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Resumo 

 

 

A espectroscopia no infravermelho próximo associada à quimiometria tem sido empregada 

para a análise de diferentes amostras. Este trabalho teve como principal objetivo o 

desenvolvimento de metodologias analíticas multivariadas orientadas a análise de farinhas 

de mandioca de diferentes regiões do Brasil utilizando-se da espectroscopia de 

infravermelho próximo (NIR). Os parâmetros de qualidade: cinzas, umidade, e pH foram 

determinados pelos métodos físico-químicos da AOAC (1995) e do Instituto Adolf Lutz 

(1985). Os espectros no infravermelho próximo foram adquiridos na faixa de 10000 a 4000 

cm
-1

. Os modelos de calibração foram desenvolvidos utilizando setenta e duas amostras de 

farinha correlacionando os dados físico-químicos com os espectros NIR por Regressão por 

Mínimos Quadrados Parciais - PLS, Regressão por Mínimos Quadrados Parciais com 

coeficientes de regressão selecionados pelo algoritmo Jack-Knife - PLS/JK e Regressão 

Linear Múltipla com seleção de variáveis pelo Algoritmo das Projeções Sucessivas - 

MLR/SPA. A capacidade preditiva dos modelos foi avaliada por validação externa, 

utilizando um conjunto de trinta e cinco amostras que não fizeram parte da modelagem. Os 

modelos foram testados utilizando diferentes pré-processamentos. A análise de 

componentes principais (PCA) não permitiu a discriminação das amostras de farinha em 

função do estado de origem. Quanto aos modelos de calibração e validação, para 

determinação do teor de umidade, o melhor modelo foi obtido utilizando a correção 

multiplicativa de sinal (MSC), com RMSEP igual a 0,39%. Para a determinação do pH, o 

melhor modelo foi obtido empregando a primeira derivada com filtro de Savitzky Golay 

com janela de 21 pontos, com RMSEP igual a 0,29 . Para a determinação do teor de cinzas, 

o melhor modelo empregou o MSC, com RMSEP igual 0,11%.  As vantagens do emprego 

dessa técnica são a simplicidade, a rapidez e a ausência de resíduos químicos, os quais são 

geralmente gerados pelos métodos tradicionais de análises.  

 

Palavras-chave: Farinha de mandioca. Espectroscopia no infravermelho próximo (NIR). 

Calibração multivariada. 



 

Abstract 

 

 

Near infrared spectroscopy associated with chemometrics is used for the analysis of 

different samples. This work had as its main objective the development of analytical 

methodologies oriented towards a multivariate analysis of cassava flour from different 

regions of Brazil, using near infrared spectroscopy (NIR). Initially ash, moisture and pH 

were investigated using the physicochemical methods of AOAC (1995) and Adolfo Lutz 

Institute (1985). The spectra were acquired in the near infrared range 10000 - 4000 cm
-1

. 

The calibration models were developed with seventy-two samples of flour correlating the 

physicochemical data with the NIR spectra using Partial Least Squares Regression - PLS, 

Partial Least Squares Regression with regression coefficients selected by the Jack-Knife 

algorithm; and PLS / JK and multiple linear regression with variable selection by the 

Successive Projections Algorithm - MLR / SPA. The predictive ability of the models was 

evaluated by external validation, using a set of thirty five samples that were not part of the 

modeling. The models were tested using different pre-processing techniques. The principal 

component analysis (PCA) did not allow for the discrimination of samples of flour by state 

of origin. As for the model calibration and validation for determination of moisture 

content, the best model was obtained using multiplicative signal correction (MSC), with 

RMSEP equal to 0.39%. For the determination of pH, the best model was obtained using 

the first derivative with a Savitzky Golay filter of 21 points with the window, RMSEP 

equal to 0.29. MSC, with RMSEP equal to 0.11, waz the best model to determine ash 

content. The advantages of this technique are simplicity, speed and lack of chemical waste, 

which are usually generated by traditional analysis methods. 

 

 

Keywords: Cassava flour. Infrared spectroscopy (NIR). Multivariate calibration. 
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Introdução 

 

1. INTRODUÇÃO 

 

A farinha é um dos principais produtos obtido da raiz da planta mandioca (Manihot 

esculenta Crantz), sendo o seu consumo difundido por todo o Brasil, principalmente nas 

regiões Norte e Nordeste e nos países da África e Ásia (FERREIRA NETO; FIGUEIRÊDO; 

QUEIROZ, 2003).  

O processo de fabricação da farinha de mandioca é bastante diversificado, pois 

geralmente é produzida artesanalmente por pequenos produtores, utilizando mão de obra 

familiar, ou por empresas de pequeno porte que não possuem tecnologia ou procedimentos 

bem estabelecidos. Em geral, a produção é realizada em precárias condições higiênico-

sanitárias. As diferenças de processamento influenciam no padrão de qualidade das farinhas, 

deixando-as fora do padrão exigido pela legislação vigente e também na segurança alimentar 

do consumidor (CHISTÉ, 2006).  

As análises convencionais utilizadas no controle da qualidade de alimentos são 

precisas, no entanto, apresentam algumas desvantagens consideráveis, visto que geralmente 

são laboriosas, pois consomem muito tempo, são dispendiosas e geram muitos resíduos. A 

espectroscopia no infravermelho próximo (NIR) vem sendo muito utilizada como método de 

controle de qualidade de alimentos, uma vez que é uma técnica que requer pouco ou nenhum 

tratamento das amostras e permite a análise de vários parâmetros, produzindo métodos 

rápidos e limpos (PASQUINI, 2003).  

De acordo com a literatura, os resultados obtidos utilizando a espectroscopia NIR 

associada às ferramentas quimiométricas para determinação de parâmetros de qualidade de 

farinhas de trigo (FERRÃO, 2004; DON; SUN, 2013), farinhas de soja (MENEZES et al., 

2004), farinhas de linhaça (RIBEIRO, 2012) e farinhas de mandioca, batata doce, cará e 

inhame produzidas em diferentes países da Ásia (LEBOT et al., 2009) são  bastante 

promissores. Entretanto, nenhum trabalho foi encontrado na literatura que tivesse como matriz 

a farinha de mandioca fabricada no Brasil.  

Nesse contexto, o presente trabalho apresenta um método analítico para determinar os 

parâmetros de qualidade: teores de umidade, cinzas e pH em farinhas de mandioca de diversas 

regiões do Brasil por meio da espectroscopia NIR e modelos de calibração multivariada, para 

o controle de qualidade dessas farinhas. 
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2. REVISÃO DE LITERATURA 

 

2.1 MANDIOCA 

 

A mandioca (Manihot esculenta Crantz) é uma planta que teve a sua origem no sul do 

continente americano. Há indícios que desde a descoberta do Brasil, a mandioca já era 

cultivada e processada pelos índios e utilizada na alimentação. Posteriormente, foi levada à 

África pelos portugueses e servia de alimentação para os colonizadores e escravos 

transportados através do Oceano Atlântico, em direção às Américas ( LORENZI ; DIAS, 

1993, CAMARGO, 2007). 

Componente essencial na alimentação dos indígenas brasileiros, a mandioca deve o 

seu nome ao tupi-guarani mandióg, que designa a raiz da planta, chamada mandii. 

Atualmente, há uma grande variedade de nomes pelo qual a mandioca é conhecida, 

dependendo da região, ela pode ser chamada de: “[...] aipim, aimpim, candinga, castelinha, 

macamba, macaxeira, macaxera, mandioca-brava, mandioca-doce, mandioca-mansa, maniva, 

maniveira, moogo, mucamba, pão-da-américa, pão-de-pobre, pau-de-farinha, pau-farinha, 

tapioca, uaipi, xagala. (RETEC-BA, 2006).” 

Por ser uma planta bastante tolerante à seca e a solos de baixa fertilidade, a cultura da 

mandioca é bem estabelecida nos países que estão localizados nas zonas tropicais da África, 

América e Ásia (EMBRAPA, 2011).  

Atualmente, dos vinte maiores produtores de mandioca, onze estão localizados na 

África, em seguida tem-se a Ásia, principalmente no sudeste, com seis países produtores: 

Tailândia, Indonésia, Índia, China, Japão e Malásia. A América do sul possui três países 

produtores de mandioca: Brasil, Paraguai e Colômbia (FOCO et al., 2008). Da produção 

mundial, a África é responsável por 54,5%; a Ásia, por 27,8%; e a América Latina, 17,7%. A 

Figura 1 ilustra a produção mundial de mandioca em ha/km². 
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Figura 1 - Distribuição mundial dos países que cultivaram mandioca em 2008 

(ha/km²). 

 

Fonte: FAO, 2013. 

 

 Rica em carboidratos, a mandioca é utilizada tanto na alimentação humana quanto na 

alimentação animal. A composição química média da raiz desta planta é: 65% água, 25% 

amido, 3% proteína, 2% celulose e 5% outros (EMBRAPA, 2003). Por isso é muito utilizada 

na alimentação humana, constituindo a principal fonte de carboidrato para a população de 

baixa renda. Para alimentação animal utilizam-se tanto as folhas e caule, como as raízes. 

 As variedades de mandioca podem ser classificadas como mansas ou bravas de acordo 

com o teor de ácido cianídrico (HCN) presente na raiz. As mandiocas conhecidas como 

mansas ou doces apresentam menos de 100 mg kg
-1

 de HCN em polpa crua de raízes e são 

destinadas ao consumo humano de forma fresca. Por outro lado, as mandiocas bravas ou 

amargas possuem mais de 100 mg kg
-1

 de HCN em polpa crua de raízes e necessitam de 

algum processamento antes de serem consumidas pelos humanos. O ácido cianídrico é um 

composto volátil, por isso é quase que totalmente eliminado durante os processos de 

fabricação da farinha, da fécula e durante o cozimento (MAIEVES, 2010; SOARES, 2011). 

 No Brasil, a mandioca e seus subprodutos originaram uma variada gastronomia, na 

qual os principais produtos utilizados na alimentação humana são: mandioca pré-cozida, 

farinhas cruas ou torradas, polvilho doce ou azedo, beijus, mingaus e bolos diversos, ou ainda, 

como aditivo na fabricação de embutidos, balas, bolachas e roscas, sobremesas, sagu, sopas e 

pão (Figura 2) (SEBRAE, 2009). 

 Na região Norte, preparam com a mandioca o tacacá e o tucupi, além da farinha 

d’água. Na Bahia, utilizam-se os brotos novos da planta com o guisado de carne ou peixe para 
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compor um prato típico, conhecido como maniçoba. Muitas aplicações da mandioca na 

culinária derivam da inventividade dos índios, que dela extraíam o cauim, bebida fermentada. 

O álcool que as raízes fornecem está presente ainda hoje na tiquira, aguardente produzida no 

Maranhão e na Amazônia. 

 

Figura 2 - Principais produtos obtidos da mandioca. 

 

Fonte: Elaborado pela autora. 
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A mandioca é uma das principais culturas exploradas agronomicamente no mundo 

(Figura 3), com uma produção acima de 200 milhões de toneladas. Entre as principais culturas 

alimentares, perde apenas para o milho (FAO, 2013). 

 

Figura 3 - Crescimento da produção mundial das principais culturas 

alimentares, 1980-2011. 

 

Fonte: FAO, 2013. 

 

2.2 FARINHA DE MANDIOCA 

 

O Ministério da Agricultura define a farinha de mandioca como o produto obtido de 

raízes do gênero Manihot, submetidas a processo tecnológico adequado de fabricação e 

beneficiamento (BRASIL, 2011). 

A farinha de mandioca constitui o produto principal da mandioca. Sendo responsável 

por, aproximadamente, 70% da produção da raiz. Seu consumo é difundido por todo o país, 

constituindo a principal fonte de carboidrato para a população de baixo poder aquisitivo, 

principalmente nas regiões Norte e Nordeste do Brasil (FERREIRA NETO; FIGUEIRÊDO; 

QUEIROZ, 2003). De acordo com uma pesquisa realizada por Moreira e Santana (2011) no 

estado do Pará, cerca de 45% dos consumidores não substituem a farinha de mandioca por 

nenhum outro produto. 
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2.2.1 História do cultivo 

 

A farinha de mandioca já era produzida pelos indígenas, em operações conhecidas 

como “farinhadas”, desde a chegada dos portugueses. Também foi muito utilizada como 

alimento para os escravos que eram mantidos nas fazendas e nos engenhos, além de servir 

também como suprimento alimentar dos portugueses que faziam viagens longínquas. Levadas 

em sacos pelos referidos viajantes, conta-se que para evitar que fosse perecível, misturava-se 

à farinha de mandioca, a farinha de peixe seco socada em pilão (SOARES apud 

CONCEIÇÃO, 1981). 

Segundo Pinto [S.d.] e Camargo (2007), durante o período colonial, outras 

denominações da farinha eram comuns, tais como: 

• Farinha de Barco: assim conhecida porque chegava através do mar e se depreciava no 

mercado porque ficava com cheiro da maresia; 

• Farinha de Foguete: era colocada à venda em situações de calamidade pública e sua chegada 

era anunciada por um foguete; 

• Farinha de Guerra: reservada às tropas em mobilidade, foi usada, por exemplo, pelos 

bandeirantes quando se deslocavam para o sertão. Era servida no rancho dos quartéis e 

considerada de má qualidade; 

• Farinha de Pau: denominação atribuída pelos portugueses por analogia com a raiz da 

mandioca. 

 

2.2.2 Classificação da farinha 

 

A classificação da farinha de mandioca é determinada pelo órgão oficial de 

classificação credenciado pelo Ministério da Agricultura, Pecuária e Abastecimento, por meio 

do Certificado de Classificação e é estabelecida em função dos seus requisitos de identidade e 

qualidade. 

Os requisitos de identidade da farinha de mandioca são definidos pelo gênero e pelo 

processo tecnológico de fabricação, nos quais, as farinhas podem ser classificadas como: seca, 

d’água e bijusada. Quanto aos requisitos de qualidade, as farinhas de mandioca são 
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classificadas em função da granulometria e dos teores de amido e cinzas, fibra bruta, casca e 

entrecascas, características sensoriais e ausência de matérias estranhas. 

De acordo com o processo tecnológico de fabricação, conforme já mencionado, a 

farinha de mandioca será classificada em: 

 

 Farinha seca: quando o produto for obtido das raízes de mandioca sadias, devidamente 

limpas, descascadas, trituradas, raladas, moídas, prensadas, desmembradas, 

peneiradas, secas à temperatura adequada, podendo ser peneirada outra vez e ainda 

beneficiada; 

 

E de acordo com a granulometria, a farinha de mandioca desse grupo, poderá ser 

classificada em três classes: 

a) fina: quando todo o produto passar pela peneira com abertura de malha de 2 mm e 

ficar retida em até 10% na peneira com abertura de malha de 1 mm; 

b) grossa: quando mais de 10% da farinha fica retida na peneira com abertura de malha 

de 2 mm;  

c) média: quando a farinha não se enquadrar nas classes anteriores. 

