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Resumo

A técnica de estimacao por maxima verossimilhanca é uma das metodologias mais
utilizadas na area de Estatistica. Em determinados modelos, esta técnica produz
um estimador viesado ou assintoticamente nao-viesado. No ultimo caso, a ordem
de magnitude dos vieses desses estimadores ¢ em geral O(n~!) e seu desvio padrao
na ordem de O(n~'/2). Por esse motivo, esses vieses nio sio levados em conta em
amostras de tamanho grande. Porém, em pequenas amostras esse viés na estima-
¢ao pode ter um significado importante. Assim, o estudo sobre diminuir o viés
do estimador de maxima verossimilhanc¢a torna-se bastante relevante em diversas
areas, tais como, medicina, farmécia, biologia, entre outras, que necessitam de
precisao e ao mesmo tempo trabalham com amostras pequenas.

Durante décadas, muitos artigos foram publicados na area de correcao de viés,
utilizando diversos tipos de modelos e técnicas de estimagao. Neste trabalho, pro-
pomos uma técnica de correcao de viés baseada em uma sequéncia de translacoes
da funcao escore, de forma que a primeira translacao é exatamente a que Da-
vid Firth propos, ver [18]. Para isso, usamos inicialmente a expansao de Taylor
do estimador de maxima verossimilhanca para realizar a primeira translacao, o
zero desta funcao transladada é o estimador 6, que é o estimador proposto por
Firth. Com a expansao de Taylor deste estimador, realizamos outra translacao
na funcao escore ja transladada, encontrando o estimador #;. Sob determinadas
condicoes de regularidade, o viés deste novo estimador tem ordem de magnitude
O(n=3). Repetindo esse processo k-vezes, obtemos um estimador cujo viés tem
ordem de magnitude O(n*), para k = 1,2,.... Realizamos vérias simulacoes de
Monte Carlo em uma grande variedade de situagoes e de modelos estatisticos.
No caso uniparamétrico, comparamos o desempenho do estimador 67 com o es-
timador de méxima verossimilhanca é\, com 6, com 51 visto na equacao 2.18 e
com o estimador s proposto por Ferrari et al [17], que pode ser visto na equacgao
2.19. No caso biparamétrico, comparamos o estimador #; com os estimadores )
e 03. Os resultados das simulagoes mostram que esses estimadores, cuja proposta
¢ de corrigir viés, sao competitivos entre si, mas hd uma leve superioridade dos
estimadores 0] e 6. No caso biparamétrico é mais evidente a superioridade do
estimador 07, para n pequeno.

vi



Abstract

The technique of maximum likelihood estimation is one of the most used metho-
dologies in the field of Statistics. In certain models, this technique produces an
estimator asymptotically biased or non-biased. In the latter case, the order of
magnitude of the bias of these estimators is generally O(n~!) and their standard
deviation has order O(n’%), when n is the sample size. For this reason, these
biases are not taken into account for large sample size. However, in small samples
this bias in the estimation may have important meaning. Thus, the study of the
bias of the maximum likelihood estimator becomes very important in many fi-
elds such as medicine, pharmacy, biology, among others, requiring precision while
working with small samples.

For decades, many articles have been published in the area of bias correc-
tion, using various types of models and estimation techniques. In this thesis, we
propose a technique for bias correction based on a series of translations of the
score function, where the first translation is exactly what David Firth proposed,
see [18]. For this, we initially use the Taylor expansion of maximum likelihood
estimator to perform the first translation, the zero of the modified score function
is the estimator 6, that is the estimator proposed by Firth. With the Taylor
expansion of this estimator, we performed another translation in score function
already modified, finding the estimator #7. Under certain regularity conditions,
the bias of the new estimator has order of magnitude O(n~2). Repeating this pro-
cess k-times, we obtain an estimator whose bias has order of magnitude O(n=*),
for k = 1,2,.... We conducted several Monte Carlo simulations in a variety of
situations and statistical models. In the one-parameter case, we compare the
performance of the estimator 0] with the maximum likelihood estimator 6, with
65, with 51 seen in equation 2.18 and with the estimator 6, proposed by Ferrari
et al [17], hich can be seen in equation 2.19. In the two-parameter case, we
compare the estimator 07 with the estimators 9 and 0;. The simulation results
show that these estimators, whose proposal is to correct bias, are competitive
with each other, but there is a slight superiority of estimators 6] and 6. In the
two-parameter case it is most evident the superiority of the estimator 67, for
small n.
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Capitulo 1

INTRODUCAO

Um modelo estatistico pode ser carecterizado por um ou mais parametros, as-
sim um dos objetivos da inferéncia estatistica é estimar esses parametros. Uma
técnica de estimagao muito utilizada é estimagao por maxima verossimilhanca,
que consiste em maximizar a funcao de verossimilhanca com relacao aos seus
parametros. O estimador obtido a partir desta técnica é denominado estimador
de maxima verossimilhanga (EMV), representado neste trabalho por 9. Em mui-
tos casos esse estimador é viesado, com viés da ordem O(n!) e desvio padrao
com ordem de magnitude O(n_%). Em geral, quando a amostra tem um tamanho
grande, esse viés nao é levado em conta, porém em amostras pequenas o EMV
pode produzir estimativas com valores significativamente diferentes do verdadeiro
valor do parametro do modelo. Nesta conjutura, uma area de bastante interesse
na estatistica é a correcao de viés e que é objeto de estudo deste trabalho.

O ponto de méximo da funcao de verossimilhanca corresponde ao zero da
funcao escore, entao, uma técnica de correcao de viés foi proposta por David Firth
[18], que consiste em transladar a fun¢ao escore, de forma que 6 zero desta nova
fungao transladada é o EMV com viés corrigido. Podemos dizer que é feita uma
correcao de viés preventiva, pois, antes de estimar o parametro é feita a correcao
de viés, diferentemente de muitas técnicas em que estima-se o viés e depois o
subtrai do estimador de maxima verossimilhanca. Por exemplo, o estimador de
segunda ordem 51 e o estimador de terceira ordem proposto por Ferrari et al.

|17|, que podem ser vistos nas equagoes (2.18) e (2.19), respectivamente.
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Dada a expansao de Taylor da funcao escore em torno de 6, a proposta de
David Firth consiste basicamente em retirar o termo de primeira ordem do viés de
Cox & Snell. Inspirados nessa ideia de translacao da funcao escore e com base na
expressao (2.4), apresentada por Bartlett [2], propomos no espago uniparamétrico
uma técnica nova de estimacao, de modo que o estimador obtido tenha viés de
ordem de magnitude O(n~%), para k = 2,3.... Essa nova metodologia de estima-
¢ao, proposta nesta tese, consiste basicamente em fazer sucessivas translacoes na
funcao escore, sendo que a primeira translagao é exatamente a que David Firth
propos. A segunda translacao tem como objetivo retirar os termos de segunda
ordem do viés do estimador 6. O zero da funcao escore transladada pela segunda
vez ¢ o estimador 6}, cujo viés tem ordem de magnitude O(n~3). Repetindo este
processo de translacao k vezes, obtemos uma sequéncia de estimadores, tal que os
trés primeiros elementos sao é, 05 e 07, que tém vieses com ordem de magnitude
O(n™Y), O(n™2) e O(n™3), respectivamente; e o k-ésimo elemento da sequéncia
sendo um estimador cujo viés é da ordem O(n=F).

Generalizamos esse raciocinio para o espago biparamétrico. Dada a funcao
escore biparamétrica L'(6), utilizamos a expansao de Taylor do EMV, em torno
do ponto L’ (5) e propomos uma translacao na fungao escore. Provamos que essa
translacao é exatamente a translacao proposta por David Firth. Assim, o zero
desta funcao transladada é o estimador 6. A seguir, dada a fungao escore trans-
ladada Lo(#), fazemos a expansao de Taylor do estimador 6§, em torno do ponto
Lo(65) e propomos uma translagdo na fungao Lo, cujo zero é o estimador 6],
que tem viés com ordem de magnitude O(n~?). Repetindo esse processo k vezes,
obtemos, como no caso uniparamétrico, uma sequéncia de estimadores, cujo k-
ésimo elemento ¢ um estimador cujo viés tem ordem de magnitude O(n="), para
k=1,2,.... Nestes termos, esta técnica foi estendida para o caso multiparamé-
trico.

Com o intuito de avaliar o desempenho do estimador 67, no caso uniparamé-
trico, comparamos este estimador com os estimadores 5, 51, 05 e 52. Ja para o
caso biparamétrico, o comparamos apenas com os estimadores 0 e 6;. Para isso,

realizamos simulacoes de Monte Carlo em uma grande variedade de modelos esta-
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tisticos e em uma grande diversidade de situacoes. Em cada simulagao de Monte
Carlo, calculamos o viés estimado de cada estimador, ou seja, simulamos dez mil
réplicas de Monte Carlo e calculamos a média dos vieses desses estimadores.

Concluimos no caso uniparameétrico que, apesar desses estimadores serem com-
petitivos entre si, h4 uma leve superioridade dos estimadores 607 e 52, inclusive
h4 uma grande similaridade entre estes dois estimadores. Percebemos, que em
alguns casos, como nos modelos Poisson, binomial e geométrico, pode nao fazer
sentido a estimagcao corretiva, pois, dependendo do parametro a ser estimado, o
viés pode ser menos infinito ou até mesmo nem existir. No caso biparamétrico,
a superioridade do estimador 6] torna-se mais evidente, apesar de 0 e 07 serem
competitivos entre si.

Esta tese de doutorado esta dividida em cinco capitulos, sendo que no Capi-
tulo 2 estao os conceitos basicos abordados ao longo do texto, além de um resumo
de trabalhos publicados em correcao de viés. Neste capitulo demonstramos a ex-
pressao (2.4), proposta por Bartlett, mas nao demonstrada em seu artigo, ver [2].
Demonstramos a expressao para o viés de Cox & Snell, assim como demonstramos
as expressoes para os estimadores @\1, 05 e 52.

Em seguida, no Capitulo 3, generalizamos a expressao (2.4), apresentada por
Bartlett. Ou seja, expandimos o estimador obtido para encontrar o zero da
funcao escore transladada em parcelas com ordem de magnitude Op(n_%), até o
termo residual ser da ordem Op(n’%), para k = 2,3,.... Este resultado esta
apresentado no Teorema 3.2.1 e através dele propomos o estimador 07, cujo viés
tem ordem de magnitude O(n=2). No Teorema 3.3.1 apresentamos uma sequéncia
de estimadores uniparamétricos, cujos vises tém ordem de magnitude O(n=%),
para k = 1,2,.... Generalizamos essa sequéncia para o caso biparameétrico, que
pode ser visto no Teorema 3.4.1, e para o caso multiparamétrico, ver o Teorema
3.5.1.

Os resultados das simulacoes de Monte Carlo estao apresentados no Capitulo
4. Ja no Capitulo 5 temos as conclusoes desta tese, assim como sugestoes para
trabalhos futuros.

No Apéndice A expandimos a equacgao generalizada de Bartlett até o quinto
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termo. Nas implementacoes das simulagoes de Monte Carlo usamos expressoes
fechadas para o valor esperado de poténcias da funcao escore, estas expressoes
sao dadas no Apéndice B. A expansao de Taylor dos estimadores 0 e 05 foi
feita a partir das derivadas da funcgao inversa da escore. Estas derivadas podem
ser calculadas por meio de derivacao implicita, sem necessariamente encontrar
a expressao algébrica da funcao inversa. Assim, colocamos no Apéndice C as
derivadas da funcao inversa da funcao escore.

As simulacoes deste artigo foram realizadas usando a linguagem de progra-
magao matricial Ox, que pode ser obtida no endereco http://www.doornik.com.
Os graficos foram construidos usando o ambiente grafico e de programacao R,

disponivel gratuitamente no endereco http://www.r-project.org.



Capitulo 2

CONCEITOS BASICOS

2.1 Introducao

Em geral, 0o EMV tem viés de ordem O(n™1) e desvio padrao de ordem O(n"2).
Assim, em amostras grandes, este viés normalmente nao é considerado. Porém,
no caso de amostras pequenas, o estimador pode divergir significativamente do
verdadeiro valor do parametro. Neste contexto, o estudo sobre correcao de viés
do EMV torna-se uma area de pesquisa de bastante interesse, pois é uma técnica
voltada para diminuir o erro de estimacao.

Uma técnica de corregdo de viés foi proposta por Firth [18], que consiste
em fazer uma correcao preventiva e para isso ele sugere fazer uma translacao na
fungao escore. Inspirados na generalizagao da equagao (2.4) proposta por Bartllet
[2], usamos a expansao de Taylor da fungao inversa da fungio escore para propor
uma nova técnica de estimacao, que consiste em generalizar a ideia desenvolvida
por Firth, no sentido de desenvolver sequéncias de estimadores com vieses de
ordem de magnitude O(n~*%), para qualquer k = 3,4, ....

Com o intuito de desenvolver estes novos estimadores, realizamos neste ca-
pitulo um resumo sobre a teoria de correcao de viés, no qual damos um breve
historico dos casos estudados, definimos os principais conceitos sobre o assunto,
realizamos um estudo aprofundado em dois estimadores cujos os vieses tém or-
dens de magnitude O(n=2) e O(n~3), propostos, respectivamente, por Firth [18]

e por Ferrari et al. [17], e detalhamos uma equacao desenvolvida por Bartlett [2],
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que é base desta tese de doutorado.

Este capitulo esta dividido da seguinte forma: na Segao 2.2 resumimos bre-
vemente os casos ja estudados sobre este tema; na Secao 2.3 estudamos a teoria,
sobre estimacao por maxima verossimilhanca e ordem de magnitude; ja na Secao
2.4 demonstramos a equacao de Bartlett, equagao (2.4), sob determinadas condi-
¢oes; na Secao 2.5 discutimos os residuos de Cox & Snell; por fim, nas Secoes 2.6
e 2.7 apresentamos, respectivamente, o estimador proposto por Firth [18], base-
ado na translacao da funcgao escore, para o qual o viés é O(n’%) e o estimador
proposto por Ferrari, Botter, Cordeiro & Cribari-Neto |17, cujo viés tem ordem

de magnitude O(n™?).

2.2 Historico

Nesta secao fazemos um breve historico dos casos envolvendo correcao de viés do
EMV ja estudados.

Comegamos pelo ano de 1953, onde Bartlett [2] apresentou a equagao (2.5),
que é uma expressao para o viés de ordem O(n~') do EMV no caso uniparamé-
trico. Esta expressao é estudada na Secao 2.4, a qual demonstramos e colocamos
condicoes de regularidade para que ela tenha validade.

Entre os anos de 1953 e 1956, foram apresentados por Haldane [22|, Haldane
& Smith |23], vieses de ordem O(n™') para o caso biparamétrico. O caso geral
para a expressao do viés de segunda ordem do EMV foi apresentado em 1968
por Cox & Snell [13]. Na Sec¢ao 2.5 demonstramos com detalhes essa expressao e
assim como para a equacao de Bartlett colocamos condigoes de regularidade para
validar essa expressao. Essas condicoes de regularidade sao generalizagoes, para
o caso multiparamétrico, das condi¢oes constantes na Secao 2.4.

Em 1971, Box [4] calculou o viés de ordem O(n™!) em modelos nao-lineares
multivariados com matriz de covariancias conhecida. Em 1980, Pike et al. [39]
utilizaram modelos lineares logisticos no estudo da correcao de viés; Young &
Bakir [54] estudaram modelo de regressao log-gama generalizado; Cordeiro &

McCullagh [9] obtiveram o viés de segunda ordem para modelos lineares generali-
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zados; Ferrari et al. [17] restringiram-se ao caso de modelos na familia exponencial
uniparamétrica e obtiveram vieses de segunda e terceira ordem para o estimador
de maxima verossimilhanca. Nesse artigo, eles encontram féormulas fechadas para
os coeficientes desses vieses e de uma expansao assintética para a variancia do
EMV. Um estudo detalhado desse artigo é realizado na Segao 2.7.

Nos anos de 1997 a 2002 varias pesquisas foram desenvolvidas em corre¢oes de
viés para diferentes tipos de modelos e com diversos focos, por exemplo: modelos
de regressao nao-lineares normais multivariados, Cordeiro & Vasconcellos [10];
modelos de regressao heterocedéasticos e modelos SUR nao-lineares, Vasconcellos
& Cordeiro [46] e [47]; modelos de regressao ndo-linear com erros independentes e
distribuidos como ¢ de Student com ntimero de graus de liberdade conhecido |7];
Ferrari & Cribari-Neto [16] utilizaram expansoes de Edgeworth; modelos de re-
gressao de dados circulares com distribui¢ao von Mises foram usados por Cordeiro
& Vasconcellos [11]; Cordeiro et al. [8] usaram modelos nao-lineares de regressao
em que as observagoes tém distribuicoes independentes e simétricas; Vasconcellos
& Cordeiro 48] e Vasconcellos et al. [50] generalizam resultados de Cordeiro et
al. [7] para modelos de regressao com distribuicdo ¢ de Student multivariada com
niamero de graus de liberdade conhecido; Cordeiro & Botter [6] basearam seus
estudos em modelos lineares generalizados com superdispersao. No ano de 2002,
Cribari-Neto & Vasconcellos [14] publicaram alternativas para correcoes de viés
com dados provenientes de uma distribuicao beta e, em 2005, Vasconcellos &
Cribari-Neto [49] utilizaram modelos de regressao beta. Vasconcellos et al. [51]
aplicaram corre¢oes de viés na modelagem de dados de imagens de radar. Ainda,
em 2005, Vasconcellos & Silva [53] estudaram o caso em que os dados tém distri-
buicao t de Student com nimero de graus de liberdade desconhecido. Ospina et
al. [37] utilizaram o método de bootstrap na estimac¢ao pontual e intervalar em
um modelo de regressao beta. A distribui¢ao Birnbaum-Saunders foi utilizada
nas pesquisas sobre corre¢ao de viés por Lemonte et al. [32]. Vasconcellos &
Dourado [52] pesquisaram a corre¢ao de viés nos modelos da familia exponencial
biparamétrica. Recentemente, Barreto-Souza & Vasconcellos [1] utilizaram mo-

delos de regressao nos quais as observagoes tém distribuicao usada para modelar
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valores extremos.

2.3 Conceitos Basicos

Considere o contexto em que temos uma amostra de variaveis aleatorias de tama-
nho n, cuja representagao é X = (Xy,...,X,), com densidade de probabilidade
conjunta f(X|6), em que o parametro § € IR” caracteriza a distribuigao dentro
da familia F, a qual contém a densidade f(X|6).

Um dos objetivos da inferéncia estatistica é estimar o parametro 6 e dentre as
técnicas mais utilizadas destacamos a proposta de Fisher no comeco da década de
20, quando cursava o seu terceiro ano da graduagao, ver Fisher [19]. A ideia desta
técnica é escolher 6 para o qual a amostra X é mais provavel de ter acontecido. Em
outras palavras, escolhe-se  que maximiza a fungao de verossimilhanga f(0]X).
Observe que esta funcao é a propria densidade de probabilidade fixada no ponto
X e tendo como argumento o parametro 6. O estimador obtido a partir desta
técnica é chamado de EMV .

E bastante comum a amostra X ter suas componentes X7, . .., X,, mutuamen-

te independentes. Assim, a funcao de verossimilhanca reduz-se a expressao
F61x) = [ r61x0). (2.1)
i=1

O primeiro passo para maximizar esta fungao é deriva-la em relacao ao pa-
rametro 6. A derivada de um produto pode ser uma expressao grande, entao,
uma alternativa ¢ maximizar a func¢ao log-verossimilhanca L(6) = log[f(0|X)],
pois esta transformagao torna o produto da equagao (2.1) em soma de logaritmos,
o0 que torna muito mais simples calcular a derivada. A partir dai, definimos a

funcao escore como
OL(0)
00
que é um vetor de tamanho p. Portanto, o EMV é a solugao da equacao L'(6) = 0.

A matriz 1(0) = E[L'(6)L'"(0)], de dimensao p x p, em que L'T(6) denota o

IHOE

vetor L'(0) transposto, é chamada matriz de informacao. Esta matriz é uma im-

portante quantidade relacionada a um estimador nao viesado, pois ela determina
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o seu nivel de eficiéncia. Um estimador é dito nao viesado para um parametro
6, se seu valor esperado é gual a 6. No caso uniparamétrico, a eficiéncia de um
estimador nao viesado é\para um parametro 6 é definida com o quociente entre o
limite inferior das variancias dos estimadores nao viesados para ¢ e Var[ ] ver [3].
Assim, quando este limite coincide com a variancia, temos um estimador eficiente.
O teorema da desigualdade da informagao garante que, sob certas condicoes de
regularidade [20] e [21], a varidncia de qualquer estimador nao viesado satisfaz a
desigualdade

Varld] > 17(0).

Ou seja, a matriz de informacao nos diz o quanto um estimador 0 esta proximo
da eficiéncia. Na estimacao multiparamétrica, este teorema garante que a matriz
Var[f] — I71(0) ¢ positiva semi-definida.

No presente trabalho nao iremos abordar esses tipos de estimadores, pois va-
mos explorar estimadores viesados e sempre com intuito de diminuir o viés desses
estimadores. Mas, poderemos ver uma outra importante utilidade da matriz de
informacao, que é na contrucao de estimadores com vieses corrigidos, como, por
exemplo, o estimador corrigido de Cox & Snell, visto na na Sec¢ao 2.5.

Em geral, o célculo do viés de um estimador envolve expressoes complicadas,
porém uma ferramenta que facilita esses célculos é a funcao geradora de momentos
My (t) de uma variavel aleatoria Y, que é definida como o valor esperado da fun¢ao
exponencial calculada no ponto tY. Assim, My (t) = E [exp(tY)]. Ver James [26],
Magalhaes [34].

