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RESUMO 

 A fotogrametria usa basicamente a equação da colinearidade em que as rotações 

segundo os eixos cartesianos são dadas na forma conhecida como ângulos de 

Euler. No entanto, podem ocorrer combinações desses ângulos que torna a matriz 

de rotação numa situação instável e, assim, operações acabam incorretas ou até 

impossíveis, em algumas aplicações fotogramétricas. Este problema, chamado de 

gimbal lock (ou gimble lock), é comum em robótica, visão por computadores e 

aeronáutica, quando é necessário se definir a posição e orientação de uma câmara 

no espaço tridimensional, e tem sido resolvido com a substituição dos ângulos de 

Euler pelo uso dos quatérnios. Em fotogrametria podem ocorrer na fotogrametria 

terrestre ou a curta distância. O presente estudo tem por objetivo usar esta solução 

para resolver os possíveis problemas de orientações críticas em fotogrametria, em 

aplicações na resseção espacial e orientação relativa. Para tanto há a necessidade 

de estudar situações de instabilidades, matrizes de rotação com ângulos de Euler e 

quatérnios, aplicados para identificar situações críticas em várias operações da 

fotogrametria. Foram avaliadas situações simuladas e reais dos ângulos de Euler, 

substituindo pelos quatérnios na resseção espacial e orientação relativa. Pôde ser 

verificado que os modelos matemáticos da resseção espacial e orientação relativa 

funcionam bem para situações consideradas normais da fotogrametria. Os testes 

efetuados comprovaram que os quatérnios são mais robustos, de modo geral, 

permitem que possa ser calculada a resseção espacial com quatro pontos de forma 

direta e consegue calcular a resseção espacial, quando usados valores iniciais 

aproximados, com um menor de iterações, fato que pode fornecer resultados mais 

confiáveis. Os quatérnios permitem cálculos de resseção espacial e orientação 

relativa de fotografias em posições com ambiguidades de rotações e situações 

críticas de gimbal lock.  
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ABSTRACT 

Photogrammetry uses basically the equation of collinearity in which the rotations 

according to the Cartesian axes are given in known as Euler angles form. However, 

combinations of these angles of rotation matrix become an unstable situation, and 

thus end up wrong operations or even impossible in some applications 

photogrammetric may occur. This problem, called gimbal lock (or gimble lock), is 

common in robotics, computer vision and aeronautics, when it is necessary to define 

the position and orientation of a camera in three-dimensional space, and has been 

solved with the replacement of the angles of Euler by the use of quaternions.  In 

photogrammetry can occur in terrestrial photogrammetry or close range 

photogrammetry. This study aims to use this solution to solve the possible problems 

of critical in photogrammetry applications in space resection and relative orientation. 

For this there is a need to study situations of instable, rotation matrices with Euler 

angles and quaternions, applied to identify critical situations in several operations of 

photogrammetry. Simulated the actual Euler angles, quaternions replaced by the 

space resection and guidance on situations and were evaluated. It could be verified 

that the mathematical models of space resection and orientation on work well for 

situations considered normal photogrammetry. The conducted tests proved that the 

quaternions are more robust, in general, allow can be calculated space resection with 

four points and can directly calculate the space resection, approximate initial values 

when used with a smaller iterations, the fact that can provide more reliable results. 

Quaternions allow calculations of space resection and relative orientation of 

photographs in positions with ambiguities of revolutions and critical situations gimbal 

lock. 

 

Keywords: Gimbal Lock, Quaternions, Photogrammetry. 
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1. INTRODUÇÃO  

A realização de rotações no espaço é aplicada em várias áreas de 

conhecimento como Geociências, Robótica e Computação Gráfica. Há diversas 

maneiras de representá-las como, por exemplo, com os ângulos de Euler, a matriz 

de Rodrigues, a matriz fundamental e com quatérnios.  

De modo geral podem ocorrer situações de instabilidades em combinações de 

rotações em áreas como Aeronáutica, Astronáutica e Fotogrametria. Em 

fotogrametria esses casos prejudicam a precisão dos resultados, como na 

orientação relativa e absoluta, quando são usadas as representações pelos ângulos 

de Euler. Tal situação acontece porque várias combinações de rotações resultam na 

mesma orientação dos eixos no espaço, em relação a um referencial terrestre, ou 

chegam a gerar indefinições de orientações. Um exemplo em fotogrametria é 

encontrado num estudo feito por Silva (1995) que, ao executar um levantamento 

fotogramétrico para o cálculo de coordenadas tridimensionais de pontos discretos de 

um tanque cilíndrico vertical, constatou que a submatriz com as variâncias e 

covariâncias dos parâmetros de posição e orientação de uma determinada câmara 

apresentavam valores com alta variância, em ordem de grandeza muito acima das 

demais posições. Na ocasião se verificou que havia uma situação de instabilidade 

na matriz de rotação devido à existência de dualidades, uma vez que apresentam o 

mesmo resultado com mais de uma combinação de operações com os ângulos.  

O problema não ocorre nos casos comuns dos levantamentos aéreos em que 

a aquisição é praticamente vertical, mas pode ocorrer em fotogrametria aérea 

inclinada e terrestre, sendo que estes casos são pouco discutidos em trabalhos 

práticos e pesquisas, porque pode passar despercebido dentro de um bloco de 

fototriangulação. Numa fototriangulação há necessidade de obtenção da posição e 

orientação da câmara fotogramétrica no espaço, a partir da equação da 

colinearidade, que entre seus parâmetros, contém a matriz de rotação composta de 

rotações sucessivas em torno dos eixos x, y e z, os conhecidos ângulos de Euler 

𝜔, 𝜑 e 𝜅, que são facilmente recuperáveis, mas sem a definição do quadrante 

(KRAUS, 2000), que embora seja trivial para fotografias aéreas verticais pode não 

ser para os outros casos. Como há múltiplas possibilidades de resultados, as 

operações de ajustamento pelo Método dos Mínimos Quadrados (MMQ) podem 
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convergir para valores que não são compatíveis com a geometria do problema, não 

convergir ou apresentar confiabilidade baixa.    

A indefinição de orientação no espaço é muito comum em Robótica, Visão 

computacional e Aeronáutica, sendo conhecida como gimbal lock, que é a perda de 

um grau de liberdade rotacional (ARAÚJO, 2000). Do ponto de vista matemático isto 

equivale à questão em que, quando escolhida uma sequência de rotações, há uma 

situação de alinhamento de dois eixos em torno dos quais se realizam as rotações, 

fazendo com que nem todo o espaço das rotações possíveis possa ser atingido 

numa próxima sequência de rotações (LAVIERI, 2011). A solução usual adotada 

nessas áreas de conhecimento é a substituição da representação dos ângulos de 

Euler por quatérnios, que são uma generalização dos números complexos para o 

campo tridimensional, com a vantagem de não acontecer o caso de instabilidade de 

soluções (ARAÚJO, 2000 e SHIH, 1990).  

As ocorrências de dualidades e gimbal lock devem merecer mais atenção na 

fotogrametria por serem pouco discutidos e porque atualmente está havendo um 

grande avanço em aplicações dessa ciência em sistemas terrestres móveis de 

mapeamento, em Veículos Aéreos Não Tripulados (VANTs) e sistemas aéreos com 

câmaras inclinadas, que criam situações fora dos padrões do planejamento 

fotogramétrico convencional e podem gerar situações críticas quanto à estabilidade 

do ajustamento e do processamento.    

 

1.1 Objetivos da dissertação 

1.1.1 Objetivo geral 

Identificar e avaliar as ocorrências de situações de orientações críticas em 

fotogrametria, devido ao uso dos ângulos de Euler e analisar os resultados da 

substituição por quatérnios nas matrizes de rotação. 

 

1.1.2 Objetivos específicos 

 Identificar as principais situações de instabilidades gerais em sistemas de 

equações e problemas de transformações em fotogrametria de modo que 

não sejam confundidos com os casos devido aos ângulos de rotação. 
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 Identificar os casos críticos da matriz de rotação com ângulos de Euler, em 

suas diversas combinações e sequências de composição, que geram 

ambiguidades e o efeito gimbal lock. 

 Avaliar os aspectos teóricos, práticos e resultados da substituição dos 

ângulos de Euler pelos quatérnios em algumas operações fotogramétricas, 

como resseção espacial e orientação relativa. 

 

1.2 Aplicações dos quatérnios 

 Atualmente os quatérnios são usados em diversas áreas do conhecimento, 

para resolver problemas referentes a orientações no espaço tridimensional entre 

elas: 

 Cinemática: no estudo de movimentos que podem gerar o gimbal lock, 

como o caso da cinemática inversa, utilizando o cálculo do autovetor 

(JOHNSON, 2003); ao se fazer o uso de funções elípticas e álgebra de 

quatérnio no estudo de movimentos de giroscópios e rotações de corpos 

rígidos (DAVAILUS e NEWMAN, 2005); ao ser buscar definir a posição de 

um corpo rígido do espaço, sem que haja singularidades, com matrizes de 

rotações e quatérnio unitário (DIEBEL, 2006); no estudo de cinemática de 

robôs (QIAO et al, 2010). 

 Matemática: na interpolação de rotações de objetos sólidos (ARAÚJO, 

2000); nos estudos de funções quaterniônicas, no estudo da 

hiperperiodicidade das funções exponenciais e logarítmicas com 

quatérnios e na fórmula de integral de Cauchy (BARREIRO, 2009).  

 Geodésia: na transformação do datum geodésico baseado em um 

quatérnio, usando o MMQ (SHEN, CHEN e ZHENG, 2006); na 

determinação de atitude de satélites artificiais (FERREIRA et al, 2008); ao 

resolver o problema de transformação de coordenadas tridimensionais com 

quatérnios de modo iterativo, através do método paramétrico (ZENG e YI, 

2012).  

 Robótica: ao se determinar a posição, orientação e a velocidade angular 

de um objeto (GODDARD, 1997); no posicionamento, como modelo 

matemático para sintetizar projetos de robôs (GARCIA, 1999; SANTOS, 
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2003); na calibração remota de sistemas robóticos, com a utilização de 

sensores internos e externos (MARQUES, 2005); para rastrear 

movimentos de um corpo humano, com filtro de Kalman baseado em 

quatérnios (YUN e BACHMANN, 2006); ao se estimar a posição de uma 

câmara, usando linhas de correspondências, com matriz de rotação com 

quatérnios (JIANG, WANG, ZHENG, 2010); na estimação de orientação de 

uma câmara em tempo real, a partir de uma única imagem distorcida 

(WERNECK, 2012); no controle da cinemática de robôs (MARTINS, 2013).  

 Visão computacional: na orientação de câmaras, com uso de dados 

mínimos para estimar essa orientação, em problemas de correspondências 

de ponto 2D para 3D, através de autovetores (BUJN ÁK, 2012).  

 Astronomia: ao buscar estimar posições, através de matrizes de rotações 

linearizadas e álgebra de quatérnio durante o processo de derivações, 

para evitar singularidade (BARFOOT, FORBES e FURGALE, 2010); para 

se estimar a posição de corpos rígidos (GRO𝑌 EKATTHO FER e YOON, 

2012). 

 Geomática: na determinação de atitude com precisão, usando GPS e 

quatérnios (WON, KO e LEE, 2001). 

 Biomedicina: na orientação de uma molécula (KARNEY, 2007); na 

modelagem cinemática das articulações humanas, com interpolação linear 

esférica (PENNESTRÌ e VALENTINI, 2009); no mapeamento da estrutura 

global da proteína (HANSON e THAKUR, 2012). 

  Engenharia naval: na estimação de posição, com filtro de Kalman 

estendido (MARINS, 2000); ao se estudar métodos de navegação inercial 

aplicados a lançamentos submarinos (LAVIERI, 2011).  

 Computação gráfica: no estudo de animação em tempo real (MALVEZZI, 

2004). 

Em se tratando dos trabalhos desenvolvidos com quatérnios em fotogrametria 

podem ser citados: 

 Orientação absoluta: ao se fazer o ajustamento com três ou mais pontos 

(HORN, 1987).  

 Triangulação, com a interpolação linear esférica (JUN, DONGHONG e 

YONGSHENG, 2008).  
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 Métodos de ajustamento de blocos (TRIGGS et al, 1999);  

 Equação da colinearidade e transformação isogonal (GALO e TOZZI, 

2001).  

 Orientação exterior: ao realizar a orientação exterior, com ajustamento 

linear (JI et al, 2000).  

 Automação de processos do LIDAR e de pontos 3D do modelo digital da 

superfície (ARMENAKIS, GAO e SOHN, 2012).  

 Orientação interior com pontos de fuga, com uma ortonormalização da 

matriz de rotação (F𝑂 RSTNER, 2012). 

Para as aplicações fotogramétricas que são abordadas nesta dissertação, 

foram usadas referências já citadas e principalmente as seguintes: 

 Resseção espacial: Cálculo sem a necessidade de valores iniciais com um 

quatérnio obtido através de autovetores (GUAN et al, 2008); Cálculo da 

resseção espacial com interpolação linear esférica (JIANG et al, 2010). 

 Orientação relativa: Orientação relativa e resseção espacial (HINSKEN, 

1988); Orientação relativa com a equação da coplanaridade, sem a 

necessidade de valor inicial (HORN, 1989); orientação relativa, usando a 

condição de coplanaridade e quatérnios (GALO, 2003); Orientação relativa 

com quatérnios duais (LIN et al, 2010).  

 Cálculo das distâncias do centro perspectivo aos pontos no espaço objeto 

(GRAFAREND e SHAN, 1997). 

 Cálculo das matrizes de rotações (POPE, 1970). 

 

1.3 Estruturação da dissertação 

O presente trabalho está estruturado em sete capítulos. O Capítulo 1- 

introdução, onde é feita a contextualização da temática, apresentação dos objetivos 

da dissertação e revisão do estado da arte.  

No Capítulo 2 é feito um levantamento bibliográfico sobre: Situações de 

instabilidade, Ângulos de Euler e Gimbal lock.   

No Capítulo 3 é feito um estudo sobre a matemática básica de quatérnios e a 

formação das matrizes de rotações com os quatérnios, por ser a solução proposta 

para esta dissertação. 
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No Capítulo 4 trata-se das aplicações fotogramétricas abordadas nesta 

pesquisa: resseção espacial com quatérnios e a orientação relativa com quatérnios  

No Capítulo 5 são estudados os elementos necessários para implantação dos 

quatérnios na resseção espacial e orientação relativa e os resultados obtidos com as 

implementações.  

No Capítulo 6 apresenta-se uma síntese dos resultados obtidos com as 

implementações de quatérnios na resseção espacial e na orientação relativa.   

No Capítulo 7 são apresentadas as conclusões e recomendações deste 

trabalho.   
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2.  ESTUDO DE SITUAÇÕES DE INSTABILIDADE  

Neste capítulo são estudas de forma breve, as situações de instabilidades que 

podem ocorrer ao serem resolvidos sistemas de equações, seja por motivos do 

próprio modelo matemático (como, por exemplo, o uso das matrizes de rotações 

com os ângulos de Euler), seja pelo tipo de algoritmo empregado para a solução ou 

pela posição dos pontos que entram na solução. Esta abordagem tem o objetivo de 

mostrar que situações de instabilidades podem ocorrer por várias origens e é 

necessário se ter algumas pistas do possível, ou possíveis, motivos, além dos casos 

relativos às matrizes de rotações, que serão objeto de outros capítulos.  

A forma mais conhecida de análise de soluções de sistemas de equações 

vem da análise de determinantes (GEMAEL, 1994). A partir deles é possível definir 

se um sistema é possível (determinado ou indeterminado), ou impossível. As 

dificuldades aparecem quando os determinantes têm valores muito diferentes entre 

si, ou tem valores muito grandes, ou muito pequenos; o que é provocado por 

incógnitas que tem alta correlação entre si ou por inconsistência de dados com erros 

grosseiros. Estes dois últimos aspectos são, certamente, a maior origem dos 

problemas na área de ciências geodésicas aplicadas, porque são usados modelos 

matemáticos que inerentemente tem parâmetros correlacionados e são usados 

dados ou observações com erros aleatórios e sistemáticos. Esses erros são 

responsáveis por sua vez também por inconsistência dos dados, que os métodos de 

MMQ podem resolver.  

Os aspectos dos tópicos discutidos a seguir tem muito a ver com a teoria dos 

determinantes já citada, mas chama a atenção para procedimentos que de forma 

mais direta podem ajudar a detectar situações de instabilidades.   

 

2.1 Indicadores de situações de instabilidades de sistemas de equações 

lineares 

Um sistema de equações lineares é dito ser mal condicionado quando uma 

pequena mudança nos elementos, do termo independente ou da matriz dos 

coeficientes, acarretar uma grande mudança na solução se comparada com a 

solução inicial. O mau condicionamento acontece devido à quase singularidade da 

matriz dos coeficientes (CAMPOS FILHO, 2001). A título de exemplo de sistema mal 
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condicionado é mostrado o sistema a seguir (CAMPOS FILHO, 2001), que tem como 

solução a equação 2. 

 
𝑥 + 0,99𝑦 = 1,99

0,99𝑥 + 0,98𝑦 = 1,97
                                                                                                                                     (1)                                     

𝑋𝑡 =  1 1                                                                                                                 (2) 

Caso o valor 0,98 da segunda equação de (1) seja modificado para 0,99 a 

solução muda completamente (CAMPOS FILHO, 2001): 

 𝑋 =  
2

−0,0101
                                                                                                           (3) 

 É possível observar que as equações do sistema mostrado na equação 1 

apresentam coeficientes angulares bem parecidos. Do ponto de vista geométrico 

essas equações são quase coincidentes. Este exemplo mostra que sistemas de 

equações, cujas retas são quase coincidentes formam um sistema mal condicionado 

(BAJPAI, MUSTOE e WALKER, 1980). 

Nos trabalhos de Gemael (1994) e Berberan (2002) encontram-se várias 

descrições de motivos e indicadores de sistemas mal condicionados. A seguir serão 

citados alguns: 

 Determinante de uma matriz que tenha apenas valores pequenos, mas 

cuja respectiva inversa contenha valores numéricos grandes. Por exemplo, 

a matriz M a seguir e sua inversa M-1: 

𝑀 =  
1 1

1,001 1
 , 𝑀−1 =  

−1000 1000
1001 −1000

                                                                (4) 

𝐷𝑒𝑡  𝑀 = −0,001                                                                                                      (5) 

𝐷𝑒𝑡  𝑀−1 = −1000                                                                                                    (6) 

Na equação 5 a matriz M possui determinante de pequeno valor numérico, 

enquanto na equação 6 o determinante apresenta grande valor numérico. 

Entretanto é importante deixar claro que se o determinante for composto de 

elementos de alto valor, do ponto de vista numérico, não significa sempre que a 

matriz é mal condicionada (GEMAEL, 1994), portanto o valor do determinante nem 

sempre é um bom modo de verificar o condicionamento de um sistema (CAMPOS 

FILHO, 2001). 

 Inversas muito sensíveis ou instáveis. Seja, por exemplo, a matriz M a 

seguir (GEMAEL, 1994): 
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𝑀 =  

5 7 6 5
7 10 8 7
6 8 10 9
5 7 9 10

 ⇒ 𝑀−1 =

 

 
 

23610

351017

6102541

10174168









 

 
 

                                         (7) 

Se o elemento 𝑚11 de M mudar de cinco para 4,99 a matriz inversa (equação 

8) será completamente diferente de M-1 da equação 7, o que pode comprometer 

seriamente os resultados esperados dos cálculos. 

𝑀−1 =

 

 
 
 

125,53125,88125,1825,31

3125,803125,1478125,31125,53

8125,1878125,3153125,77125,128

25,31125,53125,1285,212









 

 
 
 

                                                  (8) 

 Forte correlação entre parâmetros. Numericamente isto acontece quando o 

valor absoluto da correlação é próximo de um.  Para haver independência 

entre os parâmetros o valor ideal deve ser zero (ou bem próximo deste) 

(MONTGOMERY e RUNGER, 2002).  

Um exemplo de correlação forte em fotogrametria é encontrado em Silva 

(1995) no qual a Matriz Variância Covariância (MVC) dos parâmetros de calibração 

de uma câmara gerou a matriz de correlações mostrada a seguir (a forte correlação 

entre 𝑘2 e A’ de -0,87 está realçada): 

                                  

em que: 

𝑓 distância focal; 

𝑥0 e 𝑦0 coordenadas do ponto principal; 

𝑘𝑖  parâmetros de distorção radial, com 𝑖 = 1,2; 

A’, B’ fatores de correção de escala e não ortogonalidade. 

  

 Análise da distribuição de probabilidade t-Student dado por (BERBERAN, 

2002): 

(9) 
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𝑡𝑚𝑡−1,∝𝑡/2 =
𝑥𝑖

𝜎𝑥 𝑖
                                                                                                          (10) 

em que: 

𝑚𝑡  é o número de equações; 

∝𝑡  representa o nível de confiança dos dados; 

𝑥𝑖  é o parâmetro; 

𝜎𝑥𝑖
 variância de 𝑥𝑖 . 

O valor de 𝑡 é calculado para 𝑚 − 1 graus de liberdade para medir o nível de 

confiança ∝. Tem a finalidade de avaliar se uma variável pode ser considerada como 

valor zero e ser retirada do modelo matemático ou permanecer. Esta análise é útil 

quando, além do valor baixo, se suspeita que haja correlação entre incógnitas, fato 

que pode tornar o cálculo instável (BERBERAN, 2002);  

 Os números de condição de uma matriz podem ser um meio apropriado 

para medir o quanto a matriz é mal condicionada (CAMPOS FILHO, 2001), 

mas nenhum indicador reúne condições para permitir um diagnóstico 

definitivo de mau condicionamento (GEMAEL, 1994). Existem vários deles, 

como exemplos: o número de condição de Turing, de Todd, de H. Quando 

esses números são elevados significa que pode haver situação de 

instabilidade. As equações a seguir apresentam os modelos matemáticos 

desses números: 

 Números de Turing da matriz M: 

𝑇1 =
𝑡 𝑡 ′

𝑛
 

𝑡2 = 𝑡𝑟 𝑀𝑡𝑀 

𝑡′ 2
= 𝑡𝑟  𝑀−1 𝑡𝑀−1 

;                                                                                (11 𝑖) 

𝑇2 = 𝑛 max 𝑚𝑖𝑗  max 𝑚′
𝑖𝑗  .                                                                                    (11 𝑖𝑖) 

em que: 

𝑡𝑟 é o traço da matriz; 

𝑛 dimensão da matriz; 

𝑚𝑖𝑗  é um elemento da matriz 𝑀. 

Se o traço da matriz for muito grande, ao dividi-la pelo valor que indica a 

ordem da matriz, o valor de 𝑇1 será muito alto. Já o valor 𝑇2 será muito elevado 

quando o maior elemento da matriz em questão for muito grande. 

 Número de Todd (com 𝜆𝑖  sendo os valores próprios da matriz M): 

𝑁𝑇𝑂𝐷𝐷 =  
max 𝜆

min 𝜆
                                                                                                          (12) 
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 Se o maior valor próprio da matriz for muito grande e o menor valor próprio for 

bem pequeno, logo a divisão será um valor bastante elevado. 

 Número de condição H (em que 𝜆𝑖  representa os valores próprios da 

matriz produto 𝑀𝑡𝑀):  

𝐻 =  
max 𝑢

min 𝑢
                                                                                                                (13) 

 De modo geral em alguns softwares, como o MATLAB® e Scilab, é comum 

que exista um indicador de mau condicionamento, o "rcond", ao invés do número de 

condição. A função rcond, nesse software, indica o número recíproco (que em 

linguagem matemática quer dizer número inverso) do número de condição 

(MATLAB®, 2013). 

 

2.2 Instabilidade pelo tipo de algoritmo empregado na solução de sistemas 

lineares 

Acontecem situações de instabilidade devido às características do algoritmo 

adotado para a solução de sistemas de equações normais, em combinação com o 

número de algarismos significativos dos programas e do processador do 

computador. Estes casos são comuns na área de Geociências, principalmente em 

cálculos pelo MMQ.  

Só é confiável resolver um problema de mínimos quadrados com equações 

normais se o número de condição da matriz dos coeficientes for menor que o inverso 

da raiz quadrada da unidade de arredondamento do computador em questão. O 

modelo matemático necessário para assegurar tal confiabilidade (GARNÉS, 1996) é:  

𝐶 𝑀 <
1

 𝑢
                                                                                                                                           (14) 

em que: 

𝐶 representa o número de condição; 

𝑀 é a matriz dos coeficientes; 

𝑢 é a unidade de arredondamento do computador. 

Para a resolução do sistema de equações podem ser usados métodos diretos 

ou iterativos. Dentre os métodos diretos encontram-se: Método de Inversão, Regra 
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de Cramer, Banachievicz, Escalonamento, Cholesky, QR, Decomposição Low Upper 

(LU) e Decomposição do Valor Singular (SVD). Os métodos mais recomendado são 

o QR e o SVD, que é uma das ferramentas mais importantes na análise do problema 

de mínimos quadrados linear, pois não forma, explicitamente, equações normais 

(GARNÉS, 2001).  

Há também métodos iterativos para resolver sistemas de equações, como: 

Jacobi, Gauss-Seidel, Sobre-relaxação sucessiva (do inglês Successive Over-

relaxation-SOR), Gradientes conjugados e Gradientes conjugados com pré-

condicionamento.  O método que converge melhor é o dos gradientes conjugados 

com pré-condicionamento, quando o número de condição for grande (como por 

exemplo, elevado a potência 10) e então podem ser agrupadas todas as 

observações (GARNÉS, 2001). 

 

2.3 Instabilidade por posições e distribuições de pontos 

As situações de instabilidades por posições e distribuições de pontos usados 

obrigatoriamente em muitas operações geodésicas, e particularmente em 

fotogrametria, a rigor tem a ver diretamente com a possibilidade de existência, ou 

não, de dependências lineares ou de correlações, entre as variáveis. Aqui são 

apresentados alguns casos que devem ser evitados, classificados em três grupos: a) 

geometria deficiente dos pontos; b) distribuições relativas e densidade de pontos; c) 

Círculo ou cilindro crítico. 

 

2.3.1 Geometria deficiente dos pontos 

A figura geométrica com melhor rigidez é o triângulo equilátero e os pontos de 

apoio a serem usados em diversas operações fotogramétricas deviam 

preferencialmente atender a essa distribuição. Porém na prática pode ocorrer 

formação de triângulo com um ângulo agudo muito pequeno ou com os três pontos 

quase colineares. Por exemplo, em fotogrametria pode ser o caso de uso de três 

pontos quase colineares para cálculo da resseção espacial ou para orientação 

absoluta de um modelo estereoscópico. A Figura 1 mostra exemplos de posição 

favorável e desfavorável para a resseção espacial, sendo C é o centro perspectivo 
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(CP) e pi, com i variando de 1 à 5, as coordenadas no espaço objeto. No primeiro 

caso (Figura 1a) a configuração dos pontos é favorável. A geometria passa a ser 

desfavorável, na Figura 1b, pelo pequeno ângulo de visada e pela colinearidade dos 

pontos p1, p2 e p3. 

 

Figura 1- Situação de instabilidade por geometria deficiente dos pontos. 

 

 

2.3.2 Distribuições relativas e densidade dos pontos 

Ocorrem algumas situações de inconsistências no cálculo da orientação 

relativa por conta da distribuição dos pontos homólogos. Para que esta operação 

seja bem sucedida devem ser eliminadas as paralaxes em y em seis pontos (os 

pontos de Von-Gr𝑢 ber). Na fotogrametria digital esta operação pode ser realizada 

em dezenas (e até centenas) de pontos, mas é necessário que as duas imagens 

tenham correspondência entre si, que os pontos homólogos estejam bem 

distribuídos e que sejam inequivocamente identificados e medidos. Isto é obtido com 

o processamento automático de correspondências (matching) de imagens digitais 

com o devido recobrimento, mas podem ocorrer situações de inconsistências, 

porque dado um ponto numa imagem, o ponto correspondente na outra imagem 

pode não existir, devido a fatores como: obstáculo cobrindo o ponto, por mudança 

da posição da câmara que cria oclusões, ou por existirem múltiplos homólogos 

devido a padrões repetitivos (GALO, 2003; SANTOS, 2006). A Figura 2 mostra duas 

imagens, na imagem da esquerda aparecem as fachadas das casas que deixam de 

existir na imagem da direita devido à mudança de posição da câmara. 
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Figura 2- Oclusões devido posições diferentes da câmara. 

 

 

2.3.3 Cilindro crítico 

Uma situação instável pela posição dos pontos pode ocorrer na orientação 

relativa, quando o terreno é acidentado e coincide que os pontos estejam em um 

cilindro, como mostrado na Figura 3.  Este caso é conhecido como Cilindro Crítico, 

em que os pontos Pt de 1 a 8, e os centros perspectivos (CP1 e CP2) estão num 

cilindro (KRAUS, 2000). 

 

Figura 3- Pontos do espaço objeto e centros de exposição localizados num cilindro. 

 

Fonte: Adaptado de Kraus (2000). 

 

2.3.4 Círculo crítico 

  Pode ocorrer o círculo crítico em casos de orientação interna, quando são 

medidas oito marcas fiduciais distribuídas como mostra a Figura 4 (GHOSH, 1925).  
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Figura 4- Localização das marcas fiduciais em condição crítica. 

 

Fonte: Adaptado de Ghosh (1925). 

 

A distribuição dessas marcas fiduciais, embora nãos seja comum nas câmeras 

fotogramétricas usuais, encontra-se semelhante a um círculo. O modelo matemático 

gerado por essa distribuição é (GHOSH, 1925): 

𝑥2 + 𝑦2 = 𝑟2                                                                                                             (15) 

em que 𝑟2 representa uma constante e estabelece a dependência dos termos. Este 

modelo apresenta fortes correlações.  

Uma distribuição ideal é apresentada na Figura 5 em que foi introduzido um 

nono ponto no centro (GHOSH, 1925). 

 

Figura 5- Localização das marcas fiduciais de forma a evitar círculo crítico. 

 

Fonte: Adaptado de Ghosh (1925).  

 

2.4 Situações de instabilidades nas matrizes de rotação com ângulos de Euler 

Os ângulos de Euler são usados normalmente em fotogrametria, e em muitas 

outras disciplinas, na formação das matrizes de rotação, mas em muitos casos 

apresentam situações de instabilidades, dualidades e condições críticas, que serão 

discutidas a seguir. 
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2.4.1 Ângulos de Euler 

Os ângulos de rotação 𝜔, 𝜑, 𝜅 associados aos eixos x, y e z, são chamados 

de ângulos de Euler. Em fotogrametria, são os parâmetros que indicam a orientação, 

ou também atitude, da fotografia no espaço e fazem parte dos parâmetros de 

orientação exterior, ao lado dos parâmetros de posição (LUGNANI, 1987). 

Significam rotações que ocorrem no sistema local de coordenadas de cada câmara, 

em relação ao referencial do terreno e que são aplicadas com os objetivos de tornar 

a câmara paralela aos eixos definidores do sistema de coordenadas no espaço 

objeto (COELHO e BRITO, 2007).  

A orientação feita pelos ângulos de Euler representam as rotações em torno 

dos eixos cartesianos, sendo que 𝜔 representa a rotação em torno do eixo x, 𝜑 é a 

rotação em torno do eixo y e 𝜅 representa a rotação em torno do eixo z (Figura 6). 

Nota-se que o sentido da rotação é dextrógiro e anti-horário olhando para a origem 

do sistema.  

 

Figura 6- Rotações com os ângulos de Euler. 

 

Fonte: Adaptado de Wolf e Dewit (1983). 
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Na Figura 6 (a) é mostrada a rotação em torno do eixo x por meio do ângulo 

𝜔. Em 6 (b) a rotação em torno do eixo y (através do ângulo 𝜑) e em 6 (c) a rotação 

em torno do eixo z (ângulo 𝜅). Nestas figuras 𝑥′1, 𝑦′1, 𝑧′1, 𝑥′2, 𝑦′2, 𝑧′2, 𝑧′, 𝑥′ , 𝑦′ são os 

eixos após as rotações. Este sistema é o mais comum da fotogrametria, no entanto 

há outras nomenclaturas para esses ângulos, adotadas, por exemplo, em aviação, 

sensoriamento e outras áreas, como roll, pitch e yaw (NASA, 2008; FIGUEIREDO, 

2005), em sistemas inerciais roll, pitch e Heading (B𝐴 UMKER e HEIMES, 2001). Em 

fotogrametria terrestre podem ser usados ω, −𝛼 (ou –𝜑), К (SLAMA, 1980; WOLF e 

DEWIT, 1983). Em fotogrametria inclinada também é usado o sistema tilt, swing, α 

(azimute) (WOLF e DEWIT, 1983).   

O Quadro 1 relaciona os ângulos de Euler com as outras nomenclaturas, 

menos para o sistema tilt, swing, α que não tem uma equivalência direta. 

 

Quadro 1- Relação dos Ângulos de Euler com outras nomenclaturas. 

𝝎 𝝋 𝜿 

-Roll -Pitch -Yaw 

Roll Pitch Heading 

𝜔  −𝛼(𝑜𝑢 − 𝜑) −𝜅 

 

A orientação baseada nos ângulos roll (rolamento), pitch (arfagem) e yaw 

(deriva) são aplicados ao controle da orientação de aeronaves (NASA, 2008 e 

FIGUEIREDO, 2005). Os ângulos roll (rolamento), pitch (arfagem) e heading (que 

equivale ao ângulo yaw) são aplicados em sistema de navegação inercial, que por 

sua vez é baseado na integração contínua das acelerações medidas pelos 

acelerômetros. Para a correção devido à gravidade, e outros efeitos, as acelerações 

devem ser transformadas num sistema de coordenadas local, que é o sistema de 

coordenadas de navegação, e essa transformação é feita via matriz de rotação que 

inclui esses três ângulos (B𝐴 UMKER e HEIMES, 2001). Esses ângulos em 

aeronáutica estão ilustrados na Figura 7.  
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Figura 7- Orientação dos ângulos roll, pitch e yaw em aviação. 

