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ABSTRACT

This work develops models for quantifying risk and reliability-related metrics of systems
in different phases of their life cycle. For systems in the design phase, a Multi-Objective
Genetic Algorithm (MOGA) is coupled with Discrete Event Simulation (DES) to pro-
vide non-dominated configurations with respect to availability and cost. The proposed
MOGA + DES incorporates a Generalized Renewal Process to account for imperfect
repairs and it also indicates the optimal number of maintenance teams. For the oper-
ational phase, a hybridism between MOGA and Risk-Based Inspection is proposed for
the elaboration of non-dominated inspection plans in terms of risk and cost that comply
with local regulations. Regression via Support Vector Machines (SVR) is applied when
the reliability-related metric (response variable) of an operational system is function of a
number of environmental and operational variables with unknown analytical relationship.
A Particle Swarm Optimization is combined to SVR for the selection of the most relevant
variables along with the tuning of the SVR hyperparameters that appear in its training
problem. In order to assess the uncertainty related to the response variable, bootstrap
methods are coupled with SVR to construct confidence and prediction intervals. Numer-
ical experiments and application examples in the context of oil industry are provided.
The obtained results indicate that the proposed frameworks give valuable information for
budget planning and for the implementation of proper actions to avoid undesired events.

Keywords: Risk and Reliability in Oil and Gas Industries, Redundancy Allocation,
Inspection Plans, Failure Prediction, Multi-objective Genetic Algorithms, Support Vector
Machines.



RESUMO

Nesse trabalho sao desenvolvidos modelos de quantificacdo de métricas de risco e con-
fiabilidade para sistemas em diferentes etapas do ciclo de vida. Para sistemas na fase
de projeto, um Algoritmo Genético Multiobjetivo (MOGA) é combinado a Simulagao
Discreta de Eventos (DES) a fim de prover configuragbes nao-dominadas com relagao a
disponibilidade e ao custo. O MOGA + DES proposto incorpora Processos de Renovacao
Generalizados para modelagem de reparos imperfeitos e também indica o niimero 6timo de
equipes de manutencao. Para a fase operacional é proposto um hibridismo entre MOGA
e Inspecao Baseada no Risco para elaboragao de planos de inspecao nao-dominados em
termos de risco e custo que atendem as normas locais. Regressao via Support Vector Ma-
chines (SVR) é aplicada nos casos em que a métrica relacionada a confiabilidade (varidvel
resposta) de um sistema operacional é fungao de varidveis ambientais e operacionais com
expressao analitica desconhecida. Otimizacao via Nuvens de Particulas é combinada a
SVR para a selecao simultanea das variaveis explicativas mais relevantes e dos valores
dos hiperparametros que aparecem no problema de treinamento de SVR. Com o objetivo
de avaliar a incerteza relacionada a variavel resposta, métodos bootstrap sao combinados
a SVR para a obtencao de intervalos de confianga e de previsao. Sao realizados experi-
mentos numéricos e sao apresentados exemplos de aplicagdo no contexto da industria do
petréleo. Os resultados obtidos indicam que os modelos propostos fornecem informacoes
importantes para o planejamento de custos e para a implementacao de agdes apropriadas
a fim de evitar eventos indesejados.

Palavras-chave: Risco e Confiabilidade nas Indtstrias de Petréleo e Gas, Alocagao de
Redundancias, Planos de Inspecao, Previsao de Falhas, Algoritmos Genéticos Multiobje-
tivo, Support Vector Machines.
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1 INTRODUCTION

Risk is a measure of the potential losses due to natural or human activities and is quan-
titatively defined by the interaction of an event that leads to natural or artificial hazard
exposure, its likelihood or frequency of occurrence and its related consequences (MODAR-
RES, 2006). Regarding industrial activities and their associated hazards, the estimation
of frequencies depends greatly on the reliability of systems’ components (MODARRES
et al., 1999). Hence, the consideration of reliability aspects of production processes are
fundamental in the assurance of system, environmental and human safety.

The occurrence of failures can lead to system shutdowns, loss of production, equipment
damage. In more complex systems, e.g. oil and gas industries and nuclear power plants,
failures can incur accidents that degrade the environment and prejudice human integrity.
All these undesired effects are translated into increased costs due to system recovery,
legal penalties and organization’s affected image in face of society. Failure prediction
modeling of systems may be conducted during various phases of their life cycle, including
the concept validation and definition, the design and operation. At any stage, obtained
predictions serve the purpose of anticipating the reliability behavior of the systems so as
to enable the implementation of appropriate actions for their maintaining and, possibly,
improvement (ZIO et al., 2008). Also, those predictions allow for a cost evaluation due
to maintenances and inspections, which is a valuable information for properly planning
the allocation of resources to these activities.

Systems in different stages of their life cycle may demand various approaches for
reliability assessment. For example, in the design phase, simulation techniques can be ap-
plied to imitate components’ and system’s failure-operation processes, which depend on
system’s logic, number of redundancies, among other characteristics. Discrete Event Sim-
ulation (DES) is a powerful tool for systems’ dynamic modeling, as realistic aspects can be
introduced, e.g. effectiveness of repairs, availability of maintenance teams, among others.
Besides, system’s configurations can be determined with respect to various objectives such
as cost and availability, by coupling the simulation method with an optimization proce-
dure to define, for example, the types and the number of redundancies in each subsystem.
As cost and availability are ususally conflicting objectives, a multi-objective approach can
be adopted. In fact, this is a variation of a Redundancy Allocation Problem (RAP), which
in its traditional single-objective formulation concerns the definition of the numbers of
(equal) redundancies in each subsystem that maximize overall system reliability subject
to cost constraints (KUO et al., 2001).

In the operational phase of an equipment, inspection activities play an important role
as an integrity control technique to track the real state of the equipment often exposed to a
damage mechanism. Risk-Based Inspection (RBI) (API, 2008) has been used for guiding



Chapter 1 INTRODUCTION

inspection activities mainly on equipments of the petrochemical industry. Based on a
predefined risk level — risk target — and on the information provided by an inspection, the
actual risk to which the equipment is exposed is updated by RBI, which indicates when
the next inspection should occur. However, RBI requires the risk target a priori and it
does not consider the expenditures due to the inspection performance. In this way, as
minimum cost and risk are both desired but conflicting, a multi-objective optimization
emerges as an alternative to overcome the drawbacks of RBI: a risk target is not required,
as risk is an objective to be minimized, and the cost due to inspections is also considered
as an objective.

In multi-objective optimization, a solution that optimizes all objectives concurrently
is very difficult to be reached or it does not exist. In this way, instead of having a unique
solution as in single objective cases, one may obtain a set with multiple solutions. These
solutions, named nondominated solutions, present a compromise among objectives and
usually do not yield an optimal value for either of them individually. Once this set is
obtained, the decision maker can choose any of its elements based on her preferences and
then implement the selected solution.

Probabilistic optimization methods, such as Genetic Algorithms (GAs) have interest-
ing characteristics to handle multi-objective optimization problems (DEB, 1999): (i) they
are population-based, that is, many potential solutions are simultaneously considered;
(ii) they permit a separated treatment of the different objectives, thus not requiring any
transformations of the multiple objectives into a unique function. GAs (GOLDBERG,
1989) attempt to computationally imitate natural evolution process in which the fittest
individuals are more likely to remain in population. In the optimization context, an in-
dividual is a potential solution of the considered problem and a set of individuals is the
population, which evolves according to some genetic-based operators, such as selection,
crossover and mutation.

Frequently, the reliability behavior of an equipment during its operational phase is
influenced by a number of factors usually interdependent and an analytical model of the
reliability behavior of these systems becomes impractical. For these situations, in which
the underlying process that maps input — regressors, influential variables — into output
— response or target variable — is not known, empirical regression via Support Vector
Machines (SVMs) — Support Vector Regression (SVR) — is an effective option. SVM
is a supervised learning method whose foundations stem from the statistical learning
theory (VAPNIK, 2000). The training step of SVMs involves a quadratic optimization
problem for which the Karush-Kuhn-Tucker first order conditions for a global optimum are
necessary and sufficient, differently from other learning techniques such as Artificial Neural
Networks (ANNs) that can be trapped on local minima (SCHOLKOPF & SMOLA, 2002).
Also, the SVM training objective function embodies the Structural Risk Minimization

(SRM) principle, which consists in the minimization of the errors computed in the training
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phase and also of the errors associated with the machine capacity in accurately predicting
the response variable related to input observations not in the original training data set
(the so-called generalization ability). On the other hand, ANNs entail the Empirical Risk
Minimization (ERM) principle, which only considers the minimization of the training
error and is suitable for handling large amounts of data (VAPNIK, 2000).

The performance of SVM is highly dependent on the values of some hyperparam-
eters that appear in the associated training problem. The simultaneous adjustment of
these hyperparameters by trial and error is time-consuming and does not guarantee the
achievement of good values for them. Thus, structured methods such as grid and pat-
tern search (MOMMA & BENNETT, 2002), gradient-based methods (CHAPELLE et
al., 2002; CHANG & LIN, 2005; ITO & NAKANO, 2003) and heuristics such as Particle
Swarm Optimization (PSO) (LIN et al., 2008; FEI et al., 2009; LINS et al., 2010a, 2010b)
and GA (PAI, 2006; CHEN, 2007) have been used to tune SVMs hyperparameters. These
procedures are usually driven by performance metrics based on validation data, which is
a part of the available data set not used in actual training.

Furthermore, in practice, among the many factors that are supposed to influence
the response variable, only a subset of them may be important to describe its behavior.
Actually, some of these potential regressors may be redundant, noisy or even irrelevant for
predicting the response variable. Thus, a variable selection procedure may be applied to
identify such a subset of variables. According to Guyon & Elisseeff (2003), the objectives
of variable selection are to improve the prediction performance of predictors (e.g. SVMs),
to construct faster predictors and also to provide better understanding of the underlying
process that might have generated the response variable. Given that the introduction or
removal of input variables change the data set, a hyperparameter tuning may be performed
in order to avoid an eventual decrease in the predictive ability of SVM.

As in any regression method, once the SVR regression function is estimated, pre-
diction becomes a straightforward task: values of the input variables are applied to the
regression formula and an estimated value of the response is obtained. In this way, if
the same observed values are used in the estimated model, the point estimate will be
exactly the same no matter how many calculations are performed. However, it is also
important to evaluate the uncertainty related to the response variable so as to provide
not only accurate point estimates, but also the more informed confidence and prediction
intervals, which give an idea about the precision of the quantities under consideration. In
order to preserve the interesting non-parametric properties of SVR, non-parametric boot-
strap methods (EFRON, 1979; EFRON & TIBSHIRANI, 1993) can be used to perform
uncertainty analyses concerning the response variable.

In this section, some limitations of the techniques for reliability modeling have been
presented and this work aims at solving them in the following contexts: (i) design of sys-

tems submitted to imperfect repairs considering availability and cost; (ii) elaboration of
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efficient inspection plans in terms of risk and cost; (iii) prediction of Times Between Fail-
ures (TBFs) via SVR models with adjusted hyperparameters and most relevant subset of
regressors; (iv) construction of confidence and prediction intervals concerning failure times
by means of bootstrapped SVRs. In next section, the main motivations and justifications

of the work are given for each of these contexts.

1.1 Motivation and Justification

By an organizational perspective, systems without considerations about risk and re-
liability may cost less at a first glance, however the undesired failures’ consequences in
its various forms — unsatisfied demand, components’ replacement, system recovery, hu-
man losses, environmental accidents — are more prone to occur, which certainly increase
costs and can definitely harm the companies’ activities. These effects can be reduced or
even avoided by means of well performed risk and reliability analyses, which are specially
important when the consequences are severe.

On the other hand, by the viewpoint of stakeholders — employees, costumers, suppliers,
investors, nearby population, society, — organizations committed to offer goods and/or
services originated from safe and reliable production systems seem “healthier” to support
and to invest in. Thus, investments in reliable and safe processes turn into competitive
advantage to the company for maintaining and increasing its market share.

In addition to these general motivations, in the following, further details on the limi-
tations of the techniques in the areas of interest previously mentioned are provided. Some

of these limitations are tackled in this work by the use of metaheuristics (multi-objective
GAs, PSO), SVR and simulation methods.

1.1.1 Multi-objective Redundancy Allocation Problems

According to (KUO & WAN, 2007), it is usually difficult for a single objective to
adequately describe a real problem for which an optimal design is required, thus multi-
objective approaches deserve attention. In this context, Multi-objective Genetic Algo-
rithm (MOGA) emerges as an alternative optimization procedure to tackle multi-objective
RAPs. Moreover, the authors comment the existence of many unsolved topics related to
redundancy allocation, including optimal design of nonrenewable systems. Indeed, the
majority of the works considering repairable systems involve components with constant
failure rates, thus use an underlying Exponential distribution to model their failure pro-
cesses (BUSACCA et al., 2001; ELEGBEDE & ADJALLAH, 2003; CHIANG & CHEN,
2007; JUANG et al., 2008).

However, the hypothesis of components with constant failure rates is often non-

realistic, as it does not incorporate the effects of component degradation / improvement.
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Therefore, such a supposition can mislead the evaluation of some characteristics of the
complete system such as system reliability. Specifically in the context of software reliabil-
ity, Littlewood (2008) points out the irrelevant results provided by non-realistic assump-
tions upon reliability models. Jones & Hayes (2001) state that, in the context of electronic
systems, the hypothesis of constant failure rates are not met in real situations and may
deceive the estimation of the entire system reliability. Also, Bowles (2002) discusses and
illustrates the effects of assuming constant failure rates in modeling component reliabil-
ity in system design with Weibull distributions with the same Mean Time To Failure
(MTTF) and different shape parameters (/3), including the special case when 5 = 1, i.e.
an Exponential distribution. By considering a non-repairable parallel redundant system,
it is shown that if components are supposed to have a constant failure-rate but actually
have either increasing or decreasing hazard functions, the complete system reliability is
either overestimated or underestimated, respectively.

The works of Cantoni et al. (2000) and Lins & Droguett (2009) present some sophisti-
cation regarding the reliability portion of the redundancy allocation problem. The former
couples GA with Monte Carlo simulation in order to obtain an optimal plant design.
They tackle a single objective redundancy allocation problem in which it is desired to
obtain a combination of several repairable components to be placed in a series-parallel
layout in order to maximize system profit. They consider that all standby components
are cold (there are no failures in standby mode) and that components failure rates are
constant from the time they return from a maintenance intervention to the time of the
very next failure. This means that the system deterioration during operational time is
not modeled. Moreover, the authors take into account a modified Brown-Proschan (B-P)
model of imperfect repairs, which is in the group of failure intensity models (DOYEN
& GAUDOIN, 2004). The modified B-P approach assumes that either a minimal or a
deteriorating repair is performed with respective probabilities p and 1 — p (i.e. accord-
ing to a Bernoulli distribution). If a minimal repair is performed, the system returns
to operation with the same condition it had before the failure occurrence (failure-rate
remains the same). Otherwise, if a deteriorating repair is executed, the system returns
to operation worse than it was before the failure occurrence (failure-rate is increased by
a given percentage).

The other work, from Lins & Droguett (2009), tackles RAPs for repairable systems via
MOGA and DES. It does not consider constant failure rates, but involves the supposition
of perfect repairs, which are often not met in practice. Also, Lins & Droguett (2008)
propose a combination of a Multi-objective Ant Colony Optimization (MOACO) and
DES for solving RAPs involving systems with imperfect repairs modeled by a Generalized
Renewal Process (GRP), but do not optimize the number of maintenance teams.

In fact, any improvement in system reliability / availability demands resources, which

in turn raise the associated costs. As a consequence, a more realistic treatment of RAPs
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in repairable systems should consider not only the choice of components and systems
configurations, but also the number of available resources. Marseguerra et al. (2005), for
example, aim to encounter the optimal number of spare parts, which are a sort of resource,

but they do not aggregate it with finding optimal system configurations.

1.1.2 Multi-objective Inspection Plans

Planning inspections involve the definition of which techniques have to be adopted and
when they have to be performed in full compliance with local and specific regulations.
In the context of oil and petrochemical industries, RBI has been used to support the
management and scheduling of inspections.

However, in RBI methodology, the risk target is usually user defined and not an
objective to be optimized. Thus, there is no guarantee about the efficiency of inspections
plans elaborated based on such a risk level. Also, it does not take into account the costs
associated with the inspection activities and does not suggest how resources should be
allocated. For example, it does not indicate if it is better to perform a number of low cost
/ low-effective inspections or fewer inspections with higher effectiveness.

Since techniques of high effectiveness are usually more expensive, it is not interest-
ing to only adopt them instead of using simpler but cheaper inspections. Additionally,
regulations often provide a maximum permitted period between inspections using differ-
ent techniques. In this context, a multi-objective approach emerges as an alternative to
handle the conflicting objectives of risk and cost so as to create efficient inspection plans
that comply with regulation standards concerning several inspection techniques. Given
a planning horizon, the idea is to find the optimal compromise between risk and cost
by answering two questions: (i) in each period, an inspection should or should not be
performed? and (ii) if the answer of (i) is affirmative, which techniques should be used?

Depending on the number of periods considered within the planning horizon and
on the quantity of inspection techniques, the number of possible inspection plans can
be prohibitively large for an exhaustive evaluation of their performance. In this way, a
probabilistic approach such as MOGA can be adopted for the quest of inspection plans

representing the optimal compromise between risk and cost.

1.1.3 Variable Selection and Adjustment of Support Vector Regression Hy-

perparameters

In the SVM context, Rakotomamonjy (2003) performs variable selection for classifi-
cation based on relevance criteria originated from SVM theory (weight vector and upper
bound of the generalization error). The author uses a backward elimination strategy, in

which the initial model involves all variables and the least promising ones are progres-
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sively eliminated (GUYON & ELISSEEFF, 2003). Search for SVM hyperparameters is
not performed but the author states that more work should be devoted to the problem of
hyperparameter selection in conjunction to that of variable selection.

Probabilistic heuristics such as PSO (KENNEDY & EBERHART, 1995) and GAs
(GOLDBERG, 1989) are flexible to permit the simultaneous resolution of variable and
SVM hyperparameter selection problems. For SVM classification, (FROHLICH et al.,
2003) and (LIN et al., 2008) apply, respectively, GA and PSO methods to tackle both
problems at the same time. However, GAs often require more computational effort than
PSO, given the necessity of various genetic operators to mimic the evolutionary process,
e.g. mutation, crossover, among others. The main idea of PSO is derived from the motion
of groups of organisms, e.g. schools of fishes and flocks of birds. The swarm evolution
is mainly governed by a couple of update equations concerning particles’ velocities and
positions in the search space. Indeed, besides the computational advantage of PSO over
GA, (BABAOGLU et al., 2010) report the better accuracy of PSO-based feature selection
for SVM classification problems.

For SVR, Yang & Ong (2010) use a grid search method to tune SVR hyperparameters
previous to variable selection by a recursive feature elimination scheme, which is an in-
stance of backward feature elimination (GUYON et al., 2002). At each step of the algo-
rithm, after the specification of the variables to be included in the regression model, an
SVR training takes place without the re-tuning of the hyperparameters. However, their
most suitable values are dependent on the data set used to guide their search. Thus,
the obtained hyperparameters’ values over a set with all regressors do not guarantee a
satisfactory SVR performance over an adjusted training data.

Wu & Wang (2009), in turn, present successive PSO algorithms for SVR hyperparam-
eter tuning and feature selection. Firstly, a PSO involving a project pursuit technique
(FRIEDMAN & TUCKEY, 1974) is performed for feature selection. Afterwards, another
PSO is applied to hyperparameter selection. Thus, the feature selection is essentially a
preprocessing step and the obtained results are used to feed the SVR algorithm coupled
with the PSO related to hyperparameter search. In this way, the SVR prediction accuracy
is not used to guide the quest for the most relevant subset of features.

Thus, given the importance of selecting the most relevant variables and of tuning of
the SVR hyperparameters for its predictive ability (usually dependent on the available
data set), a method for the concurrent performance of both tasks is required. In this
work, a PSO is combined to SVR to tackle such a problem.

1.1.4 Uncertainty assessment via Bootstrap and Support Vector Regression

After the SVR training step, in correspondence of a new observation of the input

vector x, henceforth called x,, the estimate §j, of the true mean response py(xy) can
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be obtained via the adjusted regression function (i.e. the estimator). Besides point
estimates, confidence intervals for py (x) are also needed to account for the variability
of the estimator. Furthermore, it is important to assess the uncertainty on the prediction
of the response variable Y, itself by means of prediction intervals (MONTGOMERY et
al., 2006).

Given that SVR does not require any hypothesis about the distribution of the error
term, the central limit theorem enables the approximation of confidence and prediction
intervals when large data sets are available (BRABANTER et al., 2011). On the other
hand, for small numbers of data points, the intervals based on bootstrap (EFRON, 1979;
EFRON & TIBSHIRANI, 1993) tend to be more accurate, given that they do not rely
on asymptotic results but on the construction of the limit distribution from the available
data.

The main idea of bootstrap methods is to estimate probability distributions for statis-
tics of interest obtained from the available data. They are widely used in (generalized)
linear, non-linear and nonparametric regression (DAVISON & HINKLEY, 1997). For
example, in linear regression, Cribari-Neto (2004) and Cribari-Neto & Lima (2009) use
bootstraped hypothesis testing and intervals tailored to account for heteroskedasticity
with an estimator of the covariance matrix that considers the effects of leverage points in
the design matrix. In non-parametric regression, Zio (2006), Cadini et al. (2008), Secchi et
al. (2008) and Zio et al. (2010) analyze by bootstrap the uncertainty of ANNs predictions
of nuclear process parameters. In the specific context of SVM, bootstrap approaches have
been mainly applied to classification problems (ANGUITA et al., 2000; TSUJITANI &
TANAKA, 2011). For SVR, Lin & Weng (2004) and Yang & Ong (2010) have proposed
probabilistic outputs, but assuming a probability distribution for the response variable.