Se a funcao geradora de momentos existe em uma vizinhanca da origem, entao
todos os momentos da variavel aleatéria Y existem e podemos expandir esta
fungdo em uma série de poténcias, ver Lehmann & Casella [31]. Logo, podemos

expressar a funcao geradora de momentos na forma
o (&)
=1+ Z —|, (2.2)

em que p) = E[Y7] é o j-ésimo momento da varidvel Y. Com a funcio ge-

radora de momentos My (t), definimos uma outra fun¢ao importante, Ky (t) =
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log [My (t)] , cujo desenvolvimento em série de poténcias é representado por

oo

Ky (t) = Z H(j)<;_)!j. (2.3)

j=1
A fungao Ky (t) é chamada de funcao geradora de cumulantes e os coeficientes
k) sao denominados de cumulantes. A partir das equacdes definidas em (2.2) e
(2.3), podemos expressar os cumulantes ) em funcdo dos momentos ). Por
exemplo, por uma simples comparacio entre as duas séries, temos que £ = p(V)
e K@ = 1@ — (uM)? ver Lehmann & Casella [31], Cramér [15] e Stuart & Ord
|44].

Se uma varidvel aleatoria Y pertence a familia exponencial p-paramétrica,
entao, sua densidade esta na forma canoénica da familia exponencial se estar escrita

da seguinte forma:

F(Y10) = exp (Z 0T - Aw)) ,

i=1

em que 0 = (6y,...,0,)7 caracteriza a densidade de probabilidade da varidvel.

Neste caso, a funcao geradora de momentos e a funcao geradora de cumulantes

sao dadas por

exp(A(0 +t))
exp(A(9))
Ky(t) = A0 +1t)— A(6).

My (t)

Outro conceito que iremos abordar ao longo do texto é o de ordem de magni-
tude. Dadas duas sequéncias de ntmeros reais a, e b,, dizemos que a,, tem ordem
de magnitude menor que b,, se Z—: — 0, quando n — oo e usamos a notagao
a, = o(b,). No caso em que a sequéncia |{*| é menor que uma constante fixa
para todo n suficientemente grande, dizemos que a,, tem ordem de magnitude no
méximo igual a de b,, e escrevemos a,, = O(b,,).

Podemos estender o conceito de ordem de magnitude para o caso de sequéncias
de variaveis aleatorias utilizando o conceito de convergéncia em probabilidade.
Dizemos que uma sequéncia de variaveis aleatorias Y,, converge em probabilidade

para uma variavel aleatoria Y, se V € > 0, temos que lim,,_,., P(|Y, — Y| >¢€) = 0.

: : P : : P
Indicamos isto por Y;,— Y. Assim, dizemos que Y,, = o,(a,), se Z/—" — 0. Ou
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seja, se };—: converge em probabilidade para zero. Similarmente, Y,, = O,(a,), se
a sequéncia |}:—:| é limitada em probabilidade para n suficientemente grande. Em
outras palavras,V € > 0 existe uma constante M, tal que P(|ay—:| < M) >1—g¢,
para n suficientemente grande.

Um tipo particular de sequéncias de niimeros reais que utilizamos para medir
a precisao de um estimador é a sequéncia do tipo n*, para k pertencente ao
conjunto dos inteiros.

As ordens de magnitudes gozam de varias propriedades; dentre elas, destaca-

mos duas muito utilizadas ao longo do texto. Sao elas:

e P1: Se Y, = O,(n™) e Z, = 0,(n*?), entao, Y,, + Z, = O,(nFm=) em que
kmax = max {]Cl, kQ}

o P2 Se Y, = 0,(n'") ¢ Z, = Oyn*), entiio, Y, Zy = Oy(n1+5)

Uma boa abordagem sobre este tema pode ser vista em Cordeiro |5].

2.4 Equacoes de Bartlett

Seguindo artigo de Vasconcellos [45], o objetivo desta se¢ao é realizar um estudo

aprofundado da expansao truncada,

> L) L) [L"o) +10)]  (L'(0)>L"(0)
R RASa i) B
em que ¢ 0o EMV de 6. Da equagao (2.4), temos
Ef] =6 — {%E[L”’(@)] + ag_(;)} JI0)? +---. (2.5)

Estas equagoes foram apresentadas por Bartlett [2] em 1953, porém, nao de-
monstradas. Assim, é aqui provado, sob certas condi¢oes de regularidade, que
0s termos da expansao 6 — 6 definidos em (2.4) sao, respectivamente, de ordens
Op(n_%) e Op(n1). J& o restante da expressao tem ordem Op(n_%). Também é
demonstrado que o termo do viés da equagdo (2.5) tem ordem O(n™1).
Considerando apenas o caso uniparamétrico, iremos supor que a amostra X

tem suas componentes independentes e identicamente distribuidas. Portanto, a
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fungao log-verossimilhanga resume-se a L(0) = > ¢;(0), sendo que (;() =

log[f(0|X;)]. Por simplicidade do caso uniparamétrico, simplificaremos a notacao

das derivadas das func¢oes com relacao ao parametro: [ = %f(0|X), G" =
2GO1X),..., LV = ZLL(0]X), etc.

Ao longo do texto iremos considerar, a principio, as seguintes condig¢oes de
regularidade:
Condigoes de Regularidade Uniparamétricas:

e (a): L tem suas derivadas continuas.

e (b): L' tem exatamente uma raiz feL"H) <0.

e (c¢): L" ndo se anula em uma vizinhanga compacta de 8 a qual pertence 0.

e (d): E[L']=0.

e (e): E[(L))?] = E[-L"] < oo.

o (f): I'=—E[L"] — E[L"L].

o (h): (L"+1)=0,(n2).

(i): (I — K) = O,(n?), em que K = E[L"] ¢ finita.

(j): As derivadas de segunda e terceira ordens ¢” e ¢ tém esperancas unifor-

memente limitadas, no sentido de que existem constantes positivas C;, Cs,
Cs e Cy, tais que Cy < |E[¢]]| < E[|t]]] < Co, E[|0V| ] < C5 e E[|0)| ] < Cy,
paratodoi=1,...,n.

e (k): A funcdo n/L” é Oy(1) em uma vizinhanga de 6 que inclui 6.

e (1): As fungdes L”, L" e L'™) sdao O,(n) em uma vizinhanga de 6 que inclui

6.



2. CONCEITOS BASICOS 13

As condigoes (a) a (c¢) garantem a existéncia de um maximo global e que L' é
invertivel na vizinhanga de 6 citada. Ja a condigao (d) é valida, por exemplo, se

podemos derivar dentro da integral, ou seja,

%/Lfdx:/%[Lf]dx

sendo f = f(X16). Assim, temos que E[L'] = [ f'dz = 2 [ fdz = 0. Derivando

mais uma vez dentro da integral temos a condicao (e) satisfeita, pois,

/ " ?
Bl = /ae 5] ae = [ |5 -] e
= 2% / fdr — E[L”?] = —E[L"?.

A condic¢ao (f) pode ser obtida se pudermos derivar dentro da integral na
expressdo da informacdo I, pois I' = =2 [L"fdz = — [ L" fdx — [ L f'dz =
—K — E[L'L"]. As condigoes (g) a (i) serao validas se assumirmos, por exemplo,
que os ¢;’s satisfazem algum teorema central do limite. Por exemplo,

LY — BILY) —5N(0,1)
Var[L®)] "

Como Var[L®] = O(n), teremos que L*) — E[L®¥)] = Op(n%). A condigao (j) é
importante para garantir o comportamento do termo residual da expressao (2.5).
As condigoes (g) e (1) garantem que produtos da forma (L") (L")2 (L") tém or-
dens de magnitudes iguais a O (n 2 +’32+e3) e a condicdo (j) garante que os valores
esperados desses produtos tém ordens de magnitudes iguais a O(n%+62+63). Esta
condi¢ao também da sentido a condigao (k), pois teremos certeza de que a in-

formacao esperada é positiva. Entao, como veremos, o comportamento do termo

(L)1 (L2 (L)%
I¢4

residual do viés sera, o valor esperado de quocientes da forma e
5 ; F+eatez—eq P 5

terda ordem de magnitude O(n2 ). Por fim, as condigoes (k) e (1) sao fre-

quentemente satisfeitas, por exemplo, no caso em que a amostra é independente e

identicamente distribuida ou no caso da amostra pertencer a familia exponencial.
O teorema a seguir estabelece que a aproximagao vista na equagao (2.4) tem

3 ~ . ~
ordem O,(n~2). Na Se¢ao 2.4, generalizamos esta expressao de forma que, dados

k> i >0, 0 i-ésimo termo da expressio tenha ordem de magnitude O,(n"2) ¢ o

termo residual seja Op(n_%).
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Teorema 2.4.1 Dadas as condi¢ées (a) a (1), temos que

L/ LI L// I L/ 2L///
:7+{ 1) (1) }+@m*%,

6—0
2 e

em que o primeiro e sequndo termos sio de ordens O,(n"*?) e O,(n™Y), respec-

tivamente.

Este teorema pode ser demonstrado utilizando a expansao de Taylor da funcao

inversa de L'. Considere H tal que H(L'(0)) = 6. Entao,

R L (L/)2L/// (L/>3 [3([/”)2 _ L(“’)L”] .
0=9— T3~y ST +r(07), (2.6)

sendo r(6*) = %H (L'(6%)) L'(6*)* e 6* tal que |L'(6*)| < |L'(0)]. As condigdes
() a (1) garantem que o peniiltimo termo desta expansio ¢ de ordem O,(n~3/2).

A validade das condigoes (¢), (e), (h), (j) e (k) permite concluirmos que
1 L"+1 1\°
(L") - 72

. 10 (L"+IN? 5 (L'+1 1
SO mE ) e ) T

Substituindo esta igualdade na expressido (2.6) e encontrando o denominador

comum desta expressao, temos que

é\ = 0+ 1 |: - 6L/(L”)4 - 3(L/)2(L/’)2L/// _ (L/>3[3(L///)2 _ L//L(iv)]i|

6
10 (L"+1\> 5 (L'+1 1 13 L
-2 (5 w5 (5 ) - o] 07

Com um pouco de algebra temos que (L")* = I* — 4I3(L" + I) + 6I*(L" +
)2+ 0,(n3); da mesma forma (L")* = —I3 + 31%(L" 4 I) + O,(n?); de maneira
analoga (L")2 = 12 — 2I(L" + I) + O,(n), que também ¢é igual 12 + O,(n2) e
por fim L" = —I + Op(n%). Concluimos que a expressao (2.6) pode ser escrita da

seguinte forma:

. L/ L/ L// + I L/ 2L/// L/ L// + I 2
7 :9+_+{ w+h, & }+_L__L+

I I? 213 I3
3([/)2[/”([// + [) N (L/)3[3(L///)2L// o L//L(z‘v)]

574 Ve +O0,(n7%).  (2.7)

~ _1 .
O segundo termo desta expressao tem ordem O,(n~2), o terceiro e o quarto termo

tém ordem O,(n™'), j4 do quinto termo até o sétimo a ordem de magnitude é
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Op(n’%). Ou seja, esta é exatamente a expressao (2.4) apresentada por Bartlett,

acrescida do termo Op(n_%).

O viés de segunda ordem de 6 é definido como o primeiro termo da expansao

E[f — 6] = —[(2)2 (g + I’(Q)) +E[R,),

em que K = E[L(0)] e R, = O,(n"2). Apesar da ordem de R,, sob as condicoes
(a) a (1), temos que E[R,] = O(n™?).
Dada a Afirmacao 2.4.1 abaixo, temos que tanto este viés, como a ordem de

magnitude de R,,, podem ser obtidos diretamente da equagao (2.7).

Afirmacéo 2.4.1 Seja P uma funcio tal que SE[P] e E[P'] sdo O(n*), entio,
E[L'P] = O(n).

Dem.

BlL'P] = / Pz — / %[Pf]dx— / P fde

) _
= %E[P]—E[P] = O(n*)m

Trivialmente temos que as esperancas do quinto ao sétimo termo da equacao
(2.7) tém ordem de magnitude O(n~?), pois, dada a Afirmacao 2.4.1, basta no
quinto termo desta equagao definir P = (L” +1)?, no sexto termo P = L'L" (L" +
I) e por fim no sétimo termo fazer P = (L')?[3(L")? — L"L()].

Para obter o viés de segunda ordem do EMV observe que

E {(L;)[?BL”’} _ g {(L’)Z(L’”Q;BK + K)]

KE[(L)?] (L)?*(L" - K) 3
= ——— -1 F 4.
575 T 573 (Pela Afirmacao 2.4.1)
K 5
- ﬁ + O(n )
Como E[L'L"] = —I' — K, temos que o viés de segunda ordem do EMV pode ser

obtido diretamente da equacgao de Bartlett:

% L/ L/ L// I L/ 2L///
E[e—e] = E[7+ (I;r )+< 2)]3 +0(n™?)
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Em Vasconcellos [45] é possivel ver a ordem de magnitude das esperancas das

seguintes poténcias de 0 —0:

o B[(6 -6 ="'+ 0(n?),

-~

o B[(6-0)°] =0(n*?),
o E[(0— 0] =0(n?).

Também é possivel generalizar estes resultados para o caso de uma reparame-

trizagao n = g(#) do parametro 6.

2.5 Residuos de Cox & Snell

Na Secao 2.4, a equagao (2.4), proposta por Bartlett [2], nos conduzia a um viés
do EMV de ordem n~!, porém, restrito ao caso em que temos apenas modelos
uniparamétricos. O caso multiparamétrico foi tratado por Cox & Snell [13] em
seu artigo “A general definition of residuals (with discussion)”, em que os autores

definiram residuos de ordem n~!

em modelos lineares. Nesta secao, detalhamos
com precisao as féormulas para o viés do estimador de maxima verossimilhanca
com ordem de magnitude O(n™!) para o caso multiparamétrico, proposto por
Cox & Snell [13]. Este sera chamado de viés de Cox & Snell.

Seguindo a ideia desenvolvida por Vasconcellos em [45| para demonstrar essas

formulas, considere no caso uniparamétrico a expansao de Taylor da fungao escore

calculada no ponto 0 e em torno desta funcao calculada no ponto 6, ou seja,

L@ = O+ L0)F-0) + 10007, (2.8)

sendo que 0* pertence ao intervalo formado por 9 e 0. Dadas as condicoes de

regularidades vista na Secao 2.4 e supondo que 0 — 0 tem ordem de magnitude
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Op(n’%), podemos observar que

L' = (L"+1-D@-0)+0,01)
= —I(0—0)+0,(1).

Portanto,
~ I
-0 = -+ O,(n™ 1), (2.9)
N L/ 2 3
6—0)? = (12) + O,(n~2). (2.10)

Da defini¢ao de covariancia de duas variaveis aleatorias, temos que E[L” (5—
0)] = —IE[@\— 0] + COV[L”,@\— 6]. Substituindo o resultado da equacao (2.9)
na expressao da covariancia é facil observar que Cov[L"” 6 — 0) = tE[L'L"] +
Cov[L",0,(n71)]. Seja L™ a k-ésima derivada da fun¢do log-verossimilhanga e
suponha que L®) — E[L®)] = Op(n%). Entao, podemos supor que a ordem de
magnitude da covariancia entre L*) e os termos de ordem O,(n™!) da expansio

de Taylor da funcao escore L' é O(n_%), pois,

Cov[L® O,(n™Y)] = Cov[L™ —E[LW] + E[LW], 0,(n™")]
= Cov[L™ —E[L™], 0,(n™")] + Cov[E[LP], O, (n~")]
= E[LW —E[LW)O,(n")]
= O(n"2).

Dessa forma temos a seguinte igualdade:
~ ~ 1
B[L"(6—6)] = —IE[— 0]+ ;E[L'L"] + O(n™ 7). (2.11)

Com raciocinio anéalago e usando a equagao (2.10) chegamos, também, a seguinte

expressao:

E [L”’(é - 9)2} — E[L"E][@ -0

| S

[ + Cov [L”’, (@\— 9)2}
— E[L"E [(5 - 9)2] +O(n 1)

= = 4+0(n2), (2.12)
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sendo K = E[L"].

O quarto termo da expansao de Taylor da equacao (2.8) é %L(“’) (5— 0)3, que
tem ordem de magnitude Op(n_%). Assim, levando em consideracao que a funcao
escore é zero no ponto 0 e que seu valor esperado em qualquer ponto 6 também

é zero, temos que o vlaor esperado desta expansao é
~ 1 ~ 1
0= BIL"(0 - 0)] + 5E [L'"(e . 9)2] L0 ),

Entao, com um pequeno desenvolvimento algébrico e dadas as equagoes (2.11) e

(2.12), chegamos a expressao

. E['L" K 3
-K-T K 3
= T Tapton)

= —% <§ +I') +O0(n2).
Esta é exatamente a expressao do viés de segunda ordem do EMV no caso uni-
paramétrico vista na Secao 2.4.
Consideraremos agora o caso multiparamétrico, ou seja, o parametro carac-
terizador da distribui¢io tem a forma 6 = (61,...,6,)". Deste modo a fungio
escore é o vetor gradiente da funcao log-verossimilhanga. Utilizaremos neste

caso multiparamétrico a notagao introduzida em Lawley [30]. Assim, as de-

rivadas parciais da log-verossimilhanca sdo representadas por U, = 0L/d0,,
U = 0°L)30,0,, U.yy = 93L/30,0,0;,.... Os momentos sao representados por
K, assim, Kk, s = E[U.Uy], krs = E[Uys), krsg = E[U,sUy], . ... E as derivadas dos

momentos sao denotadas por /<¢7(»t3) = Okys/00;. Uma representacao muito utilizada

na literatura é k™, que significa o elemento de posi¢ao (r,s) na matriz inversa
I7', sendo I = E[L'L'T).

Para o caso multiparamétrcio definimos as seguintes matrizes, L = [0L" /00,
., 0L"00y), ..., LW = [oL*V /90, ... dL*=V/50,)].

Suponha as seguintes condicoes de regularidades para o caso multiparamé-
trico,

Condigoes de Regularidade Multiparamétricas:

e (a): As derivadas parciais de L sdo continuas.
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e (b): L tem exatamente uma raiz 0 e a matriz L" ((9\) é negativa definida.
e (¢): E[L']=0.
e (d): E[L'L'T] = E[—L"] e tem todos os elementos finitos.

o (e): I'= —E[L"] — E[L"L.

N[

o (f): L' =0,(n2).

(g): Qualquer derivada parcial menos seu valor esperado é Op(n%). Ou seja,

[ ]
Urst... — Rpst... = Op(n%)

e (h): Se uma fun¢do polinomial das derivadas parcias f(U,U,sU,s ...) tem
ordem de magnitude O,(n"), entdao, E[f(U,U,sU,s - ..)] = O(n*).

e (i): Os elementos da matriz (L”)~! sdao Oy(n~!) em uma vizinhanga de 6
que inclui 0.

e (j): Os elementos das matrizes L”, L e L") sdo O,(n) em uma vizinhanca

de 6 que inclui 0.
o (k): O EMV satisfaz as igualdades 0— 0= Op(n_%) e E [5— 9} =O0(n™1).

Estas condicoes de regularidades sao generalizacos das condi¢oes dadas na Se-
¢ao 2.4. As condigoes (a) a (d) garantem a existéncia do EMV e a invertibilidade
da funciio L. E bastante comum nos modelos estatisticos podermos passar a de-
rivada para dentro do integrando, assim, as condigbes (d) e (e) sdo na maioria das
vezes satisfeitas. A condigao (g), (i) e (j) na grande parte dos modelos também
sao satisfeitas, por exemplo, nas amostras independentes, indenticamente distri-
buidas e com momentos finitos. Ja a condi¢ao (h) é importante para garantir
que a ordem de magnitude do valor esperado dos termos da expansao de Taylor
continue a mesma, no sentido que E [O,(n*)] = O(n™"). Por fim, a condicdo (k)
garante que estamos trabalhando com estimadores pelo menos assintoticamente
nao viesado. Assim como vimos naquela secao, essas suposi¢oes sao comuns de
acontecer, ou seja, nao ha uma restricao muito forte nas classes dos modelos

estatistico que satisfazem essas condicoes.
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A demonstracao do viés de Cox & Snell para o caso p-dimensional é apenas
uma generalizagao do que foi visto no modelo uniparamétrico.

O produto de Kronecker [25] e [35], representado pelo simbolo ®, é definido
da seguinte forma, se A e B sao matrizes de dimensodes m; X n; e ms X ng,

respectivamente, entao,

CLHB e alnlB

A® B =

amllB PN amlmB

Observe que a matriz A ® B tem dimensao mimso X nino. Em particular, temos

que

(6, — 6:)(0, — 61)

(0 — 0,)(01 — 1)

(91 - 91)(519 - 9:0)

A expansao de Taylor da funcao escore calculada no EMV e em torno do ponto

0 é dada por

@ = L’+L”(§—9)+%L’” (6-6)0@-0)+r),  (213)
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sendo que 6* esta no retangulo p-dimensional definido por 6 e 9. Dadas as con-
digoes de regularidades multiparamétrica, temos que o termo 7(6*) tem ordem
Op(n_%)-

Podemos esperar dessa espansdo que L' + (L + I — I)(6 — 0) = O,(1) e,
portanto, b—0=1"'L+ O,(n™"). Assim, o t-ézimo termo deste vetor é dado

por
N p
Qt — et = Z Ht’uUu + Op(n_l).
u=1

E do produto (5— 0) (5— 0)T concluimos que
E [(@ —0,)(0, — eu)] = KM O(n"3). (2.14)

Note ainda que Cov[U.s. , Op(n™)] = Cov|Up... — Krtu.., Op(n™1)]. Em parti-
cular, temos que Cov|[U,, Op(n™1)] = O(n~2) e Cov[Ups, (6, — 6,)%] = O(n"2).

