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Resumo

Alinhamento Multiplo de sequéncias (MSA) é uma das tarefas mais importantes em
bioinformética. A MSA € uma técnica fundamental para o estudo da funcao, estrutura e evolucao
de biomoléculas. A partir do uso de métodos de MSA € possivel a criagdo de modelos estatisticos
para a classificagdo de familias de proteina , andlise filogenética e a previsdo de estruturas
secunddrias de proteinas. Como trata-se de um problema do tipo NP-dificil, torna-se invidvel o
uso de métodos exatos para a busca da melhor solucdo. Por isso, € importante o uso de métodos
de optimizagao baseado em heuristica para resolver o problema de MSA. Nesta dissertagao,
propomos uma abordagem para alinhamento multiplo de sequéncias por meio da otimizagdo
de uma funcao objetivo utilizando Evolucdo Diferencial. Embora a ideia de usar algoritmos
evolutivos ndo seja nova, a abordagem apresentada difere pelo uso da Evolu¢ao Diferencial e
pela defini¢cao do alinhamento como uma dispersdo de lacunas ao longo das sequéncias, sem
levar em consideracdo fendmenos bioldgicos, como os de inser¢ao ou surgimento de bases,
delecdo ou mutacdo de bases. A solucdo proposta tem provado ser capaz de fazer melhorias

significativas em alinhamentos quando comparadas com o método do estado da arte Clustal.

Palavras-chave: Alinhamento multiplo de sequéncia. Bioinformética. Computagdo evolutiva.

Evolucao diferencial. Algoritmo genético.



Abstract

Multiple sequence alignment (MSA) is one of the most important tasks in bioinformatics. The
MSA is a fundamental technique to the study of function, structure and evolution of biomolecules.
By using of MSA methods it’s possible to create statistical models for classification of protein
families, phylogenetic analysis and the prediction of secondary structures of proteins. Being a NP-
hard problem, it is infeasible due to its completely, the use of exact methods to search for optimal
solutions. Because of this it is important to use heuristic-based optimization methods to solve
the MSA problem. In this dissertation, we propose an approach to multiple sequence alignment
by optimizing an objective function using Differential Evolution. Although the idea of using
Evolutionary Algorithms is not new, the approach presented differs from the use of Differential
Evolution and definition of alignment as a dispersion of gaps along the sequences, without
considering biological events such as insertion or emergence of bases, deletion or mutation
of bases. The proposed solution has proven to be able to make significant improvements in

alignments when compared to the state-of-the art Clustal method.

Keywords: Multiple sequence alignment. Bioinformatics. Evolutionary computing.

Differential evolution. Genetic algorithm.



2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10

3.1
3.2
3.3
3.4
3.5
3.6

5.1
5.2
2.3
5.4
2.9
2.6

Lista de Figuras

Needleman-Wunsch - Fase de inicializagao. . . . . . .. . ... ... .. ..
Needleman-Wunsch - Fase de preenchimento (scoring). . . . .. .. .. ..
Needleman-Wunsch - Fim da fase de preenchimento (scoring). . . . . . ..
Needleman-Wunsch - Fim da fase de alinhamento (traceback). . . . . . ..
Needleman-Wunsch - Alinhamento Resultante. . . . . . ... .. .. .. ..
Smith-Waterman - Fase de inicializacdo. . . . . . . .. .. ... ... ...
Smith-Waterman - Fase de preenchimento (scoring). . . . . . . . .. .. ..
Smith-Waterman - Fim da fase de preenchimento (scoring). . . . . . . . ..
Smith-Waterman - Fim da fase de alinhamento (traceback). . . . . . . . ..

Smith-Waterman - Alinhamento Resultante. . . . . . . . . . .. .. . ...

Fluxo de um Algoritmo Evolucionario tipico. . . . . . . . .. ... ... ..
Roleta. . . . . . . . . e
Cruzamento com um ponto. . . . . . . . . . ...
Cruzamento com vArios pontos. . . . . . . . . . . ...
Mutacao por inversao. . . . . . . . ... e e

Mutacao por troca aleatoria. . . . . . . . . . ...

Resultado Geral. . . . . . . .. .. .. L
Resultado Geral - 752 Percentil do Clustal. . . . . . ... ... ... ....
Resultado Geral - Valores Minimos. . . . . . . . .. .. ... ... .....
Resultado Geral - Medianas. . . . . . . ... .. .. ... ... .. .. ...
Resultado Geral - Estabilidade. . . . . . .. .. .. .. ... ...

Resultado Geral - Precisdo. . . . . . . . . . .

17



3.1
3.2

4.1
4.2
4.3

5.1

0.2

Lista de Tabelas

Valor de aptidao de individuos de uma populagao. . . . . . . . . .. .. .. 35
Probabilidade de selecao na roleta. . . . . . .. .. .. ... ... .. ... 40
Parametros das Estratégias de Evolucao Diferencial. . . . . . . . .. .. .. 49
Parametros do Clustal. . . . . . .. .. .. ... . . 000 50
Multiplicadores das Fung¢oes Componentes. . . . . . . . . ... ... . ... 51

Evolucao Diferencial superanado Clustal e Equivaléncia entre Algoritmos
Genétivos e Clustal. . . . . . . . .. ... L 54

Evolugao Diferencial superando Algoritmos Genéticos. . . . . . . . . . . .. 55



Lista de Algoritmos

Algoritmo Evolucionario tipico. . . . . . . . .. .. .. ... .. ... ... 32
Algoritmo Genético tipico. . . . . . ..o Lo 38
Algoritmo de Evolucao Diferencial tipico. . . . . . . .. .. ... ... ... 44

Algoritmo padrao de cruzamento para DE. . . . . . .. ... .. ... ... 47



AE

B1B

B2B

BLAST

CDE

CRS

DE

EP

GA

GP

MSA

PWM

PSO

R1B

R2B

RB1B

Lista de Acronimos

Algoritmo Evolucionario
Best/1/Bin

Best/2/Bin

Basic Local Alignment Search Tool
Chaos-differential evolution
Controlled Random Search
Differential Evolution
Evolutionary Programming
Genetic Algorithmns

Genetic Programming
Multiple Sequence Alignment
Positional Wight Matrix
Particle swarm optimization
Rand/1/Bin

Rand/2/Bin

Rand-To-Best/1/Bin



1.1
1.2
1.3

2.1
2.2
2.3
2.4
241
2.4.2
243

3.1
3.1.1
3.1.2
3.1.3
3.1.4
3.1.5
3.1.6
3.1.7
3.1.7.1
3.1.7.2
3.1.8
3.2
3.2.1

Sumario

INTRODUCAO . . . . .. e 13
Objetivo geral . . . . . . . . . .. 14
Objetivos especificos . . . . . . . . . .. L o 14
Estrutura do documento . . . . . . .. ... oo 14
ALINHAMENTO DE BIOSEQUENCIAS . . . .. ... ... ..... 16
Alinhamento Global entre duas sequéncias . . . . . . .. .. ... ... 16
Alinhamento Local entre duas sequéncias . . . . . . .. .. ... ... 21
Alinhamento com Heuristica entre duas sequéncias . . . . . ... ... 26
Alinhamento Miltiplo de Sequéncias . . . . . . . . ... .. ... ... 27
Algoritmos de MSA exatos . . . . . ... ... . Lo L. 28
Algoritmos de MSA progressivos . . . . . . .. ... L. 28
Algoritmos de MSA iterativos . . . . . . . . ... Lo 29
ALGORITMOS EVOLUCIONARIOS . . . . ... ........... 30
Algoritmos Evolucionarios . . . . . . .. ... ... ... ... .. ... 31
Conceito . . . . . . .. 31
Definicao algoritmica . . . . . . .. .. ... oL 32
Representacao . . . . . . . . . . .. .. 33
Inicializagao . . . . . . . . oL 34
Funcao de aptidao . . . . . . . . . . . . .. ... 34
Selecao de pais . . . . . . . . .. 35
Operadores de variacao . . . . . . . . . .. ..o 35
Cruzamento . . . . . . . . . .. 36
Mutacao . . . . . . .. 36
Selecao de sobreviventes . . . . . . ... Lo oL 36
Algoritmos Genéticos . . . . . . .. Lo 37

Definicao algoritmica . . . . . . .. .. ... oo 37



3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.2.7
3.2.8
3.3

3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6
3.3.7

4.1
4.2
4.3
4.4
4.5

5.1
5.1.1
5.1.2
5.2

6.1
6.2

Representacao . . . . . . . . . . ... 38

Inicializacao . . . . . . . ... 39
Funcao de aptidao . . . . . . . . . . . .. ... 39
Selecao de pais . . . . . . .. 39
Cruzamento . . . . .. .. ... 40
Mutacao . . . . . . . . e 41
Selecao de sobreviventes . . . . . .. .. Lo oo 42
Evolucao Diferencial . . . . . . . .. .. ... Lo 42
Defini¢ao algorftmica . . . . . . . . .. ... Lo L 43
Representacao . . . . . . . . . . . o 45
Inicializacao . . . . . . . . .. 45
Funcao de aptidao . . . . . . . . .. ..o 45
Mutagao . . . . . . . . 45
Cruzamento . . . . . . . . .. 46
Selecao de sobreviventes . . . . . . ... ..o oo 47
METODOLOGIA . . . . . . 48
Sequéncias utilizadas . . . .. ... .. Lo o 48
Experimentos com GA . . . . . . . . ... ... ... ... . ... 49
Experimentos com DE . . . . . .. ..o o000 49
Experimentos com Clustal . . . . ... ... ... ... ........ 50
Funcao Objetivo . . . . . . . . . . . 50
RESULTADOS E DISCUSSOES . . . . .. . ... .. 54
Resultados . . . . . .. .. . o 54
Testes de Wilcoxon . . . . . . . . ... L Lo oo 54
Graficos . . . . . . .o 55
Discussoes . . . . . o .o e e 63
CONCLUSAO . . ... ... i 64
Conclusoes gerais . . . . . . . . .. L L 64

Publicagoes . . . . . . . .. 64



6.3 Trabalhos futuros . . . . . . . . . .

Referéncias



13

INTRODUCAO

O alinhamento multiplo de sequéncias (Multiple Sequence Alignment, MSA) é um dos
mais fundamentais e mais desafiadores problemas em biologia computacional. O problema
do MSA pode ser descrito como o arranjo de trés ou mais sequéncias de nucleotideos ou
aminoacidos, sobrepostas. Este arranjo é obtido pelo deslocamentos dos elementos destas
sequéncias obtidos pela inser¢ao de espagos vazios, chamados de lacunas (gaps). O MSA
¢ uma técnica utilizada para o estudo da funcao, estrutura e evolucao de biomoléculas.
Algumas das aplicagdes do MSA estdo na andlise filogenética (GUSFIELD, 1997), na
criagdo de modelos estatisticos para classificacao de familias de proteinas (SIPPL, 1999),
na predi¢do de estruturas secundarias de proteinas (JONES, 1999) e em ferramentas de
extracao de similaridade entre sequéncias (ALTSCHUL et al., 1997).