 

 Farinha d'água: é a farinha fermentada, proveniente das raízes de mandiocas sadias, 

maceradas, descascadas, trituradas ou moídas, prensadas, desmembradas, peneiradas e 

secas à temperatura adequada, podendo ser peneirada outra vez;  

 

E de acordo coma sua granulometria, a farinha de mandioca do grupo d'água será 

classificada nas seguintes classes: 

a) fina: quando a farinha fica retida em até 10% na peneira com abertura de malha de 2 

mm; 

b) média: quando o produto fica retido em mais de 10% e até 15% na peneira com 

abertura de malha de 2 mm; 

c) grossa: quando a farinha fica retida em mais de 15% na peneira com abertura de 

malha de 2 mm. 

 

 Farinha bijusada: farinha de baixa densidade, proveniente das raízes de mandioca 

sadias, limpas, descascadas, trituradas, raladas (moídas), prensadas, desmembradas, 
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peneiradas e laminadas à temperatura adequada, na forma predominante de flocos 

irregulares; 

 

As farinhas de mandioca, de acordo com o grupo que pertencem, serão classificadas 

em três tipos para as farinhas do grupo seca ou do grupo d’água ou em um único tipo para as 

farinhas bijusadas, de acordo com seguintes características físico-químicas estabelecidas na 

Tabela 1.  

 

Tabela 1 - Características físico-químicas da farinha de mandioca de acordo com a Legislação. Instrução Normativa 

Nº- 52, 7/11/2011. 

 FARINHA SECA FARINHA D’ÁGUA FARINHA 

BIJUSADA 

Tipo 1 2 3 1 2 3 Único 

Teor de amido 

(g/100g) 

≥86,0 ≥ 82,0 

< 86,0 

≥ 80,0 

< 82,0 

≥86,0 ≥ 82,0 

< 86,0 

≥ 80,0 

< 82,0 

≥ 80,0 

 

Cinzas (g/100g) ≤ 1,4 ≤ 1,4 ≤ 1,4 ≤ 1,4 ≤ 1,4 ≤ 1,4 ≤ 1,4 

Umidade (g/100g) ≤13,0 ≤13,0 ≤13,0 ≤13,0 ≤13,0 ≤13,0 ≤13,0 

Fibra bruta 

(g/100g) 

≤ 2,3 ≤ 2,3 ≤ 2,3 ≤ 2,3 ≤ 2,3 ≤ 2,3 ≤ 2,3 

Fonte: BRASIL, 2011. 

Quanto à acidez, a farinha de mandioca poderá apresentar acidez baixa ou alta: para os 

grupos seca e bijusada será considerada de acidez baixa a farinha de mandioca que apresentar 

valores até 3,0 meq NaOH (0,1N)/100 g, ou alta para valores acima de 3,0 meq NaOH 

(0,1N)/100 g; enquanto que para o Grupo d'água será considerada de acidez baixa a farinha de 

mandioca que apresentar valores até 5,0 meq NaOH (0,1N)/100 g, ou alta para valores acima 

de 5,0 meq NaOH (0,1N)/100g (BRASIL, 2011). 

 

2.2.3 Processo de beneficiamento 

 

O processo de fabricação da farinha é simples, porém exige alguns cuidados no seu 

desenvolvimento a fim de garantir a qualidade da mesma, como por exemplo: a seleção da 



24 

Farinha de Mandioca 

 

matéria-prima adequada, a higiene e os cuidados durante todo o processo de fabricação 

(SOUZA et al., 2008 a).  

A maior parte da farinha de mandioca comercializada é produzida por pequenos 

agricultores, utilizando a mão de obra familiar, em estabelecimentos denominados de “Casas 

de Farinha” e processada de forma primitiva, semelhante aos primeiros índios. Nesses locais, 

as condições higiênico-sanitárias geralmente são precárias, podendo se observar animais 

domésticos transitando na área de processamento, presença de insetos e/ou roedores, falta de 

higiene do pessoal da produção e a não higienização do maquinário, além de outras 

irregularidades, o que compromete a qualidade do produto e a segurança alimentar (CHISTÉ, 

2006, FERREIRA NETO; FIGUEIRÊDO; QUEIROZ, 2003). 

Além das condições de higiene das Casas de Farinha, as diferenças no processamento 

da farinha, tais como fermentação da mandioca, intensidade da prensagem da massa triturada 

e temperatura do forno, influenciam no padrão de qualidade das farinhas (CHISTÉ et al., 

2006). 

As etapas ou operações unitárias do processamento de farinha de mandioca são: 

colheita/recepção das raízes, descascamento, lavagem, trituração, prensagem, esfarelamento, 

torração e ensacamento, conforme ilustrado na Figura 4. A essas operações básicas outras 

podem ser acrescentadas, como a de amolecimento em água. O tempo de processamento 

depende do quão mecanizado é o processo, pois quando predominam as etapas manuais o 

tempo de processo é mais longo e o produto mais difícil de padronizar (CEREDA, 2003). 
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Figura 4- Etapas do processo de produção de farinha de mandioca seca e d'água. 

 

Fonte: Elaborado pela autora. 

 

Colheita / Recepção das raízes: 

As raízes de mandioca utilizadas na fabricação de farinha são colhidas com a idade de 

16 a 20 meses, entre abril e agosto, quando geralmente apresentam o máximo de rendimento 

(EMBRAPA, 2006). O processamento deve acontecer logo após a colheita ou no prazo 

máximo de 24 horas, para evitar perdas ou escurecimento da raiz, proveniente do ataque de 

microrganismos, como fungo, por exemplo (ARAUJO; LOPES, 2009).  

As raízes que são selecionadas devem possuir uma boa integridade, textura adequada e 

ausência de pontos escurecidos ou outra coloração diferente da coloração original da polpa. O 

odor deve ser característico de raízes frescas (BEZERRA, 2006).  
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Descascamento: 

 Nesta etapa, eliminam-se as fibras presente nas cascas e as substâncias tânicas, 

responsáveis pelo escurecimento da farinha e parte do ácido cianídrico também presente nas 

cascas (EMBRAPA, 2006). O descascamento pode ser realizado manualmente, através de 

facas ou do raspador manual, ou ainda através de lavador-descascador rotativo de raízes, 

equipado com entrada de água corrente potável, Figura 5. Neste equipamento, as impurezas 

pesadas, como pedras, terra aderida às raízes, cascas e películas, estimadas entre 5% e 10%, 

são arrastadas pela água ao longo das barras do lavador ou são retiradas pela porta de limpeza. 

No lavador-descascador rotativo o descascamento e a lavagem são efetuados na mesma etapa 

(BEZERRA, 2006). 

 

Figura 5 - Lavador-descascador rotativo. 

 

 Fonte: BEZERRA, 2006. 

 

 

Lavagem 

 As raízes descascadas são lavadas com água corrente, a fim de retirar restos de cascas 

e qualquer resquício de impurezas que possam comprometer a qualidade da farinha. Em 

seguida, as raízes lavadas são imersas em uma solução 0,5% de água clorada, para dificultar o 
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crescimento de bactérias e fungos contaminantes (ARAUJO; LOPES, 2009; BEZERRA, 

2006). 

 

Amolecimento em água (FARINHA D’ÁGUA) 

 Este procedimento se aplica apenas no processamento da farinha d’água, no qual as 

raízes descascadas e lavadas são colocadas em um recipiente com água parada ou corrente no 

período que varia de 3 a 5 dias. Nesta etapa, ocorre a fermentação das raízes, devido ao 

contato com a água, que provoca o amolecimento das raízes, deixando a massa com 

características sensoriais peculiares (ARAUJO; LOPES, 2009; BEZERRA, 2006). Segundo 

Maravalhas (1964) apud Chisté e Cohen (2011), a fermentação é quem determina o sabor e o 

odor da farinha d’água e a principal fermentação que ocorre é provavelmente a butírica por 

Clostridium sp, uma vez que é observado um acentuado odor butírico exalado. 

 

Trituração  

Nesta etapa, a mandioca é transformada em massa. Trituram-se as raízes para que as 

células das mesmas sejam rompidas, liberando os grânulos de amido, permitindo a 

homogeneização da farinha (COSTA, 2010). 

 A mandioca limpa é levada ao triturador, geralmente elétrico, constituído de cilindro 

de aço inoxidável, provido de lâminas, que ficam dispostas de forma paralela entre si, Figura 

6. O cilindro gira a uma velocidade de 1200 a 2500 rpm. Para dar início ao processo, as raízes 

são empurradas em direção ao centro do cilindro com auxílio de braços de madeira que 

possuem movimentos alternados (BEZERRA, 2006). 
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Figura 6 - Triturador de raízes de mandioca. 

 

Fonte: BEZERRA, 2006. 

 

Prensagem 

 A prensagem é uma operação realizada com o propósito de diminuir a quantidade de 

água da massa ralada obtida. No geral, elimina-se cerca de 20 a 30% da água presente. Esta 

água é conhecida como manipueira, líquido rico em amido (BEZERRA, 2006). 

 Essa operação é de suma importância, uma vez que ao retirar o excesso de água da 

massa, diminui-se o efeito de fermentações indesejadas, além de diminuir o tempo e 

economizar combustível na operação de torração (COSTA, 2010). 

 É possível utilizar prensas manuais, construídas de madeira (Figura 7), ou prensas 

hidráulicas, que possuem maiores rendimentos e requer menos esforço do trabalhador. 
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Figura 7 Prensa manual utilizada no 

processamento de farinha de mandioca. 

 

Fonte: BEZERRA, 2006. 

 

Esfarelamento 

 Após a etapa de prensagem, a massa obtida encontra-se na forma de bloco, compacto e 

coeso, Figura 8. A massa deve ser esfarelada antes de seguir para a próxima etapa, a fim 

diminuir a aglutinação da mesma.  

Figura 8 - Mandioca prensada. 

 

Fonte: COSTA, 2010. 
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 O esfarelamento pode ocorrer de forma mecânica ou manual. No caso mecânico, é 

utilizada uma peneira vibratória acoplada a um motor elétrico. Enquanto que, da forma 

manual, utiliza-se um rodo sobre uma peneira normal para auxiliar no peneiramento da massa. 

Com a peneira vibratória é possível obter um maior rendimento quando comparada ao 

processo manual. A malha das peneiras utilizada nesse processo determinará a granulometria 

da farinha produzida (ARAUJO; LOPES, 2009; BEZERRA, 2006). 

 

Torração 

 Nesta etapa, uma fina camada da massa obtida dos processos anteriores é colocada 

sobre um forno com temperatura de aproximadamente 160 ºC, por cerca de 30 minutos. A 

massa a ser torrada deve ser movimentada do início ao fim do processo, com auxílio de um 

rodo ou de um giro mecânico com palhetas de madeira nos processos mais mecanizados, 

Figura 9. É considerada a etapa mais delicada do processo, pois além de eliminar o 

remanescente de ácido cianídrico, que causa o sabor amargo da farinha, determina a cor, o 

sabor e a durabilidade do produto final (ARAUJO; LOPES, 2009; BEZERRA, 2006; COSTA, 

2010). 

 

 

Fonte: BEZERRA, 2006. 

 

 

Figura 9 - Torrador com giro mecânico. 
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Resfriamento / Peneiramento 

 Durante o resfriamento, grânulos da farinha se aglutinam devido à gomagem da fécula. 

Esta etapa é utilizada para uniformizar a granulometria da farinha e então classificá-la. A 

classificação é realizada com o auxílio de peneiras padronizadas com abertura de malha de 2 

mm (COSTA, 2010). 

 

Ensacamento 

 Depois de classificada, a farinha é condicionada em sacos de 50 kg destinados às 

vendas em atacado ou ainda em sacos de 0,5 ou 1 kg para vendas em varejo. O 

acondicionamento pode ser mecânico, através de uma máquina embaladora automática ou 

manual, com o fechamento através da costura (ARAUJO; LOPES, 2009). 

 

2.2.3 Características físico-químicas das farinhas de mandioca 

 

A composição das farinhas varia de acordo com a origem do grão e processos 

tecnológicos de sua fabricação. Especificamente, as farinhas são identificadas por alguns 

ensaios de qualidade. As análises de rotina incluem, entre outras, as determinações de 

umidade, pH e cinzas. 

 

Umidade 

 

A umidade é um parâmetro muito importante nas farinhas de mandioca e está 

relacionado ao tempo de armazenamento das mesmas, valores acima de 13% favorecem o 

crescimento microbiano e a deterioração em um período de tempo menor, enquanto que 

valores mais baixos favorecem um tempo vida de prateleira mais longo (SOUZA et al., 2008).  

Segundo Chisté e Cohen (2011), o teor de umidade da farinha está relacionado ao 

processo de fabricação da mesma e varia, principalmente, com o tempo e a temperatura de 

torração, assim como as condições de armazenamento e o material da embalagem.  
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Diversos métodos para determinação de umidade são descritos na literatura (LUTZ, 

2008). O método gravimétrico é o mais comumente aplicado e utiliza uma pequena 

quantidade de amostra (FERRÃO, 2000). Este método, entretanto, é muito lento e tem 

duração média de seis horas (BOTELHO; MENDES; SENA, 2013). 

 

pH 

 

O pH das farinhas está relacionado com o processo de fabricação das mesmas, como 

por exemplo, o tempo de fermentação ou tempo de prensagem da massa de mandioca 

triturada. Esse parâmetro é importante em farinhas porque baixos valores de pH, acidez 

elevada, limitam a capacidade de desenvolvimento de microrganismos no alimento. A maioria 

dos fungos, leveduras filamentosas e bactérias crescem em pH superior a 4,5 (SOUZA et al., 

2008). 

De acordo com Santos et al. (2008), os alimentos podem ser classificados de acordo 

com o pH como muito ácidos (pH < 4), ácidos (pH entre 4,0 e 4,5) e pouco ácidos (pH > 4,5). 

Essa classificação se baseia no pH mínimo para a multiplicação e produção de toxina do 

Clostridium botulinum (pH = 4,5) e no pH mínimo para a multiplicação da grande maioria das 

bactérias (pH = 4,00). 

Os processos que avaliam o pH podem ser colorimétricos ou eletrométricos. Os 

primeiros são processos limitados, visto que apresentam medidas aproximadas. Nos processos 

eletrométricos utilizam-se potenciômetros que permitem uma determinação direta e precisa do 

pH (LUTZ, 2008). 