Assim, temos que

p
Cov(Up, by — 0;) = Cov |Up, Y £"Uy + Op(n™")
u=1

P
= Z K4 Cov [U, Uy + O(n™7)

u=1

p
= ) KK+ O(n7E). (2.15)
u=1

Dada a expansdo de Taylor na equagao (2.13), observamos que a r-ésima

~

coordenada do vetor gradiente L'(0) é dada por
P N 1 22 R R )
0="0U,+ ; Urs(0x = 0) + 5 t_zl ; Urta(0: = 0,)(0, — 0,) + Op(n"2).
Usando o fato de que as covariancias vista acima sao O(n_%) e usando as igual-
dades vista nas equagoes (2.14) e (2.15) temos que o valor esperado desta tltima
expressao é dado por,
P N p P o 1 22 » B

;KME [03 — 93} + ;;m Kt + 3 ;;mrmm =0(n"2).

Este resultado foi encontrado para r-ésima linha do vetor expandido na equacgao de

Taylor, entao, usando o fato que k,; = —k, 5, podemos representar esta igualdade
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usando notagao matricial,

f:l p =1 Kb ("’ilt,u + %/ﬁtu) + O(nié)

mi-o -

f:l p =1 Kb (Kt + %“ptu> + O(nf%)

Multiplicando o lado esquerdo desta igualdade pela matriz 1! é facil verificar
que a r-ésima linha deste produto é dada por

p

EJ6—6] = D m ) ) s (Fv + %H) +0(n73).  (216)

s=1 t=1 u=1

Este igualdade é extamente o viés de Cox & Snell.

2.6 Correcao de Viés Preventiva

A ideia central desta se¢do é mostrar uma técnica proposta por Firth [18|, na qual
se pode remover o termo de primeira ordem do viés de 0 em modelos parameétricos
a partir da fungao escore. Para este intuito é feita uma modificacao na funcao
escore de forma que o estimador obtido igualando a zero esta nova funcao reduza
0 Viés.

A técnica proposta por Firth [18] considera estimagdo multiparamétrica e

consiste em fazer a seguinte modificacao na funcao escore:
U:0)=U.(0)+ A.(0),

em que A, pode depender dos dados e é O,(1).
Seja 0%, tal que, U*(0*) = 0, entdo, utilizando uma forma fechada para 7 =
n'/2(6* — ) vista em McCullagh [33], baseada na expansao de Taylor de U*(6)

em torno de 6, temos que o viés de 6* é dado por
Eln 29" = n 7 " { =K (Ks g + Fopa) /2 + Q) + O(n"2), (2.17)

em que oy é a esperanca de Aj.
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Esta ideia é base do desenvolvimento da presente tese, pois, no Capitulo 3
iremos generalizar este raciocinio para encontrar o viés com ordem de magnitude
O(n7F), para qualquer & = 3,4,.... Em pricipio, esta generalizacio se dari
apenas no caso uniparamétrico, em seguida apresentamos a ideia para espacos
biparamétricos.

Um candidado natural para remover o viés de segunda ordem é escolher

ag = /fr,sK'T’S {Kztu (K's,t,u + Hs,tu) /2} '

Assim, observamos que para remover o viés de segunda ordem basta escolher A,,
tal que E[A,] = —1(0)b1(0)/n + O(n™'), sendo b; o termo de primeira ordem do
viés de Cox & Snell, visto na equagao (2.16).

No caso uniparamétrico em que a amostra tem uma distribuicao exponencial
com parametro 6, ou seja, X ~ exp(f), temos que kg, = 0 € Kypy = Kspu =
n~'E[L"”(0)]. Logo, se tomarmos

nflE[L///(Q)]
n=121(0) ’

teremos que o viés da equagao (2.17) tem ordem de magnitude O(n_%). Ou seja,
a fun¢ao escore modificada é dada por

E[L"(6)]
L*(0)=L0) — ——=+
que na verdade é apenas uma translacdo da funcdo escore L'(0). Neste caso,
podemos encontrar o estimador 0 proposto por Firth [18] igualando a zero esta

nova funcao escore L'*. Assim, temos

Este novo estimador, também, é viesado, porém tem viés com ordem de magni-
tude menor.
O grafico da Figura 2.1, que é uma adaptacao do grafico do artigo de Firth
[18], representa as fungoes escore L'(f) e sua modificagao L"™*(#), para o caso
20

particular de uma amostra de tamanho n =20 e > ;_, z; = 5. A reta tangente a

curva L'(#) no ponto f tem como coeficiente angular a derivada da funcao escore
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Figura 2.1. Fungoes escore L'(0) e escore modificada L™*(6).

15

—— Func¢éo Escore
- Fungao Escore Modificada

1.0

0.5

EMV* *

0.0

-1.0
|

3.0 3.5 4.0 4.5 5.0

Parametro

calculada neste ponto. Entao, o valor esperado deste coeficiente é o simétrico da

informacao de Fisher estimada [ (5) Assim, o triangulo retangulo formado pela
reta, que além de passar pelo ponto (6*,0), tem como coeficiente angular I(é\), e
o segmento b do eixo das abscissas delimitado pelas duas curvas tem o terceiro
lado de tamanho aproximado b, com 7 = [(5) eb= b(@\) Portanto, a ideia é que
deslocando-se a funcao escore desta forma, o ponto zero dela estara mais proximo
do verdadeiro valor do parametro, encontrando-se assim um estimador 6* cujo
viés é menor que o viés de 0.

Um caso bastante interessante observado por David Firth acontece na familia
exponencial. Se 6 é o parametro candnico da familia exponencial, entao, o esti-
mador corrigido coincide com o estimador obtido pela fungao de verossimilhanca
penalizada, que pode ser vista como a priori invariante de Jeffreys [28], [27] e [38],

. N . , . . 1
ja que a funcao a ser maximizada é proprcional a |1(6)]z.

Na familia exponencial canonica temos que k, s = 0, para todos 7, s,t, por-
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tanto, podemos considerar

a = gufior (%57) ] = 55 Goelren,

Assim, a funcao a ser maximizada é

L(0) = L(9) + %log (0]

A distribuicdo normal, com média 4 e variancia o2 desconhecidas, é um exem-
plo cléassico apresentado no artigo de David Firth. Suponha que o interesse esteja

em estimar o parametro canonico desta distribuicao, ou seja, estimar

(e L
9_<02’ 202>'

Neste caso é facil verificar que a matriz de informagao é

no? 2npuo?

1(0) =
npo? n(4po? + 201)
Como o determinante da matriz de informacao é log[2n%0°], a funcao log-veros-

similhanca a ser maximizada é

n

1
202 4

=1

1
L*(0) = —g log[2m0?] — exp {— (x; — M)Q} + 5 log [2n*0?] .

Sejam 6, = 4 e 6, = —51;. Entdo, derivando esta funcdo em relacio ao parametro
o 20 )

candnico temos o vetor gradiente
n no
U Dim1 Ti + 5y,
_n no2_ nbf 3
Us 20 T D1 T 102 + 2,
Igualando a zero este vetor e resolvendo o sistema de equagoes, chegamos ao

estimador de maxima verossimilhanga corrigido (EMVC):

o (n=3)z n-3
B S22 282 )7

sendo S = >"" (x; — Z)*. Dado que §—§ ~ X(n_1): €ntao,
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para r > 1 —n. Assim, fazendo-se r = —2, temos que E [—%ﬂ = 6,. O teorema
de Basu garante que T e S? sao independentes na distribui¢ao normal [24] e [36].

Logo,

Portanto, o estimador #* é nao viesado para o parametro 6.

Observe que esta técnica garante que o viés do estimador é pelo menos de
ordem de magnitude O(n’%), mas, nada impede que este viés tenha uma ordem
de magnitude menor ainda, como neste exemplo em que ele é nao viesado, para

n > 3.

2.7 Uma Reducao de Viés de Terceira Ordem para
a Familia Exponencial Uniparamétrica

Vimos na Secao 2.6 uma correcao de viés preventiva, em que fazemos uma trans-
lacao na funcao escore, de tal forma que ao encontrar o zero desta funcao trans-
ladada ja obtemos um estimador de maxima verossimilhanca com viés corrigido.
Nesta sec¢ao, iremos discutir um estimador de maxima verossimilhanca, cujo viés
tem ordem de magnitude O(n=3). Este estimador foi proposto por Ferrari, Botter,
Cordeiro & Cribari-Neto [17], apenas para o caso do modelo pertencer & familia
exponencial uniparamétrica, utilizando o viés de Cox & Snell estimado. Nesta
técnica, estima-se o viés e depois corrige o estimador, diferentemente da técnica
de estimacao preventiva.

Considere que a amostra x1, ..., x, pertence a familia exponencial uniparamé-
trica, entao, baseado nas expansoes do viés e da variancia do EMV até a segunda
ordem, B(f) = 2O 4 B0 4 53y e v(9) = VO 4 VO 4 5(5-3) sendo

B)=E [5— 0} , sao definidos trés estimadores:

~

0, — 0— 2.18
1 n ) ( )

5, _ 7_B0 _ B0

n n

sy
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, (2.19)

em que B3(0) = By(0) — B1(0) B1(0) — 5 B7(0)Vi(0).
Se seguissemos a intui¢do, comenteriamos um erro em afirmar que o estimador
0, tem viés de ordem de magnitude O(n~2). E demonstrado que tanto 01, como
0>, sio O(n~1) e que apenas o estimador 6, é nio viesado até ordem O(n=2).
Para estabelecer as ordens de magnitudes de 51, 52 e 52 consideramos a ex-

Bl(é)

pansao de Taylor de da funcao H(0) = 0 — em torno de 6,

@—E%@ :9—5%@+(Lf%@>@—m+%5gha—mz

Como B(f) = 0 e considerando que Bl(e) = B(A) — 2% + O(n3), temos que

n2

E[0;, — 6] =

Se fizermos a expansao de Taylor em torno de 6 da fungao H(6) =
chegamos a conclusao que

B3(60) — Ba(0)

n2

E[6, — 0] = +0(n7?).

0 — Bi(9) _ B3(0) (9)

n

Similarmente, fazendo-se a expansao da funcao H(0) = e calcu-

lando o valor esperado temos que

BG, 6 — B;(QH) B Bi(f) N (1 B Bgn(e) B Bi(&)) (Blne) N B;(Ze))
+ %(Bi;b@ _B;;(w) (v1750> +v2n<26>) O
= O(n™®).

Ou seja, apenas o viés do estimador 52 tem ordem de magnitude O(n=3).
A partir de resultados de Shenton & Bowman (1977, pp.44-47) [43] é possivel

determinar expressoes fechadas para estes vieses, a saber:

1
B1(6’) = _ﬁ (/1999 — 2R§00)> s
96
1
By(0) = iy (Kogase + 12kK00.000 + K0 0000 + SKo.00.00 + 4K0.0.000)
7

Tond (13%999%999 — 18K60,00K000 — 18%9999%? + 36%90,9(9%%)
90
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1
— 36/1999/41299)9 + 36/@%?/@%% + 18/1999/4,%)) — 8? [11/4;399
06
— 485399,%%) + 48/<;999(/-$((,99))2} ,
1
Vi(0) = -

Bi(6) = Bu0)~ BiO)BI(6) 5 BIOA().

Um caso particular ocorre quando a matriz de informacao nao depende mais

dos dados, por exemplo na familia exponencial candnica, entao temos que: kg gg..0 =

Oe né? = Kgpp. LOgo, as expressoes acima reduz-se a
L///
Bi(0) =
1( ) 2(1//)2 ’
Liv L/// 2
o) = ;o UL
2(1//)2 (L”)3
Lv 3L///Liv 3 L/// 3
BUO) = oo - oL D
2([/’)2 (L”)3 (L”)4
B (9) o (Lv + 12L//L///) N (13LivL/// + 18(L//)2L///> B 11([///)3
2 - 8([/’)3 12([//)4 8(L”)5 )
1
o) = -
Considere agora uma amostra r = (z1,...,z,), independente e identicamente

distribuida segundo uma Poisson com parametro A. Ou seja, x; ~ P()), para todo
1 =1,...,n. Suponha que estamos interessados em estimar o parametro canénico

0 =log(A). A funcao de verossimilhanga e a funcdo de log-verossimilhanca sio,

)\2?:1 Tq exp (_n/\)
flz]\) = T o |
falp) = SPODin mi) exp[-nexp(d)]

[T il ’
L) = 6 Z z; —nexp(f) — log <H xi!> :
i=1 i=1

A fungao escore L'(f) e suas derivadas sao dadas, respectivamente, por

L') = Z%—HGXP(Q),
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Portanto, a informagao de Fisher é 1(0) = nexp(0).
Sabemos que o0 EMV de 6 é obtido por igualar a zero a funcao escore, logo é

dado por,

0 = log (7).

Ja o estimador com viés corrigido preventivamente, proposto por Firth [18], é

LIII

obtido por transladar a funcao escore L'(f) com a matriz Ay, sendo Ay = —Z7.

1
g = 1 T+ —.
o og(:c—irzn)

Para encontrarmos o estimador proposto por Ferrari et al. [17], precisamos

Assim,

calcular
~ L/Il 1
B{(0) = -
1(0) 2(L")2 T’
~ Lw (L///)Q 1
Bi(@) - m2 3y —
2(L") (L") 2nx
~ L 3L"Lw  3(L")? 1
Bi’(@) = mz 3 + ma o —
2L (L T
B (@\) B Lv + 12L//L/// + 13LivL/// + 18(L”)2L/” 11(L///)3 B 5
2T 8(L")3 12(L")4 8(L") —  12n272
~ 1 1
—__ N N N 1 N N )
B0 = B0~ BOBO) ~ sHORE) = fyrms

Assim, o estimador cujo viés tem ordem de magnitude O(n=3) é
~ 1 5

92 = 9—31(9)—B2(9) = 10g(l‘)+%—m



Capitulo 3

CORRECAO DE VIES DE
ORDEM SUPERIOR

3.1 Introducao

Neste capitulo propomos uma técnica de estimacao que é uma variacao da esti-
macao por maxima verossimilhanca, baseada em sucessivas translacoes da funcao
escore. O estimador obtido a partir dessa nova técnica corrige de forma preven-
tiva o viés do EMV até a ordem de magnitude O(n="*?)), em que h = 0,1,... e
esta relacionado com o nimero de translagoes realizadas na funcao escore.

Muitas técnicas de correcao de viés consistem em estimar o viés, para depois
proceder a corre¢ao do estimador, por exemplo, [12], [17|. Diferentemente, a
técnica de estimacgao proposta nesta tese de doutorado é preventiva.

Pioneiramente, em meados dos anos 90, David Firth propos um EMVC pre-
ventivamente. Ele observou que, na pratica, a estimacao realizada para maximi-
zar a funcao verossimilhanca consiste basicamente em encontrar o zero da funcao
escore. Assim, foi proposto realizar uma translacao nessa funcao com o intuito
de que a nova funcao transladada tivesse seu zero mais proximo do verdadeiro
valor do parametro a ser estimado e, consequentemente, diminuisse o erro de esti-
macao. Em geral, esta metodologia produz um estimador nao viesado até ordem
O(n™1).

No capitulo anterior vimos que essa ideia consiste em fazer uma translagao

30
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na fungao escore, de forma a anular o viés de Cox & Snell (2.16). A técnica de
estimacao apresentada neste trabalho é uma generalizacao desta proposta; para
isso, utilizamos a funcao inversa da funcao escore. Com a equacao de Bartlett
(2.4) foi possivel mostrar na Se¢ao 2.4, utilizando a fungao inversa da fungao
escore, como se da a correcao de viés uniparamétrica preventiva proposta por
Firth. Com o intuito de expandir essa técnica, no sentido de produzir estimadores
com vieses cada vez menores, generalizamos a expressao de Bartlett. A partir
dessa expressao generalizada, que pode ser vista na equagao (3.2), propomos
uma sequéncia de translacoes na funcao escore, de tal forma que o zero da funcao
transladada h vezes ¢ um EMVC, cujo viés tem ordem de magnitude O(n~"*+2).

Utilizando a expansao de Taylor da funcao inversa da fungao escore, expan-
dimos essa metodologia para o caso de estimacgao biparamétrica, logo em seguida
para o espaco multiparamétrico. Assim, neste capitulo, é proposta uma metodo-
logia de estimacao uniparameétrica, biparamétrica e multiparamétrica, que produz
estimadores nao viesados até a ordem de magnitude desejada.

O presente capitulo esta dividido da seguinte forma: na Secao 3.2 generaliza-
mos a equacao de Bartlett, e por meio dessa generalizagao mostramos como se
comporta a fungao escore transladada; na Secao 3.3 propomos uma técnica nova
de estimacao, que é uma extensao da proposta por David Firth; esta metodologia
foi estendida para o caso biparamétrico na Secao 3.4 e para o caso multiparamé-

trcio na Segao 3.5; por fim, ofertamos as consideragoes finais na Secao 3.6.

3.2 Expressao de Bartlett Generalizada

Na Secao 2.4, vimos que se a funcao escore L’ satisfaz determinadas condigoes de
regularidade, entao, é\, zero desta funcao, pode ser expresso por meio da equagao
de Bartlett vista em (2.4), em que o termo residual tem ordem de magnitude
Op(n_%). Nesta secao iremos generalizar essa expressao de Bartlett, no sentido
de que para qualquer funcao G que satisfaca as suposicoes apresentadas nesta
secao, teremos que 6* zero da funcao G’, também, podera ser escrito como uma

. . . k41
expressao em que o termo residual tem ordem de magnitude O,(n~"z ), para
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qualquer k > 2. Para isso, dado k > 2, considere uma fun¢ao G() que satisfaz

as seguintes condigoes:

e S1 (G tem as k primeiras derivadas continuas.
e S2 G’ tem exatamente uma raiz 0* e G é negativa nesta raiz.

e S3 (" nao se anula em uma vizinhanca compacta de 6 & qual pertence 6*.

N

e S4 G’ ¢ de ordem Op(nz).

[NIE

e S5 G"+ 1 e G" — E[G"] sao de ordem O,(n2) .

e S6 IH) = % e GF = %;ch sao de ordem O,(n), para qualquer k-ésima

derivada de G ou de I, em que k > 2.
e S7 Tanto (G”)~* como I™! sdo de ordem O,(n™1).

e S8 Se uma funcio polinomial das derivadas f(G’,G”,...,G®) tem ordem
de magnitude O,(n"), entdo, tanto E [f(G',G”,...,GY)] quanto a derivada

dessa esperanca sao O(n*).

Consideraremos que a fun¢ao escore L’ satisfaz as condi¢oes de regularidade
dadas na Secao 2.4; em particular, satisfaz essas suposi¢oes também.

As suposicoes S1 a S3 garantem que G’ é invertivel em uma vizinhanga com-
pacta de 6*. Seja H tal funcao inversa, ou seja, H(G'(6)) = 6 para todo 6 per-
tencente a tal vizinhanca de 6*. Assim, podemos usar a expansao de Taylor da

fun¢ao H em torno do ponto G'(#), ou seja,

* 1 //G/2 a(k)H (_G/>k
QIG—HG—FHT—F"‘-FW 7l

+r,

sendo G' = G'(0).
O Lema 3.2.1 estabelece como se comportam as derivadas da funcao H e qual

a ordem de magnitude dessas derivadas.
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., . . ~ L, (2) .
Lema 3.2.1 A i-ésima derivada da funcao H € da forma gc/g = (G,{fgi_l, em

que Hy =1, H; = H]_|G" — (2i — 3)G""H;_1, para todo i > 1, com H] sendo a

derivada em relagao a 0. Ainda, tanto H; quanto H] tém ordem O,(n'™1).

Dem. Vamos usar indu¢ao matemdtica. Para i=1 a afirmacao vale, pois H' =

1 - OPH _ -G - s
=7. Para i =2, temos que Sa® = @0 que claramente satisfaz as hipoteses de

G// .

inducao. Suponha que a afirmacao € verdadeira para um determinado 1. Usando

a regra da cadeia, temos que

oU+D) [ o ToOWHT 1 -
—BG’(”l) = —8G’(i) el (usando a regra da cadeia)
H; 1
- % {W;_l} e (por hipotese de indugao)
Hl{(G//)%—l _ (2i _ 1)(G//)2i_2G”/HZ-

- (G//)4i71

_ G- 216,

o (G//)2i+1

Observe que o termo no numerador tem ordem Oy(n'), pois G' satisfaz a suposi¢ao

S6 e pela hipdtese de indugdo temos que H; = Op(n*™') e H = O,(n""1). m

Dado o Lema 3.2.1, podemos reescrever a expansao de Taylor da funcao H

em torno do ponto zero da seguinte forma:

. o, Hi(=G)  Hy (=G')? H, (=)
0 0= Gr o1l + (G”)3 91 + + (G//)Zkfl k!

+ 7.

