
FEDERAL UNIVERSITY OF PERNAMBUCO
CENTRE FOR NATURAL AND EXACT SCIENCES

POSTGRADUATE PROGRAM IN STATISTICS

MATHEMATICAL PROPERTIES OF SOME GENERALIZED GAMMA MODELS

MARIA DO CARMO SOARES DE LIMA

Doctoral thesis

Recife
2015



Federal University of Pernambuco
Centre for Natural and Exact Sciences

Maria do Carmo Soares de Lima

MATHEMATICAL PROPERTIES OF SOME GENERALIZED GAMMA MODELS

Doctoral thesis submitted to the Post Graduate Program in Statistics, Department of
Statistics, Federal University of Pernambuco as a partial requirement for obtaining
a Ph.D. in Statistics.

Advisor: Professor Dr. Gauss Moutinho Cordeiro

Recife
2015



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                  

 
 
                               Catalogação na fonte 

Bibliotecária Monick Raquel Silvestre da Silva, CRB4-1217                   
  

  
 

L732m Lima, Maria do Carmo Soares  
  Mathematical properties of some generalized Gamma models / 

Maria do Carmo Soares Lima. – Recife: O Autor, 2015. 
  151 f.: il., fig.. tab. 
 
  Orientador: Gauss Moutinho Cordeiro. 
  Tese (Doutorado) – Universidade Federal de Pernambuco. 

CCEN. Estatística, 2015. 
                  Inclui referências e apêndices.  
 

      1. Estatística matemática. 2. Distribuições exponencializadas. 3. 
Momentos ordinários. 4. Estatísticas de ordem. Cordeiro, Gauss 
Moutinho (orientador).  II. Título. 
 
       519.5               CDD (23. ed.)          UFPE- MEI 2015-07 
       

 

 



 

MARIA DO CARMO SOARES DE LIMA 

 

MATHEMATICAL PROPERTIES OF SOME GENERALIZED GAMMA 

MODELS 

 

 

Tese apresentada ao Programa de Pós-
Graduação em Estatística da Universidade 
Federal de Pernambuco, como requisito 
parcial para a obtenção do título de Doutora 
em Estatística.  

 
 
 
Aprovada em: 14/01/2015. 
 
 
 

BANCA EXAMINADORA 
 
 
 

______________________________________________ 
Prof. PhD. Gauss Moutinho Cordeiro (Orientador) 

Universidade Federal de Pernambuco 
 
 

__________________________________________________ 
Prof. Dr. Manoel Raimundo Sena Junior (Examinador Interno) 

Universidade Federal de Pernambuco 
 
 

______________________________________________________ 
Prof. Dr. Abraão David Costa do Nascimento (Examinador Interno) 

Universidade Federal de Pernambuco 
 
 

______________________________________________________ 
Prof. Dr. Rodrigo Bernardo da Silva (Examinador Externo) 

Universidade Federal da Paraíba 
 
 

________________________________________________________ 
Prof. Dr. Cláudio Tadeu Cristino (Examinador Externo) 

Universidade Federal Rural de Pernambuco 
 



Dedico esta tese à minha mãe guerreira, ao meu irmão,
à minha querida avó e (não poderia esquecer) ao meu
amado esposo.



Agradecimentos

Quero agradecer primeiramente à Deus por mais essa vitória, numa longa carreira de anos
de dedicação.

À minha amada e guerreira mãe, da qual tenho muito orgulho de ser filha, por sempre ter
me apoiado na minha caminhada, estando ao meu lado em todas as minhas decisões. E ao me
irmão pela confiança em diversos aspectos e pelo carinho. À minha avó, pelo seu amor, rezas
e noites de preocupação.

Ao meu amado companheiro e esposo Flávio, a quem admiro como homem, marido e, prin-
cipalmente como pai. Agradeço pelos incentivos e palavras certas, nas horas em que pensei
em jogar tudo ao alto. Espero um dia poder retribuir um pouquinho do carinho e compreensão
que você me deu.

Ao meu orientador Gauss Cordeiro pelo incentivo e confiança no meu trabalho.
Aos membros da banca, pelas críticas construtivas.
Aos professores com os quais tive a oportunidade de conviver, entre eles: Sérgio Santa

Cruz, Airton Castro, Antônio Carlos, Adriano Pedrosa, Jalila Rios, Cleide Martins, Marcus
Vinícius, Francisco Brito, William, Antônio (Tony), Marcos Barone, Audrey Cysneiros, Fran-
cisco Cribari, Francisco Cysneiros, Sérgio Bezerra, Klauss Vasconcellos, dentre outros.

Aos meus colaboradores: Edwin Ortega, Abraão Nascimento, Rodrigo Pescim, Marcelo
Bourguignon, Cibele da Silva, Antônio Gomes, Morah Alizadeh, Jeremias Leão e Marcelino
Pascoa.

Aos colegas que, direta ou indiretamente contribuíram nessa caminhada, dentre eles: Thi-
ago Fiel, Luiz Silva, Marlon, João, Gilson Simões, Thiago Tanaka, Cláudia, Luiz Filipe, Vinícius,
Roberto, Luz Milena, dentre outros.

Á Valéria pelo carinho, paciência e pela amizade que construímos juntas.
À CAPES, pelo apoio financeiro.



Resumo

Modelagem e análise de tempos de vida são aspectos importantes do trabalho estatístico,
em uma ampla variedade de áreas científicas e tecnológicas. Estudamos algumas propriedades
matemáticas de uma família recente chamada gama-G [Zografos and Balakrishnan (2009) and
Ristić and Balakrishnan (2012)], denotada aqui por GG, em que G é chamada distribuição
baseline. Escolhemos, como baselines, cinco distribuições amplamente conhecidas: Birnbaum-
Saunders, Normal, Lindley, Nadarajah-Haghighi e uma extensão da Weibull. A mais recente,
Nadarajah-Haghighi, foi estudada por Nadarajah e Haghighi (2011), que desenvolveram algu-
mas propriedades interessantes. Demonstramos que as funções densidades das distribuições
propostas podem ser expressas como combinação linear de funções densidades das respecti-
vas exponencializadas-G. Para uma baseline arbitrária com cdf G(x), uma variável aleatória
é dita ter distribuição exponencializada-G, com parâmetro a > 0, digamos X ∼exp−G(a),
se sua pdf e cdf são ha(x) = aGa−1(x)g(x) and Ha(x) = Ga(x), respectivamente. As pro-
priedades de algumas exponecializadas têm sido estudadas por muitos autores, veja Mud-
holkar e Srivastava (1993) e Mudholkar et al. (1995) para Weibull exponencializada (exp-W),
Gupta et al. (1998) para Pareto exponencializada, Gupta and Kundu (2001) para exponencial
exponencializada (exp-E) e Nadarajah e Gupta (2007) para gama exponencializada (exp-G).
Mais recentimente, Cordeiro et al. (2011a) investigaram algumas propriedades matemáticas
para a distribuição gama generalizada exponencializada (exp-GG). Além disso, várias de suas
propriedades estruturais são derivadas, incluindo expressões explícitas para os momentos, as
funções quantílica e geratriz de momentos, desvios médios e dois tipos de entropia. Também
investigamos as estatísticas de ordem e de seus momentos. Técnicas de máxima verossimil-
hança são usadas para ajustar os novos modelos e para mostrar a sua potencialidade.

Palavras-chave: Desvios médios. Distribuição Birnbaum-Saunders. Distribuição Extended Weibull.
Distribuição Gamma-G. Distribuição Lindley. Distribuição Nadarajah-Haghighi. Distribuição
Normal. Estimação por máxima verossimilhança. Função quantílica.



Abstract

The modeling and analysis of lifetimes are important aspects of statistical work in a wide
variety of scientific and technological fields. We study some relevant mathematical properties
of the recent family called gamma-G family [Zografos and Balakrishnan (2009) and Ristić and
Balakrishnan (2012)], denoted here by “GG”, for short, where G is called the baseline distri-
bution. As baseline distributions, we choose five widely-known models: Birnbaum-Saunders,
Normal, Lindley, Nadarajah-Haghighi and an extended Weibull. The fourth one is the most re-
cent, studied by Nadarajah and Haghighi (2011), who developed some of its interesting prop-
erties. We demonstrate that the new density functions can be expressed as linear combination
of exponentiated-G (“EG”, for short) density functions. For an arbitrary baseline cdf G(x), a
random variable is said to have the exponentiated-G distribution with parameter a > 0, say
X ∼ exp-G(a), if its pdf and cdf are ha(x) = aGa−1(x)g(x) and Ha(x) = Ga(x), respectively.
The properties of some exponentiated distributions have been studied by several authors, see
Mudholkar and Srivastava (1993) and Mudholkar et al. (1995) for exponentiated Weibull (exp-
W), Gupta et al. (1998) for exponentiated Pareto, Gupta and Kundu (2001) for exponentiated
exponential (exp-E) and Nadarajah and Gupta (2007) for exponentiated gamma (exp-G) distri-
butions. More recently, Cordeiro et al. (2011a) investigated some mathematical properties for
exponentiated generalized gamma (exp-GG) distribution. Further, various of their structural
properties are derived, including explicit expressions for the moments, quantile and generat-
ing functions, mean deviations, probability weighted moments and two types of entropy. We
also investigate the order statistics and their moments. Maximum likelihood techniques are
used to fit the new models and to show their potentiality on real data set.

Keywords: Birnbaum-Saunders distribution. Extended Weibull distribution. Gamma-G distri-
bution. Lindley distribution. Maximum likelihood estimation. Mean deviation. Nadarajah-
Haghighi distribution. Normal distribution. Quantile function.
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CHAPTER 1

Introduction

For any continuous baseline G distribution, Zografos and Balakrishnan (2009) proposed
a generalized gamma-generated distribution (denoted here with the prefix “GG”, for short)
with an extra positive parameter. The central ideia is: let X(U1), . . . , X(Un) be upper record
values arising from a sequence of i.i.d. continuous random variables from a population with
cumulative density function (cdf) G(x) and probability density function (pdf) g(x), where 1 ≤
U1 < . . . < Un ≤ n. Then, the pdf of the nth upper record value, X(Un), is given by

gX(Un)
(x) =

g(x)
(n− 1)!

{− log [1− G(x)]}n−1 , −∞ < x < ∞.

In the literature, the quantity n ∈ N such that n ≥ 1 has been replaced with a ∈ R+,
resulting (Zografos and Balakrishnan, 2009)

f (x) =
g(x)
Γ(a)

{− log [1− G(x)]}a−1 , −∞ < x < ∞.

To that end, we employ the generator proposed by Zografos and Balakrishnan (2009). They
studied some of its mathematical properties and presented some special cases. Here, we pro-
vide a comprehensive treatment of general mathematical properties of GG distributions by
taking four different baselines. We discuss density expansions, quantile function, moments,
incomplete moments, generating functions, entropies, order statistics, estimation of the model
parameters by maximum likelihood and provide applications to real data sets. We present
mathematical properties of four different models: Gamma Birnbaum-Saunders, Gamma Nor-
mal, Gamma Lindley and Gamma Nadarajah-Haghighi.

The first one uses the Birnbaum-Saunders as baseline distribution. Birnbaum and Saun-
ders (1969a) pioneered a lifetime model which is commonly used in reliability studies. Based
on this distribution, a new model called the gamma Birnbaum-Saunders distribution is pro-
posed for describing fatigue life data. Several properties of this distribution including ex-
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plicit expressions for the ordinary and incomplete moments, generating and quantile func-
tions, mean deviations, density function of the order statistics and their moments are derived.
We discuss the estimation of the model parameters by the method of maximum likelihood.
The superiority of the new model is illustrated by means of three failure real data sets.

In the second chapter, we discuss the gamma normal distribution which has the normal
distribution as the baseline. We study some of its mathematical properties too and maximum
likelihood techniques are used in order to fit the new model and to show its potenciality by
means of two examples of real data. Based on three criteria, the proposed distribution provides
a better fit than the skew-normal distribution.

The third chapter is about a gamma Lindley (GL) distribution, which generalizes the Lind-
ley model. We advance under three different aspects. First, the proposed model from the
application of the Lindley distribution to the gamma generator, and the study of its structural
properties are addressed. Secondly, the performance of the GL additional parameter estima-
tion is quantified under variation of the Lindley (L) parameter by means of a simulation study.
The new distribution can strongly be more flexible than the L model, when one wishes to
analyze time between failures for repairable item. Thirdly, we consider the GL model for de-
scribing intensity data extracted from synthetic aperture radar (SAR) images. The empirical
distributions (for more details, see, Gao (2010)) obtained from SAR data require specialized
models since these data are corrupted by an interference pattern, called speckle noise(Oliver
and Quegan, 1998). Results present meaningful evidence in favor of the GL model compared
to the baseline Lindley, and, more important, the Weibull distribution – which has been indi-
cated as a well-accepted model to describe empirical SAR distributions (Oliver and Quegan,
1998; Fernandes, 1998; de Fatima and Fernandes, 2000; Gao, 2010) – and the complementary
exponential geometric (CEG) distribution (Louzada et al., 2011)– like a recent bi-parametric
extended model.

In the fourth chapter, we propose the gamma Nadarajah-Haghighi model, which is a new
generalized gamma distribution. This distribution can be interpreted as a truncated general-
ized gamma distribution (Stacy, 1962). It can have a constant, decreasing, increasing, upside-
down bathtub or bathtub-shaped hazard rate function depending on the values of its parame-
ters. We demons-
trate that the new density function can be expressed as a linear combination of exponentiated
Nadarajah-Haghighi density functions (Lemonte, 2013). Various of its structural properties
are derived, including some explicit expressions for the moments, quantile and generating
functions, skewness, kurtosis, mean deviations, Bonferroni and Lorenz curves, probability
weighted moments and two types of entropy. We also obtain the order statistics. The method
of maximum likelihood is used for estimating the model parameters and the observed infor-
mation matrix is derived.

Finally, we propose, in the last chapter, the gamma extended Weibull model, which extend
the Weibull and extended Weibull distributions among several other distributions. We obtain
explicit expressions for the ordinary incomplete moments, generating and quantile functions,
mean deviations, entropies and reliability. The method of maximum likelihood is used for
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estimating the model parameters. The applicability of the new model is illustrated by means
of a real data set.
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CHAPTER 2

The gamma-G family of distributions

Resumo

Neste capítulo, falamos sobre o gerador gamma-G, com um parâmetro positivo adicional, pro-
posto por Zografos e Balakrishnan (2009). Eles estudaram algumas propriedades matemáticas
e apresentaram alguns casos especiais. Aqui, apresentamos algumas propriedades matemáti-
cas gerais desse gerador, com o objetivo de, nos capítulos seguintes, mostrar todas essas pro-
priedades sendo aplicadas a uma distribuição gamma-G, em que a baseline G é escolhida como
uma determinada distribuição conhecida na literatura.

Palavras-chave: Baseline. Distribuição gama.

Abstract

In this chapter, we discuss about the gamma-G generator, with an extra positive parameter,
proposed by Zografos e Balakrishnan (2009). They studied some of its mathematical proper-
ties and presented some special cases. Here, we present some general mathematical properties
of gamma-G distributions, in order to, in the next chapters, show all these properties being ap-
plied to a gamma-G distribution, where the baseline G is chosen as a given distribution known
in the literature.

Keywords: Baseline. Gamma distribution.
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2.1 Introduction

Recently, attempts have been made to define new classes of lifetime distributions that
provide greater flexibility in modeling skewed data in practice. In 2012, Torabi and Hedesh
proposed a new general class of distributions (with two additional parameters), generated
from the logit of the gamma random variable and they discussed some mathematical proper-
ties. Motivated by Torabi and Hedesh (2012), Cordeiro et al. introduced a new sub-family of
the Zografos-Balakrishnan’s family of distributions (paper submited in Applied Mathematical
Modelling). In this paper, they introduced a gamma extended family of distributions with two
extra generator parameters and studied some particular cases e properties of the new class.
Amini et al.(2013) discussed two new families of distribution with two additional parameters,
called Log Gamma-G I and Log Gamma-G II. In this paper the authors developed some math-
ematical properties of those new families.

Zografos and Balakrishnan (2009) and Ristić and Balakrishnan (2011) proposed a family of
univariate distributions generated by gamma random variables. For any baseline cdf G(x),
x ∈ R, they defined the gamma-G (“GG” for short) distribution with pdf f (x) and cdf F(x)
given by

f (x) =
g(x)
Γ(a)

{− log [1− G(x)]}a−1 (2.1)

and

F(x) =
1

Γ(a)

∫ − log[1−G(x)]

0
ta−1 e−t dt, (2.2)

respectively, for a > 0, where g(x) = dG(x)/dx, Γ(a) =
∫ ∞

0 ta−1 e−tdt is the gamma function,
γ(a, z) =

∫ z
0 ta−1 e−tdt denotes the incomplete gamma function and γ1(a, z) = γ(a, z)/Γ(a) is

the incomplete gamma function ratio. Its hrf h(x) is given by

h(x) = g(x) {− log [1− G(x)]}a−1 /Γ(a,− log [1− G(x)]),

where Γ(a, z) =
∫ ∞

z ta−1 e−tdt denotes the complementary incomplete gamma function. The
GG distribution has the same parameters of the G distribution plus an additional shape pa-
rameter a > 0. Each new GG distribution can be obtained from a specified G distribution. For
a = 1, the G distribution is a basic exemplar with a continuous crossover towards cases with
different shapes (for example, a particular combination of skewness and kurtosis). Nadarajah
et al. (2013) derived several structural properties of the GG family of distributions, which hold
for any G such as the asymptotic properties of (2.1) and (2.2), quantile function, ordinary and
incomplete moments, generating function, mean deviations, asymptotic distribution of the ex-
treme values, reliability and order statistics. Here, we intend to show some properties of GG
distributions using four different baselines.
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2.2 Expansions

Some useful expansions for (2.1) and (2.2) can be derived using the concept of exponenti-
ated distributions. For an arbitrary baseline cdf G(x), a random variable is said to have the
exponentiated-G distribution with parameter a > 0, say X ∼ exp-G(a), if its pdf and cdf are

ha(x) = aGa−1(x)g(x)

and

Ha(x) = Ga(x),

respectively. The properties of some exponentiated distributions have been studied by several
authors, see Mudholkar and Srivastava (1993) and Mudholkar et al. (1995) for exponentiated
Weibull (exp-W), Gupta et al. (1998) for exponentiated Pareto, Gupta and Kundu (2001) for
exponentiated exponential (exp-E) and Nadarajah and Gupta (2007) for exponentiated gamma
(exp-G) distributions. More recently, Cordeiro et al. (2011a) investigated some mathematical
properties for exponentiated generalized gamma (exp-GG) distribution.

Nadarajah et al. (2013) used an expansion for the quantity {− log [1−Φ(ν)]}a−1 given by

{− log [1−Φ(ν)]}a−1 = (a− 1)
∞

∑
k=0

(
k + 1− a

k

) k

∑
j=0

(−1)j+k(k
j) pj,k

(a− 1− j)
Φ(ν)a+k−1,

where

Φ(x) =
1√
2π

∫ x

−∞
e−t2/2 dt,

a > 0 is any real number and the quantities pj,k can be determined (for j = 0, 1, 2, . . . and
k = 1, 2, . . .) recursively by

pj,k = k−1
k

∑
m=1

(−1)m [m(j + 1)− k]
(m + 1)

pj,k−m, (2.3)

and pj,0 = 1. For any real parameter a > 0, we define

bk =
(k+1−a

k )

(a + k)Γ(a− 1)

k

∑
j=0

(−1)j+k(k
j) pj,k

(a− 1− j)
(2.4)

and then (2.1) can be expressed as

f (x) =
∞

∑
k=0

bk ha+k(x), (2.5)

where ha+k(x) denotes the exp-G density function with parameter a+ k. The cdf corresponding
to (2.5) becomes

F(x) =
∞

∑
k=0

bk Ha+k(x), (2.6)

where Ha+k(x) denotes the exp-G cdf with parameter with parameter a+ k. Based on equation
(2.5), several structural properties of the GG distribution can be obtained by knowing those of
the exp-G distribution.
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2.3 Quantile function

Here, we use a result by Gradshteyn and Ryzhik (2007, Section 0.314) for a power series
raised to a positive integer j (

∞

∑
i=0

ai xi

)j

=
∞

∑
i=0

cj,i xi, (2.7)

where the coefficients cj,i (for j = 1, 2, . . .) are easily obtained from the recurrence equation

cj,i = (ia0)
−1

i

∑
m=1

[m(j + 1)− i] am cj,i−m (2.8)

and cj,0 = aj
0. The coefficient cj,i can be determined from cj,0, . . . , cj,i−1 and then from the

quantities a0, . . . , ai. In fact, cj,i can be given explicitly in terms of the coefficients ai, although
it is not necessary for programming numerically our expansions in any algebraic or numerical
software.

The GG qf, say Q(u) = F−1(u), can be expressed in terms of the G quantile function
(QG(·)). Inverting equation (2.2), it follows the qf of X as

F−1(u) = QGG(u) = QG

{
1− exp[−Q−1(a, 1− u)]

}
, (2.9)

for 0 < u < 1, where Q−1(a, u) is the inverse function of Q(a, z) = 1− γ(a, z)/Γ(a). Quantities
of interest can be obtained from (2.9) by substituting appropriate values for u.

2.4 Moments

Let Y ∼exp-G(a + k). A first formula for the nth moment of X can be obtained from (2.5)
as

E(Xn) =
∞

∑
k=0

bk E(Yn).

Expressions for moments of several exponentiated distributions are given by Nadarajah and
Kotz (2006), which can be used to produce E(Xn).

A second formula for E(Xn) can be obtained in terms of the baseline quantile function
QG(x) = G−1(x). We obtain

E(Xn) =
∞

∑
k=0

(a + k) bk τ(n, a + k− 1), (2.10)

where the integral

τ(n, a) =
∫ ∞

−∞
xn G(x)a g(x)dx

can be expressed in terms of the G qf

τ(n, a) =
∫ 1

0
QG(u)n uadu.
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The nth incomplete moment of X is calculated as

mn(y) = E (Xn|X < y) =
∞

∑
k=0

(a + k)bk

∫ G(y)

0
QG(u)nua+k−1du.

The last integral can be computed for most baseline G distributions.
Further, the central moments (µr) and cumulants (κr) of X can be calculated as

µr =
r

∑
k=0

(−1)k
(

r
k

)
µ′k1 µ′r−k and κr = µ′r −

r−1

∑
k=1

(
r− 1
k− 1

)
κk µ′r−k,

respectively, where κ1 = µ′1. Then, κ2 = µ′2 − µ′21 , κ3 = µ′3 − 3µ′2µ′1 + 2µ′31 , κ4 = µ′4 − 4µ′3µ′1 −
3µ′22 + 12µ′2µ′21 − 6µ′41 , etc. The skewness γ1 = κ3/κ3/2

2 and kurtosis γ2 = κ4/κ2
2 follow from

the second, third and fourth cumulants. Other kinds of moments such L-moments may also
be obtained in closed-form, but we consider only the previous moments for reasons of space.

2.5 Generating functions

A first formula for the mgf M(t) of X comes from (2.5) as

M(t) =
∞

∑
k=0

bk Mk(t),

where Mk(t) is the mgf of Yk. Hence, M(t) can be immediately determined from the generating
function of the exp-G distribution.

A second formula for M(t) can be derived from (2.5) as

M(t) =
∞

∑
i=0

(a + k) bk ρ(t, a + k− 1), (2.11)

where

ρ(t, a) =
∫ ∞

−∞
exp(tx) G(x)a g(x)dx

can be calculated from the baseline qf QG(x) = G−1(x) by

ρ(t, a) =
∫ 1

0
exp {t QG(u)} uadu. (2.12)

From equations (2.11) and (2.12) we can obtain the mgf ′s of several gamma-G distributions
directly.

2.6 Entropies

An entropy is a measure of variation or uncertainty of a random variable X. Two popular
entropy measures are the Rényi and Shannon entropies (Shannon, 1948; Rached et al.,2001).
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Following Nadarajah et al. (2013), the Rényi entropy, when X is a gamma-G random variable,
is defined as

IR(γ) = −
γ log Γ(a)

1− γ
+

1
1− γ

log

{
∞

∑
k=0

(
k− γa + γ

k

) k

∑
j=0

(−1)j+k (k
j) pj,k

[γ(a− 1)− j]
Ik

}
, (2.13)

where Ik comes from the baseline distribution as

Ik = E{G(Z)[(a−1)γ+ k] g(Z)γ− 1} =
∫ ∞

0
G(x)[γ(a−1)+k] gγ(x)dx,

where Z represents any continuous random variable with pdf and cdf given by g(x) and G(x),
respectively.

Next, the Shannon entropy of a random variable X is defined by E{− log[ f (X)]}. It is a
special case of the Rényi entropy when γ ↑ 1. Equation (2.13) is very complicated for limiting,
and then we derive an explicit expression for the Shannon entropy from its definition. We can
write

E [− log f (X)] = log Γ(a) + (1− a)
∞

∑
j=1

(−1)j−1

j

∞

∑
r=0

ej,r E
[

Gr+j(X)
]

+E {log [G(X)]} − E {log [g(X)]} ,

where

E
[

Gr+j(X)
]

=
∞

∑
k=0

(a + k) bk

∫ ∞

0
Ga+r+j+k−1(x) g(x)dx

=
∞

∑
k=0

(a + k) bk

(a + r + j + k)
,

E {log [G(X)]} =
∞

∑
k=0

(a + k) bk

∫ ∞

0
log[G(x)] Ga+k−1(x)g(x)dx

= −
∞

∑
k=0

bk

a + k

and

E {log [g(X)]} =
∞

∑
k=0

(a + k) bk

∫ ∞

0
log[g(x)] Ga+k−1(x)g(x)dx.

This last integral can be computed numerically for most baseline distributions.

2.7 Order statistics

Order statistics have been used in a wide range of problems, including robust statistical es-
timation and detection of outliers, characterization of probability distributions and goodness-
of-fit tests, entropy estimation, analysis of censored samples, reliability analysis, quality con-
trol and strength of materials.



24
Suppose X1, . . . , Xn is a random sample from the standard GG distribution and let X1:n <

· · · < Xi:n denote the corresponding order statistics. Using (2.5) and (2.6), the pdf of Xi:n can
be expressed as

fi:n(x) =
n!

(i− 1)!(n− i)!

n−i

∑
j=0

(−1)j
(

n− i
j

)
f (x) F(x)i+j−1

Using (2.7) and (2.8), we can write[
∞

∑
k=0

bk G(x)a+k

]j+i−1

=
∞

∑
k=0

f j+i−1,k G(x)a(j+i−1)+k,

where f j+i−1,0 = bj+i−1
0 and

f j+i−1,k = (k b0)
−1

k

∑
m=1

[m(j + i)− k] bm f j+i−1,k−m.

Hence,

fi:n(x) =
n−i

∑
j=0

∞

∑
r,k=0

mj,r,k ha(j+i)+r+k(x), (2.14)

where

mj,r,k =
(−1)j n!

(i− 1)! (n− i− j)! j!
(a + r) br f j+i−1,k

[a(j + i) + r + k]
.

Equation (2.14) is the main result of this section. It reveals that the pdf of the gamma-G order
statistics is a triple linear combination of exp-G density functions. So, several mathematical
quantities of the gamma-G order statistics like ordinary, incomplete and factorial moments,
mgf, mean deviations and several others can be obtained from those quantities of gamma-G
distributions. Clearly, the cdf of Xi:n can be expressed as

Fi:n(x) =
n−i

∑
j=0

∞

∑
r,k=0

mj,r,k Ha(j+i)+r+k(x).
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CHAPTER 3

An extended Birnbaum-Saunders distribution

Resumo

Birnbaum e Saunders (1969a) foram os pioneiros de um modelo de vida que é comumente uti-
lizado em estudos de confiabilidade. Com base nesta distribuição, um novo modelo chamado
de distribuição gama-Birnbaum-Saunders é proposto para descrever dados de fadiga. Várias
propriedades da nova distribuição, incluindo expressões explícitas para momentos ordinários
incompletos, funções geradoras e de quantis, desvios médios, função densidade das estatísti-
cas de ordem e os seus momentos são derivados. Discute-se o método de máxima verossim-
ilhança para estimar os parâmetros do modelo. A superioridade do novo modelo é ilustrada
por meio de três conjuntos de dados reais.

Palavras-chave: Dados de tempo de vida. Distribuição Birnbaum-Saunders. Distribuição de
fadiga. Distribuição gama. Estimação de máxima verossimilhança.

Abstract

Birnbaum and Saunders (1969a) pioneered a lifetime model which is commonly used in relia-
bility studies. Based on this distribution, a new model called the gamma-Birnbaum-Saunders
distribution is proposed for describing fatigue life data. Several properties of the new distribu-
tion including explicit expressions for the ordinary and incomplete moments, generating and
quantile functions, mean deviations, density function of the order statistics and their moments
are derived. We discuss the method of maximum likelihood approach to estimate the model
parameters. The superiority of the new model is illustrated by means of three failure real data
sets.
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Keywords: Birnbaum-Saunders distribution. Fatigue life distribution; Gamma distribution.
Lifetime data. Maximum likelihood estimation.

3.1 Introduction

Motivated by problems of vibration in commercial aircraft that caused fatigue in the mate-
rials, Birnbaum and Saunders (1969a, 1969b) proposed the two-parameter Birnbaum-Saunders
(BS) model, also known as the fatigue life distribution, with shape parameter α > 0 and scale
parameter β > 0, say BS(α, β). This distribution can be used to model lifetime data and it
is widely applicable for modelling failure times of fatiguing materials. A random variable W
having the BS(α, β) distribution is defined by

W = β

αZ
2

+

{(
αZ
2

)2

+ 1

}1/2
2

,

where Z is a standard normal random variable. Its cumulative distribution function (cdf) is
given by

G(x) = Φ(ν), x > 0, (3.1)

where ν(x) ≡ α−1ρ(x/β), ρ(z) = z1/2 − z−1/2 and Φ(·) is the standard normal cumulative
function. The parameter β is the median of the distribution, i.e. G(β) = Φ(0) = 1/2. For
any k > 0, k W ∼ BS(α, kβ). Kundu et al. (2008) investigated the shape of the BS hazard rate
function (hrf). Results on improved statistical inference for this model are discussed by Wu and
Wong (2004) and Lemonte et al. (2007, 2008). Further, Díaz-Garcia and Leiva (2005) proposed a
new class of generalized BS distributions based on contoured elliptical distributions, whereas
Guiraud et al. (2009) introduced a non-central version of the BS distribution. The probability
density function (pdf) corresponding to (3.1) is given by

g(x) = k(α, β) x−3/2 (x + β) exp
[
−τ(x/β)

2α2

]
, x > 0, (3.2)

where k(α, β) = (2αeα2√
2πβ)−1 and τ(z) = z− z−1. The fractional moments of (3.2) are given

by Rieck (1999) E(Wp) = βp I(p, α), where

I(p, α) =
κp+1/2(α

−2) + κp−1/2(α
−2)

2κ1/2(α−2)
, (3.3)

and κν(z) = 0.5
∫ ∞
−∞ exp{−z cosh(t)− νt}dt denotes the modified Bessel function of the third

kind with ν representing its order and z the argument. A discussion of this function can be
found in Watson (1995).

Here, we propose a new lifetime model called the gamma Birnbaum-Saunders (GBS) distribu-
tion to extend the BS model. We know the hrf plays an important role in lifetime data analysis.
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The shape of the hazard function of Birnbaum-Saunders distribution is unimodal. Thus, we
will propose a new model that has four forms of hrf, as follows. We provide properties of the
new distribution, discuss maxi-
mum likelihood estimation of the model parameters and derive the observed information ma-
trix. The rest of the chapter is outlined as follows. In Section 3.2, we discuss about the new
distribution. We derive useful expansions in Section 3.3. The qf is thoroughly discussed in
Section 3.4. In Sections 3.5 and 3.6, we obtain the ordinary moments and two representations
for the mgf of X, respectively. In Section 3.7, we derive the mean deviations, Bonferroni and
Lorenz curves and reliability. The order statistics are investigated in Section 3.8. In Section 3.9,
we present the method of maximum likelihood. In Section 3.10, one application to real data
sets is presented to demonstrate the potentiality of the new distribution for fatigue life model-
ing and the flexibility and practical relevance. Finally, Section 3.11 ends with some concluding
remarks.

3.2 The new distribution

The pdf and cdf of the GBS distribution are defined (for x > 0) by applying (3.1) and (3.2)
in equations (2.1) and (2.2)

f (x) =
k(α, β)

Γ(a)
x−3/2 (x + β) exp

[
−τ(x/β)

2α2

]
{− log [1−Φ(ν)]}a−1 (3.4)

and

F(x) =
1

Γ(a)

∫ − log[1−Φ(ν)]

0
ta−1 e−t dt, (3.5)

respectively. Evidently, the density function (3.4) does not involve any complicated function
and the BS distribution arises as the basic exemplar for a = 1. The fact that the GBS distribution
extends the BS distribution is also a positive point. Figure 3.1 displays some possible shapes of
the density function (3.4) for selected parameter values. It is evident that the GBS distribution
is much more flexible than the BS distribution.

