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ABSTRACT

Bell functions are known by the central role played on the characterization of non-locality
in quantum theory. They are often used in the quantification of the non-locality strength
for specific quantum systems by calculating their maximum among all possible states and
detector’s configurations. However, even if two quantum states present different “non-
local density configurations” (States with different contributions of detector configurations
that generate non-locality), if these display the same value for the maximum of Bell
function, then they are considered equally non-local. Making use of this criteria, Acin et
al. (Phys. Rev. A 65, 052325, 2002) found that for gunits (Joint states of d-dimensional
quantum systems), the maximally entangled state does not match with the maximally
non-local state, this is known as an anomaly of quantum non-locality (Méthot & Scarani;
Quant. Inf. Comput. 7, 157, 2008).

In order to solve the anomaly problem, in this dissertation it is proposed a non-
locality strength measure in which the whole contributions of detector’s configurations
that give rise to non-locality are taken into account. Such a measure is proportional to
the Bell function integration over the violation region on the space of the parameters that
characterize the detector’s configuration (Usually, relative angles between orientations of
detectors).

The non-locality strength was calculated for several two and three-level bipartite sys-
tems, with and without a contribution of white noise to the whole state of the system,
by using three kinds of Bell inequalities: Bell inequality in its original version, CHSH
inequality and GCLMP inequality (Acin et al. 2002). In all the cases, it was observed
agreement between maximally entangled states and maximally non-local ones, thus solv-
ing the problem of anomaly of non-locality.

Keywords: Quantum Non-Locality. QuNit Systems. Non-Locality Anomaly.



RESUMO

As funcoes de Bell sao conhecidas pelo papel central desempenhado na caracterizagao da
nao localidade da teoria quantica. Usualmente sao empregadas na quantificacao do grau
de nao localidade de sistemas quanticos especificos através do calculo do seu valor méaximo
entre todos os possiveis estados e configuracoes associadas aos detectores. No entanto,
embora dois estados quanticos tenham diferentes “densidades de configuracao nao lo-
cal” (Estados com diferentes contribuigoes de configuragoes associadas aos detectores que
geram nao localidade), se eles possuem o mesmo valor do méximo da fungao de Bell, entao
sao considerados igualmente nao locais. Usando este critério, Acin et al. (Phys. Rev.
A 65, 052325, 2002) encontraram que para qunits (Estados de sistemas quanticos con-
juntos d-dimensionais), o estado maximamente emaranhado nao corresponde ao estado
maximamente nao local, fato que é considerado como uma anomalia da nao localidade
da teoria quantica (Méthot & Scarani; Quant. Inf. Comput. 7, 157, 2008).

A fim de resolver o problema da anomalia, nesta dissertacao é proposta uma medida
do grau de nao localidade, na qual sao tomadas em conta todas as contribui¢oes de con-
figuracoes dos detectores que geram nao localidade do estado. Tal medida é proporcional
a integral da funcao de Bell na regiao de violacao, no espago dos parametros que carac-
terizam as configuragdes (Em geral angulos relativos entre orientagoes dos detectores).

Foi calculado o grau de nao localidade de vérios sistemas de dois e trés niveis, com e
sem uma contribuicao de ruido quantico ao estado, usando trés tipos de desigualdades de
Bell: A desigualdade na versao original, a desigualdade CHSH e a desigualdade GCLMP
(Acin et al. 2002). Em todos os casos estudados foi observada concondancia entre o
estado maximamente emaranhado e o estado maximamente nao local, resolvendo assim
o problema da anomalia da nao localidade.

Palavras-chave: Nao-Localidade Quantica. Sistemas QuNit. Anomalia de Nao Local-
idade.
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CHAPTER 1

INTRODUCTION

Entanglement is the concept behind some of the most bemusing features of quantum

mechanics. In spite of this, it alone may be seen as a purely mathematical concept: the

failure of a vector in a large Hilbert space H to be represented as a single tensor product of

vectors in smaller spaces H;, that together form H = @H,. As a result of intense research
1

in the field, it is presently clear that there is no unique way to quantify entanglement. In
this sense its manifestations or effects, as for example, non-locality, are more concrete (or
even meaningful) from a physical perspective. Put differently, entanglement happens in
Hilbert spaces while non-locality manifests itself in our ordinary (3+1)D-space. It seems,
therefore, that the pursuit of measures to quantify non-locality is a task worth of some
effort. There is little dispute, if any, on the fact that entanglement and non-locality are
different resources. This consideration, however, has been pushed to a point that may
not correspond to the actual state of affairs, as it is suggested in this dissertation.

Although different quantities, there are two desirable properties that candidates to
quantifiers of entanglement and non-locality should have in common. First, (i) maximally
entangled and maximally non-local states should coincide, and in addition, (ii) as we can
attach a number to a state |¥) to estimate its degree of entanglement, given a particular
experiment one should be able to refer to the amount of non-locality embodied by |¥)
regarding that experiment with no direct mention to particular settings (“tracing out”
settings).

In an essay in honor of Abner Shimony, Nicolas Gisin give a list of open questions
related to Bell inequalities [2]. The one most directly related to the present work is “Why
are almost all known Bell inequalities for more than 2 outcomes maximally violated by
states that are not maximally entangled?”. This means that, by adopting the maximum
of Bell functions as quantifiers of non-locality, condition (i) in the previous paragraph is
not fulfilled. This problem has been often mentioned and studied in the literature, in
some cases, it has been refereed to as an “anomaly” [3].

In this dissertation we propose a new way to quantify non-locality that accounts for
properties (i) and (ii), thus, eliminating the alleged anomaly in the non-locality of two
entangled three-level systems.

In chapter 2 it is given a brief review about the development of the concept of non-
locality in quantum mechanics from the EPR paradox, passing through Bell’s theorem
and inequalities to recent experimental confirmations.

Chapter 3 is devoted to present some progresses concerning the problem of non-
locality in high-dimensional bipartite systems, the Bel-CGLMP inequality and the non-
locality anomaly as one of its consequences.

In chapter 4 our proposal to quantify non-locality is presented and some results on
bipartite spin—% entangled systems are discussed.

13



14 INTRODUCTION

In chapter 5 the main result is exposed. It is shown that, by applying our quantifiers
(egs. 4.1 and 4.2), no conflict between maxima of entanglement and non-locality appears.
This seems to indicate a quite plausible solution to the so-called non-locality anomaly.

Finally, in chapter 6 conclusions and future perspectives of the present dissertation
are given.



CHAPTER 2

EPR PARADOX AND BELL INEQUALITIES

2.1 THE EPR ARGUMENT

In 1935 Albert Einstein, Boris Podolsky and Nathan Rosen [4] (hereafter EPR) pub-
lished an elegant set of arguments which led them to conclude that quantum theory is
incomplete.

The EPR’s discussion begins with two requirements which, according to them, must
be satisfied by a physical theory:

e Correctness, referring to the agreement between predictions of a theory and results
of experiments (In the domain of validity of the theory). And

e Completeness, in the words of EPR: “Fuvery element of physical reality must have
a counterpart in the physical theory”.

Then, a definition of what they mean by element of physical reality is given, which
amounts to a quantity that is not changed by a measurement and whose outcome
can be predicted with certainty (with probability equal to unity).

Finally, the principle of locality is assumed: There is no action-at-a-distance in
nature [5].

2.1.1 The Bohm Version

In the EPR paper, a treatment using operators of position and momentum is carried out,
but a more convenient way to illustrate the EPR points of view is to employ a set of
operators with a discrete-finite set of eigenvalues, such as the spin angular momentum
operators, as argued by David Bohm and Yakir Aharonov?![6].

The system considered by Bohm and Aharonov consists of a stationary spin-zero
particle decaying in two entangled spin—% particles?, each one in turn moving towards
two opposite observers, say Alice and Bob as usual. Assuming that the total angular
momentum of the system is conserved and that there is no spin-orbit interaction, the
quantum state of the system |¥) may be written as:

W) =2) @ [x),
where |®) is the orbital (symmetric) part and |x) is the spin (antisymmetric) part of the
wave function. The latter is known as singlet state and is given by:
1

X) 7

IFurthermore it represents the first experimental proposal to test the validity of the EPR hypothesis.
2For instance a pion 7° decaying into an electron e~ and a positron e.

)1 @|=)2 = [=)1 @ [+)a],

15



16 EPR PARADOX AND BELL INEQUALITIES

here, |1); expresses an eigenvector of the k particle spin operator in the z direction Sgk)
(a'gk)), with associated eigenvalue 2 (£1).

For simplicity it can be written as:

1
\X>:ﬁ[|+—>—\—+>]- (2.1)

Moreover the singlet state is spherically symmetric, then it is invariant under the
action of a rotation Dj; to an arbitrary direction n:

) = hoa = Dal) = % 04 —a— | =+l

thus, if Alice carries out a measurement of SS), its outcome will always be opposite to

that obtained by Bob when he measures S f) .