: : L L. _i
Desta forma, fica facil verificar que o i-ésimo termo da série tem ordem O,(n~2),

parai=1,...,k e o ultimo termo tem ordem Op(n’%)

: . ki1
Assim, a menos dos termos de ordem menor ou igual a Oy(n~ 2 ), temos que

5 o al(_G/)(G//)%fQ + az(_G/)2(G//)2k74]{2 4+t ak(—G’)ka
V= (G//)Qk—l ) (31)
sendo a; = %, parat=1,... k.
Usando a identidade (G,/)ﬁ = Z?igl C?k’l (—%)j (GG",,*II)%_P] ,em que Cd =

| o, . , . ., .
ﬁ, temos que o produto do j-ésimo termo deste somatoério pelo i-ésimo termo
do numerador da soma dada pela equagdo (3.1) tem ordem
—6k+3+7 —2k+1—itj

Op(n~ 2 )0,(n21723) = 0,(n~ 2z ). Logo, a soma dos primeiros k — 2 + i

termos deste produto tem ordem Op(n’%). Entao, a menos dos termos de ordem
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menor ou igual a Op(n’%), 0 i-ésimo termo da equagao (3.1) pode ser escrito

da forma
ai(—G’)i(G”)Q(k%)Hl‘ 2k—1 - j Q'+ 1 U—1—j
EyET T e ) 6 1) Cor
2kl J 1" 2k—1—j
G'+1
_ (Y // 2k—1 - a4
= a(-EY(GE Y <I><G”I>
Jj=k—141
2k—1
= I% - H Z ]CQk 1 G//)(g—i—l 27) (G//+I)2k 1=
J=k—1+i

Como j > 2i — 1, temos que j+ 1 —2i > 0. Seja o par (i,7) tal que 1 <i < ke
k—14+1 <7 <2k —1. Defina

(1PCH ai(~G) H, (G + 1"

Hij = J2h—1

Considere k; = j+1—2i e aidentidade (G”)* = fio CF(G"+I)*~!(—I)". Entao,

temos que o produto de H;; pelo [-ésimo termo do somatorio desta identidade tem

—2k—1+43i—j+kq +1 . .
ordem O,(n 2 ). Desta forma, a soma dos primeiros k — 1 — ¢ termos

deste somatorio tem ordem Op(n_%). Entao,

k1

Hij(G//)(j-l—l—%) _ Hijzcllfl(G// + ]>k1—l(_])l
1=0
k1

Hy > GG+ DR (=) + Op(n~ =

l=k—1i

A equagao abaixo, a menos dos termos de ordem menor ou igual a O, (n~ "2

é a generalizacao da expressao dada por Bartlett,

]12

k 2k—
z lk: (G//+])2k 2i—1
-2 Z e S

j=k—

sendo Cyju, = (—1)i+j+lC;k_1Cf+1_2iai.

O termo da parcela correspondente aos indices ¢, j e [ tem ordem Op(n%).
A Tabela 3.1 mostra os possiveis valores para o expoente de n.

Assim, podemos expandir 6%, tal que G'(6*) = 0, em parcelas da seguinte

forma:

k
0 — 0= bi+0,(n %), (3.3)
i=1
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Tabela 3.1. Possiveis valores do expoente de n.

k—14i<j<2k—1|k—i<Il<j4+1-—2i| =2
i j 1
k=141 k—i =%
k—i<I<k-i+1
k+i k—i =k
k—i+1 =kt
k—i<l<k-i+2
k—i =k
k—i+1 k—i+1 =kt
k—i+2 =kt2

k—i<l<2k-—2i
k—i =k
bk — + 1 —k:2+1
k—i+2 =kt2
2k — 1
2%k — (20 — 2) —2
2k — (2i — 1) -1
2k — 2i -1

_i )
com b, = Oy(n72), parai=1,... k.
E facil verificar que se a funcao escore satisfaz essas suposicoes, entao, pode-

mos expandir o EMV em parcelas com essas caracteristicas. Este caso particular
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estd dado na Tabela 3.2, pois, fazendo-se k = 2 e G' = L/, entao, como H; = 1
e Hy = —L", temos que a soma dos termos da quarta coluna da Tabela 3.2 é

exatamente igual & expressao (2.4).

Tabela 3.2. Expressao de Bartlett quando k& = 2.

i j [ Equacao (3.2)
2 | 1| e
! | e
3
L/
2 T
(L/)2LIII
2 | 3 | 0 (LeL”

A ideia é fazer sucessivas translacoes na funcao escore de forma que a -
ésima parcela da equacdo (3.3) seja particionada em sub-parcelas com ordem
de magnitude menor que Op(n’%). Assim, dada uma funcao G que satisfaz as
suposicoes S1 a S8, permitiremos fazer uma translacao nela de forma que essas
suposicoes continuem a valer na funcao transladada. Dessa forma acrescentamos

a seguinte suposi¢ao:

e S9 Sejam G’ uma fungao que satisfaz as suposi¢oes S1 a S8 e 6* zero
desta fungao. Considere a expansao de 0* como na equagao (3.3) e defina

EO(h+1) como os elementos dessa expansao cuja soma tem valor esperado
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com ordem de magnitude O(n~"*1)). Entdo, a funcio G, = G’ + A, em
que A, = —IE[FEO(h + 1)], satisfaz as suposi¢oes S1 a S8. Além disso,

tanto Aj, como todas suas derivadas sao de ordem O(n™"), com h > 0.
O Lema 3.2.2 estabelece como se comporta a funcao inversa de G’ transladada.

Lema 3.2.2 Sejam G}, Ap como em S9, H; como no Lema 3.2.1 e Hh a fun¢ao
inversa de G, entao, a i-ésima derivada da fun¢ao Hh é da forma

O'Hh  Hy

oG, = GuET’
em que Hh; = H; + Rin(An), com Rip =0, Rop = —A} e para todo i > 2 temos

que:
i) Rin(An) = Hi_ A}, — (20 = 3)Hi1 A} + R/(ifl)h(Ah)(G” + A+
—(Qi — 3)R(i_1)h(Ah)(Gm + AZ)
’LZ) R(ifl)h(Ah) = Op(ni_z_h).

iii) Ri;_1y,(An) = Op(n'=71).

Dem. Vamos usar o principio da inducao matemdtica nesta demonstracao. Do
Lema 3.2.1 temos que Hhy =1 e Hhy = —(G" + A}). Como por hipdtese A} e
A} sdo Oy(n~"), temos que a hipdtese de inducgio € satisfeita parai=1ei= 2.
Suponha as hipdteses de inducao vdlidas para um certo 1 > 2. Pelo Lema 3.2.1

temos que

(H! + Ry (An) (G + Ay) — (20 — 1)(H; + Ran(An))(G” + A7)
= Hj(G"+A4,) - (20 - H(G" + A})

+ Rip(An)(G" + Ap) = (20 = DRin(An)(G™ + A7)

= H{G” — (26— 1)H7;Gm +HZ{A;”L — (20 — 1)HiAZ

g

H;iq

+ RUAN(G" + AL) — (20 — 1)Ron(A)(G" + A

= Hip1 4+ Rirn(An).
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Observe que temos uma soma de quatro parcelas, sendo cada uma O,(ni=*=").
Logo, R(Ap)in = Op(ni='""). A derivada de R11)n(Ar) € a soma de derivadas
de ordem O,(n'~*=") por hipdtese, logo Riiinn(An), também, é Op(n'=17"). m

Com o lema anterior podemos provar o importante Teorema 3.2.1, que nao
s6 afirma que é possivel particionar a i-ésima parcela da equagao (3.3) em sub-

parcelas de ordem de magnitude menor, como mostra a forma dessas sub-parcelas.

Teorema 3.2.1 Considere as fungoes G', G}, e Ap, tal como no Lema 3.2.2 e

seja 0% tal que G (6%) = 0. Entao,

+ Bijir|

Cijlk(G/>iHi(G/I + I)*—2i71
J2k—1-1

—2k+titl—1—2h . . B
em que By, tem ordem Op(n 2 ) e Ciju, € definido como na equagdo

Dem. Observe que
(G Hu (G + T2
— (G,+Ah)z<H+Rm(Ah))(GH+A, +I)2k—2i—l

= Zcz (G A [Hi + Rin(An)] Zc& (G" + 1) (A,

i1=1 k1=0

sendo k = 2k — 21 — [. Decompondo este produto de somas em cinco parcelas,

temos:

Pl — (G/)z '(G”—{—I)H

P2 = HZC” (G" + 1)1 (4",
K1=1
P3 = Rin(Ap) ch G" + 1)1 (4",
k1=0
P4 = Zcz (@)~ “A“- it ZC” (G + I)"" (Ap)™,
Lii=1 J rk1=0
P5 = Zcz (G~ “A“— Rin(An) ZC“ (G" + 1)~ "1 (A"
Lii=1 J rk1=0
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Desta forma, cada parcela dividida por I?*71=! tem as sequintes ordens:

—2k4i+l

Pl = Op(n— 2 ), P2 = Oyn

—2k+i4l—-1—-2h —2k+i41—-4—2h
2 2

), P3 = O,(n

—2ktitl—3—4h
2 )

),

—2k+4i41-1—-2h

P4 = Opy(n ), P5 = O,(n

Entao, defina

P2+ P3+ P4+ P5
Biji(An) = Ciju Tl ;

(n 72k+i+2l7172h )

que tem ordem O, ..

. . C’L G/ TH- G”-}—I 2k—27i—1 —2k+1+1
Assim, para cada ijlk, temos que stk )12115—1—1 ) = Op(n—2 ). Isto

quer dizer que se 0* e 05 sdo tais que G'(0*) = 0 e G}, (6;) = 0, entdo, podemos

escrever
i k+1
=0 = > W +0,(n ), (3.4)
i=1

em que b = b; + B, b; é dado pela equacio (3.3) e Bl = Op(n’w). Ou
seja, cada B! tem a ordem de b; com o expoente diminuido de % Em outras
palavras, ao fazermos a translacdo G}, = G’ + Aj, conseguimos ainda expandir
gy — 0 usando a equagao (3.3) com G}, de forma que essa expansao é a mesma
se usassemos G', porém, cada parcela fica acrescida de um termo com ordem de
magnitude menor.

Considere o modelo de Poisson apresentado na Se¢ao 2.7. Defina Ljj = L' + 1.

Entao, Lj = L" e L" + I = 0. Pela equacao (3.3) temos que

. LI L/ (L//+]) (L/ )ZL/// 3
0, = 0+7°+ D ]02 ;]30 +O0,(n"2)
L/ 1 (L/)2L/// (4L/+1)L/// 3
SO T gt s T e O,

De fato, como h = 0, temos que BY = 5. e B) = % sdo Op(n) e O,(n"2),

respectivamente. Continuando a sequéncia podemos definir L} = Lj+ gll, assim,
Lgk) = LW 4+ (—1)k1L para k = 2,3,.... Logo, expandindo a equagio (3.4)

temos

0f = O0+0by+ B+ Bl +by+ BY 4 by + BY + by + Op(n"3),
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sendo

os quais tém ordem de magnitude O,(n?). Para encontrarmos esses termos, além
de desprezar os elementos com ordem de magnitude menor que Op(n_g), usamos
a expressao de bz, apresentada no Apéndice A.

A escolha do termo ﬁ nao foi aleatoria, o propoésito da sua escolha é que no
modelo de Poisson, no qual desejamos estimar o parametro candnico, veremos na
secao seguinte que 67 zero da funcao L' + % + ﬁ tem viés de ordem O(n=3).

O que queremos ilustrar aqui é que podemos fazer sucessivas translagoes na
fungao escore, de modo que cada parcela da expansao da equagdo (3.3) seja
particioanada em varias subparcelas B, com ordem de magnitude menor. Este
fato é de muita relevancia para o desenvolvimento do algoritmo proposto na

secao seguinte, na qual generalizamos, no caso unidimensional, a ideia proposta

por Firth [18].

3.3 Estimador de Maxima Verossimilhanca com

Viés de Ordem Reduzida

O Teorema 3.2.1 ¢ uma poderosa ferramenta para expandir o EMV em parcelas
tendo um certo controle sobre a ordem de magnitude de cada parcela. Usando
este teorema, generalizamos a ideia desenvolvida por Firth [18]. Propomos uma
técnica nova de estimagao que produz um estimador com viés de ordem de mag-
nitude O(n="), para qualquer k = 2,3, .... A ideia é basicamente fazer sucessivas
translagoes na funcao escore, sendo que a primeira translacao é exatamente a
sugerida por David Firth.

Considere a expansao do EMV f como na equagao (3.2). Seja Ay definido

como na Sec¢ao 2.6, ou seja,

AO - —IE[Z)Q]
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L/(LII + ]) + (L/)QL///

= —IE
I? 213

O Teorema 3.2.1 afirma que 6, tal que Ly(05) = 0, com Ly = L' — IE[by], pode

ser escrito como

05— 60 = b)+03+05 4+ 0p(n?)

= )+ +b3+ B+ 0,(n?)
Ly | Lh(IE+1)  (ThPLY ”
- T+ 12 + 213 +b3+0p(n )
L'+ Ay (I'+A))(L"+ Ay +1) (L' + Ag)*>(L" + A)) s
- I * 2 + 273 +b3+0p(n )
L'+Ay L(L'+1)+ LA+ Ay(L" + Ay + 1)
= —F+ e +
(L)LY + (L2 A + 2A0L'L" + 2L/ AgAf + ARL" + ABAY ) o
o3 3T
L' —IE[b] L'(L"+1) (L))L" LAY+ Ao(L" + Ay + 1)
pu— b
7 + 2 + 273 +03 + 2 +
b
(L')?Af + 240 L'L" + 21/ Ao Af + ABL" + ARAY
213

+

Op(n=2).

Observe que pela Afirmacao 2.4.1, o valor esperado de b3 é

LI(L// _|_ 1)2 3(L/)2L///(L// + ]) (LI>3 3(_[/};/)2 - L”L;Lw)
- -

Elbs] = E
[bs] I3 274 615

= O(n?).

Como S8 vale, E[L'] =0 e E[(L')?] = —E[L"] = I, temos que

Ly, Iy(Eg+1) | (L)LY

* —2
E;—0] = E 7 e Y +b3| +0(n™)
A A/ ]A// + 2A E L/L/// + A2E L/// ‘|‘ A2A// B
_ 320+ 0 + 240K 2}]3 oE[L"] oA L o2
= O(n™?).

Observe que E[L'L"] = O(n™"'), pois E[L'L"”] = E[L/(L" — K) + L'K], sendo
K = E[L"]. Assim, 6* tal que L'(6*) — I(6*)E[b2|0*] = 0 tem viés de ordem
O(n™?).

A partir desse viés, definimos a seguinte quantidade,

Aody | TAG -+ 240B[L'L"] + AE(L"]
g 213 '

Reo = (35)
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De fato, existem na literatura diversos estimadores cujo viés tem ordem de
magnitude O(n~?), tais como [12], [17], [40], |41], entre outros. Porém, este
estimador ¢ tem caracteristicas muito atrativas, ja que ele nao restringe muito
as classes de distribuicoes que podem ser usadas nessa técnica; precisamos apenas
encontrar um zero de uma func¢ao, o que demanda baixo custo computacional; e
principalmente, a técnica inspira e da ferramentas para encontrarmos estimadores
com ordem de magnitudes menores que O,(n?).

Faremos agora uma nova translagdo na fungao escore transladada L{ com a
fungio A;, que além de ser O,(n™!), tem a caracteristica de anular o termo de
ordem O(n~?) do viés do estimador 6 usado na primeira translagio de L'.

Seja 07 zero da fungao L) = L + Ay, com A; = —I{Rey + E[bI + b] + bs]},
b9, b3, bs como na equagao (3.4) e Rey dado por (3.5). Como vimos, Reg, b3,
by e by sao de ordem O,(n~?), entdo, de fato h = 1, ou seja, 4; = O(n~ ). O
Teorema 3.2.1 e a equagdo (3.4) garantem que os termos Bi, Bi, BY e B tém

ordens menores ou iguais & O,(n~3). Assim, podemos escrever

07 —0 = by +by+by+by+by+O,(n?
= by +by+ b3+ By + b+ By + b2+ Bi + 0,(n?)

= by + by + b3+ b + b5+ O,(n~?)
Ly Ly(Zf+1) (L)LY

= Tt~ t R + b9+ b + bs + Op(n~?)
_ Lot A) (Lot A)Lo+ A4 +T) (Lo + A)*(Lg + AY)
B I I? 213

+ b9+ b + b5+ O,(n7?).

Ou seja,
g - Lo, L) L)Ly A
! I JE 2I3 Ji
LhAY 4+ AL+ Ay + 1)
[2
(L) AY + 2A Ly LY + 2Ly A1 A + AILY + A3 AY
213

+ b+ b+ bs + O,(n?).

LObserve que neste caso, A nio é uma variavel aleatéria.
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Assim, o valor esperado da expressao acima é dado por

'L/ L/ (L” + I) (L/ )QL///
E 6* o 9 — E _0 0 0 0 0
01 =] W + 12 213
'Reo—Azg;glOl
L E [—I{Re+E [?g + 8% + b5]}} N
) ALE[LY] + Ay (BILY + AL+ 1) )
12
N AVE[LY] + 2A.E[Ly LY + 2A, AYE[Ly] + AJE[LY] + A2 AY N

213
+ E[B)+0)+bs5] +0(n?).

Como E[(L}y)?] = I+ A2, E[L]] = Ay—IT e E[L{ L] = E[L'(L""— K)|+ Ao Aj+ Ao K,
temos que 07, que é zero da fungao L' — I{E[Reg + b3 + b3 + b5}, tem viés dado

por

A Ay + Au(Ay+ A A4 — 1)
2 HYE
2ABIL/(L" — K)] + Aoy + AK) + 240 AiA{ |
27°
AZE[LY] + A2AY + A2(K + Al) + AZAY
27° i

E[07 —0] =

O(n™?%)
= O(n™?).

Lembrando que tanto Ay, como suas derivadas sao O,(n~"), entdo, o viés de 0}
tem ordem menor ou igual a O(n™?), como pode ser verificado na equacdo acima.

Pelas suposicoes S4 e S8, temos que E [(L')Qk]

= O(n*), mas quando este
expoente nao é par, podemos melhorar a ordem de magnitude de poténcias da

fungao escore, como podemos observar na afirmagao seguinte.

Afirmagao 3.3.1 Seja uma fungao H = O,(n') tal que sua derivada H' também
€ O,(n'), entio E [(L')**H] = O(n**).

Dem. Novamente a prova se dd por inducdao matemdtica. Quando k = 0,
a igualdade € vdlida devido a Afirmacao 2.4.1. Basta no referido lema fazer
P = H. Se k = 1, tomemos P = (L')*H na Afirmacgao 2.4.1, pelas suposi-
¢oes S4 e S8 temos 8E6[6P] = O(n!™). E de sorte E[P'] também ¢ O(n'™!), basta

aplicar novamente a Afirmacao 2.4.1 em P'. Portanto, novamente pela mesma
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afirmacao temos E[(L')*H] = O(n'*1). Suponha por hipdtese de inducio que
E[(L)*TH] = O(n**), para k inteiro positivo. Para sabermos a ordem de
magnitude de E [(L')QH:}H] , recorremos novamente o Afirmacao 2.4.1. Assim,
defina P = (L')**™2H. Logo, P = O,(n*"'*!), consequentemente seu valor es-
perado também tem a mesma ordem de magnitude devido a4 suposicao S8. A
quantidade P' = (L')**T1L"H tem seu valor esperado com ordem de magnitude
O, (n* 1) por hipdtese de indugdo. Portanto, devido a Afirmagdao 2.4.1, temos
E [(I))*+3H] = O(n*1+1). w

Observe que nao & necessario utilizar todos os termos de b3

, by e bs, basta con-
siderar apenas os termos que tém ordem de magnitude de seus valores esperados
maior que O(n~3). Por exemplo, no caso particular em que L” nao depende dos

dados, como L” + I = 0, temos que
L'(L"+1)* N 10(L)*(=L")(L" + 1)? N 15(L)3H3(L} + 1)*

Elb:] = E
b5 . & 1
W) 1) | (P ~
+ 2478 12079 (Pela Afirmagao 3.3.1)

em que Hs, H, e H; sao dados pelo Lema 3.2.1, neste caso nao dependendo dos
dados, e Hs = O(n?).
Neste caso particular ainda ha uma simplicacao na expressao da funcao escore

transladada L}, que é

L/// LY 5L///Liv (L///)S
Ay = —, A = — )
0 2 T 3R T Tep T

Por exemplo, no modelo de Poisson descrito na Secao 3.2, em que desejamos
estimar o parametro candnico, temos que o valor de A; pode ser escrito da seguinte

forma:

1 5 18 1
A = 0+8_]+0_6_I+E YA

Assim, temos que o estimador 67, obtido ao encontrar o zero da fungao escore

transladada

1 1

/ —
L'o) = ;xz — nexp(f) + 5> T o
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é nao viesado até a ordem O(n™?).

Neste modelo, temos espressoes fechadas para os cincos estimadores:

~ B o~ B 1 . B 1
) = tog(0), By = log@) + o 05 = log (a4 5 ).

1
2

3+ ((6nz + 3)* +6)
12n ’

~ 1 5
6 = log(z)+— — .
2 og () + 2nT  n2x?

Observe, contudo, que

E[@] = Ellog (z)] = E[log (M)]

n

_ B [i exp(—n\)(nA)*log(k) B log(n)]

k!
k=0

= —ooexp(—nA) + Z exp(—n/\)g!m)\)k log(k) _ log(n).

Ou seja, a probabilidade de ¥ ser zero é positiva e como o somatorio acima con-
verge, temos que o viés do estimador 0 ¢ menos infinito. No caso dos estimadores
/9\1 e 52, o viés nao é definido. Portanto, neste caso, a técnica de estimacao pre-
ventiva é uma excelente ferramenta para se produzir estimadores com vieses de
ordem de magnitude pequena.

Um outro exemplo interessante ¢ o modelo gaussiano com meédia zero e va-
riancia desconhecida. Entdo, seja uma amostra x = (x1,...,x,) independente
e identicamente distribuida segundo uma gaussiana de média zero e variancia
0? desconhecida. Ou seja, x; ~ N(0,0?), para todo ¢ = 1,...,n. Suponha que

estamos interessados em estimar d = 1/(20%). A funcao escore é dada por

n n
L'(d) = ﬁ—Zx?.
=1
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Portanto, a informacao de Fisher é

Logo, temos que
1
Ay = —, Ay = 0.
0 e

Assim, temos que o estimador dj coincide com o estimador dfj proposto por
Firth, que é obtido por encontrar o zero da funcao escore transladada L'+ Ag e

¢ dado por
n—2
= ——n 5> n
2>, 7

Observe que d ¢ ndo viesado? para d, pois, Y ., 2?2 /02 ~ X%n)' Logo,

dy > 2.