 

Fonte: Adaptado de NASA (2008). 

 

O sistema de orientação definida pelos ângulos 𝜔, −𝛼 e 𝜅 é aplicado na 

fotogrametria terrestre e pode ser visto na Figura 8 (SLAMA, 1980). Também há 

autores que usam o sistema 𝜔, 𝜑 e 𝜅, mas tendo o 𝜑 com sentido horário, como 

ilustrado na Figura 9 (WOLF e DEWIT, 1983). 

 

Figura 8- Orientação definida pelos ângulos ω, -α e κ na Fotogrametria Terrestre. 

 

Fonte: SLAMA (1980). 
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Figura 9- Orientação com os ângulos ω, -φ e κ na fotogrametria terrestre. 

 

Fonte: Adaptado de Wolf e Dewit (1983). 

 

Outro sistema de orientação que também é muito utilizado é: tilt (t), swing (s) 

e azimute (𝛼) (Figura 10). O ângulo t é o ângulo entre o eixo óptico da câmara e a 

linha vertical. O ângulo de inclinação proporciona a magnitude da inclinação de uma 

fotografia, que pode ser dada através de diferentes modos (no sentido frontal ou nos 

sentidos laterais). 

O ângulo s é a posição da linha principal na fotografia com relação ao sistema 

de referência do eixo fiducial. É definido como o ângulo dos ponteiros do relógio, 

medido no plano da fotografia, a partir do eixo y positivo ao fim do nadir da linha 

principal e dá a direção de inclinação na fotografia. 

O ângulo 𝛼 dá a orientação do plano principal com relação ao eixo do sistema 

de referência do espaço objeto. É medido no sentido horário a partir do eixo Y do 

solo (geralmente norte) para a linha principal do datum e no plano de referência (ou 

em um plano paralelo ao plano de referência).  A equação a seguir apresenta uma 

relação matemática que pode ser estabelecida entre os ângulos 𝜔, 𝜑 de Euler e 𝑡 

(TEWINKEL, 1952): 

tg 𝑡 =  tg2 𝜑 + tg2 𝜔                                                                                                 (16) 
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O sistema tilt-swing-azimute não tem relação direta com os ângulos de Euler. 

Estes ângulos de Euler podem ser obtidos através dos ângulos do sistema tilt, swing 

e azimute com um cálculo vetorial (DEWITT, 1996).  

 

Figura 10- Interpretação geométrica do sistema tilt (t), swing (s) e azimute (α). 

 

Fonte: Adaptado de Wolf e Dewit (1983) 

 

Os dois sistemas são diferentes e o sistema com os ângulos 𝜔, 𝜑 e 𝜅 traz 

mais vantagens computacionais e por isso é mais popular, mas o sistema t, s e 𝛼 é 

compreendido de modo mais fácil e tem sido utilizado (WOLF e DEWITT, 1983). A 

Figura 11 mostra as interpretações geométricas dos dois sistemas de orientação. 
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Figura 11-Composição dos sistemas de orientação com ângulos de Euler e t, s e 𝜶. 

 

Fonte: Adaptado de Engineer manual (1993). 

 

Este sistema t, s e 𝛼, também tem aplicações na robótica e é comentado, por 

exemplo, em BATISTA et al (1995) e BARRETO (2000). 

 

2.4.2 Convenções usadas nas matrizes de rotação 

Para as rotações serem perfeitamente definidas no espaço 2D e 3D, e não 

haver dúvidas de interpretação, devem estar claras as seguintes convenções quanto 

aos sinais algébricos: 

 Se a rotação é ativa ou passiva; 

 Qual o sentido de giro positivo; 

 As posições relativas dos eixos dextrógiro ou levógiro. 

 

A Figura 12 mostra rotações passiva e ativa tomando como referência um 

retângulo.  Na rotação ativa o sistema de referência permanece estático e o objeto é 

transformado. Na rotação passiva o sistema varia e o objeto fica estacionário 

(LUGNANI, 1987). Em resumo, o termo ativo ou passivo refere-se ao objeto.  
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Figura 12- Exemplo de rotação passiva e ativa. 

 

 

Na Figura 12 (a) o sistema cartesiano é rotacionado da posição inicial (em 

linha contínua) para a posição final (em linha tracejada), enquanto o espaço 

permanece estático e o sistema de referência varia.  Já na Figura 12 (b), rotação 

ativa, o espaço é transformado (da linha contínua para tracejada), enquanto o 

sistema de referência permanece estacionário (LUGNANI, 1987). Em termos 

práticos se passa de um para outro sistema apenas trocando os sinais dos senos 

que compõem as matrizes de rotações ou trocando os sinais da rotação, ou seja, o 

resultado da rotação de sentido positivo num sistema é o mesmo com sinal negativo 

no outro. 

O sentido de rotação positivo deve atender à convenção de giro anti-horário 

ou horário. No sistema dextrógiro (de mão direita) as posições relativas dos eixos 

𝑥𝑦𝑧 são equivalente às posições dos dedos polegar, indicador e médio, 

respectivamente, estendidos e fazendo 90º ente eles, enquanto no levógiro a 

referência é a mão esquerda.  

 

2.4.3 Matrizes de rotação com ângulos de Euler  

Quando as rotações em fotogrametria são representadas pelos ângulos de 

Euler considera-se que a matriz de rotação resultante seja o produto de três 

rotações associadas a cada eixo do sistema cartesiano tridimensional (x, y e z) 

(GALO e TOZZI, 2001). A matriz resultante também é chamada de matriz de 

cossenos diretores (LAVIERI, 2011). 

As matrizes de rotação são exemplos de matrizes ortogonais. Uma matriz 

quadrada 𝑀𝑛×𝑛  é ortogonal quando vale a relação (LUGNANI, 1987): 
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 𝑀𝑡𝑀 = 𝐼𝑛  e 𝑀𝑀𝑡 = 𝐼𝑚                                                                                              (17) 

ou seja, 𝑀𝑡 = 𝑀−1.  

Um exemplo é a matriz descrita a seguir (MANFRA, 2004):  

𝑀 =  
𝑐𝑜𝑠𝜑 −𝑠𝑖𝑛𝜑
𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜑

                                                                                                 (18) 

As matrizes de rotações independentes ativas 𝑅1 (𝜔), 𝑅2 (𝜑) e 𝑅3 (𝜅) para os 

eixos x, y e z, respectivamente, tem os seus elementos com as posições dadas por 

(POPE, 1970): 

 
1 0 0
0 cos 𝜔 −𝑠𝑒𝑛 𝜔
0 𝑠𝑒𝑛 𝜔 cos 𝜔

                                                                                                (19) 

 
cos 𝜑 0 𝑠𝑒𝑛 𝜑

0 1 0
−𝑠𝑒𝑛 𝜑 0 cos 𝜑

                                                                                                (20) 

 
cos 𝜅 −𝑠𝑒𝑛  𝜅 0
𝑠𝑒𝑛 𝜅 cos 𝜅 0

0 0 1
                                                                                               (21) 

 Nas equivalentes passivas apenas o sinal do seno é trocado e são:  

 
1 0 0
0 cos 𝜔 𝑠𝑒𝑛 𝜔
0 −𝑠𝑒𝑛 𝜔 cos 𝜔

                                                                                                (22) 

 
cos 𝜑 0 −𝑠𝑒𝑛 𝜑

0 1 0
𝑠𝑒𝑛 𝜑 0 cos 𝜑

                                                                                                (23) 

 
cos 𝜅 𝑠𝑒𝑛  𝜅 0

−𝑠𝑒𝑛 𝜅 cos 𝜅 0
0 0 1

                                                                                               (24) 

Há quatros possibilidades de multiplicação de rotações. Dois no sistema ativo 

e dois no sistema passivo (FO RSTNER e WROBEL, 2004). 

 Rotações no sistema ativo: 

a) Rotação 𝑅3 (𝜅)  × 𝑅2 𝜑 × 𝑅1 𝜔 ; 

b) Rotação 𝑅1 𝜔 × 𝑅2 𝜑 × 𝑅3 (𝜅); 

 Rotações no sistema passivo: 

c) Rotação 𝑅1 𝜔 𝑡 × 𝑅2 𝜑 𝑡 × 𝑅3 (𝜅) 𝑡 ; 

d) Rotação 𝑅3 (𝜅) 𝑡 × 𝑅2 𝜑 𝑡 × 𝑅1 𝜔 𝑡; 

A sequência das rotações pode ter qualquer ordem de multiplicação, mas 

como o produto de matrizes não é comutativo, a ordem em que acontecem as 

rotações afetam as resultantes (GALO e TOZZI, 2001). 
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As rotações nas letras a e d são de multiplicação pela esquerda, ou seja, 

𝑅3 × 𝑅2 × 𝑅1. Já as rotações apresentadas nas letras b e c são o produto da rotação 

pela direita, ou seja, 𝑅1 × 𝑅2 × 𝑅3. 

O produto 𝑅123 = 𝑅3 × 𝑅2 × 𝑅1 indica que a primeira rotação é a R1, depois é 

aplicada a R2 e finalmente a R3, com isso surge a sequência de rotação 123. Dessa 

forma R1 é a rotação primária, R2 é a rotação secundária e R3 é a rotação terciária.  

Com essas relações pode-se observar que a sequência de multiplicação 

apresentada em a tem por inversa a sequência de multiplicação mostrada em c, 

assim como d é a inversa de b. Para mais detalhes consultar Fo rstner e Wrobel 

(2004). 

Há diversas sequências de rotações em fotogrametria. A seguir é ilustrada 

como exemplo a matriz de rotação da sequência 𝜔𝜑𝜅, no sistema ativo (as demais 

sequências podem ser encontradas no Apêndice A). 

 

𝑅𝜔𝜑𝜅 = 𝑅3 𝜅 × 𝑅2 𝜑 × 𝑅1 𝜔 =

 

𝑐𝑜𝑠 𝜅 cos 𝜑 cos 𝜅  𝑠𝑒𝑛 𝜑 𝑠𝑒𝑛 𝜔 − 𝑠𝑒𝑛 𝜅 cos 𝜔 cos 𝜅  𝑠𝑒𝑛 𝜑 cos 𝜔 + 𝑠𝑒𝑛 𝜅 𝑠𝑒𝑛 𝜔
𝑠𝑒𝑛 𝜅 cos 𝜑 𝑠𝑒𝑛 𝜅 𝑠𝑒𝑛 𝜑 𝑠𝑒𝑛 𝜔 + cos 𝜅 cos 𝜔 𝑠𝑒𝑛 𝜅 𝑠𝑒𝑛 𝜑 cos 𝜔 − cos 𝜅  𝑠𝑒𝑛 𝜔

−𝑠𝑒𝑛 𝜑 cos 𝜑  𝑠𝑒𝑛 𝜔 cos 𝜑 cos 𝜔
             (25) 

 

Além desse tipo de sequência de rotações em torno de três eixos diferentes 

existem outras em torno de dois eixos. Nestas sequências também acontecem três 

rotações, de modo que se têm uma rotação em torno de um primeiro eixo, depois a 

rotação em torno de um segundo eixo e, por fim, há outra rotação em torno do 

primeiro eixo (que já havia sido rotacionado). Assim passam a surgir sequências do 

tipo 𝑥𝑦𝑥 , 𝑥𝑧𝑥 , 𝑦𝑥𝑦 , 𝑦𝑧𝑦 , 𝑧𝑥𝑧  e 𝑧𝑦𝑧  (onde o eixo com ―~‖ indica uma nova rotação em 

um eixo antes já rotacionado). A equação a seguir apresenta a matriz de rotação 

resultante da sequência 𝜔𝜑𝜔  para o sistema ativo (as demais sequências podem ser 

vistas também no Apêndice A): 

𝑅𝜔𝜑𝜔 = 𝑅3 𝜔  × 𝑅2 𝜑 × 𝑅1 𝜔 =

 

cos φ sen φ sen ω sen φ cos ω
sen ω  sen φ cos ω cos ω − sen ω cos φ  sen ω − cos ω  sen ω − sen ω cos φ cos ω

− cos ω  sen φ sen ω cos ω + cos ω cos φ sen ω − sen ω  sen ω + cos ω cos φ cos ω
              (26) 

 

 A matriz de rotação dos ângulos do sistema α, t e s é deste tipo em que α e s 

acontecem em torno do eixo vertical e tem a forma (SHIH, 1990):  
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𝑅𝛼𝑡𝑠 =  
− cos s cos α − sen s cos t sen α sen s cos α − cos s cos t sen α −sen t sen α

cos s sen α − sen s cos t cos α sen s sen α − cos s cos t cos α −sen t  cos α
−sen s sen t − cos s sen t cost

             (27) 

 

Há uma diferença entre as definições para ângulos de Euler e ângulos 

eulerianos. Quando acontecem sequências como 𝑥𝑦𝑥  (duas rotações em torno de 

mesmo eixo, neste caso x) são chamados de ângulos eulerianos e são comuns em 

astronomia e física (POPE, 1970).  

Um exemplo desse tipo de sequência de rotação é apresentado na Figura 13, 

na qual acontecem duas rotações em torno do eixo z e uma sobre o eixo y 

obedecendo à sequência 𝑧𝑦𝑧 . A primeira rotação acontece em torno do eixo z, com 

o ângulo kappa. A segunda rotação ocorre em torno do eixo y e a terceira rotação 

acontece novamente sobre o eixo z (agora indicado pelo ângulo 𝜅 ) (KRAUS, 2000). 

 

Figura 13- Esquematização da sequência 𝒛𝒚𝒛 . 

 

Fonte: Adaptado de Kraus (2000). 

 

O modelo matemático usado para encontrar as coordenadas de P’ é dado por 

(LUGNANI, 1987): 

𝑃′ = 𝑅123 × 𝑃                                                                                                            (28) 
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em que: 

𝑅123  é uma matriz de rotação; 

𝑃 é o vetor com coordenadas a rotacionar.  

 Para simplificar podem-se escrever essas matrizes como: 

𝑅 =  

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

                                                                                                              (29) 

De modo geral é relativamente fácil descobrir os valores de 𝜔, 𝜑 e 𝜅, desde 

que sejam conhecidos os elementos da matriz de rotação e qual a sequência 

efetuada das rotações, como relacionadas nas equações 25 à 27. Por exemplo, para 

obter esses valores a partir da equação 25 podem ser usadas as seguintes relações 

(KRAUS, 2000): 

𝜔 = 𝑎𝑟𝑐 tg  
𝑟32

𝑟33
                                                                                                        (30 𝑖) 

𝜑 = arc  sen  −𝑟31                                                                                                 (30 𝑖𝑖) 

𝜅 = 𝑎𝑟𝑐 tg  
𝑟21

𝑟11
                                                                                                      (30 𝑖𝑖𝑖) 

Em MATLAB® existe também a função atan 2 (função inversa da tangente), 

que encontra ângulos nos quatro quadrantes (MATLAB®, 2013), fato que pode 

facilitar a extração dos ângulos de Euler em vários casos (SANTOS, 2003). 

𝜔 = atan 2 (𝑟32 , 𝑟33)                                                                                                                        (31 𝑖) 

𝜑 = atan 2  −𝑟31 ,  𝑠𝑞𝑟𝑡  𝑟32
2 + 𝑟33

2                                                                                          (31 𝑖𝑖)  

𝜅 =  atan 2  𝑟21 , 𝑟11                                                                                                                       (31 𝑖𝑖𝑖) 

A equação 31 𝑖𝑖 é muito útil quando o ângulo da rotação secundária é maior 

que noventa graus, já que ao usar a equação 30 𝑖𝑖 alguns resultados em MATLAB® 

são dados em números complexos, uma vez que o domínio da função arco seno 

compreende o intervalo  −
𝜋

2
;
𝜋

2
 . A validade de 31 𝑖𝑖 é verificada a seguir: 

atan 2  – 𝑟31 ,  𝑠𝑞𝑟𝑡  𝑟32
2 + 𝑟33

2     = 

atan 2  −𝑠𝑒𝑛 𝜑,  𝑠𝑞𝑟𝑡   −𝑠𝑒𝑛𝜔 cos 𝜑 2 + (cos 𝜔 cos 𝜑)2   = 

atan 2  −𝑠𝑒𝑛 𝜑,  𝑠𝑞𝑟𝑡 cos 𝜑2  𝑠𝑒𝑛 𝜔2 + cos 𝜔2     = atan 2  – 𝑠𝑒𝑛 𝜑,   𝑠𝑞𝑟𝑡  cos 𝜑2   

= atan 2  −𝑠𝑒𝑛 𝜑, cos 𝜑                                                                                                                                   (32) 

A função é válida para valores de −
𝜋

2
< 𝜑 <

𝜋

2
.   
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Porém, há dualidades com os modelos da equação 30. Considerando, por 

exemplo, os ângulos 𝜔 = 70°, 𝜑 = 5° e 𝜅 = 30°, a matriz de rotação da equação 25 

resulta em: 

𝑅 =  
0,863 −0,100 0,496
0,498 0,337 −0,799

−0,087 0,936 0,341
                                                                             (33) 

 

Procedendo agora no sentido inverso para obter o valor de cada ângulo, o 

valor de 𝜑 será dado pela equação 51𝑖𝑖. Como 𝑟31 = sin 𝜑 = −0, 087 resulta 𝜑 igual 

a 5° ou 175°, já que o seno positivo produz valores no primeiro e segundo quadrante 

(caso análogo se o seno for negativo). Esta ambiguidade do ângulo 𝜑 ocasiona 

ambiguidade também nos demais ângulos de Euler, uma vez que os dois valores 

podem satisfazer a solução ao mesmo tempo (SHIH, 1990). 

Para superar tais ambiguidades podem ser estudados os sinais das funções 

senos e cossenos da rotação intermediária. Para a equação 25 a extração dos 

ângulos de Euler obedece as seguintes equações (SHIH, 1990): 

Se 𝑐𝑜𝑠 𝜑 for positivo: 

𝑘 = atan 2  𝑟21 , 𝑟11                                                                                                                          (34 𝑖) 

𝜑 = −atan 2  𝑟31 ,  
𝑟11

cos 𝜅
                                                                                                           (34 𝑖𝑖) 

𝜔 = atan 2 (𝑟32 , 𝑟33)                                                                                                                     (34 𝑖𝑖𝑖) 

 Se cos 𝜑 for negativo 34 𝑖𝑖 deve ser: 

𝜑 = atan 2  𝑟31 ,  
𝑟11

cos 𝜅
                                                                                                                  (35) 

Além das ambiguidades ocorrem situações de instabilidade nas matrizes 

resultantes de rotações que serão estudadas na próxima seção. 

 

2.4.4 Gimbal lock  

O gimbal lock é a perda de um grau de liberdade rotacional, quando se perde 

um grau de liberdade de movimento (ARAÚJO, 2000), que pode ser um sério 

problema em aeronáutica e robótica e que também acontece em fotogrametria. 

Equivale ao problema que acontece quando é escolhida uma sequência de 

rotações e há uma situação de alinhamento de dois eixos, em torno dos quais estão 
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sendo realizadas as rotações. Com isto nem todo o espaço das rotações possíveis 

poderá ser contemplado numa próxima sequência de rotações (LAVIERI, 2011).  

É fácil identificar o ângulo possivelmente crítico apenas obervando qual a 

rotação secundária nas matrizes das equações 25 à 27  (ou nas matrizes 

apresentadas no Apêndice A) em duas situações: a) quando o cosseno do ângulo de 

Euler da rotação secundária é zero, no caso de rotações realizadas em torno dos 

três eixos (em outras palavras quando um dos ângulos de Euler é 90° ou 270°, ou 

bem próximo destes valores); ou b) em se tratando de rotações realizadas em torno 

de dois eixos, quando o seno da rotação secundária é zero (ou seja, quando um 

desses ângulos é 0º ou 180º, ou próximo deste). Com estes ângulos a rotação 

desejada ou prevista pode não ocorrer (GRAVELLE, 2006). 

A matriz da equação 25, as matrizes mostradas nas equações 115 à 119 e 

125 à 130 do Apêndice A, admitem condição crítica para um ângulo de 90º ou 270º 

(caso a) por terem um elemento que depende apenas da função seno que pode 

assumir valores 1 ou -1 enquanto outros dois elementos se tornam zero (vide 

equação 36). A partir disso as outras duas rotações serão somas dos outros dois 

ângulos (a explicação é similar para o cosseno dos ângulos 0º e 180º, em se 

tratando das equações 26 e 27, as matrizes das equações 120 à 124 e 131 à 136 do 

Apêndice A  que tem um elemento que depende só da função cosseno). 

Ao se considerar 𝜑 = 90° a matriz de rotação expressa na equação 25, por 

exemplo, será dada por (MALVEZZI, 2004): 

𝑅𝜔𝜑𝜅 =  
0 𝑐𝑜𝑠 𝜅 𝑠𝑒𝑛 𝜔 − 𝑠𝑒𝑛 𝜅 𝑐𝑜𝑠 𝜔 𝑐𝑜𝑠 𝜅 𝑐𝑜𝑠 𝜔 + 𝑠𝑒𝑛 𝜅 𝑠𝑒𝑛 𝜔
0 𝑠𝑒𝑛 𝜅 𝑠𝑒𝑛 𝜔 + 𝑐𝑜𝑠 𝜅 𝑐𝑜𝑠 𝜔 𝑠𝑒𝑛 𝜅 𝑐𝑜𝑠 𝜔 − 𝑐𝑜𝑠 𝜅  𝑠𝑒𝑛 𝜔

−1 0 0
                             (36) 

Os elementos da equação 36 são agora apenas adições de senos e cossenos 

de 𝜔 e 𝜅, como mostradas a seguir (IEZZI e HAZZAN, 1985): 

𝑐𝑜𝑠 𝜅 𝑠𝑒𝑛 𝜔 − 𝑠𝑒𝑛 𝜅 𝑐𝑜𝑠 𝜔 = 𝑠𝑒𝑛 (𝜔 − 𝜅)                                                                     (37 i) 

𝑠𝑒𝑛 𝜅 𝑠𝑒𝑛 𝜔 + 𝑐𝑜𝑠 𝜅 𝑐𝑜𝑠 𝜔 = 𝑐𝑜𝑠(𝜔 − 𝜅)                                                                     (37 ii) 

𝑐𝑜𝑠 𝜅 𝑐𝑜𝑠 𝜔 + 𝑠𝑒𝑛 𝜅 𝑠𝑒𝑛 𝜔 = 𝑐𝑜𝑠(𝜔 − 𝜅)                                                                     (37 iii) 

𝑠𝑒𝑛 𝜅 𝑐𝑜𝑠 𝜔 − 𝑐𝑜𝑠 𝜅  𝑠𝑒𝑛 𝜔 = −𝑠𝑒𝑛(𝜔 − 𝜅)                                                                 (37 iv) 

 

Então a matriz de rotação da equação 36 fica: 

𝑅𝜔𝜑𝜅 =  
0 𝑠𝑒𝑛 (𝜔 − 𝜅) 𝑐𝑜𝑠(𝜔 − 𝜅)
0 𝑐𝑜𝑠(𝜔 − 𝜅) −𝑠𝑒𝑛(𝜔 − 𝜅)

−1 0 0

                                                                    (38) 
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Esta equação mostra que a matriz de rotação depende apenas da subtração 

de 𝜔 e 𝜅. Deste modo esta matriz de rotação perdeu um grau de liberdade rotacional 

(ARAÚJO, 2000).  

Para melhor entendimento serão apresentadas nesta seção outras equações, 

cujas matrizes apresentam a ocorrência de gimbal lock.  

A sequência de rotação 𝜅𝜑𝜔 está em situação crítica quando 𝜑 é 90º (que 

pode ser visto na equação 39 i) ou 270º (equação 39 ii). 

𝑅𝜅𝜑𝜔 =  

0 0 1
𝑠𝑒𝑛 (𝜅 + 𝜔) 𝑐𝑜𝑠(𝜅 + 𝜔) 0
− 𝑐𝑜𝑠(𝜅 + 𝜔) 𝑠𝑒𝑛(𝜅 + 𝜔) 0

                                                               (39 i) 

𝑅𝜅𝜑𝜔 =  

0 0 −1
−𝑠𝑒𝑛 (𝜅 − 𝜔) cos(𝜅 − 𝜔)   0
𝑐𝑜𝑠(𝜅 − 𝜔) 𝑠𝑒𝑛(𝜅 − 𝜔)   0

                                                           (39 ii) 

Já a sequência de rotação 𝜔𝜑𝜔  está em condicionamento crítico quando 𝜑 é 

0º (equação 40 i) ou 180º (equação 40 ii). 

𝑅𝜔𝜑𝜔 =  

1 0 0
0 cos(𝜔 + 𝜔) − 𝑠𝑒𝑛 (𝜔 + 𝜔)
0 𝑠𝑒𝑛(𝜔 + 𝜔) cos(𝜔 + 𝜔)

                                                             (40 i) 

𝑅𝜔𝜑𝜔 =  

−1 0 0
0 cos(𝜔 − 𝜔) 𝑠𝑒𝑛 (𝜔 − 𝜔)
0 𝑠𝑒𝑛 (𝜔 − 𝜔) − cos(𝜔 − 𝜔)

                                                          (40 ii) 

As demais sequências de rotações abordadas neste estudo em situação 

crítica, bem como o detalhamento das equações 39 e 40 podem ser encontradas no 

Apêndice B. 

O caso do gimbal lock em aeronáutica pode ser exemplificado na Figura 14. 

Na Figura 14 (a) o avião encontra-se estabilizado. Na Figura 14 (b) o avião está 

sujeito a uma rotação em torno do eixo y. Na Figura 14 (c) o mesmo é rotacionado 

em torno do eixo x e na Figura 14 (d) está rotacionado em z. Por fim é mostrado que 

ocorre o gimbal lock devido ao alinhamento de dois eixos X e Z na Figura 14 (e).  
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Figura 14- Exemplo de gimbal lock com um avião 

 

Fonte: Adaptado de Gimble Lock Explained (2012). 

 

A Figura 15 mostra um caso de gimbal lock com uma câmara fotográfica. Na 

Figura 15 (a) o objeto admite três graus de liberdade. No entanto, na Figura 15 (b) o 

objeto já se encontra apenas com dois graus de liberdade devido ao fato do 

alinhamento de dois eixos (Z representado pelo anel em vermelho e Y representado 

pelo anel cor verde).  Esse exemplo não deve ocorrer com aerofotogrametria, mas 

pode acontecer em fotogrametria terrestre e a curta distância, ao ser realizado um 

levantamento que envolve todas as laterais e parte superior de um objeto. 
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Figura 15- Gimbal lock na rotação de uma câmara. 

 

Fonte: Adaptado de Vass (2009). 

 

O Quadro 2 mostra a correlação entre as sequências de rotações e as 

condições críticas que podem ocorrer no caso de fotogrametria terrestre (LAVIERI, 

2011). 

 

Quadro 2- Situações em que ocorre o gimbal lock. 

Sequência de Rotação Eixo rotacionado com ângulo 

0 (ou 𝝅) ou 𝒏𝝅 +
𝝅

𝟐
, 𝒏 ∈  ℤ. 

Eixos alinhados 

𝜔𝜑𝜅 𝑦 𝑥 e 𝑧 

𝜔𝜅𝜑 𝑧 𝑥 e 𝑦 

𝜅𝜑𝜔 𝑦 𝑥 e 𝑧 

𝜅𝜔𝜑 𝑥 𝑦 e 𝑧 

𝜑𝜔𝜅 𝑥 𝑦 e 𝑧 

𝜑𝜅𝜔 𝑧 𝑦 e 𝑥 

𝜔𝜑𝜔  𝑦 𝑥 e 𝑥  

𝜔𝜅𝜔  𝑧 𝑥 e 𝑥  

𝜑𝜔𝜑  𝑥 𝑦 e 𝑦  

𝜑𝜅𝜑  𝑧 𝑦 e 𝑦  

𝜅𝜔𝜅  𝑥 𝑧 e 𝑧  

𝜅𝜑𝜅  𝑦 𝑧 e 𝑧  

 Fonte: Lavieri (2011). 

 

Um exemplo prático desse tipo de situação instável foi obtido por Silva (1995). 

Ao realizar a fototriangulação, de um conjunto de fotografias destinadas à 

reconstrução 3D de um tanque, observou que a MVC apresentou valores elevados 

na fotografia de posição nove, que corresponde a 𝜑 = 270°, na sequência 𝜅𝜑𝜔, de 

acordo com a disposição dos eixos cartesianos do levantamento (no qual os eixos X 

e Z estão na horizontal e Y na vertical). Na Figura 16 está em destaque a localização 

da fotografia nove. 
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Figura 16- Indicação da localização da fotografia 9. 

 

Fonte: Adaptado de Silva (1995). 

 

No caso do sistema t, s e 𝛼 ocorre gimbal lock quando tilt é igual a zero, 

conforme se percebe que t é a rotação secundária na matriz  apresentada na 

equação 38. 

As dualidades de soluções e os efeitos de gimbal lock que podem ocorrer ao 

para operar com rotações dos ângulos de Euler podem ser evitados com o uso dos 

quatérnios que será discutido no capítulo a seguir.  
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3. MATRIZES DE ROTAÇÃO COM OS QUATÉRNIOS 

3.1 Quatérnios 

Os quatérnios, ou quaternions, podem ser considerados números 

hipercomplexos de ordem quatro, que não possuem todas as características de um 

corpo, uma vez que não admitem comutatividade na multiplicação (LAVIERI, 2011). 

Os quatérnios estão definidos no ℝ4 e, por vezes, são também representados por H, 

devido ao nome de seu criador William R. Hamilton (GALO e TOZZI, 2001). 

Segundo Wheeler e Ikeuchi (1995), Santana e Braga (2008), Araújo (2000), 

Dam, Koch, Lillholm (1998) e Shih (1990), as rotações com os quatérnios 

apresentam algumas vantagens dentre as quais se podem citar: 

 Não acontece o problema de situações de instabilidade de soluções;  

 Podem ser compostos ou multiplicados de uma maneira simples para 

acumular os efeitos das rotações;  

 Tem fácil interpretação geométrica;  

 Os métodos de interpolações são mais simples; 

 Utiliza apenas funções lineares; 

 Não acarretam o gimbal lock. 

As desvantagens citadas para os quatérnios são: a) as matrizes de quatérnios 

não são adequadas para  fazer representações tais como translações (que para 

esse tipo de aplicação são usadas as matrizes homogêneas); b) de modo geral não 

há muita difusão sobre os quatérnios como assunto da álgebra o que causa, assim, 

uma aparência de serem complicados (DAM, KOCH e LILLHOLM, 1998). 

As demonstrações que se seguem foram desenvolvidas com base em: 

Hamilton (1866), Biasi e Gattass (2002); Galo e Tozzi (2001); Barreiro (2009); Neves 

(2008); Cefalo, Mirats-Tur (2011); Celledoni e Safstrom (2010) e Horn (1987). 

 

3.2 Representação dos quatérnios 

Os quatérnios podem ser representados através de: a) um vetor com quatro 

componentes; b) uma composição de um escalar e um vetor; c) um número 

complexo com três diferentes partes imaginárias. As equações a seguir mostram, 

respectivamente, estas representações (GALO e TOZZI, 2001 e POPE, 1970): 
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 𝑞 = (𝑞, 𝑞𝑥 , 𝑞𝑦 , 𝑞𝑧)                                                                                                    (41 i) 

 𝑞 = 𝑞 + 𝑞 =  𝑞, 𝑞                                                                                                   (41 iii) 

 𝑞 = 𝑞 + 𝑞𝑥 𝑖 + 𝑞𝑦 𝑗 + 𝑞𝑧𝑘                                                                                          (41 iv)  

em que: 

𝑞 parte real do quatérnio, primeiro componente do quatérnio; 

𝑞𝑥  segundo componente do quatérnio;  

𝑞𝑦  terceiro componente do quatérnio; 

𝑞𝑧  quarto componente do quatérnio;  

𝑞  é o quatérnio. 

 Para outros autores, como Pope (1970), a notação adotada é: 

𝑞 =  

𝛿
𝛼
𝛽
𝛾

                                                                                                                    (42)  

em que 𝛿, 𝛼, 𝛽 e 𝛾 são os componentes do quatérnio. 

 

3.3 Operações quaternárias 

Os quatérnios são uma generalização dos números complexos como 

especificado na Seção 3.1, então 𝑖2 = −1, mas também 𝑗2 = 𝑘2 = −1. A partir disso 

outras relações podem ser estabelecidas, atentando-se para o fato de a 

multiplicação entre esses imaginários são de natureza diferente, o que resulta em 

(CEFALO e MIRATS-TUR, 2011; HAMILTON, 1866): 

𝑖𝑗 = −𝑗𝑖 = 𝑘; 𝑘𝑖 = −𝑖𝑘 = 𝑗; 𝑗𝑘 = −𝑘𝑗 = 𝑖; 𝑖𝑗𝑘 = −1                                                   (43) 

 As principais operações quaternárias são dadas a seguir. 