Given that Alice, e. g., can switch the orientation of the detectors at any moment
before the measurement on the particles® (for instance S(;) — Sg)) and since no matter
her choice, the corresponding quantity for Bob must be determined, in the sense of EPR,
it is possible to attribute elements of physical reality to the operators Sg) and 55@2)
simultaneously.

However quantum theory predicts that observables associated with operators which

do not commute cannot be known simultaneously (in our case [Sg), 522)] # 0), or in

other words cannot have elements of physical reality simultaneously.

This contradiction led EPR to conclude that quantum theory does not provide a
complete description of nature and opened the question of the possibility of construction
of a more general and complete theory.

2.2 BELL THEOREM

In analogy to the relation between statistical mechanics and thermodynamics, many of
the attempts made to find a generalization of quantum theory were based on hidden
variables descriptions in which, besides the standard quantum mechanical state, there
should exist a set of additional unknown variables [7, 8]. These hidden variables were
supposed to contain the whole information about measurements and outcomes in order
to eliminate the apparent action at a distance emerged in EPR’s paper. Furthermore,
quantum theory must arise as an average of the general theory over all possible states. A
very pedagogical example and more details about hidden variables can be found in [9].

In order to deal with the problem of the completeness of quantum theory, John Bell
in 1964, using a hidden variable scheme, proposed a set of constraints that must be
satisfied to ensure locality of quantum theory. These constraints are known today as
Bell’s inequalities [10].

In his work, Bell considers a system consisting of two spin—% particles in the singlet
state, moving apart in opposite directions towards two separated observers Alice and

3This time may be arbitrarily small in order to ensure that there will be no transport of information
about the orientation shift between the apparatus and the other particle.



2.2 BELL THEOREM 17

Bob, each one equipped with a device to measure the spin component associated to
the particles Sél) and Slgz), when their devices are orientated in the directions a and b
respectively.

A condition of determinism is implicitly introduced within a parameter A that char-
acterizes the set of hidden variables* in such a way that the knowledge of this parameter
determines the outcome of any measurement performed by Alice or Bob. Without loss of
generality, consider A as a continuous parameter within a space of allowed states A. On
this, a distribution function p(\) may be defined to specify the probability of the state
of the system to lie on the interval [\, A + d\]: dp = p(X)dA, and is normalized:

/Ap()\)d)\://\dp: 1.

According to this description, the result C' of a measurement of any observable, in
addition to the dependence on variables related with internal settings of the detector a,
must depend on the value of the parameter A\, then the mean value E¢ of the observable
is given by:

Ec(a) :/AC(a, A)p(A)dA.

Similarly, in the case of normalized spin operators (or Pauli matrices), A(a, ) = &1
and B(b,\) = £1:

EA(d)—/Ap(A)A(d, A)dA, (2.2)
and:

Bo(b) = [ o) BN (2.3

A second condition takes into account the independence of the results of the measure-
ment on each part of the system, or locality. Following this implication, the result of a
measurement of the component of spin in an arbitrary direction by Alice A(a, A) depends
only on the orientation of her Stern-Gerlach device a and on the value of the hidden
variables A\, and is completely independent on the orientation of the Bob’s apparatus b.
As in the case of only one observer (Equations 2.2 and 2.3), the mean value of a joint
measurement carried out by Alice and Bob is given by:

E(a,b) = /A p(N) A(a, \)B(b, \)dA.

E(a, l;) is also known as correlation between measurements on the particles 1 and 2
when the detectors associated with Alice and Bob are oriented in the directions a and 5,
respectively.

If Alice and Bob perform a measurement on a system in the singlet state and their
detectors are orientated in the same direction (i.e. @), it is said that the spin components

are perfectly anti-correlated:
A(a,\) = —B(a, \).

4This set of hidden variables may be composed by only one variable or as many as required by the
theory and can be discrete or continuous.
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Using the fact that A(a, A\) = £1 and the normalization condition for the distribution
function of hidden variables p()), the correlation takes the form:

E(a,b) = /A p(N)A(@, \)B(b, \)d\ = — /A p(N)A%(a, \)dA,

Bla.b) = - [ pix

E(a,b) = —1.

Now suppose that Alice fixes the orientation of her measuring device on the direction
a while Bob has two choices b or ¥, then:

~

E(a,b) — E(a,i) = — /A p(\) [A(a, NA®D,A) — Aa, A, )\)] d),
E(a,b) — E@a,i) = — / p(N)A(a, N A(b, \) {1 — A, )\)A(IS’,A)] d),

E(a,b) — E@a, ) = / p(N)A(a, \)B(b, \) [1 + A(, /\)B(B’,A)] d.

Here it has been used the fact that A= (7, \) = A(n, \).
Two well behaved functions f(x) and g(z) in D, satisfy the following inequality:

Lﬂmmwm

gLvmmwmm

then:

/A p(N)A(a, \)B(b, \) [1 + A, NB(, A)} d)\' ,

g//\‘p(A)A(d, N B(b, \) [1+A(3,/\)B(5’,)\)”d)\,

g/A’A(a,A)B(é,A)Hp(A) [1+A(6,A)B(l§’,)\)”d)\,

) - E(&7l;,)

&
—

Q>

(=R

S/A’p()\) [1+A(6,A)B(6’,A)HdA,

\E(a, b) — E(a, V)| < 1+ B, ). (2.4)

This is the Bell Inequality in its original form, or first Bell inequality and must be
satisfied by any set of correlations resulting from a local hidden variables theory.
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2.2.1 Correlations Predicted by Quantum Theory

In order to test whether quantum theory predictions agree with Bell’s inequalities, it is
necessary to calculate quantum correlations between measurements performed by Alice
and Bob when their detectors are orientated in the directions a and 13, respectively. It
is equivalent to calculate (¢ - a ® & - l;) p, Where & is a vector whose components are the
Pauli matrices and p is the density operator of the system.

In the case of one-particle system, any operator A can be written in the Dirac notation

as:
A= Ay Im)(nl,

where A,,, are the matrix elements of the operator A in the basis {|m)}.
In the two-particle case:

A® B = Z ApnBia|lm)(n| @ [m) (i,

more compactly:

A X B = Z Am,nBﬁL,ﬁ|m7 ﬁl> <7’L, ﬁ|

m,n,m,n

Similarly, an arbitrary two party density operator can be expressed as:
pP = Z pj,k,j,l;|j7 k><]7 k|
j7k737];
The mean value of A ® B on a system characterized by p is given by:

(A® B), =Tr (pA® B),

(A®B), =) (IllpA® BJl,I),

1]

<A®B>p = Z pj7k,j,]}Am,ann,ﬁ<lal~|j7 k)(},%\m,ﬂ)(n,ﬁﬂ,D,

3k, 3 kL mni, R

(A® B), = Z Pj x5k AmnBing 00507 105 1m0k 7001057

j7k737];’:7l7i7m7n7m7/ﬁ
(A® B)p = E pl,l”,m,mAm,le,Z :
LlLm,m

Applying this result, the quantum correlation between measurements of spin, per-
formed by Alice in the direction a and Bob in the direction b, F(a,b) takes the form:

E<d7 b) = <6: a®o - b)P = Z pl,f,m,masz,laf*nj ) (25)

l,l~,m,ﬁ1
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where o7, ; are the matrix elements of the projection of the vector of Pauli matrices & in
the direction 7, in the basis {|+),|—)}:

&-ﬁ:( = ”z_"’y). (2.6)

Ng + 1Ny —n,

The density operator of a system composed by two spin—% particles in the singlet state

in the basis {| ++),[+ —),| = +),| — —)} is given by:
0 0 0 O
0 = -0
p= 2 2
0 -2 1+ 0
0 0 0 0

Substituting, the quantum correlation takes the form:
E(a,b) = pr-05,0" +p 0 oh Hp ot ol +p o0t o,
then:
E(a,b) = —azb, —ayb, —ab, = —a - b,
E(a,b) = — cos O, (2.7)
where 6, is the angle subtended by the unitary vectors a and b.
Thus, quantum correlations for a system on the singlet state depend only on the rela-
tive orientations of the involved detectors. For a particular choice of coplanar orientations

in which the unitary vector a forms an angle of § with b and %” with ¥/ , Bell’s inequality
becomes:

1
‘ <1 5 or 1< 2!

Thus, quantum correlations do not always satisfy Bell’s inequality.

This result constitutes the proof of a first version of Bell’s theorem [5]: No determin-
istic hidden-variables theory that admits perfect anti-correlations, satisfying a locality
condition can agree with all predictions by quantum mechanics concerning the spins of a
pair of spin—% particles in the singlet state.

Although some stages in the construction of Bell theorem are grounded on idealized
conditions®, it constitutes an experimental scheme to follow in order to decide between
quantum theory and local hidden-variables theories to deal with the EPR paradox.