)

|(24)] - =

1 I (n=2
- {m} B % (Fazendo-se r = —2),

(Desde que n > —r),

NS |~~~

Ou seja,
n—2
El———]| = d
{22?—1@2}

Com o teorema seguinte generalizaremos esse raciocinio para encontrarmos
um estimador 6 cujo viés tenha ordem de magnitude O(n~*+2)) para qualquer

k=0,1,2,....

Teorema 3.3.1 Seja uma amostra X = (Xy,...,X,) independente e identica-
mente distribuida tal que a funcao escore satisfaz as suposigcoes S1 a S9. Consi-
dere a expansao do EMV dada na equagao (3.3) até k = 3 e defina EO(1) como
0s elementos dessa expansdo cuja soma tem seu valor esperado O(n~'). Entao,
05 que € zero da funcao L'+ Ay, com Ag = —IE[EO(1)], € nao viesado até ordem
O(n=2). Da mesma forma, considere a expansio de 0F como na equagio (5.4)

até k = 5 e defina EO(2) como os elementos dessa expansao cuja soma tem

2Na verdade, dj é o estimador uniformemente nio viesado de minima variancia para d.
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seu valor esperado O(n~2). Entdo, 0} que é zero da fungio L' + Ag + Ay, com
A, = —IE[EO(2)], ¢ nao viesado até ordem O(n™3). Sucessivamente, considere
a expansao de 65, como na equacdo (3.4) até k = 2h + 3 e defina EO(h + 1)
como os elementos dessa expansio cuja soma tem seu valor esperado O(n~("+D),
Entao, 0}, que € zero da fun¢ao L'+ Ao+ A1+ - -+ Ap, com Ay, = —IE[EO(h+1)],

¢ nao viesado até ordem O(n~ h+2))

Dem. Vamos provar por indu¢ao matemdtica. Vimos que a equacao (3.3) garante
que podemos expandir o EMV da sequinte forma h—0= b1+ by + Op(n_%) e que
0s, zero da funcio L' + Ao, com Ay = —IE[by], € ndo viesado até ordem O(n™?).
O termo bs foi desprezado porque seu valor esperado é O(n=2). Observe que by € o
conjunto dos termos dessa expansdo cuja soma tem valor esperado O(n™1), pois,
b; = Op(n_%) e vale a suposicao S8. Da mesma forma, a equagao (3.4) garante
que podemos expandir 0} da sequinte forma 65 —6 = b+ b3+ b3+ b3 +bs + O, (n~?)
e vimos que 05, zero da fungdo L' + Ag+ A1, com Ay = —I{Reo+E[bS + bl +bs]},
¢ nao viesado até a ordem O(n=3). Observe que {Reo + E[b + b3+ bs]} € a soma
dos elementos cuja soma tem seu valor esperado O(n=?). Assim, verificamos que
o teorema € vdlido para h =0 e h = 1. Suponha agora que este teorema € vdlido

para h — 1, ou seja, por hipétese de indugao,
L/
E[6;_,—-0] = E ’}*1 F O bl Oy ()

= O(n D),

Vamos provar que essa teoria vale para h qualquer. Dada a hipdtese de inducao,

fica facil ver que, por definicao,
EO(h+1) = 0"+ bV 4.+ bgl;—',-l bgﬁﬂl) + bgi}jr31 .
A expansao da equagao (3.4) até k =2h+ 3 é
Oh =0 =V + -+ by 5+ Op(n~ "),
Observe que para cada parcela temos que

b = bi+ B+ + B+ B!
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= b+ B2+ 4 B4 0, (n " FY)

= Y40, (n ),

Isso quer dizer que para i > 2 podemos agrupar o termo B em Op(n_(h+2)), pOiS

_i4142h ,
Bl=0,(n~""2 ). No caso em que i = 2, temos

L, A+ AL+ T+ A (AL, + A2 (LY + AY)

B = i + 575 ,
logo E[BE] = O(n=""*2). Assim, usando esses fatos e a hipdtese de indugio,
temos que
B0, —0] = E[0+057" + By 4+ by + Op(n” ")
= E w F O BY L+ Oy ()
-~ % +E[EO(h —1)] + E [Op(n~"+?)]

= O(n_(h+2)). n

Este teorema garante que se a funcao escore satisfaz condi¢oes bastante gerais,
que sao as suposi¢oes S1 a S9, entao podemos fazer sucessivas translacoes na
funcao escore de forma que o zero dessa fungao transladada gere um estimador

cujo viés tem ordem de magnitude O(n~("*?)), para qualquer h > 0.

3.4 Correcao de Viés Biparamétrica

Nesta secao iremos estender a correcao de viés para o caso biparamétrico. Assim,
como na Secao 3.3, a ideia basica é seguir os passos do Teorema 3.3.1 e propor
um estimador cujo viés tem ordem de magnitude O(n~("*?), para h =0,1,....

Dada uma funcao G real, definida no espago paramétrico bidimensional, usa-
remos uma notacao mais simples do que a dada na Secao 2.5 no caso multipara-
métrico. Considere o parametro 6 = (a, 3), entdo, o vetor gradiente G'(«, 3) é

definido como
G RxR — R xR

(a? 6>T — (Gav GB)T )
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em que G, = —a e Gg = % sao as derivadas parciais de G. Da mesma forma,
as demais derivadas parciais sao denotadas por Gog = 358%, Gaa = a(kskc); Por
fim, as derivadas seguem a mesma notagdo matricial, G" = [8G’/8a,8G’/@B],

-, G® = [0G*V /9o, 0G*V /93], Note que G*¥) é uma matriz 2 x 2(k — 1),
com k > 1.

Estabeleceremos algumas suposicoes de regularidade biparamétricas, sao elas:

e SB1 As derivadas parciais de GG sao continuas.

e SB2 O gradiente G’ tem exatamente uma raiz 0* e a matriz G”(6*) é ne-

gativa definida.
e SB3 E[G'G'T] tem todos os elementos finitos.
e SB4 G” nao depende dos dados.

e SB5 (' = O,(n2).

2’G 98¢ . )
OJa’? dadB’ dadada?

tem ordem de magnitude O,(n*), entdo, tanto E[f(%2, 885—8%, 80[883%,"')]

e SB6 Se uma funcao polinomial das derivadas parciais f (

quanto a derivada dessa esperanca tém ordem de magnitude O(n*).

e SB7 Os elementos da matriz (G”)~! sdo O,(n™') em uma vizinhanga de 60

que inclui 6*.

e SB8 Os elementos das matrizes G”, G, ..., G® sdo O,(n) em uma vizi-

nhanca de 6 que inclui 6*.

Estas suposicoes sao adaptacoes das condicoes de regularidade multiparamé-
tricas para a funcao escore L', dadas na Secao 2.5. Elas sao importantes para
que possamos inverter a fun¢ao G’, como garantem as suposicoes SB1 e SB2.
Ser4 necessario que o valor esperado da matriz G’G'" seja finito, pois sua matriz
inversa seréd decomposta em parcelas com ordem de magnitude decrescente; isso é
assegurado pela terceira suposicao. Ja SB4 tem apenas a finalidade de simplificar

os calculos de valores esperados de elemntos de uma matriz G*®). A relevancia
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das suposicoes SB5 a SB8 se di na garantia da ordem de magnitude de seus
elementos e de funcoes polinomiais de seus elementos.

Seja L; o k-ésimo elemento da sequéncia de translagoes da fungdo escore
L, = L) | + Ay, em que Ay = (Ay, Bp)T, com Ay e By sendo O,(n™%) e L} =
L'+ Ay. Denotaremos por 65 = (o}, 8;)T o zero da fungao L} . Em outras palavras,
Lya(a, B) = Lis(og, Bg) = 0.

Se G, satisfaz as suposi¢oes SB1 e SB2, entdo, dada sua inversa Hj, a ex-

pansao de Taylor de 6}, em torno de G}, é dada por

* el 1 A Pali ! (_1)k
9, = ¢ HhGh+2Hh( h®GY) e+ i

HY(G, - @G}) + 1k, (3.6)

k—vezes
em que |ry| < |G'(0)].

Observe que as suposicoes SB’s se referem a uma funcao G e nao neces-
sariamente a funcao log-verossimilhanca L; isto se deve ao fato de que iremos
fazer sucessivas translagoes na funcao escore L’ de forma que, por hipotese, esta
nova funcao transladada continue satisfazendo estas suposi¢oes. Dessa forma,

acrescentamos a seguinte suposi¢ao:

e SB9 Sejam G, uma funcao que satisfaz as suposi¢oes SB1 a SB8 e 65 zero
desta fun¢ao, considere a expansao de 65 como na equagao (3.6) e defina
EO(h+2) como os elementos dessa expansao cuja soma tem valor esperado
com ordem de magnitude O(n~"*?). Entdo, a funcdo G}, = G}, + Ans1,
com Ay = —IE[EO(h + 2)], satisfaz as suposicoes SB1 a SB8. Além
disso, tanto Apy1 quanto todas suas derivadas sao de ordem Op(n_(h“)),

com h > 0.

Estamos impondo que pequenas translacoes deste tipo nao impecam que a
funcao deixe de satisfazer as suposi¢oes biparamétricas SB’s.
Suponha que a fun¢ao escore transladada L) satisfaz as condigbes de regula-

ridade biparamétrica SB1 a SB9 e seja Hj, sua funcao inversa. Ou seja,

H, R xR — R xR
(Lal, B), Lg(ev, 8))" +— (H}(La, Lg), H}(La, Lp))",
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tal que (H(La, Lg), H(La,Lg))" = (a,8)". Em outras palavras, temos que
H(L},(6)) = 6.

Encontrar esta funcao inversa Hjy pode ser uma tarefa ardua e até mesmo
impossivel. Entao, uma solucao para superar essa dificuldade ¢, assim como na
Secao 3.2, em que tratamos do caso uniparamétrico, usar o teorema da funcao
inversa [42], o qual garante que a matriz H;, é igual a inversa da matriz L}. No

caso biparamétrico sempre é facil fazer essa inversao, pois

o= (1)
Ligs  —Lkag 1
_Lkﬁa Lk‘ocoz ’ L% |

OHL  OH}

_ BL;m BLkB
o OH?  OH?
| OLka  OLip

Para encontrar as derivadas de Hj, utilizamos derivagao implicita. Assim,

dada
euy o) oeuy ot
oL OLyaOLrg OLpgOLpn  OL
H//(Lk 9 — ko kB
k ( )) 82H,§ BQHE 92 H}% 62H,§ )

8Lia OLyaOLyp OLyg0Lgq 8[%6
temos, por exemplo, que

02 H} ) {aﬂ,g }

OLraOLrs ~ OLpa | OLys
0 [0H}] 0H} N 0 [0H}] oH?
-~ OH} |0Lys| OLke  OH} |OLks| 0Ly

_ K [_Lkaﬂ] Lyap _i_ﬁ |:_Lka5:| (_Lkﬁa)
Oa | |Ly| | 1LY 08 | LY | L]
_ (Lkap|Lila — LrapalLy]) Lrss N (Lraps|Li| — Lias| Lyl g) Lipa
N 1Ly 1Ly ’
k k

em que |LY|, e |LY|s, sao as derivadas do determinante de L} em relagdo a a e a

[, respectivamente.

Agora, através do lema seguinte, veremos como se relaciona essa matriz Hj,

com a matriz Hj,_;.

Lema 3.4.1 Considere a sequéncia de translagoes da func¢do escore, L), = L) |+

Ay, com L)y = L' + Ay e Ay = (Ay, Bx)T, um vetor com ordem de magnitude
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O,(n=%). Suponha que cada L), satisfaz as suposicoes SB1 a SB9. Entio, a

matriz H;, pode ser decomposta em parcelas da sequinte forma:
Hi = Hi_y+Re(k)+ Oy(n~ "),
em que

Bis  —Akp 1 |Ly| — [ Ly _
Re(k) = ] k \L”!k Sy )
—Bra  Aia k—1 k

Dem. Vamos provar por indu¢ao matemdtica. Para k = 0, temos que

Lgs + Bog  —(Lag +Aog) | 1

1y = .
_(Lﬁa + BOa) Laa + AOa |L6/|
B Lgg  —Lag Bos  —Aos 1
= + 7 )
_Lﬁa Laa _B0a AOa |L | + RO

sendo Ry = |Lj| — |L"]. Ou seja, Ry = AoaLss + BogLaa + AoaBos — AopLsa —

BooLog — AogBoa- Portanto, Ry = O,(n).

1 Ro

L1 Ry )
[L7[+Ro — |L”] (L T+ R L7 ? entao,

Mas observe que

Bog  —Aop 1 (L") 'Ry
H/ _ L// —1 4 o 4 O -3
0 ( ) _Boa Aoa |L//| |L//| + RO P(n )

= H' +Re(0) + 0,(n?).

Suponha que a afirmagao € vdlida para k — 1 e seja H}, a fun¢do inversa de
L, = L, |, + Ag. De maneira andloga, define-se Ry = |L!| — |LY_,|. E facil
verificar que Ry, = O,(n*="). Logo,

Ligg  —Lkap 1
L]

H, =
_Lkﬂa Lkaa

Lik-1p8  —Lk-1)as N By  —Ayp

—La—1ga  Lk-1)aa —Bro  Apa
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o Ry,
|L/(/k_1)| (|L/(/k_1)| + Rk)|L’é71|

Brg  —Ag L (Ly_y) "Ry
—Bra  Aka (Lol L] + B

= H,_, +Re(k) + O, (n~+3)),

= (L)' + + O,(n~FH9))

Logo, por indugao, a afirmacao € valida para qualquer k. m

Como |L}| — |Ly_,| tem ordem de magnitude O,(n'~*), temos que Re(k) =
Op(n=*+2)).

O Lema 3.4.1 é de relevancia para nosso desenvolvimento, pois mostra como
se comporta a matriz H; ap6s uma translagdo da fungio escore ja transladada.

O proximo lema estabelece a ordem de magnitude das derivadas de Hj,.

Lema 3.4.2 Seja L, uma funcao que satisfaz as suposicoes SB1 a SB9; entao,

a ordem de magnitude da [-ésima derivada da:
a) fungdo inversa Hy é O,(n7").

b) funcio Re(k) ¢ O,(n~*+H2),

Dem.

a) Novamente vamos demonstrar esta afirmagao usando o principio da indugdao
matemdtica. Para | = 1, H; = (L"), pelas suposi¢cies SB3, SB6 a SB9
claramente Hj, = O,(n™'). Suponha a hipdtese de indugio vdlida para l — 1. Por

definica g _ oul™" oY g Ja d lidad dere BEY
efinicao, Hy™ = | %1, —5p— | - Sem perda de generalidade, considere hy, = o

elemento de posi¢ao (1,1) da matriz H,gl_l), entao

1 0 1—
hél)l = OLra [hl(gnl)]
_ a [ (171)] 8H,§ I E) [ (171)] 8H,§
OH! UMY 1 0Ly, ~ 0H? UM 1 0Ly,

= 0,(n" )0, (n) + 0,(n" )0, (n ")
= Op(nil)-
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b) A demonstracio deste item é andloga & do item (a). E fdcil verificar que

1

. . . . OH
derivar Re(k) em rela¢ao a 6 nao muda sua ordem de magnitude e que aL: =

O(n~1). Assim, por exemplo, Re(k) = afl,i [Re(k)] glii + 3;2’2 [Re(k)] gﬁi tem

ordem O(n=%*3)). Entdo, suponha que a igualdade vale para | — 1. Sem perda de

generalidade, temos que

0

n — (I-1)
Re(k) BT [Re (k)]
0 OH} 0 OH?
- 9 (1-1)7 9H (-1 9Hj;
ot ReW N S g ReW o

= Op<n_(k+l+1))0p(n_l> + Op(n_(k+l+l))0p(n_l)

= Op(n_(k+l+2)). n

Dadas as suposicoes SB5, SB6 e com a Afirmacao 3.4.2 fica facil observar
que o [-ésimo termo da expressao (3.6) tem ordem de magnitude Op(n_%). Assim,

considere os trés primeiros termos dessa expressao para o EMV

~ 1

b = 0-HL+ H"(L'oL)+ O,(n"?).
Em notacao matricial,
P Lo+ 13 L
a—«
B—p

L L
PYLE + (B + ) LaLs + b L2
+Op(n2),

WD L? + (hg? + h%)) LoLs+h$) L3

()

sendo que h;;" é o elemento de posicdo (7, j) da matriz H®),

Defina FO(1) como a soma dos elementos dessa expressao cujo valor esperado
& O(n™1) e Xy = E[EO(1)], entdo, 0y, zero da fungiao L' + Ay, sendo Ay = L" X,
tem viés com ordem de magnitude O(n~2). Observe que

1
Xy = E[QH”(L’@)L’)}
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PYLZ + (B + ) LaLs + W L2

PLE + (B + nG)) LaLs + hE) L2
Como a suposi¢ao SB4 garante que E[H'] = H', temos que
1
0y —0 = —HyLj+ §H6’(L6 ® L)+ O0,(n"2) (pelo Lema 3.4.1)
= —(H +Re(0)) (L' + L"X) +
1
5 (H' + RE(0) (L' + Ap) @ (I + Ap)) + Op(n2).

Assim, obtem-se
B -6 = ~%+ B (e I)] + O(n ™)
= O(n?).
Dado que H'L” é igual & matriz identidade, derivando este produto em relagao

OH' OL4 OH' OLg 1" 18L"
a «, obtemos (—8La S + 9L, da L" + H'S5 = 0. Podemos representar essa

igualdade em forma matricial

Hl aLH — . H/l 68% L”
Oa %& )14

Se derivarmos o produto H'L” em relacdo a [ teremos uma igualdade similar.
Entao, usando a definicdo de L” e concatenando as duas igualdades em uma

unica matriz teremos

Ty 1 oL" oL"
HL" = H ( o oL )
OLo 711 OLa 71
_ g | e L
8[/[3 " BLﬂ 1Zi
Ba L’ G5 L
— _H// (L” ® L//) .

Ou seja, L = —-L"H" (L" ® L") .
O produto de Kronecker satisfaz uma propriedade na qual garante que vec[L”
H'L"] = (L" @ L") vec|[H'], sendo que o operador “vec” de uma matriz A é defi-

nido como o vetor formado pelas colunas de A sobrepostas uma a uma. Assim,
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temos que a translagao da funcao escore proposta por David Firth, examinada

na Secao 2.6, é exatamente a translacao proposta nesta secao, pois

1
Ay = §L”’Vec [H'] (translagao proposta por Firth)
1
— _§L1/H/l (Ll/ ®L//) vec [H/]

1
= —5L"H"vec[L']

1
= §L”H”E [L'® L'] (translagao proposta nesta se¢ao).

Na tltima igualdade, usamos o fato de que E[L’ ® L'| = —vec|L"].
Podemos continuar a transladar a funcao escore; desta forma, considere a

expansao de Taylor de 6} em torno de L'(#) até ordem Op(n’%). Assim,
1 1
05 = 60— H)Ly+ §H6/(L6 ® Ly) — EH(')"(L{) ® Ly ® L) +

1 X)) _5
+ o Wb @ Lh @ Ll @ L) + O,(n~).

De maneira analoga, define-se FO(2) como a soma dos elementos dessa expansao
cuja soma tem valor esperado com ordem de magnitude O(n™2) e X; = E[EO(2)].
Logo, 07 que é zero da fun¢ao Lj + A;, com A; = LjA}, é um estimador ndo

viesado de 0 até a ordem O(n~3). Observe que

1 1 1
X1 = —Re(0)Ay + §H”A0 ® Ap + §Re’(0)E L' ® L] — 6H”’E '@ L' ® L +
1 .
+ 3L/®L/®Ao] +ﬂH(w)E[L/®L/®LI®L/].
Perceba que Hl(l) = Hél) + ReW(1) e como a ordem de magnitude do termo
Re(1) ¢ no maximo O,(n~*), podemos dispensa-lo. Assim, Hl(l) = HO +

Re®(0); no caso em que [ > 3, também, podemos dispensar o termo Re”(0).

Antes de calcular o viés de 07 observemos que

E[HL)] = E[(H)+ Re(1)) (L + A+ A)] +0(n?)
= (H +Re(0)) (L' Xy + LyXy) +O(n™3)
= X+ Re(0)Ay + X1 +O(n?)
= Re(0)Ay+ Xy + &+ O(n™?).
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Da mesma forma

E[HY(Ly ® L})] = E[Hy(Ly® Ly)|+O(n™)
= E[(H" + R'e(0)) (L' + Ay) @ (L' + Ag))] + O(n?)
= H'E[L'® L+ H"(A;® Ag) + R'e(0)E[L' @ L' + O(n~?)
= 2X,+ H"(Ay® Ao) + R'e(0)E[L' @ L'] + O(n™?).

Similarmente, temos
EH"L,Lyo L)) =H"E[L ®L'® L' +3L @ L' ® A)] + O(n™?).

Também é facil verificar, que a menos dos termos de ordem O(n=3), ¢ vélida a

igualdade E [H™(L) @ L) @ L) @ L})| = HYE[L' ® L' ® L' @ L']..

Portanto,
* I/ 1 iz / !/ ]‘ " / / /
Elfi -6 = E _H1L1+§H1(L1®L1)_6H1 (L1 ® Ly ® Ly)+
1 v _5
+ (L@ L@ Ly ® L) + Oy(n 3)]

= —RegAo— X — X1+ X+ H'(Ay @ Ag) + Re(0O)E[L' @ L] +
1
+ E {—EH’” ('eoLleL +3L'eL® Ao)] +

1 )
+ E [ﬁH(”)(L’ L QL @ L’)] +0,(n7?)

= Oy(n™).

Observe que, por defini¢ao, a soma dos quatro ultimos termos dessa soma mais o
primeiro termo é exatamente X.
Assim, como na Secao 3.3, apresentamos o Teorema 3.4.1 no qual garantimos
. s . . . o~ ,
no espago biparamétrico a construcao de um estimador ¢; nao viesado até a ordem
O(n=("*2) para k = 0,1,2,.... Este estimador também ¢é definido como 6} que

é zero da fungao escore Lj transladada k-vezes.