 

Cinzas 

 

O teor de cinzas da farinha de mandioca está relacionado tanto com as características 

intrínsecas das raízes, quanto com o processo de fabricação, como, por exemplo, o 

descascamento (CHISTÉ ; COHEN, 2011). De acordo com Paiva (1991) e Souza et al. 

(2008), teores maiores aos estabelecidos pela legislação de cinzas, podem ser indícios de 
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fraudes, como adição de areia ou ainda de processamento inadequado, como por exemplo, de 

lavagem e/ou descascamento incompletos. Valores maiores que a tolerância máxima 

permitida pode ser ainda um indicativo de teores significativos de Ca, P, Fe e Mg, como 

também, mais provavelmente, indicam contaminação por material estranho ao produto 

ocasionado por falhas em algumas etapas do processamento.  

O método gravimétrico é o mais aplicado na determinação de cinzas, podendo ter 

outras variantes que também são oficializadas na literatura (FERRÃO, 2000). O método 

gravimétrico apesar de ser preciso, é bastante trabalhoso (LUTZ, 2008). 

 

 

2.3 ESPECTROSCOPIA NO INFRAVERMELHO  

 

Princípios teóricos  

 

 A radiação infravermelha (IV) compreende a faixa de radiação eletromagnética com 

números de onda no intervalo de aproximadamente 12800 a 10 cm
-1

. A radiação IV se divide 

em três regiões: infravermelho próximo, NIR, do inglês Near Infrared (12800 - 4000 cm
-1

), o 

infravermelho médio, MID, do inglês Middle Infrared (4000 - 200 cm
-1

) e o infravermelho 

distante, FIR, do inglês Far Infrared, (200 - 10 cm
-1

)
 
(SKOOG; HOLLER; CROUCH, 2009). 

A Tabela 2 fornece os limites aproximados das três regiões do infravermelho. 

 

Tabela 2- Regiões espectrais do infravermelho. 

Região Comprimentos de 

onda (λ), μm 

Números de onda 

, cm
-1 

Frequências (ν), 

Hz 

Próximo 0,78 – 2,5 12800 – 4000 3,8x10
14

 - 1,2x10
14 

Médio 2,5 – 50 4000 - 200 1,2x10
14

 - 6,0x10
12 

Distante 50 - 1000 200 – 10 6,0x10
12

 - 3,0x10
11 

FONTE: Adaptado de (SKOOG; HOLLER; CROUCH, 2009). 
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 Para que a radiação IV seja absorvida por uma molécula, ela deve possuir variações no 

momento de dipolo durante seus movimentos, sejam eles translacionais ou rotacionais. Desta 

forma, quando o comprimento de onda da radiação IV coincide com a frequência de oscilação 

de uma ligação molecular, o campo elétrico alternado da radiação pode interagir com a 

molécula e causar variações na amplitude dos movimentos. Portanto, a radiação IV é limitada 

às moléculas que possuem diferenças de energia nos estados vibracionais e rotacionais 

(HIGSON, 2009; SKOOG; HOLLER; CROUCH, 2009). 

 A espectroscopia IV é usada pelos químicos orgânicos para ajudar na identificação 

estrutural, pois sabe se que cada movimento envolve oscilação em uma frequência específica, 

logo a absorção pode ajudar a caracterizar o tipo de oscilação molecular que está ocorrendo e, 

frequentemente, os grupos funcionais presentes nas moléculas (HIGSON, 2009).  

A absorção de radiação IV segue a lei de Beer-Lambert, que relaciona a absorção à 

concentração das moléculas, cn, ao comprimento do trajeto, l, e à absortividade molar, , 

Equação 1. Portanto, a absorção da radiação IV está diretamente relacionada à concentração 

de ligações (ou grupos funcionais) específica na amostra e, portanto, à concentração de 

analitos existentes (HIGSON, 2009). 

 

 
 

 

 A incidência da radiação eletromagnética nas partículas da amostra podem causar 

diversos tipos de fenômenos, como absorção, transmissão, refração e reflexão e difração da 

luz incidente, Figura 10. Os mecanismos de medida mais utilizados para a caracterização dos 

compostos no infravermelho são: absorbância, transmitância e reflectância (COSTA FILHO, 

2003; PANERO, 2007; SKOOG; HOLLER; CROUCH, 2009). 
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Figura 10 - Interação da radiação com partículas em uma amostra sólida. 

 

Fonte: PANERO, 2007. 

 

A transmitância se baseia na atenuação do feixe de radiação incidente, devido à 

interação entre os fótons e os átomos ou moléculas absorventes, sendo a mesma determinada 

pela razão entre a potência do feixe de saída (P) e o incidente (P0) : T = P/P0 (CAETANO, 

2010; PASQUINI, 2003; SIMÕES, 2008).  

Quando interage com a matéria, a radiação eletromagnética pode sofrer diferentes 

tipos de reflexão, tais como: reflexão difusa, reflexão especular, reflexão interna e reflexão 

total atenuada. A reflectância difusa é muito utilizada na obtenção dos espectros em amostras 

sólidas para análises empregando a espectrometria NIR. Nesse processo, a radiação penetra na 

camada superficial das partículas e excita os modos vibracionais das moléculas do composto 

de interesse e a energia refletida emerge aleatoriamente e espalha-se em todas as direções. A 

energia refletida difusamente pela amostra carrega informações suficientes para geração do 

espectro da amostra na região do infravermelho. Esse tipo de medida permite obter espectros 

diretamente de amostras sólidas com um mínimo de preparo das mesmas. (FERRÃO, 2000; 

PANERO, 2007; PEREIRA, 2008; SIMÕES, 2008). 

 

Vibrações moleculares 

Em uma molécula, os átomos se movimentam, flexionam e vibram em torno de suas 

ligações moleculares. A frequência de uma oscilação molecular é determinada, 
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principalmente, pela natureza de cada ligação na molécula e pelos tipos de grupamento 

diretamente associados à oscilação (HIGSON, 2009; SKOOG; HOLLER; CROUCH, 2009). 

 As oscilações ou vibrações moleculares podem ocorrer por: estiramento, que consiste 

em uma variação interatômica ao longo do eixo da ligação entre dois átomos ou grupos da 

molécula; bem como por deformação, que envolvem variação de ângulos entre as ligações; 

além de uma combinação de ambos. Dos modos de vibração conhecidos, os mais utilizados 

são: a deformação angular simétrica no plano, a deformação angular assimétrica no plano, 

deformação angular simétrica no plano e deformação angular assimétrica fora do plano, como 

ilustrado na Figura 11 (HIGSON, 2009). 

 

Figura 11 - Oscilações moleculares de deformação. 

 

 

 A maioria das moléculas se encontra no estado vibracional fundamental à temperatura 

ambiente, podendo ocorrer transições entre os níveis vibracionais quando energia é transferida 

para a molécula. O modelo do oscilador harmônico simples pode ser utilizado para descrever 

as características de uma vibração atômica, se uma molécula diatômica for aproximada por 

duas massas esféricas, m1 e m2, conectadas por uma mola que possui constante de força 

constante, k (PASQUINI, 2003; SKOOG; HOLLER; CROUCH, 2009). 

 A energia potencial do sistema massa-mola (E), em função da distância entre os 

átomos (x), é dada pela Equação 2 e tem o formato de uma parábola, como representado pela 

Figura 12. A energia potencial é mínima na posição de equilíbrio e é máxima quando a mola 

está esticada ou comprimida na sua amplitude máxima (PASQUINI, 2003). Entretanto, o 
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modelo harmônico possui limitações quando utilizado para descrever os movimentos 

vibracionais moleculares, pois os sistemas moleculares possuem energia discreta e não 

energia contínua, conforme descrito pelo modelo. Além disso, nesse modelo a diferença entre 

dois modos vibracionais adjacentes são sempre iguais, permitindo apenas a transição entre 

níveis vibracionais adjacentes Δν = ± 1 - Regra de seleção (PASQUINI, 2003). 

 

  

 

Figura 12 - Representação sistemática da energia potencial para (a) 

oscilador harmônico, (b) oscilador anarmônico. De = distância do 

equilíbrio (E = mínimo). 

 

FONTE: Adaptado de PASQUINI, 2003. 

 

 Um modelo mais realista para representar as vibrações moleculares é o oscilador 

anarmônico, que considera a repulsão coulômbica entre dois núcleos, quando os dois átomos 

se aproximam e o decréscimo da energia potencial, quando a distância interatômica está 

próximo da dissociação, como mostra a Figura 12-b. Nesse modelo, é possível explicar 

transições com Δν = ± 2 ou ±3, denominadas sobretons, com frequências aproximadamente 

duas a três vezes a frequência fundamental (SKOOG; HOLLER; CROUCH, 2009). 
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Espectroscopia NIR 

 

 As absorções moleculares mais frequentes na espectroscopia NIR são harmônicas de 

estiramentos C-H, N-H e O-H e bandas de combinação, Tabela 3. (HIGSON, 2009; 

PASQUINI, 2003; SKOOG; HOLLER; CROUCH, 2009). Essa região é caracterizada por 

possuir bandas sobrepostas e fracas, aproximadamente de 10 a 100 vezes mais fracas quando 

comparadas às bandas do MID, visto que as probabilidades de transições envolvendo 

sobretons são menores quando comparadas às transições fundamentais (COSTA FILHO, 

2003). 

 

Tabela 3 - Atribuições das bandas espectrais as transições vibracionais. 

Região Espectral (nm) Natureza da transição vibracional 

2200 – 2450 Combinação de estiramentos C-H 

2000 – 2200 Combinação de estiramentos N-H e O-H 

1650 – 1800 Primeiro sobretom do estiramento C-H 

1400 – 1500 Primeiro sobretom do estiramento N-H, 

O-H 

1100 – 1225 Segundo sobretom do estiramento C-H 

950 – 1100 Segundo sobretom do estiramento N-H, 

O-H 

850 – 950 Terceiro sobretom do estiramento C-H 

775 – 850 Terceiro sobretom do estiramento N-H, O-

H 

Fonte: COSTA FILHO, 2003. 

 

 Os espectros obtidos na região do NIR são dependentes de parâmetros físicos, tais 

como: tamanho e distribuição de partículas, polimorfismo, umidade, temperatura, pressão, 

densidade, textura, forma, compactação, entre outros (COSTA FILHO, 2003). 

 A espectroscopia NIR é muito utilizada para análises quantitativas. O primeiro 

trabalho publicado utilizando a região do infravermelho próximo foi em 1938, em que foi 
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determinado o teor de água em gelatinas, utilizando as fortes bandas de absorção nessa região 

(PASQUINI, 2003). 

 A instrumentação utilizada no infravermelho próximo, geralmente, utiliza lâmpadas de 

tungstênio-halogênio como fonte, detectores fotocondutores de sulfeto de chumbo (PbS) e 

seleneto de chumbo (PbSe) a fotodiodos de antimoneto de índio (InSb) e Arseneto de Índio 

(InAs) e células ópticas de quartzo ou de sílica fundida (HIGSON, 2009; SKOOG; HOLLER; 

CROUCH, 2009).  

A instrumentação utilizada para a espectroscopia NIR se assemelha à de muitos 

espectrômetros UV-visível, sendo possível encontrar espectrofotômetros UV-VIS comerciais 

projetados para operar na região de 180 a 2500 nm possibilitando a obtenção de espectros 

NIR (HIGSON, 2009; SKOOG; HOLLER; CROUCH, 2009). 

A aplicabilidade da espectroscopia NIR é bem diversificada, sendo utilizada em 

diversos segmentos, tais como na área agrícola (MORGANO et al., 2005; SENA; POPPI, 

2000), alimentícia (BOTELHO; MENDES; SENA, 2013), indústrias petroquímicas 

(PANTOJA, 2010) e farmacêutica (SIMÕES, 2008) e no monitoramento de reações orgânicas 

(KILLNER; ROHWEDDER; PASQUINI, 2011). 

A grande aceitação da espectroscopia NIR por diferentes tipos de indústria pode ser 

atribuída a grande facilidade de se trabalhar com amostras sólidas e pós e realizar pouca ou 

nenhuma manipulação analítica, permitir a análise simultânea de vários parâmetros, as 

análises são não destrutivas e são pouco invasivas, rápidas, de baixo custo, confiáveis e 

versáteis e não consomem reagentes químicos (NAES et al., 2002; SIMÕES, 2008). 

 

 

2.4 QUIMIOMETRIA 

 

 O termo Quimiometria foi usado pela primeira vez em 1972 por Svante Wold e Bruce 

R. Kowalski para descrever o uso crescente de modelos matemáticos, princípios estatísticos e 

outros métodos baseados em lógica na área da química, especialmente da química analítica 

(OTTO, 2007).   
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 Os métodos quimiométricos utilizados em química analítica usam ferramentas 

matemáticas e estatísticas para (a) planejar ou selecionar os melhores procedimentos e 

experimentos de medidas; e (b) para fornecer o máximo de informação química a partir da 

análise dos dados (OTTO, 2007). 

A quimiometria é multidisciplinar e, atualmente, as maiores áreas de aplicação são: 

calibração, validação e teste de significância; otimização de experimentos e extração do 

máximo de informação química dos dados analíticos (BEEBE; PELL; SEASHOLTZ, 1998; 

TAYLOR; FRANCIS, 2006). 

As ferramentas quimiométricas permitiram o uso da espectroscopia NIR para as mais 

diferentes finalidades. No caso da caracterização de alimentos, diferentes aplicações a 

diferentes matrizes são descritas na literatura: queijo (BOTELHO; MENDES; SENA, 2013), 

café (MORGANO et al., 2007), leite em pó (CABRAL, 2011), grãos e cereais 

(CHEEWAPRAMONG, 2007), bananas (GALLO, 2008), mel (ESCUREDO et al., 2013), 

presunto (TALENS et al., 2013), polpa de açaí (SANDRA et al., 2013) e malte de cevada 

(SILEONI et al., 2013). 

 

2.4.1 Arranjo dos dados e notação algébrica 

 Os dados multivariados envolvem um número elevado de variáveis e objetos. 

Os objetos podem ser amostras, materiais diferentes, moléculas, entre outros. Enquanto as 

variáveis podem ser absorbâncias em diferentes comprimentos de onda, sinais analíticos em 

função do potencial elétrico ou do tempo de retenção, concentração de elementos ou outras 

propriedades físicas. Na espectroscopia, os objetos são as amostras e as variáveis são 

absorbâncias em diferentes comprimentos de onda, conforme ilustrado na Figura 13. 
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Figura 13 - Disposição da matriz de dados espectrométricos. 