2.3 CHSH INEQUALITY

In a seminal work, John F. Clauser, Michael A. Horne, Abner Shimony, and Richard A.
Holt [11](Herafter CHSH), keeping assumptions of locality and determinism and dispens-
ing with the condition of perfect correlations, obtained a more general version of Bell’s
inequality. Here, the original proof of the inequality will not be shown. Instead, it is
presented a version due to John Bell [12]:

5The perfect anti-correlation requirement implies the existence of detectors with an efficiency of 100%
and zero attenuation.
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2.4 SECOND BELL INEQUALITY

As in the first version, the system is composed by two entangled spin—% particles traveling
away one from each other towards two observers Alice and Bob, each of them equipped
with measuring devices that are capable of measuring spin’s component along the direc-
tions a and 13, respectively.

The state of measuring devices must be taken in consideration, since it may affect the
correlations. Thus, values of outcomes A and B are averaged over hypothetical variables
related to the measurement instruments, so the averaged outcomes A and B are no longer
binary quantities, but continuous between —1 and 1. It is important to note that the
possibility of no detection (A =0 or B = 0) is also allowed.

Following the notation used in the first Bell inequality, correlations may be written
as:

—_ A

E(a,b) = /A p(N)A(a, \)B(b, \)dA.

The locality condition is again taken into account, while this is not the case for
determinism because of the randomness implicit in A and B.

Let @’ and V' be alternative orientations of the Alice and Bob detectors respectively,
then:

E(a,b) — E(a, V) = / p(\) [A(a, AN B(b,\) — A(a, B, \)| dA (2.8)

A
For simplicity, let:

A

B(b,\).

A, = Aa, N and By
Adding and subtracting £A, B, Ay By in equation 2.8 and taking the absolute value:

)E(a, b) — E(a,b)| = / p(N) {AuBy[1 £ Ay By] — A.By [1 £ Au By} dA‘ .
A

Using the property |a — b| < |a+b| < |a| + |b]:

‘E(&, B) — E(d, b/) § / p()\)AaBb [1 + Aa/Bb/] d)\‘ + / p(/\)AaBb/ [1 + Aa/Bb] d)\‘ .
A A
As:
‘ [ t@as| < [ 1@ s
p(A) =0
and:
|A.By| <1,
then:

S /Ap()\) [1 + Aa/Bb/] d\ + /Ap()\) [1 + Aa/Bb] d)\,

‘E(d, b) — E(a,0)| <1+ E@, ) + 1+ E@,b),
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A~

(E(a, b) — E(a, )

<2 ’E(d’,?)’) + (@, D)

or more symmetrically:

E(a,b) - B(a,¥)

n ‘E(d’, V) + B, b)

< 2. (2.9)

This is the second Bell inequality and is equivalent to the expression derived indepen-
dently by CHSH ©.
Using absolute value properties on equation 2.9:

—2 < E(a,b) — E(a,V) + E(a', V) + B(d',b) < 2. (2.10)

Due to its irreducibility, it is more common to find texts in the literature referring to
equation 2.10 (instead of 2.9) as the Bell-CHSH inequality. This in turn may be written
as:

—2< S(a,b,a b)) <2,

where S(a, b,a, b ) is known as Bell’s parameter or Bell-CHSH function.

A simple test of compatibility between quantum predictions and CHSH inequality
may be carried out by restricting the possible orientations of measuring devices (a,a’)
and (B, v ) to a plane, placed in a set of configurations such that every pair of unit vectors
(a;, ISJ) are separated by an angle ¢, except for the corresponding to (a, v ), which form an
angle of 3. Since measurements are performed on a system consisting of two entangled
two-level particles in the singlet state, then correlations given by equation 2.7 can be
used. Substituting, the Bell-CHSH function takes the form:

S(p) = cos(3p) — 3cos(p). (2.11)

A plot of the Bell-CHSH function for this arrangement is shown in figure 2.1, it
presents two regions where Bell-CHSH inequality is violated and each of these has asso-
ciated two angles in which maximal violation is reached”.

Given that certain measurement configurations on a particular entangled state lead
to violation of Bell-CHSH inequality and in order to exclude perfect anti-correlations
and determinism conditions present in its former version, then Bell’s theorem may be
reformulated as [13]:

“No physical theory of local hidden variables can ever reproduce all of the predictions of
quantum mechanics.”

6Note that doing &’ = V' and allowing perfect anti-correlation (E(¥,6')=-1), the second Bell inequality
(equation 2.9) becomes:

‘E(&, b) — E(a,b)| +1 - E@,b) <2,

[B(a,) — B(@,B)| < +1+ B@,D),

that is the first Bell inequality, as expected.
"It can be easily shown that the extrema of Bell-CHSH function are 4+21/2 for any of the following
angle’s configurations: px = T, 3% 57 Tr

4040404
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?

Figure 2.1 (Black solid) Bell-CHSH function for a system composed by two two-level particles
in the singlet state and a coplanar set of orientations of Alice and Bob’s detectors (d,a’) and
(b, ') respectively, separated (in the next order: @ — b — @’ — V') by an angle . (Red dashed)
Regions of violation of CHSH inequality.

At that point only an experiment could give the final verdict between hidden variables
theories and quantum mechanics in the search for a solution to the EPR paradox. How-
ever, the experiment proposed by CHSH requires a two-channel detection scheme and was
carried out only in 1982, since at the time suitable devices still had not been developed.
Because of this, several alternative proposals based on single channel detection schemes
to detect polarization states of photons were formulated®. These inequalities instead of
relate correlations (like CHSH does) use the number of detection counts in each one and
both detectors.

Clauser and Horne [14] elaborated an inequality that includes inherently stochastic
theories, in which if it is used the same device configuration that was used in [11], then
CHSH inequality is obtained.

Freedman and Clauser [15] proposed an inequality with correlations of linear polar-
ization of photons in an atomic cascade of calcium. Their predicted quantum correlations
violate such inequality for sufficiently small detector solid angles and highly efficient po-
larizers. Finally, they found experimentally a strong agreement between measured and
quantum predictions.

These are known as “first generation experiments” [16] which even showing great com-
patibility between results and quantum predictions, were not taken seriously because in
the construction of the inequalities they had to make several assumptions that were far
from ideal. One of their suppositions was that the detected particles were part of a signif-
icant sample of emerging particles from the source, which was a very strong assumption.

The next generation of experiments is represented by the work of Alain Aspect and

8In this approach each arm has only one no event-ready detector, so the possible outcomes are either
count or no-count.
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colleagues [17] in which experiments following a two channel scheme to test CHSH inequal-
ity are developed. This generation of experiments again cannot be considered conclusive
because some features in their experimental arrangements are not disposed in such a way
that wrong conclusions from the results can be avoided: First, it is necessary to ensure
that information about the choice of orientation done by one of the observers cannot in
any way reach the other observer (traveling at a velocity equal or less than speed of light),
before the latter one has chosen his own orientation®. Any experiment of this kind that
satisfy such a condition is said to be free from the Locality Loophole. Second, in most of
the experiments using photons, the proportion of pairs of particles detected to emitted is
extremely low, making the experiment non-viable statistically. In order to avoid the so
called Detection Loophole, either the detection efficiencies must improve or experiments
with material particles, like in the Bohm version of EPR paradox should be carried out
8].

More recently, “third generation experiments”have been devoted to close definitely
the loopholes. In 1998 a group at Innsbruck led by Anton Zeilinger [18] performed
an experiment that closed the loophole of locality completely by putting two observers
separated far enough (~ 400 m) and using polarizers able to change their orientations
randomly as quickly as needed to ensure causal independence. Then, in 2001 the first
experiment closing detection loophole was carried out using massive entangled pairs of
9Be™ ions [19]. Each of the third generation experiments confirm the validity of quantum
theory closing one of the loopholes independently, but fail to close both simultaneously.

Recent experiments have succeeded to close the detection loophole using photons
instead of massive particles [20, 21], indicating that it will not take too long until results
of Bell test experiments appear closing locality and detection loopholes simultaneously
and definitely confirming the non-local character of quantum theory.

9Tt is equivalent to say that events in which orientations are chosen by observers must be causally
disconnected.



CHAPTER 3

CGLMP INEQUALITY AND NON-LOCALITY
ANOMALY

3.1 BELL MULTIPORT BEAM SPLITTERS

First progresses in the study of quantum non-locality used measurement schemes based on
Stern-Gerlach devices. Nevertheless, such approaches are too limited because these only
work properly for systems that are described by two-dimensional Hilbert spaces (i.e. spin
one-half particles) due to the fact that this kind of measurements are characterized by two
parameters only, thus the whole space is not exploited completely in higher dimensional
systems [1].