The hazard rate function (hrf) corresponding to (3.4) is given by

h(x) =
k(α, β) x−3/2 (x + β) exp

[
− τ(x/β)

2α2

]
{− log [1−Φ(ν)]}a−1

Γ(a) Γ(a,− log [1−Φ(ν)])
.

Hereafter, a random variable X having density function (3.4) is denoted by X ∼ GBS(α, β, a).
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Figure 3.1: Plots of the GBS density for some parameter values.

Plots of the hrf h(x) for selected parameter values are displayed in Figure 3.2. We note that
these plots illustrate the four types of hazard shapes. The new model is easily simulated as
follows: if V is a gamma random variable with parameter a > 0, then

X = β

{
α Φ−1(V)

2
+

[(
α Φ−1(V)2

4

)
+ 1
]1/2}2

has the GBS(α, β, a) distribution. This scheme is useful because of the existence of fast gener-
ators for gamma random variables and the standard normal quantile function is available in
several statistical packages.

3.3 Useful expansions

Expansions for (3.4) and (3.5) can be derived using the concept of exponentiated distribu-
tions. Cordeiro et al. (2013) defined the exponentiated Birnbaum-Saunders (exp-BS) distribution
with positive parameters α, β and c, say Y ∼ exp-BS(α, β, c), if its cdf and pdf are given by
H(y; α, β, c) = Φ(ν)c and h(y; α, β, c) = c g(y)Φ(ν)c−1, respectively, where ν is defined in (3.1)
and g is given in (3.2).

From (3.4), we can write

f (x) =
∞

∑
k=0

bk ha+k(x), (3.6)
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where

bk =
(k+1−a

k )

(a + k)Γ(a− 1)

k

∑
j=0

(−1)j+k(k
j) pj,k

(a− 1− j)

and ha+k(x) denotes the exp-BS(α, β, a + k) density function. The cdf corresponding to (3.6)
becomes

F(x) =
∞

∑
k=0

bk Ha+k(x) =
∞

∑
k=0

bk Φ(ν)a+k, (3.7)

where Ha+k(x) = Φ(ν)a+k denotes the exp-BS cdf with parameters α, β and (a + k). Based on
equation (3.6), several structural properties of the GBS distribution can be obtained by know-
ing those of the exp-BS distribution.

If a is a nonnegative integer, we can expand Φ(ν)a+k as

Φ(ν)a+k =
∞

∑
r=0

sr(a + k)Φ(ν)r, (3.8)

where

sr(a) =
∞

∑
l=r

(−1)r+l
(

a
l

)(
l
r

)
.

Thus, from equations (3.2), (3.6) and (3.8), we obtain

f (x) = g(x)
∞

∑
r=0

dr Φ(ν)r, (3.9)

where dr = ∑∞
k=0 bk sr(a + k). Equations (3.6) and (3.9) are the main results of this section.

3.4 Quantile Function

The GBS quantile function (qf), say Q(u) = F−1(u), can be expressed in terms of the BS qf
(QBS(·)) and beta qf (Qβ(·)). The BS qf is straightforward computed from the standard normal
qf x = QN(u) = Φ−1(u) (Cordeiro and Lemonte, 2011)

QBS(u) =
β

2

{
2 + α2 QN(u)2 + α QN(u)

[
4 + α2 QN(u)2]1/2

}
.

Inverting F(x) = u, we obtain the qf of X as

F−1(u) = QGBS(u) = QBS

{
1− exp[−Q−1(a, 1− u)]

}
, (3.10)

for 0 < u < 1, where Q−1(a, u) is the inverse function of Q(a, z) = 1− γ(a, z)/Γ(a). Quantities
of interest immediately follow from (3.10) by substituting appropriate values for u. Further,
the BS qf can be expressed as

QBS(u) =
∞

∑
i,j=0

pj hj,iu(i+j)/a, (3.11)
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where pj = ∑∞

k=j mk
(−1

2

)k−j
(k

j), hj,i = (iv0)−1 ∑i
m=0[m(j + 1) − i] vm hj,i−m, vi = qi+1. Here,

q0 = 0, q1 = 1, q2 = (β− 1)/(α + 1), . . ., and the quantities qi
′s (for i ≥ 2) can be derived from

a cubic recursive formula given in Appendix A.
We can obtain the inverse function Q−1(a, u) in the Wolfram website as

z = Q−1(a, 1− u) =
∞

∑
i=0

ai ui/a,

where a0 = 0, a1 = Γ(a + 1)1/a, a2 = Γ(a+1)2/a

(a+1) , a3 = (3a+5)Γ(a+1)3/a

2(a+1)2(a+2) , . . ., etc. By expanding the
exponential function and using (2.7), we have

1− exp

(
−

∞

∑
r=0

arur/a

)
= 1−

∞

∑
r=0

pr ur/a,

where the pr
′s are defined in Appendix A. Then,

QGBS(u) = QBS

(
1−

∞

∑
r=0

pr ur/a

)
.

After some algebra, using the power series expansion (2.7), we obtain from (3.11)

QGBS(u) =
∞

∑
i,j=0

pj hj,i

∞

∑
s=0

(−1)s
(
(i + j)/a

s

) ∞

∑
r=0

ds,r ur/a =
∞

∑
r=0

cr ur/a, (3.12)

where the coefficients ds,r can be determined from (2.8) as ds,r = (rp0)−1 ∑r
v=1[v(s + 1) −

r] pv ds,r−v for s ≥ 0, r ≥ 1, ds,0 = ps
0 and cr is defined by

cr =
∞

∑
i,j,s=0

(−1)s
(
(i + j)/a

s

)
pj hj,i ds,r.

Some algebraic details about (3.12) are given in Appendix A. Equation (3.12) can be used to
obtain some mathematical measures of X such as the moments and generating function by
integration over [0, 1].

3.5 Moments

The ordinary moments of X can be derived from the PWMs (Greenwood et al., 1979) of the
BS distribution defined for p and r non-negative integers by

τp,r =
∫ ∞

0
xp Φ(ν)r g(x)dx. (3.13)

The integral (3.13) can be computed numerically in softwares such as MAPLE, MATLAB,
MATHEMATICA, Ox or R. Cordeiro and Lemonte (2011) proposed an alternative re-
presentation to obtain τp,r as

τp,r =
βp

2r

r

∑
j=0

(
r
j

) ∞

∑
k1,...,k j

A(k1, . . . , k j)
2sj+j

∑
m=0

(−1)m
(

2sj + j
m

)

× I
(

p +
(2sj + j− 2m)

2
, α

)
, (3.14)
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where sj = k1 + . . . + k j, A(k1, . . . , k j) = α−2sj−j ak1 , . . . , ak j , ak = (−1)k 2(1−2k)/2 [

√
π(2k + 1)]−1

and I(p + (2sj + j − 2m)/2, α) is determined from equation (3.3). Those algebraic softwares
have currently the ability to deal with analytic expressions of formidable size and complexity.

The sth moment of X can be expressed from (2.5) as

µ′s =
∞

∑
r=0

dr τs,r, (3.15)

where τs,r comes from (3.14) and dr is given by (3.9). Equation (3.15) can be computed nume-
rically in any symbolic mathematical software. Plots of the skewness and kurtosis, for selected
values of α and β, as functions of a are displayed in Figures 3.3 and 3.4, respectively.

Next, we obtain the nth incomplete moment of X defined as Tn(y) =
∫ y

0 xn f (x)dx. The
incomplete moments play an important role for measuring inequality, for example, income
quantiles and Lorenz and Bonferroni curves. Substituting (2.5) in the last equation, we obtain

Tn(y) = k(α, β)
∞

∑
r=0

dr

∫ y

0
(x + β) xn−3/2 exp

[
−τ(x/β)

2α2

]
Φ(ν)rdx.

Using the expansion for Φ(ν)r given by Cordeiro and Lemonte (2011), Tn(y) can be ex-
pressed as

Tn(y) = k(α, β)
∞

∑
r=0

dr

2r

r

∑
j=0

(
r
j

) ∞

∑
k1,...,k j=0

β−(2sj+j)/2 A(k1, . . . , k j)
2sj+j

∑
m=0

(−β)m
(

2sj + j
m

)

×
[

D
(

n +
2sj + j− 2m− 1

2
, y
)
+ β D

(
n +

2sj + j− 2m− 3
2

, y
)]

, (3.16)

where the quantity D(p, q) is defined in Appendix B. Equation (3.16) is the main result of this
section.

The Bonferroni and Lorenz curves of X are defined as B(π) = T1(q)/[πµ′1] and L(π) =

T1(q)/µ′1, respectively, where q = QGBS(π) comes from the qf (3.12) for a given probability π

and (3.16) with n = 1. These two curves have applications in economics, reliability, demo-
graphy, insurance and medicine; see for example Ordu et al. (2011) and Cuena and Seidl (2007).
Plots of the Bonferroni and Lorenz curves versus π for some choices of a, α = 0.5 and β = 1.1
are displayed in Figures 3.5a and 3.5b, respectively.

3.6 Generating function

We provide two representations for the mgf of X, say M(s) = E(es X). From equation (3.6),
we obtain a first expansion

M(s) =
∞

∑
k=0

bk (a + k)
∫ ∞

0
estG(t)a+k−1g(t)dt.

By expanding the exponential function and the qf, M(s) can be rewritten as

M(s) =
∞

∑
n,s,k=0

(a + k) bk vs,n

(s/a + a + k)
sn

n!
,
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where vs,n = (nq0)

−1 ∑s
m=0[m(s + 1) − j] qm vs,n−m follows from (2.7) and (2.8) with vs,0 =

qs
0. Further, qk comes from the expansion of QBS(u) given by QBS(u) = ∑∞

s=0 qsu
s/a, whose

coefficients and the details of the proof are given in Appendix C.
A second representation for M(s) is determined from the exp-BS generating function. We

can write M(s) = ∑∞
k=0 bk Mk(t), where bk is given by (2.4) and Mk(t) is the mgf of Yk ∼exp-

BS(a + k) given by

Mk(t) =
∞

∑
r,k=0

(−1)r Γ(a + 1) τk,a+r−1

k!
tk.

3.7 Other Measures

In this section, we derive the means deviations and the reliability of X.

3.7.1 Mean deviations

The mean deviations about the mean µ′1 and about the median M can be written as

δ1 = 2
[
µ′1 F(µ′1)− T1(µ

′
1)
]

and δ2 = µ′1 − 2T1(M),

where T1(ω) is the first incomplete moment of X computed from (3.16) with n = 1. Then, the
measures δ1 and δ2 are determined from this equation.
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Figure 3.3: Skewness and kurtosis of the GBS distribution as functions of a for some values of
α.



36
(a) (b)

1.5 2.0 2.5 3.0 3.5 4.0

3
.0

3
.5

4
.0

4
.5

5
.0

5
.5

6
.0

a

S
k
e
w

n
e
s
s

α=1.5

β=5
β=8
β=10
β=12

2.0 2.5 3.0 3.5 4.0 4.5 5.0

0
5
0

1
0
0

1
5
0

2
0
0

a

K
u
rt

o
s
is

α=1.5

β=5
β=8
β=10
β=12

Figure 3.4: Skewness and kurtosis of the GBS distribution as functions of a for some values of
β.

3.7.2 Reliability

Consider the life of a component which has a random strength X1 subjected to a random
stress X2. The component fails at the instant that the stress applied to it exceeds the strength,
and then a measure of component reliability is R = Pr(X1 < X2) =

∫ ∞
0 f1(x) F2(x)dx. We

derive R when X1 and X2 have independent GBS(α, β, a1) and GBS(α, β, a2) distributions with
the same shape parameters α and β. The pdf of X1 and the cdf of X2 can be obtained from (3.6)
and (3.7) as

f1(x) = g(x)
∞

∑
k=0

b1k Φ(ν)a1+k and F2(x) =
∞

∑
j=0

b2j Φ(ν)a2+j,

respectively, where

b1k =
(k+1−a1

k )

(a1 + k) Γ(a1 − 1)

k

∑
i=0

(−1)i+k (k
i) pi,k

(a1 − 1− i)
, b2j =

(j+1−a2
j )

(a2 + j) Γ(a2 − 1)

j

∑
i=0

(−1)i+j (j
i) pi,j

(a2 − 1− i)
,

and pi,j is defined in (2.3). Then, the reliability becomes

R =
∞

∑
j,k=0

b1k b2j

∫ ∞

0
Φ(ν)a1+a2+j+k g(x)dx.
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Figure 3.5: Bonferroni and Lorenz curves for the GBS distribution for some parameter values.

From equation (3.8), we can write

Φ(ν)a1+a2+j+k =
∞

∑
r=0

(a1 + a2 + j + k) sr Φ(ν)r,

and R reduces to

R =
∞

∑
j,k=0

b1k b2j

∞

∑
r=0

sr(a1 + a2 + j + k) τ0,r,

where τ0,r is obtained from (3.13).

3.8 Order statistics

Suppose X1, . . . , Xn is a random sample from the GBS distribution and let X1:n < · · · < Xn:n

be the order statistics. Using (2.5) and (2.6), the pdf of Xi:n can be expressed as

fi:n(x) =
n!

(i− 1)!(n− i)!

n−i

∑
j=0

(−1)j
(

n− i
j

)[ ∞

∑
r=0

br (a + r)Φ(ν)a+r−1 g(x)

]
×

×
[

∞

∑
k=0

bk Φ(ν)a+k

]i+j−1

.

Based on equations (2.7) and (2.8), we obtain[
∞

∑
k=0

bk Φ(ν)a+k

]i+j−1

=
∞

∑
k=0

cj+i−1,k Φ(ν)a(j+i−1)+k,
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where cj+i−1,0 = bj+i−1

0 and cj+i−1,k = (kb0)−1 ∑k
m=1[m(j + i)− k] bm cj+i−1,k−m. Hence, the pdf

of the ith order statistic of X reduces to

fi:n(x) = g(x)
n−i

∑
j=0

∞

∑
r,k=0

mj,k,r Φ(ν)a(j+i)+k+r, (3.17)

where

mj,k,r =
(−1)j (a + r) (n−i

j ) n! br cj+i−1,k

(i− 1)! (n− i)!
.

Equation (3.17) can be expressed as

fi:n(x) =
n−i

∑
j=0

∞

∑
r,k=0

f j,k,r hr+k+a(j+i)(x), (3.18)

where f j,k,r = mj,k,r/[r + k + a(j + i)].
Equation (3.18) is the main result of this section. It reveals that the pdf of the GBS or-

der statistics is a triple linear combination of exp-BS distributions with parameters α, β and
[k + r + a(j + i)]. So, several mathematical quantities of the GBS order statistics such as ordi-
nary and incomplete moments, mgf, mean deviations and others can be obtained immediately
from those quantities of the exp-BS distribution.

As a simple application of (3.17), the sth moment of X is given by

E(Xs
i:n) =

n−i

∑
j=0

∞

∑
r,k=0

mj,k,r τs,k+r+a(j+i).

Another closed-form expression for E(Xs
i:n) can be obtained using a result due to Barakat

and Abdelkader (2004) applied to the independent and identically distributed case. Thus,

E(Xs
i:n) = s

n

∑
j=n−i+1

(−1)j−n+i−1
(

j− 1
n− i

)(
n
j

)
Jj(s),

where Jj(s) =
∫ ∞

0 xs−1 [1− F(x)]jdx.
By expanding [1− F(x)]j and using (3.7), we can obtain Jj(s). For a real non-integer a, we

can write from (3.7) and (2.8)

Jj(s) =
j

∑
m=0

(−1)m
(

j
m

) ∫ ∞

0
xs−1

(
∞

∑
k=0

bk G(x)a+k

)m

dx

=
j

∑
m=0

(−1)m
(

j
m

) ∞

∑
k=0

dm,k τs−1,am+k =
∞

∑
k=0

j

∑
m=0

(−1)m
(

j
m

)
dm,k τs−1,am+k,

where dm,k = (kt0)−1 ∑k
j=1[j(m + 1)− k] bm dm,k−j and dm,0 = bm

0 .

3.9 Inference and estimation

In this section, we discuss the maximum likelihood method and a Bayesian approach for
infe-
rence and estimation of the model parameters of the GBS distribution.
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3.9.1 Maximum likelihood estimation

First, the estimation of the parameters of the GBS model is investigated by maximum likeli-
hood. Let x = (x1, . . . , xn) be a random sample taken from X. The total log-likelihood function
for θ = (α, β, a) is

`(θ) = n log{k(α, β)} − n log Γ(a)− 3
2

n

∑
i=1

log(xi) +
n

∑
i=1

log(xi + β) + nα−2

− 1
2α2

n

∑
i=1

τ(xi/β) + (a− 1)
n

∑
i=1

log{− log[1−Φ(νi)]}. (3.19)

The elements of the score vector are given by

Uα = −n
α

(
1 +

1
α2

)
+

1
α3

n

∑
i=1

(
xi

β
+

β

xi

)
− (a− 1)

α

n

∑
i=1

νi φ(νi) [1−Φ(νi)]
−1

{log[1−Φ(νi)]}
,

Uβ = − n
2β

+
n

∑
i=1

1
xi + β

+
1

2α2β

n

∑
i=1

(
xi

β
+

β

xi

)
− (a− 1)

2αβ

n

∑
i=1

τ(
√

xi/β) φ(νi)

[1−Φ(νi)] {log[1−Φ(νi)]}
,

Ua =
n

∑
i=1

log{− log[1−Φ(νi)]} − n ψ(a),

where φ(·) is the pdf of the standard normal, ψ(p) = Γ
′
(p)/Γ(p) is the digamma function,

νi = α−1{(xi/β)1/2 − (xi/β)−1/2} and τ(
√

xi/β) = (xi/β)1/2 + (β/xi)
1/2 for i = 1, . . . , n.

Maximization of (3.19) can be performed using well established functions such as nlm or
optimize in the R statistical package. Setting these equations to zero, U(θ) = 0, and solving
them simultaneously gives the maximum likelihood estimate (MLE) θ̂ of θ, where U(θ) is the
score vector. These equations cannot be solved analytically and statistical software can be
used to evaluate them numerically using iterative techniques such as the Newton-Raphson
algorithm.

For interval estimation and tests of hypotheses on the parameters in θ, we require the 3× 3
unit observed information matrix J = J(θ) = {jr,s} whose elements jr,s for r, s = α, β, a are
given in Appendix D. Under conditions that are fulfilled for parameters in the interior of
the parameter space but not on the boundary, the estimated approximate multivariate nor-
mal N3(0, n−1J(θ̂)−1) can be used to construct approximate confidence intervals for the model
parameters.

The likelihood ratio (LR) statistics is useful for comparing the new distribution with some
special models. For example, we may use the LR statistic to check if the fit using the GBS
distribution is statistically “superior” to a fit using the BS distribution for a given data set.
In any case, considering the partition ` = (θT

1 , θT
2 )

T, with θ1 = a and θ2 = (α, β), tests of
hypotheses of the type H0 : θ1 = θ

(0)
1 versus HA : θ1 6= θ

(0)
1 can be performed using the LR
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statistic w = 2{`(θ̂)− `(θ̃)}, where θ̂ and θ̃ are the estimates of θ unrestricted and restricted
under H0, respectively. Under the null hypothesis H0, w d→ χ2

q, where q is the dimension of the
parameter vector θ1 of interest. The LR test rejects H0 if w > ξγ, where ξγ denotes the upper
100γ% point of the χ2

q distribution.

3.10 Applications

In this section, we compare the fits of the GBS, BS and beta Birnbaum-Saunders (βBS)
(Cordeiro and Lemonte, 2011) distributions to three real uncensored data sets from Murthy
et al. (2004) . The computations are performed using the procedure NLMixed in SAS and the R
statistical software. We describe three data sets reported by Murthy et al. (2004):

• Shocks data

We consider an uncensored data (n = 20) representing the number of shocks before
failure. The data are: 2, 3, 6, 6, 7, 9, 9, 10, 10, 11, 12, 12, 12, 13, 13, 13, 15, 16, 16, 18.

• Repairable data

The following data refer to the time between failures for repairable item (n = 30): 1.43,
0.11, 0.71, 0.77, 2.63, 1.49, 3.46, 2.46, 0.59, 0.74, 1.23, 0.94, 4.36, 0.40, 1.74, 4.73, 2.23, 0.45,
0.70, 1.06, 1.46, 0.30, 1.82, 2.37, 0.63, 1.23, 1.24, 1.97, 1.86, 1.17.

• Stress data

These data refer to accelerated life testing of (n = 40) items with change in stress from
100 to 150 at t = 15. The data are: 0.13, 0.62, 0.75, 0.87, 1.56, 2.28, 3.15, 3.25, 3.55, 4.49,
4.50, 4.61, 4.79, 7.17, 7.31, 7.43, 7.84, 8.49, 8.94, 9.40, 9.61, 9.84, 10.58, 11.18, 11.84, 13.28,
14.47, 14.79, 15.54, 16.90, 17.25, 17.37, 18.69, 18.78, 19.88, 20.06, 20.10, 20.95, 21.72, 23.87.

Table 3.1 provides a summary of these data. The shocks data have negative skewness and
kurtosis. The repairable data have positive skewness and kurtosis, and have less variability in
the data. The stress data have positive skewness and negative kurtosis, larger values of these
sample moments.

Table 3.1: Descriptive statistics.

Data Mean Median Mode Std. Dev. Skewness Kurtosis Min. Max.
Shocks 10.65 11.5 12.0a 4.28 -0.39 -0.28 2 18

Repairable 1.54 1.24 1.23 1.13 1.37 1.80 0.11 4.73
Stress 10.45 9.51 0.13a 6.99 0.23 -1.19 0.13 23.87

aThere are various modes.

In order to estimate the model parameters, we consider the maximum likelihood estimation
method discussed in Section 3.9. We take the estimates of α and β from the fitted BS distribution
as starting values for the numerical iterative procedure.
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Recently, Cordeiro and Lemonte (2011) proposed the β-BS distribution with four posi-

tive parameters a, b, α and β by extending the BS distribution which provides more flexibility
to fit various types of lifetime data. Its cdf is given by F(x) = IΦ(v)(a, b), where B(a, b) =

Γ(a)Γ(b)/Γ(a + b) is the beta function, Γ(·) is the gamma function, Iy(a, b) = By(a, b)/B(a, b)
is the incomplete beta function ratio and By(a, b) =

∫ y
0 ωa−1 (1− ω)b−1dω is the incomplete

beta function. The corresponding pdf (for x > 0) is

f (x) =
κ(α, β)

B(a, b)
x−3/2 (x + β) exp

{
−τ(x/β)/(2α2)

}
Φ(v)a−1 {1−Φ(v)}b−1,

where κ(α, β) = exp(α−2)/(2α
√

2πβ) and τ(z) = z + z−1, v = α−1ρ(t/β) and ρ(z) = z1/2 −
z−1/2. For more details, see Cordeiro and Lemonte (2011).

Table 3.2 lists the MLEs of the parameters (with standard errors in parentheses) and the va-
lues of the following statistics for some models: Akaike Information Criterion (AIC), Consis-
tent Akaike Information Criterion (CAIC) and Bayesian Information Criterion (BIC). The fig-
ures in this table indicate that the GBS model has the smallest values of these statistics among
all fitted models. So, it could be chosen as the more suitable model.

A formal test for the third skewness parameter in the GBS distribution is based on LR statis-
tics described in Section 3.9. Applying these tests to the three data sets, we obtain the results
listed in Table 3.3. For the repairable data, the additional parameter of the GBS distribution
may not, in fact, be necessary because the LR test provides no indications against the BS model
when compared with the GBS model. However, for the shocks and stress data, we reject the
null hypotheses of the two LR tests in favor of the GBS distribution. The rejection is extremely
highly significant for the stress data, and highly or very highly significant for the shocks data.
This gives clear evidence of the potential need for three skewness parameter when modeling
real data.
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Table 3.2: MLEs of the model parameters for the three data sets and the AIC, CAIC and BIC
statistics.

Shocks a b α β AIC CAIC BIC
GBS 7.9526 - 21.8829 0.00193 123.1 124.6 126.1

(1.7316) - (49.6893) (0.0088)
BS 1 - 0.5752 9.1023 127.2 127.9 129.2

- - (0.0909) (1.1225)

β-BS 188.72 112.52 85.5110 0.01318 124.5 127.1 128.5
(0.1596) (0.4004) (76.4559) (0.0235)

Repairable a b α β AIC CAIC BIC
GBS 3.4530 - 1.5556 0.1448 85.3 86.2 89.5

(1.3948) - (0.8757) (0.2043)
BS 1 - 0.8885 1.0938 87.1 87.6 89.9

- - (0.1147) (0.1606)

β-BS 8.4879 1.0608 2.9364 0.0698 87.2 88.8 92.8
(2.0876) (0.3031) (1.8261) (0.0915)

Stress a b α β AIC CAIC BIC
GBS 3.6998 - 3.7682 0.1764 268.3 268.9 273.3

(0.6388) - (2.5877) (0.2627)
BS 1 - 1.4908 4.4303 291.8 292.1 295.1

- - () ()

β-BS 450.32 384.67 69.2962 0.1805 269.6 270.7 276.3
(0.6437) (0.0397) (39.1129) (0.1999)

Table 3.3: LR tests.

Shocks Hypotheses Statistic w p-value
GBS vs BS H0 : a = 1 vs H1 : H0 is false 6.1 0.0135
Repairable Hypotheses Statistic w p-value
GBS vs BS H0 : a = 1 vs H1 : H0 is false 3.8 0.0512

Stress Hypotheses Statistic w p-value
GBS vs BS H0 : a = 1 vs H1 : H0 is false 25.5 <0.00001

3.11 Concluding remarks

The Birnbaum-Saunders (BS) distribution is widely used to model times to failure for ma-
terials subject to fatigue. We propose the gamma Birnbaum-Saunders (GBS) distribution to
extend the BS distribution pioneered by Birnbaum and Saunders (1969a). We provide a mathe-
matical treatment of the new distribution including expansions for the cumulative and density
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functions. We derive explicit expressions for the ordinary and incomplete moments, gener-
ating and quantile functions, mean deviations and moments of the order statistics. The es-
timation of the model parameters is approached by the method of maximum likelihood and
the observed information matrix is derived. We consider the likelihood ratio (LR) statistic and
other criteria to compare the GBS model with its baseline model and other non-nested model.
Applications of the GBS distribution to three real data sets show that the new distribution pro-
vides consistently better fits than the BS distribution. We hope that this generalization may
attract wider applications in the literature of the fatigue life distributions.

3.12 Appendix

Appendix A: Quantile function

We derive a power series for the QGBS(u) in the following way. First, we use a known
power series for Q−1(a, 1−u). Second, we obtain a power series for the argument 1− exp[−Q−1(a, 1−
u)]. Third, we use the power series for the BS qf (Cordeiro and Lemonte, 2011) to obtain a
power series for QGBS(u). We introduce the following quantities defined by Cordeiro and
Lemonte (2011). Let Q−1(a, z) be the inverse function of Q(a, z) = 1−γ(a, z)/Γ(a) = Γ(a, z)/Γ(a) =
u. The inverse incomplete gamma function in the Wolfram website1 is given by

Q−1(a, 1− u) = w +
w2

a + 1
+

(3a + 5)w3

2(a + 1)2(a + 2)
+

[a(8a + 33) + 31]w4

3(a + 1)3(a + 2)(a + 3)
+ O(w5),

where w = [u Γ(a + 1)]1/a. Thus, we can write the last equation as

z = Q−1(a, 1− u) =
∞

∑
r=0

ar ur/a, (3.20)

where the ai
′s are given in Section 3.5. They can be expressed as ai = biΓ(a + 1)i/a, where

b0 = 0, b1 = 1 and any coefficient bi+1 for i ≥ 1 is determined by the cubic recurrence equation

bi+1 =
1

i(a + i)

{ i

∑
r=1

i−s+1

∑
s=1

br bs bi−r−s+2 s (i− r− s + 2)×

×
i

∑
r=2

br bi−r+2 r [r− a− (1− a)(i + 2− r)]
}

.

The first coefficients are b2 = 1/(a + 1), b3 = (3a + 5)/[2(a + 1)2(a + 2)], . . . Here, we present
the algebraic details of the calculation of the GBS qf. The cdf of X is given by (3.5) and inverting
u = F(x), we obtain (3.10). The BS qf can be expressed as (Cordeiro and Lemonte, 2011)

QBS(u) =
∞

∑
i,j=0

∞

∑
k=j

mk

(
−1
2

)k−j (k
j

)
hj,i u(i+j)/a =

∞

∑
i,j=0

pj hj,i u(i+j)/a, (3.21)

1http://functions.wolfram.com/GammaBetaErf/InverseGammaRegularized/06/01/03/
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where pj = ∑∞

k=j(−1)k−j 2j−k mk (
k
j) and mk = (2π)k/2 ∑∞

s=0 ps es,k. Here, p0 = β, p2 = βα2/2,

p2j+1 = β α2j+1 2−2j (1/2
j ) for j ≥ 0 and p2j = 0 for j ≥ 2. The quantities es,k come from the

constants dk
′s in (2.8) by es,0 = ds

0 and (for k ≥ 1) es,k = (kd0)−1 ∑k
m=1 [m(j + 1)− k] dm ej,k−m,

where dk = 0 (for k = 0, 2, 4, . . .), dk = c(k−1)/2 (for k = 1, 3, 5, . . .) and the ck
′s are calculated

recursively from ck+1 = 1
2(2k+3) ∑k

r=0
(2r+1) (2k−2r+1) cr ck−r

(r+1)(2r+1) .
Further, the basic quantities (Cordeiro and Lemonte, 2011) hj,i

′s come from (2.8) as

hj,i = (iv0)
−1

i

∑
m=0

[m(j + 1)− i] vm hj,i−m,

where vi = qi+1, q0 = 0, q1 = 1, q2 = (β− 1)/(α+ 1), . . ., and the qi
′s (for i ≥ 2) can be derived

from the cubic recursive formula

qi = 1
[i2+(a−2)i+(1−a)]

{
(1− δi,2)∑i−1

r=2 qr qi+1−r[r(1− α)(i− r)− r(r− 1)]

+∑i−1
r=1 ∑i−r

s=1 qr qs qi+1−r−s[r(r− α) + s(α + β− 2)(i + 1− r− s)]
}

,

where δi,2 = 1 if i = 2 and δi,2 = 0 if i 6= 2.
The BS qf (3.21) holds for −2 < (t/β)1/2 − (β/t)1/2 < 2. Thus, replacing (3.20) in (3.10),

we obtain

QGBS(u) = QBS

[
1− exp

(
−

∞

∑
r=0

ar ur/a

)]
.

By expanding the exponential function and using (2.7), we have

1− exp

(
−

∞

∑
r=0

ar ur/a

)
= 1−

∞

∑
l=0

(−1)l (∑∞
r=0 ar ur/a)l

l!

= 1−
∞

∑
l=0

(−1)l ∑∞
r=0 fl,r ur/a

l!
= 1−

∞

∑
r=0

prur/a, (3.22)

where pr = ∑∞
l=0

(−1)l fl,r
l! , fl,r = (ra0)−1 ∑r

q=1[q(l + 1)− r] am fl,r−q and fl,0 = al
0. The coefficient

fl,r can be obtained from fl,0, . . . , fl,r−1 and then from a0, . . . , ar. Substituting (3.21) in (3.22)
gives

QGBS(u) =
∞

∑
i,j=0

pj hj,i

(
1−

∞

∑
r=0

pr ur/a

)(i+j)/a

.

By expanding the binomial term for a non-integer power, we have

QGBS(u) =
∞

∑
i,j=0

pj hj,i

∞

∑
s=0

(−1)s
(
(i + j)/a

s

) ( ∞

∑
r=0

pr ur/a

)s

=
∞

∑
i,j=0

∞

∑
s,r=0

(−1)s
(
(i + j)/a

s

)
pj hj,i ds,r ur/a,
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where the coefficients ds,r can be determined from (2.8) as ds,r = (rp0)−1 ∑r

v=1[v(s + 1) −
r] pv ds,r−v. Finally, we can rewrite the last equation as

QGBS(u) =
∞

∑
r=0

cr ur/a,

where cr = ∑∞
i,j,s=0 (−1)s ((i+j)/a

s ) pj hj,i ds,r.