Indeed, Brabanter et al. (2011) compares the proposed approximation intervals with
bootstrap intervals, but these were only based on a residuals sampling. In this work,
bootstrap methods — both pairs and residuals schemes — are combined to SVR for the
construction of confidence and prediction intervals. The proposed bootstrapped SVRs are
first tested on a simulated example and then applied to a real case study for the prediction
of scale growth rate on metal surfaces of an equipment used in offshore oil wells.

Given the abovementioned limitations and the general ideas to overcome some of them

in each context, next section gives the main and specific objectives of the thesis.

1.2 A Comprehensive Framework

In spite of the different contexts to which the proposed models are applied, the used
techniques can be combined to form a comprehensive framework to evaluate risk, relia-
bility and cost of production systems. The outcomes can guide, for example, decisions

concerning the allocation of resources related to components acquisition and to inspection
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and maintenance activities.

In Figure 1.1, a connection among the different problems, contexts and techniques
is illustrated. Imagine that, during the operational phase of a component, data related
to failure, maintenance and inspection as well as data concerning operational and envi-
ronmental conditions can be observed and gathered. In a first moment, these data can
feed a learning method, such as SVR, in order to produce accurate reliability prediction
functions with the most relevant influential variables, proper hyperparameters and uncer-
tainty analysis. These adjusted non-parametric models can substitute the probabilistic
distributions concerning components’ Times To Failure (TTFs) in DES, which is used to
mimic the system operational behavior in the design step.

The collected data can also enable the calculation of risk — e.g. via RBI if the compo-
nent is from oil or petrochemical industry — and cost so as a multi-objective optimization
(e.g. MOGA) can be used for the quest of nondominated inspection plans. The selected
inspection plan provided by a post-optimization procedure can be implemented and give
new inspection observations and can also feed the simulation block.

In the case of a critical component, for which failures are extremely undesired, the
failure times predicted by SVR models enable the implementation of preventive actions
that can restore the components to an intermediate state between “new” and “as bad as
before intervention” (e.g. imperfect maintenance). Preventive maintenance can also be
guided by inspection activities. Otherwise, if the component is not critical so that it can
fail, corrective maintenance based on imperfect repairs can be adopted.

A simulation method comprising all these features replicated for several components
and for different combinations among them permits the computation of availability and
cost associated with various system configurations. By coupling simulation with multi-
objective optimization a set of nondominated system configurations can be obtained and
one of them can be chosen to be implemented. When operational, the system provides
observations of each of its components and this completes the cycle.

Therefore, the proposed methods to evaluate risk and reliability during the compo-
nents’ operational phase can be transformed into valuable information for the design
step of systems to be implemented in the future. However, the combination of all men-
tioned aspects into a unique model involving observation, estimation, simulation and
(post-)optimization is a complex task. In this way, instead of directly handling the big
problem, it is wise to divide it into parts and tackle each of them in a separate way so as
to understand their particularities. Often, even the subproblems involve a great amount
of complexity. Afterwards, once the methods used in each of the parts are developed and

stabilized, they can be joined in order to tackle the more general problem.
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Figure 1.1: Relationships among analyzed problems

1.3 Objectives

1.3.1 Main Objective

This thesis proposes quantitative models based on metaheuristics and SVMs to assess

risk and reliability-related metrics of systems in two different life cycle phases:

e Design:

— Development of a MOGA + DES method for the indication of efficient system

designs subjected to imperfect repairs in terms of both availability and cost.

e Operation:

— Development of genetic operators for the MOGA to be combined with the RBI

methodology in order to provide inspection plans representing the optimal

compromise between risk and cost.

10
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— Development of a PSO + SVR for obtaining the subset of the most important
input variables influencing the response along with the proper values for the

SVR hyperparameters, so as to improve the quality of the SVR predictions.

— Combination of SVR with bootstrap techniques for uncertainty handling in
the prediction of equipment failures in order to support maintenance-related

decisions.

1.3.2 Specific Objectives

The following specific objectives are defined in order to attain the main goals of the

thesis:

o Implementation of the metaheuristics MOGA and PSO with the necessary adapta-

tions for each problem.
o Implementation of SVR using Interior Point (IP) methods.

« Comparison of results obtained by the proposed MOGA for system design with the
ones provided by other metaheuristics, such as MOACO, and also with real Pareto

fronts.

o Performance comparison between the model considering all available input variables

as regressors and the reduced model from the proposed PSO + SVR.

o Assessment of coverage properties of the different bootstrap techniques (pairs and

residuals sampling) when combined to SVR.

« Application of the proposed methods for the operation phase to examples and case

studies in the context of oil and gas industries.

1.4 Outline of the Thesis

Besides this introductory chapter, this thesis contains 7 additional chapters, whose

contents are described as follows:

o Chapter 2 concerns the theory underlying the two subsequent chapters involving
MOGA developments. It includes: a description of multi-objective optimization;

an introduction to MOGA; the main concepts of the techniques to be coupled with
MOGA - GRP, DES and RBI.

o Chapter 3 refers to the development of a MOGA and its coupling with DES for

solving multi-objective RAPs with cost and availability as objective functions. Two

11
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performance metrics for comparison between simulated and real Pareto fronts are
presented and used in two validation examples of the MOGA. The proposed MOGA
+ DES is applied to an illustrative example with components submitted to imperfect

repairs.

o Chapter 4 is related to the development of genetic operators specific for the con-
struction of feasible inspection plans and to the coupling of MOGA and RBI for
obtaining inspection plans representing the optimal compromise between risk and
cost. The proposed MOGA + RBI is applied to example involving an oil and gas

separator.

o Chapter 5 contains the theoretical background of the SVM-related chapters: an
overview of SVM; a detailed description of SVR; an introduction to IP methods used
to solve the SVR training problem; comments on the model and variable selection
problems and a description of the PSO method used to tackle them; the general

ideas concerning bootstrap methods.

o Chapter 6 presents the combination of PSO and SVR for the simultaneous variable
selection and SVR hyperparameters adjustment. The proposed PSO + SVR is

applied to an example in the context of onshore oil wells.

o Chapter 7 details the development of bootstrapped SVRs, which are validated in
an artificial example and applied to a case study involving an equipment used in

offshore oil wells.

o Chapter 8 presents the main contributions and limitations of the work along with

suggestions for future research.

12



2 THEORETICAL BACKGROUND - PART 1

This chapter contains the theoretical background used in the MOGA developments
that are present in Chapters 3 and 4. The essential concepts associated with multi-
objective optimization and an introduction of MOGA are provided. Also, the techniques
coupled with the proposed MOGAs — GRP, DES and RBI — are described.

2.1 Multi-objective Optimization

Practical situations often require the achievement of many objectives simultaneously.
In risk and reliability fields, usual goals are to minimize risk, to maximize reliabil-
ity /availability, to minimize costs. The general formulation of a multi-objective opti-

mization problem is:

Hl?X z = [fl(x)a 7fk’<x>] 2.1

s.t gj(x) =0, j=1,...,p, 2.2

h’J(I)Soﬂ j:p_'_l? 4, (23)

in which z is a vector formed by the objective functions f;(z), 7 =1,...,k, x is the vector

of decision variables, p is the number of equality constraints g;(z) and ¢ — p is the number
of inequality constraints h;(x).

Given the conflicting relation among objectives, a unique solution that optimizes all
elements of z at the same time is very difficult to be found or such a solution does not even
exist. In this way, instead of a unique optimal solution as in the single-objective situation,
the resolution of a multi-objective problem may provide a set of solutions representing the
compromise among objectives, all “optimal” according to the multi-objective viewpoint.
This set, formed by nondominated solutions, is known as optimal Pareto set due to the
Italian economist Vilfredo Pareto, who generalized the optimality concept for the multi-
objective context (COELLO et al., 2002).

A solution is nondominated if, for all objectives, it has a performance at least as
good as the performance of the other solutions and, at least for one of the objectives, its
performance overcomes the performance of the others. On the other hand, the dominance

relation is mathematically defined as follows:
1 = To < fi(xy) > fi(xe), Vi and fi(x1) > fi(z2) for some i, (2.4)

where > denotes dominance, x; is a nondominated solution for a maximization problem
and x5 is a dominated solution for the same problem; f;, denotes the hth objective func-

tion. If a minimization problem is considered, the signs > and > in Equation (2.4) are

13
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replaced by < and <, respectively. If one of the conditions in the right side of Equation
(2.4) is not satisfied, z; is said to be nondominated in relation to x5 and vice-versa. That
is, for a number of objectives, x; overcomes the performance of x5 and, for the remain-
ing objectives, xo overcomes the performance of z;. The nondominance relation is also
observed when x; = x.

The concepts of local and global optimality in single-objective optimization are re-
placed by local optimal Pareto set (P) and global optimal Pareto set (P), respectively,
in the multi-objective case (DEB, 1999; ZITZLER, 1999). To define these concepts, let
X be the set of all x that satisfies the constraints in Equations (2.2) and (2.3), i.e., the

feasible set:

o Local optimal Pareto set (P): Vo € P, # ' € X satisfying ||z’ — z|| < ¢ which
dominates any member of P (||-]|| is the Euclidean distance between two points and
e >0).

« Global optimal Pareto set (P): Vo € P, # 2’/ € X such that 2/ = =.

If the solutions in P are substituted in the objective functions, the local Pareto front
(FP) is obtained (Equation (2.5)); following the same reasoning for the solutions of P,
the global Pareto front F'P is found (Equation (2.6)):

FP={fi(2),..., fs(z)),Vz € P}, (2.5)
FP={fi(a),..., fs(z)),Ya € P}. (2.6)

Figure 2.1 illustrates the mapping of solutions for a problem with two maximization
objectives, fi(x) and fo(z), and two decision variables, i.e. x = (x1,23). In the search
space, the light gray ellipse and the elements within it represent the feasible set X. The
black circle with locally nondominated pairs (x7,25) in the same space is the local optimal
Pareto set (P) that is mapped into the local Pareto front (black line) in the objective
space. Similarly, the dark gray circle (P) containing the globally nondominated pairs
(x1,m5) in the search space is mapped into the global optimal Pareto front (dark gray
line) in the objective space. Note that the dominated pairs in the search space produces
dominated Pareto fronts in the objective space (in light gray).

As multiple solutions are available, the multi-objective approach involves two distinct
phases: (i) the search for potential solutions and (ii) the decision making associated to the
selection of a single solution representing the adequate compromise among objectives. The
manner these two phases are combined determines the classification of the multi-objective
methods into three categories (ZITZLER, 1999):

« Decision making before search: the objectives are aggregated into a unique objective

function that implicitly involves information about the decision maker preferences.
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Search space Objective space
Y fa(x)

X M / Global Pareto Front
/
e\—d / Local Pareto Front
)

T fl(x) -

Dominated solutions

Figure 2.1: Mapping of solutions from search space to objective space: local and global
Pareto sets into local and global Pareto fronts. (Adapted from Zitzler (1999), p. 9)

The transformation of a multi-objective problem into a single-objective one enables
the use of techniques devised for the resolution of single-objective optimization prob-
lems. However, the incorporation of the decision maker preferences, usually in the

form of weights, is a relevant step and, in general, demands elicitation methods.

e Decision making during search: the decision maker provides information about her
preferences during the search procedure; at each step they are used in the deter-
mination of new potential solutions. The methods within this category are called
“interactive”; they require the decision maker availability for direct participation in
the search process and that she is familiar with the used elicitation and optimization

procedures as well.

o Decision making after search: the optimization process is performed without any
preference information. As a result, a set of solutions, — ideally Pareto optimal —
is obtained and then the decision maker finally chooses one of them according to
her own preferences. Sometimes, the obtained set of solutions is very large, which
turns the selection of a unique solution into a difficult task. However, the decision-
making after search avoid eventual problems with decision makers non-familiarized

with elicitation and optimization processes required in the previous categories.

The outcome of the methods of the third category is a set of nondominated solutions.
Then another problem arises: given that all solutions are similar from a multi-objective
perspective, which of them the decision-maker must choose? She may select it according
to her own preferences, but such a task often becomes a challenge in practical situations,
specially when they involve budget and safety-related issues. In order to support decision-
making for a given Pareto set, Taboada et al. (2007) suggested data clustering techniques
in order to reduce the number of solutions of the Pareto set: the main idea is to form
groups internally homogeneous externally heterogeneous, to take a representative solution

of each group and to select the most relevant one — such a solution is likely to be related
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to the “knee” region of the Pareto front, in which small deterioration in one objective,
e.g. cost, turns into high improvements on the other e.g. reliability.

Santos et al. (2010), Lins et al. (2011a, 2013) present an interesting game theory
approach to support decisions related to the design of security systems subjected to pur-
poseful attacks. Given the Pareto solutions, the equilibria of a sequential game involving
preferences of both agents (defender and attacker) are the selected solutions. In this work,
however, as only deterioration processes are taken into account, Return On Investment
(ROI) analyses are performed as in Lins & Droguett (2009). The main objective is to
provide the decision-maker with information about how investements (higher costs) are
translated into gains (reduction) in avaialability (risk). ROI analyses are presented in
Sections 3.6.2.1 and 4.5.1.

The two main traditional approaches for multi-objective optimization are the Weighted
Sum and the e-Perturbation methods (DEB, 1999; COELLO et al., 2002). Both of
them transform the multi-objective problem into a single-objective one. The Weighted
Sum Method makes use of weights to aggregate all the objective functions into a single
objective-function. The weights do not represent the relative importance among objec-
tives: they are only factors that may be altered to locate different points in the optimal
Pareto set. One of the main drawbacks of the Weighted Sum Method is the fact that
it cannot find solutions in non-convex regions of the Pareto front if the Pareto front is
non-convex (MESSAC et al., 2000).

In the e-Perturbation Method, an objective is arbitrarily chosen (or the one considered
as the most important) and optimized as the others become constraints that must satisfy
acceptable levels previously defined. Different Pareto optimal solutions are found by
varying the acceptable levels. The choice of the acceptable levels demands a preliminary
analysis since inappropriate values can result in empty feasible sets (DEB, 1999).

In addition, both traditional methods not only require multiple runs in order to obtain
different optimal Pareto solutions (it is expected that they are indeed optimal Pareto solu-
tions). Alternatively, nature-based algorithms such as GAs and Ant Colony Optimization
(ACO) can be used to resolve multi-objective problems. These algorithms overcome some
of the drawbacks of the above-mentioned traditional methods: they handle many poten-
tial solutions simultaneously, which allow the achievement of different Pareto solutions in
a single run of the algorithm and do not impose any requirements regarding the convexity
of the Pareto front.

2.1.1 Multi-objective Genetic Algorithms

GAs attempt to computationally mimic the natural evolution process by the use of
genetic operators such as selection, crossover and mutation. They are mainly applied in

optimization problems that have some characteristics not accepted by traditional methods
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of mathematical programming and are within the group of probabilistic optimization
methods. In addition to the fact that more than one objective is taken into account,
the main difference between the single objective GA and the multi-objective GA is the
selection phase. In the multi-objective case, the concept of dominance is directly or
indirectly incorporated in that step. Table 2.1 lists the main multi-objective methodologies
involving evolutionary algorithms. For further details in single and/or multi-objective GA,
see Goldberg (1989), Michalewicz (1996), Deb (1999), Messac et al. (2000) and Coello et
al. (2002).

Table 2.1: Main methods of multi-objective optimization via evolutionary algorithms

Method Author(s) and date
Vector Evaluated Genetic Algorithm (VEGA) Schaffer (1985)

MOGA Fonseca & Fleming (1993)
Niched-Pareto Genetic Algorithm (NPGA) Horn et al. (1994)
Nondominated Sorting Genetic Algorithm (NSGA) Srinivas & Deb (1994)
Strength Pareto Evolutionary Algorithm (SPEA) Zitzler (1999)

Nondominated Sorting Genetic Algorithm IT (NSGA-II) Deb et al. (2002)

In this work, integer-coded MOGAs are adopted and they do not make use of elab-
orated fitness metrics; hence each individual has an associated fitness vector with size
equal to the number of the considered objectives. One MOGA is coupled with DES to
solve a multi-objective RAP, which is detailed in Chapter 3. Another MOGA is combined
to RBI in order to provide optimal inspection plans in terms of risk and cost. The latter

methodology is described in Chapter 4.

2.2 Generalized Renewal Processes

The usual stochastic processes to model the failure-repair process of repairable com-
ponents (or systems) are the Renewal Processs (RPs) and the Non-Homogeneous Poisson
Processs (NHPPs). Both of them are counting processes and the Times To Repair (TTRs)
are negligible if compared to the component operational time. If RP is chosen, the TBFs
are independent and identically distributed (i.i.d.) with an arbitrary probability distribu-
tion. Besides, one assumes that the component, after a failure, is subjected to a perfect
repair and returns to operation with a condition it presented when new (“as good as
new”). On the other hand, using NHPP, the TBFs are neither independent nor identi-
cally distributed. In addition, it is supposed that the maintenance crew makes a minimal
repair in the failed component, that is, it returns to an operational state with the same
condition it had just before the failure occurrence (“as bad as old”).

Nevertheless, the assumption of minimal or perfect repairs required to utilize either

NHPP or RP, respectively, is often not realistic. In practical situations, corrective mainte-
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nance actions are likely to be imperfect repairs, i.e., they are intermediate actions between
minimal and perfect repairs and the equipment returns to operation with a condition bet-
ter than old and worse than new. In this way, GRPs can be used to model failure-repair
processes of components subject to imperfect repairs. In GRP, a parameter ¢ (rejuve-
nation parameter) is introduced in the model and the value it assumes is related to the
maintenance action efficacy (see Table 2.2). The common values of ¢ are in [0, 1], but
q < 0 and ¢ > 1 are also possible and represent the improved and the worse repair,
in this order. However, an improved repair might require some project modifications of
the component and this is not a procedure used in ordinary repair actions (MOURA et
al., 2007). Also, a corrective maintenance action that returns the equipment worse than
immediately before the failure occurrence is not common in real situations. In this work,

the rejuvenation parameter is considered to be in [0, 1].

Table 2.2: Repair classification according to parameter ¢

q value Repair type

g<0 Improved
q=0 Perfect
0<qg<1 Imperfect
qg=1 Minimal
qg>1 Worse

The parameter ¢ is used in the calculation of the component virtual age (V},), which
is defined as follows:
Vn = anl + an7 (27)

where X, is the time between the (n — 1)th and the nth failure. By definition, V4 = 0.
Thus the expansion of Equation (2.7) yields:

Vo = quia (28)

where >°7" ; X; is the real component age.

The definition of virtual age presented in Equations (2.7) and (2.8) is in accordance
with Kijima Type I model, which assumes that the repair actuates just on the very last
failure and compensates only the damage accumulated in the interval between the (n—1)th
and nth failures. In this way, only the additional age X, is reduced.

The distribution of the nth failure time (7)) can be calculated by a probability dis-

tribution function conditioned to the (n — 1)th component virtual age, as follows:

F(zplvn—1) = P(X <,V >v,1) = P(T, < vy + 20|V > v5-1) (2.9)
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 F(zn+vp-1) — F(vn-1)
_ . , (2.10)

If the TBFs are distributed according to a Weibull distribution with o and g as scale

and shape parameters, respectively, (2.10) becomes as follows:

Flan|vn1) =1 — exp [(”Z‘)B — (W>6] (2.11)

«

If the TTRs are not small when compared to the component operational time, they
might be taken into account in the system failure-repair process evaluation. In this way,
two different GRP counting processes can be considered: one related to failure occurrences
and the other to repair actions. The superimposing of these stochastic processes yields an
alternating process that characterizes the component state, i.e., if it is either operational
or under a maintenance action.

Suppose that a system is made of many components and that the failure-repair process
of each one of them follows the two above-mentioned GRP. Thus, the failure-repair process
of the entire system is a superimposition of all components failure-repair processes, which,
in turn, are alternating processes. The analytical handling of the failure-repair process of
the full system is not possible and, as an alternative, DES can be adopted. A detailed
discussion about RP and NHPP is found in Rigdon & Basu (2000) and Rausand &
Hoyland (2004). For more information on GRP, see Kijima & Sumita (1986), Yaties et
al. (2002) and Moura et al. (2007).

2.3 Discrete Event Simulation

The DES framework is specially useful when the system characterization involves
a complex logical structure among its components. The underlying idea of DES is to
stochastically generate “events” of interest over time in order to obtain quantities ne-
cessary for evaluating system performance. The basic elements of a DES are variables
and events. The variables are usually categorized into: (i) time variable (¢), which is
the amount of simulated time; (ii) counter variable that refers to the number of times an
event have occurred by time ¢; (iii) system state variable that concerns the state of the
system on time ¢ (ROSS, 2002). Whenever an event occurs, these variables are updated
and the dynamics of the system can be observed. In the end of the simulation period,
an overview of the system behavior during simulation time can be provided along with a
performance assessment.

In the case of the system configurations related to RAPs, failure and repair of each
component are the fundamental events of interest. By means of the states of the various

components at a given time and of the system logic, the state of the entire system can be
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determined. Indeed, the system logic is often represented by reliability block diagrams
(MODARRES et al., 1999) and computationally assessed by Binary Decision Diagram
(BDD) (RAUZY, 2001).

