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Abstract 
 
 This thesis focuses on the Brazilian population dynamics between 1970 and 2010. In 
this sense, the first objective is to explore the behavior of the Brazilian population 
distribution, revisiting the traditional rank-size rule and Markov chain approaches. In order to 
bring up more accurate information on the dynamics and evolution of the population 
distribution, the spatial dependence is introduced through the analysis of LISA Markov and 
Spatial Markov Chains. The distribution shape may indicate that divergence in population 
size of Minimum Comparable Areas  (MCAs) is decreasing. The Zipf's law estimation 
indicates that the population distribution is, every decade, moving away from Pareto law. 
Markov chain approach brings as main evidence the high-persistence of MCAs to stay in their 
own class size from one decade to another over the whole period, and different spatial 
contexts have different effects on transition for regions. The second and main objective of the 
present thesis is to model population growth dynamics of Brazilian MCAs in order to assess 
the determinants of population growth of these units between 1970 and 2010 and examine the 
existence and magnitude of spatial interaction and spatial spillover effects associated with 
these determinants. In this sense, the population growth model developed by Glaeser et al. 
(1995) and Glaeser (2008) is extended to include spatial interaction effects, and it is tested by 
estimating a dynamic spatial panel model with spatial and time period fixed effects and by 
comparing the performance of a wide range of potential neighborhood matrices using 
Bayesian posterior model probabilities. Six of the thirteen determinants of population growth 
considered in this thesis turn out to produce significant spatial interaction effects. This implies 
that a change of such a variable in one unit, also significantly affects population growth in 
other units, a phenomena that in most of the previous studies on population growth has been 
ignored. 

 
Keywords: Population distribution, Zipf's Law, Markov Chains, Population growth, Spatial 
dependence, Dynamic Spatial Panel models, Spillover effects 
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Resumo 
 
 Esta tese tem como foco principal a dinâmica populacional brasileira entre 1970 e 
2010. Neste sentido, o primeiro objetivo é explorar o comportamento da distribuição 
populacional, utilizando tanto a abordagem tradicional de rank quanto as cadeias de Markov. 
A fim de obter informações mais precisas sobre a dinâmica e a evolução da distribuição 
populacional, a dependência espacial é introduzida através da análise de LISA Markov e 
Spatial Markov Chains. O formato da distribuição indica que a divergência no tamanho 
populacional das Áreas Mínimas Comparáveis (AMC) é decrescente. A estimação da lei de 
Zipf traz evidências de que a distribuição populacional está, a cada década, de distanciando da 
distribuição de Pareto. A abordagem utilizando as cadeias de Markov traz como principais 
evidências a alta persistência das AMCs permanecerem nas suas classes iniciais com o passar 
das décadas e o fenômeno que diferentes contextos espaciais tem efeitos diferentes sobre a 
transição das localidades. O segundo e principal objetivo da tese é modelar a dinâmica do 
crescimento populacional das AMCs brasileiras a fim de avaliar os determinantes do 
crescimento populacional destas unidades entre 1970 e 2010, bem como examinar a 
existência e magnitude da interação espacial e dos efeitos de spillovers espaciais associados a 
estes determinantes. Neste sentido, o modelo de crescimento populacional desenvolvido por 
Glaeser et al (1995) e Glaeser (2008) é ampliado para incluir efeitos de interações espaciais. 
Este modelo é, então, testado empiricamente através da estimação de um modelo espacial 
dinâmico com dados em painel incluindo efeitos fixos e comparando a performance de uma 
ampla gama de matrizes de vizinhança através de modelos Bayesianos de probabilidade 
posterior. Seis dos treze determinantes do crescimento populacional considerados nesta tese 
apresentaram efeitos de interação espacial significantes. Isto implica que uma mudança em 
uma destas variáveis de uma unidade também afeta significantemente o crescimento 
populacional nas unidades vizinhas, um efeito que tem sido ignorado na maiorias dos estudos 
anteriores a este. 
 
Palavras-Chave: Distribuição Populacional, lei de Zipf, Cadeias de Markov, Crescimento 
Populacional, Modelos espaciais dinâmicos em dados de painel, Spillovers Effects 
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1. Introduction 
 The Brazilian urbanization process is surely one of the most significant and robust 

social phenomena in the country in the past four decades. Throughout all economic and social 

changes of the last decades, the percentage of people living in urban centers in Brazil has 

been steadily growing; according to the last Brazilian Demographic Census of the year 2010, 

it increased from 55.9% in 1970 to 84.4% in 2010 (IBGE, 2011). Several studies have shown 

that this process has been driven by improved economic and social prospects in cities (Yap, 

1976; Henderson, 1988; Da Mata et al., 2007). In addition, Ramalho and Silveira-Neto (2012) 

have pointed out that the most important migration flux of people in Brazil since the 1990s 

occured between cities (urban-urban). In other words, apart from demographic factors, the 

most important sources of population growth dynamics of Brazilian cities in more recent 

decades are associated to specific urban characteristics. 

 Population growth of cities is also associated with the population movement between 

municipalities. To illustrate, according to data from the Brazilian Institute of Geography and 

Statistics (IBGE) in 1970 there were 66 cities in Brazil with more than 100 000 inhabitants, 

105 cities in the early 1980s, 398 in 2000, and this number increased to 488 in 2010. 

Meanwhile, in the last decade the number of cities with over 1 million inhabitants went only 

from 13 to 14. In this sense, the concern is not only for the scale of urbanization, but also for 

the distribution of population across the urban hierarchy that becomes a challenge for policy 

makers to establish strategies for cities of different sizes. This observation raises some 

questions: How cities of different sizes grow during the process of development and 

transformation of a country? Is the degree of cities-size mobility slow or fast in the last 40 

years? Are the movements within the distribution affected by spatial dependence? 

 Regarding this context, some authors investigated the behavior of cities’s size 

distribution (Dobkins and Ioannides, 1999; Black and Henderson, 2003; Gabaix and 

Ioannides, 2004; Gallo and Chasco, 2007). About the Brazilian case, there are few studies on 

the behaviour of population distribution. Oliveira (2004a), when analyzing the evolution of 

city-size distribution in Brazil between 1936 and 2000, found evidence that smaller cities 

grew less than large ones until the 1990s. Trindade and Sartoris (2009) examined the 

evolution of size distribution of cities in Brazil between the 1920-2000 period and the results 

show evidence of divergence, similarly to Oliveira (2004a). Justo (2012) finds evidence of 

low interclass mobility and high persistence in the population distribution behavior of 431 

minimum comparable areas between 1910 and 2010. Moro and Santos (2013) also found low 
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mobility for the period of 1970-2010, but they only as sample the municipalities that existed 

in 1970, not covering all Brazilian territory. 

 For studies on the characterization and evolution of population distribution, the 

national literature available does not include information in their databases beyond the year 

2000 (e.g.: Oliveira, 2004a; Trindade and Sartoris, 2009), do not go further in the 

investigation of spatial effects (e.g.: Justo, 2012) or do not cover all Brazilian territory (e.g.: 

Moro and Santos, 2013). In this sense, the first focus of this thesis is to assess the behavior of 

the population size distribution of Brazilian Minimum Comparable Areas (MCA) covering all 

Brazilian territory between 1970 and 2010. 1 Furthermore, the intention of the first part of the 

study is to advance in providing more accurate evidences, taking into account the possibility 

of spatial dependence in population size distribution by using current spatial techniques. In 

analyzing the evolution of Brazilian minimum comparable areas (MCA) population 

distribution, we begin by revisiting the traditional rank-size rule and Pareto distribution 

approaches. Therefore, in order to bring up information on the dynamics and evolution of the 

population distribution, we lead with the estimation of transition probability matrices 

associated with discrete Markov chains (Kemeny and Snell, 1976). And then, the spatial 

dependence is introduced through the analysis of LISA Markov and Spatial Markov Chains, 

both developed by Rey (2001).  

Much less is known, however, about the specific factors conditioning population 

growth in Brazilian cities. Among the few studies available, Henderson (1988) has shown that 

population growth of Brazilian cities between 1960 and 1970 was positively associated with 

initial levels of schooling of the population. More recently, Da Mata et al. (2007) have 

analyzed the growth of cities between 1970 and 2000 and have provided evidence that 

favorable supply and demand conditions measured by market potential variables, better 

schooling and decreasing opportunities in the agricultural sector favored the growth of 

Brazilian cities. One obvious limitation of these studies is that they do not analyze the more 

recent period of 2000-2010. Firstly, after a decade of high inflation, this was a period of price 

stability. Secondly, it was also a period characterized by income convergence among 

Brazilian states (Silveira-Neto and Azzoni, 2012). Finally, the great increase in the production 

of commodities and agricultural goods during this period had a positive impact on the number 

of opportunities in towns that are distant from large urban centers.  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 A MCA is a municipality or an aggregation of municipalities necessary to enable consistent spatial 
analyses over time. More details follow in section 4.2. 
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Besides this limitation, in their study, Da Mata et al. (2007) selected only those 

municipalities with over 75,000 inhabitants, which corresponds to 75% of Brazilian urban 

population. As has now been largely recognized (Boarnet et al., 2005), spatial dependence is 

much more severe for small spatial units such as municipalities. Recently, by analyzing 

income dynamics at different levels of spatial aggregation units, Resende et al. (2013) 

confirmed the importance of spatial dependence for the case of Brazilian MCAs.  

These findings are not surprising since the Brazilian Constitution of 1988 states that 

the municipality is the third and lowest political administrative unit of the country, with 

autonomy for collecting taxes on services activities (ISS: Imposto sobre Serviços) and on 

urban real estate property (IPTU: Imposto Predial e Territorial Urbano) and for legislating 

land use. All these policies can potentially affect the location of firms and people and, hence, 

may generate reactions from or affect neighboring cities (Brueckner, 2008). There is a 

scarcity of studies related to population growth with a high level of geographical 

disaggregation, since most studies available in Brazilian literature are based on geographic 

units representing large aggregates, including Vergolino and Jatoba (2000) and Da Mata et al. 

(2007) using micro-regions and urban agglomerations, respectively. By using these large 

aggregates, the researcher runs the risk of being negligent with potential spatial effects, for 

example the effects of tax competition between municipalities to attract new ventures. Some 

of the studies that attempt to analyze population growth defend the use of smaller geographic 

units, mainly because these are the most open economies allowing greater movement of 

capital, labor and ideas (Glaeser et al., 1995), better reflecting the spatial heterogeneity unlike 

large aggregates such as countries, states and macro regions (Beenson et al., 2001) and greater 

relevance for planning and policy-making (Chi, 2009). Furthermore and more generally, 

spatial technological spillovers (Ertur and Koch, 2007) are potentially more prevalent among 

small urban neighboring centers than among large ones. By considering spatial urban centers 

at a lower and fuller scale, there is also the possibility that common or shared specific 

amenities will affect population welfare. All of these factors may cause spatial dependence on 

population growth dynamics of Brazilian cities and its determinants. 

Therefore, in order to adequately analyze population growth dynamics of all Brazilian 

cities and identify the factors conditioning such dynamics, it appears fundamental to model 

spatial dependence among these spatial units explicitly. Thus, the second and central objective 

of the present thesis is to model population growth dynamics of Brazilian Minimum 

Comparable Areas (MCA) in order to assess the determinants of population growth of these 

units between 1970 and 2010 and to examine the existence and magnitude of spatial 
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interaction and spatial spillover effects associated with these determinants. Specifically, we 

motivate the empirical investigation by presenting a spatial extension of the city population 

growth model developed by Glaeser (2008). This spatial extension accounts for spatial 

interaction effects among both productivity and city amenities and implies an empirical 

specification for population growth dynamics consisting of spatial interaction effects in the 

dependent and independent variables. The empirical strategy of modeling population growth 

dynamics of Brazilian cities (MCA) consists of a dynamic spatial panel model with controls 

for spatial and time specific effects. This strategy offers the opportunity to disentangle the 

magnitude and significance levels of spatial spillover effects both in the short and in the long 

term, and guarantees that any evidence in favor of these effects is not due to ignoring time-

specific effects that areas have in common.  

 This dissertation is organized in correlated chapters and is not composed by 

independent papers. In addition to these introductory notes, in the chapter 2 we present the 

foundations for distributions dynamics of population and spatial dependence through the 

literature review and presentation of Zipf’s law and Markov Chain approaches. Chapter 3 

builds the foundations for the population growth dynamics. In this chapter, besides the 

literature review, we set out our theoretical spatial extension of Glaeser’s population growth 

model as well as we present the econometric methodology behind our dynamic spatial panel 

data model. Chapter 4 describes the dataset and reports the results of the empirical analysis 

regarding distributional dynamics and population growth, respectively. The conclusions are 

presented in Chapter 5. 
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2. Distribution Dynamics of Population and Spatial Dependence 
 In this chapter, we present the literature review and methodologies used to analyze the 

behavior of the MCAs's population distribution covering the entire Brazilian territory in the 

period 1970-2010. The first methodology deals with the traditional estimation of Zipf's Law, 

which verifies that the distribution of city sizes follows the Pareto distribution. This technique 

only provides some information about static distribution at each point in time. As suggested 

by Duranton (2006), even though it may be only a rough first approximation, Zipf's law 

nonetheless remains a useful benchmark to think about the distribution of city sizes. 

Therefore, in order to bring up information on the dynamics and evolution of the population 

distribution, i.e., to access information on the movements of the localities within the 

distribution, techniques based on the Markov Chain will be explored in the remaining topics 

in this section. 

 

2.1 Literature Review 

Based on the integration of spatial statistic with modeling using Markov chains, Rey 

(2001) studies the evolution of the regional distribution of income taking into account the 

transitions of both the individual economies and those of their respective geographic 

neighbours within a distribution of income. Using data from 48 U.S. states for the period 

1929-1994, the main result found by the author is that the rates of upward or downward 

mobility of the states within the distribution was sensitive to the position of its neighbour in 

the same distribution. And a possible implication in terms of policy is that, for example, a 

policy to reduce regional disparities could be more effective when the receiving state of the 

policy is surrounded by less disparate states. 

 Black and Henderson (2003) examine the evolution of the US city size distribution by 

applying Zipf 's Law to the 20th century US city size distribution. They then turn to a more 

general approach to analyze the evolution and trends of the size distribution of cities by 

modeling the transition process of cities directly. In relation to the Zipf’s Law, the Pareto 

parameter estimated for the whole sample lending modest support to the view of increasing 

urban concentration in recent decades. For the top one-third of cities, the rise in the Pareto 

parameter would suggest decreasing urban concentration in the US over time. But the fact is 

that this difference between the estimated parameters suggests that the relationship between 

rank and city size is not log-linear. In relation to city size distribution, the authors conclude 

that existing cities tend to move up the size distribution ‘fairly quickly’, but to move down 



! 6 

extremely slowly. Additionally, there is some tendency in the USA towards increasing urban 

concentration, with a greater proportion of cities in large relative size categories.  

Gallo and Chasco (2007) analyzed the evolution of population growth for a group of 

722 Spanish municipalities during the period 1900-2001. Attentive to the fact that the 

omission of spatial autocorrelation could cause a bias to the OLS estimator, the authors 

followed the strategy suggested by Anselin (1988) and estimated a spatial model SUR for 

Zipf's Law's (size distribution of cities follows a Pareto Law) and two main phases are found: 

divergence (1900-1980) and convergence (1980-2001). Furthermore, the authors estimated 

transition matrices associated with discrete Markov chains to obtain information concerning 

the movements of the urban groups within the population distribution. In this case, the results 

indicated that the municipalities located on the ends of the distribution would be more 

persistent in staying in those positions in the ranking, while medium-sized cities were more 

likely to move into smaller categories. The authors, however, do not explore the approach 

suggested by Rey (2001) who proposes the use of a spatial Markov matrix. 

The international literature that refers to the behavior of population distribution is 

much wider than the one discussed in this thesis. Dobkins and Ioannides (1999) using the data 

from U.S. Census and cover metropolitan areas between 1900 and 1990, the authors found 

evidences of divergent growth, if spatial evolution is ignored, and convergent growth in the 

presence of very significant regional effects. Lalanne (2013) investigate the hierarchical 

structure of the Canadian urban system. Some papers discuss theoretical issues on city size 

distributions (Gabaix, 1999; Gabaix and Ioannides, 2003; Duranton, 2006; Gan et al., 2006). 

The diversity of international studies is very large, but this is not the case of the national 

literature. Below we list some work featured in national literature regarding distributional 

population behavior. 

Oliveira (2004a), when studying the evolution of size distribution in Brazilian cities 

and testing the validity of Zipf's Law, estimates Pareto coefficient for Brazil between 1936 

and 2000. The obtained results do not allow the conclusion that the rule of order and size 

applies to Brazil. Only in 1960 and 1970 this rule is true, but represents a transition period, 

since the coefficient decreased constantly over the period studied. This reduction represents 

an increase in inequality in the size of Brazilian cities. In this study, the author does not take 

into account the spatial factors that could influence the results. 

Trindade and Sartoris (2009) examine the evolution of the relationship between the 

size of Brazilian cities and their population distribution for the period between 1920 and 

2000. Using models based on Zipf's Law, Markov chain and taking spatial effects into 
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account, the authors find in their results that there is a persistent population concentration in a 

small number of areas. As Gallo and Chasco (2007), the authors do not use the approach of 

spatial Markov matrix proposed by Rey (2001), which would have clearer information about 

the spatial relation existing in size distribution of cities. 

