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Resumo

Este trabalho está dividido em quatro capítulos independentes. Nos Capítulos 2 e 3 propo-

mos extensões para a distribuição Weibull. A primeira delas, com cinco parâmetros, é uma

composição das distribuições beta e Weibull Poisson. Essa nova distribuição tem como sub-

modelos algumas importantes distribuições descritas na literatura e outras ainda não discutidas

tais como: bata exponencial Poisson, Weibull Poisson exponencializada, Rayleigh Poisson expo-

nencializada, beta Weibull, Weibull, exponencial, entre outras. Obtemos algumas propriedades

matemáticas tais como momentos ordinários e incompletos, estatísticas de ordem e seus momen-

tos e entropia de Rényi. Usamos o método da máxima verossimilhança para obter estimativas

dos parâmetros. A potencialidade desse novo modelo é mostrada por meio de um conjunto de

dados reais. A segunda extensão, com quatro parâmetros, é uma composição das distribuições

Poisson generalizada e Weibull, tendo a Poisson generalizada exponencial, a Rayleigh Poisson,

Weibull Poisson e Weibull como alguns de seus sub-modelos. Várias propriedades matemáticas

foram investigadas, incluíndo expressões explícitas para os momentos ordinários e incompletos,

desvios médios, função quantílica, curvas de Bonferroni e Lorentz, con�abilidade e as entropias

de Rényi e Shannon. Estatísticas de ordem e seus momentos são investigados. A estimativa de

parâmetros é feita pelo método da máxima verossimilhança e é obtida a matriz de informação

obsevada. Uma aplicação a um conjunto de dados reais mostra a utilidade do novo modelo. Nos

dois últimos capítulos propomos duas novas classes de distribuições. No Capítulo 4 apresentamos

a família G- Binomial Negativa com dois parâmetros extras. Essa nova família inclui como caso

especial um modelo bastante popular, a Weibull binomial negativa, discutida por Rodrigues et

al.(Advances and Applications in Statistics 22 (2011), 25-55.) Algumas propriedades matemáti-

cas da nova classe são estudadas, incluindo momentos e função geradora. O método de máxima

verossimilhança é utilizado para obter estimativas dos parâmetros. A utilidade da nova classe

é mostrada através de um exemplo com conjuntos de dados reais. No Capítulo 5 apresentamos

a classe Zeta-G com um parâmetro extra e algumas nova distribuições desta classe. Obtemos

expressões explícitas para a função quantílica, momentos ordinários e incompletos, dois tipos de

entropia, con�abilidade e momentos das estatísticas de ordem. Usamos o método da máxima

verossimilhança para estimar os parâmetros e a utilidade da nova classe é exempli�cada com um

conjunto de dados reais.

Palavras-chave: Distribuição beta. Distribuição Poisson generalizada. Distribuição binomial

negativa. Distribuição Weibull Poisson. Distribuição Zeta. Entropia. Máxima verossimilhança.



Abstract

This paper is divided into four independent chapters. In Chapters 2 and 3 we propose ex-

tensions to the Weibull distribution. The �rst one with �ve parameters is a composition of

the beta and the Weibull Poisson distributions. This new distribution has as sub-models some

important distributions described in the literature and others that have not been discussed yet,

such as: beta exponential Poisson (BEP), exponentiated Weibull Poisson (EWP), exponentiated

Rayleigh Poisson (ERP), beta Weibull, Weibull, exponential, among others. We obtain some

mathematical properties such as ordinary and incomplete moments, order statistics and their

moments and Rényi entropy. We use the method of maximum likelihood to obtain estimates of

the parameters. The potential of this new model is shown by a real data set. The second ex-

tension, with four parameters, is a composition of generalized Poisson and Weibull distributions

having the exponential generalized Poisson, the Rayleigh Poisson, Weibull Poisson and Weibull

as some of its sub-models. Several mathematical properties were investigated, including explicit

expressions for the ordinary and incomplete moments, mean deviation, Quantile function, Bon-

ferroni and Lorentz curves, reliability and the entropies of Rényi and Shannon. Order statistics

and their moments are investigated. The parameter estimation is performed by the method of

maximum likelihood and the observed matrix of information is obtained. An application to an

actual data set shows the usefulness of the new model. In the last two chapters we propose two

new classes of distributions. In Chapter 4 we present the G-negative binomial family with two

extra parameters. This new family includes as special case a very popular model, the Weibull

negative binomial, discussed by Rodrigues et al. (Advances and Applications Statistics in 22

(2011) , 25-55). Some math properties of the new class are studied, including moments and

generating function. The maximum likelihood method is used to obtain parameters estimates.

The usefulness of the new class is shown by an example with real data sets. In Chapter 5 we

present Zeta-G class with an extra parameter and some new distributions of this class. We

obtain explicit expressions for the Quantile function, ordinary and incomplete moments, two

types of entropy, reliability and moments of order statistics. We use the method of maximum

likelihood to estimate the parameters and the usefulness of the new class is exempli�ed with a

real data set.

Keywords: Beta distribution. Entropy. Generalized Poisson distribution. Maximum likelihood.

Negative binomial distribution. Weibull Poisson distribution. Zeta distribution.
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CHAPTER 1

Introduction

This thesis is composed by four independent papers. Two of them introduce new distributions

and two others, new families of distributions. So, in this thesis, each of the papers �lls a distinct

chapter. Therefore, each chapter can be read independently, since each one is self contained.

Additionally, we emphasize that each chapter contains a thorough introduction to the presented

matter, so this general introduction only shows, quite brie�y, the context of each chapter.

In each chapter we are interested in the study of continuous distributions de�ned on the

positive real line. Roughly speaking, any continuous distribution de�ned on the positive real line

can be considered as a lifetime distribution. Obviously, not all such distributions are meaningful

for describing an aging (lifetime) phenomenon. The analysis of lifetime data is an important

topic in statistical literature, since its applications range from industrial applications to biological

studies. We note that in survival analysis, the time to be analyzed refers to the time until the

occurrence of any event of interest: diagnosis of a disease, birth, healing, appearance of a

tumor, a fault of an equipment or component, etc. Several probabilistic models have proved

quite adequate to describe lifetime data. In Chapters 2-5 we present construction methods of

continuous distributions used in survival data analysis. Such distributions are characterized by

a variety of ways on your rate of failure function.

Chapter 2 introduces a new model obtained by compounding the beta and Weibull Poisson

(WP) distributions (Lu and Shi, 2012), called the beta Weibull Poisson (BWP) distribution.

This distribution has various types of shapes: it can be increasing, decreasing, upside-down

bathtub-shaped or unimodal. The WP model is well-motivated for industrial applications and

biological studies. As an example, consider the time to relapse of cancer under the �rst-activation

scheme. Suppose that the number, say Z, of carcinogenic cells for an individual left active after

an initial treatment follows a truncated Poisson distribution and letWi be the time spent for the

ith carcinogenic cell to produce a detectable cancer mass, for i ≥ 1. If {Wi}i≥1 is a sequence of

independent and identically distributed (iid) Weibull random variables independent of Z, then
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the time to relapse of cancer of a susceptible individual can be modeled by the WP distribution.

Some mathematical properties are investigated, explicit expressions for the quantile function,

Rényi entropy, among several others. We illustrate the potentiality of the new distribution with

an application to a real data set.

Chapter 3 presents another extension of the Weibull distribution with four parameters. Tak-

ing the baseline distribution as the Weibull model and the distribution of Z as the generalized

Poisson, we develop theWeibull generalized Poisson (WGP) distribution. This model generalizes

the exponential generalized Poisson (EGP) distribution proposed by Gupta et al. (2013) and has

several sub-models such as exponential Poisson (EP), Rayleigh generalized Poisson (RGP) and

Weibull Poisson (WP) distributions. This new lifetime distribution has strong biological moti-

vation. As an example, consider that the unknown number, say Z, of carcinogenic cells for an

individual left active after an initial treatment follows the GP distribution and let Yi (for i ≥ 1)

be the time spent for the ith carcinogenic cell to produce a detectable cancer mass. If {Yi}i≥1
is a sequence of iid X random variables independent of Z having the Weibull distribution, then

the random variable X =Min{Yi}Zi=1 denoting the cancer recurrence time can be modeled by

the WGP distribution. The WGP density function can be written as a linear combination of

Weibull density functions. This is one of the main results of this chapter. The usefulness of the

new model is illustrated in an application to real data using formal goodness-of-�t tests. By

means of a real data application, we prove that the proposed distribution is a very competitive

model to the exponentiated Weibull and beta Weibull distributions.

Several new models involving the negative binomial distribution have been proposed and

applied in survival analysis. In Chapter 4, we propose a general family of continuous distributions

called the G-negative binomial (G-NB) family. It includes, as a special case, theWeibull negative

binomial (WNB) model. This generalization is obtained by increasing the number of parameters

compared to the G model. This increase adds more �exibility to the generated distribution. One

positive point of the G-NB model is that it includes the G distribution as a sub-model when

s = 1 and β → 0. The G-NB family is well-motivated for industrial applications and biological

studies. For example, considers that the failure of a device occurs due to the presence of an

unknown number N of initial defects of the same kind, which can be identi�able only after

causing failure and are repaired perfectly. De�ne by Xi the time to the failure of the device due

to the ith defect, for i ≥ 1. If we assume that the Xi's are iid random variables independent

of N , which follows a G distribution, then the time to the �rst failure is appropriately modeled

by the G-NB family. For reliability studies, the random variable X =Min{Xi}Ni=1 can be used

in serial systems with identical components, which appear in many industrial applications and

biological organisms. An important results is the fact that the G-NB density family is a linear

combination of exponentiated-G (�exp-G� for short) density functions.

Finally, in Chapter 5, we propose a new family by compounding any continuous baseline G

distribution with the zeta distribution supported on integers n ≥ 1. By this method, we obtain

a new class of distributions, called the zeta-G, with an additional shape parameter, whose role

is to govern skewness and generate densities with heavier/ligther tails. The cdf of the zeta-G

distribution has one representation in terms of polylogarithm function and can be represented by
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others special functions, for example, using the generalized hypergeometric function, the Lerch

transcendent function and the Meijer G-function. We demonstrate that the zeta-G density

class is a linear combination of exponentiated-G (�exp-G� for short) density functions. A good

characteristic of the zeta-G model is that it includes the G distribution as a special model when

s → ∞. This new class extends several widely-known distributions in the literature. So, we

present some of its special cases. Its density function will be most tractable when the cdf G(x)

and the pdf g(x) have simple analytic expressions, and allow for greater �exibility of its tails

and can be widely applied in many areas of engineering and biology. We discuss maximum

likelihood estimation and inference on the parameters based on the Cramér-von Mises (CM)

and Anderson-Darling (AD) statistics. An example to real data illustrates the importance and

potentiality of the new class.
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CHAPTER 2

The beta Weibull Poisson distribution

Resumo

Em Estatística, costuma-se buscar distribuições mais �exíveis. Uma nova distribuição de cinco

parâmetros chamada de beta Weibull Poisson é proposta. Ela é obtida através da composição das

distribuições Weibull Poisson e beta. Generaliza vários modelos de tempo de vida conhecidos.

Nós obtemos algumas propriedades da distribuição proposta, como as funções de sobrevivência

e taxa de risco, a função quantílica, momentos ordinários e incompletos, estatísticas de ordem e

entropia de Rényi. Estimativas por máxima verossimilhança e inferência para grandes amostras

são abordadas. A potencialidade do novo modelo é mostrada por meio de um conjunto de dados

reais de�nido. Na verdade, o modelo proposto pode produzir melhores ajustes do que algumas

distribuições conhecidas.

Palavras-chave: Distribuição beta; Distribuição Weibull Poisson; Dados de vida; Função Quan-

tílica; Máxima verossimilhança.

Abstract

In statistics, it is customary to seek more �exible distributions. A new �ve-parameter distribu-

tion called the beta Weibull Poisson is proposed. It is obtained by compounding the Weibull

Poisson and beta distributions. It generalizes several known lifetime models. We obtain some

properties of the proposed distribution such as the survival and hazard rate functions, quantile

function, ordinary and incomplete moments, order statistics and Rényi entropy. Estimation by

maximum likelihood and inference for large samples are addressed. The potentiality of the new

model is shown by means of a real data set. In fact, the proposed model can produce better �ts

than some well-known distributions.

Keywords: Beta distribution; Lifetime data; maximum likelihood; Quantile function; Weibull

Poisson distribution.
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2.1 Introduction

The Weibull distribution is a very popular model in reliability and it has been widely used

for analyzing lifetime data. Several new models have been proposed that are either derived from

or, in some way, are related to the Weibull distribution. When modelling monotone hazard

rates, the Weibull distribution may be an initial choice because of its negatively and positively

skewed density shapes. However, it does not provide a reasonable parametric �t for modelling

phenomenon with non-monotone failure rates such as the bathtub shaped and the unimodal

failure rates that are common in reliability and biological studies. An example of the bathtub-

shaped failure rate is the human mortality experience with a high infant mortality rate which

reduces rapidly to reach a low level. It then remains at that level for quite a few years before

picking up again. Unimodal failure rates can be observed in course of a disease whose mortality

reaches a peak after some �nite period and then declines gradually.

The statistics literature is �lled with hundreds of continuous univariate distributions. Recent

developments focus on new techniques for building meaningful distributions. Several methods

of introducing one or more parameters to generate new distributions have been studied in the

statistical literature recently. Among these methods, the compounding of some discrete and

important lifetime distributions has been in the vanguard of lifetime modeling. So, several

families of distributions were proposed by compounding some useful lifetime and truncated

discrete distributions.

In recent years, there has been a great interest among statisticians and applied researchers in

constructing �exible distributions to furnish better modeling for describing lifetime data. Sev-

eral authors introduced more �exible distributions to model monotone or unimodal failure rates

but they are not useful for modelling bathtub-shaped failure rates. [1] proposed the exponential

geometric (EG) distribution to model lifetime data with decreasing failure rate function and

[10, 11, 12] de�ned the generalized exponential (GE) (also called the exponentiated exponential)

distribution. The last distribution has only increasing or decreasing failure rate function. Fol-

lowing the key idea of [1], [13] introduced the exponential Poisson (EP) distribution which has a

monotone failure rate. [14] proposed a generalization of the Weibull distribution called the beta

Weibull (BW) distribution. [3] studied a Weibull geometric (WG) distribution which extends

the EG and Weibull distributions. In this paper, we propose a new compounding distribution,

called the beta Weibull Poisson (BWP) distribution, by compounding the beta and Weibull Pois-

son (WP) distributions (Lu and Shi, 2012). The failure rate function of the WP distribution

has various shapes. In fact, it can be increasing, decreasing, upside-down bathtub-shaped or

unimodal.

The proposed generalization stems from a general class of distributions which is de�ned by

the following cumulative distribution function (cdf)

F (x) = IG(x)(a, b) =
1

B(a, b)

∫ G(x)

0
wa−1(1− w)b−1dw, (2.1)

where a > 0 and b > 0 are two additional shape parameters to the parameters of the G-

distribution, B(a, b) = Γ(a)Γ(b)/Γ(a+ b) is the beta function and IG(x)(a, b) denotes the incom-
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plete beta function ratio evaluated at G(x). The parameters a and b govern both the skewness

and kurtosis of the generated distribution.

This class was proposed by [8] and has been widely used ever since. For example, [8] in-

troduced the beta normal (BN) distribution, [16] de�ned the beta Gumbel (BGu) distribution

and [17] proposed the beta Fréchet (BF) distribution. Another example is the beta exponential

(BE) model studied by [18].

The probability density function (pdf) corresponding to (2.1) is given by

f(x) =
g(x)

B(a, b)
G(x)a−1{1−G(x)}b−1, (2.2)

where g(x) = dG(x)/dx is the baseline density function.

The paper is organized as follows. In Section 2.2, we de�ne the BWP distribution and

highlight some special cases. In Section 2.3.1, we demonstrate that the new density function

is a linear combination of WP density functions. The proof is given in Appendix A. Also, we

derive the survival and hazard rate functions, moments and moment generating function (mgf),

order statistics and their moments and Rényi entropy. Maximum likelihood estimation of the

model parameters and the observed information matrix are discussed in Section 2.4. In Section

2.5, we provide an application of the BWP model to the maintenance data with 46 observations

reported on active repair times (hours) for an airborne communication transceiver. Concluding

remarks are given in Section 2.6. Unless otherwise indicated, all results presented in the paper

are new and original. It is expected that they could encourage further research of the new model.

2.2 The BWP distribution

We assume that Z has a truncated Poisson distribution with parameter λ > 0 and probability

mass function given by

p(z;λ) = e−λλz Γ−1(z + 1)(1− e−λ)−1, z = 1, 2, . . . ,

where Γ(p) =
∫∞
0 xp−1e−xdx (for p > 0) is the gamma function.

We de�ne {Wi}Zi=1 to be independent and identically distributed random variable having the

Weibull density function de�ned by

π(w;α, β) = αβwα−1 exp(−βwα), w > 0,

where α > 0 is the shape parameter and β > 0 is the scale parameter.

We de�ne X = min{W1, . . . ,WZ}, where the random variables Z and W's are assumed

independent. The WP distribution of X has density function given by

g(x;α, β, λ) = ċ u xα−1 eλu, x > 0, (2.3)

where ċ = ċ(α, β, λ) =
αβλe−λ

1− e−λ
and u = e−βx

α
.

The WP model is well-motivated for industrial applications and biological studies. As a �rst

example, consider the time to relapse of cancer under the �rst-activation scheme. Suppose that
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Figure 2.1: Plots of the BWP density function for: (a) α = 1, β = 2 and λ = 1, (b) α = 0.5, β = 2 and λ = 1,

(c) α = 1.5, β = 2 and λ = 1, (d) α = 0.5, β = 0.5 and λ = 2.

the number, say Z, of carcinogenic cells for an individual left active after the initial treatment

follows a truncated Poisson distribution and let Wi be the time spent for the ith carcinogenic

cell to produce a detectable cancer mass, for i ≥ 1. If {Wi}i≥1 is a sequence of independent and
identically distributed (iid) Weibull random variables independent of Z, then the time to relapse

of cancer of a susceptible individual can be modeled by the WP distribution. Another example

considers that the failure of a device occurs due to the presence of an unknown number, say Z,

of initial defects of the same kind, which can be identi�able only after causing failure and are

repaired perfectly. De�ne by Wi the time to the failure of the device due to the ith defect, for

i ≥ 1. If we assume that the Wi's are iid Weibull random variables independent of Z, which is

a truncated Poisson random variable, then the time to the �rst failure is appropriately modeled
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by the WP distribution. For reliability studies, the proposed models for X = min {Wi}Zi=1

and T = max {Wi}Zi=1 can be used in serial and parallel systems with identical components,

which appear in many industrial applications and biological organisms. The �rst activation

scheme may be questioned by certain diseases. Consider that the number Z of latent factors

that must all be activated by failure follows a truncated Poisson distribution and assume that

W represents the time of resistance to a disease manifestation due to the ith latent factor has

the Weibull distribution. In the �rst-activation scheme, the failure occurs after all Z factors

have been activated. So, the WP distribution is able for modeling the time to the failure under

last-activation scheme.

The cdf corresponding to (2.3) is

G(x) =
eλu − eλ

1− eλ
, x > 0. (2.4)

The BWP density function is obtained by inserting (2.3) and (2.4) in equation (2.2). It is

given by

f(x) = c u xα−1eλu(eλ − eλu)a−1(eλu − 1)b−1, (2.5)

where

c =
αβλ e−λ(eλ − 1)2−a−b

B(a, b)(1− e−λ)
.

Hereafter, a random variable X having density function (2.5) is denoted byX ∼ BWP(α, β, λ, a, b).

The cumulative distribution of X is given by

F (x) = IG(x)(a, b) = I(eλu−eλ)/(1−eλ)(a, b). (2.6)

We are motivated to study the BWP distributions because of the wide usage of the Weibull

and the fact that the current generalization provides means of its continuous extension to still

more complex situations. A second positive point of the current generalization is that the WP

distribution is a basic exemplar of the proposed family. A third positive point is the role played

by the two beta generator parameters to the WP model. They can add more �exibility in the

density function (2.5) by imposing more dispersion in the skewness and kurtosis of X and to

control the tail weights.

The beta exponential Poisson (BEP) distribution is obtained from (2.5) when α = 1. For

b = 1, the exponentiated Weibull Poisson (EWP) distribution comes as a special model. In

addition, for α = 1, we obtain the exponentiated exponential Poisson (EEP) distribution. On

the other hand, if α = 2, the beta Rayleigh Poisson (BRP) distribution is obtained. In addition,

for b = 1, it follows the exponentiated Rayleigh Poisson (ERP) distribution. The beta Weibull

(BW) distribution comes as the limiting distribution of the BWP distribution when λ → 0+.

For a = b = 1, equation (2.5) becomes the WP density function. In addition, if α = 1, we obtain

the exponential Poisson (EP) distribution. The following distributions are new sub-models: the

beta Rayleigh Poisson (BRP), exponentiated Weibull Poisson (EWP), beta exponential Poisson

(BEP), exponentiated Rayleigh Poisson (ERP), beta Rayleigh (BR), Rayleigh Poisson (RP) and
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Figure 2.2: Relationships of the BWP sub-models.

arc sine Weibull Poisson (ASWP) distributions (for more details, see Appendix B). Other sub-

models are the beta exponential (BE), beta Weibull (BW), beta Rayleigh (BR), exponentiated

Rayleigh (ER), exponentiated exponential (EE), exponentiated Weibull (EW), Rayleigh (R),

Weibull (W) and exponential (E) distributions. Several special distributions of the BWP model

are displayed in Figure 2.2.

2.3 Properties of the new distribution

2.3.1 Density function

We can derive a useful expansion for the BWP density function (see the proof in Appendix

A) given by

f(x) =
∞∑
r=0

r∑
j=0

vr,j g(x;α, β, λr,j), (2.7)

where λr,j = λ(r − j + 1) > 0 and

vr,j =
(−1)j (r + 1) vr ejλ (1− e−λr,j )

(r − j + 1) e−λr,j (1− eλ)r(eλ − 1)

(
r

j

)
.

Clearly,
∑∞

r=0

∑r
j=0 vr,j = 1. Equation (2.7) reveals that the BWP density function is a

linear combination of WP density functions. So, we can obtain some mathematical properties

of the BWP distribution directly from those WP properties.
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2.3.2 Cumulative function and quantiles

By integrating (2.7), the cdf F (x) becomes

F (x) =
∞∑
r=0

r∑
j=0

vr,j G(x;α, β, λr,j). (2.8)

Quantile functions are in widespread use in general statistics and often �nd representations

in terms of lookup tables for key percentiles. For some baseline distributions with closed-form

cdf, it is possible to obtain the quantile function in closed-form. However, for some other

distributions, the solution is not possible. The quantile function, say x = Q(z;α, β, λ, a, b) =

F−1(z;α, β, λ, a, b), of the BWP distribution follows by inverting (2.6) as

x = Q(z;α, β, λ, a, b) =

{
log
(

log[w + eλ(1− w)]
1
λ

)− 1
β

} 1
α

, (2.9)

where w = Qa,b(z) denotes the beta quantile function with parameters a and b.