 

Fonte: PONTES, 2009. 

 

A fim de facilitar a manipulação dos dados multivariados, os mesmos podem ser 

arranjados na forma de uma matriz Xij, de i objetos e j variáveis (BEEBE; PELL; 

SEASHOLTZ, 1998; COSTA FILHO, 2003), como representado pela Figura 14. 

 

Figura 14 - Representação 

matricial dos dados. 

 

Fonte: Elaborado pela autora. 

 

 Nesta dissertação, as matrizes serão denotadas por letras maiúsculas em negrito (X) e 

os vetores em letras minúsculas e negritas (x). A transposta de matriz ou vetor será 

representada por um sobrescrito  ( ) e a inversa pelo sobrescrito 
-1 ( ). As letras 

minúsculas representam números escalares ( ). 

 

2.4.2 Pré-processamento dos dados 

 

Os espectros no infravermelho armazenam muitas informações sobre as amostras e, 

portanto, podem ser empregados nos mais diversos tipos de análises químicas e/ou físicas. No 
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entanto, uma parte destes dados não possui informações correlacionadas diretamente com a 

propriedade de interesse, o que pode ocasionar distorções ao modelo. Para minimizar este 

problema utilizam-se diversos métodos de pré-processamentos. 

Define-se pré-processamento como qualquer manipulação matemática dos dados 

realizada antes da construção dos modelos quimiométricos. Os pré-processamentos mais 

utilizados em dados espectroscópicos são: centralização na média, escalonamento de 

variância, correção multiplicativa de sinal, variação de padrão normal e as derivadas. 

 

Método de centralização na média 

 

No pré-processamento dos dados através da centralização na média, do inglês Mean 

Centering, calcula-se a absorbância média para cada comprimento de onda e em seguida esse 

valor é subtraído de todas as absorbâncias desse mesmo comprimento de onda. Os elementos 

da matriz de dados pré-processados ( ) são dados pela Equação 3. (TAYLOR; FRANCIS, 

2006). 

  

 

Neste tipo de processamento, a origem dos dados é alterada para o zero, como 

ilustrado pela Figura 15. 

 

 

 

 

 

 

 

 

Fonte: Elaborado pela autora. 
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Figura 15 - Gráfico bidimensional ilustrando o efeito da centralização na média (a) Dados originais. (b) 

Dados centrados na média. 
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Método de escalonamento de variância 

 

 Essa estratégia é utilizada com o objetivo de dar peso igual a todos os comprimentos 

de onda pela normalização das variáveis, dispostas nas colunas, de forma que a variância de 

cada coluna é igual a um (TAYLOR; FRANCIS, 2006). 

 Neste pré-processamento, as variáveis que contém informação útil terá a mesma 

influência que o ruído. Por isso, deve ser utilizado com muita cautela. 

 A combinação destes dois pré-processamentos: centrar na média e escalonar, é 

conhecida como auto-escalonamento (TAYLOR; FRANCIS, 2006). Além da subtração da 

média, os dados são divididos pelo desvio padrão de cada coluna, sj, de acordo com as 

Equações 4 a 6. 

 

  

 

 
 

 

 
 

 

Método da correção multiplicativa de sinal 

 

 A correção multiplicativa de sinal, do inglês Multiplicative Scatter Correction (MSC) 

é muito utilizada para corrigir o efeito da dispersão da luz presente nos espectros de 

infravermelho próximo que utilizam técnicas de reflectância de amostras em pó. Esses 

espectros apresentam variação da linha de base e efeito multiplicativo devido às diferenças na 
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granulometria das partículas (BEEBE; PELL; SEASHOLTZ, 1998; FERRÃO, 2000; 

TAYLOR; FRANCIS, 2006). 

 O MSC utiliza como referência, em geral, o espectro médio do conjunto de calibração, 

que é calculado a partir das médias de todas as absorbâncias para todas as amostras em cada 

um dos comprimentos de onda. Para tentar corrigir a variação da linha de base, o MSC realiza 

uma regressão linear simples de cada espectro, xi, em relação ao espectro médio, ., que 

resulta na equação 7 (FERRÃO, 2000; TAYLOR; FRANCIS, 2006). 

 

 
 

 

Em que  e  são os coeficientes de regressão da reta. 

 Os coeficientes obtidos a partir da Equação 7, serão utilizados para corrigir todos os 

espectros. 

 

 
 

 

No desenvolvimento de modelos de calibração que utilizam a regressão por mínimos 

quadrados parciais (PLS), observa-se que ao utilizar o MSC nos espectros, o número de 

variáveis necessário para a construção do modelo é reduzido e, em geral, melhora a 

linearidade (NAES et al., 2002). 

 

Transformação de padrão normal  

 

 O método da transformação de padrão normal, do inglês Standard Normal Variate 

(SNV) possui um efeito muito similar ao MSC. É aplicado para corrigir as interferências de 
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espalhamento e os efeitos do espalhamento multiplicativo entre diferentes amostras 

(LUYPAERT et al., 2002). 

 No SNV, a média do espectro é subtraída de cada espectro inteiro e o comprimento do 

mesmo é normalizado para um, através da normalização do desvio padrão. Esse método, ao 

contrário do MSC, padroniza cada espectro utilizando apenas os dados desse espectro. O 

procedimento matemático é semelhante ao MSC, com e , em que  

representa a norma do vetor , Equação 9 (NAES et al., 2002). 

 

  

 

Método das derivadas 

 

 A derivada consiste em um método muito utilizado para reduzir o efeito do 

espalhamento da luz, pois remove os efeitos aditivos encontrados nos espectros, visto que a 

derivada de uma constante é igual à zero. Quando se aplica a primeira ou segunda derivada, 

acentuam-se os picos, bem como a relação entre eles. No entanto, os ruídos também são 

acentuados, sendo, em geral, necessário antes da aplicação de derivadas o uso de filtros que 

suavizem os ruídos observados (FERRÃO, 2000; NAES et al., 2002; TAYLOR; FRANCIS, 

2006). Uma desvantagem do uso das derivadas é a mudança no formato do espectro original, 

guardando as características inerentes das derivadas (NAES et al., 2002) 

 A primeira derivada remove efeitos aditivos na linha de base e evidencia 

características pouco visíveis no espectro bruto, enquanto que a segunda derivada remove a 

variação linear da linha de base (NAES et al., 2002). 

Vários algoritmos têm sido utilizados no cálculo das derivadas, entre eles destacam-se 

a derivada de Norris e a derivada de Savitzky-Golay (SOUZA, 2005).  
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2.4.3 Análise de Componentes Principais (PCA) 

 

 O objetivo principal da análise de componentes principais, PCA, do inglês Principal 

Component Analysis, é maximizar as informações oriundas de um conjunto de dados, a partir 

da redução de sua dimensionalidade pela combinação linear dos dados originais. 

 Na redução da dimensão dos dados, a matriz original é representada por novas 

variáveis que são ortogonais e linearmente independentes entre si. Essas variáveis, chamadas 

de componentes principais, PC’s, são direcionadas em função da distribuição dos dados. A 

primeira PC é o eixo cuja direção descreve a maior variabilidade dos dados, por isso possui a 

maior variância. A segunda PC descreve a segunda maior variabilidade do sistema e assim por 

diante. 

 A PCA decompõe a matriz de dados originais X, de posto h, em uma soma de h 

matrizes que possuem posto igual a um. Essas matrizes são produtos vetoriais entre scores, th, 

e loadings, ph, conforme Equação 10 (SENA; POPPI, 2000).  

 

 
 

 

Os scores representam as coordenadas das amostras nas PC’s e os loadings 

correspondem à contribuição de cada variável original para a PC e correspondem ao cosseno 

do ângulo formado entre a variável e a PC, Figura 16 - a. Os scores e os loadings são 

calculados pelo método de ajuste de mínimos quadrados. De forma ilustrativa, é possível 

verificar na Figura 16 - b os vetores  representados no plano bidimensional de 

variáveis  (FIDÊNCIO, 2001). 



47 

Quimiometria 

 

Figura 16 - Representação das componentes principais no plano de variáveis x1 e x2: (a) representação dos 

loadings como cossenos dos ângulos formados entre a componente principal e a variável. (b) representação dos 

scores em um plano bidimensional. 

 

Fonte: Elaborado pela autora. 

 

2.4.4 Modelos de Regressão 

 

O princípio fundamental da calibração multivariada é encontrar uma relação entre as 

variáveis independentes (X) e as variáveis dependentes (Y). Essa relação consiste em uma 

função matemática que pode ser linear ou não, o que depende da complexidade do sistema em 

estudo (FIDÊNCIO, 2001).  

No contexto da química analítica, a calibração multivariada é muito utilizada na 

obtenção de modelos matemáticos que possibilitem estimar grandezas de interesse, como por 

exemplo, a concentração de um analito com base em valores mensurados de um conjunto de 

variáveis explicativas, através de dados químicos de natureza multivariada (SANTIAGO, 

2013). 

Processos como Regressão Linear Múltipla (MLR), Regressão por Componentes 

Principais (PCR) e Regressão por Mínimos Quadrados Parciais (PLS), os dois últimos por 

meio da Análise de Componentes Principais (PCA), permitem o cálculo de modelos de 

regressão. Esses modelos podem estimar com eficiência as propriedades de interesse nas 

amostras (PANERO, 2007). 

Segundo Pimentel e Barros Neto (1996), o processo de calibração é dividido em duas 

etapas: descritiva e preditiva. Na primeira parte, desenvolve-se um modelo de regressão a 

(a) (b) 
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partir de medidas analíticas de padrões que possuem concentrações do analito conhecidas. Na 

segunda parte, utiliza-se esse modelo para obter as concentrações do analito em novas 

amostras, a partir das medidas analíticas obtidas. 

Durante a etapa de calibração, faz-se necessário a detecção de amostras anômalas, ou 

outliers, que sofreram algum tipo de interferência durante a determinação de suas 

propriedades; e determinar, no caso do PLS, o número de fatores (variáveis latentes) 

necessários para descrever o modelo.  

 

2.4.4.1 Regressão Linear Múltipla (MLR) 

 

 O método da Regressão Linear Múltipla, do inglês Multiple Linear Regression (MLR), 

tem como objetivo encontrar uma combinação linear entre as variáveis independentes (X - 

medidas instrumentais) e as variáveis dependentes (y - propriedade de interesse), de forma a 

minimizar o erro na estimativa da variável de interesse (COSTA FILHO, 2003; FERRÃO, 

2000; SENA; POPPI, 2000). 

 De forma geral, a regressão pode ser representada de acordo com as Equações 11 e 12 

mostradas abaixo: 

 

 
 

 
 

 

b é o vetor com os coeficientes de regressão. A equação 13 é utilizada para encontrar b, 

através da solução de mínimos quadrados.  
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 Apesar de ser o método de regressão mais simples, o MLR apresenta algumas 

limitações. Para que o sistema apresente solução, o número de amostras deve ser maior que o 

número de variáveis e as variáveis independentes não devem ser altamente correlacionadas, 

para que seja possível determinar a inversa da matriz  (COSTA FILHO, 2003; 

FERRÃO, 2000). Portanto, é necessário realizar a seleção de variáveis. 

 

2.4.4.2 Regressão por Mínimos Quadrados Parciais (PLS) 

 

 A regressão por mínimos quadrados parciais, do inglês Partial Least Squares (PLS), 

foi proposta originalmente por Herman Wold na década de 70 e pode ser calculada pelo 

método NIPALS (GELADI; KOWALSKI, 1986). Este método é baseado em variáveis 

latentes, em que cada variável é a combinação linear das variáveis originais da matriz X e Y 

(NAES et al., 2002).  

 Na regressão PLS, as informações espectrais (X) e as informações das concentrações 

(Y) são usadas ao mesmo tempo na etapa de calibração. As matrizes X e Y são decompostas 

simultaneamente nas matrizes de scores e loadings, em uma soma de “h” variáveis latentes, 

como descrito nas Equações 14 e 15 (BERETON, 2007; FERRÃO, 2000; SENA; POPPI, 

2000): 

 

  

  

 

T e U representam as matrizes de scores, P e Q as matrizes de loadings, e E e F são os 

resíduos das matrizes X e Y, respectivamente.  

A correlação entre os dois blocos X e Y é uma relação linear obtida pelo coeficiente de 

regressão linear correlacionando os scores de cada bloco, de forma que se maximize a 

covariância entre eles, de acordo com a Equação 16 (NAES et al., 2002; SENA; POPPI, 

2000): 
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O parâmetro b, para cada variável latente h, representa o coeficiente angular do vetor que 

melhor explica a relação entre os scores de X e Y (BERETON, 2007; SENA; POPPI, 2000). 

A matriz Y é calculada a partir de : 

 
 

 

 O número ideal de variáveis latentes é dado normalmente pela validação cruzada, ou 

do inglês cross validation, processo pelo qual o erro mínimo de previsão é calculado. 

 Na validação cruzada, de uma série de n amostras, uma é deixada de fora, e n-1 

amostras são utilizadas na calibração, em seguida, realiza-se uma previsão da concentração da 

amostra que não foi utilizada na calibração. Esse procedimento é realizado até que todas as 

amostras sejam excluídas uma vez. Posteriormente, comparam-se os valores previstos  

com os valores de referência  através do RMSECV, do inglês Root Mean Squared Error 

of Cross Validation, Equação 18, de forma que o melhor modelo gera um erro menor (NAES 

et al., 2002) 

 

 
 

 

2.4.5 Seleção de variáveis 

 

 Para que a verdadeira relação entre Y e X seja estabelecida, faz-se necessário 

selecionar variáveis apropriadas. A seleção de variáveis aplicada ao conjunto de calibração 

permite desenvolver um modelo de calibração que forneça uma descrição estatística 

representativa e adequada para uso em previsão (PONTES, 2009; TAYLOR; FRANCIS, 

2006). 
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A seleção de variáveis é utilizada principalmente em modelos de Regressão Linear 

Múltipla, em que são frequentes problemas de correlação e em casos que se deseja selecionar 

apenas informações importantes, uma vez que muitas variáveis da matriz de dados original 

são irrelevantes ou redundantes (PONTES, 2009; TAYLOR; FRANCIS, 2006). 

 Entre os diferentes métodos de seleção de variáveis, o algoritmo das projeções 

sucessivas, do inglês Sucessive Projections Algorithm – SPA tem sido uma alternativa 

bastante utilizada no contexto da calibração multivariada, especificamente quando aplicado ao 

MLR. Proposto em 2001, por Araújo et al., o SPA é uma técnica de seleção de variáveis que 

busca um subconjunto representativo pequeno de variáveis espectrais para minimizar 

problemas de colinearidade (PONTES, 2009; SIMÕES, 2008). 

