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Resumo 

 

 

Durante o processo de fermentação, Saccharomyces cerevisiaeresiste a 

vários tipos de estresses ambientais,tais como flutuações nas condições oxidativas e 

osmóticas, choque térmico e as variações de pH. Para suportar essas flutuações 

ambientais, a levedura apresenta mecanismos de respostas capazes de preservar a 

estrutura celular. Entre estas proteínas podemos citar Hog1p, envolvida em estresse 

hiperosmótico; Ylr194cp, Smi1p e Slg1p que participam da manutenção da parede 

celular; Yap1p e Skn7p, tolerância ao estresse oxidativo; Slt2p, manutenção da 

parede celular e choque térmico. Através do sistema duplo híbrido buscamos 

entender como a interação destas proteínas pode atuar em conjunto para 

manutenção da viabilidade celular durante os diferentes estresses. Desta forma, os 

genes YLR194C, HOG1, SLG1,YAP1e SLT2 foram inseridos no vetor pGADC2 

(contendo o domínio de ativação); YLR194C e YAP1 foram inseridos no vetor pBTM 

(contendo o domínio de ligação). Nossos resultados indicaram interações entre os 

produtos dos genes YLR194C e YAP1; YLR194C e SLT2 na ausência de agentes 

estressores, e novas interações entre as proteínas Yap1p e Slg1p; Ylr194cp e Slg1p; 

Ylr194cp e Hog1p, Yap1 e Slt2, Yap1 e Slg1 diante de um determinado agente 

estressor. Todos os resultados foram avaliados através da detecção da atividade do 

gene repórter HIS3. 

  

 
 

Palavras-chave: Duplo híbrido; estresse; Saccharomyces cerevisiae 
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Abstract 

 

During fermentation process, Saccharomyces cerevisiae withstands various 

environmental stress agents, such as oxidative and osmotic conditions fluctuations, 

heat shock and pH variations. In order to endure these conditions, yeast presents 

response pathways able to preserve cell structure. Among several proteins included 

in these pathways, as the best known, we may mention Hog1p, involved in 

hyperosmotic stress; Ylr194cp, Smi1p and Slg1p involved cell wall integrity; Yap1p 

and Skn7p, oxidative stress tolerance; Kre6p, cell wall β-1,6 glucans synthesis; Slt2p, 

heat shock and cell wall integrity. Using yeast two-hybrid system, our work tries to 

understand how interaction between these proteins has influence on cellular viability 

during distinct stress. YLR194C, HOG1, SLG1, YAP1 and SLT2 genes have been 

inserted into pGADC2 vector, which contain transcription activation domain (AD), 

while YLR194C and YAP1 genes have been inserted into pBTM vector, which 

contain DNA-binding domain (DB). Our results indicated interaction between gene 

productsYLR194C and YAP1, and interaction between YLR194C and SLT2, in the 

absence of stressors, and new interactions between Yap1p and Slg1p; Ylr194cp and 

Slg1p; Ylr194cp and Hog1p, Yap1 and Slt2, Yap1 and Slg1 proteins in the presence 

of a particular stressor.All results were evaluated by detecting the activity of the HIS3 

reporter gene. 

 

 

Key words: two-hybrid; stress; Saccharomyces cerevisiae 
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1. Introdução 

A levedura Saccharomyces cerevisiae,além de ser considerada um 

modelo biológico para compreensão de diversos mecanismos moleculares em 

organismos eucariotos, também é relevante do ponto de vista econômico. Seu 

emprego inclui alguns dos mais importantes bioprocessos da indústria, como 

produção de bebidas alcoólicas, fermentação do pão e produção do bioetanol a 

partir da fermentação da cana de açúcar. 

No processo industrial, após a etapa da fermentação, as células de S. 

cerevisiae são separadas por centrifugação para serem reutilizadas em um novo 

ciclo. Para tanto, o material obtido é tratado com ácido sulfúrico com o intuito de 

reduzir a contaminação bacteriana presente no meio. Este processo de 

reciclagem acaba levando a levedura a enfrentar um conjunto de agentes 

estressores presentes no meio, dos quais citam-se: estresse oxidativo, osmótico, 

choque térmico e variações no pH, ocasionando diminuição na viabilidade celular. 

Para suportar essas flutuações ambientais, a levedura desenvolveu 

mecanismos de respostas que convergem para manutenção da estrutura da 

parede celular.Essa estrutura é composta por polissacarídeos de β 1,3-glicanos, β 

1,6-glicanos, quitina (polímeros de N-acetilglicosamina), manoproteínas 

glicosiladas. Tais características contribuem para a capacidade da célula de 

responder a diferentes condições osmóticas impostas pelo meio. 

Diante deste cenário, nós buscamos entender como essas vias de 

respostas convergem para manutenção da viabilidade celular através da interação 

entre suas proteínas, utilizando o sistema de análise de interações duplo híbrido 

em levedura. 
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2. Revisão da Literatura 

 

2.1 Fermentação alcoólica  

 

O bioetanol é um combustível de fonte renovável, cuja produção é 

geradora de empregos, além de representar uma alternativa em substituição ao 

consumo de combustíveis fósseis, associados ao aumento da emissão do CO2 na 

atmosfera (Demain, 2009). O Brasil é o segundo maior produtor de bioetanol do 

mundo, perdendo apenas para os Estados Unidos. A produção de bioetanol, 

associada à indústria açucareira, responde por cerca de 2,3% do Produto Interno 

Bruto (PIB) nacional, gerando cerca de 4,5 milhões de empregos (Basso et al., 

2011). 

Para o processo de fermentação, as células da levedura Saccharomyces 

cerevisiae são cultivadas no caldo da cana de açúcar ou melaço sob agitação 

(Wheals et al., 1999; Basso et al., 2008), incubadas em fermentadores cilíndricos 

com retroalimentação periódica. Após processo fermentativo de seis a dez horas, 

as células são coletadas por centrifugação. Essas leveduras são recicladas, o que 

resulta em menor desvio do metabolismo de carboidratos para a produção de 

biomassa, estimando-se um aumento de biomassa de apenas cinco a dez por 

cento em relação à biomassa inicial (Basso et al., 2008). O material obtido por 

centrifugação é transferido para recipientes, onde é tratado com solução aquosa 

de ácido sulfúrico (pH 1,8- 2,5) para reduzir a contaminação bacteriana (Melo et 

al., 2010). Em geral, a reutilização das leveduras pode durar de quatro a seis 

meses, desde que não ocorram eventos de contaminações bacterianas ou por 

outras leveduras (Liberal et al., 2007; Basilio et al., 2008; Basso et al., 2008; 

Lucena et al., 2010). 
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2.1.1 Agentes estressores no processo industrial 

O procedimento da reciclagem utilizado nas fermentações industriais 

expõe as células das leveduras a uma variedade de perturbações físicas, 

químicas e biológicas (Logothetis, Walker e Nerantzis, 2007). Essas condições 

impostas que venham a ameaçar a sobrevivência celular ou que, pelo menos, 

estejam fora dos padrões ideais do metabolismo fisiológico celular são referidas 

como estresse celular (Hohmann e Mager, 2003). Essas perturbações acabam 

reduzindo a viabilidade celular e a capacidade fermentativa devido à presença de 

agentes estressores no meio, dos quais são citados: potencial osmótico, presença 

do etanol, radicais livres, flutuações de pH, choque térmico, entre outros.  

O estresse osmótico é causado principalmente pela presença dos sais 

provenientes do melaço da cana de açúcar, excesso de cálcio, potássio, 

magnésio (Basso et al., 2011), entre outros. Também pode ser resultado das altas 

concentrações de açúcares presentes no meio (Saito e Posas, 2012). O aumento 

da osmolaridade externa induz o efluxo de água e o aumento das concentrações 

citosólicas de íons, a exemplo do sódio, resultando na plasmólise celular (Saito e 

Posas, 2012). Entretanto algumas leveduras conseguem suportar o aumento da 

osmolaridade através de respostas adaptativas que incluem parada no ciclo 

celular, regulação da transcrição e da tradução, síntese e retenção do glicerol 

(Saito e Posas, 2012). Um exemplo de mecanismo de resposta ao estresse 

salino, causado pela presença do cloreto de sódio é baseado em ajustes 

osmóticos por sistemas de transportes dos cátions de sódio (Logothetis, Walker e 

Nerantzis, 2007). Também podemos encontrar o acúmulo de osmólitos, como 

polióis, particularmente o glicerol (Blomberg, 2000). 
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Ainda que o etanol seja um produto fisiológico do metabolismo 

fermentativo, ao qual a levedura apresenta tolerância, seu acúmulo pode ser 

considerado um fator de estresse, cujas altas concentrações inibem o 

crescimento celular e provocam queda da eficiência da fermentação (Alexandre et 

al., 2001; Aguilera et al., 2006). Em baixas concentrações, o etanol pode atuar 

como um inibidor do crescimento celular alterando a taxa de divisão celular e 

diminuindo o volume celular médio, enquanto que altas concentrações de etanol 

reduzem a vitalidade celular e aumentam a taxa de morte celular (Birch e Walker, 

2000). A exposição da levedura a determinados índices de etanol também 

influencia o metabolismo celular e a biossíntese de macromoléculas, induzindo, 

por exemplo, a produção de proteínas semelhantes às proteínas heat-shock, a 

redução de taxas de transcrição e tradução, o aumento da frequência de 

mutações pontuais, proteínas de desnaturação intracelular e enzimas glicolíticas, 

reduzindo ainda suas respectivas atividades (Hu et al., 2007).  

O oxigênio molecular, em vista da formação de espécies reativas de 

oxigênio ao longo do metabolismo aeróbico, apresenta potencial toxicidade às 

leveduras em crescimento com efeitos prejudiciais, a exemplo da peroxidação 

lipídica e mutagênese, além de alterações degenerativas associadas ao 

envelhecimento (Briggs et al., 2004). Apesar disso, o oxigênio exerce papel 

essencial no processo de preparação que antecede a fermentação a nível 

industrial.  

Uma boa quantidade de oxigênio é necessária para a etapa preparatória 

da fermentação com o intuito de gerar biomassa de levedura e assegurar 

condições fisiológicas ótimas para fermentação (Hammond, 2000; Hulse, 2003). 

Além disso, durante o processo de fermentação, a presença do oxigênio é 
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necessária para a síntese de ácidos graxos e esteróis, o qual permitem a 

manutenção da integridade da membrana plasmática e sua função, e, 

consequentemente, a replicação celular (Hammond, 2000; Briggs et al., 2004). 

Entretanto, altos níveis de exposição da levedura ao oxigênio no tanque de 

fermentação podem resultar em crescimento celular excessivo à custa da 

produção de etanol (Briggs et al., 2004). Níveis ótimos de oxigênio são, portanto, 

necessários para a adequada produção de etanol (Gibson et al., 2007).  

A teoria de envelhecimento celular mediado por radicais livres postula que 

espécies reativas de oxigênio, produzidas sob condições aeróbicas de 

crescimento, seriam a causa primária de danos aos componentes celulares 

associados ao envelhecimento (Barker, Brimage e Smart, 1999; Halliwell e 

Gutteridge, 1999). O estresse oxidativo poderia, portanto, ter participação na 

deterioração progressiva de células, ao longo de sua reutilização serial. Essa 

técnica de coleta e reutilização, comumente adotada na fermentação industrial, 

acaba selecionando leveduras com uma alta proporção de células envelhecidas 

(Powell et al., 2000).  

O tempo de vida replicativo de leveduras é estimado através da sua 

capacidade de produzir células filhas, o qual irá depender da linhagem utilizada 

(Maskell et al., 2001) e está relacionado ao potencial antioxidante da célula 

(Barker et al., 1999; Van Zandycke, Sohier e Smart 2002). Em suma, a eficiência 

de mecanismos de resposta da levedura ao estresse oxidativo e sua sensibilidade 

intrínseca aos radicais oxidativos podem determinar o número de ciclos de 

reutilização que uma cultura de leveduras em preparação pode tolerar (Gibson et 

al., 2006).  
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O pH típico do mosto fermentativo varia entre 5,5 e 4,1 (Coote e Kirsop, 

1976; Rowe, Simpson e Hammond 1994). Este baixo pH é decorrente da 

produção de ácido carbônico proveniente do CO2, da secreção de ácido orgânicos 

e consumo de compostos tamponantes (aminoácido básicos e fosfatos primários) 

(Gibson et al., 2007). O pH final é dependente da capacidade de tamponamento 

do mosto, do pH inicial, da extensão do crescimento da levedura (Heggart et al., 

1999). Evidências sugerem que algumas leveduras conseguem tolerar uma queda 

de dois a 1,5 unidades de pH durante a fermentação (Boulton e Quain, 2001). 

