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Resumo

Este trabalho esta dividido em quatro capitulos independentes. Nos Capitulos 2 e 3 propo-
mos extensOes para a distribuicdo Weibull. A primeira delas, com cinco pardmetros, é uma
composicao das distribuigdes beta e Weibull Poisson. Essa nova distribuicdo tem como sub-
modelos algumas importantes distribuicoes descritas na literatura e outras ainda nao discutidas
tais como: bata exponencial Poisson, Weibull Poisson exponencializada, Rayleigh Poisson expo-
nencializada, beta Weibull, Weibull, exponencial, entre outras. Obtemos algumas propriedades
matematicas tais como momentos ordinérios e incompletos, estatisticas de ordem e seus momen-
tos e entropia de Rényi. Usamos o método da méaxima verossimilhanca para obter estimativas
dos parametros. A potencialidade desse novo modelo é mostrada por meio de um conjunto de
dados reais. A segunda extensdo, com quatro pardmetros, é uma composicao das distribuicoes
Poisson generalizada e Weibull, tendo a Poisson generalizada exponencial, a Rayleigh Poisson,
Weibull Poisson e Weibull como alguns de seus sub-modelos. Varias propriedades matemaéticas
foram investigadas, incluindo expressoes explicitas para os momentos ordinarios e incompletos,
desvios médios, funcdo quantilica, curvas de Bonferroni e Lorentz, confiabilidade e as entropias
de Rényi e Shannon. Estatisticas de ordem e seus momentos sdo investigados. A estimativa de
pardametros é feita pelo método da maxima verossimilhanca e é obtida a matriz de informacao
obsevada. Uma aplicacao a um conjunto de dados reais mostra a utilidade do novo modelo. Nos
dois ultimos capitulos propomos duas novas classes de distribuicdes. No Capitulo 4 apresentamos
a familia G- Binomial Negativa com dois parametros extras. Essa nova familia inclui como caso
especial um modelo bastante popular, a Weibull binomial negativa, discutida por Rodrigues et
al.(Advances and Applications in Statistics 22 (2011), 25-55.) Algumas propriedades matemati-
cas da nova classe sao estudadas, incluindo momentos e funcao geradora. O método de maxima
verossimilhanca é utilizado para obter estimativas dos parametros. A utilidade da nova classe
¢ mostrada através de um exemplo com conjuntos de dados reais. No Capitulo 5 apresentamos
a classe Zeta-G com um parédmetro extra e algumas nova distribuicoes desta classe. Obtemos
expressoes explicitas para a funcao quantilica, momentos ordinérios e incompletos, dois tipos de
entropia, confiabilidade e momentos das estatisticas de ordem. Usamos o método da méaxima
verossimilhanca para estimar os parametros e a utilidade da nova classe é exemplificada com um

conjunto de dados reais.

Palavras-chave: Distribuicao beta. Distribuicdo Poisson generalizada. Distribuicdo binomial

negativa. Distribui¢do Weibull Poisson. Distribui¢do Zeta. Entropia. Maxima verossimilhanca.



Abstract

This paper is divided into four independent chapters. In Chapters 2 and 3 we propose ex-
tensions to the Weibull distribution. The first one with five parameters is a composition of
the beta and the Weibull Poisson distributions. This new distribution has as sub-models some
important distributions described in the literature and others that have not been discussed yet,
such as: beta exponential Poisson (BEP), exponentiated Weibull Poisson (EWP), exponentiated
Rayleigh Poisson (ERP), beta Weibull, Weibull, exponential, among others. We obtain some
mathematical properties such as ordinary and incomplete moments, order statistics and their
moments and Rényi entropy. We use the method of maximum likelihood to obtain estimates of
the parameters. The potential of this new model is shown by a real data set. The second ex-
tension, with four parameters, is a composition of generalized Poisson and Weibull distributions
having the exponential generalized Poisson, the Rayleigh Poisson, Weibull Poisson and Weibull
as some of its sub-models. Several mathematical properties were investigated, including explicit
expressions for the ordinary and incomplete moments, mean deviation, Quantile function, Bon-
ferroni and Lorentz curves, reliability and the entropies of Rényi and Shannon. Order statistics
and their moments are investigated. The parameter estimation is performed by the method of
maximum likelihood and the observed matrix of information is obtained. An application to an
actual data set shows the usefulness of the new model. In the last two chapters we propose two
new classes of distributions. In Chapter 4 we present the G-negative binomial family with two
extra parameters. This new family includes as special case a very popular model, the Weibull
negative binomial, discussed by Rodrigues et al. (Advances and Applications Statistics in 22
(2011) , 25-55). Some math properties of the new class are studied, including moments and
generating function. The maximum likelihood method is used to obtain parameters estimates.
The usefulness of the new class is shown by an example with real data sets. In Chapter 5 we
present Zeta-G class with an extra parameter and some new distributions of this class. We
obtain explicit expressions for the Quantile function, ordinary and incomplete moments, two
types of entropy, reliability and moments of order statistics. We use the method of maximum
likelihood to estimate the parameters and the usefulness of the new class is exemplified with a

real data set.

Keywords: Beta distribution. Entropy. Generalized Poisson distribution. Maximum likelihood.

Negative binomial distribution. Weibull Poisson distribution. Zeta distribution.
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CHAPTER 1

Introduction

This thesis is composed by four independent papers. Two of them introduce new distributions
and two others, new families of distributions. So, in this thesis, each of the papers fills a distinct
chapter. Therefore, each chapter can be read independently, since each one is self contained.
Additionally, we emphasize that each chapter contains a thorough introduction to the presented
matter, so this general introduction only shows, quite briefly, the context of each chapter.

In each chapter we are interested in the study of continuous distributions defined on the
positive real line. Roughly speaking, any continuous distribution defined on the positive real line
can be considered as a lifetime distribution. Obviously, not all such distributions are meaningful
for describing an aging (lifetime) phenomenon. The analysis of lifetime data is an important
topic in statistical literature, since its applications range from industrial applications to biological
studies. We note that in survival analysis, the time to be analyzed refers to the time until the
occurrence of any event of interest: diagnosis of a disease, birth, healing, appearance of a
tumor, a fault of an equipment or component, etc. Several probabilistic models have proved
quite adequate to describe lifetime data. In Chapters 2-5 we present construction methods of
continuous distributions used in survival data analysis. Such distributions are characterized by
a variety of ways on your rate of failure function.

Chapter 2 introduces a new model obtained by compounding the beta and Weibull Poisson
(WP) distributions (Lu and Shi, 2012), called the beta Weibull Poisson (BWP) distribution.
This distribution has various types of shapes: it can be increasing, decreasing, upside-down
bathtub-shaped or unimodal. The WP model is well-motivated for industrial applications and
biological studies. As an example, consider the time to relapse of cancer under the first-activation
scheme. Suppose that the number, say Z, of carcinogenic cells for an individual left active after
an initial treatment follows a truncated Poisson distribution and let W; be the time spent for the
ith carcinogenic cell to produce a detectable cancer mass, for ¢ > 1. If {Wi}iZI is a sequence of

independent and identically distributed (iid) Weibull random variables independent of Z, then
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the time to relapse of cancer of a susceptible individual can be modeled by the WP distribution.
Some mathematical properties are investigated, explicit expressions for the quantile function,
Rényi entropy, among several others. We illustrate the potentiality of the new distribution with
an application to a real data set.

Chapter 3 presents another extension of the Weibull distribution with four parameters. Tak-
ing the baseline distribution as the Weibull model and the distribution of Z as the generalized
Poisson, we develop the Weibull generalized Poisson (WGP) distribution. This model generalizes
the exponential generalized Poisson (EGP) distribution proposed by Gupta et al. (2013) and has
several sub-models such as exponential Poisson (EP), Rayleigh generalized Poisson (RGP) and
Weibull Poisson (WP) distributions. This new lifetime distribution has strong biological moti-
vation. As an example, consider that the unknown number, say Z, of carcinogenic cells for an
individual left active after an initial treatment follows the GP distribution and let Y; (for ¢ > 1)
be the time spent for the ith carcinogenic cell to produce a detectable cancer mass. If {Y;},5,
is a sequence of iid X random variables independent of Z having the Weibull distribution, thgn
the random variable X :1\/[in{Y;}iZ:1 denoting the cancer recurrence time can be modeled by
the WGP distribution. The WGP density function can be written as a linear combination of
Weibull density functions. This is one of the main results of this chapter. The usefulness of the
new model is illustrated in an application to real data using formal goodness-of-fit tests. By
means of a real data application, we prove that the proposed distribution is a very competitive
model to the exponentiated Weibull and beta Weibull distributions.

Several new models involving the negative binomial distribution have been proposed and
applied in survival analysis. In Chapter 4, we propose a general family of continuous distributions
called the G-negative binomial (G-NB) family. It includes, as a special case, the Weibull negative
binomial (WNB) model. This generalization is obtained by increasing the number of parameters
compared to the G model. This increase adds more flexibility to the generated distribution. One
positive point of the G-NB model is that it includes the G distribution as a sub-model when
s =1and 8 — 0. The G-NB family is well-motivated for industrial applications and biological
studies. For example, considers that the failure of a device occurs due to the presence of an
unknown number N of initial defects of the same kind, which can be identifiable only after
causing failure and are repaired perfectly. Define by X; the time to the failure of the device due
to the i¢th defect, for ¢ > 1. If we assume that the X;’s are iid random variables independent
of N, which follows a G distribution, then the time to the first failure is appropriately modeled
by the G-NB family. For reliability studies, the random variable X :Min{Xi}iA; , can be used
in serial systems with identical components, which appear in many industrial applications and
biological organisms. An important results is the fact that the G-NB density family is a linear
combination of exponentiated-G (“exp-G” for short) density functions.

Finally, in Chapter 5, we propose a new family by compounding any continuous baseline G
distribution with the zeta distribution supported on integers n > 1. By this method, we obtain
a new class of distributions, called the zeta-G, with an additional shape parameter, whose role
is to govern skewness and generate densities with heavier/ligther tails. The cdf of the zeta-G

distribution has one representation in terms of polylogarithm function and can be represented by
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others special functions, for example, using the generalized hypergeometric function, the Lerch
transcendent function and the Meijer G-function. We demonstrate that the zeta-G density
class is a linear combination of exponentiated-G (“exp-G” for short) density functions. A good
characteristic of the zeta-G model is that it includes the G distribution as a special model when
s — oo. This new class extends several widely-known distributions in the literature. So, we
present some of its special cases. Its density function will be most tractable when the cdf G(x)
and the pdf g(x) have simple analytic expressions, and allow for greater flexibility of its tails
and can be widely applied in many areas of engineering and biology. We discuss maximum
likelihood estimation and inference on the parameters based on the Cramér-von Mises (CM)
and Anderson-Darling (AD) statistics. An example to real data illustrates the importance and

potentiality of the new class.
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CHAPTER 2

The beta Weibull Poisson distribution

Resumo

Em Estatistica, costuma-se buscar distribuigoes mais flexiveis. Uma nova distribuicdo de cinco
parametros chamada de beta Weibull Poisson é proposta. Ela é obtida através da composicao das
distribui¢bes Weibull Poisson e beta. Generaliza virios modelos de tempo de vida conhecidos.
No6s obtemos algumas propriedades da distribuicdo proposta, como as fungoes de sobrevivéncia
e taxa de risco, a fun¢ao quantilica, momentos ordinarios e incompletos, estatisticas de ordem e
entropia de Rényi. Estimativas por maxima verossimilhanca e inferéncia para grandes amostras
sao abordadas. A potencialidade do novo modelo é mostrada por meio de um conjunto de dados
reais definido. Na verdade, o modelo proposto pode produzir melhores ajustes do que algumas

distribuicdes conhecidas.

Palavras-chave: Distribuicdo beta; Distribuicdo Weibull Poisson; Dados de vida; Funcao Quan-
tilica; Méaxima verossimilhanca.
Abstract

In statistics, it is customary to seek more flexible distributions. A new five-parameter distribu-
tion called the beta Weibull Poisson is proposed. It is obtained by compounding the Weibull
Poisson and beta distributions. It generalizes several known lifetime models. We obtain some
properties of the proposed distribution such as the survival and hazard rate functions, quantile
function, ordinary and incomplete moments, order statistics and Rényi entropy. Estimation by
maximum likelihood and inference for large samples are addressed. The potentiality of the new
model is shown by means of a real data set. In fact, the proposed model can produce better fits

than some well-known distributions.

Keywords: Beta distribution; Lifetime data; maximum likelihood; Quantile function; Weibull

Poisson distribution.
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2.1 Introduction

The Weibull distribution is a very popular model in reliability and it has been widely used
for analyzing lifetime data. Several new models have been proposed that are either derived from
or, in some way, are related to the Weibull distribution. When modelling monotone hazard
rates, the Weibull distribution may be an initial choice because of its negatively and positively
skewed density shapes. However, it does not provide a reasonable parametric fit for modelling
phenomenon with non-monotone failure rates such as the bathtub shaped and the unimodal
failure rates that are common in reliability and biological studies. An example of the bathtub-
shaped failure rate is the human mortality experience with a high infant mortality rate which
reduces rapidly to reach a low level. It then remains at that level for quite a few years before
picking up again. Unimodal failure rates can be observed in course of a disease whose mortality
reaches a peak after some finite period and then declines gradually.

The statistics literature is filled with hundreds of continuous univariate distributions. Recent
developments focus on new techniques for building meaningful distributions. Several methods
of introducing one or more parameters to generate new distributions have been studied in the
statistical literature recently. Among these methods, the compounding of some discrete and
important lifetime distributions has been in the vanguard of lifetime modeling. So, several
families of distributions were proposed by compounding some useful lifetime and truncated
discrete distributions.

In recent years, there has been a great interest among statisticians and applied researchers in
constructing flexible distributions to furnish better modeling for describing lifetime data. Sev-
eral authors introduced more flexible distributions to model monotone or unimodal failure rates
but they are not useful for modelling bathtub-shaped failure rates. [1| proposed the exponential
geometric (EG) distribution to model lifetime data with decreasing failure rate function and
[10, 11, 12| defined the generalized exponential (GE) (also called the exponentiated exponential)
distribution. The last distribution has only increasing or decreasing failure rate function. Fol-
lowing the key idea of [1], [13] introduced the exponential Poisson (EP) distribution which has a
monotone failure rate. [14] proposed a generalization of the Weibull distribution called the beta
Weibull (BW) distribution. [3] studied a Weibull geometric (WG) distribution which extends
the EG and Weibull distributions. In this paper, we propose a new compounding distribution,
called the beta Weibull Poisson (BWP) distribution, by compounding the beta and Weibull Pois-
son (WP) distributions (Lu and Shi, 2012). The failure rate function of the WP distribution
has various shapes. In fact, it can be increasing, decreasing, upside-down bathtub-shaped or
unimodal.

The proposed generalization stems from a general class of distributions which is defined by

the following cumulative distribution function (cdf)

G(x)
F(2) = I (ab) = B(ib)/o W 1(1 = w)*~Ldw, (2.1)

where a > 0 and b > 0 are two additional shape parameters to the parameters of the G-
distribution, B(a,b) = I'(a)['(b)/T'(a +b) is the beta function and Ig(,)(a, b) denotes the incom-
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plete beta function ratio evaluated at G(x). The parameters a and b govern both the skewness
and kurtosis of the generated distribution.

This class was proposed by [8] and has been widely used ever since. For example, [8] in-
troduced the beta normal (BN) distribution, [16] defined the beta Gumbel (BGu) distribution
and [17] proposed the beta Fréchet (BF) distribution. Another example is the beta exponential
(BE) model studied by [18].

The probability density function (pdf) corresponding to (2.1) is given by

) = Gl 1 = G, 2:2)

where g(x) = dG(z)/dz is the baseline density function.

The paper is organized as follows. In Section 2.2, we define the BWP distribution and
highlight some special cases. In Section 2.3.1, we demonstrate that the new density function
is a linear combination of WP density functions. The proof is given in Appendix A. Also, we
derive the survival and hazard rate functions, moments and moment generating function (mgf),
order statistics and their moments and Rényi entropy. Maximum likelihood estimation of the
model parameters and the observed information matrix are discussed in Section 2.4. In Section
2.5, we provide an application of the BWP model to the maintenance data with 46 observations
reported on active repair times (hours) for an airborne communication transceiver. Concluding
remarks are given in Section 2.6. Unless otherwise indicated, all results presented in the paper

are new and original. It is expected that they could encourage further research of the new model.

2.2 The BWP distribution

We assume that Z has a truncated Poisson distribution with parameter A > 0 and probability

mass function given by
p(zA) = NI e+ 1 - 2=1,2,.. .,

where I'(p) = [;° #P~ e "dx (for p > 0) is the gamma function.
We define {W;}Z_; to be independent and identically distributed random variable having the
Weibull density function defined by

7(w; o, B) = afuw®  exp(—pw®), w > 0,

where o > 0 is the shape parameter and 5 > 0 is the scale parameter.
We define X = min{Wy,..., Wz}, where the random variables Z and W’s are assumed
independent. The WP distribution of X has density function given by

glz;a, B,\) = cux®t e, x>0, (2.3)

_—
where ¢ = ¢(a, 5,\) = ML:

The WP model is well-motivated for industrial applications and biological studies. As a first

_ o
and u = e P,

example, consider the time to relapse of cancer under the first-activation scheme. Suppose that
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Figure 2.1: Plots of the BWP deunsity function for: (a) a=1,8=2and A=1, (b) a=0.5, 3=2and A =1,
(c)a=15=2and A=1,(d) a=0.5,=0.5and A = 2.

the number, say Z, of carcinogenic cells for an individual left active after the initial treatment
follows a truncated Poisson distribution and let W; be the time spent for the ith carcinogenic
cell to produce a detectable cancer mass, for i > 1. If {W;},-, is a sequence of independent and
identically distributed (iid) Weibull random variables indepe;dent of Z, then the time to relapse
of cancer of a susceptible individual can be modeled by the WP distribution. Another example
considers that the failure of a device occurs due to the presence of an unknown number, say Z,
of initial defects of the same kind, which can be identifiable only after causing failure and are
repaired perfectly. Define by W; the time to the failure of the device due to the ith defect, for
i > 1. If we assume that the W;’s are iid Weibull random variables independent of Z, which is

a truncated Poisson random variable, then the time to the first failure is appropriately modeled
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by the WP distribution. For reliability studies, the proposed models for X = min {VVZ-}I-Z:1
and T = max{Wi}l-Z: 1 can be used in serial and parallel systems with identical components,
which appear in many industrial applications and biological organisms. The first activation
scheme may be questioned by certain diseases. Consider that the number Z of latent factors
that must all be activated by failure follows a truncated Poisson distribution and assume that
W represents the time of resistance to a disease manifestation due to the ith latent factor has
the Weibull distribution. In the first-activation scheme, the failure occurs after all Z factors
have been activated. So, the WP distribution is able for modeling the time to the failure under
last-activation scheme.
The cdf corresponding to (2.3) is
Au e>\
G(x) = T ° > 0. (2.4)
The BWP density function is obtained by inserting (2.3) and (2.4) in equation (2.2). It is
given by
f(z) = cu z® TN (e — M)a (M — 1)1 (2.5)

where

_aBA e_’\(e’\ — 1)2_a_b
~ B(a,b)(1—e?)
Hereafter, a random variable X having density function (2.5) is denoted by X ~ BWP(«, 5, A, a, b).

