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Resumo

Nossa abordagem € direcionada a varidveis aleatorias simétricas observadas ao longo do tempo.
Nesse sentido, avaliamos os procedimentos de estimag¢do e discutimos o uso da metodologia
de diagndstico sob o enfoque de influéncia local para classe de modelos autorregressivos de
médias méveis simétrico, SYMARMA. Modelos sazonais também sdo abordados neste traba-
lho. A estimacdo dos parametros do modelo SYMARMA ¢ feita através da maximizagao do
logaritmo da funcdo de verossimilhanga condicional utilizando o algoritmo escore de Fisher.
Apresentamos um estudo de robustez baseado na fun¢do de influéncia para avaliar a qualidade
do procedimento de estimagdo. Além disso, conduzimos um estudo de simulacio para avaliar
a consisténcia e normalidade assintdtica do estimador de méxima verossimilhanca condicional.
Derivamos expressdes mais simples para as fungdes escore e a matriz informacao de Fisher.
Desenvolvemos medidas de diagndstico sob o enfoque de influéncia local baseado nas medi-
das de curvatura de Cook (1986), inclinacao de Billor e Loynes (1993) e curvatura de Lesaffre
e Verbeke (1998). Derivamos, através de simula¢des, marcas de referéncia (limiares) para
determinar se uma observacdo € influente. Aplicacdes de dados reais foram abordadas neste
trabalho.

Palavras-chave: Distribui¢do simétrica. Influéncia local. Modelos SYMARMA. Outlier.
Séries temporais.



Abstract

Our approach is applied to symmetric random variables on over time. In this sense, we develop
estimation procedures and discuss the use of local influence diagnostic methodology to class
of the autoregressive and moving average symmetric models, SYMARMA. Sazonal models
also are considered. The Fisher scoring algorithm is used to find the estimations of parame-
ters SYMARMA model maximizing the logarithm of the conditional likelihood function. We
present an robustness study based on influence function to assess the quality of the estimation
procedure and we conduct simulation studies to evaluate the consistency and asymptotic nor-
mality of the conditional maximum likelihood estimator. We derive simpler expressions for
the score function and Fisher information matrix. In order to assess local influence we develop
diagnostic measures based on Cook’s curvature (1986), slope of Billor and Loynes (1993) and
curvature of Lesaffre and Verbeke (1998). We evaluate benchmarks by simulation to identify
influential observations. Application are used to illustrate of the proposed methodology.

Keywords: Local influence. Outlier. SYMARMA models. Symmetric distributions. Time
series.
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Capitulo 1

Introducao

A suposicao de normalidade para os erros em uma andlise de regressdo tem sido constante-
mente utilizada na descricao e investigacdo de fendmenos considerados aleatérios. No entanto,
em muitas situagdes, a suposicao de normalidade dos erros ndo € satisfeita e, além disso, mui-
tas vezes nos deparamos com acontecimentos inesperados ou incontroldveis que ddo origem a
observacdes atipicas que, de alguma forma, sdo inconsistentes com o restante da série. Tais
observacdes podem comprometer os procedimentos inferenciais de métodos estatisticos mais
convencionais, que assumem a distribuicao normal para os erros, tal como a classe de modelos
autorregressivos de médias méoveis (ARMA), podendo fornecer estimativas bastantes viesadas
para os parametros do modelo ou, até mesmo, uma identificacio incorreta do mesmo. Apds
o ajuste do modelo, técnicas de diagnostico devem ser utilizadas para checar se as suposi¢oes
feitas para o modelo sdo verdadeiras. Dentre as técnicas de diagndstico utilizadas para modelos
de séries temporais, a medida de influéncia local tem um papel importante por nao ser baseada
na exclusao de observacdes do conjunto de dados que, a principio, sdo dependentes.

Alguns trabalhos desenvolvidos ao longo das dltimas décadas visam alternativas a suposi-
cao de normalidade. O estudo pioneiro para séries nao-gaussianas foi desenvolvido por Heyde
e Feigin (1975), que definiram a familia exponencial condicional de distribui¢des e usaram
um modelo simples que tinha um unico termo autorregressivo. Cox (1981) estudou a autocor-

