
João Alves Silva Júnior

First Steps in Homotopy Type Theory

Brasil

Fevereiro de 2014

João Alves Silva Júnior

First Steps in Homotopy Type Theory

Dissertação submetida ao Corpo Docente
do Programa de Pós-Graduação do Depar-
tamento de Matemática da Universidade Fed-
eral de Pernambuco como parte dos requi-
sitos para obtenção do grau de Mestre em
Matemática.

Universidade Federal de Pernambuco

Centro de Ciências Exatas e da Natureza

Departamento de Matemática

Orientador: Ruy José Guerra Barreto de Queiroz

Brasil
Fevereiro de 2014

Catalogação na fonte
Bibliotecária Jane Souto Maior, CRB4-571

Silva Júnior, João Alves
First steps in homo t opy type theory / João Alves Si lva

Júnior. - Recife: O Autor, 2014.
58 f., fig.

Orientador: Ruy José Guerra Barretto de Queiroz.
Dissertação (rnestrado) - Universidade Federai de Pernambuco.

CCEN, Matemática, 2014.

Inclui referências.

1. IVlatemaíica. 2. Álgebra. 3. Lógica matemática. I. Queiroz, Ruy
José Guerra Barretto de (orientador). II. Título.

510 CDD(23. ed.) MEI2014-042

Dissertação submetida ao Corpo Docente do Programa de Pós-graduação do

Departamento de Matemática da Universidade Federal de Pernambuco como parte dos

requisitos necessários para a obtenção do Grau de Mestrado em Matemática.

Aprovado: __

Ruy José Guerra Barreto de Queiroz, UFPE

Orientador

 __

Manoel José Machado Soares Lemos, UFPE

 __

Wilson Rosa de Oliveira Junior, UFRPE

FIRST STEPS IN HOMOTOPY TYPE THEORY
Por

João Alves Silva Junior

UNIVERSIDADE FEDERAL DE PERNAMBUCO

CENTRO DE CIÊNCIAS EXATAS E DA NATUREZA

DEPARTAMENTO DE MATEMÁTICA

Cidade Universitária – Tels. (081) 2126 - 8414 – Fax: (081) 2126 - 8410

RECIFE – BRASIL

27 de Fevereiro – 2014

To my parents

Acknowledgements

Above all, I am grateful to my family, especially my parents, João Alves (aka Dão)
and Rosilene, for the steadfast support during all my student’s life.

I would also like to express my gratitude to my adviser Ruy de Queiroz, for
introducing me to this beautiful area of research. Thanks to Manoel Lemos, Wilson Rosa,
and Peter Johnson for the examination of this dissertation and the given commentaries
about it. Not less valuable was the knowledge and the maturity I acquired in the master’s
program, with the professors Tony Sousa, Seyed Hamid, and Fernando Xavier.

I warmly thank my colleagues from DMat/UFPE for the camaraderie and the
exchange of ideas. I am indebted to Jaime for watching my pre-presentation; it was
fundamental in my preparation.

Finally, thanks to Michael Shulman, Thorsten Altenkirch, Vladimir Voevodsky,
among others, for some questions answered via internet.

Recife, Pernambuco
March 2014

João A. Silva Jr.

“Eventually I became convinced that the most interesting and important directions in
current mathematics are the ones related to the transition into a new era

which will be characterized by the widespread use of automated
tools for proof construction and verification.”
– Vladimir Voevodsky (VOEVODSKY, 2010)

Resumo
Em abril de 2013, o Programa de Fundamentos Univalentes do IAS, Princeton, lançou o
primeiro livro em teoria homotópica de tipos, apresentando várias provas de resultados
da teoria da homotopia em “um novo estilo de ‘teoria de tipos informal’ que pode ser
lida e entendida por um ser humano, como um complemento à prova formal que pode
ser checada por uma máquina”. O objetivo desta dissertação é dar uma abordagem mais
detalhada e acessível a algumas dessas provas. Escolhemos como leitmotiv uma versão tipo-
teórica (originalmente proposta por Michael Shulman) de uma prova padrão de π1(S1) = Z
usando espaços de recobrimento. Um ponto crucial dela é o uso do “lema do achatamento”
(flattening lemma), primeiramente formulado em generalidade por Guillaume Brunerie, cujo
enunciado é bem complicado e cuja a prova é difícil, muito técnica e extensa. Enunciamos
e provamos um caso particular desse lema, restringindo-o à mínima generalidade exigida
pela demonstração de π1(S1) = Z. Também simplificamos outros resultados auxiliares,
adicionamos detalhes a algumas provas e incluímos algumas provas originais de lemas
simples como “composição de mapas preserva homotopia”, “contrabilidade é uma invariante
homotópica”, “todo mapa entre tipos contráteis é uma equivalência”, etc.

Palavras-chaves: teoria homotópica de tipos. fundamentos univalentes. grupo fundamen-
tal do círculo. lema do achatamento. cobertura universal do círculo.

Abstract
In April 2013, the Univalent Foundations Program, IAS, Princeton, released the first
book on homotopy type theory, presenting several proofs of results from homotopy theory
in “a new style of ‘informal type theory’ that can be read and understood by human
beings, as a complement to a formal proof that can be checked by a machine.” The
objective of this dissertation is to give a more detailed and accessible approach to some
of these proofs. We have chosen as leitmotif a type-theoretic version (originally proposed
by Michael Shulman) of a standard proof of π1(S1) = Z using covering spaces. A crucial
point of it is the use of the flattening lemma, firstly formulated in generality by Guillaume
Brunerie, whose statement is very complicated and whose proof is difficult, very technical
and extensive. We state and prove a particular case of this lemma, restricting it to the
minimum generality required by the proof of π1(S1) = Z. We also simplify other auxiliary
results, add missing details to some proofs, and include some original proofs of simple
lemmas such as “composition of maps preserves homotopy,” “contractibility is a homotopy
invariant,” “every map between contractible types is an equivalence,” etc.

Keywords: homotopy type theory. univalent foundations. fundamental group of the circle.
flattening lemma. universal cover of the circle.

List of Figures

Figure 1 – Commutative diagram for the path lifting property. The symbol i0
denotes the natural inclusion i0(?) = 0. 38

Figure 2 – Commutative diagram for the homotopy lifting property. The symbol
i0 denotes the natural inclusion i0(x) = (x, 0). 40

Contents

0 INTRODUCTION . 10
0.1 Summary on informal type theory . 11
0.1.1 Function types, or ∏-types . 11
0.1.2 Pair types, or ∑-types . 12
0.1.3 Identity types . 13
0.1.4 Propositions as types . 15

1 PATHS AND HOMOTOPIES . 16
1.1 Path operations . 16
1.2 Action of a function on a path . 18
1.3 Generic transport lemmas . 19
1.4 Homotopies between maps . 20

2 EQUIVALENCES . 23
2.1 Homotopy equivalences . 23
2.2 Function extensionality and univalence 27

3 IDENTITY TYPES OF ∑- AND ∏-TYPES 31
3.1 Specific transport lemmas . 31
3.2 Characterizations of identity types . 32
3.2.1 Dependent pair types and non-dependent function types 32
3.2.2 Dependent function types . 37
3.3 Type families as fibrations . 38

4 CONTRACTIBILITY AND FIBERWISE EQUIVALENCES 42
4.1 Contractibility . 42
4.2 Fiberwise equivalences . 44

5 THE FUNDAMENTAL GROUP OF THE CIRCLE 49
5.1 Inductive definitions . 49
5.2 The flattening lemma for the universal cover of S1 51
5.3 A proof of π1(S1) = Z . 56

REFERENCES . 58

10

0 Introduction

Homotopy type theory is a recent field of research based on discovered connections
between abstract homotopy theory and the branch of type theory from logic and theoretical
computer science. As observed by Hofmann and Streicher (HOFMANN; STREICHER,
1998), in Martin-Löf intentional type theory (MARTIN-LÖF, 1975; MARTIN-LÖF, 1984;
MARTIN-LÖF, 1998), each type A, endowed with its identity types IdA(a, b), possesses
a non-trivial structure, similar to a groupoid; in fact, a weak ∞-groupoid. Essentially
the same is observed in a topological space when we consider its paths, path homotopies,
homotopies between path homotopies, etc., all up to homotopy. This inspired Voevodsky
(VOEVODSKY, 2006) and (independently) Awodey and Warren (AWODEY; WARREN,
2009) to develop the first works on homotopy type theory.

Voevodsky has constructed a model of type theory, using simplicial sets, that
satisfies a property later called the univalence axiom, because it is now integrated to
homotopy type theory as an axiom. In homotopy type theory, the univalence axiom says
that isomorphic structures may be identified. So, it formalizes a common mathematical
practice. The consequences of this axiom go far. Voevodsky has advocated the so called
Univalent Foundations Program, suggesting new foundations for mathematics on the basis
of homotopy type theory with the univalence axiom.

According (AWODEY, 2012), “the computational implementation of type theory
allows computer verified proofs in homotopy theory”, whereas “homotopy can be used as
a tool to construct models of systems of logic”. Computer scientists and mathematicians
working in various areas are very excited about all the benefits that these connections
promise. As said in (Univalent Foundations Program, 2013),

“One can imagine a not-too-distant future when it will be possible for math-
ematicians to verify the correctness of their own papers by working within
the system of univalent foundations, formalized in a proof assistant, and that
doing so will become as natural as typesetting their own papers in TEX. In
principle, this could be equally true for any other foundational system, but we
believe it to be more practically attainable using univalent foundations (...)”.

In this dissertation, we present some proofs in homotopy type theory which may
serve as an introduction to the subject. Much of the text is heavily based on (Univalent
Foundations Program, 2013).

As prerequisites, we assume some familiarity with topology, the sections 1.1–1.6,
1.11, and 1.12 of (Univalent Foundations Program, 2013), and some parts of (Univalent

Chapter 0. Introduction 11

Foundations Program, 2013, Chapter 6) as indicated in our Chapter 5. For reference,
we summarize in the next section some things about informal type theory. Since we are
primarily interested in Martin-Löf intentional type theory, we sometimes refer to this
particular formulation simply as type theory.

0.1 Summary on informal type theory
Martin-Löf type theory is an extension of the typed λ-calculus. For an introduction

to λ-calculus, we recommend (HINDLEY; SELDIN, 2008).

The basic judgements of type theory are a : A (a has the type A) and a ≡ b : A (a
and b are equal terms of the type A). Here, equality between terms means judgemental
equality, which is the same as definitional equality. This is a syntactic notion (see the last
paragraph before section A.1.1 of (Univalent Foundations Program, 2013)). We usually
write a ≡ b : A as a ≡ b. Expressions of the form A :≡ B are used to define A as being B.

A universe is a type whose elements are types. We call the elements of a given
universe its small types. Each term is associated to a unique small type, i.e., a type which is
not a universe. We denote universes by U0,U1,U2, Since there is a cumulative chain of
universes, in any discussion inside type theory, we may suppose the existence of a universe
U where all the other types are in.

The expression B[u/x] indicates the term B′ obtained by replacing all the free
occurrences of the variable x in B by the term u, changing bound variables to avoid
clashes.

0.1.1 Function types, or ∏-types

In the rules below, B and b may depend on x.

♦ Formation rule: If B : U for any x : A, then ∏(x:A) B : U .

♦ Introduction rule: If b : B for any x : A, then λ(x : A).b : ∏(x:A) B.

♦ Elimination rule: For all f : ∏(x:A)B and all a : A, f(a) : B[a/x].

♦ Computation rule: For all f : ∏(x:A)B and all a : A, (λ(x : A).f(x))(a) ≡ f(a).

♦ Uniqueness rule: If f : ∏(x:A) B, then λ(x : A).f(x) ≡ f .

The elements of ∏(x:A) B are called (dependent) functions or maps. When B does
not depend on x, we denote ∏(x:A) B by A → B. The elements of A → B are called
non-dependent functions.

Chapter 0. Introduction 12

Given any type A, the function idA :≡ λ(x : A).x is called the identity function
on A. Given functions f : A → B and g : ∏(y:B) C(y), with C : B → U , we define the
composite function of f and g by g ◦ f :≡ λ(x : A).g(f(x)). Verify that composition of
functions is associative, i.e., f ◦ (g ◦h) ≡ (f ◦g)◦h whenever these instances of composition
are well-defined.

A type family is a function whose values are types. In other words, a type family is
an element of a type A→ U , for some A : U .

The notation λ(x : A).f(x) is sometimes abbreviated to λx.f(x). Observe the other
notational conventions adopted in (Univalent Foundations Program, 2013, Chapter 1), like

f(x, y) :≡ f(x)(y),∏
x,y:A

B(x, y) :≡
∏

(x:A)

∏
(y:A)

B(x, y),

∏
x:A

B(x)→ C(x) :≡
∏
x:A

(B(x)→ C(x)),

A→ B → C :≡ A→ (B → C).

0.1.2 Pair types, or ∑-types

♦ Formation rule: If A : U and B : A→ U , then ∑(x:A) B(x) : U .

♦ Introduction rule: For all ∑-type S :≡ ∑
(x:A) B(x), with A : U and B : A → U ,

there is a function
intrS :

∏
(x:A)

∏
(y:B(x))

S.

♦ Elimination rule: Given A : U and B : A→ U , let S denote ∑(x:A) B(x). There is a
map indS that gives a function

indS(C, g) :
∏
s:S
C(s)

for each
C : S → U and g :

∏
(x:A)

∏
(y:B(x))

C((x, y)).

♦ Computation rule: In the context of the elimination rule above, if x : A and y : B(x),
then

indS(C, g, (x, y)) ≡ g(x)(y).

We usually denote intrS(x, y) by (x, y). The elements of ∑(x:A) B(x) are called
(dependent) pairs. When B′ : A→ U is a constant function λ(x : A).B for some B : U , we
denote ∑(x:A) B

′(x) by A×B. Types of the form A×B are called product types. Given
A,B : U , the type A×B is said to be the cartesian product of A and B.

Chapter 0. Introduction 13

Observe the notational conventions adopted in (Univalent Foundations Program,
2013, Chapter 1), like ∑

x,y:A
B(x, y) :≡

∑
x:A

∑
y:A

B(x, y),

∑
x:A

B(x)→ C(x) :≡
∑
x:A

(B(x)→ C(x)).