The cumulative distribution of X is given by

F((L‘) = IG(x) (a, b) = I(eAu_eA)/(l_e)\)(a, b) (26)

We are motivated to study the BWP distributions because of the wide usage of the Weibull
and the fact that the current generalization provides means of its continuous extension to still
more complex situations. A second positive point of the current generalization is that the WP
distribution is a basic exemplar of the proposed family. A third positive point is the role played
by the two beta generator parameters to the WP model. They can add more flexibility in the
density function (2.5) by imposing more dispersion in the skewness and kurtosis of X and to
control the tail weights.

The beta exponential Poisson (BEP) distribution is obtained from (2.5) when o = 1. For
b = 1, the exponentiated Weibull Poisson (EWP) distribution comes as a special model. In
addition, for & = 1, we obtain the exponentiated exponential Poisson (EEP) distribution. On
the other hand, if a = 2, the beta Rayleigh Poisson (BRP) distribution is obtained. In addition,
for b = 1, it follows the exponentiated Rayleigh Poisson (ERP) distribution. The beta Weibull
(BW) distribution comes as the limiting distribution of the BWP distribution when A — 0F.
For a = b = 1, equation (2.5) becomes the WP density function. In addition, if &« = 1, we obtain
the exponential Poisson (EP) distribution. The following distributions are new sub-models: the
beta Rayleigh Poisson (BRP), exponentiated Weibull Poisson (EWP), beta exponential Poisson
(BEP), exponentiated Rayleigh Poisson (ERP), beta Rayleigh (BR), Rayleigh Poisson (RP) and

23



Figure 2.2: Relationships of the BWP sub-models.

arc sine Weibull Poisson (ASWP) distributions (for more details, see Appendix B). Other sub-
models are the beta exponential (BE), beta Weibull (BW), beta Rayleigh (BR), exponentiated
Rayleigh (ER), exponentiated exponential (EE), exponentiated Weibull (EW), Rayleigh (R),
Weibull (W) and exponential (E) distributions. Several special distributions of the BWP model
are displayed in Figure 2.2.

2.3 Properties of the new distribution

2.3.1 Density function

We can derive a useful expansion for the BWP density function (see the proof in Appendix
A) given by
o0 T
fx) =37 vnyglwia B, ), (2.7)
r=0 j=0
where A ; = A(r—j+1) >0 and
(1) (r4+1) v (1 —e i) [r
T ity e =y — 1) @
Clearly, 32,3 _ovrj = 1. Equation (2.7) reveals that the BWP density function is a
linear combination of WP density functions. So, we can obtain some mathematical properties
of the BWP distribution directly from those WP properties.
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2.3.2 Cumulative function and quantiles

By integrating (2.7), the cdf F'(x) becomes

F(x) = ZZUW- G(x;a, B, Arj). (2.8)

r=0 j=0
Quantile functions are in widespread use in general statistics and often find representations
in terms of lookup tables for key percentiles. For some baseline distributions with closed-form
cdf, it is possible to obtain the quantile function in closed-form. However, for some other
distributions, the solution is not possible. The quantile function, say = = Q(z;«, 8, A, a,b) =
F~Yz;a, 3, A, a,b), of the BWP distribution follows by inverting (2.6) as

z=Q(za,8,\ a,b) = {log <log[w FeM1— w)]i)é}“ , (2.9)

where w = Qq(2) denotes the beta quantile function with parameters a and b.

Power series methods are at the heart of many aspects of applied mathematics and statistics.
We can obtain the moments of the beta G distribution using a power series expansion for the
quantile function = Qg (u) = G~!(u) of the baseline cdf G(x) with easily computed non-linear
recurrence equation for its coefficients.

When the function Q(u) does not have a closed form expression, this function can usually
be written in terms of a power series expansion of a transformed variable v, which is usually of
the form v = p(qu — t)? for p, q,t and p known constants.

We can obtain a power series for Qq(2) in the Wolfram website given by

1) (b—1)(a® +3ba—a+5b—4) 4
¥1) 2(a+ 1)2(a + 2) Y
U4

Qa,b(z) = v+

+ [a* + (6b—1)a® + (b +2)(8b — 5)a”® +

3(a+1)3(a+2)(a+3)
(33b% — 30D + 4)a + b(31b — 47) + 18] + O(v°), (2.10)

where v = [azB(a, b)]'/* for a > 0.
The simulation of the BWP distribution is easy. If W is a random variable having a beta

distribution with parameters a and b, then the random variable
1 - @
X = {log (log[W + e/\(l — W)]X) B}
follows the BWP distribution.

2.3.3 Survival and hazard rate functions

The BWP survival function is given by
S([E, 0) =1- F(.’E, 0) =1- I(e)\u_e)\)/(l_eA)(a, b),
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where 0 = (o, 5, A\, a,b) is the vector of the model parameters. The failure rate function corre-

sponding to (2.5) reduces to

f(a:; 9) _cu xo‘_le)‘“(e)‘ . eAu)a—l(e)\u o 1)6—1

S(z;0) {1- I(em,eX)/(l,eA)(a, b)}

h(z;0) =

12

1— @2
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Figure 2.3: Plots of the BWP hazard rate function for (a) o =1, 8 =2 and A = 1;(b) a = 0.5, 3 = 2 and
A=1(c)a=15=2and A=1;(d) a =05, =0.5and A =1.

2.3.4 Moments

We hardly need to emphasize the necessity and importance of moments in any statistical
analysis especially in applied work. Some of the most important features and characteristics of a

distribution can be studied through moments (e.g., tendency, dispersion, skewness and kurtosis).
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An expression for the mgf of X can be obtained from (2.5) using the WP generating function.

Setting y = /\w-efﬂxa in the definition of the mgf, we can express it as

Mx(t) = D> (et —1)7"
r=0 j=0
Arj
x /0 exp{t(—F[log(y) — log(Ary))V® + y}dy.

Using the power series of the exponential function, after some simplification, we obtain

Mx(t) = Z Zq(r,m,n,j) J(Arj,m,n)t", (2.11)
r,m,n=0 j=0
where
Ar,j ) n
TOvgomn) = [y (=57 og(o) ~ o(hry)) * dy
and

UT?J

q(r,m,n,j) = (e>\»p7j —1) m! n!’

The last integral can be computed using the software Mathematica 8.0. Then,

Mx(t) = Y Zw(r,m,n,j)F<a+n) , (2.12)

r,m,n=0 j=0

where

a+n

Equation (??) can be reduced to

Mx(t) = iént”, (2.13)
n=0

a—+n

where 5n:anOTOZ§Ow(T,m,n,j)I’< ,n=0,1,...
Hence, the nth ordinary moment of X, say p,, = E(X"), is simply given by ul, = n!d,.
Further, the central moments (u,) and cumulants (k,) of X can be determined as

n

n—1
n n—1
pn =Y (1) <8> WPy and Ky =g — ) (s B 1) Fos s

s=0 s=1

respectively, where k1 = p). Then, ko = pb — pi?, k3 = py — 3ubul + 23, ka = ply — Aphl —
3 + 12phu? — 6/t ete. The skewness v = K3/ mg/ % and kurtosis v = k4 /K3 follow from the

second, third and fourth cumulants.
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The nth descending factorial moment of X is
iy = BOX™) = BIX(X = 1) x o x (X —n+1)] =3 s(n.r) gy,

where

1 [d
s(n,r) = ] [d:):’"w( )]
: =0

is the Stirling number of the first kind which counts the number of ways to permute a list of n
items into r cycles. So, we can obtain the factorial moments from the ordinary moments given
before.

The incomplete moments of X can be expressed in terms of the incomplete moments of the
WP distribution from equation (2.7). We obtain

oo s

my(y) = EX"|X <y) Z Ur,]/ T g(m’;a,ﬁ,)\m)dx
r=0 j=
= szw/ "cur® teMd. (2.14)

r=0 j=0

Setting z = Sx® and integrating by parts, we can write

D9 3 D o D

r=0 j=0

The sum in m converges to (n+ma)~te™*P¥". Then, the nth incomplete moment of X becomes

o0 ASe—sBy” ynef)\(lfe_ﬁya)
Zzp’r‘,]y {; |:S‘(n+m06):| - 1_6)\ ) (215)

r=0 j=0

nUrj e A
1—e?
We can derive the mean deviations of X about the mean p} and about the median M in

where p;.; =

terms of its first incomplete moment. They can be expressed as
01 =2[py F(py) —mi(ph)]  and  do = py — 2my (M), (2.16)

where pf = E(X) and my(q) = [? @ f(x)dz. The quantity m1(qg) is obtained from (2.15) with
n = 1 and the measures d; and dy in (5.21) are immediately determined from these formulae
with n = 1 by setting ¢ = ,ull and ¢ = M, respectively. For a positive random variable X,
the Bonferroni and Lorenz curves are defined as B(w) = Ti(q)/[wpy] and L(m) = Ti(q)/u},
respectively, where ¢ = F~!(m) = Q(r) comes from the quantile function (2.9) for a given

probability .
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The formulae derived along the paper can be easily handled in most symbolic computation
software platforms such as Maple, Mathematica and Matlab. These platforms have currently the
ability to deal with analytic expressions of formidable size and complexity. Established explicit
expressions to calculate statistical measures can be more efficient than computing them directly
by numerical integration. The infinity limit in the sums of these expressions can be substituted

by a large positive integer such as 20 or 30 for most practical purposes.

2.3.5 Order statistics

Order statistics make their appearance in many areas of statistical theory and practice.
Moments of order statistics play an important role in quality control and reliability, where some
predictors are often based on moments of the order statistics. We derive an explicit expression
for the density function of the ith order statistic Xj.,,, say fi.n(x) (see Appendix C). For a beta-G
model defined from the parent functions g(x) and G(z), fin(x) can be expressed as an infinite

linear combination of WP density functions

oo 1
fzn(x) = Z Z’Yi:n(ly 5) g(x; a, 3, Al,s)» (2'17)

=0 s=0
where \j s = A(l — s+ 1) and

(D () () (T (T e i

(l—s+1)(1- e—;) (1 —eM! B(a,b)"IB(i,n —i+1)

71nl3 :ZZ

7=01rk=0

An expression for the mgf of X;.,, can be obtained from (2.17) using the WP generating

function. Setting y = )\l’se*ﬁ‘”a in the definition of the generating function, we obtain

00 l
My, () = ZWi(l,m,n,S)P<aZn) ¢, (2.18)

l,m,n=0 s=0

where . win
B=ENL (14 m) = i (l, 5)

m! n! (ets — 1)

Equation (2.18) can be reduced to Mx,, (t) = > " 0. t", where

w;i(l,m,n,s) =

00 l
wi(l,m,n,s)T atn ,n=0,1,...
> Ywlmn (2

m,l=0 s=0

Hence, the sth ordinary moment of Xj;., becomes E(X?, ) = s! ;..
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2.3.6 Rényi entropy

The entropy of a random variable X with density function f(z) is a measure of the uncer-

tainty variation. The Rényi entropy is defined as

Ir(p) = (1—p) ' log {/f(x)pd:r} ,

where p > 0 and p # 1. If a random variable X has the BWP distribution, we have

fl) = [ %((";ebﬂ ()@ [1 — G()] >, (2.19)

By expanding the binomial term, the following expansion holds for any real a,
G(x (a Dp+i — ZS [(a—1)p+j] Glz),

where s,[(a — 1)p+j] = > 52 (—=1)" ((“_1.)”+j) (!). Equation (2.19) can be rewritten as

o>

7j=0r=

[e.9]

fap = |

qu‘ ,
0

where g;, = (—1)7 ((b_jl)p) spl(a—1)p+ j].
From equations (2.3) and (2.4), we obtain

a—1 )\u p 0 o0 /\ r
f(z)F = |:CU$(:| ZZQJT<_6> .
7=0 r=0
Then,

f(:L’)p = Z Z Dirt uP xa(pfi) e/\(PJFT*t)”’ (2.20)

_ @
where u = e 7" and

Dirs = gjr(=D (f)eMe”
P [Bla,b)e(1— M)

[)\(p +r— t)] e—sﬂxo‘ i

Using the power series expansion eMPtr=u = $7% ' n (2.20) and
s!
setting y = Bsx®, the Rényi entropy reduces to
-1 .- L—p
Ir(p) = (1—p)"'log ¢ D_0i(p) T (p+—) b (2.21)
=0

where

Pirt N (p+1—1)°
ZZ = 7P+P '

r,s=0 t=0 as' BS) «
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2.4 Maximum likelihood estimation

Let x1,...,x, be a random sample of size n from the BWP(a, b, «, 3, \) distribution. The

log-likelihood function for the vector of parameters 8 = (a, b, a, 3, A)” can be expressed as

(@) = n [log(aﬁ)\) —A— log[B(a, b)] —log(1 — e*A) _ log(e)\ _ 1)a+b72]

+(a—1) Zlog(wi) - ﬁz:rf‘ + /\Zui
i=1 i=1 i=1

+(a—1) Zlog()‘ — M)+ (b—1) Zlog(e’\“i —1)
i=1 =1

where u; = exp(—pz%) is a transformed observation. The components of the score vector U(0)

are given by

Ua(0) = g + Z log(z;) — B Z x$ log(x;) — A8 Z wizs log(z;)

i=1
1—a b—1
Ui
+)‘/BZU1 Y log(x;) (e/\uz' — o + 1= eAuz‘> ,
n n
Us(0) = 5 me‘ - )\Zuzx? + )\Zuix?emi
=1 =1 =1

1—a b—1
N —er T T o )

) = §-n oy - eI
n n AU A
—i—;uz—i-(a—l);u;iui_ei—(b—l)
n AU
% Zz; 1Uiee/\uz
Ua(®) = —nlb(a) — ¥la+b) +nlog(e — )7 logllog(1 — &)
+ Zn:log i _ g
i=1
Up(0) = —n [1/1(5) — P(a+b)] + nlog(e* — 1)****loglog(1 — &*)]

+ Z log(1 ’\“’

where 9(-) is the digamma function. The maximum likelihood estimates (MLEs) 6 = (a, b,a, B, X)T
of @ = (a,b,a,3,\)T are the simultaneous solutions of the non-linear equations: U,(6) =
Up(0) = Uqy(0) = Us(0) = Ux(0) = 0. They can be solved numerically using iterative methods

such as a Newton-Raphson type algorithm.
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For interval estimation and hypothesis tests on the model parameters, we require the 5 X 5
observed information matrix J = J(0) given in Appendix D. Under conditions that are fulfilled
for parameters in the interior of the parameter space but not on the boundary, the asymptotic
distribution of \/ﬁ(a —0) is N5(0,1(6)71), where I(8) is the expected information matrix. In
practice, we can replace I(0) by the observed information matrix evaluated at 5, say J(@)
We can construct approximate confidence regions for the parameters based on the multivariate
normal N5(0, J(a)*l) distribution.

Further, the likelihood ratio (LR) statistic can be used for comparing this distribution
with some of its sub-models. We can compute the maximum values of the unrestricted and
restricted log-likelihoods to construct the LR statistics for testing some sub-models of the
BWP distribution. For example, the test of Hy : @« = b = 1 versus Hy : Hy is not true is
equivalent to compare the BWP and WP distributions and the LR statistic becomes w =
2{l(a,b,é&, B,A\) —I(1,1,a, B, \)}, where a, b, &, § and A are the MLEs underH; and &, 8 and A

are the estimates under Hj.

2.5 Application

Here, we present an application regarding the BWP model to the maintenance data with 46
observations reported on active repair times (hours) for an airborne communication transceiver
discussed by [2], [4] and [7]. We also fit a five-parameter beta Weibull geometric (BWG) dis-
tribution introduced by [6] to make a comparasion with the BWP model. The BWG density

function is given by

a(l _ p)bﬂaza—le—b(ﬁx)“(l _ e—(Bz)o‘)a—l(l _ pe—(ﬁx)"‘)—(a+b)

f(z;01) = Bla.b) ;

where 081 = (p, o, 8,a,b) and x > 0.

The data are: 0.2, 0.3, 0.5, 0.5, 0.5, 0.5, 0.6, 0.6, 0.7, 0.7, 0.7, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0, 1.1,
1.3, 1.5, 1.5, 1.5, 1.5, 2.0, 2.0, 2.2, 2.5, 2.7, 3.0, 3.0, 3.3, 3.3, 4.0, 4.0, 4.5, 4.7, 5.0, 5.4, 5.4, 7.0,
7.5, 8.8, 9.0, 10.3, 22.0 e 24.5.

In Table 2.1, we list the MLEs of the model parameters and the bias-corrected Akaike
information criterion (BAIC), Bayesian information criterion (BIC) and the Hannan-Quinn in-
formation criterion (HQIC). We observe that the value of the BAIC criterion is smaller for the
BWP distribution as compared with those values of the other models. So, the new distribution

seems to be a very competitive model to these data.

The LR test statistic for testing Hy : a = b = 1 against Hy : Hy is not true is w = 7.08912
(p-value = 2.88 x 1072), which is statistically significant. Figure ?? displays the histogram of
the data and the plots of the fitted BWP, WP, Weibull and BWG models.
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Table 2.1: MLEs of the parameters and BAIC, BIC and HQIC statistics of the BWP, BWG,

WP and Weibull models for data of active repair times (hours) for an airborne communication

transceiver.

Model a b & B A BAIC BIC  HQIC

BWP  21.969 0.320 0.722 1439 5342 207.838 216.981 211.263
(58.799)  (0.256) (0.390) (1.418) (2.232)

WP 1.101  0.092  3.522 210.927 216.413 212.982
(0.120) (0.052) (1.917)

Weibull 0.899  0.334 212.939 216.597 214.309

(0.096)  (0.075)
Model a b & B P BAIC BIC  HQIC
1.417  0.212  0.988 208.205 217.348 211.630

BWG 3.269 0.587

(4.599) (0.323) (0.642) (0.076) (0.017)

— BWP
---- WP
....... Welbu"
------ BWG

0.20
|

0.10 0.15
| |

Density

0.05
|

0.00
|

repair times for an airborne communication transceiver

Figure 2.4: The density functions of the fitted BWP, WP, Weibull and BWG distributions
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2.6 Concluding remarks

The Weibull distribution is commonly used to model the lifetime of a system. However, it
does not exhibit a bathtub-shaped failure rate function and thus it can not be used to model the
complete lifetime of a system. We define a new lifetime model, called the beta Weibull Poisson
(BWP) distribution, which extends the Weibull Poisson (WP) distribution proposed by Lu and
Shi (2012), whose failure rate function can be increasing, decreasing and upside-down bathtub.
The BWP distribution is quite flexible to analyse positive data instead of some other special
models. Its density function can be expressed as a mixture of WP densities. We provide a mathe-
matical treatment of the distribution including explicit expressions for the density function,
generating function, ordinary and incomplete moments, Rényi entropy, order statistics and their
moments. The estimation of the model parameters is approached by the method of maximum
likelihood and the observed information matrix is determined. An application to real data reveals
that the BWP distribution can provide a better fit than other well-known lifetime models.

