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RESUMO

Nesta dissertação, tratamos da computação quântica em variáveis contínuas empregando a

armadilha de íons como plataforma física. A proposta central deste trabalho consiste na sis-

tematização de uma toolbox com portas lógicas gaussianas a partir da manipulação coerente

dos modos de vibração de um íon aprisionado. Através da irradiação de feixes de lasers clássi-

cos monocromáticos e bicromáticos em um íon confinado, propomos portas lógicas gaussianas

análogas às operações de ótica linear e não linear. Relacionamos essas portas lógicas a op-

erações já bem conhecidas do caso discreto, tais como transformada de Fourier, gates CNOT

e CPHASE. A execução de cada uma dessas operações lógicas é selecionada pela frequência

do laser de interação e pelo parâmetro de Lamb-Dicke. Reunindo todas as operações obtidas,

gaussianas e não gaussianas, mostramos ser possível com nosso sistema simular hamiltonianas

descritas por um polinômio em cada coordenada do espaço de fase, permitindo com isso a

realização de dinâmicas hamiltonianas polinomiais nesse espaço.

Palavras-chave: Computação quântica. Variáveis contínuas. Portas lógicas gaussianas. Por-

tas lógicas quânticas. Modos de vibração. Armadilha de íons.



ABSTRACT

In this monography, we propose the realization of quantum computation over continuous vari-

ables using the ion trap as physical platform. The central idea of our work is to provide a

toolbox of Gaussian logic gates from the coherent manipulation of the vibrational modes of a

trapped ion. By irradiating monochromatic and bichromatic classical laser beams in a confined

ion, we propose gaussian logic gates similar to the operations of linear and nonlinear optics.

We connect these gates with operations already employed in the discrete case, such as Fourier,

CNOT and CPHASE gates. The execution of each of these logical operations is selected by

the frequency of the interacting laser and the Lamb-Dicke parameters. Bringing together all

the proposed operations, Gaussian and non-Gaussian, we show the simulation of Hamiltonians

with polynomial expansion in the phase space coordinates.

Keywords: Quantum computation. Continuous variables. Gaussian gates. Quantum gates.

Vibrational modes. Ion trap.



RESUMÉ

Dans cette thèse, nous traitons de l’informatique quantique à variables continues, en utilisant

le piège à ions comme plate-forme physique. L’objectif central de ce travail est de constru-

ire une boite à outils avec des portes logiques gaussiennes à travers de la manipulation co-

hérente des modes de vibration d’un ion piégé. En irradiant un ion confiné par des faisceaux

lasers classiques monochromatiques et dichromatique , nous proposons des opérations quan-

tiques gaussiennes similaires aux opérateurs d’optique linéaire et non linéaire . Nous relions

ces opérateurs des portes quantiques déjà bien connus pour le cas discret, comme des transfor-

mées de Fourier, par des portes quantiques CNOT et CPHASE. L’exécution de chacune de ces

opérations logiques est sélectionnée par fréquence de l’interaction laser et par les paramètres de

Lamb-Dicke. En réunissant toutes les opérations pertinentes, gaussiennes et non gaussiennes,

nous avons montré par simulation que l’hamiltonien est décrit par un polynôme en chaque coor-

donnée de l’espace des phases, ce qui permet d’effectuer l’hamiltonien dynamique, c’est à dire

l’expression polynomiale dans cet espace.

Mots-clés: Information quantique. Variables continues. Portes gaussiennes. Portes quan-

tiques. Modes de vibration. Ion piège.
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Chapter 1
Introduction

“If you decide you don’t have to
get A’s, you can learn an enormous
amount in college.”

Isidor Isaac Rabi

1.1 Quantum information and computation over continuous
variables

The first steps in developing quantum information theory were given in the 1970s. Let us

begin by citing some of the notorious names that contributed to it. In 1970, Stephen Wies-

ner invented “Conjugate coding”, an important tool for quantum cryptography [1]. In 1973,

Alexander Holevo showed that n qubits cannot be used to communicate more information that

n bits, a result known today as the “Holevo bound”[2]. Shortly after that, Charles Bennett

showed that computation can be realized reversibly [3]. In 1975, R. P. Poplovskii argued for

the impracticality of realizing quantum simulations with classical computers[4]. In 1973, the

mathematical physicist Roman Ingarden showed in a seminal work that the information theory

devised by Shannon cannot be generalized directly to the quantum case; at the same time, he

also showed that it is possible to construct a quantum information theory that is more general

than Shannon’s theory for the formalism of quantum mechanics in open systems[5].

In 1982, Richard Feynman considered which kind of universal computer could simulate

quantum systems. He conjectured that this problem would not find efficient solution in a classi-

cal computer and started to devise a new type of computer that would be capable of doing so: a

quantum computer[6]. In 1994, a key discovery by Peter Shor showed that a quantum computer

would have the capability to efficiently perform tasks believed to be unfeasible with classical

computers [7]. He showed that a quantum computer could factor a large number in polyno-

14
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mial time, a result that contrasts with the current belief that classical Turing machines must

take exponential resources to solve the factorization problem. Two years after that, Seth Lloyd

developed more on the idea that the simulation of quantum systems could be implemented in a

quantum computer [8].

Quantum information is a recent branch of physics. One of its goals is to contribute for the

development of quantum theory in a very fundamental level, by uniting physics and information.

Let us not forget that much of computation as well as information theories are based in physi-

cal concepts, according to Feynmann and Landauer [9, 10]. Exploring fundamental concepts of

quantum information, we may cite the two prominent applications of quantum computation, be-

lieved to achieve exponential speedup over classical computation for certain tasks, and quantum

key distribution, which may bring unconditional security to communications.

There are two general ways in which to represent quantum information in physical systems,

either through continuous or discrete observables. For each type of observable spectrum, the

Hilbert space is exploited differently.

The general motivations to work with continuous observables, or continuous variables (CV),

are the high measurement efficiency and unconditionality of implementation. In optical sys-

tems, uncondicionality is difficult to obtain in the case of discrete variables (i.e. qubit-based

implementations). However, as we will show, continuous variables can also be implemented in

trapped ion systems, in which case they offer a novel way to interpret the quantum state of those

systems.

Considering the set of quantum operations capable of acting on continuous variables, they

may be classified as Gaussian and non-Gaussian. Gaussian operations are based on interactions

which are quadratic on the phase space observables (e.g. position and momentum). Examples

of these include squeezing and the beam-splitter transformation, among others. Despite the

advent of several theoretical proposals, experimental quantum computation over CV has made

little progress in recent years [11].

Gaussian operations are special in the sense that they map Gaussian states into Gaussian

states. However, Non-Gaussian states are required in more advanced quantum communications.

The measurement unit of quantum information in the CV regime is the ’qunat’, in analogy

to classical conventional terminology for continuous computers, 1 nat = log2 e bits. We note

that both experimentalists and theorists are particularly interested in the study of entanglement

entropy in quantum optics to connection with condensed matter, for example, by the use of
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conformal field theory to describe coherent states and compute the entanglement entropy of

some systems [12].

In general, the field of quantum information has been growing in importance, boosted pri-

marily by technological applications of presumably great impact once available. In fact, the

research community has been dedicated in the last years to increase the degree of control over

quantum systems. There is a great interest in exploring more fundamental aspects of quantum

mechanics using concepts borrowed from quantum information theory, in particular to better

understand the building blocks of physical reality [13, 14, 15, 16].

1.1.1 Outline of the thesis

In the first chapter, we highlight certain results in the literature considering topics that permeate

our area of study and are important for the research frontier between quantum information and

other branches of physics.

In chapter two, we study the quantum logic gates developed to coherently manipulate trapped

ions. We give a brief description of the computation procedure involved in the coherent con-

trol of trapped ions. We describe the physical system composed of trapped ions in interaction

with an external laser field. We consider in detail the interaction Hamiltonian driving the two-

level system associated with each ion as well as the collective vibrational modes. We describe

the two best known examples of collective quantum gates in this context: the Cirac-Zoller and

Mølmer-Sørensen gate.

In chapter three, we present how to realize quantum operations over continuous variables,

with the development of analytic calculations to obtain the general expression for the ion-laser

interaction Hamiltonian in the ion trap with two vibrational modes. These analytical calcu-

lations were carried out in an analogous manner to the general expression for a single-mode

Hamiltonian of the quantum harmonic oscillator. From these general expressions, we deter-

mine the quantum operations realized by laser light with a convenient set of frequencies. We

obtain Gaussian operations, analogous to the linear quantum optics operations of displacement,

phase rotation and beam splitter, as well as non-linear ones, such as squeezing of one or two

modes. We develop a toolbox of gates to manipulate the position and momentum of trapped

ions. Finally, we investigate non-Gaussian operations and how they contribute to achieve uni-

versal computation over continuous variables. As we show, the ion trap processor is a system

that naturally supports Gaussian and non-Gaussian operations.
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1.1.2 Quantized fields and canonical operators of bosonic systems

Continuous variables (CV) systems are defined as those associated with observables of contin-

uous spectra. The Hilbert space employed to describe the quantum state of one such system has

infinite dimension. One example of a quantized system with CV spectrum is the electromag-

netic field, described in terms of quadrature observables [17]. To avoid conceptua difficulties,

the field is quantized considering discrete modes, as e.g. in an optical cavity [18].

The set of operators describing a CV system are represented by N bosonic modes, from

N quantum harmonic oscillators of the Hilbert space I = ⊗N
k=1Ik, where each Ik′s describes a

single mode. In the case of the electromagnetic field, the Hamiltonian can be written as

Ĥ =
N

∑
k=1

Ĥk, Ĥ = h̄ωk(â
†
k âk +

1
2
), (1.1)

where each term in the Hamiltonian of the kth mode of the field represents a single harmonic

oscillator. Here the ladder operators change the number of excitations (photons) in the kth mode.

They follow the commutation relations[
âi, â

†
j

]
= δi j, [âk, âl] =

[
âi

†, â†
j

]
= 0. (1.2)

We can construct a group that gathers all ladder operators in a single vector, due to the

properties of the symplectic space, in the form[
b̂i, b̂ j

]
= Ωi j, (i, j = 1, ...,2N) , (1.3)

where Ωi j is a generic element of N-modes in the symplectic form of 2N×2N,

Ω =⊗N
k=1ω, ω =

 0 1

−1 0

 . (1.4)

The Hilbert space of this system has infinite dimension and can be spanned by a Fock basis

{|n〉}∞

n=0, composed of eigenstates of the number operators n̂ = â†â, which are compatible with

the Hamiltonian. In particular we have the well known relations

â |0〉= 0, â |n〉=
√

n |n−1〉 for (n > 1) , (1.5)

â† |n+1〉=
√

n+1 |n+1〉 for(n > 0) . (1.6)

Besides bosonic field operators, the system can also be described through field quadratures as

{q̂k, p̂k}N
k=1, by defining the vector

x̂≡ (q̂1, p̂1, . . . , q̂N , p̂N)
T . (1.7)
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The amplitude and phase quadrature observables are respectively given by

q̂k ≡ âk + â†
k p̂k ≡ i(â†

k− âk), (1.8)

[
x̂i, x̂ j

]
= 2iΩi j. (1.9)

The quadrature operators are observables with continuous spectra. Indeed, the two operators

have eigenstates that are incompatible, denoted by {|q〉}qεR
and {|p〉}pεR

, two basis connected

by the Fourier transform, as we can see below

|q〉= 1
2π

∫
d pexp−ipq/2 |p〉 , (1.10)

|p〉= 1
2π

∫
dqexp−ipq/2 |q〉 . (1.11)

In general, for N-modes we have the relations

x̂T |x〉= xT |x〉 ; |x〉 ≡ (|x1〉 , . . . , |x2N〉)T , (1.12)

with x ε R2N , the quadratures observables. They will be used to define continuous variables in

the phase space.

1.1.3 Phase space representation

Although the quadrature observables obey the same algebra as the classical position and mo-

mentum of a quantum harmonic oscillator (provided we substitute the Poisson brackets by the

commutator), the classical construction of a phase space in quantum mechanics is not straight-

forward. The problem is that the quadrature observables do not commute. Hence the meaning

of a point described in phase space by coordinates given by concomitant eigenvalues of p and q

has to be carefully considered. We can take guidance in the classical limit of quantum mechan-

ics.

In particular, given a quantum state ρ , we look for a distribution in phase space over the

canonical variables q and p that reproduces the classical behavior. Defining a distribution func-

tion ρQ in phase space, it must have the following properties:∫
ρQ(q, p)d p =< q|ρ|q >, (1.13)

∫
ρQ(q, p)dq =< p|ρ|p >, (1.14)

ρQ(q, p)> 0. (1.15)
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In fact, there are infinite functions ρQ(q, p) which satisfy these 3 equations, and none of

them present a clear physical meaning to lead us in our path. In 1971, Wigner proved that

ρQ(q, p) could not satisfy the conditions 1.13, 1.14 and 1.15. The bilinearity condition in the

distribution function is attractive but lacks physical motivation [19, 20, 21]. However, this

condition has been generalized, and the condition of bilinearity was replaced by the “mixture

condition”. This property requires that the distribution in phase space should depend only on

the operator, and not on the particular basis in which it is represented, as a mixture of any set

of pure states. To circumvent these negative results, two approaches have been proposed. The

first is the Wigner function that satisfies the mixture properties 1.13, 1.14, but not 1.15. The

consequence is that the Wigner function cannot be interpreted as a formal probability density

in phase space, since it may show negative values. The second is the Husimi distribution,

that we can interpret probabilistically, since it is always positive, but as a downside does not

provide clear cut evidence of quantum behavior. Here, we adopt the Wigner approach. We

consider ρ̂ : H⊗N → H⊗N , with density space denoted by D(H⊗N). The density operator finds

a representation equivalent to the quasi-probability defined over the real symplectic space. With

this, we can introduce the Weyl operator, as follows:

D(ξ )≡ exp(ix̂T
Ωξ ), (1.16)

where ξ ∈ ℜ2N , so ρ̂ is equivalent to a characteristic function χ(ξ ), that is defined in relation

to Weyl operator

χ(ξ ) = tr(ρ̂D(ξ )), (1.17)

Its Fourier Transform is the Wigner function

W (x) =
∫

ℜ2N

d2Nξ

(2π)2N exp(−ix̂T
Ωξ )X(ξ ). (1.18)

In the equation above, the continuous variables x ∈ ℜ2N are the eigenvalues of the quadrature

operator x̂. These variables generate a real symplectic space K≡ (ℜ2N, ) which is called phase

space. The quantum state ρ̂ of bosonic systems of N-modes is equivalent to the Wigner function

W (x) defined over the phase space K.

The Wigner function is particularly suitable to define a “quantum distribution in phase

space”, to describe the effects of the observables of quantum theory and statistical physics

which have a probability distribution with classical analog. So we need to compute the mea-

surement quantities as mean values and variance of quadratures. For quantum states with no
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classical analog, the Wigner function presents negative values [22]. In these cases, W (x, p) is

similar to a probability distribution only in the sense that it is normalizable as∫
w(α)d2

α = 1, (1.19)

being d2α = d(Reα)d(Imα) = dxd p. This equation would furnish the mean value of any

operator Â in the quantum state ρ if the average value could be calculated as

〈Â〉= tr(ρ̂Â) =
∫

w(x)A(α)d2
α. (1.20)

The marginal distribution for p, 〈p|ρ |p〉, is obtained by a change of variables, for example

x−y = u and x+y = v, by using the Fourier transform and the identity
∫

exp(4iyp)d p = π

2 δ (y).

