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RESUMO 
 
A disponibilidade de água no mundo inteiro tem se tornado pauta importante em todos os 
fóruns de discussão sobre as condições dos recursos hídricos no planeta. As avaliações sobre 
esta disponibilidade são, principalmente em relação à qualidade da águ,a em termos da 
definição de parâmetros físicos, químicos e biológicos da água, representando um conjunto 
de parâmetros extremamente importantes para o contexto da sustentabilidade ambiental. 
Neste cenário, as técnicas de Inteligência Computacional ou de Inteligência Artificial, têm se 
tornando alternativas de ampla aplicabilidade para modelagem e simulação da qualidade da 
água. Neste trabalho foi, então, desenvolvido um estudo para que as redes neurais, a lógica 
fuzzy e a análise de componente principal fossem utilizadas como estratégias para avaliação 
da qualidade da água em corpos hídricos do Estado de Sergipe, com vista à construção de 
interface fáceis de serem utilizadas em ambiente MATLAB. Neste estudo, foram coletados 
dados ambientais dos reservatórios Jacarecica, da Marcela e da bacia do Rio Poxim, em 
Sergipe. Para o desenvolvimento da modelagem em termos de redes neurais, foram 
utilizadas as redes Multi Layer Perceptron (MLP) e as redes Radial Basis Function (RBF) e 
um sistema neuro-fuzzy para modelar a qualidade da água utilizando como variável de saída 
a concentração de clorofila-a para caracterizar o fenômeno de eutrofização do sistema. Além 
dessa modelagem, foi desenvolvida uma equação com base na análise de componente 
principal em função das medidas de pH, oxigênio dissolvido, amônia, nitrito e nitrato, além 
das concentrações de ortofosfato, nitrogênio total e fosforo total, e clorofila-a. Quanto à 
aplicação da lógica fuzzy, foi calculado o índice de qualidade da água em função das 
concentrações de clorofila-a, nitrogênio total e fósforo total para classificação do sistema 
nos quatro níveis tróficos para que as variáveis linguísticas fossem identificadas. Para a 
análise fuzzy foram implementadas as regras fuzzy com base no conhecimento especialista 
do sistema hídrico, sendo o modelo fuzzy considerado representativo para classificar as 
condições ambientais dos reservatórios. É importante ressaltar que os resultados foram 
satisfatórios em termos da classificação e descrição do fenômeno de eutrofização entre os 
níveis de oligotrófico e hipertrófico para corpos hídricos em análise. Dessa forma, as 
técnicas de inteligência artificial, em particular as redes neurais e a lógica fuzzy, foram 
empregadas com sucesso para um conjunto de dados ambientais, mostrando a viabilidade 
numérica no que concerne a representação de fenômenos ambientais complexos e 
importantes para sustentabilidade ambiental dos corpos hídricos. 
 
 
 
 
 
Palavras-chave: Redes Neurais Artificiais. Lógica Fuzzy. Sistema Neurofuzzy. Índice de 
Qualidade da Água. 

 



 

 
ABSTRACT 

 
The availability of water in the world has become important agenda in all forums on the 
conditions of water resources on the planet. The evaluations are available on this, especially 
in relation to water quality in terms of the definition of physical, chemical and biological 
water, representing a set of parameters extremely important for the context of environmental 
sustainability. In this scenario, the techniques of Computational Intelligence and Artificial 
Intelligence have become alternative broad applicability for modeling and simulation of 
water quality. This work was then carried out to the neural networks, fuzzy logic and 
principal component analysis were used as strategies for evaluation of water quality in water 
bodies of the State of Sergipe, with a view to building interface easily be used in MATLAB. 
In this study, data were collected Jacarecica environmental reservoirs of some of Marcela 
and Poxim River basin in Sergipe. For the development of modeling in terms of neural 
networks, the networks were used Multi-Layer Perceptron (MLP) and Radial Basis Function 
networks (RBF) and a neuro-fuzzy system for modeling water quality using as output 
variable concentration chlorophyll-a to characterize the phenomenon of eutrophication. In 
this model, we developed an equation based on principal component analysis on the basis of 
measurements of pH, dissolved oxygen, ammonia, nitrite and nitrate, and concentrations of 
orthophosphate, total nitrogen and total phosphorus and chlorophyll-a. Concerning the 
application of fuzzy logic, we calculated the index of water quality in the concentrations of 
chlorophyll a, total nitrogen and total phosphorus for the classification system in the four 
trophic levels for the linguistic variables were identified. To analyze fuzzy rules were 
implemented based on expert knowledge of the water system and the fuzzy model was 
representative to classify the environmental conditions of the reservoirs. Importantly, the 
results were satisfactory in terms of classification and description of the phenomenon of 
eutrophication levels for oligotrophic and hypertrophic water bodies under consideration. 
Thus, the artificial intelligence techniques, in particular neural networks and fuzzy logic 
have been successfully employed for a set of environmental data, showing the feasibility 
with regard to numerical representation of complex environmental phenomena and 
important for environmental sustainability of the bodies water. 
 
 
 
 
 
 
 
Keywords: Artificial Neural Networks. Fuzzy Logic. Neuro Fuzzy System. Water Quality 
Index. 
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1 INTRODUÇÃO 
 

A disponibilidade de água no mundo inteiro tem se tornado pauta em muitos os 

fóruns de discussão sobre os recursos hídricos do planeta. As avaliações sobre esta 

disponibilidade são, principalmente, em relação à qualidade da água para os usos 

considerados nobres como abastecimento público, recreação, geração de energia, irrigação e 

pesca. Conforme comentam Srebotnjak et al. (2012), proteger a qualidade de água doce para 

as necessidades humanas e o equilíbrio ecológico é, portanto, um aspecto importante da 

gestão ambiental integrada ao desenvolvimento sustentável da humanidade. 

O Brasil detém, aproximadamente, 12 % da água doce superficial do planeta, ou seja, 

tem-se água em abundância no país. Entretanto, o Brasil apresenta graves problemas quanto 

à distribuição e utilização dos recursos hídricos disponíveis. Esses problemas são mais 

graves na região Nordeste, que conta apenas com 3 % dessa disponibilidade. Agregada a 

esse fato, o crescimento e os problemas de abastecimento tornam o Nordeste a região mais 

carente do país quanto à quantidade e à qualidade da água, conforme relatórios apresentados 

pela Agência Nacional de Águas - ANA (ANA, 2012). 

Neste cenário, a avaliação da qualidade da água é imprescindível para 

sustentabilidade dos recursos hídricos do país, pois sua disponibilidade vem se tornando 

limitada. Macedo (2004) comenta que 63% do descarte de lixo no país são feitos em rios, 

lagos e restingas (ecossistemas costeiros, fisicamente determinados pelas condições edáficas 

(solo arenoso) e pela influência marinha), agravando cada vez mais a qualidade e a 

quantidade de água em áreas populacionais carentes em abastecimento e tratamento de água. 

Em decorrência dessa condição socioeconômica, a avaliação da qualidade da água quanto 

aos fenômenos ambientais, a exemplo do fenômeno de eutrofização, vem se destacando em 

estudos nos principais centros de pesquisas no Brasil e no mundo.  

Os estudos do comportamento dos corpos hídricos são desenvolvidos em termos da 

definição de parâmetros físicos, químicos e biológicos da água, que representam um 

conjunto de parâmetros ambientais necessário para classificação da qualidade desses 

recursos. Dessa forma, ressalta-se, por exemplo, que a qualidade da água de superfície em 

uma região depende muito da natureza e da magnitude das atividades antropogênicas 

industriais, agrícolas e outras nos corpos d’água (SINGH et al., 2009). 

Em geral, a poluição orgânica em um sistema hídrico pode ser medida e expressa, 

por exemplo, através da Demanda Bioquímica de Oxigênio (DBO) e da quantidade de 

Oxigênio Dissolvido (OD) indicando o nível de clorofila-a (principal parâmetro para 
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indicação do nível eutrófico do sistema). Sendo assim, é de extrema necessidade o 

desenvolvimento de métodos para determinação da clorifila-a, ou de parâmetros 

correlacionados, seja através de medidas empíricas seja através de medidas numéricas 

(estratégias numéricas). 

É importante ressaltar que o interesse na análise e a previsão dos parâmetros da 

qualidade da água têm aumentado substancialmente nos últimos anos, devido à crescente 

disponibilidade de métodos de inteligência computacional (CHAU, 2006 apud WEST; 

DELLANA, 2011). No entanto, alguns autores comentam sobre a dificuldade na previsão 

dos parâmetros ambientais devido à natureza complexa e cumulativa dos processos 

biológicos e a necessidade de longos prazos na aquisição de informações sobre as condições 

ambientais do sistema hídrico. 

Nesta abordagem, as técnicas de Inteligência Computacional (IC) ou de Inteligência 

Artificial (IA), têm sido desenvolvidas como alternativas consubstanciadas para avaliação da 

qualidade da água. 

Atualmente, a área de Inteligência Computacional envolve as principais técnicas de 

redes neurais, lógica fuzzy, algoritmo genético ou modelos híbridos (neurofuzzy) . O termo 

inteligência é atribuído aos desenvolvimentos computacionais, pois são sistemas inspirados 

no comportamento humano ou que tentam reproduzi-lo mesmo estando longe de ser 

autônomo em inteligência ou no pensar. Apesar desta ressalva, esses sistemas têm 

encontrado grande aceitação em diversas áreas do conhecimento, e muitas vezes apresentam 

desempenho superior quando comparados aos métodos convencionais utilizados  para 

descrever os processos (WU; BANZHAT, 2010). 

No entanto, um impedimento para uma maior aplicação de técnicas de Computação 

Inteligente na modelagem da qualidade da água é a falta de conhecimento dos profissionais 

desta área em relação às técnicas de Inteligência Artificial quando comparados, por 

exemplo, aos profissionais de informática que já vêm aplicando estas técnicas há muito 

tempo. Outro fato que pode ser observado como responsável por uma falta de uma maior 

utilização destas técnicas nessa área é a falta de estratégias para sua aplicação nas áreas de 

Química Analítica Ambiental, Engenharia Ambiental, ou mesmo em Química, que comecem 

com a caracterização do problema utilizando as técnicas de Inteligência Artificial, assim 

como uma avaliação de sua aplicabilidade e eficiência na apresentação da resposta ao 

problema. 

Apesar da disponibilidade crescente de softwares para implementação dessas 

técnicas, tais como redes neurais e sistema fuzzy, ter facilitado sua disseminação nas diversas 
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áreas, há ainda necessidade de maior compreensão, utilização destas metodologias e sua 

validação na descrição do comportamento da qualidade da água. 

Segundo Kuo et al. (2007), a dificuldade em predizer o comportamento de corpos de 

água é devido a complexidade física, química e biológica envolvidas nos processos hídricos. 

Além disso, os sistemas de qualidade da água são processos biológicos complexos 

(CARLSSON; LINDBERG, 1998; SPALL; CRISTION, 1997 apud WEST; DELLANA, 

2011), o que torna essa dificuldade ainda maior. Os balanços de massas para representar o 

comportamento fenomenológico, a exemplo a eutrofização de lagos e reservatórios, 

começaram aproximadamente no final da década de 70 do século passado. Com o aumento 

do entendimento do processo de eutrofização, assim como com o avanço da capacidade 

computacional, modelos multidimensionais de hidrodinâmica da água têm sido 

desenvolvidos e técnicas têm sido aplicadas para descrever a qualidade da água, porém essas 

técnicas são pouco difundidas no Brasil e até mesmo em outros países.  

Dentre os trabalhos publicados, merecem destaques os de Lu e Lo (2002) que retrata 

o diagnóstico de reservatório de água utilizando a lógica fuzzy para representar o processo de 

eutrofização em termos de parâmetros como fósforo total e clorofila-a; o de Chaves e Kojiri 

(2007), que desenvolveram estratégias em neuro-fuzzy considerando os parâmetros da 

qualidade da água associados aos processos de aeração e remoção de sedimentos no 

reservatório; Singh et al. (2009) que descreveram o treinamento, validação e aplicação de 

Redes Neurais Artificiais (RNA) para calcular o oxigênio dissolvido e a demanda 

bioquímica de oxigênio em rios; o de Han et al. (2011), que apresenta a aplicação de uma 

Rede Neural Radial (Radial Basis Function - RBF) para previsão da qualidade da água; o de 

Carvalho et al. (2010), que utilizaram as redes neurais e a estatística multivariada para 

avaliar a qualidade da água em dois corpos d’água de Sergipe. Neste último, o fenômeno da 

eutrofização foi idealizado como um problema de entrada-saída, ou seja, os dados de 

clorofila-a (output) foram associados aos dados dos nutrientes (input) e como resultado foi 

possível classificar os sistemas oligotróficos e hipertróficos. 

Além disso, em relação às técnicas de Sistemas Inteligentes duas delas se destacam, 

em função da crescente utilização na modelagem da qualidade da água: as Redes Neurais 

Artificiais e a Lógica Fuzzy (Sistemas Difusos). Merece destaque, também, a combinação 

entre estas duas técnicas, um sistema híbrido denominado de Neuro-Fuzzy. Inseridos nesta 

abordagem, a disponibilidade de estratégias utilizando essas técnicas torna-se imprescindível 

como ferramenta para monitoramento e controle da qualidade dos recursos hídricos, sendo, 

portanto, este o objetivo principal deste trabalho. 
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 Inserido neste contexto, o presente trabalho tem como objetivo principal desenvolver 

estratégias para utilização de sistemas inteligentes no monitoramento da qualidade da água 

em reservatórios de Sergipe. E para o alcance deste objetivo, os seguintes objetivos 

específicos foram definidos: 

 

1. Monitorar da qualidade dos recursos hídricos nos reservatórios de Jacarecica e 

Marcela e no Rio Poxim, no Estado de Sergipe, através da caracterização física, 

química, microbiológica e toxicológica. 

 

2. Elaborar softwares com uso da ferramenta MATLAB para aplicação das técnicas de 

Redes Neurais, Lógica Fuzzy e Neuro-Fuzzy para caracterização desses reservatórios 

com bases nos parâmetros físicos, químicos, microbiológicos e toxicológicos. 

 

3. Desenvolver um índice multivariável para o estado trófico da água utilizando a 

técnica de Análise de Componentes Principais com uso da ferramenta MATLAB. 

 

4. Construir interfaces aceitáveis para o usuário, direcionadas para uma aplicação mais 

ágil destas técnicas na caracterização dos reservatórios. 

 

Neste cenário, a maior dificuldade da aplicação das técnicas de Computação 

Inteligente em Engenharia é o pouco conhecimento dos profissionais desta área em relação 

às técnicas de Inteligência Artificial e a sua aplicabilidade a fenômenos específicos, como a 

eutrofização de um sistema hídrico. Esta ausência de familiarização se deve em muito à falta 

de preparo deste profissional que vai desde a caracterização do problema de engenharia 

como passível de solução pelas técnicas de Inteligência Artificial, assim como de estratégias 

para sua aplicação e formas de avaliação de sua aplicabilidade e eficiência. 

Em geral, os Sistemas Inteligentes encontram aplicações em Modelagem, 

Otimização, Identificação, Operação e Controle de processos. Estes sistemas são alternativas 

ou complementos das técnicas já consagradas de estatística, pesquisa operacional e 

modelagem numérica utilizadas frequentemente na Engenharia. 

No que concerne ao monitoramento ambiental, o processo de eutrofização traz 

consequências devastadoras ao meio ambiente e sua análise numérica não é simples, tendo 

em vista à complexidade física, química e biológica que dificulta a predição do 
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comportamento dos nutrientes nos lagos e reservatórios. Os modelos determinísticos e 

empíricos são desenvolvidos de forma mais geral e necessitam, frequentemente, de algum 

nível de calibração com dados específicos experimentais. E, importantes fatores que afetam 

o fenômeno de eutrofização relacionados à natureza do ecossistema, são, geralmente, 

desprezados em aproximações clássicas. No entanto, esses parâmetros podem ser 

relacionados mais facilmente através da aplicação dos sistemas inteligentes. 

É importante ressaltar que em relação ao monitoramento da qualidade de um corpo 

hídrico, o desenvolvimento experimental constitui um dos aspectos mais impactante no 

sucesso desse monitoramento. A qualidade e a quantidade de dados experimentais 

necessários para classificar a qualidade de um recurso hídrico são influenciadas por 

variáveis que muitas vezes independem do executor do projeto, a exemplo, as condições 

climáticas, econômicas e até mesmo políticas institucionais. 

 Neste sentido, esta tese de doutorado propõe o desenvolvimento de estratégias 

utilizando as técnicas de Redes Neurais, Lógica Fuzzy e Neuro-fuzzy, prevendo o 

desenvolvimento de estratégias numéricas para aplicação destas técnicas com uso do 

MATLAB, com ênfase em aplicações na Engenharia Ambiental e na área de Química 

Analítica Ambiental, para monitoramento da qualidade dos recursos hídricos, em particular 

nos corpos hídricos do Estado de Sergipe.  

 

 



 

2 FUNDAMENTAÇÃO TEÓRICA 
 

 Neste item do trabalho, será apresentado o levantamento bibliográfico sobre os 

assuntos relacionados ao desenvolvimento da tese. Primeiro, será caracterizado o objetivo de 

estudo, a água, suas características e sua importância como elemento fundamental para a 

sustentabilidade e desenvolvimento socioeconômico de um país. Segundo, os principais 

processos que distinguem a qualidade da água. Terceiro, os modelos que constituem as 

estratégias numéricas para avaliação da qualidade dos recursos hídricos. 

 

2.1 ÁGUA 

De todos os recursos naturais, a água é sem dúvida o mais importante e o mais 

precioso. No entanto, a água vem apresentando uma variedade de contaminantes, em 

decorrência de um grande número de práticas destrutivas e de má gestão ambiental. Estas 

são ameaças aos recursos hídricos, que, em escala mundial, restringem os diversos usos de 

água (MACEDO, 2004; ABBASI; ABBASI, 2012).  

O uso da água exige diferentes padrões para a qualidade do sistema hídrico. Dentre 

estes, os principais usos e parâmetros são: 

a. Para a preservação da vida aquática: oxigênio dissolvido, pH, estado trófico, 

algas, nutrientes, turbidez, substâncias tóxicas (metais, agrotóxicos) 

b. Para o abastecimento doméstico: turbidez, demanda bioquímica de oxigênio, 

algas, nutrientes, salinidade, substâncias tóxicas, coliformes fecais. 

c. Para a recreação de contato primário: coliformes fecais, algas, óleos e graxas. 

 

De acordo com a ANA, criada através da Lei 9.984/2000 e que tem como missão 

regulamentar o uso dos recursos hídricos da União, vem sendo implantado um sistema 

nacional de gerenciamento desses recursos para garantir o uso sustentável, monitorando a 

qualidade e a quantidade dos corpos de água. De forma que inserido no Artigo 4º dessa lei, 

tem-se a importância dos diversos estudos ambientais: 

Art. 4º-Cabe à ANA: 
“Promover a elaboração de estudos para subsidiar a aplicação de recursos financeiros da 
União em obras e serviços... de controle da poluição hídrica, em consonância com o 
estabelecido nos planos de recursos hídricos”. 
“Fiscalizar os usos de recursos hídricos nos corpos de água de domínio da União”. 
“Propor ao CNRH o estabelecimento de incentivos, inclusive financeiros, à conservação 
qualitativa e quantitativa de recursos hídricos”. 
“Organizar, implantar e gerir o Sistema de Informações Sobre Recursos Hídricos 

(SNIRH)”. 
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Em 2007, no Seminário Macrorregional para consolidação da implementação do 

decreto nº 5.440/2005 (“Estabelece definições e procedimentos sobre o controle de 

qualidade da água de sistemas de abastecimento e institui mecanismos e instrumentos para 

divulgação de informação ao consumidor sobre a qualidade da água para consumo 

humano.”), a ANA divulgou que são mensurados os parâmetros temperatura, pH, 

condutividade, oxigênio dissolvido e turbidez trimestralmente em 630 pontos de 

monitoramento.  

Em 2012, o relatório da Conjuntura dos Recursos Hídricos no Brasil – Informe 

Especial, elaborado pela ANA, mostrou o panorama da qualidade da água em todo território 

nacional. Esse relatório consta que mais de 100 corpos d´água estão em condições péssimas 

ou ruins. A Figura 1 mostra os pontos de monitoramento da qualidade da água, classificando 

as regiões hidrográficas em péssima, ruim, regular, boa e ótima de acordo com o Índice de 

Qualidade das Águas (IQA). É importante ressaltar, conforme consta nesse relatório, “o IQA 

é particularmente sensível à contaminação pelo lançamento de esgotos, sendo um índice de 

referência normalmente associado à qualidade da água bruta captada para o abastecimento 

público após tratamento”. 

 Dessa forma, a poluição das águas pode ser melhor compreendida através da análise 

de dois fenômenos: a bioacumulação e a eutrofização. No caso da bioacumulação trata-se de 

um fenômeno através do qual os organismos vivos retêm, dentro de si, certas substâncias 

tóxicas sem conseguir realizar sua eliminação naturalmente. A eutrofização pode ser 

definida como sendo a fertilização, aumento da concentração de nutrientes, das águas de 

rios, lagos e represas. Essa poluição ocorre, por exemplo, como consequência da falta de um 

sistema de coleta e tratamento de esgoto doméstico (MAGOSSI; BONACELLA, 2003).  
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Figura 1 - Classificação do corpo hídrico de acordo como o Índice de Qualidade da Água 
Fonte: ANA (2012) 
 

Nesse sentido, o Altas de Saneamento de 2011, divulgado pelo Instituto Brasileiro de 

Geografia e Estatística (IBGE), mostra que houve aumento na proporção de domicílios com 

acesso à rede de esgoto que passaram de 33,5%, em 2000, para 45,7%, em 2008. Nesse 

relatório, consta que apenas a Região Sudeste apresenta mais da metade dos domicílios 

(69,8%) com acesso à rede geral, em seguida a região Centro-Oeste (33,7%), com resultado 

próximo ao da Região Sul (30,2%). No entanto, as Regiões Nordeste (29,1%) e Norte 

(3,5%) estão bem abaixo desses valores (RODRIGUES, 2011). 

 
2.2 FENÔMENOS DE EUTROFIZAÇÃO 

 O processo de eutrofização pode ser compreendido como o aumento de concentração 

de nutrientes, principalmente fósforo e nitrogênio, nos ambientes aquáticos. O fenômeno de 

eutrofização pode acontecer de forma natural, contribuindo para o equilíbrio ecológico, ou 
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de forma cultural (eutrofização antrópica – artificial), como sendo a fertilização provocada 

por atividades humanas. A eutrofização artificial é capaz de quebrar o equilíbrio entre a 

produção e a decomposição de matéria orgânica no ambiente aquático. Esse desequilíbrio é 

provocado, principalmente, pela utilização sem controle de fertilizantes agrícolas e pela 

descarga de esgotos industriais e domésticos sem tratamento no corpo hídrico (JI, 2008).  

Dessa forma, Magossi e Bonacella (2003) comentam que no processo de 

eutrofização, o aumento da concentração de nutrientes favorecendo o crescimento e a 

multiplicação do fitoplâncton, o que provoca o aumento da turbidez da água e como 

consequência, a luz solar não chega às plantas que se encontram submersas, não ocorrendo o 

processo de fotossíntese, o que leva a deterioração da água para consumo humano. 

 Sob essa análise, o estabelecimento do comportamento de corpos d’água, através da 

medida de parâmetros ambientais, funciona com uma importante ferramenta no combate a 

problemas ambientais, como o processo de eutrofização de reservatórios. Entretanto, esta é 

uma tarefa difícil devido à complexidade dos processos físicos, químicos e biológicos 

causadores desses problemas (NIJBOER; VERDONSCHOT, 2004; KUO et al., 2007).  

Os reservatórios são fontes de água superficiais construídos artificialmente e, em 

geral, são usados para geração de energia, recreação, prática de esporte, pesca comercial, 

irrigação, abastecimento para consumo humano etc. No entanto, esses ambientes estão 

sujeitos ao processo de eutrofização, sendo, portanto, importante o monitoramento da 

qualidade da água (DALTRO FILHO; SANTOS, 2002). 

Uma gama de problemas está relacionada aos efeitos da eutrofização em 

reservatórios. Dentre estes, ocorre, principalmente, a diminuição da diversidade de espécies, 

o aumento de biomassa de plantas e animais, o aumento da turbidez e o aumento da taxa de 

sedimentação, e a diminuição da concentração de oxigênio nos reservatórios. No que se 

refere aos problemas relacionados ao uso de determinado recurso hídrico, os efeitos da 

eutrofização estão relacionados à dificuldade no processo de tratamento da água potável, o 

odor e o gosto desagradáveis, presentes nas linhas de suprimento de água, várias doenças 

podem ser transmitidas, o aumento da vegetação aquática, que pode impedir o fluxo da água 

e a navegação. Além disso, problemas de gestão ambiental e econômica são agravados por 

ocorrer uma necessidade de maior investimento nos processos de tratamento e 

monitoramento da água em todo mundo (PARR; MASON, 2004; KUO et al., 2008; ZANG 

et al., 2008). 
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2.2.1 Estado ou grau trófico 

O estado ou grau trófico de um sistema hídrico é determinado através do Índice de 

Estado Trófico (IET), que representa entradas externas de nutrientes, como, esgoto 

doméstico, resíduos industriais e agrícolas, e está associado a características específicas de 

cada reservatório, a exemplo, tempo de retenção, vazão, regime hidrológico. Dessa forma, o 

IET serve de base para a elaboração de sistema de monitoramento da eutrofização e 

definição do uso do corpo hídrico (MAIA, 2011). 

Nesse contexto, determinar o estado trófico ou o IET é uma ação fundamental para 

classificação dos sistemas hídricos, ou seja, para avaliar a qualidade da água quanto ao 

processo de eutrofização, conforme ressaltam Sulis et al. (2011) quando desenvolveram um 

modelo linear para estimativa da qualidade da água com base no IET. 

O estado trófico de um reservatório pode ser avaliado através de índices 

estabelecidos através de equações que utilizam parâmetros limnológicos. O Índice de Estado 

Trófico (IET) de Carlson (1977) é bastante utilizado na literatura, principalmente pela 

facilidade de aplicação numérica (equações simples) em função de parâmetros ambientais, 

como as concentrações de fósforo total e nitrogênio total (HAVENS, 1995; CHACON-

TORRES; ROSAS-MONGE, 1998; MATTHEWS et al., 2002). 

2.2.1.1 Parâmetros limnológicos  
 

Inicialmente definida como sendo a ciência que estuda os lagos, Esteves (2011) 

define a limnologia como sendo o “estudo ecológico de todas as massas de água 

continentais, independentemente de suas origens, dimensões e concentrações salinas”. 

Tundisi e Tundisi (2008) definiram também a Limnologia como sendo o estudo das 

reações funcionais e produtividade das comunidades bióticas de lagos, rios, reservatórios e 

região costeira em relação aos parâmetros físicos, químicos e bióticos ambientais. Dentre os 

parâmetros limnológicos, destacam-se a clorofila-a, transparência da água, concentrações de 

fósforo e de nitrogênio por serem bastante utilizados nas equações dos índices de estado 

trófico.  

A definição e determinação dos parâmetros limnológicos são extremamente 

importantes para diferentes áreas do conhecimento científico voltadas ao meio ambiente, 

como por exemplo, manejo de ecossistemas, com ênfase ao controle de eutrofização, 
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aspectos para elaboração de Estudos de Impactos Ambientais (EIA) e Relatório de Impacto 

Ambiental (RIMA) e outros, conforme comenta Lundberg (2012).  

A seguir serão descritos os parâmetros limnológicos clorofila-a, transparência da 

água e concentrações de nitrogênio e fósforos, referindo-se aos principais parâmetros para 

caracterização do estado trófico da água. 

a. Clorofila-a 

Designa-se de Clorofila o grupo de pigmentos fotossintéticos produzidos nos 

cloroplastos das folhas e em outros tecidos vegetais. Estes pigmentos são responsáveis pela 

cor verde das plantas e atuam como fotorreceptor da luz visível utilizada no processo da 

fotossíntese. São quatro os tipos de clorofilas: clorofila-a, b, c e d. As clorofilas a e b estão 

presentes em plantas verdes e as clorofilas c e d são encontradas nas algas e cianobactérias. 

Os pigmentos envolvidos no processo de fotossíntese são as clorofilas a e b, os carotenóides 

e as ficobilinas. As diferenças aparentes nas cores dos vegetais são devidas à presença de 

outros pigmentos associados, como os carotenóides, que sempre acompanham as clorofilas 

(MARTINI et al. 2006; TUNDISI; TUNDISI, 2008; CAMPOS, 2010).  

Dessa forma, a clorofila é considerada como sendo o principal parâmetro indicador 

do estado trófico, pois o acúmulo de plantas nas zonas hídricas indica forte enriquecimento 

de nutrientes aquáticos (FERREIRA, 2011; DIMBERG et al. 2012). 

O processo utilizado para obtenção é a extração da clorofila-a, na qual, comumente 

se utiliza a acetona a 90%. De acordo com a Resolução CONAMA 357/2005, recomendam-

se valores de clorofila-a de até 30 µg/L (ambientes lênticos) como adequados para a 

manutenção de uma boa qualidade da água e para evitar impactos nos corpos da água que 

recebem descargas de efluentes. 

