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RESUMO

A fotogrametria usa basicamente a equacéo da colinearidade em que as rotacdes
segundo os eixos cartesianos sdo dadas na forma conhecida como angulos de
Euler. No entanto, podem ocorrer combinacdes desses angulos que torna a matriz
de rotacdo numa situacao instavel e, assim, operacfes acabam incorretas ou até
impossiveis, em algumas aplicacdes fotogramétricas. Este problema, chamado de
gimbal lock (ou gimble lock), € comum em robdtica, visdo por computadores e
aeronautica, quando € necessario se definir a posicéo e orientacdo de uma camara
no espaco tridimensional, e tem sido resolvido com a substituicdo dos angulos de
Euler pelo uso dos quatérnios. Em fotogrametria podem ocorrer na fotogrametria
terrestre ou a curta distancia. O presente estudo tem por objetivo usar esta solugcao
para resolver os possiveis problemas de orientacdes criticas em fotogrametria, em
aplicacdes na ressecao espacial e orientacdo relativa. Para tanto ha a necessidade
de estudar situacdes de instabilidades, matrizes de rotacdo com angulos de Euler e
quatérnios, aplicados para identificar situacdes criticas em varias operacfes da
fotogrametria. Foram avaliadas situacdes simuladas e reais dos angulos de Euler,
substituindo pelos quatérnios na ressecao espacial e orientacdo relativa. Péde ser
verificado que os modelos matematicos da ressecéo espacial e orientacdo relativa
funcionam bem para situacdes consideradas normais da fotogrametria. Os testes
efetuados comprovaram que 0s quatérnios sao mais robustos, de modo geral,
permitem que possa ser calculada a ressecdo espacial com quatro pontos de forma
direta e consegue calcular a ressecdo espacial, quando usados valores iniciais
aproximados, com um menor de iteracdes, fato que pode fornecer resultados mais
confiaveis. Os quatérnios permitem calculos de ressecdo espacial e orientacao
relativa de fotografias em posicdes com ambiguidades de rotacdes e situacdes

criticas de gimbal lock.

Palavras-chave: Gimbal Lock, Quatérnios, Fotogrametria.
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ABSTRACT

Photogrammetry uses basically the equation of collinearity in which the rotations
according to the Cartesian axes are given in known as Euler angles form. However,
combinations of these angles of rotation matrix become an unstable situation, and
thus end up wrong operations or even impossible in some applications
photogrammetric may occur. This problem, called gimbal lock (or gimble lock), is
common in robotics, computer vision and aeronautics, when it is necessary to define
the position and orientation of a camera in three-dimensional space, and has been
solved with the replacement of the angles of Euler by the use of quaternions. In
photogrammetry can occur in terrestrial photogrammetry or close range
photogrammetry. This study aims to use this solution to solve the possible problems
of critical in photogrammetry applications in space resection and relative orientation.
For this there is a need to study situations of instable, rotation matrices with Euler
angles and quaternions, applied to identify critical situations in several operations of
photogrammetry. Simulated the actual Euler angles, quaternions replaced by the
space resection and guidance on situations and were evaluated. It could be verified
that the mathematical models of space resection and orientation on work well for
situations considered normal photogrammetry. The conducted tests proved that the
guaternions are more robust, in general, allow can be calculated space resection with
four points and can directly calculate the space resection, approximate initial values
when used with a smaller iterations, the fact that can provide more reliable results.
Quaternions allow calculations of space resection and relative orientation of
photographs in positions with ambiguities of revolutions and critical situations gimbal

lock.

Keywords: Gimbal Lock, Quaternions, Photogrammetry.
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1. INTRODUCAO

A realizacdo de rotacdes no espaco € aplicada em varias areas de
conhecimento como Geociéncias, Robédtica e Computacdo Gréafica. Ha diversas
maneiras de representa-las como, por exemplo, com os angulos de Euler, a matriz
de Rodrigues, a matriz fundamental e com quatérnios.

De modo geral podem ocorrer situacdes de instabilidades em combinacdes de
rotacbes em areas como Aeronautica, Astronautica e Fotogrametria. Em
fotogrametria esses casos prejudicam a precisdo dos resultados, como na
orientacao relativa e absoluta, quando sdo usadas as representacdes pelos angulos
de Euler. Tal situacdo acontece porque varias combinacfes de rotacdes resultam na
mesma orientacdo dos eixos no espaco, em relacdo a um referencial terrestre, ou
chegam a gerar indefinicbes de orientagbes. Um exemplo em fotogrametria é
encontrado num estudo feito por Silva (1995) que, ao executar um levantamento
fotogramétrico para o calculo de coordenadas tridimensionais de pontos discretos de
um tanque cilindrico vertical, constatou que a submatriz com as variancias e
covariancias dos parametros de posicao e orientacdo de uma determinada camara
apresentavam valores com alta variancia, em ordem de grandeza muito acima das
demais posicdes. Na ocasido se verificou que havia uma situacdo de instabilidade
na matriz de rotacdo devido a existéncia de dualidades, uma vez que apresentam o
mesmo resultado com mais de uma combinacdo de operacdes com 0s angulos.

O problema néo ocorre nos casos comuns dos levantamentos aéreos em que
a aquisicdo € praticamente vertical, mas pode ocorrer em fotogrametria aérea
inclinada e terrestre, sendo que estes casos sdo pouco discutidos em trabalhos
praticos e pesquisas, porque pode passar despercebido dentro de um bloco de
fototriangulacdo. Numa fototriangulacdo ha necessidade de obtencdo da posicéo e
orientacdo da camara fotogramétrica no espago, a partir da equacdo da
colinearidade, que entre seus parametros, contém a matriz de rotacdo composta de
rotacdes sucessivas em torno dos eixos X, y e z, 0s conhecidos angulos de Euler
w,pe k, que sdo facilmente recuperaveis, mas sem a definicAo do quadrante
(KRAUS, 2000), que embora seja trivial para fotografias aéreas verticais pode nao
ser para 0s outros casos. Como ha mudltiplas possibilidades de resultados, as

operacdes de ajustamento pelo Método dos Minimos Quadrados (MMQ) podem
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convergir para valores que ndo sdo compativeis com a geometria do problema, néo
convergir ou apresentar confiabilidade baixa.

A indefinicdo de orientacdo no espaco € muito comum em Robdtica, Visédo
computacional e Aerondutica, sendo conhecida como gimbal lock, que é a perda de
um grau de liberdade rotacional (ARAUJO, 2000). Do ponto de vista matematico isto
equivale a questdo em que, quando escolhida uma sequéncia de rota¢des, ha uma
situacdo de alinhamento de dois eixos em torno dos quais se realizam as rotacoes,
fazendo com que nem todo o espaco das rotacdes possiveis possa ser atingido
numa préxima sequéncia de rotacdes (LAVIERI, 2011). A solugcdo usual adotada
nessas areas de conhecimento € a substituicdo da representacdo dos angulos de
Euler por quatérnios, que sdo uma generalizacdo dos numeros complexos para o
campo tridimensional, com a vantagem de ndo acontecer o caso de instabilidade de
solucbes (ARAUJO, 2000 e SHIH, 1990).

As ocorréncias de dualidades e gimbal lock devem merecer mais atencdo na
fotogrametria por serem pouco discutidos e porque atualmente esta havendo um
grande avanco em aplicacdes dessa ciéncia em sistemas terrestres moéveis de
mapeamento, em Veiculos Aéreos Nao Tripulados (VANTS) e sistemas aéreos com
camaras inclinadas, que criam situacoes fora dos padrées do planejamento
fotogramétrico convencional e podem gerar situagdes criticas quanto a estabilidade

do ajustamento e do processamento.

1.1 Objetivos da dissertagéo

1.1.1 Objetivo geral
Identificar e avaliar as ocorréncias de situacOes de orientagdes criticas em
fotogrametria, devido ao uso dos angulos de Euler e analisar os resultados da

substituicdo por quatérnios nas matrizes de rotagao.

1.1.2 Objetivos especificos
e Identificar as principais situacdes de instabilidades gerais em sistemas de
equacdes e problemas de transformacdes em fotogrametria de modo que

nao sejam confundidos com os casos devido aos angulos de rotacéo.
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Identificar os casos criticos da matriz de rotacdo com angulos de Euler, em
suas diversas combinacfes e sequéncias de composicdo, que geram
ambiguidades e o efeito gimbal lock.

Avaliar os aspectos tedricos, praticos e resultados da substituicdo dos
angulos de Euler pelos quatérnios em algumas operac¢des fotogramétricas,

como ressecao espacial e orientacao relativa.

1.2 AplicacBes dos quatérnios

Atualmente os quatérnios sao usados em diversas areas do conhecimento,

para resolver problemas referentes a orientagdes no espaco tridimensional entre

elas:

Cinematica: no estudo de movimentos que podem gerar o gimbal lock,
como o caso da cinemética inversa, utilizando o célculo do autovetor
(JOHNSON, 2003); ao se fazer o uso de funcdes elipticas e algebra de
qguatérnio no estudo de movimentos de giroscépios e rotacdes de corpos
rigidos (DAVAILUS e NEWMAN, 2005); ao ser buscar definir a posi¢cao de
um corpo rigido do espaco, sem que haja singularidades, com matrizes de
rotacBes e quatérnio unitario (DIEBEL, 2006); no estudo de cinemética de
robds (QIAO et al, 2010).

Matematica: na interpolacdo de rotacdes de objetos sdélidos (ARAUJO,
2000); nos estudos de fungdes quaternidnicas, no estudo da
hiperperiodicidade das funcdes exponenciais e logaritmicas com
quatérnios e na férmula de integral de Cauchy (BARREIRO, 2009).
Geodésia: na transformacdo do datum geodésico baseado em um
quatérnio, usando o MMQ (SHEN, CHEN e ZHENG, 2006); na
determinacao de atitude de satélites artificiais (FERREIRA et al, 2008); ao
resolver o problema de transformacao de coordenadas tridimensionais com
quatérnios de modo iterativo, através do método paramétrico (ZENG e YI,
2012).

Robdtica: ao se determinar a posicdo, orientacdo e a velocidade angular
de um objeto (GODDARD, 1997); no posicionamento, como modelo
matematico para sintetizar projetos de robds (GARCIA, 1999; SANTOS,
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2003); na calibracdo remota de sistemas robdticos, com a utilizacdo de
sensores internos e externos (MARQUES, 2005); para rastrear
movimentos de um corpo humano, com filtro de Kalman baseado em
quatérnios (YUN e BACHMANN, 2006); ao se estimar a posicao de uma
camara, usando linhas de correspondéncias, com matriz de rotagdo com
quatérnios (JIANG, WANG, ZHENG, 2010); na estimacédo de orientagdo de
uma camara em tempo real, a partir de uma Unica imagem distorcida
(WERNECK, 2012); no controle da cinemética de robds (MARTINS, 2013).
Visdo computacional: na orientacdo de camaras, com uso de dados
minimos para estimar essa orientacao, em problemas de correspondéncias
de ponto 2D para 3D, através de autovetores (BUINAK, 2012).

Astronomia: ao buscar estimar posicées, através de matrizes de rotacdes
linearizadas e algebra de quatérnio durante o processo de derivacoes,
para evitar singularidade (BARFOOT, FORBES e FURGALE, 2010); para
se estimar a posicdo de corpos rigidos (GROYEKATTHOFER e YOON,
2012).

Geomaética: na determinacdo de atitude com precisdo, usando GPS e
quatérnios (WON, KO e LEE, 2001).

Biomedicina: na orientacgdo de uma molécula (KARNEY, 2007); na
modelagem cinematica das articulacdes humanas, com interpolacéo linear
esférica (PENNESTRI e VALENTINI, 2009); no mapeamento da estrutura
global da proteina (HANSON e THAKUR, 2012).

Engenharia naval: na estimacdo de posicdo, com filtro de Kalman
estendido (MARINS, 2000); ao se estudar métodos de navegacdao inercial
aplicados a langamentos submarinos (LAVIERI, 2011).

Computacéo grafica: no estudo de animacdo em tempo real (MALVEZZI,
2004).

Em se tratando dos trabalhos desenvolvidos com quatérnios em fotogrametria

podem ser citados:

Orientacdo absoluta: ao se fazer o ajustamento com trés ou mais pontos
(HORN, 1987).

Triangulacdo, com a interpolacédo linear esférica (JUN, DONGHONG e
YONGSHENG, 2008).
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e Meétodos de ajustamento de blocos (TRIGGS et al, 1999);

e Equacdo da colinearidade e transformacado isogonal (GALO e TOZZI,
2001).

e Orientacdo exterior: ao realizar a orientagdo exterior, com ajustamento
linear (JI et al, 2000).

e Automacado de processos do LIDAR e de pontos 3D do modelo digital da
superficie (ARMENAKIS, GAO e SOHN, 2012).

e Orientacdo interior com pontos de fuga, com uma ortonormalizacdo da
matriz de rotagédo (FORSTNER, 2012).

Para as aplicacdes fotogramétricas que sdo abordadas nesta dissertacao,

foram usadas referéncias ja citadas e principalmente as seguintes:

e Ressecdo espacial: Calculo sem a necessidade de valores iniciais com um
quatérnio obtido através de autovetores (GUAN et al, 2008); Calculo da
ressecdo espacial com interpolacao linear esférica (JIANG et al, 2010).

e Orientacdo relativa: Orientacdo relativa e ressecdo espacial (HINSKEN,
1988); Orientacdo relativa com a equacdo da coplanaridade, sem a
necessidade de valor inicial (HORN, 1989); orientacéo relativa, usando a
condicao de coplanaridade e quatérnios (GALO, 2003); Orientacao relativa
com quatérnios duais (LIN et al, 2010).

e Célculo das distancias do centro perspectivo aos pontos no espacgo objeto
(GRAFAREND e SHAN, 1997).

e Calculo das matrizes de rota¢des (POPE, 1970).

1.3 Estruturacao da dissertacao

O presente trabalho esta estruturado em sete capitulos. O Capitulo 1-
introducéo, onde é feita a contextualizacdo da tematica, apresentacao dos objetivos
da dissertacao e revisdo do estado da arte.

No Capitulo 2 € feito um levantamento bibliografico sobre: Situacbes de
instabilidade, Angulos de Euler e Gimbal lock.

No Capitulo 3 é feito um estudo sobre a matematica basica de quatérnios e a
formacdo das matrizes de rotacbes com os quatérnios, por ser a solucdo proposta
para esta dissertacéo.
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No Capitulo 4 trata-se das aplicacdes fotogramétricas abordadas nesta
pesquisa: ressecdo espacial com quatérnios e a orientacéo relativa com quatérnios

No Capitulo 5 séo estudados os elementos necessarios para implantacéo dos
guatérnios na ressecao espacial e orientacao relativa e os resultados obtidos com as
implementagodes.

No Capitulo 6 apresenta-se uma sintese dos resultados obtidos com as
implementacdes de quatérnios na ressecao espacial e na orientacao relativa.

No Capitulo 7 sdo apresentadas as conclusdes e recomendacdes deste

trabalho.
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2. ESTUDO DE SITUACOES DE INSTABILIDADE

Neste capitulo sdo estudas de forma breve, as situacdes de instabilidades que
podem ocorrer ao serem resolvidos sistemas de equacbes, seja por motivos do
préprio modelo matematico (como, por exemplo, o uso das matrizes de rotacdes
com os angulos de Euler), seja pelo tipo de algoritmo empregado para a solucéo ou
pela posi¢éo dos pontos que entram na solugéo. Esta abordagem tem o objetivo de
mostrar que situacdes de instabilidades podem ocorrer por varias origens e é
necessario se ter algumas pistas do possivel, ou possiveis, motivos, além dos casos
relativos as matrizes de rotacfes, que serdo objeto de outros capitulos.

A forma mais conhecida de andlise de solu¢Bes de sistemas de equacdes
vem da analise de determinantes (GEMAEL, 1994). A partir deles € possivel definir
se um sistema é possivel (determinado ou indeterminado), ou impossivel. As
dificuldades aparecem guando os determinantes tém valores muito diferentes entre
si, ou tem valores muito grandes, ou muito pequenos; o que € provocado por
incognitas que tem alta correlacdo entre si ou por inconsisténcia de dados com erros
grosseiros. Estes dois Ultimos aspectos sdo, certamente, a maior origem dos
problemas na area de ciéncias geodésicas aplicadas, porque sdo usados modelos
matematicos que inerentemente tem parametros correlacionados e sdo usados
dados ou observacdes com erros aleatérios e sistematicos. Esses erros sao
responsaveis por sua vez também por inconsisténcia dos dados, que os métodos de
MMQ podem resolver.

Os aspectos dos topicos discutidos a seguir tem muito a ver com a teoria dos
determinantes ja citada, mas chama a atencédo para procedimentos que de forma

mais direta podem ajudar a detectar situacdes de instabilidades.

2.1 Indicadores de situacbes de instabilidades de sistemas de equacdes

lineares

Um sistema de equacdes lineares é dito ser mal condicionado quando uma
pequena mudanca nos elementos, do termo independente ou da matriz dos
coeficientes, acarretar uma grande mudanca na solucdo se comparada com a
solucéo inicial. O mau condicionamento acontece devido a quase singularidade da
matriz dos coeficientes (CAMPOS FILHO, 2001). A titulo de exemplo de sistema mal
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condicionado é mostrado o sistema a seguir (CAMPOS FILHO, 2001), que tem como
solugcéo a equacgao 2.

x+ 0,99y =199 .
{0,9936 + 0,98y =1,97 €Y)
Xt=0 1 (2)

Caso o valor 0,98 da segunda equacédo de (1) seja modificado para 0,99 a
solucdo muda completamente (CAMPOS FILHO, 2001):

X= (—0,5101) (3)

E possivel observar que as equacdes do sistema mostrado na equacéo 1
apresentam coeficientes angulares bem parecidos. Do ponto de vista geométrico
essas equacOes sdo quase coincidentes. Este exemplo mostra que sistemas de
equacodes, cujas retas sdo quase coincidentes formam um sistema mal condicionado
(BAJPAI, MUSTOE e WALKER, 1980).

Nos trabalhos de Gemael (1994) e Berberan (2002) encontram-se varias
descricbes de motivos e indicadores de sistemas mal condicionados. A seguir serdo
citados alguns:

e Determinante de uma matriz que tenha apenas valores pequenos, mas

cuja respectiva inversa contenha valores numéricos grandes. Por exemplo,

a matriz M a seguir e sua inversa M™:

11 1 _ (—1000 1000

M= (1,001 1)' M= 1001 —1000) ()
Det (M) = —0,001 (5)
Det (M~1) = —1000 (6)

Na equacdo 5 a matriz M possui determinante de pequeno valor numérico,
engquanto na equacéao 6 o determinante apresenta grande valor numérico.

Entretanto é importante deixar claro que se o determinante for composto de
elementos de alto valor, do ponto de vista numérico, ndo significa sempre que a
matriz € mal condicionada (GEMAEL, 1994), portanto o valor do determinante nem
sempre € um bom modo de verificar o condicionamento de um sistema (CAMPOS
FILHO, 2001).

e Inversas muito sensiveis ou instaveis. Seja, por exemplo, a matriz M a

seguir (GEMAEL, 1994):
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> 7605 621 _2‘;1 _1](-)7 1(()3\
7 10 8 7 -1 - -

M = =>M =
6 8 10 9 -17 10 5 -3

(7)

Se o elemento my; de M mudar de cinco para 4,99 a matriz inversa (equacéo

8) ser4 completamente diferente de M™ da equacdo 7, o que pode comprometer

seriamente os resultados esperados dos célculos.

/ 2125 128125 -53125 3125 \
-128125 7753125 3178125 -188125
A4‘1==| ~53125 3178125 1403125 -83125 |

\ 3125 -188125 -83125 5125 /

(8)

e Forte correlagédo entre parametros. Numericamente isto acontece quando o

valor absoluto da correlacdo € proximo de um. Para haver independéncia

entre os parametros o valor ideal deve ser zero (ou bem préximo deste)

(MONTGOMERY e RUNGER, 2002).

Um exemplo de correlacdo forte em fotogrametria € encontrado em Silva

(1995) no qual a Matriz Variancia Covariancia (MVC) dos parametros de calibracao

de uma camara gerou a matriz de correlacdes mostrada a seguir (a forte correlacéo

entre k, e A’ de -0,87 esta realcada):

- f Xp Yo key ko A B'

f 1,000 0,070 0,040 -—-0,040 0,020 -0,030 -0,020

Xp 0,070 1,000 -0,000 -0,070 -—-0,050 0,230 -0,020
Ya 0,040 -0,000 1,000 -—0,020 -0,020 -0,020 0,160
iy -0,040 -0,070 -—-0,020 1,000 -0,010 0050 -0,030
k4 0,020 -0,050 -—-0,020 -0,010 1000 €0,870% —0,140
A —0,030 0230 —0020 0,050 €0,870 31,000 0,100
B' —-0,020 -0,020 0,460 -0,030 -0,140 0,100 1,000

em que:
f distancia focal,

Xy € yo coordenadas do ponto principal,

k; parametros de distorcéo radial, comi = 1,2;

A’, B’ fatores de correcao de escala e ndo ortogonalidade.

9)

e Andlise da distribuicdo de probabilidade t-Student dado por (BERBERAN,

2002):
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X:

b=t /2 = — (10)

ox;
em que:

m; € 0 numero de equacoes;

o, representa o nivel de confianga dos dados;

x; € 0 parametro;

oy, variancia de x;.

O valor de t é calculado para m — 1 graus de liberdade para medir o nivel de
confianca oc. Tem a finalidade de avaliar se uma variavel pode ser considerada como
valor zero e ser retirada do modelo matematico ou permanecer. Esta analise é (til
guando, além do valor baixo, se suspeita que haja correlacdo entre incognitas, fato
que pode tornar o calculo instavel (BERBERAN, 2002);

e Os numeros de condicdo de uma matriz podem ser um meio apropriado

para medir 0 quanto a matriz € mal condicionada (CAMPOS FILHO, 2001),
mas nenhum indicador retne condi¢cdes para permitir um diagndstico
definitivo de mau condicionamento (GEMAEL, 1994). Existem varios deles,
como exemplos: o numero de condicdo de Turing, de Todd, de H. Quando
esses numeros sdo elevados significa que pode haver situacdo de
instabilidade. As equacdes a seguir apresentam os modelos matematicos
desses numeros:

e Numeros de Turing da matriz M:

, 2 _ t
tt te = tT'(M M) .
Th=—1.2 ANt ape1s (119
n(t S =tr[((M~)'M™]
T, = nmax|mi]- | max|m'l-j | (11 i0)

em que:
tr é o traco da matriz;
n dimensao da matriz;
m;; € um elemento da matriz M.

Se o trago da matriz for muito grande, ao dividi-la pelo valor que indica a
ordem da matriz, o valor de T; sera muito alto. J4 o valor T, serd muito elevado
guando o maior elemento da matriz em questéo for muito grande.

e Numero de Todd (com A; sendo os valores préoprios da matriz M):

max A

Nropp = (12)

min A
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Se o maior valor proprio da matriz for muito grande e o menor valor préprio for
bem pequeno, logo a divisdo sera um valor bastante elevado.
e Numero de condi¢cdo H (em que A; representa os valores proprios da

matriz produto M*M):

H — max u (13)

min u

De modo geral em alguns softwares, como o MATLAB® e Scilab, & comum
gue exista um indicador de mau condicionamento, o "rcond”, ao invés do niumero de
condicdo. A funcdo rcond, nesse software, indica 0 nimero reciproco (que em
linguagem matematica quer dizer numero inverso) do numero de condi¢do
(MATLAB®, 2013).

2.2 Instabilidade pelo tipo de algoritmo empregado na solucdo de sistemas

lineares

Acontecem situa¢cfes de instabilidade devido as caracteristicas do algoritmo
adotado para a solucédo de sistemas de equac¢des normais, em combinacdo com o
namero de algarismos significativos dos programas e do processador do
computador. Estes casos sdo comuns na area de Geociéncias, principalmente em

calculos pelo MMQ.

S6 é confidvel resolver um problema de minimos quadrados com equacfes
normais se o numero de condicdo da matriz dos coeficientes for menor que o inverso
da raiz quadrada da unidade de arredondamento do computador em questdo. O

modelo matematico necessario para assegurar tal confiabilidade (GARNES, 1996) é:

1
C(M) < \/_ﬂ (14)

em que:
C representa o numero de condigao;

M é a matriz dos coeficientes;

u é a unidade de arredondamento do computador.

Para a resolugéo do sistema de equacdes podem ser usados métodos diretos
ou iterativos. Dentre os métodos diretos encontram-se: Método de Inversdo, Regra
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de Cramer, Banachievicz, Escalonamento, Cholesky, QR, Decomposi¢cdo Low Upper
(LU) e Decomposi¢do do Valor Singular (SVD). Os métodos mais recomendado sao
0 QR e 0 SVD, que € uma das ferramentas mais importantes na analise do problema
de minimos quadrados linear, pois ndo forma, explicitamente, equacbes normais
(GARNES, 2001).