The elimination rule above, together with its computation rule, is also known as the
induction principle, or the dependent eliminator, for dependent pair types. As a particular
case of it, we have the recursion principle, or the non-dependent eliminator, for dependent
pair types, which says that for any type S of the form ∑

(x:A) B(x), there is a map recS
that gives a function

recS(C, g) :≡ indS(λ(s : S).C, g) : S → C

for each
C : U and g :

∏
(x:A)

∏
(y:B(x))

C,

in such a way that
recS(C, g, (x, y)) ≡ g(x)(y),

for any x : A and y : B.

Lemma 0.1. Associated to any type family B : A→ U , there are functions

pr1 :
(∑
x:A

B(x)
)
→ A, pr2 :

∏
w :
∑

(x:A) B(x)
B(pr1(w))

such that pr1((x, y)) ≡ x and pr2((x, y)) ≡ y, for all x : A and y : B(x).

Proof. See (Univalent Foundations Program, 2013, Section 1.6).

0.1.3 Identity types

♦ Formation rule: Given A : U , for any x, y : A, we have IdA(x, y) : U .

♦ Introduction rule: For all A : U and x : A, we have a certain element reflx of
IdA(x, x).

♦ Elimination rule: Given A : U , there is a map ind=A
that gives a function

ind=A
(C, g) :

∏
(x,y:A)

∏
(p:IdA(x,y))

C(x, y, p),

for each
C :

∏
(x,y:A)

∏
(p:IdA(x,y))

U and g :
∏
x:A

C(x, x, reflx).

Chapter 0. Introduction 14

♦ Computation rule: In the context of the elimination rule above,

ind=A
(C, c, x, x, reflx) ≡ g(x).

We often denote IdA(x, y) by x =A y or simply x = y. The elements of IdA(x, y) are
called equalities. Equalities of the form reflx are called reflexivities.

The elimination rule above, together with its computation rule, is also known as
the path induction principle. As a consequence of it, we have the based path induction
principle1, which says that for any A : U and a : A, there is a certain map ind′=A

(a) that
gives a function

ind′=A
(a, C, c) :

∏
(x:A)

∏
(p:a=Ax)

C(x, p)

for each
C :

∏
(x:A)

∏
(p:a=Ax)

U and c : C(a, refla)

in such a way that
ind′=A

(a, C, c, a, refla) ≡ c.

Lemma 0.2 (Propositional uniqueness rule for ∑-types). For any A : U and B : A→ U ,
there is a certain function

uppt :
∏

w:
∑

(x:A) B(x)
(pr1(w), pr2(w)) = w

such that, for all x : A and y : B(x), uppt((x, y)) ≡ refl(x,y).

Proof. Let S denote ∑(x:A) B(x). Consider

g :≡ λ(x : A).λ(y : B(x)).refl(x,y) :
∏

(x:A)

∏
(y:B(x))

C((x, y)),

where C :≡ λ(w : S). ((pr1(w), pr2(w)) = w) : S → U . Define uppt as being indS(C, g).

This is a generalization of the function uppt presented in (Univalent Foundations
Program, 2013, Section 1.5). It would be more correct to denote uppt by upptS, where S
is the involved ∑-type. The same is true for the projection functions pr1 and pr2. But we
usually ignore these details for simplicity.
1 The based path induction principle is also a sufficient condition for the path induction principle, but

for our purposes it suffices to observe the necessity.

Chapter 0. Introduction 15

0.1.4 Propositions as types

There is a correspondence between types and propositions according to which
the expressions ∏(x:A) and

∑
(x:A) are interpreted as ∀x ∈ A and ∃x ∈ A, respectively. In

particular, A×B and A→ B are interpreted as “A and B” and “A implies B,” respectively.
Elements of a type are considered proofs of the correspondent proposition. The negation
of a type A is defined as the type A→ 0, where 0 is the empty type (a type that has no
elements). A type, viewed as a proposition, is true if it is inhabited and false if its negation
is inhabited. Given types A and B, we say that A is a sufficient (repectively, necessary)
condition for B if the type A→ B (respectively B → A) is inhabited. Two types A and B
are said to be logically equivalent if both A→ B and B → A are inhabited.

Since our type theory is constructive, so is its logical interpretation. For instance,
our existential quantifier carry more information than the usual one, because we are not
allowed to claim that something exists without exhibiting it. Hence, a translation of the
axiom of choice into our type theory is automatically true. On the other hand, the law of
double negation and law of excluded middle are not valid here.

16

1 Paths and Homotopies

As the reader probably know, in a topological space X, a path (from x0 ∈ X to
x1 ∈ X) is a continuous function γ : [0, 1] → X (such that γ(0) = x0 and γ(1) = x1).
The image of a path γ in X, called the trace of γ, is usually thought as the trajectory
of a particle with position γ(t) at the instant t. Sometimes we identify the path with its
trace, so that we may assign geometric/physical properties/concepts to paths without
extra definitions. Given paths γ and δ in X with γ(1) = δ(0),

• the inverse path (or simply the inverse) of γ is the path γ−1 given by γ−1(t) = γ(1−t);

• the concatenation (or the composition) of γ and δ is the path γ � δ given by

(γ � δ)(t) =

γ(2t), if 0 ≤ t ≤ 1/2;

δ(2t− 1), if 1/2 < t ≤ 1.

Note that γ−1 is a path from γ(1) to γ(0) with the same trace as γ. And γ � δ is something
like γ followed by δ, each with double velocity.

Let γ and δ be paths in X, with γ(0) = δ(0) and γ(1) = δ(1). A (path) homotopy
from γ to δ is a continuous map H : [0, 1] × [0, 1] → X such that H(s, 0) = γ(s),
H(s, 1) = δ(s), and H(k, t) = γ(k) = δ(k),for all k ∈ 0, 1 and t ∈ [0, 1]. If there is
such a H, we write H : γ ∼ δ, or simply γ ∼ δ, and we say that γ is homotopic to δ
(via H). So, we have defined a binary relation ∼ on set of all paths in X from x1 to
x2, for any x1, x2 ∈ X. This is an equivalence relation and the operations of inversion
and concatenation of paths are well-defined on the equivalence classes. That is, we may
concatenate and invert equivalence classes by operating with (any of) its representatives.
More precisely, if γ ∼ γ′, δ ∼ δ′ and [α] denotes the equivalence class of a given path
α with respect to ∼, then [γ−1] = [γ′−1] and [γ � δ] = [γ′ � δ′], so that we may define
[γ]−1 = [γ−1] and [γ] � [δ] = [γ � δ].

In this chapter, we interpret equalities as paths up to homotopy, i.e., as equivalence
classes of the path homotopy relation. Due to this interpretation, elements of identity
types are often called paths. Reflexivities are interpreted as (and therefore called) constant
paths.

1.1 Path operations

Lemma 1.1. For any type A, there are functions

Chapter 1. Paths and Homotopies 17

(a) pinvA : ∏(x,y:A)(x = y)→ (y = x),

(b) concA : ∏(x,y,z:A)(x = y)→ (y = z)→ (x = z),

called path inversion and path concatenation (or path composition), respectively, such
that pinvA(x, x, reflx) ≡ reflx and concA(x, x, x, reflx, reflx) ≡ reflx, for all x : A.

Proof.

(a) We must construct an element pinvA of the type ∏(x,y:A)(x = y) → (y = x),
which is definitionally equal to ∏(x,y:A)

∏
(p:x=y) C(x, y, p), for C : ∏(x,y:A)

∏
(p:x=y) U

given by C(x, y, p) :≡ (y = x). The definition of pinvA must satisfy the compu-
tation rule reflx ≡ pinvA(x, x, reflx). By path induction, it suffices to exhibit a g :∏

(x:A) C(x, x, reflx) satisfying g(x) ≡ reflx, so that we can define pinvA :≡ ind=A
(C, g).

These conditions are satisfied by g :≡ λ(x : A).reflx. So, the proof is concluded.

(b) Let C1 : ∏(x,y:A)
∏

(p:x=y) U be given by C1(x, y, p) :≡ ∏(z:A)
∏

(q:y=z) x = z. Note that
the type T :≡ ∏(x,y,z:A)(x = y)→ (y = z)→ (z = x), as a proposition, is a necessary
condition for S :≡ ∏

(x,y:A)
∏

(p:x=y) C1(x, y, p). In fact, it is easy to see that these
are logically equivalent, but for our purposes here it is sufficient to observe that we
have a function ψ : S → T , which is defined by ψ(g, x, y, z, p) :≡ g(x, y, p, z), for any
g : S, x, y, z : A, and p : x = y. To prove S by path induction, it suffices to find
an element g1 of the type ∏(x:A) C1(x, x, reflx), which is definitionally equal to R :≡∏

(x,z:A)
∏

(q:x=z)C2(x, z, q), for C2 : ∏(x,z:A)
∏

(q:x=z) U given by C2(x, z, q) :≡ (x = z).
To prove R by path induction, it suffices to construct a g2 : ∏(x:A) C2(x, x, reflx) ≡∏

(x:A)(x = x). The obvious choice is g2 :≡ λ(x : A).reflx. Now, we may define
g1 :≡ ind=A

(C2, g2) : R, g0 :≡ ind=A
(C1, g1) : S and concA :≡ ψ(g0) : T . So, for all

x : A,

concA(x, x, x, reflx, reflx) ≡ g0(x, x, reflx, x, reflx) ≡ g1(x, x, reflx) ≡ g2(x) ≡ reflx.

We usually denote concA(x, y, z, p, q) by p � q and pinvA(x, y, p) by p−1, leaving the
arguments x, y, z : A omitted. We call p � q the concatenation or the composite of p and
q. The path p−1 is called the inverse of p. In the rest of this dissertation, we do more
endpoints omissions like these, without explicit warning. For example, the function apf of
Lemma 1.3 is actually an element of ∏(x,y:A)

∏
(p:x=y) f(x) = f(y) and the notation apf (p)

is an abbreviation for apf (x, y, p).

The proof by path induction given for Lemma 1.1 is too formal and it may be
tedious to prove more complicated claims in that way. More practical styles of proof by
path induction are used in the next lemmas.

Lemma 1.2. For all p : x =A y, q : y =A z, and r : z =A w,

Chapter 1. Paths and Homotopies 18

(a) p = p � refly;

(b) p = reflx � p;

(c) p−1 � p = refly;

(d) p � p−1 = reflx;

(e) (p−1)−1 = p;

(f) p � (q � r) = (p � q) � r.

Proof. By the principle of path induction, it suffices to consider the case when x ≡ y ≡ z

and p ≡ q ≡ r ≡ reflx. But, in this case, all the equalities above hold trivially, with both
sides being judgmentally equal, by the computation rules of concatenation and inversion
of paths.

For example, if x ≡ y, then reflx ≡ refly. Since reflx ≡ reflx � reflx, it follows that
reflx ≡ reflx � refly, so that (reflx = reflx) ≡ (reflx = reflx � refly). Now, by reflreflx : reflx = reflx,
we deduce reflreflx : reflx = reflx � refly. This proves item (a), since we may suppose without
loss of generality that p ≡ reflx (this is the induction hypothesis). More formally,

ind=A
(C, g, x, y, p) : p = p � refly,

where g : ∏(x:A) C(x, x, reflx) and C : ∏(x,y:A)
∏

(p:x=y) U are defined by g(x) :≡ reflreflx and
C(x, y, p) :≡ (p = p � refly).

We outline the proof of one more item and leave the other as exercises to the reader.
Since reflx � reflx ≡ reflx, we have that reflx � (reflx � reflx) ≡ reflx � reflx ≡ (reflx � reflx) � reflx.
Therefore,

reflreflx�(reflx�reflx) : reflx � (reflx � reflx) = (reflx � reflx) � reflx.

From this, by path induction, one obtains a proof for p � (q � r) = (p � q) � r.

1.2 Action of a function on a path
Lemma 1.3. For any f : A→ B and p : x =A y, there is a path apf(p) : f(x) =B f(y).
The function apf defined in this way is such that apf (reflx) ≡ reflf(x) for all x : A.

Proof. Let p : x =A y be arbitrary. By path induction, we may assume without loss of
generality that x ≡ y and p ≡ reflx. Since x ≡ y, we have that f(x) ≡ f(y). Then we
may define apf(p) :≡ reflf(x). Since p ≡ reflx, the computation rule apf(reflx) ≡ reflf(x) is
satisfied.

In the homotopical interpretation of type theory, functions correspond to continuous
maps and apf (p) is the image of the path p under the map f .

Chapter 1. Paths and Homotopies 19

Lemma 1.4. Given f : A→ B, g : B → C, p : x =A y, q : y =A z, and r : z =A w,

(a) apf (p � q) = apf (p) � apf (q);

(b) apf (p−1) = apf (p)−1;

(c) apg◦f (p) = apg(apf (p));

(d) apidA
(p) = p.

Proof. Apply path induction on p and q, using the computation rules of the involved
functions.

We want to generalize Lemma 1.3 for dependent functions, but in this case f(x)
and f(y) may have different types, and we still have no definition for paths between points
of different types. An idea for this generalization is to consider a path between points
u : P (x) and v : P (y) as a path between the elements (x, u) and (y, v) of ∑(a:A) P (a). In
Theorem 3.5, we give another characterization for this notion of paths in a type family.

Lemma 1.5. To each f : ∏(a:A) B(a) and each p : x =A y, we can assign a path

apd′f (p) : (x, f(x)) =∑
(a:A) B(a) (y, f(y))

in such a way that the function apd′f so defined satisfies apd′f(reflx) ≡ refl(x,f(x)) for all
x : A.

Proof. Just apply Lemma 1.3 for the function f ′ : A→ ∑
(a:A) B(a) defined by f ′(x) :≡

(x, f(x)).

1.3 Generic transport lemmas
In this section, we define the operation of transport along a path. We state some

lemmas about transport which will be often used in the rest of this dissertation. The
proofs of these lemmas are simple path inductions, which we have omitted or just outlined.
Other transport lemmas are given in Section 3.1.

Lemma 1.6. For any type family P : A → U , there is a map transpP that assigns a
function transpP (p) : P (x)→ P (y) to each p : x =A y. Moreover, transpP (reflx) ≡ idP (x),
for all x : A.

Proof. In the case when x ≡ y, we have P (x) ≡ P (y), so that we may define transpP (reflx) :≡
idP (x). The general assertion follows immediately by path induction.