 Monastério (2009) analyzes the changes in the spatial distribution of population and 

manufacturing employment in Brazil between 1872 and 1920. To this end, the used tools, 

which combine the spatial analysis techniques Exploratory Spatial Data Analysis (ESDA) of 

the Markov chain, as, suggested by Rey (2001). The sample consists of minimum comparable 

areas in the Northeast, Southeast and South, and the state of Goiás. That is, the other states of 

the Midwest and the northern region are outside the sample used. The analysis revealed 

differences in the trajectories of the areas within states, the role of space in the dynamics and 

the tendency to increase in concentration during the studied period, especially with regard to 

manufacturing occupation. The analysis using the Markov matrix spatially conditioned 

indicated that the neighborhood was essential to the destinations of AMCs. Localities with 

little dense neighbors tended to approach the low-density profile of its neighbors. 

Justo (2012) seeks to identify the dynamics of population growth for a group of 431 

minimum comparable areas in Brazil between 1910 and 2010. For this, the author estimated 

spatial models for Zipf's law achieving results that point to the divergence, which has been 

losing strength in recent decades. Furthermore, through the estimation of functions of non-

parametric densities, the author attempts to characterize the population distribution and 

through a process stationary first order Markov Chain shown the growth process of Brazilian 

cities. The results point to a low interclass mobility and high persistence. The probability of 

remaining cities on the class itself between a decade and another over the last hundred years is 

high. Despite being a very recent paper, as Trindade and Sartoris (2009), the author does not 

use the approach of spatial Markov matrix proposed by Rey (2001). 

Moro and Santos (2013) test the Zipf’s Law in order to describe the spatial distribution 

of the Brazilian cities and Markov Chains analysis to examine the dynamics of the cities 

within the urban system. Additionally, the authors introduce spatial dependence in both Zipf’s 

law estimation and Markov. To estimate the Zipf’s law equation, they used the full sample of 

municipalities between 1970 and 2010. The results point that the Pareto coefficient is much 

smaller than 1, featuring a polarized and asymmetric urban structure. Regarding the spatial 

Markov approach, the results show strong evidence that the probability of urban growth of a 

municipality depends on the surrounding urban context, and there is a low mobility for the 

period 1970-2010. However, in the Markov chain analysis, they use as sampling only 
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municipalities that existed in 1970, not covering all Brazilian territory in the following 

decades. In this way, territory and population of new municipalities (created from the 

subdivision of former municipalities) will be excluded from the sample, skewing the results 

with selection bias.   

2.2 Zipf’s Law 

 The evolution of the size distribution of cities is explored through the law of Zipf, or 

rank-size rule. Zipf (1949) stated that the size distribution of cities follows a Pareto law 

(Pareto, 1896) by claiming that: 

                                                                                                                                (1) 

where R is the classification order of the city in the size distribution of population, S is the 

city's population, a and b are parameters, b is the Pareto exponent. Formally, the size 

distribution of cities depends on the value of b parameter. In the limit, if b tends to infinity, all 

cities will have the same size. The smaller the value of b, the greater the inequality in the size 

distribution of cities.  

 In terms of the Pareto distribution, this means that the probability of city size be 

greater than some S is proportional to 1/S: , the statement of Zipf’s Law 

implies a Pareto exponent of unity, b=1. According to this law, populations of cities within 

any group of cities at any point in time are inversely proportional to the ranking of their 

populations in this group. According to Gabaix (1999), one proposed explanation for Zipf’s 

Law is if cities grow randomly, with the same expected growth rate and the same standart 

deviation, the limit distribution will converge to Zipf’s law. 

 At this moment to is interesting to point the differences between Zipf’s law and rank-

size rule. Using Gabaix (1999) words, Zipf’s law states that the probability that a city has a 

size greater than S decreases as 1/S. The rank-size rule states that we should expect the size  

of a city of rank I to follow a power law: the size of the city of rank I varies as 1/i , and the 

ratio of the second largest city to the largest city should be !, the ratio of city 3 and city 2, 

2/3, and so on. These size ratios are often used to compare actual urban patterns with “ideal” 

(Zipf) patterns. In fact, even if Zipf’s law is verified exactly, the rank-size rule will be verified 

only approximately, if our probabilistic interpretation of Zipf’s law is correct. 

 The b parameter can be interpreted as an indication of inequatility. More precisely, the 

high value of b represents a greater possibility of mobility. That is, as the inequality in the 

localities's size is small, the possibility of mobility is higher in the rank. Greater dispersion of 

population among the cities implies increasing convergence of cities's sizes and a greater 

R = a !S"b

P(Size > S) =! Sb

Si
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number of cities with a population close to average size (the smaller the size variance). 

Empirically, the logarithms are taken on both sides of equation (1) and the linear expression 

for each city each year is estimated: 

                                                                                                        (2) 

 According to Rosen and Resnick (1980), beyond the question of how closely city-size 

data obey the rank-size rule is the more fundamental question of how well these populations 

fit the general Pareto distribution. To test for non-Pareto behaviour, the authors suggest the 

addition of a non-linear term to basic logarithmic version (2), giving, 

                                                                                        (3) 

 The authors state that more interesting than the significance of these extra terms is the 

direction of curvature which they indicate. Then,  indicating upward concavity and 

 downward concavity. The upward concavity means that the ranking variation rate 

increases with city size. According to Rosen and Resnick (1980), this may reflect scale 

economies. In many countries, the highest-ranking cities, taking advantage of scale 

economies, have grown most quickly.  

 Unfortunately, it is not possible to have information on the dynamics of the 

distribution only from the estimation of equations (2) and (3). According to Gallo and Chasco 

(2007), Zipf's law allows the characterization of the overall evolution of the size distribution 

of cities, but gives no information on the movements of the cities within the distribution. It is 

not to possible to answer, for example, why is it that some cities are present in certain 

positions of the distribution over time. Another limitation of Zipf's law to study the population 

distribution of cities is that in addition to not realize movements within the distribution, it 

does not take into account the possibility that these movements are affected by spatial 

dependence. To clarify these issues, in the next topics we lead with the estimation of 

transition probability matrices associated with discrete Markov chains (Kemeny and Snell, 

1976), which will make it possible to follow the progress of each group of cities of a certain 

size in time. And then, the spatial dependence is introduced through the analysis of LISA 

Markov and Spatial Markov Chains, both developed by Rey (2001). 

 

2.3 Markov Chains and Spatial Dependence 

 The study of distributive population dynamics according to the position of the cities 

and the trend configuration of population distribution over time is a method aimed at 

describing the law of motion driving the evolution of the distribution as a Markovian 

lnRit = lnat ! bt " lnSit +!it

lnRit = lnat ! bt lnSit + ct (lnSit )
2 +!it

ct > 0

ct < 0
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stochastic process. Once estimated the motion up or down probabilities in the population 

hierarchy during a transition period of a given length, the law is used to calculate a limiting 

population distribution characterizing a stochastic steady-state income distribution to which 

the system converges over time. Through modeling of the transition process of the minimum 

comparable areas directly, we can examine the evolution and trends in the MCAs size 

distribution. Compared to continuous stochastic kernels, for example, one of advantages of 

using this method listed by Gallo and Chasco (2007) is that discrete probability distribution 

and transition matrices are easier to interpret: various descriptive indices and the long-run or 

ergodic distribution are easier to compute. The Zipf’s law, as density functions, allows the 

characterization of the evolution of the global distribution, but Gallo and Chasco do not 

provide information about the movements of the localities within the distribution. 

Specifically, they do not say if the locations that were in a region of the distribution at the 

beginning remain or not in the same region of the distribution at the end of period. 

 We denote  as the distribution of the cross-section population of the minimum 

comparable areas at time t related to an average in the country. Defining a set of K different 

size classes, we discretize the population distribution in K relevant classes. To proceed with 

the estimation, first we need to assume that the distribution frequency follows a first order 

stationary process of Markov. This assumption requires transition probabilities, , of order 

1, which means independence of the classes at the beginning periods ( t-2, t-3, ...). If the order 

is higher, the transition matrix will not be clearly specified. That is, we only have part of the 

necessary information to describe the true evolution of the population distribution. Following 

this assumption, the evolution of a size distribution is represented by a transition probability 

matrix, M, in which each element (i, j) indicates which is the probability that a city in class i 

at time t will be in the class j in the following period. The (K, 1) vector indicating the 

frequency of cities in each size class at time t, is described by:  

                                                                                                                                 (4) 

where M is the matrix of transition probability ( ) representing the transition between two 

distributions: 

                                                                                                  (5) 
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where each element  represents the probability that the cities of a particular size class k 

at time t-1  will be in the class j at time t and . 

 The elements of the matrix M can be estimated by the frequency of changes from a 

size class to another. According to Amemiya (1985) or Hamilton (1994), the maximum 

likelihood estimator of is: 

                                                                                                                                     (6) 

where is the total number of cities moving from class i in the decade t-1 to j in decade t and 

 is the total number of municipalities which remains in i for all T-1 transitions. 

 If the transition probabilities are stationary, in other words, if the probabilities of two 

classes do not vary over time, then: 

Ft+s = FtM
s                                                                                                                                 (7) 

 Thus, we can define the steady state distribution (also known as ergodic distribution) 

of , which is characterized when s tends to infinity in the equation (7), since the changes 

represented by M are repeated an arbitrary number of times. Such distribution of steady state 

exists if the Markov chain is regular, which means, if and only if, for an m,  has no inputs 

with a value equal to zero. In this case, the matrix of transition probabilities converges to 

of rank 1. Then the existence of a steady state distribution, , is characterized by: 

MF* = F*                                                                                                                                  (8) 

 The vector  describes the future distribution of cities’ sizes, if the movements 

observed in the sample period are repeated ad infinitum. Each row of  tends to the limit of 

the distribution when .  

 To get a sense of speed with which the urban localities move within the distribution, it 

is possible to calculate the matrix of mean first passage times , where one element  

indicates the expected time for a unit of observation to move from class i to class j for the first 

time. For a regular Markov chain,  is defined as  

                                                                                                           (9) 

where  is the identity matrix of order K, Z is the fundamental matrix: , 

 is the limiting matrix, e is the unit vector,  results from Z setting off-diagonal entries 
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to 0, and D  is the diagonal matrix with diagonal elements , given that 

is the limiting probability vector for M (Kemeny and Snell, 1976).                                      

 A consideration about limitations of traditional Markov chains to study the dynamics 

of cities is that they do not capture the spatial dependence that may exist between the studied 

observational units. This spatial dependence can arise from measurement errors, such as 

boundary mismatches between the administrative data and market processes (Rey, 2001), and 

may reflect amenities and knowledge spillovers or trade and migration flows. In this sense, in 

order to bring up information on the spatial dependence in the population distribution, 

techniques developed by Anselin (1995) and Rey (2001) will be explored in the remainder of 

this section. 

 

Local Indicators of Spatial Association 

 Anselin (1995) suggest a class of Local Indicators if Spatial Association (LISA) for 

the analysis of spatial clustering and hot spots. These local statistics can provide more 

detailed insights on the location specific nature of spatial dependence. The local Moran 

statistic is given by 

                                                                                                                          (10) 

where  expresses the observation for region I on a variable as a deviation from the mean, 

and  is the spatial lag for location i  

                                                                                                                            (11) 

 As pointed by Rey (2001), the local Moran can be used to map an observation’s 

location in absolute space into a relative space that consider not only its point in an a-spatial 

variate distribution, but also the location of its neighbours in the same distribution. The 

position of neighbours is summarized by the spatial lag from . The LISA implementation, 

then, divides the observations in four classes according to their local Moran statistic, as 

summarized in table below. Additionally, several geographical aspects can be viewed in a 

Moran scatter plot, consisting of pairs of local Moran and its spatial lag local Moran for each 

location. 
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Table 1 – LISA Classifications 

Class Own Value ( ) Neighbours Value ( ) 
HH Above Average Above Average 
HL Above Average Below Average 
LH Below Average Above Average 
LL Below Average Below Average 
Source: Rey (2001)  

 Rey (2001) suggest an extension of LISA approach that integrates the local indicators 

of spatial integration into a dynamic framework based on Markov chain. The main motivation 

for this extension is the fact that Moran scatter plot only brings spatial information about the 

locational distribution of a given variable at a point in time. 

 In each period, the local Moran statistic for each observation can be classified into 

four mutually exclusive classes. Thus, there are twelve possible transitions a local Moran may 

experience over two or more periods. Moreover, These twelve transitions can be divided in 

three groups: Type 0 – The region-neighbours pair remains at same level; Type I – Only the 

region moves, but its neighbours were in the same category; Type II – Involves a transition of 

only the neighbours in relative space, but the region in question remains in the previous state; 

and Type III – Involves a transition of both a locality and its neighbours. The Type III can be 

broken down into two subgroups: IIIA – which occurs when both state and neighbours move 

in the same direction in the distribution; and IIIB - occurs when locality and neighbours move 

in opposite directions. These transitions types are summarized in Table X. 

 

Table 2 – Spatial Transitions 

t t+1 
HH HL LH LL 

HH 0 II I IIIA 
HL II 0 IIIB I 
LH I IIIB 0 II 
LL IIIA I II 0 
Source: Rey (2001) 

 Rey (2001) also suggests two interesting measures that can be obtained using the 

frequency of each type of transition between two periods. One is a flow measure, which can 

be understood as a measure of instability in the short-term spatial dynamics. A measure of 

instability or flux of the short run can be given by 

                                                                                                                        (12) 
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Where is defined as the number of observation that experience a transition of type I in the 

period , and . This flux measure varies between 0 and 1, 

where 1 indicates a high instability. 

 Since the relationship between the locality and its neighbours remains cohesive under 

Type 0 and Type IIIA, a measure of spatial cohesion is given by 

                                                                                                           (13) 

This cohesion measure varies between 0 and 1, where 1 indicates a high cohesion. It is the 

percentage of locations that move in the same direction of its spatial lag or locality-

neighbours pair that remains in the same class from the previous period. 

 In the original implementation of LISA, developed by Anselin, a bifurcation of high 

and low value relative to the mean was used. This correspond to discretize the distribution in 

k=2 classes. According to Rey (2001), with respect to Markov chains, such classification may 

too aggregate and darken some of transitional dynamics in the income distribution.  

 

Spatial Markov Chains 

 Rey (2001) suggests a modification in the traditional Markov matrix, conditioning the 

transition probability ( ) to the j initial class of the spatial lag of the variable in question. 

Here, this conditioning concerns the population size class of the spatial lag in the initial 

period. This combination of traditional Markov matrix with the spatial autocorrelation is 

called spatial Markov matrix. Conditioned on the class of spatial lag in the initial period, this 

matrix can be constructed by dividing the traditional matrix ( ) in k conditional matrices 

of dimension (k,k), this is, the traditional matrix ( )is decomposed into a system (

). In other words, an explicit test of adherence or propulsive influence of neighbours of an 

economy can be based on the comparison between the different state transitions conditioned 

to the initial state of its spatial lag (Rey, 2001). 

 For the k-th matrix conditional, an element  is the probability of a region in class i 

at time t convert the class j in the next moment on the understanding that its spatial lag was in 

class k at time t. This matrix is shown in Table 1 below where k = 4. 
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Table 3 – Spatial Markov Transition Probability Matrix 

Spatial Lag  

 

1 2 3 4 
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Notes: Elaboration by the Author based on Rey (2001) 

 Table 3 can be used to test the negative or positive influence of geographic neighbours 

in a region. In this case, dividing the cities in four size classes (small, medium-small, 

medium-large and large), for example. If we want to know the effect of medium-large sized 

neighbours on the transition to move up or down of a city, we analyze the matrix elements in 

the third conditional, where the spatial lag is medium-large. Per instance, the  element 

stands for the possibility of a region in the medium-large class to move upwards given that its 

neighbours are in medium-large class. 

 Furthermore, it is possible to know the influence of spatial dependence on the 

transition probability comparing the elements of the traditional transition matrix with the 

elements of the spatial Markov matrix. For example, if , then the probability of an 

upward movement in the classification of a city in the medium-large class is higher than the 

probability of one in the medium-large class with neighbours in the same class. Generally 

speaking, if the neighbourhood has no effect on the probability of transition, then the 

conditional probability is equal to the probability of the traditional Markov matrix  

                                                                                                  (14) 

ti
ti +1
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p21|1 p22|1 p23|1 p24|1
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p11|2 p12|2 p13|2 p14|2
p21|2 p22|2 p23|2 p24|2
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p11|3 p12|3 p13|3 p14|3
p21|3 p22|3 p23|3 p24|3
p31|3 p32|3 p33|3 p34|3
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 The main gain in analyzing the dynamics of the spatial conditioning is capturing the 

influence of the location and thus the influence of the dimensions of the neighbors about the 

possibilities for mobility of minimum comparable areas within the populational hierarchy. 

Beyond to providing a more detailed view of the geographic dimension of population 

distribution, some interesting questions concerning the characteristics of population mobility 

can be formulated, in analogy with the questions that Rey(2001) has brought forward for the 

income distribution theme. Some of these: Is MCA’s probability of moving up or down the 

distribution related to the current, or past movements of its neighbors? Is this form of spatial 

dependence of a similar magnitude for upward as opposed to downward moves in the 

distribution? These are some of the questions that can be answered by using of a spatial 

Markov matrix. 
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3. A Spatial Economic Model of Population Growth Dynamics in Brazilian 

MCAs 
 In this third chapter, we build the foundations for the population growth dynamics. 