relacdo dos dados, caracterizando duas classes de modelos dependentes do tempo: modelos
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condicionados a observacdes passadas e modelos baseados em processos latentes. Na linha dos
modelos condicionados a observagdes passadas, notamos que Zeger e Qagqish (1988) desenvol-
veram um trabalho que aborda os modelos de Poisson e gama condicionais autorregressivos,
adicionando aos modelos de Heyde e Feigin (1975) termos autorregressivos e incluindo o pas-
sado e o presente de covariaveis, Li (1991) desenvolveu testes de qualidade do ajuste para tais
modelos e, em seguida, Li (1994) apresenta uma estrutura de médias moéveis aos modelos de
Zeger e Qaqish (1988). Chen e Liu (1993) desenvolveram um procedimento para detecgdo de
outliers na classe de modelos autorregressivos integrados de médias méveis (ARIMA). Exten-
soes da classe de modelos ARMA podem ser encontradas em Shephard (1995) e Benjamin
et al. (2003) que consideram a distribuicao dos dados, condicional ao passado do processo,
pertencente a familia exponencial. Na mesma dire¢do Rocha e Cribari-Neto (2009) desenvol-
veram modelos dindmicos para varidveis aleatdrias na familia de distribui¢do beta (BARMA).
Cordeiro e Andrade (2009) incorporam a ideia de varidvel resposta transformada ao modelo
GARMA introduzido por Benjamin et al. (2003). Mais recentemente, Maior (2012) desen-
volve uma nova classe de modelos para dados temporais pertencentes a classe simétrica de
distribui¢des e Creal et al. (2013) propdem a classe de modelos GAS (Generalized Autoregres-
sive Score).

Em se tratando da andlise de diagndstico, uma das ferramentas mais uteis para dados tempo-
rais € a andlise de influéncia local, proposta inicialmente por Cook (1986). A proposta de Cook
(1986) € baseada em uma medida de afastamento da fungdo de verossimilhanca. Na literatura,
através da Curvatura de Cook, podemos citar os trabalhos de Lesaffre e Verbeke (1998) que
utilizaram o enfoque de influéncia local para avaliar modelos lineares mistos, Liu (2002) que
utilizou o método de influéncia local para modelos de regressdo linear elipticos multivariados
considerando perturba¢des de casos ponderados na varidvel explicativa e na varidvel resposta e,
mais recentemente, Paula et al. (2009) que consideraram os erros elipticos autorregressivos de
primeira ordem e Paula e Cysneiros (2009) que propuseram a Curvatura de Cook como método

de diagnéstico de influéncia local para modelos CAPM (Capital Asset Pricing Model) sob a
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suposi¢ao de distribui¢des simétricas.

Billor e Loynes (1993) apontam algumas dificuldades praticas e tedricas que surgem no
enfoque de influéncia local introduzido por Cook (1986), entre elas, a falta de invaridncia da
curvatura sobre reparametrizagdes do esquema de perturbacdo. Dessa forma, propdem utilizar
a maxima inclinacdo baseada no afatamento da funcdo de verossimilhan¢a modificada como
medida de influéncia local e aplicam a sua metodologia para avaliar modelos de regressao li-
near, considerando o esquema de perturbagdo na matriz de variancias. Zhang e King (2005)
simularam a distribui¢do da medida de influéncia local proposta por Billor e Loynes (1993)
em modelos heteroceddsticos autorregressivos generalizados (GARCH) com erros gaussianos,
usando a primeira derivada (inclinacdo de Billor e Loynes) e a segunda derivada do grafico
de influéncia modificado. Esse procedimento foi denominado de limiares (benchmarks). O
trabalho de Zhang e King (2005) foi o pioneiro na aplica¢cdo de marcas de referéncia que deter-
minam, estatisticamente, que observacdes da série podem ser caracterizadas como influentes,
na maioria das vezes essa caracterizacao ¢ feita por meio de uma simples anélise exploratdria.
Scall e Dunne (1991) apresentaram um estudo para investigar a influéncia local em modelos
de regressdo com erros ARMA, utilizando diversos esquemas de perturbacdo. Finalmente, Ze-
vallos e Hotta (2012) utilizaram a metodologia dos limiares para anélise de influéncia local em
modelos GARCH considerando, alternativamente, a curvatura de Cook ao invés da segunda
derivada do gréfico de influéncia modificado, obtendo uma grande vantagem de ordem compu-
tacional.

