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mãe e meu irmão que sempre estiveram comigo em todos os momentos (bons e ruins) por

qual passei, e meu espelho de crescimento e conquista (meu grande irmão, Reneé). Estes
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Resumo

As distribuições generalizadas têm sido amplamente estudadas na Estat́ıstica e diver-

sos autores têm investigado novas distribuições de sobrevivência devido à sua flexibili-

dade para ajustar dados. Neste trabalho um novo método de compor distribuições é pro-

posto: a famı́lia Half-Normal-G, em que G é chamada distribuição baseline. Demostramos

que as funções densidades das distribuições propostas podem ser expressas como com-

binação linear de funções densidades das respectivas exponencializadas-G. Diversas pro-

priedades dessa famı́lia são estudadas. Apresentamos também uma nova distribuição de

probabilidade baseado na Famı́lia de Distribuições Generalizadas Kumaraswamy (kw-

G), já conhecida na literatura. Escolhemos como baseline a distribuição Nadarajah-

Haghighi, recentemente estudada por Nadarajah e Haghighi (2011) e que desenvolveram

algumas propriedades interessantes. Estudamos várias propriedades da nova distribuição

Kumaraswamu-Nadarajah-Haghighi (Kw-NH) e fizemos duas aplicações de bancos de da-

dos mostrando empiricamente a flexibilidade do modelo.

Palavras-chave: Distribuição generalizadas. Distribuição Half-Normal. Distribuição

Kumaraswamy. Distribuição Nadarajah-Haghighi. Estimativa de máxima verossimil-

hança. Função taxa de falha. Momentos. Tempo de vida.



Abstract

Generalized distributions have been widely studied in the Statistics, and several au-

thors have investigated new distributions of survival because of their flexibility to adjust

data. In this work, a new method of composing distributions is proposed: a Half-Normal-

G family, where G is called the distribution baseline. We demonstrate that the new

density functions can be expressed as a linear combination of exponentiated-G (“EG”, for

short) density functions. Several properties of this family are studied. We also present

a new probability distribution based on the family of Kumaraswamy generalized distri-

butions (“kw-G”, for short), which known in the literature. Chosen as the baseline the

Nadarajah-Haghighi distribution, recently proposed by Nadarajah and Haghighi (2011)

that developed some interesting properties. We study various properties of the new dis-

tribution, Kumaraswamy-Nadarajah-Haghighi (Kw-NH), and make two applications of

databases, empirically showing the flexibility of the model.

Keywords: Generalized distributions. Half-Normal distribution. Hazard function. ku-

maraswamy distribution. Lifetime. Maximum likelihood estimation. Moments. Nadarajah-

Haghighi distribution.
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Chapter 1
Introduction

Generalized distributions have been widely studied in Statistics and several authors

have investigated new survival distributions because of their flexibility to fit data. For

example, Lemonte (2013) proposed the exponentiated Nadarajah-Haghighi distribution

by adding an extra parameter form in Nadarajah-Haghighi distribution. This construc-

tion method can be seen also in Mudholkar et al. (1995), Nadarajah and Kotz (2004),

and Nadarajah and Gupta (2007), among others. Bourguignon et al. (2013) introduced

the Kumaraswamy-Pareto distribution (Kw-P), based on a composition of Kumaraswamy

distribution and Pareto distribution. The Kw-P distribution generalizes the Pareto dis-

tribution and can be more flexible. Many authors have generalized other distributions

similarly to Kw-P. The kw-Weibull by Cordeiro et al. (2010),Kw-generalized gamma

by de Pascoa et al. (2011), Kw-generalized half-normal by Cordeiro et al. (2012a),

kw-exponentiated Pareto by Elbatal (2013), Kw-Gumbel by Cordeiro et al. (2012b),

Kw-Birnbaum-Saunders by Saulo et al. (2012), Kw-normal by Correa et al. (2012), Kw-

BurrXII by Paranaiba et al. (2013), Kw-Lomax by Shams (2013), and Kw-generalized

Rayleigh by Gomes et al. (2014) distributions are some examples obtained by taking

G(x) to be the cdf of the Weibull, generalized gamma, generalized half-normal, exponen-

tiated pareto, Gumbel, Birnbaum-Saunders, normal, Burr XII, Lomax and generalized

Rayleigh distributions, respectively, among several others.

In this dissertation we study two families of probability distributions, we introduce a

new family based on the generalized half-normal distribution, and we extended a family

already known in the literature, generalized Kumaraswamy family. In the second chapter,

the half-normal family of continuous distribution is introduced with additional parame-

ters to generalize any continuous baseline distribution. We derive some mathematical

properties. Finally, we performed two applications to real data. In the third chapter,

we present a new continuous distribution based on Kumaraswamy family composed with

the Nadarajah-Haghighi distribution. We study some mathematical properties, and max-

imum likelihood techniques are used to adjust the model and to show its potential. We

show that the proposed probability density function can be expressed as a linear combi-

nation of the density function Nadarajah-Haghighi exponentiated distribution.
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Chapter 2
The Half-Normal Generalized Family of

Distributions

Resumo

Neste caṕıtulo, propomos a famı́lia half-normal de distribuições com um parâmetro

positivo adicional para generalizar qualquer distribuição baseline cont́ınua. Apresentamos

quatro modelos especiais: distribuições half-normal-Weibull, half-normal-Pareto, half-

normal-Gumbel e half-normal-log-logistic. Derivamos algumas propriedades matemáticas

da nova famı́lia: momentos ordinários e incompletos, função geradora, função quantil e

desvios médios. Discutimos a estimação dos parâmetros do modelo por máxima verossim-

ilhança. Duas aplicações a dados reais mostram que a nova famı́lia pode fornecer melhor

ajuste do que outros modelos de vida importantes.

Palavras-chave: Distribuição generalizadas; distribuição Half-Normal; tempo de vida.

Abstract

In this chapter, we proposed the half-normal family of distributions with an extra pos-

itive parameter to generalize any continuous baseline distribution. Four special models,

the half-normal-Weibull, half-normal-Pareto, half-normal-Gumbel and half-normal-log-

logistic distributions are presented. Some mathematical properties of the new family such

as ordinary and incomplete moments, quantile and generating functions, and mean devi-

ations are investigated. We discuss the estimation of the model parameters by maximum

likelihood. Two applications the real data show that the new family can provides better

fits than other important lifetime models.

Key words: Generalized distribution. Half-Normal distribution. Lifetime.
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2.1 Introdution

Numerous classical distributions have been extensively used over the past decades for

modelling data in several areas such as engineering, actuarial, environmental and medical

sciences, biological studies, demography, economics, finance, and insurance. However,

in many applied areas, there is a clear need for extended forms of these distributions.

For that reason, several methods for generating new families of distributions have been

studied recently.

There has been an increased interest in defining new generators for univariate contin-

uous families by introducing one or more additional shape parameter(s) into a baseline

distribution. The well-known generators are the following: beta-G by Eugene et al.

(2002), Kumaraswamy-G (Kw-G) by Cordeiro and de Castro (2011), McDonald-G (Mc-

G) by Alexander et al. (2012), gamma-G (type 1) by Zografos and Balakrishnan (2009),

gamma-G (type 2) by Ristic̀ and Balakrishanan (2012), gamma-G (type 3) by Torabi

and Montazari (2012), log-gamma-G by Amini et al. (2012), logistic-G by Torabi and

Montazari (2013), exponentiated generalized-G by Cordeiro et al. (2013), Weibull-G by

Bourguignon et al. (2014), and exponentiated half-logistic-G by Cordeiro et al. (2014).

The half-normal (HN) distribution is a special case of the folded normal distribution.

Let Z be an ordinary normal distribution, N(0, a2), then Y = |Z| has the HN distribution.

Thus, this distribution is a fold at the mean of an ordinary normal distribution with zero

mean. A previous study by Bland and Altman (1999) used the HN distribution to study

the relationship between measurement error and magnitude. Bland (2005) extended their

work by using this distribution to estimate the standard deviation as a function so that

measurement error could be controlled. In his work, various exercise tests were analyzed

and it was determined that the variability of performance does decline with practice.

Manufacturing industries have used the HN distribution to model lifetime processes under

fatigue. These industries often produce goods with a long lifetime need for customers,

making the cost of the resources needed to analyze the product failure times very high.

To save time and money, the HN distribution is used in this reliability analysis to study

the probabilistic aspects of the product failure times de Castro et al. (2012).