Appendix B: Incomplete moments

From Cordeiro and Lemonte (2011), we can write

Φ(ν)r =
1
2r

r

∑
j=0

(
r
j

) ∞

∑
k1,...,k j=0

β−(2sj+j)/2 A(k1, . . . , k j)
2sj+j

∑
m=0

(−β)m
(

2sj + j
m

)
x(2sj+j−2m)/2,

where sj and A(k1, . . . , k j) are defined in equation (3.14). Thus,

Tn(y) = k(α, β)
∞

∑
r=0

dr

2r

r

∑
j=0

(
r
j

) ∞

∑
k1,...,k j=0

β−(2sj+j)/2 A(k1, . . . , k j)
2sj+j

∑
m=0

(−β)m
(

2sj + j
m

)

×
∫ y

0
xn+(2sj+j−2m−3)/2 (x + β) exp

[
−τ(x/β)

2α2

]
dx. (3.23)

Let

D(p, q) =
∫ q

0
xq exp

[
− (x/β + β/x)

2α2

]
dx = βp+1

∫ q/β

0
uq exp

[
− (u + u−1)

2α2

]
du.

From Terras (1981), we can write D(p, q) = βp+1 κp+1(α
−2) − qp+1κp+1

(
q

2α2β
, β

2α2q

)
, where

κν(x1, x2) denotes the incomplete Bessel function with arguments x1 and x2 and order ν. For
further details, see Jones (2007a, 2007b) and Harris (2008). By inserting the above quantities in
(3.23), we obtain

Tn(y) = k(α, β)
∞

∑
r=0

dr

2r

r

∑
j=0

(
r
j

) ∞

∑
k1,...,k j=0

β−(2sj+j)/2 A(k1, . . . , k j)
2sj+j

∑
m=0

(−β)m
(

2sj + j
m

)

×
[

D
(

n +
2sj + j− 2m− 1

2
, y
)
+ β D

(
n +

2sj + j− 2m− 3
2

, y
)]

.

Appendix C: Generating function

Here, we prove the first result in Section 3.6. Using the expansion of the qf, we obtain

M(s) =
∞

∑
k=0

∫ ∞

0
est bk(a + k) G(t)a+k−1 g(t)dt =

∞

∑
k=0

(a + k) bk

∫ 1

0
es QBS(u) ua+k−1du.

Let Js = {(i, j) ∈ N×N; i + j = s} and qs = ∑(i,j)∈Js
pj hj,i. We can rewrite (3.21) based on the

set Js as

QBS(u) =
∞

∑
i,j=0

pj hj,i u(i+j)/a =
∞

∑
s=0

qs us/a,
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By expanding the exponential function and using (2.7) in the last integral, we have

∫ 1

0
es QBS(u) ua+k−1du =

∞

∑
n=0

sn

n!

∫ 1

0

(
∞

∑
s=0

qs us/a

)n

ua+k−1du =
∞

∑
n=0

sn

n!

∫ 1

0

∞

∑
s=0

vs,n us/a+a+k−1du,

where vs,n = (nq0)
−1 ∑s

m=0[m(s + 1) − j] qm vs,n−m follows from (2.7), (2.8) and vs,0 = qs
0. Fi-

nally, the mgf of X reduces to

M(s) =
∞

∑
n,s,k=0

(a + k) bk vs,n

(s/a + a + k)
sn

n!
.

Appendix D: Elements of the observed information matrix

The elements of the observed information matrix J(θ) for the parameters α, β and a are
given by

jα,α =
n
α2 +

3n
α4 −

3
α4

n

∑
i=1

(
xi

β
+

β

xi

)
+

(a− 1)
α2

n

∑
i=1

{
ν3

i φ(νi) [1−Φ(νi)]
−1

{log[1−Φ(νi)]}

+ 2
νi φ(νi) [1−Φ(νi)]

−1

{log[1−Φ(νi)]}
+

ν2
i φ(νi)

2 [1−Φ(νi)]
−2

{log[1−Φ(νi)]}2 −
ν2

i φ(νi) [1−Φ(νi)]
−2

{log[1−Φ(νi)]}

}
,

jα,β = − 1
α3β

n

∑
i=1

(
xi

β
− β

xi

)
− (a− 1)

2α2β

n

∑
i=1

{
ν2

i φ(νi) τ(
√

xi/β)

{log[1−Φ(νi)]} [1−Φ(νi)]
−

φ(νi) τ(
√

xi/β)

{log[1−Φ(νi)]} [1−Φ(νi)]

−
νi φ(νi)

2 τ(
√

xi/β)

{log[1−Φ(νi)]}2 [1−Φ(νi)]2
−

νi φ(νi)
2 τ(

√
xi/β)

{log[1−Φ(νi)]} [1−Φ(νi)]2

}
,

jβ,β =
n

2β2 −
n

∑
i=1

1
(xi + β)2 −

1
α2β3

n

∑
i=1

xi −
(a− 1)
4αβ2

n

∑
i=1

{
α νi φ(νi) [1−Φ(νi)]

−1

{log[1−Φ(νi)]}
+

α−1 νi φ(νi) τ(
√

xi/β)2

{log[1−Φ(νi)]} [1−Φ(νi)]

+
α−1 φ(νi)

2 τ(
√

xi/β)2

{log[1−Φ(νi)]} [1−Φ(νi)]2
+

α−1 φ(νi)
2 τ(

√
xi/β)2

{log[1−Φ(νi)]}2 [1−Φ(νi)]2

}
,

ja,a = −n ψ
′
(a), ja,α = −1

α

n

∑
i=1

νi φ(νi) [1−Φ(νi)]
−1

{log[1−Φ(νi)]}
,

ja,β = −
n

∑
i=1

(2αβ)−1 τ(
√

xi/β) φ(νi)

{log[1−Φ(νi)]} [1−Φ(νi)]
,

where ψ
′
(.) is the trigamma function.



47

References

BARAKAT, H. M.; ABDELKADER, Y. H. Computing the moments of order statistics from non-
identical random variables. Statistical Methods and Applications, v. 13, p. 13–24, 2004.

BIRNBAUM, Z. W.; SAUNDERS, S. C. A new family of life distributions. Journal of Applied
Probability, v. 6, p. 319–327, 1969a.

BIRNBAUM, Z. W.; SAUNDERS, S. C. Estimation for a family of life distributions with ap-
plications to fatigue. Journal of Applied Probability, v. 6, p. 328–377, 1969b.

CORDEIRO, G. M.; ORTEGA, E. M. M.; SILVA, G. O. (2011a). The exponentiated general-
ized gamma distribution with application to lifetime data. Journal of Statistical Computation and
Simulation, v. 81, p. 827–842, 2011a.

CORDEIRO, G. M.; LEMONTE, A. J. The beta Birnbaum-Saunders distribution: An improved
distribution for fatigue life modeling. Computational Statistics and Data Analysis, v. 55, p. 1445–
1461, 2011b.

CORDEIRO, G. M.; LEMONTE, A. J.; ORTEGA, E. M. M. An extended fatigue life distribu-
tion. Statistics, 2011, doi:10.1080/02331888.2011.617447.

COWLES, M. K.; CARLIN, B. P. Markov chain Monte Carlo convergence diagnostics: a com-
parative review. Journal of the American Statistical Association, v. 91, p. 133–169, 1996.

DÍAZ-GARCÍA, J. A.; LEIVA, V. (2005). A new family of life distributions based on ellipti-
cally contoured distributions. Journal of Statistical Planning and Inference, v. 137, p. 1512–1513,
2005.

FLEMING, T. R.; O’FALLON, J. R.; O’BRIEN, P. C.; HARRINGTON, D. P. Modified Kolmogorov-



48
Smirnov test procedures with application to arbitrarily right censored data. Biometrics, v. 36,
p. 607–626, 1980.

GELMAN, A.; RUBIN, D. B. Inference from iterative simulation using multiple sequences
(with discussion), Statistical Science, v. 7, 457–472, 1992.

GRADSHTEYN, I. S.; RYZHIK, I. M. Table of integrals, series, and products. New York: Aca-
demic Press, 2007.

GREENWOOD, J. A.; LANDWEHR, J. M.; MATALAS, N. C.; WALLIS, J. R. Probability weighted
moments: Definition and relation to parameters of several distributions expressible in inverse
form. Water Resources Research, v. 15, p. 1049–1054, 1979.

GUIRAUD, P.; LEIVA, V.; FIERRO, R. (2009). A non-central version of the Birnbaum-Saunders
distribution for reliability analysis. IEEE Transactions on Reliability, v. 58, p. 152–160, 2009.

GUPTA, R. D.; KUNDU, D. Exponentiated Exponential Family: An Alternative to Gamma
and Weibull Distributions. Biometrical Journal, v. 43, p. 117–130, 2001.

GUPTA, R. C.; GUPTA, P. L.; GUPTA, R. D. Modeling failure time data by Lehman alterna-
tives. Communications Statistics - Theory and Methods, v. 27, p. 887–904, 1998.

HARRIS, F. E. Incomplete Bessel, generalized incomplete gamma, or leaky aquifer functions.
Journal of Computational and Applied Mathematics, v. 215, p. 260–269, 2008.

JONES, D. S. Incomplete Bessel functions. Proceedings of the Edinburgh Mathematical Society,
v. 50, p. 173–183, 2007a.

JONES, D. S. Incomplete Bessel functions. Asymptotic expansions for large argument. Pro-
ceedings of the Edinburgh Mathematical Society, v. 50, p. 711–723, 2007b.

KUNDU, D.; KANNAN, N.; BALAKRISHNAN, N. On the function of Birnbaum-Saunders
distribution and associated inference. Computational Statistics and Data Analysis, v. 52, p. 2692–
2702, 2008.

LEMONTE, A. J.; CRIBARI-NETO, F.; VASCONCELLOS, K. L. P. Improved statistical infer-
ence for the two-parameter Birnbaum-Saunders distribution, Computational Statistical and Data
Analysis, v. 51, p. 4656–4681, 2007.

LEMONTE, A. J.; SIMAS, A. B.; CRIBARI-NETO, F. Bootstrap-based improved estimators for
the two-parameter Birnbaum-Saunders distribution, Journal Statistical Computation Simulation,



49
v. 78, p. 37–49, 2008.

MUDHOLKAR, G. S.; SRIVASTAVA, D. K. Exponentiated Weibull family for analyzing bath-
tub failure-real data. IEEE Transaction on Reliability, v. 42, p. 299–302, 1993.

MUDHOLKAR, G. S.; SRIVASTAVA, D. K.; FRIEMER, M. The exponential Weibull family:
A reanalysis of the bus-motor failure data. Technometrics, v. 37, p. 436–445, 1995.

MURTHY, D. N. P.; XIE, M.; JIANG, R. Weibull models. New Jersey: John Wiley, 2004.

NADARAJAH, S.; CORDEIRO, G. M.; ORTEGA, E. M. M. The Zografos-Balakrishnan-G fam-
ily of distributions: Mathematical properties and applications. Communication in Statistics -
Theory and Methods, to appear, 2013.

NADARAJAH, S.; GUPTA, A. K. A generalized gamma distribution with application to drought
data. Mathematics and Computer in Simulation, v. 74, p. 1–7, 2007.

RIECK, J. R. A moment-generating function with application to the Birnbaum-Saunders distri-
bution, Communications in Statistics-Theory and Methods, v. 28, p. 2213–2222, 1999.
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CHAPTER 4

A new extension of the normal distribution

Resumo

Fornecer uma nova distribuição é sempre algo precioso para os estatísticos. Uma nova dis-
tribuição de três parâmetros chamada distribuição gama normal é definida e estudada. Várias
propriedades estruturais da nova distribuição são derivadas, incluindo algumas expressões
explícitas para o momentos, funções quantílica e geradora, desvios médios, probabilidade
ponderada de momentos e dois tipos de entropia. Investigamos também as estatísticas de
ordem e seus momentos. Técnicas de máxima verossimilhança são usadas para ajustar o novo
modelo e para mostrar sua potencialidade através de dois exemplos de dados reais. Com base
em três critérios, a proposta de distribuição fornece um melhor ajuste quando comparada com
a distribuição skew-normal.

Palavras-chave: Distribuição gama. Distribuição normal. Estimação de máxima verossimil-
hança. Média desvio padrão. Quantil.

Abstract

Providing a new distribution is always precious for statisticians. A new three-parameter dis-
tribution called the gamma normal distribution is defined and studied. Various structural
properties of the new distribution are derived, including some explicit expressions for the mo-
ments, quantile and generating functions, mean deviations, probability weighted moments
and two types of entropy. We also investigate the order statistics and their moments. Maxi-
mum likelihood techniques are used to fit the new model and to show its potentiality by means
of two examples of real data. Based on three criteria, the proposed distribution provides a bet-
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ter fit then the skew-normal distribution.

Keywords: Gamma distribution; Maximum likelihood estimation; Mean deviation; Normal dis-
tribution; Quantile.

4.1 Introduction

In statistics, the normal distribution is the most popular model in applications to real data.
When the number of observations is large, it can serve as an approximate distribution for other
models. The pdf (for x ∈ R) of the normal N(µ, σ) distribution becomes

g(x; µ, σ) =
1√

2 πσ
exp

{
− (x− µ)2

2σ2

}
=

1
σ

φ

(
x− µ

σ

)
, (4.1)

where −∞ < µ < ∞ is a location parameter and σ > 0 is a scale parameter. Its cdf is given by

G(x; µ, σ) = Φ
(

x− µ

σ

)
. (4.2)

Here, we study some structural properties of the gamma normal (GN) distribution, which
generalizes the normal distribution. We introduce the GN distribution and provide plots of
its pdf. We derive expansions for the pdf and cdf (Section 4.3) and explicit expressions for the
qf (Section 4.4), ordinary and incomplete moments and Bonferroni and Lorenz curves (Section
4.5), generating function (Section 4.6) and entropies (Section 4.7). In Section 4.8, we investigate
the order statistics and their moments. The estimation of the model parameters is performed
by maximum likelihood in Section 4.9 and two applications are provided in Section 4.10. Con-
cluding remarks are addressed in Section 4.11.

4.2 The GN distribution

By taking the pdf (4.1) and cdf (4.2) of the normal distribution with location parameter
µ ∈ R and dispersion parameter σ > 0, the pdf and cdf of the GN distribution are obtained
from equations (2.1) and (2.2) (for x ∈ R) as

f (x) =
1

σΓ(a)
φ

(
x− µ

σ

){
− log

[
1−Φ

(
x− µ

σ

)]}a−1

(4.3)

and

F(x) =
1

Γ(a)

∫ − log[1−Φ( x−µ
σ )]

0
ta−1 e−t dt. (4.4)

Evidently, the GN distribution is defined by a simple transformation: if Z ∼ G(a, 1), then the
random variable X = Φ−1(1 − e−Z) has the density function (4.3), with µ = 0 and σ = 1.
Hereafter, a random variable X following (4.3) is denoted by X ∼GN(a, µ, σ). The density
function (4.3) does not involve any complicated function and the normal distribution arises as
the basic exemplar for a = 1. It is a positive point of the current generalization. We motivate
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the paper by comparing the performances of the GN, normal and skew-normal models applied
to two real data sets.

In Figure 4.1, we display some possible shapes of the density function (4.3) for some pa-
rameter values. It is evident that the GN distribution is much more flexible than the normal
distribution.

The new distribution is easily simulated as follows: if V is a gamma random variable with
parameter a, then

X = σ Φ−1[1− exp(−V)] + µ

has the GN(a, µ, σ) distribution. This scheme is useful because of the existence of fast genera-
tors for gamma random variables and for the standard normal quantile function in most sta-
tistical packages.

4.3 Useful expansions

Expansions for equations (4.3) and (4.4) can be derived using the concept of exponentiated
distributions. Consider the exponentiated normal (exp-N) distribution with power parameter

a > 0 defined by Y ∼ exp-N(a, µ, σ), with cdf and pdf given by Ha(y) = Φ
(

y−µ
σ

)a
and

ha(y) = a
σ φ
(

y−µ
σ

)
Φ( y−µ

σ )a−1, respectively. Following Nadarajah et al. (2013), equation (4.3)
can be expressed as

f (x) =
∞

∑
k=0

bk ha+k(x), (4.5)

where

bk =
(k+1−a

k )

(a + k)Γ(a− 1)

k

∑
j=0

(−1)j+k(k
j) pj,k

(a− 1− j)

and ha+k(x) =
(

a+k
σ

)
φ
(

x−µ
σ

)
Φ
(

x−µ
σ

)a+k−1
denotes the exp-N(a + k, µ, σ) density function.

The cdf corresponding to (4.5) becomes

F(x) =
∞

∑
k=0

bk Ha+k(x) =
∞

∑
k=0

bk Φ
(

x− µ

σ

)a+k

, (4.6)

where Ha+k(x) = Φ
(

x−µ
σ

)a+k
denotes the exp-N cdf with parameters a + k, µ and σ.

If a > 0 is a real number, we can expand Φ
(

x−µ
σ

)a+k
as

Φ
(

x− µ

σ

)a+k

=
∞

∑
r=0

sr(a + k)Φ
(

x− µ

σ

)r

, (4.7)

where

sr(a) =
∞

∑
l=r

(−1)r+l
(

a
l

)(
l
r

)
. (4.8)
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Figure 4.1: Plots of the new density function for some parameter values. 3(a) For different
values of a with µ = 0 and σ = 1. (b) For different values of a and σ with µ = 0. (c) For
different values of a, µ and σ.
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Combining equations (4.6) and (4.7), we obtain

F(x) =
∞

∑
k=0

∞

∑
r=0

bk sr(a + k)Φ
(

x− µ

σ

)r

.

By differentiating the previous equation and changing indices, we can write

f (x) =
∞

∑
r=0

dr hr+1(x), (4.9)

where dr = ∑∞
k=0 bk sr+1(a + k). Clearly, by integrating both sides of the previous equation,

∑∞
r=0 dr = 1. Equation (4.9) is the main result of this section. It reveals that the GN density

function is a linear combination of exp-N densities. So, several properties of the GN distribu-
tion can be obtained by knowing those properties of the exp-N distribution.

4.4 Quantile Function

The GN qf, say Q(u) = F−1(u), can be expressed in terms of the normal qf (QN(·)). The
normal qf is given by x = QN(u) = σΦ−1(u) + µ. Inverting equation (4.4), we obtain the qf of
X as

F−1(u) = QGN(u) = µ + σ QN

{
1− exp[−Q−1(a, 1− u)]

}
, (4.10)

for 0 < u < 1, where Q−1(a, u) is the inverse function of Q(a, z) = 1− γ(a, z)/Γ(a). Quantities
of interest can be obtained from (4.10) by substituting appropriate values for u. Further, the
normal qf can be expressed as (Steinbrecher, 2002) in equation (7.27), see Appendix A. Further,
after some algebra (see Appendix A), we obtain

QN(u) =
∞

∑
s=0

ws us, (4.11)

where ws = ∑∞
k=s(−2)s−k (

√
2π)k(k

s) dk and the quantity dk was defined in Section 4.3.
We can obtain the inverse function Q−1(a, u) in the Wolfram website as

z = Q−1(a, 1− u) =
∞

∑
i=0

ai ui/a,

where a0 = 0, a1 = Γ(a + 1)1/a, a2 = Γ(a + 1)2/a/(a + 1), a3 = (3a + 5)Γ(a + 1)3/a/[2(a +
1)2(a + 2)], etc.

By expanding the exponential function and using (2.7), we have (see Appendix A)

1− exp

(
−

∞

∑
r=0

arur/a

)
= 1−

∞

∑
r=0

pr ur/a,

where the p′rs are defined there. We can write

QGN(u) = µ + σ QN

(
1−

∞

∑
r=0

prur/a

)
.
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By using equations (4.11) and (2.7), we can obtain from (4.10)

QGN(u) = µ + σ
∞

∑
r=0

τr ur/a, (4.12)

where τr = hj,r pj, pj = ∑∞
s=0 ∑s

j=0(−1)j ws (
s
j) and hj,i = (i p0)−1 ∑i

m=0[m(j + 1)− i] pm hj,i−m.
Some algebraic details about (4.12) and others quantities of interest are given in Appendix A.
Equations (4.11) and (4.12) are the main results of this section.

4.5 Moments

Here, we obtain the ordinary and incomplete moments of X. They can be immediately
derived from the moments of Y following the exp-N(a, µ, σ) distribution. Hereafter, let Z be
the standard GN(a, 0, 1) random variable. First, we obtain the moments of Z. Thus, we can
write from (4.5)

µ′n = E(Zn) =
∞

∑
k=0

bk

∫ ∞

−∞
xn Φ(x)a+k−1φ(x) dx.

Further, we can express µ′n in terms of QN(u) as

µ′n =
∞

∑
k=0

bk

∫ 1

0
QN(u)n ua+k−1du.

Using (2.7) and (4.11), we can rewrite µ′n as

µ′n =
∞

∑
k,s=0

bk en,s

(a + k + s)
, (4.13)

where the quantities en,s are determined from (2.8) and (4.11) as en,s = (i w0)−1 ∑s
m=1[m(n +

1)− s]wm en,s−m for s ≥ 1, en,0 = wn
0 , wm = ∑∞

k=m (−2)m−k (
√

2π)k ( k
m)dk and the quantity dk

was defined in Section 4.3. The moments of X immediately follow from the moments of Z as
E(Xn) = ∑n

k=0 (
n
k) µn−k σk µ′k.

The second representation for µ′n is based on (n, r)th PWM (for n and r positive integers)
of the standard normal distribution given by

µ′n =
∞

∑
k,r=0

bk sr+1(a + k) τn,r, (4.14)

where bk was defined previously and sr(a) is given by (4.8) and τn,r can be expressed as
(Nadarajah, 2008)

τn,r = 2n/2π−(r+1/2)
r

∑
p=0

(n+r−p) even

(π

2

)p
(

r
p

)
Γ
(

n + r− p + 1
2

)
×

F(r−p)
A

(
n + r− p + 1

2
;

1
2

, . . . ,
1
2

;
3
2

, . . . ,
3
2

;−1, . . . ,−1
)

, (4.15)
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where

F(n)
A (a, b1, . . . , bn; c1, . . . , cn; x1, . . . , cn) =

∞

∑
m1=0
· · ·

∞

∑
mn=0

am1+···+mn(b1)m1 · · · (bn)mn

(c1)m1 · · · (cn)mn

xm1
1 · · · x

mn
n

m1! · · ·mn!

is the Lauricella function of type A (Exton, 1978) and the Pochhammer symbol (a)k = a(a +
1) . . . (a + k− 1) indicates the kth rising factorial power of a with the convention (a)0 = 1.

We derive three formulae for the nth incomplete moment of Z given by Tn(y) = P(Z <

y) =
∫ y

0 xn f (x)dx. First, based on equation (4.5), with µ = 0 and σ = 1, Tn(y) reduces to

Tn(y) =
∞

∑
r=0

dr

∫ y

−∞
xn φ(x)Φ(x)rdx. (4.16)

We can write Φ(x) as a power series Φ(x) = ∑∞
j=0 aj xj, where a0 = (1 +

√
2/π)−1/2,

a2j+1 = (−1)j/[
√

2π 2j(2j + 1)j!] for j = 0, 1, 2 . . . and a2j = 0 for j = 1, 2, . . . Further, using
(2.7), we have

Φ(x)r =
∞

∑
j=0

cr,j xj, (4.17)

where the coefficients cr,j can be determined from the recurrence equation (2.8) with these a′is.
Thus, using (4.17) and changing variable in the last integral, it follows from (4.16)

Tn(y) =
1√
2 π

∞

∑
j,r=0

2n+j−1 dr cr,j γ

(
n + j + 1

2
,

y2

2

)
. (4.18)

Next, we derive a second representation for the moments. The integral A(j, q) =∫ q
−∞ xj e−x2/2 dx can be determined for q > 0 and q < 0. We define

G(j) =
∫ ∞

0
xj e−

x2
2 dx = 2(j−1)/2 Γ

(
j + 1

2

)
.

For q < 0 and q > 0, we have

A(j, q) = (−1)j G(j) + (−1)j+1H(j, q)

and
A(j, q) = (−1)jG(j) + H(j, q),

respectively, where the integral H(j, q) =
∫ q

0 xj e−x2/2 dx can be easily computed (Whittaker
and Watson, 1990). The details are given in Appendix B. After some algebra, we can write
Tn(y) as

Tn(y) =
1√
2π

∞

∑
k,r,j=0

bk cr,j sr+1(a + k)A(j + n, y), (4.19)

where cr,j = (j a0)−1 ∑
j
m=1[m(r + 1)− j] am cr,j−m, for j ≥ 1, cr,0 = ar

0, c0,0 = 1, sr(a) is given
by (4.8) and the quantities a′is are defined in Section 4.4. Some details about (4.19) are given in
Appendix B.



57
A third representation for Tn(y) is based on the normal qf. Thus, equation (4.17) becomes

Tn(y) =
∞

∑
r=0

dr

∫ Φ(y)

0
QN(u)nurdu.

After some algebra, using (2.7) and (4.11), we have

Tn(y) =
∞

∑
r,s=0

dr en,s
Φ(y)s+r+1

(s + r + 1)
, (4.20)

where en,s is given before. More details about (4.20) are addressed in Appendix B.
The nth incomplete moment of X follows after a binomial expansion

E(Xn|X < y) =
n

∑
k=0

µ′n−k σk
(

n
k

)
Tk

(
y− µ

σ

)
.

We can derive the mean deviations of Z about the mean µ′1 and about the median M in
terms of its first incomplete moment. They can be expressed as

δ1 = 2
[
µ′1 F(µ′1)− T1(µ

′
1)
]

and δ2 = µ′1 − 2T1(M), (4.21)

where µ′1 = E(Z) and T1(q) =
∫ q
−∞ x f (x) dx. The quantity T1(q) can be obtained from (4.18)

(or (4.19) or (4.20)) with n = 1 and the measures δ1 and δ2 in (4.21) are immediately determined
by setting q = µ′1 and q = M, respectively.

For a positive random variable X, the Bonferroni and Lorenz curves are defined by B(π) =

T1(q)/(πµ′1) and L(π) = T1(q)/µ′1, respectively, where q = F−1(π) = QGN(π) comes from
the qf (4.10) for a given probability π.

Next, we obtain the PWMs of Z. They cover the summarization and description of theoret-
ical probability distributions. The primary use of these moments is to estimate the parameters
of a distribution whose inverse cannot be expressed explicitly. The (s, p)th PWM of Z is for-
mally defined as

ξs, p = E[Zs F(Z)p] =
∫ ∞

0
zs F(z)p f (z)dz.

Using (4.6), (4.5) and (2.7), we obtain

ξs,p =
1√
π

∞

∑
j,n,r=0

2
(j+n+s)

2 −1 dr f p,j cr,n Γ
(

j + n + s + 1
2

)
, (4.22)

where dr is defined in Section 4.3, f p,j = (j e0)−1 ∑
j
v=1 [v(p+ 1)− j] ev f p,j−m for j ≥ 1, f p,0 = ep

0 ,
ej = ∑∞

t=0 qt ct,j and qt = ∑∞
t=0 bt st(a + k). The quantity ct,j was just defined after equation

(4.19).
Equations (4.13)-(4.15), (4.18)-(4.20) and (4.22) are the main results of this section. Some

algebraic details are given in Appendix B.
The skewness and kurtosis measures can be calculated from the ordinary moments using

well- known relationships. Plots of the skewness and kurtosis for selected parameters values
as function of a are displayed in Figure 4.2 and 4.3, respectively . In the plots of Figures 4.2(a)
and 4.3(c), σ = 10.50, whereas in those of Figures 4.2(b) and 4.3(d), µ = 2.50.



58
4.6 Generating function

The generating function M(−t) = E(e−tZ) of Z ∼GN(a, 0, 1) is given by

M(−t) =
1√
2π

∞

∑
k,r=0

bk sr+1(a + k)
∫ ∞

−∞
Φ(x)r exp

(
−tx− x2

2

)
dx.

Inserting equation (4.17), we obtain

M(−t) =
1√
2π

∞

∑
k,r,j=0

bk sr+1(a + k) cr,j

∫ ∞

−∞
xj exp

(
−tx− x2

2

)
dx.

Based on Prudnikov et al. (1986, Eq.2.3.15.8), the above integral can be rewritten as

J(s, j) =
∫ ∞

−∞
xj exp

(
−sx− x2

2

)
dx = (−1)j

√
2π

∂j

∂sj

(
es2/2

)
.

Thus, the mgf of Z becomes

M(−t) =
1√
2π

∞

∑
k,r,j=0

bk sr+1(a + k) cr,j J(s, j). (4.23)

A second representation for M(t) can be based on the qf. We have

M(t) =
∫ 1

0
exp [t QGN(u)] du.

Expanding the exponential function, using (4.12) and after some algebra, we obtain

M(t) =
∞

∑
k,r=0

dk,r( r
a + 1

) tk

k!
, (4.24)

where dk,r = (r g0)−1 ∑r
m=1[m(k + 1)− r] gm dk,r−m for r ≥ 1, dk,0 = gk

0, d0,r = 1, gj = pj hj,r and
the quantities pj and hj,r are given in Section 4.4.

Equations (4.23) and (4.24) are the main results of this section. The mgf of X is simply given
by MX(t) = eµ M(σt). The cf has many useful and important properties which gives it a central
role in statistical theory. Its approach is particularly useful in analysis of linear combination of
independent random variables. Clearly, a simple representation for the cf φX(t) = MX(it) of
X, where i =

√
−1, is given by

φX(t) =
∫ ∞

0
cos(tx) f (x)dx + i

∫ ∞

0
sin(tx) f (x)dx.

From the expansions cos(tx) = ∑∞
r=0

(−1)r

(2r)! (tx)
2r and sin(tx) = ∑∞

r=0
(−1)r

(2r+1)! (tx)
2r+1, we obtain

φx(t) =
∞

∑
r=0

(−1)r t2r

(2r)!
E(X2r) + i

∞

∑
r=0

(−1)r t2r+1

(2r + 1)!
E(X2r+1).



59
(a) (b)

0.0 0.5 1.0 1.5 2.0 2.5

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

a

S
ke

w
n

e
ss

µ=−0.5
µ=−1.0
µ=1.5
µ=2.0

0 1 2 3 4

0
5

1
0

1
5

2
0

a
S

ke
w

n
e

ss

σ=0.5
σ=1.5
σ=2.5
σ=3.5

Figure 4.2: (a) Skewness of X as function of a for some values of µ. (b) Skewness of X as
function of a for some values of σ.
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Figure 4.3: (a) Kurtosis of X as function of a for some values of µ. (b) Kurtosis of X as function
of a for some values of σ.
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4.7 Entropies

Here, we consider the random variable Z ∼GN(a,0,1). Thus, the Rényi entropy is defined
as

IR(γ) =
1

1− γ
log

∫ +∞

−∞
f γ(x)dx

for γ > 0 and γ 6= 1.
First, we consider γ = n = 2, 3, . . ., µ = 0, σ = 1 and the rth moment of the standard

normal distribution given by

m′r =
1√
2π

∫ +∞

−∞
xre−x2/2. (4.25)

We have two cases: m′r = 0, if r is odd, and m′r = 1× 3 . . .× (r− 1), if r is even.
Using (4.17), we can write from (4.5) and (4.17)

IR(n) =
1

1− n
log

{(
1√
2π

)n n

∑
j=0

℘n,j

∫ +∞

−∞
xj e−

n x2
2 dx

}

=
1

1− n

{
− (n− 1)

2
log(2π)− (j + 1)

2
log(n) + log

[
n

∑
j=0

℘n,jmj ′
]}

, (4.26)

where ℘n,j = (j e0)−1 ∑
j
m=1[m(n + 1)− j] em ℘n,j−m, ej = ∑∞

j=0 dr cr,j, ℘n,0 = en
0 and the mj

′s are
given by (4.25). The quantities dr

′s are defined in Section 4.3, whereas the cr,j
′s and the av

′s
are given in Section 4.5.