Firstly, we present the literature review that discusses studies related to our work. Secondly, 

we set out our theoretical spatial extension of Glaeser’s population growth model. And in the 

remaining topic, we present the econometric methodology behind our dynamic spatial panel 

data model. 

 

3.1 Literature Review 

 Glaeser et al (1995) studied how urban growth is related to several characteristics of 

the initial period, providing a theoretical framework and empirical analysis. Conceptually, in 

the model developed by Glaeser and more sophisticatedly in Glaeser (2008), including 

housing market, the cities are treated as separated economies that share common pools of 

labour and capital2. Because of assumption of shared labour and capital, cities differ only in 

the level of productivity and their quality of life. Additionally, under the assumption of spatial 

equilibrium, which assumes that, with free migration of workers, welfare is equalized across 

space. Population growth thus reflects both productivity growth and improvement in quality 

of life of a locality. The empirical analysis is based on cross-section data of industrial cities in 

the United States between 1960 and 1990. The results show that a city’s income and 

population grow together and they are positively related to the education of the initial period, 

negatively related to initial employment, negatively related to the initial share of employment 

in manufacturing. Moreover, the results also suggest the importance of a well-educated work 

force, suggesting that higher education levels influence later growth not through saving rates 

but through influencing the growth of technology.  

 In 2001, Beeson, DeJong and Troesken, examined the location and growth of urban 

population of North American cities using data from the U.S. Census between 1840 and 1900. 

The authors investigated how natural and produced characteristics of cities in 1840 influenced 

the growth of the subsequent 150 years. The first results indicated that the natural 

characteristics strongly influenced where the population was located in 1840. Then the 

authors found that produced characteristics, many of which are viewed as proxies for 

agglomeration economies (i.e., industry mix, educational infrastructure, and human capital), 

have had a significant effect on population growth. For example, there is evidence suggesting 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2 See also Glaeser and Gottlieb (2009). 
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that growth is influenced not only by the stock of human capital, but also factors that facilitate 

the production of more human capital (educational infrastructure). 

Oliveira (2004b) intends to identify the determinants of economic and population 

growth of Brazilian northeastern cities in the 1990s. The variables used represent the initial 

characteristics of these cities coming from the IBGE censuses for the years 1991 and 2000. 

Based on Glaeser (1995) theoretical framework, the author found that cities that had the 

highest levels of human capital in 1991 were the fastest growing ones. Additionally, cities 

with higher income and quality of life in 1991 grew fastest. This result, according to Oliveira, 

can indicate migratory movement in search of better living conditions. 

 Da Mata et al (2007) consider a model for population growth composed by supply and 

demand factors, similar to that found in Henderson (1988). To measure these factors, they use 

market potential variables, which are partly dependent on the road transport network. From a 

spatial econometric viewpoint, market potential variables can be interpreted as spatially 

lagged explanatory variables or exogenous interaction effects, since they measure the impact 

of X variables in one spatial unit on the dependent variable in another spatial unit. The 

disadvantage of using market potential variables is that a certain neighborhood matrix 

structure is imposed on these X variables without first testing this structure. Following this 

theoretical approach, the authors estimated equations that describe the size and growth of a 

group of Brazilian urban agglomerations between 1970 and 2000. For these estimates 

econometric techniques including Generalized Methods of Moments (GMM) and spatial 

GMM were used in order to correct endogeneity in the presence of spatially autocorrelated 

errors. The results showed that the increase of rural population supply, improved connectivity 

inter-regional transport and qualification of the labor force all have strong impacts on the 

growth of cities. On the other hand, crime and violence variables and public industrial capital 

had negative impacts on the growth of urban areas. 

Vieira (2009), using specifications for spatial models in cross section, intended to 

compare the growth of municipalities in São Paulo state between 1980 and 2000 through the 

influence of spatial externalities in their growth trajectory variables and of correlated 

variables with their growth rate. The employed model to obtain these growth ratios was the 

one proposed by Glaeser et al. (1995), with added variables that seek to capture the 

agglomeration effects. Among the findings, the average schooling variable did not present a 

positive correlation with population growth, on the contrary; it was negative and statistically 

significant. One hypothesis to explain such a result would be that a higher educational level of 

the municipality’s population boosted the expulsion of the inhabitants of those cities less 
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favored with skilled jobs opportunities comparing to the capital and regional centers. 

Likewise, some of his results indicate the presence of negative spatial externality caused by 

the higher education of the neighbour. The municipal infrastructure also proved relevant to 

the growth rate as well as the composition of the municipality's economy. According to the 

author, the results show that this municipality that had greater involvement of industry in total 

production has tended to grow more. In relation to these interpretations of results, Vieira did 

not perform the calculation of the partial derivatives (direct and indirect effects). He interprets 

the estimated coefficients directly as marginal effects. But the estimated coefficients on 

spatial models do not represent the marginal effects of changes in the explanatory variables on 

the dependent variable. According to Elhorst (2010), no observation of this characteristic of 

spatial models leads some empirical studies to erroneous conclusions. 

 Recently, Duranton and Puga (2013) reviewed the key theories with implications for 

urban growth followed by a discussion of their respective empirical evidences. According to 

the aurhors, a large literature based in Alonso (1964), Mills (1967), and Muth (1969), has 

focused on the importance of location within the city and its impact on commuting costs as a 

key determinant of land use and housing development in cities, factors that drive the 

population size of cities. Another theoretical segment has been devoted to modelling the 

productive advantages of cities or agglomeration economies (Fujita, 1988; Helsley and 

Strange, 1990; Glaeser, 1999; Duranton and Puga, 2001), these models follow Rosen (1979) 

and Roback (1982) works. Finally, Duranton and Puga attempt to explain the random urban 

growth models, witch are motivated by existence of regularities in the size distribution of 

cities and in the patterns of urban growth (e.g.: Gabbaix, 1999). However, as the authors 

themselves warn, the empirical evidences presented in their paper are mostly focused on cities 

in developed economies, most of them originated from the United States in particular. 

 

3.2 A Spatial Extension of Glaeser’s Population Growth Model 

 In this section, we provide a theoretical framework for the empirical analysis of 

population growth across Brazil. As remembered by Glaeser and Gottilieb (2009), due to the 

seminal works of Mills (1967), Rosen (1979) and Roback (1982) on population changes 

within a country, the spatial equilibrium condition became one of the main theoretical tools of 

urban economists. This assumption states that welfare is equalized across space, provided that 

labor is mobile; higher wages in urban areas are offset by negative urban attributes such as 

higher prices and negative amenities. 
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 In the urban growth model developed by Glaeser et al. (1995),3 cities are treated as 

independent economies that share common pools of labor and capital and that differ in their 

level of productivity (Ait) and quality of life (Qit). Total output of an economy is determined 

by this productivity level and modeled by a Cobb-Douglas production function dependent on 

population size. Total welfare of a potential migrant to this economy equals wages multiplied 

by the quality of life, which decreases with population size. The net result is a population 

growth regression containing factors that determine quality of life, such as crime, housing 

prices, traffic congestion and population size of an economy. Glaeser concludes that 

population growth is the most useful indicator for urban prosperity or welfare. As explained 

by Cheshire and Magrini (2007), people vote with their feet, and if the combination of real 

wage and quality of life they could receive in some other city is higher, then they will move to 

it. 

One objection to Glaeser’s theoretical framework is that it ignores spatial interaction 

effects among economies, especially between a locality and its surroundings. One way to deal 

with this problem is to increase the scale of the geographical units that are used in the 

empirical analysis, thereby assuming that these interaction effects at this higher scale no 

longer exist (Glaeser et al., 1995). The other way, more prevalent and fundamental, is to 

model these spatial interaction effects explicitly.  

Let total output of an economy be given by 
!"!" ##= 1

iitititit ZKNAY                                 (15) 

where Ait represents the level of productivity in economy i at time t, Nit denotes population 

size, Kit is traded capital, and iZ  is fixed non-traded capital.  

The first extension includes productivity interaction effects among economies. In a 

seminal paper, Ertur and Koch (2007) state that there is no clear reason to constrain 

knowledge externalities (that improve technology) within the borders of the economy. They 

argue that knowledge accumulated in one economy depends on knowledge accumulated in 

other economies, although with diminished intensity due to frictions caused by socio-

economic and institutional dissimilarities which can be captured by geographical distance or 

border effects. More formally, 
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!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3 A more sophisticated approach, including the housing market, can be found in Glaeser (2008). 
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where the productivity level of an economy, Ait, is taken to depend on urban differences in the 

productivity of labor related to social, technological, and political sources in the own 

economy i, ait, and those in neighboring economies denoted by j, ajt. The parameter ! reflects 

the degree of interdependence among economies, with 0 < ! < 1. Although this parameter is 

assumed to be identical for all economies, the net effect of these interaction effects on 

economy i depends on its relative location, the effect of being located closer or further away 

from other economies. This relative location of different economies is represented by the 

exogenous terms, wij, which are assumed to be non-negative, non-stochastic and finite 

numbers setting up an N by N row-normalized neighborhood matrix W with 10 !! ijw  and 

0=ijw  if i = j.  

On substituting (16) into (15), total output of an economy is given by  
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The first order conditions for capital and labor, i.e., capital income (with a normalized price of 

one) and labor income of worker itS  are equal to their marginal products, result in the 

following labor demand equation, provided that the optimal solution for capital is substituted 

in the condition for labor 
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This labor demand equation shows that higher wages reflect higher productivity and fewer 

workers. 

 Consumers have Cobb-Douglas utility functions defined over tradable goods and 

housing, respectively denoted by Cit and Hit. In addition, it is assumed that welfare is partly 

due to the (dis)amenities of the local economy, "it. In other words, the locality's 

(dis)amenities will directly affect the welfare of people who live there. These (dis)amenities 

may interfere negatively or positively with somebody’s utility and, moreover, can be natural 

(e.g. climate, beaches, vegetation) or generated by humans (e.g. violence, entertainment, 

traffic, pollution) 

itititit HCU != " ##1                                 (19) 

where! is a constant. The price of tradable goods is normalized to 1, while the housing price 

is pH. Consumers maximize their utility subject to the budget constraint 

ititHit SHpC =+                                            (20) 

by choosing Cit and Hit.  
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The second extension includes amenity interaction effects among economies. Some 

(dis)amenities may also (dis)benefit individuals living in other economies (Brueckner, 2003). 

For example, people may use facilities in other localities; the violence in a particular 

neighborhood can also generate feelings of insecurity in adjacent neighborhoods; and water 

pollution can cause health damage downstream. In mathematical terms 
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where the total amenities of an economy, "it, are taken to depend on local amenities #it and 

those in neighboring economies denoted by #jt, whose impact decrease with geographical 

distance. The parameter $ measures the degree of interdependence among economies, with 0 

<  $ < 1. According to Glaeser et al. (1995), many of the potential (dis)amenities are reflected 

by the level of population and the population growth rate; the greater the size of a city, the 

lower the quality of life. One reason is that the costs of migration are rising in the number of 

in-migrants. In addition, if the population size of a city grows rapidly, it takes time to build up 

certain public goods, infrastructure, or housing. Consequently, the residents of quickly 

growing cities may suffer in terms of quality of life. Together this yields the utility function 
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where 0>! and 0>! . Total city demand for housing is given by 

H
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The spatial equilibrium condition implies that welfare is equalized across space, which we 

denote by tV  at a particular point in time t. Substituting the demand equation for housing 

derived in (23) into (22), yields the indirect utility function in (24), which equals the common 

utility level tV  
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Following Glaeser (2008), housing floor space is produced competitively either by 

land (L) or by height (h). A fixed quantity of land at a particular location ( L ) will determine 

an endogenous price for land (pL) and housing (pH), while the cost of producing hL units of 

structure on top of L units of land is given by Lhc !
0 , where 1>! . The developer then 

maximizes profits given by 
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LpLhchLp LH !!= "# 0                                (25) 

The first order condition of this maximization problem for height, ( ) 1
1

0 != ""cph H , implies the 

total housing supply equation 

( ) LcpLh H 1
1

0 != ""                      (26) 

By setting housing demand in equation (23) to housing supply in equation (26), the housing 

price equation is obtained  
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The labor demand equation in (18), the indirect utility equation in (24), and the 

housing price equation in (27) form a system of three equations with three unknown variables 

(Nit, Sit, and pH).  Solving this system for population, Nit, yields 
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where  
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 According to Glaeser and Gottlieb (2009), the spatial equilibrium condition formally 

means that in a dynamic model only lifetime utility levels will be equalized across space. 

However, as long as housing prices or rents can change quickly, or to a reasonable extent 

within the observation periods being considered, which in this study is ten years,4 the price 

adjustment suffices to maintain the spatial equilibrium. Under this condition, the change in 

utility level between time t and t +1 is the same across space, 
tV

tV 1+ , as a result of which 

equation (28a) can be rewritten as 
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!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
4 According to Duranton and Puga (2013, p.18), cyclical behavior and sluggish adjustment also 
suggest measuring population growth over periods of five or ten years. 
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Following Glaeser et al. (1995), we assume that Xit is a vector of city characteristics at time t 

that determine the growth of both city specific amenities and of city specific productivity 
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Combining the sets of equations (28) and (30) yields the dynamic spatial population growth 

equation 
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The equation (31a) contains spatial interaction effects among the explanatory variables 

Empirically, there is the possibility of spatial interaction among the error terms, as showed in 

equation (31b). In the spatial econometrics literature, such a model specification in (31b) is 

known as the spatial Durbin error model (SDEM, see LeSage and Pace, 2009). Since the 

right-hand side of this model also contains the dependent variable lagged one period time, this 

model may also be labeled as a dynamic SDEM model. 

 The utility function specified in (22) assumes that the quality of life for potential 

migrants declines both in the level of population and in the growth rate of population. Just as 

knowledge and amenities in one economy are assumed to interact with knowledge and 

amenities in other economies, so might the level of population and the growth rate of 

population depend on those in neighboring economies. If residents of quickly growing cities 

may suffer in terms of quality of life, they might move to neighboring areas. In view of this, if 

the utility of individuals is also negatively correlated with the level of population (population 

size) and with the population growth rate of their neighbors, the utility function takes the form 
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where 0>!  and 0>! . Solving the system for population, Nit, with this alternative 

specification of the utility function yields the population growth equation 
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where % is defined as in (28b). In addition to spatial interaction effects among the explanatory 

variables, this model specification also contains spatial interaction effects among the 

dependent variable. Empirically, there is the possibility of spatial interaction among the error 

terms, as showed in equation (33b). In the spatial econometrics literature, such a model 

specification in (33b) is known as the general nesting spatial model (GNS, see Elhorst, 2014), 

or, if we also account for the dependent variable lagged one period in time, as a dynamic GNS 

model. 

 

3.3 Econometric Methodology: Spatial Panel Data Models 

 In spatial models research, panel data refer to observations made on a number of 

spatial units over time. Recently, after contributions from Elhorst (2003), Baltagi et al (2006), 

Elhorst (2005), LeSage and Pace (2009), a number of studies on models of spatial panels 

increased and the quality of information is increasingly improving. 

According to Elhorst (2011), the central focus of spatial econometrics was originally a 

type of interaction in a single equation configured for data in cross-section. Thus, the punctual 

estimation of the equation’s coefficient was used to test the hypothesis that the spatial effect 

existed or not. Recently, however, such focus has changed to more than one type of 

interaction effect, panel data and the marginal effects of explanatory variables in the model. 

The main advantages of using panel data are that they are more informative (including the 

possibility of controlling for fixed effects) and contain more variation and less collinearity 
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among the variables. The use of panel data results in a better availability of degrees of 

freedom, increasing the efficiency of estimation. Panel data also allows the specification of 

more complicated tests of hypotheses, including effects that can not be addressed using data 

on purely cross-section. 

 The econometric spatial model to cross-section can be expanded to a model in panel of 

N observations and T time periods and can be written as: 

Yt = !WYt+Xt"+WXt#+µ+$t%N+vt,   vt=$Wvt+&t,                                                                     (34) 

Where Yt denotes an N!1 vector consisting of one observation of the dependent variable for 

every economy (i=1,...,N) in the sample at time t (t=1,...,T), in this study the population 

growth rate log(Nit+1/Nit), and Xt is an N!K matrix of exogenous or predetermined explanatory 

variables observed at the start of each observation period (t-1,t). A vector or a matrix 

premultiplied by W denotes its spatially lagged value. W is a weight matrix  

describing the spatial distribution of spatial units and being  the  element of W. It is 

assumed that this matrix is composed of known constants that the diagonal elements are equal 

to zero and that the characteristic of the matrix, , is known. According to Elhorst (2003) the 

first assumption excludes the possibility that the matrix is parametric, the second assumption 

implies that a spatial unit which can not be adjacent to itself and the third assumption infers 

that the matrix’s characteristics can be precisely computed, allowing the use in empirical 

research. The parameter & represents the response parameter of the dependent variable lagged 

in space, WYt. Additionally, the autoregressive spatial coefficient & is assumed to be restricted 

to the interval  where is the smallest and is the largest characteristic 

root of W, if this matrix is symmetric. If W is a symmetric matrix similar to a row-stochastic 

matrix, where , the interval for & becomes (LeSage and Pace, 2009). The 

symbols " and # represent K!1 vectors of response parameters of the exogenous explanatory 

variables. The error term specification consists of three components. The vector vt reflects the 

error term specification of the model, which is assumed to be spatially correlated with 

autocorrelation coefficient '. The N!1 vector &t=((1t,…,(Nt)T consists of i.i.d. disturbance 

terms, which have zero mean and finite variance !2. The N!1 vector µ=(µ1,…,µN)T contains 

spatial specific effects, µi, and are meant to control for all spatial specific, time-invariant 

variables that are difficult to be measured or obtained, but if omitted, could bias the estimates 

in a typical cross-sectional study (Baltagi, 2005). Similarly, 't (t=1,…,T) denote time-period 

specific effects, where )N is a N"1 vector of ones, meant to control for all time-specific, unit-

(N !N )

wij (i, j)

!i

( )minmin 1,1 !! min! max!