Chapter 1. Paths and Homotopies 20

We sometimes use the notation p∗ for transpP (p), leaving the type family P implicit.
Given u : P (x), we call transpP (p, u) the transport of u along p with respect to P .

From the logical viewpoint, Lemma 1.6 tells that any property of x holds for
y provided that x = y. By symmetry of equality (Lemma 1.1(a)), it follows that any
property of y also holds for x when x = y. So, we have that identical objects are logically
indistinguishable.

Lemma 1.7. Given P : A→ U , p : x =A y, and q : y =A z, for any u : P (x), we have a
path

ittranspP (p, q, u) : q∗(p∗(u)) = (p � q)∗(u).

Moreover, ittranspP (reflx, reflx, u) ≡ reflu, for any x : A and u : P (x).

Proof. An easy path induction on p and q.

Corollary 1.8. For all P : A→ U , p : x =A y, u : P (x), and v : P (y), we have paths

(a) ittranspinvP1 (p, u) : p−1
∗(p∗(u)) = u;

(b) ittranspinvP2 (p, v) : p∗(p−1
∗(v)) = v.

Proof. By Lemmas 1.2(c) and 1.1(a), we have a path r : p � p−1 = reflx. Consider e ≡
λ(s : x = x).s∗(u) and observe that ape(r) : (p � p−1)∗(u) = (reflx)∗(u) ≡ idP (x)(u) ≡ u. So,
we may define ittranspinvP (p, u) :≡ ittranspP1 (p, p−1, u) � ape(r). This proves part (a). The
other part is proved analogously.

Lemma 1.9. Given f : A→ B, P : A→ U , p : x =A y, and u : P (f(x)),

transpP◦f (p, u) = transpP (apf (p), u).

Proof. Immediate by path induction on p.

1.4 Homotopies between maps
In set theory, two functions f, g : A→ B are equal if and only if f(x) = g(x) for all

x ∈ A; but a translation of this (logical) equivalence into type theory is not automatically
true (see Section 2.2). More precisely, under the type-theoretic rules so far introduced, we
cannot define a function from ∏

(x:A) f(x) = g(x) to f = g, although there is a map in the
reverse direction. However, if the type ∏(x:A) f(x) = g(x) is inhabited, then f and g are
very similar from the homotopical perspective.

As we have said in Section 1.2, in homotopy type theory, functions between types are
considered continuous maps between topological spaces and proofs of equalities are viewed

Chapter 1. Paths and Homotopies 21

as paths. From this viewpoint, it is natural to consider each element H of ∏(x:A) f(x) = g(x)
as a family of paths γx from f(x) to g(x), with x varying on A. Equivalently, H is a
homotopy between f and g, i.e., a continuous function H : A × [0, 1] → B such that
H(x, 0) = f(x) and H(x, 1) = g(x), for all x ∈ A.

We generalize this notion of homotopy for dependent functions.

Definition 1.1. Let A : U and B : A→ U . Given f, g : ∏(x:A) B(x), a homotopy from f

to g (or between f and g) is a function H : ∏(x:A) f(x) = g(x). We denote

(f ∼ g) :≡
∏
x:A

f(x) = g(x).

The previous definition introduces a binary relation ∼ on each dependent function
type ∏(x:A) B(x). This is an equivalence relation, as we prove now.

Lemma 1.10 (Homotopy between maps is an equivalence relation). Given f, g, h :∏
(x:A) B(x),

(a) f ∼ f ;

(b) if f ∼ g, then g ∼ f ;

(c) if f ∼ g and g ∼ h, then f ∼ h.

Proof. Just verify that

λ(x : A).reflf(x) : f ∼ f

λ(H : f ∼ g).λ(x : A).H(x)−1 : (f ∼ g)→ (g ∼ f)

λ(H1 : f ∼ g).λ(H2 : g ∼ h).λ(x : A).H1(x) �H2(x) : (f ∼ g)→ (g ∼ h)→ (f ∼ h)

Lemma 1.11 (Composition of maps preserves homotopy). Given f1, f2 : A → B and
g1, g2 : B → C, if F : f1 ∼ f2 and G : g1 ∼ g2, then H : g1 ◦ f1 ∼ g2 ◦ f1, where H is
defined by H(x) ≡ apg1(F (x)) �G(f2(x)).

Proof. For all x : A, we have:

g1(f1(x)) = g1(f2(x)) by apg1(F (x))

= g2(f2(x)), by G(f2(x))

so that apg1(F (x)) �G(f2(x)) : g1(f1(x)) = g2(f2(x)), i.e.,

H(x) : (g1 ◦ f1)(x) = (g2 ◦ f2)(x).

Chapter 1. Paths and Homotopies 22

Lemma 1.12 (Homotopies are natural transformations). Given f, g : A→ B, let H be a
homotopy from f to g. For all p : x =A y, we have

H(x) � apg(p) = apf (p) �H(y). (1.1)

Proof. In the case when x ≡ y and p ≡ reflx, the type (1.1) is definitionally equal to

H(x) � reflg(x) = reflf(x) �H(x), (1.2)

which is a necessary condition for H(x) = H(x). In fact, we can define a function

F : (H(x) = H(x))→
(
H(x) � reflg(x) = reflf(x) �H(x)

)
by F (p) :≡ r � p � s, where r : H(x) � reflg(x) = H(x) and s : reflf(x) �H(x) = H(x) are given
by Lemma 1.2. So, since reflH(x) : H(x) = H(x), we see that (1.2) has a proof. Therefore,
by path induction, (1.1) is true for all p : x =A y.

Corollary 1.13. If f : A→ A and H : f ∼ idA, then H(f(x)) = apf (H(x)) for all x : A.

Proof. Replacing (simultaneously) x by f(x), y by x, p by H(x), and g by idA in (1.1), we
have that H(f(x)) �H(x) = apf (H(x)) �H(x). By concatenating both sides of this equality
with H(x)−1 to the right, it follows that

(H(f(x)) �H(x)) �H(x)−1 = (apf (H(x)) �H(x)) �H(x)−1,

by Lemma 1.3. Then, by Lemma 1.2,

H(f(x)) = H(f(x)) � reflf(x) = H(f(x)) � (H(x) �H(x)−1)

= (H(f(x)) �H(x)) �H(x)−1 = (apf (H(x)) �H(x)) �H(x)−1

= apf (H(x)) � (H(x) �H(x)−1) = apf (H(x)) � reflf(x) = apf (H(x)).

23

2 Equivalences

Two topological spaces A and B are said to be homotopy equivalent if there are
continuous maps f : A→ B and g : B → A such that f ◦ g and g ◦ f are homotopic to
the identity maps on B and A, respectively. In Section 2.1, we translate this concept into
type theory and prove some lemmas about it. Next, in Section 2.2, we present the axioms
of function extensionality and univalence.

2.1 Homotopy equivalences

Definition 2.1. A quasi-inverse of a function f : A→ B is a function g : B → A together
with homotopies h : f ◦ g ∼ idB and k : g ◦ f ∼ idA. More precisely, the quasi-inverses of
f : A→ B are all the elements of the type

qinv(f) :≡
∑

g:B→A
((f ◦ g ∼ idB)× (g ◦ f ∼ idA)).

Informally, we say that g : B → A is a quasi-inverse of f : A → B if g ◦ f ∼ idA
and f ◦ g ∼ idB.

Definition 2.2. A (homotopy) equivalence from A to B (or between A and B) is a pair
(f, q), where f : A→ B and q : qinv(f). We denote the type of equivalences from A to B
by A ' B. Symbolically,

(A ' B) :≡
∑

f :A→B
qinv(f).

Thus, if ε : A ' B, then pr2(ε) is a quasi-inverse of pr1(ε), so that pr2(ε, pr1(ε, x)) =
x and pr1(ε, pr2(ε, y)) = y, for all x : A and y : B. Informally, we say that a function
f : A→ B is an equivalence if it has a quasi-inverse. But it is necessary to be careful to
not confuse this informal convention with the official definition, according to which an
equivalence is not a function, but a pair.

Example 2.1. Path inversion is an equivalence. For any x, y : A, the function λ(p : x =
y).p−1 is a quasi-inverse of itself (by Lemma 1.2(e)).

Example 2.2. Concatenations to the right and to the left of a fixed path are equivalences.
More precisely, given a path p : x =A y and points x′, y′ : A, the functions λ(r : x′ = x).r �p
and λ(r : x′ = x).r−1 � p are quasi-inverses of each other, as well as λ(s : y = y′).p � s and
λ(s : y = y′).p � s−1. The verification is immediate by Lemma 1.2.

Chapter 2. Equivalences 24

Example 2.3. Given a type family P : A → U and a path p : x =A y, the function
transpP (p) is an equivalence with quasi-inverse transpP (p−1). In fact, for all u : P (x) and
v : P (y), we have transpP (p−1, transpP (p, u)) = u and transpP (p, transpP (p−1, v)) = v, by
Lemma 1.8.

Definition 2.2 introduces a binary relation ' on U . This is an equivalence relation.

Lemma 2.1 (Homotopy equivalence is an equivalence relation). For all A,B,C : U ,

(a) A ' A;

(b) if A ' B, then B ' A;

(c) if A ' B and B ' C, then A ' C.

Proof.

(a) Just verify that (idA, (idA, (λa.refla, λa.refla))) : A ' A.

(b) Note that if (f, (g, (h, k))) : A ' B, then (g, (f, (k, h))) : B ' A. Moreover, by suc-
cessive applications of Lemma 0.2, every element of A ' B is equal to (f, (g, (h, k)))
for some (specific) f : A → B, g : B → A, h : f ◦ g ∼ idB and k : g ◦ f ∼ idA. So,
we can define a function F : (A ' B)→ (B ' A) by F (v) :≡ (g, (f, (k, h))), where
(f, (g, (h, k))) = v.

(c) Given (f1, (g1, (h1, k1))) : A ' B and (f2, (g2, (h2, k2))) : B ' C, consider

q1 :≡ (λz : C).apf2(h1(g2(z))) � h2(z), (2.1)

q2 :≡ (λx : A).apg1(k2(f1(x))) � k1(x), (2.2)

and verify that (f2 ◦f1, (g1 ◦g2, (q1, q2))) : A ' C. Therefore, we can define a function
G : (A ' B)→ (B ' C)→ (A ' C) by G(v, w) :≡ (f2 ◦ f1, (g1 ◦ g2, (q1, q2))), where
(f1, (g1, (h1, k1))) and (f2, (g2, (h2, k2))), given by Lemma 0.2, are equal to v and w,
respectively.

Definition 2.3. For any v : A ' B and w : B ' C, the previous lemma (items (b) and
(c), respectively) gives equivalences F (v) : B ' A and G(v, w) : A ' C. We denote these
by v−1 and w ◦ v, respectively. We call v−1 the inverse (equivalence) of v and w ◦ v the
composite (equivalence) of v and w.

Informally, one may consider elements of A ' B as functions from A to B that
have quasi-inverses, or denote by f−1 any function from B to A such that both f ◦ f−1

and f ◦ f−1 are homotopic to identity functions, for a given f : A→ B, but we avoid this
kind of abuse, especially when writing symbolically.

Chapter 2. Equivalences 25

Example 2.4. Consider a path p : x =A y and a point z : A. By Examples 2.1 and 2.2, we
have equivalences α : (x = z) ' (z = x) and β : (z = x) ' (z = y) such that pr1(α, r) ≡ r−1

and pr1(β, s) ≡ s � p. Then β ◦ α : (x = z) ' (z = y) satisfies pr1(β ◦ α, r) ≡ r−1 � p.

In the rest of this section, we prove some simple lemmas about equivalences to be
used in the next chapters.

Lemma 2.2. Given a type A and paths p : a =A b and q : c =A d, we have equivalences
α : (a =A c) ' (b =A d) and β : (a =A d) ' (c =A b) such that

pr1(α) ≡ λ(r : a = c).p−1 � r � q, pr2(α) ≡ λ(s : b = d).p � s � q−1,

pr1(β) ≡ λ(r : a = d).q � r−1 � p, pr2(β) ≡ λ(s : c = b).p � s−1 � q.

In particular, if a ≡ b, p ≡ refla, d ≡ c, and q ≡ reflc, then β : (a =A c) ' (c =A a)
and this is essentially Example 2.1. If either p ≡ refla or q ≡ reflc, then α is essentially
Example 2.2.

Proof. It is immediate to verify that pr1(α) ◦ pr2(α), pr2(α) ◦ pr1(α), pr1(β) ◦ pr2(β), and
pr2(β) ◦ pr1(β) are homotopic to identity functions, by Lemma 1.2.

Lemma 2.3 (∑-types are “associative”). For any C :
(∑

(a:A) B(a)
)
→ U , with A : U and

B : A→ U , ∑
(a:A)

∑
(b:B(a))

C((a, b)) '
∑

q:
∑

(a:A) B(a)
C(q). (2.3)

Proof. Let M and N denote the left and the right sides of (2.3), respectively. The idea of
the proof is simply to define f : M → N and g : N →M so that

f((a, (b, c))) ≡ ((a, b), c), g(((a, b), c)) ≡ (a, (b, c)),

and hence

f(g(((a, b), c))) ≡ ((a, b), c), g(f((a, (b, c)))) ≡ (a, (b, c)),

for all a : A, b : B(a), and c : B((a, b)). These conditions hold for

f :≡ λ(v : M).((pr1v, pr1pr2v), pr2pr2v),

g :≡ λ(w : N).(pr1pr1w, (pr2pr1w, pr2w)),

where, for brevity, we have omitted the parentheses around arguments of projection
functions. Observe that

f(g(w)) ≡ ((pr1pr1w, pr2pr1w), pr2w), g(f(v)) ≡ (pr1v, (pr1pr2v, pr2pr2v)).

Chapter 2. Equivalences 26

Moreover, by Lemma 0.2, we have paths

t1(w) : (pr1w, pr2w) = w, t2(w) : (pr1pr1w, pr2pr1w) = pr1w,

s1(v) : (pr1v, pr2v) = v, s2(v) : (pr1pr2v, pr2pr2v) = pr2v,

so that

apα(t2(w)) : ((pr1pr1w, pr2pr1w), pr2w) = (pr1w, pr2w),

apβ(s2(v)) : (pr1v, (pr1pr2v, pr2pr2v)) = (pr1v, pr2v),

where α :≡ λa.(a, pr2w) and β :≡ λb.(pr1v, b). Therefore,

apα(t2(w)) � t1(w) : f(g(w)) = w,

apβ(s2(v)) � s1(v) : g(f(v)) = v.