Appendix A - The BWP density function

An expansion for the beta-G cumulative function is given by [5] and follows from equation
(2.1) as

Fla) = & (;b) Zot Ga), (2.22)

where t, = > 7 W s.(a +m) for any real a, wy, = (=1)™(a +m)~! (b;f) and sy(a +m) =
Z?’;T(—l)rﬂ (atm) (/) . Differentiating equation (2.22), we obtain an expansion for the BWP

density function

f(z) = ZUT hry1 (), (2.23)
r=0

where v, = t,4+1/B(a,b). Note that hy11(z) = (r + 1)G(z)"g(z) is the density function of the
exponentiated G with power parameter r + 1, say exp-G(r+ 1), distribution. We can verify that
Yoo gvr = 1. In fact,

o 1 (o] o0
Zvr = mz Z Wmsr(a) =1

r=0 r=0 m=0

if and only if

Z Z Wy, $r(a) = B(a,b). (2.24)

r=0 m=0

But

B(a,b) = /Oltala — )Lt = i <bj 1) (ﬁl)j

J=0
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and, consequently,

55wt = 5 0SS () (1) -

r=0 m=0 m:0 r=0 j=r

Consider the expressions of g(z) and G(x) from equations (2.3) and (2.4), respectively.
Replacing them in (2.23), we obtain an expansion for the BWP density function

flz) = Aqur (r+1) ( 1__6§A)T. (2.25)

Hence, from this equation, the BWP density function can be expressed as a linear combina-

tion of WP density functions.

Appendix B - Special cases of the BWP distribution

Setting b = 1 in equation (2.5), we obtain the EWP density function

Au oA o1
_ a—1 o [€ —e _ aBA
f(x) =cuz®"e (1—eA> , CiB(a,l)(l—e_)‘)'

Using equation G(z)% = 3_7° sk(a) G(2)*, we can write

AN K
e 1 /\u —¢
flz) = Zsk a—1) ( o )
sp(a—1) k
— Cuxafle)\uz /{76/\) Z < > Au(k— r)e)\r' (226)

k=0 r=

After some algebra, we obtain from (2.26)

oo

K
f(z) = szk,r 9(x; 0, B, M) (2.27)

k=0 r=0
where Ay, = A(k —7+1) and

(—1)7"(';) Bla,b) sp(a — 1) e (1 — e Mkr)
(k—r+1)B(a,1) (1 —eMk(1 —e?)

Vgr =

Equation (2.27) reveals that the density function f(x) is a linear combination of the WP
densities.

From equation (2.5) with a = b = 1/2, we obtain

Fa:6) = cra®tyeM (M _ oA —1/2 . QAU _ oA *1/2’
T 1—e? 1—et

afre™ (et — 1)
(1—e?)

and u = e #*" . Thus,

where ¢; =
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If A approaches to 0, then

c1x* tue aBz® tu

lim f(z;0) = lim =
A—0 A—0 M oA 1 _ oM T u(l — u)
T
1—¢e? 1—er

So, the BWP distribution reduces as a limiting case to a two-parameter arcsine Weibull-

Poisson distribution.

Appendix C - Expansion for the Density Function of the order

statistics

The density function f;.,(z) of the ith order statistic, say Xj.,, for i = 1,2,...,n, from data
values X1,..., X, having the beta-G distribution can be obtained from (2.2) as

iy = 9@) G I G} R )
fin(x) = Bla.b) Blin i+ 1) jz;( 1)J< ; )F() it (2.28)

By application of an equation in Section 0.314 of [9] for a power series raised to any j positive

integer

00 J 00
(Z a; ul> = Z Cji ui, (2.29)
=0 =0

where the coefficients ¢;; (for i =1,2,...) can be obtained from the recurrence equation

)

¢ji = (iag) ™" Z [m(j + 1) —i] am ¢ji—m, (2.30)
m=1
with ¢jo = ag. The coefficient ¢;; comes from c;o,...,cj;—1 and then from ag,...,a;. The

coefficients ¢;; can be given explicitly in terms of the quantities ajs, although it is not necessary
for programming numerically our expansions in any algebraic or numerical software.

For a > 0 real non-integer, we have

00 i+j—1
F(a)t™ = (B(i b)ZtAa,b)G(x)r)
? r=0

- <B<i,b>>i+j_l (g‘;trw)r)”“'

We now use equations (2.29)-(4.33)
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n—t alz l,a—l _ =1 /i &
fzn(qj) — . (_1)]9( ()G( ) [(1 G( )] ( ] )Zci-ﬁ-j—l,TG(x)r

7=0 r=0
B e (@I = GGyt
]:Og( 1) Cz+j—1,’l’< j > B(G,b)’H—JB(Z,n—Z—i— 1) 3 (231)
where )
Citj—1,0 = (rtg) 1 Z ((i + §)m — ")tmCitj—1r—m- (2.32)
m=1

Equation (2.31) can be written as

n—i 00 n—i g(:c)[(l _ G(x)]b_l[l _ (1 _ G(m))]r—i-a—l
finle) = 33, (") G T

For any ¢ > 0 real, we have

Glz)? =[1—{1— => (-1 < ) — G(2)]F, (2.33)
k=0
and then
f'Ln ZZQ Z <T+a 1> [1—G(1’)]k+b_l.
7=0r= k=0

In the same way, using equation (2.33), it follows that

n—i oo 1) Jt+k+l ( ; z) (7"+a—1) (k+ll7—1) Citj1r

Fien Z Z (a,b)iti BIZZ', n—i+1) 9(x) G(x)l.

Replacing equations (2.3) and (2.4) in the above equation, fi.,(z) can be expressed as an

infinite linear combination of WP density functions

n—i 00 i\ (ra—1\ (k+b—1 . l
fA (x) — Z 1)]+k+l ( ] )( +k‘ )( ! ) CZ"‘Fj—L’r‘ aﬁ)\e by y xail e)\u e)\u _ e)\
" E =01,k 1=0 (a,0)*7B(i,n —i+1) 1—e? 1—e
- > i (_1)]+k+l ( J_Z) (T+Z_1) (k+?_1) Citj—1r [afBre™ w1l et
7=0 r,k,l=0 B(a,b)i‘i‘j B(i,n — 1+ 1)(1 —e)‘)l 1—e A
l l
’ (_1)8( >(em)lseﬂ' (2.34)
S
s=0

Equation (2.34) reduces to
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co I
Fin(@) =D %im(lys) glasa, B, Ars), (2.35)

=0 s=0
where \j s = A(l — s+ 1) and

G (e () () () ()0 e

in(l,8) = — .
gk ) ]Z;T;O (l—s+1)(1—-e (1 —e! B(a,b)ti B(i,n—1i+1)

Appendix D - Information Matrix

Let u; = exp(—pz¢). The elements of the observed information matrix J(@) for the param-
eters (a, 3, A, a,b) are

Joo = ———BZx log x;) AﬁZuzx log Z; +)\52Zx2"uzlog (z:)

=1

\Bu;z¥e i log? (z;
-wfwz[ﬁehj(ﬂwm

=1

e e )]

1 — etui
i—1

n
Jop=Jga = — fo log(x;) )\Zuzx log(x;) + /\BZUZ 2% og (x;)
= =1

M=

oz/\uZ
Ha- Y [ sl

e/\uz _e/\ :| 1/)(%)

Au;z®eM log(x;
|: : 1_ Ui ( Z):| 90($1),

1

<.
Il

M:

+(b—1)

=1

where

e)\ul _ e)\

Py )\ul
w(a:,) = <—1 + ,Bl’za + )\ﬂulm’f‘ — )\BUZ)

and

1 — etui

e )\uz
o(z;) = <1 — pxd — Npuzy — Ausaie™ > .

Further,

i=1
i )\uie)‘“"
+(b— 1);%@) (1 + Aui + T em) ,
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Jor = a = fBZulz:f‘ log(z;) + (a — 1) Zp(l‘l) [ 1 — Ay
i=1

/\(uie)‘“" —

e)\qu _ e)\




- Z)‘P(ﬂfi),
i=1

where p(x;) = Puizie og(x;)

Jss

and
— o

n
n
_@_'_)\E ui$%a+
i=1

ab - Jba Z)\qb xz

Qe | )
o) = iz log(x:)

1 — el ?
- )\ul( )2
i=1

A oA
X<1+)\Ui— i€

e

U n Auiﬂ,’?ae)\ui
1‘—@>+%b_n§:<]ffwu>

=1

% (_1_)\%_ Au

Au;
T
1 —erui |7

=3 (0= 1) D) | -1+ 2T
=1 i—1

e)\ui _ e)\

+b—1)) 6(x) (1 + \u; + &) 7
=1

Jga = Jap = — Z/\’Y(xi),

Jgp = Jog = Z)“S(xi)v

i=1
QAU a Au;
v(zi) = % and d(z;) = % Furthermore,
n ne~* ne~2* n(a+b—2)e* log(1 — et)atb=2
I = -3+ — + 3 — S 5
A2 1-—e (1—e?) 1 —erlog(l—et)
— A A A
w1 (a+b—2)e A e
(1—eMlog(l—er)  1—¢e*  (1—e?)log(l—e)
n uie)\ui _ e)\ (uie)\ui _ e)\)2
+(a o 1) ; |: e\ _ A (e)\ui _ e)\)2 :|
n u2€>\ul u2 (e/\ui )2
—(b—-1 7
ne* log(1 — et)ato—2
= 1 b — 2)log[log(1 — e*
= S [ {0+ - 2 togilog(1 - )
SO
3 (M)
ne* log(1 — et)ato—2
—Jp = 1 b — 2) log[log(1 — & }
Iao = Jor [ (1= M log(1 — o) } { +(a+ ) log[log(1 — e%)]

+Z<1_em>’
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Ja a

Jab = Jba

Jbb

where By(a,b) = ;B(a,b) . By(a,b) =

a

nBy(a,b) ™ [Ba(a7 b)r

Blab) | Blab)
% log2flog(1 — ¢)],

B nB(a,b) nB(a

_ nlog(l _ e)\)a+b—2

B(a,b) [Bj(a, b)]?

X logQ[log(l — e>‘)],

) 2
_an(a, by T [Bb(a, b)]
B(a,b) [B(a,b)]?
X log2[log(1 — e)‘)],
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CHAPTER 3

The Weibull Generalized Poisson distribution

Resumo

Em Estatistica, costuma-se investigar distribui¢ées mais flexiveis. Uma nova distribuicido con-
tinua é estudada pela composicao das distribuigoes Poisson generalizada e Weibull. Considerar a
distribuicao do tempo de vida de um sistema em série com um nimero aleatério Z componentes.
Tomando a Poisson generalizada para a distribui¢ao de Z, nés definimos a distribuigdo Weibull
Poisson generalizada compondo as duas distribui¢des. Véarias propriedades mateméaticas do
modelo proposto sao investigadas, incluindo expressoes explicitas para os momentos ordinarios
e incompletos, funcao geradora, desvios médios, dois tipos de entropias e estatisticas de ordem.
Discutimos estimacao do modelo de parametros por maxima verossimilhanca e fornecemos uma
aplicacdo a uma conjunto de dados reais. Esperamos que a proposta de distribuicdo sirva como
um modelo alternativo para outras distribuicoes para modelar dados reais positivos em muitas

areas.

Palavras-chave: Distribuicdo Poisson generalizada; distribuigdo Weibull; matriz de informacao;
maxima verossimilhanca.
Abstract

In statistics, it is customary to seek more flexible distributions. A new continuous distribu-
tion is studied by compounding the generalized Poisson and Weibull distributions. We consider
the distribution of the lifetime of a series system with a random number Z of components.
Taking the generalized Poisson for the distribution of Z, we define the Weibull generalized Pois-
son distribution by compounding the two distributions. Various mathematical properties of the
proposed model are investigated, including explicit expressions for the ordinary and incomplete
moments, generating function, mean deviations, two types of entropies and order statistics. We

discuss estimation of the model parameters by maximum likelihood and provide an application
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to a real data set. We hope that the proposed distribution will serve as an alternative model to

other distributions for modeling positive real data in many areas.

Keywords: Generalized Poisson distribution; Information matrix; Maximum likelihood; Weibull

distribution.

3.1 Introduction

Many distributions lack biological motivation for modeling lifetime data such as cancer recur-
rence times. Adding new parameters to classical distributions in order to obtain more flexibility
has been investigated by several authors in the last twenty years or so.

Let Y1,...,Yz be a random sample of unknown size Z from a distribution with survival
function G(t), t > 0. In realibility analysis, each of the Y;’s denotes the lifetime of a subject
(component). For a parallel system, we observe max{Y1,...,Yz}, whereas for a series system,
we observe min{Yy,...,Yz}. In reliability and survival analysis, it is almost impossible to have
a fixed sample size because of missing observations. In such cases, the sample size should be
considered a random variable.

In this paper, we assume that Z has the generalized Poisson (GP) distribution which is an
extension of the Poisson distribution with one additional parameter «. Various distributions
for Z have been proposed in the literature. Cheng et al. (2003), Cooner (2007), Kus (2007)
and Karlis (2009) considered the Poisson distribution for Z. Morais and Barreto-Souza (2011)
took the power series distribution for Z, which is a more general discrete distribution. We aim
to generalize (Gupta et al. 2013)’s results who proposed the exponential generalized Poisson
(EGP) distribution. We compare this distribution with our model in terms of model fitting.

So, we introduce a new four-parameter lifetime distribution with strong biological motivation.
As an example, consider that the unknown number, say Z, of carcinogenic cells for an individual
left active after an initial treatment follows the GP distribution and let Y; (for i > 1) be the
time spent for the ith carcinogenic cell to produce a detectable cancer mass. If {Y;},., is a
sequence of independent and identically distributed (iid) random variables independen_t of Z
having the Weibull distribution, then the random variable X=min{Y7,...,Yz} denoting the
cancer recurrence time can be modeled by the Weibull generalized Poisson (WGP) distribution.

The rest of the paper is organized as follows. In Section 3.2, we define the new distribution
and some special cases. We demonstrate that the WGP density function is a linear combination
of Weibull densities and provide explicit expressions for the quantile function, ordinary and
incomplete moments, moment generating function (mgf), mean deviations, Shannon entropy,
Rényi entropy, reliability and moments of order statistics in Sections 3.3 to 3.6. The estimation
of the model parameters using maximum likelihood is discussed in Section 3.7. An application
to a real data set is performed in Section 3.8. Finally, some conclusions are addressed in Section
3.9.
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3.2 The WGP distribution

Let Y1,...,Yz be a random sample from the Weibull distribution with probability density
function (pdf) and survival function given by g(y;a,b) = aby® ! exp(—by?) (for y,a,b > 0)
and G(y;a,b) = exp(—by?), respectively. Let Z be a random variable having a zero-truncated

generalized Poisson (ZTGP) distribution with probability mass function (pmf)

A+ az)FlemA72
(1—eMl(z+1)
where z € {1,2,...}, A > 0, max(—1,—-A/m) < a < 1, m > 4 is the largest positive integer

P(z; N\ a) =

for which A + ma > 0 when a < 0 and T'(-) is the gamma function, see Consul and Jain
(1973). The ZTGP distribution reduces to the zero-truncated Poisson when o = 0. We assume
that the random variables Z and the Y;’s are independent. Let X =min(Y7,...,Yz). Then,
g(y|z;a,b) = abzy* ! exp(—bzy?) is the conditional WGP density function.

[1] expressed the mgf Mz(t) of the GP distribution in terms of the Lambert W function as

My(t) = exp {2 [W (—ae™t) + a } :

where « # 0 and W (z) is the Lambert W function defined by

W (z)eV @ = g, (3.1)

for > —e~!. For —e™! < < 0, there are two possible values of W (z). We denote the branch
satisfying —1 < W(z) by Wy(z) and the branch satisfying W(z) < —1 by W_;(x). Wpy(z) is
referred to as the principal branch of the Lambert W function. Here, we denote Wy(x) as W (x).
The history of this function goes back to J. H. Lambert (1728-1777).

The Lambert W function admits the power series

& (_1)n71nn72

W(z) = Z ECESE z". (3.2)

n=1
Another elementary property of the Lambert W function is provided by its derivative. After
some algebra, we obtain the following formula for the derivative of W
W (x) 1 :
W' (x) = = , ifz #£ 0.
@) = W@ T w@lesw@ 7

Other Lambert W properties have been studied by Corless et al. (1996).
Gupta et al. (2013) derived the mgt M} (t) of the ZT'GP distribution as

M.(t) — P(Z = 0)

Mz(t) = 1—P(Z=0)
_exp{—2 [W(—ae™*™) +a]} —e?
B 1—e? '

Thus, the unconditional WGP survival function reduces to
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oo

S(x;0) = > [PY >a|Z=2)P(Z = 2)

z=1
= > (€")P(Z = 2) = My (~ba")
z=1
exp {—g [W(—ae ") +a]} —e?

1—e A ’
where 0 = (a,b,\,a), © >0, a,b >0, A >0 and 0 < a < 1. We can verify that the expression

—dS(z)/dx becomes a proper density function when has a normalizing constant given by

et — 1

67§W(fae_a) _ 1'

C =

Thus, the corresponding density function of X reduces to

f:0) = Aabzt! exp{—(%_—l—il)i/j/ﬁg—oz—ba:“}7 (3.3)

[+ W ()] [emaW o™ —1]
where 1(z) = —ae™ %" We can verify using the Mathematica software that IS f(a;0)de =1,
i.e., f(x;0) is a proper density function with support R™. Hereafter, a random variable X with
pdf (3.3) is denoted by X ~ WGP (a,b,\,a). To the best of our knowledge the density (3.3)

is a new result.

The cumulative distribution function (cdf), obtained from the normalized survival function,

and the hazard rate function (hrf) of X are given by

e_%W(_O‘e a) — e_%[W(w)}
F(z;0) = EpYa—— (3.4)
e o 1
and
Wz 0) Aabztexp {-2 W () —a — bz}
Z; = by 9
1+ W) =" —1]
respectively.

We are motivated to study the WGP distribution because of the importance of the Weibull
distribution and the fact that the current generalization provides means of its continuous ex-
tension to still more complex situations. A second positive point of the current generalization
is that the Weibull distribution is a basic exemplar of the new distribution when « and X tend
to zero.