2.3.1 Binary Decision Diagrams

A BDD represents a Boolean function as a rooted, directed acyclic graph (BRYANT,
1992). As an illustration, suppose the series-parallel system represented by the block
diagram in Figure 2.2 and its related BDD. Each node is characterized by the success
event associated with a component (¢;;). The solid line corresponds to the realization
of the success event — ¢;; is operational, whereas the dashed line is associated with the
occurrence of the failure event — ¢;; is unavailable. The BDD is responsible for evaluating
the system state on a given DES time step, in which the state of each component is
already defined: ¢;; is either operational or failed. Thus the probabilities associated with
the success event is either 0 or 1, as shown in Figure 2.2. All paths leading to either 0
(failed system) or 1 (available system) are mutually excluding. Furthermore, paths toward
1 represent the minimal paths of the related block diagram (MODARRES et al., 1999).
For more on BDD, see Bryant (1992) and Rauzy (2001).

C11
{ } iy

C12

System block diagram

System BDD

If ¢;; is operational, then P(E;;) =1 and 1 — P(E;;) = 0; otherwise P(E;;) =0 and 1 — P(E;;) = 1.

System logic function: P(Eq1)P(E21) + [1 — P(E11)]P(E12)P(E21)

0, if system is down.
1, if system is up.

Figure 2.2: System BDD

2.4 Risk-Based Inspection

In risk analysis, usually a qualitative assessment is primarily performed in order to
obtain a categorized risk level for the considered equipments. Probabilities of failures and
consequences are divided into categories and then combined so as to find an appropriate
category for the risk (e.g. high, medium high, medium and low). The equipments with

(medium) high risk level are often submitted to a more detailed quantitative risk analysis
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(MODARRES, 2006).

RBI emerges as a quantitative methodology to support inspection decision making
in the context of pressurized equipment often used in petrochemical industry. The risk
assessment relies on the evaluation of likelihood or frequencies or of equipment malfunction
due to changes in material and structure (e.g. cracks, holes, ruptures) and of the related

consequences such as leakage of dangerous substances, fires and explosions.
For RBI (API, 2008) the probability of failure is given by:

Py(k) =gff-Ds(k) - Fus, (2.12)

in which k is a given time period, gff is the generic failure frequency obtained from
a representative failure database; Df(k) is the damage factor related to the applicable
damage mechanisms (e.g. corrosion) acting on the equipment and it modifies the gf f to
make it specific to the equipment under evaluation; F);g is the management systems factor
that accounts for the influence of the facility’s management system on the mechanical
integrity of the plant equipment and is often obtained by the application of a questionnaire.

In RBI, the consequences are determined using consequence analysis techniques and
are expressed in affected area or financial terms. In this work, only financial consequences
(FC) are considered. The underlying idea of a consequence analysis is to estimate the
consequences of releases of hazardous fluids for different hole sizes, which depend on the
phase of the fluid. For a pressurized equipment from petrochemical industry, the steps of

a consequence analysis are (API, 2008):
o Determine representative fluid.
o Select a set of release hole sizes.
« Calculate theoretical release rate/mass.
o Estimate fluid inventory.
o Establish release type.
« Estimate impact of detection and isolation systems.
« Calculate adjusted release rate / mass.
o Determine flammable / explosive consequences.
e Determine toxic consequences.
e Determine non-flammable non-toxic consequences.

e Determine component damage and personnel injury consequence areas.
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¢ Determine FC.

The probability of failure P;(k) and the F'C's can be calculated for different types of
damage mechanisms (e.g. internal or external corrosion) and for a number of different
hole sizes, h = 1/47,17,4”,16”, that are related to small, medium, large and rupture,
respectively. For each damage mechanism, there are several costs taken into account: (i)
costs of repair and replacement, (ii) costs of damage to surrounding equipment in affected
areas, (iii) costs associated with production losses and business interruption as a result
of downtime to repair or replace damaged equipment, (iv) costs due to potential injuries
associated with a failure, (v) environmental cleanup costs (API, 2008). All of these costs
are aggregated for the different types of holes and an overall financial consequence F'C', per
damage mechanism, is obtained. The total risk value to which the equipment is exposed

for a given damage mechanism is as follows:
R(k) =>_ P}(k)- FC. (2.13)
h

If two or more damage mechanisms are present, then the total risk is the sum of the risks
related to each of them.

Inspection is an integrity control technique that permits the identification of damage
mechanisms responsible for the equipment deterioration process. Although it does not
necessarily reduce the involved risk, the knowledge about the presence of damage mech-
anisms reduces the uncertainty about the actual deterioration state of the equipment.
The RBI approach basically consists in the determination of inspection plans with risks
that do not exceed a predefined acceptable risk level (risk target). Thus, the calculation
of risk should be updated whenever an inspection is performed in order to represent the
equipment condition over time.

Actually, as gf f, Fys and F'C are obtained only once, i.e. they become constant, only
the damage factor D(k) needs to be computed after an inspection and it is responsible
for modifying the risk level in time. Also the uncertainty about the D¢(k) depends on
the efficacy of the inspection technique adopted. For example, the application of an
inspection of low (high) efficacy can result in high (low) uncertainty level about Dy (k),
even if applied in the beginning (end) of the considered period. This is contrary to the
intuition of an increasing damage factor, as no interventions are performed to delay such
a mechanism. The uncertainty about the Dy(k), partially due to the efficacy of the
inspection techniques, reflects on the calculated risk values over time.

This chapter presented the theoretical foundations used in the subsequent two chap-
ters, which tackle multi-objective problems with cost and availability / risk as conflicting
objectives in the design of systems with imperfect repairs and in the construction of

inspection plans.
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3 DESIGN OF SYSTEMS SUBMITTED TO IMPER-
FECT REPAIRS BY MULTI-OBJECTIVE GENETIC AL-
GORITHMS AND DISCRETE EVENT SIMULATION

In this chapter, the multi-objective RAP considered in this work is formally stated and
a solution framework combining MOGA and DES is developed. Two examples with known
exact Pareto fronts are used to validate the proposed MOGA by means of two performance
metrics. Also, MOGA + DES is applied to a more realistic example involving systems
subjected to imperfect repairs, which are incorporated to DES by a GRP model. Indeed,
the DES portion of the proposed methodology enables the evaluation of the system’s
failure-repair process and of the related costs during its lifetime cycle and not only at
the acquisition moment. Also in the more realisitic application, the maintenance teams
are taken into account as a decision variable itself. As a result, nondominated system
configurations representing the compromise between availability and cost are obtained
and the number teams necessary to maintain the system along its mission time is also
indicated. The main aspects and findings of the proposed methodology are in Lins &
Droguett (2011).

3.1 Problem Statement and Formulation

Suppose that one has to design a system formed by a predefined number of subsystems
in series (s), which, in turn, may have several components in parallel. Also, assume that
the designer objectives are to maximize system availability (A) and to minimize system
cost (C'). There are several components available in market, with different reliability
and cost characteristics: suppose that for each subsystem j (j = 1,...,s) there are ct;
different component types that perform the same function. Moreover each subsystem
may have a minimum and a maximum number of allowed components (7;min, 7jmax
respectively). Thus, the designer may obtain a set of nondominated solutions (i.e. system
configurations) that represent the compromise between availability and cost. The general

mathematical formulation of this problem is as follows:

max A(z) (3.1)

min  C(z) (32)
ctj

st Njmin < Z Zjk < M max; (3.3)
k=1

Ijk e {07 17 e 7nj,max}7 (34)
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in which k =1, ..., ct; and xj;, is the number of components of type £ in the jth subsystem.
The argument of both objective functions reflects the dependence of system performance
on the performance of its components. In this way, input data regarding the components’
availability and cost features are required. As a result, a set of nondominated solutions

of the form

T = (211, Tlky ooy Tlictys o3 Tls ooy Tjkr oo oy Tjictys oo sl e vy Tsky ooy Taer,)  (3.5)

is found.

The definition of the objective functions in Equations (3.1) and (3.2) depends on
the considered reliability approach during the design phase of the system, whereas the
constraints given by Equations (3.3) and (3.4) remain unchanged. If a static analysis
is adopted, the components availabilities can be interpreted as steady-state availabilities
(constant values) and the system acquisition cost can be computed. Then Equations (3.1)

and (3.2) become Equations (3.6) and (3.7), respectively:

s ctj
max  A(z) =[] |1 - (1 — 4;x)%*], (3.6)
* j=1 k=1
s Ctj
min  Cy(z) = DD i, (3.7)
j=1k=1

where Aj;, and cf;, are, respectively, the components’ steady-state availabilities and acqui-
sition costs. When the number of possible configurations allows the exhaustive calculation
of the Pareto front, then one has an exact solution for the redundancy allocation problem
under consideration. This is specially useful for validating heuristic algorithms (MOGAs,
for example), since simulated and exact Pareto fronts can be compared.

The cost function of Equation (3.7) can be slightly modified to incorporate the steady-

state unavailability cost:
C(z) = Cu(x) +c& - t, - [1 — A(x)], (3.8)

in which c{ is the cost per time unit related to system unavailability and ¢,, is the mission
time. Examples of works that incorporate a static approach to the reliability / availability
are Taboada et al. (2007) and Taboada et al. (2008). Nevertheless, the static formulation
by no means incorporates the dynamic behavior that the different configurations can
have during their lifetime. Hence, a more realistic formulation may be implemented and
can be combined with DES to compute system availability and also to provide some
metrics for the cost calculation. Additionally, besides optimal system configurations in
accordance with a multi-objective perspective, the number of maintenance teams related

to a system design can be determined, given that the availability of maintenance teams
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may be considered by DES when a component failure takes place and has to be repaired.
Then the general solution presented in Equation (3.5) has an additional decision variable

y at the end, regarding the number of maintenance teams, i.e.,

Tr = (xlly-"7m1k7"'7m1,ct1;"';lea"'7$jk>"'axj,ctj;"';xsla~--7x8k7"'7xs,ct5;y)'
(3.9)

For the more realistic formulation involving DES; the considered objective functions are:

max A(x) = Operational time/Mission time, (3.10)

min  C(z) = Co(z) + Co(2) + Com(x) + Coe(2) + Cu(x), (3.11)

where C,(z) is the acquisition cost calculated as in Equation (3.7);

s ctj xjk

j=1k=11=0
is the operational cost, in which ¢ is the cost per unit time of operating a component of

type k in jth subsystem and 9, is the operational time of the [th copy of that component;

s Ctj Tk

Com(z) =D > cinjm (3.13)

j=1k=11=0

is the corrective maintenance cost, where ¢ is the corrective maintenance cost of a com-

j
ponent of type k in subsystem j and n;i; is the number of repairs that the /th component
undergoes during mission time;

Ci(x) =™y (3.14)

is the cost associated with maintenance teams and ¢™ is the cost of a single maintenance

team for the period of mission time;
Cu(z) = c& - t§ (3.15)

is the cost of system unavailability, where c% is the cost of system unavailability per time
unit and ¢ is the time in which the system remains unavailable during mission time. This
cost can be interpreted as a penalty to the system due to its unavailability for a certain
amount of time. The quantities 5, njx, t§ and the objective function concerning system
availability (Equation (3.10)) are all obtained via DES. The failure-repair processes of

each component are modeled via alternating GRP introduced in Section 2.2.
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3.2 Proposed Multi-objective Genetic Algorithm

Genetic operators that provide only feasible individuals as outcomes significantly re-
duces the search space, which is formed by all possible solutions disregarding the physical
constraints in Equation (3.3). For the RAP discussed in the previous section, the per-

centage of the search space concerning feasible solutions is given by:

[Ty Sy (Momectht
L ) oo

21 (M max + 1)

where the numerator concerns the number of feasible solutions, whereas the denominator
is related to the number of total solutions in the entire search space.

As only the feasible search space is explored, the MOGA can not be “lost” in some
unfeasible location and also the use of penalty functions due to an eventual unfeasibility
is not required. Additionally, the fitnesses’ evaluation step can demand an increased
computational cost (e.g. DES), which is only used to assess actual potential solutions —
otherwise, such an effort would be unnecessarily applied to the evaluation of unfeasible
individuals.

In the following, let N be the fixed size of population P, P; the ith individual of P that
represents a system configuration, P,,, the auxiliary population that stores nondominated
individuals and that is updated at each MOGA iteration. Also, let x denote an individual
phenotype. The individual representation and the genetic operators devised to create
feasible system configurations with respect to constraints in Equation (3.3) are presented

in the next subsections.

3.2.1 Individual Representation

The redundancy allocation problems tackled in this work have only integer-valued
decision variables. Therefore, an integer representation of individuals is used. As an
illustration, suppose that a system is formed by two subsystems in series and that each
one of them can have at least 1 and at most 4 components in parallel (n;min = 1 and
Njmax = 4, J = 1,2). Moreover, consider that the first subsystem has 4 component options
(cty = 4), whereas the second subsystem has only 2 component options (ct; = 2). Each
z;, value (z;, € {0,1,...,4}, j = 1,2, k = 1,...,ct;) represents the number of every
component type that may be put in parallel in its respective subsystem. In addition,
y is the decision variable associated with the number of maintenance teams that can
be hired and that y € {0,1,...,10}. The individual phenotype as well as the system
design it represents are depicted in Figure 3.1. It is important to note that y can be
interpreted as an additional subsystem having only one available type of component and

with minimum and maximum number of redundant components respectively equal to the
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minimum and maximum maintenance teams that can be used. Such interpretation is very
useful, since the developed genetic operators do not make any difference among variables’
nature. Hence, in the example just described and if at least one maintenance team is

required, s = 3, ct3 = 1, N3 min = 1 and ng max = 10.

Subsystem 1 2 3
Variable T11 T2 T13 T4 T21  T22
System configuration 2 0 1 1 3 0

Subsystem 1
Subsystem 2

HEEE]
G

4 maintenance teams

Figure 3.1: Individual representation for MOGA (system configuration)

3.2.2 Generation of Initial Population

Each one of the N individuals of the initial population is generated in accordance with
Algorithm 1, whose main idea is to create one subsystem at a time and to generate random
integers for the different component types within the considered subsystem. A vector pos
containing a permutation of 1,. .., ct; is used for the generation of the variables’ values so
that one component type has no advantages over the other ones. The parameters 7 min
and 71, max along with the number of components already allocated in subsystem j enables
the generation of feasible values for x;,,s,. Whenever a subsystem attains the maximum
number of components 7;max, the other positions are set to 0. A feasible individual

represented by x is the result of Algorithm 1.

3.2.3 Selection and Update of the Auxiliary Population

In the selection step, the dominance relation among individuals is evaluated accord-
ing to their fitness values (fitness evaluation step is described in Section 3.3). Firstly,
dominance relation is assessed between pairs of individuals within the current population.
Dominated individuals are eliminated and the nondominated ones are then candidate so-

lutions to become part of the auxiliary population P,... Secondly, P,,x update takes place
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1. Forj=1,...,s:
a. Set S =0.
b. While S < 1 min:
I. S=0.
II. pos < random permutation of 1,...,ct;
III. For k=1,...,ct;:
i If njmax — S > 0, generate x; pos, from 0,...,1jmax — S and S < S + = pos,, -
ii. Else if njmax —S =0, set 2jpos, =0foro=%k+1,...,ct; and k < ct; + 1.
2. Return x.

Algorithm 1: Generation of a feasible individual

in accordance with the following rules:

o If a candidate solution is dominated by some individual in P,,, it is discarded.

e If a candidate solution dominates individuals in P,,, all dominated solutions are

deleted from P, and a copy of the candidate solution is stored in Pj.

o If a candidate solution neither dominates nor is dominated by individuals in P,

it is inserted into P, .x.

Since the dominated individuals are eliminated, the size of P is reduced to N, (N, < N).
In order to maintain the population with N individuals, N — N, solutions are randomly
selected from P, and inserted into P. Algorithm 2 summarizes the selection and the
update of P,.; [ represents the set of indexes related to dominated solutions in the

current population P.

1. Fori=1,...,N:
a. If P; is nondominated in P:
I. If P; is nondominated in Py, insert a copy of P; into Pyux.
II. Else if P; dominates individuals in P,.x, eliminate dominated individuals from P,,, and
insert a copy of P; into Pyux.
II1. Else if P; is dominated by any solution in P,,x, ignore P;.
b. Else if P; is dominated in P, insert ¢ into I.
2. Eliminate P; from P for all i € I.
3. Randomly select N — N, individuals from P,y and insert them into P.
4. Return P and P,.x.

Algorithm 2: Selection and update of P,y

With the elimination of dominated individuals from P, the update of P,,. and the
posterior random choice of its solutions to complete P, the MOGA tends to maintain
solutions of higher expected quality, whose information can be exchanged and modified in
the crossover and mutation steps, respectively. One may wonder if this approach would
harm the MOGA ability in exploring the search space, as it could lead the algorithm
to local Pareto sets. However, it is important to emphasize that the solutions that are

nondominated in P but dominated by individuals in P, remain in P. Such individuals
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can have information of non-explored parts of the search space and provide the required
variability among potential solutions.

Another possibility would be not updating P,,. until the stop criterion is reached.
Some early experiments indicated that such a strategy have better performance in real-
valued problems than in integer-valued ones. The obtained Pareto fronts in the former
type of problems were much better with the non-updating approach and the opposite
was observed for the latter problems, i.e the Pareto fronts of the integer-valued problems
were enhanced by the updating strategy. Also, there were some problems concerning the
size of the auxiliary population, which sometimes became prohibitively large. Since only
integer-valued problems are taken into account in this work, the update of P, at every

iteration is adopted.

3.2.4 Crossover and Replacement

After selection, a random number in [0, 1] is generated for each individual in P. If
this number is less than the crossover probability p. for a certain P;, this individual will
participate in the crossover. In this work, the proposed crossover operator handles integer
variables and avoids the creation of unfeasible individuals.

For each pair of individuals participating in crossover (parents), m different positions
are defined in their phenotypes (ignoring subsystems’ boundaries) by the generation of
random numbers in [1, n], where n is the phenotype length or the total number of variables.
As long as these positions are chosen, the subsystem to which they belong is verified and
their contents are exchanged between parents in order to generate children.

In a first moment, these children can be unfeasible, 7.e. they can present subsystems
with forbidden quantities of components. With the aim of rendering an eventual unfeasible
subsystem j into a feasible one, one position at a time is randomly chosen among the m

selected in the preceding step and its content can be:
» Added by one unit, if j has less than n; i, components or

e Diminished by one unit if it is greater than the minimum value the related variable

can assume and if j contains more than n;m.x components.

Such a procedure is repeated until the number of components in j is in [7; min, 7jmax]-
Since only one unit is incremented / decremented at a time, the algorithm tendency in
providing a lower / greater number of components in subsystem j is not severely modified.

The crossover step for a given couple of parents o' and 2 is detailed in Algorithm 3.
Note that the replacement strategy “children replace parents” is already incorporated in
the crossover, as Algorithm 3 returns the modified z! and z? (children), which automati-

cally replace the original parents z! and z2.
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1. For a given pair of parents 2! and z2, randomly select m positions and exchange their contents.
2. Forj=1,...,sand foro=1,2:
ct;

80 =302 7.
Select a random position w in subsystem j whose content was exchanged.
. While S° < 7 min, x5, < x5, +1 and S° <+ S° + 1.
. While S° > 7 max"

L If 2§, >0, 2%, < 29, — 1 and S <= 5% — 1.

II. Else if %, = 0, eliminate w from the possible positions to be selected.
3. Return ! and 2.

&

oo o

Algorithm 3: Crossover and replacement return feasible individuals

3.2.5 Mutation

The mutation step consists in changing the content of a position in an individual
phenotype. If a position is selected in accordance with the predefined mutation probability
Pm, its content is substituted by a random integer uniformly generated in an interval
that does not violate the individual’s feasibility. If position k from the jth subsystem is
selected, then the number of components of other types in the current subsystem (S_j),
Mjmin aNd 1 max are taken into account to generate a new value for z;, as described in
Algorithm 4.

1. For j=1,...,s:
a. For k=1,...,ct;:
I. Generate u from #4(0,1).

II If u < ppm:
i. S_p= Tjp+ o+ Tik—1+ Tjkt1 0+ Ty
ii. If S_p > njmin, generate xj, from 0,..., 1) max — S—k-
iii. Else if S_p < 1) min, generate x;; from n; min — S—k, .-+, Njmax — S—k-
b. Return x.

Algorithm 4: Mutation returns a feasible individual

3.3 Assessment of Fitnesses by Discrete Event Simulation

The MOGA summarized in the previous section is coupled with Monte Carlo simula-
tion for a more realistic representation of the dynamic behavior of systems. In particular,
DES is used to analyze the behavior of a system, which consists in the generation of ran-
dom discrete events during simulation time with the aim of creating a “typical” scenario
for a system so as to allow for the evaluation of some of its features that are of interest
for the calculation of the objective functions of an individual P; previously defined.

As depicted in Figure 3.2, the coupling takes place at the fitness evaluation step. For
a given generation in the genetic algorithm evolution process, the availability objective
function is estimated for every individual P, € P, ¢ = 1,..., N, via the DES algorithm.
For a predetermined mission time, ¢,, the ith individual (a candidate system) undergoes

stochastic transitions between its possible states which, for the problem of interest, corre-
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spond to available and unavailable states. The system availability estimation is based on
its components, i.e., the system evolves through states of availability and unavailability

depending on the components states: available or unavailable.
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Figure 3.2: MOGA + DES

The failed components along with the available maintenance teams form a queueing
system (ROSS, 2010), in which the former are the “customers” and the latter are the
“servers”. When a component fails, it is necessary to evaluate if there is any maintenance
team available to perform the repair action. If there is an available maintenance team,
then the component has to wait until it becomes ready to initiate the repair. If there
is not, the component is added to a queue (in this work, the modeled queue is without
priority, since all components are supposed to have the same relevance). Under this
circumstance, the component must wait until all components that were already in queue
to be repaired. Moreover, when the considered component becomes the very next to be
repaired, it may have to wait the delay previously commented. Therefore, a component

is said to be unavailable if it is:

o Failed and in queue: this occurs when all maintenance teams are occupied.

o Failed and waiting to initiate repair: the component is the very next to be repaired,

however there is a delay from the time a maintenance team becomes available to
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the time it is ready to perform the repair action.

o Under repair.