Classificado como um problema do tipo NP-dificil (CARRILLO; LIPMAN, 1988;
NOTREDAME, 2002), a complexidade do MSA torna inviavel o uso de métodos exatos
para a busca de solucoes 6timas. Portanto, sao usualmente utilizadas as seguintes
estratégias:  Alinhamentos Progressivos (FENG; DOOLITTLE, 1987), destacando-se
o Clustal (THOMPSON; HIGGINS; GIBSON, 1994, THOMSEN; FOGEL; KRINK,
2002; HIGGINS; BLEASBY; FUCHS, 1992), MUSCLE (EDGAR, 2004a,b) e T-COFFE
(NOTREDAME; HIGGINS; HERINGA, 2000); e os Algoritimos Iterativos onde se
destaca a utilizacao de meta-heuristicas, como as dos Algoritmos Evolucionarios

(AE) (DORTMUND, 1995), sendo SAGA (NOTREDAME; HIGGINS, 1996), COFFE
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(NOTREDAME; HOLM; HIGGINS, 1998) e PWMAligner (MASULLI; PETERSON;
TAGLIAFERRI, 2010) os mais conhecidos.

Inspirados nos principios da evolugao natural de Darwin e na genética, os
Algoritmos Evolucionarios (AE) sdo direcionados a encontrar 6timos globais, evitando
a parada prematura em oOtimos locais. Existem varias formas de AEs, dentre o que
se aplicam a este trabalho temos: Algoritmos Genéticos (Genetic Algorithmns, GA)
(GOLDBERG, 1989) e os algoritmos de Evolugao Diferencial (Differential Evolution, DE)
(STORN; PRICE, 1997; PRICE; STORN; LAMPINEN, 2005). A DE se destaca pela sua

facilidade de uso, rapida velocidade de convergéncia e poucos parametros de controle.

1.1 Objetivo geral

Neste trabalho, propomos uma abordagem para alinhamento miltiplo de
sequéncias por meio da otimizacao de uma funcao objetivo utilizando Evolucao Diferencial.
Embora a idéia de usar algoritmos evolutivos nao seja novo, a abordagem apresentada

difere pelo uso da Evolugao Diferencial.

1.2 Objetivos especificos

a) Propor uma nova representacio baseada somente nas posicoes das lacunas

b) Discretizagdo da DE para a aplicacio em um problema de otimizagao

combinatoria

1.3 Estrutura do documento

No Capitulo 2, é apresentado o conceito de Alinhamento de Sequéncias, listando as
técnicas canodnicas de alinhamento, os tipos de alinhamentos de sequéncias e a classificagao
das técnicas de alinhamento multiplo de sequéncias.

No Capitulo 3, é apresentado o conceito de Algoritmos Evolucionéarios assim

como sua defini¢ao algoritmica, uma descricao de seus passos computacionais e por fim
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duas formas de Algoritmos Evolucionarios relacionados a esta dissertagao: Algoritmos
Genéticos e Evolucao Diferencial. Para cada uma destas duas formas de Algoritmos
Evolucionarios sao abordadas sua defini¢ao algoritmica canonica e uma descri¢do dos seus
passos computacionais caracteristicos.

No Capitulo 4, temos a descricio da metodologia empregada. Aqui sdo
apresentados como foram obtidas as amostras utilizadas nos experimentos e detalhes do
protocolo de experimentos.

No Capitulo 5, sao apresentados os resultados obtidos e uma breve discussao sobre
os resultados atingidos é realizada.

No Capitulo 6, temos uma breve apresentacao das contribuicoes, publicagoes e

possibilidades de trabalhos futuros.
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ALINHAMENTO DE BIOSEQUENCIAS

No inicio do século XXI, a Biologia Molecular desenvolveu-se rapidamente e
novos métodos e técnicas de sequenciamento de genes (PLUS AND MINUS METHOD
, SANGER F ET AL 1975 J MOL BIOL 94:441) foram criados. O avanc¢o tecnologico,
associado a esta area da ciéncia, permitiu o levantamento de informacao gendmica de
véarias espécies, incluindo o do c6digo genético humano, microrganismos como bactérias,
fungos e virus, assim como de espécies de interesse econdémico. Varios tipos de estudos
podem ser realizados a partir da relagao das informagoes obtidas pelos sequenciamentos.
Para a realizacao destas relacoes entre sequéncias é necessaria a utilizacao de técnicas de
alinhamento entre sequéncias.

O alinhamento de sequéncias consiste no processo de comparar duas sequéncias (de
nucleotideos ou proteinas) de forma a se observar seu nivel de identidade. O alinhamento

entre duas sequéncias pode ser feito de forma global ou local.

2.1 Alinhamento Global entre duas sequéncias

No Alinhamento Global a comparacao entre as sequéncias é realizada ao longo
de toda a extensdao da sequéncia. O algoritmo Needleman-Wunsch (NEEDLEMAN;
WUNSCH, 1970) é o mais conhecido para realizar esse tipo de alinhamento. Considerado

como um dos primeiros métodos de alinhamento o algoritmo de Needleman-Wunsch faz
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Figura 2.1: Needleman-Wunsch - Fase de inicializacao.
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uso da técnica de programacao dinamica para encontrar de forma direta e 6tima um
alinhamento entre duas sequéncias biomoleculares. A execucao do algoritmo ocorre em
trés etapas: inicializa¢do, preenchimento da matriz (scoring) e Alinhamento (traceback).

Vamos considerar duas sequéncias (A = [TATACTA] e B = [CGCTATAT]) como
exemplo para a realizacao do alinhamento global a partir da aplicacao da técnica de
Needleman-Wunsch. As constantes m e n sao respectivamente os comprimentos das
sequéncias A e B, portanto m =7 e n =8. O primeiro passo do algoritmo é criar uma
matriz com m+ 1 linhas e n+1 colunas, ou seja, para as sequéncias A e B dadas como
exemplo teremos uma matriz 8 x 9. Uma inicializacao desta matriz ¢ realizada de acordo
com a condi¢ao inicial estabelecida na Equagao 2.1, onde F(i, j) é a Fungao de Pontuagao

para preenchimento da matriz de pontuacao m—+1xn+1.

F(0,0)=0
Condicao Inicial de Needleman-Wunsch = { F (i, 0) = —id
F(()?.]) = _Jd

O resultado da inicializacao respeitando a condicao inicial da Equacao 2.1, pode
ser vista na Figura 2.1.
Para a segunda etapa (scoring) sao aplicadas a Fung¢dao de Pontuagao F(i,j) e uma

Matriz de Mérito W(A;,B;) é consultada. A Funcao de pontuacdo para o algoritmo de
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Needleman-Wunsch é definida na Equagao 2.2.

F(i,j) =max{F(i—1,j— 1)+ W(A;,B)), F(i—1,j)—d, F(i,j—1)—d}

onde:

e d ¢ uma constante que penaliza a existéncia de lacunas nos alinhamentos.

Consideramos que d = 0;

e W(A;,B;j) é a Matriz de Mérito que retorna o score correspondente ao par de

elementos (A;,B;).

e A; é o i-ésimo elemento da sequéncia A e B; ¢ o j-ésimo elemento da sequéncia

B.

A Matriz de Mérito tem como objetivo auxiliar na comparacao das similaridades
(matches) e diferencas (mismatches) entre as duas sequéncias. A Matriz de Mérito é
construida a partir da relacao logaritmica entre as probabilidades de que um par de 4cidos
nucleicos (ou aminoéacidos, se for o caso) estejam alinhados e a probabilidade de que o
par se apresente independente. A Equacao 2.3 apresenta esta relacao, onde a e b sao os
acidos nucleicos das duas sequéncias, p,, ¢ a probabilidade dos elementos aparecerem ao
mesmo tempo, g, € qp sdo as probabilidades independentes de cada aminoécido e S(a,b)
é a razao logaritmica entre essas probabilidades. S(a,b) é a chamada razao log-odds e
descreve a probabilidade de que a e b sejam achados alinhados em vez de serem achados

nao alinhados (SIPPL, 1999).
S(a,b) = log(L)

qaqb
Para o exemplo de alinhamento local que iremos executar a seguir sera considerada a
Matriz de Mérito da Equacao 2.4, tendo seus valores definidos somente para efeito de

exemplo do algoritmo.
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Figura 2.2: Needleman-Wunsch - Fase de preenchimento (scoring).
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A partir da Fungao de Pontuacao e Matriz de Mérito é realizada o preenchimento
do resto da matriz m+ 1 xn+ 1 como mostra a Figura 2.2. Como exemplo, para F(1,4)
teremos: Se F(1—1,4—1)+W(A[,Bs) =F(0,3)+W(T,T)=0+2=2, F(1-1,4)—d =
F(0,4)—0=0-0=0, F(1,4—1)—d=F(1,3) —0=0—-0=0, e max{2,0,0} =2, logo
F(1,4)=2.

A matriz totalmente preenchida caracterizando o término da fase de scoring pode
ser visualizada na Figura 2.3. Analisando a Figura 2.3 é possivel identifica o valor 10 como
a pontuacao maxima possivel do alinhamento global entre as duas sequéncias de exemplo.
Apobs o término da etapa de scoring a pontuagao méxima sempre serd encontrada na parte
inferior direita da matriz, ou seja, na posi¢ao (m,n).

A qultima etapa do algoritmo de Needleman-Wunsch é a etapa de traceback. O
traceback permite encontrar o alinhamento que resulta na pontuacao maxima alcancada.
E possivel encontrar casos onde existam varios alinhamentos possiveis com a mesma

pontuacao maxima.
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Figura 2.3: Needleman-Wunsch - Fim da fase de preenchimento (scoring).
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Para construir o alinhamento, o traceback comega na posicdo (m,n) da matriz
(nesta caso existe um 10 nesta posi¢ao) e olhamos para as células vizinhas da posigao atual.
Dentre estes vizinhos esta o vizinho precedente direto da posicao atual. Identificando o

vizinho precedente deve-se levar em consideracao as seguintes regras para o alinhamento:

e se o elemento precedente esta acima da posicao atual entao A; alinha com

lacuna;

e se o elemento precedente esta na diagonal da posi¢ao atual entao B alinha com

Aj;

e se o elemento precedente esta a esquerda da posi¢ao atual entao B; alinha com

lacuna.

Apos o término do processo iterativo do traceback na posicao (0,0) da matriz, é
possivel identificar todo o caminho caracteristico para o alinhamento que serd gerado,
como mostra a Figura 2.4. O alinhamento resultado utilizando as informacoes da fase de
traceback pode ser visualizado na Figura 2.5.

