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RESUMO

A disponibilidade de dgua no mundo inteiro tem se tornado pauta importante em todos os
foéruns de discussdo sobre as condi¢des dos recursos hidricos no planeta. As avaliagdes sobre
esta disponibilidade sdo, principalmente em relacdo a qualidade da dgu,a em termos da
defini¢do de parametros fisicos, quimicos e biolégicos da dgua, representando um conjunto
de pardmetros extremamente importantes para o contexto da sustentabilidade ambiental.
Neste cendrio, as técnicas de Inteligéncia Computacional ou de Inteligéncia Artificial, tém se
tornando alternativas de ampla aplicabilidade para modelagem e simulacdo da qualidade da
agua. Neste trabalho foi, entdo, desenvolvido um estudo para que as redes neurais, a 1dgica
fuzzy e a andlise de componente principal fossem utilizadas como estratégias para avaliacdo
da qualidade da dgua em corpos hidricos do Estado de Sergipe, com vista a construcao de
interface faceis de serem utilizadas em ambiente MATLAB. Neste estudo, foram coletados
dados ambientais dos reservatorios Jacarecica, da Marcela e da bacia do Rio Poxim, em
Sergipe. Para o desenvolvimento da modelagem em termos de redes neurais, foram
utilizadas as redes Multi Layer Perceptron (MLP) e as redes Radial Basis Function (RBF) e
um sistema neuro-fuzzy para modelar a qualidade da dgua utilizando como variavel de saida
a concentracao de clorofila-a para caracterizar o fendmeno de eutrofiza¢ao do sistema. Além
dessa modelagem, foi desenvolvida uma equacdo com base na andlise de componente
principal em funcdo das medidas de pH, oxigénio dissolvido, amdnia, nitrito e nitrato, além
das concentracdes de ortofosfato, nitrogénio total e fosforo total, e clorofila-a. Quanto a
aplicacdo da légica fuzzy, foi calculado o indice de qualidade da dgua em funcdo das
concentracdes de clorofila-a, nitrogénio total e fésforo total para classificagcdo do sistema
nos quatro niveis tréficos para que as varidveis linguisticas fossem identificadas. Para a
andlise fuzzy foram implementadas as regras fuzzy com base no conhecimento especialista
do sistema hidrico, sendo o modelo fuzzy considerado representativo para classificar as
condi¢des ambientais dos reservatérios. E importante ressaltar que os resultados foram
satisfatorios em termos da classificagdo e descri¢do do fenomeno de eutrofizagdo entre os
niveis de oligotréfico e hipertréfico para corpos hidricos em andlise. Dessa forma, as
técnicas de inteligéncia artificial, em particular as redes neurais e a logica fuzzy, foram
empregadas com sucesso para um conjunto de dados ambientais, mostrando a viabilidade
numérica no que concerne a representacio de fendmenos ambientais complexos e
importantes para sustentabilidade ambiental dos corpos hidricos.

Palavras-chave: Redes Neurais Artificiais. Logica Fuzzy. Sistema Neurofuzzy. Indice de
Qualidade da Agua.



ABSTRACT

The availability of water in the world has become important agenda in all forums on the
conditions of water resources on the planet. The evaluations are available on this, especially
in relation to water quality in terms of the definition of physical, chemical and biological
water, representing a set of parameters extremely important for the context of environmental
sustainability. In this scenario, the techniques of Computational Intelligence and Artificial
Intelligence have become alternative broad applicability for modeling and simulation of
water quality. This work was then carried out to the neural networks, fuzzy logic and
principal component analysis were used as strategies for evaluation of water quality in water
bodies of the State of Sergipe, with a view to building interface easily be used in MATLAB.
In this study, data were collected Jacarecica environmental reservoirs of some of Marcela
and Poxim River basin in Sergipe. For the development of modeling in terms of neural
networks, the networks were used Multi-Layer Perceptron (MLP) and Radial Basis Function
networks (RBF) and a neuro-fuzzy system for modeling water quality using as output
variable concentration chlorophyll-a to characterize the phenomenon of eutrophication. In
this model, we developed an equation based on principal component analysis on the basis of
measurements of pH, dissolved oxygen, ammonia, nitrite and nitrate, and concentrations of
orthophosphate, total nitrogen and total phosphorus and chlorophyll-a. Concerning the
application of fuzzy logic, we calculated the index of water quality in the concentrations of
chlorophyll a, total nitrogen and total phosphorus for the classification system in the four
trophic levels for the linguistic variables were identified. To analyze fuzzy rules were
implemented based on expert knowledge of the water system and the fuzzy model was
representative to classify the environmental conditions of the reservoirs. Importantly, the
results were satisfactory in terms of classification and description of the phenomenon of
eutrophication levels for oligotrophic and hypertrophic water bodies under consideration.
Thus, the artificial intelligence techniques, in particular neural networks and fuzzy logic
have been successfully employed for a set of environmental data, showing the feasibility
with regard to numerical representation of complex environmental phenomena and
important for environmental sustainability of the bodies water.

Keywords: Artificial Neural Networks. Fuzzy Logic. Neuro Fuzzy System. Water Quality
Index.
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1 INTRODUCAO

A disponibilidade de dgua no mundo inteiro tem se tornado pauta em muitos oS
foruns de discussdo sobre os recursos hidricos do planeta. As avaliaches sobre esta
disponibilidade sdo, principalmente, em relacdo a qualidade da dgua para os usos
considerados nobres como abastecimento publico, recreacdo, geracao de energia, irrigagao e
pesca. Conforme comentam Srebotnjak et al. (2012), proteger a qualidade de d4gua doce para
as necessidades humanas e o equilibrio ecoldgico €, portanto, um aspecto importante da
gestdo ambiental integrada ao desenvolvimento sustentdvel da humanidade.

O Brasil detém, aproximadamente, 12 % da dgua doce superficial do planeta, ou seja,
tem-se d4gua em abundancia no pais. Entretanto, o Brasil apresenta graves problemas quanto
a distribuicdo e utilizagdo dos recursos hidricos disponiveis. Esses problemas sio mais
graves na regido Nordeste, que conta apenas com 3 % dessa disponibilidade. Agregada a
esse fato, o crescimento e os problemas de abastecimento tornam o Nordeste a regido mais
carente do pais quanto a quantidade e a qualidade da dgua, conforme relatérios apresentados
pela Agéncia Nacional de Aguas - ANA (ANA, 2012).

Neste cendrio, a avaliacdo da qualidade da dgua € imprescindivel para
sustentabilidade dos recursos hidricos do pais, pois sua disponibilidade vem se tornando
limitada. Macedo (2004) comenta que 63% do descarte de lixo no pais sdo feitos em rios,
lagos e restingas (ecossistemas costeiros, fisicamente determinados pelas condi¢des edaficas
(solo arenoso) e pela influéncia marinha), agravando cada vez mais a qualidade e a
quantidade de d4gua em dreas populacionais carentes em abastecimento e tratamento de dgua.
Em decorréncia dessa condi¢do socioecondmica, a avaliagdo da qualidade da dgua quanto
aos fendmenos ambientais, a exemplo do fendomeno de eutrofizacdo, vem se destacando em
estudos nos principais centros de pesquisas no Brasil e no mundo.

Os estudos do comportamento dos corpos hidricos sdo desenvolvidos em termos da
definicdo de parametros fisicos, quimicos e bioldgicos da 4gua, que representam um
conjunto de parametros ambientais necessdrio para classificacio da qualidade desses
recursos. Dessa forma, ressalta-se, por exemplo, que a qualidade da 4gua de superficie em
uma regido depende muito da natureza e da magnitude das atividades antropogénicas
industriais, agricolas e outras nos corpos d’dgua (SINGH et al., 2009).

Em geral, a polui¢do orginica em um sistema hidrico pode ser medida e expressa,
por exemplo, através da Demanda Bioquimica de Oxigénio (DBO) e da quantidade de

Oxigénio Dissolvido (OD) indicando o nivel de clorofila-a (principal parametro para
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indicacdo do nivel eutréfico do sistema). Sendo assim, € de extrema necessidade o
desenvolvimento de métodos para determinacdo da clorifila-a, ou de pardmetros
correlacionados, seja através de medidas empiricas seja através de medidas numéricas
(estratégias numéricas).

E importante ressaltar que o interesse na andlise e a previsdo dos parimetros da
qualidade da 4gua tém aumentado substancialmente nos ultimos anos, devido a crescente
disponibilidade de métodos de inteligéncia computacional (CHAU, 2006 apud WEST;
DELLANA, 2011). No entanto, alguns autores comentam sobre a dificuldade na previsao
dos parametros ambientais devido a natureza complexa e cumulativa dos processos
bioldgicos e a necessidade de longos prazos na aquisi¢do de informagdes sobre as condigdes
ambientais do sistema hidrico.

Nesta abordagem, as técnicas de Inteligéncia Computacional (IC) ou de Inteligéncia
Artificial (IA), tém sido desenvolvidas como alternativas consubstanciadas para avaliacdo da
qualidade da dgua.

Atualmente, a 4rea de Inteligéncia Computacional envolve as principais técnicas de
redes neurais, légica fuzzy, algoritmo genético ou modelos hibridos (neurofuzzy) . O termo
inteligéncia é atribuido aos desenvolvimentos computacionais, pois sao sistemas inspirados
no comportamento humano ou que tentam reproduzi-lo mesmo estando longe de ser
autbnomo em inteligéncia ou no pensar. Apesar desta ressalva, esses sistemas tém
encontrado grande aceitacdo em diversas dreas do conhecimento, € muitas vezes apresentam
desempenho superior quando comparados aos métodos convencionais utilizados para
descrever os processos (WU; BANZHAT, 2010).

No entanto, um impedimento para uma maior aplica¢do de técnicas de Computacao
Inteligente na modelagem da qualidade da dgua € a falta de conhecimento dos profissionais
desta drea em relagdo as técnicas de Inteligéncia Artificial quando comparados, por
exemplo, aos profissionais de informdtica que ja vém aplicando estas técnicas ha muito
tempo. Outro fato que pode ser observado como responsdvel por uma falta de uma maior
utilizacdo destas técnicas nessa drea € a falta de estratégias para sua aplicacdo nas dreas de
Quimica Analitica Ambiental, Engenharia Ambiental, ou mesmo em Quimica, que comecem
com a caracterizacdo do problema utilizando as técnicas de Inteligéncia Artificial, assim
como uma avaliacdo de sua aplicabilidade e eficiéncia na apresentacdo da resposta ao
problema.

Apesar da disponibilidade crescente de softwares para implementacdo dessas

técnicas, tais como redes neurais e sistema fuzzy, ter facilitado sua disseminacao nas diversas
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areas, ha ainda necessidade de maior compreensio, utilizacao destas metodologias e sua
validacdo na descri¢cdo do comportamento da qualidade da dgua.

Segundo Kuo et al. (2007), a dificuldade em predizer o comportamento de corpos de
agua é devido a complexidade fisica, quimica e bioldgica envolvidas nos processos hidricos.
Além disso, os sistemas de qualidade da dgua sdo processos bioldgicos complexos
(CARLSSON; LINDBERG, 1998; SPALL; CRISTION, 1997 apud WEST; DELLANA,
2011), o que torna essa dificuldade ainda maior. Os balancos de massas para representar o
comportamento fenomenoldgico, a exemplo a eutrofizacdo de lagos e reservatorios,
comegaram aproximadamente no final da década de 70 do século passado. Com o aumento
do entendimento do processo de eutrofizagdo, assim como com o avanco da capacidade
computacional, modelos multidimensionais de hidrodindmica da &gua t€m sido
desenvolvidos e técnicas tém sido aplicadas para descrever a qualidade da dgua, porém essas
técnicas sdo pouco difundidas no Brasil e até mesmo em outros paises.

Dentre os trabalhos publicados, merecem destaques os de Lu e Lo (2002) que retrata
o diagnostico de reservatorio de dgua utilizando a l6gica fuzzy para representar o processo de
eutrofizacdo em termos de parametros como fésforo total e clorofila-a; o de Chaves e Kojiri
(2007), que desenvolveram estratégias em neuro-fuzzy considerando os pardmetros da
qualidade da &4gua associados aos processos de aeracdo e remoc¢do de sedimentos no
reservatorio; Singh et al. (2009) que descreveram o treinamento, validacdo e aplicacdo de
Redes Neurais Artificiais (RNA) para calcular o oxigénio dissolvido e a demanda
bioquimica de oxigénio em rios; o de Han et al. (2011), que apresenta a aplicacdo de uma
Rede Neural Radial (Radial Basis Function - RBF) para previsao da qualidade da dgua; o de
Carvalho et al. (2010), que utilizaram as redes neurais e a estatistica multivariada para
avaliar a qualidade da dgua em dois corpos d’dgua de Sergipe. Neste dltimo, o fendmeno da
eutrofizacdo foi idealizado como um problema de entrada-saida, ou seja, os dados de
clorofila-a (output) foram associados aos dados dos nutrientes (input) e como resultado foi
possivel classificar os sistemas oligotroficos e hipertréficos.

Além disso, em relacdo as técnicas de Sistemas Inteligentes duas delas se destacam,
em funcdo da crescente utilizacdo na modelagem da qualidade da dgua: as Redes Neurais
Artificiais e a Ldgica Fuzzy (Sistemas Difusos). Merece destaque, também, a combinagao
entre estas duas técnicas, um sistema hibrido denominado de Neuro-Fuzzy. Inseridos nesta
abordagem, a disponibilidade de estratégias utilizando essas técnicas torna-se imprescindivel
como ferramenta para monitoramento e controle da qualidade dos recursos hidricos, sendo,

portanto, este o objetivo principal deste trabalho.
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Inserido neste contexto, o presente trabalho tem como objetivo principal desenvolver
estratégias para utilizacdo de sistemas inteligentes no monitoramento da qualidade da dgua
em reservatorios de Sergipe. E para o alcance deste objetivo, os seguintes objetivos

especificos foram definidos:

1. Monitorar da qualidade dos recursos hidricos nos reservatérios de Jacarecica e
Marcela e no Rio Poxim, no Estado de Sergipe, através da caracterizacdo fisica,

quimica, microbioldgica e toxicoldgica.

2. Elaborar softwares com uso da ferramenta MATLAB para aplicagcdo das técnicas de
Redes Neurais, Logica Fuzzy e Neuro-Fuzzy para caracterizagio desses reservatorios

com bases nos parametros fisicos, quimicos, microbioldgicos e toxicoldgicos.

3. Desenvolver um indice multivaridvel para o estado tréfico da dgua utilizando a

técnica de Andlise de Componentes Principais com uso da ferramenta MATLAB.

4. Construir interfaces aceitdveis para o usudrio, direcionadas para uma aplicacdo mais

agil destas técnicas na caracterizagdo dos reservatorios.

Neste cendrio, a maior dificuldade da aplicagdo das técnicas de Computacdo
Inteligente em Engenharia é o pouco conhecimento dos profissionais desta area em relagao
as técnicas de Inteligéncia Artificial e a sua aplicabilidade a fendmenos especificos, como a
eutrofiza¢do de um sistema hidrico. Esta auséncia de familiarizagdo se deve em muito a falta
de preparo deste profissional que vai desde a caracterizagdo do problema de engenharia
como passivel de solugdo pelas técnicas de Inteligéncia Artificial, assim como de estratégias
para sua aplica¢do e formas de avaliagdo de sua aplicabilidade e eficiéncia.

Em geral, os Sistemas Inteligentes encontram aplicacdes em Modelagem,
Otimizagdo, Identificacdo, Operagao e Controle de processos. Estes sistemas sdo alternativas
ou complementos das técnicas ja consagradas de estatistica, pesquisa operacional e
modelagem numérica utilizadas frequentemente na Engenharia.

No que concerne ao monitoramento ambiental, o processo de eutrofizacido traz
consequéncias devastadoras ao meio ambiente e sua analise numérica ndo € simples, tendo

N

em vista a complexidade fisica, quimica e biologica que dificulta a predicdo do
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comportamento dos nutrientes nos lagos e reservatérios. Os modelos deterministicos e
empiricos sdo desenvolvidos de forma mais geral e necessitam, frequentemente, de algum
nivel de calibracdo com dados especificos experimentais. E, importantes fatores que afetam
o fendmeno de eutrofizacdo relacionados a natureza do ecossistema, sdo, geralmente,
desprezados em aproximagdes classicas. No entanto, esses parametros podem ser
relacionados mais facilmente através da aplicacdo dos sistemas inteligentes.

E importante ressaltar que em relacio ao monitoramento da qualidade de um corpo
hidrico, o desenvolvimento experimental constitui um dos aspectos mais impactante no
sucesso desse monitoramento. A qualidade e a quantidade de dados experimentais
necessarios para classificar a qualidade de um recurso hidrico sdo influenciadas por
varidveis que muitas vezes independem do executor do projeto, a exemplo, as condi¢des
climéticas, econdmicas e até mesmo politicas institucionais.

Neste sentido, esta tese de doutorado propde o desenvolvimento de estratégias
utilizando as técnicas de Redes Neurais, Légica Fuzzy e Neuro-fuzzy, prevendo o
desenvolvimento de estratégias numéricas para aplicacdo destas técnicas com uso do
MATLAB, com énfase em aplicagcdes na Engenharia Ambiental e na drea de Quimica

Analitica Ambiental, para monitoramento da qualidade dos recursos hidricos, em particular

nos corpos hidricos do Estado de Sergipe.



2 FUNDAMENTACAO TEORICA

Neste item do trabalho, serd apresentado o levantamento bibliografico sobre os
assuntos relacionados ao desenvolvimento da tese. Primeiro, serd caracterizado o objetivo de
estudo, a 4dgua, suas caracteristicas e sua importancia como elemento fundamental para a
sustentabilidade e desenvolvimento socioecondmico de um pais. Segundo, os principais
processos que distinguem a qualidade da dgua. Terceiro, os modelos que constituem as

estratégias numéricas para avaliacdo da qualidade dos recursos hidricos.

2.1 AGUA

De todos os recursos naturais, a dgua é sem ddvida o mais importante € o mais
precioso. No entanto, a dgua vem apresentando uma variedade de contaminantes, em
decorréncia de um grande nimero de praticas destrutivas e de ma gestdo ambiental. Estas
s30 ameagas aos recursos hidricos, que, em escala mundial, restringem os diversos usos de
dgua (MACEDO, 2004; ABBASI; ABBASI, 2012).

O uso da 4gua exige diferentes padrdes para a qualidade do sistema hidrico. Dentre
estes, 0s principais usos e parametros sao:

a. Para a preservacdo da vida aqudtica: oxigénio dissolvido, pH, estado tréfico,

algas, nutrientes, turbidez, substincias toxicas (metais, agrotoxicos)

b. Para o abastecimento doméstico: turbidez, demanda bioquimica de oxigénio,

algas, nutrientes, salinidade, substancias toxicas, coliformes fecais.

c. Para arecreacdo de contato primdrio: coliformes fecais, algas, 6leos e graxas.

De acordo com a ANA, criada através da Lei 9.984/2000 e que tem como missdo
regulamentar o uso dos recursos hidricos da Unido, vem sendo implantado um sistema
nacional de gerenciamento desses recursos para garantir o uso sustentdvel, monitorando a
qualidade e a quantidade dos corpos de dgua. De forma que inserido no Artigo 4° dessa lei,

tem-se a importancia dos diversos estudos ambientais:

Art. 4°-Cabe a ANA:

“Promover a elaborac¢do de estudos para subsidiar a aplicacdo de recursos financeiros da
Unido em obras e servicos... de controle da polui¢do hidrica, em consondncia com o
estabelecido nos planos de recursos hidricos”.

“Fiscalizar os usos de recursos hidricos nos corpos de dgua de dominio da Unido”.
“Propor ao CNRH o estabelecimento de incentivos, inclusive financeiros, a conservacio
qualitativa e quantitativa de recursos hidricos”.

“Organizar, implantar e gerir o Sistema de Informagdes Sobre Recursos Hidricos

(SNIRH)”.
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Em 2007, no Semindrio Macrorregional para consolidacdo da implementagdao do
decreto n° 5.440/2005 (“Estabelece definicdes e procedimentos sobre o controle de
qualidade da dgua de sistemas de abastecimento e institui mecanismos € instrumentos para
divulgacdo de informacdo ao consumidor sobre a qualidade da dgua para consumo
humano.”), a ANA divulgou que sdao mensurados os parametros temperatura, pH,
condutividade, oxigénio dissolvido e turbidez trimestralmente em 630 pontos de
monitoramento.

Em 2012, o relatério da Conjuntura dos Recursos Hidricos no Brasil — Informe
Especial, elaborado pela ANA, mostrou o panorama da qualidade da 4gua em todo territério
nacional. Esse relatorio consta que mais de 100 corpos d“dgua estdo em condi¢des péssimas
ou ruins. A Figura 1 mostra os pontos de monitoramento da qualidade da dgua, classificando
as regides hidrograficas em péssima, ruim, regular, boa e Gtima de acordo com o Indice de
Qualidade das Aguas (IQA). E importante ressaltar, conforme consta nesse relatorio, “o IQA
¢ particularmente sensivel a contaminacio pelo lancamento de esgotos, sendo um indice de
referéncia normalmente associado a qualidade da dgua bruta captada para o abastecimento
publico apds tratamento™.

Dessa forma, a poluicao das dguas pode ser melhor compreendida através da andlise
de dois fendmenos: a bioacumulacgdo e a eutrofizagdo. No caso da bioacumulagdo trata-se de
um fendmeno através do qual os organismos vivos retém, dentro de si, certas substancias
téxicas sem conseguir realizar sua eliminacdo naturalmente. A eutrofizacdo pode ser
definida como sendo a fertilizacdo, aumento da concentracdo de nutrientes, das dguas de
rios, lagos e represas. Essa polui¢c@o ocorre, por exemplo, como consequéncia da falta de um

sistema de coleta e tratamento de esgoto doméstico (MAGOSSI; BONACELLA, 2003).
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Figura 1 - Classificacdo do corpo hidrico de acordo como o Indice de Qualidade da Agua
Fonte: ANA (2012)

Nesse sentido, o Altas de Saneamento de 2011, divulgado pelo Instituto Brasileiro de
Geografia e Estatistica (IBGE), mostra que houve aumento na proporciao de domicilios com
acesso a rede de esgoto que passaram de 33,5%, em 2000, para 45,7%, em 2008. Nesse
relatério, consta que apenas a Regido Sudeste apresenta mais da metade dos domicilios
(69,8%) com acesso a rede geral, em seguida a regido Centro-Oeste (33,7%), com resultado
proximo ao da Regido Sul (30,2%). No entanto, as Regides Nordeste (29,1%) e Norte
(3,5%) estao bem abaixo desses valores (RODRIGUES, 2011).

2.2 FENOMENOS DE EUTROFIZACAO

O processo de eutrofizagdo pode ser compreendido como o aumento de concentragdo
de nutrientes, principalmente fésforo e nitrogénio, nos ambientes aquéticos. O fendmeno de

eutrofizacdo pode acontecer de forma natural, contribuindo para o equilibrio ecoldgico, ou
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de forma cultural (eutrofizacdo antrépica — artificial), como sendo a fertilizacdo provocada
por atividades humanas. A eutrofizacdo artificial é capaz de quebrar o equilibrio entre a
producdo e a decomposicao de matéria organica no ambiente aquético. Esse desequilibrio é
provocado, principalmente, pela utilizacdo sem controle de fertilizantes agricolas e pela
descarga de esgotos industriais ¢ domésticos sem tratamento no corpo hidrico (JI, 2008).

Dessa forma, Magossi e Bonacella (2003) comentam que no processo de
eutrofizacdo, o aumento da concentracdo de nutrientes favorecendo o crescimento e a
multiplicacdo do fitopldancton, o que provoca o aumento da turbidez da dgua e como
consequéncia, a luz solar ndo chega as plantas que se encontram submersas, nao ocorrendo o
processo de fotossintese, o que leva a deterioracao da 4gua para consumo humano.

Sob essa andlise, o estabelecimento do comportamento de corpos d’dgua, através da
medida de parametros ambientais, funciona com uma importante ferramenta no combate a
problemas ambientais, como o processo de eutrofizacdo de reservatorios. Entretanto, esta é
uma tarefa dificil devido a complexidade dos processos fisicos, quimicos e bioldgicos

causadores desses problemas (NIJBOER; VERDONSCHOT, 2004; KUO et al., 2007).

Os reservatorios sao fontes de 4dgua superficiais construidos artificialmente e, em
geral, sao usados para geracdo de energia, recreacdo, pratica de esporte, pesca comercial,
irrigacdo, abastecimento para consumo humano etc. No entanto, esses ambientes estdo
sujeitos ao processo de eutrofizacdo, sendo, portanto, importante o monitoramento da

qualidade da 4gua (DALTRO FILHO; SANTOS, 2002).

Uma gama de problemas estd relacionada aos efeitos da eutrofizacio em
reservatorios. Dentre estes, ocorre, principalmente, a diminuicdo da diversidade de espécies,
o aumento de biomassa de plantas e animais, o aumento da turbidez e o aumento da taxa de
sedimentacdo, e a diminui¢do da concentragdo de oxigé€nio nos reservatérios. No que se
refere aos problemas relacionados ao uso de determinado recurso hidrico, os efeitos da
eutrofizacdo estao relacionados a dificuldade no processo de tratamento da dgua potavel, o
odor e o gosto desagraddveis, presentes nas linhas de suprimento de dgua, vérias doencas
podem ser transmitidas, o aumento da vegetacio aquatica, que pode impedir o fluxo da dgua
e a navegagdo. Além disso, problemas de gestdo ambiental e econdmica sdao agravados por
ocorrer uma necessidade de maior investimento nos processos de tratamento e
monitoramento da d4gua em todo mundo (PARR; MASON, 2004; KUO et al., 2008; ZANG
et al., 2008).
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2.2.1 Estado ou grau tréfico

O estado ou grau tréfico de um sistema hidrico é determinado através do Indice de
Estado Trofico (IET), que representa entradas externas de nutrientes, como, esgoto
doméstico, residuos industriais e agricolas, e estd associado a caracteristicas especificas de
cada reservatorio, a exemplo, tempo de reten¢do, vazao, regime hidrolégico. Dessa forma, o
IET serve de base para a elaboracdo de sistema de monitoramento da eutrofizacdo e

defini¢ao do uso do corpo hidrico (MAIA, 2011).

Nesse contexto, determinar o estado tréfico ou o IET € uma acdo fundamental para
classificacdo dos sistemas hidricos, ou seja, para avaliar a qualidade da 4dgua quanto ao
processo de eutrofizacdo, conforme ressaltam Sulis et al. (2011) quando desenvolveram um

modelo linear para estimativa da qualidade da 4gua com base no IET.

O estado tréfico de um reservatério pode ser avaliado através de indices
estabelecidos através de equacdes que utilizam pardmetros limnoldgicos. O Indice de Estado
Trofico (IET) de Carlson (1977) € bastante utilizado na literatura, principalmente pela
facilidade de aplicagdo numérica (equagdes simples) em funcio de pardmetros ambientais,
como as concentracdes de fosforo total e nitrogénio total (HAVENS, 1995; CHACON-
TORRES; ROSAS-MONGE, 1998; MATTHEWS et al., 2002).

2.2.1.1 Pardametros limnologicos

Inicialmente definida como sendo a ciéncia que estuda os lagos, Esteves (2011)
define a limnologia como sendo o “estudo ecolégico de todas as massas de dgua
continentais, independentemente de suas origens, dimensdes e concentragdes salinas”.

Tundisi e Tundisi (2008) definiram também a Limnologia como sendo o estudo das
reacoes funcionais e produtividade das comunidades bidticas de lagos, rios, reservatorios e
regido costeira em relacdo aos parametros fisicos, quimicos e bidticos ambientais. Dentre os
parametros limnoldgicos, destacam-se a clorofila-a, transparéncia da dgua, concentragdes de
fosforo e de nitrogé€nio por serem bastante utilizados nas equagdes dos indices de estado
trofico.

A definicdo e determinagdo dos parametros limnoldgicos s3o extremamente
importantes para diferentes dreas do conhecimento cientifico voltadas ao meio ambiente,

como por exemplo, manejo de ecossistemas, com énfase ao controle de eutrofizacio,
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aspectos para elaboracdo de Estudos de Impactos Ambientais (EIA) e Relatério de Impacto
Ambiental (RIMA) e outros, conforme comenta Lundberg (2012).

A seguir serdo descritos 0os parametros limnoldgicos clorofila-a, transparéncia da
agua e concentragdes de nitrogénio e fésforos, referindo-se aos principais parametros para
caracterizacao do estado tréfico da dgua.

a. Clorofila-a

Designa-se de Clorofila o grupo de pigmentos fotossintéticos produzidos nos
cloroplastos das folhas e em outros tecidos vegetais. Estes pigmentos sdo responsaveis pela
cor verde das plantas e atuam como fotorreceptor da luz visivel utilizada no processo da
fotossintese. Sdo quatro os tipos de clorofilas: clorofila-a, b, ¢c e d. As clorofilas a e b estdo
presentes em plantas verdes e as clorofilas ¢ e d sdo encontradas nas algas e cianobactérias.
Os pigmentos envolvidos no processo de fotossintese sao as clorofilas a e b, os carotendides
e as ficobilinas. As diferencas aparentes nas cores dos vegetais sao devidas a presenga de
outros pigmentos associados, como os carotendides, que sempre acompanham as clorofilas
(MARTINI et al. 2006; TUNDISI; TUNDISI, 2008; CAMPOS, 2010).

Dessa forma, a clorofila é considerada como sendo o principal parametro indicador
do estado tréfico, pois o acimulo de plantas nas zonas hidricas indica forte enriquecimento
de nutrientes aquéticos (FERREIRA, 2011; DIMBERG et al. 2012).

O processo utilizado para obtencdo € a extracdo da clorofila-a, na qual, comumente
se utiliza a acetona a 90%. De acordo com a Resolu¢gdo CONAMA 357/2005, recomendam-
se valores de clorofila-a de até 30 pg/L (ambientes 1€nticos) como adequados para a
manutencdo de uma boa qualidade da 4gua e para evitar impactos nos corpos da dgua que

recebem descargas de efluentes.

b. Transparéncia da 4gua — profundidade de Secchi

A medida de penetracdo de luz na coluna da dgua € um dos indicadores da qualidade
da 4gua e pode ser obtida através de um método simples e de baixo custo, conforme
comentam Tundisi e Tundisi (2008). Essa medida utiliza um disco, normalmente de 20 cm
de didmetro (denominado “disco de Secchi”) de material resistente, pode-se avaliar o quanto
a luz incidente na 4dgua estd sendo diminuida em decorréncia da presenga das algas.

Segundo Esteves (2011), a profundidade de Secchi corresponde a profundidade em
que a.

O disco de Secchi € um equipamento indispensdvel a qualquer trabalho na drea de

limnologia. O sistema consiste em uma corda, graduada, que é colocada na 4gua até
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desaparecer. Assim que o padrao grafico do disco ndo € mais observado, anotasse o quanto
este desceu na coluna d’4gua, sendo que o valor adequado para a manuten¢do de uma boa

qualidade da 4gua situa-se ao redor de 40 cm (ESTEVES, 2011).

c. Concentragdo de Fésforo

De maneira geral, a eutroficacdo caracteriza-se pelo aumento da producdo de
fitomassa de algas, causada pelo aumento da disponibilidade de nutrientes na dgua. As
concentracdes de fésforo e nitrogénio sdo os principais fatores que provocam o processo de
eutrofizacdo (ESTEVES, 2011).

Sendo assim, a determinacdo das concentragdes de fosforo na dgua € uma das
principais etapas para o monitoramento e controle da eutrofizacao.