Various generalizations of the HN distribution have been derived. These extensions

include the generalized half-normal (GHN) (Cooray et al., 2008) beta-generalized half-

normal (Pescrim et al., 2010), and Kumaraswamy generalized half-normal (de Castro

et al., 2012) distributions. Several of the corresponding applications include the stress-

rupture life of kevlar 49/epoxy strands placed under sustained pressure (Cooray et al.,

2008) and failure times of mechanical components and flood data (de Castro et al., 2012).

Let G(x) be the cumulative distribution function (cdf) of any random variable X and

r(t) be the probability density function (pdf) of a random variable T defined on [0,∞).

The cdf of the T-X family of distributions, Alzaatreh et al. (2013), is given by

F (x) =

∫ G(x)

G(x)

0

r(t) dt, (2.1)
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where Ḡ(x) = 1−G(x). Differentiating (2.1) in relation the X gives

f(x) =

(
d

dx

G(x)

G(x)

)
r

(
G(x)

G(x)

)
. (2.2)

If a random variable T has the HN distribution with parameter a > 0, its pdf is given

by

r(t; a) =

√
2

a
√
π

exp

(
− t2

2a2

)
, t > 0, (2.3)

and its cdf becomes

R(t; a) =
2√
π

∫ t/(
√

2a)

0

e−z2dz = erf

(
t√
2a

)
, (2.4)

where erf(x) = (2/
√
π)
∫ x

0
e−z2dz is the error functions. γ(a, x) is denoted the incomplet

gamma function.

The error function (also called the Gauss error function) is a function related to the

normal distribution and gamma distribution. This function has as property, for ν > 0,

• erf(0) = 0;

• erf(±∞) = ±1;

• erf(−ν) = −erf(ν). Is a impair function;

• erf(ν) = 1√
π
γ
(

1
2
, ν2
)
. γ() the incomplet gamma function.

The aim of this dissertation is to study a new family of continuous distributions, called

the half-normal -G (“HNG” for short), where r(t) in (2.1) is given by (2.3). Its generated

cdf and pdf are

F (x) =

∫ G(x)

G(x)

0

√
2

a
√
π

exp

(
− t2

2a2

)
dt = erf

{
G(x)√
2a G(x)

}
(2.5)

and

f(x) =

√
2

π

g(x)

aG(x)2
e
−G(x)2

2a2 G(x)2 , (2.6)

respectively, where g(x) = dG(x)/dx. The HNG family has the same parameters of the

G distribution plus one additional scale parameter a > 0. The pdf (2.6) will be most

tractable when G(x) and g(x) have simple analytic expressions. Henceforth, a random

variable with density (2.6) is denoted by X ∼ HNG(a).

The hazard rate function (rhf) of X is

h(x) =

√
2

π

g(x) e
−G(x)2

2a2G(x)2

aG(x)2
[
1− erf

(
G(x)√
2 a G(x)

)] . (2.7)
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2.2 Special HNG distributions

The HNG density function (2.6) allows for greater flexibility and can be applied in

many areas of engineering and biology. Here, we present and study some special cases of

this family because it extends several widely known distributions in the literature. In the

following examples, a is the HN generator parameter.

2.2.1 Half-normal-Weibull (HNW) distribution

The HNW distribution is defined from (2.6) by taking G(x) = 1 − exp[−(β x)α] and

g(x) = αβ xα−1 exp[−(β x)α] to be the cdf and pdf of the Weibull(α, β) distribution. The

HNW density fuction and hazard rate function are given, respectively, by

fHNW (x) =

√
2αβαxα−1

√
πa exp[−(βx)α]

e
−{1−exp[−(βx)α]}2
2a2{exp[−(βx)α]}2 . (2.8)

and

h(x) =

√
2αβαx

α−1
exp[−(β x)α]√

π a exp[−(β x)2α]
exp

(
{exp[−(β x)α]− 1}2

2 a2 exp[−(β x)2α]

)
×

[
1− erf

(
1− exp[−(β x)α]√
2 a exp[−(β x)α]

)]−1

(2.9)

Figure 2.1: The HNW density function for some parameter values

2.2.2 Half-normal-Pareto (HNPa) distribution

Let G(x) be the Pareto cdf with shape parameter α > 0 and scale parameter β > 0,

say G(x) = 1− (x/β)−α. The HNPa density fuction and hazard rate function are given,

respectively, by

fHNPa(x) =

√
2αxα−1

√
πaβα

e
(x−α−β−α)2

2a2x−2α . (2.10)
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Figure 2.2: The HNW hrf for some parameter values

and

h(x) =

√
2α, βα√
π a xα+1

exp

{
−[(β/x)α − 1]2

2 a2 (β/x)2α

}
×

[
1− erf

(
1− (β/x)α√

2 a (β/x)α

)]−1

(2.11)

Figure 2.3: The HNPa density function for some parameter values

2.2.3 Half-normal-Gumbel (HNGu) distribution

Consider the Gumbel distribution with location parameter µ ∈ R and scale parameter

σ > 0, where the pdf and cdf (for x ∈ R) are

g(x) = 1
σ
exp

{(
x−µ
σ

)
− exp

(
x−µ
σ

)}
and G(x) = exp

{
−exp

(
x−µ
σ

)}
,

respectively. Inserting these expressions into (2.6) and (2.7) gives the HNGu density

function and hrf, respectively
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Figure 2.4: The HNPa hrf for some parameter values

fHNGu(x) =

√
2e( x−µ

σ )

√
πaσe−e(

x−µ
σ )

exp


e−e(

x−µ
σ )
− 1

2a2

[
e−e(

x−µ
σ )
]2

 . (2.12)

and

h(x) =

√
2 exp[( (v−µ)

σ
)− exp( (x−µ)

σ
)]

√
π a σ (1− exp{− exp[− (x−µ)

σ
]})2

exp

[
−(exp{− exp[− (x−µ)

σ
]})2

2 a2(1− exp{− exp[− (x−µ)
σ

]})2

]

×

[
1− erf

(
exp{− exp[− (x−µ)

σ
]}

√
2 a (1− exp{− exp[− (x−µ)

σ
]})

)]−1

(2.13)

Figure 2.5: The HNGu density function for some parameter values

2.2.4 Half-normal-log-logistic (HNLL) distribution

The pdf and cdf of the log-logistc (LL) distribution are (for x, α, β > 0)
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Figure 2.6: The HNGu hrf for some parameter values

g(x) = β
αβ
xβ−1

[
1 +

(
x
α

)]−2
and G(x) = 1−

[
1 +

(
x
α

)β]−1

,

respectively. Inserting these expressions into (2.6) and (2.7) gives the HNLL density

function and hrf (for x > 0), respectively

fHNLL(x) =

√
2βxβ−1

[
1 +

(
x
α

)]−2

√
πaαβ

exp


[(

1 +
(

x
α

)β)−1

− 1

]2

2a2
[
1 +

(
x
α

)β]−2

 . (2.14)

and

h(x) =

√
2 β, xβ+1

2
√
π a3, αβ+2

erf

[
x√

2 aα

]−1

(2.15)

Figure 2.7: The HNLL density function for some parameter values
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Figure 2.8: The HNLL hrf for some parameter values

2.3 Useful expansions

Some useful expansions for (2.5) and (2.6) can be derived using the concept of expo-

nentiated distributions. For an arbitrary baseline cdf G(x), a random variable is said to

have the exponentiated-G (exp-G) distribution with parameter a > 0, say Ya ∼ exp-G(a),

if its pdf and cdf are given by ha(x) = aGa−1(x)g(x) and Ha(x) = Ga(x), respectively.

The properties of exponentiated distributions have been studied by many authors in re-

cent years. See Mudholkar and Srivastava (1993) for exponentiated Weibull, Gupta et

al. (1998) for exponentiated Pareto, Nadarajah (2005) for exponentiated Gumbel, and

Nadarajah and Gupta (2007) for exponentiated gamma. By using the power series for

the exponential function, we obtain

exp

{
− G(x)2

2σ2[G(x)]2

}
=
∞∑

k=0

(−1)k

2kk!σ2k

G(x)2k

G(x)2k
.

Inserting this expansion in equation (2.6) gives

f(x) =

√
2

σ
√
π
g(x)

∞∑
k=0

(−1)k

2kk!σ2k

G(x)2k

[G(x)]2k+2
. (2.16)

Now, using the generalized binomial theorem, G(x)2k+2 can be expressed as

G(x)−(2k+2) =
∞∑
n=0

(−1)n

(
−2− 2k

n

)
G(x)n (2.17)

where
(−2−2k

n

)
= Γ(−2k−1)

Γ(n+1)Γ(−2k−n−1)
, and Γ(x) is the gamma function.