Com o alinhamento resultante em maos é possivel constatar que o valor na posi¢ao
(m,n) (Valor Maximo) é dado pela soma das parcelas correspondentes a pontuagao de cada
alinhamento individual utilizando a Matriz de Mérito: W(A,—)+W(T,T)+W(—,C) +
W(AA)+W(T, T)+W(AA)+W(T,T)+W(C,—)+W(G,—)+W(C,—)=0+0+0+2+
24+2+24+0+2+0=10.
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Figura 2.4: Needleman-Wunsch - Fim da fase de alinhamento (traceback).
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Figura 2.5: Needleman-Wunsch - Alinhamento Resultante.
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2.2 Alinhamento Local entre duas sequéncias

No Alinhamento Local a comparacao entre as sequéncias nao é realizada ao longo
de toda a extensao da sequéncia, mas sim em pequenas regides. O algoritmo Smith-
Waterman (SMITH; WATERMAN, 1981) é o mais conhecido para realizar esse tipo de
alinhamento. Também faz uso da técnica de programacao dindmica de forma similar ao
Algorirmo de Nedleman-Wunsch para encontrar de forma direta e 6tima um alinhamento
local entre duas sequéncias biomoleculares. A execucao do algoritmo ocorre também em
trés etapas: inicializa¢do, preenchimento da matriz (scoring) e alinhamento (traceback).

Vamos considerar duas sequéncias de aminoacidos (A = [PAWHEAE| ¢ B =
[HEAGAWGHEE]) como exemplo para a realizagdo do alinhamento local a partir da
aplicacao da técnica de Smith-Waterman. As constantes m e n sao respectivamente os
comprimentos das sequéncias A e B, portanto m =7 e n=10. O primeiro passo do
algoritmo ¢ criar uma matriz com m+-1 linhas e n+ 1 colunas, ou seja, para as sequéncias
A e B dadas como exemplo teremos uma matriz 8 x 11. Uma inicializacdo desta matriz é
realizada de acordo com a condigao inicial estabelecida na Equagao 2.5, onde F(i,j) é a

Funcao de Pontuacao para preenchimento de uma matriz de pontuacao m+1xn—+1.



2.2. ALINHAMENTO LOCAL ENTRE DUAS SEQUENCIAS 22

Figura 2.6: Smith-Waterman - Fase de inicializacao.
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O resultado da inicializacao respeitando a condigao inicial da Equacao 2.5, pode
ser vista na Figura 2.6.

Para a segunda etapa (scoring) sao aplicadas a Fungdo de Pontuagao F (i, j) e uma
Matriz de Mérito W(A;,Bj) é consultada. A Funcdo de pontuagao para o algoritmo de

Smith-Waterman é definida na Equacao 2.6.

F(i,j) =max{0, F(i—1,j—1)+W(A;,B)), F(i—1,j)—d, F(i,j—1)—d,}

onde:

e d é uma constante que penaliza a existéncia de lacunas nos alinhamentos. Para

o exemplo, vamos considerar que d = 8;

e W(A;,B;j) é a Matriz de Mérito que retorna o score correspondente ao par de

elementos (A;,B;).

e A; & 0 i-¢simo elemento da sequéncia A e B; é o j-ésimo elemento da sequéncia

B.
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Para o exemplo de alinhamento local ¢ adotada a matriz BLOSUM50 (HENIKOFF;
HENIKOFF, 1992) como Matriz de Mérito. A matriz BLOSUM50 pode ser visualizada
na Equacgao 2.7. Para fins de agilidade na consulta e melhor compreensao a Matriz de
Meérito seré representada somente pelos elementos presentes nas sequéncias exemplos x e

y, sendo W(A;, B;) definido finalmente na Equacao 2.8.

A 5 -2 -1 -2 -1 -1 -1 0 -2 -1 -2 -1 -1 =3 -1 1 0 -3 -2 0 -2 -2 -1
R -2 7 -1 -2 -4 1 0 -3 0 -4 -3 3 -2 -3 -3 -1 -1 -3 -1 -3 -1 =3 0
N -1 1 7 2 -2 0 0 0 1 -3 -4 0 -2 -4 -2 1 0o -4 -2 -3 5 -4 0
D -2 -2 2 8§ —4 0 2 -1 -1 4 -4 -1 -4 -5 -1 0 -1 -5 -3 -4 6 -4 1
C -1 -4 -2 -4 13 -3 -3 -3 -3 -2 -2 -3 -2 -2 -4 -1 -1 -5 -3 -1 -3 -2 -3
0 —1 1 0 0o -3 7 2 2 1 -3 -2 2 o -4 -1 0 -1 -1 -1 -3 0 -3 4
E —1 0 0 2 -3 2 6 -3 0 -4 -3 1 -2 -3 -1 -1 -1 -3 -2 3 1 -3 5
G o -3 0 -1 -3 -2 -3 8 -2 -4 -4 -2 -3 4 -2 0 -2 -3 -3 -4 -1 -4 =22
H -2 0 1 -1 =3 1 o -2 10 -4 -3 0 -1 -1 -2 -1 -2 -3 2 -4 0 -3 0
I -1 4 -3 4 -2 -3 -4 -4 -4 5 2 -3 2 o -3 -3 -1 -3 -1 4 -4 4 -3
L -2 -3 4 4 -2 -2 -3 -4 -3 2 5 -3 3 1 -4 -3 -1 -2 -1 1 -4 4 -3
BLOSUMSO = kK | -1 3 0 -1 -3 2 1 -2 0 -3 -3 6 -2 —4 -1 0 -1 -3 —2 -3 0 -3 1
M -1 -2 -2 -4 =2 0 -2 -3 -1 2 3 -2 7 0 -3 -2 -1 -1 0 1 -3 2 -1
F -3 -3 -4 -5 -2 -4 -3 -4 -1 0 1 -4 0 8§ -4 -3 -2 1 4 -1 -4 1 —4
P - -3 -2 -1 4 -1 -1 -2 -2 -3 -4 -1 -3 -4 10 -1 -1 -4 -3 -3 -2 -3 -1
N 1 -1 1 o -1 0 -1 0 -1 -3 -3 0 -2 -3 -1 5 2 -4 -2 -2 0 -3 0
T 0 -1 o -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 =2 -1 2 5 -3 -2 0 0o -1 -1
w -3 3 4 -5 -5 -1 -3 -3 -3 -3 -2 -3 -1 1 -4 -4 -3 15 2 -3 -5 2 =2
Y -2 -1 -2 -3 -3 -1 -2 -3 2 -1 -1 =2 0 4 -3 -2 -2 2 8§ -1 -3 -1 =2
vV o -3 -3 4 -1 -3 -3 -4 -4 4 1 -3 1 -1 -3 -2 0 -3 -1 5 -3 2 =3
B -2 -1 5 6 -3 0 1 -1 0o -4 -4 0 -3 -4 -2 0 0o -5 -3 -3 6 -4 1
J -2 -3 4 4 -2 -3 -3 -4 -3 4 4 -3 2 1 -3 -3 -1 -2 -1 2 -4 4 3
z -1 0 0 1 -3 4 5 -2 0 -3 -3 1 -1 -4 -1 0 -1 -2 -2 -3 1 -3 5

=
I
= @ g >
|
(98]
|
98]
|
(98]
|
(98]
v
&
(o]

A partir da Funcao de Pontuacao e Matriz de Mérito é realizada o preenchimento
do resto da matriz m+ 1 x n+ 1 como mostra a Figura 2.7. Como exemplo, para a F(2,4)
teremos: Se F(2—1,4—1)+W(A2,B4) =F(1,3)+W(P,G)=0+0=0, F2—1,4)—d =
F(1,4)—8=0-8=0,F(2,4—1)—d=F(2,3)—8=5—-8= -3, e max{0,0,—8, -3}, logo
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Figura 2.7: Smith-Waterman - Fase de preenchimento (scoring).
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Figura 2.8: Smith-Waterman - Fim da fase de preenchimento (scoring).
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F(2,4)=0.

A matriz totalmente preenchida caracterizando o término da fase de scoring pode
ser visualizada na Figura 2.8. Analisando a Figura 2.8 é possivel identifica o valor méximo
encontrado. Diferentemente do Algoritmo de Needleman-Wunsch onde o valor méximo
estard na posi¢ao (m,n), na técnica de Smith-Waterman buscamos em toda a matriz o
maior valor obtido. No caso o maior valor obtido foi 28.

A dltima etapa do algoritmo de Smith-Waterman é a etapa de traceback. O
traceback permite encontrar o alinhamento que resulta na pontuacao maxima alcancada.
A etapa de traceback é iniciada a partir da posicao de maior valor. A partir desta posicao

olhamos para as células vizinhas da posicao atual. Dentre estes vizinhos esta o vizinho
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Figura 2.9: Smith-Waterman - Fim da fase de alinhamento (traceback).
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Figura 2.10: Smith-Waterman - Alinhamento Resultante.
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precedente direto da posicao atual. A posicao corrente da varredura da matriz assume
a posicao do vizinho precedente e o processo se repete. Um caminho é percorrido até
alcancar uma célula com valor 0 (zero). Neste processo de varredura deve-se levar em

consideracao as seguintes regras para o alinhamento:

e se o elemento precedente esta acima da posicao atual entao A; alinha com

lacuna;
e se o elemento precedente esta na diagonal da posi¢ao atual entao B; alinha com
Aj;

e se o elemento precedente esta a esquerda da posicao atual entao B; alinha com

lacuna.

Na Figura 2.9 é possivel identificar todo o caminho caracteristico do alinhamento
para a geracao do alinhamento. O alinhamento resultado utilizando as informacoes da

fase de traceback pode ser visualizado na Figura 2.10.
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2.3 Alinhamento com Heuristica entre duas sequéncias

A complexidade quadratica dos algoritmos de Needleman-Wunsch, Smith-
Waterman e de suas variacoes fazem com que eles se tornem invidveis em aplicacoes
como busca em bases de dados moleculares (NCBI, 2015). Algumas destas bases possuem
milhoes de sequéncias (NCBI, 2015). O problema tipico dessa aplicagao é a comparagao
de uma dada sequéncia nova com todas as depositadas na base de dados. Isto significa
que milhares de comparagoes precisam ser feitas (SETUBAL; MEIDANIS, 1997).

O primeiro programa de busca por similaridades em banco de dados largamente
utiizado foi o FASTA (LIPMAN; PEARSON, 1985; BAXEVANIS; OUELLETTE, 2001).
O método heuristico aplicado contruibui para a sua velocidade de execucao. O principio
basico do programa FASTA é comparar cada sequéncia do banco de dados com a
sequéncia procurada e retornar aquelas que tenham semelhanga significativa (SETUBAL;
MEIDANTIS, 1997).

Para encontrar essa semelhanca significativa primeiramente o algoritmo FASTA
busca sub-sequéncias curtas (chamadas de k-tuplas), que ocorrem tanto na sequéncia
de busca quanto na base de dados de sequéncias. Usando entao a matriz BLOSUMS50
(HENIKOFF; HENIKOFF, 1992), o algoritmo pontua os primeiros 10 alinhamentos
sem lacunas que contenham as k-tuplas mais similares. Os alinhamentos sem lacunas
encontrados sao avaliados por sua capacidade de serem unidos a um alinhamento com
lacunas sem reduzir a pontuacao atual para abaixo de um determinado limiar.

Para aqueles alinhamentos unidos que possuem uma pontuagao do limiar, um
alinhamento local 6timo daquela regido usando o algoritmo de Smith Waterman (SMITH;
WATERMAN, 1981) é realizado e a pontuagao para aquele alinhamento é retornada. Um
dos problemas do FASTA é que ele possui alguns problemas relacionados a perda de
regioes de sequéncias analisadas.

