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Resumo

A técnica de estimação por máxima verossimilhança é uma das metodologias mais
utilizadas na área de Estatística. Em determinados modelos, esta técnica produz
um estimador viesado ou assintoticamente não-viesado. No último caso, a ordem
de magnitude dos vieses desses estimadores é em geral O(n−1) e seu desvio padrão
na ordem de O(n−1/2). Por esse motivo, esses vieses não são levados em conta em
amostras de tamanho grande. Porém, em pequenas amostras esse viés na estima-
ção pode ter um signi�cado importante. Assim, o estudo sobre diminuir o viés
do estimador de máxima verossimilhança torna-se bastante relevante em diversas
áreas, tais como, medicina, farmácia, biologia, entre outras, que necessitam de
precisão e ao mesmo tempo trabalham com amostras pequenas.

Durante décadas, muitos artigos foram publicados na área de correção de viés,
utilizando diversos tipos de modelos e técnicas de estimação. Neste trabalho, pro-
pomos uma técnica de correção de viés baseada em uma sequência de translações
da função escore, de forma que a primeira translação é exatamente a que Da-
vid Firth propôs, ver [18]. Para isso, usamos inicialmente a expansão de Taylor
do estimador de máxima verossimilhança para realizar a primeira translação, o
zero desta função transladada é o estimador θ∗0, que é o estimador proposto por
Firth. Com a expansão de Taylor deste estimador, realizamos outra translação
na função escore já transladada, encontrando o estimador θ∗1. Sob determinadas
condições de regularidade, o viés deste novo estimador tem ordem de magnitude
O(n−3). Repetindo esse processo k-vezes, obtemos um estimador cujo viés tem
ordem de magnitude O(n−k), para k = 1, 2, . . . . Realizamos várias simulações de
Monte Carlo em uma grande variedade de situações e de modelos estatísticos.
No caso uniparamétrico, comparamos o desempenho do estimador θ∗1 com o es-
timador de máxima verossimilhança θ̂, com θ∗0, com θ̂1 visto na equação 2.18 e
com o estimador θ̃2 proposto por Ferrari et al [17], que pode ser visto na equação
2.19. No caso biparamétrico, comparamos o estimador θ∗1 com os estimadores θ̂
e θ∗2. Os resultados das simulações mostram que esses estimadores, cuja proposta
é de corrigir viés, são competitivos entre si, mas há uma leve superioridade dos
estimadores θ∗1 e θ̃2. No caso biparamétrico é mais evidente a superioridade do
estimador θ∗1, para n pequeno.
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Abstract

The technique of maximum likelihood estimation is one of the most used metho-
dologies in the �eld of Statistics. In certain models, this technique produces an
estimator asymptotically biased or non-biased. In the latter case, the order of
magnitude of the bias of these estimators is generally O(n−1) and their standard
deviation has order O(n− 1

2 ), when n is the sample size. For this reason, these
biases are not taken into account for large sample size. However, in small samples
this bias in the estimation may have important meaning. Thus, the study of the
bias of the maximum likelihood estimator becomes very important in many �-
elds such as medicine, pharmacy, biology, among others, requiring precision while
working with small samples.

For decades, many articles have been published in the area of bias correc-
tion, using various types of models and estimation techniques. In this thesis, we
propose a technique for bias correction based on a series of translations of the
score function, where the �rst translation is exactly what David Firth proposed,
see [18]. For this, we initially use the Taylor expansion of maximum likelihood
estimator to perform the �rst translation, the zero of the modi�ed score function
is the estimator θ∗0, that is the estimator proposed by Firth. With the Taylor
expansion of this estimator, we performed another translation in score function
already modi�ed, �nding the estimator θ∗1. Under certain regularity conditions,
the bias of the new estimator has order of magnitude O(n−3). Repeating this pro-
cess k-times, we obtain an estimator whose bias has order of magnitude O(n−k),
for k = 1, 2, . . . . We conducted several Monte Carlo simulations in a variety of
situations and statistical models. In the one-parameter case, we compare the
performance of the estimator θ∗1 with the maximum likelihood estimator θ̂, with
θ∗0, with θ̂1 seen in equation 2.18 and with the estimator θ̃2 proposed by Ferrari
et al [17], hich can be seen in equation 2.19. In the two-parameter case, we
compare the estimator θ∗1 with the estimators θ̂ and θ∗0. The simulation results
show that these estimators, whose proposal is to correct bias, are competitive
with each other, but there is a slight superiority of estimators θ∗1 and θ̃2. In the
two-parameter case it is most evident the superiority of the estimator θ∗1, for
small n.
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Capítulo 1

INTRODUÇÃO

Um modelo estatístico pode ser carecterizado por um ou mais parâmetros, as-

sim um dos objetivos da inferência estatística é estimar esses parâmetros. Uma

técnica de estimação muito utilizada é estimação por máxima verossimilhança,

que consiste em maximizar a função de verossimilhança com relação aos seus

parâmetros. O estimador obtido a partir desta técnica é denominado estimador

de máxima verossimilhança (EMV), representado neste trabalho por θ̂. Em mui-

tos casos esse estimador é viesado, com viés da ordem O(n−1) e desvio padrão

com ordem de magnitude O(n− 1
2 ). Em geral, quando a amostra tem um tamanho

grande, esse viés não é levado em conta, porém em amostras pequenas o EMV

pode produzir estimativas com valores signi�cativamente diferentes do verdadeiro

valor do parâmetro do modelo. Nesta conjutura, uma área de bastante interesse

na estatística é a correção de viés e que é objeto de estudo deste trabalho.

O ponto de máximo da função de verossimilhança corresponde ao zero da

função escore, então, uma técnica de correção de viés foi proposta por David Firth

[18], que consiste em transladar a função escore, de forma que θ∗0 zero desta nova

função transladada é o EMV com viés corrigido. Podemos dizer que é feita uma

correção de viés preventiva, pois, antes de estimar o parâmetro é feita a correção

de viés, diferentemente de muitas técnicas em que estima-se o viés e depois o

subtrai do estimador de máxima verossimilhança. Por exemplo, o estimador de

segunda ordem θ̂1 e o estimador de terceira ordem proposto por Ferrari et al.

[17], que podem ser vistos nas equações (2.18) e (2.19), respectivamente.

1



1. INTRODUÇÃO 2

Dada a expansão de Taylor da função escore em torno de θ∗0, a proposta de

David Firth consiste basicamente em retirar o termo de primeira ordem do viés de

Cox & Snell. Inspirados nessa ideia de translação da função escore e com base na

expressão (2.4), apresentada por Bartlett [2], propomos no espaço uniparamétrico

uma técnica nova de estimação, de modo que o estimador obtido tenha viés de

ordem de magnitude O(n−k), para k = 2, 3 . . . . Essa nova metodologia de estima-

ção, proposta nesta tese, consiste basicamente em fazer sucessivas translações na

função escore, sendo que a primeira translação é exatamente a que David Firth

propôs. A segunda translação tem como objetivo retirar os termos de segunda

ordem do viés do estimador θ∗0. O zero da função escore transladada pela segunda

vez é o estimador θ∗1, cujo viés tem ordem de magnitude O(n−3). Repetindo este

processo de translação k vezes, obtemos uma sequência de estimadores, tal que os

três primeiros elementos são θ̂, θ∗0 e θ∗1, que têm vieses com ordem de magnitude

O(n−1), O(n−2) e O(n−3), respectivamente; e o k-ésimo elemento da sequência

sendo um estimador cujo viés é da ordem O(n−k).

Generalizamos esse raciocínio para o espaço biparamétrico. Dada a função

escore biparamétrica L′(θ), utilizamos a expansão de Taylor do EMV, em torno

do ponto L′(θ̂) e propomos uma translação na função escore. Provamos que essa

translação é exatamente a translação proposta por David Firth. Assim, o zero

desta função transladada é o estimador θ∗0. A seguir, dada a função escore trans-

ladada L0(θ), fazemos a expansão de Taylor do estimador θ∗0, em torno do ponto

L0(θ
∗
0) e propomos uma translação na função L0, cujo zero é o estimador θ∗1,

que tem viés com ordem de magnitude O(n−3). Repetindo esse processo k vezes,

obtemos, como no caso uniparamétrico, uma sequência de estimadores, cujo k-

ésimo elemento é um estimador cujo viés tem ordem de magnitude O(n−k), para

k = 1, 2, . . . . Nestes termos, esta técnica foi estendida para o caso multiparamé-

trico.

Com o intuito de avaliar o desempenho do estimador θ∗1, no caso uniparamé-

trico, comparamos este estimador com os estimadores θ̂, θ̂1, θ∗0 e θ̃2. Já para o

caso biparamétrico, o comparamos apenas com os estimadores θ̂ e θ∗0. Para isso,

realizamos simulações de Monte Carlo em uma grande variedade de modelos esta-
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tísticos e em uma grande diversidade de situações. Em cada simulação de Monte

Carlo, calculamos o viés estimado de cada estimador, ou seja, simulamos dez mil

réplicas de Monte Carlo e calculamos a média dos vieses desses estimadores.

Concluímos no caso uniparamétrico que, apesar desses estimadores serem com-

petitivos entre si, há uma leve superioridade dos estimadores θ∗1 e θ̃2, inclusive

há uma grande similaridade entre estes dois estimadores. Percebemos, que em

alguns casos, como nos modelos Poisson, binomial e geométrico, pode não fazer

sentido a estimação corretiva, pois, dependendo do parâmetro a ser estimado, o

viés pode ser menos in�nito ou até mesmo nem existir. No caso biparamétrico,

a superioridade do estimador θ∗1 torna-se mais evidente, apesar de θ∗0 e θ∗1 serem

competitivos entre si.

Esta tese de doutorado está dividida em cinco capítulos, sendo que no Capí-

tulo 2 estão os conceitos básicos abordados ao longo do texto, além de um resumo

de trabalhos publicados em correção de viés. Neste capítulo demonstramos a ex-

pressão (2.4), proposta por Bartlett, mas não demonstrada em seu artigo, ver [2].

Demonstramos a expressão para o viés de Cox & Snell, assim como demonstramos

as expressões para os estimadores θ̂1, θ∗0 e θ̃2.

Em seguida, no Capítulo 3, generalizamos a expressão (2.4), apresentada por

Bartlett. Ou seja, expandimos o estimador obtido para encontrar o zero da

função escore transladada em parcelas com ordem de magnitude Op(n
− i

2 ), até o

termo residual ser da ordem Op(n
− k+1

2 ), para k = 2, 3, . . . . Este resultado está

apresentado no Teorema 3.2.1 e através dele propomos o estimador θ∗1, cujo viés

tem ordem de magnitude O(n−3). No Teorema 3.3.1 apresentamos uma sequência

de estimadores uniparamétricos, cujos vises têm ordem de magnitude O(n−k),

para k = 1, 2, . . . . Generalizamos essa sequência para o caso biparamétrico, que

pode ser visto no Teorema 3.4.1, e para o caso multiparamétrico, ver o Teorema

3.5.1.

Os resultados das simulações de Monte Carlo estão apresentados no Capítulo

4. Já no Capítulo 5 temos as conclusões desta tese, assim como sugestões para

trabalhos futuros.

No Apêndice A expandimos a equação generalizada de Bartlett até o quinto
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termo. Nas implementações das simulações de Monte Carlo usamos expressões

fechadas para o valor esperado de potências da função escore, estas expressões

são dadas no Apêndice B. A expansão de Taylor dos estimadores θ̂ e θ∗0 foi

feita a partir das derivadas da função inversa da escore. Estas derivadas podem

ser calculadas por meio de derivação implícita, sem necessariamente encontrar

a expressão algébrica da função inversa. Assim, colocamos no Apêndice C as

derivadas da função inversa da função escore.

As simulações deste artigo foram realizadas usando a linguagem de progra-

mação matricial Ox, que pode ser obtida no endereço http://www.doornik.com.

Os grá�cos foram construídos usando o ambiente grá�co e de programaçao R,

disponível gratuitamente no endereço http://www.r-project.org.



Capítulo 2

CONCEITOS BÁSICOS

2.1 Introdução

Em geral, o EMV tem viés de ordem O(n−1) e desvio padrão de ordem O(n− 1
2 ).

Assim, em amostras grandes, este viés normalmente não é considerado. Porém,

no caso de amostras pequenas, o estimador pode divergir signi�cativamente do

verdadeiro valor do parâmetro. Neste contexto, o estudo sobre correção de viés

do EMV torna-se uma área de pesquisa de bastante interesse, pois é uma técnica

voltada para diminuir o erro de estimação.

Uma técnica de correção de viés foi proposta por Firth [18], que consiste

em fazer uma correção preventiva e para isso ele sugere fazer uma translação na

função escore. Inspirados na generalização da equação (2.4) proposta por Bartllet

[2], usamos a expansão de Taylor da função inversa da função escore para propor

uma nova técnica de estimação, que consiste em generalizar a ideia desenvolvida

por Firth, no sentido de desenvolver sequências de estimadores com vieses de

ordem de magnitude O(n−k), para qualquer k = 3, 4, . . . .

Com o intuito de desenvolver estes novos estimadores, realizamos neste ca-

pítulo um resumo sobre a teoria de correção de viés, no qual damos um breve

histórico dos casos estudados, de�nimos os principais conceitos sobre o assunto,

realizamos um estudo aprofundado em dois estimadores cujos os vieses têm or-

dens de magnitude O(n−2) e O(n−3), propostos, respectivamente, por Firth [18]

e por Ferrari et al. [17], e detalhamos uma equação desenvolvida por Bartlett [2],

5
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que é base desta tese de doutorado.

Este capítulo está dividido da seguinte forma: na Seção 2.2 resumimos bre-

vemente os casos já estudados sobre este tema; na Seção 2.3 estudamos a teoria

sobre estimação por máxima verossimilhança e ordem de magnitude; já na Seção

2.4 demonstramos a equação de Bartlett, equação (2.4), sob determinadas condi-

ções; na Seção 2.5 discutimos os resíduos de Cox & Snell; por �m, nas Seções 2.6

e 2.7 apresentamos, respectivamente, o estimador proposto por Firth [18], base-

ado na translação da função escore, para o qual o viés é O(n− 3
2 ) e o estimador

proposto por Ferrari, Botter, Cordeiro & Cribari-Neto [17], cujo viés tem ordem

de magnitude O(n−3).

2.2 Histórico

Nesta seção fazemos um breve histórico dos casos envolvendo correção de viés do

EMV já estudados.

Começamos pelo ano de 1953, onde Bartlett [2] apresentou a equação (2.5),

que é uma expressão para o viés de ordem O(n−1) do EMV no caso uniparamé-

trico. Esta expressão é estudada na Seção 2.4, a qual demonstramos e colocamos

condições de regularidade para que ela tenha validade.

Entre os anos de 1953 e 1956, foram apresentados por Haldane [22], Haldane

& Smith [23], vieses de ordem O(n−1) para o caso biparamétrico. O caso geral

para a expressão do viés de segunda ordem do EMV foi apresentado em 1968

por Cox & Snell [13]. Na Seção 2.5 demonstramos com detalhes essa expressão e

assim como para a equação de Bartlett colocamos condições de regularidade para

validar essa expressão. Essas condições de regularidade são generalizações, para

o caso multiparamétrico, das condições constantes na Seção 2.4.

Em 1971, Box [4] calculou o viés de ordem O(n−1) em modelos não-lineares

multivariados com matriz de covariâncias conhecida. Em 1980, Pike et al. [39]

utilizaram modelos lineares logísticos no estudo da correção de viés; Young &

Bakir [54] estudaram modelo de regressão log-gama generalizado; Cordeiro &

McCullagh [9] obtiveram o viés de segunda ordem para modelos lineares generali-
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zados; Ferrari et al. [17] restringiram-se ao caso de modelos na família exponencial

uniparamétrica e obtiveram vieses de segunda e terceira ordem para o estimador

de máxima verossimilhança. Nesse artigo, eles encontram fórmulas fechadas para

os coe�cientes desses vieses e de uma expansão assintótica para a variância do

EMV. Um estudo detalhado desse artigo é realizado na Seção 2.7.

Nos anos de 1997 a 2002 várias pesquisas foram desenvolvidas em correções de

viés para diferentes tipos de modelos e com diversos focos, por exemplo: modelos

de regressão não-lineares normais multivariados, Cordeiro & Vasconcellos [10];

modelos de regressão heterocedásticos e modelos SUR não-lineares, Vasconcellos

& Cordeiro [46] e [47]; modelos de regressão não-linear com erros independentes e

distribuídos como t de Student com número de graus de liberdade conhecido [7];

Ferrari & Cribari-Neto [16] utilizaram expansões de Edgeworth; modelos de re-

gressão de dados circulares com distribuição von Mises foram usados por Cordeiro

& Vasconcellos [11]; Cordeiro et al. [8] usaram modelos não-lineares de regressão

em que as observações têm distribuições independentes e simétricas; Vasconcellos

& Cordeiro [48] e Vasconcellos et al. [50] generalizam resultados de Cordeiro et

al. [7] para modelos de regressão com distribuição t de Student multivariada com

número de graus de liberdade conhecido; Cordeiro & Botter [6] basearam seus

estudos em modelos lineares generalizados com superdispersão. No ano de 2002,

Cribari-Neto & Vasconcellos [14] publicaram alternativas para correções de viés

com dados provenientes de uma distribuição beta e, em 2005, Vasconcellos &

Cribari-Neto [49] utilizaram modelos de regressão beta. Vasconcellos et al. [51]

aplicaram correções de viés na modelagem de dados de imagens de radar. Ainda,

em 2005, Vasconcellos & Silva [53] estudaram o caso em que os dados têm distri-

buição t de Student com número de graus de liberdade desconhecido. Ospina et

al. [37] utilizaram o método de bootstrap na estimação pontual e intervalar em

um modelo de regressão beta. A distribuição Birnbaum-Saunders foi utilizada

nas pesquisas sobre correção de viés por Lemonte et al. [32]. Vasconcellos &

Dourado [52] pesquisaram a correção de viés nos modelos da família exponencial

biparamétrica. Recentemente, Barreto-Souza & Vasconcellos [1] utilizaram mo-

delos de regressão nos quais as observações têm distribuição usada para modelar
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valores extremos.

2.3 Conceitos Básicos

Considere o contexto em que temos uma amostra de variáveis aleatórias de tama-

nho n, cuja representação é X = (X1, . . . , Xn), com densidade de probabilidade

conjunta f(X|θ), em que o parâmetro θ ∈ IRp caracteriza a distribuição dentro

da família F , a qual contém a densidade f(X|θ).

Um dos objetivos da inferência estatística é estimar o parâmetro θ e dentre as

técnicas mais utilizadas destacamos a proposta de Fisher no começo da década de

20, quando cursava o seu terceiro ano da graduação, ver Fisher [19]. A ideia desta

técnica é escolher θ para o qual a amostraX é mais provável de ter acontecido. Em

outras palavras, escolhe-se θ que maximiza a função de verossimilhança f(θ|X).

Observe que esta função é a própria densidade de probabilidade �xada no ponto

X e tendo como argumento o parâmetro θ. O estimador obtido a partir desta

técnica é chamado de EMV θ̂.

É bastante comum a amostra X ter suas componentes X1, . . . , Xn mutuamen-

te independentes. Assim, a função de verossimilhança reduz-se à expressão

f(θ|X) =
n∏

i=1

f(θ|Xi). (2.1)

O primeiro passo para maximizar esta função é derivá-la em relação ao pa-

râmetro θ. A derivada de um produto pode ser uma expressão grande, então,

uma alternativa é maximizar a função log-verossimilhança L(θ) = log[f(θ|X)],

pois esta transformação torna o produto da equação (2.1) em soma de logaritmos,

o que torna muito mais simples calcular a derivada. A partir daí, de�nimos a

função escore como

L′(θ) =
∂L(θ)

∂θ
,

que é um vetor de tamanho p. Portanto, o EMV é a solução da equação L′(θ) = 0.

A matriz I(θ) = E[L′(θ)L′T(θ)], de dimensão p × p, em que L′T(θ) denota o

vetor L′(θ) transposto, é chamada matriz de informação. Esta matriz é uma im-

portante quantidade relacionada a um estimador não viesado, pois ela determina
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o seu nível de e�ciência. Um estimador é dito não viesado para um parâmetro

θ, se seu valor esperado é gual a θ. No caso uniparamétrico, a e�ciência de um

estimador não viesado θ̂ para um parâmetro θ é de�nida com o quociente entre o

limite inferior das variâncias dos estimadores não viesados para θ e Var[θ̂], ver [3].

Assim, quando este limite coincide com a variância, temos um estimador e�ciente.

O teorema da desigualdade da informação garante que, sob certas condições de

regularidade [20] e [21], a variância de qualquer estimador não viesado satisfaz a

desigualdade

Var[θ̂] ≥ I−1(θ).

Ou seja, a matriz de informação nos diz o quanto um estimador θ̂ está próximo

da e�ciência. Na estimação multiparamétrica, este teorema garante que a matriz

Var[θ̂]− I−1(θ) é positiva semi-de�nida.

No presente trabalho não iremos abordar esses tipos de estimadores, pois va-

mos explorar estimadores viesados e sempre com intuito de diminuir o viés desses

estimadores. Mas, poderemos ver uma outra importante utilidade da matriz de

informação, que é na contrução de estimadores com vieses corrigidos, como, por

exemplo, o estimador corrigido de Cox & Snell, visto na na Seção 2.5.

Em geral, o cálculo do viés de um estimador envolve expressões complicadas,

porém uma ferramenta que facilita esses cálculos é a função geradora de momentos

MY (t) de uma variável aleatória Y, que é de�nida como o valor esperado da função

exponencial calculada no ponto tY. Assim, MY (t) = E [exp(tY )] . Ver James [26],

Magalhães [34].

Se a função geradora de momentos existe em uma vizinhança da origem, então

todos os momentos da variável aleatória Y existem e podemos expandir esta

função em uma série de potências, ver Lehmann & Casella [31]. Logo, podemos

expressar a função geradora de momentos na forma

MY (t) = 1 +
∞∑
j=1

µ(j) (t)
j

j !
, (2.2)

em que µ(j) = E[Y j] é o j-ésimo momento da variável Y . Com a função ge-

radora de momentos MY (t), de�nimos uma outra função importante, KY (t) =
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log [MY (t)] , cujo desenvolvimento em série de potências é representado por

KY (t) =
∞∑
j=1

κ(j)
(t)j

j !
. (2.3)

A função KY (t) é chamada de função geradora de cumulantes e os coe�cientes

κ(j) são denominados de cumulantes. A partir das equações de�nidas em (2.2) e

(2.3), podemos expressar os cumulantes κ(j) em função dos momentos µ(j). Por

exemplo, por uma simples comparação entre as duas séries, temos que κ(1) = µ(1)

e κ(2) = µ(2) − (µ(1))2, ver Lehmann & Casella [31], Cramér [15] e Stuart & Ord

[44].

Se uma variável aleatória Y pertence à família exponencial p-paramétrica,

então, sua densidade está na forma canônica da família exponencial se estar escrita

da seguinte forma:

f(Y |θ) = exp

(
p∑

i=1

θiTi(Y )− A(θ)

)
,

em que θ = (θ1, . . . , θp)
T caracteriza a densidade de probabilidade da variável.

Neste caso, a função geradora de momentos e a função geradora de cumulantes

são dadas por

MY (t) =
exp(A(θ + t))

exp(A(θ))
,

KY (t) = A(θ + t)− A(θ).

Outro conceito que iremos abordar ao longo do texto é o de ordem de magni-

tude. Dadas duas sequências de números reais an e bn, dizemos que an tem ordem

de magnitude menor que bn, se an
bn

−→ 0, quando n −→ ∞ e usamos a notação

an = o(bn). No caso em que a sequência |an
bn
| é menor que uma constante �xa

para todo n su�cientemente grande, dizemos que an tem ordem de magnitude no

máximo igual à de bn e escrevemos an = O(bn).

Podemos estender o conceito de ordem de magnitude para o caso de sequências

de variáveis aleatórias utilizando o conceito de convergência em probabilidade.

Dizemos que uma sequência de variáveis aleatórias Yn converge em probabilidade

para uma variável aleatória Y , se ∀ ϵ > 0, temos que limn→∞ P (|Yn − Y | > ϵ) = 0.

Indicamos isto por Yn
P−→ Y. Assim, dizemos que Yn = op(an), se Yn

an

P−→ 0. Ou
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seja, se Yn

an
converge em probabilidade para zero. Similarmente, Yn = Op(an), se

a sequência |Yn

an
| é limitada em probabilidade para n su�cientemente grande. Em

outras palavras,∀ ϵ > 0 existe uma constante M , tal que P (|Yn

an
| < M) > 1 − ϵ,

para n su�cientemente grande.

Um tipo particular de sequências de números reais que utilizamos para medir

a precisão de um estimador é a sequência do tipo nk, para k pertencente ao

conjunto dos inteiros.

As ordens de magnitudes gozam de várias propriedades; dentre elas, destaca-

mos duas muito utilizadas ao longo do texto. São elas:

• P1: Se Yn = Op(n
k1) e Zn = Op(n

k2), então, Yn + Zn = Op(n
kmax), em que

kmax = max {k1, k2}.