The normalization of the Wigner function follows from tr(ρ̂) = 1. For any symmetric operator,

we can define the Weyl operator

tr[ρ̂S(x̂n p̂m)] =
∫

w(x, p)xn pmdxd p, (1.21)

where Ŝ(x̂n p̂m) is the symmetrization operator, e.g. Ŝ(x̂2 p̂) = (x̂2 p̂+ x̂ p̂x̂+ p̂x̂2)/3 corresponds

to x̂2 p̂ [23]. However, the quantities that characterize the Wigner function (W or χ) are mo-

ments of a quantum statistical distribution. A first moment that is also called the mean value is

described by

x̄≡< x̂ >= tr(x̂ρ), (1.22)

and the second moment or the covariance matrix V can be defined by arbitrary elements, as

V i j =
1
2
< {δ x̂i,δ x̂ j}>, (1.23)

where δ x̂i = x̂i−〈x̂i〉 and {,} is the anti-commutator. This matrix 2N× 2N, is real and sym-

plectic, and satisfies the uncertainty relation in the form

V + iΩ≥ 0. (1.24)

Since V > 0, we have

V (q̂k)V (p̂k)≥ 1. (1.25)

We can generalize these relations to define all Gaussian states as a bosonic state in which the

Wigner function and its characteristic function obey, respectively, the following expressions

χ(ξ ) = exp−
(

1
2

ξ
T (

ΩV Ω
T)

ξ − i(Ωx̄)T
ξ

)
(1.26)

W (x) =
exp−

(
1
2 (x− x̄)T V−1 (x− x̄)

)
(2π)N√detV

(1.27)
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1.2 Symplectic geometry in a nutshell

The structure of the Hamiltonian dynamics can always be seen from a geometric point of view.

We will need to work with differentiable manifolds for which the Hamiltonian dynamics is

bound in a symplectic structure, i.e. one that has a closed and non degenerated differential

2-form. The main appeal of the symplectic structure is that it is entirely geometric, and for

this reason we will briefly study its vectorial space. The geometry brought by bilinear forms

is quite rich when compared with symmetric tensors. We can bring the intuition we have from

the Euclidean vector space to the symplectic vector space [24]. For 2-forms, the metric creates

invariant subsets and quasi-complex structures. We will use the Euclidean set with dimension

ℜ2N (local theorems and real manifolds). In this section, we base our approach in Refs. [25,

26, 27].

1.2.1 Symplectic vector space

We consider an open set U in ℜ2N to invoke the definition below:

Definition: A symplectic structure is a real, non-degenerate and asymmetric bilinear ap-

plication defined over the vectors in the U set. Given η and ξ , we have that

[ξ ,η ] =−[η ,ξ ], (1.28)

together with the condition of non-degenerescence for all η different from zero, in such a way

that

[ξ ,η ] = 0 (1.29)

implies η = 0. Let the components of a vector v be given by {p1, ..., pn,q1, ...,qn}. We can

define a 2-form as

ω = d p1∧dq1 + ...d pn∧dqn (1.30)

and impose the relation [ξ ,η ] = ω(ξ ,η). This is a non-degenerate form and the determinant

of its component is non null. The vector space ℜ2N is parametrized by the canonical coordi-

nates p and q, and therefore we get a symplectic structure. Geometrically, this is the sum of

parallelogram areas in the (pi,qi) plane. Two vectors are called non orthogonal if their inner

product is null. This notion of orthogonality is important when we want to build a geometric

structure with the symplectic form like planes, spheres and related. In analogy with Riemannian



CHAPTER 1. INTRODUCTION 22

geometry, we define an orthogonal complement. As the symplectic application is bilinear, the

orthogonal complement will also be a vectorial space.

Definition: The symplectic complement of W contained in U is the set

W ω = {η ε U |ω(ξ ,η) = 0, ξ ε W}. (1.31)

The symplectic complement is necessarily transverse to ξ , and so W can be labeled according

to the following conditions [28]:

• Isotropic, when W ⊂W ω .

• Coisotropic, when W ω ⊂W .

• Symplectic, when W ω ∩W = {0}.

• Lagrangian, when W =W ω .

This means W will be isotropic iff ω is null in W . For each physical system, we can explore

one of these conditions. Throughout this text, we will only use the third condition.

Lemma: For any subspace W ⊂U the following definitions are valid

dimW +dimW ω = dimV, (1.32)

and

W =W ω . (1.33)

This lemma is very important for several reasons. One of them is that the isomorphism between

the symplectic vector space and its dual is built. This connection is physically important because

all dynamic structures of the Hamiltonians is based on this. The lemma helps us to build an

intuition about the geometry of the symplectic spaces. For physical systems, we can interpret

this geometric intuition through the concept of the Hamiltonian flux that permeates the whole

of classical mechanics. In short, there are always two non-orthogonal vectors. If we fix η , the

dimension of its complement is 2n−1. This is employed to define the symplectic basis.
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Figure 1.1: Orthogonal complement of v and w.

Definition: A symplectic basis is a set of 2n vectors, epa and eqa, for which a = 1, ...,n.

So

[epa,epa] =
[
eqa,eqa

]
= 0 (1.34)

with [
epa,eqa

]
= 1 (1.35)

We have that all the basis vectors are orthogonal to all the others except one. The next result is

the most important about symplectic spaces that we will show. The theorem shows us that we

should only think in terms of linear transformations applied to the basis.

Theorem: All symplectic structures allow a symplectic basis, and any non null vector can

be taken as basis element.

1.2.2 Symplectic group

Orthogonal transformations preserve the Euclidean structure. Analogously, symplectic trans-

formations are defined as those which preserve the symplectic structure.

Definition: The linear transformation S : ℜ2N →ℜ2N of the symplectic space in itself is

called symplectic if it satisfies

[Sξ ,Sη ] =−[ξ ,η ] (1.36)

for all vectors in ℜ
2N . The set of all the symplectic transformations in ℜ

2N is the symplectic

group, represented by Sp(2n). Being S a linear transformation, the composition of two sym-

plectic transformations will also be symplectic. For the structure displayed in Eq. 1.36, we say

that S should preserve the differential form ω , which is the sum of the parallelogram area in the

planes defined by the symplectic vectors. Thus we have a volume element in ℜ
2N to all exterior

power of ω , which implies detS = 1. So we have

vol = ω ∧ ...∧ω
n times

. (1.37)
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Theorem: A linear transformation S : ℜ2N →ℜ2N is symplectic iff it takes a symplectic

basis to another symplectic basis. For a symplectic basis
{

epa,eqb
}

, the component of ω is

{
epa,eqb

}
= ωab, (1.38)

satisfying

Sa
cωabSb

d = ωcd, (1.39)

by the action of this transformation, we can write the equations more easily in matrix form using

Eq. 1.30 for n = 1. Following the same procedure of Ref.[29], Eq.1.39 can be represented as a b

c d

 0 −1

1 0

 a c

b d

=

 0 −1

1 0

 . (1.40)

The matrix coefficients must obey detS = 1 and there are no fixed parameters. In ℜ
2N the

symplectic form is exactly the volume element, which implies the following equation

Sp(2,R) = SL(2,R). (1.41)

For higher dimensions, in general, Sp(2n) is contained in SL(2n) as proper subset.

1.2.3 Local symplectic invariants of Gaussian states

Now that we saw the basic definitions about the phase space and the symplectic group, let us

deepen our understanding of the role of Gaussian states and operations in quantum information

theory. We have that a class of transformations known in analytical mechanics makes the con-

nection between unitary transformations U and its counterpart at the phase-space, this is called

the symplectic transformation. For Hamiltonian equations of motion, we have an arbitrary vec-

tor X = (q1, p1, . . . ,qn, pn)
T that has the form in the symplectic formalism

.
X = σi j∂ jH. (1.42)

The transformation of coordinates (X→ SX) leaves the form of equation invariant iff SσST =σ .

Thus, we can start to define the symplectic group.

Definition: The symplectic group Sp(2,R) is the set of 2n×2n real matrices S that satisfy

SσST = σ . (1.43)
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The symplectic group Sp(2,R) has dimension n(2n+ 1) and its elements are called canonical

or symplectic transformations. In quantum mechanics, the elements of Sp(2,R) are preserved

due to the relations of commutation, and all modes transformation are generated by linear and

bilinear symplectic interactions. The relation between the unitary and symplectic transforma-

tions is a consequence the Stone - von Neumann’s Theorem: every transformation S in the 2n

dimensional of phase space ρ =R
2n has its counterpart at the Hilbert space level I via an unitary

transformation U[30].

In Tab. 1.1, the main differences between the description of physical states in the Hilbert

space and in the phase space are summarized.

Property Hilbert space H Phase space Γ

dimension ∞ 2N

structure ⊗ ⊗

description ρ d,σ

bona fide ρ ≥ 0 σ + iΩ ≥ 0

Unitary Û |Û†Û = Î S|SΩST = Ω

operations ρ → ÛρÛ† d→ Sd, σ → SσST

spectra ÛρÛ† = diag
0≤λ j≤1

{λ j}∞
j=1 STσS = diag

0≤νk≤1
{(νk,νk)}N

k=1

pure states λi = 1, λ j 6=i = 0 νk = 1, ∀k = 1, ...,N

purity trρ2 = ∑
j
λ 2

j 1/
√

detσ = ∏k ν
−1
k

Table 1.1: Comparison between Hilbert space and phase space, in the case of N mode Gaussian states.
We have that d is the first moment and σ is the second moment. Table reproduced from Ref.[18].

The quasi-classical states (coherent states) of the field can be obtained through the displace-

ment operator of the vacuum state, as we will describe in the next section. This operator shifts

the vacuum to another point in the phase space. We know that the covariance matrix is the same

for the vacuum: Vi j =
1
2δi j. Thus, all displacement operators are complete, so every operator O

on H can be written as

O =
∫

Cn

d2nλ

π
tr[OD(λ )]D†,(λ ) (1.44)
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as derived by Glauber. The characteristic function of operator O is

χ[O](λ ) = tr[OD(λ )]. (1.45)

Definition: A state ρ of a canonical system with 2n degrees of freedom is Gaussian iff its

characteristic function is Gaussian, i.e.

χ[ρ](λ ) = χ[ρ](0)e−λ T
∑λ+dT λ , (1.46)

when Σ is a matrix 2n x 2n and d ε R
2n. From the definition above, we can characterize the

Gaussian states by its first- and second-order momenta. The operators O and the covariance

matrix are given by

d = σ tr[Oρ], (1.47)

∑ = σ
TV σ . (1.48)

The quantum correlation is given by the second-order momenta. These criteria are quite impor-

tant for the study of entanglement and separability of Gaussian states. Then, we need to invoke

an important theorem, that is quite used in Bogoliubov’s transformation for diagonalization of

quadratic Hamiltonians:

Williamson’s Theorem: Given a V ε M(2n,R) satisfy V † =V and V > 0, there is a sym-

plectic transformation S ε Sp(2n,R) and the diagonal matrix Dε M(n,R) positive definite which

can be represented in the following way [31]:

V = ST

 D 0

0 D

S. (1.49)

Matrices S and D are unique, apart from permutations of elements D. The eigenvalues of D are

called symplectic eigenvalues. Thus, we can generate a Gaussian state ρ through the unitary

transformation US associated with the symplectic matrix S that is given for

ρ =USΞU†
S , (1.50)

where Ξ is a thermal state, a consequence of the Williamson’s Theorem. Let us consider now

the particular case of two-mode Gaussian states, represented by the vector of quadratures in

phase space OA B = (XA,PA,XB,PB)
T . We can write the covariance matrix in blocks of 2× 2

matrices as

V =

 A C

CT B

 , (1.51)
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where A, B, and C are 2×2 matrices that contain the information about the local states A and B

and the correlation C between the two subsystems. Local invariants with respect to Sp(2,R)⊗

Sp(2,R) are derived considering the action of the generic local sympletic transformations SA	

SB and SA, SB ε Sp(2,R) over V , as shown below

A→ SAAS†
AB→ SBBS†

BC→ SACS†
B. (1.52)

The determinant of all blocks will not change under the action of symplectic transformation

Sp(2,R)⊗Sp(2,R) ⊂ Sp(4,R), since detA,detB,detC,detV are symplectic invariants. The the-

orem allows us to diagonalize the matrices A and B suitable of SA and SB, so that we have

SAAS†
A = DA = a12, (1.53)

SBBS†
B = DB = b12. (1.54)

Lastly, we make a final simplification of Eq. 1.40 by noting that matrices C and CT are real

matrices 2×2 that admit diagonalization by a proper choice of orthogonal matrix OA B, so

V =


a 0 c 0

0 a 0 d

c 0 b 0

0 d 0 b

 . (1.55)

The covariance matrix is then in the final form, with three symplectic invariants that have as

feature: detA= a2, detB= b2 and detC = cd [32, 30]. A practical form of obtaining eigenvalues

of the covariance matrix is given by

√
2d± =

√
∑[V ]±

√
(∑[V ])2−4detV , (1.56)

with ∑[V ] = detA+ detB+ 2detC. We have that d± are eigenvalues of D that follows the

Williamson’s form of Eq. 1.55 being simplified to

V = ST

 d+ 0

0 d−

⊕
 d+ 0

0 d−

S. (1.57)

1.3 Bogoliubov Transformation

In a few words, the Bogoliubov transformation is a change of basis from a set of modal so-

lutions to another basis that preserve the commutation relations (or anti-commutation) of field

operators. In general, is it a unitary transformation from one field modal basis to another.
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1.3.1 Linear unitary Bogoliubov orthogonal (LUBO)- stationary scenar-
ios

In the context of Gaussian transformations, we can make linear transformations for an arbitrary

quadrature M, where

M : x→Mx = x′. (1.58)

For this transformation to be physical, it must preserve the commutation relations of Eqs.1.2

and 1.9. This restriction can be described as:

MΩMT = Ω. (1.59)

Since Ω is the symplectic form, this condition implies that the elements of M belong to

the real symplectic group Sp(2N,ℜ). We can construct an unitary operator or diagonalize the

Hamiltonian using a linear transformation by determining the unitary U2N×2N such that U†xU =

Mx. Then we obtain the transformation of the quantum state as ρ →UρU†.

These unitary operators are refereed to as linear unitary Bogoliubov operations (LUBO).

The evolution of the quantum states proceeds via U ∼ eiH , where H is an unitary Gaussian

operator. These operators are generators of quadratic Hamiltonians in the quadrature operators,

that is, they generate the symplectic group. In its simplest case, quadratic functions do not have

second order terms, as in the case of operations that only use linear optics. However, if we want

to add non linearities to the Hamiltonian we will obtain mode mixing. The second order terms

of the Hamiltonian are generated by a mixture of ladder operators. For these terms, the use of

LUBO becomes necessary[33].

1.3.2 Diagonalization of quadratic Hamiltonian

A quadratic Hamiltonian (or bilinear) can be always diagonalized, meaning that it is possible to

reduce it to a linear combination of number operators. A quadratic Hamiltonian is implemented

for non-interacting systems, and also in the context of a mean field approximation. We can try

to verify if the number conservation is obeyed by a quadratic Hamiltonian. We find that even

with a change of basis the number operator n̂ is conserved. A quadratic Hamiltonian is written

as

H = ∑
i j

Hi ja
†
i a j, (1.60)

where Hi j are real numbers, and

a†
l = ∑

i
a†

i Uil. (1.61)
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Inverting this relation, we have

∑a†
l

(
u†
)

l j
= a j, (1.62)

Considering the Hermitian conjugate, we have

∑
l

U jlal = a j (1.63)

Replacing the ladder operators by Bogoliubov coefficients, we find

H = ∑
lm

α
†
l

(
U†HU

)
lm

αm = ∑
n

εnα
†
n αn = ∑

n
εnn̂n (1.64)

Thus demonstrating the conservation of the number of particles.

1.3.3 Bosonic example

A number of physically important systems, when treated approximately, give rise to bilinear

Hamiltonians involving two modes. An example is the Hamiltonian of trapped ion-laser inter-

action with two modes of ionic vibration. This Hamiltonian can be diagonalized by Bogoliubov

transformations which mix the creation and annihilation operators, but always preserve the

commutation relations.