Inserido no desenvolvimento do fitopldncton tanto o fésforo quanto o nitrogénio sao
nutrientes limitantes, uma vez que o fésforo é necessdrio para sinteses moleculares e
transporte de fons e o nitrogénio € necessdrio para sintese de aminodcidos e proteinas
(FERREIRA, 2011).

Do ponto de vista limnolégico, o fésforo por ser um elemento a ser sempre
monitorado, constituindo-se em 6timo indicador da qualidade da dgua. As fontes naturais de
fosforo sdo as rochas da bacia de drenagem, precipitacdo atmosférica e a deposi¢do de
material particulado, como particulas de solo e rochas, de organismos vivos e em
decomposicdo, compostos volateis liberados de plantas etc (ESTEVES, 2011).

A Resolucao CONAMA 357/2005 recomenda, para ambientes Iénticos (dgua parada,
lagos) e hibridos (entre 1énticos e 16ticos - barragens), valores de até 30 pug/LL como valores

de referéncia para concentracao de fésforo.

d. Nitrogénio

O nitrogénio é um dos principais elementos quimicos, sendo que € mais abundante
na forma gasosa na atmosfera. Em particular, devido a sua participacdo na formacdo de
proteinas, o nitrogénio é um dos elementos mais importantes no metabolismo de
ecossistemas aqudticos, podendo atuar como fator limitante na produg¢do primdria desses
ecossistemas e, em determinadas condicdes, tornar-se toxico a organismos aquaticos. Dentre
os compostos de nitrogénio dissolvidos na 4gua, pode-se encontrar uma forma ionizada
(NH;" fon amonio), e outra ndo ionizada (NH; amdnia). As duas formas juntas constituem a
amonia total ou nitrogénio amoniacal total (ESTEVES, 2011).

As principais fontes de nitrogénio para os ecossistemas aqudticos continentais sio a
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fixacdo bioldgica de nitrogénio que ocorre com a transformacdo de gés nitrogénio (N2) em
nitrogénio bioldgico, chuvas, aporte de efluentes domésticos e industriais ndo tratados ou
parcialmente tratados lancados nos corpos de dgua (FERREIRA, 2011; ESTEVES, 2011).
Quanto maior for o pH, maior serd a porcentagem da amonia total presente na forma
NHj; nao ionizada (forma téxica). Por exemplo, na piscicultura intensiva, a principal fonte de
compostos nitrogenados incorporados a dgua advém da alimentacdo. Os fertilizantes e
racoes utilizadas em viveiros contém nitrogénio, principalmente na forma de amoénia e
nitrato. O excesso desses elementos pode prejudicar o crescimento dos peixes. Além disso,
esse nutriente € consumido também pelo fitoplancton, acarretando geralmente um
crescimento excessivo das algas. De forma que, o manejo inadequado de fertilizantes

quimicos compromete bastante a qualidade da dgua (STOATE et al., 2009; RIJN, 2012) .

2.2.1.2 Indice de Estado Trdfico

O Indice de Estado Tréfico (IET) é indice numérico composto por pardmetros
fisicos, quimicos, bioldgicos para indicar as condi¢des ambientais de um sistema hidrico. O
IET é dividido em cinco grupos com intervalos de 0-20, 20-40, 40-60, 60-80, 80-100
correspondentes a cinco estados tréficos, hiperoligotréfico, oligotréfico, mesotréfico,

eutréfico e hipereutréfico, respectivamente (XU, 2008).

Carlson e Simpson (1996) definiram o Indice de Estado Tréfico (IET) com base na
biomassa fitoplanctonica presente em determinado corpo d’dgua, em local e tempo
especificos. Estes autores definiram também que o estado tréfico ndo € o mesmo que a
qualidade da 4gua, mas um aspecto importante da mesma. Nesse indice, estdo inseridos as
varidveis clorofila-a, transparéncia (disco de Secchi), nitrogénio total e fésforo total para
estimar a concentracdo de biomassa de algas. Como resultado, estes autores propuseram as

equagdes mostradas na Tabela 1 para determinar o IET.

Tabela 1 - Indice de Estado Tréfico.

Equacao do IET Parametros

IET (DS) = 60 — 14,41 In(DS) Transparéncia do disco de Secchi (DS), medida em m
IET (Chl) = 9,81 In(Chl) + 30,6 Clorofila (Chl), medida em pg.L*

IET (Pt) = 14,42 In(Py) + 4,15 Fésforo total (Pr), medido em pg.L!

IET (Nt) = 54,45 + 14,43 In(N) Nitrogénio total (Nt), medido em mg.L!

Fonte: Carlson; Simpson (1996)

Um corpo d'dgua, geralmente, pode ser classificado como oligotréfico, mesotréfico e

eutréfico, (e termos associados as caracteristicas dos sistemas hidricos), em funcdo da
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produtividade bioldgica e as condi¢des de nutrientes, definindo assim seu estado tréfico. De

acordo com Ji (2008):

a. O termo oligotréfico é empregado para descrever um corpo d'dgua com baixa

atividade bioldgica e excelente qualidade de dgua, pois € um ambiente pobre em

nutrientes e algas e com produ¢do de biomassa limitada;

b. O termo mesotréfico é empregado para descrever um corpo d'dgua com média

atividade bioldgica e a qualidade da dgua é considerada boa;

c. O termo eutréfico é empregado para descrever um corpo d'dgua com excessiva

atividade bioldgica e a qualidade da 4dgua é considera ruim.

Considerando, entdo, o estado tréfico, os reservatérios podem ser classificados nas

classes apresentadas na Tabela 2 e uma combinacdo das variagdes do IET, concentracdes de

clorofila e fésforo total e transparéncia do disco Secchi.

Tabela 2 - Classificaciio do estado tréfico

.. Transparéncia
ES;E(::: IET (Elor(lit:lll)a do disco de FOifOI‘(]i_tl())tal Caracteristicas
HE- Secchi (m) ME-
Agua limpa e oxigénio no
Oligotréfico <30 <095 >8 <6 hipolimnio durante todo o
Hipolimnia de Pode tornar-se andxico
P 30-40  0,95-2,60 8—4 6- 12 (falta de oxigénio).
lagos rasos
Agua moderamente limpa,
maior probabilidade de
Mesotroéfico 40-50 2,60-7,30 4-2 12-24 anoxia no hipolimnio no
verao.
Eutréfico 50-60  7,30-20 2-1 24 — 48 Anoxia no hipolimnio
Dominio de Podem surgir gosto e odor
. 60-70 20-56 05-1 48 — 96 desagradéveis.
algas azuis
Produtividade limitada
Hipereutréfico  70-80 56-155 0,25-0,5 96 — 192 pela luz.
f?llfizrl'sores . Dominio de peixes
! Ouclas >80  >155 <0,25 192-384  resistentes e  possivel
poucas morte de peixes no verao.
macrofitas

Fonte: Carlson; Simpson (1996)
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Nesse sentido, muitos trabalhos tém sido desenvolvidos a fim de estudar o processo
de eutrofizacdo em reservatdrios ou a qualidade da dgua em todo mundo tomando como

referéncia a classificagdo dos corpos hidricos apresentada na Tabela 2.

Havens (1995) estudou a quantificagdo histérica, de 1973 a 1993, do nutriente
limitante do lago Okeechobee, na Florida, Estados Unidos. O nivel do nutriente limitante
(nitrogénio/fosforo) foi estimado por desvios entre o indice de estado tréfico, calculado a
partir da rotina de monitoramento de dados. O estudo da variagdo do indice de estado tréfico
histérico indicou uma forte tendéncia da limitacdo do fésforo a limitacdo secunddria do
nitrogénio entre 1970 e 1980, que coincidiu com mudancgas na saida de nutrientes e manejo
hidrico. Essa documenta¢do da limitacdo secundéria do nitrogénio foi importante para o
manejo do lago, porque confirmou que os esfor¢os progressivos e dispendiosos para reduzir
a concentragao de fésforo e criar uma condi¢do limitada pelo fésforo no lago, na realidade

constitui uma restauracao da condic@o natural prévia.

Soyupak et al. (1997) desenvolveram estudos no reservatério de Keban Dam, oeste
da Anatdlia, Turquia, no qual diferentes se¢des do reservatério t€m diferentes estados
tréficos, sendo a por¢do superior do lago eutréfica. Nesse sentido, avaliaram, estratégias
alternativas a serem implementadas para controle do fésforo e da eutrofizacdo. Técnicas de
modelagem matemadtica s@o usadas para composi¢ao de vdrias alternativas, em termos de sua
relativa eficdcia, para controle de fésforo. O modelo usado simulou a concentragdo de
oxigénio dissolvido e a clorofila eufética sob condi¢des correspondentes a varias estratégias
propostas para o controle de fosforo. Os esfor¢os da modelagem produziram informacgdes
valiosas que podem ser usadas para tomada de decisdes na avaliagdo de diferentes

alternativas de manejo, incluindo reducdo de entrada de carga de fésforo.

Chacon-Torres e Rosas-Monge (1998) realizaram estudos de monitoramento
limnolégico anual no lago tropical Zirahuen, no México, que sofre uma forte influéncia
antropogénica. Os estudos foram desenvolvidos com base nas caracteristicas da qualidade da
dgua e no nivel tréfico do lago, para incentivar o desenvolvimento de um programa de
manejo para uso sustentdvel e conservacdo do ecossistema do lago. Os modelos de estados
tréficos, indice de estado tréfico proposto por Shannon e Brezonik (1972) e o proposto por
Carlson (1977), sugeriram que o lago Zirahuen é um sistema oligotréfico. Contudo, o
aumento da erosdo e o aporte de esgoto ndo tratado indicaram a necessidade de estratégias

de manejo do lago para conservacio e desenvolvimento sustentdvel do sistema.
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Ibafiez et al. (2000) estudaram as caracteristicas fisicas e quimicas de trés sistemas
aqudticos na Baixada Maranhanense: os rios Pindaré (lago Viana), Pericuma e Turiacu.
Nesse trabalho, observou-se que os corpos d’dgua diferiram quanto a condutividade elétrica,
sOlidos totais suspensos e nutrientes, com elevados valores (exceto para o nitrogénio total)

no periodo seco.

Perkins e Underwood (2000) realizaram estudos no reservatério Alton Water,
Suffolk, UK, durante trés anos (1995 a 1997) e observaram uma varia¢do entre o estado
eutréfico a mesotréfico. No verdo de 1995, a concentragdo da clorofila-a noroeste do
reservatorio era 95 + 34 ug.L'l, 24 vezes maior que na bacia. As concentragdes de fosforo
total, ortofosfato, nitrato e amodnia reduziram de maneira significativa ao longo do
reservatorio, enquanto a transparéncia do disco de Secchi aumentou. Nesse trabalho, os
autores verificaram também que a noroeste do reservatério havia alta concentracdo de
sOlidos suspensos e biomassa algal, enquanto a bacia principal apresentou dgua limpa com

alta transparéncia no disco de Secchi.

Havens et al. (2001) compararam a dindmica dos nutrientes em trés lagos, situados
no Japao (lago Kasamigaura), China (lago Danghu) e Estados Unidos (lago Okeechobee),
fortemente influenciados por fonte de poluicdo pontual e difusa, todos grandes (4drea maior
que 30 km?), rasos (profundidade menor que 4 m) e eutréficos. Neste trabalho, constatou-se,
nos trés lagos, fortes correlagdes entre os sedimentos, a coluna d’dgua e as atividades
antropicas. Processos importantes afetam a dindmica dos nutrientes como fixacdo de
nitrogénio e a limitacdo da luz devido a resuspensdo de sedimentos. Os autores observaram

que a dinamica varidvel de nutrientes € tipica de sistemas de lagos rasos.

Freitas (2001) observou que as aguas do reservatorio Marcela (Itabaiana, Sergipe)
eram improprias para irrigagdo de hortaligas. A classificacdo do estado tréfico variou de
mesotréfico a hipereutréfico, predominando o ambiente eutréfico, sendo que o nutriente

limitante foi o nitrogénio.

Gulati e Van Donk (2002) descreveram a origem da eutrofizacio e das técnicas de
restauracdo em lagos rasos, como o lago Dutch, na Holanda. Os estudos revelaram que a
reducdo de fésforo a niveis baixos ndo foi garantia de que ocorresse 0 mesmo com a
populacdo de cianobactérias, pois elas podem resistir a grandes variacdes do fésforo e,

portanto, a variacdes na razao carbono:fésforo.
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Matthews et al. (2002) avaliaram durante onze anos parametros para definir o estado
tréfico e o nutriente limitante no lago Whatcom, caracterizado como oligotréfico, localizado
em uma cadeia de lagos em Washington, nos Estados Unidos. Os autores perceberam que,
apesar das concentracdes do fosforo total e o fosforo reativo solivel serem relativamente
baixas em todo o lago, houve diferencas significativas entre os locais amostrados. Os
coeficientes de correlacao entre clorofila, profundidade do disco de Secchi, nitrogénio total e
nitrogénio inorganico dissolvido foram altos. No final do verdo, a correlacdo da biomassa
algal foi melhor com o nitrogénio inorganico dissolvido e o fésforo total. O indice de estado
tréfico baseado no fésforo total, nitrogénio total, clorofila e profundidade do disco de Secchi
revelou que apesar do crescimento algal ser limitado pelo fésforo durante o ano, o nordeste
do lago pode ter tido, como co-limitante, o nitrogénio, durante o final do verdo e outono. O

modelo observado no lago foi mais semelhante ao descrito para lagos eutréficos.

Cavenaghi et al. (2003) caracterizaram a dgua € o sedimento em cinco reservatorios
da bacia do rio Tiet€ e correlacionaram as informacdes obtidas com a ocorréncia das
principais plantas aquéticas. Nesse trabalho foi possivel concluir que a ocorréncia de plantas
submersas foi a varidvel mais dependente da transparéncia da dgua e transmissao de luz. O
deslocamento a jusante no rio Tieté provoca a reducdo dos teores de fosfato e nitrogénio,
além de alterar a turbidez e a quantidade de s6lidos em suspensdo. Os sélidos em suspensao
apresentaram grande efeito na transmiss@o de luz por colunas de dgua, determinando ou nao
a ocorréncia de plantas aqudticas imersas. A grande infestacdo de plantas marginais e
flutuantes estd associada a sedimentacdo que ocorre na area de ingresso de tributdrios nos

reservatorios.

Jones e Knowlton (2005) observaram 135 reservatorios de Missouri, Estados Unidos,
e analisaram a relacdo entre os nutrientes e a bacia hidrografica para explorar a variagdao
entre os solidos totais suspensos e suas duas fracoes: solidos suspensos volateis e solidos
suspensos nao voldteis. Os solidos suspensos, em particular os voléteis, correlacionaram
com o estado tréfico do lago e se relacionaram positivamente com a propor¢do de terra
cultivada na bacia, e negativamente com a floresta coberta e fracamente com a drea de terra
coberta com grama. Efeitos de fatores da bacia sobre os sélidos totais suspensos no verao
refletiram no crescimento de planctons mediante a influéncia de nutrientes (afetando os
solidos suspensos voléteis) sobre a entrada direta de sedimentos (afetando os sélidos

suspensos nao volateis).
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Souza et al. (2007) avaliaram as condi¢cdes ambientais do reservatério de Acarape do
Meio - Ceard em fungdo dos pardmetros clorofila-a, fosfato, ortofosfato solivel e a média
entre estes parametros. Nesse trabalho foi observada uma tendéncia a hipereutrofia do

reservatorio, mostrando um agravamento da qualidade da dgua.

Guedes et al. (2011) realizam um estudo para caracterizar a qualidade da 4gua e
estimar o estado tréfico do reservatério Lago do Amor, em Campo Grande - Mato Grosso
do Sul. Nesse trabalho, os autores mostraram que, de acordo com os elevados valores dos
parametros ambientais, como DBO, OD, fésforo, nitrogénio total, clorofila-a, o reservatério
foi classificado como dguas pertencentes a classe 4 (Resolu¢do do Conselho Nacional do
Meio Ambiente - CONAMA n° 430/2011 — 4dgua destinadas a navegacdo e harmonia
paisagistica). Os autores constataram, ainda, que o mesmo encontra-se eutrofizado e em
degradacdo, em decorréncia do processo de poluicdo e contamina¢do dos corregos

tributdrios que desdguam no reservatorio.

Akkoyunlu e Akiner (2012) analisaram a qualidade da 4gua do lago Sapanca
(Marmara - Turquia) em relagdo a quinze parametros ambientais (por exemplo, temperatura,
OD, DBO, nitrato, nitrito e clorofila-a) e propuseram um indice de eutrofizacio (WQley)
que levou em conta um nimero menor de parametros. Os autores constatam que o indice
proposto estabelecia uma boa relagdo com a andlise obtida a partir de todos os parametros, e

concluiram que o lago estd em processo de eutrofizacao.

Assim, € importante ressaltar que o processo de eutrofizacdo resulta do excesso de
algas e macrofitas nos reservatdrios, provocando a deterioragdo da qualidade da 4dgua para
uso humano e decréscimo nos niveis do oxigénio dissolvido, com efeitos adversos para os
peixes. Nesse contexto, a eutrofizacdo é um fenOmeno extremamente grave, conforme
comentam Magossi e Bonacella (2003), pois além de comprometer a qualidade das dguas,
impde condi¢cdes que praticamente impedem a reversdo natural, ou seja, um sistema
eutrofizado tende a permanecer naturalmente assim. E possivel observar que, na literatura da
area, dentre os parametros, a quantidade de clorofila-a € utilizada amplamente como

indicador do processo de eutrofizagao.

2.3 REDES NEURAIS
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De acordo com Haykin (2001), uma Rede Neural Artificial (RNA) € um processador
numérico constituido de unidades de processamento simples, que tem como finalidade
armazenar conhecimentos empiricos e tornd-los disponiveis para aplicacdo ou uso em
futuros experimentos. A RNA se assemelha ao cérebro humano em dois aspectos: quando o
conhecimento é adquirido pela rede através de um processo de aprendizagem e quando as
forcas de conexdo entre neurdnios (pesos sindpticos) sdo utilizadas para armazenar o

conhecimento adquirido.

Dessa forma, as redes neurais artificiais possuem duas fases de processamento, a de
aprendizagem e a de utilizacdo, que seria a prépria aplicacdo da rede. A primeira fase
consiste no ajuste dos pesos das conexdes, em resposta ao estimulo apresentado a rede
neural (histérico de dados). A segunda fase consiste na resposta da rede a um estimulo de
entrada, sem que ocorram modificacdes em sua estrutura de aprendizagem (OLIVEIRA

JUNIOR et al., 2007).

O conhecimento € adquirido pela rede por meio de dados do ambiente, em um
processo de aprendizagem. O processo de treinamento € denominado de Algoritmo de
Aprendizagem, e tem como finalidade ajustar os pesos sindpticos da rede de uma forma

ordenada para alcangar um objetivo desejado (ZHANG et al., 2011).

As conexdes entre 0s neurdnios, designadas de pesos sindpticos, sao utilizadas para
armazenar o conhecimento adquirido. Entdo, uma rede neural funciona com vérios
neurdnios, organizados em grupos (ou camadas) sequenciados. Os dados sdo alimentados na
camada de entrada e a resposta da rede ao seu efeito (perturbacdo) é observada na saida.
Podem existir uma ou mais camadas, denominadas de camada oculta, entre a camada de
entrada e a camada de saida da rede. O nimero de camadas ocultas é dado pelas

caracteristicas de cada sistema.

As Redes Neurais podem, ainda, ser sintetizadas por sistemas de equagdes, em geral
nao-lineares, interconectadas, em que o resultado de uma equacgdo € o valor de entrada para
vdrias outras na rede. Esta estrutura foi concebida a partir de estudo sobre a fisiologia do
cérebro humano e do seu componente primério, o neur6nio. As redes neurais sao
aproximadores universais de fun¢des, ou seja, conseguem reproduzir o comportamento de
qualquer funcdo matematica. Esta capacidade as popularizou, rapidamente, como uma
ferramenta tipo Caixa Preta para modelar relacdes entre variaveis, de modo semelhante aos
métodos estatisticos de regressdao. (GARCIA er al., 2004a; 2004b; CARVALHO et al.,
2007)
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A arquitetura de uma rede neural artificial depende diretamente do problema que
serd tratado pela rede. Como parte da definicdo da arquitetura da rede e com o objetivo de
classificd-las, tem-se: quantidades de camadas, nimeros de neur6nios em cada camada e tipo
de conex@o entre os neurdnios e sua conectividade, conforme ilustra a Figura 2 (BRAGA et

al., 2007).

Arquitetura de uma
RNA

Quantidades de

Tipo de conex@o
camadas

Camada Multiplas Parcialmente Completamente
unica camadas conectada conectada

Figura 2 - Composi¢ao da arquitetura de uma rede neural

A Figura 3 mostra as redes de acordo com a composicao da arquitetura.
Quanto ao numero de camadas, pode-se ter:

v" Redes de camada unica: essa é a forma mais simples de uma rede em camadas e
surge quando possui uma camada de entrada que se projeta para a camada de saida,

mas ndo vice-versa, como mostrado na Figura 3 (a) e (d);

v" Redes com midltiplas camadas: essas redes se distinguem das redes com camada
unica pela presenca de uma ou mais camadas ocultas, Figura 3 (b) e (c). Nestas, a

fun¢do das camadas ocultas é extrair informagdes das amostras.
Quanto aos tipos de conexdes entre os neurdnios, t€ém-se:

v Feedforward ou aciclica: neste tipo de rede, a saida do neur6nio na i-ésima camada
ndo pode ter entradas com neurdnios em camadas de indice menor ou igual a 1, como

mostrado na Figura 3 (a), (b) e (¢);

v Feedback ou ciclica: para esse tipo de rede, a saida do neurdnio na i-ésima camada
tem entradas com neurdnios em camadas de indice menor ou igual a i, como

mostrado na Figura 3 (d).

E quanto a sua conectividade, t€m-se:
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v Rede fracamente (ou parcialmente) conectada, como na Figura 3 (c);

v" Rede completamente conectada, como mostrado na Figura 3 (a), (b) e (d).

Camada de Camada de
Camada de Camada de - Camada de -
- o . neurdnios - neurdnios de
neurdnios de entrada neurdnios de saida de entrada neurdnios ocultos saida
(@ ()

Camada de Camada de

neurdnios neurdnios de

de entrada saida

Camada de Entradas'
neurdnios [ J
ocultos
© @

Saidas

Figura 3 - Exemplos de arquiteturas de redes neurais artificiais
Fonte: Adaptada de Haykin (2001)

2.3.1 Perceptron de Miiltiplas Camadas (Multi Layer Perceptron - MLP)

Os perceptrons de multiplas camadas com retropropagacdo de erro tém sido
aplicados com sucesso para resolver diversos problemas dificeis, através do seu treinamento
de forma supervisionada com um algoritmo backpropagation. Este algoritmo € baseado na

regra de aprendizagem por correcdo de erro (HAYKIN, 2001).

A Figura 4 mostra a arquitetura de uma rede perceptron de multiplas camadas com
uma camada de entrada, uma oculta e uma de saida, totalmente conectadas. Isso significa
que um neurénio em qualquer camada da rede estd conectado a todos os neurdnios da

camada anterior.

Camada Oculta

Camada de Entrada ‘

) I Camada de Saida
Vm];iéveiga de ‘ 3 ' B Variaveis de
ntra . VA N Saida

Pesos ‘

Figura 4 - Arquitetura perceptron de miltiplas camadas com uma camada oculta

Fonte: Adaptada de Haykin (2001)
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Nos préximos itens serdo mostradas as fungdes de ativagdes que foram empregadas

na presente tese e que sdo importantes no desenvolvimento do algoritmo mais utilizado para

as redes MLP - o algoritmo backpropagation.

2.3.2 Funcoes de ativacao

A funcdo de ativagcdo define a saida (em geral ndo linear) de um neurdnio, apos o

processamento da informacdo recebida pelo neurdnio (HAYKIN, 2001). A Tabela 3 mostra

as trés fungdes de ativacao mais utilizadas na literatura.

Tabela 3 - Funcoes de ativacio.

Funcao Comentario Equacdo e sua derivada
Este tipo de fungdo de ativagdo é muito  f(x)= p.x 0
Linear utilizado nas unidades que compdem a
camada de saida das arquiteturas MLP. ! (X) = pX
A origem deste tipo de funcdo estd (x)= 1
. \ _ - flae)=—0 2)
vinculada a preocupagcdao em limitar o l+e
intervalo de variagdo da fungdo (0, 1) _ _
Sigméide o & | VW)= pfG)i- ()
pela inclusd@o de um efeito de saturagao.
Sua derivada também € uma funcdo
continua.
Pelo fato da fun¢do sigmdéide apresentar eP* — X
o fx)=————=tanh(p.x)
valores de ativacdo no intervalo (0, 1), e +e? (3)
em muitos casos ela € substituida pela ( 2)
Tangente =pll—
8 funcdo tangente  hiperbdlica, que f @)= pli=1(x)
hiperbdlica

preserva a forma sigmoidal da funcao
sigmdide, mas assume valores positivos

e negativos (-1, 1).

Fonte: Braga et al. (2007)

A titulo de exemplo, na Figura 5 estdo representados os principais elementos de uma

tipica Rede Neural Feedforward, sendo que x e y representam entrada e saida (varidveis do

processo), respectivamente; w representa os pesos e f(x), a funcao de ativagdo. Nesta rede, a

funcdo de ativacao € do tipo Sigmoide.
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Redes Neurais - Caracteristicas peculiares

Neurénio Biolégico Neurénio Artificial

Padroes de Entrada }- I Padrdes de Entrada

Sinapse f Pesos
Conexoes [ 'i Conexoes
Padraes de Saida Padroes de Saida

Figura 5 - Rede Neural Feedforward (a) e a fun¢éo de ativagdo (b).
Fonte: Carvalho ef al. (2010)

x5

X, =X W +X,W, +...+ X W, = Z.\'iw,.‘ HE)=
i

b)

2.3.3 Algoritmo de retro-propagacao (Backpropagation)

O backpropagation padrao é um algoritmo de gradiente descendente, no qual os
pesos da rede sdo movidos ao longo do negativo do gradiente da fun¢do de desempenho. O
termo backpropagation refere-se a maneira como o gradiente ¢ computado para redes de
multiplas camadas ndo lineares. Existem diversas variagdes do algoritmo bdsico que sdo
baseados em outras técnicas de otimizacdo, tais como o gradiente conjugado e os métodos

de Newton (HAYKIN, 2001).

Durante o treinamento com o algoritmo backpropagation, a rede opera em uma
seqiiéncia de dois passos. Primeiro, um conjunto de varidveis € apresentado a camada de
entrada da rede. A atividade flui através da rede, camada por camada, até que a resposta seja
produzida pela camada de saida. No segundo passo, a saida fornecida pela rede ¢ comparada
com a saida desejada para esse conjunto particular. Se esta ndo estiver correta, o erro €
calculado. O erro é propagado a partir da camada de saida para a camada de entrada, e os
pesos das conexdes das unidades das camadas internas vao sendo modificados até que o erro

retro-propagado atinja o valor estabelecido (OLIVEIRA, 2000).

O treinamento ou aprendizado supervisionado de uma RNA visa a obtencdo dos
pesos das conexdes que minimizam uma fung¢do erro dada pela diferenca entre saida
calculada pela rede e um valor de saida conhecido. Este processo de aprendizado ocorre
através dos ajustes sucessivos dos pesos e, em alguns algoritmos, por meio dos residuos de
ativacao, de forma a se obter dados de saida o mais proximo possivel dos desejados. Esta € a
etapa que exige maior demanda computacional. Um dos algoritmos de treinamento mais
utilizados € o backpropagation, apesar da literatura trazer vérios outros (TORRECILLA et

al., 2007).
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A titulo de exemplo, a Figura 6 ilustra a fase de treinamento supervisionado cldssico

de uma RNA, sendo x o vetor de entrada de dados; Yd o vetor de saida desejado e Yc o

vetor de saida calculado; W € o vetor de pesos e n € o niimero da iteragao.

Saida Desejada Supervisor | Saida Desejada
Yd
+
.
Pesos | § ) .
O WijT
O Corregan dos pesos Wij

Camadas Intermediarias

b (n+1) = w, (n) + 47, )

Figura 6 - Fase de treinamento de uma RNA

Fonte: Carvalho et al. (2010)

Como o algoritmo backpropagation (retro-propagacao) foi historicamente um dos

primeiros algoritmos desenvolvidos para o tratamento das redes neurais, este foi utilizado

neste trabalho e serd descrito a seguir.

Para facilitar a derivagdo do algoritmo backpropagation, serd adotada a notagdo

apresentada na Tabela 4.

Tabela 4 - Notacdo adotada no algoritmo backpropagation.

Simbologia Significado

1,] indices referentes a diferentes neurdnios da rede

n n-ésimo vetor de entrada (iteracdo)

N nimero de amostras (padrdes de treinamento)

M numero de camadas

yj(n) sinal de saida da unidade j na itera¢do n

ej(n) sinal de erro da unidade de saida j na iteracao n

wi,j(n) peso sindptico conectando a saida da unidade 1 a entrada da unidade j
na iteracao n

uj(n) ativacdo da unidade j na iteragdo n; sinal a ser aplicado a ndo-
linearidade

() func¢do de ativagdo associada a unidade j

X matriz de dados de entrada (amostras de treinamento)

S matriz de dados de saida (saidas desejadas)
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Continuacio...

xi(n) i-ésimo elemento do vetor de entradas
sj(n) j-ésimo elemento do vetor de saidas
o taxa de aprendizagem

letras minudsculas em | vetores
negrito (a, b, ¢)

letras maidsculas em | matrizes

negrito (A, B, C)
letras a, b, ¢ escalares
As matrizes W" (param =0, 1, ..., M - 1; sendo M é o nimero de camadas da rede)

. ~ 1 0 ,
possuem dimensdo S * ' x §”, em que S’ = nimero de entradas da rede; e os vetores b”

. ~ 1
possuem dimensdo $" " x 1.

Para simplificar o desenvolvimento do algoritmo backpropagation, utiliza-se a
notacdo abreviada para uma arquitetura genérica com duas camadas (NARENDRA;

PARTHASARATHY, 1990; HAGAN; MENHAJ, 1994; DEMULTH; BEALE, 2002;) e

tomou-se como base a Figura 7.

Primeira Camada Segunda Camada
A A
r N lf N\ R
X B i 2 a
=W WA S
u' | u’ )
f f
1 1 >
—> b’ —> b’
D N S
Y 5 . .
v'i=f' Wk +bh v = (Wi'+bd)

Figura 7 - Rede neural com duas camadas.
Fonte: Haykin (2001)

Na Figura 7 tem-se uma rede neural artificial com uma camada intermedidria e uma
camada de saida (M = 2); as unidades na primeira camada (camada oculta) recebem as

entradas externas agrupadas em um vetor na forma:

v =x (4)

O vetor de saida da camada oculta da rede € dado por:

u' =W'x+b' )
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v =t'u!)=1" (W'x+b') (6)

O vetor de saida da camada de saida da rede € dado por:
u’=WZy'+b? (7)

y2 =£2(u?)=£2(W2y' +b?) (8)
Logo, a saida da rede € dada em funcao do vetor de entrada x, das matrizes de pesos

1 2 L 1.2 -~
W' e W~ e dos vetores de limiares b™ e b”. A expressao é:

y=y’ =f2(W2f1(W1x+b1)+b2) ©)
Pode-se representar as equagdes anteriores de uma forma geral para um total de M

camadas na rede. Assim:

um+1 :Wm+1ym +bm+1 (10)

ym+1 :fm+1 (um+1):fm+1(wm+lym +bm+1) (11)

Sendom =0, 1, ..., M-1.