Entretanto, trabalhos recentes caracterizaram cepas mais sensíveis a variações 

de pH, com taxas de crescimento reduzidas (Maskell, 2003; Gibson et al., 2007) e 

mudanças no padrão de expressão gênica. Em uma cepa haplóide de S. 

cerevisiae,foi observado que após a redução do pH de 5,5 para 3,5 ocorreu 

aumento na expressão de 36 genes relacionados com parede celular, com o 

metabolismo de carboidratos e metabolismo redox, com o controle da expressão 

gênica, transporte nuclear e genes relacionados com mecanismos de proteção 

contra diversas condições de estresse (Kapteyn et al., 2001). 

Durante o processo de reciclagem das leveduras, as células são 

submetidas a baixos níveis de pH com o intuito de reduzir contaminações 

bacterianas (Melo et al., 2010), o que implica em diferenças significativas nos 

perfis de fermentação quando comparados àqueles apresentados por cepas não 

tratadas (Cunningham e Stewart, 1998). Foram observadas perturbações 

fisiológicas decorrentes do vazamento de nitrogênio, fósforo, potássio e 

magnésio, e redução nos níveis de trealose (Ferreira, Amorim e Basso, 1999). A 

adição do ácido dietilesterol durante a lavagem reduz a viabilidade celular 

(Uchida, Ohsumi e Anraku, 1988). Esse ácido atua como inibidor da ATPase-H+ 
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de membrana plasmática, levando à morte da levedura devido à acidificação 

intracelular por perda da capacidade de troca de íons (Carmello, Bogaerts e Sá-

Correia, 1996).  

O mais fundamental estresse experimentado pela levedura é aquele 

promovido pela adaptação da célula à temperatura ambiente.  S. cerevisiae exibe 

crescimento ótimo entre 25-30˚C. Entretanto, em temperaturas acima de 36-37˚C, 

as células da levedura ativam um programa transcricional protetor, denominado 

resposta a choque térmico, e altera outros componentes de sua fisiologia, 

incluindo composição da membrana plasmática e fluxo de carboidratos (Morano, 

Grant, e Moye-Rowley, 2011). S. cerevisiae e outras leveduras mesofílicas 

mantêm seu crescimento em temperaturas de até 42˚C, aproximadamente, mas 

são incapazes de lidar com exposição crônica a temperaturas superiores (de fato, 

a RNA polimerase II de levedura é inativa em temperaturas superiores a 42⁰C) 

(Yamamoto et al., 2008).  

Uma vez que células de levedura podem experimentar uma variação de 

temperatura ao longo do curso do ciclo dia/noite, estudos acerca da resposta ao 

choque térmico induzido pela mudança de 30˚C para 37˚C (o choque térmico 

clássico) em condições laboratoriais são fisiologicamente relevantes (Morano 

Grant, e Moye-Rowley, 2011). Nos últimos 25 anos, estudos demonstraram como 

as células de leveduras respondem ao choque térmico, incluindo fatores de 

transcrição que regulam mudanças na expressão gênica, e a reprogramação 

metabólica que permite à célula resistir desde a exposição crônica até 

temperatura sub-letais (Trott e Morano, 2003).  

Além de todos esses agentes estressores mencionados anteriormente, 

podemos encontrar o estresse imposto pelo tratamento com biocidas, como 
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polihexametileno biguanida (PHMB), capaz de matar leveduras contaminantes do 

processo fermentativo. O tratamento com este agente leva a ativação dos genes 

de resposta da via de manutenção da integridade da parede celular (CWI) 

(Elsztein et al., 2011). O tratamento com o corante fluorescente branco calcoflúor 

e o vermelho congo induz a falhas no processo de montagem adequada do 

envelope celular (Ketela et al., 1999; De Nobel et al., 2000). Mutantes de SWI4 e 

6  ,dois componentes da via de manutenção da integridade da parede, são 

hipersensível ao branco calcoflúor, apoiando uma papel para o complexo SBF na 

resposta a este agente (Kim et al., 2010), enquanto o vermelho congo irá atuar na 

perturbação da rede formada pelos polímeros de β-1,3 glicanos, levando a 

ativação MAP quinase Slt2p (Ketela et al., 1999; De Nobel et al., 2000).  
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2.2. Metabolismo da resposta a estresse em Saccharomyces cerevisiae 

2.2.1 A importância da integridade da parede celular para as leveduras 

 

Como visto, as células de S. cerevisiae são afetadas por uma quantidade 

significativa de agentes estressores inerentes ao processo de fermentação. 

Entretanto, para que este processo seja realizado de forma adequada, as 

leveduras devem ser capazes de detectar e responder de forma hábil aos 

estímulos ambientais sem perda de sua viabilidade (Bauer e Pretorius, 2000). 

Portanto, quando as condições ambientais são alteradas, a adaptabilidade celular 

permite o rápido ajuste de seu metabolismo de forma a resistir, ou melhor, 

aproveitar os distintos recursos aos quais está sendo exposta (Hohmann e Mager, 

2003). Para atingir este objetivo, as células apresentam sistemas de sensores 

presentes na parede celular com a finalidade de detectar flutuações no ambiente, 

a exemplo das variações nos níveis de pH, radicais livres e osmolaridade.  

Após a etapa da detecção das perturbações, ocorre a ativação de vias de 

transdução de sinais. Essas vias terão como resultado final a alteração do padrão 

de expressão gênica, com síntese de moléculas de proteção, ou a modulação do 

nível e/ou atividade de proteínas por meio de modificações pós-traducionais ou de 

localização subcelular (Hohmann e Mager, 2003; Rodrigues-Pousada, Nevitt e 

Menezes, 2005). 

As respostas a agentes estressores encontradas em S. cerevisiae podem 

ser agrupadas em diferentes fases, desde alterações locais imediatas a 

perturbação com resposta direta até modificações na homeostase celular 

(Logothetis, Walker e Nerantzis, 2007). 
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A parede celular das leveduras proporcionam uma primeira barreira às 

mudanças ambientais e determina a integridade e a morfologia de suas células 

(Rodicio e Heinisch, 2010). A estrutura da membrana plasmática e suas funções 

parecem ser um alvo predominante para o etanol. A exposição da levedura ao 

etanol resulta em aumento da fluidez da membrana e consequente diminuição de 

sua integridade (Mishra e Prasad, 1989). Uma diminuição na disponibilidade de 

água devido à presença do etanol provoca a inibição de enzimas glicolíticas 

chave, provavelmente devido a sua desnaturação (Hallsworth, 1998). 

A manutenção da sua estrutura e organização representa um ponto chave 

para suportar a exposição aos agentes estressores (Levin, 2005; Fuchs e 

Eleftherios, 2009).Os mecanismos de controle de remodelamentoda parede 

celular da levedura durante o crescimento têm despertado interesse de pesquisa, 

levando a realização de vários estudos nas últimas décadas (Levin,  2005; Klis, 

Boorsma e De Groot, 2006; Lesage e Bussey, 2006). A estrutura dinâmica dessa 

parede é responsável pela sua estabilidade osmótica e proteção contra estresse 

mecânico, configurando uma estrutura forte, mas ao mesmo tempo elástica, 

capaz de suportar mudanças na força de compressão, além de conferir a 

morfologia celular (Cidet al., 1995; Harold, 2002), a qual é essencial para a 

divisão celular (Levin, 2011).  

A parede celular fornece suporte para proteínas de superfície, sobre as 

quais os polissacarídeos atuam como matriz de ligação para glicoproteínas 

(Zlotnick et al, 1984;. Kliset al., 2006). As glicoproteínas incluem fatores de 

aglutinação sexual (Cappellaro et al., 1994;Zhao et al., 2001), adesinas que 

permitem o contato célula-célula durante a formação de filamentação, 

crescimento invasivo e biofilme (Reynolds e Fink 2001;. Douglas et al., 2007; 
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Levin, 2011) Dada à importância da parede para a sobrevivência das células em 

condições estressantes, existe um investimento enérgico considerável para sua 

biogênese, uma vez que a parede compõe cerca de 10 a 25% do peso seco da 

célula (Adams, 2004). Dados de micrografia eletrônica revelaram que a 

organização do envoltório celular da levedura S. cerevisiaeé realizada por 

diversos polissacarídeos (Orlean, 1997; Lipke e Ovalle, 1998; Kliset. al., 2002; Yin 

et al., 2005). A resistência mecânica da parede é dada principalmente pela sua 

camada interna, composta por cerca de 80-90% de polímeros de β1,3-glicanos;8 

a 18% de polímeros de β1,6-glicanos e quitina (polímeros de N-acetilglicosamina), 

contribuindo com 1 a 2% (Levin, 2011). 

A presença de moléculas com ligações β1,3 permite a associação local 

dos polímeros através de pontes de hidrogênio (Klis, Boorsma e De Groot, 2006) 

(Figura 1). Essa conformação leva à formação de uma rede tridimensional 

contínua e elástica, permitindo assim que a célula consiga responder a diferentes 

condições osmóticas impostas pelo meio. As extremidades não redutoras das 

moléculas β1,3-glicanos podem funcionar como sítios de ligação covalente para 

outros polissacarídeos presentes na parede, comopor exemplo, quitina (Lesage e 

Bussey, 2006). Na face externa podemos encontrar moléculas com ligações a 

polímeros de β1,6-glicanos, que, por sua vez, podem ser ligadas a quitinas e 

manoproteínas (Montijn et al., 1997; Kapteyn et al., 1997; Fujii, Shimoi e Limura, 

1999). 
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Figura 1: Relações entre os componentes da parede celular de Saccharomyces 

cerevisiae. (A) componentes mostrados individualmente: polipeptídios de manoproteínas em azul, 

oligossacarídeos mostrados em amarelo ligados com oxigênio ou nitrogênio. Alguns dos pontos de 

ramificação de glicanos são mostrados. Quitina pode ser ligada a β-1,6 glicanos. (B) Associação 

dos componentes mostrados em A.  β-1,6 glicanos estão ligados para formar triplas hélices, 

quitina é mostrada como um microdomínio cristalino. (Retirado e adaptado de Lipke e Ovalle, 

1998). 

No interior das redes de β1,3-glicanos encontram-se ligadas algumas 

moléculas de quitina, as quais são encontradas apenas após a citocinese, 

demonstrando que a quitina não confere resistência mecânica às paredes laterais. 

A quitina pode se ligar também às cadeias de β1,6-glicanos, em resposta ao 

estresse de parede (Klis et al., 2006). Em contraste à estrutura microfibrilar dos 

β1,3-glicanos, encontramos os polímeros mais curtos de β1,6-glicanos, que atuam 

como uma cola por formação de ligações cruzadas para β1,3-glicanos, quitina e 

para as manoproteínas (Kollar et al., 1997). A camada externa é composta por 

uma variedade de polissacarídeos que receberam a denominação de 

manoproteínas. São estruturas glicosiladas provenientes da superfície celular 
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(Figura 1) (Baba e Osumi, 1987; Cappellaro et al., 1994) com estrutura variável 

entre diferentes espécies de leveduras (Gemmill, e Trimble, 1999). 

São descritas duas classes de glicoproteínas da parede celular (Lesage e 

Bussey, 2006). A primeira classe é composta pelas glicofosfatidilinositol (GPI), 

que compõe a maioria das proteínas de parede e é indiretamente ligada à rede de 

β1,3-glicanos (Klis et al., 2006). Estas proteínas são dirigidas para a face 

extracelular da membrana através da secreção de âncoras de lipídios em seus C 

terminais. As destinadas à parede são liberadas a partir da clivagem de suas 

âncoras (Kollar et al., 1997). Lipídios GPI menores ficam unidos à superfície 

externa da rede de β1,3-glicanos indiretamente através de cadeias β1,6-glicanos 

(Klis et al., 2006). 

A segunda classe é composta por um grupo menor de glicoproteínas de 

parede que estão diretamente ligadas à rede de β1,3-glicanos, sendo 

representada por cinco polipeptídeos relacionados PIR (proteínas de repetição 

interna) (Toh-e et al., 1993; Kapteyn et al., 1999; Mrsa e Tanner 1999; Klis et al., 

2006). Apesar dos genes relacionados à PIR não serem essenciais, cepas que 

tiveram múltiplas deleções de PIR1 e PIR4 apresentaram defeitos na viabilidade 

celular decorrentes da sensibilidade aos agentes estressores de parede celular 

(Mrsa e Tanner, 1999). 

Além destas duas classes principais de proteínas de paredes, também 

podemos encontrar proteínas que são ligadas de forma não covalentes, a 

exemplo de Bgl2p, ou através de pontes de dissulfeto a outras proteínas, a 

exemplo da subunidade aglutinina Aga2p em células Matα (Klebl e Tanner, 1989; 

Cappellaro et al., 1994). Algumas proteínas citosólicas, a exemplo de enzimas 
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glicolíticas, podem chegar à parede celular através de proteínas de exportação 

(Cleves et al., 1996; Molina, 2000). 