Now, we can consider a simple application of the Williamson Theorem seen in Sec. ??. Ad-

ditionally, we illustrate the LUBO transformation applied in the last section as described by the

ransformation of Gaussian operators. We start with the description of our bilinear Hamiltonian,

H = ε

(
â†â+ b̂†b̂

)
+λ

(
â†b̂† + b̂â

)
. (1.65)

We consider the transformation

â† = ud̂†
1 + vd̂2, (1.66)

b̂† = ud̂†
2 + vd̂1, (1.67)

to which we impose the commutation relations,[
â†, b̂†

]
= 0. (1.68)

We then find the condition [
â, â†

]
= u2

[
d̂1, d̂

†
1

]
− v2

[
d̂2, d̂

†
2

]
= 1, (1.69)
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and thus the requirement that u2−v2 = 1. The Bogoliubov transformation can be also parametrized

by u = coshθ and v = sinhθ . Introducing the matrix notation as enunciated in the Williamson

Theorem, we have

H =
1
2

(
â†b̂ b̂†â

)


ε λ 0 0

λ ε 0 0

0 0 ε λ

0 0 λ ε




â

b̂†

b̂

â†

− ε. (1.70)

Where for bosons we need to use the commutators and replace in Eq. 1.70. Selecting the

block (2×2) as below, (
â† b̂

) ε λ

λ ε

 â

b̂†

 , (1.71)

we describe the Bogoliubov transformation in matrix form as â

b̂†

=

 u v

v u

 d̂1

d̂2
†

 . (1.72)

Replacing the ladder operators by the transformation given in Eqs. 1.66 and 1.67, we have

(
d̂1 d2

) u v

v u

 ε λ

λ ε

 u v

v u

 d̂1

d̂2

 . (1.73)

Detailing the calculation, we have u v

v u

 ε λ

λ ε

 u v

v u

=

 ε
[
u2 + v2]+2λuv 2εuv+λ

[
u2 + v2]

2εuv+λ
[
u2 + v2] ε

[
u2 + v2]+2λuv

 , (1.74)

by using the relations u2 + v2 = cosh2θ and 2uv = sinh2θ . Thus, since tanh2θ = −λ/ε , we

find

H = ε̂

(
d̂1d̂1 + d̂†

2 d̂2

)
− ε + ε̄. (1.75)

We note that for ε > λ , we have that H is a Hamiltonian with a normal mode of oscillation in

unstable equilibrium.

1.4 Examples of Gaussian states

The study of entanglement in the CV regime finds many difficulties in systems of infinite di-

mension, but a large simplification is possible by restricting it to the set of “Gaussian states”.
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This set is relevant because it is what we get most often in the classical limit, and appears mul-

tiple times in mean-field theories. This states are probably the movasive members of this class.

Gaussian states form the most important class of states of the harmonic oscillator, since thermal

and coherent states are both of this type [34]. They have the special property of being kept as

Gaussian under the action of linear optical devices such as beam splitters and phase shifters.

They can also be employed for teleportation and quantum error correction [35].

1.4.1 Vacuum and thermal states

Thermal states are a subclass of Gaussian states. Bosonic thermal states can be defined as those

which maximizes the von Neumann entropy, given by

S =−tr(ρ̂ ln ρ̂), (1.76)

for fixed mean energy. We have tr(ρ̂ â†â) = n̄, where n̄ ≥ 0 is the mean number of phonons in

the bosonic mode. The representation of a thermal state in terms of number states is given by

ρ̂
th(n̄) =

+∞

∑
n=0

n̄n

(n̄+1)n+1 |n〉〈n| . (1.77)

Their Wigner function is Gaussian, with null quadrature average and covariance matrix given

by V = (2n̄+1)I where 12×2.

1.4.2 Displacement and coherent states

Coherent states are well known in quantum optics, due to the facts that they describe the sta-

tistical properties of a laser light source and are invariant when interacting with linear optical

elements. They are used in others branches of physics for their properties. The coherent states

|α〉 are defined as eigenstates of ladder operators,

â |α〉= α |α〉 . (1.78)

Expanding this relation in the Fock basis, {|n〉}(with n ε N0), in the both sides of Eq. 1.78, we

have a recurrence relation whose solution is given by

|α〉= e−|α|
2/2

∑
n ε N0

αn
√

n!
|n〉. (1.79)

Using the BCH relation, we obtain that coherent states can be understood as displacements of

the oscillator ground state,

|α〉= D(α) |α〉= eαa†−α∗a |0〉 , (1.80)
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where a→ a+α , and D(α) is not related to the Weyl’s operator. This operation is equivalent

to Bogoliubov’s transformation corresponding to a displacement a→ a+α or a displacement

in the quadrature x→ x+(p,q)T.

Below we list the main properties of the displacement operator and coherent states.

• In the Heisenberg representation, a displacement α of the annihilation operator

D†(α)aD(α) = a+α. (1.81)

• The concatenated action of two displacement operators displaces the vacuum as

D(α)D(β ) = eiIm(αβ∗)D(α +β ). (1.82)

• The coherent states are not orthogonal

〈α|β 〉= e−
|α|2+|β |2

2 +α∗β (1.83)

• They make an over-complete basis of the quantum oscillator Hilbert space∫
C

d2α

π
|α〉〈α|= ∑

n ε N0

|n〉〈n|= 1. (1.84)

1.4.3 Phase rotation

Of the most important operations in linear optics, the phase rotation is perhaps the Gaussian uni-

tary operator which is more physically intuitive. This operation can be realized in this context

with a highly refractive medium. This gives rise to a difference of phase when compared to fixed

local harmonic oscillator. Mathematically, the phase rotation is generated by the Hamiltonian

H = 2θa†a which generates the Gaussian operator

R(θ) = exp(−iθa†a). (1.85)

Using a LUBO, this transformation maps a→ exp iθ ′a for a single mode. Thus, this mode

transforms in phase space as

x→

 cosθ sinθ

−sinθ cosθ

x. (1.86)
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1.4.4 Beam splitter

The beam splitter optical element is quite useful in quantum optics. Its Hamiltonian contains

the terms of form â†b̂ and âb̂†. We note it promotes the coherent combination between the

modes â and b̂, giving rise to a Gaussian unitary represented by

B(θ)→ exp(θ(â†b̂− âb̂†)), (1.87)

like a LUBO. The ladder operators of two modes are submitted to a linear combination by the

expression  a′

b′

→
 sinθ cosθ

−cosθ sinθ

 a

b

 . (1.88)

Considering the four quadrature operators (x = (q1, p1,q2, p2)) this relation becomes

x→


sinθ 0 cosθ 0

0 sinθ 0 cosθ

−cosθ 0 sinθ 0

0 −cosθ 0 sinθ

x =

 sinθ I cosθ I

−cosθ I sinθ I

x. (1.89)

1.4.5 Single-mode squeezed state

As seen previously, Gaussian operators originate from operations of linear optics. A notorious

example of entanglement in CV systems arise in the form of squeezed states [36].

Definition: Squeezing is a process from which the variance of one quadrature in a par-

ticular direction in phase space is decreased and, as a consequence, its conjugated direction is

increased with respect to the vacuum noise. We describe in the following two types of squeezing

transformations, acting on one mode or two modes [23].

An example of a physical phenomenon capable of producing single mode squeezing is de-

generate parametric down conversion. This is a process whereby photons with given energy

pass through a non-linear crystal and are converted into two photons with equal energy and

momentum. Since pairs of photons are generated, the interaction Hamiltonian must contain two

creation operators for a single mode (e. g. â†2
) and its Hermitian conjugate. We assume that the

input pump is a classical field, e.g.,αpump = keiθ , where k and θ are real numbers representing

the field strength and phase. So the Hamiltonian is given by

H = ik(â†2
eiθ − â2e−iθ ). (1.90)
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The evolution operator associated with the Hamiltonian above represents a single-mode squeez-

ing operator, given by

S(r) = exp
( r

2

(
â2− â†2

))
, (1.91)

where r = kt is the squeezing parameter. In the Heisenberg picture, we obtain a LUBO in the

form

â→ âcoshr− â† sinhr, (1.92)

whereby the quadrature observables become p′

q′

→
 e−r 0

0 er

 p

q

 . (1.93)

1.4.6 Two-mode squeezed states

The two-mode squeezer is implemented optically through a non-degenerate optical amplifier.

Being that the main difference with respect to the single mode case is the interaction between

distinct modes, the generalization to two modes results in the Hamiltonian

H = 2iκ(â†b̂†eiθ − âb̂eiθ ), (1.94)

where the Gaussian operator corresponding to the two-mode squeezer is

S2(r) = exp(
r
2
(âb̂− â†b̂†)). (1.95)

This unitary acts over the quadratures x = (qa, pa,qb, pb) as

x→


coshr 0 sinhr 0

0 coshr 0 −sinhr

sinhr 0 coshr 0

0 −sinhr 0 coshr

=

 coshrI sinhrσz

sinhrσz coshrI

x, (1.96)

where σz = diag(1,−1) is the Pauli matrix and I is a identity matrix, both with dimension

(2× 2). The LUBO associated with the two-mode squeezing transformation affects the field

operators as

â→ âcoshr+ b̂† sinhr, (1.97)

b̂→ b̂coshr+ â† sinhr. (1.98)

As the two-mode squeezing transforms a phase space composed of four quadrature observ-

ables, two of them become squeezed and their conjugates are anti-squeezed. For example, if
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squeezing takes place in the directions of the quadratures qa−qb and pa+ pb, the anti-squeezed

quadratures are qa− pb and pa−qb. Applying S2(r) to a pair of vacuum modes, we obtain the

EPR state as an important class of Gaussian states,

S2(r) |0〉= |r〉EPR =
√

1− tanh2 r
∞

∑
n=0

(− tanhr)n |n〉a |n〉b . (1.99)

Considering x̄ = 0 (mean value), we have

VEPR =

 cosh2rI sinh2rσz

sinh2rσz cosh2rI

 . (1.100)

These states correspond to the Einstein-Poldoski-Rosen (EPR) state in the limit of infinite

amount of squeezing, producing two-mode entanglement.



Chapter 2
Quantum logic using trapped ions

“Science knows no country,
because knowledge belongs to
humanity, and is the torch which
illuminates the world.”

Louis Pasteur

2.1 Engineering quantum gates

What is a quantum computer? Before answering this question, we need to consider that a clas-

sical computer is a machine that executes logical operations over binary numbers, represented

by 0s or 1s. In quantum logic, the basic unit of information becomes instead the quantum bit,

also called qubit – a two-level quantum system that can assume any superposition of the logi-

cal basis states |0〉 and |1〉. The usual physical realization of a quantum computer consists of

several qubits in which the elementary logical operations, the quantum gates, are performed in

sequence [37].

The high degree of experimental control achieved with trapped ions makes them very at-

tractive candidates for the implementation of quantum logic. This idea was initially proposed

by Ignacio Cirac and Peter Zoller in 1995 [38], where a string of trapped ions would be cooled

down to near the motional ground state to perform quantum gate operations. The ions would

then be manipulated with lasers to perform quantum gate operations. In addition to quantum

computation, the CZ (Cirac-Zoller) proposal finds important applications in spectroscopy and

time keeping [39].

One important concept in quantum computation is that of entanglement. The entangled

states are based on the onset of strong correlations between two or more quantum systems.

Entanglement means that the quantum state of the system cannot be split into a product quantum

36
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states describing subsets of the system without losing information. For instance, a well known

entangled state of two qubits is the Bell singlet state

Φ =
|↓↓〉+ |↑↑〉√

2
. (2.1)

An entangled state has the counter-intuitive property that measurements realized on one of the

particles seem to bring to collapse the state of the other particle – instantaneously. Although

information cannot be transmitted by this apparent collapse (i.e. local measurements on one

particle cannot be used to infer whether local measurements have been performed on the other

particle), there are consequences of this kind of effect to the interpretation of quantum theory

with respect to its non-locality and/or non-realism.

In a seminal paper from 1935, Einstein, Poldosky, and Rosen (EPR) [36] considered a

thought experiment in which two non-commuting observables could be alledgedly measured

using such kind of quantum states, hence concluding that quantum mechanics should be con-

sidered incomplete. To determine from experiments the compatibility of quantum mechanics

with factual data, Bell developed an inequality capable of distinguishing between the predic-

tions of classical-like theories (local/realist hidden variables theories) and those of quantum

mechanics. This inequality and a class of others can be violated by observables described as in

quantum mechanics, but will be obeyed by the so-called “hidden variables” theories, a concept

that was originated in the EPR paper. This fact unleashed a big interest in the fundamentals of

entangled states and quantum non-locality in a wide variety of physical systems such as trapped

ions and single photons [40, 41, 42].

The possibilities to implement quantum logic and produce entangled states with trapped ions

make this system a very interesting experimental platform for investigations in quantum infor-

mation. This is a field in rapid progression where important proof-of-principle experiments have

been realized, especially in the research group of David Wineland in NIST (Boulder, USA), and

in the group of Rainer Blatt (Innsbruck, Austria) with the first demonstrations of gates with two

qubits [43], the realization of simple quantum algorithms, the generation of entangled states of

many particles [40, 44], and the violation of fundamental inequalities [45]. There are tremen-

dous possibilities within this field, which several groups around the world are working hard to

explore [46].
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2.1.1 Why ‘qubit’?

1

Twenty years ago was a great year for quantum computation: as we already know, 1995

was the year when Cirac and Zoller proposed their quantum computation platform using the

ion trap and Wineland’s group implemented it for the first time. Simultaneously, quantum error

correction codes were invented by Shor and Steane, entanglement concentration and purifica-

tion protocols were described by Bennett, besides many other developments made this year so

surprising for the quantum world.

Twenty years ago nobody spoke the word ‘qubit’ instead of ‘two-level quantum system’.

The advent of this new word brought, besides a somewhat large amount of saved time and

breath, a powerful message: a quantum state can be used to encode a new kind of information.

Ben Schumacher, in his article ‘Quantum Coding’ [47], was the first to introduce the word

‘qubit’. In the acknowledgments of this article, the author talks about the origin of the word:

“The term ‘qubit’, was coined in jest during one of the author’s many intriguing and valu-

able conversations with W. K. Wootters, and become the initial impetus for this work”

Recently, the theoretical physicist Paul Ginsparg, inspired in the post of the blog Quantum

Frontiers signed by the theoretical physicist John Preskill, did a plot of the word ‘qubit’ in

papers posted on the arXiv, reproduced in Fig. 2.1 This discussion was strongly based in the

Figure 2.1: The figure, we have: i) uses of qubit in arxiv (divided by 10) per month, and a total of
documents per month:an impressive 669394 total in 29587 documents. Credits to Paul Ginsparg.

1David Mermin coined the word ’qbit’, but sadly the term that has been mostly used is the ‘qubit’.
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blog Quantum Frontiers. Happy birthday, young “qubit”!

2.1.2 Single-qubit gates

Every quantum algorithm can be broken into a sequence of single-qubit operations and two-

qubit entangling operations, such as e.g. a conditional phase gate, a controlled NOT gate or a

SWAP gate [48].

In the ion trap, operations with a single qubit are the easiest ones to implement in order to

achieve universal computation. In fact, the Rabi oscillation between the two energy levels of

the qubit implement a single qubit rotation. We may describe the effect of resonant radiation

through the gate RC (θ ,φ) acting over state vector |ψ〉= α |0〉+β |1〉 [37] as

RC (θ ,φ) = exp
(

iθ
2
(
eiϕ

σ++ e−iϕ
σ−
))

= I cos
(

θ

2

)
+ i(σx cosϕ−σy sinϕ)sin

θ

2
⇒

⇒

 cos
(

θ

2

)
ieiϕ sin θ

2

ie−iϕ sin θ

2 cos
(

θ

2

)
 . (2.2)

These operations acting on a single qubit can be better visualized in the Bloch sphere, where

they perform rotations of the spin vector. Any linear combination of Pauli matrix operations can

be implemented by a sequence of laser pulses with the appropriate relative phases.