1max =! ( )1,1 min!
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invariant variables, which, if omitted, could bias the estimates in a typical time-series study. 

More details about the fixed effects are discussed in the next topic. 

 

Dynamic Model 

 The econometric counterpart of the dynamic spatial GNS model, the final equation 

implied by the theoretical model presented in the previous section 3.2, reads as (in vector 

form)  

Yt = 'Yt-1+!WYt+(WYt-1+Xt"+WXt#+µ+$t%N+vt,   vt=$Wvt+&t,                     (35) 

A vector or a matrix with subscript t-1 in (35) denotes its time-lagged value. The parameters 

*, & and $ are the response parameters of successively the dependent variable lagged in time, 

Yt-1, the dependent variable lagged in space, WYt, and the dependent variable lagged in both 

space and time, WYt-1. In order to avoid possible confusion with the parameters, Table 4 

below brings the linkage between theoretical model equation and econometric model 

equation. 

Table 4 – Linkage Between Theoretical Model Equation and Econometric Model Equation 

Econometric Model Theoretical Model 
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Note: Elaboration by the Author. 

 Generally, the spatial and time-period specific effects may be treated as fixed or as 

random effects. In the fixed effects model, a dummy variable is introduced for each spatial 

unit and for each time period (except one to avoid multicollinearity). In the random effects 

model, µ and 't are treated as random variables that are independently and identically 

distributed with zero average and variance of ! µ
2 e !"

2 , respectively. It is also assumed that 
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the random variables, µ, 't and  are independent from each other. As Elhorst (2014) has 

pointed out, the random effects model might not be an appropriate specification when 

observations of adjacent units in an unbroken study area are used and the whole population is 

sampled, i.e., each spatial units represents itself and has not be sampled randomly. The 

random effects model would make sense if a limited number of MCAs would be drawn from 

Brazil, but then the elements of the neighborhood matrix cannot be defined and the impact of 

spatial interaction effects not be consistently estimated. Only when neighboring units are also 

part of the sample, it is possible to measure the impact of these neighboring units. In this 

respect, this study distinguishes itself from many urban studies trying to explain economic 

growth in cities, such as those of Glaeser et al. (1995) and Glaeser (2008). Whereas we 

include both urban and rural regions so as to cover a whole country and to model the 

interactions between them, these previous studies ignore potential interaction effects with 

their surroundings and treat cities as independent entities.  

 Unlike the non-spatial models, the estimated coefficients on spatial models do not 

represent the marginal effects of changes in the explanatory variables on the dependent 

variable. Direct interpretation of the coefficients in the dynamic GNS model is difficult 

because they do not represent true partial derivatives. The interpretation of the partial 

derivative of the impact of changes in a variable represents a more valid ground to test the 

hypothesis whether there are spatial spillovers or not (LeSage and Pace, 2009). Debarsy et al. 

(2012) and Elhorst (2012) show that the matrix of (true) partial derivatives of the expected 

value of the dependent variable with respect to the !!! independent variable for i=1,…,N in 

year ! in the short term is given by 
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In addition, LeSage and Pace (2009) advocate for the decomposition of the marginal effects 

into direct (own-economy) and indirect (spillover) effects to other economies. Direct effects 

are given by the own-partial derivatives along the diagonals of (36). They constitute the effect 

on the dependent variable resulting from a change in the kth regressor, xk, in economy ! in the 

short term, i.e., the direct effect arises from the effect of the independent variable on the 

dependent of the individual. The off-diagonal elements represent short-term indirect effects, 

the impact of this neighbour’s independent variable on the dependent variable of the 

individual. Since the direct and the indirect effects are different for different units in the 

sample, LeSage and Pace (2009) propose to report one summary indicator for the direct 

!i
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effects measured by the average of the diagonal elements, and one summary indicator for the 

indirect effects measured by the average of the column sums of the non-diagonal elements of 

that matrix. Since the matrix on the right-hand side of equation (36) is independent of the time 

index t, these calculations are equivalent to those presented in LeSage and Pace (2009) for a 

cross-sectional setting, i.e., these calculations are the short term effect. From Elhorst (2012) it 

further follows that the long-term marginal effects are given by 
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 By examining the relationship between population growth and its determinants using 

the decompositions in both (36) and (37), we are able to explore the direct and indirect effects 

into short-term and long-term effects. The insight of these two types of effects is quite 

interesting for the case of municipalities, considering that it will become possible to get to 

know specifically how a city is affected by variables related to it and its neighboring cities. 

For example, it is possible to estimate not only the effect of education on population growth, 

but also the effect of education of the neighbours on city growth. 

 One problem of the dynamic GNS model is that its parameters are not identified. 

Recently, Anselin et al. (2008), Gibbons and Overman (2012), and Halleck Vega and Elhorst 

(2012) paid attention to this issue. Interaction effects among the dependent variable and 

among the error terms cannot formally distinguished from each other, provided that 

interaction effects among the explanatory variables are also included. This implies that one of 

these two spatial interaction effects should be left aside to obtain consistent parameter 

estimates. If the spatial interaction effects among the dependent variable are left aside, the 

dynamic SDEM specification results, which is fully consistent with the utility function 

specified in equation (22). This implies that &=$=0 in (35), that the spatial multiplier matrix 

(I-&W)-1 in (36) reduces to the identity matrix and the spatial multiplier matrix [(1-*)I-

(&+$)W]-1 in (37) to the matrix 1/(1-*)I. 

 The dynamic Spatial Durbin model (SDM) results if the spatial interaction effects 

among the error terms are left aside. This model specification is consistent with the utility 

function specified in equation (32). Although interaction effects among the error terms are not 

accounted for in this specification, thereby reducing the efficiency of the parameter estimates, 

this does not affect the consistency of the parameter estimates. This also follows from the fact 

that imposing the restriction '=0 in (35) does not affect the direct and indirect effects derived 

in equations (36) and (37). In the words of LeSage and Pace (pp. 155-158), the cost of 
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ignoring spatial dependence in the dependent variable and/or in the independent variables is 

relatively high since the econometrics literature has pointed out that if one or more relevant 

explanatory variable are omitted from a regression equation, the estimator of the coefficients 

for the remaining variables is biased and inconsistent (Greene, 2005, pp. 133-134). In 

contrast, ignoring spatial dependence in the disturbances, if present, will only cause a loss of 

efficiency. 

Another important difference between the SDEM and SDM specifications is that the 

indirect or spatial spillover effects in the first model are local, while in the second model they 

are global in nature. Anselin (2003) describes the difference. In the SDM specification, a 

change in X at any location will be transmitted to all other locations following the matrix 

inverse in equation (36), also if two locations according to W are unconnected. In contrast, 

local spillovers are those that occur at other locations without involving an inverse matrix, 

i.e., only those locations that according to W are connected to each other.  

 To be able to choose between the SDM and SDEM specifications, and related to that, 

between the utility functions specified in equation (22) or (32) and between a global or local 

spillover model, we apply a Bayesian approach recently developed by LeSage (2013). If the 

probability of one model is higher than that of the other model, we may conclude that the 

former model describes the data better. Another advantage of taking a Bayesian perspective is 

that different specifications of the neighborhood matrix W can be tested against each other 

too. Bayesian methods do not require nested models to carry out these comparisons. By 

repeating the previous analysis for different specifications of the neighborhood matrix and by 

comparing their performance based on the value of the log marginal likelihood, one can select 

the neighborhood matrix that outperforms other potential specifications. 

 Depending on the outcome of these tests, one can finally estimate either the SDM or 

the SDEM specification by ML. If the previous test points to the dynamic SDM, this model 

can be estimated by the bias corrected ML estimator developed by Yu et al. (2008) or Lee and 

Yu (2010), dependent on whether time period fixed are included. If it points to the dynamic 

SDEM, this model can be estimated by the bias corrected ML estimator developed by Elhorst 

(2005).  
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4. Results 
 In this chapter we present the empirical analysis referent to the population distribution 

dynamics and the population growth dynamics of Brazilian minimum comparable areas 

between 1970 and 2010. Therefore, in the next sections, besides information about the dataset 

implementation, we report and interpret the estimated results, based in the theoretical and 

methodological foundations presented in chapters 2 and 3. 

 

4.1 The Distribution Dynamics of Brazilian MCAs: Results 

 In order to examine the behavior of the population distribution between the minimum 

comparable areas covering the entire Brazilian territory, a serie of empirical evidences are 

presented according to the characteristics of the methodologies applied. Besides the data 

implementation, the following two subsections deal with the estimation of density functions 

and Zipf's law. Then, techniques based on Markov Chain will be explored, in order to bring 

up information on the dynamics and evolution, as well as the possibility of spatial dependence 

on the behavior of population distribution. 

 

4.1.1 Data Implementation 

 The main source of data is the Brazilian Demographic Census for the years 1970, 

1980, 1991, 2000 and 2010 conducted by the Brazilian Institute of Geography and Statistics 

(IBGE). Although the municipality constitute the smallest unit of observation in political and 

administrative terms to which is possible to obtain economic and demographic data with 

coverage of entire Brazilian territory for various periods of time, the intertemporal 

comparisons in a strictly municipal geographic level become inconsistent with changes in the 

number, area, and border of municipalities that occurred over the decades. Specifically, over 

the period 1970-2010, the number of municipalities increases from 3952 to 5565. Therefore, 

to allow consistent comparisons over time, it is necessary to aggregate these municipalities 

into broader geographical areas, called Minimum Comparable Areas (MCA). Based on the 

aggregation of municipalities developed by IPEA (Reis et al., 2010), this study has 3659 

MCAs relating to the aggregation of all Brazilian municipalities for each census from 1970 to 

2010, covering all territory and avoiding selection bias problem. Figure 1 shows a map of the 

geographical delineation of all areas taken up in the sample. 
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Figure 1 – Brazil: Minimum Comparable Areas (1970 – 2010) 

 
Notes: Elaboration by the Author based on IPEA’s shape file 

 
4.1.2 Evolution of Brazilian MCAs size distribution 

 To investigate the evolution of the Brazilian population distribution shape for 1970-

2010 period, a non-parametric normal kernel density with bandwidth value of 0.0245 was 

estimated for the urban population distribution for each decade5. Following Gallo and Chasco 

(2007), relative population size are considered and the Figure 2, below, shows the 

distributions of the relative log of population size in 1970, 1980, 1991, 2000 and 2010. The 

Kernel density plot may be interpreted as the continuous equivalent of a histogram in which 

the number of intervals has been set to infinity. Adopting a similar strategy to interpretation of 

Gallo and Chasco, 1 on the horizontal axis indicates Brazilian average MCA size, 1.5 

indicates 50% higher than the average, and so on.  

 

 
 
 
 
 
 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
5 The largest bandwidth among the optimum values calculated for each decade was chosen. The 
optimum values for each decade were calculated using the Matlab function ksdensity. 
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Figure 2 – Normal Kernel Density Functions for the Population Distribution of MCAs, 1970-
2010 

 
 
 
 

 
 
 

 
 
 
 
 
 
 

 
Notes: Elaboration by the Author. Database from Demographic Census for 1970, 1980, 1991, 2000 and 2010. 
 

 Observing the figure, it is remarkable that over the decades there is a loss of 

concentration of AMCs around the mean. However, this presents a deconcentration rhythm 

regressive each decade, i.e., the distance between the lines is decreasing. The behavior in the 

distribution shape may indicate that divergence in population size of MCAs is decreasing, or 

polarized sizes distribution. In other words, the size of the localities are not converging to the 

same level, but diverging at a diminishing rate.  

 Table 5 below shows a statistical summary information, clarifying the Figure 1. 

Through observation of the columns, obviously the mean is equal to 1 since the values are 

normalized, the median value decreases over the decades while the standard deviation 

increases. Clearly, the 2010 distribution is more dispersed around the mean, and this seems to 

be the trend between 1970 and 2010. Specifically, the distribution became more dispersed in 

approximately 20% between 1970 and 2010. However, as already pointed out, this divergence 

is decreasing, between 1970 and 1980 and between 2000 and 2010 the standard deviation 
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growth was 9% to 2.1%, respectively. Still observing the values of the table, with the 

reduction of the median over the decades we note that the greater dispersion arises mainly 

from the increased presence of cities above the mean. 
 
Table 5 – Summary Statistics – Relative Population of Brazilian MCAs, 1970 – 2010 

Year Mean Median Standart Deviation 
1970 1 0.9914 0.1044 
1980 1 0.9905 0.1137 
1991 1 0.9902 0.1194 
2000 1 0.9885 0.1231 
2010 1 0.9880 0.1258 

Notes: Estimates by the Author. Database from Demographic Census for 1970, 1980, 1991, 2000 and 2010. 
 
 The evidence of decreasing divergence is similar to others found in the literature, as in 

Justo (2012) for 431 brazilians MCAs between 1910 and 2010. On the other hand, Trindade 

and Sartoris (2009) found evidence that the behavior of the Brazilian population distribution 

already shows a trend of increasing number of municipalities with population below average 

between 1920 and 2000.  

 Tables 6a and 6b (below) allow us to contextualize such regional changes in 

population distribution emphasized in the preceding paragraphs. While the numbers remain 

fairly stable over the decades, the North region had the largest growth in the number of MCAs 

above the national median from 2.27% in 1970 to 3.03% in 2010. In this period, as can be 

seen in Table 6 the North Region’s share in the total population increased from 4.43% to 

8.32%. On the other hand, the southern region had the highest percentage reduction of MCAs 

above the median from 9.51% in 1970 to 7.76% in 2010. The participation of the southern 

region in the total population decreased from 17.71% to 14.36% between 1970 and 2010. 

 

Table 6a – Relative Population Above the Median per Region, 1970 – 2010  

Region Above Median (%) 
1970 1980 1991 2000 2010 

North 2.27 2.71 2.84 2.92 3.03 
Northeast 19.24 19.90 19.98 19.98 19.70 
Southeast 16.64 16.40 16.67 16.64 16.81 
South 9.51 8.72 8.03 7.82 7.76 
Midwest 2.32 2.27 2.46 2.62 2.71 
Notes: Estimates by the Author. Database from Demographic Census for 1970, 1980, 1991, 2000 and 2010. 
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Table 6b – Participation on the Total Population per Region, 1970 – 2010  

Region Percentage of Population (%) 
1970 1980 1991 2000 2010 

North 4.43 5.56 6.83 7.60 8.32 
Northeast 30.18 29.25 28.94 28.12 27.82 
Southeast 42.79 43.47 42.73 42.65 42.13 
South 17.71 15.99 15.07 14.79 14.36 
Midwest 4.89 5.72 6.42 6.85 7.37 
Total 93,134,846 119,011,052 146,825,475 169,799,170 190,747,731 
Notes: Estimates by the Author. Database from Demographic Census for 1970, 1980, 1991, 2000 and 2010. 
 
 Table 7 provides information about what percentage of MCAs within each region was 

higher than the median of the country, which allows us to observe how these changes 

occurred in the population distribution within each region. As can be seen, the biggest 

changes in population distribution occurred within the North and Midwest regions. For 

example, from 143 minimum comparable areas of the North, 58% were above the median in 

1970 and this percentage increased to 77.62% in 2010. In the South, there is a reduction of 

58.6% to 47.81% in the percentage of MCAs with population above the national median. 

 

Table 7 – MCAs with Population Above the Median per Region, 1970 – 2010 

Region Above Median (%) 
1970 1980 1991 2000 2010 Total 

North 58.04 69.23 72.73 74.83 77.62 143 
Northeast 54.24 56.09 56.32 56.32 55.55 1298 
Southeast 43.47 42.83 43.54 43.47 43.90 1401 
South 58.59 53.70 49.49 48.15 47.81 594 
Midwest 38.12 37.22 40.36 43.05 44.39 223 
Notes: Estimates by the Author. Database from Demographic Census for 1970, 1980, 1991, 2000 and 2010. 
 
 The non-parametric normal kernel density functions estimates, as well as the 

descriptive tables foregoing, have as main role to illustrate the city size distribution patterns. 