 

b. Transparência da água – profundidade de Secchi 

A medida de penetração de luz na coluna da água é um dos indicadores da qualidade 

da água e pode ser obtida através de um método simples e de baixo custo, conforme 

comentam Tundisi e Tundisi (2008). Essa medida utiliza um disco, normalmente de 20 cm 

de diâmetro (denominado “disco de Secchi”) de material resistente, pode-se avaliar o quanto 

a luz incidente na água está sendo diminuída em decorrência da presença das algas.  

Segundo Esteves (2011), a profundidade de Secchi corresponde à profundidade em 

que a. 

O disco de Secchi é um equipamento indispensável a qualquer trabalho na área de 

limnologia. O sistema consiste em uma corda, graduada, que é colocada na água até 
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desaparecer. Assim que o padrão gráfico do disco não é mais observado, anotasse o quanto 

este desceu na coluna d’água, sendo que o valor adequado para a manutenção de uma boa 

qualidade da água situa-se ao redor de 40 cm (ESTEVES, 2011). 

 

c. Concentração de Fósforo 

De maneira geral, a eutroficação caracteriza-se pelo aumento da produção de 

fitomassa de algas, causada pelo aumento da disponibilidade de nutrientes na água. As 

concentrações de fósforo e nitrogênio são os principais fatores que provocam o processo de 

eutrofização (ESTEVES, 2011). 

Sendo assim, a determinação das concentrações de fósforo na água é uma das 

principais etapas para o monitoramento e controle da eutrofização. 

Inserido no desenvolvimento do fitoplâncton tanto o fósforo quanto o nitrogênio são 

nutrientes limitantes, uma vez que o fósforo é necessário para sínteses moleculares e 

transporte de íons e o nitrogênio é necessário para síntese de aminoácidos e proteínas 

(FERREIRA, 2011). 

Do ponto de vista limnológico, o fósforo por ser um elemento a ser sempre 

monitorado, constituindo-se em ótimo indicador da qualidade da água. As fontes naturais de 

fósforo são as rochas da bacia de drenagem, precipitação atmosférica e a deposição de 

material particulado, como partículas de solo e rochas, de organismos vivos e em 

decomposição, compostos voláteis liberados de plantas etc (ESTEVES, 2011).  

A Resolução CONAMA 357/2005 recomenda, para ambientes lênticos (água parada, 

lagos) e híbridos (entre lênticos e lóticos - barragens), valores de até 30 µg/L como valores 

de referência para concentração de fósforo. 

 

d. Nitrogênio 

O nitrogênio é um dos principais elementos químicos, sendo que é mais abundante 

na forma gasosa na atmosfera. Em particular, devido a sua participação na formação de 

proteínas, o nitrogênio é um dos elementos mais importantes no metabolismo de 

ecossistemas aquáticos, podendo atuar como fator limitante na produção primária desses 

ecossistemas e, em determinadas condições, tornar-se tóxico a organismos aquáticos. Dentre 

os compostos de nitrogênio dissolvidos na água, pode-se encontrar uma forma ionizada 

(NH4
+ íon amônio), e outra não ionizada (NH3 amônia). As duas formas juntas constituem a 

amônia total ou nitrogênio amoniacal total (ESTEVES, 2011).  

As principais fontes de nitrogênio para os ecossistemas aquáticos continentais são a 



23 
 

 

fixação biológica de nitrogênio que ocorre com a transformação de gás nitrogênio (N2) em 

nitrogênio biológico, chuvas, aporte de efluentes domésticos e industriais não tratados ou 

parcialmente tratados lançados nos corpos de água (FERREIRA, 2011; ESTEVES, 2011). 

Quanto maior for o pH, maior será a porcentagem da amônia total presente na forma 

NH3 não ionizada (forma tóxica). Por exemplo, na piscicultura intensiva, a principal fonte de 

compostos nitrogenados incorporados à água advém da alimentação. Os fertilizantes e 

rações utilizadas em viveiros contêm nitrogênio, principalmente na forma de amônia e 

nitrato. O excesso desses elementos pode prejudicar o crescimento dos peixes. Além disso, 

esse nutriente é consumido também pelo fitoplâncton, acarretando geralmente um 

crescimento excessivo das algas. De forma que, o manejo inadequado de fertilizantes 

químicos compromete bastante a qualidade da água (STOATE et al., 2009; RIJN, 2012) . 

 

2.2.1.2 Índice de Estado Trófico  

O Índice de Estado Trófico (IET) é índice numérico composto por parâmetros 

físicos, químicos, biológicos para indicar as condições ambientais de um sistema hidrico. O 

IET é dividido em cinco grupos com intervalos de 0-20, 20-40, 40-60, 60-80, 80-100 

correspondentes a cinco estados tróficos, hiperoligotrófico, oligotrófico, mesotrófico, 

eutrófico e hipereutrófico, respectivamente (XU, 2008).  

Carlson e Simpson (1996) definiram o Índice de Estado Trófico (IET) com base na 

biomassa fitoplanctônica presente em determinado corpo d’água, em local e tempo 

específicos. Estes autores definiram também que o estado trófico não é o mesmo que a 

qualidade da água, mas um aspecto importante da mesma. Nesse índice, estão inseridos as 

variáveis clorofila-a, transparência (disco de Secchi), nitrogênio total e fósforo total para 

estimar a concentração de biomassa de algas. Como resultado, estes autores propuseram as 

equações mostradas na Tabela 1 para determinar o IET.  

Tabela 1 - Índice de Estado Trófico. 
Equação do IET Parâmetros 
IET (DS) = 60 – 14,41 ln(DS) Transparência do disco de Secchi (DS), medida em m 
IET (Chl) = 9,81 ln(Chl) + 30,6 Clorofila (Chl), medida em µg.L-¹ 
IET (PT) = 14,42 ln(PT) + 4,15 Fósforo total (PT), medido em µg.L-¹ 
IET (NT) = 54,45 + 14,43 ln(NT) Nitrogênio total (NT), medido em mg.L-¹ 
Fonte: Carlson; Simpson (1996) 

Um corpo d'água, geralmente, pode ser classificado como oligotrófico, mesotrófico e 

eutrófico, (e termos associados às características dos sistemas hídricos), em função da 
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produtividade biológica e as condições de nutrientes, definindo assim seu estado trófico. De 

acordo com Ji (2008): 

a. O termo oligotrófico é empregado para descrever um corpo d'água com baixa 

atividade biológica e excelente qualidade de água, pois é um ambiente pobre em 

nutrientes e algas e com produção de biomassa limitada; 

b. O termo mesotrófico é empregado para descrever um corpo d'água com média 

atividade biológica e a qualidade da água é considerada boa; 

c. O termo eutrófico é empregado para descrever um corpo d'água com excessiva 

atividade biológica e a qualidade da água é considera ruim. 

Considerando, então, o estado trófico, os reservatórios podem ser classificados nas 

classes apresentadas na Tabela 2 e uma combinação das variações do IET, concentrações de 

clorofila e fósforo total e transparência do disco Secchi. 

 
Tabela 2 - Classificação do estado trófico 

Estado 
trófico IET 

Clorofila 
(µg.L-¹) 

Transparência 
do disco de 
Secchi (m) 

Fósforo total 
(µg.L-¹) Características 

Oligotrófico < 30 < 0,95 > 8 < 6 

Água limpa e oxigênio no 
hipolímnio durante todo o 
ano. 
 

Hipolimnia de 
lagos rasos  

30-40 0,95-2,60 8 – 4 6 –  12 
Pode tornar-se anóxico 
(falta de oxigênio). 
 

Mesotrófico 40-50 2,60-7,30 4 – 2 12 – 24 

Água moderamente limpa, 
maior probabilidade de 
anoxia no hipolimnio no 
verão. 
 

Eutrófico 50-60 7,30-20 2 – 1 24 – 48 Anoxia no hipolimnio 

Domínio de 
algas azuis 

60-70 20-56 0,5 – 1 48 – 96 
Podem surgir gosto e odor 
desagradáveis. 
 

Hipereutrófico 70-80 56-155 0,25 – 0,5 96 – 192 
Produtividade limitada 
pela luz. 
 

Algas 
inferiores e 
poucas 
macrófitas  

> 80 > 155 <0,25 192 –384 
Domínio de peixes 
resistentes e possível 
morte de peixes no verão. 

Fonte: Carlson; Simpson (1996) 
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Nesse sentido, muitos trabalhos têm sido desenvolvidos a fim de estudar o processo 

de eutrofização em reservatórios ou a qualidade da água em todo mundo tomando como 

referência a classificação dos corpos hídricos apresentada na Tabela 2. 

Havens (1995) estudou a quantificação histórica, de 1973 a 1993, do nutriente 

limitante do lago Okeechobee, na Flórida, Estados Unidos. O nível do nutriente limitante 

(nitrogênio/fósforo) foi estimado por desvios entre o índice de estado trófico, calculado a 

partir da rotina de monitoramento de dados. O estudo da variação do índice de estado trófico 

histórico indicou uma forte tendência da limitação do fósforo à limitação secundária do 

nitrogênio entre 1970 e 1980, que coincidiu com mudanças na saída de nutrientes e manejo 

hídrico. Essa documentação da limitação secundária do nitrogênio foi importante para o 

manejo do lago, porque confirmou que os esforços progressivos e dispendiosos para reduzir 

a concentração de fósforo e criar uma condição limitada pelo fósforo no lago, na realidade 

constitui uma restauração da condição natural prévia. 

Soyupak et al. (1997) desenvolveram estudos no reservatório de Keban Dam, oeste 

da Anatólia, Turquia, no qual diferentes seções do reservatório têm diferentes estados 

tróficos, sendo a porção superior do lago eutrófica. Nesse sentido, avaliaram, estratégias 

alternativas a serem implementadas para controle do fósforo e da eutrofização. Técnicas de 

modelagem matemática são usadas para composição de várias alternativas, em termos de sua 

relativa eficácia, para controle de fósforo. O modelo usado simulou a concentração de 

oxigênio dissolvido e a clorofila eufótica sob condições correspondentes a várias estratégias 

propostas para o controle de fósforo. Os esforços da modelagem produziram informações 

valiosas que podem ser usadas para tomada de decisões na avaliação de diferentes 

alternativas de manejo, incluindo redução de entrada de carga de fósforo. 

Chacon-Torres e Rosas-Monge (1998) realizaram estudos de monitoramento 

limnológico anual no lago tropical Zirahuen, no México, que sofre uma forte influência 

antropogênica. Os estudos foram desenvolvidos com base nas características da qualidade da 

água e no nível trófico do lago, para incentivar o desenvolvimento de um programa de 

manejo para uso sustentável e conservação do ecossistema do lago. Os modelos de estados 

tróficos, índice de estado trófico proposto por Shannon e Brezonik (1972) e o proposto por 

Carlson (1977), sugeriram que o lago Zirahuen é um sistema oligotrófico. Contudo, o 

aumento da erosão e o aporte de esgoto não tratado indicaram a necessidade de estratégias 

de manejo do lago para conservação e desenvolvimento sustentável do sistema. 
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Ibañez et al. (2000) estudaram as características físicas e químicas de três sistemas 

aquáticos na Baixada Maranhanense: os rios Pindaré (lago Viana), Pericumã e Turiaçu. 

Nesse trabalho, observou-se que os corpos d’água diferiram quanto à condutividade elétrica, 

sólidos totais suspensos e nutrientes, com elevados valores (exceto para o nitrogênio total) 

no período seco. 

Perkins e Underwood (2000) realizaram estudos no reservatório Alton Water, 

Suffolk, UK, durante três anos (1995 a 1997) e observaram uma variação entre o estado 

eutrófico a mesotrófico. No verão de 1995, a concentração da clorofila-a noroeste do 

reservatório era 95 ±  34 µg.L-¹, 24 vezes maior que na bacia. As concentrações de fósforo 

total, ortofosfato, nitrato e amônia reduziram de maneira significativa ao longo do 

reservatório, enquanto a transparência do disco de Secchi aumentou. Nesse trabalho, os 

autores verificaram também que a noroeste do reservatório havia alta concentração de 

sólidos suspensos e biomassa algal, enquanto a bacia principal apresentou água limpa com 

alta transparência no disco de Secchi. 

Havens et al. (2001) compararam a dinâmica dos nutrientes em três lagos, situados 

no Japão (lago Kasamigaura), China (lago Danghu) e Estados Unidos (lago Okeechobee), 

fortemente influenciados por fonte de poluição pontual e difusa, todos grandes (área maior 

que 30 km²), rasos (profundidade menor que 4 m) e eutróficos. Neste trabalho, constatou-se, 

nos três lagos, fortes correlações entre os sedimentos, a coluna d’água e as atividades 

antrópicas. Processos importantes afetam a dinâmica dos nutrientes como fixação de 

nitrogênio e a limitação da luz devido à resuspensão de sedimentos. Os autores observaram 

que a dinâmica variável de nutrientes é típica de sistemas de lagos rasos. 

Freitas (2001) observou que as águas do reservatório Marcela (Itabaiana, Sergipe) 

eram impróprias para irrigação de hortaliças. A classificação do estado trófico variou de 

mesotrófico a hipereutrófico, predominando o ambiente eutrófico, sendo que o nutriente 

limitante foi o nitrogênio. 

Gulati e Van Donk (2002) descreveram a origem da eutrofização e das técnicas de 

restauração em lagos rasos, como o lago Dutch, na Holanda. Os estudos revelaram que a 

redução de fósforo a níveis baixos não foi garantia de que ocorresse o mesmo com a 

população de cianobactérias, pois elas podem resistir a grandes variações do fósforo e, 

portanto, a variações na razão carbono:fósforo. 
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Matthews et al. (2002) avaliaram durante onze anos parâmetros para definir o estado 

trófico e o nutriente limitante no lago Whatcom, caracterizado como oligotrófico, localizado 

em uma cadeia de lagos em Washington, nos Estados Unidos. Os autores perceberam que, 

apesar das concentrações do fósforo total e o fósforo reativo solúvel serem relativamente 

baixas em todo o lago, houve diferenças significativas entre os locais amostrados. Os 

coeficientes de correlação entre clorofila, profundidade do disco de Secchi, nitrogênio total e 

nitrogênio inorgânico dissolvido foram altos. No final do verão, a correlação da biomassa 

algal foi melhor com o nitrogênio inorgânico dissolvido e o fósforo total. O índice de estado 

trófico baseado no fósforo total, nitrogênio total, clorofila e profundidade do disco de Secchi 

revelou que apesar do crescimento algal ser limitado pelo fósforo durante o ano, o nordeste 

do lago pode ter tido, como co-limitante, o nitrogênio, durante o final do verão e outono. O 

modelo observado no lago foi mais semelhante ao descrito para lagos eutróficos. 

Cavenaghi et al. (2003) caracterizaram a água e o sedimento em cinco reservatórios 

da bacia do rio Tietê e correlacionaram as informações obtidas com a ocorrência das 

principais plantas aquáticas. Nesse trabalho foi possível concluir que a ocorrência de plantas 

submersas foi a variável mais dependente da transparência da água e transmissão de luz. O 

deslocamento a jusante no rio Tietê provoca a redução dos teores de fosfato e nitrogênio, 

além de alterar a turbidez e a quantidade de sólidos em suspensão. Os sólidos em suspensão 

apresentaram grande efeito na transmissão de luz por colunas de água, determinando ou não 

a ocorrência de plantas aquáticas imersas. A grande infestação de plantas marginais e 

flutuantes está associada à sedimentação que ocorre na área de ingresso de tributários nos 

reservatórios. 

Jones e Knowlton (2005) observaram 135 reservatórios de Missouri, Estados Unidos, 

e analisaram a relação entre os nutrientes e a bacia hidrográfica para explorar a variação 

entre os sólidos totais suspensos e suas duas frações: sólidos suspensos voláteis e sólidos 

suspensos não voláteis.  Os sólidos suspensos, em particular os voláteis, correlacionaram 

com o estado trófico do lago e se relacionaram positivamente com a proporção de terra 

cultivada na bacia, e negativamente com a floresta coberta e fracamente com a área de terra 

coberta com grama. Efeitos de fatores da bacia sobre os sólidos totais suspensos no verão 

refletiram no crescimento de plânctons mediante a influência de nutrientes (afetando os 

sólidos suspensos voláteis) sobre a entrada direta de sedimentos (afetando os sólidos 

suspensos não voláteis). 
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Souza et al. (2007) avaliaram as condições ambientais do reservatório de Acarape do 

Meio - Ceará em função dos parâmetros clorofila-a, fosfato, ortofosfato solúvel e a média 

entre estes parâmetros. Nesse trabalho foi observada uma tendência à hipereutrofia do 

reservatório, mostrando um agravamento da qualidade da água. 

Guedes et al. (2011) realizam um estudo para caracterizar a qualidade da água e 

estimar o estado trófico do reservatório Lago do Amor, em Campo Grande -  Mato Grosso 

do Sul. Nesse trabalho, os autores mostraram que, de acordo com os elevados valores dos 

parâmetros ambientais, como DBO, OD, fósforo, nitrogênio total, clorofila-a, o reservatório 

foi classificado como águas pertencentes à classe 4 (Resolução do Conselho Nacional do 

Meio Ambiente - CONAMA n° 430/2011 – água destinadas a navegação e harmonia 

paisagística). Os autores constataram, ainda, que o mesmo encontra-se eutrofizado e em 

degradação, em decorrência do processo de poluição e contaminação dos córregos 

tributários que deságuam no reservatório. 

Akkoyunlu e Akiner (2012) analisaram a qualidade da água do lago Sapanca 

(Marmara - Turquia) em relação a quinze parâmetros ambientais (por exemplo, temperatura, 

OD, DBO, nitrato, nitrito e clorofila-a) e propuseram um índice de eutrofização (WQIeut) 

que levou em conta um número menor de parâmetros. Os autores constatam que o índice 

proposto estabelecia uma boa relação com a análise obtida a partir de todos os parâmetros, e 

concluíram que o lago está em processo de eutrofização.  

Assim, é importante ressaltar que o processo de eutrofização resulta do excesso de 

algas e macrófitas nos reservatórios, provocando a deterioração da qualidade da água para 

uso humano e decréscimo nos níveis do oxigênio dissolvido, com efeitos adversos para os 

peixes. Nesse contexto, a eutrofização é um fenômeno extremamente grave, conforme 

comentam Magossi e Bonacella (2003), pois além de comprometer a qualidade das águas, 

impõe condições que praticamente impedem a reversão natural, ou seja, um sistema 

eutrofizado tende a permanecer naturalmente assim. É possível observar que, na literatura da 

área, dentre os parâmetros, a quantidade de clorofila-a é utilizada amplamente como 

indicador do processo de eutrofização. 

2.3 REDES NEURAIS 
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De acordo com Haykin (2001), uma Rede Neural Artificial (RNA) é um processador 

numérico constituído de unidades de processamento simples, que tem como finalidade 

armazenar conhecimentos empíricos e torná-los disponíveis para aplicação ou uso em 

futuros experimentos. A RNA se assemelha ao cérebro humano em dois aspectos: quando o 

conhecimento é adquirido pela rede através de um processo de aprendizagem e quando as 

forças de conexão entre neurônios (pesos sinápticos) são utilizadas para armazenar o 

conhecimento adquirido. 

Dessa forma, as redes neurais artificiais possuem duas fases de processamento, a de 

aprendizagem e a de utilização, que seria a própria aplicação da rede. A primeira fase 

consiste no ajuste dos pesos das conexões, em resposta ao estímulo apresentado à rede 

neural (histórico de dados). A segunda fase consiste na resposta da rede a um estímulo de 

entrada, sem que ocorram modificações em sua estrutura de aprendizagem (OLIVEIRA 

JUNIOR et al., 2007). 

O conhecimento é adquirido pela rede por meio de dados do ambiente, em um 

processo de aprendizagem. O processo de treinamento é denominado de Algoritmo de 

Aprendizagem, e tem como finalidade ajustar os pesos sinápticos da rede de uma forma 

ordenada para alcançar um objetivo desejado (ZHANG et al., 2011). 

As conexões entre os neurônios, designadas de pesos sinápticos, são utilizadas para 

armazenar o conhecimento adquirido. Então, uma rede neural funciona com vários 

neurônios, organizados em grupos (ou camadas) sequenciados. Os dados são alimentados na 

camada de entrada e a resposta da rede ao seu efeito (perturbação) é observada na saída. 

Podem existir uma ou mais camadas, denominadas de camada oculta, entre a camada de 

entrada e a camada de saída da rede. O número de camadas ocultas é dado pelas 

características de cada sistema. 

As Redes Neurais podem, ainda, ser sintetizadas por sistemas de equações, em geral 

não-lineares, interconectadas, em que o resultado de uma equação é o valor de entrada para 

várias outras na rede. Esta estrutura foi concebida a partir de estudo sobre a fisiologia do 

cérebro humano e do seu componente primário, o neurônio. As redes neurais são 

aproximadores universais de funções, ou seja, conseguem reproduzir o comportamento de 

qualquer função matemática. Esta capacidade as popularizou, rapidamente, como uma 

ferramenta tipo Caixa Preta para modelar relações entre variáveis, de modo semelhante aos 

métodos estatísticos de regressão. (GARCIA et al., 2004a; 2004b; CARVALHO et al., 

2007) 
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A arquitetura de uma rede neural artificial depende diretamente do problema que 

será tratado pela rede. Como parte da definição da arquitetura da rede e com o objetivo de 

classificá-las, tem-se: quantidades de camadas, números de neurônios em cada camada e tipo 

de conexão entre os neurônios e sua conectividade, conforme ilustra a Figura 2 (BRAGA et 

al., 2007). 

 

Figura 2 - Composição da arquitetura de uma rede neural 
 

A Figura 3 mostra as redes de acordo com a composição da arquitetura.  

Quanto ao número de camadas, pode-se ter: 

� Redes de camada única: essa é a forma mais simples de uma rede em camadas e 

surge quando possui uma camada de entrada que se projeta para a camada de saída, 

mas não vice-versa, como mostrado na Figura 3 (a) e (d); 

� Redes com múltiplas camadas: essas redes se distinguem das redes com camada 

única pela presença de uma ou mais camadas ocultas, Figura 3 (b) e (c). Nestas, a 

função das camadas ocultas é extrair informações das amostras. 

Quanto aos tipos de conexões entre os neurônios, têm-se: 

� Feedforward ou acíclica: neste tipo de rede, a saída do neurônio na i-ésima camada 

não pode ter entradas com neurônios em camadas de índice menor ou igual a i, como 

mostrado na Figura 3 (a), (b) e (c); 

� Feedback ou cíclica: para esse tipo de rede, a saída do neurônio na i-ésima camada 

tem entradas com neurônios em camadas de índice menor ou igual a i, como 

mostrado na Figura 3 (d). 

E quanto a sua conectividade, têm-se: 
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� Rede fracamente (ou parcialmente) conectada, como na Figura 3 (c); 

� Rede completamente conectada, como mostrado na Figura 3 (a), (b) e (d). 

 
Figura 3 - Exemplos de arquiteturas de redes neurais artificiais 
Fonte: Adaptada de Haykin (2001) 
 
2.3.1 Perceptron de Múltiplas Camadas (Multi Layer Perceptron - MLP) 

Os perceptrons de múltiplas camadas com retropropagação de erro têm sido 

aplicados com sucesso para resolver diversos problemas difíceis, através do seu treinamento 

de forma supervisionada com um algoritmo backpropagation. Este algoritmo é baseado na 

regra de aprendizagem por correção de erro (HAYKIN, 2001). 

A Figura 4 mostra a arquitetura de uma rede perceptron de múltiplas camadas com 

uma camada de entrada, uma oculta e uma de saída, totalmente conectadas. Isso significa 

que um neurônio em qualquer camada da rede está conectado a todos os neurônios da 

camada anterior. 

 
 

Figura 4 - Arquitetura perceptron de múltiplas camadas com uma camada oculta 
Fonte: Adaptada de Haykin (2001) 
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Nos próximos itens serão mostradas as funções de ativações que foram empregadas 

na presente tese e que são importantes no desenvolvimento do algoritmo mais utilizado para 

as redes MLP - o algoritmo backpropagation.  

 

2.3.2 Funções de ativação  

A função de ativação define a saída (em geral não linear) de um neurônio, após o 

processamento da informação recebida pelo neurônio (HAYKIN, 2001). A Tabela 3 mostra 

as três funções de ativação mais utilizadas na literatura. 

Tabela 3 - Funções de ativação. 

Função Comentário Equação e sua derivada 

 

Linear 

Este tipo de função de ativação é muito 

utilizado nas unidades que compõem a 

camada de saída das arquiteturas MLP. 

( ) p.xxf =                                            (1) 

( ) p.xf' =x  

 

 

Sigmóide 

A origem deste tipo de função está 

vinculada à preocupação em limitar o 

intervalo de variação da função (0, 1) 

pela inclusão de um efeito de saturação. 

Sua derivada também é uma função 

contínua. 

( )
px-e

xf
+

=
1

1
                                    (2) 

( ) ( ) ( )( )xfxp.fxf' −= 1.  

 

 

Tangente 

hiperbólica 

Pelo fato da função sigmóide apresentar 

valores de ativação no intervalo (0, 1), 

em muitos casos ela é substituída pela 

função tangente hiperbólica, que 

preserva a forma sigmoidal da função 

sigmóide, mas assume valores positivos 

e negativos (-1, 1). 

( ) ( )p.x
ee

ee
xf

px-px

-pxpx

tanh=
+

−
=

             (3)
 

( ) ( )( )21 xfp.xf' −=  

Fonte: Braga et al. (2007) 
 

A título de exemplo, na Figura 5 estão representados os principais elementos de uma 

típica Rede Neural Feedforward, sendo que x e y representam entrada e saída (variáveis do 

processo), respectivamente; w representa os pesos e f(x), a função de ativação. Nesta rede, a 

função de ativação é do tipo Sigmóide. 
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Figura 5 - Rede Neural Feedforward (a) e a função de ativação (b). 
Fonte: Carvalho et al. (2010) 
 
2.3.3 Algoritmo de retro-propagação (Backpropagation) 

O backpropagation padrão é um algoritmo de gradiente descendente, no qual os 

pesos da rede são movidos ao longo do negativo do gradiente da função de desempenho. O 

termo backpropagation refere-se à maneira como o gradiente é computado para redes de 

múltiplas camadas não lineares. Existem diversas variações do algoritmo básico que são 

baseados em outras técnicas de otimização, tais como o gradiente conjugado e os métodos 

de Newton (HAYKIN, 2001). 

Durante o treinamento com o algoritmo backpropagation, a rede opera em uma 

seqüência de dois passos. Primeiro, um conjunto de variáveis é apresentado à camada de 

entrada da rede. A atividade flui através da rede, camada por camada, até que a resposta seja 

produzida pela camada de saída. No segundo passo, a saída fornecida pela rede é comparada 

com a saída desejada para esse conjunto particular. Se esta não estiver correta, o erro é 

calculado. O erro é propagado a partir da camada de saída para a camada de entrada, e os 

pesos das conexões das unidades das camadas internas vão sendo modificados até que o erro 

retro-propagado atinja o valor estabelecido (OLIVEIRA, 2000). 

O treinamento ou aprendizado supervisionado de uma RNA visa a obtenção dos 

pesos das conexões que minimizam uma função erro dada pela diferença entre saída 

calculada pela rede e um valor de saída conhecido. Este processo de aprendizado ocorre 

através dos ajustes sucessivos dos pesos e, em alguns algoritmos, por meio dos resíduos de 

ativação, de forma a se obter dados de saída o mais próximo possível dos desejados. Esta é a 

etapa que exige maior demanda computacional. Um dos algoritmos de treinamento mais 

utilizados é o backpropagation, apesar da literatura trazer vários outros (TORRECILLA et 

al., 2007). 



34 
 

 

A título de exemplo, a Figura 6 ilustra a fase de treinamento supervisionado clássico 

de uma RNA, sendo x o vetor de entrada de dados; Yd o vetor de saída desejado e Yc o 

vetor de saída calculado; W é o vetor de pesos e n é o número da iteração. 

 
Figura 6 - Fase de treinamento de uma RNA 
Fonte: Carvalho et al. (2010) 

Como o algoritmo backpropagation (retro-propagação) foi historicamente um dos 

primeiros algoritmos desenvolvidos para o tratamento das redes neurais, este foi utilizado 

neste trabalho e será descrito a seguir. 

Para facilitar a derivação do algoritmo backpropagation, será adotada a notação 

apresentada na Tabela 4. 

Tabela 4 - Notação adotada no algoritmo backpropagation. 

Simbologia Significado 

i, j índices referentes a diferentes neurônios da rede 

n n-ésimo vetor de entrada (iteração) 

N número de amostras (padrões de treinamento) 

M número de camadas 

yj(n) sinal de saída da unidade j na iteração n 

ej(n) sinal de erro da unidade de saída j na iteração n 

wi,j(n) peso sináptico conectando a saída da unidade i à entrada da unidade j 
na iteração n 

uj(n) ativação da unidade j na iteração n; sinal a ser aplicado à não-
linearidade 

fj(.) função de ativação associada à unidade j 

X matriz de dados de entrada (amostras de treinamento) 

S matriz de dados de saída (saídas desejadas) 
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Continuação...  

xi(n) i-ésimo elemento do vetor de entradas 

sj(n) j-ésimo elemento do vetor de saídas 

α taxa de aprendizagem 

letras minúsculas em 
negrito (a, b, c) 

vetores 

letras maiúsculas em 
negrito (A, B, C) 

matrizes 

letras a, b, c escalares 

 

As matrizes Wm (para m = 0, 1, …, M - 1; sendo M é o número de camadas da rede) 

possuem dimensão Sm + 1 × Sm, em que S0 = número de entradas da rede; e os vetores bm 

possuem dimensão Sm + 1 × 1. 