2.1.3 Two-qubit gates

The CNOT gate involves two qubits and thus acts on the superposition

|ψ〉= α |1〉 |1〉+β |1〉 |0〉+ γ |0〉 |1〉+δ |0〉 |0〉 α, β , ,γ, δ ε C (2.3)

The truth table 2.1 of the CNOT gate is the result of its operation on the vectors of the logical

basis, given by tensor products of the ‘control qubit’ and the ‘target qubit’, respectively. An

Input Output
Control Target Control Target

1 1 1 1
1 0 1 0
0 1 0 0
0 0 0 1

Table 2.1: Truth table for the CNOT gate.

alternative realization of a conditional operation relies on the controlled phase gate, which adds
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a π phase to one of the basis states. The CNOT-gate and the Controlled-Z gate are equivalent up

to a local rotation of the target qubit, as we can see by the action of the C-Z gate in the rotated

basis |0〉,|1〉
1 0

0 1
0

0
0 1

1 0


︸ ︷︷ ︸

CNOT

=



1√
2
−1√

2
1√
2

1√
2

0

0
1√
2
−1√

2
1√
2

1√
2


︸ ︷︷ ︸

R( π

2 ), target qubit


1 0

0 1
0

0
1 0

0 −1


︸ ︷︷ ︸

Controlled−Z



1√
2

1√
2

−1√
2

1√
2

0

0
1√
2

1√
2

−1√
2

1√
2


︸ ︷︷ ︸

R(− π

2 ), target qubit

(2.4)

Thus the CNOT gate acting on the logical basis {|11〉 , |10〉 , |01〉 , |00〉} is equivalent to the

transformation produced by the C-Z gate on the alternative logical basis {|0〉 , |1〉} , since the

two basis differ only by local qubit rotations. Quantum gates and the preparation of entangled

states are related issues, since with the ability to make the CNOT gate, one is also able to prepare

entangled states. For instance, we find that

CNOT
{[

cos
(

θ

2

)
|−〉+ eiϕ sin

(
θ

2

)
|+〉
]
⊗|−〉

}
=

cos
(

θ

2

)
|−〉|−〉+ eiϕ sin

(
θ

2

)
|+〉 |+〉 , (2.5)

is an entangled state for a suitably chosen angle θ . The preparation of these states for trapped

ions is discussed in the next sections. To achieve a set of universal gates, we must obtain

complementary operations through one and two qubit operations. These operations are the

most important for quantum computation and allows for the generation of entanglement among

qubits. Through the combined operations of one qubit or more qubits, we can implement any

important operation [49]. In the next sections, we will describe briefly the Cirac-Zoller gate and

the Mølmer - Sørensen gate as examples of two-qubit gates.

2.2 Quantum information in the ion trap

Trapped ions can be seen as the experimental realization of an ideal system composed of ‘atoms

in a box’ [50]. In this physical system, collective modes of vibration of an ensemble of ions

are kept confined in space by a strong electromagnetic field which behaves like a virtual box.

The collective modes of the ionic oscillators, together with the electronic transition between

two internal energy levels of each ion (the qubit), can be manipulated by an external source of

coherent radiation, usually laser light.
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The method employed to manipulate trapped ions is conceptually similar to methods used

in cavity quantum electrodynamics (CQED) mainly because there are many similarities in the

equations of motion. While the qubit is represented in both types of systems by internal energy

levels of an atom, the modes of CQED stand as quantized electromagnetic fields confined to

an optical cavity, whereas trapped ions offer their vibrational modes as CV degrees of freedom.

On the conceptual level ,the CQED Hamiltonian is more fundamental than the one of a trapped

ion, since in the atomic case the modes result from a quadratic approximation of the confining

potential.

The spin-spring interaction was well studied by Haroche [50], and in the ion trap it is more

subtle and less direct than in the CQED. On the other hand, in ion trapped systems we have

a large variety of effects and a wealth of details with respect to the possible coupling that can

always be improved with changes in the parameters of the laser, which in CQED can not occur.

In particular, since energy conservation is not required in the interaction between qubit and

vibrational modes in the case of trapped ions (given that the excitation energy is provided by

an external laser source), anti-Jaynes-Cummings coupling is also available in this system, as

opposed to CQED systems [50].

Ions can be trapped for long times, much longer than the time needed for coherent quantum

manipulation and read-out of the quantum state – this is the case of qubit states that have a long

lifetime, making this system more suitable for quantum information applications. In summary,

the experiments with CQED are conceptually simpler, however the ion traps are more promis-

ing for applications. Fig. 2.2 schematizes the ion trap system constructed in the research group

of Prof. Rainer Blatt (IQOQI / University of Innsbruck).

The system of single ion trapping is one of the most successful experimental implemen-

tations of quantum computation. It still stands as one of the few quantum systems for which

several basic protocols of coherent manipulation have been demonstrated and scalability does

not seem unfeasible (yet) [52]. The usual design utilizes a Paul trap, a set of electrodes sub-

ject to an oscillatory external electric potential. The time-average potential associated with the

secular motion of the ions provides confinement of charged particles in the three directions of

space [43].

However, when it comes to the implementation of quantum information with continuous

variables, the quantized electromagnetic field continues to be the physical system of choice

for most experimentalists. In this case, the optical amplitude and phase quadratures are the
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Figure 2.2: Scheme of a linear ion trap employing an ion string of Ca+. A single laser addresses the ions
individually and manipulates their quantum states. Credit: IQOQI / University of Innsbruck. Ref.[51].

usual CV degrees of freedom. Although light is suitable for the experimental realization of CV

quantum information, usually only Gaussian states and operations (explored in the previous

chapter) are available in the laboratory [53]. Those alone are not enough, nevertheless, to

implement universal quantum computation in CV [54], since non-Gaussian resources (such as

‘macroscopic cat’ states) are needed to achieve quantum speed-up in many quantum information

processes. Those types of operations are very challenging to achieve with light, and probably for

this reason research in CV quantum computation (CVQC) is less developed than with discrete

variables.

We believe trapped ions can furnish a new impetus to CVQC. By making use of the position

and momentum (i.e. the wavefunction) of a single trapped ion as the CV degrees of freedom,

CVQC could be investigated in theory and experiment taking this system as basic physical

implementation. Due to the special characteristics of the trapped ions, it is possible to strongly

couple vibrational modes through the mediation of the ionic qubit, by employing pulses of

classical light for the coherent manipulation, such that the non-linear interactions and non-

Gaussian operations interactions are possibly not a major problem to implement. The higher

order non-linearity that gives rise to non-Gaussian operations can be realized by compound

light pulses, creating and destroying single phonons at will. Pioneering experiments employing

related ideas have produced motional cat states of a single ion, a class of states applicable in

quantum computation [55, 56].

Experimental studies on this topic can help understand the practical differences between

qubits and CV in the implementation of quantum information processing. CV systems typ-
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ically have Hilbert spaces of higher dimension than discrete systems, allowing for a larger

configuration space within current technological constraints. A better understanding of these

topics is as interesting experimentally as from a theoretical point of view, and could help in the

development of a more practical model for quantum computing. We believe pioneering work in

CVQC could be performed with the ion trap [23].

2.3 Two-level model

We consider an atom with two levels where |g〉, the ground state, is connected to |e〉, the excited

state, and this connection is given by a dipole with the angular frequency ωeg represented in

the figure. This system is equivalent to a spin-1/2 system immersed in a magnetic field along

the z axis. We can do a correspondence according to the notation used in quantum information

|e〉→ |0〉, and |g〉→ |1〉, with eigenvalues +1 and−1, respectively, as shown in figure 2.3. The

Figure 2.3: Two-level atom

Hamiltonian operator of the atom represented by this two-level system is given by

HA = Ee |e〉〈e|+Eg |g〉〈g| . (2.6)

In 2-D space, 4 linear operators are possible, which are generated through the basis |e〉, |g〉.

Then

1= |e〉〈e|+ |g〉〈g| , (2.7)

σz = |e〉〈e|− |g〉〈g| , (2.8)

σ
+ = |e〉〈g| , (2.9)

σ
− = |g〉〈e| , (2.10)

from which comes the algebra

σ
2
z = 1, σ

+
σ
−−σ

−
σ
+ = σz, (2.11)
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(
σ
−)2

= |g〉〈g| ,
(
σ
+
)2

= |e〉〈e| . (2.12)

Let us introduce the atomic raising and lowering operators σ±,

σ± =
1
2
(σx± iσy) . (2.13)

In terms of the spin eigenstates along the z axis, these operators are

σ
+ = |0〉〈1| , σ

− = |1〉〈0| , (2.14)

and

σ
+ |1〉= |0〉 , σ

− |0〉= |1〉 , σ
+ |0〉= |0〉 , σ

− |1〉= 0. (2.15)

If we separate the term (Ee +Eg)/21 in the Hamiltonian 2.6, we can rewrite the Hamiltonian

and obtain, for a two-level system, the following equation

HA =
1
2

h̄ωegσz. (2.16)

The transition frequency between levels can be written

ωeg =
1
h̄
(Ee−Eg) . (2.17)

We can describe the commutation relations between the above operators as

[
σ
+,σ−

]
= σz,

[
σ
+,σz

]
=−2σ

+,
[
σ
−,σz

]
= 2σ

−, (2.18)

and complement these with the Pauli’s operators

[σx,σy] = 2iσz, [σy,σz] = 2iσx, [σz,σx] = 2iσy. (2.19)

The vector state in 2-D can be represented as vectors in C2 according to the rule

|ψ〉= cg |g〉+ ce |e〉 →

 ce

cg

 . (2.20)

The operations are represented by matrices

σ
+→

 0 1

0 0

 , σ
−→

 0 0

1 0

 , σz→

 1 0

0 −1

 , 1→

 1 0

0 1

 .

(2.21)
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2.3.1 Two-level atom interacting with a classical electric field

The main aspects of atom-light interaction can be understood by considering a simple model

in which the electronic cloud and nucleus form an electric dipole that can be excited by the

electric field of an external source of coherent light. We add to the free two-level Hamiltonian

an interaction term,

H = Ha +Hr, (2.22)

with

Hr =−
−→
D ·−→Er, (2.23)

where we describe the atom-light coupling. The atomic dipole operator reads as
−→
D = q

−→
R ,

where q is the free charge in the dipole and R is the position of the electron. The classical

electric field depends on time,

−→
Er = iεr

[−→
εr e−iωrte−iϕ −

−→
ε
∗
r eiωrteiϕ

]
, (2.24)

In this expression, εr is the real amplitude of the classical electric field, ωr is the optical fre-

quency,~εr is a complex unit vector describing the polarization, and φ is its phase. The dipole

operator has odd parity,
−→
D its diagonal matrix elements must be null, and the operator is de-

scribed by the matrices σ± according to

−→
D = d

(−→
εa σ−+

−→
ε
∗
a σ+

)
, (2.25)

where the notation below was introduced,

q〈g|−→R |e〉= d−→εa . (2.26)

Note that d is the matrix elements of the atomic dipole operators and −→εa is a unit vector that

describes the atomic polarization.

2.4 Motion of the ion

Before starting the next chapter, let us briefly describe some qualitative aspects of the ion mo-

tion. A moving atom emits or absorbs light with frequency ω different from its transition

frequency ω0 due to the Doppler effect,

ω = ω0 +k ·v (2.27)
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Figure 2.4: Energy levels of the trapped atom (ground and excited) and its resulting spectrum. ωT is the
frequency of oscillation of the confining potential.

where k is the wave vector of the emitted/absorbed light and v is the atomic speed vector. For

free atoms, the speed can be arbitrary, following the Boltzmann distribution for the vapour tem-

perature. The optical spectrum of atomic ensembles is broadened and/or displaced according to

their motion in space.

In trapped ions, the energy of the motion is quantized. Since the ion motion can be ap-

proximated by the motion of a set of harmonic oscillators, the motional Doppler shift creates

sidebands at specific frequencies displaced from the carrier frequency of atomic emission. Fig.

2.4 illustrates a set of sidebands, showing that the resulting emission spectrum contains a large

number of resonant lines. The main idea of this chapter is to present some tools to explore the

motion of the ion, i.e., its continuous variables (CV) position and momentum, as a quantum

system amenable to coherent manipulation with the aim of performing quantum information

processing.

The interaction of an ion with a resonant external laser can be understood in terms of a

simple two-level system driven by an external coupling. Each level corresponds to an internal

electronic level of the ion. While the ion interacts with the laser, it is bounded to move in an

area of space restricted by the confining potential of a Paul trap. As the ion is cooled to have low

kinetic energy, its motion can be treated as that of a quantum oscillator. The coupling between

the electronic levels and the vibrational degree of freedom takes place due to the absorption and

emission of photons and the resulting recoil of the ion.

We can start the physical discussion with the classical Hamiltonian of an ion with mass m

confined by an harmonic 1-D potential, as follows

Hvib =
p2

2m
+

mω2x2

2
(2.28)

where ω is the angular frequency of the vibrational motion, x is the displacement of the ion rel-
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ative to its equilibrium position and p is its momentum. The motion of the ion can be quantized

introducing the canonical operators x̂ and p̂ that can be written in terms of ladder operators.

Thus, the Hamiltonian of Eq. 2.28 is quantized in the following way

Hvib = h̄ω

(
â†â+

1
2

)
(2.29)

with eigenstates given by the Fock basis |n〉 corresponding to a well defined number n of excita-

tions (phonons). The complete free Hamiltonian of the ion involves the qubit and the motional

degree of freedom, yielding

Ĥ0 = Ĥint + Ĥvib =
h̄ω0

2
σ̂z + h̄ω â†â. (2.30)

The dipole interaction of this system with an external light source was already discussed in

previous sections.

2.4.1 Interaction Hamiltonian

For the simple case of a single trapped ion, we begin by employing the Hamiltonian of a two-

level atom interacting with an external laser field [46]. To include the fact that the atom is

confined in space, we consider the electric field of the laser at the quantum-mechanical position

of the ion, described by the operator x = a+a†. The interaction Hamiltonian then reads as

H =−ih̄Ωσ+e−i(∆t) exp
(

iη
(

ae−iωt +a†eiωt
))

+h.c., (2.31)

where a and a† are respectively the annihilation and creation operators of vibrational excitations

(phonons) of the harmonic oscillator associated with the trapped atom and ∆ is the qubit-laser

detuning. The Rabi frequency Ω depends on the laser electric field amplitude as an experi-

mentally controllable parameter. The φ denotes the phase of the laser, ω denotes the secular

frequency of the ions in confined movement and η = kzz0 is the Lamb-Dicke parameter. This

parameter reflects the strength of laser-motion coupling. It depends on kz, the projection of the

laser-field wave vector along the direction z of the atomic oscillation, and z0 =
√

h̄
2mω

is the

typical spatial extension of the ground state wave function of the ion in the harmonic oscillator.

Only some terms of the Hamiltonian in Eq. 2.31 contribute resonantly to the ionic tran-

sitions. The rotating wave approximation (RWA) considers only terms oscillating with small

frequencies in comparison with the typical time scale of the quantum evolution. In addition, the

Lamb-Dicke approximation can also be employed when the oscillator wave function is much
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smaller in extension than the radiation wavelength
(

η

√〈
(a+a†)

2
〉
<< 1

)
. We obtain the

simplified expression

H w−ih̄Ω

{
σ+e−i(∆ t−ϕ)+σ−ei(∆ t−ϕ)+ iη

(
σ+e−i(∆ t−ϕ)−σ−ei(∆ t−ϕ)

)(
ae−iωt +a†eiωt

)}
.

(2.32)

The basis for quantum logical operations is now formed by a combination of motional and

atomic qubit, i.e., by the states: |g,0〉,|g,1〉,|e,0〉,|e,1〉 as depicted in Fig. 2.5. In the Lamb-

Dicke approximation, there are three important transitions to consider: red sideband,carrier and

blue sideband transitions. Each of them corresponds to a value of laser detuning ∆=+ω,0,−ω .

Figure 2.5: A single ion with carrier (C) and sideband ± transitions. Reproduced from Ref. [51].

Each of the Hamiltonians that follow are derived from Eq. 2.32 by neglecting off-resonant

terms, giving rise to the following quantum dynamics:

i)Carrier frequency excitation: For ∆ = 0, the carrier excitation induces transitions in the

qubit without affecting the motion. It is described by the Hamiltonian

Hc '−ih̄
Ωl

2
(
e−iϕ

σ+− eiϕ
σ−
)
. (2.33)

This Hamiltonian couples the basis states |g,n〉 and |e,n〉. All the quantum gates acting on

one qubit may be obtained by tuning the laser phase φ , and the time of interaction of atom-laser.