Os objetivos desse trabalho sdo desenvolver modelos dindmicos para dados temporais sob
distribui¢do simétrica condicional e propor métodos de diagndstico sob o enfoque de influéncia
local. Ampliar o leque de opcdes para distribuicdo condicional da série temporal, considerando,
por exemplo, a distribui¢do 7-Student para os dados, tem-se mostrado uma boa alternativa no
ajuste de séries temporais na presenca de observagdes atipicas. Neste trabalho obtemos ex-
pressdes mais simplificadas para os estimadores dos parametros do modelo autorregressivo de

médias mdveis simétrico, SYMARMA, e, pela primeira vez, avaliamos a convergéncia assinto-
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tica e a robustez qualitativa dos mesmos. Além disso, apresentamos propriedades relacionadas
a média, variancia e covaridncia marginal. Para cada modelo proposto desenvolvemos andlises
de diagndstico baseadas nas medidas de influéncia local desenvolvidas por Cook (1986), Billor
e Loynes (1993) e Lesaftre e Verbeke (1998). Dentre os esquemas de perturbagdo considerados
temos a perturbacdo aditiva na varidvel resposta e a perturbacdo no parametro de dispersao.
Aplicamos a metodologia de limiares, proposta por Zhang e King (2005), para classificacao de
observacoes influentes. Para ilustrar a metodologia desenvolvida apresentamos aplicacdes com

dados reais e estudos de simulagdo.

1.1 Motivacao

Frequentemente, em séries temporais, sdo encontradas observagdes que surgem como ati-
picas face as restantes em consequéncia de erros de medi¢do, influéncia de intervencdes exo-
genas, alteracOes inesperadas em certas condicdes de um sistema fisico, entre outras. Essas
observacdes atipicas sdo comumente denominadas de outliers (FOX, 1972).

Dentre os autores que discutem a influéncia de outliers na estimacao e inferéncia dos pa-
rametros em modelos estatisticos podemos citar Martin e Yohai (1985), Ota (1996) e Maior
(2012).

Para ilustrar a presenca de observacoes atipicas em séries temporais, apresentamos, nas
Figuras 1.1 e 1.2, duas séries com essas caracteristicas. A primeira série corresponde ao excesso
de retorno nos precos de fechamento didrio da Microsoft, abrangendo o periodo entre 1 de abril
e 5 de setembro de 2002. Notamos que a série possui trés pontos atipicos correspondentes as
observagdes yr7 = 11,10%, y73 = —9,47% € ygo = —7,34%.

A segunda série refere-se a inflacdo no Brasil avaliada anualmente pelo Indice Geral de
Precos - Oferta Global (IGP-OG) durante o periodo de 1970 e 2014. Diversas observacdes
atipicas, correspondentes a época de hiperinflacdo no Brasil, estdo presentes nesta série, entre

elas, podemos destacar os anos de 1986 (plano Cruzado), 1987 (plano Bresser), 1989 (plano
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Figura 1.1 Série excesso de retorno da Microsoft.
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Fonte: Autoria prépria.

Verao), 1990 (plano Collor I), 1991 (plano Collor IT) e 1994 (plano Real).

Figura 1.2 Série inflaciondria no Brasil de acordo com IGP-OG.
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Fonte: Autoria prépria.

Estudaremos essas séries em mais detalhes no decorrer desse trabalho e, como veremos,
considerar modelos com distribui¢cdes mais flexiveis pode ser bastante util para modelagem de

séries na presenca de outliers.
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1.2 Apresentacao dos capitulos

No Capitulo 2, definimos o modelo SYMARMA e apresentamos algumas propriedades re-
lacionadas a média, variancia e covariancia marginal. Tratamos do problema de estimagao dos
parametros fornecendo expressdes para o vetor escore € para a matriz informagdo esperada de
Fisher condicional. Com o objetivo de observar o comportamento dos estimadores, realizamos
alguns estudos de simulacdo e apresentamos resultados relacionados a robustez, obtidos através
da fun¢do de influéncia. Discutimos como realizar testes de hipdteses para os pardmetros do
modelo e previsdes. Finalizamos o capitulo com uma explana¢@o sobre modelos SYMARMA
sazonais.

No Capitulo 3, apresentamos as medidas de influéncia local que ser@o aplicadas a classe de
modelos SYMARMA e, em seguida, descrevemos detalhadamente a metodologia de limiares
proposta por Zhang e King (2005) para identificar observacoes influentes baseada nas distri-
bui¢cdes estimadas das estatisticas de Inclinagcao de Billor e Loynes (1993), Curvatura de Cook
(1986) e Curvatura de Lesaffre e Verbeke (1998). Consideramos os esquemas de perturbacao
aditiva nos dados, perturbacdo no parametro de dispersao, perturbacao no vetor de parametros
autorregressivos e perturbacao no vetor de parametros de médias méveis. [lustramos a metodo-
logia proposta através de estudos de simulagdo e tecemos comentdrios a respeito da aplicagdo
dessa metodologia nos modelos SYMARMA sazonais.