• P2: Se Yn = Op(n
k1) e Zn = Op(n

k2), então, YnZn = Op(n
k1+k2).

Uma boa abordagem sobre este tema pode ser vista em Cordeiro [5].

2.4 Equações de Bartlett

Seguindo artigo de Vasconcellos [45], o objetivo desta seção é realizar um estudo

aprofundado da expansão truncada,

θ̂ − θ ∼ L′(θ)

I(θ)
+

{
L′(θ) [L′′(θ) + I(θ)]

I(θ)2
+

(L′(θ))2L′′′(θ)

2I(θ)3

}
, (2.4)

em que θ̂ é o EMV de θ. Da equação (2.4), temos

E[θ̂] = θ −
{
1

2
E[L′′′(θ)] +

∂I(θ)

∂θ

}
/I(θ)2 + · · · . (2.5)

Estas equações foram apresentadas por Bartlett [2] em 1953, porém, não de-

monstradas. Assim, é aqui provado, sob certas condições de regularidade, que

os termos da expansão θ̂ − θ de�nidos em (2.4) são, respectivamente, de ordens

Op(n
− 1

2 ) e Op(n
−1). Já o restante da expressão tem ordem Op(n

− 3
2 ). Também é

demonstrado que o termo do viés da equação (2.5) tem ordem O(n−1).

Considerando apenas o caso uniparamétrico, iremos supor que a amostra X

tem suas componentes independentes e identicamente distribuídas. Portanto, a
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função log-verossimilhança resume-se a L(θ) =
∑n

i=1 ℓi(θ), sendo que ℓi(θ) =

log[f(θ|Xi)]. Por simplicidade do caso uniparamétrico, simpli�caremos a notação

das derivadas das funções com relação ao parâmetro: f ′ = ∂
∂θ
f(θ|X), G′′ =

∂2

∂θ2
G(θ|X), . . . , L(k) = ∂k

∂θk
L(θ|X), etc.

Ao longo do texto iremos considerar, a princípio, as seguintes condições de

regularidade:

Condições de Regularidade Uniparamétricas:

• (a): L tem suas derivadas contínuas.

• (b): L′ tem exatamente uma raiz θ̂ e L′′(θ̂) < 0.

• (c): L′′ não se anula em uma vizinhança compacta de θ à qual pertence θ̂.

• (d): E[L′] = 0.

• (e): E[(L′)2] = E[−L′′] <∞.

• (f): I ′ = −E[L′′′]− E[L′′L′].

• (g): L′ = Op(n
1
2 ).

• (h): (L′′ + I) = Op(n
1
2 ).

• (i): (L′′′ −K) = Op(n
1
2 ), em que K = E[L′′′] é �nita.

• (j): As derivadas de segunda e terceira ordens ℓ′′ e ℓ′′′ têm esperanças unifor-

memente limitadas, no sentido de que existem constantes positivas C1, C2,

C3 e C4, tais que C1 < |E[ℓ′′i ]| ≤ E[|ℓ′′i |] < C2, E[|ℓ′′′i | ] < C3 e E[|ℓ′′′i | ] < C4,

para todo i = 1, . . . , n.

• (k): A função n/L′′ é Op(1) em uma vizinhança de θ que inclui θ̂.

• (l): As funções L′′, L′′′ e L(iv) são Op(n) em uma vizinhança de θ que inclui

θ̂.
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As condições (a) a (c) garantem a existência de um máximo global e que L′ é

invertível na vizinhança de θ citada. Já a condição (d) é válida, por exemplo, se

podemos derivar dentro da integral, ou seja,

∂

∂θ

∫
Lfdx =

∫
∂

∂θ
[Lf ]dx,

sendo f = f(X|θ). Assim, temos que E[L′] =
∫
f ′dx = ∂

∂θ

∫
fdx = 0. Derivando

mais uma vez dentro da integral temos a condição (e) satisfeita, pois,

E[L′′] =

∫
∂

∂θ

[
f ′

f

]
fdx =

∫ [
f ′′

f
− f ′2

f 2

]
fdx

=
∂2

∂θ2

∫
fdx− E[L′2] = −E[L′2].

A condição (f) pode ser obtida se pudermos derivar dentro da integral na

expressão da informação I, pois I ′ = − ∂
∂θ

∫
L′′fdx = −

∫
L′′′fdx −

∫
L′′f ′dx =

−K − E[L′L′′]. As condições (g) a (i) serão válidas se assumirmos, por exemplo,

que os ℓi's satisfazem algum teorema central do limite. Por exemplo,(
L(k) − E[L(k)]√

Var[L(k)]

)
D−→N (0, 1).

Como Var[L(k)] = O(n), teremos que L(k) − E[L(k)] = Op(n
1
2 ). A condição (j) é

importante para garantir o comportamento do termo residual da expressão (2.5).

As condições (g) e (l) garantem que produtos da forma (L′)e1(L′′)e2(L′′′)e3 têm or-

dens de magnitudes iguais a Op(n
e1
2
+e2+e3) e a condição (j) garante que os valores

esperados desses produtos têm ordens de magnitudes iguais a O(n
e1
2
+e2+e3). Esta

condição também dá sentido a condição (k), pois teremos certeza de que a in-

formação esperada é positiva. Então, como veremos, o comportamento do termo

residual do viés será, o valor esperado de quocientes da forma (L′)e1 (L′′)e2 (L′′′)e3

Ie4
e

terá ordem de magnitude O(n
e1
2
+e2+e3−e4). Por �m, as condições (k) e (l) são fre-

quentemente satisfeitas, por exemplo, no caso em que a amostra é independente e

identicamente distribuída ou no caso da amostra pertencer à família exponencial.

O teorema a seguir estabelece que a aproximação vista na equação (2.4) tem

ordem Op(n
− 3

2 ). Na Seção 2.4, generalizamos esta expressão de forma que, dados

k > i > 0, o i-ésimo termo da expressão tenha ordem de magnitude Op(n
− i

2 ) e o

termo residual seja Op(n
− k+1

2 ).
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Teorema 2.4.1 Dadas as condições (a) a (l), temos que

θ̂ − θ =
L′

I
+

{
L′ [L′′ + I]

I2
+

(L′)2L′′′

2I3

}
+Op(n

−3/2),

em que o primeiro e segundo termos são de ordens Op(n
−1/2) e Op(n

−1), respec-

tivamente.

Este teorema pode ser demonstrado utilizando a expansão de Taylor da função

inversa de L′. Considere H tal que H(L′(θ)) = θ. Então,

θ̂ = θ − L′

L′′ −
(L′)2L′′′

2(L′′)3
−

(L′)3
[
3(L′′′)2 − L(iv)L′′]

6(L′′)5
+ r(θ∗), (2.6)

sendo r(θ∗) = ∂(4)

∂L′(4)H (L′(θ∗))L′(θ∗)4 e θ∗ tal que |L′(θ∗)| < |L′(θ)|. As condições

(g) a (l) garantem que o penúltimo termo desta expansão é de ordem Op(n
−3/2).

A validade das condições (c), (e), (h), (j) e (k) permite concluirmos que

1

(L′′)5
=

(
L′′ + I

L′′ − 1

I

)5

= Op(n
− 13

2 )− 10

I5

(
L′′ + I

L′′

)2

+
5

I5

(
L′′ + I

L′′

)
− 1

I5
.

Substituindo esta igualdade na expressão (2.6) e encontrando o denominador

comum desta expressão, temos que

θ̂ = θ +
1

6

[
− 6L′(L′′)4 − 3(L′)2(L′′)2L′′′ − (L′)3[3(L′′′)2 − L′′L(iv)]

]
×

[
− 10

I5

(
L′′ + I

L′′

)2

+
5

I5

(
L′′ + I

L′′

)
− 1

I5
+Op(n

− 13
2 )
]
+Op(n

−2).

Com um pouco de álgebra temos que (L′′)4 = I4 − 4I3(L′′ + I) + 6I2(L′′ +

I)2 +Op(n
5
2 ); da mesma forma (L′′)3 = −I3 + 3I2(L′′ + I) +Op(n

2); de maneira

análoga (L′′)2 = I2 − 2I(L′′ + I) + Op(n), que também é igual I2 + Op(n
3
2 ) e

por �m L′′ = −I +Op(n
1
2 ). Concluimos que a expressão (2.6) pode ser escrita da

seguinte forma:

θ̂ = θ +
L′

I
+

{
L′ (L′′ + I)

I2
+

(L′)2L′′′

2I3

}
+
L′(L′′ + I)2

I3
+

+
3(L′)2L′′′(L′′ + I)

2I4
+

(L′)3[3(L′′′)2L′′ − L′′L(iv)]

6I5
+Op(n

−2). (2.7)

O segundo termo desta expressão tem ordem Op(n
− 1

2 ), o terceiro e o quarto termo

têm ordem Op(n
−1), já do quinto termo até o sétimo a ordem de magnitude é
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Op(n
− 3

2 ). Ou seja, esta é exatamente a expressão (2.4) apresentada por Bartlett,

acrescida do termo Op(n
− 3

2 ).

O viés de segunda ordem de θ̂ é de�nido como o primeiro termo da expansão

E[θ̂ − θ] = − 1

I(θ)2

(
K

2
+ I ′(θ)

)
+ E[Rn],

em que K = E[L′′′(θ)] e Rn = Op(n
− 3

2 ). Apesar da ordem de Rn, sob as condições

(a) a (l), temos que E[Rn] = O(n−2).

Dada a A�rmação 2.4.1 abaixo, temos que tanto este viés, como a ordem de

magnitude de Rn, podem ser obtidos diretamente da equação (2.7).

A�rmação 2.4.1 Seja P uma função tal que ∂
∂θ
E[P ] e E[P ′] são O(nk), então,

E[L′P ] = O(nk).

Dem.

E [L′P ] =

∫
f ′Pdx =

∫
∂

∂θ
[Pf ]dx−

∫
P ′fdx

=
∂

∂θ
E[P ]− E [P ′] = O(nk).�

Trivialmente temos que as esperanças do quinto ao sétimo termo da equação

(2.7) têm ordem de magnitude O(n−2), pois, dada a A�rmação 2.4.1, basta no

quinto termo desta equação de�nir P = (L′′+I)2, no sexto termo P = L′L′′′(L′′+

I) e por �m no sétimo termo fazer P = (L′)2[3(L′′′)2 − L′′L(iv)].

Para obter o viés de segunda ordem do EMV observe que

E

[
(L′)2L′′′

2I3

]
= E

[
(L′)2(L′′′ −K +K)

2I3

]
=

KE [(L′)2]

2I3
+ E

[
(L′)2(L′′′ −K)

2I3

]
(Pela A�rmação 2.4.1)

=
K

2I2
+O(n−2).

Como E[L′L′′] = −I ′ −K, temos que o viés de segunda ordem do EMV pode ser

obtido diretamente da equação de Bartlett:

E
[
θ̂ − θ

]
= E

[
L′

I
+
L′(L′′ + I)

I2
+

(L′)2L′′′

2I3

]
+O(n−2)
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=
−I ′ −K

I2
+

K

2I2
+O(n−2)

= − 1

I2

(
K

2
+ I ′

)
.

Em Vasconcellos [45] é possível ver a ordem de magnitude das esperanças das

seguintes potências de θ̂ − θ:

• E[(θ̂ − θ)2] = I−1 +O(n−3/2),

• E[(θ̂ − θ)3] = O(n−3/2),

• E[(θ̂ − θ)4] = O(n−2).

Também é possível generalizar estes resultados para o caso de uma reparame-

trização η = g(θ) do parâmetro θ.

2.5 Resíduos de Cox & Snell

Na Seção 2.4, a equação (2.4), proposta por Bartlett [2], nos conduzia a um viés

do EMV de ordem n−1, porém, restrito ao caso em que temos apenas modelos

uniparamétricos. O caso multiparamétrico foi tratado por Cox & Snell [13] em

seu artigo �A general de�nition of residuals (with discussion)�, em que os autores

de�niram resíduos de ordem n−1 em modelos lineares. Nesta seção, detalhamos

com precisão as fórmulas para o viés do estimador de máxima verossimilhança

com ordem de magnitude O(n−1) para o caso multiparamétrico, proposto por

Cox & Snell [13]. Este será chamado de viés de Cox & Snell.

Seguindo a ideia desenvolvida por Vasconcellos em [45] para demonstrar essas

fórmulas, considere no caso uniparamétrico a expansão de Taylor da função escore

calculada no ponto θ̂ e em torno desta função calculada no ponto θ, ou seja,

L′(θ̂) = L′(θ) + L′′(θ)(θ̂ − θ) +
1

2
L′′′(θ∗)(θ̂ − θ∗)2, (2.8)

sendo que θ∗ pertence ao intervalo formado por θ̂ e θ. Dadas as condições de

regularidades vista na Seção 2.4 e supondo que θ̂ − θ tem ordem de magnitude
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Op(n
− 1

2 ), podemos observar que

−L′ = (L′′ + I − I)(θ̂ − θ) +Op(1)

= −I(θ̂ − θ) +Op(1).

Portanto,

θ̂ − θ =
L′

I
+Op(n

−1), (2.9)

(θ̂ − θ)2 =
(L′)2

I2
+Op(n

− 3
2 ). (2.10)

Da de�nição de covariância de duas variáveis aleatórias, temos que E[L′′(θ̂ −

θ)] = −IE[θ̂ − θ] + Cov[L′′, θ̂ − θ]. Substituindo o resultado da equação (2.9)

na expressão da covariância é fácil observar que Cov[L′′, θ̂ − θ] = 1
I
E[L′L′′] +

Cov[L′′, Op(n
−1)]. Seja L(k) a k-ésima derivada da função log-verossimilhança e

suponha que L(k) − E[L(k)] = Op(n
1
2 ). Então, podemos supor que a ordem de

magnitude da covariância entre L(k) e os termos de ordem Op(n
−1) da expansão

de Taylor da função escore L′ é O(n− 1
2 ), pois,

Cov[L(k), Op(n
−1)] = Cov[L(k) − E[L(k)] + E[L(k)], Op(n

−1)]

= Cov[L(k) − E[L(k)], Op(n
−1)] + Cov[E[L(k)], Op(n

−1)]

= E[(L(k) − E[L(k)])Op(n
−1)]

= O(n− 1
2 ).

Dessa forma temos a seguinte igualdade:

E[L′′(θ̂ − θ)] = −IE[θ̂ − θ] +
1

I
E[L′L′′] +O(n− 1

2 ). (2.11)

Com raciocínio análago e usando a equação (2.10) chegamos, também, à seguinte

expressão:

E
[
L′′′(θ̂ − θ)2

]
= E [L′′′] E

[
(θ̂ − θ)2

]
+ Cov

[
L′′′, (θ̂ − θ)2

]
= E [L′′′] E

[
(θ̂ − θ)2

]
+O(n− 1

2 )

=
K

I
+O(n− 1

2 ), (2.12)
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sendo K = E[L′′′].

O quarto termo da expansão de Taylor da equação (2.8) é 1
6
L(iv)(θ̂− θ)3, que

tem ordem de magnitude Op(n
− 1

2 ). Assim, levando em consideração que a função

escore é zero no ponto θ̂ e que seu valor esperado em qualquer ponto θ também

é zero, temos que o vlaor esperado desta expansão é

0 = E[L′′(θ̂ − θ)] +
1

2
E
[
L′′′(θ̂ − θ)2

]
+O(n− 1

2 ).

Então, com um pequeno desenvolvimento algébrico e dadas as equações (2.11) e

(2.12), chegamos à expressão

E[θ̂ − θ] =
E[L′L′′]

I2
+

K

2I2
+O(n− 3

2 )

=
−K − I ′

I2
+

K

2I2
+O(n− 3

2 )

= − 1

I2

(
K

2
+ I ′

)
+O(n− 3

2 ).

Esta é exatamente a expressão do viés de segunda ordem do EMV no caso uni-

paramétrico vista na Seção 2.4.

Consideraremos agora o caso multiparamétrico, ou seja, o parâmetro carac-

terizador da distribuição tem a forma θ = (θ1, . . . , θp)
T . Deste modo a função

escore é o vetor gradiente da função log-verossimilhança. Utilizaremos neste

caso multiparamétrico a notação introduzida em Lawley [30]. Assim, as de-

rivadas parciais da log-verossimilhança são representadas por Ur = ∂L/∂θr,

Urs = ∂2L/∂θrθs, Urst = ∂3L/∂θrθsθt, . . . . Os momentos são representados por

κ, assim, κr,s = E[UrUs], κrs = E[Urs], κrs,t = E[UrsUt], . . . . E as derivadas dos

momentos são denotadas por κ(t)rs = ∂κrs/∂θt. Uma representação muito utilizada

na literatura é κr,s, que signi�ca o elemento de posição (r, s) na matriz inversa

I−1, sendo I = E[L′L′T ].

Para o caso multiparamétrcio de�nimos as seguintes matrizes, L′′′ = [∂L′′/∂θ1,

. . . , ∂L′′/∂θp], . . . , L
(k) = [∂L(k−1)/∂θ1, . . . , ∂L

(k−1)/∂θp].

Suponha as seguintes condições de regularidades para o caso multiparamé-

trico,

Condições de Regularidade Multiparamétricas:

• (a): As derivadas parciais de L são contínuas.
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• (b): L′ tem exatamente uma raiz θ̂ e a matriz L′′(θ̂) é negativa de�nida.

• (c): E[L′] = 0.

• (d): E[L′L′T ] = E[−L′′] e tem todos os elementos �nitos.

• (e): I ′ = −E[L′′′]− E[L′′L′].

• (f): L′ = Op(n
1
2 ).

• (g): Qualquer derivada parcial menos seu valor esperado é Op(n
1
2 ). Ou seja,

Urst... − κrst... = Op(n
1
2 ).

• (h): Se uma função polinomial das derivadas parcias f(UrUrsUrst . . .) tem

ordem de magnitude Op(n
k), então, E[f(UrUrsUrst . . .)] = O(nk).

• (i): Os elementos da matriz (L′′)−1 são Op(n
−1) em uma vizinhança de θ

que inclui θ̂.

• (j): Os elementos das matrizes L′′, L′′′ e L(iv) são Op(n) em uma vizinhança

de θ que inclui θ̂.

• (k): O EMV satisfaz as igualdades θ̂ − θ = Op(n
− 1

2 ) e E
[
θ̂ − θ

]
= O(n−1).

Estas condições de regularidades são generalizaços das condições dadas na Se-

ção 2.4. As condições (a) a (d) garantem a existência do EMV e a invertibilidade

da função L′. É bastante comum nos modelos estatísticos podermos passar a de-

rivada para dentro do integrando, assim, as condições (d) e (e) são na maioria das

vezes satisfeitas. A condição (g), (i) e (j) na grande parte dos modelos também

são satisfeitas, por exemplo, nas amostras independentes, indenticamente distri-

buídas e com momentos �nitos. Já a condição (h) é importante para garantir

que a ordem de magnitude do valor esperado dos termos da expansão de Taylor

continue a mesma, no sentido que E
[
Op(n

−k)
]
= O(n−k). Por �m, a condição (k)

garante que estamos trabalhando com estimadores pelo menos assintoticamente

não viesado. Assim como vimos naquela seção, essas suposições são comuns de

acontecer, ou seja, não há uma restrição muito forte nas classes dos modelos

estatístico que satisfazem essas condições.
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A demonstração do viés de Cox & Snell para o caso p-dimensional é apenas

uma generalização do que foi visto no modelo uniparamétrico.

O produto de Kronecker [25] e [35], representado pelo símbolo ⊗, é de�nido

da seguinte forma, se A e B são matrizes de dimensões m1 × n1 e m2 × n2,

respectivamente, então,

A⊗B =



a11B . . . a1n1B

· . . . ·

· . . . ·

· . . . ·

am11B . . . am1n1B


.

Observe que a matriz A⊗ B tem dimensão m1m2 × n1n2. Em particular, temos

que

(θ̂ − θ)⊗ (θ̂ − θ) =



(θ̂1 − θ1)(θ̂1 − θ1)

·

·

·

(θ̂p − θp)(θ̂1 − θ1)

·

·

·

(θ̂1 − θ1)(θ̂p − θp)

·

·

·

(θ̂p − θp)(θ̂p − θp)



.

A expansão de Taylor da função escore calculada no EMV e em torno do ponto

θ é dada por

L′(θ̂) = L′ + L′′(θ̂ − θ) +
1

2
L′′′
(
(θ̂ − θ)⊗ (θ̂ − θ)

)
+ r(θ∗), (2.13)
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sendo que θ∗ está no retângulo p-dimensional de�nido por θ e θ̂. Dadas as con-

dições de regularidades multiparamétrica, temos que o termo r(θ∗) tem ordem

Op(n
− 1

2 ).

Podemos esperar dessa espansão que L′ + (L′′ + I − I)(θ̂ − θ) = Op(1) e,

portanto, θ̂ − θ = I−1L′ + Op(n
−1). Assim, o t-ézimo termo deste vetor é dado

por

θ̂t − θt =

p∑
u=1

κt,uUu +Op(n
−1).

E do produto (θ̂ − θ)(θ̂ − θ)T concluímos que

E
[
(θ̂t − θt)(θ̂u − θu)

]
= κt,u +O(n− 3

2 ). (2.14)

Note ainda que Cov[Urts..., Op(n
−1)] = Cov[Urtu... −κrtu..., Op(n

−1)]. Em parti-

cular, temos que Cov[Urt, Op(n
−1)] = O(n− 1

2 ) e Cov[Urtu, (θ̂u − θu)
2] = O(n− 1

2 ).

Assim, temos que

Cov(Urt, θ̂t − θt) = Cov

[
Urt,

p∑
u=1

κt,uUu +Op(n
−1)

]

=

p∑
u=1

κt,uCov [Urt, Uu] +O(n− 1
2 )

=

p∑
u=1

κt,uκrt,u +O(n− 1
2 ). (2.15)

Dada a expansão de Taylor na equação (2.13), observamos que a r-ésima

coordenada do vetor gradiente L′(θ̂) é dada por

0 = Ur +

p∑
s=1

Urs(θ̂s − θs) +
1

2

p∑
t=1

p∑
u=1

Urtu(θ̂t − θt)(θ̂u − θu) +Op(n
− 1

2 ).

Usando o fato de que as covariâncias vista acima são O(n− 1
2 ) e usando as igual-

dades vista nas equações (2.14) e (2.15) temos que o valor esperado desta última

expressão é dado por,

p∑
s=1

κrsE
[
θ̂s − θs

]
+

p∑
t=1

p∑
u=1

κt,uκrt,u +
1

2

p∑
t=1

p∑
u=1

κrtuκ
t,u = O(n− 1

2 ).

Este resultado foi encontrado para r-ésima linha do vetor expandido na equação de

Taylor, então, usando o fato que κrs = −κr,s, podemos representar esta igualdade
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usando notação matricial,

IE
[
θ̂ − θ

]
=



∑p
t=1

∑p
u=1 κ

t,u(κ1t,u +
1
2
κ1tu) +O(n− 1

2 )

·

·

·∑p
t=1

∑p
u=1 κ

t,u(κpt,u +
1
2
κptu) +O(n− 1

2 )


.

Multiplicando o lado esquerdo desta igualdade pela matriz I−1 é fácil veri�car

que a r-ésima linha deste produto é dada por

E
[
θ̂r − θr

]
=

p∑
s=1

κr,s
p∑

t=1

p∑
u=1

κt,u
(
κst,u +

1

2
κstu

)
+O(n− 3

2 ). (2.16)

Este igualdade é extamente o viés de Cox & Snell.

2.6 Correção de Viés Preventiva

A ideia central desta seção é mostrar uma técnica proposta por Firth [18], na qual

se pode remover o termo de primeira ordem do viés de θ̂ em modelos paramétricos

a partir da função escore. Para este intuito é feita uma modi�cação na função

escore de forma que o estimador obtido igualando a zero esta nova função reduza

o viés.

A técnica proposta por Firth [18] considera estimação multiparamétrica e

consiste em fazer a seguinte modi�cação na função escore:

U∗
r (θ) = Ur(θ) + Ar(θ),

em que Ar pode depender dos dados e é Op(1).

Seja θ∗, tal que, U∗(θ∗) = 0, então, utilizando uma forma fechada para γ̂ =

n1/2(θ∗ − θ) vista em McCullagh [33], baseada na expansão de Taylor de U∗
r (θ)

em torno de θ, temos que o viés de θ∗ é dado por

E[n−1/2γ̂r] = n−1κr,s
{
−κt,u (κs,t,u + κs,tu) /2 + αs

}
+O(n− 3

2 ), (2.17)

em que αs é a esperança de As.
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Esta ideia é base do desenvolvimento da presente tese, pois, no Capítulo 3

iremos generalizar este raciocínio para encontrar o viés com ordem de magnitude

O(n−k), para qualquer k = 3, 4, . . .. Em pricípio, esta generalização se dará

apenas no caso uniparamétrico, em seguida apresentamos a ideia para espaços

biparamétricos.

Um candidado natural para remover o viés de segunda ordem é escolher

αs = κr,sκ
r,s
{
κt,u (κs,t,u + κs,tu) /2

}
.