The speed of the gate is tuned by the laser intensity through the Rabi frequency Ω. When the

Lamb-Dicke parameter is not small, other terms of the expansion should be considered. Since

the resonant terms of the Hamiltonian are diagonal in the Fock basis, it couples |g,n〉 and |e,n〉,

although with Rabi frequencies depend on the phonon number. This effect becomes relevant

only in the case the interaction acts over very long times.

ii)Red sideband excitation: If the driving laser is tuned to ∆ =−ω , we find the following

approximation for the resonant Hamiltonian:
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Hr '−ih̄
Ωlη

2

(
aσ+−a†

σ−
)
. (2.34)

This Hamiltonian is essentially the Jaynes-Cummings term of CQED. The red sideband

couple the states |g,n〉 and |e,n−1〉, inducing an excitation of the qubit and the simultane-

ous absorption of a phonon in the motional state. Since it realizes a dynamics of the qubit

conditioned on the number of phonons, it produces coupling between the internal and external

degrees of freedom of the ion. The Rabi frequency in this case strongly depends on the phonon

number, as

Ωn,n−1 =
√

nηΩ (2.35)

iii)Blue sideband excitation: When the external laser assumes the detuning ∆ = +ω , we

can describe it through the approximate equation:

Hb;1 '−ih̄
Ωlη

2

(
a†

σ+−aσ−
)

(2.36)

The blue sideband interaction implements an anti-Jaynes-Cumming model, which induces

in the qubit a transition between the states |g〉 and |e〉 while emitting a phonon in the vibrational

mode. This process cannot be resonant in CQED, for example, but in our system we can

realize it, since in the ion trap the driving laser provides the extra energy required to realize the

transition. This interaction can also be used to entangle the qubit and the motional mode of the

ion. The Rabi frequency is given by

Ωn,n+1 =
√

n+1ηΩ (2.37)

where n describe the number of motional quanta (phonons).

2.5 Motion of ion strings

In the CZ proposal, the interaction between ionic qubits is obtained using the motional degree

of freedom as a quantum bus2 for the distribution of quantum information between pairs of ions

[60]. The simplest method to couple a single ion with a vibrational mode is schematized in Fig.

2.6.

The laser field is made resonant with a blue-sideband transition. The following unitary

operator is realized. This operation is important it is one of the gates that we obtained in the
2This is a device which can be used to store or transfer information between independent qubits. This concept

was first demonstrated by some researches, as we can see these references: [57, 58, 59].



CHAPTER 2. QUANTUM LOGIC USING TRAPPED IONS 50

Figure 2.6: Energy level of a single trapped ion, being |g〉a ground level and |e〉 an excited level in a
Paul trap. The symbols ωqubit and ωtrap. Figure borrowed from reference [61]

Gaussian toolbox.

R+(θ ,φ) = exp(i
θ

2
(eiφ

σ
+a† + e−iφ

σ
−a)). (2.38)

The parameter θ depends on the strength and duration of the applied pulse, and φ describes

the relative phase between optical field and the atomic polarization. Qubit and motional state

change simultaneously. For experiments with quantum logic, the case of multiple ions is also

of interest. Because of the Coulomb coupling between the ions movement takes place in terms

of the normal modes of a string of ions [62, 63].

Although we do not consider the treatment of multiples ions in detail, we take some space

to describe a bit the normal modes of vibration. For three ions, the normal modes are, in

increasing order of frequency, the center-of-mass, breathing (or stretch) and an additional axial

mode, where we denote the center-of-mass mode by the frequency ω1, the breathing mode by

ω2 and axial mode by ω3, as in Fig. 2.7.

Figure 2.7: Normal modes of the three-ion string along the axial direction with frequency ωi

2.6 Quantum gates using trapped ions

There is a considerable number of proposals to implement quantum gates using a string of

cold trapped ions [62, 63, 64]. In the next sections, we discus the Cirac-Zoller proposal in
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some detail, as demonstrated by the Innsbruck group [43]. Another relevant proposal is the

Mølmer-Sørensen gate [65, 66], which, unlike the Cirac-Zoller gate, does not require cooling

the oscillator to the ground state, nor the addressing of individuals ions. This proposal was

successfully implemented by the NIST group using two or four ions, and subsequently by the

Innsbruck group to produce a two-qubit entangled Bell state with high fidelity [67].

2.6.1 Cirac-Zoller gate

In this proposal, a string of ions is confined in the effective harmonic potential of a linear Paul

trap as schematized in Fig. 2.8

Figure 2.8: Basic scheme of the Cirac-Zoller proposal. A chain of ions trapped in a harmonic potential
is radiated by laser beams. Internal states define the qubit states |0〉, |1〉. Reproduced from Ref. [68].

The ions are cooled to the ground state of oscillation, and can be addressed individually by

a laser beam with spectral resolution better than the motional oscillation frequency in the trap.

The Lamb-Dicke limit is supposed to be a valid approximation, and hence the most relevant

transitions for achieving gate operations are the carrier red- and blue-sideband transitions (RSB

and BSB, respectively), which were described in detail in the previous section. A simple ex-

ample of how two ions could effectively interact mediated by the vibrational mode is provided

below, where a two qubit Bell state is produced by a sequence of sideband laser pulses.

|−〉|−〉|0〉

⇓

BSB π/2 -pulse , Ion 2

|−〉 [|−〉|0〉− i |+〉 |1〉]

⇓
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RSB π- pulse, Ion 1

[|−〉|−〉− |+〉 |+〉] |0〉 (2.39)

Firstly, we apply a BSB π

2 pulse on ion 2. A simple example of how two ions could be

made to effectively interact mediated by the vibrational mode is provided below, where a two

qubit Bell state is produced by a sequence of sideband laser pulses, giving rise to entanglement

between ion 2 and the motional mode. Subsequently, an RSB π-pulse on the ion 1 transforms

only the |−〉 |+〉 |1〉 ket, such that the entangled state is mapped into the internal state of the

ions. The excitation and de-excitation of the motional state provide a kind of communication

channel between the qubits. It is essential in this procedure to have individual addressing and

ions cooled to the motional ground state.

Although RSB and BSB transitions are sufficient to perform entangling operations between

qubits, as we have seen in the previous example, there is a more systematic way of realizing

conditional operations between two qubits, by employing the CNOT or C-phase gate. The

central importance of the Cirac-Zoller proposal is in fact offering a means to realize the C-

phase gate in a viable physical system [38]. The C-phase gate between a pair of ions works

as follows: initially, the quantum state of the first ion is transferred to the quantum state of

the motional mode, the ‘quantum information bus’, so that the information is made collectively

available to all ions. Subsequently, the conditional gate is performed between the motional

mode and a second ion of choice. The final step requires mapping back the motional state to the

first ion.

Figure 2.9: Representation of the three steps that perform a phase gate between two ions with an elec-
tronic ground state |g〉, an excited state |e〉 and an ancilla state |a〉 (an extra state). The illustration was
taken from reference [61].

The steps employed to realize the Cirac-Zoller phase gate, as illustrated in Fig. 2.9, are: a

RSB pulse of area π addresses the first ion to move all the population from state |0,e〉 to |1,g〉,
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while for the state |0,g〉 the transfer is not performed. This step maps the quantum information

from qubit to motion, rendering the first ion in the separable state |g〉. The inverse step is

realized after the gate is realized. Hence the crucial step is the intermediate one, whereby the

basis state |0,g〉 involving the second ion is delayed by a π phase. In the original CZ proposal,

that is realized by employing an alternative intermediate electronic state that couples only to the

|g〉 state of the second ion. The actual experimental realization utilizes as intermediate state the

Fock state |2〉 of the motional mode, achieving the same result.

The applied Rabi transitions induced by sideband gates are restricted to have a time duration

T, since the sideband needs to be resolved and must be limited in coupling strength so that off-

resonant excitation of the carrier transition is avoided. For instance, for a π

2 sideband pulse, the

following restriction holds

T =
π

ηΩ
>>

π

ηωz
, (2.40)

where η is the Lamb-Dicke parameter, and Ω is of Rabi frequency for the free ion. For a single

qubit gate, there is no need to excite the motional state, we can implement a carrier pulse for

which the duration should obey for π

2 pulses the relation T >> π

ωz
. Thus we can conclude that

a single ion gates is not only easier to implement, they are much faster than the two-qubit gate.

2.6.2 Mølmer-Sørensen gate

The CZ gate strict requirement of ground state cooling can be relaxed in a second class of two-

qubit gates proposed by Molmer and Sorensen in 1999 [66]. The MS gate employs bichromatic

radiation, i.e., a laser with two frequency components, to displace the ion wave function in

phase space in a manner which is dependent on the qubit quantum state. The laser effectively

applies a state-dependent force on the ion, coherently displacing it in one internal state is |g〉

and vice-versa. By applying radiation with frequency slightly detuned from the oscillating

frequency, the motional wavefunction returns to its initial state some time after the interaction

begins. However, the area enclosed in phase space during the interaction imposes a relative

phase delay between the |g〉 and |e〉 qubit states, similarly to a Berry phase [69, 70].

To better understand the MS gate, we suppose again the Lamb-Dicke limit, η
√

n+1 << 1,

detuning 0 < δ < ωz and a weak field such that ηΩ << ωz− δ . Although one-photon transi-

tions are not allowed, however, two-photon transition of the type |−〉|−〉|n〉− |+〉 |+〉 |n〉 are

resonant if they happen via the intermediate states |−〉|+〉 |m〉 and |+〉 |−〉|m〉, where (m =

n− 1,n,n+ 1). Considering the transitions path via intermediate states in a second-order per-
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turbation theory, we find that the Rabi frequency for the two-photon transition is [66]

Ω̃ =−2ωz (ηΩ)2

ω2
z −δ 2 . (2.41)

We also have |−〉|+〉 |n〉 − |+〉 |−〉|n〉 two-photon transitions via the intermediate states

|−〉|−〉|m〉 and |+〉 |+〉 |m〉 (m = n−1, n, n+1) are allowed, and the corresponding two-photon

Rabi frequency is−Ω̃. A bichromatic laser pulse induces the transfer of population between two

states of the computational basis using two other states as non-resonant intermediates. Since

the two-photon Rabi frequency is n-independent, the dynamics is insensitive to heating during

the gate operations and ground state cooling is not required; in addition, both ions are irradiated

by the same laser, rendering individual addressing not necessary.

The proposal has been refined to the case where ηΩ=ωz−δ , under the assumptions Ω2 <<

ω2
z and η2 << 1 [69]. In this case, the gate operations are faster, however, and the fact that the

motional state is excited during the gate operations means that only at specific points in time

can the motional mode return to its initial state, making the scheme sensitive to heating during

the gate operation. Fig. 2.10 schematizes the quantum transitions involved in the gate operation

Figure 2.10: Energy-level diagram of two trapped ions by the principle of the Sørensen and Mølmer
gate. The bus mode can be initially populated with n phonons. Two laser beams tuned close to the blue
and red sidebands drive the system through the dashed virtual energy levels.

For interactions with the appropriate time, the MS gate performs the following transforma-
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tion of the basis states:

|ee〉 → (|ee〉+ i |gg〉)/
√

2

|eg〉 → (|eg〉+ i |ge〉)/
√

2

|ge〉 → (|ge〉+ i |eg〉)/
√

2

|gg〉 → (|gg〉+ i |ee〉)/
√

2 (2.42)

To obtain a universal set of gates, we introduce a new basis |±〉= (|e〉i±|g〉i)/
√

2, with |±〉|±〉

described in Eq. 2.42. The MS gate transforms them according to |++〉 → |++〉, |+−〉 →

i |+−〉,|−+〉→ i |−+〉, |−−〉→ |−−〉, where a global phase e−iπ/4 has been omitted. Thus the

MS gate realizes the two-qubit conditional phase gate understood to be an essential resource to

achieve universality in the quantum manipulation of discrete variables.



Chapter 3
CV quantum computation using the

motion of the ion

“When we look at reality through
the equations of physics, we find
that they describe patterns and
regularities. But to me,
mathematics is more than a
window on the outside world: I
argue that our physical world not
only is described by mathematics,
but that it is mathematics: a
mathematical structure, to be
precise.”

Max Tegmark

The main idea of this chapter consists in increasing the size of the Hilbert space through

the manipulation of the vibrational modes of trapped ions. We consider the simplest case of

using only a single trapped ion and take as a starting point its three vibrational modes. In

this proposed paradigm, the qubit is used as mediator of the interaction between the pairs of

vibrational modes, i.e., the qubit is our ‘quantum bus’. This proposal is in a sense an inversion

of the ‘CZ paradigm’ of quantum computing, which employs one or more motional modes of

the quantum harmonic oscillator to mediate the interaction between the qubit pairs, as we have

seen previously. This situation is represented in Fig. 3.1

From this different viewpoint, we develop a CV quantum computing toolbox to manipulate

each of the single vibrational modes and make them interact in pairs. The quantum gates we

propose are realized by the coherent manipulation of the vibrational modes of the ion through

bichromatic beams of light. Furthermore, with the elements of our toolbox, it is shown that we

can obtain gates that are already known from discrete quantum computing, such as the Fourier

transform, the CNOT and CPHASE gates. Besides, we can also obtain generalized Pauli ma-

56
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Figure 3.1: Comparison of two proposals of CVQC using an ion trap. (a) The CZ paradigm, where the
‘quantum bus’ consists of the motional modes. (b) Our proposal, where the ‘quantum bus’ is composed
of the qubits, i.e., our proposal is the inverse of the CZ paradigm. The size of the Hilbert space in our
proposal is larger than it is in the CZ paradigm.

trices, which are used to explore quantum error correction codes in the stabilizer formalism.

Gathering Non-Gaussian and Gaussian gates, we also show that it is possible to generate dy-

namics through the commutators, as described by Lloyd [8].

3.1 Interaction Hamiltonian for two vibrational modes

We can start describing our proposal. It is built from the implementation of an ion trap proces-

sor: a single ion offers the qubit and its modes of vibration. The manipulation of the quantum

state of trapped ions is realized by exciting their internal and external degrees of freedom, as

detailed in Ch. 2, employing a laser resonant to specific transitions. The total Hamiltonian of

the system can be written as

H = H0 +Hint . (3.1)

The H0 term describes the dynamics before the laser interaction, and is given by

H0 = h̄ω(a†a+b†b)+
h̄ωegσz

2
. (3.2)

Where the operators â and b̂ are the vibrational modes of quantum harmonic oscillator. Thus,

the Hamiltonian of interaction is

Hint =
h̄Ω

2
e−iωlteikzcosθ e−iφ

σ
++h.c. (3.3)

where Ω is the Rabi frequency, ωl is the laser frequency, θ is the angle between the wave vector

k of the laser and the z direction of oscillation of the ion in two dimensions, and φ is the phase

of the laser field.
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It is convenient to consider the above Hamiltonian in the interaction picture. To this end,

we need to manipulate the term associated with the ion motion eikzcosθ . Using the fact that our

system is described by a quantum harmonic oscillator, we write

eikzcosθ = eik[z0(a+a†)+z1(b+b†)] (3.4)

where z0 and z1 are the amplitudes of oscillation

z0 =

√
h̄

2mω0
and z1 =

√
h̄

2mω1
. (3.5)

Using the identity e(A+B) = eAeBe−[A,B]/2, we have

ei[ηa(a+a†)+η1(b+b†)] = eiηa(a+a†)eiηb(b+b†). (3.6)

The definition of the exponential yields

ei[ηa(a+a†)+ηb(b+b†)] =

(
∞

∑
n=0

(iηaa†)n

n!

)(
∞

∑
m=0

(iηaa)m

m!

)(
∞

∑
p=0

(iηbb†)p

p!

)(
∞

∑
k=0

(iηba†)k

k!

)
(3.7)

=
∞

∑
n=0,m=0

(iηa)
n+m (a†)n(a)m

n!m!

∞

∑
p=0,k=0

(iηa)
p+k (b

†)p(b)k

p!k!
. (3.8)

For ηa = ηb = η , it then follows

eiη(a+a†+b+b†) =

(
∞

∑
n=0,m=0,p=0,k=0

(iη)n+m+p+k (a
†)n(a)m(b†)p(b)k

n!m!p!k!

)
(3.9)

As for the one-dimensional case, we need to factor the sums with the goal of sorting out the

distinct sidebands. We can break this double sum in three parts:

• n > m, with n = m+q′ and p > k, with p = k+q′′;

• n = m and p = k;

• n < m, with m = n+q′ and p < k, with p = k+q′′;

For n > m and p > q∑
q′>0

∞

∑
m=0

(−1)m(iη)q′
η

2m (a†)m+q′(a)n

m!(m+q′)!

 ∑
q′′>0

∞

∑
k=0

(−1)k(iη)q′′
η

2k (b
†)k+q′′(b)k

k!(k+q′′)!