In order to study high dimensional systems, Anton Zeilinger and collaborators devel-
oped a scheme based on devices known as multiport beam splitters, which are arrangements
of simple optical elements, like mirrors and beam splitters [22], able to represent discrete
finite-dimensional unitary operators [23]. This scheme may be used to obtain pairs of
photons in N-dimensional entangled states (analogous to entangled states of pairs of spin-
N particles) which obey quantum correlations in the same fashion as spin—% particles do
within the framework of Stern-Gerlach measurements [24, 25].

As it can be seen in figure 3.1, the experiment is divided in three stages. A brief
description of each one of them is given in subsections 3.1.1 to 3.1.3:

3.1.1 Generation of Photon Pairs

The generation of pairs of photons is given by the process of spontaneous parametric
down-conversion [26, 27]. In this process a photon passing through a non-linear crystal
gives rise to two photons. If k; denotes the wave vector and w; the frequency associated
to the ¢-th photon, conservation of linear momentum and energy respectively may be
written as:

E{) = ];1 + l;g, (31)

Wy = w1 + Wa, (32)

D1 e e D!
D2 D2
& —®
f B A f
DN._;_ _.. D~

Figure 3.1 Experimental arrangement of Bell multiport beam splitters. Figure reproduced
from [1].

25
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where the subscript 0 denotes the decaying photon, while 1 and 2, correspond to the
produced photons. An additional condition is that the production of both photons must
be simultaneous.

If equations 3.1 and 3.2 are satisfied, a pair of photons with frequencies w; = wy = %
are generated in the symmetrical case. Schematically, the system can be seen as 3 photons
lying over the surface of a standard cone in the following manner: The decaying photon on
the vertex and the two produced in points diametrically opposite over the circumference
formed by the base of the cone. Thus, it is possible to locate a plate arranged with two
pinholes such that only pairs of photons created simultaneously are able to cross. The
quantity of pairs of diametrically disposed pinholes over the plate may be increased as
much as required, in the present case, up to the dimension of interest V.

At this point, a set of N unpaired photons is channeled and directed to an observer
(say Alice) and the remaining N unpaired photons is also channeled and sent to another
observer, Bob. Thus, the state of the system may be written as:

vy = %Nmz m)a ® m)s, (3.3)

where |m)4 represents a photon into the channel m corresponding to Alice, and with
|m) g being the analogous state to Bob.

It is important to note that this state is formally equivalent to a maximally entangled
state of two particles of spin-/N.

If, somehow, the source of pairs of entangled photons is configured in such a way that
the feeding of each one of the channels is not uniform, then the state have to be written
as:

N-1
U) =) amlm)a @ [m) 5.
m=0

For convenience, the variable corresponding to the channel number m has been changed
to range from 0 to N — 1.

3.1.2 Phase Shift

In order to introduce macroscopic parameters (like orientations of detectors in Stern-
Gerlach experiments), local adaptive phase shifters are employed over all the channels
belonging to Alice and Bob. Let the phase shifts corresponding to the m-th channel in
the devices of Alice and Bob be ¢J' and ¢;" respectively. Thus the state of a photon
passing through a phase shifter is transformed as follows:

Im) 4 — €% |m) 4,
for a photon traveling to Alice, and
Im)g — €' |m) g,

for a photon traveling to Bob.
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The state of the whole system is then transformed into'°

N-1
— |0 @) m) 4, @ |m) g,
0= )= =3 m)a @ ).
for the maximally entangled case, and:
N-1
[0) = [0) = 37 ane @A m) 4 @ fm) (3.4
m=0

for the general case.

3.1.3 Multiport Beam Splitters

A multiport beam splitter is an optical device consisting of 2N channels (/N input and
N output) able to represent any unitary discrete operation on a finite dimension by
successive application of unitary operations on two dimensional subsystems performed
by arrays of ordinary beam splitters [23, 28, 29]. A special case of multiports known
as symmetric unbiased multiport beam splitters is a very good alternative to carry out
generalized Stern-Gerlach type measurements on high dimensional systems due to its
main feature: Regardless of the gate that a photon enters, it has equal probability of
leaving from any of the N output channels'! [25].

The action of a symmetric beam splitter on a photon entering via channel m is given
by a N-dimensional discrete Fourier transform:

As it may be seen, the operator U y connects any input state |m) to all the output states
|k) with the same probability (1/N), as required.

Putting together the action of symmetric multiport beam splitters on Alice and Bob
photons:

UroUS == Z Z IR k) 4 (m|a @ 1) p(n]p.

ln 0 k,m=

10 Actually there is no need to introduce 2N phases, given that the phase is relative, only 2(N — 1)
suffice.

HNote that for the case N = 2, symmetric unbiased multiport beam splitters are reduced to conven-
tional 50-50 beam splitters.
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Simplifying notation as |a b) = |a)4 ® |b) g, then:

N-1

Z ei%(mk+nl)‘k l><m n’

k,l,m,n=0

1
UyoUy=—

The state of a pair of entangled photons after passing on phase shifters and symmetric
multiport beam splitters |¥”) is given by:

0") = Uy @ Uy|¥"),

N-1
1 . j j - 27
|0y = I ajel((f’?ﬁ‘pi)e’zﬁ(m“”l)(m nlj i)k 1),
7,k,l,m,n=0
v) = Z el AT 1)
]kl 0

Thus, quantum mechanical joint probability PaQbM(k:, [) of Alice and Bob detect a pair
of photons in the output channels k and [ respectively, given a set of phase configurations
{7, o1}, may be calculated as:

P3Y (1) = or (The @ T W) (W)

where, II, and II; are projection operators on the subspaces associated to the first and
second particle respectively. Substituting |¥”), and after some alculations, the expression
for joint probability takes the form:

2

I

N-1
1 , ;2
PR (k1) = ‘N > ajexp {z {cbé o)+ Sk + l)H

N-1

PM (k1) = ;2 3 oz]oz/exp[ {5] (k1) — g’b(/@z)H,

J,3'=0

with 87, (k,1) = @] + ol + Zj(k +1).

PAM (k1) = ;2 S oyl + Zajoz/exp[ { i (k1) — g;(k,z)H,

Jj=0 J#J’
1 g N1 . .
PR (kD) = <5 + ~5 D Rlayaj) cos (,ng(k, ) — 3 (k, z)) ,
or:

12 . L
P (k1) = 5 + 75 D Rleyag) cos AF (k. 1), (3-5)

J>3'
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where AFI (k,1) = B2,(k,1) — B2,(k, 1) = ¢ + @] — 6 — @] + 20 — 7')(k +1).

It is important to note that the numerical value k + [ is taken modulo N.

It can be shown that for certain configurations of phase shifters {¢?*, gp{)*} in equation
3.5, the positive detection of a photon in a given channel belonging to one of the observers
determines with a probability equal to unity the channel whereby the other observer will
execute the detection of the corresponding photon, leading to perfect correlations as in
the case of spin one half pairs of entangled particles. For details, see [25].

Other proposed experiments [30] and realizations of entangled systems in N = 3 or
Qutrits [31, 32] and N = 4 or Ququarts [33] have been recently carried out, representing
significant progresses in the field of quantum information.

3.2 PREVIOUS RESULTS

As an extension to the study of pairs of entangled qubits, an arbitrary increase of the
dimensionality of each subsystem showed that maximal violation of Bell inequalities as a
measurement of non-locality diminishes with /N, which was in concordance with the old
vision of quasi-classical mechanical behavior of large numbers in quantum mechanics [1].
However, those studies were conducted applying Stern-Gerlach type measurements and
as was already said, these kind of measurements are not optimal for high dimensional
systems. Later results showed that non-locality survives even if N — co. This ambiguity
led Dagomir Kaszlikowski, Marek Zukowski and collaborators to work in this problem
[1]. They consider a maximally entangled state of two quNits [UY ) (eq. 3.3) with an

additional contribution of white noise characterized by the noise fraction parameter Fly.
The density operator of the whole system is given by:

pN(FN) :Fanoise+(1 _FN)|\Ij%aa:><\Ij7jxaz|’ (36)

where the component of white noise is proportional to the unity operator p,,.;.. = I/N?.

In order to quantify the strength of non-locality, they calculate the maximum amount
of noise F* for which it is still impossible to describe the system with a local realistic
theory (i.e. the maximum amount of noise necessary to ensure no violation of a Bell
inequality.). They consider two observers (Alice and Bob as usual) able to perform one
out of two measurements of local non-degenerate observables (A;, As; By, Bs) following
a Bell multiport beam splitters scheme, on a pair of entangled quNits whose state is
described by py(Fy). They find a system of 4N? equations relating quantum joint
probabilities and hypothetical probabilities to be satisfied by a local hidden variable
theory. Applying numerical methods of linear optimization they found values of F**,
showing an increasing behavior F3"** < F3"* < ... < F§"** with a tendency to reach a
constant value for N — oo.