Para simplificar o desenvolvimento do algoritmo backpropagation, utiliza-se a 

notação abreviada para uma arquitetura genérica com duas camadas (NARENDRA; 

PARTHASARATHY, 1990; HAGAN; MENHAJ, 1994; DEMULTH; BEALE, 2002;) e 

tomou-se como base a Figura 7. 

 
Figura 7 - Rede neural com duas camadas. 
Fonte: Haykin (2001) 

 

Na Figura 7 tem-se uma rede neural artificial com uma camada intermediária e uma 

camada de saída (M = 2); as unidades na primeira camada (camada oculta) recebem as 

entradas externas agrupadas em um vetor na forma: 

xy =0  (4) 

O vetor de saída da camada oculta da rede é dado por:  

111 bxWu +=  (5) 
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( ) ( )111111 bxWfufy +==  (6) 

O vetor de saída da camada de saída da rede é dado por: 

2122 byWu +=  (7) 

( ) ( )2122222 byWfufy +==  (8) 

Logo, a saída da rede é dada em função do vetor de entrada x, das matrizes de pesos 

W1 e W2 e dos vetores de limiares b1 e b2. A expressão é: 

( )( )2111222 bbxWfWfyy ++==  (9) 

Pode-se representar as equações anteriores de uma forma geral para um total de M 

camadas na rede. Assim: 

111 +++ += mmmm byWu  (10) 

( ) ( )111111 ++++++ +== mmmmmmm byWfufy  (11) 

Sendo m = 0, 1, …, M-1. 

O algoritmo backpropagation para as redes de múltiplas camadas é uma 

generalização do método dos quadrados mínimos (LS –Least Squares) e utiliza como 

medida de desempenho o erro quadrático médio (MSE –Mean Squared Error) (MUELLER, 

1996). Inicialmente, é apresentado um conjunto de exemplos: 

{(x1, s1), (x2, s2), …, (xN, sN)} (12) 

Sendo xn a n-ésima entrada para a rede e sn a saída desejada correspondente (n = 1, 

…, N).   

Após cada entrada ser aplicada à rede, a saída produzida pela rede é comparada com 

a saída desejada, s. O algoritmo deve ajustar os parâmetros da rede (pesos e limiares), com o 

objetivo de minimizar o erro quadrático médio na iteração n. Logo, 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )nnnnnnn TT ysyseeJ −−==  (13) 

Para e(n) sendo o erro ( ) ( )( )nn ys −  na iteração n. 

A lei de ajuste, denominada de steepest descente, para minimizar o erro quadrático é 

dada por: 
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( ) ( ) ( )
m

ji,

m
ji,

m
ji,

w

nJ
nwnw

∂

∂
α−=+1  (14) 

( ) ( ) ( )
m
i

m
i

m
i

b

nJ
nbnb

∂

∂
α−=+1  (15) 

Na qual α  é a taxa de aprendizagem. 

Como o erro é função indireta dos pesos nas camadas intermediárias, a regra da 

cadeia deverá ser usada para o cálculo das derivadas. O conceito de regra da cadeia será 

utilizado na determinação das derivadas das Equações 14 e 15: 

m
ji,

m
i

m
i

m
ji, w

u

u

J

w

J

∂

∂

∂

∂
=

∂

∂
 (16) 

m
i

m
i

m
i

m
i b

u

u

J

b

J

∂

∂

∂

∂
=

∂

∂
 (17) 

Porém,  

∑
=

− +=

1

1

1
-mS

j

m
i

m
j

m
ji,

m
i bywu

 

Logo, 

1-m
jm

ji,

m
i y

w

u
=

∂

∂

, 
1=

∂

∂
m
i

m
i

b

u

. 

Definindo agora a sensibilidade de J, a mudança no i-ésimo elemento da ativação da 

rede na camada m como: 

m
i

m
i

u

J

∂

∂
=δ  (18) 

As Equações 16 e 17 podem ser simplificadas para: 

1-m
j

m
im

ji,

y
w

J
δ=

∂

∂
 (19) 

m
im

ib

J
δ=

∂

∂
 (20) 

Agora, é possível aproximar as Equações 14 e 15 através de 
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( ) ( ) 11 -m
j

m
i

m
ji,

m
ji, ynwnw αδ−=+  (21) 

( ) ( ) m
i

m
i

m
i nbnb αδ−=+1  (22) 

Em notação matricial, as duas equações anteriores tornam-se: 

( ) ( ) ( )11 -mmmm nn yαδWW −=+  (23) 

( ) ( ) mmm nn αδbb −=+1  (24) 

Sendo: 



























∂

∂

∂

∂
∂

∂

=
∂

∂
=

m
S

m

m

m
m

mu

J

u

J
u

J

J

M
2

1

u
δ  (25) 

Ainda é necessário calcular as sensibilidades m
δ , que requerem outra aplicação da 

regra da cadeia. É este processo que dá origem ao termo retro-propagação 

(backpropagation), pois descreve a relação de recorrência na qual a sensibilidade na camada 

m é calculada a partir da sensibilidade na camada m + 1. 

Para derivar a relação de recorrência das sensibilidades, utiliza-se a seguinte matriz 

jacobiana: 































∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

=
∂

∂

+++

+++

+++

+

+++

m
S

m
S

m

m
S

m

m
S

m
S

m

m

m

m

m

m
S

m

m

m

m

m

m

m

m

mmm

m

m

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

1

2

1

1

1

1
2

2

1
2

1

1
2

1
1

2

1
1

1

1
1

1

111

K

MOMM

K

K

u

u
 (26) 

Em seguida encontra-se uma expressão para esta matriz. Considerando o elemento i, 

j da matriz: 
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( ) ( )m
j

m
m

ji,m
j

m
j

m
m

ji,m
j

m
jm

ji,m
j

m
i ufw

u

uf
w

u

y
w

u

u •
+++

+

∂

∂
=

∂

∂
=

∂

∂ 111
1

 (27) 

 

Sendo: 

( ) ( )
m
j

m
j

m
m
j

m

u

uf
uf

∂

∂
=

•

 (28) 

Entretanto, a matriz jacobiana pode ser escrita como: 

( )m
m

m

m

m

uFW
u

u •
+

+

=
∂

∂
1

1

 (29) 

Para a qual, tem-se: 

( )

( )
( )

( )























=

•

•

•

•

m
S

m

m
m

m
m

m
m

muf

uf

uf

L

MOMM

L

L

00

00

00

2

1

uF  (30) 

Agora, pode-se escrever a relação de recorrência para a sensibilidade utilizando a 

regra da cadeia em forma matricial: 

( )( )
1

1
1

1

+

+
•

+

+

∂

∂
=

∂

∂















∂

∂
=

∂

∂
=

m

Tmm
m

m

T

m

m

m
m JJJ

u
WuF

uu

u

u
δ  (31) 

( )( ) 11 ++
•

= mTmm
m

m
δWuFδ  (32) 

Observa-se que as sensibilidades são propagadas da última para a primeira camada 

através da rede: 

121 δ→δ→→δ→δ L
-MM  (33) 

Ainda existe um último passo a ser executado para que o algoritmo de retro-

propagação fique completo. Precisa-se do ponto de partida, Mδ , para a relação de 

recorrência da Equação (32). Este ponto é obtido na última camada: 
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( ) ( ) ( )
M
i

i
iiM

i

T

M
i

M
i

u

y
ys

uu

J

∂

∂
−−=

∂

−−∂
=

∂

∂
=δ 2

ysys
 (34) 

Como:                    ( )M
j

M

M
i

M
i

M
i

i uf
u

y

u

y •

=
∂

∂
=

∂

∂
 (35) 

Pode-se escrever: 

( ) ( )M
j

M

ii
M
i ufys

•

−−=δ 2  (36) 

A Equação 36 pode ser colocada em forma matricial, resultando na Equação 37. 

( )( )ysuF −−=
•

M
M

M
δ 2  (37) 

2.3.4 Algoritmo de otimização para treinamento supervisionado 

A maior parte dos algoritmos de treinamento é baseada nos métodos de gradientes 

descendentes e de Newton. As abordagens baseadas nos métodos de Newton apresentam, em 

geral, melhores resultados pelo fato de serem métodos de segunda ordem, apresentando uma 

convergência quadrática próxima ao mínimo. No entanto, estes métodos são limitados pelo 

grande espaço de memória necessário e pelo volume de cálculos matriciais envolvidos, o 

que os torna praticamente inviáveis para redes de grande dimensão (HAYKIN, 2001). 

Um método simplificado para o treinamento de RNA é o algoritmo de Lavenberg-

Marquart, desenvolvido para se obter uma rápida velocidade de treinamento 

(TORRECILLA et al., 2007). 

Portanto, descreve-se o método de otimização não-linear irrestrito para treinamento 

de redes multicamadas. O treinamento de redes neurais com várias camadas pode ser 

entendido como um caso especial de aproximação de funções, no qual não é levado em 

consideração nenhum modelo dos dados específico (SAMPAIO, 2006).  

Na presente tese, o algoritmo escolhido foi o de Levenberg-Marquardt (LM). A 

escolha deste método foi feita com base na capacidade que o mesmo possui de conseguir 

convergências mais rápidas em relação aos outros algoritmos nas mais variadas aplicações, 

como reconhecimento de padrões e em problemas de aproximação de funções (DEMULTH; 

BEALE, 2002; HAGAN; MENHAJ, 1994; SAMPAIO, 2006). 
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2.3.4.1 Método de Levenberg-Marquardt (LM) 

O método de Levenber-Marquardt é um algoritmo bastante eficiente quando se trata 

de redes que não possuem mais do que algumas centenas de conexões a serem ajustadas 

(MARQUARDT, 1963; HAGAN; MENHAJ, 1994). Isto se deve, principalmente, ao fato de 

que estes algoritmos necessitam armazenar uma matriz quadrada cuja dimensão é da ordem 

do número de conexões da rede. 

Considerando como funcional de erro a soma dos erros quadráticos, e ainda levando 

em conta que o problema pode ter múltiplas saídas, obtém-se a seguinte expressão para o 

funcional de erro: 

( ) ( ) ( )( ) ∑∑∑
== =

=θ=
q

k
l

N

i

m

j
ijij rg-gθJ

1

2
2

1 1

,xˆx  (38) 

Sendo J(θ) o funcional de erro, ( )θ,xˆ ijg  o modelo que procura aproximar a função 

( )xijg , N o número de amostras, l o número de unidades intermediárias, r o erro residual, m 

o número de saídas, e q o produto N  × m. 

Seja J o Jacobiano (matriz das derivadas primeiras) do funcional J dado pela 

Equação 38. Esta matriz pode ser escrita da seguinte forma: 





















∇

∇

∇

≡

T
q

T

T

r

   

r

r

M

2

1

J  (39) 

Sendo r denominado erro residual. 

Diferenciando a Equação 38 obtém-se: 

∑
=

∇==∇
q

k
kk

T r2J
1

2 rrJ  (40) 











∇+=∇ ∑

=

q

k
kk

T rJ
1

22 2 rJJ  (41) 

A matriz de derivadas segundas do funcional de erro é chamada de matriz hessiana. 

Quando os erros residuais são suficientemente pequenos, a matriz hessiana pode ser 

aproximada pelo primeiro termo da Equação 41, resultando em: 
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JJTJ 22 ≈∇  (42) 

Esta aproximação geralmente é válida em um mínimo de J para a maioria dos 

propósitos, e é a base para o método de Gauss-Newton (HAGAN; FORESSE, 1997). A lei 

de atualização torna-se então: 

[ ] rJJJθ TT 1−
=∆  (43) 

A modificação de Levenberg-Marquardt para o método de Gauss-Newton é: 

[ ] rJµIJJθ TT 1−
+=∆  (44) 

O efeito da matriz adicional µµµµI é adicionar µµµµ a cada autovalor de JTJ. Uma vez que a 

matriz JTJ é semidefinida positiva e, portanto, o autovalor mínimo possível é zero, qualquer 

valor positivo, pequeno, mas numericamente significativo, de µµµµ, será suficiente para 

restaurar a matriz aumentada e produzir uma direção descendente de busca. 

Os valores de µµµµ podem ser escolhidos de várias maneiras, sendo a mais simples 

escolher zero, a menos que a matriz hessiana encontrada na iteração i seja singular. Quando 

isso ocorrer, um valor pequeno como ( )
ii

N T∑−=
1

410 JJµ  pode ser usado. Outras formas de 

determinação do parâmetro µµµµ são sugeridas por Hagan e Menhaj (1994). 

É importante observar que, quanto maior for o valor de µ, menor é a influência da 

informação de segunda ordem e mais este algoritmo se aproxima de um método de primeira 

ordem. 

2.3.5 Treinamento da rede MLP 

O treinamento de uma rede MLP envolve os seguintes passos: modo de treinamento, 

topologia da rede, divisão dos dados e avaliação da eficiência do treinamento. Ressalta-se 

que será adotada neste trabalho a função hiperbólica como função de ativação na camada 

oculta e, na camada de saída, a função linear. Além disso, é importante comentar que o 

objetivo é obter uma rede neural com o melhor desempenho ou o menor erro quadrático 

médio de previsão das amostras de validação. 

2.3.5.1 Modo de treinamento 
 

O programa usado para treinar e testar as redes neurais neste trabalho foi o Neural 

Networks Toolbox para uso com MATLAB. Neste Toolbox, os algoritmos foram 
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desenvolvidos para treinamento em lote. Segundo Demuth e Beale (2002), existem duas 

diferentes formas de treinamento para o algoritmo backpropagation: o treinamento na forma 

sequencial e o treinamento na forma de lote. Na forma seqüencial, a atualização dos pesos é 

realizada após a apresentação de cada exemplo, ou amostra, de treinamento. Já na forma em 

lote, todos os exemplos, ou amostras, são aplicados a rede antes da atualização dos pesos. 

Uma apresentação completa de todo o conjunto de treinamento é denominada de época. 

 

2.3.5.2 Topologia da rede 
 

Konderla e Mokanek (2000) e Swingler (1996) apud Palma e Portugal (2009) 

argumentaram que para a topologia da rede, número de camadas e de neurônios da rede, na 

resolução de problemas com o uso de redes neurais artificiais, têm sido utilizadas redes com 

apenas uma, e algumas vezes, duas camadas ocultas. Neste trabalho foram utilizadas redes 

contendo uma única camada oculta. Segundo Oliveira (2000), o uso de uma única camada 

interna tem se mostrado suficiente na modelagem de processos químicos, visto que quando 

há necessidade de modelos mais complexos o ajuste do número de neurônios na camada 

oculta geralmente é suficiente. 

O número de neurônios na camada de entrada é, em geral, igual ao número de 

variáveis de entrada do processo. Entretanto, este número pode ser reduzido através do uso 

de técnicas estatísticas de redução de dimensionalidades (variáveis), como a análise dos 

componentes principais (PCA). Para o número de neurônios na camada oculta não há ainda 

uma regra que indique o número necessário para se obter resultados satisfatórios no 

treinamento da rede. Turner et al. (1996) apresentam algumas observações gerais para 

determinação da topologia da rede consistindo em: 

a. A rede deve ter a estrutura mais simples possível, para evitar sobre-parametrização; 

b. Pode ser demonstrado que qualquer função contínua não linear pode ser modelada 

utilizando uma camada oculta; 

c. O número de neurônios na camada oculta deve ser inicialmente igual ao número de 

entradas. Do ponto de vista prático, este procedimento funciona de maneira satisfatória e 

tende a manter um número relativamente pequeno de pesos necessários para a rede. Se a 

rede falhar para modelar as relações de entrada e saída, o número de neurônios na camada 

oculta pode ser aumentado. 
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Da mesma forma que na camada de entrada, o número de neurônios na camada de 

saída é igual ao número de variáveis de saídas (variáveis a serem preditas) do processo. 

Segundo Oliveira-Esquerre (2003), é recomendável que cada modelo apresente uma única 

resposta (um neurônio) na camada de saída, o que diminui o número de parâmetros a serem 

ajustados e, consequentemente, a carga computacional exigida. Uma exceção a esta regra é 

para situações em que se deseja predizer diversas respostas correlacionadas, como as 

concentrações de diferentes constituintes de uma mistura em um sistema fechado. As redes 

neurais podem ser utilizadas de duas formas: 

a. Um modelo que forneça todas as variáveis de saída a partir das entradas fornecida e;  

b. Um modelo de RNA para cada saída da rede, lembrando que para isto é necessário 

que se tenha o mesmo conjunto de dados padrões para treinamento. 

 

2.3.5.3 Conjunto de dados 
 

Em geral, o conjunto de dados disponível para análise de determinados fenômenos é, 

geralmente, imposto ou limitado em problemas práticos.  Segundo Oliveira-Esquerre (2003), 

é possível obter excelentes resultados para a modelagem de sistemas utilizando um número 

limitado de dados durante o treinamento. Entretanto, se for validar o modelo para um 

conjunto independente de dados, geralmente, uma significativa degradação dos resultados 

pode ser observada devido ao sobre-ajuste (ou overfitting) dos parâmetros e, 

consequentemente, perda da habilidade de generalização. 

Dentro desse contexto, um importante passo no desenvolvimento de um modelo está 

na divisão do conjunto de dados disponíveis em dois ou três subconjuntos, quais sejam: 

1. Treinamento – utilizado para estimar os parâmetros do modelo; 

2. Validação – utilizada para verificar a habilidade de generalização do modelo frente a 

amostras independentes do conjunto de treinamento; 

3. Teste – utilizado para validar o modelo usando novas amostras. 

Ressalta-se que, dependendo da quantidade de dados disponível, pode-se ter apenas o 

conjunto de dados de treinamento e validação. 

De acordo com Despagne e Massart (1998), o ideal para um conjunto de dados 

considerado grande é dividir este conjunto em 40% das amostras para treinamento, 20 % 

para validação e 40% para teste. A performance da rede não deve ser julgada pelo ajuste dos 
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dados de treino, pois estes podem ser ajustados perfeitamente. Os resultados podem ser 

apresentados tanto pelo conjunto de validação como pelo conjunto de teste. Outros autores 

(HAYKIN, 2001; OLIVEIRA et al., 2007; LIMA et al., 2009; NAZÁRIO et al., 2009) 

sugeriram ou utilizaram como particionamento do conjunto a seguinte forma: 50% dos 

dados para treinamento, 25% para validação e 25% para teste. 

No processo de aprendizagem e validação deve-se observar com atenção à escolha 

dos conjuntos de dados, pois a rede deve ser treinada sobre o mais amplo domínio possível, 

de forma que o conjunto de validação esteja contido no conjunto de aprendizagem. Neste 

contexto, uma das limitações das redes reside na dificuldade de extrapolar dados para os 

quais a rede não foi treinada. 

 
2.3.5.4 Generalização 

 

Quando a rede é treinada para atingir um erro mínimo, esta, na maioria dos casos, é 

incapaz de predizer bem amostras que não foram usadas no conjunto de treinamento. A este 

fato é dado o nome de sobre-ajuste (overfitting), pois a rede se especializou nos dados de 

treinamento e perdeu sua capacidade de generalizar para novas situações. A seguir são 

apresentados dois métodos para melhorar a generalização dos dados: a parada antecipada e a 

regularização.  

2.3.5.4.1 Parada antecipada (early stopping) 
 

Quando é feito o treinamento de uma rede neural, geralmente deseja-se obter uma 

rede com a melhor capacidade de generalização possível, ou seja, a maior capacidade de 

responder corretamente a dados que não foram utilizados no processo de treinamento. As 

arquiteturas convencionais, totalmente conectadas, como o MLP, estão sujeitas a sofrerem 

sobre-treinamento (overtraining): quando a rede parece estar representando o problema cada 

vez melhor, ou seja, o erro do conjunto de treinamento continua diminuindo, mas, em algum 

ponto deste processo, a capacidade da rede em responder a um novo conjunto de dados 

piora. Para combater o sobre-treinamento pode-se utilizar os procedimentos de parada 

antecipada que são largamente utilizados por serem de fácil entendimento e implementação 

(HAYKIN, 2001; SILVA NETTO, 2006; RIBEIRO, 2007). 

Na parada antecipada, o conjunto de treinamento é usado para computar o gradiente 

e atualizar os pesos da rede. O erro do conjunto de validação é monitorado durante o 
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processo de treinamento. No entanto, quando a rede inicia a sobre ajustar os dados, o erro no 

grupo de validação irá aumentar. Quando o erro de validação aumenta para um número 

específico de iterações, o treinamento é parado e os pesos no erro mínimo de validação são 

retornados. Esta regra é conhecida como parada antecipada e está ilustrada na Figura 6. A 

parada antecipada foi utilizada no presente trabalho. A raiz quadrada do erro quadrático 

médio (RMSE – Root Mean Squared Error) do conjunto de validação foi usada para avaliar 

o desempenho dos modelos empíricos usados. 

 

Figura 6 - Regra de parada antecipada baseada na validação cruzada 
Fonte: Haykin (2001) 

 

2.3.5.4.2 Regularização bayesiana 
 

Um modelo desejado de rede neural deve produzir pequeno erro não somente nos 

dados de treinamento, mas também nos dados que não pertencem ao conjunto de 

treinamento (conjunto de validação ou de teste). Para produzir uma rede com a melhor 

capacidade de generalização, Mackay (1992) propôs um método para restringir os valores 

dos parâmetros da rede através da regularização. A técnica de regularização direciona a rede 

a responder suavemente e, então, é pouco provável que o sobreajuste (overfitting) aconteça 

(HAGAN; FORESEE, 1997). 

Na técnica de regularização, a função de custo F é definida como: 

wreg FFF β+α=  (45) 

Na Equação 45 F é uma função típica para treinar redes neurais do tipo MLP, que é a 

soma dos erros quadráticos, dada por: 
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E Fw  é a soma dos quadrados dos parâmetros (pesos e bias), dada por: 
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Sendo que na Equação 45 α e β são os parâmetros da função objetivo. 

O problema da regularização é a dificuldade em determinar um valor adequado para 

a taxa. Se o valor for muito grande poderá levar a um sobreajuste e, se for muito pequeno, a 

rede poderá não ajustar adequadamente os dados de treinamento (SAMPAIO, 2006). É 

desejável determinar esses parâmetros de uma forma automatizada e, sendo uma destas 

abordagens o processo que usa a estrutura Bayesiana. 

Na estrutura Bayesiana, os pesos são considerados aleatórios e variáveis. Depois os 

dados são tomados e a função densidade para os pesos podem ser antecipados de acordo 

com a regra de Bayes: 
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Na Equação 48,  D representa o conjunto de dados, M o modelo de rede neural usado 

e w o vetor de pesos da rede. P(w | α, M) é a densidade anterior, que representa o 

conhecimento dos pesos antes de qualquer dado ser coletado. P(D | w, β, M) é a função de 

probabilidade dos dados, quando indicados os pesos w. P(D | α, β, M) é o fator de 

normalização, que garante que a probabilidade total seja igual a 1. 

Se for assumido que o ruído no conjunto de treinamento é Gaussiano e a distribuição 

anterior para os pesos é Gaussiana, a função probabilidade dos dados pode ser escrita como: 
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/

α
π=α . Substituindo estas probabilidades na 

Equação (48), obtém-se: 
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Nesta estrutura Bayesiana, os pesos ótimos deverão maximizar a probabilidade 

posterior P(w | D, α, β, M). Maximizar a probabilidade posterior é equivalente a minimizar a 

função objetiva regularizada wD EEF β+α= . 

Para otimizar os parâmetros da função objetivo α e β, considerar-se a aplicação da 

regra de Bayes. Agora, tem-se: 
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Assumindo ser uniforme a densidade anterior P(α,β|D, M) para os parâmetros α e β, 

então a maximização da posterior é realizada pela maximização da função de probabilidade 

P(D|α,β,M). Nota-se que esta função de probabilidade é o fator de normalização da Equação 

(48). Desde que todas as probabilidades tenham a forma Gaussiana, pode-se conhecer a 

forma da densidade posterior da Equação (48). Isto é mostrado na Equação (50). Agora, 

pode-se resolver a Equação (48) para o fator de normalização. 
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 (52) 

 

As constantes ZD(β) e Zw(α) são conhecidas da Equação 49, e ZF(α,β) pode ser 

estimada por expansão com série de Taylor. Desde que a função objetivo tenha a forma 

quadrática em uma pequena área ao redor do ponto mínimo, pode-se expandir F(w) em volta 

do ponto mínimo da densidade posterior wMP, para o gradiente zero. Resolvendo para a 

constante de normalização obtém-se: 
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Em que w
2

D
2 EEH ∇α+∇β=  é a matriz Hessiana da função objetivo. Colocando 

este resultado na Equação 52, pode-se resolvê-la para os valores ótimos de α e β no ponto de 

mínimo, ou seja, deriva-se em relação a cada logaritmo de Equação 52 e iguala-se a zero. 

Obtém-se, então: 
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Sendo ( )MPMP tr2N Hα−=γ  o número efetivo de parâmetros e N o número total de 

parâmetros. O parâmetro γ  é a medida de quantos parâmetros da rede são efetivamente 

usados na redução da função erro. Este parâmetro pode variar de 0 até N. 

Hagan e Foresse (1997) propuseram aplicar a aproximação Gauss-Newton à matriz 

Hessiana, que pode ser convenientemente implementada se o algoritmo de otimização 

Levenberg-Marquardt for usado para a localização do ponto mínimo. Este minimiza a 

computação adicional requerida para a regularização. 

 

2.3.6 Redes com funções de ativação base radial ( Radial Basis Function – RBF) 

De acordo com Garg et al. (2007) apud Araujo et al. (2010), a RBF apresenta na 

camada de entrada (camada de base radial) neurônios de base radial e apresenta na camada 

de saída (camada linear simples) neurônios com função de ativação linear. Então, as funções 

de base radial são funções não-lineares que podem ser utilizadas como funções-base em 

qualquer tipo de modelo de regressão não-linear (linear ou nãolinear nos parâmetros) e, 

particularmente, como função de ativação de qualquer tipo de rede multicamada. 

As redes com funções de ativação de base radial (RBF) são redes neurais cuja função 

de ativação é a distância entre os vetores de entrada e de peso (funções radiais), 

diferentemente das redes MLP, nas quais se tem como argumento o produto escalar entre o 

vetor de entrada e o vetor de pesos. Na Figura 8 é possível observar dois exemplos de rede 

neural de base radial 
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             (a)                                                                               (b) 
Figura 8 - Rede neural de base radial (a) e rede neural de base radial com múltiplas saídas (b) 
Fonte: BROOMHEAD; LOWE (1988) 

 

As funções radiais representam, então, uma classe especial de funções cujo valor 

diminui ou aumenta em relação à distância de um ponto central. A função radial mais 

utilizada é a gaussiana, expressa pela Equação 55. 
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Sendo jnn cxv −= para a distância em relação ao centro (cjn)  

Semelhante às redes MLP, as redes RBF contêm no mínimo 3 camadas: uma camada 

de entrada, uma camada escondida e uma camada de saída e é bastante difundida a utilização 

de apenas uma camada escondida.  Cada camada desempenha um papel específico na rede, 

Braga et al. (2007): 

a. Camada de entrada – distribui as variáveis de entrada para a camada escondida; 

b. Camada escondida – agrupa os dados de entrada em clusters, transformando um conjunto 

de padrões de entrada não-linearmente separáveis em um conjunto de saída linearmente 

separáveis. Os neurônios dessa camada têm apenas funções de base radial como função 

de ativação, ao invés de funções sigmoidais ou outras. 

c. Camada de saída – procura classificar os padrões recebidos da camada escondida. 

 

Apesar de serem aproximadores universais de funções, as redes MLP e RBF 

apresentam algumas diferenças, destacadas na Tabela 5. 
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Tabela 5 - Comparação de uma rede RBF típica com uma rede MLP convencional  
MLP RBF 

Pode ter uma ou mais camadas intermediárias Geralmente possui apenas uma camada intermediária 

Neurônios das camadas intermediárias e de saída 

têm funções semelhantes 

Neurônios das camadas intermediárias têm funções 

diferentes dos neurônios da camada de saída 

Entrada da função de ativação é o produto 

interno dos vetores de entrada e de pesos 

Entrada da função de ativação é a distância euclidiana 

entre os vetores de entrada e de pesos 

Separa padrões de entrada com hiperplanos Separa padrões de entrada com hiperelipsóides 

Melhor em problemas complexos Melhor em problemas bem-definidos 

Constrói aproximadores globais para 

mapeamento entrada-saída 

Constrói aproximadores locais para mapeamento entrada-

saída 

Fonte: Carvalho et al. (2010) 
 

 É importante ressaltar que, na presente tese, foram aplicadas os dois tipos de redes, a 

MLP e a RBF para avaliar a qualidade de água em relação aos parâmetros ambientais. 

 
2.3.7 Redes neurais e qualidade de água 

A degradação dos recursos hídricos tem aumentado a necessidade de 

desenvolvimentos de projetos relacionados à qualidade da água. A predição do 

comportamento de corpos d’água, através da medida de parâmetros ambientais, funciona 

como uma importante ferramenta no combate a problemas ambientais, como processo de 

eutrofização de reservatórios. Entretanto, esta é uma tarefa difícil devido à complexidade 

dos processos físico-químicos e biológicos causadores desses problemas (KUO et al, 2007).  

O processo de eutrofização resulta no excesso de algas e macrófitas nos 

reservatórios, provocando a deterioração da qualidade da água para uso humano e 

decréscimo nos níveis do oxigênio dissolvido com efeitos adversos para os peixes. Dentre os 

parâmetros, a quantidade de clorofila é o indicador preliminar da eutrofização. Em alguns 

casos, a clorofila-a é linearmente dependente de algumas variáveis como profundidade e 

quantidade de sólidos suspensos (KARUL et al., 2000). 