We can write IR(γ) = (1− γ)−1 E{ f (Z)γ−1}. Let δ = E(Z). For γ real positive, we have

E{ f (Z)γ−1} = δγ−1 E{1 + θ [ f (Z)− δ]}γ−1,

where θ = δ−1. From the generalized binomial expansion, we obtain

{1 + θ [ f (Z)− δ]}γ−1 = 1 +
∞

∑
n=1

θn =n

n!
[ f (Z)− δ]n,

where =n = ∏n−1
j=0 (γ− 1− j). Further,

E{ f (Z)γ−1} = δγ−1

(
1 +

∞

∑
n=2

θn =n

n!
E{[ f (Z)− δ]n}

)
. (4.27)

We now obtain E{[ f (Z)]n} for n ≥ 2. From equation (4.5) and using the binomial expan-
sion, we can write

ρn = E{[ f (Z)]n} =
∞

∑
j=0

℘n,j ψn,j,

where ψn,j = E{Zj φ(Z)n}. Thus,

ψn,j =
∫ ∞

−∞
xj φ(x)n+1 dx.
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Setting

√
(n + 1) x = y, we can easily determine the last integral and then rewrite ρn as

ρn =

(
1√
2π

)n ∞

∑
j=0

℘n,j

(
1√

n + 1

)j+1

mj
′. (4.28)

By expanding the binomial term in (4.27), we can obtain an explicit expression for IR(γ), which
holds for any γ real positive and γ 6= 1, given by

IR(γ) = (1− γ)−1 δγ−1

[
1 +

∞

∑
n=2

θn =n

n!

n

∑
k=0

(−δ)n−k
(

n
k

)
ρk

]
, (4.29)

where ρk is determined from (4.28). Algebraic details can be found in Appendix D.
Next, the Shannon entropy of a random variable Z is defined by E{− log[ f (Z)]}. It is a

special case of the Rényi entropy when γ ↑ 1. Equation (4.26) is very complicated for limiting,
and then we derive an explicit expression for the Shannon entropy from its definition. We can
write

log[ f (x)] = log
{

1
σΓ(a)

φ(x) {− log [1−Φ(x)]}a−1
}

= − log[σΓ(a)] + log[φ(x)] + (a− 1) log {− log[1−Φ(x)]} . (4.30)

So, we first calculate E {log[φ(X)]} and E [log {− log[1−Φ(X)]}]. Setting µ = 0 and σ = 1,
the first quantity is easily calculated as follows

E {log[φ(X)]} = −1
2

log(2π)− E
(

X2

2

)
= −1

2
[
log(2π) + µ2

′] , (4.31)

where µ2
′ comes from (4.13) or (4.14) with n = 2.

The second quantity E [log {− log[1−Φ(x)]}] is obtained from the expansion of
log {− log[1−Φ(x)]}. We can write (for 0 < u < 1) from MATHEMATICA

log {− log[1− u]} = log(u) +
u
2
+

5u2

24
+

u3

8
+

251u4

2880
+

19u5

288
+

19087u6

362880
+

751u7

17280
+

1070017u8

29030400

+
2857u9

89600
+

26842253u10

958003200
+ O(u11). (4.32)

From equations (4.30)-(4.32), we obtain the Shanon entropy E{− log[ f (Z)]} using the or-
dinary moments given by (4.13), (4.14) and (4.17). Equations (4.26), (4.29)-(4.32) are the main
results of this section.

4.8 Order statistics

Suppose Z1, . . . , Zn is a random sample from the standard GN distribution and let Z1:n <

· · · < Zi:n denote the corresponding order statistics. Using (4.5) and (4.6), the pdf of Zi:n can
be expressed as

fi:n(z) =
n!

(i− 1)!(n− i)!

n−i

∑
j=0

(−1)j
(

n− i
j

)[ ∞

∑
r=0

br (a + r)Φ(z)a+r−1 φ(z)

]
×

×
[

∞

∑
k=0

bk Φ(z)a+k

]i+j−1

.
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Based on equations (2.7) and (2.8), we obtain[

∞

∑
k=0

bk Φ(z)a+k

]i+j−1

=
∞

∑
k=0

ηi+j−1,k Φ(z)(i+j−1)a+k,

where ηi+j−1,0 = bi+j−1
0 and ηi+j−1,k = (kb0)−1 ∑k

m=1 [m(i + j) − k] bm ηi+j−1,k−m. Hence, the
pdf of Zi:n reduces to

fi:n(z) = φ(z)
n−i

∑
j=0

∞

∑
r,k=0

mj,k,r Φ(z)(i+j)a+k+r−1, (4.33)

where

mj,k,r =
(−1)j (a + r) n! br ηi+j−1,k

(i− 1)! (n− i− j)! j!
.

Equation (4.33) can be expressed as

fi:n(z) =
n−i

∑
j=0

∞

∑
r,k=0

f j,k,r h(i+j)a+k+r(z), (4.34)

where

f j,k,r =
mj,k,r

[(i + j)a + k + r]
.

Equation (4.34) is the main result of this section. It reveals that the pdf of the standard GN
order statistics is a triple linear combination of exp-N densities with parameters (i+ j)a+ k+ r,
µ = 0 and σ = 1. So, several mathematical quantities of the GN order statistics such as
ordinary and incomplete moments, mgf and mean deviations can be immediately obtained
from those quantities of the exp-N distribution. It gives the pdf of the GN order statistics as a
power series of the standard normal cdf multiplied by the standard normal density function.

As an application of (4.33), the s-th ordinary moment of Zi:n becomes

E(Zs
i:n) =

n−i

∑
j=0

∞

∑
r,k=0

mj,k,rτs,(i+j)a+k+r−1,

where τs,(i+j)a+k+r−1 can be obtained from (4.15).
Another closed-form expression for E(Zs

i:n) can be derived using a result due to Barakat
and Abdelkader (2004) applied to the independent and identically distributed case. Thus,

E(Zs
i:n) = s

n

∑
j=n−i+1

(−1)i+j−n−1
(

j− 1
n− i

)(
n
j

)
Jj(s),

where Jj(s) =
∫ ∞

0 zs−1 [1− F(z)]jdx. By expanding [1− F(z)]j and using (4.6) , we obtain Jj(s).
For any real a > 0, we can write from equations (4.6) and (2.8)

Jj(s) =
j

∑
m=0

(−1)m
(

j
m

) ∫ ∞

0
zs−1

(
∞

∑
k=0

bk Φ(z)a+k

)m

dx

=
j

∑
m=0

(−1)m
(

j
m

) ∞

∑
k=0

dm,k τs−1,ma+k =
∞

∑
k=0

j

∑
m=0

(−1)m
(

j
m

)
dm,k τs−1,ma+k,

where dm,k is defined in Section 4.5 and the quantities τn,r are given in equation (4.15).
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4.9 Estimation

Here, we consider estimation of the unknown parameters of the GL distribution by the
method of maximum likelihood. Let x1, . . . , xn be a random sample of size n from the GN(a, µ, σ)

distribution. The log-likelihood function for the vector of parameters θ = (a, µ, σ)T can be ex-
pressed as

l(θ) = −n log(σ)− n log[Γ(a)] +
n

∑
i=1

log
[

φ

(
xi − µ

σ

)]
+(a− 1)

n

∑
i=1

log
{
− log

[
1−Φ

(
xi − µ

σ

)]}
. (4.35)

The components of the score vector U(θ) are given by

Ua(θ) = −nψ(a) +
n

∑
i=1

log
{
− log

[
1−Φ

(
xi − µ

σ

)]}
,

Uµ(θ) =
1
σ
+

n

∑
i=1

(
xi − µ

σ

)
+

(a− 1)
σ

n

∑
i=1

φ
(

xi−µ
σ

)
[1−Φ

(
xi−µ

σ

)
] log[1−Φ

(
xi−µ

σ

)
]
,

Uσ(θ) = −n
σ
+

1
σ

n

∑
i=1

(
xi − µ

σ

)2 (a− 1)
σ

n

∑
i=1

(
xi−µ

σ

)
φ
(

xi−µ
σ

)
[1−Φ

(
xi−µ

σ

)
] log[1−Φ

(
xi−µ

σ

)
]
,

where ψ(·) is the digamma function.
Setting these expressions to zero and solving them simultaneously yields the maximum

likelihood estimates (MLEs) of the three parameters, under some regularity conditions. For
more details, see Nocedal and Wright (1999, chapter 8) We use the matrix programming lan-
guage Ox (MaxBFGS subroutine), see for example, Doornik (2006) and the procedure NLMixed
in SAS to compute the MLE θ̂. For interval estimation of the model parameters, we require the
expected information matrix. The 3× 3 total observed information matrix J(θ) is given by

J(θ) =

 Jaa Jaµ Jaσ

. Jµµ Jµσ

. . Jσσ

 ,

whose elements are listed in Appendix E. Under conditions that are fulfilled for parameters
in the interior of the parameter space but not on the boundary, the asymptotic distribution of
√

n(θ̂ − θ) is N3(0, K(θ)−1), where K(θ) = E{J(θ)} is the expected information matrix. The
multivariate normal N3(0, J(θ)−1) distribution can be used to construct approximate confi-
dence intervals for the parameters.

The LR can be used for testing the goodness of fit of the GL distribution and for comparing
this distribution with the normal model. We can compute the maximum values of the unres-
tricted and restricted log-likelihoods to construct LR statistics for testing some sub-models of
the GL distribution. For example, we may use the LR statistic to check if the fit using the
new distribution is statistically “superior” to a fit using the normal distribution for a given
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data set. In any case, hypothesis tests of the type H0 : ψ = ψ0 versus H : ψ 6= ψ0, where
ψ is a vector formed with some components of θ and ψ0 is a specified vector, can be per-
formed using LR statistics. For example, the test of H0 : a = 1 versus H : H0 is not true is
equivalent to compare the GN and normal distributions and then the LR statistic reduces to
w = 2{`(â, µ̂, σ̂) − `(1, µ̃, σ̃)}, where â, µ̂ and σ̂ are the MLEs under H and µ̃ and σ̃ are the
estimates under H0.

4.10 Applications

In this section, the potentiality of the GN model is illustrated in two applications to real
data. An alternative analysis of these data can be performed using the normal distribution.
The beta-normal (BN) (Eugene et al., 2002) and Kumaraswamy-normal (KwN) models extend
the normal model and they can also be used to fit data that come from a distribution with
heavy tails reducing the influence of aberrant observations.

The BN distribution
The BN pdf with parameters µ and σ and two extra shape parameters α > 0 and β > 0 is

given by

f (x) =
Γ(α + β)

σΓ(α)Γ(β)

[
Φ
(

x− µ

σ

)]α−1 [
1−Φ

(
y− µ

σ

)]β−1

φ

(
x− µ

σ

)
, (4.36)

−∞ < x < ∞. For α = β = 1, we obtain the normal distribution. Recently, Alexander et
al. (2012) and Cordeiro et al. (2012) proposed the generalized beta-generated and McDonald
normal distributions, respectively. The first generated model contains, as special cases, several
important distributions discussed in the literature such as the normal, exponentiated normal,
BN and KwN distributions, among others.

Kumaraswamy-normal (KwN) distribution
The KwN pdf with parameters µ and σ and two extra shape parameters a > 0 and b > 0 is

given by

f (x) =
ab
σ

φ

(
x− µ

σ

) [
Φ
(

x− µ

σ

)]a−1 [
1−Φa

(
x− µ

σ

)]b−1

, −∞ < x < ∞. (4.37)

For a = b = 1, we have the normal distribution. Clearly, equation (4.37) is much simpler than
(4.36).

4.10.1 Application 1: Carbohydrates data

The first example refers to the data from agronomic experiments (Matsuo, 1986) conducted
at the Federal University of Paraná. The main objective was to verify the content of carbohy-
drates (in %) of the corn farms. Some summary statistics for the CO data are: mean=66.34,
median=66.64, minimum=62.35 and maximum=68.46.
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The parameters of each model are estimated by maximum likelihood (Section 4.7) using

the subroutine NLMixed in SAS. We report the MLEs (and the corresponding standard errors
in parentheses) of the parameters and the values of the Akaike Information Criterion (AIC),
Consistent Akaike Information Criterion (CAIC) and Bayesian Information Criterion (BIC) in
Table 4.1. The lower the values of these criteria, the better the fit. Since the values of these
statistics are smaller for the GN distribution compared to their values for the other three mod-
els, we can conclude that the new distribution is the best model among the four to explain the
current data. An analysis under the GN model also provides a check on the appropriateness of
the normal model and indicates the extent for which inferences depend upon the model. For
example, the LR statistic for testing the hypothesis H0 : a = 1 versus H : H0 is not true, i.e. to
compare the GN and normal models, is w = 2{−63.05− (65.20)} = 4.30 (p-value = 0.0381),
which provides support toward the new model.

Table 4.1: MLEs and information criteria.

Carbohydrate a µ σ AIC CAIC BIC
GN 0.1454 68.3276 0.7443 132.1 132.9 136.9

(0.0277) (0.2963) (0.0388)
Normal 1 66.3379 1.4800 134.3 134.8 137.6

- (0.2467) (0.1744)
α β µ σ

BN 0.1167 0.0678 65.5745 0.3683 137.3 138.6 143.6
(0.0471) (0.0129) (0.3649) (0.0475)

a b µ σ

KwN 0.1859 0.0309 66.6857 0.3460 132.2 133.3 138.3
(0.2023) (0.0281) (1.1912) (0.1034)

4.10.2 Application 2: Carbon monoxide data

Here, we work with carbon monoxide (CO) measurements made in several brands of
cigarettes in 1994. The data have been collected by the Federal Trade Commission (FTC), an
independent agency of the United States government, whose main mission is the promotion
of consumer protection. For three decades the FTC regularly has released reports on the nico-
tine and tar content of cigarettes. The reports indicate that nicotine levels, on average, had
remained stable since 1980, after falling in the preceding decade. The report entitled “Tar,
Nicotine, and Carbon Monoxide of the Smoke of 1206 Varieties of Domestic Cigarettes for the
year of 1994” at https://www.erowid.org/plants/tobacco/tobacconic.shtml includes some
information about the source of the data, smoker’s behavior and beliefs about nicotine, tar and
carbon monoxide contents in cigarettes. The data are in Appendix F.

The data include n = 384 records of CO measurements, in milligrams, in cigarettes of
several brands. Some summary statistics for the CO data are: mean=11.34, median=12.00,
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Table 4.2: MLEs and information criteria.

Carbon monoxide a µ σ AIC CAIC BIC
GN 0.1432 16.9819 2.0889 1931.8 1931.9 1943.3

(0.0085) (0.2476) (0.0378)
Normal 1 11.3425 4.0626 1950.4 1950.5 1958.1

- (0.2187) (0.1547)
α β µ σ

BN 0.2143 3.1422 18.5092 2.8673 1932.9 1933.0 1948.3
(0.0906) (0.4851) (0.4680) (0.5866)

a b µ σ

KwN 0.2242 0.0730 11.8209 1.2921 1929.1 1929.2 1944.5
(0.0420) (0.0262) (1.1516) (0.1306)

minimum=0.05 and maximum=22.00. In each case, the parameters are estimated by maximum
likelihood using the subroutine NLMixed in SAS. We report the MLEs (and the corresponding
standard errors in parentheses) of the parameters and the values of the AIC, CAIC and BIC
statistics in Table 4.2. Since the values of these statistics are smaller for the GN and KwN
distributions compared to those values for the other models, the new distribution is a very
competitive model to explain these data and it is more parsimonious. The LR statistic for
comparing the GN and normal models is w = 2{−962.9− (−1946.4)} = 20.6 (p-value =<

0.0001), which yields favorable support toward to the first model.

4.11 Concluding remarks

In this chapter, we propose a new model called the gamma-normal distribution which ex-
tends the normal distribution. The proposed distribution is very versatile to fit real data and
could be a good alternative to the normal and two recent generalizations of this distribution.
We study some of its structural properties. We provide explicit expressions for the ordinary
and incomplete moments, quantile and generating functions, mean deviations, Rényi entropy,
Shannon entropy, order statistics and their moments. We derive a power series expansion for
its quantile function which is useful to obtain alternative formulae for several mathematical
measures. The model parameters are estimated by maximum likelihood and the observed in-
formation matrix is determined. The potentiality of the new model is illustrated by means of
two examples.
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4.12 Appendix

Appendix A: Quantile function

We derive a power series for the QGN(u) in the following way. First, we use a known power
series for Q−1(a, 1−u). Second, we obtain a power series for the argument 1− exp[−Q−1(a, 1−
u)]. Third, we consider the power series for the normal quantile function given in Stein-
brecher (2002) to obtain a power series for QGN(u).

We introduce the following quantities defined by Cordeiro and Lemonte (2011). Let Q−1(a, z)
be the inverse function of

Q(a, z) = 1− γ(a, z)
Γ(a)

=
Γ(a, z)
Γ(a)

= u.

The inverse quantile function Q−1(a, 1− u) is determined in the Wolfram website 1 as

Q−1(a, 1− u) = w +
w2

a + 1
+

(3a + 5)w3

2(a + 1)2(a + 2)
+

[a(8a + 33) + 31]w4

3(a + 1)3(a + 2)(a + 3)

+
{a(a[a(125a + 1179) + 3971] + 5661) + 2888}w5

24(a + 1)4(a + 2)2(a + 3)(a + 4)
+ O(w6),

where w = [uΓ(a + 1)]1/a. We can write the last equation as

z = Q−1(a, 1− u) =
∞

∑
r=0

δr ur/a, (4.38)

where δi
′s is given by δi = bi Γ(a + 1)i/a. Here, b0 = 0, b1 = 1 and any coefficient bi+1 (for

i ≥ 1) can be obtained from the cubic recurrence equation

bi+1 =
1

i(a + i)

{ i

∑
r=1

i−s+1

∑
s=1

brbsbi−r−s+2 s (i− r− s + 2)
i

∑
r=2

brbi−r+2 r [r− a− (1− a)(i + 2− r)]
}

.

The first coefficients are b2 = 1/(a + 1), b3 = (3a + 5)/[2(a + 1)2(a + 2)], . . .. Now, we present
some algebraic details for the GN qf, say QGN(u). The cdf of X is given by (4.4). The normal
quantile function can be expressed as (Steinbrecher, 2002)

QN(u) = Φ−1(x) =
∞

∑
k=0

dk

[√
2 π (u− 1/2)

]k
, (4.39)

where the coefficients dk
′s are defined by dk = 0 for k = 0, 2, 4, . . . and dk = e(k−1)/2 for

k = 1, 3, 5, . . . The quantities ek
′s are determined recursively from

ek+1 =
1

2(2k + 3)

k

∑
r=0

(2r + 1)(2k− 2r + 1) er ek−r

(r + 1)(2r + 1)
.

1http://functions.wolfram.com/GammaBetaErf/InverseGammaRegularized/06/01/03/
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Expanding the binomial term in (7.27), we obtain

QN(u) =
∞

∑
k=0

(
√

2π)k dk

k

∑
s=0

(−2)s−k
(

k
s

)
us =

∞

∑
k=0

k

∑
s=0

(
√

2π)k (−2)s−k dk

(
k
s

)
us.

Changing ∑∞
k=0 ∑k

s=0 by ∑∞
s=0 ∑∞

k=s, we have

QN(u) =
∞

∑
s=0

∞

∑
k=s

(
√

2π)k(−2)s−k dk

(
k
s

)
us,

and then QN(u) = ∑∞
s=0 ws us, where ws = ∑∞

k=s(−2)s−k (
√

2π)k (k
s) dk and the quantity dk was

defined above.
By replacing (4.38) in equation (4.10), we can write

QGN(u) = µ + σ QN

{
1− exp

[
−

∞

∑
r=0

δr ur/a

]}
.

By expanding the exponential function and using (2.7), we have

1− exp

(
−

∞

∑
r=0

δr ur/a

)
= 1−

∞

∑
l=0

(−1)l (∑∞
r=0 δr ur/a)l

l!

= 1−
∞

∑
l=0

(−1)l ∑∞
r=0 fl,r ur/a

l!
= 1−

∞

∑
r=0

pr ur/a, (4.40)

where pr = ∑∞
l=0

(−1)l fl,r
l! , fl,r = (r δ0)−1 ∑r

q=1[q(l + 1) − r] δm fl,r−q for r ≥ 1 and fl,0 = δl
0.

Combining (4.10) and (4.40), we obtain

QGN(u) = µ + σ QN

(
1−

∞

∑
r=0

pr ur/a

)
.

Using the know result for QN(u) in the last equation and expanding the binomial term, we
have

QGN(u) = µ + σ

{
∞

∑
s=0

ws

(
1−

∞

∑
r=0

pr ur/a

)s}

= µ + σ

 ∞

∑
s=0

ws

s

∑
j=0

(−1)j
(

s
j

)( ∞

∑
r=0

prur/a

)j
 .

Now, using (2.7), we obtain

QGN(u) = µ + σ

{
∞

∑
s=0

s

∑
j=0

(−1)j
(

s
j

)
ws

∞

∑
r=0

hj,r ur/a

}

= µ + σ

{
∞

∑
s,r=0

s

∑
j=0

(−1)j ws hj,r

(
s
j

)
ur/a

}
,

where hj,r = (r p0)−1 ∑r
m=0[m(j + 1)− r] pm hj,r−m. Finally,

QGN(u) = µ + σ
∞

∑
r=0

pj hj,r ur/a,

where pj = ∑∞
s=0 ∑s

j=0(−1)j ws (
s
j).
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Appendix B: Moments

Here, we use equation (2.7) and the power series Φ(x) = ∑∞
j=0 aj xj given in Section 4.5. We

have

Tn(y) =
∫ y

0
xn f (x)dx.

Inserting (4.5) (with µ = 0 and σ = 1) in the last equation gives

Tn(y) =
∞

∑
r=0

dr

∫ y

0
xn φ(x)Φ(x)rdx.

From the power series for Φ(x) and equation (2.7), we have

Tn(y) =
∞

∑
j,r=0

dr cr,j

∫ y

0
xn+j φ(x)dx =

1√
2 π

∞

∑
j,r=0

dr cr,j

∫ y

0
xn+j e−x2/2 dx,

where dr is defined in Section 4.3 and the quantities cr,j are obtained from (2.8) using the ai’s of
the power series for Φ(x). Setting z = x2/2, we obtain

Tn(y) =
1√
2 π

∞

∑
j,r=0

dr cr,j

∫ y2/2

0
(2z)

n+j−1
2 e−z dz =

1√
2 π

∞

∑
j,r=0

2n+j−1 dr cr,j γ

(
n + j + 1

2
,

y2

2

)
,

where γ(·, ·) is the gamma incomplete function.
The second representation for Tn(y) is based on the integral A(j, q) =

∫ q
−∞ xj e−x2/2dx,

which is determined for q > 0 and q < 0. We define

G(j) =
∫ ∞

0
xj e−x2/2dx = 2(j−1)/2 Γ

(
j + 1

2

)
.

For q < 0 and q > 0, we have

A(j, q) = (−1)j G(j) + (−1)j+1H(j, q) and A(j, q) = (−1)j G(j) + H(j, q),

respectively, where the integral H(j, q) =
∫ j

0 xj e−x2/2dx can be easily determined as (Whittaker
and Watson, 1990)

H(j, q) =
2j/4+1/4qj/2+1/2e−q2/4

(j/2 + 1/2)(j + 3)
Nj/4+1/4,j/4+3/4(q2/2)

+
2j/4+1/4qj/2−3/2e−q2/4

j/2 + 1/2
Nj/4+5/4,j/4+3/4(q2/2),

where Nk,m(x) is the Whittaker function (Abramowitz and Stegun, 1972, p. 505; Whittaker
and Watson 1990, pp. 339-351) given, in terms of the confluent hypergeometric function

1F1(a; b; z) = ∑∞
k=0

(a)k
(b)k

zk

k! , or in terms of the Kummer’s function U(a, b; z) = z−a
2F0(a, 1 + a−

b;−z−1), where (a)k was defined in Section 4.5. We have
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Nk,m =
xm+1/2

e−x/2 1F1

(
1
2
+ m− k, 1 + 2m; x

)
and Nk,m =

xm+1/2

e−x/2 U
(

1
2
+ m− k, 1 + 2m; x

)
.

Combining (4.5) and (4.17), we can write

Tn(y) =
1√
2π

∞

∑
k,r=0

bk sr+1(a + k)
∫ y

0
xn e−x2/2

∞

∑
j=0

cr,j xjdx

=
1√
2π

∞

∑
j,k,r=0

bk sr+1(a + k) cr,j

∫ y

−∞
xj+n e−x2/2dx,

where cr,j = (ja0)−1 ∑
j
m=1[m(r + 1) − j] am cr,j−m, for j ≥ 1, cr,0 = ar

0 and c0,0 = 1 and the
quantities ai

′s are defined in Section 4.5.
Computing the last integral, we have

Tn(y) =
1√
2π

∞

∑
k,r,j=0

bk cr,j sr+1(a + k) A(j + n, y),

where A(·, ·) is determined as before and sr(a) is given by (4.8).
The third representation for Tn(y) is based on the normal qf. We have

Tn(y) =
∞

∑
r=0

dr

∫ y

−∞
xn φ(x)Φ(x)rdx

The last integral can be rewritten according to the normal qf QN(u) given in Section 4.4.
Thus, using equations (2.7) and (4.11), we have

Tn(y) =
∞

∑
r=0

dr

∫ Φ(y)

0

(
∞

∑
s=0

ws us

)n

urdu =
∞

∑
r=0

dr

∫ Φ(y)

0

∞

∑
s=0

en,s ur+sdu,

where en,s = (s w0)−1 ∑s
m=1[m(n + 1) − s]wm en,s−m (for s ≥ 1),en,0 = wn

0 and the quantities
wm’s are given in Section 4.4. Finally, we obtain

Tn(y) =
∞

∑
r,s=0

dr en,s
Φ(y)r+s+1

(r + s + 1)
.

Appendix C: Generating function

Here, we present the algebraic details of the second representation for M(t) based on the
quantile power series of X. Using (4.12) with µ = 0 and σ = 1, we obtain

M(t) =
∫ 1

0
exp [t QGN(u)] du =

∫ 1

0
exp

[
t

(
∞

∑
r=0

pj hj,r ur/a

)]
du,

where pj = ∑∞
s=0 ∑s

j=0(−1)j (s
j)ws, ws = ∑∞

k=s(
√

2π)k(−2)s−k dk (
k
s) and

hj,i = (i p0)−1 ∑i
m=0[m(j + 1)− i] pm hj,i−m. Other quantities are well-defined in Section 4.4.
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Expanding the exponential function, we have

M(t) =
∫ 1

0

∞

∑
k=0

tk
(

∑∞
r=0 pj hj,r ur/a

)k

k!
du =

∞

∑
k,r=0

dk,r( r
a + 1

) tk

k!
,

where dk,r = (r g0)−1 ∑r
m=1[m(k + 1)− r] gm dk,r−m (for r ≥ 1), dk,0 = gr

0, d0,0 = 1, the quantities
gj’s are given by gj = pj hj,r and the other quantities pj and hj,r are defined before.

Appendix D: Rényi entropy

The Rényi entropy of a random variable with pdf f (x) is defined as

IR(γ) =
1

1− γ
log

∫ +∞

−∞
f γ(x)dx

for γ > 0 and γ 6= 1. We provide details about the Rényi entropy for γ positive integer first
and then for positive real.

First, assuming γ = n = 2, 3, . . ., µ = 0 and σ = 1, we can write from (4.5) and (4.17)

IR(n) =
1

1− n
log

∫ +∞

−∞

(
1√
2π

e−x2/2
∞

∑
r=0

dr Φ(x)r

)n

dx

=
1

1− n
log

∫ +∞

−∞

{(
1√
2π

)n

e−nx2/2

(
∞

∑
r=0

dr

∞

∑
j=0

cr,j xj

)n

dx

}

=
1

1− n
log

∫ +∞

−∞

{(
1√
2π

)n

e−nx2/2

(
∞

∑
j=0

ej xj

)n

dx

}

=
1

1− n
log

{(
1√
2π

)n n

∑
j=0

℘n,j

∫ +∞

−∞
xj e−

n x2
2 dx

}

Letting y =
√

nx and using equation (4.25), we have

IR(n) =
1

n− 1

{
(n− 1)

2
log(2π) +

(j + 1)
2

log(n)− log

[
n

∑
j=0

℘n,jmj
′
]}

,

where ℘n,j = (j e0)−1 ∑
j
m=1[m(n + 1)− j] em ℘n,j−m (for j ≥ 1), ℘n,0 = en

0 , ej = ∑∞
j=0 dr cr,j and

mj
′ is the jth moment of the normal distribution. The quantities dr’s are defined in Section 4.3

and the av’s and cr,j’s are given in Section 4.5.
We can write IR(γ) = (1− γ)−1 E{ f (Z)γ−1}. Let δ = E(Z). For γ real positive, we can

write
E{ f (Z)γ−1} = δγ−1 E{1 + θ [ f (Z)− δ]}γ−1,

where θ = δ−1. From the generalized binomial expansion, we obtain

{1 + θ [ f (Z)− δ]}γ−1 = 1 +
∞

∑
n=1

θn =n

n!
[ f (Z)− δ]n,
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where =n = ∏n−1

j=0 (γ− 1− j). Further, we have

E{ f (Z)γ−1} = δγ−1

(
1 +

∞

∑
n=2

θn =n

n!
E{[ f (Z)− δ]n}

)
.

We now calculate E{[ f (Z)]n} for n ≥ 2. From equation (4.5) and using the binomial expan-
sion, we can write

ρn = E{[ f (Z)]n} =
∞

∑
j=0

℘n,j ψn,j

where ψn,j = E{Zj φ(Z)n}. Then,

ψn,j =
∫ ∞

−∞
xj φ(x)n+1 dx.

Setting
√
(n + 1)x = y, we can easily determine the last integral and write ρn as

ρn =

(
1√
2π

)n ∞

∑
j=0

℘n,j

(
1√

n + 1

)j+1

mj
′.

By expanding the binomial term in (4.27), we can obtain an explicit expression for IR(γ), which
holds for any γ real positive and γ 6= 1, given by

IR(γ) = (1− γ)−1 δγ−1

[
1 +

∞

∑
n=2

θn =n

n!

n

∑
k=0

(−δ)n−k
(

n
k

)
ρk

]
,

where ρj is determined from (4.28).

Appendix E: The observed information matrix

The elements of the observed information matrix J(θ) for the three parameters (a, µ, σ) are
given by:

Jaa = −nψ′(a), Jaµ =
1
σ

n

∑
i=1

φ(zi)

[1−Φ(zi)] log[1−Φ(zi)]
,

Jaµ =
1
σ

n

∑
i=1

ziφ(zi)

[1−Φ(zi)] log[1−Φ(zi)]
,

Jµµ = − n
σ2 +

(a− 1)
σ2

n

∑
i=1

ziφ(zi)

[1−Φ(zi)] log[1−Φ(zi)]
− (a− 1)

σ

n

∑
i=1

φ2(zi){1 + log[1−Φ(zi)]}
[1−Φ(zi)]2{log[1−Φ(zi)]}2 ,

Jµσ = − 2
σ2

n

∑
i=1

zi +
(a− 1)

σ2

n

∑
i=1

(z2
i − 1)φ(zi)

[1−Φ(zi)] log[1−Φ(zi)]
−

− (a− 1)
σ2

n

∑
i=1

ziφ
2(zi){1 + log[1−Φ(zi)]}

[1−Φ(zi)]2{log[1−Φ(zi)]}2 ,
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Jσσ =
n
σ2 −

3
σ2

n

∑
i=1

z2
i +

2(a− 1)
σ2

n

∑
i=1

ziφ(zi)

[1−Φ(zi)] log[1−Φ(zi)]
−

− (a− 1)
σ2

n

∑
i=1

z2
i φ2(zi){1 + log[1−Φ(zi)]}

[1−Φ(zi)]2{log[1−Φ(zi)]}2 ,

where zi =
(

xi−µ
σ

)
and ψ′(·) is the trigamma function.

Appendix F: Data of application 2

The data are:
0.05, 0.05, 0.05, 1, 1, 2, 2, 3, 2, 3, 3, 3, 3, 3, 4, 5, 4, 6, 6, 7, 4, 4, 6, 6, 6, 6, 6, 6, 7, 5, 5, 6, 7, 8, 8, 5, 4, 4,
4, 4, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 8, 8, 5, 6, 6, 6, 8, 8, 8, 8, 8, 8,
9, 9, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 5, 9, 10, 10, 5, 6, 8, 9, 9, 9, 10, 11, 10, 10, 12, 15, 10, 11, 11,
11, 11, 11, 12, 12, 12, 13, 14, 9, 6, 9, 9, 10, 10, 10, 10, 10, 10, 11, 11, 12, 10, 10, 10, 10, 10, 10, 11, 11,
11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 11, 12, 12, 12, 13, 13, 15,
16, 16, 17, 17, 18, 15, 10, 10, 10, 11, 11, 12, 12, 9, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12,
12, 13, 13, 14, 14, 14, 14, 15, 12, 13, 13, 14, 14, 14, 16, 14, 15, 15, 15, 17, 18, 14, 15, 16, 15, 14, 11,
11, 11, 12, 13, 13, 14, 15, 15, 9, 12, 12, 12, 12, 19, 12, 13, 14, 14, 14, 15, 16, 16, 14, 15, 15, 16, 14, 14,
17, 9, 11, 12, 12, 13, 13, 13, 13, 14, 14, 15, 16, 18, 13, 13, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 16,
16, 16, 17, 17, 14, 14, 14, 15, 16, 17, 9, 13, 13, 14, 14, 15, 16, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 15,
17, 17, 12, 15, 22, 12, 17, 17, 15, 14, 15, 15, 16, 16, 17, 17, 17, 15, 16, 20, 20, 13, 15, 15, 15, 12, 18,
16, 16, 16, 14, 16, 15, 15, 16,18,16,16,18,16
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CHAPTER 5

The gamma Lindley distribution

Resumo

Uma nova distribuição de dois parâmetros chamada de modelo gama Lindley é definida e
estudada. Várias de suas propriedades estruturais são derivadas, incluindo expressões explíc-
itas para o momentos, funções quantílica e geradora de momentos, desvios médios e proba-
bilidade ponderada de momentos. Também investigamos as estatísticas de ordem e de seus
momentos. Técnicas de máxima verossimilhança são usadas para ajustar o novo modelo e para
mostrar sua potencialidade. Com base em três critérios, o modelo proposto prevê um melhor
ajuste para dois conjuntos de dados reais do que os modelos Lindley e exponencial geométrico
complementar.