Teorema 3.4.1 Seja uma amostra X = (Xq,...,X,) independente e identica-
mente distribuida tal que a funcao escore satisfaz as suposicoes SB1 a SB9.

Faca G), = L' na equacao (3.6); entao, considere a erpansao do EMV dada
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nesta equac¢ao até k = 2 e defina Xy como a esperanca da soma dos elementos
dessa expansio cuja soma tem valor esperado O(n™'). Entao, 0} que é zero da
funcio Ly = L'+ Ao, com Ay = L"Xy, é um estimador nao viesado até or-
dem O(n=2). Da mesma forma, considere a expansio de 0 como na equacdo
(3.6), com G, = L, até k = 4 e defina X; como a esperanc¢a da soma dos ele-
mentos dessa expansdo cuja soma tem valor esperado O(n~2). Entdo, 07 que é
zero da fungao L) = L'+ Ag + Ay, com Ay = L{Xy, € nao viesado até ordem
O(n™3). Sucessivamente, considere a expansio de 05 , como na equagdo (3.6),
com Gy, =L |, até k = 2h + 2 e defina X, como a soma dos elementos dessa
expansio cuja soma tem seu valor esperado O(n~"*Y). Entdo, 0y que € zero da
fungao Ly, = L'+ Ao+ A1+ -+ Ay, com Ay, = L] | X, € nao viesado até ordem
O(n_(h+2)).

Dem. Novamente usaremos inducao matemdtica nesta prova. Parah =0eh =1,
ja provamos ser verdadeira esta afirmac¢ao. Suponha, por hipdtese de indugao, que
este teorema € valido para h — 1, entao, vamos provar que essa teoria vale para h
qualquer. Observe que pelo Lema 3.4.1 temos H), = Hj _,+Re(h)+0,(n=+3) ¢
pelo Lema 3.4.2 temos H = H 10, (n="+42)) " A menos dos termos de ordem

Op(n_%zj), podemos escrever a expansao de Taylor de 0} da sequinte forma:

1
* o _ g/ . - (2h+2) 11 o 2h+2
Op—0=—H,L,+ -+ (2h+2>!Hh—1 L@, (3.7)
b d tacdo, L' @* = L) @---@ L, . Vi divids 7
em que, por abuso de notagao, L) ® h(f ® L. Vamos dividir essa equagao
em trés partes, a primeira Py = —H; Ap, a sequnda
/ / 1 7 / 2 1 (2h+2) 7/ 2h+2
Pro= —Hy Lyt G Ly @ e MH;H h1®77,

que por hipdtese de indugio tem valor esperado com ordem de magnitude O(n~("+1).
Portanto, X, = Py, logo A, = L} _|Py. A terceira parte € o que resta da equagao

(3.9) apds a retirada das duas primeiras partes:

1
P, = §H;{,1(L;L ®° —Lj_1®°) 4+
1
+ e (L, @2 — L, @72,

(2h 1 2)!
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O wvalor esperado de Py € O(n_(h+2)). Para verificarmos esse fato, observe que o
produto de Kronecker satisfaz as propriedades associativas e distributivas, assim,
temos que (L), |+ Ap) @ (L) | +Ap) =L QL | +2A, QL) | + A, ® Ay,

Como o valor esperado de L) , é O(1), entao,
E[(Lhoy+Ap) @ (Lo + Ap)] =E [y ® Ly + O(n™").

Portanto, a esperanca do primeiro termo de P, tem ordem O(n_(h+2)). Suponha,

por hipdtese de inducao que para algum 1, vale a igualdade E [(L’h_1 + Ah)®q =

41

E[L},_,®'] + O(n~="). Entio,

+1
E[(Lh+An@™] = E [Z G (L @) @ (Are')

1=0

I+1
- E [L;L—1®l+1} + ZCZ;HE [L;l_1®l+1—i} ® (Ah®i)
i=1
— B[L,_ @] +0mn ).
Ou seja, a igualdade vale para | + 1. Assim, o valor esperado de um termo da
expressdio de P, tem magnitude E [H,Slll([/;l ®! —L’h_1®l)} = 0(nH0(n

_ 2h—l+41
2 ).

Como | > 2, temos que este valor esperado é no mdzimo O(n~""+2). Portanto,

como Re(h)Ay, tem ordem maior que Op(n’L;?’), temos que

E[0; —6] = E[- (H;,_,+Re(h)) Ay +E[P]+E[P]+E [op(nf%)}

_ —P1+P1+P2+E[Op(n ; )}

= O(n_(h+2)). [

3.5 Estimacao Multiparamétrica

Consideraremos agora o caso multiparamétrico § = (6y,---,6,)", como na Se¢io
2.5. Sejam © o conjunto de todos os possiveis valores de # e G uma funcao com
dominio em O, entao estabeleceremos as seguintes suposicoes de regularidade

multiparamétricas:

e SM1 As derivadas parciais de G sao continuas.
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e SM2 O gradiente G’ tem exatamente uma raiz 6* e a matriz G"(0*) é

negativa definida.
e SM3 E[G'G'"] tem todos os elementos finitos.

e SM4 G’ = O,(n2).

e SM5 Se uma funcao polinomial das derivadas parciais f(g—g,%,...)

tem ordem de magnitude O,(n*), entdo, tanto E[f(g—eGl, %, ...)] como a

derivada dessa esperanca tém ordem de magnitude O(nF).

e SM6 Os elementos da matriz (G”)™! sdo O,(n™!) em uma vizinhanga de 6

que inclui 6*.

e SM7 Os elementos das matrizes G”, G, ..., G® sio O,(n) em uma vizi-

nhanca de 8 que inclui 6*.

Lembre que no caso biparamétrico utilizamos a suposicao de que a funcao
L" nao dependia dos dados. Agora estamos generalizando tanto a dimensao do
espaco paramétrico como estamos abrindo mao da nao-aleatoriedade da derivada
da funcao escore.

Similarmente ao caso biparamétrico, considere que a fungao G}, = (Gyg,, . - -,

G,) satisfaz as suposicoes acima e seja Hj, sua inversa, ou seja,

H, Rx...xR — Rx...xR
———— N———
p—vezes p—vezes

(oo Groy (01,0, 0,), . )" — (.. Hi(Groyy -, Gray), )7,

comi=1,...,p,talque, (H}(Gro,,...,Gro,),---, Hp(Gro,, ..., Gro,))" = (61, ..
6,)T. Em outras palavras, temos que Hy(G}(0)) = 6.

Seja 05 zero da funcdo G, entao, a expansao de Taylor de 0} em torno de
G, (9) é dada por

* Wall 1 ¥all ! (_1)k
0, = 0—H, h+§Hh( R ®GR) + e+ il

HY(Gh @ @G)) + 11, (3.8)

k—vezes

sendo |ri| < |G'(0)].
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Faremos sucessivas translagoes na funcao G, e desejamos que ela continue a

satisfazer as suposi¢oes acima, dessa forma, acrescentamos a seguinte suposi¢ao:

e SMS8 Sejam G uma fungido que satisfaz as suposicoes SM1 a SMT e 6;
zero desta funcao, considere a expansao de 6} como na equagao (3.8) e defina
EO(h + 2) como a esperanga da soma dos elementos dessa expansao cuja
soma tem valor esperado com ordem de magnitude O(n~("*2)). Entdo, a
fungio G, = G + Apy1, sendo Ay = E [H}] " E[EO(h + 2)), satisfaz as
suposi¢oes SM1 a SM7. Além disso, tanto Ay, como todas suas derivadas

sao de ordem O,(n~"*D) com h > 0.

O determinante de uma matriz tem ordem de magnitude relacionada com a
dimensao do espago paramétrico e com a magnitude de seus elementos; o proximo
lema estabelece esta relagao. Para demonstrar este lema precisamos da seguinte
definicao: dada uma matriz quadrada M, definimos a matriz M_; _; como a

matriz M sem a linha 7 e sem a coluna j.

Lema 3.5.1 Seja Aj, uma matriz p X p tal que cada elemento ay; ;) de Aj, tem
ordem O,(n=%). Entdo, o determinante de A, tem ordem de magnitude O,(n=*").
Dem. Para p = 1 e p = 2, esta itqualdade € trivialmente satisfeita. Suponha
vdlida para p — 1. Fizada uma coluna j, temos que o determinante de A} € dado
por

p

AL = > (D)) | Ay -

=1

Por hipotese de indugao tem ordem Op(n_k(p_l)), logo cada parcela

Al

—i,—3)

desta soma tem ordem O,(n=*?). Como p € constante, temos o resultado desejado.

A proposta desta tese é fazer sucessivas translacdes na funcao escore para eli-
minar vieses com magnitudes grandes. O Lema 3.5.2 estabelece como se relaciona
o determinante de uma matriz G}_; com a matriz transladada G}, = G}_; + A}

J& o Lema 3.5.3 estabelece qual a relagao entre essas matrizes.
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Lema 3.5.2 Sejam Gj_, e A}, duas matrizes pxp tais que cada elemento g—1)i ;)

de G|_, tem ordem O,(n) e cada elemento de ay jy de A}, tem ordem Oy(n™").

Entao, o determinante da matriz Gy, = Gj_, + A}, é dado por
Grl = |Gyl + R(K),
em que R(k) = 37, (=1)™ {g(k—l)(i,j) Ay | + W69 |Gl i) T Ak-i }

e tem ordem O,(n~(—P+D),
Dem. Para p =1 trivialmente esta igualdade € vdlida. Para p = 2, temos que
[EA= Ik(1,1)9k(2,2) — Gk(1,2)9k(2,1)
= (9E-nan + aran)(gE-1@22) + are2)
= (9-12) + a2)(Gr-1)21) + A1)
= Jk-1)(1,1)9(*k—-1)(2,2) — 9(k—-1)(1,2)9(k—1)(2,1) T G(k—1)(1,1)Ak(2,2)
+ ara ) (Gr-1)2,2) F Or22) = Ie-1)(1,2)0k2,1) — Ck(1,2) (Ik—1)(2,1) T Ak(2,1))
= |Ghyl + R(K),
em que R(Kk) = gr-1)1,10k2,2) + @e,1)(9k—1)(2,2) + Qk(2,2)) — Jk—1)(1,2)Tk(2,1) —
ak1,2)(Ge—1)2,1) F k1)) € tem ordem de magnitude O,(n=* =) Suponha a igual-

dade vdlida para p — 1. Entao, para um j qualquer fizo, o determinante de G} é

dado por
p
GHl = D (1" g5 |Gy
=1
p . .
= D (D (0169 + a6p) | Glimryci—g) T ki
=1

= |Gl + R(k),

em que R(k) = >0 (=1)"* {g(k—l)(i,j) A + Ak(i)

e tem ordem de magnitude O,(n~ =PV pois o termo com maior ordem ¢é

G,(/k—l)( — O(n_k)0<np_1) ]

1! /
Gle1y(i—i) T Akij)

)

(_iv_j)

Qke(i,g) —i,—j)
Dada uma matriz quadrada M, definimos M (M) como a transposta da matriz
formada pelos cofatores de M. Portanto, temos do teorema da fungao inversa que

H,, ¢éigual a inversa de L}, ou seja,
M(L)
1Ll
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Lema 3.5.3 Considere a sequéncia de translagao da funcao escore, L, = L., +
Ag, com L), = L' + Ay e Ay um vetor p-dimensional com ordem de magnitude

O,(n™%). Entao, a matriz Hj, pode ser decomposta em parcelas da sequinte forma:

H, = H,_,+Rei(k)+ Rea(k) + Op(n P71,

com
Ll/ _ L//
4]
M(Ar)
Reg(/{i) =
1L

em que Rei(k) e Reg(k) tém ordem de magnitude O,(n~*+2) e O,(nP*+D)
respectivamente.
Dem. Para p =1, esta igualdade € valida pelo Lema 3.2.2. Suponha a igualdade

vdlida para p— 1. O elemento de posicao (i,7) da matriz de cofatores de L} € da

forma
_1\i+J " _ z +7
(=)™ |Liip| = | Lemty(—imgy + Ar=i=) |-
S b 1 1 ‘LZ|_|Lg—1| t~ d ¢ . ¢
abemos que m = 1 — prpr T entao, como a soma de uma matriz trans-
[Z] [LY_q] [LYILY ]

posta € a matriz transposta da soma dessas matrizes, ao dividirmos a transposta
da matriz de cofatores de L}, por |L}| temos que o elemento de posi¢ao (j,i) da
matriz H;, é

1L = L]
Lial LRI

L — | —1)y+i | A i
= -Gy — b m‘ 4 ,‘, il 2V ‘,, )| + O, (n~hrrL),
L4l | L1l

hiay = (=)™ Ly i) + Ak=i—p)|

Portanto,

Ll = 1Ll M(AR)
| L] [ Li ]

HI; = Hllc—l +Hl/c 1 +Op<nikpipil)-

Observe que

Ll = L5

| _
Hl/cfl |L;€/| - Op(n (k+2))7
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M(Ak) _
L7 = Oy( Ko=) )
k—1
€
L] — | Zi | —
Apsiiy| —e——— @) PP,
Ao oy P

Na expansao de Taylor dada na equagao (3.8) aparecem derivadas de ordem
[ da fungao H. Assim, o lema seguinte afirma qual a ordem de magnitude dessas

derivadas e das parcelas de suas translagoes.

Lema 3.5.4 Seja L) uma funcao satisfazemdo as suposi¢oes SM1 a SM8, en-

tao, a ordem de magnitude da l-ésima derivada das funcoes:
a) H, ¢ Op(’nfl).
b) Rei(k) é O,(n~k+2H0),

c) Rea(k) é O,(n~FP=-D-p=1),

Dem. Sem perda de generalidade, considere a derivada de uma dessas fungoes

em relagdo a coordenada Lg, e o primeiro termo de H}!. Ou seja,

" ah;f(l,l) ah/ E(1,1) 8H

= —_— = = O -2 .
HLY 0L, ~~ OH} 0L, ()

Suponha por inducao que a igualdade vale para | — 1. Logo o termo de posi¢ao
(1,1) de H,gl) é dado por

- (1-1)
RO ahﬁc(ll,l) _ - ahk(l 1) 0H],
k(1,1) 8L91 — 8Hz 8L91

::Zo D)0, = Oyn)
Os itens b e ¢ sao idénticos na demonstracao. m

O principal resultado desta tese de doutorado é apresentado no Teorema 3.5.1,
no qual propomos uma sequéncia de translagoes da funcao escore, de forma que

o zero de cada funcgao transladada ¢ um estimador com viés corrigido.
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Teorema 3.5.1 Dada uma amostra X = (X1,...,X,,) independente e identica-
mente distribuida, tal que a funcao escore satisfaz as suposi¢coes SM1 a SMS.
Faga G, = L' na equagao (3.8), considere a expansao do EMV dada nesta equa-
cao até k = 2 e defina Xy como a esperanc¢a da soma dos elementos dessa ex-
pansio cuja soma tem valor esperado O(n='). Entdo, 0}, que € zero da funcao
L = L'+ Ay, com Ay = E[H']"" Xy, € nao viesado até ordem O(n~2). Da mesma
forma, considere a expansao de 0f como na equagao (3.8), com Gy = Ly, até k = 4
e defina Xy como a esperanca da soma dos elementos dessa expansao cuja soma
tem walor esperado O(n=2). Entdo, 07 que € zero da funcdo L) = L' + Ay + Ay,
com Ay = E[H}| ™" Xy, € nao viesado até ordem O(n™3). Sucessivamente, con-
sidere a expansao de 05_, como na equagao (3.8), com Gj_, = L,_,, até k =
2h + 2 e defina X, como a esperanca da soma dos elementos dessa expansao
cuja soma tem seu valor esperado O(n~("V). Entdo, 0y que € zero da fungao
L, =L+Ao+A1+---+Ap, com A, =E [H;L_l]fl X}, € nao viesado até ordem
O(n_(h+2)).

Dem. Novamente usaremos inducao matemdtica nesta prova. Para h =0, temos

que Xo =E [-H'L' + $H" (Ly @ Ly)] . Entao, o viés de 6} ¢ dado por

1 3
E%—ﬂ—-E—%%+#%@MM@+@mgﬂ

= B |(-H R (0) (I 4 A + %HU (L'e L) +Op(n§)]
= E -(_H/) <L/ + E[Hl]il X0> -+ %HU (L/ ® L/) + Op(n_g):|

= O(n™?).

Usamos que E [Op(n_%)} = O(n™?), devido & Afirmagao 8.3.1.

Suponha por hipdtese de inducao que este teorema € vdlido para h — 1, entao,
vamos provar que essa teoria vale para h qualquer. Observe que pelo Lema 3.5.3
temos H; = H) | + Rei(h) + Rea(h) + Op(n="7P=1) ¢ pelo Lema 3.5.4 temos
H,(ll) = H}(Ql + 0, (n= "2 A menos dos termos de ordem Op(n_zgj), podemos

escrever a expansao de Taylor de 0} da forma

0f —0=—H\L +-- + HM [ @2 (3.9)

(2h + 2)!
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Dividiremos essa equagao em trés partes: a primeira Py = —H; Ay, a sequnda
/ / 1 17 / 2 1 (2h+2) 7/ 2h+2
P = —H, L, ,+ §Hh71th1 Q7+ + mHh—1 Ly, @77,

que por hipotese de inducao tem valor esperado com ordem de magnitude O(n_(h+1)).
Portanto, X, = E[P], logo A, = E [H}_,] - E[Py]. A terceira parte € o que resta

da equagao (3.9), apds a retirada das duas primeiras partes

1
Py = SH (L, ® =L}, @) + -+
1
4 D) H}(ZQ_hl+2)(L;l @2 +2 _L/h_1®2h+2)'

Assim como no caso bidimensional, temos que o valor esperado de Py é O(n~(+2),

Portanto, como Reyi(h)Ay, tem ordem maior que Op(n’%), temos que

E [0, — 0] :IH—G%4+%WMA4+EUﬂ+Euﬂ+Eka%#ﬂ

- E[—P1+P1+P2]+E[Op(n : )}

= O(n_(h+2)). ]

Em outras palavras, dada uma amostra de variaveis aleatérias, na qual a fun-
¢ao escore satisfaz as suposicoes SM1 a SMS8, é possivel encontrar um estimador
cujo viés tem ordem de magnitude O(n=%), para k = 2,3,.... Isto &, propomos
uma nova alternativa para encontrar EMVs com viés de ordem de magnitude tao

pequena qunto se deseja.

3.6 Consideracgoes Finais

Foi proposta uma técnica de estimacao nova, em que a partir de uma sequéncia
de translacoes na funcao escore, obtemos um EMVC com ordem de magnitude
tao pequena quanto se queira.

Uma grande vantagem dessa metodologia é que nao ha uma restricao muito
forte nas classes de modelos em que podemos empregar tal técnica. Basta apenas
que a funcao de verossimilhanca satisfaca algumas suposicoes de regularidade, que

sao bastante gerais e satisfeitas por um grande niimero de modelos estatisticos.
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Nesta metodologia precisamos apenas encontrar o zero da funcao escore modi-
ficada, desta forma torna-se uma técnica muito promissora para ser desenvolvida
em outros métodos de estimacao, nao necessariamente em estimagao por maxima,

verossimilhanca.



Capitulo 4

AVALIACAO NUMERICA

4.1 Introducao

No presente trabalho apresentamos uma técnica de estimacao baseada em corrigir,
de forma preventiva, o EMV. Esta técnica consiste em fazer sucessivas translacoes
na funcao escore, de tal forma que o zero da funcao escore transladada é um
estimador cujo viés tem ordem de magnitude reduzida. A primeira translacao é
a sugerida por David Firth; assim, obtemos uma sequéncia de estimadores sendo
que o primeiro elemento da sequéncia ¢ o EMV é\, o segundo é o estimador 6] e
o terceiro elemento ¢é 07, estes dois ultimos tém vieses com ordem de magnitude
O(n™2) e O(n™3), respectivamente. Outros dois estimadores com vieses corrigidos
foram estudados no Capitulo 2, que sao 51, com viés de ordem de magnitude
O(n™2), e b5, com viés O(n=3).

Realizamos neste capitulo um estudo aprofundado do desempenho destes qua-
tro estimadores, mais o EMV. Foram realizadas simula¢oes de Monte Carlo em
varios modelos estatisticos, com diferentes tamanhos amostrais. A metodologia
empregada para avaliar os estimadores foi baseada em comparar a média dos
vieses estimados. Ou seja, em cada réplica de Monte Carlo, calculamos a esti-
mativa do parametro, segundo cada estimador, no final da simulagao calculamos
a médias dessas estimativas e a subtraimos do valor verdadeiro do parametro.
Essas simulagoes foram implementadas na linguagem de programacao matricial

Ox. Em muitos casos estudados, para encontrar o zero da fungao escore ou de

68
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alguma de suas translacoes, existiu uma grande complexidade algébrica, entao,
fizemos uso do calculo numérico através da fungao computacional “‘SolveNLE.”’
Esta fun¢ao esta disponivel na linguagem de programacao Ox através do pacote
‘‘solvenle’.

Na Secao 4.2 apresentamos os resultados das simulagoes feitas em modelos
uniparameétricos, tais como, beta, gama, entre outros; a Secao 4.3 foi dedicada
aos modelos biparamétricos; finalizamos o capitulo com a Secao 4.4, na qual

colocamos as consideracoes finais sobre as avaliacoes numéricas realizadas.