 (3.10)

By defining

fq′(a
†,a) =

∞

∑
m=0

η
2m (a†)m(a)m

m!(m+q′)!
(3.11)
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fq′′(b,b
†) =

∞

∑
k=0

(−1)k(iη)2k(b†)k(b)k

k!(k+q′′)!
(3.12)

We come to

∑
q′>0;q′′>0

(iη)q′+q′′(a†)q′(b†)q′′ fq′(a
†,a) fq′′(b,b

†) (3.13)

For n = m and p = k, we have

∞

∑
n=0;p=0

(−1)n+k(η)2n+2p (a
†a)n(b†b)p

(n!)2(p!)2 = f0(a†,a) f0(b,b†)≡ f00(a†,a;b,b†) (3.14)

In the case n < m and p < k, we obtain(
∑

q′>0

∞

∑
n=0

(−1)n (iη)q′η2n(a†)n(a)n+q

n!(n+q)!

)(
∑

q′′>0

∞

∑
p=0

(−1)p (iη)q′′η2p(b†)p(b)p+q′′

p!(p+q′′)!

)
⇒

⇒ ∑
q′>0;q′′>0

(iη)q′+q′′(a)q′(b)q′′ fq′(a
†,a) fq′′(b,b

†) (3.15)

Then,

eikzcosθ = ( f00(a†,a;b,b†)+ ∑
q′>0;q′′>0

(iη)q′+q′′(a)q′(b)q′′ fq′(a
†,a) fq′′(b,b

†)+

+ ∑
q′>0;q′′>0

(iη)q′+q′′(a†)q′(b†)q′′ fq′(a
†,a) fq′′(b,b

†)) (3.16)

Here, we can assume that at first fq′(a†,a) 6= fq′(a†a) = fq(Na), where Na = a†a is the number

operator. Let’s now check if fq(a†,a) = fq(Na). We see that (a†)mam = (a†)m−1Naam−1, for

the commutator [Na,am], so we have the expression below

[N,am] = [a†a,am] = a†[a,am]+ [a†,am]a

[a†,am]a = (a[a†,am−1]+ [a†,a]am−1)a

... (3.17)

⇒ am−1[a†,a]− (m−1)am−1a = (−mam−1)a =−mam (3.18)

Which means we have

⇒ [Na,aq] =−qaq (3.19)

Similarly, for Nb = b†b it follows

⇒ [Nb,bq] =−qbq (3.20)

And in another way, we have

([Na,aq])† = (Naq−aqN)† =−[Na,(a†)q] (3.21)
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then,

[Na,(a†)q] = q(a†)q (3.22)

and,

[Nb,(b†)q] = q(b†)q (3.23)

Returning to the term of (a†)mam

(a†)mam = a†)m−1Nam−1 = (a†)m−1[am−1N− (m−1)am−1] = (a†)m−1am−1[N− (m−1)]⇒

⇒ (a†)m−2.am−2[N− (m−1)].[N− (m−1)] = (a†)m−2.am−2[N− (m−1)].[N− (m−1)]

...

⇒ (a†)a[N− (m− (m−1))][N− (m− (m−2))]...[N−2][N−1] (3.24)

As a result, we have

⇒ (a†)mam =
m

∏
j′=1

(Na− (m− j′)) =
m−1

∏
j′=0

(Na− j′) (3.25)

Analogously for the b̂ mode, we have

(b†)kbk =
k

∏
j′′=1

(Nb− (k− j′′)) =
k−1

∏
j′=0

(Nb− j′′) (3.26)

As the dependences in fq′(a†,a) and fq′′(b†,b) are exactly in (a†)mam and (b†)kbk, we have

fq′(a
†,a) = fq′(Na) =

∞

∑
m=0

(−1)m
η

2m
m−1

∏
j′=0

(Na− j′)
m!(m+q′)!

(3.27)

and

fq′′(b
†,b) = fq′′(Nb) =

∞

∑
k=0

(−1)k
η

2k
k−1

∏
j′′=0

(Nb− j′′)
m!(k+q′′)!

. (3.28)

Now we can finally move on to the interaction picture. Considering the operators in the

Heisenberg picture with respect to the free Hamiltonian (H0), we have the interaction Hamilto-

nian

H
′
int =U0HintU0, (3.29)

where

U0 = e−iH0t/h̄ = e−iωNte−iωegσzt/2, N = Na +Nb. (3.30)

The operator N acts in the space of number states and the operator σz acts in the space of qubits

|e〉, |g〉, and so that N and σz commute. As U0 and Hint factor in different terms with dependence

on the spaces of number of excitations and qubits, we can treat these operator parts separately

and make the product between each part, as below



CHAPTER 3. CV QUANTUM COMPUTATION USING THE MOTION OF THE ION 61

• Space of number states

eiωNteiη(a†+a+b†+b)e−iωNt ⇒

+ ∑
q′>0;q′′>0

(iη)q′+q′′(a†)q′(b†)q′′ fq′(a
†,a) fq′′(b,b

†)e−iω(Na+Nb)t . (3.31)

We next use the fact that these are polynomial functions of N = Na +Nb and thus commute

with e±iωNt . In this way, we need only to consider the effect of the evolution operator over aq

and (a†)q. First we expand the term aqe−iωNat ,

aqe−iωNat =
∞

∑
m=0

(−iω)m

m!
aq(Na)

m. (3.32)

And it follows that

aq(Na)
m = aqN(N)m−1 = (Naq +qaq)Nm−1 = (N +q)aqNm−1⇒

⇒ (N +q)(Naq +qaq)Nm−2 = (N +q)(N +q)aqNm−2 = (N +q)2aqNm−2

...

aqe−iωNat =
∞

∑
m=0

(−iω)m

m!
(N +q)maq = e−iω(Na+q)taq. (3.33)

Now we need to work out the term eiωNat(a†)q. We have

eiωNat(a†)q =
∞

∑
m=0

(−iω)m

m!
(Na)

m(a†)q

Nm
a (a

†)q = Nm−1
a Na(a†)q = Nm−1

a ((a†)qNa +q(a†)q) = Nm−1
a (a†)q(Na +q)⇒

⇒ Nm−2
a ((a†)qNa +q(a†)q)(Na +q) = Nm−2

a (a†)q(Na +q)(Na +q) = Nm−2
a (a†)q(Na +q)2

...

(Na)
m(a†)q = (a†)q(Na +q)m (3.34)

So,

eiωNat(a†)q =
∞

∑
m=0

(iω)m

m!
(a†)q(N +q)m ≡ (a†)qeiω(Na+q)t

(bq′)e−iωNbt = e−iω(Nb+q′)tbq′

eiωNbt(b†)q′ = (b†)q′eiω(Nb+q)t . (3.35)

Using the results of Eq. 3.33 and 3.35, we obtain for Eq. 3.31 the expression

eiω(Na+Nb)teiη(a†+a+b†+b)e−iω(Na+Nb)t =

⇒
(

eiω(Na)teiη(a†+a)e−iω(Na)t
)
.
(

eiω(Nb)teiη(b†+b)e−iω(Nb)t
)
. (3.36)
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Hence the motional term of the Hamiltonian above in the interaction picture reads as

⇒ [ f00(a†,a;b,b†)+ ∑
q′>0;q′′>0

(iη)q′+q′′e−i(q′+q′′)ωt(a)q′(b)q′′ fq′(a
†,a) fq′′(b,b

†)+

+ ∑
q′>0;q′′>0

(iη)q′+q′′(a†)q′(b†)q′′ei(q′+q′′)ωt fq′(a
†,a) fq′′(b,b

†)] (3.37)

• For the qubit space |g〉 and |e〉 we can find

eiωσzt/2
σ
+e−iωσzt/2 =

∞

∑
m=0;n=0

(
iωegt

2

)m(−iωegt
2

)n (σz)
mσ+(σz)

n

m!n!
, (3.38)

where (σz)
2m = 1, (σz)

2m+1 = σz, σzσ
+ = σ+, and σ+σz = −σ+. We then separate the two

sums in parts with n/m being even/odd,

∞

∑
m=0;n=0

(
iωegt

2

)m(−iωegt
2

)n (σz)
mσ+(σz)

n

m!n!
⇒

⇒

(
∞

∑
m=0

1
(2m)!

(
iωegt

2

)2m

+
∞

∑
m=0

1
(2m+1)!

(
iωegt

2

)2m+1

σz

)
.σ+.

.

(
∞

∑
n=0

1
(2n)!

(
−iωegt

2

)2n

+
∞

∑
n=0

1
(2n+1)!

(
−iωegt

2

)2n+1

σz

)
. (3.39)

Identifying the sums with higher order terms in cos(ωegt/2) and terms with ±isin(ωegt/2), we

have

⇒
(
cos2(ωegt/2)− sin2(ωegt/2)

)
σ
+− isin(ωegt/2)cos(ωegt/2)σ+

σz +

+ isin(ωegt/2)cos(ωegt/2)σzσ
+

⇒ cos(ωegt)σ++ isin(ωegt)σ+ = eiωegt
σ
+ (3.40)

Thus, as conclusion of our results, we have a single sum of the Hamiltonian of interaction in

the interaction picture for two vibrational modes of the trap. The general expression is given by

H ′int =
−ih̄Ωe−iφ

2
[ f00(a†,a;b,b†)ei(ωeg−ωl)t +

+ ∑
q′>0;q′′>0

(iη)q′+q′′ei(ωeg−ωl−(q′+q′′)ω)t(a)q′(b)q′′ fq′(a
†,a) fq′′(b,b

†)+

+ ∑
q′>0;q′′>0

(iη)q′+q′′ei(ωeg−ωl−(q′+q′′)ω)t(a)q′(b)q′′ fq′(a
†,a) fq′′(b,b

†)+

+ ∑
q′>0;q′′>0

(iη)q′+q′′(a†)q′(b†)q′′ei(ωeg−ωl+(q′+q′′)ω)t fq′(a
†,a) fq′′(b,b

†)]σ++h.c.(3.41)
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3.2 CV Gaussian quantum gates over two motional modes

Due to the properties of saturation with absorption of a single quantum, the qubit promotes a

way to add and subtract phonons to motional modes. It also prevents the motional state from

reaching a fast increase of the number of excitations. We can make interesting combinations

of Hamiltonians using terms that are resonant and considering bichromatic beams to drive the

quantum dynamics [71]

Let us now explore the Hamiltonian of one and two modes separately. We will construct a

toolbox of Gaussian operations by tuning the laser radiation frequency. We also show that non-

Gaussian operations are available by employing the Hamiltonian for the blue and red sideband

transitions.

3.2.1 Single-mode Gaussian gate

The Gaussian operations are better visualized in the phase space of the Wigner function used to

describe the CV quantum system. We write Eq. 3.41 for the two mode ion-laser Hamiltonian

in a restricted form to initially consider operations acting on only one mode,

H ′int1−mode
=

(
−ih̄e−η2/2e−iφ

2

)
.

[
f0(N)e−iδ t

σ
++

+ ∑
q>0

(iη)qe−i(δ+qω)t fq(N)aq
σ
++

+ ∑
q>0

(iη)qe−i(δ−qω)ta†q fq(N)σ+

]
(3.42)

where δ = ωl−ωeg is the detuning frequency and the function fq′(a†,a) is defined by Eq. 3.27.

Expanding Eq. 3.42 explicitly, and considering first that we will focus on Gaussian operations,

for q = 0,1,2 and η up to second order, we have

Hint1−mode =

(
− ih̄Ωe−iφ

2

)(
e−iδ t

(
1− η2

2
(aa† +a†a)+ · · ·

)
+

+ e−i(δ+ω)t
(

iη− i
η3

3
a2a†− i

η3

6
a†a2 + · · ·

)
+

+ e−i(δ−ω)t
(

iη− i
η3

3
a†2a− i

η3

6
aa†2 + · · ·

)
+ e−i(δ+2ω)t

(−η2a2

2
+ · · ·

)
+

+ e−i(δ−2ω)t
(−η2a†2

2
+ · · ·

)
+ e−i(δ+3ω)t

(−iη3a3

6
+ · · ·

)
+

+ e−i(δ−3ω)t
(−iη3a†3

6
+ · · ·

)
+ e−i(δ+4ω)t

(
η4a4

5!
+ · · ·

)
+

+ e−i(δ−4ω)t
(

η4a†4

5!
+ · · ·

)
+ · · ·

)
σ
++h.c.. (3.43)
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The fact that this Hamiltonian has so many different frequencies allows us to choose a

single resonant term through the laser detuning δ . We consider a single and well defined laser

frequency and we use the expansion of the Hamiltonian in powers of η . Then, up to the second-

order approximation, we have five resonant frequencies to choose from. The evolution operators

corresponding to the resonant part of the Hamiltonian are

U(t) = exp
(
−iHintt

h̄

)
. (3.44)

The first-order term in η is resonant for ωl = ωeg and corresponds to a qubit rotation in the

Bloch sphere.

Ĥ(0) =

(
ih̄Ω

2

)(
eiφ

σ̂++ e−iφ
σ̂−
)
. (3.45)

The Hamiltonian induces a qubit transition without changing the motional state of the ion. Now,

we will describe the operations obtained and, at the end of this subsection, present a summary

of the Gaussian gates. Initially, we consider the Rotation operation in the phase space, that is

the Fourier transform. The Fourier gate introduces a number dependent phase shift in the form

|ns〉 → einθ |ns〉, where ns is the number of phonons in the mode ŝ. The Fourier transform gate

is realized by frequency ωl = ωeg, i.e. by a monochromatic laser. The Hamiltonian is given by

Hint(1) =

(
iΩh̄eiϕ

2

)(
−η2a†a

2

)
σ+ (3.46)

that is the Fourier gate F̂ = exp−iθ â†â or a rotation in the phase space, where the θ is the rotation.

We consider now the displacement operator that realizes a mode displacement ŝ. Using a

bichromatic beam with composite frequency given by δ1 =−δ2 = δ = ωs, we have

Ĥ(1)
s = ih̄Ωσ̂+

(
α̃ ŝ†− α̃

∗ŝ†
)
. (3.47)

The realization of a single-mode displacement operation requires the qubit state to be initialized

in an eigenstate of the operator σ̂+. Then applying the evolution operator from this Hamiltonian,

we obtain the D̂(α) of mode ŝ.

Another operation available to us is the squeezing operation. This gate is obtained by a

bichromatic beam with detuning δ1 =−δ2 = δ = 2ωs that produce the Hamiltonian

Ĥ(2)
s = ih̄Ωσ̂+

(
ξ̃ ŝ†2− ξ̃

∗ŝ†2
)
, (3.48)

where ξ is the squeezing parameter. Acting with this Hamiltonian on the motional state, we

have the evolution operation given by Ŝ(ξ ).
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The Gaussian operations are realized with the terms of the Hamiltonian stemming from the

second-order expansion in η . However, these terms involve not only the creation of quanta in

the vibrational modes, but also the excitation of the qubit, a feature that will produce undesirable

entanglement between them. We would like the qubit to be an expectator of the interaction,

with the sole role of mediating the coupling among the motional modes. A bichromatic laser as

shown in Tab. 3.1 solves this problem by factoring the qubit operators from the motional ones.

Next we analyze each of the possibilities of Gaussian operations.

Hamiltonian Frequency Operator

Hint(1) =
(

iΩh̄eiϕ

2

){
1− η2aa†

2 − η2a†a
2

}
σ++h.c. ωl = ωeg R̂

(
Ωteiϕ η2

4

)
Hint(2) =

(
−Ωh̄eiϕ

2

)
{ηa}σ++h.c. ωl = ωeg−ω -

Hint(3) =
(
−Ωh̄eiϕ

2

){
ηa†}σ++h.c. ωl = ωeg +ω -

Hint(4) =
(
−iΩh̄eiϕ

4

){
η2a2}σ++h.c. ωl = ωeg−2ω -

Hint(5) =
(
−iΩh̄eiϕ

4

){
η2a2†}σ++h.c. ωl = ωeg +2ω -

H
′
total = Hint(3)+ eiθ Hint(2) ωl′;ωl′′ D̂

(
iΩteiς η

2

)
H
′′
total = Hint(5)+ eiθ Hint(4) ωl′;ωl′′ Ŝ

(
Ωteiς η2

2

)
Table 3.1: Gaussian operations achieved through the application of a bichromatic beam on the Hamilto-
nian with one external degree of freedom.

3.2.2 Two-mode Gaussian gates

Let us now consider a Hamiltonian of the ion-laser interaction considering two vibrational

modes. Using the rotating-wave approximation (RWA) for two modes, we expand the gen-

eral expression given in equation 3.41, in an analogous way to the expansion of one mode.