Dados dois quatérnios 𝑞 1 =  (𝑞1, 𝑞 1) e 𝑞 2 =  (𝑞2, 𝑞 2), a soma é dada por (GALO 

e TOZZI, 2001): 

𝑞 1 + 𝑞 2 =  𝑞1, 𝑞 1 +  𝑞2, 𝑞 2 = (𝑞1 + 𝑞2, 𝑞 1 + 𝑞 2)                                                       (44) 

O produto dos quatérnios não é comutativo (LAVIERI, 2011) e é dado por 

(GALO e TOZZI, 2001): 

𝑞 1 ∙ 𝑞 2 = (𝑞1 ∙ 𝑞2 − 𝑞 1 ∙ 𝑞 2, 𝑞1 ∙ 𝑞 2 + 𝑞2 ∙ 𝑞 1 + 𝑞 1 × 𝑞 2)                                                 (45) 

 A multiplicação quaterniônica é associativa e distributiva através da adição 

(BARREIRO, 2009). 
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3.4 Classificação de quatérnios 

3.4.1 Quatérnio puro 

Ocorre quando a parte real desse número é igual à zero. O quatérnio então 

passa a ser escrito como (GALO e TOZZI, 2001): 

𝑞 = (0, 𝑞 )                                                                                                                  (46) 

 

3.4.2 Quatérnio unitário 

Acontece quando a norma do quatérnio equivale a um (GALO e TOZZI, 

2001): 

  𝑞  =  𝑞2 + 𝑞𝑥
2 + 𝑞𝑦

2 + 𝑞𝑧
2 = 1                                                                                  (47) 

 

3.4.3 Quatérnio inverso 

O inverso de um quatérnio é representado por 𝑞 −1. O produto de um quatérnio 

por seu inverso é sempre um. A partir disso se tem a relação (BIASI e GATTASS, 

2002): 

 𝑞 𝑞 −1 = 𝑞 −1 𝑞 = 1                                                                                                     (48) 

 

3.4.4 Conjugado de um quatérnio 

 O conjugado de um quatérnio é dado por (GALO e TOZZI, 2001): 

 𝑞  = 𝑞 − 𝑞𝑥 𝑖 − 𝑞𝑦 𝑗 − 𝑞𝑧𝑘                                                                                             (49) 

Com base no quatérnio conjugado pode-se definir a subtração de dois 

quatérnios com sendo a soma de um quatérnios com o seu conjugado que admite as 

seguintes propriedades (BARREIRO, 2009): 

𝑞  = 𝑞                                                                                                                        (50 i) 

 𝑝𝑞     = 𝑝  𝑞                                                                                                                 (50 ii) 

𝑝 + 𝑞        = 𝑝  + 𝑞                                                                                                          (50 iii) 
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3.5 Igualdade de um quatérnio 

Dois quatérnios serão iguais se cada um de seus termos correspondentes 

forem iguais. Considerando os quatérnios:  

 𝑞 1 = (𝑞1, 𝑞𝑥1
, 𝑞𝑦1

, 𝑞𝑧1
)                                                                                            (51 i) 

 𝑞 2 = (𝑞2, 𝑞𝑥 2
, 𝑞𝑦 2

, 𝑞𝑧2
)                                                                                           (51 ii) 

A igualdade ocorrerá se os elementos correspondentes de cada quatérnio 

forem iguais: 

𝑞1 = 𝑞2                                                                                                                   (52 𝑖) 

𝑞𝑥1
= 𝑞𝑥 2

                                                                                                              (52 𝑖𝑖) 

𝑞𝑦1
= 𝑞𝑦 2

                                                                                                            (52 𝑖𝑖𝑖)  

𝑞𝑧1
= 𝑞𝑧2

                                                                                                              (52 𝑖𝑣) 

 

3.6 Rotações com quatérnios 

A realização de rotação 𝜃 com os quatérnios (com 𝜃𝜖 [−𝜋, 𝜋]) em torno do 

vetor 𝑣  será dada por (BIASI e GATTASS, 2002): 

  𝑞 2 = 𝑞2 +  𝑞  2 = 1                                                                                                 (53) 

Mas, pela relação fundamental em trigonometria há um ângulo em que 

𝑞 = cos 𝜃 e  𝑞  = sin 𝜃. Então se considerando 𝑣  um vetor unitário pode-se escrever 

o quatérnio do seguinte modo (BIASI e GATTASS, 2002): 

𝑞 = cos  
𝜃

2
 + sin  

𝜃

2
 𝑣 =  cos  

𝜃

2
 , sin  

𝜃

2
 𝑣                                                              (54) 

Então a rotação com quatérnios em relação aos versores 𝑖 , 𝑗  e 𝑘  , 

respectivamente, serão expressas por (POPE, 1970): 

𝑅𝑞 𝜃 =  cos  
𝜃

2
 , sin  

𝜃

2
 𝑖                                                                                       (55 i) 

𝑅𝑞 𝜃 =  cos  
𝜃

2
 , sin  

𝜃

2
 𝑗                                                                                      (55 ii) 

𝑅𝑞 𝜃 =  cos  
𝜃

2
 , sin  

𝜃

2
 𝑘                                                                                      (55 iii) 

 O ponto 𝑃  =  (𝑥, 𝑦, 𝑧) do espaço tridimensional sobre o qual se deseja efetuar 

uma rotação será representado pelo quatérnio puro da equação 56 e a rotação será 

(BIASI e GATTASS, 2002): 

𝑝 = (0, 𝑃  )                                                                                                                  (56) 
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𝑅𝑞 𝑝  = 𝑞 𝑝 𝑞                                                                                                               (57) 

 A Figura 17 ilustra a rotação de 𝑃   por um ângulo 𝜃, pelo vetor 𝑣 . 

 

Figura 17- Rotação de 𝑷    por um ângulo θ, pelo vetor 𝒗   . 

 

Fonte: Galo e Tozzi (2001). 

 

 Desenvolvendo a equação 57, por meio das propriedades vetoriais, tem-se 

(GALO e TOZZI, 2001): 

 𝑅𝑞 𝑝  =  𝑞, 𝑞    0, 𝑃     𝑞, −𝑞   =  −𝑞  𝑃,   𝑞𝑃   + 𝑞  × 𝑃     𝑞, −𝑞     

=   −𝑞 𝑃   𝑞 −  𝑞𝑃  + 𝑞 × 𝑃    −𝑞  ,  −𝑞 𝑃    −𝑞  + 𝑞 𝑞𝑃  + 𝑞 × 𝑃   +  𝑞𝑃  + 𝑞 × 𝑃   ×  −𝑞    

 =  −𝑞 𝑞 𝑃   + 𝑞 𝑃  𝑞  +  𝑞 × 𝑃   𝑞 ,  𝑞 𝑃   𝑞 + 𝑞2𝑃  + 𝑞 𝑞 × 𝑃   + 𝑞  𝑃  ×  −𝑞   +  𝑞 × 𝑃   ×  −𝑞    

 = ((𝑞 × 𝑃)     𝑞 ,  𝑞 𝑃)     𝑞 + 𝑞2𝑃  + 𝑞 𝑞 × 𝑃   + 𝑞 𝑃  × −𝑞  +  𝑞 × 𝑃   ×  −𝑞    

 =  0,  𝑞 𝑃   𝑞 + 𝑞2𝑃  + 2𝑞 𝑞 × 𝑃   +  𝑞 × 𝑃   ×  −𝑞    

 = (0, 2 𝑞 𝑃   𝑞 +  𝑞2 −  𝑞 𝑞   𝑃  + 2𝑞 𝑞 × 𝑃   )                                                               (58) 

 Mas, como na rotação se usa o quatérnio representado pela equação 54 a 

rotação dada por 58, passa a ter, com as fórmulas de multiplicação de trigonometria, 

a seguinte forma (BIASI e GATTASS, 2002): 

𝑅𝑞 𝑝  = (0, 2 sin 𝜃𝑣  𝑃  ) sin 𝜃 𝑣 + cos 𝜃2 𝑃  − ( sin 𝜃2 𝑣     𝑣  𝑃  + 2 cos 𝜃(sin 𝜃𝑣 × 𝑃  ))   

= (0, cos 𝜃2 𝑃  −  sin 𝜃2 𝑃  +  1 − cos 2𝜃 𝑣  𝑃  𝑣 + (sin 2𝜃)𝑣 × 𝑃  )                                                                          

 = (0, (cos 2𝜃)𝑃  +  1 − cos 2𝜃 𝑣  𝑃  𝑣 + (sin 2𝜃)𝑣 × 𝑃  )                                      (59) 

 Então para ser realizada a rotação em torno de um eixo deve-se: 

 Representar 𝑃   pelo quatérnio 𝑝 =  (0,  𝑃    ); 

 Usar o quatérnio da equação 54; 

 Aplicar a equação 59. 
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Pode-se escrever de uma maneira geral para 𝑛 rotações (GALO e TOZZI, 

2001): 

𝑅𝑞1…𝑞𝑛  𝑝  = 𝑞 𝑛 …𝑞 1𝑝 𝑞  1 …𝑞  𝑛                                                                                      (60) 

 Para fazer a representação matricial é necessário desenvolver cada termo da 

equação 58. Antes, porém, a parte real deve ser desconsiderada, uma vez que é 

nula e a matriz de rotação quaternária será indicada por 𝑅. Então é gerada a relação 

(GALO e TOZZI, 2001): 

𝑅𝑞𝑃  = 2 𝑞 𝑃   𝑞 +  𝑞2 −  𝑞 𝑞   𝑃  + 2𝑞 𝑞 × 𝑃                                                                 (61) 

 Desenvolvendo agora o primeiro termo tem-se:  

2 𝑞 𝑃   𝑞 = 2 𝑞𝑥𝑥 + 𝑞𝑦𝑦 + 𝑞𝑧𝑧  

𝑞𝑥

𝑞𝑦

𝑞𝑧

 = 2  

 𝑞𝑥𝑥 + 𝑞𝑦𝑦 + 𝑞𝑧𝑧 𝑞𝑥

 𝑞𝑥𝑥 + 𝑞𝑦𝑦 + 𝑞𝑧𝑧 𝑞𝑦

 𝑞𝑥𝑥 + 𝑞𝑦𝑦 + 𝑞𝑧𝑧 𝑞𝑧

 = 2  

𝑞𝑥
2 𝑞𝑥𝑞𝑦 𝑞𝑥𝑞𝑧

𝑞𝑥𝑞𝑦 𝑞𝑦
2 𝑞𝑦𝑞𝑧

𝑞𝑥𝑞𝑧 𝑞𝑦𝑞𝑧 𝑞𝑧
2

        (62) 

Para o segundo termo vem:  

 𝑞2 −  𝑞 𝑞   𝑃  =  𝑞2 − 𝑞𝑥
2 − 𝑞𝑦

2 − 𝑞𝑧
2 𝑃  =  𝑞2 − 𝑞𝑥

2 − 𝑞𝑦
2 − 𝑞𝑧

2  
𝑥
𝑦
𝑧
                   (63) 

E para o último termo tem-se: 

2𝑞 𝑞 × 𝑃   = 2𝑞  
𝑖 𝑗 𝑘  

𝑞𝑥 𝑞𝑦 𝑞𝑧

𝑥 𝑦 𝑧

 = 2𝑞   𝑞𝑦𝑧 − 𝑞𝑧𝑦 𝑖 +  𝑞𝑧𝑥 − 𝑞𝑥𝑧 𝑗 +  𝑞𝑥𝑦 − 𝑞𝑦𝑥 𝑘               

= 2𝑞  

0 −𝑞𝑧 𝑞𝑦

𝑞𝑧 0 −𝑞𝑥

−𝑞𝑦 𝑞𝑥 0
  

𝑥
𝑦
𝑧
                                                                                          (64) 

 Desse modo a equação 61 passa a ser escrita como (GALO e TOZZI, 2001): 

𝑅𝑞𝑃  = 2  

𝑞𝑥
2 𝑞𝑥𝑞𝑦 𝑞𝑥𝑞𝑧

𝑞𝑥𝑞𝑦 𝑞𝑦
2 𝑞𝑦𝑞𝑧

𝑞𝑥𝑞𝑧 𝑞𝑦𝑞𝑧 𝑞𝑧
2

  
𝑥
𝑦
𝑧
 +  𝑞2 − 𝑞𝑥

2 − 𝑞𝑦
2 − 𝑞𝑧

2  
𝑥
𝑦
𝑧
 + 

2𝑞  

0 −𝑞𝑧 𝑞𝑦

𝑞𝑧 0 −𝑞𝑥

−𝑞𝑦 𝑞𝑥 0
  

𝑥
𝑦
𝑧
                                                                                                   (65) 

Simplificando a equação 65, após separar 𝑃   formado por (𝑥, 𝑦, 𝑧), é obtida a 

matriz 𝑅 (GALO e TOZZI), que representa a rotação quaternária: 

𝑅𝑞 =  

𝑞2 + 𝑞𝑥
2 − 𝑞

𝑦
2 − 𝑞

𝑧
2 2(𝑞𝑥𝑞𝑦 − 𝑞𝑞𝑧) 2(𝑞𝑥𝑞𝑧 + 𝑞𝑞𝑦)

2(𝑞𝑥𝑞𝑦 + 𝑞𝑞𝑧) 𝑞2 − 𝑞𝑥
2 + 𝑞

𝑦
2 − 𝑞

𝑧
2 2(𝑞𝑦𝑞𝑧 − 𝑞𝑞𝑥)

2(𝑞𝑥𝑞𝑧 − 𝑞𝑞𝑦) 2(𝑞𝑦𝑞𝑧 + 𝑞𝑞𝑥) 𝑞2 − 𝑞𝑥
2 − 𝑞

𝑦
2 + 𝑞

𝑧
2

                (66) 
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A matriz da equação 66 pode ser aplicada da mesma forma que as matrizes 

de rotação com ângulos de Euler. Por exemplo, a matriz 𝑅 aplicada na equação da 

colinearidade resulta (GALO e TOZZI, 2001): 

𝑥 = −𝑓
 𝑞2 + 𝑞𝑥

2 − 𝑞𝑦
2 − 𝑞𝑧

2  𝑋 − 𝑋𝑐 + 2 𝑞𝑥𝑞𝑦 − 𝑞𝑞𝑧  𝑌 − 𝑌𝑐 + 2 𝑞𝑥𝑞𝑧 + 𝑞𝑞𝑦  𝑍 − 𝑍𝑐 

2 𝑞𝑥𝑞𝑧 − 𝑞𝑞𝑦  𝑋 − 𝑋𝑐 + 2 𝑞𝑦𝑞𝑧 + 𝑞𝑞𝑥  𝑌 − 𝑌𝑐 +  𝑞2 − 𝑞𝑥
2 − 𝑞𝑦

2 + 𝑞𝑧
2  𝑍 − 𝑍𝑐 

         (67 𝑖) 

 𝑦 = −𝑓
2 𝑞𝑥𝑞𝑦 + 𝑞𝑞𝑧  𝑋 − Xc + (𝑞2 − 𝑞𝑥

2 + 𝑞𝑦
2 − 𝑞𝑧

2) Y − Yc + 2(𝑞𝑦𝑞𝑧 − 𝑞𝑞𝑥)(Z − Zc)

2 𝑞𝑥𝑞𝑧 − 𝑞𝑞𝑦  𝑋 − 𝑋𝑐 + 2 𝑞𝑦𝑞𝑧 + 𝑞𝑞𝑥  𝑌 − 𝑌𝑐 + (𝑞2 − 𝑞𝑥
2 − 𝑞𝑦

2 + 𝑞𝑧
2)(𝑍 − 𝑍𝑐)

    (67 𝑖𝑖) 

 

3.7 Comparações de Quatérnios com ângulos de Euler 

Os quatérnios e ângulos de Euler podem ser obtidos uns dos outros desde 

que sejam conhecidas as sequências de rotação nos dois sistemas. 

Ao ser realizada a sequência 𝑅𝜔𝜑𝜅  o quatérnio será dado por: 

𝑞 = (𝑐𝑜𝑠
𝜅

2
, 𝑠𝑒𝑛

𝜅

2
𝑘  )  𝑐𝑜𝑠

𝜑

2
, 𝑠𝑒𝑛

𝜑

2
𝑗   𝑐𝑜𝑠

𝜔

2
, 𝑠𝑒𝑛

𝜔

2
𝑖                                                     (68) 

 Desenvolvendo este produto chega-se a (SANTOS, 2003 e POPE, 1970): 

𝑞 = cos
𝜅

2
cos

𝜑

2
cos

𝜔

2
+ 𝑠𝑒𝑛

𝜅

2
 𝑠𝑒𝑛

𝜑

2
 𝑠𝑒𝑛

𝜔

2
                                 (69 i) 

𝑞𝑥 = cos
𝜅

2
 𝑐𝑜𝑠

𝜑

2
𝑠𝑒𝑛

𝜔

2
− 𝑠𝑒𝑛

𝜅

2
 𝑠𝑒𝑛

𝜑

2
 𝑐𝑜𝑠

𝜔

2
                                                              (69 ii) 

𝑞𝑦 = 𝑐𝑜𝑠
𝜅

2
𝑠𝑒𝑛

𝜑

2
𝑐𝑜𝑠

𝜔

2
+ 𝑠𝑒𝑛

𝜅

2
𝑐𝑜𝑠

𝜑

2
 𝑠𝑒𝑛

𝜔

2
                                                              (69 iii) 

𝑞𝑧 = 𝑠𝑒𝑛
𝜅

2
cos

𝜑

2
cos

𝜔

2
− cos

𝜅

2
 𝑠𝑒𝑛

𝜑

2
𝑠𝑒𝑛

𝜔

2
                                                               (69 iv) 

Com as equações 69 𝑖, 69𝑖𝑖, 69 𝑖𝑖𝑖 e 69𝑖𝑣 considerando, por exemplo, 𝜔 =

45°, 𝜑 = 45° e 𝜅 = 30° gera-se o seguinte quatérnio: 

𝑞 = (0,862 + 0,250𝑖 + 0,433𝑗 + 0,079𝑘  ) = (0,862 0,250 0,433 0,079)                      (70) 

Estudos mais detalhados dos quatérnios podem ser vistos em Pope (1970), 

Horn (1987), Hamilton (1866), Helmstetter (2012), Wilkins (2000); Gungor e 

Sarduvan (2011).  
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4. APLICAÇÕES DE QUATÉRNIOS EM FOTOGRAMETRIA  

Os quatérnios podem ser usados em diversas aplicações de fotogrametria que 

utilize uma matriz de rotação, por exemplo, na equação da colinearidade, para 

efetuar a orientação relativa, orientação absoluta e resseção espacial. Nesta 

pesquisa foram aplicados na resseção espacial e orientação relativa. 

 

4.1 Resseção espacial em fotogrametria 

A resseção espacial em fotogrametria determina os parâmetros de orientação 

exterior de uma fotografia que são 𝜔, 𝜑, 𝜅, 𝑋𝑐 , 𝑌𝑐  e 𝑍𝑐 , sendo que os três primeiros 

elementos indicam a orientação (ou também chamada de atitude) e 𝑋𝑐 , 𝑌𝑐  e 𝑍𝑐  são 

as coordenadas do centro perspectivo (ou a posição da fotografia no espaço), a 

partir de fotocoordenadas (𝑥𝑖 , 𝑦𝑖) de pontos que tem as correspondentes 

coordenadas no espaço objeto (𝑋𝑖 , 𝑌𝑖 , 𝑍𝑖), e da distância focal  𝑓 . São necessários 

no mínimo três pontos não colineares para ser obtida uma solução. Existem 

métodos de determinação diretos e por iterações, neste caso é necessário ter um 

vetor dos parâmetros aproximados dos parâmetros a serem determinados 

(𝜔0, 𝜑0, 𝜅0 , 𝑋𝑐0
, 𝑌𝑐0

, 𝑍𝑐0
). A Figura 18 apresenta a geometria da resseção espacial. 

Figura 18- Geometria da resseção espacial. 
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Existem vários tipos de procedimentos para a determinação da resseção 

espacial, como por exemplo, o método de Church, da equação da colinearidade, 

métodos diretos baseados na lei dos cossenos, etc. O método de Church é um meio 

de calcular os parâmetros da orientação exterior para fotografias inclinadas ou 

quase verticais, usado para o sistema t, s e 𝛼 detalhado em Wolf e Dewit (1983). Os 

métodos que usam a equação da colinearidade e a lei dos cossenos serão 

estudados aqui com mais detalhes. 

 

4.1.1 Resseção espacial com a equação da colinearidade 

A equação da colinearidade é aplicada ao mínimo de três pontos não 

colineares com coordenadas conhecidas nos dois espaços imagem (𝑥, 𝑦) e objeto 

(𝑋, 𝑌, 𝑍). O modelo matemático adotado é: 

𝑥 = −𝑓
𝑟11 𝑋 − 𝑋𝑐 + 𝑟12 𝑌 − 𝑌𝑐 + 𝑟13 𝑍 − 𝑍𝑐 

𝑟31 𝑋 − 𝑋𝑐 + 𝑟32 𝑌 − 𝑌𝑐 + 𝑟33 𝑍 − 𝑍𝑐 
                                                                                                     (71 𝑖) 

 𝑦 = −𝑓
𝑟21 𝑋 − Xc + r22 Y − Yc + 𝑟23 (Z − Zc)

𝑟31 𝑋 − 𝑋𝑐 + 𝑟32 𝑌 − 𝑌𝑐 + 𝑟33(𝑍 − 𝑍𝑐)
                                                                                                   (71 𝑖𝑖) 

em que: 

𝑥 e 𝑦 são as fotocoordenadas; 

𝑓 é a distância focal; 

𝑋, 𝑌 𝑒 𝑍 são as coordenadas no espaço objeto; 

𝑋𝑐 , 𝑌𝑐  𝑒 𝑍𝑐  são as coordenadas do centro perspectivo; 

𝑟𝑖𝑗  são os elementos da matriz de rotação, com i e j variando de 1 a 3. 

No ajustamento é adotado o MMQ que pode ser pelo método paramétrico 

(equação 72) ou o método Combinado (equação 73) (LUGNANI, 1987).  

𝐴𝑋 + 𝐿 = 𝑉                                                                                                               (72) 

𝐴𝑋 + 𝐵𝑉 + 𝑊 = 0                                                                                                     (73) 

em que: 

𝐴, representa a matriz das derivadas da equação 71 com relação aos parâmetros; 

𝑋, é o vetor das correções dos parâmetros; 

𝐿 = 𝐿𝑜 − 𝐿𝑏, sendo 𝐿𝑜  obtida a partir dos valores iniciais; 

𝐿𝑏 , vetor dos valores observados; 
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𝐵 , matriz que representa as derivadas do modelo funcional com relação aos valores 

observados; 

𝑉, vetor dos resíduos; 

𝑊, é o vetor erro de fechamento. 

A solução pelo método paramétrico é dada por: 

𝑋 = (𝐴𝑡𝑃𝐴)−1𝐴𝑡𝑃𝐿                                                                                                    (74) 

em que: 

𝑃 é a matriz dos pesos; 

A solução para o método combinado é dado por:  

𝑋 = −(𝐴𝑡𝑀−1𝐴)−1𝐴𝑡𝑀−1𝑊                                                                                       (75) 

em que 𝑀 = 𝐵𝑡𝑃𝐵  

O vetor com os parâmetros ajustados é conseguido somando as correções 

aos valores aproximados iniciais em um processo de iterações até haver 

estabilidade da solução. 

𝑋𝑎 = 𝑋0 + 𝑋                                                                                                              (76) 

 Para mais detalhes podem ser consultados Gemael (1994) ou Ghilani e Wolf 

(2006). 

 

4.1.2 Resseção espacial com os quatérnios 

A resseção espacial com as equações da colinearidade e com a lei dos 

cossenos tem soluções adaptadas para usar quatérnios, que neste trabalho foram 

classificadas como: a) com iterações; b) sem iterações. 

 Com iterações. Fazem uso de valores iniciais no MMQ e calcula a 

resseção espacial a partir da equação da colinearidade com substituição 

das rotações com ângulos de Euler por quatérnios, como em Jiang et al 

(2010); 

 Sem iterações. São soluções exatas ("closed-form") para o problema da 

recessão espacial tridimensional em topografia, com adaptações para a 

fotogrametria, como Hinsken (1988) e Guan et al (2008), em que se entra 
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com a lei dos cossenos para os triângulos. Com base nessa lei são 

encontradas as distâncias do centro perspectivo às coordenadas no 

espaço objeto e depois os demais parâmetros de posição e orientação são 

obtidos basicamente com uma transformação isogonal 3D. A maioria das 

soluções exatas usa três pontos no espaço objeto como, por exemplo, os 

estudos de Haralick et al (1994) e Zeng (2012). Mas Grafarend e Shan 

(1997) usam quatro pontos. Esta solução acaba sempre numa equação de 

terceiro ou quarto grau. A pesquisa de Hinsken (1988) parte da equação 

da colinearidade, calculando as derivadas parciais com relação aos 

parâmetros e adapta a equação linearizada para quatérnios. No artigo de 

Guan et al (2008), após serem obtidas as distâncias, é formada uma matriz 

N da qual são obtidos os autovalores e autovetores e, por conseguinte, são 

extraídos os elementos de orientação exterior. 

 

4.1.2.1 Resseção espacial com equação da colinearidade e quatérnios 

A resseção com iterações pode ser calculada com base no modelo 

matemático que usa a equação da colinearidade fazendo a adaptação das rotações 

para os quatérnios.  

Partindo-se da equação 71 e linearizando resulta na equação a seguir (JIANG 

et al, 2010): 

𝑥′ = 𝑎11

𝜕𝑥

𝜕𝑋𝑐𝑖

+ 𝑎12

𝜕𝑥

𝜕𝑌𝑐𝑖

+ 𝑎13

𝜕𝑥

𝜕𝑍𝑐𝑖

+ 𝑎14

𝜕𝑥

𝜕𝑞𝑖

+ 𝑎15

𝜕𝑥

𝜕𝑞𝑥𝑖

+ 𝑎16

𝜕𝑥

𝜕𝑞𝑦𝑖

+ 𝑎17

𝜕𝑥

𝜕𝑞𝑧𝑖

− 𝑙𝑥            (77 𝑖) 

𝑦 ′ = 𝑎21

𝜕𝑦

𝜕𝑋𝑐𝑖

+ 𝑎22

𝜕𝑦

𝜕𝑌𝑐𝑖

+ 𝑎23

𝜕𝑦

𝜕𝑍𝑐𝑖

+ 𝑎24

𝜕𝑦

𝜕𝑞𝑖

+ 𝑎25

𝜕𝑦

𝜕𝑞𝑥𝑖

+ 𝑎26

𝜕𝑦

𝜕𝑞𝑦𝑖

+ 𝑎27

𝜕𝑦

𝜕𝑞𝑧𝑖

− 𝑙𝑦          (77 𝑖𝑖) 

em que 𝑎𝑖𝑗 ·, com i variando de um a duas vezes o número de pontos e j de 1 a 6 são 

os elementos da matriz A.  

 Além das fotocoordenadas são dados de entrada a distância focal, as 

coordenadas dos pontos no espaço objeto e valores aproximados para todos os 

parâmetros (𝜔0, 𝜑0, 𝜅0, 𝑋𝑐0
, 𝑌𝑐0

, 𝑍𝑐0
). 

A matriz A é das derivadas com relação aos parâmetros incógnitos, com base 

nos elementos 𝑎𝑖𝑗  da equação 77. 
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Para as derivadas da equação 77 com relação aos parâmetros podem ser 

usadas as seguintes simplificações (JUN, DONGHONG e YONGSHENG, 2008): 

𝜕𝑥

𝜕𝑋𝑐

=
 𝑞2 + 𝑞𝑥

2 − 𝑞𝑦
2 − 𝑞𝑧

2 𝑓 + (2 𝑞𝑥𝑞𝑧 − 𝑞𝑞𝑦 ) × 𝑥

2 𝑞𝑥𝑞𝑧 − 𝑞𝑞𝑦  𝑋 − 𝑋𝑐 + 2 𝑞𝑦𝑞𝑧 + 𝑞𝑞𝑥  𝑌 − 𝑌𝑐 +  𝑞2 − 𝑞𝑥
2 − 𝑞𝑦

2 + 𝑞𝑧
2  𝑍 − 𝑍𝑐 

                  (78 𝑖) 

𝜕𝑥

𝜕𝑌𝑐

=
2(𝑞𝑥𝑞𝑦 − 𝑞𝑞𝑧)𝑓 + (2(𝑞𝑦𝑞𝑧 + 𝑞𝑞𝑥)) × 𝑥

2 𝑞𝑥𝑞𝑧 − 𝑞𝑞𝑦  𝑋 − 𝑋𝑐 + 2 𝑞𝑦𝑞𝑧 + 𝑞𝑞𝑥  𝑌 − 𝑌𝑐 +  𝑞2 − 𝑞𝑥
2 − 𝑞𝑦

2 + 𝑞𝑧
2  𝑍 − 𝑍𝑐 

                 (78 𝑖𝑖) 

𝜕𝑥

𝜕𝑍𝑐

=
2(𝑞𝑥𝑞𝑧 + 𝑞𝑞𝑦 )𝑓 + (𝑞2 − 𝑞𝑥

2 − 𝑞𝑦
2 + 𝑞𝑧

2) × 𝑥

2 𝑞𝑥𝑞𝑧 − 𝑞𝑞𝑦  𝑋 − 𝑋𝑐 + 2 𝑞𝑦𝑞𝑧 + 𝑞𝑞𝑥  𝑌 − 𝑌𝑐 +  𝑞2 − 𝑞𝑥
2 − 𝑞𝑦

2 + 𝑞𝑧
2  𝑍 − 𝑍𝑐 

                 (78 𝑖𝑖𝑖) 

𝜕𝑦

𝜕𝑋𝑐

=
 2(𝑞𝑥𝑞𝑦 + 𝑞𝑞𝑧) 𝑓 + (2(𝑞𝑥𝑞𝑧 − 𝑞𝑞𝑦 )) × 𝑦

2 𝑞𝑥𝑞𝑧 − 𝑞𝑞𝑦  𝑋 − 𝑋𝑐 + 2 𝑞𝑦𝑞𝑧 + 𝑞𝑞𝑥  𝑌 − 𝑌𝑐 +  𝑞2 − 𝑞𝑥
2 − 𝑞𝑦

2 + 𝑞𝑧
2  𝑍 − 𝑍𝑐 

                (78 𝑖𝑣) 

𝜕𝑦

𝜕𝑌𝑐

=
 𝑞2 − 𝑞𝑥

2 + 𝑞𝑦
2 − 𝑞𝑧

2 𝑓 + (2(𝑞𝑦𝑞𝑧 + 𝑞𝑞𝑥)) × 𝑦

2 𝑞𝑥𝑞𝑧 − 𝑞𝑞𝑦  𝑋 − 𝑋𝑐 + 2 𝑞𝑦𝑞𝑧 + 𝑞𝑞𝑥  𝑌 − 𝑌𝑐 +  𝑞2 − 𝑞𝑥
2 − 𝑞𝑦

2 + 𝑞𝑧
2  𝑍 − 𝑍𝑐 

                   (78 𝑣) 

𝜕𝑦

𝜕𝑍𝑐

=
 2(𝑞𝑦𝑞𝑧 − 𝑞𝑞𝑥) 𝑓 + (𝑞2 − 𝑞𝑥

2 − 𝑞𝑦
2 + 𝑞𝑧

2) × 𝑦

2 𝑞𝑥𝑞𝑧 − 𝑞𝑞𝑦  𝑋 − 𝑋𝑐 + 2 𝑞𝑦𝑞𝑧 + 𝑞𝑞𝑥  𝑌 − 𝑌𝑐 +  𝑞2 − 𝑞𝑥
2 − 𝑞𝑦

2 + 𝑞𝑧
2  𝑍 − 𝑍𝑐 

                 (78 𝑣𝑖) 

𝜕𝑥

𝜕𝑞
= 2  −

𝑥𝑦

𝑓
𝑞𝑥 +  𝑓 +

𝑥2

𝑓
 𝑞𝑦 + 𝑦𝑞𝑧                                                                                                                   (78 𝑣𝑖𝑖) 

𝜕𝑥

𝜕𝑞𝑥

= 2  −
𝑥𝑦

𝑓
𝑞 + 𝑦𝑞𝑦 −  𝑓 +

𝑥2

𝑓
 𝑞𝑧                                                                                                                  (78 𝑣𝑖𝑖𝑖) 

𝜕𝑥

𝜕𝑞𝑦

= 2  − 𝑓 +
𝑥2

𝑓
 𝑞 − 𝑦𝑞𝑥 −

𝑥𝑦

𝑓
𝑞𝑧                                                                                                                     (78 𝑖𝑥) 

𝜕𝑥

𝜕𝑞𝑧

= 2  −𝑦𝑞 +  𝑓 +
𝑥2

𝑓
 𝑞𝑥 +

𝑥𝑦

𝑓
𝑞𝑦                                                                                                                       (78 𝑥) 

𝜕𝑦

𝜕𝑞
= 2  − 𝑓 +

𝑦2

𝑓
 𝑞𝑥 +

𝑥𝑦

𝑓
𝑞𝑦 − 𝑥𝑞𝑧                                                                                                                     (78 𝑥𝑖) 

𝜕𝑦

𝜕𝑞𝑥

= 2  − 𝑓 +
𝑦2

𝑓
 𝑞𝑥 − 𝑥𝑞𝑦 −

𝑥𝑦

𝑓
𝑞𝑧                                                                                                                 (78 𝑥𝑖𝑖) 

𝜕𝑦

𝜕𝑞𝑦

= 2  −
𝑥𝑦

𝑓
𝑞 + 𝑥𝑞𝑥 −  𝑓 +

𝑦2

𝑓
 𝑞𝑧                                                                                                                  (78 𝑥𝑖𝑖𝑖) 

𝜕𝑦

𝜕𝑞𝑧

= 2  𝑥𝑞 +
𝑥𝑦

𝑓
𝑞𝑥 +  𝑓 +

𝑦2

𝑓
 𝑞𝑦                                                                                                                         (78 𝑖𝑥) 

Para o cálculo do quatérnio inicial devem ser usados ângulos de Euler 

aproximados. Os demais valores aproximados também devem ser obtidos. 