Assim, observamos que para remover o viés de segunda ordem basta escolher Ar,

tal que E[Ar] = −I(θ)b1(θ)/n + O(n−1), sendo b1 o termo de primeira ordem do

viés de Cox & Snell, visto na equação (2.16).

No caso uniparamétrico em que a amostra tem uma distribuição exponencial

com parâmetro θ, ou seja, X ∼ exp(θ), temos que κs,tu = 0 e κs,t,u = κstu =

n−1E[L′′′(θ)]. Logo, se tomarmos

α = −n
−1E[L′′′(θ)]

n−12I(θ)
,

teremos que o viés da equação (2.17) tem ordem de magnitude O(n− 3
2 ). Ou seja,

a função escore modi�cada é dada por

L′∗(θ) = L′(θ)− E[L′′′(θ)]

2I(θ)
,

que na verdade é apenas uma translação da função escore L′(θ). Neste caso,

podemos encontrar o estimador θ̂∗ proposto por Firth [18] igualando a zero esta

nova função escore L′∗. Assim, temos

θ̂∗ =
n− 1∑n
i=1 xi

= θ̂

(
1− 1

n

)
.

Este novo estimador, também, é viesado, porém tem viés com ordem de magni-

tude menor.

O grá�co da Figura 2.1, que é uma adaptação do grá�co do artigo de Firth

[18], representa as funções escore L′(θ) e sua modi�cação L′∗(θ), para o caso

particular de uma amostra de tamanho n = 20 e
∑20

i=1 xi = 5. A reta tangente à

curva L′(θ) no ponto θ̂ tem como coe�ciente angular a derivada da função escore
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Figura 2.1. Funções escore L′(θ) e escore modi�cada L′∗(θ).
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calculada neste ponto. Então, o valor esperado deste coe�ciente é o simétrico da

informação de Fisher estimada I(θ̂). Assim, o triângulo retângulo formado pela

reta, que além de passar pelo ponto (θ∗, 0), tem como coe�ciente angular I(θ̂), e

o segmento b do eixo das abscissas delimitado pelas duas curvas tem o terceiro

lado de tamanho aproximado ib, com i = I(θ̂) e b = b(θ̂). Portanto, a ideia é que

deslocando-se a função escore desta forma, o ponto zero dela estará mais próximo

do verdadeiro valor do parâmetro, encontrando-se assim um estimador θ∗ cujo

viés é menor que o viés de θ̂.

Um caso bastante interessante observado por David Firth acontece na família

exponencial. Se θ é o parâmetro canônico da família exponencial, então, o esti-

mador corrigido coincide com o estimador obtido pela função de verossimilhança

penalizada, que pode ser vista como a priori invariante de Je�reys [28], [27] e [38],

já que a função a ser maximizada é proprcional à |I(θ)| 12 .

Na família exponencial canônica temos que κr,st = 0, para todos r, s, t, por-
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tanto, podemos considerar

A =
1

2
tr

{
I(θ)−1

(
∂I(θ

∂θ

)}
=

1

2

∂

∂θ
{log [I(θ)]} .

Assim, a função a ser maximizada é

L∗(θ) = L(θ) +
1

2
log [I(θ)] .

A distribuição normal, com média µ e variância σ2 desconhecidas, é um exem-

plo clássico apresentado no artigo de David Firth. Suponha que o interesse esteja

em estimar o parâmetro canônico desta distribuição, ou seja, estimar

θ =

(
µ

σ2
,− 1

2σ2

)
.

Neste caso é fácil veri�car que a matriz de informação é

I(θ) =

 nσ2 2nµσ2

nµσ2 n(4µ2σ2 + 2σ4)

 .
Como o determinante da matriz de informação é log[2n2σ6], a função log-veros-

similhança a ser maximizada é

L∗(θ) = −n
2
log[2πσ2]− exp

{
− 1

2σ2

n∑
i=1

(xi − µ)2

}
+

1

2
log
[
2n2σ6

]
.

Sejam θ1 =
µ
σ2 e θ2 = − 1

2σ2 . Então, derivando esta função em relação ao parâmetro

canônico temos o vetor gradiente U1

U2

 =

 ∑n
i=1 xi +

nα
2θ2

− n
2θ2

+
∑n

i=1 x
2
i −

nθ21
4θ22

+ 3
2θ2

 .
Igualando a zero este vetor e resolvendo o sistema de equações, chegamos ao

estimador de máxima verossimilhança corrigido (EMVC):

θ∗ =

(
(n− 3)x̄

S2
x

,−n− 3

2S2
x

)
,

sendo S2
x =

∑n
i=1(xi − x̄)2. Dado que S2

x

σ2 ∼ χ2
(n−1), então,

E [Sr
x] =

σr2
r
2Γ
(
n−1+r

2

)
Γ
(
n−1
2

) ,
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para r > 1− n. Assim, fazendo-se r = −2, temos que E
[
−n−3

2S2
x

]
= θ2. O teorema

de Basu garante que x̄ e S2
x são independentes na distribuição normal [24] e [36].

Logo,

E

[
(n− 3)x̄

S2
x

]
= E

[
n− 3

S2
x

]
E [x̄] =

µ

σ2
= θ2.

Portanto, o estimador θ∗ é não viesado para o parâmetro θ.

Observe que esta técnica garante que o viés do estimador é pelo menos de

ordem de magnitude O(n− 3
2 ), mas, nada impede que este viés tenha uma ordem

de magnitude menor ainda, como neste exemplo em que ele é não viesado, para

n > 3.

2.7 Uma Redução de Viés de Terceira Ordem para

a Família Exponencial Uniparamétrica

Vimos na Seção 2.6 uma correção de viés preventiva, em que fazemos uma trans-

lação na função escore, de tal forma que ao encontrar o zero desta função trans-

ladada já obtemos um estimador de máxima verossimilhança com viés corrigido.

Nesta seção, iremos discutir um estimador de máxima verossimilhança, cujo viés

tem ordem de magnitude O(n−3). Este estimador foi proposto por Ferrari, Botter,

Cordeiro & Cribari-Neto [17], apenas para o caso do modelo pertencer à família

exponencial uniparamétrica, utilizando o viés de Cox & Snell estimado. Nesta

técnica, estima-se o viés e depois corrige o estimador, diferentemente da técnica

de estimação preventiva.

Considere que a amostra x1, . . . , xn pertence a família exponencial uniparamé-

trica, então, baseado nas expansões do viés e da variância do EMV até a segunda

ordem, B(θ) = B1(θ)
n

+ B2(θ)
n2 + O(n−3) e V (θ) = V1(θ)

n
+ V2(θ)

n2 + O(n−3), sendo

B(θ) = E
[
θ̂ − θ

]
, são de�nidos três estimadores:

θ̂1 = θ̂ − B1(θ̂)

n
, (2.18)

θ̂2 = θ̂ − B1(θ̂)

n
− B2(θ̂)

n2
,
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θ̃2 = θ̂ − B(θ̂)

n
− B∗(θ̂)

n2
, (2.19)

em que B∗
2(θ) = B2(θ)−B1(θ)B

′
1(θ)− 1

2
B′′

1 (θ)V1(θ).

Se seguíssemos a intuição, comenteríamos um erro em a�rmar que o estimador

θ̂2 tem viés de ordem de magnitude O(n−2). É demonstrado que tanto θ̂1, como

θ̂2, são O(n−1) e que apenas o estimador θ̃2 é não viesado até ordem O(n−2).

Para estabelecer as ordens de magnitudes de θ̂1, θ̂2 e θ̃2 consideramos a ex-

pansão de Taylor de da função H(θ) = θ − B1(θ)
n

em torno de θ,

θ̂1 −
B1(θ̂1)

n
= θ − B1(θ)

n
+

(
1− B′

1(θ)

n

)
(θ̂1 − θ) +

1

2

B′′
1 (θ)

n
(θ̂1 − θ)2

Como B(θ̂) = 0 e considerando que B1(θ)
n

= B(θ)− B2(θ
n2 +O(n−3), temos que

E[θ̂1 − θ] =
B∗

2(θ)

n2
+O(n−3).

Se �zermos a expansão de Taylor em torno de θ da função H(θ) = θ− B1(θ)
n

− B2(θ)
n2 ,

chegamos à conclusão que

E[θ̂2 − θ] =
B∗

2(θ)−B2(θ)

n2
+O(n−3).

Similarmente, fazendo-se a expansão da função H(θ) = θ − B1(θ)
n

− B∗
2 (θ)

n2 e calcu-

lando o valor esperado temos que

E[θ̃2 − θ] =
B2(θ)

n2
− B∗

2(θ)

n2
+

(
1− B′

1(θ)

n
− B∗′

2 (θ)

n2

)(
B1(θ)

n
+
B2(θ)

n2

)
+

1

2

(
B′′

1 (θ)

n
− B∗′′

2 (θ)

n2

)(
V1(θ)

n
+
V2(θ)

n2

)
+O(n−3)

= O(n−3).

Ou seja, apenas o viés do estimador θ̃2 tem ordem de magnitude O(n−3).

A partir de resultados de Shenton & Bowman (1977, pp.44-47) [43] é possível

determinar expressões fechadas para estes vieses, a saber:

B1(θ) = − 1

2κ2θθ

(
κθθθ − 2κ

(θ)
θθ

)
,

B2(θ) = − 1

8κ3θθ
(κθθθθθ + 12κθθ,θθθ + 4κθ,θθθθ + 8κθ,θθ,θθ + 4κθ,θ,θθθ)

+
1

12κ4θθ

(
13κθθθθκθθθ − 18κθθ,θθκθθθ − 18κθθθθκ

(θ)
θθ + 36κθθ,θθκ

(θ)
θθ
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− 36κθθθκ
(θ)
θθθ + 36κ

(θ)
θθ κ

(θ)
θθθ + 18κθθθκ

(θ)
θθ

)
− 1

8κ5θθ

[
11κ3θθθ

− 48κ2θθθκ
(θ)
θθ + 48κθθθ(κ

(θ)
θθ )

2
]
,

V1(θ) = − 1

κθθ
,

B∗
2(θ) = B2(θ)−B1(θ)B

′
1(θ)−

1

2
B′′

1 (θ)V1(θ).

Um caso particular ocorre quando a matriz de informação não depende mais

dos dados, por exemplo na família exponencial canônica, então temos que: κθ,θθ...θ =

0 e κ(θ)θθ = κθθθ. Logo, as expressões acima reduz-se a

B1(θ) =
L′′′

2(L′′)2
,

B′
1(θ) =

Liv

2(L′′)2
− (L′′′)2

(L′′)3
,

B′′
1 (θ) =

Lv

2(L′′)2
− 3L′′′Liv

(L′′)3
+

3(L′′′)3

(L′′)4
,

B2(θ) = −(Lv + 12L′′L′′′)

8(L′′)3
+

(13LivL′′′ + 18(L′′)2L′′′)

12(L′′)4
− 11(L′′′)3

8(L′′)5
,

V1(θ) = − 1

L′′ .

Considere agora uma amostra x = (x1, . . . , xn), independente e identicamente

distribuída segundo uma Poisson com parâmetro λ. Ou seja, xi ∼ P(λ), para todo

i = 1, . . . , n. Suponha que estamos interessados em estimar o parâmetro canônico

θ = log(λ). A função de verossimilhança e a função de log-verossimilhança são,

f(x|λ) =
λ
∑n

i=1 xi exp (−nλ)∏n
i=1 xi!

,

f(x|θ) =
exp (θ

∑n
i=1 xi) exp [−n exp(θ)]∏n

i=1 xi!
,

L(θ) = θ
n∑

i=1

xi − n exp(θ)− log

(
n∏

i=1

xi!

)
.

A função escore L′(θ) e suas derivadas são dadas, respectivamente, por

L′(θ) =
n∑

i=1

xi − n exp(θ),
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Lk(θ) = −n exp(θ), ∀ k ≥ 2.

Portanto, a informação de Fisher é I(θ) = n exp(θ).

Sabemos que o EMV de θ é obtido por igualar a zero a função escore, logo é

dado por,

θ̂ = log (x) .

Já o estimador com viés corrigido preventivamente, proposto por Firth [18], é

obtido por transladar a função escore L′(θ) com a matriz A0, sendo A0 = −L′′′

2I
.

Assim,

θ∗0 = log

(
x+

1

2n

)
.

Para encontrarmos o estimador proposto por Ferrari et al. [17], precisamos

calcular

B1(θ̂) =
L′′′

2(L′′)2
= − 1

2nx
,

B′
1(θ̂) =

Liv

2(L′′)2
− (L′′′)2

(L′′3)
=

1

2nx
,

B′′
1 (θ̂) =

Lv

2(L′′)2
− 3L′′′Liv

(L′′)3
+

3(L′′′)3

(L′′)4
= − 1

2nx
,

B2(θ̂) = −L
v + 12L′′L′′′

8(L′′)3
+

13LivL′′′ + 18(L′′)2L′′′

12(L′′)4
− 11(L′′′)3

8(L′′)5
= − 5

12n2x2
,

V1(θ̂) = − 1

L′′ =
1

nx
,

B∗
2(θ̂) = B2(θ̂)−B1(θ̂)B

′
1(θ̂)−

1

2
B′′

1 (θ̂)V1(θ̂) =
5

12n2x2
.

Assim, o estimador cujo viés tem ordem de magnitude O(n−3) é

θ̃2 = θ̂ −B1(θ̂)−B∗
2(θ̂) = log(x) +

1

2nx
− 5

12n2x2
.



Capítulo 3

CORREÇÃO DE VIÉS DE

ORDEM SUPERIOR

3.1 Introdução

Neste capítulo propomos uma técnica de estimação que é uma variação da esti-

mação por máxima verossimilhança, baseada em sucessivas translações da função

escore. O estimador obtido a partir dessa nova técnica corrige de forma preven-

tiva o viés do EMV até a ordem de magnitude O(n−(h+2)), em que h = 0, 1, . . . e

está relacionado com o número de translações realizadas na função escore.

Muitas técnicas de correção de viés consistem em estimar o viés, para depois

proceder à correção do estimador, por exemplo, [12], [17]. Diferentemente, a

técnica de estimação proposta nesta tese de doutorado é preventiva.

Pioneiramente, em meados dos anos 90, David Firth propôs um EMVC pre-

ventivamente. Ele observou que, na prática, a estimação realizada para maximi-

zar a função verossimilhança consiste basicamente em encontrar o zero da função

escore. Assim, foi proposto realizar uma translação nessa função com o intuito

de que a nova função transladada tivesse seu zero mais próximo do verdadeiro

valor do parâmetro a ser estimado e, consequentemente, diminuísse o erro de esti-

mação. Em geral, esta metodologia produz um estimador não viesado até ordem

O(n−1).

No capítulo anterior vimos que essa ideia consiste em fazer uma translação

30
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na função escore, de forma a anular o viés de Cox & Snell (2.16). A técnica de

estimação apresentada neste trabalho é uma generalização desta proposta; para

isso, utilizamos a função inversa da função escore. Com a equação de Bartlett

(2.4) foi possível mostrar na Seção 2.4, utilizando a função inversa da função

escore, como se dá a correção de viés uniparamétrica preventiva proposta por

Firth. Com o intuito de expandir essa técnica, no sentido de produzir estimadores

com vieses cada vez menores, generalizamos a expressão de Bartlett. A partir

dessa expressão generalizada, que pode ser vista na equação (3.2), propomos

uma sequência de translações na função escore, de tal forma que o zero da função

transladada h vezes é um EMVC, cujo viés tem ordem de magnitude O(n−(h+2)).

Utilizando a expansão de Taylor da função inversa da função escore, expan-

dimos essa metodologia para o caso de estimação biparamétrica, logo em seguida

para o espaço multiparamétrico. Assim, neste capítulo, é proposta uma metodo-

logia de estimação uniparamétrica, biparamétrica e multiparamétrica, que produz

estimadores não viesados até a ordem de magnitude desejada.

O presente capítulo está dividido da seguinte forma: na Seção 3.2 generaliza-

mos a equação de Bartlett, e por meio dessa generalização mostramos como se

comporta a função escore transladada; na Seção 3.3 propomos uma técnica nova

de estimação, que é uma extensão da proposta por David Firth; esta metodologia

foi estendida para o caso biparamétrico na Seção 3.4 e para o caso multiparamé-

trcio na Seção 3.5; por �m, ofertamos as considerações �nais na Seção 3.6.

3.2 Expressão de Bartlett Generalizada

Na Seção 2.4, vimos que se a função escore L′ satisfaz determinadas condições de

regularidade, então, θ̂, zero desta função, pode ser expresso por meio da equação

de Bartlett vista em (2.4), em que o termo residual tem ordem de magnitude

Op(n
− 3

2 ). Nesta seção iremos generalizar essa expressão de Bartlett, no sentido

de que para qualquer função G que satisfaça as suposições apresentadas nesta

seção, teremos que θ∗ zero da função G′, também, poderá ser escrito como uma

expressão em que o termo residual tem ordem de magnitude Op(n
− k+1

2 ), para
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qualquer k ≥ 2. Para isso, dado k ≥ 2, considere uma função G(θ) que satisfaz

as seguintes condições:

• S1 G tem as k primeiras derivadas contínuas.

• S2 G′ tem exatamente uma raiz θ∗ e G′′ é negativa nesta raiz.

• S3 G′′ não se anula em uma vizinhança compacta de θ à qual pertence θ∗.

• S4 G′ é de ordem Op(n
1
2 ).

• S5 G′′ + I e G′′′ − E[G′′′] são de ordem Op(n
1
2 ) .

• S6 I(k) = ∂kI
∂θk

e G(k) = ∂kG
∂θk

são de ordem Op(n), para qualquer k-ésima

derivada de G ou de I, em que k ≥ 2.

• S7 Tanto (G′′)−1 como I−1 são de ordem Op(n
−1).

• S8 Se uma função polinomial das derivadas f(G′, G′′, . . . , G(i)) tem ordem

de magnitude Op(n
k), então, tanto E

[
f(G′, G′′, . . . , G(i))

]
quanto a derivada

dessa esperança são O(nk).

Consideraremos que a função escore L′ satisfaz as condições de regularidade

dadas na Seção 2.4; em particular, satisfaz essas suposições também.

As suposições S1 a S3 garantem que G′ é invertível em uma vizinhança com-

pacta de θ∗. Seja H tal função inversa, ou seja, H(G′(θ)) = θ para todo θ per-

tencente a tal vizinhança de θ∗. Assim, podemos usar a expansão de Taylor da

função H em torno do ponto G′(θ), ou seja,

θ∗ = θ −H ′G′ +H ′′G
′2

2!
+ · · ·+ ∂(k)H

∂G′(k)
(−G′)k

k!
+ r,

sendo G′ = G′(θ).

O Lema 3.2.1 estabelece como se comportam as derivadas da função H e qual

a ordem de magnitude dessas derivadas.
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Lema 3.2.1 A i-ésima derivada da função H é da forma ∂(i)H

∂G′(i) = Hi

(G′′)2i−1 , em

que H1 = 1, Hi = H ′
i−1G

′′ − (2i − 3)G′′′Hi−1, para todo i > 1, com H ′
i sendo a

derivada em relação a θ. Ainda, tanto Hi quanto H ′
i têm ordem Op(n

i−1).

Dem. Vamos usar indução matemática. Para i=1 a a�rmação vale, pois H ′ =

1
G′′ . Para i = 2, temos que ∂(2)H

∂G′(2) =
−G′′′

(G′′)3
, que claramente satisfaz as hipóteses de

indução. Suponha que a a�rmação é verdadeira para um determinado i. Usando

a regra da cadeia, temos que

∂(i+1)H

∂G′(i+1)
=

∂

∂θ

[
∂(i)H

∂G′(i)

]
1

G′′ (usando a regra da cadeia)

=
∂

∂θ

[
Hi

(G′′)2i−1

]
1

G′′ (por hipótese de indução)

=
H ′

i(G
′′)2i−1 − (2i− 1)(G′′)2i−2G′′′Hi

(G′′)4i−1

=
H ′

iG
′′ − (2i− 1)G′′′Hi

(G′′)2i+1
.

Observe que o termo no numerador tem ordem Op(n
i), pois G′ satisfaz a suposição

S6 e pela hipótese de indução temos que Hi = Op(n
i−1) e H ′

i = Op(n
i−1). �

Dado o Lema 3.2.1, podemos reescrever a expansão de Taylor da função H

em torno do ponto zero da seguinte forma:

θ∗ − θ =
H1

G′′
(−G′)

1!
+

H2

(G′′)3
(−G′)2

2!
+ · · ·+ Hk

(G′′)2k−1

(−G′)k

k!
+ r.

Desta forma, �ca fácil veri�car que o i-ésimo termo da série tem ordem Op(n
− i

2 ),

para i = 1, . . . , k e o último termo tem ordem Op(n
− k+1

2 ).

Assim, a menos dos termos de ordem menor ou igual a Op(n
− k+1

2 ), temos que

θ∗ − θ =
a1(−G′)(G′′)2k−2 + a2(−G′)2(G′′)2k−4H2 + · · ·+ ak(−G′)kHk

(G′′)2k−1
, (3.1)

sendo ai = 1
i!
, para i = 1, . . . , k.

Usando a identidade 1
(G′′)2k−1 =

∑2k−1
j=0 C2k−1

j

(
−1

I

)j (G′′+I
G′′I

)2k−1−j
, em que Cd

c =

d!
(d−c)!c!

, temos que o produto do j-ésimo termo deste somatório pelo i-ésimo termo

do numerador da soma dada pela equação (3.1) tem ordem

Op(n
−6k+3+j

2 )Op(n
2k−1− i

2 ) = Op(n
−2k+1−i+j

2 ). Logo, a soma dos primeiros k − 2 + i

termos deste produto tem ordem Op(n
− k+1

2 ). Então, a menos dos termos de ordem
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menor ou igual a Op(n
− k+1

2 ), o i-ésimo termo da equação (3.1) pode ser escrito

da forma

ai(−G′)i(G′′)2(k−i)Hi

(G′′)2k−1
= ai(−G′)i(G′′)2(k−i)Hi

2k−1∑
j=0

C2k−1
j

(
−1

I

)j (G′′ + I

G′′I

)2k−1−j

= ai(−G′)i(G′′)2(k−i)Hi

2k−1∑
j=k−1+i

C2k−1
j

(
−1

I

)j (G′′ + I

G′′I

)2k−1−j

=
ai(−G′)i

I2k−1
Hi

2k−1∑
j=k−1+i

(−1)jC2k−1
j (G′′)(j+1−2i)

(
G′′ + I

)2k−1−j
.

Como j ≥ 2i− 1, temos que j + 1− 2i ≥ 0. Seja o par (i, j) tal que 1 ≤ i ≤ k e

k − 1 + i ≤ j ≤ 2k − 1. De�na

Hij =
(−1)jC2k−1

j ai(−G′)iHi (G
′′ + I)2k−1−j

I2k−1
.

Considere k1 = j+1−2i e a identidade (G′′)k1 =
∑k1

l=0 C
k1
l (G′′+I)k1−l(−I)l. Então,

temos que o produto de Hij pelo l-ésimo termo do somatório desta identidade tem

ordem Op(n
−2k−1+3i−j+k1+l

2 ). Desta forma, a soma dos primeiros k − 1 − i termos

deste somatório tem ordem Op(n
− k+1

2 ). Então,

Hij(G
′′)(j+1−2i) = Hij

k1∑
l=0

Ck1
l (G′′ + I)k1−l(−I)l

= Hij

k1∑
l=k−i

Ck1
l (G′′ + I)k1−l(−I)l +Op(n

− k+1
2 ).

A equação abaixo, a menos dos termos de ordem menor ou igual a Op(n
− k+1

2 ),

é a generalização da expressão dada por Bartlett,

θ∗ − θ =
k∑

i=1

2k−1∑
j=k−1+i

j+1−2i∑
l=k−i

Cijlk(G′)iHi(G
′′ + I)2k−2i−l

I2k−1−l
, (3.2)

sendo Cijlk = (−1)i+j+lC2k−1
j Cj+1−2i

l ai.

O termo da parcela correspondente aos índices i, j e l tem ordem Op(n
−2k+i+l

2 ).

A Tabela 3.1 mostra os possíveis valores para o expoente de n.

Assim, podemos expandir θ∗, tal que G′(θ∗) = 0, em parcelas da seguinte

forma:

θ∗ − θ =
k∑

i=1

bi +Op(n
− k+1

2 ), (3.3)
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Tabela 3.1. Possíveis valores do expoente de n.

k − 1 + i ≤ j ≤ 2k − 1 k − i ≤ l ≤ j + 1− 2i −2k+i+l
2

i j l

k − 1 + i k − i −k
2

k− i ≤ l ≤ k− i+ 1

k + i k − i −k
2

k − i+ 1 −k+1
2

k− i ≤ l ≤ k− i+ 2

k − i −k
2

k − i+ 1 k − i+ 1 −k+1
2

k − i+ 2 −k+2
2

i . . .

. . .

. . .

k− i ≤ l ≤ 2k− 2i

k − i −k
2

k − i+ 1 −k+1
2

k − i+ 2 −k+2
2

2k − 1 . .

. .

. .