Thus we have

H ′int2−mode
=

(
−ih̄Ωe−iφ

2

)
eη2

eiωegt
(

1+ iη(ae−iωat +a†eiωat +be−iωbt +b†eiωbt)+

+
−η2

2
(ae−iωat +a†eiωat +be−iωbt +b†eiωbt)2 +

+
−iη3

6
(ae−iωat +a†eiωat +be−iωbt +b†eiωbt)3 + · · ·

)
e−iωl σ

++h.c. (3.49)
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Right now, we will not consider the third term of the expansion, because we will explore it in

the non-linear analysis in a later section. Simplifying the expression, we have

H ′int2−mode
=

(
−ih̄Ωe−iφ

2

)(
e−iδ t

(
1− η2

2

(
aa† +a†a+bb† +b†b

))
+

+ e−i(δ+ωa)t(iηa)+ e−i(δ−ωa)t(iηa†)+ e−i(δ+ωb)t(iηb)+

+ e−i(δ−ωb)t(iηb†)+ e−i(δ+2ωa)t
(
−η2a2

2

)
+

+ e−i(δ+2ωb)t
(
−η2b2

2

)
+ e−i(δ−2ωa)t

(
−η2a†2

2

)
+

+ e−i(δ+(ωa+ωb))t
(
−η2ab

2

)
+ e−i(δ−(ωb−ωa))t

(
−η2ab†

2

)
+

+ e−i(δ−(ωa−ωb))t
(
−η2a†b

2

)
+ · · ·

)
σ
++h.c. (3.50)

In this Hamiltonian, we have a pair of phonons that is created and destroyed in each mode. The

term of nth order in η will coherently distribute n phonons between the two modes, although

the coupling strength decreases with increasing powers of ηn. The action of these Hamiltonians

can be understood in the Fock basis of the motional modes by describing the wave function in

the form of quantized excitations. We consider the Lamb-Dicke parameter up to powers of η2.

As we saw previously, Gaussian operations acting on two vibrational modes produce trans-

formations in linear combinations of modes. The bichromatic field can modify the Eq. 3.50

to produce two types of dynamics. The first Hamiltonian that we start to describe is obtained

by choosing the bichromatic radiation δ1 = −δ2 = δ = ωa−ωb, for ωa > ωb. The resulting

Hamiltonian is

Ĥ(2)
ab = h̄Ωσ̂+

(
e−iϕ â†b̂+ e−iϕ âb̂†

)
, (3.51)

as a result the beam splitter operator B̂. In the case of two-mode quantum state is initially

separable, the beam splitter dynamics entangles the modes.

The second type of quantum gate involving two modes is obtained from choosing the de-

tuning δ1 =−δ2 = δ = ωa +ωb. The resonant term generates the Hamiltonian

Ĥ(2)
ab = h̄Ωσ̂+

(
e−iϕ âb̂+ e−iϕ â†b̂†

)
, (3.52)

then as resulted we have the two-mode squeezing operator using the propagator 3.44. This pro-

duces an EPR-type entanglement between the motional modes when acting over the oscillator

ground state.

We summarize all these operations in Tab. 3.2. As we can see, we obtain Gaussian operators
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Hamiltonian Frequency (2 mode) Operator

Hint(1) =
(

iΩh̄eiϕ

2

){
1− η2

2

(
aa† +a†a

)
−η2

2 (bb† +b†b
}

σ++h.c
ωl = ωeg

R̂â

(
Ωteiς η2

4

)
R̂b̂

(
Ωteiς η2

4

)
Hint(10) =

(
−iΩh̄eiϕ

4

){
η2

2 a†b†
}

σ++h.c. ωl = ωeg +(ωa +ωb) -

Hint(11) =
(
−iΩh̄eiϕ

4

){
η2

2 ab
}

σ++h.c. ωl = ωeg− (ωa +ωb) -

Hint(12) =
(
−iΩh̄eiϕ

2

){
η2

2 ab†
}

σ++h.c. ωl = ωeg− (ωa−ωb) -

Hint(13) =
(
−iΩh̄eiϕ

2

){
η2

2 a†b
}

σ++h.c. ωl = ωeg +(ωa−ωb) -

Htotal = H13 + eiθ H12 ωl′;ωl′′ B̂
(

Ωteiς η2

4

)
Htotal = H10 + eiθ H11 ωl′;ωl′′ Ŝâ,b̂

(
Ωteiς η2

2

)
Table 3.2: Gaussian operations achieved through the application of bichromatic lasers on Hamiltonians
with two vibrational modes.

like the beam-splitter B̂
(
Ωteiς η2/4

)
, two-mode squeezeer Ŝâ,b̂

(
Ωteiς η2/2

)
, and rotations in

the individual modes R̂â
(
Ωteiς η2/4

)
, R̂b̂

(
Ωteiς η2/4

)
.

3.2.3 Non Gaussian and Gaussian operations

To produce an arbitrary CV quantum state, we need at least one of the operations to be non-

Gaussian. We have also seen that the operations of creation and annihilation of phonons of

one-mode through BSH and RSH, and the linear coupling ηs, make these terms stronger than

others in the interaction. An alternative to this is to perform the non-Gaussian operations using

resonant laser fields. Non Gaussian operations can be done with bichromatic light. In this

way, the number of phonons continues to increase, changing with the Wigner function due to

the non-Gaussian terms. In the case of two-modes, the cross function of the Hamiltonian Ĥab

allows the simultaneous creation or annihilation of phonons in each motional mode, using light

of a single frequency.

3.2.4 Generalization of Gaussian operations

Quantum Mechanics gives us aspects of information processing that could not be realized us-

ing the classical laws of information theory. For instance, it may be possible to perform an

algorithm efficiently on a quantum computer that cannot be realized in this way in a classical

computer. The Gottesman-Knill theorem [72] for qubits gives us a tool for the evaluation of

classical complexity of a given process. Firstly, the states of some quantum algorithm begin

with a computational basis and employ only a class of gates restricted to: Hadamard, Phase,
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Controlled-NOT and Pauli gates. With this, we can simulate in an efficient way the quantum

computation on a classical computer [37]. We can analyse an extension of the Gottesman-Knill

theorem to try to understand which CVQC algorithms may be efficiently simulated by a classi-

cal computer. During this section we develop a set of sufficient conditions for CVQC that can

be simulated in a classically efficient way. We will not give a complete proof in here, but we

use the stabilizer formalism in terms of their generators. Moreover, we can also connect these

elements to the idea of encoding the quantum state in CV from our Gaussian and Non-Gaussian

gates.

We will start our discussion about quantum logic from the Gaussian operations of one and

two-modes represented in CV. Thus, converting our ‘objects’ to the phase space, we have:

D̂(α) = exp
(

α â†−α
∗â
)
→ exp

(
ipX̂− ixP̂

)
(3.53)

Ŝ (ξ ) = exp
(

ξ
∗â2−ξ â†2

)
→
[
(ξ −ξ

∗)
(
X̂2− P̂2)+ i(ξ +ξ

∗)
(
X̂ P̂+ P̂X̂

)]
(3.54)

R̂(θ) = exp
(

iθ â†â
)
→ exp

(
iθ
(
X̂2 + P̂2−1

))
(3.55)

B̂
(
θ
′)= exp

(
iθ
′
(

â†b̂− âb̂†
))
→ exp

(
2iθ ′

(
X̂1P̂2− P̂1X̂2

))
(3.56)

Ŝâ,b̂ (ζ ) = exp
(

ζ

2

(
âb̂− â†b̂†

))
→ exp

[
2(ξ −ξ

∗)
(
X̂1X̂2− P̂1P̂2

)
+2(ξ +ξ

∗)
(
X̂1P̂2− P̂1X̂2

)]
(3.57)

We can now direct our attention to the operations in x̂ and p̂. For linear and quadratic Hamil-

tonians we can explore one- and two-modes Gaussian gates. We then start by generalizing the

Pauli operator X in CV as a displacement operator, and so we have

X(x) = exp
(
−ixP̂

)
(3.58)

where P̂ is the momentum operator. This adds a logic number to the state of the computational

basis, as follows

X |0〉 ≡ |0⊕1〉 ≡ |1〉 , X̂
(
x′
)∣∣x′〉= ∣∣x+ x′

〉
. (3.59)

Another important construction is the generalization of the Pauli operator Z, which can be

represented as

Z (p) = exp
(
ipX̂
)

(3.60)

This operator adds a phase to the computational states basis, as

Ẑ (p) |x〉= e2ixp |x〉 . (3.61)
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The generalizations of the Pauli operators are elements of the Heisenberg-Weyl group, which

are fundamental objects in quantum error correction, specifically in the stabilizer formalism

[73]. Furthermore, we can also interpret these elements of the group as displacement operators.

We then have

X (q) = D
(
X̂
)
, Z (p) = D

(
iP̂
)
. (3.62)

In other words, X(q) performs a displacement along the real axis and Z(p) does it along the

complex axis of the phase space. Both operators can be obtained by bichromatic beams δ1 =

−δ2 = δ =ωs of the Hamiltonian Ĥ(1)
s . These operators are noncommutative, and act as follows

X̂ (q) Ẑ (p) = e−2ixpẐ (p) X̂ (q) . (3.63)

We also have that the rotation operator given in Eq. 3.55, or the operator part Hint(1) of Tab. 3.2,

is analogous to the unitary operator that represents a Fourier transform in CV, as we can check

by

F = exp
(

i
π

4
(
X̂2 + P̂2))∝ exp

(
â†â+ ââ†

)
(3.64)

We can verify the action of F over the Heisenberg-Weyl group and the canonical operators

through a mathematical manipulation using the BCH expansion and the identity UAnU† =

UAU†UA . . .AU† =
(
UAU†)n. It follows that

FX (q)F † = Z (q) (3.65)

F P̂F † =−X̂ (3.66)

FZ (p)F † = X−1 (p) = X (−p) . (3.67)

Comparing it with the discrete case, these transformations are equivalent to the Hadamard gate

described by H, which also acts as a discrete Fourier transform. Then

HZH = X ,HXH = Z (3.68)

Following the order of relevant operations, we introduce the phase gate as follows

Φ
(
θ̃
)
= exp

(
−iθ̃

X̂2

2

)
. (3.69)

As we can see in Eqs. 3.54 and 3.55, this gate can be generated by the combination of a single-

mode squeezer and a rotation of quadratures. Its action on the Pauli operators in Eq. 3.58 and

3.60 is given by

Φ
(
θ̃
)

X (q)Φ
−1 (

θ̃
)
= X (q)Z

(
θ̃q
)

eiθ̃ ′q̂2
(3.70)
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Φ
(
θ̃
)

Z (p)Φ
−1 (

θ̃
)
= Z (p) (3.71)

or simply:

Φ
(
θ̃
)

:

X (q)→ eiθ̃ ′q̂2
X (q)Z

(
θ̃q
)
, (3.72)

Z (p)→ Z (p) . (3.73)

This gate may suggest another phase gate that is generated by a momentum quadrature, as given

below

Φp
(
θ̃
)
= exp

(
iθ̃

P̂
2

)
. (3.74)

This operator is obtained through the Fourier transform from operator Φ(θ̃) as we can see below

Φp
(
θ̃
)
= FΦ

(
θ̃
)
F †, (3.75)

which may be implemented in the ion trap. This can also be achieved from the rotation operator.

We will now move on to discuss what can be obtained from two-mode Gaussian gates. We

know from the discrete case that the CX or the CNOT gates are two of the entangling gates that

can accomplish a bit-flip X to the ‘target qubit’ that is controlled by the ‘control qubit’. In the

continuous variables version, we have

CXi j = exp
(
−iX̂i⊗ P̂j

)
. (3.76)

The expression above can also be read as (control)⊗(target). This operator displaces the position

of the momentum of the control mode, and is similar to the beam splitter gate or to two-mode

gates depending on the squeezer parameter as we can see in Eqs. 3.56 and 3.57. The action of

this gate on the Pauli operators follows as

X1 (q)→ X1 (q)X2 (q) , Z1 (p)→ Z1 (p) , (3.77)

X2 (q)→ X2 (q) , Z−1
2 (p)Z1 (p) , (3.78)

or, ĈX i j :

Xi (q)⊗ I j→ Xi (q)⊗X j (q) , (3.79)

Zi (p)⊗ I j→ Zi (p)⊗ I j,

Ii⊗X j (q)→ Ii⊗X j (q) ,

Ii⊗Z j (p)→ Z−1
i (p)⊗Z j (p)
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Another quite known operation in discrete quantum computation is the controlled-Z gate,

also called CPHASE, denoted by C-Z, which applies a phase-flip Z in the qubit target that is

controlled through another qubit. For the continuous case, we have the following equation

CZi j = exp
(
iX̂i⊗ X̂ j

)
(3.80)

which also acts on (control)⊗(target). This is a similar gate to the two-mode squeezer operation

as we can see in Eq. 3.57. This CZi j gate produce a transformation associated with Pauli

operations. We have

X1 (q)→ X1 (q)Z2 (p) (3.81)

Both conditional operations, CXi j and CZi j, can be obtained via tetrachromatic laser, with fre-

quencies: δ1 = −δ2 = ωs−ωs′ and δ3 = −δ4 = ωs +ωs′ . In addition to the fundamentals of

quantum logic, these gates have been shown to have the form of the Pauli group of the stabilizer

formalism used in quantum error correction. Thus, besides implementing a quantum logic with

our ‘Gaussian and Non Gaussian objects’ for the ion trap processor, we can also take another

step in quantum information processing: encoding of our quantum states.

3.2.5 Dynamic via commutators

In this section, we investigate how to generate the quantum dynamics via commutators of the

basic gates explored above, the aim to obtain the power of the quadrature operators and show

that it is possible to generate a polynomial Hamiltonian in the phase space, as proposed in Ref.

[8]. Using elements of our toolbox of Gaussian and non Gaussian operations we reproduced the

Lloyd proposal.

From the Gottesman-Knill theorem we obtain a large class of operations that can keep track

of the stabilizer. Thus, for a quantum computer based on continuous variables offering a speed-

up in its information processing, we need to include non Gaussian operations. We will start this

section with quadratic interaction Hamiltonians. We know that the commutator of two quadratic

functions is also a quadratic function of the quadrature operator, as we write below

[
X̂2, P̂2]= i

(
X̂ P̂+ P̂X̂

)
,

[
X̂2, P̂X̂

]
= iX̂2 (3.82)

When we determine the evolution operator in the Heisenberg picture, we solve the commutators

repeatedly via the expansion BCH. However, the elements of the commutator do not increase

the polynomial order of the quadrature operators, and thus we need operators having higher
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polynomial order in position and momentum, as we can see in the following equation

HK =
(
X̂2 + P̂2)2

∝

(
â†â+

1
2

)2

(3.83)

In this way, using the same commutators, we can generate the following polynomials having

the minimum possible degree in position and momentum required to perform universal compu-

tation. These are [
HK, X̂

]
=−i

(
X̂2P̂+ P̂X̂2 +2P̂3) , (3.84)[

HK, P̂
]
=−i

(
P̂2X̂ + X̂ P̂2 +2X̂3) , (3.85)[

HK, X̂ P̂+ P̂X̂
]
= 4i

(
X̂4− P̂4) . (3.86)

As we can see, we have polynomials of third and fourth order. This means we can explore

the nonlinear terms of the expansions in one- and two-modes of our interaction Hamiltonian

to generate polynomials with mixed Gaussian elements to verify universal computation and the

effectiveness of these generated objects.

We can explore the non Gaussian terms in more depth, making use of quantum simulations

as in Ref. [74]. However, we will now expand the terms corresponding to η3 of a two-mode

Hamiltonian as in Eq. 3.49, which are non Gaussian terms but have a reasonable coupling

strength compared to higher-order terms. With the Hamiltonian of these terms we can generate

commutators with canonical variables and obtain a reasonable polynomial to simulate quantum

computation over continuous variables. In the next tables, we have Hamiltonians in the phase

space whose commutators can be employed to generate new kinds of dynamics. We can always

build the polynomial of order k, where k has degree of at least 3, as the Hamiltonians in Tabs.