So, we have constructed homotopies h : f ◦ g ∼ idN and k : g ◦ f ∼ idM given by

h(w) :≡ apα(t2(w)) � t1(w), k(v) :≡ apβ(s2(v)) � s1(v).

Lemma 2.4 (∑-types are “commutative”). For all A : U , B : A → U , and C :(∑
(a:A) B(a)

)
→ U , ∑

(a:A)

∑
(b:B)

C((a, b)) '
∑

(b:B)

∑
(a:A)

C((a, b)). (2.4)

Proof. Let M and N denote the left and the right sides of (2.4), respectively. The idea of
the proof is simply to define f : M → N and g : N →M so that

f((a, (b, c))) ≡ (b, (a, c)), g((b, (a, c))) ≡ (a, (b, c)),

and hence
f(g((b, (a, c))) ≡ (b, (a, c)), g(f((a, (b, c)))) ≡ (a, (b, c)),

for all a : A, b : B(a), and c : B((a, b)). These conditions hold for

f :≡ λ(v : M).(pr1pr2v, (pr1v, pr2pr2v)),

g :≡ λ(w : N).(pr1pr2w, (pr1w, pr2pr2w)).

We leave to the reader the task of constructing homotopies h : f◦g ∼ idN and h : g◦f ∼ idM
as we did in Lemma 2.3.

The next lemma is a version of (Univalent Foundations Program, 2013, Lemma 4.2.3)
in a more direct language.

Lemma 2.5. Given (f, (g, (h, k))) : A ' B, there is a h′ : f ◦ g ∼ idB such that, for any
x : A, apf (k(x)) = h′(f(x)).

Chapter 2. Equivalences 27

Proof. Define h′ :≡ λ(y : B).h(f(g(y)))−1 � (apf (k(g(y))) � h(y)). We need to prove that

apf (k(x)) = h(f(g(f(x))))−1 � (apf (k(g(f(x)))) � h(f(x))), (2.5)

for any x : A. Applying Corollary 1.13 for g ◦ f : A→ A and k : g ◦ f ∼ idA, we have a
path p : k(g(f(x))) = apg◦f (k(x)). Setting µ :≡ λs. apf (s) � h(f(x)), it follows that

apµ(p) : apf (k(g(f(x)))) � h(f(x)) = apf (apg◦f (k(x))) � h(f(x)).

But, by (Lemma 1.4(c))−1, there is a q : apf (apg◦f (k(x))) = apf◦g◦f (k(x)) so that

apν(q) : apf (apg◦f (k(x))) � h(f(x)) = apf◦g◦f (k(x)) � h(f(x)),

for ν :≡ λs. s�h(f(x)). Moreover, by replacing (simultaneously)H with h, x with f(g(f(x))),
g with f , p with k(x), and f with f ◦ g ◦ f in (1.1), we obtain a path

r : h(f(g(f(x)))) � apf (k(x)) = apf◦g◦f (k(x)) � h(f(x)).

So, we can see that (apµ(p) � apν(q)) � r−1 is an inhabitant of the type

apf (k(g(f(x)))) � h(f(x)) = h(f(g(f(x)))) � apf (k(x)).

Concatenating both sides of this equality with h(f(g(f(x))))−1 to the left, it follows that

h(f(g(f(x))))−1 � (apf (k(g(f(x)))) � h(f(x))) = apf (k(x)),

by Lemma 1.2. Hence, (2.5) is true.

2.2 Function extensionality and univalence
The next lemma tells that equality between non-dependent functions is a particular

case of homotopy.

Lemma 2.6. For all A,B : U , f, g : A→ B, and p : f = g, there is a certain homotopy
happly(p) from f to g. The function happly defined in this way satisfies the computation
rule happly(reflf) ≡ λ(x : A).reflf(x).

Proof. Define happly by
happly(p) :≡ λ(x : A).ape(x)(p),

where e(x) :≡ λ(h : A → B).h(x). (It is also easy to define such a homotopy by path
induction.)

As we commented at the beginning of Section 1.4, under the type-theoretic rules
so far presented, we cannot deduce that any two homotopic functions are equal. But we
can assert this as an axiom.

Chapter 2. Equivalences 28

Axiom 2.1 (Function extensionality). The function happly defined in Lemma 2.6 has a
quasi-inverse

funext : (f ∼ g)→ (f = g).

The proof of the part (a) of the next lemma (which is used in the proofs of
Lemmas 4.3, 5.2, and Theorem 4.8) uses the axiom of function extensionality.

Lemma 2.7. Let P and Q be type families over A.

(a) If ∏(x:A) P (x) ' Q(x), then
(∏

(x:A) P (x)
)
'
(∏

(x:A) Q(x)
)
.

(b) If ∏(x:A) P (x) ' Q(x), then
(∑

(x:A) P (x)
)
'
(∑

(x:A) Q(x)
)
.

Proof. Suppose that α : ∏(x:A) P (x) ' Q(x).

(a) Let C and D denote ∏(x:A) P (x) and ∏(x:A) Q(x), respectively. We need to construct
an element (f, (g, (h, k))) of C ' D. In particular, we must give, for each c : C,
a dependent function f(c) : ∏(x:A)Q(x). Note that, for any x : A, we can get an
element of Q(x) by applying pr1(α(x)) : P (x) → Q(x) on c(x) : P (x). So, we may
define

f(c) :≡ λ(x : A).pr1(α(x), c(x)).

Similarly, one verifies that the definition

g(d) :≡ λ(x : A).pr2(α(x), d(x))

is suitable, for each d : D. So, we have constructed f : C → D and g : D → C. Now,
set pr3 :≡ pr1 ◦ pr2 ◦ pr2, pr4 :≡ pr2 ◦ pr2 ◦ pr2, and note that

pr3(α(x), d(x)) : pr1(α(x), pr2(α(x), d(x))) = d(x),

pr4(α(x), c(x)) : pr2(α(x), pr1(α(x), c(x))) = c(x),

for all c : C, d : D, and x : A. Since f(g(d)) ≡ λ(x : A).pr1(α(x), pr2(α(x), d(x)))
and g(f(c)) ≡ λ(x : A).pr2(α(x), pr1(α(x), c(x))), it follows by λ(x : A).c(x) ≡ c and
d ≡ λ(x : A).d(x) that

funext(λ(x : A).pr3(α(x), d(x))) : f(g(d)) = d,

funext(λ(x : A).pr4(α(x), c(x))) : g(f(c)) = c.

Thus, we may define h : f ◦ g ∼ idD and k : g ◦ f ∼ idC by

h(d) :≡ funext(λ(x : A).pr3(α(x), d(x))),

k(c) :≡ funext(λ(x : A).pr4(α(x), c(x))).

Chapter 2. Equivalences 29

(b) In the same spirit of part (a), let V and W denote ∑(x:A) P (x) and ∑
(x:A) Q(x),

respectively. It is easy to see that f : V → W and g : W → V may be defined by

f(v) :≡ (pr1(v), pr1(α, pr2(v))),

g(w) :≡ (pr1(w), pr2(α, pr2(w))).

Moreover,

f(g(w)) ≡ (pr1(g(w)), pr1(α, pr2(g(w))))

≡ (pr1(w), pr1(α, pr2(α, pr2(w))))

= (pr1(w), pr2(w)) by p

= w, by q

where p :≡ apµ(pr3(α, pr2(w))), for µ :≡ λy.(pr1(w), y), and q :≡ uppt(w). (Recall
that pr3 :≡ pr1 ◦ pr2 ◦ pr2.) Analogously, one proves g(f(v)) = v.

The axiom of function extensionality is a consequence of another important axiom,
called the axiom of univalence.

Lemma 2.8. For all A,B : U and p : A =U B, there is a certain equivalence

idtoeqv(p) : A ' B.

The function idtoeqv defined in this way satisfies the computation rule

idtoeqv(reflA) ≡ (idA, (idA, (λa.refla, λa.refla))).

Proof. Consider the function transportX 7→X , where X 7→ X denotes the type family that
sends each type X : U to itself. It assigns to each p : A = B a function transportX 7→X(p)
which has a quasi-inverse transportX 7→X(p−1), by Example 2.3. These mutual quasi-inverses,
together with the respective homotopies, give an equivalence from A to B. We define
idtoeqv(p) as being this equivalence. The verification of the computation rule is immediate.
Another easy way of proving this lemma is by applying path induction on p.

Axiom 2.2 (Univalence). The function idtoeqv defined in Lemma 2.8 has a quasi-inverse
(whose first coordinate is)

ua : (A ' B)→ (A =U B).

The axiom of univalence formalizes the common mathematical practice of identifying
isomorphic structures.

By the homotopies involved in Axiom 2.2, we have

idtoeqv(ua(v)) = v, (2.6)

p = ua(idtoeqv(p)), (2.7)

Chapter 2. Equivalences 30

for all v : A ' B and p : A = B. Note that if q is an element of (2.6), then happly(appr1(q), a)
is an inhabitant of

transportX 7→X(ua(v), a) = pr1(v, a), (2.8)

for all a : A, since transportX 7→X(ua(v)) ≡ pr1(idtoeqv(ua(v))).

31

3 Identity Types of ∑- and ∏-types

In this chapter, we characterize some types IdA(x, y), with A being of the form∑
(z:B) P (z) or the form ∏

(z:B) P (z). Some lemmas about certain forms of transport are
required for this purpose. We have put together these and other similar lemmas into
Section 3.1. In Section 3.3, we interpret the first projection associated to any type family
as a fibration.

3.1 Specific transport lemmas
In Section 1.3, we proved some lemmas about transport with respect to completely

arbitrary type families. Now, we study transport with respect to more specific type families.

Lemma 3.1. For any type B and every path p : x =A y, there is a certain dependent
function

transpconstBp :
∏
b:B

transp(λ(a:A).B)(p, b) = b.

The map p 7→ transpconstBp so defined satisfies transpconstBreflx
≡ λ(b : B).reflb, for all x : A.

Proof. In the case when x ≡ y, we have transp(λ(x:A).B)(reflx, b) ≡ idB(b) ≡ b for all b : B,
so that we may define transpconstBreflx

:≡ λ(b : B).reflb. The general assertion follows
immediately by path induction.

Lemma 3.2. Let A be a type, x1, x2, a : A, and p : x1 = x2.

(a) For all q : a = x1, transpx 7→(a=x)(p, q) = q � p.

(b) For all q : x1 = a, transpx 7→(x=a)(p, q) = p−1 � q.

(c) For all q : x1 = x1, transpx 7→(x=x)(p, q) = p−1 � q � p.

Proof. For the first two items, use path induction on p and based path induction on q.
Recall that based path induction is very similar to ordinary path induction, it says that,
fixed a : A, we prove a claim about every path q : a =A x simply by proving the trivial case
when x ≡ a and q ≡ refla. Of course, given a : A, any claim about every path q′ : x =A a

can be converted into a logically equivalent claim about every path q : a =A x, where
q ≡ p−1 (see Example 2.1). For item (c), it suffices to apply induction on p.

Lemma 3.3. Suppose given a type X, type families A,B : X → U , and a path p : x1 =X x2.
Let A → B denote the element of X → U defined by (A → B)(x) :≡ A(x) → B(x), for

Chapter 3. Identity Types of
∑

- and
∏

-types 32

all x ∈ X. For any f : (A→ B)(x1), we have an element transpfunA→Bp (f) of the type

transpA→B(p, f) = λ(a : A(x2)).transpB(p, f(transpA(p−1, a))).

More concisely,
transpfunA→Bp (f) : p∗(f) = λa.p∗(f(p−1

∗(a))).

In addition, the map p 7→ λ(f : (A→ B)(x1)).transpfunA→Bp (f) so defined is such that, for
all f : (A→ B)(x1), transpfunA→Breflx

(f) is the constant path on transpA→B(reflx, f).

Proof. Suppose x2 ≡ x1. Setting x :≡ x1 ≡ x2, we have, for each f : (A→ B)(x),

transpP (reflx, f) ≡ idA(x)→B(x)(f)

≡ f

≡ λ(a : A(x)).f(a)

≡ λ(a : A(x)).transpB(reflx, f(a))

≡ λ(a : A(x)).transpB(reflx, f(transpA(reflx, a))).

Then, the constant path on transpA→B(reflx, f) is an inhabitant of

transpA→B(reflx, f) = λ(a : A(x)).transpB(reflx, f(transpA(refl−1
x , a))).

The general statement follows immediately by path induction on p.

See Lemma 3.10 for one more result about transport, which would be placed here
if it did not use the function dpair=, defined in the next section.

3.2 Characterizations of identity types

3.2.1 Dependent pair types and non-dependent function types

Theorem 3.4. For all w,w′ : A×B,

(w =A×B w
′) ' (pr1(w) =A pr1(w′))× (pr2(w) =B pr2(w′)). (3.1)

Proof. Let C and D denote the left and right sides of (3.1), respectively. A function
f : C → D is given immediately by path induction with the computation rule f(reflw) =
(reflpr1(w), reflpr2(w)). Now, we have to construct a g : D → C. By path induction (on p and
q), it is easy to verify that there is a certain function

g1 :
∏

(x,x′:A)

∏
(p:x=x′)

∏
(y,y′:B)

∏
(q:y=y′)

(x, y) = (x′, y′),

Chapter 3. Identity Types of
∑

- and
∏

-types 33

which corresponds to a

g2 :
∏

(x:A)

∏
(y,:B)

∏
(x′:A)

∏
(y′:B)

∏
(p:x=x′)

∏
(q:y=y′)

(x, y) = (x′, y′)

≡
∏

(x:A)

∏
(y,:B)

∏
(x′:A)

∏
(y′:B)

(x = x′)→ (y = y′)→ ((x, y) = (x′, y′))

under the evident logical equivalence between the types of these two functions. By applying
the induction principle for product types twice, g2 becomes

g3 :
∏

w,w′:A×B
(pr1(w) = pr1(w′))→ (pr2(w) = pr2(w′))→ (w = w′).