One of the limitations of this information is that it does not permit us to make more precise 

statements about the size distribution of cities. In this sense, the next topics will bring 

evidences obtained through the Zipf's law approach, which allows the characterization of the 

overall evolution of the size distribution of cities, and, in order to bring up information on the 

dynamics and evolution of the population distribution, techniques based on Markov Chain 

will also be explored. 
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4.1.3 The Rank Size Rule for Brazilian MCAs 

 Table 8 presents the estimation of rank-size equation (2) for all Brazilian MCAs in 

each decade using an OLS estimator. In the 1970s, the estimated Pareto coefficient 

approaches the Zipf's law, with an estimated value of 0.95. According to this rule, city 

populations among any group of cities at any time are proportional to the inverse of the 

ranking of their populations in that group (Gallo and Chasco, 2007). In the following decades, 

this coefficient deviates increasingly from the unit value, reaching 0.77 in 2010. This 

parametric analysis is consistent with the previously obtained evidence of the decreasing 

distances between the size population distributions of MCAs seen in Figure 1, acquired 

through the non-parametric normal kernel density analysis. What seems natural, for a more 

equitable distribution of population between locations (with less variance; 1970 in relation to 

2010, for example), the change in position between the cities become easier due to the fact 

that most localities have closer sizes.  

 

Table 8 – Classic Rank-Size Equation for log(rank) as dependent variable, 1970 – 2010  

Explanatory 
Variables 

OLS  

1970   1980   1991   2000   2010   
Variable 

          Intercept 16.1272 ** 15.4354 ** 15.1158 ** 14.8880 ** 14.7113 ** 
ln Population -0.9517 ** -0.8698 ** -0.8251 ** -0.7950 ** -0.7713 ** 

           No. Obs. 3659  3659  3659  3659 
 

3659 
 R-squared 0.913  0.920  0.925  0.929 

 
0.928 

 Log Likelihood -2458  -2311  -2220 
 

-2110 
 

-2150 
 

           JB stat 3302 ** 4373 ** 6572 ** 9942 ** 12381 ** 
Notes: Estimates by the Author. Database from Demographic Census for 1970, 1980, 1991, 2000 and 2010. 
  
 This result, from the classical equation of rank-size, is qualitatively consistent with 

Trindade and Sartoris (2009), Justo (2012) and Moro and Santos (2013). Of these, what the 

first two have in common with our work is the use of the entire Brazilian territory and both 

rural and urban populations of the observed units, which allows a comparison with our 

analysis. Moreover, unlike our analysis, both two studies use a very high level of aggregation, 

920 MCAs between 1920 and 2000, and 431 observational units between 1910 and 2010, 

respectively. In 1970 their estimated coefficients were 0.794 and 0.77, respectively. The only 

difference between these two estimates and our work is the level of aggregation, but 3659 

observational units is much closer to reality for 1970. Therefore, we can see that the high 

aggregation level used by these two studies lead to results that indicate a higher population 
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concentration than the reality, making their evidence inaccurate6. Although Moro and Santos 

(2013) use municipality as observational unit (more disaggregated than MCAs), they only 

take the urban population into account, which makes our results quantitatively incomparable. 

 Following the suggestion from Rosen and Resnick (1980), we test for non-Pareto 

beahavior using the quadratic form for Rank-size equation (3). If the coefficient of quadratic 

log of population is positive, , there is a positive correlation between ranking variation 

and size. On the other hand, if  there is a negative correlation between ranking variation 

and size. The results of quadratic form are presented in Table 9. 

 

Table 9 – Quadratic Rank-Size Equation for log(rank) as dependent variable, 1970 – 2010  

Explanatory 
Variables 

OLS quadratic 

1970   1980   1991   2000   2010   
Variable 

          Intercept 2.4910 ** 3.2885 ** 3.5169 ** 3.7033 ** 3.5493 ** 
ln Population 1.8708 ** 1.6153 ** 1.5170 ** 1.4424 ** 1.4470 ** 
(Ln Population)^2 -0.1444 ** -0.1254 ** -0.1165 ** -0.1101 ** -0.1084 ** 

           No. Obs. 3659  3659  3659  3659 
 

3659 
 R-squared 0.978  0.985  0.990  0.993 

 
0.995 

 Log Likelihood 34  769  1477 
 

2198 
 

2604 
 

           JB stat 3.8E+06 ** 2.7E+06 ** 1.4E+06 ** 9.0E+05 ** 7.2E+05 ** 
Notes: Estimates by the Author. Database from Demographic Census for 1970, 1980, 1991, 2000 and 2010. 
 
 The quadratic term has a negative coefficient and significant at 1% for all analysed 

decades. The curvature presents downward concavity, there is a negative correlation between 

ranking variation and size, thus producing more cities in the intermediate size classes than 

would be predicted by a Pareto distribution. This result, a significant value for the quadratic 

term representing a deviation from the Pareto for the Brazilian case, is concurring with 

Oliveira (2004a) and Moro and Santos (2013), and contrary to the results found by Rosen and 

Resnick (1980). 

 
4.1.4 Brazilian Population Distributional Dynamics 

 Unfortunately, it is not possible to have information on the dynamics of the 

distribution estimating the Zipf’s law equations. The approach of the last topic gives no 

information on the movements of the cities within the distribution. Apart from this, it does not 

take into account the possibility that these movements are affected by spatial dependence. To 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
6 In 1970 the Brazilian territory was divided into 3952 municipalities. 

ct > 0

ct < 0
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assess these empirical issues on the size distribution of Brazilian minimum comparable areas, 

in the next topics we lead with the estimation of transition probability matrices associated 

with discrete Markov chains (Kemeny and Snell, 1976), which will make it possible to follow 

the progress of each group of Brazilian MCAs in time. And then, the spatial dependence is 

introduced through the analysis of LISA Markov and Spatial Markov Chains, both developed 

by Rey (2001). 

 

Traditional Markov Chains  

 In order to observe the behaviour of transition from the relative population levels over 

time, Table 10 shows the traditional Markov transition probability matrix for four classes of 

relative population according to quartiles for each decade between 1970 and 2010. The class 

with the MCAs with smaller populations relative is represented by the first quartile. 

Therefore, if a MCA is in the first quartile class means that it is among the 25% smaller in 

terms of relative population, and if the MCA is inserted in the fourth quartile means that 25% 

is among the largest in terms of relative population. 

 

Table 10 – Markov Transition Probability Matrix for Brazilian MCAs population, 1970-2010 

ti 
ti+1 

1 2 3 4 
1 0.9208 0.0781 0.0005 0.0005 
2 0.0787 0.8249 0.0951 0.0014 
3 0.0005 0.0971 0.8356 0.0667 
4 0.0000 0.0000 0.0686 0.9314 

Notes: Estimates by the Author. Database from Demographic Census for 1970, 1980, 1991, 2000 and 2010. 
 
 From Table 10, several points can be observed. Firstly, the transitions probabilities on 

the main diagonal are relatively high. If the MCA is in the ith class, the probability of being in 

the same class the decade after is at least 82.49% and at most up 93.14%.  Specifically, the 

probability that the MCA in the second quartile remain in this class in the next period is 

82.49%. The high probabilities on the main diagonal show a low interclass mobility, a high 

persistence of MCAs to stay in their own class from one decade to another over the whole 

period. However, since these probabilities are not exactly equal to 1, we have the possibility 

to analyse how the MCAs in each cell move to other cells. Secondly, the probability to 

continue in the initial state, given by the diagonal elements, is higher in the two extreme 

classes. In particular, the largest and smallest MCAs have less probability of moving to 

another categories, i.e., these localities have less interclass mobility than the medium-size 
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cities. Since the elements of main diagonal do not assume the value 1, so there is no 

possibility of parallel or uniform growth between MCAs. This result is an evidence that 

population distribution structure suffered changes during the period 1970-2010.  

 Continuing with the reading of Table 10, we realize that the non-diagonal elements are 

extremely smaller than elements in the main diagonal. Nevertheless, during 1970 to 2010, the 

medium classes (2 and 3) have more probability of inter-class mobility than extreme classes 

(1 and 4), the biggest transition probability among different classes is 9.71% which occurs 

from third to second quartile; next is the second to third class moving, 9.51%.  That is, the 

largest flows occur between the MCAs that are in the second and third classes. This evidence, 

together with high persistence of both largest and smallest MCAs to stay in the initial class, 

highlights the major role of medium-size localities in the processes of urban agglomeration 

that occurred in Brazil during the last 40 years. This evidence is in agreement with Andrade 

and Serra (2001), as they assert that Brazilian population is undergoing a process of 

polarization reversal, in which the medium-sized cities play a decisive role in an automatic 

decentralization of economic activities. In addition, the probabilities of MCAs move up or 

down more than two steps are extremely small. 

 The first mean passage time indicates the expected time for a locality to move from 

class i to class j for the first time. To determine the speed with which the urban municipalities 

move within the distribution, Table 11 displays the mean first passage time matrix for relative 

population based on equation (9)7. 

 
Table 11 – First Mean Passage Time Matrix in Decades for Brazilian MCAs population, 
1970-2010 

ti 
ti+1 

1 2 3 4 
1 4.00 13.00 33.16 75.36 
2 37.47 4.00 20.72 63.31 
3 57.47 20.28 4.00 43.73 
4 72.05 34.86 14.58 4.00 

Notes: Estimates by the Author. Database from Demographic Census for 1970, 1980, 1991, 2000 and 2010. 
 
 On average, the number of years to reach any class other than the original is relatively 

high: the shortest time passage is 13 decades and the longest is 75.36 decades.  As expected, 

more distant classes take longer to be reached. For example, for a MCA that was originally in 

class 1 achieve the class 3, it takes on average 33.6 decades. The faster declines in the 3 and 4 

classes (20.28 and 14.58 decades, respectively) may indicate that localities in these classes are 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
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more likely to lose relative population. This evidence suggests a general progressive 

suburbanization process in which big cities stop to grow, favouring the progressive 

appearance of smaller population cores (Gallo and Chasco, 2007).  

 The ergodic distribution can be interpreted as the long-run equilibrium in the 

distribution of relative population of the MCAs. As stated by Gallo and Chasco (2007), given 

a regular transition matrix, with the passage of many periods, there will be a time when the 

distribution of urban municipalities will not change any more: that is the ergodic or limit 

distribution. As the population relative discretization was made from the quartiles, the ergodic 

distribution naturally will be similar to the initial distribution of classes (25% of MCAs in 

each class) and does not bring interesting results to be interpreted. 

 A consideration about limitations of traditional Markov chains to study the dynamics 

of cities is that they do not capture the spatial dependence that may exist between the studied 

observational units. In order to take into account the possibility of spatial dependence in 

population distribution dynamics of Brazilian minimum comparable areas, we introduce in the 

following topics the spatial dependence through the analysis of LISA Markov, that integrates 

the local indicators of spatial association into a dynamic framework based on Markov chains, 

and Spatial Markov Chains, that extends the transition probabilities from traditional Markov 

chains to be conditioned on the initial relative population class of its spatial lag. Both 

approaches were developed by Rey (2001). 

 

LISA Markov 

 Table 12 below summarizes the spatial transitions using the same classification system 

proposed by Rey (2001) shown in section 2, Table 2. The LISA Markov matrix was estimated 

for four different time intervals: between 1970 and 1980, 1970 and 1991, 1970 and 2000, and 

between 1970 and 2010. This way, various types of evidence can be seen, among them the 

role of time on the behaviour of MCA's population distribution in relation to their respective 

spatial lags8. The standard contiguity neighbours matrix (W) was used for estimation of 

following LISA Markov matrices. In this spatial weight matrix, the wij of the contiguity 

neighbours are equal to 1 and zero otherwise, the diagonal elements also have values set to 

zero since no spatial unit can be viewed as its own neighbour. 

 The first result that emerges is a high probability of minimum comparable areas and 

their spatial lag to remain in the same classification (Type 0). Specifically, between 1970 and 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
8 The probabilities presented should be seen under an exploratory perspective, it would be prudent to 
interpret these probabilities with a certain caution (Rey, 2001). 
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1980 this probability was 89.86%, indicating a low mobility between classes in this decade. 

However, it is possible to observe an increase in mobility according to an increase in the time 

interval. For example, in a forty-years interval the probability of remaining in the same size 

for a MCA and its neighbours drops to 80.13%. Moro and Santos (2013) found that these 

probabilities are 96.2% and 88.5%, respectively, for urban population of Brazilian 

municipalities that already existed in 1970, not covering the entire Brazilian territory between 

1980 and 2010, since new municipalities were created in this period. This way of obtaining 

the sample may bring harm to the results, considering that territories and, consequently, 

population of new municipalities (created from the subdivision of former municipalities) will 

be excluded from the sample. That is, the results of these authors could be affected by a 

selection bias in the choice of geographical units. 

 

Table 12 – LISA Spatial Transitions for Brazilian MCAs population, 1970-2010 

Interval Type of Transition Cohesion Flux Type 0 I II IIIA IIIB 

1 decade 
0.8986 0.0443 0.0533 0.0038 0.0000 0.9024 0.1014 

UP 0.0139 0.0128 0.0003 - 
  DOWN 0.0303 0.0404 0.0036 - 
  

        
2 decades 

0.8500 0.0596 0.0798 0.0098 0.0008 0.8598 0.1500 
UP  0.0186 0.0221 0.0011 - 

  DOWN 0.0410 0.0577 0.0087 - 
  

        
3 decades 

0.8163 0.0711 0.0981 0.0139 0.0005 0.8303 0.1837 
UP 0.0251 0.0271 0.0022 - 

  DOWN 0.0459 0.0711 0.0118 - 
  

        
4 decades 

0.8013 0.0749 0.1071 0.0161 0.0005 0.8174 0.1987 
UP 0.0257 0.0284 0.0033 - 

  DOWN 0.0492 0.0787 0.0128 -     
Notes: Estimates by the Author. Database from Demographic Census for 1970, 1980, 1991, 2000 and 2010. 
 
 A second result we can see through the table 12, besides the transition from Type 0, 

the most common type of transition is Type II, which involves a transition of only the 

neighbours in relative space, but the locality in question remains in the previous state. 

Furthermore, the probability of this transition type also increases when the time interval 

increases. Another result concerning this type of transition is that there is a greater probability 

of downward movement, i.e. a higher probability of most populous neighbours to become less 

populated. 



! 42 

 Also regarding the Type II transition, we can obtain a subgroup of MCAs that were 

populated above average and had less populous neighbours, while in the following period the 

neighbours became highly populated. We can investigate further highly populated 

communities that propelled the neighbours. Thus, in the interval between 1970 and 1980, we 

identified 14 MCAs that played this role. These minimum comparable areas are equivalent to 

the current territory of 48 municipalities, three of these are located in Pará state (North), 3 in 

Pernambuco and 3 in Bahia (Northeast), 6 in São Paulo state (Southeast), 3 in Paraná state 

(South), and finally, 27 municipalities in  state of Mato Grosso and one in the Federal District 

(Midwest)9. Only 3 (Curitiba, Brasília and Cuiabá) of these 48 municipalities are capitals of 

their respective states. To get an idea of the important role played by these localities, 45 of 

these municipalities had these features for all time intervals. Probably, these municipalities 

boosted population growth in theirs neighbourhoods. To investigate more deeply these 

municipalities is an interesting suggestion for future research. 

 The second most frequent transition type is Type I, which occurs when only the 

locality moves, but its neighbours remained in the same category. Similar to our results, Moro 

and Santos (2013) found in their study that transition Type I is the second most frequent, 

while less frequent is the Type IIIB. 

 Additionally, the cohesion measure is decreasing with the increase of the time interval. 

That is, over longer time intervals the probability of the MCAs move in the same direction of 

theirs spatial lag between different classes decreases. The flux measurement indicates that 

there is an increased instability in behaviour of MCAs relative to its neighbours in the 

population distribution when the time interval increases. 

 In Table 13, below, the LISA Markov matrix was estimated for decennial time 

interval: between 1970 and 1980, 1980 and 1991, 1991 and 2000, and between 2000 and 

2010. The main motivation is the distinction between the decades over the last 40 years of 

changes in the population configuration of the country. Performing the estimation with LISA 

decennial intervals give us an idea of how the changes on the behavior of MCA's population 

distribution in relation to their respective spatial lags have occurred in every period. As can be 

seen, the transition probability of Type 0 is high; there is a higher probability of minimum 

comparable areas and their spatial lag to remain in the same classification. Additionally, this 

probability increases each decade indicating a low mobility between the classes. Specifically, 

between 1970 and 1980 the probability of transition Type 0 was 86.89%, and between 2000 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
9 The listing of these 48 municipalities is in Table A1 in the Appendix. 
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and 2010 this probability increases to 96.91%. This evidence of stability in the population 

distribution behavior over time corroborate with the normal non-parametric kernel density 

functions estimates (Figure 1) and with the summary statistics (Table 4). 

 
Table 13 – LISA Spatial Transitions (Decennial) for Brazilian MCAs population, 1970 – 
2010 

Interval Type of Transition Cohesion Flux Type 0 I II IIIA IIIB 

1970 to 
1980 

0.8986 0.0443 0.0533 0.0038 0.0000 0.9024 0.1014 
UP 0.0139 0.0128 0.0003 - 

  DOWN 0.0303 0.0404 0.0036 - 
  

        1980 to 
1991 

0.9322 0.0295 0.0358 0.0019 0.0005 0.9341 0.0678 
UP  0.0098 0.0123 0.0005 - 

  DOWN 0.0197 0.0235 0.0014 - 
  

        1991 to 
2000 

0.9516 0.0191 0.0292 0.0000 0.0000 0.9516 0.0484 
UP 0.0096 0.0093 0.0000 - 

  DOWN 0.0096 0.0200 0.0000 - 
  

        2000 to 
2010 

0.9691 0.0120 0.0189 0.0000 0.0000 0.9691 0.0309 
UP 0.0046 0.0063 0.0000 - 

  DOWN 0.0074 0.0126 0.0000 -     
Notes: Estimates by the Author. Database from Demographic Census for 1970, 1980, 1991, 2000 and 2010. 
 