Uma outro caso de aplicacao de heuristica para resolver o problema de alinhamento
entre duas sequéncias ¢ o BLAST. O termo BLAST (ALTSCHUL et al., 1990) é

uma acronimo de Basic Local Alignment Search Tool (Ferramenta Basica de Busca de
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Alinhamentos Locais). O BLAST & uma derivacdo do Algortimo de Smith-Waterman
mais rapida do que o FASTA. O BLAST prioriza o alinhamento de locais especificos da
sequéncia com relevancia estatistica, em lugar de realizar alinhamentos globais permitindo
assim identificar relacdes de similiaridade entre sequéncias, mesmo que esta ocorra em
somente algumas regides isoladas (ALTSCHUL et al., 1990). A principal diferenga do
BLAST e o FASTA esta em como o BLAST trata a lista de k-tuplas identificadas.

Os algoritmos de Needleman-Wunsch, Smith-Waterman, FASTA e BLAST sao
comumente chamados de técnicas de alinhamento por pares (pairwise) por sempre envolver
somente duas sequéncias de cada vez na realizacao do alinhamento. Mesmo sendo as
técnicas FASTA e BLAST aplicadas para procura em um banco de dados de sequéncias, o
processamento da comparacao entre a sequéncia de consulta e as sequéncias que existem

nos bancos de dados sempre serao efetuados aos pares.

2.4 Alinhamento Multiplo de Sequéncias

O Alinhamento Multiplo de Sequéncia (Multiple Sequence Alignment, MSA) é
uma extensao do alinhamento por pares, permitindo que trés ou mais sequéncias
sejam alinhadas simultaneamente. Uma pequena similaridade entre pares de sequéncias
alinhadas pode se tornar altamente significativa na presenca de outras sequéncias. Os
alinhamentos miltiplos podem revelar as semelhancas sutis que os alinhamentos por pares
nao sao capazes de exibir.

De acordo com NOTREDAME (2002) a realizacdo do MSA envolve trés questoes:
Escolha das sequéncias, escolha de uma fungao objetivo capaz de qualificar biologicamente
um alinhamento e a computacao de um alinhamento 6timo.

A escolha das sequéncias é guiada pelo grau de similaridade existente entre
elas. Sequéncias de organismos bastante distintos possuem baixa similaridade entre si,
ja sequéncia de organismos semelhantes possuem alta similiaridade. Alguns métodos
de alinhamento multiplo exigem a escolha de sequéncias de alta similaridade. O uso
de sequéncias distantes em similaridade pode inserir ruido, incorporando um viés na

execucao do algoritmo, o que impossibilita o alinhamento de residuos realmente relevantes
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(NOTREDAME, 2002).

A funcao objetivo de MSA busca mensurar a qualidade bioldgica de um
alinhamento. Uma funcao objetivo frequentemente utilizada é baseada no modelo de
pontuagao conhecido por sum of pairs (soma dos pares) (NEEDLEMAN; WUNSCH,
1970) . Este modelo de pontuacdo leva em consideracao as correspondéncias entre
bases de uma mesma coluna e a atribuicao de penalidades para insercoes e exclusoes
de bases. A computacdao da pontuacao total, chamada de score, é obtida pelo célculo
de correspondéncias e pelas penalidades atribuidas as lacunas (gaps) é responsavel por
mensurar a qualidade do alinhamento.

Podemos agrupar as classes de algoritmos de MSA em exatos, progressivos e

iterativos.

2.4.1 Algoritmos de MSA exatos

Sao o grupo de técnicas que empregam técnicas de programacao dinamica
multidimensional. A abordagem faz uso do algoritmo de Needleman-Wunsch
(NEEDLEMAN; WUNSCH, 1970) para reduzir a computagao e estimar qual regiao de
uma matriz diagonal multidimensional de busca deve ser explorada.

Embora sejam capazes de obter alinhamentos mais precisos e proximos do 6timo,
as abordagens exatas possuem grandes custo computacional. Na manipulacao de uma
matriz multidimensional de busca na qual cada sequéncia representa uma dimensao extra,
faz do MSA um problema de complexidade O(LN) para N sequéncias de comprimento L

tornando-o proibitivo mesmo para um pequeno niimero de sequéncias.

2.4.2 Algoritmos de MSA progressivos

Inicialmente descrito por Hogeweg e Hesper (HOGEWEG; HESPER, 1984) os
algoritmos progressivos possuem uma boa relagdo custo/qualidade (NOTREDAME;
HIGGINS; HERINGA, 2000; HIGGINS; SHARP, 1988; CORPET, 1988).

O processo se resume em trés etapas. Na primeira etapa sao realizados

alinhamentos em pares (pairwise) entre todas as sequéncias para produzir scores
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responsaveis por medir a similaridade entre as sequéncias (FENG; DOOLITTLE, 1987,
HOGEWEG; HESPER, 1984; SIMOSSIS; KLEINJUNG; HERINGA, 2003; TAYLOR,
1988). Na segunda etapa, as sequéncias mais similares sdo agrupadas para formar um
dendrograma que ird guiar o alinhamento na terceira etapa. A terceira etapa alinha
as sequéncias e grupos de sequéncias da etapa anterior. Os grupos de sequéncias sao
convertidos em uma listagem exibindo a frequéncia das bases (ou aminoacidos) em cada
coluna.

O Clustal (THOMPSON; HIGGINS; GIBSON, 1994; THOMSEN; FOGEL;
KRINK, 2002; HIGGINS; BLEASBY; FUCHS, 1992) é a implementagao de heuristica
progressiva mais conhecida e é capaz de alinhar poucas milhares de sequéncias de
comprimento moderado (SIEVERS et al., 2011). Uma das deficiéncias do Clustal esté
em nao reavaliar lacunas inseridas inicialmente, este possivel erro cometido no inicio do
processo de alinhamento ¢ mantidos até o final do processo de construcao e nao pode ser
reparado. Este tipo de problema é conhecido na literatura como once a gap always a gap
(NOTREDAME; HIGGINS; HERINGA, 2000).

Para combater o problema do Clustal foram desenvolvidos algoritmos progressivos
utilizando novas heuristicas. Exemplos destes algoritmos progressivos sao: O T-Coffee
(NOTREDAME; HIGGINS; HERINGA, 2000) e o PRALINE (SIMOSSIS; HERINGA,
2005). A melhoria da precisao obtida por estas técnicas também veém associada ao elevado

custo computacional, limitando estes novos algoritmos a operarem com uma quantidade

de sequéncias reduzida (CUTELLO et al., 2011).

2.4.3 Algoritmos de MSA iterativos

Algoritmos iterativos de MSA produzem inicialmente alinhamentos nao 6timos e
através de um processo de vérias iteracoes vao melhorando o alinhamento inicial até que
um limiar pré-definido de qualidade seja alcancado. Nos algoritmos de MSA iterativos
estocésticos um grau de aleatoriedade é incorporado a solugao. Um exemplo de técnicas
de MSA iterativas estocasticas sao aquelas que modelam Algoritmos Evolucionéarios, como

os Algoritmos Genéticos ou Evolucao Diferencial.
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ALGORITMOS EVOLUCIONARIOS

A utilizagao de AEs na solugao de problemas de MSA tem-se apresentado com
relativa frequéncia no estado da arte: Zhang e Wong (ZHANG; WONG, 1997), em 1997,
apresentaram uma solucao baseada no alinhamento exato de colunas, alcancando bons
resultados. Contudo, a solucao limita-se ao tratamento de sequéncias com alto grau de
similaridade. Thomsen, Fogel e Krink (THOMSEN; FOGEL; KRINK, 2002), em 2002,
apresentaram uma solucao que utilizava como entrada alinhamentos ja executados pelo
Clustal V (HIGGINS; BLEASBY; FUCHS, 1992), com o objetivo de melhorar resultados
ja alcancados. Zhang e Huang (ZHANG; HUANG, 2004), em 2004, propuseram um
GA tendo uma estratégia de inicializacao da populacdo e um esquema de operador de
cruzamento baseados em um ponto. Meshoul et al. (MESHOUL; LAYEB; BATOUCHE,
2005) e Abdesselem et al. (LAYEB; MESHOUL; BATOUCHE, 2006) propuseram,
respectivamente em 2005 e 2006, algoritmos que mesclam conceitos de computacao
quantica e algoritmos evolucionarios com o objetivo de obter melhores resultados. Ainda
em 2006, Hu (HU, 2009) apresentou uma solu¢ao utilizando uma forma hibrida de DE
(Chaos-differential evolution, CDE), a fim de evitar a convergéncia prematura do processo
de busca. Gondro e Kinghorn (GONDRO; KINGHORN, 2007), em 2007, propuseram
um GA tendo dois operadores para crossover, um para combinagoes horizontais e outro
para combinagoes verticais, e quatro operadores de mutagao, todos operando sobre

lacunas do alinhamento, garantindo resultados superiores ao do ClustalW (THOMPSON;
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HIGGINS; GIBSON, 1994). A desvantagem deste esquema é o ntmero de geragoes:
cerca de 20000. Lee et al. (LEE et al., 2008), em 2008, propuseram o algoritmo GA-
ACO, um GA que fazia uso do algoritmo de colonia de formigas (DORIGO; DI CARO;
GAMBARDELLA, 1999) para otimizar o espaco de busca. Botta e Negro (MASULLI;
PETERSON; TAGLIAFERRI, 2010), em 2010, apresentaram uma solu¢ao onde uma
matriz com pesos posicionais (Positional Wight Matrix, PWM) representava um individuo
da populacao, representando a probabilidade de uma determinada posicao da sequéncia

ser associada a uma coluna do alinhamento.

3.1 Algoritmos Evolucionarios

3.1.1 Conceito

Os AEs sdo uma classe de técnicas de otimizacdo estocastica inspirados nos
mecanismos de evolucao natural das populacoes de espécies aplicados ao contexto da
otimizacao. Na metafora evolucionaria temos uma populacao de individuos existentes
em um ambiente com recursos limitados. A competicdo por recursos leva a uma selecao
natural que ird destacar os individuos mais aptos (mais adaptados ao ambiente). Estes
individuos mais aptos irao possuir preferéncia em relacao aos demais no momento da
geragao de novos individuos para a proxima geragao. Este processo de geragao de novos
individuos ocorre a partir de operacoes de recombinacao e mutacao. Os novos individuos
iram competir entre si ou também com seus parentes para sobreviverem. Ao longo
das geragoes, o processo de selecao natural permitird um aumento da aptidao geral dos
individuos da populagao.

Duas forcas fundamentais foram a base do sistema evolucionario: os operadores
de variacao (recombinagdo e mutacao) que criam a diversidade necessaria para o processo
de busca e o operador de selecao que permite a reducao da diversidade populacional,
atuando como uma forca que melhora a qualidade da populacao. O equilibrio entre estes

dois elementos tende a melhorar o valor de aptidao nas populagoes seguintes.



3.1. ALGORITMOS EVOLUCIONARIOS 32

Algoritmo 1: Algoritmo Evoluciondrio tipico.