The exponential generalized Poisson (EGP) distribution is obtained from (3.3) when a = 1.
In addition, for o — 0, we have the exponential Poisson (EP) distribution, and letting A — 07,
we obtain the exponential distribution. On the other hand, if @ = 2, the Rayleigh generalized
Poisson (RGP) distribution arises as a special case. Further, for a — 0, we have the Rayleigh
Poisson (RP) distribution, and adding A — 0%, we obtain the Rayleigh distribution. The
Weibull Poisson (WP) distribution comes as the limiting distribution of the WGP distribution
when o — 0%, In addition, if A — 0%, we obtain the Weibull (W) distribution.
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Figure 3.1: Relationships of the WGP sub-models.

3.3 Properties of the new distribution

3.3.1 A useful representation

Henceforth, we use an equation by (Gradshteyn and Ryzhik 2000) for a power series raised

to a positive integer n

<Zai u2> = Zcm u’, (3.5)

1=0 =0

where the coefficients ¢, ; (for i = 1,2,...) are determined from the recurrence equation

Cnyi = (i ao)il Z [m(n+1) =il amcpi—m, i>1 (3.6)

m=1

and ¢, 0 = ag.

We can derive a useful expansion for the WGP survival function given by

S(x;0) = Z wii G(z;a,bg ), (3.7)
k,i=0

where by ; = (k+i+1)b > 0 and
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Figure 3.2: Plots of the WGP density function for: (a) a = 0.5, b =05 and A =1, (b) a = 2, b = 1 and
a=06,(c)b=1,A=2and a=0.6, (d) a=1.5, A =2 and a = 0.6.

(_1)i AR+L o At e—a(k+i+1)
Whi = K (k+ 1)
The algebraic details that lead to (3.7) and the quantities K and dj41; are given in Appendix
29

Equation (3.7) reveals that the WGP survival function is a linear combination of Weibull
survival functions. Clearly,

F(2;0) = ) whi G(x;0,bpy). (3.8)
=0

The corresponding expansion for the WGP density function becomes
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£(0:0) =~ - S gl ). 3.9)

k,i=0
Equation (3.9) gives the WGP density function as a linear combination of Weibull density

functions. It is the main result of this section. Thus, some mathematical properties of the WGP
distribution can be derived directly from those Weibull properties.
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3.3.2 Moments

The nth moment of a Weibull random variable Zj,; with scale a and shape by ; is E(Z},) =
b,:?/a I'(n/a+ 1). From equation (3.9), we obtain

o
n —n/
= B(X) =T (2 41) ,; jo wri by,
y0=

The central moments (u,) and cumulants (k,) of X can be determined as

n n—1
S 1 T Dl (i L
s=1

respectively, where k1 = p). Then, ko = ph — p?, k3 = py — 3pbul + 203, ko = ply — 4pl) —
3u 4+ 12ph 2 — 6uft, etc. The skewness v = Hg/ﬁg/Q and kurtosis o = k4/k3 can be obtained
from the second, third and fourth cumulants. Plots of the skewness and kurtosis of the WGP
distribution for some choices of a, b and « as function of A are displayed in Figure 3.4. We take
a=2,b=1and a = 1.5, b= 2 for the plots of the skewness and kurtosis, respectively. These
plots reveal that the shapes of the proposed distribution have strong dependence on the values
of o and A.

100
1

— a=0.25
== a=05

a=0.7
- -=- a=0.9

80

Skewness
Kurtosis

Figure 3.4: Skewness and kurtosis measures of the WGP distribution for some parameter values.

For empirical purposes, the shape of many distributions can be usefully described by what we
call the incomplete moments. These moments play an important role for measuring inequality,
for example, income quantiles and Lorenz and Bonferroni curves. The incomplete moments of X
can be expressed in terms of the incomplete moments of the Weibull distribution from equation
(3.9). We can write

o0
Y
mp(y) = EX"X <y) = Z Wk’i/o a"aby; 2 e ki 2%
k,i=0

20



Using the power series for the exponential function and, after some simplification, we have

Ma(y) = Y Oy IO, (3.10)
k,i,j=0

where
) (1) awgi by
S e+ D) gt
The symbolic computational plataforms Maple, Mathematica and Matlab make it possible

to automate the formulae derived in this paper since they have currently the ability to deal
with analytic recurrence equations and sums of formidable size and complexity. In practical
terms, we can substitute co in the sums by a large number such as 30 or 50 for most practical
applications. Establishing scripts for the closed-form expressions given throughout the paper
can be more accurate computationally than other integral representations which can be prone

to rounding off errors among others.

3.3.3 Quantile function
The quantile function of X, say Q(u; A\, a, a,b) = F~1(u; \, o, a, b), follows by inverting (3.4)

as

1/a

Qu) = {—‘;‘ - %log [—; ! {—%log 1+ K(1— u)]}] }

The Lambert W (x) function is defined as the inverse function of y exp(y) = z and the solution
is given by y = W(z). Then, we can define the inverse function W~1(y) = z = yexp(y).

We can rewrite the quantile function as

Q) = {—2 {log<—]f>+a+M]}l/a, (3.11)

where

M = —%bg[l + K(1— ).
Quantiles of interest for X can be obtained from the last equation by substituting appropriate
values for u. In particular, the median of X comes when u = 0.5.
3.3.4 Generating Function

We provide two representations for the mgf of X, say M(t) = E(e'X). The algebraic de-
velopments follow closely the works by (Cheng et al. 2003), (Nadarajah and Gupta 2007) and
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(Cordeiro et al. 2010). We can write M (¢) from (3.9) as

M(t)=a > wk;bri Li(t), (3.12)
k,i=0

where

Li(t) = / 21 exp[t x — by,; 2%)dx,
0

and wy; and by ; are defined in Section 3.1.
A first representation for M (t) is based on the Wright generalized hypergeometric function
(Wright 1935) defined by

P
H (aj + Ajn)

:CTL

nl’

S Rrrii el

q
H (Bj + Bjn)
The Wright function exists if 1+ 3°9_) B; —37_; A; > 0. We have
S L&) m
Li(t) = L mta—1 oyny (—by; %) d = i r(f 1)
o(0) mzzoml/ox exp (s} o = g 30 SCHED (4
1 (l,a_l) t
= v 5 — 1
abk’il 0 _ 7b]gi] (3 3)

provided that a > 1. Combining (3.12) and (3.13), the mgf of X (for a > 1) reduces to

> 1,a7 ! t
Mt)zzwk,u% (1, );b“
k,i=0 - ki
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A second representation for M (t) follows from the Meijer G-function defined by

m n
H b+t H 1—a]—t
G;’:‘;]"<a: :q

al, ey CLp o 1 ,7:
bi, ..., b 2w P
where ¢ = \/—1 is the complex unit and L denotes an integration path (Gradshteyn and Ryzhik

H (a; +1) H 1—b—t)

:TL

2000, Section 9.3). The Meijer G-function contains many integrals with elementary and special
functions. Some of these integrals are given by (Prudnikov et al. 1986).

For an arbitrary g(-) function, we can write
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and then

Lk(t) = / el ZCa_l G(l):(l] <bk7i$a ; ) dx.
0

We assume that a = p/q, where p > 1 and ¢ > 1 are co-prime integers. Using equation (2.24.1.1)
n (Prudnikov et al. 1986), we have (for ¢t < 0)

(27r)(p+q)/2—1 q,p (_t)pqq

Using (3.12) and the last equation, we obtain (for ¢ < 0)

1/2 - bl a)d
_ap 2 (-t o [ ()
M(t) = (2 )(p+q)/2 1 Z Wh,i bhi G‘LP (—t)pqq
Here, the condition a = p/q in the last equation is not very restrictive since every real number
can be approximated by a rational number. For irrational @, an approximation of vanishingly

small error can be made using increasingly accurate rational approximations of a.

3.3.5 Mean deviations

The mean deviations about the mean (6;(X) = E(]X —p])) and about the median (d2(X) =
E(|X — M]|)) of X can be expressed as

01(X) =2p1 F (uy) —2ma (py)  and  62(X) = i — 2ma (M),

respectively, where pf = E(X), M = Median(X) is the median computed from (3.11) with
u = 1/2, F(u}) is easily calculated from the cdf (3.4) and my(z) = [*__ xf(z)dz is the first
incomplete moment given by (3.10) with n = 1.

The Lorenz and Bonferroni curves are important applications of the mean deviations in fields
like economics, reliability, demography insurance and medicine. They are defined for a given
probability m by B(m) = m1(q)/(mu}) and L(7) = mq(q)/u} respectively, where pf = E(X) and
g = Q(m) is given by (3.11). The Bonferroni and Lorenz curves for the WGP distribution as
functions of 7 are readily calculated from (3.10) for n = 1. They are plotted for some parameter

values in Figure 3.5.

3.4 Entropies

An entropy is a measure of variation or uncertainty of a random variable X. Two popular
entropy measures are the Rényi and Shannon entropies (Rényi 1961) and (Shannon 1951). The
Rényi entropy of a random variable with pdf f(-) is defined by (for 6 > 0 and ¢ # 1)

5 log </0<>0 f‘s(m)dw)

23
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Figure 3.5: Plots of B(w) and L(m) versus 7 for the WGP distribution. Here, b = 3, a = 0.5
and A =2 for B(m) and b=1, a = 0.5 and A = 1.5 for L(~).

The Shannon entropy of a random variable X is defined by E{—log[f(X)]}. It is the particular
case of the Rényi entropy when § goes to one.

Here, we derive explicit expressions for the Rényi and Shannon entropies for the WGP

d:c},

1
) and the quantity K is defined in Appendix ??. Using the expansion in

distribution. From equation (3.3), we write

o) = e{ [

Aabe @
K

[, 8(a—1) g—dba® e—5(§+1)ww)
[1+W(y)P

where L = (

Taylor series for the exponential function, we obtain

1 X (1) IR (N + a)
Ir(6) = 1 LY :
o) 1-0 Og{/o = ad jlt!

x W) [1+W()]™° xa<5+t>-5dx}. (3.14)

Now, we use the expansion

wra = (F)era,

n=0
where £ is any real number, |z| < a and (_nk) is an extended binomial coefficient (for any real

value of k and positive integer n), given by

o4



()= (270

Since |W(¢)] < 1, equation (3.14) reduces to

1 ]+t5]+tbt Ao
() = 1— log{/ LZ ( Y

pr ltl
Js

% ZW )" a(d+t)— 5da:},

Using equations (3.2), (3.5) and (3.6), we obtain

1 X0 (1) ITEE A+ ) (70) dusj
Ir(0) = 1—5log{L ZO ad jit!
7,tn,i=

/oo 1/}j+n+i xa(6+t)6dx},
0

where the constant dy,4;; is defined by dptj; = (igo)™" Z:nzl[m(n + 7+ 1) — i gmdntji-m,
with ¢ = (=1) (i + 1)1 /i! (for i > 0) and dpj0 = ¢

Replacing the expression of ¢ and integrating, the Rényi entropy reduces to

1 _ t+0)—0+1\ —
Ir(6) = 1_510g{a 1I‘(a( ) Z gjtm},fora>1,

7,t,m,1=0

where o ' '
(= 1)t LIt ot (A 4 @) (70) die

1+a(t+38)—9

e ti+) jIt1[b(j +n +i)] e

The Shannon entropy can be obtained by limiting ¢ 1 1 in the last equation. However, it is

fj,t,n,i =

easier to derive an expression for Ig(d) from its definition. We have

E{—log[f(X)]} = a+log(K)—1log(Aab)— (a—1)E{log(X)}+bE(X?)
+ <2 + 1> E[W ()] + E{log[1 + W ()]}, (3.15)

where the quantity K is defined in Appendix A. Here, and for the rest of the section, ¥ = ¢(X).
The four expectations in (3.15) can be easily evaluated numerically. Using (3.9), they can also

be determined as

E{log(X)} = Z Wi log(x) g(x; a, by ;)dz
k,i=0 0
= — Z a~ ! Wk i [’Y + log(bm)],
k,i=0

5%)



where v ~ 0.577216 is the Euler’s constant. Further,

o

B(X%) = Y o

bri
Ji—

Using the power series expansion (3.2) for the Lambert W function, we have

E{WW)} = D wei [ W) g(w;a,be)de

B Z i a"n 2wy (k+i+1)e
N —  (k+i+n+1)(n—1)

and
E{log[l+ W)} = Z Wh,i /OO log[1 + W (¥)] g(z; a, by, ;) dz.
k,i=0 0

Using the power series expansion for the logarithm (since |W(v)| < 1), the power series (3.2)
for the Lambert W function and equations (3.5) and (3.6), the last equation reduces to

D (k+i4+ D) wgidn, o e—a(r+n)
nk+i+r+n+1)

Bllogh + W)y = > SO

kyi,;r=0n=1

)

where d,, , is defined before for » > 0 and r = 0.

3.5 Reliability

We derive the reliability, R = Pr(Xs < X;), when X; ~ WGP(A\,a1,a,b) and Xy ~
WGP (A2, a9,a,b) are independent random variables. Probabilities of this form have many
applications especially in engineering concepts. Let f; and F; denote the pdf and cdf of X,

respectively. Based on the representations (3.8) and (3.9), we can write

0 00
R = Z / Wr,s Wy,v g(IE; a, br,s) G(SE, a, bu,v) dx (316)
7,8,u,v=0 0
where
(_1)5 )\g-&-l dr—l—l,s Off efal(r+s+1)
w. =
e K (7’ + 1)'
and
(_1)11 )\12L+1 du+l,v 0/2] e—ag(u+v+1)
Wy, v

v Ko (u+1)!

o6



A2 —a
22— 2
Here, K1 =¢ o —land Ko =e @2 (—aze™2)

in Appendix A and d,41 is defined in Section 3.4.

2L (—ae 1) —1, dyy1,5 and dy41,, ave defined

Using equation (3.21) and after some algebra, we obtain

Ty s wyp (u+ v+ 1) T(1+ )
Z Z Jl(r+s+1) )

r,s,u,v=0 j=1

3.6 Order statistics

Order statistics make their appearance in many areas of statistical theory and practice.
Moments of order statistics play an important role in quality control and reliability, where some
predictors are often based on moments of the order statistics. We derive an explicit expression
for the density function of the ith order statistic Xj.,, say fin(z) (see Appendix B). Suppose
X1, Xo,...,X, is a random sample from the WGP distribution. Let Xj.,, denote the ith order
statistic. From equations (3.3) and (3.4), the pdf of X;., can be expressed as an infinite linear

combination of Weibull density functions

—i ji— 00
fzn - Z Z Z Yiin ]’S t v, m T) g(x;aabt,v,m,r>7 (317)
j=0 s=0 t,v,m,r=

where b ymr =b(t +v+m+r+1) and

(=) (m +r 4+ 1) (As)t a? (K + 1)77 71 dy
(t+v+m+r+ 1) Kit=1B(i,n—i+1)

» <n ; ) <j o 1) W ae ) awin)
i S

Equation (3.17) reveals that the pdf of X, can be represented as a finite mixture of WGP

’Yi:n(j)svt)rl))m)r) =

density functions. So, some mathematical properties for X;.,, can be obtained from this equation.
For example, the pth moment of the ith WGP order statistic in a sample of size n comes
from (3.17) as

i 00
B(XP =T (13 + 1) ST pinls tiv,m,r), (3.18)

where

(_1)j+s+v(m +7r+ 1) ()\S)t o b—P/ll (K + 1)j+i—1
#H Ki+i—1 B(i,n — 17+ 1) (t_|_v +m4r+ 1)1+p/a

dt, Wi s (n - z> (j +i— 1) {2 W (ae)—ain}
J

S

Pi:n(j757tav7m7T) =

X
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Alternatively, we obtain another explicit expression for these moments using a result due to
(Barakat and Abdelkader 2004) applied to the i.i.d. case

n

ety =p 3 ot (20 (M) ), (319

n—1
j=n—i+1 J

where

L) = [ 1= P do

From equations (3.2), (3.4), (3.5), (3.6) and (3.21) this integral can be reduced to
Ij(p) = K™’ Zhj,s / PP W (Y) o de,
s=0 0

where the quantity K is defined in Appendix A and the constant hj is defined by hjs =
— . _1)s+1 )\5+1 .
(se) P Y0 [t +1) —slechjs—i, es = (a*l:)lw (for s > 0) and hjo = €.

Using equations (3.2), (3.5) and (3.6) and after some algebra, we obtain

oo 00
Ij (p) — K*j Z hj,s dj-l—s,t (_1)j+s+t aj+s+t efoz(j+s+t) / l,pfl efb(j+s+t)acadw7
s,t=0 0

where the constant dj s, is defined by djys¢ = (¢ qo)_l z%zl[m(j +54+1) —t] gm djts,t—m, With
g = (=1t (¢t + 1)1/t (for ¢ > 0) and djps0 = @ *°.

Simple integration yields

(_1)j+s+t hj,s dj+s,t aJtstt g—ali+s+t)
[b(j + s+ t)]p/e

L) —a Kr(2) Y

s,t=0

From equation (3.19), we obtain

n oo .
, S 1
E(szn) _ pa_l K—J F(B) Z Z (_1)y—n+z—1 <] ) <n>
a j=n—i+1s,t=0 n—1 J
(_1>j+s+t hjs djy st oIttt gmalits+t)

8 b0 + 5+ £)]/

(3.20)

We can compute the moments of the WGP order statistics by two different formulas. Equa-
tion (3.18) involves four infinite sums and two finite sums, whereas equation (3.20) is much
simpler since it involves only two infinite sums and one finite sum.

3.7 Maximum likelihood estimation

We determine the maximum likelihood estimates (MLEs) of the parameters of the WGP

distribution from complete samples only. Let zi,...,x, be a observed sample of size n from

28



the WGP(a,b, \, a) distribution. The log-likelihood function for the vector of parameters 6 =

(a,b,\, )T can be expressed as

(0) = n[-A—a+log(N)]=b> 2f+(a—1)) log(z)
=1 =1

_ <2+1> Zw(wi) —Zlog[1+W(¢i)],
=1 =1

oy a—a—bx? _Adab(er=1)(1—eM)"1
where 9; = —ae and N = foxp{— S (—ae—)}=1]" The components of the score vector

U(0) are given by

Ua(8) = =+ log(a) +bY_ nlas) [p(x) - 1],
=1 =1

UN0) = T+ alleten) 1],
=1
., A = a—1) < . a+ A 1
vl = QEWW“”( )zzl w0 | )

i=1

where e(z;) = %, n(zi) = x7 log(z;) and

p(x:) = [% + (1 + 2) a(xi)] .

For interval estimation and hypothesis tests on the model parameters, we require the 4 x 4
observed information matrix J = J(0) given in the Appendix C. Under conditions that are
fulfilled for parameters in the interior of the parameter space but not on the boundary, the
asymptotic distribution of \/ﬁ(a — 0) is N4(0,1(0)71), where 1(0) is the expected information
matrix. We can replace I(6) by the observed information matrix evaluated at 0, say J(a), to
construct approximate confidence intervals for the parameters based on the multivariate normal
N4(0,J(8)™1) distribution.