O algoritmo backpropagation para as redes de multiplas camadas € uma
generalizagcdo do método dos quadrados minimos (LS —Least Squares) e utiliza como

medida de desempenho o erro quadratico médio (MSE —Mean Squared Error) (MUELLER,

1996). Inicialmente, é apresentado um conjunto de exemplos:

{(x1, 1), (X2, $2), ..., (XN, SN) } (12)

Sendo x, a n-ésima entrada para a rede e s, a saida desejada correspondente (n = 1,

s N).

Apo6s cada entrada ser aplicada a rede, a saida produzida pela rede € comparada com
a saida desejada, s. O algoritmo deve ajustar os parametros da rede (pesos e limiares), com o

objetivo de minimizar o erro quadratico médio na itera¢do n. Logo,
J(n)=e(n)" e(n)=(s(n)~y(n))" (5(2)-y(n)) (13)
Para e(n) sendo o erro (S(n)—y(n)) na iteracdo n.

A lei de ajuste, denominada de steepest descente, para minimizar o erro quadratico é

dada por:



wlf"j (n+1) = wlf"j (n)—(x aJ(n)
’ ’ aw;fj.

b (n+1)= b7 () - a2 )
abim

Na qual a ¢ a taxa de aprendizagem.
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(14)

(15)

Como o erro € fun¢do indireta dos pesos nas camadas intermedidrias, a regra da

cadeia deverd ser usada para o cédlculo das derivadas. O conceito de regra da cadeia serd

utilizado na determinagdo das derivadas das Equagdes 14 e 15:

o _ dJ ou;"

m m m
ow/ " du" ow; "

aJ _ dJ ou
" du" "
Porém,
Sml
u" = Zwlmjy;" 1+blm
j=1
Logo,
du;" _ om1 du)"

wy,

ij

(16)

7)

Definindo agora a sensibilidade de J, a mudanga no i-ésimo elemento da ativagdo da

rede na camada m como:

oJ

ou;"

o

1

As Equacgdes 16 e 17 podem ser simplificadas para:

oJ
=57y}
ow;" !
_f%l_::sgl
ob!"

Agora, € possivel aproximar as Equacdes 14 e 15 através de

(18)

(19)

(20)



wlmj (n+1): wlmj (n)—(xﬁj-"y;"'l

b"(n+1)=b"(n)—od™

Em nota¢do matricial, as duas equacdes anteriores tornam-se:

W (n+1)= W" (n)- 05" [y"")

b"(n+1)=b"(n)—ad™
Sendo:
g

m
du,

aJ

8"1 [ m
abfz

oJ

o,
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1)

(22)

(23)

(24)

(25)

Ainda € necessdrio calcular as sensibilidades 8™ , que requerem outra aplicacdo da

regra da cadeia. E este processo que da origem ao termo retro-propagacio

(backpropagation), pois descreve a relacdo de recorréncia na qual a sensibilidade na camada

m € calculada a partir da sensibilidade na camada m + 1.

Para derivar a relagdo de recorréncia das sensibilidades, utiliza-se a seguinte matriz

jacobiana:
au1m+1 aulm+1 aulm+1
u"  oul ou”,
m+l1 m+1 m+1
ou™ | 92 ou) ouy
= m m m

ou” abfl abfz au.s "

au r.n+1 au 1;1+1 au 1;1+1
Sm+l Sm+l Sm+l

I ouy" us' oug, ]

(26)

Em seguida encontra-se uma expressao para esta matriz. Considerando o elemento i,

j da matriz:
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au'mH _ . om+l ayT _ . om+l afm(u;") m+1 " m
a0 M k) =
Sendo:
om of ™™
f (uj-”)=fa—(:‘,’) (28)
Uuj
Entretanto, a matriz jacobiana pode ser escrita como:
m+1 o /M
M Wk ) 29)
ou”
Para a qual, tem-se:
Flr) o 0
F )= 0 f (ué") 0 (30)
I 0 0 ].f (u;"m )_

Agora, pode-se escrever a relagdo de recorréncia para a sensibilidade utilizando a

regra da cadeia em forma matricial:

T
w_ o _[ou™ oJ " Neomi Y OJ
°  ou” _[ ou” J Ju*! =¥ (u XW ) Ju*! GD
6m :h:m(um me+1 )T8m+1 (32)

Observa-se que as sensibilidades sdo propagadas da dltima para a primeira camada

através da rede:

M 5 5. 587 5§ (33)

Ainda existe um ultimo passo a ser executado para que o algoritmo de retro-

propagacdo fique completo. Precisa-se do ponto de partida, M, para a relacdo de

recorréncia da Equagao (32). Este ponto € obtido na tltima camada:
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o _ds-y) (s-y) 9y,
wa = = ==20s; =y )— 34
ou ou (5= )8ul.M G
a)’i a)’iM - M
Como: T () (35)
Pode-se escrever:
M
8" =2, ~y,)f ) (36)

A Equacdo 36 pode ser colocada em forma matricial, resultando na Equacao 37.

oM
oM =-2F (uM Xs—y) 37
2.3.4 Algoritmo de otimizacio para treinamento supervisionado

A maior parte dos algoritmos de treinamento € baseada nos métodos de gradientes
descendentes e de Newton. As abordagens baseadas nos métodos de Newton apresentam, em
geral, melhores resultados pelo fato de serem métodos de segunda ordem, apresentando uma
convergéncia quadratica proxima ao minimo. No entanto, estes métodos sdo limitados pelo
grande espago de memoria necessdrio e pelo volume de célculos matriciais envolvidos, o

que os torna praticamente invidveis para redes de grande dimensao (HAYKIN, 2001).

Um método simplificado para o treinamento de RNA € o algoritmo de Lavenberg-

Marquart, desenvolvido para se obter uma rdpida velocidade de treinamento

(TORRECILLA et al., 2007).

Portanto, descreve-se o método de otimizagao nao-linear irrestrito para treinamento
de redes multicamadas. O treinamento de redes neurais com vdrias camadas pode ser
entendido como um caso especial de aproximacdo de fun¢des, no qual ndo é levado em

considera¢do nenhum modelo dos dados especifico (SAMPAIO, 2006).

Na presente tese, o algoritmo escolhido foi o de Levenberg-Marquardt (LM). A
escolha deste método foi feita com base na capacidade que o mesmo possui de conseguir
convergéncias mais rdpidas em relagdo aos outros algoritmos nas mais variadas aplicagdes,
como reconhecimento de padrdes e em problemas de aproximacao de fun¢des (DEMULTH;

BEALE, 2002; HAGAN; MENHAJ, 1994; SAMPAIO, 2006).
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2.3.4.1 Método de Levenberg-Marquardt (LM)

O método de Levenber-Marquardt é um algoritmo bastante eficiente quando se trata
de redes que nao possuem mais do que algumas centenas de conexdes a serem ajustadas
(MARQUARDT, 1963; HAGAN; MENHAJ, 1994). Isto se deve, principalmente, ao fato de
que estes algoritmos necessitam armazenar uma matriz quadrada cuja dimensao € da ordem

do ndmero de conexoes da rede.

Considerando como funcional de erro a soma dos erros quadréticos, e ainda levando
em conta que o problema pode ter miltiplas saidas, obtém-se a seguinte expressao para o

funcional de erro:

10)=33 (g, 0)-2,(0) =37 %)

Sendo J(0) o funcional de erro, §lj (X, 6) o modelo que procura aproximar a funcdo
8ij (X), N o numero de amostras, / o ndmero de unidades intermediarias, r o erro residual, m
o numero de saidas, e g o produto N X m.

Seja J o Jacobiano (matriz das derivadas primeiras) do funcional J dado pela

Equacgao 38. Esta matriz pode ser escrita da seguinte forma:

_VrlT ]
VrzT
J=| . (39)
quT |
Sendo r denominado erro residual.
Diferenciando a Equacao 38 obtém-se:
q
VJ=2]"r=2> rVr, (40)
k=1
q
ViI=2J"J+> nVir, (41)
k=1

A matriz de derivadas segundas do funcional de erro é chamada de matriz hessiana.
Quando os erros residuais sdo suficientemente pequenos, a matriz hessiana pode ser

aproximada pelo primeiro termo da Equacdo 41, resultando em:
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Vi =2]"] (42)
Esta aproximacdo geralmente ¢ vdlida em um minimo de J para a maioria dos
propositos, e € a base para o método de Gauss-Newton (HAGAN; FORESSE, 1997). A lei

de atualizacdo torna-se entdo:

A0 =[5 37r (43)

A modifica¢do de Levenberg-Marquardt para o método de Gauss-Newton é:

A0 =[17y+p1] 37y (44)

O efeito da matriz adicional pI é adicionar p a cada autovalor de J'J. Uma vez que a

matriz J'J é semidefinida positiva e, portanto, o autovalor minimo possivel é zero, qualquer
valor positivo, pequeno, mas numericamente significativo, de W, serd suficiente para

restaurar a matriz aumentada e produzir uma direcao descendente de busca.

Os valores de pu podem ser escolhidos de vdrias maneiras, sendo a mais simples

escolher zero, a menos que a matriz hessiana encontrada na iteracdo i seja singular. Quando
. _ —4 N (T

isso ocorrer, um valor pequeno como p=10 Zl JJ . pode ser usado. Outras formas de
determinagdo do parametro W sdo sugeridas por Hagan e Menhaj (1994).

E importante observar que, quanto maior for o valor de |, menor € a influéncia da
informacao de segunda ordem e mais este algoritmo se aproxima de um método de primeira

ordem.
2.3.5 Treinamento da rede MLP

O treinamento de uma rede MLP envolve os seguintes passos: modo de treinamento,
topologia da rede, divisao dos dados e avaliagdo da eficiéncia do treinamento. Ressalta-se
que serd adotada neste trabalho a fun¢do hiperbdlica como func¢do de ativacdo na camada
oculta e, na camada de saida, a funcdo linear. Além disso, é importante comentar que o
objetivo € obter uma rede neural com o melhor desempenho ou o menor erro quadrético

médio de previsao das amostras de validacao.

2.3.5.1 Modo de treinamento

O programa usado para treinar e testar as redes neurais neste trabalho foi o Neural

Networks Toolbox para uso com MATLAB. Neste Toolbox, os algoritmos foram
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desenvolvidos para treinamento em lote. Segundo Demuth e Beale (2002), existem duas
diferentes formas de treinamento para o algoritmo backpropagation: o treinamento na forma
sequencial e o treinamento na forma de lote. Na forma seqiiencial, a atualizacdo dos pesos €
realizada apds a apresentacdo de cada exemplo, ou amostra, de treinamento. J4 na forma em
lote, todos os exemplos, ou amostras, sdao aplicados a rede antes da atualizacdo dos pesos.

Uma apresentacao completa de todo o conjunto de treinamento é denominada de época.

2.3.5.2 Topologia da rede

Konderla e Mokanek (2000) e Swingler (1996) apud Palma e Portugal (2009)
argumentaram que para a topologia da rede, nimero de camadas e de neurdnios da rede, na
resolucao de problemas com o uso de redes neurais artificiais, tém sido utilizadas redes com
apenas uma, e algumas vezes, duas camadas ocultas. Neste trabalho foram utilizadas redes
contendo uma tnica camada oculta. Segundo Oliveira (2000), o uso de uma unica camada
interna tem se mostrado suficiente na modelagem de processos quimicos, visto que quando
ha necessidade de modelos mais complexos o ajuste do nimero de neurdnios na camada

oculta geralmente € suficiente.

O nimero de neurdnios na camada de entrada €, em geral, igual ao nimero de
varidaveis de entrada do processo. Entretanto, este nimero pode ser reduzido através do uso
de técnicas estatisticas de reducdo de dimensionalidades (varidveis), como a andlise dos
componentes principais (PCA). Para o nimero de neur6nios na camada oculta ndo ha ainda
uma regra que indique o numero necessdrio para se obter resultados satisfatérios no
treinamento da rede. Turner et al. (1996) apresentam algumas observacdes gerais para

determinacao da topologia da rede consistindo em:
a. A rede deve ter a estrutura mais simples possivel, para evitar sobre-parametrizacao;

b. Pode ser demonstrado que qualquer fun¢@o continua ndo linear pode ser modelada

utilizando uma camada oculta;

c. O nimero de neurdnios na camada oculta deve ser inicialmente igual ao ndimero de
entradas. Do ponto de vista pratico, este procedimento funciona de maneira satisfatoria e
tende a manter um ndmero relativamente pequeno de pesos necessarios para a rede. Se a
rede falhar para modelar as relacdes de entrada e saida, o niimero de neur6nios na camada

oculta pode ser aumentado.



44

Da mesma forma que na camada de entrada, o nimero de neur6nios na camada de
saida € igual ao nimero de varidveis de saidas (varidveis a serem preditas) do processo.
Segundo Oliveira-Esquerre (2003), é recomenddvel que cada modelo apresente uma unica
resposta (um neur6nio) na camada de saida, o que diminui o nimero de parametros a serem
ajustados e, consequentemente, a carga computacional exigida. Uma excec¢ao a esta regra é
para situagdes em que se deseja predizer diversas respostas correlacionadas, como as
concentracdes de diferentes constituintes de uma mistura em um sistema fechado. As redes

neurais podem ser utilizadas de duas formas:

a. Um modelo que fornecga todas as varidveis de saida a partir das entradas fornecida e;
b. Um modelo de RNA para cada saida da rede, lembrando que para isto € necessario

que se tenha o mesmo conjunto de dados padrdes para treinamento.

2.3.5.3 Conjunto de dados

Em geral, o conjunto de dados disponivel para andlise de determinados fendmenos €,
geralmente, imposto ou limitado em problemas praticos. Segundo Oliveira-Esquerre (2003),
€ possivel obter excelentes resultados para a modelagem de sistemas utilizando um nimero
limitado de dados durante o treinamento. Entretanto, se for validar o modelo para um
conjunto independente de dados, geralmente, uma significativa degradacdo dos resultados
pode ser observada devido ao sobre-ajuste (ou overfitting) dos parametros e,

consequentemente, perda da habilidade de generalizacao.

Dentro desse contexto, um importante passo no desenvolvimento de um modelo esta

na divisdo do conjunto de dados disponiveis em dois ou trés subconjuntos, quais sejam:
1. Treinamento — utilizado para estimar os parametros do modelo;

2. Validacdo — utilizada para verificar a habilidade de generalizacdo do modelo frente a

amostras independentes do conjunto de treinamento;
3. Teste — utilizado para validar o modelo usando novas amostras.

Ressalta-se que, dependendo da quantidade de dados disponivel, pode-se ter apenas o

conjunto de dados de treinamento e validagao.

De acordo com Despagne e Massart (1998), o ideal para um conjunto de dados
considerado grande € dividir este conjunto em 40% das amostras para treinamento, 20 %

para validagcao e 40% para teste. A performance da rede ndo deve ser julgada pelo ajuste dos
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dados de treino, pois estes podem ser ajustados perfeitamente. Os resultados podem ser
apresentados tanto pelo conjunto de validagdo como pelo conjunto de teste. Outros autores
(HAYKIN, 2001; OLIVEIRA et al., 2007; LIMA et al., 2009; NAZARIO et al., 2009)
sugeriram ou utilizaram como particionamento do conjunto a seguinte forma: 50% dos

dados para treinamento, 25% para validacao e 25% para teste.

No processo de aprendizagem e validagdo deve-se observar com atencdo a escolha
dos conjuntos de dados, pois a rede deve ser treinada sobre o mais amplo dominio possivel,
de forma que o conjunto de validacdo esteja contido no conjunto de aprendizagem. Neste
contexto, uma das limitacdes das redes reside na dificuldade de extrapolar dados para os

quais a rede ndo foi treinada.

2.3.5.4 Generalizacdo

Quando a rede € treinada para atingir um erro minimo, esta, na maioria dos casos, €
incapaz de predizer bem amostras que nao foram usadas no conjunto de treinamento. A este
fato é dado o nome de sobre-ajuste (overfitting), pois a rede se especializou nos dados de
treinamento e perdeu sua capacidade de generalizar para novas situagdes. A seguir sdo
apresentados dois métodos para melhorar a generaliza¢do dos dados: a parada antecipada e a

regularizagao.

2.3.5.4.1 Parada antecipada (early stopping)

Quando ¢ feito o treinamento de uma rede neural, geralmente deseja-se obter uma
rede com a melhor capacidade de generalizacdo possivel, ou seja, a maior capacidade de
responder corretamente a dados que ndo foram utilizados no processo de treinamento. As
arquiteturas convencionais, totalmente conectadas, como o MLP, estdo sujeitas a sofrerem
sobre-treinamento (overtraining): quando a rede parece estar representando o problema cada
vez melhor, ou seja, o erro do conjunto de treinamento continua diminuindo, mas, em algum
ponto deste processo, a capacidade da rede em responder a um novo conjunto de dados
piora. Para combater o sobre-treinamento pode-se utilizar os procedimentos de parada
antecipada que s@o largamente utilizados por serem de facil entendimento e implementacao

(HAYKIN, 2001; SILVA NETTO, 2006; RIBEIRO, 2007).

Na parada antecipada, o conjunto de treinamento € usado para computar o gradiente

z

e atualizar os pesos da rede. O erro do conjunto de validagdo € monitorado durante o
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processo de treinamento. No entanto, quando a rede inicia a sobre ajustar os dados, o erro no
grupo de validagcdo ird aumentar. Quando o erro de validagdo aumenta para um nimero
especifico de iteragdes, o treinamento € parado e os pesos no erro minimo de validacdo sdo
retornados. Esta regra é conhecida como parada antecipada e esté ilustrada na Figura 6. A
parada antecipada foi utilizada no presente trabalho. A raiz quadrada do erro quadrético
médio (RMSE — Root Mean Squared Error) do conjunto de validacdo foi usada para avaliar

o desempenho dos modelos empiricos usados.

;, Erro

| Quadritico
i Meédio
Amostra de
\ / validacio
I{\ rd
[\ \\ /'/
|\ /
\ 7
\ \\ 7
\ T i
‘ \ Ponto de Amostra de
\ parada treinamento
\_ | antecipada
\\l / i
e
0 Nimero de Epocas

Figura 6 - Regra de parada antecipada baseada na validagdo cruzada
Fonte: Haykin (2001)

2.3.5.4.2 Regularizacdo bayesiana

Um modelo desejado de rede neural deve produzir pequeno erro nio somente nos
dados de treinamento, mas também nos dados que ndo pertencem ao conjunto de
treinamento (conjunto de validacdo ou de teste). Para produzir uma rede com a melhor
capacidade de generalizacdo, Mackay (1992) propds um método para restringir os valores
dos parametros da rede através da regularizacdo. A técnica de regularizacdo direciona a rede
a responder suavemente e, entdo, é pouco provavel que o sobreajuste (overfitting) aconteca

(HAGAN; FORESEE, 1997).
Na técnica de regularizacao, a funcao de custo F € definida como:
F., = 0F+pF, (45)

Na Equacdo 45 F € uma funcao tipica para treinar redes neurais do tipo MLP, que € a

soma dos erros quadréticos, dada por:
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1 N
F=§Z(si—yi)2 (46)
i=1

E F,, € a soma dos quadrados dos parametros (pesos e bias), dada por:

1
By =—2 wj (47)
Sendo que na Equagdo 45 a e B sdo os pardmetros da fungdo objetivo.

O problema da regularizacdo € a dificuldade em determinar um valor adequado para
a taxa. Se o valor for muito grande podera levar a um sobreajuste e, se for muito pequeno, a
rede poderd ndo ajustar adequadamente os dados de treinamento (SAMPAIO, 2006). E
desejdvel determinar esses parametros de uma forma automatizada e, sendo uma destas

abordagens o processo que usa a estrutura Bayesiana.

Na estrutura Bayesiana, os pesos s@o considerados aleatdrios e varidveis. Depois os
dados sdao tomados e a funcdo densidade para os pesos podem ser antecipados de acordo

com a regra de Bayes:

(DIw,B, M )P(wlo, M)
P(Dla,B,M)

P(WID,oc,B,M):P (48)

Na Equacgdo 48, D representa o conjunto de dados, M o modelo de rede neural usado
e w o vetor de pesos da rede. P(w | o, M) é a densidade anterior, que representa o
conhecimento dos pesos antes de qualquer dado ser coletado. P(D | w, B, M) é a fungdo de
probabilidade dos dados, quando indicados os pesos w. P(D | o, B, M) é o fator de

normalizagdo, que garante que a probabilidade total seja igual a 1.

Se for assumido que o ruido no conjunto de treinamento ¢ Gaussiano e a distribui¢do

anterior para os pesos € Gaussiana, a fungao probabilidade dos dados pode ser escrita como:

1
P(DIw, B,M)= 1 ﬁ)exp(— BE,) )
P(wID,a, ,M)= 7 l(a)eXP(— ak,)

n/2 N/2
Sendo ZD(B)z (%j e Z, (oc): %) . Substituindo estas probabilidades na

Equacao (48), obtém-se:
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1 1
P(wID,a, f,M)= ZD(mZW(a)eXp(_ (BE, +@aE,))

_ (50)
fator de normalizacdo Z, (a, B

)exp(— F(w))

Nesta estrutura Bayesiana, os pesos Otimos deverdo maximizar a probabilidade
posterior P(w | D, o, B, M). Maximizar a probabilidade posterior é equivalente a minimizar a

funcao objetiva regularizada F=aE +BE, .

Para otimizar os pardmetros da fungio objetivo o e B, considerar-se a aplicacdo da

regra de Bayes. Agora, tem-se:

P(DIa,B, M )P(a, BI M)

P(o, BID, M )= P11

(51)

Assumindo ser uniforme a densidade anterior P(a.,ID, M) para os parametros o e 3,
entdo a maximizagdo da posterior € realizada pela maximizagdo da funcdo de probabilidade
P(Dla,3,M). Nota-se que esta fungio de probabilidade € o fator de normalizag¢do da Equagdo
(48). Desde que todas as probabilidades tenham a forma Gaussiana, pode-se conhecer a
forma da densidade posterior da Equacao (48). Isto é mostrado na Equagdo (50). Agora,
pode-se resolver a Equagao (48) para o fator de normalizagao.

_P(DIw,B, M )P(wla, M)

HDton B M )= D pir)

gpentne)] et

= = (52)

1
m exp(— F(W ))

ZF(a9 B) exp(— BED —aE ) ZF(OC,B)
Zo(B)Z, (@) exp(-F(w)  z,()z, ()

As constantes Zp(B) e Zw(o) sdo conhecidas da Equacao 49, e Zg(o,3) pode ser
estimada por expansdo com série de Taylor. Desde que a fun¢do objetivo tenha a forma
quadratica em uma pequena drea ao redor do ponto minimo, pode-se expandir F(w) em volta
do ponto minimo da densidade posterior w, para o gradiente zero. Resolvendo para a

constante de normaliza¢do obtém-se:
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2 = 0x)ae (") D“ explFlw™?) 53)

Em que H=BV’E, +aV?E_ ¢é a matriz Hessiana da fung@o objetivo. Colocando

este resultado na Equacdo 52, pode-se resolvé-la para os valores 6timos de o e B no ponto de
minimo, ou seja, deriva-se em relacdo a cada logaritmo de Equacao 52 e iguala-se a zero.

Obtém-se, entio:

MP _ Y mMp _  h—Y
* T W) © P T2E (w'?) (54)
w D

Sendo y=N-2a™° tr(H MP ) o nimero efetivo de pardmetros e N o niimero total de
parametros. O parametro Y ¢ a medida de quantos parametros da rede sao efetivamente

usados na redugdo da fungao erro. Este parametro pode variar de 0 até N.

Hagan e Foresse (1997) propuseram aplicar a aproximagdo Gauss-Newton a matriz
Hessiana, que pode ser convenientemente implementada se o algoritmo de otimizacdo
Levenberg-Marquardt for usado para a localizagdo do ponto minimo. Este minimiza a

computacao adicional requerida para a regularizacao.

2.3.6 Redes com funcoes de ativacido base radial ( Radial Basis Function — RBF)

De acordo com Garg et al. (2007) apud Araujo et al. (2010), a RBF apresenta na
camada de entrada (camada de base radial) neuronios de base radial e apresenta na camada
de saida (camada linear simples) neur6nios com funcdo de ativacdo linear. Entdo, as fungdes
de base radial sdao funcdes ndo-lineares que podem ser utilizadas como fun¢des-base em
qualquer tipo de modelo de regressdo nao-linear (linear ou naolinear nos parametros) e,

particularmente, como funcdo de ativacao de qualquer tipo de rede multicamada.

As redes com fungdes de ativacdo de base radial (RBF) sdo redes neurais cuja funcio
de ativacdo é a distancia entre os vetores de entrada e de peso (fungdes radiais),
diferentemente das redes MLP, nas quais se tem como argumento o produto escalar entre o
vetor de entrada e o vetor de pesos. Na Figura 8 € possivel observar dois exemplos de rede

neural de base radial
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Camada de entrada Camada intermediaria Camada de saida

(b)

Figura 8 - Rede neural de base radial (a) e rede neural de base radial com miltiplas saidas (b)
Fonte: BROOMHEAD; LOWE (1988)

As fungdes radiais representam, entdo, uma classe especial de fungdes cujo valor
diminui ou aumenta em relacdo a distancia de um ponto central. A funcdo radial mais

utilizada € a gaussiana, expressa pela Equacao 55.

£ () =exp ——

207 (>)

Sendo v = x, —c,, para a distncia em rela¢@o ao centro (Cjn)

Semelhante as redes MLP, as redes RBF contém no minimo 3 camadas: uma camada
de entrada, uma camada escondida e uma camada de saida e é bastante difundida a utilizacao
de apenas uma camada escondida. Cada camada desempenha um papel especifico na rede,

Braga et al. (2007):
a. Camada de entrada — distribui as varidveis de entrada para a camada escondida;

b. Camada escondida — agrupa os dados de entrada em clusters, transformando um conjunto
de padrdes de entrada nao-linearmente separdveis em um conjunto de saida linearmente
separaveis. Os neurdnios dessa camada tém apenas fung¢des de base radial como fungao

de ativagdo, ao invés de funcdes sigmoidais ou outras.

c. Camada de saida — procura classificar os padrdes recebidos da camada escondida.

Apesar de serem aproximadores universais de funcdes, as redes MLP e RBF

apresentam algumas diferencas, destacadas na Tabela 5.
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Tabela 5 - Comparacio de uma rede RBF tipica com uma rede MLP convencional

MLP

RBF

Pode ter uma ou mais camadas intermedidrias
Neuronios das camadas intermedidrias e de saida
tém fungdes semelhantes

Entrada da funcdo de ativacio é o produto
interno dos vetores de entrada e de pesos

Separa padrdes de entrada com hiperplanos
Melhor em problemas complexos

Constréi aproximadores

globais para

mapeamento entrada-saida

Geralmente possui apenas uma camada intermedidria

Neurdnios das camadas intermediarias tém fungdes
diferentes dos neurdnios da camada de saida

Entrada da fung¢do de ativagdo é a distancia euclidiana
entre os vetores de entrada e de pesos

Separa padrdes de entrada com hiperelipséides

Melhor em problemas bem-definidos

Constréi aproximadores locais para mapeamento entrada-

saida

Fonte: Carvalho et al. (2010)

E importante ressaltar que, na presente tese, foram aplicadas os dois tipos de redes, a

MLP e a RBF para avaliar a qualidade de d4gua em relagdo aos parametros ambientais.

2.3.7 Redes neurais e qualidade de agua

A degradacdo dos recursos hidricos tem aumentado a necessidade de
desenvolvimentos de projetos relacionados a qualidade da 4gua. A predicio do
comportamento de corpos d’dgua, através da medida de pardmetros ambientais, funciona
como uma importante ferramenta no combate a problemas ambientais, como processo de
eutrofizacdo de reservatdrios. Entretanto, esta ¢ uma tarefa dificil devido a complexidade

dos processos fisico-quimicos e biolégicos causadores desses problemas (KUO et al, 2007).

O processo de eutrofizacdo resulta no excesso de algas e macrofitas nos
reservatorios, provocando a deterioracdo da qualidade da 4gua para uso humano e
decréscimo nos niveis do oxigénio dissolvido com efeitos adversos para os peixes. Dentre os
parametros, a quantidade de clorofila € o indicador preliminar da eutrofizacdo. Em alguns
casos, a clorofila-a é linearmente dependente de algumas varidveis como profundidade e

quantidade de sélidos suspensos (KARUL et al., 2000).

Os modelos classicos fazem aproximacdes de vdrios processos envolvendo
caracteristicas da dgua, de modo a representd-los por equacdes lineares. O comportamento
nao linear do processo de eutrofizacdo tem sido modelado, entdo, usando redes neurais e

sistemas fuzzy, com sucesso considerdavel (KARUL et al., 2000; LU; LO, 2002).
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Dentre os trabalhos publicados que mostram a utilizagdo de redes neurais artificiais
para estimativa da qualidade da dgua, merecem destaque os de Lu e Lo (2002) que retrata o
diagndstico de reservatdrio de dgua utilizando a 16gica fuzzy para representar o processo de
eutrofizacdo em termos de parametros como fésforo total e clorofila-a; o de Strobl et al.
(2007) que utilizaram diferentes redes neurais para classificar o grau de eutrofizacdo de um
lago; o de Lo e Wu (2008) que utilizaram uma RNA do tipo MLP para determinacdo em
tempo real da dosagem de coagulante a ser utilizada no tratamento da dgua; e o de Vilas et
al. (2011) que estudaram a qualidade da dgua em rios da Espanha utilizando a combinagao
entre os dados de espectrometria (MERIS) e aplicacdo de redes neurais para determinacao
da clorofila-a, ressaltando a importancia desse parametro como um bioindicador da

qualidade da dgua.

Predizer o comportamento de corpos d’agua, através da medida de parametros fisico-
quimicos consiste em um poderoso instrumento de combate e controle da eutrofizacio.
Dentre os pardmetros de qualidade da 4gua, a concentracdo de clorofila-a € o indicador
preliminar da eutrofizacdo. Em alguns casos, a clorofila-a é linearmente dependente de
varidveis como profundidade do sistema e quantidade de sélidos suspensos embora,
geralmente, ndo exista relacdo direta entre qualquer varidvel medida, clorofila-a e a maioria

das espécies de algas encontradas em ambientes eutrofizados. (CARVALHO et al, 2007).

2.4 LOGICA FUZZY

A légica como ciéncia teve origem com o filosofo Aristételes na Grécia Antiga. Este
filésofo atribuiu um conjunto de regras que classificavam as sentengas como verdadeiras ou
falsas.

Em 1847, o matemético George Boole, com a publicaciao do Livro The Mathematical
Analysis of Logic fez nascer a légica booleana. Essa ldégica classificou as sentencas
atribuindo valores numéricos de 1 para sentencas verdadeiras e O para sentencas falsas. No
entanto, esse conceito dificilmente representava as respostas aos processos reais. Assumir
somente duas possibilidades deixa de lado fatores que influenciam na resposta real do
processo.

Em 1960, Zabeh publicou Fuzzy sets, information and control, que mostrava que 0s

recursos tecnoldgicos eram incapazes de automatizar processos complexos utilizando a
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bivaléncia booleana. Isto provocou o surgimento da ldgica fuzzy ou ldégica difusa
(BARBALHO, 2001).

A légica fuzzy introduziu os conceitos de parcialmente falso ou parcialmente
verdadeiro, considerando um grau de incerteza que varia entre 1 (verdadeiro) e O (falso).