Considerando a matriz 𝑃 como a matriz identidade e aplicando o ajustamento pelo 

método paramétrico (equação 74) encontram-se os parâmetros ajustados. 
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4.1.2.2 Resseção espacial sem iteração 

É o método que encontra os parâmetros da resseção espacial de forma direta, 

sem a necessidade de iterações e de valores iniciais, usando os quatérnios. No 

entanto é necessário que sejam previamente conhecidas as distâncias entre o 

centro perspectivo e cada ponto no terreno. Esta solução é encontrada, por 

exemplo, em Horn (1987) e para este trabalho foram usadas as fórmulas de 

implementação de Guan et al (2008). 

A Figura 19 ilustra a geometria da resseção espacial proposto por Guan et al 

(2008) com a localização do centro perspectivo, dos pontos de controle e as 

coordenadas da imagem. 

 

Figura 19- Geometria da resseção espacial proposto por Guan et al (2008). 

 

Fonte: Adaptado de Guan et al (2008). 

 

Na Figura 19 𝐶 representa o centro perspectivo, 𝑝𝑖 , com 𝑖 = 1, … , 4, indicam as 

fotocoordenadas e 𝑃𝑖  são as coordenadas no espaço objeto e 𝛽𝑖𝑗 , com i e j variando 

de 1 até 4, são os ângulos espaciais. 
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A seguir são descritos os procedimentos de cálculo de resseção com este 

método, com as etapas de obtenção das distâncias entre o centro perspectivo e os 

pontos no espaço objeto, cálculo do fator escala, cálculo das novas coordenadas a 

partir do centroide, obtenção de uma matriz N, calcular os autovalores, construção 

da matriz de rotação, cálculo dos elementos angulares (𝜔, 𝜑, 𝜅), cálculo da matriz de 

translação, cálculo dos demais parâmetros de orientação exterior (𝑋𝑐 , 𝑌𝑐  𝑒 𝑍𝑐).  

1. Calcular as distâncias entre o centro perspectivo e os pontos no espaço 

objeto:  

Esta distância pode ser obtida por processo iterativo, com base na lei dos 

cossenos ou método de Grafarend (GUAN et al, 2008). Usando o método de 

Grafarend [a partir de Grafarend e Shan (1997)] o cálculo da distância deve ser feito 

do seguinte modo: 

  Entrar com as coordenadas no espaço objeto, as fotocoordenadas e 

distância focal; 

 Expressar os ângulos espaciais 𝛽𝑖𝑗  em termos das fotocoordenadas e 

distância focal: 

cos 𝛽𝑖𝑗  =
𝑥𝑖𝑥𝑗 + 𝑦𝑖𝑦𝑗 + 𝑓2

 𝑥𝑖
2 + 𝑦𝑖

2 + 𝑓2 𝑥𝑖
2 + 𝑦𝑖

2 + 𝑓2

                                                                                   (79) 

em que: 

𝛽𝑖𝑗  são os ângulos espaciais; 

 (𝑥𝑖 , 𝑦𝑖) são as fotocoordenadas; 

𝑓 distância focal. 

 Usar a lei dos cossenos em função dos ângulos espaciais e das distâncias 

requeridas: 

 𝑃1𝑃2
          

2
=  𝐶𝑃1

         
2

+  𝐶𝑃2
         

2
− 2 𝐶𝑃1

          𝐶𝑃2
         cos 𝛽12                                             (80 𝑖) 

 𝑃2𝑃3
          

2
=  𝐶𝑃2

         
2

+  𝐶𝑃3
         

2
− 2 𝐶𝑃2

          𝐶𝑃3
         cos(𝛽23)                                           (80 𝑖𝑖) 

 𝑃3𝑃4
          

2
=  𝐶𝑃3

         
2

+  𝐶𝑃4
         

2
− 2 𝐶𝑃3

          𝐶𝑃4
         cos(𝛽34)                                          (80 𝑖𝑖𝑖) 

 𝑃4𝑃1
          

2
=  𝐶𝑃4

         
2

+  𝐶𝑃1
         

2
− 2 𝐶𝑃4

          𝐶𝑃1
         cos(𝛽41)                                          (80 𝑖𝑣) 
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 𝑃1𝑃3
          

2
=  𝐶𝑃1

         
2

+  𝐶𝑃3
         

2
− 2 𝐶𝑃1

          𝐶𝑃3
         cos(𝛽13)                                           (80 𝑣) 

 𝑃2𝑃4
          

2
=  𝐶𝑃2

         
2

+  𝐶𝑃4
         

2
− 2 𝐶𝑃2

          𝐶𝑃4
         cos(𝛽24)                                          (80 𝑣𝑖) 

Fazendo: 

 𝑃1𝑃2
          

2
= 𝑏12 ,  𝑃2𝑃3

          
2

= 𝑏23,  𝑃3𝑃4
          

2
= 𝑏34,  𝑃4𝑃1

          
2

= 𝑏41,  𝑃1𝑃3
          

2
= 𝑏13, 

 𝑃2𝑃4
          

2
= 𝑏24, 𝑏𝑖𝑗  𝜖ℝ+  

−2 cos 𝛽12 = 𝑎12  

−2 cos 𝛽23 = 𝑎23      

−2 cos 𝛽34 = 𝑎34                

−2 cos 𝛽41 = 𝑎41                

−2 cos 𝛽13 = 𝑎13                     

−2 cos 𝛽24 = 𝑎24 , −2 ≤ 𝑎𝑖𝑗 ≤ 2 

em que: 

𝐶 É o centro perspectivo; 

𝑃𝑖  São os pontos no espaço objeto. 

As distâncias procuradas são: 

 𝐶𝑃1
         = 𝑥1                     

 𝐶𝑃2
         = 𝑥2  

 𝐶𝑃3
         = 𝑥3  

 𝐶𝑃4
         = 𝑥4 , 𝑥𝑖𝜖ℝ

+ 

Com simplificações para os termos 𝑏𝑖𝑗  chegam-se as equações de Grunert 

(GRAFAREND e SHAN, 1997): 

𝑥1
2 + 𝑥2

2 + 𝑎12𝑥1𝑥2 = 𝑏12                                                                                         (81 𝑖) 

𝑥2
2 + 𝑥3

2 + 𝑎23𝑥2𝑥3 = 𝑏23                                                                                        (81 𝑖𝑖) 

𝑥3
2 + 𝑥4

2 + 𝑎34𝑥3𝑥4 = 𝑏34                                                                                       (81 𝑖𝑖𝑖) 

𝑥4
2 + 𝑥1

2 + 𝑎41𝑥4𝑥1 = 𝑏41                                                                                       (81 𝑖𝑣) 
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𝑥1
2 + 𝑥3

2 + 𝑎13𝑥1𝑥3 = 𝑏13                                                                                        (81 𝑣) 

𝑥2
2 + 𝑥4

2 + 𝑎24𝑥2𝑥4 = 𝑏24                                                                                       (81 𝑣𝑖) 

Entre essas equações apenas três são independentes e escolhendo 

81 𝑖𝑖, 81 𝑖𝑖𝑖 𝑒 81 𝑣𝑖 são obtidas as relações para as coordenadas homogêneas 𝑦3 e 

𝑦4:  

𝑦3 =
𝑥3

𝑥2
                                                                                                                     (82) 

 𝑦4 =
𝑥4

𝑥2
                                                                                                                    (83) 

Isolando 𝑥2
2 nas equações 81 𝑖𝑖, 81 𝑖𝑖𝑖 𝑒 81 𝑣𝑖, levando em consideração as 

equações 82 e 83 são obtidos: 

𝑥2
2 =

𝑏23

1+𝑦3
2+𝑎23𝑦3

                                                                                                     (84 𝑖) 

𝑥2
2 =

𝑏34

𝑦3
2+𝑦4

2+𝑎34𝑦3𝑦4
                                                                                                (84 𝑖𝑖) 

𝑥2
2 =

𝑏24

1+𝑦4
2+𝑎24𝑦4

                                                                                                   (84 𝑖𝑖𝑖) 

 Dividindo 84 𝑖𝑖 por 84 𝑖 e 84 𝑖𝑖𝑖 por 84 𝑖 resultam as equações a seguir: 

𝑏34 1 + 𝑦3
2 + 𝑎23𝑦3 = 𝑏23(𝑦3

2 + 𝑦4
2 + 𝑎34𝑦3𝑦4)                                                         (85) 

𝑏24 1 + 𝑦3
2 + 𝑎23𝑦3 = 𝑏23(1 + 𝑦4

2 + 𝑎24𝑦4)                                                               (86) 

Subtraindo a equação 85 pela equação 86 é obtido o valor de 𝑦4: 

𝑦4 =
 𝑏34 − 𝑏23 − 𝑏24 𝑦3

2 + 𝑎23 𝑏34 − 𝑏24 𝑦3 + (𝑏23 + 𝑏34 − 𝑏24)

𝑎34𝑏23𝑦3 − 𝑎24𝑏23
                                     (87) 

Substituindo este valor na equação 87 chega-se a uma equação do quarto 

grau, conforme o modelo explicitado: 

𝐶4𝑦3
4 + 𝐶3𝑦3

3 + 𝐶2𝑦3
2 + 𝐶1𝑦3 + 𝐶0 = 0                                                                         (88) 

em que: 

𝐶4 = 𝑏23(𝑏34 − 𝑏23 − 𝑏24)2 − 𝑎34
2 𝑏23

2 𝑏24 

𝐶3 =  𝑏34 − 𝑏23 − 𝑏24 ×  𝑎24𝑎34𝑏23
2 + 2𝑎23𝑏23 𝑏34 − 𝑏24  + 𝑎34𝑏23

2 𝑏24(2𝑎24 − 𝑎23𝑎34) 
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𝐶2 = 𝑏23 𝑎23
2 (𝑏34 − 𝑏24)2 + 2 𝑏34 − 𝑏23 − 𝑏24 (𝑏23 + 𝑏34 − 𝑏24 

+ 𝑎23𝑎24𝑎34𝑏23
2  𝑏24 + 𝑏34 + 𝑎34

2𝑏23
2  𝑏23 − 𝑏24 + 𝑎24

2𝑏23
2  𝑏23 − 𝑏24  

𝐶1 = 2𝑎23𝑏23 𝑏34 − 𝑏24  𝑏23 + 𝑏34 − 𝑏24 + 𝑎24𝑎34𝑏23
2  𝑏34 + 𝑏24 − 𝑏23 − 𝑎23𝑎24

2𝑏23
2 𝑏34 

𝐶0 = 𝑏23 𝑏23 + 𝑏34 − 𝑏24 2 − 𝑎24
2𝑏23

2 𝑏34 

As raízes de 88 são quatro e devem ser testadas para a escolha da raiz 

―correta‖. Uma vez encontrado o valor de 𝑦3 obtém-se 𝑥2, usando 84 i. Inserindo-se 

esses valores obtém-se 𝑥3, pela aplicação da equação 82. Depois se encontra 𝑦4, 

com a equação 87, e com ele e 𝑥2 descobre-se 𝑥4, pela equação 83. Com isso 

chega ao valor de 𝑥1, com a equação 81. Ao resolver a equação de quarto grau, 

deve-se tomar como solução o número positivo e número real, uma vez que se 

busca o valor de uma distância (ZENG, 2012), mas além disso devem ser verificados 

os valores absolutos das raízes que não podem exceder um certo limiar. Mais 

detalhes são dados nos experimentos.  

2. Calcular os fatores de escala: 

Estes fatores são uma relação entre as distâncias do centro perspectivo até 

as coordenadas no espaço objeto e centro perspectivo até fotocoordenadas, 

expresso cada um por (GUAN et al, 2008): 

𝜆𝑖 =
𝑆𝑖

 𝑥𝑖
2 + 𝑦𝑖

2 + 𝑓2

                                                                                                                           (89) 

em que  𝑆𝑖  representa a distância do centro perspectivo ao ponto i no espaço objeto; 

3. Calcular as novas coordenadas a partir do centroide, efetuando uma 

translação, com as equações (GUAN et al, 2008): 

𝑝𝑖 = 𝑝𝑖 − 𝑝𝑔                                                                                                               (90) 

𝑠𝑖 = 𝑠𝑖 − 𝑠𝑔                                                                                                                 (91) 

com: 

𝑠𝑖 =  

𝜆𝑖𝑥𝑖

𝜆𝑖𝑦𝑖

𝜆𝑖𝑓
                                                                                                                (92) 

𝑠𝑔 =
1

𝑛
 𝑠𝑖

𝑖

                                                                                                                                          (93) 
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𝑝𝑔 =
1

𝑛
 𝑝𝑖

𝑖

                                                                                                                                         (94) 

em que: 

𝑝𝑖  são as coordenadas no espaço objeto, com 𝑖 = 1, … , 𝑛; 

𝑠𝑖  são as coordenadas que dependem do fator escala e da distância focal; 

 𝑠𝑔  e 𝑝𝑔  são o centroide; 

 𝑛 é o número de pontos. 

 4. Formação da matriz N e cálculo dos autovalores: 

A matriz N é dada pelo produto de duas matrizes que representam a rotação 

para um vetor no espaço tridimensional e é apresentada como (GUAN et al, 2008): 

𝑁 =   

0
𝑥𝑝𝑖

𝑦𝑝𝑖

𝑧𝑝𝑖

−𝑥𝑝𝑖

0
𝑧𝑝𝑖

−𝑦𝑝𝑖

−𝑦𝑝𝑖

−𝑧𝑝𝑖

0
𝑥𝑝𝑖

−𝑧𝑝𝑖

𝑦𝑝𝑖

−𝑥𝑝𝑖

0

 

𝑡

 

0
𝑥𝑠𝑖

𝑦𝑠𝑖

𝑧𝑠𝑖

−𝑥𝑠𝑖

0
−𝑧𝑠𝑖

𝑦𝑠𝑖

−𝑦𝑠𝑖

𝑧𝑠𝑖

0
−𝑥𝑠𝑖

−𝑧𝑠𝑖

−𝑦𝑠𝑖

−𝑥𝑠𝑖

0

 𝑖                                  (95) 

 Os elementos que compõem estas matrizes são os quatérnios 𝑃𝑖 =  (0, 𝑝𝑖 ) e 

𝑆𝑖 =  (0, 𝑠𝑖 ). 

5. Selecionar o maior autovalor e calcular o autovetor correspondente para 

adotar como o quatérnio. Neste caso a seleção é feita tomando-se o autovetor 

correspondente ao maior autovalor. 

6. Construir matriz de rotação. A construção da matriz de rotação é feita 

conforme a equação apresentada na Seção 3.6. 

7. Calcular os elementos angulares. Os elementos angulares são calculados 

ao se observar a sequência de rotação dos dados que estão sendo processados e 

estabelecer as relações trigonométricas existentes. 

8. Calcular a matriz de translação (GUAN et al, 2008):  

𝑇 = 𝑅𝑞
𝑡  

𝑋𝑐

𝑌𝑐

𝑍𝑐

                                                                                                             (96) 

9. Calcular os demais parâmetros de orientação exterior. Os demais 

elementos são as coordenadas do centro perspectivo que, por sua vez, são dadas 

pelo produto da matriz de rotação com o vetor da translação: 
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𝑋𝑐

𝑌𝑐

𝑍𝑐

 = 𝑇 × 𝑅𝑞                                                                                                           (97) 

O modelo matemático que gera os resíduos é dado por (GUAN et al, 2008): 

𝑉𝑖 = 𝑅𝑞
𝑡𝑝𝑖 − 𝑠𝑖 − 𝑇                                                                                                  (98) 

em que 𝑇 é a matriz que depende das coordenadas do centro perspectivo 

apresentada na equação 96 (GUAN et al, 2008). 

Mais detalhes podem ser consultados Guan et al (2008) e Horn (1987). 

 

4.2. Orientação Relativa 

A orientação relativa é a operação que cria uma representação tridimensional 

do objeto fotografado (modelo estereoscópico), com um par de fotografias e com 

superposição adequada (WONG, 1980) e faz parte da orientação exterior, 

juntamente com a orientação absoluta. A geometria da orientação relativa com o 

plano epipolar pode ser vista na Figura 20. O plano epipolar faz parte da condição 

de coplanaridade, que é um dos modelos usados para a orientação relativa neste 

trabalho, além do modelo que usa a equação da colinearidade. 

 

Figura 20 – Geometria da orientação relativa para condição de coplanaridade. 

 

Fonte: Adaptado de Berberan (2002). 
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Na Figura 20 P1 representa o ponto P na fotografia esquerda, P2 é o ponto P 

na fotografia direita, 𝑏   é o vetor da base, 𝑅1
      e 𝑅2

      são vetores do espaço objeto. 

 

4.2.1 Orientação relativa com a equação da colinearidade 

 Ao se calcular a orientação relativa com a equação da colinearidade, além de 

encontrar os parâmetros de uma câmara com relação à outra, fornece também as 

coordenadas tridimensionais dos pontos observados. Na solução chamada 

orientação relativa dependente, os parâmetros da câmara esquerda são 

considerados como fixos (𝜔1, 𝜑1, 𝜅1, 𝑋𝑐1
𝑌𝑐1

, 𝑍𝑐1
) e são determinados os parâmetros 

da câmara direita (𝜔2, 𝜑2, 𝜅2, 𝑌𝑐2
, 𝑍𝑐2

) com relação à primeira câmara. É necessário 

considerar 𝑋𝑐2
, ou o comprimento da base, como injunção, já que o sistema é 

singular (GALO, 2003). 

Para a obtenção da orientação relativa, neste caso, é aplicado o MMQ 

(LUGNANI, 1987). Uma das soluções do MMQ é dada pelo Método Paramétrico 

que, por sua vez, depende das matrizes 𝐴, 𝑃, 𝐿 e 𝑋0. 

A formação da matriz A depende das derivadas parciais em relação aos 

parâmetros incógnitos e fica como (GALO, 2003):  

 

(99) 
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em que 𝑥1e 𝑦1 são as funções da equação da colinearidade para a câmara esquerda 

(câmara um). Já 𝑥2 e 𝑦2 são as funções da equação da colinearidade para a câmara 

direita (câmara dois). 

 Por meio da equação 99 pode-se notar que a matriz A está basicamente 

dividida em quatro partes: As superiores e inferiores são referentes às derivadas 

parciais da equação da colinearidade para a câmara esquerda e direita. As partes 

esquerda e direita referem-se aos parâmetros de cada fotografia e coordenadas dos 

pontos do modelo, respectivamente. A parte superior esquerda é toda de zeros 

porque os parâmetros da fotografia esquerda não entram no modelo, pois são iguais 

a zero.  

A matriz P é uma matriz quadrada que dependerá do valor imposto ao sigma 

a priori e da MVC das observações (𝐿𝑏 ) (GEMAEL, 1994). Já a matriz 𝐿 é um vetor 

que resulta de uma relação entre as fotocoordenadas lidas na imagem (vetor 𝐿𝑏 ) e 

as coordenadas calculadas da imagem (𝐿0), a partir dos valores iniciais introduzidas 

nas equações 71 𝑖 e 71 𝑖𝑖. A equação a seguir mostra a relação para obter L: 

𝐿 = 𝐿𝑏 − 𝐿0                                                                                                             (100) 

 Para os valores de 𝑋0 são tomados valores aproximados, usando 

procedimento adequado, para os parâmetros incógnitos em questão, conforme o 

modelo apresentado na equação a seguir: 

𝑋0 =  𝜔20
𝜑20

𝜅20
𝑋𝑐20

𝑌𝑐20
𝑍𝑐20

𝑋1 𝑌1 𝑍1 ⋯ 𝑋𝑛 𝑌𝑛 𝑍𝑛                   (101) 

 

4.2.2 Orientação relativa com equação da coplanaridade 

A orientação relativa também pode ser diretamente obtida da condição de 

coplanaridade (Figura 20). Como os centros de exposição, fotocoordenadas e ponto 

no espaço objeto devem estar em um plano, deve valer o modelo matemático 

(WONG, 1980): 

𝐹 = 𝑏  ∙  𝑅1
     × 𝑅2

      = 0                                                                                                                      (102)    

em que: 

𝑏   representa o vetor que contém as componentes da base que são 𝑏𝑥 , 𝑏𝑦  e 𝑏𝑧 ; 
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𝑅1
      e 𝑅2

      são vetores dados em funções de fotocoordenadas para a câmara direita e 

esquerda, respectivamente.  

Esses três vetores de forma mais explícita são: 

𝑏  =  

𝑏𝑥

𝑏𝑦

𝑏𝑧

                                                                                                                                             (103) 

𝑅1
     =  

𝑥1

𝑦1

−𝑓
                                                                                                                                          (104)  

𝑅2
     =  

𝑟11𝑥2 + 𝑟21𝑦2 − 𝑟31𝑓
𝑟12𝑥2 + 𝑟22𝑦2 − 𝑟32𝑓
𝑟13𝑥2 + 𝑟23𝑦2 − 𝑟33𝑓

                                                                                                        (105) 

em que: 

 𝑟𝑖𝑗  são os elementos da matriz de rotação; 

𝑓 é a distância focal; 

𝑥1, 𝑦1 𝑒 𝑥2, 𝑦2 são as fotocoordenadas da câmara esquerda e direita, 

respectivamente.  

Neste caso, para facilitar os cálculos, a orientação relativa pode ser calculada 

tomando as coordenadas da câmara esquerda fixa. Fazendo as substituições em 

102 resulta, para cada ponto, uma equação do tipo: 

𝐹 =  𝑏𝑥𝑦1 − 𝑏𝑦𝑥1  𝑟13𝑥2 + 𝑟23𝑦2 − 𝑟33𝑓 +  𝑏𝑧𝑥1 + 𝑏𝑥𝑓  𝑟12𝑥2 + 𝑟22𝑦2 − 𝑟32𝑓 −

 𝑏𝑦𝑓 + 𝑏𝑧𝑦1 (𝑟11𝑥2 + 𝑟21𝑦2 − 𝑟31𝑓)                                                                         (106)  

em que: 

𝑏𝑥 , 𝑏𝑦  e 𝑏𝑧  são componentes do vetor da base (com 𝑏𝑥  fixo); 

𝑟𝑖𝑗  são os elementos da matriz de rotação; 

𝑓 é a distância focal; 

𝑥1 e 𝑦1 são as fotocoordenadas da câmara esquerda (fixa); 

𝑥2 e 𝑦2 são as fotocoordenadas da câmara direita (incógnitas). 

 A solução da orientação relativa é dada pela linearização da equação 106 e 

aplicação do método combinado (equação 75, da Seção 4.1.1), de modo que a 
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matriz A será das derivadas parciais em relação à 𝜔, 𝜑, 𝜅, 𝑏𝑦  e 𝑏𝑧 . Já a matriz B 

será das derivadas parciais com relação às fotocoordenadas da câmara esquerda e 

direita, conforme os modelos matemáticos a seguir (WONG, 1980): 

𝐴 =  
𝜕𝐹

𝜕𝑋𝑐

𝜕𝐹

𝜕𝑌𝑐

𝜕𝐹

𝜕𝑍𝑐

𝜕𝐹

𝜕𝜔

𝜕𝐹

𝜕𝜑

𝜕𝐹

𝜕𝜅
                                                                                      (107) 

𝐵 =  
𝜕𝐹

𝜕𝑥1

𝜕𝐹

𝜕𝑦1

𝜕𝐹

𝜕𝑥2

𝜕𝐹

𝜕𝑦2
                                                                                                        (108) 

Mais detalhes podem ser encontrados em Berberan (2002) e Galo (2003). 

 

4.2.3 Orientação relativa com quatérnios 

 A aplicação dos quatérnios na orientação relativa é encontrada, por exemplo, 

em Galo (2003), Hinsken (1988) e Horn (1989), que usam a condição da 

coplanaridade.  

Em Galo (2003) a orientação relativa é feita adaptando as fórmulas 

fotogramétricas da condição de coplanaridade para quatérnios, usando o 

ajustamento pelo método paramétrico e injunção. Hinsken (1988) calcula esta 

orientação, a partir da condição de coplanaridade encontrando uma forma 

linearizada para este cálculo. Em Horn (1989) o cálculo é realizado sem a 

necessidade de valores iniciais, com quatérnios unitários, deduzindo uma forma de 

cálculo direto.  

Também existe aplicação da orientação relativa em Lin et al (2010), que 

efetua a orientação relativa com vetores e ângulos calculados por quatérnios duais, 

usando linearização de Taylor. 

O método desenvolvido por Galo (2003) para o cálculo da orientação relativa 

com quatérnios parte de uma adaptação da condição de coplanaridade (que foi 

apresentada na equação 106 da Seção 4.2.2), que é apresentado a seguir: 

𝑂𝑖 =  

𝑥1𝑖

𝑦1𝑖

𝑓
 

𝑡

 

0 𝑏𝑧 −𝑏𝑦

−𝑏𝑧 0 𝑏𝑥

𝑏𝑦 −𝑏𝑥 0
 𝑅𝑡  

𝑥2𝑖

𝑦2𝑖

𝑓
                                                                 (109) 

em que: 

𝑥1𝑖 , 𝑦1𝑖  são as fotocoordenadas da câmara esquerda; 
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𝑥2𝑖 , 𝑦2𝑖  são as fotocoordenadas da câmara direita; 

𝑓 distância focal; 

𝑏𝑥 , 𝑏𝑦  e 𝑏𝑧  são os componentes do vetor da base; 

𝑅 é a matriz de rotação de quatérnios. 

 Os parâmetros incógnitos desse modelo são: 

𝑋𝑎 =

 

 
 
 
 

𝑏𝑥

𝑏𝑦

𝑏𝑧
𝑞
𝑞𝑥

𝑞𝑦

𝑞𝑧 

 
 
 
 

                                                                                                             (110) 

 Para o cálculo da orientação relativa com quatérnios pode-se inserir a 

injunção do quatérnio unitário (também considerando o componente 𝑏𝑥  como fixo), 

usar mínimo de seis pontos correspondentes, linearizar a equação 110, conforme a 

equação a seguir e aplicar o método paramétrico (GALO, 2003): 

𝐴𝑖1 =  
𝜕𝑂𝑖

𝜕𝑞

𝜕𝑂𝑖

𝜕𝑞𝑥

𝜕𝑂𝑖

𝜕𝑞𝑦

𝜕𝑂𝑖

𝜕𝑞𝑧

𝜕𝑂𝑖

𝜕𝑏𝑥

𝜕𝑂𝑖

𝜕𝑏𝑦

𝜕𝑂𝑖

𝜕𝑏𝑧
                                                                  (111) 
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5. EXPERIMENTOS 

Foram realizados diversos experimentos com os programas desenvolvidos 

neste trabalho para a resseção espacial em fotogrametria e orientação relativa, tanto 

usando os modelos analíticos baseados na equação da colinearidade, como usando 

modelos com quatérnios.  

  A metodologia de cada experimento, as particularidades que levaram a suas 

escolhas e os resultados são detalhados nas próximas seções. 

 

5.1 Aplicação da resseção espacial  

Para os experimentos de resseção espacial foram comparados três métodos: 

 Equação da colinearidade; 

 Resseção direta; 

 Equação de colinearidade, adaptada para quatérnios. 

O método tradicional da equação da colinearidade com os ângulos de Euler 

foi usado para comparação com os resultados obtidos com as resseções espaciais 

com os outros métodos. Este método foi realizado com o ajustamento pelo método 

paramétrico, desenvolvido por Silva (1995), com iterações. 

 Foram testados dois métodos com uso de quatérnios. Um método de 

resseção direta chamado aqui de resseção espacial sem iteração (SI) e outro 

desenvolvido a partir da equação da colinearidade adaptada com quatérnios, 

chamado aqui de resseção espacial com iteração (CI). 

 

5.1.1 Aplicação da resseção espacial sem iteração (SI) 

Foi implementado um programa para a resseção espacial sem iteração 

seguindo principalmente o algoritmo de Guan et al (2008). Este tipo de solução 

chamado na literatura internacional de "closed-form", na maioria usa três pontos, 

mas a de Guan et al (2008) usa quatro pontos.  

Para se resolver este método primeiro é necessário calcular as distâncias 

entre o centro perspectivo e os pontos no espaço objeto, para o qual foi usado o 
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método de Grafarend e Shan (1997), cujo detalhamento pode ser visto no Capítulo 

4. 

 

5.1.1.1 Experimento 1 SI 

O experimento 1 foi realizado para validar o programa de cálculo da resseção 

espacial sem iteração, usando os dados originais de Guan et al (2008) e para 

comparação com o método da equação da colinearidade. Os dados de entrada 

estão na Tabela 1. Os elementos de orientação interior usados foram 𝑥0 = 𝑦0 =

0,000 e 𝑓 = 153,240, em milímetros (mm) e as coordenadas do espaço objeto são 

dadas em metros (m). 

 

Tabela 1- Dados de entrada do experimento 1 SI. 

  Coordenadas: 

𝑷𝒕 
Imagem (mm) Espaço objeto (m) 

𝑥 𝑦 𝑋 𝑌 𝑍 

𝟏 -86,150 -68,990 36589,410 25273,320 2195,170 

𝟐 -53,400 82,210 37631,080 31324,510 728,690 

𝟑 10,460 64,430 40426,540 30319,810 757,310 

𝟒 -14,780 -76,630 39100,970 24934,980 2386,500 

Fonte: Guan et al (2008). 

 

A Tabela 2 mostra os resultados finais da resseção espacial pela equação de 

colinearidade (Colinearidade), pelo programa desenvolvido (Sem Iteração) e os 

resultados originais de Guan et al (2008), além das diferenças entre os dados 

originais e os recalculados.  Os ângulos são dados em radianos (rad). 

 

Tabela 2- Resultado da resseção espacial sem iteração no experimento 1 SI. 

Método /Parâmetros 𝑋𝑐 𝑚  𝑌𝑐 𝑚  𝑍𝑐 𝑚  𝜔  𝑟𝑎𝑑  𝜑  𝑟𝑎𝑑  𝜅 (𝑟𝑎𝑑) 

Colinearidade 39795,452 27476,462 7572,686 0,002 0,004 -0,068 

Sem iteração 39800,558 27469,959 7570,588 0,002 0,005 -0,068 

Resultado de Guan 
et al (2008) 

39795,080 27476,750 7572,810 0,002 -0,004 -0,068 

Diferenças artigo Guan et al (2008) e método: 

 Δ𝑋𝑐 𝑚  Δ𝑌𝑐 𝑚  Δ𝑍𝑐 𝑚  Δ𝜔  𝑟𝑎𝑑  Δ𝜑  𝑟𝑎𝑑  Δ𝜅 (𝑟𝑎𝑑) 

Colinearidade 0,372 -0,288 -0,124 0,000 -0,008 0,000 

Sem iteração 5,478 -6,791 -2,222 0,000 -0,009 0,000 

 



A representação das matrizes de rotações  com o uso dos quatérnios: aplicações à Fotogrametria 

 

SILVA, A. M. 76 

A Tabela 2 mostra que a resseção espacial com a equação da colinearidade 

apresentou um valor próximo ao de Guan et al (2008), principalmente no resultado 

encontrado para os ângulos de Euler. O resultado da resseção espacial sem 

iteração teve diferença significativa de 6,791𝑚 na coordenada Y. Para confirmar se o 

algoritmo foi implementado corretamente foi realizado um segundo experimento 2 SI. 

 

5.1.1.2 Experimento 2 SI 

O experimento 2 SI foi realizado com uma imagem simulada a partir das 

coordenadas no espaço objeto da Tabela 1 e dos parâmetros de orientação exterior 

dos resultados  originais, Tabela 2, de Guan et al (2008). Os elementos de 

orientação interior foram os mesmos usados no experimento anterior. Foi simulada 

uma fotografia obedecendo a rotação 𝑅𝜑𝜔𝜅  no sistema ativo, em MATLAB® com um 

programa de simulação de fotografias chamado simufoto.m.  A Tabela 3 mostra as 

coordenadas da imagem obtidas com a simulação. 

 

Tabela 3- Fotocoordenadas obtidas para o experimento 2 SI. 

 

 

A Tabela 3 mostra que os resultados obtidos para os valores das 

fotocoordenadas são bem próximos, mas não iguais, das fotocoordenadas 

apresentadas na Tabela 1, o que indica prováveis erros aleatórios nas observações 

de Guan et al (2008).   

Entrando com as fotocoordenadas simuladas e repetindo as coordenadas no 

espaço objeto da Tabela 1 foi calculada a resseção espacial sem iteração, cujos 

resultados estão na Tabela 4. 

 

 

 

 

𝑷𝒕 𝒙(𝒎𝒎) 𝒚(𝒎𝒎) 

𝟏 86,379 -67,997 

𝟐 -53,965 83,435 

𝟑 10,145  65,478 

𝟒 -15,082 -75,527 
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Tabela 4- Resultado da resseção espacial sem iteração no experimento 2 SI. 