So, for any w,w′ : A×B, g3(w,w′) produces

g : (pr1(w) = pr1(w′))× (pr2(w) = pr2(w′))→ (w = w′),

by the recursion principle for product types. Moreover, g1, g2, g3, and g satisfy the
computation rules

g((p, q)) ≡ g3(w,w′, p, q),

g3((x, y), (x′, y′), p, q) ≡ g2(x, y, x′, y′, p, q),

g2(x, y, x, y, reflx, refly) ≡ g1(x, x, reflx, y, y, refly) ≡ refl(x,y).

To prove that f ◦ g ∼ idD and g ◦ f ∼ idC , consider x :≡ pr1(w), y :≡ pr2(w),
x′ :≡ pr1(w′), and y′ :≡ pr2(w′). Given d : D, let d1 and d2 denote pr1(d) and pr2(d),
respectively. On one hand, we have, by Lemma 0.2:

f(g(d)) = f(g((d1, d2))) ≡ f(g3(w,w′, d1, d2))

= f(g3((x, y), (x′, y′), d1, d2)) ≡ f(g2(x, y, x′, y′, d1, d2)).

On the other hand, by the principle of path induction, we may assume that x ≡ x′, y ≡ y′,
and d ≡ refl(x,y), so that

f(g2(x, y, x′, y′, d1, d2)) ≡ f(g2(x, y, x, y, reflx, refly)) ≡ f(g1(x, x, reflx, y, y, refly))

≡ f(refl(x,y)) ≡ (reflx, refly) ≡ (appr1
(refl(x,y)), appr2

(refl(x,y)))

= refl(x,y) ≡ d,

by uppt(refl(x,y)) (Lemma 0.2). Thus, f ◦ g ∼ idD. Finally, to see that g ◦ f ∼ idC , it suffices
to note that if x ≡ x′ and y ≡ y′, then g(f(refl(x,y))) ≡ g((reflx, refly)) ≡ refl(x,y).

Definition 3.1. Given w,w′ : A×B, we denote by pair= the element of∏
(p:pr1(w)=pr1(w′))

∏
(q:pr2(w)=pr2(w′))

w = w′

defined so that pair=(p, q) is the path from w to w′ that corresponds to (p, q) under the
equivalence from Theorem 3.4. Thus, pair=(refla, reflb) = refl(a,b), for any a : A and b : B.

Chapter 3. Identity Types of
∑

- and
∏

-types 34

Now we generalize Theorem 3.4 for dependent pair types.

Theorem 3.5. For every type family P : A→ U and any w,w′ : ∑(x:A) P (x), we have

(w = w′) '
∑

p:pr1(w)=pr1(w′)
transpP (p, pr2(w)) = pr2(w′). (3.2)

Proof. Let S(w,w′) denote the right side of (3.2), for each w and w′ having the type
T :≡ ∑(x:A) P (x). Fix v : T . We have to construct, for each w : T , two mutual quasi-inverses
fw : (v = w)→ S(v, w) and gw : S(v, w)→ (v = w).

Consider the map c :≡ λ(w : T).(reflpr1(w), reflpr2(w)) : ∏(w:T) C(w,w, reflw), where
C : ∏(w,w′:T)

∏
(r:w=w′) U is defined by C(w,w′, r) :≡ S(w,w′). We have,

ind=T
(C, c) :

∏
(w,w′:T)

∏
(r:w=w′)

C(w,w′, r)

so that we may define

fw :≡ ind=T
(C, c, v, w) :

∏
r:v=w

C(v, w, r) ≡ ((v = w)→ S(v, w)) .

Now, observe that the type
∏

(x,x′:A)

∏
(p:x=x′)

∏
(y:P (x))

∏
(y′:P (x′))

∏
(q:p∗(y)=y′)

(x, y) = (x′, y′) (3.3)

is inhabited. The verification is straightforward by path induction on p and based path
induction on q. Furthermore, (3.3) is logically equivalent to

∏
(x,x′:A)

∏
(y:P (x))

∏
(y′:P (x′))

∏
(p:x=x′)

∏
(q:p∗(y)=y′)

(x, y) = (x′, y′).

So, for all x, x′ : A, y : P (x), and y′ : P (x′), the type ∏(p:x=x′)
∏

(q:p∗(y)=y′)(x, y) = (x′, y′)
is inhabited. In particular, for each w : T , we have an element of the type

∏
(p:pr1(v)=pr1(w))

∏
(q:p∗(pr2(v))=pr2(w))

(pr1(v), pr2(v)) = (pr1(w), pr2(w))

which is transformed into an inhabitant of

S(v, w)→ ((pr1(v), pr2(v)) = (pr1(w), pr2(w))) ,

by the recursion principle for dependent pair types. But, by Lemmas 0.2 and 2.2,

((pr1(v), pr2(v)) = (pr1(w), pr2(w))) ' (v = w).

Therefore, we have a
gw : S(v, w)→ (v = w).

Chapter 3. Identity Types of
∑

- and
∏

-types 35

It remains to show that gw : qinv(fw), for any w : T . For this purpose, define
v1 :≡ pr1(v), v2 :≡ pr2(v), and verify that

fv(reflv) = f(v1,v2)(refl(v1,v2)) ≡ (reflv1 , reflv2),

gv((reflv1 , reflv2)) = g(v1,v2)((reflv1 , reflv2)) ≡ refl(v2,v2) = reflv,

so that

gv(fv(reflv)) = gv((reflv1 , reflv2)) = reflv,

fv(gv((reflv1 , reflv2))) = fv(reflv) = (reflv1 , reflv2).

By based path induction, it follows that

gw(fw(r)) = r, (3.4)

fw(gw((p, q))) = (p, q), (3.5)

for all w : T , r : v = w, x : A, p : v1 = x, y : P (x), and q : p∗(x) = y. From (3.4), we have
that gw ◦ fw ∼ id(v=w), for any w : T . And from (3.5), by induction on S(v, w), we see that
fw ◦ gw ∼ idS(v,w), for all w : T .

Definition 3.2. Given w,w′ : ∑(x:A) P (x), we denote by dpair= the element of
∏

(p:pr1(w)=pr1(w′))

∏
(q:p∗(pr2(w))=pr2(w′))

w = w′

defined so that dpair=(p, q) is the path from w to w′ that corresponds to (p, q) under
the equivalence from Theorem 3.5. Thus, dpair=(refla, reflb) = refl(a,b), for any a : A and
b : P (a).

Recall that in Lemma 1.5 we considered a path between points u : B(x) and
v : B(y) of different types as being a path from (x, u) to (y, v) in ∑(a:A) B(a). Now, by
Theorem 3.5, we see that such a path from (x, u) to (y, v) corresponds to a pair (p, q) with
p : x = y and q : p∗(u) = v. This characterization of paths between points of different
types is more descriptive, so it motivates another version of Lemma 1.5.

Definition 3.3. Given a type family B : A→ U and a path p : x =A y, a dependent path
from u : B(x) to v : B(y) lying over p is an element of the type

(u =B
p v) :≡ (transpB(p, u) =B(y) v).

Lemma 3.6. For all f : ∏(a:A) B(a), there is a function apdf that assigns, to each
p : x =A y, a path apdf(p) : f(x) =B

p f(y) in such a way that apdf(refla) ≡ reflf(a) for all
a : A.

Proof. Immediate by path induction on p.

Chapter 3. Identity Types of
∑

- and
∏

-types 36

Compare Lemmas 3.6 and 1.5.

The following two lemmas are simple path inductions involving dpair= which are
used in the proof of Lemma 5.2.

Lemma 3.7. Let P : A→ U . For all p1 : x =A y, q1 : y =A z, p2 : transpP (p1, u) =P (y) v,
and q2 : transpP (q1, v) =P (z) w,

dpair=(p1, p2) � dpair=(q1, q2) = dpair=(p1 � q1, p2 � q2).

Proof. Immediate by path induction on p1, p2, q1, and q2.

Lemma 3.8. Let P be a type family over A. Given a : A, if f : P (a) → ∑
(x:A) P (x)

is defined by f(u) :≡ (a, u) and p is any path in A from a to itself, then, for all q :
transpP (p, u) =P (a) v,

apf (q) = dpair=(refla, q).

Proof. Fix u : P (a) and apply based path induction on q.

We end this section with a characterization of types of dependent paths between
non-dependent functions. In Lemma 3.11, we generalize it for dependent functions.

Lemma 3.9. Given A,B : X → U , let A→ B denote the element of X → U defined by
(A→ B)(x) :≡ A(x)→ B(x), for all x ∈ X. For any p : x1 =X x2, f : (A→ B)(x1), and
g : (A→ B)(x2), we have:(

transpA→B(p, f) = g
)
'

∏
a:A(x1)

(
transpB(p, f(a)) = g(transpA(p, a))

)
.

More concisely,
(p∗(f) = g) '

∏
a:A(x1)

p∗(f(a)) = g(p∗(a)). (3.6)

In addition, if q : p∗(f) = g corresponds to q′ under this equivalence, then, for all a : A(x1),
the path

happly(q, p∗(a)) : (p∗(f))(p∗(a)) = g(p∗(a))

is equal to the composite

(p∗(f))(p∗(a)) = p∗
(
f(p−1

∗(p∗(a)))
)

by ape(transpfunA→Bp (f))

= p∗(f(a)) by app∗◦f (ittranspinv1(p, a))

= g(p∗(a)), by q′(a)

where e ≡ λ(f : P (x2)).f(p∗(a)).

Chapter 3. Identity Types of
∑

- and
∏

-types 37

Proof. In the trivial case (when x1 ≡ x2 and p ≡ reflx1), (3.6) reduces to the extensionality
axiom. So, by path induction, (3.6) is true in generality. The second part of the lemma is
also proved by path induction, using the fact that, in the trivial case, q′ is judgementally
equal to happly(q), whereas ape(transpfunA→Bp (f)) and app∗◦f (ittranspinv1(p, a)) reduce to
reflexivities.

3.2.2 Dependent function types

Lemma 3.10. Suppose given a type X, a path p : x1 =X x2, and type families A : X → U
and B : ∏(x:X) A(x)→ U . Consider ΠA(B) : X → U and B̂ :

(∑
(x:X) A(x)

)
→ U defined

by

ΠA(B)(x) :≡
∏

a:A(x)
B(x, a), (3.7)

B̂(w) :≡ B(pr1(w), pr2(w)). (3.8)

For all f : ΠA(B)(x1), the type

transpΠA(B)(p, f) = λ (a : A(x2)) .transpB̂
((

dpair=
(
p−1, reflp−1

∗(a)
))−1

, f
(
p−1

∗(a)
))

is inhabited by certain path, which we denote by transpdfunΠA(B)
p (f). So, for any a : A(x2),

we have an element happly(transpdfunΠA(B)
p (f), a) of the type

p∗(f)(a) = dpair=
(
p−1, reflp−1

∗(a)
)−1

∗

(
f(p−1

∗(a))
)
.

Proof. Immediate by path induction on p.

Lemma 3.11. Given type families A,B : X → U , let ΠA(B) : ∏(x:X) → U and B̂ be
defined as in (3.7) and (3.8). For any p : x1 =X x2, f : ΠA(B)(x1), and g : ΠA(B)(x2), we
have:(

transpΠA(B)(p, f) = g
)
'

∏
a:A(x1)

(
transpB̂

(
dpair=

(
p, reflp∗(a)

)
, f(a)

)
= g(p∗(a))

)
.

More concisely,

(p∗(f) = g) '
∏

a:A(x1)
dpair=

(
p, reflp∗(a)

)
∗
(f(a)) = g(p∗(a)).

In addition, if q : p∗(f) = g corresponds to q′ under this equivalence, then, for all a : A(x1),
the path

happly(q, p∗(a)) : (p∗(f))(p∗(a)) = g(p∗(a))

Chapter 3. Identity Types of
∑

- and
∏

-types 38

is equal to the composite

(p∗(f))(p∗(a)) = dpair=
(
p−1, reflp−1

∗(p∗(a))
)−1

∗

(
f
(
p−1

∗(p∗(a))
))

by p1(a)

= dpair=
(
p−1, refla

)−1

∗
(f(a)) by p2(a)

= dpair=
(
p, reflp∗(a)

)
∗
(f(a)) by p3(a)

= g(p∗(a)), by q′(a)

where

p1(a) :≡ ape1(transpfunA→Bp (f))

for e1 :≡ λ(h : (A→ B)(x2)).h(p∗(a)),

p2(a) :≡ ape2(ittranspinv1(p, a))

for e2 :≡ λ(u : A(x1)).dpair=
(
p−1, reflu

)−1

∗
(f(u)),

p3(a) :≡ ape3(r)

for e3 :≡ λs.s∗(f(a))

and r : dpair=
(
p−1, refla

)−1
= dpair=

(
p, reflp∗(a)

)
given by induction on p.

Proof. Similar to the proof of Lemma 3.9.

3.3 Type families as fibrations

Figure 1 – Commutative diagram for the path lifting property. The symbol i0 denotes the
natural inclusion i0(?) = 0.

In homotopy theory, a map h : Y → Z between topological spaces is said to have
the path lifting property if, for any path γ : [0, 1]→ Y and any point y0 ∈ Y being a lift of
γ(0) (i.e., such that f(y0) = γ(0)), there is a unique path γ̃ : [0, 1]→ Y that starts in y0

(i.e., γ̃(0) = y0) and is a lifting of γ (i.e., h ◦ γ̃ = γ). (See Figure 1.) The points γ(0) ∈ Z
and y0 ∈ Y may be thought as constant maps γ0 : t 7→ γ(0) and γ̃0 : t 7→ y0 on a certain

Chapter 3. Identity Types of
∑

- and
∏

-types 39

unit set {?} into their respective spaces (Z and Y), so that the condition h(y0) = γ(0)
may be interpreted as h ◦ γ̃0 = γ0.

The next lemma tells that the first projection pr1 :
(∑

(x:A) P (x)
)
→ A associated

to any type family P : A→ U satisfies the path lifting property in the homotopy-theoretic
interpretation of type theory. As in Lemma 3.6, a path between points u : B(x) and
v : B(y) of different types is viewed as a pair (p, q), with p : x = y and q : u =B

p v.