4.2 Modelos Uniparamétricos

Com o intuito de avaliar o desempenho em pequenas amostras do EMVC até
ordem O(n™3), proposto na Segao 3.3, realizamos diversas simulagoes de Monte
Carlo em uma grande variedade de modelos e de situagoes. Cada simulacao
foi composta de dez mil réplicas de Monte Carlo. Variamos as simulagoes com
os modelos beta, gama, binomial, Poisson e geométrico. Nesta se¢ao tratamos
apenas do caso uniparamétrico; desta forma, caso um modelo seja caracterizado
por mais de um parametro, consideramos sempre que apenas um dos parametros
¢ desconhecido. Em cada modelo atribuimos diversos valores para o parametro e
usando diversos estimadores foi calculado em cada réplica de Monte Carlo o valor
estimado desses parametros; em seguida foi calculado o viés médio, ou seja, foi
feita uma média da diferenca entre o verdadeiro valor do parametro e seu valor
estimado nas réplicas de Monte Carlo.

Consideramos em nossa avaliacao o EMV 5; o estimador proposto por David
Firth 65, que é o zero da fun¢ao escore transladada por Ay = %; mais os estima-
dores 51 e 52, este tultimo proposto por Ferrari et al., que sao dados nas equacoes
(2.18) e (2.19), respectivamente; por fim, o estimador 6] proposto neste trabalho,
o qual é obtido por encontrar o zero da funcao escore transladada por Ag e por
Ay, definidos na Sec¢ao 3.3

Uma importante distribuicao de probabilidade estudada neste trabalho é a

distribuicao beta. Uma variavel aleatéria X é dita ter distribuicao beta com
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Figura 4.1. Densidades da distribui¢ao beta com parametros (u, ¢).

~ - [\ (0.1,20) (0.9,20)

(0.3,20) (0.7,20)
(0.5,20)

densidade
densidade

parametros p > 0 e ¢ > 0, se sua funcao de densidade é dada por

I'(p+q) Pl
['(p)L'(q)

em que 0 <z < 1el()éafuncio gama.

flz;ip.q) = (1—x)r, (4.1)

Uma reparametrizacao util desta distribuicao se da ao definir y = zﬁq e p=
p + q. Desta forma o parametro p é uma medida de locacao, enquanto ¢ é uma
medida de escala. Isto pode ser visto com mais facilidade na Figura 4.1, na qual
esta representado o grafico desta densidade de probabilidade para vérios valores
de p e ¢.

Consideremos uma, amostra de tamanho n, r = zy, ..., x,, de variaveis alea-
torias independentes e identicamente distribuidas, de acordo com a distribuicao
beta com parametros p > 0 e ¢ > 0. A funcao de verossimilhanca de p e ¢ com
base nesta amostra é dada por

p7q|x Hf‘r'L?p? - { p+q] H 1_3?1 1’

=1

em que podemos escrever a fungao log—verosmmllhanga como

L(p,q) = nlogT(p+q) —nlogT'(p) —nlogT(q)
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n

+ [(p — 1) logz; + (¢ — 1)log(1 — z)].

=1

(4.2)

Tabela 4.1. Vieses dos estimadores do parametro p da densidade beta, n = 10.

Parametro | viés de 6 | viés de 8, | viés de 05 | viés de 07 | viés de 8
p O(n™) | O™ | O(m™®) | O(n™) | On7
0,50 0,037950 | 0,001252 | 0,000135 | 0,000696 | 0,001082
0,75 0,041520 | -0,003327 | -0,004582 | -0,003746 | -0,003421
1,00 0,047026 | -0,003718 | -0,005022 | -0,003976 | -0,003725
2,00 0,067623 | -0,000583 | -0,001481 | -0,000583 | -0,000445
3,00 0,085738 | -0,000640 | -0,001204 | -0,000487 | -0,000499
4,00 0,108000 | -0,001852 | -0,002307 | -0,001715 | -0,001725
5,00 0,148610 | 0,005796 | 0,005410 | 0,005917 | 0,005908
6,00 0,187100 | -0,004991 | -0,005328 | -0,004883 | -0,004891
7,00 0,287480 | 0,011278 | 0,010984 | 0,011374 | 0,011365
8,00 0,472380 | 0,023781 | 0,023546 | 0,023861 | 0,023850

Suponha que seja conhecido o parametro g e queiramos estimar p. A funcao

log-verossimilhanca e suas derivadas sao dadas por
L(p) = nlogI'(p+q) —nlogl'(p) — nlogI'(q)

+ > l(p—Dloga; + (g — 1) log(1 — )],

i=1

L'(p) =

L'(p) =

n(p +q) — nib(p) + Y log ;,
=1
' (p + q) — n'(p),

np " V(p+q) —np*V(p), sek > 1.
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Tabela 4.2. Vieses dos estimadores do parametro p da densidade beta, n = 15.

Parametro | viés de 6 | viés de 8, | viés de 05 | viés de 07 | viés de 8
p O(n™) | O™ | O(m~®) | O™ | O(n7
0,50 0,022342 | -0,001922 | -0,002301 | -0,002056 | -0,002001
0,75 0,031352 | 0,001459 | 0,001034 | 0,001406 | 0,001415
1,00 0,030452 | -0,003319 | -0,003757 | -0,003327 | -0,003323
2,00 0,049168 | 0,003828 | 0,003499 | 0,003894 | 0,003890
3,00 0,056783 | -0,000536 | -0,000783 | -0,000469 | -0,000472
4,00 0,082390 | 0,009433 | 0,009234 | 0,009492 | 0,009490
5,00 0,090048 | -0,004385 | -0,004555 | -0,004333 | -0,004335
6,00 0,145980 | 0,018608 | 0,018461 | 0,018655 | 0,018653
7,00 0,191140 | 0,009150 | 0,009022 | 0,009192 | 0,009189
8,00 0,282350 | -0,010375 | -0,010477 | -0,010342 | -0,010345

Nas Tabelas 4.1 e 4.2 estao os resultados de varias simulagoes de Monte Carlo,
nas quais fixamos o valor do parametro de locacao de tal forma que p 4+ ¢ = 10,
variamos o valor de p e avaliamos o comportamento dos estimadores supracitados
em amostras com tamanhos n = 10 e n = 15. Podemos verificar que os qua-
tro estimadores com vieses corrigidos sao competitivos entre si e todos eles tém
desempenho superior ao de maxima verossimilhanca.

Outra distribuicao de probabilidade de relevancia é a densidade gama. Dize-
mos que uma variavel aleatéria X tem distribuicao gama com parametros o e 3,
ambos positivos, se sua densidade é dada por

x® 1B exp (— )
(o) ’

f(xler) =

com x > 0. Se o parametro « for menor ou igual um, o grafico da densidade
gama tem o formato como o do grafico esquerdo da Figura 4.2, caso contrario,

seu formato é como o do gréafico da direita.



4. AVALIACAO NUMERICA 73

Figura 4.2. Densidades da distribuicao gama.

densidade
densidade

A funcao de verossimilhanca é dada por

fla) =T(a)™"p" (H xl> exp (—BZ@) .

Suponha que o parametro § seja conhecido e desejamos estimar «. Neste caso, a

funcao de log-verossimilhanga e suas derivadas sao

L) = —nlog[[()] +nalog(B) + (a—1) D log(x:) = B3 a1,

L) = —mi(a) +nlog(8) + Y log(a:),

L®(a) = —np*V(a), sek>1.

Um resumo dos resultados das simulacoes de Monte Carlo para o modelo gama
pode ser visto nas Tabelas 4.3 e 4.4. O parametro 3 foi considerado conhecido e de

valor igual a um, o parametro « variou de 0.8 a 10. Utilizamos nessas simulacoes
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Parametro | viés de 6 | viés de 8, | viés de 05 | viés de 07 | viés de 8
a O(n™) | O(n™?) O(n™?) O(n™3) O(n™3)
0,80 0,037953 | -0,003702 | -0,005494 | -0,004584 | -0,003795
1,00 0,043309 | -0,000880 | -0,001900 | -0,000907 | -0,000897
1,50 0,045000 | -0,002238 | -0,003098 | -0,002136 | -0,002145
2,00 0,048607 | 0,000132 | -0,000559 | 0,000271 | 0,000259
3,00 0,054748 | 0,005377 | 0,004908 | 0,005507 | 0,005499
4,00 0,062932 | 0,013266 | 0,012918 | 0,013372 | 0,013367
5,00 0,046020 | -0,003773 | -0,004049 | -0,003686 | -0,003689
6,00 0,050685 | 0,000824 | 0,000597 | 0,000898 | 0,000895
8,00 0,053646 | 0,003721 | 0,003554 | 0,003776 | 0,003774
10,00 0,047370 | -0,002584 | -0,002716 | -0,002540 | -0,002541

Tabela 4.3. Vieses dos estimadores do parametro o da densidade gama, n = 10.

amostras com tamanhos 10 e 15. Todos os estimadores que tém a proposta de
corrigir viés apresentaram desempenho superior ao EMV, além de serem muito
competitivos entre si. Devemos observar que os estimadores 6] e 0, sdo muito
parecidos, principalmente para valores grande de .

No modelo de Poisson descrito nas Secoes 2.7 e 3.2, sendo que o objetivo
é estimar o parametro canonico, apesar de termos expressoes fechadas para os
cincos estimadores, s6 faz sentido estimar os vieses dos estimadores preventivo.
Realizamos diversas simulagoes variando o parametro A com valores entre um
a sete. A Tabela 4.5 apresenta um resumo dessas simulagoes para o caso de
amostras com tamanhos n = 10 e n = 15. Percebemos uma leve superioridade
do estimador #7 para o tamanho da amostra n = 10, por exemplo, quando o
parametro é A = 1,5 temos uma casa decimal de diferenca entre os vieses.

Também foram realizados estudos no modelo binomial, sendo que x ~ B(n, p).
Neste caso, o objetivo é estimar o parametro canonico 6 = log (%) ; € no modelo

geométrico, o qual o interesse esta sobre o parametro = log (1 — p) . As fungoes
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Parametro | viés de 6 | viés de 8, | viés de 05 | viés de 07 | viés de 8
a O(n™) | O(n™?) O(n™?) O(n™3) O(n™3)
0,80 0,029156 | 0,001302 | 0,000847 | 0,001252 | 0,001260
1,00 0,027680 | -0,001815 | -0,002266 | -0,001826 | -0,001823
1,50 0,030852 | -0,000683 | -0,001061 | -0,000637 | -0,000640
2,00 0,029288 | -0,003050 | -0,003354 | -0,002989 | -0,002992
3,00 0,032857 | -0,000063 | -0,000270 | 0,000006 | 0,000009
4,00 0,034346 | 0,001233 | 0,001079 | 0,001279 | 0,001278
5,00 0,032410 | -0,000788 | -0,000910 | -0,000750 | -0,000751
6,00 0,021970 | -0,011271 | -0,011372 | -0,011239 | -0,011240
8,00 0,032478 | -0,000806 | -0,000880 | -0,000782 | -0,000782
10,00 0,042934 | 0,009632 | 0,009573 | 0,009651 | 0,009651

Tabela 4.4. Vieses dos estimadores do parametro o da densidade gama, n = 15.

escore dos modelos binomial e geométrico sao dadas por

nexp(0)

e = -0
(6) 1+ exp(&) M
) _ nexp()
L) = 1— exp(6) + Z o

respectivamente.

Nestes dois modelos, os vieses dos estimadores 5, é\l e 52 nao sao definidos,
similarmente ao caso do modelo de Poisson. Portanto, realizamos simulagoes
de Monte Carlo para comparar os vieses dos estimadores preventivos 0 e 0.
Resumos dessas simulacoes estao apresentados nas Tabelas 4.6 e 4.7, sendo que no
modelo binomial estao apresentados os resultados para amostras com tamanhos
n = 5 e n = 10; enquanto no modelo geométricio as amostras tém tamanhos
n = 20 e n = 25. No primeiro modelo com n = 5, o estimador 6} é superior, porém

quando n = 10, os dois estimadores ficam competitivos. Ja no modelo geométrico,

quando o tamanho da amostra é n = 20, os estimadores sao competitivos e com
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Tabela 4.5. Vieses dos estimadores do parametro canonico da densidade de

Poisson.
n =10 n =15

Parametro | viés de 0 | viés de 6] | Parametro | viés de 60 | viés de 6]
A O(n=2?) O(n=3) A O(n=2?) O(n=3)

1 -0,000676 | -0,000133 1 0,001889 | 0,002105

1,2 -0,003252 | -0,002894 1,2 0,003675 | 0,003819

1,5 -0,000288 | -0,000072 1,5 -0,002283 | -0,002191

1,8 -0,002964 | -0,002817 1,8 -0,001355 | -0,001293

2 -0,003255 | -0,003137 2 0,001144 | 0,001193

2,5 -0,001801 | -0,001728 2,5 0,000290 | 0,000322

3 0,001131 | 0,001180 3 -0,001381 | -0,001360

4 -0,002534 | -0,002506 4 0,001916 | 0,001928

5 -0,001507 | -0,001490 5 -0,000227 | -0,000219

6 -0,001250 | -0,001238 6 -0,001425 | -0,001420

7 -0,000171 | -0,000162 7 0,000441 | 0,000445

uma leve superioridade de 6. Porém, quando n = 25, o estimador ] tem um

desempenho melhor.

4.3 Modelos Biparamétricos

Nesta secao realizamos simulagoes em modelos biparamétricos, em particular, em
modelos com densidades de probabilidades beta. Foram feitas varias simulacoes
de Monte Carlo, todas sempre com dez mil réplicas. Simulamos diversos valores
para os parametros caracterizadores das distribuicoes, assim como utilizamos
diferentes tamanhos de amostras.

Os estimadores avaliados neste trabalho sao obtidos pela maximizagao da fun-

¢ao log-verossimilhanga L(p, q), que na pratica podem ser obtidos por encontrar
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Tabela 4.6. Vieses dos estimadores do parametro canonico da densidade bino-

mial.
n=>5 n =10

Parametro | viés de 0 | viés de 6] | Parametro | viés de 60 | viés de 6]
p O(m™*) | O~ p O(n™*) | O™
0,2 0,769614 | 0,716203 0,2 0,229317 | 0,210326
0,3 0,320291 | 0,282122 0,3 0,049678 | 0,034487
0,4 0,110073 | 0,105753 0,4 0,014187 | 0,010256
0,5 -0,031875 | 0,006015 0,5 0,001470 | 0,018874
0,6 -0,159366 | -0,070086 0,6 20,022954 | 0,030449
0,7 -0,386339 | -0,253204 0,7 -0,071604 | 0,035575
0,8 -0,744097 | -0,570776 0,8 -0,254515 | -0,085245

meétrica.

n = 20 n =25
Parametro | viés de 60 | viés de 6] | Parametro | viés de 0 | viés de 6]
p O(n=?) | O(n™) p O(n=?) | O(n™)
0,1 0,000017 | 0,000086 0,1 -0,000453 | -0,000410
0,2 0,001152 | 0,001439 0,2 -0,000136 | 0,000047
0,3 0,000283 | 0,000977 0,3 -0,000667 | -0,000229
0,4 0,000331 | 0,001664 0,4 -0,000976 | -0,000134
0,5 -0,001370 | 0,000928 0,5 0,000648 | 0,002088
0,6 -0,000681 | 0,003022 0,6 -0,003535 | -0,001184
0,7 -0,002112 | 0,003616 0,7 -0,002363 | 0,001282

dp =0

o zero das funcoes escore, através das equagoes

OL(p, q)

IOL(p, q)
dq

0,

Tabela 4.7. Vieses dos estimadores do parametro candnico da densidade geo-
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Tabela 4.8. Vieses dos estimadores dos parametros p e ¢ da densidade beta,

n = 15.
Parametro | viés de 6 | viés de 07 | viés de 0;
O™ | O(n™) | O(n™)
D 0,10 0,018315 | 0,022217 | 0,034375
q 0,40 -0,254830 | 0,033870 | 0,018531
P 0,15 -0,005010 | 0,008110 | 0,022005
q 0,35 -0,108090 | -0,010738 | 0,012589
p| 020 |-0,022442 | 0,006269 | 0,013969
q 0,30 -0,065074 | -0,002502 | 0,008736
D 0,25 -0,041650 | 0,001026 | 0,009295
q 0,25 -0,043501 | 0,000304 | 0,008634
P 0,30 -0,064496 | 0,004097 | 0,009433
q 0,20 -0,024942 | 0,008464 | 0,013082
P 0,35 -0,107980 | -0,006167 | 0,009926
q 0,15 | -0,009518 | 0,009282 | 0,017631
sendo
OL 0
((31; Q) _ na—logr(p—{—q) —n— log '(p —|—210ng
= np(p+q) —np(p +Zlog:rz,
oL 0
((91;79) — na—logf‘(p+q)—n—logF +Zlog 1—x)

e ¥(-) denota a fun¢ao digama.

= np(p+q) — (g +Zlog1—a:z

Comparamos os desempenhos do EMV é\, do proposto por David Firth 67,

visto na Secao 2.6, e o do estimador 67 proposto neste trabalho.

Todos estes

estimadores sdo obtidos por encontrar o zero das funcoes L', L'+ Ag e L'+ Ay+ Ay,
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Tabela 4.9. Vieses dos estimadores dos parametros p e ¢ da densidade beta,

n = 20.
Parametro | viés de 6 | viés de 07 | viés de 0;
O(n™1) O(n=3) O(n?)

P 0,10 0,023832 | 0,032750 | 0,033427
q 0,40 -0,138500 | 0,035910 | 0,014255
D 0,15 -0,001134 | 0,016074 | 0,018669
q 0,35 -0,069844 | 0,009183 | 0,008610
p| 020 | -0,017847 | 0,003447 | 0,007538
q 0,30 -0,048041 | -0,003720 | 0,002021
D 0,25 -0,027482 | 0,001130 | 0,007586
q 0,25 -0,029162 | -0,000684 | 0,005852
P 0,30 -0,044950 | -0,006858 | 0,004492
q 0,20 -0,017420 | 0,001555 | 0,008690
D 0,35 -0,074934 | -0,012387 | 0,003440
q 0,15 | -0,007660 | 0,006706 | 0,013597

sendo que Aj e A; sao definidos como no Teorema 3.4.1. Os zeros dessas fun¢oes
nao podem ser calculados algebricamente, assim, utilizamos a funcao SolveNLE
disponivel na linguagem de programacao Ox.

Os desempenhos desses estimadores foram avaliados a partir do viés estimado.
Dado que sabemos os verdadeiros valores dos parametros de cada distribuicao,
calculamos a diferenca entre estes valores verdadeiros e os obtidos pelos estima-
dores acima. Ao final do experimento de Monte Carlo calculamos a média das
estimativas de cada parametro e em seguida a subtraimos do verdadeiro valor do
parametro, obtendo, assim, o viés estimado.

No modelo beta, visto na secao anterior, usamos que o parametro g da equa-
¢ao (4.1) era conhecido; agora iremos supor que nao temos informagao sobre

nenhum dos dois parametros. Assim, para empregarmos os métodos desenvol-
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Tabela 4.10. Vieses dos estimadores dos parametros p e ¢ da densidade beta,

n = 295.

Parametro | viés de 6 | viés de 07 | viés de 0;
O(n™) | O(™) | O™

D 0,10 0,024451 | 0,031187 | 0,033786
q 0,40 -0,097027 | 0,000492 | 0,009915
D 0,15 -0,002121 | 0,009546 | 0,014289
q 0,35 -0,051727 | -0,008071 | 0,005383
p| 020 |-0,014100 | 0,002264 | 0,005589
q 0,30 -0,034147 | -0,002006 | 0,003625
P 0,25 -0,021878 | -0,000537 | 0,003733
q 0,25 -0,022049 | 0,000176 | 0,004138
D 0,30 -0,035263 | -0,003879 | 0,001704
q 0,20 -0,014035 | 0,002237 | 0,005502
P 0,35 -0,056865 | -0,007910 | 0,000425
q 0,15 | -0,005942 | 0,006513 | 0,010100

vidos nesta tese necessitaremos fazer uso das derivadas parciais da funcao de

log-verossimilhanca. No caso da densidade beta, as derivadas de segunda ordem

sao dadas pelas expressoes,

d°L(p,q)

9°L(p, q)

9°L(p, q)

op?

Opdq

0q?

2

0
n—;logl’

op?

(p+q)

n'(p + q) — ' (p),

2

2

0
— ”a_p2 logI'(p)

logT"
" 3pq 1% (p+q)
nY'(p +q),
0? 0?
na—q2 logT'(p+q) — na—q2 logI'(q)

nd'(p + q) — ' (q),
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senqo que ¥'(+) denota a fungao trigama. A partir dessas trés derivadas fica facil
encontrar as expressoes para as demais.

Nas Tabelas 4.8, 4.9 e 4.10 estao os vieses estimados dos trés estimadores /9\,
05 e 07. Percebemos que quando o tamanho da amostra é pequeno, n = 15, os
desempenhos dos estimadores sao proximos, porém com uma superioridade do
estimador 67, pois este tem viés menor em muitos casos, por exemplo, quando
p=0,2eq=0,3. Esta superioridade torna-se mais nitida quando n = 25, veja
como exemplo a Tabela 4.10, quando p = ¢ = 0,25, em que o viés de 67 é nulo

até a terceira casa decimal, enquanto que o viés do EMV ¢é nulo s6 na primeira

casa decimal e o viés de 6 é nulo até a segunda casa decimal.

4.4 Consideracoes Finais

Avaliamos o desempenho do EMV 0 e de suas variacoes. Para isso, fizemos uso
da metodologia de Monte Carlo em varios modelos estatisticos e com diferentes
tamanhos amostrais. Dividimos o estudo em duas partes, uma dedicada aos
modelos uniparamétricos e outra aos modelos biparamétricos.

