Joao Alves Silva Junior

First Steps in Homotopy Type Theory

Brasil

Fevereiro de 2014

Joao Alves Silva Junior

First Steps in Homotopy Type Theory

Dissertagao submetida ao Corpo Docente
do Programa de Poés-Graduagao do Depar-
tamento de Matematica da Universidade Fed-
eral de Pernambuco como parte dos requi-
sitos para obtencao do grau de Mestre em
Matematica.

Universidade Federal de Pernambuco
Centro de Ciéncias Exatas e da Natureza

Departamento de Matematica

Orientador: Ruy José Guerra Barreto de Queiroz

Brasil

Fevereiro de 2014

Catalogacao na fonte
Bibliotecaria Jane Souto Maior, CRB4-571

Silva Junior, Joao Alves

First steps in homotopy type theory / Joao Alves Silva
Junior. - Recife: O Autor, 2014.

58 f., fig.

Orientador: Ruy José Guerra Barretto de Queiroz.
Dissertagdo (mestrado) - Universidade Federal de Pernambuco.
CCEN, Matematica, 2014.

Inclui referéncias.

1. Matematica. 2. Algebra. 3. Légica matematica. |. Queiroz, Ruy
José Guerra Barretto de (orientador). Il. Titulo.

510 CDD (23. ed.) MEI2014 - 042

Dissertacdo submetida ao Corpo Docente do Programa de Pds-graduacdo do
Departamento de Matematica da Universidade Federal de Pernambuco como parte dos
requisitos necessarios para a obtencdo do Grau de Mestrado em Matematica.

Aprovado:

Ruy José Guerra Barreto de Queiroz, UFPE
Orientador

Manoel José Machado Soares Lemos, UFPE

Wilson Rosa de Oliveira Junior, UFRPE

FIRST STEPS IN HOMOTOPY TYPE THEORY

Por
Jodo Alves Silva Junior

UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE CIENCIAS EXATAS E DA NATUREZA
DEPARTAMENTO DE MATEMATICA
Cidade Universitaria — Tels. (081) 2126 - 8414 — Fax: (081) 2126 - 8410
RECIFE — BRASIL
27 de Fevereiro — 2014

To my parents

Acknowledgements

Above all, I am grateful to my family, especially my parents, Joao Alves (aka Dao)

and Rosilene, for the steadfast support during all my student’s life.

I would also like to express my gratitude to my adviser Ruy de Queiroz, for
introducing me to this beautiful area of research. Thanks to Manoel Lemos, Wilson Rosa,
and Peter Johnson for the examination of this dissertation and the given commentaries
about it. Not less valuable was the knowledge and the maturity I acquired in the master’s

program, with the professors Tony Sousa, Seyed Hamid, and Fernando Xavier.

I warmly thank my colleagues from DMat/UFPE for the camaraderie and the
exchange of ideas. I am indebted to Jaime for watching my pre-presentation; it was

fundamental in my preparation.

Finally, thanks to Michael Shulman, Thorsten Altenkirch, Vladimir Voevodsky,

among others, for some questions answered via internet.

Recife, Pernambuco
March 2014
Joao A. Silva Jr.

“Fventually I became convinced that the most interesting and important directions in
current mathematics are the ones related to the transition into a new era

which will be characterized by the widespread use of automated

tools for proof construction and verification.”

— Vladimir Voevodsky (VOEVODSKY, 2010)

Resumo

Em abril de 2013, o Programa de Fundamentos Univalentes do TAS, Princeton, langou o
primeiro livro em teoria homotopica de tipos, apresentando varias provas de resultados
da teoria da homotopia em “um novo estilo de ‘teoria de tipos informal’ que pode ser
lida e entendida por um ser humano, como um complemento a prova formal que pode
ser checada por uma maquina”. O objetivo desta dissertagdo é dar uma abordagem mais
detalhada e acessivel a algumas dessas provas. Escolhemos como leitmotiv uma versao tipo-
tedrica (originalmente proposta por Michael Shulman) de uma prova padrao de 71(S') = Z
usando espagos de recobrimento. Um ponto crucial dela é o uso do “lema do achatamento”
(flattening lemma), primeiramente formulado em generalidade por Guillaume Brunerie, cujo
enunciado é bem complicado e cuja a prova ¢ dificil, muito técnica e extensa. Enunciamos
e provamos um caso particular desse lema, restringindo-o a minima generalidade exigida
pela demonstragao de m(S') = Z. Também simplificamos outros resultados auxiliares,
adicionamos detalhes a algumas provas e incluimos algumas provas originais de lemas
simples como “composi¢ao de mapas preserva homotopia”, “contrabilidade é uma invariante

homotépica”, “todo mapa entre tipos contrateis ¢ uma equivaléncia”, etc.

Palavras-chaves: teoria homotodpica de tipos. fundamentos univalentes. grupo fundamen-

tal do circulo. lema do achatamento. cobertura universal do circulo.

Abstract

In April 2013, the Univalent Foundations Program, IAS, Princeton, released the first
book on homotopy type theory, presenting several proofs of results from homotopy theory
in “a new style of ‘informal type theory’ that can be read and understood by human
beings, as a complement to a formal proof that can be checked by a machine.” The
objective of this dissertation is to give a more detailed and accessible approach to some
of these proofs. We have chosen as leitmotif a type-theoretic version (originally proposed
by Michael Shulman) of a standard proof of 7;(S') = Z using covering spaces. A crucial
point of it is the use of the flattening lemma, firstly formulated in generality by Guillaume
Brunerie, whose statement is very complicated and whose proof is difficult, very technical
and extensive. We state and prove a particular case of this lemma, restricting it to the
minimum generality required by the proof of m;(S') = Z. We also simplify other auxiliary
results, add missing details to some proofs, and include some original proofs of simple

W

lemmas such as “composition of maps preserves homotopy,” “contractibility is a homotopy

7«

invariant,” “every map between contractible types is an equivalence,” etc.

Keywords: homotopy type theory. univalent foundations. fundamental group of the circle.

flattening lemma. universal cover of the circle.

List of Figures

Figure 1 — Commutative diagram for the path lifting property. The symbol iy
denotes the natural inclusion ig(*) =0.
Figure 2 — Commutative diagram for the homotopy lifting property. The symbol

ip denotes the natural inclusion io(z) = (2,0).

0.1

0.1.1
0.1.2
0.1.3
0.1.4

1.1
1.2
1.3
1.4

2.1
2.2

3.1
3.2
3.2.1
3.2.2
3.3

4.1
4.2

5.1
5.2
5.3

Contents

INTRODUCTION e e e e e e e e e e 10
Summary on informal type theory 11
Function types, or []-types 11
Pair types, or > -types 12
[dentity types 13
Propositions astypes 15
PATHS AND HOMOTOPIES 16
Path operations 16
Action of a functiononapath 18
Generic transport lemmas L 19
Homotopies between maps 20
EQUIVALENCES e e e e e e e e e e 23
Homotopy equivalences 23
Function extensionality and univalence 27
IDENTITY TYPES OF >- AND [[-TYPES 31
Specific transport lemmas 31
Characterizations of identity types 32
Dependent pair types and non-dependent function types 32
Dependent function types 37
Type families as fibrations 38
CONTRACTIBILITY AND FIBERWISE EQUIVALENCES 42
Contractibility 42
Fiberwise equivalences L. 44
THE FUNDAMENTAL GROUP OF THECIRCLE 49
Inductive definitions oL 49
The flattening lemma for the universal cover of S' 51
Aproofof mi(SHY=Z 56

REFERENCES e e e e 58

10

0 Introduction

Homotopy type theory is a recent field of research based on discovered connections
between abstract homotopy theory and the branch of type theory from logic and theoretical
computer science. As observed by Hofmann and Streicher (HOFMANN; STREICHER,
1998), in Martin-Lof intentional type theory (MARTIN-LOF, 1975; MARTIN-LOF, 1984;
MARTIN-LOF, 1998), each type A, endowed with its identity types Ida(a,b), possesses
a non-trivial structure, similar to a groupoid; in fact, a weak oco-groupoid. Essentially
the same is observed in a topological space when we consider its paths, path homotopies,
homotopies between path homotopies, etc., all up to homotopy. This inspired Voevodsky
(VOEVODSKY, 2006) and (independently) Awodey and Warren (AWODEY; WARREN,
2009) to develop the first works on homotopy type theory.

Voevodsky has constructed a model of type theory, using simplicial sets, that
satisfies a property later called the univalence axiom, because it is now integrated to
homotopy type theory as an axiom. In homotopy type theory, the univalence axiom says
that isomorphic structures may be identified. So, it formalizes a common mathematical
practice. The consequences of this axiom go far. Voevodsky has advocated the so called
Univalent Foundations Program, suggesting new foundations for mathematics on the basis

of homotopy type theory with the univalence axiom.

According (AWODEY, 2012), “the computational implementation of type theory
allows computer verified proofs in homotopy theory”, whereas “homotopy can be used as
a tool to construct models of systems of logic”. Computer scientists and mathematicians
working in various areas are very excited about all the benefits that these connections

promise. As said in (Univalent Foundations Program, 2013),

“One can imagine a not-too-distant future when it will be possible for math-
ematicians to verify the correctness of their own papers by working within
the system of univalent foundations, formalized in a proof assistant, and that
doing so will become as natural as typesetting their own papers in TEX. In
principle, this could be equally true for any other foundational system, but we

believe it to be more practically attainable using univalent foundations (...)".

In this dissertation, we present some proofs in homotopy type theory which may
serve as an introduction to the subject. Much of the text is heavily based on (Univalent

Foundations Program, 2013).

As prerequisites, we assume some familiarity with topology, the sections 1.1-1.6,

1.11, and 1.12 of (Univalent Foundations Program, 2013), and some parts of (Univalent

Chapter 0. Introduction 11

Foundations Program, 2013, Chapter 6) as indicated in our Chapter 5. For reference,
we summarize in the next section some things about informal type theory. Since we are
primarily interested in Martin-Lof intentional type theory, we sometimes refer to this

particular formulation simply as type theory.

0.1 Summary on informal type theory

Martin-Lof type theory is an extension of the typed A-calculus. For an introduction
to A-calculus, we recommend (HINDLEY; SELDIN, 2008).

The basic judgements of type theory are a : A (a has the type A) anda=b: A (a
and b are equal terms of the type A). Here, equality between terms means judgemental
equality, which is the same as definitional equality. This is a syntactic notion (see the last
paragraph before section A.1.1 of (Univalent Foundations Program, 2013)). We usually

write a = b : A as a = b. Expressions of the form A := B are used to define A as being B.

A universe is a type whose elements are types. We call the elements of a given
universe its small types. FEach term is associated to a unique small type, i.e., a type which is
not a universe. We denote universes by Uy, Uy, Us, Since there is a cumulative chain of
universes, in any discussion inside type theory, we may suppose the existence of a universe

U where all the other types are in.

The expression Blu/z| indicates the term B’ obtained by replacing all the free
occurrences of the variable x in B by the term wu, changing bound variables to avoid

clashes.

0.1.1 Function types, or [[-types

In the rules below, B and b may depend on .

¢ FORMATION RULE: If B : U for any z : A, then [],.4) B : U.
¢ INTRODUCTION RULE: If b: B for any z : A, then A(z : A).b: [](,.a) B
¢ ELIMINATION RULE: For all f : [[,.4) B and all a : A, f(a) : Bla/z].
¢ COMPUTATION RULE: For all f:[[.4) B and all a: A, (A(z : A).f(2))(a) = f(a).
¢ UNIQUENESS RULE: If f :]](.4) B, then A(x : A).f(x) = f.
The elements of [](,.4) B are called (dependent) functions or maps. When B does

not depend on z, we denote [[,.4) B by A — B. The elements of A — B are called

non-dependent functions.

Chapter 0. Introduction 12

Given any type A, the function id4 := A(z : A).z is called the identity function
on A. Given functions f : A — B and g : [(,.5 C(y), with C : B — U, we define the
composite function of f and g by go f := Az : A).g(f(x)). Verify that composition of
functions is associative, i.e., fo(goh) = (fog)oh whenever these instances of composition

are well-defined.

A type family is a function whose values are types. In other words, a type family is

an element of a type A — U, for some A : U.

The notation A(z : A).f(x) is sometimes abbreviated to Az.f(x). Observe the other

notational conventions adopted in (Univalent Foundations Program, 2013, Chapter 1), like

[, y) = fz)(y),
IT B(z,y):= 1] II B(z,y),
(@:4) (y:A)

z,y:A

llB(x) — C(x) = H(B(a:) — C(x)),

z:A
A—-B—-C:=A— (B—C0).

0.1.2 Pair types, or > -types

¢ FORMATION RULE: If A:U and B : A — U, then 3>, 4) B(x) : U.

¢ INTRODUCTION RULE: For all }-type S := 3 (,.4) B(z), with A : U and B : A — U,

there is a function

intrg : H H S.