As manoproteínas exercem a função de proteção da camada interna da 

degradação por enzimas (Zlotnick et al., 1984; de Nobelet al., 1990; de Nobel 

eBarnett, 1991; Klis et al., 2002). Também são importantes para eventos de 

reconhecimento célula-célula durante aglutinação sexual, e formação do biofilme 

(Lipke e Kurjan, 1992; Cappellaro et al., 1994; Reynolds e Fink, 2001).   

A quitina é um polímero linear de β1,4-glicanos ligados a N-

acetilglicosamina, formando miofibrilas estabilizadas por pontes de hidrogênio 

(Lesage e Bussey, 2006). Como visto, a quitina é pouco encontrada nas paredes 

celulares de S. cerevisiae na ausência de condições de estresse. Entretanto, em 

condições de estresse de parede celular, seus níveis aumentam para valores de 

até 20% (Popolo et al., 1997; García-Rodriguez, Durán e Roncero, 2000; 

Valdivieso et al., 2000). A quitina pode ser ligada tanto a polímeros de β1,3-

glicanos como de β1,6-glicanos por transacetilases redundantes Crh1p e Crh2p 

(Cabib et al., 2007, 2008; Cabib, 2009). 

Dada à importância da parede celular para sobrevivência da levedura, 

perturbações no seu ambiente decorrentes da presença de agentes estressores 

levam a ativação de mecanismos de respostas denominadas de mecanismos de 

compensação.  Estas respostas são caracterizadas por um aumento no conteúdo 

de β- glicanos, quitina, polissacarídeos e proteínas, além da relocalização de 

proteínas importantes da maquinaria de construção da parede celular. (Arroyo, 

2009). 
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2.2.2. Via de manutenção da integridade da parede celular (CWI) 
 

Dada à facilidade de manipulação genética de leveduras, em especial S. 

cerevisiae, seu estudo tem permitido uma melhor compreensão das vias de 

resposta associadas a mudanças ambientais (Dohlman e Thorner, 2001; 

Hohmann, 2002; Levin, 2005). Uma função essencial presente nas células 

eucarióticas é captar alterações no seu ambiente e ajustar sua fisiologia em 

função dessa modificação. A percepção desses sinais é realizada por receptores 

presentes na membrana plasmática, a exemplo dos receptores de membrana da 

família de proteínas Wsc (Slg1p/Wsc1p, Wsc2p, Wsc3p e Mid2p homólogo de 

Mlt1p) (Verna et al., 1997; Ketela et al., 1999; Rajavel et. al., 1999). Em geral, os 

receptores estão relacionados com ativação de uma cascata de transdução de 

sinal específica de acordo com o agente estressor presente no meio (Rodicio e 

Heinisch, 2010). 

 Em muitos casos, estas vias irão desencadear respostas transitórias, 

voltando aos seus níveis de atividade basal, mesmo com a persistência do 

estímulo através do processo de adaptação (Molina, Cid e Martin, 2010). Estas 

respostas irão atuar nos níveis de expressão gênica e modificações pós- 

traducionais, e implicará na localização espacial e temporal de proteínas para 

deposição precisa de um derminado componente da parede celular (Heinisch et 

al., 1999; Levin, 2005). Cerca de 1.200 genes participam direta e indiretamente na 

síntese e organização da parede celular de S. cerevisiae (Klis 1994; Lesage et al., 

2000; Basmaji et al., 2006). 
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Os organismos eucariotos, desde os mais simples aos mais complexos, 

fazem uso da via proteína quinase ativada por mitógenos (MAPK). Essa via 

apresenta-se bem conservada ao longo da evolução e está relacionada não 

apenas a presença de agentes estressores, mas também com a proliferação 

celular, diferenciação celular, desenvolvimento e apoptose (Qi e Elion, 2005). Em 

S. cerevisiae,podemos encontrar cinco MAPKs: Fus3p, Kss1p, Hog1p, 

Slt2p/Mpk1p e Smk1p que controlam o acasalamento, a filamentação/invasão, 

alta osmolaridade, integridade da parede celular e esporulação (Qi e Elion, 2005).  

A via de manutenção da integridade da parede celular (Cell Wall Integrity -

CWI) é ativada durante o crescimento e divisão celular e também pode ser 

ativada em condições de estresse de parede (Martin et al., 2000; Levin, 2005) 

como, por exemplo, no tratamento com vermelho congo, branco calcoflúor e 

choque térmico (Rodriguez-Pena et al., 2010). Deste modo, mutantes que 

apresentam defeitos no gene FKS1, o qual codifica uma unidade catalítica da 

glucano sintase, exibem uma ativação constitutiva da via CWI que é essencial 

para sua viabilidade (de Nobel et al,. 2000). O mecanismo de resposta mediado 

pela via CWI (Figura 2) é iniciado quando os receptores de membrana celular 

Mid2p e Wsc1p captam perturbações no envelope (Ketela, Green e Bussey 1999; 

Rajavel et al., 1999). Estes são os mais importantes entre os vários tipos de 

sensores descritos; a deleção do gene WSC1 resulta na lise celular em 

temperaturas entre 37⁰C a 39⁰C (Levin, 2011). Deleções em ambos os genes 

demonstraram a necessidade de um suporte osmótico para a sobrevivência 

celular (Ketela Green e Bussey, 1999; Rajavel et al., 1999), revelando a função 

complementar entre esses dois sensores (Levin, 2011).   
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Os receptores Mid2p e Wsc1p interagem com um fator de troca de 

nucleotídeos GDP/GTP (GEF) Rom2p (Ozaki et al.,1996; Philip e Levin, 2001), 

que converte a GTPase Rho1p em sua forma ativa ligada ao GTP, ativando a 

proteína quinase C (Figura 2) (Rodicio e Heinisch, 2010). Rho1p é considerado 

um dos pontos chave da via CWI, pois integra sinais a partir da superfície e do 

ciclo celular, regula a biogênese da parede celular, organização do citoesqueleto 

de actina e direcionamento correto de vesículas secretoras para o local de 

crescimento (Levin, 2011). Rho1p altera a composição da parede celular através 

da ativação das glucano sintases Fks1p e Fks2p, relacionadas com a síntese de 

β1,3-glicanos (Figura 1) (Rajavel et al., 1999) e β1,6-glicanos no local do 

remodelamento. Ainda, Fks1p e Fks2p podem se ligar à proteína quinase C 

(Pkc1p) (Nonaka et al., 1995; Kamada et al., 1995) em duas regiões do domínio 

terminal; uma rica em resíduos de cisteínas e uma de homologia ao domínio da 

região um (HR1) (Nonaka et al., 1995; Schmitz, Lorberg e Heinisch 2002). 

Pkc1p é homóloga da proteína quinase C de mamíferos e ativa uma 

cascata de MAP quinases: MEKK (MAP quinase-quinase) Bck1p, duas MEKs 

redundantes (MAPK quinases) Mkk1p/Mkk2p que irão fosforilar resíduos de 

tirosina a treonina no subdomínio VIII da MAPK Slt2p/Mpk1p (Gustin et al., 1998; 

Hohmann, 2002 Martin-Yken et al., 2003) (Figura 2).  A deleção do gene PKC1 é 

letal em condições normais de crescimento, levando a lise celular, podendo ser 

corrigido pelo suporte osmótico adequado, a exemplo de sorbitol (Levin e Bartlett-

Heubusch 1992; Paravicini et al., 1992). A fosforilação de Slt2p/Mpk1p promove o 

seu direcionamento para o núcleo, onde irá atuar nos fatores SBF fator de ligação 

ao ciclo celuar(cell cycle box binding factor)que consiste em duas proteínas: 
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Swi4p e Swi6p, e Rlm1p. Esses fatores iniciarão a expressão de genes 

relacionados à síntese de parede (Fuchs e Mylonakis, 2009). 

 

 

Figura 2: Via de manutenção da integridade da parede celular (CWI) em Saccharomyces 

cerevisiae. Sob condição de estresse, os receptores de parede Mid2p e Wsc1p/Slg1p interagem 

com GEF Rom2p, o qual converte Rho1p a sua forma ativa, ligada ao GTP.  Rho1p ativa 

diretamente Fks1p para síntese de β1,3-glicanos, ou ativa Pkc1p provocando a ativação de uma 

série de MAPK quinases (Bck1p), duas MAPK quinases redundantes (Mkk1p e Mpkk2p) e a MAPK 

quinase Slt2p, que vai ser direcionado para o núcleo através de Knr4p/Smi1p.Uma vez no núcleo, 

Slt2p irá ativar os fatores transcricionais Rlm1p e SBF que irão regular genes envolvidos na 

biossíntese da parede celular.  

 

A ativação da Slt2p/Mpk1p é necessária para a estimulação do influxo do 

cálcio através da membrana plasmática, graças à abertura dos canais de cálcio, 

os quais ativam a calcineurina (Cyert et al., 1992). Esta desfosforila o fator de 
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transcrição Crz1p (Cyert et al., 2003), permitindo a sua retenção no núcleo, 

promovendo a expressão de genes envolvidos com a resposta ao estresse.O 

mecanismo de como Slt2p/Mpk1p promove a abertura dos canais de cálcio não é 

claro, mas envolve a fosforilação de uma ou ambas as subunidades. A 

fosforilação e consequente ativação da via MAPK representa um importante 

evento na ativação sequencial, sendo regulada de forma negativa por fosfatases 

que desfosforilam essas quinases (Martin et al., 2005). Outra forma de regulação 

é a formação de complexos proteicos de atuação espacial e temporal, 

responsáveis por transduzir o sinal específico através dos domínios de interação 

das proteínas sinalizadoras, com auxílio de proteínas acessórias (Molina, Cid e 

Martin, 2010). Essas últimas atuam como centros organizadores do fluxo através 

da via de sinalização, impedindo comunicação equivocada entre as vias (Molina, 

Cid e Martin, 2010). 

Outro elemento adicional que compõe a via CWI é a proteína 

Knr4p/Smi1p, a qual é necessária para o correto direcionamento da MAP quinase 

Slt2p para atuar em seus fatores de transcrição alvos no núcleo (Martin-Yken et 

al., 2003). O gene KNR4 foi isolado originalmente de um mutante resistente a 

uma hipertoxina denominada de HM-1, de Hansenula mrakii (Hong et al., 1994), 

cujo efeito citocida é o encolhimento da parede celular no ápice do broto. Este 

gene também foi isolado de vários mutantes sensíveis a branco calcoflúor, 

através da repressão de genes que codificam quitina sintases (Martin et al., 

1999).Dada à importância da via MAP quinase em condições de crescimento 

normal e na presença de agentes estressores, o rompimento da sinalização 

mediada por esta via resulta em lise celular em sítios de crescimento polarizado 

(Levin, 2011). 
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Em suma, diferentes sensores e mecanismos de resposta são utilizados 

na via de sinalização de manutenção da parede celular em S. cerevisiae,dado um 

agente estressor presente no meio. A consequência final é a indução do 

programa transcricional mediado pela via CWI. Estudos realizados por Elsztein et 

al., (2011) e Iwahashi et al., (2005) demonstram que o gene YLR194c foi 

superexpresso em S. cerevisiae submetidas  ao polihexametileno biguanida 

(PHM) e a uma pressão hidróstica de 30 MPa, quando comparados a pressão de 

0,1MPa. Esse gene pode estar localizado na parede celular, e está envolvido na 

manutenção e remodelamento da parede em resposta a agentes estressores de 

parede, ou por mutação do gene FKS1 (Eslztein, et al., 2011). 
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2.2.3. Via do glicerol de alta osmolaridade (HOG) 

Como visto na via CWI, para se adaptar a constantes mudanças 

ambientais e, portanto, suportar diversas situações de estresse molecular, S. 

cerevisiae desenvolveu vias de sinalização dependentes de MAPK em resposta a 

estímulos específicos. Como mencionado anteriormente, duas vias MAPK, mais 

especificamente, são responsáveis pela resposta a estímulos estressores, a 

saber, a via do glicerol de alta osmolaridade (HOG) e a via de integridade da 

parede celular (CWI) (Rodrıguez-Peña et al., 2010). 

Em S. cerevisiae, mudanças osmóticas externas elicitam respostas de 

ambas as vias CWI e HOG. De modo geral, a via CWI pode responder a 

condições hiposmóticas, enquanto a via HOG de S. cerevisiae responde a 

condições hiperosmóticas. Entretanto, em fungos patogênicos, a via HOG parece 

estar implicada na regulação de respostas de estresse a diferentes estímulos 

além do choque osmótico, como estresse oxidativo, exposição a luz UV, metais 

pesados e altas temperaturas (Alonso-Monge et al.,2003, Bahn et al,2007, 

Boisnard et al.,2008).  