Ha também métodos iterativos para resolver sistemas de equacdes, como:
Jacobi, Gauss-Seidel, Sobre-relaxacdo sucessiva (do inglés Successive Over-
relaxation-SOR), Gradientes conjugados e Gradientes conjugados com pré-
condicionamento. O método que converge melhor é o dos gradientes conjugados
com pré-condicionamento, quando o nudmero de condi¢cdo for grande (como por
exemplo, elevado a poténcia 10) e entdo podem ser agrupadas todas as
observacdes (GARNES, 2001).

2.3 Instabilidade por posicdes e distribuicdes de pontos

As situacBes de instabilidades por posicoes e distribuicdes de pontos usados
obrigatoriamente em muitas operacfes geodésicas, e particularmente em
fotogrametria, a rigor tem a ver diretamente com a possibilidade de existéncia, ou
ndo, de dependéncias lineares ou de correlacdes, entre as variaveis. Aqui Sao
apresentados alguns casos que devem ser evitados, classificados em trés grupos: a)
geometria deficiente dos pontos; b) distribuices relativas e densidade de pontos; )

Circulo ou cilindro critico.

2.3.1 Geometria deficiente dos pontos

A figura geométrica com melhor rigidez é o triangulo equilatero e os pontos de
apoio a serem usados em diversas operagbes fotogramétricas deviam
preferencialmente atender a essa distribuicdo. Porém na pratica pode ocorrer
formacao de triangulo com um angulo agudo muito pequeno ou com 0s trés pontos
guase colineares. Por exemplo, em fotogrametria pode ser o caso de uso de trés
pontos quase colineares para célculo da ressecdo espacial ou para orientacdo
absoluta de um modelo estereoscoépico. A Figura 1 mostra exemplos de posicéo

favoravel e desfavoravel para a ressecao espacial, sendo C € o centro perspectivo
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(CP) e pi, com i variando de 1 a 5, as coordenadas no espaco objeto. No primeiro
caso (Figura la) a configuracdo dos pontos é favoravel. A geometria passa a ser
desfavoravel, na Figura 1b, pelo pequeno angulo de visada e pela colinearidade dos

pontos p;1, p2 € ps.

Figura 1- Situacao de instabilidade por geometria deficiente dos pontos.

Figura 1 (a) Configuracdo favoravel Figura 1 (b) Configuracdo desfavoravel

| Foa

4] ]

2.3.2 Distribuigdes relativas e densidade dos pontos

Ocorrem algumas situacbes de inconsisténcias no calculo da orientacéo
relativa por conta da distribuicdo dos pontos homoélogos. Para que esta operacao
seja bem sucedida devem ser eliminadas as paralaxes em y em seis pontos (0s
pontos de Von-Griiber). Na fotogrametria digital esta operacdo pode ser realizada
em dezenas (e até centenas) de pontos, mas € necessario que as duas imagens
tenham correspondéncia entre si, que 0s pontos homédlogos estejam bem
distribuidos e que sejam inequivocamente identificados e medidos. Isto é obtido com
0 processamento automatico de correspondéncias (matching) de imagens digitais
com o devido recobrimento, mas podem ocorrer situacbes de inconsisténcias,
porque dado um ponto numa imagem, O ponto correspondente na outra imagem
pode ndo existir, devido a fatores como: obstaculo cobrindo o ponto, por mudanca
da posicdo da camara que cria oclusGes, ou por existirem multiplos homadlogos
devido a padrdes repetitivos (GALO, 2003; SANTOS, 2006). A Figura 2 mostra duas
imagens, na imagem da esquerda aparecem as fachadas das casas que deixam de
existir na imagem da direita devido & mudanca de posi¢do da camara.
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Figura 2- Oclusdes devido posi¢des diferentes da camara.

2.3.3 Cilindro critico

Uma situacdo instavel pela posicdo dos pontos pode ocorrer na orientacdo
relativa, quando o terreno € acidentado e coincide que os pontos estejam em um
cilindro, como mostrado na Figura 3. Este caso é conhecido como Cilindro Critico,
em que os pontos Pt de 1 a 8, e os centros perspectivos (CP; e CP,) estdo num
cilindro (KRAUS, 2000).

Figura 3- Pontos do espaco objeto e centros de exposi¢éo localizados num cilindro.

z CP:

Fonte: Adaptado de Kraus (2000).

2.3.4 Circulo critico

Pode ocorrer o circulo critico em casos de orientacdo interna, quando sdo

medidas oito marcas fiduciais distribuidas como mostra a Figura 4 (GHOSH, 1925).

SILVA, A. M. 31



A representacdo das matrizes de rotag6es com o uso dos quatérnios: aplicagdes a Fotogrametria

Figura 4- Localizacdo das marcas fiduciais em condicao critica.

Fonte: Adaptado de Ghosh (1925).

A distribuicdo dessas marcas fiduciais, embora naos seja comum nas cameras
fotogramétricas usuais, encontra-se semelhante a um circulo. O modelo matemético
gerado por essa distribuicdo € (GHOSH, 1925):

x2 +y?=r? (15)

em que r? representa uma constante e estabelece a dependéncia dos termos. Este

modelo apresenta fortes correlacdes.

Uma distribuicdo ideal é apresentada na Figura 5 em que foi introduzido um
nono ponto no centro (GHOSH, 1925).

Figura 5- Localizacdo das marcas fiduciais de forma a evitar circulo critico.

+ + +
+ + +
+ + +

Fonte: Adaptado de Ghosh (1925).

2.4 Situacdes de instabilidades nas matrizes de rotacdo com angulos de Euler

Os angulos de Euler sdo usados normalmente em fotogrametria, e em muitas
outras disciplinas, na formagdo das matrizes de rotagdo, mas em muitos casos
apresentam situagfes de instabilidades, dualidades e condi¢fes criticas, que seréo

discutidas a sequir.
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2.4.1 Angulos de Euler

Os angulos de rotacdo w, ¢, k associados aos eixos X, y e z, sdo chamados
de angulos de Euler. Em fotogrametria, sdo os parametros que indicam a orientacao,
ou também atitude, da fotografia no espaco e fazem parte dos parametros de
orientacdo exterior, ao lado dos parametros de posicdo (LUGNANI, 1987).
Significam rotagbes que ocorrem no sistema local de coordenadas de cada camara,
em relacdo ao referencial do terreno e que sédo aplicadas com os objetivos de tornar
a camara paralela aos eixos definidores do sistema de coordenadas no espaco
objeto (COELHO e BRITO, 2007).

A orientacao feita pelos angulos de Euler representam as rotacdes em torno
dos eixos cartesianos, sendo que w representa a rotacdo em torno do eixo X, ¢ é a
rotacdo em torno do eixo y e k representa a rotacdo em torno do eixo z (Figura 6).
Nota-se que o sentido da rotacao é dextrogiro e anti-horario olhando para a origem
do sistema.

Figura 6- Rotagcfes com os angulos de Euler.

Figura 6 (a)- Rotacdo angulo w. Figura 6 (b)- Rotacao angulo .
v 4
2 f]
% v
o S O Fd
/ 7
/ \‘ // y .
/ 1 ,l II
4 Y _— X X
(4
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I/ ',

7 7

Gmmm n===.-=====:J

Fonte: Adaptado de Wolf e Dewit (1983).
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Na Figura 6 (a) é mostrada a rotagdo em torno do eixo x por meio do angulo
w. Em 6 (b) a rotacdo em torno do eixo y (através do angulo ¢) e em 6 (c) a rotacéo
em torno do eixo z (angulo k). Nestas figuras x'y, ¥'1, z'1, '3, ¥'2, 2’5, Z', x , y' sd0 os
eixos apods as rotagdes. Este sistema € 0 mais comum da fotogrametria, no entanto
h& outras nomenclaturas para esses angulos, adotadas, por exemplo, em aviagao,
sensoriamento e outras areas, como roll, pitch e yaw (NASA, 2008; FIGUEIREDO,
2005), em sistemas inerciais roll, pitch e Heading (BAUMKER e HEIMES, 2001). Em
fotogrametria terrestre podem ser usados w, —a (ou - ¢), K (SLAMA, 1980; WOLF e
DEWIT, 1983). Em fotogrametria inclinada também € usado o sistema tilt, swing, a
(azimute) (WOLF e DEWIT, 1983).

O Quadro 1 relaciona os angulos de Euler com as outras nomenclaturas,

menos para o sistema tilt, swing, a que n&o tem uma equivaléncia direta.

Quadro 1- Relagéo dos Angulos de Euler com outras nomenclaturas.

w 17 K
-Roll -Pitch -Yaw
Roll Pitch Heading
W —a(ou — @) —K

A orientacdo baseada nos angulos roll (rolamento), pitch (arfagem) e yaw
(deriva) sdo aplicados ao controle da orientacdo de aeronaves (NASA, 2008 e
FIGUEIREDO, 2005). Os angulos roll (rolamento), pitch (arfagem) e heading (que
equivale ao angulo yaw) séao aplicados em sistema de navegacao inercial, que por
sua vez é baseado na integracdo continua das aceleracbes medidas pelos
acelerbmetros. Para a correcdo devido a gravidade, e outros efeitos, as aceleracdes
devem ser transformadas num sistema de coordenadas local, que é o sistema de
coordenadas de navegacdao, e essa transformacao é feita via matriz de rotacédo que
inclui esses trés angulos (BAUMKER e HEIMES, 2001). Esses angulos em

aeronautica estao ilustrados na Figura 7.
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Figura 7- Orientacdo dos angulos roll, pitch e yaw em aviacao.

Centrode
gravidade

Eixo Arfagem

+ Arfagem
(pitch)

Eixo Rolamento

Eixo Deriva
+ Rolamento

(roll)

Fonte: Adaptado de NASA (2008).

Deriva
(yaw ou heading)

O sistema de orientacdo definida pelos angulos w, —a e k é aplicado na
fotogrametria terrestre e pode ser visto na Figura 8 (SLAMA, 1980). Também ha
autores que usam o sistema w,@ e k, mas tendo o ¢ com sentido horario, como
ilustrado na Figura 9 (WOLF e DEWIT, 1983).

Figura 8- Orientacdo definida pelos angulos w, -a e Kk na Fotogrametria Terrestre.

Fonte: SLAMA (1980).

SILVA, A. M. 35



A representacdo das matrizes de rotag6es com o uso dos quatérnios: aplicagdes a Fotogrametria

Figura 9- Orientagdo com os angulos w, -¢ e k na fotogrametria terrestre.

i e

Fonte: Adaptado de Wolf e Dewit (1983).

Outro sistema de orientacdo que também é muito utilizado é: tilt (t), swing (s)
e azimute (a) (Figura 10). O angulo t € o angulo entre o eixo Optico da camara e a
linha vertical. O angulo de inclinagdo proporciona a magnitude da inclinagcdo de uma
fotografia, que pode ser dada através de diferentes modos (no sentido frontal ou nos
sentidos laterais).

O angulo s € a posicéo da linha principal na fotografia com relagéo ao sistema
de referéncia do eixo fiducial. E definido como o angulo dos ponteiros do relogio,
medido no plano da fotografia, a partir do eixo y positivo ao fim do nadir da linha
principal e d& a direcédo de inclinacdo na fotografia.

O angulo a da a orientacéo do plano principal com relacdo ao eixo do sistema
de referéncia do espaco objeto. E medido no sentido horario a partir do eixo Y do
solo (geralmente norte) para a linha principal do datum e no plano de referéncia (ou
em um plano paralelo ao plano de referéncia). A equacgéo a seguir apresenta uma
relacdo matematica que pode ser estabelecida entre os angulos w, ¢ de Euler e t
(TEWINKEL, 1952):

tgt = Jtg2 o +tg% w (16)
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O sistema tilt-swing-azimute néo tem relacéo direta com os angulos de Euler.
Estes angulos de Euler podem ser obtidos através dos angulos do sistema tilt, swing

e azimute com um célculo vetorial (DEWITT, 1996).

Figura 10- Interpretacdo geométrica do sistema tilt (t), swing (s) e azimute (a).

Linha principal
do Datum

Fonte: Adaptado de Wolf e Dewit (1983)

Os dois sistemas sao diferentes e o sistema com 0s angulos w, ¢ e k traz
mais vantagens computacionais e por isso € mais popular, mas o sistemat,se a é
compreendido de modo mais facil e tem sido utilizado (WOLF e DEWITT, 1983). A

Figura 11 mostra as interpretacdes geometricas dos dois sistemas de orientacao.
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Figura 11-Composicao dos sistemas de orientacdo com angulos de Euleret, s e a.

z

Eixoda
camara

bt

Fonte: Adaptado de Engineer manual (1993).

Este sistemat, s e a, também tem aplicacdes na robdtica e € comentado, por
exemplo, em BATISTA et al (1995) e BARRETO (2000).

2.4.2 Convencdes usadas nas matrizes de rotagao

Para as rotacdes serem perfeitamente definidas no espaco 2D e 3D, e nao
haver duvidas de interpretacdo, devem estar claras as seguintes convenc¢des quanto
aos sinais algébricos:

e Se arotacdo é ativa ou passiva;

e Qual o sentido de giro positivo;

e As posicgoes relativas dos eixos dextrogiro ou levogiro.

A Figura 12 mostra rotacdes passiva e ativa tomando como referéncia um
retdngulo. Na rotagdo ativa o sistema de referéncia permanece estatico e o objeto é
transformado. Na rotacdo passiva 0 sistema varia e 0 objeto fica estacionario

(LUGNANI, 1987). Em resumo, o termo ativo ou passivo refere-se ao objeto.
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Figura 12- Exemplo de rotacdo passiva e ativa.

Figura 12 (a)- Rotacdo passiva Figura 12 (b)- Rotacdo ativa.
r y 1
¥ Y -

Na Figura 12 (a) o sistema cartesiano € rotacionado da posicéo inicial (em
linha continua) para a posicao final (em linha tracejada), enquanto o espaco
permanece estatico e o sistema de referéncia varia. Ja na Figura 12 (b), rotacdo
ativa, o espaco é transformado (da linha continua para tracejada), enquanto o
sistema de referéncia permanece estacionario (LUGNANI, 1987). Em termos
praticos se passa de um para outro sistema apenas trocando os sinais dos senos
gue compdem as matrizes de rotacdes ou trocando os sinais da rotacéo, ou seja, 0
resultado da rotacao de sentido positivo num sistema € o mesmo com sinal negativo
no outro.

O sentido de rotacao positivo deve atender a convencao de giro anti-horario
ou horério. No sistema dextrogiro (de méo direita) as posicoes relativas dos eixos
xyz sao equivalente as posicdes dos dedos polegar, indicador e médio,
respectivamente, estendidos e fazendo 90° ente eles, enquanto no levogiro a

referéncia € a mao esquerda.

2.4.3 Matrizes de rotagcdo com angulos de Euler

Quando as rotagbes em fotogrametria sdo representadas pelos angulos de
Euler considera-se que a matriz de rotacdo resultante seja o produto de trés
rotagbes associadas a cada eixo do sistema cartesiano tridimensional (x, y e z)
(GALO e TOZzI, 2001). A matriz resultante também €& chamada de matriz de
cossenos diretores (LAVIERI, 2011).

As matrizes de rotacdo sdo exemplos de matrizes ortogonais. Uma matriz

quadrada M,,,, é ortogonal quando vale a relacdo (LUGNANI, 1987):
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MM =1,e MMt =1, (17)
ou seja, Mt = M1,
Um exemplo é a matriz descrita a seguir (MANFRA, 2004):

M=(cqs<p —smgo) (18)
sing  cosg

As matrizes de rotacles independentes ativas R; (w), R, (¢) € Rz (k) para 0s
eixos X, y e z, respectivamente, tem os seus elementos com as posi¢cdes dadas por
(POPE, 1970):

1 0 0
0 cosw —senw (29)
0 senw cosw

cosep 0 seng
0 1 0 ) (20)
—seng 0 cos@
cosk —senk 0
sen k cosk 0 (22)
0 0 1
Nas equivalentes passivas apenas o sinal do seno € trocado e séo:
1 0 0
0 cosw senw (22)
0 —senw cosw
cosp 0 —seng
< 0 1 0 ) (23)
sengp 0 coso
cosk senk 0
—senk cosk O (24)
0 0 1

Ha quatros possibilidades de multiplicacdo de rotacdes. Dois no sistema ativo
e dois no sistema passivo (FORSTNER e WROBEL, 2004).
e Rotacdes no sistema ativo:
a) Rotagdo Rz (k) X Ry(¢) X Ry (w);
b) Rotacdo R;(w) X R,(¢) X R3 (k);
e Rotacdes no sistema passivo:
c) Rotacao R;(w)! X Ry (@)t X R (k) &;
d) Rotagdo R; (k) t X Ry(¢)*t X Ry (w)*;
A sequéncia das rotacdes pode ter qualguer ordem de multiplicagdo, mas
como o produto de matrizes ndo é comutativo, a ordem em que acontecem as
rotacdes afetam as resultantes (GALO e TOZZI, 2001).
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As rotagcOes nas letras a e d sdo de multiplicacdo pela esquerda, ou seja,
R; X R, X R;. Ja as rotacOes apresentadas nas letras b e ¢ sédo o produto da rotacéo
pela direita, ou seja, Ry X R, X R;.

O produto Ry;3 = R3 X R, X Ry indica que a primeira rotacdo € a R;, depois é
aplicada a R; e finalmente a Rz, com isso surge a sequéncia de rotacdo 123. Dessa
forma R; é a rotagdo priméria, R, é a rotagdo secundaria e R3 é a rotacao terciaria.

Com essas relacdes pode-se observar que a sequéncia de multiplicacao
apresentada em a tem por inversa a sequéncia de multiplicacdo mostrada em c,
assim como d € a inversa de b. Para mais detalhes consultar Forstner e Wrobel
(2004).

Ha diversas sequéncias de rotacdes em fotogrametria. A seguir € ilustrada
como exemplo a matriz de rotacdo da sequéncia wgk, no sistema ativo (as demais

sequéncias podem ser encontradas no Apéndice A).

Rw(px = R3(1) X Ry () X Ry (w) =

COSKCOS(® COSK Sen@ senw —SenKcosw COSK Sen @ cosw + Senk sen w
SenkKcos@ senksen@senw + COSKCOSw Senk sen @ cosw — COSK sen w
—sen ¢ Cos@ senw CoOsS @ Cos w

(25)

Além desse tipo de sequéncia de rotacdes em torno de trés eixos diferentes
existem outras em torno de dois eixos. Nestas sequéncias também acontecem trés
rotacdes, de modo que se tém uma rotacdo em torno de um primeiro eixo, depois a
rotacdo em torno de um segundo eixo e, por fim, ha outra rotacdo em torno do
primeiro eixo (que ja havia sido rotacionado). Assim passam a surgir sequéncias do

“* ”
~

tipo xyX, xzX, yxy, yzy, zxZ e zyZ (onde 0 eixo com indica uma nova rotagdo em
um eixo antes ja rotacionado). A equacdo a seguir apresenta a matriz de rotacao
resultante da sequéncia we@ para o sistema ativo (as demais sequéncias podem ser
vistas também no Apéndice A):

Ryps = R3(@) X Ry(¢) X Ry(w) =

Cos @ sen @ sen w sen @ cos w
sen®sen COS®WCOSW — Sen ®WCoS(P Ssen w — CoS® Sen w — sen M CoS (P COS W (26)
—cossen@ sen ®COSwW + COSWCOSP sen w — Ssen o sen w + Ccos @ COS  COS W

A matriz de rotagdo dos angulos do sistema a, t e s é deste tipoem que a e s

acontecem em torno do eixo vertical e tem a forma (SHIH, 1990):
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cosssen a— senscostcosa sensseno —cosscostcosa —sent cosa
—senssent —cosssent cost

(27)

—COSScosa—senscostsena senscosa—cosscostsena —sentsena
. )

Ha uma diferenca entre as definicbes para angulos de Euler e angulos
eulerianos. Quando acontecem sequéncias como xyX (duas rotacdes em torno de
mesmo eixo, neste caso x) sdo chamados de angulos eulerianos e sdo comuns em
astronomia e fisica (POPE, 1970).

Um exemplo desse tipo de sequéncia de rotacdo € apresentado na Figura 13,
na qual acontecem duas rotacdes em torno do eixo z e uma sobre o eixo y
obedecendo a sequéncia zyZ. A primeira rotacdo acontece em torno do eixo z, com
0 angulo kappa. A segunda rotacao ocorre em torno do eixo y e a terceira rotagéo

acontece novamente sobre o eixo z (agora indicado pelo angulo k) (KRAUS, 2000).

Figura 13- Esquematizacéo da sequéncia zyz.

01X Yo.Z,)

'\
\

N
/

i
k

Fonte: Adaptado de Kraus (2000).

O modelo matematico usado para encontrar as coordenadas de P’ é dado por
(LUGNANI, 1987):
P =Ryy3 X P (28)
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em que:
Ri»3 € uma matriz de rotacao;
P é o vetor com coordenadas a rotacionar.
Para simplificar podem-se escrever essas matrizes como:
1 Tz T3
R = (7‘21 722 7’23) (29)
31 T32 733
De modo geral € relativamente facil descobrir os valores de w, ¢ e k, desde
gue sejam conhecidos os elementos da matriz de rotacdo e qual a sequéncia
efetuada das rotacGes, como relacionadas nas equacdes 25 a 27. Por exemplo, para
obter esses valores a partir da equacgédo 25 podem ser usadas as seguintes relacoes
(KRAUS, 2000):

w=arctg (Z—;) (3010)
¢ = arc sen (—731) (30 1)
K =arctg (%) (30 iii)

Em MATLAB® existe também a funcéo atan2 (funcdo inversa da tangente),
que encontra angulos nos quatro quadrantes (MATLAB®, 2013), fato que pode

facilitar a extracdo dos angulos de Euler em varios casos (SANTOS, 2003).

w = atan2 (r33,733) (310)
@ = atan2 (—r31, (sqrt (r$, + r323))) (31ii)
Kk = atan 2 (ry1,111) (31 iii)

A equacédo 31 ii € muito Gtil quando o angulo da rotacdo secundaria é maior
que noventa graus, j& que ao usar a equacdo 30 ii alguns resultados em MATLAB®

sdo dados em numeros complexos, uma vez que o dominio da funcdo arco seno
compreende o intervalo [—%%] A validade de 31 ii é verificada a seguir:

atan 2 (— 131, (sqrt (rd, + r323))) =

atan 2 (—sen @, (sqrt ((—senw cos ¢)? + (cos w cos (p)z))) =

atan 2 (—sen o, (sqrt(cos ¢? (sen w? + cos wz)))) =atan2 (-sen ¢, sqrt (cos¢?))

= atan 2 (—sen ¢, cos @) (32)

A fung&o é valida para valores de —~ < ¢ < ~.
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Porém, ha dualidades com os modelos da equacdo 30. Considerando, por
exemplo, os angulos w = 70°, ¢ = 5° e k = 30°, a matriz de rotacdo da equacéo 25

resulta em:

0,498 0337 —-0,799
-0,087 0936 0,341

0,863 -—0,100 0,496
R=< ) 33)

Procedendo agora no sentido inverso para obter o valor de cada angulo, o
valor de ¢ sera dado pela equacao 51ii. Como r3; = singp = —0,087 resulta ¢ igual
a 5° ou 175°, ja que o seno positivo produz valores no primeiro e segundo quadrante
(caso analogo se o seno for negativo). Esta ambiguidade do angulo ¢ ocasiona
ambiguidade também nos demais angulos de Euler, uma vez que os dois valores
podem satisfazer a solucdo ao mesmo tempo (SHIH, 1990).

Para superar tais ambiguidades podem ser estudados os sinais das funcdes
senos e cossenos da rotacdo intermediaria. Para a equacdo 25 a extracdo dos
angulos de Euler obedece as seguintes equac¢des (SHIH, 1990):

Se cos ¢ for positivo:

k = atan2 (1y1,711) (341)

1 .
@ = —atan2 <r31, (cos K)) (34 ii)
w = atan 2 (r33,733) (34 iii)

Se cos ¢ for negativo 34 ii deve ser:

¢ = atan 2 <r31,( i )) (35)

COS K

Além das ambiguidades ocorrem situacbes de instabilidade nas matrizes

resultantes de rotacdes que serdo estudadas na préxima secao.

2.4.4 Gimbal lock

O gimbal lock é a perda de um grau de liberdade rotacional, quando se perde
um grau de liberdade de movimento (ARAUJO, 2000), que pode ser um Sério
problema em aeronautica e robdtica e que também acontece em fotogrametria.

Equivale ao problema que acontece quando é escolhida uma sequéncia de

rotacdes e ha uma situacdo de alinhamento de dois eixos, em torno dos quais estao
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sendo realizadas as rota¢cdes. Com isto nem todo o espac¢o das rotacfes possiveis
podera ser contemplado numa préxima sequéncia de rota¢gdes (LAVIERI, 2011).