 O algoritmo Jack-Knife (JK) ou teste de incerteza, proposto por Efrom (1982) e 

adaptado por Martens e colaboradores (2000), também é utilizado para selecionar variáveis 

espectrais para a construção dos coeficientes de regressão. Esse método se baseia nos erros 

obtidos na estimativa dos coeficientes de regressão. Os intervalos de confiança desses 

coeficientes e o nível de significância de cada variável para o modelo são avaliados. Esse 

algoritmo pode ser utilizado em qualquer método de regressão, no entanto, apresenta grande 

aplicabilidade em modelos PLS (HONORATO et al., 2007). 

 

2.4.6 Seleção de amostras 

 

 As amostras que são utilizadas no subconjunto de calibração devem ser representativas 

do conjunto total dos dados. Essas amostras podem ser selecionadas de forma aleatória, do 

inglês: Random Search - RS. No entanto, esse método apesar de ser comum, não garante a 

representatividade do conjunto (SIMÕES, 2008).  

 O algoritmo Kennard-Stone (KS) é um método clássico de seleção de amostras que se 

baseia na distância euclidiana das respostas instrumentais (X) (KENNARD; STONE, 1969). 

Inicialmente, selecionam-se duas amostras que possuem a maior distância euclidiana entre si 

na matriz X. Em seguida, calcula-se a distância mínima entre as amostras selecionadas e as 

amostras remanescentes. É selecionada a amostra que possui a maior distância mínima entre 

as amostras que foram selecionadas anteriormente. O procedimento se repete até que o 

número de amostras estipulado pelo analista seja alcançado (HONORATO et al., 2007). 



52 

Quimiometria 

 

O SPXY, do inglês: Sample set Partioning based on joint X-y distances, é um 

algoritmo similar ao KS, e diferentemente deste, considera tanto as diferenças de X (respostas 

instrumentais) quanto às de y (parâmetro de interesse) no cálculo das distâncias entre as 

amostras (GALVÃO et al., 2005). 

 

2.4.7 Validação 

 

 Depois de desenvolvido o modelo de calibração, faz-se necessário avaliar a capacidade 

preditiva do mesmo a partir de amostras que não foram utilizadas na calibração. 

 Existem vários parâmetros que são utilizados com esse fim, como por exemplo, a 

validação cruzada, já citada anteriormente e a validação externa. 

Na validação externa, para avaliar a capacidade preditiva do modelo, utilizam-se 

amostras diferentes das utilizadas na construção do modelo de calibração. Em seguida, 

calcula-se o erro entre os valores previstos  e os valores de referência , através do 

RMSEP, do inglês Root Mean Squared Error Prediction, de acordo com a Equação 19.  

 

 
 

 

 O RMSEP é uma medida de desvio padrão, de forma que quanto menor o valor de 

RMSEP melhor o modelo. Para se comparar a qualidade de previsão de dois modelos de 

calibração diferentes pode-se usar o teste F, a partir da comparação da razão da variância de 

cada modelo, quadrado do RMSEP e o F tabelado a um determinado nível de confiança 

(OLIVEIRA et al., 2004). 
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2.5.8 Amostras anômalas (Outliers) 

 

 Existem amostras que apresentam comportamento diferente das amostras do conjunto 

de calibração e de validação. Essas amostras, conhecidas como anômalas (outliers), quando 

presentes no conjunto de calibração podem desenvolver modelos com baixa capacidade 

preditiva. Se presentes no conjunto de validação externa, podem influenciar de forma negativa 

o resultado, indicando que o modelo não está adequado. 

 O leverage indica o grau de influência de uma amostra no modelo de regressão e é 

uma medida utilizada para detectar amostras anômalas. Se as medidas experimentais de uma 

amostra se diferenciarem muito das demais, essa amostra possuirá um leverage alto, e pode 

influenciar de forma negativa no modelo. Uma regra utilizada para detectar outliers a partir do 

leverage é calcular o leverage crítico: multiplicar o número de variáveis latentes por três e 

dividir esse valor pelo número de amostras utilizadas para construir o modelo de regressão. 

Amostras que possuem o leverage maior que leverage crítico devem ser excluídas do modelo 

de regressão (FERREIRA et al., 1999). 

 Outra grandeza complementar ao leverage na detecção de amostras anômalas é o 

resíduo de Student. As amostras mal modeladas possuem resíduos altos. Assumindo- se que 

os resíduos de Student são distribuídos normalmente, aplica-se o teste t a fim de verificar se a 

amostra está dentro da distribuição com 95% de confiança. Os valores além de ±2,5 são 

considerados altos sob as condições usuais da estatística (FERREIRA et al., 1999).

 Diante do exposto, utiliza-se a análise gráfica leverage versus resíduos de Student para 

verificar a presença outliers. 

 

2.5 MÉTODOS ANALÍTICOS BASEADOS NA ESPECTROSCOPIA NO 

INFRAVERMELHO PARA ANÁLISE DE FARINHAS 

 

 O uso da espectroscopia na região do infravermelho associada à calibração 

multivariada no controle de qualidade de farinhas já é uma realidade e diante dos resultados 

tem se mostrado uma alternativa muito promissora. 
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Em 2004, Ferrão e colaboradores utilizaram medidas de reflectância difusa no 

infravermelho próximo e médio com Transformada de Fourier para construir modelos de 

regressão multivariados por mínimos quadrados parciais (PLS) para a determinação 

simultânea dos teores de proteínas e cinzas em amostras de farinha de trigo da variedade 

Triticum aestivum L. Os autores obtiveram valores de SEV menores que 0,3 % (m/m) para 

teor de proteínas e menor que 0,05 % (m/m) para teor de cinzas. Os modelos foram 

considerados adequados quando comparados aos métodos de referência.  

Menezes et al. (2005) determinaram o teor de proteínas e umidade em farinhas de soja 

e fizeram uma comparação entre os modelos de regressão por mínimos quadrados parciais 

(PLS) utilizando apenas a região do MID ou o NIR e os modelos multiblocos com as duas 

regiões juntas. Foi verificado que o modelo usando apenas a região NIR apresentou melhores 

resultados quando comparado ao modelo usando a região MID. A partir dos resultados para os 

multiblocos, foi verificado que há informações no MID que não estão no NIR e quando as 

duas regiões são usadas juntas melhoram os resultados dos modelos. 

 Em 2008, Lebot e colaboradores determinaram diferentes constituintes de diversos 

tipos farinhas de tubérculos provenientes de diferentes países da Ásia usando a espectroscopia 

no infravermelho próximo e quimiometria. Foram desenvolvidos modelos de calibração PLS 

para determinação de cada parâmetro analisado. Os modelos obtidos para amido, açúcar, teor 

de nitrogênio total, cinzas (minerais) e celulose forneceram RMSEP de, respectivamente,  

2,74 % (m/m), 1,66 % (m/m), 0,77 % (m/m), 0,70 % (m/m) e 1,03 % (m/m).  

Ribeiro (2012) utilizou a espectroscopia na região do infravermelho aliada à regressão 

de mínimos quadrados parciais (PLS) para determinar a concentração de ácidos graxos em 

farinhas de linhaça dourada e marrom. A região do NIR forneceu modelos de regressão com 

coeficientes de determinação de R²val = 0,99 tanto para o ácido oléico quanto para o ácido 

linolênico, com erro padrão relativo de 1,02% e 1,21%, respectivamente. Já para o teor de 

ácido linoleico o maior coeficiente de determinação foi de R²val = 0,88, obtido na região do 

infravermelho médio, e o erro padrão médio relativo foi de 0,76%. Esses resultados 

demonstraram que análises de infravermelho podem ser utilizadas como técnica alternativa 

eficaz para determinação de ácidos graxos em linhaça, em substituição à técnica 

tradicionalmente utilizada, cromatografia gasosa.   

Don e Sun (2013) determinaram cinzas e umidade em farinha de trigo utilizando a 

espectroscopia NIR e o método regressão por mínimos quadrados com seleção de bandas por 
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intervalos (iPLS). As bandas características de 4000-5500, 6708-7304 e 4000-4896, 5504-

6704 cm
-1

 foram escolhidas para cinzas e umidade, respectivamente. A capacidade de 

previsão dos modelos para cinzas e umidade foi melhorada com RMSEP de 0,019 e 0,088% 

(m/m) utilizando as bandas características. Os valores preditivos obtidos para novas amostras 

de farinha de trigo com o modelo NIR desenvolvido não apresentaram diferença significativa 

com os valores de referência.  

Não foi encontrado na literatura estudos referentes à utilização da espectroscopia no 

infravermelho próximo aliada à calibração multivariada visando a determinação dos teores de 

umidade, cinzas e pH em farinhas fabricadas no Brasil.  
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3 OBJETIVOS 

 

 

3.1 OBJETIVO GERAL 

 

Determinar os parâmetros de qualidade: teores de umidade, cinzas e pH em farinhas de 

mandioca de diversas regiões do Brasil por meio da espectroscopia NIR e modelos de 

calibração multivariada. 

 

3.2 OBJETIVOS ESPECÍFICOS 

 

a) Caracterizar farinhas de mandioca de diferentes regiões do Brasil quanto aos seus 

teores de umidade e cinzas e pH determinados pelos métodos de referência; 

 

b) Comparar as características físico-químicas das farinhas com os limites estabelecidos 

pela legislação brasileira vigente; 

 

c) Desenvolver modelos de calibração multivariada, empregando os métodos de 

Regressão Linear Múltipla (MLR) e Regressão por Mínimos Quadrados Parciais 

(PLS), para determinação dos teores de umidade e cinzas e pH em farinhas de 

mandioca. 

 

 

 

 

 



58 

Metodologia 

 

 

 

 

 

 

 

 

Capítulo 3: 

 

Metodologia 

 

 

 

 

 

 

 

 



59 

Metodologia 

 
 

4. METODOLOGIA 

 

4.1 Amostragem 

 

Cento e sete amostras de farinhas de mandioca dos grupos seca e d’água foram 

adquiridas em diferentes supermercados e feiras livres de todas as regiões do Brasil: Sul (10), 

Nordeste (85), Norte (5), Centro-oeste (4) e Sudeste (3). 

 

4.2 Métodos de referência 

 

As análises de umidade, pH e cinzas foram realizadas empregando os métodos de 

referência descritos nos itens 4.2.1, 4.2.2 e 4.2.3. As análises foram realizadas em triplicata. 

Os valores de referência considerados foram as médias das triplicatas. 

 

4.2.1 Determinação da umidade a 105º C 

 

Para a análise de umidade pesou-se aproximadamente 5 g da amostra em cadinhos de 

porcelana previamente tarados. A amostra foi seca em estufa a temperatura de 105ºC até obter 

peso constante. O material foi seco até que duas pesagens consecutivas apresentassem o 

mesmo peso, de acordo com o método 012/IV (Instituto Adolfo Lutz, 2008).  

 

4.2.2 pH 

 

O pH foi determinado de acordo com o método 017/IV (Instituto Adolfo Lutz, 2008), 

utilizando o pHmêtro da MS TECNOPON. Diluiu-se 10 g da amostra em 100 mL de água 

destilada. O conteúdo foi agitado até que as partículas ficassem uniformemente suspensas. Em 

seguida, mediu-se o pH na fase líquida da solução. 

. 
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4.2.3 Cinzas 

 

Na determinação das cinzas, 10 g das amostras foram carbonizadas até cessar a 

liberação de fumaça e, posteriormente, calcinadas em mufla a 550 °C até peso constante, 

segundo o método 018/IV (Instituto Adolfo Lutz, 2008).  

 

4.3 Tratamento das amostras 

 

 A fim de minimizar o efeito das diferentes granulometrias das farinhas no espectro 

NIR, todas as amostras foram passadas em um moinho rotativo PULVERISETTE 14 da 

FRITSCH (Figura 17), com velocidade de 18000 rpm. 

 

 

 

 

 

 

4.4 Aquisição dos espectros 

 

 Os espectros de reflectância na região do infravermelho próximo foram coletados em 

um espectrofotômetro da marca Perkin Elmer, modelo Spectrum 400 (Figura 18), na faixa 

espectral de 10.000 a 4.000 cm
-1

, com resolução espectral de 8 cm
-1

 e média de 32 varreduras. 

As medidas foram realizadas utilizando-se um acessório de reflectância difusa Near Infrared 

Reflectance Accessory – NIRA, Figura 19. 

 

Figura 17 – (a) Moinho rotativo PULVERISETTE 14 da FRITSCH. (b) Parte interna do 

moinho. 

(a) (b) 
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Figura 18 - Espectrofotômetro da PerkinElmer, 

modelo Spectrum 400, acoplado com o acessório 

NIRA. 

 

 Fonte: Tutorial do Spectrum Multimedia 

PerkinElmer®. 

 

Figura 19 - Amostra posicionada sobre o acessório NIRA. 

 

Fonte: Tutorial do Spectrum Multimedia PerkinElmer®. 

 

4.2.8 Tratamento quimiométrico dos dados 
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4.2.8.1 Pré-processamento dos espectros 

 

Diferentes estratégias de pré-processamento dos espectros foram avaliadas: primeira 

derivada com filtro Savitzky-Golay e polinômio de segunda ordem, variando-se o tamanho 

das janelas de 15 e 21 pontos; correção do espalhamento multiplicativo (MSC) e 

transformação padrão normal de variação (SNV). As variáveis (números de onda) foram 

centradas na média antes da modelagem. 

 

4.2.9 Desenvolvimento dos modelos de regressão 

 

A detecção de amostras anômalas foi realizada utilizando os gráficos dos resíduos 

versus o leverage, na matriz X (espectros) e em y (propriedade de interesse). As amostras que 

apresentaram resíduos e leverage altos foram excluídas do conjunto de dados. Em seguida, 

novos modelos foram construídos e os parâmetros como coeficiente de correlação (R) e o 

RMSECV foram reavaliados.  

Posteriormente, as amostras foram divididas em dois conjuntos de dados: calibração 

(2/3) e previsão (1/3), utilizando o algoritmo SPXY. 

Foram desenvolvidos modelos de calibração multivariada PLS utilizando-se espectros 

pré-processados com todas as variáveis espectrais e aquelas com coeficientes de regressão 

significativos (algoritmo Jack-Knife – JK). 

Na construção dos modelos de calibração, para determinar o número ideal de fatores 

(variáveis latentes) de cada modelo PLS, foram analisadas as ferramentas de diagnóstico do 

modelo (gráfico da variância explicada versus RMSECV, gráfico dos loadings e do resíduo 

dos modelos). 