 Other interesting results can be obtained by Type II transitions, which involves a 

transition of only the neighbours in relative space, but the locality in question remains in the 

previous state. The probability of this transition type, as expected, decreases with each 

decade. As in the previous analysis, there is a greater probability of downward movement, i.e. 

higher probabilities of most populous neighbours become less populated. 

 Similarly to the exercise for different time intervals, we can investigate further highly 

populated communities that propelled the neighbours, i.e., MCAs that were populated above 

average and had less populous neighbours, while in the following period the neighbours 

became highly populated. Of course, in the interval between 1970 and 1980, we identified the 

same 14 MCAs (48 municipalities) that played this role. Between 1980 and 1991, 13 MCAs 

(25 municipalities) played this role, ten of these municipalities are located in Pará state 

(North); 1 in Rio Grande do Norte, 1 in Paraíba and 6 in Bahia (Northeast); 2 in Minas Gerais 

and 3 in São Paulo state (Southeast); and 2 in Santa Catarina state (South). Of these 25 

municipalities, only 4 are capitals (Belém, Natal, João Pessoa and Salvador). Between 1991 

and 2000, only 4 MCAs (5 municipalities) played this role, 1 in Sergipe (Northeast); 2 in 

Minas Gerais and 1 in São Paulo state (Southeast); and 1 in Santa Catarina (South). At this 
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period, Sergipe's state capital (Aracaju) played this role of highly populated community that 

propelled the neighbours. Finally, between 2000 and 2010, also only 4 MCAs (8 

municipalities) played this role, all of them in Northeast, 4 in Maranhão state (including the 

capital São Luís) and 4 in Ceara state10. Again, investigate more deeply the particularities of 

these municipalities is an interesting suggestion for future research. 

 In relation to Type I transition, which occurs when only the locality moves, but its 

neighbours remain in the same category, this is less likely than Type II and is decreasing over 

the decades. Regarding the probability of Type IIIa, which occurs when both MCA and 

neighbors move in the same direction in the distribution, the results indicate that the 

probability of such transition became null between the decades of 1991 and 2000 and between 

2000 and 2010. That is, in the last 20 years there were no transitions of minimum comparable 

areas together with their neighborhood within the urban hierarchy. Finally, the cohesion and 

flow measurements are decreasing over time. In other words, over the time the probability of 

the MCAs move in the same direction of its spatial lag between different classes decreases, 

and the flux measurement indicates that there is a decreasing instability in behaviour of 

MCAs relative to its neighbours in the population distribution, as already evidenced. 

 

Spatial Markov Chains 

 From the traditional Markov matrix, Rey (2001) suggests an extending modification, 

so that the transition probabilities are conditioned on the initial relative population class of its 

spatial lag. The spatial Markov matrix, as called by Rey, speaks to the question of whether a 

locality’s transition in the relative population distribution is related to the relative population 

of its neighbours. As explained by Rey, the spatial provides a great deal of information 

regarding the transitions of regions and the possible association between the direction and rate 

of the transitions and the regional context faced by each economy. 

 A spatial Markov transition probability matrix was constructed to analyse the spatial-

temporal dynamics of relative population distribution, i.e., considering the possible influence 

from neighbours on the transition of regions. The standard contiguity neighbours matrix (W) 

is used for estimation of following spatial Markov matrices, reported in Table 14. 
 
 
 
 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
10 The listings of municipalities for each decennial interval are in Table A1 in the Appendix. 
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Table 14 – Spatial Markov Transitions Probabilities Matrix for Brazilian MCAs population, 1970-
2010 

Spatial Lag ti 
ti+1 

1 2 3 4 

1 

1 0.9546 0.0448 0.0006 0.0000 
2 0.1088 0.8391 0.0522 0.0000 
3 0.0000 0.1088 0.8407 0.0505 
4 0.0000 0.0000 0.0507 0.9493 

2 

1 0.9096 0.0894 0.0010 0.0000 
2 0.0850 0.8470 0.0670 0.0009 
3 0.0011 0.1105 0.8475 0.0409 
4 0.0000 0.0000 0.0700 0.9300 

3 

1 0.8866 0.1134 0.0000 0.0000 
2 0.0559 0.8410 0.1030 0.0000 
3 0.0009 0.0986 0.8489 0.0516 
4 0.0000 0.0000 0.0811 0.9189 

4 

1 0.8628 0.1326 0.0000 0.0047 
2 0.0631 0.7474 0.1836 0.0059 
3 0.0000 0.0761 0.8073 0.1166 
4 0.0000 0.0000 0.0657 0.9343 

Notes: Estimates by the Author. Database from Demographic Census for 1970, 1980, 1991, 2000 and 2010. 
 
 Initially, some evidences can be seen from Table 14. Firstly, spatial background 

appears to play an important role in the dynamics of relative population distribution. In other 

words, the neighbours of a MCA have an impact on its transition probabilities over time. If 

the spatial context did not work, then the four conditional matrices should be the same and are 

equal to the traditional Markov matrix (Table 10). But in fact it is the opposite.  Specifically, a 

chi-squared test of the difference between each of the spatial conditioned transition 

submatrices against the overall (a-spatial) transition matrix rejects the null hypothesis that 

these matrices are equal at 1%11. Secondly, different spatial contexts have different effects on 

transition for regions. Specifically, the probability of upward transitions will increase for 

MCAs with neighbours in high classes. For example, for a MCA in the first quartile with 

neighbours in the same class, the probability of moving upward is 4.48%, while if it is 

adjacent to localities in fourth quartile this probability increases to 13.26%. A similar 

phenomenon to this occurs also for MCAs originally in classes 2 and 3.  

 In table 14, as in Table 10, the medium classes (2 and 3) have more probability of 

inter-class mobility than extreme classes (1 and 4).  However, considering the spatial 

dimension, we can observe that the MCAs grouped into medium classes have a higher 

probability of a downward transition if your neighbours are in a less populated class (class 1).  

The opposite happens if the neighbours are the most populous class (class 4). This evidence 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
11 Table A2 in appendix. 
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that the MCAs in the third quartile is more likely to move within the distribution to a larger 

class when they are near the most populated places, certainly means that there is an overflow 

of the population of large cities to medium-sized cities. The latter evidence highlights again 

the major role of medium-size localities in the processes of urban agglomeration that occurred 

in Brazil during the last 40 years, even considering the spatial context.  

 Furthermore, as suggested by Rey (2001), it is possible to know the influence of 

spatial dependence on the transition probability comparing the elements of a traditional 

transition matrix with the elements of the spatial Markov matrix. For example, ignoring 

spatial context (Table 10), the probability of a MCA in the third quartile to move down to the 

second quartile is 9.71%, this probability rises to 10.88% if the neighbours are in the first 

quartile (less populated class). We can also observe, by comparing the traditional and spatial 

matrix, that the less populous MCAs that have highly populated neighbours decreases the 

probability of persistence in the same class distribution. Specifically, ignoring the spatial 

context, the probabilities of MCAs to in the first and second quartiles are 92.08% and 

82.49%, respectively. These probabilities are reduced to 86.28% and 74.74% when high-

populated neighbours surround these locations. Additionally, we can explore steady state 

distribution implied by each estimated conditional transition probability matrix from Table 

14, calculated as steady state distribution that was defined in section 2.3. The steady state 

distribution spatially conditioned is presented in Table 15. 

 

Table 15 – Steady State Distribution for Brazilian MCAs population, 1970 – 2010 

Spatial Lag (%) 
1 2 3 4 

1 0.5472 0.2284 0.1125 0.1119 
2 0.3225 0.3401 0.2101 0.1273 
3 0.1570 0.3130 0.3239 0.2062 
4 0.0537 0.1167 0.2939 0.5357 

Notes: Estimates by the Author. Database from Demographic Census for 1970, 1980, 1991, 2000 and 2010. 
 
 The long run distribution for MCAs with neighbouring relatively less populated (class 

1) has 54.72% of localities in the first quartile and 11,19% in the fourth quartile, for example. 

On the other hand, the long run distribution for MCAs with neighbouring relatively high 

populated (class 4) has just 5.37% of localities in the first quartile and 53.57% in the fourth 

quartile. According to Gallo and Chasco (2007), concentration of the frequencies in some of 

the classes, that is, a multimodal limit distribution, may be interpreted as a tendency towards 

stratification into different convergence clubs. As can be noted in main diagonal, there would 
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be a higher concentration of frequency on a particular class according to the spatial lag that 

can be an evidence of different convergence clubs according to spatial lag. 

 Finally, we can determine the speed with which the urban municipalities move within 

the relative population distribution, conditioned to spatial lag. Table 16 displays the expected 

time for a locality to move from class i to class j for the first time based on equation (9) for 

each submatrices in Table 14, i.e., conditional on quartile in population distribution of its 

neighbours. 

  
Table 16– Spatial Markov First Mean Passage Time in Decade for Brazilian MCAs 
population, 1970 - 2010 

Spatial Lag ti 
ti+1 

1 2 3 4 

1 

1 1.83 22.27 84.52 240.90 
2 17.98 4.38 63.34 219.72 
3 36.31 18.33 8.89 156.38 
4 56.02 38.04 19.71 8.93 

2 

1 3.10 11.23 39.10 135.51 
2 23.10 2.94 28.35 124.74 
3 37.06 14.30 4.76 97.93 
4 51.35 28.59 14.29 7.86 

3 

1 6.37 8.82 23.31 70.82 
2 47.37 3.20 14.49 62.00 
3 63.37 16.52 3.09 47.51 
4 75.71 28.86 12.34 4.85 

4 

1 18.62 9.04 15.78 26.86 
2 126.64 8.57 8.26 20.26 
3 163.11 36.46 3.40 13.19 
4 178.33 51.68 15.22 1.87 

Notes: Estimates by the Author. Database from Demographic Census for 1970, 1980, 1991, 2000 and 2010. 
 
 As can be seen in Table 16, MCAs with relative population in the first quartile with 

neighbours in the first quartile return to the first quartile after 1.83 decades, after leaving the 

first quartile. This time is 18.62 decades for localities in the first quartile with neighbours high 

populated. Furthermore, MCAs in first class with neighbours also in the first quartile enter the 

third class 84.52 decades after leaving the first quartile, on average. On the other hand, this 

time frame falls to 23.31 decades if the spatial lag is in third quartile. 

 In this section, we presented an overview of the population distribution of Brazilian 

minimum comparable areas between 1970 and 2010. The Zipf's law estimation indicates that 

the population distribution is, every decade, moving away from Pareto law. The traditional 

Markov chain approach brings as main evidence the high probabilities on the main diagonal 

indicating a low interclass mobility. Finally, the mobility rates for MCAs in the population 
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distribution were found to be sensitive to the relative positions of their neighbors in the same 

distribution. 

 

4.2 Spatial Evaluation of Population Growth Dynamics of Brazilian MCAs: Results 

 In this chapter we present the data implementation followed by the results for 

population growth equations developed in a spatial economic model of population growth 

dynamics in Brazilian MCAs section. The objective of this empirical analysis is to assess the 

determinants of population growth of Brazilian MCAs between 1970 and 2010 and to 

examine the existence and magnitude of spatial interaction and spatial spillover effects 

associated with these determinants. 

 

4.2.1 Data Implementation 

 In order to estimate the population growth equation developed in chapter 3, the main 

source of data from the Brazilian Demographic Census is complemented with data collected 

by the Brazilian Institute for Applied Economic Research (IPEA). Due to an ongoing process 

of changes in the number, area, and borders of municipalities, this dataset is also based on the 

aggregation through minimum comparable areas (MCAs). Thus, this study is able to cover a 

spatial panel of 3659 MCAs over the 1970-2010 period. Therefore, if we talk about cities or 

municipalities below, we are actually referring to MCAs. 

 Based on the theoretical model set out in chapter 2, literature review and data 

availability, population growth rate is further taken to depend on the population growth rate in the 

previous decade and thirteen explanatory variables, which will be further explained below. 

Although Brazil is an emerging economy rather than a developed country, and we consider 

population growth in both urban and rural areas so as to be able to model spatial interaction 

effects, the explanations put forward based in literature review remain helpful in selecting the 

explanatory variables for this study. The main difference is that sometimes the variables 

selected need to be placed in a different context, in relation to studies for developed countries. 

For example, a variety of studies includes variables representing the human capital in an 

attempt to explain population growth, among them, Glaeser and Mare (1994), Nardinelli and 

Simon (1996), Simon (1998), Da Mata et al (2007), Chi (2009), Chi and Vos (2011), 

Duranton and Puga (2013). Educational attainment can be related with local economic 

dynamism, ability to absorb and generate innovation, and adaptability. Whereas Duranton and 

Puga (2013, p.39) observe a tendency in the U.S. literature to measure human capital by the 
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share of university graduates, this study focuses on the share of people aged 25 years and over 

that is literate, which increased from 48% in 1970 to 82% in 2010. 

 Regarding demographic characteristics, we consider lagged population growth rate, 

rural population, density, mean age, and birth rate. As explained in the literature review, in Da 

Mata et al. (2007), the market potential variables are inversely related to transport costs, 

which in turn are linearly related to distance, without further testing whether this degree of 

distance decay is faster or slower.  In this sense, just as in Da Mata et al. (2007), the 

population growth rate is therefore taken to depend on GDP per capita, rural GDP per capita, 

rural population size, and their spatially lagged values, but then as separate variables in order 

to test for agglomeration effects. Population density is used to control for housing supply and 

(dis)amenities, two of key drivers of city growth identified by Duranton and Puga (2013).  

Many cities have the capacity to receive more people. However, since it takes time to build up 

certain public goods, infrastructure, or housing, the cost of living increases, the residents of 

quickly growing cities may suffer in terms of quality of life and might also deter prospective 

migrants. Since each age group in a population behaves differently, and the distribution across 

age groups changes over time, economic opportunities may be boosted or slowed down 

temporarily. This leads us to believe that it is also important to control for variables such as 

mean of age. In addition, if the population of a particular region is relatively immobile, 

differences in population growth among areas within that region are mainly due to difference 

in fertility (Glaeser et al., 1995), which is an important reason to consider the birth rate.

 Percentage of population working on agricultural sector and relationship between the 

number of employees in the manufacturing industry and the service sector were measures for 

industrial composition. Moreover, the percentage of the economically active population that 

was occupied was also used in this analysis. These variables provide information about types 

of jobs available, and productive structure. According to Glaeser et al (1995), employment 

variables can reflect how workers respond to business cycle shocks; can be a proxy for human 

capital, in which the percentage of employed may reflect that there are skills needed in the 

workforce; and low percentage of workforce occupied may generate negative amenities. We 

expect that the share of employment in agriculture will have a negative effect on population 

growth due to less economic opportunities, especially for women.  

 According to Duranton and Puga (2013), apart from housing supply, infrastructure and 

(dis)amenities are key drivers of city growth. Cities infrastructures are present in this analysis 

because they can capture factors of attractiveness for prospective migrants and housing 

qualities that might lead prices up. The variables used are the following: percentage of 
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households supplied by water company and percentage of households supplied by sewer 

company. Considering the hypothesis that crime rates may be disamenity that negatively 

influences the decision to settle in a particular locality. Just as in Da Mata et al (2007), we use 

the homicide rate, the number of homicides per 100,000 inhabitants, to represent crime rate. 

 The following Table 17 describe the means and standard deviation for these variables. 

Note that dependent variable is the rate of population growth in the decade and we have no 

information for the decade of 1960, so there is no information for the population growth rate 

between 1970 and 1980. Also, there is no information available about the homicide rates for 

the years 1970 and 2010, but as we shall see, the estimated equation does not need the 

explanatory variables for 1970 and 2010. 

Among the information generalized to the country as a whole, some stand out: (i) the 

reduction of the rural population over the 4 decades, (ii) starting in 1991, an increase in 

density, i.e. more people sharing the same area, (iii) in this period there was also an 

expressive increase in the literacy rate, which whent from 48% in 1970 to 82% in 2010, (iv) 

reduction in the percentage of people employed in agriculture, (v) increase in the logarithm of 

GDP per capita between 1970 and 1980 and between 2000 and 2010, (vi) increase in the 

percentage of households with piped water from 14% in 1970 to 71% in 2010, while, the 

percentage of homes with sewer system goes out of 5 % to 37% in the same period - these 

two variables reflects improvements in infrastructure and basic health conditions that 

occurred in Brazil in the last 40 years. 