Método /Parâmetros 𝑋𝑐 𝑚  𝑌𝑐 𝑚  𝑍𝑐 𝑚  𝜔  𝑟𝑎𝑑  𝜑  𝑟𝑎𝑑  𝜅 (𝑟𝑎𝑑) 

Colinearidade 39795,000 27476,001 7573,000 -0,004 0,002 -0,068 

Sem iteração 39795,087 27476,726 7572,803 -0,004 0,002 0,068 

Resultado de Guan 
et al (2008) 

39795,080 27476,750 7572,810 0,002 -0,004 -0,068 

Diferenças artigo Guan et al (2008) e método: 

 Δ𝑋𝑐 𝑚  Δ𝑌𝑐 𝑚  Δ𝑍𝑐 𝑚  Δ𝜔  𝑟𝑎𝑑  Δ𝜑 𝑟𝑎𝑑  Δ𝜅 (𝑟𝑎𝑑) 

Colinearidade 0,372 -0,288 -0,124 -0,006 0,006 0,000 

Sem iteração 0,007 -0,024 -0,007 -0,006 0,006 0,136 

 

A Tabela 4 mostra que o novo resultado da resseção com a colinearidade é 

muito semelhante ao experimento anterior, com diferenças de coordenadas de até 

0,372m. Já a resseção espacial sem iteração ficou bastante semelhante do 

resultado de Guan et al (2008), com diferença máxima de 2,4 cm na coordenada Y. 

 Esperava-se que essas diferenças fossem menores, e foram realizados 

outros testes que confirmaram que o algoritmo de Guan et al (2008) é muito sensível 

aos valores das distâncias, que são os dados principais de entrada.  Neste sentido 

foi realizado um teste com as distâncias usadas pelo artigo de Guan et al (2008) e o 

resultado da recessão coincidiu com o mesmo, indicando possíveis erros nas 

observações descritas no artigo. 

 As distâncias que são obtidas pelo método de Grafarend por sua vez também 

apresentam algumas dificuldades de interpretação, conforme ocorrências explicadas 

nos próximos experimentos. Aparenta ainda ter problemas de ordem numérica, visto 

que foi feito um teste com simples variação da ordem dos pontos e os resultados 

não coincidem exatamente. 

 

5.1.1.3 Experimento 3 SI 

O experimento 3 foi realizado testar o programa com os dados extraídos de 

Grafarend e Shan (1997) e para testar também o método de cálculo de distâncias do 

mesmo. Usando as coordenadas no espaço objeto e os valores da orientação 

exterior (Tabela 5), foram simuladas as fotocoordenadas no programa simufoto.m, 

apresentadas na  Tabela 6. Os elementos de orientação interior usados foram 

𝑥0 = 𝑦0 = 0,0 𝑚𝑚 e 𝑓 = 50,0 𝑚𝑚. 
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Tabela 5- Dados da simulação de fotocoordenadas do experimento 3 SI. 

𝑷𝒕 
Coordenadas no espaço objeto (m) 

𝑋 𝑌 𝑍 

𝟏 0,000 0,000 1,000 

𝟐 2,000 0,000 -1,000 

𝟑 2,000 2,000 1,000 

𝟒 0,000 2,000 -1,000 

Elementos orientação exterior 

𝑋𝑐 𝑚  𝑌𝑐 𝑚  𝑍𝑐 𝑚  𝜔  °  𝜑  °  𝜅 (°) 

1,000 1,000 4,000 0,000 0,000 0,000 

Fonte: Grafarend e Shan (1997). 

  

Tabela 6- Fotocoordenadas obtidas para o experimento 3 SI. 

 

 

 

 

Depois foi calculada a resseção espacial sem iteração. A Tabela 7 apresenta 

os valores obtidos neste experimento. Neste caso os ângulos são dados em graus 

(°). 

 

Tabela 7- Resultado da resseção espacial sem iteração no experimento 3 SI. 

Método /Parâmetros 𝑋𝑐 𝑚  𝑌𝑐 𝑚  𝑍𝑐 𝑚  𝜔  °  𝜑  °  𝜅 (°) 

Colinearidade 1,000 1,000 4,000 0,000 0,000 0,000 

Sem iteração 1,335 1,047 -3,0799 0,786 -1,140 0,417 

Resultado Grafarend e Shan 
(1997) 

1,000 1,000 4,000 0,000 0,000 0,000 

Diferenças Grafarend e Shan (1997) e método: 

 Δ𝑋𝑐 𝑚  Δ𝑌𝑐 𝑚  Δ𝑍𝑐 𝑚  Δ𝜔  °  Δ𝜑  °  Δ𝜅 (°) 

Colinearidade 0,000 0,000 0,000 0,000 0,000 0,000 

Sem iteração 0,335 0,047 -7,080 0,786 -1,114 0,417 

 

Nesse experimento a resseção espacial com a equação da colinearidade deu 

o mesmo resultado de Grafarend e Shan (1997). Mas o resultado da resseção 

espacial sem iteração apresentou diferenças significativas do esperado, 

principalmente para a coordenada Z. Depois de alguns testes, foi verificado que o 

motivo estava no método de escolha das raízes do polinômio de quarto grau, que 

interfere no cálculo da distância pelo método de Grafarend.  

𝑷𝒕 𝒙(𝒎𝒎) 𝒚(𝒎𝒎) 

𝟏 -16,667 -16,667 

𝟐 10,000 -10,000 

𝟑 16,667 16,667 

𝟒 -10,000 10,000 
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No experimento 1 e 2 (Seções 5.1.1.1 e 5.1.1.2) a raiz escolhida, dentre as 

quatros obtidas com o método de Grafarend, foi baseada no Teorema de Bolzano, 

que afirma que ao ser dada uma função contínua (neste caso o polinômio), num 

intervalo fechado, de modo que as imagens dos pontos extremos do intervalo 

tenham sinais diferentes, então existe pelo menos um número 𝑛 tal que 𝑓(𝑛) = 0 

(SARTORI e MANTOVANI, 2010). Foram realizados vários testes de modo empírico 

que mostraram que os valores que geravam convergência era a maior raiz do 

domínio  0;  1,5 , pois se a raiz encontrada fosse maior que 1,5 as distâncias obtidas 

com o método de Grafarend (dados de entradas da resseção espacial sem iteração) 

faziam com que a resseção espacial sem iteração não convergisse. Então foi 

implementado uma sub-rotina com teste de para escolha da raiz, no MATLAB®, de 

modo que as raízes saíssem em ordem decrescente (para que pudesse ser tomada 

diretamente a primeira raiz como a solução adequada para o método de Grafarend), 

com essa restrição de intervalo. 

Para este experimento a sub-rotina com 𝑥 ∈  0; 1,5 , sendo x um número real, 

não funcionou, o que demonstrou que a restrição de intervalo, como implementada, 

pode falhar. Como tomar a primeira raiz deste intervalo (que foi implementado de 

modo a ser sempre a maior dentre as quatro possíveis) nem sempre fazia com que a 

resseção espacial sem iteração convergisse, então os resultados encontrados com 

estes método foram comparados com os resultados esperados dos experimentos 

(dados de Guan et al (2008), Grafarend e Shan (1997) e Silva (1995)). A cada vez 

que não havia convergência era feita a troca de raízes de modo que o resultado 

esperado fosse atingido. 

 Neste caso ocorreram quatro raízes reais e a solução foi encontrada com a 

quarta raiz, que resultou nas distâncias que coincidiram com as do artigo de 

Grafarend e Shan (1997). Com essas distâncias foi recalculada a resseção espacial 

sem iteração, cujo resultado está na Tabela 8, que agora se iguala ao de Grafarend 

e Shan (1997).  
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Tabela 8- Novo resultado da resseção sem iteração no experimento 3 SI. 

Método/ Parâmetros 𝑋𝑐 𝑚  𝑌𝑐 𝑚  𝑍𝑐 𝑚  𝜔  °  𝜑  °  𝜅 (°) 

Sem iteração 1,000 1,000 4,000 0,000 0,000 0,000 

Resultado Grafarend e Shan (1997) 1,000 1,000 4,000 0,000 0,000 0,000 

Diferenças Grafarend e Shan (1997) e método: 

 Δ𝑋𝑐 𝑚  Δ𝑌𝑐 𝑚  Δ𝑍𝑐 𝑚  Δ𝜔  °  Δ𝜑  °  Δ𝜅 (°) 

Sem iteração 0,000 0,000 0,000 0,000 0,000 0,000 

 

5.1.1.4 Experimento 4 SI 

O objetivo dos experimentos 4, 5 e 6 é testar a resseção espacial sem 

iteração com dados reais. As posições das fotografias são conhecidas a partir de 

uma fototriangulação, que fornece as posições e orientações devidamente 

ajustadas, e permitirão também análises de resultados com ambiguidades e 

posições críticas, conforme previsões estudadas na seção 2.4, conforme exemplos 

nos experimentos 5 e 6.   

Serão usados dados de Silva (1995), que fez um levantamento em torno de 

um tanque cilíndrico, composto por 11 fotografias, dispostas de acordo com a Figura 

21. Os elementos de orientação interior usados foram 𝑥0 = 𝑦0 = 0 mm e 𝑓 = 99,800 

mm. 

Figura 21- Indicações das posições das estações de exposições. 

 

Fonte: Silva (1995). 
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Foi realizada a resseção espacial para a fotografia da posição 1 da Figura 21. 

Como a fotografia tinha mais que quatro pontos no espaço objeto, fez-se uma 

seleção das fotocoordenadas que estivessem bem distribuídas (dispostas no canto 

superior e inferior na direita e esquerda da imagem a partir da posição do centro da 

fotografia, de modo a ter pontos nos quatro quadrantes da fotografia). A seleção foi 

feita com um gráfico de dispersão do Excel, para verificar as distribuições das 

fotocoordenadas, conforme a Figura 22. Com esta figura foram observados os 

quatro pontos mais próximos dos vértices desta fotografia e assim foram extraídas 

as fotocoordenadas de interesse.  

 

Figura 22- Posições das fotocoordenadas do experimento 4. 

 

 

Na Figura 23 e Tabela 9 podem ser verificadas as posições dos pontos e do 

centro da fotografia e valores, respectivamente, das fotocoordenadas selecionadas. 

 



A representação das matrizes de rotações  com o uso dos quatérnios: aplicações à Fotogrametria 

 

SILVA, A. M. 82 

Figura 23- Posições das fotocoordenadas selecionadas do experimento 4. 

 

 

 

Tabela 9- Fotocoordenadas selecionadas para o experimento 4 SI. 

 

 

 

Fonte: Adaptado de Silva (1995). 

As coordenadas correspondentes no espaço objeto podem ser vistas na 

Tabela 10.  

Tabela 10- Dados de entrada do experimento 4 SI. 

𝑷𝒕 
Coordenadas no espaço objeto (m) 

𝑋 𝑌 𝑍 

𝟏 17,457 9,245 21,385 

𝟐 18,880 0,344 20,224 

𝟑 9,775 9,247 20,604 

𝟒 12,952 -0,041 23,414 

Fonte: Silva (1995). 

Com esses dados foi calculada a resseção espacial sem iteração. Na Tabela 

11 estão os resultados, junto com os valores da resseção espacial pela 

colinearidade e de Silva (1995), obtido por fototriangulação e usado como referência. 

 

 

 

  

𝑷𝒕 𝒙(𝒎𝒎) 𝒚(𝒎𝒎) 

𝟏 36,290 62,403 

𝟐 49,875 -36,817 

𝟑 -46,172 55,611 

𝟒 -20,623 -58,807 
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Tabela 11- Resultado da resseção espacial sem iteração no experimento 4 SI. 

Método/ Parâmetros 𝑋𝑐 𝑚  𝑌𝑐 𝑚  𝑍𝑐 𝑚  𝜔  °  𝜑  °  𝜅 (°) 

Colinearidade 14,366 3,250 29,862 3,496 0,894 -0,325 

Sem Iteração 14,368 3,253 29,863 3,480 0,903 -0,380 

Resultado de Silva (1995) 14,370 3,261 29,875 3,406 0,918 -0,378 

Diferenças Silva (1995) e método: 

 Δ𝑋𝑐 𝑚  Δ𝑌𝑐 𝑚  Δ𝑍𝑐 𝑚  Δ𝜔  °  Δ𝜑  °  Δ𝜅 (°) 

Com colinearidade -0,004 -0,011 -0,013 0,092 -0,024 0,053 

Sem Iteração -0,002 -0,008 -0,012 0,074 -0,015 -0,002 

 

O resultado da Tabela 11 mostra que a resseção espacial com a equação da 

colinearidade tem pouca diferença do resultado encontrado por Silva (1995), porém 

a resseção espacial sem iteração apresenta a menor diferença.  

É importante chamar a atenção que o sistema de coordenadas da Figura 21 

não está em posição convencional, comparando com o aéreo, ou seja, o eixo Z não 

está na vertical. Com isto a fotografia um está em posição equivalente a uma 

fotografia vertical, caso o sistema estivesse em posição normal. 

 

5.1.1.5 Experimento 5 SI 

O experimento 5 foi realizado para testar um caso de resultado ambíguo, a 

partir da matriz de rotação. Aqui os cálculos são para a fotografia 5 (Figura 21). A 

Tabela 12 apresenta os dados de entrada deste experimento. As coordenadas foram 

escolhidas de forma similar ao experimento 4.  

 

Tabela 12- Dados de entrada do experimento 5 SI. 

  Coordenadas: 

𝑷𝒕 
Imagem real (mm) Terreno (m) 

𝑥 𝑦 𝑋 𝑌 𝑍 

𝟏 36,290 39,519 12,018 9,282 9,677 

𝟐 -34,829 40,527 20,338 9,260 13,861 

𝟑 -50,115 -35,718 21,796 -0,008 12,631 

𝟒 37,500 -30,047 12,018 9,282 9,677 

Fonte: Silva (1995). 

 

Com os dados da tabela anterior foi calculada a resseção espacial sem 

iteração, que é apresentado na Tabela 13. 
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Tabela 13- Resultado da resseção espacial sem iteração no experimento 5 SI. 

Método/ Parâmetros 𝑋𝑐 𝑚  𝑌𝑐 𝑚  𝑍𝑐 𝑚  𝜔  °  𝜑  °  𝜅 (°) 

Colinearidade NC NC NC NC NC NC 

Sem iteração 22,029 3,330 0,426 -3,489 27,074 2,360 

Resultado de Silva (1995) 22,024 3,340 0,404 -3,420 152,978 2,331 

Diferenças Silva (1995) e método: 

 Δ𝑋𝑐 𝑚  Δ𝑌𝑐 𝑚  Δ𝑍𝑐 𝑚  Δ𝜔  °  Δ𝜑  °  Δ𝜅 (°) 

Colinearidade - - - - - - 
Sem iteração 0,005 -0,01 0,022 -0,069 -125,904 0,029 

 

Os resultados da Tabela 13 mostram que a resseção espacial com a equação 

da colinearidade não convergiu (NC). A resseção espacial sem iteração se 

aproximou do resultado de Silva (1995), exceto para o valor de 𝜑.  Porém foi 

observado que arredondando o valor de 𝜑 e do resultado de Silva (1995) para um 

número inteiro, os ângulos são suplementares e tem a mesma imagem para a 

função seno, conforme apresentado da Figura 24. 

 

Figura 24- Localizações dos ângulos 27° e 153° no ciclo trigonométrico. 

 

 

Então se concluiu que o MATLAB® estava dando resultado reduzido ao 

primeiro quadrante (neste caso ambíguo), com a equação 30 𝑖𝑖. Para resolver 

situações como esta Shih (1990) indica o uso da equação 34, desde que seja 

calculado previamente o valor aproximado do cosseno de 𝜑, porque encontra o valor 

do ângulo nos quatros quadrantes do ciclo trigonométrico e é livre de dualidades. 

Neste caso, como não havia valor de 𝜑 aproximado, tentou-se inserir a equação 

34 𝑖𝑖 da Seção 2.4.3, mas o valor deste ângulo foi encontrado com sinal oposto. A 
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solução foi calcular 𝜑 com a equação 35 (desta mesma seção). Para isto foi 

acessada a matriz de rotação calculada a partir do quatérnio no programa e feita sua 

equivalência com a rotação 𝑅𝜅𝜑𝜔  no sistema passivo que é apresentada na equação 

130 do Apêndice A. A Tabela 14 mostra o novo resultado recalculado, que agora se 

aproxima do resultado de Silva (1995). 

 

Tabela 14- Novo resultado da resseção sem iteração no experimento 5 SI. 

Método/ Parâmetros 𝑋𝑐 𝑚  𝑌𝑐 𝑚  𝑍𝑐 𝑚  𝜔  °  𝜑  °  𝜅 (°) 

Sem iteração 22,028 3,330 0,426 -3,489 152,860 2,360 

Resultado de Silva (1995) 22,024 3,340 0,404 -3,420 152,978 2,331 

Diferenças Silva (1995) e método: 

 Δ𝑋𝑐 𝑚  Δ𝑌𝑐 𝑚  Δ𝑍𝑐 𝑚  Δ𝜔  °  Δ𝜑  °  Δ𝜅 (°) 

Sem iteração 0,004 -0,01 0,022 -0,069 -0,118 0,029 

 

5.1.1.6 Experimento 6 SI 

O objetivo do experimento 6 é testar a resseção espacial  sem iteração em 

fotografias cujas posições são críticas, segundo as discussões da Seção 2.4.4, 

quando ocorrem gimbal lock. Neste caso também foram usados dados de Silva 

(1995) para o fotografia de posição 9. A posição dessa fotografia é crítica porque ela 

está em rotação 𝑅𝜅𝜑𝜔 , no sistema passivo, com o ângulo da rotação secundário φ 

próximo de 270°. Na Tabela 15 são mostrados os dados de entrada deste 

experimento.  

 

Tabela 15- Dados de entrada do experimento 6 SI. 

  Coordenadas: 

𝑷𝒕 
Imagem real (mm) Espaço objeto (m) 

𝑥 𝑦 𝑋 𝑌 𝑍 

𝟏 40,064 49,968 9,775 9,247 20,604 

𝟐 -38,565 53,28 9,228 9,243 11,534 

𝟑 -42,934 -34,928 7,515 -0,103 11,946 

𝟒 33,021 -42,275 5,944 -0,027 18,660 

Fonte: Silva (1995). 

 

A Tabela 16 mostra o resultado obtido com o cálculo da resseção espacial 

sem iteração. 
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Tabela 16- Resultado da resseção espacial sem iteração no experimento 6 SI. 

Método/ Parâmetros 𝑋𝑐 𝑚  𝑌𝑐 𝑚  𝑍𝑐 𝑚  𝜔  °  𝜑  °  𝜅 (°) 

Colinearidade NC NC NC NC NC NC 

Sem iteração -1,984 3,250 16,051 29,520 -89,560 30,364 

Resultado de Silva (1995) -1,997 3,251 16,053 26,682 270,439 27,524 

Diferenças Silva (1995) e método: 

 Δ𝑋𝑐 𝑚  Δ𝑌𝑐 𝑚  Δ𝑍𝑐 𝑚  Δ𝜔  °  Δ𝜑  °  Δ𝜅 (°) 

Colinearidade - - - - - - 

Sem iteração 0,013 -0,001 -0,002 2,838 0,001 2,840 

 

A Tabela 16 mostra a resseção espacial com a equação da colinearidade que 

não converge, fato que era esperado por envolver uma posição classificada como 

crítica na literatura. Já a resseção espacial sem iteração apresentou valores bem 

semelhantes para as coordenadas do centro perspectivo, enquanto que para os 

ângulos existem diferenças em torno de 3º em 𝜔 e 𝜅. Essas diferenças podem ser 

por conta dos erros aleatórios das quatro coordenadas utilizadas, uma vez que no 

ajustamento de Silva (1995) foram utilizadas mais pontos. O valor de  𝜑 = 270,439°, 

é equivalente a -89,561º, pois para transformar um ângulo negativo deve-se somar 

360° ao ângulo (por isso que a diferença foi de 0,001° do resultado de Silva (1995)).  

O algoritmo da resseção espacial sem iteração necessita inicialmente das 

distâncias entre o CP e cada ponto no espaço objeto. Porém o método 

implementado pode fornecer quatro resultados diferentes e é necessário introduzir 

alguns testes que permitam definir qual grupo de distâncias seja a solução correta. 

Um resumo das principais observações sobre esse método de recessão 

espacial sem iterações, a partir dos resultados obtidos é o seguinte: 

1. A resseção espacial sem iteração precisa do cálculo da distância inicial, 

cujo método implementado foi de Grafarend. Esse método usa raízes do 

polinômio de quarto grau para encontrar as distâncias, mas é necessário 

encontrar uma forma mais adequada de selecionar as raízes, além de se 

verificar possíveis questões numéricas de processamento com base nas 

posições relativas dos pontos. 

2. O método de Guan et al (2008) é muito sensível aos dados de entrada das 

distâncias, isto é, pequenas variações nas distâncias se refletem em 

significativas diferenças nas coordenadas do CP. 
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3. Uma desvantagem deste método de recessão sem iteração é que ele só 

funciona com quatro pontos, não sendo possível tirar vantagem de 

observações mais abundantes. 

4. Ocorrem casos em que os ângulos são ambíguos e que as funções 

trigonométricas tem que ser alteradas dependendo da linguagem de 

programação (por exemplo, o uso das funções atan e atan2 no MATLAB®); 

5. Para o caso da resseção com fotografias em posições ambíguas, e 

também em casos reconhecidos como críticos, o método da equação da 

colinearidade pode não funcionar; 

6. O método de resseção espacial sem iteração é mais robusto (funciona 

para casos de ambiguidades e casos críticos) do que a resseção espacial 

com a equação da colinearidade e não precisa de valor aproximado inicial. 

 

5.1.2 Aplicação da resseção espacial com iteração (CI) 

A resseção espacial com iteração usada aqui é uma adaptação da resseção 

espacial com a equação da colinearidade, com troca da matriz de rotação com 

ângulos de Euler pelos quatérnios. Neste caso método tem a desvantagem de 

necessitar de valores iniciais e tem a vantagem de poder usar mais de quatro 

pontos. 

O programa que foi construído no MATLAB® para calcular a resseção espacial 

com iteração segue a seguinte sequência: 

 Entrar com valores: da distância focal, coordenadas do ponto principal 

(obtida pela calibração), das fotocoordenadas e das coordenadas no 

espaço objeto; aproximados dos parâmetros de orientação exterior; 

 Calcular o quatérnio inicial; 

 Calcular: 

 A matriz de rotação com os quatérnios; 

 𝐿0 e formar 𝐿, usando 𝐿𝑏 ; 

 As derivadas da matriz 𝐴; 

 𝑋𝑎 ; 
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 O resíduo; 

 Critério de convergência; 

 Quatérnio ajustado; 

 A matriz de rotação ajustada; 

 Os elementos de orientação exterior; 

 Saída dos parâmetros ajustados. 

Mais alguns detalhes são dados a seguir. 

Devem ser fornecidos valores iniciais para 𝑋0, (coordenadas aproximadas do 

CP e valores iniciais do quatérnio). Com base nestes dados é calculada a matriz de 

rotação com quatérnio e outros valores aproximados como 𝐿0 Para o cálculo de 𝐿𝑏  

foram usadas as fotocoordenadas. A partir 𝐿0 e 𝐿𝑏  é obtido 𝐿.  A matriz A é 

formada a partir das derivadas parciais da equação da colinearidade, já adaptada 

para os quatérnios, com relação aos parâmetros incógnitos da resseção espacial, 

usando a equação 78. 

Na sequência é calculado o vetor de correções 𝑋𝑎  pela equação 76 (da Seção 

4.1.1) e o resíduo pelo modelo apresentado na equação 72 (da mesma seção).  

Como o cálculo é feito de modo iterativo, usando o método paramétrico, o 

critério de convergência usado é a diferença entre os sigmas a posteriori (𝜎 0
2), com 

valor de  𝜀 = 10−6 . O 𝜎 0
2 em cada iteração é obtido por: 

𝜎 0
2 = 𝑉𝑡𝑃𝑉                                                                                                              (112)        

Como a matriz dos pesos 𝑃 é, neste caso, igual a matriz identidade, então a 

equação 112 se resume a: 

𝜎 0
2 = 𝑉𝑡𝑉                                                                                                                (113)            

Após a convergência é calculado o quatérnio ajustado e por meio dele foram 

encontrados os elementos da resseção espacial. As coordenadas do centro 

perspectivo são obtidas diretamente do quatérnio ajustado, tomando os três 

primeiros elementos. 

Para encontrar os ângulos de Euler foram analisadas as sequências de 

rotações e as suas respectivas equivalências com relações trigonométricas 

existentes na matriz de rotação de quatérnios.  
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Os experimentos de 1CI a 6CI foram processados com o método da resseção 

espacial com iterações para os mesmos casos usados na resseção espacial sem 

iteração. 

 

5.1.2.1 Experimento 1 CI 

O experimento 1CI equivale ao experimento 1 discutido na resseção espacial 

sem iteração, com dados originais de Guan et al (2008). O resultado da resseção 

espacial com iteração está na Tabela 17, que nas primeiras linhas mostra os valores 

iniciais usados no método da resseção com a colinearidade e com este método com 

iterações. 

 

Tabela 17- Resultado da resseção espacial com iteração no experimento 1 CI. 

Parâmetros aproximados iniciais no método: 

 𝑋𝑐0
 𝑚  𝑌𝑐0

 𝑚  𝑍𝑐0
(𝑚) 𝜔0 𝑟𝑎𝑑  𝜑0 𝑟𝑎𝑑  𝜅0(𝑟𝑎𝑑) 

Colinearidade 39700,000 27400,000 7500,000 0,000 0,000 0,000 

Com iteração 39700,000 27400,000 7500,000 0,000 0,000 0,000 

Resultado da resseção espacial com o método: 

 𝑋𝑐 𝑚  𝑌𝑐 𝑚  𝑍𝑐 𝑚  𝜔  𝑟𝑎𝑑  𝜑  𝑟𝑎𝑑  𝜅 (𝑟𝑎𝑑) 

Colinearidade 39795,452 27476,462 7572,686 0,002 0,004 -0,068 

Com iteração 39795,948 27477,782 7572,939 -0,002 -0,004 0,068 

Resultado Guan et al 
(2008) 

39795,080 27476,750 7572,810 0,002 -0,004 -0,068 

Diferenças Guan et al (2008) e método: 

 Δ𝑋𝑐 𝑚  Δ𝑌𝑐 𝑚  Δ𝑍𝑐 𝑚  Δ𝜔  𝑟𝑎𝑑  Δ𝜑  𝑟𝑎𝑑  Δ𝜅 (𝑟𝑎𝑑) 

Colinearidade 0,372 -0,288 0,129 0,000 0,008 0,372 

Com iteração 0,868 1,032 0,131 -0,004 0,000 0,866 

 

A Tabela 17 mostra que a resseção espacial com a equação da colinearidade 

se aproximou mais do resultado de Guan et al (2008) do que a resseção com 

iteração. As diferenças com iteração em Yc chegam a 1,032m. 

 

5.1.2.2 Experimento 2 CI 

Os dados de entrada do experimento 2 CI são os mesmos  do experimento 2 

SI, com dados simulados a partir de dados de Guan et al (2008). O resultado com 

este método está na Tabela 18.  
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Tabela 18- Resultado da resseção espacial com iteração no experimento 2  CI. 

Parâmetros aproximados iniciais no método: 

 𝑋𝑐0
 𝑚  𝑌𝑐0

 𝑚  𝑍𝑐0
(𝑚) 𝜔0 𝑟𝑎𝑑  𝜑0 𝑟𝑎𝑑  𝜅0(𝑟𝑎𝑑) 

Colinearidade 39700,000 27400,000 7500,000 0,000 0,000 0,000 

Com iteração 39700,000 27400,000 7500,000 0,000 0,000 0,000 

Resultado da resseção espacial com o método: 

 𝑋𝑐 𝑚  𝑌𝑐 𝑚  𝑍𝑐 𝑚  𝜔  𝑟𝑎𝑑  𝜑  𝑟𝑎𝑑  𝜅 (𝑟𝑎𝑑) 

Colinearidade 39795,001 27476,001 7573,000 -0,004 0,002 -0,068 

Com iteração 39794,981 27476,029 7573,011 0,004 -0,002 0,068 

Resultado Guan et al 
(2008) 

39795,080 27476,750 7572,810 0,002 -0,004 -0,068 

Diferenças Guan et al (2008) e método: 

 Δ𝑋𝑐 𝑚  Δ𝑌𝑐 𝑚  Δ𝑍𝑐 𝑚  Δ𝜔  𝑟𝑎𝑑  Δ𝜑  𝑟𝑎𝑑  Δ𝜅 (𝑟𝑎𝑑) 

Colinearidade -0,079 -0,288 -0,124 -0,006 0,006 0,000 

Com iteração -0,099 -0,721 0,201 0,002 -0,008 0,136 

 

A Tabela 18 mostra que os ambos os métodos de cálculo se aproximaram 

mais do resultado de Guan et al (2008) que no experimento anterior mas ainda 

existe uma diferença significativa em Yc de -0,721m.  

 

5.1.2.3 Experimento 3 CI 

Os dados de entrada deste experimento são os mesmo do experimento 3 SI, 

com dados de Grafarend e Shan (1997).  O resultado da resseção espacial com 

iteração pode ser visto na Tabela 19.  

 

Tabela 19- Resultado da resseção espacial com iteração no experimento 3 CI. 

Parâmetros aproximados iniciais no método: 

 𝑋𝑐0
 𝑚  𝑌𝑐0

 𝑚  𝑍𝑐0
(𝑚) 𝜔0 𝑟𝑎𝑑  𝜑0 𝑟𝑎𝑑  𝜅0(𝑟𝑎𝑑) 

Colinearidade 0,700 0,700 3,000 0,000 0,003 0,000 

Com iteração 1,000 1,050 3,000 0,000 0,000 0,000 

Resultado da resseção espacial com o método: 

 𝑋𝑐 𝑚  𝑌𝑐 𝑚  𝑍𝑐 𝑚  𝜔  𝑟𝑎𝑑  𝜑  𝑟𝑎𝑑  𝜅 (𝑟𝑎𝑑) 

Colinearidade 1,000 1,000 4,000 0,000 0,000 0,000 

Com iteração 1,004 1,003 4,000 -0,181 0,052 0,000 

Resultado Grafarend e 
Shan (1997) 

1,000 1,000 4,000 0,000 0,000 0,000 

Diferenças de Grafarend e Shan (1997) e método: 

 Δ𝑋𝑐 𝑚  Δ𝑌𝑐 𝑚  Δ𝑍𝑐 𝑚  Δ𝜔  𝑟𝑎𝑑  Δ𝜑  𝑟𝑎𝑑  Δ𝜅 (𝑟𝑎𝑑) 

Colinearidade 0,000 0,000 0,000 0,000 0,000 0,000 

Com iteração 0,004 0,003 0,000 -0,181 -0,002 0,000 
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A Tabela 19 mostra que o resultado da resseção espacial com iteração ficou 

próximo do resultado de Grafarend e Shan (1997), mas o método sem iteração neste 

caso foi melhor (Tabela 8) porque os resultados coincidiram. 

 

5.1.2.4 Experimento 4 CI 

Este experimento equivale ao experimento 4 SI, que usa dados reais de Silva 

(1995) para a fotografia 1. Vale salientar que os valores iniciais para o método com 

quatérnios e iterações são mais fracos que para a colinearidade, conforme consta na 

Tabela 20, que também mostra todo o resultado da resseção espacial com iteração.  

 

Tabela 20- Resultado da resseção espacial com iteração no experimento 4 CI. 

Parâmetros aproximados iniciais no método: 

 𝑋𝑐0
 𝑚  𝑌𝑐0

 𝑚  𝑍𝑐0
 𝑚  𝜔0 °  𝜑0 °  𝜅0(°) 

Colinearidade 16,000 1,000 27,000 0,000 0,000 0,000 

Com iteração 10,000 1,000 17,000 0,000 0,000 0,000 

Resultado da resseção espacial com o método: 

 𝑋𝑐 𝑚  𝑌𝑐 𝑚  𝑍𝑐 𝑚  𝜔  °  𝜑  °  𝜅 (°) 

Colinearidade 14,366 3,250 29,862 3,496 0,894 -0,325 

Com iteração 14,366 3,250 29,862 3,498 0,892 -0,378 

Resultado de Silva (1995) 14,370 3,261 29,875 3,406 0,918 -0,378 

Diferenças Silva (1995) e método: 

 Δ𝑋𝑐 𝑚  Δ𝑌𝑐 𝑚  Δ𝑍𝑐 𝑚  Δ𝜔  °  Δ𝜑  °  Δ𝜅 (°) 

Colinearidade -0,004 -0,011 -0,013 0,090 -0,024 0,053 

Com iteração -0,004 -0,011 -0,013 0,092 -0,026 0,000 

 

Na Tabela 20 pode-se verificar que ambos os métodos apresentam valores 

muito próximos entre si com relação ao resultado de Silva (1995), mas as diferenças 

são um pouco maiores que na resseção sem iteração (Tabela 11).  

 

5.1.2.5 Experimento 5 CI 

O experimento 5  CI equivale ao experimento 5 SI, com um exemplo de 

ambiguidade de ângulos, com dados de Silva (1995) para a fotografia 5. O resultado 

obtido com a aplicação da resseção espacial com iteração está na Tabela 21. 
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Tabela 21- Resultado da resseção espacial com iteração no experimento 5 CI. 