A capacidade preditiva dos modelos PLS e MLR foi avaliada pelos erros de previsão 

(RMSEP) para o conjunto de validação externa. Um teste-F, ao nível de confiança de 95%, foi 

utilizado para avaliar se existiam diferenças estatisticamente significativas entre valores de 

RMSEP dos modelos MLR/SPA, PLS e PLS/JK. Os valores de Fcal foram calculados como a 

razão entre os valores quadráticos do maior e menor RMSEP obtidos pelos modelos. Esses 
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valores de Fcal foram comparados com os F críticos (N, N, 0,95) tabelados. Em que N é igual ao 

número de graus de liberdade do modelo, ou seja, (número de amostras utilizados na predição 

– 1). Por exemplo, na comparação de modelos que utilizaram 35 amostras de validação 

externa F (N, N, 0,95) = F (34, 34, 0,95) = 1,77. 

O programa Unscrambler® 9.7 (CAMO S.A foi empregado no pré-processamento dos 

dados e na obtenção dos modelos PLS e PLS/JK. Os algoritmos de Kennard-Stone (KS), 

SPXY e MLR/SPA foram executados utilizando-se rotinas escritas em Matlab®. 
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5. RESULTADOS E DISCUSSÃO 

 

5.1 Análises físico-químicas 

 

 Os teores de umidade, cinzas e pH das farinhas de mandioca encontram-se no 

Apêndice A. Os valores médios obtidos, bem como os intervalos e o desvio padrão para as 

propriedades de umidade, cinzas e pH das 107 farinhas de mandioca são apresentados na 

Tabela 4. 

 

Tabela 4 - Características físico-químicas para as 107 amostras de farinha de mandioca. 

Propriedade Intervalo  Média  D.P. 

Umidade (%) (m/m) 4,80 – 12,62 9,65 0,78 

Cinzas (%) (m/m) 0,28 – 1,69 0,90 0,01 

pH 4,35 – 6,62 5,69 0,07 

 

O teor de umidade da farinha de mandioca variou de 4,80 a 12,62% m/m, os valores 

estavam distribuídos normalmente em torno da média, 9,65%. Todas as amostras 

apresentaram teores de umidade dentro do limite estabelecido pela legislação brasileira 

vigente, abaixo dos 13% (BRASIL, 2011).  

Os teores de umidade obtidos foram próximos aos teores relatados na literatura. Souza 

e colaboradores (2008 a, 2008 b) estudaram farinhas de mandioca do estado do Acre e 

encontraram valores de umidade que variaram entre: 4,47 a 5,94% e 8,10 a 12,02%, 

respectivamente. Os valores encontrados por Chisté e Cohen (2011) para a farinha d’água do 

estado do Pará variaram de 1,45 a 8,39%. Maziya-Dixon et al. (2005) estudaram farinhas 

comercializadas na Nigéria e encontraram teores de umidade de: 10,78 e 12,72%. 
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Os valores de pH variaram de 4,35 a 6,62. De acordo com a classificação de Santos et 

al., 2008, as amostras de farinha de mandioca analisadas são consideradas ácidas ou pouco 

ácidas e estão dentro da faixa de risco para a multiplicação e produção da toxina do C. 

botulinum e da maioria das bactérias. 

Os resultados obtidos no presente trabalho estão de acordo com os valores encontrados 

por Miqueloni e colaboradores (2012) que caracterizaram as farinhas de mandioca do estado 

do Acre (pH de 3,91 a 6,20) e Dias e Leonel (2006) que estudaram farinhas de diversos 

grupos de diferentes regiões do Brasil (pH de 4,16 a 6,10). Entretanto, quando os resultados 

de pH obtidos no presente trabalho são comparados a farinhas produzidas em outro país, 

Gana, os mesmos são inferiores (ERIKSSON, 2013).  

O teor de cinzas, ou resíduo mineral fixo, resultante da incineração da amostra do 

produto variou de 0,28% a 1,69% m/m, estando seis amostras com valores acima do limite 

estabelecido pela Portaria n° 554 de 30.08.1995 da Secretaria da Agricultura, do 

Abastecimento e Reforma Agrária (BRASIL, 2011), que estabelece índice máximo de 1,4% 

para as cinzas. Esses valores podem estar associados a um processamento inadequado da 

matéria-prima ou contaminação por material estranho ao processo, como areia, por exemplo, 

proveniente do local de deposição da raiz descascada.  

Os valores obtidos para cinzas encontram-se próximos aos relatados por Chisté et al. 

(2006 a) para amostras de farinha de mandioca do grupo seca do estado do Pará, 0,54 a 0,90 

% e os relatados por Chisté et al. (2006 b) para amostras de farinha de mandioca do grupo 

d’água do estado do Pará, 0,16 a 1,64%. Os valores obtidos neste trabalho também foram 

similares aos descritos por Aldana e Quintero (2013) em farinhas da Colômbia. 

 

5.2 Espectros de Infravermelho Próximo de Reflectância Difusa 

 

A Figura 20 mostra os espectros NIR de reflectância difusa das 107 amostras de 

farinha de mandioca registrados na faixa de 10000 - 4000 cm
-1

. 
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Figura 20 - Espectros NIR originais de 107 amostras de farinha de mandioca. 
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Nos espectros observam-se bandas relacionadas às vibrações do amido associadas à 

região das combinações dos estiramentos C-H, C-C e C-O-C (4000 cm
-1

), estiramentos C-H e 

deformação CH2 (4386–4394 cm
-1

), estiramento O-H e deformação HOH (4762 cm
-1

), 

primeiro sobretom (6897 cm
-1

) do estiramento de ligações O-H. Além dessas, são observadas 

bandas na região de 4650 e 4587 cm
-1

, as quais estão relacionadas com aminoácidos e 

proteínas e em 8370 cm
-1

 proveniente de estiramentos C-H relacionados à celulose. As bandas 

associadas à região de combinação do estiramento O-H e deformação HOH e o segundo 

sobretom da deformação O-H (5208-5154) e o primeiro sobretom do estiramento O-H (6944-

6802 cm
-1

) estão relacionados à absorção da água (WORKMAN, WEYER, 2008; WU et al., 

2008). 

 Observa-se nos espectros uma grande variação sistemática da linha base ao longo de 

toda faixa de trabalho, provocados pela não uniformidade das amostras, devido, 

principalmente, a diferença de granulometria, empacotamento, geometria e orientação das 

partículas de farinha. Verificou-se, portanto, a necessidade do uso de técnicas de correção 

antes da obtenção dos modelos de calibração a fim de minimizar o efeito do espalhamento de 

luz presente nos espectros obtidos por reflectância. Os pré-processamentos testados foram: 
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primeira derivada com filtro Savitzky-Golay janela de 15 e 21 pontos, MSC e o SNV, Figura 

21. 

Figura 21 - Espectros das 107 amostras de farinhas de mandioca pré-processados com: (a) primeira derivada 

com filtro de Savitzky-Golay com janela de 15 pontos; (b) primeira derivada com filtro de Savitzky-Golay 

com janela de 21 pontos; (c) MSC; (d) SNV. 
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 A partir da Figura 21, observa-se que variação sistemática da linha base dos espectros 

foi corrigida com o uso dos diferentes pré-processamentos testados. 

 

5.3 PCA 

 

 Realizou-se uma PCA nos 107 espectros com o intuito de realizar uma avaliação 

exploratória dos dados. A Figura 22 mostra o gráfico dos scores da PC1 versus PC2. 
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Figura 22 - Gráfico dos scores PC1 versus PC2 nos espectros NIR. 

 

 

 Na Figura 22, verifica-se que PC1 e PC2 explicam 100% da variância dos dados, não 

havendo distinção entre as amostras por estado. Além disso, verifica-se uma dispersão das 

amostras do mesmo estado, o que pode ser um indicativo da falta de homogeneidade dos 

processamentos das farinhas de mandioca dentro dos estados ou, principalmente que a 

espectroscopia no infravermelho próximo não consiga diferenciar essas farinhas por região de 

origem.  

 Foi realizada uma PCA em Y, parâmetros de qualidade das farinhas de mandioca 

determinados no presente trabalho. O gráfico dos scores se encontra na Figura 23 e os 

loadings na Figura 24. 
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Figura 23 - Gráfico dos scores PC1 versus PC2 resultante da PCA realizada em Y. 

 

 

Figura 24 - Gráfico dos loadings da PC1 versus PC2 resultante da PCA realizada em Y. 

 

 

 A PC1 e a PC2 explicam 78% da variância dos dados. De acordo com os gráficos, 

verificou-se que não é possível distinguir as amostras quando relacionadas ao estado de 

origem utilizando a PCA, visto que há uma superposição dos dados. No entanto, é possível 

verificar uma certa semelhança nas amostras do Pará. Essas se localizaram no quarto 

quadrante no gráfico dos scores, e possuem como características alto teor de cinzas, baixo 

teor de umidade e pH baixo. 

 A partir do gráfico dos loadings verifica-se que as farinhas que possuem teores alto de 

umidade e cinzas, possuem pH mais baixo. Isso ocorre devido à influência da umidade no 
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processo de fermentação da massa, aumentando a acidez da farinha e consequentemente 

diminuindo o pH. 

 

5.4 Calibração multivariada 

 

 Na construção dos modelos de calibração a faixa espectral utilizada foi de 10000 a 

4000 cm
-1

. Setenta e duas amostras, selecionadas pelo algoritmo SPXY, foram utilizadas na 

calibração e as trinta e cinco amostras restantes foram utilizadas para validação externa. 

 

5.4.1 Umidade 

 

Na Tabela 5 encontram-se os resultados obtidos para os modelos de calibração 

multivariada MLR/SPA, PLS e PLS/JK construídos a partir de seus respectivos espectros NIR 

(10000 a 4000 cm
-1

) empregando diferentes estratégias de pré-processamento. 

 

Tabela 5 - Resultados obtidos para os modelos de calibração multivariada PLS, PLS-JK e MLR/SPA para 

umidade utilizando diferentes estratégias de pré-processamento dos espectros. 

 Calibração Previsão
b 

Modelo 
Pré-

processamento 

Nº 

V.L
a R 

RMSECV 

(%) 
Outliers R 

RMSEP 

(%) 

MLR/SPA 

Sem 11 0,79 1,06 0 0,15 1,25 

MSC 2 0,77 0,99 2 0,91 0,56 

SNV 8 0,80 1,06 0 0,52 0,79 

1ª Derivada 

S.G 
c
– 15 

pontos 

8 0,82 0,99 0 0,61 0,76 

1ª Derivada 

S.G – 21 

pontos 

2 0,72 1,20 0 0,27 1,25 

PLS Sem 3 0,80 1,09 0 0,62 0,85 
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 Calibração Previsão
b 

Modelo 
Pré-

processamento 

Nº 

V.L
a R 

RMSECV 

(%) 
Outliers R 

RMSEP 

(%) 

MSC 3 0,86 0,88 4 0,96 0,39 

SNV 4 0,84 0,93 1 0,93 0,50 

1ª Derivada 

S.G – 15 

pontos 

3 0,86 0,88 4 0,71 0,61 

1ª Derivada 

S.G – 21 

pontos 

3 0,86 0,88 4 0,82 0,55 

PLS / JK 

Sem 3 0,81 1,09 0 0,62 0,86 

MSC 3 0,88 0,80 2 0,95 0,51 

SNV 4 0,84 0,92 1 0,93 0,49 

1ª Derivada 

S.G – 15 

pontos 

2 0,85 0,88 4 0,82 0,55 

1ª Derivada 

S.G – 21 

pontos 

2 0,85 0,88 4 0,86 0,55 

a Número de variáveis latentes (PLS) ou número de variáveis espectrais (MLR/SPA). 

b  Número de amostras de validação = 35. 

c S. G. = Savitzky Golay. 

 

Para os modelos MLR/SPA e PLS os menores RMSEP’s foram obtidos a partir dos 

espectros NIR pré-processados com o MSC, 0,56%, 0,39%, respectivamente, enquanto que 

para o modelo PLS/JK o menor RMSEP foi obtido a partir dos espectros NIR pré-processados 

com o SNV, 0,49%. Comparando esses resultados com os obtidos com os demais pré-

processamentos a partir do teste F ao nível de 95% de confiança (Tabela 6) observa-se que 

para o modelo MLR/SPA há uma diferença significativa entre o MSC e as demais estratégias 

de pré-processamento dos dados. Para os modelos PLS, os resultados obtidos com MSC são 

estatisticamente semelhantes aos obtidos com SNV e diferente das demais estratégias 

estudadas. No caso dos modelos PLS/JK, não houve diferenças estatisticamente significativas 
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entre os modelos pré-processados com o MSC e as demais estratégias de pré-processamento 

ao nível de 95% de confiança.  

Usando o princípio da parcimônia, pode se considerar o MSC como o pré-

processamento mais adequado para a determinação do teor de umidade nas amostras de 

farinhas de mandioca nos modelos MLR/SPA e PLS. Para o modelo PLS/JK, o pré-

processado com a estratégia MSC também é o mais adequado, visto que os parâmetros gerais 

do modelo, tanto para a calibração quanto para a previsão, são melhores quando comparado 

aos demais pré-processamentos. 

 

Tabela 6 - Resultados para o teste F (95% de confiança) obtidos na comparação das diferentes técnicas de pré-

processamento empregadas na construção dos modelos (MLR/SPA, PLS e PLS/JK) para umidade. 

MLR/SPA PLS PLS/JK 

 
FCalculado  FCalculado  FCalculado  

MSC  MSC  SNV 

SNV  1,99 SNV  1,64 MSC  1,08 

1ª Derivada 

S. G. - 15 

pontos  

1,84 

1ª Derivada 

S. G. - 15 

pontos  

2,45 

1ª Derivada 

S. G. - 15 

pontos  

1,26 

1ª Derivada 

S. G. - 21 

pontos  

4,98 

1ª Derivada 

S. G. - 21 

pontos 

1,99 

1ª Derivada 

S. G. - 21 

pontos  

1,26 

*Fcrítico (34, 34, 0,95) = 1,77. 

Comparando o desempenho dos modelos MLR/SPA, PLS e PLS/JK utilizando a 

estratégia de pré-processamento MSC verificou-se que o modelo PLS apresentou menor 

RMSEP (0,39%), o qual diverge estatisticamente (em um nível de 95% de confiança) do 

obtido pelo modelo MLR/SPA. O resultado obtido pelo modelo PLS é comparável à 

reprodutibilidade do método de referência – 0,3% (m/m) (SORVANIEMI et al., 1993). 