 Os modelos clássicos fazem aproximações de vários processos envolvendo 

características da água, de modo a representá-los por equações lineares. O comportamento 

não linear do processo de eutrofização tem sido modelado, então, usando redes neurais e 

sistemas fuzzy, com sucesso considerável (KARUL et al., 2000; LU; LO, 2002). 
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Dentre os trabalhos publicados que mostram a utilização de redes neurais artificiais 

para estimativa da qualidade da água, merecem destaque os de Lu e Lo (2002) que retrata o 

diagnóstico de reservatório de água utilizando a lógica fuzzy para representar o processo de 

eutrofização em termos de parâmetros como fósforo total e clorofila-a; o de Strobl et al. 

(2007) que utilizaram diferentes redes neurais para classificar o grau de eutrofização de um 

lago; o de Lo e Wu (2008) que utilizaram uma RNA do tipo MLP para determinação em 

tempo real da dosagem de coagulante a ser utilizada no tratamento da água; e o de Vilas et 

al. (2011) que estudaram a qualidade da água em rios da Espanha utilizando a combinação 

entre os dados de espectrometria (MERIS) e aplicação de redes neurais para determinação 

da clorofila-a, ressaltando a importância desse parâmetro como um bioindicador da 

qualidade da água.  

Predizer o comportamento de corpos d’água, através da medida de parâmetros físico-

químicos consiste em um poderoso instrumento de combate e controle da eutrofização. 

Dentre os parâmetros de qualidade da água, a concentração de clorofila-a é o indicador 

preliminar da eutrofização. Em alguns casos, a clorofila-a é linearmente dependente de 

variáveis como profundidade do sistema e quantidade de sólidos suspensos embora, 

geralmente, não exista relação direta entre qualquer variável medida, clorofila-a e a maioria 

das espécies de algas encontradas em ambientes eutrofizados. (CARVALHO et al, 2007). 

 

2.4 LÓGICA FUZZY 

A lógica como ciência teve origem com o filósofo Aristóteles na Grécia Antiga. Este 

filósofo atribuiu um conjunto de regras que classificavam as sentenças como verdadeiras ou 

falsas. 

Em 1847, o matemático George Boole, com a publicação do Livro The Mathematical 

Analysis of Logic fez nascer a lógica booleana. Essa lógica classificou as sentenças 

atribuindo valores numéricos de 1 para sentenças verdadeiras e 0 para sentenças falsas. No 

entanto, esse conceito dificilmente representava as respostas aos processos reais. Assumir 

somente duas possibilidades deixa de lado fatores que influenciam na resposta real do 

processo. 

Em 1960, Zabeh publicou Fuzzy sets, information and control, que mostrava que os 

recursos tecnológicos eram incapazes de automatizar processos complexos  utilizando a 
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bivalência booleana. Isto provocou o surgimento da lógica fuzzy ou lógica difusa 

(BARBALHO, 2001). 

A lógica fuzzy introduziu os conceitos de parcialmente falso ou parcialmente 

verdadeiro, considerando um grau de incerteza que varia entre 1 (verdadeiro) e 0 (falso).  

Segundo Vieira et al. (1999), os sistemas difusos (lógica fuzzy) foram responsáveis, 

nas ultimas três décadas, por mudanças significativas nas aplicações industriais da 

Inteligência Artificial, especialmente os sistemas de controle, tendo sua aplicação na 

avaliação de riscos e impactos econômicos e ambientais, automação e controle de processos, 

e em sistemas de apoio de decisão.  

De acordo com Barbalho (2001), a lógica fuzzy é uma técnica de inteligência 

artificial baseada no conhecimento heurístico, geralmente representado por um conjunto de 

expressões condicionantes para representar os fenômenos. 

Angulo et al. (2012) aplicaram técnicas matemáticas avançadas para auxiliar no 

gerenciamento e monitoramento da qualidade da água. Nesse trabalho foi desenvolvido uma 

ferramenta software para apoio à decisão, com base na aplicação de técnicas de lógica fuzzy, 

que podem detectar episódios de qualidade a partir do comportamento das variáveis 

contínuas medidas no monitoramento.  

A Figura 9 mostra o processo de desenvolvimento para elaboração das regras da 

lógica fuzzy, esquematizado por Angulo et al. (2012). O sistema desenvolvido nesse 

trabalho foi capaz de gerar, em tempo real, um conjunto de indicadores para definir a 

qualidade da água com base em: dados da rede e conhecimento especializado (empírico) 

sobre a qualidade da água, expresso através de regras. O objetivo, então, foi de traçar um 

perfil da evolução da qualidade da água de uma bacia hidrográfica, permitindo a detecção de 

dois eventos (fenômenos) ambientais: pontos de descargas urbanas, ou causadas por uma 

estação de tratamento de águas residuais, e condições ambientais (eutrofização). 

 
Figura 9 - Desenvolvimento das regras da lógica fuzzy. 
Fonte: Adaptada de Angulo et al. (2012) 
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A lógica nebulosa foi desenvolvida a partir da teoria de conjuntos nebulosos, para 

tratar do aspecto vago da informação (SANDRI; CORREA, 1999; ALTUNKAYNAK et al., 

2005; ICAGA, 2007; PEREIRA et al., 2009), ou seja, com o objetivo de fornecer uma 

ferramenta matemática para o tratamento de informações de caráter impreciso ou vago e 

auxiliar no controle e na tomada de decisão. Esta teoria generaliza o conceito clássico dos 

conjuntos, que pode ser visto como um conjunto nebuloso específico, denominado 

geralmente de crisp, permitindo que objetos possuam graus de pertinência a determinados 

conjuntos, o que possibilita a representação de conceitos imprecisos, sem perder a precisão 

matemática no tratamento.  

A lógica fuzzy possibilita classificar em números reais uma determinada realidade 

ou situação que está atrelada a variáveis linguísticas, incertas ou vagas. Sendo assim é 

possível a modelagem realista de sistemas tendo como objeto de análise, variáveis 

qualitativas, quantidades imprecisas, conceitos vagos e mal definidos (FONSECA, 2003). 

A estrutura da lógica fuzzy foi inicialmente construída a partir dos conceitos já 

estabelecidos da lógica clássica ou tradicional, a qual foi fundamentada na teoria dos 

conjuntos e suas regras, como união, intersecção, além de regras expressas através de 

implicações lógicas. Com a evolução da informática, e associado ao desenvolvimento de 

técnicas relacionadas aos sistemas especialistas, novos operadores foram sendo definidos, 

permitindo que problemas de maior complexidade pudessem ser modelados sob a ótica da 

lógica fuzzy. 

De forma mais objetiva e preliminar, define-se Lógica Fuzzy como sendo uma 

ferramenta capaz de capturar informações vagas, em geral descritas em uma linguagem 

natural e convertê-las para um formato numérico, de fácil manipulação pelos computadores 

de hoje em dia.  

A representação destas informações vagas é desenvolvida através do uso de 

conjuntos nebulosos. Devido a esta propriedade e a capacidade de realizar inferências, a 

Lógica Fuzzy tem encontrado grandes aplicações nas seguintes áreas: Sistemas 

Especialistas; Computação com Palavras; Raciocínio Aproximado; Linguagem Natural; 

Controle de Processos; Robótica; Modelamento de Sistemas Parcialmente Abertos; 

Reconhecimento de Padrões; Processos de Tomada de Decisão (decision making).  
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Os conjuntos Fuzzy constituem uma ligação entre o raciocínio humano ao da lógica 

executada por uma máquina. Tradicionalmente, tem-se, em um conjunto convencional, 

limites bruscos (por exemplo, o conjunto dos números maiores que 2), na qual a transição 

dos membros (elementos que pertencem ao conjunto) para não – membros (elementos que 

não pertencem ao conjunto) é abrupta e finita. O grau de associação do conjunto é 

especificado, por exemplo, por um número 1 para os membros e 0 para os não - membros. 

Por exemplo um controlador de temperatura pode considerar 40ºC como quente mas 39,9ºC 

como frio, não fazendo uso de uma percepção de quanto afasta ou se aproxima do calor de 

referência. Esta percepção seria considerar aspectos de pertinência aproximada utilizando 

um linguístico adequado (GOMIDE; ROCHA, 1992).  

Então, um conceito relacionado com conjuntos nebulosos é o de variável linguística. 

Entende-se por variável um identificador que pode assumir um dentre vários valores. Deste 

modo, uma variável linguística pode assumir um valor linguístico dentre vários outros em 

um conjunto de termos linguísticos. Formalmente, uma variável linguística é caracterizada 

pela quíntupla {X, T(X), U, G, M}, sendo X o nome do conjunto de termos, U o universo de 

discurso, G uma gramática para gerar os termos T(X) e M o significado dos termos 

linguísticos, representado através de conjuntos nebulosos. Variáveis linguísticas podem 

também conter modificadores (também linguísticos) que alteram seu valor. Exemplos de 

modificadores válidos são: muito, pouco, não muito, mais ou menos (OLIVERIA JUNIOR 

et al., 2007).  

Existem também conectivos que podem ser aplicados a estas variáveis, e e ou. 

Assim, um valor válido para a variável linguística altura seria não muito alto e não muito 

baixo. Os modificadores linguísticos podem ser definidos matematicamente, como no 

exemplo dos conjuntos, baixo e muito baixo, no qual o modificador muito é caracterizado 

por elevar cada ponto da função de pertinência à segunda potência. Os conectivos E (and) e 

OU (or) são equivalentes às operações de união e intersecção de conjuntos, respectivamente, 

podendo dar origem a conjuntos complexamente definidos, porém representados 

linguisticamente de maneira simples (CAMPOS FILHO, 2004).  

A Lógica Fuzzy pode ser utilizada para a implementação de controladores 

nebulosos, aplicados nos mais variados tipos de processos. A utilização de regras nebulosas 

e variáveis linguísticas confere ao sistema de controle algumas vantagens, incluindo: 

a. Simplificação do modelo do processo; 
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b. Melhor tratamento das imprecisões inerentes aos sensores utilizados;  

c. Facilidade na especificação das regras de controle, em linguagem próxima à natural;  

d. Satisfação de múltiplos objetivos de controle;  

e. Facilidade de incorporação do conhecimento de especialistas humanos.  

Entretanto, visto que tanto as leituras de sensores quanto os sinais esperados pelos 

atuadores do sistema de controle, não são nebulosos, são necessários elementos adicionais 

entre o controlador nebuloso e o processo a ser controlado. Estes elementos são 

denominados fuzzificador e defuzzificador, e estão posicionados na entrada e saída do 

sistema de controle, respectivamente. Estes elementos são responsáveis por transformar as 

medidas obtidas dos sensores, em conjuntos nebulosos (fuzzificador), e em transformar os 

conjuntos nebulosos obtidos na saída do controlador, em valores não nebulosos de controle 

para o processo (defuzzificador) (CAMPOS; SAITO, 2004). 

2.4.1 Características da lógica fuzzy 

 De forma geral, a lógica fuzzy apresenta as seguintes características (CAMPOS; SAITO, 

2004; OLIVEIRA JUNIOR et al., 2007):  

a. A Lógica Fuzzy está baseada em palavras e não em números, ou seja, os valores 

verdades são expressos linguisticamente. Por exemplo: quente, muito frio, verdade, longe, 

perto, rápido, vagaroso, médio, etc.  

b. Possui vários modificadores de predicado como por exemplo: muito, mais ou menos, 

pouco, bastante, médio, etc. 

c. Possui também um amplo conjunto de quantificadores, como por exemplo : poucos, 

vários, em torno de, usualmente. 

d. Faz uso das probabilidades linguísticas, como por exemplo: provável, improvável, que 

são interpretados como números fuzzy e manipulados pela sua aritmética. 

e. Manuseia todos os valores entre 0 e 1, tomando estes, como um limite apenas. 

Com base em Oliveira Junior et al. (2007) e Campos e Kaito (2004), é possível citar 

as seguintes vantagens e perspectivas da lógica fuzzy:  

a. Requer poucas regras, valores e decisões;  

b. Mais variáveis observáveis podem ser valoradas;  
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c. O uso de variáveis linguísticas nos deixa mais perto do pensamento humano;  

d. Simplifica a solução de problemas;  

e. Proporciona um rápido protótipo dos sistemas;  

f. Simplifica a aquisição da base do conhecimento.  

A seguir serão apresentados os conceitos básicos para utilização da lógica fuzzy em 

geral e no controle de processos. 

 

2.4.2 Conjunto fuzzy 

A lógica fuzzy é baseada na teoria dos conjuntos fuzzy e esta é, em grande parte, 

uma extensão da teoria dos conjuntos tradicionais (OLIVEIRA JUNIOR et al., 2007). 

A Figura 10 exemplifica os dois tipos de conjuntos, tradicional e fuzzy, 

considerando que na teoria de conjuntos clássica, um elemento pertence ou não a um dado 

conjunto e a teoria de conjuntos fuzzy existe um grau de pertinência de cada elemento a um 

determinado conjunto (faixa de pertinência). Ou seja, conforme a definição formal de um 

conjunto tradicional tem-se: 

��	���: � → 0,1 (56) 

Sendo que se o elemento pertence ao conjunto A é atribuído o valor 1 e se não 

pertence é atribuído o valor 0:  ����� 
 	 �1, ��	� ∈ �0, ��	� ∉ � 

 
Figura 10 - Função do conjunto tradicional (a) e conjunto fuzzy (b) 

 

A representação do grau de pertinência (o quanto pertence, parcialmente, fortemente, 

fracamente, etc...) é definida por meio de uma função característica generalizada 

denominada de função de pertinência	��	���: 
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��	���:	�	 → [0,1] (57) 

Sendo que: 

��	���:	1	��	�	 → [0,1]	indica	que	�	é	completamente	compatível	com	� 

��	���:	0	��	�	 → [0,1]	indica	que	�	é	completamente	incompatível	com	�  

0 < ��	��� < 1	��	�	 → [0,1]	indica	que	�	é	parcialmente	compatível	com	�  

Sendo que X é o universo de discurso e A é um subconjunto fuzzy de X. Essa função 

associa a cada elemento x de X o grau ��	���, com o qual x pertence a A.  

A representação de pertinência anterior indica o grau com que um elemento x 

pertence ao subconjunto A, grau este que pode assumir infinitos valores no intervalo [0,1]. A 

representação formal como um conjunto é:  

� 
 )����	���}		|	� ∈ �, ��	���:	� → [0,1] (58) 

Um conjunto fuzzy definido no universo de discurso A é caracterizado por uma 

função de pertinência ��, a qual mapeia os elementos de X para o intervalo [0,1]. Assim, a 

função de pertinência associa a cada elemento x pertencente a X um número real ��	���	no 

intervalo [0,1], que representa o grau de pertinência do elemento x ao conjunto A.  

 

2.4.3 Funções de pertinência 
 

Os conjuntos fuzzy são definidos através de sua função de pertinência que mostra a 

intensidade com que o objeto pertence ao conjunto fuzzy. Existem várias formas de 

representar uma função fuzzy de pertinência, sendo que, as mais usuais são a triangular, 

gaussiana, trapezoidal, sigmóide bipolar, S e quadrática, sendo todas definidas no intervalo 

de pertinência de 0 a 1. As funções mostradas a seguir (triangular, gaussiana e trapezoidal) 

são as mais utilizadas na literatura (CAMPOS; SAITO, 2004; OLIVEIRA JUNIOR et al., 

2007). 

 

2.4.3.1 Função de pertinência triangular 
 

A função triangular é caracterizada por uma terna (a, b, c) sendo que a e c 

determinam o intervalo para o qual a função arrume valores diferentes de zero, e b 
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representa o ponto no qual a função de pertinência é máxima. Ou seja, os números fuzzy 

começam a subir a partir de zero x = a; atingem um máximo de 1 em x = b; e retornam a 

zero em x = c. Em seguida, a  função µ (x) de um número fuzzy triangular é representada na 

equação (59) e na Figura 11.  

,-./���; 1, 2, 3� 
 4 0, � 5 1�� 6 1�/�2 6 1�,			1 < � 5 2	�3 6 ��/�3 6 2�,			2 < � 5 30, � 8 3  (59) 

Ou:  ,-./���; 1, 2, 3� 
 /1� 9min 9:;<=;< , >;:>;=? , 0? 

 
Figura 11 - Representação da função triangular 
Fonte: MATLAB (2011) 

 

2.4.3.2 Função de Pertinência Guassiana 
 

A função de pertinência gaussiana é caracterizada pela sua média e pelo desvio 

padrão. A função µ (x) de um número fuzzy gaussiana é representada na Equação 60 e na 

Figura 12.  

@1A��/���; 1, 2, 3� 
 1�;�:;=�BC>B  
(60) 

 

Figura 12 - Representação da função gaussiana 
Fonte: MATLAB (2011) 
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2.4.3.3 Função de Pertinência Trapezoidal 
 

A função de pertinência trapezoidal é caraterizada por um conjunto de valores de a, 

b, c, e d, sendo que a e d determinam o intervalo dentro do qual a função assume valores 

diferentes de zero, e b e c determinam o intervalo para o qual a função é máxima e igual a 1. 

Ou seja, na função trapezoidal os números fuzzy começam a subir a partir de zero x = a; 

atinge um máximo de 1 em x = b, se mantém em 1 no intervalo {b c}  e retorna a zero em x 

= d. A  função µ (x) de um número fuzzy trapezoidal é representada na Equação 61 e na 

Figura 13.  

,-1D/���; 1, 2, 3� 
 	
EFF
G
FFH

0, � 5 1� 6 12 6 1 , 1 < � 5 2	�3 6 2�, � 
 1I 6 �I 6 3 , 2 < � 5 30, � J I
 (61) 

Ou:  

,-1D/���; 1, 2, 3� 
 /1� K/.L K� 6 12 6 1 , 1, I 6 �I 6 3M , 0M 

 

Figura 13 - Representação da função trapezoidal 
Fonte: MATLAB (2011) 

 

Dessa forma, as funções das Figuras 11, 12 e 13, refletem o grau de pertinência do 

elemento x para o conjunto fuzzy.  

 
2.4.4 Variáveis Linguísticas no Sistema de Inferência Fuzzy 

 

Na representação fuzzy do conhecimento o sistema não pode ser caracterizado de 

maneira definitiva, do tipo é ou não é, pertence ou não pertence. Dessa forma, de acordo 
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com Campos Filho (2004), uma variável linguística pode ser considerada como sendo o 

nome dado a um conjunto fuzzy, cabendo variações associadas às expressões linguísticas 

como é, mais ou menos, não é, ou alto, médio, baixo. Essas variações são definidas com 

base no conhecimento do sistema por especialistas da área. 

A forma de utilização das variáveis linguísticas depende das propriedades do sistema 

de inferência fuzzy. Essas propriedades podem ser sintáticas e semânticas. Para as 

propriedades sintáticas as informações linguísticas são armazenadas, gerando a criação de 

uma base de conhecimento do sistema em análise. Para as propriedades semânticas é 

especificado o modo como é extraído e processado o conhecimento, contido na estrutura 

definida pelas propriedades sintáticas e pela interferência das regras estabelecidas, conforme 

comenta, ainda, Campos Filho (2004). 

Por exemplo, o conjunto de temperatura de sistema de processamento de biscoitos, 

poderia ser representado através das variáveis “baixa”, “média” e “alta”, conforme mostra a 

Figura 14. 

 

Figura 14 - Função triangular do conjunto de temperatura de processamento de biscoitos 
 

Na construção do modelo fuzzy, para cada variável linguística é atribuído um 

intervalo numérico contínuo de entrada. Conforme o exemplo mostrado na Figura 14, 

referente ao conjunto de temperatura, será analisado o grau de pertinência de cada 

temperatura a cada conjunto fuzzy de temperatura. Neste conjunto, tem-se:  

a. O conjunto temperatura baixa: tem seu grau de pertinência 100% quando o valor de X 

varia entre 0 e 25. Esse grau de pertinência vai diminuindo até chegar em 0 quando x = 50.  

b. O conjunto temperatura média: de 37,5 até 50 vai aumentando o grau de pertinência. 

Quando a temperatura é 50ºC tem grau de 100%, e começa a cair até chagar em 0, quando X 

for 75. 
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c. O conjunto temperatura alta: a partir de 62,5ºC vai aumentando o seu grau de pertinência. 

Quando chega a 75ºC, o grau de pertinência alcança 100% e se mantém alta.  

No sistema de inferência fuzzy é através das variáveis linguísticas que ocorre o 

relacionamento entre os conjuntos, para gerar a resposta do modelo. Esse relacionamento, 

feito mediante as regras de inferência, que serão comentadas nos próximos itens. 

 

2.4.4.1 Regras de Inferência Fuzzy  
 

Define-se inferência como a passagem, através de regras válidas, do antecedente 

(SE) ao consequente (ENTÃO) de um objeto de estudo. Na lógica fuzzy, essa passagem é 

realizada mediante a interação, determinada pelas regras de inferência, entre as variáveis 

linguísticas de entrada (SE), gerando um conjunto de dados de saída (ENTÃO). Essas regras 

são aplicadas aos conjuntos fuzzy através das variáveis linguísticas e são construídas 

mediante a operação entre os conjuntos (CAMPOS; SAITO, 2004; OLIVEIRA JUNIOR et 

al., 2007). 

No procedimento de inferência é analisado o grau de pertinência, associado àquele 

mesmo valor numérico no universo de discurso, relacionando-os a uma base de regras 

conforme a condicional se – então. 

O tipo de inferência ocorre: 

If(Se) < antecedente > then(Então) < conseqüente > 

Ou 

SE <situação>  ENTÃO <ação> 

Na lógica clássica a inferência é dada pela comparação, sendo que se permite apenas 

uma compatibilidade exata, ou seja, é ou não é, pertence ou não pertence. No raciocínio 

difuso é possível adotar um valor aproximado dependendo da pertinência ou fuzzyficação 

dessa variável ao conjunto fuzzy. (WESTPHAL, 2003; SIVANANDAM et al., 2007) 

O processo de defuzzificação é utilizado quando a inferência é realizada em um 

sistema do tipo clássico com o objetivo de obter um valor de saída numérico (SAADE, 

2000; SIVANANDAM et al., 2007). Em um sistema de inferência fuzzy, como no método 

de Mamdani, a característica de saída é obtida a partir de valores defuzzificados de produção 

de conjuntos fuzzy. Estes originados da agregação de diferentes resultantes de cada regra 
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(fornecidas após a fuzzyficação) da base de regras de inferência distribuídas no universo de 

discurso.  

Sendo assim, após a entrada das variáveis numéricas precisas, são ativadas as regras 

(fuzzyficação), em seguida o sistema de inferência determina como as regras (determinadas 

por especialistas) são combinadas. Como resultado dessa combinação tem-se uma agregação 

entre as respostas das regras e, após a escolha do tipo de resposta em relação à distribuição 

dos dados agregados (defuzzyficação), tem-se a resposta do modelo no domínio das 

variáveis de saída num correspondente universo de discurso. Dessa forma, as entradas e 

saídas do sistema são denominadas respectivamente, fuzzificação e defuzzificação e 

correspondem às etapas principais de modelos de inferência  fuzzy (MALUTTA, 2004). 

Esses passos estão descritos na Figura 15. 

 
Figura 15 - Sistema de inferência fuzzy 
Fonte: Adaptada de Malutta (2004) 

 

Neste sentido, em resumo, são estabelecidas as etapas para metodologia fuzzy: 

a. Etapa de fuzzificação: etapa na qual se modela matematicamente a informação das 

variáveis de entrada do sistema por meio de conjuntos fuzzy. Nesta etapa, o papel do 

especialista ou o conhecimento do sistema é notado, pois, para cada variável de entrada, 

termos linguísticos devem ser atribuídos para representá-la e cada termo linguísticos deve 

ser associado ao conjunto fuzzy através da função de pertinência definida. 

b. Etapa de base de regras: é o cerne do conhecimento, ou seja, nesta etapa são inseridas as 

variáveis e suas classificações linguísticas. 

c. Etapa de inferência: nesta, define-se os conectivos lógicos para modelar as regras 

estabelecidas. 

d. Etapa de defuzzificação: nesta etapa é realizada transformação da variável de saída fuzzy 

em um valor numérico.  
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2.4.4.2 Métodos de Inferência Mamdani 

Campos Filho (2004) cita que a primeira aplicação da lógica fuzzy em controle de 

processos foi realizada por Mamdani e Assilam em 1975, com base as teorias propostas por 

Zadeh em 1965. Neste trabalho, o desenvolvimento do sistema de controle foi voltado para o 

funcionamento de máquinas a vapor através da modelagem matemática das atividades 

(ações) dos operadores das máquinas, considerados os especialistas do sistema, tornando as 

tarefas automatizáveis. 

A partir de então, o método de inferência proposto por Mamdani e Assilam tornou-se 

uma referência padrão para a utilização da lógica fuzzy em processamento de conhecimento 

em diversas áreas. 

Ainda de acordo com Campos Filho (2004), o método de inferência de Mamdani e 

Assilam  possui módulos de interface que transformam as variáveis de entrada baseadas em 

grandezas numéricas, em conjuntos fuzzy equivalentes e, posteriormente, as variáveis fuzzy 

geradas em variáveis numéricas proporcionais, adequadas para os sistemas de atuação 

existentes. 

No método de inferência fuzzy de Mamdani, a regra semântica tradicionalmente 

usada para o processamento de inferência é denominada de Máx-Min, utilizando as 

operações de união e interseção entre conjuntos por meio de operadores de máximo e 

mínimo, respectivamente (ALMEIDA; EVSUKOFF, 2003 apud LANDMANN; 

ERDMANN, 2011). Gomide (2007), através da Figura 16, mostra o método Mamdani de 

inferência.  

Tosun et al. (2011) comentam que, comumente, no modelo de Mamdani, tanto o 

antecedente e consequente são proposições fuzzy e os termos linguísticos fuzzy if (se) e then 

(então) atribuem a seguinte forma geral para as regras fuzzy: NO: P�	�	é	�O 	QL,ãS	T	é	UO,			. 
 1,2, …X 

Sendo Ri é o número de regra fuzzy, Ai e Bi são os conjuntos fuzzy, x é a variável 

antecedente que representa a entrada no sistema fuzzy, e y é a variável consequente 

relacionada à saída do sistema fuzzy. 
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Figura 16 - Inferência Mamdani 
Fonte: Gomide (2007) 
 
2.4.4.3 Métodos de Defuzzificação 

 

Na etapa de defuzzificação, a variável difusa produzida pela etapa de inferência é 

transformada em variável numérica (determinística) que proporcionará a análise da resposta 

do sistema. Os métodos de defuzzificação mais utilizados são: o primeiro máximo, a média 

dos máximos e o centro da área ou centróide. Esses métodos estão representados Tabela 5. 

a. Método do primeiro máximo o valor de saída corresponde ao ponto em que o grau de 

pertinência da distribuição atinge o primeiro valor máximo; 

b. No método da média do máximos o valor de saída corresponde ao ponto médio entre os 

valores que tem maior grau de pertinência; 

c. No método centróide, mais utilizado, o valor de saída corresponde ao centro da gravidade 

da função de distribuição. 

Tabela 6 - Comparativo dos métodos de defuzzificação. 

Método Fórmula Gráfico 

Primeiro máximo �	Y1� 
 �	/1�1 Z �	/1�2 

 



66 
 

 

Média dos máximos �	Y�IY1� 
 ��	/1�[ Z	�	/1�C�2  

 

Centróide �\ 
 ∑�.^.∑^.  

 

 

No que concerne a avaliação e monitoramento de sistemas hídricos, vários autores 

utilizaram a lógica fuzzy para classificar ou avaliar os sistemas quanto a sua qualidade para 

determinado uso do recurso hídrico Altunkaynak et al. (2005), Icaga (2007), Pereira et al. 

(2009), Lermontov et al. (2009), Peche e Rodríguez (2012) e Angulo et al. (2012). Dentre 

estes, no trabalho de Angulo et al. (2012) merece destaque a aplicação de técnicas 

matemáticas avançadas para auxiliar no gerenciamento e monitoramento da qualidade da 

água, com o objetivo de detectar episódios (fenômenos) de qualidade, a partir do 

comportamento das variáveis ambientalmente representativas desses fenômenos. 

 

2.4.5 Sistema Neuro-Fuzzy 

A modelagem utilizando os sistemas neuro-fuzzy é, atualmente, uma das técnicas 

mais modernas e poderosas em engenharia, principalmente quando aplicada a sistemas 

fortemente não-lineares e de comportamento transiente.  

De acordo com Oliveira Júnior et al. (2007), os sistemas neuro-fuzzy consistem na 

representação do sistema fuzzy na forma de redes passíveis de treinamento, por técnicas 

semelhantes às usadas em redes neurais. O processo de treinamento na verdade é o ajuste de 

parâmetros, com o objetivo de minimizar a função erro entre as saídas desejadas e as 

apresentadas pela rede. Os sistemas neurofuzzy têm como objetivo, então, conjugar a 

capacidade de aprendizagem das redes neurais à interpretação característica dos sistemas 

fuzzy. 