Lemma 3.12 (Path lifting property for type families). Given a type family P over A,
consider the first projection pr1 : T → A, where T :≡ ∑(x:A) P (x). For any p : x =A y and
u : P (x), we have a path

liftP (p, u) : (x, u) =T (y, p∗(u))

such that appr1
(liftP (p, u)) = p. The function liftP so defined, sometimes abbreviated as lift,

satisfies the computation rule

liftP (reflx, u) ≡ refl(x,u)

for all x : A and u : P (x). Moreover, fixed p : x =A y and u : P (x), any path p̃ : (x, u) =T w

such that appr1
(p̃) = p is propositionally equal to liftP (p, u).

Proof. Since (x, u) ≡ (x, (reflx)∗(u)), we have refl(x,u) : (x, u) = (x, reflx∗(u)). From this,
an easy path induction gives the required function lift with the required computation rule.
Now,

appr1
(lift(reflx, u)) ≡ appr1

(refl(x,u)) ≡ reflpr1((x,u)) ≡ reflx,

so that, by path induction, appr1
(lift(p, u)) = p, for all p : x =A y and u : P (x). It remains

to prove the “uniqueness” of lift(p, u), which means to construct an element of the type
∏

(x,y:A)

∏
(p:x=y)

∏
(u:P (x))

∏
(w:T)

∏
(p̃:(x,u)=w)

(appr1
(p̃) = p)→ (p̃ = lift(p, u)). (3.9)

This can be done easily by induction on p and based induction on p̃, since the computation
rules of appr1

and lift imply that (reflx = reflx)→ (refl(x,u) = refl(x,u)) is definitionally equal
to (appr1

(refl(x,u)) = reflx)→ (refl(x,u) = lift(reflx, u)) and hence

λ(r : reflx = reflx).id(refl(x,u)=refl(x,u)) :
(
(appr1

(refl(x,u)) = reflx)→ (refl(x,u) = lift(reflx, u))
)
.

More formally, let C : ∏(x,y:A)
∏

(p:x=y)
∏

(u:P (x))
∏

(w:T)
∏

(p̃:(x,u)=w) U be defined by

C(x, y, p, u, w, p̃) :≡ (appr1
(p̃) = p)→ (p̃ = lift(p, u)).

As we saw above, for all x : A and u : P (x), the function

g :≡ λ(r : reflx = reflx).id(refl(x,u)=refl(x,u))

Chapter 3. Identity Types of
∑

- and
∏

-types 40

has type C1((x, u), refl(x,u)), where C1 :≡ C(x, x, reflx, u). Therefore, by based path induc-
tion on p̃ and lambda abstraction on u and x, the type

∏
(x:A)

∏
(u:P (x))

∏
(w:T)

∏
(p̃:(x,u)=w)

C1(w, p̃) (3.10)

is inhabited by
g1 :≡ λ(x : A).λ(u : P (x)).ind′=T

(C1, g).

But (3.10) is definitionally equal to
∏
x:A

C2(x, x, reflx), (3.11)

where C2 : ∏(x,y:A)
∏

(p:x=y)
∏

(u:P (x)) U is defined by

C2(x, y, p) :≡
∏

(u:P (x))

∏
(w:T)

∏
(p̃:(x,u)=w)

C(x, y, p, u, w, p̃).

Finally, by ordinary path induction, we obtain an element ind=A
(C2, g1) of the type

∏
(x,y:A)

∏
(p:x=y)

C2(x, y, p),

which is judgementally equal to (3.9).

Given set-theoretic functions h : A → B and g : B → C, a lift (or lifting) of h
(across g) is a function f : A→ C such that g ◦ f = h. We say in this situation that f lifts
(or is lifting1) h. The same nomenclature applies for morphisms in any category, which
may be continuous maps, type-theoretic functions, etc.

Figure 2 – Commutative diagram for the homotopy lifting property. The symbol i0 denotes
the natural inclusion i0(x) = (x, 0).

Given a topological spaceX and a continuous map h : Y → Z, we say that h satisfies
the homotopy lifting property (with respect to X) if for any homotopy H : X × [0, 1]→ Z

1 Other authors say that h lifts to f or h lifts across g. Our nomenclature is according to (HATCHER,
2002, p. 60).

Chapter 3. Identity Types of
∑

- and
∏

-types 41

and any continuous H̃0 : X → Y lifting H|X×{0} across h, there is a unique homotopy
H̃ : X× [0, 1]→ Z lifting H such that H̃|X×{0} = H̃0 (see Figure 2). A (Hurewicz) fibration
is a continuous map that satisfies the homotopy lifting property with respect to any space.

Notice that if we take X being any one point space space {?}, the homotopy lifting
property reduces to the path lifting property (via the identification {?} × [0, 1] ' [0, 1]
and other identifications mentioned at p. 3.3). Conversely, if a continuous map h : Y → Z

satisfies the path lifting property, then h satisfies the homotopy lifting property with
respect to any space X. Since we have proved that type families satisfy the path lifting
property, type families correspond to fibrations in the homotopy interpretation of type
theory.

42

4 Contractibility and Fiberwise Equivalences

4.1 Contractibility

Definition 4.1. A type A is said to be

(a) a set if it does not have nontrivial paths, i.e., if the type

isset(A) :≡
∏

(x,y:A)

∏
(p,q:x=y)

p = q

is inhabited.

(b) contractible if there is an element a : A, called the center of contraction of A, such
that a = x for all x : A. To put it another way, A is contractible if the type

iscontr(A) :≡
∑

(a:A)

∏
(x:A)

(a = x)

is inhabited.

Lemma 4.1 (Contractibility is a homotopy invariant). If (f, (g, (h, k))) : A ' B and A
is contractible with center a, then B is contractible with center f(a).

Proof. Since A is contractible with center a, there is a dependent function c : ∏(x:A)(a = x).
For any y : B, since c(g(y)) : a = g(y), we have apf (c(g(y))) : f(a) = f(g(y)), so that

apf (c(g(y))) � h(y) : f(a) = y.

Lemma 4.2. Every contractible type is a set.

Proof. Suppose that A is contractible. So, there is some f : ∏(x:A)(a = x), with a : A.
Given x1, x2 : X, for all p : x1 = x2, we have:

f(x1) � p = transpx 7→(a=x)(p, f(x1)) by (Lemma 3.2(a))−1

= f(x2). by apdf (p)

Denoting by q the above constructed element of f(x1) � p = f(x2), it follows that

p = reflx1 � p by Lemma 1.2(b)

= (f(x1)−1 � f(x1)) � p by aph((Lemma 1.2(c))−1)

= f(x1)−1 � (f(x1) � p) by (Lemma 1.2(f))−1

= f(x1)−1 � f(x2), by apg(q)

where g :≡ λ(r : a = x2).f(x1)−1 � r and h :≡ λ(r : x1 = x1).r � p. Thus, all the elements of
x1 = x2 are equal to f(x1)−1 �f(x2). Hence, the elements of x1 = x2 are pairwise equal.

Chapter 4. Contractibility and Fiberwise Equivalences 43

Lemma 4.3. Let A be a type. For all a : A,

(a) ∑(x:A)(a = x) is contractible;

(b) ∑(x:A)(x = a) is contractible.

Proof.

(a) We show that (a, refla) is the center of contraction of ∑(x:A)(a = x). Given x : A and
p : a = x,

((a, refla) = (x, p))

'
∑
q:a=x

transpx 7→(a=x)(p, refla) = p by Theorem 3.5

'
∑
q:a=x

refla � p = p by Lemmas 3.2(a), 2.2, and 2.7(b)

'
∑
q:a=x

p = p. by Lemmas (1.2(b))−1, 2.2, and 2.7(b)

The pair (p, reflp) : ∑(q:a=x)(p = p) corresponds under this equivalence to a path
g(x, p) between (a, refla) and (x, p). Thus, we have a function

g :
∏

(x:A)

∏
(p:a=x)

(a, refla) = (x, p),

which produces
f :

∏
v:
∑

(x:A)(a=x)
(a, refla) = v,

by the induction principle for dependent pair types.

(b) This is a simple consequence of part (a) and Lemmas 2.2, 2.7(b) and 4.1. Alternatively,
the proof of part (a) can be easily adapted for this one, with the same center of
contraction.

Lemma 4.4. Every map between contractible types is an equivalence.

Proof. Let A and B be contractible types with centers of contraction a : A and b : B.
Given f : A → B, define g : B → A by g ≡ λ(x : B).a. So, g ◦ f, idA : A → A and
f ◦ g, idB : B → B. Since A is contractible, we have: idA ∼ λ(x : A).a. From this, by
Lemma 1.11, it follows that

g ◦ f = idA ◦ (g ◦ f) ∼ (λ(x : A).a) ◦ (g ◦ f) ≡ λ(x : A).a ∼ idA.

Analogously, one proves f ◦ g ∼ idB. Thus, f is an equivalence.

Lemma 4.5. Let P : A→ U . If A is contractible with center a, then
(∑

(x:A) P (x)
)
' P (a).

Chapter 4. Contractibility and Fiberwise Equivalences 44

Proof. Since a is the center of contraction of A, there is a function c : ∏(x:A)(a = x). Let
T denote ∑(x:A) P (x). We define f : T → P (a) and g : P (a)→ T by

f :≡ λ(w : T).c(pr1(w))−1
∗(pr2(w)),

g :≡ λ(z : P (a)).(a, z).

By Lemma 4.2, A is a set. So, there is an equality of paths q : c(a)−1 = refl−1
a . For each

z : P (a), consider the function ez :≡ λ(p : a = a).p∗(z). By apez
(q), we have:

f(g(z)) ≡ f((a, z)) ≡ c(a)−1
∗(z) = (refl−1

a)∗(z) ≡ (refla)∗(z) ≡ z.

On the other hand, for all w : T ,

g(f(w)) ≡ g(c(pr1(w))−1
∗(pr2(w))) ≡ (a, c(pr1(w))−1

∗(pr2(w))),

so that

(g(f(w)) = w) ≡
((
a, c(pr1(w))−1

∗(pr2(w))
)

= (pr1(w), pr2(w))
)

'
∑

p:a=pr1(w)
p∗
(
c(pr1(w))−1

∗(pr2(w))
)

= pr2(w).

From this, since c(pr1(w)) : a = pr1(w) and

ittranspinvP2 (c(pr1(w)), pr2(w)) : c(pr1(w))∗
(
c(pr1(w))−1

∗(pr2(w))
)

= pr2(w),

one obtains an element of g(f(w)) = w.

4.2 Fiberwise equivalences

Definition 4.2. The fiber of a map f : A→ B over a point y : B is the type

fibf (y) :≡
∑
x:A

(f(x) = y).

We usually think of fibf(y) as the inverse image of y under f . So, we sometimes
consider an element of fibf (y) as being its first coordinate.

Lemma 4.6. For all f : A→ B, y : B, and (x, p), (x′, p′) : fibf (y),

((x, p) = (x′, p′)) '
 ∑
γ:x=x′

apf (γ) � p′ = p

 .
Proof. Let P denote the type family over B defined by P (u) :≡ (u = y). We have:

((x, p) = (x′, p′)) '
∑

γ:x=x′
transpP◦f (γ, p) = p′ by Theorem 3.5

'
∑

γ:x=x′
transpP (apf (γ), p) = p′ by Lemmas 1.9 and 2.7(b)

'
∑

γ:x=x′
apf (γ)−1 � q = p′. by Lemmas 2.7(b) and 3.2(b)

Chapter 4. Contractibility and Fiberwise Equivalences 45

Now, observe that by concatenating both sides of apf (γ)−1 � q = p′ with apf (γ) to the left,
we obtain an equivalent type q = apf (γ) � p′, which in turn is equivalent to apf (γ) � p′ = q,
since path inversion is an equivalence (by Example 2.1). Therefore, by Lemma 2.7(b), ∑

γ:x=x′
apf (γ)−1 � q = p′

 '
 ∑
γ:x=x′

apf (γ) � p′ = q

 .

Definition 4.3. Let P and Q be type families over A. A fiberwise transformation or
a fiberwise map between P and Q is a function f : ∏(x:A) P (x) → Q(x). A fiberwise
transformation is said to be a fiberwise equivalence if, for all x : A, the function f(x) :
P (x)→ Q(x) is an equivalence.

By the recursion principle for Σ-types, each fiberwise transformation f between
type families P : A→ U and Q : A→ U induces a function

total(f) :
(∑
x:A

P (x)
)
→
∑
x:A

Q(x) (4.1)

satisfying total(f)((x, u)) ≡ (x, f(x)(u)) for each x : A and u : P (x).

Definition 4.4. A function f : A→ B is contractible if every fiber of f is contractible.
Equivalently, f is contractible if the type

isContr(f) :≡
∏
b:B

iscontr(fibf (b))

is inhabited.

Theorem 4.7. Every contractible map f : A→ B is an equivalence.

Proof. Let P be the element of isContr(f) given by hypothesis. Recall that

isContr(f) ≡
∏

(y:B)

∑
(a:fibf (y))

∏
(u:fibf (y))

a = u.

The most natural choice of a candidate g : B → A for quasi-inverse of f consists of sending
each y : B to the center of contraction pr1(P (y)) of fibf(y), or more precisely, to the
element of A that appears in pr1(P (y)) as one of its coordinates:

g :≡ λ(y : B).pr1(pr1(P (y))).

By definition of isContr(f), the second coordinate of pr1(P (y)) is an element of the type
f(pr1(pr1(P (y)))) = y, i.e.,

pr2(pr1(P (y))) : f(g(y)) = y,

Chapter 4. Contractibility and Fiberwise Equivalences 46

for each y : B. So, we define

h :≡ λ(y : B).pr2(pr1(P (y))) : f ◦ g ∼ idB.

It remains to construct a homotopy k : g ◦ f ∼ idA. A key idea for this final step is to
notice that both g(f(x)) and x “are in” fibf (f(x)), in the sense that both f(g(f(x))) and
f(x) are equal to f(x). So, since fibf (f(x)) is contractible, there must be a path between
g(f(x)) and x. In fact, from h(f(x)) : f(g(f(x))) = f(x) and reflf(x) : f(x) = f(x), it
follows that

(g(f(x)), h(f(x))) : fibf (f(x)),

(x, reflf(x)) : fibf (f(x)),

and hence

pr2(P (f(x)))((g(f(x)), h(f(x)))) : pr1(P (f(x))) = (g(f(x)), h(f(x))),

pr2(P (f(x)))((x, reflf(x))) : pr1(P (f(x))) = (x, reflf(x)),

so that

α(x) :≡ (pr2(P (f(x)))((g(f(x)), h(f(x)))))−1 � pr2(P (f(x)))((x, reflf(x)))

is a path between (g(f(x)), h(f(x))) and (x, reflf(x)) in fibf(f(x)). Then, by Lemma 4.6,
we get a path k(x) : g(f(x)) = x, defined as the first coordinate of the result of passing
α(x) across the equivalence of that lemma.