2k − (2i− 2) − i−2
2

2k − (2i− 1) − i−1
2

2k − 2i − i
2

com bi = Op(n
− i

2 ), para i = 1, . . . , k.

É fácil veri�car que se a função escore satisfaz essas suposições, então, pode-

mos expandir o EMV em parcelas com essas características. Este caso particular
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está dado na Tabela 3.2, pois, fazendo-se k = 2 e G′ = L′, então, como H1 = 1

e H2 = −L′′′, temos que a soma dos termos da quarta coluna da Tabela 3.2 é

exatamente igual à expressão (2.4).

Tabela 3.2. Expressão de Bartlett quando k = 2.

i j l Equação (3.2)

2 1 3L′(L′′+I)
I2

1 1 −2L′(L′′+I)
I2

3

2 L′

I

2 3 0 (L′)2L′′′

2I3

A ideia é fazer sucessivas translações na função escore de forma que a i-

ésima parcela da equação (3.3) seja particionada em sub-parcelas com ordem

de magnitude menor que Op(n
− i

2 ). Assim, dada uma função G que satisfaz as

suposições S1 a S8, permitiremos fazer uma translação nela de forma que essas

suposições continuem a valer na função transladada. Dessa forma acrescentamos

a seguinte suposição:

• S9 Sejam G′ uma função que satisfaz as suposições S1 a S8 e θ∗ zero

desta função. Considere a expansão de θ∗ como na equação (3.3) e de�na

EO(h+1) como os elementos dessa expansão cuja soma tem valor esperado
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com ordem de magnitude O(n−(h+1)). Então, a função G′
h = G′ + Ah, em

que Ah = −IE[EO(h + 1)], satisfaz as suposições S1 a S8. Além disso,

tanto Ah como todas suas derivadas são de ordem O(n−h), com h ≥ 0.

O Lema 3.2.2 estabelece como se comporta a função inversa de G′ transladada.

Lema 3.2.2 Sejam G′
h, Ah como em S9, Hi como no Lema 3.2.1 e Hh a função

inversa de G′
h, então, a i-ésima derivada da função Hh é da forma

∂iHh

∂G′
h
i =

Hhi

G′′
h
2i−1 ,

em que Hhi = Hi +Rih(Ah), com R1h = 0, R2h = −A′′
h e para todo i ≥ 2 temos

que:

i) Rih(Ah) = H ′
i−1A

′
h − (2i− 3)Hi−1A

′′
h +R′

(i−1)h(Ah)(G
′′ + A′

h)+

−(2i− 3)R(i−1)h(Ah)(G
′′′ + A′′

h).

ii) R(i−1)h(Ah) = Op(n
i−2−h).

iii) R′
(i−1)h(Ah) = Op(n

i−2−h).

Dem. Vamos usar o princípio da indução matemática nesta demonstração. Do

Lema 3.2.1 temos que Hh1 = 1 e Hh2 = −(G′′′ + A′′
h). Como por hipótese A′′

h e

A′′′
h são Op(n

−h), temos que a hipótese de indução é satisfeita para i = 1 e i = 2.

Suponha as hipóteses de indução válidas para um certo i ≥ 2. Pelo Lema 3.2.1

temos que

Hh(i+1) = Hh′iG
′′
h − (2i− 1)HhiG

′′′
h

= (H ′
i +R′

ih(Ah))(G
′′ + A′

h)− (2i− 1)(Hi +Rih(Ah))(G
′′′ + A′′

h)

= H ′
i(G

′′ + A′
h)− (2i− 1)Hi(G

′′′ + A′′
h)

+ R′
ih(Ah)(G

′′ + A′
h)− (2i− 1)Rih(Ah)(G

′′′ + A′′
h)

= H ′
iG

′′ − (2i− 1)HiG
′′′︸ ︷︷ ︸

Hi+1

+H ′
iA

′
h − (2i− 1)HiA

′′
h

+ R′
ih(Ah)(G

′′ + A′
h)− (2i− 1)Rih(Ah)(G

′′′ + A′′
h)

= Hi+1 +R(i+1)h(Ah).
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Observe que temos uma soma de quatro parcelas, sendo cada uma Op(n
i−1−h).

Logo, R(Ah)ih = Op(n
i−1−h). A derivada de R(i+1)h(Ah) é a soma de derivadas

de ordem Op(n
i−1−h) por hipótese, logo R′

(i+1)h(Ah), também, é Op(n
i−1−h). �

Com o lema anterior podemos provar o importante Teorema 3.2.1, que não

só a�rma que é possível particionar a i-ésima parcela da equação (3.3) em sub-

parcelas de ordem de magnitude menor, como mostra a forma dessas sub-parcelas.

Teorema 3.2.1 Considere as funções G′, G′
h e Ah, tal como no Lema 3.2.2 e

seja θ∗ tal que G′
h(θ

∗) = 0. Então,

θ∗ − θ =
k∑

i=1

2k−1∑
j=k−1+i

j+1−2i∑
l=k−i

[
Cijlk(G′)iHi(G

′′ + I)2k−2i−l

I2k−1−l
+Bijlk

]
,

em que Bijlk tem ordem Op(n
−2k+i+l−1−2h

2 ) e Cijlk é de�nido como na equação

(3.2).

Dem. Observe que

(G′
h)

iHhi(G
′′
h + I)2k−2i−l

= (G′ + Ah)
i(Hi +Rih(Ah))(G

′′ + A′
h + I)2k−2i−l

=

[
(G′)i +

i∑
i1=1

Ci
i1
(G′)i−i1Ai1

h

]
[Hi +Rih(Ah)]

κ∑
κ1=0

Cκ
κ1
(G′′ + I)κ−κ1(A′

h)
κ1 ,

sendo κ = 2k − 2i − l. Decompondo este produto de somas em cinco parcelas,

temos:

P1 = (G′)iHi(G
′′ + I)κ,

P2 = (G′)iHi

κ∑
κ1=1

Cκ
κ1
(G′′ + I)κ−κ1(A′

h)
κ1 ,

P3 = (G′)iRih(Ah)
κ∑

κ1=0

Cκ
κ1
(G′′ + I)κ−κ1(A′

h)
κ1 ,

P4 =

[
i∑

i1=1

Ci
i1
(G′)i−i1Ai1

h

]
Hi

κ∑
κ1=0

Cκ
κ1
(G′′ + I)κ−κ1(A′

h)
κ1 ,

P5 =

[
i∑

i1=1

Ci
i1
(G′)i−i1Ai1

h

]
Rih(Ah)

κ∑
κ1=0

Cκ
κ1
(G′′ + I)κ−κ1(A′

h)
κ1 .
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Desta forma, cada parcela dividida por I2k−1−l tem as seguintes ordens:

P1 = Op(n
−2k+i+l

2 ), P2 = Op(n
−2k+i+l−1−2h

2 ), P3 = Op(n
−2k+i+l−4−2h

2 ),

P4 = Op(n
−2k+i+l−1−2h

2 ), P5 = Op(n
−2k+i+l−3−4h

2 ).

Então, de�na

Bijlk(Ah) = Cijlk
P2 + P3 + P4 + P5

I2k−1−l
,

que tem ordem Op(n
−2k+i+l−1−2h

2 ). �

Assim, para cada ijlk, temos que Cijlk(G′)iHi(G
′′+I)2k−2i−l

I2k−1−l = Op(n
−2k+l+i

2 ). Isto

quer dizer que se θ∗ e θ∗h são tais que G′(θ∗) = 0 e G′
h(θ

∗
h) = 0, então, podemos

escrever

θ∗h − θ =
k∑

i=1

bhi +Op(n
− k+1

2 ), (3.4)

em que bhi = bi + Bh
i , bi é dado pela equação (3.3) e Bh

i = Op(n
− i+1+2h

2 ). Ou

seja, cada Bh
i tem a ordem de bi com o expoente diminuído de 1+2h

2
. Em outras

palavras, ao fazermos a translação G′
h = G′ + Ah, conseguimos ainda expandir

θ∗h − θ usando a equação (3.3) com G′
h, de forma que essa expansão é a mesma

se usássemos G′, porém, cada parcela �ca acrescida de um termo com ordem de

magnitude menor.

Considere o modelo de Poisson apresentado na Seção 2.7. De�na L′
0 = L′+ 1

2
.

Então, L′′
0 = L′′ e L′′ + I = 0. Pela equação (3.3) temos que

θ∗0 = θ +
L′
0

I
+
L′
0(L

′′
0 + I)

I2
+

(L′
0)

2L′′′
0

2I3
+Op(n

− 3
2 )

= θ +
L′

I
+

1

2I
+

(L′)2L′′′

2I3
+

(4L′ + 1)L′′′

8I3
+Op(n

− 3
2 ).

De fato, como h = 0, temos que B0
1 = 1

2I
e B0

2 = (4L′+1)L′′′

8I3
são Op(n

−1) e Op(n
− 3

2 ),

respectivamente. Continuando a sequência podemos de�nir L′
1 = L′

0+
1

24I
, assim,

L
(k)
1 = L(k) + (−1)k+1 1

24I
, para k = 2, 3, . . . . Logo, expandindo a equação (3.4)

temos

θ∗1 = θ + b1 +B0
1 +B1

1 + b2 +B0
2 + b3 +B0

3 + b4 +Op(n
− 5

2 ),
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sendo

B0
3 = −(L′)2

I3
, B1

1 =
1

24I2
,

os quais têm ordem de magnitude Op(n
−2). Para encontrarmos esses termos, além

de desprezar os elementos com ordem de magnitude menor que Op(n
− 5

2 ), usamos

a expressão de b3, apresentada no Apêndice A.

A escolha do termo 1
24I

não foi aleatória, o propósito da sua escolha é que no

modelo de Poisson, no qual desejamos estimar o parâmetro canônico, veremos na

seção seguinte que θ∗1 zero da função L′ + 1
2
+ 1

24I
tem viés de ordem O(n−3).

O que queremos ilustrar aqui é que podemos fazer sucessivas translações na

função escore, de modo que cada parcela da expansão da equação (3.3) seja

particioanada em várias subparcelas Bk
i , com ordem de magnitude menor. Este

fato é de muita relevância para o desenvolvimento do algoritmo proposto na

seção seguinte, na qual generalizamos, no caso unidimensional, a ideia proposta

por Firth [18].

3.3 Estimador de Máxima Verossimilhança com

Viés de Ordem Reduzida

O Teorema 3.2.1 é uma poderosa ferramenta para expandir o EMV em parcelas

tendo um certo controle sobre a ordem de magnitude de cada parcela. Usando

este teorema, generalizamos a ideia desenvolvida por Firth [18]. Propomos uma

técnica nova de estimação que produz um estimador com viés de ordem de mag-

nitude O(n−k), para qualquer k = 2, 3, . . . . A ideia é basicamente fazer sucessivas

translações na função escore, sendo que a primeira translação é exatamente a

sugerida por David Firth.

Considere a expansão do EMV θ̂ como na equação (3.2). Seja A0 de�nido

como na Seção 2.6, ou seja,

A0 = −IE[b2]
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= −IE
[
L′(L′′ + I)

I2
+

(L′)2L′′′

2I3

]
.

O Teorema 3.2.1 a�rma que θ∗0, tal que L
′
0(θ

∗
0) = 0, com L′

0 = L′ − IE[b2], pode

ser escrito como

θ∗0 − θ = b01 + b02 + b03 +Op(n
−2)

= b01 + b02 + b3 +B0
3 +Op(n

−2)

=
L′
0

I
+

L′
0(L

′′
0 + I)

I2
+

(L′
0)

2L′′′
0

2I3
+ b3 +Op(n

−2)

=
L′ +A0

I
+

(L′ +A0)(L
′′ +A′

0 + I)

I2
+

(L′ +A0)
2(L′′′ +A′′

0)

2I3
+ b3 +Op(n

−2)

=
L′ +A0

I
+

L′(L′′ + I) + L′A′
0 +A0(L

′′ +A′
0 + I)

I2
+

+
(L′)2L′′′ + (L′)2A′′

0 + 2A0L
′L′′′ + 2L′A0A

′′
0 +A2

0L
′′′ +A2

0A
′′
0

2I3
+ b3 +Op(n

−2)

=
L′ − IE[b2]

I
+

L′(L′′ + I)

I2
+

(L′)2L′′′

2I3︸ ︷︷ ︸
b2

+b3 +
L′A′

0 +A0(L
′′ +A′

0 + I)

I2
+

+
(L′)2A′′

0 + 2A0L
′L′′′ + 2L′A0A

′′
0 +A2

0L
′′′ +A2

0A
′′
0

2I3
+Op(n

−2).

Observe que pela A�rmação 2.4.1, o valor esperado de b3 é

E[b3] = E

L′(L′′ + I)2

I3
+

3(L′)2L′′′(L′′ + I)

2I4
+

(L′)3
[
3(L′′′

h )
2 − L′′L

(iv)
h

]
6I5


= O(n−2).

Como S8 vale, E[L′] = 0 e E[(L′)2] = −E[L′′] = I, temos que

E [θ∗0 − θ] = E

[
L′

0

I
+
L′
0(L

′′
0 + I)

I2
+

(L′
0)

2L′′′
0

2I3
+ b3

]
+O(n−2)

=
A0A

′
0

I2
+
IA′′

0 + 2A0E[L
′L′′′] + A2

0E[L
′′′] + A2

0A
′′
0

2I3
+O(n−2)

= O(n−2).

Observe que E[L′L′′′] = O(n−1), pois E[L′L′′′] = E[L′(L′′′ − K) + L′K], sendo

K = E[L′′′]. Assim, θ∗ tal que L′(θ∗) − I(θ∗)E[b2|θ∗] = 0 tem viés de ordem

O(n−2).

A partir desse viés, de�nimos a seguinte quantidade,

Re0 =
A0A

′
0

I2
+
IA′′

0 + 2A0E[L
′L′′′] + A2

0E[L
′′′]

2I3
. (3.5)
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De fato, existem na literatura diversos estimadores cujo viés tem ordem de

magnitude O(n−2), tais como [12], [17], [40], [41], entre outros. Porém, este

estimador θ∗0 tem características muito atrativas, já que ele não restringe muito

as classes de distribuições que podem ser usadas nessa técnica; precisamos apenas

encontrar um zero de uma função, o que demanda baixo custo computacional; e

principalmente, a técnica inspira e dá ferramentas para encontrarmos estimadores

com ordem de magnitudes menores que Op(n
−2).

Faremos agora uma nova translação na função escore transladada L′
0 com a

função A1, que além de ser Op(n
−1), tem a característica de anular o termo de

ordem O(n−2) do viés do estimador θ∗0 usado na primeira translação de L′.

Seja θ∗1 zero da função L′
1 = L′

0 + A1, com A1 = −I{Re0 + E[b03 + b04 + b5]},

b03, b
0
4, b5 como na equação (3.4) e Re0 dado por (3.5). Como vimos, Re0, b03,

b04 e b5 são de ordem Op(n
−2), então, de fato h = 1, ou seja, A1 = O(n−1)1. O

Teorema 3.2.1 e a equação (3.4) garantem que os termos B1
3 , B

1
4 , B

0
5 e B1

5 têm

ordens menores ou iguais à Op(n
−3). Assim, podemos escrever

θ∗1 − θ = b11 + b12 + b13 + b14 + b15 +Op(n
−3)

= b11 + b12 + b03 +B1
3 + b04 +B1

4 + b05 +B1
5 +Op(n

−3)

= b11 + b12 + b03 + b04 + b5 +Op(n
−3)

=
L′

1

I
+
L′
1(L

′′
1 + I)

I2
+

(L′
1)

2L′′′
1

2I3
+ b03 + b04 + b5 +Op(n

−3)

=
(L′

0 + A1)

I
+

(L′
0 + A1)(L

′′
0 + A′

1 + I)

I2
+

(L′
0 + A1)

2(L′′′
0 + A′′

1)

2I3

+ b03 + b04 + b5 +Op(n
−3).

Ou seja,

θ∗1 − θ =
L′
0

I
+
L′
0(L

′′
0 + I)

I2
+

(L′
0)

2L′′′
0

2I3
+
A1

I

+
L′
0A

′
1 + A1(L

′′
0 + A′

1 + I)

I2

+
(L′

0)
2A′′

1 + 2A1L
′
0L

′′′
0 + 2L′

0A1A
′′
1 + A2

1L
′′′
0 + A2

1A
′′
1

2I3

+ b03 + b04 + b5 +Op(n
−3).

1Observe que neste caso, A não é uma variável aleatória.
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Assim, o valor esperado da expressão acima é dado por

E[θ∗1 − θ] = E

[
L′

0

I
+
L′
0(L

′′
0 + I)

I2
+

(L′
0)

2L′′′
0

2I3

]
︸ ︷︷ ︸

Re0−
A2
0A

′′
0

2I3

+

+ E

[
−I{Re+ E [b03 + b04 + b5]}

I

]
+

+
A′

1E[L
′
0] + A1(E[L

′′
0] + A′

1 + I)

I2
+

+
A′′

1E[L
′′
0] + 2A1E[L

′
0L

′′′
0 ] + 2A1A

′′
1E[L

′
0] + A2

1E[L
′′′
0 ] + A2

1A
′′
1

2I3
+

+ E
[
b03 + b04 + b5

]
+O(n−3).

Como E[(L′
0)

2] = I+A2
0, E[L

′′
0] = A′

0−I e E[L′
0L

′′′
0 ] = E[L′(L′′′−K)]+A0A

′′
0+A0K,

temos que θ∗1, que é zero da função L′ − I{E[Re0 + b03 + b04 + b5}, tem viés dado

por

E[θ∗1 − θ] =
A′

1A0 + A1(A
′
0 + A′

1)

I2
+
A′′

1(A
′
0 − I)

2I3
+

+
2A1{E[L′(L′′′ −K)] + A0A

′′
0 + A0K}+ 2A0A1A

′′
1

2I3
+

+
A2

1E[L
′′′
0 ] + A2

1A
′′
1 + A2

1(K + A′′
0) + A2

1A
′′
1

2I3
+O(n−3)

= O(n−3).

Lembrando que tanto Ah, como suas derivadas são Op(n
−h), então, o viés de θ∗1

tem ordem menor ou igual a O(n−3), como pode ser veri�cado na equação acima.

Pelas suposições S4 e S8, temos que E
[
(L′)2k

]
= O(nk), mas quando este

expoente não é par, podemos melhorar a ordem de magnitude de potências da

função escore, como podemos observar na a�rmação seguinte.

A�rmação 3.3.1 Seja uma função H = Op(n
l) tal que sua derivada H ′ também

é Op(n
l), então E

[
(L′)2k+1H

]
= O(nk+l).

Dem. Novamente a prova se dá por indução matemática. Quando k = 0,

a igualdade é válida devido à A�rmação 2.4.1. Basta no referido lema fazer

P = H. Se k = 1, tomemos P = (L′)2H na A�rmação 2.4.1, pelas suposi-

ções S4 e S8 temos ∂E[P ]
∂θ

= O(nl+1). E de sorte E[P ′] também é O(nl+1), basta

aplicar novamente a A�rmação 2.4.1 em P ′. Portanto, novamente pela mesma
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a�rmação temos E[(L′)3H] = O(nl+1). Suponha por hipótese de indução que

E
[
(L′)2k+1H

]
= O(nk+l), para k inteiro positivo. Para sabermos a ordem de

magnitude de E
[
(L′)2k+3H

]
, recorremos novamente à A�rmação 2.4.1. Assim,

de�na P = (L′)2k+2H. Logo, P = Op(n
k+1+l), consequentemente seu valor es-

perado também tem a mesma ordem de magnitude devido à suposição S8. A

quantidade P ′ = (L′)2k+1L′′H tem seu valor esperado com ordem de magnitude

Op(n
k+1+l), por hipótese de indução. Portanto, devido à A�rmação 2.4.1, temos

E
[
(L′)2k+3H

]
= O(nk+1+l). �

Observe que não é necessário utilizar todos os termos de b03, b
0
4 e b5, basta con-

siderar apenas os termos que têm ordem de magnitude de seus valores esperados

maior que O(n−3). Por exemplo, no caso particular em que L′′ não depende dos

dados, como L′′ + I = 0, temos que

E[b5] = E

[
L′(L′′ + I)4

I5
+

10(L′)2(−L′′′)(L′′ + I)3

2I6
+

15(L′)3H3(L
′′
h + I)2

6I7

+
7(L′)4H4(L

′′ + I)

24I8
+

(L′)5H5

120I9

]
(Pela A�rmação 3.3.1)

= O(n−3),

em que H3, H4 e H5 são dados pelo Lema 3.2.1, neste caso não dependendo dos

dados, e H5 = O(n4).

Neste caso particular ainda há uma simplicação na expressão da função escore

transladada L′
1, que é

A0 = −L
′′′

2I
, A1 =

Lv

8I2
+

5L′′′Liv

12I3
+

(L′′′)3

4I4
.

Por exemplo, no modelo de Poisson descrito na Seção 3.2, em que desejamos

estimar o parâmetro canônico, temos que o valor deA1 pode ser escrito da seguinte

forma:

A1 = 0 +
1

8I
+ 0− 5

6I
+

18

24I
=

1

24I
.

Assim, temos que o estimador θ∗1, obtido ao encontrar o zero da função escore

transladada

L′(θ) =
n∑

i=1

xi − n exp(θ) +
1

2
+

1

24I
,
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é não viesado até a ordem O(n−3).

Neste modelo, temos espressões fechadas para os cincos estimadores:

θ̂ = log (x̄) , θ̂1 = log (x̄) +
1

2nx̄
, θ∗0 = log

(
x̄+

1

2n

)
,

θ∗1 = log

 x̄
2
+

3 +
(
(6nx̄+ 3)2 + 6

) 1
2

12n

 ,

θ̃2 = log (x̄) +
1

2nx̄
− 5

n2x̄2
.

Observe, contudo, que

E
[
θ̂
]

= E[log (x̄)] = E

[
log

(
x1 + · · ·+ xn

n

)]
= E

[
∞∑
k=0

exp(−nλ)(nλ)k log(k)
k!

− log(n)

]

= −∞ exp(−nλ) +
∞∑
k=2

exp(−nλ)(nλ)k log(k)
k!

− log(n).

Ou seja, a probabilidade de x̄ ser zero é positiva e como o somatório acima con-

verge, temos que o viés do estimador θ̂ é menos in�nito. No caso dos estimadores

θ̂1 e θ̃2, o viés não é de�nido. Portanto, neste caso, a técnica de estimação pre-

ventiva é uma excelente ferramenta para se produzir estimadores com vieses de

ordem de magnitude pequena.

Um outro exemplo interessante é o modelo gaussiano com média zero e va-

riância desconhecida. Então, seja uma amostra x = (x1, . . . , xn) independente

e identicamente distribuída segundo uma gaussiana de média zero e variância

σ2 desconhecida. Ou seja, xi ∼ N (0, σ2), para todo i = 1, . . . , n. Suponha que

estamos interessados em estimar d = 1/(2σ2). A função escore é dada por

L′(d) =
n

2d
−

n∑
i=1

x2i .
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Portanto, a informação de Fisher é

I(d) =
n

2d2
.

Logo, temos que

A0 = −1

d
, A1 = 0.

Assim, temos que o estimador d∗1 coincide com o estimador d∗0 proposto por

Firth, que é obtido por encontrar o zero da função escore transladada L′ + A0 e

é dado por

d∗0 =
n− 2

2
∑n

i=1 x
2
i

, n > 2.

Observe que d∗0 é não viesado2 para d, pois,
∑n

i=1 x
2
i /σ

2 ∼ χ2
(n). Logo,

E

[(
n∑

i=1

x2i

)r]
=

σr2
r
2Γ
(
n+r
2

)
Γ
(
n
2

) (Desde que n > −r),

E

[
1

2
∑n

i=1 x
2
i

]
=

Γ
(
n−2
2

)
4σ2Γ

(
n
2

) (Fazendo-se r = −2),

=
1

2(n− 2)σ2
.

Ou seja,

E

[
n− 2

2
∑n

i=1 x
2
i

]
= d.

Com o teorema seguinte generalizaremos esse raciocínio para encontrarmos

um estimador θ∗k cujo viés tenha ordem de magnitude O(n−(k+2)), para qualquer

k = 0, 1, 2, . . . .

Teorema 3.3.1 Seja uma amostra X = (X1, . . . , Xn) independente e identica-

mente distribuída tal que a função escore satisfaz as suposições S1 a S9. Consi-

dere a expansão do EMV dada na equação (3.3) até k = 3 e de�na EO(1) como

os elementos dessa expansão cuja soma tem seu valor esperado O(n−1). Então,

θ∗0 que é zero da função L′+A0, com A0 = −IE[EO(1)], é não viesado até ordem

O(n−2). Da mesma forma, considere a expansão de θ∗0 como na equação (3.4)

até k = 5 e de�na EO(2) como os elementos dessa expansão cuja soma tem

2Na verdade, d∗0 é o estimador uniformemente não viesado de mínima variância para d.
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seu valor esperado O(n−2). Então, θ∗1 que é zero da função L′ + A0 + A1, com

A1 = −IE[EO(2)], é não viesado até ordem O(n−3). Sucessivamente, considere

a expansão de θ∗h−1 como na equação (3.4) até k = 2h + 3 e de�na EO(h + 1)

como os elementos dessa expansão cuja soma tem seu valor esperado O(n−(h+1)).