Palavras-chave: Desvios médios. Distribuição gama. Distribuição Lindley. Estimação de máx-
ima verossimilhança. Função quantílica.

Abstract

A new two-parameter distribution called the gamma Lindley model is defined and studied.
Various of its structural properties are derived, including explicit expressions for the moments,
quantile and generating functions, mean deviations and probability weighted moments. We
also investigate the order statistics and their moments. Maximum likelihood techniques are
used to fit the new model and to show its potentiality. Based on three criteria, the proposed
model provides a better fit to two real datasets than the Lindley and complementary exponen-
tial geometric distributions.
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deviation. Quantile function.

5.1 Introduction

The Lindley distribution is an important uniparametric law with support on the positive
real line. The pdf (for x > 0) of the Lindley L(λ) distribution with a scale parameter λ > 0 is
given by

g(x; λ) =
λ2

1 + λ
(1 + x) e−λx. (5.1)

Its cdf becomes

G(x; λ) = 1− e−λx
(

1 +
λx

1 + λ

)
. (5.2)

This model pioneered in Lindley (1958) is denoted by X ∼ L(λ). Such distribution has
been strongly used in several contexts. For instance, the Lindley distribution was firstly used
in order to measure the difference between Fiducial and posterior distributions (related to
Bayesian analysis) (Lindley, 1958) Subsequently, Sankaran (1970) used such law as the mixing
distribution of a Poisson parameter, resulting in the distribution known as the Poisson-Lindley
distribution. Recently, Ghitany et al. (2008) discussed and studied various properties of the
Lindley pdf (5.1).

Although the Lindley distribution is frequently used, it involves only one parameter, what
makes its application to the lifetime context a hard task. Various parametric models have been
developed recently to cope with the wide variety of patterns in survival data. Some of the
proposed parametric models have incorporated one or two shape parameters in a classical
distribution to account for additional possible hazard shapes. This chapter aims to build up a
new model with one additional parameter.

This chapter is organized as follows. In Section 5.2, we introduce the GL distribution and
provide plots of its density and hrf. We derive expansions for the pdf and cdf (Section 5.3),
explicit expressions for the qf (Section 5.4), ordinary and incomplete moments and Bonferroni
and Lorenz curves (Section 5.5), and generating function (Section 5.6).In Section 5.7, we in-
vestigate the order statistics and their moments. The estimation of the model parameters is
performed by maximum likelihood in Section 5.8 and a simulation study and two applications
to real data are provided in Section 5.9. Concluding remarks are addressed in Section 5.10.

5.2 The gamma Lindley distribution

By taking the pdf (5.1) and cdf (5.2) of the Lindley distribution with scale parameter λ > 0,
the pdf and cdf of the GL distribution are obtained from equations (2.1) and (2.2) (for x ∈ R)
as

f (x) =
λ2

(1 + λ)Γ(a)
(1 + x) e−λx

[
λx− log

(
1 +

λx
1 + λ

)]a−1

(5.3)
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and

F(x) =
1

Γ(a)

∫ λx−log(1+ λx
1+λ )

0
ta−1 e−t dt = γ1

(
a, λx− log

[
1 +

λx
1 + λ

])
. (5.4)

In this chapter, a random variable X having density function (5.3) is denoted by X ∼GL(λ, a).
Evidently, equation (5.3) does not involve any complicated function and the Lindley distribu-
tion arises as the basic exemplar for a = 1.

The GL survival function, S(t) = 1 − F(t), can not be expressed in closed-form. However,
it may be obtained in terms of the incomplete gamma function ratio.

By means of the Inverse Transform Method (for more details see Gentle, 2003), we can de-
fine the GL random number generator (RNG) from the well-known gamma cdf and Lindley
cdf that can be easily implemented using common statistical packages. We motivate the new
model by comparing the performances of the GL, Lindley, Weibull and complementary expo-
nential geometric (CEG) distributions applied to two real data sets.

Figure 5.1 displays possible shapes of the density function (5.3) for selected parameter val-
ues. It is evident that the GL distribution is much more flexible than the Lindley distribution.

5.3 Useful expansions

Expansions for (5.3) and (5.4) can be derived using the concept of exponentiated distri-
butions. Consider the exponentiated Lindley (exp-L) distribution with power parameter a > 0
defined by Y ∼ exp-L(λ, a) with cdf and pdf given by

Ha(y) =

{
1− e−λx

(
1 +

λx
1 + λ

)}a

and

ha(y) =
aλ2

1 + λ
(1 + x) e−λx

{
1 − e−λx

(
1 +

λx
1 + λ

)}a−1

,

respectively.
In this section, we present expansions for (5.3) and (5.4) in the form of a theorem and a

corollary.
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Figure 5.1: Plots of the GL density and hazard functions for some parameter values.

Theorem 5.3.1. Let X ∼ GL(λ, a). The pdf of X can be expressed by the linear combination

f (x) =
∞

∑
k=0

bk ha+k(x), (5.5)

where ha+k(x) denotes the exp-L(λ, a + k) pdf given by

ha+k(x) =
(a + k)λ2

1 + λ
(1 + x) e−λx

{
1− e−λx

(
1 +

λx
1 + λ

)}a+k−1

,

bk =
(k+1−a

k )

(a + k)Γ(a− 1)

k

∑
j=0

(−1)j+k (k
j) pj,k

(a− 1− j)
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and pj,k is defined as follows.

Proof: Based on an expansion due to Nadarajah et al. (2013), we can write (for a > 0)

{− log (1− G(x))}a−1 = (a− 1)
∞

∑
k=0

(
k + 1− a

k

) k

∑
j=0

(−1)j+k(k
j) pj,k

(a− 1− j)
G(x)a+k−1,

where the constants pj,k can be calculated recursively by

pj,k = k−1
k

∑
m=1

(−1)m [m(j + 1)− k]
(m + 1)

pj,k−m,

for k = 1, 2, . . . and pj,0 = 1. Let

bk =
(k+1−a

k )

(a + k)Γ(a− 1)

k

∑
j=0

(−1)j+k (k
j) pj,k

(a− 1− j)
.

Then, equation (5.3) can be expressed as

f (x) =
∞

∑
k=0

bk ha+k(x),

where ha+k(x) = (a+k)λ2

1+λ (1 + x) e−λx {1− e−λx (1 + λx
1+λ

)}a+k−1
denotes the exp-L(λ, a + k)

density function.

Corollary 5.3.2. The cdf of X can be expressed as

F(x) =
∞

∑
k=0

bk Ha+k(x), (5.6)

where Ha+k(x) =
{

1− e−λx (1 + λx
1+λ

)}a+k
denotes the exp-L cdf with parameters λ and a + k.

Theorem 5.3.1 and Corollary 5.3.2 are the main results of this section. They reveal that the
GL pdf and cdf are linear combinations of the exp-L pdf ′s and cdf ′s, respectively. So, several
mathematical properties of the GL distribution can be obtained by knowing those properties
of the exp-L distribution.

5.4 Quantile Function

The GL qf, say QGL(u) = F−1(u), can be expressed in terms of the Lindley qf (QL(·)).
Inver-
ting equation (5.4), the qf of X (for 0 < u < 1) reduces to

QGL(u) = F−1(u) = QL

{
1− exp[−Q−1(a, 1− u)]

}
, (5.7)

where Q−1(a, u) is the inverse function of Q(a, z) = 1− γ(a, z)/Γ(a). Quantities of interest
can be obtained from (5.7) by substituting appropriate values for u. The simulation of the
GL distribution is addressed in Section 5.9. Figure 5.2 displays some plots of the GL qf for
λ = a = k ∈ {1/4, 1/2, 1, 4}. From a theoretical point of view, some intractable statistical
quantities of X can be derived from a power series expansion for QGL(u). To that end, we have
the following theorem.
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Theorem 5.4.1. The Lindley qf can be expanded as

QL(u) =
∞

∑
n=0

tn un, (5.8)

where tn = ∑∞
k=n+1(−1)k−n (k

n)πk.

Proof: We can determine the Lindley qf using the Lagrange theorem.
We assume that the power series expansion holds

x = G(u) = x0 +
∞

∑
k=1

fk (u− u0)
k, f1 = G′(u) 6= 0,

where G(u) is analytic at a point u0 that gives a simple x0-point.
Then, the inverse function G−1(x) exists and is single-valued in the neighborhood of the

point x = x0. The power series inverse x = QL(u) is given by

x = QL(u) = u0 +
∞

∑
k=1

πk (u− u0)
k,

where

πk =
1
k!

∂k−1

∂xk−1

{
[ψ(x)]k

} ∣∣∣∣
x=x0

and ψ(x) =
x− x0

G(x)− u0
.

Then, we can write the GL qf as follows

G(x) = 1 −
(

1 +
λx

1 + λ

)
e−˘x = u0 + x

∞

∑
i=0

fi xi,

where u0 = 1 and fi = (−λ)i+1
[

1
(i+1)! −

1
(1+λ)i!

]
.

Thus, we have

ψ(x) =
x− x0

G(x)− u0
=

1
∑∞

i=0 fi xi =
1

λ
( −λ

1+λ

) ∞

∑
i=0

$i xi = −
(

1 + λ

λ2

) ∞

∑
i=0

$i xi, (5.9)

where $0 = −1, $i = −$i, $0 = 1 and $i =
1
f0

∑∞
j=1 f j $i−j.

So, we obtain from equation (5.9)

dk−1

dxk−1

{
[ψ(x)]k

} ∣∣∣∣
x=x0

=
νk,k−1 (1 + λ)k (k− 1)!

λ2k , (5.10)

where νk,i = (k$0)
−1 ∑k

m=1[m(i + 1)− k] $m νk,i−m and νk,0 = $i
0 = 1.

From equations (5.9) and (5.10), πk is given by

πk =
1
k!

dk−1

dxk−1

{
[ψ(x)]k

} ∣∣∣∣
x=x0

=
νk,k−1 (1 + λ)k

kλ2k .

Hence, the Lindley qf reduces to

QL(u) =
∞

∑
k=1

νk,k−1 (1 + λ)k

kλ2k (u− 1)k.
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An alternative expression for QL(x) is

QL(u) =
∞

∑
n=0

tn un,

where tn = ∑∞
k=n+1(−1)k−n (k

n)πk.

Corollary 5.4.2. The GL qf can be expanded as

QGL(u) =
∞

∑
r=0

τr ur/a, (5.11)

where τr = hj,r pj, pj and hj,i are defined and discussed in Appendix A.
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Figure 5.2: Plots of the GL qf for λ = a = k ∈ {1/4, 1/2, 1, 4}.

5.5 Moments

The ordinary and incomplete moments of X can be derived from the moments of Yk fol-
lowing the exp-L(λ, a + k) distribution. From Theorem 5.3.1, we can write

µ′n = E(Xn) =
∞

∑
k=0

bk E(Yn
k ).

Using the moments of Yk ∼ exp− L(a + k) (Nadarajah et al., 2012), the following corollary is
obtained.

Corollary 5.5.1. Suppose that µ′n = E(Xn) exists. Then,

µ′n =
λ2

λ + 1

∞

∑
k=0

(a + k) bk K(a + k, λ, n, λ), (5.12)

where K(a, b, c, d) = ∑∞
i=0 ∑i

j=0 ∑
j+1
k=0

(−1)i bj

(1+b)i (ib+d)c+k+1 (
a−1

i )(j+1
k ) Γ(c + k + 1).
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Further, we can express µ′n in terms of QL(u) as

µ′n =
∞

∑
k=0

bk (a + k)
∫ 1

0
QL(u)n ua+k−1 du.

Thus, an alternative expansion for µ′n can be obtained from Theorem 5.4.1 in the form of the
following corollary.

Corollary 5.5.2. Suppose that µ′n = E(Xn) exists. Then,

µ′n =
∞

∑
i,k=0

bk (a + k) en,i

(a + i + k + 1)
, (5.13)

where the quantities en,i are determined from (2.8) and (5.8) as en,i = (it−1
0 )∑i

m=1[m(n + 1) −
i] tm en,i−m, for i ≥ 1, en,0 = tn

0 , and the quantities ti and dk are defined in Appendices A and B,
respectively.

The skewness and kurtosis measures can be calculated from the ordinary moments using
well-known relationships. Plots of these quantities for some parameter values as functions of
a are displayed in Figure 5.3.
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Figure 5.3: Plots of the skewness and kurtosis measures for the GL distribution.

The nth incomplete moment of X can be based on the Lindley qf as

mn(y) =
∫ y

0
xn f (x) dx =

∞

∑
k=0

(a + k) bk

∫ 1−e−λx(1+ λx
1+λ )

0
QL(u)n ua+k−1 du.

Let Js = {(l, r) ∈ N×N; l + r = s}. After some algebra, using (2.7) and (5.8) and based on
the set Js, we obtain the subsequent corollary.
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Corollary 5.5.3. Suppose that mn(y) exists. Then,

mn(y) =
∞

∑
l,r=0

ζ l,r yl+r+2 =
∞

∑
s=0

qs ys+2, (5.14)

where ζ l,r = ∑∞
i,j,k=0

(−1)j (a+k) bk mj,l qj,r
a+i+k+1 ( j

s)(
a+i+k+1

j ) and qs = ∑(l,r)∈Js
ζ l,r, for s ≥ 0.

More details about (5.14) and other quantities are addressed in Appendix B.
We can derive the mean deviations of X about the mean µ′1 and about the median M in

terms of its first incomplete moment. They can be expressed as

δ1 = 2
[
µ′1 F(µ′1) − m1(µ

′
1)
]

and δ2 = µ′1 − 2m1(M), (5.15)

where µ′1 = E(X) and m1(q) =
∫ q

0 x f (x)dx.
The quantity m1(q) can be obtained from (5.14) with n = 1 and the measures δ1 and δ2 in

(5.15) are determined by setting q = µ′1 and q = M, respectively.
For a positive random variable X, the Bonferroni and Lorenz curves are defined by B(π) =

m1(q)/(πµ′1) and L(π) = m1(q)/µ′1, respectively, where q = QGL(π) comes from (5.7) for a
given probability π. Figure 5.4 displays plots of the GL Bonferroni function for λ = a = k ∈
{1/4, 1/2, 1, 4}.
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Figure 5.4: Plots of the Bonferroni curve for λ = a = k ∈ {1/4, 1/2, 1, 4}.

Next, we obtain the probability weighted moments (PWMs) of X. They cover the sum-
marization and description of theoretical probability distributions. The primary use of these
moments is to estimate the parameters of a distribution whose inverse cannot be expressed
explicitly. The (s, p)th PWM of X is formally defined as

ξs, p = E[Xs F(X)p] =
∫ ∞

0
xs F(x)p f (x)dx.

Using (2.7), (5.5) and (5.6), we obtain the subsequent corollary.
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Corollary 5.5.4. The (s, p)th PWM of X is given by

ξs,p =
∞

∑
k,r,t

αp,r ωk,r,t

(λ + λt)s

[
Γ(s + k + 1) +

Γ(s + k + 2)
λ + λt

]
, (5.16)

where ωk,r,t = ∑∞
l=0

(−1)t dl λk+2

(1+λ)k+1 (λ+tλ)k (
t
k)(

l+r
t ), dl = ∑∞

k=0 bk sr+1(a + k), αp,r = (rv0)−1

∑r
m=1[m(p + 1) − r] vm cp,r−m, vm = ∑∞

k=0 bk sm(a + k) and sm(a) is given by (5.21) (Section F).
Other quantities and some details about (5.16) can be found in Appendix B.

Equations (5.12), (5.14) and (5.16) are the main results of this section. Some algebraic details
are given in Appendix B.

5.6 Generating function

A first representation for the mgf M(t) of X can be based on its qf. We have

M(t) =
∫ 1

0
exp [t QGL(u)] du.

Expanding the exponential function using (5.11) and after some algebra, we obtain:

Corollary 5.6.1. The mgf of X can be expressed as

M(t) =
∞

∑
r,s=0

ds,r( r
a + 1

) ts

s!
, (5.17)

where ds,j = (j g0)−1 ∑
j
m=1[m(s + 1)− j] gm ds,j−m for s ≥ 1, ds,0 = gs

0, d0,j = 1, gj = pj hj,r and the
quantities pj and hj,r are given in Section 5.4.

More details about this corollary can be found in Appendix C.
A second representation for M(t) is determined from the exp-L generating function. We

can write M(t) = ∑∞
k=0 bk Mk(t), where bk is defined in Section 5.3 and Mk(t) is the mgf of

Yk ∼ exp− L(a + k):

Corollary 5.6.2. The mgf of X is given by

Mk(t) =
(a + k)λ2

1 + λ
K(a + k, λ, 0, λ− t), (5.18)

where K(a, b, c, d) is defined in Section 5.5. Equations (5.17) and (5.18) are the main results of this
section.

5.7 Order statistics

Suppose X1, . . . , Xn is a random sample from the GL distribution and let X1:n < · · · < Xn:n

denote the corresponding order statistics. The following theorem gives an expansion for the
pdf of the ith order statistic Xi:n, say fk:n(z).
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Theorem 5.7.1. The pdf of Xi:n can be expanded as

fi:n(z) =
n−i

∑
j=0

∞

∑
k,r=0

f j,k,r h(i+j)a+k+r(z), (5.19)

where

f j,k,r =
mj,k,r

[(i + j)a + k + r]
.

Proof: Here, we use the follows relationship: for z ∈ (0, 1) and any real non-integer α, we have

zα =
∞

∑
r=0

sr(α) zr, (5.20)

where

sr(α) =
∞

∑
l=r

(−1)r+l
(

α

l

)(
l
r

)
. (5.21)

Combining equations (5.6) and (5.20), we obtain

F(x) =
∞

∑
k,r=0

bk sr(a + k)
{

1 − e−λx
(

1 +
λx

1 + λ

)}r

=
∞

∑
k,r=0

bk sr(a + k) G(x)r.

By differentiating the previous equation, we can write

f (x) = g(x)
∞

∑
r=0

dr G(x)r, (5.22)

where dr = ∑∞
k=0 bk sr(a + k− 1).

Using (5.6) and (5.22), the pdf of Xi:n can be expressed as

fi:n(z) =
n!

(i− 1)!(n− i)!

n−i

∑
j=0

(−1)j
(

n− i
j

)
f (z) F(z)i+j−1

=
n!

(i− 1)!(n− i)!

n−i

∑
j=0

(−1)j
(

n− i
j

)[ ∞

∑
r=0

br (a + r) G(z)a+r−1 g(z)

]

×
[

∞

∑
k=0

bk G(z)a+k

]i+j−1

.

Based on equations (2.7), (2.8) and after some algebra, we obtain[
∞

∑
k=0

bk G(z)a+k

]i+j−1

=
∞

∑
k=0

ηi+j−1,k G(z)(i+j−1)a+k,

where ηi+j−1,0 = bi+j−1
0 and ηi+j−1,k = (kb0)−1 ∑k

m=1 [m(i + j) − k] bm ηi+j−1,k−m. Hence, the
pdf of Xi:n reduces to

fi:n(z) = g(z)
n−i

∑
j=0

∞

∑
k,r=0

mj,k,r G(z)(i+j)a+k+r−1, (5.23)
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where

mj,k,r =
(−1)j (a + r) n! br ηi+j−1,k

(i− 1)! (n− i− j)! j!
.

Equation (5.23) can be expressed as

fi:n(z) =
n−i

∑
j=0

∞

∑
r,k=0

f j,k,r h(i+j)a+k+r(z),

where

f j,k,r =
mj,k,r

[(i + j)a + k + r]
.

Equation (5.19) reveals that the pdf of the GL order statistics is a triple linear combination of
exp-L densities with parameters (i + j)a + k + r and λ. Then, several mathematical quantities
of the GL order statistics such as ordinary and incomplete moments, mgf and mean deviations
can be obtained from those exp-L quantities.

5.8 Estimation

Consider a random variable X ∼ GL(λ, a) and let θ = ( λ, a )> be the model parameters.
Thus, the associated log-likelihood function for one observation x reduces to

`(θ; x) = [2 log(λ) − log(1 + λ)] − log[Γ(a)] + log(1 + x) − λ x

+ (a − 1) log
[

λ x − log
(

1 +
λ x

1 + λ

)]
. (5.24)

The maximum likelihood estimate (MLE) of θ is determined by maximizing
`n(θ) = ∑n

i=1 `(θ; xi) from a data set x1, . . . , xn. The score function comes from (5.24) as

Uθ = (Uλ, Ua )
> =

( ∂ `(θ; x)
∂λ

,
∂ `(θ; x)

∂a

)>
.

After some algebra, two identities hold:

Uλ =
∂ `(θ; x)

∂ λ
(5.25)

=
2 + λ

(λ + 1)λ
− x +

[
a − 1

λ x − log
(

1 + λ x
1+ λ

)] [x − x
(1 + λ)(λ + 1 + λ x)

]
(5.26)

and
Ua =

∂ `(θ; x)
∂ a

= log
[
λ x − log

(
1 +

λ x
1 + λ

)]
− Ψ(a),

where Ψ(·) is the digamma function.
Additionally, in order to make inference on the model parameters, we obtain the observed

information matrix,

H(θ; x) =

(
∂2 `(θ;x)

∂ λ2
∂2 `(θ;x)

∂ λ ∂ a
∂2 `(θ;x)

∂ a ∂ λ
d2 `(θ;x)

d a2

)
,
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and the expected information matrix

K(θ) = E[−H(θ; X)] =

(
κλλ κλa

κaλ κaa

)
.

By differentiating the score function, we have κaa = −ψ′(a),

κλλ =
λ2 + 4λ + 2
(λ + 1)2 λ2 − (a − 1) E

{
d2

d λ2 log
[

λ X − log
(

1 +
λ X

1 + λ

)]}
and

κλa = κaλ = E

[
X − X

(λ+ 1)(1+ λ+ λ X)

λ X − log(1 + λ X
λ+ 1 )

]
. (5.27)

From (5.25), we have

E(Uλ) = 0 ⇔ E

[
X − X

(λ+ 1)(1+ λ+ λ X)

λ X − log(1 + λ X
λ+ 1 )

]
= (a − 1)−1

{
E(X) − 2 + λ

(λ + 1)λ

}
,

where E(X) is given by (5.14) with n = 1.
Thus, substituting the last result in (5.27), we obtain

κλa = (a − 1)−1

{
E(X) − 2 + λ

(λ + 1)λ

}
.

5.9 Applications

5.9.1 Simulation study

This section aims to provide a simulation study in order to assess the accuracy of the
MLEs described in Section 5.8. One of the advantages of the GL distribution is that its cdf
has tractable analytic form. This fact provides a simple random number generator (RNG)
given by the Algorithm 1. The use of this algorithm is illustrated in Figure 5.5 for the GL(3, 2)
distribution.

A RNG FOR THE GL DISTRIBUTION [1]
Generate a value u from U ∼ Γ(a, 1). A possible outcome x from X ∼ GL(λ, a) is then given
by the solution of the non-linear equation:

λ x − log
(

1 +
λ x

1 + λ

)
= u.

Now, we perform a simulation study in order to assess the influence of the Lindley pa-
rameter, λ, on the GL additional parameter, a. To that end, we consider 5,000 Monte Carlo
replications and, on each generated data, we compute the MLEs and (i) the average, (ii) bias
and (iii) mean square error (MSE) to be quantified like an assessment criterion.
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Figure 5.5: Plots of the theoretical and empirical densities for the GL(3,2) distribution.

From Section 5.8, taking Uθ = 0, the MLEs are given by the solutions of the system of
non-linear equations:

n 2+ λ
(λ+ 1)λ − ∑n

i=1 xi + ∑n
i=1 xi

[
a− 1

λ xi − log
(

1+ λ xi
1+ λ

)] [1 − 1
(1+ λ)(λ+ 1+ λ xi)

]
= 0,

∑n
i=1 log

[
λ xi − log

(
1 + λ xi

1+λ

)]
− n Ψ(a) = 0.

The MLEs do not have closed-form expressions and we use the numerical BFGS procedure to
obtain them, which is reportedly fast and accurate. The simulation process will be conducted
following the steps:

1. Simulated GL distributed data of N ∈ {50, 100, 150} are obtained by means of the GL
RNG.

2. Two scenarios are considered: (a) a = 2 and λ ∈ {1, 2, 3, 4, 5} and (b) a = 5 and λ ∈
{1, 2, 3, 4, 5}.

3. Generated data is submitted to ML estimation to obtain parameter estimates and sample
biases and MSEs.

The initial parameter values chosen in the iterative process are (λ, a) = (1, 1). Table 5.1
gives the mean estimates for (λ, a) and their associated MSEs for all scenarios. The MSE values
decrease as the sample size increases as expected. Further, smaller values of the MSE at a
specified pair are associated to the smaller parameter values. In order to assess separately the
influence of increasing both λ and a on the MLE of a, we display plots of Bias(â) as functions
of λ ∈ {1, 2, 3, 4} for a ∈ {2, 5} in Figure 5.6. These plots indicate that the bias decreases when
λ increases and it is slower for large values of a.



91

Table 5.1: Average of MLEs and their corresponding estimates for the MSE

(a, λ) N â MSE(â) λ̂ MSE(λ̂)
(2, 1) 50 3.114 1.724 1.213 0.105

100 3.016 1.252 1.179 0.060
150 2.989 1.114 1.170 0.050

(2, 2) · 2.362 0.397 2.138 0.203
· 2.293 0.201 2.076 0.084
· 2.257 0.142 2.048 0.054

(2, 3) · 2.217 0.264 3.152 0.420
· 2.151 0.116 3.052 0.173
· 2.130 0.080 3.027 0.115

(2, 4) · 2.164 0.225 4.185 0.717
· 2.109 0.104 4.078 0.322
· 2.080 0.061 4.024 0.195

(5, 1) 50 6.625 5.087 1.160 0.085
100 6.393 3.064 1.125 0.043
150 6.326 2.469 1.115 0.031

(5, 2) · 5.850 2.566 2.189 0.248
· 5.649 1.224 2.120 0.107
· 5.560 0.799 2.090 0.064

(5, 3) · 5.597 1.904 3.225 0.483
· 5.426 0.867 3.131 0.210
· 5.351 0.563 3.090 0.132

(5, 4) · 5.476 1.676 4.258 0.831
· 5.314 0.747 4.139 0.357
· 5.259 0.481 4.099 0.229

5.9.2 Applications to real data

Here, we perform two applications to real data to show that the proposed model is more
adequate than other more common lifetime distributions. We consider a study in the survival
context and an application to the SAR image data.

First application: Modeling reliability data

We consider the analysis of the time between failures for repairable item in the form of a
data set discussed by Murthy et al. (2004) [pp. 278, Data Set 15.1]. Such quantity is a widely
used variable in reliability and, assuming the condition of a constant failure rate, it can be
defined as the time between two consecutive failures. In terms of an initial analysis, Table 5.2
provides a descriptive discussion of the current data set. The descriptive statistics indicate that
the empirical distribution of the data is right skewed (skeness = 1.295462 > 0) and leptokurtic
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Figure 5.6: Plots of the bias estimates for a in terms of λ in the GL distribution.

(kurtosis = 4.31917 > 3). Further, the sample mean and median are not much different and
the relationship between mean and dispersion is very expressive (CV = 73.08%).

Table 5.2: Descriptive statistics from the real data set

Size kurtosis skewness Mean Median CV % Min Max
30 4.31917 1.295462 1.5430 1.2350 73.08 0.11 4.73

We compare the proposed GL distribution with three other lifetime models: (a) the Lindley,
(b) the Weibull and (c) the complementary exponential geometric (Louzada, 2011) distribu-
tions. As an initial inferential discussion, Table 5.3 provides the MLEs and their corresponding
standard errors. The estimates present low standard errors what makes a comparative study
of fitness in terms of the estimates acceptable. Figure 5.7 displays the histogram of the data
and the fitted densities.

Table 5.3: MLEs and their standard errors based on the first real data set
Models α1 α2

GL 1.702903 (0.006475723) 1.496357 (0.004269048)
L 0.9762392 (0.0006029884) •
W 1.709983 (0.0016919445) 1.463319 (0.0013725423)

CEG 1.2440647 (0.003156975) 0.2369999 (0.0006839305)

In order to quantify the performance of the current distributions, we adopt three goodness-
of-fit measures for discriminating both the empirical ( fn) and fitted ( f̂ ) densities: (a) Sym-
metrized Kullback-Leibler divergence (Eguchi and Copas, 2006; Seghouane and Amari, 2007),
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Figure 5.7: Application to real data.

KL( fn, f̂ ), (b) Symmetrized chi-square divergence (Taneja, 2006), χ2( fn, f̂ ), and (c) Kolmogorov-
Smirnov measures, KS( fn, f̂ ). Table 5.4 lists the values of these measures based on the current
data set. The results indicate that the GL model outperforms the other distributions according
to these criteria.

Table 5.4: Godness-of-fit measures based on a real data set
Measures GL Lindley Weibull CEG
χ2( fn, f̂ ) 0.04216311 0.04746565 0.04549579 0.04558648
KL( fn, f̂ ) 0.01834463 0.02254057 0.02000603 0.01910870
KS( fn, f̂ ) 0.16983330 0.19526670 0.17020000 0.17070000
p-valueKS 0.74514940 0.62345490 0.74416100 0.74262650

Second application: Modeling intensity data from SAR images

SAR images have been indicated as remote sensing important tools. Among several advan-
tages, the analysis of SAR images can be justified by the ability of producing high spacial reso-
lution images and of operating in all-weather and all-day. However, such images are strongly
contaminated by an interference pattern, nominated by speckle noise (Oliver and Quegan, 1998).
This phenomenon requires a specialized model to be used in the processing of SAR images.

In general (or polarimetric terms), these images are obtained obeying the following method-
ology: orthogonally polarized pulses (in vertical, ‘V’, or horizontal, ‘H’, orientations) are sent
towards a target, and the returned echo is captured with respect to each polarization: HH, HV,
VH (in practice, HV ≈ VH) and VV. As a consequence, resulting images are understood as
an outcome from a sequence either (i) of complex random vectors (called single look) or (ii) of
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Hermitian positive definite random matrices (called multilook) (Martinez and Pottier, 2007).
This application consists in an advance in case (ii) on which each pixel is represented by 3×3
Hermitian positive definite matrices, whose diagonal elements are positive real intensities:

Z =

 |ZHH| ZHH-HV ZHH-VV

Z∗HH-HV |ZHV| ZHV-VV

Z∗HH-VV Z∗HV-VV |ZVV|

,

where {|ZHH|, |ZHV|, |ZVV|} represents the set of intensities from ZHH, ZHV, and ZVV polar-
ization channels (complex random vectors) and {ZHH-HV, ZHH-VV, ZHV-VV} indicates the set of
possible products between two different polarization channels such that ZA-B = ZAZ∗B, for A,B
∈ {HH, HV, VV}, and ∗ denotes the conjugate of a complex number. In particular, we propose
the GL model for describing the terms |ZVV| in one sample extracted from SAR images.

According to the survey proposed by Gao (2010), empirical distributions for describing in-
tensity SAR data consist of models which have no sound deduction in theory, coming from
the experience of analyzing real data. Some works (Oliver and Quegan, 1998; Fernandes, 1998;
de Fatima and Fernandes, 2000; Gao, 2010) have indicated that the Weibull distribution is one
of the best bi-parametric models for describing single-look images for intensity. However,
the performance of such distribution is affected by multi-look effect (Ulaby et al., 1986). The
proposed distribution can be also used as an alternative model for describing intensities in
polarization channels extracted from SAR images. In the subsequent discussion, we present
evidence in favor of the GL distribution to be used as pre-processing step of SAR images.