E facil identificar o angulo possivelmente critico apenas obervando qual a
rotacdo secundaria nas matrizes das equacdes 25 a 27 (ou nas matrizes
apresentadas no Apéndice A) em duas situacdes: a) quando o cosseno do angulo de
Euler da rotacdo secundaria é zero, no caso de rotacfes realizadas em torno dos

trés eixos (em outras palavras quando um dos angulos de Euler € 90° ou 270°, ou
bem préximo destes valores); ou b) em se tratando de rotacdes realizadas em torno

de dois eixos, quando o seno da rotacdo secundéria € zero (ou seja, quando um

desses angulos € 0° ou 180° ou préximo deste). Com estes angulos a rotacdo

desejada ou prevista pode nao ocorrer (GRAVELLE, 2006).

A matriz da equacdo 25, as matrizes mostradas nas equacdes 115 a 119 e
125 a 130 do Apéndice A, admitem condicéo critica para um angulo de 90° ou 270°
(caso a) por terem um elemento que depende apenas da fungdo seno que pode
assumir valores 1 ou -1 enquanto outros dois elementos se tornam zero (vide
equacao 36). A partir disso as outras duas rotacbes serdo somas dos outros dois
angulos (a explicagdo é similar para o cosseno dos angulos 0° e 180° em se
tratando das equacfes 26 e 27, as matrizes das equacdes 120 a 124 e 131 a 136 do
Apéndice A que tem um elemento que depende s6 da fungéo cosseno).

Ao se considerar ¢ = 90° a matriz de rotagdo expressa na equagéo 25, por
exemplo, serd dada por (MALVEZZI, 2004):

0 COS K Sen w — Sen kK cos w COSKCOS W + Sen kK sen w
qumc -

(36)

0 senksenw+coskcosw Ssenk cosw — COSK Senw
-1 0 0

Os elementos da equacao 36 sdo agora apenas adicdes de senos e cossenos
de w e k, como mostradas a seguir (IEZZI e HAZZAN, 1985):

cosk senw — senkcosw = sen (w — k) (371)
senksenw + coskcos w = cos(w — k) (37 i)
coskcosw + senk sen w = cos(w — k) (37 i)
senk cosw — cosk senw = —sen(w — k) (37 iv)

Entdo a matriz de rotacédo da equacéao 36 fica:

0 sen(w—k) cos(w—k)
Rype = ( 0 cos(w—k) —sen(w— K)) (38)
-1 0 0
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Esta equacdo mostra que a matriz de rotagdo depende apenas da subtracao
de w e k. Deste modo esta matriz de rotacdo perdeu um grau de liberdade rotacional
(ARAUJO, 2000).

Para melhor entendimento serdo apresentadas nesta secdo outras equacoes,

cujas matrizes apresentam a ocorréncia de gimbal lock.

A sequéncia de rotacdo kpw estd em situagcao critica quando ¢ € 90° (que

pode ser visto ha equacdo 39 i) ou 270° (equacao 39 ii).

0 0 1
Repw = ( sen (k + w) cos(k + w) O) (391)
—cos(k +w) sen(k+w) 0

0 0 -1
Repw = (—sen (k —w) cos(k —w) O) (39 i)
cos(k—w) sen(k—w) 0

J& a sequéncia de rotacdo we® estd em condicionamento critico quando ¢ é

0° (equacéo 40 i) ou 180° (equacéo 40 ii).

1 0 0

Rups = <O cos(® +w) —sen(®+ a))> (401)
0 sen(@+w) cos(@+ w)
-1 0 0

Rups = < 0 cos(W—w) sen(®—w) ) (40 i)
0 sen(wWw—w) —cos(w—w)

As demais sequéncias de rotacdes abordadas neste estudo em situagao
critica, bem como o detalhamento das equacdes 39 e 40 podem ser encontradas no

Apéndice B.

O caso do gimbal lock em aeronautica pode ser exemplificado na Figura 14.
Na Figura 14 (a) o avido encontra-se estabilizado. Na Figura 14 (b) o avido esta
sujeito a uma rotacdo em torno do eixo y. Na Figura 14 (c) o mesmo é rotacionado
em torno do eixo X e na Figura 14 (d) esta rotacionado em z. Por fim € mostrado que

ocorre o gimbal lock devido ao alinhamento de dois eixos X e Z na Figura 14 (e).
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Figura 14- Exemplo de gimbal lock com um avido

Figura 14 (3)- Avi30 estabilzado Figura 14 (b)-Rotac30 2m mo 00 &0 ¥

Flgura 14 (c)- Rotagdo em 1omo 0o 2o X Flgura 14 (d)- Rotagdo em 0mo do #x0 2

Fonte: Adaptado de Gimble Lock Explained (2012).

A Figura 15 mostra um caso de gimbal lock com uma camara fotografica. Na
Figura 15 (a) o objeto admite trés graus de liberdade. No entanto, na Figura 15 (b) o
objeto jA se encontra apenas com dois graus de liberdade devido ao fato do
alinhamento de dois eixos (Z representado pelo anel em vermelho e Y representado
pelo anel cor verde). Esse exemplo ndo deve ocorrer com aerofotogrametria, mas
pode acontecer em fotogrametria terrestre e a curta distancia, ao ser realizado um

levantamento que envolve todas as laterais e parte superior de um objeto.
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Figura 15- Gimbal lock na rotacdo de uma camara.

Figura 15 (a)- Objeto com trés graus de liberdade. Figura 15 (b)- Objeto com dois graus de liberdade

Fonte: Adaptado de Vass (2009).

O Quadro 2 mostra a correlacdo entre as sequéncias de rotacfes e as
condicBes criticas que podem ocorrer no caso de fotogrametria terrestre (LAVIERI,
2011).

Quadro 2- Situacdes em que ocorre o gimbal lock.

Sequéncia de Rotacao Eixo rotacionado com angulo Eixos alinhados
0 (ou m) ou nn+’2—’,ne Z.
WPK y xez
WKP z xey
KQw y xXez
KwQ X yez
PwWK X yez
PKW z yex
WP y xex
WKW z xex
pwd X yey
PKP z yey
KWK X zZez
KQK y zez

Fonte: Lavieri (2011).

Um exemplo prético desse tipo de situagdo instavel foi obtido por Silva (1995).
Ao realizar a fototriangulacdo, de um conjunto de fotografias destinadas a
reconstrucdo 3D de um tanque, observou que a MVC apresentou valores elevados
na fotografia de posi¢cdo nove, que corresponde a ¢ = 270°, na sequéncia kpw, de
acordo com a disposicéo dos eixos cartesianos do levantamento (no qual os eixos X
e Z estdo na horizontal e Y na vertical). Na Figura 16 esta em destaque a localizacao

da fotografia nove.
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Figura 16- Indicacao da localizac&o da fotografia 9.
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v2b
{0\ [ %
| " A "'
| AN wl 2 !
A S = \
/ . 9,
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I 1 $ ‘7
CoNvENgORs
Z ’

Va DENT VERTICAL
o R o pur soesroNTAL
- WTACAD OB XPOsC)

Fonte: Adaptado de Silva (1995).

No caso do sistema t, s e a ocorre gimbal lock quando tilt € igual a zero,
conforme se percebe que t é a rotacdo secundaria na matriz apresentada na
equacao 38.

As dualidades de solugbes e os efeitos de gimbal lock que podem ocorrer ao
para operar com rotacdes dos angulos de Euler podem ser evitados com o uso dos

guatérnios que sera discutido no capitulo a seguir.
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3. MATRIZES DE ROTACAO COM OS QUATERNIOS

3.1 Quatérnios

Os quatérnios, ou quaternions, podem ser considerados numeros
hipercomplexos de ordem quatro, que ndo possuem todas as caracteristicas de um
corpo, uma vez que nao admitem comutatividade na multiplicacdo (LAVIERI, 2011).
Os quatérnios estéo definidos no R* e, por vezes, sdo também representados por H,
devido ao nome de seu criador William R. Hamilton (GALO e TOZZI, 2001).

Segundo Wheeler e lkeuchi (1995), Santana e Braga (2008), Araujo (2000),
Dam, Koch, Lillholm (1998) e Shih (1990), as rotacbes com o0s quatérnios
apresentam algumas vantagens dentre as quais se podem citar:

e Nao acontece o problema de situacdes de instabilidade de solucdes;

e Podem ser compostos ou multiplicados de uma maneira simples para

acumular os efeitos das rotacgoes;

e Tem facil interpretacdo geométrica;

e Os métodos de interpolacfes sdo mais simples;

e Utiliza apenas funcdes lineares;

e N&o acarretam o gimbal lock.

As desvantagens citadas para os quatérnios sao: a) as matrizes de quatérnios
nao sao adequadas para fazer representagcdes tais como translacdes (que para
esse tipo de aplicacdo sdo usadas as matrizes homogéneas); b) de modo geral nédo
ha muita difusdo sobre os quatérnios como assunto da algebra o que causa, assim,
uma aparéncia de serem complicados (DAM, KOCH e LILLHOLM, 1998).

As demonstracbes que se seguem foram desenvolvidas com base em:
Hamilton (1866), Biasi e Gattass (2002); Galo e Tozzi (2001); Barreiro (2009); Neves
(2008); Cefalo, Mirats-Tur (2011); Celledoni e Safstrom (2010) e Horn (1987).

3.2 Representacdo dos quatérnios

Os quatérnios podem ser representados através de: a) um vetor com quatro
componentes; b) uma composicdo de um escalar e um vetor; ¢) um ndamero
complexo com trés diferentes partes imaginarias. As equacdes a seguir mostram,
respectivamente, estas representagdes (GALO e TOZZI, 2001 e POPE, 1970):
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9= (9,99, 492) (41 1)
¢=q+q4=1(q9 (41 iii)
q=q+qi+q,]+qk (41 iv)
em que:

q parte real do quatérnio, primeiro componente do quatérnio;
q, segundo componente do quatérnio;

q, terceiro componente do quatérnio;

q, quarto componente do quatérnio;
q € o quatérnio.
Para outros autores, como Pope (1970), a notacdo adotada é:

1)
a

i=|p (42)
)4

em que §, a, B e y sdo os componentes do quatérnio.

3.3 Operacdes quaternarias

Os quatérnios sdo uma generalizacdo dos numeros complexos como
especificado na Secéo 3.1, entdo i? = —1, mas também j2 = k? = —1. A partir disso
outras relacbes podem ser estabelecidas, atentando-se para o fato de a
multiplicacdo entre esses imaginarios sdo de natureza diferente, o que resulta em
(CEFALO e MIRATS-TUR, 2011; HAMILTON, 1866):
ij = —ji = k; ki = —ik = j; jk = —kj = i;ijk = —1 (43)

As principais opera¢fes quaternarias sdo dadas a seguir.

Dados dois quatérnios ¢; = (q1,G1) € ¢, = (g2, G,), a soma é dada por (GALO
e TOZZI, 2001):

G+ G2 = (q1,41) + (q2,G2) = (@1 + 92, G1 + G2) (44)

O produto dos quatérnios ndo € comutativo (LAVIERI, 2011) e é dado por
(GALO e TOZZI, 2001):

G1°G2=(q1" 92— G1" G291 " G2 + 2" G + G1 X G2) (45)

A multiplicagdo quaternidnica € associativa e distributiva através da adi¢éo
(BARREIRO, 2009).
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3.4 Classificacdo de quatérnios

3.4.1 Quatérnio puro

Ocorre quando a parte real desse numero € igual a zero. O quatérnio entdo
passa a ser escrito como (GALO e TOZZI, 2001):

q=(0,9) (46)

3.4.2 Quatérnio unitario

Acontece quando a norma do quatérnio equivale a um (GALO e TOZZI,
2001):

gl =Ja* +qi+qi+q2 =1 (47)

3.4.3 Quatérnio inverso

O inverso de um quatérnio é representado por ¢~1. O produto de um quatérnio
por seu inverso é sempre um. A partir disso se tem a relacdo (BIASI e GATTASS,
2002):

T =qq=1 (48)

3.4.4 Conjugado de um quatérnio
O conjugado de um quatérnio é dado por (GALO e TOZZI, 2001):

=q—qi—q,]—q,k (49)
Com base no quatérnio conjugado pode-se definir a subtracdo de dois

Y

guatérnios com sendo a soma de um quatérnios com o seu conjugado que admite as
seguintes propriedades (BARREIRO, 2009):

q=4q (50 i)
(P9 = pq (50 ii
m = ﬁ + E[ (50 iii)
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3.5 lgualdade de um quatérnio

Dois quatérnios serdo iguais se cada um de seus termos correspondentes

forem iguais. Considerando os quatérnios:

41 = (41, 9x1, 9y, 921) (511)
92 = (2, Ax 5 Ay, 9z;) (51 i)
A igualdade ocorrer4 se os elementos correspondentes de cada quatérnio
forem iguais:
a1 =4 (521)
Tx1 = dx; (52 ii)
qy, = qy, (52 iii)
dz1 = 4z, (52 iv)

3.6 Rotacdes com quatérnios

A realizacdo de rotagcdo 6 com os quatérnios (com 8¢ [—m, m]) em torno do
vetor v sera dada por (BIASI e GATTASS, 2002):
131 = q* + 141> =1 (53)
Mas, pela relacdo fundamental em trigonometria ha um angulo em que
q = cos @ e |q| =sinf. Entdo se considerando ¢ um vetor unitario pode-se escrever
o quatérnio do seguinte modo (BIASI e GATTASS, 2002):

g = cos (%) + sin (%) V= (cos (%) ,sin (%) 17) (54)

Entdo a rotagdo com quatérnios em relacdo aos versores i, j e Kk,

respectivamente, serdo expressas por (POPE, 1970):

R,(6) = (cos (%) ,sin (g) T) (551)
R,(6) = (cos (%) ,sin (g) f) (55 ii)
R,(0) = (cos (%) ,sin (g) E) (55 iii)

O ponto P = (x,y,z) do espaco tridimensional sobre o qual se deseja efetuar
uma rotacao sera representado pelo quatérnio puro da equacgéo 56 e a rotacdo sera
(BIASI e GATTASS, 2002):

p = (0,P) (56)
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R,(®) = qpq (57)

A Figura 17 ilustra a rotacdo de P por um angulo 6, pelo vetor 7.

Figura 17- Rotacéo de P por um angulo 6, pelo vetor v.

Fonte: Galo e Tozzi (2001).

Desenvolvendo a equacdo 57, por meio das propriedades vetoriais, tem-se
(GALO e TOZZI, 2001):

R,®) = (¢.9(0,P)(q,—9) = (-4P,qP + G x P)(q,—q)
= ((-4P)q - (aP + G x P)(=4), (~4P) (- + q(aP + G x P) + (¢P + G x P) x (-9))
= (~a(@P) +a(P3) + (4 x P)d. (aP)i + ¢*P + a(@ x P) + a (P x (=) + (a x P) x (-))
= (@ x P)q, (aP)d + a*P + a(d x P) + q(P x =) + (4 x P) x (=)
= (0,(4P)d + q?P + 2q(4 x P) + (4 x P) x (-9))
= (0,2(3P) + (¢* - GD)P +2q(d x P)) (58)
Mas, como na rotacdo se usa 0 quatérnio representado pela equacdo 54 a

rotacdo dada por 58, passa a ter, com as formulas de multiplicacdo de trigonometria,
a seguinte forma (BIASI e GATTASS, 2002):

R,(®) = (0,2(sin 8% P) sin8 ¥ + cos 82 P — (sin 82 5'%)P + 2 cos O(sin 67 x P))
= (0,cos 82 P — (sin 62)P + (1 — cos 260)3 P¥ + (sin 26)% x P)

= (0, (cos 20)P + (1 — cos 20)% P + (sin 20)% x P) (59)
Entéo para ser realizada a rotacdo em torno de um eixo deve-se:

e Representar P pelo quatérnio p = (0, P);

e Usar o quatérnio da equacao 54,

e Aplicar a equacéo 59.
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Pode-se escrever de uma maneira geral para nrotacdes (GALO e TOZZI,
2001):
Ry1.qn®P) = Gy . G1PG1 - G (60)
Para fazer a representacdo matricial € necessario desenvolver cada termo da
equacdo 58. Antes, porém, a parte real deve ser desconsiderada, uma vez que €
nula e a matriz de rotacdo quaternaria sera indicada por R. Entdo é gerada a relacdo
(GALO e TOZZI, 2001):
R,P =2(GP)d + (q*> — ()P + 2q(4 x P) (61)
Desenvolvendo agora o primeiro termo tem-se:
G (qex + qyy + q,2)qx &% 4Gy 4,
2(qP)q = 2(qux + 4yy + ¢,2) (%) =2 (qx+ayy +4,2)q, | =2 <qqu q,* quz> (62)
1 (qxx +ayy + 4,2)q, %9 G 9
Para o segundo termo vem:

X
(@®-GD)P=(*-a*-9,°-¢.2)P=(¢* - 0.* - ¢,* — q,%) <y> (63)
Z

E para o dltimo termo tem-se:

- -

J

A 4y 49
x y z

0 —q dy X
=2q| q, 0 —q, (y) (64)
—qy qx 0 Z

Desse modo a equacao 61 passa a ser escrita como (GALO e TOZZI, 2001):

2q(G % P) = 2q = 2q (92 — .31+ (@,x — 4.2)] + (92 — 3, %)K)

02 Gl 4x4:

X X
RP=2(aay, ¢ a¢ya <y>+(q2—qx2—qy2—qz2)<y>+
U, 4,9, 9. ) Z z

0 —q; dy X
2q( @, 0 -q <y> (65)
—qy qx 0 z

Simplificando a equacéo 65, apés separar P formado por (x,y,z), é obtida a

matriz R (GALO e TOZZI), que representa a rotacao quaternaria:

*+a.’—q-a 2099, —q9,) 2(9:9. + 99,)
R,=| 2(@ay+qq.) ¢—a’+q’-q° 2000, 9%) (66)
2(9x4, — q9y) 2(4yq, +9q0) 9’ —a<’ —q,’+a,’
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A matriz da equacéo 66 pode ser aplicada da mesma forma que as matrizes
de rotacdo com angulos de Euler. Por exemplo, a matriz R aplicada na equacéo da
colinearidade resulta (GALO e TOZZI, 2001):

_ @+ a’ -2 - g2 )X - X) + 2(q:9y — 99,) ¥ —Yo) +2(4:9, + 99,)Z — Z)
z(qxqz - qqy)(X - XL‘) + Z(quz + QQX)(Y - Yc) + (qZ - sz - qyz + qzz)(z - Zc)
. 2(qxqy +qa)X —X) + (¢* — 4" + ¢° — .Y = Y) +2(q,9, — q9:)Z — Z.)
2(axq, — qa,) X = X) +2(ayq, + q9:)(Y =Y) + (¢* — 4> — qy> + ¢,)(Z = Z.)

X

(67 i)

(67 ii)

3.7 Comparacfes de Quatérnios com angulos de Euler

Os quatérnios e angulos de Euler podem ser obtidos uns dos outros desde
gue sejam conhecidas as sequéncias de rotacdo nos dois sistemas.
Ao ser realizada a sequéncia R,,,, 0 quatérnio sera dado por:
q= (cosg,sengk) (cos%,sen%]’) (cos%,sen%?) (68)
Desenvolvendo este produto chega-se a (SANTOS, 2003 e POPE, 1970):

K 17 w K 1) w .
— Ko< cos? K @ il [
q = COS~COS—COS—+ sen— sen— sen- (69 1)
K w K w .
g, = cos~ cosLsenZ — sen= sen? cos> (69 i)
2 2 2 2 2 2
K @ 1) K @ 1)
= coS—Ssen—cos—+ sen-cos— sen— 69 iii
ay 2 2 2 + 2 2 2 ( )
K w K w .
q,; = sen;cos%cos; — cos> sen%sen; (69 iv)

Com as equacbes 69 i, 69ii, 69iii e 69iv considerando, por exemplo, w =
45°, ¢ = 45° e k = 30° gera-se 0 seguinte quatérnio:
g = (0,862 + 0,2507 + 0,433] + 0,079k) = (0,862 0,250 0,433 0,079) (70)
Estudos mais detalhados dos quatérnios podem ser vistos em Pope (1970),
Horn (1987), Hamilton (1866), Helmstetter (2012), Wilkins (2000); Gungor e
Sarduvan (2011).
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4. APLICACOES DE QUATERNIOS EM FOTOGRAMETRIA

Os quatérnios podem ser usados em diversas aplicagdes de fotogrametria que
utilize uma matriz de rotacdo, por exemplo, na equacdo da colinearidade, para
efetuar a orientacdo relativa, orientacdo absoluta e ressecdo espacial. Nesta

pesquisa foram aplicados na ressecao espacial e orientacao relativa.

4.1 Ressecdao espacial em fotogrametria

A ressecéao espacial em fotogrametria determina os parametros de orientacéo
exterior de uma fotografia que séo w, ¢, k, X.,Y, e Z., sendo que os trés primeiros
elementos indicam a orientacdo (ou também chamada de atitude) e X.,Y, e Z. sdo
as coordenadas do centro perspectivo (ou a posicdo da fotografia no espaco), a
partir de fotocoordenadas (x;,y;) de pontos que tem as correspondentes
coordenadas no espaco objeto (X;,Y;,Z;), e da distancia focal (f). Sdo necessérios
no minimo trés pontos ndo colineares para ser obtida uma solucdo. Existem
métodos de determinacdo diretos e por iteracdes, neste caso é necessario ter um
vetor dos parametros aproximados dos parametros a serem determinados

(w0, Po, Ko, Xy Yoo Ze,)- A Figura 18 apresenta a geometria da ressecao espacial.

Figura 18- Geometria da ressecdo espacial.
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Existem varios tipos de procedimentos para a determinacdo da ressecdo

espacial, como por exemplo, o método de Church, da equac¢édo da colinearidade,

métodos diretos baseados na lei dos cossenos, etc. O método de Church é um meio

de calcular os parametros da orientacdo exterior para fotografias inclinadas ou

guase verticais, usado para o sistemat, s e a detalhado em Wolf e Dewit (1983). Os

métodos que usam a equacdo da colinearidade e a lei dos cossenos serdo

estudados aqui com mais detalhes.

4.1.1 Ressecdao espacial com a equacao da colinearidade

A equacdo da colinearidade € aplicada ao minimo de trés pontos nao

colineares com coordenadas conhecidas nos dois espacos imagem (x,y) e objeto

(X,Y,Z). O modelo matematico adotado é:

_ X =X) (Y =Y) +13(Z - Z,)
(= X) (Y —Y) + 13 (Z - Z0)
(X =X) 4+ (Y =Y +13(Z— 7o)
(= X) + (Y —Y) +r3(Z - Z0)

em que:
x e y sdo as fotocoordenadas;

f é adistancia focal;

X,Y e Z sé@o as coordenadas no espaco objeto;

X.,Y. e Z. sdo as coordenadas do centro perspectivo;

7;; S0 0s elementos da matriz de rotagao, comi e j variando de 1 a 3.

7

No ajustamento é adotado o MMQ que pode ser pelo método
(equacao 72) ou o método Combinado (equacao 73) (LUGNANI, 1987).

AX+L=V
AX+BV+W =0

em que:

(71 )

(71 id)

paramétrico

(72)

(73)

A, representa a matriz das derivadas da equagéo 71 com relagcdo aos parametros;

X, é 0 vetor das corre¢cfes dos parametros;
L = Lo — Lb, sendo L, obtida a partir dos valores iniciais;

L,, vetor dos valores observados;
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B, matriz que representa as derivadas do modelo funcional com relacdo aos valores

observados;
V7, vetor dos residuos;
W, é o vetor erro de fechamento.
A solucéo pelo método paramétrico € dada por:
X = (A'PA)"1A'PL (74)
em que:
P € a matriz dos pesos;
A solucéo para o método combinado é dado por:
X=—(AM A AM W (75)
em que M = B'PB

O vetor com os parametros ajustados é conseguido somando as correcdes
aos valores aproximados iniciais em um processo de iteracdes até haver

estabilidade da solucao.
X, =Xo+X (76)

Para mais detalhes podem ser consultados Gemael (1994) ou Ghilani e Wolf
(2006).

4.1.2 Ressecao espacial com os quatérnios

A ressecao espacial com as equagOes da colinearidade e com a lei dos
cossenos tem solucdes adaptadas para usar quatérnios, que neste trabalho foram

classificadas como: a) com itera¢cdes; b) sem iteracdes.

e Com iteracOes. Fazem uso de valores iniciais no MMQ e calcula a
ressecao espacial a partir da equacéo da colinearidade com substituicéo
das rotagBes com angulos de Euler por quatérnios, como em Jiang et al
(2010);

e Sem iteracdes. Sao solucdes exatas ("closed-form") para o problema da
recessao espacial tridimensional em topografia, com adaptacdes para a

fotogrametria, como Hinsken (1988) e Guan et al (2008), em que se entra
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com a lei dos cossenos para os triangulos. Com base nessa lei sao
encontradas as distancias do centro perspectivo as coordenadas no
espaco objeto e depois os demais parametros de posicao e orientacdo sao
obtidos basicamente com uma transformacéo isogonal 3D. A maioria das
solugdes exatas usa trés pontos no espaco objeto como, por exemplo, 0s
estudos de Haralick et al (1994) e Zeng (2012). Mas Grafarend e Shan
(1997) usam quatro pontos. Esta solugdo acaba sempre numa equacao de
terceiro ou quarto grau. A pesquisa de Hinsken (1988) parte da equacéo
da colinearidade, calculando as derivadas parciais com relacdo aos
parametros e adapta a equacdo linearizada para quatérnios. No artigo de
Guan et al (2008), apds serem obtidas as distancias, € formada uma matriz
N da qual sdo obtidos os autovalores e autovetores e, por conseguinte, sdo

extraidos os elementos de orientacé@o exterior.