Na estimagao uniparamétrica, em particular nos modelos beta e gama, os
quatro estimadores, 51, 05, 07 e 52, que tém como objetivo reduzir o viés dos
estimador de méaxima verssoimilhanca, apresentaram desempenhos similares. Ja
nos modelos de Poisson, binomial e geométrico nao tém sentido estimar os vieses
do EMV e dos estimadores corretivos (2)\1 e 52, pois 0s vieses ou sao menos infinito
ou nao sao definidos. Comparando apenas os estimadores preventivos, 0 e 67,
fica evidente na maioria das situagoes um desempenho melhor do estimador 6;.

Comparamos os desempenhos apenas dos trés estimadores 5, 05, e 07, no caso
biparamétrico. Quando o tamanho da amostra é pequeno, percebemos claramente
que o estimador 07 é superior, porém a medida que n aumenta os desempenhos
dos trés estimadores tornam-se parecidos, porém, com uma leve superiordade do

estimador 07.
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CONCLUSOES

Em muitos modelos estatisticos, a técnica de estimacao por méxima verossimi-
lhanca conduz a um estimador viesado. Em geral, estes estimadores sao assin-
toticamente nao viesados. Assim, um dos objetivos da inferéncia estatistica é
desenvolver metodologias de estimacao que produzam estimadores com vieses
cada vez menores. Ou seja, estimadores com vieses corrigidos.

Héa varios anos muitos trabalhos relacionados a correcao de vieses foram pu-
blicados. Destacamos o artigo apresentado por David Firth, nele é proposta uma
técnica de correcao de viés em EMVs, que consiste em fazer uma translacao na
funcao escore, de tal maneira que o zero desta funcao transladada ¢ um estimador
cujo viés tem ordem de magnitude O(n~2). Podemos assim dizer que esta é uma
técnica preventiva de correcao de viés, ji que antes de estimar o parametro se
faz a correcao do viés através de uma translacao da funcao escore, diferentemente
das metodologias nas quais estima-se o viés e em seguida subtrai-se do estimador,
como € o caso dos estimadores 51 e 52.

Foi apresentada por Bartlett uma expressao para uma aproximacao do viés do
EMV até ordem O(n’%). Com base nessa expressao, generalizamos para o caso
uniparamétrico a ideia de transladar a funcao escore, proposta por David Firth.
Esta generalizacao consiste em fazer sucessivas translacoes na fungao escore, senqo
que a primeira translagao é exatamente a que David Firth sugeriu. Assim, obte-
mos uma sequéncia de estimadores, sendo o primeiro elemento o EMV, cujo viés

tem ordem de magnitude O(n™'), o segundo ¢ 6}, com viés de ordem O(n~?),

82
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o terceiro ¢ 0}, o qual tem viés da ordem de O(n=3), e o k-ésimo elemento tem
viés com ordem O(n~*). Ou seja, iniciamos a sequéncia com o EMV e a cada
translacao da fungao escore obtemos um novo estimador, cujo viés tem a ordem
de magnitude diminuida de O(n=*) para O(n=**Y) com k = 1,2, . ...

Por meio de simulagoes de Monte Carlo, avaliamos no espago uniparamétrico,
os desempenhos de cinco estimadores. Sao eles: 0 EMV 6A’, o estimador de segunda
ordem 51, o proposto por Firth 6;, o estimador apresentado nesta tese 07 e o

elaborado por Ferrari et al. 5. Desta forma, chegamos as seguintes conclusoes:

1. Para amostras de tamanho pequeno, aproximadamente n = 15, exceto o
EMYV, estes estimadores muitas vezes sao competitivos entre si, pois apre-

sentam vieses muito proximos.
2. Os estimadores 07 e 62 sao os que apresentam mais similaridade.

3. Nos modelos beta e gama os estimadores 07 e 6, apresentaram uma leve

superioridade no seu desempenho em relacao aos demais estimadores.

4. Nos modelos de Poisson, geométrico e binomial nao faz sentido calcular o
viés médio para os estimadores 5, «/9\1 e 52, pois o viés ou é menos infinito,
como no caso do modelo de Poisson, ou nao é definido. Assim, os estima-
dores 6 e 07 sao boas alternativas para se produzir um estimador cujo viés

tem ordem de magnitude O(n~3).

5. Em geral, desde que estejam satisfeitas as suposicoes S1 a S9, o estimador
0] é uma boa metodologia para se obter estimadores com vieses com ordem

de magnitude O(n=3).

Expandimos esta medologia para os casos biparamétrico e multiparamétrico.
Para o caso em que o parametro da populacao pertence ao espago biparamétrico,
fizemos simulacoes de Monte Carlo com o intuito de avaliar apenas os estimadores

8, 05 e 07. Concluimos que:

1. Os estimadores com vieses corrigidos, em geral, apresentam desempenho

melhor que o EMV.
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2. Os estimadores 6 e 07 sao competitivos entre si, porém, ha uma evidente
superioridade do estimador 67, proposto neste trabalho, para tamanhos pe-

quenos da amostra.

3. A metodologia empregada na construcao do estimador 67 é uma boa alter-

nativa para produzir estimadores cujo viés seja da ordem O(n~?).

Nesta tese realizamos corregoes de vieses de alta ordem em EMVs. A ideia
principal deste trabalho é que em vez de maximizar a funcao verossimilhanca,
encontramos o zero da funcao escore transladada. Assim, deixamos como sugestao
para um trabalho futuro tentar empregar esta metodologia em outras técnicas
de estimacao que se baseiam em encontrar zero de funcoes, como por exemplo,

estimacao por minimos quadrados.
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Apéndice A
Expansao da Equagao (3.3)

Com o auxilio da Tabela 3.1 podemos expandir a equacao (3.3) até k = 5, assim,

b= 0,(n"2):
Ly
=
by = Op(n_%>:
_ ULEE+D) | ZWOLILE+ D) —(Lh) (= Ly)
2 2 213
_ LL(@a+T)  (Ly)°Ly
2 213

S5L4(Ly + 1) 9L (Ly+1)* | 45L4(Lj + 1)

I3 I3 I3
SULALELG+ ) | SEHLY)Ly+ 1) | (L) oy
214 214 61°
Li(Ly+1? | 3(LuPLy(Ly + 1) | (Ly)°Hag
I3 214 615

Por exemplo, para o caso em que h = 0, temos Lj = L' + Ay.

B — (L' + Ao)(L" + Ay + I)? N 3(L'+ Ag)*(L" + Ap)(L" + Ay + 1)
9=

I3 214
(L + A [B(L" + A — (I -+ A5) (1" + A7)
615 '

91
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Como b3 = b+ BY, retirando-se da equagao anterior os termos pertencentes

a b3, temos que

By

by = Op(n~2):

5

L RANL + 1) + (Ap)?] | Ao(L" + Ay + 1)?
_l’_
g g
B(L)2L" Ay | 3(L)2AG(L" + Ay + 1)

o1t T o7
3(2L/ Ag + A2)(L" + ADY(L + AL + 1)

274
(I')? [BRL" Af + (Ag)°) — LAY — AY(L* + A)]

61°

[3(L)?Ag + 3L/ A% + AF] [B(L" + Aj)* — (L” + Ap) (L™ + AY)]

615

165L4(Lj + I)* | —440L, (Ly + 1)* 396 L4, (L + 1)°

14 I4 e

—120L5, (L}, + [)3 N —55(L;L)2(—LZ’)(LZ + 1)2

14 215
TT(L,)* (=L (Ly, + 1) n —28(Ly,)* (= Ly )(Ly 4+ 1)?

215 215

11(Ly,)* Hhs(Ly + 1) n —6(Ly,) Hhs(Ly, + 1) N —(L},) Hhy

616 616 2417
Li,(Ly +I)® n 6(Li,) %Ly (Ly, +1I)? n 5(Ly,)%Hhs(Ly, + I)

T4 215 616
(Ly,)*Hhy
2417

330L4(Ly + I)* | —S5LL(Ly + D) | 1540L4 (L} + 1)

e e e

—9ULL(LY+ 1) 200L (LY + 1) —165(L) (L) (Lf + 1)’

e e 216

330(L3)* (= Li) (L + 1)° | =231(L5)* (= Ly) (Lj + I)°

216 216

S6(L5)*(=Li)(Lh + 1)* | 55(L4)" Hhs(Ly + I)°

216 617

—55(Ly,) s (L + 1)* | 15(L)* Hhs(Lj + 1)°

617 617

UL Hu(Ly + 1) | AL Hu(Ly+ 1) | (L) Hhg

2413 2418 1207°

Li(Ly +1* | 10(LL)*(~Li)(Ly+ D® | 15(L;)*Hhg(Lf + 12

I5 216 617
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7(Li)*Hhy(Lj +1) | (L;)°Hhs
2418 1201°

Para completar essa expansao precisamos encontrar os Hh;’s, sabemos que

Hhy =1eque Hh; =l L} — (2i — 3)L} Hh;_y, assim teremos,

e th; =1.

o Hh, = —L}.

e ths = 3(L}")? — L"LY. Logo temos que Hy = 5L} L — L) LY.

e th, = 10L{LyLY — (L})2LY — 15(L}’)3. Pois,

iy = (SLYLY — TIRLE — (8 = 3)LY (L) — LLLY)
= BLYLYLY — (L))?LY — 15(L}))® + 5L} L)LY
= 10LYLY)LY — (L})*LY — 15(L}))3.
Da mesma forma, sua derivada é dada por

I,

10 {(LRYLY + L4 [(R)° + L) = 2L L
= (Ly)*Ly’ — 45(Ly)" Ly
= 10(Ly)*Ly’ +10Ly(Ly")? + 10Ly Ly’ Ly — 2Ly L' Ly,
= (Ly)*Ly’ — 45(Ly)* Ly

= =35(LY)2LY + 101y (L) + SLYLY' Ly — (L)LY

o Hi; = —105L{ (Ly)?LiY 4+ 10(Ly)*(L{¥)? + 78(Ly,)*Ly/Ly, — (Ly)*Ly!
—105(L{")*.

Seguindo o algoritmo, temos

= =B5Ly(LY 2Ly + 10(Ly) 2 (L) + 8(Ly) 2Ly Ly — (Ly) Ly
— TOLY(LY)2L™ + 70(L))* Ly LY + 105(Ly)*
= —105LY(L;) Ly + 10(Li)*(L3)? + T8(L3)* Ly Ly, — (L5)° L

— 105(L)H*



Apéndice B

Valores Esperados de Poténcias da

Funcao Escore

Observe que, de forma geral, temos que

foi| _ [ [0
E[f}‘/ffdm‘ daap!

02 02
B 0adf {/fd:c} - 5’0485[1] =0

Assim, temos que

s - afg] - [ [4]

= E[%—f}fﬁ] = —E[LoLg].

Da mesma forma temos que

o - sfg] - 2 [4]
. {fw fola

N ?} = —E[LoLd].

o - ol o[ -4]

- E -faﬁa _ faﬁfa _ |:faaf6+fafga _ 2f3f@j”
L/ f? f? f3

_ -_ fozﬁfa N faafﬁ fgf5:|

SR TR
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_ g |-orto Lﬁ% + 202 L

f
= E[—2Lq[Lag+ LoLg] — Lg [Laa + L2] +2L2 L]

= E[-2LoLap — LgLaa — L2 Lg] .

Ou seja,

E[L2Ls] = —2E[LaLas] — E[LgLoa) — E[Laag] -

Com o intuito de simplificar os célculos, considere o caso onde a matriz L”

nao é aleatoria. Observe que

Jas

f = Laﬁ + LQLB.
Se derivarmos f”‘Ta em relacao a o temos
fOéCYCY faafa
= + Laaa + 2LaLaa
S I?

= (Laa+L%) Lo + Loaa + 2LaLaa

Lz + Laaa + 3LaLaa-

Derivando em relacao a § a expressao I “f<, temos que

faaaﬂ focaafﬁ
- g T 3L Lap + Laoas + 3LagLaa + 3LaLaag

= (L} 4 Laaa +3LaLaa) Lg + 3L Lag + Lagas + 3LapLaa + 3LaLaags-

Calculando o valor esperado dessa expressao obtemos

E [L? L] —3E [LaLgLaa) — 3E [L2 Lag] — Lacas — 3LagLaa

- SLaBLaa - Laaaﬂ-

Derivando em relacao a 8 a expressao f“‘T"‘ temos que

faaﬁ
f

= LgLoa+ L2Lg+ Laap + 2LaLag.
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Assim,
% = (LgLoa + L2Lg + Laop + 2LaLag) Ls + LggLao + LsLaas
+ 2LoLgLog+ L2Lgg + Loags + 2LapLlap + 2LaLagp.
Logo,
E[L2L3] = LaaLgs+2L% — LaaLss + 2L+ LaaLgps — Laaps — 2L25

= LaaL,BB + 2[435 — Laaﬂ,@-



Apéndice C

Derivadas da Funcao Inversa da

Funcao Escore

Seja a fungao H(Hy, Hs) a inversa da fungao escore L'(«, ) = (Lq, Lg), entdo,

H = inv(L")™!
Lgg  —Lap | 1
_Lﬁa Lo |L”|‘

A derivada da matriz H' em relagdo a L’ é dada por

OHy  OH,
9Lo OL

H(L@O) = | . o
dL. OLg

Adicionalmente,

H'(LO) = | 2 2|

OLo. OLg

9%H, 9%H, 9%H, 9%H,
o oL2 OLaOLg  OLgOLq 8[%

9%Ho 9%H> 9%Ho 9%Ho

OLZ  DLadls 0LgdL. 0L}

Podemos simplificar essa derivada da seguinte formas:

97
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o’ = “%%H%ZN Eﬂ+ﬂﬂ]v

H" = [ng+ng ~ Hly+ Hjuw }

H™ = [ Hl'v+Hyz ~ Hl'y+ Hjw } !
%:Z[%J+%%+%J+%%“’%J+%%+%W+%% ’
s [ Mot M Mo Mo My 1, e+ i~

H(;aay + Hézaya + H&ayoé + H&yaa + Héaoéw + H/éawa + Héawa + Héwaa :| )

"

of = | Hiop® + H\ows+ Hlgro + Hxop + Hpo g2+ Hp 25 + Hygzo + Hizap  ~

H('mﬁy + H! ys + H(;Bya + H yop + Héaﬁw + H/gawg + Héﬁwa + Héwag } ,

%::[ﬂﬂ+%%+%ﬂ+%%“J%W+%W+%W+%W]’

[}

[0}

H] = Hi, v+ Hyro + Hj 2 + Hgzo ~ Hjy+ Hiys + Hg,w+ gwa],
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Hg' = | Hlsw+ Hlzg+ Hjsz + Hjzg ~ Hlgy+ Hlys + Hijgw + Hjwg | -
Outras derivadas utilizadas ao longo do texto sao:

IL"| = Laalgs —2L2,
‘L/lla = LaaaLﬁﬁ + LaaLﬁBa - 2La,8aLaﬁ7

IL"ls = LaapLpp + LaaLpps — 2LapsLag;

IL"lap = Lacaplpp + LacaLpps + LaapLppa + LaaLlppap — 2Lapaslap — 2LapaLlass;

’L”|aa = LozaaozL,BB + LaaaLBBa + LaaaLBﬁa + LaaLB,Baa - 2La,8aaLa5 - 2[/25@

LaaaaLﬂ,B + 2Lo¢ao¢Lﬂﬁo¢ + LaaL,B,Baa - 2La6aaLaﬁ - 2Liﬁo¢7

|L”|aaﬂ = LaaaaﬂLﬁB + LocaaocLﬂ,B,B + 2Laaa6Lﬂ,3a + 2Lao¢aLﬂ,6’aﬁ + Laa,BLﬁﬁaa

+ LaaLBBaaB - 2Laﬁaa[3Laﬂ - 2LaﬁaaLaﬁﬂ - 4LaﬁaLaﬂaﬂ7

‘L”|ozo¢a = LaaaaaLﬁﬁ + LaaaaLﬁ,Ba + 2LaaaaL,8ﬁa + 2LaaaL,3,8aa
+ LaaaLﬁBaa + LaaLﬁ,Bocoza - 2Lo¢ﬁo¢o¢aLo¢,3

+ _2La6aaLa,Ba - 4La6aLaﬁaaa

|L//‘aaa = LaaaaaLB,B + 3LaaaaLﬁBa + 3LaaaL,B,8aa

+ LaaL,B,Baaa - 2Lo¢5ao¢o¢La6 - 2La[3aaLaﬁa - 4LaﬁaLa6aaa
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IL"|s8 = LaassLlss + LaasLsss + LaapLsps + LaaLlssss — 2LapspLlas — 2LapsLaps

= LaappLss + 2LaasLpps + LaaLpsss — 2LagpsLap — 2L 55,

IL"|gsa = Laapsalss + Laasslssa + 2Laapalppp + 2LaapLpppe + LaoaLlssss

+  LaaLpgpppe — 2Lapppalas — 2LappsLapa — 4LapsLapsas

IL"|s88 = LaappsLlps + LaopsLpps + 2LaapsLppp + 2LaasLssss

+

LaapLppps + LaaLpppss — 2LapsssLas

+

—2LapppLaps — 4LapsLapps:

IL"|sss = LaappsLlps + 3Laasslsss + 3LaapLspss

+  LaaLlppsss — 2Lappsslas — 2LapspLlaps — 4LapsLapss-

As derivadas parciais de H' sao

o= | Do “lasa| 1 /1L

* _Laﬁa Laaa ‘L”‘ ‘L”’ ‘

Uma notacao alternativa é definir a matriz

V- Lgg  —Lag
_Laﬁ Laa
Assim,
M
H =
||’
Mo HD

o« - i
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Moo = Ho| Lo — H'|L"| a0 — Hy | L |o

H/
ax |L//|
Moo —2H! |L"|, — H'|L" | e
|L"| ’
, Mg — Hp|L"|o — H'|L"[ap — H,|L"|3
aB T |L”| )
, Maga — Hp [L"|o — H|L"|aa — H L |ap — H'|L"|aga
afa T |L//|
o T HaalLls ~ HyL g = Hy| L

|| ’

, Meps — Hpgg| L |0 — Hp|L"|op — Hp|L"|op — H'|L"|app
aBp T |L”|
—H5|L"|g — H|L"|35 — H},g|L" |3

|| ’

Mags — Hgg|L"|o — 2Hp|L" |ap — H'|L"|app — 2Hys| L" |5 — HLIL" |5

;55 = |L”|

Maaa _ 2H&a|LN|a _ 2H<I)¢|L//|oca - H&|L”|aa B HI|L//|aa0c _ H&alL”|a

oo |L/,|
_ M(;/aa — 3H(/m|L”’a — 3H&’L”|aa — H,|L”‘aaa
- |L”| ’
, Maap = 2H5|L" |0 — 2H,|L"|ap — Hp|L"|aa — H'|[L"|aap — Heol L"|s
aaB T ‘L//l ’
Mg — H'|L"|g
Hé = |L”’ ’

Mpgg — 2HG|L" |5 — H'|L"|5

/
Hﬂﬁ = ‘L/ll )
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g Mgpg — 3Hps|L" |5 — 3HG|L"|pg — H'|L" |55
BBB |L//| :

Para calcular Ry, observe que

A 1 |L”|a~
0 "
2|L ‘ |L//|,B
Portanto,
IL"aa 2
AOa = 2’L//| - 2A07
B o |L//|/86 232
[L"]ag
AOB - 2|L/,| - 2A0B0a
BOoz - AOﬂ?
B —A 1 R
Re(0) = e —

“Bow Ao |1 1L+ R

Para calcularmos R.(0) precisamos encontrar sua derivada em relagao a o e

a (. Assim, temos que

" "
1L aaa_ [L"]aalLla

Avaa = 2[L"] 2Lz 440/0a
|L//|atm 2
= o (o 248240 — 440 Aua,
p
Appa = |g’ |L°j/“|a — 4A% — 640 Ao,
|L" 588 3
Buss = gt — 454 = 6BoBos,
|L"‘aa6 2
Avs = 5l = 20uBio — 4438y — 4o,
IL" |80 >
Boga = =85 _94,Bys — 4AgB2 — 4By By,

2|L”‘



C. Derivadas da Fungao Inversa da Fungao Escore

103

L// o
Aogs = % — 4Aog By — 440 Bf — 2A¢Byg,
|L//|a6a )
AOﬁa Y — 4AOA0ﬁ — 4AOBO — 2A0a807
BOaa = AO,B@,
BOaﬁ = Aoﬁﬂ.

Como Ags = By € Lag = Lga, temos que Ry é dado por

Ry = AoaLps + BogLoa + AvaBos — AosLsa — BoaLlas — AopBoa

= AoaLpp + BogLaa + AvaBosg — 2A08Lsa — AopBoa-

Logo sua derivada em relacao a o é

ROoz = AOaaLﬁﬁ + AOaL,Bﬁa + BOﬁaLaa + BOﬁLaaa + AOocaBOB
+ AOaBOBa - 2AOBaLBa - ZAOBLﬂaa - AOﬂaBOa - AOBBOaa'

A derivada em relacao a g3 é

ROB = AOaﬁLﬁg + AOQngg + BO,BBLaa + ngLaag + AoagBog

-+ AOaBOﬁ,B — 2A055Lﬁa — 2A05L5a5 — AOB,BBOa — AOﬁBOaﬂ-

Para calcular a derivada de R.(0) defina a seguinte matriz:

ma = | P o
_BOa AOa
Logo,
MA Ry
Re(0) = — H'.
O = TR
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Portanto
MA, MAL" . [ Roa L] + Roa | Ro
Re (O>a L' 'z | R o I 2 H' — L R Hf/l’
|| L] LIL"]+ Ro  (|L”| + Ro)* L] + Ry
MAz  MA|L"[s [ Rop L] + Rog | Ry
RE(O)B - " - L2 B " - 1 2 H' — L Hé
L] || LIL"[+ Ry (|L”| + Ro)* ] L] + Ro

Logo a derivada de R.(0) em relagao a L’ é dada por,

1
R,(0) = 07 [Re(0)aLss — Re(0)sLap, —Re(0)aLpa + Re(0)sLaql -