Further, the likelihood ratio (LR) statistic can be adopted for comparing this distribution
with some of its sub-models. We can compute the maximum values of the unrestricted and
restricted log-likelihoods to construct LR statistics for testing some sub-models of the WGP
distribution. For example, the test of Hy : a = 1 versus Hy : Hg is not true is equivalent to
compare the WGP and EGP distributions and the LR statistic becomes

w=2{l(a,b,\,&) — £(1,b,\, &)},

where a, 13, A and @ are the MLEs under H; and g, X and @ are the estimates under Hy.
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3.8 Application

Here, we present an application of the WGP model to the data obtained from (Proschan
1963). The data set denotes the number of successive failures for the air conditioning system of
each member in a fleet of 7 Boeing 720 airplanes. The 125 observations refer to aircraft numbers
7910, 7911, 7912, 7913, 7914, 7915 and 7916. We present the fits of the WGP, EP, EGP, EW
and BW distributions. The BW distribution has pdf given by

f(z;a,b,a,)\) = [@X/B(a,b)] 2>t exp(—ba z™)[1 — exp(—az)]* L,

for x > 0. The EW model follows if a = 1.

Table 3.1 gives the MLEs and corresponding standard errors (SEs), the values of the Crameér-
von Mises (CM) and Anderson-Darling (AD) statistics for the current data. In general, the
smaller the values of these statistics, the better the fit to the data. To obtain the statistics,
one can proceed as follows: (1) compute v; = F(xl,g) and y; = ® !(v;), where the z/s are
in ascending order, f is an estimate of 0, ®(-) is the standard normal cumulative function and
®~1() denotes its inverse; (2) compute u; = ®[(y; —¥)/sy], where 7 is the sample mean of y; and
sy is the sample standard deviation; (3) compute CM* = > [u; — (2i—1)/2n]?*+1/(12n) and
AD* = —n—(1/n) X" 1 [(29—1) log(u;)+(2 n+1—21) log(1—w;)], and then CM = (140.5/n)CM*
and AD = (1 +0.75/n + 2.25/n%)AD*.

Table 3.1: MLEs, the corresponding SEs (given in parentheses), maximized log-likelihoods,

statistics W* and A* for the numbers of successive failures.

Distribution a b A Q W A
EP - 0.0085 1.0371 - 0.0718  0.4592
- (0.0015)  (0.5792) -
EGP - 0.0072 0.6213 0.4231 0.0497  0.3282
- (0.0019) (1.2792) (0.3286)
WGP 1.3744 0.0006 1.2021 0.8853 | 0.0295 0.2084
(0.1675)  (0.0006) (0.0159) (0.1095)
Distribution a b c A
EW 0.5618 2.3252 0.0338 0.0415  0.2970
(0.1642)  (1.4154) (0.0307)
BW 4.2708 3.4124 0.3932 0.0123 0.0370  0.2805
(3.0016) (3.3254) (0.1266) (0.0379)

The figures in Table 3.1 indicate that the fitted WGP distribution to these data is superior
than the other fitted models. Further, the QQ-plots of the data for the fitted models are displayed
in Figure 3.6. They reveal that the WGP model provides the better fit to these data.
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Figure 3.6: QQ-plots to the number of successive failures.

3.9 Concluding remarks

The Weibull distribution is commonly used to model the lifetime of a system. However, it
does not exhibit a bathtub-shaped failure rate function and thus it can not be used to model
the complete lifetime of a system. We define a new lifetime model, called the Weibull gener-
alized Poisson (WGP) distribution, which extends the exponential generalized Poisson (EGP)
distribution proposed by (Gupta et al. 2013), whose failure rate function can be increasing,
decreasing and upside-down bathtub. The WGP density function can be expressed as a linear
combination of Weibull densities, which allows to obtain several of its structural properties.
We provide a mathematical treatment of the distribution including explicit expressions for the
density function, generating function, ordinary and incomplete moments, Rényi and Shannon en-
tropies, reliability, order statistics and their moments. The parameter estimation is approached

by maximum likelihood and the observed information matrix is derived. The usefulness of the
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new model is illustrated in an application to real data using formal goodness-of-fit tests. By
means of a real data application, we show that the proposed distribution is a very competitive
model to the exponentiated Weibull and beta Weibull distributions.

Appendix A - The WGP survival function

After some algebra, from equation (3.4) , we can write

S@:0) = —{1—eo (- [Cww)])}
where K = e-aW(-ae™®) _ 1,

Using the power series expansion

(3.21)

we obtain

1 x (—1)k+1)\kW(’¢)k

K ok k!
k=1

S(z;0) =

Based on the power series (3.2), we have

0 ( k+2 )\k

o0 n— nn—2 k
swo) = 3 S E

k=1 n=1

Setting ¢ = n — 1 in the last sum gives

% \E+2y\k o (_1yigi4 -t 1"
swo) = YN wklz( y¢+1) W] |
k=1

K oFk! . il
=0

Applying equations (3.5) and (3.6) in the second sum gives

S(xz;0) = Z wiiG(z;a,b(k + 1)),
k,i=0

where

s — (_1)i+3)\k+1 ot e—o(k+14i) dk—&-l,i
" K (k+1)! ’

with digy1i = (1g0) " by [m(k +2) — il gm diks1i-m, dis10 = ¢4 = 1 and ¢; = (—1)7 (i +
1)i=1/il for i > 0.
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Appendix B - Expansion for the density function of the order

statistic

The density fi.n(x) of the ith order statistic, for ¢ = 1,...n, from iid random variables
X1,...,X; from the WGP distribution is given by

Jin(®) = B D) n—z—i—l nz <n_Z>F(a:)j+i_1.

]=0

Substituting (3.4) in this equation, we can write

(DT K+ ()
fin(@) = B(4, n—z+1 Z_ Kiti-1

< [1-exp {%[W(w) - W(—ae_o‘)]HjH%.

Using the binomial theorem and the power series for the exponential function, we have

j+i— 1 1 j+i—1\ (A3 W (—ae~®
i) = SO I s e
“n B(i,n—i+1) n—z-i— 1) p Kiti—1

s=0

x Z ASﬁww

t' at

Substituting expansion (3.2) and using equations (3.5) and (3.6), we obtain

n—i

jt+i— l _]-‘1-5 (K + l)j—i-z 1 (nj Z) (jJFZ*l) e%W(—ae_a)
Z Ki+i—1

]050

fin(2) B(z n—z—l— 1)

o

> T S a

t=

X

where dio = ¢b, ¢ = (=1)"(v+ 1)1 /vl and diy = (Vo) ™t o0 _ [m(t + 1) — v] g diy—mm (for
v>1).

Substituting equations of ¥ and f(x), the last expression reduces to

(=1)I+sH (As)E fy (K 4 1)1 (n]—z) (j-i—i—l) e W(—ae™®)

t!at Kit =1 B(i,n —i+1)
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where b ymr =b(t +v+m+r+1) and

(=15 (m 4+ r + 1) (As)ta? (K + 1)1 dy y win
(t+v+m—+r+ 1)t Kit =1 B(i,n—i+1)

y (n - Z) (j +i— 1) A2 W(ae ) atvin}
Vi S

7i:n(j7 S, t7 v, m, T) =

Appendix C - Information Matrix

The elements of the observed information matrix J(@) for the model parameters (a,b, A, )

are given by

o = b o)+ S |+ T
e (14 2) Do+ S - )
e = S £ B
" <1+ 04) ;@(m L+ ﬁ%@% ) 1+bvv§<wi>}’
Juw = Joa = _g ggo(xi) + b(o‘a_ 2 V; g fv(vx("zmz {20+ W) -1}
+< oz+)\—|—of7(oz—l)) ”m[dm_”’
Jox=JDa = iiw(wi),
T = +Z[ el (“"”)_1}+(1+2>im[g(%)_l}’

A — a—1) & ¢ e(x;
S =T = =2y Yoty — Y I e

Jan=Jw = a Zﬂfg e(wi),
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Jo—g nA(a+ Cq) Cy Aa+Cq) Cy A(a+ Cy) Cy
CETTNE T a3 (14 Co) [eNV )2 — 1] | a (1 4 Of) e/ @)C2 — 1] a(l+Co)
a+3Cy +2C3 2\
- W}—agi:l[w(%) (a—1)e 221+W
(0 —1)(2e(z:) — 1) A+ a) g~ [0 = D(e(zi) — 1)
% [ W) 1} T Z_Zg(%)[ T W) 1}’
1< (a—1) < n (o + Cy) C:
Jorn=Da = — ZW(%) + 3 3 e(@i) + — 110y [e(i/a)é ]
ACs
% [e()\/a)cz -1 +a_)\02:|’
n nC2 e(M@)Cs

J)\)\ = *F aQ[e(/\/a)CQ — 1}2)

where e(z;) is defined in Section 3.7, §(z;) = ba¢ log(z?) e(z;) and ¢(x;) = x¢ log(x;) ().
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CHAPTER 4

The G-Negative Binomial Family: General Properties and Applications

Resumo

Propomos uma nova classe de distribui¢cGes com dois parametros positivos adicionais. Alguns
casos especiais sao apresentados. Obtivemos algumas propriedades mateméticas desta classe, in-
cluindo expressdes explicitas para a funcao quantil, momentos ordinarios e incompletos, funcao
geradora, desvios médios, dois tipos de entropia, confiabilidade, estatisticas de ordem e seus
momentos. Discutimos estimativa dos pardmetros do modelo por méxima verossimilhanca e

fornecemos uma aplicacdo para um conjunto de dados reais.

Palavras-chave: Distribuicao binomial negativa; desvios médios; estimagao; momentos.
Abstract

We propose a new class of distributions with two extra positive parameters. Some special
cases are presented. We derive some mathematical properties of this class including explicit
expressions for the quantile function, ordinary and incomplete moments, generating function,
mean deviations, two types of entropy, reliability, order statistics and their moments. We discuss
estimation of the model parameters by maximum likelihood and provide an application to a real

data set.

Keywords: Estimation; Mean Deviation; Moment; Negative Binomial Distribution.

4.1 Introduction

Providing a wider family of continuous models is always precious for statisticians. The neg-
ative binomial distribution has been widely used in mixing procedures of distributions. Several
new models have been proposed and applied in survival analysis. Zamani and Ismail [11] in-

troduced the negative binomial-Lindley (NB-L) distribution to model claim counts, one of the
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most important topics in actuarial theory and practice. Hajebi et al. [16] investigated the ex-
ponential negative binomial (ENB) distribution for modeling failure times of a system. Ortega
et al. [7] introduced a regression model to predict cure of prostate cancer based on the negative
binomial-beta Weibull (NBBW) distribution. Rodrigues et al. [5] pionnered a composition of
the truncated negative binomial and Weibull distributions yielding a very popular model to
analyze survival data, the so-called Weibull negative binomial (WNB) distribution.

We propose a general family of continuous distributions called the G-negative binomial (G-
NB) family. It includes as a special case the WNB model. We demonstrate that the G-NB
density family is a linear combination of exponentiated-G (“exp-G” for short) density functions.

Let Wi,..., Wy be a random sample from a random variable having density function g(-),
where Z is an unknown positive integer number. We assume that the random variable Z has
a zero truncated negative binomial (ZTNB) probability mass function (pmf) with parameters
s>0and g € (0,1) given by

s+ z—

P(Z;S,ﬁ)zfé’z( 1)[(1—6)5—1]1, zeN.

Here, Z and W are considered to be independent random variables. Let X =Min(W1,...,Wyz).

Then, the conditional cumulative distribution function (cdf) of X given Z is

F(z|z) 1-P(X >z|z)=1—-P*(W; >x)

— 1-1-PWi<a)f=1-[1-G).

The unconditional cdf of X becomes
> Lfs+z—1 s _ P
P@ = 2o st n e

for £ > 0. Here, s and [ are shape parameters. After some algebra, the cdf of X reduces to

Py e L)

4.1
@-p -1 )
The probability density function (pdf) corresponding to (4.1) is given by
_ Sﬁ o o —s—1
@) = =gy 9le) {1 = A1 = Gy (42

This generalization is obtained by increasing the number of parameters compared to the G
model, this increase being the price to pay for adding more flexibility to the generated distri-
bution. A first positive point of the G-NB model is that it includes the G distribution as a
sub-model when s =1 and 8 — 0. A second one is that it includes as special cases important
lifetime models published in recent years. Hereafter, a random variable X following the family
(4.2) is denoted by X ~ G-NB(t, s, ), where 7 is the parameter vector associated with G. The

survival function and hazard rate function (hrf) of X are given by
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-1 -G@) -

S (e )

and

s Bg(x) {1 = B[L = G(@)]} !
0-80-G@h>-1

respectively. The aim of this paper is to derive some mathematical properties of (4.2) which hold

h(z) = (4.3)

for any baseline continuous G. We obtain explicit expressions for the quantile function, ordinary
and incomplete moments, moment generating function (mgf), mean deviations, Bonferroni and
Lorenz curves, Shannon entropy, Rényi entropy, reliability and moments of the order statistics.

The G-NB family is well-motivated for industrial applications and biological studies. As a
first example, consider that the number, say N, of carcinogenic cells for an individual left active
after the initial treatment follows a ZTNB distribution and let X; be the time spent for the ith
carcinogenic cell to produce a detectable cancer mass, for i« > 1. If {X;},~, is a sequence of
independent and identically distributed (iid) random variables independent_of N following the
G distribution, then the time to relapse of cancer of a susceptible individual can be modeled
by the G-NB family of distributions. Another example considers that the failure of a device
occurs due to the presence of an unknown number N of initial defects of the same kind, which
can be identifiable only after causing failure and are repaired perfectly. Define by X; the time
to the failure of the device due to the ith defect, for i > 1. If we assume that the X;’s are iid
random variables independent of N, which follows a G distribution, then the time to the first
failure is appropriately modeled by the G-NB family. For reliability studies, the random variable
X :1\/Iin{Xi}i]\;1 can be used in serial systems with identical components, which appear in many
industrial applications and biological organisms.

The rest of the paper is organized as follows. In Section 4.2, we define some new distributions
in the G-NB family. A range of mathematical properties of (4.2) is derived in Sections 4.3 to
4.10. The estimation of the model parameters performed by the method of maximum likelihood
is presented in Section 4.11. An application to real data is addressed in Section 4.12. Finally,

some conclusions are addressed in Section 4.13.

4.2 Special G-NB distributions

The G-NB family of density functions (4.2) allows for greater flexibility of its tails and can
be widely applied in many areas of engineering and biology. The new family extends several
widely-known distributions in the literature. So, we present some of its special cases. The
density function (4.2) will be most tractable when the cdf G(x) and the pdf g(z) have simple

analytic expressions.
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4.2.1 Normal-negative binomial (NNB) distribution

The NNB distribution is defined from (4.2) by taking G(x) and g(x) to be the cdf and pdf

of the normal N (u,0?) distribution. Its density function is

—-s _ 11— T — 2
PRI (R s lexp{g( u)}

oV 2w 2 o

R

where x € R, u € R is a location parameter, o > 0 is a scale parameter, s > 0, § € (0,1) and

¢(-) and ®(-) are the pdf and cdf of the standard normal distribution, respectively. A random
variable with density (4.4) is denoted by X ~ NNB(u,02%,5,8). For p = 0 and 0 = 1, we
obtain the standard NNB distribution. Further, this distribution with s = 1 and 8 — 0 tends
to the normal distribution. Plots of the NNB density function for selected parameter values are

displayed in Figure 4.1.

4.2.2 Gumbel-negative binomial (GulNB) distribution

Consider the Gumbel distribution with location parameter i € R and scale parameter o > 0,
where the pdf and cdf (for z € R) are

and

respectively. The mean and variance are equal to p—~o and 7202 /6, respectively, where 7 is the

Euler’s constant (y ~ 0.57722). Inserting these expressions into (4.2) gives the GuNB density

founs(@) = am_%?—s_u exp{(JU;M) ~ exp <x;u)}

o N e ) A

where z,u € R, s,0 > 0 and 8 € (0,1). The Gumbel distribution corresponds to s = 1 and

function

B — 0. Plots of the density function (4.5) for selected parameter values are displayed in Figure
4.2.

4.2.3 Log-normal-negative binomial (LNNB) distribution

Let G(z) be the log-normal distribution with cdf

Gla) =1 - o B TH log(z) + 1)

g
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Figure 4.1: The NNB density function for some parameter values: (a) 4 = 0 and o = 1; (b)
p=0and s=15;(c)c=1and f§=0.5; (d) p=0and g =0.5.

for £ >0, 0 > 0 and p € R. The LNNB density function (for > 0) is given by

fevste) = P o (- [

< {i-afa(te) @

For s =1 and 8 — 0, we obtain the log-normal distribution. Figure 4.3 displays some plots of

the LNNB density function for some parameter values.
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Figure 4.2: The GuNB density function for some parameter values: (a) p = 0 and o = 1; (b)
pu=0and s=15;(c)c=15and §=0.7; (d) p =0and g =0.7.

4.2.4 Gamma-negative binomial (GaNB) distribution

The gamma cumulative distribution (for x > 0) with shape parameter a > 0 and scale
parameter b > 0 is

Gla) = v(a, bx)

R (4.7)

where I'(a) = [;°w* 'e™"dw and y(a,z) = [ w* te™“dw are the gamma and incomplete

gamma functions, respectively. The density function of a random variable X having the GaNB
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distribution can be expressed as

s /B pe xa—l e—bm

foans(z) =

(1-8)°—1]T(a)

{1

_B[l_v(a,bx

I'(a)

Some plots of the GaNB density function are displayed in Figure 4.4.
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Figure 4.4: The GaNB density function for some parameter values: (a) a = 1.5 and b = 1; (b)
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4.2.5 Log-logistic negative binomial (LLNB) distribution

The pdf and cdf of the log-logistic (LL) distribution are (for x, «,v > 0)

g(x) = %aﬂ_l [1 + (g)q _Qand Gz)=1- [1 + (2)7}—1.

Inserting these expressions into (4.2) gives the LLNB density function (for > 0)
e G e (O
- 1+ (2 181+ (2 .
Feens®) = gyt a G

I6)
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Figure 4.5: The LLNB density function for some parameter values: (a) o = 1 and v = 1.5; (b)
a=15and s=1.5; (c)a=1and 8=0.5; (d) y =2 and 8 =0.7.

The LL distribution is obtained for s = 1 and 8 — 0. Plots of the LLNB density function for
selected parameter values are displayed in Figure 4.5.
4.3 Useful representations

Some useful expansions for (4.1) and (4.2) can be derived using the concept of exponentiated
distributions. For an arbitrary baseline cdf G(x), a random variable is said to have the exp-G

distribution with parameter j > 0, say Y; ~ exp-G(j + 1), if its pdf and cdf are
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hin(y) = (G +1) G(y) g(y) (4.9)

and

Hji(y) = G(y)'*, (4.10)

respectively. The properties of exponentiated distributions have been studied by several authors
in recent years. See Mudholkar and Srivastava (1993) for exponentiated Weibull, Gupta and
Kundu (1999) for exponentiated exponential, Nadarajah and Kotz (2006) for exponentiated
Fréchet and Nadarajah and Gupta (2007) for exponentiated gamma distributions.