Segundo Vieira et al. (1999), os sistemas difusos (légica fuzzy) foram responsaveis,
nas ultimas trés décadas, por mudancas significativas nas aplicacdes industriais da
Inteligéncia Artificial, especialmente os sistemas de controle, tendo sua aplicacdo na
avaliacdo de riscos e impactos econdmicos e ambientais, automacao e controle de processos,
e em sistemas de apoio de decisdo.

De acordo com Barbalho (2001), a l6gica fuzzy é uma técnica de inteligéncia
artificial baseada no conhecimento heuristico, geralmente representado por um conjunto de
expressoes condicionantes para representar os fendmenos.

Angulo et al. (2012) aplicaram técnicas matemdticas avancadas para auxiliar no
gerenciamento e monitoramento da qualidade da dgua. Nesse trabalho foi desenvolvido uma
ferramenta software para apoio a decisdo, com base na aplicacao de técnicas de 16gica fuzzy,
que podem detectar episddios de qualidade a partir do comportamento das varidveis
continuas medidas no monitoramento.

A Figura 9 mostra o processo de desenvolvimento para elaboragdo das regras da
l6gica fuzzy, esquematizado por Angulo et al. (2012). O sistema desenvolvido nesse
trabalho foi capaz de gerar, em tempo real, um conjunto de indicadores para definir a
qualidade da dgua com base em: dados da rede e conhecimento especializado (empirico)
sobre a qualidade da dgua, expresso através de regras. O objetivo, entdo, foi de tracar um
perfil da evolugdo da qualidade da 4gua de uma bacia hidrografica, permitindo a detec¢ao de
dois eventos (fendmenos) ambientais: pontos de descargas urbanas, ou causadas por uma
estacdo de tratamento de dguas residuais, e condi¢des ambientais (eutrofizacao).

SELECAO DAS ESTACOES
DE MONITORAMENTO

Grupo de pesquisa Especialistas

P :E Fenomenos e hipéteses & A ‘)
oy ey

Desenvolvimento do Algoritmo Fuzzy

Testes e Validagdo do Algoritmo Fuzzy

Figura 9 - Desenvolvimento das regras da l6gica fuzzy.
Fonte: Adaptada de Angulo et al. (2012)
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A ldgica nebulosa foi desenvolvida a partir da teoria de conjuntos nebulosos, para
tratar do aspecto vago da informag¢do (SANDRI; CORREA, 1999; ALTUNKAYNAK et al.,
2005; ICAGA, 2007; PEREIRA et al., 2009), ou seja, com o objetivo de fornecer uma
ferramenta matematica para o tratamento de informacdes de cardter impreciso ou vago e
auxiliar no controle e na tomada de decisdo. Esta teoria generaliza o conceito cldssico dos
conjuntos, que pode ser visto como um conjunto nebuloso especifico, denominado
geralmente de crisp, permitindo que objetos possuam graus de pertinéncia a determinados
conjuntos, o que possibilita a representacdo de conceitos imprecisos, sem perder a precisao

matematica no tratamento.

A légica fuzzy possibilita classificar em numeros reais uma determinada realidade
ou situacdo que estd atrelada a varidveis linguisticas, incertas ou vagas. Sendo assim &
possivel a modelagem realista de sistemas tendo como objeto de andlise, varidveis

qualitativas, quantidades imprecisas, conceitos vagos e mal definidos (FONSECA, 2003).

A estrutura da l6gica fuzzy foi inicialmente construida a partir dos conceitos ja
estabelecidos da l6gica cldssica ou tradicional, a qual foi fundamentada na teoria dos
conjuntos e suas regras, como unido, intersec¢do, além de regras expressas através de
implicagdes l6gicas. Com a evolucdo da informadtica, e associado ao desenvolvimento de
técnicas relacionadas aos sistemas especialistas, novos operadores foram sendo definidos,
permitindo que problemas de maior complexidade pudessem ser modelados sob a 6tica da

l16gica fuzzy.

De forma mais objetiva e preliminar, define-se Logica Fuzzy como sendo uma
ferramenta capaz de capturar informacdes vagas, em geral descritas em uma linguagem
natural e converté-las para um formato numérico, de facil manipulacdo pelos computadores

de hoje em dia.

A representacdo destas informagdes vagas € desenvolvida através do uso de
conjuntos nebulosos. Devido a esta propriedade e a capacidade de realizar inferéncias, a
Logica Fuzzy tem encontrado grandes aplicacdes nas seguintes dreas: Sistemas
Especialistas; Computagdo com Palavras; Raciocinio Aproximado; Linguagem Natural;
Controle de Processos; Roboética; Modelamento de Sistemas Parcialmente Abertos;

Reconhecimento de Padrdes; Processos de Tomada de Decisdo (decision making).
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Os conjuntos Fuzzy constituem uma ligag¢do entre o raciocinio humano ao da l6gica
executada por uma méquina. Tradicionalmente, tem-se, em um conjunto convencional,
limites bruscos (por exemplo, o conjunto dos nimeros maiores que 2), na qual a transicao
dos membros (elementos que pertencem ao conjunto) para ndo — membros (elementos que
ndo pertencem ao conjunto) € abrupta e finita. O grau de associacdo do conjunto é
especificado, por exemplo, por um nimero 1 para os membros e () para os ndo - membros.
Por exemplo um controlador de temperatura pode considerar 40°C como quente mas 39,9°C
como frio, ndo fazendo uso de uma percep¢ao de quanto afasta ou se aproxima do calor de
referéncia. Esta percepcao seria considerar aspectos de pertinéncia aproximada utilizando

um linguistico adequado (GOMIDE; ROCHA, 1992).

Entdo, um conceito relacionado com conjuntos nebulosos € o de varidvel linguistica.
Entende-se por varidvel um identificador que pode assumir um dentre varios valores. Deste
modo, uma varidvel linguistica pode assumir um valor linguistico dentre varios outros em
um conjunto de termos linguisticos. Formalmente, uma varidvel linguistica € caracterizada
pela quintupla {X, T(X), U, G, M}, sendo X o0 nome do conjunto de termos, U o universo de
discurso, G uma gramadtica para gerar os termos T(X) e M o significado dos termos
linguisticos, representado através de conjuntos nebulosos. Varidveis linguisticas podem
também conter modificadores (também linguisticos) que alteram seu valor. Exemplos de
modificadores vélidos sdo: muito, pouco, ndo muito, mais ou menos (OLIVERIA JUNIOR

et al., 2007).

Existem também conectivos que podem ser aplicados a estas varidveis, e € ou.
Assim, um valor valido para a varidvel linguistica altura seria ndo muito alto € ndo muito
baixo. Os modificadores linguisticos podem ser definidos matematicamente, como no
exemplo dos conjuntos, baixo € muito baixo, no qual o modificador muito € caracterizado
por elevar cada ponto da fungdo de pertinéncia a segunda poténcia. Os conectivos E (and) e
OU (or) sdo equivalentes as operacdes de unido e intersec¢ao de conjuntos, respectivamente,
podendo dar origem a conjuntos complexamente definidos, porém representados

linguisticamente de maneira simples (CAMPOS FILHO, 2004).

A Loégica Fuzzy pode ser utilizada para a implementacdo de controladores
nebulosos, aplicados nos mais variados tipos de processos. A utiliza¢do de regras nebulosas

e varidveis linguisticas confere ao sistema de controle algumas vantagens, incluindo:

a.  Simplificacdo do modelo do processo;
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b. Melhor tratamento das imprecisdes inerentes aos sensores utilizados;

c.  Facilidade na especificacdo das regras de controle, em linguagem préxima a natural;
d.  Satisfacdo de multiplos objetivos de controle;

e.  Facilidade de incorporag¢do do conhecimento de especialistas humanos.

Entretanto, visto que tanto as leituras de sensores quanto os sinais esperados pelos
atuadores do sistema de controle, ndo sdo nebulosos, sdo necessarios elementos adicionais
entre o controlador nebuloso e o processo a ser controlado. Estes elementos sdo
denominados fuzzificador e defuzzificador, e estdo posicionados na entrada e saida do
sistema de controle, respectivamente. Estes elementos sdo responsdveis por transformar as
medidas obtidas dos sensores, em conjuntos nebulosos (fuzzificador), e em transformar os
conjuntos nebulosos obtidos na saida do controlador, em valores ndo nebulosos de controle

para o processo (defuzzificador) (CAMPOS; SAITO, 2004).
2.4.1 Caracteristicas da logica fuzzy

De forma geral, a 16gica fuzzy apresenta as seguintes caracteristicas (CAMPOS; SAITO,
2004; OLIVEIRA JUNIOR et al., 2007):

a. A Lobgica Fuzzy estd baseada em palavras e ndo em ndmeros, ou seja, os valores
verdades sdo expressos linguisticamente. Por exemplo: quente, muito frio, verdade, longe,

perto, rdpido, vagaroso, médio, etc.

b. Possui varios modificadores de predicado como por exemplo: muito, mais ou menos,

pouco, bastante, médio, etc.

c. Possui também um amplo conjunto de quantificadores, como por exemplo : poucos,

varios, em torno de, usualmente.

d. Faz uso das probabilidades linguisticas, como por exemplo: provdvel, improvdvel, que

sdo interpretados como nimeros fuzzy e manipulados pela sua aritmética.
e. Manuseia todos os valores entre 0 e 1, tomando estes, como um limite apenas.

Com base em Oliveira Junior et al. (2007) e Campos e Kaito (2004), € possivel citar

as seguintes vantagens e perspectivas da logica fuzzy:
a. Requer poucas regras, valores e decisoes;

b. Mais varidveis observaveis podem ser valoradas;
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c. Ouso de varidveis linguisticas nos deixa mais perto do pensamento humano;
d. Simplifica a solucdo de problemas;

e. Proporciona um rapido protétipo dos sistemas;

f.  Simplifica a aquisi¢do da base do conhecimento.

A seguir serdo apresentados os conceitos bdsicos para utilizacdo da légica fuzzy em

geral e no controle de processos.

2.4.2 Conjunto fuzzy

A ldgica fuzzy é baseada na teoria dos conjuntos fuzzy e esta €, em grande parte,

uma extensao da teoria dos conjuntos tradicionais (OLIVEIRA JUNIOR et al., 2007).

A Figura 10 exemplifica os dois tipos de conjuntos, tradicional e fuzzy,
considerando que na teoria de conjuntos cldssica, um elemento pertence ou nao a um dado
conjunto e a teoria de conjuntos fuzzy existe um grau de pertinéncia de cada elemento a um
determinado conjunto (faixa de pertinéncia). Ou seja, conforme a defini¢do formal de um

conjunto tradicional tem-se:

fa(x):X - 0,1 (56)
Sendo que se o elemento pertence ao conjunto A € atribuido o valor 1 e se ndo
. l,sex €A
ertence € atribuido o valor 0: x) = { ’
p fA( ) 0, se x $ A
A i3
L,sex€A] A < 1,sex€A] 1
0,sex€A0 0,sexeA?) >
A A

(a) (b)

Figura 10 - Funcio do conjunto tradicional (a) e conjunto fuzzy (b)

A representacdo do grau de pertinéncia (o quanto pertence, parcialmente, fortemente,
fracamente, etc...) € definida por meio de uma funcdo caracteristica generalizada

denominada de funcéo de pertinéncia p, (x):
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Ha (X):X —[0,1] (57)

Sendo que:

Uy (x):1se X — [0,1] indica que x é completamente compativel com A

s (x): 0se X — [0,1] indica que x é completamente incompativel com A

0 <puy(x)<1lseX - [0,1] indica que x é parcialmente compativel com A

Sendo que X € o universo de discurso e A € um subconjunto fuzzy de X. Essa fungdo

associa a cada elemento x de X o grau u, (x), com o qual x pertence a A.

A representagdo de pertinéncia anterior indica o grau com que um elemento X
pertence ao subconjunto A, grau este que pode assumir infinitos valores no intervalo [0,1]. A

representacdo formal como um conjunto é:

A={x(ug (O} | x €X,uy (x): X - [0,1] (58)

Um conjunto fuzzy definido no universo de discurso A € caracterizado por uma
funcdo de pertinéncia iy, a qual mapeia os elementos de X para o intervalo [0,1]. Assim, a
funcdo de pertinéncia associa a cada elemento x pertencente a X um nimero real u, (x) no

intervalo [0,1], que representa o grau de pertinéncia do elemento X ao conjunto A.

2.4.3 Funcgoes de pertinéncia

Os conjuntos fuzzy sdo definidos através de sua funcdo de pertinéncia que mostra a
intensidade com que o objeto pertence ao conjunto fuzzy. Existem vdrias formas de
representar uma funcao fuzzy de pertinéncia, sendo que, as mais usuais sdo a triangular,
gaussiana, trapezoidal, sigmdide bipolar, S e quadrética, sendo todas definidas no intervalo
de pertinéncia de 0 a 1. As fun¢des mostradas a seguir (triangular, gaussiana e trapezoidal)
sdo as mais utilizadas na literatura (CAMPOS; SAITO, 2004; OLIVEIRA JUNIOR et al.,
2007).

2.4.3.1 Fungdo de pertinéncia triangular

z

A funcdo triangular € caracterizada por uma terna (a, b, c) sendo que a e ¢

determinam o intervalo para o qual a funcdo arrume valores diferentes de zero, € b
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representa o ponto no qual a funcdo de pertinéncia é maxima. Ou seja, os nimeros fuzzy
comecam a subir a partir de zero x = a; atingem um maximo de 1 em x = b; e retornam a
zero em X = ¢. Em seguida, a func@o p (x) de um nimero fuzzy triangular é representada na
equacgdo (59) e na Figura 11.

0,x<a

(x—a)/(b—a), a<x<bh

(c—x)/(c—=b), b<x<c (59)

trimf(x;a,b,c) =

0,x>c
i . (x—a c—x
Ou: trimf(x;a,b,c) = max (mln (—,—) ) O)
b—a’c-b
b

g
Q
£
-
L%
Q
L%
©
g

V) a C

Variavel normalizada

Figura 11 - Representacio da fung¢io triangular
Fonte: MATLAB (2011)

2.4.3.2 Fungdo de Pertinéncia Guassiana

A funcdo de pertinéncia gaussiana € caracterizada pela sua média e pelo desvio
padrao. A funcdo p (x) de um nimero fuzzy gaussiana € representada na Equacdo 60 e na

Figura 12.

—(x=b)?

gaussmf(x;a,b,c) = ae 2c? (60)

Grau de pertinéncia

Variavel normalizada

Figura 12 - Representacio da fun¢io gaussiana
Fonte: MATLAB (2011)
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2.4.3.3 Fungdo de Pertinéncia Trapezoidal

A funcdo de pertinéncia trapezoidal € caraterizada por um conjunto de valores de a,
b, c, e d, sendo que a e d determinam o intervalo dentro do qual a funcdo assume valores
diferentes de zero, e b e ¢ determinam o intervalo para o qual a funcdo ¢ maxima e igual a 1.
Ou seja, na fungdo trapezoidal os nimeros fuzzy comegam a subir a partir de zero x = a;
atinge um maximo de 1 em x = b, se mantém em 1 no intervalo {b c} e retorna a zero em x

=d. A fungdo pu (x) de um nimero fuzzy trapezoidal € representada na Equacdo 61 e na

Figura 13.
0,x<a
x—a <x<b
g A <*=
trapmf(x;a,b,c) = < (c—b)x=1 (61)
d—x b -
q_cb<x=c
\ 0,x>d
Ou:
. (x;a,b,c) = ( '(x_a1d_x)0)
rapmf(x;a,b,c) = max|min P —a' Yd—c)
b c
£
g
3
8
) a d

Variavel normalizada

Figura 13 - Representacio da func¢io trapezoidal
Fonte: MATLAB (2011)

Dessa forma, as funcdes das Figuras 11, 12 e 13, refletem o grau de pertinéncia do

elemento x para o conjunto fuzzy.

2.4.4 Varidveis Linguisticas no Sistema de Inferéncia Fuzzy

Na representacdo fuzzy do conhecimento o sistema ndo pode ser caracterizado de

maneira definitiva, do tipo é ou ndo €, pertence ou nao pertence. Dessa forma, de acordo
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com Campos Filho (2004), uma varidvel linguistica pode ser considerada como sendo o
nome dado a um conjunto fuzzy, cabendo variacdes associadas as expressoes linguisticas
como €, mais ou menos, nao é, ou alto, médio, baixo. Essas variagdes sdo definidas com

base no conhecimento do sistema por especialistas da area.

A forma de utilizag@o das varidveis linguisticas depende das propriedades do sistema
de inferéncia fuzzy. Essas propriedades podem ser sintdticas e semanticas. Para as
propriedades sintéticas as informacdes linguisticas sdo armazenadas, gerando a criacdo de
uma base de conhecimento do sistema em andlise. Para as propriedades semanticas é
especificado o0 modo como é extraido e processado o conhecimento, contido na estrutura
definida pelas propriedades sintéticas e pela interferéncia das regras estabelecidas, conforme

comenta, ainda, Campos Filho (2004).

Por exemplo, o conjunto de temperatura de sistema de processamento de biscoitos,

29 <

poderia ser representado através das varidveis “baixa”, “média” e “alta”, conforme mostra a

Figura 14.
A
Funcao
de pertinénci
© PETInenaid | ixa média alta
1 A
25 5

50 7
Temperatura (°C)

Figura 14 - Funcao triangular do conjunto de temperatura de processamento de biscoitos

Na construcio do modelo fuzzy, para cada varidvel linguistica € atribuido um
intervalo numérico continuo de entrada. Conforme o exemplo mostrado na Figura 14,
referente ao conjunto de temperatura, serd analisado o grau de pertinéncia de cada

temperatura a cada conjunto fuzzy de temperatura. Neste conjunto, tem-se:

a. O conjunto temperatura baixa: tem seu grau de pertinéncia 100% quando o valor de X

varia entre 0 e 25. Esse grau de pertinéncia vai diminuindo até chegar em 0 quando x = 50.

b. O conjunto temperatura média: de 37,5 até 50 vai aumentando o grau de pertinéncia.
Quando a temperatura é 50°C tem grau de 100%, e comeca a cair até chagar em 0, quando X

for 75.
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c. O conjunto temperatura alta: a partir de 62,5°C vai aumentando o seu grau de pertinéncia.

Quando chega a 75°C, o grau de pertinéncia alcanca 100% e se mantém alta.

No sistema de inferéncia fuzzy € através das varidveis linguisticas que ocorre o
relacionamento entre os conjuntos, para gerar a resposta do modelo. Esse relacionamento,

feito mediante as regras de inferéncia, que serdo comentadas nos proximos itens.

2.4.4.1 Regras de Inferéncia Fuzzy

Define-se inferéncia como a passagem, através de regras vélidas, do antecedente
(SE) ao consequente (ENTAO) de um objeto de estudo. Na légica fuzzy, essa passagem é
realizada mediante a interacdo, determinada pelas regras de inferéncia, entre as varidveis
linguisticas de entrada (SE), gerando um conjunto de dados de saida (ENTAO). Essas regras
sdo aplicadas aos conjuntos fuzzy através das varidveis linguisticas e sdo construidas
mediante a operacdo entre os conjuntos (CAMPOS; SAITO, 2004; OLIVEIRA JUNIOR et
al., 2007).

No procedimento de inferéncia € analisado o grau de pertinéncia, associado aquele
mesmo valor numérico no universo de discurso, relacionando-os a uma base de regras

conforme a condicional se — entdo.

O tipo de inferéncia ocorre:
If(Se) < antecedente > then(Entdo) < conseqiiente >
Ou
SE <situagdo> ENTAO <agdo>

Na légica cléssica a inferéncia € dada pela comparagdo, sendo que se permite apenas
uma compatibilidade exata, ou seja, € ou ndo €, pertence ou nio pertence. No raciocinio
difuso € possivel adotar um valor aproximado dependendo da pertinéncia ou fuzzyficacdo

dessa varidvel ao conjunto fuzzy. (WESTPHAL, 2003; SIVANANDAM et al., 2007)

O processo de defuzzificacdo € utilizado quando a inferéncia é realizada em um
sistema do tipo cldssico com o objetivo de obter um valor de saida numérico (SAADE,
2000; SIVANANDAM et al., 2007). Em um sistema de inferéncia fuzzy, como no método
de Mamdani, a caracteristica de saida € obtida a partir de valores defuzzificados de produgao

de conjuntos fuzzy. Estes originados da agregacdo de diferentes resultantes de cada regra
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(fornecidas apo6s a fuzzyficacido) da base de regras de inferéncia distribuidas no universo de

discurso.

Sendo assim, ap6s a entrada das varidveis numéricas precisas, sdo ativadas as regras
(fuzzyficagdo), em seguida o sistema de inferéncia determina como as regras (determinadas
por especialistas) sdo combinadas. Como resultado dessa combinag¢do tem-se uma agregacao
entre as respostas das regras e, apds a escolha do tipo de resposta em relagdo a distribui¢ao
dos dados agregados (defuzzyficacdo), tem-se a resposta do modelo no dominio das
varidveis de saida num correspondente universo de discurso. Dessa forma, as entradas e
saidas do sistema sdo denominadas respectivamente, fuzzificacdo e defuzzificacdo e
correspondem as etapas principais de modelos de inferéncia fuzzy (MALUTTA, 2004).

Esses passos estdo descritos na Figura 15.

DADOS AMBIENTAIS

Saida precisa

REGRAS
Ativar as regras (de acordo com o conhecimento
sobre o corpo hidrico)
DEFUZZIFICACKD YQutputs

Inputs @
INFERENCIA

(combinagdo das varidveis)

Figura 15 - Sistema de inferéncia fuzzy
Fonte: Adaptada de Malutta (2004)

Neste sentido, em resumo, sdo estabelecidas as etapas para metodologia fuzzy:

a. Etapa de fuzzificacdo: etapa na qual se modela matematicamente a informagdo das
varidveis de entrada do sistema por meio de conjuntos fuzzy. Nesta etapa, o papel do
especialista ou o conhecimento do sistema é notado, pois, para cada varidvel de entrada,
termos linguisticos devem ser atribuidos para representd-la e cada termo linguisticos deve
ser associado ao conjunto fuzzy através da fungdo de pertinéncia definida.

b. Etapa de base de regras: é o cerne do conhecimento, ou seja, nesta etapa sdo inseridas as
varidveis e suas classificacdes linguisticas.

c. Etapa de inferéncia: nesta, define-se os conectivos ldgicos para modelar as regras
estabelecidas.

d. Etapa de defuzzificacdo: nesta etapa € realizada transformacao da varidvel de saida fuzzy

em um valor numérico.
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2.4.4.2 Métodos de Inferéncia Mamdani

Campos Filho (2004) cita que a primeira aplicagdo da logica fuzzy em controle de
processos foi realizada por Mamdani e Assilam em 1975, com base as teorias propostas por
Zadeh em 1965. Neste trabalho, o desenvolvimento do sistema de controle foi voltado para o
funcionamento de mdquinas a vapor através da modelagem matemadtica das atividades
(acdes) dos operadores das maquinas, considerados os especialistas do sistema, tornando as
tarefas automatizdveis.

A partir de entdo, o método de inferéncia proposto por Mamdani e Assilam tornou-se
uma referéncia padrdo para a utilizacdo da légica fuzzy em processamento de conhecimento
em diversas dreas.

Ainda de acordo com Campos Filho (2004), o método de inferéncia de Mamdani e
Assilam possui médulos de interface que transformam as varidveis de entrada baseadas em
grandezas numéricas, em conjuntos fuzzy equivalentes e, posteriormente, as varidveis fuzzy
geradas em varidveis numéricas proporcionais, adequadas para os sistemas de atuacdo
existentes.

No método de inferéncia fuzzy de Mamdani, a regra semantica tradicionalmente
usada para o processamento de inferéncia € denominada de Max-Min, utilizando as
operacdes de unido e intersecdo entre conjuntos por meio de operadores de miximo e
minimo, respectivamente (ALMEIDA; EVSUKOFF, 2003 apud LANDMANN;
ERDMANN, 2011). Gomide (2007), através da Figura 16, mostra o método Mamdani de
inferéncia.

Tosun et al. (2011) comentam que, comumente, no modelo de Mamdani, tanto o
antecedente e consequente sdo proposi¢coes fuzzy € os termos linguisticos fuzzy if (se) e then
(entdo) atribuem a seguinte forma geral para as regras fuzzy:

Ri:SexéA;EntaoyéB;, i=12,..k

Sendo R; € o nimero de regra fuzzy, A; e B; s@o os conjuntos fuzzy, x € a variavel

antecedente que representa a entrada no sistema fuzzy, e y € a varidvel consequente

relacionada a saida do sistema fuzzy.
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Figura 16 - Inferéncia Mamdani
Fonte: Gomide (2007)

2.4.4.3 Métodos de Defuzzificacdo

Na etapa de defuzzificagcdo, a varidvel difusa produzida pela etapa de inferéncia é
transformada em varidvel numérica (deterministica) que proporcionard a anélise da resposta
do sistema. Os métodos de defuzzificagdo mais utilizados sao: o primeiro maximo, a média

dos miximos e o centro da drea ou centrdide. Esses métodos estdo representados Tabela 5.

a. Método do primeiro méximo o valor de saida corresponde ao ponto em que o grau de

pertinéncia da distribui¢io atinge o primeiro valor maximo;

b. No método da média do maximos o valor de saida corresponde ao ponto médio entre os

valores que tem maior grau de pertinéncia;

¢. No método centréide, mais utilizado, o valor de saida corresponde ao centro da gravidade

da funcgdo de distribuigao.

Tabela 6 - Comparativo dos métodos de defuzzificacdo.

Método Formula Grafico

Primeiro méximo X Max = x max; + x max,
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Média dos maximos X MedMax = (x max; + x max,)
2
Centréide YC = X Xw;
2w,

No que concerne a avaliacdo e monitoramento de sistemas hidricos, varios autores
utilizaram a légica fuzzy para classificar ou avaliar os sistemas quanto a sua qualidade para
determinado uso do recurso hidrico Altunkaynak et al. (2005), Icaga (2007), Pereira et al.
(2009), Lermontov et al. (2009), Peche e Rodriguez (2012) e Angulo et al. (2012). Dentre
estes, no trabalho de Angulo et al. (2012) merece destaque a aplicagdo de técnicas
matemadticas avangadas para auxiliar no gerenciamento € monitoramento da qualidade da
dgua, com o objetivo de detectar episédios (fendmenos) de qualidade, a partir do

comportamento das varidveis ambientalmente representativas desses fendmenos.

2.4.5 Sistema Neuro-Fuzzy

A modelagem utilizando os sistemas neuro-fuzzy €, atualmente, uma das técnicas
mais modernas e poderosas em engenharia, principalmente quando aplicada a sistemas
fortemente ndo-lineares e de comportamento transiente.

De acordo com Oliveira Junior et al. (2007), os sistemas neuro-fuzzy consistem na
representacdo do sistema fuzzy na forma de redes passiveis de treinamento, por técnicas
semelhantes as usadas em redes neurais. O processo de treinamento na verdade € o ajuste de
parametros, com o objetivo de minimizar a fun¢do erro entre as saidas desejadas e as
apresentadas pela rede. Os sistemas neurofuzzy t€m como objetivo, entdo, conjugar a
capacidade de aprendizagem das redes neurais a interpretacdo caracteristica dos sistemas
fuzzy.

Uma das redes neuro-fuzzy mais conhecidas e aplicadas € a estrutura ANFIS
(Adaptive Neuro-Fuzzy Inference System) proposta em Jang (1993). Esta estrutura ¢é

composta por 5 camadas e exemplificada nas Figuras 17 e 18:
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a. Camada 1: esta camada recebe as varidveis de entrada e as “fuzzyfica”, ou seja, associa

cada entrada x com um termo linguistico A; através da seguinte equacao:

NI = bayo (62)
Sendo que x é o valor da entrada no né i e Ai € o valor linguistico associado a esta funcao;
N} é a funcdo de pertinéncia de A1 e especifica o grau com que o valor da entrada satisfaz o
valor linguistico Ai. Para representar esta funcao € usada, comumente, a fung¢ao gaussiana.
b. Camada 2: cada neurdnio desta camada representa uma regra de inferéncia fuzzy que, ao
receber as varidveis de entrada “fuzzyficadas”, define o grau de aplicabilidade da regra, ou a

forca da regra, executando uma fungdo fixa:

Wi = Ha,(x0)- KB, (x) (63)

Sendo wi a saida da unidade i, que representa o grau de aplicabilidade de uma regra.
c. Camada 3: esta camada ¢ definida pela normalizacdo do grau de pertinéncia de cada
regra, considerando-se como um pré-processamento da defuzzyficacdo; nesta, para cada
unidade i, calcula-se a razao entre a aplicabilidade da i-ésima regra e a soma de todas as
aplicabilidades do sistema de regra através da equacao:

— Wi

W, = m (64)
Sendo w; sdo as saidas dessa camada, denominadas de aplicabilidades normalizadas.
d. Camada 4: nesta camada adaptativa efetua-se o produto entre o grau de aplicabilidade

da regra normalizado e os valores processados em cada regra, correspondentes aos

singletons ou a combinacdo linear das varidveis de entrada, conforme a Equacdo 65.

N} =W.f; =w. (pix + qiy +11) (65)
Sendo w, a saida da terceira camada e {p; q; 1;} o conjunto de parametros das
consequéncias.
e. Camada 5: nesta camada calcula-se a varidvel de saida de cada multiplexador, ou seja,

realiza-se o processo de defuzzyficacdo através da soma dos produtos obtidos na Camada 4:

_ 2w, fi
Nl-5 = i
ZW /i LW, (66)

As Figuras 17 e 18 apresentam a relacdo entre as equagdes 62 a 66.
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2* camada 3*camada  _
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5% camada

Figura 17 - Arquitetura basica ANFIS
Fonte: Jang (1993)

Consequente

Antecedente

Figura 18 - ANFIS com 9 regras de inferéncia.
Fonte: Jang (1993)

Para diversas dreas, alguns trabalhos publicados utilizam o sistema de inferéncia
adaptativa neuro-fuzzy (ANFIS), merecendo destaque, por exemplo:
a. Taylan e Darrab (2011) apresentam uma abordagem sistemadtica para um sistema de
inferéncia adaptativa neuro-fuzzy de controle de producdo de tapetes em relagdo a
quantidade de latex presente para minimizar as variagdes indesejdveis na qualidade do
produto. Neste trabalho, o sistema ANFIS apresentou resultados melhores do que as outras
ferramentas de controle estatistico do processo, fornecendo uma distribui¢do mais eficiente e
uniforme do peso do litex.
b. Yetilmezsoy et al. (2011) realizaram um estudo para prever a estabilidade da mistura
(emulsdes) dgua e 6leo utilizando o sistema de inferéncia adaptativa neuro-fuzzy. Neste
trabalho foram utilizados fatores bésicos, como viscosidade, densidade e fracdo de SARA

(saturados, aromaéticos, resinas e asfaltenos) para desenvolver um indice de estabilidade da



69

mistura. Os resultados deste estudo mostraram que a modelagem neuro-fuzzy pode ser usada
com sucesso para prever a estabilidade dessa mistura dgua e dleo.

c. Sucena et al. (2012) propdem um modelo para um Indicador de Sustentabilidade
Sistémica (ISS) de apoio ao Sistema de Gestao Ambiental (SGA). Para composicdo desse
indice, foram utilizados os conceitos conjugados das teorias fuzzy e de redes neurais
associados aos indicadores ambientais, propostos no SGA, do sistema MaglLev-Cobra, para
gestdo de transporte urbano. Os autores deste trabalho ressaltaram que o sistema neuro-fuzzy
permitiu desenvolver, de forma simplificada e mais barata, bancos de dados para armazenar
as varidveis de entrada e os resultados, bem como as telas para sua gestdo, quando
comparado com outros sistemas da drea (plataformas de Business Intelligence (BI) e

softwares especialistas).