No Capitulo 4, apresentamos a andlise de dois conjuntos de dados reais.

No Capitulo 5, evidenciamos detalhes da sintexe de comandos das rotinas elliptical.ts e
influence.ts, desenvolvidas pelo autor na plataforma R para modelagem e diagnéstico de in-
fluéncia local de dados de séries temporais sob distribuicao simétrica condicional.

No Capitulo 6, apresentamos as contribui¢des, algumas conclusdes e futuras linhas de pes-
quisa.

Por fim, apresentamos alguns detalhes técnicos nos Apéndices.
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Capitulo 2

Modelo Autorregressivo de Médias Moveis Simétrico

2.1 Introducao

Séries temporais evoluem em torno de uma média que, geralmente, apresenta algum tipo de
tendéncia totalmente arbitrdria em fun¢do do tempo. Essas tendéncias, quando deterministicas,

podem ser ajustadas por modelos bastantes simples como, por exemplo,
Yi=w+rn, (D

em que ; € uma fun¢do deterministica que pode ser constante, linear, quadratica, sazonal, entre
outras formas, e r; € uma varidvel aleatdria independente e identicamente distribuida (i.i.d.)
com média zero, para todo ¢, ou seja, um ruido branco. Esses modelos deterministicos levam
em consideracio que a tendéncia da série é a mesma em qualquer periodo considerado. Porém,
em diversas aplicacdes, particularmente em economia e negdcios, notamos que a tendéncia
varia de forma aleatdria ao longo do tempo. Nesses casos, considerar uma fun¢do estocéstica
para média tem sido uma boa alternativa. Tais modelos sao chamados de modelos estocésticos.

Os modelos estocdsticos, em sua maioria, consideram que a tendéncia estocéstica da mé-
dia pode ser representada por uma dependéncia linear entre as observacdes passadas e/ou uma

combinacdo linear de impactos aleatdrios. A classe de modelos autorregressivos de médias mo-
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veis, denotada por ARMA, €, sem dudvida, a mais utilizada na modelagem de séries temporais

estacionarias com tendéncia estocastica, sendo a sua estrutura definida como

P q
Y=Y oY i+ 6rj+r,
i=1 j=1

em que {r;} representa uma série de varidveis aleatorias i.i.d. com média zero e as constantes
p € g sdo as ordens dos polindmios autorregressivos (¢’s) e de médias moveis (0’s), respecti-
vamente. Geralmente consideramos a distribui¢do normal de probabilidade para as varidveis
aleatdrias r;’s.

Para séries ndo estaciondrias integradas, uma alternativa é induzir estacionariedade atra-
vés de transformagdes nos dados como, por exemplo, o uso da escala logaritmica, o uso da
transformacdo de Box-Cox (BOX; COX, 1964), o uso da série diferenciada, entre outras.

A proposta da classe de modelos autorregressivos de médias méveis simétricos, denotada
por SYMARMA, € ampliar o leque de opcdes para a distribuicdo das varidveis aleatdrias 7;’s
nos modelos (1), que passam a pertencer a classe de distribuicdes simétricas. Dessa forma,
temos que, dado o conjunto de informagdes passadas H;— 1 = {y;—1,...,y1, ly—1,---, U1},
distribuicdo condicional de ¥;|H;_; também pertence a classe simétrica na qual encontramos
distribui¢des com caudas mais pesadas do que as da normal como, por exemplo, as distribui-
coes 7-Student e a logistica II. Distribui¢des com caudas pesadas tendem a acomodar melhor
observacdes atipicas. Diante disso, a classe de modelos SYMARMA pode ser vista como uma
alternativa para modelagem de séries temporais na presenga de outliers.