(z:A) (y:B(x))
¢ ELIMINATION RULE: Given A :U and B : A — U, let S denote 3 (,.4) B(x). There is a
map indg that gives a function
inds(C,g) : [[C(s)
s:5

for each
C:S—=U and g: [[] Clz,v)).
(2:4) (y:B(2))
¢ COMPUTATION RULE: In the context of the elimination rule above, if 2 : A and y : B(x),
then

inds(C, g, (z,y)) = g(z)(y)-

We usually denote intrs(x,y) by (7,y). The elements of 3= ,.4) B(z) are called
(dependent) pairs. When B’ : A — U is a constant function A\(x : A).B for some B : U, we
denote 3.4y B'(z) by A x B. Types of the form A x B are called product types. Given
A, B : U, the type A x B is said to be the cartesian product of A and B.

Chapter 0. Introduction 13

Observe the notational conventions adopted in (Univalent Foundations Program,
2013, Chapter 1), like

> B(z,y):=)_ > Blx,y),

ZAB(x) — C(z) = ZA(B(x) — C(x)).

The elimination rule above, together with its computation rule, is also known as the
induction principle, or the dependent eliminator, for dependent pair types. As a particular
case of it, we have the recursion principle, or the non-dependent eliminator, for dependent
pair types, which says that for any type S of the form }(,.4) B(z), there is a map recg

that gives a function
recs(C, g) :==indg(A(s: 5).C,g): S —C

for each

C:U and g: [[II C.

(z:4) (y:B(x))

in such a way that
reCS(Cv g, (ZL’, y)) = g(l’)(y),
for any x : A and y : B.

Lemma 0.1. Associated to any type family B : A — U, there are functions
s (S80) a0 e T1 Bon(w)
z:A w:Z(z:A) B(z)

such that pri((z,y)) =z and pry((z,y)) =y, for all z: A and y : B(z).

Proof. See (Univalent Foundations Program, 2013, Section 1.6). O

0.1.3 Identity types

¢ FORMATION RULE: Given A : U, for any =,y : A, we have lda(x,y) : U.

¢ INTRODUCTION RULE: For all A : U and z : A, we have a certain element refl, of
lda(x, x).

<> ELIMINATION RULE: Given A : U, there is a map ind_, that gives a function
ind:A(C,g) : H H C(%%ﬁ)a
(z,y:A) (p:lda(z,y))

for each

C: U and g: || C(x,x,refl,).
I 11 [Ic()

(z,y:A) (p:ld A (z,y)) T:A

Chapter 0. Introduction 14

¢») COMPUTATION RULE: In the context of the elimination rule above,

ind—, (C, ¢, z, z,refl,) = g(x).

We often denote Ida(x,y) by x =4 y or simply « = y. The elements of Id4(z,y) are

called equalities. Equalities of the form refl, are called reflexivities.

The elimination rule above, together with its computation rule, is also known as
the path induction principle. As a consequence of it, we have the based path induction
principle', which says that for any A : U and a : A, there is a certain map ind_ (a) that

gives a function

ind_ aC’c:H II C(zp)

A) (p:a=az)
for each

C: 1] I U and c:C(a,refl,)

(z:A) (p:a=ax)
in such a way that
. i .
ind_ (a,C,c,a,refl,) = c.

Lemma 0.2 (Propositional uniqueness rule for Y -types). For any A:U and B: A — U,

there is a certain function
wppt: IT (praw).pra(w) —w
w:Z<I:A) B(z)
such that, for all x : A and y : B(x), uppt((z,y)) = refl,).
Proof. Let S denote 3 ,.4) B(x). Consider
g:=MNx: ANy : Bx)refle,y: [T I Cl(z,y)),
(z:A) (y:B(x))

where C' := A(w : S). ((pry(w), pro(w)) = w) : S — U. Define uppt as being indg(C,g). O

This is a generalization of the function uppt presented in (Univalent Foundations
Program, 2013, Section 1.5). It would be more correct to denote uppt by upptg, where S
is the involved > -type. The same is true for the projection functions pr; and pr,. But we

usually ignore these details for simplicity.

L The based path induction principle is also a sufficient condition for the path induction principle, but

for our purposes it suffices to observe the necessity.

Chapter 0. Introduction 15

0.1.4 Propositions as types

There is a correspondence between types and propositions according to which
the expressions [(,.4) and 3 ,.4) are interpreted as Vo € A and 3z € A, respectively. In
particular, Ax B and A — B are interpreted as “A and B” and “A implies B,” respectively.
Elements of a type are considered proofs of the correspondent proposition. The negation
of a type A is defined as the type A — 0, where 0 is the empty type (a type that has no
elements). A type, viewed as a proposition, is true if it is inhabited and false if its negation
is inhabited. Given types A and B, we say that A is a sufficient (repectively, necessary)
condition for B if the type A — B (respectively B — A) is inhabited. Two types A and B
are said to be logically equivalent if both A — B and B — A are inhabited.

Since our type theory is constructive, so is its logical interpretation. For instance,
our existential quantifier carry more information than the usual one, because we are not
allowed to claim that something exists without exhibiting it. Hence, a translation of the
axiom of choice into our type theory is automatically true. On the other hand, the law of

double negation and law of excluded middle are not valid here.

16

1 Paths and Homotopies

As the reader probably know, in a topological space X, a path (from zq € X to
x1 € X) is a continuous function ~ : [0,1] — X (such that v(0) = zo and (1) = ;).
The image of a path v in X, called the trace of v, is usually thought as the trajectory
of a particle with position v(¢) at the instant ¢. Sometimes we identify the path with its
trace, so that we may assign geometric/physical properties/concepts to paths without
extra definitions. Given paths v and ¢ in X with (1) = 6(0),

e the inverse path (or simply the inverse) of 7y is the path v~ given by v~ (t) = v(1—1);
e the concatenation (or the composition) of v and 9§ is the path . given by

v(2t), if0<t<1/2;
§(2t—1), if1/2<t<1.

(v+0)(t) =

Note that 7! is a path from ~y(1) to (0) with the same trace as . And 7. ¢ is something
like v followed by ¢, each with double velocity.

Let v and ¢ be paths in X, with v(0) = §(0) and (1) = 6(1). A (path) homotopy
from v to ¢ is a continuous map H : [0,1] x [0,1] — X such that H(s,0) = 7(s),
H(s,1) = 6(s), and H(k,t) = ~v(k) = §(k),for all k£ € 0,1 and ¢ € [0,1]. If there is
such a H, we write H : v ~ §, or simply v ~ 4, and we say that v is homotopic to ¢
(via H). So, we have defined a binary relation ~ on set of all paths in X from z; to
X9, for any x1, x5 € X. This is an equivalence relation and the operations of inversion
and concatenation of paths are well-defined on the equivalence classes. That is, we may
concatenate and invert equivalence classes by operating with (any of) its representatives.
More precisely, if v ~ 7/, § ~ ¢" and [a] denotes the equivalence class of a given path
a with respect to ~, then [y7'] = [y/7!] and [y.d] = [y . '], so that we may define
™ =y and [4]. [d] = [.]

In this chapter, we interpret equalities as paths up to homotopy, i.e., as equivalence
classes of the path homotopy relation. Due to this interpretation, elements of identity

types are often called paths. Reflexivities are interpreted as (and therefore called) constant

paths.

1.1 Path operations

Lemma 1.1. For any type A, there are functions

Chapter 1. Paths and Homotopies 17

(CL) pinvA : H(:my:A)(x = y) - (y = 'CE);

(b) concy - H(x,y,z:A)(x = y) — (y = Z) — (‘T = Z);

called path inversion and path concatenation (or path composition), respectively, such

that pinv 4 (x, z, refl,) = refl, and conca(x, z, z, refl,, refl,) = refl,., for all x : A.
Proof.

(a) We must construct an element pinv, of the type [l .4 (7 = y) — (v = 2),
p:ﬂ::y)u
given by C(z,y,p) := (y = x). The definition of pinv, must satisfy the compu-

which is definitionally equal to [T, .4y [I(pwey) C(2,y,p), for C : T ;.4]

tation rule refl, = pinv,(z, z,refl,). By path induction, it suffices to exhibit a ¢ :
[T(z:a) C (7, z, refl,) satistying g(x) = refl,, so that we can define pinv, := ind_, (C, g).
These conditions are satisfied by g := A(z : A).refl,.. So, the proof is concluded.

(b) Let C1 : [T(zy:4) [pwey) U be given by C1(x,y,p) := 1.4y [1(g:y=-) T = 2. Note that
the type T' :=]y ..a) (T = y) — (y = 2) — (2 = x), as a proposition, is a necessary
condition for S := [I, y.4) [I(puzy) C1(z,y,p). In fact, it is easy to see that these
are logically equivalent, but for our purposes here it is sufficient to observe that we
have a function ¢ : S — T, which is defined by (g, z,y, z,p) := g(x,y, p, 2), for any
g:S,z,y,z: A and p: x = y. To prove S by path induction, it suffices to find
an element g; of the type [](,.4) C1(z, z,refl,), which is definitionally equal to R :=
[Tiz,2:a) Hgaes) C2(, 2, q), for Co = Tl 2oy [(giaesy U given by Co(x, 2,q) := (z = 2).
To prove R by path induction, it suffices to construct a gs : [1;.4) Cao(, z, refl,) =
[I(z:a)(x = x). The obvious choice is g, := A(z : A).refl,. Now, we may define
g1 :=1ind=,(Cy,¢92) : R, go :=ind_,(C1,01) : S and concy := 9(go) : T. So, for all
x: A,

conca(x, x, x, refl, refl,) = go(z, x, refl,, x, refl,) = g1(x, x, refl,) = go(x) = refl,. O

We usually denote conca(z,y, 2,p,q) by p.q and pinv,(z,y,p) by p~!, leaving the
arguments , vy, z : A omitted. We call p. g the concatenation or the composite of p and
q. The path p~! is called the inverse of p. In the rest of this dissertation, we do more
endpoints omissions like these, without explicit warning. For example, the function ap, of
Lemma 1.3 is actually an element of [], ,.4) [I(p.uey) f(2) = f(y) and the notation ap(p)

is an abbreviation for ap;(z,y,p).

The proof by path induction given for Lemma 1.1 is too formal and it may be
tedious to prove more complicated claims in that way. More practical styles of proof by

path induction are used in the next lemmas.

Lemma 1.2. Forallp:x =y, q:y=a2, andr:z =, w,

Chapter 1. Paths and Homotopies 18

(a) p=mp.refl,;
(b) p=refl,.p;
(c) p~top=refl,;
(d) p.p~t = refl,;
(¢) (p~)~" =p;

(f) pa(ger)=(psq).r.

Proof. By the principle of path induction, it suffices to consider the case when z =y = 2
and p = q = r = refl,. But, in this case, all the equalities above hold trivially, with both
sides being judgmentally equal, by the computation rules of concatenation and inversion

of paths.

For example, if x = y, then refl, = refl,. Since refl, = refl, . refl,, it follows that
refl, = refl, .refl,, so that (refl, = refl,) = (refl, = refl, .refl,). Now, by refl.q, : refl, = refl,,
we deduce reflieq, : refl, = refl, . refl,. This proves item (a), since we may suppose without

loss of generality that p = refl, (this is the induction hypothesis). More formally,

ind_,(C,g,2,y,p) : p=p.refl,

where g : [1(,.4) C (2, z,refl,) and C : Ty .y [l (piomy) U are defined by g(x) := reflen, and
C(z,y,p) = (p=p.refly).

We outline the proof of one more item and leave the other as exercises to the reader.
Since refl, . refl, = refl,, we have that refl, . (refl, . refl,) = refl, . refl, = (refl, . refl,) . refl,.
Therefore,

reflren, .(reflyrefl,) © refly « (refl, o refl,) = (refl, . refl,) . refl,.

From this, by path induction, one obtains a proof for p.(q.7) = (p.q) ..]

1.2 Action of a function on a path

Lemma 1.3. For any f: A — B and p:x =4y, there is a path ap;(p) : f(z) =5 f(y).
The function ap; defined in this way is such that ap;(refl,) = refly,y for all z : A.

Proof. Let p : x =4 y be arbitrary. By path induction, we may assume without loss of
generality that © = y and p = refl,. Since x = y, we have that f(z) = f(y). Then we
may define ap;(p) := refly(). Since p = refl,, the computation rule ap,(refl,) = refls () is
satisfied. O

In the homotopical interpretation of type theory, functions correspond to continuous

maps and apf(p) is the image of the path p under the map f.

Chapter 1. Paths and Homotopies 19

Lemma 1.4. Given f: A—B,g:B—C,p:x=ay,q:y=a2, andr:z =4 w,

(a) aps(p-q) = ap;(p) » aps(q);
(b) aps(p™") = aps(p) ™"

(¢) apgof(p) = apy(aps(p));

(d) apig,(p) = p-

Proof. Apply path induction on p and ¢, using the computation rules of the involved

functions. O

We want to generalize Lemma 1.3 for dependent functions, but in this case f(z)
and f(y) may have different types, and we still have no definition for paths between points
of different types. An idea for this generalization is to consider a path between points
u: P(z) and v : P(y) as a path between the elements (z,u) and (y,v) of 3,4y P(a). In

Theorem 3.5, we give another characterization for this notion of paths in a type family.

Lemma 1.5. To each f : [I(4.a) B(a) and each p : v =4y, we can assign a path

apd) (p) : (&, [(2) =52, piw) (4 (0)

in such a way that the function apd'f so defined satisfies apd}(reflgﬁ) = refl(, f(2)) for all
x: A.