Table 5.5: Descriptive statistics from the second real data set

Window kurtosis skewness Mean Median CV % Min Max
41× 41 5.885843 1.386258 0.0341400 0.0302800 59.80 8.33× 10−4 0.1417

Table 5.6: MLEs and their standard errors based on the second real data set
Models α1 α2

GL 2.945013 (0.04340277) 87.226878 (0.6839667)
L 30.22958 (0.6631777) •
W 0.03852693 (0.0005583914) 1.78024116 (0.032154107)

CEG 77.35430015 (0.9419955) 0.09774584 (0.005164741)

To that end, we use an image of San Francisco obtained by the AIRSAR sensor – an airborne
mission with PolSAR capabilities designed by the Jet Propulsion Laboratory. This figure was
obtained at http://earth.eo.esa.int/polsarpro/datasets.html by means of the polSARpro
software. Figure 5.8(a) displays a 41× 41 pixels image (HH channel) of San Francisco recorded
by this sensor, acquired with four nominal looks. Table 5.5 presents a fast descriptive analysis
from extracted data. This empirical distribution provides more evidence to be right skewed
and to have a leptokurtic form than that furnished by the data in the first application.
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Table 5.7: Godness-of-fit measures based on a real data set
Measures GL Lindley Weibull CEG
χ2( fn, f̂ ) 190.70514 2891.6875 460.0431 484.9014
KL( fn, f̂ ) 72.99628 552.5212 116.2774 148.6457
KS( fn, f̂ ) 0.02866805 0.2211755 0.0517323 0.05193516
p-valueKS 0.53451750 < 10−16 0.04779928 0.03515184

Based on these data and in order to advance in inferential process, the MLEs are listed in
Table 5.6. The fitted densities for the intensity SAR returns are plotted in Figure 5.8. Note that
larger returns values are well described by the GL distribution.

Table 5.7 gives the goodness-of-fit measures for the second application. Under the three
criteria – χ2, KL and KS – the GL model is meaningfully better than the other models. Addi-
tionally, assuming to a decision error (nominal level) of 5%, the p-valueKS indicates that only
for the GL distribution the null hypothesis that SAR intensity data come from X ∼ GL(λ, a) is
not rejected.

5.10 Concluding remarks

In this chapter, we apply the gamma-G class of distributions pioneered by Zografos and
Balakrishnan (2009) and Ristić and Balakrishnan (2011) to define a new distribution named
as gamma Lindley (GL) distribution. The structural properties of this distribution, which in-
clude the moments, quantile and generating functions, order statistics, is studied in details.
Additionally, we derive a power series for the qf which is useful to obtain some mathemati-
cal measures. The proposed distribution has been shown to be very versatile to fit skew real
data. Maximum likelihood method is used to estimate the unknown parameters in the pro-
posed model. A simulation study was performed to evaluate the performance of the MLEs.
Finally, we consider two applications from survival data and synthetic aperture radar (SAR)
images under which the proposed distribution is compared with three other lifetime models.
According to three goodness-of-fit criteria, the GL distribution outperforms other distributions
in terms of model fitting.
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(a) Application to AIRSAR image.
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(b) Fits on SAR data.

Figure 5.8: Application to AIRSAR image.

5.11 Appendix

Appendix A:Quantile function

We derive a power series for QGL(u) following the steps. First, we use a power series for
Q−1(a, 1− u). Second, we obtain a power series for the argument 1− exp[−Q−1(a, 1− u)].
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Third, we derive a power series for the Lindley qf using the Lagrange theorem to obtain a
power series for QGL(u).

We introduce the following quantities defined by Cordeiro and Lemonte (2011). Let Q−1(a, z)
be the inverse function of

Q(a, z) = 1− γ(a, z)
Γ(a)

=
Γ(a, z)
Γ(a)

= u.

The inverse quantile function Q−1(a, 1− u) is determined in the Wolfram website 1 as

Q−1(a, 1− u) = w +
w2

a + 1
+

(3a + 5)w3

2(a + 1)2(a + 2)
+

[a(8a + 33) + 31]w4

3(a + 1)3(a + 2)(a + 3)

+
{a(a[a(125a + 1179) + 3971] + 5661) + 2888}w5

24(a + 1)4(a + 2)2(a + 3)(a + 4)
+ O(w6),

where w = [uΓ(a + 1)]1/a. We can write the last equation as

z = Q−1(a, 1− u) =
∞

∑
r=0

δr ur/a, (5.28)

where δi = bi Γ(a + 1)i/a. Here, b0 = 0, b1 = 1 and any coefficient bi+1 (for i ≥ 1) can be
obtained from the cubic recurrence equation

bi+1 =
1

i(a + i)

{ i

∑
r=1

i−s+1

∑
s=1

brbsbi−r−s+2 s (i− r− s + 2)

×
i

∑
r=2

brbi−r+2 r [r− a− (1− a)(i + 2− r)]
}

.

The first coefficients are b2 = 1/(a + 1), b3 = (3a + 5)/[2(a + 1)2(a + 2)], . . . Now, we present
some algebraic details for the GL qf, say QGL(u). The cdf of X is given by (5.4). By inverting
F(x) = u, we obtain (5.7).

By replacing (5.28) in equation (5.7), we can write

QGL(u) = QL

(
1− exp

[
−

∞

∑
r=0

δr ur/a

])
.

By expanding the exponential function and using (2.7), we have

1− exp

(
−

∞

∑
r=0

δr ur/a

)
= 1−

∞

∑
l=0

(−1)l (∑∞
r=0 δr ur/a)l

l!

= 1−
∞

∑
l=0

(−1)l ∑∞
r=0 fl,r ur/a

l!
= 1−

∞

∑
r=0

pr ur/a, (5.29)

where pr = ∑∞
l=0

(−1)l fl,r
l! , fl,r = (r δ0)−1 ∑r

q=1[q(l + 1) − r] δq fl,r−q for r ≥ 1 and fl,0 = δl
0.

Combining (5.7) and (7.28), we obtain

QGL(u) = QL

(
1−

∞

∑
r=0

pr ur/a

)
.

1http://functions.wolfram.com/GammaBetaErf/InverseGammaRegularized/06/01/03/
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Using the power series for QL(u) in the last equation and expanding the binomial term gives

QGL(u) =

{
∞

∑
n=0

tn

(
1−

∞

∑
r=0

pr ur/a

)n}
=

 ∞

∑
n=0

tn

n

∑
j=0

(−1)j
(

n
j

)( ∞

∑
r=0

prur/a

)j
 .

Now, using (2.7), we can write

QGL(u) =

{
∞

∑
n=0

n

∑
j=0

(−1)j
(

n
j

)
tn

∞

∑
r=0

hj,r ur/a

}
=

{
∞

∑
n,r=0

n

∑
j=0

(−1)j tn hj,r

(
n
j

)
ur/a

}
,

where hj,r = (r p0)−1 ∑r
m=0[m(j + 1)− r] pm hj,r−m. Finally,

QGL(u) =
∞

∑
r=0

τr ur/a,

where τr = pj hj,r, pj = ∑∞
n=0 ∑n

j=0(−1)j tn (
n
j).

Appendix B: Moments

Here, we demonstrate the results obtained in Section 5.5. The nth ordinary moment of
X ∼GL(λ, a) can be expressed in terms of QL(u) as follows

µ′n = E(Xn) =
∞

∑
k=0

bk (a + k)
∫ 1

0
QL(u)n ua+k−1 du.

Inserting (5.8) in the last equation and using (2.7), we have

µ′n =
∞

∑
k=0

bk (a + k)
∫ 1

0

(
∞

∑
i=0

ti ui

)n

ua+k−1 du

=
∞

∑
i,k=0

bk (a + k) en,i

∫ 1

0
ua+i+k−1du =

∞

∑
i,k=0

bk (a + k) en,i

a + i + k
,

where en,i = (it−1
0 )∑i

m=1[m(n + 1)− i] tm en,i−m and en,0 = tn
0 .

Now, we use equation (2.7) and the power series QL(u) = ∑∞
i=0 ti xi to obtain the nth in-

complete moment given in Section 5.3. We obtain

mn(y) = E(Xn|X < y) =
∞

∑
k=0

(a + k)bk

∫ 1−e−λy
(

1+ λy
1+λ

)
0

QL(u)nua+k−1 du.

So, using the Lindley qf and equation (2.7), we have

mn(y) =
∞

∑
i,k=0

(a + k) bk vn,i

∫ 1−e−λ y
(

1+ λy
1+λ

)
0

ua+i+k−1 du

=
∞

∑
i,k=0

(a + k) bk vn,i

a + i + k

{
1− e−˘y

(
1 +

˘y
1 + ˘

)}a+i+k

,
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where vn,i = (it0)−1 ∑i

m=1[m(n + 1)− i] tm vn,i−m and the coefficients ti
′ are given in Appendix

A.
Expanding the binomial term and the exponential function in the last equation, we obtain

mn(y) =
∞

∑
i,j,k,l=0

(−1)j bk vn,i uj,l (a + k)
a + i + k

(
1 +

λy
1 + λ

)j (a + i + k
j

)
yl

=
∞

∑
i,j,k,l,r=0

(−1)j bk vn,i uj,l (a + k) λr

(a + i + k)(1 + λ)r

(
a + i + k

j

)(
j
r

)
yl+r

where uj,l = (la0)−1 ∑l
m=1[m(l + 1)− j] am uj,l−m and al = −λ/l!.

Let Js = {(l, r) ∈ N×N; l + r = s}. We have

mn(y) =
∞

∑
l,r=0

ζl,r yl+r =
∞

∑
s=0

qs ys,

where ζl,r = ∑∞
i,j,k=0

(−1)j bk vn,i uj,l (a+k) λr

(a+i+k)(1+λ)r (a+i+k
j )( j

r) and qs = ∑(l,r)∈Js
ζl,r, for s ≥ 0.

Further, we obtain the (s, p)th PWM of X using equations (2.7) and (5.22) as follows

ξs, p = E[Xs F(X)p] =
∫ ∞

0
xs F(x)p f (x)dx

=
∫ ∞

0
xs

(
∞

∑
r=0

vrG(x)r

)p

g(x)
∞

∑
l=0

dl G(x)l dx

=
∞

∑
l,r=0

αp,r dl λ2

1 + λ

∫ ∞

0
(1 + x) xs e−˘x

{
1− e˘x

(
1 +

˘x
1 + ˘

)}l+r

dx,

where αp,r = (r v0)−1 ∑r
m=1[m(p + 1)− r] vr αp,r−m, vr = ∑∞

k=0 bksr(a + k) and sr(a) is given by
(5.21)(Section 5.7). Further, dl = ∑∞

k=0 bk sr(a + k− 1).
Thus, expanding the binomial term and the exponential function in the last equation, we

have

ξs, p =
∞

∑
l,k,r,t=0

(−1)t αp,r dl λk+2

(1 + λ)k+1

(
t
k

)(
l + r

t

) ∫ ∞

0
(1 + x) xs+k e−(˘+˘t)x dx

The integral in the last equation comes from the gamma function. Thus, we obtain

ξs,p =
∞

∑
k,r,t

αp,r ωk,r,t

λs (1 + t)s

[
Γ(s + k + 1) +

Γ(s + k + 2)
λ (1 + t)

]
,

where ωk,r,t = ∑∞
l=0

(−1)t dl λk+2

(1+λ)k+1 (λ+tλ)k (
t
k)(

l+r
t ) and dl is given above.

Appendix C: Generating function
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Here, we present the algebraic details of the second representation for M(t) based on the

quantile power series of X. Using (5.11) with µ = 0 and σ = 1, we obtain

M(t) =
∫ 1

0
exp [t QGL(u)] du =

∫ 1

0
exp

[
t

(
∞

∑
r=0

τr ur/a

)]
du,

where τr = pj hj,r pj = ∑∞
s=0 ∑s

j=0(−1)j (s
j) ts, ts = ∑∞

k=s+1(−1)k−s (k
s)πk, πk is given in Ap-

pendix A. and hj,i = (i p0)−1 ∑i
m=0[m(j + 1)− i] pm hj,i−m. Other quantities are well-defined in

Section 5.4.
Expanding the exponential function, we have

M(t) =
∫ 1

0

∞

∑
k=0

tk (∑∞
r=0 τr ur/a)k

k!
du =

∞

∑
k,r=0

dk,r( r
a + 1

) tk

k!
,

where dk,r = (r τ0)−1 ∑r
m=1[m(k + 1)− r] τm dk,r−m (for r ≥ 1), dk,0 = τr

0 , d0,0 = 1, the quantities
τj’s are given by τj = pj hj,r and the other quantities pj and hj,r are defined before.
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CHAPTER 6

A new generalized gamma distribution

Resumo

A modelagem e análise de tempo de vida é um aspecto importante do trabalho estatístico
em uma ampla variedade de informação científica e campos tecnológicos. Neste capítulo, in-
troduzimos e estudamos a distribuição gama-Nadarajah-Haghighi, que pode ser interpretada
como uma distribuição gama generalizada truncada( Stacy, 1962). Esse modelo pode apresen-
tar função taxa de falha nas formas constante, decrescente, crescente, em forma de um tipo es-
pecial de banheira e um tipo especial de banheira invertida, dependendo dos valores dos seus
parâmetros. Demonstramos que a nova função de densidade pode ser expressa como uma
combinação linear de funções densidade de exponecializadas Nadarajah-Haghighi (Lemonte,
2013). Várias de suas propriedades estruturais são derivadas, incluindo algumas expressões
explícitas para o momentos, funções quantílica e geradora, assimetria, curtose, desvios, cur-
vas de Bonferroni e Lorenz, probabilidade ponderada de momentos e dois tipos de entropia.
Também obtemos as estatísticas de ordem. O método de máxima verosimilhança é usado para
estimar os parâmetros do modelo e da matriz de informação observada é derivada. Ilustramos
o potencial da nova distribuição por meio de duas aplicações para conjuntos de dados reais.

Palavras-chave: Distribuição gama generalizada. Distribuição Nadarajah-Haghighi. Estimação
de máxima verossimilhança. Função taxa de falha.

Abstract

The modeling and analysis of lifetimes is an important aspect of statistical work in a wide
variety of scientific and technological fields. We introduce and study the gamma-Nadarajah-
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Haghighi distribution which can be interpreted as a truncated generalized gamma distribution
(Stacy, 1962). It can have a constant, decreasing, increasing, upside-down bathtub or bathtub-
shaped hazard rate function depending on the values of its parameters. We demonstrate that
the new density function can be expressed as a mixture of exponentiated Nadarajah-Haghighi
density functions (Lemonte, 2013). Various of its structural properties are derived, including
some explicit expressions for the moments, quantile and generating functions, skewness, kur-
tosis, mean deviations, Bonferroni and Lorenz curves, probability weighted moments and two
types of entropy. We also obtain the order statistics. The method of maximum likelihood is
used for estimating the model parameters and the observed information matrix is derived. We
illustrate the potentiality of the new distribution by means of two applications to real data sets.

Keywords: Generalized gamma distribution; Hazard rate function; Nadarajah-Haghighi dis-
tribution; Maximum likelihood estimation.

6.1 Introduction

In the last decades, several distributions have been proposed based on different modi-
fications of the beta, gamma and Weibull distributions, among others, to provide bathtub
hrfs. We cite the exponentiated Weibull distribution pioneered by Mudholkar and Srivas-
tava (1993). Cordeiro et al. (2010) defined the Kumaraswamy Weibull distribution, Kong and
Sepanski (2007) studied the beta gamma distribution and Cordeiro et al. (2011) proposed the
exponentiated generalized gamma distribution.

If G(x; α, λ) = 1 − exp[−(λx)α] is the Weibull cumulative distribution with parameters
α > 0 (shape parameter) and λ > 0 (scale parameter), then equation (2.2) yields the generalized
gamma (“GeGa”) cumulative distribution (Stacy, 1962)

F(x; a, α, λ) =
γ(a, (λx)α)

Γ(a)
,

and the corresponding pdf given by

f (x; a, α, λ) =
α λαa

Γ(a)
xαa−1 exp[−(λx)α].

The GeGa distribution having the Weibull, gamma, exponential and Rayleigh as special
models is widely used for modelling lifetime data. Ortega et al. (2003) discussed influence
diagnostics in GeGa regression models, Nadarajah and Gupta (2007) applied the GeGa distri-
bution to drought data, Huang and Hwang (2006) presented a simple method for estimating
the model parameters using its characterization and moment estimation and Cox et al. (2007)
developed a parametric survival analysis and taxonomy for its hrf. More recently, Ortega et al.
(2008) compared three types of residuals based on the deviance component in GeGa regression
models under censored observations and Ortega et al. (2009) proposed a modification of these
regression models to allow the possibility that long-term survivors may be presented in the
data.
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Nadarajah and Haghighi (2011) proposed a new generalization of the exponential distribu-

tion as an alternative to the gamma, Weibull and exponentiated exponential (EE) distributions
with cdf and pdf (for x > 0) given by

G(x; α, λ) = 1− exp[1− (1 + λx)α],

and
g(x; α, λ) = α λ(1 + λx)α−1 exp[1− (1 + λx)α],

respectively, where α > 0 (shape parameter) and λ > 0 (scale parameter). If Y follows the
Nadarajah-Haghighi (NH) distribution, we write Y ∼ NH(α, λ). The generalization always
has its mode at zero and yet allows for increasing, decreasing and constant hrfs. Lemonte (2013)
studied the exponentiated NH (exp-NH) distribution.

Here, we combine the works of Zografos and Balakrishnan (2009) and Nadarajah and
Haghighi (2011) to derive some mathematical properties of a new three-parameter distribu-
tion called the gamma Nadarajah-Haghighi (GNH) distribution, with the hope that it may give a
“better fit” compared to the GeGa distribution in certain practical situations. Additionally, we
study some of its mathematical properties and discuss maximum likelihood estimation of the
model parameters. This distribution is expected to have immediate application for modeling
failure times due to fatigue and lifetime data in fields such as engineering, finance, economics
and insurance, among others.

The rest of the chapter is organized as follows. In Section 6.2, we present the density func-
tion and hrf and provide plots of such functions for selected parameter values. In Section 6.3,
we derive useful expansions for its cumulative and density functions. In Section 6.4, 6.5 and 6.6
we provide general properties of the GNH distribution including the moments, quantile and
generating functions, skewness, kurtosis, mean deviations, Bonferroni and Lorenz curves and
probability weighted moments. The Rényi and Shannon entropies are derived in Section 6.8.
The estimation of the model parameters is performed by maximum likelihood in Section 6.9
and two applications to real data are given in Section 6.10. Concluding remarks are addressed
in Section 6.11.

6.2 The new distribution

In this section, we introduce a new generalization of the gamma distribution. If G(x; α, λ) =

1− exp[1− (1 + λx)α] is the NH cumulative distribution with parameters α and λ, then equa-
tion (2.2) yields the GNH cumulative distribution (for x > 0)

F(x; a, α, λ) =
γ(a, (1 + λx)α − 1)

Γ(a)
, (6.1)

where λ > 0 is a scale parameter and the other positive parameters α and a are shape parame-
ters.

The corresponding density function becomes

f (x; a, α, λ) =
α λ

Γ(a)
(1 + λx)α−1 [(1 + λx)α − 1]a−1 exp{−[(1 + λx)α − 1]}. (6.2)
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In this chapter, a random variable X following (6.2) is denoted by X ∼ GNH(a, α, λ). Ev-

idently, the density function (6.2) does not involve any complicated function. It is a positive
point of the current generalization. It can be proved that the GNH density function is log-
convex if α < 1 and a < 1, and it is log-concave if α > 1 and a > 1. Furthermore,

lim
x→0

f (x; a, α, λ) =


∞, a < 1,
0, a > 1,
α λ, a = 1.

The study of the GHN distribution seems important since it extends some useful distribu-
tions previously studied in the literature. In fact, the NH distribution is obtained by taking
a = 1. The gamma distribution corresponds to α = 1, whereas the exponential distribution is
obtained by taking α = 1 and a = 1. For α = 1, a = η/2 and λ = 2, equation (6.2) reduces
to the chi-squared distribution, where η denotes the degrees of freedom. Figure 6.1 displays
some plots of the density function (6.2) for some parameter values. It is evident that the new
distribution is much more flexible than the NH distribution.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
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α = 0.8, a = 1.5
α = 1.5, a = 0.8
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α = 3, a = 5

Figure 6.1: Plots for the GNH pdf for some parameter values; λ = 1.

We note five motivations for the proposed distribution:
•Ability (or the inability) of the GNH distribution to model data that have their mode fixed

at zero;
• If Y is a Gamma-G (GG) random variable with shape parameters α and a, and scale

parameter λ, then the density in (6.2) is the same as that of the random variable Z = Y −
λ−1 truncated at zero; that is, the GNH distribution can be interpreted as a truncated GG
distribution;
• As we shall see later, the GNH hrf can be constant, decreasing, increasing, upside-down

bathtub (special case, without the constant part) or bathtub-shaped (special case, without the
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constant part);
• Some distributions commonly used for parametric models in survival analysis are special

cases of the GNH distribution, such as the NH, gamma, chi-squared and exponential distribu-
tions;
• It can be applied in some interesting situations as follows: biological and reliability stud-

ies, see Cordeiro et al. (2011a); failure times of fatiguing materials (see Section 6.10), among
others.

The GHN hrf is given by

τ(x; a, α, λ) =
α λ(1 + λx)α−1 [(1 + λx)α − 1]a−1 exp{−[(1 + λx)α − 1]}

Γ(a, (1 + λx)α − 1)
, (6.3)

where Γ(a, z) = Γ(a)− γ(a, z) =
∫ ∞

z ta−1e−tdt. Figure 6.2 displays plots of the GNH hrf for
some parameter values.

The new distribution is easily simulated as follows: if V is a gamma random variable with
shape parameter a > 0, then

X = λ−1
{
(1 + V)1/α − 1

}
has the GNH(a, α, λ) distribution.

6.3 Useful expansions

Expansions for equations (6.1) and (6.2) can be derived using the concept of exponentiated
distributions. Consider the exp-NH distribution with power parameter a > 0 defined by
Y ∼ exp-NH(a, α, λ) with cdf and pdf given by

Ha(x) = {1− exp {1− (1 + λx)α}}a

and

ha(x) = a α λ
(1 + λx)α−1 exp {1− (1 + λx)α}
[1− exp {1− (1 + λx)α}]1−a ,

respectively. Then, equation (6.2) can be expressed as

f (x) =
∞

∑
k=0

bk ha+k(x) = g(x)
∞

∑
k=0

(a + k) bk G(x)a+k−1, (6.4)

where

bk =
(k+1−a

k )

(a + k)Γ(a− 1)

k

∑
j=0

(−1)j+k(k
j) pj,k

(a− 1− j)

and

ha+k(x) = α λ (a + k) (1 + λx)α−1 exp {1− (1 + λx)α} [1− exp {1− (1 + λx)α}]a+k−1
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Figure 6.2: The GNH hrf for some parameter values; λ = 1.

denotes the exp-NH(a + k, α, λ) density function. Equation (6.4) is the main result of this sec-
tion. It reveals that the GNH density function is a mixture of exp-NH densities. So, several
GNH properties can be obtained by knowing those properties of the exp-NH distribution.

The cdf corresponding to (6.4) becomes

F(x) =
∞

∑
k=0

bk Ha+k(x) =
∞

∑
k=0

bk {1− exp [1− (1 + λx)α]}a+k , (6.5)

where Ha+k(x) = {1− exp [1− (1 + λx)α]}a+k denotes the exp-NH cdf with parameters a + k,
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α and λ.

For z ∈ (0, 1) and any real non-integer α, we have

zα =
∞

∑
r=0

sr(α) zr, (6.6)

where

sr(α) =
∞

∑
l=r

(−1)r+l
(

α

l

)(
l
r

)
.

Combining (6.4) and (6.6), we obtain

f (x) = g(x)
∞

∑
r=0

dr G(x)r, (6.7)

where dr = (r + 1)−1 ∑∞
k=0 bk (a + k) sr(a + k− 1).

6.4 Quantile Function

The GNH qf, say Q(u) = F−1(u), can be expressed in terms of the NH qf (QNH(·)). Invert-
ing equation (6.1), it follows the qf of X as

F−1(u) = QGNH(u) = QNH

{
1− exp[−Q−1(a, 1− u)]

}
, (6.8)

for 0 < u < 1, where Q−1(a, u) is the inverse function of Q(a, z) = 1− γ(a, z)/Γ(a). Quantities
of interest can be obtained from (6.8) by substituting appropriate values for u. Further, after
some algebra, the NH qf can expressed as (Nadarajah and Haghighi, 2011)

QNH(u) = λ−1
{
[1− log(1− u)]1/α − 1

}
. (6.9)

By replacing (6.9) in equation (6.8), we obtain

QGNH(u) = λ−1
{[

1− log[1− (1− exp[−Q−1(a, 1− u)])]
]1/α
− 1
}

. (6.10)

The inverse function Q−1(a, u) follows from the Wolfram website as

z = Q−1(a, 1− u) =
∞

∑
i=0

ai ui/a, (6.11)

where a0 = 0, a1 = Γ(a + 1)1/a, a2 = Γ(a + 1)2/a/(a + 1), a3 = (3a + 5)Γ(a + 1)3/a/[2(a +
1)2(a + 2)], etc.

Then, after some algebra using (2.7), (6.9) and (6.11), we obtain

QGNH(u) =
∞

∑
i=0

qi ui/a, (6.12)

where q0 = (q0 − 1)λ−1, qi = qiλ
−1 (i ≥ 1). The quantity qi and some other quantities of

interest and algebraic details are given in Appendix A. Equations (6.10)-(6.12) are the main
results of this section.
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6.5 Moments

The ordinary and incomplete moments of X can be immediately obtained from the mo-
ments of Y having the exp-NH(a, α, λ) distribution. Thus, we can write from (6.4)

µ′n = E(Xn) =
∞

∑
k=0

bk E(Yn
k ).

Using the moments of Yk ∼ exp−NH(a + k) (Lemonte, 2013), we have

µ′n = E(Xn) = λ−n
∞

∑
k=0

bk Rn(α, a + k), (6.13)

where Rn(α, a + k) =
∫ 1

0

{
[1− log(1− u)]1/α − 1

}n ua+k−1 du is an integral to be computed
numerically.

Alternatively, we can write µ′n in closed-form, based on the quantity E(Yn
k ) (Lemonte, 2013),

as

µ′n = λ−n(a + k)
∞

∑
j,k=0

n

∑
i=0

(−1)n+j−i (a + k) ej+1 bk

(j + 1)i/α+1

(
a + k− 1

j

)(
n
i

)
Γ
(

i
α
+ 1, j + 1

)
, (6.14)

where Γ(a, x) =
∫ ∞

x za−1 e−z dz.
Let Tn(y) denote the nth incomplete moment of X. That is, Tn(y) =

∫ y
0 xn f (x) dx. From

equation (6.4), we can write

Tn(y) =
∞

∑
k=0

bk TNH
n (y, a + k), (6.15)

where TNH
n (y, a+ k) denotes the incomplete moment of Yk. In Lemonte (2013), two expressions

for TNH
n (y, a + k) are given. The first one is

TNH
n (y, a + k) = (a + k)λ−n

∫ ∞

1−exp1−(1+λy)α

{[
1− log(1− u)

]1/α
− 1
}n

ua+k−1 du,

which involves numerical integration. The second one is given in closed-formed as

TNH
n (y, a + k) = λ−n

∞

∑
j,k=0

n

∑
i=0

(−1)n+j−i (a + k) ej+1 bk

(j + 1)i/α+1

(
a + k− 1

j

)(
n
i

)
×

× Γ
(

i
α
+ 1, (j + 1)(1 + λy)α

)
.

Using the incomplete first moment, we can derive the mean deviations of X about the mean
µ′1 and about the median M as, respectively,

δ1 = 2
[
µ′1 F(µ′1)− T1(µ

′
1)
]

and δ2 = µ′1 − 2T1(M). (6.16)

For a positive random variable X, the Bonferroni and Lorenz curves are defined by B(π) =

T1(q)/(πµ′1) and L(π) = T1(q)/µ′1, respectively, where q = F−1(π) = QGNH(π) comes from
the qf (6.10) for a given probability π.
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Figure 6.3: Bonferroni and Lorenz curves for some parameter values.

Next, we obtain the probability weighted moments (PWMs) of X. The primary use of these
moments is to estimate the parameters of a distribution whose inverse can not be expressed
explicitly. The (s, p)th PWM of X is formally defined as

ξs, p = E[Xs F(X)p] =
∫ ∞

0
xs F(x)p f (x)dx.

Using equations (2.7), (6.4) and (6.5), we have

ξs,p =
∞

∑
r,s,m,i=0

ςp,r ωr,s,m,i Γ
(m

α
+ 1, 1

)
, (6.17)

where

ωr,s,m,i =
∞

∑
j,k,l,n=0

(−1)i+j+n+m+s−1 α dl

λs k! (αi + 1)

(
k
i

)(
l + r

j

)(
α− 1

n

)(
s + n

m

)
,

dl is defined in Section 6.3, vm = ∑∞
k=0 bk sm(a + k), sm(a + k) is given in Section 6.3, ςp,r =

(rv0)−1 ∑r
m=1[m(p + 1)− r] vm ςp,r−m (for r ≥ 1) and ςp,0 = vp

0 .
Equations (6.13), (6.14), (6.15) and (6.17) are the main results of this section.
To illustrate the behaviour of the skewness and kurtosis as functions of the parameters,

Figure 6.5 displays the Galton’s skewness (Johnson et al, 1994, p. 40) and Moors’ kurtosis
(Moors, 1988) for a selected values of a and α, with λ = 1. These measures are considered more
robust than those usual skewness and kurtosis measures and they exist even for distributions
without moments. The Galton’s skewness is given by

G =
Q
( 3

4

)
+ Q

( 1
4

)
− 2Q

( 1
2

)
Q
( 3

4

)
−Q

( 1
4

) ,

whereas the Moors kurtosis is given by

M =
Q
( 3

8

)
−Q

( 1
8

)
+ Q

( 7
8

)
−Q

( 5
8

)
Q
( 6

8

)
−Q

( 2
8

) .
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Figure 6.5 suggests that both Galton’s skewness and Moors’ kurtosis increase as α increases,

whereas the behaviour for increasing a seems to be different. Also, the parameter a seems to
have a much smaller effect in these quantities than α.
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Figure 6.4: Galton’s skewness and Moor’s kurtosis for the GNH distribution.

6.6 Generating function

A first representation for the mgf M(t) of X can be based on the qf. We have

M(t) =
∫ 1

0
exp [t QGNH(u)] du.

Expanding the exponential function, using (6.12) and after some algebra, we obtain

M(t) =
∞

∑
i,k=0

dk,i( i
a + 1

) tk

k!
, (6.18)

where dk,i = (i q0)
−1 ∑i

m=1[m(k + 1)− i] qm dk,i−m for k ≥ 1, dk,0 = qk
0, d0,i = 1, qi = qiλ

−1 (for
i ≥ 1), q0 = (q0 − 1)λ−1 and qi and other quantities are defined in Appendix A.

A second representation for M(t) is determined from the exp-NH generating function.
We ca write M(t) = ∑∞

k=0 bk Mk(t), where bk is given in Section 6.3 and Mk(t) is the mgf of
Yk ∼ exp−NH(a + k) given by

Mk(t) =
∞

∑
i,r=0

ηi gi,r tk

r/β + 1
, (6.19)

where ηi = ∑∞
k=0

(−1)i

λk k! (
k
i), gi,r = (rζ0)−1 ∑r

n=1[n(i + 1)− r] ζn gi,r−n, ζr = ∑∞
m=0 fmdm,r, dm,r =

(ra0)−1 ∑r
v=0[v(m + 1)− r] av dm,r−v, fm = ∑∞

j=m(−1)j−m ( j
m)
(
α−1)

j /j!, where
(α−1)j =

(
α−1) (α−1 − 1

)
. . .
(
α−1 − j + 1

)
is the descending factorial. Other quantities and

details about (6.19) are provided in Appendix B.
Equations (6.18) and (6.19) are the main results of this section.
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6.7 Order statistics

Suppose X1, . . . , Xn is a random sample from the standard GNH distribution and let X1:n <

· · · < Xn:n denote the corresponding order statistics. Using (6.4) and (6.5), the pdf of Xi:n can
be expressed as

fi:n(z) =
n!

(i− 1)!(n− i)!

n−i

∑
j=0

(−1)j
(

n− i
j

)
×

×
[

g(z)
∞

∑
r=0

(a + r) br G(z)a+r−1

] [
∞

∑
k=0

bk G(z)a+k

]i+j−1

,

where the coefficients b′ks are given in Section 6.3. Based on equations (2.7) and (2.8), we obtain[
∞

∑
k=0

bk G(z)a+k

]i+j−1

=
∞

∑
k=0

ηi+j−1,k G(z)a+k,

where ηi+j−1,0 = κ
i+j−1
0 and ηi+j−1,k = (kb0)−1 ∑k

m=1 [m(i + j)− k] bm ηi+j−1,k−m. Thus, the pdf
of Xi:n reduces to

fi:n(z) = g(z)
∞

∑
k,r=0

mk,r G(z)2a+k+r−1, (6.20)

where

mk,r =
n−i

∑
j=0

(−1)j n! br ηi+j−1,k

(i− 1)! (n− i− j)! j!
.

Equation (6.20) can be expressed as

fi:n(z) =
∞

∑
k,r=0

fk,r h2a+k+r(x), (6.21)

where

fk,r =
mk,r

2a + k + r
.