Neste capitulo introduzimos o modelo SYMARMA juntamente com algumas propriedades
relacionadas a média, variancia e covariancia marginal. Sugerimos um método para estimagao
dos parametros e apresentamos resultados relacionados a robustez, obtidos através da fun¢ao de
influéncia. Finalizamos o capitulo com alguns estudos de simulacdo e a extensao dos modelos

SYMARMA para dados sazonais.
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2.2 Modelo autorregressivo de médias moveis simétrico

Suponhamos que os ruidos brancos {r;} em (1), parat = 1,...,n, sdo varidveis aleatérias si-
métricas continuas e, consequentemente, a distribui¢do condicional de cada Y;, dado o conjunto
de informacgdes passadas Hy_1 = {y;—1,...,y1,ls—1,---, U1 }, segue uma distribuicdo simétrica

continua com funcdo de densidade de probabilidade definida como

1 ()’t—ﬂt)z
\/Gg{ ¢

f(yt|Ht—17uta(P>: }7 ytEIR7 .ute]Re(P>07 (2)

em que L, é o parAmetro de locacdo, ¢ é o parAmetro de dispersdo e g(-) é a fungdo geradora de
densidades, com g(u) > 0, para u > 0, sendo tal que [, w2 g(u)du = 1. Essa condi¢ao é neces-
sdria para que f(y;|H,—1, ll;, ¢) seja uma funcdo de densidade de probabilidade. Em particular,

yv/2 v+1

lexp{—u/2} para a distribui¢iio normal; g(u) = m(V%—u)‘ 2

temos que: g(u) = (27)~

para a distribuicdo 7-Student com v graus de liberdade, em que B(-,-) é a funcdo beta; e

g(u) = cﬁ para a distribuicdo logistica I, em que ¢ ~ 1,484200029 € a constante nor-

malizadora obtida da relagdo [;° w2 glu)du=1.

Utilizamos a notacao Y;|H;—; ~ S(1;, ¢, g) para indicar que a varidvel Y;, condicional ao
conjunto de observagdes passadas, H, 1, segue distribui¢do simétrica com parametro de loca-
¢do U, parametro de dispersdo ¢ e funcdo geradora de densidades g.

SeY;|H,—; ~ S(1, 9, g), entdo a fungdo caracteristica de ¥;, definida por { (t) = E(exp(itY)),
fica expressa como ¢ (¢) = exp(ity; )h(t?@), t € R, para alguma funcio / que depende da dis-
tribuicdo simétrica considerada, com A(u) € R para todo # > 0. Quando existem, a média e a

variiincia de Y;|H,_1, sfo expressas, respectivamente, por
E(Y;[H_1)=w e Var(Y,[H_)=Eop,

em que & > 0 é uma constante igual a & = —24/(0), com /' (0) = dh(u)/dul,—o. Kelker (1970)

1 . . - L. . .
observa que se ilany) f(u) for integravel, entdo o k-ésimo momento de Y;|H,;_; existe. Dis-
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tribuicdes pertencentes a classe simétrica que ndo possuem os dois primeiros momentos finitos
nao sdo consideradas nesse trabalho como, por exemplo, a distribui¢cdo Cauchy. Alguns valores

de & sdo apresentados para algumas distribui¢cdes simétricas na Tabela 2.1.

Tabela 2.1 Valores de & para algumas distribui¢des simétricas.

Distribui¢io &
Normal 1
t-Student 23, V>2
t-Student generalizada %5, s>0,r>2
Logistica-I 0,79569

oo 7.[2
Logistica-II =3
Logistica generalizada 2y’ (m)
Exponencial poténcia 201+ %

Fonte: Cysneiros (2004)

Diferentemente da classe de modelos simétricos de regressido, em que U; = x,' B, temos
na especificacdo da média dos modelos SYMARMA uma componente dindmica adicional, 7,

com termos autorregressivos e de médias moveis incluidos aditivamente. Definimos y; como

-

ut:Xt ﬁ+Tt, (3)
em que x,T = (1,x1,%2,-..,X) € um vetor que contém os valores das k varidveis explicativas,
k < n, sendo n o tamanho da amostra, B = (Bo,B1,B2,...,B) " é um vetor de parimetros

desconhecidos e 7; ¢ uma componente ARMA expressa por

P q
w=Y o {v-i—xLBh+ Y Oy @)
i=1 j=1
sendo ¢ = (¢1,0,. .., gl)p)T e0=(61,0,,..., Qq)T os vetores de parAmetros autorregressivos e

de médias mdveis, respectivamente. Os termos de médias moveis, r;’s, sdo ruidos brancos que
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podem ser, por exemplo, erros de medida na escala original (isto é, y; — u;), ou, residuos de
Pearson, entre outros.
A motivagdo da definicdo da componente ARMA, 7;, em (3), consiste inicialmente em

considerar @, =y, — x,T B com sendo um processo ARMA(p,q), isto é,

q
iy + Z Ojri—j+r. (5
1 =1

p
wl:

=
Assumindo que E(r;|H,_;) = 0 e tomando a esperanca condicional a H;_; para ambos os lados

de (5), obtemos a expressao (4).