4.1.2.1 Ressecdo espacial com equacéo da colinearidade e quatérnios

A ressecdo com iteracbes pode ser calculada com base no modelo
matematico que usa a equacado da colinearidade fazendo a adaptacdo das rotacées

para os quatérnios.

Partindo-se da equacao 71 e linearizando resulta na equagéo a seguir (JIANG
et al, 2010):

. 6x+ 6x+ 6x+ 6x+ 6x+ 6x+ dx l 77
X =daqq X, aip v, a3 9z, a4 a4, ais Fre QA16 aqyi aiz aq x (7710)

: oy oy oy oy ay oy oy g
y = a21m+azza_YCi+a23ﬁCi+a24a_qi+a25@+a26ﬁyi+az7a_—ly (77 ll)

em que qa;; -, com i variando de um a duas vezes 0 numero de pontos e jde 1 a 6 sé&o

ij "
0s elementos da matriz A.

Além das fotocoordenadas sdo dados de entrada a distancia focal, as
coordenadas dos pontos no espacgo objeto e valores aproximados para todos os

parametros (wo, Yo, ko, Xy Yegr Zey)-

A matriz A é das derivadas com relacédo aos parametros incognitos, com base

nos elementos a;; da equagao 77.
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Para as derivadas da equacédo 77 com relacdo aos parametros podem ser
usadas as seguintes simplificacdes (JUN, DONGHONG e YONGSHENG, 2008):

Ox _ (¢ + a:* — 9y — a,°)f + (2(9:9, — 99,)) X x 781)
0X.  2(qyq, —qqy) X —X) +2(q,q, + qq.)Y = Y) + (¢* — ¢, —q,> + q,2)(Z - Z,)
ox _ 2(9xqy — 99:)f + (2(qyq; +99:)) X x 78 i)
Y. 2(qrq, —qa,)X —X) +2(qyq, + qq.)¥Y = Y) + (¢ — @ — ¢, > + ¢,2)Z — Z.)
Ox _ 2(9:9; +99)f + (@° —@:° —9,* +q,*) X x 78id)
0Z.  2(qrq, —qq,)X —X) +2(qy9, +99,) Y = Y) + (> —¢.> —q,2 + q,2)Z - Z.)
9y _ (2(4x9y +q9))f + (2(a:9, — 99,)) X ¥ (78 iv)
0X.  2(qxq, —a9y)X —X) +2(a,9, + 90,) ¥ = Y) + (¢* — 4.2 —q,2 + 4,>)(Z - Z,)
oy _ (@° —a* +a,* —a.*)f +(2(4yq. + q9:)) Xy (78v)
Y. 2(qrq, —qq,)X —X) +2(q,q, + q9,)Y =Y) + (¢® — q,2 — q,% + ¢,2)(Z — Z,)
9y _ (2(ayq; —qa))f + (@ —a.” —a,* +a,) Xy (78 v0)
0Z.  2(qrq, —qa,)X —X) +2(q,q, + q9,)Y = Y) + (¢® — q2 — q,% + q,2)(Z — Z.)
P B f+ﬁ + (78 vii)
57 £ 7Oty
2
6qx = ( XT q+yq, — (f + f>qz (78 viii)
_ Xy )
aqy - ( ( )CI Vayx 7 Clz) (78 ix)
Nl
6qz ( ) Tqy) (78 x)
dy y° .
£—2<—<f+7)qx ) (78 xi)
B o xy 3
6qx = 2( ( ) xqy f qz> (78 xii)
2
oo Forn (7))
y? .
6qz (xq +—qx <f +T) qy> (781ix)

Para o calculo do quatérnio inicial devem ser usados angulos de Euler
aproximados. Os demais valores aproximados também devem ser obtidos.
Considerando a matriz P como a matriz identidade e aplicando o ajustamento pelo

meétodo paramétrico (equacao 74) encontram-se 0s parametros ajustados.
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4.1.2.2 Ressecao espacial sem iteracao

E 0 método que encontra os parametros da ressecéo espacial de forma direta,
sem a necessidade de iteracdes e de valores iniciais, usando os quatérnios. No
entanto é necessario que sejam previamente conhecidas as distancias entre o
centro perspectivo e cada ponto no terreno. Esta solugcdo é encontrada, por
exemplo, em Horn (1987) e para este trabalho foram usadas as foérmulas de

implementacédo de Guan et al (2008).

A Figura 19 ilustra a geometria da ressecao espacial proposto por Guan et al
(2008) com a localizacdo do centro perspectivo, dos pontos de controle e as

coordenadas da imagem.

Figura 19- Geometria da ressecédo espacial proposto por Guan et al (2008).

P;
Py

Fonte: Adaptado de Guan et al (2008).

Na Figura 19 C representa o centro perspectivo, p;, com i = 1, ..., 4, indicam as
fotocoordenadas e P; sé@o as coordenadas no espago objeto e S;;, com i e j variando

de 1 até 4, sdo os angulos espaciais.
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A seguir sdo descritos os procedimentos de calculo de ressecdo com este
método, com as etapas de obtencdo das distancias entre o centro perspectivo e 0s
pontos no espaco objeto, calculo do fator escala, calculo das novas coordenadas a
partir do centroide, obtencdo de uma matriz N, calcular os autovalores, construcao
da matriz de rotacédo, calculo dos elementos angulares (w, ¢, k), calculo da matriz de

translacao, calculo dos demais parametros de orientacao exterior (X.,Y. e Z.).

1. Calcular as distancias entre o centro perspectivo e 0s pontos no espaco

objeto:

Esta distancia pode ser obtida por processo iterativo, com base na lei dos
cossenos ou método de Grafarend (GUAN et al, 2008). Usando o método de
Grafarend [a partir de Grafarend e Shan (1997)] o calculo da distancia deve ser feito

do seguinte modo:

e Entrar com as coordenadas no espaco objeto, as fotocoordenadas e
distancia focal;
e Expressar os angulos espaciais f§;; em termos das fotocoordenadas e

distancia focal:
x5 +yy; + f*
R R s

(79)

cos(ﬁij) =

em que:
p;; sao os angulos espaciais;
(x;,y;) séo as fotocoordenadas;
f distancia focal.

e Usar a lei dos cossenos em fungédo dos angulos espaciais e das distancias

requeridas:

—_y 2 — 2 — 2 —_— —

" = [P + [Pl — 2 ePiier) coscpin 00
—2 —_ 2 —2 — — ‘.
[P2Ps||” = [[CPL|| + [|CPs]|” — 2||CP[||CP5]|cos(Ba3) (80 i)
—_ 2 —_ 2 — 2 — —
[PsPu]|” = [[CPS[|” + [|CP]|” = 2[|CP3]|[|CPyl|cos(Ba) (80 iif)
2 2 2 i _
[PPi]|” = (ICP][” + [[CPL]|” = 2[|CPL|[[CPy]cos(Bar) (80 iv)
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— 2 — 2 — 2 —— sy ———
[PePs||” = [[CPL]|” +|[CPs]|” = 2||CPy||[|CP5||cos(Bis)

— 2 — 2 — 2 —— s ———
PP = |CP2|| + |[CPA||” = 2||CP][[|CPal|cos(B2s)

Fazendo:

— 2 —2 — 2 — 2
||P1P2|| =bp ||P2P3|| = by3, ||P3P4|| = b3y, ||P4P1|| = by1,

IPP° = baa, by R

—2cos(f12) = arz

—2c0s(B23) = aa3

—2cos(f34) = az,

—2cos(fy1) = asn

—2 cos(P13) = as3

—2cos(fys) = Ay, —2<a;; <2
em que:

C E o centro perspectivo;

P; S@o 0s pontos no espaco objeto.

As distancias procuradas sao:

ICP ] = x
ICP2|| = x,
ICPs]| = x3

(80 v)

(80 vi)

— 2
|PLPs||” = bus,

Com simplificagdes para os termos b;; chegam-se as equagdes de Grunert

(GRAFAREND e SHAN, 1997):

Xt + x5 + a;px1x; = by (811)
X3 + x5 + az3xzx3 = by3 (81 ii)
X3 + x% + as4x3%4 = b3y (81 iii)
X7 + X7 + agx4x, = by (81 iv)
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x{ +x3 + ay3x1x3 = by (81v)
x22 + x;% + Arp XXy = b24 (81 Ul)

Entre essas equacOes apenas trés sao independentes e escolhendo

81 ii,81 iii e 81 vi sdo obtidas as relacbes para as coordenadas homogéneas y; e

Vs
ys =1 (82)
Vo= (83)

Isolando x% nas equacbes 81 ii,81 iii e 81 vi, levando em consideracédo as

equacdes 82 e 83 sdo obtidos:

b3

2 _ .
X2 = 1+y$+az3y3 (®41)
2 b34 ..
— 84
X2 Y5 +yi+azaysya (840)
X3 = — 2 (84 iii)

2 l+yf+azsys
Dividindo 84 ii por 84 i e 84 iii por 84 i resultam as equacdes a seguir:
b3a(1 + y5 + az3y3) = bos (3 + yi + azaysya) (85)
boa(1 + y5 + azsys) = bys (1 + y§ + azsys) (86)
Subtraindo a equacéao 85 pela equacédo 86 é obtido o valor de y,:
(b3s — baz — b2s)y5 + az3(b3s — baa)ys + (bos + b3y — bya)
V4 = (87)

a34b33Y3 — Az4b73

Substituindo este valor na equacéo 87 chega-se a uma equacgédo do quarto

grau, conforme o modelo explicitado:

Cay3 +C3y3 + Gy + Ciys +Cp = 0 (88)
em que:

Cy = by3(b3s — by — bps)? — a3abizbys

C3 = (b34 — by3 — byy) X [a24a34b§3 + 2a33b33(b3s — byy)] + a34b223b24(2a24 — Qp3034)
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C, = byz[as3(bsg — bps)* + 2(b3y — byz — byg) (baz + b3g — byy]

+ Ap3024a34b33(byy + b3g) + aza?b33(bys — byy) + az4°b53(byz — byy)
C; = 2a33bp3(b3s — bp4)(boz + b3y — byy) + ap4a34b53(b3g + bay — by3) — ap3a24°b53bsy
Co = b3 (b3 + b3y — byy)* — apy?bisbsy

As raizes de 88 sdo quatro e devem ser testadas para a escolha da raiz
“correta”. Uma vez encontrado o valor de y; obtém-se x,, usando 84 i. Inserindo-se
esses valores obtém-se x3, pela aplicacdo da equacao 82. Depois se encontra y,,
com a equacao 87, e com ele e x, descobre-se x,, pela equacdo 83. Com isso
chega ao valor de x;, com a equacao 81. Ao resolver a equacdo de quarto grau,
deve-se tomar como solucdo o namero positivo e niumero real, uma vez que se
busca o valor de uma distancia (ZENG, 2012), mas além disso devem ser verificados
os valores absolutos das raizes que ndo podem exceder um certo limiar. Mais
detalhes sdo dados nos experimentos.

2. Calcular os fatores de escala:

Estes fatores sdo uma relacdo entre as distancias do centro perspectivo até
as coordenadas no espaco objeto e centro perspectivo até fotocoordenadas,

expresso cada um por (GUAN et al, 2008):

Si
A = (89)

JH YRS

em que S; representa a distancia do centro perspectivo ao ponto i no espaco objeto;

3. Calcular as novas coordenadas a partir do centroide, efetuando uma

translagéo, com as equacgdes (GUAN et al, 2008):

Di =Di — Py (90)
Si =5 — 5 (91)
com
Aix;
s; = | Ay (92)
Aif

1
Sg = EE S; (93)
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1
Dy = ;Z D (94)
i

em que:
p; sdo as coordenadas no espaco objeto, comi =1, ...,n;
s; sao as coordenadas que dependem do fator escala e da distancia focal;
Sq € pg SA0 o centroide;
n € o numero de pontos.
4. Formacdo da matriz N e calculo dos autovalores:

A matriz N é dada pelo produto de duas matrizes que representam a rotacao

para um vetor no espaco tridimensional e € apresentada como (GUAN et al, 2008):

0 —x,, Yo —2Z,\' /0 —x;, Vs =z,

S e N I Do R S o (95)
Ypi Di 0 Xp; Vs; Si 0 Xs;
Zp, Y, Xp; 0 Zg, Vs, —Xs; 0

Os elementos que compdem estas matrizes sdo os quatérnios P, = (0,p;) e
Si = (0,5).

5. Selecionar o maior autovalor e calcular o autovetor correspondente para
adotar como o quatérnio. Neste caso a selecdo é feita tomando-se o autovetor
correspondente ao maior autovalor.

6. Construir matriz de rotacdo. A construcdo da matriz de rotacdo é feita
conforme a equacéo apresentada na Secéo 3.6.

7. Calcular os elementos angulares. Os elementos angulares sdo calculados
ao se observar a sequéncia de rotacdo dos dados que estdo sendo processados e
estabelecer as relacdes trigonométricas existentes.

8. Calcular a matriz de translacéo (GUAN et al, 2008):

Xc
T=R,"| Y, (96)
Ze

9. Calcular os demais parametros de orientacdo exterior. Os demais

elementos sdo as coordenadas do centro perspectivo que, por sua vez, sdo dadas

pelo produto da matriz de rotagdo com o vetor da translacéo:
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X
<YC>:T><Rq (97)
Z;

O modelo matematico que gera os residuos € dado por (GUAN et al, 2008):

Vi = thPi —5—T (98)

em que T é a matriz que depende das coordenadas do centro perspectivo

apresentada na equacgéo 96 (GUAN et al, 2008).

Mais detalhes podem ser consultados Guan et al (2008) e Horn (1987).

4.2. Orientacdo Relativa

A orientacao relativa é a operacdo que cria uma representacao tridimensional
do objeto fotografado (modelo estereoscépico), com um par de fotografias e com
superposicdo adequada (WONG, 1980) e faz parte da orientacdo exterior,
juntamente com a orientacdo absoluta. A geometria da orientacdo relativa com o
plano epipolar pode ser vista na Figura 20. O plano epipolar faz parte da condi¢ao
de coplanaridade, que é um dos modelos usados para a orientacdo relativa neste

trabalho, além do modelo que usa a equacao da colinearidade.

Figura 20 — Geometria da orientacao relativa para condicdo de coplanaridade.

Imagens homdlogas do

ponto P no espaco
objeto
- P2

4——— Centrosde exposicdo

Plano epipolar

Ponto P no espago objeto

Fonte: Adaptado de Berberan (2002).
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Na Figura 20 P1 representa o ponto P na fotografia esquerda, P2 € o ponto P

na fotografia direita, b é o vetor da base, R_l) e R_z) sao vetores do espaco objeto.

4.2.1 Orientacdao relativa com a equacao da colinearidade

Ao se calcular a orientacéo relativa com a equacao da colinearidade, além de
encontrar os parametros de uma camara com relagcdo a outra, fornece também as
coordenadas tridimensionais dos pontos observados. Na solucdo chamada
orientacdo relativa dependente, os parametros da camara esquerda s&o
considerados como fixos (wy, @1, k1, X¢, Ye,, Zc,) € S@o determinados os parametros
da camara direita (w,, ¢,, k2, Y;,, Z.,) com relagdo a primeira camara. E necessario
considerar X.,, ou o comprimento da base, como injungdo, ja que o sistema é
singular (GALO, 2003).

Para a obtencdo da orientacdo relativa, neste caso, € aplicado o MMQ

(LUGNANI, 1987). Uma das solu¢Bes do MMQ ¢é dada pelo Método Paramétrico

que, por sua vez, depende das matrizes A4,P,L e X,.

A formacdo da matriz A depende das derivadas parciais em relacdo aos

parametros incognitos e fica como (GALO, 2003):

E.Y; E.\'l. 6.1‘1
0 0 0 0 0 0 1 1 L 0 0 0
X, 28 ¢z,
E'\'l 6}'}1 a}.ll
0 0 0 0 0 0 —_—rl 0 0 0
1 0}1 ch
&x, axy i ax, ;
0 0 0 0 0 0 0 0 0 —
exX, cr, ez,
Vp &p, Oy (99)
1 1 1
0 0 0 0 0 0 0 0 0 — —- —
Ain+ixe+an = - - - - - _ - Xy 2 ez,
ox 1, Ox. o, 1, O [&q., oy ox
—= e = —= —= = —= 0 0 0
can e} ok, 06X, oY, ©0Z, | X, o dZ,
M, M, M, M, M, M, |M, &, M,
= = = —= = = —  — 0 0 0
éen ey 0Ky @X, Y, 8Z, | aXy er éZ,

é‘r,, s O ér;, . Ex;, . ax, . Cxyy o, . Oxy
- = - = il - 0 0 0 — —
éan oy oKy 8X,y OI, 0Z, éx, er, ez,
Vn., - Vp., p., . s 5 ¢ Yy e, Y,
ey el oxy 08X, oY, 0oz, X, er, oY,
0 0 0 1 0 0 0 0 0 0 0 0 0
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em que x;e y; séo as funcdes da equacéo da colinearidade para a camara esquerda
(camara um). Ja x, e y, séo as funcdes da equacédo da colinearidade para a camara

direita (camara dois).

Por meio da equacdo 99 pode-se notar que a matriz A esta basicamente
dividida em quatro partes: As superiores e inferiores sdo referentes as derivadas
parciais da equacao da colinearidade para a camara esquerda e direita. As partes
esquerda e direita referem-se aos parametros de cada fotografia e coordenadas dos
pontos do modelo, respectivamente. A parte superior esquerda é toda de zeros
porque os parametros da fotografia esquerda ndo entram no modelo, pois sao iguais

a Zero.

A matriz P € uma matriz quadrada que dependera do valor imposto ao sigma
a priori e da MVC das observacdes (L,) (GEMAEL, 1994). J4 a matriz L é um vetor
gue resulta de uma relacao entre as fotocoordenadas lidas na imagem (vetor L,) e
as coordenadas calculadas da imagem (L), a partir dos valores iniciais introduzidas
nas equacdes 71 i e 71ii. A equacao a seguir mostra a relacdo para obter L:

L=L,— L (100)

Para os valores de X, sao tomados valores aproximados, usando
procedimento adequado, para os parametros incognitos em gquestdo, conforme o

modelo apresentado na equacao a seguir:

XO = ((1)20 (pZO KZO XCZ() YCZO Zc20 X1 Y1 Zl h Xn Yn Zn) (101)

4.2.2 Orientacao relativa com equacao da coplanaridade

A orientacdo relativa também pode ser diretamente obtida da condicdo de
coplanaridade (Figura 20). Como os centros de exposi¢ao, fotocoordenadas e ponto
no espaco objeto devem estar em um plano, deve valer o modelo matematico
(WONG, 1980):

F=b- (R xR;) =0 (102)
em que:

b representa o vetor que contém as componentes da base que sao b,, b, € b,;
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R; e R, sédo vetores dados em fungdes de fotocoordenadas para a camara direita e

esquerda, respectivamente.

Esses trés vetores de forma mais explicita séo:

by

b=|b (103)
b,
X1

R, = (3’1 ) (104)
-f

. T11Xy + 121Y2 — 131 f

Ry = | T12Xy + 122y — Taof (105)

r13Xy + 1232 — 33 f
em que:
r;; S8o os elementos da matriz de rotagéo;
f é adistancia focal;

X1,V1€exy,y, Sado as fotocoordenadas da camara esquerda e direita,

respectivamente.

Neste caso, para facilitar os célculos, a orientacdo relativa pode ser calculada
tomando as coordenadas da camara esquerda fixa. Fazendo as substituices em
102 resulta, para cada ponto, uma equacgéao do tipo:

F = (bey1 — byx;)(rizxz + 1232 — 133f) + (byx1 + by f) (r1ax; + 122y, — 132f) —

(byf + bz}’1)(7‘11X2 + 121Y2 — 131f) (106)
em que:

by, b, e b, sdo componentes do vetor da base (com b, fixo);

r;; Sa0 0s elementos da matriz de rotagao;

f € a distancia focal;

x1 € y; sao as fotocoordenadas da camara esquerda (fixa);

X, € y, séo as fotocoordenadas da camara direita (incognitas).

A solucédo da orientacéo relativa é dada pela linearizagdo da equacgéo 106 e

aplicacdo do método combinado (equacdo 75, da Secdo 4.1.1), de modo que a
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matriz A sera das derivadas parciais em relagdo a w, ¢, k, b, € b,. Ja a matriz B
sera das derivadas parciais com relacdo as fotocoordenadas da camara esquerda e

direita, conforme os modelos matematicos a seguir (WONG, 1980):

Ao (aF oF OF O0F O0F 6F> 107
~\aX. dY, 0Z. dw d¢ Ok (107)
_ (aF oF OF aF) 108
B dx; 0y; 0xy 0y, ( )

Mais detalhes podem ser encontrados em Berberan (2002) e Galo (2003).

4.2.3 Orientacéo relativa com quatérnios

A aplicacdo dos quatérnios na orientacao relativa é encontrada, por exemplo,
em Galo (2003), Hinsken (1988) e Horn (1989), que usam a condicdo da

coplanaridade.

Em Galo (2003) a orientacdo relativa é feita adaptando as formulas
fotogramétricas da condicdo de coplanaridade para quatérnios, usando o
ajustamento pelo método paramétrico e injuncdo. Hinsken (1988) calcula esta
orientacdo, a partir da condicdo de coplanaridade encontrando uma forma
linearizada para este calculo. Em Horn (1989) o calculo é realizado sem a
necessidade de valores iniciais, com quatérnios unitarios, deduzindo uma forma de

célculo direto.

Também existe aplicacdo da orientacdo relativa em Lin et al (2010), que
efetua a orientacdo relativa com vetores e angulos calculados por quatérnios duais,

usando linearizacao de Taylor.

O método desenvolvido por Galo (2003) para o calculo da orientagéo relativa
com quatérnios parte de uma adaptacdo da condicdo de coplanaridade (que foi

apresentada na equacédo 106 da Secao 4.2.2), que € apresentado a seguir:

X1i t 0 bZ —by X2

0, = ()’u) —-b, O b, |Rt ()’2i> (109)
) \b b o f

em que.

X1;, y1; Sao as fotocoordenadas da camara esquerda,
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X2;, V2; SA0 as fotocoordenadas da camara direita;
f distancia focal;

by, b, e b, séo os componentes do vetor da base;
R € a matriz de rotacao de quatérnios.

Os parametros incognitos desse modelo sao:

by

by

b

N
it

N

(110)

\
I
I
0 |
% /
Para o célculo da orientacdo relativa com quatérnios pode-se inserir a
injuncdo do quatérnio unitario (também considerando o componente b, como fixo),
usar minimo de seis pontos correspondentes, linearizar a equagéo 110, conforme a
equacao a seguir e aplicar o método paramétrico (GALO, 2003):

_ (90, 90, 80; 90; 90; 90; a0,
“~\oq aq. dq, dq, db, b, ab,

(111)
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5. EXPERIMENTOS

Foram realizados diversos experimentos com o0s programas desenvolvidos
neste trabalho para a ressec¢éo espacial em fotogrametria e orientacao relativa, tanto
usando os modelos analiticos baseados na equacéo da colinearidade, como usando

modelos com quatérnios.

A metodologia de cada experimento, as particularidades que levaram a suas
escolhas e os resultados séo detalhados nas proximas secoes.

5.1 Aplicacao da ressecéao espacial
Para os experimentos de ressecao espacial foram comparados trés métodos:
e Equacéo da colinearidade;
e Ressecdao direta;

¢ Equacéo de colinearidade, adaptada para quatérnios.

O método tradicional da equacao da colinearidade com os angulos de Euler
foi usado para comparacdo com os resultados obtidos com as ressecfes espaciais
com os outros métodos. Este método foi realizado com o ajustamento pelo método
paramétrico, desenvolvido por Silva (1995), com iteracdes.

Foram testados dois métodos com uso de quatérnios. Um método de
ressecao direta chamado aqui de ressecdo espacial sem iteracdo (Sl) e outro
desenvolvido a partir da equacdo da colinearidade adaptada com quatérnios,

chamado aqui de ressec¢ao espacial com iteragao (Cl).

5.1.1 Aplicacédo daressecéo espacial sem iteracao (Sl)

Foi implementado um programa para a ressecao espacial sem iteracao
seguindo principalmente o algoritmo de Guan et al (2008). Este tipo de solucéo
chamado na literatura internacional de "closed-form", na maioria usa trés pontos,
mas a de Guan et al (2008) usa quatro pontos.