 

Table 17 - Means and Standard Deviations of Variables for Brazilian MCAs, 1970 - 2010 

Explanatory Variables 1970 1980 1991 2000 2010 
Mean SD Mean SD Mean SD Mean SD Mean SD 

population growth rate - - 0.09 0.27 0.12 0.21 0.08 0.15 0.07 0.12 
ln rural population 8.87 1.04 8.69 1.25 8.5 1.38 8.32 1.43 8.19 1.5 
ln density 1.8 1.2 1.8 1.3 1.4 1.2 1.6 1.2 1.8 1.2 
mean age 22.9 1.7 24.2 2 25.6 2.4 28.1 2.7 32 2.9 
birth rate 0.67 0.72 0.76 0.97 0.9 1.23 0.39 0.4 0.33 0.35 
literacy rate 0.48 0.17 0.58 0.19 0.66 0.19 0.76 0.15 0.82 0.13 
agriculture 0.32 0.11 0.29 0.12 0.24 0.11 0.2 0.11 0.17 0.1 
manufacte/service 1.02 1.85 1.15 1.63 0.8 0.98 1.74 1.99 0.95 1.02 
workforce ocuppied 0.99 0.02 0.98 0.03 0.96 0.03 0.88 0.06 

  ln of GDP per capita 0.12 0.81 0.9 0.81 0.82 0.84 1.12 0.71 1.38 0.67 
ln of rural GDP per capita -0.89 0.98 -0.16 1.1 -0.43 1.29 -0.89 1.25 -0.71 1.28 
homicide rate - - 3.8 44.1 8.3 92.7 12.4 135.4 14.25 78.75 
water company 0.14 0.18 0.29 0.24 0.48 0.23 0.61 0.2 0.71 0.17 
sewer company  0.05 0.11 0.11 0.19 0.18 0.26 0.29 0.3 0.37 0.32 
Notes: Estimates by the Author. Database from Demographic Census for 1970, 1980, 1991, 2000 and 2010. 
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4.2.2 Population Growth of Brazilian MCAs 

 In this section, we examine how the characteristics of MCAs were correlated with 

subsequent population growth rates. Starting with equations (31), (33), and (35), the 

dependent variable of our empirical analysis, Yit, is measured by the rate of population growth 

in one particular MCA over one decade (t-1,t), where i runs from 1 to 3659, t in equation (35) 

runs from 1980 to 2010 and the number “1” represents a decade. Population growth rate is 

taken to depend on the population growth rate in the previous decade, and when the dynamic 

spatial Durbin model is adopted also on the population growth rate in neighboring units in the 

contemporaneous and previous decades. 

 The estimation results are presented in Table 18. The first column reports the 

estimation results of a standard linear panel data model extended to include spatial and time-

period fixed effects, but without any spatial interaction effects. The estimation results of the 

dynamic SDM specification are recorded in the second column of Table 18. We first discuss 

the results of several specification tests before we turn to the estimation results reported in the 

second column of Table 18. 
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Table 18 – Population Growth of Brazilian MCAs: Non-Spatial and Dynamic Spatial Models 

Explanatory Variables  
OLS Dynamic SDM + Fixed Effects  

(bias correction) 
Coeff t Coeff t Spatial  t 

lagged population growth rate -0.0271 ** 0.0755 ** 0.0681 ** 
ln rural population -0.0433 ** -0.0391 ** 0.0068 

 density -0.1248 ** -0.1256 ** -0.0221 ** 
mean age 0.0135 ** 0.0089 ** -0.002 

 birth rate 0.0172 ** 0.015 ** 0.0072 ** 
literacy rate 0.1361 ** 0.0681 ** 0.0395 

 agriculture -0.2612 ** -0.2315 ** 0.1063 ** 
manufacturing/service 0.0045 ** 0.0021 ** 0.0016 

 occupied workforce 0.4911 ** 0.3535 ** -0.0681 
 ln GDP per capita 0.0513 ** 0.0527 ** -0.0248 ** 

ln rural GDP per capita 0.0088 ** 0.0135 ** -0.0095 ** 
homicide rate -0.003 ** 0.0006 

 
-0.0042 * 

water company 0.0081  0.0274 
 

-0.0255 
 sewer company  -0.0123  -0.0365 ** -0.0058 
 WY (delta) 

    
0.3439 ** 

       No. Obs. 10977 
 

10977 
   R-squared 0.711 

 
0.743 

   Log Likelihood 11144 
 

5580.37 
   Spatial lag, OLS model: 

  LM 909.32 ** Spatial lag, SDM model: 
LM(robust) 114.89 ** Wald 

 
54.39 ** 

Spatial error, OLS model: 
  LM 796.34 ** Spatial error, SDM model: 

LM(robust) 1.91  Wald 
 

134.23 ** 
Joint significance 

     LR(spatial fe=0) 8674.6 ** 
    LR(time fe=0) 789.06 **         

Notes: Estimates by the Author. Database from Demographic Census for 1970, 1980, 1991, 2000 and 2010. ** 
and * significant at 1% and 5%, respectively. 
 

To investigate the (null) hypothesis that the spatial fixed effects are jointly 

insignificant, we performed a likelihood ratio (LR) test. The results (8674.34, with 3658 

degrees of freedom [df], p < 0.01) indicate that this hypothesis must be rejected. Similarly, the 

hypothesis that the time-period fixed effects are jointly insignificant must be rejected (789.06, 

3 df, p < 0.01). These test results justify the extension of the model with spatial and time-

period fixed effects.12  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
#$!Table A3 in appendix reports the correlation coefficients between the explanatory variables to show that 
multicollinearity in this empirical study is not a problem.!
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 Additionally, to test whether this non-spatial model with spatial and time-period fixed 

effects should be extended with spatial interaction effects among the dependent variable (SAR 

specification) or spatial interaction effects among the error terms (SEM specification), we use 

LM tests applied to a first-order binary contiguity neighborhood matrix. In this spatial weight 

matrix, the ijw  are equal to 1 to contiguity neighbors and the diagonal elements have values 

set to zero, since no spatial unit can be viewed as its own neighbor. Furthermore, the matrix is 

normalized such that the sum of the elements of each row is equal to 1. These LM tests follow 

a chi-squared distribution with one degree of freedom and have a critical value of 3.84 at 5% 

significance or 2.71 at 10% significance. When using the classic LM tests, both the 

hypothesis of no spatially lagged dependent variable and the hypothesis of no spatially 

autocorrelated error term must be rejected. When using the robust tests, the hypothesis of no 

spatially lagged dependent variable must still be rejected. However, the hypothesis of no 

spatially autocorrelated error term cannot longer be rejected, also at 10% significance. These 

test results point to an extension of the non-spatial model with a spatially lagged dependent. 

In other words, the tests indicate that spatial dependence should be considered when 

estimating the minimum comparable areas’ population growth; therefore to use standard OLS 

would prejudice the results. However, if a non-spatial model on the basis of (robust) LM tests 

is rejected in favor of the spatial lag model or the spatial error model, one should be careful to 

endorse one of these two models. LeSage and Pace (2009, Ch. 6) and Elhorst (2012) 

recommend to also consider the spatial Durbin model and then test whether or not this model 

can be simplified to the spatial lag or spatial error model. In this study, however, we take a 

broader view by applying the Bayesian approach set out in chapter 3. Firstly, we calculate the 

Bayesian posterior model probabilities of the SDM and SDEM specifications, as well as the 

simpler SAR and SEM specifications, to find out which model specification best describes the 

data. Secondly, we repeat this analysis for several specifications of the neighborhood matrix 

to find out which specification of W best describes the data. The results are reported in Table 

19. 
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Table 19 – Comparison of model specifications and neighborhood matrices 

W Matrix Statistics SAR SDM SEM SDEM 

Binary Contiguity log marginal 3566.85 3616.03 3548.42 3611.80 
model probabilities 0.0000 0.9855 0.0000 0.0145 

First and Second Order log marginal 3562.21 3574.79 3558.60 3579.41 
model probabilities 0.0000 0.0097 0.0000 0.9903 

First, Second and Third 
Order 

log marginal 3527.98 3528.75 3535.86 3536.28 
model probabilities 0.0001 0.0003 0.3974 0.6022 

Inverse distance log marginal 3368.78 3444.87 3363.32 3455.44 
model probabilities 0.0000 0.0000 0.0000 1.0000 

5 nearest neighbors log marginal 3539.69 3601.04 3521.72 3597.88 
model probabilities 0.0000 0.9594 0.0000 0.0406 

6 nearest neighbors log marginal 3551.02 3613.06 3539.41 3613.60 
model probabilities 0.0000 0.3676 0.0000 0.6324 

7 nearest neighbors log marginal 3548.94 3606.39 3537.52 3606.54 
model probabilities 0.0000 0.4622 0.0000 0.5378 

8 nearest neighbors log marginal 3551.30 3607.94 3541.97 3610.07 
model probabilities 0.0000 0.1054 0.0000 0.8946 

9 nearest neighbors log marginal 3561.30 3610.94 3553.84 3613.93 
model probabilities 0.0000 0.0474 0.0000 0.9526 

10 nearest neighbors log marginal 3560.11 3607.68 3556.60 3609.52 
model probabilities 0.0000 0.1373 0.0000 0.8627 

20 nearest neighbors log marginal 3526.87 3552.07 3534.30 3552.99 
model probabilities 0.0000 0.2853 0.0000 0.7147 

Notes: Calculations by the Author based on LeSage (2013). 

 The results show that the SAR and SEM models are always outperformed by either the 

SDM or the SDEM specifications. This indicates that spatially lagged explanatory variables 

(WX) are important and should be included in the model. By also considering the log-

marginals of the different specifications of the spatial weight matrix, the worst performing 

spatial weight matrix appears to be the inverse distance matrix, corroborating with our 

observation made in the previous section that to decompose market potential variables into 

their underlying components, as well as to consider spatially lagged values of these 

components lead to a much greater degree of empirical flexibility. One can see that the first-

order binary contiguity matrix and the SDM specification give the best performance of all 44 

combinations. For this reason, we decided to estimate the dynamic SDM specification using 

the bias corrected ML estimator developed by Lee and Yu (2010).13 The estimation results are 

recorded in the second column of Table 18. The results of this model are finally used to test 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
13 This bias correction is needed since the dependent variables lagged in time (Yt-1) and in both space 
and time (WYt-1) at the right-hand side of (35) is correlated with the spatial fixed effects µ. This is the 
spatial counterpart of the Nickell (1981) bias, as shown by Yu et al. (2008) and Lee and Yu (2010) 
respectively for a dynamic spatial panel data model without and with time-period fixed effects. 
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whether the dynamic spatial Durbin can perhaps be simplified to the dynamic spatial lag 

model or the dynamic spatial error model. Both tests follow a chi-squared distribution with 

K+1 degrees of freedom (the number of spatially lagged explanatory variables and the 

spatially lagged dependent variable) and take the form of a Wald test, since these simplified 

models themselves have not been estimated. The results point out that both hypotheses need 

to be rejected. In conclusion, we can say that the empirical results point to the utility function 

specified in equation (32), which posits that the utility of individuals is also negatively 

correlated with the level of population (population size) and with the population growth rate 

of their neighbors, and the global spillover model, which posits that #$0. 

 The results reported in second column of Table 18 show that six of the thirteen 

spatially lagged explanatory variables in the dynamic SDM specification appear to be 

statistically significant at the 5% significance level. Moreover, the coefficients of the spatially 

lagged dependent variable at time t and t-1, WYt and the WYt-1, are also significant. Besides, a 

necessary and sufficient condition for stationarity is *+&+$=0.0755+0.3439+0.0681=0.4875 < 

1, which is satisfied. 

The spatial models explore a sophisticated dependence structure among spatial units. 

As consequence, the parameter estimates contain a wealth of information on relationships 

among the observations. This rich set of information also increases the difficulty of 

interpreting the resulting estimates (LeSage and Pace, 2009). Unlike the non-spatial models, 

the estimated coefficients on spatial models do not represent the marginal effects of changes 

in the explanatory variables on the dependent variable. According to Elhorst (2010), the 

denial of this characteristic of spatial models lead some empirical studies to erroneous 

conclusions, while the interpretation of the partial derivative of the impacts of a change in the 

explanatory variables represents a more valid basis for testing the hypothesis of spatial 

spillovers. Table 20 reports the short-term and long-term estimates of the direct, indirect and 

total effects, derived from the parameter estimates of this model using equations (36) and 

(37). The direct effects represent a change in the dependent variable associated with a change 

in the explanatory variable of the observational unit itself. Additionally, the indirect effects 

represent a change in the dependent variable associated with a spatially lagged explanatory 

variable. The indirect effects are properly the effects of spatial spillovers and, as has been 

emphasized during the text, its study is one of the main interests in this thesis. In order to 

draw inferences regarding the statistical significance of these effects, we used the variation of 

100 simulated parameters combinations drawn from the variance-covariance matrix implied 

by the maximum likelihood estimates. The number of explanatory variables producing 
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significant spatial spillover effects appears to be 3 in the short term and 6 in the long term. In 

other words, we find evidence of spatial spillovers in the determinants of population growth 

in Brazilian cities between 1970 and 2010. The reason that these numbers are lower than the 

number of significant spatial interaction effects is because they depend on more than just one 

single parameter, namely three parameters in the short term and five parameters in the long 

term, see equations (36) and (37).   

 

Table 20 – Dynamic Spatial Model – Direct, Indirect and Total Effects 

Explanatory Variables Short Term Effects Long Term Effect 
Direct Indirect Total Direct Indirect Total 

lagged population growth rate 
   

-0.918 0.137 -0.781 

    
(-113.146) (7.030) (-40.167) 

ln rural population -0.04 -0.011 -0.05 -0.043 -0.021 -0.064 

 
(-14.351) (-1.253) (-5.487) (-13.992) (-1.967) (-5.548) 

Density -0.131 -0.092 -0.223 -0.145 -0.141 -0.286 

 
(-24.052) (-6.158) (-14.465) (-22.473) (-6.720) (-12.907) 

mean age 0.009 0.002 0.01 0.01 0.004 0.013 

 
(7.083) (0.593) (4.448) (7.142) (1.157) (4.531) 

birth rate 0.016 0.019 0.035 0.018 0.027 0.044 

 
(9.274) (3.022) (5.479) (9.518) (3.373) (5.475) 

literacy rate 0.074 0.103 0.177 0.083 0.143 0.226 

 
(2.325) (1.558) (2.464) (2.384) (1.733) (2.480) 

Agriculture -0.227 0.037 -0.189 -0.247 0.004 -0.242 

 
(-8.076) (0.612) (-2.967) (-8.093) (0.058) (-2.967) 

manufacturing/services 0.003 0.003 0.005 0.003 0.004 0.007 

 
(2.200) (0.944) (1.621) (2.240) (1.061) (1.625) 

occupied workforce 0.359 0.08 0.439 0.394 0.167 0.561 

 
(10.297) (0.905) (4.423) (10.353) (1.506) (4.470) 

ln of GDP per capita 0.052 -0.009 0.043 0.057 -0.001 0.055 

 
(12.769) (-0.875) (3.986) (12.649) (-0.110) (3.955) 

ln of rural GDP per capita 0.013 -0.008 0.005 0.014 -0.008 0.006 

 
(5.647) (-1.489) (0.884) (5.607) (-1.139) (0.885) 

homicide rate 0.001 -0.006 -0.005 0.000 -0.007 -0.007 

 
(0.447) (-1.842) (-1.576) (0.356) (-1.804) (-1.570) 

water company 0.026 -0.026 0.000 0.028 -0.028 0.001 

 
(1.938) (-0.846) (0.010) (1.927) (-0.724) (0.017) 

sewer company  -0.036 -0.028 -0.064 -0.04 -0.043 -0.082 
  (-2.660) (-1.179) (-2.594) (-2.711) (-1.403) (-2.560) 
Notes: Estimates by the Author. t-values in parentheses. 

 The long-term direct, indirect and total effect estimates of the growth rate represent 

significant convergence and deconcentration effects. Specifically, a 1% increase in the 

population growth rate from one location reduces the rate of population growth in the long 

run in 0.918 percentage point. In other words, the greater population growth in the own MCA 

has been in the previous decade, the smaller it will be in the next decade, and vice versa. This 

evidence points to conditional convergence in population growth rate of Brazilian MCAs. The 
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localities that grow at higher rates in the past have reduced population growth rate in the 

future. The indirect effect of 0.137 is statistically significant at 1%. Increases in population 

growth in the neighborhood in the previous decade stimulate population growth in the future. 

This movement or deconcentration of people to neighboring areas, perhaps to escape the 

congestion of the city, is a convergence effect. However, the feedback effect of this behavior 

is that the city starts growing again, as a result of which the total convergence effect becomes 

smaller. This explains the reduction of the convergence effect from -0.918 to -0.781. These 

results are absolutely unknown in Brazilian literature about population growth; they indicate a 

potential force for deconcentration in the country's population in the past 40 years. 

 The direct effect of the natural logarithm of rural population is negative and highly 

significant in both short and long term. If a locality has a large rural population at the 

beginning of a decade, this will lead to a reduction in population growth after 10 years. 

Specifically, an increasing of 1 per cent in rural population in a particular MCA reduces the 

population growth rate at 0.04 percentage point in the short term and 0.043 percentage point 

in the long term. This result is similar to that found by Da Mata et al. (2007) and is consistent 

with the country urbanization process for the period, as mentioned in the introduction. The 

indirect effect is also negative and statistically significant at 5% in long term, suggesting that 

municipalities that have a large rural population in the neighbourhood will have a lower 

response in terms of population growth.  

 The direct effect of log of density on population growth is negative and significant, 

with magnitude greater in the long run than in the short-term. If a municipality has a 

population density increased, this will reduce the growth in population in the next decades, 

corroborating with the hypothesis that densely populated cities deter prospective migrants due 

to deteriorating living conditions. Specifically, if population density increases by 1%, 

population growth will be reduced by 0.13 percentage point in long term. Moreover, this 

adverse effect also spills over to neighboring MCAs. The indirect effect is also negative and 

highly significant. If there is an increase in population density in the neighbourhood of a 

particular MCA, there will be a decrease in population growth in this locality. If the spatially 

lagged population density increases by 1%, there will be a decrease of 0.09 percentage point 

in population growth in short term and 0.14 percentage point in long term. This evidence 

reinforces the analysis of spatial spillovers for studying population growth of cities. 