Uma das redes neuro-fuzzy mais conhecidas e aplicadas é a estrutura ANFIS 

(Adaptive Neuro-Fuzzy Inference System) proposta em Jang (1993). Esta estrutura é 

composta por 5 camadas e exemplificada nas Figuras 17 e 18: 
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a. Camada 1: esta camada recebe as variáveis de entrada e as “fuzzyfica”, ou seja, associa 

cada entrada x com um termo linguístico Ai através da seguinte equação: 

_O[ 
 ��`�:� (62) 

Sendo que x é o valor da entrada no nó i e Ai é o valor linguístico associado a esta função; _.1 é a função de pertinência de A1 e especifica o grau com que o valor da entrada satisfaz o 

valor linguístico Ai. Para representar esta função é usada, comumente, a função gaussiana.  

b. Camada 2: cada neurônio desta camada representa uma regra de inferência fuzzy que, ao 

receber as variáveis de entrada “fuzzyficadas”, define o grau de aplicabilidade da regra, ou a 

força da regra, executando uma função fixa:  

^O 
 ��`�:�. �b`�:� (63) 

Sendo wi a saída da unidade i, que representa o grau de aplicabilidade de uma regra. 

c. Camada 3: esta camada é definida pela normalização do grau de pertinência de cada 

regra, considerando-se como um pré-processamento da defuzzyficação; nesta, para cada 

unidade i, calcula-se a razão entre a aplicabilidade da i-ésima regra e a soma de todas as 

aplicabilidades do sistema de regra através da equação: 

ĉddd 
 ^O^[ Z ^C (64) 

Sendo ^.e  são as saídas dessa camada, denominadas de aplicabilidades normalizadas. 

d. Camada 4: nesta camada adaptativa efetua-se o produto entre o grau de aplicabilidade 

da regra normalizado e os valores processados em cada regra, correspondentes aos 

singletons ou a combinação linear das variáveis de entrada, conforme a Equação 65. 

_Of 
 ĉddd. �O 
 ĉddd. �DO� Z gOT Z -O) (65) 

Sendo ĉddd a saída da terceira camada e )DO, gO, -O} o conjunto de parâmetros das 

consequências. 

e. Camada 5: nesta camada calcula-se a variável de saída de cada multiplexador, ou seja, 

realiza-se o processo de defuzzyficação através da soma dos produtos obtidos na Camada 4: 

_Oh 
 i ĉddd. �OO 
 ∑ ĉddd. �OO∑ ĉdddO  

 

(66) 

 As Figuras 17 e 18 apresentam a relação entre as equações 62 a 66. 
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Figura 17 - Arquitetura básica ANFIS  
Fonte: Jang (1993) 

 

 
Figura 18 - ANFIS com 9 regras de inferência. 
Fonte: Jang (1993) 
 

Para diversas áreas, alguns trabalhos publicados utilizam o sistema de inferência 

adaptativa neuro-fuzzy (ANFIS), merecendo destaque, por exemplo:  

a. Taylan e Darrab (2011) apresentam uma abordagem sistemática para um sistema de 

inferência adaptativa neuro-fuzzy de controle de produção de tapetes em relação a 

quantidade de látex presente para minimizar as variações indesejáveis na qualidade do 

produto. Neste trabalho, o sistema ANFIS apresentou resultados melhores do que as outras 

ferramentas de controle estatístico do processo, fornecendo uma distribuição mais eficiente e 

uniforme do peso do látex.  

b. Yetilmezsoy et al. (2011) realizaram um estudo para prever a estabilidade da mistura 

(emulsões) água e óleo utilizando o sistema de inferência adaptativa neuro-fuzzy. Neste 

trabalho foram utilizados fatores básicos, como viscosidade, densidade e fração de SARA 

(saturados, aromáticos, resinas e asfaltenos) para desenvolver um índice de estabilidade da 
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mistura. Os resultados deste estudo mostraram que a modelagem neuro-fuzzy pode ser usada 

com sucesso para prever a estabilidade dessa mistura água e óleo. 

c. Sucena et al. (2012) propõem um modelo para um Indicador de Sustentabilidade 

Sistêmica (ISS) de apoio ao Sistema de Gestão Ambiental (SGA). Para composição desse 

índice, foram utilizados os conceitos conjugados das teorias fuzzy e de redes neurais 

associados aos indicadores ambientais, propostos no SGA, do sistema MagLev-Cobra, para 

gestão de transporte urbano. Os autores deste trabalho ressaltaram que o sistema neuro-fuzzy 

permitiu desenvolver, de forma simplificada e mais barata, bancos de dados para armazenar 

as variáveis de entrada e os resultados, bem como as telas para sua gestão, quando 

comparado com outros sistemas da área (plataformas de Business Intelligence (BI) e 

softwares especialistas).  

No entanto, dentre os poucos artigos publicados sobre análise da qualidade da água 

aplicando o sistema neuro-fuzzy, merece destaque o trabalho de Yan et al. (2010). Neste 

trabalho, os autores desenvolveram um modelo baseado na ANFIS para avaliar a aplicação 

de um sistema neuro-fuzzy para classificar a qualidade da água e comparar com a 

performance obtida por um modelo de redes neurais. Neste trabalho, os parâmetros de 

qualidade da água selecionados foram a concentração de oxigênio dissolvido, a demanda 

química de oxigênio e a concentração de amônia no sistema. Para estes dados, o modelo 

obteve 89,59% de precisão quanto ao nível de qualidade do rio estudado, resultado este 

satisfatório. Além disso, o modelo apresentou melhor desempenho que a redes neurais. 

 
2.5 ANÁLISE DE COMPONENTES PRINCIPAIS  

 A Análise de Componentes Principais (Principal Component Analysis - PCA) é uma 

técnica estatística multivariada, em que novas variáveis (componentes principais) são 

formadas através da combinação linear das variáveis originais, mantendo a máxima 

variância possível e sujeitas à duas condições: a variância total deve se manter a mesma e as 

componentes devem ser não-correlacionadas (MIDDLETON, 2000).  

 Parinet et al. (2004), Ouyang (2005), Çamdevýren et al. (2005), Karydis et al. (2007 

e 2009), Zimmermann et al. (2008), Primpas et al. (2010) e Kitsiou e Karydis (2011) 

apresentam a utilização da estatística multivariada, a exemplo do PCA, na classificação do 

nível de eutrofização de corpos d’água. 

As primeiras componentes mantêm a maior parte da variância do sistema original 

(Figura 19), que contém m variáveis, de modo que é possível compactar grande parte da 
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informação linear desse sistema em apenas k novas variáveis, sendo k < m. Assim, a i-ésima 

componente principal de um conjunto de m variáveis é definida segundo a Equação 62, 

sendo Zi é a componente principal, os aij são os loadings e Xj são as variáveis originais. 

  

Zi = ai1X1 + ai2X2 + ... + aimXm (62) 

 
Figura 19 - Representação geométrica das componentes principais 
Fonte: Carvalho et al. (2010) 
 

De acordo com Çamdevýren et al. (2005), o PCA oferece um método objetivo para 

lidar com um grande conjunto de dados bióticos e abióticos e ajuda a reduzir a 

complexidade de sistemas multidimensionais através da maximização da variância dos 

loadings das componentes e da eliminação de componentes pouco representativas. 

Um índice tem como objetivo sintetizar em uma única variável a informação de 

todas as variáveis que foram medidas sobre o fenômeno, sendo que seus valores podem ser 

analisados por métodos de estatística univariada. As técnicas como análise de componentes 

principais, análise fatorial e análise de correlações canônicas são úteis na construção desses 

índices (MINGOTI, 2005). 

Com o objetivo de quantificar as concentrações de nutrientes e o estado do 

fitoplâncton em águas marinhas, diversos índices foram propostos e buscando uma nova 

abordagem nesse campo. Karydis et al. (2007) propuseram um índice multivariado baseado 

em PCA para classificar a água do mar em oligotrófica, mesotrófica e eutrófica utilizando 

variáveis já conhecidas como sendo de grande influência no fenômeno da eutrofização: 

concentrações de PO4, NO3, NO2 NH3 e clorofila-a.  

Em outro trabalho, Karydis et al. (2009) aplicaram com sucesso a metodologia para 

classificação do nível trófico do mar Egeu e o compara com a classificação das Diretrizes da 

União Européia para Gestão das Águas (European Water Framework Directive), 
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demonstrando que o índice poderia ser utilizado para classificar a qualidade da água em alta, 

boa, moderada, pobre e ruim. 

O índice de trofia utilizado nesse trabalho foi proposto por Karydis et al. (2007 e 

2009). Os autores desse trabalho justificam o uso dessa técnica estatística na construção do 

índice pelo fato do PCA ser capaz de realizar uma redução de dimensionalidade de modo a 

sintetizar em algumas poucas componentes, grande parte da informação contida no sistema 

original. 

 A construção do índice foi feita a partir da utilização da primeira componente 

principal utilizando a matriz de correlação das variáveis originais para evitar que a 

discrepância das unidades de medidas influencie na determinação da direção dos novos 

eixos ortogonais. O índice, conforme Karydis et al. (2007 e 2009) é dado pela Equação 63. 

IE = a[PO4] + b[NO3] + c[NO2] + d[NH3] + e[Cl-a] (63) 

 

Sendo que os coeficientes a, b, c, d e e são os loadings da primeira componente 

principal. Esse índice utiliza somente as concentrações de PO4, NO3, NO2, NH3 e clorofila-a 

como variáveis para sua construção, visando a classificação de águas. O índice desenvolvido 

nesse trabalho, por outro lado, abre a possibilidade para que outras variáveis, como pH, 

oxigênio dissolvido, sólidos solúveis e outros, possam ser utilizadas pois essas variáveis 

físico-químicas estão em maior ou menor grau ligadas às causas ou efeitos da eutrofização 

(PARINET et al., 2004). 

 A definição dos limites para a classificação no nível de trofia foi feita utilizando-se 

análise de distribuição de frequência (KARYDIS et al., 2009), na qual os subconjuntos de 

dados, com exemplos para um corpo eutrófico, mesotrófico e oligotrófico, são normalizados 

por transformação logarítmica e os limites do índice são calculados usando µ-σ e µ+σ em 

que µ  é a média e σ é o desvio padrão dos valores do índice antes da transformação. 

 



 

3 METODOLOGIA 
 

 A presente tese constitui um estudo de caso de base empírica, pelo fato de ser uma 

abordagem metodológica com ênfase nas características do fenômeno (processo) e tem 

como base as características associadas aos processos, para a obtenção de dados e da melhor 

estratégia para análise dos mesmos (MARKONI; LAKATOS, 2010). 

 O fenômeno, neste trabalho, foi a avaliação da qualidade da água em corpos 

hídricos através da utilização de redes neurais, lógica fuzzy e modelo híbrido neurofuzzy. 

Avaliou-se, também, a qualidade da água através da construção de um índice de qualidade 

da com base na análise de componentes principais. 

 Neste processo, as análises das amostras de água foram realizadas no Laboratório 

de Química Analítica Ambiental (LQA), bem como foram utilizados os dados ambientais 

disponibilizados pela Secretária de Recursos Hídricos de Sergipe (SRHSE). Os dados estão 

disponibilizados no ANEXO A. É importante ressaltar que a metodologia adotada para 

caracterização físico-química dos reservatórios foi a análise dos parâmetros de acordo com a 

Standard Methods for the Examination of Water and Wastewater, American Public Health 

Association (APHA, 1998). 

 O fluxograma apresentado na Figura 20 mostra a estratégia empírica e numérica 

aplicadas para desenvolvimento do trabalho. 

 
Figura 20 - Estratégia metodológica do trabalho 
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3.1 AMBIENTES DE ESTUDOS  

 Na presente tese foram avaliados os dados ambientais dos reservatórios da Marcela 

e de Jacarecica e do Rio Poxim, em Sergipe. 

 

3.1.1 Reservatório da Marcela 

 O reservatório da Marcela (Figura 21), situado na cidade de Itabaiana-SE, foi 

construído no período 1953-1957 pelo barramento do riacho Fuzil. A obra teve a parceria 

dos Governos Federal e Estadual, tendo como objetivo maior a manutenção do homem no 

campo, ou seja, a diminuição do êxodo rural. Esse reservatório tem uma capacidade de 

2,7x106 m3, ocupa uma área de 14 km2 e foi projetado para fornecer água para irrigação de 

156 hectares, com extensão de 1,0 km (ALVES; GARCIA, 2006).  

 
Figura 21 - Reservatório da Marcela (SRH-SE, 2005) 
 

3.1.2 Reservatório Jacarecica 

 O reservatório de Jacarecica II (Figura 22) foi construído pelo barramento do Rio 

Jacarecica, afluente da margem direita do Rio Sergipe, está situado na divisa do município 

de Malhador e Areia Branca, distante 55 km da cidade de Aracaju, capital do Estado. O 

reservatório teve sua fase de enchimento iniciado em novembro de 2000, tem capacidade 

máxima de 29,7x106 m3 de água, com uma cota, prevista no projeto, de 70 m e 

aproveitamento para irrigação de 1600 hectares e uso doméstico, além de uma extensão de 

4,5 km.  
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Figura 22 - Reservatório de Jacarecica II  
Fonte: Google Earth (Acesso em 2007) 
 

3.1.3 Rio Poxim 

A área de drenagem da sub-bacia hidrográfica do rio Poxim compreende 381,5 km2 e 

faz parte da bacia hidrográfica do rio Sergipe que drena uma superfície de cerca de 3.670 

km². De formato alongado, no sentido noroeste - sudeste, esta unidade de planejamento é 

limitada ao sul pela bacia hidrográfica do Rio Vaza-Barris e, ao norte, pelo Rio Sergipe. As 

suas principais nascentes localizam-se a oeste, limite final da Serra dos Cajueiros e sua foz a 

leste, no rio Sergipe, próxima ao Oceano Atlântico. Ressalta-se que desde 1958 o Rio Poxim 

tem sido uma das fontes de suprimento de água para Aracaju, sendo, portanto, vital seu 

monitoramento (ALVES; GARCIA, 2006).  

A Figura 23 mostra a sub-bacia do Rio Poxim e identifica a presença de possíveis 

aportes de contaminantes (Conjunto habitacional e a Universidade Federal de Sergipe – SE). 

Nesta figura também são mostrados o ponto de captação de água e a localização de uma 

Estação de Tratamento de Água (ETA) da Companhia de Saneamento de Sergipe (DESO). 
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Figura 23 - Sub-bacia do Rio Poxim 
Fonte: Google Earth (2012) 

 
 
3.2 MATERIAIS E MÉTODOS 

 

 No monitoramento ambiental, os dados experimentais foram obtidos utilizando os 

procedimentos analíticos consagrados na literatura da área. Nesse caso, a metodologia 

adotada para caracterização físico-química dos ambientes de estudo foi a análise dos 

parâmetros de acordo com a APHA (1998). A Tabela 7 mostra os parâmetros (variáveis), o 

método empregado e a referência metodológica APHA. 

 

Tabela 7 - Variáveis, métodos e referências utilizados para a caracterização da água dos 
reservatórios  

Variável Metodologia Referência 

pH Peagâmetro marca Digimed, modelo DMPH-2 

 
 

Transparência Disco de Secchi, equipamento de campo  
Temperatura Termômetro digital  
Condutividade Elétrica Condutivímetro, marca Digimed, modelo CD-21 APHA 2510 

Amônia Espectrofotômetro, método do feno, APHA 4500-NH3 F 
Nitrito Espectrofotômetro, método colorimétrico APHA 4500-NO2

- B 

Nitrato Espectrofotômetro, com redução em coluna 
automática de cádmio 

APHA 4500-NO3
- F 

Nitrogênio Total Espectrofotômetro, com redução em coluna 
automática de cádmio 

APHA 4500-Norg D 

Fósforo Total Espectrofotômetro APHA 4500-P E 
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Continuação...   

Oxigênio Dissolvido Método de Winkler modificado, com utilização 
de azida sódica 

APHA 4500-O  C 

Clorofila a Espectrofotômetro APHA 10200 H 

Cor Espectrofotômetro  

Profundidade Equipamento de campo  

Sólidos totais suspensos Gravimétrico APHA 2540 C 

Sólidos totais dissolvidos Gravimétrico APHA 2540 D 

Alcalinidade Titulométrico  

Demanda bioquímica de 
oxigênio 

Titulométrico APHA 5210 B 

 
 
3.3 REDE NEURAL 

Na presente tese as redes MLP e RBF foram construídas para os dados dos 

reservatórios da Marcela e de Jacarecica. É importante ressaltar que, em decorrência da 

disponibilidade dos dados, foram utilizados diferentes parâmetros para os dois reservatórios. 

Essa disponibilidade era limitada pelo fato de ser o LQA um prestador de serviços e a 

depender do projeto, alguns parâmetros não eram exigidos ou necessários. 

 

3.3.1 Rede MLP 

 A rede neural artificial MLP foi construída com 9 neurônios de entrada e 1 

neurônio de saída por vez. Os parâmetros escolhidos para os neurônios de entrada foram: 

temperatura da água, oxigênio dissolvido (OD), pH, alcalinidade, condutividade elétrica, 

sólidos suspensos, nitrogênio, fosfato e demanda bioquímica de oxigênio (DBO5).  

 A alcalinidade, pH, DBO5 e a condutividade elétrica foram incluídos para simular 

as propriedades químicas do ambiente, os quais podem ter efeitos indiretos no ecossistema. 

A radiação solar fornece a energia essencial para a produção primária, logo, para simular os 

efeitos dessa energia, também foi usada a temperatura como parâmetro de entrada. A 

concentração de OD foi usada por ser vital para os organismos e para algumas reações 

químicas. As concentrações de fósforo e nitrogênio são os nutrientes limitantes da 

eutrofização. Os dados de clorofila-a, indicadores da eutrofização, foram definidos como 

parâmetro de saída da RNA. 

Com base na metodologia descrita anteriormente, as redes neurais foram treinadas e 

validadas de acordo com os dados disponíveis. Primeiramente foram utilizados os dados dos 

reservatórios da Marcela e de Jacarecica utilizando a rede MLP. 
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A rede MLP inicialmente foi construída para os dados da bacia de Jacarecica II com 

as 3 camadas, sendo inicialmente 9 neurônios na camada de entrada, e tentativas de 6, 8, 10 

e 12 neurônios  na camada intermediária e 1 neurônio de saída, conforme representação na 

Figura 24. A função de transferência utilizada nas camadas intermediária e de saída foi a 

função tangente hiperbólica. 

 
Figura 24 - Topologia para a rede neural MLP 

 

Dentre as muitas variações do método de treinamento backpropagation, o algoritmo 

utilizado foi o Levenberg-Marquadt, que utiliza a informação da Hessiana para a busca do 

mínimo global do erro e apresenta uma convergência mais rápida para redes que contém até 

centenas de neurônios. 

 
3.3.2 Rede RBF 

Para o reservatório da Marcela foi possível explorar mais as ferramentas disponíveis 

no ToolBox de redes neurais do MATLAB para o pré-tratamento de dados antes da etapa de 

treinamento da RNA, tendo em vista que para esse reservatório se tinha uma maior número 

parâmetros. O pré-tratamento, separando uma parte dos dados, poderia melhorar a eficiência 

da rede neural. Então, procurou-se, também, explorar a utilização de outro tipo de rede 

neural disponibilizada pelo MATLAB, a rede com funções de ativação de base radial (RBF). 

Neste estudo, os parâmetros escolhidos para os neurônios de entrada foram: 

profundidade, temperatura da água, temperatura do ar, transparência, condutividade, cor, 

pH, sólidos totais, sólidos suspensos, oxigênio dissolvido, N-NH4, N-NO2, N-NO3, P-PO4, 
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Nitrogênio total, Fósforo total perfazendo um total de 16, ou seja, a camada de entrada 

consistiu de 16 neurônios. Deve-se observar que os dados de clorofila-a, indicador da 

eutrofização, foram definidos como parâmetro de saída da RNA, assim como no reservatório 

de Jacarecica. A Figura 25 mostra o arranjo de entradas e saída da rede neural construída 

para os dados do reservatório de Marcela.  

 
 

Figura 25 - Topologia para RNA para os dados de Marcela 
 

No pré-tratamento foi utilizado a análise dos componentes principais (PCA – 

Principal Component Analysis), que é uma ferramenta para compressão de dados e extração 

de informações, conforme argumentado anteriormente. A técnica de PCA encontra 

combinações de variáveis, ou fatores, que descrevem a maior tendência nos dados. 

A técnica de PCA consiste em uma manipulação da matriz de dados com o objetivo 

de representar alterações presentes em muitas variáveis, através de um número menor de 

fatores. Nesta, constrói-se um novo sistema de eixos, denominados de fatores, componentes 

principais, variáveis latentes ou autovetores, para representar as amostras, no qual a natureza 

multivariada dos dados pode ser visualizada em poucas dimensões. 
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3.3.3 Sistema Neuro-Fuzzy 

Como já argumentado anteriormente, o sistema neuro-fuzzy mostra a integração 

entre duas abordagens de inteligência artificial: lógica fuzzy e redes neurais. No sistema 

ANFIS o algoritmo de inferência constrói o FIS (Fuzzy Inference System), cuja função de 

partição é ajustada usando o algoritmo  backpropagation ou combinação com métodos de 

mínimos quadrados. Portanto, o sistema ANFIS apresenta técnica de aprendizagem Neuro-

Adaptativo (Neuro-Adaptive). 

Neste trabalho foi utilizado o sistema ANFIS do ToolBox do MATLAB para os 

dados do rio Poxim utilizando a rede MLP. Os parâmetros escolhidos para os neurônios de 

entrada foram: temperatura da água, condutividade, cor, pH, sólidos totais, sólidos 

suspensos, oxigênio dissolvido, DBO, N-NH4, N-NO2, N-NO3, P-PO4, nitrogênio total e 

fósforo total, perfazendo um total de 13, ou seja, a camada de entrada apresenta 13 

neurônios. Deve-se observar que os dados de clorofila-a, o indicador da eutrofização, foram, 

mais uma vez, definidos como parâmetro de saída da rede neural e do sistema ANFIS. A 

Figura 26 mostra a topologia do modelo ANFIS com a identificação das variáveis. 

 
Figura 26 - Topologia para condições ótimas do modelo ANFIS  
 

É importante salientar que a utilização de diferentes parâmetros para ambientes 

hídricos é consequência da dificuldade de obtenção desses dados experimentais. Alguns 

desses dados foram obtidos de projetos e subprojetos de pesquisa do Laboratório de Química 

Analítica Ambiental da UFS. Além disso, o custo de cada campanha fazia com que somente 
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os dados exigidos pelos projetos, não sendo, portanto, objeto da tese a coleta experimental e 

sim a avaliação numérica do recurso hídrico em análise. 

A Tabela 8 mostra, a título de exemplo, os custos para obtenção dos dados 

experimentais. 

Tabela 8 - Custos por campanha experimental 

Aluguel de barco R$ 300,00 

Aluguel de canoa R$ 50,00 

Aluguel de veículo R$ 250,00 

Alimentação R$ 200,00 

Diária para pessoal de apoio (duas pessoas) R$ 200,00 

Material de coleta (isopor, gelo, frascos, etc...) R$ 200,00 

Diária do pessoal de coleta R$ 100,00 

Total de gastos com mobilização e coleta R$ 1.300,00 

Custo de análise de uma amostra de água (parâmetros físico-

químicos, microbiológicos) 

R$ 450,00 

Reservatório da Marcela R$ 5.350,00 

Reservatório de Jacarecica I R$ 9.400,00 

Reservatório de Jacarecica II R$ 47.650,00 

Poxim R$ 6.250,00 

Total  R$ 68.650,00 

 

 

3.4 FERRAMENTA COMPUTACIONAL 

Neste trabalho foi utilizado o ambiente MATLAB, versão 2008 e versão 2011, 

através de seus toolboxs para redes neurais e lógica fuzzy. No MATLAB foi construída uma 

ferramenta computacional, denominada de Modelagem da Qualidade da Água, para análise 

em termos de redes neurais, determinação do índice trófico da água e de lógica fuzzy, 

conforme mostra a Figura 27. Clicando em cada ícone das etapas, são obtidos os resultados 

da Modelagem da Qualidade da Água. 
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Figura 27 - Tela principal da ferramenta computacional 
 

Clicando no ícone Rede Neural da Figura 27, obtém-se a tela mostrando a 

modelagem para os dois tipos de redes (MLP, RBF) e para o sistema neuro-fuzzy 

exemplificada na Figura 28. 

 
Figura 28 - Ambiente da Rede Neural (MLP, RBF e Neuro-Fuzzy) 

 

Para obtenção dos resultados, a seguinte metodologia foi empregada: 
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a. Primeiro passo: Na Figura 28 clicar no ícone Carregar os dados, caso sejam novos dados, ou 

Carregar rede, caso os dados já tenham sido rodados. 

b. Segundo passo: Escolher o tipo de rede a ser aplicada (MLP e RBF) ou escolher aplicar o 

sistema neuro-fuzzy. 

c. Terceiro passo: Para rede MLP definir o número de neurônio e o número de camadas (Figura 

29) e clicar no ícone treinar resultando na Figura 30. Após o treinamento da rede os gráficos 

são gerados e é possível estimar o valor da clorofila-a para novos dados experimentais. 

 
Figura 29 - Rede MLP 
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Figura 30 - Treinamento da rede MLP 

 

d. Quarto passo: Para rede RBF definir o spread (taxa de espalhamento dos dados) e o número 

máximo de neurônios, conforme indicado na Figura 31. Esses valores são fornecidos com 

base nos resultados da rede MLP ou com base na confiabilidade dos dados experimentais. 

Após o treinamento da rede os gráficos são gerados e é possível estimar o valor da clorofila-

a para novos dados experimentais. 
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Figura 31 - Rede RBF 
 

e. Quinto passo: Para o sistema neuro-fuzzy (Figura 32), clicando no ícone neuro-fuzzy 

resultará nas Figuras 33 e 34. Essas duas figuras corresponde às etapas necessárias para 

obtenção dos resultados: selecionar o ícone Training (Seta A - arquivo em xls com os dados 

separados para o treinamento) e selecionar o ícone Checking (Seta B - arquivo em xls com os 

dados separados para a validação). Depois de selecionados os dados, clicar no ícone Test 

now (Seta C – obtenção dos resultados). Após a etapa do test now é possível obter a tela de 

saída das regras para estimativa da clorofila-a. Ressalta-se que é possível estimar o valor da 



85 

 

clorofila-a para novos dados experimentais inseridos no campo passível de inserção 

mostrado na Figura 34. 

 

 
Figura 32 - Sistema neuro-fuzzy 
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Figura 33 - Sistema neuro-fuzzy para as etapas de treinamento, validação e teste. 
 

 
Figura 34 - Regras do sistema neuro-fuzzy e estimativa da clorofila-a 



 

A construção da ferramenta computacional para criação de interfaces amigáveis, ou 

seja, a metodologia utilizada para aplicação mais fácil e mais rápida das técnicas de redes 

neurais e lógica fuzzy está descrita no ANEXO B. 

 



 

4 RESULTADOS E DISCUSSÃO 
 

 O fenômeno da eutrofização, assim como qualquer outro problema a ser resolvido 

por um modelo de rede neural ou lógica fuzzy, foi idealizado como um problema de entrada-

saída, ou seja, os dados de clorofila (output) são associados aos dados dos nutrientes (input). 

Para o sucesso da modelagem e simulação foi necessário que os fatores físico, químico ou 

biológico envolvidos no fenômeno estivessem direta ou indiretamente envolvidos no 

sistema. 

 Neste item, então, os resultados foram organizados de acordo com a aplicação da 

ferramenta computacional desenvolvida para a Modelagem da Qualidade da Água, ou seja, 

os resultados para cada ícone mostrado na Figura 27: Rede Neural, Índice e Fuzzy. 

 
4.1 REDE NEURAL 

4.1.1 Rede MLP 

Para a modelagem empírica utilizando as redes neurais artificiais, foi utilizado o 

MatLab versão 2008 e adaptada a versão 2011, através do toolbox de redes neurais 

artificiais. Neste toolbox constam programas específicos para a utilização das redes neurais. 

Vale salientar que a modelagem através das redes neurais exige várias escolhas de 

parâmetros como arquitetura da rede neural, número de camadas, números de neurônios em 

cada camada, funções de ativação dos neurônios por camada e algoritmo de treinamento. 

Essas definições foram realizadas originalmente no tollbox de redes neurais através de 

modificações em linhas de programação MATLAB se caracterizando como um processo de 

tentativa e erro. 

De acordo com a metodologia apresentada no item 3.3.1, as figuras 35 a 40 mostram 

os resultados obtidos pela rede MLP utilizada na modelagem da clorofila-a para diferentes 

números de neurônios na camada oculta para o reservatório de Jacarecica.  

As Figuras 35 e 36 mostram uma comparação entre os dados experimentais e os 

dados simulados com o objetivo de ajustar os dados para estimativa da concentração de 

clorofila-a. Nestas figuras a rede MLP foi treinada com 10 neurônios na camada oculta e o 

melhor ajuste entre os dados foi a equação � 
 0,98	l Z 0,33, na qual A representa a 

concentração da clorofila-a experimental e T a concentração da clorofila-a experimental, 

com o coeficiente de correlação (R) entre os dados igual a 0,979.  



89 

 

A Figura 36 representa, também, uma comparação entre os entre os dados 

experimentais e os dados simulados de clorofila-a, estratificando os dados utilizados para 

validação, teste e treinamento. É importante ressaltar que, conforme recomendado na 

literatura da área, o particionamento do conjunto de dados foi 50% dos dados para 

treinamento, 25% para validação e 25% para teste. 