Para se resolver este método primeiro € necessario calcular as distancias

entre 0 centro perspectivo e 0s pontos no espago objeto, para o qual foi usado o
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método de Grafarend e Shan (1997), cujo detalhamento pode ser visto no Capitulo
4,

5.1.1.1 Experimento 1 SI

O experimento 1 foi realizado para validar o programa de calculo da ressecao
espacial sem iteracdo, usando os dados originais de Guan et al (2008) e para
comparacdo com o método da equacdo da colinearidade. Os dados de entrada
estdo na Tabela 1. Os elementos de orientacdo interior usados foram x, =y, =
0,000 e f = 153,240, em milimetros (mm) e as coordenadas do espacgo objeto sédo

dadas em metros (m).

Tabela 1- Dados de entrada do experimento 1 Sl.

Coordenadas:
Pt Imagem (mm) Espaco objeto (m)
x y X Y A
1 -86,150 -68,990 | 36589,410 | 25273,320 |2195,170
2 -53,400 82,210 | 37631,080 | 31324,510 | 728,690
3 10,460 64,430 | 40426,540 | 30319,810 | 757,310
4 -14,780 -76,630 | 39100,970 | 24934,980 |2386,500

Fonte: Guan et al (2008).

A Tabela 2 mostra os resultados finais da ressecao espacial pela equacao de
colinearidade (Colinearidade), pelo programa desenvolvido (Sem Iteracdo) e os
resultados originais de Guan et al (2008), além das diferencas entre os dados

originais e os recalculados. Os angulos sédo dados em radianos (rad).

Tabela 2- Resultado da ressec¢édo espacial sem iteracdo no experimento 1 Sl.

Método /Parametros X.(m) Y.(m) Z.(m) w (rad) @ (rad) | x(rad)
Colinearidade 39795,452 | 27476,462 | 7572,686 0,002 0,004 -0,068
Sem iteracéo 39800,558 | 27469,959 | 7570,588 0,002 0,005 -0,068

Resultado de Guan | 39795,080 | 27476,750 | 7572,810 0,002 -0,004 -0,068

et al (2008)
Diferencas artigo Guan et al (2008) e método:
AX.(m) AY,(m) AZ, (m) Aw (rad) | A (rad) | Ak (rad)
Colinearidade 0,372 -0,288 -0,124 0,000 -0,008 0,000
Sem iteracéo 5,478 -6,791 -2,222 0,000 -0,009 0,000
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A Tabela 2 mostra que a ressec¢éo espacial com a equacgao da colinearidade
apresentou um valor proximo ao de Guan et al (2008), principalmente no resultado
encontrado para os angulos de Euler. O resultado da ressecdo espacial sem
iteracao teve diferencga significativa de 6,791m na coordenada Y. Para confirmar se o

algoritmo foi implementado corretamente foi realizado um segundo experimento 2 Sl.

5.1.1.2 Experimento 2 SI

O experimento 2 Sl foi realizado com uma imagem simulada a partir das
coordenadas no espaco objeto da Tabela 1 e dos parametros de orientacdo exterior
dos resultados originais, Tabela 2, de Guan et al (2008). Os elementos de
orientacao interior foram os mesmos usados no experimento anterior. Foi simulada
uma fotografia obedecendo a rotagao R, no sistema ativo, em MATLAB® com um
programa de simulacédo de fotografias chamado simufoto.m. A Tabela 3 mostra as

coordenadas da imagem obtidas com a simulagé&o.

Tabela 3- Fotocoordenadas obtidas para o experimento 2 Sl.

Pt | x(mm) | y(mm)
1 | 86,379 | -67,997
2 | -53,965 | 83,435
3 | 10,145 | 65,478
4 | -15,082 | -75,527

A Tabela 3 mostra que os resultados obtidos para os valores das
fotocoordenadas s&o bem préximos, mas nao iguais, das fotocoordenadas
apresentadas na Tabela 1, o que indica provaveis erros aleatorios nas observacoes
de Guan et al (2008).

Entrando com as fotocoordenadas simuladas e repetindo as coordenadas no
espaco objeto da Tabela 1 foi calculada a ressecdo espacial sem iteragdo, cujos
resultados estéo na Tabela 4.
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Tabela 4- Resultado da ressecéo espacial sem iteracdo no experimento 2 Sl.

Método /Parametros X.(m) Y.(m) Z.(m) w (rad) | ¢ (rad)| x (rad)
Colinearidade 39795,000 | 27476,001 | 7573,000 -0,004 0,002 | -0,068
Sem iteracdo 39795,087 | 27476,726 | 7572,803 -0,004 0,002 0,068

Resultado de Guan 39795,080 | 27476,750 | 7572,810 0,002 -0,004 | -0,068

et al (2008)
Diferencas artigo Guan et al (2008) e método:
AX.(m) AY,(m) AZ.(m) Aw (rad) | Ap(rad)| Ak (rad)
Colinearidade 0,372 -0,288 -0,124 -0,006 0,006 0,000
Sem iteracdo 0,007 -0,024 -0,007 -0,006 0,006 0,136

A Tabela 4 mostra que o novo resultado da resse¢do com a colinearidade é
muito semelhante ao experimento anterior, com diferencas de coordenadas de até
0,372m. Ja4 a ressecdo espacial sem iteracdo ficou bastante semelhante do

resultado de Guan et al (2008), com diferenca maxima de 2,4 cm na coordenada Y.

Esperava-se que essas diferencas fossem menores, e foram realizados
outros testes que confirmaram que o algoritmo de Guan et al (2008) é muito sensivel
aos valores das distancias, que sdo os dados principais de entrada. Neste sentido
foi realizado um teste com as distancias usadas pelo artigo de Guan et al (2008) e o
resultado da recessdo coincidiu com o mesmo, indicando possiveis erros nas

observacdes descritas no artigo.

As distancias que séo obtidas pelo método de Grafarend por sua vez também
apresentam algumas dificuldades de interpretacéo, conforme ocorréncias explicadas
nos proximos experimentos. Aparenta ainda ter problemas de ordem numérica, visto
qgue foi feito um teste com simples variacdo da ordem dos pontos e os resultados

nao coincidem exatamente.

5.1.1.3 Experimento 3 SI

O experimento 3 foi realizado testar o programa com os dados extraidos de
Grafarend e Shan (1997) e para testar também o método de célculo de distancias do
mesmo. Usando as coordenadas no espaco objeto e os valores da orientagao
exterior (Tabela 5), foram simuladas as fotocoordenadas no programa simufoto.m,
apresentadas na Tabela 6. Os elementos de orientacdo interior usados foram

Xo =Y =0,0mme f=500mm.
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Tabela 5- Dados da simulacao de fotocoordenadas do experimento 3 SI.

Pt Coordenadas no espaco objeto (m)
X Y A
1 0,000 0,000 1,000
2 2,000 0,000 -1,000
3 2,000 2,000 1,000
4 0,000 2,000 -1,000
Elementos orientagéo exterior
X (m) Y. (m) Z.(m) w (°) () K ()
1,000 1,000 4,000 0,000 0,000 0,000

Fonte: Grafarend e Shan (1997).

Tabela 6- Fotocoordenadas obtidas para o experimento 3 Sl.

Pt | x(mm) | y(mm)
1 | -16,667 | -16,667
2 | 10,000 | -10,000
3 | 16,667 | 16,667
4 | -10,000 | 10,000

Depois foi calculada a ressecdo espacial sem iteracdo. A Tabela 7 apresenta

os valores obtidos neste experimento. Neste caso os angulos sdo dados em graus

(©)-

Tabela 7- Resultado da ressec¢éo espacial sem iteracdo no experimento 3 Sl.

Método /Parametros X.(m) Y, (m) Z.(m) w (°) o (9 K (°)

Colinearidade 1,000 1,000 4,000 0,000 0,000 0,000

Sem iteracéo 1,335 1,047 | -3,0799 | 0,786 -1,140 0,417

Resultado Grafarend e Shan 1,000 1,000 4,000 0,000 0,000 0,000

(1997)

Diferencas Grafarend e Shan (1997) e método:

AX.(m) | AY.(m) | AZ.(m) | Aw (°) | Ap (°) | Ak (%)

Colinearidade 0,000 0,000 0,000 0,000 0,000 0,000

Sem iteragéo 0,335 0,047 -7,080 0,786 -1,114 0,417

Nesse experimento a ressecao espacial com a equacao da colinearidade deu
0 mesmo resultado de Grafarend e Shan (1997). Mas o resultado da ressecéo
espacial sem iteragdo apresentou diferencas significativas do esperado,
principalmente para a coordenada Z. Depois de alguns testes, foi verificado que o
motivo estava no método de escolha das raizes do polinbmio de quarto grau, que

interfere no calculo da distancia pelo método de Grafarend.
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No experimento 1 e 2 (Seg¢bes 5.1.1.1 e 5.1.1.2) a raiz escolhida, dentre as
quatros obtidas com o método de Grafarend, foi baseada no Teorema de Bolzano,
que afirma que ao ser dada uma fungédo continua (neste caso o polindmio), num
intervalo fechado, de modo que as imagens dos pontos extremos do intervalo
tenham sinais diferentes, entdo existe pelo menos um numero n tal que f(n) =0
(SARTORI e MANTOVANI, 2010). Foram realizados varios testes de modo empirico
gue mostraram que os valores que geravam convergéncia era a maior raiz do
dominio [0; 1,5], pois se a raiz encontrada fosse maior que 1,5 as distancias obtidas
com o método de Grafarend (dados de entradas da ressecdo espacial sem iteracao)
faziam com que a ressecdo espacial sem iteracdo ndo convergisse. Entdo foi
implementado uma sub-rotina com teste de para escolha da raiz, no MATLAB®, de
modo que as raizes saissem em ordem decrescente (para que pudesse ser tomada
diretamente a primeira raiz como a solucdo adequada para o método de Grafarend),

com essa restricdo de intervalo.

Para este experimento a sub-rotina com x € [0;1,5], sendo x um ndmero real,
nao funcionou, o que demonstrou que a restricdo de intervalo, como implementada,
pode falhar. Como tomar a primeira raiz deste intervalo (que foi implementado de
modo a ser sempre a maior dentre as quatro possiveis) nem sempre fazia com que a
ressecao espacial sem iteracdo convergisse, entdo os resultados encontrados com
estes método foram comparados com o0s resultados esperados dos experimentos
(dados de Guan et al (2008), Grafarend e Shan (1997) e Silva (1995)). A cada vez
gue nado havia convergéncia era feita a troca de raizes de modo que o resultado

esperado fosse atingido.

Neste caso ocorreram quatro raizes reais e a solucdo foi encontrada com a
quarta raiz, que resultou nas distancias que coincidiram com as do artigo de
Grafarend e Shan (1997). Com essas distancias foi recalculada a ressecéo espacial
sem iteracdo, cujo resultado esta na Tabela 8, que agora se iguala ao de Grafarend
e Shan (1997).
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Tabela 8- Novo resultado da ressecao sem iteracao no experimento 3 Sl.

Método/ Parametros X.(m) | Y.(m) | Z.(m) w (°) o () K (°)

Sem iteracéo 1,000 | 1,000 | 4,000 0,000 0,000 | 0,000

Resultado Grafarend e Shan (1997) | 1,000 | 1,000 | 4,000 0,000 0,000 | 0,000
Diferencas Grafarend e Shan (1997) e método:

AX (m) | AY.(m) | AZ,(m) | Aw (°) | A (°) | Ak (%)

Sem iteracao 0,000 | 0,000 | 0,000 0,000 0,000 | 0,000

5.1.1.4 Experimento 4 SI

O objetivo dos experimentos 4, 5 e 6 é testar a ressecao espacial sem
iteracdo com dados reais. As posicdes das fotografias sdo conhecidas a partir de
uma fototriangulacdo, que fornece as posicdes e orientacbes devidamente
ajustadas, e permitirdo também analises de resultados com ambiguidades e

posicdes criticas, conforme previsfes estudadas na secdo 2.4, conforme exemplos

nos experimentos 5 e 6.

Serdo usados dados de Silva (1995), que fez um levantamento em torno de
um tanque cilindrico, composto por 11 fotografias, dispostas de acordo com a Figura

21. Os elementos de orientacdo interior usados foram x, =y, = 0 mm e f = 99,800

mm.

Figura 21- IndicacGes das posicfes das estacdes de exposicdes.
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Fonte: Silva (1995).
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Foi realizada a ressecao espacial para a fotografia da posicéo 1 da Figura 21.
Como a fotografia tinha mais que quatro pontos no espaco objeto, fez-se uma
selecédo das fotocoordenadas que estivessem bem distribuidas (dispostas no canto
superior e inferior na direita e esquerda da imagem a partir da posi¢ao do centro da
fotografia, de modo a ter pontos nos quatro quadrantes da fotografia). A selecéo foi
feita com um grafico de dispersdo do Excel, para verificar as distribuicbes das
fotocoordenadas, conforme a Figura 22. Com esta figura foram observados os
quatro pontos mais proximos dos vértices desta fotografia e assim foram extraidas

as fotocoordenadas de interesse.

Figura 22- Posi¢bes das fotocoordenadas do experimento 4.
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Na Figura 23 e Tabela 9 podem ser verificadas as posi¢coes dos pontos e do

centro da fotografia e valores, respectivamente, das fotocoordenadas selecionadas.
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Figura 23- Posicbes das fotocoordenadas selecionadas do experimento 4.
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Tabela 9- Fotocoordenadas selecionadas para o experimento 4 Sl.

Pt | x(mm) | y(mm)
1 | 36,290 | 62,403
2 | 49,875 | -36,817
3 | -46,172 | 55,611
4 | -20,623 | -58,807

Fonte: Adaptado de Silva (1995).

As coordenadas correspondentes no espaco objeto podem ser vistas na
Tabela 10.

Tabela 10- Dados de entrada do experimento 4 Sl.

Pt Coordenadas no espago objeto (m)
X Y A

1 17,457 9,245 21,385

2 18,880 0,344 20,224

3 9,775 9,247 20,604

4 12,952 -0,041 23,414

Fonte: Silva (1995).

Com esses dados foi calculada a ressecéo espacial sem iteracdo. Na Tabela
11 estdo os resultados, junto com os valores da ressecdo espacial pela

colinearidade e de Silva (1995), obtido por fototriangulacédo e usado como referéncia.
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Tabela 11- Resultado da ressecédo espacial sem iteracdo no experimento 4 Sl.

Método/ Parametros X.(m) Y.(m) Z.(m) w (°) o (©) K (%)
Colinearidade 14,366 3,250 29,862 3,496 0,894 -0,325
Sem lteracao 14,368 3,253 29,863 3,480 0,903 -0,380
Resultado de Silva (1995) 14,370 3,261 29,875 3,406 0,918 -0,378

Diferencas Silva (1995) e método:

AX.(m) | AY.(m) | AZ.(m) [ Aw () [ Ap () | Ak ()

Com colinearidade -0,004 -0,011 -0,013 0,092 -0,024 0,053
Sem lteracéo -0,002 -0,008 -0,012 0,074 -0,015 -0,002

O resultado da Tabela 11 mostra que a ressecéo espacial com a equacao da

colinearidade tem pouca diferenca do resultado encontrado por Silva (1995), porém

a ressecado espacial sem iteracdo apresenta a menor diferenca.

E importante chamar a atencdo que o sistema de coordenadas da Figura 21

nao esta em posicdo convencional, comparando com 0 aéreo, ou seja, 0 eixo Z nao

estd na vertical. Com isto a fotografia um estd em posicdo equivalente a uma

fotografia vertical, caso o sistema estivesse em posicdo normal.

5.1.1.5 Experimento 5 Sl

O experimento 5 foi realizado para testar um caso de resultado ambiguo, a

partir da matriz de rotacdo. Aqui os calculos sdo para a fotografia 5 (Figura 21). A

Tabela 12 apresenta os dados de entrada deste experimento. As coordenadas foram

escolhidas de forma similar ao experimento 4.

Tabela 12- Dados de entrada do experimento 5 Sl.

Coordenadas:
Pt Imagem real (mm) Terreno (m)
x y X Y A
1 36,290 39,519 12,018 9,282 9,677
2 -34,829 40,527 20,338 9,260 13,861
3 -50,115 -35,718 21,796 -0,008 12,631
4 37,500 -30,047 12,018 9,282 9,677

Fonte: Silva (1995).

Com os dados da tabela anterior foi calculada a ressecdo espacial sem

iteracdo, que é apresentado na Tabela 13.
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Tabela 13- Resultado da ressecédo espacial sem iteracdo no experimento 5 Sl.

Método/ Parametros X.(m) Y.(m) Z.(m) | w(®) o () K (%)
Colinearidade NC NC NC NC NC NC
Sem iteracéo 22,029 3,330 0,426 | -3,489 27,074 2,360
Resultado de Silva (1995) 22,024 3,340 0,404 | -3,420 | 152,978 | 2,331
Diferencas Silva (1995) e método:
AX,(m) | AY.(m) | AZ.(m)| Aw (°) | Ap (®) | Ak (®)
Colinearidade - - - - - -
Sem iteragdo 0,005 -0,01 0,022 | -0,069 | -125,904 | 0,029

Os resultados da Tabela 13 mostram que a ressec¢ao espacial com a equacéo
da colinearidade n&o convergiu (NC). A ressecdo espacial sem iteracdo se
aproximou do resultado de Silva (1995), exceto para o valor de ¢. Porém foi
observado que arredondando o valor de ¢ e do resultado de Silva (1995) para um
namero inteiro, os angulos sdo suplementares e tem a mesma imagem para a

funcdo seno, conforme apresentado da Figura 24.

Figura 24- Localiza¢des dos angulos 27° e 153° no ciclo trigonométrico.

v 4

2q ra

o
153 370

3°Q 4°Q

Entdo se concluiu que o MATLAB® estava dando resultado reduzido ao
primeiro quadrante (neste caso ambiguo), com a equacdo 30ii. Para resolver
situagcdes como esta Shih (1990) indica o uso da equacdo 34, desde que seja
calculado previamente o valor aproximado do cosseno de ¢, porque encontra o valor
do angulo nos quatros quadrantes do ciclo trigopnométrico e € livre de dualidades.
Neste caso, como nao havia valor de ¢ aproximado, tentou-se inserir a equacgao

34ii da Secédo 2.4.3, mas o valor deste angulo foi encontrado com sinal oposto. A
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solucdo foi calcular ¢ com a equacdo 35 (desta mesma secdo). Para isto foi

acessada a matriz de rotacao calculada a partir do quatérnio no programa e feita sua

equivaléncia com a rotagéo R, NO sistema passivo que é apresentada na equagao

130 do Apéndice A. A Tabela 14 mostra o novo resultado recalculado, que agora se
aproxima do resultado de Silva (1995).

Tabela 14- Novo resultado da ressecdo sem iteracdo no experimento 5 Sl.

Método/ Pardmetros X.(m) Y.(m) Z.(m) w (®) o () Kk (%)

Sem iteracéo 22,028 3,330 0,426 -3,489 | 152,860 2,360

Resultado de Silva (1995) 22,024 3,340 0,404 -3,420 | 152,978 | 2,331
Diferencas Silva (1995) e método:

AX (m) AY, (m) AZ(m) | Aw () | Ap () | Ak ()

Sem iteragéo 0,004 -0,01 0,022 -0,069 -0,118 0,029

5.1.1.6 Experimento 6 Sl

O objetivo do experimento 6 é testar a ressecao espacial sem iteragdo em

fotografias cujas posicdes sdo criticas, segundo as discussbes da Secao 2.4.4,

quando ocorrem gimbal lock. Neste caso também foram usados dados de Silva

(1995) para o fotografia de posicdo 9. A posicao dessa fotografia € critica porque ela

esta em rotagdo R, , N0 sistema passivo, com o angulo da rotagdo secundario @

proximo de 270°. Na Tabela 15 sdo mostrados os dados de entrada deste
experimento.

Tabela 15- Dados de entrada do experimento 6 Sl.

Coordenadas:
Imagem real (mm) Espaco objeto (m
Pt
X y X Z

1 40,064 49,968 9,775 9,247 20,604
2 -38,565 53,28 9,228 9,243 11,534
3 -42,934 -34,928 7,515 -0,103 11,946
4 33,021 -42,275 5,944 -0,027 18,660

Fonte: Silva (1995).

A Tabela 16 mostra o resultado obtido com o calculo da

sem iteragao.

ressecao espacial
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Tabela 16- Resultado da ressecéo espacial sem iteracdo no experimento 6 Sl.

Método/ Parametros X.(m) | Y.(m) Z.(m) w () o () K (°)
Colinearidade NC NC NC NC NC NC
Sem iteracao -1,984 | 3,250 16,051 29,520 -89,560 | 30,364

Resultado de Silva (1995) | -1,997 | 3,251 | 16,053 | 26,682 | 270,439 | 27,524
Diferencas Silva (1995) e método:
AX (m) | AY,(m) | AZ.(m) | Aw (°) Ag (©) Ak (°)

Colinearidade - - - -
Sem iteracéo 0,013 | -0,001 | -0,002 2,838 0,001 2,840

A Tabela 16 mostra a ressecéo espacial com a equacao da colinearidade que
nao converge, fato que era esperado por envolver uma posi¢ao classificada como
critica na literatura. J4 a ressecdo espacial sem iteracdo apresentou valores bem
semelhantes para as coordenadas do centro perspectivo, enquanto que para oS
angulos existem diferencas em torno de 3° em w e k. Essas diferencas podem ser
por conta dos erros aleatérios das quatro coordenadas utilizadas, uma vez que no
ajustamento de Silva (1995) foram utilizadas mais pontos. O valor de ¢ = 270,439°,
€ equivalente a -89,561°, pois para transformar um angulo negativo deve-se somar

360° ao angulo (por isso que a diferenca foi de 0,001° do resultado de Silva (1995)).

O algoritmo da ressecdo espacial sem iteracdo necessita inicialmente das
distancias entre o CP e cada ponto no espaco objeto. Porém o método
implementado pode fornecer quatro resultados diferentes e é necessario introduzir

alguns testes que permitam definir qual grupo de distancias seja a solu¢ao correta.

Um resumo das principais observacfes sobre esse método de recesséo

espacial sem iteracdes, a partir dos resultados obtidos € o seguinte:

1. A ressecao espacial sem iteragdo precisa do calculo da distancia inicial,
cujo método implementado foi de Grafarend. Esse método usa raizes do
polindmio de quarto grau para encontrar as distancias, mas é necessario
encontrar uma forma mais adequada de selecionar as raizes, além de se
verificar possiveis questdbes numéricas de processamento com base nas

posicdes relativas dos pontos.

2. O método de Guan et al (2008) é muito sensivel aos dados de entrada das
distancias, isto €, pequenas variacfes nas distancias se refletem em

significativas diferencas nas coordenadas do CP.
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Uma desvantagem deste método de recessao sem iteracdo € que ele sé
funciona com quatro pontos, ndo sendo possivel tirar vantagem de

observacdes mais abundantes.

Ocorrem casos em que 0s angulos sdo ambiguos e que as funcbes
trigopnométricas tem que ser alteradas dependendo da linguagem de

programacao (por exemplo, o uso das funcées atan e atan2 no MATLAB®);

Para o caso da ressecdo com fotografias em posicbes ambiguas, e
também em casos reconhecidos como criticos, o0 método da equacédo da

colinearidade pode néo funcionar;

O método de ressecdo espacial sem iteracdo € mais robusto (funciona
para casos de ambiguidades e casos criticos) do que a ressecao espacial

com a equacéo da colinearidade e nao precisa de valor aproximado inicial.

5.1.2 Aplicacédo da ressecéo espacial com iteracao (Cl)

A ressecado espacial com iteracdo usada aqui € uma adaptacdo da ressecao

espacial com a equacédo da colinearidade, com troca da matriz de rotacdo com

angulos de Euler pelos quatérnios. Neste caso método tem a desvantagem de

necessitar de valores iniciais e tem a vantagem de poder usar mais de quatro

pontos.

O programa que foi construido no MATLAB® para calcular a ressecéo espacial

com iteracdo segue a seguinte sequéncia:

Entrar com valores: da distancia focal, coordenadas do ponto principal
(obtida pela calibragdo), das fotocoordenadas e das coordenadas no
espaco objeto; aproximados dos parametros de orientacdo exterior;
Calcular o quatérnio inicial;

Calcular:

A matriz de rotagcdo com os quatérnios;

Ly e formar L, usando L;

As derivadas da matriz A;
° Xa;
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e O residuo;

e Critério de convergéncia;

e Quatérnio ajustado;

e A matriz de rotagéo ajustada,

e Os elementos de orientacéo exterior;

e Saida dos parametros ajustados.
Mais alguns detalhes sdo dados a seguir.

Devem ser fornecidos valores iniciais para X,, (coordenadas aproximadas do
CP e valores iniciais do quatérnio). Com base nestes dados é calculada a matriz de
rotacdo com quatérnio e outros valores aproximados como L, Para o calculo de L,
foram usadas as fotocoordenadas. A patrtir L, e L, é obtido L. A matriz A é
formada a partir das derivadas parciais da equacdo da colinearidade, ja adaptada
para os quatérnios, com relacdo aos parametros incégnitos da ressecao espacial,

usando a equacéo 78.