Proof. Just apply Lemma 1.3 for the function f': A — 3 ,.4) B(a) defined by f'(z) :=
(@, f(@)). O

1.3 Generic transport lemmas

In this section, we define the operation of transport along a path. We state some
lemmas about transport which will be often used in the rest of this dissertation. The
proofs of these lemmas are simple path inductions, which we have omitted or just outlined.

Other transport lemmas are given in Section 3.1.

Lemma 1.6. For any type family P : A — U, there is a map transp® that assigns a
function transp® (p) : P(z) — P(y) to each p : x =4 y. Moreover, transp” (refl,) = idp(,),
forall x : A.

Proof. In the case when x = y, we have P(x) = P(y), so that we may define transp” (refl,) :=

idp(z). The general assertion follows immediately by path induction. O

Chapter 1. Paths and Homotopies 20

We sometimes use the notation p, for transp?(p), leaving the type family P implicit.

Given u : P(x), we call transp”(p, u) the transport of u along p with respect to P.

From the logical viewpoint, Lemma 1.6 tells that any property of x holds for
y provided that = = y. By symmetry of equality (Lemma 1.1(a)), it follows that any
property of y also holds for x when z = y. So, we have that identical objects are logically

indistinguishable.

Lemma 1.7. Given P: A —U,p:x =4y, and q:y =4 2z, for any u : P(x), we have a
path

ittransp” (p, ¢, u) : . (p.(u)) = (p+ @) (w).

Moreover, ittransp” (refl,, refl,, u) = refl,, for any v : A and u : P(x).

Proof. An easy path induction on p and gq. n

Corollary 1.8. ForallP: A—U,p:x=ay, u: P(x), and v : P(y), we have paths

(a) ittranspinv] (p.) : p, (p.(u)) = u;
(b) ittranspinvy (p,v) : p.(p~,.(v)) = v.

Proof. By Lemmas 1.2(c) and 1.1(a), we have a path r : p.p~! = refl,. Consider e =
A(s: @ = z).s,(u) and observe that ap,(r) : (p.p~1).(u) = (refl,).(u) = idp() (u) = u. So,
(

we may define ittranspinv” (p, u) := ittransp! (p,p~!, u) . ap,(r). This proves part (a). The

other part is proved analogously. O

Lemma 1.9. Given f: A— B, P: A—=U,p:x =4y, and u: P(f(z)),
transp”®/ (p, u) = transpp(apf(p), u).

Proof. Immediate by path induction on p. O]

1.4 Homotopies between maps

In set theory, two functions f, g : A — B are equal if and only if f(x) = g(zx) for all
x € A; but a translation of this (logical) equivalence into type theory is not automatically
true (see Section 2.2). More precisely, under the type-theoretic rules so far introduced, we
cannot define a function from [],.4) f(z) = g(z) to f = g, although there is a map in the
reverse direction. However, if the type [],.4) f(z) = g() is inhabited, then f and g are

very similar from the homotopical perspective.

As we have said in Section 1.2, in homotopy type theory, functions between types are

considered continuous maps between topological spaces and proofs of equalities are viewed

Chapter 1. Paths and Homotopies 21

as paths. From this viewpoint, it is natural to consider each element H of [](,.4) f(z) = g(x)
as a family of paths v, from f(x) to g(x), with x varying on A. Equivalently, H is a
homotopy between f and g, i.e., a continuous function H : A x [0,1] — B such that
H(z,0) = f(z) and H(z,1) = g(x), for all z € A.

We generalize this notion of homotopy for dependent functions.

Definition 1.1. Let A: U and B : A — U. Given f, g : [];.4) B(x), a homotopy from f
to g (or between f and g) is a function H : [](,.4) f(x) = g(z). We denote

(f~g) =]]f(z)=g(x).

z:A

The previous definition introduces a binary relation ~ on each dependent function

type 1.4y B(z). This is an equivalence relation, as we prove now.

Lemma 1.10 (Homotopy between maps is an equivalence relation). Given f,g,h
H(:(::A) B(x);

(a) [~ f;

(b) if f~g, then g~ f;

(c) if f~gandg~ h, then f ~ h.
Proof. Just verify that

Ma: A)reflpy o f ~ f
MH: f~g) Mot A)H@)™ : (f~g) = (g~ f)
AHy: f o g) M Hy g~ h). A2 A).Hy(x) « Hy(x) - (f ~g) = (g~ h) = (f ~h) O

Lemma 1.11 (Composition of maps preserves homotopy). Given fi, fo : A — B and
91,92 : B—=>C,if F:fi~ fyand G: g ~ go, then H : gy o fi ~ g2 0 f1, where H is
defined by H(x) = ap,, (F(r)) « G(fa(z)).

Proof. For all x : A, we have:

g1(f1(x)) = g1(fa(2)) by apg, (F(z))
= ga(fa(x)), by G(fa(z))

so that ap,, (F(2)) . G(f2(2)) : g1(fi(2)) = ga(fo(2)), L.,
H(x) : (g1 0 f)(@) = (g2 0 fo) (a). N

Chapter 1. Paths and Homotopies 22

Lemma 1.12 (Homotopies are natural transformations). Given f,g: A — B, let H be a

homotopy from f to g. For all p:x =4y, we have
H(x) . apy(p) = ap;(p) - H(y). (1.1)
Proof. In the case when = = y and p = refl,, the type (1.1) is definitionally equal to
H(x).reflyqy = reflym) « H(x), (1.2)
which is a necessary condition for H(x) = H(x). In fact, we can define a function
F:(H(x)=H(z)) = (H(@) . reflyu) = reflp) H(x))

by F(p) :=r.p.s, where r : H(x) .refly,) = H(z) and s : refly,) . H(x) = H(x) are given
by Lemma 1.2. So, since refly(,) : H(x) = H(x), we see that (1.2) has a proof. Therefore,
by path induction, (1.1) is true for all p: x =4 y. O

Corollary 1.13. If f: A— A and H : f ~idys, then H(f(x)) = ap;(H(x)) for all x : A.

Proof. Replacing (simultaneously) « by f(z), y by =, p by H(z), and g by id4 in (1.1), we
have that H(f(x)).H(x) = ap;(H(z)). H(z). By concatenating both sides of this equality
with H(z)™! to the right, it follows that

(H(f(x))« H(z))« H(x)™" = (ap;(H(x)) « H(z)) . H(2) ™",

by Lemma 1.3. Then, by Lemma 1.2,

H(f(x)) = H(f(x))« reflyy = H(f(x)) « (H(2) s H(z)™)
= (H(f(x))« H(x))« H(z)™" = (ap;(H(z)) H()) « H(z)™
= ap;(H(2))« (H(z) . H(x)™") = apy(

23

2 Equivalences

Two topological spaces A and B are said to be homotopy equivalent if there are
continuous maps f : A — B and g : B — A such that f o g and g o f are homotopic to
the identity maps on B and A, respectively. In Section 2.1, we translate this concept into
type theory and prove some lemmas about it. Next, in Section 2.2, we present the axioms

of function extensionality and univalence.

2.1 Homotopy equivalences

Definition 2.1. A quasi-inverse of a function f : A — B is a function g : B — A together
with homotopies h: fog~idg and k: go f ~ idy. More precisely, the quasi-inverses of
f: A — B are all the elements of the type

qinv(f) == Y. ((fog~idg) x (go f ~ida)).

g:B—A

Informally, we say that g : B — A is a quasi-inverse of f : A - Bif go f ~idy
and fog~idg.

Definition 2.2. A (homotopy) equivalence from A to B (or between A and B) is a pair
(f,q), where f: A — B and ¢ : ginv(f). We denote the type of equivalences from A to B
by A ~ B. Symbolically,

(A~ B):= Y qinv(f).
f:A—B
Thus, if £ : A ~ B, then pry(¢) is a quasi-inverse of pr, (), so that pry(e, pry(e,z)) =
x and pry(g,pry(e,y)) = y, for all z : A and y : B. Informally, we say that a function
f: A — B is an equivalence if it has a quasi-inverse. But it is necessary to be careful to
not confuse this informal convention with the official definition, according to which an

equivalence is not a function, but a pair.

Example 2.1. Path inversion is an equivalence. For any x,y : A, the function A\(p : x =

y).p~ ' is a quasi-inverse of itself (by Lemma 1.2(e)).

Example 2.2. Concatenations to the right and to the left of a fixed path are equivalences.
More precisely, given a path p:x =4y and points x',y' : A, the functions X(r : &' = z).r.p
and \(r : &' = z).r~' . p are quasi-inverses of each other, as well as \(s: y=1v').p.s and

As:y=1y).p.s~ . The verification is immediate by Lemma 1.2.

Chapter 2. Equivalences 24

Example 2.3. Given a type family P : A — U and a path p : © =4 y, the function
transp” (p) is an equivalence with quasi-inverse transp” (p=t). In fact, for all v : P(z) and
v : P(y), we have transp” (p~, transp” (p,u)) = u and transp® (p, transp” (p~',v)) = v, by

Lemma 1.8.

Definition 2.2 introduces a binary relation ~ on . This is an equivalence relation.

Lemma 2.1 (Homotopy equivalence is an equivalence relation). For all A, B,C : U,

(a) A~ A;
(b) if A~ B, then B ~ A;

(c) if A~ B and B ~ C, then A~ C.
Proof.

(a) Just verify that (ida, (ida, (Aa.refl,, Aa.refl,))) : A ~ A.

(b) Note that if (f, (g, (h,k))) : A~ B, then (g, (f,(k,h))) : B~ A. Moreover, by suc-
cessive applications of Lemma 0.2, every element of A ~ B is equal to (f, (g, (h,k)))
for some (specific) f: A— B,g: B— A, h: fog~idgand k:go f ~id4. So,
we can define a function F': (A~ B) — (B~ A) by F(v) := (g, (f, (k,h))), where
(f: (g, (h, k))) = v.

(c) Given (f1, (g1, (h1,k1))) : A~ B and (f2, (92, (he, k2))) : B ~ C, consider

q1 = (Mz: C).apy, (hi(g92(2))) « ha(2), (2.1)
¢ = (A A).ap,, (ka(fi1(2))) « kr(w), (2.2)

and verify that (fa0 f1, (91092, (¢1,¢2))) : A =~ C. Therefore, we can define a function
G:(A~B)—» (B~C)— (A~C) by G(v,w) := (f20 f1,(g1 092, (q1,¢2))), where
(f1, (g1, (h1,k1))) and (fa, (g2, (he, k2))), given by Lemma 0.2, are equal to v and w,
respectively. O]

Definition 2.3. For any v: A~ B and w : B ~ C, the previous lemma (items (b) and
(c), respectively) gives equivalences F(v) : B ~ A and G(v,w) : A ~ C. We denote these

1

by v~ and w o v, respectively. We call v™! the inverse (equivalence) of v and w o v the

composite (equivalence) of v and w.

Informally, one may consider elements of A ~ B as functions from A to B that
have quasi-inverses, or denote by f~! any function from B to A such that both fo f!
and f o f~! are homotopic to identity functions, for a given f : A — B, but we avoid this

kind of abuse, especially when writing symbolically.

Chapter 2. Equivalences 25

Example 2.4. Consider a path p: x =4 y and a point z : A. By Examples 2.1 and 2.2, we

have equivalences o : (x = z) ~ (z =) and B : (z = x) ~ (z = y) such that pry(a,r) = r~*

and pry(B,8) = s«p. Then foa: (v = 2) ~ (2 = y) satisfies pry(Boa,r)=r"1.p.

In the rest of this section, we prove some simple lemmas about equivalences to be

used in the next chapters.

Lemma 2.2. Given a type A and paths p:a =4 b and q: c =4 d, we have equivalences
a:(a=p¢)~(b=ad)and f:(a=4d)~ (c=40b) such that

((
((

b=d)p.s.q ',

c)p T g, pry()
d).q.r™"p, pra(5)

pri(a) = A(r:a= (s -
pri(B) =A(r:a= Ms:c=b)p.st.q

In particular, if a = b, p = refl,, d = ¢, and q = refl., then : (a =4 ¢) ~ (¢ =4 a)
and this is essentially Fxample 2.1. If either p = refl, or q = refl., then « is essentially
Example 2.2.

Proof. Tt is immediate to verify that pry(a) o pry(a), pry(a) o pry(a), pri(B) o pry(5), and
pry(B3) o pry(B) are homotopic to identity functions, by Lemma 1.2. O

Lemma 2.3 (Y -types are “associative”). For any C': (Z(a:A) B(a)) — U, with A : U and
B:A—-U,

> Y @)= Y Cl). (2.3)

(a:A) (b:B(a)) q:Z(a;A) B(a)

Proof. Let M and N denote the left and the right sides of (2.3), respectively. The idea of
the proof is simply to define f : M — N and g : N — M so that

f((a,(b,c)) = ((a,b),¢), g(((a,b),c)) = (a, (b)),
and hence
f(g(((a;0),¢))) = ((a,0),c), g(f((a,(b,c)))) = (a, (b,c)),

foralla: A, b: B(a), and ¢ : B((a,b)). These conditions hold for

f=Xv: M).((pryv, priprav), praprav),
g := Mw : N).(prypryw, (propryw, praw)),

where, for brevity, we have omitted the parentheses around arguments of projection

functions. Observe that

f(g(w)) = ((pripryw, propryw), prow), — g(f(v)) = (pryv, (Priprov, proprav)).