Inserting (2.17) in equation (2.16), the density function of X can be expressed as a
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mixture of exp-G density functions

f(x) =
∞∑

k,n=0

qk,n h2k+n+1(x), (2.18)

where qk,n =
√

2(−1)k+n

(2k+n+1)
√
π2kσ2k+1k!

(−2−2k
n

)
, and h2k+n+1(x) denotes the pdf of the exp-G

(2k+n+1) distribution. The cdf correspoding (2.18) is given by

F (x) =
∞∑

k,n=0

qk,nH2k+n+1(x), (2.19)

where H2k+n+1(x) denotes the cdf of the exp-G(2k+n+1) distribution. Therefore, several

properties of the HNG family can be obtained by using properties of the exp-G distribu-

tion; see for example, Mudholkar et al. (1995) and Nadarajah and Kotz (2006), among

others.

2.4 Main properties

In this section, we obtain the quantile function (qf), ordinary and incomplete moments,

moment generating function (mgf), and mean deviations of the HNG family. The formula

derived throughout the dissertation can be easily handled in analytical software such

as Maple and Mathematica which have the ability to deal with symbolic expressions of

formidable size and complexity.

2.4.1 Quantile function

By inverting (2.5), an explicit expression for the qf of X is created, as shown below:

Q(u) = F−1(u) = QG

( √
2 a erf−1(u)

1 +
√

2 a erf−1(u)

)
, (2.20)

where QG(u) = G−1(u) is the qf of the baseline G distribution and u ∈ (0, 1).

Quantiles of interest can be obtained from (2.20) by substituting appropriate values

for u. In particular, the median of X is

Median(X) = QG

( √
2 a erf−1(0.5)

1 +
√

2 a erf−1(0.5)

)
.

We can also use (2.20) for simulating HNG random variables: if U is a uniform random
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variable on the unit interval (0, 1), then

X = QG

( √
2 a erf−1(U)

1 +
√

2 a erf−1(U)

)

has the pdf (2.6).

Henceforth, we use an equation by Gradshteyn and Ryzhik (2007, Section 0.314) for

a power series raised to a positive integer n(
∞∑
i=0

ai u
i

)n

=
∞∑
i=0

cn,i u
i, (2.21)

where the constants cn,i (for i = 1, 2, . . .) are determined from the recurrence equation

cn,i = (i a0)−1

i∑
m=1

[m(n+ 1)− i]am cn,i−m,

and cn,0 = an0 .

First, the expansion holds

z

1 + z
=
∞∑
i=1

(−1)n+1 zn. (2.22)

Second, using (2.21) and (2.22) and the power series for the error function given at

http://mathworld.wolfram.com/InverseErf.html, we can rewrite Q(u) as

Q(u) = QG

(
∞∑
k=0

qk u
2k+1

)
, (2.23)

where (for k ≥ 0) qk =
∑∞

n=1(−1)n+1(
√

2σ)ncn,k, cn,0 =
√
π

2
and

cn,k =

√
π

2k(2k + 1)

k∑
j=1

[j(n+ 1)− k]{[2−2(k+1)πk+1/2] + k}cn,k−j.

Let W (·) be any integrable function in the positive real line. We can write

∫ ∞
0

W (x) f(x)dx =

∫ 1

0

W

[
QG

(
∞∑
k=0

qk u
2k+1

)]
du. (2.24)

Equations (2.23) and (2.24) are the main results of this section, since we can obtain

from them various HNG mathematical quantities. In fact, several of them can follow by

using the right-hand integral for special W (·) functions, which are usually more simple

than if they are based on the left-hand integral. Established algebraic expansions to
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determine these quantities based on equation (2.24) can sometimes be more efficient then

using numerical integration of (2.6) and (2.18), which can be prone to rounding off errors

among others.

For example, we can obtain easily the moments of X as µ′n = E(Xn) =
∫ 1

0
(u
∑∞

s=0 qs u
2s)n

du =
∑∞

s=0 hn,s
∫ 1

0
un+2sdu =

∑∞
s=0 hn,s/(n+2s+1), where hn,s can be determined based

on the quantities qs from equation (2.21).

2.4.2 Moments

Some of the most important features and characteristics of a distribution can be stu-

died through moments (e.g. tendency, dispersion, skewness and kurtosis). From now on,

let Yk,n ∼ exp−G(2k + n + 1). A first formula for the rth moment of X can be obtained

from (2.18) as

µ′r = E(Xr) =
∞∑

k,n=0

qk,nE(Y r
k,n). (2.25)

A second formula for E(Xr) follows from (2.25) in terms of the baseline qf QG(u). We

have

µ′r = E(Xr) =
∞∑

k,n=0

(2k + n+ 1) qk,n τ(r, 2k + n), (2.26)

where τ(r, σ) =
∫∞
−∞ x

rG(x)σ g(x)dx =
∫ 1

0
QG(u)r uσdu. The ordinary moments of several

HNG distributions can be calculated directly from equations (2.26).

Further, the central moments (µr) and cumulants (κr) of X can be calculated as

µr =
r∑

k=0

(−1)k
(
r

k

)
µ′k1 µ

′
r−k and κr = µ′r −

r−1∑
k=1

(
r − 1

k − 1

)
κk µ

′
r−k,

respectively, where κ1 = µ′1. The skewness γ1 = κ3/κ
3/2
2 and kurtosis γ2 = κ4/κ

2
2 follow

from the second, third and fourth cumulants.

Plots of the skewness and kurtosis for some choices of the parameter a as function of

α and β are given below.

• The HNW distribution. For β = 5, Figure 2.9 show that the skewness and kurtosis

curves decrease with α (a fixed).

• The HNPa distribution For β = 0.2, Figure 2.10 show that the skewness and kurtosis

curves decrease with α (a fixed).
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Figure 2.9: Skewness and kurtosis of the HNW distribution as a function of a, for some
values of α with β = 5.
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Figure 2.10: Skewness and kurtosis of the HNPa distribution as a function of a, for some
values of β with α = 0.2.

Incomplete Moments

For empirical purposes, the shape of many distributions can be usefully described by

the incomplete moments. These types of moments play an important role for measuring

inequality, for example, income quantiles. The main application of the first incomplete

moment refers to the Bonferroni and Lorenz curves. These curves are very useful in

economics, reliability, demography, insurance, and medicine.

The rth incomplete moment of X is determined as

mr(y) =

∫ y

−∞
xr f(x)dx =

∞∑
k,j=0

(2k + n+ 1) qk,n

∫ G(y)

0

QG(u)r u2k+ndu.

The last integral can be computed in most baseline G distributions.
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2.4.3 Moments Generating function

We derive two formulae for the gf M(t) = E(et X) of X. The first formula comes from

(2.18) as

M(t) =
∞∑

k,n=0

qk,nMk,n(t), (2.27)

where Mk,n(t) is the mgf of Yk,n. Hence, M(t) can be immediately determined from the

gf of the exp-G distribution.

A secund formula for M(t) can be derived from (2.18) as

M(t) =
∞∑

k,n=0

(2k + n+ 1) qk,n ρ(t, 2k + n), (2.28)

where ρ(t, σ) =
∫∞
−∞ exp(tx)G(x)σ g(x)dx =

∫ 1

0
exp {tQG(u)}uσdu.

Therefore, we can obtain the gf’s of several HNG distributions directly from equations

(2.28).

2.5 Mean deviations

The mean deviations about the mean (δ1 = E(|X − µ′1|)) and about the median

(δ2 = E(|X −M |)) of X can be expressed as δ1 = 2µ′1 F (µ′1) − 2m1 (µ′1) and δ2(X) =

µ′1 − 2m1(M), respectively, where µ′1 = E(X), M = Median(X) is the median, F (µ′1) is

calculated (2.5) and m1(z) =
∫ z
−∞ xf(x)dx is the first incomplete moment.

We provide two alternative ways to compute m1(z). The first one comes from (2.18)

as

m1(z) =
∞∑

k,n=0

qk,n Jk,n(z), (2.29)

where Jk,n(z) =
∫ z
−∞ xh2k+n+1(x)dx is the basic quantity to compute the mean deviations

of the exp-G distributions.