 A Figura 25 mostra o gráfico dos valores de referência em função dos valores previstos 

pelos modelos MLR/SPA, PLS e PLS/JK (pré-processamento o MSC) nas etapas de calibração e 

validação externa. Como pode ser observado, não há presença de erro sistemático nos modelos, 

visto que os valores encontram-se aleatoriamente distribuídos ao longo da bissetriz.  
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Figura 25 - Gráfico dos valores previstos para umidade versus valores de referência para os modelos: (a) 

MLR/SPA (b) PLS e (c) PLS/JK  (●: amostras de calibração e ●: validação externa). 
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 Na Figura 26, é possível observar as variáveis espectrais selecionadas pelos algoritmos: 

SPA no modelo de regressão MLR e o Jack-Knife no modelo de regressão PLS construído para a 

umidade, utilizando como pré-processamento o MSC. Verifica-se que a estratégia MLR/SPA 

selecionou apenas duas variáveis espectrais originais para a determinação do teor de umidade, 

sendo, portanto, um modelo mais simples. As variáveis selecionadas pelo algoritmo Jack-Knife 

para a construção do modelo PLS/JK são correlacionadas com as bandas da água já citadas 

anteriormente. As variáveis selecionadas pelo algoritmo SPA na construção do modelo MLR 

foram: 8836 e 4028 cm
-1

 e também estão relacionadas às bandas da molécula de água 

(BAIANU; GUO, 2011). 
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Figura 26 - Variáveis espectrais selecionadas pelas estratégias: (a) MLR/SPA e (b) 

PLS/JK para umidade utilizando como pré-processamento o MSC. 
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5.4.2 pH 

 

Os resultados obtidos para os modelos de calibração multivariada MLR/SPA, PLS e 

PLS/JK obtidos para pH a partir dos respectivos espectros NIR (10000 a 4000 cm
-1

) 

empregando diferentes estratégias de pré-processamento são apresentados na Tabela 7. 

 

Tabela 7 - Resultados obtidos para os modelos de calibração multivariada PLS, PLS-JK e MLR/SPA para pH 

utilizando diferentes estratégias de pré-processamento dos espectros. 

 Calibração Previsão 

Modelo Pré-processamento 

Nº 

V.L
a
 

R RMSECV Outliers N
b
 R RMSEP 

MLR/SPA 

Sem 16 0,82 0,32 0 35 0,45 0,39 

MSC 8 0,77 0,33 0 35 0,74 0,31 

SNV 12 0,79 0,32 0 35 0,65 0,35 

1ª Derivada S.G 
c
 – 

15 pontos 
3 0,83 0,30 0 33 0,51 0,37 

1ª Derivada S.G – 

21 pontos 
3 0,85 0,28 0 33 0,76 0,29 

PLS 

Sem 8 0,85 0,35 2 35 0,64 0,34 

MSC 6 0,84 0,33 5 33 0,73 0,31 

SNV 6 0,85 0,34 7 34 0,67 0,35 

1ª Derivada S.G – 

15 pontos 
6 0,91 0,34 5 34 0,80 0,26 

1ª Derivada S.G – 

21 pontos 
5 0,82 0,33 5 34 0,68 0,34 

PLS / JK 

Sem 8 0,83 0,38 0 35 0,60 0,35 

MSC 5 0,84 0,32 5 34 0,73 0,32 

SNV 4 0,83 0,37 7 34 0,72 0,31 
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 Calibração Previsão 

Modelo Pré-processamento 

Nº 

V.L
a
 

R RMSECV Outliers N
b
 R RMSEP 

1ª Derivada S.G – 

15 pontos 
6 0,90 0,28 5 34 0,77 0,28 

1ª Derivada S.G – 

21 pontos 
5 0,83 0,32 5 34 0,71 0,33 

a Número de variáveis latentes (PLS) ou número de variáveis espectrais (MLR/SPA). 

b N Número de amostras de validação. 

c S. G. = Savitzky Golay. 

 

 O pH está relacionado à concentrações do íon hidrônio, H3O
+
 (HARRIS, 2008). A 

concentração de H3O
+ 

encontrada nas amostras de farinha estudadas neste trabalho é muito 

baixa, 4,5 x 10
-5

 a 2,4 x 10
-7

 mol L
-1

. A região do infravermelho próximo possui baixa 

sensibilidade a esse íon, visto que o limite de detecção do NIR é de cerca de 0,1% (m/m) 

(PASQUINI, 2003). Por isso, foi necessário um número elevado de variáveis latentes em 

todos os modelos de calibração construídos (BURNS; CIURCZAK, 2008). 

Os menores RMSEP’s obtidos para os modelos MLR/SPA, PLS, PLS/JK foram 

obtidos a partir dos espectros NIR pré-processados com a 1ª Derivada com filtro de Savitzky 

Golay com 21 pontos para o MLR/SPA (0,29) e com 15 pontos para o PLS (0,26) e o PLS/JK 

(0,28). Comparando esses resultados com os obtidos com os demais pré-processamentos a 

partir do teste F ao nível de 95% de confiança, (Tabela 8) observa-se que para esses modelos 

não há diferenças significativas entre essas estratégias e os demais tipos de pré-

processamentos. Exceto, no caso dos modelos PLS, em que o resultado obtido com a primeira 

derivada e filtro de Savitzky Golay (janela de 15 pontos) difere estatisticamente do modelo 

pré-processado com o SNV. Portanto, as demais estratégias testadas apresentam desempenho 

semelhante no pré-processamento de dados espectrais NIR na determinação do pH em 

amostras de farinhas de mandioca.  

Levando-se em conta os menores valores de RMSECV’s e maiores valores de 

coeficientes de correlação, R, a 1ª Derivada com filtro de Savitzky Golay com janelas de 21 

pontos e de 15 pontos podem ser consideradas as estratégias de pré-processamento mais 
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adequadas quando comparada às demais estudadas para os modelos MLR/SPA e PLS, 

respectivamente. Enquanto que o pré-processamento mais adequado para o modelo PLS/JK 

foi o SNV. 

 

Tabela 8- Resultados para o teste F (95% de confiança) obtidos na comparação das diferentes técnicas de pré-

processamento empregadas na construção dos modelos (MLR/SPA, PLS e PLS/JK) para pH. 

MLR/SPA PLS PLS/JK 

 

1ª Derivada S. 

G. - 21 pontos 

(33) 
a  

1ª Derivada S. 

G. - 15 pontos 

(34)  

1ª Derivada S. 

G. - 15 pontos 

(34) 

FCalculado FCrítico FCalculado FCrítico FCalculado FCrítico 

MSC (35) 1,14 1,79 MSC (33) 1,42 1,79 MSC (34) 1,31 1,79 

SNV (35) 1,46 1,79 SNV (34) 1,81 1,79 SNV (34) 1,23 1,79 

1ª 

Derivada 

S. G. - 15 

pontos 

(33) 

1,63 1,80 

1ª 

Derivada 

S. G. - 21 

pontos 

(34) 

1,71 1,79 

1ª 

Derivada 

S. G. - 21 

pontos 

(34) 

1,39 1,79 

a O valor entre parênteses indica o número de amostras utilizadas para a previsão em cada modelo. 

Avaliando os modelos MLR/SPA, PLS e PLS/JK desenvolvidos para pH com a 

estratégia de pré-processamento 1ª Derivada com filtro de Savitzky Golay com janelas de 21 

pontos e 15 pontos para os dois primeiros modelos e o SNV para o último, verificou-se que o 

modelo PLS apresentou menor RMSEP (0,26 unidades de pH). Esse valor não difere 

estatisticamente dos valores obtidos pelos modelos MLR e PLS/JK para o nível de 95% de 

confiança. Nesse caso, é mais indicado utilizar o modelo obtido pelo MLR/SPA para 

determinar pH em farinhas de mandioca, visto que o MLR/SPA é uma estratégia de 

modelagem mais simples, pois além de usar menos variáveis espectrais, utiliza as variáveis 

originais na obtenção dos modelos, ao contrário do PLS (BEEBE et al., 1998). Os resultados 

obtidos para o modelos são comparáveis aos descritos por Jiang et al. (2013) para 

determinação de pH em alimentos, utilizando 10 variáveis latentes. 

A Figura 27 apresenta os gráficos com os valores de referência de pH versus os 

valores de previstos para os modelos construídos a partir dos espectros pré-processados com 
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1ª Derivada com filtro de Savitzky Golay com janela de 21 pontos (MLR/SPA), 1ª Derivada 

com filtro de Savitzky Golay com janela de 15 pontos( PLS) e SNV (PLS/JK).  

 

 

Figura 27 - Gráfico dos valores previstos para pH versus valores de referência para os modelos: (a) 

MLR/SPA (b) PLS  e (c) PLS/JK  (●: amostras de calibração e ●: validação externa). 
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A partir da Figura 27, verifica-se que não há presença de erros sistemáticos, visto que 

os valores estão distribuídos aleatoriamente ao longo da bissetriz.  

As variáveis espectrais selecionadas pelos modelos de calibração MLR/SPA e PLS/JK 

encontram-se na Figura 28. As variáveis selecionadas pelo algoritmo SPA foram: 4056, 5226 

e 6004 cm
-1

 e correspondem a região das combinações e primeiro sobretom do estiramento de 
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ligações C-H, respectivamente. As variáveis selecionadas pelo algoritmo Jack-Knife estão 

distribuídas ao longo de todo o espectro e correspondem às regiões de combinação do 

estiramento das ligações C-H (4700-4146 cm
-1

). Além dessas, foram selecionadas variáveis na 

região de 6304-5208 cm
-1

 associadas ao primeiro sobretom do estiramento de ligações C-H 

(WORKMAN; WEYER, 2012). 

 

 

 

 

 

 

 

 

 

 

 

 



81 

Resultados e Discussão 

 
 

Figura 28 - Variáveis espectrais selecionadas pelas estratégias: (a) MLR/SPA e (b) 

PLS/JK para pH utilizando como pré-processamento a 1ª Derivada com filtro de Savitzky 

Golay com janela de 21 pontos e o SNV, respectivamente. 
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5.4.3 Cinzas 

 

Os resultados obtidos para os modelos de calibração multivariada MLR/SPA, PLS e 

PLS/JK obtidos para cinzas ou resíduos sólidos a partir de seus respectivos espectros NIR 

(10000 a 4000 cm
-1

) empregando diferentes estratégias de pré-processamento podem ser 

encontrados na Tabela 9. 

 

Tabela 9 - Resultados obtidos para os modelos de calibração multivariada PLS, PLS-JK e MLR/SPA para cinzas 

utilizando diferentes estratégias de pré-processamento dos espectros. 

 Calibração Previsão 

Modelo 
Pré-

processamento 

Nº 

V.L
a R 

RMSECV 

(%) 
Outliers N

b 
R 

RMSEP 

(%) 

MLR/SPA 

Sem 10 0,69 0,23 0 35 0,61 0,21 

MSC 6 0,70 0,21 0 35 0,65 0,20 

SNV 7 0,74 0,20 0 35 0,66 0,20 

1ª Derivada 

S.G
c
 – 15 

pontos 

3 0,51 0,27 0 35 0,43 0,19 

1ª Derivada 

S.G – 21 

pontos 

8 0,57 0,26 0 35 0,63 0,16 

PLS 

Sem 5 0,64 0,26 0 35 0,71 0,15 

MSC 10 0,87 0,23 0 31 0,91 0,11 

SNV 10 0,86 0,23 0 31 0,81 0,14 

1ª Derivada 

S.G – 15 

pontos 

5 0,68 0,28 0 35 0,71 0,22 

1ª Derivada 

S.G – 21 

pontos 

10 0,97 0,27 0 32 0,35 0,22 

PLS / JK 

Sem 4 0,64 0,26 0 35 0,69 0,15 

MSC 7 0,81 0,21 0 31 0,83 0,14 

SNV 4 0,67 0,24 0 31 0,73 0,17 
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 Calibração Previsão 

Modelo 
Pré-

processamento 

Nº 

V.L
a R 

RMSECV 

(%) 
Outliers N

b 
R 

RMSEP 

(%) 

1ª Derivada 

S.G – 15 

pontos 

4 0,69 0,27 3 30 0,74 0,23 

1ª Derivada 

S.G – 21 

pontos 

7 0,88 0,18 0 33 0,48 0,20 

a Número de variáveis latentes (PLS) ou número de variáveis espectrais (MLR/SPA). 

b N Número de amostras de validação. 

c S. G. = Savitzky Golay. 

 

 O modelo de calibração MLR/SPA que obteve o menor RMSEP foi aquele utilizando 

dados espectrais pré-processados com 1ª Derivada com filtro de Savitzky Golay com janela de 

21 pontos (0,16% m/m), enquanto que para os modelos PLS e PLS/JK os menores RMSEP’s 

obtidos foram os pré-processados com MSC - 0,11% e 0,14% (m/m), respectivamente.  

Avaliando os modelos que obtiveram os menores RMSEP’s com os obtidos com os 

demais pré-processamentos a partir do teste F ao nível de 95% de confiança, Tabela 10, 

verifica-se que para os modelos MLR/SPA não há diferenças significativas entre os resultados 

obtidos com as diferentes estratégias de pré-processamento, em um nível de 95% de 

confiança. Entretanto, para os modelos PLS e PLS/JK, os resultados obtidos com o pré-

processamento MSC são estatisticamente semelhantes apenas aos obtidos com SNV.  

Os pré-processamentos que forneceram modelos com parâmetros gerais melhores 

tanto na calibração quanto na previsão foram o SNV para o modelo MLR/SPA e o MSC para 

os modelos PLS e PLS/JK.  

 

 

 



84 

Resultados e Discussão 

 
 
Tabela 10 - Resultados para o teste F (95% de confiança) obtidos na comparação das diferentes técnicas de pré-

processamento empregadas na construção dos modelos (MLR/SPA, PLS e PLS/JK) para cinzas. 

MLR/SPA PLS PLS/JK 

 

1ª Derivada S. G. 

- 21 pontos (35) 
a 

 
MSC (31) 

 
MSC (31) 

FCalculado FCrítico FCalculado FCrítico FCalculado FCrítico 

SNV (35) 1,56 1,77 SNV (31) 1,62 1,84 SNV (31) 1,47 1,82 

MSC (35) 1,56 1,77 

1ª 

Derivada 

S. G. - 15 

pontos 

(35) 

4,00 1,82 

1ª 

Derivada 

S. G. - 15 

pontos 

(30) 

2,70 1,85 

1ª 

Derivada 

S. G. - 15 

pontos 

(35) 

1,41 1,77 

1ª 

Derivada 

S. G. - 21 

pontos 

(32) 

4,00 1,83 

1ª 

Derivada 

S. G. - 21 

pontos 

(33) 

2,04 1,83 

a O valor entre parênteses indica o número de amostras utilizadas para a previsão em cada modelo. 