Chapter 2. Equivalences 26

Moreover, by Lemma 0.2, we have paths
ti(w) : (pryw, pryw) = w, ta(w) : (prypryw, propriw) = pryw,
s1(v) : (pryv, pryv) = v, $2(v) & (Prypryv, prapryv) = prav,
so that
apa(tQ(w)) : ((prlprlwa pr2prlw)’ pr2w) = (prlw’ pr2w)7
apg(s2(v)) = (pryv, (pryprav, propryv)) = (pryv, prav),

where « := Aa.(a, pryw) and § := Ab.(pryv, b). Therefore,

ap, (ta(w)) « tr(w) = f(g(w)) = w,
aps(s2(v)) « s1(v) : g(f(v)) = .

So, we have constructed homotopies h : fog ~idy and k: go f ~ id,, given by

h(w) := ap,, (ta(w)) « t1(w), k(v) := apg(s2(v)) « 51(v). O

Lemma 2.4 (Y -types are “commutative”). For all A : U, B : A — U, and C :
(Z(a:A) B(a)) — u:
> > C((a,b)) ~ ZZC@Z) (2.4)

(a:A) (b:B)) (a:A)

Proof. Let M and N denote the left and the right sides of (2.4), respectively. The idea of
the proof is simply to define f : M — N and g : N — M so that

f((a, (b,e))) = (b, (a,), g((b,(a,¢))) = (a, (b,c)),

and hence
f(g((0,(a,0))) = (b, (a,c), g(f((a,(b,0)))) = (a, (b,¢)),
foralla: A, b: B(a), and ¢: B((a,b)). These conditions hold for

f=)‘(U : M).(prlprQU, (prlva pr2pr2v)),
g := Mw : N).(pryprow, (pryw, propraw)).

We leave to the reader the task of constructing homotopies h : fog ~idy and h : gof ~ idy,

as we did in Lemma 2.3. O

The next lemma is a version of (Univalent Foundations Program, 2013, Lemma 4.2.3)

in a more direct language.

Lemma 2.5. Given (f,(g,(h,k))): A~ B, there is a h' : f o g ~idp such that, for any
v A, apy(k(x)) = I (f(x).

Chapter 2. Equivalences 27

Proof. Define h' := Ay : B).h(f(g(y)))~" - (ap;(k(g(y))) - h(y)). We need to prove that

ap;(k(x)) = h(f(g(f(2))) " « (ap;(k(g(f(2)))) - h(f(2))), (2.5)

for any x : A. Applying Corollary 1.13 for go f: A — Aand k: go f ~ id4, we have a
path p: k(g(f(x))) = apy.s(k()). Setting p := Xs.ap(s) « h(f(x)), it follows that

ap,(p) : aps(k(g(f(2)))) « h(f(z)) = aps(apyor(k(2))) « h(f(2)).

But, by (Lemma 1.4(c))™", there is a ¢ : ap;(ap,o;(k(2))) = apjogos(k(x)) so that

ap, () : aps(apyos (K(2))) « A(f(2)) = apjogor (k(x)) « h(f(2)),
for v := As. suh(f(z)). Moreover, by replacing (simultaneously) H with h, z with f(g(f(x))),
g with f, p with k(z), and f with fogo fin (1.1), we obtain a path
rh(f(g(f(2)))) «aps(k(x)) = apjoger (K(2)) « h(f(2)).

-1

So, we can see that (ap,(p)-ap,(g)) .7~ is an inhabitant of the type

ap;(k(g(f(2)))) « h(f(2)) = h(f(g(f(2)))) « ap; (k(x))-

Concatenating both sides of this equality with h(f(g(f(x))))™! to the left, it follows that

h(f(g(f (@)« (apy (k(g(f(2)))) « h(f(2))) = ap,(k(z)),

by Lemma 1.2. Hence, (2.5) is true. O

2.2 Function extensionality and univalence

The next lemma tells that equality between non-dependent functions is a particular

case of homotopy.

Lemma 2.6. Forall A,B:U, f,g: A— B, and p: f = g, there is a certain homotopy
happly(p) from f to g. The function happly defined in this way satisfies the computation
rule happly(refly) = Az : A).refl.

Proof. Define happly by
happly(p) := A(z : A).ap.,(p),
where e(x) := AM(h : A — B).h(z). (It is also easy to define such a homotopy by path

induction.) O

As we commented at the beginning of Section 1.4, under the type-theoretic rules
so far presented, we cannot deduce that any two homotopic functions are equal. But we

can assert this as an axiom.

Chapter 2. Equivalences 28

Axiom 2.1 (Function extensionality). The function happly defined in Lemma 2.6 has a

quasi-inuverse
funext: (f ~g) — (f =9).

The proof of the part (a) of the next lemma (which is used in the proofs of

Lemmas 4.3, 5.2, and Theorem 4.8) uses the axiom of function extensionality.

Lemma 2.7. Let P and Q be type families over A.

() If Ty P(x) > Q(2), then (Twiny P(2)) ~ (M) Q(x)).
(6) If Hwsa) P(x) = Q) then (Lo P(@)) ~ (o Q(2)).
Proof. Suppose that a : [],.4) P(7) ~ Q(x).

(a) Let C and D denote [](,.4) P(x) and [],.4) Q(z), respectively. We need to construct
an element (f,(g,(h,k))) of C >~ D. In particular, we must give, for each ¢ : C,
a dependent function f(c) : [](;.4) @(x). Note that, for any x : A, we can get an
element of Q(z) by applying pr,(a(z)) : P(x) — Q(z) on ¢(x) : P(x). So, we may
define
fle) == Az : A).pry(a(z), c(x)).

Similarly, one verifies that the definition

g(d) := XMz : A).pry(a(x),d(z))

is suitable, for each d : D. So, we have constructed f: C — D and g : D — C. Now,

set prq := pry o0 pry © pry, pry := pry O© pry 0 proy, and note that
pra(ev(z), d(x)) : pri(a(z), pro(a(z), d(2))) = d(z),
pro(a(z), c(x)) : pro(e(z), pri(a(z), c(z))) = c(z),

Az = A).pri(a(), pry(a(), d(2)))
it follows by A(z : A).c(z) =

forall ¢ : C, d: D, and z : A. Since f(g(d))

and g(f(c)) = Az : A).pry(a(), pry(e(), c(x))),
d= XNz : A).d(x) that

¢ and

funext(A(z = A).pry(a(z), d(x))) - f(9(d)) = d,
funext(A(x : A).pry(a(z),c(x))) : g(f(c)) =c.

Thus, we may define h: fog ~idp and k: go f ~idc by

h(d) := funext(A(z : A).prs(a(z),d(x))),
k(c) := funext(A(z : A).pry(a(z), c(x))).

Chapter 2. Equivalences 29

(b) In the same spirit of part (a), let V and W denote > (,.4) P(x) and > (,.4) Q(7),
respectively. It is easy to see that f: V — W and g : W — V may be defined by
f(U) = (pI'l(U), prl(a7 pI’Q(U))),
g(w) := (pry(w), pray(a, pry(w))).
Moreover,
flg(w)) = (pri(g(w)), pri(a, pra(g(w))))
= (pry(w), pry(a, pry(av, pry(w))))

= (pry(w), pry(w)) by p
= w, by ¢q

where p := ap,, (pry(, pry(w))), for p:= Ay.(pr;(w), y), and ¢ := uppt(w). (Recall
that pry := pry o pry o pry.) Analogously, one proves g(f(v)) = O

The axiom of function extensionality is a consequence of another important axiom,
called the axiom of univalence.
Lemma 2.8. For all A,B:U and p: A =y B, there is a certain equivalence
idtoeqv(p) : A ~ B.
The function idtoeqv defined in this way satisfies the computation rule
idtoeqv(refl4) = (id 4, (id4, (Aa.refl,, Aa.refl,))).

Proof. Consider the function transport® =%, where X — X denotes the type family that

p)
p~ 1), by Example 2.3. These mutual quasi-inverses,

sends each type X : U to itself. It assigns to each p : A = B a function transport*—%(

which has a quasi-inverse transport™ % (
together with the respective homotopies, give an equivalence from A to B. We define
idtoeqv(p) as being this equivalence. The verification of the computation rule is immediate.

Another easy way of proving this lemma is by applying path induction on p. O]

Axiom 2.2 (Univalence). The function idtoeqv defined in Lemma 2.8 has a quasi-inverse

(whose first coordinate is)
a:(A~B)— (A=y B).

The axiom of univalence formalizes the common mathematical practice of identifying
isomorphic structures.
By the homotopies involved in Axiom 2.2, we have
idtoeqv(ua(v)) = v, (2.6)
p = ua(idtoeqv(p)), (2.7)

Chapter 2. Equivalences 30

forallv: A~ Bandp: A= B. Note that if ¢ is an element of (2.6), then happly(ap,,, (¢), a)
is an inhabitant of

transport®~* (ua(v),a) = pr, (v, a), (2.8)

for all a : A, since transport®*~* (ua(v)) = pr, (idtoeqv(ua(v))).

31

3 ldentity Types of =- and n-types

In this chapter, we characterize some types Id4(z,y), with A being of the form
> (=:p) P(2) or the form [](,.p) P(2). Some lemmas about certain forms of transport are
required for this purpose. We have put together these and other similar lemmas into
Section 3.1. In Section 3.3, we interpret the first projection associated to any type family

as a fibration.

3.1 Specific transport lemmas

In Section 1.3, we proved some lemmas about transport with respect to completely

arbitrary type families. Now, we study transport with respect to more specific type families.

Lemma 3.1. For any type B and every path p : x =4 y, there is a certain dependent

function

transpconstf : Htransp()‘(a:A)‘B) (p,b) = b.
b:B

The map p — transpconst” so defined satisfies transpconstly = A(b: B).refly, for all z : A.

Proof. In the case when z = y, we have transp*@4)-B)(refl,, b) = idp(b) = b for all b : B,
so that we may define transpconst?y := A(b : B).refl,. The general assertion follows

immediately by path induction. O
Lemma 3.2. Let A be a type, x1,22,a: A, and p : v1 = o>.

;L’»—>(a:;r)(

(a) For all q: a = xq, transp Dyq) = q«D.

(b) For all q: z, = a, transp™@=9(p,q) = p~t.q.

p,q) =p taq.p.

(¢c) For all q: x, = x1, transp™@=2)(
Proof. For the first two items, use path induction on p and based path induction on q.
Recall that based path induction is very similar to ordinary path induction, it says that,
fixed a : A, we prove a claim about every path ¢ : a =4 x simply by proving the trivial case
when x = a and ¢ = refl,. Of course, given a : A, any claim about every path ¢’ : v =4 a
can be converted into a logically equivalent claim about every path ¢ : a =4 x, where

q =p ' (see Example 2.1). For item (c), it suffices to apply induction on p. O

Lemma 3.3. Suppose given a type X, type families A, B : X — U, and a pathp : x1 =x To.
Let A — B denote the element of X — U defined by (A — B)(x) := A(x) — B(x), for

Chapter 3. Identity Types of > - and []-types 32

allz € X. For any f: (A — B)(z1), we have an element transpfunﬁﬂB(f) of the type

transp B (p,) = AMa : A(zy)).transp?(p, f(transp(p~!, a))).

More concisely,
transpfun;HB(f) pe(f) = Aap.(f(p~t(a))).

In addition, the map p— A(f : (A — B)(xl)).transpfunﬁ_}B(f) so defined is such that, for

all f: (A — B)(x1), transpfuniiy B(f) is the constant path on transp~5(refl,, f).

refl,
Proof. Suppose x5 = 1. Setting z := 1 = x5, we have, for each f : (A — B)(x),

transp” (refl,, f) = ida@)-n) (f)
=f
= \a: A(2)).f(0)
(a: A(z)).transp®(refl,, f(a))
(a : A(x)).transp® (refl,, f(transp” (refl,, a))).

Q

A
A

Then, the constant path on transpA=B(refl,, f) is an inhabitant of
transp =B (refl,, f) = Ma : A(x)).transp® (refl,, f(transp™(refl- ', a))).

The general statement follows immediately by path induction on p. O

See Lemma 3.10 for one more result about transport, which would be placed here

if it did not use the function dpair™, defined in the next section.