 
Figura 35 - Performance da rede neural com 10 neurônios na camada oculta 

 

 
Figura 36 - Performance da rede neural com particionamento do conjunto de dados – 10 neurônios na 
camada oculta 
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 As Figuras 37 e 38 mostram uma comparação entre os dados experimentais e os 

dados simulados com o objetivo de ajustar os dados para estimativa da concentração de 

clorofila-a. Nestas figuras a rede MLP foi treinada com 12 neurônios na camada oculta e o 

melhor ajuste entre os dados foi a equação � 
 0,918	l Z 0,528, na qual A representa a 

concentração da clorofila-a experimental e T a concentração da clorofila-a experimental, 

com o coeficiente de correlação (R) entre os dados igual a 0,886. 

 
Figura 37 - Performance da rede neural com 12 neurônios na camada oculta 

 
Figura 38 - Performance da rede neural com particionamento do conjunto de dados -  12 neurônios na 
camada oculta 
 



91 

 

 As Figuras 39 e 40 mostram uma comparação entre os dados experimentais e os 

dados simulados com o objetivo de ajustar os dados para estimativa da concentração de 

clorofila-a. Nestas figuras a rede MLP foi treinada com 14 neurônios na camada oculta e o 

melhor ajuste entre os dados foi a equação � 
 0,729	l Z 4,32, na qual A representa a 

concentração da clorofila-a experimental e T a concentração da clorofila-a experimental, 

com o coeficiente de correlação (R) entre os dados igual a 0,978. 

 
Figura 39 - Performance da rede neural com 14 neurônios na camada oculta 

 
Figura 40 - Performance da rede neural com particionamento do conjunto de dados – 14 neurônios na 
camada oculta 
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Através da análise das figuras 35 a 40, é possível identificar que o número de 

neurônios na camada oculta que apresentou o melhor desempenho para a rede MLP foi 

aquela com 10 neurônios. É importante comentar que os resultados em termos de coeficiente 

de ajuste linear são bem próximos para o número de neurônios implementado na simulação. 

 

4.1.2 Redes MLP e RBF com o PCA 

As Figuras 41 a 48 ilustram os resultados obtidos com o treinamento das redes MLP 

e RBF para o reservatório da Marcela, com e sem o uso do PCA para pré tratamento de 

dados. Nestas figuras, a rede MLP foi treinada com 12 neurônios na camada oculta e a rede 

RBF foi treinada com 25 neurônios na camada oculta, pois foram identificados como sendo 

os números de neurônios que representavam o melhor ajuste entre os dados de concentração 

de clorofila-a. 

A Figura 41 mostra o melhor ajuste da rede RBF sem realizar o pré-tratamento 

usando o PCA. O melhor ajuste entre as concentrações de clorofila-a experimental e 

simulada foi a equação � 
 0,865	l Z 6,16 e um coeficiente de correlação de 0,932. Com 

esse ajuste, é possível admitir que a rede simulou com boa precisão as concentrações de 

clorofila-a, conforme mostra a Figura 42. 

 
Figura 41 - Aderência do modelo para a RBF sem PCA 
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Figura 42 - Resultado da simulação para a RBF sem PCA 
 

A Figura 43 mostra o melhor ajuste da rede RBF utilizando o pré-tratamento através 

da técnica de PCA. O melhor ajuste entre as concentrações de clorofila-a experimental e 

simulada neste caso foi a equação � 
 0,869	l Z 6,28 e um coeficiente de correlação de 

0,93. Observa-se que para a rede RBF a utilização do PCA não influencia n o ajuste dos 

dados, pois a diferença entre os coeficientes de correlação é de apenas 0,2145%. Com esse 

ajuste, também, admite-se que a rede conseguiu simular com boa precisão a concentração de 

clorofila-a. 

 
Figura 43 - Aderência da rede RBF com PCA 
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Figura 44 - Resultado da simulação para a RBF com PCA 
 
 
 As Figuras 45 a 48 mostram a rede MLP sem e com o pré-tratamento através da 

técnica de PCA. 

A Figura 45 mostra o melhor ajuste da rede MLP sem realizar o pré-tratamento 

usando o PCA. O melhor ajuste entre as concentrações de clorofila-a experimental e 

simulada neste caso foi � 
 0,957	l Z 7,05 e um coeficiente de correlação de 0,944. Para a 

rede MLP ocorre desempenho similar ao obtido pela rede RBF, simulando com boa precisão 

as concentrações de clorofila-a, conforme mostra a Figura 46. 
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Figura 45 - Aderência do modelo para a MLP sem PCA 

 
Figura 46 - Resultado da simulação para a MLP sem PCA 
 

A Figura 47 mostra o melhor ajuste da concentração de clorofila usando a rede MLP 

com pré-tratamento através da técnica de PCA. O melhor ajuste entre as concentrações de 

clorofila-a experimental e simulada, neste caso, foi � 
 0,845	l Z 6,38 e um coeficiente de 

correlação de 0,929. Para esse ajuste, a Figura 48 mostra que a rede conseguiu simular com 

boa precisão as concentrações de clorofila-a. 

 
Figura 47 - Aderência do modelo para a MLP com PCA 
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Figura 48 - Resultado da simulação para a MLP com PCA 
 

A Tabela 9 resume os melhores valores dos ajustes (aderência) de cada tipo de rede 

com e sem o pré-tratamento através do PCA. Nesta tabela, observa-se que não houve 

diferença significativa entre os modelos (redes) e que o uso do PCA não resultou em uma 

melhoria da qualidade dos resultados. Porém, deve-se ressaltar que o fato do PCA não 

fornecer melhoria para os dados utilizados no treinamento, não implica que no futuro, com 

um conjunto de dados mais representativo, seu desempenho não possa ser significativo. 

Ressaltando mais uma vez que a dificuldade na obtenção dos dados experimentais pode 

justificar o fato de não ocorre essa melhoria, levando em consideração que o número de 

medidas foi bem menor quando comparados com o número de dados apresentados na 

literatura.  

Tabela 9 - Aderência das redes neurais testadas para o reservatório da Marcela 

Tipo de rede Neurônios ocultos Com PCA Sem PCA  
RBF  25 0,930 0,932 
MLP  12 0,929 0,944 

 

Para os conjuntos de dados utilizados nesta tese, as redes neurais do tipo MLP e RBF 

apresentaram resultados semelhantes e produziram melhores resultados se comparados a 

modelos com estatística multivariada encontrados na literatura sobre o mesmo tema. A 

modelagem RNA da eutrofização, através da determinação da clorofila-a no reservatório de 

Marcela Sergipe/Brasil, realizada com um número maior de dados foi capaz de simular as 

concentrações de clorofila-a com um coeficiente de regressão médio de aproximadamente 
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0,93 tanto para a rede MLP como para RBF . A avaliação dos resultados induz a constatação 

de que o processo de eutrofização pode ser modelado com razoável precisão usando as 

RNA. Cabe ressaltar que, pelo fato dos dados apresentados para o reservatório da Marcela 

não representarem uma série histórica, o modelo não tem nenhum componente temporal,  

possibilitando, desta forma, apenas um diagnóstico atual da qualidade das águas do 

reservatório. 

 

4.2 SISTEMA NEURO-FUZZY 

 O sistema neuro-fuzzy foi aplicado aos dados experimentais do rio Poxim, e, 

lamentavelmente, somente 70 medidas foram possível para os mesmos parâmetros das redes 

treinadas para os dois reservatórios. No entanto, com os dados da topologia apresentada no 

item 3.3.3 e na Figura 28, que são utilizados para o treinamento do sistema ANFIS, obteve-

se um razoável ajuste para 14 neurônios na camada intermediária, como mostra a Figura 49. 

Nesta figura o melhor ajuste entre as concentrações de clorofila-a experimental e simulada, 

foi � 
 0,819	l 6 0,102 e um coeficiente de correlação de 0,839. 

 

Figura 49 - Performance da rede neural no sistema neuro-fuzzy - rio Poxim 
 



98 

 

Ressalta-se que estes dados foram extraídos da topologia dada pela Figura 28, que 

foram utilizados para o treinamento e validação do sistema neuro-fuzzy para avaliar o rio 

Poxim. As Figuras 50 e 51 mostram as telas do sistema ANFIS do Matlab sem customização 

para a concentração de clorofila-a. A Figura 50 para o conjunto de dados destinado ao 

treinamento da rede e a Figura 51 para o conjunto de dados utilizado na validação da rede. 

Nestas figuras, conforme metodologia, foram utilizados 13 parâmetros de entrada (# of 

inputs) e o parâmetro de saída foi a concentração de clorofila-a (# of outputs). O número de 

regras para cada parâmetro foi 3 (# of input mfs) e 65 dados foram utilizados na etapa de 

treinamento e 17 na etapa de validação. É importante ressaltar que o próprio sistema 

particiona os dados para fornecer o melhor desempenho do sistema neuro-fuzzy e que não 

necessariamente, quando somados os números de dados de cada etapa seja o número total de 

dados fornecidos. 

 

 
Figura 50 - Ilustração da tela do sistema ANFIS para o treinamento. 
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Figura 51 - Ilustração da tela do sistema ANFIS para validação 
 

Depois de realizado o treinamento e a validação da rede, realizou-se o teste do 

sistema (test now) conforme descrito no item 3.4. Para cada variável de entrada, um 

conjunto de regras foi otimizado no sistema ANFIS. Para ilustrar essa otimização, a Figura 

52 mostra um conjunto com cinco regras para a concentração de nitrogênio (12º parâmetro 

de entrada). 

 

Figura 52 - Ilustração da tela do sistema ANFIS com cinco regras para cada variável de entrada 
 

A Figura 53 ilustra o comportamento da variável de saída (clorofila) em função das 

variáveis de entrada concentrações de fósforo e nitrogênio. Observa-se um aumento da 

concentração de clorofila com a maior concentração de nitrogênio e com uma menor 

influência da concentração de fósforo. Esta observação pode não refletir a real relação entre 
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as concentrações de fósforo e de nitrogênio como influência sobre o perfil da clorofila-a no 

sistema hídrico; pois a relação estequiométrica entre as concentrações de nitrogênio e de 

fósforo, que permitiria concluir qual o nutriente limitante no processo de eutrofização não 

foi feita. 

 

Figura 53 - Comportamento da clorofila em função das concentrações de fósforo e nitrogênio 
 

Neste trabalho foi avaliada a influência do número de “épocas” para o treinamento e 

a validação do sistema ANFIS. O procedimento consistiu em gerar a melhor faixa de 

influência das variáveis de entrada e determinar o número de regras que melhor respondesse 

a simulação da concentração de clorofila-a. As Figuras 54 a 58 mostram esta avaliação para 

qual foi elaborada a Tabela 7. Nestas figuras são apresentadas as etapas de treinamento e 

validação do sistema como teste para determinação do melhor número de regras, ou seja, a 

melhor combinação entre os parâmetros de entrada que produz o menor erro entre a 

concentração de clorofila-a experimental e simulada.  

As Figuras 54 a 58 correspondem aos cinco testes numéricos realizados para 

obtenção do número de regras que melhor representava os dados experimentais. As setas nas 

figuras indicam o número de regras que o programa apresentou em cada simulação. 
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Figura 54 - Conjunto de quatro regras (a) dados para treinamento (b) dados para validação – teste 1 
 

 

Figura 55 - Conjunto de cinco regras (a) dados para treinamento (b) dados para validação – teste 2 
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Figura 56 - Conjunto de seis regras (a) dados para treinamento (b) dados para validação – teste 3 
 

 

Figura 57 - Conjunto de sete regras (a) dados para treinamento (b) dados para validação – teste 4 
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Figura 58 - Conjunto de treze regras (a) dados para treinamento (b) dados para validação – teste 5 
 

A Tabela 10 foi elaborada a partir das informações dos testes mostrados 

anteriormente nas figuras 54 a 58. Nesta tabela, para cada etapa (treinamento e validação) o 

erro médio foi identificado correspondendo ao número de regras simulado de cada teste. 

Observa-se que o melhor conjunto de regras é o que apresenta seis regras, pois produziu o 

menor erro no treinamento. No entanto, no que se refere à validação o menor erro 

corresponde ao conjunto com 13 regras, o que teria consequentemente uma melhor 

representatividade do processo já que mostraria uma maior interação entre as variáveis de 

entrada. Mas, entre os erros do treinamento e da validação, foi escolhido o menor erro para o 

treinamento, tendo em vista que, de acordo com a literatura da área, neste conjunto 

concentra-se o maior número de valores experimentais para treinamento da rede (50%). 

Tabela 10 - Erro médio do teste para o sistema ANFIS 

Testes Número de regras obtido Erro médio no treinamento Erro médio na validação 
1 4 0,31010 27,6093 
2 5 0,02489 48,6202 
3 6 0,01596 23,9894 
4 7 0,01886 20,7180 
5 13 20,8566 6,74660 
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 Definido o melhor conjunto de regras como sendo seis regras para cada parâmetro de 

entrada, foi obtida a Figura 59. Esta figura mostra um conjunto de dados de entrada que 

apresenta como resposta a concentração de clorofila igual a 8,63 µg.L-1. Além disso, esta 

figura ilustra uma tela pela qual é possível realizar a simulação da clorofila-a com novos 

dados de entrada. Esta simulação é realizada inserindo novos dados no campo input 

destacado (Passível de inserção). É possível ainda, nesta tabela, avaliar a influência de cada 

variável de entrada sobre o perfil da concentração de clorofila-a, mantendo as outras 

constantes.  

É importante ressaltar a ausência da variável temporal, que pode ter considerável 

influência nos resultados, visto que o período do ano influencia no valor da clorofila-a nos 

reservatórios de água. Ressalta-se ainda que as variáveis de entrada in1 a in13 correspondem 

a temperatura da água, condutividade, cor, pH, sólidos totais, sólidos suspensos, oxigênio 

dissolvido, DBO, N-NH4, N-NO2, N-NO3, nitrogênio total e fósforo total, respectivamente. 

 

Figura 59 - Ilustração do conjunto de regras fuzzy com menor erro no treinamento. 
 
4.3 ÍNDICE DE ESTADO TRÓFICO DA ÁGUA 

 A construção do índice de estado trófico foi desenvolvida a partir da utilização da 

primeira componente principal, utilizando a matriz de correlação das variáveis originais, 

para evitar que a discrepância das unidades de medidas influenciasse na determinação da 

direção dos novos eixos ortogonais, conforme comentado anteriormente.  
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4.3.1 PCA 

 Para esta etapa do trabalho, foi utilizado o toolbox Statistics do Matlab, que permite 

o cálculo automatizado da matriz de covariância e dos loadings do PCA através do comando 

princomp. Para a matriz de correlação, usou-se o comando prestd que efetua uma 

transformação nos dados de modo a normalizá-los com média nula e variância unitária, antes 

de usar o comando princomp. 

 A construção da interface foi feita através do GUIDE e foi dividida em duas etapas: 

interface principal (Figura 60) e assistente de calibração (Figura 61). O assistente de 

calibração serve para simplificar e automatizar a tarefa de construção do índice, cabendo ao 

usuário apenas a tarefa de fornecer os dados divididos de forma apropriada para as classes 

oligotrófica, mesotrófico, eutrófica e hipertrófico (Figura 62). É importante ressaltar que 

para estabelecer o índice de estado trófico, foram utilizados os dados do reservatório da 

Marcela e do rio Poxim. 

De forma resumida, o procedimento consiste nos seguintes passos: 

a. Clicar no ícone índice da Figura 27 (Tela da Modelagem da Qualidade da Água), para 

obtenção da Figura 60.  

 

Figura 60 - Interface principal para o índice do nível de trofia do reservatório  
 

b. Na Figura 60, clicar no ícone Calibração para obtenção da Figura 61. 
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c. Na Figura 61, clicar no ícone próximo para calibrar novos dados ou em carregar perfil para 

um perfil já calibrado. 

d. Clicando em próximo na Figura 61, obtém-se a Figura 62 para carregar os dados já divididos 

nas quatro classes tróficas, e clica-se em próximo e esperar o tempo de processamento da 

rede (Figura 63). 

e. Após carregar os dados, é possível inserir os valores para o conjunto de variáveis e 

classificar os novos dados, calcular o índice de estado trófico e estimar a concentração de 

clorofila-a (Figura 64). 

 

 
Figura 61 - Interface do assistente de calibração.  
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Figura 62 - Interface do assistente de calibração para o carregamento de dados. 

 
Figura 63 - Processamento da rede 
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Figura 64 - Classificação do sistema 
 

 É importante comentar que a ferramenta utiliza somente dados de planilhas com 

extensão .xls. Nas planilhas apresentadas no ANEXO C, as variáveis devem estar dispostas 

em colunas e a primeira linha deve conter os nomes das variáveis. 

 Os dados foram testados na ferramenta e a 1ª componente principal do PCA explicou 

57,2% da covariância do sistema, permitindo a construção do índice que originou a Equação 

69. Observa-se nessa equação que o índice aponta para um crescimento do nível de 

eutrofização conforme as variáveis aumentam, com exceção do oxigênio dissolvido, que 

diminui conforme aumenta a quantidade de algas e estas passam a consumir o oxigênio para 

crescer.  

I.E. = 0.3177[pH] - 0.2703[OD] + 0.2889[N-NH4] + 0.2372[N-NO2] + 0.3663[N-NO3] 

         + 0.3991[P-PO4] + 0.3218[Ntotal] + 0.3811[Ptotal]  + 0.3794[Cl-a] 
(69) 

 

 A análise de distribuição de frequências mostrou que o ponto de separação entre as 

classes é de 1,4157. Isso significa que amostras com índice superior a esse valor serão 

consideradas hipertróficas e abaixo desse valor, oligotróficas. 

 A Figura 65, por meio de uma representação biplot entre as componentes 1 e 2, 

mostra a separação das classes oligotrófica e hipertrófica, correspondente aos dados do rio 

Poxim e da Bacia de Marcela, respectivamente, utilizados nesta etapa do trabalho. 
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Figura 65 - Gráfico biplot da componente 1 pela componente 2 - PCA 

 

Ao classificar os mesmos dados utilizados para a construção do índice, verificou-se 

um acerto de 100% na classificação. A visível separação das classes observadas NA Figura 

65 foi o que permitiu a relativa facilidade do na classificação dos sistemas hídricos. 

Desse modo, a ferramenta desenvolvida neste trabalho conseguiu classificar de modo 

satisfatório os dados de águas oligotróficas e hipertróficas do rio Poxim e do reservatório da 

Marcela, respectivamente.  

4.3.2 Lógica Fuzzy 

Com base no conhecimento dos sistemas, as funções das variáveis de entrada e da 

variável de saída foram definidas utilizando o Fuzzy Logical Toolbox do MATLAB. Nesta 

etapa, o método de inferência fuzzy foi o método de Mamdani e para a etapa de 

defuzzificação foi utilizado o método do centro de gravidade (Centroid), conforme se 

identifica, em vermelho) na Figura 66.  A função de pertinência trapezoidal foi utilizada para 

todas as variáveis. 

Para implementação da estratégia fuzzy foram utilizados os dados experimentais o 

reservatório de Jacarecica e considerou-se que: 

a. As três variáveis de entrada foram definidas a partir dos resultados da aplicação do 

modelo de redes neurais e da avaliação do índice de qualidade da água, como aquelas que 

mais influenciam na qualidade da água, segundo especialistas: clorofila-a, fósforo e 

nitrogênio. 
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b. A variável de saída foi o índice de estado trófico da água, classificando o sistema em 

quatro níveis tróficos do sistema. 

c. A função de pertinência triangular foi a mesma para cada variável de entrada e para a  

variável de saída. 

d. Foram implementadas 23, regras fuzzy de acordo com o grau de importância, ou de 

pertinência, para a resposta do sistema, em conformidade com as definições dos 

especialistas. 

A Figura 65 mostra a tela obtida no MATLAB para identificação das três variáveis 

de entrada e da variável de saída.  

 

Figura 66 - Tela principal para índice de estado trófico da água através da lógica fuzzy 
 

 As Figuras 67, 68 e 69 apresentam as condições fuzzy implementadas para as 

variáveis de entrada do modelo. Para definir as classes linguísticas foram calculados o índice 

de estado trófico (IET) através das equações mostradas na Tabela 1 e as faixas de trofia 

apresentadas na Tabela 2 no item 2.2.1.2 da fundamentação.  

 A partir das figuras 67 a 69 é possível inferir sobre o estado trófico do sistema em 

relação a cada parâmetro ambiental. Em decorrência dessa inferência, obtém-se a Figura 70 
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que mostra essa combinação entre as concentrações de clorofila-a, de nitrogênio e de fósforo 

para se definir o estado trófico do sistema.  

 

 

Figura 67 - Condições fuzzy – variável de entrada concentração de clorofila-a (µµµµg/L) 

 
Figura 68 - Condições fuzzy – variável de entrada nitrogênio 
 

 
Figura 69 - Condições fuzzy – variável de entrada fósforo 
 

 A Figura 70 mostra, então,  o conjunto de saída para o estado trófico do sistema 

hídrico. Para os subconjuntos deste índice, tem-se que o subconjunto OLIGOTRÓFICO é 

representado pela terna (0,00414; 0,1141; 0,234); o subconjunto MESOTRÓFICO é 

representado pela terna (0,0959; 0,26; 0,4013); o subconjunto EUTRÓFICO é representado 

pela terna (0,3395; 0,4205; 0,5095); e o subconjunto HIPEREUTRÓFICO é representado 
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pela terna (0,444; 0,626; 0,85). É importante destacar, então, que acima de 0,85 o sistema 

poderia ser classificado como hiperhipereutrófico, podendo ser um novo termo linguístico a 

ser aplicado. 

 
Figura 70 - Condições fuzzy – variável de saída IET 
 

 A Figura 71 apresenta o conjunto de 23 regras fuzzy aplicado ao sistema hídrico. 

Diferentemente do sistema ANFIS (neuro-fuzzy), esse conjunto de regras foi definido para ser 

inserido no programa. É possível observar na Figura 49 que para cada valor atribuído às variáveis de 

entrada, por exemplo, clorofila 80,5 µg.L-¹, nitrogênio 2 mg.L-¹ e fósforo 200 mg.L-¹, como resposta 

o sistema gera IET de 0,747 que representa 74,7 % de segurança na resposta referente às condições 

do reservatório. Na literatura, uma resposta acima de 70% é bom grau de acerto na análise da 

variável de saída (MELO, 2009). É importante ressaltar que quanto maior o número de variáveis de 

entrada maior o número de regras, o que torna o sistema mais dependente do conhecimento dos 

especialistas na integração entre as regras. Observa-se, então, que nesta simulação hipotética, o IET 

igual a 0,747 indica que o sistema pode ser enquadrado no termo linguístico hipereutrófico, 

conforme mostra anteriormente a Figura 70. 

 É importante comentar que em termos limnológicos, esses resultados mostram que o 

reservatório de Jacarecica I, apresenta características de sistemas oligotróficos a eutróficos, 

tornando-se mais eutrofizado logicamente a depender do período da coleta. Além disso, pela 

análise dos índices de estado trófico e de seus desvios, o nutriente limitante do reservatório 

no período de estiagem é o nitrogênio e, durante o período chuvoso, a limitação passa a ser 

do fósforo.  
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Figura 71 - Regras fuzzy aplicadas 
 



 

5 CONCLUSÕES 
 

Neste trabalho, foram avaliadas as condições de eutrofização dos reservatórios da 

Marcela e de Jacarecica, e do rio Poxim em Sergipe através do desenvolvimento de 

estratégias numéricas e construção de ferramentas computacionais utilizando redes neurais, 

lógica fuzzy e o sistema neuro-fuzzy.  

Para essa avaliação ambiental foram analisadas 226 amostras coletadas durante o 

monitoramento dos reservatórios no Laboratório de Química Analítica Ambiental (LQA) da 

Universidade Federal de Sergipe e 70 dados cedidos pela Secretária de Recursos Hídricos de 

Sergipe (SRH-SE). Cabe, neste momento, ressaltar a dificuldade na obtenção de dados sobre 

a qualidade da água, principalmente em relação à quantidade de dados exigidos para 

implementação de ferramentas computacionais. 

 A avaliação dos resultados para os reservatórios foi desenvolvida através da 

aplicação de redes neurais do tipo MLP e RBF e um sistema neuro-fuzzy. Para as redes 

MLP e RBF o ajuste para os dois reservatórios permitiu concluir que o processo de 

eutrofização pode ser modelado com razoável precisão com redes neurais, ou seja, os 

resultados mostram que essas arquiteturas de redes neurais foram capazes de verificar com 

razoável precisão a tendência dos dados experimentais simulando a concentração de 

clorofila-a.  

 Para os dados disponíveis, a lógica fuzzy permitiu que o conhecimento empírico dos 

especialistas fosse corroborado matematicamente e foi possível o utilizar o IET como 

parâmetro de gestão indicando a influência dos problemas de eutrofização dos corpos 

hídricos quando o grau de pertinência fosse, em termos linguísticos, superior ao estado de 

mesotrofia do sistema. Além disso, a classificação do IET foi desenvolvida com base nos 

valores de concentrações de fósforo, nitrogênio e clorofila-a e os resultados fuzzy mostraram 

uma combinação satisfatória entre os indicadores ambientais que classificam o sistema entre 

níveis oligotrófico e hipereutrófico a depender da inferência dos dados. Neste estudo, 23 

regras foram aplicadas e constatou-se que o rio Poxim, nos pontos de coleta, foi classificado 

como oligotrófico e os reservatórios da Marcela e de Jacarecica foram classificados como 

sendo hipereutrófico e oligotrófico, respectivamente. 

Em relação ao sistema neuro-fuzzy, apesar desse sistema combinar as vantagens da 

lógica fuzzy e das redes neurais, uma limitação da técnica é o número de variáveis de 

entrada que deve ser o menor possível para que não haja uma elevada combinação de regras. 

Neste sentido, no presente trabalho foram utilizados treze parâmetros, ou seja, um número 
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de variáveis de entrada considerado elevado, promovendo assim, matematicamente, um 

maior esforço computacional. 

Em termos limnolgicos, considerando os limites estabelecidos para estes 

parâmetros analisados para qualidade da água de acordo com a Resolução nº 375/05 de 

Conama, a água dos reservatórios e do rio Poxim foi considerada de boa qualidade. Os 

parâmetros de qualidade da água utilizados numericamente neste trabalho (como por 

exemplo, sólidos suspensos, sólidos totais dissolvidos, oxigênio dissolvido, condutividade 

elétrica, concentrações de amônia, de fósforo, de nitrogênio e de clorofila) servem como 

indicadores de qualidade da água, visando o seu monitoramento ambiental, possibilitando, 

por exemplo, inferir sobre o uso e ocupação do solo da região e a construção de um índice 

de qualidade de água. 

Neste sentido, os resultados mostram que é possível avaliar o fenômeno de 

eutrofização de corpos hídricos através do desenvolvimento de estratégias e construção de 

ferramentas computacionais, em particular as redes neurais e a lógica fuzzy, utilizando os 

principais parâmetros limnológicos, mostrando a viabilidade numérica no que concerne a 

representação de fenômenos ambientais complexos e importantes para sustentabilidade 

ambiental dos corpos hídricos. 

 

5.1 LIMITAÇÕES 

Atualmente, os sistemas de gestão possibilitam propor modelos de melhoria através 

da indicação dos pontos fracos de um processo/projeto. Sendo assim, neste trabalho, os 

pontos fracos na análise do fenômeno de eutrofização estão relacionados com a obtenção 

dos dados experimentais que foram utilizados na simulação. O elevado custo das campanhas 

de coleta e a heterogeneidade dos parâmetros a serem mensurados dificultaram a quantidade 

e qualidade dos dados experimentais, constituindo as principais limitações no 

desenvolvimento da presente tese. 

Como consequência dessas limitações, o número de dados experimentais desta tese 

foi considerado pequeno quando comparado com alguns trabalhos apresentados na literatura. 

 

5.2 SUGESTÃO DE TRABALHOS FUTUROS 

Como consequência das limitações da presente tese, tem-se a necessidade de se 

desenvolver trabalhos futuros no sentindo de se aplicar a utilização de ferramentas de 
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Inteligência Artificial na análise de fenômenos complexos com maior desempenho e com 

melhores resultados. Sendo assim, os seguintes trabalhos são sugestões consubstanciadas 

nos resultados da tese e na análise do fenômeno de eutrofização:  

1. Aplicação do Índice de Qualidade da Água (IQA) e do Índice de Estado Trófico para 

elaboração de um modelo de gestão ambiental. 

2. Costumização dos sistemas fuzzy e neuro-fuzzy no ambiente MATLAB para 

representação do fenômeno de eutrofização. 
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ANEXO A – Tabelas com os dados ambientais dos corpos hídricos avaliados 

Tabela 1 - Valores médios, mínimos, máximos e desvios padrões dos parâmetros do reservatório da Marcela 

Estações Prof. Tágua T ar Trans. 
Cond. 