 The direct effect of the mean age of the population is positive and significant. If the 

mean age of the population increases by one year, the population growth rate increases by 

0.01 percentage points. Since the mean age over the observation period increased from 23 in 
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1970 to 32 in 2010, this finding corroborates with the view that economic opportunities may 

boost when the number of working-age adults grows large relative to the dependent 

population. The birth rate variable has a direct effect on the population growth rate positive 

and significant, in both short and long term. If the birth rate increased by 1 child for every 

1000 inhabitants in a given area, in the short term there will be an increase in the population 

growth rate of 0.016 percentage point and in the long run this rate will be increased by 0.018 

percentage point. The indirect effect of birth rate is positive and significant in both short and 

long terms. That is, the population growth rate of Brazilian MCAs is positively affected by 

the amount of children born in the neighbourhood.  

 The direct effect of literacy rate is positive and significant. Areas that have a higher 

percentage of literate people in the initial period have a higher population growth rate in both 

the short and long term. Specifically, a 1% increase in literacy rate in a particular locality 

would raise the population growth rate of unit itself at approximately 0.072 and 0.079 

percentage points in short and long run, respectively. The positive relationship between 

educational attainment and population growth is in line with Glaeser and Saiz (2003) and Da 

Mata et al (2007) when they argue that economies with more educated people generate 

positive amenities and are more adaptable to technological change due to spillover effect of 

knowledge, becoming more attractive places. The indirect effect is positive and statistically 

significant at 10% significance. The positive relationship between educational attainment and 

population growth in its surroundings is in line with the proposition introduced in equation 

(16) that knowledge accumulated in one economy depends on knowledge accumulated in 

other economies. 

 The percentage of people employed in activities related to agriculture has a negative 

and significant direct effect. The minimum comparable areas that had in the initial period a 

high percentage of people employed in agriculture experience a reduction in the rate of 

population growth in both short and long term due to less economic opportunities, especially 

for women. The indirect effect for this variable is positive and not significant. This result 

suggests that the percentage of people working in agriculture in a particular geographical area 

does not affect the population growth of their neighbourhood. The relationship between the 

number of people employed in the manufacturing sector and the number of people employed 

in the service sector have direct effects positive and statistically significant in both short and 

long terms. This result is in line with Da Mata et al. (2007) and suggests that areas with a high 

percentage of manufacturing in base period experienced a population growth faster. The 

indirect effect for manufacture/service variable is negative and not significant. The direct 
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effect of percentage of occupied workforce is positive and significant. An increase in the 

number of workers employed in the initial period of a particular MCA exerts a positive effect 

on population growth rate of the locality. Specifically, a 1% increase in the percentage of 

employed in a particular locality in the long term its population growth rate will increase by 

0.39 percentage points. The spillover effect is also positive but not statistically significant. 

 The direct effect of logarithm of per capita GDP is positive and significant. An 

increase in GDP per capita in a given locality results in an increase in its growth rate, in the 

short and long term. Specifically, a 1% increase in GDP per capita increases the population 

growth rate by 0.05 and 0.06 percentage point in short and long term, respectively. The 

spillover effect is not significant. The rural GDP per capita has a direct effect positive and 

statistically significant, indicating that municipalities that offer income opportunities remain 

attractive areas to live in. A reduction in rural GDP per capita of a location would reduce the 

population growth rate in the short and long term. The indirect effect has a negative sign and 

is not statistically significant. Da Mata et al. (2007, p. 266) reported their rural variables to 

perform poorly due to limited variation and multicollinearity. By decomposing the market 

potential variables, these problems do not occur in this study. 

 The homicide rate has statistically insignificant direct effects on the population growth 

rate. The spillover effect is negative and statistically significant at 10%, indicating that 

especially the surroundings of a city pay the price for this disamenity. This result is an 

evidence that neighbours amenities influences the utility of individuals and, consequently, the 

population growth of localities. In other words, MCAs with neighbouring areas presenting 

high crime ratio have a reduction in population growth rate, both in the short and long term. 

Regarding infrastructure, the share of households supplied by Water Company presents a 

positive and statistically significant direct effect. Specifically, the percentage of households 

supplied by water company of a particular MCA increase by 1% in base period, this area will 

have 0.026 and 0.028 percentage point increase in the rate of population growth, in short and 

long term, respectively. Moreover, the spillover effect is negative and not statistically 

significant. The share of households supplied by adequate public regular sewer system has 

negative and statistically significant direct effect. An increase in the share of households 

supplied by Sewer Company in a given MCA reduces its own population growth rate in the 

short and long term. One possible reason for the negative sign of direct effect is that the 

variable could be a proxy for the price of urban space, which affects the location of people 

and firms, especially at municipalities level. If the supply of housing with access to public 

sewer is relatively inelastic, the prices of this type of housing might increase so much that 
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prospective migrants might be discouraged and the population growth rate falls. According to 

research from Economic Benefits Expansion of Sanitation (FGV, 2010), sanitation enables 

constructions with higher added value and appreciation of existing buildings. The indirect 

effect (spillover) for this variable also appears as negative, but is statistically insignificant. 

 Due to these significant indirect effects, it is interesting to compare the long-term total 

effects reported in Table 20 that have been derived from the dynamic SDM specification with 

those from the non-spatial model reported in the first column of Table 18. The long-term total 

effect of the non-spatial model can be obtained by +/(1-*), where + is the coefficient estimate 

of a particular explanatory variable and * the coefficient estimate of the dependent variable 

lagged one decade in time. The long-term total effect of the rural population according to the 

spatial model amounts to -0.064 and according to the non-spatial model to -0.0433/(1-(-

0.0271)=-0.0422. This means that the latter effect in the non-spatial model is underestimated 

by 34.1%. For the other variables that produce significant spatial spillover effects, we find 

57.5% for population density, 61.9% for the birth rate, 41.4% for the literacy rate, and 58.3% 

for the homicide rate. These results are reported in Table 21. On average, the degree of 

underestimation amounts to 27% taken over all explanatory variables, indicating that a non-

spatial modeling approach does not reflect the full impact of policy measures that act on these 

variables. 

Table 21 – Long-term Effects Comparison 

Explanatory Variables Non-spatial 
Coefficients 

Long-term 
effect in 

Non-Spatial 
model  
+/(1-*) 

Total Effect 
in Spatial 

model 

Underestimation 
long-term effect 
in Non-Spatial 

model (%) 

lagged population growth rate -0.0271 - -0.781 - 
ln rural population -0.0433 -0.0422 -0.064 34.1 
Density -0.1248 -0.1215 -0.286 57.5 
mean age 0.0135 0.0131 0.013 -1.1 
birth rate 0.0172 0.0167 0.044 61.9 
literacy rate 0.1361 0.1325 0.226 41.4 
Agriculture -0.2612 -0.2543 -0.242 -5.1 
manufacturing/services 0.0045 0.0044 0.007 37.4 
occupied workforce 0.4911 0.4781 0.561 14.8 
ln of GDP per capita 0.0513 0.0499 0.055 9.2 
ln of rural GDP per capita 0.0088 0.0086 0.006 -42.8 
homicide rate -0.003 -0.0029 -0.007 58.3 
water company 0.0081 0.0079 0.001 0 
sewer company  -0.0123 -0.0120 -0.082 85.4 
Notes: Elaboration by the Author. 
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5. Conclusions 

 The first objective of this thesis was to explore the behavior of the population size 

distribution of Brazilian Minimum Comparable Areas (MCAs) covering all Brazilian territory 

between 1970 and 2010, revisiting the traditional rank-size rule and Markov chain 

approaches. In order to bring up more accurate information on the dynamics and evolution of 

the population distribution, the spatial dependence is introduced through the analysis of LISA 

Markov and Spatial Markov Chains, both developed by Rey (2001). The second and main 

objective of the present thesis was to model population growth dynamics of Brazilian 

Minimum Comparable Areas (MCAs) in order to assess the determinants of population 

growth of these units between 1970 and 2010 and examine the existence and magnitude of 

spatial interaction and spatial spillover effects associated with these determinants. 

 Initially, the non-parametric normal kernel density functions estimates brought 

evidence that behavior in the distribution shape may indicate that divergence in population 

size of MCAs is decreasing. The Zipf's law estimation indicates that the population 

distribution is, decade by decade, moving away from Pareto law. In other words, this result 

shows that in the Brazilian case, over time, less and less the ranking of cities is influenced by 

its size. In the estimation of quadratic rank-size equation, the curvature presents downward 

concavity; there is a negative correlation between ranking variation and size. 

 The traditional Markov chain approach brings as main evidence the high probabilities 

on the main diagonal indicating a low interclass mobility, high-persistence of MCAs to stay in 

their own class size from one decade to another over the whole period. As suggested by Rey 

(2001), a spatial Markov transition probability matrix was constructed to analyse the spatial-

temporal dynamics of relative population distribution, i.e., considering the possible influence 

from neighbours on the transition of regions. The results bring evidence that different spatial 

contexts have different effects on transition for regions. Specifically, the probability of 

upward transitions will increase for MCAs with neighbours in high classes. Another 

interesting results is that the MCAs grouped into medium classes have a higher probability of 

a downward transition if their neighbours are in a less populated class (class 1).  The opposite 

happens if the neighbours are the most populous class (class 4). This evidence highlights 

again the major role of medium-size localities in the processes of urban agglomeration that 

occurred in Brazil during the last 40 years, even considering the spatial context. In relation to 

the LISA Markov approach, we found evidence of stability in the population distribution 

behavior over time that corroborate with the normal non-parametric kernel density functions 
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estimates. Additionally, we investigated further highly populated communities that propelled 

the neighbours (MCAs that were populated above average and had less populous neighbours, 

while in the following period the neighbours became highly populated). It was identified that 

some municipalities, mainly in the north and northeast have played this role in the past 40 

years, including some capitals of their respective states. Investigate more deeply the 

municipalities with this feature is an interesting suggestion for future research.  

  To achieve the second objective, we extended the population growth model 

developed by Glaeser et al. (1995) and Glaeser (2008) to include spatial interaction effects, 

both theoretically and empirically. Instead of treating cities as independent entities, we 

included interaction effects in the production function by assuming that knowledge 

accumulated in one economy may depend on knowledge accumulated in other economies, as 

well as interaction effects in the utility function by assuming that (dis)amenities in one 

economy may also (dis)benefit individuals living in other economies. Depending on whether 

or not utility of individuals is also assumed to be negatively correlated with population size 

and population growth of neighboring economies, we show that the population growth rate 

that can derived from this extended urban growth model eventually results in an econometric 

model that in the spatial econometrics literature is known as either a dynamic spatial Durbin 

error model (SDEM) or a dynamic general spatial nesting (GNS) model. To discriminate 

between these two models empirically and because the parameters of a dynamic GNS model 

are not identified, we test the dynamic SDEM and the dynamic spatial Durbin model (SDM) 

against each other. To carry out this test, we take a Bayesian perspective since it not only 

offers the opportunity to calculate Bayesian posterior model probabilities of both 

specifications, but also to compare the performance of these models using the log-marginals 

of different potential specifications of the neighborhood matrix. We find that the SDM 

specification in combination with the first-order binary contiguity matrix gives the best 

performance of all 44 possibilities being considered. Based on this finding, we conclude that 

the empirical results point to the utility function accounting for population size and population 

growth of neighboring economies and to the corresponding dynamic SDM specification.  

According to the results, some spatially lagged variables, including the endogenous 

variable, showed highly significant coefficients. This result reinforces that these variables 

should not be excluded from the model. After considering a spatial panel data structure for 

Brazilian municipalities, we calculate the direct and indirect effects of short-term and long-

term derived from population growth equation when the specification is the dynamic SDM 

model including time period fixed effects and space-specific fixed effects. 
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To make inferences regarding the statistical significance of the direct, indirect and 

total effects, were performed 100 simulated parameter combinations drawn from the 

multivariate Normal distribution implied by the ML Estimates. Some of the main results of 

the direct effects are: conditional convergence in population growth rate of Brazilian 

municipalities; a large rural population at the beginning of the decade will lead to a reduction 

in population growth after 10 years; areas that have a higher percentage of literate people in 

the initial period have a higher population growth rate in both short and long terms, an 

increase in GDP per capita in a given locality results in an increase in its growth rate, in short 

and long term.  

 Moreover, based on statistical significance verified through the t-statistics calculated, 

we found that some variables have statistically significant indirect effects. In other words, we 

found evidence of spatial spillovers in the determinants of population growth in Brazilian 

minimum comparable areas between the 1970s and 2010. Among these results, we find that 

five determinants of population produce significant indirect effects in the long term: rural 

population size, population density, the birth rate, the literacy rate and the homicide rate. This 

implies that a change of such a variable in one unit, also significantly affects population 

growth in other units, a phenomena that in most previous studies on population growth has 

been ignored. We find that such a non-spatial approach for Brazil underestimates the long-

term total effects of the explanatory variables by 27% on average. Regarding the last four 

determinants we also find that the magnitude of the cumulative effect over all neighbors is as 

large as the magnitude of the impact on the city itself.  
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Appendix 
 
Table A1 – High-Populated Municipalities that Propelled the Neighbours 

1970-1980 1980-1991 1991-2000 2000-2010 
Municipality FU Municipality FU Municipality FU Municipality FU 
Terra Santa PA Belém PA Aracaju SE Presidente Sarney MA 
Faro PA Redenção PA Marataizes MG Pinheiro MA 
Oriximiná PA São Geraldo do Araguaia PA Itapemirim MG Pedro do Rosário MA 
Santa Filomena PE Conceição do Araguaia PA Jundiaí SP São Luís MA 
Ouricuri PE Xinguara PA Itajaí SC Itapagé CE 
Santa Cruz PE Rio Maria PA 

  
Tejuçuoca CE 

Mata de São João BA Piçarra PA 
  

Catunda CE 
Camaçari BA Floresta do Araguaia PA 

  
Santa Quitéria CE 

Dias d'Ávila BA Sapucaia PA 
    Araguari ES Pau d'Arco PA 
    Coronel Fabriciano ES Natal RN 
    Campinas SP João Pessoa PB 
    Itapevi SP Conceição do Coité BA 
    Saltinho SP Monte Santo BA 
    Piracicaba SP Madre de Deus BA 
    São Roque SP Salvador BA 
    Araçariguama SP Senhor do Bonfim BA 
    Curitiba PR Andorinha BA 
    Foz do Iguaçu PR Uberaba ES 
    Santa Terezinha de Itaipu PR Delta ES 
    Poxoréo MT Atibaia SP 
    Cana Brava do Norte MT Itapira SP 
    Campo Verde MT Sorocaba SP 
    Campinápolis MT Balneário Arroio do Silva SC 
    Cuiabá MT Araranguá SC 
    Jaciara MT 

      Novo São Joaquim MT 
      Juscimeira MT 
      Ribeirão Cascalheira MT 
      Alto Boa Vista MT 
      São José do Xingu MT 
      Canarana MT 
      Confresa MT 
      Santa Terezinha MT 
      Querência MT 
      Dom Aquino MT 
      Primavera do Leste MT 
      Luciara MT 
      Barra do Garças MT 
      Nova Xavantina MT 
      São Félix do Araguaia MT 
      São Pedro da Cipa MT 
      Cocalinho MT 
      Porto Alegre do Norte MT 
      Araguaiana MT 
      Água Boa MT 
      Vila Rica MT 
      Brasília DF             

Notes: Elaboration by the Author. FU = Federal Unit (State). 
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Table A2 - Test of difference between the conditional transition matrix against the overall 
transition matrix 

Spatial Conditioned 
Transitions Submatrices Chi2 P-value Degrees of freedon 

1 61.8955 0.0000 9 
2 24.1559 0.0041 9 
3 26.3733 0.0018 9 
4 148.6507 0.0000 9 

Notes: Estimates by the Author. 
 
 
Table A3 – Correlation coefficients between explanatory variables 

ln rural population 1.00                         
ln density -0.25 1.00 

           mean age -0.32 0.13 1.00 
          birth rate -0.29 -0.16 -0.05 1.00 

         literacy rate -0.30 0.14 0.60 -0.15 1.00 
        agriculture 0.23 -0.32 -0.31 0.21 -0.48 1.00 

       manufacturing/services -0.09 0.11 0.14 -0.07 0.20 -0.19 1.00 
      workforce occupied 0.09 -0.04 -0.29 0.14 -0.20 0.48 -0.08 1.00 

     ln GDP per capita -0.26 0.19 0.40 -0.13 0.76 -0.42 0.19 -0.07 1.00 
    ln rural GDP per capita 0.10 -0.44 0.02 0.19 0.05 0.46 -0.07 0.38 0.20 1.00 

   homicide rate -0.05 0.17 0.02 -0.13 0.14 -0.25 -0.03 -0.19 0.18 -0.19 1.00 
  water company -0.36 0.26 0.56 -0.18 0.65 -0.64 0.11 -0.40 0.55 -0.20 0.18 1.00 

 sewer company  -0.30 0.26 0.51 -0.13 0.53 -0.45 0.11 -0.22 0.49 -0.10 0.07 0.64 1.00 
Notes: Estimates by the Author. Database from Demographic Census for 1970, 1980, 1991, 2000 and 2010. 
 