Algoritmo Algoritmos Evoluciondrio Tipico
1 INICIALIZA populagdo com solu¢des candidatas aleatorias;
2 AVALIA cada candidato;
3 enquanto critério de parada ndo for satisfeito faca
4 SELECIONA parentes;
5 RECOMBINA pares de parentes;
6 MUTACAO nos descendentes resultantes da recombinacio;
7 AVALIA novos candidatos;
8 SELECIONA individuos para a proxima geragao;
9 fim enquanto
fim

3.1.2 Definicao algoritmica

Em Algoritmo 1 temos uma representagao algoritmica do esquema geral de um
AE aplicado a um problema de otimizagao. A primeira atividade no AE é a inicializacao
aleatoria (Linha 1) de uma populagao de individuos representantes de solu¢oes candidatas
ao problema de otimizacao. Apoés esta etapa temos a avaliacao da aptidao destes
individuos (Linha 2).

Em seguida, entramos em um lago de repeticao (das Linhas 3-9) executado até que
a condicao de parada tenha sido satisfeita. A condicao de parada pode ser um limiar de
aptidao minimo a ser atingido ou um nimero maximo de geractes. A primeira atividade
dentro do lago é a execucao de alguma forma de selegao de individuos (Linha 4) que serdo
os parentes dos individuos da préxima geracao. Para geracao destes novos individuos,
sao aplicados os operadores de variacdo de Recombinac¢ao (Linha 5) e Mutagao (Linha
6). Apos a aplicacdo dos operadores de variagao, um novo calculo (Linha 7) de aptidao é
realizado semelhante ao executado na Linha 2, a diferenca é que agora o calculo é aplicado
aos novos individuos gerados. Na ultima atividade (Linha 8) temos a aplicagdo de um
mecanismo de selecao de individuos que ira selecionar aqueles que irao fazer parte da
proxima geracdo. Na Figura 3.1 temos o esquema geral ilustrativo dos AEs onde é possivel
visualizar as mesmas atividades elucidadas no pseudocodigo mas sem as atividades de
avaliacao de aptidao.

Existem varios formas AEs, chamados de dialetos. Os dialetos aplicados a este
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trabalho sdo os Algoritmos Genéticos (Genetic Algorithmns, GA) (GOLDBERG, 1989)
e Evolugao Diferencial (Differential Evolution, DE) (STORN; PRICE, 1997; PRICE;
STORN; LAMPINEN, 2005) abordados em ordem a partir das proximas sessoes.

Figura 3.1: Fluxo de um Algoritmo Evolucionario tipico.

Parent selection

»|  Parents
Initialisation
Recombination
_) )
Population
Mutation
\ 4
Y
Termination
Offspring

Survivor selection

Fonte: Adaptado de (EIBEN; SMITH, 2003).

3.1.3 Representacao

A representagao é um dos primeiros aspectos a serem considerados no uso de AEs.
A representagao do individuo é chamada de Cromossomo. O Cromossomo é uma estrutura
de dados, geralmente vetores ou cadeias de valores binarios que codificam uma possivel
solucao para o problema de otimizacdo. A estrutura da representacao de um individuo
depende do problema abordado. Cada método de busca também possui caracteristicas
que ajudam na especificagao do tipo de representacao a ser utilizada.

O termo Fenotipo é utilizado para designar as caracteristicas expressas por um
individuo levando em consideragao o seu Cromossomo, no caso, uma solucao possivel
no espaco de busca. O termo Gendétipo é utilizado para designar uma representacao do

Fenotipo na forma de valores nos Cromossomos.
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3.1.4 Inicializacao

O processo de inicializacao define como a populacao inicial de individuos sera
inicialmente no espaco de busca. E um passo computacional que depende da representacio
adotada no modelo do problema. A forma mais comum de inicializacdo ¢ a aleatoria.
Neste caso os individuos sao distribuidos aleatoriamente no espaco solucao. O problema
desta estratégia é ocorréncia de regioes nao inicialmente exploradas no espaco de busca e
outras regioes com maiores concentragao de individuos. Uma outra forma de inicializagao
é obedecer uma distribuicao uniforme dos individuos no espago de busca, permitindo
a vantagem de cobrir bem o espacgo solucao, contudo execucoes sucessivas nao trazem
informacdo adicional ja que o estado de inicializacdo serd sempre o mesmo. E possivel
também "semear" a populacao inicial com individuos em posicoes no espaco de busca
ja conhecidos, obtidos pela aplicacao de outros métodos de busca ou até de rodadas

anteriores do algoritmo evolucionario.

3.1.5 Funcao de aptidao

A Funcao de Aptidao é uma expressao matematica utilizada para quantificar a
proximidade das solucoes & solucao desejada. Alguns problemas de otimizagao procuram
maximizar o valor da funcao, isto é, encontrar solucoes que produzam o maior valor
possivel para a fun¢ao de aptidao, como por exemplo: Definir o nimero méximo de caixas
que podem ser colocadas dentro de um depoésito. Outros problemas procuram minimizar
o valor da funcao de aptidao, como por exemplo: Encontrar um caminho mais curto
entre um conjunto de rotas. Existem ainda funcoes que procuram satisfazer mais de um
objetivo, encontradas em problemas de otimizacao multiobjetivo.

Na Tabela 3.1 temos um exemplo do calculo da aptidao de 7 individuos de uma
populacao exemplo. Os cromossomos sao representados por uma cadeia de valores binarios.
A funcao de aptidao escolhida somente retorna o valor correspondente em decimal do valor
da cadeia bindria. Na tdltima coluna temos a aptidao relativa do inviduo utilizada para

calcular o quanto apto é o individuo em relacao a aptidao total da populacao.
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Tabela 3.1: Valor de aptidao de individuos de uma populacdo.

Individuo (i) Cromossomo Aptidao (f;)

1 0000000 0
2 0000001 1
3 0000010 2
4 0001010 10
5 0001011 11
6 0000101 5
7 1010000 80

3.1.6 Selecao de pais

O objetivo do operador de selecao de pais é permitir de forma equilibrada que os
individuos da populagao atual sejam escolhidos para participar na definicao dos individuos
da proxima geracao. Como a selecao de pais é comumente probabilistica, os individuos
mais aptos possuem mais chances de serem escolhidos, o equilibrio na escolha destes pais é
necessario para que os individuos menos aptos também possam fazer parte do processo de
geracao de novos individuos. Esta necessidade se justifica pela manutencao da diversidade

populacional, evitando uma convergéncia prematura do processo de busca (DORTMUND,

1995).

3.1.7 Operadores de variacao

Os operadores de variacao tém como papel gerar novos individuos a partir dos
ja existentes. Os operadores de variacdao sao geralmente dividido em dois tipos de
acordo com a aridade (numero de entradas). Operadores de variagdo que recebem uma
entrada sao chamados de operadores de mutagao. Operadores de variacao que recebem
mais de uma entrada sao chamados de operadores de recombinacao. Os operadores de
recombinacao que recebem duas entradas sao tipicamente chamados de operadores de

cruzamento (Crossover).
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3.1.7.1 Cruzamento

Este operador simula o processo de reproducao sexuada como ocorre na natureza,
em que os filhos sdo gerados a partir da combinagao dos genes dos pais. As varias formas
de se implementar o operador cruzamento exigem (em geral) como entrada dois individuos
pais e uma constante Py, definida no intervalo [0, 1], correspondente a probabilidade de
ocorréncia do cruzamento. A implementacao desde operador depende do dialeto de AEs

assim como a representacao adotada dos individuos.

3.1.7.2 Mutacio

Apos a aplicacao do operador de cruzamento, o processo segue com a aplicacao do
operador de mutagao nos individuos filhos gerados no cruzamento. Na mutacgao é realizada
uma pertubacao dos valores que compoem a representacao do individuo, afim de inserir
variabilidade genética na populacao. A importancia que é dada ao operador de mutacao
depende do dialeto de AEs, por exemplo, no caso dos GAs, o operador de mutacao tem
um papel secundéario sendo responsavel pela preservacao e introducao de diversidade; ja
na Programacao Evolucionéria (Evolutionary Programming, EP) o operador de mutacao é
o unico operador de variacao utilizado; na Programagao Genética (Genetic Programming,
GP) a mutagao é raramente utilizada. A implementacao do operador de mutagao depende
também da representacao adotada do individuo. Uma constante P, definida no intervalo
[0, 1], chamada de Taxa de Mutacao determina a probabilidade de cada individuo sofrer

mutagao.

3.1.8 Selecao de sobreviventes

A fase de selecao de sobreviventes consiste na sele¢ao dos individuos (entre os pais
e filhos) que irdo fazer parte da proxima geracao. Muitos dialetos de AEs consideram que
o tamanho da populacao seja constante, entao é necessario uma estratégia para escolher
individuos entre pais e filhos. Tipicamente temos a estratégia da substituicao generalizada,
onde todos os individuos filhos substituem completamente a populacao dos pais. Esta

¢ estratégia adotada do dialeto GA canénico. Outra estratégia é a troca em estado
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estacionario, onde em cada geracao um filho é gerado, podendo substituir o pior individuo
da populacao dos pais. Uma outra forma chamada de Elitismo consiste em selecionar os

melhores individuos entre os pais e filhos.

3.2 Algoritmos Genéticos

Os Algoritmos Genéticos (Genetic Algorithmns, GA) (HOLLAND, 1975) constituem
uma das mais conhecidas classes de Algoritmos Evolucionérios. Os GA realizam um
processo de busca inspirado no processo de selecao natural da Teoria da Evolucao de
Darwin e na genética de Mendel.

O GA opera através dos mesmos passos computacionais empregados pelos
Algoritimos Evolucionarios classicos como a Inicializacao, Selecao de pais, Cruzamento,
Mutacao e Selecao de Sobreviventes.

A formulagao inicial do GA considera uma representa¢ao binaria do individuo,
uma sele¢do de pais proporcional a aptiddo (Método da Roleta), valores baixos de Py,
(Taxa de Mutagao), cruzamento de um ponto e na sele¢ao de sobreviventes a prole sempre
substituia os seus pais na proxima geracao. O modelo inicial do GA tinha como objetivo
definir um método de estudo ao comportamento adaptativo (HOLLAND, 1975) porém tem
sido largamente aplicado como método de otimizagao, aprendizado de maquina e outras

classes de problemas (EIBEN; SMITH, 2003; MITCHELL, 1998; WHITLEY, 1994).

3.2.1 Definicao algoritmica

De acordo com o Algoritmo 2, o GA tipico manipula a cada iteracao G, um
conjunto de pontos (populacdo) de tamanho constante, gerando a partir destes uma
nova populagdo. A primeira atividade consiste na inicializacao (Linha 2) da populagao
Pidividuos(G) da geragdo G, sendo inicialmente G = 1. Em seguida a fun¢ao de aptidao
avalia (Linha 3) os individuos gerados na etapa anterior. O processo segue entrando em um
laco evolucionario (Linha 4) que se repete até que a uma condigao de parada definida tenha

sido alcangada. Dentro do lago evolucionario uma populacdo de pares de pais Ppuis(G) é
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Algoritmo 2: Algoritmo Genético tipico.