Então, θ∗h que é zero da função L′+A0+A1+· · ·+Ah, com Ah = −IE[EO(h+1)],

é não viesado até ordem O(n−(h+2)).

Dem. Vamos provar por indução matemática. Vimos que a equação (3.3) garante

que podemos expandir o EMV da seguinte forma θ̂− θ = b1 + b2 +Op(n
− 3

2 ) e que

θ∗0, zero da função L′ +A0, com A0 = −IE[b2], é não viesado até ordem O(n−2).

O termo b3 foi desprezado porque seu valor esperado é O(n−2). Observe que b2 é o

conjunto dos termos dessa expansão cuja soma tem valor esperado O(n−1), pois,

bi = Op(n
− i

2 ) e vale a suposição S8. Da mesma forma, a equação (3.4) garante

que podemos expandir θ∗0 da seguinte forma θ∗0−θ = b01+b
0
2+b

0
3+b

0
4+b5+Op(n

−3)

e vimos que θ∗1, zero da função L′+A0+A1, com A1 = −I{Re0+E[b03+ b
0
4+ b5]},

é não viesado até a ordem O(n−3). Observe que {Re0 +E[b03 + b04 + b5]} é a soma

dos elementos cuja soma tem seu valor esperado O(n−2). Assim, veri�camos que

o teorema é válido para h = 0 e h = 1. Suponha agora que este teorema é válido

para h− 1, ou seja, por hipótese de indução,

E
[
θ∗h−1 − θ

]
= E

[
L′

h−1

I
+ bh−1

2 + · · ·+ bh−1
2h+1 +Op(n

−(h+1))

]
= O(n−(h+1)).

Vamos provar que essa teoria vale para h qualquer. Dada a hipótese de indução,

�ca fácil ver que, por de�nição,

EO(h+ 1) = b
(h−1)
1 + b

(h−1)
2 + · · ·+ b

(h−1)
2h+1 + b

(h−1)
h+2 + b

(2h−1)
2h+3 .

A expansão da equação (3.4) até k = 2h+ 3 é

θ∗h − θ = bh1 + · · ·+ bh2h+3 +Op(n
−(h+2)).

Observe que para cada parcela temos que

bhi = bi +B0
i + · · ·+Bh−1

i +Bh
i
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= bi +B0
i + · · ·+Bh−1

i +Op(n
−(h+2))

= bh−1
i +Op(n

−(h+2)).

Isso quer dizer que para i > 2 podemos agrupar o termo Bh
i em Op(n

−(h+2)), pois

Bh
i = Op(n

− i+1+2h
2 ). No caso em que i = 2, temos

Bh
2 =

L′
h−1Ah + Ah(L

′′
h−1 + I + A′

h)

I2
+

(2AhL
′
h−1 + A2

h)(L
′′′
h−1 + A′′

h)

2I3
,

logo E[Bh
2 ] = O(n−(h+2)). Assim, usando esses fatos e a hipótese de indução,

temos que

E [θ∗h − θ] = E
[
bh1 + bh−1

2 +Bh
2 + · · ·+ bh−1

2h+3 +Op(n
−(h+2))

]
= E

[
L′

h−1 + Ah

I
+ bh−1

2 +Bh
2 + · · ·+ bh−1

2h+3 +Op(n
−(h+2))

]
=

Ah

I
+ E[EO(h− 1)] + E

[
Op(n

−(h+2))
]

= O(n−(h+2)). �

Este teorema garante que se a função escore satisfaz condições bastante gerais,

que são as suposições S1 a S9, então podemos fazer sucessivas translações na

função escore de forma que o zero dessa função transladada gere um estimador

cujo viés tem ordem de magnitude O(n−(h+2)), para qualquer h ≥ 0.

3.4 Correção de Viés Biparamétrica

Nesta seção iremos estender a correção de viés para o caso biparamétrico. Assim,

como na Seção 3.3, a ideia básica é seguir os passos do Teorema 3.3.1 e propor

um estimador cujo viés tem ordem de magnitude O(n−(h+2)), para h = 0, 1, . . . .

Dada uma função G real, de�nida no espaço paramétrico bidimensional, usa-

remos uma notação mais simples do que a dada na Seção 2.5 no caso multipara-

métrico. Considere o parâmetro θ = (α, β)T , então, o vetor gradiente G′(α, β) é

de�nido como
G′ : R×R −→ R×R

(α, β)T 7−→ (Gα, Gβ)
T ,
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em que Gα = ∂G
∂α

e Gβ = ∂G
∂β

são as derivadas parciais de G. Da mesma forma,

as demais derivadas parciais são denotadas por Gαβ = ∂2G
∂α∂β

, Gα...α = ∂(k)G
∂α(k) . Por

�m, as derivadas seguem a mesma notação matricial, G′′ = [∂G′/∂α, ∂G′/∂β],

· · · , G(k) = [∂G(k−1)/∂α, ∂G(k−1)/∂β]. Note que G(k) é uma matriz 2 × 2(k − 1),

com k > 1.

Estabeleceremos algumas suposições de regularidade biparamétricas, são elas:

• SB1 As derivadas parciais de G são contínuas.

• SB2 O gradiente G′ tem exatamente uma raiz θ∗ e a matriz G′′(θ∗) é ne-

gativa de�nida.

• SB3 E[G′G′T ] tem todos os elementos �nitos.

• SB4 G′′ não depende dos dados.

• SB5 G′ = Op(n
1
2 ).

• SB6 Se uma função polinomial das derivadas parciais f(∂G
∂α
, ∂2G
∂α∂β

, ∂3G
∂α∂α∂α

, · · ·)

tem ordem de magnitude Op(n
k), então, tanto E[f(∂G

∂α
, ∂2G
∂α∂β

, ∂3G
∂α∂α∂α

, · · ·)]

quanto a derivada dessa esperança têm ordem de magnitude O(nk).

• SB7 Os elementos da matriz (G′′)−1 são Op(n
−1) em uma vizinhança de θ

que inclui θ∗.

• SB8 Os elementos das matrizes G′′, G′′′, . . . , G(k) são Op(n) em uma vizi-

nhança de θ que inclui θ∗.

Estas suposições são adaptações das condições de regularidade multiparamé-

tricas para a função escore L′, dadas na Seção 2.5. Elas são importantes para

que possamos inverter a função G′, como garantem as suposições SB1 e SB2.

Será necessário que o valor esperado da matriz G′G′T seja �nito, pois sua matriz

inversa será decomposta em parcelas com ordem de magnitude decrescente; isso é

assegurado pela terceira suposição. Já SB4 tem apenas a �nalidade de simpli�car

os cálculos de valores esperados de elemntos de uma matriz G(k). A relevância
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das suposições SB5 a SB8 se dá na garantia da ordem de magnitude de seus

elementos e de funções polinomiais de seus elementos.

Seja L′
k o k-ésimo elemento da sequência de translações da função escore

L′
k = L′

k−1 + Ak, em que Ak = (Ak, Bk)
T , com Ak e Bk sendo Op(n

−k) e L′
0 =

L′+A0. Denotaremos por θ∗k = (α∗
k, β

∗
k)

T o zero da função L′
k. Em outras palavras,

Lkα(α
∗
k, β

∗
k) = Lkβ(α

∗
k, β

∗
k) = 0.

Se G′
h satisfaz as suposições SB1 e SB2, então, dada sua inversa Hh, a ex-

pansão de Taylor de θ∗h, em torno de G′
h é dada por

θ∗h = θ −H ′
hG

′
h +

1

2
H ′′

h(G
′
h ⊗G′

h) + · · ·+ (−1)k

k!
H

(k)
h (G′

h⊗ · · ·⊗︸ ︷︷ ︸
k−vezes

G′
h) + rk, (3.6)

em que |rk| ≤ |G′(θ)|.

Observe que as suposições SB's se referem a uma função G e não neces-

sariamente à função log-verossimilhança L; isto se deve ao fato de que iremos

fazer sucessivas translações na função escore L′ de forma que, por hipótese, esta

nova função transladada continue satisfazendo estas suposições. Dessa forma,

acrescentamos a seguinte suposição:

• SB9 Sejam G′
h uma função que satisfaz as suposições SB1 a SB8 e θ∗h zero

desta função, considere a expansão de θ∗h como na equação (3.6) e de�na

EO(h+2) como os elementos dessa expansão cuja soma tem valor esperado

com ordem de magnitude O(n−(h+2)). Então, a função G′
h+1 = G′

h + Ah+1,

com Ah+1 = −IE[EO(h + 2)], satisfaz as suposições SB1 a SB8. Além

disso, tanto Ah+1 quanto todas suas derivadas são de ordem Op(n
−(h+1)),

com h ≥ 0.

Estamos impondo que pequenas translações deste tipo não impeçam que a

função deixe de satisfazer as suposições biparamétricas SB's.

Suponha que a função escore transladada L′
k satisfaz as condições de regula-

ridade biparamétrica SB1 a SB9 e seja Hk sua função inversa. Ou seja,

Hk : R×R −→ R×R

(Lα(α, β), Lβ(α, β))
T 7−→ (H1

k(Lα, Lβ), H
2
k(Lα, Lβ))

T ,
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tal que (H1
k(Lα, Lβ), H

2
k(Lα, Lβ))

T = (α, β)T . Em outras palavras, temos que

Hk(L
′
k(θ)) = θ.

Encontrar esta função inversa Hk pode ser uma tarefa árdua e até mesmo

impossível. Então, uma solução para superar essa di�culdade é, assim como na

Seção 3.2, em que tratamos do caso uniparamétrico, usar o teorema da função

inversa [42], o qual garante que a matriz H ′
k é igual à inversa da matriz L′′

k. No

caso biparamétrico sempre é fácil fazer essa inversão, pois

H ′
k = (L′′

k)
−1

=

 Lkββ −Lkαβ

−Lkβα Lkαα

 1

|L′′
k|

=

 ∂H1
k

∂Lkα

∂H1
k

∂Lkβ

∂H2
k

∂Lkα

∂H2
k

∂Lkβ

 .
Para encontrar as derivadas de H ′

k, utilizamos derivação implícita. Assim,

dada

H ′′
k (Lk(θ)) =

 ∂2H1
k

∂L2
kα

∂2H1
k

∂Lkα∂Lkβ

∂2H1
k

∂Lkβ∂Lkα

∂2H1
k

∂L2
kβ

∂2H2
k

∂L2
kα

∂2H2
k

∂Lkα∂Lkβ

∂2H2
k

∂Lkβ∂Lkα

∂2H2
k

∂L2
kβ

 ,
temos, por exemplo, que

∂2H1
k

∂Lkα∂Lkβ

=
∂

∂Lkα

[
∂H1

k

∂Lkβ

]
=

∂

∂H1
k

[
∂H1

k

∂Lkβ

]
∂H1

k

∂Lkα

+
∂

∂H2
k

[
∂H1

k

∂Lkβ

]
∂H2

k

∂Lkα

=
∂

∂α

[
−Lkαβ

|L′′
k|

]
Lkββ

|L′′
k|

+
∂

∂β

[
−Lkαβ

|L′′
k|

](
−Lkβα

|L′′
k|

)
=

(Lkαβ|L′′
k|α − Lkαβα|L′′

k|)Lkββ

|L′′
k|3

+
(Lkαββ|L′′

k| − Lkαβ|L′′
k|β)Lkβα

|L′′
k|3

,

em que |L′′
k|α e |L′′

k|β, são as derivadas do determinante de L′′
k em relação a α e a

β, respectivamente.

Agora, através do lema seguinte, veremos como se relaciona essa matriz H ′
k

com a matriz H ′
k−1.

Lema 3.4.1 Considere a sequência de translações da função escore, L′
k = L′

k−1+

Ak, com L′
0 = L′ + A0 e Ak = (Ak, Bk)

T , um vetor com ordem de magnitude
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Op(n
−k). Suponha que cada L′

k satisfaz as suposições SB1 a SB9. Então, a

matriz H ′
k pode ser decomposta em parcelas da seguinte forma:

H ′
k = H ′

k−1 +Re(k) +Op(n
−(2k+3)),

em que

Re(k) =

 Bkβ −Akβ

−Bkα Akα

 1

|L′′
k−1|

−
|L′′

k| − |L′′
k−1|

|L′′
k|

(L′′
k−1)

−1.

Dem. Vamos provar por indução matemática. Para k = 0, temos que

H ′
0 =

 Lββ +B0β −(Lαβ + A0β)

−(Lβα +B0α) Lαα + A0α

 1

|L′′
0|

=

 Lββ −Lαβ

−Lβα Lαα

+

 B0β −A0β

−B0α A0α

 1

|L′′|+R0

,

sendo R0 = |L′′
0| − |L′′|. Ou seja, R0 = A0αLββ + B0βLαα + A0αB0β − A0βLβα −

B0αLαβ − A0βB0α. Portanto, R0 = Op(n).

Mas observe que 1
|L′′|+R0

= 1
|L′′| −

R0

(|L′′|+R0)|L′′| , então,

H ′
0 = (L′′)−1 +

 B0β −A0β

−B0α A0α

 1

|L′′|
− (L′′)−1R0

|L′′|+R0

+Op(n
−3)

= H ′ +Re(0) +Op(n
−3).

Suponha que a a�rmação é válida para k − 1 e seja H ′
k a função inversa de

L′
k = L′

k−1 + Ak. De maneira análoga, de�ne-se Rk = |L′′
k| − |L′′

k−1|. É fácil

veri�car que Rk = Op(n
1−k). Logo,

H ′
k =

 Lkββ −Lkαβ

−Lkβα Lkαα

 1

|L′′
k|

=

 L(k−1)ββ −L(k−1)αβ

−L(k−1)βα L(k−1)αα

+

 Bkβ −Akβ

−Bkα Akα


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×

[
1

|L′′
(k−1)|

− Rk

(|L′′
(k−1)|+Rk)|L′′

k−1|

]

= (L′′
k−1)

−1 +

 Bkβ −Akβ

−Bkα Akα

 1

|L′′
k−1|

−
(L′′

k−1)
−1Rk

|L′′
k−1|+Rk

+Op(n
−(2k+3))

= H ′
k−1 +Re(k) +Op(n

−(2k+3)).

Logo, por indução, a a�rmação é válida para qualquer k. �

Como |L′′
k| − |L′′

k−1| tem ordem de magnitude Op(n
1−k), temos que Re(k) =

Op(n
−(k+2)).

O Lema 3.4.1 é de relevância para nosso desenvolvimento, pois mostra como

se comporta a matriz H ′
k após uma translação da função escore já transladada.

O próximo lema estabelece a ordem de magnitude das derivadas de H ′
k.

Lema 3.4.2 Seja Lk uma função que satisfaz as suposições SB1 a SB9; então,

a ordem de magnitude da l-ésima derivada da:

a) função inversa Hk é Op(n
−l).

b) função Re(k) é Op(n
−(k+l+2)).

Dem.

a) Novamente vamos demonstrar esta a�rmação usando o princípio da indução

matemática. Para l = 1, H ′
k = (L′′)−1, pelas suposições SB3, SB6 a SB9

claramente H ′
k = Op(n

−1). Suponha a hipótese de indução válida para l − 1. Por

de�nição, H(l)
k =

[
∂H

(l−1)
k

∂Lkα
,
∂H

(l−1)
k

∂Lkβ

]
. Sem perda de generalidade, considere h(l−1)

k11 o

elemento de posição (1, 1) da matriz H(l−1)
k , então

h
(l)
k11 =

∂

∂Lkα

[
h
(l−1)
k11

]
=

∂

∂H1
k

[
h
(l−1)
k11

] ∂H1
k

∂Lkα

+
∂

∂H2
k

[
h
(l−1)
k11

] ∂H2
k

∂Lkα

= Op(n
−(l−1))Op(n

−1) +Op(n
−(l−1))Op(n

−1)

= Op(n
−l).
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b) A demonstração deste item é análoga à do item (a). É fácil veri�car que

derivar Re(k) em relação a θ não muda sua ordem de magnitude e que ∂H1
k

∂Lkα
=

O(n−1). Assim, por exemplo, Re(k)′ = ∂
∂H1

k
[Re(k)] ∂H1

k

∂Lkα
+ ∂

∂H2
k
[Re(k)] ∂H2

k

∂Lkα
tem

ordem O(n−(k+3)). Então, suponha que a igualdade vale para l− 1. Sem perda de

generalidade, temos que

Re(k)(l) =
∂

∂Lkα

[
Re(k)(l−1)

]
=

∂

∂H1
k

[
Re(k)(l−1)

] ∂H1
k

∂Lkα

+
∂

∂H2
k

[
Re(k)(l−1)

] ∂H2
k

∂Lkα

= Op(n
−(k+l+1))Op(n

−1) +Op(n
−(k+l+1))Op(n

−1)

= Op(n
−(k+l+2)). �

Dadas as suposições SB5, SB6 e com a A�rmação 3.4.2 �ca fácil observar

que o l-ésimo termo da expressão (3.6) tem ordem de magnitude Op(n
− l

2 ). Assim,

considere os três primeiros termos dessa expressão para o EMV

θ̂ = θ −H ′L′ +
1

2
H ′′(L′ ⊗ L′) +Op(n

− 3
2 ).

Em notação matricial,

 α̂− α

β̂ − β

 = −


h
(1)
11 Lα + h

(1)
12 Lβ

h
(1)
21 Lα + h

(1)
22 Lβ

+

+
1

2


h
(2)
11 L

2
α +

(
h
(2)
12 + h

(2)
13

)
LαLβ + h

(2)
14 L

2
β

h
(2)
21 L

2
α +

(
h
(2)
22 + h

(2)
23

)
LαLβ + h

(2)
24 L

2
β

+Op(n
− 3

2 ),

sendo que h(k)ij é o elemento de posição (i, j) da matriz H(k).

De�na EO(1) como a soma dos elementos dessa expressão cujo valor esperado

é O(n−1) e X0 = E[EO(1)], então, θ0, zero da função L′ +A0, sendo A0 = L′′X0,

tem viés com ordem de magnitude O(n−2). Observe que

X0 = E

[
1

2
H ′′(L′ ⊗ L′)

]
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=
1

2
E




h
(2)
11 L

2
α +

(
h
(2)
12 + h

(2)
13

)
LαLβ + h

(2)
14 L

2
β

h
(2)
21 L

2
α +

(
h
(2)
22 + h

(2)
23

)
LαLβ + h

(2)
24 L

2
β


 .

Como a suposição SB4 garante que E[H ′] = H ′, temos que

θ∗0 − θ = −H ′
0L

′
0 +

1

2
H ′′

0 (L
′
0 ⊗ L′

0) +Op(n
− 3

2 ) (pelo Lema 3.4.1)

= − (H ′ +Re(0)) (L′ + L′′X0) +

+
1

2
(H ′′ +Re′(0)) ((L′ +A0)⊗ (L′ +A0)) +Op(n

− 3
2 ).

Assim, obtem-se

E [θ∗0 − θ] = −X0 +
1

2
E [H ′′(L′ ⊗ L′)] +O(n−2)

= O(n−2).

Dado que H ′L′′ é igual à matriz identidade, derivando este produto em relação

a α, obtemos
(

∂H′

∂Lα

∂Lα

∂α
+ ∂H′

∂Lβ

∂Lβ

∂α

)
L′′ + H ′ ∂L′′

∂α
= 0. Podemos representar essa

igualdade em forma matricial

H ′∂L
′′

∂α
= −H ′′

 ∂Lα

∂α
L′′

∂Lβ

∂α
L′′

 .

Se derivarmos o produto H ′L′′ em relação a β teremos uma igualdade similar.

Então, usando a de�nição de L′′′ e concatenando as duas igualdades em uma

única matriz teremos

H ′L′′′ = H ′
(

∂L′′

∂α
∂L′′

∂β

)
= −H ′′

 ∂Lα

∂α
L′′ ∂Lα

∂β
L′′

∂Lβ

∂α
L′′ ∂Lβ

∂β
L′′


= −H ′′ (L′′ ⊗ L′′) .

Ou seja, L′′′ = −L′′H ′′ (L′′ ⊗ L′′) .

O produto de Kronecker satisfaz uma propriedade na qual garante que vec[L′′

H ′L′′] = (L′′ ⊗ L′′) vec [H ′] , sendo que o operador �vec� de uma matriz A é de�-

nido como o vetor formado pelas colunas de A sobrepostas uma a uma. Assim,
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temos que a translação da função escore proposta por David Firth, examinada

na Seção 2.6, é exatamente a translação proposta nesta seção, pois

A0 =
1

2
L′′′vec [H ′] (translação proposta por Firth)

= −1

2
L′′H ′′ (L′′ ⊗ L′′) vec [H ′]

= −1

2
L′′H ′′vec [L′′]

=
1

2
L′′H ′′E [L′ ⊗ L′] (translação proposta nesta seção).

Na última igualdade, usamos o fato de que E [L′ ⊗ L′] = −vec[L′′].

Podemos continuar a transladar a função escore; desta forma, considere a

expansão de Taylor de θ∗0 em torno de L′(θ) até ordem Op(n
− 5

2 ). Assim,

θ∗0 = θ −H ′
0L

′
0 +

1

2
H ′′

0 (L
′
0 ⊗ L′

0)−
1

6
H ′′′

0 (L
′
0 ⊗ L′

0 ⊗ L′
0) +

+
1

24
H

(iv)
0 (L′

0 ⊗ L′
0 ⊗ L′

0 ⊗ L′
0) +Op(n

− 5
2 ).

De maneira análoga, de�ne-se EO(2) como a soma dos elementos dessa expansão

cuja soma tem valor esperado com ordem de magnitude O(n−2) e X1 = E[EO(2)].

Logo, θ∗1 que é zero da função L′
0 + A1, com A1 = L′′

0X1, é um estimador não

viesado de θ até a ordem O(n−3). Observe que

X1 = −Re(0)A0 +
1

2
H ′′A0 ⊗A0 +

1

2
Re′(0)E [L′ ⊗ L′]− 1

6
H ′′′E [L′ ⊗ L′ ⊗ L′ +

+ 3L′ ⊗ L′ ⊗A0] +
1

24
H(iv)E [L′ ⊗ L′ ⊗ L′ ⊗ L′] .

Perceba que H(l)
1 = H

(l)
0 + Re(l)(1) e como a ordem de magnitude do termo

Re(l)(1) é no máximo Op(n
−4), podemos dispensá-lo. Assim, H(l)

1 = H(l) +

Re(l)(0); no caso em que l ≥ 3, também, podemos dispensar o termo Re(l)(0).

Antes de calcular o viés de θ∗1 observemos que

E [H ′
1L

′
1] = E [(H ′

0 +Re(1)) (L′ +A0 +A1)] +O(n−3)

= (H ′ +Re(0)) (L′′X0 + L′′
0X1) +O(n−3)

= X0 +Re(0)A0 + X1 +O(n−3)

= Re(0)A0 + X0 + X1 +O(n−3).
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Da mesma forma

E[H ′′
1 (L

′
1 ⊗ L′

1)] = E[H ′′
0 (L

′
0 ⊗ L′

0)] +O(n−3)

= E[(H ′′ +R′e(0)) ((L′ +A0)⊗ (L′ +A0))] +O(n−3)

= H ′′E [L′ ⊗ L′] +H ′′(A0 ⊗A0) +R′e(0)E[L′ ⊗ L′] +O(n−3)

= 2X0 +H ′′(A0 ⊗A0) +R′e(0)E[L′ ⊗ L′] +O(n−3).

Similarmente, temos

E[H ′′′
1 (L

′
1 ⊗ L′

1 ⊗ L′
1)] = H ′′′E [L′ ⊗ L′ ⊗ L′ + 3L′ ⊗ L′ ⊗A0] +O(n−3).

Também é fácil veri�car, que a menos dos termos de ordem O(n−3), é válida a

igualdade E
[
H(iv)(L′

1 ⊗ L′
1 ⊗ L′

1 ⊗ L′
1)
]
= H ivE [L′ ⊗ L′ ⊗ L′ ⊗ L′] .

Portanto,

E [θ∗1 − θ] = E

[
−H ′

1L
′
1 +

1

2
H ′′

1 (L
′
1 ⊗ L′

1)−
1

6
H ′′′

1 (L
′
1 ⊗ L′

1 ⊗ L′
1)+

+
1

24
H

(iv)
1 (L′

1 ⊗ L′
1 ⊗ L′

1 ⊗ L′
1) +Op(n

− 5
2 )

]
= −Re0A0 −X0 −X1 + X0 +H ′′(A0 ⊗A0) +Re(0)E[L′ ⊗ L′] +

+ E

[
−1

6
H ′′′ (L′ ⊗ L′ ⊗ L′ + 3L′ ⊗ L′ ⊗A0)

]
+

+ E

[
1

24
H(iv)(L′ ⊗ L′ ⊗ L′ ⊗ L′)

]
+Op(n

−3)

= Op(n
−3).

Observe que, por de�nição, a soma dos quatro últimos termos dessa soma mais o

primeiro termo é exatamente X1.