Equation (6.21) is the main result of this section. It reveals that the pdf of the GNH order
statistics is a double linear combination of exp-NH densities with parameters 2a + k + r, α

and λ. So, several mathematical quantities of the GNH order statistics such as ordinary and
incomplete moments, mgf and mean deviations can be obtained from those quantities of the
exp-NH distribution.

6.8 Entropies

Entropy can be understood as a measure of variation or uncertainty of a random variable
X. The Rényi and Shannon entropies are the two more common measures (Shannon, 1948;
Rényi, 1961). The Rényi entropy of a random variable with pdf f (x;θ) is defined as

HR,c(θ) =
1

1− c
log
{

E
[

f c−1(X;θ)
]}

=
1

1− c
log
(∫ ∞

0
f c(x;θ)dx

)
, (6.22)
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for c > 0 and c 6= 1.

The Shannon entropy of a random variable X is defined by HS(θ) = E {− log [ f (X;θ)]}. It
is the special case of the Rényi entropy when c ↑ 1.

Direct calculation yields that the Shannon entropy of the random variable X as

HS(θ) = − { log(α) + log(λ) − log[Γ(a)] } − (α − 1) E [log(1 + λ X)] − 1 + E (1 + λ X)α

− (a − 1) E log[(1 + λX)α − 1].

Next, we obtain an expansion for the GNH Rényi entropy. From a result by Lemonte and
Cordeiro (2011)

xλ =
∞

∑
j=0

f j xj,

where

f j = f j(λ) =
∞

∑
k=j

(−1)k−j
(

k
j

)
(λ)k

k!
,

and from equation (6.7), we can write

f c(x) = gc(x)

(
∞

∑
r=0

dr Gr(x)

)c

= gc(x)
∞

∑
j=0

f j

(
∞

∑
r=0

dr Gr(x)

)j

.

By applying equation (2.7), we have

f c(x) = gc(x)
∞

∑
j,r=0

f j cj,r︸ ︷︷ ︸
wj,r

Gr(x) =
∞

∑
j,r=0

wj,r gc(x) Gr(x).

Finally, using the above result in (6.22), the Rényi entropy can be reduced to

HR,c(θ) =
1

1− c
log

(
∞

∑
j,r=0

wj,r

∫ ∞

0
gc(x) Gr(x)dx

)

=
1

1− c
log

{
∞

∑
j,r=0

wj,r EY

[
gc−1(Y) Gr(Y)

]}
,

where EY denotes the expected value based on the exp-NH random variable Y defined at the
beginning of Section 6.3.

6.9 Maximum likelihood estimation

Here, we propose a method for obtaining the maximum likelihood estimates (MLEs) of the
GNH model parameters. Let x1, . . . , xn be a sample of size n from X ∼ GHN(a, α, λ). The
log-likelihood function for the vector of parameters θ = (a, α, λ)> can be expressed as

`(θ) = n { log(α) + log(λ) − log[Γ(a)] } + (α − 1)
n

∑
i=1

log(1 + λ xi) + n −
n

∑
i=1

(1 + λ xi)
α

+ (a − 1)
n

∑
i=1

log[(1 + λxi)
α − 1].
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The components of the score vector are given by

Uθ = (Ua, Uα, Uλ )
> =

( d`(θ)
da

,
d`(θ)

dα
,

d`(θ)
dλ

)>
,

Ua = − n Ψ(0)(a) +
n

∑
i=1

log[ (1 + λ xi)
α − 1 ],

Uα =
n
α
+

n

∑
i=1

log(1 + λ xi) − ∑
i=1

(1 + λ xi)
α log(1 + λ xi) +

+ (a− 1)
n

∑
i=1

(1 + λ xi)
α log(1 + λ xi)

(1 + λ xi)α − 1

and

Uλ =
n
λ

+ (α − 1)
n

∑
i=1

(
xi

1 + λ xi

)
− α

n

∑
i=1

xi (1 + λ xi)
α−1 + α (a− 1)×

×
n

∑
i=1

[
xi (1 + λ xi)

α−1

(1 + λ xi)α − 1

]
,

where Ψ(·) is the digamma function.
Setting these equations to zero, U(θ) = 0, and solving them simultaneously yields the

MLE θ̂ of θ, under some regularity conditions. These equations can not be solved analytically
but statistical software to compute them numerically using iterative techniques such as the
Newton-Raphson algorithm are available. For interval estimation of the model parameters,
we use the 3× 3 total observed information matrix J(θ) given by

J(θ) =

 Jaa Jaα Jaλ

• Jαα Jαλ

• • Jλλ

 =


d2`(θ)
da da

d2`(θ)
da dα

d2`(θ)
da dλ

• d2`(θ)
dα dα

d2`(θ)
dα dλ

• • d2`(θ)
dλ dλ

 ,

whose elements are

Jaa = − n Ψ(1)(a), Jaα =
n

∑
i=1

(1 + λ xi)
α log(1 + λ xi)

(1 + λ xi)α − 1
, Jaλ = α

n

∑
i=1

xi (1 + λ xi)
α−1

(1 + λ xi)α − 1
,

Jαα = − n
α2 − ∑

i=1
(1 + λ xi)

α log2(1 + λ xi)

+ (a− 1)
n

∑
i=1

{
(1 + λ xi)

α log2(1 + λ xi) [(1 + λ xi)
α − 1] − (1 + λ xi)

2α log2(1 + λ xi)

[ (1 + λ xi)α − 1 ]2

}
,

Jαλ =
n

∑
i=1

(
xi

1 + λ xi

)
− α

n

∑
i=1

xi (1 + λ xi)
α−1 log(1 + λ xi) −

n

∑
i=1

xi (1 + λ xi)
α−1

+ (a− 1)
n

∑
i=1

{
α xi (1 + λ xi)

α−1 log(1 + λ xi) + xi (1 + λ xi)
α−1

(1 + λ xi)α − 1

− α xi (1 + λ xi)
2α−1 log(1 + λxi)

[(1 + λ xi)α − 1]2

}
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and

Jλλ = − n
λ2 − (α − 1)

n

∑
i=1

(
xi

1 + λ xi

)2

− α (α − 1)
n

∑
i=1

x2
i (1 + λ xi)

α−2

+ α (a− 1)
n

∑
i=1

xi

{
(α− 1) xi (1 + λ xi)

α− 2 [(1 + λ xi)
α − 1] − α xi (1 + λ xi)

2α− 2

[ (1 + λ xi)α − 1 ]2

}
.

Under standard regularity conditions (Cox and Hinkley, 1974) that are fulfilled for parame-
ters in the interior of the parameter space but not on the boundary, the multivariate normal
N3(0, J(θ̂)−1) distribution can be used to construct approximate confidence intervals for the
parameters.

6.10 Applications to real data

We conduct two applications of the GNH distribution to real data for illustrative purposes.
We estimate the unknown parameters of the fitted distributions by the maximum-likelihood
method as discussed in Section 6.9. All computations were done using the Ox matrix pro-
gramming language (for more details see Doornik, 2006). The first example is a data set from
Nichols and Padgett (2006) consisting of 100 observations on breaking stress of carbon fibres
(in Gba). For the second example, we consider the data set consisting of the number of suc-
cessive failures for the air conditioning system of each member in a fleet of 13 Boeing 720 jet
airplanes (Proschan, 1963). Obviously, due to the genesis of the GNH distribution, the posi-
tive data are by excellence ideally modelled by this distribution. Thus, the use of the GNH
distribution for fitting these two data sets is well justified.

Table 6.1 provides some descriptive measures for the two data sets, which include central
tendency statistics, standard deviation (SD), skewness (CS) and kurtosis (CK), among others.

Table 6.1: Descriptives statistics.
Statistic Real data sets

stress carbon fibres number sucessive of failures
Mean 2.621 92.704
Median 2.700 54.000
Mode 2.170 14.000
SD 1.014 107.916
CS 0.374 2.122
CK 0.173 4.938
Minimum 0.390 1.000
Maximum 5.710 603.000

One of the important device which can help selecting a particular model is the total time
on test (TTT) plot (for more details see Aarset, 1987). This plot is constructed through the
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quantities

T(i/n) =

[
i

∑
j=1

Xj:n + (n− i)Xi:n

]
/

n

∑
j=1

Xj:n versus i/n,

where i = 1, . . . , n and Xj:n is the j-th order statistics of the sample (Mudholkar et al., 1996).
The TTT plots for the fibres data and for the number of successive failure data are pre-

sented in Figure 6.5. The TTT plot for the fibres data in Figure 6.5(a) indicates a decreasing
hrf, whereas the TTT plot for the number of sucessive failure data in Figure 6.5(b) reveals
an upside-down bathtub hrf. Therefore, these plots indicate the appropriateness of the GNH
distribution to fit these data, since the new model can present both forms of the hrf.
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Figure 6.5: TTT plots – (a) stress carbon fibres data; (b) number of sucessive failures air condi-
tioning system data.

The three-parameter GeGa, (Stacy, 1962), exp-NH (Lemonte, 2013) and gamma exponen-
tiated exponential (GEE) (Ristić and Balakrishnan, 2012) distributions are also fitted to these
data. Their densities are given by

fGeGa(x) =
α λαa

Γ(a)
xαa−1 exp[−(λx)α], x > 0,

fexp−NH(x) = a α λ
(1 + λx)α−1 exp {1− (1 + λx)α}
[1− exp {1− (1 + λx)α}]1−a , x > 0,

fGEE(x) =
λ αa

Γ(a)
e−λx(1− e−λx)α−1[− log(1− e−λx)]a−1, x > 0,

respectively, where λ > 0, α > 0 and a > 0 are parameters.
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Table 6.2 lists the MLEs (and the corresponding standard errors in parentheses) of the pa-

rameters of the four fitted distributions to both data sets. From the figures of Table 6.2, for the
stress carbon fibres data set, we note that α̂ > 1 and â > 1 for the GNH and exp-NH mod-
els, which implies that the hrf for these distributions are decreasing in accordance with Figure
6.5(a). Further, for the number of successive failure data, we have α̂ < 1 and â > 1 for the
GNH and exp-NH models, implying that the hrf is upside-down bathtub in accordance with
Figure 6.5(b).

Table 6.2: MLEs (standard erros in parenthesis).
Distribution Estimates

stress carbon fibres number of sucessive failures
GNH(α, λ, a) 2.9102 0.2273 3.1231 0.4906 0.0838 1.6009

(2.2944) (0.2677) (0.7864) (0.0955) (0.0795) (0.4855)
GG(α, λ, a) 1.1528 1.7814 2.9543 1.2642 0.3735 5.1353

(0.1335) (0.7722) (0.7690) (5.7261) (0.1747) (4.5431)
exp-NH(α, λ, a) 2.6211 0.1981 4.1170 0.6275 0.0273 1.1007

(0.0632) (0.0365) (0.9971) (0.0080) (0.0262) (0.1291)
GEE(λ, α, a) 0.2697 8.0755 6.1597 0.0001 3.3052 16.6892

(0.0243) (1.1726) (1.0632) (10−6) (0.3448) (1.7474)

Now, we shall apply formal goodness-of-fit tests to verify which distribution fits better
to these real data sets. We consider the Cramér-von Mises (W∗) and Anderson-Darling (A∗),
which are described in details in Chen and Balakrishnan (1995), and Kolmogorov-Smirnov
(KS) statistics. Table 6.3 gives the values of the KS, W∗ and A∗ statistics (and the p-values
of the tests in parentheses) for the data sets. Thus, according to these formal tests, the GNH
model fits the current data better than the other models, i.e., these values indicate that the
null hypothesis is strongly not rejected for the GNH distribution. Thus, according to these
goodness-of-fit tests, the GNH model fits the current data better than the other models. These
results illustrate the potentiality of the GNH distribution and the importance of the additional
shape parameter.

Figure 6.6 and Figure 6.7 display the QQ plot with envelope, which allows us to compare
the empirical distribution with the fitted GNH distribution and plots of the estimated pdf’s
of the fitted GNH, GG, exp-NH and GEE models to these data. They indicate that the GNH
distribution is superior to the other distributions in terms of model fitting. These QQ-plots
support the result obtained by the KS, W∗ and A∗ tests. From these plots, we conclude that
the proposed distribution provides a better fit to these data than the GG, exp-NH and GEE
models.
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Table 6.3: Goodness-of-fit tests.
Distribution stress carbon fibres number of sucessive failures

KS W∗ A∗ KS W∗ A∗

GNH 0.0645 0.0706 0.4132 0.0442 0.0311 0.2401
(0.7998) (0.2720) (0.3317) (0.8554) (0.8316) (0.7735)

GG 0.0793 0.1443 0.7307 0.0443 0.0460 0.3236
(0.5548) (0.0286) (0.0550) (0.8543) (0.5714) (0.5231)

exp-NH 0.0859 0.1100 0.5653 0.0462 0.0671 0.4493
(0.4514) (0.0801) (0.1397) (0.8175) (0.3039) (0.2744)

GEE 0.9997 0.1615 0.8265 0.9959 0.0345 0.2563
(<0.001) (0.0165) (0.0318) (<0.001) (0.7783) (0.7204)
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Figure 6.6: (a) QQ plot with envelope for the GNH distribution and (b) fitted densities of the
GNH (solid line), GG (dashed line), exp-NH (dotted line) and GEE (dotdash line) distributions
for fibre data.
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Figure 6.7: (a) QQ plot with envelope for the GNH distribution and (b) fitted densities of the
GNH (solid line), GG (dashed line) exp-NH (dotted line) and GEE (dotdash line) distributions
for number of successive failures for the air conditioning system.

6.11 Concluding remarks

In this chapter, we propose a new generalized gamma distribution called the gamma-
Nadarajah-Haghighi (GNH) distribution. We demonstrate that the hazard rate function of
the GNH distribution can be increasing, decreasing, bathtub-shaped and upside-down bath-
tub shaped. A detailed study on some mathematical properties of the new distribution is
presented. The model parameters are estimated by maximum likelihood and the observed in-
formation matrix is determined. The potentiality of the new model is demonstrated by means
of two real data sets. In fact, the GNH distribution model fits the two data sets well. We hope
that the proposed model may attract wider applications in statistics.

6.12 Appendix

Appendix A: Quantile function

We derive a power series for QGNH(u) in the following way. First, we use a known power
series for Q−1(a, 1−u). Second, we obtain a power series for the argument 1− exp[−Q−1(a, 1−
u)]. Third, we consider the NH qf given in Nadarajah and Haghighi (2011).
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We introduce the following quantities defined by Cordeiro and Lemonte (2011). Let Q−1(a, z)

be the inverse function of

Q(a, z) = 1− γ(a, z)
Γ(a)

=
Γ(a, z)
Γ(a)

= u.

The inverse function Q−1(a, 1− u) is determined in the Wolfram website 1 as

Q−1(a, 1− u) = w +
w2

a + 1
+

(3a + 5)w3

2(a + 1)2(a + 2)
+

[a(8a + 33) + 31]w4

3(a + 1)3(a + 2)(a + 3)

+
{a(a[a(125a + 1179) + 3971] + 5661) + 2888}w5

24(a + 1)4(a + 2)2(a + 3)(a + 4)
+ O(w6),

where w = [uΓ(a + 1)]1/a. We can write the last equation as in (6.10), where the δ′i ’s are given
by δi = bi Γ(a + 1)i/a. Here, b0 = 0, b1 = 1 and any coefficient bi+1 (for i ≥ 1) can be obtained
from the cubic recurrence equation

bi+1 =
1

i(a + i)

{ i

∑
r=1

i−s+1

∑
s=1

brbsbi−r−s+2 s (i− r− s + 2)
i

∑
r=2

brbi−r+2 r [r− a− (1− a)(i + 2− r)]
}

.

The first coefficients are b2 = 1/(a + 1), b3 = (3a + 5)/[2(a + 1)2(a + 2)], . . .. Now, we present
some algebraic details for the GNH qf, say QGNH(u). The cdf of X is given by (6.1). By invert-
ing F(x) = u, we obtain (6.10). The NH qf is given by (6.9).

So, using (6.11), we have

1 + Q−1(a, 1− u) =
∞

∑
i=0

riui/a,

where r0 = 1 and ri = ai (i ≥ 1).
Now, replacing the last result in (6.10), we obtain

QGNH(u) = λ−1


(

∞

∑
i=0

ri ui/a

)1/α

− 1


By expanding

(
∑∞

i=0 ri ui/a)1/α
and using (2.7) and (2.8), we have(

∞

∑
i=0

ri ui/a

)1/α

=
∞

∑
j=0

fi(α
−1)

(
∞

∑
i=0

ri ui/a

)j

=
∞

∑
i,j=0

fiεj,iui/a,

where f j(α
−1) = ∑∞

k=j(−1)k−j (k
j) (α

−1)k/k!, (α−1)k = α−1(α−1 − 1) . . . (α−1 − k + 1) is the de-

scending factorial, εj,i = (ir0)−1 ∑i
m=1[m(j + 1)− i] rm εj,i−m (for i ≥ 1) and εj,i = rj

0.
Using the last result, we obtain

QGNH(u) =
∞

∑
i=0

qi ui/a,

where q0 = (q0 − 1)λ−1, qi = qiλ
−1 (i ≥ 1) and qi = fi(α

−1)∑∞
j=0 εj,i.

1http://functions.wolfram.com/GammaBetaErf/InverseGammaRegularized/06/01/03/
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Appendix B: Generating function

Here, we present the algebraic details of the second representation for M(t) based on the
quantile power series of X. From equation (6.12), we can write

M(t) =
∫ 1

0
exp [t QGNH(u)] du =

∫ 1

0
exp

[
t

(
∞

∑
i=0

qi ui/a

)]
du,

q0 = (q0 − 1)λ−1, qi = qiλ
−1 (i ≥ 1), qi = fi(α

−1)∑∞
j=0 εj,i, f j = ∑∞

k=j(−1)k−j (k
j) (β)k/k!,

(α−1)k = α−1(α−1 − 1) . . . (α−1 − k + 1) is the descending factorial, εj,i = (ir0)−1 ∑i
m=1[m(j +

1)− i] rm εj,i−m and β = 1/α.
Expanding the exponential function, we have

M(t) =
∫ 1

0

∞

∑
k=0

tk (∑∞
i=0 qi ui/a)k

k!
du =

∞

∑
i,k=0

dk,i( i
a + 1

) tk

k!
,

where dk,i = (i q0)
−1 ∑i

m=1[m(k + 1)− i] qm dk,i−m (for i ≥ 1), dk,0 = qi
0, d0,0 = 1.

Next, we obtain the exp-NH generating function using the exp-NH qf as follows:

Mexp−NH(t) =
∫ 1

0
exp

[
tQexp−NH(u)

]
du =

∫ 1

0
exp{tλ−1[1− log(1− u1/β)]1/α − 1} du.

Expanding the exponential function, we obtain

Mexp−NH(t) =
∞

∑
k=0

tk

λk k!

∫ 1

0

{
[1− log(1− u1/β)]1/α − 1

}k
du, (6.23)

where 1− log(1− u1/β) can be expressed as

1− log(1− u1/β) =
∞

∑
r=0

vr ur/β,

where vr =. Using (2.7) and (2.8), we have(
∞

∑
r=0

vr ur/β

)1/α

=
∞

∑
m=0

fm

(
∞

∑
r=0

vr ur/β

)m

=
∞

∑
m=0

fm

∞

∑
r=0

νm,r ur/β =
∞

∑
m,r=0

fm νm,r ur/β, (6.24)

where fm = ∑∞
j=m(−1)j−m ( j

m)
(
α−1)

j /j!,
(
α−1)

j = (α−1)(α−1 − 1) . . . (α−1 − j + 1) is the de-
cending factorial and νm,r = (rv0)−1 ∑r

n=1[n(m + 1)− r] vnνm,r−n.
Further, using (6.24) and the binomial expansion, we can write{

[1− log(1− u1/β)]1/α − 1
}k

=

(
∞

∑
m,r=0

fm νm,r ur/β − 1

)k

=
∞

∑
i=0

(−1)i
(

k
i

) ( ∞

∑
r=0

γr ur/β

)i

=
∞

∑
i,r=0

(−1)i
(

k
i

)
gi,r ur/β, (6.25)
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where γr = ∑∞

m=0 fm νm,r and gi,r = (rγ0)−1 ∑r
s=1[s(i + 1)− r] γs gi,r−s (for r ≥ 1) and gi,0 = γi

0.
Thus, replacing (6.25) in (6.23), we obtain

M(t) =
∞

∑
k=0

tk

λk k!

∞

∑
i,r=0

(−1)i
(

k
i

)
gi,r

∫ 1

0
ur/β du

=
∞

∑
i,r=0

ηi gi,r tk

r/β + 1
,

where ηi = ∑∞
k=0

(−1)i

λk k! (
k
i).
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CHAPTER 7

The Gamma Extended Weibull Distribution

Resumo

Neste capítulo, estudamos a distribuição tempo de vida de quatro parâmetros denominada
gama Weibull estendida, que generaliza as distribuições de Weibull e Weibull estendida, entre
vários outros. Obtemos expressões explícitas para os momentos incompletos, funções quan-
tílica e geradora, desvios médios, entropias e confiabilidade. O método de máxima verossi-
milhanccã é usado para estimar os parâmetros do modelo. A aplicabilidade do novo modelo é
ilustrada por meio de um conjunto de reais.

Palavras-chave: Desvios médios. Distribuição gama Weibull estendida. Distribuição Weibull
estendida. Estimação de máxima verossimilhança. Função geradora. Função quantílica.

Abstract

We study a four-parameter lifetime distribution named the gamma extended Weibull model,
which generalizes the Weibull and extended Weibull distributions, among several others. We
obtain explicit expressions for the raw and incomplete moments, generating and quantile func-
tions, mean deviations, entropies and reliability. The method of maximum likelihood is used
for estimating the model parameters. The applicability of the new model is illustrated by
means of a real data set.

Keywords: Extended Weibull distribution; Gamma extended Weibull distribution; Generating
function; Maximum likelihood estimation; Mean deviation; Quantile function.
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7.1 Introduction

There are hundreds of continuous univariate distributions and recent developments focus
on constructing wider distributions from classic ones. The two-parameter Weibull has been the
most popular distribution for modeling lifetimes. However, its major weakness is its inabil-
ity to accommodate non-monotone hazard rates. This has led to new generalizations of this
distribution. One of the first extensions allowing for non-monotone hazard rates, including
the bathtub shaped hazard rate function (hrf), is the exponentiated Weibull (Exp-W) distribu-
tion studied by Mudholkar and Srivastava (1993), Mudholkar et al. (1995) and Mudholkar et
al. (1996). It has been well established in the literature that the Exp-W distribution provides
significantly better fits than traditional models based on the exponential, gamma, Weibull and
log-normal distributions. In the last paper, the authors presented a three-parameter extended
Weibull (EW) model to yield a more flexible distribution. Further, Shao et al. (2004) used this
distribution to study flood frequency and Hao and Singh (2008) described some of its appli-
cations in hydrology. We take the EW distribution as the baseline distribution for a further
generalization introduced here.

The three-parameter EW distribution is defined by the pdf and cdf (Mudholkar et al., 1996)

gλ,α,β(x) = λ β xβ−1 (1 + αλ xβ)−
1
α−1, α > 0 and gλ,β(x) = λ β xβ−1 e−λxβ

, α = 0, (7.1)

Gλ,α,β(x) = 1− (1 + αλxβ)−
1
α , α > 0 and Gλ,β(x) = 1− e−λxβ

, α = 0, (7.2)

respectively, where λ > 0 is a scale parameter and α ≥ 0 and β > 0 are shape parameters.
The support of the EW distribution is (0, ∞). The forms of the pdf and cdf when α goes to
zero tend to those ones of the case α = 0. Clearly, the cdf (7.2) extends the Weibull cdf and
this fact justifies the name EW model. Due to the shape parameter α, more flexibility can be
incorporated in model (7.1), which is useful for lifetime data. The survival function associated
to (7.1) is Sλ,α,β(x) = 1− Gλ,α,β(x) for α > 0 and Sλ,β(x) = 1− Gλ,β(x) for α = 0.

A family of univariate distributions generated by gamma random variables was proposed
by Zografos and Balakrishnan (2009) and Ristić and Balakrishnan (2012). For any baseline cdf
G(x), x ∈ R, they defined the gamma-G (GG for short) model with an extra parameter a > 0 by
the pdf and cdf given by

f (x) =
g(x)
Γ(a)

{− log [1− G(x)]}a−1 (7.3)

and

F(x) =
1

Γ(a)

∫ − log[1−G(x)]

0
ta−1 e−t dt = γ1(a,− log [1− G(x)]), (7.4)

respectively, where g(x) = dG(x)/dx, Γ(a) =
∫ ∞

0 ta−1 e−tdt is the gamma function, γ(a, z) =∫ z
0 ta−1e−tdt denotes the incomplete gamma function and γ1(a, z) = γ(a, z)/Γ(a) is the incom-

plete gamma function ratio.
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The GG distribution has the same parameters of the parent G distribution plus one extra

shape parameter a > 0. Each new GG distribution can be determined from a specified G
distribution. For a = 1, the G distribution is a basic exemplar with a continuous crossover
towards cases with different shapes (for example, a particular combination of skewness and
kurtosis).

In this paper, we introduce a new four-parameter model called the “gamma extended Weibull”
(denoted with the prefix “GEW” for short) distribution which contains several distributions as
special models including the EW distribution. This distribution represents only a basic exem-
plar of the GEW distribution. We study some of its mathematical properties. The paper is
outlined as follows. In Section 7.1, we define the GEW distribution and provide some of its
special models. Further, two useful expansions for its density and cumulative distributions
are given in Section 7.2. In Section 7.3, we obtain its quantile function (qf). The generating
function, moments and mean deviations are presented in Sections 7.4, 7.5 and 7.6, respectively.
Closed-form expressions for the Rényi and Shannon entropies are derived in Section 7.7. The
reliability is investigated in Section 7.8. Maximum likelihood estimation of the model param-
eters and some inferential tools are discussed in Section 7.9. The usefulness of the new model
is provided by means of an application to a real data set in Section 7.10. Some conclusions are
offered in Section 7.11.

7.2 The GEW Distribution

By taking the pdf (7.1) and cdf (7.2) of the EW distribution with scale parameter λ > 0 and
shape parameters α ≥ 0 and β > 0, the pdf and cdf of the GEW distribution are obtained from
equations (7.3) and (7.4) (for x > 0) as

f (x; τ, a) =


λ β xβ−1 (1+αλ xβ)−

1
α−1

αa−1 Γ(a)

{
log[(1 + αλ xβ)]

}a−1 , α > 0,
λa β xβa−1 e−λxβ

Γ(a) , α = 0,
(7.5)

F(x; τ, a) =

γ1
(
a, 1

α log[1 + αλ xβ]
)

α > 0,

γ1(a, λxβ), α = 0,
(7.6)

where τ = (α, β, λ). Clearly, when α → 0, the first expressions in (7.5) and (7.6) tend to the
second ones in these equations. For α = 0, we note that the GEW distribution is identical to the
generalized gamma (GG) distribution pioneered by Stacy (1962). Hereafter, a random variable
X having pdf (7.5) is denoted by X ∼GEW(τ, a). Evidently, the density function (7.5) does
not involve any complicated function and the EW distribution arises as the basic exemplar
for a = 1. It is a positive point for the current generalization. The GEW model has several
submodels: the extended Weibull (EW) when a = 1, gamma Weibull (GW) when α = 0,
gamma extended exponential (GEE) when β = 1, extended exponential (EE) when β = a = 1,
gamma exponential (GE) when α = 0 and β = 1, Weibull (W) when α = 0 and a = 1, and
exponential when α = 0 and a = β = 1. We motivate the paper by comparing the performance
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of the GEW distribution and some of its sub-models applied to a real data set in Section 7.10. In
Figure 7.1, we display shapes of the pdf (7.5) for some parameter values. Plots of the density
function (7.5) and its hrf for selected parameter values are displayed in Figures 7.1 and 7.2,
respectively.

The new distribution is easily simulated as follows: if V is a gamma random variable with
parameter a, then

X =
(

α−1 λ−1 {[exp(−V)]−α − 1
})1/β

has the GEW(τ, a) distribution. This generate scheme is straightforward because of the exis-
tence of fast generators for gamma random variables.

7.3 Useful expansions

Expansions for equations (7.5) and (7.6) can be derived using the concept of exponentiated
distributions. The exponentiated extended Weibull (exp-EW) distribution follows by raising the
cdf (7.2) to a power a > 0. Let Y ∼ exp-EW(τ, a) for a > 0 be a random variable having this
distribution. The cdf and pdf of Y are given by

Ha(x; τ) =


[
1− (1 + αλ xβ)−

1
α

]a
, α > 0,[

1− exp(−λ xβ)
]a , α = 0,

and

ha(x; τ) =

a λ β xβ−1 (1 + αλ xβ)−
1
α−1[1− (1 + αλ xβ)−

1
α ]a−1, α > 0,

a λ β xβ−1 e−λxβ
[1− exp(−λ xβ)]a−1, α = 0,

(7.7)

respectively.
Using http://functions.wolfram.com/ GammaBetaErf/ InverseGammaRegularized/ 06/

01/ 03/ 0001/, we can write{
1
α

log
[
1− αλ xβ

]}a−1

= (a− 1)
∞

∑
k=0

(
k + 1− a

k

) k

∑
j=0

(−1)j+k(k
j) pj,k

(a− 1− j)
[1− (1− αλ xβ)−

1
α ]a+k−1,

where a > 0 is a real parameter and the constants pj,k are given recursively by

pj,k = k−1
k

∑
m=1

(−1)m [m(j + 1)− k]
(m + 1)

pj,k−m,

for k = 1, 2, . . . and pj,0 = 1.
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Figure 7.1: Plots of the GEW density.
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Further, for any real parameter a > 0, we define

bk =
(k+1−a

k )

(a + k)Γ(a− 1)

k

∑
j=0

(−1)j+k (k
j) pj,k

(a− 1− j)

and then the first equation in (7.5) can be expressed as

f (x) =
∞

∑
k=0

bk ha+k(x), (7.8)

where ha+k(x) = (a + k) λ β xβ−1 (1 + αλ xβ)−
1
α−1 [1− (1 + αλ x−

1
α )]a+k−1 denotes the

exp-EW(τ, a + k) density function. The cdf corresponding to (7.8) is given by

F(x) =
∞

∑
k=0

bk Ha+k(x),

where Ha+k(x) =
[
1− (1 + αλ xβ)−

1
α

]a+k
represents the exp-EW cdf with parameters α, λ, β

and a + k.
Similarly, we can derive an expansion for the GW density (when α = 0). Using the second

equation in (7.5), we obtain the same expression in (7.8), but the function ha+k(x) denotes, in
the case α = 0, the GEW(τ, a + k) density function given by the second equation of (7.7).

After some algebra using (7.7) in (7.8), we obtain the representation

fGEW(x; τ, a) =


∞
∑

j=0
ej gλ?,α?,β(x) if α > 0,

∞
∑

j=0
ej gλ?,β(x) if α = 0,

(7.9)

where ej = ∑∞
k=0(−1)j (a + k) bk (

a+k−1
j ), gλ?,α?,β(x) denotes the EW pdf with parameters λ? =

(j + 1)λ, α∗ = α/(j + 1) and β and gλ?,β(x) denotes the Weibull pdf with parameters λ? and β.
By integrating (7.9), we obtain

FGEW(x; τ, a) =


∞
∑

j=0
ej Gλ?,α?,β(x) if α > 0,

∞
∑

j=0
ej Gλ?,β(x) if α = 0.

(7.10)

Equations (7.9) and (7.10) are the main formulae of this section. They indicate that the
GEW density function is a linear combination of EW (when α > 0) and Weibull (when α = 0)
densities. So, several GEW structural properties can be obtained from those properties of the
EW and Weibull distributions.

7.4 Quantile Function

First, we consider the general case α > 0. The GEW qf, say Q(u) = F−1(u), can be ex-
pressed in terms of the EW qf (QEW(·)). Inverting F(x) = u given by (7.6), we obtain the qf of
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X (for 0 < u < 1) as

F−1(u) = QGEW(u) = QEW

{
1− exp[−Q−1(a, 1− u)]

}
, (7.11)

where Q−1(a, u) is the inverse function of Q(a, z) = 1− γ1(a, z). Quantities of interest can be
obtained from (7.11) by substituting appropriate values for u. Further, the EW qf is given by

QEW(u) =
{

1− (1− u)α

αλ(1− u)α

}1/β

(7.12)

We can obtain the inverse function Q−1(a, u) in the Wolfram website as

z = Q−1(a, 1− u) =
∞

∑
i=0

ai ui/a,

where a0 = 0, a1 = Γ(a + 1)1/a, a2 = Γ(a + 1)2/a/(a + 1), a3 = (3a + 5)Γ(a + 1)3/a/[2(a +
1)2(a + 2)], etc.