Indeed, the availability quantification for the ith individual starts by subdividing
the mission time ¢, into n time steps. For a given iteration, say t;, with £ = 1,...,n,
the current state for each component is evaluated, as shown in Figure 3.2-b. In order
to determine the system state from its components states at t;, one needs to construct
the relationship characterizing the system logic as a function of the components. In the
proposed approach, this is achieved by means of BDDs, briefly described in Section 2.3.1.
Thus, in order to keep track of the simultaneous evolutions of all components of the ith
individual as well as of the system itself during the mission time, the observed realizations
of the following random variables are recorded: number of failures and repairs of each
component, number of times the system fails, the time intervals for which each component
is under repair (corrective maintenance) and the time intervals during which the system
is in the available state. The DES is replicated several times such that independent
realizations of these random variables are obtained and then used to estimate the point
availability, A(t), for the ith system over the mission time. Then, one obtains estimates
for the two objective functions, namely the system average availability, and the system
total cost, where both metrics are estimated over the mission time. These results are then
fed back to the MOGA, as illustrated in Figure 3.2.

The greater the number of steps and replications, the better the DES estimates. How-
ever, given that the redundancy allocation problem may involve a considerable number
of components, each with a particular failure-repair process, DES may demand great
computational and time efforts. Both MOGA and DES were implemented in C++.

3.4 OQverview

The proposed MOGA described in Section 3.2 is summarized in Algorithm 5. Note
that the coupling between MOGA and the DES detailed in Section 3.3 takes place at
the fitness evaluation step. The algorithm is repeated until the maximum number of
generations Nge, is attained. At the end, the algorithm returns P,, with the feasible
and overall nondominated individuals, which represent efficient system configurations in
terms of mean availability and cost. In addition, Figure 3.2 depicts the flowchart of the
proposed MOGA + DES with further details of the DES portion of the methodology.

3.5 Metrics for Comparing Real and Simulated Pareto Fronts

As mentioned earlier, the static availability approach of a multi-objective redundancy

allocation problem is useful to assess the performance of MOGA by comparing the sim-
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1. Set g = 0 and generate initial population.
Fori=1,...,N:

a. Compute A(z?) via DES.

b. Obtain metrics from DES and calculate C(x?).
Perform selection and update of P,yx.

If g = Ngen, g0 to step 7; else go to step 5.
Perform crossover and replacement.

Perform mutation, g < g + 1, go to step 2.
Return P, ..

o

N Ot W

Algorithm 5: Proposed MOGA + DES

ulated Pareto fronts with the exact one. Such a comparison requires the use of metrics
that can, even if heuristically, represent the convergence of the simulated Pareto front
towards the exact one.

System cost and system steady-state availability belong to different scales. Therefore,
in order to avoid scale problems, the values of the objectives are scaled in [0, 1]. The scaling
factors, 7.e. the minimum and maximum observed cost and availability, are provided by
the exact Pareto front, which can be obtained by an exhaustive algorithm. Two distance

metrics to be applied in the objective space are considered and then described.

3.5.1 Point-to-Point Distance

For each point in the obtained front, the minimum Euclidean distance from it to one
of the points in the real front is computed. In order to find a mean distance representing
an entire front (czi, i=1,...,nf), all minimum distances (d, see Figure 3.3) are summed
and divided by ns; (number of obtained nondominated solutions in the ith simulated

front). Then, the following weighted mean is calculated:

Z?zfl d; - ns;
Z?:f1 ns;

as an attempt to summarize the convergence of the obtained fronts in one single number.

D= (3.17)

However, note that in this procedure there is loss of information since the solution is the

entire front and not only one single point.

3.5.2 Coordinate Distance

As a consequence of the dominance / nondominance relation, of the nature of the
handled objectives and also of the objective space presentation (e.g. cost as the hori-
zontal axis and steady-state availability as the vertical one), a monotonically increasing
Pareto front is obtained. The coordinate distance metric would be very natural if the
real Pareto front were continuous. However, the considered problem is discrete and a

suitable approximation consists in supposing the steady-state availability as a piecewise
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linear function of the system cost. Hence each two consecutive points j and j+ 1 from the
exact Pareto front are connected by a straight line segment with angular coefficient w; and
intercept &;, that is, A;(C) = w;C+¢;, C € [C}, Cjt1]. Thus, each point (Cgim, Asim) from
the simulated front has two associated distances (see Figure 3.4): a horizontal distance
h, shown in Equation (3.18) and a vertical distance v, given in Equation (3.19):
A im T SJ
h = C’sim - Ma C'sim € [Cj7 Cj+1]7 (318)
Wi
V= ij’Sim + fj — Asim, Csim - [Cj, Cj+1]. (319)

Then, for every simulated Pareto front, a mean horizontal distance (h;) and a mean
vertical distance (v;) are calculated: all horizontal distances (h, Figure 3.4) are summed
and divided by ns; and all vertical distances (v, Figure 3.4) are summed and divided by

ns;. Similar to the case of the point-to-point distance, weighted means H and V' regarding
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horizontal and vertical distances, respectively, are calculated:

E?il ;Lz *NS;

H = , 3.20
S ns; (3:20)
s nss

V= M (3.21)

Z?:f1 ns;
These metrics are used as an approximation for the convergence of the obtained fronts
toward the real one and small values for them are desired. For further details on metrics

for comparing Pareto fronts, see Knowles & Corne (2002) and Yan et al. (2007).

3.6 Numerical Experiments

All experiments described in this section were executed in a PC with Windows oper-
ating system, 2.0 GHz processor and 2 GB of RAM.

3.6.1 Validation Examples

In order to validate the proposed MOGA, two analytical examples are devised so as
to allow for the comparison between the exact Pareto fronts and the results obtained via
MOGA. For both of them suppose a series system composed by 3 subsystems (s = 3),
which, in turn, may have several components in parallel. The aim is to maximize system
steady-state availability and minimize system cost. Table 3.1 lists some configuration
features of each subsystem. Components steady-state availabilities (A;;,) and acquisition
costs (c;‘k) are shown in Table 3.2. These examples have each 1,394,525 feasible compo-
nents combinations, which represent 0.0135% of the search space (see Equation (3.16)),
and were resolved by means of an exhaustive recursive method in order to obtain the

exact sets of Pareto nondominated solutions.

Table 3.1: Subsystems’ characteristics

j 5 min 5, max Ctj
1 1 3 5
2 1 ) 6
3 1 ) 3

In the first validation example, Example 1, system cost is defined only by components
acquisition cost. The multi-objective formulation is given by Equations (3.6), (3.7), (3.3)
and (3.4). The associated real Pareto front is formed by nr = 144 nondominated system
designs. The second example, Example 2, takes into account the cost due to system

unavailability along with the acquisition cost, thus the cost objective is calculated by
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Table 3.2: Example 1 — Components’ characteristics

Component Subsystem 1 Subsystem 2 Subsystem 3
Aji C?k Aji C?k Aji C?k

1 0.9861 10,500 0.9346 6,400 0.9272 7,500

2 0.9699 9,100 0.9664 8,000 0.9175 6,900

3 0.9684 8,300 0.9512 7,600 0.9343 6,200

4 0.9777 8,700 0.9672 9,300 -

5 0.9769 8,000 0.9568 7,000 -

6 - - 0.9570 8,800 -

Equation (3.8). The parameter ¢, is set to 500 monetary units per time unit and ¢, is
set to 730 time units. A set of nr = 119 nondominated system designs outlines the exact
Pareto front.

Afterwards, nf = 100 trials of the MOGA were executed for each example and the
distance metrics of Equations (3.17)-(3.21) were used to provide an idea of the proximity
of simulated and real Pareto fronts. The scaling factors obtained from the exact Pareto

front are presented in Table 3.3, whereas Table 3.4 shows the parameters used to feed the

MOGA.

Table 3.3: Scaling factors

E ] Cost Steady-state availability
xamp:e Min. Max. Min. Max.

1 20,600.00 109,000.00 0.853026 0.999996

2 43,859.94 109,001.44 0.977644 0.999996

Table 3.4: MOGA parameters

Parameter Value
Population size (V) 100
Number of generations (Ngen) 200
Probability of crossover (p..) 0.95
Number of variables for crossover 7
Probability of mutation (p,) 0.01

Table 3.5 summarizes results from Examples 1 and 2. It presents D, H, V and some
descriptive statistics (minimum, maximum, mean and standard deviation) regarding the
number of solutions in each simulated Pareto front as well as the number of obtained
exact Pareto solutions. Both examples were also solved by a MOACO algorithm (100
replications), whose essence is described in (LINS & DROGUETT, 2008). The used
parameters for the MOACO were: 100 ants, 1000 cycles, « = 1, 8 = 1, ¢ = 0.5 and
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@@ = 1. The related results are presented in the last two columns of Table 3.5. It can
be observed that the proposed MOGA is, in general, more accurate than the MOACO.
Indeed, the maximum number of solutions obtained by the MOACO is lower than the
minimum number of solutions provided by the MOGA for Examples 1 and 2. The same

reasoning can be applied to the number of exact solutions.

Table 3.5: Results of validation Examples 1 and 2 - MOGA x MOACO

MOGA MOACO
Example 1 Example 2 Example 1 Example 2
D 4.71-107¢ 1.05-1073 7.39-107* 1.87-1073
Distance metrics H 3.10-1073 5.48-1073 3.88-1073 7.13-10°3
\% 2.08-1074 7.80-1074 2.29.10~4 1.80-1073
Min. 107 84 74 51
. Max. 143 114 89 67
Number of solutions 130.6 101.2 81.6 58.9
Std. dev. 6.06 5.47 3.19 3.48
Min. 73 45 50 29
Exact solution Max. 132 96 65 41
act sotutions Mean 106.1 77.7 56.8 34.8
Std. dev. 12.74 11.97 2.79 2.47

Figures 3.5 and 3.6 depict the exact and two simulated Pareto fronts for both Examples
1 and 2, respectively. Note that the Pareto front from Example 1 is more scattered than
the one associated with Example 2, which is concentrated in higher values of the steady-
state availability. Since Example 2 incorporates the unavailability cost, the solutions
may reflect this fact, that is, designs with greater steady-state availabilities may incur
in higher acquisition costs but lower unavailability costs. The simulated fronts in those
figures correspond to the ones with minimum and maximum exact Pareto solutions. It

can be noticed that the MOGA is able to find solutions on or near the real Pareto front.

3.6.2 Application Example

In this section, an application example is discussed. As in the previous examples,
the system is formed by 3 subsystems, whose characteristics are shown in Table 3.1. The
objectives taken into account are the maximization of availability and minimization of
system total cost. System availability, as well as several parameters used in the calculation
of system total cost, is estimated by means of the DES portion of the methodology. The
aim is to find the configurations, including the number of maintenance teams, that are
compromise solutions between system availability and system total cost. The formulation
of the redundancy allocation problem involves Equations (3.3), (3.4), (3.10) and (3.11).

The available components of each subsystem have diverse reliability and cost charac-

37



Chapter 3 DESIGN OF SYSTEMS SUBMITTED TO IMPERFECT REPAIRS BY MOGA + DES

o
o
—
o
o ]
o
2 *®
3 @
]
g
< @
o
G{ -
o
(c]
@
® ¢ Real Pareto front, 144 solutions
O Simulated front, 139 solutiobs, 73 exact
L |e o Simulated front, 139 solutions, 132 exact
o T T T T T
2 4 6 8 10

Cost (x 10%)

Figure 3.5: Validation example 1 — Exact and simulated Pareto fronts

o
o
g -
—
n
(@]
S
o
2 S
g
<
Lo
[ee]
3
o
o .
Q. e Real Pareto front, 119 solutions
o . O Simulated front, 109 solutiobs, 45 exact
. o Simulated front, 105 solutions, 96 exact

5 6 7 8 9 10 11
Cost (x 10%)

Figure 3.6: Validation example 2 — Exact and simulated Pareto fronts

38



Chapter 3 DESIGN OF SYSTEMS SUBMITTED TO IMPERFECT REPAIRS BY MOGA + DES

teristics, as presented in Table 3.6. The TTFs — X — are supposed to follow Weibull
distributions with different scale («) and shape () parameters and with the same re-
juvenation parameter (¢). The TTRs — D — in turn, are supposed to be exponentially
distributed with different parameters and the expected value associated to each D, Mean
Time To Repair (MTTR), is also given. Notice that other probabilistic distributions, e.g.
Log-normal, could also be used. Often, in practice, the adoption of a distribution depends
on components’ historical data related to TTFs and TTRs, so as parameter estimation
and goodness-of-fit evaluation can be performed via statistical inference methods. Also,
as mentioned in Section 1.2 and illustrated in Figure 1.1, instead of using probabilistic
distributions, one can adopt previously adjusted SVR models to provide components’
failure times.

In addition, ¢™ = 1200; c¢% = 500; the number of maintenance teams (y) is in
{0,1,...,7}, but at least one is required and the time since a maintenance crew is or
becomes available up to the beginning of repair is supposed to be exponentially distributed
with parameter 1. The addition of the number of maintenance teams as a decision variable
increased the number of feasible solutions to 9,761,765 that represents 0.0118% of the
search space (see Equation (3.16)).

The Mean Time to First Failure (MTFF) is also presented in Table 3.6 in order to
provide an idea of the components reliability features. If perfect repairs are assumed the
MTFF is also equal to all the Mean Time Between Failures (MTBF), since components are
delivered to operation as if they were new. On the other hand, in minimal and imperfect
repairs approaches, MTBF are smaller than the mean time to first failure, given that

component deterioration processes are taken into account.

Table 3.6: Application example — components’ characteristics

j Component fx(z) MTFF fo(d) MTTR G Sy i
1 Weibull(40; 1.9; q) 35.4945 Exp(2.0) 0.5000 10,500 210 1,050
2 Weibull(36; 1.6; ¢) 32.2767 Exp(1.0)  1.0000 9,100 182 910
1 3 Weibull(34; 1.5; ¢)  30.6933 Exp(1.0) 1.0000 8,300 166 830
4 Weibull(32; 1.4; ¢) 29.1655 Exp(1.5) 0.6667 8,700 174 870
5 Weibull(30; 1.2; ¢) 28.2197 Exp(1.5) 0.6667 8,000 160 800
1 Weibull(19; 1.2; q) 17.8725 Exp(0.8) 1.2500 6,400 128 640
2 Weibull(29; 1.5; ¢) 26.1796 Exp(1.1) 0.9091 8,000 160 800
) 3 Weibull(23; 1.2; )  21.6351 Exp(0.9)  1.1111 7,600 152 760
4 Weibull(27; 1.4; ¢)  24.6084 Exp(1.2)  0.8333 9,300 186 930
5 Weibull(24; 1.3; ¢) 22.1658 Exp(1.0) 1.0000 7,000 140 700
6 Weibull(31; 1.6; q) 27.7938 Exp(0.8) 1.2500 8,800 176 880
1 Weibull(22; 1.1; ¢)  21.2281 Exp(0.6)  1.6667 7,500 150 750
3 2 Weibull(25; 1.7; ¢)  22.2322  Exp(0.5) 2.0000 6,900 138 690
3 Weibull(26; 1.8; ¢)  23.6970 Exp(0.6)  1.6667 6,200 124 620

In order to analyze the impacts caused by different types of corrective maintenance
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actions (minimal, imperfect and perfect repairs) in the multi-objective optimization of
system designs, the same application example was solved three times, each one considering
a specific repair policy. Hence, the rejuvenation parameter (¢) was equal to 1 when
components were subjected to minimal repairs and equal to 0 when perfect repairs were
executed. In the situation in which maintenance teams performed imperfect repairs, all ¢
were set to 0.5. As in the validation examples, the considered mission time was t,, = 730
time units. For the MOGA, N = 75, Ngen = 150 and all the other parameters’ values are
the same as the ones shown in Table 3.4. Steps and replications of the DES portion were
set to 30 and 100, respectively.

The number of globally nondominated solutions obtained from MOGA + DES for
the minimal, imperfect and perfect repairs were, respectively, 78, 89 and 106, which are
depicted in Figure 3.7. It can be observed that the points regarding perfect repairs are
above the solutions related to imperfect repairs, which in turn, are over the compromise
solutions associated with minimal repairs. Indeed, solutions of the perfect repair approach,
in most cases dominate solutions concerning imperfect repairs and these latter results, in
general, dominate minimal repair solutions. This is an expected behavior since the system
with components subject to imperfect repairs may have an intermediate performance

between systems with components that undergo either minimal or perfect repairs.
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Figure 3.7: Application example MOGA + DES — Obtained Pareto fronts for each type
of repair.

If a repairable system with perfect repairs is considered, one assumes that maintenance
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Figure 3.8: Application example MOGA + DES — selected solutions related to perfect,
imperfect and minimal repairs

teams are so efficient that they can bring failed components to a condition “as good as
new”. If otherwise minimal repairs are supposed, maintenance teams can only repair a
failed component and deliver it to operation in an “as bad as old” condition. However, in
practice, imperfect repairs are often performed. Thus, in such real situations, if perfect
repairs are assumed, system mean availability may be overestimated, whereas if minimal
repairs are considered, it may be underestimated: note that points regarding perfect
repairs in Figure 3.7 have the highest mean availabilities and the ones related to minimal
repairs have the lowest mean availabilities. Figure 3.8 illustrates the system configurations

related to some selected solutions from the three Pareto fronts.

3.6.2.1 Return on Invesment Analysis

Since all the Pareto solutions are optimal in a multi-objective perspective, a suggestion
to the decision maker is to evaluate the gain in availability due to an investment in system

design between pairs of solutions in the Pareto front, that is, to perform a ROI analysis.
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Mathematically:
A — A,

[= 2+ 9
ROL= &,

i # 7, (3.22)

in which A; and A; are the mean availabilities of configurations ¢ and j, in this order, and
C; and Cj are their respective costs. As an example, consider the solutions indicated in
Figure 3.7. It can be inferred from Table 3.7 that the investment in system design to gain
about 0.3 in mean availability is 384,123.83 (from solution A to solution B). On the other
hand, it is necessary to invest 770,855.97 to obtain an addition of about 0.04 in system
mean availability (solution B to solution C). Thus, high investments on system design
do not necessarily result in great gains on system mean availability. The same analysis
can be done for the minimal and perfect repair cases and the ROIs of selected solutions

related to each repair type are also shown in Table 3.7.

Table 3.7: ROI of selected solutions related to minimal, imperfect and perfect repairs.

Repair Solution Mean availability Total system cost ROI
A 0.6288 533,345.37  6.5899 x 1077
Minimal B 0.9682 1,048,371.86  5.2418 x 1078
C 0.9986 1,628,322.45
D 0.6622 514,312.39 7.6798 x 10~
Imperfect E 0.9572 898,436.22 5.4615 x 1078
F 0.9993 1,669,292.19
G 0.7545 443,753.28  8.3226 x 10~
Perfect H 0.9476 675,771.58  5.3070 x 1078
I 0.9999 1,661,268.77

3.7 Summary and Discussion

This chapter presented a procedure based on the coupling of a MOGA with DES to
find compromise solutions for redundancy allocation problems related to systems subject
to imperfect repairs. The genetic operators developed to handle only feasible solutions
significantly shrink the search space to be explored by MOGA and the evaluation of
fitnesses does not require penalty functions to tackle unfeasibility. The two considered
objectives were the system mean availability and the system total cost. The second
objective comprised not only the acquisition cost, but also other costs often incurred in
practical situations such as operating and maintenance costs and the penalties due to
system unavailability. Moreover, the number of maintenance teams was considered as a
decision variable and the (un)availability of that resource during simulation time was also
taken into account.

In order to tackle the unrealistic assumptions regarding the reliability behavior of sys-

tems that are imposed by the majority of the procedures to handle redundancy allocation
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problems; the system failure-repair process was modeled according to GRP providing a
more realistic treatment of the problem. In this context, the proposed approach is able
to circumvent the perfect or minimal repairs assumptions underpinning other approaches
such as NHPP or RP when components are in fact subjected to imperfect repairs.

As it was demonstrated by means of the validation examples, the proposed MOGA
was able to provide solutions on or very near the exact Pareto fronts. With the purpose of
measuring the difference between real and simulated Pareto fronts, two distance metrics
were presented. Their achieved values were satisfactory, all of them smaller than 1072,
Moreover, the glsmoga provided more exact solutions of the real Pareto fronts than the
MOACO, as well as better values for the presented distance metrics.

The application example was solved three times, each one considering a specific type
of maintenance action. As expected, the solutions related to perfect repairs completely
dominated the ones associated with either imperfect or minimal repairs. After obtaining
the nondominated solutions, a ROI analysis was suggested to aid the decision maker in
choosing a specific design and the number of maintenance teams to be hired. It was
observed that considerable investments in system design do not necessarily result in great

gains on system mean availability.
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4 ELABORATION OF INSPECTION PLANS BY MULTI-
OBJECTIVE GENETIC ALGORITHMS AND RISK-BASED
INSPECTION

The multi-objective problem concerning the elaboration of inspection plans based
on risk and cost is mathematically formalized in this chapter. The proposed solution
framework combining MOGA and RBI is provided along with the description of the
genetic operators adapted to return only feasible individuals (i.e. feasible inspection
plans). The performance of the MOGA + RBI is evaluated by means of a validation
example for which the true Pareto front is known. Also, the proposed methodology is
applied to an example involving a separator vessel of oil and gas. The main results of this
chapter can be found in Furtado et al. (2012).