A second formula for m1(z) can be derived by setting u = G(x) in equation (2.18)

m1(z) =
∞∑

k,n=0

(2k + n+ 1) qk,n Tk,n(z), (2.30)

where Tk,n(z) =
∫ G(z)

0
QG(u)u2k+ndu is a simple integral based on qf of G. Hence, the

mean deviations of the HNG family can be computed from (2.29) and (2.30).

Applications of these equations to obtain Bonferroni and Lorenz curves can be per-
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formed. For a given probability π, these curves are given by B(π) = m1(q)/πµ′1 and

L(π) = m1(q)/µ′1, respectively, where µ′1 = E(X), q = QG

[ √
2σerf−1(π)

[1−
√

2σerf−1(π)]

]
is the qf of X

at π and m1(q) comes from the equations given before.

2.6 Maximum likelihood estimation

In this section, we determine the maximum likelihood estimates (MLEs) of the model

parameters of the new family from complete samples only. Let x1, . . . , xn be observed

values from the HNG distribution. Let θ be a p-vector parameter vector specifying G(·).
The log-likelihood function logL = logL(a,θ) is given by

logL =
n

2
log(2/π)− n log a+

n∑
i=1

log g(xi)− 2
n∑
i=1

log[Ḡ(xi)]−
1

2a2

n∑
i=1

G(xi)
2

Ḡ(xi)2
(2.31)

The first derivatives of log L with respect to the parameters a and θ are

∂ logL

∂a
=

1

a3

n∑
i=1

G(xi)
2

Ḡ(xi)2
− n

a

and

∂ logL

∂θ
=

n∑
i=1

∂g(xi)/∂θ

g(xi)
− 2

n∑
i=1

∂Ḡ(xi)/∂θ

Ḡ(xi)

− 1

a2

n∑
i=1

G(xi) Ḡ(xi)
2 ∂G(xi)/∂θ −G(xi)

2 Ḡ(xi) ∂Ḡ(xi)/∂θ

Ḡ(xi)4

The maximum likelihood estimates (MLEs) of (a,θ), say (â, θ̂), are the simultane-

ous solutions of the equations ∂ logL/∂a = 0 and ∂ logL∂θ = 0. We estimate the un-

known parameters of each model by maximum likelihood. There exist many maximization

methods in R packages like NR (Newton-Raphson), BFGS (Broyden-FletcherGoldfarb-

Shanno), BHHH (Berndt-Hall-Hall-Hausman), SANN (Simulated-Annealing) and NM

(Nelder-Mead). The MLEs are calculated using Limited Memory quasi-Newton code

for Bound-constrained optimization (L-BFGS-B) and the Anderson-Darling (A∗) and

Cramér-Von Mises (W ∗) statistics are computed to compare the fitted models. The com-

putations are carried out using R-package AdequacyModel given freely from http://cran.r-

project.org/web/packages/AdequacyModel/AdequacyModel.pdf.



27

2.7 Applications

2.7.1 Exceedances of Flood Peaks

The data refer to exceedances of flood peaks (in m3/s) of the Wheaton River near

Carcross in Yukon Territory, Canada (see, for instance, Choulakian and Stephens, 2001;

Mahmoudi, 2011). In many applications, there is qualitative information about the hrf,

which can help with selecting a particular model. In this context, a device called the total

time on test (TTT) plot, Aarset (1987), is useful. The TTT plot is obtained by plotting

G(r/n) = [(
∑r

i=1 yi:n) + (n− r)yr:n]/
∑n

i=1 yi:n, where r = 1, . . . , n and yi:n (i = 1, . . . , n)

are the order statistics of the sample, against r/n. It is a straight diagonal for constant

failure rates, and it is convex for decreasing failure rates and concave for increasing failure

rates. It is first convex and then concave if the failure rate is bathtub shaped. It is first

concave and then convex if the failure rate is upside-down bathtub. The TTT plot for

the exceedances of flood peaks data in Figure 2.11 indicates a bathtub-shaped failure rate

and therefore the appropriateness of the HNW distribution to fit these data.
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Figure 2.11: TTT-plot for the exceedances of flood peak data.

For these data, we fit the HNW distribution defined in (2.8). Its fit is compared

with others models well-known in literature: gamma-weibull (GW), Nadarajah et al.

(2012), exponentiated Weibull (EW), Mudholkar and Srivastava (1993), and Weibull

(We), Gurvich et al. (1997), models with corresponding densities:

fGW (x) =
αβαa

Γ(a)
xaα−1e−(βx)α ,

fEW (x) = aαβαxα−1e−(βx)α
(
1− e−(βx)α

)a−1
,

fWe(x) = αβxβ−1e−αxβ ,
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where x > 0, a > 0, α > 0 and β > 0.

Table 2.1 lists the MLEs of the parameters (the standard errors are given in paren-

theses) for the HNW, GW, EW and We distributions fitted to the exceedances of flood

peak data.

Table 2.1: MLEs (standard errors in parentheses)

Model Estimates
HNW(a,α,β) 0.1873 0.6734 0.0048

(0.0793) (0.0766) (0.0021)
GW(a,α,β) 1.4887 0.0411 0.4783

(0.7231) (0.0193) (0.3207)
EW(a,α,β) 0.5194 0.0502 1.3852

(0.3118) (0.0209) (0.5881)
We(α,β) 0.0859 0.9011

(0.0118) (0.0855)

Table 2.2: W ∗ and A∗ statistics

Model W ∗ A∗

HNW 0.09842 0.62177
GW 0.10541 0.64624
EW 0.10509 0.64234
We 0.13799 0.78544

The statistics W ∗ and A∗ are described in Chen and Balakrishnan (1995). In general,

the smaller the values of the goodness-of-fit measures, the better the fit to the data. The

statistics W ∗ and A∗ for all models are listed in Table 2.2. From the figures in this table,

we conclude that the HNW model fits the current data better than the other models.

Therefore, the HNW model may be an interesting alternative to other models available

in the literature for modeling positive real data with bathtub-shaped hrf.

The estimated pdf and cdf for the fitted HNW model to the current data and the

histogram of the data and the empirical cumulative distribution are displayed in Figure

2.12.

2.7.2 Percentage of body fat data

Here, we consider the data referring to the percentage of body fat determined by un-

derwater weighing and various body circumference measurements for 252 men. A variety

of popular health books suggest that the readers assess their health, at least in part, by

estimating their percentage of body fat. In Bailey (1994), for instance, readers can esti-

mate body fat from tables using their age and various skin-fold measurements obtained by

using a caliper. Other texts give predictive equations for body fat using body circumfer-

ence measurements (e.g. abdominal circumference) and/or skin-fold measurements. See,
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Figure 2.12: left: Estimated density of the HNW model; right: Empirical cdf and esti-
mated cdf of the HNW model

for instance, Behnke and Wilmore (1974, pp. 66-67), Wilmore (1977) and Katch and

McArdle (1983, pp. 120-132).

Percentage of body fat for an individual can be estimated once body density has been

determined. Siri (1956) assumes that the body consists of two components: lean body

tissue and fat tissue. The data can also be found on the site

http://lib.stat.cmu.edu/datasets/bodyfat. For the TTT plot in Figure 2.13, we can verify

a concave curve and therefore we can consider distributions with increasing hrf for these

data.

Therefore, we fit the HNLL distribution defined in (2.14) and the exponentiated log-

logistic (ELL) (Rosaiah et al. , 2006), McDonald log-logistic (McLL) (Tahir et al., 2014),

beta log-logistic (BLL) (Lemonte, 2012) and log-logistic (LL) models with associated

densities:

fELL(x) =
αa

βαa
xαa−1

[
1 +

(
x

β

)α]−(a+1)

,

fMcLL(x) =
c

B(ac−1, b)

(
α

βaα−1

)
xαa−1

[
1 +

(
x

β

)α]−(a+1)

×

[
1−

{
1−

[
1 +

(
x

β

)α]−1
}c]b−1

,

fBLL(x) =
1

B(a, b)

(
α

βaα−1

)
xaα−1

[
1 +

(
x

β

)α]−(α+β)

,

fLL(x) =
α

βα
xα−1

[
1 +

(
x

β

)α]−2

,

where x > 0, a, b, c > 0, α > 0 and β > 0.

The MLEs of the parameters (with standard errors) of the fitted models are given in

Table 2.3. The statistics W ∗ and A∗ for all these fitted models are listed in Table 2.4.
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Based on the statistics W ∗ and A∗, we conclude that the HNLL model fits the current

data better than the other models. Therefore, it may be an interesting alternative to other

lifetime models available in the literature for modeling positive real data with increased-

shaped hrf.