3.2 Characterizations of identity types

3.2.1 Dependent pair types and non-dependent function types

Theorem 3.4. For all w,w' : A X B,
(w =axp w') = (pry(w) =4 pry(w')) x (pry(w) =p pry(w’)). (3.1)

Proof. Let C' and D denote the left and right sides of (3.1), respectively. A function
f:C — D is given immediately by path induction with the computation rule f(refl,) =
(reflor, (w), reflor, (w)). Now, we have to construct a g : D — C. By path induction (on p and

q), it is easy to verify that there is a certain function

g1 H H H H (SL’,y) = (xlvy/)v

(z,a":A) (px=a') (y,y":B) (¢:y=y')

Chapter 3. Identity Types of > - and []-types 33

which corresponds to a

I I I I 1T () = @y

(z:A) (y,:B) (2':A) (y':B) (pz=2') (¢:y= y)

H H 11 H r=1)=(y=19) = ((z.y) =" y))

A) (y,:B) (2":A) (y
under the evident logical equivalence between the types of these two functions. By applying

the induction principle for product types twice, g2 becomes
g3: I (pri(w) = pri(w')) — (pry(w) = pry(w’)) = (w = w').
w,w’:Ax B

So, for any w,w’ : A x B, gs(w,w") produces

g : (pri(w) = pry(w')) x (pry(w) = pry(w’)) = (w = w'),

by the recursion principle for product types. Moreover, g1, g2, g3, and g satisfy the

computation rules

9((p,q)) = gs(w,w',p, q),

93((I7 y)7 (J’J’ y/>ap7 q) = g?(‘ra Y, {E,7 ?/7]97 Q>a
Go(x,y, x, y, refl,, refly) = g1 (x, x, refl,, y, y, refly) = refl,).

To prove that fog ~ idp and go f ~ idg, consider x := pry(w), y := pry(w),
' = pry(w'), and y' = pry(w’). Given d : D, let d; and dy denote pry(d) and pry(d),

respectively. On one hand, we have, by Lemma 0.2:

flg(d)) = f(g((dr,d2))) = fg3(w,w',dy,dy))
= f(g3((z,y), (2", ¢),dr,d2)) = f(ga(2,y, 2",y dy, dy)).

On the other hand, by the principle of path induction, we may assume that x = 2/, y = v/,
and d = refl(, ., so that

f(g2($7 Y, 1:/7 y/v d17 d2)> = f(g2($7 y,x,y, reﬂm7 reﬂy)) = f(gl<x7 &Z, reﬂx? v,Y, reﬂy))
= f(reflyy)) = (refl,, refl,) = (apprl(refl(w)), appr2(ref|(x7y)))
= refl,) =d,

by uppt(refl;,)) (Lemma 0.2). Thus, fog ~ idp. Finally, to see that go f ~ id¢, it suffices
to note that if vz = 2" and y = ¢/, then g(f(refl,y))) = g((refl,, refl,)) = refl, . O

Definition 3.1. Given w,w’ : A x B, we denote by pair~ the element of
11 11 w=w
(pipr s (w)=pry (")) (g:pra(w)=pra(uw'))
defined so that pair=(p, ¢) is the path from w to w’ that corresponds to (p,q) under the

equivalence from Theorem 3.4. Thus, pair~(refl,, refl,) = refl,), for any a : A and b: B.

Chapter 3. Identity Types of > - and []-types 34

Now we generalize Theorem 3.4 for dependent pair types.

Theorem 3.5. For every type family P : A — U and any w,w' : 3 (,.4) P(x), we have
w=uw)= X transp”(p,pra(w)) = pro(u). (32)
pipry (w)=pry (w’)

Proof. Let S(w,w’) denote the right side of (3.2), for each w and w’ having the type
T =3 (;.4) P(). Fix v : T. We have to construct, for each w : T', two mutual quasi-inverses
fuw: (w=w)— S,w)and g, : S(v,w) = (v=w).

Consider the map ¢ := Aw : T).(reflo, (w), reflor, () * Ty C(w, w, refly,), where
C : Tww:r) Hirwew) U is defined by C(w,w’,r) := S(w,w'). We have,

ind_,.(C.c):][II Clw ', r)

(w,w":T) (rw=w’)

so that we may define

fw :=ind_ . (C,c,v,w) . [Clv,w,r) = ((v=w)— S(v,w)).

TIV=w

Now, observe that the type

I I I 1II (z,y) = (', ¢/) (3.3)

(za’:A) (pz=z') (y:P(x)) (v':P (")) (g:p=(y)=y')

is inhabited. The verification is straightforward by path induction on p and based path

induction on ¢. Furthermore, (3.3) is logically equivalent to

I 1 I I @y==cy.

(z,2":A) (y:P(2)) (y':P(2")) (pz=2') (¢:p«(y)=y’)

So, for all 2,2’ : A, y : P(z), and ' : P(2), the type [e Higp.)=y (@ y) = (@', ¥)
is inhabited. In particular, for each w : T, we have an element of the type

11 11 (pry(v), pra(v)) = (pri(w), pray(w))

(p:pry (v)=pry (w)) (g:ps(pro(v))=pra(w))

which is transformed into an inhabitant of
S(v,w) = ((pri(v), pra(v)) = (pri(w), pra(w))) ,

by the recursion principle for dependent pair types. But, by Lemmas 0.2 and 2.2,
((pri(v), pra(v)) = (pri(w), pra(w))) = (v = w).

Therefore, we have a

Gw : S(v,w) = (v =w).

Chapter 3. Identity Types of > - and []-types 35

It remains to show that g, : qinv(f,), for any w : T. For this purpose, define
vy = pry(v), vy := pry(v), and verify that

Jo(refly) = frorm) (refla,) = (refl,,, refl,,),
Go((refly,, refly,)) = groy) ((refly, , refl,,)) = refly, 4,y = refl,,

so that

Go(fo(refly)) = go((refly,, refl,,)) = refl,,
Jo(gu((refly,, refl,,))) = fo(refl,) = (refl,,, refl,,).

By based path induction, it follows that

gw(fw(r)) =T, (3'4)
fu(9u((2,9))) = (9, q), (3.5)

forallw: T, r:v=w,z: A p:v;=z,y: Px),and ¢ : p.(x) = y. From (3.4), we have
that g, o fu ~ id(y=w), for any w : T. And from (3.5), by induction on S(v,w), we see that
Jw © Guw ~ ids(w), for all w: T. O

Definition 3.2. Given w,w’: 3 (,.4) P(x), we denote by dpair~ the element of

11 11 w=w
(prpry (w)=pry (w)) (g:p« (pra(w))=pry(w’))
defined so that dpair=(p,q) is the path from w to w’ that corresponds to (p,q) under
the equivalence from Theorem 3.5. Thus, dpair~(refl,, refl,) = refl,), for any a : A and
b: P(a).

Recall that in Lemma 1.5 we considered a path between points v : B(z) and
v : B(y) of different types as being a path from (x,u) to (y,v) in 3.4y B(a). Now, by
Theorem 3.5, we see that such a path from (x,u) to (y,v) corresponds to a pair (p, q) with
p:x =y and q : p,(u) = v. This characterization of paths between points of different

types is more descriptive, so it motivates another version of Lemma 1.5.

Definition 3.3. Given a type family B : A — U and a path p: z =4 y, a dependent path
from w : B(x) to v : B(y) lying over p is an element of the type

(u =0 v) := (transp” (p, u) =p(y) v).

Lemma 3.6. For all f : [l,.a) B(a), there is a function apd; that assigns, to each
p:ix=ay, apath apd,(p) : f(z) :5 f(y) in such a way that apd (refl,) = refly,) for all
a: A.

Proof. Immediate by path induction on p. O

Chapter 3. Identity Types of > - and []-types 36

Compare Lemmas 3.6 and 1.5.

The following two lemmas are simple path inductions involving dpair~ which are

used in the proof of Lemma 5.2.

Lemma 3.7. Let P: A —U. Forallp; :x =4y, ¢1:y =4 2, ps : transp” (p1, u) =p(y) v,

and gy : transp” (q1,v) =p(z) w,
dpair™ (p1, p2) « dpair=(qi, g2) = dpair~(p1 « g1, P2 « G2)-

Proof. Immediate by path induction on pq, ps, q1, and gs. O

Lemma 3.8. Let P be a type family over A. Given a = A, if f: P(a) — X .4y P()
is defined by f(u) := (a,u) and p is any path in A from a to itself, then, for all q :
transp” (p, u) =p(a) v,

ap;(q) = dpair~(refly, q).
Proof. Fix u : P(a) and apply based path induction on q.]

We end this section with a characterization of types of dependent paths between

non-dependent functions. In Lemma 3.11, we generalize it for dependent functions.

Lemma 3.9. Given A, B : X — U, let A — B denote the element of X — U defined by
(A— B)(z) := A(x) — B(x), for allz € X. For any p: x; =x 2, f: (A — B)(x1), and
g: (A — B)(x3), we have:

(transp™ 5 (p, f) = g) ~ 1_([)(transpB(p,f(a)) = g(transp™ (p, a)))

More concisely,

() =9)~ [p(f(a))=g(p(a)). (3.6)

a:A(z1)
In addition, if q : p.(f) = g corresponds to q¢' under this equivalence, then, for all a : A(xy),
the path

happly(g, p«(a)) : (p«(f))(p«(a)) = g(p«(a))

is equal to the composite

(p(£)(po(@)) = po (f (P (ps()))) by ap, (transpfun’ =7 (f))
= p*(f
= g(p«

a)) by ap,, . (ittranspinv, (p, a))

(
(a)), by ¢'(a)

where e = N(f : P(x2)).f(p«(a)).

Chapter 3. Identity Types of > - and []-types 37

Proof. In the trivial case (when x1 = 25 and p = refl,,), (3.6) reduces to the extensionality
axiom. So, by path induction, (3.6) is true in generality. The second part of the lemma is
also proved by path induction, using the fact that, in the trivial case, ¢’ is judgementally
equal to happly(q), whereas ape(transpfunAﬁB(f)) and ap,,_;(ittranspinv, (p, a)) reduce to

reflexivities. O

3.2.2 Dependent function types

Lemma 3.10. Suppose given a type X, a path p : x1 =x x2, and type families A : X — U
and B : T].x) A(x) — U. Consider Ix(B) : X — U and B: (Z(x:X) A(x)) — U defined
by

[4(B)(z) := [[Bl(z,a), (3.7)
a:A(z)
B(w) = B(pr,(w), pry(w)). (3.8)

For all f : 11 4(B)(xy), the type
transp™ B (p, f) = A (a : A(x)) .transp§ ((dpair (p_l, reflpfl*(a)»_l, f (p_l*(a)))

is inhabited by certain path, which we denote by transpdfuanA(B)(f). So, for any a : A(xs),
we have an element happly(transpdfunnA B)(f), a) of the type

-1

p(f)(a) = dpair~ (p~', refl,) (f(p~'.(a))).

Proof. Immediate by path induction on p. O

Lemma 3.11. Given type families A, B : X — U, let lI4(B) : [z.x) — U and B be
defined as in (3.7) and (3.8). For any p : 1 =x xa, f : Ha(B)(z1), and g : Hs(B)(z2), we
have:

(transpHA(B)(p, f) = g) ~ H (transp’§ (dpair: (p, reflp*(a)) , f(a)) = g(p*(a))> .

a:A(z1)

More concisely,

(p(f)=g) =~ T dpair (p, refl,.0)) (f(a)) = g(p.(a)).

a:A(z1)

In addition, if q : p«(f) = g corresponds to q' under this equivalence, then, for all a : A(xy),
the path

happly(q, p«(a)) : (p«(f))(p«(a)) = g(p«(a))

Chapter 3. Identity Types of > - and []-types 38

is equal to the composite

(p.(F) (@) = dpair= (p~refl s o) (F (P 0u@)) by pi(a)

= dpair= (p~"refl) " (f(a)) by pa(a)
= dpair™ (p, refl,.(a)) (f(a)) by ps(a)
= 9(p:(a)), by ¢'(a)

where

pi(a) := ap,, (transpfun; =7 (f))
for ex:= Ah: (A= B)(x2)).h(p.(a)),
p2(a) = ap,, (ittranspinv, (p, a))
for ey := ANu : A(zy)).dpair™ (p’l, reﬂu)il*(f(u)),
ps(a) := ap,,(r)
for ez := As.s.(f(a))
and r : dpair~ (p_l, refla)i1 = dpair~ (p, reflp*(a)) given by induction on p.

Proof. Similar to the proof of Lemma 3.9. [

3.3 Type families as fibrations

Y0
{x})
IO T h
[0,1] : |

Figure 1 — Commutative diagram for the path lifting property. The symbol 7y, denotes the
natural inclusion iy(x) = 0.

In homotopy theory, a map h : Y — Z between topological spaces is said to have
the path lifting property if, for any path ~ : [0, 1] — Y and any point yo € Y being a lift of
7(0) (i.e., such that f(yo) = 7(0)), there is a unique path 7 : [0, 1] — Y that starts in yq
(i.e., ¥(0) = yo) and is a lifting of v (i.e., ho ¥ = ~). (See Figure 1.) The points v(0) € Z
and yo € Y may be thought as constant maps v : t — v(0) and g : t — 7o on a certain

Chapter 3. Identity Types of > - and []-types 39

unit set {x} into their respective spaces (Z and Y'), so that the condition h(yo) = v(0)

may be interpreted as h o vy = ¥o.