Power series methods are at the heart of many aspects of applied mathematics and statistics.

We can obtain the moments of the beta G distribution using a power series expansion for the

quantile function x = QG(u) = G−1(u) of the baseline cdf G(x) with easily computed non-linear

recurrence equation for its coe�cients.

When the function Q(u) does not have a closed form expression, this function can usually

be written in terms of a power series expansion of a transformed variable v, which is usually of

the form v = p(qu− t)ρ for p, q, t and ρ known constants.

We can obtain a power series for Qa,b(z) in the Wolfram website given by

Qa,b(z) = v +
(b− 1)

(a+ 1)
v2 +

(b− 1)(a2 + 3ba− a+ 5b− 4)

2(a+ 1)2(a+ 2)
v3

+
v4(b− 1)

3(a+ 1)3(a+ 2)(a+ 3)
[a4 + (6b− 1)a3 + (b+ 2)(8b− 5)a2 +

(33b2 − 30b+ 4)a+ b(31b− 47) + 18] +O(v5), (2.10)

where v = [azB(a, b)]1/a for a > 0.

The simulation of the BWP distribution is easy. If W is a random variable having a beta

distribution with parameters a and b, then the random variable

X =

{
log
(

log[W + eλ(1−W )]
1
λ

)− 1
β

} 1
α

follows the BWP distribution.

2.3.3 Survival and hazard rate functions

The BWP survival function is given by

S(x;θ) = 1− F (x;θ) = 1− I(eλu−eλ)/(1−eλ)(a, b),
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where θ = (α, β, λ, a, b) is the vector of the model parameters. The failure rate function corre-

sponding to (2.5) reduces to

h(x;θ) =
f(x;θ)

S(x;θ)
=
c u xα−1eλu(eλ − eλu)a−1(eλu − 1)b−1

{1− I(eλu−eλ)/(1−eλ)(a, b)}
.
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Figure 2.3: Plots of the BWP hazard rate function for (a) α = 1, β = 2 and λ = 1; (b) α = 0.5, β = 2 and

λ = 1; (c) α = 1.5, β = 2 and λ = 1; (d) α = 0.5, β = 0.5 and λ = 1.

2.3.4 Moments

We hardly need to emphasize the necessity and importance of moments in any statistical

analysis especially in applied work. Some of the most important features and characteristics of a

distribution can be studied through moments (e.g., tendency, dispersion, skewness and kurtosis).
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An expression for the mgf of X can be obtained from (2.5) using the WP generating function.

Setting y = λr,je
−βxα in the de�nition of the mgf, we can express it as

MX(t) =
∞∑
r=0

r∑
j=0

vr,j (eλr,j − 1)−1

×
∫ λr,j

0
exp{t(−β−1[log(y)− log(λr,j)])

1/α + y}dy.

Using the power series of the exponential function, after some simpli�cation, we obtain

MX(t) =
∞∑

r,m,n=0

r∑
j=0

q(r,m, n, j) J(λr,j ,m, n) tn, (2.11)

where

J(λr,j ,m, n) =

∫ λr,j

0
ym
(
−β−1[log(y)− log(λr,j)]

)n
α dy

and

q(r,m, n, j) =
vr,j

(eλr,j − 1) m! n!
.

The last integral can be computed using the software Mathematica 8.0. Then,

MX(t) =
∞∑

r,m,n=0

r∑
j=0

$(r,m, n, j) Γ

(
α+ n

α

)
tn, (2.12)

where

$(r,m, n, j) = β−
n
α λm+1

r,j (1 +m)−
α+n
α q(r,m, n, j).

Equation (??) can be reduced to

MX(t) =

∞∑
n=0

δn t
n, (2.13)

where δn =
∑∞

m,r=0

∑r
j=0$(r,m, n, j) Γ

(
α+ n

α

)
, n = 0, 1, . . .

Hence, the nth ordinary moment of X, say µ′n = E(Xn), is simply given by µ′n = n! δn.

Further, the central moments (µn) and cumulants (κn) of X can be determined as

µn =
n∑
s=0

(−1)s
(
n

s

)
µ′s1 µ

′
n−s and κn = µ′n −

n−1∑
s=1

(
n− 1

s− 1

)
κs µ

′
n−s,

respectively, where κ1 = µ′1. Then, κ2 = µ′2 − µ′21 , κ3 = µ′3 − 3µ′2µ
′
1 + 2µ′31 , κ4 = µ′4 − 4µ′3µ

′
1 −

3µ′22 + 12µ′2µ
′2
1 − 6µ′41 , etc. The skewness γ1 = κ3/κ

3/2
2 and kurtosis γ2 = κ4/κ

2
2 follow from the

second, third and fourth cumulants.
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The nth descending factorial moment of X is

µ′(n) = E(X(n)) = E [X(X − 1)× · · · × (X − n+ 1)] =

n∑
r=0

s(n, r)µ′r,

where

s(n, r) =
1

r!

[
dr

dxr
x(n)

]
x=0

is the Stirling number of the �rst kind which counts the number of ways to permute a list of n

items into r cycles. So, we can obtain the factorial moments from the ordinary moments given

before.

The incomplete moments of X can be expressed in terms of the incomplete moments of the

WP distribution from equation (2.7). We obtain

mn(y) = E(Xn|X < y) =
∞∑
r=0

r∑
j=0

vr,j

∫ y

0
xng(x;α, β, λr,j)dx

=

∞∑
r=0

r∑
j=0

vr,j

∫ y

0
xnc u xα−1eλudx. (2.14)

Setting z = βxα and integrating by parts, we can write

mn(y) =
e−λyn

1− eλ

∞∑
r=0

r∑
j=0

vr,j

{
n

∞∑
s=0

λs

s!

[ ∞∑
m=0

(−1)msm(βyα)m

n+mα

]
− eλe

−βyα
}
.

The sum in m converges to (n+mα)−1e−sβy
α
. Then, the nth incomplete moment of X becomes

mn(y) =
∞∑
r=0

r∑
j=0

pr,j y
n

{ ∞∑
s=0

[
λse−sβy

α

s!(n+mα)

]
− yne−λ(1−e

−βyα )

1− eλ

}
, (2.15)

where pr,j =
n vr,j e−λ

1− eλ
.

We can derive the mean deviations of X about the mean µ′1 and about the median M in

terms of its �rst incomplete moment. They can be expressed as

δ1 = 2
[
µ′1 F (µ′1)−m1(µ

′
1)
]

and δ2 = µ′1 − 2m1(M), (2.16)

where µ′1 = E(X) and m1(q) =
∫ q
−∞ x f(x) dx. The quantity m1(q) is obtained from (2.15) with

n = 1 and the measures δ1 and δ2 in (5.21) are immediately determined from these formulae

with n = 1 by setting q = µ
′
1 and q = M , respectively. For a positive random variable X,

the Bonferroni and Lorenz curves are de�ned as B(π) = T1(q)/[πµ
′
1] and L(π) = T1(q)/µ

′
1,

respectively, where q = F−1(π) = Q(π) comes from the quantile function (2.9) for a given

probability π.
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The formulae derived along the paper can be easily handled in most symbolic computation

software platforms such as Maple, Mathematica and Matlab. These platforms have currently the

ability to deal with analytic expressions of formidable size and complexity. Established explicit

expressions to calculate statistical measures can be more e�cient than computing them directly

by numerical integration. The in�nity limit in the sums of these expressions can be substituted

by a large positive integer such as 20 or 30 for most practical purposes.

2.3.5 Order statistics

Order statistics make their appearance in many areas of statistical theory and practice.

Moments of order statistics play an important role in quality control and reliability, where some

predictors are often based on moments of the order statistics. We derive an explicit expression

for the density function of the ith order statistic Xi:n, say fi:n(x) (see Appendix C). For a beta-G

model de�ned from the parent functions g(x) and G(x), fi:n(x) can be expressed as an in�nite

linear combination of WP density functions

fi:n(x) =

∞∑
l=0

l∑
s=0

γi:n(l, s) g(x;α, β, λl,s), (2.17)

where λl,s = λ(l − s+ 1) and

γi:n(l, s) =

n−i∑
j=0

∞∑
r,k=0

(−1)l+s+j+k esλ
(
l
s

)(
n−i
j

)(
r+a−1
k

)(
k+b−1

l

)
(1− e−λl,s) ci+1−j,r

(l − s+ 1)(1− e−λ) (1− eλ)lB(a, b)i+jB(i, n− i+ 1)
.

An expression for the mgf of Xi:n can be obtained from (2.17) using the WP generating

function. Setting y = λl,se
−βxα in the de�nition of the generating function, we obtain

MXi:n(t) =
∞∑

l,m,n=0

l∑
s=0

$i(l,m, n, s) Γ

(
α+ n

α

)
tn, (2.18)

where

$i(l,m, n, s) =
β−

n
α λm+1

l,s (1 +m)−
α+n
α γi:n(l, s)

m! n! (eλl,s − 1)
.

Equation (2.18) can be reduced to MXi:n(t) =
∑∞

n=0 δi:n t
n, where

δi:n =
∞∑

m,l=0

l∑
s=0

$i(l,m, n, s) Γ

(
α+ n

α

)
, n = 0, 1, . . .

Hence, the sth ordinary moment of Xi:n becomes E(Xs
i:n) = s! δi:n.
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2.3.6 Rényi entropy

The entropy of a random variable X with density function f(x) is a measure of the uncer-

tainty variation. The Rényi entropy is de�ned as

IR(ρ) = (1− ρ)−1 log

{∫
f(x)ρdx

}
,

where ρ > 0 and ρ 6= 1. If a random variable X has the BWP distribution, we have

f(x)ρ =

[
g(x; θ)

B(a, b)

]ρ
G(x)(a−1)ρ [1−G(x)](b−1)ρ. (2.19)

By expanding the binomial term, the following expansion holds for any real a,

G(x)(a−1)ρ+j =
∞∑
r=0

sr[(a− 1)ρ+ j] G(x)r,

where sr[(a− 1)ρ+ j] =
∑∞

i=r(−1)r+i
(
(a−1)ρ+j

j

) (
i
r

)
. Equation (2.19) can be rewritten as

f(x)ρ =

[
g(x; θ)

B(a, b)

]ρ ∞∑
j=0

∞∑
r=0

qj,r G(x)r,

where qj,r = (−1)j
(
(b−1)ρ
j

)
sr[(a− 1)ρ+ j].

From equations (2.3) and (2.4), we obtain

f(x)ρ =

[
c u xα−1eλu

B(a, b)

]ρ ∞∑
j=0

∞∑
r=0

qj,r

(
eλu − eλ

1− eλ

)r
.

Then,

f(x)ρ =
∞∑
j=0

∞∑
r=0

r∑
t=0

pj,r,t u
ρ xα(ρ−

ρ
α
) eλ(ρ+r−t)u, (2.20)

where u = e−βx
α
and

pj,r,t =
qj,r(−1)t

(
r
t

)
eλtc ρ

[B(a, b)]ρ(1− eλ)r
.

Using the power series expansion eλ(ρ+r−t)u =
∑∞

s=0

[λ(ρ+ r − t)]s

s!
e−sβx

α
in (2.20) and

setting y = βsxα, the Rényi entropy reduces to

IR(ρ) = (1− ρ)−1 log


∞∑
j=0

φj(ρ) Γ

(
ρ+

1− ρ
α

) , (2.21)

where

φj(ρ) =

∞∑
r,s=0

r∑
t=0

pj,r,t λ
s(ρ+ r − t)s

α s! (βs)
1−ρ
α

+ρ
.
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2.4 Maximum likelihood estimation

Let x1, . . . , xn be a random sample of size n from the BWP(a, b, α, β, λ) distribution. The

log-likelihood function for the vector of parameters θ = (a, b, α, β, λ)T can be expressed as

l(θ) = n [log(αβλ)− λ− log[B(a, b)]− log(1− e−λ)− log(eλ − 1)a+b−2]

+(α− 1)
n∑
i=1

log(xi)− β
n∑
i=1

xαi + λ
n∑
i=1

ui

+(a− 1)
n∑
i=1

log(λ − eλui) + (b− 1)
n∑
i=1

log(eλui − 1),

where ui = exp(−βxαi ) is a transformed observation. The components of the score vector U(θ)

are given by

Uα(θ) =
n

α
+

n∑
i=1

log(xi)− β
n∑
i=1

xαi log(xi)− λβ
n∑
i=1

uix
α
i log(xi)

+λβ
n∑
i=1

uix
α
i eλui log(xi)

(
1− a

eλui − eλ
+

b− 1

1− eλui

)
,

Uβ(θ) =
n

β
−

n∑
i=1

xαi − λ
n∑
i=1

uix
α
i + λ

n∑
i=1

uix
α
i eλui

×
(

1− a
eλui − eλ

+
b− 1

1− eλui

)
,

Uλ(θ) =
n

λ
− n+

ne−λ

1− e−λ
− n(a+ b− 2)eλ log(1− eλ)a+b−2

(1− eλ) log(1− eλ)

+
n∑
i=1

ui + (a− 1)
n∑
i=1

uie
λui − eλ

eλui − eλ
− (b− 1)

×
n∑
i=1

uie
λui

1− eλui
,

Ua(θ) = −n [ψ(a)− ψ(a+ b)] + n log(eλ − 1)a+b−2 log[log(1− eλ)]

+
n∑
i=1

log(eλui − eλ),

Ub(θ) = −n [ψ(b)− ψ(a+ b)] + n log(eλ − 1)a+b−2 log[log(1− eλ)]

+
n∑
i=1

log(1− eλui),

where ψ(·) is the digamma function. The maximum likelihood estimates (MLEs) θ̂ = (â, b̂, α̂, β̂, λ̂)T

of θ = (a, b, α, β, λ)T are the simultaneous solutions of the non-linear equations: Ua(θ) =

Ub(θ) = Uα(θ) = Uβ(θ) = Uλ(θ) = 0. They can be solved numerically using iterative methods

such as a Newton-Raphson type algorithm.
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For interval estimation and hypothesis tests on the model parameters, we require the 5× 5

observed information matrix J = J(θ) given in Appendix D. Under conditions that are ful�lled

for parameters in the interior of the parameter space but not on the boundary, the asymptotic

distribution of
√
n(θ̂ − θ) is N5(0, I(θ)−1), where I(θ) is the expected information matrix. In

practice, we can replace I(θ) by the observed information matrix evaluated at θ̂, say J(θ̂).

We can construct approximate con�dence regions for the parameters based on the multivariate

normal N5(0, J(θ̂)−1) distribution.

Further, the likelihood ratio (LR) statistic can be used for comparing this distribution

with some of its sub-models. We can compute the maximum values of the unrestricted and

restricted log-likelihoods to construct the LR statistics for testing some sub-models of the

BWP distribution. For example, the test of H0 : a = b = 1 versus H1 : H0 is not true is

equivalent to compare the BWP and WP distributions and the LR statistic becomes w =

2{l(â, b̂, α̂, β̂, λ̂)− l(1, 1, α̃, β̃, λ̃)}, where â, b̂, α̂, β̂ and λ̂ are the MLEs underH1 and α̃, β̃ and λ̃

are the estimates under H0.

2.5 Application

Here, we present an application regarding the BWP model to the maintenance data with 46

observations reported on active repair times (hours) for an airborne communication transceiver

discussed by [2], [4] and [7]. We also �t a �ve-parameter beta Weibull geometric (BWG) dis-

tribution introduced by [6] to make a comparasion with the BWP model. The BWG density

function is given by

f(x;θ1) =
α(1− p)bβαxα−1e−b(βx)α(1− e−(βx)

α
)a−1(1− pe−(βx)α)−(a+b)

B(a, b)
,

where θ1 = (p, α, β, a, b) and x > 0.

The data are: 0.2, 0.3, 0.5, 0.5, 0.5, 0.5, 0.6, 0.6, 0.7, 0.7, 0.7, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0, 1.1,

1.3, 1.5, 1.5, 1.5, 1.5, 2.0, 2.0, 2.2, 2.5, 2.7, 3.0, 3.0, 3.3, 3.3, 4.0, 4.0, 4.5, 4.7, 5.0, 5.4, 5.4, 7.0,

7.5, 8.8, 9.0, 10.3, 22.0 e 24.5.

In Table 2.1, we list the MLEs of the model parameters and the bias-corrected Akaike

information criterion (BAIC), Bayesian information criterion (BIC) and the Hannan-Quinn in-

formation criterion (HQIC). We observe that the value of the BAIC criterion is smaller for the

BWP distribution as compared with those values of the other models. So, the new distribution

seems to be a very competitive model to these data.

The LR test statistic for testing H0 : a = b = 1 against H1 : H0 is not true is w = 7.08912

(p-value = 2.88 × 10−2), which is statistically signi�cant. Figure ?? displays the histogram of

the data and the plots of the �tted BWP, WP, Weibull and BWG models.
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Table 2.1: MLEs of the parameters and BAIC, BIC and HQIC statistics of the BWP, BWG,

WP and Weibull models for data of active repair times (hours) for an airborne communication

transceiver.

Model â b̂ α̂ β̂ λ̂ BAIC BIC HQIC

BWP 21.969 0.320 0.722 1.439 5.342 207.838 216.981 211.263

(58.799) (0.256) (0.390) (1.418) (2.232)

WP 1.101 0.092 3.522 210.927 216.413 212.982

(0.120) (0.052) (1.917)

Weibull 0.899 0.334 212.939 216.597 214.309

(0.096) (0.075)

Model â b̂ α̂ β̂ p̂ BAIC BIC HQIC

BWG 3.269 0.587 1.417 0.212 0.988 208.205 217.348 211.630

(4.599) (0.323) (0.642) (0.076) (0.017)

repair times for an airborne communication transceiver
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Figure 2.4: The density functions of the �tted BWP, WP, Weibull and BWG distributions.
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2.6 Concluding remarks

The Weibull distribution is commonly used to model the lifetime of a system. However, it

does not exhibit a bathtub-shaped failure rate function and thus it can not be used to model the

complete lifetime of a system. We de�ne a new lifetime model, called the beta Weibull Poisson

(BWP) distribution, which extends the Weibull Poisson (WP) distribution proposed by Lu and

Shi (2012), whose failure rate function can be increasing, decreasing and upside-down bathtub.

The BWP distribution is quite �exible to analyse positive data instead of some other special

models. Its density function can be expressed as a mixture of WP densities. We provide a mathe-

matical treatment of the distribution including explicit expressions for the density function,

generating function, ordinary and incomplete moments, Rényi entropy, order statistics and their

moments. The estimation of the model parameters is approached by the method of maximum

likelihood and the observed information matrix is determined. An application to real data reveals

that the BWP distribution can provide a better �t than other well-known lifetime models.

Appendix A - The BWP density function

An expansion for the beta-G cumulative function is given by [5] and follows from equation

(2.1) as

F (x) =
1

B(a, b)

∞∑
r=0

tr G(x)r, (2.22)

where tr =
∑∞

m=0wm sr(a + m) for any real a, wm = (−1)m(a + m)−1
(
b−1
m

)
and sr(a + m) =∑∞

j=r(−1)r+j
(
a+m
j

)(
j
r

)
. Di�erentiating equation (2.22), we obtain an expansion for the BWP

density function

f(x) =
∞∑
r=0

vr hr+1(x), (2.23)

where vr = tr+1/B(a, b). Note that hr+1(x) = (r + 1)G(x)rg(x) is the density function of the

exponentiated G with power parameter r+ 1, say exp-G(r+ 1), distribution. We can verify that∑∞
r=0 vr = 1. In fact,

∞∑
r=0

vr =
1

B(a, b)

∞∑
r=0

∞∑
m=0

wmsr(a) = 1

if and only if

∞∑
r=0

∞∑
m=0

wm sr(a) = B(a, b). (2.24)

But

B(a, b) =

∫ 1

0
ta−1(1− t)b−1dt =

∞∑
j=0

(
b− 1

j

)
(−1)j

a+ j
,
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and, consequently,

∞∑
r=0

∞∑
m=0

wm sr(a) =
∞∑
m=0

(−1)m

(a+m)

(
b− 1

m

) ∞∑
r=0

∞∑
j=r

(−1)r+j
(
a

j

)(
j

r

)
= B(a, b)

Consider the expressions of g(x) and G(x) from equations (2.3) and (2.4), respectively.

Replacing them in (2.23), we obtain an expansion for the BWP density function

f(x) = c xα−1 u eλu
∞∑
r=0

vr(r + 1)

(
eλu − eλ

1− eλ

)r
. (2.25)

Hence, from this equation, the BWP density function can be expressed as a linear combina-

tion of WP density functions.

Appendix B - Special cases of the BWP distribution

Setting b = 1 in equation (2.5), we obtain the EWP density function

f(x) = c u xα−1eλu
(

eλu − eλ

1− eλ

)a−1
, c =

αβλ

B(a, 1)(1− e−λ)
.

Using equation G(x)α =
∑∞

k=0 sk(α)G(x)k, we can write

f(x) = c u xα−1eλu
∞∑
k=0

sk(a− 1)

(
eλu − eλ

1− eλ

)k

= c u xα−1eλu
∞∑
k=0

sk(a− 1)

(1− eλ)k

k∑
r=0

(−1)r
(
k

r

)
eλu(k−r)eλr. (2.26)

After some algebra, we obtain from (2.26)

f(x) =
∞∑
k=0

k∑
r=0

vk,r g(x;α, β, λk,r), (2.27)

where λk,r = λ(k − r + 1) and

vk,r =
(−1)r

(
k
r

)
B(a, b) sk(a− 1) eλr(1− e−λk,r)

(k − r + 1)B(a, 1) (1− eλ)k(1− e−λ)
.

Equation (2.27) reveals that the density function f(x) is a linear combination of the WP

densities.

From equation (2.5) with a = b = 1/2, we obtain

f(x;θ) =
c1x

α−1ueλu

π

(
eλu − eλ

1− eλ

)−1/2(
1− eλu − eλ

1− eλ

)−1/2
,

where c1 =
αβλe−λ(eλ − 1)

(1− e−λ)
and u = e−βx

α
. Thus,
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f(x;θ) =
c1x

α−1ueλu

π

√(
eλu − eλ

1− eλ

)(
1− eλu

1− eλ

)
If λ approaches to 0, then

lim
λ→0

f(x;θ) = lim
λ→0

c1x
α−1ueλu

π

√(
eλu − eλ

1− eλ

)(
1− eλu

1− eλ

) =
αβxα−1u

π
√
u(1− u)

So, the BWP distribution reduces as a limiting case to a two-parameter arcsine Weibull-

Poisson distribution.