The estimated pdf and cdf of the three best fitted models to the histogram of the data

and the empirical cumulative distribution are displayed in Figure 2.14.
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Figure 2.13: TTT plot for percent body fat from Siri (1956) equation data.

Table 2.3: MLEs (standard errors in parentheses)

Model Estimates
HNLL(a,α,β) 8.615931 1.978180 7.302491

(9.2474) (0.1011) (15.4808)
ELL(a,α,β) 28.4033 8.9949 0.2093

(1.2439) (1.5806) (0.0486)
McLL(a,b,c,α,β) 1.093647 23.7361 6.5262 2.2521 27.3499

(1.3685) (67.6007) (5.6939) (2.1495) (8.2357)
BELL(a,b,α,β) 4.2583 41.2238 0.49373 6.0359

(1.9744) (19.8646) (0.2869) (9.7253)
LL(α,β) 18.1616 3.5074

(0.5707) (0.1852)

2.8 Concluding remarks

There has been a great interest among statisticians and applied researchers to con-

struct flexible lifetime models to provide better fits to survival data. In this dissertation,
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Table 2.4: W ∗ and A∗ statistics

Model W ∗ A∗

HNLL 0.02152 0.19394
ELL 0.058609 0.42661

McLL 0.02655 0.19654
BELL 0.03223 0.24747

LL 0.60602 3.64363
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Figure 2.14: left: Estimated density of the HNLL model; right: Empirical cdf and esti-
mated cdf of the HNLL model

we propose the new half normal family of distributions. We provide the density, cumula-

tive, and hazard rate functions of the new model. Some of its structural properties include

an expansion for the density function and explicit expressions for the quantile function,

ordinary and incomplete moments, generating function and mean deviations. The max-

imum likelihood method is employed for estimating the model parameters. We fit two

special models of the proposed family to real data sets to demonstrate the flexibility of the

new family compared to other classes of distributions. These special models provide con-

sistently better fits than other competing models. We hope that the proposed distribution

will serve as an alternative model to other models available in the literature for modelling

positive real data in many areas such as engineering, survival analysis, hydrology, and

economics.
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Chapter 3
The Kumaraswamy Nadarajah-Haghighi

distribution

Resumo

Propomos novo modelo de tempo de vida de quatro parâmetros, chamado distribuição

Kumaraswamy Nadarajah-Haghighi, para generalizar o modelo de dois parâmeros Nadarajah-

Haghighi.A distribuição proposta é muito flex́ıvel para análise de dados positivos. A sua

função de risco pode ser constante, decrescente, crescente, banheira invertida e forma de

banheira dependendo dos valores dos parâmetros. Ele inclui como modelos especiais as dis-

tribuições Nadarajah-Haghighi e Nadarajah-Haghighi exponencializada (Lemonte, 2013).

Apresentamos expressões explicitas para os momentos ordinário e incompleto, desvios

médios, função quantil e estat́ısticas de ordem. A estimação dos parâmetros do modelo

é realizada por máxima verossimilhança. A flexibilidade do novo modelo é ilustrado em-

piricamente por meio de duas aplicações a banco de dados reais. Esperamos que a nova

distribuição servirá como um modelo alternativo para outras distribuições úteis para a

modelagem de dados reais positivos em muitas áreas.

Palavras-chave: Distribuição Kumaraswamy; distribuição Nadarajah-Haghighi; estimação

de máxima verossimilhança; função taxa de falha; momentos.

Abstract

We propose a new four-parameter lifetime model, called the Kumaraswamy Nadarajah-

Haghighi distribution, to generalize the two-parameter Nadarajah-Haghighi model. The

new model is quite flexible for analyzing positive data. Its hazard function can be con-

stant, decreasing, increasing, upside-down bathtub, and bathtub-shaped depending on the

parameter values. It includes as special models the Nadarajah-Haghighi and exponenti-

ated Nadarajah-Haghighi (Lemonte, 2013) distributions. We provide explicit expressions
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for the ordinary and incomplete moments, mean deviations, quantile function, and order

statistics. The estimation of the model parameters is performed by maximum likelihood

using the BFGS algorithm. The flexibility of the new model is proved empirically by means

of two applications to real data set. We hope that the new distribution will serve as an

alternative model to other useful distributions for modeling positive real data in many

areas.

Key words: Hazard function. Kumaraswamy distribution. Maximum likelihood estima-

tion. Moment. Nadarajah and Haghighi distribution.

3.1 Introdution

In recent years, several ways of generating new continuous distributions have been

proposed based on different modifications of the beta, gamma, and Weibull distributions,

among others, to provide bathtub hazard rate functions (hrfs). The beta generated fami-

ly was proposed by Eugene et al. (2002). Jones (2004) studied a family that arose

naturally from the distribution of order statistics. Some researchers have suggested using

other bounded distributions on (0, 1) to obtain a generalization of any parent cumulative

distribution function (cdf).

Cordeiro and de Castro (2011) proposed another generator called the Kumaraswamy-

G (Kw-G for short) class. For any parent cdf G(x), they defined the probability density

function (pdf) f(x) and cdf F (x) of the Kw-G family by

f(x) = a b g(x)G(x)a−1 [1−G(x)a]b−1, (3.1)

and

F (x) = 1− [1−G(x)a]b, (3.2)

respectively, where g(x) = dG(x)/dx and a > 0 and b > 0 are additional shape parameters

to the G model. If X is a random variable with density (3.1), we write X ∼Kw-G(a, b).

Each new Kw-G distribution can be obtained from a parent G distribution.

One major benefit of the Kw-G family is its ability to fitting skewed data that can

not be properly modeled by existing distributions. This fact was demonstrated recently

by Cordeiro et al. (2010), who applied the Kumaraswamy Weibull distribution to failure

data. The density family (3.1) has many of the same properties of the class of beta-G dis-

tributions, but has some advantages in terms of tractability, since it does not involve any

special function such as the beta function. The Kw-Gumbel by Cordeiro et al. (2012b),

Kw-Birnbaum-Saunders by Saulo et al. (2012), Kw-normal by Correa et al. (2012),

Kw-Pareto by Bourguignon et al. (2013), Kw-BurrXII by Paranaiba et al. (2013),

Kw-Lomax by Shams (2013), and Kw-generalized Rayleigh by Gomes et al. (2014)

distributions are some examples obtained by taking G(x) to be the cdf of the Gumbel,

Birnbaum-Saunders, normal, Pareto, Burr XII, Lomax and generalized Rayleigh distri-
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butions, respectively, among several others. Hence, each new Kw-G distribution can be

generated form a specified G distribution.

Nadarajah and Haghighi (2011) proposed a generalization of the exponential dis-

tribution as an alternative to the gamma, Weibull and exponentiated exponential (EE)

distributions with cdf and pdf (for x > 0) given by

G(x;α, β) = 1− exp[1− (1 + β x)α] (3.3)

and

g(x;α, β) = αβ(1 + β x)α−1 exp[1− (1 + β x)α], (3.4)

respectively, where α > 0 is a shape parameter and β > 0 is a scale parameter. If Y follows

the Nadarajah-Haghighi (NH) model, we write Y ∼NH(α, β). This generalization always

has its mode at zero and allows for increasing, decreasing and constant hrfs. Lemonte

(2013) extended this distribution by applying the exponentiated class and studied the

generated model called the exponentiated NH (ENH) distribution, whose hrf can exhibit

the classical four shapes: increasing, decreasing, unimodal and bathtub-shaped.

Bourguignon et al. (2015) extended the NH distribution by defining the gamma NH

(GNH) based on the class of generalized gamma-G distributions pioneered by Zografos

and Balakrishnan (2009). The generalized distributions follow by taking any parent G

distribution in the cdf of a gamma distribution with one additional shape parameter.

In a similar way, many gamma-type distributions were introduced and studied; see, for

example, the gamma-uniform investigated by Torabi and Montazari (2012).

In this chapter, we propose a four-parameter extension of the NH distribution named

the Kumaraswamy Nadarajah-Haghighi (Kw-NH) distribution by combining the works of

Cordeiro and de Castro (2011) and Nadarajah and Haghighi (2011). We derive some

mathematical properties of the new distribution. It can have increasing, decreasing, uni-

modal and bathtub-shaped hazard functions and thus is quite flexible to analyze lifetime

data.