The next lemma tells that the first projection pr, : (Z(x: A) P(a:)) — A associated
to any type family P : A — U satisfies the path lifting property in the homotopy-theoretic
interpretation of type theory. As in Lemma 3.6, a path between points u : B(x) and
v : B(y) of different types is viewed as a pair (p, q), with p: 2 =y and ¢ : u =2 v

5 .
Lemma 3.12 (Path lifting property for type families). Given a type family P over A,
consider the first projection pry : T'— A, where T := Y (,.4) P(x). For any p:x =4y and
u: P(x), we have a path

lift” (p, u) : (z,u) =1 (y, pe(u))

such that apprl(liftp(p, u)) = p. The function lift" so defined, sometimes abbreviated as lift,
satisfies the computation rule

lift"” (refl,, u) = refl(,)

forallz : A andu : P(x). Moreover, fixedp : x =4 y andu : P(x), any path p : (z,u) =r w
such that ap,, (p) = p is propositionally equal to lift” (p, u).

Proof. Since (z,u) = (x, (refl,).(u)), we have refl,) : (x,u) = (z,refl,.(u)). From this,
an easy path induction gives the required function lift with the required computation rule.

Now,

apprl(lift(reﬂz?u)) = apprl(refl(x,u)) = refloe ((z0)) = refl,

so that, by path induction, ap,, (lift(p,u)) =p, for all p: 2z =, y and u: P(z). It remains

to prove the “uniqueness” of lift(p, u), which means to construct an element of the type

II IT II II II C(ape,(®) =p) = (B =liftp,u)). (3.9)

(z,y:A) (prz=y) (u:P(2)) (w:T) (p:(z,u)=w)

This can be done easily by induction on p and based induction on p, since the computation
rules of ap,,, and lift imply that (refl, = refl,) — (refl,) = refl, .)) is definitionally equal
to (apy, (reflizu)) = refl,) — (refl.) = lift(refl,, u)) and hence

A(r < refly = refl,) iden, , —ref,) © ((2Ppr, (reflzuy) = refly) — (refligu) = lift(refly, u))) .
More formally, let C": Tl (e) Hpia—y) HwPe)) Hw:r) g um)=w) Y be defined by
C(z,y,p,u,w,p) = (apy, (p) = p) = (P = lift(p, u)).

As we saw above, for all z : A and w : P(z), the function

g := N :refl, = reflm).id(reﬂmu)zreﬂ(m))

Chapter 3. Identity Types of > - and []-types 40

has type C1((z,u), reflz), where Cy := C(x, z, refl,, u). Therefore, by based path induc-

tion on p and lambda abstraction on u and x, the type

H II I II &wp (3.10)

(z:4) (w:P(z)) (w:T) (p:(x,u)=w)

is inhabited by
g1 = Ma: A)XNu : P(z)).ind__(Ch, g).

But (3.10) is definitionally equal to

HC’Q(x,x, refl,.), (3.11)

z:A

where Cy @ [1(zy:a) [(pia=y) [w:p@)) U is defined by

Cy(zoyp)= I II I Clay,p u,w,p).
 (@P@) W) ()

Finally, by ordinary path induction, we obtain an element ind_, (Cs, g1) of the type

IT II Colz,y.p),

(z,y:A) (p:z=y)

which is judgementally equal to (3.9).]

Given set-theoretic functions h : A — B and g : B — C, a lift (or lifting) of A
(across ¢g) is a function f : A — C such that go f = h. We say in this situation that f lifts
(or is lifting!) h. The same nomenclature applies for morphisms in any category, which

may be continuous maps, type-theoretic functions, etc.

Ho

X

\J
~

[

Y
N

Xx[0,1]—

Figure 2 — Commutative diagram for the homotopy lifting property. The symbol 7y denotes
the natural inclusion io(z) = (x,0).

Given a topological space X and a continuous map h : Y — Z, we say that h satisfies

the homotopy lifting property (with respect to X) if for any homotopy H : X x [0,1] = Z

1 Other authors say that h lifts to f or h lifts across g. Our nomenclature is according to (HATCHER,
2002, p. 60).

Chapter 3. Identity Types of > - and []-types 41

and any continuous Hy: X > Y lifting H|x oy across h, there is a unique homotopy
H: X x[0,1] — Z lifting H such that H|XX{0} = Hy (see Figure 2). A (Hurewicz) fibration

is a continuous map that satisfies the homotopy lifting property with respect to any space.

Notice that if we take X being any one point space space {*}, the homotopy lifting
property reduces to the path lifting property (via the identification {x} x [0,1] ~ [0, 1]
and other identifications mentioned at p. 3.3). Conversely, if a continuous map h:Y — Z
satisfies the path lifting property, then h satisfies the homotopy lifting property with
respect to any space X. Since we have proved that type families satisfy the path lifting
property, type families correspond to fibrations in the homotopy interpretation of type

theory.

42

4 Contractibility and Fiberwise Equivalences

4.1 Contractibility

Definition 4.1. A type A is said to be

(a) a set if it does not have nontrivial paths, i.e., if the type

isset(A):= [[] rp=¢

(z,y:4) (p,q:x=y)
is inhabited.

(b) contractible if there is an element a : A, called the center of contraction of A, such

that a = x for all x : A. To put it another way, A is contractible if the type

iscontr(A) :== > [] (e =)

(a:A) (z:A)
is inhabited.
Lemma 4.1 (Contractibility is a homotopy invariant). If (f, (g, (h,k))): A~ B and A

is contractible with center a, then B is contractible with center f(a).

Proof. Since A is contractible with center a, there is a dependent function ¢ : [](,.4)(a =).

For any y : B, since ¢(g(y)) : a = g(y), we have ap(c(g(y))) : f(a) = f(g(y)), so that
ap;(c(9(y))) + h(y) : fla) =y. O
Lemma 4.2. FEvery contractible type is a set.
Proof. Suppose that A is contractible. So, there is some f : [[(;.4)(a = 7), with a : A.
Given x1, 29 : X, for all p: 1 = x5, we have:
f(@1) e p = transp™ =) (p, f(x1)) by (Lemma 3.2(a)) ™"
= f(x2). by apd;(p)

Denoting by ¢ the above constructed element of f(z1).p = f(z2), it follows that

p=refl,, .p by Lemma 1.2(b)
= (f(z1) 7« f(@1))wp by ap,((Lemma 1.2(c))™")
= fl@z)™ (fz1) e p) by (Lemma 1.2(f))~"

= f(z1)7" f(za), by ap,(q)

where g := A(r:a = xy).f(x1)" er and b := A\(r : 1 = x1).7 . p. Thus, all the elements of

11 = x5 are equal to f(z1)~'. f(z2). Hence, the elements of z; = x4 are pairwise equal. [

Chapter 4. Contractibility and Fiberwise Equivalences 43

Lemma 4.3. Let A be a type. For all a : A,
(a) X (w.a)(a=x) is contractible;
(b) X (z:a)(x = a) is contractible.

Proof.

(a) We show that (a, refl,) is the center of contraction of 3=,.4)(a = z). Given z : A and

p:ia=ux,

(((Z, refla) = (Zlf,p))
~ " transp™®=)(p, refl,) = p by Theorem 3.5

q:a=x

~ > refl,.p=p by Lemmas 3.2(a), 2.2, and 2.7(b)
q:a=x

~ Y p=p. by Lemmas (1.2(b))™", 2.2, and 2.7(b)
q:a=x

The pair (p,refl,) : 3 (yazs) (P = p) corresponds under this equivalence to a path

g(x,p) between (a,refl,) and (x,p). Thus, we have a function
g: [I 11 (a refly) = (z,p),
(z:A) (p:a=x)

which produces

f: H (a,refl,) = v,
U:Z(z:m(a:x)

by the induction principle for dependent pair types.

(b) This is a simple consequence of part (a) and Lemmas 2.2, 2.7(b) and 4.1. Alternatively,
the proof of part (a) can be easily adapted for this one, with the same center of

contraction. O

Lemma 4.4. Fvery map between contractible types is an equivalence.

Proof. Let A and B be contractible types with centers of contraction a : A and b : B.
Given f : A — B, define g : B — Aby g = AN : B).a. So, go f,idg : A — A and
fog,idg : B — B. Since A is contractible, we have: idq ~ A(z : A).a. From this, by
Lemma 1.11, it follows that

gof=idao(gof)~(Ax:A).a)o(gof)=Az:A).a~ida.
Analogously, one proves f o g ~ idg. Thus, f is an equivalence. O]

Lemma 4.5. Let P : A — U. If A is contractible with center a, then (Z(m:A) P(:c)) ~ P(a).

Chapter 4. Contractibility and Fiberwise Equivalences 44

Proof. Since a is the center of contraction of A, there is a function c : [[(;.4)(a =). Let
T denote Y- (,.4) P(x). We define f : T"— P(a) and g : P(a) — T by

f=Mw T).cepry(w)) ™, (pry(w)),
g:=XNz:P(a)).(a,z).

By Lemma 4.2, A is a set. So, there is an equality of paths ¢ : c¢(a)™' = refl;!. For each
2 : P(a), consider the function e, := A(p : a = a).p.(2). By ap,_(q), we have:

F(9(2) = [((a,2) = c(a) 7 (2) = (refl;)(2) = (refla).(2) = 2.
On the other hand, for all w : T,

g(f(w)) = gle(pr,(w)) ™", (pro(w))) = (a, c(pr, (w)) ™", (pra(w))),
so that

(9(f(w)) = w) = ((a,c(pry(w)) ", (pro(w))) = (pry (w), pry(w)))
>> pa(elpry(w)) ™ (pra(w))) = pra(w).

p:a=pry (w)

12

From this, since ¢(pr;(w)) : a = pry(w) and

ittranspinvy (c(pry (w)), pry(w)) : c(pry(w)), <c(pr1(w))_1*(pr2(w))> = pry(w),

one obtains an element of g(f(w)) = w. O

4.2 Fiberwise equivalences

Definition 4.2. The fiber of a map f: A — B over a point y : B is the type

fiby(y) =D (f(x) =v).

z:A

We usually think of fibs(y) as the inverse image of y under f. So, we sometimes

consider an element of fibs(y) as being its first coordinate.

Lemma 4.6. Forall f: A— B, y: B, and (z,p), («',p') : fibs(y),

((z,p) = («/,p)) =~ (> aps(v) .o =p) :

y:z=x'

Proof. Let P denote the type family over B defined by P(u) := (u = y). We have:

((z,p) = (2/,p)) =~ 3 transp™/(v,p) =/ by Theorem 3.5
y:z=x'
~ > transp”(ap;(7),p) =p' by Lemmas 1.9 and 2.7(b)
y:x=x'
~ > api(y) =17 by Lemmas 2.7(b) and 3.2(b)

y:z=x'

Chapter 4. Contractibility and Fiberwise Equivalences 45

Now, observe that by concatenating both sides of apf('y)_1 .q = p' with ap(7) to the left,
we obtain an equivalent type ¢ = ap;(7) . p, which in turn is equivalent to ap,(v) .p’ = q,

since path inversion is an equivalence (by Example 2.1). Therefore, by Lemma 2.7(b),

(> apf(’y)‘l-Q=p’) ~ (> apf(’y)-p’zq) :

y:x=xa' yx=xa'

]

Definition 4.3. Let P and @ be type families over A. A fiberwise transformation or
a fiberwise map between P and @Q is a function f : [],.4) P(z) — Q(z). A fiberwise
transformation is said to be a fiberwise equivalence if, for all : A, the function f(x) :

P(z) — Q(x) is an equivalence.

By the recursion principle for »-types, each fiberwise transformation f between

type families P: A — U and @ : A — U induces a function

total(f) : <§£ P(m)) — EA;Q(@“) (4.1)

satisfying total(f)((x,u)) = (z, f(z)(u)) for each z : A and u : P(x).

Definition 4.4. A function f : A — B is contractible if every fiber of f is contractible.
Equivalently, f is contractible if the type

isContr(f) := [] iscontr(fibs (b))

b:B

is inhabited.

Theorem 4.7. Every contractible map f : A — B is an equivalence.

Proof. Let P be the element of isContr(f) given by hypothesis. Recall that

isContr(f) = [[. Il e=wu

(y:B) (a:fibg (y)) (u:fibg (y))

The most natural choice of a candidate g : B — A for quasi-inverse of f consists of sending
each y : B to the center of contraction pry(P(y)) of fibs(y), or more precisely, to the

element of A that appears in pr,(P(y)) as one of its coordinates:

g:= My : B).pri(pri(P(y))).

By definition of isContr(f), the second coordinate of pr;(P(y)) is an element of the type
fpri(pri(P(y)))) = v, ie.,

pro(pri(P(v))) : f(9(y) = v,

Chapter 4. Contractibility and Fiberwise Equivalences 46

for each y : B. So, we define

h:= Ay : B).pry(pri(P(y))) : fo g~ idp.

It remains to construct a homotopy k : go f ~ ids. A key idea for this final step is to
notice that both g(f(z)) and = “are in” fibs(f(x)), in the sense that both f(g(f(z))) and
f(x) are equal to f(x). So, since fib(f(z)) is contractible, there must be a path between

g(f(z)) and z. In fact, from h(f(x)) : f(g9(f(x))) = f(x) and reflyy) : f(z) = f(x), it
follows that

(g(f(2)), h(f())) : fibs(f(x)),
(z, reflp)) = fibs(f(2)),

and hence

pro(P(f () ((g(f (2)), h(f(x)))) : pri(P(f(x))) = (9(f(x)), h(f(2))),
pro(P(f () ((x, refly@))) - pri(P(f(2))) = (@, refly(a)),

so that

a(z) := (pry(P(f()))((g(f (), A(f(2))))) "+ pra(P(f (2)))((x, refls)))

is a path between (g(f(x)),h(f(x))) and (x,reflzy) in fibs(f(x)). Then, by Lemma 4.6,
we get a path k(z) : g(f(x)) = x, defined as the first coordinate of the result of passing

a(x) across the equivalence of that lemma.]