Algoritmo Algoritmo Genético Tipico
Entrada

NP: tamanho da populacao

P,,: taxa de cruzamento

P,,: taxa de mutacao
Saida

populacao de individuos-solugdes

1 G+ 1;

2 iniCializa<})individuos(G)7NP);

3 avalia(Pindividuos(G)>;

4 enquanto critério de parada nao for satisfeito faca
5 Ppais(G) — Pindividuos(G)'SeZECionaPais();
Piithos(G) <= cruzamento(Ppuis(G), Per);
mutagdo(Pritpos(G), Pn);

avalia(Pfitnos(G));

Pindividuos(G + 1) < selecionaSobreviventesEntre(Pjiinos(G), Pindividuos(G));
10 G+—G+1;

11 fim enquanto

fim

O Co N D

gerada a partir da populacdo atual Pygiviaues(G) (Linha 5). O processo segue com a
aplicacdo dos operadores de variacao, onde na Linha 6 uma populagao de filhos Pyijos(G)
¢ gerada a partir do cruzamento entre os pares da populacdo de pares de pais Ppis(G)
respeitando uma taxa de probabilidade de cruzamento P... A aplicacao dos operadores de
variagao termina com a Linha 7, onde o operador de mutagao é aplicado sobre a populacao
de filhos Ppipes(G) respeitando uma probabilidade de mutacdo B,. Agora ¢ necessrio
realizar a avaliacdo da aptidao destes novos individuos que foram gerados, isto ocorre
na Linha 8 e na Linha 9 sao selecionados os sobreviventes para populacao da proxima
geraGao Pgividuos(G + 1) entre os individuos ja existentes Pygividuos(G) € os individuos

filhos Prijnes(G). Cada etapa computacional de um GA sera a seguir tratada em detalhes.

3.2.2 Representacio

A representagao a ser utilizada é inerente & modelagem do problema a ser explorado
utilizando GA. O GA permite diversas formas de representacao. O modelo inicial de GA

utilizava representagao binaria (HOLLAND, 1975), porém é possivel utilizar outras formas
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lineares de dados como as representagdes numéricas (inteiros e reais), vetores de strings e

até estruturas nao lineares como arvores e grafos.

3.2.3 Inicializacao

As consideragbes quanto a etapa de inicializacdo dos AE tratados na sessao 3.1.4

aplicam-se também ao passo computacional de inicializacao implementado pelos GA.

3.2.4 Funcao de aptidao

As consideragoes quanto a etapa de Funcao de Avaliacao dos AE tratados na sessao

3.1.5 aplicam-se também ao passo computacional correspondente no GA.

3.2.5 Selecao de pais

Existem varios métodos de selecao propostos. A maioria das propostas busca
favorecer individuos mais aptos, como o Método da Roleta. No método da roleta os
individuos sao representados em uma roleta por uma fatia proporcional a sua aptidao.
Assim, individuos com maiores valores de aptidao ocuparao maiores fatias na roleta,
enquanto individuos com menores valores de aptidao ocuparao fatias menores. A area
da fatia da roleta de cada individuo é definida através de sua aptidao relativa, segundo a

Equacao:

Ji
pi= .3.1
l ZT:lfj

onde:
e p; é a probabilidade de um individuo i ser selecionado.
e f; corresponde a aptidao do individuo i, sendo f; >0, e
e m é o nimero de individuos da populacao.

Durante a fase de selegao de pais, a roleta é "girada", selecionando um individuo

que irad seguir para a proxima fase, onde sao aplicados os operadores de variacao. A
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Figura 3.2: Roleta.

m] 2 m3 54 5 w6 m7/

Figura 3.2 ilustra a definicao de uma roleta para uma populacao exemplo disposta na
Tabela 3.2. O método da roleta nao funciona em caso de aptidoes negativas e pode levar

a uma convergéncia prematura do processo de busca.

Tabela 3.2: Probabilidade de selecdo na roleta.

Individuo (i) Cromossomo Aptiddo (f;) Aptidao Relativa (p;) Tamanho da Fatia

1 0000000 0 0.000 0%

2 0000001 1 0.009 9%

3 0000010 2 0.018 1.8%
4 0001010 10 0.091 9.1%
5 0001011 11 0.101 10.1%
6 0000101 5 0.046 4.6%
7 1010000 80 0.734 73.4%

Outra estratégia de selecao de pais é o método por torneio, onde um nimero k de
individuos da populagao sao escolhidos aleatoriamente, com a mesma probabilidade. O

individuo com maior aptidao dentre estes k individuos sera selecionado.

3.2.6 Cruzamento

A aplicagao dos Operadores de Selecao de Pais retornam os dois individuos

"pais" necessarios para a realizacao do cruzamento. Em seguida é realizado um sorteio
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Figura 3.3: Cruzamento com um ponto.

(2|sfef7[2]  [efefaf7[z]

elefafofs] [2]sfe]fo]1]

Figura 3.4: Cruzamento com varios pontos.

2]sfef7[2] | [z2[efa]7]2]
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considerando a constante P,,,; ja apresentada que ira definir se o cruzamento ird ocorrer ou
nao. Deste modo, de acordo com a taxa de cruzamento, pode ocorrer que 0s cromossomos
“pais” sejam repassados sem modificacao para a geracao seguinte, criando “filhos” idénticos
a eles.

Algumas formas de cruzamento tipicas sao: Cruzamento com um Ponto,
Cruzamento com Varios Pontos e o Cruzamento Uniforme.

No Cruzamento com um Ponto o corte para a realizacao da operacao é escolhido
aleatoriamente, o exemplo da Figura 3.3 ilustra o processo. Quando sao realizados cortes
em mais de um ponto, caracteriza-se entdo o Cruzamento com Varios Pontos (multi-point

crossover) (GOLDBERG, 1989) exemplificado na Figura 3.4

3.2.7 Mutacgao

Na Figura 3.5 temos um exemplo de mutagao por inversao para uma representagao
binaria usando um GA como dialeto. No exemplo é escolhido uma posicao aleatéria na
representacao do individuo e uma operagao de inversao binaria é realizada no valor da
posicao.

Uma outra forma de mutacao é a troca aleatoria, onde é escolhido uma posicao

Figura 3.5: Mutacao por inversao.

[(1]oJoJof1] » [2fz2]ofaf1]
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Figura 3.6: Mutaciao por troca aleatéria.

[2]s[eJof1] = [2]7[6]0]1]

aleatoria na representacao do individuo e uma operacao de troca do valor da posicao por

um novo valor aleatério é realizada. Um exemplo dessa operagao é visto na Figura 3.6.

3.2.8 Selecao de sobreviventes

As considerages quanto a etapa de Selecao de Sobreviventes dos AE tratados na

sessao 3.1.8 aplicam-se também ao passo computacional correspondente no GA.

3.3 Evolucao Diferencial

A Evolugao Diferencial (Differential Evolution, DE) foi apresentada inicialmente
por Storn e Price (STORN; PRICE, 1997) como uma heuristica eficiente para otimizagao
em espagos continuos.

A DE opera através dos mesmos passos computacionais empregados pelos
algoritimos evolucionérios cléssicos. Contudo, diferentemente dos demais algoritmos
evolucionarios como o GA, a DE emprega diferencas ponderadas entre vetores de
parametros que compoem a populacao na realizacdao do processo de busca. Algoritimos
ancestrais a DE como o Algoritimo de Nelder-Mead (NELDER; MEAD, 1965) e Busca
Randomica Controlada (Controlled Random Search, CRS) (PRICE, 1977), também
realizavam diferenca entre os vetores de parametros como forma de implementar
variabilidade.

A DE é visto como um método de otimizacao atrativo pela sua facilidade de
implementacdo comparada a maiorias dos outros AEs. A pesar de algoritmos como o
PSO (Particle swarm optimization) também serem faceis de implementar, o desempenho
de DE em relagao a PSO é superior em uma grande variedade de problemas como
mencionam os estudos (DAS et al., 2009), (RAHNAMAYAN; TIZHOOSH; SALAMA,
2008) e (VESTERSTROM; THOMSEN, 2004). Como indicado em estudos sobre
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DE (DAS et al., 2009), (RAHNAMAYAN; TIZHOOSH; SALAMA, 2008) e (ZHANG;
SANDERSON, 2009), apesar de sua simplicidade a DE mostra uma performance superior
a outros algoritmos como G3 com PCX, MA-S2, ALEP, CPSO-H. Outra caracteristica
marcante da DE é o pequeno ntimero de parametros de controle (CR, F, e NP) na
sua forma classica que irao ser descritos em seguida. Esta caracteristica permite que

o algoritmo possa trabalhar em larga escala e em problemas de otimizagao custosos.

3.3.1 Definicao algoritmica

A DE tipica manipula a cada iteracdo G uma colecao de vetores de parametros
D-dimensionais x; ¢ definidos na Equacao 3.2. De acordo com o Algoritmo 3, o algoritmo
recebe como entrada uma constante NP correspondente ao tamanho da colecao de

individuos, uma taxa de cruzamento CR e o fator de ponderacao F das diferencas vetoriais.

XiG = (X]LG,XQ,‘}G,...,XDLG) , sendo, i=1,...,NP.

A primeira atividade (Linha 1) consiste na inicializagao onde os vetores solugoes x; |
sao gerado aleatoriamente e devem cobrir todo o espago de busca. Na auséncia de qualquer
conhecimento acerca do espago de busca (regides promissoras ou mesmo solugoes parciais),
utiliza-se uma distribui¢do uniforme para a populagdo inicial. Na (Linha 2) a funcao de
aptidao avalia os individuos gerados na etapa anterior. O processo segue entrando no
laco evolucionéario (Linha 3) que se repete até que a uma condi¢ao de parada definida
tenha sido alcancada. Dentro do laco evolucionério, a primeira atividade executada é a
aplicacdo dos operadores de variacao (Linhas 5 e 6) para os vetor de parametros x;g. O
operador de mutacdo (Linha 5) tem como entrada o vetor de parametros x; g atual e o
fator de ponderagao F e retorna um vetor resultado v; g chamado de vetor mutante. O
operador de cruzamento (Linha 6) tem como entrada o vetor de parametros x; ¢ atual, o
vetor mutante v; g+ atual, a taxa de cruzamento CR e retonar um vetor resultado u; g+
chamado de vetor ensaio. Os vetores mutantes e ensaio sao definidos na Equacao 3.3 e

3.4 respectivamentes.
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Algoritmo 3: Algoritmo de Evolucdo Diferencial tipico.