Appendix C - Expansion for the Density Function of the order

statistics

The density function fi:n(x) of the ith order statistic, say Xi:n, for i = 1, 2, . . . , n, from data

values X1, . . . , Xn having the beta-G distribution can be obtained from (2.2) as

fi:n(x) =
g(x) G(x)a−1{1−G(x)}b−1

B(a, b) B(i, n− i+ 1)

n−i∑
j=0

(−1)j
(
n− i
j

)
F (x)i+j−1. (2.28)

By application of an equation in Section 0.314 of [9] for a power series raised to any j positive

integer ( ∞∑
i=0

ai u
i

)j
=

∞∑
i=0

cj,i u
i, (2.29)

where the coe�cients cj,i (for i = 1, 2, . . .) can be obtained from the recurrence equation

cj,i = (ia0)
−1

i∑
m=1

[m(j + 1)− i] am cj,i−m, (2.30)

with cj,0 = aj0. The coe�cient cj,i comes from cj,0, . . . , cj,i−1 and then from a0, . . . , ai. The

coe�cients cj,i can be given explicitly in terms of the quantities a′is, although it is not necessary

for programming numerically our expansions in any algebraic or numerical software.

For a > 0 real non-integer, we have

F (x)i+j−1 =

(
1

B(a, b)

∞∑
r=0

tr(a, b)G(x)r

)i+j−1

=

(
1

B(a, b)

)i+j−1( ∞∑
r=0

trG(x)r

)i+j−1
.

We now use equations (2.29)-(4.33)
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fi:n(x) =

n−i∑
j=0

(−1)j
g(x)G(x)a−1[(1−G(x)]b−1

B(a, b)i+jB(i, n− i+ 1)

(
n− i
j

) ∞∑
r=0

ci+j−1,rG(x)r

=

n−i∑
j=0

∞∑
r=0

(−1)j ci+j−1,r

(
n− i
j

)
g(x)[(1−G(x)]b−1G(x)r+a−1

B(a, b)i+jB(i, n− i+ 1)
, (2.31)

where

ci+j−1,r = (rt0)
−1

r∑
m=1

((i+ j)m− r)tmci+j−1,r−m. (2.32)

Equation (2.31) can be written as

fi:n(x) =
n−i∑
j=0

∞∑
r=0

(−1)jci+j−1,r

(
n− i
j

)
g(x)[(1−G(x)]b−1[1− (1−G(x))]r+a−1

B(a, b)i+jB(i, n− i+ 1)
.

For any q > 0 real, we have

G(x)q = [1− {1−G(x)}]q =
∞∑
k=0

(−1)k
(
q

k

)
[1−G(x)]k, (2.33)

and then

fi:n(x) =
n−i∑
j=0

∞∑
r=0

g(x)
∞∑
k=0

(−1)k
(
r + a− 1

k

)
[1−G(x)]k+b−1.

In the same way, using equation (2.33), it follows that

fi:n(x) =
n−i∑
j=0

∞∑
r,k,l=0

(−1)j+k+l
(
n−i
j

)(
r+a−1
k

)(
k+b−1

l

)
ci+j−1,r

B(a, b)i+j B(i, n− i+ 1)
g(x)G(x)l.

Replacing equations (2.3) and (2.4) in the above equation, fi:n(x) can be expressed as an

in�nite linear combination of WP density functions

fi:n(x) =
n−i∑
j=0

∞∑
r,k,l=0

(−1)j+k+l
(
n−i
j

)(
r+a−1
k

)(
k+b−1

l

)
ci+j−1,r

B(a, b)i+jB(i, n− i+ 1)

[
αβλe−λ

1− e−λ
u xα−1 eλu

] [
eλu − eλ

1− eλ

]l

=

n−i∑
j=0

∞∑
r,k,l=0

(−1)j+k+l
(
n−i
j

)(
r+a−1
k

)(
k+b−1

l

)
ci+j−1,r

B(a, b)i+j B(i, n− i+ 1)(1− eλ)l

[
αβλe−λ

1− e−λ
u xα−1 eλu

]

×
l∑

s=0

(−1)s
(
l

s

)
(eλu)l−sesλ. (2.34)

Equation (2.34) reduces to
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fi:n(x) =

∞∑
l=0

l∑
s=0

γi:n(l, s) g(x;α, β, λl,s), (2.35)

where λl,s = λ(l − s+ 1) and

γi:n(l, s) =
n−i∑
j=0

∞∑
r,k=0

(−1)l+s+j+k esλ
(
l
s

)(
n−i
j

)(
r+a−1
k

)(
k+b−1

l

)
(1− e−λl,s) ci+1−j,r

(l − s+ 1)(1− e−λ)(1− eλ)lB(a, b)i+j B(i, n− i+ 1)
.

Appendix D - Information Matrix

Let ui = exp(−βxαi ). The elements of the observed information matrix J(θ) for the param-

eters (α, β, λ, a, b) are

Jαα = − n

α2
− β

n∑
i=1

xαi log2(xi)− λβ
n∑
i=1

uix
α
i log2(xi) + λβ2

n∑
i=1

x2αi ui log2(xi)

+(a− 1)
n∑
i=1

[
λβuix

α
i eλui log2(xi)

eλui − eλ

]
ψ(xi)

+(b− 1)
n∑
i=1

[
λβuix

α
i eλui log2(xi)

1− eλui

]
ϕ(xi),

Jαβ = Jβα = −
n∑
i=1

xαi log(xi)− λ
n∑
i=1

uix
α
i log(xi) + λβ

n∑
i=1

uix
2α
i log(xi)

+(a− 1)
n∑
i=1

[
λuix

α
i eλui log(xi)

eλui − eλ

]
ψ(xi)

+(b− 1)
n∑
i=1

[
λuix

α
i eλui log(xi)

1− eλui

]
ϕ(xi),

where

ψ(xi) =

(
−1 + βxαi + λβuix

α
i −

λβuix
α
i eλui

eλui − eλ

)
and

ϕ(xi) =

(
1− βxαi − λβuixαi −

λβuix
α
i eλui

1− eλui

)
.

Further,

Jαλ = Jλα = −β
n∑
i=1

uix
α
i log(xi) + (a− 1)

n∑
i=1

ρ(xi)

[
− 1− λui

+
λ(uie

λui − eλ)

eλui − eλ

]
+ (b− 1)

n∑
i=1

φ(xi)

(
1 + λui +

λuie
λui

1− eλui

)
,
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Jαa = Jaα = −
n∑
i=1

λρ(xi), Jαb = Jbα =

n∑
i=1

λφ(xi),

where ρ(xi) =
βuix

α
i eλui log(xi)

eλui − eλ
and φ(xi) =

βuix
α
i eλui log(xi)

1− eλui
,

Jββ = − n

β2
+ λ

n∑
i=1

uix
2α
i + (a− 1)

n∑
i=1

(
λui(x

α
i )2eλui

eλui − eλ

)

×
(

1 + λui −
λuie

λui

eλui − eλ

)
+ (b− 1)

n∑
i=1

(
λuix

2α
i eλui

1− eλui

)
×
(
−1− λui −

λuie
λui

1− eλui

)
,

Jβλ = Jλβ = −
n∑
i=1

uix
α
i + (a− 1)

n∑
i=1

γ(xi)

[
−1− λui +

λ(uie
λui − eλ)

eλui − eλ

]

+(b− 1)
n∑
i=1

δ(xi)

(
1 + λui +

λuie
λui

1− eλui

)
,

Jβa = Jaβ = −
n∑
i=1

λγ(xi), Jβb = Jbβ =

n∑
i=1

λδ(xi),

γ(xi) =
uix

α
i eλui

eλui − eλ
and δ(xi) =

uix
α
i eλui

1− eλui
. Furthermore,

Jλλ = − n

λ2
+

ne−λ

1− e−λ
+

ne−2λ

(1− e−λ)2
− n(a+ b− 2)eλ log(1− eλ)a+b−2

1− eλ log(1− eλ)

×
[
1− (a+ b− 2)eλ

(1− eλ) log(1− eλ)
+

eλ

1− eλ
+

eλ

(1− eλ) log(1− eλ)

]
+(a− 1)

n∑
i=1

[
uie

λui − eλ

eλui − eλ
− (uie

λui − eλ)2

(eλui − eλ)2

]

−(b− 1)

n∑
i=1

[
u2i e

λui

1− eλui
+

u2i (e
λui)2

(1− eλui)2

]
,

Jλa = Jaλ =

[
neλ log(1− eλ)a+b−2

(1− eλ) log(1− eλ)

]{
1 + (a+ b− 2) log[log(1− eλ)]

}
+

n∑
i=1

(
uie

λui − eλ

eλui − eλ

)
,

Jλb = Jbλ =

[
neλ log(1− eλ)a+b−2

(1− eλ) log(1− eλ)

]{
1 + (a+ b− 2) log[log(1− eλ)]

}
+

n∑
i=1

(
uie

λui

1− eλui

)
,
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Jaa = −nB̈a(a, b)
B(a, b)

+
n
[
Ḃa(a, b)

]2
B(a, b)

− n log(1− eλ)a+b−2

× log2[log(1− eλ)],

Jab = Jba = −nB̈(a, b)

B(a, b)
+
nḂa(a, b)Ḃb(a, b)

[B(a, b)]2
− n log(1− eλ)a+b−2

× log2[log(1− eλ)],

Jbb = −nB̈b(a, b)
B(a, b)

+
n
[
Ḃb(a, b)

]2
[B(a, b)]2

− n log(1− eλ)a+b−2

× log2[log(1− eλ)],

where Ḃa(a, b) =
∂

∂a
B(a, b) , Ḃb(a, b) =

∂

∂b
B(a, b) and B̈(a, b) =

∂2

∂b∂a
B(a, b).
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CHAPTER 3

The Weibull Generalized Poisson distribution

Resumo

Em Estatística, costuma-se investigar distribuições mais �exíveis. Uma nova distribuição con-

tínua é estudada pela composição das distribuições Poisson generalizada e Weibull. Considerar a

distribuição do tempo de vida de um sistema em série com um número aleatório Z componentes.

Tomando a Poisson generalizada para a distribuição de Z, nós de�nimos a distribuição Weibull

Poisson generalizada compondo as duas distribuições. Várias propriedades matemáticas do

modelo proposto são investigadas, incluíndo expressões explícitas para os momentos ordinários

e incompletos, função geradora, desvios médios, dois tipos de entropias e estatísticas de ordem.

Discutimos estimação do modelo de parâmetros por máxima verossimilhança e fornecemos uma

aplicação a uma conjunto de dados reais. Esperamos que a proposta de distribuição sirva como

um modelo alternativo para outras distribuições para modelar dados reais positivos em muitas

áreas.

Palavras-chave: Distribuição Poisson generalizada; distribuição Weibull; matriz de informação;

máxima verossimilhança.

Abstract

In statistics, it is customary to seek more �exible distributions. A new continuous distribu-

tion is studied by compounding the generalized Poisson and Weibull distributions. We consider

the distribution of the lifetime of a series system with a random number Z of components.

Taking the generalized Poisson for the distribution of Z, we de�ne the Weibull generalized Pois-

son distribution by compounding the two distributions. Various mathematical properties of the

proposed model are investigated, including explicit expressions for the ordinary and incomplete

moments, generating function, mean deviations, two types of entropies and order statistics. We

discuss estimation of the model parameters by maximum likelihood and provide an application
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to a real data set. We hope that the proposed distribution will serve as an alternative model to

other distributions for modeling positive real data in many areas.

Keywords: Generalized Poisson distribution; Information matrix; Maximum likelihood; Weibull

distribution.

3.1 Introduction

Many distributions lack biological motivation for modeling lifetime data such as cancer recur-

rence times. Adding new parameters to classical distributions in order to obtain more �exibility

has been investigated by several authors in the last twenty years or so.

Let Y1, . . . , YZ be a random sample of unknown size Z from a distribution with survival

function G(t), t > 0. In realibility analysis, each of the Yi's denotes the lifetime of a subject

(component). For a parallel system, we observe max{Y1, . . . , YZ}, whereas for a series system,

we observe min{Y1, . . . , YZ}. In reliability and survival analysis, it is almost impossible to have

a �xed sample size because of missing observations. In such cases, the sample size should be

considered a random variable.

In this paper, we assume that Z has the generalized Poisson (GP) distribution which is an

extension of the Poisson distribution with one additional parameter α. Various distributions

for Z have been proposed in the literature. Cheng et al. (2003), Cooner (2007), Kus (2007)

and Karlis (2009) considered the Poisson distribution for Z. Morais and Barreto-Souza (2011)

took the power series distribution for Z, which is a more general discrete distribution. We aim

to generalize (Gupta et al. 2013)'s results who proposed the exponential generalized Poisson

(EGP) distribution. We compare this distribution with our model in terms of model �tting.

So, we introduce a new four-parameter lifetime distribution with strong biological motivation.

As an example, consider that the unknown number, say Z, of carcinogenic cells for an individual

left active after an initial treatment follows the GP distribution and let Yi (for i ≥ 1) be the

time spent for the ith carcinogenic cell to produce a detectable cancer mass. If {Yi}i≥1 is a

sequence of independent and identically distributed (iid) random variables independent of Z

having the Weibull distribution, then the random variable X=min{Y1, . . . , YZ} denoting the

cancer recurrence time can be modeled by the Weibull generalized Poisson (WGP) distribution.

The rest of the paper is organized as follows. In Section 3.2, we de�ne the new distribution

and some special cases. We demonstrate that the WGP density function is a linear combination

of Weibull densities and provide explicit expressions for the quantile function, ordinary and

incomplete moments, moment generating function (mgf), mean deviations, Shannon entropy,

Rényi entropy, reliability and moments of order statistics in Sections 3.3 to 3.6. The estimation

of the model parameters using maximum likelihood is discussed in Section 3.7. An application

to a real data set is performed in Section 3.8. Finally, some conclusions are addressed in Section

3.9.
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3.2 The WGP distribution

Let Y1, . . . , YZ be a random sample from the Weibull distribution with probability density

function (pdf) and survival function given by g(y; a, b) = a b ya−1 exp(−b ya) (for y, a, b > 0)

and G(y; a, b) = exp(−b ya), respectively. Let Z be a random variable having a zero-truncated

generalized Poisson (ZTGP) distribution with probability mass function (pmf)

P (z;λ, α) =
λ(λ+ αz)z−1e−λ−αz

(1− e−λ)Γ(z + 1)
,

where z ∈ {1, 2, . . .}, λ > 0, max(−1,−λ/m) ≤ α ≤ 1, m ≥ 4 is the largest positive integer

for which λ + mα > 0 when α < 0 and Γ(·) is the gamma function, see Consul and Jain

(1973). The ZTGP distribution reduces to the zero-truncated Poisson when α = 0. We assume

that the random variables Z and the Yi's are independent. Let X =min(Y1, . . . , YZ). Then,

g(y|z; a, b) = a b z ya−1 exp(−b z ya) is the conditional WGP density function.

[1] expressed the mgf MZ(t) of the GP distribution in terms of the Lambert W function as

MZ(t) = exp

{
−λ
α

[
W (−αe−α+t) + α

]}
,

where α 6= 0 and W (x) is the Lambert W function de�ned by

W (x) eW (x) = x, (3.1)

for x > −e−1. For −e−1 ≤ x < 0, there are two possible values of W (x). We denote the branch

satisfying −1 ≤ W (x) by W0(x) and the branch satisfying W (x) ≤ −1 by W−1(x). W0(x) is

referred to as the principal branch of the Lambert W function. Here, we denote W0(x) as W (x).

The history of this function goes back to J. H. Lambert (1728-1777).

The Lambert W function admits the power series

W (x) =
∞∑
n=1

(−1)n−1nn−2

(n− 1)!
xn. (3.2)

Another elementary property of the Lambert W function is provided by its derivative. After

some algebra, we obtain the following formula for the derivative of W

W ′(x) =
W (x)

x[1 +W (x)]
=

1

[1 +W (x)] exp[W (x)]
, ifx 6= 0.

Other Lambert W properties have been studied by Corless et al. (1996).

Gupta et al. (2013) derived the mgf M∗Z(t) of the ZTGP distribution as

M∗Z(t) =
Mz(t)− P (Z = 0)

1− P (Z = 0)

=
exp

{
−λ
α

[
W (−αe−α+t) + α

]}
− e−λ

1− e−λ
.

Thus, the unconditional WGP survival function reduces to
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S(x;θ) =
∞∑
z=1

[P (Y > x|Z = z)]zP (Z = z)

=

∞∑
z=1

(e−bx
a
)zP (Z = z) = M∗Z(−bxa)

=
exp

{
−λ
α

[
W (−α e−α−bx

a
) + α

]}
− e−λ

1− e−λ
,

where θ = (a, b, λ, α), x > 0, a, b > 0, λ > 0 and 0 < α < 1. We can verify that the expression

−dS(x)/dx becomes a proper density function when has a normalizing constant given by

C =
eλ − 1

e−
λ
α
W (−αe−α) − 1

.

Thus, the corresponding density function of X reduces to

f(x;θ) =
λ a b xa−1 exp

{
−(λα + 1)W (ψ)− α− b xa

}
[1 +W (ψ)] [e−

λ
α
W (−αe−α) − 1]

, (3.3)

where ψ(x) = −α e−α−bx
a
. We can verify using theMathematica software that

∫∞
0 f(x;θ)dx = 1,

i.e., f(x;θ) is a proper density function with support R+. Hereafter, a random variable X with

pdf (3.3) is denoted by X ∼ WGP (a, b, λ, α). To the best of our knowledge the density (3.3)

is a new result.

The cumulative distribution function (cdf), obtained from the normalized survival function,

and the hazard rate function (hrf) of X are given by

F (x;θ) =
e−

λ
α
W (−αe−α) − e−

λ
α
[W (ψ)]

e−
λ
α
W (−αe−α) − 1

(3.4)

and

h(x;θ) =
λ a b xa−1 exp

{
−λ
α [W (ψ)− α− b xa]

}
[1 +W (ψ)] [e−

λ
α
W (ψ) − 1]

,

respectively.

We are motivated to study the WGP distribution because of the importance of the Weibull

distribution and the fact that the current generalization provides means of its continuous ex-

tension to still more complex situations. A second positive point of the current generalization

is that the Weibull distribution is a basic exemplar of the new distribution when α and λ tend

to zero.

The exponential generalized Poisson (EGP) distribution is obtained from (3.3) when a = 1.

In addition, for α→ 0, we have the exponential Poisson (EP) distribution, and letting λ→ 0+,

we obtain the exponential distribution. On the other hand, if a = 2, the Rayleigh generalized

Poisson (RGP) distribution arises as a special case. Further, for α → 0, we have the Rayleigh

Poisson (RP) distribution, and adding λ → 0+, we obtain the Rayleigh distribution. The

Weibull Poisson (WP) distribution comes as the limiting distribution of the WGP distribution

when α→ 0+. In addition, if λ→ 0+, we obtain the Weibull (W) distribution.
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Figure 3.1: Relationships of the WGP sub-models.

3.3 Properties of the new distribution

3.3.1 A useful representation

Henceforth, we use an equation by (Gradshteyn and Ryzhik 2000) for a power series raised

to a positive integer n

( ∞∑
i=0

ai u
i

)n
=
∞∑
i=0

cn,i u
i, (3.5)

where the coe�cients cn,i (for i = 1, 2, . . .) are determined from the recurrence equation

cn,i = (i a0)
−1

i∑
m=1

[m(n+ 1)− i] am cn,i−m, i ≥ 1 (3.6)

and cn,0 = an0 .

We can derive a useful expansion for the WGP survival function given by

S(x;θ) =

∞∑
k,i=0

ωk,i G(x; a, bk,i), (3.7)

where bk,i = (k + i+ 1) b > 0 and
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Figure 3.2: Plots of the WGP density function for: (a) a = 0.5, b = 0.5 and λ = 1, (b) a = 2, b = 1 and

α = 0.6, (c) b = 1, λ = 2 and α = 0.6, (d) a = 1.5, λ = 2 and α = 0.6.

ωk,i =
(−1)i λk+1 αi dk+1,i e−α(k+i+1)

K (k + 1)!
.

The algebraic details that lead to (3.7) and the quantities K and dk+1,i are given in Appendix

??.

Equation (3.7) reveals that the WGP survival function is a linear combination of Weibull

survival functions. Clearly,

F (x;θ) =
∞∑

k,i=0

ωk,i G(x; a, bk,i). (3.8)

The corresponding expansion for the WGP density function becomes
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Figure 3.3: Plots of the WGP hrf for: (a) λ = 1, α = 0.5 and b = 1.5; (b) λ = 1, a = 2 and b = 1.5; (c) λ = 1,

α = 0.5 and a = 2; (d) α = 0.9, a = 2 and b = 3.

f(x;θ) = −dS(x)

dx
=

∞∑
k,i=0

ωk,i g(x; a, bk,i). (3.9)

Equation (3.9) gives the WGP density function as a linear combination of Weibull density

functions. It is the main result of this section. Thus, some mathematical properties of the WGP

distribution can be derived directly from those Weibull properties.
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3.3.2 Moments

The nth moment of a Weibull random variable Zk,i with scale a and shape bk,i is E(Znk,i) =

b
−n/a
k,i Γ(n/a+ 1). From equation (3.9), we obtain

µ′n = E(Xn) = Γ
(n
a

+ 1
) ∞∑
k,i=0

ωk,i b
−n/a
k,i .

The central moments (µn) and cumulants (κn) of X can be determined as

µn =
n∑
s=0

(−1)s
(
n

s

)
µ′s1 µ

′
n−s and κn = µ′n −

n−1∑
s=1

(
n− 1

s− 1

)
κs µ

′
n−s,

respectively, where κ1 = µ′1. Then, κ2 = µ′2 − µ′21 , κ3 = µ′3 − 3µ′2µ
′
1 + 2µ′31 , κ4 = µ′4 − 4µ′3µ

′
1 −

3µ′22 + 12µ′2µ
′2
1 − 6µ′41 , etc. The skewness γ1 = κ3/κ

3/2
2 and kurtosis γ2 = κ4/κ

2
2 can be obtained

from the second, third and fourth cumulants. Plots of the skewness and kurtosis of the WGP

distribution for some choices of a, b and α as function of λ are displayed in Figure 3.4. We take

a = 2, b = 1 and a = 1.5, b = 2 for the plots of the skewness and kurtosis, respectively. These

plots reveal that the shapes of the proposed distribution have strong dependence on the values

of α and λ.
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Figure 3.4: Skewness and kurtosis measures of the WGP distribution for some parameter values.