4.1 Problem Statement and Formulation

An inspection plan z is represented by the following vector:
T =Tty Tk Thms o 3505w e s Tl ooy Tjmi oo - 5Ty e ey Tnky ooy Tom)y (1)

in which n is the number of available inspection techniques and m is the number of
time steps considered in the planning horizon. Each element zj; of x is either 0 or 1,
j=1,...,nand k =1,...,m. If j; = 1, then an inspection involving technique j is
performed at period k. Otherwise, if x;;, = 0, then there is no inspection of type j at
period k. In this way, at most one inspection using a given technique is allowed in the
same period.

Given a planning horizon with m periods and a number n of inspection techniques, the
multi-objective optimization problem consists in the selection of inspection plans z that
represent the compromise between risk and cost and that satisfy the maximum allowed
intervals between inspections (t;max, 7 = 1,...,n) for each considered technique. The

problem is mathematically defined as follows:

min C(ﬂ?)Zi(%'i%k)+Cp'zn:§:%k+cd'Zi%’k (4.2)

j=1 k=1 j=1k=1 jeJ k=1

min R(z) =>_ R(k) (4.3)
k=1

s.t. Tj 041 + -+ Lj, b+t5 max+1 > 1, \V/j, (44)

where ¢ represents a period with an inspection (xj, = 1) and can possibly assume any

of the values 1,...,m — ¢ nax — 1. Thus, the constraints in Equation (4.4) concern the
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summations of inspections over groups of ¢; max + 1 periods, which have to be at least 1,
that is, at least one inspection using technique j have to be performed in such an interval.
These constraints are usually related to inspection regulations devised for a specific type
of equipments.

In the cost objective function (Equation (4.2)), ¢; is the cost of performing technique
J, ¢p is the cost of qualified personnel per inspection, ¢4 is the downtime cost per period
and J’ is the set of techniques requiring equipment interruption to be executed. The
risk objective function R(x) (Equation (4.3)) concerns the total risk associated to an
inspection plan x within the planning horizon m; it is the sum of the risks calculated at
every period k, which are defined in Equation (2.13).

It is important to emphasize that the financial consequences that are part of the
risk calculation (Equation (2.13)) and the cost objective function (Equation (4.2)) are
of different nature. The former is related to expenditures due to failure occurrence, e.g.
equipment and system repairs, environmental cleanup, injuries to personnel and nearby
communities, legal penalties, among others. The latter, in turn, is associated to the

inspection activity.

4.2 Proposed Multi-objective Genetic Algorithm

As in the case of the proposed MOGA for RAPs described in Chapter 3, the genetic
operators are devised to allow only for feasible individuals, 7.e. inspection plans. As
previously commented, such an approach have the following advantages: (i) it reduces
the search space to be explored by the MOGA,; (ii) it prevents the MOGA from being lost
in an unfeasible part of the search space; (iii) it avoids unnecessary fitness evaluations of
unfeasible individuals; (iv) the use of penalty functions due to unfeasibility is not required.
For the problem characterized in the previous section, the total number of solutions in
the search space, when the constraints in Equation (4.4) are not taken into account, is
given by 2™". In turn, the number of feasible inspection plans for a given technique j is
Ump; = [2™] ( Iv; (x)), defined as the coefficient of 2™ in the z-power series expansion of
fp;(z), where

o) = 2H ) 2ot (45)

l—x—a%2—.- —aPi

for p; = t; max+1. Hence, the percentage of the search space concerning feasible inspection

plans is given by

Gy " Qmpa " 77 " Qimpn ()07 (4.6)

2m-n

As an illustration, suppose n = 1, m = 20, p = 3 (thus, ¢ max = 2). The z-power series

expansion of f,, (x) is
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20 +4x% + 723 + 132% 4 242° + 4425 + 8127 + 14928 + 2742° + 50421° + 92721 4+ 1705212 +
313623 4+57682*+106092° 41951326 +3589047+66012x8+121415219+ 223317220+ . . .

Therefore the number of feasible inspection plans is ags = 223,317 and it represents
about 21.3% of the search space. For further details on enumeration techniques, the
reader is referred to Lins (1981).

Next sections detail the individual representation along with the proposed genetic op-
erators for the generation of initial population, crossover and mutation. Differently from
the genetic operators presented in Chapter 3 for the multi-objective RAP, recursive algo-
rithms are developed for the elaboration of inspection plans, since feasibility evaluation of
Tj 0415 - > Tj, 04, max+1 18 Tequired whenever an inspection takes place (i.e. x;, = 1) and
for every technique j = 1,...,n. The selection and update of the auxiliary population

P,ux is the same as presented in Section 3.2.3.

4.2.1 Individual Representation

An individual is represented by the vector in Equation (4.1), whose entries are either 1
or 0 if either an inspection using the related technique is or not performed in the associated
period. As in the case of MOGA for RAPs, an integer representation of individuals are
adopted. For the sake of illustration, suppose n = 3, m = 6, timax = 2, t2max = 3,
t3 max = 4 and the inspection plan in Table 4.1. It indicates that inspections using: (i) the
first technique should be performed at periods 2 and 5; (ii) the second technique should be
performed at periods 1, 3 and 4; (iii) the third technique should be performed at periods
1 and 6.

Table 4.1: Individual representation for MOGA (inspection plan)

Technique 1 Technique 2 Technique 3
Period 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
Inspection plan 0 1 0 0 1 O 1 0 1 1 0 O 1 0 0 0 0 1

4.2.2 Generation of Initial Population

Each of the N individuals of the initial population are randomly generated according
to a discrete uniform distribution with additional features to handle unfeasibility, which
are presented in Algorithm 6. The underlying idea of the algorithm is that, for a given

technique j, every time an inspection is established (z;, = 1), a new group of values for
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the future periods x; ¢11,- - -, Tj 114; max+1 18 generated for feasibility investigation. In this
way, an inspection to be carried out at period ¢ requires the restart of the algorithm from
(+1.

Indeed, groups of ¢; maxt+1 periods, starting from ¢ + 1, are considered one at a time.
The values xj,,7 = +1,..., 0+ 1tjmaxt1, are randomly set either to 0 or 1 and, whenever
xj, = 1, arecursion of the algorithm starting from r+1 is required. If all z;, are equal to 0,
then no inspection is performed within the considered period (S = 0) and the constraint
in Equation (4.4) is violated. In order to tackle the unfeasibility, a position p among
the ones taken into account is selected and the corresponding value is set to 1. Then, a
recursion with p as argument is called. These steps are repeated until the final period
m is reached. Once this reasoning is applied for each of the n considered techniques, a

feasible individual is generated.

GENERATEFEASIBLEPLAN(J, ¢} max, £, m, )
1. If/<m—1:
a. S=0.
b. Forr=£0+1,...,04+tjmax +1and r <m:
I. Generate zj, from ¢({0,1}).
II. If 2, =1:
i. S« S + Tjp.
ii. GENERATEFEASIBLEPLAN(4,; max, 7, M, ).
iii. r=m+ 1.
c. If S=0and?l<m—1tjmax:
L p—U{l+1,....0+tjmax +1}).
II. Tip < 1
L S« S+ .
IV. GENERATEFEASIBLEPLAN(4, t; max, D, M, T).
2. Return z.

Algorithm 6: Generation of a feasible plan for a given technique

4.2.3 Crossover and Replacement

Since the values of z;;, are either 0 or 1, the usual binary crossover (MICHALEWICZ,
1996) is performed between two individuals (parents, e.g. x' and x?). The parents’ po-
sitions are interchanged at randomly chosen cut points (¢) so as to generate two new
individuals: child 1 and child 2 that are respectively the modified 2! and z?, since the
replacement is automatically performed as in Section 3.2.4. Figure 4.1-a depicts the
crossover between two individuals when n = 3, m = 6, ¢ = 4, timax = 2, tomax = 3
and t3 max = 4. Then the investigation and handling of an eventual unfeasibility for each
new individual, per technique, takes place. The algorithm used to perform these tasks
is essentially the same as Algorithm 6; the only exception is step 1(b)I, given that in
the crossover the values z;, are not created. Notice that for the illustrated example, the

crossover procedure generated an unfeasible offspring (child 2) that violated the maxi-
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mum number of periods without an inspection using technique 1. In Figure 4.1-b, the
unfeasibility is identified and a possible solution is given. As an outcome, child 2 becomes

feasible.

Technique 1 Technique 2 Technique 3
(a) Parent1(z!) 0 1 0[]0 1 0 110 1.1 01]0 1 0 0 0|0 1
Parent 2 (%) [N N ﬁ-- 00 1 0
Crossover at
cut points “|” \L

Child 1

0 1 0
Child > NN

(b) Child 2 110 1 0 0 1 1 0 1 0 0 0 1 0
Solving
\l, unfeasibility

Child 2 1[1 0 0]1 0 1 0 0 1 1 0 1 0 0 0 1 0

Figure 4.1: Example of binary crossover procedure (a); solving unfeasibility of child 2 (b)

4.2.4 Mutation

As in the case of the crossover, given that either z;;, = 0 or xj; = 1 for all j and &,
the traditional binary mutation (MICHALEWICZ, 1996) is applied. For every position a
uniform random number u € [0, 1] is generated; given a position jk , if u is less or equal
than the mutation probability (p,,), the value of x4 is changed either (i) from 0 to 1 or
(ii) from 1 to 0; otherwise, if u > p,, =, remains the same.

Mutations that can render an individual unfeasible are only of type (ii), since addi-
tional inspections due to type (i) mutations by no means harm the individual’s feasibility.
In this way, whenever a mutation of type (ii) occurs, the related technique and period
are respectively stored in vectors it and ip. Once all positions of an individual have been
submitted to the binary mutation procedure, it and ip are of the same length (|it| = |ip|).
If it and ip are both empty, which means no mutations of type (ii) have happened, the
related individual is still feasible.

On the other hand, if |it| = |ip| > 0, it is necessary to investigate eventual unfeasibility
arisen due to type (ii) mutations. If technique j and period k are, respectively, at the
same positions of it and ip and the corresponding mutation resulted in an unfeasibility

(a greater number of periods without inspections using technique j than permitted), the
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x i, value is restored to 1 as if no mutation had taken place at position jk. Otherwise, if
a mutation of type (ii) has occurred but has not generated an unfeasibility, the product
of the mutation remains unchanged, i.e. x;; = 0. The idea is to modify individuals as
least as possible after mutation operator has been applied in order to preserve the MOGA
evolution trend.

Algorithm 7 summarizes the investigation procedure for unfeasibility over an indi-
vidual for a given technique as well as their associated treatment in order to render the
inspection plan feasible. Notice that steps until (iii) are basically the same as in Algorithm
6. These steps are necessary because of alterations in feasibility analysis due to eventual
I’s provided by mutations of type (i) that also demand the recursion of the algorithm
starting from the immediate subsequent position. The elements of ¢t and ip that are
eliminated in steps D and E are those involving already solved unfeasibility. Thus, at the
end, if |it| = |ip| > 0, the remaining elements refer to positions that have been submitted

to type (ii) mutations but have not generated unfeasibility.

RENDERPLANFEASIBLE(], ¢} max, ¢, m, T, it, ip)

1. ¢ <m-—1:
a. S=0.
b. Forr=0+1,....,04+tjmax +1and r < m:
L If zj, =1:
i. S+ S+zj.

ii. RENDERPLANFEASIBLE(J, tj max, 7, M, &, it, ip).
iii. r=m+1.
c. fS=0and < m—tjmax:
1. flag=1.
II. For g =1,...,|ip| and flag:
i. If ¢ <iplq]:
p + iplg].
=1

>

B. %jplq

C. S« S+ Tjip[q]-

D. it < it[—q].

E. ip < ip[—q].

F. If |ip| > 0, RENDERPLANFEASIBLE(4, tj max, P» M, &, it, ip).
G. flag «+ 0.

2. Return =z.

Algorithm 7: Evaluation and solution of eventual unfeasibility after mutation

4.3 Evaluation of Risk via Risk Based Inspection

The calculation of the cost objective is straighforward as Equation (4.2) is directly
applied to the considered inspection plan. The risk objective, in turn, is computed by
an RBI methodology using APT (2008) recomendations. The financial consequences F'C's
via consequence analysis along with the ¢gff and the Fj;s are obtained only once at
the beginning of optimization procedure. The damage factor Ds(k), in turn, is updated

according to the specific inspection plan provided by MOGA for every technique and
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period. In this way, the overall risk R(z) is obtained. For further details in the risk
evaluation by RBI, the interested reader is referenced to API (2008).

4.4 QOverview

The proposed methodology couples the RBI methodology to an optimization proce-
dure — MOGA — that entails constraints to comply with regulations. An overview of the
MOGA + RBI is provided in Algorithm 8. Notice that most of the steps in Algorithm
8 are the same as in the Algorithm 5, however the used initial sampling, crossover and

mutation are the ones detailed in Sections 4.2.2, 4.2.3 and 4.2.4 respectively.

1. Obtain FC, gff and Fjs via RBI

2. Set g = 0 and generate initial population.
3. Fori=1,...,N:

a. Compute R(z?) via RBL

b. Calculate C(z?).

Perform selection and update of P,x.

If g = Ngen, g0 to step 8; else go to step 6.
Perform crossover and replacement.
Perform mutation, g < g + 1, go to step 3.
Return P,ux.

XN ot

Algorithm 8: Proposed MOGA + RBI

4.5 Application Example

In this section, the proposed MOGA + RBI is applied to obtain non-dominated in-
spection plans for a separator vessel of oil and gas by considering 3 inspection techniques
and a horizon of 20 years. Internal and external corrosion are damage mechanisms to
which the vessel is exposed. For such an equipment, the recommended times between
inspections, according to the Brazilian Regulation Standard (NR-13), are 3, 7 and 15
years, respectively (MARANGONE & FREIRE, 2005). The fincancial consequences were
obtained from the consequence analysis performed by Furtado et al. (2012). The RBI fea-
tures are summarized in Table 4.2 and MOGA parameters are presented in Table 4.3. For
this problem, the number of feasible inspection plans is in the order of 107 and represents
50.77% of the entire search space.

The MOGA + RBI provided 15 non-dominated inspection plans comprising the Pareto
set, which enabled the construction of the Pareto front of Figure 4.2. In this graph, three
points A, B and C are identified, whose cost and risk values along with the associated
schedule of inspections are shown in Figure 4.3. The gray cells represent that an inspection
is to be performed in the associated period (column) using the related technique (row).

On the other hand, the white cells indicate no inspection is required.
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Table 4.2: RBI parameters

Technique i mqq (years) C
1 3 1,000.00
2 7 5,000.00
3 15 10,000.00
¢ 300.00
Iy 1,000.00
FC 6,743, 238.37

Table 4.3: MOGA parameters

Parameter Value

Population size (V) 50
Number of generations (Ngen) 100
Probability of crossover (p.) 0.95
Number of cut points 9
Probability of mutation (p,,)  0.01

4.5

o A

Risk (x10%)
20 25 30 35

15

1.0

®e
[} B.. [ [ 2P ® 0 ® C.

7.

T T T T T T
0 7.5 8.0 8.5 9.0 9.5 10.0

Cost (x10%)

Figure 4.2: Application example MOGA + RBI — Obtained Pareto front

4.5.1 Return on Investment Analysis

The obtained non-dominated solutions can be submitted to ROI analysis so as to

support inspection-related decision making. The ROI is given by:
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’ Solution \ Cost Risk \ Technique \ Periods 1-20 ‘

1
A 68,400 | 44,163 H H H H

Figure 4.3: Application example MOGA + RBI — Selected inspection plans

B 81,000 | 9,492

DNO| ] Q| DO ]| Lol DN

C 101,000 | 8,667

R, — R,
C,—C;’

where R; and R; are the risks related to inspection plans ¢ and j and C; and Cj are

ROI = i, (4.7)

their respective costs. The ROI of solution A to B is about —2.75 monetary units, that
is, the risk is reduced by 2.75 monetary units for every unit invested in inspection. On
the other hand, the ROI is about —0.04 from solution B to C, which means that the
reduction in risk for each monetary unit invested in inspection is only about 0.04. Thus,
high investments in inspection are not necessarily translated into significant reduction in

risk.

4.6 Summary and Discussion

In this chapter, a combination of MOGA and RBI was developed to provide efficient
inspection plans in terms of both cost and risk. The genetic operators of MOGA were
adapted for the creation of only feasible inspection plans in compliance with the maximum
allowed time between inspections. In this way, there is a significant reduction in the space
to be explored by MOGA and there is no need to handle unfeasible inspection plans during
MOGA steps.

The RBI was used to assess the risk related to the inspection plans provided by
MOGA. As the risk was considered as an objective to be optimized, the user defined
risk target was not required. Additionally, each inspection plan was submitted to a cost
evaluation, with which expenditures related to the inspection activity become known.
This is not possible if only RBI methodology is adopted.

The proposed MOGA + RBI was applied to an example involving an oil and gas
separator vessel. A ROI analysis was illustrated on the obtained nondominated inspection
plans. It could be inferred that high investments on inspection do not necessarily yield
a great reduction in risk. The results suggest that the MOGA 4 RBI with the post-
optimization ROI analysis is an effective tool to support decisions related to equipment

integrity.
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This chapter provides the underlying theory related to the coupling of SVR with
PSO and bootstrap methods presented in Chapters 6 and 7, respectively. An overview
of SVM and a detailed description of SVR are given. A formulation of the SVR training
problem to be solved by IP methods is also provided. Additionally, this chapter includes
an introduction to the variable and SVR model selection problems that are tackled via

PSO. Finally, the general ideas of the bootstrap techniques are presented.

5.1 Support Vector Machines

SVMs are well suited when the underlying process that maps a set of influential
variables, represented by an input vector x € R™, into the response variable of interest,
denoted by the scalar output y, is not known or when analytical formulations relating
them are difficult to be established. This feature renders SVM as a model-free or non-
parametric approach.

In its classical formulation, SVM is a supervised learning method, given that the
available set of observations D comprises not only the multidimensional inputs x, but also
the associated outputs y, i.e. D = {(z1,y1),..., (x¢,y¢)} (VAPNIK, 2000; SCHOLKOPF
& SMOLA, 2002). The set D is the so-called training set as it is used in the SVM learning
(or training) phase.

Indeed, the SVM learning step concerns the resolution of a mathematical programming
problem, whose objective function embodies the SRM principle that aims at balancing
model’s complexity and model’s training accuracy in order to avoid underfitting and
overfitting situations. The former case is characterized by models with low complexity
that have both inaccurate training and generalization performances. The latter involves
very complex models so specialized in the training examples that poorly generalize to
unseen data (KECMAN, 2005). The behavior of training and generalization errors with
respect to model complexity is illustrated in Figure 5.1.

Besides, the SRM principle was proved to be useful when dealing with small data
sets. This is an advantage of SVM over other learning techniques such as ANNs that are
suited for large training sets as they only involve the minimization of the training error
by means of the ERM principle (VAPNIK, 1999).

The SVM training problem is a quadratic, thus convex, mathematical program, for
which the Karush-Kuhn-Tucker (KKT) first order optimality conditions are not only
necessary but also sufficient for a unique global optimum. In this way, SVM is not
trapped in local optima as ANNs are (BOYD & VANDENBERGHE, 2004; SCHOLKOPF
& SMOLA, 2002).
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Underfitting Overfitting

Error

— Generalization error
— - Training error

4

Capacity

Figure 5.1: Relation between model complexity and errors

The nature of the scalar output defines the type of problem to be handled. If y
assumes discrete values representing categories, then the problem is of classification. On
the other hand, for real-valued y, one has a regression problem. In this work, only SVM for
regression is taken into account. For an introduction to SVM classification, the interested
reader is referred to Burges (1998), Scholkopf & Smola (2002) and Kecman (2005).

5.1.1 Regression via Support Vector Machines

Non-parametric regression can be formalized considering the response as a random

variable Y generated by the model:
Y = iy (z) + (o), (5.1)

where py () is the deterministic but unknown expected value of Y and ¢(z) is a random
error term with zero mean and variance o2(z) > 0. SVR aims at estimating py (x) using

the training set D for the adjustment of a regression expression of the form:

F(z) = wTo(x) +b, (5.2)

in which both w, the /-dimensional weight vector, and b, the linear coefficient, are un-
known. Also, in Equation (5.2), the operator ¢ maps z into a higher dimensional space F
in order to account for possible nonlinearities between the input vector and the response
variable. The underlying idea of the mapping ¢ is to translate a non-linear relationship
between z and y in the input space into a linear association between ¢(x) and y in F, as

illustrated in Figure 5.2 for the case of unidimensional z.
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The SVR learning problem is as follows:

¢
S ;wTw +c lg& +¢ (5.3)
st. y—wlé(r)—b<e+§&, VI, (5.4)
wh(x) +b—y <e+&, VI, (5.5)
& >0, VI, (5.6)
& >0, Vi, (5.7)

where the first part of the objective function (5.3) relates to the SVR model complexity
and its ability in predicting data not in D and the second part is associated with training
errors. The parameter ¢ controls the compromise between these two parts. The slack
variables ¢ and & originate from Vapnik’s e-insensitivity loss function which forms a

“tube” around the y values, such that errors are computed only for points lying outside
t (VAPNIK, 2000; KECMAN, 2005):

lyp — f(z))| —e =&,  if observation [ is “above” the e-“tube”, (5.8)

lyi — f(z)| —e =&, if observation [ is “below” the e-“tube”, (5.9)

for all [. The parameter € represents the “tube” width, i.e. the accepted deviation of
f(x;) from y;. Figure 5.2 contains a graphical visualization of the e-“tube” formed by H_
and H, in F and of the e-insensitivity loss function. Also, in the same Figure, pairs (z, y)
associated to the circled dots lying on or beyond H_ and H, are named support vectors.