In a subsequent work [34], it is carried out an extension up to N = 16, confirming pre-
vious results and additionally finding sets of local detectors settings (values of the phase
shifts) that maximize violation of local realism for /N-dimensional maximally entangled
states.

The work done so far only could be numerical due to the fact that analytical expres-
sions available to date were valid only for two-level systems. Based on Clauser and Horne
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inequality, Dagomir Kaszlikowski and collaborators [35] derived a set of inequalities that
joint probabilities in a local realistic theory must satisfy for entangled pairs of qutrits.
This inequality succeeded to reproduce previous numerical results, however it was lim-
ited to three-level systems. Surprisingly, when Kaszlikowski and collaborators submitted
their paper, a report showing a generalization to arbitrary dimension had been submitted
three days before. The latter is known today as Bell-CGLMP inequality and is briefly
exposed in the next section.

3.3 CGLMP INEQUALITY

Based on a set of constraints that joint probabilities in local variable theories must satisfy,
Daniel Collins, Nicolas Gisin, Noah Linden, Serge Massar, and Sandu Popescu (Hereafter
CGLMP) developed inequalities for arbitrary N dimensional bipartite systems [36].

The scenario in which the inequality is constructed is the same used in previous works:
A system composed by two parties, two observers and two possible local measurements
for each one. The Bell function I has the form:

[N/2]—1
2k

+ P(Ay =By +k)+P(Bo=A1+ k)] - [P(Ai =B, —k—1)
+P(31:A2—k)+P(A2:Bg—k—1)+P(BzzA1—k—1)}}, (3.7)

where [z] indicates the integer part of the variable x and P(A, = By+k) is the probability
that the outcomes A, and B, differ by k£ (modulo N):

=2

P(A,=By,+k)= P(A,=7,By,=j+k modN). (3.8)

<
I
o

It may be easily shown that the maximum value attainable by Iy for a theory based in
local variables is 2 and for theory based in non-local variables is 4, then Bell-CGLMP
inequality takes the form:

Iy <2. (3-9)
By substituting equation 3.8 into the Bell function Iy, the inequality becomes:

(N/2]-1 op \ N1
Iy = L {P K - Pa(G k41,5
N kzzo( N_J;) [Pr1i(j, 5 + k) + Py 7)

+ P(j,j + k) + Pio(j + k. §)] — [Pu(jj—k—1)
+P21(j - ka]) +P22(j7j —k— 1) +P12(] —k— 179)]} < 27 (3‘10)

where subscripts a and b in P,(j, k) represent the possible choices of measurement in
Alice and Bob devices respectively.
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The most effective way for Alice and Bob to perform measurements is using Bell mul-
tiport beam splitters. Note that when quantum joint probabilities (eq. 3.5) are inserted
into the inequality, the eight terms 1/N? cancel out. Because of this, and assuming that
the amplitudes of the initial state «; are real, it is possible to define quantum pseudo-
probabilities PEA (k. 1):

N-1

~ 2
POM (k1) = FZO{manCOSAﬁ "(k,1).

m>n

Bell-CGLMP inequality takes the form:

[N/2-1N-1 B B B B
§: Ej(: j>{PHUJ+k%J%d$j—k—D+PhU+k+Lj%J%Nj—hj)

+ Poo(j,j + k) — Po(j,j —k — 1)+ Pia(j + k, j) — Piaj — k — 1,j)} <2. (3.11)

Substituting quantum pseudo-probabilities into the inequality:

[N/2]-1 N—1 o
Z Z QU Oty (1 - m) {cos ABLN 7,5+ k) —cos ABT(j,7 — k — 1)

k=0 j5=0
m>n

+cos ALY (j+Ek+1,7) —cos ABR™M(j — k, J) + cos ABys (4,7 + k)
—cos ALY (4,7 —k — 1)+ cos AL (4 + k,j) — cos AB (j — k — 1,j)} <2. (3.12)

Previous numerical results in [34] yield the following set of phases that maximize
Bell-CGLMP function Iy for a maximally entangled state 2
=0 ¢,=

™. P T ; ™

e = — ‘7:——.

for j =0,...,N — 1. Table 3.1 summarizes the calculated values of maximal violation of
Bell-CGLMP inequality for a maximally entangled state up to N = 10.

It is straightforward to show that addition of white noise to the state as in equation
3.6 results in a change in joint probabilities P;?M(k, [) and consequently in Bell-CGLMP
function Iy as follows:

Fn
POM (k1) = (1 — Fy) PO (k1) + 2
Iy = (1 - Fy)ly,
then, the critical amount of noise is given by:

Ipe —2

max
IN

Fi =

12A brief summary of Von Neumann entropy as quantifier of entanglement and maximally N-
dimensional entangled bipartitie states is given in appendix A.
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Table 3.1 Maximal violation of Bell-CGLMP inequality for a maximally entangled state and
corresponding critical amount of white noise for N < 10.

Dimension Maximal Violation Critical Noise

N Iyer Fy

2 2.82842712 0.29289321
3 2.87293405 0.30384757
4 2.89624321 0.30945026
3 2.91054480 0.31284342
6 2.92020360 0.31511624
7 2.92716094 0.31674409
8 2.93240960 0.31796704
9 2.93650953 0.31891928
10 2.93980029 0.31968167

Table 3.1 shows calculated critical amount of noise Fy for N < 10 which are in
accordance with previous numerical calculations [34], as expected. As can be seen, the
critical amount of noise increases slightly with N, thus the greater the dimension, the
harder the system can be described by local realistic theory. From this, [1] conclude
that systems composed by two entangled quNits violate local realism more than pairs of
entangled qubits.

3.4 NON-LOCALITY ANOMALY

Following the results presented above, it may be inferred a relation of correspondence
between entanglement and non-locality (i.e. the more entangled the system, the larger
its resistance to noise). Nevertheless, Antonio Acin and collaborators found that this is
no longer true if the idea of resistance to noise as a measure of non-locality continues to
be accepted [37]. By using analytical and numerical optimization methods they reached
the conclusion that the state that maximally violates the Bell-CGLMP inequality is not
the maximally entangled one. Specifically for the case of two qutrits, they show that
the state which maximizes the Bell-CGLMP function under the optimal set of phases
presented previously is given by:

W3) = (100) +7[11) +[22)) (3-13)

1

where v13 = (\/1_ — \/§) /2 ~ 0.7923 and the maximum value attained by the Bell-
CGLMP function: I (|W5v)) = 1+ /11/3 ~ 2.9149. Furthermore they find numer-
ically values of maximal violation of Bell-CGLMP inequalities I3** up to N = 8, but
do not give any kind of insight about the quantum state involved |[¥") . Via numerical
calculations we obtained approximate values of amplitude coefficients «y; for a maximal
violation state |URV) given by:
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1 N-1
|‘I’JT\an> = ’YjNUj>- (3-14)
Sy >

Vin =0

The values of v; and maximal violation of Bell-CGLMP inequality up to N = 6 are
summarized in table 3.2.

Table 3.2 Approximate values of amplitude coefficients 7,5 that lead to maximal viola-
tion of Bell-CGLMP inequality and maximum value attained by the Bell CGLMP function
I (JeRY) ) up to N < 6.

N YoN YIN YoN V3N V4N Ysnv o IR (|URY) )

3 1.0000 0.7923 1.0000 - - - 2.9148542
4 1.0000 0.7394 0.7394 1.0000 - - 2.9726983
5 1.0000 0.7189 0.6605 0.7189 1.0000 - 3.0157105
6 1.0000 0.7094 0.6256 0.6256 0.7094 1.0000  3.0497004

Acin and collaborators end their report suggesting that resistance to noise is not a
suitable measure of non-locality and propose some alternatives.

André Methot and Valerio Scarani describe the previous results as an anomaly of
quantum non-locality [3], and propose an explanation to it, in their words: non-locality
and entanglement are not only different concepts, but are really quantitatively different
resources. We will show that, although this statement is true, it is far too strong.

The next two chapters devoted an attempt to reconcile the concepts of quantum
entanglement and quantum non-locality by a proposal of quantifier for the latter.



CHAPTER 4

A PROPOSAL TO QUANTIFY QUANTUM
NON-LOCALITY

4.1 THE PROPOSAL

We argue that the anomaly of non-locality arises due to the fact that the maximum of the
Bell function was adopted as criterion to quantify non-locality. From this point of view,
two states exhibiting the same maximal violation of a given Bell inequality are equally
non-local even if the amount of configurations of detectors that lead to non-locality are
different.

As an illustration, Bell functions associated to the CHSH inequality are plotted in
figure 4.1, corresponding to two different states under a given measurement scheme char-
acterized by a parameter . The violation of local realism by the Bell-CHSH function
of the state II may be reached by a range of parameters wider than that corresponding
to the state I. In principle one could argue that the extent to which locality is violated
by state II is stronger than the violation for state I, nevertheless following the current
conception, the fact that the Bell function I attains a higher maximum value makes it
the most non-local.