No entanto, dentre os poucos artigos publicados sobre andlise da qualidade da dgua
aplicando o sistema neuro-fuzzy, merece destaque o trabalho de Yan et al. (2010). Neste
trabalho, os autores desenvolveram um modelo baseado na ANFIS para avaliar a aplicac¢io
de um sistema neuro-fuzzy para classificar a qualidade da 4gua e comparar com a
performance obtida por um modelo de redes neurais. Neste trabalho, os pardmetros de
qualidade da 4dgua selecionados foram a concentracdo de oxigénio dissolvido, a demanda
quimica de oxigé€nio e a concentracdo de amodnia no sistema. Para estes dados, o modelo
obteve 89,59% de precisd@o quanto ao nivel de qualidade do rio estudado, resultado este

satisfatorio. Além disso, o modelo apresentou melhor desempenho que a redes neurais.

2.5 ANALISE DE COMPONENTES PRINCIPAIS

A Anidlise de Componentes Principais (Principal Component Analysis - PCA) € uma
técnica estatistica multivariada, em que novas varidveis (componentes principais) sao
formadas através da combinag¢do linear das varidveis originais, mantendo a maxima
variancia possivel e sujeitas a duas condicoes: a variancia total deve se manter a mesma e as
componentes devem ser ndo-correlacionadas (MIDDLETON, 2000).

Parinet et al. (2004), Ouyang (2005), Camdevyren et al. (2005), Karydis et al. (2007
e 2009), Zimmermann et al. (2008), Primpas et al. (2010) e Kitsiou e Karydis (2011)
apresentam a utiliza¢do da estatistica multivariada, a exemplo do PCA, na classifica¢do do
nivel de eutrofizac¢do de corpos d’agua.

As primeiras componentes mantém a maior parte da variancia do sistema original

(Figura 19), que contém m varidveis, de modo que é possivel compactar grande parte da
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informacao linear desse sistema em apenas k novas varidveis, sendo k < m. Assim, a i-ésima
componente principal de um conjunto de m varidveis € definida segundo a Equacdo 62,

sendo Z; € a componente principal, os a;; sdo o0s loadings e Xj sdo as varidveis originais.

Z;=ap X1+ apXo + ... + aimXn (62)

2° C;;ﬂpp‘l{gnte
‘:_';,__'_Pﬁ.h'cip al -

garitvel !

Figura 19 - Representacio geométrica das componentes principais
Fonte: Carvalho ef al. (2010)

De acordo com Camdevyren et al. (2005), o PCA oferece um método objetivo para
lidar com um grande conjunto de dados bidticos e abidticos e ajuda a reduzir a
complexidade de sistemas multidimensionais através da maximizacdo da variancia dos
loadings das componentes e da elimina¢do de componentes pouco representativas.

Um indice tem como objetivo sintetizar em uma unica varidvel a informagdo de
todas as varidveis que foram medidas sobre o fendmeno, sendo que seus valores podem ser
analisados por métodos de estatistica univariada. As técnicas como andlise de componentes
principais, andlise fatorial e andlise de correlacdes canOnicas sdo uteis na constru¢ao desses
indices (MINGOTI, 2005).

Com o objetivo de quantificar as concentracdes de nutrientes e o estado do
fitoplancton em dguas marinhas, diversos indices foram propostos e buscando uma nova
abordagem nesse campo. Karydis et al. (2007) propuseram um indice multivariado baseado
em PCA para classificar a 4gua do mar em oligotrofica, mesotrofica e eutréfica utilizando
varidveis j4 conhecidas como sendo de grande influéncia no fendmeno da eutrofizagdo:
concentracdes de PO,4, NO3;, NO, NHj e clorofila-a.

Em outro trabalho, Karydis et al. (2009) aplicaram com sucesso a metodologia para
classificagc@o do nivel tréfico do mar Egeu e o compara com a classificagdao das Diretrizes da

Unido Européia para Gestio das Aguas (European Water Framework Directive),
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demonstrando que o indice poderia ser utilizado para classificar a qualidade da dgua em alta,
boa, moderada, pobre e ruim.

O indice de trofia utilizado nesse trabalho foi proposto por Karydis et al. (2007 e
2009). Os autores desse trabalho justificam o uso dessa técnica estatistica na constru¢io do
indice pelo fato do PCA ser capaz de realizar uma reducdo de dimensionalidade de modo a
sintetizar em algumas poucas componentes, grande parte da informacdo contida no sistema
original.

A constru¢do do indice foi feita a partir da utilizacdo da primeira componente
principal utilizando a matriz de correlacdo das varidveis originais para evitar que a
discrepancia das unidades de medidas influencie na determinacdo da direcdo dos novos

eixos ortogonais. O indice, conforme Karydis et al. (2007 e 2009) € dado pela Equagdo 63.

IE = a[PO4] + b[NOs3] + ¢[NO2] + d[NH3] + ¢[Cl-a] (63)

Sendo que os coeficientes a, b, ¢, d e e sdo os loadings da primeira componente
principal. Esse indice utiliza somente as concentra¢des de PO4, NO3, NO,, NHj3 e clorofila-a
como varidveis para sua constru¢do, visando a classificagao de dguas. O indice desenvolvido
nesse trabalho, por outro lado, abre a possibilidade para que outras varidveis, como pH,
oxigénio dissolvido, sélidos soliveis e outros, possam ser utilizadas pois essas varidveis
fisico-quimicas estdo em maior ou menor grau ligadas as causas ou efeitos da eutrofizacdo
(PARINET et al., 2004).

A definicdo dos limites para a classificagdo no nivel de trofia foi feita utilizando-se
andlise de distribuicdo de frequéncia (KARYDIS et al., 2009), na qual os subconjuntos de
dados, com exemplos para um corpo eutréfico, mesotréfico e oligotréfico, sdo normalizados
por transformagdo logaritmica e os limites do indice sdo calculados usando u-o e u+o em

que u ¢ amédia e o € o desvio padrao dos valores do indice antes da transformacao.



3 METODOLOGIA

A presente tese constitui um estudo de caso de base empirica, pelo fato de ser uma
abordagem metodoldgica com énfase nas caracteristicas do fendmeno (processo) e tem
como base as caracteristicas associadas aos processos, para a obtenc¢io de dados e da melhor
estratégia para andlise dos mesmos (MARKONI; LAKATOS, 2010).

O fendmeno, neste trabalho, foi a avaliagdo da qualidade da dgua em corpos
hidricos através da utilizacdo de redes neurais, 16gica fuzzy e modelo hibrido neurofuzzy.
Avaliou-se, também, a qualidade da dgua através da constru¢do de um indice de qualidade
da com base na andlise de componentes principais.

Neste processo, as andlises das amostras de dgua foram realizadas no Laboratério
de Quimica Analitica Ambiental (LQA), bem como foram utilizados os dados ambientais
disponibilizados pela Secretaria de Recursos Hidricos de Sergipe (SRHSE). Os dados estdo
disponibilizados no ANEXO A. E importante ressaltar que a metodologia adotada para
caracterizacao fisico-quimica dos reservatérios foi a andlise dos parametros de acordo com a
Standard Methods for the Examination of Water and Wastewater, American Public Health
Association (APHA, 1998).

O fluxograma apresentado na Figura 20 mostra a estratégia empirica e numérica

aplicadas para desenvolvimento do trabalho.

@ Definicdo dos parametros fisicos, quimicos e biologicos

@ Realizacdo da coleta amostral de agua: definicdo dos
—> pontos de coleta
Realizacdo da analise das amostras obtidas
Tabulacao e tratamento dos dados

@

@

i
Construgdo de N
interfaces no MATLAB

Figura 20 - Estratégia metodologica do trabalho
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3.1 AMBIENTES DE ESTUDOS

Na presente tese foram avaliados os dados ambientais dos reservatérios da Marcela

e de Jacarecica e do Rio Poxim, em Sergipe.

3.1.1 Reservatorio da Marcela

O reservatério da Marcela (Figura 21), situado na cidade de Itabaiana-SE, foi
construido no periodo 1953-1957 pelo barramento do riacho Fuzil. A obra teve a parceria
dos Governos Federal e Estadual, tendo como objetivo maior a manuten¢do do homem no
campo, ou seja, a diminuicdo do éxodo rural. Esse reservatério tem uma capacidade de
2,7x10° m®, ocupa uma drea de 14 km? e foi projetado para fornecer 4gua para irrigagdo de

156 hectares, com extensdo de 1,0 km (ALVES; GARCIA, 2006).

-

Figura 21 - Reservatorio da Marcela (SRH-SE, 2005)

3.1.2 Reservatorio Jacarecica

O reservatério de Jacarecica Il (Figura 22) foi construido pelo barramento do Rio
Jacarecica, afluente da margem direita do Rio Sergipe, estéd situado na divisa do municipio
de Malhador e Areia Branca, distante 55 km da cidade de Aracaju, capital do Estado. O
reservatdrio teve sua fase de enchimento iniciado em novembro de 2000, tem capacidade
maxima de 29,7x106 m’ de dgua, com uma cota, prevista no projeto, de 70 m e
aproveitamento para irrigagdo de 1600 hectares e uso doméstico, além de uma extensdo de

4,5 km.
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Altitude do ponto de visao  5.30 km

Figura 22 - Reservatorio de Jacarecica I1
Fonte: Google Earth (Acesso em 2007)

3.1.3 Rio Poxim

A érea de drenagem da sub-bacia hidrografica do rio Poxim compreende 381,5 km’ e
faz parte da bacia hidrogréfica do rio Sergipe que drena uma superficie de cerca de 3.670
km2. De formato alongado, no sentido noroeste - sudeste, esta unidade de planejamento é
limitada ao sul pela bacia hidrogrifica do Rio Vaza-Barris e, ao norte, pelo Rio Sergipe. As
suas principais nascentes localizam-se a oeste, limite final da Serra dos Cajueiros e sua foz a
leste, no rio Sergipe, proxima ao Oceano Atlantico. Ressalta-se que desde 1958 o Rio Poxim
tem sido uma das fontes de suprimento de dgua para Aracaju, sendo, portanto, vital seu
monitoramento (ALVES; GARCIA, 2006).

A Figura 23 mostra a sub-bacia do Rio Poxim e identifica a presenca de possiveis
aportes de contaminantes (Conjunto habitacional e a Universidade Federal de Sergipe — SE).
Nesta figura também sdo mostrados o ponto de captacdo de dgua e a localizacdo de uma

Estacdo de Tratamento de Agua (ETA) da Companhia de Saneamento de Sergipe (DESO).
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Figura 23 - Sub-bacia do Rio Poxim

Fonte: Google Earth (2012)

3.2 MATERIAIS E METODOS

No monitoramento ambiental, os dados experimentais foram obtidos utilizando os

procedimentos analiticos consagrados na literatura da 4rea. Nesse caso, a metodologia

adotada para caracterizagdo fisico-quimica dos ambientes de estudo foi a andlise dos

pardmetros de acordo com a APHA (1998). A Tabela 7 mostra os pardmetros (varidveis), o

método empregado e a referéncia metodolégica APHA.

Tabela 7 - Variaveis, métodos e referéncias utilizados para a caracterizacio da agua dos

reservatorios
Variavel Metodologia Referéncia
pH Peagimetro marca Digimed, modelo DMPH-2
Transparéncia Disco de Secchi, equipamento de campo
Temperatura Termdmetro digital

Condutividade Elétrica
Amonia

Nitrito

Nitrato

Nitrogénio Total

Foésforo Total

Condutivimetro, marca Digimed, modelo CD-21 ~ APHA 2510

Espectrofotdémetro, método do feno, APHA 4500-NH; F
Espectrofotdometro, método colorimétrico APHA 4500-NO, B
Espectrofotdometro, com reduciao em coluna APHA 4500-NO; F

automatica de cadmio

Espectrofotdometro, com reduciao em coluna APHA 4500-N,, D
automdtica de cddmio

Espectrofotometro APHA 4500-P E
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Continuagao...

Oxigénio Dissolvido Método de Winkler modificado, com utilizacio APHA 4500-O C
de azida sddica

Clorofila a Espectrofotdometro APHA 10200 H

Cor Espectrofotometro

Profundidade Equipamento de campo

Sélidos totais suspensos Gravimétrico APHA 2540 C

Sdlidos totais dissolvidos ~ Gravimétrico APHA 2540 D

Alcalinidade Titulométrico

Demanda bioquimica de ~ Titulométrico APHA 5210 B

oxigénio

3.3 REDE NEURAL

Na presente tese as redes MLP e RBF foram construidas para os dados dos
reservatérios da Marcela e de Jacarecica. E importante ressaltar que, em decorréncia da
disponibilidade dos dados, foram utilizados diferentes parametros para os dois reservatorios.
Essa disponibilidade era limitada pelo fato de ser o LQA um prestador de servigos e a

depender do projeto, alguns parametros ndo eram exigidos ou necessarios.

3.3.1 Rede MLP

A rede neural artificial MLP foi construida com 9 neur6nios de entrada e 1
neurdnio de saida por vez. Os parametros escolhidos para os neuronios de entrada foram:
temperatura da dgua, oxigénio dissolvido (OD), pH, alcalinidade, condutividade elétrica,
sOlidos suspensos, nitrogénio, fosfato e demanda bioquimica de oxigénio (DBOs).

A alcalinidade, pH, DBOs e a condutividade elétrica foram incluidos para simular
as propriedades quimicas do ambiente, os quais podem ter efeitos indiretos no ecossistema.
A radiagdo solar fornece a energia essencial para a producao priméria, logo, para simular os
efeitos dessa energia, também foi usada a temperatura como parametro de entrada. A
concentracdo de OD foi usada por ser vital para os organismos e para algumas reacdes
quimicas. As concentracoes de fosforo e nitrogénio sd@o os nutrientes limitantes da
eutrofizacdo. Os dados de clorofila-a, indicadores da eutrofizacdo, foram definidos como
parametro de saida da RNA.

Com base na metodologia descrita anteriormente, as redes neurais foram treinadas e
validadas de acordo com os dados disponiveis. Primeiramente foram utilizados os dados dos

reservatorios da Marcela e de Jacarecica utilizando a rede MLP.
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A rede MLP inicialmente foi construida para os dados da bacia de Jacarecica II com
as 3 camadas, sendo inicialmente 9 neurdnios na camada de entrada, e tentativas de 6, 8, 10
e 12 neurbnios na camada intermedidria e 1 neurdnio de saida, conforme representacao na
Figura 24. A fun¢do de transferéncia utilizada nas camadas intermedidria e de saida foi a

funcdo tangente hiperbolica.

Camada de enirada Camada intermnedidria

A A

Temperatura da agua

pH
Camada de saida
A

Condutividade elétrica

Soélidos suspensos

Oxigénio dissolvido
Clorofila-a

N-NH,

N-NO,

Figura 24 - Topologia para a rede neural MLP

Dentre as muitas variagdes do método de treinamento backpropagation, o algoritmo
utilizado foi o Levenberg-Marquadt, que utiliza a informagdo da Hessiana para a busca do
minimo global do erro e apresenta uma convergéncia mais rapida para redes que contém até

centenas de neurdnios.

3.3.2 Rede RBF

Para o reservatério da Marcela foi possivel explorar mais as ferramentas disponiveis
no ToolBox de redes neurais do MATLAB para o pré-tratamento de dados antes da etapa de
treinamento da RNA, tendo em vista que para esse reservatorio se tinha uma maior nimero
parametros. O pré-tratamento, separando uma parte dos dados, poderia melhorar a eficiéncia
da rede neural. Entdo, procurou-se, também, explorar a utilizagdo de outro tipo de rede

neural disponibilizada pelo MATLAB, a rede com fung¢des de ativacdo de base radial (RBF).

Neste estudo, os parametros escolhidos para os neur6nios de entrada foram:
profundidade, temperatura da dgua, temperatura do ar, transparéncia, condutividade, cor,

pH, sdlidos totais, s6lidos suspensos, oxigénio dissolvido, N-NH4, N-NO,, N-NO3, P-POy,
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Nitrogénio total, Fésforo total perfazendo um total de 16, ou seja, a camada de entrada
consistiu de 16 neur6nios. Deve-se observar que os dados de clorofila-a, indicador da
eutrofizacdo, foram definidos como parametro de saida da RNA, assim como no reservatorio
de Jacarecica. A Figura 25 mostra o arranjo de entradas e saida da rede neural construida

para os dados do reservatério de Marcela.

Profundidade

Temperatura da dgua

Temperatura do ar
Transparéncia
Condutividade

Cor

pH
Sélidos totais Clorofila-a
Sélidos suspensos
Oxigénio dissolvido
N-NH4

N-NO2

N-NO3

P-PO4

Nitrogénio total

Fosforo total

Figura 25 - Topologia para RNA para os dados de Marcela

No pré-tratamento foi utilizado a andlise dos componentes principais (PCA —
Principal Component Analysis), que € uma ferramenta para compressio de dados e extracao
de informagdes, conforme argumentado anteriormente. A técnica de PCA encontra

combinacdes de varidveis, ou fatores, que descrevem a maior tendéncia nos dados.

A técnica de PCA consiste em uma manipula¢do da matriz de dados com o objetivo
de representar alteracOes presentes em muitas varidveis, através de um ndmero menor de
fatores. Nesta, constréi-se um novo sistema de eixos, denominados de fatores, componentes
principais, varidveis latentes ou autovetores, para representar as amostras, no qual a natureza

multivariada dos dados pode ser visualizada em poucas dimensoes.
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3.3.3 Sistema Neuro-Fuzzy

Como j4 argumentado anteriormente, o sistema neuro-fuzzy mostra a integracao
entre duas abordagens de inteligéncia artificial: 16gica fuzzy e redes neurais. No sistema
ANFIS o algoritmo de inferéncia constr6i o FIS (Fuzzy Inference System), cuja funcdo de
particdo € ajustada usando o algoritmo backpropagation ou combina¢do com métodos de
minimos quadrados. Portanto, o sistema ANFIS apresenta técnica de aprendizagem Neuro-

Adaptativo (Neuro-Adaptive).

Neste trabalho foi utilizado o sistema ANFIS do ToolBox do MATLAB para os
dados do rio Poxim utilizando a rede MLP. Os parametros escolhidos para os neuronios de
entrada foram: temperatura da dgua, condutividade, cor, pH, soélidos totais, solidos
suspensos, oxigénio dissolvido, DBO, N-NH4, N-NO,, N-NO3, P-PO,, nitrogénio total e
fosforo total, perfazendo um total de 13, ou seja, a camada de entrada apresenta 13
neurdnios. Deve-se observar que os dados de clorofila-a, o indicador da eutrofizacdo, foram,
mais uma vez, definidos como parametro de saida da rede neural e do sistema ANFIS. A

Figura 26 mostra a topologia do modelo ANFIS com a identificacdo das varidveis.

Temperatura da dgua

Condutividade @@

Cor L 4

pH.

Sélidos totais @

Sélidos suspensos
Clorofila-a

Oxigénio dissolvido @

DBO @

N-NH: @

N-NO: @

N-NO; @

Nitrogénio total @@
Fésforo total

Figura 26 - Topologia para condi¢des 6timas do modelo ANFIS

2

E importante salientar que a utilizacdo de diferentes parametros para ambientes
hidricos € consequéncia da dificuldade de obtencdo desses dados experimentais. Alguns
desses dados foram obtidos de projetos e subprojetos de pesquisa do Laboratério de Quimica

Analitica Ambiental da UFS. Além disso, o custo de cada campanha fazia com que somente
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os dados exigidos pelos projetos, ndo sendo, portanto, objeto da tese a coleta experimental e
sim a avaliacdo numérica do recurso hidrico em anélise.

A Tabela 8 mostra, a titulo de exemplo, os custos para obtencdo dos dados

experimentais.

Tabela 8 - Custos por campanha experimental

Aluguel de barco R$ 300,00
Aluguel de canoa RS 50,00
Aluguel de veiculo R$ 250,00
Alimentacdo R$ 200,00
Diédria para pessoal de apoio (duas pessoas) R$ 200,00
Material de coleta (isopor, gelo, frascos, etc...) R$ 200,00
Didria do pessoal de coleta R$ 100,00
Total de gastos com mobilizacio e coleta R$ 1.300,00

Custo de andlise de uma amostra de agua (parametros fisico- R$ 450,00

quimicos, microbiolégicos)

Reservatério da Marcela R$ 5.350,00
Reservatorio de Jacarecica | R$ 9.400,00
Reservatorio de Jacarecica 11 R$ 47.650,00
Poxim R$ 6.250,00
Total R$ 68.650,00

3.4 FERRAMENTA COMPUTACIONAL

Neste trabalho foi utilizado o ambiente MATLAB, versao 2008 e versao 2011,
através de seus foolboxs para redes neurais e logica fuzzy. No MATLAB foi construida uma
ferramenta computacional, denominada de Modelagem da Qualidade da Agua, para anélise
em termos de redes neurais, determinacdo do indice tréfico da agua e de logica fuzzy,
conforme mostra a Figura 27. Clicando em cada icone das etapas, sdo obtidos os resultados

da Modelagem da Qualidade da Agua.
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Figura 27 - Tela principal da ferramenta computacional

Clicando no icone Rede Neural da Figura 27, obtém-se a tela mostrando a
modelagem para os dois tipos de redes (MLP, RBF) e para o sistema neuro-fuzzy

exemplificada na Figura 28.

B Rede neural para concentragao de clorofila (= |
Carregar dados ’ ‘ Carregar rede ’
Rede N
’7 O MLP @) RBF () Neuro-Fuzzy ‘
Nuamero de neurdnios:
Nuamero de camadas:
Fun transf. intermediaria: | Tansig |
Fun transf. saida: Tansig )|
Alg. de treinamento: |Levn Marq. ~|
Treinar ] [ Salvar rede l
Novos dados
Variaveis: el
Estimar clorofila
Clorofila: =

Figura 28 - Ambiente da Rede Neural (MLP, RBF e Neuro-Fuzzy)

Para obtenc¢do dos resultados, a seguinte metodologia foi empregada:
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a. Primeiro passo: Na Figura 28 clicar no icone Carregar os dados, caso sejam novos dados, ou
Carregar rede, caso os dados ja tenham sido rodados.

b. Segundo passo: Escolher o tipo de rede a ser aplicada (MLP e RBF) ou escolher aplicar o
sistema neuro-fuzzy.

c. Terceiro passo: Para rede MLP definir o niimero de neurdnio e o nimero de camadas (Figura
29) e clicar no icone treinar resultando na Figura 30. Ap6s o treinamento da rede os graficos
sao gerados e € possivel estimar o valor da clorofila-a para novos dados experimentais.

immmam "

Carregar dados Carregar rede
~— Rede Neural
o MLP ) RBF ) Neuro-Fuzzy
NGmero de neurdnios:
NOmero de camadas
Fun.transf. intermedidria: Tansig %)
Fun.transf. saida: Tansig )
Alg. de treinamento.  Levn Marg. M
Treinar Salvar rede
Novos dados
Varidveis: )
Valor: Ok l
Estimar clorofila
Clorofila -

Figura 29 - Rede MLP
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Figura 30 - Treinamento da rede MLP

d. Quarto passo: Para rede RBF definir o spread (taxa de espalhamento dos dados) e o nimero
maximo de neurdnios, conforme indicado na Figura 31. Esses valores sdo fornecidos com
base nos resultados da rede MLP ou com base na confiabilidade dos dados experimentais.
Apés o treinamento da rede os graficos sdo gerados e € possivel estimar o valor da clorofila-

a para novos dados experimentais.
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Figura 31 - Rede RBF

e. Quinto passo: Para o sistema neuro-fuzzy (Figura 32), clicando no icone neuro-fuzzy
resultard nas Figuras 33 e 34. Essas duas figuras corresponde as etapas necessdrias para
obtencdo dos resultados: selecionar o icone Training (Seta A - arquivo em xls com os dados
separados para o treinamento) e selecionar o icone Checking (Seta B - arquivo em xIs com os
dados separados para a validagdo). Depois de selecionados os dados, clicar no icone Test
now (Seta C — obtengdo dos resultados). Apds a etapa do test now € possivel obter a tela de

saida das regras para estimativa da clorofila-a. Ressalta-se que € possivel estimar o valor da
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clorofila-a para novos dados experimentais inseridos no campo passivel de insercdo

mostrado na Figura 34.

Rede neural para de
Carregar dados Carregar rede
— Rede Neural
O wp ©) RBF © Neuro-Fuzzy
|
Spread: | 055

Nimero max. de neurdnios: | 10

Treinar Salvar rede
Novos dados
Varidveis:  Ptotal M
Valor: Ok
Estimar clorofila

Clorofia:  0.545578

Figura 32 - Sistema neuro-fuzzy
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Figura 33 - Sistema neuro-fuzzy para as etapas de treinamento, validacao e teste.
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Figura 34 - Regras do sistema neuro-fuzzy e estimativa da clorofila-a



A constru¢do da ferramenta computacional para criacdo de interfaces amigéveis, ou
seja, a metodologia utilizada para aplicacdo mais facil e mais rdpida das técnicas de redes

neurais e logica fuzzy esta descrita no ANEXO B.



4 RESULTADOS E DISCUSSAO

O fendmeno da eutrofizagdo, assim como qualquer outro problema a ser resolvido
por um modelo de rede neural ou légica fuzzy, foi idealizado como um problema de entrada-
saida, ou seja, os dados de clorofila (output) sdao associados aos dados dos nutrientes (input).
Para o sucesso da modelagem e simulacdo foi necessario que os fatores fisico, quimico ou
bioldgico envolvidos no fendmeno estivessem direta ou indiretamente envolvidos no
sistema.

Neste item, entdo, os resultados foram organizados de acordo com a aplicacdo da
ferramenta computacional desenvolvida para a Modelagem da Qualidade da Agua, ou seja,

os resultados para cada icone mostrado na Figura 27: Rede Neural, Indice e Fuzzy.
4.1 REDE NEURAL

4.1.1 Rede MLP

Para a modelagem empirica utilizando as redes neurais artificiais, foi utilizado o
MatLab versao 2008 e adaptada a versao 2011, através do toolbox de redes neurais
artificiais. Neste toolbox constam programas especificos para a utilizacdo das redes neurais.
Vale salientar que a modelagem através das redes neurais exige vdarias escolhas de
parametros como arquitetura da rede neural, nimero de camadas, niimeros de neurdnios em
cada camada, funcdes de ativacdo dos neurdnios por camada e algoritmo de treinamento.
Essas defini¢des foram realizadas originalmente no tollbox de redes neurais através de
modifica¢des em linhas de programacdo MATLAB se caracterizando como um processo de

tentativa e erro.

De acordo com a metodologia apresentada no item 3.3.1, as figuras 35 a 40 mostram
os resultados obtidos pela rede MLP utilizada na modelagem da clorofila-a para diferentes

nimeros de neurdnios na camada oculta para o reservatoério de Jacarecica.

As Figuras 35 e 36 mostram uma comparacdo entre os dados experimentais € 0S
dados simulados com o objetivo de ajustar os dados para estimativa da concentracdo de
clorofila-a. Nestas figuras a rede MLP foi treinada com 10 neur6nios na camada oculta e o
melhor ajuste entre os dados foi a equacdo A =0,98T + 0,33, na qual A representa a
concentracdo da clorofila-a experimental e T a concentragao da clorofila-a experimental,

com o coeficiente de correlagdo (R) entre os dados igual a 0,979.
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A Figura 36 representa, também, uma comparacdo entre os entre os dados
experimentais e os dados simulados de clorofila-a, estratificando os dados utilizados para
validacdo, teste e treinamento. E importante ressaltar que, conforme recomendado na
literatura da drea, o particionamento do conjunto de dados foi 50% dos dados para

treinamento, 25% para validacdo e 25% para teste.

40 T T T T T T T

& pontos
A=T / |
"""""" melhor ajuste linear 5 o

T
e}

35

30r

25+

20

T

15

Concentragdo de clorofila-a experimental (pg/L)

1 1 1 L

0 5 10 15 20 25 30 35 40

Concentragdo de clorofila-a simulada (pg/L)

Figura 35 - Performance da rede neural com 10 neurénios na camada oculta
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Figura 36 - Performance da rede neural com particionamento do conjunto de dados — 10 neurénios na
camada oculta
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As Figuras 37 e 38 mostram uma comparacio entre os dados experimentais € 0S
dados simulados com o objetivo de ajustar os dados para estimativa da concentracdo de
clorofila-a. Nestas figuras a rede MLP foi treinada com 12 neur6nios na camada oculta e o
melhor ajuste entre os dados foi a equacdo A = 0,918 T + 0,528, na qual A representa a
concentracdo da clorofila-a experimental e T a concentragdo da clorofila-a experimental,

com o coeficiente de correlagdo (R) entre os dados igual a 0,886.
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Figura 37 - Performance da rede neural com 12 neurdnios na camada oculta
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Figura 38 - Performance da rede neural com particionamento do conjunto de dados - 12 neurdnios na
camada oculta
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As Figuras 39 e 40 mostram uma comparacio entre os dados experimentais € 0s
dados simulados com o objetivo de ajustar os dados para estimativa da concentracdo de
clorofila-a. Nestas figuras a rede MLP foi treinada com 14 neur6nios na camada oculta e o
melhor ajuste entre os dados foi a equacdo A = 0,729 T + 4,32, na qual A representa a
concentracdo da clorofila-a experimental e T a concentragdo da clorofila-a experimental,
com o coeficiente de correlagdo (R) entre os dados igual a 0,978.
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Figura 39 - Performance da rede neural com 14 neurdnios na camada oculta
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Figura 40 - Performance da rede neural com particionamento do conjunto de dados — 14 neuronios na
camada oculta
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Através da andlise das figuras 35 a 40, € possivel identificar que o ndmero de
neurdnios na camada oculta que apresentou o melhor desempenho para a rede MLP foi
aquela com 10 neurdnios. E importante comentar que os resultados em termos de coeficiente

de ajuste linear sdo bem préximos para o nimero de neurdnios implementado na simulacao.

4.1.2 Redes MLP e RBF com o PCA

As Figuras 41 a 48 ilustram os resultados obtidos com o treinamento das redes MLP
e RBF para o reservatério da Marcela, com e sem o uso do PCA para pré tratamento de
dados. Nestas figuras, a rede MLP foi treinada com 12 neur6nios na camada oculta e a rede
RBF foi treinada com 25 neur6nios na camada oculta, pois foram identificados como sendo
os numeros de neurdnios que representavam o melhor ajuste entre os dados de concentragdo

de clorofila-a.

A Figura 41 mostra o melhor ajuste da rede RBF sem realizar o pré-tratamento
usando o PCA. O melhor ajuste entre as concentracdes de clorofila-a experimental e
simulada foi a equacdo A = 0,865 T + 6,16 e um coeficiente de correlacdo de 0,932. Com
esse ajuste, € possivel admitir que a rede simulou com boa precisdo as concentracdes de

clorofila-a, conforme mostra a Figura 42.

300 T T T

—_ o
R =0.932
%u 250 - =
2 Q- -
E oo~
S 200 o ]
= @
g . 2
] A
U 150} Dt .
5 O
< o
= o O~
g o R o
c 100+ le) A2 0 |
Gl 50 o ®
L o]
o 8 O
‘S 50 ]
£
§ O  Dados
E 0 Melhor Ajuste |
"""""" Sim = Exp
.50 1 1 [ 1 1
50 100 150 200 250 300

Concentra¢do de clorofila-a simulada (pug/L)

Figura 41 - Aderéncia do modelo para a RBF sem PCA
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Figura 42 - Resultado da simulacio para a RBF sem PCA

A Figura 43 mostra o melhor ajuste da rede RBF utilizando o pré-tratamento através
da técnica de PCA. O melhor ajuste entre as concentragdes de clorofila-a experimental e
simulada neste caso foi a equagdo A = 0,869 T + 6,28 e um coeficiente de correlacdo de
0,93. Observa-se que para a rede RBF a utilizacdo do PCA ndo influencia n o ajuste dos
dados, pois a diferenca entre os coeficientes de correlagao é de apenas 0,2145%. Com esse
ajuste, também, admite-se que a rede conseguiu simular com boa precisdo a concentracao de

clorofila-a.
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Figura 43 - Aderéncia da rede RBF com PCA
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Figura 44 - Resultado da simulacdo para a RBF com PCA

As Figuras 45 a 48 mostram a rede MLP sem e com o pré-tratamento através da

técnica de PCA.