Theorem 4.8. If f : A→ B is an equivalence, then f is contractible.

Proof. Let (g, (h, k)) be the quasi-inverse of f given by hypothesis. Fix y : B. Since
h(y) : f(g(y)) = y, we have (g(y), h(y)) : fibf (y). To show that (g(y), h(y)) is the center of
contraction of fibf (y), we must construct an element of the type

∏
u:fibf (y)

(g(y), h(y)) = u,

which is equivalent to
∏

(u:fibf (y))

∑
(γ:g(y)=pr1(u))

apf (γ) � pr2(u) = h(y), (4.2)

by Lemmas 4.6 and 2.7(a). For each u : fibf (y), we have that pr2(u) : f(pr1(u)) = y, whence
apg(pr2(u)) : g(f(pr1(u))) = g(y). From this, by k(pr1(u)) : g(f(pr1(u))) = pr1(u), we have:

γu :≡ apg(pr2(u))−1 � k(pr1(u)) : g(y) = pr1(u).

Chapter 4. Contractibility and Fiberwise Equivalences 47

To find an inhabitant of (4.2), it remains to give a path from apf (γu) � pr2(u) to h(y), for
any u : fibf (y). By Lemma 2.5, we may suppose without loss of generality that we have a
path

q : apf (k(pr1(u))) = h(f(pr1(u))).

(If it is not the case that apf(k(pr1(u))) = h(f(pr1(u))), then replace h with the h′ given
by Lemma 2.5.) And we also have paths

r : apf (γu) = apf◦g(pr2(u))−1 � apf (k(pr1(u))), by Lemma 1.4

s : h(f(pr1(u))) � pr2(u) = apf◦g(pr2(u)) � h(y), by Lemma 1.12

t : apf◦g(pr2(u))−1 � apf◦g(pr2(u)) � h(y) = h(y). by Lemma 1.2

So,

apf (γu) � pr2(u) = (apf◦g(pr2(u))−1 � apf (k(pr1(u)))) � pr2(u) by apµ(r)

= (apf◦g(pr2(u))−1 � h(f(pr1(u)))) � pr2(u) by apν(q)

= apf◦g(pr2(u))−1 � (h(f(pr1(u))) � pr2(u)) by (Lemma 1.2(f))−1

= apf◦g(pr2(u))−1 � (apf◦g(pr2(u)) � h(y)) by apξ(s)

= (apf◦g(pr2(u))−1 � apf◦g(pr2(u))) � h(y) by Lemma 1.2(f)

= h(y), by t

where µ, ν, and ξ are functions defined by

µ(p) :≡ p � pr2(u),

ν(p) :≡ (apf◦g(pr2(u))−1 � p) � pr2(u),

ξ(p) :≡ apf◦g(pr2(u))−1 � p.

Theorem 4.9. Let f be a fiberwise transformation between type families P and Q over
A. For all a : A and v : Q(a),

fibtotal(f)((a, v)) ' fibf(a)(v).

Proof. Consider the type family R :
(∑

(x:A)(x = a)
)
→ U given by

R(w) :≡
∑

u:P (pr1(w))
(pr2(w))∗ (f(pr1(w), u)) = v.

Chapter 4. Contractibility and Fiberwise Equivalences 48

We have:

fibtotal(f)((a, v)) ≡

 ∑
w:
∑

(x:A) P (x)
(pr1(w), f(pr1(w), pr2(w))) = (a, v)


'
∑

(x:A)

∑
(u:P (x))

(x, f(x, u)) = (a, v) by (Lemma 2.3)−1

'
∑

(x:A)

∑
(u:P (x))

∑
(p:x=a)

p∗(f(x, u)) = v by Theorem 3.5 and Lemma 2.7(b)

'
∑

(x:A)

∑
(p:x=a)

R((x, p)) by Lemmas 2.4 and 2.7(b)

'
∑

w:
∑

(x:A)(x=a)
R(w) by Lemma 2.3

'
∑
u:P (a)

(refla)∗(f(a, u)) = v. by Lemmas 4.3(b) and 4.5

Since this last type is definitionally equal to fibf(a)(v), the theorem is proved.

The following theorem is a version of a well-known result in algebraic topology
which can be found in (MAY, 1999, Section 7.5, p. 52).

Theorem 4.10. Let A be a type and f a fiberwise transformation between families P and
Q over A. If total(f) is an equivalence, then f is a fiberwise equivalence.

Proof. First, note that there is a function of type ∏
w:
∑

(x:A) Q(x)
iscontr(fibtotal(f)(w))

→
 ∏

(a:A)

∏
(v:Q(a))

iscontr(fibtotal(f)((a, v)))
 (4.3)

that maps each g in its domain to λ(a : A).λ(v : Q(a)).g((a, v)). Now, consider the
composite function

qinv(total(f))

→ isContr(total(f)) by Theorem 4.8

≡
∏

w:
∑

(x:A) Q(x)
iscontr(fibtotal(f)(w))

→
∏

(a:A)

∏
(v:Q(a))

iscontr(fibtotal(f)((a, v))) by (4.3)

→
∏

(a:A)

∏
(v:Q(a))

iscontr(fibf(a)(v)) by Theorem 4.9 and Lemma 2.7(a)

≡
∏
a:A

isContr(f(a))

→
∏
a:A

qinv(f(a)). by Theorem 4.7 and Lemma 2.7(a)

49

5 The Fundamental Group of the Circle

The goal of this chapter is to reproduce a proof of π1(S1) = Z in type theory. This
was originally done by Michael Shulman and posteriorly (in another approach) by Daniel
Licata (LICATA; SHULMAN, 2013). Shulman have translated into type theory a standard
proof of π1(S1) = Z using covering spaces (HATCHER, 2002, Chapter 1). In the sequel,
we aim to explore this translation.

5.1 Inductive definitions
Just like free groups can be defined by a set of symbols (its generators), types can

be defined by a list of constructors. A constructor of a type X is a symbol denoting a
function of some number of arguments (possibly zero) with codomain X and domains
being types. A constructor of X with zero arguments is an element of X, considered as a
constant function.

This pattern of type definition is known as induction. A type defined by a list of
constructors is said to be an inductive type. Once a type X have been inductively defined
by n constructors

ci : Ai,1 → · · · → Ai,ki
→ X (i ∈ {1, . . . , n}),

one can define any function f : ∏(x:X) P (x) by assigning a unique element f(ci(a1, . . . , aki
))

of P (ci(a1, . . . , aki
)) to each expression ci(a1, . . . , aki

), with aj : Ai,j, j ∈ {1, . . . , ki}, and
i ∈ {1, . . . , n}.

Example 5.1. The type of natural numbers N is generated by

• 0N : N

• succN : N→ N.

Example 5.2. The type of booleans 2 is inductively defined by

• 02 : 2

• 12 : 2.

This type corresponds to the set of boolean values {0, 1}, which contains only two elements.

A new feature of the type theory currently used in homotopy type theory is that it
admits a broader notion of inductive definition, known as higher inductive definition. In

Chapter 5. The Fundamental Group of the Circle 50

this new pattern, the constructors may originate not only elements of X but also paths in
X. For instance, there may be constructors of the form

c : A1 → · · · → Ak → (b(a1) =X b(a2)),

where b : A → X is another constructor of X and a1, a2 : A. Given a higher inductive
type X, any function f : X → Y may be defined by assigning a unique element of Y
(respectively, a unique element of Y) to each element (respectively, path) originated from
some constructor of X. The assignments of paths must be coherent with the assignments
of the endpoints of the paths. For instance, if c1 : A→ X and c2 : A→ (c1(a1) = c1(a2)),
with a1, a2 : A, are constructors of X and we assign y1 : Y and y2 : Y to c1(a1) and
c1(a2), respectively, then the path in Y to be assigned to c2(a), for any a : A, must
have type y1 =Y y2. Similar considerations apply for dependent functions f : ∏(x:X) P (x)
and dependent constructors, with dependent paths wherever necessary (see (Univalent
Foundations Program, 2013, Section 6.2)).

Example 5.3. The circle S1 is defined as being generated by the following constructors:

• base : S1

• loop : base =S1 base.

The goal of this chapter is to prove a well-known homotopical property of the circle,
namely that its fundamental group is isomorphic to the additive group of integers. We
refer the reader to (Univalent Foundations Program, 2013, Section 6.10) for a definition of
the type of integers Z. We assume that Z is endowed with an element 0 : Z, functions

• i : N→ Z, written n 7→ n,

• succ : Z→ Z, written n 7→ n+ 1,

• minus : Z→ Z, written n 7→ −n,

and a binary relation < satisfying the usual order properties of the natural and integer
numbers. To be careful about the precise meaning of “binary relation,” we would need
to talk about mere propositions, but we want to avoid this. It is worth mentioning that
0 < m and m < 0 mean “m = n+ 1 for some n : N” and “m = −(n+ 1) for some n : N,”
respectively. We assume that Z is a set (in the sense of Definition 4.1) and the function
succ has a quasi-inverse n 7→ n− 1. We denote by succeq the respective equivalence from
Z to Z, so that, for any n : Z,

pr1(succeq, n) ≡ succ(n) ≡ n+ 1. (5.1)

Another important fact about Z is the following lemma, which can be found in
(Univalent Foundations Program, 2013, Lemma 6.10.12).

Chapter 5. The Fundamental Group of the Circle 51

Lemma 5.1 (Induction principle for Z). For any P : Z→ U , there is a map indZ(P) that
assigns a function

f :≡ indZ(P, d0, d+, d−) :
∏
n:Z
P (n)

to each

d0 : P (0), d+ :
∏
n:N

P (n)→ P (n+ 1), and d− :
∏
n:N

P (−n)→ P (−(n+ 1))

in such a way that

f(0) ≡ d0, f(n+ 1) ≡ d+(f(n)), and f(−(n+ 1)) ≡ d−(f(−n)),

for all n : N.

5.2 The flattening lemma for the universal cover of S1

Definition 5.1 (Universal cover of S1). We define code : S1 → U by

code(base) :≡ Z,

apcode(loop) :≡ ua(succeq).

Definition 5.2. The homotopical reals are the elements of the type R generated by the
following constructors:

• c : Z→ R

• d : ∏(n:Z)(c(n) =R c(n+ 1)).

Lemma 5.2 (Flattening Lemma for code). ∑(x:S1) code(x) ' R.

Proof. To simplify the notation, let T :≡ ∑(x : S1) code(x). We want to construct functions
h : R→ T , k : T → R, and homotopies α : h ◦ k ∼ idT , β : k ◦ h ∼ idR. For clarity, we use
the concise notation for transport (with subscript asterisk) exclusively with respect to
code.

The construction of h : R→ T . The inductive definition of R says that in order to give
(intuitively) a value h(r) for each r : R, it suffices to evaluate h on the elements of
the form c(n), with n : Z, and on the paths d(n) : c(n) =T c(n+ 1) between these.
More precisely, we must give:

• for each n : Z, an element h(c(n)) of T ;

• for each n : Z, a path aph(d(n)) : (h(c(n)) =T h(c(n+ 1))).

Chapter 5. The Fundamental Group of the Circle 52

For the first coordinate of h(c(n)), we do not have much choice: the only distinguished
element of S1 is base. For the second one, we may take n. So,

h(c(n)) :≡ (base, n). (5.2)

Now, we use the characterization of paths in dependent pair types (Theorem 3.5): ∑
p:base=base

transpcode(p, n) =Z n+ 1
 ' ((base, n) =T (base, n+ 1)).

Denoting by pn the composite path

transpcode(loop, n) ≡ transp(X 7→X) ◦ code(loop, n)

= transp(X 7→X)(apcode(loop), n) by Lemma 1.9

≡ transp(X 7→X)(ua(succeq), n)

= succ(n) ≡ n+ 1, by (2.8) and (5.1)

we have that dpair=(loop, pn) has type h(c(n)) =T h(c(n+ 1)). So, we define:

aph(d(n)) :≡ dpair=(loop, pn). (5.3)

The construction of k : T → R. We want to define k using the recursion principle for
dependent pair types. To do this, we need an equivalence

η :
(∏
n:Z

c(n) =R c(n+ 1)
)
'
(

c =Q
loop c

)
,

where Q : S1 → U is given by Q(x) :≡ (code(x)→ R). For each n : Z,

apc(pn) : c(loop∗(n)) =R c(n+ 1), (5.4)

transpconstR
loop(c(n)) : transpx 7→R(loop, c(n)) =R c(n), (5.5)

where the symbol x 7→ R denotes the constant type family defined on S1 that gives
the value R for any input. From this, by Lemma 2.2, we have an equivalence

εn : (c(n) =R c(n+ 1)) '
(

transpx 7→R(loop, c(n)) =R c(loop∗(n))
)

(5.6)

such that

pr1(εn) :≡ λ(p : c(n) =R c(n+ 1)).
(

transpconstR
loop(c(n)) � p � apc(pn)−1

)
, (5.7)

for each n : Z. These equivalences produce, by Lemma 2.7(a), another equivalence

ε :
(∏
n:Z

c(n) =R c(n+ 1)
)
'
(∏
n:Z

transpx7→R(loop, c(n)) =R c(loop∗(n))
)

Chapter 5. The Fundamental Group of the Circle 53

such that
pr1(ε, f, n) :≡ pr1(εn, f(n)) (5.8)

for any f : ∏(n:Z) c(n) =R c(n+ 1) and n : Z. Moreover, by Lemma 3.9, we have an
equivalence

ϕ :
(

transpQ(loop, c) =Z→R c
)
'
(∏
n:Z

transpx 7→R(loop, c(n)) =R c(loop∗(n))
)
. (5.9)

So, since (c =Q
loop c) ≡

(
transpQ(loop, c) =Z→R c

)
, we may define

η :≡ ϕ−1 ◦ ε. (5.10)

Now, let g : ∏(x:S1) Q(x) be given by S1-induction as follows:

g(base) :≡ c, (5.11)

apdg(loop) :≡ pr1(η, d). (5.12)

We define k from g by the recursion principle for T so that

k((x, n)) :≡ g(x)(n),

for any x : S1 and n : Z. That is, k :≡ recT (R, g).