For any real a and |z] < 1, we have the power series

Dﬁg

(1—2)" (4.11)

k:()

where (a)o =1 and (a)y =ala+1)(a+2)...(a+k—1) =T(a+ k)/I'(a) is the Pochhammer
symbol. Using expansion (4.11), we can write (4.2) as

fz) = 3+1

I I e— T k. .
e - G(a) (412)

OM8

Expanding the binomial term in Equation (4.2), we can express f(z) as

) =Y wjhjn(e), (4.13)
=0

where hji1(x) denotes the exp-G(j + 1) density function and

' (—1)7 . (s+ 1), BF [k
YT G- B Z k-' (a)

=j
We can verify that » 22 w; = 1. By integrating (4.13), we can express F'(z) as

) =Y wiHj (), (4.14)
j=0

where Hjy1(x) denotes the exp-G(j + 1) cumulative distribution. So, several mathematical
properties of the G-NB family can be obtained by knowing those of the exp-G distribution, see,
for example, Mudholkar et al. [9], Nadarajah and Kotz [17], among others.
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4.4 Quantile function

Inverting F'(z) = w in (4.1), the quantile function of X, say Q(u), for 0 < u < 1, follows as

i

- G_l{l—; [1—(1—5)(1—u[1—(1—5)8])—1”. (4.15)

Using Equation (4.11) in the last equality, we obtain

0 =

Q) = 6 {1- [l (- A - 1)

T B B I Y A AN R N
Q) = ¢ {1 5|t m”(s)j jl
_ 21\ W[l —(1-p))
. G1{< Z() 4oy
= Gg! _1)Ooa]u]

where ag = 0 and a; = (%)j [1_(1]7_,5)513, j>1

Quantiles of interest can be obtained from (4.15) by substituting appropriate values for u.
In particular, the median of X comes when u = 0.5.

The motivation for using quantile-based measures is because of the non-existence of classical
kurtosis for many generalized distributions. The Bowley’s skewness is based on quartiles (Kenney

and Keeping, 1962):

5 QB/Y 2001/ + QY
Q(3/4) — Q(1/4)

and the Moors’ kurtosis (Moors, 1984) is based on octiles:

1 = QU7/8) —Q(5/8) — Q(3/8) + Q(1/8)
Q(6/8) — Q(2/8)
Plots of the skewness and kurtosis for the GulNB distribution, for some choices of 3, ¢ and
w as function of s, and for some choices of s, o and p as function of 5 are displayed in Figure
4.6. The plots indicate that there is a great flexibility of the skewness and kurtosis curves of
this distribution.

4.5 Moments

A first formula for the nth moment of X, say p,, = E(X™), can be obtained from (4.13) and
Y; ~ exp-G(j +1) as
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Figure 4.6: Plots of the GuNB skewness and kurtosis as functions of s for selected values of

and as functions of 3 for selected values of s. Here, y =0 and o = 1.

=Y w B(Y]"). (4.16)
j=0

Expressions for moments of several exponentiated distributions are given by Nadarajah and Kotz
[17], which can be used to obtain E(X™).

A second formula for p], can be derived from (4.16) in terms of the baseline quantile function
Qqg(r) = G~1(x). We obtain

[e.o]

§=0
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where 7, ; is given by

oo 1
Tn,j =/ 2" G(x)’ g(z)dx :/0 Qc(w)™ v du. (4.18)

—00

The ordinary moments of several G-NB distributions can be determined directly from equa-
tions (4.17) and (4.18). Here, we give three examples. For the standard logistic-negative binomial
(LoNB) distribution, where G(z) = (1 + e~®)~!, using a result from Prudnikov et al. (1986,
Section 2.6.13, equation 4), we have (for t < 1)

9

o0 a n
NG+ Dw (Z) B +i+1.1—
1, ;(J+ ) wj ((%) (t+j+1,1—1) .

where B(a,b) = fol t2=1 (1 — ¢)>=1dt is the beta function. The moments of the exponential-
negative binomial (ENB) distribution (with parameter A > 0) are

Z"O —1)" (G + 1w <]>
I n' )\n ( J )
o 7,k=0 (k + 1)n+1 k

For the Pareto-negative binomial (ParNB) distribution, where G(z) =1 — (1 4+ z)™%, and con-

sidering v > 1, we obtain

o0
f = j;o(—l)”+k (j+1)w; B, 1 — kv <Z>

For empirical purposes, the shape of many distributions can be usefully described by what

we call the incomplete moments. These types of moments play an important role for measuring

inequality, for example, income quantiles and Lorenz and Bonferroni curves, which depend upon

the incomplete moments of a distribution. The nth incomplete moment of X can be determined

as

00 G
mn(y) = E(X"X <vy) = Z(] +1) wj/ v Qc(u)" v du. (4.19)
=0 0
The last integral can be computed for most baseline G distributions, at least numerically. Equa-
tions (4.16) - (4.19) are the main results of this sectiomn.

The symbolic computational plataforms Maple, Mathematica and Matlab make it possible
to automate the formulae derived in this paper since they have currently the ability to deal
with analytic recurrence equations and sums of formidable size and complexity. In practical
terms, we can substitute co in the sums by a large number such as 20 or 50 for most practical
applications. Establishing scripts for the explicit expressions given throughout the paper can
be more accurate computationally than other integral representations which can be prone to

rounding off errors among others.
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4.6 Generating function

The mgf M(t) = E(e'X) of X follows from (4.13) as

M(t) = (5 +1)w; M(t), (4.20)
5=0

where M;(t) is the mgf of Y;. Hence, M(t) can be immediately determined from the exp-G

generating function. Another formula for M (¢) can be derived from (4.13) as

M(t) =) (G +1)wjp;(t), (4.21)

M

i
o

where p;(t) can be determined from Qg (u) = G™1(u) as

0o 1
pi(t) = / e Q) g(x)de = /0 exp{t Qc(u)} v du. (4.22)

—00

We can obtain the mgf’s of several G-NB distributions directly from equations (4.21) and
(4.22). For example, the mgf’s of the LoNB (for ¢ < 1), ENB (with parameter \)(for ¢t < A71)
and ParNB (with parameter v > 0)(for v > 1) distributions are

Mit)=>» (J+1)w;B(t+j+1,1-1),

j=0
and
e’} . 1
t G+Dw;BG+1L,1-rv) .
J,r=0
respectively.

4.7 Mean deviations

The mean deviations about the mean (61 (X) = E(|X —p}|)) and about the median (§2(X) =
E(|X — M])) of X can be expressed as

01(X) = 2p) F (11) — 2ma (1) and 02(X) = py — 2m1 (M), (4.23)

respectively, where pf = E(X), M = Median(X) is the median computed from (4.15) with
u = 1/2, F(u}) is easily calculated from the cdf (4.1) and my(z) = [ af(x)dz is the first

incomplete moment given by (4.19) with n = 1.
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In this section, we provide two alternative ways to compute d;(X) and d2(X). A general

equation for m1(z) can be derived from (4.13) as

=3 W Ry(2), (4.24)
=0
where

Rj(z) = /z xhjp1(x)de. (4.25)

— 0o
Equation (4.25) is the basic quantity to compute the mean deviations of the exp-G distribution.

Hence, the mean deviations (4.23) depend only on the mean deviations of the exp-G distributions.

So, alternative representations for §;(X) and d2(X) are

[e.o]

61(X) = 2u F (ph) —22%}3 (1)) and 6(X) = —ZZw]
=0
In a similar manner, the mean deviations of any G-NB distribution can be determined from
equation (4.19). Let T(z) = G(Z Q¢ (u) udu. For example, the mean deviations of the LoNB,
ParNB (with irrational v > 0) and ENB (with parameter \) follow, based on the generalized

binomial expansion, from the functions

> F(j+1+k)[1—exp(—kz)]
Z (k+ 1)! ’

P‘] k=0

ne- 53 G (1) ()

k=0 r=0
and

[k] [1 —exp (—kA2)]

f)\lz 1)' ’

respectively, where (1 — j)i = (—=1)*(G —1)(j —2)(j —3)...(j — k) is the descending factorial.

Applications of equations (4.24) and (4.25) can be important to obtain Bonferroni and Lorenz
curves defined for a given probability m by B(w) = my(q)/(mu}) and L(w) = mq(q)/ i} respec-
tively, where p) = E(X) and

q:G‘l{l_;[l—{ﬂ—ﬁ)—S—w (1—5)‘8—1}}i”

is the G-NB quantile function at 7 (see Section 4.4). For example, the Bonferroni and Lorenz
curves for the LLNB distribution (Section 2.5) with parameters o,y > 0 are readily calculated
from B(m) and L(7w). They are plotted for selected parameter values in Figure 4.7.
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Figure 4.7: Plots of B(w) and L(w) versus 7 for the LLNB distribution. Here, 8 = 0.5, v = 3
and o = 2 for B(w) and s =2, f = 0.5 and o = 1.5 for L(m).

4.8 Entropies

An entropy is a measure of variation or uncertainty of a random variable X. Two popular
entropy measures are the Rényi and Shannon entropies (Shannon, 1951; Rényi, 1961). The
Rényi entropy of a random variable with pdf f(-) is defined by (for v > 0 and v # 1)

1 oo
T log (/0 fﬂx)da;).

The Shannon entropy of a random variable X is defined by E{—log[f(X)]}. It is the limit of

the Rényi entropy when v goes to one.

Ir(y) =

Here, we derive closed-form expressions for the Rényi and Shannon entropies when X is a
G-NB random variable. From Equations (4.2) and (4.11), we obtain

Ir(y) = 117{ log(K) + log

/0 gy (1B - G(x)]w(””dx] }
= s+ 1)
/ {g@cﬁZ(—l)( )

k=0

! —G(w)]k}dx] }

where K = (s8)7/[(1 — §)~% — 1]7. By expanding the binomial term, we obtain

1
= 1{ log(K') + log

X
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Ir(y) = 1_17{log(K)+1og (/ [ZZ < ><—v(z+ 1))

k=0 7=0

The above sum converges to  g(x)Y{1—[14+G(z)]3} "¢V, Then, the Rényi entropy reduces
to

In(r) = g7 {loa(s8) ~ logl(1 - 6)~* ~ 1]}

+ oz ! o ( /0 T @) (1—[1 + G) 5}7(S+1)dx>. (4.26)

The last integral depends only on the baseline G distribution.
The Shannon entropy can be obtained by limiting v 1 1 in (4.26). However, it is easier to

derive its expression from the definition. We have

E{-log[f(X)]} = —log(sB)+log[(1—B)"* —1] - E{log[g(X)]}
—E{—log[l — B(1 — G(X))| =T~}

For any real a > 0, the following formula given by (http:// functions.wolfram.com/ Elemen-
taryFunctions/ Log/ 06/ 01/ 04/ 03/) holds

(—log[l — G(x)}o ! = a_1i<k+l—a>zjjk s (4.27)
k=0

where
(=17 pix (k)
Jikla) = —FF——=| .
sk(a) (a—1—-4) \J

and the constants p;; can be calculated recursively by

R m(j +1) — k]
= g 4.2

m=1

for k=1,2,... and pjo = 1.

Then, using expansion (4.27), we obtain

E{-log[f(X)]} = —log(sB)+log[(1—p)~" —1] — E{log[g(X)]}
ook

=D i B[GX)T, (4.29)
k,i=0 j=0
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where

qk,j,i =

(—1)7tk (s 4+ 1) gsthtlp, <k> (k —5— 1)
(s+1—7) J k ’
The two expectations in (4.29) can be easily evaluated numerically for given G(-) and g(-).

Using (4.13), they can also be represented as

S S D@ e
E J+ 1 w / G l+] )d = fG(w)HjJr )
JZ_(:) ’ i+i+1)

and

F {loglg(X)]} = Z]+1% | 1oslata)] Gap gt

respectively. The last equation can also be expressed in terms of the baseline quantile function

E {log[g( Z j+1) w]/ log {9 [Qc(u)]} v/ du.
=0

The last integral can be calculated for most baseline distributions using a power series expansion

for Qa(u).

4.9 Reliability

We derive the reliability, R = Pr(Xs < X;), when X; ~ G1-NB and X9 ~ G2-NB are
independent random variables. Probabilities of this form have many applications especially in
engineering concepts. Let f; and F; denote the pdf and cdf of X;, respectively. By using the

representations (4.13) and (4.14), we can write

R = Z pnm/ Hm+1 n+1 dl’— Z Dnm Rpm, (4'30)

n,m=0 n,m=0
where

(=1)™™ 5159 vy (81, B1) Vm (82, B2)

(n+1)(m+D[(1=B)~" —1][(1 = B2)~ = 1]’
where v;(s;, 3;) (for i = 1,2 and j = n,m) is given by

o0 ghtl (g
visi, Bi) =Y W <k>

k=j J

pnm

and Ry, = Pr(Y,, <Y,) is the reliability between the independent random variables Y;, ~ exp-
G(n+1) and Y, ~ exp-G(m+1). Hence, the reliability of the G-NB random variables is a linear
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combination of those for exp-G random variables. For example, we derive the reliability when
X1 and X5 have independent WNB distributions with the same shape parameter b, namely,
WNB(aq, b, s1, 1) and WNB(ag, b, s2, 82). The reliability obtained from Equation (4.30) is

e}

R = Z (n +1) Pm / g(x;a1,0) G(z;a1,b)" G(x;az,b)™ M dx
n,m=0 0
= Z (n+1) prm / [a1b l’b_le_alxb} 11— e_alxb]" [1— e—azacb]m-I—ldx‘
n,m:O 0

By application of the binomial expansion, we obtain

[e¢) n m+1

= 2SS e van (7) (7))

n,m=0 [=0 k=0

% /OO xb—le—[al(l-‘rl)-i-azk] xbdﬂj. (431)
0

Calculating the last integral, we can write the reliability R = Pr(Xs < X1) as

(o) n m+l
_ ( )k+lba1(n+l>pnm m—l—l
r= Y Sy R e (D) (")
4.10 Order statistics

Order statistics make their appearance in many areas of statistical theory and practice.
Suppose X1, Xo,..., X, is a random sample from the G-NB distribution. Let Xj;., denote the
ith order statistic. From equations (4.13) and (4.14), the pdf of Xj., is

fin(z) = Z ‘ <n - Z> Fla) F(a)y i

(2—1 n—1) j:O

- <—1><>Z<‘ () [ZW* (@ 9@

J

oo jHi—1
w G(:r)kH] .
T

Here, we use an equation by Gradshteyn and Ryzhik (2000, Section 0.314) for a power series

X

raised to a positive integer n

<§: a; uz> = i Cn,i u’, (4.32)
i=0 i=0

where the coefficients ¢, ; (for i = 1,2,...) are easily determined from the recurrence equation

Cnyi = (1 ao)fl m (n+1) — i) am cni—m, (4.33)

m=1
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and ¢,0 = aj. The coefficient ¢, ; can be determined from ¢y, ...,cpi—1 and then from the
quantities ag, . .., a;. In fact, ¢, ; can be given explicitly in terms of the coefficients a}s, although
it is not necessary for programming numerically the expansions in any algebraic or numerical
software.

Using Equations (4.32) and (4.33), we can write

x) Z wi, G(z)k
k=0

jHi—1

[eS)
§ : k+j+i—1

j+Z 1kG ) J )
k=0

k
where yj1i-1,0 = 6+ and vjqi—1k = (kwo) -1 2 m(j+1) — klwn Vjpim1 k—m-
m=1
Hence,
o n—i
fin(@ Z Z Mk j Mk (), (4.34)
r,k=0 j=0
where
e (=174 (r + 1) wr vjgio1k () (n—i
r,k,j (T+k+]—|—l) i ] .

Equation (4.34) reveals that the pdf of the G-NB order statistics is a triple linear combination
of exp-G density functions. So, several mathematical quantities of the G-NB order statistics such
as the ordinary, incomplete and factorial moments, mgf and mean deviations can be obtained
from those quantities of the exp-G distributions. Clearly, the cdf of Xj., can be expressed as

oo n—i

Fin(z) = Z Z Mrk,j Hr+k+j+i($)-

k=0 j=0
For example, from equation (5.27), the moments of the G-NB order statistics can be expressed

directly in terms of the exp-G moments as

0o n—1i

=SS / 2 b i) da. (4.35)

r,k=0 j=0

Using equation (4.35), the moments of the WNB order statistics can be written directly in
terms of the exp-Weibull moments (with parameters r +k+j7+¢>0,a > 0 and b > 0) as

E(X5,) = a~ ZZkaJ (b”), (4.36)

r,k=0 j=0

where

- n n—1
Drkg = (_1)jl(r+1)wr'7j+i—1,k<.>< . )

i J
rk4j4i—1 o

r+k+j+i—1 _

—1)" 1+t

DIV (AR [
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Alternatively, we obtain another expression for these moments using a result due to Barakat
and Abdelkader [12] applied to the independent and identically distributed (i.i.d.) case, subject

to existence,

s =s > o (U (7) ae, (4.37)

t=n—i+1

where I;(s) denotes the integral

o0

L(s) = / 211 — F(2))'da

—00

Using the binomial expansion and interchanging terms, the lest integral becomes

o = 3 (1) [ et

Using Equation (4.32), we obtain

Ii(s) = ; < )/was—licm,jﬂjﬂ(m)dx

= ii: ( )Cm,j/ooows_lG(w)j“dw,

=0 m=0

.

where ¢ 0 =wi' and ¢ = (J wo) ! %:1 n(m+1) = jlwn Cm,j—n-

Inserting the expression for I;(s) in equation (4.37) yields

0 = 3 3 S () ()

t=n—i+1m=0 j=0
S -

X / 251 G(aj)jﬂdaz.
0

The last integral can be computed for most baseline distributions.

4.11 Estimation

We calculate the maximum likelihood estimates (MLEs) of the parameters of the G-NB
distribution from complete samples only. Let x1, ..., z, be a random sample of size n from

the G-NB(s,3,7) distribution, where 7 is a p x 1 vector of unknown parameters in the baseline
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distribution G(z; 7). The log-likelihood function for the vector of parameters 8 = (s, 3,77)T

can be expressed as

10) = nflog(sB) — log[(1 — B) }+Zlog oo T

— (s+1) jgjlog{l- [1— G(zi; 7))} (4.38)

The log-likelihood can be maximized by using well established routines like nlm or optimize
in the R statistical package or by solving the nonlinear likelihood equations obtained by differ-
entiating (4.38). The components of the score vector U (@) are

Uy(0) = 2 4 LB loal] Zlog{l— Bl - G (7]}

S (1-p8)"5—
_n_ s(L=F) ~_ GsT)—1
e B (e (T D Ph e e

g(zi; T /(97] n B[E)G (x4;7) /87']}
z; SCRED DY s ey &

g(@i; T i=1

forj=1,...p.