3.2 The Kw-NH distribution

By inserting (3.3) and (3.4) in equation (3.1), we define the Kw-NH density function

with positive shape parameters a, b, α and scale parameter β > 0, for x > 0 by

f(x; a, b, α, β) = a b α β (1 + β x)α−1{exp[1− (1 + β x)α]} {1− exp[1− (1 + β x)α]}a−1

×{1− {1− exp[1− (1 + β x)α]}a}b−1. (3.5)

Evidently, the above density function does not involve any complicated function, which is

a positive point of the current generalization. Hereafter, a random variable X following

(3.5) is denoted by X ∼Kw-NH(a, b, α, β).

The study of (3.5) is important since it extends very useful distributions. In fact, the
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NH distribution is obtained when a = b = 1. The exponential distribution follows by

taking α = β = 1 and a = 1. The ENH distribution is a special case when b = 1. The cdf

and hrf corresponding to (3.5) are given by

F (x; a, b, α, β) = 1− {1− {1− exp [1− (1 + β x)α]}a}b (3.6)

and

τ(x) =
a b α β (1 + β x)α−1{exp[1− (1 + β x)α]} {1− exp[1− (1 + β x)α]}a−1

1− {1− exp [1− (1 + β x)α]}a
, (3.7)

respectively.

Figures 3.1 and 3.2 display some plots of the density and hrf of the Kw-NH distribution

for selected parameter values, respectively. The plots reveal that the new distribution is

very flexible and that its hrf can have decreasing, increasing, upside-down bathtub, and

bathtub-shaped forms.

Figure 3.1: Plots of the Kw-NH density for some parameter values.

3.2.1 Linear representations

Expansions for equations (3.5) and (3.6) can be derived using the concept of expo-

nentiated distributions. We obtain a linear representation for the Kw-NH cumulative

distribution by using the generalized binomial theorem (for |z| < 1 and ε > 0)

(1− z)ε =
∞∑
j=0

(−1)j
(
ε

j

)
zj, (3.8)

where
(
ε
j

)
= ε(ε− 1)(ε− 2) . . . (ε− j + 1)/j!.
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(a) (b)

(c) (d)

Figure 3.2: The Kw-NH hrf for some parameter values.

We can write (3.6) as

F (x;α, β, a, b) =
∞∑
j=0

(−1)j
(
b

j

)
{1− exp [1− (1− β x)α]}ja

=
∞∑
j=0

ωj H(x;α, β, ja), (3.9)

where ωj = (−1)j
(
b
j

)
and H(x;α, β, ja) denotes the ENH cumulative distribution given

by

H(x;α, β, ja) = {1− exp [1− (1− β x)α]}ja .

By differentiating (3.9) with respect to x, we obtain

f(x;α, β, a, b) =
∞∑
j=0

ρj h(x;α, β, ja) (3.10)
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where ρj = (−1)j b
(j+1)

(
b−1
j

)
and h(x;α, β, ja) denotes the ENH density function with parame-

ters α, β and (j+ 1)a. Then, the Kw-NH density function can be expressed as an infinite

linear combination of ENH densities and then some of its basic mathematical properties

can be obtained from those ENH properties. For example, the ordinary, incomplete and

factorial moments and moment generating function (mgf) of the Kw-NH distribution can

follow from those ENH quantities.

3.2.2 Limiting behaviour of the density

Lemma 1. The limit of the density function of X when x→∞ is 0 and the limit as

x→ 0 are

lim
x→0

f(x; a, b, α, β) =


∞, a < 1,

b α β, a = 1,

0, a > 1.

Proof. It is easy to demonstrate the result from the density function (3.5)

3.3 Quantile function

The qf of X, say x = Q(u), follows easily by inverting (3.6) as

x = Q(u) = β−1
{

1− log
{

1−
[
1− (1− u)1/b

]1/a}}1/α

− β−1, u ∈ (0, 1). (3.11)

Quantiles of interest can be obtained from (3.11) by substituting appropriate values

for u. In particular, the median of X is Q(0.5)

Median(X) = β−1
{

1− log
{

1−
[
1− (1− 0.5)1/b

]1/a}}1/α

− β−1.

We can also use (3.11) for simulating Kw-NH random variables: if U is a uniform

random variable on the unit interval (0, 1), then

X = Q(U) = β−1
{

1− log
{

1−
[
1− (1− U)1/b

]1/a}}1/α

− β−1

has the pdf (3.5). Next, we use the qf given by (3.11) to determine the Bowley’s skewness

and the Moors’ kurtosis. The Bowley’s skewness is based on quartiles, see Kenney and

Keeping (1962), given by

S =
Q(3/4)− 2Q(1/2) +Q(1/4)

Q(3/4)−Q(1/4)
,
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and the Moor’s kurtosis, see Moors (1998), is based on octiles given by

M =
Q(7/8)−Q(5/8)−Q(3/8) +Q(1/8)

Q(6/8)−Q(2/8)
,

where Q(·) is the qf given by (3.11). Plots of the skewness and kurtosis for selected values

of b, as functions of a, and for selected values of a, as functions of b, for α = 1.5, β = 0.5,

are displayed in Figures 3.3. These plots reveal that the skewness increases or decreases

for b fixed and decreases for a fixed, whereas the kurtosis decreases when b increases for

fixed a and when a increases for fixed b.

(a) (b)

(c) (d)

Figure 3.3: Skewness and kurtosis of the Kw-NH distribution.
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3.4 Moments

The ordinary and incomplete moments of X can be determined from the moments of

Yj ∼ENH((j + 1)a). First, we can write from (3.10)

µ′r = E(Xr) =
∞∑
j=0

ρj
(j + 1)

E(Y r
j )

and then change variables to use the ENH qf

µ′r = β−r
∞∑
j=0

ρj
(j + 1)

Tr(α, (j + 1)a),

where Tr(α, (j + 1)a) =
∫ 1

0
{[1 − log(1 − u)]1/α − 1}r u(j+1)a−1 du is an integral to be

evaluated numerically.

Alternatively, the moments of X can be determined based on the quantity E(Y r
j ) given

by Lemonte (2013) as

µ′r = β−r
∞∑

k,j=0

r∑
i=0

(−1)r+k−i (j + 1)a ek+1 ρj
(k + 1)1/α+1

(
(j + 1)a− 1

k

)(
r

i

)
Γ

(
i

α
+ 1, k + 1

)
,

(3.12)

where Γ(a, x) =
∫∞
x
za−1 e−z dz is the upper incomplete gamma function.

The central moments (µr) and cumulants (κr) of X can be determined from (3.4) or

(3.12) as

µr =
r∑

k=0

(
r

k

)
(−1)k µ′k1 µ

′
s−k, κr = µ′s −

r−1∑
k=1

(
r − 1

k − 1

)
κk κr−k,

respectively, where κ1 = µ′1. Thus, κ2 = µ′2−µ′21 , κ3 = µ′3−3µ′2µ
′
1+2µ′31 , κ4 = µ′4−4µ′3µ

′
1−

3µ′22 + 12µ′2µ
′2
1 − 6µ′41 , etc. Additionally, the skewness and kurtosis can be obtained from

the third and fourth standardized cumulants in the forms γ1 = κ3/κ
3/2
2 and γ2 = κ4/κ

2
2,

respectively.

The rth incomplete moment of X is given by

mr(z) =

∫ z

0

xr f(x; a, b, α, β)dx =
∞∑
j=0

ρj
(j + 1)

∫ z

0

xr h(x;α, β, (j + 1)a)dx

where
∫ z

0
xr h(x;α, β, (j + 1)a)dx is the rth incomplete moment of the ENH distribution.

Then,

mr(z) = β−1

∞∑
j=0

ρj
(j + 1)

∫ ∞
1−e1−(1+β z)α

{[1− log(1− u)]1/α − 1}r u(j+1)a−1 du.
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Alternatively, using the incomplete moments given by Lemonte (2013), mr(z) reduces

to

mr(z) = β−r
∞∑

k,j=0

r∑
i=0

(−1)r+k−i (j + 1)a ek+1 ρj
(k + 1)1/α+1

(
(j + 1)a− 1

k

)(
r

i

)
× Γ

(
i

α
+ 1, (k + 1)[1− (1 + β z)α]

)
. (3.13)

The mean deviations of X about the mean δ1 = E(|X − µ′1|) and about the median

δ2 = E(|X −M |) of X can be expressed as

δ1 = 2µ′1 F (µ′1)− 2m1 (µ′1) and δ2 = µ′1 − 2 m1(M),

where µ′1 = E(X), M = Median(X) is the median of X and m1(z) is given by (3.13)

with r = 1.