The construction of α : h ◦ k ∼ idT . To construct α by induction on T , it suffices to
give a function

j :
∏

(x:S1)

∏
(u:code(x))

h(k((x, u))) = (x, u).

Using induction on S1, this can be done by giving

• a function j(base) : ∏(n:Z) h(k((base, n))) = (base, n);

• a dependent path apdj(p) : j(base) =ΠA(B)
loop j(base), where ΠA(B) is the type

family defined as in (3.7) for A :≡ code and B :≡ λx.λu. (h(k((x, u))) = (x, u)).

For all n : Z, we have:

h(k((base, n))) ≡ h(g(base)(n)) ≡ h(c(n)) ≡ (base, n).

Then, we may define:
j(base) :≡ λ(n : Z).refl(base,n).

Now, by Lemma 3.11,
(
j(base) =ΠA(B)

loop j(base)
)

≡
(

transpΠA(B)(loop, j(base)) = j(base)
)

'
∏
n:Z

(
transpB̂

(
dpair=

(
loop, reflloop∗(n)

)
, j(base, n)

)
= j(base, loop∗(n))

)
,

Chapter 5. The Fundamental Group of the Circle 54

where B̂ :
(∑

(x:S1) code(x)
)
→ U is defined as in (3.8). So, it remains to prove that

transpB̂
(

dpair=
(

loop, reflloop∗(n)
)
, j(base, n)

)
= j(base, loop∗(n)), (5.13)

for any n : Z. Let ` :≡ λ(m : Z).(base,m). Thus, j(base,m) : B̂(`(m)) for all m : Z.
Recall that pn : loop∗(n) = n+ 1. Since

j(base, loop∗(n)) = transpB̂◦`(p−1
n , j(base, n+ 1)) by

(
apdj(base)(p−1

n)
)−1

= transpB̂(ap`(p−1
n), j(base, n+ 1)) by Lemma 1.9

= transpB̂(ap`(pn)−1, j(base, n+ 1)), by Lemma 1.4(b)

we have (by Lemma (2.2)) that the type (5.13) is equivalent to

transpB̂
(

dpair=
(

loop, reflloop∗(n)
)
, j(base, n)

)
= transpB̂(ap`(pn)−1, j(base, n+ 1)). (5.14)

By applying λb.transpB̂(ap`(pn), b) on both sides of (5.14), we obtain, by Lemmas 1.3,
1.7, and Corollary 1.8, another identity type

transpB̂
(

ap`(pn) � dpair=(loop, reflloop∗(n)), j(base, n)
)

= j(base, n+ 1) (5.15)

which is equivalent to (5.13), since we can recover (5.14) by transporting both sides
of (5.15) along ap`(pn)−1 with respect to B̂ (Example 2.3). But, by Lemmas 3.8 and
3.7,

ap`(pn) = dpair=(reflbase, pn),

dpair=(reflbase, pn) � dpair=(loop, reflloop∗(n)) = dpair=(loop, pn),

so that

ap`(pn) � dpair=(loop, reflloop∗(n)) = dpair=(reflbase, pn) � dpair=(loop, reflloop∗(n))

= dpair=(loop, pn).

Thus, (5.15) is equivalent to

transpB̂ (dpair=(loop, pn), j(base, n)) = j(base, n+ 1). (5.16)

By path induction on r : x =S1 y and based path induction on s : transpcode(r, u) = v,
its easy to verify that

transpB̂(dpair=(r, s), refl(x,u)) = refl(y,v),

for r and s arbitrary. From this, since j(base) ≡ λ(m : Z).refl(base,m), it follows that
(5.16) is true.

Chapter 5. The Fundamental Group of the Circle 55

The construction of β : k ◦ h ∼ idR. To construct β by R-induction, it suffices to prove
that k(h(c(n))) = c(n) and apk(aph(d(n))) = d(n), for any n : Z. The first equality
follows immediately from k(h(c(n))) ≡ k((base, n)) ≡ c(n). Now, by (5.3), it remains
to show that apk(dpair=(loop, pn)) = d(n). First, we observe that for all r : x1 =S1 x2

and s : r∗(y1) = y2, the path apk(dpair=(r, s)) : k((x1, y1)) = k((x2, y2)) is equal to
the composite

k((x1, y1)) ≡ g(x1)(y1) = transpx 7→R(r, g(x1)(y1)) by q1(r, s)

= transpx 7→R(r, g(x1)(r−1
∗(r∗(y1)))) by q2(r, s)

= transpQ(r, g(x1))(r∗(y1)) by q3(r, s)

= g(x2)(r∗(y1)) by q4(r, s)

= g(x2)(y2) ≡ k((x2, y2)), by q5(r, s)

where

q1(r, s) :≡ (transpconstR
r (g(x1)(y1)))−1,

q2(r, s) :≡ apu(r,s)((ittranspinvcode
1 (r, y1))−1)

for u(r, s) :≡ transpx7→R(r) ◦ g(x1),

q3(r, s) :≡ ape(r,s)((transpfuncode→(x 7→R)
r (g(x1)))−1)

for e(r, s) :≡ λf.f(r∗(y1)),

q4(r, s) :≡ happly(apdg(r))(r∗(y1)),

q5(r, s) :≡ apg(x2)(s).

In fact, it is easy to verify that apk(dpair=(r, s)) and each qi(r, s), with i = 1, . . . , 5,
reduce to reflexivities when r ≡ reflx1 and s ≡ refly1 . From this, the claim follows
immediately by path induction on r and s. In particular, for r ≡ loop and s ≡ pn,
we have:

apk(dpair=(loop, pn)) = q1(loop, pn) � . . . � q5(loop, pn). (5.17)

Second, since apdg(loop) ≡ pr1(η, d) corresponds to pr1(ϕ, pr1(η, d)) ≡ pr1(ε, d) under
ϕ, we have, by the computation rule of Lemma 3.9 and by (5.8):

q4(loop, pn) = q3(loop, pn)−1 � q2(loop, pn)−1 � pr1(εn, d(n)). (5.18)

Third, by (5.7),

pr1(εn, d(n)) ≡ q1(loop, pn)−1 � d(n) � q5(loop, pn)−1 (5.19)

Finally, substituting (5.19) and (5.18) in (5.17), we conclude that

apk(dpair=(loop, pn)) = d(n).

Chapter 5. The Fundamental Group of the Circle 56

5.3 A proof of π1(S1) = Z

Remember that a set is a type without nontrivial paths. There is a map ‖−‖0 : U →
U , called 0-truncation, that assigns a set ‖B‖0 to each type B in such a way that ‖B‖0 = B

if B is a set (see (Univalent Foundations Program, 2013, Section 6.9)). Topologically, ‖B‖0

is B with the discrete topology. But ‖B‖0 still has the operations of path concatenation
and path inversion, which make it a groupoid (Lemma 1.2). Furthermore, if B ≡ (a = a)
for some a : A, then ‖B‖0 is a group.

Definition 5.3. Given A : U and a : A, the loop space of A based on a is the type

Ω(A, a) :≡ (a = a)

and the fundamental group of A based on a is the type

π1(A, a) :≡ ‖Ω(A, a)‖0.

Now we are ready to determine the fundamental group of the circle.

Corollary 5.3. The type ∑(x:S1)(base = x) is contractible.

Proof. It is just a particular case of Lemma 4.3(a).

Lemma 5.4. R is contractible.

Proof. We want to show that c(0) is the center of contraction of R. This means to construct
a function q : ∏(y:R)(c(0) = y). The inductive definition of R tells us that, in order to
evaluate q (intuitively) on each element y of R, we only need concern ourselves with the
elements of the form c(z), for z : Z, and with the paths d(z) : c(z) =R c(z + 1) between
these. More precisely, we must give:

(i) for each z : Z, an element q(c(z)) : Q(c(z));

(ii) for each z : Z, a path apdq(d(z)) : q(c(z)) =Q
d(z) q(c(z + 1)),

where Q : R→ U is defined by Q(y) :≡ (c(0) = y). Each of these items corresponds to a
function on Z. For the part (i), we use induction on Z:

q(c(0)) :≡ reflc(0);

q(c(n+ 1)) :≡ q(c(n)) � d(n) if 0 < n;

q(c(n− 1)) :≡ q(c(n)) � d(n− 1)−1 if n < 0.

Verify that these definitions are well-typed. For the part (ii), we must construct an element
of the type

(q(c(z)) =Q
d(z) q(c(z + 1))) ≡ (transpQ(d(z), q(c(z))) = q(c(z + 1))), (5.20)

Chapter 5. The Fundamental Group of the Circle 57

which is equivalent (by Lemma 2.2) to

q(c(z + 1)) = q(c(z + 1)), (5.21)

since transpQ(d(z), q(c(z))) = q(c(z)) �d(z) ≡ q(c(z+1)), by Lemma 3.2(a) and definition of
z 7→ q(c(z)). So, we define apdq(d(z)) as the element of (5.20) correspondent to reflq(c(z+1))

under this equivalence.

Corollary 5.5. The type ∑(x:S1) code(x) is contractible.

Proof. Immediate from Lemmas 5.2, 5.4, and 4.1.

We define
encode :

∏
x:S1

(base = x)→ code(x) (5.22)

by encode(x, p) = transpcode(p, 0).

Corollary 5.6. The map

total(encode) :
∑
x:S1

base = x

→∑
x:S1

code(x)

(see (4.1)) is an equivalence.

Proof. Immediate from Corollaries 5.3 and 5.5 and Lemma 4.4.

Theorem 5.7. Ω(S1, base) ' Z.

Proof. By Theorem 4.10 and Corollary 5.6, encode is a fiberwise equivalence. Therefore,
encode(base) : ((base = base) ' code(base)), i.e., encode(base) : Ω(S1, base) ' Z.

Corollary 5.8. π1(S1, base) = Z.

Proof. From Theorem 5.7, by the univalence axiom, we have that Ω(S1, base) = Z. Hence,
by Lemma 1.3, ‖Ω(S1, base)‖0 = ‖Z‖0. But π1(S1, base) ≡ ‖Ω(S1, base)‖0, by definition.
And ‖Z‖0 = Z, since Z is a set. Thus, π1(S1, base) = Z.

58

References

AWODEY, S. Homotopy type theory and univalent foundations of mathematics.
<http://www.andrew.cmu.edu/user/awodey/hott/CMUslides.pdf>. 2012. Cited in page
10.

AWODEY, S.; WARREN, M. A. Homotopy theoretic models of identity types.
Mathematical Proceedings of the Cambridge Philosophical Society, v. 146, p. 45–55, 2009.
Cited in page 10.

HATCHER, A. Algebraic Topology. [S.l.]: Cambridge University Press, 2002. Cited 2
times in page(s) 40 and 49.

HINDLEY, J. R.; SELDIN, J. P. Lambda Calculus and Combinators, an Introduction.
New York: Cambridge University Press, 2008. Cited in page 11.

HOFMANN, M.; STREICHER, T. The groupoid interpretation of type theory. Oxford
Logic Guides, v. 36, p. 83–111, 1998. Cited in page 10.

LICATA, D. R.; SHULMAN, M. Calculating the fundamental group of the circle in
homotopy type theory. LICS 2013: Proceedings of the Twenty-Eighth Annual ACM/IEEE
Symposium on Logic in Computer Science, 2013. Cited in page 49.

MARTIN-LÖF, P. An intuitionistic theory of types: predicative part. Studies in Logic and
the Foundations of Mathematics, v. 80, p. 73–118, 1975. Cited in page 10.

MARTIN-LÖF, P. Intuitionistic type theory. Studies in Proof Theory, v. 1, 1984. Cited
in page 10.

MARTIN-LÖF, P. An intuitionistic theory of types. Oxford Logic Guides, v. 36, p.
127–172, 1998. Cited in page 10.

MAY, J. P. A Concise Course in Algebraic Topology. [S.l.]: University Of Chicago Press,
1999. Cited in page 48.

Univalent Foundations Program, T. Homotopy Type Theory: Univalent Foundations of
Mathematics. Institute for Advanced Study: <http://homotopytypetheory.org/book>,
2013. Cited 8 times in page(s) 10, 11, 12, 13, 14, 26, 50, and 56.

VOEVODSKY, V. A very short note on the homotopy λ-calculus. <http://www.math.
ias.edu/~Vladimir/Site3/Univalent_Foundations_files/Hlambda_short_current.pdf>.
2006. Cited in page 10.

VOEVODSKY, V. Univalent foundations project. <http://www.math.ias.edu/~vladimir/
Site3/Univalent_Foundations_files/univalent_foundations_project.pdf>. 2010. Cited in
page 5.

http://www.andrew.cmu.edu/user/awodey/hott/CMUslides.pdf
http://homotopytypetheory.org/book
http://www.math.ias.edu/~Vladimir/Site3/Univalent_Foundations_files/ Hlambda_short_current.pdf
http://www.math.ias.edu/~Vladimir/Site3/Univalent_Foundations_files/ Hlambda_short_current.pdf
http://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_files/univalent_foundations_project.pdf
http://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_files/univalent_foundations_project.pdf

	Title page
	Approval
	Dedication
	Acknowledgements
	Epigraph
	Resumo
	Abstract
	List of Figures
	Contents
	Introduction
	Summary on informal type theory
	Function types, or -types
	Pair types, or -types
	Identity types
	Propositions as types

	Paths and Homotopies
	Path operations
	Action of a function on a path
	Generic transport lemmas
	Homotopies between maps

	Equivalences
	Homotopy equivalences
	Function extensionality and univalence

	Identity Types of - and -types
	Specific transport lemmas
	Characterizations of identity types
	Dependent pair types and non-dependent function types
	Dependent function types

	Type families as fibrations

	Contractibility and Fiberwise Equivalences
	Contractibility
	Fiberwise equivalences

	The Fundamental Group of the Circle
	Inductive definitions
	The flattening lemma for the universal cover of S1
	A proof of 1(S1) = Z

	References