For empirical purposes, the shape of many distributions can be usefully described by what we

call the incomplete moments. These moments play an important role for measuring inequality,

for example, income quantiles and Lorenz and Bonferroni curves. The incomplete moments of X

can be expressed in terms of the incomplete moments of the Weibull distribution from equation

(3.9). We can write

mn(y) = E(Xn|X < y) =

∞∑
k,i=0

ωk,i

∫ y

0
xna bk,i x

a−1e−bk,i xadx.
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Using the power series for the exponential function and, after some simpli�cation, we have

mn(y) =
∞∑

k,i,j=0

δk,i,j y
a(j+1)+n, (3.10)

where

δk,i,j =
(−1)j aωk,i b

j+1
k,i

[a(j + 1) + n] j!
.

The symbolic computational plataforms Maple, Mathematica and Matlab make it possible

to automate the formulae derived in this paper since they have currently the ability to deal

with analytic recurrence equations and sums of formidable size and complexity. In practical

terms, we can substitute ∞ in the sums by a large number such as 30 or 50 for most practical

applications. Establishing scripts for the closed-form expressions given throughout the paper

can be more accurate computationally than other integral representations which can be prone

to rounding o� errors among others.

3.3.3 Quantile function

The quantile function of X, say Q(u;λ, α, a, b) = F−1(u;λ, α, a, b), follows by inverting (3.4)

as

Q(u) =

{
−α
b
− 1

b
log

[
− 1

α
W−1

{
−α
λ

log [1 +K(1− u)]
}]}1/a

.

The LambertW (x) function is de�ned as the inverse function of y exp(y) = x and the solution

is given by y = W (x). Then, we can de�ne the inverse function W−1(y) = x = y exp(y).

We can rewrite the quantile function as

Q(u) =

{
−1

b

[
log

(
−M
α

)
+ α+M

]}1/a

, (3.11)

where

M = −α
λ

log[1 +K(1− u)].

Quantiles of interest forX can be obtained from the last equation by substituting appropriate

values for u. In particular, the median of X comes when u = 0.5.

3.3.4 Generating Function

We provide two representations for the mgf of X, say M(t) = E(etX). The algebraic de-

velopments follow closely the works by (Cheng et al. 2003), (Nadarajah and Gupta 2007) and
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(Cordeiro et al. 2010). We can write M(t) from (3.9) as

M(t) = a
∞∑

k,i=0

ωk,i bk,i Lk(t), (3.12)

where

Lk(t) =

∫ ∞
0

xa−1 exp[t x− bk,i xa]dx,

and ωk,i and bk,i are de�ned in Section 3.1.

A �rst representation for M(t) is based on the Wright generalized hypergeometric function

(Wright 1935) de�ned by

pΨq

[ (
α1, A1

)
, · · · ,

(
αp, Ap

)(
β1, B1

)
, · · · ,

(
βq, Bq)

; x

]
=

∞∑
n=0

p∏
j=1

Γ(αj +Aj n)

q∏
j=1

Γ(βj +Bj n)

xn

n!
.

The Wright function exists if 1 +
∑q

j=1Bj −
∑p

j=1Aj > 0. We have

Lk(t) =

∞∑
m=0

tm

m!

∫ ∞
0

xm+a−1 exp (−bk,i xa) dx =
1

a bk,i

∞∑
m=0

(t/b ak,i)
m

m!
Γ
(m
a

+ 1
)

=
1

a bk,i
1Ψ0

[ (
1, a−1

)
−

;
t

b ak,i

]
(3.13)

provided that a > 1. Combining (3.12) and (3.13), the mgf of X (for a > 1) reduces to

M(t) =

∞∑
k,i=0

ωk,i 1Ψ0

[ (
1, a−1

)
−

;
t

b ak,i

]
.

A second representation for M(t) follows from the Meijer G-function de�ned by

Gm,np,q

(
x

∣∣∣∣∣ a1, . . . , apb1, . . . , bq

)
=

1

2πi

∫
L

m∏
j=1

Γ (bj + t)

n∏
j=1

Γ (1− aj − t)

p∏
j=n+1

Γ (aj + t)

q∏
j=m+1

Γ (1− bj − t)
x−tdt,

where i =
√
−1 is the complex unit and L denotes an integration path (Gradshteyn and Ryzhik

2000, Section 9.3). The Meijer G-function contains many integrals with elementary and special

functions. Some of these integrals are given by (Prudnikov et al. 1986).

For an arbitrary g(·) function, we can write

exp[−g(x)] = G1,0
0,1

(
g(x)

∣∣∣ −
0

)
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and then

Lk(t) =

∫ ∞
0

etx xa−1G1,0
0,1

(
bk,ix

a
∣∣∣ −

0

)
dx.

We assume that a = p/q, where p ≥ 1 and q ≥ 1 are co-prime integers. Using equation (2.24.1.1)

in (Prudnikov et al. 1986), we have (for t < 0)

Lj(t) =
pa−1/2(−t)−a

(2π)(p+q)/2−1
Gp,qq,p

(
(b ak,i a)qpp

(−t)pqq

∣∣∣∣ 1−a
p , 2−ap , . , p−ap
0, 1q , . ,

q−1
q

)
.

Using (3.12) and the last equation, we obtain (for t < 0)

M(t) =
a pa−1/2 (−t)−a

(2π)(p+q)/2−1

∞∑
k,i=0

ωk,i bk,iG
p,q
q,p

(
(b ak,i a)qpp

(−t)pqq

∣∣∣∣ 1−a
p , 2−ap , . , p−ap
0, 1q , . ,

q−1
q

)
.

Here, the condition a = p/q in the last equation is not very restrictive since every real number

can be approximated by a rational number. For irrational a, an approximation of vanishingly

small error can be made using increasingly accurate rational approximations of a.

3.3.5 Mean deviations

The mean deviations about the mean (δ1(X) = E(|X−µ′1|)) and about the median (δ2(X) =

E(|X −M |)) of X can be expressed as

δ1(X) = 2µ′1 F
(
µ′1
)
− 2m1

(
µ′1
)

and δ2(X) = µ′1 − 2m1(M),

respectively, where µ′1 = E(X), M = Median(X) is the median computed from (3.11) with

u = 1/2, F (µ′1) is easily calculated from the cdf (3.4) and m1(z) =
∫ z
−∞ xf(x)dx is the �rst

incomplete moment given by (3.10) with n = 1.

The Lorenz and Bonferroni curves are important applications of the mean deviations in �elds

like economics, reliability, demography insurance and medicine. They are de�ned for a given

probability π by B(π) = m1(q)/(πµ
′
1) and L(π) = m1(q)/µ

′
1 respectively, where µ

′
1 = E(X) and

q = Q(π) is given by (3.11). The Bonferroni and Lorenz curves for the WGP distribution as

functions of π are readily calculated from (3.10) for n = 1. They are plotted for some parameter

values in Figure 3.5.

3.4 Entropies

An entropy is a measure of variation or uncertainty of a random variable X. Two popular

entropy measures are the Rényi and Shannon entropies (Rényi 1961) and (Shannon 1951). The

Rényi entropy of a random variable with pdf f(·) is de�ned by (for δ > 0 and δ 6= 1)

IR(δ) =
1

1− δ
log

(∫ ∞
0

f δ(x)dx

)
.
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Figure 3.5: Plots of B(π) and L(π) versus π for the WGP distribution. Here, b = 3, α = 0.5

and λ = 2 for B(π) and b = 1, α = 0.5 and λ = 1.5 for L(π).

The Shannon entropy of a random variable X is de�ned by E{− log[f(X)]}. It is the particular
case of the Rényi entropy when δ goes to one.

Here, we derive explicit expressions for the Rényi and Shannon entropies for the WGP

distribution. From equation (3.3), we write

IR(δ) =
1

1− δ
log

{∫ ∞
0

[
Lxδ(a−1) e−δb x

a
e−δ(

λ
α
+1)W (ψ)

[1 +W (ψ)]δ

]
dx

}
,

where L =
(
λa b e−α

K

)δ
and the quantity K is de�ned in Appendix ??. Using the expansion in

Taylor series for the exponential function, we obtain

IR(δ) =
1

1− δ
log

{∫ ∞
0

L
∞∑

j,t=0

(−1)j+t δj+t bt (λ+ α)j

αj j! t!

× W (ψ)j [1 +W (ψ)]−δ xa(δ+t)−δdx

}
. (3.14)

Now, we use the expansion

(x+ a)−k =

∞∑
n=0

(
−k
n

)
xn a−k−n,

where k is any real number, |x| < a and
(−k
n

)
is an extended binomial coe�cient (for any real

value of k and positive integer n), given by

54



(
−k
n

)
= (−1)n

(
k + n− 1

n

)
.

Since |W (ψ)| < 1, equation (3.14) reduces to

IR(δ) =
1

1− δ
log

{∫ ∞
0

L
∞∑

j,t=0

(−1)j+t δj+t bt (λ+ α)j

αj j! t!

×
∞∑
n=0

W (ψ)n+j xa(δ+t)−δdx

}
,

Using equations (3.2), (3.5) and (3.6), we obtain

IR(δ) =
1

1− δ
log

{
L

∞∑
j,t,n,i=0

(−1)j+t δj+t bt (λ+ α)j
(−δ
n

)
dn+j,i

αj j! t!

×
∫ ∞
0

ψj+n+i xa(δ+t)−δdx

}
,

where the constant dn+j,i is de�ned by dn+j,i = (i q0)
−1∑i

m=1[m(n + j + 1) − i] qm dn+j,i−m,
with qi = (−1)i (i+ 1)i−1/i! (for i ≥ 0) and dn+j,0 = qn+j0 .

Replacing the expression of ψ and integrating, the Rényi entropy reduces to

IR(δ) =
1

1− δ
log

{
a−1 Γ

(a(t+ δ)− δ + 1

a

) ∞∑
j,t,n,i=0

ξj,t,n,i

}
, for a > 1,

where

ξj,t,n,i =
(−1)t+n+i Lδj+t bt αn+i (λ+ α)j

(−δ
n

)
dn+j,i

eα(n+j+i) j! t! [b(j + n+ i)]
1+a(t+δ)−δ

a

.

The Shannon entropy can be obtained by limiting δ ↑ 1 in the last equation. However, it is

easier to derive an expression for IS(δ) from its de�nition. We have

E{− log[f(X)]} = α+ log(K)− log(λ a b)− (a− 1)E{log(X)}+ bE(Xa)

+

(
λ

α
+ 1

)
E[W (ψ)] + E{log[1 +W (ψ)]}, (3.15)

where the quantity K is de�ned in Appendix A. Here, and for the rest of the section, ψ = ψ(X).

The four expectations in (3.15) can be easily evaluated numerically. Using (3.9), they can also

be determined as

E{log(X)} =

∞∑
k,i=0

ωk,i

∫ ∞
0

log(x) g(x; a, bk,i)dx

= −
∞∑

k,i=0

a−1 ωk,i [γ + log(bk,i)],
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where γ ' 0.577216 is the Euler's constant. Further,

E(Xa) =
∞∑

k,i=0

ωk,i
bk,i

.

Using the power series expansion (3.2) for the Lambert W function, we have

E{W (ψ)} =

∞∑
k,i=0

ωk,i

∫ ∞
0

W (ψ) g(x; a, bk,i)dx

= −
∞∑

k,i=0

∞∑
n=1

αn nn−2 ωk,i (k + i+ 1) e−nα

(k + i+ n+ 1) (n− 1)!

and

E{log[1 +W (ψ)]} =

∞∑
k,i=0

ωk,i

∫ ∞
0

log[1 +W (ψ)] g(x; a, bk,i)dx.

Using the power series expansion for the logarithm (since |W (ψ)| ≤ 1), the power series (3.2)

for the Lambert W function and equations (3.5) and (3.6), the last equation reduces to

E{log[1 +W (ψ)]} =
∞∑

k,i,r=0

∞∑
n=1

(−1)r−1 (k + i+ 1)ωk,i dn,r α
r+n e−α(r+n)

n (k + i+ r + n+ 1)
,

where dn,r is de�ned before for r > 0 and r = 0.

3.5 Reliability

We derive the reliability, R = Pr(X2 < X1), when X1 ∼ WGP (λ1, α1, a, b) and X2 ∼
WGP (λ2, α2, a, b) are independent random variables. Probabilities of this form have many

applications especially in engineering concepts. Let fi and Fi denote the pdf and cdf of Xi,

respectively. Based on the representations (3.8) and (3.9), we can write

R =
∞∑

r,s,u,v=0

∫ ∞
0

ωr,s ωu,v g(x; a, br,s)G(x; a, bu,v) dx (3.16)

where

ωr,s =
(−1)s λr+1

1 dr+1,s α
s
1 e−α1(r+s+1)

K1 (r + 1)!

and

ωu,v =
(−1)v λu+1

2 du+1,v α
v
2 e−α2(u+v+1)

K2 (u+ 1)!
.
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Here, K1 = e
− λ1
α1
W (−α1e−α1 )− 1 and K2 = e

− λ2
α2
W (−α2e−α2 )− 1, dr+1,s and du+1,v are de�ned

in Appendix A and dr+1,s is de�ned in Section 3.4.

Using equation (3.21) and after some algebra, we obtain

R =
∞∑

r,s,u,v=0

∞∑
j=1

(−1)j+1ωr,s ωu,v (u+ v + 1)j Γ(1 + j)

j! (r + s+ 1)j
.

3.6 Order statistics

Order statistics make their appearance in many areas of statistical theory and practice.

Moments of order statistics play an important role in quality control and reliability, where some

predictors are often based on moments of the order statistics. We derive an explicit expression

for the density function of the ith order statistic Xi:n, say fi:n(x) (see Appendix B). Suppose

X1, X2, . . . , Xn is a random sample from the WGP distribution. Let Xi:n denote the ith order

statistic. From equations (3.3) and (3.4), the pdf of Xi:n can be expressed as an in�nite linear

combination of Weibull density functions

fi:n(x) =

n−i∑
j=0

j+i−1∑
s=0

∞∑
t,v,m,r=0

γi:n(j, s, t, v,m, r) g(x; a, bt,v,m,r), (3.17)

where bt,v,m,r = b(t+ v +m+ r + 1) and

γi:n(j, s, t, v,m, r) =
(−1)j+s+v(m+ r + 1) (λs)t αv (K + 1)j+i−1 dt,v ωm,r

(t+ v +m+ r + 1) t!Kj+i−1B(i, n− i+ 1)

×
(
n− i
j

)(
j + i− 1

s

)
e

{
λs
α
W (−αe−α)−α(v+t)

}
.

Equation (3.17) reveals that the pdf of Xi:n can be represented as a �nite mixture of WGP

density functions. So, some mathematical properties forXi:n can be obtained from this equation.

For example, the pth moment of the ith WGP order statistic in a sample of size n comes

from (3.17) as

E(Xp
i:n) = Γ

(p
a

+ 1
) n−i∑
j=0

j+i−1∑
s=0

∞∑
t,v,m,r=0

ρi:n(j, s, t, v,m, r), (3.18)

where

ρi:n(j, s, t, v,m, r) =
(−1)j+s+v(m+ r + 1) (λs)t αv b−p/a (K + 1)j+i−1

t!Kj+i−1B(i, n− i+ 1) (t+ v +m+ r + 1)1+p/a

× dt,v ωm,r

(
n− i
j

)(
j + i− 1

s

)
e

{
λs
α
W (−αe−α)−α(v+t)

}
.
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Alternatively, we obtain another explicit expression for these moments using a result due to

(Barakat and Abdelkader 2004) applied to the i.i.d. case

E(Xp
i:n) = p

n∑
j=n−i+1

(−1)j−n+i−1
(
j − 1

n− i

)(
n

j

)
Ij(p), (3.19)

where

Ij(p) =

∫ ∞
0

xp−1 {1− F (x)}j dx.

From equations (3.2), (3.4), (3.5), (3.6) and (3.21) this integral can be reduced to

Ij(p) = K−j
∞∑
s=0

hj,s

∫ ∞
0

xp−1W (ψ)j+sdx,

where the quantity K is de�ned in Appendix A and the constant hj,s is de�ned by hj,s =

(s e0)
−1∑s

t=1[t(j + 1)− s] et hj,s−t, es = (−1)s+1 λs+1

αs=1 (s+1)!
(for s ≥ 0) and hj,0 = ej0.

Using equations (3.2), (3.5) and (3.6) and after some algebra, we obtain

Ij(p) = K−j
∞∑

s,t=0

hj,s dj+s,t (−1)j+s+t αj+s+t e−α(j+s+t)
∫ ∞
0

xp−1 e−b(j+s+t)x
a
dx,

where the constant dj+s,t is de�ned by dj+s,t = (t q0)
−1∑t

m=1[m(j+s+1)− t] qm dj+s,t−m, with
qt = (−1)t (t+ 1)t−1/t! (for t ≥ 0) and dj+s,0 = qj+s0 .

Simple integration yields

Ij(p) = a−1K−j Γ
(p
a

) ∞∑
s,t=0

(−1)j+s+t hj,s dj+s,t α
j+s+t e−α(j+s+t)

[b(j + s+ t)]p/a
.

From equation (3.19), we obtain

E(Xp
i:n) = p a−1K−j Γ

(p
a

) n∑
j=n−i+1

∞∑
s,t=0

(−1)j−n+i−1
(
j − 1

n− i

)(
n

j

)

× (−1)j+s+t hj,s dj+s,t α
j+s+t e−α(j+s+t)

[b(j + s+ t)]p/a
. (3.20)

We can compute the moments of the WGP order statistics by two di�erent formulas. Equa-

tion (3.18) involves four in�nite sums and two �nite sums, whereas equation (3.20) is much

simpler since it involves only two in�nite sums and one �nite sum.

3.7 Maximum likelihood estimation

We determine the maximum likelihood estimates (MLEs) of the parameters of the WGP

distribution from complete samples only. Let x1, . . . , xn be a observed sample of size n from
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the WGP(a, b, λ, α) distribution. The log-likelihood function for the vector of parameters θ =

(a, b, λ, α)T can be expressed as

l(θ) = n [−λ− α+ log (N)]− b
n∑
i=1

xai + (a− 1)

n∑
i=1

log (xi)

−
(
λ

α
+ 1

) n∑
i=1

W (ψi)−
n∑
i=1

log [1 +W (ψi)] ,

where ψi = −α e−α−bx
a
i and N = λa b (eλ−1) (1−e−λ)−1

[exp{− λ
α
W (−αe−α)}−1] . The components of the score vector

U(θ) are given by

Ua(θ) =
n

a
+

n∑
i=1

log (xi) + b
n∑
i=1

η(xi) [ϕ(xi)− 1] ,

Ub(θ) =
n

b
+

n∑
i=1

xai [ϕ(xi)− 1] ,

Uα(θ) = −n+
λ

α2

n∑
i=1

W (ψi) +

(
α− 1

α

) n∑
i=1

ε(xi)

[
α+ λ

α
+

1

1 +W (ψi)

]
,

Uλ(θ) = n

[
1− λ
λ
− 1

eλ − 1

]
− 1

α

n∑
i=1

W (ψi) ,

where ε(xi) = W (ψi)
1+W (ψi)

, η(xi) = xai log(xi) and

ϕ(xi) =

[
ε(xi)

1 +W (ψi)
+

(
1 +

λ

α

)
ε(xi)

]
.

For interval estimation and hypothesis tests on the model parameters, we require the 4× 4

observed information matrix J = J(θ) given in the Appendix C. Under conditions that are

ful�lled for parameters in the interior of the parameter space but not on the boundary, the

asymptotic distribution of
√
n(θ̂ − θ) is N4(0, I(θ)−1), where I(θ) is the expected information

matrix. We can replace I(θ) by the observed information matrix evaluated at θ̂, say J(θ̂), to

construct approximate con�dence intervals for the parameters based on the multivariate normal

N4(0, J(θ̂)−1) distribution.

Further, the likelihood ratio (LR) statistic can be adopted for comparing this distribution

with some of its sub-models. We can compute the maximum values of the unrestricted and

restricted log-likelihoods to construct LR statistics for testing some sub-models of the WGP

distribution. For example, the test of H0 : a = 1 versus H1 : H0 is not true is equivalent to

compare the WGP and EGP distributions and the LR statistic becomes

w = 2{`(â, b̂, λ̂, α̂)− `(1, b̃, λ̃, α̃)},

where â, b̂, λ̂ and α̂ are the MLEs under H1 and b̃, λ̃ and α̃ are the estimates under H0.
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3.8 Application

Here, we present an application of the WGP model to the data obtained from (Proschan

1963). The data set denotes the number of successive failures for the air conditioning system of

each member in a �eet of 7 Boeing 720 airplanes. The 125 observations refer to aircraft numbers

7910, 7911, 7912, 7913, 7914, 7915 and 7916. We present the �ts of the WGP, EP, EGP, EW

and BW distributions. The BW distribution has pdf given by

f(x; a, b, α, λ) = [αλ/B(a, b)]xλ−1 exp(−b α xλ)[1− exp(−αxλ)]a−1,

for x > 0. The EW model follows if a = 1.

Table 3.1 gives the MLEs and corresponding standard errors (SEs), the values of the Cramér-

von Mises (CM) and Anderson-Darling (AD) statistics for the current data. In general, the

smaller the values of these statistics, the better the �t to the data. To obtain the statistics,

one can proceed as follows: (1) compute vi = F (xi; θ̂) and yi = Φ−1(vi), where the x′is are

in ascending order, θ̂ is an estimate of θ, Φ(·) is the standard normal cumulative function and

Φ−1(·) denotes its inverse; (2) compute ui = Φ[(yi− ȳ)/sy], where ȳ is the sample mean of yi and

sy is the sample standard deviation; (3) compute CM∗ =
∑n

i=1[ui−(2 i−1)/2n]2+1/(12n) and

AD∗ = −n−(1/n)
∑n

i=1[(2 i−1) log(ui)+(2n+1−2 i) log(1−ui)], and then CM = (1+0.5/n)CM∗

and AD = (1 + 0.75/n+ 2.25/n2)AD∗.

Table 3.1: MLEs, the corresponding SEs (given in parentheses), maximized log-likelihoods,

statistics W∗ and A∗ for the numbers of successive failures.