Algoritmo Algortimo de Evolugdo Diferencial Tipico
Entrada

NP: tamanho da populacao

CR: taxa de cruzamento

F': fator de ponderagdo das diferencas vetoriais
Saida

populacao de individuos-solugdes

1 G+1
2 inicializa(x; 1, NP)
3 fity < avalia(x; )
4 enquanto critério de parada nao for satisfeito faca
5 parai =1 ate NP faca
ViG+1 < mutation(x; g, F)
Ui G4+1 < crossover(x; G,viG+1,CR)
fim para
fity < avalia(u; G+1)
10 parai =1 ate NP faca

O Co NN DN

11 se fit, (i) > fit,(i) entdo
12 Xi,G4+1 € Ui G+1

13 senao

14 Xi,G+1 < XiG

15 fim se

16 fim para
17 G+~ G+1
18 fim enquanto
fim

Viig+1 = (VIi,G4+1,V2i,G+15 - VDi,G+1) , sendo, i =1,...,NP,
Ui, G+1 = (U1iG+1,U2i,G+1, -, UpiG+1) » sendo, i=1,...,NP,

Ao término da aplicacao dos operadores de variacao os vetores ensaios sao avaliados
pela funcao de aptidao (Linha 9). O processo segue com a aplicacio do operador de selegao
de sobreviventes, onde a aptidao do vetor solucao x; g ¢ comparada com a aptidao do seu
vetor ensaio u; g+1 correspondente, seguindo para a proxima geragao os vetores mais aptos
dentre os dois. Por fim o contador de iteragdes é incrementado (Linha 17) é o processo se

repete.
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3.3.2 Representacao

Devido a natureza dos passos computacionais da DE, este dialeto de AE somente
permite representagoes numéricas (inteiros e reais), ji que as operacdes de mutagao

necessitam operar sobre parametros pertencentes ao conjunto dos niimeros reais.

3.3.3 Inicializacao

As consideracoes quanto a etapa de inicializagao dos AE tratados na sessao 3.1.4

aplicam-se também ao passo computacional de inicializacao implementado na DE.

3.3.4 Funcao de aptidao

As consideracoes quanto a etapa de Funcao de Avaliacao dos AE tratados na sessao

3.1.5 aplicam-se também ao passo computacional correspondente na DE.

3.3.5 Mutacao

Ao longo das iteracoes do processo evolucionario, a DE gera novos vetores de
parametros v; g+1 chamados de vetores mutantes. Esta geracao ocorre através da adicao
a um vetor solucao da populagao atual a diferenca ponderada entre outros vetores solugoes.
Esta operacao ¢ chamada de mutagao. Existem varias abordagens para a producao do
vetor mutante mas é sempre presente a diferenca ponderada entre os vetores. Para cada
vetor solucao x; g da populagao G, sendo i=1,2,3,4,5...,N),,, um vetor mutante pode ser
gerados de acordo com as regras Rand/1/Bin (Equagao 3.5), Rand/2/Bin (Equagao 3.6),
Best/1/Bin (Equagao 3.7), Best/2/Bin (Equagao 3.8) e Rand-To-Best/1/Bin (Equacao
3.9). Os indices aleatorios ry,r2,73,74 € {1,2,...,Npop }, inteiros, mutualmente diferentes e
F ¢ um fator constante € [0,2] que controla a amplificacdo da diferenga. O vetor xpey g

corresponde ao melhor individuo da populacao na geracao G.

ViG+1 =Xr 6+ F- (xrz,G - xr3-,G)
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ViGr1 =X+ F - (%r,6—%r.6) +F  (Xr,.6 —X1,.6)
Vi,G+1 = Xpest,G +F- (xrl.,G _xrz,G)

Vi,.G+1 = Xbest,G +F- (xrl,G _xrz.,G) +F- (xrg,G _xr47G)

© » 2 g I
o o0 “ o >N

Vi1 =XiG+F - (Xpest.c —Xi6) +F - (1,6 —%r,6)

3.3.6 Cruzamento

Para cada vetor solucao x; g da populacao G, sendo i =1,2,3,4,5...,N,,,, além do

vetor mutante v; g é também gerado o vetor ensaio u; g, formado pela regra:

vjiicg+1 serand;(0,1) <CR,
Uij,G+1 =

XjiG caso contrario.

Na Equacao 3.10, CR € [0, 1] é uma constante predefinida e rand; (0, 1) corresponde
j-éssima geracao de um ntimero aleatério com distribui¢ao normal € [0,1]. Em Algoritmo
4 temos um pseudo-cédigo padrao do processo de cruzamento onde a formacao do vetor

ensaio pode ser visto de forma mais detalhada.
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Algoritmo 4: Algoritmo padrdo de cruzamento para DE.

Algoritmo cruzamento
Entrada
x; g: vetor alvo i da geragdo G
Vi G+1: vetor mutante i para a geragdo G+ 1
CR: taxa de cruzamento
Saida
u; G+1: vetor alvo

1 para j =1 ate D faca

2 se randb(j) <= CR entao
3 UjiG+1 $ UjiG+1

4 senao

3 Uji,G+1 $= XjiG

6 fim se

7 fim para

fim

3.3.7 Selecao de sobreviventes

Os vetores que irao fazer parte da geracao G+ 1 sao definidos no processo de selecao
de sobreviventes. O vetor solugao x;G4+1 € o seu vetor ensaio u; g4+ correspondente sao
dados como entrada neste processo, o vetor entre os dois que possuir melhor aptidao segue

para compor a proxima geracao.
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METODOLOGIA

Este capitulo tem como objetivo descrever os materiais e métodos utilizados para

atingir os objetivos do trabalhos.

4.1 Sequéncias utilizadas

Para formar a base de dados utilizada nos experimentos, foram construidos no
total 50 grupos de 4 sequéncias retiradas do genoma do fungo Pyrenophora tritici-
repentis da base publica do EMBL-EB. Foram utilizadas as sequéncias AAXI01000001
até AAXT01000040.

Para cada sequéncias AAXI010000* foram capturadas as primeiras 960 bases e em
seguida distribuidas em linhas de comprimento igual a 60 bases. Na construcao de cada um
dos 50 conjuntos de sequéncias, quatro desses genomas foram escolhidos uniformemente
ao acaso e de cada um, foi extraida a n-ésima linha onde n corresponde a um ntmero
aleatorio € [1,16] com distribui¢ao uniforme. Estas quatro linhas irfo compor grupos de

quatro sequéncias que serao exclusivas para um ensaio.
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4.2 Experimentos com GA

Nos experimentos com GA foi utilizado uma distribuicao de probabilidade
uniforme para a inicializacao da populagdao. A populacao inicial Np,, foi de 1500
individuos. A estratégia de selecao de pais utilizada foi o torneio entre 2 individuos.
A probabilidade de cruzamento P, utilizada foi de 0.9. A probabilidade de mutacgao
P foi de 0.9. A técnica de cruzamento utilizada foi de um ponto. A técnica de mutacao
utilizada foi a de troca aleatoria. Como estratégia de selecdo de sobrevivente foi usado
elitismo. Para a condicao de parada do processo evolucionario foi definido um numero

maximo de 1500 iteracoes ou 150 iteragoes sem melhora na pontuagao.

4.3 Experimentos com DE

Para as cinco abordagens de DE definidas (Best/1/Bin, Best/2/Bin, Rand/1/Bin,
Rand/2/Bin e Rand-To-Best/1/Bin) foram utilizados os mesmos 50 grupos de sequéncias.
Para cada grupo de sequéncia o processo evolucionario foi executado 100 vezes. Os

parametros utilizados na execugao de cada estratégia de DE estao na Tabela 4.1.

Tabela 4.1: Parametros das Estratégias de Evolucao Diferencial.

Pardmetro ~ Descricdo Valor Utilizado
CR Taxa de cruzamento 1
F Amplificagcdo da diferenca 1
Npop Tamanho da Populacéo 1500
QntInteracoes N° de Iteragcdes 1500

Foi utilizado uma distribui¢ao de probabilidade uniforme para a inicializacao da
populacdo. A estratégia de selecao de pais utilizada foi o torneio entre 2 individuos. Para
a condicao de parada do processo evolucionario foi definido um ntimero maximo de 1500

iteracoes ou 150 iteracoes sem melhora na pontuacao.
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4.4 Experimentos com Clustal

Para fins de comparacao com o método de alinhamento progressivo foram obtidos
os alinhamentos sugeridos pelo Clustal para cada um dos 50 grupos de sequéncias. Foi
utilizado o Clustal versao W2 disponivel no website do EMBL-EBI (http://www.ebi.
ac.uk/Tools/msa/clustalw2/) utilizando os parametros padroes da ferramenta,
conforme a Tabela 4.2.

A funcao objetivo foi aplicada para cada alinhamento sugerido pelo Clustal e os
resultados obtidos pelas abordagens de GA, DE e Clustal foram comparados usando o

teste nao-paramétrico de Wilcoxon para amostras pareadas.

Tabela 4.2: Parametros do Clustal.

Pardmetro  Descrigao Valor Utilizado
dnamatrix Matriz de pontuacdo utilizada IUB
gapopen Penalidade de criagdo de lacunas -10
noendgaps Penalizar separacdo de lacunas no fim do alinhamento? no
gapext Penalidade por extensao de lacunas -0.2
gapdist Penalidade por separacdo de lacunas 5
iteration Estratégia de iteracdo none
numiter Numero maximo de iteragdes 1

4.5 Funcao Objetivo

A funcdo objetivo adotada neste trabalho foi formulada inicialmente em (SOUZA;
SANTOS; YARA, 2013). A fungao objetivo é definida na Equagao 4.1 e busca atender
os varios aspectos do problema de MSA. A ideia da funcao adotada é premiar aspectos
desejaveis e penalizar os nao-desejaveis. Para realizar isso a funcao objetivo é definida

como uma combinacao linear de outras quatro funcoes.

f(Wi> :wSPfSP<Wi) + Openal fPenal (Wi> + wCorresprorresp (Wi> + Oconsec fConsec (Wi) )


http://www.ebi.ac.uk/Tools/msa/clustalw2/
http://www.ebi.ac.uk/Tools/msa/clustalw2/
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onde, Wsp, Wpenal, OCorresp € OConsec 530 08 ponderadores das fungoes componentes,
usados para configurar a influéncia de cada funcao de pontuacgao correspondente sobre o
valor total da fungao objetivo. Os valores utilizados para os parametros estao na Tabela
4.3.

Tabela 4.3: Multiplicadores das Fun¢des Componentes.

Parametro Valor Utilizado

sp 1,0
Wpenal 1,0
WCorresp 2,0
(WConsec 1,0

O primeiro termo da funcao objetivo é definido pela Equacao 4.2. A matriz w,
corresponde ao alinhamento resultante, sendo n o indice da sequéncia alinhada e s o
indice da coluna do alinhanto. Em fsp(w) ¢é realizado o somatoério para cada coluna do
alinhamento de todas as correspondéncias entre bases de uma mesma coluna, onde, o
peso de cada correspondéncia seja determinado através de uma matriz de similaridades

M (i x j).