Theorem 4.8. If f : A — B is an equivalence, then f is contractible.

Proof. Let (g, (h,k)) be the quasi-inverse of f given by hypothesis. Fix y : B. Since

h(y) : f(g9(y)) =y, we have (g(y), h(y)) : fibs(y). To show that (g(y), h(y)) is the center of
contraction of fibs(y), we must construct an element of the type

which is equivalent to

11 S aps(7) - pra(u) = h(y), (4.2)

(ufiby (y)) (v:9(y)=pry(u))

by Lemmas 4.6 and 2.7(a). For each u : fibs(y), we have that pry(u) : f(pry(u)) = y, whence
ap, (pra(w)) = g(f(pri(u))) = g(y). From this, by k(pry(u)) : g(f(pri(u))) = pri(u), we have:

Yu 1= apy (Pra(u) ™+ k(pry(u)) : g(y) = pry(u).

Chapter 4. Contractibility and Fiberwise Equivalences 47

To find an inhabitant of (4.2), it remains to give a path from ap;(v,) - pra(u) to h(y), for

any u : fibs(y). By Lemma 2.5, we may suppose without loss of generality that we have a
path
q = apg(k(pri(u))) = h(f(pri(u))).

(If it is not the case that ap;(k(pry(u))) = h(f(pri(u))), then replace h with the h' given
by Lemma 2.5.) And we also have paths

T an(’Yu) = apfog<pr2(u))_1 . apf(k(prl(u))), by Lemma 1.4
s h(f(pri(u))) « pra(u) = ap oy (pray(u)) « A(y), by Lemma 1.12
£ ap oy (Pra(u) ! + 2oy (pra(u) - hy) = A(y). by Lemma 1.2

So,

apy(u) « Pro() = (apgoy(pra(u)) = v ap(k(pri(u)))) « pry(u) by ap,(r)
= (apog(Pra(u)) ™" h(f(pri(w)))) « pro(u) by ap,(q)
) -

)
))
) (h(f(pri(w)
)
)

= ap o, (PP (u) pro(u)) by (Lemma 1.2(f))~"
= 3Pfog(l3r2(u) ! (3Pfog(Pr2(U)) -h(y)) by 3P5(3)

= (AP og (Pra()) ™"+ @p oy (Pra(u))) « A(y) by Lemma 1.2(f)

= h(y), by ¢

where i, v, and & are functions defined by

u(p) = papry(u),
v(p) = (apjog(pra(u)) ™"« p) « pro(u),
E(p) := ap oy (pra(u)) ™"« p. O

Theorem 4.9. Let f be a fiberwise transformation between type families P and () over
A. Foralla: A and v : Q(a),

fibotal(r) (@, v)) = fib(a) (V).
Proof. Consider the type family R : (E(z: (= a)) — U given by

Rw)= > (pra(w)). (f(pry(w) u)) =v.

u:P(pry (w))

Chapter 4. Contractibility and Fiberwise Equivalences 48

We have:

~ (z, f(z,u)) = (a,v) by (Lemma 2.3)""
(z:A) (u:P(x))

~ > Y p(f(z,u)) =v by Theorem 3.5 and Lemma 2.7(b)
(z:A) (u:P(z)) (p:x=a)

~ R((z,p)) by Lemmas 2.4 and 2.7(b)
(z:4) (pia—a)

~ > R(w) by Lemma 2.3
wzz(x:m(x:a)

~ Y (refly)(fla,u) = v. by Lemmas 4.3(b) and 4.5
u:P(a)

Since this last type is definitionally equal to fibs)(v), the theorem is proved.]

The following theorem is a version of a well-known result in algebraic topology
which can be found in (MAY, 1999, Section 7.5, p. 52).

Theorem 4.10. Let A be a type and f a fiberwise transformation between families P and

Q over A. If total(f) is an equivalence, then f is a fiberwise equivalence.

Proof. First, note that there is a function of type

(11 iscontr(fibtota|(f)(w))> — (H 11 iscontr(fibtot3|(f)((a,v)))) (4.3)

w4y Q) (a:A) (v:Q(a))

that maps each ¢ in its domain to A(a : A).\(v : Q(a)).g((a,v)). Now, consider the

composite function

ginv(total(f))
— isContr(total(f)) by Theorem 4.8
= II iscontr (fibotai(py (w))
WZ(I:A) Q()

— I I iscontr(fibeoas)((a,v))) by (4.3)
(a:4) (v:Q(a))

— JI I iscontr(fibs(v)) by Theorem 4.9 and Lemma 2.7(a)
(a:A) (v:Q(a))

= H isContr(f(a))

a:A
— [ainv(f(a)). by Theorem 4.7 and Lemma 2.7(a) [
a:A

49

5 The Fundamental Group of the Circle

The goal of this chapter is to reproduce a proof of 7,(S') = Z in type theory. This
was originally done by Michael Shulman and posteriorly (in another approach) by Daniel
Licata (LICATA; SHULMAN, 2013). Shulman have translated into type theory a standard
proof of 7, (S') = Z using covering spaces (HATCHER, 2002, Chapter 1). In the sequel,

we aim to explore this translation.

5.1 Inductive definitions

Just like free groups can be defined by a set of symbols (its generators), types can
be defined by a list of constructors. A constructor of a type X is a symbol denoting a
function of some number of arguments (possibly zero) with codomain X and domains
being types. A constructor of X with zero arguments is an element of X, considered as a

constant function.

This pattern of type definition is known as induction. A type defined by a list of
constructors is said to be an inductive type. Once a type X have been inductively defined

by n constructors
Ci:Ai,lé"'%Ai,ki%X (iE{l,...,n}),

one can define any function f : [](,.x) P(x) by assigning a unique element f(c;(as, ..., ax,))
of P(c;(a1,-..,ax)) to each expression ¢;(aq, ..., ax), with a; : A;;, 7 € {1,...,k;}, and
ie{l,...,n}.

Example 5.1. The type of natural numbers N is generated by
o Oy: N
e succy : N — N.
Example 5.2. The type of booleans 2 is inductively defined by
o (0y:2
o 15:2.
This type corresponds to the set of boolean values {0, 1}, which contains only two elements.

A new feature of the type theory currently used in homotopy type theory is that it

admits a broader notion of inductive definition, known as higher inductive definition. In

Chapter 5. The Fundamental Group of the Circle 50

this new pattern, the constructors may originate not only elements of X but also paths in

X. For instance, there may be constructors of the form
C: Al — s —> Ak — (b(al) =x b(ag)),

where b : A — X is another constructor of X and aq,as : A. Given a higher inductive
type X, any function f : X — Y may be defined by assigning a unique element of Y
(respectively, a unique element of Y') to each element (respectively, path) originated from
some constructor of X. The assignments of paths must be coherent with the assignments
of the endpoints of the paths. For instance, if ¢; : A — X and ¢y : A — (c1(a1) = ¢1(ag)),
with a1,ay : A, are constructors of X and we assign y; : Y and 3 : Y to ¢i(a;) and
c1(ag), respectively, then the path in Y to be assigned to cy(a), for any a : A, must
have type y1 =y y2. Similar considerations apply for dependent functions f : [],.x) P(x)
and dependent constructors, with dependent paths wherever necessary (see (Univalent
Foundations Program, 2013, Section 6.2)).

Example 5.3. The circle S* is defined as being generated by the following constructors:

e base: S!

e loop : base =g1 base.

The goal of this chapter is to prove a well-known homotopical property of the circle,
namely that its fundamental group is isomorphic to the additive group of integers. We
refer the reader to (Univalent Foundations Program, 2013, Section 6.10) for a definition of

the type of integers Z. We assume that Z is endowed with an element 0 : Z, functions

e i: N — Z, written n — n,
e succ:Z — Z, written n —n + 1,

e minus : Z — Z, written n — —n,

and a binary relation < satisfying the usual order properties of the natural and integer
numbers. To be careful about the precise meaning of “binary relation,” we would need
to talk about mere propositions, but we want to avoid this. It is worth mentioning that
0 <m and m < 0 mean “m = n+ 1 for some n : N” and “m = —(n + 1) for some n : N,”
respectively. We assume that Z is a set (in the sense of Definition 4.1) and the function
succ has a quasi-inverse n — n — 1. We denote by succeq the respective equivalence from
Z to 7, so that, for any n : Z,

pr, (succeq,n) = succ(n) =n + 1. (5.1)

Another important fact about Z is the following lemma, which can be found in
(Univalent Foundations Program, 2013, Lemma 6.10.12).

Chapter 5. The Fundamental Group of the Circle 51

Lemma 5.1 (Induction principle for Z). For any P : Z — U, there is a map indz(P) that

assigns a function

f=indz(P, do,ds,d_) : [[P(n)
n:7

to each

do: P(0), di:[[P(n)— P(n+1), and d_:]]P(—n)— P(—(n+1))

n:N n:N

in such a way that

fO)=do, fln+1)=d(f(n)), and f(=(n+1))=d(f(-n)),

for alln : N.

5.2 The flattening lemma for the universal cover of S!

Definition 5.1 (Universal cover of S'). We define code : S' — U by

code(base) := Z,

aPcode(l0Op) = ua(succeq).

Definition 5.2. The homotopical reals are the elements of the type R generated by the

following constructors:

ec:Z—R
o d:]z (c(n) =k c(n+1)).

Lemma 5.2 (Flattening Lemma for code). 3= ,.1) code(z) ~ R.

Proof. To simplify the notation, let 7" := 3, .s1) code(x). We want to construct functions
h:R—=T,k:T — R, and homotopies o : ho k ~idy, 8 : ko h ~ idg. For clarity, we use
the concise notation for transport (with subscript asterisk) exclusively with respect to

code.

The construction of 4 : R — T. The inductive definition of R says that in order to give
(intuitively) a value h(r) for each r : R, it suffices to evaluate h on the elements of
the form c(n), with n : Z, and on the paths d(n) : ¢(n) =r c(n + 1) between these.

More precisely, we must give:

e for each n : Z, an element h(c(n)) of T}

e for each n : Z, a path ap,(d(n)) : (h(c(n)) =7 h(c(n +1))).

Chapter 5. The Fundamental Group of the Circle 52

For the first coordinate of h(c(n)), we do not have much choice: the only distinguished

element of S! is base. For the second one, we may take n. So,
h(c(n)) := (base, n). (5.2)

Now, we use the characterization of paths in dependent pair types (Theorem 3.5):

(> transp©®(p,n) =z n + 1) ~ ((base,n) =7 (base,n + 1)).

p:base=base

Denoting by p,, the composite path

transp<®®(loop, n) = transp XX ecede(jo0p 1)
= transpX"?X) (ap, 4. (loop), n) by Lemma 1.9
= transp™ =) (ua(succeq), n)
=succ(n) =n+1, by (2.8) and (5.1)

we have that dpair~(loop, p,,) has type h(c(n)) =7 h(c(n +1)). So, we define:
ap,,(d(n)) := dpair~(loop, p,). (5.3)

The construction of k£ : T'— R. We want to define k using the recursion principle for

dependent pair types. To do this, we need an equivalence

(Hc =g c(n + 1)) (c :ﬁfop c) :
where @ : S! — U is given by Q(x) := (code(x) — R). For each n : Z,

ap.(p) : c(lo0p, (1)) =g c(n+ 1), (5.4)
transpconstys,,(c(n)) : transp™ R (loop, c(n)) =g c(n), (5.5)

where the symbol z — R denotes the constant type family defined on S! that gives

the value R for any input. From this, by Lemma 2.2, we have an equivalence
en (c(n) =g c(n+ 1)) ~ (transp™ R (loop, c(n)) =r c(loop,(n))) (5.6)
such that
pri(en) 1= Alp : ¢(n) =g c(n + 1)). (transpconstiy, (c(n)) « p+apc(pa) '), (5.7)

for each n : Z. These equivalences produce, by Lemma 2.7(a), another equivalence

(Hc =rc(n+1)) ~ (H transp”~ R (loop, c(n)) =g c(Ioop*(n))>

n:Z

Chapter 5. The Fundamental Group of the Circle 53

such that
prl (5a f: n) = prl (87“ f(n)) (58)
for any f : [l c(n) =r c(n + 1) and n : Z. Moreover, by Lemma 3.9, we have an

equivalence

P (transpQ(Ioop,c) =7R c) o~ (H transp™ R (loop, c(n)) =g c(Ioop*(n))> . (5.9)

So, since (c :gop c) = (transpQ(Ioop, C) =z.R c)7 we may define

n:=¢p loe. (5.10)
Now, let g : [1(;:51) @(x) be given by Sl-induction as follows:

g(base) :=c, (5.11)
apd, (loop) := pr(n,d). (5.12)

We define k£ from g by the recursion principle for 7" so that

k((x,n)) = g(x)(n),
for any z : St and n : Z. That is, k := recy(R, g).