Cor pH Stotal SS OD N-NH4 
N-
NO2 

N-
NO3 P-PO4 Ntotal Ptotal Clorofila.a 

  m oC oC m mS/cm Pt-Co   mg/L mg/L mg/L ug/L ug/L ug/L ug/L mg/L mg/L ug/L 

1S 0 27 25 0,55 1,5 18,0 8,1 908 26 6,7 16,3 167,1 1815,7 569,8 4,2 0,6 37,4 

1M 1,9 27 25 0,55 1,5 17,8 8,2 898 26 6,5 12,4 166,4 1311,5 565,3 4,5 0,6 48,7 

2S 0 26 27 0,5 1,5 19,4 8,3 898 28 6,4 10,0 130,6 1403,3 553,4 3,9 0,7 64,3 

2M 2,85 27 27 0,5 1,5 17,4 8,1 940 28 6,5 9,0 138,7 1265,8 569,8 3,2 0,7 61,2 

3S 0 27 28 0,55 1,4 18,3 8,3 910 26 5,2 6,8 105,6 1297,2 563,9 3,7 0,7 157,1 

3M 3,2 27 28 0,55 1,5 17,8 8,2 892 48 7,0 9,0 101,5 1315,5 554,9 2,7 0,7 95,9 

1S 0 23 23 0,5 1,31 19,8 8,1 820 28 6,6 159,4 217,2 1201,1 593,6 3,2 0,6 92,3 

1M 2,07 23 23 0,5 1,31 19,8 8,1 824 32 6,5 162,3 227,3 1378,5 577,3 3,4 0,6 126,4 

3S 0 26 27 0,5 1,9 15,7 8,15 716 32 9,1 15,6 413,2 2663,8 304,6 2,5 0,3 84,8 

3M 3 25 27 0,5 1,9 15,6 7,95 746 2 5,4 14,9 284,7 1782,6 322,3 3,8 0,1 56,3 

1S 0 29,8 32 0,4 1,0 25,4 8,1 860 42 4,6 91,4 17,7 1876,6 409,3 14,2 0,6 224,8 

1M 2,3 30 32 0,4 1,0 24,4 8,18 844 16 5,2 35,3 16,3 1315,5 407,8 4,7 0,5 112,0 

2S 0 30 31 0,3 0,9 23,1 8,19 802 34 2,8 22,7 34,6 1614,5 412,2 2,2 0,6 83,0 

2M 2,5 30 31 0,3 1,0 21,3 7,97 880 26 4,2 29,0 10,9 1436,3 410,7 2,9 0,5 147,7 

3S 0 29,5 31 0,25 0,9 23,3 8,08 908 18 2,2 25,4 106,9 1080,6 416,6 6,1 0,6 186,2 

3M 2,5 30 31 0,25 0,9 22,2 7,94 924 24 3,4 40,5 140,1 1537,9 429,9 10,1 0,7 114,9 

1S 0 28 28,5 0,3 1,0 25,4 8,31 918 54 6,4 20,5 23,7 1394,6 341,4 4,5 0,6 113,8 

1M 2 28 28,5 0,3 1,0 23,7 8,09 894 40 4,9 22,2 96,8 1985,0 375,3 2,5 0,6 125,3 

2S 0 29 28 0,4 1,0 24,8 8,45 878 40 7,8 12,0 12,9 2241,9 353,2 1,3 0,6 109,0 

2M 2,5 28 28 0,4 1,0 23,7 8,29 880 48 4,6 14,4 51,5 1842,8 356,2 10,6 0,3 123,7 

3S 0 28 28 0,3 1,0 25,0 8,33 896 48 5,2 10,5 21,0 2320,4 345,9 5,5 0,3 155,7 

3M 2,2 28 28 0,3 1,0 24,4 8,22 898 42 3,6 13,2 21,0 2709,8 366,5 9,0 0,6 149,6 
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Continuação... 

1S   31 34 0,3 1,6 38,9 8,66 966 92 14,1 29,7 67,7 1567,0 70,1 3,6 0,6 167,6 

1M   30 34 0,3 1,7 38,3 8,71 966 104 13,3 28,0 64,3 1786,7 89,3 1,2 0,6 140,0 

2S   31 34 0,25 1,6 34,8 8,68 916 64 14,7 30,7 72,4 1504,5 174,8 0,9 0,6 65,4 

2M   30,5 34 0,25 1,6 34,4 8,67 926 82 14,4 39,2 70,4 1982,5 74,6 9,7 0,6 82,4 

3S   30 32,5 0,3 1,6 33,1 8,54 964 76 9,6 58,0 174,6 2383,2 135,0 5,3 0,6 77,4 

3M   29 32,5 0,3 1,5 31,7 8,39 944 76 4,4 85,0 208,4 2320,5 120,3 5,4 0,6 83,3 

1S 0 27,6 31,3 0,25 1,1 38,5 8,58 1072 92 9,1 36,1 7,1 552,9 309,0 3,9 1,0 98,0 

1M 1,5 27,9 31,3 0,25 1,1 38,9 8,98 1078 10 9,0 29,7 6,8 351,0 319,3 2,7 1,0 109,9 

2S 0 27,3 29,3 0,3 1,1 34,1 8,8 1074 78 7,7 27,1 9,5 769,2 320,8 4,4 0,7 143,2 

2M 2 26,3 29,3 0,3 1,1 34,4 9,47 1072 12 7,3 31,7 12,5 1014,4 313,4 9,4 0,8 183,7 

3S 0 26,8 30,8 0,3 1,1 34,8 8,67 1088 88 5,0 33,9 77,1 977,7 375,3 9,5 0,9 127,6 

3M 2 26 30,8 0,3 1,1 34,4 9,25 1058 88 3,1 37,8 136,0 676,6 384,2 28,0 1,2 185,3 

1S 0 27,7 28 0,2 1,6 63,5 8,3 1040 78 6,5 28,8 1,7 693,2 196,9 3,6 0,9 264,4 

1M 1,75 27,2 28 0,2 1,6 57,8 8,4 974 54 5,3 22,7 2,4 1430,4 183,7 4,3 1,0 225,7 

2S 0 26,8 28 0,2 1,5 65,5 8,5 996 26 5,5 31,9 3,8 1577,8 196,9 5,5 0,7 119,0 

2M 2,3 25,4 28 0,2 1,6 66,8 8,5 1014 74 4,4 24,6 1,7 1198,0 194,0 4,6 0,9 229,6 

3S 0 25 31,7 0,2 1,6 73,9 8,4 964 52 4,0 29,7 2,1 1105,1 254,4 8,1 0,6 293,7 

3M 1,5 24,5 31,7 0,2 1,6 70,9 8,4 1002 66 3,9 27,5 0,7 481,7 279,5 6,6 0,4 208,4 

1S 0 28,7 26,7 0,25 1,4 8,9 8,65 1040 6 4,4 87,5 96,1 447,7 474,1 3,2 1,8 9,5 

1M 1,4 28,7 26,7 0,25 1,3 7,6 7,95 1100 5 3,6 97,7 83,9 649,8 480,0 3,1 1,0 9,3 

1F 2,8 28,9 26,7 0,25 1,3 5,9 8,85 1135 6 3,0 64,6 92,0 3197,8 452,0 2,1 1,2 10,8 

2S 0 28,1 30,5 0,4 1,3 6,1 8,79 1160 7 4,6 13,2 59,6 1991,7 488,9 3,1 1,1 12,7 

2M 1,9 27,7 30,5 0,4 1,3 7,4 8,93 1030 11 4,0 14,6 54,8 1142,5 483,0 3,2 1,4 10,4 

2F 3,7 27,2 31,2 0,4 1,3 6,7 8,69 1025 8 0,6 19,8 46,7 1046,5 516,9 2,4 0,8 12,7 

3S 0 28,2 31,2 0,25 1,3 6,3 8,703 1115 7 4,6 16,8 48,1 2836,6 500,7 3,5 1,0 11,3 

3M 2 27,9 31,2 0,25 1,4 7,0 8,724 1780 6 0,9 21,7 55,5 2203,4 506,6 4,5 1,2 11,0 

  



134 
 

 

Continuação... 

3F 4 27,5 31,2 0,25 1,4 7,8 8,649 1100 7 0,1 25,1 52,1 2567,2 503,6 4,9 1,1 11,1 

1S   30 32 0,25 1,3 32,6 9,55 1175 13 9,0 29,7 264,4 835,4 166,0 9,5 0,7 17,3 

1M 3,8 30 32 0,25 1,3 34,1 9,50 1175 14,5 6,2 28,3 257,7 1721,6 170,4 9,8 0,7 18,1 

1F   31 32 0,25 1,3 36,3 9,43 1200 18,5 5,3 59,0 291,5 1227,9 177,8 8,4 1,0 23,5 

2S   29,7 31 0,3 1,3 29,8 9,41 1120 11 8,6 20,7 311,8 1107,7 177,8 6,7 0,8 49,5 

2M 4,5 29 31 0,3 1,3 30,0 9,30 1115 12,5 4,6 20,0 345,6 1594,8 183,7 9,6 1,0 48,5 

2F   31 31 0,3 1,3 27,4 9,45 1165 10 0,9 58,2 480,8 1365,4 208,7 9,3 0,9 47,9 

3S   29 31 0,3 1,3 28,9 9,30 1145 13 5,6 18,5 453,8 1419,9 189,6 7,5 0,8 63,1 

3M 4,5 29 31 0,3 1,3 29,6 9,16 1185 13,5 2,4 17,8 507,9 1426,2 198,4 6,5 0,7 55,4 

3F   30 31 0,3 1,4 29,4 9,09 1245 11 0,9 18,0 575,5 1275,4 204,3 9,5 0,9 82,5 

1S 0 29,5 29 0,3 1,3 10,4 8,88 1150 49 9,4 21,2 4,1 1201,9 505,1 3,9 0,8 13,2 

1M 1,6 28 29 0,3 1,3 9,4 8,67 1170 12 4,2 26,6 100,8 899,1 593,6 4,6 0,6 16,3 

1F 3,2 29 29 0,3 1,4 10,6 8,71 1135 30 2,1 17,8 48,1 1274,1 575,9 4,1 0,9 13,4 

2S 0 30 27 0,3 1,3 2,8 8,77 1100 3 6,5 12,2 9,5 1562,5 592,1 3,5 0,7 16,9 

2M 2,5 29 27 0,3 1,3 5,9 8,6 1175 9 5,3 23,9 105,6 610,6 543,4 3,3 0,7 16,4 

2F 5 29 27 0,3 1,4 10,6 8,4 1140 29 1,2 78,2 308,5 495,2 627,5 3,5 0,8 16,9 

3S 0 23,5 30 0,3 1,4 4,3 8,71 1150 9 8,5 9,0 38,6 726,0 561,1 4,6 0,8 16,8 

3M 2,9 30 30 0,3 1,3 5,6 8,58 1190 10 1,4 57,0 167,8 826,9 620,1 4,6 0,9 16,4 

3F 5,8 29 30 0,3 1,4 6,5 8,43 1135 9 0,9 114,3 336,2 134,6 599,5 4,8 0,8 16,7 

1S   28,2 26,3 0,3 1,2 15,4 8,98 2280 9 9,3 59,0 < 0,14 1317,3 490,4 2,7 0,8 18,9 

1M 2 27,1 26,3 0,3 1,3 17,0 8,5 2350 44 3,0 51,7 34,6 974,6 516,9 2,9 1,0 16,6 

2S   30 32,1 0,4 1,3 17,6 8,86 2145 6 10,0 56,8 28,5 599,7 590,6 3,0 0,5 15,7 

2M 3 26,9 32,1 0,4 1,2 17,2 8,55 2275 6 3,6 54,8 10,9 1372,6 415,2 2,9 1,0 15,1 

2F   27,2 32,1 0,4 1,2 14,8 8,26 2220 30 0,9 93,6 114,4 447,3 605,4 2,8 0,8 17,0 

3S   26,1 30,4 0,45 1,3 16,9 8,78 2325 5 6,3 32,9 27,1 1160,7 266,2 2,9 0,8 16,6 

3M 4 25 30,4 0,45 1,3 15,4 8,45 2180 11 2,2 57,5 25,1 978,0 370,9 2,7 0,8 16,6 
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Conitnuação... 

3F   24,9 30,4 0,45 1,3 16,7 8,24 1045 5 0,7 106,7 112,3 221,3 549,3 3,6 1,0 17,6 

1S 0 31,7 31,6 0,4 2,3 17,2 8,38 1090 3 5,8 88,5 6,8 1382,3 825,3 2,2 0,9 19,2 

1M 2,2 31,2 31,6 0,4 2,9 18,7 8,4 1080 4 4,1 59,3 8,2 1643,5 899,6 2,9 0,9 22,4 

1F 4,4 31,3 31,6 0,4 2,7 20,2 8,23 1070 6 3,9 73,9 6,2 1331,0 902,6 2,2 1,0 26,6 

2S 0 30,4 34 0,5 2,2 16,9 8,32 1145 2 5,7 168,9 6,8 1295,7 956,1 3,2 1,0 17,5 

2M 3 32,5 34 0,5 2,8 16,7 8,29 1055 3 3,6 165,2 5,5 1827,8 962,1 2,9 0,9 22,2 

2F 6 28 34 0,5 2,7 17,2 8,18 1235 3 2,8 223,7 6,8 1367,8 861,0 3,2 1,0 18,9 

3S 0 29,7 32,1 0,5 2,3 16,7 8,46 1060 4 4,5 94,3 5,5 1106,6 941,2 4,3 0,9 19,6 

3M 2,9 32,2 32,1 0,5 2,6 13,5 8,3 1055 3 5,0 107,9 6,8 1079,4 881,8 3,2 0,9 23,6 

3F 5,8 32,6 32,1 0,5 3,0 15,0 8,31 1070 4 7,0 121,4 6,2 1446,4 887,7 2,7 0,9 17,1 

1S 0 30 28 0,4 2,8 19,1 8,15 495 12 7,0 41,0 263,1 1650,3 322,3 3,9 1,5 57,2 

1M 2,8 29 28 0,4 2,8 17,2 8,21 615 4 6,4 28,2 272,2 1433,5 285,4 4,8 1,4 16,6 

1F 5,5 27 28 0,4 2,7 15,6 8,25 1140 1 5,9 6,2 281,0 1361,0 257,4 4,6 1,1 33,3 

2S 0 30 29,5 0,5 2,8 17,2 7,8 1055 7 5,3 23,6 271,2 1390,3 334,1 5,1 1,5 45,0 

2M 2,8 29,5 29,5 0,5 2,7 15,0 7,78 1100 11 4,1 79,3 253,0 1376,8 247,1 4,0 1,5 43,1 

2F 5,5 29,5 29,5 0,5 2,8 13,3 8,09 1050 5 4,3 28,7 291,2 1072,0 233,8 4,6 1,1 47,6 

3S 0 30 28 0,45 2,6 15,9 7,93 705 3 5,2 23,1 239,8 1593,8 171,9 4,9 1,5 48,6 

3M 2,5 28 28 0,45 2,8 17,6 8,05 960 8 2,9 16,4 295,6 1403,5 462,3 5,0 1,4 37,7 

3F 5 29 28 0,45 2,8 15,4 8,18 920 6 2,8 7,7 296,6 1735,2 763,1 4,3 1,6 52,0 

1S 0 26,6 28 0,45 1,5 19,1 8,79 795 4 9,4 55,8 286,1 2190,0 437,3 5,1 0,8 14,2 

1M 1 27 28 0,45 1,5 18,3 8,78 835 2 8,8 52,2 340,9 1251,1 416,6 1,9 1,0 14,8 

1F 2 27,4 28 0,45 1,5 16,9 8,79 815 38 9,0 35,8 337,5 1352,2 381,2 3,6 0,8 13,1 

2S 0 27,3 28,4 0,45 1,5 15,2 8,7 765 2 8,2 35,3 161,7 1298,9 432,8 4,3 0,5 14,4 

2M 1,5 27,1 28,4 0,45 1,5 19,3 8,67 840 2 7,9 41,5 188,8 1976,1 421,1 5,8 1,0 15,8 

2F 3 27,4 28,4 0,45 1,5 19,6 8,53 860 5 5,1 46,6 361,2 1611,2 429,9 6,6 0,8 14,7 

3S 0 27,1 28,3 0,45 1,5 15,4 8,39 850 12 6,6 53,8 272,6 1151,9 437,3 2,5 0,8 14,2 
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Conitnuação... 

3M 2 27,4 28,3 0,45 1,5 14,6 8,57 800 1 3,9 70,6 332,1 1611,9 447,6 3,8 1,7 12,9 

3F 4 27,3 28,3 0,45 1,5 19,1 8,43 1005 27 3,7 55,3 134,0 1314,0 418,1 3,7 1,0 14,5 

1S 0 28,1 26,9 0,3 1,5 15,2 8,69 900 22 8,2 20,5 33,2 346,6 276,6 3,6 0,5 16,9 

1M 0,9 28,2 26,9 0,3 1,5 13,5 8,83 830 31 8,0 31,8 47,4 318,0 227,9 4,8 0,5 19,3 

1F 1,8 28,9 26,9 0,3 1,6 14,8 8,75 860 21 5,7 49,2 6,2 272,7 185,1   0,4 20,6 

2S 0 27,8 27,1 0,4 1,5 17,8 8,61 835 23 5,1 69,7 4,8 331,7 220,5 0,2 0,5 24,1 

2M 1,6 27,7 27,1 0,4 1,5 16,7 8,61 800 21 4,8 29,7 5,5 345,5 205,8   0,5 25,3 

2F 3,2 27,4 27,1 0,4 1,5 18,3 8,34 940 25 1,3 142,3 1,7 262,7 183,7   0,5 28,3 

3S 0 27,8 26,7 0,4 1,5 13,0 8,52 885 10 2,8 37,9 4,1 318,0 248,5   0,6 27,6 

3M 1,4 27,9 26,7 0,4 1,5 15,4 8,28 1060 12,9 2,0 111,6 14,9 321,6 238,2 1,3 0,6 24,6 

3F 2,8 27,9 26,7 0,4 1,5 15,7 8,46 860 15 3,2 92,2 36,6 256,7 245,6 3,6 0,6 26,0 

1S 0 27 25 0,3 3,0 17,2 8,83 890 2 7,5 74,8 270,7 729,4 416,6 1,3 0,8 34,4 

1M 1,3 28 25 0,3 3,0 15,2 9,06 820 1 6,3 69,7 343,7 367,9 410,7 1,4 0,8 8,3 

1F 2,5 28 25 0,3 3,0 17,8 9,3 880 2 4,8 87,0 347,7 335,0 431,4 1,2 0,7 8,6 

2S 0 28 26 0,4 2,9 18,1 9,14 1370 5 6,1 23,6 418,1 841,6 424,0 1,7 0,7 22,4 

2M 1,5 27 26 0,4 2,9 18,0 9,11 895 4 4,9 50,2 345,0 986,7 425,5 1,7 0,8 18,5 

2F 3 27,5 26 0,4 2,9 18,0 9,08 735 5 3,4 62,5 354,5 1020,5 435,8 1,7 1,1 12,0 

3S 0 28 31 0,5 2,9 15,4 9,03 830 3 4,8 28,7 407,3 953,3 437,3 1,7 1,4 12,7 

3M 1,7 28 31 0,5 2,9 13,3 8,92 830 2 1,9 72,7 449,2 695,1 452,0 1,3 0,8 13,1 

3F 3,3 29 31 0,5 2,9 18,1 8,97 855 5 1,9 34,9 395,1 734,7 438,7 0,9 0,7 19,4 

Mínimo 0 23 23 0,2 0,9 2,8 7,78 495 1 0,1 6,2 0,7 134,6 70,1 0,2 0,1 8,3 

Máximo 6 32,6 34 0,5 3,0 73,9 9,6 2350 104 14,7 223,7 575,5 3197,8 962,1 28 1,8 293,7 

Média 1,782 28,239 29,28 0,3667 1,674636 21,47695 8,563 1058,025 23,1 5,324 48,19 146,2 1256 415,1 4,5164 0,829 59,2837 

Dpadrão 1,696 1,8231 2,476 0,0971 0,636051 13,27792 0,399 339,6461 24,8 2,852 39,66 146,32 615,88 200,3 3,3154 0,296 63,2058 
S – medida na superfície M – medida no meio do corpo hídrico  F -  medida no fundo do corpo hídrico 

 



 

 
Tabela 2 -  Valores médios, mínimos, máximos e desvios padrões dos parâmetros do reservatório de Jacarecica 

Estações Prof. Tágua T ar Trans. Cond. Cor pH Stotal SS OD N-NH4 N-NO2 N-NO3 
P-

PO4 Ntotal Ptotal Clorof.a 

  m oC oC m mS/cm Pt-Co   mg/L mg/L mg/L µg/L µg/L µg/L µg/L mg/L mg/L µg/L 

2 0,0 29,1 30,6 2,00 0,37   7,4 190,0 2,0 3,25 < 2,80 < 0,14 58,17 < 0,91   0,68 18,55 

2 5,0 28,5   2,00 0,37   7,3 225,0 3,0 2,45 < 2,80 8,86 49,76 < 0,91   0,41 20,11 

4 0,0 28,7 31,4 2,30 0,37   7,5 170,0 2,0 4,10 < 2,80 < 0,14 59,62 < 0,91   0,39 23,55 

4 5,0 28,3   2,30 0,41   7,4 215,0 2,0 2,70 < 2,80 12,24 <0,70 < 0,91   1,57 19,12 

5 0,0 28,9 30,0 2,0 0,39   7,7 210,0 1,0 4,40 < 2,80 < 0,14 < 0,70 < 0,91   0,66 11,70 

5 5,0 28,2   2,0 0,37   7,6 155,0 2,0 3,60 < 2,80 4,80 < 0,70 < 0,91   0,87 25,86 

7 0,0 28,1 29,7 2,0 0,38   7,7 210,0 2,0 4,28 < 2,80 3,45 174,6 < 0,91   0,08 6,05 

7 5,0 27,8   2,0 0,39   7,4 230,0 3,0 2,60 < 2,80 10,89 < 0,70 < 0,91   0,26 1,76 

8 0,0 26,8 29,8   0,50   7,4 295,0 15,0 9,34 < 2,80 <0,14 199,5 < 0,91   0,84 4,66 

1 0,0 26,5 30,4 3,4 0,34 2,97 7,8 225,0 6,0 3,56 < 2,80 10,18 20,86 < 0,91 0,64 1,18 8,72 

1 5,0 29,2     0,37 24,26 8,0 215,0 5,3 0,00 772,9 10,85 28,15 < 0,91 0,85 0,25 6,63 

2 0,0 29,5 27,4 3,0 0,35 2,78 8,2 200,0 1,0 4,30 < 2,80 9,84 11,81 < 0,91 0,64 0,25 5,86 

2 5,0 28,7     0,35 2,97 8,2 200,0 0,7 0,00 < 2,80 10,18 14,37 < 0,91 0,08   4,97 

3 0,0 28,7 27,5 3,0 0,35 2,60 8,4 200,0 0,7 5,04 6,37 9,84 34,88 472,7   0,52 5,39 

3 5,0 26,6     0,35 2,78 8,3 240,0 1,0 3,70 6,37 10,18 46,82 < 0,91 0,28 0,49 5,89 

4 0,0 28,2 27,1 2,8 0,35 2,78 8,3 195,0 1,3 5,41 < 2,80 10,18 36,73 394,5 0,09 0,43 5,47 

4 5,0 27,5     0,35 2,78 8,2 205,0 1,0 5,38 1,97 10,85 38,25 335,5 0,06 0,38 5,39 

5 0,0 27,9 30,4 2,4 0,35 2,97 8,4 215,0 1,0 6,52 < 2,80 9,84 40,65 307,5   0,35 4,88 

5 5,0 26,6     0,35 2,78 8,4 190,0 2,7 5,33 1,72 11,19 40,81 281,0   0,41 4,92 

6 0,0 27,1 31,5 2,8 0,35 2,97 8,1 210,0 1,0 6,08 11,22 9,84 28,39 245,6   0,26 7,11 

6 5,0 26,8     0,35 2,78 8,1 190,0 1,0 4,89 < 2,80 11,19 33,60 176,3   0,59 5,38 

7 0,0 28,0 27,5 2,5 0,35 2,60 8,2 195,0 0,0 6,22 44,36 9,84 33,44 362,1   0,36 4,93 

7 5,0 26,0     0,35 3,15 8,1 200,0 2,0 5,48 72,13 10,85 36,08 341,4   0,42 7,53 
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Continuação... 

8 0,0 27,8 30,4 0,0 0,46 3,52 8,3 305,0 0,0 6,34 32,66 9,84 26,95 0,84   0,0402 5,47 

1 0,0 29,0 26,2 3,5 0,41 3,15 7,7 150,0 0,0 1,48 < 2,80 < 0,14 6,01 < 0,91   0,00 0,94 

1 5,0 26,8     0,39 6,30 7,6 215,0 2,7 2,67 10,6 12,21 26,87 < 0,91     1,53 

2 0,0 29,0 24,0 3,0 0,37 2,78 7,7 255,0 0,0 3,26 26,8 13,56 8,27 < 0,91     0,98 

2 5,0 28,9     0,41 2,78 7,7 265,0 0,0 3,11 53,6 10,52 14,05 < 0,91     2,00 

3 0,0 29,4 27,0 3,7 0,42 2,78 7,9 255,0 0,0 5,04 51,52 4,77 31,77 < 0,91     1,45 

3 5,0 29,0     0,45 2,78 7,8 235,0 0,0 5,04 23,91 6,46 50,36 < 0,91   0,03 2,46 

4 0,0 30,0 29,0 3,0 0,40 2,60 7,9 260,0 1,0 5,33 95,0 7,47 39,30 < 0,91   0,02 2,18 

4 5,0 25,9     0,42 23,33 7,7 265,0 4,0 0,00 123,1 14,91 34,39 52,4   0,10 0,98 

5 0,0 28,7 28,4 2,7 0,41 2,41 8,0 215,0 0,0 5,48 14,15 1,72 7,26 < 0,91   0,00 0,74 

5 5,0 28,6     0,41 2,23 8,0 210,0 0,0 5,33 15,85 1,72 28,17 < 0,91     3,70 

6 0,0 29,1 27,5 2,7 0,39 2,78 8,0 235,0 0,0 6,08 <2,8 6,46 24,39 < 0,91     0,94 

6 5,0 28,9     0,39 2,41 8,0 240,0 0,0 5,78 14,63 7,13 30,24 < 0,91     0,70 

7 0,0 29,3 29,0 3,0 0,39 2,23 8,0 235,0 0,0 5,19 20,8 3,41 25,84 < 0,91   0,02 1,54 

7 5,0 28,9     0,41 2,60 8,0 240,0 0,0 5,63 46,4 5,44 26,80 < 0,91   0,02 2,00 

8 0,0 26,8 27,0 0,0 0,55 3,90 8,0 340,0 0,0 5,93 496,6 3,75 55,49 < 0,91   0,05 0,94 

1 0,0 28,0 26,0 1,5 0,36 7,41 6,6 185,0 2,0 6,19 430,1 7,47 77,52 692,4     0,70 

  5,0 26,6     0,32 7,23 6,3 215,0 7,0 3,40 471,0 9,16 21,82 696,8     4,26 

2 0,0 23,0 26,5 1,4 0,39 6,49 6,6 230,0 2,0 5,57 348,3 5,78 24,32 742,5     0,98 

2 5,0 29,6     0,31 9,45 6,3 175,0 3,7 2,94 368,7 11,87 8,92 718,9     0,51 

3 0,0 23,1 28,9 1,7 0,39 6,30 7,5 245,0 3,3 5,41 169,2 7,81 49,07 742,5     4,90 

3 5,0 22,1     0,78 12,04 7,3 260,0 12,3 3,09 245,9 10,85 48,34 774,9     2,18 

4 0,0 23,3 27,3 1,6 0,38 4,82 7,5 190,0 5,0 5,80 87,3 10,52 44,34 738,1     12,73 

4 5,0 22,5     0,38 9,08 7,2 230,0 5,3 1,24 174,3 14,24 31,72 770,5     4,81 

5 0,0 22,0 23,1 1,5 0,73 5,01 7,4 205,0 2,0 4,72 138,5 9,16 46,34 757,2     6,52 

5 5,0 21,3     0,71 7,78 7,0 250,0 8,7 0,00 194,8 29,79 27,47 786,7     1,34 
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Continuação... 

6 0,0 21,2 24 1,4 0,37 4,27 6,9 235,0 2,3 4,48 61,8 8,15 43,70 751,3     3,24 

6 5,0 21,3     0,68 5,75 6,9 230,0 7,3 2,78 87,3 30,80 28,67 746,9     3,45 

7 0,0 28,0 24,6 1,6 0,73 4,45 7,3 220,0 6,0 3,79 102,7 12,88 26,22 741,0     0,74 

7 5,0 27,9     0,42 11,85 7,0 255,0 8,7 0,00 133,4 26,75 6,39 693,8     0,74 

8 0,0 28,0 25,9 0,0 0,38 4,45 7,8 285,0 4,0 7,19 384,1 8,83 24,31 5,26     0,8211 

1 0,0 28,1 28,1 2,0 0,61 7,04 7,9 285,0 0,3 5,72 261,3 4,43 72,48 < 0,91     0,79 

  5,0 26,1     0,61 7,41 7,8 210,0 1,3 3,22 128,3 12,54 14,60 < 0,91     3,87 

2 0,0 26,0 29,1 2,0 0,65 7,04 7,9 205,0 0,3 5,72 164,1 3,41 25,12 < 0,91     4,59 

2 5,0 25,1     0,60 6,49 7,8 ? 2,0 3,59 506,9 4,77 15,18 < 0,91     4,22 

3 0,0 27,0 29,1 2,0 0,69 6,49 8,0 115,0 1,7 5,64 31,1 2,74 49,56 < 0,91     2,68 

3 5,0 25,1     0,68 6,67 7,9 145,0 0,3 3,08 77,1 3,75 54,37 < 0,91     6,34 

4 0,0 27,0 27,0 1,9 0,71 6,67 8,1 180,0 0,7 6,16 9,3 2,74 46,19 < 0,91     6,72 

4 5,0 26,0     0,61 6,86 7,8 230,0 6,0 2,13 9,3 4,77 53,17 < 0,91     4,84 

5 0,0 28,0 29,0 2,0 0,65 6,49 8,0 170,0 1,3 6,82 6,4 1,72 47,64 < 0,91     4,10 

5 5,0 24,0     0,60 6,12 7,8 165,0 1,7 2,49 63,5 3,08 51,41 < 0,91     4,08 

6 0,0 26,1 30,1 1,8 0,63 6,49 7,1 200,0 0,7 7,04 < 2,80 5,11 45,15 8,2     5,12 

6 5,0 25,1     0,60 5,75 7,9 215,0 2,0 2,57 31,1 12,21 44,17 < 0,91     3,14 

7 0,0 26,0 26,0 2,0 0,64 6,30 8,0 165,0 1,7 4,69 5,6 3,75 33,21 < 0,91     3,79 

7 5,0 26,0     0,65 6,86 7,7 205,0 4,0 1,32 7,1 4,77 36,34       3,35 

8 0,0 29,0 31,0 0,0 0,94 3,90 8,0 178,0 10,0 7,11 82,2 4,09 29,53 < 0,91     4,83 

Mínimo  0 21,2 23,1 0 0,31 2,23 6,3 115 0 0 1,7 1,7 6,01 0,84 0,06 0 0,51 

Máximo 5 30,0 31,5 3,7 0,78 24,26 8,4 340 15 9,34 772,9 30,8 199,5 786,7 0,85 1,57 25,86 

Média 2,3 27,0 28,0 2,1 0,5 5,5 7,7 217,3 2,6 4,3 131,8 8,9 39,2 494,0 0,4 0,4 5,1 

Dpadão 2,51 2,27 2,16 0,91 0,14 4,16 0,48 39,05 3,07 1,98 168,74 5,72 30,80 283,35 0,33 0,37 5,29 

S – medida na superfície M – medida no meio do corpo hídrico  F -  medida no fundo do corpo hídrico 
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Tabela 3 - Valores médios, mínimos, máximos e desvios padrões dos parâmetros Rio Poxim 

Campa
nha 

Tágu
a pH Cond. 