A Figura 45 mostra o melhor ajuste da rede MLP sem realizar o pré-tratamento
usando o PCA. O melhor ajuste entre as concentracdes de clorofila-a experimental e
simulada neste caso foi A = 0,957 T + 7,05 e um coeficiente de correlacdo de 0,944. Para a
rede MLP ocorre desempenho similar ao obtido pela rede RBF, simulando com boa precisao

as concentracoes de clorofila-a, conforme mostra a Figura 46.
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Figura 45 - Aderéncia do modelo para a MLP sem PCA
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Figura 46 - Resultado da simulacdo para a MLP sem PCA
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A Figura 47 mostra o melhor ajuste da concentragdo de clorofila usando a rede MLP

com pré-tratamento através da técnica de PCA. O melhor ajuste entre as concentragdes de

clorofila-a experimental e simulada, neste caso, foi A = 0,845 T + 6,38 e um coeficiente de

correlagdo de 0,929. Para esse ajuste, a Figura 48 mostra que a rede conseguiu simular com

boa precisdo as concentragdes de clorofila-a.
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Figura 48 - Resultado da simulacao para a MLP com PCA

A Tabela 9 resume os melhores valores dos ajustes (aderéncia) de cada tipo de rede
com e sem o pré-tratamento através do PCA. Nesta tabela, observa-se que ndao houve
diferenca significativa entre os modelos (redes) e que o uso do PCA nao resultou em uma
melhoria da qualidade dos resultados. Porém, deve-se ressaltar que o fato do PCA ndo
fornecer melhoria para os dados utilizados no treinamento, ndo implica que no futuro, com
um conjunto de dados mais representativo, seu desempenho ndo possa ser significativo.
Ressaltando mais uma vez que a dificuldade na obtencdo dos dados experimentais pode
justificar o fato de nao ocorre essa melhoria, levando em consideragdo que o nimero de
medidas foi bem menor quando comparados com o nimero de dados apresentados na

literatura.

Tabela 9 - Aderéncia das redes neurais testadas para o reservatorio da Marcela

Tipo de rede | Neuronios ocultos Com PCA Sem PCA

RBF 25 0,930 0,932

MLP 12 0,929 0,944

Para os conjuntos de dados utilizados nesta tese, as redes neurais do tipo MLP e RBF
apresentaram resultados semelhantes e produziram melhores resultados se comparados a
modelos com estatistica multivariada encontrados na literatura sobre o mesmo tema. A
modelagem RNA da eutrofizacdo, através da determinacdo da clorofila-a no reservatério de
Marcela Sergipe/Brasil, realizada com um ntimero maior de dados foi capaz de simular as

concentracdes de clorofila-a com um coeficiente de regressao médio de aproximadamente
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0,93 tanto para a rede MLP como para RBF . A avaliacdo dos resultados induz a constatacio
de que o processo de eutrofizacdo pode ser modelado com razodvel precisao usando as
RNA. Cabe ressaltar que, pelo fato dos dados apresentados para o reservatério da Marcela
nao representarem uma série histérica, o modelo ndo tem nenhum componente temporal,
possibilitando, desta forma, apenas um diagndstico atual da qualidade das dguas do

reservatorio.

4.2 SISTEMA NEURO-FUZZY

O sistema neuro-fuzzy foi aplicado aos dados experimentais do rio Poxim, e,
lamentavelmente, somente 70 medidas foram possivel para os mesmos parametros das redes
treinadas para os dois reservatdrios. No entanto, com os dados da topologia apresentada no
item 3.3.3 e na Figura 28, que sdo utilizados para o treinamento do sistema ANFIS, obteve-
se um razodvel ajuste para 14 neurdnios na camada intermedidria, como mostra a Figura 49.
Nesta figura o melhor ajuste entre as concentracdes de clorofila-a experimental e simulada,

foi A = 0,819 T — 0,102 e um coeficiente de correlacio de 0,839.
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Figura 49 - Performance da rede neural no sistema neuro-fuzzy - rio Poxim
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Ressalta-se que estes dados foram extraidos da topologia dada pela Figura 28, que
foram utilizados para o treinamento e validacdo do sistema neuro-fuzzy para avaliar o rio
Poxim. As Figuras 50 e 51 mostram as telas do sistema ANFIS do Matlab sem customizacio
para a concentracdo de clorofila-a. A Figura 50 para o conjunto de dados destinado ao
treinamento da rede e a Figura 51 para o conjunto de dados utilizado na validacdo da rede.
Nestas figuras, conforme metodologia, foram utilizados 13 parametros de entrada (# of
inputs) e o parametro de saida foi a concentracdo de clorofila-a (# of outputs). O nimero de
regras para cada parametro foi 3 (# of input mfs) e 65 dados foram utilizados na etapa de
treinamento e 17 na etapa de validacdo. E importante ressaltar que o préprio sistema
particiona os dados para fornecer o melhor desempenho do sistema neuro-fuzzy e que nao
necessariamente, quando somados os nimeros de dados de cada etapa seja o nimero total de

dados fornecidos.

Figura 50 - Ilustracio da tela do sistema ANFIS para o treinamento.
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Figura 51 - Tlustracio da tela do sistema ANFIS para validacao

Depois de realizado o treinamento e a validacdo da rede, realizou-se o teste do
sistema (test now) conforme descrito no item 3.4. Para cada varidvel de entrada, um
conjunto de regras foi otimizado no sistema ANFIS. Para ilustrar essa otimizagdo, a Figura
52 mostra um conjunto com cinco regras para a concentracdo de nitrogénio (12° parametro
de entrada).
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Figura 52 - Ilustracgio da tela do sistema ANFIS com cinco regras para cada variavel de entrada

A Figura 53 ilustra o comportamento da varidvel de saida (clorofila) em fun¢do das
varidveis de entrada concentragdes de fosforo e nitrogénio. Observa-se um aumento da
concentracdo de clorofila com a maior concentracio de nitrogénio e com uma menor

influéncia da concentracdo de fésforo. Esta observacdo pode ndo refletir a real relacdo entre
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as concentracdes de fosforo e de nitrogénio como influéncia sobre o perfil da clorofila-a no
sistema hidrico; pois a relacdo estequiométrica entre as concentracdes de nitrogé€nio e de
fosforo, que permitiria concluir qual o nutriente limitante no processo de eutrofizacdo nao

foi feita.

Fésforo

Narogénio

Figura 53 - Comportamento da clorofila em funcio das concentracoes de fosforo e nitrogénio

(194

Neste trabalho foi avaliada a influéncia do nimero de “épocas” para o treinamento e
a validacao do sistema ANFIS. O procedimento consistiu em gerar a melhor faixa de
influéncia das varidveis de entrada e determinar o nimero de regras que melhor respondesse
a simulagdo da concentragdo de clorofila-a. As Figuras 54 a 58 mostram esta avaliagdo para
qual foi elaborada a Tabela 7. Nestas figuras s@o apresentadas as etapas de treinamento e
validacdo do sistema como teste para determinacdo do melhor nimero de regras, ou seja, a
melhor combinagdo entre os parametros de entrada que produz o menor erro entre a

concentragdo de clorofila-a experimental e simulada.

As Figuras 54 a 58 correspondem aos cinco testes numéricos realizados para
obten¢ao do nimero de regras que melhor representava os dados experimentais. As setas nas

figuras indicam o nimero de regras que o programa apresentou em cada simulacao.
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Figura 54 - Conjunto de quatro regras (a) dados para treinamento (b) dados para validacao — teste 1
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Figura 55 - Conjunto de cinco regras (a) dados para treinamento (b) dados para validacio — teste 2
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Figura 56 - Conjunto de seis regras (a) dados para treinamento (b) dados para validacao - teste 3
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Figura 57 - Conjunto de sete regras (a) dados para treinamento (b) dados para validacao — teste 4
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Figura 58 - Conjunto de treze regras (a) dados para treinamento (b) dados para validacao — teste 5

A Tabela 10 foi elaborada a partir das informagdes dos testes mostrados
anteriormente nas figuras 54 a 58. Nesta tabela, para cada etapa (treinamento e validacio) o
erro médio foi identificado correspondendo ao nimero de regras simulado de cada teste.
Observa-se que o melhor conjunto de regras € o que apresenta seis regras, pois produziu o
menor erro no treinamento. No entanto, no que se refere a validagdo o menor erro
corresponde ao conjunto com 13 regras, o que teria consequentemente uma melhor
representatividade do processo ja que mostraria uma maior interacdo entre as varidveis de
entrada. Mas, entre os erros do treinamento e da validagdo, foi escolhido o menor erro para o
treinamento, tendo em vista que, de acordo com a literatura da drea, neste conjunto

concentra-se 0 maior nimero de valores experimentais para treinamento da rede (50%).

Tabela 10 - Erro médio do teste para o sistema ANFIS

Testes Numero de regras obtido  Erro médio no treinamento  Erro médio na validagdo

1 4 0,31010 27,6093
2 5 0,02489 48,6202
3 6 0,01596 23,9894
4 7 0,01886 20,7180
5 13 20,8566 6,74660
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Definido o melhor conjunto de regras como sendo seis regras para cada pardmetro de
entrada, foi obtida a Figura 59. Esta figura mostra um conjunto de dados de entrada que
apresenta como resposta a concentracio de clorofila igual a 8,63 pg.L"'. Além disso, esta
figura ilustra uma tela pela qual é possivel realizar a simulacdo da clorofila-a com novos
dados de entrada. Esta simulacdo é realizada inserindo novos dados no campo input
destacado (Passivel de inser¢do). E possivel ainda, nesta tabela, avaliar a influéncia de cada

varidvel de entrada sobre o perfil da concentracio de clorofila-a, mantendo as outras

constantes.

E importante ressaltar a auséncia da varidvel temporal, que pode ter considerdvel
influéncia nos resultados, visto que o periodo do ano influencia no valor da clorofila-a nos
reservatorios de dgua. Ressalta-se ainda que as varidveis de entrada inl a in13 correspondem
a temperatura da dgua, condutividade, cor, pH, sélidos totais, sélidos suspensos, oxigénio

dissolvido, DBO, N-NH4, N-NO,, N-NOs, nitrogénio total e fosforo total, respectivamente.

[ Rule Viewer: Untitled [E=e X
file Edit View Options
=278 in2=288e4004 in3=60 iM4=805  inS=1954004  n6=205 7 =563 in8=105 in9=091 n10=013 in11=0805 in12=577 an=10s Clorofila
| | ot =863
AN A A L N H g
g | N\
|
‘ /\ | N N |
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= | Ly L b \| |
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\ = /\ —\ |
'y i \
: | H B |
=h 4—] b | =i |
| |
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2 35 001 | 575 10 1o 64 97 00033 | 3894 138 | 3967 027 "2 19 017 | 165 0006 | 0263 001 16 04 | 14 01 2
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Figura 59 - Ilustracio do conjunto de regras fuzzy com menor erro no treinamento.

4.3 INDICE DE ESTADO TROFICO DA AGUA

A construcio do indice de estado tréfico foi desenvolvida a partir da utilizacdo da
primeira componente principal, utilizando a matriz de correlagdo das varidveis originais,
para evitar que a discrepancia das unidades de medidas influenciasse na determinacdo da

direcdo dos novos eixos ortogonais, conforme comentado anteriormente.
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4.3.1 PCA

Para esta etapa do trabalho, foi utilizado o toolbox Statistics do Matlab, que permite
o cdlculo automatizado da matriz de covariancia e dos loadings do PCA através do comando
princomp. Para a matriz de correlacdo, usou-se o comando prestd que efetua uma
transformacdo nos dados de modo a normaliza-los com média nula e variancia unitdria, antes
de usar o comando princomp.

A construcdo da interface foi feita através do GUIDE e foi dividida em duas etapas:
interface principal (Figura 60) e assistente de calibracdo (Figura 61). O assistente de
calibragdo serve para simplificar e automatizar a tarefa de constru¢do do indice, cabendo ao
usudrio apenas a tarefa de fornecer os dados divididos de forma apropriada para as classes
oligotréfica, mesotréfico, eutréfica e hipertréfico (Figura 62). E importante ressaltar que
para estabelecer o indice de estado tréfico, foram utilizados os dados do reservatério da
Marcela e do rio Poxim.

De forma resumida, o procedimento consiste nos seguintes passos:

a. Clicar no icone indice da Figura 27 (Tela da Modelagem da Qualidade da Agua), para
obtencdo da Figura 60.

B indice do nivel de trofia @L&

1) Insira o valor das variaveis Calibragao

Variavel \e

Ferramenta néo calibrada!

2) Clique em no botao abaixo para classificar a amostra

Clorofila estimada:

— Classificacéo —indice

Figura 60 - Interface principal para o indice do nivel de trofia do reservatério

b. Na Figura 60, clicar no icone Calibracdo para obtenc¢do da Figura 61.
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c. Na Figura 61, clicar no icone préximo para calibrar novos dados ou em carregar perfil para
um perfil ja calibrado.

d. Clicando em préximo na Figura 61, obtém-se a Figura 62 para carregar os dados ja divididos
nas quatro classes tréficas, e clica-se em proximo e esperar o tempo de processamento da
rede (Figura 63).

e. Apoés carregar os dados, € possivel inserir os valores para o conjunto de varidveis e
classificar os novos dados, calcular o indice de estado tréfico e estimar a concentragdo de

clorofila-a (Figura 64).

N

Berm vindo ao assistente de calibragéo!

;
5
!
\‘& 1) Para calibray & ferianents corm hoves dadas & crial uim peril de calibragas i
i ligue no biotan Prdsio. i
i i
2) Para carregar um perfil pronto clique no botdo Carregar Perfil.
Carregar Perfil
i

S

Figura 61 - Interface do assistente de calibracao.
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B Assistente de cali

Carregue os dados separando-os por classe. Em caso de dividas
sobre formatagéo, clique no botdo ao lado.

Oligotréfico: [ Procurar

Mesotréfico: l Procurar

Eutréfico: l Procurar

Hipertréfico: [ Procurar

Figura 62 - Interface do assistente de calibracio para o carregamento de dados.
4\ Neural Network Training (nntraintool) L=ni=y

Neural Network

Layer Layer Layer

30 30 1
Algorithms
Data Division: Index (divideind)
Training: Levenberg-Marquardt (trainim)

Performance: Mean Squared Error (mse)
Derivative: Default (defaultderiv)

Progress

Epoch: 0 13 iterations 1000
Time: 0:00:02

Performance: 0.205 1.00e-06

Gradient: 124 [N0I007740 | 1.00e-05
Mu: 0.00100 | 100e-07 1.00e+10
Validation Checks: N

Plots

Performance | (plotperform)

Training State | (plottrainstate)
(plotregression)

Plot Interval: U 1 epochs

v Performance goal met.

@ Stop Training } [ @ Cancel

Figura 63 - Processamento da rede
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, Y
B Indice do nivel de trofia = -
1) Insira o valor das varidveis Calibragdo
-
Varidvel Ferramenta calibrada!
Valor. Ok

2) Clique em no botho abaixo para classificar a amostra

Classéicacio Indice
Classificar
Clorofila estimada:
Oligotréfico Eutréfico
Mesotréfico Hipertréfico

Figura 64 - Classificacio do sistema

E importante comentar que a ferramenta utiliza somente dados de planilhas com
extensdo .xls. Nas planilhas apresentadas no ANEXO C, as varidveis devem estar dispostas
em colunas e a primeira linha deve conter os nomes das varidveis.

Os dados foram testados na ferramenta e a 1* componente principal do PCA explicou
57,2% da covariancia do sistema, permitindo a constru¢do do indice que originou a Equagao
69. Observa-se nessa equacdo que o indice aponta para um crescimento do nivel de
eutrofizacdo conforme as varidveis aumentam, com exce¢do do oxigénio dissolvido, que
diminui conforme aumenta a quantidade de algas e estas passam a consumir o oxigénio para

Crescer.

LE. =0.3177[pH] - 0.2703[OD] + 0.2889[N-NH4] + 0.2372[N-NO2] + 0.3663[N-NO3]
+ 0.3991[P-PO4] + 0.3218[Ntotal] + 0.3811[Ptotal] + 0.3794[Cl-a]

(69)

A andlise de distribui¢ao de frequéncias mostrou que o ponto de separacao entre as

classes € de 1,4157. Isso significa que amostras com indice superior a esse valor serdo
consideradas hipertréficas e abaixo desse valor, oligotréficas.

A Figura 65, por meio de uma representagdo biplot entre as componentes 1 e 2,

mostra a separacdo das classes oligotrdfica e hipertréfica, correspondente aos dados do rio

Poxim e da Bacia de Marcela, respectivamente, utilizados nesta etapa do trabalho.
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Figura 65 - Grafico biplot da componente 1 pela componente 2 - PCA

Ao classificar os mesmos dados utilizados para a construcdo do indice, verificou-se
um acerto de 100% na classificagdo. A visivel separacdo das classes observadas NA Figura
65 foi o que permitiu a relativa facilidade do na classificagdo dos sistemas hidricos.

Desse modo, a ferramenta desenvolvida neste trabalho conseguiu classificar de modo
satisfatério os dados de dguas oligotréficas e hipertréficas do rio Poxim e do reservatério da

Marcela, respectivamente.

4.3.2 Légica Fuzzy

Com base no conhecimento dos sistemas, as funcdes das varidveis de entrada e da
varidvel de saida foram definidas utilizando o Fuzzy Logical Toolbox do MATLAB. Nesta
etapa, o método de inferéncia fuzzy foi o método de Mamdani e para a etapa de
defuzzificagdo foi utilizado o método do centro de gravidade (Centroid), conforme se
identifica, em vermelho) na Figura 66. A func¢do de pertinéncia trapezoidal foi utilizada para

todas as variaveis.

Para implementacdo da estratégia fuzzy foram utilizados os dados experimentais o

reservatorio de Jacarecica e considerou-se que:

a. As trés varidveis de entrada foram definidas a partir dos resultados da aplicacdo do
modelo de redes neurais e da avaliacdo do indice de qualidade da dgua, como aquelas que
mais influenciam na qualidade da &4gua, segundo especialistas: clorofila-a, foésforo e

nitrogénio.
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b. A varidvel de saida foi o indice de estado tréfico da dgua, classificando o sistema em

quatro niveis tréficos do sistema.

c. A funcdo de pertinéncia triangular foi a mesma para cada varidvel de entrada e para a

variavel de saida.

d. Foram implementadas 23, regras fuzzy de acordo com o grau de importincia, ou de
pertinéncia, para a resposta do sistema, em conformidade com as defini¢des dos

especialistas.

A Figura 65 mostra a tela obtida no MATLAB para identificacdo das trés varidveis

de entrada e da variavel de saida.

B FIS Editor: IQA1 =cy

File Edit View

/

QA1

XX

NITROGENIO

XX

ESTADOTROFICO
FOSFORO

FIS Name: QA1 FIS Type. mamdani
And method - « || Current Variable
Or method — | |||{iame
Implication e = Type

Range
Aggregation max v
Defuzzification o = Help e l
Opening Rule Editor

\.

Figura 66 - Tela principal para indice de estado tréfico da agua através da logica fuzzy

As Figuras 67, 68 e 69 apresentam as condi¢des fuzzy implementadas para as
varidveis de entrada do modelo. Para definir as classes linguisticas foram calculados o indice
de estado tréfico (IET) através das equacdes mostradas na Tabela 1 e as faixas de trofia
apresentadas na Tabela 2 no item 2.2.1.2 da fundamentacao.

A partir das figuras 67 a 69 € possivel inferir sobre o estado tr6fico do sistema em

relagdo a cada pardmetro ambiental. Em decorréncia dessa inferéncia, obtém-se a Figura 70
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que mostra essa combinacao entre as concentragdes de clorofila-a, de nitrogénio e de fésforo

para se definir o estado tréfico do sistema.

Olitrofico Mesotrofico Eutrofico Hipereutrofico

Grau de pertinéncia

input variable "CLOROFILA"

Figura 67 - Condicoes fuzzy — variavel de entrada concentracio de clorofila-a (ug/L)

Olitrofico Mesotrofico Eutrofico Hipereutrofico

Grau de pertinéncia

input variable ”‘NITROGENIO"
Figura 68 - Condicdes fuzzy — variavel de entrada nitrogénio

Olitrofico Mesotrofico Eutrofico Hipereutrofico

Grau de pertinéncia

input variable "FOSFORO"

Figura 69 - Condicdes fuzzy — variavel de entrada fésforo

A Figura 70 mostra, entdo, o conjunto de saida para o estado tréfico do sistema
hidrico. Para os subconjuntos deste indice, tem-se que o subconjunto OLIGOTROFICO &
representado pela terna (0,00414; 0,1141; 0,234); o subconjunto MESOTROFICO
representado pela terna (0,0959; 0,26; 0,4013); o subconjunto EUTROFICO ¢ representado
pela terna (0,3395; 0,4205; 0,5095); e o subconjunto HIPEREUTROFICO ¢ representado

(€N
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pela terna (0,444; 0,626; 0,85). E importante destacar, entdo, que acima de 0,85 o sistema
poderia ser classificado como hiperhipereutréfico, podendo ser um novo termo linguistico a

ser aplicado.

Olitrofico Mesotrofico Eutrofico Hipereutrofico

Grau de pertinéncia

. output variable "ESTADOTROFICO™
Figura 70 - Condicdes fuzzy — variavel de saida IET

A Figura 71 apresenta o conjunto de 23 regras fuzzy aplicado ao sistema hidrico.
Diferentemente do sistema ANFIS (neuro-fuzzy), esse conjunto de regras foi definido para ser
inserido no programa. E possivel observar na Figura 49 que para cada valor atribuido as varidveis de
entrada, por exemplo, clorofila 80,5 ug.L1, nitrogénio 2 mg.L! e fésforo 200 mg.L™!, como resposta
o sistema gera IET de 0,747 que representa 74,7 % de seguranga na resposta referente as condi¢des
do reservatério. Na literatura, uma resposta acima de 70% € bom grau de acerto na andlise da
varidvel de saida (MELO, 2009). E importante ressaltar que quanto maior o nimero de varidveis de
entrada maior o nimero de regras, o que torna o sistema mais dependente do conhecimento dos
especialistas na integracdo entre as regras. Observa-se, entdo, que nesta simulacio hipotética, o IET
igual a 0,747 indica que o sistema pode ser enquadrado no termo linguistico hipereutrdfico,
conforme mostra anteriormente a Figura 70.

E importante comentar que em termos limnolégicos, esses resultados mostram que o
reservatorio de Jacarecica I, apresenta caracteristicas de sistemas oligotréficos a eutréficos,
tornando-se mais eutrofizado logicamente a depender do periodo da coleta. Além disso, pela
analise dos indices de estado trofico e de seus desvios, o nutriente limitante do reservatorio

no periodo de estiagem € o nitrogénio e, durante o periodo chuvoso, a limitacdo passa a ser

do fésforo.
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Figura 71 - Regras fuzzy aplicadas




5 CONCLUSOES

Neste trabalho, foram avaliadas as condi¢des de eutrofizacdo dos reservatorios da
Marcela e de Jacarecica, e do rio Poxim em Sergipe através do desenvolvimento de
estratégias numéricas e constru¢do de ferramentas computacionais utilizando redes neurais,
16gica fuzzy e o sistema neuro-fuzzy.

Para essa avaliagdo ambiental foram analisadas 226 amostras coletadas durante o
monitoramento dos reservatérios no Laboratério de Quimica Analitica Ambiental (LQA) da
Universidade Federal de Sergipe e 70 dados cedidos pela Secretaria de Recursos Hidricos de
Sergipe (SRH-SE). Cabe, neste momento, ressaltar a dificuldade na obtencao de dados sobre
a qualidade da agua, principalmente em relagdo a quantidade de dados exigidos para
implementacdo de ferramentas computacionais.

A avaliagdo dos resultados para os reservatérios foi desenvolvida através da
aplicacdo de redes neurais do tipo MLP e RBF e um sistema neuro-fuzzy. Para as redes
MLP e RBF o ajuste para os dois reservatérios permitiu concluir que o processo de
eutrofizacdo pode ser modelado com razodvel precisdo com redes neurais, ou seja, 0S
resultados mostram que essas arquiteturas de redes neurais foram capazes de verificar com
razodavel precisao a tendéncia dos dados experimentais simulando a concentracdo de
clorofila-a.

Para os dados disponiveis, a légica fuzzy permitiu que o conhecimento empirico dos
especialistas fosse corroborado matematicamente e foi possivel o utilizar o IET como
parametro de gestdo indicando a influéncia dos problemas de eutrofizacdo dos corpos
hidricos quando o grau de pertinéncia fosse, em termos linguisticos, superior ao estado de
mesotrofia do sistema. Além disso, a classificacdo do IET foi desenvolvida com base nos
valores de concentracdes de fosforo, nitrogénio e clorofila-a e os resultados fuzzy mostraram
uma combinagao satisfatéria entre os indicadores ambientais que classificam o sistema entre
niveis oligotrofico e hipereutréfico a depender da inferéncia dos dados. Neste estudo, 23
regras foram aplicadas e constatou-se que o rio Poxim, nos pontos de coleta, foi classificado
como oligotréfico e os reservatérios da Marcela e de Jacarecica foram classificados como
sendo hipereutréfico e oligotréfico, respectivamente.

Em relacdo ao sistema neuro-fuzzy, apesar desse sistema combinar as vantagens da
l6gica fuzzy e das redes neurais, uma limitagdo da técnica € o nimero de varidveis de
entrada que deve ser o menor possivel para que ndo haja uma elevada combinagdo de regras.

Neste sentido, no presente trabalho foram utilizados treze parametros, ou seja, um nimero
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de varidveis de entrada considerado elevado, promovendo assim, matematicamente, um
maior esfor¢co computacional.

Em termos limnolgicos, considerando os limites estabelecidos para estes
parametros analisados para qualidade da 4dgua de acordo com a Resolu¢do n°® 375/05 de
Conama, a 4gua dos reservatérios e do rio Poxim foi considerada de boa qualidade. Os
parametros de qualidade da &4gua utilizados numericamente neste trabalho (como por
exemplo, solidos suspensos, solidos totais dissolvidos, oxigénio dissolvido, condutividade
elétrica, concentracdes de amodnia, de fésforo, de nitrogénio e de clorofila) servem como
indicadores de qualidade da dgua, visando o seu monitoramento ambiental, possibilitando,
por exemplo, inferir sobre o uso e ocupagdo do solo da regido e a constru¢cdo de um indice
de qualidade de agua.

Neste sentido, os resultados mostram que € possivel avaliar o fendmeno de
eutrofizacdo de corpos hidricos através do desenvolvimento de estratégias e construcao de
ferramentas computacionais, em particular as redes neurais e a logica fuzzy, utilizando os
principais parametros limnolégicos, mostrando a viabilidade numérica no que concerne a
representacdo de fendmenos ambientais complexos e importantes para sustentabilidade

ambiental dos corpos hidricos.

5.1 LIMITACOES

Atualmente, os sistemas de gestdo possibilitam propor modelos de melhoria através
da indica¢do dos pontos fracos de um processo/projeto. Sendo assim, neste trabalho, os
pontos fracos na andlise do fendmeno de eutrofizac@o estdo relacionados com a obtengdo
dos dados experimentais que foram utilizados na simula¢do. O elevado custo das campanhas
de coleta e a heterogeneidade dos parametros a serem mensurados dificultaram a quantidade
e qualidade dos dados experimentais, constituindo as principais limitagdes no
desenvolvimento da presente tese.

Como consequéncia dessas limitagcdes, o nimero de dados experimentais desta tese

foi considerado pequeno quando comparado com alguns trabalhos apresentados na literatura.

5.2 SUGESTAO DE TRABALHOS FUTUROS

Como consequéncia das limitagcdes da presente tese, tem-se a necessidade de se

desenvolver trabalhos futuros no sentindo de se aplicar a utilizacdo de ferramentas de
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Inteligéncia Artificial na andlise de fendmenos complexos com maior desempenho e com
melhores resultados. Sendo assim, os seguintes trabalhos sdo sugestdes consubstanciadas
nos resultados da tese e na andlise do fendmeno de eutrofizacgao:
1. Aplicagio do Indice de Qualidade da Agua (IQA) e do Indice de Estado Tréfico para
elaboracao de um modelo de gestdo ambiental.
2. Costumizagdo dos sistemas fuzzy e neuro-fuzzy no ambiente MATLAB para

representacdo do fendmeno de eutrofizacao.
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ANEXO A — Tabelas com os dados ambientais dos corpos hidricos avaliados

Tabela 1 - Valores médios, minimos, mdximos e desvios padrdes dos pardmetros do reservatério da Marcela

Estacoes Prof. | Tagua |T ar | Trans. cond: Cor pH | Stotal SS OD |N-NH4 202 :OS P-PO4 | Ntotal | Ptotal | Clorofila.a
m oC oC |m mS/em | pg.cg mg/L mg/L |mg/L |ug/L  |ug/L |ug/L |ug/L mg/L | mg/L |ug/L
1S 0 271 25| os55] 1S 18.0| 8.1 908| 26| 67| 163] 167,1] 18157 569.8| 42| 06 374
IM 1.9 271 25| oss5] 19 17.8| 82 898| 26| 65| 124| 1664] 13115 5653| 45| 06 48,7
28 0 26| 27| os| 1S 194 83 898| 28| 64| 100| 130,6] 14033| 5534| 39| 07 64,3
M 2,85 271 27| os| 1 174| 8.1 940| 28| 65 90| 1387] 12658| 569.8| 32| 07 61,2
3S 0 271 28] o55] 14 183 83 910| 26| 52 68| 1056| 12972 5639 37| 07 157,1
3M 3.2 271 28| os55] IS 17.8| 82 892| 48| 7.0 90| 101,5]| 13155| 5549| 27| 07 95,9
1S 0 23| 23 05| 131 198 8.1 820| 28| 66| 1594| 2172] 1201,1] 5936 32| 06 92,3
IM 2,07 23] 23| os5| 131 19.8| 8,1 824 32| 65| 1623| 2273] 13785 5773 34| 06 126,4
3S 0 26| 27/ o5 19 15,7] 8,15 716| 32| 91| 156] 4132]2663,8| 3046| 25| 03 84,8
3M 3 25| 27] o5 19 15,6 7,95 746 20 54| 149| 284,7| 17826] 3223 38| 0,1 56,3
1S 298| 32/ o04] IO 254| 8.1 860| 42| 46| 914| 17,7] 18766 4093| 142| 06 204.8
IM 2.3 30| 32| o04| 10 244/ 8,18 844| 16| 52| 353| 163]13155| 407.8| 47| 05 112,0
28 30| 31 03| 09 23,1| 8,19 802 34| 28| 227| 346 16145| 4122| 22| 06 83,0
M 2.5 30| 31 03| 1O 213] 7,97 880 26| 42| 290| 109]14363| 4107| 29| 05 147,7
3S 295 31| o0p2s5] 09 233| 8,08 908| 18| 22| 254| 1069| 1080,6| 4166| 61| 06 186,2
3M 2.5 30| 31| 025 09 222| 7,94 924| 24| 34| 405| 140,1| 15379 4299| 10,1| 07 114,9
1S 0 28| 285| 03] 1O 254| 831 918| 54| 64| 205| 237|13946| 3414 45| 06 113,8
IM 2 28| 285| 03] IO 23,7| 8,09 894| 40| 49| 222| 96819850 3753| 25| 06 1253
28 0 29| 28] o04] IO 24.8| 845 878 40| 78| 12,0 129] 22419 3532 13| 06 109,0
M 2.5 28| 28] o04] IO 23,7| 8,29 880| 48| 46| 144| 515|18428| 3562| 106 03 123,7
3S 0 28| 28] 03] IO 250| 833 896| 48| 52| 105| 21023204 3459| 55| 03 155,7
3M 2.2 28] 28] 03] IO 244| 822 898| 42| 36| 132| 21,0]27098| 3665 90| 06 149,6




133

Continuacio...