Parâmetros aproximados iniciais no método: 

 𝑋𝑐0
 𝑚  𝑌𝑐0

 𝑚  𝑍𝑐0
 𝑚  𝜔0 °  𝜑0 °  𝜅0(°) 

Colinearidade 19,000 2,000 -0,420 0,000 150,000 0,000 

Com iteração 19,000 2,000 -0,420 0,000 0,000 0,000 

Resultado da resseção espacial com o método: 

 𝑋𝑐 𝑚  𝑌𝑐 𝑚  𝑍𝑐 𝑚  𝜔  °  𝜑  °  𝜅 (°) 

Colinearidade NC NC NC NC NC NC 

Com iteração 22,020 3,340 0,420 -3,489 -90+ 24,704i 2,362 

Resultado de Silva (1995) 22,024 3,340 0,404 -3,420 152,978 2,331 

Diferenças Silva (1995) e método: 

 Δ𝑋𝑐 𝑚  Δ𝑌𝑐 𝑚  Δ𝑍𝑐 𝑚  Δ𝜔  °  Δ𝜑  °  Δ𝜅 (°) 

Colinearidade - - - - - - 

Com iteração -0,004 0,000 0,016 -0,069 62+ 24,704i 0,031 

 

Nesta Tabela 21 verifica-se que a resseção espacial com iteração apresentou 

valores próximos para todos os parâmetros, exceto para o valor do segundo ângulo 

(𝜑) dado em número complexo. Isso se deu porque o domínio da função arco seno é 

definida como ∀ 𝑥 ∈   −1 ; 1  

𝑦 = 𝑎𝑟𝑐 𝑠𝑒𝑛 𝑥                                                                                                          (114) 

e tem por domínio o intervalo 𝑦 ∈ [−
𝜋

2
,
𝜋

2
]. 

Como neste caso existem valores aproximados, então foi possível calcular o 

cosseno do ângulo da rotação secundária inicial, o que permitiu usar de imediato a 

equação 35, da Seção 2.4.3, (que resolve problemas de ambiguidades, conforme 

detalhamento no experimento 5 SI, e aquela equação permite encontrar o valor do 

ângulo nos quatros quadrantes do ciclo trigonométrico). Com isso o novo valor de 𝜑 

é encontrado e apresentado na Tabela 22. 

 

Tabela 22- Novo resultado da resseção com iteração no experimento 5 CI. 

Parâmetros aproximados iniciais no método: 

 𝑋𝑐0
 𝑚  𝑌𝑐0

 𝑚  𝑍𝑐0
 𝑚  𝜔0 °  𝜑0 °  𝜅0(°) 

Com iteração 19,000 2,000 -0,420 0,000 0,000 0,000 

Resultado da resseção espacial com o método: 

 𝑋𝑐 𝑚  𝑌𝑐 𝑚  𝑍𝑐 𝑚  𝜔  °  𝜑  °  𝜅 (°) 

Com iteração 22,020 3,340 0,420 -3,489 152,968 2,362 

Resultado de Silva (1995) 22,024 3,340 0,404 -3,420 152,978 2,331 

Diferenças Silva (1995) e método: 

 Δ𝑋𝑐 𝑚  Δ𝑌𝑐 𝑚  Δ𝑍𝑐 𝑚  Δ𝜔  °  Δ𝜑  °  Δ𝜅 (°) 

Com iteração -0,004 0,000 0,016 -0,069 -0,010 0,031 
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O resultado da Tabela 22 é um pouco melhor que o resultado da resseção 

espacial sem iteração (Tabela 14). 

 

5.1.2.6 Experimento 6 CI 

Os dados de entrada do experimento 6 CI usam os mesmos dados do 

experimento 6 SI (a fotografia 9 em posição crítica de Silva (1995)). O resultado da 

resseção espacial com iteração está na Tabela 23. 

 

Tabela 23- Resultado da resseção espacial com iteração no experimento 6 CI. 

Parâmetros aproximados iniciais no método: 

 𝑋𝑐0
 𝑚  𝑌𝑐0

 𝑚  𝑍𝑐0
 𝑚  𝜔0 °  𝜑0 °  𝜅0(°) 

Colinearidade -2,400 2,000 17,000 25,000 265,000 28,000 

Com iteração -2,400 2,000 17,000 0,500 100,760 0,570 

Resultado da resseção espacial com o método: 

 𝑋𝑐 𝑚  𝑌𝑐 𝑚  𝑍𝑐 𝑚  𝜔  °  𝜑  °  𝜅 (°) 

Colinearidade NC NC NC NC NC NC 

Com iteração -1,983 3,245 16,054 26,238 -90,475 27,108 

Resultado de Silva (1995) -1,997 3,251 16,053 26,682 270,439 27,524 

Diferenças Silva (1995) e método: 

 Δ𝑋𝑐 𝑚  Δ𝑌𝑐 𝑚  Δ𝑍𝑐 𝑚  Δ𝜔  °  Δ𝜑  °  Δ𝜅 (°) 

Colinearidade - - - - - - 

Com iteração 0,014 -0,006 0,001 -0,444 -0,036 -0,416 

 

Esta Tabela 23 mostra que a resseção espacial com iteração ficou bem 

semelhante ao resultado de Silva (1995) e bem melhor que os resultados da 

orientação de resseção sem iteração (Tabela 16).  Para se conseguir calcular a 

resseção espacial com esta fotografia, foi imposto um valor de convergência 

𝜀 = 10−3, maior que o valor usado nos outros experimentos que era de 10-6, pois 

com esse valor a convergência não era atingida. 

 

5.1.2.7 Experimento 7 CI 

Nos experimentos anteriores sempre foi calculado um quatérnio inicial a partir 

dos ângulos de Euler aproximados informados, usando as equações da Seção 3.7. 

Com o quatérnio inicial e com as coordenadas aproximadas do centro perspectivo é 

possível usar o MMQ e prosseguir nos cálculos da resseção espacial com iteração.  
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O experimento 7 foi realizado para mostrar que o programa de resseção 

espacial com iteração também funciona usando diretamente um quatérnio inicial 

estimado, sem usar os ângulos de Euler, como nos outros experimentos, desde que 

seja adequado à geometria da resseção. Neste experimento foram usados os dados 

do experimento 4, fotografia 1 da Figura 21. O resultado da resseção espacial com 

iteração está na Tabela 24. 

  

Tabela 24- Resultado da resseção espacial com iteração no experimento 7 CI. 

Parâmetros aproximados iniciais no método: 

 𝑋𝑐0
 𝑚  𝑌𝑐0

 𝑚  𝑍𝑐0
 𝑚  𝑞0 𝑞1 𝑞2 𝑞3 

Com iteração -2,400 2,000 17,000 1,000 0,000 0,000 0,000 

 𝑋𝑐0
 𝑚  𝑌𝑐0

 𝑚  𝑍𝑐0
 𝑚  𝜔0 °  𝜑0 °  𝜅0(°) 

Colinearidade  16,000 1,000 27,000 0,000 0,000 0,000 

Resultado da resseção espacial com o método: 

 𝑋𝑐 𝑚  𝑌𝑐 𝑚  𝑍𝑐 𝑚  𝜔  °  𝜑  °  𝜅 (°) 

Com iteração 14,366 3,250 29,862 3,498 0,893 -0,378 

Colinearidade 14,366 3,250 29,862 3,496 0,894 -0,325 

Resultado de 
Silva (1995) 

14,370 3,261 29,875 3,406 0,918 -0,378 

Diferenças Silva (1995) e método: 

 Δ𝑋𝑐 𝑚  Δ𝑌𝑐 𝑚  Δ𝑍𝑐 𝑚  Δ𝜔  °  Δ𝜑  °  Δ𝜅 (°) 

Com iteração -0,004 -0,011 -0,013 0,092 -0,026 0,000 

Colinearidade -0,004 -0,011 -0,013 0,090 -0,025 0,053 

 

A Tabela 24 mostra que os valores obtidos com uso do quatérnio (1, 0, 0, 0) 

estimado são iguais ao do experimento 4 CI, que na entrada usava ângulos de Euler 

aproximados. 

Porém, só é possível entrar com quatérnio inicial se houver conhecimento 

anterior dos valores aproximados do mesmo, o que é mais difícil de estimar em 

qualquer situação que os ângulos de Euler. No caso de fotografia vertical (a 

fotografia 1 é equivalente uma vertical por conta da geometria adotada no 

levantamento, com já explicado antes na Seção 5.1.1.4) um quatérnio aproximado 

com valores (1, 0, 0, 0) se aplica bem, mas com valores como (0,1, 0, 0), (0, 0, 1,0) 

ou (0,0,0,1) não darão certo. A título de exemplo é mostrado o resultado da resseção 

espacial com os dados usados do experimento 6CI (fotografia 9) e com o quatérnio 

de entrada (1, 0, 0, 0), na Tabela 25. 
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Tabela 25- Novo resultado da resseção com iteração no experimento 7 CI. 

Parâmetros aproximados iniciais no método: 

 𝑋𝑐0
 𝑚  𝑌𝑐0

 𝑚  𝑍𝑐0
 𝑚  𝑞0 𝑞1 𝑞2 𝑞3 

Com iteração -2,400 2,000 17,000 1,000 0,000 0,000 0,000 

 𝑋𝑐0
 𝑚  𝑌𝑐0

 𝑚  𝑍𝑐0
 𝑚  𝜔0 °  𝜑0 °  𝜅0(°) 

Colinearidade -2,400 2,000 17,000 25,000 265,000 28,000 

Resultado da resseção espacial com o método: 

 𝑋𝑐 𝑚  𝑌𝑐 𝑚  𝑍𝑐 𝑚  𝜔  °  𝜑  °  𝜅 (°) 

Com iteração 10,268 8,620 22,860 -16,657 170,903 38,450 

Colinearidade NC NC NC NC NC NC 

Resultado de Silva (1995) -1,997 3,251 16,053 26,682 270,439 27,524 

Diferenças Silva (1995) e método: 

 Δ𝑋𝑐 𝑚  Δ𝑌𝑐 𝑚  Δ𝑍𝑐 𝑚  Δ𝜔  °  Δ𝜑  °  Δ𝜅 (°) 

Com iteração 12,265 5,369 6,807 -43,339 -99,536 10,926 

Colinearidade - - - - - - 

 

A Tabela 25 mostra que o cálculo da resseção espacial com iteração, usando 

o quatérnio (1, 0, 0, 0), apresentou valores bem diferentes dos obtidos no 

experimento 6CI, porque o quatérnio aproximado de entrada não foi o adequado. 

Um resumo das observações mais importantes sobre os resultados desse 

método de resseção com iterações é o seguinte: 

1. O método da resseção espacial com iteração, apesar de ter sido 

implementado com quatro pontos, pode ser implementado com mais 

pontos, com isso haverá maior redundância, o que pode ser vantajoso para 

aumentar a confiabilidade do resultado e detectar erros grosseiros. 

2. O método com iterações ele precisa de valores iniciais. Ao usar quatérnios 

com valores iniciais é preciso ter uma boa aproximação deles ou o melhor 

é usar ângulos de Euler aproximados e, com esses ângulos, calcular o 

quatérnio correspondente; 

3. Os resultados obtidos com esse método foram bem parecidos com os 

resultados da resseção espacial sem iteração, melhores em alguns casos 

(nos experimentos 3, 4, 5 e 7, chegando a ter coincidências com os 

resultados da resseção espacial com o método da equação da 

colinearidade) e piores em outros (como os experimentos 1, 2 e 6, 

chegando a ter erros de cinco metros (experimento 1, por exemplo) e em 

torno de 2º de diferenças (experimento 6 SI)); 
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4. Chegou a ser testada uma implementação de injunção para quatérnio 

unitário (segundo o modelo matemático mostrado na Seção 3.4.2), mas 

não apresentou diferença significativas com o programa sem a injunção. 

Porém esta questão merece mais estudos por ser teoricamente justificável 

a comparação de uso de quatérnios quaisquer com o quatérnio 

normalizado de valor 1. 

 

5.2 Aplicação da orientação relativa (OR) 

Com o objetivo de análise da aplicação dos quatérnios na orientação relativa 

também foram usados três métodos em três programas em MATLAB®, de modo a 

ser possível fazer comparações de desempenho: 

 Programa 1 - Equação da colinearidade com ajustamento paramétrico. 

 Programa 2 - Condição da coplanaridade com ajustamento combinado. 

 Programa 3 - Condição da coplanaridade com quatérnios com 

ajustamento combinado. 

As orientações relativas implantadas são do tipo dependente (orientação de 

uma câmara em relação à outra, que se mantém fixa), portanto o sistema de 

coordenadas é o da fotografia da esquerda. Os resultados dos experimentos estão 

respectivamente em tabelas como a 27. Nas tabelas os parâmetros 𝑌𝑐  e 𝑍𝑐  são 

translações relativas ao centro perspectivo da fotografia esquerda para o caso da 

colinearidade (a base fotográfica 𝑋𝑐  entra como fixa no programa e varia conforme a 

distância focal de cada experimento). Já 𝑏𝑦  e 𝑏𝑧  são os equivalentes para os dois 

outros métodos, mas sendo proporcionais ao 𝑏𝑥 , que nos programas são valores 

fixos e iguais a 1,0.   

O método da equação da colinearidade foi desenvolvido com base nas 

equações 71 da Seção 4.1.1 e 99 da Seção 4.2.1. Já o método da condição da 

coplanaridade foi construído com as equações 102 à 108, da Seção 4.2.2. O método 

do programa 3 tem a seguinte sequência: 

 Entrada dos dados das fotocoordenadas das duas fotografias; 

 Entrada do quatérnio inicial, considerando a parte imaginária nula; 
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 Cálculo do vetor 𝐿𝑏 ; 

 Estimação do vetor que contém os componentes iniciais da base; 

 Cálculo de 𝑋0; 

 Cálculo da matriz dos pesos (que aqui foi usada a identidade); 

 Cálculo da matriz de rotação de quatérnios; 

 Formação da matriz 𝐴 e 𝐵, com base nas derivadas parciais em relação aos 

parâmetros, seguindo a equação 109; 

 Cálculo do vetor 𝑅1 e 𝑅2; 

 Cálculo do vetor fechamento; 

 Cálculo de 𝑀; 

 Cálculo de 𝑋; 

 Cálculo da injunção; 

 Cálculo da correção; 

 Cálculo de 𝑋𝑎  ajustado, segundo a equação 110. 

Foram usadas fotografias simuladas com elementos de orientação interior 

𝑥0 = 𝑦0 = 0,0 mm e 𝑓 = 50,0 𝑚𝑚. Os demais elementos necessários para as 

simulações são definidos em cada experimento. 

 

5.2.1 Experimento 1 OR 

O experimento 1 da orientação relativa serviu para verificar se os programas  

desenvolvidos estavam corretas, com comparações de valores utilizados nas  

simulações de fotografias. Foram simuladas duas fotografias aéreas verticais, com 

sobreposição longitudinal de 60%, com a rotação 𝑅𝜅𝜑𝜔 , no sistema passivo, 

conforme a geometria da Figura 25.  Na Tabela 26 estão as coordenadas no espaço 

objeto e na Tabela 27 os dados de orientação exterior usados na simulação. 
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Figura 25- Posições das fotografias na simulação do experimento 1 OR. 

 

 

Tabela 26- Dados usados na simulação das fotografias do experimento 1 OR. 

𝑷𝒕 Coordenadas no espaço objeto (m) 

𝟏 12,000 10,000 28,000 

𝟐 20,000 11,000 31,000 

𝟑 23,000 19,000 13,000 

𝟒 10,000 20,000 14,000 

𝟓 16,000 12,500 8,000 

𝟔 21,000 07,000 11,000 

𝟕 10,000 15,000 28,000 

𝟖 15,000 10,000 3,000 

 

Tabela 27- Resultado da orientação relativa no experimento 1 OR. 

Elementos orientação exterior da simulação 

𝑭𝑻 𝑋𝑐0
 𝑚  𝑌𝑐0

 𝑚  𝑍𝑐0
 𝑚  𝜔0 °  𝜑0 °  𝜅0(°) 

𝟏 12,000 15,000 50,000 3,000 2,000 1,000 

𝟐 18,000 15,000 50,000 2,500 1,800 2,000 

Resultado da orientação relativa com o método: 

Parâmetro 𝑌𝑐2
 ou 𝑏𝑦  𝑍𝑐2

ou 𝑏𝑧  𝜔2 𝜑2 𝜅2 

Colinearidade -0,174 0,349 -0,503 -0,191 0,982 

Coplanaridade -0,017 0,035 -0,503 -0,195 0,982 

Quatérnios -0,017 0,036 -0,504 -0,240 0,945 

 

Na Tabela 27 são mostrados os valores dos elementos de orientação exterior 

usadas durante a simulação de fotografias (as coordenadas do centro perspectivo e 

os ângulos de orientação). Também são apresentados os resultados obtidos com o 

cálculo da orientação relativa. Os valores para 𝑌𝑐2
 e 𝑍𝑐2

 são os resultados obtidos 
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com a equação da colinearidade, já 𝑏𝑦  e 𝑏𝑧  são os valores encontrados com os 

outros dois métodos e apresentam diferenças significativas porque as bases de 

entrada nos programas são diferentes. 

  Os resultados da Tabela 27 mostram que os três métodos de cálculo 

apresentaram resultados semelhantes, portanto os programas implementados estão 

funcionando corretamente, para este exemplo comum de fotografias quase verticais. 

Os valores encontrados dessas orientações relativas foram aproximadamente iguais 

às diferenças entre os ângulos usados na simulação (0,5 graus em ômega, 0,2 

graus em fi e 1,0 grau em kappa), como se esperava.  

 Nos experimentos 2 e 3 foram simuladas fotografias típicas de levantamento 

de fotogrametria terrestre, em que as posições são mais variadas do que na 

fotogrametria aérea e podem ocorrer com mais facilidades casos de dualidades e 

situações críticas. Foram formados pares estereoscópicos em posições sucessivas 

com diferenças de 90° (com a mesma sobreposição do experimento anterior) como 

indicadas na Figura 26. Os pontos no espaço objeto estão na Tabela 28.  

 

Figura 26- Posições das fotografias na simulação dos experimentos 2 e 3 OR. 
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Tabela 28- Dados da simulação das fotografias do experimento 2 e 3 OR. 

𝑷𝒕 Coordenadas no espaço objeto (m) 

𝟏 4,000 4,100 5,100 

𝟐 8,100 7,900 4,900 

𝟑 4,100 8,100 3,000 

𝟒 8,050 4,000 3,100 

𝟓 3,950 6,000 -0,500 

𝟔 8,000 6,000 -0,900 

𝟕 6,000 4,000 -0,500 

𝟖 6,000 8,000 -0,900 

 

5.2.2 Experimento 2 OR 

O objetivo deste experimento é testar se a orientação relativa com quatérnios 

funciona para o caso de posições de fotografias em que um dos ângulos de Euler, 

neste caso o 𝜔, seja próximo de 90°, com a rotação 𝑅𝜅𝜑𝜔 , no sistema passivo. Para 

tanto foram usadas as fotocoordenadas das fotografias 1 e 2 (posições indicadas na 

Figura 26). As fotocoordenadas estão apresentadas na Figura 27, para fins de 

visualização quanto à distribuição na fotografia e da paralaxe em y (a linha de 

ligação é apenas para facilitar a leitura da sequência de identificação dos pontos na 

figura, que é de cima para baixo). 

 

Figura 27- Posições das fotocoordenadas do experimento 2 OR. 

 

 



A representação das matrizes de rotações  com o uso dos quatérnios: aplicações à Fotogrametria 

 

SILVA, A. M. 101 

A Figura 27 mostra que as diferenças de paralaxes y nos oito pontos entre as 

fotografias são bem pequenas. Esta observação é importante porque em outras 

simulações as diferenças podem ser muito significativas em alguns, ou em todos os 

pontos, e perfeitamente notadas nas figuras. Os resultados do cálculo da orientação 

relativa com todos os métodos encontram-se na Tabela 29. 

 

Tabela 29- Resultado da orientação relativa no experimento 2 OR. 

Elementos orientação exterior da simulação 

𝑭𝑻 𝑋𝑐0
 𝑚  𝑌𝑐0

 𝑚  𝑍𝑐0
 𝑚  𝜔0 °  𝜑0 °  𝜅0(°) 

𝟏 6,000 0,000 3,000 91,000 1,000 2,000 

𝟐 6,500 0,000 3,000 92,000 2,000 3,000 

Resultado da orientação relativa com o método: 

Parâmetro 𝑌𝑐2
ou 𝑏𝑦  𝑍𝑐2

ou 𝑏𝑧  𝜔2 𝜑2 𝜅2 

Colinearidade -0,350 0,176 1,034 0,963 1,017 

Coplanaridade -0,032 0,021 1,036 0,982 1,040 

Quatérnios -0,033 0,021 1,053 0,960 1,062 

 

A Tabela 29 mostra que todos os métodos apresentaram bons resultados, 

próximos dos esperados, neste exemplo, com valores em torno de 𝜔 = 𝜑 = 𝜅 = 1, 

que são as diferenças entre os ângulos das fotografias 1 e 2.  

 

5.2.3 Experimento 3 OR 

O experimento 3 tem o objetivo de se analisar a sensibilidade dos métodos, 

na medida em que os ângulos simulados tem diferenças maiores que três ou cinco 

graus, normalmente definidos como tolerâncias em levantamento fotogramétricos, 

neste exemplo com 9°. Essa limitação séria de ângulos, que vem da fotogrametria 

analógica e continuou mesmo na fase de fotogrametria analítica, é teoricamente 

devida ao uso de modelos de matrizes de rotação simplificadas, como a de 

Rodriguez e que só funciona com fotografias quase verticais. Com os modelos 

completos das matrizes de rotação deste trabalho não deve ocorrer dificuldades 

para os cálculos.  

 As posições das fotografias usadas neste experimento foram 7 e 8 (Figura 

26), com a rotação 𝑅𝜔𝜑𝜅 , no sistema passivo. A Figura 28 mostra a distribuição das 

fotocoordenadas das fotografias 7 e 8, respectivamente, em que é possível perceber 
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que existe uma paralaxe em y em torno de 10 unidades em todos os pontos. O 

resultado da orientação relativa pode ser visto na Tabela 30. 

 

Figura 28-Posições das fotocoordenadas do experimento 3 OR. 

 

 

Tabela 30- Resultado da orientação relativa no experimento 3 OR. 

Elementos orientação exterior da simulação 

𝑭𝑻 𝑋𝑐0
 𝑚  𝑌𝑐0

 𝑚  𝑍𝑐0
 𝑚  𝜔0 °  𝜑0 °  𝜅0(°) 

𝟕 0,000 6,500 3,000 91,000 2,000 91,000 

𝟖 0,000 6,000 3,000 100,000 3,000 92,000 

Resultado da orientação relativa com o método: 

Parâmetro 𝑌𝑐2
ou 𝑏𝑦  𝑍𝑐2

ou 𝑏𝑧  𝜔2 𝜑2 𝜅2 

Colinearidade 0,352 0,169 8,964 0,814 -1,159 

Coplanaridade 0,039 0,022 8,966 0,774 -0,793 

Quatérnios 0,028 0,036 9,032 0,784 -0,885 

 

A Tabela 30 mostra que o método da equação da colinearidade apresentou 

valores semelhantes do resultado esperado para as diferenças dos ângulos e das 

translações. O método da coplanaridade e de quatérnios tiveram valores bem 

semelhantes e de acordo com o esperado. 

 

5.2.4 Experimento 4 OR 

Este experimento serviu para verificar o cálculo da orientação relativa com 

câmeras convergentes em torno do eixo vertical, ou seja, com eixo ótico horizontal e 
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convergente. Neste exemplo as posições das duas fotografias (1 e 2 da Figura 29)  

tem 45º entre si, com a sequência 𝑅𝜔𝜑𝜅 , no sistema passivo, o que não é o caso 

para formar pares estereoscópicos, mas que pode ocorrer em fotogrametria 

terrestre.  

Figura 29- Posições das fotografias experimento 4 OR. 

 

As posições das fotocoordenadas referentes às fotografias 1 e 2, 

respectivamente, estão na Figura 30, que mostra que as paralaxes de y de todos os 

pontos dessas duas fotografias apresentam diferenças muito significativas e não 

constantes. Os resultados dos cálculos das orientações relativas encontram-se na 

Tabela 31. 

 

Figura 30- Posições das fotocoordenadas do experimento 4 OR. 
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Tabela 31- Resultado da orientação relativa no experimento 4 OR. 

Elementos orientação exterior da simulação 

𝑭𝑻 𝑋𝑐0
 𝑚  𝑌𝑐0

 𝑚  𝑍𝑐0
 𝑚  𝜔0 °  𝜑0 °  𝜅0(°) 

𝟏 6,000 0,000 3,000 90,000 0,000 0,000 

𝟐 10,400 1,800 3,000 90,000 0,000 45,000 

Resultado da orientação relativa com o método: 

Parâmetro 𝑌𝑐2
ou 𝑏𝑦  𝑍𝑐2

ou 𝑏𝑧  𝜔2 𝜑2 𝜅2 

Colinearidade 4,8x10
23

 2,6x10
22

 -43,727 -3,402 11,444 

Coplanaridade 0,001 -0,392 -0,065 -0,105 45,080 

Quatérnios 0,014 -0,391 -0,647 -0,409 45,003 

 

A Tabela 31 mostra que o método da equação da colinearidade apresenta 

resultados totalmente diferentes dos esperados para os ângulos relativos, que neste 

caso, era de 0º para ω e φ e de 45º para қ. Os ângulos encontrados também foram 

muito diferentes dos outros métodos da coplanaridade e quatérnios. Os resultados 

das translações apresentaram valores extremamente grandes, na ordem de 1023. 

Neste caso houve um alerta do MATLAB®, indicando que o número de condição 

estava muito alto, e assim o resultado pode não ser confiável conforme as 

discussões da Seção 2.1.  

O método da condição de coplanaridade e de quatérnios tiveram resultados 

semelhantes e compatíveis com a simulação. Portanto para este tipo de geometria 

das posições das fotografias são mais confiáveis que o método da colinearidade. 

 

5.2.5 Experimento 5 OR 

Foram realizados diversos experimentos para testar o caso de orientação 

relativa com pontos simulados que reproduzem o problema do cilindro crítico. Aqui 

será apresentado um dos testes. A distribuição dos pontos no terreno e dos CPs 

formam um cilindro, conforme a Figura 31, e com eles foram simuladas duas 

fotografias no simufoto.m, obedecendo a rotação 𝑅𝜅𝜑𝜔 , no sistema passivo. Os 

pontos no espaço objeto estão na Tabela 32. 
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Figura 31-Posições das fotografias na simulação do experimento 5 OR. 

 

Fonte: Adaptado de Kraus (2000). 

 

Tabela 32- Dados usados na simulação das fotografias do experimento 5 OR. 

𝑷𝒕 Coordenadas no espaço objeto (m) 

𝟏 8,000 30,000 11,000 

𝟐 19,000 30,000 3,000 

𝟑 44,000 30,000 3,000 

𝟒 56,000 30,000 11,000 

𝟓 8,000 80,000 11,000 

𝟔 19,000 80,000 3,000 

𝟕 44,000 80,000 3,000 

𝟖 56,000 80,000 11,000 

 

A Figura 32 mostra a distribuição das fotocoordenadas das fotografias 1 e 2 

(da Figura 31), respectivamente. Os resultados da orientação relativa estão na 

Tabela 33. 
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Figura 32- Posições das fotocoordenadas do experimento 5 OR. 

 

 

Tabela 33- Resultado da orientação relativa no experimento 5 OR 

Elementos orientação exterior da simulação 

𝑭𝑻 𝑋𝑐0
 𝑚  𝑌𝑐0

 𝑚  𝑍𝑐0
 𝑚  𝜔0 °  𝜑0 °  𝜅0(°) 

𝟏 32,000 40,000 64,000 0,000 0,000 90,000 

𝟐 32,000 70,000 64,000 1,000 2,000 93,000 

Resultado da orientação relativa com o método: 

Parâmetro 𝑌𝑐2
ou 𝑏𝑦  𝑍𝑐2

ou 𝑏𝑧  𝜔2 𝜑2 𝜅2 

Colinearidade 0,003 0,000 2,003 -0,999 3,035 

Coplanaridade 0,002 0,000 1,944 -1,009 3,035 

Quatérnios 0,002 0,000 1,529 -1,102 2,993 

 

A Tabela 33 mostra que os cálculos da orientação relativa com dados 

simulados de uma situação de pontos e CPs em um cilindro crítico foram obtidos 

com todos os três métodos. Embora o cilindro crítico seja normalmente citado como 

um caso de difícil solução ou de solução instável, não foi encontrado na literatura um 

exemplo de cálculo analítico que ilustrasse o problema. Nos vários testes realizados 

nesta pesquisa, com dados e posições pouco diferentes dos pontos e até posição 

transversa do cilindro, sempre houve a convergência nos três métodos. 

  

Um resumo dos principais resultados das comparações de orientação relativa 

com os três métodos é o seguinte: 

1. Além desses experimentos acima foram realizados outros que mostraram 

que diferenças de orientação entre as fotografias simuladas, com 

variações maiores, como de três a dez graus, ao se fazer a orientação 

relativa com a equação da colinearidade, os resultados sempre são piores 

(porque não convergiam ou apresentavam maiores resíduos) que com 
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coplanaridade e coplanaridade com quatérnios. Conclui-se que esses 

métodos são mais robustos, pois mesmo com variações significativas de 

inclinações forneceram resultados melhores. 

2. De modo geral não houve diferença significativa entre a coplanaridade e 

coplanaridade com quatérnios, uma vez que eles apresentaram resultados 

extremamente semelhantes.  
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6. DISCUSSÃO DOS RESULTADOS 

Para o desenvolvimento deste trabalho foi relativamente fácil conseguir 

literatura adequada e suficiente sobre a teoria, relatos e proposições de aplicações 

de quatérnios, mas houve grande dificuldade para encontrar exemplos numéricos 

com detalhes suficientes para validar os programas que foram implementados. Além 

disso, foram detectadas outras dificuldades menores, mas que exigiram estudos 

adicionais para deixar o assunto mais claro e conceitos mais precisos, entre elas:  

 É necessário atrelar a matriz de rotação de quatérnios com a sequência de 

rotação em torno dos eixos x, y e z, porque isto gera quatérnios diferentes.  

 Como são diversas as possibilidades de rotações e de combinações com 

ângulos de Euler e com os quatérnios, no caso de transformações todos 

devem obedecer à mesma sequência para ficarem estreitamente 

relacionados. Isto porque na literatura encontram-se enganos nos modelos 

matemáticos das matrizes de rotações e até confusão com relação à 

sequência de rotação primária, secundária e terciária, pois existem duas 

possibilidades de multiplicação para uma sequência no sistema ativo e 

duas no sistema passivo (multiplicação pela direita e pela esquerda).  

 O gimbal lock ocorre sempre na segunda rotação, quando o ângulo for 90° 

ou 270° (para as matrizes que tem a função seno isoladas), ou, 0° ou 180° 

(para as matrizes que tem a função cosseno isoladas) ou bem próximos 

desses valores, porém esta forma de detecção a partir da observação dos 

elementos da matriz de rotação não é comum na literatura.  

Com os programas desenvolvidos para verificações das possíveis vantagens 

de substituição dos ângulos de Euler pelos quatérnios, com dados simulados e reais, 

foi possível realizar vários testes que permitiram fazer comparações e análises de 

eficiência dos métodos utilizados nos experimentos do capítulo 5, que serão 

resumidos nas próximas seções. 
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6.1 Resultados da resseção espacial sem iteração 

No experimento 1 (Seção 5.1.1.1) a resseção espacial com a equação da 

colinearidade ficou bem próximo do resultado  esperado, mas a resseção sem 

iteração não apresentou bons valores, pois não convergiu. Então foram simuladas 

novas fotocoordenadas, usadas no experimento 2, Seção 5.1.1.2, e a resseção 

agora ficou muito semelhante do resultado esperado, já que a diferença só ocorreu 

na casa segunda casa decimal, o que pode indicar possíveis erros de 

arredondamento do programa implementado ou do computador.  

O primeiro resultado para o experimento 3 (Seção 5.1.1.3) mostrou que o 

método de Grafarend não calculou corretamente as distâncias do CP até as 

coordenadas no espaço objeto. O fato das distâncias estarem com erros interferiu no 

resultado da resseção que foi muito diferente do esperado. Depois de efetuados 

diversos testes foi observado que todas as raízes do polinômio de quarto grau, que 

faz parte do cálculo do método de Grafarend, devem ser testadas para verificar qual 

a correta. Este é um problema deste método, mas ele foi o escolhido para fornecer 

as distâncias, que é um dado essencial para ser calculada a resseção sem valores 

iniciais para o caso de quatro pontos. Existem outros métodos para o cálculo das 

distâncias, mas que também não são de fácil aplicação.   

Para este experimento a resseção espacial sem iteração correta foi 

encontrada com a quarta raiz, com a qual o resultado coincidiu com o esperado. Mas 

como a definição da raiz correta no método de Grafarend é variável, uma sugestão é 

implementar alguns testes com as diversas raízes, e comparar os resultados, ou 

ainda usar os procedimentos que também fornecem a posição do CP, sem uso de 

quatérnios, do artigo Grafarend e Shan (1997).  

O experimento 4  (Seção 5.1.1.4) aplica a resseção espacial sem iteração em 

dados reais com quatro pontos bem distribuídos na área da imagem, de um conjunto 

com muito mais pontos, com resultado considerado bom. O experimento, apesar de 

usar dados de fotogrametria terrestre, foi equivalente a uma fotografia vertical em 

situação normal. 

O experimento 5 (Seção 5.1.1.5) ilustra um caso em que pode haver 

ambiguidades nos resultados da resseção espacial, mesmo com quatérnios, devido 
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a função trigonométrica que está em uso para obter os ângulos de Euler no final. 

Para superar esta dificuldade teve que ser introduzido no programa a função de Shih 

(1990), que extrai o valor do ângulo da rotação secundária e assim o ângulo correto 

foi obtido. A resseção espacial com a equação da colinearidade não funciona para 

esse caso. 