Distribution a b λ α W∗ A∗

EP - 0.0085 1.0371 - 0.0718 0.4592

- (0.0015) (0.5792) -

EGP - 0.0072 0.6213 0.4231 0.0497 0.3282

- (0.0019) (1.2792) (0.3286)

WGP 1.3744 0.0006 1.2021 0.8853 0.0295 0.2084

(0.1675) (0.0006) (0.0159) (0.1095)

Distribution a b c λ

EW 0.5618 2.3252 0.0338 0.0415 0.2970

(0.1642) (1.4154) (0.0307)

BW 4.2708 3.4124 0.3932 0.0123 0.0370 0.2805

(3.0016) (3.3254) (0.1266) (0.0379)

The �gures in Table 3.1 indicate that the �tted WGP distribution to these data is superior

than the other �tted models. Further, the QQ-plots of the data for the �tted models are displayed

in Figure 3.6. They reveal that the WGP model provides the better �t to these data.
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Figure 3.6: QQ-plots to the number of successive failures.

3.9 Concluding remarks

The Weibull distribution is commonly used to model the lifetime of a system. However, it

does not exhibit a bathtub-shaped failure rate function and thus it can not be used to model

the complete lifetime of a system. We de�ne a new lifetime model, called the Weibull gener-

alized Poisson (WGP) distribution, which extends the exponential generalized Poisson (EGP)

distribution proposed by (Gupta et al. 2013), whose failure rate function can be increasing,

decreasing and upside-down bathtub. The WGP density function can be expressed as a linear

combination of Weibull densities, which allows to obtain several of its structural properties.

We provide a mathematical treatment of the distribution including explicit expressions for the

density function, generating function, ordinary and incomplete moments, Rényi and Shannon en-

tropies, reliability, order statistics and their moments. The parameter estimation is approached

by maximum likelihood and the observed information matrix is derived. The usefulness of the
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new model is illustrated in an application to real data using formal goodness-of-�t tests. By

means of a real data application, we show that the proposed distribution is a very competitive

model to the exponentiated Weibull and beta Weibull distributions.

Appendix A - The WGP survival function

After some algebra, from equation (3.4) , we can write

S(x;θ) = − 1

K

{
1− exp

(
−
[λ
α
W (ψ)

])}
,

where K = e−
λ
α
W (−αe−α) − 1.

Using the power series expansion

1− e−z =

∞∑
k=1

(−1)k+1zk

k!
, (3.21)

we obtain

S(x;θ) = − 1

K

∞∑
k=1

(−1)k+1λkW (ψ)k

αkk!
.

Based on the power series (3.2), we have

S(x;θ) =
∞∑
k=1

(−1)k+2λk

K αkk!

[ ∞∑
n=1

(−1)n−1 nn−2

(n− 1)!
ψn

]k
.

Setting i = n− 1 in the last sum gives

S(x;θ) =
∞∑
k=1

(−1)k+2λk

K αkk!
ψk

[ ∞∑
i=0

(−1)i (i+ 1)i−1

i!
ψi

]k
.

Applying equations (3.5) and (3.6) in the second sum gives

S(x;θ) =

∞∑
k,i=0

ωk,iG(x; a, b(k + i)),

where

ωk,i =
(−1)i+3λk+1 αi e−α(k+1+i) dk+1,i

K (k + 1)!
,

with dk+1,i = (i q0)
−1∑i

m=1[m(k + 2) − i] qm dk+1,i−m, dk+1,0 = qk+1
0 = 1 and qi = (−1)i (i +

1)i−1/i! for i ≥ 0.
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Appendix B - Expansion for the density function of the order

statistic

The density fi:n(x) of the ith order statistic, for i = 1, . . . n, from iid random variables

X1, . . . , Xi from the WGP distribution is given by

fi:n(x) =
f(x)

B(i, n− i+ 1)

n−i∑
j=0

(−1)j
(
n− i
j

)
F (x)j+i−1.

Substituting (3.4) in this equation, we can write

fi:n(x) =
f(x)

B(i, n− i+ 1)

n−i∑
j=0

(−1)j (K + 1)j+i−1
(
n−i
j

)
Kj+i−1

×
[
1− exp

{−λ
α

[W (ψ)−W (−αe−α)]
}]j+i−1

.

Using the binomial theorem and the power series for the exponential function, we have

fi:n(x) =
f(x)

B(i, n− i+ 1)

n−i∑
j=0

j+i−1∑
s=0

(−1)j+s (K + 1)j+i−1
(
n−i
j

)(
j+i−1
s

)
e
λs
α
W (−αe−α)

Kj+i−1

×
∞∑
t=0

(−1)t (λs)t

t!αt
W (ψ)t.

Substituting expansion (3.2) and using equations (3.5) and (3.6), we obtain

fi:n(x) =
f(x)

B(i, n− i+ 1)

n−i∑
j=0

j+i−1∑
s=0

(−1)j+s (K + 1)j+i−1
(
n−i
j

)(
j+i−1
s

)
e
λs
α
W (−αe−α)

Kj+i−1

×
∞∑
t=0

(−1)t (λs)t

t!αt

∞∑
v=0

dt,vψ
t+v,

where dt,0 = qt0, qv = (−1)v(v + 1)v−1/v! and dt,v = (v q0)
−1∑v

m=1[m(t+ 1)− v] qm dt,v−m (for

v ≥ 1).

Substituting equations of ψ and f(x), the last expression reduces to

fi:n(x) =
n−i∑
j=0

j+i−1∑
s=0

∞∑
t,v=0

(−1)j+s+t (λs)t ft,v (K + 1)j+i−1
(
n−i
j

)(
j+i−1
s

)
e
λs
α
W (−αe−α)

t!αtKj+i−1B(i, n− i+ 1)

× (−αe−α−bx
a
)t+v

∞∑
m,r=0

ωm,r g(x; a, b(m+ r + 1))

=

n−i∑
j=0

j+i−1∑
s=0

∞∑
t,v,m,r=0

γi:n(j, s, t, v,m, r) g(x; a, bt,v,m,r),
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where bt,v,m,r = b(t+ v +m+ r + 1) and

γi:n(j, s, t, v,m, r) =
(−1)j+s+v(m+ r + 1) (λs)t αv (K + 1)j+i−1 dt,v ωm,r

(t+ v +m+ r + 1) t!Kj+i−1B(i, n− i+ 1)

×
(
n− i
j

)(
j + i− 1

s

)
e

{
λs
α
W (−αe−α)−α(v+t)

}
.

Appendix C - Information Matrix

The elements of the observed information matrix J(θ) for the model parameters (a, b, λ, α)

are given by

Jaa = − n

a2
− b

n∑
i=1

xai log2(xi) +

n∑
i=1

δ(xi)

1 +W (ψi)

[
1 +

2b xai ε(xi)

1 +W (ψi)

− b xai
1 +W (ψi)

]
+

(
1 +

λ

α

) n∑
i=1

δ(xi)
[
1 +

b xai ε(xi)

1 +W (ψi)
− b xai

1 +W (ψi)

]
,

Jab = Jba = −
n∑
i=1

xai log(xi) +

n∑
i=1

ϕ(xi)

1 +W (ψi)

[
1 +

2 b xai ε(xi)

1 +W (ψi)
− b xai

1 +W (ψi)

]
+

(
1 +

λ

α

) n∑
i=1

ϕ(xi)
[
1 +

b xai ε(xi)

1 +W (ψi)
− b xai

1 +W (ψi)

]
,

Jaα = Jαa = −λ b
α2

n∑
i=1

ϕ(xi) +
b (α− 1)

α

n∑
i=1

ϕ(xi)

[1 +W (ψi)]2

{
2 [1 +W (ψi)]

−3 − 1
}

+
( α+ λ+ b(α− 1)

α

) n∑
i=1

ϕ(xi)

1 +W (ψi)
[ε(xi)− 1],

Jaλ = Jλa =
b

α

n∑
i=1

ϕ(xi),

Jbb = − n
b2

+

n∑
i=1

(xai )
2 ε(xi)

[1 +W (ψi)]2

[
2 ε(xi)− 1

]
+
(

1 +
λ

α

) n∑
i=1

(xai )
2 ε(xi)

1 +W (ψi)

[
ε(xi)− 1

]
,

Jbα = Jαb = − λ

α2

n∑
i=1

xai ε(xi)−
(α− 1)

α

n∑
i=1

xai ε(xi)

[1 +W (ψi)]2

[
2 ε(xi)− 1

]
+

(
1 +

λ

α

)(α− 1)

α

n∑
i=1

xai ε(xi)

1 +W (ψi)

[
ε(xi)− 1

]
,

Jbλ = Jλb = α−1
n∑
i=1

xai ε(xi),
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Jαα = Jαα =
nλ(α+ C2)C2

α3 (1 + C2) [e(λ/α)C2 − 1]

{
λ (α+ C2)C2

α (1 + C2) [e(λ/α)C2 − 1]
+
λ (α+ C2)C2

α (1 + C2)

− α+ 3C2 + 2C2
2

(1 + C2)2

}
− 2λ

α3

n∑
i=1

[W (ψi)− (α− 1)ε(xi)] +
1

α2

n∑
i=1

ε(xi)

1 +W (ψi)

×
[(α2 − 1)(2 ε(xi)− 1)

1 +W (ψi)
+ 1
]

+
(λ+ α)

α3

n∑
i=1

ε(xi)
[(α2 − 1)(ε(xi)− 1)

1 +W (ψi)
+ 1
]
,

Jαλ = Jλα =
1

α2

n∑
i=1

W (ψi) +
(α− 1)

α2

n∑
i=1

ε(xi) +
n (α+ C2)C2

α3 (1 + C2) [e(λ/α)C2 − 1]

×
[ λC2

e(λ/α)C2 − 1
+ α− λC2

]
,

Jλλ = − n

λ2
+

nC2
2 e(λ/α)C2

α2[e(λ/α)C2 − 1]2
,

where ε(xi) is de�ned in Section 3.7, δ(xi) = b xai log(x2i ) ε(xi) and ϕ(xi) = xai log(xi) ε(xi).
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CHAPTER 4

The G-Negative Binomial Family: General Properties and Applications

Resumo

Propomos uma nova classe de distribuições com dois parâmetros positivos adicionais. Alguns

casos especiais são apresentados. Obtivemos algumas propriedades matemáticas desta classe, in-

cluíndo expressões explícitas para a função quantil, momentos ordinários e incompletos, função

geradora, desvios médios, dois tipos de entropia, con�abilidade, estatísticas de ordem e seus

momentos. Discutimos estimativa dos parâmetros do modelo por máxima verossimilhança e

fornecemos uma aplicação para um conjunto de dados reais.

Palavras-chave: Distribuição binomial negativa; desvios médios; estimação; momentos.

Abstract

We propose a new class of distributions with two extra positive parameters. Some special

cases are presented. We derive some mathematical properties of this class including explicit

expressions for the quantile function, ordinary and incomplete moments, generating function,

mean deviations, two types of entropy, reliability, order statistics and their moments. We discuss

estimation of the model parameters by maximum likelihood and provide an application to a real

data set.

Keywords: Estimation; Mean Deviation; Moment; Negative Binomial Distribution.

4.1 Introduction

Providing a wider family of continuous models is always precious for statisticians. The neg-

ative binomial distribution has been widely used in mixing procedures of distributions. Several

new models have been proposed and applied in survival analysis. Zamani and Ismail [11] in-

troduced the negative binomial-Lindley (NB-L) distribution to model claim counts, one of the
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most important topics in actuarial theory and practice. Hajebi et al. [16] investigated the ex-

ponential negative binomial (ENB) distribution for modeling failure times of a system. Ortega

et al. [7] introduced a regression model to predict cure of prostate cancer based on the negative

binomial-beta Weibull (NBBW) distribution. Rodrigues et al. [5] pionnered a composition of

the truncated negative binomial and Weibull distributions yielding a very popular model to

analyze survival data, the so-called Weibull negative binomial (WNB) distribution.

We propose a general family of continuous distributions called the G-negative binomial (G-

NB) family. It includes as a special case the WNB model. We demonstrate that the G-NB

density family is a linear combination of exponentiated-G (�exp-G� for short) density functions.

Let W1, . . . ,WZ be a random sample from a random variable having density function g(·),
where Z is an unknown positive integer number. We assume that the random variable Z has

a zero truncated negative binomial (ZTNB) probability mass function (pmf) with parameters

s > 0 and β ∈ (0, 1) given by

P (z; s, β) = βz
(
s+ z − 1

z

)
[(1− β)−s − 1]−1, z ∈ N.

Here, Z and W are considered to be independent random variables. Let X =Min(W1, . . . ,WZ).

Then, the conditional cumulative distribution function (cdf) of X given Z is

F (x|z) = 1− P (X ≥ x|z) = 1− P z(W1 ≥ x)

= 1− [1− P (W1 ≤ x)]z = 1− [1−G(x)]z.

The unconditional cdf of X becomes

F (x) =
∞∑
z=0

βz
(
s+ z − 1

z

)
{(1− β)−s − 1}−1{1− [1−G(x)]z},

for x > 0. Here, s and β are shape parameters. After some algebra, the cdf of X reduces to

F (x) =
(1− β)−s − {1− β[1−G(x)]}−s

[(1− β)−s − 1]
. (4.1)

The probability density function (pdf) corresponding to (4.1) is given by

f(x) =
sβ

[(1− β)−s − 1]
g(x) {1− β[1−G(x)]}−s−1. (4.2)

This generalization is obtained by increasing the number of parameters compared to the G

model, this increase being the price to pay for adding more �exibility to the generated distri-

bution. A �rst positive point of the G-NB model is that it includes the G distribution as a

sub-model when s = 1 and β → 0. A second one is that it includes as special cases important

lifetime models published in recent years. Hereafter, a random variable X following the family

(4.2) is denoted by X ∼ G-NB(τ, s, β), where τ is the parameter vector associated with G. The

survival function and hazard rate function (hrf) of X are given by
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S(x) =
{1− β[1−G(x)]}−s − 1

[(1− β)−s − 1]

and

h(x) =
s β g(x) {1− β[1−G(x)]}−s−1

{1− β[1−G(x)]}−s − 1
, (4.3)

respectively. The aim of this paper is to derive some mathematical properties of (4.2) which hold

for any baseline continuous G. We obtain explicit expressions for the quantile function, ordinary

and incomplete moments, moment generating function (mgf), mean deviations, Bonferroni and

Lorenz curves, Shannon entropy, Rényi entropy, reliability and moments of the order statistics.

The G-NB family is well-motivated for industrial applications and biological studies. As a

�rst example, consider that the number, say N , of carcinogenic cells for an individual left active

after the initial treatment follows a ZTNB distribution and let Xi be the time spent for the ith

carcinogenic cell to produce a detectable cancer mass, for i ≥ 1. If {Xi}i≥1 is a sequence of

independent and identically distributed (iid) random variables independent of N following the

G distribution, then the time to relapse of cancer of a susceptible individual can be modeled

by the G-NB family of distributions. Another example considers that the failure of a device

occurs due to the presence of an unknown number N of initial defects of the same kind, which

can be identi�able only after causing failure and are repaired perfectly. De�ne by Xi the time

to the failure of the device due to the ith defect, for i ≥ 1. If we assume that the Xi's are iid

random variables independent of N , which follows a G distribution, then the time to the �rst

failure is appropriately modeled by the G-NB family. For reliability studies, the random variable

X =Min{Xi}Ni=1 can be used in serial systems with identical components, which appear in many

industrial applications and biological organisms.

The rest of the paper is organized as follows. In Section 4.2, we de�ne some new distributions

in the G-NB family. A range of mathematical properties of (4.2) is derived in Sections 4.3 to

4.10. The estimation of the model parameters performed by the method of maximum likelihood

is presented in Section 4.11. An application to real data is addressed in Section 4.12. Finally,

some conclusions are addressed in Section 4.13.

4.2 Special G-NB distributions

The G-NB family of density functions (4.2) allows for greater �exibility of its tails and can

be widely applied in many areas of engineering and biology. The new family extends several

widely-known distributions in the literature. So, we present some of its special cases. The

density function (4.2) will be most tractable when the cdf G(x) and the pdf g(x) have simple

analytic expressions.
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4.2.1 Normal-negative binomial (NNB) distribution

The NNB distribution is de�ned from (4.2) by taking G(x) and g(x) to be the cdf and pdf

of the normal N(µ, σ2) distribution. Its density function is

fNNB(x) =
s β [(1− β)−s − 1]−1

σ
√

2π
exp

{
−1

2

(
x− µ
σ

)2
}

×
{

1− β
[

1

2
− 1

2
erf

(
x− µ
σ
√

2

)]}−s−1
, (4.4)

where x ∈ R, µ ∈ R is a location parameter, σ > 0 is a scale parameter, s > 0, β ∈ (0, 1) and

φ(·) and Φ(·) are the pdf and cdf of the standard normal distribution, respectively. A random

variable with density (4.4) is denoted by X ∼ NNB(µ, σ2, s, β). For µ = 0 and σ = 1, we

obtain the standard NNB distribution. Further, this distribution with s = 1 and β → 0 tends

to the normal distribution. Plots of the NNB density function for selected parameter values are

displayed in Figure 4.1.

4.2.2 Gumbel-negative binomial (GuNB) distribution

Consider the Gumbel distribution with location parameter µ ∈ R and scale parameter σ > 0,

where the pdf and cdf (for x ∈ R) are

g(x) =
1

σ
exp

{(
x− µ
σ

)
− exp

(
x− µ
σ

)}
and

G(x) = 1− exp

{
− exp

(
x− µ
σ

)}
,

respectively. The mean and variance are equal to µ−γσ and π2σ2/6, respectively, where γ is the

Euler's constant (γ ≈ 0.57722). Inserting these expressions into (4.2) gives the GuNB density

function

fGuNB(x) =
s β

σ[(1− β)−s − 1]
exp

{(x− µ
σ

)
− exp

(
x− µ
σ

)}
×

{
1− β

[
exp

{
− exp

(
µ− x
σ

)}]}−s−1
, (4.5)

where x, µ ∈ R, s, σ > 0 and β ∈ (0, 1). The Gumbel distribution corresponds to s = 1 and

β → 0. Plots of the density function (4.5) for selected parameter values are displayed in Figure

4.2.

4.2.3 Log-normal-negative binomial (LNNB) distribution

Let G(x) be the log-normal distribution with cdf

G(x) = 1− Φ
(− log(x) + µ

σ

)
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Figure 4.1: The NNB density function for some parameter values: (a) µ = 0 and σ = 1; (b)

µ = 0 and s = 1.5; (c) σ = 1 and β = 0.5; (d) µ = 0 and β = 0.5.

for x > 0, σ > 0 and µ ∈ R. The LNNB density function (for x > 0) is given by

fLNNB(x) =
s β [(1− β)−s − 1]−1√

2π σ x
exp

{
− 1

2

[ log(x)− µ
σ

]2}
×

{
1− β

[
Φ
(− log(x) + µ

σ

)]}−s−1
. (4.6)

For s = 1 and β → 0, we obtain the log-normal distribution. Figure 4.3 displays some plots of

the LNNB density function for some parameter values.
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Figure 4.2: The GuNB density function for some parameter values: (a) µ = 0 and σ = 1; (b)

µ = 0 and s = 1.5; (c) σ = 1.5 and β = 0.7; (d) µ = 0 and β = 0.7.

4.2.4 Gamma-negative binomial (GaNB) distribution

The gamma cumulative distribution (for x > 0) with shape parameter a > 0 and scale

parameter b > 0 is

G(x) =
γ(a, bx)

Γ(a)
, (4.7)

where Γ(a) =
∫∞
0 wa−1e−wdw and γ(a, x) =

∫ x
0 w

a−1e−wdw are the gamma and incomplete

gamma functions, respectively. The density function of a random variable X having the GaNB
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Figure 4.3: The LNNB density function for some parameter values: (a) s = 1.5 and σ = 1; (b)

s = 1.5 and σ = 0.25; (c) σ = 1 and β = 0.6; (d) µ = 1 and β = 0.5.

distribution can be expressed as

fGaNB(x) =
s β ba xa−1 e−bx

[(1− β)−s − 1] Γ(a)

{
1− β

[
1− γ(a, bx)

Γ(a)

]}−s−1
. (4.8)

Some plots of the GaNB density function are displayed in Figure 4.4.
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Figure 4.4: The GaNB density function for some parameter values: (a) a = 1.5 and b = 1; (b)

a = 1.5 and s = 1.5; (c) b = 2 and β = 0.7; (d) a = 1.5 and β = 0.9.

4.2.5 Log-logistic negative binomial (LLNB) distribution

The pdf and cdf of the log-logistic (LL) distribution are (for x, α, γ > 0)

g(x) =
γ

αγ
xγ−1

[
1 +

(x
α

)γ]−2
and G(x) = 1−

[
1 +

(x
α

)γ]−1
.

Inserting these expressions into (4.2) gives the LLNB density function (for x > 0)

fLLNB(x) =
s β γ xγ−1

αγ [(1− β)−s − 1]

[
1 +

(x
α

)γ]−2 {
1− β

[
1 +

(x
α

)γ]−1}−s−1
.
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Figure 4.5: The LLNB density function for some parameter values: (a) α = 1 and γ = 1.5; (b)

α = 1.5 and s = 1.5; (c) α = 1 and β = 0.5; (d) γ = 2 and β = 0.7.

The LL distribution is obtained for s = 1 and β → 0. Plots of the LLNB density function for

selected parameter values are displayed in Figure 4.5.

4.3 Useful representations

Some useful expansions for (4.1) and (4.2) can be derived using the concept of exponentiated

distributions. For an arbitrary baseline cdf G(x), a random variable is said to have the exp-G

distribution with parameter j > 0, say Yj ∼ exp-G(j + 1), if its pdf and cdf are
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hj+1(y) = (j + 1)G(y)j g(y) (4.9)

and

Hj+1(y) = G(y)j+1, (4.10)

respectively. The properties of exponentiated distributions have been studied by several authors

in recent years. See Mudholkar and Srivastava (1993) for exponentiated Weibull, Gupta and

Kundu (1999) for exponentiated exponential, Nadarajah and Kotz (2006) for exponentiated

Fréchet and Nadarajah and Gupta (2007) for exponentiated gamma distributions.

For any real a and |z| < 1, we have the power series

(1− z)−a =

∞∑
k=0

(a)k
zk

k!
, (4.11)

where (a)0 = 1 and (a)k = a(a + 1)(a + 2) . . . (a + k − 1) = Γ(a + k)/Γ(a) is the Pochhammer

symbol. Using expansion (4.11), we can write (4.2) as

f(x) =
s β

[(1− β)−s − 1]
g(x)

∞∑
k=0

(s+ 1)k
k!

βk [1−G(x)]k. (4.12)

Expanding the binomial term in Equation (4.2), we can express f(x) as

f(x) =

∞∑
j=0

ωj hj+1(x), (4.13)

where hj+1(x) denotes the exp-G(j + 1) density function and

ωj =
(−1)j s

(j + 1)[(1− β)−s − 1]

∞∑
k=j

(s+ 1)k β
k+1

k!

(
k

j

)
.