Apesar de condições osmóticas opostas ativarem as vias CWI e HOG, 

alguma comunicação cruzada entre as duas coordena sua regulação, o que pode 

ser demonstrado por Slt2p/Mpk1p. Enquanto soluções hipotônicas induzem a 

fosforilação de Slt2p/Mpk1p, em uma via dependente da proteína quinase C 

(PKC), soluções hipertônicas induzem a transcrição do gene SLT2/MPK1 que é 

dependente de Hog1p e Rlm1p (Hahn et al.,2002.). A transcrição deste gene 

dependente de Hog1p da via CWI, em condições hiperosmóticas, e a ativação de 

Slt2p/Mpk1p induzida pela cascata fosforilativa de CWI sugerem algum nível de 

regulação entre as vias HOG e CWI para a homeostase osmótica (Figura 3). 
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Figura 3: Mecanismo proposto para resposta ao estresse osmótico em S. cerevisiae. A 

via CWI é ativada em resposta ao estresse hiposmótico, levando à fosforilação de Slt2p/Mpk1p. A 

via HOG é ativada em resposta a condições de estresse hiperosmótico, o que envolve a ativação 

do fator transcricional Rlm1p, o qual regula a expressão do gene SLT2/MPK1. (Adaptado de Fuchs 

e Mylonakis, 2009).  

 

O ambiente osmótico para leveduras é particularmente crítico e sujeito a 

frequentes mudanças para aquelas em contanto com altas concentrações de 

açúcares, por exemplo. Uma vez que células de levedura são imóveis e, portanto, 

incapazes de evadir de um ambiente hostil, elas realizam ajustes internos para se 

adaptarem ao aumento da osmolaridade externa. Para tanto, as células sintetizam 

e retêm osmólitos compatíveis, tais como glicerol, para aumentar sua 

osmolaridade interna (Albertyn, et al., 1994), modificando assim o efluxo de água 

e ajustando a progressão do ciclo celular. Como consequência, células de 
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levedura expostas ao choque hiperosmótico rapidamente sofrem crenação e 

começam a sintetizar glicerol (Blomberg e Adler, 1992).  

A via HOG coordena esta resposta adaptativa (Hohmann, 2009), na qual 

dois ramos distintos ativam o módulo MAPK por diferentes mecanismos. O ramo 

Sho1p (Figura 4) requer Sho1p e duas proteínas semelhantes à mucina 

denominadas Hkr1p e Msb2p para detectar o estresse osmótico (Tatebayashi et 

al. 2007). A sinalização dependente de Sho1p necessita de uma pequena 

proteína G, a Cdc42p, e os membros da família PAK, Ste20p e Ste50p. O alvo de 

Ste20p é a MAPKKK Ste11p, a qual ativa a MAPKK Pbs2p, em condições 

hiperosmóticas, levando a ativação de Hog1p (Hohmann, 2009). Outro ramo que 

leva a ativação de Pbs2p (figura 4) envolve um sistema de transmissão de grupos 

fosfatos de dois componentes, com inativação da proteína quinase 

transmembrana Sln1p e desfosforilação das proteínas reguladoras de resposta 

Ypd1p e Ssk1p (Posas,1998). A Ssk1p não-fosforilada ativa duas MAPKKKs 

redundantes (Ssk2p/Ssk22p), as quais participam da fosforilação de Pbs2p, que é 

o principal responsável pela ativação final de Hog1p.  

Uma vez ativado, Hog1p é transportado para o núcleo, onde coordena o 

programa transcricional necessário para a adaptação celular ao estresse osmótico 

(O’Rourke e Herskowitz,  2004). Outros trabalhos demonstram a ativação de 

Hog1p em vias de resposta a outros tipos de estresse, incluindo estresse 

oxidativo (Bilsland, 2004), estresse ácido (Mollapour e Piper, 2006), exposição ao 

metilglioxal (Aguilera, Rodriguez-Vargas e Prieto, 2005) e queda de temperatura 

(Panadero et al., 2006). 
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Figura 4: Mecanismo de resposta mediado pela via HOG em Saccharomyces cerevisiae. 

Esta via é ativada por agentes estressores que causam estresse hiperosmótico. Na presença 

destes, os osmosensores Hkr1p e Msb2, medeiam à sinalização dependente de Sho1p 

necessitando das proteínas Cdc42p, Opy2p, Ste20p e Ste50. Ste11p ativa a MAPKK Pbs2p, 

levando a ativação de Hog1p. Outro ramo que leva a ativação de Pbs2p envolve Sln1p e a 

desfosforilação das proteínas reguladoras de resposta Ypd1p e Ssk1p que ativa duas MAPKKKs 

redundantes (Ssk2p/Ssk22p), as quais participam da fosforilação de Pbs2p, que é o principal 

responsável pela ativação final de Hog1p. 

 

Por fim, demonstrou-se que Hog1p e Pbs2p são membros críticos da via 

de resposta a condições de hiperosmolaridade, uma vez que mutações nestes 

genes causaram aumento de osmosensibilidade e redução no acúmulo de glicerol 

em células de levedura (Brewster et al,. 1993). 
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2.2.4Via deresposta ao estresse oxidativo 

 

Os organismos aeróbios estão continuamente expostos à formação de 

espécies reativas de oxigênio (ROS), decorrentes da redução incompleta do 

oxigênio molecular durante o processo de respiração (Xin-Jian e Fassler, 2005). 

Como visto anteriormente, ROS são responsáveis por danos ao DNA, proteínas e 

estruturas celulares (Moradas-Ferreira et al., 1996). Em S. cerevisiae, o estresse 

oxidativo está relacionado com o processo de reciclagem das células, onde temos 

um elevado percentual de células envelhecidas devido o maior acúmulo de ROS 

(Powell et al., 2000). O tempo de vida da levedura está relacionado com o 

potencial antioxidante da célula (Zandycke Van,Sohier e Smart, 2002) e pelos 

seus mecanismos de resposta ao estresse oxidativo(Gibson et al., 2006). 

Uma característica fundamental na resposta ao estresse oxidativo é a 

necessidade de uma rápida detecção na alteração do equilíbrio redox da célula, 

seguido de uma rápida resposta. Esta resposta inclui a ativação das vias de 

modulação da atividade dos reguladores de transcrição, levando a alteração no 

padrão de expressão gênica (Moye-Rowley, 2003).Um dos mecanismos de 

defesa contra o estresse oxidativo é a ativação da via HOG que interage com a 

via CWI fornecendo uma defesa adicional contra os agentes oxidantes (Fuchs e 

Mylonakis, 2009). O mecanismo de resposta ao estresse oxidativo também 

envolve a participação de fatores transcricionais, a exemplo, de Yap1p e Skn7p 

(Mulford e Fassler, 2011), embora outros fatores transcricionais, tais como 

Msn2p/Msn4p, também desempenhem um papel secundário nessa resposta 

(Gasch et al., 2000). 



 

26 

 

A exposição de S. cerevisiae a diamida altera a glutationa e grupos tióis 

oxidados e peróxido de hidrogênio, que promove a peroxidação lipídica, oxidação 

de proteínas e danos ao DNA. Esses grupos são capazes de ativar a via CWI, 

através da fosforilação Slt2p/Mpk1p com diferentes atividades cinéticas(Fuchs e 

Mylonakis, 2009).O fator transcricional Yap1p é um componente central na 

resposta ao estresse oxidativo (Moye-Rowley, 2003; Rodrigues-Pousada, 

Menezes e Pimentel 2010). Este apresenta um zíper de leucina contendo um 

regulador positivo da transcrição, (Harshman,Moye-Rowley e Parker 1988; Jones 

et al. 1988). Vários trabalhos evidenciaram a importância de Yap1p para a 

tolerância a diversos oxidantes, tais como peróxido de hidrogênio, diamida e 

metais pesado, como o cádmio (Kuge e Jones 1994; Wu e Moye-Rowley, 1994). 

Evidências genéticas apontam que a proteína Yap1p tem sua atividade 

regulada pela sua localização celular (Kuge et al., 2001). Experimentos utilizando 

ensaios com a proteína GFP demonstraram que na ausência de condições de 

estresse, esta se liga ao receptor de exportação nuclear Crm1p e direciona Yap1p 

do núcleo para o citoplasma (Kuge, Jones e Nomoto, 1997; Yan, Lee e Davis, 

1998) (Figura 5). O tratamento com um agente oxidante, como por exemplo, a 

diamida ou o dimetil maleato que atuam diretamente modificando os resíduos de 

cisteínas presentes na porção C do domínio rico em cisteína C-CRD levando a 

alterações conformacionais que impedem a interação entre Yap1p e Crm1p, 

resultando na acumulação de Yap1p no núcleo ativando a expressão de genes 

alvos (Kuge, Jones e Nomoto, 1997). 

A resposta mediada por Yap1p durante o estresse oxidativo, iniciada pela 

exposição ao peróxido de hidrogênio, é detectado pela Gpx3p peroxidase 

(Delaunay et al., 2002) que transduz um sinal para Yap1p através da formação de 
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pontes dissulfeto entre uma cisteína (Cys-598) na C-CRD (Delaunay et al., 2002), 

dependente da presença da proteína de ligação Ybp1p (Veal et al., 2003; 

Gulshan, Rovinsky e Moye-Rowley, 2004).O intermediário Gpx3p-Yap1p não 

pode ser formado na ausência de Ybp1p (Veal et al., 2003) (Figura 5). 

 

 

Figura 5: Via de resposta ao estresse oxidativo mediado por Yap1p. A resposta durante 

o estresse oxidativo é iniciada pela exposição ao peróxido de hidrogênio, e detectado pela Gpx3p 

peroxidase que transduz um sinal para Yap1p através da formação de pontes dissulfeto 

dependente da presença da proteína de ligação Ybp1p. Esta ligação alteraa conformação de 

Yap1p que fica incapaz de interagir com Crm1p e recruta Rox3p. 

 

Esta nova conformação adotada por Yap1p é incapaz de interagir com 

Crm1p e capaz de recrutar Rox3p, um componente transcricional mediador para 

promotores alvos na resposta ao peróxido de hidrogênio (Gulshan, et al., 2005). A 
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função de Ybp1p no dobramento de Yap1p ainda não é muito bem conhecida; 

sabe-se que Ybp1p é necessária para a resposta ao peróxido de hidrogênio, mas 

não é necessária para a resistência a diamida (Veal et al., 2003; Gulshan, 

Rovinsky e Moye-Rowley, 2004).  

A superprodução de Ybp1p, mas não de Yap1p, possibilitou um aumento 

na resistência ao peróxido de hidrogênio (Gulshan, Lee e Scott Moye-Rowley, 

2011). Comparando o resultado obtido com diamida, foi caracterizado um fenótipo 

hipersensível em relaçãoao fenótipo selvagem. A maior produção de Ybp1p 

também aumentou sua associação com Yap1p  vivo.Sua conformação permite a 

indução de genes alvos, de modo que Yap1p apresenta dois diferentes conjuntos 

definidos pela associação com Ybp1p. 

Contrastando com a regulação redox de Yap1p, encontramos Skn7p que 

é constitutivamente nuclear (Brown, Bussey e Stewart, 1994; Lu, Deschenes e 

Fassler, 2003).Skn7p é capaz de associar-se com promotores de resposta ao 

estresse oxidativo. Porém existe uma provável convergência entre Yap1p e 

Skn7p, já que estes fatores transcricionais estão envolvidos na ativação de 

promotores na manutenção de genes da tioredoxina, a exemplo, do TRX2, que é 

alvo da regulação por ambos os fatores transcricionais. Essa convergência não é 

restrita apenas para genes relacionados com a tioredoxina (Morano, Grant e Scott 

Moye-Ro, 2011). 

Em condições normais de crescimento, o receptor de osmolaridade Sln1p 

é mantido em seu estado fosforilado. Em condições de estresse, a perturbação 

osmótica, num processo MAPK dependente, irá deprimir a atividade quinase 

associada à fosfotransferase para Ypd1p, Ssk1p e Skn7 (Maeda, Wurgler-Murphy 

e Saito, 1994). A redução da atividade quinase e fosfotransferase resulta no 
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acúmulo da forma não fosforilada de Ssk1p, o que estimula Ssk2p e Ssk22p MAP 

quinases da via HOG (Posas e Saito, 1998). Em contraste, a fosforilação de Skn7 

não afeta a resposta osmótica (Fassler e West, 2011). 