Input space H, Feature space

o,

JRACET S

x ¢(z) — 0+ y—f(2)
Vapnik’s loss function

\/

Figure 5.2: The role of mapping ¢ and Vapnik’s e-insensitivity loss function

Once the Lagrangian function related to the primal problem (5.3)-(5.7) is obtained,
one may apply the KKT first order optimality conditions for a stationary point, so as to

construct the dual form of the SVR training problem (see Appendix 1):

1 4
nax  —5 30> (= af)(an — af)o(an) é(x,) = Yole(an + af) +wlen — af)] (5.10)

=1 o=1 =1
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‘

s.t > (u—af) =0, (5.11)
I=1
0<a<e¢ VI, (5.12)
0<a; <e¢, VI, (5.13)

where a and o* are f-dimensional vectors comprising the Lagrange multipliers related
to primal constraints (5.4) and (5.5), respectively. The resolution of the dual training

problem provides the adjusted regression function:

¢
folx) = wy ¢() + by = D (cuo — ap)d(a1)" () + bo, (5.14)

=1
in which the index 0 represents optimality. In fact, the optimal values assumed by «; and
o provide the classification of the training example (z;,1;) as: (i) free support vector,
when 0 < a9 < c or 0 < afy < ¢; (ii) bounded support vector, if ayg = ¢ or ajy = ¢; (iii)
non-support vector, if both oy and o}, are equal to zero. Note that non-support vectors
have no contribution in the regression function (5.14) as the support vectors are supposed

to summarize all relevant information of the training set.

In practice, an appropriate mapping ¢ is often difficult to be determined and the
calculation of the dot products that appear in Equations (5.10) and (5.14) may be com-
putationally expensive. Fortunately SVR allows the use of kernel functions K (x;,z,) =
d(x;)T ¢(z,), which are defined in the original space and can be used to implicitly compute
the dot products (SCHOLKOPF & SMOLA, 2002).

The Gaussian radial basis function (RBF)

K, = K(zy,2,) = exp (=7 ||z — xOHQ), (5.15)

is the most widely used kernel function. One of the advantages of Gaussian RBFs is the
fact that they are dependent only on the parameter v to be tuned based on the available
data. This is in line with the principle of parsimony according to which, provided that
the achieved predictive ability is satisfactory, simpler models with less parameters are
preferred. Also, Gaussian RBFs present relatively few numerical difficulties as compared,
for example, with polynomial kernels whose values may go to infinity or zero as the degree
of the polynomial increases or with the sigmoidal kernel, which may lose mathematical
validity for certain values of the related parameters (HSU et al., 2003; LIN & LIN, 2003).
For further details on kernel functions and on the conditions they must satisfy, see Burges
(1998), Cristiniani & Shawe-Taylor (2000), Vapnik (2000), Kecman (2001) and Scholkopf
& Smola (2002).

26



Chapter 5 THEORETICAL BACKGROUND - PART 2

The substitution of the dot products in Equation (5.10) by K (z;,z,) does not affect
the general outline for solving the dual problem. Therefore, the dot products in the
estimated regression expression may be replaced by the kernel function as well. Given «,
a* and the kernel, there is no need to explicitly determine wy, remaining only by to be
defined.

Active-set methods have been extensively applied to SVM training problems. The
main idea of these methods is to solve equality-constrained problems, which are in gen-
eral simpler than nonlinear programs with inequality constraints. The procedure involves
guesses of the set of active constraints at the solution. Then, the supposed active con-
straints are imposed as equalities and the innactive ones are simply ignored. If the guess
is incorrect, the methods use Lagrange multiplier information to drop one index from
the current working set and add a new one until optimality conditions are satisfied (NO-
CEDAL & WRIGHT, 2006). The decomposition strategy used by Joachims (1999) in
the open source SVM library SVM " and the Sequential Minimal Optimization (SMO)
implemented in LIBSVM (CHANG & LIN, 2001) are examples of active-set methods
for solving SVM training problems. With these methods, the estimation of by, can be
performed by using the free support vectors (KECMAN, 2005).

IP methods can also be used to solve SVM training problems. Contrary to the active-
set methods, IP algorithms are not based on estimates concerning the true active sets.
Also, the adoption of IP methods to solve the SVR dual problem provides by as a byprod-
uct, with no requirements of further computations. However, IP methods have been
indicated for small to moderately sized SVM (PLATT, 1998; SCHOLKOPF & SMOLA,
2002) due to the storage and handling of large matrices during the optimization process.
In spite of that, Woodsend (2009) and Woodsend & Gondzio (2011) explored the partic-
ularities of SVM training problems so as to efficiently apply IP algorithms in large-scale
situations. The authors mainly tackle linear ¢;-norm binary classification, even though
general outlines for non-linear SVM classification and regression are also given. A brief

description of SVR training using IP methods is presented in next section.

5.1.2 Support Vector Regression via Interior Point Methods

In order to describe the IP method to solve the SVR dual training problem (5.10)-

(5.13), consider its matrix formulation as a classical quadratic programming problem:

1
min §zTQz —d'z (5.16)
st.  a'z=0, (5.17)
0 <z <ce, (5.18)

in which
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e z=[a o), d= ITy — fTee and a = ["e are 20 x 1 vectors;

e y=|[y1...y/" is the vector of observed values of the response variable;

e ¢ is a column vector of ones with the appropriate dimension;

e Q=ITKI is a positive semidefinite 2¢ x 2¢ matrix;

e K is the ¢ x ¢ matrix with the kernel values K, as elements, for [,o=1...,¢;

« I and I are ¢ x 2¢ matrices defined as [ I —I | and [ I I ], respectively, i.e.

concatenations by columns of identity matrices Ipy,.

Equations (5.16)-(5.18) form the dual of the SVR training problem, which is the primal
problem to be solved by the IP methods briefly described in next sections. Also, as
@ is positive semidefinite, the KKT first order conditions are not only necessary but
also sufficient for global optimality. Thus, the resolution of the optimization problem

essentially consists in solving the system of equations resulted from the KKT first order
conditions (NOCEDAL & WRIGHT, 2006).

5.1.2.1 Primal-Dual Interior Point Method

The primal-dual IP method solves a modified version of problem (5.16)-(5.18), in
which the inequality constraints are transformed into equality constraints via the intro-
duction of 2/-dimensional non-negative slack vectors s and t. Also, in order to handle the
non-negativity of s and ¢, a log-barrier function is incorporated to the objective function
(5.16):

Iglggl ;ZTQZ —d"z — i[ln(si) + In(t;)] (5.19)
st.  alz=0, (5.20)
z—ce+s=0, s>0, (5.21)
—z+t=0, t>0, (5.22)

where p, is a positive barrier parameter that is forced to decrease to zero as k — oo. The
conditions of strict positiveness on the slack variables (s > 0 and ¢ > 0) are implicitly
considered during the step update (NOCEDAL & WRIGHT, 2006). The Lagrangian
function associated with problem (5.19)-(5.22) is defined as

20

1
L(p, px) = 5zTQz—dTZ—uk > Mn(s) +In(t)]+Aa" 27" (z—ce+s)+v" (—z+t), (5.23)
i=1
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where p = (s,t,m,v,\,2); A € R, 7 € R¥ and v € R* are the Lagrange multipliers, also
known as dual variables. An optimal point p, for (5.19)-(5.22) must be a stationary point
of L(p; u) and satisfy the KKT first order conditions, which form the following system

of non-linear equations:

Sto= e, (5.24)

Tv = e, (5.25)

z—ce+s = 0, (5.26)

4t = 0, (5.27)

alz = 0, (5.28)
Qz—d+Xa+7m—v = 0, (5.29)

where S and T are diagonal matrices whose diagonals are given by the vectors s and ¢,
respectively. Equations (5.24) and (5.25) are the p-complementarity conditions. Note
that, from Equation (5.27), t = z; thus Equation (5.25) becomes Zv = e, with Z as a
diagonal matrix obtained from z. In this way, Equation (5.27) can be eliminated, i.e. ¢
needs no longer to be explicitly considered, p = (s, 7, v, A, z) and the system (5.19)-(5.22)

can be rewritten as:

Sto= e, (5.30)

Zv = e, (5.31)

z—ce+s = 0, (5.32)

alz = 0, (5.33)
Qz—d+Xda+7m—v = 0. (5.34)

An iteration of the primal-dual IP method involves the following steps:

1. Apply one step of the Newton’s method to find the roots of (5.30)-(5.34), which

involves the resolution of the following sparse linear system:

m o S o0 0 As St — pre

0 Z 0 0 T Av Zv — uge

I 0 0 0 I Ar | =—| z—ce+s (5.35)
0 0 0 0 dF AN alz

0 —I I a @ Az Qz—d+Xa+7m—v

2. Calculate the step length aj in Newton’s direction;
3. Update variables: pri1 = pr + arAp;

4. Reduce the barrier parameter pi.
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These steps are repeated until the optimality conditions are reached. For a complete
description of the primal-dual IP method and their most successful variants the reader is
referred to Wright (1997), Nocedal & Wright (2006).

5.2 Variable and Model Selection Problems

Variable selection procedures can be generally divided into wrappers and filters (KO-
HAVI & JOHN, 1997). Wrappers consider the learning machine to score subsets of vari-
ables in accordance with their predictive power. Filters select a subset of variables in a
preprocessing step and are independent from the learning machine used. For example,
the work of Yang & Ong (2010) presents a wrapper method, whereas Wu & Wang (2009)
use a filter for feature selection.

A common filter method is to rank variables according to their coefficient of determi-
nation between each one of them and the response variable (Y) (GUYON & ELISSEEFF,
2003). Indeed, such a statistic indicates the percentage of the total variability around the
mean of Y explained by a linear fit between each regressor and Y. In this way, the
use of the coefficient of determination as a ranking criterion enforces a variable ordering
according to goodness of linear fit of individual variables.

Wrappers often give superior results, since information provided by the considered
learning machine governs the search for the most relevant set of variables. These superior
results are obtained at the expense of increased computational effort, even though it is not
always the case (GUYON & ELISSEEFF, 2003). Indeed, backward elimination and for-
ward selection are common wrappers usually associated with computational advantages.
These procedures are incremental and at each step the subset of considered variables is
modified.

The predictive ability of SVR greatly depends on the values of its hyperparameters c,
e and 7. Since the quest of the most suitable values for the SVR hyperparameters, known
as model selection problem, is usually based on the specific data set under analysis, it may
be performed whenever variable elimination or incorporation takes place. This renders
the usual incremental wrappers computationally prohibitive, in spite of their original
efficiency. For instance, Yang & Ong (2010) asserts that, like other wrappers methods,
SVR hyperparameters are not re-tuned before performing each SVR training required by
their variable selection procedure due to the increased computational effort required.

Thus, in the present work, variable selection along with SVR hyperparameters’ tuning
are simultaneously performed by PSO. Variable selection procedures in learning machines
are comprehensively discussed by Kohavi & John (1997) and Guyon & Elisseeff (2003).
For more on SVR model selection problems, the reader is referred to Momma & Bennett
(2002), Ito & Nakano (2003), Yan et al. (2004), Pai (2006), Fei et al. (2009), Lins et al.
(2010a) and Lins et al. (2012a).
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5.3 Particle Swarm Optimization

For PSO, the basic element is a particle ¢, 7 = 1,...,npa, Which is characterized
by its current position in the search space (s;), the best position it has visited (p;) and
its velocity (v;). Also, a fitness function, i.e. the objective function to be optimized, is
used to evaluate the particle performance. The ny,, particles comprising the swarm fly
throughout the search space towards an optimum by using both individual and collective

information. This process is governed by the following update equations:

vt +1) = x{vi(t) + e ur - [pig(t) — si; (D] + +ea - uz - [pg;(t) — si5(t)]}, (5.36)
Sij (t + 1) = Sij (t) + Uij(t + 1), (537)

in which j regards the jth dimension of the d-dimensional search space, ¢ indicates the
time step (i.e. PSO iteration), y is the constriction factor used to avoid huge velocity
values, ¢; and ¢y are constants, u; and uy are uniform random numbers in [0, 1] generated
whenever the update takes place and for each j, p; = (pg1, - - - Dga) is the position associated
with the best neighbor of particle i. Indeed, the second part of Equation (5.36) concerns
the particle’s cognition ability, whereas the third part is related to its social capacity of
learning from its neighbors.

The number of neighbors each particle has (nyeign) characterizes the swarm commu-
nication network. In a global topology (gbest), a particle is able to communicate with all
others (i.e. the entire swarm, npeigh = Mpart), Whereas in a local topology (lbest), a particle
exchanges information with some of the others (npeigh < Mpart). As the lbest approach is
part of the standard PSO suggested by Bratton & Kennedy (2007), this is the neighbor-
hood structure adopted in this work. Also, some experiments performed by Lins et al.
(2010a) contend that the lbest method is prone to require less computational effort (time
and number of fitness evaluations).

Equation (5.37) may render particles unfeasible, since it can yield positions outside the
search space, which is bounded by the predefined variables’ intervals. In these situations,
Bratton & Kennedy (2007) recommend the “let particles fly" strategy, which consists of
skipping the fitness evaluation phase so as to avoid unfeasible positions from becoming
the best. Besides the constriction factor y, particles’ velocities may be in [—v;-“ax, v;-nax],
is the maximum velocity allowed for the j** dimension. This procedure has

max
J
been suggested to avoid particles from going too far beyond the feasible space.

where v
The update of velocities and positions, and fitness evaluation phases are repeated

until a stop criterion is met. For further details in PSO, the interested reader can consult
Kennedy et al. (2001).
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5.4 Bootstrap

Bootstrap is a computer intensive method, whose main idea is to resample from the
original data, either directly or via a fitted model, in order to create replicate data sets.
These replicates enable the variability assessment of the quantities of interest (DAVISON
& HINKLEY, 1997). Bootstrap is particularly useful when no probabilistic model apply
to the data under analysis and / or when the amount of data is not sufficient to use the
central limit theorem.

Suppose a data set x with n elements. The boostrap begins by generating a large

B each of size n. Corresponding

number of independent bootstrap samples x!,22%,.. ., x
to each bootstrap sample is a bootstrap replication of the statistic of interest s(z°), b =
1,...,B (e.g. mean, media, standard error). The set of B replications can be used
to construct an empirical probability distribution for s as well as confidence intervals
(EFRON & TIBSHIRANI, 1993).

In the case of regression models, the bootstrap samples can be obtained based on
pairs or on residuals. In the first case, the original data pairs (x,y) are sampled with re-
placement from the original data set and each of them have the same constant probability
1/¢ of being selected. The residuals sampling, in turn, require a fitted regression model
over the original data set and the computation of residuals. Thus, the fitted model along
with the resampled residuals are used to construct the bootstrap samples. The bootstrap
techniques used linear regression is detailed in Efron & Tibshirani (1993) and Davison &
Hinkley (1997). The adaptation for SVR is formalized in Chapter 7.

This chapter provided the theory underlying the proposed methodologies PSO + SVR
and bootstrapped SVR detailed in Chapters 6 and 7, respectively. The first one is used
to solve the variable and SVR model selection problems simultaneously and the second
gives not only point estimates but also the confidence and prediction intervals related to

the response variable of interest.
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6 PARTICLE SWARM OPTIMIZATION FOR VARIABLE
SELECTION AND SUPPORT VECTOR REGRESSION
HYPERPARAMETER TUNING

In this chapter, a PSO 4+ SVR is developed to simultaneously tackle the variable and
SVR model selection problems commented in 5.2. Indeed, the methodology used in this
work is an extension of the one presented by Lins et al. (2010a), which only involves
SVR hyperparameter tuning. The PSO + SVR is applied to an example in the context
of onshore oil wells and the predictive ability of SVR is evaluated on a reduced model —
in which only a subset of variables identified as important is taken into account — and
on a full model involving all available input factors. This chapter is based on Lins et al.
(2011Db).

6.1 Coupling Particle Swarm Optimization and Support Vector Re-

gression

For the quest for SVR hyperparameters and variable selection, the PSO search space
is formed by d = 3 + n dimensions, where the first three regard ¢, €, v, in this order,
and the remaining n are the variables r; associated with regressors x;, h =1,...,n. The
latter variables are defined in the range [0, 1] and if 7, > 0.5, the hth regressor is included
in the model, otherwise it is not considered. The intervals of definition of ¢ and ~ are

arbitrarily chosen, whereas ¢ is in

0.001,0.15] -

|

> (6.1)
=1

In this way, the € range is based on the considered training+validation set.
The proposed PSO + SVR is summarized in the flowchart of Figure 6.1. The ini-
tial particles velocities and positions are uniformly initialized considering the defini-

tion intervals of the PSO decision variables (particles are initially feasible). In this

max __ cmax min
work, v = gt — g,
0.1 [—vf™, vF**] in order to prevent particles from having great velocities in the early

stages of the algorithm. After the initialization phase, particles’ neighborhoods are deter-

for all ¢, and the initial maximum velocity range is set to

mined, followed by an initial fitness evaluation of particles, which includes the update of
their best positions. Then, particles’ best neighbors, the overall best, velocities and posi-
tions are updated and fitness assessment phase is again reached and only performed for
feasible particles. This cycle repeats until one of the following stop criteria is met: (i) the
maximum number of iterations (n.,) is achieved; (ii) consecutive iterations representing

10% of njier have provided the same best fitness value; (iii) the difference between two
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consecutive best fitness values is less than a tolerance 9.

Deﬁ.ne t}“aining-i— Ran(.lon{l;y 1n1t1§11} ”e Define particles’
validation and particles’ velocities ohborhood
test sets and positions neighborhoo

For each particle
1=1,2, .. Npart

SVR (k times)' :

Update particles’
velocities and
positions

For each particle :
t=1,2,. .. Npart !

SVR training

|

SVR validation

Update global best Aft .
and particles’ best le : Ttl,part U%dage pa.rtt.lcle § Mean validation
neighbors evaluations est position NRMSE

.............................................................

No %‘m Yes Retraining over Test
criterion met? Machine with trammg[i&-\gahdatlon Test SVR NRMSE
smallest mean ata

validation NRMSE

Figure 6.1: PSO + SVR for variable selection and hyperparameter tuning

The adopted fitness function is the mean validation Normalized Root Mean Square
Error (NRMSE) (Equation (6.3)), given that the present algorithm includes a cross-
validation technique further detailed in Section 6.1.1. At the fitness evaluation step,
the hybridism of the PSO and SVR takes place. For each set of hyperparameters’ values
and a subset of variables, i.e. for each particle position s; = (¢;, €5, Vi, Tity - - - s Tiny - - - s Tin)
the SVR portion performs k trainings and predictions so as to enable the computation of
the mean validation NRMSE.

As a result, in relation to SVR accuracy in the validation phase, the PSO provides
the optimal SVR hyperparameters values combined with the most relevant regressors to
explain the variability of the response variable. Notice that the hyperparameters are
tuned considering the selected set of variables and the problem of having inappropriate

¢, € and v for the group of chosen regressors is then avoided.

6.1.1 Cross-validation

In order to evaluate the prediction performance of SVR given the values of ¢, € and ~

and a set of variables, one may compute the NRMSE, defined by the following formula:

Zz(yl - @Z)Q

NRMSE = ,
2 ?J12

(6.2)
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where y; is the observed value for the response variable and ¢; is the related prediction
provided by SVR.

In practice, the available data set is divided into two parts: (i) training + validation,
formed by ¢ observations and (ii) test, with m cases. The k-fold cross-validation is per-
formed over the training + validation part, which is further divided into k subsets. Each
one of them, with ¢/k elements, plays the role of a validation set, one at a time, and the
remaining k£ — 1 form the actual training set, upon which the SVR training is performed.
This procedure is repeated k times until all subsets have been used as a validation set.

Thus, k validation NRMSE values are obtained, which may be summarized as the mean
validation NRMSE

NRMSE; + - - - + NRMSEy
’ .

The index [ in Equation (6.2) varies from 1 to ¢/k for each NRMSE in Equation (6.3).
The best NRMSE model (i.e. with optimal hyperparameters’ values and most important

(6.3)

variables) is related to the smallest value for the mean validation NRMSE.

After finding such a model, a retraining step takes place, in which the SVR optimiza-
tion problem with all ¢ observations is solved. Finally, the test set is used to estimate
the generalization ability of the obtained model by means of the test NRMSE, when
[ =1,...,m. The adoption of a cross-validation technique in the fitness evaluation step
is also an extesion of the SVR + PSO presented in Lins et al. (2010a).

6.2 Application Example

The resulting PSO + SVR methodology is used for the prediction of TBFs of onshore
oil wells located in the Northeast of Brazil. Onshore activities in this area date back
to the beginning of the oil exploration in Brazil (ZAMITH & SANTOS, 2007). In spite
of being related to mature wells of low productivity, these activities are responsible for
a non-negligible part of the overall production. For example, for the period 2000-2010,
onshore wells provided about 12% of the national oil production (ANP, 2011). Also, the
prediction of TBFs of onshore wells permit the implementation of preventive actions to
reduce or avoid failures and production downtime.