We can verify that
∑∞

j=0 ωj = 1. By integrating (4.13), we can express F (x) as

F (x) =
∞∑
j=0

ωjHj+1(x), (4.14)

where Hj+1(x) denotes the exp-G(j + 1) cumulative distribution. So, several mathematical

properties of the G-NB family can be obtained by knowing those of the exp-G distribution, see,

for example, Mudholkar et al. [9], Nadarajah and Kotz [17], among others.
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4.4 Quantile function

Inverting F (x) = u in (4.1), the quantile function of X, say Q(u), for 0 < u < 1, follows as

Q(u) = G−1
{

1− 1

β

[
1−

(
[1− β]−s − u[(1− β)−s − 1]

)− 1
s

]}
= G−1

{
1− 1

β

[
1− (1− β)(1− u[1− (1− β)s])−

1
s

]}
. (4.15)

Using Equation (4.11) in the last equality, we obtain

Q(u) = G−1

1− 1

β

1− (1− β)

∞∑
j=0

(
1

s

)
j

uj [1− (1− β)s]j

j!


= G−1

(β − 1)

β

1−
∞∑
j=0

(
1

s

)
j

uj [1− (1− β)s]j

j!


= G−1

(β − 1)

β

∞∑
j=0

aj u
j

 ,

where a0 = 0 and aj =
(
1
s

)
j
[1−(1−β)s]j

j! , j ≥ 1.

Quantiles of interest can be obtained from (4.15) by substituting appropriate values for u.

In particular, the median of X comes when u = 0.5.

The motivation for using quantile-based measures is because of the non-existence of classical

kurtosis for many generalized distributions. The Bowley's skewness is based on quartiles (Kenney

and Keeping, 1962):

B =
Q(3/4)− 2Q(1/2) +Q(1/4)

Q(3/4)−Q(1/4)

and the Moors' kurtosis (Moors, 1984) is based on octiles:

M =
Q(7/8)−Q(5/8)−Q(3/8) +Q(1/8)

Q(6/8)−Q(2/8)
.

Plots of the skewness and kurtosis for the GuNB distribution, for some choices of β, σ and

µ as function of s, and for some choices of s, σ and µ as function of β are displayed in Figure

4.6. The plots indicate that there is a great �exibility of the skewness and kurtosis curves of

this distribution.

4.5 Moments

A �rst formula for the nth moment of X, say µ′n = E(Xn), can be obtained from (4.13) and

Yj ∼ exp-G(j + 1) as
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Figure 4.6: Plots of the GuNB skewness and kurtosis as functions of s for selected values of β

and as functions of β for selected values of s. Here, µ = 0 and σ = 1.

µ′n =

∞∑
j=0

ωj E(Y n
j ). (4.16)

Expressions for moments of several exponentiated distributions are given by Nadarajah and Kotz

[17], which can be used to obtain E(Xn).

A second formula for µ′n can be derived from (4.16) in terms of the baseline quantile function

QG(x) = G−1(x). We obtain

µ′n =

∞∑
j=0

(j + 1)ωj τn,j , (4.17)
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where τn,j is given by

τn,j =

∫ ∞
−∞

xnG(x)j g(x)dx =

∫ 1

0
QG(u)n uj du. (4.18)

The ordinary moments of several G-NB distributions can be determined directly from equa-

tions (4.17) and (4.18). Here, we give three examples. For the standard logistic-negative binomial

(LoNB) distribution, where G(x) = (1 + e−x)−1, using a result from Prudnikov et al. (1986,

Section 2.6.13, equation 4), we have (for t < 1)

µ′n =

∞∑
j=0

(j + 1)ωj

(
∂

∂t

)n
B(t+ j + 1, 1− t)

∣∣∣∣
t=0

,

where B(a, b) =
∫ 1
0 t

a−1 (1 − t)b−1dt is the beta function. The moments of the exponential-

negative binomial (ENB) distribution (with parameter λ > 0) are

µ′n = n!λn
∞∑

j,k=0

(−1)n+k (j + 1)ωj

(k + 1)n+1

(
j

k

)
.

For the Pareto-negative binomial (ParNB) distribution, where G(x) = 1 − (1 + x)−ν , and con-

sidering ν > 1, we obtain

µ′n =

∞∑
j,k=0

(−1)n+k (j + 1)ωj B(j, 1− kν−1)
(
n

k

)
.

For empirical purposes, the shape of many distributions can be usefully described by what

we call the incomplete moments. These types of moments play an important role for measuring

inequality, for example, income quantiles and Lorenz and Bonferroni curves, which depend upon

the incomplete moments of a distribution. The nth incomplete moment of X can be determined

as

mn(y) = E (Xn|X < y) =
∞∑
j=0

(j + 1)ωj

∫ G(y)

0
QG(u)n ujdu. (4.19)

The last integral can be computed for most baseline G distributions, at least numerically. Equa-

tions (4.16) - (4.19) are the main results of this section.

The symbolic computational plataforms Maple, Mathematica and Matlab make it possible

to automate the formulae derived in this paper since they have currently the ability to deal

with analytic recurrence equations and sums of formidable size and complexity. In practical

terms, we can substitute ∞ in the sums by a large number such as 20 or 50 for most practical

applications. Establishing scripts for the explicit expressions given throughout the paper can

be more accurate computationally than other integral representations which can be prone to

rounding o� errors among others.
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4.6 Generating function

The mgf M(t) = E(etX) of X follows from (4.13) as

M(t) =

∞∑
j=0

(j + 1)ωjMj(t), (4.20)

where Mj(t) is the mgf of Yj . Hence, M(t) can be immediately determined from the exp-G

generating function. Another formula for M(t) can be derived from (4.13) as

M(t) =

∞∑
j=0

(j + 1)ωj ρj(t), (4.21)

where ρj(t) can be determined from QG(u) = G−1(u) as

ρj(t) =

∫ ∞
−∞

etxG(x)jg(x)dx =

∫ 1

0
exp{tQG(u)}ujdu. (4.22)

We can obtain the mgf's of several G-NB distributions directly from equations (4.21) and

(4.22). For example, the mgf's of the LoNB (for t < 1), ENB (with parameter λ)(for t < λ−1)

and ParNB (with parameter ν > 0)(for ν > 1) distributions are

M(t) =

∞∑
j=0

(j + 1)ωj B(t+ j + 1, 1− t),

M(t) =

∞∑
j=0

(j + 1)ωj B(j + 1, 1− λt),

and

M(t) = e−t
∞∑

j,r=0

(j + 1)ωj B(j + 1, 1− rν−1)
r!

tr,

respectively.

4.7 Mean deviations

The mean deviations about the mean (δ1(X) = E(|X−µ′1|)) and about the median (δ2(X) =

E(|X −M |)) of X can be expressed as

δ1(X) = 2µ′1 F
(
µ′1
)
− 2m1

(
µ′1
)

and δ2(X) = µ′1 − 2m1(M), (4.23)

respectively, where µ′1 = E(X), M = Median(X) is the median computed from (4.15) with

u = 1/2, F (µ′1) is easily calculated from the cdf (4.1) and m1(z) =
∫ z
−∞ xf(x)dx is the �rst

incomplete moment given by (4.19) with n = 1.
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In this section, we provide two alternative ways to compute δ1(X) and δ2(X). A general

equation for m1(z) can be derived from (4.13) as

m1(z) =
∞∑
j=0

ωj Rj(z), (4.24)

where

Rj(z) =

∫ z

−∞
xhj+1(x)dx. (4.25)

Equation (4.25) is the basic quantity to compute the mean deviations of the exp-G distribution.

Hence, the mean deviations (4.23) depend only on the mean deviations of the exp-G distributions.

So, alternative representations for δ1(X) and δ2(X) are

δ1(X) = 2µ′1F
(
µ′1
)
− 2

∞∑
j=0

ωj Rj
(
µ′1
)

and δ2(X) = µ′1 − 2
∞∑
j=0

ωj Rj(M).

In a similar manner, the mean deviations of any G-NB distribution can be determined from

equation (4.19). Let Tj(z) =
∫ G(z)
0 QG(u)ujdu. For example, the mean deviations of the LoNB,

ParNB (with irrational ν > 0) and ENB (with parameter λ) follow, based on the generalized

binomial expansion, from the functions

Tj(z) =
1

Γ(j)

∞∑
k=0

(−1)k Γ(j + 1 + k) [1− exp(−kz)]
(k + 1)!

,

Tj(z) =

∞∑
k=0

k∑
r=0

(−1)k z1−rν

(1− rν)

(
j + 1

k

)(
k

r

)
and

Tj(z) = λ−1
∞∑
k=0

(1− j)[k] [1− exp (−kλz)]
(k + 1)!

,

respectively, where (1− j)[k] = (−1)k(j − 1)(j − 2)(j − 3) . . . (j − k) is the descending factorial.

Applications of equations (4.24) and (4.25) can be important to obtain Bonferroni and Lorenz

curves de�ned for a given probability π by B(π) = m1(q)/(πµ
′
1) and L(π) = m1(q)/µ

′
1 respec-

tively, where µ′1 = E(X) and

q = G−1
{

1− 1

β

[
1−

{
(1− β)−s − π

[
(1− β)−s − 1

]}− 1
s

]}
is the G-NB quantile function at π (see Section 4.4). For example, the Bonferroni and Lorenz

curves for the LLNB distribution (Section 2.5) with parameters α, γ > 0 are readily calculated

from B(π) and L(π). They are plotted for selected parameter values in Figure 4.7.
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Figure 4.7: Plots of B(π) and L(π) versus π for the LLNB distribution. Here, β = 0.5, γ = 3

and α = 2 for B(π) and s = 2, β = 0.5 and α = 1.5 for L(π).

4.8 Entropies

An entropy is a measure of variation or uncertainty of a random variable X. Two popular

entropy measures are the Rényi and Shannon entropies (Shannon, 1951; Rényi, 1961). The

Rényi entropy of a random variable with pdf f(·) is de�ned by (for γ > 0 and γ 6= 1)

IR(γ) =
1

1− γ
log

(∫ ∞
0

fγ(x)dx

)
.

The Shannon entropy of a random variable X is de�ned by E{− log[f(X)]}. It is the limit of

the Rényi entropy when γ goes to one.

Here, we derive closed-form expressions for the Rényi and Shannon entropies when X is a

G-NB random variable. From Equations (4.2) and (4.11), we obtain

IR(γ) =
1

1− γ

{
log(K) + log

[∫ ∞
0

g(x)γ (1− β[1−G(x)])−γ(s+1)dx

]}

=
1

1− γ

{
log(K) + log

[∫ ∞
0

{
g(x)γ

∞∑
k=0

(−1)k
(
−γ(s+ 1)

k

)

× βk [1−G(x)]k

}
dx

]}
,

where K = (sβ)γ/[(1− β)−s − 1]γ . By expanding the binomial term, we obtain
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IR(γ) =
1

1− γ

{
log(K) + log

(∫ ∞
0

[ ∞∑
k=0

k∑
j=0

(−1)kβk
(
k

j

)(
−γ(s+ 1)

k

)

× g(x)γ G(x)j

]
dx

)}
.

The above sum converges to g(x)γ{1−[1+G(x)]β}−γ(s+1). Then, the Rényi entropy reduces

to

IR(γ) =
γ

1− γ
{

log(sβ)− log[(1− β)−s − 1]
}

+
1

1− γ
log

(∫ ∞
0

g(x)γ {1− [1 +G(x)]β}−γ(s+1)dx

)
. (4.26)

The last integral depends only on the baseline G distribution.

The Shannon entropy can be obtained by limiting γ ↑ 1 in (4.26). However, it is easier to

derive its expression from the de�nition. We have

E{− log[f(X)]} = − log(sβ) + log[(1− β)−s − 1]− E{log[g(X)]}

−E{− log[1− β(1−G(X))](s+2)−1}.

For any real a > 0, the following formula given by (http:// functions.wolfram.com/ Elemen-

taryFunctions/ Log/ 06/ 01/ 04/ 03/) holds

{− log [1−G(x)]}a−1 = (a− 1)

∞∑
k=0

(
k + 1− a

k

) k∑
j=0

Jj,k(a)G(x)a+k−1, (4.27)

where

Jj,k(a) =
(−1)j+k pj,k
(a− 1− j)

(
k

j

)
and the constants pj,k can be calculated recursively by

pj,k = k−1
∞∑
m=1

(−1)m [m(j + 1)− k]

(m+ 1)
pj,k−m (4.28)

for k = 1, 2, . . . and pj,0 = 1.

Then, using expansion (4.27), we obtain

E {− log[f(X)]} = − log(sβ) + log[(1− β)−s − 1]− E{log[g(X)]}

−
∞∑

k,i=0

k∑
j=0

qk,j,iE
[
G(X)i

]
, (4.29)
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where

qk,j,i =
(−1)j+k (s+ 1)βs+k+1 pj,k

(s+ 1− j)

(
k

j

)(
k − s− 1

k

)
.

The two expectations in (4.29) can be easily evaluated numerically for given G(·) and g(·).
Using (4.13), they can also be represented as

E
[
G(X)i

]
=

∞∑
j=0

(j + 1)ωj

∫ ∞
0

G(x)i+j g(x)dx =

∞∑
j=0

(j + 1)ωj
(i+ j + 1)

G(x)i+j+1,

and

E {log[g(X)]} =

∞∑
j=0

(j + 1)ωj

∫ ∞
0

log[g(x)]G(x)jg(x)dx,

respectively. The last equation can also be expressed in terms of the baseline quantile function

as

E {log[g(X)]} =

∞∑
j=0

(j + 1)ωj

∫ 1

0
log {g [QG(u)]} ujdu.

The last integral can be calculated for most baseline distributions using a power series expansion

for QG(u).

4.9 Reliability

We derive the reliability, R = Pr(X2 < X1), when X1 ∼ G1-NB and X2 ∼ G2-NB are

independent random variables. Probabilities of this form have many applications especially in

engineering concepts. Let fi and Fi denote the pdf and cdf of Xi, respectively. By using the

representations (4.13) and (4.14), we can write

R =
∞∑

n,m=0

pnm

∫ ∞
0

Hm+1(x)hn+1(x)dx =
∞∑

n,m=0

pnmRnm, (4.30)

where

pnm =
(−1)n+m s1s2 vn(s1, β1) vm(s2, β2)

(n+ 1)(m+ 1)[(1− β1)−s1 − 1] [(1− β2)−s2 − 1]
,

where vj(si, βi) (for i = 1, 2 and j = n,m) is given by

vj(si, βi) =
∞∑
k=j

βk+1
i (si + 1)k

k!

(
k

j

)
and Rnm = Pr(Ym < Yn) is the reliability between the independent random variables Yn ∼ exp-

G(n+1) and Ym ∼ exp-G(m+1). Hence, the reliability of the G-NB random variables is a linear
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combination of those for exp-G random variables. For example, we derive the reliability when

X1 and X2 have independent WNB distributions with the same shape parameter b, namely,

WNB(a1, b, s1, β1) and WNB(a2, b, s2, β2). The reliability obtained from Equation (4.30) is

R =
∞∑

n,m=0

(n+ 1) pnm

∫ ∞
0

g(x; a1, b)G(x; a1, b)
nG(x; a2, b)

m+1dx

=
∞∑

n,m=0

(n+ 1) pnm

∫ ∞
0

[a1b x
b−1e−a1x

b
] [1− e−a1x

b
]n [1− e−a2x

b
]m+1dx.

By application of the binomial expansion, we obtain

R =
∞∑

n,m=0

n∑
l=0

m+1∑
k=0

(−1)k+l (n+ 1) a1b pnm

(
n

l

)(
m+ 1

k

)
×

∫ ∞
0

xb−1e−[a1(1+l)+a2k]x
b
dx. (4.31)

Calculating the last integral, we can write the reliability R = Pr(X2 < X1) as

R =
∞∑

n,m=0

n∑
l=0

m+1∑
k=0

(−1)k+l b a1 (n+ 1) pnm
a1 b(1 + l) + a2 b k

(
n

l

)(
m+ 1

k

)
.

4.10 Order statistics

Order statistics make their appearance in many areas of statistical theory and practice.

Suppose X1, X2, . . . , Xn is a random sample from the G-NB distribution. Let Xi:n denote the

ith order statistic. From equations (4.13) and (4.14), the pdf of Xi:n is

fi:n(x) =
n!

(i− 1)!(n− i)!

n−i∑
j=0

(−1)j
(
n− i
j

)
f(x)F (x)j+i−1

=
n!

(i− 1)!(n− i)!

n−i∑
j=0

(−1)j
(
n− i
j

) [ ∞∑
r=0

ωr (r + 1)G(x)r g(x)

]

×

[ ∞∑
k=0

ωkG(x)k+1

]j+i−1
.

Here, we use an equation by Gradshteyn and Ryzhik (2000, Section 0.314) for a power series

raised to a positive integer n ( ∞∑
i=0

ai u
i

)n
=
∞∑
i=0

cn,i u
i, (4.32)

where the coe�cients cn,i (for i = 1, 2, . . .) are easily determined from the recurrence equation

cn,i = (i a0)
−1

i∑
m=1

[m (n+ 1)− i] am cn,i−m, (4.33)
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and cn,0 = an0 . The coe�cient cn,i can be determined from cn,0, . . . , cn,i−1 and then from the

quantities a0, . . . , ai. In fact, cn,i can be given explicitly in terms of the coef�cients a′is, although

it is not necessary for programming numerically the expansions in any algebraic or numerical

software.

Using Equations (4.32) and (4.33), we can write[
G(x)

∞∑
k=0

ωkG(x)k

]j+i−1
=

∞∑
k=0

γj+i−1,k G(x)k+j+i−1,

where γj+i−1,0 = ωj+i−10 and γj+i−1,k = (k ω0)
−1

k∑
m=1

[m(j + i)− k]ωm γj+i−1,k−m.

Hence,

fi:n(x) =
∞∑

r,k=0

n−i∑
j=0

mr,k,j hr+k+j+i(x), (4.34)

where

mr,k,j =
(−1)j i (r + 1)ωr γj+i−1,k

(r + k + j + i)

(
n

i

)(
n− i
j

)
.

Equation (4.34) reveals that the pdf of the G-NB order statistics is a triple linear combination

of exp-G density functions. So, several mathematical quantities of the G-NB order statistics such

as the ordinary, incomplete and factorial moments, mgf and mean deviations can be obtained

from those quantities of the exp-G distributions. Clearly, the cdf of Xi:n can be expressed as

Fi:n(x) =

∞∑
r,k=0

n−i∑
j=0

mr,k,j Hr+k+j+i(x).

For example, from equation (5.27), the moments of the G-NB order statistics can be expressed

directly in terms of the exp-G moments as

E(Xs
i:n) =

∞∑
r,k=0

n−i∑
j=0

mr,k,j

∫ ∞
0

xs hr+k+j+i(x)dx. (4.35)

Using equation (4.35), the moments of the WNB order statistics can be written directly in

terms of the exp-Weibull moments (with parameters r + k + j + i > 0, a > 0 and b > 0) as

E(Xs
i:n) = a−

s
b

∞∑
r,k=0

n−i∑
j=0

pr,k,j Γ

(
b+ s

b

)
, (4.36)

where

pr,k,j = (−1)j i (r + 1)ωr γj+i−1,k

(
n

i

)(
n− i
j

)
×

r+k+j+i−1∑
t=0

(−1)t
(
r + k + j + i− 1

t

)
(1 + t)−

b+s
b .
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Alternatively, we obtain another expression for these moments using a result due to Barakat

and Abdelkader [12] applied to the independent and identically distributed (i.i.d.) case, subject

to existence,

E(Xs
i:n) = s

n∑
t=n−i+1

(−1)t−n+i−1
(
t− 1

n− i

)(
n

t

)
It(s), (4.37)

where It(s) denotes the integral

It(s) =

∫ ∞
−∞

xs−1[1− F (x)]tdx

Using the binomial expansion and interchanging terms, the lest integral becomes

It(s) =

t∑
m=0

(−1)m
(
t

m

)∫ ∞
−∞

xs−1F (x)mdx

=

t∑
m=0

(−1)m
(
t

m

)∫ ∞
−∞

xs−1

 ∞∑
j=0

ωjHj+1(x)

m dx
Using Equation (4.32), we obtain

It(s) =
t∑

m=0

(−1)m
(
t

m

)∫ ∞
0

xs−1
∞∑
j=0

cm,j Hj+1(x)dx

=
∞∑
j=0

t∑
m=0

(−1)m
(
t

m

)
cm,j

∫ ∞
0

xs−1G(x)j+1dx,

where cm,0 = ωm0 and cm,j = (j ω0)
−1∑j

n=1 [n (m+ 1)− j]ωn cm,j−n.
Inserting the expression for It(s) in equation (4.37) yields

E(Xs
i:n) = s

n∑
t=n−i+1

t∑
m=0

∞∑
j=0

cm,j (−1)t−n+i+m−1
(
t− 1

n− i

)(
n

t

)(
t

m

)
×

∫ ∞
0

xs−1G(x)j+1dx.

The last integral can be computed for most baseline distributions.

4.11 Estimation

We calculate the maximum likelihood estimates (MLEs) of the parameters of the G-NB

distribution from complete samples only. Let x1, . . ., xn be a random sample of size n from

the G-NB(s,β,τ ) distribution, where τ is a p× 1 vector of unknown parameters in the baseline

88



distribution G(x; τ ). The log-likelihood function for the vector of parameters θ = (s, β, τT )T

can be expressed as

l(θ) = n{log(sβ)− log[(1− β)−s − 1]}+
n∑
i=1

log[g(xi; τ )]

− (s+ 1)
n∑
i=1

log{1− β[1−G(xi; τ )]}. (4.38)

The log-likelihood can be maximized by using well established routines like nlm or optimize

in the R statistical package or by solving the nonlinear likelihood equations obtained by di�er-

entiating (4.38). The components of the score vector U(θ) are

Us(θ) =
n

s
+
n(1− β)−s log(1− β)

(1− β)−s − 1
−

n∑
i=1

log {1− β[1−G (xi; τ )]} ,

Uβ(θ) =
n

β
− n s (1− β)−s

(1− β)[(1− β)−s − 1]
− (s+ 1)

n∑
i=1

G (xi; τ )− 1

1− β[1−G (xi; τ )]
,

Uτj (θ) =
n∑
i=0

∂g(xi; τ )/∂τj
g(xi; τ )

− (s+ 1)
n∑
i=1

β
[
∂G (xi; τ ) /∂τj

]
1− β[1−G (xi; τ )]

,

for j = 1, . . . p.