1S 31| 34 03| L6 38,9| 8,66 966| 92| 14,1 297| 67,7] 15670 70,1 36| 06 167.6
M 30| 34 03| 17 383 8,71 966| 104| 133| 28,0| 643| 17867 89,3 12] 06 140,0
28 31| 34| o0p2s5| 1.6 34.8| 8,68 916| 64| 147 307| 724 15045| 1748 09| 06 65,4
M 30,5 34| o025 L6 34.4| 8,67 926 82| 144| 392| 704| 19825 74,6 9,7 06 82,4
3S 30| 32,5 03| L6 33,1| 8,54 964| 76| 96| 580| 174,6] 23832| 1350 53] 06 77,4
3M 29| 325 03] 1.5 31,7| 8,39 944| 76| 44| 850| 2084 23205| 1203 54| 06 83,3
1S ol 276| 313| o025 LI 385| 8,58 1072 92| 91| 361 71| 552,9| 3090 39 1,0 98,0
M 1,5 279! 313| o025 LI 38,9| 8,98 1078 10| 90| 297 68| 3510 3193 270 1,0 109,9
28 0| 273| 293 03| LI 341 88 1074 78| 77| 271 95| 7692| 3208 44| 07 1432
M 2| 263| 293 03| LI 34.4| 947 1072 12| 73| 31,7| 125 10144| 3134 94| 08 183,7
3S ol 268| 308 03| Ll 34.8| 8,67 1088| 88| 50| 339 77.1| 977,7| 3753 95 09 127,6
3M 2 26| 308 03| LI 34.4| 925 1058| 88| 3,1| 37.8| 1360| 676,6| 3842| 280| 12 185,3
1S ol 27,7] 28 02| L6 63,5 83 1040 78| 65| 288 1,7 6932] 1969 36| 09 2644
M 175 272] 28 02| L6 578| 8.4 974 54| 53| 227 24| 14304 1837 43 1,0 205.7
28 ol 268| 28 02| IS 65,5 8,5 996| 26| 55| 319 38| 1577,8| 1969 55| 07 119,0
M 23| 254 28 02| 1.6 66,8 8,5 1014| 74| 44| 246 1,7] 1198,0] 1940 46| 09 229.6
3S 0 25| 31,7 02| L6 739 84 964| 52| 40| 297 2,11 1105,1| 254.4 81| 06 2937
3M 15| 245 31,7 02| 1.6 70,9| 84 1002] 66| 39| 275 07| 481,7| 2795 66| 04 2084
1S ol 287| 267| o025 14 89| 8,65 1040 6| 44| 875| 96,1| 447,77 4741 320 18 9,5
M 14| 287| 26,7| o025 13 7.6| 7,95 1100 5| 36| 97,7] 839| 649.8| 480, 3.1 1,0 9,3
IF 28| 289 267| o0p2s5| 13 59| 885 1135 6| 30| 646 920|3197,8| 4520 2,1 12 10,8
28 ol 281] 305 04| L3 61| 879 1160 71 46| 132] 596| 1991,7| 4889 3.1 1,1 12,7
M 19 27,7] 305 04| 1.3 74| 893 1030 11| 40| 146| 548| 11425 4830 321 14 10,4
OF 370 272] 312 04| 13 6,7| 8,69 1025 8| 06| 198| 46,7| 10465 5169 24| 08 12,7
3S ol 282| 312| o025 1.3 6,318,703 1115 7| 46| 168| 48,11 28366| 5007 350 1,0 11,3
3M 2| 279] 312] o025 14 7,018,724 1780 6| 09| 21,7 555|22034| 5066 45| 12 11,0
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3F 4 27,5 31,2 0,25 1.4 7,8 | 8,649 1100 7 0,1 25,1 52,1| 2567,2 503,6 49 1,1 11,1
1S 30 32 0,25 1,3 32,6 9,55 1175 13 9,0 29,7 2644| 8354 166,0 9,5 0,7 17,3
1M 3,8 30 32 0,25 1.3 34,1] 9,50 1175| 14,5 6,2 28,3 | 257,7| 1721,6 170,4 9,8 0,7 18,1
1F 31 32 0,25 1.3 36,3] 9,43 1200 18,5 53 59,00 291,5] 12279 177,8 8,4 1,0 23,5
28 29,7 31 0,3 1,3 29,8 9,41 1120 11 8,6 20,7| 311,8| 1107,7 177,8 6,7 0,8 49,5
2M 4,5 29 31 0,3 1.3 30,0] 9,30 1115] 12,5 4,6 20,0 345,6| 1594,8 183,7 9,6 1,0 48,5
2F 31 31 0,3 1,3 2741 9,45 1165 10 0,9 58,2| 480,8| 13654 208,7 9,3 0,9 479
3S 29 31 0,3 1.3 28,9 9,30 1145 13 5,6 18,5| 453,8] 1419,9 189,6 7,5 0,8 63,1
3M 4,5 29 31 0,3 1,3 29,6 9,16 1185| 13,5 2.4 17,8 | 507,9| 1426,2 198.4 6,5 0,7 55,4
3F 30 31 0,3 1.4 29,41 9,09 1245 11 0,9 18,0 575,5] 12754 204,3 9,5 0,9 82,5
1S 0 29,5 29 0,3 1.3 10,4| 8,88 1150 49 9.4 21,2 4,1] 1201,9 505,1 39 0,8 13,2
1M 1,6 28 29 0,3 1,3 94| 8,67 1170 12 4,2 26,6| 100,8| 899,1 593.,6 4,6 0,6 16,3
1F 3,2 29 29 0,3 1.4 10,6 | 8,71 1135 30 2,1 17,8 48,1 1274,1 575,9 4,1 0,9 13,4
28 0 30 27 0,3 1,3 2,8| 8,77 1100 3 6,5 12,2 9,5| 1562,5 592,1 3,5 0,7 16,9
2M 2,5 29 27 0,3 1.3 59| 8,6 1175 9 53 23,9| 105,6| 610,6 5434 3,3 0,7 16,4
2F 5 29 27 0,3 1.4 10,6 | 84 1140 29 1,2 78,2 308,5| 4952 627,5 3,5 0,8 16,9
3S 0 23,5 30 0,3 1.4 43| 8,71 1150 9 8,5 9,0 38,6 726,0 561,1 4,6 0,8 16,8
3M 2,9 30 30 0,3 1.3 5,6| 8,58 1190 10 1,4 57,0 167,8| 8269 620,1 4,6 0,9 16,4
3F 5,8 29 30 0,3 1.4 6,5| 843 1135 09| 1143| 336,2| 134,6 599,5 4,8 0,8 16,7
1S 28,2| 26,3 0,3 1,2 15,4 8,98 2280 9,3 59,0/<0,14 | 13173 4904 2,7 0,8 18,9
1M 2 27,1| 26,3 0,3 1.3 17,0 8,5 2350 44 3,0 51,7 34,6 974,6 516,9 2,9 1,0 16,6
28 30 32,1 0,4 1.3 17,6 8,86 2145 10,0 56,8 28,5| 599,7 590,6 3,0 0,5 15,7
2M 3 269| 32,1 0,4 1,2 17,2 8,55 2275 3,6 54,8 10,9 | 1372,6 415,2 2,9 1,0 15,1
2F 27,2 32,1 0,4 1,2 14,8 | 8,26 2220 30 0,9 93,6| 1144| 44773 6054 2,8 0,8 17,0
3S 26,1| 304 0,45 1.3 16,9 | 8,78 2325 5 6,3 32,9 27,1 1160,7 266,2 2,9 0,8 16,6
3M 4 25| 304 0,45 1.3 154| 8,45 2180 11 2,2 57,5 25,1| 978,0 370,9 2,7 0,8 16,6
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3F 249| 304| o045 13 16,7 8,24 1045 5| 07| 106,7] 1123] 221,3| 5493 36| 1,0 17,6
1S ol 31,7| 31,6 04| 23 172| 838 1090 3] 58| 885 68| 13823| 8253 221 09 19,2
M 22| 312 316 04| 29 18,7| 84 1080 41 41| 593 82| 16435| 899.6 29/ 09 22,4
IF 44| 313| 31,6 04| 27 20,2| 8,23 1070 6| 39| 739 62| 1331,0] 9026 220 1,0 26,6
28 ol 304| 34 05| 22 169 8732 1145 21 57| 1689 68| 12957 956,1 320 1,0 17,5
M 3| 325| 34 05| 28 16,7 8,29 1055 3| 36| 1652 55( 18278  962,1 290 09 272
OF 6 28| 34 05| 27 172 8,18 1235 3| 28| 2237 68| 1367.8| 861,0 320 1,0 18,9
3S ol 297| 321 05| 23 16,7| 8,46 1060 4| 45| 943 55| 1106,6| 9412 430 09 19,6
3M 29| 322 321 05| 26 13,5 83 1055 31 50| 1079 68| 1079.4| 881,8 320 09 23,6
3F 58| 32.6| 321 05| 30 150 831 1070 41 70| 1214 62| 1446,4| 8877 271 09 17,1
1S 0 30| 28 04| 28 19,1 815 495 12| 70| 41,0] 263,1] 16503 | 3223 39| 15 572
M 2.8 29| 28 04| 28 172 821 615 4| 64| 282| 2722]|14335| 2854 48| 14 16,6
IF 55 271 28 04| 27 15,6 825 1140 1| 59 62| 281,0] 13610 2574 46 1.1 33,3
28 0 30| 29,5 05| 28 172 78 1055 70 53| 236] 2712]13903| 3341 510 15 45,0
M 28| 295| 295 05| 27 15,0 7,78 1100| 11| 41| 793| 253,0| 1376,8| 247.1 40| 15 43,1
OF 55 295| 295 05| 28 13,3| 8,09 1050 s| 43| 287] 2912]1072,0| 2338 46 1.1 47,6
3S 0 30| 28| 045 26 159 7.93 705 31 52| 231] 239.8| 15938 1719 49| 15 48,6
3M 2,5 28| 28| 045 28 17,6| 8,05 960 8| 29| 164| 2956 1403,5| 4623 50 14 37,7
3F 5 29| 28| o045 28 154 8,18 920 6| 2.8 77| 296,6| 17352| 7631 43| 1,6 52,0
1S ol 266 28| o045 IS 19,1 8,79 795 4| 94| 558| 286,1|2190,0| 4373 510 08 14,2
M 1 271 28| o045 LS 18,3| 8,78 835 2| 88| 522| 3409| 1251,1] 4166 1,9 1,0 14,8
IF 2| 274 28| o045 13 169 8,79 815| 38| 90| 358| 337.5| 13522| 3812 36/ 08 13,1
28 ol 273| 284| o045 IS 152 87 765 2| 82| 353| 161,7] 12989| 4328 430 05 14,4
M 1,5 27.1| 284| o045 13 193] 8,67 840 2| 79| 415] 1888 1976,1| 421,1 58/ 1,0 15,8
2F 3| 274| 284| o045 13 19,6 8,53 860 5| 51| 46,6] 3612] 16112 4299 66| 08 14,7
3S ol 271| 283| o045 LS 154 839 850 12| 66| 53.8| 272,6| 1151.9| 4373 250 08 14,2
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3M 2| 274| 283] o045| IS 14,6| 8,57 800 1| 39| 706| 332,1]1611,9| 4476 38| 17 12,9
3F 4| 273| 283| o04s5] 1S 19,1 843 1005| 27| 37| 553| 1340/ 13140| 4181 37 1,0 14,5
1S 0| 281] 269| 03] 19 152 8,69 900| 22| 82| 205| 332| 3466| 2766| 36| 05 16,9
IM 09| 282] 269| 03] 19 13,5 883 830| 31| 80| 31.8| 474| 3180| 2279| 48| 05 19.3
IF 18] 289| 269 03| 1.0 14.8| 8,75 860 21| 57| 492 62| 2727| 1851 0,4 20,6
28 o] 278 271| 04| 19 17.8| 8,61 835| 23| 51| 697| 48| 331,7| 2205| 02| 05 24,1
M 16| 277| 271 04| 15 16,7| 8,61 800| 21| 48| 297| 55| 3455| 2058 0,5 253
2F 32| 274 271 04| 19 18,3 | 8,34 940| 25| 13| 1423 17| 262,7| 1837 0,5 283
3S o| 278| 267 04| 15 13,0| 852 885 10| 28| 379| 41| 3180| 2485 0,6 27,6
3M 14| 279| 267 04| 1 154 828 1060 129 20| 111,6] 149] 321,6] 2382 13| 06 24,6
3F 28| 279 267 04| 19 15,7| 846 860 15| 32| 922| 366| 2567| 2456| 36| 06 26,0
1S 0 271 25| 03] 30 172 8,83 890| 2| 75| 748| 2707| 7294| 4166 13| 08 34.4
IM 1,3 28] 25| 03] 30 152 9,06 820 1| 63| 697] 343.7| 367.9| 4107 14| 08 8,3
IF 2.5 28] 25| 03] 30 17.8| 93 880| 2| 48| 87.0| 3477| 3350| 4314 12| 07 8,6
28 0 28] 26| 04| 20 18,1] 9,14 1370| 5| 61| 23.6| 418,1] 841,6| 4240| 17| 07 224
M 1,5 271 26| 04| 29 18,0] 9,11 895| 4| 49| 502| 3450| 986,7| 4255 17| 08 18,5
2F 3 275 26| 04| 29 18,0| 9,08 735| 5| 34| 625| 3545]|10205| 4358 7] 11 12,0
3S 0 28] 31| o5 29 154 9,03 830| 3| 48| 287| 4073 9533| 4373 17| 14 12,7
3M 1,7 28] 31| o5 29 133 892 830 2| 19| 727| 4492| 6951| 4520 13| 08 13,1
3F 3.3 29| 31| o5 29 18,1| 897 855| 5| 19| 349| 3951| 734,7| 4387 09| 07 19,4
Minimo 0 23] 23| o2 09 28| 7,78 495 1| o1 62| 07| 1346 70,1 02| o1 8,3
Méximo 6| 326/ 34| os| 30 739 96| 2350| 104| 14,7| 223,7| 5755|3197.8| 9621 28] 1.8 2937
Média 1,782 | 28,239 29,28 | 0,3667 | 1:674636 | 21 47695 | 8,563 | 1058,025| 23,1|5,324| 48,19| 1462 1256| 415,1] 4,5164| 0,829| 59,2837
Dpadrio 1,696 | 1,8231] 2,476 | 0,0071 | 0636051 | 1327792 0,399 |339,6461| 24,8|2,852| 39,66| 14632| 615,88| 2003 | 3,3154| 0,296| 63,2058

S — medida na superficie M — medida no meio do corpo hidrico

F - medida no fundo do corpo hidrico




Tabela 2 - Valores médios, minimos, maximos e desvios padrdes dos parimetros do reservatdrio de Jacarecica

Estacoes Prof. Tagua | T ar| Trans. | Cond. Cor pH Stotal SS OD | N-NH4 | N-NO2 | N-NO3 PIE)4 Ntotal | Ptotal | Clorof.a
m °C °C m mS/cm | Pt-Co mg/L. | mg/L | mg/L | ng/L ng/L pg/L | pg/L | mg/L | mg/L ng/L
2 0,0 29,1 30,6 | 2,00 0,37 74 190,0 2,0 325 | <2,80 | <0,14 | 58,17 | <091 0,68 18,55
2 5,0 28,5 2,00 0,37 7,3 225,0 3,0 245 | <2,80 8,86 49,76 | <091 0,41 20,11
4 0,0 28,7 314 2,30 0,37 7,5 170,0 2,0 4,10 | <2,80 | <0,14 | 59,62 | <091 0,39 23,55
4 5,0 28,3 2,30 0,41 7.4 215,0 2,0 2,70 | <2,80 | 12,24 | <0,70 | <091 1,57 19,12
5 0,0 28,9 30,0 2,0 0,39 7,7 210,0 1,0 440 <280 |<0,14 [<0,70 |<0,91 0,66 11,70
5 5,0 28,2 2,0 0,37 7,6 155,0 2,0 3,60 [<2,80 4,80 |<0,70 |<091 0,87 25,86
7 0,0 28,1 29,71 2,0 0,38 7,7 210,0 2,0 4,28 |1<2,80 3,45 174,6 | <091 0,08 6,05
7 5,0 27,8 2,0 0,39 74 230,0 3,0 2,60 [<2,80 10,89 |<0,70 |<0,91 0,26 1,76
8 0,0 26,8 29,8 0,50 7.4 295,0 15,0 | 9,34 |<2,80 <0,14 | 199,5 | <091 0,84 4,66
1 0,0 26,5 304 34 0,34 2,97 7,8 225,0 6,0 3,56 | <2,80 | 10,18 | 20,86 | <091 ] 0,64 1,18 8,72
1 5,0 29,2 0,37 24,26 8,0 215,0 5,3 0,00 | 7729 10,85 | 28,15 | <091 | 0,85 0,25 6,63
2 0,0 29,5 2741 3,0 0,35 2,78 8,2 200,0 1,0 4,30 | <2,80 9,84 11,81 | <091 ] 0,64 0,25 5,86
2 5,0 28,7 0,35 2,97 8,2 200,0 0,7 0,00 | <2,80 | 10,18 | 14,37 | <091 | 0,08 4,97
3 0,0 28,7 27,5 3,0 0,35 2,60 8,4 200,0 0,7 5,04 6,37 9,84 34,88 | 472,7 0,52 5,39
3 5,0 26,6 0,35 2,78 8,3 240,0 1,0 3,70 6,37 10,18 | 46,82 | <091 | 0,28 0,49 5,89
4 0,0 28,2 27,1 2,8 0,35 2,78 8,3 195,0 1,3 541 | <2,80 | 10,18 | 36,73 | 394,5 | 0,09 0,43 5,47
4 5,0 27,5 0,35 2,78 8,2 205,0 1,0 5,38 1,97 10,85 | 38,25 | 335,5 | 0,06 0,38 5,39
5 0,0 27,9 304 24 0,35 2,97 8,4 215,0 1,0 6,52 | <2,80 9,84 40,65 | 307,5 0,35 4,88
5 5,0 26,6 0,35 2,78 8,4 190,0 2,7 5,33 1,72 11,19 | 40,81 | 281,0 0,41 4,92
6 0,0 27,1 31,51 2,8 0,35 2,97 8,1 210,0 1,0 6,08 11,22 9,84 28,39 | 245,6 0,26 7,11
6 5,0 26,8 0,35 2,78 8,1 190,0 1,0 489 | <2,80 | 11,19 | 33,60 | 176,3 0,59 5,38
7 0,0 28,0 27,51 2,5 0,35 2,60 8,2 195,0 0,0 6,22 | 44,36 9,84 33,44 | 362,1 0,36 4,93
7 5,0 26,0 0,35 3,15 8,1 200,0 2,0 5,48 72,13 10,85 | 36,08 | 3414 0,42 7,53




138

Continuagio...

8 0,0 27,8 304 0,0 0,46 3,52 8,3 305,0 0,0 6,34 | 32,66 9,84 26,95 | 0,84 0,0402 5,47
1 0,0 29,0 26,2 3,5 0,41 3,15 7,7 150,0 0,0 148 | <2,80 | <0,14 | 6,01 |<091 0,00 0,94
1 5,0 26,8 0,39 6,30 7,6 215,0 2,7 2,67 10,6 12,21 | 26,87 | <0,91 1,53
2 0,0 29,0 240 3,0 0,37 2,78 7,7 255,0 0,0 3,26 26,8 13,56 8,27 <091 0,98
2 5,0 28,9 0,41 2,78 7,7 265,0 0,0 3,11 53,6 10,52 | 14,05 | <091 2,00
3 0,0 29,4 27,0 3,7 0,42 2,78 7,9 255,0 0,0 5,04 | 51,52 4,77 31,77 | <091 1,45
3 5,0 29,0 0,45 2,78 7,8 235,0 0,0 5,04 | 2391 6,46 50,36 | <091 0,03 2,46
4 0,0 30,0 29,0 3,0 0,40 2,60 7,9 260,0 1,0 5,33 95,0 7,47 39,30 | <091 0,02 2,18
4 5,0 25,9 0,42 23,33 7,7 265,0 4,0 0,00 123,1 1491 | 34,39 | 524 0,10 0,98
5 0,0 28,7 284 2,7 0,41 2,41 8,0 215,0 0,0 5,48 14,15 1,72 7,26 | <091 0,00 0,74
5 5,0 28,6 0,41 2,23 8,0 210,0 0,0 5,33 15,85 1,72 28,17 | <091 3,70
6 0,0 29,1 2751 2,7 0,39 2,78 8,0 235,0 0,0 6,08 <2,8 6,46 24,39 <091 0,94
6 5,0 28,9 0,39 241 8,0 240,0 0,0 5,78 14,63 7,13 30,24 | <091 0,70
7 0,0 29,3 29,0 3,0 0,39 2,23 8,0 235,0 0,0 5,19 20,8 341 25,84 | <091 0,02 1,54
7 5,0 28,9 0,41 2,60 8,0 240,0 0,0 5,63 46,4 5,44 26,80 | <091 0,02 2,00
8 0,0 26,8 270 0,0 0,55 3,90 8,0 340,0 0,0 5,93 496,6 3,75 5549 | <091 0,05 0,94
1 0,0 28,0 26,0 1,5 0,36 7,41 6,6 185,0 2,0 6,19 | 430,1 7,47 77,52 | 6924 0,70

5,0 26,6 0,32 7,23 6,3 215,0 7,0 340 | 471,0 9,16 21,82 | 696,8 4,26
2 0,0 23,0 26,5 1,4 0,39 6,49 6,6 230,0 2,0 5,57 348,3 5,78 24,32 | 742,5 0,98
2 5,0 29,6 0,31 9,45 6,3 175,0 3,7 2,94 | 368,7 11,87 8,92 | 7189 0,51
3 0,0 23,1 28,9 1,7 0,39 6,30 7,5 245,0 33 5,41 169,2 7,81 49,07 | 742,5 4,90
3 5,0 22,1 0,78 12,04 7,3 260,0 123 | 3,09 2459 10,85 | 48,34 | 7749 2,18
4 0,0 23,3 27,3 1,6 0,38 4,82 7,5 190,0 5,0 5,80 87,3 10,52 | 44,34 | 738,1 12,73
4 5,0 22,5 0,38 9,08 7,2 230,0 5,3 1,24 174,3 14,24 | 31,72 | 770,5 481
5 0,0 22,0 23,1 1,5 0,73 5,01 74 205,0 2,0 4,72 138,5 9,16 46,34 | 7572 6,52
5 5,0 21,3 0,71 7,78 7,0 250,0 8,7 0,00 194,8 | 29,79 | 2747 | 786,7 1,34
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6 0,0 21,2 241 14 0,37 4,27 6,9 235,0 2,3 4,48 61,8 8,15 43,70 | 751,3 3,24
6 5,0 21,3 0,68 5,75 6,9 230,0 7,3 2,78 87,3 30,80 | 28,67 | 746,9 3,45
7 0,0 28,0 24,6 1,6 0,73 4,45 7,3 220,0 6,0 3,79 102,7 12,88 | 26,22 | 741,0 0,74
7 5,0 27,9 0,42 11,85 7,0 255,0 8,7 0,00 1334 | 26,75 6,39 | 693,8 0,74
8 0,0 28,0 259| 0,0 0,38 4,45 7,8 285,0 4,0 7,19 384,1 8,83 24,31 | 5,26 0,8211
1 0,0 28,1 28,1 2,0 0,61 7,04 7,9 285,0 0,3 5,72 | 261,3 4,43 72,48 | <091 0,79
5,0 26,1 0,61 7,41 7,8 210,0 1,3 3,22 128,3 12,54 | 14,60 | <091 3,87
2 0,0 26,0 29,1 2,0 0,65 7,04 7,9 205,0 0,3 5,72 164,1 3,41 25,12 | <091 4,59
2 5,0 25,1 0,60 6,49 7,8 ? 2,0 3,59 506,9 4,77 15,18 | <091 4,22
3 0,0 27,0 29,1 2,0 0,69 6,49 8,0 115,0 1,7 5,64 31,1 2,74 49,56 | <091 2,68
3 5,0 25,1 0,68 6,67 7,9 145,0 0,3 3,08 77,1 3,75 54,37 <091 6,34
4 0,0 27,0 27,0 1,9 0,71 6,67 8,1 180,0 0,7 6,16 9,3 2,74 46,19 | <091 6,72
4 5,0 26,0 0,61 6,86 7,8 230,0 6,0 2,13 9,3 4,77 53,17 | <091 4,84
5 0,0 28,0 290 2,0 0,65 6,49 8,0 170,0 1,3 6,82 6,4 1,72 47,64 | <091 4,10
5 5,0 24,0 0,60 6,12 7,8 165,0 1,7 2,49 63,5 3,08 51,41 <091 4,08
6 0,0 26,1 30,1 1,8 0,63 6,49 7,1 200,0 0,7 7,04 | <2,80 5,11 45,15 8,2 5,12
6 5,0 25,1 0,60 5,75 7,9 215,0 2,0 2,57 31,1 12,21 | 44,17 | <091 3,14
7 0,0 26,0 26,0 2,0 0,64 6,30 8,0 165,0 1,7 4,69 5,6 3,75 33,21 <091 3,79
7 5,0 26,0 0,65 6,86 7,7 205,0 4,0 1,32 7,1 4,77 36,34 3,35
8 0,0 29,0 31,01 0,0 0,94 3,90 8,0 178,0 10,0 | 7,11 82,2 4,09 29,53 <091 4,83
Minimo 0 21,2 23,1 0 0,31 2,23 6,3 115 0 0 1,7 1,7 6,01 0,84 |0,06 0 0,51
Maximo 5 30,0 31,5 3,7 0,78 24,26 8,4 340 15 9,34 | 772,9 30,8 199,5 | 786,7 | 0,85 1,57 25,86
Média 2,3 27,0 280 2,1 0,5 5,5 7,7 217,3 2,6 4,3 131,8 8,9 39,2 | 494,0 |04 0,4 5,1
Dpadao 2,51 2,27 2,16 | 091 0,14 4,16 0,48 39,05 3,07 1,98 | 168,74 | 5,72 30,80 |283,35]0,33 0,37 5,29

S — medida na superficie

M — medida no meio do corpo hidrico

F - medida no fundo do corpo hidrico




Tabela 3 - Valores médios, minimos, maximos e desvios padroes dos parametros Rio Poxim
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Cor Alcali
Tagu Turbi | verda nidad | Durez N- N- N- P- Cloro
Campa a pH |Cond.| dez | deira | STD 0, e a Na K Ca Mg Cl SO4 | NH4 | NO2 | NO3 | PO4 | Ntotal | Ptotal | fila-a
nha mg/L( | mg/L(
g
mS/c CaC | CaC
°C m NTU | Pt-Co | mg/L | mg/L | O5) 0;) | mg/L | mg/L | mg/L | mg/LL | mg/LL | mg/LL | mg/LL | mg/LL | mg/LL | mg/LL | mg/LL | mg/L. | ug/L
<
1 30,0 72 0,12 | 9,20 | 7,41 | 21,0 | 7,10 | 43,00 | 46,18 | 15,00 | 1,00 | 7,39 | 1,30 | 19,02 | 2,50 | 0,00 | 0,01 | 0,54 0.001 0,72 | 0,00 | 0,06
<
) 3.0 6.9 0,11 | 9,70 | 7,41 | 27,0 | 7,41 | 59,30 | 48,09 | 16,00 | 0,57 | 590 | 1,56 | 22,60 | 6,50 | 0,01 | 0,01 | 0,77 0.001 1,04 | 0,02 | 0,05
3 27,5 7.2 0,14 | 9,33 | 10,37 | 57,0 | 7,34 | 43,61 | 7596 | 10,00 | 0,91 | 10,39 | 1,59 | 18,33 | 5,00 | 0,00 | 0,01 | 0,88 | 0,00 | 1,39 | 0,01 | 0,05
4 26,5 7.3 0,15 | 11,00 | 14,63 | 72,0 | 7,63 | 43,37 | 8525 | 11,30 | 0,95 | 11,07 | 1,59 | 19,14 | 5,00 | 0,01 | 0,01 | 0,95 | 0,01 | 0,50 | 0,01 | 0,05
5 28,0 7.3 0,16 | 14,20 | 15,56 | 75,0 | 7,78 | 43,02 | 83,61 | 11,30 | 1,16 | 12,29 | 1,65 | 18,82 | 7,00 | 0,01 | 0,01 | 0,30 | 0,01 1,33 | 0,04 | 0,05
6 300 70 0,17 | 11,57 | 11,11 | 62,0 | 6,99 | 66,44 1076’5 13,00 | 1,00 | 13,18 | 2,28 | 23,83 | 8,00 | 0,00 | 0,01 | 0,71 | 0,01 | 0,96 | 0,04 | 0,07
7 270 71 0,24 | 7,56 | 9,08 | 112,0 | 7.3 | 67,14 1058’7 19,00 | 1,00 | 13,50 | 242 | 19,81 | 4,00 | 0,01 | 0,01 | 0,63 | 0,00 | 1,14 | 0,03 | 0,05
8 26,0 7.9 0,19 | 10,20 | 11,11 | 39,0 | 7,56 | 65,65 | 58,80 | 12,31 | 1,06 | 16,36 | 1,64 | 19,25 | 10,00 | 0,01 | 0,01 | 0,43 | 0,00 | 1,26 | 0,08 | 0,06
9 27.0 7.0 0,11 | 14,20 | 14,63 | 66,0 | 7,20 | 69,29 | 65,86 | 15,40 | 0,98 | 14,76 | 2,98 | 27,96 | 15,00 | 0,01 | 0,01 [ 0,52 | 0,01 | 0,74 | 0,05 | 0,06
<
10 28.0 73 0,18 | 10,80 | 7,78 | 74,0 | 6,82 | 47,78 | 94,82 | 12,11 | 0,51 | 18,04 | 2,05 | 23,10 | 5,00 | 0,01 | 0,01 | 0,71 0.001 0,32 | 0,03 | 0,05
1 300 77 0,21 | 11,96 | 7,41 | 82,0 | 7,50 | 46,05 1037’3 17,00 | 0,89 | 13,82 | 2,66 | 23,21 | 5,00 | 0,00 | 0,01 | 0,27 | 0,00 | 0,25 | 0,06 | 0,05
12 27.0 7.2 0,14 | 11,30 | 11,30 | 35,0 | 7,30 | 67,18 | 47,00 | 11,00 | 0,79 | 15,99 | 0,57 | 18,00 | 7,50 | 0,01 | 0,01 | 0,58 | 0,01 | 0,47 | 0,05 | 0,06
<0,00 <
13 27.0 7.1 0,11 | 13,50 | 9,82 | 56,0 | 6,99 | 66,95 | 44,54 | 11,00 | 0,89 | 5,99 | 0,63 | 21,14 | 7,50 > 0,00 | 0,68 0.001 1,80 | 0,04 | 0,06
<
14 27.0 7.4 0,14 | 14,10 | 8,30 | 70,0 | 6,59 | 48,87 | 57,66 | 19,00 | 0,36 | 9,37 | 1,21 | 29,83 | 7,50 | 0,00 | 0,01 | 0,78 0.001 0,91 | 0,03 | 0,05
s | soa | 70 | 016 | 1140 [ 17.96 | 1020 | 740 | 2! 4602 | 1473 | 111 | 1305 | 130 | 282 | 560 | 000 [ 001 | 057 | 000 | 064 | 008 | 005