O experimento 6 (5.1.1.6) é de um caso de fotografia em situação crítica, com 

ângulo de rotação secundária próximo de 270º, em que a resseção espacial com a 

equação da colinearidade não convergiu e que a resseção sem iteração forneceu 

um resultado compatível com o esperado para as coordenadas do centro 

perspectivo. Os valores obtidos para os ângulos ω e қ apresentaram uma diferença 

em cerca de três graus. Este problema talvez possa ser solucionado se tomar outras 

fotocoordenadas ou se forem usados mais pontos. 

 

6.2 Resultados da resseção espacial com iteração 

No método de resseção espacial com quatérnios e com iteração é necessário 

fornecer os valores iniciais aproximados para a posição e ângulos do CP, caso 

esses valores não sejam adequados pode não haver convergência. Os 

experimentos usam os mesmos dados das resseções sem iteração discutidos 

anteriormente. 

O experimento 1 CI da Seção 5.1.2.1 (com os dados originais de Guan)  

mostrou que a resseção espacial com a equação da colinearidade teve diferenças 

menores que a resseção com iteração, mas tem uma diferença significativa de 

1,032m em Y. Os possíveis motivos dessas diferenças podem ser problemas 

numéricos de computação e/ou dos algoritmos porque ao longo dos experimentos 

notou-se que ocorriam alterações significativas de valores finais, ao serem alterados 

os critérios de convergência para as posições e ângulos, que algumas vezes nem 

chegava a acontecer. 

O experimento 2, da Seção 5.1.2.2, é similar ao 1, mas com dados simulados. 

Os resultados foram pouco melhores que o anterior e a diferença em Y diminuiu 

para 0,721m.  
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O experimento 3, Seção 5.1.2.3, usa dados de  Grafarend e Shan (1997). O 

método de resseção espacial com iteração se aproximou do esperado, mas neste 

caso os valores iniciais precisaram ser melhores que os experimentos anteriores e 

mesmo melhor que o valor usado na recessão espacial com a equação da 

colinearidade (Tabela 19). 

O experimento 4, Seção 5.1.2.4, com dados de Silva (1995) mostrou que tanto 

a resseção com a equação da colinearidade quanto a recessão espacial com 

iteração apresentaram resultados muito parecidos com os valores da 

fototriangulação, fato que indica um bom resultado.  

O experimento 5, Seção 5.1.2.5, caso com ambiguidade de ângulos (neste 

caso o modelo com a equação da colinearidade falha como já visto na seção 

5.1.1.5). Com a resseção com iteração o resultado para o valor do ângulo (𝜑) foi em 

número complexo, mas após a correção de intervalo (vide Seção 2.4.3) foi obtido o 

valor correto. Todos os valores finais foram muito pouco melhores que na resseção 

sem iteração.  

O resultado do experimento 6 (Seção 5.1.2.6) mostrou que a resseção 

espacial para fotografias críticas só foi obtida com os quatérnios, nos métodos sem 

iteração e com iteração, uma vez que a resseção com a equação da colinearidade 

não convergiu. Os valores finais de cada elemento da resseção são semelhantes 

entre os dois métodos com quatérnios, embora tenha sido necessário baixar o 

critério de convergência de 10-6 para 10-3 neste experimento.  

 No experimento 7, Seção 5.1.2.7, são avaliados casos de entrada direta de 

quatérnios com valores iniciais. No caso de posições comuns, como em fotografia 

vertical o quatérnio (1, 0, 0, 0) é adequado e haverá convergência para valores 

corretos da resseção, mas para fotografias em posições que possam gerar 

ambiguidades ou gimbal lock, a estimação de um quatérnio arbitrário não é 

aconselhável.  

De maneira geral os resultados da resseção espacial com a equação da 

colinearidade mostraram que ele funciona muito bem para situações normais. Já 
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para os casos em que podem ocorrer ambiguidades e gimbal lock o método pode 

não funcionar.  

Os métodos de cálculos da resseção espacial sem iteração na literatura 

também são chamados de métodos diretos ou exatos. Esses métodos dependem de 

distâncias que, por sua vez, podem ser obtidas por várias formas, como a das 

iterações, lei de cossenos e Grafarend. Foram implementados os três tipos, mas 

usado efetivamente apenas o de Grafarend. Um de iterações foi testado, mas 

necessita de valores iniciais muito bons para ser eficiente. Um com base na lei dos 

cossenos foi implementado para três pontos, que é o algoritmo mais comum, mas 

como um dos objetivos era usar quatro pontos, também não houve vantagem em 

usá-lo. Embora Grafarend tenha sido o método adotado ele se mostrou ser muito 

sensível nas suas soluções e para usos práticos necessita de alguns 

aperfeiçoamentos. 

O método de resseção espacial sem iteração funciona também para casos de 

dualidades da matriz de rotação. Já nos casos críticos podem ocorrer erros um 

pouco maiores do que os esperados. Este método só calcula corretamente quando 

se tem quatro pontos com boa distribuição das fotocoordenadas nos quatros 

quadrantes da imagem e boa distribuição no terreno.  

O método de resseção espacial com iteração, com adaptação para os 

quatérnios, funciona bem para casos críticos e de ambiguidades. No caso da 

resseção espacial com iteração os ângulos de Euler iniciais não precisam ser tão 

próximos como na resseção com a equação da colinearidade, o que é uma 

vantagem. Os quatérnios permitem convergência com menor quantidade de 

iterações. Por exemplo, em alguns experimentos os modelos matemáticos baseado 

nos quatérnios convergiam até mesmo na primeira iteração, enquanto o método da 

resseção espacial com a equação da colinearidade convergia em dez ou mais 

iterações. 

É fácil extrair os ângulos de Euler duma matriz de rotação, quando é 

conhecida a sequência das rotações, mas devido às dualidades as funções 

trigonométricas devem ser aprimoradas para prever os intervalos de uso e para as 

determinações de quadrantes. As equações mais comuns, por exemplo, usam a 
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função arco seno para encontrar o ângulo da rotação intermediária, porém este 

modelo matemático podem ocasionar dualidades, já que a função seno apresenta 

imagens simétricas e, além disso, alguns resultados podem ser dados em números 

complexos, dependendo do software utilizado nos cálculos.  O domínio da função 

arco-seno é restrito ao intervalo (−90°, 90°). 

Para evitar esses problemas pode-se calcular o ângulo da rotação secundária 

no MATLAB® com a função atan2, que encontra valores nos quatros quadrantes do 

ciclo trigonométrico, mas em modelos matemático descritos por Shih (1990). 

Em vários experimentos foram encontrados diferenças entre os resultados 

acima do esperado, tanto com dados reais como simulados. No caso de dados reais 

(experimentos 4, 5 e 6 da resseção espacial) as diferenças podem ter ocorrido por 

terem sido usados apenas quatro pontos, enquanto que os valores de referência são 

de um ajustamento de fototriangulação, que usou muito mais que quinze pontos por 

fotografia. No caso de dados simulados ocorreram casos em que os resultados 

coincidiam com o esperado e em outros não, sendo que claramente em muitas 

situações havia indicação clara de problemas numéricos, seja de estabilidade dos 

algoritmos como de sensibilidade a pequenas mudanças de valores iniciais. 

 

 6.3 Resultados da orientação relativa 

O experimento 1 (Seção 5.2.1) da orientação relativa serviu para validar os 

programas implementados com um par de fotografias verticais e todos os resultados 

foram compatíveis com o esperado. 

No experimento 2 (Seção 5.2.2) foi usado um par de fotografias com eixo na 

horizontal. Todos os resultados também foram bem aproximados dos valores 

esperados.  

O experimento 3 (Seção 5.2.3) mostrou que mesmo com diferenças de 

ângulos  maiores entre fotografias sucessivas, o valor da orientação relativa é 

calculado com os três métodos implementados. 
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O experimento 4 (Seção 5.2.4) mostrou que a orientação relativa pode não ser 

calculada com a equação da colinearidade para casos de eixos convergentes em 

torno, ou maiores, que quarenta e cinco graus entre duas fotografias, mas com os 

métodos da condição de coplanaridade e com quatérnios os resultados são bem 

parecidos com o esperado. 

O experimento 5 (Seção 5.2.5) testou o caso do problema citado na literatura 

do chamado cilindro crítico, mas todos os métodos fizeram o cálculo, portanto existe 

solução analítica para o problema. 

De modo geral a orientação relativa com a equação da colinearidade foi obtida 

de pares de fotografias verticais e com diferenças maiores que as especificadas em 

levantamentos fotogramétricos, mas nos outros casos, com diferença grande como 

45°, não foi calculada. Para diferenças como esta a condição da coplanaridade se 

mostrou ser mais robusta que a equação da colinearidade. 

 A orientação relativa com a condição de coplanaridade e quatérnios de modo 

geral teve resultados bem semelhantes à orientação relativa apenas com a condição 

de coplanaridade. Estes dois métodos funcionaram para fotos com 45º entre si e no 

caso do cilindro crítico. 
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7. CONCLUSÕES E RECOMENDAÇÕES 

 

7.1. Conclusões 

 O principal objetivo desta dissertação foi analisar a substituição dos ângulos 

de Euler por quatérnios em algumas aplicações de fotogrametria, tendo em vista que 

ocorrem várias situações, comuns em aeronáutica e robótica, em que os modelos 

matemáticos com os ângulos de Euler não funcionam bem ou não chegam a ser 

calculados quando ocorrem singularidades e o gimbal lock. As aplicações que foram 

testadas, com a substituição proposta, foram da resseção espacial e da orientação 

relativa e os resultados finais de modo geral comprovam que o uso de quatérnios 

permite obter soluções mais estáveis e mais confiáveis, principalmente para a 

fotogrametria terrestre e curta distância.  

Como resultado do desenvolvimento dos trabalhos de revisão da literatura foi 

possível definir melhor quando podem ocorrer, e como detectar, os casos de gimbal 

lock na fotogrametria:  

  - As posições críticas de orientação que provocam o gimbal lock dificilmente 

ocorrem na fotogrametria aérea vertical, mas podem ocorrer na fotogrametria 

terrestre e a curta distância. Nestes casos as posições críticas podem passar 

despercebidas nos ajustamentos em bloco de feixes de raios (que usa normalmente 

a equação da colinearidade), porque as posições e orientações de cada fotografia 

conseguem ser calculadas. A detecção nestes casos é possível apenas com análise 

da MVC fornecida pelo ajustamento porque as variâncias são significativamente 

maiores que das fotografias vizinhas. 

- Além dos exemplos dos casos conhecidos de gimbal lock, comuns em 

aplicações em robótica e aeronáutica, uma forma segura para prever em 

fotogrametria é analisar as funções trigonométricas que formam cada elemento da 

matriz de rotação. O gimbal lock vai ocorrer quando o ângulo da segunda rotação for 

90° ou 270°, para as matrizes que tem a função seno isolada ou, 0°ou 180°, para as 

matrizes que tem a função cosseno isoladas, ou quando os ângulos forem bem 

próximos desses valores.  
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Em relação aos processamentos e comparações entre os métodos de: 

resseção espacial com equação da colinearidade com matriz de rotação de Euler; 

resseção espacial sem iterações e resseção com iterações, com os quatérnios; 

orientação relativa dependente com equação da colinearidade e Euler; 

coplanaridade normal e coplanaridade com quatérnios foi possível concluir o 

seguinte:  

 Ao comparar resultados de rotações por procedimentos diferentes, é 

essencial que sejam conhecidas perfeitamente qual a sequência das rotações 

primárias, secundárias e terciarias, e dos eixos envolvidos. É muito comum 

que haja falta de informações ou mesmo ocorram informações erradas a 

respeito das rotações, no que se refere ao sistema ativo ou passivo e a 

sequencia da multiplicação empregada, pela direita ou pela esquerda.  

 Os componentes dos quatérnios têm relações diretas com as sequências de 

rotação dos ângulos de Euler, portanto não podem ser feitas conversões 

indiscriminadamente. É necessário haver testes de verificação, para conferir 

se as matrizes de rotações são realmente equivalentes, antes de adotar um 

resultado. 

 O método de resseção espacial sem iterações, direto com quatro pontos, 

adotado neste trabalho é muito sensível aos dados de entrada das distâncias 

entre pontos no espaço objeto e centro perspectivo. Portanto é necessário um 

procedimento complementar que forneça as distâncias com alta confiabilidade 

para qualquer caso de posição da câmera e isto não é trivial.  

 O método de resseção espacial direto com quatérnio, sem iteração, apresenta 

melhores resultados do que a resseção espacial com a equação da 

colinearidade. Tem ainda a vantagem de não necessitar de valores iniciais, 

que podem ser muito difíceis de serem obtidos nos casos não comuns da 

fotogrametria terrestre. Como desvantagem só utiliza quatro pontos fica muito 

sensível aos erros dos mesmos. 

 O método resseção de espacial com iteração funciona bem para casos 

críticos e de ambiguidades. 
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 O método de resseção espacial com iterações necessita de valores iniciais, 

inclusive para os quatérnios, mas pode utilizar mais que quatro pontos, o que 

pode melhorar os resultados, tornando-os mais confiáveis. 

  Os testes efetuados mostraram que os valores iniciais aproximados para os 

ângulos e posições do CP nas resseções, ao usar quatérnios, podem ser 

mais grosseiros que os valores aproximados iniciais para os ângulos de Euler 

com a equação da colinearidade comum. 

 O uso dos quatérnios permitem convergências mais rápidas em relação aos 

ângulos de Euler, com um número menor de iterações. 

 

7.2 Recomendações 

 Como recomendações para continuação das pesquisas apresentadas neste 

trabalho, a seguir são elencadas algumas propostas: 

 Analisar e implementar outros métodos de obtenção das distâncias entre os 

pontos no terreno e o CP, que entram no método de resseção espacial sem 

iterações, como o cálculo de distâncias com iterações ou com base na lei dos 

cossenos. 

 Implementar e aperfeiçoar testes para escolha de raízes da equação de 

quarto grau, de forma confiável, que são usada para a obtenção das 

distâncias pelo método de Grafarend. 

 Analisar as situações limites de cálculo da orientação relativa de fotografias 

com grande convergência, como 45º, em comparações entre uso da equação 

da colinearidade e condição de coplanaridade, com relação à precisão a partir 

da MVC. 

 Implementar os quatérnios em programa de fototriangulação de bloco para 

fotogrametria terrestre.   
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APÊNDICE A 

 
Modelo matemático das matrizes de rotações, cujas sequências de rotações 

são comuns em fotogrametria (sistema ativo): 

 

𝑅𝜔𝜅𝜑 = 𝑅3 𝜑 × 𝑅2 𝜅 × 𝑅1 𝜔 =

 

cos 𝜑 cos 𝜅 −cos 𝜑  𝑠𝑒𝑛 𝜅 𝑐𝑜𝑠 𝜔 + 𝑠𝑒𝑛 𝜑 sen 𝜔 cos 𝜑 𝑠𝑒𝑛 𝜅 sen 𝜔 + 𝑠𝑒𝑛 𝜑  𝑐𝑜𝑠 𝜔
𝑠𝑒𝑛 𝜅 cos 𝜅  𝑐𝑜𝑠 𝜔 −cos 𝜅 sen 𝜔 

 – 𝑠𝑒𝑛 𝜑 𝑐𝑜𝑠 𝜅 𝑠𝑒𝑛 𝜑 𝑠𝑒𝑛 𝜅 𝑐𝑜𝑠 𝜔 + cos 𝜑 sen 𝜔 −𝑠𝑒𝑛 𝜑 𝑠𝑒𝑛 𝜅 sen 𝜔 + cos 𝜑  𝑐𝑜𝑠 𝜔
  (115) 

 

𝑅𝜅𝜑𝜔 = 𝑅3 𝜔 × 𝑅2 𝜑 × 𝑅1 𝜅 =

 

𝑐𝑜𝑠 𝜑 𝑐𝑜𝑠𝜅 − 𝑐𝑜𝑠 𝜑 𝑠𝑒𝑛 𝜅 𝑠𝑒𝑛𝜑

𝑠𝑒𝑛 𝜔 𝑠𝑒𝑛 𝜑 cos 𝜅 + cos 𝜔 𝑠𝑒𝑛 𝜅 – 𝑠𝑒𝑛 𝜔 𝑠𝑒𝑛 𝜑 𝑠𝑒𝑛 𝜅 + 𝑐𝑜𝑠 𝜔 𝑐𝑜𝑠𝜅 −𝑠𝑒𝑛 𝜔 𝑐𝑜𝑠𝜑
− cos 𝜔 𝑠𝑒𝑛 𝜑 𝑐𝑜𝑠 𝜅 + 𝑠𝑒𝑛 𝜔 𝑠𝑒𝑛 𝜅 𝑐𝑜𝑠 𝜔 𝑠𝑒𝑛𝜑 𝑠𝑒𝑛 𝜅 + 𝑠𝑒𝑛 𝜔 𝑐𝑜𝑠 𝜅 𝑐𝑜𝑠𝜔 𝑐𝑜𝑠 𝜑

      (116) 

 

𝑅𝜅𝜔𝜑 = 𝑅3 𝜑 × 𝑅2 𝜔 × 𝑅1 𝜅 =

 

𝑐𝑜𝑠 𝜑 𝑐𝑜𝑠 𝜅 + 𝑠𝑒𝑛 𝜑 𝑠𝑒𝑛𝜔 𝑠𝑒𝑛𝜅 − 𝑐𝑜𝑠 𝜑 𝑠𝑒𝑛 𝜅 + 𝑠𝑒𝑛𝜑 𝑠𝑒𝑛𝜔 𝑐𝑜𝑠 𝜅 𝑠𝑒𝑛𝜑 𝑐𝑜𝑠 𝜔
𝑐𝑜𝑠 𝜔 𝑠𝑒𝑛𝜅 𝑐𝑜𝑠 𝜔 𝑐𝑜𝑠 𝜅 − 𝑠𝑒𝑛𝜔

−𝑠𝑒𝑛𝜑 𝑐𝑜𝑠 𝜅 + 𝑐𝑜𝑠 𝜑 𝑠𝑒𝑛𝜔 𝑠𝑒𝑛𝜅 𝑠𝑒𝑛𝜑 𝑠𝑒𝑛 𝜅 + 𝑐𝑜𝑠 𝜑 𝑠𝑒𝑛𝜔 𝑐𝑜𝑠 𝜅 𝑐𝑜𝑠 𝜑 𝑐𝑜𝑠 𝜔
       (117) 

 

𝑅𝜑𝜔𝜅 = 𝑅3 𝜅 × 𝑅2 𝜔 × 𝑅1 𝜑 =

 

𝑐𝑜𝑠 𝜅 𝑐𝑜𝑠 𝜑 − 𝑠𝑒𝑛 𝜅 𝑠𝑒𝑛𝜔 𝑠𝑒𝑛𝜑 −𝑠𝑒𝑛 𝜅 𝑐𝑜𝑠 𝜔 𝑐𝑜𝑠 𝜅 𝑠𝑒𝑛𝜑 + 𝑠𝑒𝑛 𝜅 𝑠𝑒𝑛𝜔 𝑐𝑜𝑠 𝜑
𝑠𝑒𝑛𝜅 𝑐𝑜𝑠 𝜑 + 𝑐𝑜𝑠 𝜅 𝑠𝑒𝑛𝜔 𝑠𝑒𝑛𝜑 𝑐𝑜𝑠 𝜅 𝑐𝑜𝑠 𝜔 𝑠𝑒𝑛𝜅 𝑠𝑒𝑛𝜑 − 𝑐𝑜𝑠 𝜅 𝑠𝑒𝑛𝜔 𝑐𝑜𝑠 𝜑

−𝑠𝑒𝑛𝜑 𝑐𝑜𝑠 𝜔 𝑠𝑒𝑛𝜔 𝑐𝑜𝑠 𝜔 𝑐𝑜𝑠 𝜑
          (118) 

  

𝑅𝜑𝜅𝜔 = 𝑅3 𝜔 × 𝑅2 𝜅 × 𝑅1 𝜑 =

 

cos 𝜑 cos 𝜅 −𝑠𝑒𝑛 𝜅 cos 𝜅 𝑠𝑒𝑛 𝜑
cos 𝜔 𝑠𝑒𝑛 𝜅 cos 𝜑 + 𝑠𝑒𝑛 𝜔 𝑠𝑒𝑛𝜑 cos 𝜔 cos 𝜅 cos 𝜔 𝑠𝑒𝑛 𝜅 𝑠𝑒𝑛 𝜑 − 𝑠𝑒𝑛 𝜔 cos 𝜑
𝑠𝑒𝑛 𝜔 𝑠𝑒𝑛 𝜅 cos 𝜑 − cos 𝜔 𝑠𝑒𝑛 𝜑 𝑠𝑒𝑛 𝜔 𝑠𝑒𝑛 𝜅 𝑠𝑒𝑛 𝜔 𝑠𝑒𝑛 𝜅 𝑠𝑒𝑛 𝜑 + cos 𝜔 cos 𝜑

           (119) 

 

𝑅𝜔𝜅𝜔 = 𝑅3 𝜔  × 𝑅2 𝜅 × 𝑅1 𝜔 =

 
cos κ − sen κ cos ω sen κ sen ω

cos ω  sen κ cos ω cos κ cos ω − sen ω  sen ω − cos ω cos κ sen ω − sen ω cos ω
sen ω  sen κ sen ω cos κ cos ω + cos ω  sen ω − sen ω cos κ sen ω + cos ω cos ω

          (120) 

 

𝑅𝜑𝜔 𝜑 = 𝑅3 𝜑  × 𝑅2 𝜔 × 𝑅1 𝜑 =

 
cos φ cos φ − sen φ cos ω sen φ  sen φ  sen ω cos φ  sen φ +  sen φ cos ω cos φ

sen ω sen φ cos ω − sen ω cos φ
− sen φ cos φ − cos φ cos ω  sen φ cos φ  sen ω − sen φ  sen φ + cos φ cos ω cos φ

     (121) 
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𝑅𝜑𝜅𝜑 = 𝑅3 𝜑  × 𝑅2 𝜅 × 𝑅1 𝜑 =

 

cos φ cos κ cos φ − sen φ  sen φ − cos φ  sen κ cos φ cos κ sen φ + sen φ cos φ
sen κ cos φ cos k sen κ sen φ

− sen φ  cos κ cos φ − cos φ  sen φ sen φ  sen κ − sen φ cos κ sen φ + cos φ cos φ
     (122) 

 

𝑅𝜅𝜔𝜅 = 𝑅3 𝜅  × 𝑅2 𝜔 × 𝑅1 𝜅  =

 
cos κ cos κ −  sen κ cos ω sen κ − cos κ  sen κ − sen κ cos ω cos κ sen κ  sen ω
sen κ cos κ + cos κ cos ω  sen κ − sen κ  sen κ + cos κ cos ω cos κ − cos κ   sen ω

sen ω sen κ sen ω cos κ cos ω
          (123) 

 

𝑅𝜅𝜑𝜅 = 𝑅3 𝜅  × 𝑅2 𝜑 × 𝑅1 𝜅  =

 
cos κ cos φ cos κ − sen κ  sen κ − cos κ cos φ  sen κ − sen κ cos κ cos κ  sen φ
sen κ cos φ cos κ + cos κ  sen κ − sen κ cos φ sen κ + cos κ cos κ sen κ  sen φ

− sen φ cos κ sen φ sen κ cos φ
               (124) 

 

As matrizes de rotações mais comuns no sistema passivo são: 

 

𝑅𝜔𝜑𝜅 = 𝑅3 𝜅 × 𝑅2 𝜑 × 𝑅1 𝜔 =

 −

cos 𝜅 cos 𝜑 cos 𝜅  𝑠𝑒𝑛 𝜑 𝑠𝑒𝑛𝜔 + 𝑠𝑒𝑛 𝜅 cos 𝜔 − cos 𝜅 𝑠𝑒𝑛𝜑 cos 𝜔 + 𝑠𝑒𝑛 𝜅  𝑠𝑒𝑛 𝜔
𝑠𝑒𝑛 𝜅 cos 𝜑 −𝑠𝑒𝑛 𝜅 𝑠𝑒𝑛 𝜑 𝑠𝑒𝑛 𝜔 + cos 𝜅 cos 𝜔 𝑠𝑒𝑛 𝜅 𝑠𝑒𝑛 𝜑 cos 𝜔 + cos 𝜅  𝑠𝑒𝑛 𝜔

 𝑠𝑒𝑛 𝜑 − cos 𝜑  𝑠𝑒𝑛 𝜔 cos 𝜑 cos 𝜔
     (125) 

 

𝑅𝜔𝜅𝜑 = 𝑅3 𝜑 × 𝑅2 𝜅 × 𝑅1 𝜔 =

 

cos 𝜑 cos 𝜅 cos 𝜔 𝑠𝑒𝑛 𝜅 cos 𝜑 + 𝑠𝑒𝑛 𝜔 𝑠𝑒𝑛𝜑 𝑠𝑒𝑛 𝜔 𝑠𝑒𝑛 𝜅 cos 𝜑 − cos 𝜔 𝑠𝑒𝑛 𝜑
−𝑠𝑒𝑛 𝜅 cos 𝜔 cos 𝜅 𝑠𝑒𝑛 𝜔 𝑠𝑒𝑛 𝜅

 cos 𝜅 𝑠𝑒𝑛 𝜑 cos 𝜔 𝑠𝑒𝑛 𝜅 𝑠𝑒𝑛 𝜑 − 𝑠𝑒𝑛 𝜔 cos 𝜑 𝑠𝑒𝑛 𝜔 𝑠𝑒𝑛 𝜅 𝑠𝑒𝑛 𝜑 + cos 𝜔 cos 𝜑
           (126) 

 

𝑅𝜑𝜔𝜅 = 𝑅3 𝜅 × 𝑅2 𝜔 × 𝑅1 𝜑 =

 

𝑐𝑜𝑠 𝜑 𝑐𝑜𝑠 𝜅 + 𝑠𝑒𝑛 𝜑 𝑠𝑒𝑛𝜔 𝑠𝑒𝑛𝜅 𝑐𝑜𝑠 𝜔 𝑠𝑒𝑛𝜅 − 𝑠𝑒𝑛𝜑 𝑐𝑜𝑠 𝜅 + 𝑐𝑜𝑠 𝜑 𝑠𝑒𝑛𝜔 𝑠𝑒𝑛𝜅
−𝑐𝑜𝑠 𝜑 𝑠𝑒𝑛 𝜅 + 𝑠𝑒𝑛𝜑 𝑠𝑒𝑛𝜔 𝑐𝑜𝑠 𝜅 𝑐𝑜𝑠 𝜔 𝑐𝑜𝑠 𝜅 𝑠𝑒𝑛𝜑 𝑠𝑒𝑛𝜅 + 𝑐𝑜𝑠 𝜑 𝑠𝑒𝑛𝜔 𝑐𝑜𝑠 𝜅

 𝑠𝑒𝑛 𝜑 𝑐𝑜𝑠 𝜔 −𝑠𝑒𝑛𝜔 cos 𝜔 cos 𝜑
      (127) 

 

Rφκω = 𝑅3 𝜔 × 𝑅2 𝜅 × 𝑅1 𝜑 =

 
cos 𝜑 cos 𝜅 𝑠𝑒𝑛 𝜅 – 𝑠𝑒𝑛 𝜑 𝑐𝑜𝑠 𝜅

−cos 𝜑  𝑠𝑒𝑛 𝜅 𝑐𝑜𝑠 𝜔 + 𝑠𝑒𝑛 𝜑 sen 𝜔 cos 𝜅  𝑐𝑜𝑠 𝜔 𝑠𝑒𝑛 𝜑 𝑠𝑒𝑛 𝜅 𝑐𝑜𝑠 𝜔 + cos 𝜑 sen 𝜔
 cos 𝜑 𝑠𝑒𝑛 𝜅 sen 𝜔 + 𝑠𝑒𝑛 𝜑  𝑐𝑜𝑠 𝜔 −cos 𝜅 sen 𝜔 −𝑠𝑒𝑛 𝜑 𝑠𝑒𝑛 𝜅 sen 𝜔 + cos 𝜑  𝑐𝑜𝑠 𝜔

   (128) 

 

𝑅𝜅𝜔𝜑 = 𝑅3 𝜑 × 𝑅2 𝜔 × 𝑅1 𝜅 =

 

𝑐𝑜𝑠 𝜅 𝑐𝑜𝑠 𝜑 − 𝑠𝑒𝑛 𝜅 𝑠𝑒𝑛 𝜔 𝑠𝑒𝑛 𝜑 𝑠𝑒𝑛 𝜅 𝑐𝑜𝑠 𝜑 + 𝑐𝑜𝑠 𝜅 𝑠𝑒𝑛𝜔 𝑠𝑒𝑛𝜑 −𝑠𝑒𝑛𝜑 𝑐𝑜𝑠 𝜔
−𝑠𝑒𝑛 𝜅 𝑐𝑜𝑠 𝜔 𝑐𝑜𝑠 𝜅 𝑐𝑜𝑠 𝜔 𝑠𝑒𝑛𝜔

 𝑐𝑜𝑠 𝜅 𝑠𝑒𝑛𝜑 + 𝑠𝑒𝑛 𝜅 𝑠𝑒𝑛 𝜔 𝑐𝑜𝑠 𝜑 𝑠𝑒𝑛 𝜅 𝑠𝑒𝑛 𝜑 − 𝑐𝑜𝑠 𝜅 𝑠𝑒𝑛𝜔 𝑐𝑜𝑠 𝜑 𝑐𝑜𝑠 𝜔 𝑐𝑜𝑠 𝜑
         (129) 
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𝑅𝜅𝜑𝜔 = 𝑅3 𝜔 × 𝑅2 𝜑 × 𝑅1 𝜅 =

 

cos 𝜔 cos 𝜑 𝑠𝑒𝑛 𝜅 cos 𝜑 −𝑠𝑒𝑛 𝜑
cos 𝜅  𝑠𝑒𝑛 𝜑 𝑠𝑒𝑛 𝜔 − 𝑠𝑒𝑛 𝜅 cos 𝜔 𝑠𝑒𝑛 𝜅 𝑠𝑒𝑛 𝜑 𝑠𝑒𝑛 𝜔 + cos 𝜅 cos 𝜔 cos 𝜑  𝑠𝑒𝑛 𝜔
 cos 𝜅  𝑠𝑒𝑛 𝜑 cos 𝜔 + 𝑠𝑒𝑛 𝜅 𝑠𝑒𝑛 𝜔 𝑠𝑒𝑛 𝜅 𝑠𝑒𝑛 𝜑 cos 𝜔 − cos 𝜅  𝑠𝑒𝑛 𝜔 cos 𝜑 cos 𝜔

         (130) 

 

𝑅𝜔𝜑𝜔 = 𝑅3 𝜔  × 𝑅2 𝜑 × 𝑅1 𝜔 =

 

cos φ sen φ sen ω − sen φ cos ω
sen ω  sen φ cos ω cos ω − sen ω cos φ  sen ω cos ω  sen ω +  sen ω cos φ cos ω
cos ω  sen φ − sen ω cos ω − cos ω cos φ  sen ω − sen ω  sen ω + cos ω cos φ cos ω

           (131) 

 

𝑅𝜔𝜅𝜔 = 𝑅3 𝜔  × 𝑅2 𝜅 × 𝑅1 𝜔 =

 
cos κ sen κ cos ω sen k  sen ω

− cos ω  sen κ cos ω cos κ cos ω −  sen ω  sen ω cos ω cos κ  sen ω +  sen ω cos ω
sen ω  sen κ − sen ω cos κ cos ω − cos ω  sen ω − sen ω cos κ  sen ω + cos ω cos ω

             (132) 

 

𝑅𝜑𝜔𝜑 = 𝑅3 𝜑  × 𝑅2 𝜔 × 𝑅1 𝜑 =

 
cos φ cos φ −  sen φ cos ω  sen φ  sen φ  sen ω − cos φ  sen φ −  sen φ cos ω cos φ

sen ω sen φ cos ω sen ω cos φ
sen φ cos φ + cos φ cos ω  sen φ − cos φ  sen ω − sen φ  sen φ + cos φ cos ω cos φ

           (133) 

 

𝑅𝜑𝜅𝜑 = 𝑅3 𝜑  × 𝑅2 𝜅 × 𝑅1 𝜑 =

 
cos φ cos κ cos φ −  sen φ  sen φ cos φ  sen κ − cos φ cos κ sen φ −  sen φ cos φ

− sen κ cos φ cos κ sen κ sen φ
sen φ cos κ cos φ + cos φ  sen φ  sen φ  sen κ − sen φ cos κ  sen φ + cos φ cos φ

                (134) 

 

𝑅𝜅𝜔𝜅 = 𝑅3 𝜅  × 𝑅2 𝜔 × 𝑅1 𝜅  =

 
cos κ cos κ −  sen κ cos ω  sen κ cos κ  sen κ + sen κ cos ω cos κ sen κ  sen ω

− sen κ cos κ − cos κ cos ω  sen κ − sen κ  sen κ + cos κ cos ω cos κ cos κ  sen ω
sen ω sen κ − sen ω cos κ cos ω

                (135) 

 

𝑅𝜅𝜑𝜅 = 𝑅3 𝜅  × 𝑅2 𝜑 × 𝑅1 𝜅  =

 
cos κ cos φ cos k −  sen κ  sen κ cos κ cos φ  sen κ + sen κ cos κ − cos κ  sen φ

− sen κ cos φ cos κ − cos κ   sen κ − sen κ cos φ  sen κ + cos κ cos κ  sen κ  sen φ
sen φ cos κ sen φ sen κ cos φ

             (136) 
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APÊNDICE B 

Detalhamento das matrizes de rotações em situações críticas. 