In order to take into account the whole set of configurations leading to violations of a
given Bell inequality, instead of the single setting for maximal violation, we developed an
approach to quantify how non-local is a given state under measurements characterized
by a Bell inequality.

Defining R(6, ) as the region in which a given tight Bell inequality is violated and
dQ)(0) as a differential element of hyper-volume in the space of the parameters associated
to the measurement devices {6}, we propose V() and A(«) as quantifiers of the strength
of non-locality of the state involved (which may be characterized by a set of parameters
{a}), under given measurement conditions contained in a Bell function S(6, «):

V(a) E/R(é) )dQ(@), (4.1)

Ala) = /R . d00S(0.0) (4.2)

Whereas the value of V(«) is equal to the portion of the space of configurations {6}
that leads to violation of the Bell inequality, the quantity A(«) in addition to such a
hyper-volume takes into account by how much the inequality is being violated!?.

13Notice that it is also reasonable to make a substitution S(6, a) — S’(6, @) = % in equation

4.2, where b is the locality boundary, to ensure that the weight function lie between 0 and 1. For the

Bell-CHSH function, b = 2 and §'(6, o) = ggf/g:f

34
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Figure 4.1 Pictorial representation of Bell-CHSH functions showing different maxima of vio-
lation of local realism for different detectors configurations. Depending on the interpretation, a
state is more non-local than the other one. Following our criteria although the state I presents
a higher maximum, the state II is the most non-local.

4.2 TWO SPIN-1/2 PARTICLES - FIRST BELL INEQUALITY
Consider the following state for a system composed by two spin-1/2 particles:

) = a + =) + V1 —a2e¥| — ), (4-3)
where a € [0, 1] and ¥ € [0, 27].

In the basis {| ++),|+—),| —+),| — —)} the associated density operator is given by:
0 0 0 0
0 Pa  Ps 0

P=1 0 p psoo | (4-4)
0 0 0 0

with p, = a2, ps =1 —a?, ps = a1 — a2e™ and p, = a1 — a2e™ ™,
Any matrix element p;;i; of the density operator p may be written as:

Pijit = 05i+100k+1 [0i,+ (Padk 4+ + P5Ok,—) + 0i— (P1Ok 4+ + PBOk,—)] (4-5)

where additions in the subindex are taken modulo 2.
Then, quantum correlations between Alice and Bob measurements of spin in arbitrary
directions a and b respectively, (eq. 2.5) take the form:

B(a,b) = Z Ul(cl,ﬂzb,j5j,z'+15l,k+1 10i+ (padk+ + psOr,—) + 6i— (py0k+ + sk —)]
ikl

E(a,b) = Z o4 10t 1, (Palkt + Psdr—) + Z 1071~ (PyOk+ + Padr )
k k
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E(a,b) = pao® 0"+ pso® 0%+ p,ot o’ +pgo ol (4.6)
~ Now, let Alice and Bob perform measurements of spin projections in the directions a,
b and ¢: A
a = [sind,, 0, cos b,], b = [sin 6}, cos vy, sin Oy, sin @y, cos O],
¢ = [sin @, cos @, sin 0. sin @, cos 0],
thus, by substituting into the general equation for Pauli operators (eq. 2.6):

o . cosf, sind,
o-a= . ,
sinf, —cosf,

and ,
N cos 6, sin @,,e~ "
o-n= ,

sinf,e %"  —cosb,

where 71 stands for b or ¢. For this set of orientations, calculations of quantum correlations
give: A
E(a,b) = —cos b, cosOy(pa + pp) + sin b, sin O,(pse ¥ + p,e'??),

E(a,b) = — cos b, cos B, + 2av/1 — a2 sin 0, sin 0, cos(pp + 1)) (4.7)
Analogously, for the correlation between a and ¢:
E(a,¢) = —cosf, cos b, + 2av1 — a?sin b, sin 0. cos(¢. + ). (4.8)

And:
E(E, ¢) = —cos by cosb.(pa + pg) + sin b, sin b, (p(gei(%_%) + pve_i(‘pb_%)) ,

E(b, &) = — cos 0, cos 0, + 200/1 — a2 sin 0y, sin 0, cos(pp — @e — V). (4.9)

To illustrate the need of a Bell function associated to a tight inequality, we employ

the first Bell inequality (which is not Atight). Reordering terms in the first Bell inequality
(eq. 2.4), the first Bell function S(a, b, ¢) reads:

S(a,b,é) = ’E(d, b) — E(a,&)| — B, ),

or:

S(a,b, ¢, a,1) = |2av/1 — a?sin b, ( sin 0, cos(py + 1) — sin b, cos(p, + 1))
+ cos Ga( cos . — cos Qb)
—2aV1 — a?sin b, sin 6, cos(pp — . — ) < 1. (4.10)

+ cos 0y, cos 0,

Now we proceed to calculate quantum non-locality strengths for this system. For
V(a, 1) we have:

T T T 2 2
Vi, ) = /0 6, /0 d6), sin 6, /0 46, sin 0, /0 do, /0 0o f (Bas B0, Bor 9ps Por s 1),
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where the function f(6,, 0y, 0., ¥p, ©c, @, 1) ensures that only configurations that lead to
violation of the Bell inequality are being taken into account:

1, if S(04,0, 0., 0, 0e, a, ) > 1
f(Oa, 00, 0c, 01, pc, ,00) = ' (00,0, 0c, 0b, Pc, 0, V)
07 if S(emeb,ec,%,%,a,w) S 1.

The expression for A(a, 1)) is given by:

T b T 27 27
Al 1) = /0 6, /0 d6) sin 6, /0 46, sin 0, /0 do, /0 0090, O, Os 20, 9o 1, 1)

where the function g(6,, 6y, 0., pp, Ye, @, 1) contains implicitly information about the re-
gion of violation of the first Bell inequality, and is defined as:

g(9a7 6b7 907 @b? @C? a? w) = {S(ea’ eb’ 00’ (pb’ SOC’ a’ ¢)’ %f S(9a7 9b7 907 Spb, SDC’ a’ w) > 1
O, if S(Qa,ﬁb,ec,wb,%,a,w) <1.

Normalized results of numerical'* evaluations of the integrals V' (a, 1) and A(a, 1) for
different values of phases 1 are shown in figure 4.2.

Note that independently of the value of the phase v, both measures for normalized
strength of non-locality V'(a, ) and A’(a, ) reach maximum values for a = 1/v/2 (i.e.
the singlet state) and vanish for separable states o = 0 and o = 1, as expected.

For values of the amplitude « different from the mentioned above, V' and A’ present
dependence on the phase. This feature is due to the non-tightness of the first Bell
inequality!®. According to Masanes [39], measures of non-locality which use non-tight
Bell inequalities are not reliable.

“Integrals involving a few number of variables (~ 8) were solved using standard quadrature methods
[38].

15As will be shown in a later section, a treatment performed using Bell-CHSH inequality (the only
tight Bell inequality for the bipartite case with binary inputs and outputs [2]), shows that even if the
Bell function presents dependence on a phase, the quantities V and A do not.
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Figure 4.2 Normalized quantum non-locality strengths A’(c, ) and V'(«, 1)) for a two-level
bipartite system under first Bell inequality measurement conditions.

4.3 TWO SPIN-1/2 PARTICLES + WHITE NOISE - FIRST BELL INEQUALITY

For the sake of completeness we study the effect of noise still in the case of Bell first
inequality. Let consider the state studied in the former section with an additional con-
tribution of white noise:

Pr = Proise T (1 = F)[0) (¥, (4.11)

: F
with Proise = ZI
In matrix form, the density operator may be written as:

pe 0 0 0
0 ps pz O

= , 12
0 0 0 pa

where p, = F/4, ps = (1 — F)av/1 —a%¢", p, = F/4+ (1 — F)(1 — a?) and ps =
F/4+ (1 - F)a?.
A matrix element p;j; of the density operator pj is given by:

Pijkt = Pa0ij0jkOky (0iy + 0i ) + 0jiv10: k015 (Ps0i 4 + py0i )
+ 050110500k 5 (05014 + ppdi) . (4.13)

Additions in the subindex are taken modulo 2.
By substituting matrix elements p;ji; into equation 2.5, quantum correlations become:

~

E(a,b) = paaiJraf’Hr + pao®_ o+ pgaiJrob__

+ 00t 0%+ ppot o+ psot ol (4.14)
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For the set of orientations given in the last section (a, b, ¢) quantum correlations take
the form:

E(a, E) = 08 0, €08 by (2po — ps — py) + 2s8in 6, sin 6, R (pﬁei“’b)

~

E(a,b)=(1-F) [— cos O, cos B, + 2a/1 — a2 sin 8, sin 6, cos(w, + w)] : (4.15)
Similarly for the correlation between a and ¢:

E(a,¢)=(1—-F) [— cos O, cos B, + 201 — a2 sin 0, sin 6, cos(w, + w)} . (4.16)
And:

E(f), ¢) = cos O, cos b, (2p, — ps — p+y) + 2sin 6y sin 6. R (pﬁei(Wc—@b)) 7

E(b,¢é) = (1 — F) | — cos 6 cos 0, + 201/ — a2 sin 0, sin 0, cos(¢) + @, — gob)} . (4.17)

In conclusion, quantum correlations for this case are the same as for the noiseless
situation, except for a constant (1 — F).
Bell first inequality becomes:

S(a,b,é,a,1) = (1 —F) “204\/1 — a?sin 0, sin 6, cos(pp + 1) — sin b, cos(p. + 1))
+ cos b, ( cos . — cos Qb) ‘ + cos 0y cos 0,

—2aVv1 —a?sinbysinb.cos(pp — p. — )| < 1. (4.18)

Following the same numerical procedures carried out in the preceding section, we
calculated quantum non-locality strengths V(a, v, F) and A(a,, F'). In addition we
performed calculations of entanglement of formation (see appendix B). Some results
of quantum non-locality strength, entropy of formation and maximum of Bell function
are presented in figure 4.3. Once again, except for the concurrence, there is an evident
dependence on the phase ¢ by the quantifiers of non-locality and it is possible to recognize
a concordance between maximally entangled and the most non-local state (i.e. a =
1/v2 ~ 0.707). We pay special attention to the dependence of the maximum of the Bell
function, since it disables us to work on a characterization in terms of critical noise.

4.4 TWO SPIN-1/2 PARTICLES - CHSH INEQUALITY

From now on we will focus on tight inequalities. In this section we study the case of two
spin—% particles described by the family of pure entangled states introduced previously
(eq. 4.3), under a CHSH-Bell inequality measurement scheme in which each observer
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Figure 4.3 Some results from a two-level bipartite system with a contribution of white noise
(eq. 4.11) under first Bell inequality measurement conditions. a) and b): Normalized quantum
non-locality strengths A’(a, 1) and V/(a, 1) for a phase ¢ = 2.0 ¢) Entanglement of formation
for several values of noise fraction F'. d) and e) Maximum of Bell function for phase values
1 = 2.0 and ¢ = 7 in function of the fraction of noise F. f) Normalized quantum non-locality
strength A’(a, 1) for F = 0.6 and several values of phase .
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is able to choose one out of two possible orientations of detectors to measure the spin

component of his/her associated particle. We consider the following directions'®:

a = [sind,, 0, cos b,], b= [sin 6, cos @y, sin b, sin @y, cos ),

a' = [sin Oy cos pgr, sin O, sin g, cos O,/], b = [sin Oy cos @y, sin Oy sin @y, cos Oy ].

Calculations of quantum correlations for orientations as above have been previously

carried out, by substitution on Bell-CHSH inequality, it becomes!7:

’S(d, b,a b, a, w)} = | cos b, ( cos By — cosby) — cos b, (cos by + cosOy)

+2aV1 — a2{ sin 0, [ sin 6, cos(ip + ¥) — sin Oy cos(gy + )]

+ sin 6, [sin Oy cos(pa — pp — V) + sin Oy cos(py — pp — ¢)] }‘ <2. (4.19)

A differential element of hyper-volume in the space of parameters {6} is given by:
dS) = sin 0, sin 0y, sin Oy d0,d0, dOydOy dp o dpydipy .

Numerical integration was carried out to obtain non-locality strengths A(«,1)) and
V(a, ). The integration code was further exploited to calculate the maximum of the
Bell-CHSH function S,q, (e, 1) over the space of parameters {6}.

We found no dependence of quantum non-locality quantifiers on the phase . In figure
4.4 a plot of A(«,1)) is shown for seven different phase values, all of them lying on the
same curve.

Results of normalized quantum non-locality measurements V'(a, ¢), A'(«, ), maxi-
mum of Bell-CHSH function S/, . («, 1) and entropy of entanglement E’'(c, 1) (see ap-
pendix A) as function of the amplitude « are plotted in figure 4.5. It can be seen that
for any of the three measures of non-locality, the maximally non-local state corresponds

to the maximally entangled one (a = 1/v/2).

4.5 TWO SPIN-1/2 PARTICLES + WHITE NOISE - CHSH INEQUALITY

We have seen that quantum correlations for systems under white-noise influence differ
from noiseless ones by a constant (1 — F), where 0 < F' < 1. Since Bell functions are
proportional to correlations, then inequalities have the same response to noise. CHSH

6Note that we could have set one of the orientations (say @) fixed on the positive part of the 2 axis
and equivalently a second orientation (say 13) would no longer need the specification of an azimuthal
angle, thus having 5 instead of 7 free angle variables to integrate. However we preferred to maintain the
generality and allow an extra freedom to a.

17Since the Bell-CHSH inequality may be violated when S attains a value greater than 2 or less than
—2 and in order to consider positive and negative contributions to A on the same foot, the integration
is performed over |S| instead of S.
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Figure 4.4 Normalized quantum non-locality strength A(a, ) for a two-level bipartite system
in a state given by equation 4.3, under CHSH inequality measurement conditions. It can be
noticed the independence of the phase ¢ on the quantum non-locality strength A.
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Figure 4.5 Normalized quantum non-locality strengths A’(a, 1), V' (a, 1), maximum of Bell-
CHSH function S),,,(a,v) and entropy of entanglement E’(«, 1)) for a two-level entangled
bipartite system in a state given by eq. 4.3, under CHSH inequality measurement conditions.
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Figure 4.6 Normalized quantum non-locality strength A’(«, v, F) and V' («, ¢, F') for a two-
level bipartite system in a generalized singlet state plus a contribution of white noise, under
CHSH inequality measurement conditions, for several values of noise fraction F'.

inequality for the case treated in the preceding section plus a component of noise becomes:

|S(a,b,d", ¥, a9, F)| = (1 - F)

cos 6, ( cos By — cos 91,) — cos 6, ( cos By, + cos 95/)

+2av1 — a2{ sin 0, [ sin 0, cos(ip + ¢) — sin Oy cos(py + )]
+sinf, [sin Oy cos(par — pp — ) + sin Oy cos(pe — Yp — zb)} }‘ < 2. (4.20)

Using numerical methods, quantum non-locality strengths A(«, ¢, F)) and V(«, ¢, F')
were obtained for several values of noise fraction F'. Plots of these are shown in figure
4.6. As in the former case it was found that the maximally non-local states correspond
to the maximally entangled ones for values of F' smaller than the critical noise fraction
F; =~ 2.2928 (see table 3.1). For values of F' larger than F; we found that quantum
non-locality strengths A and V' vanished i.e. no violation of local realism, as expected.

So far, definitions 4.1 and 4.2, although consistent, did not bring any genuinely new
information. However, this will be the case for two three-level entangled systems.



CHAPTER 5

NON-LOCALITY STRENGTH FOR ENTANGLED
QUTRITS - CGLMP INEQUALITY

5.1 BELL-CGLMP FUNCTION FOR QUTRITS

We have already applied our proposal of non-locality measures for a variety of cases
involving bipartite two-level systems or qubits in entangled states, getting familiar results
consigned in chapter 4. Henceforth, the discussion will be focused on bipartite three-level
systems or qutrits in entangled states, under a measurement scheme given by a Bell-
CGLMP inequality!®, using Bell multiport beam splitters.

The Bell-CGLMP function I has been previously introduced for arbitrary dimen-
sionality in section 3.3. Particularly for NV = 3, we have:

2
Iy=3 > aman{ cos AB™(4,§ + k) — cos ABY (4,5 — k — 1)

J=0
m>n

+eos B (G + o+ 1,7) — cos ABE"(G — b, ) + cos MGG, + k)
— cos ARG, 5 — k= 1)+ cos ABEG + F, ) — cos AFE G~ k= 1,7) b, (51)

with Aﬂg’bj’(l@, )=o) + goz — @) — (,0{: - 2?”(] — 7)(k + 1), for a qutrit initially prepared
in the following state:

T) = a|mm).

Note that the space of parameters associated to the measurements is 12-dimensional®®.
Thus, in order to calculate the strength of non-locality (either A or V'), it is necessary
to carry out integration of a twelve variables function within a non-trivial boundary. To
deal with this, we implemented an algorithm based on Monte Carlo techniques [38] which
improved calculations based on numerical integration methods used in the preceding
chapter.

The differential element of hyper-volume df2 is given by:

A2 =[] deide],
a,b,7,5’

where a,b = 1,2 and the phase variables may take values between 0 and 2.

18The fact that Bell CGLMP inequality is tight enables us to use it to quantify non-locality [39].