141

Continuacio...
16 272 53 0,09 | 11,90 | 9,10 | 40,0 | 7,30 | 77,63 | 41,31 | 11,00 | 1,00 | 12,65 | 0,52 | 14,91 | 6,00 |<0,002|<0,001| 0,31 0501 0,86 | 0,02 | 0,06
17 25.1 6.8 0,11 | 9,50 | 593 | 450 | 6,80 | 84,28 | 45,39 | 12,00 | 1,00 | 11,43 | 0,56 | 11,09 | 8,50 |<0,002|<0,001| 0,81 0501 1,74 | 0,03 | 0,07
18 26.0 7.6 0,14 | 9,40 | 834 | 66,1 | 7,84 | 52,32 | 7548 | 19,00 | 0,95 | 11,43 | 1,59 | 20,78 | 5,50 |<0,002|<0,001| 0,45 0501 1,22 | 0,03 | 0,07
19 28,0 7.6 0,17 | 11,03 | 10,19 | 76,5 | 7,84 | 41,97 | 72,31 | 19,00 | 0,95 | 13,06 | 1,59 | 20,36 | 7,50 |<0,002| 0,00 | 0,19 | 0,01 | 0,88 | 0,04 | 0,05
20 27,1 6.8 0,13 | 11,10 | 7,40 | 77,0 | 7,88 | 43,86 | 71,91 | 25,78 | 1,10 | 11,71 | 1,21 | 29,80 | 9,00 |<0,002| 0,00 | 0,08 | 0,00 | 0,68 | 0,03 | 0,05
21 29,0 75 0,13 | 7,25 | 7,60 | 71,4 | 6,89 | 37,23 | 95,37 | 24,00 | 1,00 | 13,06 | 0,96 | 25,34 | 6,50 |<0,002| 0,00 | 0,08 | 0,01 | 0,67 | 0,03 | 0,06
22 31,3 7.1 0,25 | 990 | 741 | 66,9 | 6,45 | 47,47 | 98,43 | 23,00 | 1,00 | 11,63 | 2,42 | 29,23 | 6,00 |<0,002|<0,001| 0,12 | 0,01 | 0,72 | 0,03 | 0,05
23 29,5 8,0 0,17 | 10,11 | 15,74 | 81,2 | 7,40 | 49,90 | 6599 | 17,70 | 1,21 | 11,50 | 3,80 | 18,59 | 7,20 | 0,00 | 0,00 | 0,65 | 0,01 | 1,00 | 0,04 | 0,07
24 30,2 8.7 0,11 | 12,20 | 6,12 | 53,6 | 894 | 72,64 | 46,80 | 9,61 | 0,95 | 12,65 | 2,80 | 14,80 | 4,98 |<0,002| 0,00 | 0,13 | 0,05 | 0,63 | 0,07 | 0,05
25 24.0 8.3 0,16 | 424 | 476 | 89,0 | 6,82 | 87,28 | 58,65 | 27,00 | 1,00 | 14,49 | 2,05 | 24,72 | 6,00 |<0,002|<0,001| 0,69 | 0,00 | 1,56 | 0,03 | 0,05
26 25.1 7.7 0,12 | 7,48 | 6,49 | 102,3 | 6,16 | 39,97 | 90,27 | 20,00 | 0,90 | 18,16 | 1,49 | 23,30 | 5,50 |<0,002|<0,001| 0,39 | 0,01 | 1,19 | 0,02 | 0,05
27 29.0 8.6 0,14 | 10,80 | 25,18 | 101,0 | 6,08 | 78,54 | 84,64 | 15,00 | 0,97 | 15,10 | 1,58 | 43,92 | 8,32 | 0,00 [<0,001| 0,39 | 0,03 | 0,99 | 0,07 | 0,07
28 26,1 6.4 0,12 | 10,72 | 12,00 | 98,0 | 7,50 | 53,20 | 45,39 | 16,00 | 0,98 | 13,47 | 1,22 | 26,20 | 7,50 | 0,00 | 0,01 | 0,30 | 0,05 | 1,16 | 0,10 | 0,09
29 28,2 5.7 0,12 | 10,80 | 10,93 | 75,0 | 6,90 | 70,99 | 42,84 | 17,84 | 1,00 | 12,65 | 3,25 | 19,57 | 6,50 | 0,01 [<0,001| 0,14 | 0,01 | 0,76 | 0,08 | 0,08
30 27,5 8.3 0,20 | 10,41 | 12,97 | 84,0 | 6,70 | 87,87 | 87,70 | 13,30 | 1,02 | 14,70 | 2,30 | 41,80 | 8,40 | 0,00 | 0,01 | 0,13 | 0,08 | 0,73 | 0,05 | 0,06
31 25,5 5.8 0,14 | 2,10 | 8,00 | 31,0 | 6,90 | 54,58 | 34,78 | 12,00 | 0,67 | 12,05 | 1,00 | 12,03 | 9,50 | 0,00 | 0,00 | 0,26 | 0,02 | 0,74 | 0,04 | 0,07
32 25,5 7.3 0,17 | 7,20 | 945 | 84,0 | 7,18 | 39,79 | 46,04 | 13,00 | 0,71 | 13,10 | 0,93 | 14,08 | 11,00 | 0,00 | 0,01 | 0,36 | 0,01 | 0,95 | 0,01 | 0,08
33 24,0 7.3 0,15 | 12,00 | 11,11 | 75,0 | 6,74 | 39,65 | 56,78 | 19,00 | 0,98 | 12,89 | 1,41 | 19,68 | 12,00 | 0,00 | 0,01 | 0,33 | 0,01 | 0,91 | 0,04 | 0,05
34 245 7.5 0,17 | 11,40 | 11,30 | 92,0 | 7,80 | 52,14 | 98,21 | 15,00 | 0,80 | 10,49 | 1,49 | 14,95 | 10,00 |<0,002| 0,01 | 0,31 | 0,01 | 0,93 | 0,02 | 0,05
35 23,0 7.1 0,14 | 7,10 | 10,19 | 65,0 | 6,74 | 42,80 | 40,92 | 30,00 | 1,15 | 9,73 | 1,39 | 24,28 | 12,50 | 0,00 | 0,01 | 0,90 | 0,03 | 0,88 | 0,07 | 0,09
36 22.0 6.8 0,12 | 5,80 | 9,82 | 63,0 | 852 | 50,62 | 52,94 | 16,88 | 1,00 | 798 | 1,43 | 17,01 | 19,00 | 0,00 | 0,00 | 0,44 | 0,03 | 0,69 | 0,60 | 0,09
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minima 22,0 53 0,09 | 2,10 | 4,76 | 21,0 | 6,08 | 37,23 | 34,78 | 9,61 | 0,36 | 590 | 0,52 | 2,82 | 2,50 | 0,00 | 0,00 | 0,08 | 0,00 | 0,25 | 0,00 | 0,05

maximo | 32 0 8,7 0,25 | 14,20 | 25,18 | 112,0 | 8,94 |121,12|108,75| 30,00 | 1,21 | 18,16 | 3,80 | 43,92 | 19,00 | 0,01 | 0,01 | 0,95 | 0,08 | 1,80 | 0,60 | 0,09
média | 273 7,3 0,15 | 10,07 | 10,39 | 69,1 | 7,23 | 58,43 | 67,46 | 16,23 | 0,93 | 12,36 | 1,68 | 2148 | 7,74 | 0,00 | 0,01 | 047 | 0,02 | 0,93 | 0,06 | 0,06

dpadrdo| 33 0,7 0,04 | 2,65 | 394 | 224 | 0,60 | 18,33 | 22,66 | 5,01 | 0,18 | 2,83 | 0,77 | 7,64 | 3,19 | 0,00 | 0,00 | 0,25 | 0,02 | 0,35 | 0,10 | 0,01




Tabela 4 - Conjunto de dados oligotréficos em relagdo a clorofila-a

pH oD N-NH4 |N-NO2 |N-NO3 P-PO4 Ntotal Ptotal Clorofila.a
mg/L ng/L ng/L ng/L ng/L mg/L mg/L ng/L
9,1 6,3 69,7 3437 367,9 410,7 1.4 0,8 8,3
9.3 4,8 87,0 347,7 335,0 4314 1,2 0,7 8,6
8,0 3,6 97,7 83,9 649,8 480,0 3,1 1,0 9.3
8,7 4.4 87,5 96,1 4477 4741 3.2 1,8 9,5
8,9 4,0 14,6 54,8 1142,5 483,0 32 1.4 10,4
8.9 3,0 64,6 92,0 3197.8 452,0 2,1 1,2 10,8
8,7 0,9 21,7 55,5 2203.4 506,6 45 1,2 11,0
8,6 0,1 25,1 52,1 25672 503,6 4,9 1,1 11,1
8,7 4,6 16,8 48,1 2836.,6 500,7 3.5 1,0 11,3
9,1 3.4 62,5 354,5 1020,5 435.8 1,7 1,1 12,0
8,7 0,6 19,8 46,7 1046.5 516,9 24 0,8 12,7
9,0 4.8 28,7 407,3 953,3 4373 1,7 1.4 12,7
8.8 4,6 13,2 59,6 1991,7 488,9 3,1 1,1 12,7
8,6 3.9 70,6 332,1 1611,9 447.6 3,8 1,7 12,9
8,9 1,9 72,7 4492 695,1 452,0 1,3 0,8 13,1
8.8 9,0 35,8 337.5 1352,2 3812 3,6 0,8 13,1
8,9 9.4 21,2 4.1 1201,9 505,1 3,9 0,8 13,2
8,7 2,1 17,8 48,1 1274,1 575,9 4,1 0,9 13,4
8.4 6,6 53,8 272,6 1151,9 4373 2,5 0,8 14,2
8.8 9.4 55,8 286,1 2190,0 4373 5,1 0,8 14,2
8,7 8.2 35,3 161,7 1298.9 4328 43 0,5 14,4
8.4 3,7 55,3 134,0 1314,0 418,1 3,7 1,0 14,5
8.5 5.1 46,6 361,2 16112 4299 6,6 0,8 14,7
8.8 8.8 52,2 340,9 1251,1 416,6 1,9 1,0 14,8
8,6 3,6 54,8 10,9 1372,6 4152 2,9 1,0 15,1
8,7 7.9 41,5 188,8 1976,1 421,1 5.8 1,0 15,8
8,7 4,2 26,6 100,8 899,1 593,6 4,6 0,6 16,3
8,6 1.4 57,0 167.8 826.,9 620,1 4,6 0,9 16,4
8,6 53 23,9 105,6 610,6 543 4 33 0,7 16,4
8.5 3,0 51,7 34,6 974.,6 516,9 2,9 1,0 16,6
8.5 2,2 57,5 25,1 978.,0 370,9 2,7 0,8 16,6
8,2 6,4 28,2 2722 1433,5 2854 4.8 1.4 16,6
8.4 0,9 114,3 336,2 134,6 599.,5 4.8 0,8 16,7
8,7 8,5 9,0 38,6 7260 561,1 4,6 0,8 16,8
8,7 8.2 20,5 33,2 346,6 276.,6 3,6 0,5 16,9
8.8 6,5 12,2 95 1562.,5 592,1 3,5 0,7 16,9
8.4 1,2 78,2 308,5 4952 627,5 3,5 0,8 16,9
8,3 7,0 1214 6,2 1446.4 887,7 2,7 0,9 17,1
8,3 57 168,9 6,8 1295,7 956,1 32 1,0 17,5
9,5 6,2 28,3 257,7 1721,6 170,4 9,8 0,7 18,1
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9,1 4,9 50,2 345,0 986,7 425,5 1,7 0,8 18,5
8,2 2,8 223,7 6,8 1367,8 861,0 32 1,0 18,9
8,4 5.8 88,5 6,8 1382,3 825,3 2,2 0,9 19,2
8,8 8,0 31,8 47,4 318,0 2279 4.8 0,5 19,3
9,0 1,9 34,9 395,1 734,7 438,7 0,9 0,7 19,4
8,5 4,5 94,3 5,5 1106,6 941,2 4,3 0,9 19,6
8,8 5,7 49,2 6,2 272,7 185,1 4,1 0,4 20,6
8,3 3,6 165,2 5,5 1827,8 962,1 2,9 0,9 22,2
9,1 6,1 23,6 418,1 841,6 424,0 1,7 0,7 22,4
8,4 4,1 59,3 8,2 1643,5 899,6 2,9 0,9 22,4
8,3 5,0 107,9 6,8 10794 881,8 32 0,9 23,6
8,0 5,1 69,7 4.8 331,7 220,5 0,2 0,5 24,1
8,3 2,0 111,6 14,9 321,6 238,2 1,3 0,6 24,6
8,6 4.8 29,7 5,5 345,5 205,8 4,1 0,5 25,3
8,5 3,2 92,2 36,6 256,7 245,6 3,6 0,6 26,0
8,2 39 73,9 6,2 1331,0 902,6 2,2 1,0 26,6
8,5 2,8 37,9 4,1 318,0 248,5 3,9 0,6 27,6
8,3 1,3 142,3 1,7 262,7 183,7 3,2 0,5 28,3
Tabela 5 - Conjunto de dados eutréficos em relagdo a clorofila-a
pH oD N-NH4 |N-NO2 [N-NO3 P-PO4 Ntotal Ptotal Clorof.a
mg/L pg/L pg/L pg/L pg/L mg/L mg/L pg/L
7,8 4,1 79,3 253,0 1376,8 247,1 4,0 1,5 43,1
7,8 5,3 23,6 271,2 1390,3 334,1 5,1 1,5 45,0
8,1 4,3 28,7 291,2 1072,0 233,8 4,6 1,1 47,6
9,5 0,9 58,2 480,8 1365,4 208,7 9,3 0,9 47,9
9,3 4,6 20,0 345,6 1594,8 183,7 9,6 1,0 48,5
7,9 5,2 23,1 239,8 1593,8 171,9 4,9 1,5 48,6
8,2 6,5 12,4 1664 1311,5 565,3 4,5 0,6 48,7
94 8,6 20,7 311,8 1107,7 1778 6,7 0,8 49,5
8,2 2,8 7,7 296,6 1735,2 763,1 4,3 1,6 52,0
9,2 24 17,8 507,9 1426,2 198,4 6,5 0,7 554
8,0 54 14,9 284,7 1782,6 3223 3,8 0,1 56,3
8,2 7,0 41,0 263,1 1650,3 3223 39 1,5 57,2
Tabela 6- Conjunto de dados mesotréficos em relagéo a clorofila-a
pH OD N-NH4 |N-NO2 [N-NO3 P-PO4 Ntotal Ptotal Clorof.a
mg/L pg/L pg/L pg/L pg/L mg/L mg/L pg/L
8,3 5,9 6,2 281,0 1361,0 2574 4,6 1,1 33,3
8,8 7,5 74,8 270,7 7294 416,6 1,3 0,8 34,4
8,1 6,7 16,3 167,1 1815,7 569,8 4,2 0,6 374
8,1 2,9 16,4 295,6 1403,5 462,3 5,0 1,4 37,7




Tabela 8 - Conjunto de dados hipereutréficos em relagdo a clorofila-a
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pH OD N-NH4 |[N-NO2 |N-NO3 P-PO4 Ntotal Ptotal Clorofila
mg/L pg/L pg/L pg/L pg/L mg/L mg/L png/L
8,1 6,5 9,0 138,7 1265,8 569,8 3,2 0,7 61,2
8,3 6,4 10,0 130,6 1403,3 5534 3,9 0,7 64,3
8,2 2,8 22,7 34,6 1614,5 4122 2,2 0,6 83,0
8,2 9,1 15,6 413,2 2663,8 304,6 2,5 0,3 84,8
8,1 6,6 1594 2172 1201,1 593,6 3,2 0,6 92,3
8,2 7,0 9,0 101,5 1315,5 554,9 2,7 0,7 95,9
8,6 9,1 36,1 7,1 5529 309,0 3,9 1,0 98,0
8,5 7,8 12,0 12,9 22419 353,2 1,3 0,6 109,0
9,0 9,0 29,7 6,8 351,0 319,3 2,7 1,0 109,9
8,2 5,2 35,3 16,3 1315,5 407,8 4,7 0,5 112,0
8,3 6,4 20,5 23,7 1394,6 3414 4,5 0,6 113,8
7,9 34 40,5 140,1 15379 429.9 10,1 0,7 114,9
8,5 5,5 31,9 3,8 1577,8 196,9 5,5 0,7 119,0
8,3 4,6 14,4 51,5 1842,8 356,2 10,6 0,3 123,7
8,1 4,9 22,2 96,8 1985,0 375,3 2,5 0,6 125,3
8,1 6,5 162,3 227,3 1378,5 577,3 3,4 0,6 126,4
8,7 5,0 33,9 77,1 977,7 375,3 9,5 0,9 127,6
8,8 7,7 27,1 9,5 769,2 320,8 4.4 0,7 1432
8,0 4,2 29,0 10,9 1436,3 410,7 2,9 0,5 147,7
8,2 3,6 13,2 21,0 2709,8 366,5 9,0 0,6 149,6
8,3 5,2 10,5 21,0 23204 345,9 5,5 0,3 155,7
8,3 5,2 6,8 105,6 1297,2 563,9 3,7 0,7 157,1
9,5 7,3 31,7 12,5 10144 3134 9,4 0,8 183,7
9,3 3,1 37,8 136,0 676,6 384,2 28,0 1,2 185,3
8,1 2,2 25,4 106,9 1080,6 416,6 6,1 0,6 186,2
8,4 3,9 27,5 0,7 481,7 279,5 6,6 0,4 2084
8,1 4,6 91,4 17,7 1876,6 409,3 14,2 0,6 2248
8,4 5,3 22,7 2.4 1430,4 183,7 43 1,0 225,7
8,5 4.4 24,6 1,7 1198,0 1940 4,6 0,9 229,6
8,3 6,5 28,8 1,7 693,2 196,9 3,6 0,9 2644
8,4 4,0 29,7 2,1 1105,1 2544 8,1 0,6 293,7




ANEXO B - Metodologia de construcao gréfica das interfaces

1 INTERFACES GRAFICAS
1.1 GUIDE

As interfaces foram desenvolvidas através do GUIDE (Graphical User Interface
Design Environment). O GUIDE € uma ferramenta do Matlab que permite a construgao de
interfaces (GUI) para facilitar a interagdo usudrio-programa através de elementos como
botdes, listas suspensas, caixas de texto, graficos entre outros. A linguagem de programacao
¢ a mesma utilizada em arquivos .m, no entanto, estes ficam “escondidos” dos usudrios, de
modo que o desenvolvedor € capaz de controlar que parametros podem ser modificados pelo
usudrio final. A seguir, serd mostrado um exemplo de como foi desenvolvida uma das telas

do indice.
1.2 Construcao das interfaces

O primeiro passo para a constru¢do de uma interface € iniciar o GUIDE através do
comando guide na linha de comando do Matlab. A Figura 1 mostra a tela de Quick Start para
criacdo de uma nova interface. Nesta tela, para escolher uma interface em branco, basta
selecionar a opcao Blank GUI (Default). Ao escolher essa op¢do, a tela mostrada na Figura 2

¢ aberta.

.
GUIDE Quick Start —

Create New GUI Q;Mg GUIi

GUIDE templates Preview

./ Blank GUI (Default)

4\ GUI with Uicontrols
' 4\ GUI with Axes and Menu
4\ Modal Question Dialog
BLANK
[T] Save new figure as: | C:\Users\Filipe\untitled.fig B
OK ] [ Cancel ] [ Help

-

Figura 1. Tela para criagdo de uma nova interface.



T T —

Y untitled.fig

147

T TR —

File Edit View Layout Tools

A=y |

.

Help

iR aBHS BN% D

[=[m)e)=)e|E)
< B2 ®0]

\’.‘

Current Point: [348, 408)

Position: [520, 380, 560, 420)

Figura 2. Uma interface em branco, com destaque para a barra de objetos.

Na Figura 2, os botdes em destaque constituem a barra de objetos, onde é possivel

escolher os objetos que fardo parte da interface, como botdes, graficos, caixas de texto, etc.

Para adicionar um objeto, basta seleciona-lo, clicando sobre ele, e clicando em um espago

livre na interface. A Figura 3 mostra um botdo sendo adicionado a interface.

r - — -
) untitedfig T T R

PN

File Edit View Layout Tools Help

NEd| $2B9 0 | 2EBhdb BH% >

&

.

.'....
=1l fomann] =

Figura 3. Botdo sendo adicionado a interface.

Current Point: [251, 258] Position: [116, 288, 65, 22]
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Para associar agdes aos objetos, existe um arquivo de extensdo .m que guarda os
respectivos comandos. O Matlab chama essas ac¢des de callbacks. Para acessar o callback de
um botdo, por exemplo, basta clicar com o botdo direito sobre o botdo, acessar View
Callbacks e em seguida clicar sobre Callback. A Figura 4 mostra como abrir o callback de

um botdo e a Figura 5 mostra o callback associado a esse botao.

[ untitied.fig =S~

File Edit View Layout Tools Help

DNEd| $2B9 ¢ (B4 D% >

Pl— .
|Push By*-~1
® Cut Ctrl+X
E] Copy Ctrl+C
Paste Ctrl+V
Clear
T
Duplicate Ctrl+D
Bring to Front Ctrl+F
Send to Back Ctrl+B
Object Browser
M-file Editor
P y . CreateFcn
roperty Inspector
R p va DeleteFcn
— — ButtonDownFcn
-——————
‘ | KeyPressFen

| Current Point: [155,300] | Position: [116, 288, 65, 22]

Figura 4. Passo a passo de como acessar o callback de um objeto.

7 Editor - C\Users\Filipe\Desktop\untitled.m [ESEER™>

Eile Edit Text Go Cell Tools Debug Desktop Window Help ‘!‘?‘ X

NMEM | $2R20 (&2 - Aeasi| B -80BRE BB | stk Bae ~| a -

BB -0 [+ | 211 |x %% | @,

&3 O

-

€4

&5 % —--- Outputs from this function are returned to the command line.

é6 [-] function varargout = untitled OutputFcn(hObject, eventdata, handles)

&7 [[Js varargout cell array for returning output args (see VARARGOUT):

&8 % hObject handle to figure

&9 % eventdata reserved - to be defined in a future version of MATLAB

70 % handles structure with handles and user data (see GUIDATA)

71

72 % Get default command line output from handles structure

231 = “wvarargout{1l} = handles.output;

74 —

75

76 % --- Executes on button press in pushbuttonl.

i function pushbuttonl Callback(hObject, eventdata, handles)

78 [£J% hObject handle to pushbuttonl (see GCBO) —al

79 % eventdata reserved - to be defined in a future version of MATLAB

80 “% handles structure with handles and user data (see GUIDATA) =

81

82 LY

83 7
‘untitled/pushbuttonl_CaIIback Ln 77 Col 1 OWR .:

Figura 5. Callback associado a um botao.
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Para fins de ilustracdo da metodologia de criacio de interfaces, serd mostrado como

foi criada a tela principal para treinamento de redes neurais:
1) Inicialmente foi criada uma interface em branco no GUIDE, como mostrado na Figura 2.

2) Em seguida, foram adicionados dois painéis: um para o usudrio escolher o tipo de rede

neural e outro para conter as propriedades de cada tipo de rede neural. Os painéis foram

y'l" - . .
adicionados utilizando o botdo Panel na barra de objetos. Para alterar o nome que €
exibido no painel, basta seleciond-lo e no menu View, clicar em Property Inspector. Na tela
que aparece, basta alterar a op¢ao Title para o nome desejado. A Figura 6 mostra a interface

com 0s painéis.

.
Y untitled1.fig ® - E@é

-

File Edit View Layout Tools He;p

NEd «mBo > |(2BHhE 0H% >
(=)
)

{Rede neural

Current Point: [510, 103] Position: [520, 380, 560, 420]

Figura 6. Interface de redes neurais com os painéis.
3) O préximo passo € inserir alguns botdes e botdes de radio. Isso pode ser feito utilizando

os objetos Push Button e Radio Button . Para fazer a alteracdo dos nomes que sdo
exibidos nesses objetos basta alterar a op¢do String no Property Inspector. A Figura 7

mostra a interface com os botoes.



Yl untitled1.fig

i

File Edit View Layout Tools Help

DEd s | 28%h4 6% P

‘ Carregar dados ‘ ‘ Carregar rede ’

Rede neural

{ MLP RBF *) Neuro-Fuzzy ‘
l Treinar l [ Salver rede ]

Estimar clorofila

Current Point: [472, -3] Position: [520, 289, 472, 511]

Figura 7. Interface com os botdes.

4) Por fim, para introduzir os textos, foi utilizado o objeto Static Text [E], para as caixas de

. Cy .
texto, Edit Text :] e para os menus suspensos, Pop-up Menu . Para editar o texto do
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objeto Static Text e para manter a caixa de texto em branco, basta selecionar o objeto e na

janela de Property Inspector alterar a op¢ao String. Para o menu suspenso, para inserir as

opg¢Oes, basta alterar a opc¢do String e dar quebra de linha para inserir as outras opgdes. A

Figura 8 mostra a interface com todos os objetos necessdrios para o treinamento e a

simulagdo de uma rede neural para inferéncia da clorofila.



4] untitled.fig

- g —

ey

File Edit View Layout Tools Help

DEH smB9c sBhd Q%>

‘ ~Rede Nebral

Carregar dados | Carregar rede

@ MLP ) RBF () Neuro-Fuzzy
NUmero de neurdnios:
Nimero de camadas:
8))lax .
Fun transf. intermediéria: Tansig v
Funtransf. saida: Tansig v
Alg. de treinamento:  Levn Marq. v‘
Ut
" Treinar Salvar rede
|
il 'Hovos dados
Varidveis: v
L —_ . = I — T
! » Estimar clorofila ’
' = i ‘
Clorofila: -

| Current Point: [13, 436]

Figura 8. Interface da rede neural com todos os objetos necessdrios para o treinamento e simulagdo.

| Position: [520, 224, 367, 576)
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5) Para modificar o callback do botdo para carregar os dados, por exemplo, bastou acessar o

respectivo callback e adicionar os comandos necessarios para carregar os dados a partir de

uma planilha de extensdo .xls (Figura 9).
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. - S—
File Edit Text Go Cell Tools Debug Desktop Window Help N2 X
NEHd | $MRYe| 2D - Aa | Bl -8B 0E BB | stk Base ~ a -
868 -0 |+ | F11 | x || O
520 O
521 % --- Executes on button press in pushbuttonl2. i
522 function pushbuttonl2 Callback(hObject, eventdata, handles) i
523 % hObject handle to pushbuttonl2 (see GCBO) —
524 % eventdata reserved - to be defined in a future version of MATLAB -
525 % handles structure with handles and user data (see GUIDATA) ;I
526 global dados variaveis temp E
527 =N
528 [arg pasta] = uigetfile({'*.xls','Planilha (*.xls)'},'Selecione o arquivo de dados'): E
52¢ =
530 if arg~=0 E'
531 [dados variaveis] = xlsread([pasta arq]): —
532 =
533 [i 3] = size (dados): =
534 temp = cell(l,3-1); E
535 en =
536 -
537 % —-- Executes on button press in radiobuttonS. il §|
538 function radiobuttong Callback(hObject, eventdata, handles) —1=
53¢ % hObject handle to radiobutton® (see GCBO) -
< | n |
| untitled / pushbutton12_Callba... |Ln 535 Col 4 [OVR :

Figura 9. Callback do botao para carregar novos dados.

Os callbacks dos outros objetos foram construidos de maneira semelhante a mostrada

no passo 5. Nao € possivel mostrar todos os passos para a constru¢do desta interface uma

vez que algumas estratégias foram usadas para fins de estética do programa, como

sobreposi¢do de objetos e utilizacdo da propriedade de invisibilidade, e que ndo sdo escopo

desta metodologia, uma vez que esta visa apenas os aspectos bdsicos utilizados na

constru¢do da interface e implementagdo dos comandos através de callbacks.



ANEXO C - Formatagao de dados para a ferramenta de estimagdo de nivel tréfico

1) As varidveis devem ser dispostas em colunas, enquanto as amostras (dados

experimentais), em linhas, conformo exemplificado na Figura 1.

pH | OD | N-NH4 | N-NO2 N-NO3 P-PO4 Ntotal Ptotal saida-
Clorof.a
8,30 | 6,36 | 10,01 130,59 | 1403,28 | 553,41 3,94 0,68 64,30
8,10 | 6,49 9,03 138,71 | 1265,75 569,82 3,22 0,74 61,15
8,30 | 5,20 6,84 | 105,57 | 1297,24 | 563,86 3,70 0,71 | 157,10
8,20 | 6,99 9,03 101,51 | 1315,51 554,90 2,66 0,67 95,89
8,10 | 6,55 | 159,37 | 217,16 | 1201,14 | 593,56 3,17 0,58 92,33
8,10 | 6,52 | 162,29 | 227,30 | 1378,50 | 577,35 3,39 0,59 | 126,36
8,15 | 9,06 | 15,61 | 413,21 | 2663,79 | 304,57 2,48 0,27 84,77
795|536 | 14,88 | 284,71 | 1782,65 322,27 3,85 0,10 56,30
8,10 | 462 | 91,38 17,65 | 1876,62 | 409,26 14,23 0,64 | 224,82
8,18 | 5,23 | 35,34 16,30 | 1315,46 | 407,78 4,71 0,52 | 112,02
8,19 | 2,80 | 22,67 34,56 | 1614,52 | 412,21 2,19 0,59 82,99
7,97 | 420 | 29,01 10,89 | 1436,26 | 410,73 2,91 0,50 | 147,68
8,08 | 2,16 | 25,35 106,92 | 1080,61 | 416,63 6,08 0,64 | 186,24
7,94 | 3,36 | 40,46 140,06 | 1537,86 | 429,90 10,12 0,68 | 114,95
8,31 | 6,38 | 20,48 23,74 | 1394,56 | 341,43 4,50 0,55 | 113,78
8,09 | 490 | 22,19 96,78 | 1985,00 | 375,35 2,55 0,56 | 125,30
8,45 | 7,85 | 11,95 12,92 | 224194 | 353,23 1,32 0,56 | 108,97
8,29 | 4,55 | 14,39 51,46 | 1842,81 356,18 10,63 0,34 | 123,72
8,33 | 5,18 | 10,49 21,03 | 2320,37 | 345,86 5,50 0,35 | 155,75
8,22 | 3,64 | 13,17 21,03 | 2709,80 | 366,50 9,04 0,57 | 149,64

Figura 1 — Exemplo de um arquivo de dados validos

2) A primeira linha do arquivo deve conter os nomes das varidveis e sua grafia ndo interfere

no desempenho da ferramenta.

3) A varidvel referente a saida, neste caso a concentracdo de clorofila-a, deve ser colocada
na ultima coluna. O arquivo de dados deve sempre possuir essa varidvel (a varidvel de

saida), caso contrdrio a rede neural ndo conseguird ser treinada.

4) O arquivo deve ser salvo no formato de planilha .xls. O formato .xlsx ndo é suportado

pela ferramenta.