By expanding the exponential function and using (2.7), we obtain

exp

(
−

∞

∑
r=0

arur/a

)
=

∞

∑
r=0

pr ur/a,

where the p′rs are defined in Appendix A. We can write

QGEW(u) =
(

1
αλ

)1/β
[ (

∑∞
r=0 pr ur/a)α

1− (∑∞
r=0 pr ur/a)

α

]−β−1

.

By expanding
(
∑∞

r=0 pr ur/a)α
, we can write QGEW(u) as follows

QGEW(u) =
(

1
αλ

)1/β (∑∞
i=0 τi ui/a

∑∞
i=0 ηi ui/a

)−1/β

,

where τi = ∑∞
s=0 fs ζs,i, ζs,i = (i p0)−1 ∑i

m=0[m(s + 1)− i]pm ζs,i−m, fs = ∑∞
k=s

(−1)k−s (α)k
k! (k

s), (α)k

is the descending factorial, η0 = 1− τ0 and ηr = −τr (r≥ 1).
Now, the ratio between the two power series reduces to

QGEW(u) =
( η0

αλ

)1/β ∞

∑
i=0

γi ui/a =
∞

∑
i=0

γ?
i ui/a. (7.13)

More details about (7.13) and other quantities are given in Appendix A.
Secondly, for the case α = 0, the algebraic calculations are much simpler. The Weibull qf is

given by

QW(u) =
[
−λ−1 log(1− u)

]1/β
. (7.14)

Thus, substituting this result in (7.12) and after some algebra, we obtain

QGW(u) =
∞

∑
j=0

℘?
j uj, (7.15)

where ℘?
j =

( 1
λ

)β−1

℘j, ℘j = ∑∞
k=j(−1)k−j (β−1)k (

k
j)/k! and (a)k = a(a − 1) . . . (a − k + 1)

denotes the descending factorial.
Equations (7.13) and (7.15) are the basic results of this section, since we can obtain from

them several mathematical quantities for the proposed model.
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7.5 Generating Function

We now provide formulae for the moment generating function (mgf) M(t) = E(etX) of X,
using the qf of X obtained in the last section. We consider two different cases. First, for α > 0,
by expanding the exponential function, we have

M(t) =
∞

∑
k=0

bk (a + k)
∫ ∞

0
etx g(x)G(x)a+k−1 dx

=
∞

∑
k=0

bk (a + k)
∫ 1

0
et QEW(u) ua+k−1 du. (7.16)

But, expanding the binomial term in (7.12), we have

QEW(u) =

{
1− (1− u)α

αλ(1− u)α

}1/β

=

(
1

αλ

)1/β
{

1−∑∞
j=0(−u)j (α

j)

∑∞
j=0(−u)j (α

j)

}1/β

=

(
1

αλ

)1/β
{

∑∞
j=0 θj uj

∑∞
j=0 θ j uj

}−1/β

,

where θ0 = 1− θ0, θ j = θj (j ≥ 1) and θj = (−1)j(α
j).

Thus, the ratio between the two power series, we obtain

QEW(u) =
( q0

αλ

)1/β
[

∞

∑
j=0

κj uj

]1/β

=
∞

∑
j=0

νjuj, (7.17)

where

κj +
1
q0

r

∑
j=1

κr−j qj − θr = 0,

ν =
( q0

αλ

)1/β
νj, νj = ∑∞

n=0 gnηn,j, ηn,j = (jκ0)−1 ∑
j
m=1[m(n + 1)− j] κm ηj−m,

gn = ∑∞
i=n

(−1)i−n ( i
n) (−1/β)i
i! and (−1/β)i is descending factorial.
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Thus, replacing the result (7.17) in (7.16), we obtain

M(t) =
∞

∑
k=0

bk (a + k)
∫ 1

0
exp

{
t

∞

∑
j=0

νjuj

}
ua+k−1du

=
∞

∑
k=0

bk (a + k)
∫ 1

0

∞

∑
r=0

tr

r!

(
∞

∑
j=0

νjuj

)r

ua+k−1du

=
∞

∑
k=0

bk (a + k)
∫ 1

0

(
1 +

∞

∑
r=1

∞

∑
j=0

tr

r!
dr,j uj

)
ua+k+j−1du

=
∞

∑
k=0

bk (a + k)
∫ 1

0

(
1 +

∞

∑
j=0

ξ j uj

)
ua+k+j−1du

=
∞

∑
j,k=0

bk (a + k) ξ?j

a + j + k
, (7.18)

where ξ?0 = 1+ ξ0, ξ?j = ξ j (j ≥ 1), ξ j =
tr

r! dr,j, dr,j = (jν0)−1 ∑
j
i=0[i(r + 1)− j] νr dr,j−i, for r ≥ 1

and j ≥ 1 and dr,0 = νr
0.

Secondly, for α = 0, in a similar manner we can obtain the mgf. From (7.14), we obtain

QW(u) =
[
−λ−1 log(1− u)

]1/β
= λ−1/β

(
∞

∑
i=0

(−1)i+2 ui+1

i + 1

)1/β

= u1/β

(
∞

∑
i=0

ψi ui

)1/β

,

where ψi =
(−1)i+2

(i+1)λ .
Thus, expanding the last parenthesis, we have

QW(u) = u1/β
∞

∑
i=0

θi ui,

where θi = ∑∞
n=0 fn ςn,i, ςn,i = (iψ0)−1 ∑i

m=0[m(n + 1)− i]ψi ςn,i−m,

fn = ∑∞
j=n

(−1)j−n (1/β)j
j! ( j

n) and (1/β)j is the descending factorial.
Using the last equation, the mgf for α = 0 is given by

M(t) =
∞

∑
k=0

bk (a + k)
∫ 1

0
et QW(u) ua+k−1 du

=
∞

∑
i,k=0

bk (a + k) ϕ?
i

a + k + i + 1/β
, (7.19)

where ϕ?
0 = 1 + ϕ0, ϕ?

i = ϕi (i ≥ 1), ϕi = ∑∞
l=1 τi tl,i, τl =

tl

l! , tl,i = (iθ0)−1 ∑i
m=1[m(l + 1)−

i] θm tl,i−m for l ≥ 1 and i ≥ 1 and dl,0 = θl
0.

By substituting known parameters in equations (7.18) and (7.19), we can obtain specific
formulae for GEW special models.
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7.6 Moments

Some of the most important features and characteristics of a distribution can be studied
through moments. Consequently, we can obtain from (7.8)

µ′r = E(Xr) =


α
−( r

β+1)
λ
− r

β
∞
∑

j=0
e?j B

(
r
β + 1, j+1

α −
r
β

)
if α > 0 and r < β/α,

λ
− r

β Γ
(

r
β + 1

) ∞
∑

j=0

ej

(j+1)r/β if α = 0,
(7.20)

where e?j = ej (j + 1).
Established algebraic expansions to determine E(Xr) can be more efficient than computing

these moments directly by numerical integration of (7.5), which can be prone to rounding
errors among others. Further, the central moments (µr) and cumulants (κr) of X are determined
from (7.20) by using the well-known relationships

µr =
r

∑
k=0

(
r
k

)
(−1)k µ′k1 µ′r−k and κr = µ′r −

r−1

∑
k=1

(
r− 1
k− 1

)
κk µ′r−k,

respectively, where κ1 = µ′1. Then, κ2 = µ′2 − µ′21 , κ3 = µ′3 − 3µ′2 µ′1 + 2µ′31 , κ4 = µ′4 − 4µ′3µ′1 −
3µ′22 + 12µ′2µ′21 − 6µ′41 , etc. The skewness γ1 = κ3/κ3/2

2 and kurtosis γ2 = κ4/κ2
2 coefficients can

be obtained readily from the second, third and fourth cumulants. Figure 7.3 and 7.4 displays
some plots of the skewness and kurtosis of the GEW model.

For lifetime models, it is of interest to know the rth incomplete moment of X defined by
Tr(y) =

∫ y
0 xr f (x)dx. Moreover, it is simple to verify from (7.9) that Tr(y) (when α > 0) can be

expressed as

Tr(y) =
∞

∑
j=0

ej λ? β ρ(y; r, α?λ?, α?−1
), (7.21)

where
ρ(y; r, p, q) =

∫ y

0
xr (1 + p x)−q−1dx

for r, p, q > 0.
Using Maple, this integral can be determined as

ρ(y; r, p, q) = A(r, p, q)

{
2 yr−q

2F1

(
q−r, q + 1; q + 1− r,− 1

py

)[
B(r, p, q) + C(r, p, q)

]}
,

(7.22)

where 2F1 is the hypergeometric function defined by

2F1(a, b; c; x) =
Γ(c)

Γ(a)Γ(b)

∞

∑
j=0

Γ(a + j)Γ(b + j)
Γ(c + j)

xj

j!
,

A(r, p, q) =
{

p sin[π(q− r)] (q− r) Γ(q + 1) Γ(r + 1− q)
}−1,
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Figure 7.3: Skewness of the GEW distribution for several choices of the parameters.
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Figure 7.4: Kurtosis of the GEW distribution for several choices of the parameters.
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B(r, p, q) = p−q Γ(q + 1) Γ(r + 1− q)

[
cos(qπ) sin(πr)− sin(qπ) cos(πr)

]
,

and

C(r, p, q) = π p−r Γ(r + 1)(q− r).

Combining equations (7.21) and (7.22), we obtain the incomplete moments. For α = 0, Tr(y)
can be expressed as

Tr(y) = λ−r
∞

∑
j=0

ej

(j + 1)r γ(r + 1, (j + 1)λy).

7.7 Mean Deviations

The mean deviations about the mean and about the median can be used as measures of
spread in a population. They are given by δ1 = E(|X − µ′1|) = 2µ′1 F(µ′1) − 2 T1(µ

′
1) and

δ2 = E(|X − m|) = µ′1 − 2 T1(m), respectively, where the mean µ′1 is determined from (7.20)
and T1(·) follows from (7.21) with r = 1 as

T1(y) = λ
∞

∑
j=0

ej ρ(y; 1, α?λ?, α?−1
).

Here, ρ(y; 1, p, q) can be reduced to

ρ(y; 1, p, q) = −[q(q− 1)p2]−1
[
(pqy + 1)
(1 + py)q − 1

]
.

Further, for α = 0, we have

T1(q) =
∞

∑
j=0

ej

(
1

λ?

)1/β ∫ λ?qβ

0
v1/β e−vdv

and then T1(q) becomes

T1(q) =
∞

∑
j=0

ej

(
1

(j + 1)λ

)1/β [
Γ
(

1 +
1
β

)
− γ

(
1 +

1
β

, (j + 1)λqβ

)]
.

Both equations for T1(·) can be used to determine Lorenz and Bonferroni curves defined
by L(π) = T1(q)/µ′1 and B(π) = T1(q)/(π µ′1), respectively, where q = Q(π) is the qf (7.12) at
a given probability π.

7.8 Entropy

The Rényi entropy is defined by

IR(ρ) =
1

1− ρ
log
{∫

f (x)ρdx
}

,



142
where ρ > 0 and ρ 6= 1. For the GEW distribution, the integral in IR(ρ) reduces to

1
1− ρ

[
λβ

αa−1Γ(a)

]ρ ∫ ∞

0
xρ(β−1)(1 + αλxβ)−ρ(1+1/α)[log(1 + αλxβ)]ρ(a−1)dx .

Setting y = x ρ(β−1) and γ = β/[ρ(β − 1)], b = ρ(a − 1) + 1, ξ = α/[α(ρ − 1) + ρ] and δ =

λ[α(ρ− 1) + ρ], we have

IR(ρ) = C
∫ ∞

0
y1/[ρ (β−1)](1 + ξδyγ)−(1+1/ξ)[log(1 + ξδyγ)]b−1dy

= C E{Y1/[ρ (β−1)]} ,

where Y ∼ GEW(ξ, γ, δ, b),

C =
1

ρ (1− ρ)(β− 1)

[
λβ

αa−1Γ(a)

]ρ

,

and E{Y1/[ρ (β−1)]} is given by (7.20) for ρ > α/(β− 1).
For α > 0, the Shannon entropy is given by

− E{log[ f (X)]} = − log(λ)− log(β) + log[Γ(a)] + (a− 1) log(α)− (β− 1)E[log(X)]

+(1 + 1/α)E[log(1 + αλXβ)]− (a− 1)E{log[log(1 + αλXβ)]}.
(7.23)

We now obtain the expectations in the right side of (7.23). Setting y = log(1 + αλXβ), we have

E[log(X)] =
∫ ∞

0
log(x)

λβxβ−1

αa−1Γ(a)
(1 + αλxβ)−(1+1/α)[log(1 + αλxβ)]a−1dx

=
1

βαa Γ(a)

[ ∫ ∞

0
log(ey − 1)e−y/αya−1dy

− log(αλ)
∫ ∞

0
e−y/αya−1dy

]
. (7.24)

The second integral in (7.24) is equal to αaΓ(a). For the first integral, using the power series

log(t) = 2
∞

∑
j=0

1
2j + 1

(
t− 1
t + 1

)2j+1

, for t > 0 ,

we have∫ ∞

0
log(ey − 1) e−y/αya−1dy = 2

∞

∑
j=0

1
2j + 1

∫ ∞

0
(1− 2e−y)2j+1 e−y/α ya−1dy

= 2
∞

∑
j=0

1
2j + 1

2j+1

∑
k=0

(
2j + 1

k

)
(−2)k

∫ ∞

0
e−y(k+1/α) ya−1dy

= 2
∞

∑
j=0

2j+1

∑
k=0

1
2j + 1

(
2j + 1

k

)
(−2)k

(
α

kα + 1

)a

Γ(a) .

Thus,

E[log(X)] =
1
β

[
∞

∑
j=0

2j+1

∑
k=0

2
2j + 1

(
2j + 1

k

)
(−2)k

(kα + 1)a − log(αλ)

]
.
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Also,

E[log(1 + αλXβ)] =
λβ

αa−1Γ(a)

∫ ∞

0
xβ−1(1 + αλxβ)−(1+1/α)[log(1 + αλxβ)]adx

=
λβ

αa Γ(a)

∫ ∞

0
ya e−y/αdy = a λ β α ,

and

E{log[log(1 + αλXβ)]}

=
λβ

αa−1Γ(a)

∫ ∞

0
log[log(1 + αλxβ)] xβ−1 (1 + αλxβ)−(1+1/α)[log(1 + αλxβ)]a−1dx

=
1

αa Γ(a)

∫ ∞

0
ya−1 log(y)e−y/αdy = log(α) + ψ(a) ,

where ψ(.) is the digamma function.
Thus, the Shannon entropy for α > 0 reduces to

−E{log[ f (x)]} = − log(λ)− log(β) + log[Γ(a)] + (α + 1) a λ β− (a− 1)ψ(a)

+
β− 1

β

[
log(αλ)−

∞

∑
j=0

2j+1

∑
k=0

2
2j + 1

(
2j + 1

k

)
(−2)k

(kα + 1)a

]
.

For α = 0, we have

−E{log[ f (x)]} = − a log(λ)− log(β) + log[Γ(a)] + (a β− 1)E[log(X)]− λE(Xβ) .

By setting y = λxβ, we can write

E[log(X)] =
λaβ

Γ(a)

∫ ∞

0
log(x) xaβ−1 exp(−λxβ)dx

=
1

βΓ(a)

∫ ∞

0
[log(y)− log(λ)] ya−1 e−ydy =

1
β
[ψ(a)− log(λ)]

and

E(Xβ) =
λaβ

Γ(a)

∫ ∞

0
xβ(a+1)−1 exp(−λxβ)dx =

a
λ

.

Thus, the Shannon entropy for α = 0 is given by

−E{log[ f (x)]} = − a [1 + log(λ)]− log(β) + log[Γ(a)] +
a β− 1

β
[ψ(a)− log(λ)] .

7.9 Estimation

The maximum likelihood method is used for estimating the parameters of the GEW model.
We determine the maximum likelihood estimates (MLEs) from complete samples only. Let
x1, . . . , xn be a sample of size n from the GEW(α, β, λ, a) distribution. The log-likelihood func-
tion for the vector of parameters θ = (α, β, λ, a)T is given by l(θ) = ∑n

i=1 log[ f (xi)] = ∑n
i=1 li(θ)

where

li(θ) = log(λ) + log(β)− log[Γ(a)]− (a− 1) log(α) + (β− 1) log(xi)

−(1 + 1/α) log(1 + αλxβ
i ) + (a− 1) log[log(1 + αλxβ

i )]. (7.25)
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The components of the score vector U(θ) are given by ∑n

i=1 ∂li(θ)/∂θj, j = 1, . . . , 4, where
θj is substituted by the parameters α, β, λ or a. The elements ∂li(θ)/∂θj, j = 1, . . . , 4, are given
below:

∂li(θ)/∂α = − a− 1
α

+
log(1 + α λ xβ

i )

α2 −
( 1

α + 1) λ xβ
i

1 + α λ xβ
i

+
(a− 1) λ xβ

i

1 + α λ xβ
i log(1 + α λ xβ

i )

∂li(θ)/∂β =
1
β
+ log(xi)−

( 1
α + 1) α λ xβ

i log(xi)

1 + α λ xβ
i

+
(a− 1) α λ xβ

i log(xi)

(1 + α λ xβ
i ) log(1 + α λ xβ

i )
,

∂li(θ)/∂λ =
1
λ
−

( 1
α + 1) α xβ

i

1 + α λ xβ
i

+
(a− 1) α xβ

i

(1 + α λ xβ
i ) log(1 + α λ xβ

i )
,

∂li(θ)/∂a = −ψ(a)− log(α) + log[log(1 + α λ xβ
i )] .

Setting these equations to zero and solving them simultaneously yield the MLEs of the
four parameters. For interval estimation on the model parameters, we require the expected
information matrix. The elements of the 4× 4 total observed information matrix J(θ) = {Jrs},
where r, s ∈ {α, β, λ, a}, are given in Appendix B.

The multivariate normal N4(0, J(θ̂)−1) distribution, where J(θ̂)−1 is the observed informa-
tion matrix evaluated at θ = θ̂, can be used to construct approximate confidence regions for
the parameters.

The likelihood ratio (LR) statistic can be used for comparing the GEW distribution with
some of its special models. We can compute the maximum values of the unrestricted and
restricted log-likelihoods to obtain LR statistics for testing some of its sub-models. In any
case, hypothesis tests of the type H0 :=0 versus H : 6=0, where is a vector formed with some
components of θ and 0 is a specified vector, can be performed using LR statistics.

7.10 Application

In the application, we use Tippett’s (1950) warp break data for six types of weaving warps.
We describe Tippett’s experiment from Tippett (1950, p.105): “The results of a weaving exper-
iment was conducted in a factory. There were 6 lots of warp yarn labelled respectively AL,
AM, etc. They were spun from two growths of cotton, A and B, and each cotton was spun to
three twists (i.e., the number of turns in the yarn per inch): low (L), medium (M), and high
(H). The combination of these three factors give 6 kinds of yarn, which are the experimental
treatments. From each yarn were prepared 9 warps (a warp is a quantity of warp yarn that
goes into one loom as a unit), and, as a loom came available in the course of events, a warp
chosen random from the 54 was assigned to it, until ultimately all 54 were disposed of. More
than one warp was woven in some looms, but that did not upset the randomness of the distri-
bution. The number of warp threads that broke during the waeving of each warp was counted
and expressed as a rate of so many breaks per unit of warp."

We analyse the warp breakage rates for individual warps disregarding the factors. We fit
the GEW model and other sub-models to these data by the method of maximum likelihood.
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The MLEs of the parameters and the AIC (Akaike Information Criterion) measure for the mod-
els are listed in Table 7.1.

Table 7.1: MLEs of the model parameters for the warp breakage rates data (Tippett, 1950), the
corresponding SEs (given in parentheses) and the AIC measure.

Model α λ β a AIC

GEW 0.895137 0.000026 9.792369 23.609396 420.257020
(0.042691) (0.000011) (0.714861) (2.615331)

GW 0 0.008219 1.622223 2.061746 425.080529
(-) (0.000971) (0.025583) (0.071981)

EW 0.104458 0.000192 2.499730 1 427.270840
(0.025452) (0.000032) (0.052776) (-)

W 0 0.000436 2.236797 1 427.436886
(-) (0.000047) (0.029037) (-)

GEE 0.000961 0.190944 1 5.364537 421.924911
(0.013883) (0.026556) (-) (0.502296)

EE 0.000100 0.035669 1 1 472.453098
(0.035378) (0.000717) (-) (-)

GE 0 0.250448 1 6.896945 422.114535
(-) (0.006646) (-) (0.176429)

E 0 0.035666 1 1 470.448845
(-) (0.00066) (-) (-)

The plots of the fitted densities of all models are given in Figure 7.5. They indicate that
the new distribution provides a better fit than the other sub-models. The required numerical
evaluations were implemented by using a R script (sub-routine nlminb that can be found at
http://cran.r-project.org). The data set warpbreaks is available as an R data frame.

A comparison of the new distribution with four of its sub-models using LR statistics is
performed in Table 7.2. These statistics indicate that the new distribution is the most adequate
model to explain the data.

Table 7.2: LR tests for the warp breakage rates data (Tippett, 1950).

Model Hypotheses Statistic LR p-value

GEW vs GW H0 : α = 0 vs H1 : H0 is false 6.823509 0.008996563
GEW vs EW H0 : a = 1 vs H1 : H0 is false 9.013820 0.002679457
GEW vs GEE H0 : β = 1 vs H1 : H0 is false 3.667891 0.055470343
GEW vs GE H0 : α = 0, β = 1 vs H1 : H0 is false 5.857515 0.053463433
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Figure 7.5: Plots of the GEW density and sub-models for the warp breakage rates data (Tippett,
1950).

7.11 Concluding remarks

We introduce a new model named the gamma extended Weibull (GEW) distribution and
study some of its structural properties. It generalizes some important distributions in the li-
terature and provides means of its continuous extension to still more complex situations. The
new model contains several distributions as special models including the extended Weibull
(Mudholkar et al., 1996), gamma Weibull (Zografos and Balakrishnan, 2009) and generalized
gamma (Stacy, 1962. We provide explicit expressions for the density function, ordinary and
incomplete moments, generating and quantile functions, mean deviations, entropies and relia-
bility. The model parameters are estimated by maximum likelihood. The usefulness of the new
model is illustrated by means of an application to real data, where the GEW model provides a
better fit than some of its submodels.
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7.12 Appendix

Appendix A

We derive a power series for QGEW(u) in the following way. First, we use a known power
series for Q−1(a, 1−u). Second, we obtain a power series for the argument 1− exp[−Q−1(a, 1−
u)]. Third, we consider the EW qf to obtain a power series for QGEW(u).

Let Q−1(a, z) be the inverse function of

Q(a, z) = 1− γ(a, z)
Γ(a)

=
Γ(a, z)
Γ(a)

= u.

The inverse function Q−1(a, 1− u) is determined in the Wolfram website 1 as

Q−1(a, 1− u) = w +
w2

a + 1
+

(3a + 5)w3

2(a + 1)2(a + 2)
+

[a(8a + 33) + 31]w4

3(a + 1)3(a + 2)(a + 3)

+
{a(a[a(125a + 1179) + 3971] + 5661) + 2888}w5

24(a + 1)4(a + 2)2(a + 3)(a + 4)
+ O(w6),

where w = [uΓ(a + 1)]1/a. We can write the last equation as

z = Q−1(a, 1− u) =
∞

∑
i=0

ai ui/a, (7.26)

where the a′is are given by ai = bi Γ(a + 1)i/a. Here, b0 = 0, b1 = 1 and any coefficient bi+1 (for
i ≥ 1) can be obtained from the cubic recurrence equation

bi+1 =
1

i(a + i)

{ i

∑
r=1

i−s+1

∑
s=1

brbsbi−r−s+2 s (i− r− s + 2)×

×
i

∑
r=2

brbi−r+2 r [r− a− (1− a)(i + 2− r)]
}

.

The first coefficients are b2 = 1/(a + 1), b3 = (3a + 5)/[2(a + 1)2(a + 2)], . . .. Now, we present
some algebraic details to derive the GEW qf, say QGEW(u). The EW qf is given by

QEW(u) =
{

1− (1− u)α

αλ(1− u)α

}1/β

.

By replacing (7.26) in equation (7.11), we can write

QGEW(u) =

{
1−

{
exp[−Q−1(a, 1− u)]

}α

αλ {exp[−Q−1(a, 1− u)]}α

}1/β

. (7.27)

1http://functions.wolfram.com/GammaBetaErf/InverseGammaRegularized/06/01/03/



148
By expanding the exponential function and using (2.7) and (7.26), we have

exp[−Q−1(a, 1− u)] = exp

(
−

∞

∑
i=0

ai ui/a

)

=
∞

∑
l=0

(−1)l+1

(
∑∞

i=0 ai ui/a)l

l!

= −1 +
∞

∑
i=0

hi ui/a =
∞

∑
i=0

pi ui/a, (7.28)

where p0 = −1+ h0, pi = hi (i≥ 1),hi = ∑∞
l=1

(−1)l+1 fl,i
l! , fl,i = (i a0)−1 ∑i

q=1[q(l + 1)− i] aq fl,i−q

for i ≥ 1 and fl,0 = al
0. Combining (7.27) and (7.28), we obtain

QGEW(u) =

(
1

αλ

)1/β
[ (

∑∞
i=0 pi ui/a)α

1− (∑∞
i=0 pi ui/a)

α

]−1/β

=

(
1

αλ

)1/β ( ∑∞
i=0 τi ui/a

1−∑∞
i=0 τi ui/a

)−1/β

=

(
1

αλ

)1/β (∑∞
i=0 τi ui/a

∑∞
i=0 ηi ui/a

)−1/β

,

where τi = ∑∞
s=0 fs ζs,i, ζs,i = (i p0)−1 ∑i

m=0[m(s + 1)− i]pm ζs,i−m, fs = ∑∞
k=s

(−1)k−s (k
s) (α)k

k! , (α)k

is the descending factorial, η0 = 1− τ0 and ηr = −τr (r≥ 1).
From the quotient of the two power series, we have

QGEW(u) =
( η0

αλ

)1/β
(

∞

∑
i=0

ρi ui/a

)−1/β

=
( η0

αλ

)1/β ∞

∑
i=0

γi ui/a =
∞

∑
i=0

γ?
i ui/a

where

ρi +
1
η0

r

∑
i=1

ρr−i ηi − τr = 0,

γ?
i =

( η0
αλ

)1/β
γi, γi = ∑∞

n=0 gnεn,i, εn,i = (i ρ0)−1 ∑i
m=0[m(n + 1)− i]ρm εn,i−m,

gn = ∑∞
j=n

(−1)j−n ( j
n) (−1/β)j
j! and (−1/β)j is descending factorial.

Appendix B

Let Jθjθk = ∂2l(θ)/∂θj∂θk = ∑n
i=1 ∂2 log[ f (xi)]/∂θj∂θk, for j, k = 1, . . . , 4, be the elements of

the information matrix J(θ), where θj and θk are substituted by the parameters α, β, λ or a. Let
li(θ) = log[ f (xi)] and q(xi) = 1 + αλxβ

i . The quantities ∂2li(θ)/∂θj∂θk are given by
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∂2li(θ)
∂α2 =

a− 1
α2 − 2 log[q(xi)]

α3 +
2 λ xβ

i
α2 log[q(xi)]

+
( 1

α + 1) λ2 x2β
i

{log[q(xi)]}2

−
(a− 1) λ2 x2β

i
{log[q(xi)]}2 log{log[q(xi)]}

−
(a− 1) λ2 x2β

i
{log[q(xi)]}2 {log{log[q(xi)]}}2 ,

∂2li(θ)
∂α∂β

=
λ xβ

i log(xi)

α q(xi)
−

( 1
α + 1) λ xβ

i log(xi)

q(xi)
+

( 1
α + 1) λ2 x2β

i α log(xi)

[q(xi)]2

+
(a− 1) λ xβ

i log(xi)

q(xi) log[q(xi)]
−

(a− 1) λ2 x2β
i α log(xi)

[q(xi)]2 log[q(xi)]

−
(a− 1) λ2 x2β

i α log(xi)

[q(xi)]2 {log[q(xi)]}2 ,

∂2li(θ)
∂α∂λ

=
xβ

i
α q(xi)

−
( 1

α + 1) xβ
i

q(xi)
+

( 1
α + 1) λ x2β

i α

[q(xi)]2
+

(a− 1) xβ
i

q(xi) log[q(xi)]

−
(a− 1) λ x2β

i α

[q(xi)]2 log[q(xi)]
−

(a− 1) λ x2β
i α

[q(xi)]2 {log[q(xi)]}2 ,

∂2li(θ)
∂α∂a

= −1
α
+

λ xβ
i

q(xi) log[q(xi)]
,

∂2li(θ)
∂β2 = − 1

β2 −
( 1

α + 1) α λ xβ
i [log(xi)]

2

q(xi)
+

( 1
α + 1) α2 λ2 x2β

i [log(xi)]
2

[q(xi)]2

+
(a− 1) α λ xβ

i [log(xi)]
2

q(xi) log[q(xi)]
−

(a− 1) α2 λ2 x2β
i [log(xi)]

2

[q(xi)]2 log[q(xi)]

−
(a− 1) α2 λ2 x2β

i [log(xi)]
2

[q(xi)]2 {log[q(xi)]}2 ,

∂2li(θ)
∂β∂λ

= −
( 1

α + 1) α xβ
i log(xi)

q(xi)
+

( 1
α + 1) α2 λ x2β

i log(xi)

[q(xi)]2
+

(a− 1) α xβ
i log(xi)

q(xi) log[q(xi)]

−
(a− 1) α2 λ x2β

i log(xi)

[q(xi)]2 log[q(xi)]
−

(a− 1) α2 λ x2β
i log(xi)

[q(xi)]2 {log[q(xi)]}2 ,

∂2li(θ)
∂β∂a

=
α λ xβ

i log(xi)

q(xi) log[q(xi)]
,

∂2li(θ)
∂λ2 = − 1

λ2 +
( 1

α + 1) α2 x2β
i

[q(xi)]2
−

(a− 1) α2 x2β
i

[q(xi)]2 log[q(xi)]
−

(a− 1) α2 x2β
i

[q(xi)]2 {log[q(xi)]}2 ,

∂2li(θ)
∂λ∂a

=
α xβ

i
q(xi) log[q(xi)]

,
∂2li(θ)

∂a2 = −ψ1(a) ,

where ψ1(a) = d2 log[Γ(a)]/da2 is the trigamma function.
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RISTIĆ, M. M.; BALAKRISHNAN, N. The gamma exponentiated exponential distribution.
Journal of Statistical Computation and Simulation, v. 82, p. 1191–1206, 2012.

SHAO, Q.; WONG, H.; XIA, J.; WAI-CHEUNG, I. Models for extremes using the extended
three-parameter Burr XII system with application to flood frequency analysis. Hydrological Sci-
ences Journal, v. 49, p. 685–702, 2004.

STACY, E. W. A generalization of the gamma distribution. The Annals of Mathematical Statistics,
v. 33, p. 1187–1192, 1962.

TIPPETT, L. H. C. Technological applications of statistics. New York : John Wiley & Sons, 1950. p.
105–106

ZOGRAFOS, K.; BALAKRISHNAN, N. On families of beta- and generalized gamma-generated
distributions and associated inference. Statistical Methodology, v. 6, p. 344–362, 2009.


	Introduction
	The gamma-G family of distributions
	Introduction
	Expansions
	Quantile function
	Moments
	Generating functions
	Entropies
	Order statistics

	An extended Birnbaum-Saunders distribution
	Introduction
	The new distribution
	Useful expansions
	Quantile Function
	Moments
	Generating function
	Other Measures
	Mean deviations
	Reliability

	Order statistics
	Inference and estimation
	Maximum likelihood estimation

	Applications
	Concluding remarks
	Appendix

	A new extension of the normal distribution
	Introduction
	The GN distribution
	 Useful expansions
	Quantile Function
	Moments
	Generating function
	Entropies
	Order statistics
	Estimation
	Applications
	Application 1: Carbohydrates data
	Application 2: Carbon monoxide data

	Concluding remarks
	Appendix

	The gamma Lindley distribution
	Introduction
	The gamma Lindley distribution
	Useful expansions
	Quantile Function
	Moments
	Generating function
	Order statistics
	Estimation
	Applications
	Simulation study
	Applications to real data

	Concluding remarks
	Appendix

	A new generalized gamma distribution
	Introduction
	The new distribution
	Useful expansions
	Quantile Function
	Moments
	Generating function
	Order statistics
	Entropies
	Maximum likelihood estimation
	Applications to real data
	Concluding remarks
	Appendix

	The Gamma Extended Weibull Distribution
	Introduction
	The GEW Distribution
	Useful expansions
	Quantile Function
	Generating Function
	Moments
	Mean Deviations
	Entropy
	Estimation
	Application
	Concluding remarks
	Appendix