3.3,3.4. Then for
[
p3, pkxl] = ipk+2xl−1 , and

[
x3, pkxn] = ipk−1xl+2, where we generate a

monomial via these commutators of order k+1 from monomial of order k.

3.2.6 Computation

Computation with continuous variables requires Hamiltonians with higher polynomial order in

the canonical variables X̂ and P̂. Hamiltonians of this type generate a set of universal gates

which allows computation in an efficient way. Mathematically, the reason why Hamiltonian

produces linear transformations of the canonical position and momentum operators is due to fact

that the commutator [X̂ , P̂] is a constant, and that [H(X̂ , P̂), X̂ ] can create higher order position

and momentum polynomials if H(X̂ , P̂) is quadratic in its variables. To create higher order

functions of X̂ and P̂, we need Hamiltonians of at least cubic order in their canonical variables.
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Frequency Ĥ (x̂1, x̂2; p̂1, p̂2)

ωl1 = ωeg−ωa
−1
2 p3

1− p1 p2
2 +

1
2 ip2

1x1 + ip2
2x1 +

1
2 ix3

1−
1
2 p1x2

1− p1x2
2 + ix1x2

2
ωl2 = ωeg +ωa

1
2 p3

1 + p1 p2
2 +

1
2 ip2

1x1 + ip2
2x1 +

1
2 p1x2

1 +
1
2 ix3

1 + p1x2
2 + ix1x2

2
ωl3 = ωeg−3ωa

1
6 p3

1−
1
2 ip2

1x1− 1
2 p1x2

1 +
1
6 ix3

1
ωl4 = ωeg +3ωa −1

6 p3
1−

1
2 ip2

1x1 +
1
2 p1x2

1 +
1
6 ix3

1
ωl5 = ωeg−ωb −p2

1 p2− 1
2 p3

2 + ip2
1x2 + i1

2 p2
2x2− p2x2

1 + ix2
1x2− 1

2 p2x2
2 +

i
2x3

2
ωl6 = ωeg +ωb p2

1 p2 +
1
2 p3

2 + ip2
1x2 + i1

2 p2
2x2 + p2x2

1 + ix2
1x2 +

1
2 p2x2

2 +
i
2x3

2
ωl7 = ωeg−3ωb

1
6 p3

2−
i
2 p2

2x2− 1
2 p2x2

2 +
i
6x3

2
ωl8 = ωeg +3ωb −1

6 p3
2−

i
2 p2

2x2 +
1
2 p2x2

2 +
i
6x3

2
ωl9 = ωeg +(ωa +2ωb) −1

2 p2
1 p2− i

2 p2
2x1− ip1 p2x2 + p2x1x2 +

1
2 p1x2

2 +
i
2x1x2

2
ωl10 = ωeg +(ωa−2ωb) −1

2 p2
1 p2− i

2 p2
2x1 + ip1 p2x2− p2x1x2 +

1
2 p1x2

2 +
i
2x1x2

2
ωl11 = ωeg +(2ωa +ωb) −1

2 p2
1 p2− ip1 p2x1 +

1
2 p2x2

1−
i
2 p2

1x2 + p1x1x2 +
i
2x2

1x2

ωl12 = ωeg +(2ωa−ωb)
1
2 p2

1 p2 + ip1 p2x1− 1
2 p2x2

1−
i
2 p2

1x2 + p1x1x2 +
i
2x2

1x2

ωl13 = ωeg− (2ωa−ωb) −1
2 p2

1 p2 + ip1 p2x1 +
1
2 p2x2

1−
i
2 p2

1x2− p1x1x2 +
i
2x2

1x2

ωl14 = ωeg− (2ωa +ωb)
1
2 p2

1 p2− ip1 p2x1− 1
2 p2x2

1−
i
2 p2

1x2− p1x1x2 +
i
2x2

1x2

ωl15 = ωeg− (ωa−2ωb)
1
2 p1 p2

2−
i
2 p2

2x1 + ip1 p2x2− 1
2 p1x2

2 +
i
2x1x2

2 + p2x1x2

ωl16 = ωeg− (ωa +2ωb)
1
2 p1 p2

2−
i
2 p2

2x1− ip1 p2x2− 1
2 p1x2

2 +
i
2x2

1x2− p2x1x2

Table 3.3: Two-modes non-Gaussian gates over continuous variables using a monochromatic laser, using
terms of the η3 order. We have 16 frequencies to select a polynomial Hamiltonian of higher order in
x̂ and/or p̂, which is a good situation to generate some interesting commutators for the simulation of
quantum computation over continuous variables.

Repeated commutators generate an ever higher order polynomial in position and momentum, as

required. Thus, in a general form, we can perform a quantum computation as follows

|X1, ...,Xn〉 x→∑
k

ck |X1, ...,Xn; f (X1, ...,Xn)〉 x (3.87)

where |ck|2 is the probability. An evolution operator UF can be generated for a large polynomial

F described by multiple variables over CV,

UF = exp
[
−iF

(
X̂1, . . . , X̂N ; P̂1, . . . , P̂N

)]
(3.88)

This unitary transformation can be decomposed in a linear sequence, quadratic and higher or-

der interactions. The biggest difficulty is to find the ‘F’ polynomials of interest to quantum

computation, and this is a current topic of research.

Now, we have all the ingredients for our CVQC scheme: we have the single-mode Gaussian

gates, such as the Heisenberg-Weyl gates, the two-modes entangling gates such as the CX and

the CZ gates, besides the non Gaussian gates that are based on a Kerr nonlinearity that forms a

set of universal gates for quantum computing.
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Frequency Ĥ (x̂1, x̂2; p̂1, p̂2)

ωl1 +ωl2 ip2
1x1 +2ip2

2x1 + ix3
1 +2ix1x2

2
ωl3 +ωl4 −ip2

1x1 +
1
3 ix3

1
ωl5 +ωl6 2ip2

1x2 + ip2
2x2 +2ix2

1x2 + ix3
2

ωl7 +ωl8 −ip2
2x2 +

i
3x3

2
ωl9 +ωl10 −p2

1 p2− ip2
2x1 + p1x2

2 + ix1x2
2

ωl11 +ωl12 −ip2
1x2 +2p1x1x2 + ix2

1x2

ωl13 +ωl14 −ip2
1x2−2p1x1x2 + ix2

1x2

ωl15 +ωl16 p2
1 p2− ip2

2x1− p1x2
2 + ix1x2

2

Table 3.4: Two-modes non-Gaussian gates over continuous variables using bichromatic lasers, using
terms of the η3 order. The polynomial Hamiltonian is realized via the composition of frequencies.

However, putting all gates together in a practical quantum computer is quite challenging,

due to the many squeezers and noise of the Kerr nonlinearities. One way to try to work around

this issue would be if we could put off the use of the Kerr nonlinearities to the final step, just

before the measurement of the modes[75].

3.2.7 Schwinger map

To construct the algebra of quantum angular momentum, operators associated with two har-

monic oscillators can be used to build the raising and lowering operators according to the map

Ĵ+ = â†b̂ and Ĵ− = âb̂†. The z-component of the angular momentum vector is expressed by

the operator Ĵz =
(
â†â− b̂†b̂

)
/2. Each eigenvalue of the total angular momentum squared Ĵ2

corresponds to the total number N = na + nb of phonons accessible in the two modes. The

eigenstates of Ĵ2 can be represented by an angular momentum vector over a sphere whose poles

are the eigenstates |N〉 and |−N〉 of Ĵz.

When possible, the two-mode quantum operations described before can be conceived as the

manipulation of such angular momentum vector. Although most frequently the two-mode mo-

tional quantum state will not obey na+nb = N in a superposition of Fock states, the Schwinger

map can be useful to treat the beam splitter operation, because it conserves the total number of

excitations in the two modes.

If we describe our Gaussian gates in a conformal field theory in two dimensions we can also

associate to it an algebra of quantum angular momentum using the Virasoro algebra.
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3.3 CVQC Toolbox of a single trapped ion

Now, we have obtained a set of basic operations through the ion-laser interaction Hamiltonian

for our system of a single ion confined in a Paul trap. With this in hand, we can control the

external modes of this quantum oscillator choosing certain frequencies and relative phases in the

addition of the Hamiltonians, i.e. with distinct frequencies we have distinct Gaussian operations

which are our quantum gates for a system over continuous variables. We can generalize these

operations of one and two modes of the trap to obtain a toolbox with these gates. Fig. 3.2 shows

that adding the Hamiltonians with distinct frequencies allows us to obtain Gaussian operations.

Figure 3.2: The toolbox of Gaussian operations is obtained by a manipulation of vibrational states of a
single trapped ion. The desired quantum gate is selected choosing the radiation frequency. All Gaussian
gates require bichromatic radiation with δ1 = −δ2 = δ , with the exception of the Fourier transform.
Possible values of the detuning frequency correspond to any of the vibrational frequencies ωs (continuous
lines), double of those frequencies (dashed lines), subtraction (dotted lines) or sum (dashed dot lines) of
pairs of frequencies. The corresponding quantum operations are displacement D̂s, squeezer Ŝs, beam
splitter Îss′, and two-mode squeezer Êss′ , respectively, where s,s′ ε {a,b,c}.

In Fig. 3.2 we have depicted the Gaussian operations together with the bichromatic laser

detuning required for its performance. The obtained single-mode quantum gates are: displace-

ment D̂s, squeezer Ŝs, and Fourier gate F̂s. Considering the correspondence between gates and

frequencies, we have

δ1 =−δ2 = ωs : D̂s,

δ1 =−δ2 = 2ωs : Ŝs,

δ = 0 : F̂s.

(3.89)

Considering now two-mode operations, we have as quantum gates: the beam splitter Îss′ , the

two-mode squeezer Êss′ , and two of the conditional operations Ĉ(1)
ss′ , Ĉ(2)

ss′ . Thus, these operations
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require the frequencies

δ1 =−δ2 = ωs−ωs′ : Îss′,

δ1 =−δ2 = ωs +ωs′ : Êss′, δ1 =−δ2 = ωs−ωs′

δ3 =−δ4 = ωs +ωs′
: Ĉ(1)

ss′ , Ĉ(2)
ss′ .

(3.90)

In summary, one of the quantum gates makes use of a monochromatic beam (Fourier gate F̂s),

four require bichromatic radiation (displacement D̂s, squeezer Ŝs, beam splitter Îss′ , and two-

mode squeezer Êss′), and two use tetrachromatic radiation (the conditional operations Ĉ(1)
ss′ , Ĉ(2)

ss′ ).

The different operations are selected by the laser detuning frequency δ in such a way as to

keep the off-resonance terms of the Hamiltonian small. Our architecture requires frequencies

ωs, ωs′ , 2ωs′ , 2ωs, ωs−ωs′ and ωs+ωs′ to be well defined and sufficiently separated. In general,

12 frequencies are available. The Lamb-Dicke parameter can be used to control some of the

quantum gates, for instance the Fourier transform F̂s. With this control, it is possible to decrease

undesired interactions of the modes if we employ radiation in a suitable direction.

In our work, we considered a single trapped ion modeled as a quantum harmonic oscillator

with three independent modes. These vibrational modes are dropped in the ‘CZ paradigm’.

However, they were explored in our construction to increase the available Hilbert space and the

size of the quantum system.

The size of the Hilbert space associated with each mode is limited by the trap potential,

which makes the distance between the Fock states’ energy levels dependent of the phonon num-

bers. Therefore, we can estimate the performance of the ion trap motional modes. Considering

electrode distances of the order of 1 mm we can have approximately 100 phonons according to

[76]. Thus, the available Hilbert space in the vibrational modes would be D ≈ (100)3 ∼ 106.

The necessary number of qubits to produce a Hilbert space of the same dimension in the CZ

paradigm would be N ≈ log106/ log2≈ 20.

In conclusion, in this M.Sc. thesis we propose an alternative route to help mitigate the

scalability problem in the ion trap processor. The degrees of freedom of a single trapped ion

give us a configuration space with a size restricted by the non-linearities of the trap potential.

For instance, if we consider a vibrational frequency ωs≈ 106 Hz, the ion wave function occupies

a physical volume V ≈ 103 nm. Thus, this implies that the linear dimension of the ion wave

function would be given by l =
√

N +1xs and the physical volume by V ≈ (N +1)
3
2 V0, where

Vo = xaxbxc is the volume of the ground state wavefunction. The ratio between the size of the
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Hilbert space and the volume occupied by a single ion is ≈ N32/V0 for N >> 1. Furthermore,

we can ensure that switching to CVQC would increase the available Hilbert space in the current

ion trap processor making it better than the previously explored limits and giving it a small

increase in complexity.



Chapter 4
Conclusion and outlook

“It is not knowledge, but the act of
learning, not possession but the act
of getting there, which grants the
greatest enjoyment. When I have
clarified and exhausted a subject,
then I turn away from it, in order to
go into darkness again; the
never-satisfied man is so strange if
he has completed a structure, then
it is not in order to dwell in it
peacefully, but in order to begin
another. I imagine the world
conqueror must feel thus, who,
after one kingdom is scarcely
conquered, stretches out his arms
for others.”

Letter to Bolyai, 1808, by Carl
Friedrich Gauss.

In this M.Sc. thesis, we developed a toolbox of quantum gates to manipulate the vibrational

modes of trapped ions. We have provided the conceptual tools to realize one- and two-mode

Gaussian quantum operations as well as non-Gaussian single-mode operations.

Our trap has a single atom that is irradiated with a classical laser field, tuned to different

frequencies. The most interesting part is that we obtain distinct gates just by the control of the

frequency of the laser, i.e. by manipulating the external degrees of freedom of our system and

coherently manipulating the ion.

We showed that with this toolbox, we can realize operations of quantum computation over

continuous variables, such as the Fourier transform, the CNOT and CPHASE gates. Bringing

together the Gaussian and non-Gaussian terms, we show that it is possible to simulate quantum

computation over CV from commutators that generate polynomials with a degree higher than

78
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three, in momentum or position operators. We explored more deeply the behavior of non-

Gaussian terms for one and two modes of the interaction Hamiltonian. We showed, that our

gates can also be written as generalized Pauli matrices, and so we obtain Weyl-Heisenberg

operators that are objects of the Pauli group used in the stabilizer formalism. Thus, with these

elements of the Pauli group, we can construct codes to encode our system.

We could still try to further develop the theoretical developments to construct quantum error

correction codes over CV in quantum topology making use of the AdS/CQE theory [77].

We could also try to connect our tools with the protocols of relativistic quantum information.

We know that there are some papers showing gates over CV for CQED systems, which are used

to explore some aspects of the interface between quantum information and relativity [78]. The

problems of relativistic quantum information have been gaining enormous interest due to fact

that we could in principle realize simulations of relativistic effects via controlled systems, in

particular in a single trapped ion [79, 80, 81].

It is also conceivable to simulate the Dirac’s equation in N dimensions by controlling the

motional degree of freedom. In particular, we may consider our ion in the Paul trap as being in

an anisotropic and/or isotropic space and explore the Hamiltonians that were investigated in this

work. With this, we could try to make the necessary adjustments needed to get the Dirac equa-

tion, which would allow us to analyze important physical effects, such as the ‘Zitterbewegung’

and Klein’s paradox, in different situations. The implementation of these quantum simulations

using the Dirac dynamic in a single trapped ion should initially use the electronic internal states

coupled to two motional degrees of freedom.

Being able to simulate a Hamiltonian in the Dirac dynamics, we could still study the in-

crease of the ion effective mass starting by gradually increasing the coupling strength to try to

understand its relation with the spontaneous symmetry breaking mechanism of the Higgs field

[79].

Another idea that we could explore is the complexification of the Fock’s space in the formu-

lation of path integrals. To do this we would need to use a conformal field theory in 2-D as a tool.

We might use our Gaussian toolbox to describe our objects by the formalism of vertex opera-

tors for coherent states. Thus, we may make the operator primary expansion (OPE’s) between

the vertex operators (Gaussian operators) and the vertex operator and tensor momentum-energy

for bosons and fermions. Using the Verma vertex through an expansion in (OPE’s), we could

analyse the Gaussian parameters and connect them with the cosmological constant expansion
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of the universe. Besides, we could try to generate the central charge ’c’, a very important theme

to study the entanglement entropy of systems with finite dimension. Thus, we could compute

the entropy of our system in distinct geometries [82, 83].
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