Na sequéncia é calculado o vetor de correcdes X, pela equacdo 76 (da Secéo

4.1.1) e o residuo pelo modelo apresentado na equacao 72 (da mesma sec¢ao).

Como o célculo é feito de modo iterativo, usando o método paramétrico, o
critério de convergéncia usado é a diferenca entre os sigmas a posteriori (6¢), com

valor de ¢ = 107°. O 6 em cada iterag&o é obtido por:
6t =Vvtpy (112)

Como a matriz dos pesos P €, neste caso, igual a matriz identidade, entdo a

equacao 112 se resume a:
6t =Vty (113)

Apoés a convergéncia é calculado o quatérnio ajustado e por meio dele foram
encontrados os elementos da ressecdo espacial. As coordenadas do centro
perspectivo sao obtidas diretamente do quatérnio ajustado, tomando os trés

primeiros elementos.

Para encontrar os angulos de Euler foram analisadas as sequéncias de
rotacbes e as suas respectivas equivaléncias com relagdes trigonométricas

existentes na matriz de rotacdo de quatérnios.
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Os experimentos de 1Cl a 6CI foram processados com o método da ressecéo
espacial com iteragfes para 0s mesmos casos usados na ressecao espacial sem

iteracao.

5.1.2.1 Experimento 1 CI

O experimento 1CIl equivale ao experimento 1 discutido na resse¢édo espacial
sem iteracdo, com dados originais de Guan et al (2008). O resultado da ressec¢éo
espacial com iteracdo esta na Tabela 17, que nas primeiras linhas mostra os valores
iniciais usados no método da ressecdo com a colinearidade e com este método com

iteracOes.

Tabela 17- Resultado da ressec¢do espacial com iteragdo no experimento 1 ClI.

Pardmetros aproximados iniciais no método:
X (m) Y, (m) Zey(m) | wo(rad) | ¢o(rad) | Ko(rad)
Colinearidade 39700,000 | 27400,000 | 7500,000 0,000 0,000 0,000
Com iteragéo 39700,000 | 27400,000 | 7500,000 0,000 0,000 0,000
Resultado da ressec¢do espacial com o0 método:
X.(m) Y.(m) Z.(m) w (rad) | ¢ (rad) | x (rad)
Colinearidade 39795,452 | 27476,462 | 7572,686 0,002 0,004 -0,068
Com iteracéo 39795,948 | 27477,782 | 7572,939 -0,002 -0,004 0,068
Resultado Guan et al 39795,080 | 27476,750 | 7572,810 0,002 -0,004 -0,068
(2008)
Diferencas Guan et al (2008) e método:
AX.(m) AY,(m) AZ, (m) Aw (rad) | A (rad) | Ak (rad)
Colinearidade 0,372 -0,288 0,129 0,000 0,008 0,372
Com iteragéo 0,868 1,032 0,131 -0,004 0,000 0,866

A Tabela 17 mostra que a ressec¢ao espacial com a equacao da colinearidade

se aproximou mais do resultado de Guan et al (2008) do que a ressecdo com

iteracdo. As diferencas com iteracdo em Y. chegam a 1,032m.

5.1.2.2 Experimento 2 ClI

Os dados de entrada do experimento 2 Cl sdo os mesmos do experimento 2

Sl, com dados simulados a partir de dados de Guan et al (2008). O resultado com

este método esta na Tabela 18.
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Tabela 18- Resultado da ressecéo espacial com iteracdo no experimento 2 CI.

Parametros aproximados iniciais no método:

X, (m) Y, (m) Zy(m) | wo(rad) | @o(rad) | ko(rad)
Colinearidade 39700,000 | 27400,000 | 7500,000 0,000 0,000 0,000
Com iteracdo 39700,000 | 27400,000 | 7500,000 0,000 0,000 0,000
Resultado da ressec¢do espacial com o método:
X (m) Y. (m) Z.(m) w (rad) | ¢ (rad) | k(rad)
Colinearidade 39795,001 | 27476,001 | 7573,000 | -0,004 0,002 -0,068
Com iteragdo 39794,981 | 27476,029 | 7573,011 0,004 -0,002 0,068
Resultado Guan et al 39795,080 | 27476,750 | 7572,810 0,002 -0,004 -0,068
(2008)
Diferencas Guan et al (2008) e método:
AX.(m) AY,(m) AZ.(m) | Aw (rad) | Ap (rad) | Ak (rad)
Colinearidade -0,079 -0,288 -0,124 -0,006 0,006 0,000
Com iteragdo -0,099 -0,721 0,201 0,002 -0,008 0,136

A Tabela 18 mostra que os ambos os métodos de calculo se aproximaram

mais do resultado de Guan et al (2008) que no experimento anterior mas ainda

existe uma diferenca significativa em Yc de -0,721m.

5.1.2.3 Experim

ento 3 ClI

Os dados de entrada deste experimento sdo os mesmo do experimento 3 Sl,

com dados de Grafarend e Shan (1997).

iteracdo pode ser visto na Tabela 19.

O resultado da ressecdo espacial com

Tabela 19- Resultado da ressec¢édo espacial com iteragcdo no experimento 3 ClI.

Parédmetros aproximados iniciais no método:

Xey(m) | Yo, (m) | Zoy(m) | wo(rad) | ¢o(rad) | Ko(rad)
Colinearidade 0,700 | 0,700 | 3,000 0,000 0,003 0,000
Com iteragéo 1,000 | 1,050 | 3,000 0,000 0,000 0,000
Resultado da ressec¢ao espacial com o0 método:
X(m) | Y(m) | Z(m) | w(rad) | ¢ (rad) | k (rad)
Colinearidade 1,000 | 1,000 | 4,000 0,000 0,000 0,000
Com iteragéo 1,004 | 1,003 | 4,000 -0,181 0,052 0,000
Resultado Grafarend e | 1,000 | 1,000 | 4,000 0,000 0,000 0,000
Shan (1997)
Diferencas de Grafarend e Shan (1997) e método:
AX.(m) | AY,(m) | AZ.(m) | Aw (rad) | A (rad) | Ak (rad)
Colinearidade 0,000 | 0,000 | 0,000 0,000 0,000 0,000
Com iteragdo 0,004 | 0,003 | 0,000 -0,181 -0,002 0,000
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A Tabela 19 mostra que o resultado da ressec¢éo espacial com iteracéo ficou
proximo do resultado de Grafarend e Shan (1997), mas o método sem iteragdo neste

caso foi melhor (Tabela 8) porque os resultados coincidiram.

5.1.2.4 Experimento 4 ClI
Este experimento equivale ao experimento 4 Sl, que usa dados reais de Silva

(1995) para a fotografia 1. Vale salientar que os valores iniciais para 0 método com
quatérnios e iteracdes sdo mais fracos que para a colinearidade, conforme consta na

Tabela 20, que também mostra todo o resultado da ressecéo espacial com iteracao.

Tabela 20- Resultado da ressec¢éo espacial com iteragc&do no experimento 4 ClI.

Parametros aproximados iniciais no método:
X, (m) | Y, (m) Z,(m) wo () 0o (®) | Ko(®)

Colinearidade 16,000 1,000 27,000 0,000 0,000 | 0,000

Com iteragao 10,000 1,000 17,000 0,000 0,000 | 0,000
Resultado da ressec¢do espacial com o método:

X.(m) Y. (m) Z.(m) w () @ () k(%)

Colinearidade 14,366 3,250 29,862 3,496 0,894 | -0,325

Com iteracao 14,366 3,250 29,862 3,498 0,892 | -0,378

Resultado de Silva (1995) | 14,370 3,261 29,875 3,406 0,918 | -0,378

Diferencas Silva (1995) e método:
AX (m) | AY.(m) | AZ . (m) Aw () | Ap (°) | Ak (®)
Colinearidade -0,004 -0,011 -0,013 0,090 -0,024 | 0,053
Com iteragéo -0,004 -0,011 -0,013 0,092 -0,026 | 0,000

Na Tabela 20 pode-se verificar que ambos os métodos apresentam valores
muito proximos entre si com relacdo ao resultado de Silva (1995), mas as diferencas

Sa0 um pouco maiores que na ressecao sem iteragao (Tabela 11).

5.1.2.5 Experimento 5 ClI

O experimento 5 CI equivale ao experimento 5 Sl, com um exemplo de
ambiguidade de angulos, com dados de Silva (1995) para a fotografia 5. O resultado

obtido com a aplicacéo da ressecao espacial com iteracédo esta na Tabela 21.
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Tabela 21- Resultado da ressecéo espacial com iteracdo no experimento 5 CI.

Parametros aproximados iniciais no método:

X (m) | Y (m) | Z, ,(m) | wo(°) ®o () Ko (%)
Colinearidade 19,000 | 2,000 | -0,420 | 0,000 150,000 0,000
Com iteragdo 19,000 | 2,000 | -0,420 | 0,000 0,000 0,000
Resultado da ressec¢ao espacial com o método:
Xm) | Y(m | Zm) | () @ () k()
Colinearidade NC NC NC NC NC NC
Com iteragdo 22,020 | 3,340 | 0,420 | -3,489 | -90+24,704i | 2,362

Resultado de Silva (1995) | 22,024 3,340 0,404 | -3,420 152,978 2,331
Diferencas Silva (1995) e método:

AX.(m) | AY.(m) | AZ.(m) | Aw (°) Ap () Ak (°)

Colinearidade -
Com iteracao -0,004 0,000 0,016 | -0,069 | 62+ 24,704i 0,031

Nesta Tabela 21 verifica-se que a ressecao espacial com iteragdo apresentou
valores proximos para todos os parametros, exceto para o valor do segundo angulo
(¢) dado em numero complexo. Isso se deu porque o dominio da funcdo arco seno é

definida como Vv x € [—1;1]
y =arcsenx (114)

e tem por dominio o intervalo y € [~,7].

Como neste caso existem valores aproximados, entdo foi possivel calcular o
cosseno do angulo da rotacao secundaria inicial, 0 que permitiu usar de imediato a
equacao 35, da Secédo 2.4.3, (que resolve problemas de ambiguidades, conforme
detalhamento no experimento 5 Sl, e aquela equacdo permite encontrar o valor do
angulo nos quatros quadrantes do ciclo trigpnométrico). Com isso o novo valor de ¢

€ encontrado e apresentado na Tabela 22.

Tabela 22- Novo resultado da ressecdo com iteracdo no experimento 5 Cl.

Parametros aproximados iniciais no método:
X)) | Yoo(m) | Z;(m) | wo(®) ?o(°) Ko (%)

Com iteragéo 19,000 | 2,000 -0,420 0,000 0,000 0,000
Resultado da ressecao espacial com o método:

X.(m) | Y.(m) Z.(m) w () @ () x (°)

Com iteragdo 22,020 | 3,340 0,420 -3,489 | 152,968 | 2,362

Resultado de Silva (1995) | 22,024 | 3,340 0,404 -3,420 | 152,978 | 2,331
Diferencas Silva (1995) e método:
AX.(m) |AY.(m) | AZ.(m) | Aw () | Ap () | Ak (®)
Com iteracéo -0,004 | 0,000 0,016 -0,069 -0,010 0,031
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O resultado da Tabela 22 € um pouco melhor que o resultado da ressec¢éo
espacial sem iteracéo (Tabela 14).

5.1.2.6 Experimento 6 ClI
Os dados de entrada do experimento 6 ClI usam os mesmos dados do
experimento 6 Sl (a fotografia 9 em posicéo critica de Silva (1995)). O resultado da

ressecao espacial com iteracéo esta na Tabela 23.

Tabela 23- Resultado da ressec¢édo espacial com iteragdo no experimento 6 ClI.

Par&dmetros aproximados iniciais no método:
Xeo(m) Yo(m) | Z,(m) wo () ®o(®) Ko (*)

Colinearidade -2,400 2,000 17,000 25,000 | 265,000 | 28,000
Com iteracéo -2,400 2,000 17,000 0,500 100,760 0,570
Resultado da ressec¢do espacial com o0 método:
X.(m) Y.(m) Z.(m) w(®) ¢ () K (®)
Colinearidade NC NC NC NC NC NC
Com iteracéo -1,983 3,245 16,054 26,238 -90,475 | 27,108

Resultado de Silva (1995) -1,997 3,251 16,053 26,682 | 270,439 | 27,524
Diferencas Silva (1995) e método:

AX.(m) | AY.(m) | AZ.(m) | Aw (°) | A9 () | Ak (%)

Colinearidade

Com iteracéo 0,014 -0,006 0,001 -0,444 -0,036 -0,416

Esta Tabela 23 mostra que a ressecdo espacial com iteracdo ficou bem
semelhante ao resultado de Silva (1995) e bem melhor que os resultados da
orientacdo de ressecdo sem iteracdo (Tabela 16). Para se conseguir calcular a
ressecdo espacial com esta fotografia, foi imposto um valor de convergéncia
e = 1073, maior que o valor usado nos outros experimentos que era de 10°, pois

com esse valor a convergéncia ndo era atingida.

5.1.2.7 Experimento 7 CI

Nos experimentos anteriores sempre foi calculado um quatérnio inicial a partir
dos angulos de Euler aproximados informados, usando as equagfes da Secao 3.7.
Com o quatérnio inicial e com as coordenadas aproximadas do centro perspectivo €

possivel usar o MMQ e prosseguir nos calculos da ressecéo espacial com iteracao.

SILVA, A. M. 93



A representacdo das matrizes de rotag6es com o uso dos quatérnios: aplicagdes a Fotogrametria

O experimento 7 foi realizado para mostrar que o programa de ressecao
espacial com iteracdo também funciona usando diretamente um quatérnio inicial
estimado, sem usar os angulos de Euler, como nos outros experimentos, desde que
seja adequado a geometria da ressecdo. Neste experimento foram usados os dados
do experimento 4, fotografia 1 da Figura 21. O resultado da ressec¢&o espacial com

iteracdo esta na Tabela 24.

Tabela 24- Resultado da ressec¢édo espacial com iteracdo no experimento 7 Cl.

Pardmetros aproximados iniciais no método:

X, (m) Y., (m) Z,,(m) 9o q1 9 q3
Com iteragéo -2,400 2,000 17,000 1,000 | 0,000 | 0,000 | 0,000
Xey (m) Yo, (m) Ze(m) | w0o() 20 (%) (%)
Colinearidade 16,000 1,000 27,000 0,000 0,000 0,000
Resultado da ressec¢do espacial com o método:
X.(m) Y.(m) Z.(m) w () @ () Kk (%)
Com iteragao 14,366 3,250 29,862 3,498 0,893 -0,378
Colinearidade 14,366 3,250 29,862 3,496 0,894 -0,325
Resultado de 14,370 3,261 29,875 3,406 0,918 -0,378
Silva (1995)
Diferencas Silva (1995) e método:
AX (m) AY, (m) AZ (m) Aw () Ap (°) Ak (°)
Com iteracéo -0,004 -0,011 -0,013 0,092 -0,026 0,000
Colinearidade -0,004 -0,011 -0,013 0,090 -0,025 0,053

A Tabela 24 mostra que os valores obtidos com uso do quatérnio (1, 0, 0, 0)
estimado sao iguais ao do experimento 4 Cl, que na entrada usava angulos de Euler

aproximados.

Porém, s6 é possivel entrar com quatérnio inicial se houver conhecimento
anterior dos valores aproximados do mesmo, o0 que € mais dificil de estimar em
qualquer situacdo que os angulos de Euler. No caso de fotografia vertical (a
fotografia 1 é equivalente uma vertical por conta da geometria adotada no
levantamento, com ja explicado antes na Se¢édo 5.1.1.4) um quatérnio aproximado
com valores (1, 0, 0, 0) se aplica bem, mas com valores como (0,1, 0, 0), (0, 0, 1,0)
ou (0,0,0,1) ndo darao certo. A titulo de exemplo € mostrado o resultado da ressecao
espacial com os dados usados do experimento 6CI (fotografia 9) e com o quatérnio
de entrada (1, O, 0, 0), na Tabela 25.
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Tabela 25- Novo resultado da ressecao com iteracéo no experimento 7 CI.

Parametros aproximados iniciais no método:

Xy (m) Y, (m) Ze, (m) do q1 q> a3
Com iteragao -2,400 2,000 17,000 1,000 0,000 | 0,000 | 0,000
X (m) Y, (m) Z.,(m) wo (") ®o(®) Ko ()
Colinearidade -2,400 2,000 17,000 25,000 265,000 28,000
Resultado da ressecdo espacial com o método:
X.(m) Y. (m) Z.(m) w (®) @ () K (%)
Com iteragao 10,268 8,620 22,860 -16,657 170,903 | 38,450
Colinearidade NC NC NC NC NC NC
Resultado de Silva (1995) -1,997 3,251 16,053 26,682 270,439 | 27,524
Diferencas Silva (1995) e método:
AX (m) | AY.(m) | AZ.(m) Aw () Ap (°) Ak (°)
Com iteragéo 12,265 5,369 6,807 -43,339 -99,536 | 10,926
Colinearidade - - - - - -

A Tabela 25 mostra que o calculo da ressecéo espacial com iteracédo, usando

o quatérnio (1, 0, 0, 0), apresentou valores bem diferentes dos obtidos no

experimento 6Cl, porque o quatérnio aproximado de entrada néo foi o adequado.

Um resumo das observacdes mais importantes sobre os resultados desse

método de ressecdo com iteracdes é o seguinte:

1.

O método da ressecdo espacial com iteracdo, apesar de ter sido
implementado com quatro pontos, pode ser implementado com mais
pontos, com isso havera maior redundancia, o que pode ser vantajoso para

aumentar a confiabilidade do resultado e detectar erros grosseiros.

O método com iteracdes ele precisa de valores iniciais. Ao usar quatérnios
com valores iniciais é preciso ter uma boa aproximacédo deles ou o melhor
€ usar angulos de Euler aproximados e, com esses angulos, calcular o

quatérnio correspondente;

Os resultados obtidos com esse método foram bem parecidos com o0s
resultados da ressecédo espacial sem iteracdo, melhores em alguns casos
(nos experimentos 3, 4, 5 e 7, chegando a ter coincidéncias com o0s
resultados da ressecdo espacial com o método da equacdo da
colinearidade) e piores em outros (como 0s experimentos 1, 2 e 6,
chegando a ter erros de cinco metros (experimento 1, por exemplo) e em

torno de 2° de diferencas (experimento 6 Sl));
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4. Chegou a ser testada uma implementacdo de injuncdo para quatérnio
unitario (segundo o modelo matematico mostrado na Sec¢do 3.4.2), mas
nao apresentou diferenca significativas com o programa sem a injuncao.
Porém esta questdo merece mais estudos por ser teoricamente justificavel
a comparacdo de uso de quatérnios quaisquer com o0 quatérnio

normalizado de valor 1.

5.2 Aplicacao da orientacdao relativa (OR)

Com o objetivo de analise da aplicacdo dos quatérnios na orientacao relativa
também foram usados trés métodos em trés programas em MATLAB®, de modo a
ser possivel fazer comparacdes de desempenho:

e Programa 1 - Equacao da colinearidade com ajustamento paramétrico.
e Programa 2 - Condicao da coplanaridade com ajustamento combinado.

e Programa 3 - Condicdo da coplanaridade com quatérnios com

ajustamento combinado.

As orientacfes relativas implantadas sédo do tipo dependente (orientacdo de
uma camara em relacdo a outra, que se mantém fixa), portanto o sistema de
coordenadas é o da fotografia da esquerda. Os resultados dos experimentos estéo
respectivamente em tabelas como a 27. Nas tabelas os parametros Y, e Z. sdo
translacdes relativas ao centro perspectivo da fotografia esquerda para o caso da
colinearidade (a base fotografica X, entra como fixa no programa e varia conforme a
distancia focal de cada experimento). Ja b, e b, sdo os equivalentes para os dois
outros métodos, mas sendo proporcionais ao b,, que nos programas sao valores

fixos e iguais a 1,0.

O método da equacdo da colinearidade foi desenvolvido com base nas
equacdes 71 da Secdo 4.1.1 e 99 da Secdo 4.2.1. J& o método da condicdo da
coplanaridade foi construido com as equac¢fes 102 a 108, da Secéo 4.2.2. O metodo

do programa 3 tem a seguinte sequéncia:
e Entrada dos dados das fotocoordenadas das duas fotografias;

e Entrada do quatérnio inicial, considerando a parte imaginaria nula;
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Calculo do vetor Ly;

e Estimacao do vetor que contém os componentes iniciais da base;
e Calculo de X;

e Calculo da matriz dos pesos (que aqui foi usada a identidade);

e Célculo da matriz de rotacédo de quatérnios;

e Formacédo da matriz A e B, com base nas derivadas parciais em relacdo aos

parametros, seguindo a equacéo 109;
e Calculo do vetor R; € Ry;
e Calculo do vetor fechamento;
e Calculo de M;
e Célculo de X;
e Célculo dainjuncéo;

e Célculo da correcéo;

Céalculo de X, ajustado, segundo a equacgéao 110.

Foram usadas fotografias simuladas com elementos de orientacdo interior
Xo=Yo=00 mm e f=500mm. Os demais elementos necessarios para as

simulagdes sdo definidos em cada experimento.

5.2.1 Experimento 1 OR

O experimento 1 da orientagéo relativa serviu para verificar se os programas
desenvolvidos estavam corretas, com comparacdoes de valores utilizados nas
simulagfes de fotografias. Foram simuladas duas fotografias aéreas verticais, com
sobreposi¢ao longitudinal de 60%, com a rotagdo R,,,, NO sistema passivo,
conforme a geometria da Figura 25. Na Tabela 26 estdo as coordenadas no espago

objeto e na Tabela 27 os dados de orientagdo exterior usados na simulagéo.

SILVA, A. M. 97



A representacdo das matrizes de rotag6es com o uso dos quatérnios: aplicagdes a Fotogrametria

Figura 25- Posi¢cdes das fotografias na simulacéo do experimento 1 OR.

Fotografia 2

Fotografia 1

Tabela 26- Dados usados na simulacdo das fotografias do experimento 1 OR.

Pt Coordenadas no espaco objeto (m)

1 12,000 10,000 28,000
2 20,000 11,000 31,000
3 23,000 19,000 13,000
4 10,000 20,000 14,000
5 16,000 12,500 8,000
6 21,000 07,000 11,000
7 10,000 15,000 28,000
8 15,000 10,000 3,000

Tabela 27- Resultado da orientagéo relativa no experimento 1 OR.

Elementos orienta¢éo exterior da simulagdo

FT Xeo(m) | Y, (m) Ze,(m) wo (*) ?o(®) Ko (%)
1 12,000 |15,000 50,000 3,000 2,000 1,000
2 18,000 |15,000 50,000 2,500 1,800 2,000
Resultado da orientagéo relativa com o método:
Parametro Y., oub, Z,,oub, W, P Ky
Colinearidade -0,174 0,349 -0,503 -0,191 0,982
Coplanaridade -0,017 0,035 -0,503 -0,195 0,982
Quatérnios -0,017 0,036 -0,504 -0,240 0,945

Na Tabela 27 sdo mostrados os valores dos elementos de orientagdo exterior
usadas durante a simulacéo de fotografias (as coordenadas do centro perspectivo e
os angulos de orientacdo). Também sdo apresentados os resultados obtidos com o

calculo da orientacgdo relativa. Os valores para Y, e Z., sdo os resultados obtidos
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com a equagdo da colinearidade, ja b, e b, séo os valores encontrados com 0s

outros dois métodos e apresentam diferencas significativas porque as bases de
entrada nos programas séo diferentes.

Os resultados da Tabela 27 mostram que os trés métodos de célculo
apresentaram resultados semelhantes, portanto os programas implementados estéo
funcionando corretamente, para este exemplo comum de fotografias quase verticais.
Os valores encontrados dessas orientagdes relativas foram aproximadamente iguais
as diferencas entre os angulos usados na simulacdo (0,5 graus em 6mega, 0,2
graus em fi e 1,0 grau em kappa), como se esperava.

Nos experimentos 2 e 3 foram simuladas fotografias tipicas de levantamento
de fotogrametria terrestre, em que as posicOes sdo mais variadas do que na
fotogrametria aérea e podem ocorrer com mais facilidades casos de dualidades e
situacdes criticas. Foram formados pares estereoscépicos em posi¢cdes sucessivas
com diferencas de 90° (com a mesma sobreposicdo do experimento anterior) como

indicadas na Figura 26. Os pontos no espaco objeto estdo na Tabela 28.

Figura 26- Posi¢Bes das fotografias na simulagéo dos experimentos 2 e 3 OR.

z )
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Tabela 28- Dados da simulacéo das fotografias do experimento 2 e 3 OR.