O papel do Skn7p na sinalização da via de resposta da parede celular é 

dependente da fosforilação de Sln1p e independente do estresse oxidativo 

(Fassler e West, 2011). Skn7p codifica um regulador de resposta que contém um 

domínio receptor típico para sistemas de transdução de sinal de dois 

componentes (Brown,North e Bussey,1993,Morgan et al., 1995). Um fosfo aceptor 

de resíduos de aspartato (D427) no domínio receptor, fosforilado por Sln1p, 

necessário para a ativação de Skn7p (Ketela et al., 1998, Li et al., 1998).  

Expressão de genes relacionados com a manutenção da parede celular e 

ciclo celular são dependentes D427 de Skn7p indicando o envolvimento da via 

SLN1-SKN7 nestes processos (Brown, Bussey e Stewart, 1994; Morgan et al., 

1995; Li et al., 1998; Raitt et al., 2000).A quinase Sln1p é autofosforilada no 

resíduo H576 em condições fisiológicas; em condições de estresse, ocorre 

redução na sua atividade quinase e acúmulo de sua forma desfosforilada(Fassler 

e West, 2011). O grupo fosforil de H576 é transferido para o domínio receptor de 

Sln1p, seguindo para Ypd1p e, finalmente, para os domínios de Ssk1p e D427 de 

Skn7 (Figura 6). Nem todos os genes dependentes de Skn7p necessitam da 

fosforilação aspartil a exemplo dos genes relacionados ao estresse oxidativo. 
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Figura 6: Via de resposta mediada por Skn7p. A transferência de um grupo fosforil de 

576 para o domínio receptor de Sln1p e depois para Ypd1p e para os domínios de Ssk1p e Skn7p 

leva a ativação de genes relacionados com a resposta ao estresse de parede, enquanto que os 

genes relacionados à resposta ao estresse oxidativo não são ativados por essas fosforilações. 

 

A análise de algumas proteínas envolvidas em diferentes vias de resposta 

em S. cerevisiae sugere que estas proteínas estão envolvidas nas mesmas vias 

de respostas, podendo interagir entre si. Uma única proteína pode interagir com 

diversos parceiros em diferentes condições, resultando em diferentes efeitos 

biológicos(Cho et al., 2004). Portanto o conhecimento das interações entre as 

proteínas seria de grande valor para compreensão dos mecanismos moleculares 

envolvidos na manutenção da viabilidade diante das perturbações induzidas por 

agentes estressores. 
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3. Objetivos 

3.1.  Objetivo geral 

 

Compreender melhor a ação das proteína  Ylr194c, Smi1, Yap1, Slg1, 

Slt2 no processo de manutenção da viabilidade celular em Saccharomyces 

cerevisiae.  

 

3.1.  Objetivo específicos 

 

 

1.Identificar possíveis pontos de conexão entre as diferentes vias de 

resposta a agente estressores em Saccharomyces cerevisiae; 

2.Caracterizar o efeito fisiológico das interações, se encontradas, diante 

de um agente estressor.  
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4. Material e Métodos 

Os métodos de Biologia Molecular empregados nesse trabalho foram 

realizados de acordo com Sambrook et. al. (1989), e métodos de cultura e 

manipulação de Saccharomyces cerevisiae de acordo com Sherman et  al., 

(1986). 

4.1.1. Cepas de leveduras  

Tabela 1: Cepas da levedura Saccharomyces cerevisiae utilizadas nesse estudo. 

Saccharomyces cerevisiae Genótipo Referência 

L40 MATahis3d200trp1-901leu2-3,311ade2 lys2-

801am URA3::(lexAop)8-LACZ 

LYS2::(lexAop)4-HIS3 GAL4 gal80 

Vojtek e 

Hollenberg, 1995 

W303 MAT-a ade2-1,100 his3-11,15  leu2-3,112 

trp1-1 ura3-1, can1-100). 

Wallis  et al., 1989 

 

4.1.2. Cepa bacteriana 

Tabela 2: Cepa de E. coliutilizada nesse estudo. 

E. coli Genótipo Referência 

DH5α  supE44 DlacU169 (f80 lacZDM15) 

hsdR17 recA1 endA1 gyrA96 thi1 

relA1 

Hanahan, 1983 
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4.1.3.  Plasmídeos 

Tabela 3: Plasmídeos utilizados nesse estudo. 

Plasmídeos Características Referências 

pBTM BDLexA, TRP1 2μm Bartel et al., 1993 

pGADC2 BDGAL4, Leu2 2μm James et al.; 1996 

 

 

 

 

 

 
 

 

 
Figura 7: Desenho esquemático dos vetores pBTM (mostrado em A) e do vetor pGADC2 

(mostrado em B). 

 

 

4.1.4.  Primers 

Tabela 4: Seqüências dos oligonucleotídeos utilizados para amplificação dos genes por PCR. Em 

todas as PCRs, com exeção da ORF SLT2, foram utilizados ciclos de desnaturação inicial a 95
0
C

 

por dois minutos, seguidos por ciclos de desnaturação a 95
0
C

 
por um minuto, anelamento a 52

0
C 

por um minuto, e extensão por dois minutos, seguidos por extensão final a sete minutos. Para a 

ORF SLT2, as condições de desnaturações foram mantidas, o anelamento foi realizado a 55
0
C por 

A B 
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um minuto, as denaturações foram alteradas para 66
0
C por quatro minutos e a final por 15 

minutos. 

ORFs Sequências 

YLR194c F-5’CCCGGGCATGAAGGCCTGTTCCATA3’ 
 

YLR194c R-5’GTCGACCTATAACAAAAGGGCACCA3’ 
 

SLT2 F-5’CCCGGGCATGGCTGATAAGATAGAG3’ 

SLT2 R-5’GGATCCCTAAAAATATTTTCTATCTAATCC3’ 
 

SLG1 F-5’ CCCGGGCATGAGACCGAACAAAACA 3’ 
 

SLG1 R-5’ GGATCCTCAATCAGCTTCGTCTGGA 3’ 
 

HOG1 F-5’ CCCGGGCATGACCACTAACGAGGAA 3’ 
 

HOG1  R-5’GGATCCTTACTGTTGGAACTCATTACGTACTGTAT3’ 
 

YAP1 F-5’ CCCGGGCATGAGTGTGTCTACCGCC 3’ 
 

YAP1 R-5’GTCGACTTAGTTCATATGCTTATTC 3’ 
 

 
 
 
 
 

4.1.4. Meios de cultura 

Tabela 5: Meios de cultura utilizados nesse estudo. 

Meios de cultura Composição 

LB Peptona ou triptona 1%; extrato de levedura 0,5%, NaCl 1%, pH 7,5 

 

LB- Amp LB contendo ampicilina na concentração final de 100µg/mL. Nos meios 

sólidos adiciona-se ágar a 2%. 

YNB-Glicose YNB 0,7%, glicose 2%. Aminoácidos e a base nitrogenada 

YPD Extrato de levedura 1%, peptona 2%, glicose 2%, sólidos com ágar a 

2%. 
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4.1.5. Soluções e tampões de uso geral  

Tabela 6: Soluções e tampões de uso geral utilizados nesse estudo.  

Soluções e tampões Composição 

Buffer Z 60 mM Na2HPO4, 40 mM NaH2PO4,10 mM KCl, 1 mM MgSO4, pH 

7,0. 

Solução de acetato de 

lítio/PEG 
40% PEG4000, 100 mM acetato de lítio, 10 mM Tris-HCl e 1 mM 

EDTA pH 7,0. 

 

GET 

50mM glicose, 25mM Tris-Cl(pH=8,0) 10mM EDTA (pH=8,0) 

TE 100mM de Tris-Cl (pH 8,0) e 10mM de EDTA (pH 8,0) 

 

X-Gal 5-bromo-4-cloro-3-indolil-β-D-galactosídeo em N,N-dimetilformamida 

(50 mg/mL). 

Tampão PBS NaCl 137mM, Fosfato 10mM, KCl 2,7mM (pH 7,4) 
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4.2. Manipulação do DNA 

4.2.1. Extração do DNA plasmidial de E. Coli 

Os plasmídeos foram extraídos através do método de lise alcalina 

(BirnboimeDoly, 1979) segundo as modificações de Sambrook et al., (1989). 

Uma colônia de bactéria foi inoculada em 2mL de meio LB contendo o 

antibiótico, e incubados a 37ºC sob agitação por 12h. Após o crescimento, cerca 

de 1,5mL de cultura foi centrifugada a 12.000 rpm por um minuto, tendo seu 

sobrenadante descartado.  O pellet foi ressuspendido em 100µl de GET. Logo 

após, adicionou-se 200µl da solução de SDS NaOH (1% de SDS, 200mM NaOH). 

As amostras foram homogeneizadas por inversão, e incubadas por cinco minutos 

no gelo. Em seguida adicionou-se 150µl de 7,5M acetato de amônio, e novamente 

inverte os tubos para homogeneização, seguidos por incubação por cinco minutos 

no gelo. Centrifugou-se o material a 12.000 rpm por 10 minutos, transferiu-se  o 

sobrenadante para um novo tubo.  Ao sobrenadante, adicionou-se 500µl de 

isopropanol, invertem-se os tubos, e centrifuga a 12.000 rpm por 10 minutos. 

Descarta-se o sobrenadante, e lava o pellet com 500µl de etanol 70%. Agitou-se o 

material no vórtex por dois minutos, e centrifuga a 12.000 rpm por 5 minutos. 

Retira-se todo o etanol, deixando o DNA secar por cinco minutos a temperatura 

ambiente.  A seguir ressuspende o DNA em 100µl de TE.  
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4.2.2.  Eletroforese e purificação do DNA em gel de agarose 

Os DNAs plasmidiais foram submetidos à eletroforese em gel de agarose 

1%, contendo 0,5 µg/ml de brometo de etídeo, a uma voltagem de 100 volts por 

30 minutos. A eletroforese foirealizada com TAE 1X (40mM Tris-acetato pH 8,5; 

2mM EDTA). 

Os Fragmentos de DNA foram recuperados de gel de agarose utilizando o 

kit Wizard® Genomic DNA Purification (PROMEGA), a purificação do DNA foi 

realizada por imobilização em coluna de troca iônica, sendo ligados a uma 

membrana se sílica gel, lavados com álcool, seguindo as instruções do fabricante. 

4.2.3. Amplificação do DNA por PCR 

Nas reações de PCR foram empregados primers específicos para cada 

gene, e amplificados de acordo com os ciclos descritos anteriormente (Tabela 6). 

Os amplicons foram separados em gel agarose a 1% e purificados através, do kit 

Wizard® Genomic DNA Purification (PROMEGA), conforme descrito 

anteriormente. 

4.2.4. Clonagem 

Os primers correpondentes a cada uma das ORFs mencionadas 

anteriormente foram desenhados utilizando o software Clone Manager. A estes 

iniciadores foram acrescentados sítios de restrição para BamHI e SmaI  nos 

primers de  HOG1, SMI1, SLG1, SLT2, e SmaI e SalI nos primers de YLR194C e 

YAP1.  

Todas as ORFs amplificadas por PCR foram digeridas com suas 

respectivas enzimas, bem como os vetores pBTM e pGADCC2(Bartelet al., 1993),  
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As reações de ligação foram realizadas segundo Sambrook et al,. (1989) 

a 16ºC por pelo menos 12 horas com a enzima T4 ligase com o seu tampão 

apropriado (New England Biolabs). 

Os plasmídeos pGADC2- HOG1, pGADC2- YLR194C, pGADC2-YAP1, 

pGADC2-SLG1, pGADC2-SLT2,  pBTM-YLR194C e pBTM-YAP1 foram utilizados 

para os testes em duplo híbrido. Todos estes genes foram clonados em fusão 

com o domínio de ativação de GAL4, presente no pGADC2, e dominínio de 

ligação de LEXA presente no pBTM. 

4.3. Transformação em células competentes de E. coli  

A transformação foi realizada de acordo com Kurien et al., (1995).  

Bactérias foram incubadas a 37ºC até aproximadamente uma OD600  de0,6. As 

amostras foram resuspendidas em solução de cloreto de cálcio 1mM e 

conservadas em 15% de glicerol a -80ºC. A suspensão de células competentes 

foram descongeladas, seguida da adição de 50ng de DNA plasmidial. As células 

foram mantidas no gelo por 30 minutos, e submetidas ao choque térmico a 

temperatura ambiente por 10 minutos. Em seguida, adicionou-se 1mL de LB 

líquido e incuba-se a 37ºC por 50 minutos. A cultura foi centrifugada e o 

sobrenadante, aproximadamente 950µl, descartado. A supensão que  restou, 

cerca de 100µl, foi plaqueada em meio seletivo (LB-Amp), para a seleção dos 

transformantes, e as placas incubadas por cerca de 12 horas a 37º C. 