Finally, we can construct Lorenz and Bonferroni curves, which are important in several

fields such as economics, reliability, demography, insurance and medicine, based on the

first incomplete moment. They are defined (for a given probability π) by L(π) = T1(q)/µ′1
and B(π) = T1(q)/(πµ′1), respectively, where q = Q(π) is determined from (3.11).

3.5 Moments Generating function

A representation for the mgf M(t) of X can follow from the ENH generating function.

We can write M(t) =
∑∞

j=0 ρjMj(t), where ρj is defined by (3.5) and Mj(t) is the mgf of

Yj ∼ENH((j + 1)a), see Bourguignon et al. (2015), given by

Mj(t) =
∞∑

s,r=0

ηs gs,r t
j

r/β + 1
. (3.14)

Here, for s ≥ 0, ηs =
∑∞

j=0
(−1)s

λj j!

(
j
s

)
, gs,0 = ζs0 and gs,r = (rζ0)−1

∑r
n=1[n(s+1)−r] ζn gs,r−n

(for r ≥ 1), where ζr =
∑∞

m=0 fm dm,r (for r ≥ 0) and, for m ≥ 0, dm,0 = am0 , dm,r =

(r a0)−1
∑r

s=0[s(m + 1) − r] as dm,r−s (r ≥ 1), fm =
∑∞

l=m(−1)l−m
(
l
m

)
(α−1)l/l!, and

(α−1)l = (α−1)× (α−1 − 1) . . . (α−1 − l + 1) is the descending factorial.

A second representation for M(t) = E[exp(tx)] of X is obtained from (3.10). We have

M(t) =

∫ ∞
0

exp(tx) f(x) =

∫ ∞
0

exp(tx)
∞∑
j=0

ρj
(j + 1)

h(x)

By using the binomial series expansions, we obtain

{1− exp[1− (1 + β x)α]}(j+1)a =
∞∑
i=0

(
(j + 1)a

i

)
(−1)i exp{i[1− (1 + β x)α]}
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and

exp(tx) =
∞∑
s=0

ts xs

s!

Hence, we can write

M(t) = αβ a
∞∑
j,i=0

ρj

(
(j + 1)a

i

)
(−1)i exp(i+ 1)

∞∑
s=0

ts

s!

×
∫ ∞

0

xs(1 + β x)[(j+1)a+1]−1 exp[−(i+ 1)(1 + β x)α]dx

Since the inner quantities of the summation are absolutely integrable, the integration

and summation can be interchanged.

For s > 0 integer, it follows that

∫ ∞
0

xs(1 + β x)[(j+1)a+1]−1 exp[−(i+ 1)(1 + β x)α] =

β−n−1

[(j + 1)a+ 1]

s∑
r=0

(
s

r

)
(−1)s−r

(i+ 1)
i

[(j+1)a+1]
+1

Γ

(
i

[(j + 1)a+ 1]
+ 1, i+ 1

)

where Γ(a, x) =
∫∞
x
za−1e−z dz denotes the complementary incomplete gamma function,

which can be evaluated in MATHEMATICA, R, etc. Then, the mgf of X can be expressed as

M(t) = α a
∞∑
j,i,s

s∑
r=0

(
(j + 1)a

i

)(
s

r

)
ρj β

r ts (−1)s+j−r

s![(j + 1)a+ 1](i+ 1){i/[(j+1)a+1]+1}

× Γ

(
i

[(j + 1)a+ 1]
+ 1, i+ 1

)
(3.15)

Equation (3.15) is the main result of this section.

3.6 Order Statistics

Order statistics make their appearance in many areas of statistical theory and practice.

The density function fi:n(x) of the ith order statistic, for i = 1, . . . , n, from i.i.d. random

variables X1, . . . , Xn following any Kw-G distribution, is simply given by

fi:n(x) =
n!

(i− 1)!(n− i)!

n−i∑
k=0

(−1)k
(
n− i
k

)
f(x)F (x)i+k−1,

Using (3.9) and (3.10), the pdf of Xi:n can be expressed as
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fi:n(x) =
n!

(i− 1)!(n− i)!

n−i∑
k=0

(−1)k
(
n− i
k

)[ ∞∑
j=0

ρj a g(x)G(x)(j+1)a−1

]

×

[
∞∑
j=0

ωj G(x)j a

]i+k−1

,

where the coefficients ρj and ωj are given in section 3.2.1, h(x) = (j+1)a g(x)G(x)(j+1)a−1

and H(x) = G(x)ja.

We use throughout the paper an equation of Gradshteyn and Ryzhik (2007, Section

0.314) for a power series raised to a positive integer j(
∞∑
i=0

ai x
i

)j

=
∞∑
i=0

cj,i x
i,

where the coefficients cj,i (for i = 1, 2, . . .) are easily obtained from the recurrence equation

cj,i = (ia0)−1

i∑
m=i

[m(j + 1)− i] am cj,i−m

and cj,0 = aj0. The coefficients cj,i can be determined from cj,0, . . . , cj,i−1 and then from

the quantities a0, . . . , ai listed above. In fact, cj, i can be given explicitly in terms of the

coefficients ai, although it is not necessary for numerically programming our expansions

in any algebraic or numerical software.

Based on the above power series, we obtain[
∞∑
j=0

ωj G(x)j a

]i+k−1

=
∞∑
j=0

ηi+k−1,jG(x)ja

where ηi+k−1,0 = κi+k−j0 and ηi+k−1,j = (κω0)−1
∑j

m=1[m(i+ k)− j]ωm ηi+k−1,j−m.

Thus, the pdf of Xi:n re reduces to

fi:n(x) = g(x)
∞∑
j=0

mk,jG(x)(2j+1)a−1 (3.16)

where

mk,j =
n−i∑
k=0

(−1)k a n! ρj ηi+k−1,j

(i− 1)!(n− i)!

(
n− i
k

)
Equation (3.16) can be expressed as

fi:n(x) =
n−i∑
k=0

∞∑
j=0

pk,jh(2j+1)a−1(x) (3.17)
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where

pk,j =
mk,j

(2j + 1)a

Equation (3.17) is the main result of this section. It reveals that the odf of the Kw-

NH order statistics is a double linear combination of ENH densities with parameters

(2j + 1)a, α and β.

3.7 Maximum likelihood estimation

Several approaches for parameter estimation were proposed in the literature but the

maximum likelihood method is the most commonly employed. The maximum likelihood

estimators (MLEs) enjoy desirable properties and can be used when constructing con-

fidence intervals for the parameters. The normal approximation for these estimators in

large sample distribution theory is easily handled either analytically or numerically. In

this section, the parameters of the new model are estimated by maximum likelihood. Let

x1, . . . , xn be a random sample of size n from X ∼ Kw-NH(a, b, α, β). The log-likelihood

function for the vector of parameters θ = (a, b, α, β)> can be expressed as

`(θ) = n {log(a) + log(b) + log(α) + log(β)} + (α− 1)
n∑
i=0

log(1 + β xi)

+ (a− 1)
n∑
i=0

log{1− exp[1− (1 + β xi)
α]}

+ (b− 1)
n∑
i=0

log(1− {1− exp[1− (1 + β xi)
α]}a).

The components of the score vector are given by

Uθ = (Ua, Ub, Uα, Uβ)> =

(
∂`(θ)

∂a
,
∂`(θ)

∂b
,
∂`(θ)

∂α
,
∂`(θ)

∂β

)>
,

where

∂`(θ)

∂a
=

n

a
−

n∑
i=0

(b− 1) {1− exp[1− (1 + β xi)
α]}a log{1− exp[1− (1 + β xi)

α]}
1− {1− exp[1− (1 + β xi)α]}a

+
n∑
i=0

log{1− exp[1− (1 + β xi)
α]},

∂`(θ)

∂b
=

n

b
+

n∑
i=0

log(1− {1− exp[1− (1 + β xi)
α]}a),

∂`(θ)

∂α
=

n

α
−

n∑
i=0

(a− 1) (1 + β xi)
α log(1 + β xi)

1− exp(xi − 1)
+

n∑
i=0

log(1 + β xi)
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−
n∑
i=0

a (1 + β xi)
α log(1 + β xi) exp[1− (1 + b xi)

α]

1− {1− exp[1− (1 + β xi)α]}a

× {1− exp[1− (1 + β xi)
α]}a−1,

∂`(θ)

∂β
=

n

β
+

n∑
i=0

xi
1 + β xi

−
n∑
i=0

(a− 1)αxi (1 + β xi)
α−1

1− exp[1− (1 + β xi)α]

−
n∑
i=0

aα (1 + β xi)
α−1 exp[1− (1 + β xi)

α] {1− exp[1− (1 + β xi)
α]}a−1

1− {1− exp[1− (1 + β xi)α]}a
.