As equações 125 à 130 em gimbal lock foram omitidas nesse estudo por serem apenas matrizes transpostas relacionadas 
às equações 25 à 30. 

Sequência /equação Ângulo Equação resultante Equação simplificada 

𝜔𝜑𝜅/25 𝜑 = 90° 
 

0 cos 𝜅 𝑠𝑒𝑛 𝜔 − 𝑠𝑒𝑛 𝜅 cos 𝜔 𝑐𝑜𝑠 𝜅 𝑐𝑜𝑠 𝜔 + 𝑠𝑒𝑛 𝜅 𝑠𝑒𝑛 𝜔
0 𝑠𝑒𝑛 𝜅 𝑠𝑒𝑛 𝜔 + cos 𝜅 cos 𝜔 𝑠𝑒𝑛 𝜅 𝑐𝑜𝑠 𝜔 − 𝑐𝑜𝑠 𝜅  𝑠𝑒𝑛 𝜔

−1 0 0
   

0 𝑠𝑒𝑛 (𝜔 − 𝜅) cos(𝜔 − 𝜅)

0 cos(𝜔 − 𝜅) −sen(𝜔 − 𝜅)
−1 0 0

  

𝜔𝜑𝜅/25 𝜑 = 270° 
 

0 − cos 𝜅 𝑠𝑒𝑛 𝜔 − 𝑠𝑒𝑛 𝜅 cos 𝜔 − 𝑐𝑜𝑠 𝜅 𝑐𝑜𝑠 𝜔 + 𝑠𝑒𝑛 𝜅 𝑠𝑒𝑛 𝜔
0 −𝑠𝑒𝑛 𝜅 𝑠𝑒𝑛 𝜔 + cos 𝜅 cos 𝜔 −𝑠𝑒𝑛 𝜅 𝑐𝑜𝑠 𝜔 − 𝑐𝑜𝑠 𝜅  𝑠𝑒𝑛 𝜔
1 0 0

   
0 −𝑠𝑒𝑛(𝜔 + 𝜅) − cos(𝜔 + 𝜅)

0 cos(𝜔 + 𝜅) −𝑠𝑒𝑛(𝜔 + 𝜅)
1 0 0

  

𝜔𝜑𝜔 /26 𝜑 = 0° 
 

1 0 0
0 cos 𝜔 cos 𝜔 − 𝑠𝑒𝑛 𝜔  𝑠𝑒𝑛 𝜔 − cos 𝜔  𝑠𝑒𝑛 𝜔 − 𝑠𝑒𝑛 𝜔 cos 𝜔
0 𝑠𝑒𝑛 𝜔 cos 𝜔 + cos 𝜔  𝑠𝑒𝑛 𝜔 − 𝑠𝑒𝑛 𝜔  𝑠𝑒𝑛 𝜔 + cos 𝜔 cos 𝜔

   

1 0 0
0 cos  (𝜔 + 𝜔) −𝑠𝑒𝑛 (𝜔 + 𝜔)

0 𝑠𝑒𝑛 (𝜔 + 𝜔) cos  (𝜔 + 𝜔)
  

𝜔𝜑𝜔 /26 𝜑 = 180° 
 
−1 0 0
0 cos 𝜔 cos 𝜔 + 𝑠𝑒𝑛 𝜔  𝑠𝑒𝑛 𝜔 − cos 𝜔  𝑠𝑒𝑛 𝜔 + 𝑠𝑒𝑛 𝜔 cos 𝜔
0 𝑠𝑒𝑛 𝜔 cos 𝜔 − cos 𝜔  𝑠𝑒𝑛 𝜔 − 𝑠𝑒𝑛 𝜔  𝑠𝑒𝑛 𝜔 − cos 𝜔 cos 𝜔

   

−1 0 0
0 cos  (𝜔 − 𝜔) 𝑠𝑒𝑛 (𝜔 − 𝜔)

0 𝑠𝑒𝑛 (𝜔 − 𝜔) −cos  (𝜔 − 𝜔)
  

𝛼𝑡𝑠/27 𝑡 = 0° 
 
−cos 𝑠 cos 𝛼 − 𝑠𝑒𝑛 𝑠 𝑠𝑒𝑛 𝛼 𝑠𝑒𝑛 𝑠 cos 𝛼 − cos 𝑠 𝑠𝑒𝑛 𝛼 0
cos 𝑠 𝑠𝑒𝑛 𝛼 −  𝑠𝑒𝑛 𝑠 cos 𝛼 −𝑠𝑒𝑛 𝑠 𝑠𝑒𝑛 𝛼 + cos 𝑠 cos 𝛼 0

0 0 1
   

−cos (𝑠 − 𝛼) 𝑠𝑒𝑛 (𝑠 − 𝛼) 0

𝑠𝑒𝑛 (𝛼 − 𝑠) cos(𝑠 + 𝛼) 0
0 0 1

  

𝛼𝑡𝑠/27 𝑡 = 180° 
 
−cos 𝑠 cos 𝛼 + 𝑠𝑒𝑛 𝑠 𝑠𝑒𝑛 𝛼 𝑠𝑒𝑛 𝑠 cos 𝛼 + cos 𝑠 𝑠𝑒𝑛 𝛼 0
cos 𝑠 𝑠𝑒𝑛 𝛼 +  𝑠𝑒𝑛 𝑠 cos 𝛼 𝑠𝑒𝑛 𝑠 𝑠𝑒𝑛 𝛼 + cos 𝑠 cos 𝛼 0

0 0 −1
   

−cos (𝑠 + 𝛼) 𝑠𝑒𝑛 (𝑠 + 𝛼) 0

𝑠𝑒𝑛 (𝛼 + 𝑠) cos(𝑠 − 𝛼) 0
0 0 1

  

𝜔𝜅𝜑/115 𝜅 = 90° 
 

0 −𝑐𝑜𝑠 𝜑 cos 𝜔 + 𝑠𝑒𝑛 𝜑 𝑠𝑒𝑛 𝜔 cos 𝜑 𝑠𝑒𝑛 𝜔 + 𝑠𝑒𝑛 𝜑 cos 𝜔
1 0 0
0 𝑠𝑒𝑛 𝜑 cos 𝜔 + cos 𝜑 𝑠𝑒𝑛 𝜔 −𝑠𝑒𝑛 𝜑 𝑠𝑒𝑛 𝜔 + cos 𝜑 cos 𝜔

   
0 − cos( 𝜑 + 𝜔) sen(𝜑 + 𝜔)
1 0 0
0 𝑠𝑒𝑛 (𝜑 + 𝜔) cos( 𝜑 + 𝜔)
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𝜔𝜅𝜑/115 𝜅 = 270° 
 

0 𝑐𝑜𝑠 𝜑  𝑐𝑜𝑠 𝜔 + 𝑠𝑒𝑛 𝜑 𝑠𝑒𝑛 𝜔 −𝑐𝑜𝑠 𝜑 𝑠𝑒𝑛 𝜔 + 𝑠𝑒𝑛 𝜑  𝑐𝑜𝑠 𝜔
−1 0 0
 0 − 𝑠𝑒𝑛 𝜑 cos 𝜔 + cos 𝜑 𝑠𝑒𝑛 𝜔 𝑠𝑒𝑛 𝜑 𝑠𝑒𝑛 𝜔 + cos 𝜑 cos 𝜔

   
0 cos( 𝜑 − 𝜔) sen(𝜑 − 𝜔)

−1 0 0
0 𝑠𝑒𝑛 (𝜑 − 𝜔) cos( 𝜑 − 𝜔)

  

𝜅𝜑𝜔/116 𝜑 = 90° 
 

0 0 1
cos 𝜔 𝑠𝑒𝑛 𝜅 + 𝑠𝑒𝑛 𝜔 cos 𝜅 cos 𝜅 cos 𝜔 − 𝑠𝑒𝑛 𝜔 𝑠𝑒𝑛 𝜅 0
 𝑠𝑒𝑛 𝜔 𝑠𝑒𝑛 𝜅 − cos 𝜔 cos 𝜅 cos 𝜅 𝑠𝑒𝑛 𝜔 + cos 𝜔 𝑠𝑒𝑛 𝜅 0

   

0 0 1
𝑠𝑒𝑛 (𝜔 + 𝜅) cos(𝜔 + 𝜅) 0

− cos(𝜔 + 𝜅) 𝑠𝑒𝑛 (𝜔 + 𝜅) 0
  

𝜅𝜑𝜔//116 𝜑 = 270° 
 

0 0 −1
cos 𝜔 𝑠𝑒𝑛 𝜅 − 𝑠𝑒𝑛 𝜔 cos 𝜅 cos 𝜅 cos 𝜔 + 𝑠𝑒𝑛 𝜔 𝑠𝑒𝑛 𝜅 0
𝑠𝑒𝑛 𝜔 𝑠𝑒𝑛 𝜅 + cos 𝜔 cos 𝜅 cos 𝜅 𝑠𝑒𝑛 𝜔 − cos 𝜔 𝑠𝑒𝑛 𝜅 0

   

0 0 −1
−𝑠𝑒𝑛 (𝜔 − 𝜅) cos(𝜔 − 𝜅) 0

cos(𝜔 − 𝜅) 𝑠𝑒𝑛 (𝜔 − 𝜅) 0
  

𝜅𝜔𝜑/117 𝜔 = 90° 
 

cos 𝜑 cos 𝜅 + 𝑠𝑒𝑛 𝜑 𝑠𝑒𝑛 𝜅 − cos 𝜑 𝑠𝑒𝑛 𝜅 + 𝑠𝑒𝑛 𝜑 cos 𝜅 0
0 0 −1

 – 𝑠𝑒𝑛 𝜑 cos 𝜅 + cos 𝜑 𝑠𝑒𝑛 𝜅 𝑠𝑒𝑛 𝜑 𝑠𝑒𝑛 𝜅 + cos 𝜑 cos 𝜅 0
    

cos ( 𝜑 − 𝜅) 𝑠𝑒𝑛 (𝜑 − 𝜅) 0
0 0 −1

−𝑠𝑒𝑛 (𝜑 − 𝜅) cos(𝜑 − 𝜅) 0
  

𝜅𝜔𝜑/117 𝜔 = 270° 
 

cos 𝜑 cos 𝜅 −  𝑠𝑒𝑛 𝜑 𝑠𝑒𝑛 𝜅 −𝑠𝑒𝑛 𝜑 𝑠𝑒𝑛 𝜅 + cos 𝜑 cos 𝜅 0
0 0 1

−𝑠𝑒𝑛 𝜑 cos 𝜅 − cos 𝜑 𝑠𝑒𝑛 𝜅 𝑠𝑒𝑛 𝜑 𝑠𝑒𝑛 𝜅 − cos 𝜑 cos 𝜅 0
    

cos ( 𝜑 + 𝜅) 𝑠𝑒𝑛 (𝜑 + 𝜅) 0
0 0 1

−𝑠𝑒𝑛 (𝜑 + 𝜅) cos(𝜑 + 𝜅) 0
  

𝜑𝜔𝜅/118 𝜔 = 90° 
 

cos 𝜅 cos 𝜑 − 𝑠𝑒𝑛 𝜅 𝑠𝑒𝑛 𝜑 0 𝑐𝑜𝑠 𝜅 𝑠𝑒𝑛 𝜑 + 𝑠𝑒𝑛 𝜅  𝑐𝑜𝑠 𝜑
𝑠𝑒𝑛 𝜅 cos 𝜑 + cos 𝜅 𝑠𝑒𝑛 𝜑 0 𝑠𝑒𝑛 𝜅 𝑠𝑒𝑛 𝜑 − 𝑐𝑜𝑠 𝜅  𝑐𝑜𝑠 𝜑

 0 1 0

   
cos(𝜑 + 𝜅) 0 sen(𝜑 + 𝜅)

𝑠𝑒𝑛 (𝜑 + 𝜅) 0 − cos(𝜑 + 𝜅)
0 1 0

  

𝜑𝜔𝜅/118 𝜔 = 270° 
 

cos 𝜅 cos 𝜑 + 𝑠𝑒𝑛 𝜅 𝑠𝑒𝑛 𝜑 0 𝑐𝑜𝑠 𝜅 𝑠𝑒𝑛 𝜑 − 𝑠𝑒𝑛 𝜅  𝑐𝑜𝑠 𝜑
𝑠𝑒𝑛 𝜅 cos 𝜑 − cos 𝜅 𝑠𝑒𝑛 𝜑 0 𝑠𝑒𝑛 𝜅 𝑠𝑒𝑛 𝜑 + 𝑐𝑜𝑠 𝜅  𝑐𝑜𝑠 𝜑

 0 −1 0

   
cos(−𝜑 + 𝜅) 0 −sen(−𝜑 + 𝜅)

𝑠𝑒𝑛 (−𝜑 + 𝜅) 0 cos(−𝜑 + 𝜅)
0 −1 0

  

𝜑𝜅𝜔/119 𝜅 = 90° 
 

0 −1 0
cos 𝜔 cos 𝜑 + 𝑠𝑒𝑛 𝜔𝑠𝑒𝑛 𝜑 0 cos 𝜔 𝑠𝑒𝑛 𝜑 − 𝑠𝑒𝑛 𝜔 cos 𝜑

 𝑠𝑒𝑛 𝜔 𝑐𝑜𝑠 𝜑 − cos 𝜔 𝑠𝑒𝑛 𝜑 0 𝑠𝑒𝑛 𝜔 𝑠𝑒𝑛 𝜑 + cos 𝜔 cos 𝜑
   

0 −1 0
cos(𝜔 − 𝜑) 0 −sen(𝜔 − 𝜑)

𝑠𝑒𝑛 (𝜔 − 𝜑) 0 cos(𝜔 − 𝜑)
  

𝜑𝜅𝜔/119 𝜅 = 270° 
 

0 1 0
−cos 𝜔 cos 𝜑 − 𝑠𝑒𝑛 𝜔𝑠𝑒𝑛 𝜑 0 −cos 𝜔 𝑠𝑒𝑛 𝜑 − 𝑠𝑒𝑛 𝜔 cos 𝜑
− 𝑠𝑒𝑛 𝜔 𝑐𝑜𝑠 𝜑 − cos 𝜔 𝑠𝑒𝑛 𝜑 0 −𝑠𝑒𝑛 𝜔 𝑠𝑒𝑛 𝜑 + cos 𝜔 cos 𝜑

   

0 1 0
−cos(𝜔 + 𝜑) 0 −sen(𝜔 + 𝜑)

−𝑠𝑒𝑛 (𝜔 + 𝜑) 0 cos(𝜔 + 𝜑)
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𝜔𝜅𝜔 /120 𝜅 = 0° 
 

1 0 0
0 cos 𝜔 cos 𝜔 − 𝑠𝑒𝑛 𝜔  𝑠𝑒𝑛 𝜔 − cos 𝜔  𝑠𝑒𝑛 𝜔 − 𝑠𝑒𝑛 𝜔 cos 𝜔
0 𝑠𝑒𝑛 𝜔 cos 𝜔 + cos 𝜔  𝑠𝑒𝑛 𝜔 − 𝑠𝑒𝑛 𝜔  𝑠𝑒𝑛 𝜔 + cos 𝜔 cos 𝜔

   

1 0 0
0 cos  (𝜔 + 𝜔) −𝑠𝑒𝑛 (𝜔 + 𝜔)

0 𝑠𝑒𝑛 (𝜔 + 𝜔) cos  (𝜔 + 𝜔)
  

𝜔𝜅𝜔 /120 𝜅 = 180° 
 
−1 0 0
0 − cos 𝜔 cos 𝜔 − 𝑠𝑒𝑛 𝜔  𝑠𝑒𝑛 𝜔 cos 𝜔  𝑠𝑒𝑛 𝜔 − 𝑠𝑒𝑛 𝜔 cos 𝜔
0 −𝑠𝑒𝑛 𝜔 cos 𝜔 + cos 𝜔  𝑠𝑒𝑛 𝜔  𝑠𝑒𝑛 𝜔  𝑠𝑒𝑛 𝜔 + cos 𝜔 cos 𝜔

   

−1 0 0
0 − cos  (𝜔 − 𝜔) −𝑠𝑒𝑛(𝜔 − 𝜔)

0 −𝑠𝑒𝑛 (𝜔 − 𝜔) cos  (𝜔 − 𝜔)
  

𝜑𝜔𝜑 /121 𝜔 = 0° 
 

cos 𝜑 cos 𝜑 − 𝑠𝑒𝑛 𝜑  𝑠𝑒𝑛 𝜑 0 cos 𝜑  𝑠𝑒𝑛 𝜑 + 𝑠𝑒𝑛 𝜑 cos 𝜑
0 1 0

− 𝑠𝑒𝑛 𝜑 cos 𝜑 − cos 𝜑 𝑠𝑒𝑛 𝜑 0 −𝑠𝑒𝑛 𝜑  𝑠𝑒𝑛 𝜑 + cos 𝜑 cos 𝜑
   

cos (𝜑 + 𝜑) 0 𝑠𝑒𝑛 (𝜑 + 𝜑)
0 1 0

−𝑠𝑒𝑛 (𝜑 + 𝜑) 0 cos  (𝜑 + 𝜑)
  

𝜑𝜔𝜑 /121 𝜔 = 180° 
 

cos 𝜑 cos 𝜑 + 𝑠𝑒𝑛 𝜑  𝑠𝑒𝑛 𝜑 0 cos 𝜑  𝑠𝑒𝑛 𝜑 − 𝑠𝑒𝑛 𝜑 cos 𝜑
0 −1 0

− 𝑠𝑒𝑛 𝜑 cos 𝜑 + cos 𝜑 𝑠𝑒𝑛 𝜑 0 −𝑠𝑒𝑛 𝜑  𝑠𝑒𝑛 𝜑 − cos 𝜑 cos 𝜑
   

cos (𝜑 − 𝜑) 0 −𝑠𝑒𝑛(𝜑 − 𝜑)
0 −1 0

−𝑠𝑒𝑛 (𝜑 − 𝜑) 0 − cos  (𝜑 − 𝜑)
  

𝜑𝜅𝜑 /122 𝜅 = 0° 
 

cos 𝜑 cos 𝜑 − 𝑠𝑒𝑛 𝜑  𝑠𝑒𝑛 𝜑 0 cos 𝜑  𝑠𝑒𝑛 𝜑 + 𝑠𝑒𝑛 𝜑 cos 𝜑
0 1 0

− 𝑠𝑒𝑛 𝜑 cos 𝜑 − cos 𝜑 𝑠𝑒𝑛 𝜑 0 −𝑠𝑒𝑛 𝜑  𝑠𝑒𝑛 𝜑 + cos 𝜑 cos 𝜑
   

cos (𝜑 + 𝜑) 0 𝑠𝑒𝑛 (𝜑 + 𝜑)
0 1 0

−𝑠𝑒𝑛 (𝜑 + 𝜑) 0 cos  (𝜑 + 𝜑)
  

𝜑𝜅𝜑 /122 𝜅 = 180° 
 

− cos 𝜑 cos 𝜑 − 𝑠𝑒𝑛 𝜑  𝑠𝑒𝑛 𝜑 0 − cos 𝜑  𝑠𝑒𝑛 𝜑 + 𝑠𝑒𝑛 𝜑 cos 𝜑
0 −1 0

 𝑠𝑒𝑛 𝜑 cos 𝜑 − cos 𝜑 𝑠𝑒𝑛 𝜑 0 𝑠𝑒𝑛 𝜑  𝑠𝑒𝑛 𝜑 + cos 𝜑 cos 𝜑
   

− cos (𝜑 − 𝜑) 0 𝑠𝑒𝑛 (𝜑 − 𝜑)
0 −1 0

𝑠𝑒𝑛 (𝜑 − 𝜑) 0 cos  (𝜑 − 𝜑)
  

𝜅𝜔𝜅 /123 𝜔 = 0° 
 

cos 𝜅 cos 𝜅 − 𝑠𝑒𝑛 𝜅  𝑠𝑒𝑛 𝜅 − cos 𝜅  𝑠𝑒𝑛 𝜅 − 𝑠𝑒𝑛 𝜅 cos 𝜅 0
𝑠𝑒𝑛 𝜅 cos 𝜅 + cos 𝜅  𝑠𝑒𝑛 𝜅 −𝑠𝑒𝑛 𝜅  𝑠𝑒𝑛 𝜅 + cos 𝜅 cos 𝜅 0

0 0 1
   

cos (𝜅 + 𝜅) −𝑠𝑒𝑛 (𝜅 + 𝜅) 0

𝑠𝑒𝑛 (𝜅 + 𝜅) cos(𝜅 + 𝜅) 0
0 0 1

  

𝜅𝜔𝜅 /123 𝜔 = 180° 
 

cos 𝜅 cos 𝜅 + 𝑠𝑒𝑛 𝜅  𝑠𝑒𝑛 𝜅 − cos 𝜅  𝑠𝑒𝑛 𝜅 + 𝑠𝑒𝑛 𝜅 cos 𝜅 0
𝑠𝑒𝑛 𝜅 cos 𝜅 − cos 𝜅  𝑠𝑒𝑛 𝜅 −𝑠𝑒𝑛 𝜅  𝑠𝑒𝑛 𝜅 − cos 𝜅 cos 𝜅 0

0 0 −1
   

cos (𝜅 − 𝜅) 𝑠𝑒𝑛(𝜅 − 𝜅) 0

𝑠𝑒𝑛 (𝜅 − 𝜅) −cos(𝜅 − 𝜅) 0
0 0 −1

  

𝜅𝜑𝜅 /124 𝜑 = 0° 
 

cos 𝜅 cos 𝜅 − 𝑠𝑒𝑛 𝜅  𝑠𝑒𝑛 𝜅 − cos 𝜅  𝑠𝑒𝑛 𝜅 − 𝑠𝑒𝑛 𝜅 cos 𝜅 0
𝑠𝑒𝑛 𝜅 cos 𝜅 + cos 𝜅  𝑠𝑒𝑛 𝜅 −𝑠𝑒𝑛 𝜅  𝑠𝑒𝑛 𝜅 + cos 𝜅 cos 𝜅 0

0 0 1
   

cos (𝜅 + 𝜅) −𝑠𝑒𝑛 (𝜅 + 𝜅) 0

𝑠𝑒𝑛 (𝜅 + 𝜅) cos(𝜅 + 𝜅) 0
0 0 1
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𝜅𝜑𝜅 /124 𝜑 = 180° 
 

−cos 𝜅 cos 𝜅 − 𝑠𝑒𝑛 𝜅  𝑠𝑒𝑛 𝜅 cos 𝜅  𝑠𝑒𝑛 𝜅 − 𝑠𝑒𝑛 𝜅 cos 𝜅 0
−𝑠𝑒𝑛 𝜅 cos 𝜅 + cos 𝜅  𝑠𝑒𝑛 𝜅 𝑠𝑒𝑛 𝜅  𝑠𝑒𝑛 𝜅 + cos 𝜅 cos 𝜅 0

0 0 −1
   

−cos (𝜅 − 𝜅) −𝑠𝑒𝑛 (𝜅 − 𝜅) 0

−𝑠𝑒𝑛 (𝜅 − 𝜅) cos(𝜅 − 𝜅) 0
0 0 −1

  

𝜔𝜑𝜔 /131 𝜑 = 0° 
 

1 0 0
0 cos 𝜔 cos 𝜔 − 𝑠𝑒𝑛 𝜔  𝑠𝑒𝑛 𝜔 cos 𝜔  𝑠𝑒𝑛 𝜔 + 𝑠𝑒𝑛 𝜔 cos 𝜔
0 −𝑠𝑒𝑛 𝜔 cos 𝜔 − cos 𝜔  𝑠𝑒𝑛 𝜔 − 𝑠𝑒𝑛 𝜔  𝑠𝑒𝑛 𝜔 + cos 𝜔 cos 𝜔

   

1 0 0
0 cos  (𝜔 + 𝜔) 𝑠𝑒𝑛 (𝜔 + 𝜔)

0 −𝑠𝑒𝑛 (𝜔 + 𝜔) cos  (𝜔 + 𝜔)
  

𝜔𝜑𝜔 /131 𝜑 = 180° 
 
−1 0 0
0 cos 𝜔 cos 𝜔 + 𝑠𝑒𝑛 𝜔  𝑠𝑒𝑛 𝜔 cos 𝜔  𝑠𝑒𝑛 𝜔 − 𝑠𝑒𝑛 𝜔 cos 𝜔
0 −𝑠𝑒𝑛 𝜔 cos 𝜔 + cos 𝜔  𝑠𝑒𝑛 𝜔 − 𝑠𝑒𝑛 𝜔  𝑠𝑒𝑛 𝜔 − cos 𝜔 cos 𝜔

   

−1 0 0
0 cos  (𝜔 − 𝜔) −𝑠𝑒𝑛 (𝜔 − 𝜔)

0 −𝑠𝑒𝑛 (𝜔 − 𝜔) −cos  (𝜔 − 𝜔)
  

𝜔𝜅𝜔 /132 𝜅 = 0° 
 

1 0 0
0 cos 𝜔 cos 𝜔 − 𝑠𝑒𝑛 𝜔  𝑠𝑒𝑛 𝜔 cos 𝜔  𝑠𝑒𝑛 𝜔 + 𝑠𝑒𝑛 𝜔 cos 𝜔
0 −𝑠𝑒𝑛 𝜔 cos 𝜔 − cos 𝜔  𝑠𝑒𝑛 𝜔 − 𝑠𝑒𝑛 𝜔  𝑠𝑒𝑛 𝜔 + cos 𝜔 cos 𝜔

   

1 0 0
0 cos  (𝜔 + 𝜔) 𝑠𝑒𝑛 (𝜔 + 𝜔)

0 −𝑠𝑒𝑛 (𝜔 + 𝜔) cos  (𝜔 + 𝜔)
  

𝜔𝜅𝜔 /132 𝜅 = 180° 
 
−1 0 0
0 − cos 𝜔 cos 𝜔 − 𝑠𝑒𝑛 𝜔  𝑠𝑒𝑛 𝜔 − cos 𝜔  𝑠𝑒𝑛 𝜔 + 𝑠𝑒𝑛 𝜔 cos 𝜔
0 𝑠𝑒𝑛 𝜔 cos 𝜔 − cos 𝜔  𝑠𝑒𝑛 𝜔  𝑠𝑒𝑛 𝜔  𝑠𝑒𝑛 𝜔 + cos 𝜔 cos 𝜔

   

−1 0 0
0 − cos  (𝜔 − 𝜔) 𝑠𝑒𝑛(𝜔 − 𝜔)

0 𝑠𝑒𝑛 (𝜔 − 𝜔) cos  (𝜔 − 𝜔)
  

𝜑𝜔𝜑 /133 𝜔 = 0° 
 

cos 𝜑 cos 𝜑 − 𝑠𝑒𝑛 𝜑  𝑠𝑒𝑛 𝜑 0 − cos 𝜑  𝑠𝑒𝑛 𝜑 − 𝑠𝑒𝑛 𝜑 cos 𝜑
0 1 0

 𝑠𝑒𝑛 𝜑 cos 𝜑 + cos 𝜑 𝑠𝑒𝑛 𝜑 0 −𝑠𝑒𝑛 𝜑  𝑠𝑒𝑛 𝜑 + cos 𝜑 cos 𝜑
   

cos (𝜑 + 𝜑) 0 −𝑠𝑒𝑛(𝜑 + 𝜑)
0 1 0

𝑠𝑒𝑛 (𝜑 + 𝜑) 0 cos  (𝜑 + 𝜑)
  

𝜑𝜔𝜑 /133 𝜔 = 180° 
 

cos 𝜑 cos 𝜑 + 𝑠𝑒𝑛 𝜑  𝑠𝑒𝑛 𝜑 0 − cos 𝜑  𝑠𝑒𝑛 𝜑 + 𝑠𝑒𝑛 𝜑 cos 𝜑
0 −1 0

 𝑠𝑒𝑛 𝜑 cos 𝜑 − cos 𝜑 𝑠𝑒𝑛 𝜑 0 −𝑠𝑒𝑛 𝜑  𝑠𝑒𝑛 𝜑 − cos 𝜑 cos 𝜑
   

cos (𝜑 − 𝜑) 0 𝑠𝑒𝑛 (𝜑 − 𝜑)
0 −1 0

𝑠𝑒𝑛 (𝜑 − 𝜑) 0 − cos(𝜑 − 𝜑)
  

𝜑𝜅𝜑 /134 𝜅 = 0° 
 

cos 𝜑 cos 𝜑 − 𝑠𝑒𝑛 𝜑  𝑠𝑒𝑛 𝜑 0 − cos 𝜑  𝑠𝑒𝑛 𝜑 − 𝑠𝑒𝑛 𝜑 cos 𝜑
0 1 0

 𝑠𝑒𝑛 𝜑 cos 𝜑 + cos 𝜑 𝑠𝑒𝑛 𝜑 0 −𝑠𝑒𝑛 𝜑  𝑠𝑒𝑛 𝜑 + cos 𝜑 cos 𝜑
   

cos (𝜑 + 𝜑) 0 −𝑠𝑒𝑛 (𝜑 + 𝜑)
0 1 0

𝑠𝑒𝑛 (𝜑 + 𝜑) 0 cos(𝜑 + 𝜑)
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𝜑𝜅𝜑 /134 𝜅 = 180° 
 

−cos 𝜑 cos 𝜑 − 𝑠𝑒𝑛 𝜑  𝑠𝑒𝑛 𝜑 0 cos 𝜑  𝑠𝑒𝑛 𝜑 − 𝑠𝑒𝑛 𝜑 cos 𝜑
0 −1 0

− 𝑠𝑒𝑛 𝜑 cos 𝜑 + cos 𝜑 𝑠𝑒𝑛 𝜑 0 𝑠𝑒𝑛 𝜑  𝑠𝑒𝑛 𝜑 + cos 𝜑 cos 𝜑
   

−cos (𝜑 − 𝜑) 0 −𝑠𝑒𝑛 (𝜑 − 𝜑)
0 −1 0

−𝑠𝑒𝑛 (𝜑 − 𝜑) 0 cos  (𝜑 − 𝜑)
  

𝜅𝜔𝜅 /135 𝜔 = 0° 
 

cos 𝜅 cos 𝜅 − 𝑠𝑒𝑛 𝜅  𝑠𝑒𝑛 𝜅 cos 𝜅  𝑠𝑒𝑛 𝜅 + 𝑠𝑒𝑛 𝜅 cos 𝜅 0
−𝑠𝑒𝑛 𝜅 cos 𝜅 − cos 𝜅  𝑠𝑒𝑛 𝜅 −𝑠𝑒𝑛 𝜅  𝑠𝑒𝑛 𝜅 + cos 𝜅 cos 𝜅 0

0 0 1
   

cos (𝜅 + 𝜅) 𝑠𝑒𝑛 (𝜅 + 𝜅) 0

−𝑠𝑒𝑛 (𝜅 + 𝜅) cos(𝜅 + 𝜅) 0
0 0 1

  

𝜅𝜔𝜅 /135 𝜔 = 180° 
 

cos 𝜅 cos 𝜅 + 𝑠𝑒𝑛 𝜅  𝑠𝑒𝑛 𝜅 cos 𝜅  𝑠𝑒𝑛 𝜅 − 𝑠𝑒𝑛 𝜅 cos 𝜅 0
−𝑠𝑒𝑛 𝜅 cos 𝜅 + cos 𝜅  𝑠𝑒𝑛 𝜅 −𝑠𝑒𝑛 𝜅  𝑠𝑒𝑛 𝜅 − cos 𝜅 cos 𝜅 0

0 0 −1
   −

cos (𝜅 − 𝜅) − 𝑠𝑒𝑛 (𝜅 − 𝜅) 0

𝑠𝑒𝑛 (𝜅 − 𝜅) −cos(𝜅 − 𝜅) 0
0 0 −1

  

𝜅𝜑𝜅 /136 𝜑 = 0° 
 

cos 𝜅 cos 𝜅 − 𝑠𝑒𝑛 𝜅  𝑠𝑒𝑛 𝜅 cos 𝜅  𝑠𝑒𝑛 𝜅 + 𝑠𝑒𝑛 𝜅 cos 𝜅 0
−𝑠𝑒𝑛 𝜅 cos 𝜅 − cos 𝜅  𝑠𝑒𝑛 𝜅 −𝑠𝑒𝑛 𝜅  𝑠𝑒𝑛 𝜅 + cos 𝜅 cos 𝜅 0

0 0 1
   

cos (𝜅 + 𝜅) 𝑠𝑒𝑛 (𝜅 + 𝜅) 0

−𝑠𝑒𝑛 (𝜅 + 𝜅) cos(𝜅 + 𝜅) 0
0 0 1

  

𝜅𝜑𝜅 /136 𝜑 = 180° 
 
−cos 𝜅 cos 𝜅 − 𝑠𝑒𝑛 𝜅  𝑠𝑒𝑛 𝜅 −cos 𝜅  𝑠𝑒𝑛 𝜅 + 𝑠𝑒𝑛 𝜅 cos 𝜅 0
𝑠𝑒𝑛 𝜅 cos 𝜅 − cos 𝜅  𝑠𝑒𝑛 𝜅 −𝑠𝑒𝑛 𝜅  𝑠𝑒𝑛 𝜅 + cos 𝜅 cos 𝜅 0

0 0 −1
   

− cos (𝜅 − 𝜅)  𝑠𝑒𝑛 (𝜅 − 𝜅) 0

𝑠𝑒𝑛 (𝜅 − 𝜅) cos(𝜅 − 𝜅) 0
0 0 −1

  

 