19The set of parameters that define measurements is composed by 12 tunable phases: {¢{7 (;5%; @{7 cp%}
(for j =0,1,2).
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Figure 5.1 Normalized quantum non-locality strength V (v, F) and A(y, F) for a qutrit in an
entangled state under the influence of white noise characterized by a noise fraction F'.

5.2 SOLVING THE PROBLEM OF NON-LOCALITY ANOMALY

Following the integration procedure carried out in section 4.2, we calculated non-locality
strengths V() and A(7) for a class of pure states that includes the one that leads to the
non-locality anomaly (eq. 3.13):

1
) = ————(J00) +5[11) + [22)). (5.2)
VE+2
Furthermore, a contribution of white noise characterized by a noise fraction F was
added to the density operator of the entangled qutrit:

pie = Pusie + (1= F) U)W = ST+ (1~ F)[0)(0]

Results of normalized non-locality strength V'(v, F') and A'(v, F') are shown in fig-
ure 5.1. A remarkable observed feature is the location of the maximum of non-locality
strength, as instead of finding this value for v = 713 (which in a previous work led to the
non-locality anomaly [37, 3]), it was found that the state with larger extent of violation
of local reality corresponds to the most entangled one, i.e. v = 1, showing that such
an anomaly comes from the inappropriate use of the maximum of the Bell function as
quantifier for non-locality:.

A decreasing behavior with the increase of F' is observed up to the critical noise. For
noise fraction values higher than the critical one, the non-locality strength vanishes as
expected.

To get some intuition about the result, we have plotted in figure 5.2 normalized results
of non-locality strength A’(7y) for the noiseless case (F' = 0), normalized Von-Neumann
entropy F'(7), as a measure of entanglement of the system and normalized maximum of
the Bell-CGLMP function I} (), which is a currently accepted measure of non-locality

3,max
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Figure 5.2 Normalized quantum non-locality and entanglement measures. The correspondence
between maximum of entanglement E’ and our proposed measure of non-locality A’ solves the
non-locality anomaly, which is also showed through the curve corresponding to the maximum
of the Bell- CGLMP function. The function V' presents a behavior very close to that of A’ and
for this reason it is not plotted here.

strength. Following our interpretation, the agreement between maximally entangled and
maximal non-local states is undoubtedly revealed, closing the apparent paradox involving
the entanglement and non-locality for the qutrit case.



CHAPTER 6

CONCLUSION AND FUTURE PERSPECTIVES

Based on a scheme that takes into account the whole space of possible settings con-
tributing to violations in tight Bell inequalities, we developed an approach to quantify
the strength of non-locality for quantum systems under given measurement conditions
related to the specific inequality under study.

The application of our proposal of non-locality measure to bipartite three-level systems
under measurement conditions given by a Bell- CGLMP inequality led us to close an
apparent inconsistency between quantum non-locality and entanglement that persists in
the literature since 2002. In fact, we showed that, contrary to the present belief, the
maxima of entanglement and non-locality do coincide also in this case.

The ideas developed in the present dissertation are general enough to allow a con-
ceptually direct (though computationally harder) extension to convey systems with di-
mensionality higher than three. This is our next step in the study of quantifiers of
non-locality.

A precise quantitative understanding of entangled systems described by Hilbert spaces
with more than two dimensions represents an important progress in the development of
applications in the field of quantum information such as quantum key distributions, that
rely on unambiguously non-local states
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APPENDIX A

MAXIMALLY N-DIMENSIONAL ENTANGLED STATES

A.1 VON NEUMANN ENTROPY

There are several ways to measure quantum entanglement. Due to its simplicity, the
entropy of entanglement is one of the most known. It is calculated using the Von Neumann
entropy of the density operator of the system:

E(p) = Si(p) = S(p;) = —tr (p;log(p;)) ,

where p, is the partial trace of the density operator on one of the parts of the system.
For instance, for a bipartite system, p; can be obtained as follows:

pr =Y (talpluas),

J

For the case of a bipartite system described by a general entangled state:

N-1
U) =" am|m)a @ |m)p,
m=0

its density operator is given by:

N-1
p=1UNU| = ) anajmm)(nn|,

m,n=0

thus, the partial trace on any of the parties takes the form:
N-1
pi= ) layPli){il.
§=0
Using the fact that log p, = Zj\[;ol log |a;]2[7) (4],

Elp) = — S {H] (2 S log|am|2|m><m|> ),

k=0 1=0 m=0
then:
N-1
E(p) = = 3 la[*log o (A1)
m=0
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Figure A.1 Entropy of entanglement for a two-level bipartite system.

A.2 BIPARTITE TWO-LEVEL SYSTEM

Recall the bipartite two-level state used in chapter 4:

|9) = |00) + V1 — a2e?|11),
where a € [0, 1] and ¢ € [0, 27].
In this case the entropy of entanglement (eq. A.1) takes the form:

E(a) = — [a*loga”® + (1 — a?) log(1 — o?)] .

In figure A.1 is plotted the entropy of entanglement in function of the amplitude .
Note that it reaches a maximum E(a*) = log2 ~ 0.69314 for o* = 1/v/2 ~ 0.7071 (i.e.
the Bell state |®1)). Thus the Bell state |®T) corresponds to the maximally entangled
state for a two-level bipartite system?:

1
7

It is important to note that the entropy of entanglement is independent of phase ¢ in
the state.

|bmaz) = |2F) = —= (]00) +[11)).

A.3 BIPARTITE THREE-LEVEL SYSTEM
For the three-level case, let examine the state studied by Acin and collaborators in [37]:

By = L (00) +y[11) + [22)). (A2)

NoEEE

! Actually, any element of the Bell basis is a maximally entangled state for a two-level bipartite system.
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Figure A.2 Entropy of entanglement for a three-level bipartite system.

The entropy of entanglement for this state is:

Bly) = — |21 L) 42 ik
,y _2_'_72 Og 2_{_72 /y Og 2+72 .

Figure A.2 shows a plot of the entropy of entanglement for a bipartite three-level
system described by the state given in equation A.2 in function of the coefficient of
amplitude . In this case, it reaches a maximum F(7*) = log3 ~ 1.09861 for v* = 1.
As in the former case, the maximally entangled state for a three-level bipartite system
corresponds to:

_
V3

It is important to highlight that the value of the entropy of entanglement for the state
that maximally violates the CGLMP inequality is lower than for a maximally entangled
state: E(y =0.7923) ~ 1.077 < log 3.

It is straightforward to show that the maximally entangled N-dimensional bipartite
state is given by:

|D) (100) + [11) + |22)).

1 N-1
@) = \/_szo [mm), (A-3)

with an entropy of entanglement value of log N.



APPENDIX B

ENTANGLEMENT OF FORMATION

B.1 DEFINITION

A suitable measure of the amount of resources necessary to construct an entangled mixed
state of a two-level bipartite system that is described by a density operator p is the
entanglement of formation, defined as [40]:

E(p) =£(C(p)), (B.1)
where
£(C) = h (H— V;—CQ) |

h(z) = —zlogy(x) — (1 — 2) logy(1 — )
and C(p) is the concurrence, given by:
C(p) = max{0,2 A, — A — Aa — A3 — Aa}, (B.2)

here )\; is the square root of the i-th eigenvalue of the non-hermitian matrix pp and
Am = max{\;}, where p is the spin-flippped state:

p=(oy®ay)p*(o,®0y)
B.2 CALCULATION OF ENTANGLEMENT OF FORMATION, SECTION 4.3

Given an arbitrary density operator p:

pP= Zpijkl|ij><kl|a (B.3)

ijkl

the spin-flippped state can be written as:

p= (Uy ® Uy)P*(Uy ® Uy) = Z(_l)HjJrkH (mod 2)p;'k—1,j—1,k+1,l+1‘ij><k”- (B.4)
ijkl

For the density operator in equation 4.12, we have:

pr, 0 0 0
- 0 p5 p5 O
= s , B.
p 0 ps p5 0 (B:5)
0 0 0 pi

o4
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Figure B.1 Entropy of formation for an entangled state of a two-level bipartite system with a
contribution of white noise (equation 4.12) in function of the state parameter a and the noise

fraction F.
thus:
|pal? 0 0 0
~ 0 psl>+pips pslps+p;) O
= " . . B.6
PP 0 pslpa+ps) losl+ps0, O (B.6)
0 0 0 [Pal?
After some calculations, the square roots of the eigenvalues of pp are:
F
)\1 == )\2 = Z

F 3 1—F
)\3:\/4+2(1—F)2a2(1—a2)—16F2+ 1 a1 — a2\/AF +16(1 — F)2a2(1 — o?) — 3F?

1-F
>\4:\/F+2(1—F)2a2(1—a2)—1?%F2— 1 a1 — a?\/4F +16(1 — F)2a2(1 — o?) — 3F?

From these, the calculation of entanglement of formation is straightforward. Results are

plotted in figure B.2.
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