For interval estimation and hypothesis tests on the model parameters, we require the (p +

2)×(p+2) observed information matrix J = J(θ) given in the Appendix. Under conditions that

are ful�lled for parameters in the interior of the parameter space but not on the boundary, the

asymptotic distribution of
√
n(θ̂−θ) is Np+2(0, I(θ)−1), where I(θ) is the expected information

matrix. In practice, we can replace I(θ) by the observed information matrix evaluated at θ̂,

say J(θ̂). We can construct approximate con�dence intervals for the parameters based on the

multivariate normal Np+2(0, J(θ̂)−1) distribution.

Further, the likelihood ratio (LR) statistic can be used for comparing this distribution with

some of its sub-models. We can compute the maximum values of the unrestricted and restricted

log-likelihoods to construct LR statistics for testing some sub-models of the G-NB distribution.

For example, the test of H0 : s = 1 andβ → 0 versus H1 : H0 is not true is equivalent to

compare the G-NB and G distributions and the LR statistic becomes

w = 2{`(τ̂ , ŝ, β̂)− `(τ̃ , 1, 0)},

where τ̂ , ŝ and β̂ are the MLEs under H1 and τ̃ and β̃ are the estimates under H0.

4.12 Application

In this section, we �t the Fréchet negative binomial (FNB) distribution to a real data set. In

order to estimate the parameters of this special model, we adopt the maximum likelihood method
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(as discussed in Section 11) with all computations performed using the subroutine NLMixed of

the SAS software. The data set obtained from Murthy et al. (2004) consist of the failure times

of 20 mechanical components. The data are: 0.067, 0.068, 0.076, 0.081, 0.084, 0.085, 0.085,

0.086, 0.089, 0.098, 0.098, 0.114, 0.114, 0.115, 0.121, 0.125, 0.131, 0.149, 0.160, 0.485.

We compare the �t of the FNB distribution with three alternative models not belonging to

the G-NB family:

• the beta Fréchet (BF) distribution (see Barreto-Souza et al., 2011) with pdf (for x > 0):

f(x;σ, λ, a, b) =
λσλ x−(λ+1)

B(a, b)
exp[−a(σ/x)λ]{1− exp[−(σ/x)λ]}b−1,

where λ > 0, σ > 0, a > 0 and b > 0, and B(a, b) = Γ(a)Γ(b)/Γ(a+ b);

• the beta Weibull (BW) distribution (see Famoye et al., 2005) with pdf (for x > 0):

f(x;α, γ, a, b) =
αγ

B(a, b)
xγ−1 exp(−b α xγ)[1− exp(−αxγ)]a−1,

where α > 0, γ > 0, a > 0 and b > 0; and

• the Marshall-Olkin Weibull (MOW) distribution (see Marshall and Olkin, 1997) with pdf

(for x > 0):

f(x;α, γ, δ) =
δ γ α xγ−1 exp(−αxγ)

[1− (1− δ) exp(−αxγ)]2
,

where α > 0, γ > 0 and δ > 0.

Table 4.1: MLEs, the corresponding SEs (given in parentheses), maximized log-likelihoods, CM

and AD statistics and the p-values for the failure time data.

Distribution Estimates `(θ̂) CM p-Value AD p-Value

FNB(σ, λ, β, s) 0.1906, 1.8463, 0.9811, 0.6264 39.25 0.0425 0.6365 0.2723 0.6703

(0.2985, 1.9279, 0.1494, 1.2789)

BF(σ, λ, a, b) 0.0745, 7.7243, 1.1875, 0.3540 39.20 0.0446 0.5977 0.3233 0.5261

(0.0466, 5.7291, 4.4002, 0.3595)

BW(α, γ, a, b) 1.3011, 0.0973, 636.50, 344.03 33.30 0.1761 0.0109 1.2506 0.0030

(0.0454, 0.0152, 340.23, 188.76)

MOW(α, γ, δ) 7.0694, 5.0872, 0.0001 36.20 0.0892 0.1577 0.6697 0.0804

(5.9804, 0.9628, 0.0001)

Table 4.1 gives the MLEs and corresponding standard errors (SEs), maximized log-likelihoods,

the values of the Cramér-von Mises (CM) and Anderson-Darling (AD) statistics and the p-values

for the current data. In general, the smaller the values of these statistics, the better the �t to

the data. To obtain the statistics, one can proceed as follows: (1) compute vi = F (xi; θ̂) and
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yi = Φ−1(vi), where the x′is are in ascending order, θ̂ is an estimate of θ, Φ(·) is the standard

normal cumulative function and Φ−1(·) denotes its inverse; (2) compute ui = Φ[(yi − ȳ)/sy],

where ȳ is the sample mean of yi and sy is the sample variance; (3) compute CM∗ =
∑n

i=1[ui −
(2 i−1)/2n]2+1/(12n) and AD∗ = −n−(1/n)

∑n
i=1[(2 i−1) log(ui)+(2n+1−2 i) log(1−ui)],

and then CM = (1 + 0.5/n)CM∗ and AD = (1 + 0.75/n+ 2.25/n2)AD∗.

Thus, according to these formal tests, the FNB model �ts better to these data than the other

models. This evidence can also be noted in Figure 4.8, where we can check that the FNB model

captures the behavior of the data.
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Figure 4.8: Plots of the estimated density (a) and estimated survivor function (b) for the failure

time data.

4.13 Concluding remarks

For the �rst time, we propose a family of generalized negative binomial (G-NB) distributions.

The G-NB family extends several common distributions such as the normal, Weibull, gamma,

log-logistic and Gumbel distributions. In fact, for each distribution G, we can de�ne the corre-

sponding G-NB distribution using a simple equation. We demonstrate that some mathematical

properties of the G-NB distribution can be readily obtained from those of the exponentiated-G

distribution. Explicit expressions for the ordinary and incomplete moments, generating function,

mean deviations, Bonferroni and Lorenz curves, Rényi and Shannon entropies, reliability and

order statistics are derived for any G-NB distribution. We discuss maximum likelihood estima-

tion and inference on the parameters based on Cramér-von Mises (CM) and Anderson-Darling

(AD) statistics. An example to real data illustrates the importance and potentiality of the new

family.
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Appendix A - Information Matrix

The elements of the observed information matrix J(θ) for the model parameters (s, β, τ) are

given by

Jss = − n
s2
− n(1− β)−s log(1− β)2

[(1− β)−s − 1]2
,

Jsβ =
1

[(1− β)s − 1]3
{n log(1− β)[s(1− β)s−1 log(1− β) + s(1− β)2s−1

× log(1− β) + 2(1− β)s−1 − 2(1− β)2s−1]},

Jsτj = −
n∑
i=1

βΦ̇

1− β(1− Φ)
,

Jββ = − n

β2
+
ns2(1− β)s−4

[(1− β)s − 1]2

{
2 + (1 + s)(β2 − 2β)− 1

(1− β)s−2

}
+(s+ 1)

n∑
i=1

(Φ− 1)2

[1− β(1− Φ)]2
,

Jτjτj =
n∑
i=1

[ φ̈
φ
− φ̇2

φ2

]
− (s+ 1)

n∑
i=1

{ βΦ̈

1− β(1− Φ)
− β2Φ̇2

[1− β(1− Φ)]2

}
,

where φ = g(xi; τ),Φ = G(xi; τ), φ̇ = ∂g(xi;τ)
∂τj

, Φ̇ = ∂G(xi;τ)
∂τj

, φ̈ = ∂2g(xi;τ)
∂τ2j

and Φ̈ = ∂2G(xi;τ)
∂τ2j

.
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CHAPTER 5

The Zeta-G Class: General Properties and Application

Resumo

Propomos uma nova classe de distribuições com um parâmetro de forma adicional. Alguns

casos especiais são apresentados. Obtivemos algumas propriedades matemáticas desta classe,

incluíndo expressões explícitas para a função quantílica, momentos ordinários e incompletos,

função geradora, desvios médios, dois tipos de entropia, con�abilidade, estatísticas de ordem e

seus momentos. Discutimos estimativa dos parâmetros do modelo por máxima verossimilhança

e fornecemos uma aplicação para um conjunto de dados reais.

Palavras-chave: Distribuição Zeta; desvios médios; estatísticas de ordem; função geradora; mo-

mentos.

Abstract

We propose a new class of distributions with one extra shape parameter. Some special cases are

presented. We derive some mathematical properties of this class including explicit expressions

for the quantile function, ordinary and incomplete moments, generating function, mean devia-

tions, two types of entropy, reliability, order statistics and their moments. We discuss estimation

of the model parameters by maximum likelihood and provide an application to a real data set.

Keywords: Generating function; Mean deviation; Moment; Order Statistic; Zeta distribution.

5.1 Introduction

Recently, new distributions have been proposed by compounding any continuous baseline

G distribution with a discrete distribution supported on integers n ≥ 1. By this method,

we can obtain a new class of distributions with additional parameters whose role is to govern
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skewness and generate densities with heavier/ligther tails. These parameters are sought as a

manner to furnish a more �exible distribution for modeling the hazard rate function (hrf). Ano-

ther important method for generating continuous distributions was proposed by Alzaatreh et

al. (2013). Accordingly, several new distributions have been appeared, such as the extended

Weibull distribution Cordeiro and Lemonte (2013) that includes the Weibull distribution as a

special case and gives more �exibility to model various types of data.

We propose a general class of continuous distributions called the Zeta-G class with an ad-

ditional shape parameter. The Zeta-G can generate new distributions from speci�ed baseline

distributions. We demonstrate that the Zeta-G density class is a linear combination of exponen-

tiated-G (�exp-G� for short) density functions.

Let W1, . . . ,WZ be a random sample from a continuous cumulative distribution function

(cdf) G(·) with positive support, where Z is an unknown positive integer number. We assume

that the random variable Z has a zeta probability mass function (pmf)

P (z; s) =
z−s

ζ(s)
, z ∈ {1, 2, . . .}, s ∈ (1,∞),

where ζ(s) is the Riemann zeta function (which is unde�ned for s = 1). Let Z and W be

independent random variables and X = min(W1, . . . ,WZ). Then, the conditional cdf of X

given Z is

F (x|z) = 1− P (X ≥ x|z) = 1− P z(W1 ≥ x)

= 1− [1− P (W1 ≤ x)]z = 1− [1−G(x)]z.

The unconditional cdf of X becomes

F (x; s) =
∞∑
z=1

z−s

ζ(s)
{1− [1−G(x)]z},

for x > 0, s > 1 and z ∈ {1, 2, . . .}. Here, s is a shape parameter. After some algebra, the cdf

of X reduces to

F (x; s) =
ζ(s)− Lis[1−G(x)]

ζ(s)
, (5.1)

where Lis(x) is the polylogarithm function [Abramowitz and Stegun] de�ned by the power series

Lis(z) =

∞∑
k=1

zk

ks
, (5.2)

with |z| < 1. The model de�ned by (5.1) is called the Zeta-G distribution

The polylogarithm function can be represented by more general functions, for example,

using the generalized hypergeometric function, the Lerch transcendent function and the Meijer

G-function (can be found in wolfram website1).

1http://functions.wolfram.com/10.08.26.0008.01 - Accessed 13/06/2013.
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We provide two motivations for the Zeta-G class of distributions. First, suppose the failure

of a device occurs due to the presence of an unknown number Z of initial defects of same kind,

which can be identi�able only after causing failure and are repaired perfectly. De�ne by Wi the

time to the failure of the device due to the ith defect, for i ≥ 1. Under the assumptions that the

Wi's are iid random variables with cdf G(x) independent of Z, where Z has a Zeta distribution,

equation (5.1) is appropriate for modeling the time to the �rst failure. Secondly, suppose that

an individual in the population is susceptible to a certain type of cancer. Let Z be the number

of carcinogenic cells for that individual left active after the initial treatment and denote by Wi

the time spent for the ith carcinogenic cell to produce a detectable cancer mass, for i ≥ 1. Under

the assumptions that {Wi}i≥1 is a sequence of iid random variables independent of Z having

the cdf G(x), where Z has a Zeta distribution, the time to relapse of cancer of a susceptible

individual is de�ned by X = min {Wi}Zi=1, which follows (5.1).

The probability density function (pdf) corresponding to (5.1) is given by

f(x) =
Lis−1[1−G(x)] g(x)

ζ(s) [1−G(x)]
, (5.3)

where g(x) = dG(x)/dx. We can verify using Mathematica that
∫∞
0 f(x)dx = 1, ∀ s > 1.

This generalization is obtained by increasing the number of parameters of the G model by

one, this increase being the price to pay for adding more �exibility to the generated distribution.

A positive point of the Zeta-G model is that it includes the G distribution as a special model when

s→∞. Hereafter, a random variableX having the density (5.3) is denoted byX ∼ Zeta-G(τ, s),

where τ is the parameter vector associated with G. The survival function and hazard rate

function (hrf) of X are given by

S(x) =
Lis[1−G(x)]

ζ(s)

and

h(x) =
g(x) Lis−1[1−G(x)]

[1−G(x)] Lis[1−G(x)]
,

respectively. The aim of this paper is to derive some mathematical properties of (5.3) which

hold for any continuous G distribution.

Throughout the paper we use an expansion in Taylor series for xλ, where λ is any real

number, given by

xλ =

∞∑
k=0

(λ)k
(x− 1)k

k!
=

∞∑
i=0

fi x
i, (5.4)

where fi =
∑∞

k=i
(−1)k−i(λ)k

k!

(
k
i

)
and (λ)k = λ(λ − 1) . . . (λ − k + 1) is the descending factorial.

Further, we use an equation by [4, Section 0.314] for a power series raised to a positive integer n

( ∞∑
i=0

ai u
i

)n
=
∞∑
i=0

cn,i u
i, (5.5)
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where the coe�cients cn,i (for i = 1, 2, . . .) are easily determined from the recurrence equation

cn,i = (i a0)
−1

i∑
m=1

[m(n+ 1)− i] am cn,i−m (5.6)

and cn,0 = an0 .

The rest of the paper is organized as follows. In Section 5.2, we present some new distribu-

tions in the Zeta-G class. We obtain explicit expressions for the quantile function, ordinary and

incomplete moments, moment generating function (mgf), mean deviations, Shannon entropy,

Rényi entropy, reliability and moments of the order statistics in Sections 5.2 to 5.10. The esti-

mation of the model parameters using the method of maximum likelihood is presented in Section

5.11. An application to a real data set is performed in Section 5.12. Finally, some conclusions

are addressed in Section 5.13.

5.2 Special Zeta-G distributions

The Zeta-G class of density functions (5.3) allows for greater �exibility of its tails and can be

widely applied in many areas of engineering and biology. This new class extends several widely-

known distributions in the literature. So, we present some of its special cases. The density

function (5.3) will be most tractable when the cdf G(x) and the pdf g(x) have simple analytic

expressions.

5.2.1 Zeta-Weibull (ZW) distribution

If G(x) is the Weibull cdf with scale parameter β > 0 and shape parameter α > 0, say

G(x) = 1− exp(−βxα), the pdf (for x > 0) and cdf of the ZW distribution reduce to

fZW(x) =
αβ xα−1 Lis−1[e

−βxα ]

ζ(s)
and FZW(x) =

ζ(s)− Lis[e
−βxα ]

ζ(s)
.

Figure 5.1 displays some possible shapes of the ZW density function.

5.2.2 Zeta-Kumaraswamy (ZKw) distribution

Consider the Kumaraswamy distribution with pdf and cdf in the forms [for x ∈ (0, 1) and

a, b > 0] g(x) = a b xa−1 and G(x) = 1 − (1 − xa)b, respectively. This distribution, introduced
by [6], was investigated by [5]. The ZKw distribution, for x ∈ (0, 1), has pdf and cdf given by

fZKw(x) =
a b xa−1 Lis−1[(1− xa)b]

ζ(s) (1− xa)b
(5.7)

and

FZKw(x) =
ζ(s)− Lis[(1− xa)b]

ζ(s)
,

respectively, where a and b are shape parameters. Plots of (5.7) for selected parameter values

are displayed in Figure 5.2.
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Figure 5.1: The ZW density function for some parameter values: (a) s = 3 and β = 1; (b) s = 5

and α = 0.7.
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Figure 5.2: The ZKw density function for some parameter values: (a) a = 1.5 and b = 2; (b)

s = 3 and a = 0.5.

5.2.3 Zeta-Fréchet (ZFr) distribution

Consider the Fréchet distribution (for x, σ, λ > 0) with cdf and pdf given by G(x) =

exp{−(σ/x)λ} and g(x) = λσλ x−λ−1 exp{−(σ/x)λ}, respectively.
The ZFr distribution, for x > 0, has pdf and cdf given by

fZFr(x) =
λσλ x−λ−1 Lis−1[1− exp{−(σx )λ}]

ζ(s) [exp{(σx )λ} − 1]
(5.8)

and

FZFr(x) =
ζ(s)− Lis[1− exp{(σx )λ}]

ζ(s)
,
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respectively, where σ > 0 is scale parameter and λ > 0 is a shape parameter. Plots of (5.8) for

selected parameter values are given in Figure 5.3.
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Figure 5.3: The ZFr density function for some parameter values: (a) s = 2 and σ = 0.5; (b)

s = 2 and λ = 1.5; (c) λ = 1.5 and σ = 1.

5.2.4 Zeta-Exponentiated Pareto (ZEPa) distribution

The pdf and cdf of the exponentiated Pareto distribution are (for θ, γ, k > 0) g(x) =

γ k θk x−k−1[1− (θ/x)k]γ−1 and G(x) = [1− (θ/x)k]γ , respectively.

The ZEPa distribution, for x ≥ θ, has pdf and cdf given by

fZEPa(x) =
γ kθk x−k−1 {1− ( θx)k}γ−1 Lis−1[(1− {1− ( θx)k}γ ]

ζ(s) [1− {1− ( θx)k}γ ]
(5.9)

and

FZEPa(x) =
ζ(s)− Lis[1− {1− ( θx)k}γ ]

ζ(s)
,

respectively. Some plots of the ZEPa density function are displayed in Figure 5.4.

5.3 Useful representations

Some useful expansions for (5.1) and (5.3) can be derived using the concept of exponenti-

ated distributions. For an arbitrary baseline cdf G(x), a random variable is said to have the

exponentiated-G (�exp-G� for short) distribution with parameter r > 0, say Yr ∼ exp-G(r), if

its pdf and cdf are

hr(x) = r G(x)r−1 g(x) and Hr(x) = G(x)r,
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Figure 5.4: The ZEPa density function for some parameter values: (a) s = 2, θ = 1 and k = 0.5;

(b) s = 3, θ = 0.5 and γ = 2.

respectively. The properties of exponentiated distributions have been studied by several authors

in recent years. See [9] for exponentiated Weibull, [7] for exponentiated exponential, [11] for

exponentiated Fréchet and [10] for exponentiated gamma distributions.

Using expansion (5.2), we can write (5.3) as

f(x) =
g(x)

ζ(s)

∞∑
k=1

1

ks−1
[1−G(x)]k−1.

Expanding the binomial term in this equation, we can express f(x) as

f(x) =

∞∑
r=1

ωr hr(x), (5.10)

where hr(x) denotes the exp-G(r) density function and

ωr =
(−1)r

r ζ(s)

∞∑
k=r

k1−s
(
k − 1

r − 1

)
.

We prove using Mathematica that
∑∞

r=1 ωr = 1. By integrating (5.10), we can express F (x)

as

F (x) =

∞∑
r=1

ωrHr(x), (5.11)

where Hr(x) denotes the exp-G(r) cdf. So, several mathematical properties of the Zeta-G class

can be obtained by knowing those of the exp-G distribution, see, for example, [9], [11], among

others.
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5.4 Quantile function

The quantile function is de�ned by x = Q(u; s) = F−1(u; s), where F (x; s) follows (5.1) and

(5.2) by

F (x; s) = 1−
k∑
j=0

cj G(x)j ,

where cj =
∑∞

k=1

(−1)j(kj)
ζ(s) ks . We shall use the Lagrange theorem [8, p. 88] to obtain the expansion

for the quantile function. We can rewrite w = F (x; s) as

w = F (x; s) = w0 −
k∑
j=1

cj z
j , F ′(x) = −c1 6= 0, (5.12)

where w0 = 1− c0 and z = G(x). The quantile function of the Zeta-G is given by x = G−1(z).

First, by inverting (5.12), the inverse function z = F−1(w; s) can be written as a power series

around zero

z =

k∑
n=1

gn (w − w0)
n, (5.13)

where gn = (1/n!)dn−1Ψ(x)n/dxn−1|z=0 and Ψ(z) = z
[F (z)−w0]

= − 1∑k
j=0 cj+1zj

.

We can obtain the inverse of the power series
∑k

j=0 cj+1z
j using Equation (0.313) from [4].

We have

Ψ(z) = − 1

c1

k∑
j=0

djz
j ,

where dj can be calculated recursively from the quantities cj by d0 = 1 and dj = −c−11

∑j
i=1 dj−i ci+1

(j ≥ 1).

We can obtain Ψ(z)n using (5.5). Then,

Ψ(z)n =

(
− 1

c1

k∑
j=0

dj z
j

)n
=

(−1)n

cn1

k∑
j=0

fj,n z
j , n ≥ 1,

where the coe�cients fj,n (for j = 1, 2, . . .) can be determined from the recurrence relation

fj,n = j−1
j∑

m=1

[m (n+ 1)− j] dm fj−m,n, (5.14)

and f0,n = dn0 = 1. The coe�cient fj,n can be calculated from the quantities f0,n, . . . , fj−1,n
and therefore from d0, . . . , dj , although it is not necessary for programming numerically our
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expansions in any algebraic or numerical software. The power series with the �rst (n+ 1) terms

can be expressed as

Ψ(z)n =
(−1)n

cn1

(
f0,n + f1,n z + · · ·+ fn−1,n z

n−1 + fn,n z
n + · · ·

)

The derivative of order (n− 1) is given by

dn−1

dzn−1
{

[Ψ(z)]n
}∣∣∣∣
z=0

=
(−1)n(n− 1)!fn−1,n

cn1
,

and then

gn =
1

n!

dn−1

dzn−1
{

[Ψ(z)]n
}∣∣∣∣
z=0

=
(−1)nfn−1,n

n cn1
.

The inverse function (5.13) can be written as

z =
k∑

n=1

(−1)nfn−1,n
n cn1

(w − w0)
n

and, therefore, the quantile function x = Q(w; s) reduces to

x = Q(w; s) = G−1

{
k∑

n=1

(−1)nfn−1,n
n cn1

(w − w0)
n

}
,

where the coe�cients fj,n are calculated from (5.14).