S N
fsp(w) =Y Y TUB(w1 g, way),
s=1n=2

A matriz de similaridade utilizada foi a matriz TUB, que corresponde & matriz
padrao usada pelo Clustal em alinhamento de sequéncias de DNA. Na matriz IUB, cada
elemento m; ; € um valor real representativo da similaridade entre a i-ésima e a j-ésima base.
Todos os elementos da diagonal principal, sendo os representativo das correspondéncias
(matches), sao preenchidos com 1.9, enquanto que os elementos restantes, conhecidos
como nao-correspondentes (mismatches) sao preenchidos com zeros. A componente fpenal
é a funcao para o calculo das penalidades pela insercao das lacunas. O valor da
penalidade atribuida para cada lacuna ¢ a soma da penalidade relativa a sua posi¢ao dentro
da sequéncia, chamada de penalidade sob posicionamento horizontal, e da penalidade
relativa a quantidade de lacunas existentes em outras sequéncias que sofreram penalizacao

horizontal na mesma posicao, chamada de penalidade sob posicionamento vertical, sendo



4.5. FUNCAO OBJETIVO 52

definida como:

fpenal(W) = @y Penaly (w,S) + @y Penaly (w,S)

onde wy corresponde ao peso da componente de penalidade horizontal, Penaly(w,S),

definida por

N S
Penaly (w,S) = Z ZgapH w.n,s)

onde gapy(w,n,s) é a penalidade horizontal para a s-ésima linha, definida como:

0, s €y
gapy (W,n,5) = Penalgaprxi, SECs

PenalgapOpen7 s € C3

Ci={s=1Vs<pps(w,n)Vs> prp(w,n)},
Cr ={s>1Agapy(w,n,s—1) <0},
Cz = {s > 1 Agapy(w,n,s—1) >0},
e wy corresponde ao peso da componente de penalidade vertical, definida como:

S

Penaloapopen
ey (.5) — gapOp .4.9
enaly (W, Z ColumnGaps(w,s)’

onde ColumnGaps(w,s) corresponde a quantidade de lacunas posicionadas na s-ésima
posicao do alinhamento representado por w e que sofreram penalizacao horizontal, com
0 < ColumnGaps(w,s) < N; ppg(W,n) e pLa(W,n) sdo as posi¢oes da primeira e tltima bases
posicionadas na n-ésima sequéncia do alinhamento w, respectivamente. As constantes
Penalgapopen © Penalgypgxe correspondem respectivamente as penalidades por abertura de
lacuna e por extensao de lacuna. Nesta aplicagao foram utilizados Penalgapopen = —1 €
Penalgapexe = —0,2.

A componente fooresp(W) trata do nimero de correspondéncias (matches)
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identificadas em cada coluna do alinhamento w, sendo definida como:

NColumnGaps(w, s)
N — ):fzz NumCorresp(w,s)’

fCorresp (W) =

onde NumCorresp(w, s) representa o nimero de correspondéncias identificadas na s-ésima
posi¢ao (coluna) do alinhamento w, com 0 < ColumnGaps(w,s) <N — 1.
A componente foonsec(W) é a fungdo que calcula a pontuacdo relativa a

consecutividade de colunas de alta similaridade, definida por:

S
fConsec(W) = Z COHSCC(W, S),

s=1

com
07 S = 1

NumCorresp(w,s—1) ¢>1
(N—NumCorresp(w,s))?2’ =

Consec(w,s) = 4.12

onde s e n sao respectivamente o nimero de colunas (posi¢oes) e o niimero de sequéncias
(linhas) do alinhamento, com 1 <s<Se 1<n<N, sendo S o total de colunas e N o

nimero de sequéncias do alinhamento.
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5.1 Resultados

5.1.1 Testes de Wilcoxon

54

Os resultados dos testes de Wilcoxon comparando os valores obtidos pelo Clustal e

as abordagens evolucionarias (DE e GA) estao na Tabela 5.1. Foi admitido um intervalo

de confianca de 0.05. Os resultados foram favoraveis as estratégias de DE e sinalizam a

equivaléncia do GA com Clustal.

Tabela 5.1: Evolug¢do Diferencial superanado Clustal e Equivaléncia entre Algoritmos
Genétivos e Clustal.

Hipotese Alternativa

Abordagem (H1) Valor p | H1 Aceita? Desfecho
Rand-1-Bin H1:R1B <Clustal 0,99999 Nao R1B foi superior
(R1B) H1:R1B # Clustal | 0,00002 Sim significativamente
Rand-2-Bin H1:R2B <Clustal 0,99999 Nao R2B foi superior
(R2B) H1:R2B ## Clustal 0,00001 Sim significativamente
Best-1-Bin HI1:B1B <Clustal 0,99999 Nao B1B foi superior
(B1B) HI1:B1B # Clustal 0,00003 Sim significativamente
Best-2-Bin H1:B2B <Clustal 0,99998 Nao B2B foi superior
(B2B) H1:B2B ## Clustal 0,00005 Sim significativamente
Rand-to-Best-1-Bin | HI1:RB1B <Clustal | 0,99999 Nao RB1B foi superior
(RB1B) H1:RB1B # Clustal | 0,00003 Sim significativamente
GA H1:GA <Clustal 0.78300 Nao GA foi

H1:GA # Clustal 0,78690 Nao equivalente
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Os resultados dos testes de Wilcoxon comparando os valores obtidos entre as
abordagens evolucionarias DE e GA estao na Tabela 5.2. Foi admitido um intervalo

de confianga de 0.05. Os resultado foram favoraveis as estratégias de DE.

Tabela 5.2: Evolugéo Diferencial superando Algoritmos Genéticos.

Abordagem Hlpotesezgi;ernatlva Valor p | H1 Aceita? Desfecho
Rand-1-Bin HI:R1B <GA 0,99999 Nao R1B foi superior
(R1B) HI1:R1B # GA 0,00000 Sim significativamente
Rand-2-Bin H1:R2B <GA 0,99999 Nao R2B foi superior
(R2B) H1:R2B # GA 0,00000 Sim significativamente
Best-1-Bin H1:B1B <GA 0,99999 Nao B1B foi superior
(B1B) H1:B1B # GA 0,00000 Sim significativamente
Best-2-Bin H1:B2B <GA 0,99998 Nao B2B foi superior
(B2B) H1:B2B # GA 0,00000 Sim significativamente
Rand-to-Best-1-Bin HI1:RB1B <GA 0,99999 Nao RB1B foi superior
(RB1B) HI:RB1B # GA 0,00000 Sim significativamente

5.1.2 Graficos

Na Figura 5.1 sao apresentados os resultados de todas as abordagens. Seguindo
a ordem da esquerda para direita temos os resultados da abordagem Best/1/Bin (B1B),
Best/2/Bin (B2B), Rand/1/Bin (R1B), Rand/2/Bin (R2B), Rand-To-Best/l/Bin (RB1B), GA e
finalmente Clustal. Os limites extremos correspondem aos valores de maximo e minimo,
enquanto que a marca central é a mediana. As posigoes abaixo e acima da mediana sao
0s percentis 25 e 75.

Na Figura 5.2 temos em destaque uma linha mostrando que 75% dos resultados
atingidos pelo Clustal estao abaixo da mediana das estratégias de DE (com excegao B2B
que possui uma assimetria negativa). Os resultados do GA motram que mais de 75% dos
valores atingidos estao abaixos dos valores médios de DE.

Na Figura 5.3 temos em destaque uma linha mostrando que 25% dos resultados
atingidos pelo Clustal possuem valores inferiores aos valores minimos atingidos pelas
estratégias de DE.

Na Figura 5.4 temos em destaque mostrando que as estratégias DE possuem valores

médios proximos, com excecao da B2B que possui uma assimetria negativa nos valores.
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Na Figura 5.5 temos em destaque mostrando que os valores maximos e minimos
atingidos pelas estratégias DE estao mais proximas de seus respectivos valores médios
quando comparada ao Clustal, sinalizando uma maior estabilidade das abordagens de
DE.

Na Figura 5.6 temos em destaque mostrando que 50% dos valores proximos ao
valores médios (25% dos valores acima e 25% dos valores abaixo da mediana) estdo
distribuidos em um intervalor menor nas estratégias de DE quando comparada ao Clustal,
onde os valores estao mais dispersos. Este comportamente sinaliza uma maior precisao

das estratégias de DE em relacao ao Clustal.
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Figura 5.1: Resultado Geral.
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Figura 5.2: Resultado Geral - 75° Percentil do Clustal.
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Figura 5.3: Resultado Geral - Valores Minimos.
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Figura 5.6: Resultado Geral - Precisdo.
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5.2 Discussoes

Foi visto uma abordagem de otimizacao de uma funcao objetivo proposta para
o problema de MSA, utilizando Evolucao Diferencial. Foram utilizadas 5 estratégias
de Evolugdo Diferencial: Best/1/Bin, Best/2/Bin, Rand/1/Bin, Rand/2/Bin e Rand-
To-Best/1/Bin. As pontuacoes obtidas para cada estratégia foram comparadas com
as pontuacoes obtidas com os alinhamentos realizados pelo método de alinhamento
progressivo Clustal.

Para a maioria dos ensaios realizados em cada estratégia de DE testada, a meta-
heuristica da DE mostrou-se eficaz para o problema de alinhamento multiplo de sequéncias,
quando comparamos os seus resultados com os obtidos pelo método de alinhamento
progressivo Clustal.

No geral, a abordagem com FEvolucao Diferencial conseguiu obter melhores
resultados em até 80% dos ensaios. As menores porcentagem de superacgao ficaram com
as estratégias Rand/1/Bin e Rand/2/Bin que superaram o Clustal em 76% dos ensaios.
As maiores pontuagoes ficaram com as estratégias Rand-To-Best/1/Bin e Best/1/Bin que

superaram o Clustal em 80% dos ensaios.
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CONCLUSAO

6.1 Conclusoes gerais

Ao longo deste trabalho foi definido um estudo da aplicacao de algoritmos
evolucionarios para resolver problemas de alinhamento miiltiplo de sequéncias biologicas.
Foram comparadas duas abordagens de algoritmos evolucionarios (Evolugao Diferencial
e Algoritmos Genéticos) com a abordagem do estado da arte Clustal. Os resultados
demonstraram que o uso de da Evolucao Diferencial leva a resultados melhores do que

com Clustal. Os Algoritmos genéticos demonstraram resultados equivalentes ao Clustal.

6.2 Publicacoes

A publicagao (SILVA et al., 2014) foi realizada no Encontro Nacional de Inteligéncia
Artificial e Computacional (ENTAC) em 2014 sob o titulo de Uma Abordagem de
Alinhamento Multiplo de Sequéncias Utilizando Evolucdo Diferencial, os autores foram
Anténio L. V. da Silva, Rodrigo G. de Souza, Ricardo Yara e Wellington P. dos Santos.

A publicagdo (SOUZA et al., 2014) foi realizada no Encontro Nacional de
Inteligéncia Artificial e Computacional (ENIAC) em 2014 sob o titulo de Alinhamento
miiltiplo de sequéncias utilizando otimizagdo dialética; os autores foram Rodrigo G. de

Souza, Antonio L. V. da Silva, Ricardo Yara e Wellington P. dos Santos.
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6.3 Trabalhos futuros

Como forma de ampliar a investigacao na obtencao de melhores alinhamentos, vem
sendo estudada a utilizacao de alinhamentos ja obtidos por métodos progressivos como
dados de entrada no processo evolucionario, para constatar se os alinhamentos obtidos ao

término do processo irao possuir uma melhor pontuacao.
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