Setting these equations to zero, U(θ) = 0 and solving them simultaneously yields the

MLE θ̂ of θ. There exists many maximization methods in the R package like NR (Newton-

Raphson), BFGS (Broyden-FletcherGoldfarb-Shanno), BHHH (Berndt-Hall-Hall-Hausman),

SANN (Simulated-Annealing), and NM (Nelder-Mead). The MLEs are evaluated using

the Limited Memory quasi-Newton code for Bound-constrained optimization (L-BFGS-B).

Further, the Anderson-Darling (A∗) and Cramér-Von Mises (W ∗) statistics are computed

for comparing the fitted models. The computations are carried out using the R-package

AdequacyModel given freely from

http://cran.r-project.org/web/packages/AdequacyModel/AdequacyModel.pdf.

3.8 Applications to real data

We perform two applications of the Kw-NH distribution to real data for illustra-

tive purposes. We estimate the unknown parameters of the fitted distributions by the

maximum-likelihood method as discussed in Section 3.7. The first example is a data set

from Kus (2007) consisting of 24 observations on the period between successive earth-

quakes in the last century in the North Anatolia fault zone. For the second example,

we consider the data corresponding to the exceedances of flood peaks (in m3/s) of the

Wheaton River near Carcross in Yukon Territoru, Canada. The data consist of 72 ex-

ceedances for the years 1958-1984, rounded to one decimal place. They are analysed by

Choulakian and Stephens (2001). The use of the Kw-NH distribution for fitting these

two data sets can be adequate. In many applications, there is qualitative information

about the hrf, which can help in selecting a particular model. In this context, a device

called the total time on test (TTT) plot by Aarset (1987) is useful. The TTT plot for

the Earthquakes in North Anatolia fault zone data in Figure 3.4(a) indicates an upside-

down bathtub hrf, whereas the TTT plot for the Oits IQ Scores data in Figure 3.4(b)

reveals an increasing hrf. Therefore, these plots indicate the appropriateness of the Kw-

NH distribution to fit these data, since the new model can present both forms of the

hrf.

Table 3.1 provides some descriptive measures for the second data sets, which include

central tendency statistics, standard deviation (SD), coefficient of variation (CV), skew-

ness (S) and kurtosis (K), among others.
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(a) (b)

Figure 3.4: TTT plots - (a) Earthquakes in North Anatolia fault zone data; (b) Flood
Peaks Exceedances

Table 3.1: Descriptives statistics.

Statistic
Flood Peaks Exceedances

Earthquakes in North Anatolia fault zone Oits IQ Scores
Mean 1430 12.2
Median 624.5 9.5
Mode 1125 6.23
SD 1980.7 12.3
CV 1.385 1.007
S 2.18 1.44
K 4.67 2.73
Minimum 9 0.1
Maximum 8592 64.0

We compare the fits of the Kw-NH distribution defined in (3.5), Kumaraswamy Weibull

(Kw-We) by Cordeiro et al. (2010), gamma Nadarajah-Haghighi (GNH) by Bourguignon

et al. (2015), ENH by Lemonte (2013), and NH by (3.3) to a real data set (for x > 0)

with corresponding densities:

fKw−We(x) = a b α βα xα−1 exp[−(β x)α]{1− exp[−(β x)α]}a−1(1− {1− exp[−(β x)α]}a)b−1,

fGNH(x) =
a β

Γ(a)
(1 + β x)α−1 [(1 + β x)α − 1]

a−1
exp {1− (1 + β x)α} ,

fENH(x) = aα β(1 + β x)α−1 exp{1− (1 + β x)α}[1− exp{1− (1 + β x)α}]β−1,

where a > 0, b > 0, α > 0 and β > 0.
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Table 3.2 lists the MLEs of the parameters (their standard errors are given in paren-

theses) of the unknown parameters of all lifetime models for the Earthquakes in North

Anatolia fault zone data, whereas Table 3.3 does the some for the Exceedances of Wheaton

River flood data.

The W ∗ and A∗ statistics for all fitted models are presented in Table 3.4 for both data

sets. First, note that the Kw-NH model fits the Earthquakes in North Anatolia fault

zone data better than the other models according to the W ∗ and A∗ statistics. On the

other hand, the Kw-NH and GNH distributions provide better fits to the Exceedances of

Wheaton River flood data according to the W ∗ statistic, although the Kw-NH distribution

should be chosen according to he and A∗ statistic. This implies that the Kw-NH could

also be chosen as the best distribution for modeling both data sets.

Table 3.2: The MLEs (standard errors) of the model parameters for the Earthquakes in
North Anatolia fault zone.

Model Estimates
Kw-NH(a,b,α,β) 1.3315 3.3696 0.2341 0.0037

(0.3514) (4.2522) (0.1722) (0.0020)
Kw-We(a,b,α,β) 13.9982 18.5321 0.1380 0.0357

(19.2417) (72.340) (0.1487) (0.2228)
GNH(a,α,β) 7.2396 0.2281 13.4234

(5.3929) (0.0636) (71.2482)
ENH(a,α,β) 1.9491 0.3158 0.0183

(1.9026) (0.1424) (0.0471)
NH(α,β) 0.5264 0.0026

(0.0909) (0.0007)

Table 3.3: The MLEs (standard errors) of the model parameters for the Flood Peaks
Exceedances.

Model Estimates
Kw-NH(a,b,α,β) 0.7603 1.6358 2.2269 0.0143

(0.1419) (1.4156) (1.7630) (0.0177)
Kw-We(a,b,α,β) 0.5561 0.7458 1.2915 0.0685

(0.3052) (0.3394) (0.4428) (0.0375)
GNH(a,α,β) 0.7324 1.8714 0.0254

(0.1299) (1.4536) (0.028)
ENH(a,α,β) 0.7309 1.6884 0.0316

(0.1373) (1.1677) (0.0318)
NH(α,β) 0.8410 0.1094

(0.2599) (0.0597)

Plots of the estimated pdfs and cdfs of the Kw-NH, Kw-We, GNH, ENH and NH

models fitted to both data sets are given in Figures 3.5 and 3.6. They indicate that the

Kw-NH distribution is superior to the other distributions in terms of model fitting.



47

Table 3.4: W ∗ and A∗ Statistics.

Distribution
Earthquakes in North Anatolia fault zone Flood Peaks Exceedances
W ∗ A∗ W ∗ A∗

Kw-NH 0.018 0.153 0.1026 0.621
Kw-We 0.024 0.165 0.1076 0.656
GNH 0.023 0.193 0.1026 0.627
ENH 0.026 0.227 0.1027 0.628
NH 0.025 0.165 0.1442 0.817

(a) (b)

Figure 3.5: Estimated pdf and cdf from the fitted kw-NH, GNH, ENH and NH models
for the earthquakes in North Anatolia fault zone data.

(a) (b)

Figure 3.6: Estimated pdf and cdf from the fitted kw-NH, GNH, ENH and NH models
for the exceedances of flood peaks data.
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3.9 Concluding remarks

The modeling and analysis of lifetimes is an important aspect of statistical work in

a wide variety of scientific and technological fields. Continuous univariate distributions

have been extensively used over the past decades for modeling data in several fields such

as environmental and medical sciences, engineering, demography, biological studies, actu-

arial, economics, finance and insurance. However, in many applied areas such as lifetime

analysis, finance and insurance, there is a clear need for extended forms of these distribu-

tions.

We introduced and studied the Kumaraswamy Nadarajah-Haghighi (Kw-NH) model

to extend the Nadarajah-Haghighi (NH) and other distributions. We derive a linear

representation for the density function and obtain explicit expressions for the ordinary

and incomplete moments, quantile and generating function, mean deviations, and density

function of the order statistics and their moments. The model parameters are estimated by

maximum likelihood and the observed information matrix is determined. Two applications

of the new model to real data sets reveal that the new model can be used quite effectively

to provide better fits than its main sub-models. We hope that the proposed model may

attract wider applications in Statistics.
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