Assim, como na Seção 3.3, apresentamos o Teorema 3.4.1 no qual garantimos

no espaço biparamétrico a construção de um estimador θ∗h não viesado até a ordem

O(n−(h+2)), para k = 0, 1, 2, . . . . Este estimador também é de�nido como θ∗h que

é zero da função escore L′
h transladada k-vezes.

Teorema 3.4.1 Seja uma amostra X = (X1, . . . , Xn) independente e identica-

mente distribuída tal que a função escore satisfaz as suposições SB1 a SB9.

Faça G′
h = L′ na equação (3.6); então, considere a expansão do EMV dada
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nesta equação até k = 2 e de�na X0 como a esperança da soma dos elementos

dessa expansão cuja soma tem valor esperado O(n−1). Então, θ∗0 que é zero da

função L′
0 = L′ + A0, com A0 = L′′X0, é um estimador não viesado até or-

dem O(n−2). Da mesma forma, considere a expansão de θ∗0 como na equação

(3.6), com G′
0 = L′

0, até k = 4 e de�na X1 como a esperança da soma dos ele-

mentos dessa expansão cuja soma tem valor esperado O(n−2). Então, θ∗1 que é

zero da função L′
1 = L′ + A0 + A1, com A1 = L′′

0X1, é não viesado até ordem

O(n−3). Sucessivamente, considere a expansão de θ∗h−1 como na equação (3.6),

com G′
h−1 = L′

h−1, até k = 2h+ 2 e de�na Xh como a soma dos elementos dessa

expansão cuja soma tem seu valor esperado O(n−(h+1)). Então, θ∗h que é zero da

função L′
h = L′+A0+A1+ · · ·+Ah, com Ah = L′′

h−1Xh, é não viesado até ordem

O(n−(h+2)).

Dem. Novamente usaremos indução matemática nesta prova. Para h = 0 e h = 1,

já provamos ser verdadeira esta a�rmação. Suponha, por hipótese de indução, que

este teorema é válido para h− 1, então, vamos provar que essa teoria vale para h

qualquer. Observe que pelo Lema 3.4.1 temos H ′
h = H ′

h−1+Re(h)+Op(n
−(2h+3)) e

pelo Lema 3.4.2 temos H(l)
h = H

(l)
h−1+Op(n

−(h+l+2)). A menos dos termos de ordem

Op(n
− 2h+3

2 ), podemos escrever a expansão de Taylor de θ∗h da seguinte forma:

θ∗h − θ = −H ′
hL

′
h + · · ·+ 1

(2h+ 2)!
H

(2h+2)
h−1 L′

h⊗2h+2, (3.7)

em que, por abuso de notação, L′
h⊗k = L′

h ⊗ · · ·⊗︸ ︷︷ ︸
k−vezes

L′
h. Vamos dividir essa equação

em três partes, a primeira P0 = −H ′
hAh, a segunda

P1 = −H ′
h−1L

′
h−1 +

1

2
H ′′

h−1L
′
h−1 ⊗2 + · · ·+ 1

(2h+ 2)!
H

(2h+2)
h−1 L′

h−1⊗2h+2,

que por hipótese de indução tem valor esperado com ordem de magnitude O(n−(h+1)).

Portanto, Xh = P1, logo Ah = L′′
h−1P1. A terceira parte é o que resta da equação

(3.9) após a retirada das duas primeiras partes:

P2 =
1

2
H ′′

h−1(L
′
h ⊗2 −L′

h−1⊗2) + · · ·+

+
1

(2h+ 2)!
H

(2h+2)
h−1 (L′

h ⊗2h+2 −L′
h−1⊗2h+2).
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O valor esperado de P2 é O(n−(h+2)). Para veri�carmos esse fato, observe que o

produto de Kronecker satisfaz as propriedades associativas e distributivas, assim,

temos que (L′
h−1 + Ah) ⊗ (L′

h−1 + Ah) = L′
h−1 ⊗ L′

h−1 + 2Ah ⊗ L′
h−1 + Ah ⊗ Ah.

Como o valor esperado de L′
h−1 é O(1), então,

E
[
(L′

h−1 + Ah)⊗ (L′
h−1 + Ah)

]
= E

[
L′
h−1 ⊗ L′

h−1

]
+O(n−h).

Portanto, a esperança do primeiro termo de P2 tem ordem O(n−(h+2)). Suponha,

por hipótese de indução que para algum l, vale a igualdade E
[
(L′

h−1 + Ah)⊗l
]
=

E
[
L′

h−1⊗l
]
+O(n− 2h−l+1

2 ). Então,

E
[
(L′

h−1 + Ah)⊗l+1
]

= E

[
l+1∑
i=0

Cl+1
i

(
L′

h−1⊗l+1−i
)
⊗
(
Ah⊗i

)]

= E
[
L′
h−1⊗l+1

]
+

l+1∑
i=1

Cl+1
i E

[
L′
h−1⊗l+1−i

]
⊗
(
Ah⊗i

)
= E

[
L′
h−1⊗l+1

]
+O(n− 2h−l

2 ).

Ou seja, a igualdade vale para l + 1. Assim, o valor esperado de um termo da

expressão de P2 tem magnitude E
[
H

(l)
h−1(L

′
h ⊗l −L′

h−1⊗l)
]
= O(n−l)O(n− 2h−l+1

2 ).

Como l > 2, temos que este valor esperado é no máximo O(n−(h+2)). Portanto,

como Re(h)Ah tem ordem maior que Op(n
− 2h+3

2 ), temos que

E [θ∗h − θ] = E
[
−
(
H ′

h−1 +Re(h)
)
Ah

]
+ E [P1] + E [P2] + E

[
Op(n

− 2h+3
2 )
]

= −P1 + P1 + P2 + E
[
Op(n

− 2h+3
2 )
]

= O(n−(h+2)). �

3.5 Estimação Multiparamétrica

Consideraremos agora o caso multiparamétrico θ = (θ1, · · · , θp)T , como na Seção

2.5. Sejam Θ o conjunto de todos os possíveis valores de θ e G uma função com

domínio em Θ, então estabeleceremos as seguintes suposições de regularidade

multiparamétricas:

• SM1 As derivadas parciais de G são contínuas.
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• SM2 O gradiente G′ tem exatamente uma raiz θ∗ e a matriz G′′(θ∗) é

negativa de�nida.

• SM3 E[G′G′T ] tem todos os elementos �nitos.

• SM4 G′ = Op(n
1
2 ).

• SM5 Se uma função polinomial das derivadas parciais f( ∂G
∂θ1
, ∂2G
∂θ1∂θ2

, . . .)

tem ordem de magnitude Op(n
k), então, tanto E[f( ∂G

∂θ1
, ∂2G
∂θ1∂θ2

, . . .)] como a

derivada dessa esperança têm ordem de magnitude O(nk).

• SM6 Os elementos da matriz (G′′)−1 são Op(n
−1) em uma vizinhança de θ

que inclui θ∗.

• SM7 Os elementos das matrizes G′′, G′′′, . . . , G(k) são Op(n) em uma vizi-

nhança de θ que inclui θ∗.

Lembre que no caso biparamétrico utilizamos a suposição de que a função

L′′ não dependia dos dados. Agora estamos generalizando tanto a dimensão do

espaço paramétrico como estamos abrindo mão da não-aleatoriedade da derivada

da função escore.

Similarmente ao caso biparamétrico, considere que a função G′
k = (Gkθ1 , . . . ,

Gkθp) satisfaz as suposições acima e seja Hk sua inversa, ou seja,

Hk : R× . . .×R︸ ︷︷ ︸
p−vezes

−→ R× . . .×R︸ ︷︷ ︸
p−vezes

(. . . , Gkθi(θ1, . . . , θp), . . .)
T 7−→ (. . . , H i

k(Gkθ1 , . . . , Gkθp), . . .)
T ,

com i = 1, . . . , p, tal que, (H1
k(Gkθ1 , . . . , Gkθp), . . . , H

p
k(Gkθ1 , . . . , Gkθp))

T = (θ1, . . . ,

θp)
T . Em outras palavras, temos que Hk(G

′
k(θ)) = θ.

Seja θ∗h zero da função G′
h, então, a expansão de Taylor de θ∗h em torno de

G′
h(θ) é dada por

θ∗h = θ −H ′
hG

′
h +

1

2
H ′′

h(G
′
h ⊗G′

h) + · · ·+ (−1)k

k!
H

(k)
h (G′

h⊗ · · ·⊗︸ ︷︷ ︸
k−vezes

G′
h) + rk, (3.8)

sendo |rk| ≤ |G′(θ)|.
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Faremos sucessivas translações na função G′
k e desejamos que ela continue a

satisfazer as suposições acima, dessa forma, acrescentamos a seguinte suposição:

• SM8 Sejam G′
h uma função que satisfaz as suposições SM1 a SM7 e θ∗h

zero desta função, considere a expansão de θ∗h como na equação (3.8) e de�na

EO(h + 2) como a esperança da soma dos elementos dessa expansão cuja

soma tem valor esperado com ordem de magnitude O(n−(h+2)). Então, a

função G′
h+1 = G′

h+Ah+1, sendo Ah+1 = E [H ′
h]

−1 E[EO(h+2)], satisfaz as

suposições SM1 a SM7. Além disso, tanto Ah+1 como todas suas derivadas

são de ordem Op(n
−(h+1)), com h ≥ 0.

O determinante de uma matriz tem ordem de magnitude relacionada com a

dimensão do espaço paramétrico e com a magnitude de seus elementos; o próximo

lema estabelece esta relação. Para demonstrar este lema precisamos da seguinte

de�nição: dada uma matriz quadrada M, de�nimos a matriz M(−i,−j) como a

matriz M sem a linha i e sem a coluna j.

Lema 3.5.1 Seja A′
k uma matriz p × p tal que cada elemento ak(i,j) de A′

k tem

ordem Op(n
−k). Então, o determinante de A′

k tem ordem de magnitude Op(n
−kp).

Dem. Para p = 1 e p = 2, esta igualdade é trivialmente satisfeita. Suponha

válida para p− 1. Fixada uma coluna j, temos que o determinante de A′
k é dado

por

|A′
k| =

p∑
i=1

(−1)i+jak(i,j)
∣∣A′

k(−i,−j)

∣∣ .
Por hipótese de indução

∣∣∣A′
k(−i,−j)

∣∣∣ tem ordem Op(n
−k(p−1)), logo cada parcela

desta soma tem ordem Op(n
−kp). Como p é constante, temos o resultado desejado.

�

A proposta desta tese é fazer sucessivas translações na função escore para eli-

minar vieses com magnitudes grandes. O Lema 3.5.2 estabelece como se relaciona

o determinante de uma matriz G′′
k−1 com a matriz transladada G′′

k = G′′
k−1 + A′

k.

Já o Lema 3.5.3 estabelece qual a relação entre essas matrizes.
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Lema 3.5.2 Sejam G′′
k−1 e A

′
k duas matrizes p×p tais que cada elemento g(k−1)(i,j)

de G′′
k−1 tem ordem Op(n) e cada elemento de ak(i,j) de A′

k tem ordem Op(n
−k).

Então, o determinante da matriz G′′
k = G′′

k−1 + A′
k é dado por

|G′′
k| = |G′′

k−1|+R(k),

em queR(k) =
∑p

i=1(−1)i+j
{
g(k−1)(i,j)

∣∣∣A′
k(−i,−j)

∣∣∣+ ak(i,j)

∣∣∣G′′
(k−1)(−i,−j) + A′

k(−i,−j)

∣∣∣}
e tem ordem Op(n

−(k−p+1)).

Dem. Para p = 1 trivialmente esta igualdade é válida. Para p = 2, temos que

|G′′
k| = gk(1,1)gk(2,2) − gk(1,2)gk(2,1)

= (g(k−1)(1,1) + ak(1,1))(g(k−1)(2,2) + ak(2,2))

− (g(k−1)(1,2) + ak(1,2))(g(k−1)(2,1) + ak(2,1))

= g(k−1)(1,1)g(k−1)(2,2) − g(k−1)(1,2)g(k−1)(2,1) + g(k−1)(1,1)ak(2,2)

+ ak(1,1)(g(k−1)(2,2) + ak(2,2))− g(k−1)(1,2)ak(2,1) − ak(1,2)(g(k−1)(2,1) + ak(2,1))

= |G′′
(k−1)|+R(k),

em que R(k) = g(k−1)(1,1)ak(2,2) + ak(1,1)(g(k−1)(2,2) + ak(2,2)) − g(k−1)(1,2)ak(2,1) −

ak(1,2)(g(k−1)(2,1)+ak(2,1)) e tem ordem de magnitude Op(n
−(k−1)). Suponha a igual-

dade válida para p− 1. Então, para um j qualquer �xo, o determinante de G′′
k é

dado por

|G′′
k| =

p∑
i=1

(−1)i+jgk(i,j)
∣∣G′′

k(−i,−j)

∣∣
=

p∑
i=1

(−1)i+j
(
g(k−1)(i,j) + ak(i,j)

) ∣∣G′′
(k−1)(−i,−j) + A′

k(−i,−j)

∣∣
= |G′′

k−1|+R(k),

em queR(k) =
∑p

i=1(−1)i+j
{
g(k−1)(i,j)

∣∣∣A′
k(−i,−j)

∣∣∣+ ak(i,j)

∣∣∣G′′
(k−1)(−i,−j) + A′

k(−i,−j)

∣∣∣}
e tem ordem de magnitude Op(n

−(k−p+1)), pois o termo com maior ordem é

ak(i,j)

∣∣∣G′′
(k−1)(−i,−j)

∣∣∣ = O(n−k)O(np−1). �

Dada uma matriz quadradaM, de�nimosM(M) como a transposta da matriz

formada pelos cofatores deM. Portanto, temos do teorema da função inversa que

H ′
k é igual a inversa de L′′

k, ou seja,

H ′
k =

M(L′′
k)

|L′′
k|

.
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Lema 3.5.3 Considere a sequência de translação da função escore, L′
k = L′

k−1+

Ak, com L′
0 = L′ + A0 e Ak um vetor p-dimensional com ordem de magnitude

Op(n
−k). Então, a matriz H ′

k pode ser decomposta em parcelas da seguinte forma:

H ′
k = H ′

k−1 +Re1(k) +Re2(k) +Op(n
−kp−p−1),

com

Re1(k) = H ′
k−1

|L′′
k| − |L′′

k−1|
|L′′

k|
,

Re2(k) =
M(Ak)

|L′′
k−1|

,

em que Re1(k) e Re2(k) têm ordem de magnitude Op(n
−(k+2)) e Op(n

−p(k+1)),

respectivamente.

Dem. Para p = 1, esta igualdade é válida pelo Lema 3.2.2. Suponha a igualdade

válida para p− 1. O elemento de posição (i, j) da matriz de cofatores de L′′
k é da

forma

(−1)i+j
∣∣L′′

k(−i,−j)

∣∣ = (−1)i+j
∣∣L′′

(k−1)(−i,−j) + Ak(−i,−j)

∣∣ .
Sabemos que 1

|L′′
k |
= 1

|L′′
k−1|

− |L′′
k |−|L′′

k−1|
|L′′

k ||L
′′
k−1|

, então, como a soma de uma matriz trans-

posta é a matriz transposta da soma dessas matrizes, ao dividirmos a transposta

da matriz de cofatores de L′′
k por |L′′

k| temos que o elemento de posição (j, i) da

matriz H ′
k é

hk(j,i) = (−1)i+j
∣∣L′′

(k−1)(−i,−j) + Ak(−i,−j)

∣∣ [ 1

|L′′
k−1|

−
|L′′

k| − |L′′
k−1|

|L′′
k||L′′

k−1|

]
= h(k−1)(j,i) − h(k−1)(j,i)

|L′′
k| − |L′′

k−1|
|L′′

k|
+

(−1)i+j
∣∣Ak(−i,−j)

∣∣
|L′′

k−1|
+Op(n

−kp−p−1).

Portanto,

H ′
k = H ′

k−1 +H ′
k−1

|L′′
k| − |L′′

k−1|
|L′′

k|
+

M(Ak)

|L′′
k−1|

+Op(n
−kp−p−1).

Observe que

H ′
k−1

|L′′
k| − |L′′

k−1|
|L′′

k|
= Op(n

−(k+2)),
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M(Ak)

|L′′
k−1|

= Op(n
−k(p−1)−p)

e ∣∣Ak(−i,−j)

∣∣ |L′′
k| − |L′′

k−1|
|L′′

k||L′′
k−1|

= Op(n
−kp−p−1).

�

Na expansão de Taylor dada na equação (3.8) aparecem derivadas de ordem

l da função H. Assim, o lema seguinte a�rma qual a ordem de magnitude dessas

derivadas e das parcelas de suas translações.

Lema 3.5.4 Seja L′
k uma função satisfazemdo as suposições SM1 a SM8, en-

tão, a ordem de magnitude da l-ésima derivada das funções:

a) Hk é Op(n
−l).

b) Re1(k) é Op(n
−(k+2+l)).

c) Re2(k) é Op(n
−k(p−1)−p−l).

Dem. Sem perda de generalidade, considere a derivada de uma dessas funções

em relação a coordenada Lθ1 e o primeiro termo de H ′′
k . Ou seja,

h′′k(1,1) =
∂h′k(1,1)
∂Lθ1

=

p∑
i=1

∂h′k(1,1)
∂H i

k

∂H i
k

∂Lθ1

= Op(n
−2).

Suponha por indução que a igualdade vale para l − 1. Logo o termo de posição

(1, 1) de H(l)
k é dado por

h
(l)
k(1,1) =

∂hl−1
k(1,1)

∂Lθ1

=

p∑
i=1

∂h
(l−1)
k(1,1)

∂H i
k

∂H i
k

∂Lθ1

=

p∑
i=1

Op(n
−(l−1))Op(n

−1) = Op(n
−l).

Os itens b e c são idênticos na demonstração. �

O principal resultado desta tese de doutorado é apresentado no Teorema 3.5.1,

no qual propomos uma sequência de translações da função escore, de forma que

o zero de cada função transladada é um estimador com viés corrigido.
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Teorema 3.5.1 Dada uma amostra X = (X1, . . . , Xn) independente e identica-

mente distribuída, tal que a função escore satisfaz as suposições SM1 a SM8.

Faça G′
h = L′ na equação (3.8), considere a expansão do EMV dada nesta equa-

ção até k = 2 e de�na X0 como a esperança da soma dos elementos dessa ex-

pansão cuja soma tem valor esperado O(n−1). Então, θ∗0, que é zero da função

L′
0 = L′+A0, com A0 = E [H ′]−1 X0, é não viesado até ordem O(n−2). Da mesma

forma, considere a expansão de θ∗0 como na equação (3.8), com G′
0 = L′

0, até k = 4

e de�na X1 como a esperança da soma dos elementos dessa expansão cuja soma

tem valor esperado O(n−2). Então, θ∗1 que é zero da função L′
1 = L′ + A0 + A1,

com A1 = E [H ′
0]

−1X1, é não viesado até ordem O(n−3). Sucessivamente, con-

sidere a expansão de θ∗h−1 como na equação (3.8), com G′
h−1 = L′

h−1, até k =

2h + 2 e de�na Xh como a esperança da soma dos elementos dessa expansão

cuja soma tem seu valor esperado O(n−(h+1)). Então, θ∗h que é zero da função

L′
h = L′+A0+A1+ · · ·+Ah, com Ah = E

[
H ′

h−1

]−1Xh, é não viesado até ordem

O(n−(h+2)).

Dem. Novamente usaremos indução matemática nesta prova. Para h = 0, temos

que X0 = E
[
−H ′L′ + 1

2
H ′′ (L′

0 ⊗ L′
0)
]
. Então, o viés de θ∗0 é dado por

E [θ∗0 − θ] = E

[
−H ′

0L
′
0 +

1

2
H ′′

0 (L
′
0 ⊗ L′

0) +Op(n
− 3

2 )

]
= E

[
(−H ′ +Re1(0)) (L′ + A0) +

1

2
H ′′ (L′ ⊗ L′) +Op(n

− 3
2 )

]
= E

[
(−H ′)

(
L′ + E [H ′]

−1X0

)
+

1

2
H ′′ (L′ ⊗ L′) +Op(n

− 3
2 )

]
= O(n−2).

Usamos que E
[
Op(n

− 3
2 )
]
= O(n−2), devido à A�rmação 3.3.1.

Suponha por hipótese de indução que este teorema é válido para h− 1, então,

vamos provar que essa teoria vale para h qualquer. Observe que pelo Lema 3.5.3

temos H ′
h = H ′

h−1 + Re1(h) + Re2(h) + Op(n
−kp−p−1) e pelo Lema 3.5.4 temos

H
(l)
h = H

(l)
h−1+Op(n

−(h+l+2)). A menos dos termos de ordem Op(n
− 2h+3

2 ), podemos

escrever a expansão de Taylor de θ∗h da forma

θ∗h − θ = −H ′
hL

′
h + · · ·+ 1

(2h+ 2)!
H

(2h+2)
h−1 L′

h ⊗2h+2 . (3.9)
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Dividiremos essa equação em três partes: a primeira P0 = −H ′
hAh, a segunda

P1 = −H ′
h−1L

′
h−1 +

1

2
H ′′

h−1L
′
h−1 ⊗2 + · · ·+ 1

(2h+ 2)!
H

(2h+2)
h−1 L′

h−1⊗2h+2,

que por hipótese de indução tem valor esperado com ordem de magnitude O(n−(h+1)).

Portanto, Xh = E [P1] , logo Ah = E
[
H ′

h−1

]−1
E[P1]. A terceira parte é o que resta

da equação (3.9), após a retirada das duas primeiras partes

P2 =
1

2
H ′′

h−1(L
′
h ⊗2 −L′

h−1⊗2) + · · ·+

+
1

(2h+ 2)!
H

(2h+2)
h−1 (L′

h ⊗2h+2 −L′
h−1⊗2h+2).

Assim como no caso bidimensional, temos que o valor esperado de P2 é O(n−(h+2)).

Portanto, como Re1(h)Ah tem ordem maior que Op(n
− 2h+3

2 ), temos que

E [θ∗h − θ] = E
[
−
(
H ′

h−1 +Re(h)
)
Ah

]
+ E [P1] + E [P2] + E

[
Op(n

− 2h+3
2 )
]

= E[−P1 + P1 + P2] + E
[
Op(n

− 2h+3
2 )
]

= O(n−(h+2)). �

Em outras palavras, dada uma amostra de variáveis aleatórias, na qual a fun-

ção escore satisfaz as suposições SM1 a SM8, é possível encontrar um estimador

cujo viés tem ordem de magnitude O(n−k), para k = 2, 3, . . . . Isto é, propomos

uma nova alternativa para encontrar EMVs com viés de ordem de magnitude tão

pequena qunto se deseja.

3.6 Considerações Finais

Foi proposta uma técnica de estimação nova, em que a partir de uma sequência

de translações na função escore, obtemos um EMVC com ordem de magnitude

tão pequena quanto se queira.

Uma grande vantagem dessa metodologia é que não há uma restrição muito

forte nas classes de modelos em que podemos empregar tal técnica. Basta apenas

que a função de verossimilhança satisfaça algumas suposições de regularidade, que

são bastante gerais e satisfeitas por um grande número de modelos estatísticos.
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Nesta metodologia precisamos apenas encontrar o zero da função escore modi-

�cada, desta forma torna-se uma técnica muito promissora para ser desenvolvida

em outros métodos de estimação, não necessariamente em estimação por máxima

verossimilhança.



Capítulo 4

AVALIAÇÃO NUMÉRICA

4.1 Introdução

No presente trabalho apresentamos uma técnica de estimação baseada em corrigir,

de forma preventiva, o EMV. Esta técnica consiste em fazer sucessivas translações

na função escore, de tal forma que o zero da função escore transladada é um

estimador cujo viés tem ordem de magnitude reduzida. A primeira translação é

a sugerida por David Firth; assim, obtemos uma sequência de estimadores sendo

que o primeiro elemento da sequência é o EMV θ̂, o segundo é o estimador θ∗0 e

o terceiro elemento é θ∗1, estes dois últimos têm vieses com ordem de magnitude

O(n−2) e O(n−3), respectivamente. Outros dois estimadores com vieses corrigidos

foram estudados no Capítulo 2, que são θ̂1, com viés de ordem de magnitude

O(n−2), e θ̃2, com viés O(n−3).

Realizamos neste capítulo um estudo aprofundado do desempenho destes qua-

tro estimadores, mais o EMV. Foram realizadas simulações de Monte Carlo em

vários modelos estatísticos, com diferentes tamanhos amostrais. A metodologia

empregada para avaliar os estimadores foi baseada em comparar a média dos

vieses estimados. Ou seja, em cada réplica de Monte Carlo, calculamos a esti-

mativa do parâmetro, segundo cada estimador, no �nal da simulação calculamos

a médias dessas estimativas e a subtraímos do valor verdadeiro do parâmetro.

Essas simulações foram implementadas na linguagem de programação matricial

Ox. Em muitos casos estudados, para encontrar o zero da função escore ou de

68
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alguma de suas translações, existiu uma grande complexidade algébrica, então,

�zemos uso do cálculo numérico através da função computacional �SolveNLE.�

Esta função está disponível na linguagem de programação Ox através do pacote

�solvenle�.