Turbi
dez 

Cor 
verda
deira STD O2 

Alcali
nidad

e 
Durez

a Na K Ca Mg Cl SO4 
N-

NH4 
N-

NO2 
N-

NO3 
P-

PO4 Ntotal Ptotal 
Cloro
fila-a 

oC   
mS/c

m NTU Pt-Co mg/L mg/L 

mg/L(
CaC
O3) 

mg/L(
CaC
O3) mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L µg/L 

1 30,0 7,2 
0,12 9,20 7,41 21,0 7,10 43,00 46,18 15,00 1,00 7,39 1,30 19,02 2,50 0,00 0,01 0,54 

< 
0,001 

0,72 0,00 0,06 

2 32,0 6,9 
0,11 9,70 7,41 27,0 7,41 59,30 48,09 16,00 0,57 5,90 1,56 22,60 6,50 0,01 0,01 0,77 

< 
0,001 

1,04 0,02 0,05 

3 27,5 7,2 0,14 9,33 10,37 57,0 7,34 43,61 75,96 10,00 0,91 10,39 1,59 18,33 5,00 0,00 0,01 0,88 0,00 1,39 0,01 0,05 

4 26,5 7,3 0,15 11,00 14,63 72,0 7,63 43,37 85,25 11,30 0,95 11,07 1,59 19,14 5,00 0,01 0,01 0,95 0,01 0,50 0,01 0,05 

5 28,0 7,3 0,16 14,20 15,56 75,0 7,78 43,02 83,61 11,30 1,16 12,29 1,65 18,82 7,00 0,01 0,01 0,30 0,01 1,33 0,04 0,05 

6 30,0 7,0 
0,17 11,57 11,11 62,0 6,99 66,44 

106,5
7 

13,00 1,00 13,18 2,28 23,83 8,00 0,00 0,01 0,71 0,01 0,96 0,04 0,07 

7 27,0 7,1 
0,24 7,56 9,08 112,0 7.3 67,14 

108,7
5 

19,00 1,00 13,50 2,42 19,81 4,00 0,01 0,01 0,63 0,00 1,14 0,03 0,05 

8 26,0 7,9 0,19 10,20 11,11 39,0 7,56 65,65 58,80 12,31 1,06 16,36 1,64 19,25 10,00 0,01 0,01 0,43 0,00 1,26 0,08 0,06 

9 27,0 7,0 0,11 14,20 14,63 66,0 7,20 69,29 65,86 15,40 0,98 14,76 2,98 27,96 15,00 0,01 0,01 0,52 0,01 0,74 0,05 0,06 

10 28,0 7,3 
0,18 10,80 7,78 74,0 6,82 47,78 94,82 12,11 0,51 18,04 2,05 23,10 5,00 0,01 0,01 0,71 

< 
0,001 

0,32 0,03 0,05 

11 30,0 7,7 
0,21 11,96 7,41 82,0 7,50 46,05 

107,3
3 

17,00 0,89 13,82 2,66 23,21 5,00 0,00 0,01 0,27 0,00 0,25 0,06 0,05 

12 27,0 7,2 0,14 11,30 11,30 35,0 7,30 67,18 47,00 11,00 0,79 15,99 0,57 18,00 7,50 0,01 0,01 0,58 0,01 0,47 0,05 0,06 

13 27,0 7,1 
0,11 13,50 9,82 56,0 6,99 66,95 44,54 11,00 0,89 5,99 0,63 21,14 7,50 

<0,00
2 

0,00 0,68 
< 

0,001 
1,80 0,04 0,06 

14 27,0 7,4 
0,14 14,10 8,30 70,0 6,59 48,87 57,66 19,00 0,36 9,37 1,21 29,83 7,50 0,00 0,01 0,78 

< 
0,001 

0,91 0,03 0,05 

15 30,4 7,9 
0,16 11,40 17,96 102,0 7,40 

121,1
2 

46,12 14,73 1,11 13,05 1,30 2,82 5,60 0,00 0,01 0,57 0,00 0,64 0,08 0,05 
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16 27,2 5,3 
0,09 11,90 9,10 40,0 7,30 77,63 41,31 11,00 1,00 12,65 0,52 14,91 6,00 <0,002 <0,001 0,31 

< 
0,001 

0,86 0,02 0,06 

17 25,1 6,8 
0,11 9,50 5,93 45,0 6,80 84,28 45,39 12,00 1,00 11,43 0,56 11,09 8,50 <0,002 <0,001 0,81 

< 
0,001 

1,74 0,03 0,07 

18 26,0 7,6 
0,14 9,40 8,34 66,1 7,84 52,32 75,48 19,00 0,95 11,43 1,59 20,78 5,50 <0,002 <0,001 0,45 

< 
0,001 

1,22 0,03 0,07 

19 28,0 7,6 0,17 11,03 10,19 76,5 7,84 41,97 72,31 19,00 0,95 13,06 1,59 20,36 7,50 <0,002 0,00 0,19 0,01 0,88 0,04 0,05 

20 27,1 6,8 0,13 11,10 7,40 77,0 7,88 43,86 71,91 25,78 1,10 11,71 1,21 29,80 9,00 <0,002 0,00 0,08 0,00 0,68 0,03 0,05 

21 29,0 7,5 0,13 7,25 7,60 71,4 6,89 37,23 95,37 24,00 1,00 13,06 0,96 25,34 6,50 <0,002 0,00 0,08 0,01 0,67 0,03 0,06 

22 31,3 7,1 0,25 9,90 7,41 66,9 6,45 47,47 98,43 23,00 1,00 11,63 2,42 29,23 6,00 <0,002 <0,001 0,12 0,01 0,72 0,03 0,05 

23 29,5 8,0 0,17 10,11 15,74 81,2 7,40 49,90 65,99 17,70 1,21 11,50 3,80 18,59 7,20 0,00 0,00 0,65 0,01 1,00 0,04 0,07 

24 30,2 8,7 0,11 12,20 6,12 53,6 8,94 72,64 46,80 9,61 0,95 12,65 2,80 14,80 4,98 <0,002 0,00 0,13 0,05 0,63 0,07 0,05 

25 24,0 8,3 0,16 4,24 4,76 89,0 6,82 87,28 58,65 27,00 1,00 14,49 2,05 24,72 6,00 <0,002 <0,001 0,69 0,00 1,56 0,03 0,05 

26 25,1 7,7 0,12 7,48 6,49 102,3 6,16 39,97 90,27 20,00 0,90 18,16 1,49 23,30 5,50 <0,002 <0,001 0,39 0,01 1,19 0,02 0,05 

27 29,0 8,6 0,14 10,80 25,18 101,0 6,08 78,54 84,64 15,00 0,97 15,10 1,58 43,92 8,32 0,00 <0,001 0,39 0,03 0,99 0,07 0,07 

28 26,1 6,4 0,12 10,72 12,00 98,0 7,50 53,20 45,39 16,00 0,98 13,47 1,22 26,20 7,50 0,00 0,01 0,30 0,05 1,16 0,10 0,09 

29 28,2 5,7 0,12 10,80 10,93 75,0 6,90 70,99 42,84 17,84 1,00 12,65 3,25 19,57 6,50 0,01 <0,001 0,14 0,01 0,76 0,08 0,08 

30 27,5 8,3 0,20 10,41 12,97 84,0 6,70 87,87 87,70 13,30 1,02 14,70 2,30 41,80 8,40 0,00 0,01 0,13 0,08 0,73 0,05 0,06 

31 25,5 5,8 0,14 2,10 8,00 31,0 6,90 54,58 34,78 12,00 0,67 12,05 1,00 12,03 9,50 0,00 0,00 0,26 0,02 0,74 0,04 0,07 

32 25,5 7,3 0,17 7,20 9,45 84,0 7,18 39,79 46,04 13,00 0,71 13,10 0,93 14,08 11,00 0,00 0,01 0,36 0,01 0,95 0,01 0,08 

33 24,0 7,3 0,15 12,00 11,11 75,0 6,74 39,65 56,78 19,00 0,98 12,89 1,41 19,68 12,00 0,00 0,01 0,33 0,01 0,91 0,04 0,05 

34 24,5 7,5 0,17 11,40 11,30 92,0 7,80 52,14 98,21 15,00 0,80 10,49 1,49 14,95 10,00 <0,002 0,01 0,31 0,01 0,93 0,02 0,05 

35 23,0 7,1 0,14 7,10 10,19 65,0 6,74 42,80 40,92 30,00 1,15 9,73 1,39 24,28 12,50 0,00 0,01 0,90 0,03 0,88 0,07 0,09 

36 22,0 6,8 0,12 5,80 9,82 63,0 8,52 50,62 52,94 16,88 1,00 7,98 1,43 17,01 19,00 0,00 0,00 0,44 0,03 0,69 0,60 0,09 
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mínima 22,0 5,3 0,09 2,10 4,76 21,0 6,08 37,23 34,78 9,61 0,36 5,90 0,52 2,82 2,50 0,00 0,00 0,08 0,00 0,25 0,00 0,05 

maximo 32,0 8,7 0,25 14,20 25,18 112,0 8,94 121,12 108,75 30,00 1,21 18,16 3,80 43,92 19,00 0,01 0,01 0,95 0,08 1,80 0,60 0,09 

média 27,3 7,3 0,15 10,07 10,39 69,1 7,23 58,43 67,46 16,23 0,93 12,36 1,68 21,48 7,74 0,00 0,01 0,47 0,02 0,93 0,06 0,06 

dpadrão 2,3 0,7 0,04 2,65 3,94 22,4 0,60 18,33 22,66 5,01 0,18 2,83 0,77 7,64 3,19 0,00 0,00 0,25 0,02 0,35 0,10 0,01 

 



 

 
Tabela 4 - Conjunto de dados oligotróficos em relação a clorofila-a 

pH OD N-NH4 N-NO2 N-NO3 P-PO4 Ntotal Ptotal Clorofila.a 

 mg/L µg/L µg/L µg/L µg/L mg/L mg/L µg/L 

9,1 6,3 69,7 343,7 367,9 410,7 1,4 0,8 8,3 

9,3 4,8 87,0 347,7 335,0 431,4 1,2 0,7 8,6 

8,0 3,6 97,7 83,9 649,8 480,0 3,1 1,0 9,3 

8,7 4,4 87,5 96,1 447,7 474,1 3,2 1,8 9,5 

8,9 4,0 14,6 54,8 1142,5 483,0 3,2 1,4 10,4 

8,9 3,0 64,6 92,0 3197,8 452,0 2,1 1,2 10,8 

8,7 0,9 21,7 55,5 2203,4 506,6 4,5 1,2 11,0 

8,6 0,1 25,1 52,1 2567,2 503,6 4,9 1,1 11,1 

8,7 4,6 16,8 48,1 2836,6 500,7 3,5 1,0 11,3 

9,1 3,4 62,5 354,5 1020,5 435,8 1,7 1,1 12,0 

8,7 0,6 19,8 46,7 1046,5 516,9 2,4 0,8 12,7 

9,0 4,8 28,7 407,3 953,3 437,3 1,7 1,4 12,7 

8,8 4,6 13,2 59,6 1991,7 488,9 3,1 1,1 12,7 

8,6 3,9 70,6 332,1 1611,9 447,6 3,8 1,7 12,9 

8,9 1,9 72,7 449,2 695,1 452,0 1,3 0,8 13,1 

8,8 9,0 35,8 337,5 1352,2 381,2 3,6 0,8 13,1 

8,9 9,4 21,2 4,1 1201,9 505,1 3,9 0,8 13,2 

8,7 2,1 17,8 48,1 1274,1 575,9 4,1 0,9 13,4 

8,4 6,6 53,8 272,6 1151,9 437,3 2,5 0,8 14,2 

8,8 9,4 55,8 286,1 2190,0 437,3 5,1 0,8 14,2 

8,7 8,2 35,3 161,7 1298,9 432,8 4,3 0,5 14,4 

8,4 3,7 55,3 134,0 1314,0 418,1 3,7 1,0 14,5 

8,5 5,1 46,6 361,2 1611,2 429,9 6,6 0,8 14,7 

8,8 8,8 52,2 340,9 1251,1 416,6 1,9 1,0 14,8 

8,6 3,6 54,8 10,9 1372,6 415,2 2,9 1,0 15,1 

8,7 7,9 41,5 188,8 1976,1 421,1 5,8 1,0 15,8 

8,7 4,2 26,6 100,8 899,1 593,6 4,6 0,6 16,3 

8,6 1,4 57,0 167,8 826,9 620,1 4,6 0,9 16,4 

8,6 5,3 23,9 105,6 610,6 543,4 3,3 0,7 16,4 

8,5 3,0 51,7 34,6 974,6 516,9 2,9 1,0 16,6 

8,5 2,2 57,5 25,1 978,0 370,9 2,7 0,8 16,6 

8,2 6,4 28,2 272,2 1433,5 285,4 4,8 1,4 16,6 

8,4 0,9 114,3 336,2 134,6 599,5 4,8 0,8 16,7 

8,7 8,5 9,0 38,6 726,0 561,1 4,6 0,8 16,8 

8,7 8,2 20,5 33,2 346,6 276,6 3,6 0,5 16,9 

8,8 6,5 12,2 9,5 1562,5 592,1 3,5 0,7 16,9 

8,4 1,2 78,2 308,5 495,2 627,5 3,5 0,8 16,9 

8,3 7,0 121,4 6,2 1446,4 887,7 2,7 0,9 17,1 

8,3 5,7 168,9 6,8 1295,7 956,1 3,2 1,0 17,5 

9,5 6,2 28,3 257,7 1721,6 170,4 9,8 0,7 18,1 
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9,1 4,9 50,2 345,0 986,7 425,5 1,7 0,8 18,5 

8,2 2,8 223,7 6,8 1367,8 861,0 3,2 1,0 18,9 

8,4 5,8 88,5 6,8 1382,3 825,3 2,2 0,9 19,2 

8,8 8,0 31,8 47,4 318,0 227,9 4,8 0,5 19,3 

9,0 1,9 34,9 395,1 734,7 438,7 0,9 0,7 19,4 

8,5 4,5 94,3 5,5 1106,6 941,2 4,3 0,9 19,6 

8,8 5,7 49,2 6,2 272,7 185,1 4,1 0,4 20,6 

8,3 3,6 165,2 5,5 1827,8 962,1 2,9 0,9 22,2 

9,1 6,1 23,6 418,1 841,6 424,0 1,7 0,7 22,4 

8,4 4,1 59,3 8,2 1643,5 899,6 2,9 0,9 22,4 

8,3 5,0 107,9 6,8 1079,4 881,8 3,2 0,9 23,6 

8,6 5,1 69,7 4,8 331,7 220,5 0,2 0,5 24,1 

8,3 2,0 111,6 14,9 321,6 238,2 1,3 0,6 24,6 

8,6 4,8 29,7 5,5 345,5 205,8 4,1 0,5 25,3 

8,5 3,2 92,2 36,6 256,7 245,6 3,6 0,6 26,0 

8,2 3,9 73,9 6,2 1331,0 902,6 2,2 1,0 26,6 

8,5 2,8 37,9 4,1 318,0 248,5 3,9 0,6 27,6 

8,3 1,3 142,3 1,7 262,7 183,7 3,2 0,5 28,3 
 
 
Tabela 5 - Conjunto de dados eutróficos em relação a clorofila-a 

pH OD N-NH4 N-NO2 N-NO3 P-PO4 Ntotal Ptotal Clorof.a 

 mg/L µg/L µg/L µg/L µg/L mg/L mg/L µg/L 

7,8 4,1 79,3 253,0 1376,8 247,1 4,0 1,5 43,1 

7,8 5,3 23,6 271,2 1390,3 334,1 5,1 1,5 45,0 

8,1 4,3 28,7 291,2 1072,0 233,8 4,6 1,1 47,6 

9,5 0,9 58,2 480,8 1365,4 208,7 9,3 0,9 47,9 

9,3 4,6 20,0 345,6 1594,8 183,7 9,6 1,0 48,5 

7,9 5,2 23,1 239,8 1593,8 171,9 4,9 1,5 48,6 

8,2 6,5 12,4 166,4 1311,5 565,3 4,5 0,6 48,7 

9,4 8,6 20,7 311,8 1107,7 177,8 6,7 0,8 49,5 

8,2 2,8 7,7 296,6 1735,2 763,1 4,3 1,6 52,0 

9,2 2,4 17,8 507,9 1426,2 198,4 6,5 0,7 55,4 

8,0 5,4 14,9 284,7 1782,6 322,3 3,8 0,1 56,3 

8,2 7,0 41,0 263,1 1650,3 322,3 3,9 1,5 57,2 
 
 
Tabela 6- Conjunto de dados mesotróficos em relação a clorofila-a 

pH OD N-NH4 N-NO2 N-NO3 P-PO4 Ntotal Ptotal Clorof.a 

 mg/L µg/L µg/L µg/L µg/L mg/L mg/L µg/L 

8,3 5,9 6,2 281,0 1361,0 257,4 4,6 1,1 33,3 

8,8 7,5 74,8 270,7 729,4 416,6 1,3 0,8 34,4 

8,1 6,7 16,3 167,1 1815,7 569,8 4,2 0,6 37,4 

8,1 2,9 16,4 295,6 1403,5 462,3 5,0 1,4 37,7 
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Tabela 8 - Conjunto de dados hipereutróficos em relação a clorofila-a 

pH OD N-NH4 N-NO2 N-NO3 P-PO4 Ntotal Ptotal Clorofila 

 mg/L µg/L µg/L µg/L µg/L mg/L mg/L µg/L 

8,1 6,5 9,0 138,7 1265,8 569,8 3,2 0,7 61,2 

8,3 6,4 10,0 130,6 1403,3 553,4 3,9 0,7 64,3 

8,2 2,8 22,7 34,6 1614,5 412,2 2,2 0,6 83,0 

8,2 9,1 15,6 413,2 2663,8 304,6 2,5 0,3 84,8 

8,1 6,6 159,4 217,2 1201,1 593,6 3,2 0,6 92,3 

8,2 7,0 9,0 101,5 1315,5 554,9 2,7 0,7 95,9 

8,6 9,1 36,1 7,1 552,9 309,0 3,9 1,0 98,0 

8,5 7,8 12,0 12,9 2241,9 353,2 1,3 0,6 109,0 

9,0 9,0 29,7 6,8 351,0 319,3 2,7 1,0 109,9 

8,2 5,2 35,3 16,3 1315,5 407,8 4,7 0,5 112,0 

8,3 6,4 20,5 23,7 1394,6 341,4 4,5 0,6 113,8 

7,9 3,4 40,5 140,1 1537,9 429,9 10,1 0,7 114,9 

8,5 5,5 31,9 3,8 1577,8 196,9 5,5 0,7 119,0 

8,3 4,6 14,4 51,5 1842,8 356,2 10,6 0,3 123,7 

8,1 4,9 22,2 96,8 1985,0 375,3 2,5 0,6 125,3 

8,1 6,5 162,3 227,3 1378,5 577,3 3,4 0,6 126,4 

8,7 5,0 33,9 77,1 977,7 375,3 9,5 0,9 127,6 

8,8 7,7 27,1 9,5 769,2 320,8 4,4 0,7 143,2 

8,0 4,2 29,0 10,9 1436,3 410,7 2,9 0,5 147,7 

8,2 3,6 13,2 21,0 2709,8 366,5 9,0 0,6 149,6 

8,3 5,2 10,5 21,0 2320,4 345,9 5,5 0,3 155,7 

8,3 5,2 6,8 105,6 1297,2 563,9 3,7 0,7 157,1 

9,5 7,3 31,7 12,5 1014,4 313,4 9,4 0,8 183,7 

9,3 3,1 37,8 136,0 676,6 384,2 28,0 1,2 185,3 

8,1 2,2 25,4 106,9 1080,6 416,6 6,1 0,6 186,2 

8,4 3,9 27,5 0,7 481,7 279,5 6,6 0,4 208,4 

8,1 4,6 91,4 17,7 1876,6 409,3 14,2 0,6 224,8 

8,4 5,3 22,7 2,4 1430,4 183,7 4,3 1,0 225,7 

8,5 4,4 24,6 1,7 1198,0 194,0 4,6 0,9 229,6 

8,3 6,5 28,8 1,7 693,2 196,9 3,6 0,9 264,4 

8,4 4,0 29,7 2,1 1105,1 254,4 8,1 0,6 293,7 
 
 

 



 

ANEXO B – Metodologia de construção gráfica das interfaces 

1 INTERFACES GRÁFICAS 

1.1 GUIDE 

As interfaces foram desenvolvidas através do GUIDE (Graphical User Interface 

Design Environment). O GUIDE é uma ferramenta do Matlab que permite a construção de 

interfaces (GUI) para facilitar a interação usuário-programa através de elementos como 

botões, listas suspensas, caixas de texto, gráficos entre outros. A linguagem de programação 

é a mesma utilizada em arquivos .m, no entanto, estes ficam “escondidos” dos usuários, de 

modo que o desenvolvedor é capaz de controlar que parâmetros podem ser modificados pelo 

usuário final. A seguir, será mostrado um exemplo de como foi desenvolvida uma das telas 

do índice. 

1.2 Construção das interfaces 

O primeiro passo para a construção de uma interface é iniciar o GUIDE através do 

comando guide na linha de comando do Matlab. A Figura 1 mostra a tela de Quick Start para 

criação de uma nova interface. Nesta tela, para escolher uma interface em branco, basta 

selecionar a opção Blank GUI (Default). Ao escolher essa opção, a tela mostrada na Figura 2 

é aberta. 

 

Figura 1. Tela para criação de uma nova interface. 
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Figura 2. Uma interface em branco, com destaque para a barra de objetos. 

Na Figura 2, os botões em destaque constituem a barra de objetos, onde é possível 

escolher os objetos que farão parte da interface, como botões, gráficos, caixas de texto, etc. 

Para adicionar um objeto, basta selecioná-lo, clicando sobre ele, e clicando em um espaço 

livre na interface. A Figura 3 mostra um botão sendo adicionado à interface. 

 

Figura 3. Botão sendo adicionado à interface. 
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Para associar ações aos objetos, existe um arquivo de extensão .m que guarda os 

respectivos comandos. O Matlab chama essas ações de callbacks. Para acessar o callback de 

um botão, por exemplo, basta clicar com o botão direito sobre o botão, acessar View 

Callbacks e em seguida clicar sobre Callback. A Figura 4 mostra como abrir o callback de 

um botão e a Figura 5 mostra o callback associado a esse botão. 

 

Figura 4. Passo a passo de como acessar o callback de um objeto. 

 

Figura 5. Callback associado a um botão. 
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Para fins de ilustração da metodologia de criação de interfaces, será mostrado como 

foi criada a tela principal para treinamento de redes neurais: 

1) Inicialmente foi criada uma interface em branco no GUIDE, como mostrado na Figura 2. 

2) Em seguida, foram adicionados dois painéis: um para o usuário escolher o tipo de rede 

neural e outro para conter as propriedades de cada tipo de rede neural. Os painéis foram 

adicionados utilizando o botão Panel  na barra de objetos. Para alterar o nome que é 

exibido no painel, basta selecioná-lo e no menu View, clicar em Property Inspector. Na tela 

que aparece, basta alterar a opção Title para o nome desejado. A Figura 6 mostra a interface 

com os painéis. 

 

 

Figura 6. Interface de redes neurais com os painéis. 

3) O próximo passo é inserir alguns botões e botões de rádio. Isso pode ser feito utilizando 

os objetos Push Button  e Radio Button . Para fazer a alteração dos nomes que são 

exibidos nesses objetos basta alterar a opção String no Property Inspector. A Figura 7 

mostra a interface com os botões. 
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Figura 7. Interface com os botões. 

4) Por fim, para introduzir os textos, foi utilizado o objeto Static Text , para as caixas de 

texto, Edit Text  e para os menus suspensos, Pop-up Menu . Para editar o texto do 

objeto Static Text e para manter a caixa de texto em branco, basta selecionar o objeto e na 

janela de Property Inspector alterar a opção String. Para o menu suspenso, para inserir as 

opções, basta alterar a opção String e dar quebra de linha para inserir as outras opções. A 

Figura 8 mostra a interface com todos os objetos necessários para o treinamento e a 

simulação de uma rede neural para inferência da clorofila. 
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Figura 8. Interface da rede neural com todos os objetos necessários para o treinamento e simulação. 

5) Para modificar o callback do botão para carregar os dados, por exemplo, bastou acessar o 

respectivo callback e adicionar os comandos necessários para carregar os dados a partir de 

uma planilha de extensão .xls (Figura 9).  
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Figura 9. Callback do botão para carregar novos dados. 

Os callbacks dos outros objetos foram construídos de maneira semelhante à mostrada 

no passo 5. Não é possível mostrar todos os passos para a construção desta interface uma 

vez que algumas estratégias foram usadas para fins de estética do programa, como 

sobreposição de objetos e utilização da propriedade de invisibilidade, e que não são escopo 

desta metodologia, uma vez que esta visa apenas os aspectos básicos utilizados na 

construção da interface e implementação dos comandos através de callbacks. 

 

 

 

 

 

 



 

 

ANEXO C - Formatação de dados para a ferramenta de estimação de nível trófico 

 

1) As variáveis devem ser dispostas em colunas, enquanto as amostras (dados 

experimentais), em linhas, conformo exemplificado na Figura 1. 

pH OD N-NH4 N-NO2 N-NO3 P-PO4 Ntotal Ptotal saída-

Clorof.a 

8,30 6,36 10,01 130,59 1403,28 553,41 3,94 0,68 64,30 

8,10 6,49 9,03 138,71 1265,75 569,82 3,22 0,74 61,15 

8,30 5,20 6,84 105,57 1297,24 563,86 3,70 0,71 157,10 

8,20 6,99 9,03 101,51 1315,51 554,90 2,66 0,67 95,89 

8,10 6,55 159,37 217,16 1201,14 593,56 3,17 0,58 92,33 

8,10 6,52 162,29 227,30 1378,50 577,35 3,39 0,59 126,36 

8,15 9,06 15,61 413,21 2663,79 304,57 2,48 0,27 84,77 

7,95 5,36 14,88 284,71 1782,65 322,27 3,85 0,10 56,30 

8,10 4,62 91,38 17,65 1876,62 409,26 14,23 0,64 224,82 

8,18 5,23 35,34 16,30 1315,46 407,78 4,71 0,52 112,02 

8,19 2,80 22,67 34,56 1614,52 412,21 2,19 0,59 82,99 

7,97 4,20 29,01 10,89 1436,26 410,73 2,91 0,50 147,68 

8,08 2,16 25,35 106,92 1080,61 416,63 6,08 0,64 186,24 

7,94 3,36 40,46 140,06 1537,86 429,90 10,12 0,68 114,95 

8,31 6,38 20,48 23,74 1394,56 341,43 4,50 0,55 113,78 

8,09 4,90 22,19 96,78 1985,00 375,35 2,55 0,56 125,30 

8,45 7,85 11,95 12,92 2241,94 353,23 1,32 0,56 108,97 

8,29 4,55 14,39 51,46 1842,81 356,18 10,63 0,34 123,72 

8,33 5,18 10,49 21,03 2320,37 345,86 5,50 0,35 155,75 

8,22 3,64 13,17 21,03 2709,80 366,50 9,04 0,57 149,64 

Figura 1 – Exemplo de um arquivo de dados válidos 

 

2) A primeira linha do arquivo deve conter os nomes das variáveis e sua grafia não interfere 

no desempenho da ferramenta. 

3) A variável referente a saída, neste caso a concentração de clorofila-a, deve ser colocada 

na última coluna. O arquivo de dados deve sempre possuir essa variável (a variável de 

saída), caso contrário a rede neural não conseguirá ser treinada. 

4) O arquivo deve ser salvo no formato de planilha .xls. O formato .xlsx não é suportado 

pela ferramenta. 