The data considered in this example originate from a database containing observations
from 1983 to 2006 of TBFs and various aspects of different onshore wells located in the
Northeast of Brazil. The database was analyzed by Barros Jr. (2006) and the rods were
identified as one of the most critical components related to well failures. These equipments
are responsible for transmitting the rotational energy of an engine to a pump, which
artificially lifts the oil to the surface.

In this work, given the importance of the rods to the proper well operation, wells’
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failures are deemed to occur upon the failures of their installed rods. Hence, the present
application aims at predicting wells” TBFs by means of SVR. The regressors shown in
Table 6.1 are believed to influence the rods’ (and wells’) performance. Some of them
are related to operational and environmental characteristics (x; - x11) and others are
associated with the previous failure and maintenance of the rods (x5 - x15). For example,
variables x4 - x7 regard the combination of rods of different sizes installed in the well,
whereas x4 is related to the level of rods substitution in the previous maintenance action.
The idea is to select a group of the the most relevant variables among x; - x1g concurrently
with the choice of SVR hyperparameters by means of the PSO methodology presented
in Section 5.3. The classification of the variables (C — categorical; N — numerical) are
also given in Table 6.1. The categorical variables x, - x15 were handled by means of 0-1

dummy variables (MONTGOMERY et al., 2006).

Table 6.1: Variables that can influence wells’ TBFs

Var. Description Type Observed range or categories
x1 Well depth (m) N [640, 830]

To Well production (m?) N [0.4,22.4]

T3 % of water and solids N [43,98.3]

T4 Presence of 1”7 rods C 1 - No, 2 - Yes

x5 Presence of 7/8” rods C 1-No, 2 - Yes

Z6 Presence of 3/4” rods C 1-No, 2 - Yes

x7 Presence of 5/8” rods C 1- No, 2 - Yes

T Level of HaS C 1 - No, 2 - Low, 3 - High

Tg Level of paraffin C 1 - No, 2 - Low, 3 - High

10 Type of artificial oil lifting C 1 - Mechanical, 2 - Progressive cavities
T11 Filter type C 1,2,3

T12 Location of previous failure (on rods) C 1,2,3

T13 Rods’ mode of previous failure C 1,2,3,4

T4 Substitution of rods in prev. maint. C 1 - None, 2 - Partial, 3 - All

T15 State of 17 rods installed in prev. maint. C 1- New, ..., 3-0ld, 4 - Other
T16 State of 7/8” rods installed in prev. maint. C 1-New, ..., 4-0ld, 5 - Other
T17 State of 3/4” rods installed in prev. maint. C 1-New, ..., 4-0lId, 5 - Other
18 State of 5/8” rods installed in prev. maint. C 1-New, ..., 4-0ld, 5 - Other
Y Time between failures (TBF) N [10,2039]

After preprocessing the original database, a subset of 242 observations related to
26 wells located in the same geographical area was selected. From these, 192 (¢) were
allocated to the training+validation phase and the remaining 50 (m) formed the test data,
which yielded a proportion of approximately 4:1 between training+validation and test
data. A 5-fold cross-validation techique is also considered. The PSO + SVR methodology
was replicated 100 times to evaluate its stochastic performance and all of them involved
the same PSO parameters (npart = 20, Npeigh = 8, Niter = 5000, x = 0.7298, ¢; = ¢ = 2.05)
and decision variables’ characteristics (Table 6.2). In order to avoid numerical problems

because of the different scales of the output and input variables, each of them was scaled
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in [0.1,0.9]. The scale parameters (minimum and maximum values of each variable) were
obtained in the training+validation set and were also used to scale the test set. Thus,
the valid range of ¢ is related to the scaled output and the obtained parameter values for

¢, v and ¢ itself are all related to scaled data.

Table 6.2: Characteristics of PSO decision variables

Decision variable Range Initial v}"®*
c [100, 1500] 140
€ [0.0021, 0.0322] 0.0301
y [0.1,150] 14.9900
rh, h=1,...,18 [0,1] 0.1000

The summary of the 100 PSO 4+ SVR replications are shown in Table 6.3, in which the
mean validation and test NRMSE values concern the original scale of the output variable.
By means of the standard deviation of the mean validation NRMSE in the 100 runs, one
can infer that the PSO was able to find essentially the same best value for the fitness
function. The variation of the PSO decision variables indicates that the mean validation
NRMSE is quite difficult to be tuned, since it may present several local minima with
slightly different values. The model associated with the smallest test NRMSE, that is, the
one with best generalization ability is described in Table 6.4 and it is referred henceforth
as “optimal reduced model”. It is important to emphasize that the test predictions to
calculate the test NRMSE were obtained by means of the retrained SVR model considering

¢ = 192 observations.

Table 6.3: Summary of 100 PSO+SVR replications

Minimum Median Maximum Mean Std. Dev.
c 101.5147 826.0446 1498.9536  826.1644 359.6575
€ 0.0199 0.0255 0.0322 0.0276 0.0039
v 0.1002 144.8759 149.9988  122.3001 40.6190
Number of selected variables 4 12 13 10.4300 2.3323
Mean validation NRMSE 0.7127 0.7148 0.7711 0.7303 0.0198
Test NRMSE (after retraining) 0.7108 0.9637 0.9874 0.9082 0.0883

From Table 6.4, notice that only 9 of the original 18 regressors were identified as
relevant to describe the wells” TBFs. PSO + SVR returned a regression model in which
the TBFs are function of the presence of 17 and 3/4” rods (x4 and xg), levels of HyS
and paraffin (zg and xg), type of filter (z11), mode of previous failure (z13), level of
rods’ substitution in previous maintenance (x14) and the state of 1”7 and 5/6” rods in
previous maintenance (z15 and x1g). The level HyS, for example, may influence the metal

corrosion. Also, given that imperfect maintenance is usually performed, i.e. the system
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Table 6.4: Characterization of the optimal reduced and full SVR models

Optimal reduced model Optimal full model

Hyperparameter Value Value
c 240.8256 178.5738
€ 0.0320 0.0231
~ 103.6400 149.9975
Selected variables T4, T6, T8, L9, T11, 13, T14, T15, T18 -
NRMSE Value Value
Mean validation 0.7509 0.7767
Training (after retraining) 0.6322 0.1251
Test (after retraining) 0.7108 0.8545
Number of support vectors 141 177

is not restored to its new condition, the variables related to the preceding failure and
maintenance may indeed affect the time to next failure and are reasonable to be included
in the model.

For comparison purposes, an SVR regression model considering all 18 variables pre-
sented in Table 6.1 was estimated by means of the PSO + SVR methodology. In this
case, PSO was used only for tuning the SVR hyperparameters ¢, ¢ and v. Once more
100 replications were performed and the model with least test NRMSE was chosen as the
“optimal full model”. Its characteristics are also shown in Table 6.4, in which the NRMSE
values concern the original data scale. In spite of the greater training NRMSE related
to the reduced model, it presented a general better generalization, given the evidence of
the smaller mean validation and test NRMSE values when compared to the full model
counterparts. Also, the reduced model is able to summarize the essential information of
the training set with less support vectors (141 vs. 177). This reflects the principle of
parsimony, which states that if two techniques adequately model a given data set, the
one with less parameters may have superior predictive ability when handling new data
(SEASHOLTZ & KOWALSKI, 1993). The prediction results provided by the optimal
reduced and full models are presented in Figures 6.2 and 6.3, for the training and test
sets, respectively. It can be noticed that the predictions of the full model over the test
set assume the same value for a number of different cases. Otherwise, the reduced model
has a better performance over the same test set, as its predictions tend to approach the
real observations.

Additionally, with the plausible consideration of independence between PSO + SVR
runs with and without variable seletion, a Wilcoxon-Mann-Whitney statistical test (HIG-
GINGS, 2004) was applied to compare the hyperparameters values provided by both
approaches. The PSO + SVR with variable selection tends to return higher values for ¢
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Figure 6.3: SVR test results

and e and lower values for v when compared to PSO + SVR without variable selection.
The obtained p-value was 0.0905 for the test concerning c and, for the tests regarding
the other two hyperparameters, the p-values were both smaller than 2.2 - 1071¢. Such an
outcome suggests the importance of SVR hyperparameters’ tuning whenever the set of

considered variables changes.

6.3 Summary and Discussion

Previous works have shown the importance of SVR hyperparameters tuning to im-
prove the SVR predicting performance. In this paper, besides the quest for the most
suitable SVR hyperparameters, a variable selection procedure was implemented. The

adoption of a PSO algorithm allowed the simultaneous application of both procedures.
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The proposed PSO + SVR methodology was used on an application example from the
Brazilian oil industry. The results show that the variable selection procedure enhanced
the predictive ability of SVR. Also, a statistical test confirmed the necessity of the SVR
hyperparameters’ adjustment for the specific data set comprising the selected regressors.
In general, the outcomes indicate that PSO + SVR is a promising tool for reliability
prediction and it could be part of maintenance framework so as to support decisions

concerning preventive actions.

70



7/ UNCERTAINTY ASSESSMENT BY COUPLING BOOT-
STRAP AND SUPPORT VECTOR REGRESSION

In order to add uncertainty-related information to the SVR point estimates of the
response variable, a methodology involving bootstrap methods and SVR for the construc-
tion of confidence and prediction intervals is presented. Indeed, two different approaches
based on two bootstrap methods frequently used in regression problems are provided.
The first one involves pairs sampling and the second relies on residuals sampling. The
boostrapped SVRs are applied to an artificial example and to a case study involving the
prediction of scale growth rate on an equipment of the offshore oil industry. The perfor-
mance of both bootstrapped SVRs are discussed. Some of the findings in this chapter can
be found in Lins et al. (2012D).

7.1 Bootstrapped Support Vector Regression

There are two different ways of bootstrap sampling a regression model: one is based
on pairs and the other on residuals (EFRON & TIBSHIRANI, 1993). The pairs scheme
involves bootstrap samples D° = {(zi,y), - (@, y)}, for b=1,..., B. The indices
i%, ..., 1% are uniformly generated with replacement from the 1,...,¢. Thus, the observed
pairs (x1,41),---,(xe,y¢) € D, introduced in Section 5.1, are directly used to form the
bootstrap sets. This type of resampling requires no assumptions on the errors e(z) in
Equation (5.1) other than independence (DAVISON & HINKLEY, 1997).

The second approach relies on the model adjusted over the original D, henceforth
called f9. This model provides the estimates §, which enables the computation of the
residuals ¢ = y,—¢), V1. Given that the error term is supposed to have zero mean, one may
adopt the centralized version of the raw residuals, € = € — >, /¢, V1. Additionally, in
order to consider the more general case involving heteroskedastic errors, instead of directly
sampling the re-centered residuals, these are combined to Rademacher variables — defined
as 1; = 1 with probability 0.5 and 7, = —1 with probability 0.5, V[ — given their efficient
performance in practice (LIU, 1988; DAVIDSON et al., 2007). Therefore, ¢, = &, are
sampled with replacement in order to obtain the sets D® = {(z, Q?+Eiz{), ooy (T, Q2+€iz)},
for %, ..., 1% as previously described. In this setting the input vectors z remain fixed and
the predictions §° have their values perturbed by the residuals €.

In both schemes, after the generation of each bootstrap set D°, an SVR training is
performed and the corresponding adjusted model f¢ is stored. The bootstrapped SVR
based on pairs and on residuals are summarized in Algorithms 9 and 10, respectively.

For a given observation of the input vector x,, instead of taking §} as estimate for
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1. Train an SVR over D; obtain f{.

2. Forb=1,...,B:
a. Generate i%, ..., ilj from 1,...,/4.
b. Set D’ = {(ziv yi), -, (:Ci27yi2)}.
c. Train an SVR over D; obtain f&.

Algorithm 9: Sampling pairs

1. Train an SVR over D; obtain f{.

2. Calculate residuals ¢ = y; — 97, V.

3. Re-center residuals, & =& — >, &/(, V1.

4. Forb=1,....B:
Generate Rademacher variables 71, ..., 7.
Calculate € = én, V1.
Generate 15, . .. 72’2 from 1,...,74.

Set D" = {(z1, 9} + &), ..., (20,97 + &)}
Train an SVR over D?; obtain f{.

© po o

Algorithm 10: Sampling residuals

py (), the bagging (bootstrap aggregating) predictor is taken (BREIMAN, 1996):

gbag _ ?Jg + ZbB:1 gﬁ-

1
" B+1 (7.1)

where @i is obtained from the respective adjusted model f& (see Algorithm 11).

In this work, percentile intervals are adopted since they present advantages over in-
tervals based on normality assumptions constructed with bootstrapped standard errors:
they satisfy the transformation-respecting and range-preserving properties with no re-
quirements of previous knowledge about appropriate transformations or specific ranges
that the random variables must respect (EFRON & TIBSHIRANI, 1993).

The construction of percentile confidence intervals for py (x4 ) is straightforward. For
a given significance level o, one may take the a/2 and 1 — /2 quantiles of 99, ... ,gjf
as lower and upper bounds of the interval, in this order. Algorithm 11 summarizes these
procedures.

In order to determine prediction intervals for Y, by bootstrapping residuals, an addi-
tional sampling is required to simulate the variation of Y, about its mean py (x). This

is accomplished by estimating the distribution of the prediction error 6, = Y, — fo(xy)

via Sim = {Qg + €T} — gji, where m = 1,..., M and M is the number of resamplings.
Afterwards, the /2 and 1 — a/2 quantiles of 3_1&, - 3iM, . ,gfl, o ,S_JEM are taken

to form the (1 — a)100% prediction interval for Y, whose limits are set as §}* + Sf’,f/ 2
and §5% + 61/ (see Algorithm 12). Note that no other SVR trainings are demanded,
only the modified version of the residuals € are constructed with no significant increase in
computational effort.

Also, one might adopt the bootstrap based on pairs and use Algorithm 4 to simulate
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1. For a given x,:
a. Obtain gj+,...,gj+ from f8,..., f&.
b. Obtain @Tg, Equation (7.1).

. Clluy (w)sa] = [§2/%, 912,

Algorithm 11: Percentile confidence interval for uy (z4) by pairs or residuals bootstrap-
ping

1. For a new x4:
a. Forb=1,...,B:
I. Form=1,..., M:
i. Generate Rademacher variable 7'*.
ii. Generate ¢ from 1,...,7.
ili. Calculate €7 = Ezm77+

iv. Compute Sbm = 9% + &) — 95
b. PI(Yy30) = [0 + 6i/2, ghes 4 §loar?]

Algorithm 12: Percentile prediction interval for Y, by residuals bootstrapping

prediction intervals. But then fJ would be used to obtain the residuals, which is against
the essence of the pairs scheme of being totally free of model assumptions. It might be
expected that a second level of bootstrap sampling would generate the desired variabil-
ity of Y, about its mean. Thus, a double bootstrap (DAVISON & HINKLEY, 1997)
was performed over the application examples presented in Section 7.2. However, the ob-
tained prediction intervals were close to the confidence intervals at the expense of a more
computer-intensive procedure as additional SVR trainings were required. Alternatively,
one could estimate a prediction interval by means of a wider confidence interval, e.g. a
95% prediction interval could be approximated by a 99% confidence interval. However,
preliminary experiments involving such an approach provided prediction intervals with
low coverages. For further details on bootstrap, the interested reader can consult Efron
& Tibshirani (1993) and Davison & Hinkley (1997).

7.2 Numerical Experiments

In both examples presented in this Section, the output variable as well as each input
variable are scaled on [0.1,0.9] at each bootstrap iteration; the test set is scaled on the
same interval but considering the lower and upper observed values of y and each compo-
nent of x on the respective training set. The hyperparameters of SVR are ¢ = 100 and
e = 0.0025 for all experiments, whereas v = 10 for the simulated example and v = 150 for
the case study. These hyperparameters values have been found by trial. The PSO + SVR
presented in Lins et al. (2010a), Lins et al. (2012a) and in Chapter 6 was not adopted as
it would introduce an additional source of uncertainty, involving ¢, €, 7. In this chapter,

the goal is to create samples that could have been observed via bootstrap schemes and
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to assess their effects on the variability of the response variable. Additionally, since the
bootstrap samples are different from each other, a PSO run would be demanded for each
of them, which would require a prohibitive computational effort. Yet, as the bootstrap
samples are all of equal sizes and originated from a unique source (i.e. the available data
set), no drastic variations are expected on the values of the SVR hyperparameters. Thus,

a single set of values for ¢, €, v may not harm the performance of the SVR models.

7.2.1 Simulated case

In order to evaluate the ability of the bootstrapped SVR in providing accurate point
and interval estimates, the following deterministic process is analyzed (HESKES, 1997;
Z10, 2006):

py (x) = sin(mzx) cos(1.25mx) (7.2)

with normally distributed heteroskedastic errors of zero mean and variance given by
o?(z) = 0.0025 + 0.0025 [1 + sin(7z)]?. (7.3)

Training sets D = {(x1,y1),..., (2, ye)} of different sizes (¢ = 100,200, 400) were con-
structed by means of the Latin Hypercube Sampling (LHS — Helton & Davis (2003))
scheme with fx(z) = |z| as probability density function of the inputs z; € (—1,1). The
main idea of LHS is to divide the range of the input variables into ¢ disjoint intervals of
equal probability and then to select one value at random from each interval.

The test set comprised n = 100 samples, with  values equally spaced over the (—1,1).
It is important to emphasize that the test points were generated independently from the
training points and were, by no means, used to construct the bootstrap samples: they
were treated as new observations.

The Mean Squared Error (MSE) (Equation (7.4)) and the quadratic bias (Equation
(7.5)) were used as performance metrics for the bootstrapped SVR over the test set. The
MSE measures the quadratic deviations occurred due to the adoption of §°® as estimate

—_—

for y and bias® is estimated by the average of the quadratic difference between §** and

—

the true py (). Note that bias® can be calculated because the true function of the mean

is known, which is not usually possible in practice.

MSE = - S (yi — 909)? (7.4)
n 1=1
/-\2 1 & ~bag 2
bias o Z [yz - MY(%’)] (7.5)

=1

Bootstrap simulations with B = 99,499,999 were performed and the number of
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iterations to construct the prediction intervals via residuals sampling was defined as
M = (B +1)/2. The MSE and bias? values for the pairs and residuals approaches are
presented, respectively, in Tables 7.1 and 7.2 for each combination of B and ¢. Regarding
the performance of the §** point estimates, the pairs sampling had overall advantage
over the residuals scheme. For ¢ = 200 and ¢ = 400, the MSE values were smaller than
for £ = 100 and were quite similar within each bootstrap type with ilightly better results
for ¢ = 200, mainly in the pairs scheme. For both bootstraps, the bias? values decreased
as the training set sizes increased. For a fixed ¢, the increase of B did not greatly impact

the performance of 9, specially when considering MSE.

—_—

Table 7.1: Simulated case — MSE (left) and bias® (right) over test set by bootstrapping
pairs

B ¢ =100 ¢ =200 ¢ =400

99  6.583-1073; 6.764-10~% 5.564-1073; 3.113-10~% 5.877-1073; 9.158 - 107
499  6.603-1073; 6.912-10~% 5.530-1073; 2.844-10~%  5.900 - 103; 9.820 - 105
999  6.522-1073; 6.555-10~%  5.520-1073; 2.693 - 10~%  5.876 - 103; 9.348 - 105

—

Table 7.2: Simulated case — MSE (left) and bias® (right) over test set by bootstrapping
residuals

B ¢ =100 ¢ =200 £ =400

99  8.320-1073; 2.167-10~% 5.932-1073; 5.975-10~* 6.106 - 10~3; 2.742 - 104
499 8.278-1073;2.162-10~%  6.091-1073; 6.868 - 104  6.081 - 10~3; 2.567 - 104
999 8.295-1073; 2.181- 1072  6.034-1073; 6.451 - 10~  6.094 - 10~3; 2.646 - 104

As an example, Figure 7.1 depicts uy (z) and §°* for the test set considering the pairs
and residuals schemes, ¢ = 200 and B = 499. Notice that both approaches convey bag-
ging estimates very near the true mean, which indicates the ability of the bootstrapped
SVR in providing accurate point estimates. For the same setting, Figures 7.2 and 7.3
show the simulated confidence intervals (a = 0.05) for bootstrapping pairs and residuals,
respectively. The graph related to the residuals scheme (Figure 7.3) also depicts the pre-
diction intervals for the response variable, which may be compared to the true intervals
[y () £1.96 - o(z;)],i = 1,...,n. Note that the simulated intervals closely approxi-
mate the true ones. Confidence and prediction intervals are represented by lines so as to
facilitate visualization.

In order to assess the coverage properties of the confidence and prediction intervals
provided by the bootstrapped SVR, a Monte Carlo experiment with 5000 replicates was

performed for each combination of B and ¢. The 5000 training sets were generated by the
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Figure 7.1: Simulated case — pairs and residuals bagging estimates vs. true mean
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Figure 7.2: Simulated case — results over test set by bootstrapping pairs
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Figure 7.3: Simulated case — results over test set by bootstrapping residuals

LHS approach. The test sets were all formed by selected xi, j=1,...,10 (Table 7.3)
and the corresponding ¥, were randomly created from Equations (7.2) and (7.3).