4.4. Análise de restrição 

Os DNAs plasmidiais extraídos de bactéria foram clivados com as 

enzimas de restrição apropriadas e submetido à eletroforese em gel de agarose a 

1% a uma voltagem de 100 volts por 30 minutos.  
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4.5. Sequenciamento de plasmídeos 

O DNA plasmidial extraído de E. coli foi sequenciado utilizando o kit 

BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems), de acordo 

com as recomendações do fabricante, utilizando o seqüenciador ABI 3.500. 

4.6. Transformação de levedura 

A transformação foi feita com acetato de lítio e DTT, conforme descrito por 

Chen et al., (1992). As células cresceram a 30oC com constante agitação por 18 

horas até atingir a fase exponencial com OD600  maior ou igual a 0,6. As células 

foram lavadas com TE, e em seguida ressuspendidas em solução de LiAc-PEG-

DTT (0,2 M acetato de lítio, 50% PEG, 1M DTT). Em seguida, foram adicionados 

2-5 µg de DNA plasmidial e incubadas a 42oC por 30 minutos. Seguido de 

plaqueamento em meio seletivo (YNB com glicose, adenina e histidina). 

4.7. Análise da interação entre proteínas pelo método do duplo híbrido 

O plasmídeo pBTM utilizado nesse trabalho, apresenta a sequência de 

ligação ao DNA do “DNA-Binding Domain” de lexA (BD-lexA), que se encontra 

sob o controle do promotor constitutivo ADH1, o qual possui a marca de seleção 

para TRP1 em levedura.   

Todos os genes inseridos no plasmídeo pBTM, geram proteínas de fusão 

LexA BD (Figura 7), ao genes inseridos no plasmídeo pGADC2 (James et al., 

1996) geraram proteínas de fusão com a seqüência do  “Activation Domain” (AD, 

domínio de ativação) (Figura 7) de Gal4, sob o controle do promotor constitutivo 

ADH1, contendo LEU2 como marca de seleção em levedura.  

Para identificação das interações, o BD e o AD foram fusionados às 

proteínas de interesse (Figura 8), de modo que a transcrição do gene repórter 
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HIS3 depende da interação dessas proteínas fusionadas aos respectivos 

domínios. Após a transformação as colônias foram analisadas através das marcas 

de auxotrofia em placas de ágar contendo meio de cultura YNB, glicose e o 

aminoácido adenina. Já que os vetores possuem marcas para leucina, triptofano, 

e a interação promove a transcrição do gene repórter HIS3 responsável por uma 

das etapas da via de síntese da histidina. 

 

Figura 8: Sistema do duplo híbrido de levedura. Os genes responsáveis pelas proteínas 

X e Y são introduzidas nos vetores pBTM e pGADC2, e depois transformadas em Saccharomyces 

cerevisiae (A) Uma “isca” é formada com a proteína de interesse X fusionada ao domínio de 

ligação ao DNA (DBD). A “presa” é formada pela proteína Y fusionada ao domínio de ativação 

(AD). (B). A isca (DBDX) liga-se a sequência ativadora de LexA e  a interação entre a isca e a 

presa permite o recrutamento da RNA polimerase para o sítio de ativação possibilitando a 

transcrição do gene repórter.  
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5. Resultados 

5.1 Clonagens 

 

Os genes alvos deste estudo foram amplificados a partir de primers 

construídos afim de inserir sítios de restrição para posterior ligação nos vetores 

pBTM e pGADC2 (Figura 9). 

 

 

 

Figura 9- Eletrofrese em gel de agarose 1% dos produtos de PCR dos seguintes genes: 

1:YLR194C  (tamanho 765pb); 2:SLG1 (tamanho: 1.137pb); 3: HOG1 (tamanho 1.308pb); 4:SMI1 

(tamanho: 1518pb); 5:YAP1 (tamanho: 1953pb); 6:KRE6 (tamanho 2.163pb); 7:SLT2 (1455pb); M: 

marcador generuler  1kb DNA ladder. 

 
Para possibilitar a clonagem, os vetores pBTM e pGADC2 foram digeridos 

com as mesmas enzimas de restrição cujos sítios estão presentes nos insertos 

amplificados (Figura 10). 
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Figura 10- Gel em gel de agarose 1% dos vetores (1) pBTM (tamanho 5512pb), (2) 

pGADC2 (tamanho 6665pb), M: marcador generuler  1kb DNA ladder. 

Os fragmentos amplificados contendo seus respectivos sítios de restrição 

foram clonados no vetor pGADC2 de maneira a se obter fusões entre o domínio 

de Gal4p (AD) de ativação da transcrição, com as proteínas em estudo, o qual foi 

confirmado por PCR e digestão (Figuras 11, 12, 13 e 14). 

 
 

Figura 11: Eletroforese em gel de agarose 1% do produto da PCR do gene YAP1 

(tamanho 1.953 pb) clonado no vetor pGADC2  (1), YAP1 controle positivo produto de PCR 

(usando DNA genômico) (2) e controle negativo (sem DNA) (3), M: marcador generuler  1kb DNA 

ladder. 
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Figura 12: Eletroforese em gel de agarose 1% do produto da PCR do gene 

HOG1(tamanho 1.308 pb)  clonado no vetor pGADC2  (1), HOG1 controle positivo produto de PCR 

(usando DNA genômico) (2) e controle negativo (sem DNA) (3), M: marcador generuler  1kb DNA 

ladder. 

 

 
 

Figura 13: Eletroforese em gel de agarose 1% do produto da PCR do gene YLR194C 

(tamanho 765 pb) clonado no vetor pGADC2  (1), YLR194C controle positivo produto de PCR 

(usando DNA genômico) (2) e controle negativo (sem DNA) (3), M: marcador generuler  1kb DNA 

ladder. 
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Figura 14: Eletroforese em gel de agarose 1% do produto da PCR do gene 

SLG1(tamanho 1.137 pb) clonado no vetor pGADC2  (1), SLG1 controle positivo produto de PCR 

(usando DNA genômico) (2) e controle negativo (sem DNA) (3), M: marcador generuler  1kb DNA 

ladder. 

 

                                       

 
Figura 15: Eletroforese em gel de agarose 1% do produto de restrição com as enzimas 

SmaI e BamHI do gene SLT2 (tamanho 1.455 pb)  clonado no vetor pGADC2  (1), M: marcador 

generuler  1kb DNA ladder 
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Os fragmentos amplificados foram clonados no vetor pBTM, desta 

maneira, foram obtidas fusões entre o domínio de ligação ao DNA da proteína 

LexA (BD) com as proteínas em estudo, o que foi confirmado por PCR (Figuras 16 

e 17). 

 

 

 

 

 

 

 
 
 
 
 

 
 

Figura 16: Eletroforese em gel de agarose 1% do produto da PCR do gene YLR194 

(tamanho 765 pb) clonado no vetor pBTM  (1), YLR194C controle positivo produto de PCR 

(usando DNA genômico) (2) e controle negativo (sem DNA) (3), M: marcador generuler  1kb DNA 

ladder. 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Figura 17: Eletroforese em gel de agarose 1% do produto da PCR do gene YAP1 

(tamanho 1.953 pb) clonado no vetor pBTM  (1), YAP1 controle positivo produto de PCR (usando 

DNA genômico) (2) e controle negativo (sem DNA) (3), M: marcador generuler  1kb DNA ladder. 
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2.000 pb 
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5.2 Interações entre as proteínas na ausência de agentes estressores 

Os diferentes plasmídeos obtidos foram transformados dois a dois na 

cepa de levedura L40, testando todas as possíveis interações.(Figuras 18, 19, 20 

e 21).Os resultados encontrados mostram a interação entre as proteínas Ylr194c 

e Yap1 (Figura 18) e Ylr194c e Slt2 (Figura 20). 

 

Figura 18 :Análise das possíveis interações entre a proteína Ylr194cp, Slg1p e Hog1p 

envolvidas em diferentes vias de resposta a agentes estressores em S. cerevisiae.  As amostras 

foram crescidas em placa com YNB com Glicose, adeninae sem histidina indicando que não houve 

interações entre as proteínas quando Ylr194cp estava fusionada ao BD, controle positivo ++ (BD-

Nip7p e AD-Nop8p) e controle negativo Ylr194cp com pGADC2 . 
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Figura 19: Análise das interações entre a proteína Ylr194cp e Slt2p.As amostras foram 

crescidas em placa com YNB com Glicose, adenina e sem histidina indicando que houve 

interações entre as proteínas Ylr194cp e Slt2p, controle positivo ++(BD-Nip7p e AD-Nop8p) e 

controle negativo Ylr194cp com pGADC2 (3). 

 

Figura 20: Análise das interações entre a proteína Ylr194cp e Yap1p. As amostras foram 

crescidas em placa com YNB com Glicose, adenina e sem histidina indicando que houve 

interações entre as proteínas.  Ylr194cp e Yap1p, controle positivo ++(BD-Nip7p e AD-Nop8p) e 

controle negativo Ylr194cp com pGADC2 (3). 
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Figura 21: Interações entre as proteínas Ylr194cp,Slg1p, Hog1p e Yap1p envolvidas em 

diferentes vias de resposta a agentes estressores em S. cerevisiae. As amostras foram crescidas 

em placa com YNB com Glicose, adenina e sem histidina indicando que não houve interações 

entre as proteínas quando Yap1p estava fusionada ao BD. Controle positivo ++ (BD-Nip7p e AD-

Nop8p) e controle negativo Yap1p com pGADC2 (5). 
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5.3 Interações entre as proteínas com tratamento com branco calcoflúor 

 

As respostas das interações entre as proteínas: Ylr194c e Slg1, Ylr194c e 

Slt2, Ylr194c e Yap1, Ylr194c e Ylr194c, Ylr194c e Yap1, Yap1 e Slg1, Yap1 e 

Hog1, Yap1 e Ylr194c foram testadascom o tratamento com branco calcoflúor 

(Figuras 22 e 23). Os resultados foram positivos para as interações entre as 

proteínas Ylr194c e Slt2 (Figura 22) e entre asproteínas Ylr194c e Yap1 (Figura 

23). 

 

Figura 22: Interações entre as proteínasYap1p,Slg1p, Ylr194cp,Slt2p envolvidas em 

diferentes vias de resposta a agentes estressores em S. cerevisiae. As amostras foram crescidas 

em placa com YNB com Glicose, branco calcoflúor 2mg/ml, adenina e sem (1), Yap1p e Slg1cp(2) 

controle negativo,Yap1p com pGADC2(3) Ylr194cp com Slt2p. 
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Figura 23: Interações entre as proteínas Yap1p, Slg1p, Ylr194cp, Slt2p e Hog1p 

envolvidas em diferentes vias de resposta a agentes estressores em S. cerevisiae. As amostras 

foram crescidas em placa com YNB com Glicose, branco calcoflúor 2mg/ml, adenina e sem 

histidina, indicando que houve interação apenas entre 194cp e Slg1p e entre 194cp e Yap1p. 

 

5.4 Interações entre as proteínas diante do tratamento com etanol 

 

As respostas das interações entre as proteínas: Ylr194c e Slg1, Ylr194c e 

Slt2, Ylr194c e Yap1, Ylr194c e Ylr194c, Ylr194c e Yap1, Yap1 e Slg1, Yap1 e 

Hog1, Yap1 e Ylr194c foram testadas após o tratamento com etanol. Os 

resultados encontrados foram positivos para as proteínas: Ylr194c e Slg1, Ylr194c 

e Slt2, Ylr194c e Yap1 na concetração de 4% e 6% (Figuras 24, 25, 26 e 27). 
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Figura 24: Interações entre as proteínas Yap1p,Slg1p, Ylr194cp,Slt2p envolvidas em 

diferentes vias de resposta a agentes estressores em S. cerevisiae. As amostras foram crescidas 

em placa com YNB com Glicose, etanol 4%, adenina e sem histidina, indicando que houve 

interação apenas entre 194cp e Slt2p. 

 

Figura 25:Interações entre as proteínas Yap1p, Slg1p, Ylr194cp, Slt2p e Hog1p 

envolvidas em diferentes vias de resposta a agentes estressores em S. cerevisiae. As amostras 

foram crescidas em placa com YNB com Glicose, etanol 4%, adenina e sem histidina, indicando 

que houve interação apenas entre 194cp e Slg1p e entre 194cp e Yap1p. 

. 
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Figura 26: Interações entre as proteínas Ylr194cp,Slg1p, Hog1p e Yap1p envolvidas em 

diferentes vias de resposta a agentes estressores em S. cerevisiae. As amostras foram crescidas 

em placa com YNB com Glicose, etanol 6%, adenina e sem histidina, indicando que houve 

interação apenas entre 194cp e Slt2p. 