For interval estimation and hypothesis tests on the model parameters, we require the (p +
2) x (p+2) observed information matrix J = J(0) given in the Appendix. Under conditions that
are fulfilled for parameters in the interior of the parameter space but not on the boundary, the
asymptotic distribution of \/ﬁ(a— 0) is Np42(0,1(0)71), where 1(6) is the expected information
matrix. In practice, we can replace I(0) by the observed information matrix evaluated at 5,
say J (29\) We can construct approximate confidence intervals for the parameters based on the
multivariate normal Np2(0, J(a)_l) distribution.

Further, the likelihood ratio (LR) statistic can be used for comparing this distribution with
some of its sub-models. We can compute the maximum values of the unrestricted and restricted
log-likelihoods to construct LR statistics for testing some sub-models of the G-NB distribution.
For example, the test of Hy : s = landf — 0 versus H; : Hy is not true is equivalent to
compare the G-NB and G distributions and the LR statistic becomes

w = 2{0(+,3,) — £(F,1,0)},

where 7, § and B are the MLEs under H; and 7 and E are the estimates under H.

4.12 Application

In this section, we fit the Fréchet negative binomial (FNB) distribution to a real data set. In

order to estimate the parameters of this special model, we adopt the maximum likelihood method
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(as discussed in Section 11) with all computations performed using the subroutine NLMixed of
the SAS software. The data set obtained from Murthy et al. (2004) consist of the failure times
of 20 mechanical components. The data are: 0.067, 0.068, 0.076, 0.081, 0.084, 0.085, 0.085,
0.086, 0.089, 0.098, 0.098, 0.114, 0.114, 0.115, 0.121, 0.125, 0.131, 0.149, 0.160, 0.485.

We compare the fit of the FNB distribution with three alternative models not belonging to
the G-NB family:

o the beta Fréchet (BF) distribution (see Barreto-Souza et al., 2011) with pdf (for = > 0):

A 0_)\ x—(/\—l-l)

Ay expl=alo /)1 = expl—(o/n) ],

f(x;a,)\,a,b) =

where A > 0,0 > 0,a > 0 and b > 0, and B(a,b) =I'(a)I'(b)/I'(a + b);

o the beta Weibull (BW) distribution (see Famoye et al., 2005) with pdf (for =z > 0):

flaia,y,a,b) = B?Jm 27V exp(~baz")[1 - exp(—az)7,

where a > 0,7 > 0,a > 0 and b > 0; and

e the Marshall-Olkin Weibull (MOW) distribution (see Marshall and Olkin, 1997) with pdf
(for = > 0):
§yaz’ texp(—ax?)

flz;0,7,0) = [1—(1-0)exp(—azx)]?’

where av > 0,7 > 0 and 6 > 0.

Table 4.1: MLEs, the corresponding SEs (given in parentheses), maximized log-likelihoods, CM

and AD statistics and the p-values for the failure time data.

Distribution Estimates £(0) CM  p-Value AD p-Value

FNB(o, A, 8,5)  0.1906, 1.8463, 0.9811, 0.6264  39.25 0.0425 0.6365 0.2723  0.6703
(0.2985, 1.9279, 0.1494, 1.2789)

BF(c, ), a,b) 0.0745, 7.7243, 1.1875, 0.3540  39.20 0.0446  0.5977  0.3233  0.5261
(0.0466, 5.7291, 4.4002, 0.3595)

BW(a,7,a,b)  1.3011, 0.0973, 636.50, 344.03  33.30 0.1761 0.0109 1.2506  0.0030
(0.0454, 0.0152, 340.23, 188.76)

MOW(a, 7, ) 7.0694, 5.0872, 0.0001 36.20 0.0892 0.1577 0.6697  0.0804

(5.9804, 0.9628, 0.0001)

Table 4.1 gives the MLEs and corresponding standard errors (SEs), maximized log-likelihoods,
the values of the Cramér-von Mises (CM) and Anderson-Darling (AD) statistics and the p-values
for the current data. In general, the smaller the values of these statistics, the better the fit to

the data. To obtain the statistics, one can proceed as follows: (1) compute v; = F(z;;6) and
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y; = ®1(v;), where the /s are in ascending order, f is an estimate of 0, ®(-) is the standard
normal cumulative function and ®~1(-) denotes its inverse; (2) compute u; = ®[(y; — 7)/s,],
where g is the sample mean of y; and s, is the sample variance; (3) compute CM* = """ | [u; —
(2i—1)/2n)*+1/(12n) and AD* = —n—(1/n) 30 ,[(23—1) log(u;) + (2n+1—21) log(1 —u;)],
and then CM = (1 + 0.5/n)CM* and AD = (1 + 0.75/n + 2.25/n?)AD*.

Thus, according to these formal tests, the FNB model fits better to these data than the other

models. This evidence can also be noted in Figure 4.8, where we can check that the FNB model
captures the behavior of the data.

— FNB

10 15
0.6 0.8
|

Density

Survivor function
0.4

0.2

0.0

Figure 4.8: Plots of the estimated density (a) and estimated survivor function (b) for the failure
time data.

4.13 Concluding remarks

For the first time, we propose a family of generalized negative binomial (G-NB) distributions.
The G-NB family extends several common distributions such as the normal, Weibull, gamma,
log-logistic and Gumbel distributions. In fact, for each distribution G, we can define the corre-
sponding G-NB distribution using a simple equation. We demonstrate that some mathematical
properties of the G-NB distribution can be readily obtained from those of the exponentiated-G
distribution. Explicit expressions for the ordinary and incomplete moments, generating function,
mean deviations, Bonferroni and Lorenz curves, Rényi and Shannon entropies, reliability and
order statistics are derived for any G-NB distribution. We discuss maximum likelihood estima-
tion and inference on the parameters based on Cramér-von Mises (CM) and Anderson-Darling

(AD) statistics. An example to real data illustrates the importance and potentiality of the new
family.
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Appendix A - Information Matrix

The elements of the observed information matrix J(@) for the model parameters (s, 3,7) are

given by
;o _n_n(=p)"log(l— B)?
ss 82 [(1 _ ﬁ)_s _ 1]2 )
g = m {nlog(1 = B)ls(1 — 5)* " log(1 — §) + s(1 — )~
xlog(1—B) +2(1—B)* "t —2(1—p)* 1]},
Jsr; = _;Wa
n ns?(1— p)s—* 1
By = <t g O 29 )
~_ (-1
D e
n ¢ q'ﬁz n ﬁcb ,32<i32
P> b ‘(S“);{l—m—@) s

where ¢ = g(z4;7),® = G(x4;7), ¢ = 89((933;;7’)7 b= 8G§fj’:;7), ¢ = 8298(:2”) and & = 82%%“7).
J J
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CHAPTER b

The Zeta-G Class: General Properties and Application

Resumo

Propomos uma nova classe de distribui¢oes com um pardmetro de forma adicional. Alguns
casos especiais sdo apresentados. Obtivemos algumas propriedades matematicas desta classe,
incluindo expressoes explicitas para a funcdo quantilica, momentos ordinarios e incompletos,
funcao geradora, desvios médios, dois tipos de entropia, confiabilidade, estatisticas de ordem e
seus momentos. Discutimos estimativa dos parametros do modelo por maxima verossimilhanca

e fornecemos uma aplicagdo para um conjunto de dados reais.

Palavras-chave: Distribuigdo Zeta; desvios médios; estatisticas de ordem; fungdo geradora; mo-
mentos.
Abstract

We propose a new class of distributions with one extra shape parameter. Some special cases are
presented. We derive some mathematical properties of this class including explicit expressions
for the quantile function, ordinary and incomplete moments, generating function, mean devia-
tions, two types of entropy, reliability, order statistics and their moments. We discuss estimation

of the model parameters by maximum likelihood and provide an application to a real data set.
Keywords: Generating function; Mean deviation; Moment; Order Statistic; Zeta distribution.
5.1 Introduction

Recently, new distributions have been proposed by compounding any continuous baseline
G distribution with a discrete distribution supported on integers n > 1. By this method,

we can obtain a new class of distributions with additional parameters whose role is to govern
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skewness and generate densities with heavier/ligther tails. These parameters are sought as a
manner to furnish a more flexible distribution for modeling the hazard rate function (hrf). Ano-
ther important method for generating continuous distributions was proposed by Alzaatreh et
al. (2013). Accordingly, several new distributions have been appeared, such as the extended
Weibull distribution Cordeiro and Lemonte (2013) that includes the Weibull distribution as a
special case and gives more flexibility to model various types of data.

We propose a general class of continuous distributions called the Zeta-G class with an ad-
ditional shape parameter. The Zeta-G can generate new distributions from specified baseline
distributions. We demonstrate that the Zeta-G density class is a linear combination of exponen-
tiated-G (“exp-G” for short) density functions.

Let Wh,...,Wz be a random sample from a continuous cumulative distribution function
(cdf) G() with positive support, where Z is an unknown positive integer number. We assume
that the random variable Z has a zeta probability mass function (pmf)

P(z;8) = CZ(_S)

where ((s) is the Riemann zeta function (which is undefined for s = 1). Let Z and W be
independent random variables and X = min(W1y,...,Wz). Then, the conditional cdf of X

z€{1,2,...}, s € (1,00),

given Z is

F(zlz) = 1-P(X >z|2)=1-P*(W; >x)
= 1-1-PW1 <z)f=1-[1-Gx)].

The unconditional cdf of X becomes

Flz;s) = Z( ;{1—[1—G<w>r},

z=1

A

forz >0, s>1and z € {1,2,...}. Here, s is a shape parameter. After some algebra, the cdf

of X reduces to

where Lis(x) is the polylogarithm function [Abramowitz and Stegun| defined by the power series

© _k
k=1

with |z| < 1. The model defined by (5.1) is called the Zeta-G distribution
The polylogarithm function can be represented by more general functions, for example,
using the generalized hypergeometric function, the Lerch transcendent function and the Meijer

G-function (can be found in wolfram website!).

"http://functions.wolfram.com/10.08.26.0008.01 - Accessed 13/06,/2013.
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We provide two motivations for the Zeta-G class of distributions. First, suppose the failure
of a device occurs due to the presence of an unknown number Z of initial defects of same kind,
which can be identifiable only after causing failure and are repaired perfectly. Define by W; the
time to the failure of the device due to the ith defect, for ¢ > 1. Under the assumptions that the
W;’s are iid random variables with cdf G(z) independent of Z, where Z has a Zeta distribution,
equation (5.1) is appropriate for modeling the time to the first failure. Secondly, suppose that
an individual in the population is susceptible to a certain type of cancer. Let Z be the number
of carcinogenic cells for that individual left active after the initial treatment and denote by W;
the time spent for the ith carcinogenic cell to produce a detectable cancer mass, for ¢ > 1. Under
the assumptions that {W;},., is a sequence of iid random variables independent of Z having
the cdf G(x), where Z has a Zeta distribution, the time to relapse of cancer of a susceptible
individual is defined by X = min {W} _ 1, which follows (5.1).

The probability density function (pdf) corresponding to (5.1) is given by
Lis_1[1 — G(z)] g(x)

¢(s) [1 = G(z)]
where g(z) = dG(x)/dz. We can verify using Mathematica that [;° f(z)dz =1,Vs > 1.

This generalization is obtained by increasing the number of parameters of the G model by

flz) = ; (5.3)

one, this increase being the price to pay for adding more flexibility to the generated distribution.
A positive point of the Zeta-G model is that it includes the G distribution as a special model when
s — oo. Hereafter, a random variable X having the density (5.3) is denoted by X ~ Zeta-G(T, s),
where 7 is the parameter vector associated with G. The survival function and hazard rate

function (hrf) of X are given by

and

_ g()Lig[1 - G()]
M) = 5 T = G

respectively. The aim of this paper is to derive some mathematical properties of (5.3) which
hold for any continuous G distribution.
Throughout the paper we use an expansion in Taylor series for z*, where \ is any real

number, given by

oo

=3 17 1 Z fial, (5.4)

k=0

where f; =Y 72, %(lﬂ) and (A\)y = A(A—1)...(A =k + 1) is the descending factorial.

(2
Further, we use an equation by [4, Section 0.314] for a power series raised to a positive integer n

%) A n oo .
(Zai ul> = Zcm u', (5.5)
i=0 i=0
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where the coefficients ¢, ; (for i = 1,2,...) are easily determined from the recurrence equation

Cni = (ia0) ™" D _[m(n+1) =] am cnim (5.6)

and ¢, 0 = ag.

The rest of the paper is organized as follows. In Section 5.2, we present some new distribu-
tions in the Zeta-G class. We obtain explicit expressions for the quantile function, ordinary and
incomplete moments, moment generating function (mgf), mean deviations, Shannon entropy,
Rényi entropy, reliability and moments of the order statistics in Sections 5.2 to 5.10. The esti-
mation of the model parameters using the method of maximum likelihood is presented in Section
5.11. An application to a real data set is performed in Section 5.12. Finally, some conclusions

are addressed in Section 5.13.

5.2 Special Zeta-G distributions

The Zeta-G class of density functions (5.3) allows for greater flexibility of its tails and can be
widely applied in many areas of engineering and biology. This new class extends several widely-
known distributions in the literature. So, we present some of its special cases. The density
function (5.3) will be most tractable when the cdf G(x) and the pdf g(x) have simple analytic

expressions.

5.2.1 Zeta-Weibull (ZW) distribution

If G(z) is the Weibull cdf with scale parameter 5 > 0 and shape parameter a > 0, say
G(z) =1 — exp(—Bx"), the pdf (for x > 0) and cdf of the ZW distribution reduce to

o Bz Lig_1[e P ¢(s) — Lig[e™#*"]
¢(s) ¢(s)
Figure 5.1 displays some possible shapes of the ZW density function.

faw(z) =

and Fzy(r) =

5.2.2 Zeta-Kumaraswamy (ZKw) distribution

Consider the Kumaraswamy distribution with pdf and cdf in the forms [for z € (0,1) and
a,b>0] g(x) = abz® ! and G(z) = 1 — (1 — 2%)°, respectively. This distribution, introduced
by [6], was investigated by [5]. The ZKw distribution, for x € (0, 1), has pdf and cdf given by

~abaz® 'Lig[(1 — 2]
fzrw(z) = ) (L= 2oy (5.7)

and

—Li — ga)b
Forn(e) - &)=L —a)]

¢(s)

respectively, where a and b are shape parameters. Plots of (5.7) for selected parameter values

are displayed in Figure 5.2.
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Figure 5.1: The ZW density function for some parameter values: (a) s =3 and 8 =1; (b) s =5
and a = 0.7.
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Figure 5.2: The ZKw density function for some parameter values: (a) a = 1.5 and b = 2; (b)
s =3 and a = 0.5.

5.2.3 Zeta-Fréchet (ZFr) distribution

Consider the Fréchet distribution (for x,0,\ > 0) with cdf and pdf given by G(z) =
exp{—(c/x)*} and g(x) = Ao* 272! exp{—(c/z)*}, respectively.
The ZFr distribution, for > 0, has pdf and cdf given by

Aot e A Lig q[1 — exp{—(2)*}]
C(s) [exp{(%)*} — 1]

fzrr(2)

and

¢(s) — Lis[1 — exp{(£)*"}]
¢(s) ’

Fzr.(z)
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respectively, where o > 0 is scale parameter and A > 0 is a shape parameter. Plots of (5.8) for
selected parameter values are given in Figure 5.3.
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Figure 5.3: The ZFr density function for some parameter values: (a) s = 2 and o = 0.5; (b)
s=2and A=15;(c) A=15and o = 1.

5.2.4 Zeta-Exponentiated Pareto (ZEPa) distribution

The pdf and cdf of the exponentiated Pareto distribution are (for 6,7,k > 0) g(x) =
Yk OF 27k — (0/2)*) 1 and G(z) = [1 — (6/x)*], respectively.
The ZEPa distribution, for > 6, has pdf and cdf given by

Y kOF & F {1 — (9)FP 1 Liga [(1— {1 = (£)F}7]
C(s) [1— {1 = (9)Fp]

fzEpa(x) =

and

s) — Lig[1 — {1 — (£)k}r
Fapma(e) = =B 2B

respectively. Some plots of the ZEPa density function are displayed in Figure 5.4.

5.3 Useful representations

Some useful expansions for (5.1) and (5.3) can be derived using the concept of exponenti-
ated distributions. For an arbitrary baseline cdf G(z), a random variable is said to have the
exponentiated-G (“exp-G” for short) distribution with parameter r > 0, say Y, ~ exp-G(r), if
its pdf and cdf are



\ s = k=08
! :
. 1 05 *\ k=15

1 B k2
-15 .
7 04\
N - k=4

Togt @t

Density
=
i~
Density

02

T 15 20 25 30 10 15 20 25 30 35 40

Figure 5.4: The ZEPa density function for some parameter values: (a) s =2, 0 =1 and k = 0.5;
(b) s=3,0=0.5and v = 2.

respectively. The properties of exponentiated distributions have been studied by several authors
in recent years. See 9] for exponentiated Weibull, |7| for exponentiated exponential, [11] for
exponentiated Fréchet and [10] for exponentiated gamma distributions.

Using expansion (5.2), we can write (5.3) as

(2) — 1 — G(x) kL
(3 2 et 1= G

<

fz) =

Y

Expanding the binomial term in this equation, we can express f(z) as

fl@)=>"w he(a), (5.10)
r=1

where h,(x) denotes the exp-G(r) density function and

()

k=r

We prove using Mathematica that > 7, w, = 1. By integrating (5.10), we can express F'(z)

as

F(z) =) wH(z), (5.11)
r=1

where H,(z) denotes the exp-G(r) cdf. So, several mathematical properties of the Zeta-G class
can be obtained by knowing those of the exp-G distribution, see, for example, [9], [11], among

others.
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5.4 Quantile function

The quantile function is defined by z = Q(u; s) = F~1(u;s), where F(x; s) follows (5.1) and
(5.2) by

k
Fr;s) =1~ ¢ G(a),
j=0

where ¢; = Y 22, % We shall use the Lagrange theorem [8, p. 88| to obtain the expansion

for the quantile function. We can rewrite w = F'(z;s) as

k
w=F(x;s) =wy— »_¢; 2, F'(z) = —c; #0, (5.12)
j=1
where wg = 1 — ¢y and z = G(x). The quantile function of the Zeta-G is given by x = G~1(z).
First, by inverting (5.12), the inverse function z = F~!(w;s) can be written as a power series

around zero

k
z = Zgn (w — wp)", (5.13)
n=1
where g, = (1/n))d" ¥ (z)"/da""!|,—¢ and ¥(2) = o) o] = > OlchzJ"
=

We can obtain the inverse of the power series Z?:o ¢j+177 using Equation (0.313) from [4].
We have

k

1 .