Na Seção 4.2 apresentamos os resultados das simulações feitas em modelos

uniparamétricos, tais como, beta, gama, entre outros; a Seção 4.3 foi dedicada

aos modelos biparamétricos; �nalizamos o capítulo com a Seção 4.4, na qual

colocamos as considerações �nais sobre as avaliações numéricas realizadas.

4.2 Modelos Uniparamétricos

Com o intuito de avaliar o desempenho em pequenas amostras do EMVC até

ordem O(n−3), proposto na Seção 3.3, realizamos diversas simulações de Monte

Carlo em uma grande variedade de modelos e de situações. Cada simulação

foi composta de dez mil réplicas de Monte Carlo. Variamos as simulações com

os modelos beta, gama, binomial, Poisson e geométrico. Nesta seção tratamos

apenas do caso uniparamétrico; desta forma, caso um modelo seja caracterizado

por mais de um parâmetro, consideramos sempre que apenas um dos parâmetros

é desconhecido. Em cada modelo atribuímos diversos valores para o parâmetro e

usando diversos estimadores foi calculado em cada réplica de Monte Carlo o valor

estimado desses parâmetros; em seguida foi calculado o viés médio, ou seja, foi

feita uma média da diferença entre o verdadeiro valor do parâmetro e seu valor

estimado nas réplicas de Monte Carlo.

Consideramos em nossa avaliação o EMV θ̂; o estimador proposto por David

Firth θ∗0, que é o zero da função escore transladada por A0 =
L′′′

2I
; mais os estima-

dores θ̂1 e θ̃2, este último proposto por Ferrari et al., que são dados nas equações

(2.18) e (2.19), respectivamente; por �m, o estimador θ∗1 proposto neste trabalho,

o qual é obtido por encontrar o zero da função escore transladada por A0 e por

A1, de�nidos na Seção 3.3

Uma importante distribuição de probabilidade estudada neste trabalho é a

distribuição beta. Uma variável aleatória X é dita ter distribuição beta com
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Figura 4.1. Densidades da distribuição beta com parâmetros (µ, ϕ).
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parâmetros p > 0 e q > 0, se sua função de densidade é dada por

f(x; p, q) =
Γ(p+ q)

Γ(p)Γ(q)
xp−1(1− x)q−1, (4.1)

em que 0 < x < 1 e Γ(·) é a função gama.

Uma reparametrização útil desta distribuição se dá ao de�nir µ = p
p+q

e ϕ =

p + q. Desta forma o parâmetro µ é uma medida de locação, enquanto ϕ é uma

medida de escala. Isto pode ser visto com mais facilidade na Figura 4.1, na qual

está representado o grá�co desta densidade de probabilidade para vários valores

de µ e ϕ.

Consideremos uma amostra de tamanho n, x = x1, . . . , xn, de variáveis alea-

tórias independentes e identicamente distribuídas, de acordo com a distribuição

beta com parâmetros p > 0 e q > 0. A função de verossimilhança de p e q com

base nesta amostra é dada por

f(p, q|x) =
n∏

i=1

f(xi; p, q) =

[
Γ(p+ q)

Γ(p)Γ(q)

]n n∏
i=1

xp−1
i (1− xi)

q−1,

em que podemos escrever a função log-verossimilhança como

L(p, q) = n log Γ(p+ q)− n log Γ(p)− n log Γ(q)
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+
n∑

i=1

[(p− 1) log xi + (q − 1) log(1− xi)]. (4.2)

Tabela 4.1. Vieses dos estimadores do parâmetro p da densidade beta, n = 10.

Parâmetro viés de θ̂ viés de θ̂1 viés de θ∗0 viés de θ∗1 viés de θ̃2

p O(n−1) O(n−2) O(n−2) O(n−3) O(n−3)

0,50 0,037950 0,001252 0,000135 0,000696 0,001082

0,75 0,041520 -0,003327 -0,004582 -0,003746 -0,003421

1,00 0,047026 -0,003718 -0,005022 -0,003976 -0,003725

2,00 0,067623 -0,000583 -0,001481 -0,000583 -0,000445

3,00 0,085738 -0,000640 -0,001204 -0,000487 -0,000499

4,00 0,108000 -0,001852 -0,002307 -0,001715 -0,001725

5,00 0,148610 0,005796 0,005410 0,005917 0,005908

6,00 0,187100 -0,004991 -0,005328 -0,004883 -0,004891

7,00 0,287480 0,011278 0,010984 0,011374 0,011365

8,00 0,472380 0,023781 0,023546 0,023861 0,023850

Suponha que seja conhecido o parâmetro q e queiramos estimar p. A função

log-verossimilhança e suas derivadas são dadas por

L(p) = n log Γ(p+ q)− n log Γ(p)− n log Γ(q)

+
n∑

i=1

[(p− 1) log xi + (q − 1) log(1− xi)],

L′(p) = nψ(p+ q)− nψ(p) +
n∑

i=1

log xi,

L′′(p) = nψ′(p+ q)− nψ′(p),

·

·

·

L(k)(p) = nψ(k−1)(p+ q)− nψ(k−1)(p), se k > 1.
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Tabela 4.2. Vieses dos estimadores do parâmetro p da densidade beta, n = 15.

Parâmetro viés de θ̂ viés de θ̂1 viés de θ∗0 viés de θ∗1 viés de θ̃2

p O(n−1) O(n−2) O(n−2) O(n−3) O(n−3)

0,50 0,022342 -0,001922 -0,002301 -0,002056 -0,002001

0,75 0,031352 0,001459 0,001034 0,001406 0,001415

1,00 0,030452 -0,003319 -0,003757 -0,003327 -0,003323

2,00 0,049168 0,003828 0,003499 0,003894 0,003890

3,00 0,056783 -0,000536 -0,000783 -0,000469 -0,000472

4,00 0,082390 0,009433 0,009234 0,009492 0,009490

5,00 0,090048 -0,004385 -0,004555 -0,004333 -0,004335

6,00 0,145980 0,018608 0,018461 0,018655 0,018653

7,00 0,191140 0,009150 0,009022 0,009192 0,009189

8,00 0,282350 -0,010375 -0,010477 -0,010342 -0,010345

Nas Tabelas 4.1 e 4.2 estão os resultados de várias simulações de Monte Carlo,

nas quais �xamos o valor do parâmetro de locação de tal forma que p + q = 10,

variamos o valor de p e avaliamos o comportamento dos estimadores supracitados

em amostras com tamanhos n = 10 e n = 15. Podemos veri�car que os qua-

tro estimadores com vieses corrigidos são competitivos entre si e todos eles têm

desempenho superior ao de máxima verossimilhança.

Outra distribuição de probabilidade de relevância é a densidade gama. Dize-

mos que uma variável aleatória X tem distribuição gama com parâmetros α e β,

ambos positivos, se sua densidade é dada por

f(x|α) = xα−1βα exp (−βx)
Γ(α)

,

com x ≥ 0. Se o parâmetro α for menor ou igual um, o grá�co da densidade

gama tem o formato como o do grá�co esquerdo da Figura 4.2, caso contrário,

seu formato é como o do grá�co da direita.
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Figura 4.2. Densidades da distribuição gama.

x

de
ns

id
ad

e

x

de
ns

id
ad

e

A função de verossimilhança é dada por

f(α) = Γ(α)−nβnα

(
n∏

i=1

xi

)α−1

exp

(
−β

n∑
i=1

xi

)
.

Suponha que o parâmetro β seja conhecido e desejamos estimar α. Neste caso, a

função de log-verossimilhança e suas derivadas são

L(α) = −n log[Γ(α)] + nα log(β) + (α− 1)
n∑

i=1

log(xi)− β

n∑
i=1

x1,

L′(α) = −nψ(α) + n log(β) +
n∑

i=1

log(xi),

·

·

·

L(k)(α) = −nψ(k−1)(α), se k > 1.

Um resumo dos resultados das simulações de Monte Carlo para o modelo gama

pode ser visto nas Tabelas 4.3 e 4.4. O parâmetro β foi considerado conhecido e de

valor igual a um, o parâmetro α variou de 0.8 a 10. Utilizamos nessas simulações
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Tabela 4.3. Vieses dos estimadores do parâmetro α da densidade gama, n = 10.

Parâmetro viés de θ̂ viés de θ̂1 viés de θ∗0 viés de θ∗1 viés de θ̃2

α O(n−1) O(n−2) O(n−2) O(n−3) O(n−3)

0,80 0,037953 -0,003702 -0,005494 -0,004584 -0,003795

1,00 0,043309 -0,000880 -0,001900 -0,000907 -0,000897

1,50 0,045000 -0,002238 -0,003098 -0,002136 -0,002145

2,00 0,048607 0,000132 -0,000559 0,000271 0,000259

3,00 0,054748 0,005377 0,004908 0,005507 0,005499

4,00 0,062932 0,013266 0,012918 0,013372 0,013367

5,00 0,046020 -0,003773 -0,004049 -0,003686 -0,003689

6,00 0,050685 0,000824 0,000597 0,000898 0,000895

8,00 0,053646 0,003721 0,003554 0,003776 0,003774

10,00 0,047370 -0,002584 -0,002716 -0,002540 -0,002541

amostras com tamanhos 10 e 15. Todos os estimadores que têm a proposta de

corrigir viés apresentaram desempenho superior ao EMV, além de serem muito

competitivos entre si. Devemos observar que os estimadores θ∗1 e θ̃2 são muito

parecidos, principalmente para valores grande de α.

No modelo de Poisson descrito nas Seções 2.7 e 3.2, sendo que o objetivo

é estimar o parâmetro canônico, apesar de termos expressões fechadas para os

cincos estimadores, só faz sentido estimar os vieses dos estimadores preventivo.

Realizamos diversas simulações variando o parâmetro λ com valores entre um

a sete. A Tabela 4.5 apresenta um resumo dessas simulações para o caso de

amostras com tamanhos n = 10 e n = 15. Percebemos uma leve superioridade

do estimador θ∗1 para o tamanho da amostra n = 10, por exemplo, quando o

parâmetro é λ = 1, 5 temos uma casa decimal de diferença entre os vieses.

Também foram realizados estudos no modelo binomial, sendo que x ∼ B(n, p).

Neste caso, o objetivo é estimar o parâmetro canônico θ = log
(

p
1−p

)
; e no modelo

geométrico, o qual o interesse está sobre o parâmetro θ = log (1− p) . As funções
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Tabela 4.4. Vieses dos estimadores do parâmetro α da densidade gama, n = 15.

Parâmetro viés de θ̂ viés de θ̂1 viés de θ∗0 viés de θ∗1 viés de θ̃2

α O(n−1) O(n−2) O(n−2) O(n−3) O(n−3)

0,80 0,029156 0,001302 0,000847 0,001252 0,001260

1,00 0,027680 -0,001815 -0,002266 -0,001826 -0,001823

1,50 0,030852 -0,000683 -0,001061 -0,000637 -0,000640

2,00 0,029288 -0,003050 -0,003354 -0,002989 -0,002992

3,00 0,032857 -0,000063 -0,000270 0,000006 0,000009

4,00 0,034346 0,001233 0,001079 0,001279 0,001278

5,00 0,032410 -0,000788 -0,000910 -0,000750 -0,000751

6,00 0,021970 -0,011271 -0,011372 -0,011239 -0,011240

8,00 0,032478 -0,000806 -0,000880 -0,000782 -0,000782

10,00 0,042934 0,009632 0,009573 0,009651 0,009651

escore dos modelos binomial e geométrico são dadas por

L′(θ) = − n exp(θ)

1 + exp(θ)
+ x e

L′(θ) = − n exp(θ)

1− exp(θ)
+

n∑
i=1

xi,

respectivamente.

Nestes dois modelos, os vieses dos estimadores θ̂, θ̂1 e θ̃2 não são de�nidos,

similarmente ao caso do modelo de Poisson. Portanto, realizamos simulações

de Monte Carlo para comparar os vieses dos estimadores preventivos θ∗0 e θ∗1.

Resumos dessas simulações estão apresentados nas Tabelas 4.6 e 4.7, sendo que no

modelo binomial estão apresentados os resultados para amostras com tamanhos

n = 5 e n = 10; enquanto no modelo geométricio as amostras têm tamanhos

n = 20 e n = 25. No primeiro modelo com n = 5, o estimador θ∗1 é superior, porém

quando n = 10, os dois estimadores �cam competitivos. Já no modelo geométrico,

quando o tamanho da amostra é n = 20, os estimadores são competitivos e com
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Tabela 4.5. Vieses dos estimadores do parâmetro canônico da densidade de

Poisson.

n = 10 n = 15

Parâmetro viés de θ∗0 viés de θ∗1 Parâmetro viés de θ∗0 viés de θ∗1

λ O(n−2) O(n−3) λ O(n−2) O(n−3)

1 -0,000676 -0,000133 1 0,001889 0,002105

1,2 -0,003252 -0,002894 1,2 0,003675 0,003819

1,5 -0,000288 -0,000072 1,5 -0,002283 -0,002191

1,8 -0,002964 -0,002817 1,8 -0,001355 -0,001293

2 -0,003255 -0,003137 2 0,001144 0,001193

2,5 -0,001801 -0,001728 2,5 0,000290 0,000322

3 0,001131 0,001180 3 -0,001381 -0,001360

4 -0,002534 -0,002506 4 0,001916 0,001928

5 -0,001507 -0,001490 5 -0,000227 -0,000219

6 -0,001250 -0,001238 6 -0,001425 -0,001420

7 -0,000171 -0,000162 7 0,000441 0,000445

uma leve superioridade de θ∗0. Porém, quando n = 25, o estimador θ∗1 tem um

desempenho melhor.

4.3 Modelos Biparamétricos

Nesta seção realizamos simulações em modelos biparamétricos, em particular, em

modelos com densidades de probabilidades beta. Foram feitas várias simulações

de Monte Carlo, todas sempre com dez mil réplicas. Simulamos diversos valores

para os parâmetros caracterizadores das distribuições, assim como utilizamos

diferentes tamanhos de amostras.

Os estimadores avaliados neste trabalho são obtidos pela maximização da fun-

ção log-verossimilhança L(p, q), que na prática podem ser obtidos por encontrar
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Tabela 4.6. Vieses dos estimadores do parâmetro canônico da densidade bino-

mial.

n = 5 n = 10

Parâmetro viés de θ∗0 viés de θ∗1 Parâmetro viés de θ∗0 viés de θ∗1

p O(n−2) O(n−3) p O(n−2) O(n−3)

0,2 0,769614 0,716203 0,2 0,229317 0,210326

0,3 0,320291 0,282122 0,3 0,049678 0,034487

0,4 0,110073 0,105753 0,4 0,014187 0,010256

0,5 -0,031875 0,006015 0,5 0,001470 0,018874

0,6 -0,159366 -0,070086 0,6 -0,022954 0,030449

0,7 -0,386339 -0,253204 0,7 -0,071604 0,035575

0,8 -0,744097 -0,570776 0,8 -0,254515 -0,085245

Tabela 4.7. Vieses dos estimadores do parâmetro canônico da densidade geo-

métrica.

n = 20 n = 25

Parâmetro viés de θ∗0 viés de θ∗1 Parâmetro viés de θ∗0 viés de θ∗1

p O(n−2) O(n−3) p O(n−2) O(n−3)

0,1 0,000017 0,000086 0,1 -0,000453 -0,000410

0,2 0,001152 0,001439 0,2 -0,000136 0,000047

0,3 0,000283 0,000977 0,3 -0,000667 -0,000229

0,4 0,000331 0,001664 0,4 -0,000976 -0,000134

0,5 -0,001370 0,000928 0,5 0,000648 0,002088

0,6 -0,000681 0,003022 0,6 -0,003535 -0,001184

0,7 -0,002112 0,003616 0,7 -0,002363 0,001282

o zero das funções escore, através das equações

∂L(p, q)

∂p
= 0 e

∂L(p, q)

∂q
= 0,
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Tabela 4.8. Vieses dos estimadores dos parâmetros p e q da densidade beta,

n = 15.

Parâmetro viés de θ̂ viés de θ∗1 viés de θ∗0

O(n−1) O(n−3) O(n−2)

p 0,10 0,018315 0,022217 0,034375

q 0,40 -0,254830 0,033870 0,018531

p 0,15 -0,005010 0,008110 0,022005

q 0,35 -0,108090 -0,010738 0,012589

p 0,20 -0,022442 0,006269 0,013969

q 0,30 -0,065074 -0,002502 0,008736

p 0,25 -0,041650 0,001026 0,009295

q 0,25 -0,043501 0,000304 0,008634

p 0,30 -0,064496 0,004097 0,009433

q 0,20 -0,024942 0,008464 0,013082

p 0,35 -0,107980 -0,006167 0,009926

q 0,15 -0,009518 0,009282 0,017631

sendo

∂L(p, q)

∂p
= n

∂

∂p
log Γ(p+ q)− n

∂

∂p
log Γ(p) +

n∑
i=1

log xi

= nψ(p+ q)− nψ(p) +
n∑

i=1

log xi,

∂L(p, q)

∂q
= n

∂

∂q
log Γ(p+ q)− n

∂

∂q
log Γ(q) +

n∑
i=1

log(1− xi)

= nψ(p+ q)− nψ(q) +
n∑

i=1

log(1− xi),

e ψ(·) denota a função digama.

Comparamos os desempenhos do EMV θ̂, do proposto por David Firth θ∗0,

visto na Seção 2.6, e o do estimador θ∗1 proposto neste trabalho. Todos estes

estimadores são obtidos por encontrar o zero das funções L′, L′+A0 e L′+A0+A1,
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Tabela 4.9. Vieses dos estimadores dos parâmetros p e q da densidade beta,

n = 20.

Parâmetro viés de θ̂ viés de θ∗1 viés de θ∗0

O(n−1) O(n−3) O(n−2)

p 0,10 0,023832 0,032750 0,033427

q 0,40 -0,138500 0,035910 0,014255

p 0,15 -0,001134 0,016074 0,018669

q 0,35 -0,069844 0,009183 0,008610

p 0,20 -0,017847 0,003447 0,007538

q 0,30 -0,048041 -0,003720 0,002021

p 0,25 -0,027482 0,001130 0,007586

q 0,25 -0,029162 -0,000684 0,005852

p 0,30 -0,044950 -0,006858 0,004492

q 0,20 -0,017420 0,001555 0,008690

p 0,35 -0,074934 -0,012387 0,003440

q 0,15 -0,007660 0,006706 0,013597

sendo que A0 e A1 são de�nidos como no Teorema 3.4.1. Os zeros dessas funções

não podem ser calculados algebricamente, assim, utilizamos a função SolveNLE

disponível na linguagem de programação Ox.

Os desempenhos desses estimadores foram avaliados a partir do viés estimado.

Dado que sabemos os verdadeiros valores dos parâmetros de cada distribuição,

calculamos a diferença entre estes valores verdadeiros e os obtidos pelos estima-

dores acima. Ao �nal do experimento de Monte Carlo calculamos a média das

estimativas de cada parâmetro e em seguida a subtraímos do verdadeiro valor do

parâmetro, obtendo, assim, o viés estimado.

No modelo beta, visto na seção anterior, usamos que o parâmetro q da equa-

ção (4.1) era conhecido; agora iremos supor que não temos informação sobre

nenhum dos dois parâmetros. Assim, para empregarmos os métodos desenvol-
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Tabela 4.10. Vieses dos estimadores dos parâmetros p e q da densidade beta,

n = 25.

Parâmetro viés de θ̂ viés de θ∗1 viés de θ∗0

O(n−1) O(n−3) O(n−2)

p 0,10 0,024451 0,031187 0,033786

q 0,40 -0,097027 0,000492 0,009915

p 0,15 -0,002121 0,009546 0,014289

q 0,35 -0,051727 -0,008071 0,005383

p 0,20 -0,014100 0,002264 0,005589

q 0,30 -0,034147 -0,002006 0,003625

p 0,25 -0,021878 -0,000537 0,003733

q 0,25 -0,022049 0,000176 0,004138

p 0,30 -0,035263 -0,003879 0,001704

q 0,20 -0,014035 0,002237 0,005502

p 0,35 -0,056865 -0,007910 0,000425

q 0,15 -0,005942 0,006513 0,010100

vidos nesta tese necessitaremos fazer uso das derivadas parciais da função de

log-verossimilhança. No caso da densidade beta, as derivadas de segunda ordem

são dadas pelas expressões,

∂2L(p, q)

∂p2
= n

∂2

∂p2
log Γ(p+ q)− n

∂2

∂p2
log Γ(p)

= nψ′(p+ q)− nψ′(p),

∂2L(p, q)

∂p∂q
= n

∂2

∂p∂q
log Γ(p+ q)

= nψ′(p+ q),

∂2L(p, q)

∂q2
= n

∂2

∂q2
log Γ(p+ q)− n

∂2

∂q2
log Γ(q)

= nψ′(p+ q)− nψ′(q),
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senqo que ψ′(·) denota a função trigama. A partir dessas três derivadas �ca fácil

encontrar as expressões para as demais.

Nas Tabelas 4.8, 4.9 e 4.10 estão os vieses estimados dos três estimadores θ̂,

θ∗0 e θ∗1. Percebemos que quando o tamanho da amostra é pequeno, n = 15, os

desempenhos dos estimadores são próximos, porém com uma superioridade do

estimador θ∗1, pois este tem viés menor em muitos casos, por exemplo, quando

p = 0, 2 e q = 0, 3. Esta superioridade torna-se mais nítida quando n = 25, veja

como exemplo a Tabela 4.10, quando p = q = 0, 25, em que o viés de θ∗1 é nulo

até a terceira casa decimal, enquanto que o viés do EMV é nulo só na primeira

casa decimal e o viés de θ∗0 é nulo até a segunda casa decimal.

4.4 Considerações Finais

Avaliamos o desempenho do EMV θ̂ e de suas variações. Para isso, �zemos uso

da metodologia de Monte Carlo em vários modelos estatísticos e com diferentes

tamanhos amostrais. Dividimos o estudo em duas partes, uma dedicada aos

modelos uniparamétricos e outra aos modelos biparamétricos.

Na estimação uniparamétrica, em particular nos modelos beta e gama, os

quatro estimadores, θ̂1, θ∗0, θ
∗
1 e θ̃2, que têm como objetivo reduzir o viés dos

estimador de máxima verssoimilhança, apresentaram desempenhos similares. Já

nos modelos de Poisson, binomial e geométrico não têm sentido estimar os vieses

do EMV e dos estimadores corretivos θ̂1 e θ̃2, pois os vieses ou são menos in�nito

ou não são de�nidos. Comparando apenas os estimadores preventivos, θ∗0 e θ∗1,

�ca evidente na maioria das situações um desempenho melhor do estimador θ∗1.

Comparamos os desempenhos apenas dos três estimadores θ̂, θ∗0, e θ
∗
1, no caso

biparamétrico. Quando o tamanho da amostra é pequeno, percebemos claramente

que o estimador θ∗1 é superior, porém a medida que n aumenta os desempenhos

dos três estimadores tornam-se parecidos, porém, com uma leve superiordade do

estimador θ∗1.
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CONCLUSÕES

Em muitos modelos estatísticos, a técnica de estimação por máxima verossimi-

lhança conduz a um estimador viesado. Em geral, estes estimadores são assin-

toticamente não viesados. Assim, um dos objetivos da inferência estatística é

desenvolver metodologias de estimação que produzam estimadores com vieses

cada vez menores. Ou seja, estimadores com vieses corrigidos.

Há vários anos muitos trabalhos relacionados à correção de vieses foram pu-

blicados. Destacamos o artigo apresentado por David Firth, nele é proposta uma

técnica de correção de viés em EMVs, que consiste em fazer uma translação na

função escore, de tal maneira que o zero desta função transladada é um estimador

cujo viés tem ordem de magnitude O(n−2). Podemos assim dizer que esta é uma

técnica preventiva de correção de viés, já que antes de estimar o parâmetro se

faz a correção do viés através de uma translação da função escore, diferentemente

das metodologias nas quais estima-se o viés e em seguida subtrai-se do estimador,

como é o caso dos estimadores θ̂1 e θ̃2.

Foi apresentada por Bartlett uma expressão para uma aproximação do viés do

EMV até ordem O(n− 3
2 ). Com base nessa expressão, generalizamos para o caso

uniparamétrico a ideia de transladar a função escore, proposta por David Firth.

Esta generalização consiste em fazer sucessivas translações na função escore, senqo

que a primeira translação é exatamente a que David Firth sugeriu. Assim, obte-

mos uma sequência de estimadores, sendo o primeiro elemento o EMV, cujo viés

tem ordem de magnitude O(n−1), o segundo é θ∗0, com viés de ordem O(n−2),

82
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o terceiro é θ∗1, o qual tem viés da ordem de O(n−3), e o k-ésimo elemento tem

viés com ordem O(n−k). Ou seja, iniciamos a sequência com o EMV e a cada

translação da função escore obtemos um novo estimador, cujo viés tem a ordem

de magnitude diminuída de O(n−k) para O(n−(k+1)), com k = 1, 2, . . . .