Pt Coordenadas no espaco objeto (m)
1 4,000 4,100 5,100
2 8,100 7,900 4,900
3 4,100 8,100 3,000
4 8,050 4,000 3,100
5 3,950 6,000 -0,500
6 8,000 6,000 -0,900
7 6,000 4,000 -0,500
8 6,000 8,000 -0,900

5.2.2 Experimento 2 OR

O objetivo deste experimento é testar se a orientacao relativa com quatérnios

funciona para o caso de posi¢cOes de fotografias em que um dos angulos de Euler,

neste caso 0 w, seja proximo de 90°, com a rotagao R, , N0 sistema passivo. Para

tanto foram usadas as fotocoordenadas das fotografias 1 e 2 (posi¢des indicadas na

Figura 26). As fotocoordenadas estdo apresentadas na Figura 27, para fins de

visualizacdo quanto a distribuicdo na fotografia e da paralaxe em y (a linha de

ligacdo é apenas para facilitar a leitura da sequéncia de identificacdo dos pontos na

figura, que é de cima para baixo).

Figura 27- Posi¢Bes das fotocoordenadas do experimento 2 OR.

Figura 27 a- Distribuicdo das fotocoordenadas da fotografia 1. Figura 27 b- Distribuigdo das fotocoordenadas da fotografia 2.
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A Figura 27 mostra que as diferencas de paralaxes y nos oito pontos entre as
fotografias sdo bem pequenas. Esta observacdo é importante porque em outras
simulacdes as diferencas podem ser muito significativas em alguns, ou em todos os
pontos, e perfeitamente notadas nas figuras. Os resultados do calculo da orientagéo

relativa com todos os métodos encontram-se na Tabela 29.

Tabela 29- Resultado da orientagéo relativa no experimento 2 OR.

Elementos orienta¢do exterior da simulagao

FT Xep(m) | Y, (m) Ze,(m) wo (*) ®o(®) Ko (%)
1 6,000 0,000 3,000 91,000 1,000 2,000
2 6,500 0,000 3,000 92,000 2,000 3,000
Resultado da orientagéo relativa com o método:
Parametro Y., oub, Z,,oub, Wy @7 K
Colinearidade -0,350 0,176 1,034 0,963 1,017
Coplanaridade -0,032 0,021 1,036 0,982 1,040
Quatérnios -0,033 0,021 1,053 0,960 1,062

A Tabela 29 mostra que todos os métodos apresentaram bons resultados,
proximos dos esperados, neste exemplo, com valores em torno de w = ¢ =k =1,

gue sao as diferencas entre os angulos das fotografias 1 e 2.

5.2.3 Experimento 3 OR

O experimento 3 tem o objetivo de se analisar a sensibilidade dos métodos,
na medida em que os angulos simulados tem diferencas maiores que trés ou cinco
graus, normalmente definidos como tolerancias em levantamento fotogramétricos,
neste exemplo com 9°. Essa limitacdo séria de angulos, que vem da fotogrametria
analdgica e continuou mesmo na fase de fotogrametria analitica, € teoricamente
devida ao uso de modelos de matrizes de rotacdo simplificadas, como a de
Rodriguez e que sO funciona com fotografias quase verticais. Com os modelos
completos das matrizes de rotacdo deste trabalho n&o deve ocorrer dificuldades

para os célculos.

As posicdes das fotografias usadas neste experimento foram 7 e 8 (Figura

26), com a rotagao R, , NO sistema passivo. A Figura 28 mostra a distribuicdo das

fotocoordenadas das fotografias 7 e 8, respectivamente, em que € possivel perceber
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gue existe uma paralaxe em y em torno de 10 unidades em todos os pontos. O

resultado da orientagao relativa pode ser visto na Tabela 30.

Figura 28-Posicbes das fotocoordenadas do experimento 3 OR.
Figura 28 a- Distribuicio dasfotocoordenadas dafotografia 7. Figura 28 b- Distribuicio das fotocoordenadas da fotografia 8.
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Tabela 30- Resultado da orientacéo relativa no experimento 3 OR.
Elementos orienta¢do exterior da simulagao
FT Xep(m) Yoo (m) Ze,(m) wo (?) ®o(*) Ko (%)
7 0,000 6,500 3,000 91,000 2,000 91,000
8 0,000 6,000 3,000 100,000 3,000 92,000
Resultado da orientacédo relativa com o método:
Parametro Y., ou b, Z,,oub, Wy [P Ko
Colinearidade 0,352 0,169 8,964 0,814 -1,159
Coplanaridade 0,039 0,022 8,966 0,774 -0,793
Quatérnios 0,028 0,036 9,032 0,784 -0,885

A Tabela 30 mostra que o método da equacao da colinearidade apresentou
valores semelhantes do resultado esperado para as diferencas dos angulos e das
translacdes. O método da coplanaridade e de quatérnios tiveram valores bem

semelhantes e de acordo com o esperado.

5.2.4 Experimento 4 OR

Este experimento serviu para verificar o calculo da orientagdo relativa com

cameras convergentes em torno do eixo vertical, ou seja, com eixo 6tico horizontal e
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convergente. Neste exemplo as posi¢cdes das duas fotografias (1 e 2 da Figura 29)
tem 45° entre si, com a sequéncia R, , NO sistema passivo, 0 que ndo € o caso

para formar pares estereoscopicos, mas que pode ocorrer em fotogrametria
terrestre.

Figura 29- Posicbes das fotografias experimento 4 OR.

) z

As posicdes das fotocoordenadas referentes as fotografias 1 e 2,
respectivamente, estdo na Figura 30, que mostra que as paralaxes de y de todos 0s
pontos dessas duas fotografias apresentam diferencas muito significativas e néao
constantes. Os resultados dos célculos das orientacdes relativas encontram-se na
Tabela 31.

Figura 30- Posi¢6es das fotocoordenadas do experimento 4 OR.

Figura 30 a- Distribuicdo das fotocoordenadas da fotografia 1. Figura 30 b- Distribuicdo das fotocoordenadas da fotografia 2.
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Tabela 31- Resultado da orientagéo relativa no experimento 4 OR.

Elementos orientacdo exterior da simulacao

FT X (M) Yo, (m) Zg,(m) wo(®) #0 () Ko (%)
1 6,000 0,000 3,000 90,000 0,000 0,000
2 10,400 1,800 3,000 90,000 0,000 45,000
Resultado da orientagéo relativa com o método:
Parametro Y., ou b, Z,,oub, W, 7 Ko
Colinearidade 4,8x10” 2,6x10% -43,727 -3,402 | 11,444
Coplanaridade 0,001 -0,392 -0,065 -0,105 45,080
Quatérnios 0,014 -0,391 -0,647 -0,409 45,003

A Tabela 31 mostra que o método da equacdo da colinearidade apresenta
resultados totalmente diferentes dos esperados para os angulos relativos, que neste
caso, era de 0° para w e @ e de 45° para k. Os angulos encontrados também foram
muito diferentes dos outros métodos da coplanaridade e quatérnios. Os resultados
das translacbes apresentaram valores extremamente grandes, na ordem de 107
Neste caso houve um alerta do MATLAB®, indicando que o nimero de condicéo
estava muito alto, e assim o resultado pode ndo ser confiavel conforme as

discussbes da Secao 2.1.

O método da condicdo de coplanaridade e de quatérnios tiveram resultados
semelhantes e compativeis com a simulacdo. Portanto para este tipo de geometria
das posicdes das fotografias sdo mais confiaveis que o método da colinearidade.

5.2.5 Experimento 5 OR

Foram realizados diversos experimentos para testar o caso de orientacao
relativa com pontos simulados que reproduzem o problema do cilindro critico. Aqui
sera apresentado um dos testes. A distribuicdo dos pontos no terreno e dos CPs
formam um cilindro, conforme a Figura 31, e com eles foram simuladas duas

fotografias no simufoto.m, obedecendo a rotagdo R,,,, NO sistema passivo. Os

pontos no espaco objeto estdo na Tabela 32.
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Figura 31-Posic¢des das fotografias na simulacéo do experimento 5 OR.

Fonte: Adaptado de Kraus (2000).

Tabela 32- Dados usados na simulacdo das fotografias do experimento 5 OR.

Pt Coordenadas no espaco objeto (m)

1 8,000 30,000 11,000
2 19,000 30,000 3,000
3 44,000 30,000 3,000
4 56,000 30,000 11,000
5 8,000 80,000 11,000
6 19,000 80,000 3,000
7 44,000 80,000 3,000
8 56,000 80,000 11,000

A Figura 32 mostra a distribuicdo das fotocoordenadas das fotografias 1 e 2
(da Figura 31), respectivamente. Os resultados da orientacdo relativa estdo na
Tabela 33.
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Figura 32- PosicBes das fotocoordenadas do experimento 5 OR.

Figura 32 a- Distribuicdo das fotocoordenadas da fotografia 1. Figura 32 b- Distribuicéc das fotocoordenadas da fotografia 2.
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Tabela 33- Resultado da orientagéo relativa no experimento 5 OR
Elementos orientacéo exterior da simulagdo
FT Xy (m) | Y, (m) Ze,(m) wo (*) ?o(®) Ko (*)
1 32,000 |40,000 64,000 0,000 0,000 90,000
2 32,000 |70,000 64,000 1,000 2,000 93,000
Resultado da orientagéo relativa com o método:
Parametro Y., ou b, Z,,oub, Wy [P Ko
Colinearidade 0,003 0,000 2,003 -0,999 3,035
Coplanaridade 0,002 0,000 1,944 -1,009 3,035
Quatérnios 0,002 0,000 1,529 -1,102 2,993

A Tabela 33 mostra que os célculos da orientacdo relativa com dados
simulados de uma situacdo de pontos e CPs em um cilindro critico foram obtidos
com todos os trés métodos. Embora o cilindro critico seja normalmente citado como
um caso de dificil solugdo ou de solugéo instavel, ndo foi encontrado na literatura um
exemplo de célculo analitico que ilustrasse o problema. Nos varios testes realizados
nesta pesquisa, com dados e posi¢cdes pouco diferentes dos pontos e até posicdo

transversa do cilindro, sempre houve a convergéncia nos trés metodos.

Um resumo dos principais resultados das comparacgdes de orientacao relativa

com os trés métodos € o seguinte:

1. Além desses experimentos acima foram realizados outros que mostraram
que diferencas de orientacdo entre as fotografias simuladas, com
variagdes maiores, como de trés a dez graus, ao se fazer a orientagao
relativa com a equacao da colinearidade, os resultados sempre sé&o piores

(porque n&@o convergiam ou apresentavam maiores residuos) que com
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coplanaridade e coplanaridade com quatérnios. Conclui-se que esses
métodos sdo mais robustos, pois mesmo com variacfes significativas de
inclinacdes forneceram resultados melhores.

2. De modo geral ndo houve diferenca significativa entre a coplanaridade e
coplanaridade com quatérnios, uma vez que eles apresentaram resultados

extremamente semelhantes.

SILVA, A. M. 107



A representacdo das matrizes de rotag6es com o uso dos quatérnios: aplicagdes a Fotogrametria

6. DISCUSSAO DOS RESULTADOS

Para o desenvolvimento deste trabalho foi relativamente facil conseguir

literatura adequada e suficiente sobre a teoria, relatos e proposi¢cdes de aplicacdes

de quatérnios, mas houve grande dificuldade para encontrar exemplos numeéricos

com detalhes suficientes para validar os programas que foram implementados. Além

disso, foram detectadas outras dificuldades menores, mas que exigiram estudos

adicionais para deixar o assunto mais claro e conceitos mais precisos, entre elas:

E necessario atrelar a matriz de rotacdo de quatérnios com a sequéncia de

rotacdo em torno dos eixos X, y e z, porque isto gera quatérnios diferentes.

Como séo diversas as possibilidades de rotacées e de combinacdes com
angulos de Euler e com os quatérnios, no caso de transformacfes todos
devem obedecer a mesma sequéncia para ficarem estreitamente
relacionados. Isto porque na literatura encontram-se enganos nos modelos
matematicos das matrizes de rotacdes e até confusdo com relacdo a
sequéncia de rotacdo primaria, secundaria e terciaria, pois existem duas
possibilidades de multiplicacdo para uma sequéncia no sistema ativo e

duas no sistema passivo (multiplicacao pela direita e pela esquerda).

O gimbal lock ocorre sempre na segunda rotacao, quando o angulo for 90°
ou 270° (para as matrizes que tem a funcéo seno isoladas), ou, 0° ou 180°
(para as matrizes que tem a funcdo cosseno isoladas) ou bem proximos
desses valores, porém esta forma de deteccdo a partir da observacéo dos

elementos da matriz de rotacdo ndo é comum na literatura.

Com os programas desenvolvidos para verificacbes das possiveis vantagens

de substituicdo dos angulos de Euler pelos quatérnios, com dados simulados e reais,

foi possivel realizar vérios testes que permitiram fazer comparacdes e andlises de

eficiéncia dos métodos utilizados nos experimentos do capitulo 5, que serao

resumidos nas proximas secoes.
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6.1 Resultados da ressecéo espacial sem iteracéo

No experimento 1 (Secdo 5.1.1.1) a ressecdo espacial com a equacdo da
colinearidade ficou bem préximo do resultado esperado, mas a ressecdo sem
iteracdo ndo apresentou bons valores, pois ndo convergiu. Entdo foram simuladas
novas fotocoordenadas, usadas no experimento 2, Secédo 5.1.1.2, e a ressecgao
agora ficou muito semelhante do resultado esperado, ja que a diferenga s6 ocorreu
na casa segunda casa decimal, o que pode indicar possiveis erros de

arredondamento do programa implementado ou do computador.

O primeiro resultado para o experimento 3 (Secédo 5.1.1.3) mostrou que 0
método de Grafarend n&o calculou corretamente as distancias do CP até as
coordenadas no espaco objeto. O fato das distancias estarem com erros interferiu no
resultado da ressecdo que foi muito diferente do esperado. Depois de efetuados
diversos testes foi observado que todas as raizes do polinbmio de quarto grau, que
faz parte do célculo do método de Grafarend, devem ser testadas para verificar qual
a correta. Este € um problema deste método, mas ele foi o escolhido para fornecer
as distancias, que € um dado essencial para ser calculada a ressecdo sem valores
iniciais para o caso de quatro pontos. Existem outros métodos para o calculo das
distancias, mas que também n&o séo de facil aplicacao.

Para este experimento a ressecdo espacial sem iteracdo correta foi
encontrada com a quarta raiz, com a qual o resultado coincidiu com o esperado. Mas
como a definicdo da raiz correta no método de Grafarend é variavel, uma sugestéo é
implementar alguns testes com as diversas raizes, e comparar os resultados, ou
ainda usar os procedimentos que também fornecem a posi¢cdo do CP, sem uso de

quatérnios, do artigo Grafarend e Shan (1997).

O experimento 4 (Secéo 5.1.1.4) aplica a ressecao espacial sem iteragcao em
dados reais com quatro pontos bem distribuidos na area da imagem, de um conjunto
com muito mais pontos, com resultado considerado bom. O experimento, apesar de
usar dados de fotogrametria terrestre, foi equivalente a uma fotografia vertical em

situacao normal.

O experimento 5 (Sec¢do 5.1.1.5) ilustra um caso em que pode haver

ambiguidades nos resultados da ressecéo espacial, mesmo com quatérnios, devido
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a funcéo trigopnométrica que estd em uso para obter os angulos de Euler no final.
Para superar esta dificuldade teve que ser introduzido no programa a funcéo de Shih
(1990), que extrai o valor do angulo da rotacdo secundaria e assim o angulo correto
foi obtido. A ressecéo espacial com a equacdo da colinearidade ndo funciona para

€SSe Caso.

O experimento 6 (5.1.1.6) é de um caso de fotografia em situag&o critica, com
angulo de rotacao secundaria proximo de 270°, em que a ressecdo espacial com a
equacdo da colinearidade ndo convergiu e que a ressecdo sem iteracdo forneceu
um resultado compativel com o0 esperado para as coordenadas do centro
perspectivo. Os valores obtidos para os angulos w e k apresentaram uma diferenca
em cerca de trés graus. Este problema talvez possa ser solucionado se tomar outras

fotocoordenadas ou se forem usados mais pontos.

6.2 Resultados da ressecédo espacial com iteracao

No método de ressecao espacial com quatérnios e com iteracdo € necessario
fornecer os valores iniciais aproximados para a posi¢cao e angulos do CP, caso
esses valores nao sejam adequados pode ndo haver convergéncia. Os
experimentos usam os mesmos dados das ressec¢fes sem iteracdo discutidos

anteriormente.

O experimento 1 Cl da Secdo 5.1.2.1 (com os dados originais de Guan)
mostrou que a ressec¢do espacial com a equacéo da colinearidade teve diferencas
menores que a ressecdo com iteragcdo, mas tem uma diferenca significativa de
1,032m em Y. Os possiveis motivos dessas diferencas podem ser problemas
numericos de computacédo e/ou dos algoritmos porque ao longo dos experimentos
notou-se que ocorriam alteragdes significativas de valores finais, ao serem alterados
0s critérios de convergéncia para as posi¢cdes e angulos, que algumas vezes nem

chegava a acontecer.

O experimento 2, da Secéo 5.1.2.2, é similar ao 1, mas com dados simulados.
Os resultados foram pouco melhores que o anterior e a diferenca em Y diminuiu

para 0,721m.
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O experimento 3, Secao 5.1.2.3, usa dados de Grafarend e Shan (1997). O
método de ressecdo espacial com iteracdo se aproximou do esperado, mas neste
caso os valores iniciais precisaram ser melhores que os experimentos anteriores e
mesmo melhor que o valor usado na recessdo espacial com a equacdo da

colinearidade (Tabela 19).

O experimento 4, Sec¢ao 5.1.2.4, com dados de Silva (1995) mostrou que tanto
a ressecdo com a equacdo da colinearidade quanto a recessdo espacial com
iteracdo apresentaram resultados muito parecidos com o0s Vvalores da

fototriangulacéo, fato que indica um bom resultado.

O experimento 5, Secdo 5.1.2.5, caso com ambiguidade de angulos (neste
caso 0 modelo com a equacao da colinearidade falha como ja visto na secéo
5.1.1.5). Com a ressecédo com iteracdo o resultado para o valor do angulo (¢) foi em
namero complexo, mas apés a correcdo de intervalo (vide Secédo 2.4.3) foi obtido o
valor correto. Todos os valores finais foram muito pouco melhores que na ressecéo

sem iteragao.

O resultado do experimento 6 (Secdo 5.1.2.6) mostrou que a ressecao
espacial para fotografias criticas so foi obtida com os quatérnios, nos métodos sem
iteracdo e com iteracdo, uma vez que a ressecao com a equacao da colinearidade
nao convergiu. Os valores finais de cada elemento da resse¢do sdo semelhantes
entre os dois métodos com quatérnios, embora tenha sido necesséario baixar o

critério de convergéncia de 10 para 10 neste experimento.

No experimento 7, Se¢do 5.1.2.7, séo avaliados casos de entrada direta de
quatérnios com valores iniciais. No caso de posi¢des comuns, como em fotografia
vertical o quatérnio (1, 0, 0, 0) é adequado e havera convergéncia para valores
corretos da ressecdo, mas para fotografias em posicdes que possam gerar
ambiguidades ou gimbal lock, a estimagdo de um quatérnio arbitrario ndo é

aconselhavel.

De maneira geral os resultados da ressecdo espacial com a equacédo da

colinearidade mostraram que ele funciona muito bem para situacdes normais. J&
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para os casos em que podem ocorrer ambiguidades e gimbal lock 0 método pode

nao funcionar.

Os métodos de calculos da ressecdo espacial sem iteracdo na literatura
também sdo chamados de métodos diretos ou exatos. Esses métodos dependem de
distancias que, por sua vez, podem ser obtidas por véarias formas, como a das
iteracOes, lei de cossenos e Grafarend. Foram implementados os trés tipos, mas
usado efetivamente apenas o de Grafarend. Um de iteracfes foi testado, mas
necessita de valores iniciais muito bons para ser eficiente. Um com base na lei dos
cossenos foi implementado para trés pontos, que € o algoritmo mais comum, mas
como um dos objetivos era usar quatro pontos, também nao houve vantagem em
usa-lo. Embora Grafarend tenha sido o método adotado ele se mostrou ser muito
sensivel nas suas solucbes e para usos praticos necessita de alguns

aperfeicoamentos.

O método de ressecdo espacial sem iteracdo funciona também para casos de
dualidades da matriz de rotacdo. Ja nos casos criticos podem ocorrer erros um
pouco maiores do que os esperados. Este método sé calcula corretamente quando
se tem quatro pontos com boa distribuicdo das fotocoordenadas nos quatros
guadrantes da imagem e boa distribuicdo no terreno.

O método de ressecao espacial com iteracdo, com adaptacdo para 0sS
quatérnios, funciona bem para casos criticos e de ambiguidades. No caso da
ressecdo espacial com iteragcdo os angulos de Euler iniciais ndo precisam ser téo
proximos como na ressecdo com a equacao da colinearidade, o que € uma
vantagem. Os quatérnios permitem convergéncia com menor quantidade de
iteracdes. Por exemplo, em alguns experimentos os modelos matematicos baseado
nos quatérnios convergiam até mesmo na primeira iteracdo, enquanto o método da
ressecao espacial com a equacdo da colinearidade convergia em dez ou mais

iteracoes.

E facil extrair os angulos de Euler duma matriz de rotacdo, quando é
conhecida a sequéncia das rotacdes, mas devido as dualidades as funcdes
trigonométricas devem ser aprimoradas para prever os intervalos de uso e para as

determinacdes de quadrantes. As equac¢des mais comuns, por exemplo, usam a
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funcdo arco seno para encontrar o angulo da rotacdo intermediaria, porém este
modelo matematico podem ocasionar dualidades, ja que a fungdo seno apresenta
imagens simétricas e, além disso, alguns resultados podem ser dados em nuameros
complexos, dependendo do software utilizado nos calculos. O dominio da funcéo

arco-seno é restrito ao intervalo (—90°,90°).

Para evitar esses problemas pode-se calcular o angulo da rotacdo secundaria
no MATLAB® com a fungdo atan2, que encontra valores nos quatros quadrantes do

ciclo trigopnométrico, mas em modelos matematico descritos por Shih (1990).

Em varios experimentos foram encontrados diferencas entre os resultados
acima do esperado, tanto com dados reais como simulados. No caso de dados reais
(experimentos 4, 5 e 6 da ressec¢éo espacial) as diferengcas podem ter ocorrido por
terem sido usados apenas quatro pontos, enquanto que os valores de referéncia sdo
de um ajustamento de fototriangulacdo, que usou muito mais que quinze pontos por
fotografia. No caso de dados simulados ocorreram casos em que 0s resultados
coincidiam com o esperado e em outros ndo, sendo que claramente em muitas
situacdes havia indicacdo clara de problemas numéricos, seja de estabilidade dos

algoritmos como de sensibilidade a pequenas mudancas de valores iniciais.

6.3 Resultados da orientacéao relativa
O experimento 1 (Secdo 5.2.1) da orientacdo relativa serviu para validar os
programas implementados com um par de fotografias verticais e todos os resultados

foram compativeis com o esperado.

No experimento 2 (Sec¢éo 5.2.2) foi usado um par de fotografias com eixo na
horizontal. Todos os resultados também foram bem aproximados dos valores

esperados.

O experimento 3 (Secédo 5.2.3) mostrou que mesmo com diferencas de
angulos maiores entre fotografias sucessivas, o valor da orientacdo relativa é

calculado com os trés métodos implementados.
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O experimento 4 (Secéo 5.2.4) mostrou que a orientacédo relativa pode néao ser
calculada com a equagédo da colinearidade para casos de eixos convergentes em
torno, ou maiores, que quarenta e cinco graus entre duas fotografias, mas com os
meétodos da condicdo de coplanaridade e com quatérnios os resultados sdo bem

parecidos com o esperado.

O experimento 5 (Secao 5.2.5) testou 0 caso do problema citado na literatura
do chamado cilindro critico, mas todos os métodos fizeram o calculo, portanto existe

solucéo analitica para o problema.

De modo geral a orientacédo relativa com a equacao da colinearidade foi obtida
de pares de fotografias verticais e com diferencas maiores que as especificadas em
levantamentos fotogramétricos, mas nos outros casos, com diferenca grande como
45°, nao foi calculada. Para diferencas como esta a condicdo da coplanaridade se

mostrou ser mais robusta que a equacao da colinearidade.

A orientacao relativa com a condicao de coplanaridade e quatérnios de modo
geral teve resultados bem semelhantes a orientacéo relativa apenas com a condi¢ao
de coplanaridade. Estes dois métodos funcionaram para fotos com 45° entre si e no

caso do cilindro critico.
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7. CONCLUSOES E RECOMENDACOES

7.1. Conclusdes

O principal objetivo desta dissertacdo foi analisar a substituicdo dos angulos
de Euler por quatérnios em algumas aplica¢cfes de fotogrametria, tendo em vista que
ocorrem varias situagdes, comuns em aeronautica e robotica, em que os modelos
matematicos com os angulos de Euler ndo funcionam bem ou ndo chegam a ser
calculados quando ocorrem singularidades e o gimbal lock. As aplicagbes que foram
testadas, com a substituicdo proposta, foram da ressecdo espacial e da orientacéo
relativa e os resultados finais de modo geral comprovam que o0 uso de quatérnios
permite obter solu¢cdes mais estaveis e mais confiaveis, principalmente para a

fotogrametria terrestre e curta distancia.