 

 

Figura 27: Interações entre as proteínas Yap1p, Slg1p, Ylr194cp, Slt2p e Hog1p 

envolvidas em diferentes vias de resposta a agentes estressores em S. cerevisiae. As amostras 

foram crescidas em placa com YNB com Glicose, etanol 6%, adenina e sem histidina, indicando 

que houve interação apenas entre 194cp e Slg1p e entre 194cp e Yap1p. 
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5.5 Interações entre as proteínas diante do tratamento com PHMB 

As respostas das interações entre as proteínas: Ylr194c e Slg1, Ylr194c e 

Slt2, Ylr194c e Yap1, Ylr194c e Ylr194c, Ylr194c e Yap1, Yap1 e Slg1, Yap1 e 

Hog1, Yap1 e Ylr194c foram testadas após o tratamento com PHMB. Os 

resultados encontrados foram positivos para as proteínas: Ylr194c e Slg1, Yap1 e 

Slt2, Yap1 e Slg1, Ylr194c e Slt2 e Ylr194c e Yap1 na concentração de 0,00025% 

(Figuras  28 e 29) e para as proteínas Ylr194c e Slg1, Ylr194c e Slt2 (Figuras 30 e 

31). 

 

Figura 28: Interações entre as proteínas Ylr194cp, Slg1p, Hog1p e Yap1p envolvidas em 

diferentes vias de resposta a agentes estressores em S. cerevisiae. As amostras foram crescidas 

em placa com YNB com Glicose, PHMB 0,00025%,adenina e sem histidina, indicando que houve 

interação apenas entre 194cp e Slt2p e entre 194cp e Slg1p. 
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Figura 29: Interações entre as proteínas Yap1p, Slg1p, Ylr194cp, Slt2p e Hog1p 

envolvidas em diferentes vias de resposta a agentes estressores em S. cerevisiae. As amostras 

foram crescidas em placa com YNB com Glicose, PHMB 0,00025%,adenina e sem histidina, 

indicando que houve interação apenas entre 194cp e Slg1p e entre 194cp e Yap1p. 

 

 

Figura 30: Interações entre as proteínas Ylr194cp, Slg1p, Hog1p e Yap1p envolvidas em 

diferentes vias de resposta a agentes estressores em S. cerevisiae. As amostras foram crescidas 

em placa com YNB com Glicose, PHMB 0,005%, adenina e sem histidina, indicando que houve 

interação apenas entre 194cp e Slt2p. 
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Figura 31: Interações entre as proteínas Yap1p, Slg1p, Ylr194cp, Slt2p e Hog1p 

envolvidas em diferentes vias de resposta a agentes estressores em S. cerevisiae. As amostras 

foram crescidas em placa com YNB com Glicose, PHMB 0,005%, adenina e sem histidina, 

indicando que houve interação apenas entre 194cp e Slg1p.  

 

5.6 Interações entre as proteínas diante do tratamento com vermelho congo 

As respostas das interações entre as proteínas: Ylr194c e Slg1, Ylr194c e 

Slt2, Ylr194c e Yap1, Ylr194c e Ylr194c, Ylr194c e Yap1, Yap1 e Slg1, Yap1 e 

Hog1, Yap1 e Ylr194c foram testadas após o tratamento com vermelho congo. 

Foram encontradas interações entre as proteínas Ylr194c e Slg1, Ylr194c e Slt2, 

Ylr194c e Yap1, Ylr194c e Hog1(Figuras 32, 33, 34 e 35).  
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Figura 32: Interações entre as proteínas Ylr194cp, Slg1p, Hog1p e Yap1p envolvidas em 

diferentes vias de resposta a agentes estressores em S. cerevisiae. As amostras foram crescidas 

em placa com YNB com Glicose, vermelho congo 0,5mg/ml com adenina e sem histidina, 

indicando que houve interação apenas entre 194cp e Slt2p.  

 

 

Figura 33: Interações entre as proteínas Yap1p, Slg1p, Ylr194cp, Slt2p e Hog1p 

envolvidas em diferentes vias de resposta a agentes estressores em S. cerevisiae. As amostras 

foram crescidas em placa com YNB com Glicose, vermelho congo 0,5mg/ml , adenina e sem 

histidina, indicando que houve interação apenas entre 194cp e Slg1p e entre 194cp e Hog1p.  
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Figura 34: Interações entre as proteínas Ylr194cp, Slg1p, Hog1p e Yap1p envolvidas em 

diferentes vias de resposta a agentes estressores em S. cerevisiae. As amostras foram crescidas 

em placa com YNB com Glicose, vermelho congo 1mg/ml com adenina e sem histidina, indicando 

que houve interação apenas entre 194cp e Slt2p. 

 

Figura 35: Interações entre as proteínas Yap1p, Slg1p, Ylr194cp, Slt2p e Hog1p 

envolvidas em diferentes vias de resposta a agentes estressores em S. cerevisiae. As amostras 

foram crescidas em placa com YNB com Glicose, vermelho congo 1mg/ml, adenina e sem 

histidina, indicando que houve interação apenas entre 194cp e Slg1p e entre 194cp e Hog1p. 
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Os resultados encontrados neste estudo estão resumidos na tabela 7. 

Tabela 7: Resumos das interações encontradas neste estudo diante de um agente estressor. 

 Calcoflúor Etanol PHMB Vermelho 

congo 

Ausência 

deagente 

estressor 

 Yap1 Ylr194c Yap1 Ylr194c Yap1 Ylr194c Yap1 Ylr194c Yap1 Ylr194c 

Ylr194c  X         

Yap1    X  X  X  X 

Slt2  X  X X X  X  X 

Slg1  X  X X X  X   

Hog1        X   
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6. Discussão 

A parede celular de Saccharomyces cerevisiaeé importante na 

manutenção da forma e integridade, permitindo que a célula promova seu 

remodelamento durante o crescimento vegetativo e morfogênese induzida por 

ferormônios (Cid et al., 1995; Kurandaet al., 2006; Truman, Kin e Levin, 2009). A 

biogênese da parede celular é um processo complexo e regulado tanto em níveis 

transcricionais como também pós traducionais (Basmaji et al., 2006). O 

remodelamento da parede é realizado pela via de manutenção da integridade da 

parede celular (CWI) controlada pela GTPase Rho1p. Esta via pode ativar Fks1p, 

reponsável pela síntese β- 1,3 glicanos, ou ativar Pkc1p, a qual ativará a via 

MAPK, responsável pela fosforilação de Slt2p. Este promove a fosforilação e 

ativação dos fatores transcricionais Rlm1p e o complexo SBF (Swi4p/Swi6p), 

induzindo genes envolvidos no reparo da parede (Jung et al., 2002; Fuchs e 

Mylonakis 2009; Elsztein et al., 2011; Lucena et al., 2012). 

Estudos realizados no nosso laboratório por Lucena et al. (2012) 

demonstraram que os genes envolvidos na via de manutenção da integridade 

celular são essenciais para o crescimento da levedura em ambientes 

ácidos,impostos pela prática do reciclo das leveduras durante o processo de 

fermentação. Estudos realizados por Elszteinet al., (2011) demonstraram a 

regulação de genes necessários ao remodelamento da parede celular durante o 

tratamento com o biocida polihexametileno biguanida (PHMB) que possui ação 

biocida contra leveduras contaminantes do processo fermentativo, indicando o 

envolvimento dos genes da via CWI na tolerância ao estresse causado por esse 

polímero. Ainda naquele estudo, foram realizados ensaios de citotoxidade com 

mutantes que apresentam deleções nos genes das vias CWI, HOG1 e YAP1, 
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além de outros genes responsivos ao estresse oxidativo, apontando HOG1 como 

um dos moduladores da via CWI. Também foi indicada a ligação entre YAP1 e via 

CWI diante da presença do PHMB independente da participação da via de 

resposta ao estresse oxidativo. 

A sequência YLR194c codifica uma proteína com função biológica ainda 

desconhecida, mas que possui um motivo teórico de uma âncora de 

glicofosfatidilinositol (GPI). Isto sugere sua localização associada à membrana 

plasmática. Sua expressão é regulada positivamente em resposta ao estresse de 

parede ou através da mutação no gene FKS1(Terashima et al., 2000), em 

resposta ao PHMB (Elsztein et al., 2011) e a pH ácido (Lucena et al., 2012). Desta 

forma, caracterizar seu papel, apontando seus parceiros de interação, durante a 

presença de agentes estressores na fermentação é de grande importância.  

Estudo realizados por Terashima et al. (2000) identificaram o aumento de 

expressão em 22 genes de S. cerevisiae quando o gene FKS1 foi deletado, em 

comparação com a linhagem parental. Dentre esses, foram encontrados 

YLR121C, YGR189C, YDR055W, YKL096W/CWPI e YLR194C, todos sugeridos 

como codificadores de proteínas que contêm uma âncora GPI em sua região C 

terminal (Caro et al., 1997; Hamada et al., 1998). Entretanto, experimentos 

utilizando fusões das proteínas alvo com o marcador Tag HA mostraram que 

menos de 1% da proteína codificada pela ORF YLR194c estava fisicamente 

ligado à parede celular(Terashima et al., 2000). Num segundo experimento, 

frações da membrana plasmática foram purificadas e identificadas, confirmando a 

presença da proteína codificada pelo YLR194c na membrana celular (Terashima 

et al., 2000). De acordo com o banco de dados EMBL-EBI (www.ebi.ac.uk) a 

proteína Ylr194c apresenta motivos de miristoilação, no qual um ácido graxo de 

http://www.ebi.ac.uk/
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14 carbonos é ligado a um resíduo de glicina na porção amino terminal, 

conferindo um caráter hidrofóbico à proteína, além dos motivos de fosforilação e 

glicosilação (Figura 35). Isto corrobora a ligação dessa proteína na membrana 

celular. 

 

Figura 36: Motivos apresentados pela proteína Ylr194c. Fonte: http://www.ebi.ac.uk. 

 

Estudos realizados por Elszteinet al. (2011) mostraram que o gene 

YLR194C, juntamente com os genes CHS1, FKS1, GAS1,HSP150, KRE6, MSN2, 

MSN4, PKH1foram superexpressos na linhagem industrial JP1 exposta ao PHMB, 

mas não apresentaram variação no padrão de expressão na linhagem industrial 

PE-2. Vale ressaltar que a linhagem JP1 é resistente ao PHMB, enquanto a 

linhagem PE-2 é sensível, indicando a participação daqueles genes no 

mecanismo de tolerância ao biocida. Ainda naquele estudo foi investigado o 

envolvimento do geneYAP1 na regulação da via CWI, através da sua deleção em 

comparação com a linhagem parental. Os resultados demonstraram que os genes 

YLR194Ce KRE6 (gene envolvido na síntese de β-1,6 glicanos) foram 

http://www.ebi.ac.uk/
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ligeiramente mais expressos pelo tratamento com PHMB na linhagem parental, 

explicando a alta sensibilidade desta em relação à cepa JP1. 

Como visto, o ponto chave da via de resposta ao estresse é a fosforilação 

de Slt2p, a qual promove a fosforilação e ativação dos fatores transcricionais 

Rlm1p e o complexo SBF (Swi4p/Swi6p). Slt2p pode ser ativado em resposta a 

estresse osmótico, oxidativo e variações no pH (Davenport et al., 1995;. Hahn e 

Thiele, 2002; Vilella et al., 2005; Serrano et al., 2006; Lucena et al., 2012) e 

tolerância a ácido clorídrico  (Claret et al., 2005). Estudos demonstram que os 

genes envolvidos na biogênese (FKS1, GAS1, KRE6 e CHS1) e estrutura da 

parede celular (HSP150 e YLR194C) podem ser induzidos pelo tratamento com 

ácido sulfúrico, tendo sua indução reduzida no mutante de SLT2, seguido pela 

sua própria indução endógena (Lucena et al., 2012). Segundo Lucena et al. 