5.5 Moments

A �rst formula for the nth moment of X, say µ′n = E(Xn), can be obtained from (5.10) and

Yr ∼ exp-G(r) as

µ′n =
∞∑
r=1

ωr E(Y n
r ). (5.15)

Expressions for moments of several exponentiated distributions are given by [11], which can be

used to obtain E(Xn). We now provide an application of (5.15) by taking the baseline Weibull

introduced in Section 5.2.1. The pdf of the exp-Weibull distribution with power parameter r

is given by hr(x) = r α β xα−1 e−βx
α

(1 − e−βx
α
)r−1. The nth moment of the ZW distribution

becomes

µ′n = β−n/α Γ
(n
α

+ 1
) ∞∑
k=0

∞∑
r=1

(−1)k r ωr (1 + k)−
n
α
−1
(
r − 1

k

)
.

Plots of skewness and kurtosis for the ZW distribution for some choices of α and β as function

of s are displayed in Figure 5.5.
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Figure 5.5: Skewness and kurtosis measures of the ZW distribution for some parameter values.

A second formula for µ′n can be derived from (5.15) in terms of the baseline quantile function

QG(x) = G−1(x). We can write

µ′n =

∞∑
r=1

r ωr τn,r, (5.16)

where τn,r can be obtained from

τn,r =

∫ ∞
−∞

xnG(x)r−1g(x)dx =

∫ 1

0
QG(u)n ur−1du. (5.17)

The ordinary moments of several Zeta-G distributions can be determined directly from Equa-

tions (5.16) and (5.17).

Here, we give two examples. First, the moments of the ZKw distribution (Section 5.2.2) are

given by

µ′n =

∞∑
r=1

∞∑
k=0

(−1)k r ωr Γ
(
n
a + 1

)
k! Γ

(
n
a + 1− k

) B

(
r + 1,

k

b
+ 1

)
,

where B(a, b) =
∫ 1
0 t

a−1 (1− t)b−1dt is the beta function. The moments of the ZFr distribution

(Section 5.2.3) are given by

µ′n = σn
∞∑
r=1

r ωr

∞∑
i,t=0

hi di,tB(r, t+ 2),

where we de�ne from Equations (5.4), (5.5) and (5.6) hi =
∑∞

j=i
(−1)j−i(−n/λ)j

j!

(
j
i

)
. Here,

(−n/λ)j = (−n/λ) . . . (−n/λ − j + 1) is the descending factorial, di,t = (t a0)
−1∑i

m=1[m(i +

1)− t] am di,t−m for t ≥ 1 and di,0 = ai0 with at = (−1)t+2/(t+ 1).
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The moments of the ZEPa distribution (Section 5.2.4) are given by

µ′n = γ θn
∞∑
r=1

r ωr

∞∑
j=0

[nk ]j

j! (j + r γ)
,

where [nk ]j = (nk )(nk + 1) . . . (nk + j − 1) is the ascending factorial.

For empirical purposes, the shape of many distributions can be usefully described by what

we call the incomplete moments. These types of moments play an important role for measuring

inequality, for example, income quantiles and Lorenz and Bonferroni curves, which depend upon

the incomplete moments of a distribution. The nth incomplete moment of X can be determined

from (5.10) as

mn(y) = E (Xn|X < y) =

∞∑
r=1

r ωr

∫ G(y)

0
QG(u)n ur−1du. (5.18)

The last integral can be computed for most baseline G distributions, at least numerically.

The symbolic computational software Maple, Mathematica, Matlab make it possible to au-

tomate the formulae derived in this paper since they have currently the ability to deal with

analytic recurrence equations and sums of formidable size and complexity. In practical terms,

we can substitute ∞ in the sums by a large number such as 20 or 50 for most practical applica-

tions. Establishing scripts for the explicit expressions given throughout the paper can be more

accurate computationally than other integral representations which can be prone to rounding

o� errors among others. Equations (5.15) - (5.18) are the main results of this section.

5.6 Generating function

The mgf M(t) = E(etX) of X follows from (5.10) as

M(t) =

∞∑
r=1

ωrMr(t),

where Mr(t) is the mgf of Yr. Hence, M(t) can be immediately determined from the generating

function of the exp-G distribution. Another formula for M(t) follows from (5.10) as

M(t) =
∞∑
r=1

r ωr γr(t), (5.19)

where γr(t) can be determined from the baseline quantile function QG(u) = G−1(u) as

γr(t) =

∫ ∞
0

etxG(x)r−1g(x)dx =

∫ 1

0
exp{tQG(u)}ur−1du. (5.20)
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We can obtain the mgf's of several Zeta-G distributions directly from equations (5.19) and

(5.20). For example, the mgf's of the Zeta-Exponential (with parameter λ and for t < λ−1) and

Zeta-Standard Logistic (for t < 1) distributions can be expressed as

M(t) =

∞∑
r=1

r ωr B(r, 1− λ t) and M(t) =

∞∑
r=1

r ωr B(t+ r, 1− t),

respectively.

5.7 Mean deviations

The mean deviations about the mean (δ1(X) = E(|X−µ′1|)) and about the median (δ2(X) =

E(|X −M |)) of X are given by

δ1(X) = 2µ′1 F
(
µ′1
)
− 2m1

(
µ′1
)

and δ2(X) = µ′1 − 2m1(M), (5.21)

respectively, where µ′1 = E(X), M = Median(X) is the median, F (µ′1) is easily calculated from

the cdf (5.1) and m1(z) =
∫ z
−∞ xf(x)dx is the �rst incomplete moment given by (5.18) with

n = 1.

In this section, we provide two alternative ways to compute δ1(X) and δ2(X). A general

equation for m1(z) can be derived from (5.10) as

m1(z) =

∞∑
r=1

ωr Sr(z),

where

Sr(z) =

∫ z

−∞
xhr(x)dx. (5.22)

Equation (5.22) is the basic quantity to compute the mean deviations of the exp-G distribu-

tions. Hence, the mean deviations in (5.21) depend only on the mean deviations of the exp-G

distribution. So, alternative representations for δ1(X) and δ2(X) are

δ1(X) = 2µ′1F
(
µ′1
)
− 2

∞∑
r=1

ω1 Sr
(
µ′1
)

and δ2(X) = µ′1 − 2
∞∑
r=1

ωr Sr(M).

In a similar manner, the mean deviations of the Zeta-G distribution can be determined

from Equation (5.18) with n = 1 and letting Tr(z) =
∫ G(z)
0 QG(u)ur−1du. For example, the

mean deviations of Zeta-Logistic (ZL), Zeta-Pareto (ZPa) (with parameter ν > 0) and ZE (with

parameter λ) distributions are calculated using the generalized binomial expansion from the

following functions

Tr(z) =
1

Γ(r − 1)

∞∑
k=0

(−1)k Γ(r + k) {1− exp(−kz)}
(k + 1)!

,
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Tr(z) =
∞∑
k=0

k∑
j=0

(−1)k z1−jν

(1− jν)

(
r

k

)(
k

j

)
and

Tr(z) = λ−1
∞∑
k=0

(2− r)k {1− exp (−kλz)}
(k + 1)!

,

respectively, where (2− r)k = (2− r)(1− r) . . . (2− r − k) is the descending factorial.

5.8 Entropies

An entropy is a measure of variation or uncertainty of a random variable X. Two popular

entropy measures are the Rényi and Shannon entropies [14, 13]. The Rényi entropy of a random

variable with pdf f(·) is de�ned by

IR(γ) =
1

1− γ
log

(∫ ∞
0

fγ(x)dx

)

for γ > 0 and γ 6= 1. The Shannon entropy of a random variable X is de�ned by IS =

E{− log[f(X)]}. It is a limit case of the Rényi entropy when γ ↑ 1.

Here, we derive closed-form expressions for the Rényi and Shannon entropies when X has a

Zeta-G distribution. From equation (5.3), we obtain

IR(γ) =
1

1− γ
log

[∫ ∞
0

g(x)γ [1−G(x)]−γ{Lis−1[1−G(x)]}γ

ζ(s)γ
dx

]
.

For any real a and |z| < 1, we have the power series

(1− z)−a =
∞∑
k=0

Γ(a+ k)

Γ(a) k!
zk, (5.23)

From Equations (5.2) and (5.23), we write

IR(γ) =
1

1− γ
log

{
ζ(s)−γ

∫ ∞
0

g(x)γ
∞∑
j=0

Γ(γ + j)

Γ(γ) j!
G(x)j

×

[ ∞∑
k=1

[1−G(x)]k

k(s−1)

]γ
dx

}
.

Applying (5.4) in the last equation, we obtain
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IR(γ) =
1

1− γ
log

{
ζ(s)−γ

∫ ∞
0

g(x)γ
∞∑
j=0

Γ(γ + j)

Γ(γ) j!
G(x)j

×
∞∑
i=0

gi

( ∞∑
k=1

[1−G(x)]k

k(s−1)

)i
dx

}
.

Now, applying (5.5) and (5.6) in the last sum, we can write

IR(γ) =
1

1− γ
log

{
ζ(s)−γ

∫ ∞
0

g(x)γ
∞∑
j=0

Γ(γ + j)

Γ(γ) j!
G(x)j

×
∞∑

i,k=0

h̃i ei,k

k+i∑
v=0

(−1)k+i
(
k + i

v

)
G(x)vdx

}
,

where ei,k = (k a0)
−1∑k

m=1[m(i + 1) − k] am ei,k−m for k ≥ 1, ei,0 = ai0 with ak = (k + 1)1−s,

h̃i =
∑∞

t=i
(−1)t−i(γ)t

t!

(
t
i

)
and (γ)t is the descending factorial.

Then, the Rényi entropy reduces to

IR(γ) =
γ

γ − 1
log[ζ(s)] +

1

1− γ
log

{ ∞∑
j,i,k=0

k+i∑
v=0

(−1)k+i h̃i ei,k
(
k+i
v

)
Γ(γ + j)

Γ(γ) j!

×
∫ ∞
0

g(x)γ G(x)j+vdx

}
.

The Shannon entropy can be obtained by limiting γ ↑ 1 in the last equation. However, it is

easier to derive an expression for IS from its de�nition

IS = log[ζ(s)] + E{− log(Lis−1[1−G(X)])} − E{log[g(X)]}

+E{log[1−G(X)]}. (5.24)

The three expectations in (5.24) can be easily determined numerically given G(·) and g(·).
From Equations (5.2) and (5.10), we obtain

E{− log(Lis−1[1−G(X)])} =

∞∑
r=1

∞∑
k,m=0

k+1∑
j=0

(−1)j r ωr cj,m
k + 1

(
k + 1

j

)
× B(r,m+ j + 1),

where cj,m = (ma0)
−1∑m

n=1[n(j + 1)−m]ancj,m−n for m ≥ 1, cj,0 = aj0 with am = (m+ 1)1−s

(for m ≥ 0)

E{log[G(X)]} =
∞∑
r=1

r ωr

∫ 1

0
ur−1 log(u) du = −

∞∑
r=1

ωr
r
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and

E{log[g(X)]} =
∞∑
r=1

r ωr

∫ ∞
0

log[g(x)]G(x)r−1 g(x) dx

respectively. The last of these equations can be expressed in terms of the baseline quantile

function, QG(u), as

E{log[g(X)]} =
∞∑
r=1

r ωr

∫ 1

0
log{g[QG(u)]}ur−1 du.

5.9 Reliability

We derive the reliability, R = Pr(X2 < X1), when X1 ∼ Zeta-G(τ, s1) and X2 ∼ Zeta-

G(τ, s2) are independent random variables. Probabilities of this form have many applications

especially in engineering concepts. Let fi and Fi denote the pdf and cdf of Xi, respectively. By

using the representations (5.10) and (5.11), we can write

R =
∞∑

n,m=1

ωn,m

∫ ∞
0

Hm(x)hn(x)dx =
∞∑

n,m=1

ωn,mRnm, (5.25)

where Rnm = Pr(Ym < Ym) is the reliability between the independent random variables Yn ∼
exp-G(n) and Ym ∼ exp-G(m). Here,

ωn,m =
(−1)n+m−2 vn(s1) vm(s2)

nm
,

and vj(si) (for j = n,m and i = 1, 2) is given by

vj(si) =
∞∑
k=j

k1−si

ζ(si)

(
k − 1

j − 1

)
.

Hence, the reliability of Zeta-G random variables is a linear combination of those for exp-G

random variables. For example, we derive the reliability when X1 and X2 have independent

Zeta-Weibull distributions with the same shape parameter β, namely Zeta-Weibull(α1, β, s1)

and Zeta-Weibull(α2, β, s2). The reliability obtained from Equation (5.25) is

R =
∞∑

n,m=1

nωn,m

∫ ∞
0

(α1β x
β−1e−α1xβ ) (1− e−α1xβ )n−1 (1− e−α2xβ )mdx.

By application of the binomial expansion, we obtain

R =

∞∑
n,m=1

n−1∑
k=0

m∑
l=0

(−1)k+l nα1β ωn,m

(
n− 1

k

)(
m

l

)
×

∫ ∞
0

xβ−1 e−[α1(1+k)+α2l]xβdx. (5.26)
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Finally, we have

R =

∞∑
n,m=1

n−1∑
k=0

m∑
l=0

(−1)k+l nα1β ωn,m
[α1 β(1 + k) + α2 β l]

(
n− 1

k

)(
m

l

)
.

5.10 Order statistics

Order statistics make their appearance in many areas of statistical theory and practice.

Suppose X1, X2, . . . , Xn is a random sample from the Zeta-G distribution. Let Xi:n denote the

ith order statistic. From Equations (5.10) and (5.11), the pdf of Xi:n is given by

fi:n(x) =
n!

(i− 1)!(n− i)!

n−i∑
j=0

(−1)j
(
n− i
j

)
f(x)F (x)j+i−1

=
n!

(i− 1)!(n− i)!

n−i∑
j=0

(−1)j
(
n− i
j

) [ ∞∑
k=1

k ωk g(x)G(x)k−1

]

×

[ ∞∑
r=1

ωrG(x)r

]j+i−1
.

Using (5.5), (5.6) and setting r = t+ 1, we write[
G(x)

∞∑
t=0

ωt+1G(x)t

]j+i−1
=

∞∑
t=0

γj+i−1,t G(x)t+j+i−1,

where γj+i−1,t = (t ω1)
−1

t∑
m=1

[m(j + i)− t]ωm+1 γj+i−1,t−m and γj+i−1,0 = ωj+i−11 .

Hence,

fi:n(x) =
n−i∑
j=0

∞∑
k,t=0

qj,k,t hk+t+j+i(x), (5.27)

where

qj,k,t =
(−1)ji (k + 1)ωk+1 γj+i−1,t

(k + t+ j + i)

(
n

i

)(
n− i
j

)
.

Equation (5.27) reveals that the pdf of the Zeta-G order statistics is a linear combination of

exp-G density functions. So, several mathematical quantities of the Zeta-G order statistics such

as the ordinary, incomplete and factorial moments, mgf and mean deviations can be obtained

from those quantities of the exp-G distributions. Clearly, the cdf of Xi:n can be expressed as

Fi:n(x) =
n−i∑
j=0

∞∑
k,t=0

qj,k,tHk+t+j+i(x).

For example, from Equation (5.27), the moments of the Zeta-G order statistics can be written

directly in terms of the exp-G moments as
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E(Xs
i:n) =

n−i∑
j=0

∞∑
k,t=0

qj,k,t

∫ ∞
0

xs hk+t+j+i(x)dx. (5.28)

As a simple example of Equation (5.28), the moments of the ZW order statistics can be

written directly in terms of the exp-Weibull moments, with baseline parameters α > 0 and

β > 0, as

E(Xs
i:n) = β−

s
α Γ

(
α+ s

α

) n−i∑
j=0

∞∑
k,t,r=0

(−1)r (k + t+ j + i) (1 + r)s/α−1

× qj,k,t
(
k + t+ j + i− 1

r

)
.

5.11 Estimation

We calculate the maximum likelihood estimates (MLEs) of the parameters of the Zeta-G

distribution from complete samples only. Let x1, . . ., xn be a observed sample of size n from

the Zeta-G(s,τ ) distribution, where τ is a p × 1 vector of unknown parameters in the baseline

distribution G(x; τ ). The log-likelihood function for the vector of parameters θ = (s, τT )T can

be expressed as

l(θ) = −n log{ζ(s)} −
n∑
i=1

log{1−G(xi; τ )}+

n∑
i=1

log{g(xi; τ )}

+

n∑
i=1

log{Lis−1[1−G(xi; τ )]}. (5.29)

The log-likelihood can be maximized by using well established routines like nlm or optimize

in the R statistical package or by solving the nonlinear likelihood equations obtained by di�er-

entiating (5.29). The components of the score vector U(θ) are

Us(θ) =
n∑
i=1

∂
∂sLis−1 [1−G (xi, τ )]

Lis−1 [1−G (xi, τ )]
− nζ (1, s)

ζ (s)
,

Uτj (θ) = −
n∑
i=1

Lis−2 [1−G (xi, τ )] ∂
∂τj

G (xi, τ )

[1−G (xi, τ )] Lis−1 [1−G (xi, τ )]
+

n∑
i=1

∂
∂τj

g (xi, τ )

g (xi, τ )

+
n∑
i=1

∂
∂τj

G (xi, τ )

1−G (xi, τ )
,

for j = 1, . . . p and ζ (1, s) = d
dsζ(s).

For interval estimation and hypothesis tests on the model parameters, we require the (p +

1)×(p+1) observed information matrix J = J(θ) given in the Appendix. Under conditions that

are ful�lled for parameters in the interior of the parameter space but not on the boundary, the
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Table 5.1: MLEs, the corresponding SEs (given in parentheses), maximized log-likelihoods,

statistics CM, AD and the p-values for successive failure data.

Distribution Estimates CM AD

ZW(s, α, β) 4.1020, 0.9320, 0.0145 0.1276 0.7973

(0.0009, 0.0488, 0.0037)

ZFr(s, σ, λ) 14.8759, 0.7360, 25.9844 0.7115 4.5757

(95.3446, 0.0346, 2.5720)

ZBXII(s, c, k) 10.7162, 13.2045, 0.0194 0.9549 6.1318

(8.2407, 0.0029, 0.0013)

ZLo(s, α, λ) 24.7604, 6.0747, 474.6617 0.0822 0.5404

(0.0087, 3.1962, 288.3710)

asymptotic distribution of
√
n(θ̂−θ) is Np+1(0, I(θ)−1), where I(θ) is the expected information

matrix. In practice, we can replace I(θ) by the observed information matrix evaluated at θ̂, say

J(θ̂), to construct approximate con�dence intervals for the parameters based on the multivariate

normal Np+1(0, J(θ̂)−1) distribution.

5.12 Application

In this section, we �t the Zeta-Weibull (ZW), Zeta-Fréchet (ZFr), Zeta-Burr XII (ZBII) and

Zeta-Lomax (ZLo) distributions to a real data set. In order to estimate the parameters of these

specials models, we adopt the maximum likelihood method (as discussed in Section 5.11) with

all computations done using the script bbmle of the R software (version 3.0.0). The data set

obtained from [12] consists of the number of successive failures for the air conditioning system

of each member in a �eet of 13 Boeing 720 jet airplanes reported with 213 observations.

Table 5.1 gives the MLEs and corresponding standard erros (SEs) and the values of the

Cramér-von Mises (CM) and Anderson-Darling (AD) statistics for the current data. In general,

the smaller the values of these statistics, the better the �t to the data. To obtain the statistics,

one can proceed as follows: (i) compute vi = F (xi; θ̂) and yi = Φ−1(vi), where the x′is are

in ascending order, θ̂ is an estimate of θ, Φ(·) is the standard normal cumulative function and

Φ−1(·) denotes its inverse; (ii) compute ui = Φ[(yi− ȳ)/sy], where ȳ is the sample mean of yi and

sy is the sample standard deviation; (iii) compute CM∗ =
∑n

i=1[ui−(2 i−1)/2n]2+1/(12n) and

AD∗ = −n−(1/n)
∑n

i=1[(2 i−1) log(ui)+(2n+1−2 i) log(1−ui)], and then CM = (1+0.5/n)CM∗

and AD = (1 + 0.75/n+ 2.25/n2)AD∗.

Thus, according to these formal tests, the ZLo model yields a better �t to these data than

the other models. This evidence can also be noted in Figure 5.6, where we can check that the

ZLo model captures the behavior of the data.
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Figure 5.6: Histogram of the data and �tted ZW, ZFr, ZBXII and ZLo density functions to

successive failure data.

5.13 Concluding remarks

We propose a general class of continuous distributions called the Zeta-G class. It extends

several common distributions such as the Weibull, Kumaraswamy, Fréchet, Burr XII, Lomax

and exponentiated Pareto distributions. In fact, for each distribution G, we can de�ne the Zeta-

G generator using a simple equation. We demonstrate that some mathematical properties of

the Zeta-G distribution can be readily obtained from those of the exponentiated-G distribution.

The ordinary and incomplete moments, the generating function and the mean deviations of the

Zeta-G class can be expressed explicitly in terms of the baseline quantile function. We discuss

maximum likelihood estimation and inference on the parameters based on the Cramér-von Mises

(CM) and Anderson-Darling (AD) statistics. An example to real data illustrates the importance

and potentiality of the new class.

Appendix: Information Matrix

The elements of the observed information matrix J(θ) for the model parameters (s, τ ) of

the Zeta-G class are given by
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Jss =

n∑
i=1

{
∂2

∂s2
Lis−1 [1− Φ]

Lis−1 [1− Φ]
−
{
∂
∂sLis−1 [1− Φ]

}2
{Lis−1 [1− Φ]}2

}
− n ζ(s)′′

ζ (s)
+
n [ζ(s)′]2

[ζ (s)]2
,

Jsτj = −
n∑
i=1

{
Φ̇ ∂
∂sLis−2 [1− Φ]

[1− Φ] Lis−1 [1− Φ]
+

Φ̇ ∂
∂s Lis−1 [1− Φ] Lis−2 [1− Φ]

{Lis−1 [1− Φ]}2 [1− Φ]

}
,

Jτjτj =
n∑
i=1

{
Lis−3 [1− Φ] Φ̇2

[1− Φ]2 Lis−1 [1− Φ]
− Lis−2 [1− Φ] Φ̇2

[1− Φ]2 Lis−1 [1− Φ]

− Lis−2 [1− Φ] Φ̈

[1− Φ] Lis−1 [1− Φ]
− {Lis−2 [1− Φ]}2 Φ̇2

[1− Φ]2 {Lis−1 [1− Φ]}2

}

+

n∑
i=1

{
φ̈

φ
− φ̇2

φ2

}
+

n∑
i=1

{
Φ̈

1− Φ
+

Φ̇2

[1− Φ]2

}
,

where φ = g(xi; τ ),Φ = G(xi; τ ), φ̇ = ∂g(xi;τ )
∂τj

, Φ̇ = ∂G(xi;τ )
∂τj

, φ̈ = ∂2g(xi;τ )
∂τ2j

and Φ̈ = ∂2G(xi;τ )
∂τ2j

.
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