U(z) = o E d;2’,
=0

where d; can be calculated recursively from the quantities ¢; by dyp = 1 and d; = —cfl 25:1 dj—;cit1

(G =1).
We can obtain ¥(z)" using (5.5). Then,

1< N\ .
wor= (g a) =T e
j=0 L =0

where the coefficients f;, (for j =1,2,...) can be determined from the recurrence relation

J

fj,n:j_l Z[m(n+1) _.7] dmfj—m,n, (514)

m=1
and fo, = dj = 1. The coefficient f;, can be calculated from the quantities fo,,...,fi—1,n
and therefore from dp,...,d;, although it is not necessary for programming numerically our
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expansions in any algebraic or numerical software. The power series with the first (n+ 1) terms

can be expressed as

7177/ B
\I](Z)”: ( cn) <f0,n+f1,nz+”'+fn—1,nzn 1+fn,nzn+"'>

1

The derivative of order (n — 1) is given by

dar—t (=1)"(n — D!fn1n
[ W n f— 9
L (e 5 ,
and then -1 C1)yf
1 e n o -1)" n—1n
o= e (WEY =

The inverse function (5.13) can be written as

k

fn 1n n
=y Wty
1 TLCI

and, therefore, the quantile function x = Q(wj; s) reduces to

k n
= Q(w;s) = Gl{ZW(w—wo)n},

n=1

where the coefficients f;,, are calculated from (5.14).

5.5 Moments

A first formula for the nth moment of X, say p,, = E(X™), can be obtained from (5.10) and
Y, ~ exp-G(r) as

- iwr E(Y™). (5.15)
r=1

Expressions for moments of several exponentiated distributions are given by [11]|, which can be
used to obtain F(X™). We now provide an application of (5.15) by taking the baseline Weibull
introduced in Section 5.2.1. The pdf of the exp-Weibull distribution with power parameter r
is given by h.(z) = rafz® e " (1 — e #*")"=1 The nth moment of the ZW distribution

becomes

=gl (M 1) 33 W1+k>——1<7“;1>.

k=0r=1

Plots of skewness and kurtosis for the ZW distribution for some choices of o and g as function

of s are displayed in Figure 5.5.

103



Skewness
K

20

10

Figure 5.5: Skewness and kurtosis measures of the ZW distribution for some parameter values.

A second formula for p, can be derived from (5.15) in terms of the baseline quantile function
Qc(z) = G7Y(x). We can write

= err Tnrs (5.16)
r=1
where 7, , can be obtained from
o) 1
Tnr = / 2" G(z) Lg(x)dr = / Qa(w)" v du. (5.17)
—00 0

The ordinary moments of several Zeta-G distributions can be determined directly from Equa-
tions (5.16) and (5.17).
Here, we give two examples. First, the moments of the ZKw distribution (Section 5.2.2) are

given by

e (—1)’“rwrf(@—|—1) k
r a b
Ha=22 RT (24 1-k) B<T+1’b+1)’

where B(a,b) = fol t2~1 (1 — t)>~1dt is the beta function. The moments of the ZFr distribution
(Section 5.2.3) are given by

o (o ¢]
wn =o" err Z hid; B(r,t+2),
r=1 i,t=0

where we define from Equations (5.4), (5.5) and (5.6) h; = Zﬁz%(ﬁ Here,
(—n/A)j = (=n/A)...(=n/X — j + 1) is the descending factorial, d;+ = (tao)™* >, _ [m(i +

1) —t] am dit—m for t > 1 and d; o = aé with a; = (—=1)*2/(t + 1).
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The moments of the ZEPa distribution (Section 5.2.4) are given by

tn = WG"ZWTZ ' —1-7“7

where [2]; = (2)(5 +1)...(% +Jj — 1) is the ascending factorial.

For empirical purposes, the shape of many distributions can be usefully described by what
we call the incomplete moments. These types of moments play an important role for measuring
inequality, for example, income quantiles and Lorenz and Bonferroni curves, which depend upon

the incomplete moments of a distribution. The nth incomplete moment of X can be determined
from (5.10) as

o G(y)
ma() = EQOIX <) =Y ren [ Qew)wdu, (5.18)
r=1 0

The last integral can be computed for most baseline G distributions, at least numerically.

The symbolic computational software Maple, Mathematica, Matlab make it possible to au-
tomate the formulae derived in this paper since they have currently the ability to deal with
analytic recurrence equations and sums of formidable size and complexity. In practical terms,
we can substitute oo in the sums by a large number such as 20 or 50 for most practical applica-
tions. KEstablishing scripts for the explicit expressions given throughout the paper can be more
accurate computationally than other integral representations which can be prone to rounding
off errors among others. Equations (5.15) - (5.18) are the main results of this section.

5.6 Generating function

The mgf M(t) = E(e'X) of X follows from (5.10) as

o0
= ZwTM t
r=1

where M,.(t) is the mgf of Y,.. Hence, M (t) can be immediately determined from the generating
function of the exp-G distribution. Another formula for M(t) follows from (5.10) as

= err "}/T(t)7 (519)
r=1

where 7,.(t) can be determined from the baseline quantile function Qg (u) = G™1(u) as

o] 1
o(t) = /0 o G(z)  g(w)d = /0 exp{t Qo(u)} u'~du. (5.20)
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We can obtain the mgf’s of several Zeta-G distributions directly from equations (5.19) and
(5.20). For example, the mgf’s of the Zeta-Exponential (with parameter A and for t < A~1) and
Zeta-Standard Logistic (for ¢ < 1) distributions can be expressed as

Mt):errB(r,l—)\t) and M(t):erTB(t—Fr,l—t),
r=1

r=1

respectively.

5.7 Mean deviations

The mean deviations about the mean (d;(X) = E(|X —p}|)) and about the median (d2(X) =
E(|X — M])) of X are given by

01(X) = 2p4 F () — 2ma (1)) and  02(X) = pj — 2ma (M), (5.21)

respectively, where p) = E(X), M = Median(X) is the median, F'(u}) is easily calculated from
the cdf (5.1) and my(z) = [°_ @ f(x)dx is the first incomplete moment given by (5.18) with
n=1.

In this section, we provide two alternative ways to compute 61(X) and d2(X). A general

equation for mq(z) can be derived from (5.10) as

= Z wy Sr(2)
r=1

where
Sp(z) = /z x hy(z)dz. (5.22)

Equation (5.22) is the basic quantity to compute the mean deviations of the exp-G distribu-
tions. Hence, the mean deviations in (5.21) depend only on the mean deviations of the exp-G

distribution. So, alternative representations for 61(X) and d2(X) are

In a similar manner, the mean deviations of the Zeta G distribution can be determined
from Equation (5.18) with n = 1 and letting 7, ( fo Yu""'du. For example, the
mean deviations of Zeta-Logistic (ZL), Zeta-Pareto (ZPa) (Wlth parameter v > 0) and ZE (with
parameter \) distributions are calculated using the generalized binomial expansion from the

following functions

T(2) = i L(r+k) {1 —exp(—kz)}

I'(r—1) k:O (k+1)!
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() ()

k=0 j=0

and

\- 1§: (2—71)k {1 —exp(—kA2)}

~ (k+1)!

respectively, where (2 — )y = (2 —7r)(1 —7r)...(2 —r — k) is the descending factorial.

5.8 Entropies

An entropy is a measure of variation or uncertainty of a random variable X. Two popular

entropy measures are the Rényi and Shannon entropies [14, 13]. The Rényi entropy of a random

variable with pdf f(-) is defined by
log / f(x)dx
-7 0

for v > 0 and v # 1. The Shannon entropy of a random variable X is defined by Ig =

Ir(y) =

E{—log[f(X)]}. It is a limit case of the Rényi entropy when ~ 1 1.
Here, we derive closed-form expressions for the Rényi and Shannon entropies when X has a

Zeta-G distribution. From equation (5.3), we obtain

_ s - G e - gy,
feb) = 1—71g[/0 {or d]'

For any real a and |z|] < 1, we have the power series

(1—2)"%= i Wzk, (5.23)

Applying (5.4) in the last equation, we obtain
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= =1 -G(x '
y zgz(z[ ) >d}
=0 k=1

= T
00 k+i
i (k41 v
XY hieip Y (1)FF ( . )G(x) d:r},
i,k=0 v=0

where e; = (kag) ™! Zﬁlzl[m(z + 1) — k] am €ip—m for k > 1, €0 = af) with a, = (k+ 1)~

hi = pras 7,)t (f) and () is the descending factorial.
Then, the Rényi entropy reduces to

In(1) = 2 loglc(o)]+ =

X /OO g(x)” G(x)j’”’dm}.
0

The Shannon entropy can be obtained by limiting v T 1 in the last equation. However, it is
easier to derive an expression for Ig from its definition

Is = log[C(s)] + E{—log(Lis—1[1 — G(X)])} — E{log[g(X)]}

+E{log[l — G(X)]}. (5.24)

The three expectations in (5.24) can be easily determined numerically given G(-) and g(-)
From Equations (5.2) and (5.10), we obtain

00 k+1

E{—log(Lis_1[1 - G(X)))} = Z Z Z erTc]m <k:+1>

r=1k,m=0 j=0 k+1 J
x B(r,m+j+1),

where ¢j i = (mag) ™t Y0 [n(j+1) —

m|anCjm—n for m > 1, cjo = aé with a,, = (m + 1)~
(for m > 0)

E{log|G err/ "1 og(u “r
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and
E{log[g( err/ log[g(x)] G(z)" ! g(z) d

respectively. The last of these equations can be expressed in terms of the baseline quantile

function, Q¢ (u), as

E{log[g( err/ log{g[Qc(u)]} v~ du.

5.9 Reliability

We derive the reliability, R = Pr(X2 < Xi), when X; ~ Zeta-G(7,s1) and Xy ~ Zeta-
G(, s2) are independent random variables. Probabilities of this form have many applications
especially in engineering concepts. Let f; and F; denote the pdf and cdf of X, respectively. By

using the representations (5.10) and (5.11), we can write

R= Z wnm/ Hyp () by (2)da = i Wn.m Rum, (5.25)

n,m=1 n,m=1

where Ry, = Pr(Y,, < Y,,) is the reliability between the independent random variables Y;, ~
exp-G(n) and Y;, ~ exp-G(m). Here,

Wnm = )

and v;(s;) (for j =mn,m and i = 1,2) is given by

ks (k-1
St (1)
Hence, the reliability of Zeta-G random varlables is a linear combination of those for exp-G
random variables. For example, we derive the reliability when X; and Xs have independent

Zeta-Weibull distributions with the same shape parameter (3, namely Zeta-Weibull(aq, 3, s1)
and Zeta-Weibull(ag, 8, s2). The reliability obtained from Equation (5.25) is

o0
R = Z N Wn,m / (18 ZEB_le_ale) (1-— e—oqa:@)n—l (1— e—oc2ac6)mdx‘

n,m=1

By application of the binomial expansion, we obtain

k
X /OO g1 emlon (k) taslla? go. (5.26)
0
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Finally, we have

i (=) nap Wn,m (n — 1> <m)
a1 B(1+Ek)+a2 Bl \ K 1)
5.10 Order statistics

Order statistics make their appearance in many areas of statistical theory and practice.
Suppose X1, Xo,...,X, is a random sample from the Zeta-G distribution. Let Xj;., denote the
ith order statistic. From Equations (5.10) and (5.11), the pdf of X;., is given by

finle) = Z (") s

X
10
€
Q

Using (5.5), (5.6) and setting r =t + 1, we write

)Y wiy1 G(x)
t=0

jHi—1

(o)

t+ j+i— 1
§ Yjt+i-1t G J
t=0

t
o
where vj1i—1 = (twi) -1 Z m(j + i) — t] wmt1 Vjti-1t—m and Yjpi—1,0 —w{ﬂ )
m=1
Hence,
fzn Z Z QJ,kthk+t+]+z( ) (527)
7=0 k,t=0
where

Gine = (=1)7i (k4 1) wrr1 Yjriove <n) (n—z)
e (k+t+j+1) ANA

Equation (5.27) reveals that the pdf of the Zeta-G order statistics is a linear combination of
exp-G density functions. So, several mathematical quantities of the Zeta-G order statistics such
as the ordinary, incomplete and factorial moments, mgf and mean deviations can be obtained

from those quantities of the exp-G distributions. Clearly, the cdf of X;., can be expressed as

n—i oo
z) = Z Z @kt Hevopjri().

§=0 k,t=0

For example, from Equation (5.27), the moments of the Zeta-G order statistics can be written

directly in terms of the exp-G moments as
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n—i

= Z Z qj,k,t / .%'S hk+t+j+i(ﬂf)d$. (528)
0

=0 k,t=0

.

As a simple example of Equation (5.28), the moments of the ZW order statistics can be
written directly in terms of the exp-Weibull moments, with baseline parameters a@ > 0 and
B >0, as

B(Xy,) = 5% (

)Z Z )kt 47 +i) (1)t

7=0k,t,r=0
k+t+j+i—1
X qj k.t , .

5.11 Estimation

We calculate the maximum likelihood estimates (MLEs) of the parameters of the Zeta-G
distribution from complete samples only. Let x1, ..., x, be a observed sample of size n from

the Zeta-G(s,7) distribution, where 7 is a p x 1 vector of unknown parameters in the baseline

distribution G(x;7). The log-likelihood function for the vector of parameters 8 = (s, 77)7 can
be expressed as
1(0) = —nlog{((s) Zlog{l —G(ziyT)} + Zlog{g(xi; )}
i=1
+ Zlog{ms 11— G(zi; 7))} (5.29)

The log-likelihood can be maximized by using well established routines like nlm or optimize
in the R statistical package or by solving the nonlinear likelihood equations obtained by differ-

entiating (5.29). The components of the score vector U (@) are

- QLis— [1 -G (miv 7-)] ng (1’ S)
_ Os 1 _
Us(6) = ~ Lis-1[1 -G (;,7)] C(s) 7
- n Lig o[l — G (z;,7)] %G (x5, T) 87’ 9 (i, 7)
Ur, (0) = —; [1— G (zi,7)] Lis_1 [1 — G (x4, T)] * = m
n 8 G(xw T)

for j=1,...pand ((1,s) = %C(S).
For interval estimation and hypothesis tests on the model parameters, we require the (p +
1) X (p+1) observed information matrix J = J (@) given in the Appendix. Under conditions that

are fulfilled for parameters in the interior of the parameter space but not on the boundary, the
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Table 5.1: MLEs, the corresponding SEs (given in parentheses), maximized log-likelihoods,

statistics CM, AD and the p-values for successive failure data.
Distribution Estimates CM AD

ZW(s, a, B) 4.1020, 0.9320, 0.0145  0.1276 0.7973
(0.0009, 0.0488, 0.0037)

ZFr(s,o,\) 14.8759, 0.7360, 25.9844  0.7115 4.5757
(95.3446, 0.0346, 2.5720)

ZBXII(s,c, k)  10.7162, 13.2045, 0.0194  0.9549 6.1318
(8.2407, 0.0029, 0.0013)

ZLo(s,a,\)  24.7604, 6.0747, 474.6617  0.0822 0.5404
(0.0087, 3.1962, 288.3710)

asymptotic distribution of \/n(8 — ) is Np41(0,1(6)71), where 1(6) is the expected information
matrix. In practice, we can replace 1(0) by the observed information matrix evaluated at 5, say

J(0), to construct approximate confidence intervals for the parameters based on the multivariate
normal Np41(0, J(a)_l) distribution.

5.12 Application

In this section, we fit the Zeta-Weibull (ZW), Zeta-Fréchet (ZFr), Zeta-Burr XII (ZBII) and
Zeta-Lomax (ZLo) distributions to a real data set. In order to estimate the parameters of these
specials models, we adopt the maximum likelihood method (as discussed in Section 5.11) with
all computations done using the script bbmle of the R software (version 3.0.0). The data set
obtained from [12] consists of the number of successive failures for the air conditioning system
of each member in a fleet of 13 Boeing 720 jet airplanes reported with 213 observations.

Table 5.1 gives the MLEs and corresponding standard erros (SEs) and the values of the
Crameér-von Mises (CM) and Anderson-Darling (AD) statistics for the current data. In general,
the smaller the values of these statistics, the better the fit to the data. To obtain the statistics,
one can proceed as follows: (i) compute v; = F(xz,é) and y; = ® 1(v;), where the s are
in ascending order, 0 is an estimate of 0, ®(-) is the standard normal cumulative function and
®~1() denotes its inverse; (i) compute u; = ®[(y; —¥)/sy], where 7 is the sample mean of y; and
sy is the sample standard deviation; (iii) compute CM* = Y7 [u; —(2i—1)/2n]*+1/(12n) and
AD* = —n—(1/n) >_7" 1 [(2i—1) log(u;)+(2 n+1—-21) log(1—w;)], and then CM = (1+0.5/n)CM*
and AD = (1 +0.75/n + 2.25/n%)AD*.

Thus, according to these formal tests, the ZLo model yields a better fit to these data than
the other models. This evidence can also be noted in Figure 5.6, where we can check that the

ZLo model captures the behavior of the data.
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Figure 5.6: Histogram of the data and fitted ZW, ZFr, ZBXII and ZLo density functions to
successive failure data.

5.13 Concluding remarks

We propose a general class of continuous distributions called the Zeta-G class. It extends
several common distributions such as the Weibull, Kumaraswamy, Fréchet, Burr XII, Lomax
and exponentiated Pareto distributions. In fact, for each distribution G, we can define the Zeta-
G generator using a simple equation. We demonstrate that some mathematical properties of
the Zeta-G distribution can be readily obtained from those of the exponentiated-G distribution.
The ordinary and incomplete moments, the generating function and the mean deviations of the
Zeta-G class can be expressed explicitly in terms of the baseline quantile function. We discuss
maximum likelihood estimation and inference on the parameters based on the Cramér-von Mises

(CM) and Anderson-Darling (AD) statistics. An example to real data illustrates the importance
and potentiality of the new class.

Appendix: Information Matrix

The elements of the observed information matrix J(@) for the model parameters (s, ) of
the Zeta-G class are given by
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PR { ZLica[1-0] {ZLi[1- @]}2} ()" nl(s))
=1

Lis_1[1 — @] (Lis_ 1[1 — )2 Cs)  [C)P
& 9PLica[1-0] 2 Lic [l - @] Lis o[l - @]
T = ; { -] Li [1-9] ' {LIH [1—]}*[1— 9] }
3 Lig g[l —®]$*  Lis o[l — @] $?
Irjry = ; { 1 - (1)]2 Lis 1 [1—-9] [1- @]2 Lig_1 [1 — @]
 Ligo[1-a]d {Lis_2 [1 — ®]}* $?
[1—®]Lisc1 [1-®] [1— &]*{Li,_q [1 — @]}
6 9| @ ¢?
At e e )
where 6 = g(zs: ). = Glzi:7), & = ag(d:zTJ dgleir) G acéi] T 4= 8%{;:;#) and ® = 82%(755;;7).
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