(2012), uma cascata de amplificação de sinal pode ser criada diante do estresse 

ácido a partir da ativação de Slt2p que por sua vez fosforila e ativa Rlm1p, e esta 

juntamente com Hog1p irá aumentar novamente a expressão de SLT2, garantindo 

a expressão dos genes envolvidos na via CWI. Os dados obtidos no presente 

estudo mostram a existência da interação entre as proteínas Ylr194cp e Slt2p em 

todas as condições testadas, caracterizando-se como um resultado ainda não 

relatado nos bancos de dados de interação de proteínas thebiogrid.org e 

yeastgenome.org, embora alguns experimentos de co-expressão desses genes 

realizados em nosso laboratório apontassem essa possível interação (Elsztein et 

al., 2011;  Lucena et al., 2012). Estudos realizados até o momento relatam a 

interação de Ylr194c com a proteína Ynl050cp (proteína com função 

desconhecida) (Krogan et al., 2006), Hek2p (proteína de ligação a RNA envolvida 

na localização assimétrica do RNAm ASH1) (Hasegawa, Irie e Gerber, 2008), 
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Nrd1p ( proteína de ligação a RNA, subunidade do complexo Nrd1)(Creamer et 

al., 2011), todas estas interações foram confirmadas por métodos físicos, a 

exemplo da cromatografia de afinidade. Também foram relatadas interações 

genéticas entre YLR194C e o NPL3 (codifica proteína de ligação ao RNA o qual 

promove o alongamento, regula a terminação, cauda poliA e o deslocamento do 

RNAm do núcleo para o citoplasma) (Moehle et al., 2012), SIP1(relacionado com 

a subunidade beta do complexo quinase Snf1p o qual confere especificidade ao 

substrato) (Costazo et al., 2010), SHS1(componente do anel de septina 

necessária a citocinese)(Costazo et al., 2010), PMA1(relacionado com ATPase 

presente na membrana plasmática)(Schuldiner et al., 2005); RAD61(subunidade 

do complexo Scc3p, Pds5p, Rad61p que inibe a coesão das cromátides irmãs) 

(Costazo et al., 2010). A funcionalidade dessas interações ainda é pouco 

compreendida, mas apontam para uma função de transdução de sinal da proteína 

Ylr194c para diferentes vias metabólicas. 

Em relação ao gene SLT2, foram descritas até o momento 1044 

interações genéticas e proteicas de acordo com o banco de dados 

yeastgenome.org, confirmadas por diferentes métodos físicos: cromatografia de 

afinidade, duplo híbrido, atividade bioquímica; e por métodos genéticos. As 

interações mais conhecidas para Slt2p estão relacionadas com os demais 

integrantes da via CWI: Swi4p, Swi6p, Rlm1p, Fks1p, Pkc1p, Mkk1p, Mkk2p, 

Bck1p, Rom2p, Mid2p, Slg1p, Rom1p, além de Skn7p integrante da via de 

estresse oxidativo e responsivo aos danos de parede e Hog1p. Estudos 

realizados por Martin-Yken et al.(2003) apontaram a proteína Knr4p/Smi1p como 

um elemento adicional na via de sinalização relacionada com Slt2p, sendo 

responsável pelo correto direcionamento de Slt2p para atuar em seus alvos no 
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núcleo. Esta interação foi encontrada através do duplo híbrido, imunoprecipitação 

in vitro e purificação por afinidade em tandem. Mutação no gene KNR4/SMI1 

aumenta a sensibilidade da levedura ao PHMB (Elszteinet al., 2011). Acredita-se 

que Knr4p/Smi1p deva estar relacionada com a progressão do ciclo celular ligado 

a síntese de parede, mostrando-se essencial para a viabilidade celular na 

ausência da via PKC1/Slt2 funcional (Durand et al., 2008). É muito provável que a 

interação entre Ylr194c e Slt2p auxilie na atividade biológica do complexo Slt2p-

Smi1p. 

A proteína Yap1 controla a resposta ao estresse oxidativo ativado pela 

presença de espécies reativas de oxigênio, tióis oxidados, a exemplo da 

glutationa e tioredoxina, etambém participa na regulação de genes de resistência 

a várias drogas (Alarco et al., 1997;  Wu et al., 1993; Herrero et al., 2008). 

Mutantes de YAP1 e CTT1 apresentam uma elevada sensibilidade ao PHMB, 

sugerindo possíveis danos oxidativos na membrana celular. CTT1 codifica a 

catalase citosólica envolvida na quebra do peróxido de hidrogênio em hidrogênio 

e água, regulado por Yap1p e Skn7p, embora os genes YAP1 e CTT1 possam 

estar envolvidos na resistênciaao PHMB de uma maneira que não está ligada ao 

estresse oxidativo(Toone e Jones, 1998; Elsztein et al., 2011). Evidências 

apontam a participação dos elementos da via PKC na resposta a agentes 

oxidantes como diamida e peróxido de hidrogênio (Vilella et al., 2005). Yap1p 

pode está relacionada com a ativação do gene SRP1 que codifica uma proteína 

da parede celular (Bourdineaud, Sampaio e Lauquin, 2000). O mutante de YAP1 é 

sensível a vermelho congo (Bourdineaud, Sampaio e Lauquin, op. cit.; Elsztein et 

al., 2011) apontando para a cooperação entre a via CWI e o elemento Yap1p 

(Elszteinop. cit.). Estudos realizados por Elsztein et al.,(2011) testaram a 
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regulação dos genes da via CWI medindo a expressão na cepa parental e no 

mutante de YAP1 os quais foram superexpressos pelo PHMB na linhagem JP1. 

Os resultados mostraram que KRE6 e YLR194C foram ligeiramente regulados na 

cepa parental. Os resultados do mutante YAP1 demonstraram a expressão 

regulada de SLT2 e a ausência de expressão de YLR194C. Tendo em vista esses 

resultados, Yap1p pode estar envolvida na regulação de Rlm1p e Slt2p, dado este 

reforçado pela expressão reduzida de SLT2 e superexpressão de RLM1 no 

mutante yap1 após tratamento com choque térmico. Elsztein et al.(2011) sugerem 

que Yap1p co-regula a expressão de SLT2 em resposta a danos no envelope 

celular, a exemplo do dano induzido por PHMB, e que esta co-regulação amplifica 

o sinal para a expressão dos genes da via CWI, corroborando com os resultados 

obtidos nesse estudo. A ativação de Slt2p por choque térmico pode ser realizada 

por uma via independente de PKC (Harrison e Zyla, 2004). 

Dados obtidos em nosso estudo mostram a existência da interação entre 

as proteínas Ylr194c e Yap1 (Figura 20), apresentando-se como um novo 

resultado. Estudos realizados até o momento relatam 124 interações físicas para 

YAP1, de acordo com o banco de dados biogrid.org. Entre as interações descritas 

para YAP1 citam-se SKN7 encontrado por cromatografia de afinidade (Mulford e 

Fassler, 2011), HOG1(Thorsenet al., 2006) encontrada através de interações 

genéticas. Outras interações importantes foram descritas para algumas proteínas 

de membrana que poderiam ser similares a Ylr194c como documentado em 

nossos resultados. Entre as proteínas de membrana que interagem com Yap1p 

citam-se Frt1p (gene que codifica uma proteína da membrana ancorada ao 

retículo endoplasmático, funciona como um substrato para a calcineurina 

fosfatase, promovendo o crescimento das células em condições de estresse), 
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essa interação foi encontrada através da técnica do duplo híbrido (Wang et al., 

2012), Yck1p (proteína palmitoilada presente na membrana plasmática) (Ptacek et 

al.,  2005). 

Os resultados obtidos até agora foram obtidos na ausência de agentes 

estressores, porém tornou-se importante verificar o que acontece com as 

interações encontradas diante de um dado agente estressor, haja vista que 

determinadas proteínas só podem interagir em sua forma ativa ou inativa e que só 

poderia ser modificada diante de um agente indutor. No presente trabalho, foram 

testadas as respostas diante de um agente estressor.  As interações entre as 

proteínas testadas foram: Ylr194c e Slg1, Ylr194c e Slt2, Ylr194c e Yap1, Ylr194c 

e Ylr194c, Ylr194c e Yap1, Yap1 e Slg1, Yap1 e Hog1, Yap1 e Ylr194c. Novas 

interações ainda não descritas na literatura foram encontradas entre Ylr194cp e 

Slg1p (Figura 27) utilizando-se uma concentração de etanol 4% e 6%, e a 

interação entre Ylr194cp e Slt2p, Ylr194cp e Yap1p (Figuras 24 e 26, 27) foram 

encontradas em ambas as concentrações de etanol. 

O etanol age como um inibidor do crescimento de leveduras em baixas 

concentrações, atuando na membrana plasmática através do aumento da fluidez 

reduzindo sua integridade (Mishra e Prasad, 1989). Também influencia o 

metabolismo e a biossíntese de macromoléculas por indução de proteínas de 

choque térmico (HSPs) (Hu et al., 2007). As células de leveduras expostas ao 

etanol sintetizam uma série de HSPs: Hsp 104, 82, 70, 30 e 12 (Stanley et al., 

2009). A perda do receptor Wsc1p/Slg1p provoca sensibilidade a condições de 

estresse como, por exemplo, choque térmico, oxidativo, etanólico, alcalino e anti 

fúngicos (Zu et al., 2001; Serrano et al., 2006). 
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Quando o agente estressor utlizado foi o PHMB foram encontradas novas 

interações entre Ylr194cp e Slg1p, Yap1 e Slt2p, Yap1 e Slg1p (Figura 29 e 30) 

além das interações entre Ylr194cp e Slt2p (Figura 28), Ylr194cp e Yap1p(Figura 

29), todas obtidos na concentração de 0,00025%, entretanto quando a 

concentração testada foi de 0,005% apenas as interações entre Ylr194cp e Slt2p 

(Figura 30), Ylr194cp e Slg1p (Figura 31) foram mantidas. O papel do PHMB 

como agente estressor já foi discutido anteriormente, e apesar das interações 

entre Ylr194cp e Slg1p ainda não terem sido descritas na literatura, este resultado 

poderia ser esperando já que Slg1p/Wsc1p é o principal receptor induzido pelos 

danos à parede celular causado pelo PHMB. Mutantes HOG1 mostararam 

sensibilidade intermediária sugerindo que existe uma ligação entre as vias PKC e 

HOG, indicando que este atua como um amplificador na detecção dos danos do 

envelope celular causado pelo PHMB (Casagrande et al., 2009; Rodríguez-Peña  

et al., 2010; García et al., 2009; Elsztein et al., 2011). 

Quando o agente estressor utlizado foi o branco calcoflúor apenas a 

interação entre Ylr194c e Slg1p, Ylr194c e Slt2p, Ylr194c e Yap1p foi detectada. 

Este agente induz afalhas no processo de montagem adequada do envelope 

celular (Ketela et al., 1999; De Nobel et al., 2000). Mutantes de SWI4 e 6 são 

hipersensível a este agente, apoiando uma papel para o complexo SBF na 

resposta a este agente (Kim et al., 2010). 

O teste realizado com o estressor vermelho congo mostrou interações 

entre Ylr194c e Slg1p, Ylr194c e Slt2p, Ylr194c e Yap1p, Ylr194c e Hog1p apenas 

na contração de 0,5mg. O vermelho congo, assim como o branco calcoflúor, induz 

a desorganização do envoltório celular, atuando na perturbação da rede formada 

pelos polímeros de β-1,3 glicanos, levando a ativação MAP quinase Slt2p (Ketela 
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et al., 1999; De Nobel et al., 2000). Estudos realizados por García et al., (2004) 

utilizando microarranjos investigaram a base molecular da resposta a  este 

agente. Foi verificado o aumento na expressão 132 genes envolvidos na 

construção e metabolismo da parede celular entre eles Rlm1p, Crz1p, SBF (Swi4p 

/Swi6p), Msn2p/Msn4p, Ste12p, e Tec1p. 

Diante do exposto, sugerimos pela primeira vez uma função biológica 

para a proteína Ylr194c como transdutora de sinal de estresse na superfície 

celular, interagindo com as proteínas Yap1, Slt2p e Hog1p em resposta a 

diferentes tipos de danos. Os dados obtidos nos permitem também propor dois 

possíveis modelos de como as proteínas Ylr194c e Slt2 se comportam diante de 

diferentes agentes estressores. Um deles seria o deslocamento de Slt2 para a 

membrana plasmática onde seria ativada por Ylr194c e retornaria para o núcleo 

para atuar em seus alvos. O outro modelo seria a fosforilação realizada por PKC1 

em Ylr194c, a qual seria deslocada da membrana e iria interagir com seus alvos 

em outros pontos da célula. 

 Os dados obtidos também apontam a nova função para a proteína Yap1 

e Ylr194c como integrante do complexo proteico que regula a manutenção da 

integridade da parede celular de S. cerevisiae.  

  



 

69 

 

7. Conclusões 

 

Em nosso estudo encontramos que as proteínas Ylr194c e Slt2, Ylr194c e 

Yap1 interagem em condições normais de crescimento e que a interação entre as 

proteínas Ylr194c e Slg1, Yap1 e Slt2, Yap1 e Slg1, Ylr194c e Hog1 é induzida 

em condições de estresse na levedura Saccharomyces cerevisiae. 

A proteína Ylr194c está presente na membrana em condições normais de 

crescimento, podendo ser alvo de fosforilações como, por exemplo, por Slt2. As 

interações encontradas entre Ylr194c e o receptor Slg1, com Slt2 e Yap1apontam 

a participação desta proteína na via de manutenção da integridade da parede 

celular. 
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