 

Avaliando-se então o desempenho dos modelos PLS, PLS/JK e MLR/SPA, observou-

se que o modelo PLS com todas as variáveis espectrais apresentou o menor valor de RMSEP 

(0,11%), o qual é estatisticamente diferente do valor obtido pelo modelo MLR/SPA (0,20%) 

ao nível de 95%. O valor de RMSEP obtido para o modelo PLS é bem menor do que o obtido 

por Moroi et al. (2011), para determinação do teor cinzas em farinhas de trigo (1,5%). 

Na Figura 29, encontram-se os gráficos com os valores de referência de cinzas em 

função dos valores previstos para os modelos MLR/SPA, PLS e PLS/JK construídos a partir 

dos espectros pré-processados com SNV, MSC e MSC, respectivamente. 
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Observa-se a partir da Figura 29 que não há presença de erros sistemáticos, visto que 

os valores estão distribuídos aleatoriamente ao longo da bissetriz. 

O resíduo mineral resultante do teste de cinzas não apresenta bandas características no 

espectro NIR, entretanto, o teor de cinzas está altamente correlacionado com o teor de 

celulose e amido, constituintes principais das farinhas (BURNS; CIURCZAK, 2008). 

As variáveis espectrais selecionadas pelos modelos de calibração MLR/SPA e PLS/JK 

encontram-se na Figura 30. As variáveis selecionadas pelo algoritmo SPA foram: 7050, 5134, 

5270, 5020, 4706 e 4024 cm
-1

 e correspondem às bandas do amido e celulose, visto que estão 

associadas ao segundo sobretom das combinações, primeiro sobretom do estiramento de 

ligações O-H, bandas de combinação do estiramento das ligações O-H e deformação HOH 
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Figura 29 - Gráfico dos valores previstos para cinzas versus valores de referência para os modelos: (a) 

MLR/SPA (b) PLS e (c) PLS/JK  (●: amostras de calibração e ●: validação externa). 

 

 

(b) (a) 
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(WORKMAN, WEYER, 2008). As variáveis selecionadas pelo algoritmo Jack-Knife estão 

distribuídas ao longo de todo o espectro.  

Figura 30 - Variáveis espectrais selecionadas pelas estratégias: (a) MLR/SPA e (b) PLS/JK para cinzas 

utilizando como pré-processamento SNV e MSC, respectivamente. 
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Conclusão 

 

Neste trabalho foi apresentado o uso da espectroscopia NIR aliada à calibração 

multivariada para a determinação de parâmetros de qualidade de farinhas de mandioca.  

A partir das análises físico-químicas realizadas, verificou-se que o teor de umidade 

variou de 5,00 a 12,62% (m/m) e que todas as amostras estudadas se encontravam dentro do 

limite estabelecido pela legislação vigente. O teor de cinzas variou de 0,28 a 1,69% (m/m) e 

seis amostras apresentaram valores superiores aos estabelecidos pela legislação. O pH das 

amostras variou de 4,35 a 6,62, sendo classificadas como ácidas ou pouco ácidas. 

A PCA não foi capaz de distinguir as farinhas por estado. Os modelos PLS utilizando 

os espectros pré-processados com o MSC mostraram-se eficientes para determinação do teor 

de umidade e cinzas, com RMSEPs iguais a 0,39 e 0,11%, respectivamente. Para a 

determinação do pH, o modelo MLR com seleção de variáveis pelo algoritmo SPA com 

espectros derivativos da primeira derivada com filtro Savitzky Golay com uma janela de 21 

pontos mostrou-se mais eficiente, com RMSEP igual a 0,29 unidades de pH. Os desempenhos 

observados na previsão de amostras externas foram comparáveis à reprodutibilidade do 

método e a trabalhos da literatura.  

 Enfim, este trabalho mostrou que a calibração multivariada é uma alternativa vantajosa 

para determinação dos teores de umidade, cinzas e pH. O método proposto é mais rápido, de 

custo relativamente baixo e limpo, além de exigir menos preparo da amostra quando 

comparado aos métodos oficiais. 
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Perspectivas 

 

 Com a finalização deste trabalho, observaram-se algumas perspectivas para um 

aprofundamento da análise espectroscópica de farinhas de mandioca. 

 Realizar outras análises físico-químicas como: amido, proteínas, lipídeos e fibras na 

matriz em estudo, e posteriormente construir modelos de calibração para esses 

parâmetros; 

 Validar as metodologias NIR desenvolvidas, utilizando figuras de mérito para a 

calibração multivariada; 

 Construir modelos multiblocos (NIR + MIR). 
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APÊNDICE A – Parâmetros físico-químicos determinados para as farinhas de mandioca. 

Amostra Estado Umidade (%) pH Cinzas (%) 

1 PE 9,87 ± 1,34 5,36 ± 0,02 1,02 ±0,02 

2 PE 10,17 ± 1,48 5,71 ±0,30 0,57 ±0,18 

3 PE 9,90 ± 1,84 4,87 ±0,01 1,02 ±0,17 

4 PE 10,94 ± 1,04 5,42 ±0,09 0,72 ±0,20 

5 PE 9,09 ± 1,34 5,28 ±0,05 1,62 ±0,05 

6 PI 11,20 ± 1,66 5,46 ±0,06 0,71 ±0,08 

7 DF 10,77 ± 1,77 6,30 ±0,07 1,48 ±0,02 

8 PE 10,35 ± 0,72 5,87 ±0,03 0,65 ±0,01 

9 PE 10,42 ± 0,61 5,78 ±0,02 0,70 ±0,03 

10 PE 10,99 ± 0,36 6,05 ±0,04 0,66 ±0,01 

11 PE 10,05 ± 0,84 5,47 ±0,01 1,22 ±0,04 

12 BA 11,31 ± 1,14 4,79 ±0,01 1,31 ±0,02 

13 DF 9,52 ± 1,37 5,11 ±0,06 1,69 ±0,02 

14 PE 10,07 ± 1,67 5,71 ±0,02 1,07 ±0,05 

15 PE 10,34 ± 0,67 6,15 ±0,02 0,53 ±0,12 

16 PE 10,45 ± 1,52 5,14 ±0,01 1,37 ±0,05 

17 PE 10,38 ± 0,93 5,76 ±0,02 0,82 ±0,01 

18 PE 11,76 ± 1,01 5,63 ±0,13 1,06 ±0,07 
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19 PE 12,62 ± 0,23 5,12 ±0,03 1,01 ±0,07 

20 DF 11,51 ± 2,64 5,30 ±0,02 1,64 ± 0,01 

21 PE 9,59 ±1,38 5,30 ±0,03 1,50 ±0,01 

22 PE 11,65 ±1,53 5,41 ±0,03 0,88 ±0,36 

23 PE 9,47 ±1,55 5,66 ±0,03 1,20 ±0,05 

24 PE 10,16 ±0,72 6,13 ±0,01 0,44 ±0,06 

25 PI 10,05 ±1,85 4,52 ±0,04 0,68 ±0,29 

26 PE 10,33 ±1,13 5,25 ±0,02 1,10 ±0,02 

27 PE 9,41± 0,98 5,31 ±0,02 1,43 ±0,05 

28 PE 10,77 ± 1,16 5,66 ±0,02 1,09 ±0,01 

29 PE 9,96 ± 1,33 5,26 ±0,02 1,60 ±0,04 

30 PE 9,71 ± 1,61 5,71 ±0,06 1,33 ±0,01 

31 PE 7,13 ± 1,12 5,21 ±0,02 0,58 ±0,32 

32 PE 11,44 ± 0,97 4,98 ±0,01 1,18 ±0,12 

33 PE 9,11 ± 1,31 5,22 ±0,04 1,28 ±0,03 

34 PE 11,02 ± 1,58 5,59 ±0,01 0,97 ±0,19 

35 PE 10,26 ± 1,28 5,26 ±0,03 1,40 ±0,06 

36 PR 7,40 ± 0,13 6,21 ±0,01 0,52 ±0,22 

37 PR 7,78 ± 0,01 5,99 ±0,02 0,68 ±0,24 

38 RN 9,10 ± 0,07 5,95 ±0,01 0,99 ±0,10 

39 SC 10,64 ± 0,10 6,06 ±0,08 0,92 ±0,07 

40 RN 7,86 ± 0,38 5,85 ±0,02 0,79 ±0,02 
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41 PE 10,40 ± 0,12 6,51 ±0,03 0,95 ±0,09 

42 PE 8,37 ± 0,13 5,71 ±0,02 0,94 ±0,08 

43 SP 10,55 ± 0,24 5,86 ±0,05 0,72 ±0,04 

44 BA 7,08 ± 0,22 6,33 ±0,01 0,85 ±0,08 

45 PE 10,62 ± 0,07 5,92 ±0,05 0,83 ±0,03 

46 PE 10,91 ± 0,19 5,97 ±0,01 0,90 ±0,07 

47 PE 11,71 ± 0,26 5,89 ±0,04 0,92 ±0,05 

48 BA 8,36 ± 0,11 5,67 ±0,05 0,65 ±0,05 

49 PE 12,23 ± 0,17 6,01 ±0,02 0,89 ±0,38 

50 PE 9,29 ± 0,15 6,26 ±0,04 0,73 ±0,07 

51 PE 9,02 ± 0,09 6,37 ±0,05 0,70 ±0,23 

52 RS 11,19 ± 0,07 5,81 ±0,01 0,97 ±0,08 

53 RS 9,24 ±0,04 5,79 ±0,01 0,93 ±0,02 

54 SC 6,81 ± 0,07 5,64 ±0,01 0,89 ±0,10 

55 SC 10,21 ± 0,14 5,98 ±0,04 0,75 ±0,04 

56 PE 9,75 ± 0,37 6,55 ±0,03 0,75 ±0,03 

57 PE 10,72 ± 0,14 5,43 ±0,02 0,68 ±0,05 

58 PE 11,10 ± 0,09 6,10 ±0,02 0,74 ±0,02 

59 SP 11,40 ± 0,06 5,64 ±0,01 0,55 ±0,15 

60 BA 8,12 ± 0,11 5,79 ±0,01 0,79 ±0,04 

61 BA 9,54 ± 0,40 6,08 ±0,03 0,63 ±0,05 

62 PE 10,13 ± 0,12 5,89 ±0,02 0,72 ±0,02 
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63 SP 10,45 ± 0,05 6,05 ±0,10 0,65 ±0,04 

64 PE 9,37 ± 0,03 5,58 ±0,01 0,68 ±0,09 

65 PE 9,45 ± 0,07 6,44 ±0,01 0,91 ±0,03 

66 BA 10,58 ± 0,11 6,10 ±0,03 0,99 ±0,01 

67 BA 9,21 ± 0,44 5,94 ±0,03 1,11 ±0,09 

68 RS 5,44 ± 0,16 5,59 ±0,01 0,85 ±0,10 

69 PE 11,40 ± 0,10 6,22 ±0,01 0,67 ±0,10 

70 PE 9,18 ± 0,20 6,19 ±0,22 0,61 ±0,01 

71 PE 11,46 ± 0,14 6,05 ±0,01 0,57 ±0,06 

72 PE 9,88 ± 0,62 5,72 ±0,03 0,44 ±0,03 

73 PE 8,95 ± 0,21 6,27 ±0,03 0,83 ±0,05 

74 PE 10,30 ± 0,15 6,25 ±0,02 0,61 ±0,08 

75 PE 11,15 ± 0,32 5,89 ±0,02 1,03 ±0,01 

76 PE 10,38 ± 0,16 4,88 ±0,03 0,58 ±0,01 

77 PR 9,76 ± 0,02 5,45 ±0,02 0,80 ±0,03 

78 PR 6,24 ± 0,08 5,67 ±0,03 0,68 ±0,16 

79 PE 10,28 ± 0,27 5,79 ±0,02 0,62 ±0,11 

80 MA 9,90 ± 0,12 6,06 ±0,02 0,71 ±0,12 

81 MA 10,62 ± 0,06 6,62 ±0,02 1,04 ±0,05 

82 MA 11,51 ± 0,46 5,83 ±0,03 0,70 ±0,04 

83 MA 9,09 ± 0,36 5,57 ±0,03 0,85 ±0,04 

84 MA 8,58 ± 0,01 5,80 ±0,02 0,83 ±0,16 
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85 MA 9,81 ± 0,29 4,66 ±0,03 0,68 ±0,06 

86 MA 11,32 ± 0,06 5,09 ±0,03 1,07 ±0,10 

87 MA 10,36 ± 0,14 5,55 ±0,02 0,89 ±0,65 

88 DF 7,21 ± 0,09 5,31 ±0,02 0,58 ±0,05 

89 DF 5,68 ± 0,06 6,37 ±0,01 0,76 ±0,03 

90 PB 4,80 ± 0,09 6,12 ±0,01 0,28 ±0,09 

91 PB 10,07 ± 0,01 4,61 ±0,01 0,75 ±0,08 

92 PB 11,59 ± 0,06 6,31 ±0,04 1,07 ±0,01 

93 AL 9,22 ± 0,07 5,82 ±0,01 0,62 ±0,41 

94 PB 7,08 ± 0,08 6,10 ±0,01 0,61 ±0,09 

95 PB 11,16 ± 0,14 5,84 ±0,04 1,21 ±0,05 

96 PB 8,59 ± 0,83 6,00 ±0,01 1,09 ±0,04 

97 PA 8,69 ± 0,16 6,00 ±0,05 0,88 ±0,01 

98 PA 9,69 ± 0,01 6,07 ±0,03 1,01 ±0,02 

99 PA 8,04 ± 0,40 6,00 ±0,03 0,87 ±0,02 

100 PA 10,59 ± 0,01 5,88 ±0,07 0,85 ±0,04 

101 PA 7,74 ± 0,11 6,21 ±0,01 0,90 ±0,01 

102 SE 5,10 ± 0,13 6,10 ±0,02 0,92 ±0,03 

103 SE 8,57 ± 0,07 4,49 ±0,02 1,24 ±0,07 

104 SE 8,73 ± 0,07 4,88 ±0,01 1,15 ±0,08 

105 SE 8,66 ± 0,07 4,38 ±0,01 1,16 ±0,04 

106 SE 8,70 ± 0,08 4,35 ±0,02 1,17 ± 0,06 
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107 SE 8,51 ± 0,05 4,72 ±0,56 0,64 ±0,03 

 