Como resultado do desenvolvimento dos trabalhos de revisdo da literatura foi
possivel definir melhor quando podem ocorrer, e como detectar, os casos de gimbal

lock na fotogrametria:

- As posicdes criticas de orientacao que provocam o gimbal lock dificilmente
ocorrem na fotogrametria aérea vertical, mas podem ocorrer na fotogrametria
terrestre e a curta distancia. Nestes casos as posi¢cdes criticas podem passar
despercebidas nos ajustamentos em bloco de feixes de raios (que usa normalmente
a equacado da colinearidade), porque as posicdes e orientacbes de cada fotografia
conseguem ser calculadas. A deteccao nestes casos é possivel apenas com andlise
da MVC fornecida pelo ajustamento porque as variancias sao significativamente

maiores que das fotografias vizinhas.

- Além dos exemplos dos casos conhecidos de gimbal lock, comuns em
aplicacbes em robdtica e aeronautica, uma forma segura para prever em
fotogrametria € analisar as fungfes trigopnométricas que formam cada elemento da
matriz de rotacdo. O gimbal lock vai ocorrer quando o angulo da segunda rotacgéo for
90° ou 270°, para as matrizes que tem a func¢ao seno isolada ou, 0°ou 180°, para as
matrizes que tem a fungdo cosseno isoladas, ou quando os angulos forem bem

préoximos desses valores.
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Em relacdo aos processamentos e comparacdes entre os métodos de:
ressecao espacial com equacao da colinearidade com matriz de rotagédo de Euler;
ressecao espacial sem iteracdes e ressecdo com iteracdes, com 0sS quatérnios;
orientacdo relativa dependente com equacdo da colinearidade e Euler;
coplanaridade normal e coplanaridade com quatérnios foi possivel concluir o

seguinte:

e Ao comparar resultados de rotagbes por procedimentos diferentes, é
essencial que sejam conhecidas perfeitamente qual a sequéncia das rotacdes
primarias, secundarias e terciarias, e dos eixos envolvidos. E muito comum
qgue haja falta de informagcbes ou mesmo ocorram informacfes erradas a
respeito das rotacdes, no que se refere ao sistema ativo ou passivo e a

sequencia da multiplicacdo empregada, pela direita ou pela esquerda.

e Os componentes dos quatérnios tém relacdes diretas com as sequéncias de
rotagdo dos angulos de Euler, portanto ndo podem ser feitas conversoes
indiscriminadamente. E necessario haver testes de verificacdo, para conferir
se as matrizes de rotacGes sdo realmente equivalentes, antes de adotar um

resultado.

¢ O método de ressecao espacial sem iteracdes, direto com quatro pontos,
adotado neste trabalho € muito sensivel aos dados de entrada das distancias
entre pontos no espaco objeto e centro perspectivo. Portanto € necessario um
procedimento complementar que fornega as distancias com alta confiabilidade

para qualquer caso de posi¢cao da camera e isto nao é trivial.

e O meétodo de ressec¢ao espacial direto com quatérnio, sem iteracao, apresenta
melhores resultados do que a ressecdo espacial com a equacdo da
colinearidade. Tem ainda a vantagem de ndo necessitar de valores iniciais,
gue podem ser muito dificeis de serem obtidos nos casos ndo comuns da
fotogrametria terrestre. Como desvantagem so utiliza quatro pontos fica muito

sensivel aos erros dos mesmos.

e O método ressecdo de espacial com iteracdo funciona bem para casos

criticos e de ambiguidades.
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e O meétodo de ressecao espacial com iteracdes necessita de valores iniciais,
inclusive para os quatérnios, mas pode utilizar mais que quatro pontos, o que

pode melhorar os resultados, tornando-os mais confiaveis.

e Os testes efetuados mostraram que os valores iniciais aproximados para 0s
angulos e posicbes do CP nas ressecdes, ao usar quatérnios, podem ser
mais grosseiros que os valores aproximados iniciais para os angulos de Euler

com a equacgéao da colinearidade comum.

e O uso dos quatérnios permitem convergéncias mais rapidas em relacdo aos

angulos de Euler, com um nimero menor de iteracoes.

7.2 Recomendacdes

Como recomendacdes para continuacdo das pesquisas apresentadas neste

trabalho, a seguir sdo elencadas algumas propostas:

e Analisar e implementar outros métodos de obtencdo das distancias entre os
pontos no terreno e o CP, que entram no método de ressecdo espacial sem
iteracBes, como o calculo de distancias com iteragcdes ou com base na lei dos

cossenaos.

e Implementar e aperfeicoar testes para escolha de raizes da equacédo de
quarto grau, de forma confidvel, que sdo usada para a obtencdo das

distancias pelo método de Grafarend.

e Analisar as situagfes limites de célculo da orientacdo relativa de fotografias
com grande convergéncia, como 45° em comparac¢des entre uso da equacao
da colinearidade e condicao de coplanaridade, com relagéo a precisdo a partir
da MVC.

e Implementar os quatérnios em programa de fototriangulacdo de bloco para

fotogrametria terrestre.
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APENDICE A

Modelo matematico das matrizes de rotacdes, cujas sequéncias de rotacoes

sdo comuns em fotogrametria (sistema ativo):

Ranc(p = R3(¢) X Ry (k) X Ry (w) =
COS @ COS K —COSQ SenkKcosw +sen@senw COSQ senksenw + sen @ cos w
( senk COSK COS W —COS K sen w ) (115)
-Sen @ coOSK Sen @Y SenkKcos w + cos@ senw —Sen @ senksenw + CoSY cos w
Rk(pw = Rj3 (w) X R, (90) X Ry () =
COS @ COSK —cos@senk seng
( Ssen w sen Y C0OSK + cosw senk  -sen w sen ¢ sen kK + cos w cosk  —sen w COS(p> (116)
—COSW Sen Y CoOSK + senw senk  coS w sen @ senk + sen w cos k COSw COS @

Rywp = R3 (@) X Ry(w) X Ry (k) =
COS@PCOSK+sen@ senw senk  —cOS@Senk + sen@ senw cosk Sen @ cos w
cos w senk COS W COS K —senw (117)
—Sen@ cosk+ cospsenwsenk  sen@senk + coS @ Senw coSK  COS @ COS W
Rywx = R3 (1) X Ry(w) X Ry () =
COSKCOS @ —SenkKsenwseny —Senkcosw COSKSeNn + senksenw cos @
Senkcos @ + cosksenwsen@ COSKCOS®W  SenkKSeng — cosk Senw cos @ (118)
—sen@ cos w senw CoS w coS @
Rpkw = R3 (w) X Ry (k) X Ry (¢) =
COS () COS K —senk COSK sen ¢
COSW Sen K cos @ + sen w senp COSwW COSK COS® Sen Kk Sen ¢ — sen w cos ¢ (119)
Sen w Sen K Ccos@ — COSw Sen @ Senw Senk Sen w Sen kK sen @ + cos w cos @
Ruka = R3((U) X Ry (1) X Ry (w) =
— Sen K cos w sen K sen w
<cos @WsSenkK COSWCOSKCOSW —sen ®senw — COS®COSKSen w — sen o cos u)) (120)
sen @ senk Sen ®CoSKCOSw + COS® Sen w — sen ® CoS K sen w + cos i CoS W
R(pw?p' = R3(¢)) X RZ((‘)) X Rl(QD) =
COS { COS (p — Ssen @ cos w sen sen @ senw COS{ sen P + sen P cos w cos @
sen w sen @ cos W — sen w cos @ (121)
—Sen P cos@ — cosPcosw sen@ cosPsenw — sen P sen @ + cosP cos w cos P
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R(pK(p =R3 ((P) X RZ(K) X R1((P) -
COSPCOSKCOS@ —senPsen® —coSPsenk Ccos{ coskKsen @ + sen P cos P
Sen K cos @ cosk sen kK sen @ (122)
—sen{ coskcos@ —cosPsen® sen{senk — sen P cosksen  + cosPcosQ
Rkwk'~: R3 ®) x Rzgw) X Ry ®) = 5 5 B
coskKcosk — senKcoswsenk —coskKsenk—senKcoswcosk senksenw
sen KCcosk + coskKcosw senk —senkKsenk+ cosKcoswcosk —coskK sen w (123)
sen w sen kK sen w cos K COS W
Ry = R3(K) X Ry(9) X Ry (K) =
COSKCOS(pCOSK —senksenk —cosKcosg senk—senkKcosk cosKsen@
senKcos@cosk+ cosksenk —senkKcos@senk+ coskcosk senksen@ (124)
— sen p cosk sen ¢ sen kK cos @
As matrizes de rotagcdes mais comuns no sistema passivo sao:
Raxpk = R3(1) X Ry(¢) X Ry(w) =
COSKCOS(® COSK Sen @ senw + Senkcosw — COSK Seny cosw + senk sen w
—SenkKcos@p —Senksen@ senw + COSKCOS®W Senk sen @ cosw + CoOSK sen w (125)
sen @ —COS (@ Ssen w COS @ COS W
Rykp = R3 (@) X Ry (1) X Ry (w) =
COS(Q COSK COSW SenkKcos + Sen w SenyY Sen w Sen K cos @ — CoS w Sen @
—senk COS W COS K sen w sen kK (126)
COSK SEn @ COSw SenkK Sen @ —Sen wcos@ Sen w sen kK sen ¢ + cos w cos ¢
Rywx = R3 () X Ry(w) X Ry () =
COS (@ COSK+ sen@senwsenk CcOSwSENK —Sen cosk + cos @ senw senk
—cos@psenk+sen@senwcosSK COSwWCOSK  Sen@ Ssenk + cos ¢ Sen w cosS k (127)
sen @ cos w —senw COS W COS
Ryrw = R3(w) X Ry(k) X Ry () =
COS (P COS K senk —-Sen ¢ cos K
—COS(Q Senk cosw +sen@senw COSK COS W sen ¢ sen k cos w + cos ¢ sen w (128)
cos@p senksenw + Sen @ cos w —COSKSenw —Sen@ senksenw + CoOS¢Q oS w
Ricw(p =Rs3 (QU) X R, ((‘)) X Ry (K) =
COSKCOS@® — SEnKSenwseny SenkKcos@ + cosksenwseny —Sseny cosw
—SenkKcos w COS K COS W senw (129)
CoOSKSen@ + SenkSenwcos Y SenKsen@ — coSkKSenwcos@  CcoS w coS @
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Rk(pw = R3(w) X Ry(9) X Ry (k) =

COS W COS @ Sen K cos ¢ —sen ¢
COSK Sen @ senw — SenKcosw Senk sen @ sen  + cCOSKCOSw COS @ Sen w (130)
COSK Sen @ cosw + Senk senw Senk sen @ cosw — CoSk Senw  COoS @ COS

Rupa = R3(@) X Ry(¢) X Ry(w) =
CoSs @ sen @ sen w — Sen ¢ cos w
(sen wsen@ C€OS®COSW — Sen ® Ccos @ sen w COs ® sen w + sen @ cos ¢ CoS W (131)
coswsen@ —sSen®WCcoSw — COSWCOS® sen w — sen & sen w + €os M oS P COS W
Ry = R3(@) X Ra(k) X Ry(w) =
COSK sen K cos w senk sen w
—Ccos@senkK COS®COSKCOSW — Sen  sen w COS W COSK sen w + sen @ cos w (132)
sen ®senk — Sen @ CcoSKCOSw — COSM Sen w — Sen @ cos K Sen w + cos @ cos w

R(pwa = R3(¢)) X RZ((U) X R1(<P) =
COS@PCOS@ — senPcosw sen® senPsenw —COS{P Sen @ — sen P cos w Cos P

( sen w sen @ cos W sen w cos @ (133)
sen Pcos@ + cosPcosw sen@ —cosPsenw — sen P sen ¢ + cos P cos w cos P

Rgmc@ = R3((/~)) X RZ(K) X Rl((p) =
COS{PCOSKCOS(® — senPsen® COSPsenk —CcOS{PCcosKsen @ — sen P cos

( — Sen Kcos @ COsK sen k sen @ (134)
Sen Y coOSKCcos@ +cos@Psen@ sensenk — sen @ cosk sen ¢ + cos P cos @

Rewk = R3(®) X Ry(@) X Ry (B) = ) )
cosKcosk — sen Kcosw sen k cosksenk+senKcoswcosk  senKsen w
—senKcosk —cosKcosw senk —senkKsenk+ cosKcoswcosk cosksen w (135)
sen w sen K — sen wcosk COS W

Rqu'}Z = R3(K) X Ry () X Ry () =

coskcos@cosk — sen K senk coskcos@ senk+senkcosk  —cosksen @
—senKcos@cosk —cosK senk —senkKcos@ senk+ coskcosk  senksen @ (136)
sen  cos K sen ¢ sen K cos @
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APENDICE B

Detalhamento das matrizes de rotacdes em situacdes criticas.

As equacbes 125 a 130 em gimbal lock foram omitidas nesse estudo por serem apenas matrizes transpostas relacionadas

as equacoes 25 a 30.

Sequéncia /equagédo Angulo Equacéo resultante Equacéo simplificada
weKl25 @ =90° 0 cosksenw —sSenkKcosSw COSKCOSw + Sen kK sen w sen (w—k) cos(w — k)
0 senksenw+cosSKCoSw Senk coSw — COSK Sen w ( cos(a) —k) —sen(w — K))
-1 0 0 0
weKl25 @ =270° 0 —cosksenw —sSenkcosw —COSkCOSw + senksen w —sen(w + k) —cos(w + k)
0 —senksenw+coSKCOSw —SenkK coSw — COSK sen w < cos(w+ k) —sen(w+ K))
1 0 0 1 0 0
w26 @ =0° 1 0 0 0 0
0 cosWcosw—sen® senw —COSW Sen w — Sen @ CosS w ( cos (0 +w) —sen (@ + w)
0 sen@cosw+cos@senw — sen & sen w + cos @ Cos w sen (@ +w) cos (& + w)
wP@/26 @ = 180° -1 0 0 -1 0 0
0 cos@cosw+sendsenw —cosd sen w + sen & cosw (0 cos (W — w) sen(@—w))
0 sen@cosw—cosdsenw —sendsen w — cos@ COSw 0 sen(®d—w) —cos (&—w)
atsl27 t=0° —cosscosa —senssena senscosa —cosssena O —cos(s—a) sen(s—a) O
cosssena — sens cosa —senssena+cosscosa 0 ( sen(a—s) cos(s+a) 0)
0 0 1 0 0 1
ats/?27 t =180° —cosscosa+senssena senscosa+cosssena 0 —cos(s+a) sen(s+a) O
cosssena+ sens cosa senssena+cosscosa 0 < sen(a+s) cos(s—a) 0)
0 0 -1 0 0 1
wkl/115 K =90° 0 —cospcosw+sen@senw COS@ sen w + sen ¢ cosw 0 —cos(p+w) sen(yp+ w)
(1 0 0 > (1 0 0 >
0 sengpcosw+cospsenw —sen @ sen w + coS @ COSw 0 sen(p+w) cos(p+w)
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A representacéo das matrizes de rotagdes com o uso dos quatérnios: aplicac8es a Fotogrametria

wk@/115 K =270° 0 CoOS@p cosw+sen@psenw —coS@ Senw + sen ¢ cos w 0 cos(p—w) sen(p—w)
(—1 0 0 ) <—1 0 0 )
0 —seng@cosw+cospsenw  sen @ sen w + CoS Y COSwW 0 sen(p—w) cos(p—w)
Kpw/116 @ =90° 0 0 1 0 0 1
COSw Sen K + sen w cOSK  COSKCosw — senw senk 0 sen(w+k) cos(w+kx) O
sen w sen K — CoSw COSK COSk sen w + cosw senk 0 —cos(w+k) sen(w+k) 0
Kowl/116 @ =270° 0 0 -1 0 0 -1
COSW Sen Kk — sen w COSK  CoSk cosw + senw senk 0 —sen (w—k) cos(w—k) O
sen w sen Kk + COSw COSK  Ccosk senw —cosw senk 0 cos(w—k) sen(w—k) O
Kkwel117 w = 90° cos@cosk +sen@psenk —cos@senk+sengcosk 0 cos(p—k) sen(p—kx) O
( 0 0 _1> ( 0 0 _1>
-Sen @ cOsK + cos@ senk  Sen ¢ sen kK + cos ¢ CoOSk 0 —sen (¢ —k) cos(p—k) O
kw@l117 w=270° COS@COSKk — sen@ senk —sen@senk +cos@cosk O cos(p+k) sen(p+k) O
( 0 0 1> ( 0 0 1)
—Sen ¢ CoOSK —cos¢@ senk sen @ senk —cos@cosk 0 —sen(p +k) cos(p+k) O
pwir/118 w = 90° coskcosp —senkseng 0 cosksen@ + senk cos @ cos(p+x) 0 sen(p+k)
(sen Kcos@ +coskseng 0 senksen @ — cosk cos go) <sen (p+x) 0 —cos(p+ K))
0 1 0 0 1 0
pwK/118 w=270° coskcos@ +senkseng 0 cosksen@ —senk cos @ cos(—p+x) 0 —sen(—¢+k)
senkcos@ —coskseng 0 senksen @+ cosk cos @ (sen (—p+Kx) 0 cos(—p+k) )
0 -1 0 0 -1 0
Prkwl/119 K =90° 0 -1 0 0 -1 0
coswcosp +senwseng 0 cosw sen ¢ — sen w cos @ cos(w—¢) 0 —sen(w— @)
senwcos@ —coswseng 0 senwsen @ + coswcos@ sen(w—¢) 0 cos(w — @)
PKw/119 K =270° 0 1 0 0 1 0
—coswcos@ —senwsen @ 0 —cosw sen ¢ — sen w cos @ —cos(w+¢@) 0 —sen(w+ @)
—senwcos@ —coswsen@ 0 —senw sen @ + cosw cos —sen(w+¢@) 0 cos(w+ @)
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A representacéo das matrizes de rotagdes com o uso dos quatérnios: aplicac8es a Fotogrametria

wk@/120 K =0° 1 0 0 1 0 0
0 coswcosw—senwsenw —COSW Sen w — Sen @ CoS w 0 cos (@+ w) —sen(d+ w)
0 sen@wcosw+coswsenw — sen ® sen w + cos @ Cos w 0 sen(&@+ w) cos (& + w)
wk®/120 Kk = 180° -1 0 0 -1 0 0
0 —cosWcosw—sendsenw COSW Sen w — Sen & cos w 0 —cos (@—w) —sen(®— w)
0 —sen@cosw+cosdsenw Sen ® sen w + COS & COS W 0 -—-sen(W—w) cos (®d—w)
@121 w=0° cosgcosp—senpsengp 0 cos@sen @+ sen @ cose cos(@+¢) 0 sen(p+ )
( 0 1 0 > ( 0 1 0 )
—sen@cosp —cosPseng 0 —sen d sen ¢ + cosP cos e —sen (Pp+¢@) 0 cos (¢ + @)
w121 w = 180° cos P cos @ + sen @ sen ¢ 0 cos @ sen @ — sen ¢ cos cos (@ — ) 0 —sen(p— )
( 0 -1 0 > ( 0 -1 0 >
—sen@pcosp +cos@sengp 0 —sen P sen @ — cosP cos@ —sen(p—¢) 0 —cos (§—¢)
Pr®l122 Kk=0° cosgcosp—senpsengp 0 cossen @+ sen P cos¢e cos(@+¢) 0 sen(p+ @)
( 0 1 0 ) < 0 1 0 )
—sen@cosgp —cos@seng 0 —sen @ sen ¢ + cosP cos@ —sen (@+¢@) 0 cos (§+ @)
PK®l122 K = 180° —cos@Pcosp—senPsengp 0 —cos@sen ¢+ sen P cos@ —cos(@—¢) 0 sen(d— o)
( 0 -1 0 ) < 0 -1 0 )
sen ¢ cos @ — cos @ sen @ 0 sen ¢ sen ¢ + cos @ cos @ sen (¢ — @) 0 cos (§p—¢)
Kwk/123 w=0° COSKCOSK —SsenKksenk —cosksenk—senkcosk 0 cos(K+x) —sen(K+k) O
sen K cosk + CosK senk —senkKsenk +coskcosk 0 <sen (R+kK) cos(K+k) 0)
0 0 1 0 0 1
KwiRI123 w = 180° CoOsKcosk +senksenk —cosKksenk+senkcosk 0 cos(K—k) sen(k—kx) O
Sen Kcosk — cosKk senk —senkKsenk —coskcosk 0 (sen (K—k) —cos(k—k) O >
0 0 -1 0 0 -1
KQRI124 @ =0° COSKCOSK —SsenkKsenk —cosksenk—senkcosk 0 cos(K+x) —sen(K+k) O
sen K cosk + cosK senk —senkKsenk +coskcosk 0 (sen (K+kK) cos(K+k) 0)
0 0 1 0 0 1
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A representacéo das matrizes de rotagdes com o uso dos quatérnios: aplicac8es a Fotogrametria

KQKI124 ¢ = 180° —COSKCOSK —senKsenk CcosKksenk—senkcosk O —cos(Kk—k) —sen(R—k) O
—sen K cosk + cosk senk senkKsenk+coskcosk 0 <—sen (K—Kx) cos(k—k) 0 )
0 0 -1 0 0 -1
wea/131 @ =0° 1 0 0 1 0 0
0 cos@cosw—sen® sen w COS & sen w + sen @ cos w <0 cos (@ +w) sen(&+ w))
0 —sen@cosw—cosWsenw —sen® sen w + cos® COSw 0 —sen(®W+w) cos (&+ w)
we®/131 @ = 180° -1 0 0 -1 0 0
0 COS & cos w + sen & sen w COS & sen w — sen @ Cos w < 0 cos (@ —w) —sen(w— w))
0 -—sen@cosw+coswsenw — sen® sen w — cos® COSw 0 -—-sen(®—w) —cos (&—w)
wk®/132 K =0° 1 0 0 1 0 0
0 cos@cosw —send sen w COS & sen w + sen @ cos w <O cos (W +w) sen (& + w))
0 —sen@cosw—cosWsenw —sen® sen w + cos® COSw 0 —sen(®W+w) cos (&+ w)
wk®/132 K = 180° -1 0 0 -1 0 0
0 —cos@Wcosw—senw senw —COS® Sen w + sen & cos w ( 0 —cos (0—w) sen(®w—w)
0 sen @ cos w — Cos & sen w sen @ sen w + cos @ cos w 0 sen (W —w) cos (0 — w)
Pwdl/133 w=0° cospcosp—sen@Psengp 0 —cos senp —sen P cos@ cos(@+¢) 0 —sen(P + @)
( 0 1 0 ) < 0 1 0 )
sen@cosp +cos@sengp 0 —sen @ sen @ + cos@ cos@ sen(@+¢@) 0 cos (§+ )
ow@/133 w = 180° cosgcosp+senpsengp 0 —cos@sen @+ sen @ cos@ cos(@—¢) O sen (@ — @)
( 0 -1 0 ) < 0 -1 0 )
senpcosp —cosPsengp 0 —sen  sen @ — cos P cos@ sen(@—¢) 0 —cos(p— )
QKkP/134 Kk=0° cospcosp—sen@Psengp 0 —cos@sen — sen P cos@ cos(@+¢@) 0 —sen(P+ )
( 0 1 0 ) < 0 1 0 >
sen@pcosp +cosPsengp 0 —sen sen @ + cosP cos @ sen(@+¢@) 0 cos(P+ @)
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A representacéo das matrizes de rotagdes com o uso dos quatérnios: aplicac8es a Fotogrametria

PxPl134 K = 180° —cosPcosp —sen@Pseng 0 cos@ sen @ —sen @ cos @ —cos(@p—¢) 0 —sen(p—¢)
( 0 -1 0 > ( 0 -1 0 )
—sen@cosgp +cosPseng 0 sen sen @ + cosPcosg —sen(p—¢) O cos (p — @)
Kkwik/135 w=0° COSK COSK — sen Kk sen k cosKk senk +senkcosk 0 cos(R+k) sen(K+k) 0
—Sen K cosk — COSK senk —senk senk +coskcosk 0 (—sen (K+xk) cos(k+k) 0>
0 0 1 0 0 1
Kkwk/135 w = 180° COoSK cosk + sen K sen K cosk senk —senkcosk 0 cos(K—x) —sen(k—kx) O
—Sen K cosk + cosk senk —senksenk —coskcosk 0 <—sen (K—k) —cos(k—kx) O )
0 0 -1 0 0 -1
KKI136 @ =0° COSK COSK — Sen K sen k cosK senk +senkcosk 0 cos(RK+x) sen(K+k) 0
—Sen K cosk — CosKk senk —senksenk +coskcosk 0 (—sen (K+k) cos(k+k) 0>
0 0 1 0 0 1
KK/136 @ = 180° —COSKCOSK —senK senk —cosksenk+senkcosk O —cos(kR—k) sen(K—x) O
sen K cosk —COSK senk —senkKsenk +coskcosk 0 ( sen(K—kx) cos(K—k) O )
0 0 -1 0 0 -1
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