The construction of o : ho k ~ idy. To construct o by induction on 7', it suffices to

give a function

g I IT Ak, w)) = (z,u).

(z:S1) (u:code(z))

Using induction on S', this can be done by giving

e a function j(base) : [I(,z) h(k((base,n))) = (base,n);
__Ia(B)

e a dependent path apd;(p) : j(base) =5, " j(base), where I14(B) is the type
family defined as in (3.7) for A := code and B := Az M. (h(k((x,u))) = (z,u)).
For all n : Z, we have:

h(k((base,n))) = h(g(base)(n)) = h(c(n)) = (base, n).

Then, we may define:
j(base) := A(n : Z).refl pase n)-

Now, by Lemma 3.11,
(j(base) :Eg;B) j(base))
= (transpHA(B)(Ioop,j(base)) = j(base))

~] (transp§ (dpair: (Ioop, refhoop*(n)) , j(base,n)) = j(base, Ioop*(n))> ,
n:Z

Chapter 5. The Fundamental Group of the Circle 54

where B : (Z(ngl) code(m)) — U is defined as in (3.8). So, it remains to prove that

transp’§ (dpair: (Ioop, refhoop*(n)) , j(base,n)) = j(base, loop,(n)), (5.13)

for any n : Z. Let £ := X\(m : Z).(base, m). Thus, j(base,m) : B({(m)) for all m : Z.
Recall that p, : loop,(n) = n + 1. Since

. AO — . — 71
j(base, loop, (n)) = transp”*(p, ", j(base, n + 1)) by (aPd;(pase) (1))

= transp”(ap,(p, '), j(base,n + 1)) by Lemma 1.9

)

o)

= transp” (ap,(p,) ', j(base,n 4+ 1)), by Lemma 1.4(b)

we have (by Lemma (2.2)) that the type (5.13) is equivalent to

transp§ (dpair: (Ioop, refhoop*(n)) , j(base,n))

= transp” (ap,(p,) ', j(base,n + 1)). (5.14)

By applying /\b.transpg(apg(pn), b) on both sides of (5.14), we obtain, by Lemmas 1.3,
1.7, and Corollary 1.8, another identity type

transp§ (ape(pn) - dpair~ (loop, refligep. (), j(base, n)) = j(base,n+1) (5.15)

which is equivalent to (5.13), since we can recover (5.14) by transporting both sides
of (5.15) along ap,(p,)~! with respect to B (Example 2.3). But, by Lemmas 3.8 and
3.7,

apf(pn) = dpair:<ref|baseapn>7
dpair™(reflpase, Pr) « dpair=(loop, reflioop (n)) = dpair—(loop, p,,),

so that
apy(pn) - dpair~(loop, refligop, (n)) = dpair™ (reflyase, pr) « dpair™(loop, refligep, (n))
= dpair~ (loop, p,,).
Thus, (5.15) is equivalent to
transpj§ (dpair~(loop, p,), j(base,n)) = j(base,n + 1). (5.16)

code(

By path induction on r : x =s1 y and based path induction on s : transp ru) = v,

its easy to verify that
transp” (dpair=(r, s), reflizu)) = refly,),

for r and s arbitrary. From this, since j(base) = A(m : Z).refl(pase,m), it follows that
(5.16) is true.

Chapter 5. The Fundamental Group of the Circle 55

The construction of §: ko h ~ idg. To construct 5 by R-induction, it suffices to prove
that k(h(c(n))) = c(n) and ap,(ap,(d(n))) = d(n), for any n : Z. The first equality
follows immediately from k(h(c(n))) = k((base,n)) = c(n). Now, by (5.3), it remains
to show that ap,(dpair~(loop, p,)) = d(n). First, we observe that for all r : z7 =g1 x5
and s : r.(y1) = yo, the path ap,(dpair=(r,s)) : k((z1,11)) = k((z2,y2)) is equal to

the composite

k((21,41)) = g(21)(y1) = transp™ R (r, g(21) (y1)) by q.(r,)
= transp”™ % (r, g(z1) (r 1 (re(11)))) by ga(r, s)
= transp®(r, g(21)) (. (1)) by gs(r, s)
= g(x2)(r+(y1)) by qa(r, s)
= g(22)(y2) = k((22,92)), by gs(r, s)

where

q1(r, s) := (transpeonst; (g(x1)(y1)))

Go(r, 8) = apu(m)((|ttransp|nv‘1:°0'e(r7)Y

"R(r) 0 glan),

g3(r, 8) = ap, () ((transpfuns®® R (g(z1))) ")
for e(r,s) := Af.f(re(y1)),

qa(r, s) := happly(apd,(r))(r.(y1)),

qs(r, s) = apg(@)(s).

for u(r, s) := transp

In fact, it is easy to verify that ap,(dpair=(r,s)) and each ¢;(r,s), with i =1,...,5,
reduce to reflexivities when r = refl,, and s = refl,,. From this, the claim follows
immediately by path induction on r and s. In particular, for » = loop and s = p,,

we have:

ap;,(dpair~(loop, p,)) = q1(loop, pn) « ... «gs(loop, py,). (5.17)

Second, since apd,(loop) = pr,(n, d) corresponds to pr, (¢, pr(n,d)) = pr, (g, d) under
¢, we have, by the computation rule of Lemma 3.9 and by (5.8):

¢a(loop, p,) = gs(loop, pn) " « ga(loop, p,) ™« pry (e, d(n)). (5.18)
Third, by (5.7),
pry(en, d(n)) = qi(loop, p,)~" + d(n) . gs(loop, pn) " (5.19)
Finally, substituting (5.19) and (5.18) in (5.17), we conclude that

ap,(dpair~(loop, p,)) = d(n). O

Chapter 5. The Fundamental Group of the Circle 56

5.3 A proof of 7 (S!) = Z

Remember that a set is a type without nontrivial paths. There is a map ||—|lo : U —
U, called O-truncation, that assigns a set || B||o to each type B in such a way that || B||o = B
if B is a set (see (Univalent Foundations Program, 2013, Section 6.9)). Topologically, || B|o
is B with the discrete topology. But || B||o still has the operations of path concatenation
and path inversion, which make it a groupoid (Lemma 1.2). Furthermore, if B = (a = a)

for some a : A, then ||B]|o is a group.

Definition 5.3. Given A : U and a : A, the loop space of A based on a is the type
QA a) := (a=a)

and the fundamental group of A based on a is the type

m (A, a) = [|QA, a)lo-

Now we are ready to determine the fundamental group of the circle.

Corollary 5.3. The type 3 ,.s1y(base = x) is contractible.

Proof. Tt is just a particular case of Lemma 4.3(a). O

Lemma 5.4. R is contractible.

Proof. We want to show that c(0) is the center of contraction of R. This means to construct
a function ¢ : [I(,:r)(c(0) = y). The inductive definition of R tells us that, in order to
evaluate ¢ (intuitively) on each element y of R, we only need concern ourselves with the
elements of the form c(z), for z : Z, and with the paths d(z2) : ¢(z) =g c(z + 1) between

these. More precisely, we must give:
(i) for each z : Z, an element ¢(c(2)) : Q(c(z));
(ii) for each z: Z, a path apd,(d(2)) : q(c(2)) :ff(z) q(c(z+1)),

where @ : R — U is defined by Q(y) := (c(0) = y). Each of these items corresponds to a

function on Z. For the part (i), we use induction on Z:
q(c(0)) = refle(py;
q(c(n+1)) :=q(c(n)) - d(n) if 0 < m;
q(c(n —1)) := q(c(n)) o d(n —1)~* if n <0.

Verify that these definitions are well-typed. For the part (ii), we must construct an element

of the type

(g(c(2)) =gy alc(z +1))) = (transp?(d(2), g(c(2))) = glc(z + 1)), (5.20)

Chapter 5. The Fundamental Group of the Circle 57

which is equivalent (by Lemma 2.2) to
q(c(z+1)) = q(c(z + 1)), (5.21)

since transp(d(2), ¢(<(2))) = q(c(2))+d(2) = g(e(>+1)), by Lemma 3:2(a) and definition of
2+ q(c(2)). So, we define apd,(d(z)) as the element of (5.20) correspondent to refly(.+1))

under this equivalence. O

Corollary 5.5. The type 3,1y code(x) is contractible.

Proof. Immediate from Lemmas 5.2, 5.4, and 4.1. O
We define
encode : [(base = z) — code(x) (5.22)
z:St

by encode(z, p) = transp®(p, 0).

Corollary 5.6. The map

total(encode) : (Z base = x) — > code(z)

z:St z:St
(see (4.1)) is an equivalence.

Proof. Immediate from Corollaries 5.3 and 5.5 and Lemma 4.4. [

Theorem 5.7. Q(S!, base) ~ Z.

Proof. By Theorem 4.10 and Corollary 5.6, encode is a fiberwise equivalence. Therefore,
encode(base) : ((base = base) ~ code(base)), i.e., encode(base) : Q(S!, base) ~ Z. O

Corollary 5.8. 7;(S!, base) = Z.

Proof. From Theorem 5.7, by the univalence axiom, we have that Q(S!, base) = Z. Hence,
by Lemma 1.3, ||2(S', base)||o = ||Z]|o- But m(S!, base) = ||2(S!, base)||o, by definition.
And ||Z||o = Z, since Z is a set. Thus, 7(S!, base) = Z. O

o8

References

AWODEY, S. Homotopy type theory and univalent foundations of mathematics.
<http://www.andrew.cmu.edu/user /awodey /hott /CMUslides.pdf>. 2012. Cited in page
10.

AWODEY, S.; WARREN, M. A. Homotopy theoretic models of identity types.
Mathematical Proceedings of the Cambridge Philosophical Society, v. 146, p. 45-55, 2009.
Cited in page 10.

HATCHER, A. Algebraic Topology. [S.1.]: Cambridge University Press, 2002. Cited 2
times in page(s) 40 and 49.

HINDLEY, J. R.; SELDIN, J. P. Lambda Calculus and Combinators, an Introduction.
New York: Cambridge University Press, 2008. Cited in page 11.

HOFMANN, M.; STREICHER, T. The groupoid interpretation of type theory. Oxford
Logic Guides, v. 36, p. 83-111, 1998. Cited in page 10.

LICATA, D. R.; SHULMAN, M. Calculating the fundamental group of the circle in
homotopy type theory. LICS 2013: Proceedings of the Twenty-Eighth Annual ACM/IEEE
Symposium on Logic in Computer Science, 2013. Cited in page 49.

MARTIN-LOF, P. An intuitionistic theory of types: predicative part. Studies in Logic and
the Foundations of Mathematics, v. 80, p. 73-118, 1975. Cited in page 10.

MARTIN-LOF, P. Intuitionistic type theory. Studies in Proof Theory, v. 1, 1984. Cited
in page 10.

MARTIN-LOF, P. An intuitionistic theory of types. Ozford Logic Guides, v. 36, p.
127-172, 1998. Cited in page 10.

MAY, J. P. A Concise Course in Algebraic Topology. [S.1.]: University Of Chicago Press,
1999. Cited in page 48.

Univalent Foundations Program, T. Homotopy Type Theory: Univalent Foundations of
Mathematics. Institute for Advanced Study: <http://homotopytypetheory.org/book>,
2013. Cited 8 times in page(s) 10, 11, 12, 13, 14, 26, 50, and 56.

VOEVODSKY, V. A very short note on the homotopy A-calculus. <http://www.math.
ias.edu/~Vladimir/Site3/Univalent_ Foundations_ files/Hlambda_ short_ current.pdf>.
2006. Cited in page 10.

VOEVODSKY, V. Univalent foundations project. <http://www.math.ias.edu/~vladimir/
Site3/Univalent_ Foundations_ files/univalent_ foundations_ project.pdf>. 2010. Cited in
page 5.

http://www.andrew.cmu.edu/user/awodey/hott/CMUslides.pdf
http://homotopytypetheory.org/book
http://www.math.ias.edu/~Vladimir/Site3/Univalent_Foundations_files/ Hlambda_short_current.pdf
http://www.math.ias.edu/~Vladimir/Site3/Univalent_Foundations_files/ Hlambda_short_current.pdf
http://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_files/univalent_foundations_project.pdf
http://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_files/univalent_foundations_project.pdf

	Title page
	Approval
	Dedication
	Acknowledgements
	Epigraph
	Resumo
	Abstract
	List of Figures
	Contents
	Introduction
	Summary on informal type theory
	Function types, or -types
	Pair types, or -types
	Identity types
	Propositions as types

	Paths and Homotopies
	Path operations
	Action of a function on a path
	Generic transport lemmas
	Homotopies between maps

	Equivalences
	Homotopy equivalences
	Function extensionality and univalence

	Identity Types of - and -types
	Specific transport lemmas
	Characterizations of identity types
	Dependent pair types and non-dependent function types
	Dependent function types

	Type families as fibrations

	Contractibility and Fiberwise Equivalences
	Contractibility
	Fiberwise equivalences

	The Fundamental Group of the Circle
	Inductive definitions
	The flattening lemma for the universal cover of S1
	A proof of 1(S1) = Z

	References