Por meio de simulações de Monte Carlo, avaliamos no espaço uniparamétrico,

os desempenhos de cinco estimadores. São eles: o EMV θ̂, o estimador de segunda

ordem θ̂1, o proposto por Firth θ∗0, o estimador apresentado nesta tese θ∗1 e o

elaborado por Ferrari et al. θ̃2. Desta forma, chegamos às seguintes conclusões:

1. Para amostras de tamanho pequeno, aproximadamente n = 15, exceto o

EMV, estes estimadores muitas vezes são competitivos entre si, pois apre-

sentam vieses muito próximos.

2. Os estimadores θ∗1 e θ̃2 são os que apresentam mais similaridade.

3. Nos modelos beta e gama os estimadores θ∗1 e θ̃2 apresentaram uma leve

superioridade no seu desempenho em relação aos demais estimadores.

4. Nos modelos de Poisson, geométrico e binomial não faz sentido calcular o

viés médio para os estimadores θ̂, θ̂1 e θ̃2, pois o viés ou é menos in�nito,

como no caso do modelo de Poisson, ou não é de�nido. Assim, os estima-

dores θ∗0 e θ
∗
1 são boas alternativas para se produzir um estimador cujo viés

tem ordem de magnitude O(n−3).

5. Em geral, desde que estejam satisfeitas as suposições S1 a S9, o estimador

θ∗1 é uma boa metodologia para se obter estimadores com vieses com ordem

de magnitude O(n−3).

Expandimos esta medologia para os casos biparamétrico e multiparamétrico.

Para o caso em que o parâmetro da população pertence ao espaço biparamétrico,

�zemos simulações de Monte Carlo com o intuito de avaliar apenas os estimadores

θ̂, θ∗0 e θ∗1. Concluímos que:

1. Os estimadores com vieses corrigidos, em geral, apresentam desempenho

melhor que o EMV.
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2. Os estimadores θ∗0 e θ∗1 são competitivos entre si, porém, há uma evidente

superioridade do estimador θ∗1, proposto neste trabalho, para tamanhos pe-

quenos da amostra.

3. A metodologia empregada na construção do estimador θ∗1 é uma boa alter-

nativa para produzir estimadores cujo viés seja da ordem O(n−3).

Nesta tese realizamos correções de vieses de alta ordem em EMVs. A ideia

principal deste trabalho é que em vez de maximizar a função verossimilhança,

encontramos o zero da função escore transladada. Assim, deixamos como sugestão

para um trabalho futuro tentar empregar esta metodologia em outras técnicas

de estimação que se baseiam em encontrar zero de funções, como por exemplo,

estimação por mínimos quadrados.
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Apêndice A

Expansão da Equação (3.3)

Com o auxílio da Tabela 3.1 podemos expandir a equação (3.3) até k = 5, assim,

bh1 = Op(n
− 1

2 ):
L′

h

I
.

bh2 = Op(n
− 2

2 ):

=
11L′

h(L
′′
h + I)

I2
+

−10L′
h(L

′′
h + I)

I2
+

−(L′
h)

2(−L′′′
h )

2I3

=
L′

h(L
′′
h + I)

I2
+

(L′
h)

2L′′′
h

2I3
.

bh3 = Op(n
− 3

2 ):

=
55L′

h(L
′′
h + I)2

I3
+

−99L′
h(L

′′
h + I)2

I3
+

45L′
h(L

′′
h + I)2

I3

+
−11(L′

h)
2(−L′′′

h )(L
′′
h + I)

2I4
+

8(L′
h)

2(−L′′′
h )(L

′′
h + I)

2I4
+

(L′
h)

3Hh3
6I5

=
L′

h(L
′′
h + I)2

I3
+

3(L′
h)

2L′′′
h (L

′′
h + I)

2I4
+

(L′
h)

3Hh3

6I5
.

Por exemplo, para o caso em que h = 0, temos L′
0 = L′ + A0.

b03 =
(L′ + A0)(L

′′ + A′
0 + I)2

I3
+

3(L′ + A0)
2(L′′′ + A′′

0)(L
′′ + A′

0 + I)

2I4

+
(L′ + A0)

3 [3(L′′′ + A′′
0)

2 − (L′′ + A′
0)(L

iv + A′′′
0 )]

6I5
.

91



A. Expansão da Equação (3.3) 92

Como b03 = b3+B
0
3 , retirando-se da equação anterior os termos pertencentes

a b3, temos que

B0
3 =

L′ [2A′
0(L

′′ + I) + (A′
0)

2]

I3
+
A0(L

′′ + A′
0 + I)2

I3

+
3(L′)2L′′′A′

0

2I4
+

3(L′)2A′′
0(L

′′ + A′
0 + I)

2I4

+
3(2L′A0 + A2

0)(L
′′′ + A′′

0)(L
′′ + A′

0 + I)

2I4

+
(L′)3 [3(2L′′′A′′

0 + (A′′
0)

2)− L′′A′′′
0 − A′

0(L
iv + A′′′

0 )]

6I5

+
[3(L′)2A0 + 3L′A2

0 + A3
0] [3(L

′′′ + A′′
0)

2 − (L′′ + A′
0)(L

iv + A′′′
0 )]

6I5
.

bh4 = Op(n
− 4

2 ):

=
165L′

h(L
′′
h + I)3

I4
+

−440L′
h(L

′′
h + I)3

I4
396L′

h(L
′′
h + I)3

I4

+
−120L′

h(L
′′
h + I)3

I4
+

−55(L′
h)

2(−L′′′
h )(L

′′
h + I)2

2I5

+
77(L′

h)
2(−L′′′

h )(L
′′
h + I)2

2I5
+

−28(L′
h)

2(−L′′′
h )(L

′′
h + I)2

2I5

+
11(L′

h)
3Hh3(L

′′
h + I)

6I6
+

−6(L′
h)

3Hh3(L
′′
h + I)

6I6
+

−(L′
h)

4Hh4
24I7

=
L′

h(L
′′
h + I)3

I4
+

6(L′
h)

2L′′′
h (L

′′
h + I)2

2I5
+

5(L′
h)

3Hh3(L
′′
h + I)

6I6

− (L′
h)

4Hh4

24I7
.

bh5 = Op(n
− 5

2 ):

=
330L′

h(L
′′
h + I)4

I5
+

−1155L′
h(L

′′
h + I)4

I5
+

1540L′
h(L

′′
h + I)4

I5

+
−924L′

h(L
′′
h + I)4

I5
+

210L′
h(L

′′
h + I)4

I5
+

−165(L′
h)

2(−L′′′
h )(L

′′
h + I)3

2I6

+
330(L′

h)
2(−L′′′

h )(L
′′
h + I)3

2I6
+

−231(L′
h)

2(−L′′′
h )(L

′′
h + I)3

2I6

+
56(L′

h)
2(−L′′′

h )(L
′′
h + I)3

2I6
+

55(L′
h)

3Hh3(L
′′
h + I)2

6I7

+
−55(L′

h)
3Hh3(L

′′
h + I)2

6I7
+

15(L′
h)

3Hh3(L
′′
h + I)2

6I7

+
−11(L′

h)
4Hh4(L

′′
h + I)

24I8
+

4(L′
h)

4Hh4(L
′′
h + I)

24I8
+

(L′
h)

5Hh5
120I9

=
L′

h(L
′′
h + I)4

I5
+

10(L′
h)

2(−L′′′
h )(L

′′
h + I)3

2I6
+

15(L′
h)

3Hh3(L
′′
h + I)2

6I7
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+
7(L′

h)
4Hh4(L

′′
h + I)

24I8
+

(L′
h)

5Hh5

120I9
.

Para completar essa expansão precisamos encontrar os Hhi's, sabemos que

Hh1 = 1 e que Hhi = Hh′i−1L
′′
h − (2i− 3)L′′′

hHhi−1, assim teremos,

• Hh1 = 1.

• Hh2 = −L′′′
h .

• Hh3 = 3(L′′′
h )

2 − L′′Liv
h . Logo temos que H ′

3 = 5L′′′
h L

iv
h − L′′

hL
v
h.

• Hh4 = 10L′′
hL

′′′
hL

iv − (L′′
h)

2Lv − 15(L′′′
h )

3. Pois,

Hh4 = (5L′′′
h L

iv
h − L′′

hL
v
h)L

′′
h − (8− 3)L′′′

h (3(L
′′′
h )

2 − L′′
hL

iv
h )

= 5L′′
hL

′′′
h L

iv
h − (L′′

h)
2Lv − 15(L′′′

h )
3 + 5L′′

hL
′′′
h L

iv
h

= 10L′′
hL

′′′
h L

iv
h − (L′′

h)
2Lv

h − 15(L′′′
h )

3.

Da mesma forma, sua derivada é dada por

Hh′4 = 10
{
(L′′′

h )
2Liv

h + L′′
h

[
(Liv

h )
2 + L′′′

h L
v
]}

− 2L′′
hL

′′′
h L

v
h

− (L′′
h)

2Lvi
h − 45(L′′′

h )
2Liv

h

= 10(L′′′
h )

2Liv
h + 10L′′

h(L
iv
h )

2 + 10L′′
hL

′′′
h L

v
h − 2L′′

hL
′′′
h L

v
h

− (L′′
h)

2Lvi
h − 45(L′′′

h )
2Liv

h

= −35(L′′′
h )

2Liv
h + 10L′′

h(L
iv
h )

2 + 8L′′
hL

′′′
h L

v
h − (L′′

h)
2Lvi

h .

• Hh5 = −105L′′
h(L

′′′
h )

2Liv
h + 10(L′′

h)
2(Liv

h )2 + 78(L′′
h)

2L′′′
hL

v
h − (L′′

h)
3Lvi

h

−105(L′′′
h )

4.

Seguindo o algoritmo, temos

Hh5 = Hh′4L
′′
h − (10− 3)L′′′

hHh4

= −35L′′
h(L

′′′
h )

2Liv
h + 10(L′′

h)
2(Liv

h )
2 + 8(L′′

h)
2L′′′

h L
v
h − (L′′

h)
3Lvi

h

− 70L′′
h(L

′′′
h )

2Liv + 70(L′′
h)

2L′′′
h L

v
h + 105(L′′′

h )
4

= −105L′′
h(L

′′′
h )

2Liv
h + 10(L′′

h)
2(Liv

h )
2 + 78(L′′

h)
2L′′′

h L
v
h − (L′′

h)
3Lvi

h

− 105(L′′′
h )

4.



Apêndice B

Valores Esperados de Potências da

Função Escore

Observe que, de forma geral, temos que

E

[
fαβ
f

]
=

∫
fαβ
f
fdx =

∫
∂2

∂α∂β
fdx

=
∂2

∂α∂β

[∫
fdx

]
=

∂2

∂α∂β
[1] = 0.

Assim, temos que

E [Lαβ] = E

[
∂

∂β
[Lα]

]
= E

[
∂

∂β

[
fα
f

]]
= E

[
fαβ
f

− fαfβ
f 2

]
= −E [LαLβ] .

Da mesma forma temos que

E [Lαα] = E

[
∂

∂α
[Lα]

]
= E

[
∂

∂α

[
fα
f

]]
= E

[
fαα
f

− fαfα
f 2

]
= −E [LαLα] .

E [Lααβ] = E

[
∂

∂α
[Lαβ]

]
= E

[
∂

∂α

[
fαβ
f

− fαfβ
f 2

]]
= E

[
fαβα
f

− fαβfα
f 2

−
[
fααfβ + fαfβα

f 2
− 2

f 2
αfβ
f 3

]]
= E

[
−2

fαβfα
f 2

− fααfβ
f 2

+ 2
f 2
αfβ
f 3

]
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= E

[
−2Lα

fαβ
f

− Lβ
fαα
f

+ 2L2
αLβ

]
= E

[
−2Lα [Lαβ + LαLβ]− Lβ

[
Lαα + L2

α

]
+ 2L2

αLβ

]
= E

[
−2LαLαβ − LβLαα − L2

αLβ

]
.

Ou seja,

E
[
L2
αLβ

]
= −2E [LαLαβ]− E [LβLαα]− E [Lααβ] .

Com o intuito de simpli�car os cálculos, considere o caso onde a matriz L′′

não é aleatória. Observe que

fαβ
f

= Lαβ + LαLβ.

Se derivarmos fαα

f
em relação a α temos

fααα
f

=
fααfα
f 2

+ Lααα + 2LαLαα

=
(
Lαα + L2

α

)
Lα + Lααα + 2LαLαα

= L3
α + Lααα + 3LαLαα.

Derivando em relação a β a expressão fααα

f
, temos que

fαααβ
f

=
fαααfβ
f 2

+ 3L2
αLαβ + Lαααβ + 3LαβLαα + 3LαLααβ

=
(
L3
α + Lααα + 3LαLαα

)
Lβ + 3L2

αLαβ + Lαααβ + 3LαβLαα + 3LαLααβ.

Calculando o valor esperado dessa expressão obtemos

E
[
L3

αLβ

]
= −3E [LαLβLαα]− 3E

[
L2
αLαβ

]
− Lαααβ − 3LαβLαα

= 3LαβLαα − Lαααβ.

Derivando em relação a β a expressão fαα

f
temos que

fααβ
f

= LβLαα + L2
αLβ + Lααβ + 2LαLαβ.
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Assim,

fααββ
f

=
(
LβLαα + L2

αLβ + Lααβ + 2LαLαβ

)
Lβ + LββLαα + LβLααβ

+ 2LαLβLαβ + L2
αLββ + Lααββ + 2LαβLαβ + 2LαLαββ.

Logo,

E
[
L2
αL

2
β

]
= LααLββ + 2L2

αβ − LααLββ + 2L2
αβ + LααLββ − Lααββ − 2L2

αβ

= LααLββ + 2L2
αβ − Lααββ.



Apêndice C

Derivadas da Função Inversa da

Função Escore

Seja a função H(H1, H2) a inversa da função escore L′(α, β) = (Lα, Lβ), então,

H ′ = inv(L′′)−1

=

 Lββ −Lαβ

−Lβα Lαα

 1

|L′′|
.

A derivada da matriz H ′ em relação a L′ é dada por

H ′(L(θ)) =

 ∂H1

∂Lα

∂H1

∂Lβ

∂H2

∂Lα

∂H2

∂Lβ

 .
Adicionalmente,

H ′′(L(θ)) =
[

∂H′

∂Lα

∂H′

∂Lβ

]
=

 ∂2H1

∂L2
α

∂2H1

∂Lα∂Lβ

∂2H1

∂Lβ∂Lα

∂2H1

∂L2
β

∂2H2

∂L2
α

∂2H2

∂Lα∂Lβ

∂2H2

∂Lβ∂Lα

∂2H2

∂L2
β

 .
Podemos simpli�car essa derivada da seguinte forma:

H ′ =

 x y

z w

 ,
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H ′′ =
[
H ′

αx+H ′
βz ∼ H ′

αy +H ′
βw

]
,

H ′′′ =
[
H ′′

αx+H ′′
βz ∼ H ′′

αy +H ′′
βw

]
,

H(iv) =
[
H ′′′

α x+H ′′′
β z ∼ H ′′′

α y +H ′′′
β w

]
,

H ′′
α =

[
H ′

ααx+H ′
αxα +H ′

βαz +H ′
βzα ∼ H ′

ααy +H ′
αyα +H ′

βαw +H ′
βwα

]
,

H ′′
αα =

[
H ′

αααx+H ′
ααxα +H ′

ααxα +H ′
αxαα +H ′

βααz +H ′
βαzα +H ′

βαzα +H ′
βzαα ∼

H ′
αααy +H ′

ααyα +H ′
ααyα +H ′

αyαα +H ′
βααw +H ′

βαwα +H ′
βαwα +H ′

βwαα

]
,

H ′′
αβ =

[
H ′

ααβx+H ′
ααxβ +H ′

αβxα +H ′
αxαβ +H ′

βαβz +H ′
βαzβ +H ′

ββzα +H ′
βzαβ ∼

H ′
ααβy +H ′

ααyβ +H ′
αβyα +H ′

αyαβ +H ′
βαβw +H ′

βαwβ +H ′
ββwα +H ′

βwαβ

]
,

H ′′
β =

[
H ′

αβx+H ′
αxβ +H ′

ββz +H ′
βzβ ∼ H ′

αβy +H ′
αyβ +H ′

ββw +H ′
βwβ

]
,

H ′′
ββ =

[
H ′

αββx+H ′
αβxβ +H ′

αβxβ +H ′
αxββ +H ′

βββz +H ′
ββzβ +H ′

ββzβ +H ′
βzββ ∼

H ′
αββy +H ′

αβyβ +H ′
αβyβ +H ′

αyββ +H ′
βββw +H ′

ββwβ +H ′
ββwβ +H ′

βwββ ∼
]
,

H ′′′
α =

[
H ′′

ααx+H ′′
αxα +H ′′

βαz +H ′′
βzα ∼ H ′′

ααy +H ′′
αyα +H ′′

βαw +H ′′
βwα

]
,
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H ′′′
β =

[
H ′′

αβx+H ′′
αxβ +H ′′

ββz +H ′′
βzβ ∼ H ′′

αβy +H ′′
αyβ +H ′′

ββw +H ′′
βwβ

]
.

Outras derivadas utilizadas ao longo do texto são:

|L′′| = LααLββ − 2L2
αβ,

|L′′|α = LαααLββ + LααLββα − 2LαβαLαβ,

|L′′|β = LααβLββ + LααLβββ − 2LαββLαβ,

|L′′|αβ = LαααβLββ + LαααLβββ + LααβLββα + LααLββαβ − 2LαβαβLαβ − 2LαβαLαββ,

|L′′|αα = LααααLββ + LαααLββα + LαααLββα + LααLββαα − 2LαβααLαβ − 2L2
αβα

= LααααLββ + 2LαααLββα + LααLββαα − 2LαβααLαβ − 2L2
αβα,

|L′′|ααβ = LααααβLββ + LααααLβββ + 2LαααβLββα + 2LαααLββαβ + LααβLββαα

+ LααLββααβ − 2LαβααβLαβ − 2LαβααLαββ − 4LαβαLαβαβ,

|L′′|ααα = LαααααLββ + LααααLββα + 2LααααLββα + 2LαααLββαα

+ LαααLββαα + LααLββααα − 2LαβαααLαβ

+ −2LαβααLαβα − 4LαβαLαβαα,

|L′′|ααα = LαααααLββ + 3LααααLββα + 3LαααLββαα

+ LααLββααα − 2LαβαααLαβ − 2LαβααLαβα − 4LαβαLαβαα,
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|L′′|ββ = LααββLββ + LααβLβββ + LααβLβββ + LααLββββ − 2LαβββLαβ − 2LαββLαββ

= LααββLββ + 2LααβLβββ + LααLββββ − 2LαβββLαβ − 2L2
αββ,

|L′′|ββα = LααββαLββ + LααββLββα + 2LααβαLβββ + 2LααβLβββα + LαααLββββ

+ LααLββββα − 2LαβββαLαβ − 2LαβββLαβα − 4LαββLαββα,

|L′′|βββ = LααβββLββ + LααββLβββ + 2LααββLβββ + 2LααβLββββ

+ LααβLββββ + LααLβββββ − 2LαββββLαβ

+ −2LαβββLαββ − 4LαββLαβββ,

|L′′|βββ = LααβββLββ + 3LααββLβββ + 3LααβLββββ

+ LααLβββββ − 2LαββββLαβ − 2LαβββLαββ − 4LαββLαβββ.

As derivadas parciais de H ′ são

H ′
α =

 Lββα −Lαβα

−Lαβα Lααα

 1

|L′′|
−H ′ |L′′|α

|L′′|
.

Uma notação alternativa é de�nir a matriz

M =

 Lββ −Lαβ

−Lαβ Lαα

 .
Assim,

H ′ =
M

|L′′|
,

H ′
α =

Mα −H ′|L′′|α
|L′′|

,
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H ′
αα =

Mαα −H ′
α|L′′|α −H ′|L′′|αα −H ′

α|L′′|α
|L′′|

=
Mαα − 2H ′

α|L′′|α −H ′|L′′|αα
|L′′|

,

H ′
αβ =

Mαβ −H ′
β|L′′|α −H ′|L′′|αβ −H ′

α|L′′|β
|L′′|

,

H ′
αβα =

Mαβα −H ′
βα|L′′|α −H ′

β|L′′|αα −H ′
α|L′′|αβ −H ′|L′′|αβα

|L′′|

+
−H ′

αα|L′′|β −H ′
α|L′′|βα −H ′

αβ|L′′|α
|L′′|

,

H ′
αββ =

Mαββ −H ′
ββ|L′′|α −H ′

β|L′′|αβ −H ′
β|L′′|αβ −H ′|L′′|αββ

|L′′|

+
−H ′

αβ|L′′|β −H ′
α|L′′|ββ −H ′

αβ|L′′|β
|L′′|

,

H ′
αββ =

Mαββ −H ′
ββ|L′′|α − 2H ′

β|L′′|αβ −H ′|L′′|αββ − 2H ′
αβ|L′′|β −H ′

α|L′′|ββ
|L′′|

,

H ′
ααα =

Mααα − 2H ′
αα|L′′|α − 2H ′

α|L′′|αα −H ′
α|L′′|αα −H ′|L′′|ααα −H ′

αα|L′′|α
|L′′|

=
M ′′

ααα − 3H ′
αα|L′′|α − 3H ′

α|L′′|αα −H ′|L′′|ααα
|L′′|

,

H ′
ααβ =

Mααβ − 2H ′
αβ|L′′|α − 2H ′

α|L′′|αβ −H ′
β|L′′|αα −H ′|L′′|ααβ −H ′

αα|L′′|β
|L′′|

,

H ′
β =

Mβ −H ′|L′′|β
|L′′|

,

H ′
ββ =

Mββ − 2H ′
β|L′′|β −H ′|L′′|ββ
|L′′|

,
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H ′
βββ =

Mβββ − 3H ′
ββ|L′′|β − 3H ′

β|L′′|ββ −H ′|L′′|βββ
|L′′|

.

Para calcular R0, observe que

A0 =
1

2|L′′|

 |L′′|α.

|L′′|β



Portanto,

A0α =
|L′′|αα
2|L′′|

− 2A2
0,

B0β =
|L′′|ββ
2|L′′|

− 2B2
0 ,

A0β =
|L′′|αβ
2|L′′|

− 2A0B0,

B0α = A0β,

Re(0) =

 B0β −A0β

−B0α A0α

 1

|L′′|
− R0

|L′′|+R0

H ′.

Para calcularmos R′
e(0) precisamos encontrar sua derivada em relação a α e

a β. Assim, temos que

A0αα =
|L′′|ααα
2|L′′|

− |L′′|αα|L|α
2|L′′|2

− 4A0A0α

=
|L′′|ααα
2|L′′|

− (A0α + 2A2
0)2A0 − 4A0A0α,

A0αα =
|L′′|ααα
2|L′′|

− 4A3
0 − 6A0A0α,

B0ββ =
|L′′|βββ
2|L′′|

− 4B3
0 − 6B0B0β,

A0αβ =
|L′′|ααβ
2|L′′|

− 2A0αB0 − 4A2
0B0 − 4A0A0β,

B0βα =
|L′′|ββα
2|L′′|

− 2A0B0β − 4A0B
2
0 − 4B0B0α,
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A0ββ =
|L′′|αββ
2L′′ − 4A0βB0 − 4A0B

2
0 − 2A0B0β,

A0βα =
|L′′|αβα
2L′′ − 4A0A0β − 4A2

0B0 − 2A0αB0,

B0αα = A0βα,

B0αβ = A0ββ.

Como A0β = B0α e Lαβ = Lβα, temos que R0 é dado por

R0 = A0αLββ +B0βLαα + A0αB0β − A0βLβα −B0αLαβ − A0βB0α

= A0αLββ +B0βLαα + A0αB0β − 2A0βLβα − A0βB0α.

Logo sua derivada em relação a α é

R0α = A0ααLββ + A0αLββα +B0βαLαα +B0βLααα + A0ααB0β

+ A0αB0βα − 2A0βαLβα − 2A0βLβαα − A0βαB0α − A0βB0αα.

A derivada em relação a β é

R0β = A0αβLββ + A0αLβββ +B0ββLαα +B0βLααβ + A0αβB0β

+ A0αB0ββ − 2A0ββLβα − 2A0βLβαβ − A0ββB0α − A0βB0αβ.

Para calcular a derivada de Re(0) de�na a seguinte matriz:

MA =

 B0β −A0β

−B0α A0α

 .
Logo,

Re(0) =
MA
|L′′|

− R0

|L′′|+R0

H ′.
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Portanto

Re(0)α =
MAα

|L′′|
− MA|L′′|α

|L′′|2
−
[

R0α

|L′′|+R0

− |L′′|α +R0α

(|L′′|+R0)
2

]
H ′ − R0

|L′′|+R0

H ′
α,

Re(0)β =
MAβ

|L′′|
− MA|L′′|β

|L′′|2
−
[

R0β

|L′′|+R0

− |L′′|β +R0β

(|L′′|+R0)
2

]
H ′ − R0

|L′′|+R0

H ′
β.

Logo a derivada de Re(0) em relação a L′ é dada por,

R′
e(0) =

1

|L′′|
[Re(0)αLββ −Re(0)βLαβ,−Re(0)αLβα +Re(0)βLαα] .