The coverage results for both bootstrap schemes are reported in Table 7.3; the nomi-
nal level of significance was set to a = 0.05, thus the nominal coverage was 95%. By the
analysis of Table 7.3, it can be noticed the superior performance of the confidence intervals
given by the pairs sampling over the ones provided by the residuals sampling. Indeed,
the coverages of the confidence intervals of the latter approach are (much) lower than the
nominal value. In this way, the reliance on f{ as the true model that characterizes the
residuals scheme negatively impacts the performance of the bootstrapped SVR. Neverthe-
less, the related prediction intervals presented excellent coverage values. The greater and
the lower coverages — when compared to the nominal 95% — for the negative and positive
a7, | respectively, are justified by the behavior of 0(z) over the interval (—1, 1) (Equation
(7.3), Figure 7.4). Note that smaller variances are associated with the negative part of
the interval, whereas greater variances are related to positive x. Hence, if a positive x
is observed, the prediction of the response variable tends to be more difficult than if a
negative x had been observed. Additionally, the increase of ¢ enhanced the performance
of the bootstrapped SVR, since more information about the process was given in the SVR
training step. On the other hand, the effects of the number of bootstrap iterations were
less evident, as B = 499 and B = 999 provided similar results with a slight advantage
over B =99.
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Table 7.3: Simulated case — coverage results (%) of the Monte Carlo simulation with 5000
replicates

¢ =100 ¢ =200 ¢ =400

;  Pairs Residuals Pairs Residuals Pairs Residuals
T+l CI PI CI CI PI CI CI PI

—-09 86.96 64.96 98.78 89.48 7548 98.80 93.30 87.34 98.98
—0.7 9482 95.72 99.68 9542 96.84 99.62 95.14 98.04 99.86
—-0.5 7516 55.76 99.48 7840 6248 99.62 81.58 73.70 99.86
—-0.3 6274 3596 99.34 7226 4948 99.68 81.34 68.48 99.62

D
CIT —-0.1 90.50 72.74 98.04 89.92 7716 9846 91.16 84.36 99.14
® 0.1 84.42 5592 9148 8740 61.96 93.06 89.72 7214 93.94
0.3 8194 3848 8570 86.24 46.98 87.24 88.80 5850 87.90
0.5 8592 4464 83.70 87.50 50.10 84.42 89.34 59.26 84.32
0.7 9462 79.64 8830 94.22 80.38 88.04 95.16 83.76 87.88
0.9 88.70 56.58 93.90 89.90 64.64 94.04 92.76 77.80 94.18
—-0.9 88.00 65.62 98.68 90.48 76.36 98.82 93.90 88.32 99.02
—-0.7 9576 96.46 99.70 95.88 97.14 99.60 96.58 98.58 99.88
—-0.5 7714 57.28 99.42 79.06 63.84 99.62 83.12 76.06 99.84
= —-0.3 63.76 36.92 99.40 73.54 49.00 99.66 82.04 70.04 99.64
< —0.1 9166 73.76 98.02 90.74 79.02 98.56 92.36 85.48 99.06
I 0.1 85.52 56.84 91.32 88.00 63.18 93.20 90.84 7298 94.10
& 0.3 82.18 38.58 85.58 87.32 47.32 87.56 89.78 58.86 88.00
0.5 87.28 45.16 83.86 88.26 50.68 84.44 90.32 59.18 84.64
0.7 9544 80.34 8840 95.14 80.60 88.04 95.72 84.54 87.70
0.9 89.84 56.56 93.80 91.38 65.48 94.16 94.04 78.66 94.16
—-09 8824 65.72 98.70 90.70 76.74 98.80 94.02 88.08 99.00
—-0.7 95.78 96.70 99.70 95.88 97.30 99.60 96.44 98.82 99.88
—-0.5 76.92 56.90 99.46 79.26 64.20 99.62 83.54 76.08 99.84
o —-0.3 6396 37.18 99.38 7348 49.06 99.66 82.36 70.24 99.64
S =01 9214 7370 9796 91.02 79.02 98.52 9242 85.46 99.06
Cg 0.1 85.62 56.46 91.32 88.28 63.14 93.20 90.88 73.12 93.96

0.3 82.84 3888 85.62 8756 47.88 8740 90.08 59.20 87.98
0.5 87.80 4530 83.80 88.26 50.56 84.34 90.54 59.44 84.54
0.7 9542 80.18 88.42 95.18 81.44 88.06 9594 84.74 87.64
0.9 90.14 56.64 9392 91.64 6574 9414 9412 78.62 94.12

As a general outcome, the bootstrapped SVR gave accurate interval estimates for
the mean response, mainly by the pairs approach, and for the response variable itself via
the residuals scheme. Also, great values for B are not necessarily required in order to
obtain satisfactory results; this is an interesting feature as far as computational effort is
concerned. However, in practical problems, the number of training examples is often a
non-adjustable parameter as it is determined by budget constraints, e.¢g. an additional

observation can represent more experiments involving the phenomenon under analysis.
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Figure 7.4: Simulated case — variance behavior over the interval of x

7.2.2 Case Study: Prediction of Scale Rate on Metal Surfaces

Scaling build-up in subsea oil well systems is a result of the combination of a set of
interacting variables, such as reservoir temperature, pressure and water composition, that
characterize the subsea environment. These factors can be tracked to predict the amount
of scale that will be deposited in the future and determine the time to next maintenance
action for removing the scale layer before it leads to equipment failure (MOURA et al.,
2011; AK et al., 2012).

Some kinetic approaches have been used to predict scale formation, accounting for
the effects of environmental variables (ZHANG et al., 2001; DYER & GRAHAM, 2002;
CHEN et al., 2005). These prediction models take the form of a deterministic mathemat-
ical formula relating the scale output variable to the multi-dimensional input variable.
Establishing such formula is often not easy in practice, and uncertainties need also to be
taken into account.

Thus, in the present case study, the proposed bootstrapped SVRs are applied so as
to give point and interval predictions of the scale growth rate on metal surfaces of an
equipment used in offshore oil wells. If the scale layer achieves a predefined width, the
equipment fails to properly perform its function. Some experiments were performed as
an attempt to reproduce the subsea environment so as to observe the deposited scale

layer. The following influential variables were observed: (i) temperature (7') and (ii)
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pressure (P) maintained over the tests, (iii) water composition (W), which characterizes
the concentration of carbonates that might be expected in the real scenario and (iv) fluid
velocity (V') near the metal surfaces. The response variable Y — scale growth rate — can
be described by the general formula of Equation 5.1 with x = (¢, p, w,v).

The experiments performed gave a set of 131 observations. From these, about 90%
(¢ = 118) are allocated for SVR training and the remaining 10% (n = 13) comprise the
test set. Confidence and prediction intervals have been obtained for the test samples via
the bootstrapped SVR with B = 99. For the construction of prediction intervals by the
residuals scheme, M is set equal to 50.

The MSE values are 6.1234 - 102 and 5.8613 - 10~3 for the pairs and residuals boot-
strapping, respectively. Differently from the simulated example, for this case study the
residuals approach has a slightly superior performance. Figures 7.5 and 7.6 depict the real
observed values y, the estimates §** and the confidence intervals for the mean response.
Figure 7.6 also presents the prediction intervals for the various test points. Once again,

line representation is adopted only for visualization purposes.
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Figure 7.5: Study case — results over test set by bootstrapping pairs

Apart from obtaining accurate point estimates for Y, the bootstrapped SVR provides
interval estimations related to the output variable Y. As seen in Figures 7.5 and 7.6, the
confidence intervals provided by the residuals approach have smaller widths than the ones
given by the pairs scheme. This is probably due to the use of fJ in the sampling of the

bootstrap based on residuals, as discussed in Section 7.2.1.
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Figure 7.6: Study case — results over test set by bootstrapping residuals

With the interval estimates for the scale rate, a threshold for the thickness of the scale
layer and the fact that scale rate = thickness/time, point and interval estimates related
to the time to attain the threshold can be obtained so as to support maintenance-related
decisions. As an illustrative example, consider the first test point z;. Suppose that the
scale rate is given in cm/day and that 5em is the threshold value. Table 7.4 presents the
point and interval estimates associated to the scale rate, which are directly provided by
the bootstrapped SVR along with the corresponding estimates for the time to reach the
threshold. The results indicate that a prudent decision would be to perform a preventive

maintenance action for the removal of the scale layer on day 14.

Table 7.4: Illustrative example — point (PE) and interval (CI, PI) estimates for the scale
rate and for the time to attain threshold

Scale rate (cm/day)  Time to attain threshold (days)

Pairs PE 0.3059 16
CI  0.2637 < py (21) < 0.3512 14 < preime(21) < 19

PE 0.2886 17
Residuals CI  0.2749 < py (z1) < 0.3051 16 < pgime(z1) < 18
PI 0.2488 < Y(xl) < 0.3447 14 < time(xl) < 20
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7.3 Summary and Discussion

In this chapter, different bootstrap methods (pairs and residuals samplings) were
combined with SVR for the evaluation of uncertainty about the response variable when
analytical and/or stochastic models describing it are not available. Moreover, instead
of using the outcome of a singe model, e.g. the one trained over the original D, as
a point estimate, the bootstrapped SVR provided the more accurate bagging estimates
(BREIMAN, 1996).

The proposed methodology was applied to a simulated example in order to assess
its ability in providing accurate point and interval estimates. The small values of MSE
and k;a? indicate that the outcomes of the bootstrapped SVR are accurate. For the
evaluation of the coverage properties of the obtained intervals, a Monte Carlo experiment
was performed and analyses about the effects of the bootstrap schemes, of the number
of bootstrap iterations and of the training set size were also carried out. As general
results: (i) confidence intervals are better estimated by the pairs scheme and the prediction
intervals given by the residuals sampling have good coverages; (ii) increasing the bootstrap
replications does not necessarily improve the performance of the bootstrapped SVR; (iii)
larger training sets are expected to give better coverages, but for practical applications
the data set is often subject to budget constraints.

A real case study involving the prediction of scale growth rates on metal surfaces as a
function of four influential variables representing the environment was successfully handled
by the bootstrapped SVR. Also, an example to illustrate how the obtained results can
support maintenance-related decisions was provided. In this way, the bootstrapped SVR
can be part of a more general framework for the establishment of maintenance policies.

The proposed methodology is based on non-parametric techniques (SVR and boot-
strap), which enables its application in a variety of practical situations as long as empirical
data of inputs and related response is available. The SVR allows for the treatment of com-
plex processes for which the mapping of inputs into output is unknown. However, once
the regression function is estimated in the training step, the prediction becomes a trivial
mathematical exercise and the application of a given observation of the inputs on the
estimated formula will always return the same predicted value for the response, indepen-
dently of how many times it is calculated. This drawback of SVR (and of all regression
methods, e.g. linear regression) is overcome by its coupling with bootstrap techniques
that have the advantage of not requiring assumptions of the probabilistic models related
to the inputs and to the response. In this way, the bootstrapped SVR provides not only
a point estimate of the response, but also an associated interval of probable values, which

is a valuable information in practical decision-making.
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This work proposed models for risk and reliability quantification of systems and equip-
ments in different phases of their life cycle (design and operation). Concerning the design
phase and in order to solve a generalization of RAPs, a MOGA was developed. Not
only the trade-off between cost and availability was handled, but also the behavior of
the system was taken into account during the optimization procedure. The results from
the validation examples indicate a superior performance of the proposed MOGA when
compared to a MOACO, as the simulated fronts provided by the former were closer to
the real Pareto fronts than the simulated fronts given by the latter.

Regarding the operational phase, a similar MOGA was adapted to the context of
multi-objective inspection plans in which cost and risk were the objectives to be both
minimized. The proposed MOGA + RBI was used in an example involving a oil and
gas separator vessel, three different inspection techniques and a planning horizon of 20
years. As an outcome, nondominated inspection schedules were obtained. In this way,
the shortcomings of the RBI methodology when applied alone were overcome, since a risk
target level was not required and the costs related to inspection activity were considered
as an objective itself.

In both proposed MOGAs, the genetic operators sampling, crossover and mutation
were devised to provide only feasible individuals. In the case of multi-objective RAPs,
the configurations were subject to physical constraints concerning the minimum and max-
imum number of components per subsystem, whereas the inspection plans were subject
to regulations’ requirements. Such an adaptation of the genetic operators enabled a re-
duction of the search space explored by MOGA that was prevented from being lost in
unfeasible regions. Additionally, unnecessary fitnesses evaluations — sometimes involving
expensive computational procedures — of unfeasible individuals were not performed.

After obtaining the Pareto front from MOGA, a ROI analysis was suggested to aid the
decision maker in choosing a specific solution (system design and number of maintenance
teams or an inspection plan). It was observed that considerable investments in system
design are not necessarily translated into a great gain on system mean availability. Anal-
ogously, considerable investments in inspection do not certainly imply a great reduction
in risk.

Also related to the operational phase of systems and equipments, the SVR learning
method was used for the prediction of TBFs of onshore oil wells and of failures related to
the scale growth rate on an equipmet used in offshore systems. In the first case, the SVR
was combined to a PSO so as to select the most important influential variables of the TBFs
concurrently to the SVR hyperparameters’ adjustment. The obtained results suggest that

whenever a variable is introduced into or removed from the data set, a tuning of the SVR
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hyperparameters must be performed so as to avoid reduction of the SVR performance.
In the second case, pairs and residuals bootstrap schemes were combined to SVR for
the construction of confidence and prediction intervals related to the response variable.
In this way, along with the accurate point predictions resulted from the adopted bagging
estimator, interval inferences could also be performed. Additionally, since both SVR and
bootstrap are non-parametric techniques, a reduced number of probabilistic assumptions
were required. This is an interesting property of the proposed method, as it can be
applied when no probabilistic models fit the phenomenon under analyais and / or when a
large amount of data can not be obtained, e.g. due to budget constraints. The proposed
methods were validated on an simulated example and a Monte Carlo experiment was
performed in order to assess their coverage properties. Such a simulation indicated that
the coverages are better when the training data set increases and that a greater number
of bootstrap iterations does not necessarily enhance the coverages. Also, an illustration
of how the presented methodology could support decision making concerning preventive
maintenance actions was also provided; it was based on the interval estimates resulted

from the boostrapped SVR and on a given threshold related to failure occurrence.

8.1 Limitations and Suggestions for Future Works

Although the presented techniques can be, in principle, used in various contexts,
the obtained results as well as the related inferences may not be generalized to other
applications without a preliminary investigation.

MOGA is a probabilistic model and does not guarantee that the true optimal solutions
have been obtained. However, such a drawback can be partially overcome if various
MOGA runs are performed with different GA parameter values (e.g. probabilities of
crossover and mutation, numbers of individuals and generations). Each of these sets of
parameters is expected to enable the exploration of a specific location of the search space
and, in the end, the comparison of the results from each run may provide an overall better
front. Besides, MOGA is a flexible optimization technique that permits the coupling with
other methods for the generation of more realistic frameworks to support decision making.
Also, it is specially useful in the absence of analytical objective functions, as in the case of
superimposing GRPs, when the problem is related to a prohibitive number of combinations
for an exhaustive evaluation of solutions, and / or multiple objectives need to be separately
handled. In fact, there are many real cases in which the optimal solution or the Pareto
front is not known or the objective functions and / or constraints are intractable. If the
methods used to compute the objectives is time consuming (e.g. DES), the previously
commented approach of GA parameter variation to provide an overall better front may
be too expensive. Like MOGA, PSO is a probabilistic optimization model and there

are no guarantees that the optimal solution have been attained. However, it has been
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successfuly applied, mainly to real-valued problems and analogously to the case of MOGA,
different PSO parameters can be used to explore various locations of the search space so
as to provide overall better solutions, mainly if the fitness evaluation step is not time
consuming.

In the multi-objective redundancy allocation problems, only the constraints related to
the minimum and maximum number of components per subsystem were considered. Other
constraints related, for example, to volume and weight, can be taken into account. Also,
instead of GRPs, other methods describing the failure-operation process of components
that incorporate the effects of repairs can be used, e.g. modulated power law processes
(RIGDON & BASU, 2000; SALDANHA & FRUTUOSO E MELO, 2012).

In this work, ROI analysis was suggested to guide the decision concerning the selection
of a solution (e.g. system design and number of maintenance teams or inspection plan)
from the obtained Pareto front. Such an approach can be combined, for example, to
elicitation methods (KAHNEMAN et al., 1982; MOSLEH et al., 1988; COOKE, 1991;
CAMPELLO DE SOUZA, 2007) that capture the preferences of the decision maker so as
to construct a circumstance-adapted post-optimization method.

Inspections reduce the uncertainty about the deterioration state of the equipment but
no intervention is performed in order to reduce the associated risk level. In this way, they
are able to suggest the performance of preventive maintenance so as to reduce and / or
delay the action of the damage mechanism. In this work, however, the effects of preven-
tive maintenance actions were not taken into account in the elaboration of multi-objective
inspection plans. The combination of multi-objective inspection and preventive mainte-
nance plans would consider the impacts of the maintenance actions on the deterioration
state of the equipment, which would be incorporated in the risk computation by the RBI.
Thus, the inspection and the maintenance activities could provide information to each
other so as to efficiently determine their scheduling.

Indeed, RBI is used for calculating risk of equipment from oil and petrochemical
industries. In this way, the proposed elaboration of multi-objective inspection plans can
only be used in such a context. However, other methods for risk evaluation applicable to
other industries can be combined to MOGA, so as to provide non-dominated inspection
plans with respect to risk and cost.

The predictive ability of SVR was basically assessed by NRMSE and MSE on a test
set. However, even though a good performance on unseen data is expected, there are no
guarantees that the estimated SVR model will properly function. But, if an SVR gives
poor predictions on unseen cases, it can be interpreted as an indicator for a retraining
procedure incorporating new data that have become available. In this way, as more data
are collected, the SVR could be retrained and updated.

Not only SVR but also bootstrap methods are suitable for situations where small to

moderate observation sets are accessible. Nevertheless, the quality of the estimated models
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and values directly depends on the quality of the data used in the estimation step. Hence,
in order to construct accurate data bases it is essential to give the appropriate importance
for the data gathering procedure. If this is accomplished, more observations mean that
more information about the phenomenon or process under analysis become available,
which may positively impact the accuracy and precision of the SVR and bootstrap models
and estimates.

Although the variable selection procedure by PSO + SVR suggests the subset of the
most relevant input variables, the variability of the response that can be apportioned to
them are not quantified. In this way, a global sensitivity analysis (SALTELLI et al., 2004)
approach could be combined to the PSO + SVR so as to allow for the ranking of the input
variables according to their contribution for the variability of the response variable.

The methods and techniques considered and proposed in this work have potential
to be combined in several manners so as to compose more general and comprehensive
frameworks, as discussed in Section 1.2. For example, the components in the MOGA
+ DES were supposed to have times between failures governed by Weibull probability
densities. However, it might not be the case and historic data concerning the components’
failures could feed an SVR. For a given component, the SVR could provide the MOGA
+ DES with the time of its next failure. Thus, data related to the operational phase of
the equipment could furnish valuable information for the design of systems. The same
reasoning could be applied to the logistic time and to the TTRs. Also, the simulation block
could incorporate not only failure times and corrective maintenance, but also inspection
and preventive actions, given the importance of these activities for critical components.
Finally, each proposed method or their combination is able to support decision making

involving risk and reliability aspects of systems.
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Appendix

Lagrangian and KKT First Order Conditions for SVR Train-

ing Problem

The Lagrangian related to the training problem (5.3)-(5.7) is:

L(w,b,&,E a,a", B,0%) = fw Tw+ ¢- Z§l+§l

=1
4

~

Z [wh(z) +b—y +e+&]

—>a [y —we(x) —b+e+&]—
=1

4

Z(ﬁlfl + BrE)

=1

(A.1)

in which o, a*, 3, 8* are the /-dimensional vectors of Lagrange multipliers associated to

constraints (5.4) and (5.5) respectively. Note that a; and a; can not be strictly positive

simultaneously, given that there is no point satisfying both (5.4) and (5.5) at the same

time. Hence, oya; = 0. The Lagrangian in (A.1) must be minimized with respect to primal

variables w, b, &, &* and maximized with respect to dual variables «, a*, 8, 3*. Then the
saddle point (wy, by, &0, &5, o, A, o, B5) of L has to be found. The related KKT first

order optimality conditions are:

E(w’ b7€’ 5*7a7 a*7/87 5*)
dw

L(w,b,§ & a,a", 3,5
ob

L(w,b,§ & a,a",b,57)
9

L(w,b,§ & a,a",b,5)
29

=0,

=0,

=0,

=0,

wg d(x1) +bo — Y1 + € + & > 0,

Yy — wy $(x1) = bo + & + &y > 0,

o > 0,

&0 = 0,

ap > 0,

ag > 0,

Bio > 0,

Bio = 0,

ago - [wg d(xr) + by — 1 + € + &o] = 0,

96

4

wo = Y (g — ) d(ay) (A.2)

=1
¢
Z(Oélo — aj)

=1

C — ap = B,

C' — oy = B,
Vi
Vi
Vi
Vi
Vi
Vi
Vi
Vi
Vi

=0

Vi

Vi

(A.3)



Appendix Lagrangian and KKT First Order Conditions for SVR Training Problem

oy [y —wld(z) —bg +e+E&5] =0, VI (A.15)
Bio&wo =0, (c—au) & =0, VI (A.16)
51*051*0 =0, (C - Oézko) '51*0 =0, VI (A-17)

By replacing equalities (A.2)-(A.5) in (A.1), the objective function (5.10) is defined. The
constraint (A.3) remains in the problem. Constraints (5.12) and (5.13), in turn, are
obtained by the combination of Equations (A.4), (A.8), (A.10), (A.12) and Equations
(A.5), (A.9), (A.11), (A.13), rescpectively. Note that problem (5.10)-(5.13) presents only
the dual variables oy and ¢ as unknowns, which have ¢ as upper bound, so as to respect
the non-negativity of 5, and 3}, see (A.12) and (A.13).
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