Portanto,

P q
to=x B+ Y o {vi—xTBh+ Y Oy ©)
i=1 j=1

O modelo SYMARMA ¢ definido pela componente aleatéria dada em (2) e pela compo-
nente dindmica dada em (6). Os modelos ARMA e ARMAX sio casos particulares do modelo
SYMARMA sob distribuicao condicional normal, SYMARMA-normal, quando consideramos,
respectivamente, a auséncia ou a presenca de varidveis explicativas. Os parametros do modelo
podem ser selecionados utilizando, por exemplo, o critério de informacao de Akaike, que em in-
glés € designado pela sigla AIC - Akaike Information Criterion, introduzido por Akaike (1973,
1974) ou, alternativamente, o critério de informacao bayesiano, que em inglés € designado pela

sigla BIC - Bayesian Information Criterion, de Schwarz (1978).

2.3 Média, variancia e covariancia marginal

Nessa se¢do denotamos por ®(B) =1 —¢;B—--- — ¢,B o polindmio autorregressivo, por
O(B) =1+ 6;B+---+ 6,B% o polindmio de médias moveis e B*y, = y,_; o operador de defa-

sagens.



28

Teorema 1. A média marginal de Y; nos modelos SYMARMA ¢é expressa por
E() =x'B,
desde que ®(B) seja invertivel.

Teorema 2. A variancia marginal de Y; nos modelos SYMARMA é expressa por

Var(Y;) =€ Y 7,
i=0

em que ; é obtido da divisio de ¥(B) = O(B)®(B)~! = ywoB® + y1B' + y,B* 4 ... sendo

Vo = 1, assumindo que ®(B) ¢ invertivel.

Teorema 3. A covaridncia e a correlagdo marginal entre Y; e Y;_ nos modelos SYMARMA

sdo, respectivamente, expressas por

o _gowill/Hk
Cov(Y,Yi ) =E@ Y wivix e Cor(Y, % 4) = —%—.
i=0 'go ll/lz

De acordo com o Teorema 1, temos que a esperanca marginal de ¥; nos modelos SY-
MARMA ¢ estaciondria desde que ®(B) seja invertivel e x| B = ¢ para todo ¢, sendo ¢ uma
constante. Enquanto que, pelo Teorema 2, a condi¢do de estacionariedade para variancia mar-
ginal de ¥; nos modelos SYMARMA ¢ que ®(B) seja invertivel. As provas dos Teoremas 1-3

sdo apresentadas nos Apéndice A, B e C.
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2.3.1 Casos particulares

O modelo SYMARMAC(1,1), definido como
Yi=0Y, 1+ 0r_1+n, (7

pode ser reescrito na forma ¥; = ¥(B)r;, em que ¥(B) = O(B)®(B) ! = 1+ y1B' 4y, B> +. . ..
Utilizando operagdes recursivas a partir (7) é possivel mostrar que o modelo SYMARMA(1,1)

pode ser expresso por meio de um processo linear geral dado por

=r+(0+6)Y ¢/ 'rn_;
j=1

Diante disso, temos que

yi=(¢+6)¢/" para j>1. ©)

A Tabela 2.2 apresenta as expressoes da variancia e da covariancia marginal de Y; para os
modelos SYMARMA(1,0), SYMARMA(0,1) e SYMARMAC(1,1), obtidas pelos Teoremas 2 e
3 e pela equagdo (8). Além disso, podemos mostrar que as funcdes de correlagdo para esses

modelos sdo expressas por:

Modelo SYMARMAC(1,0):
Corr(Y;,Y; ) = ¢ para k> 1.
Modelo SYMARMA(O,1):

0 para k=1
Corr (YY) =

_#092 para k> 2
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Modelo SYMARMA(1,1):

(0+6)(1+¢6)

Corr(¥.Yik) = 550+ 02

¢! para k>1.

Tabela 2.2 Varidncia e covaridncia marginal para os modelos SYMARMA(1,0), SYMARMA(O,1) e
SYMARMA(1,1).

Modelo Var(Y;) Cov(Y;,Y—x)
SYMARMA(1,0) lf‘gz = ¢2¢’< para k=1,2,3,...
-0 para k=1

SYMARMA(0,1)  &¢(1+67) 0 para k=234, ...

SYMARMA(1,1) §<p% E0tB)(1106) ‘“9 ”“’9 o1 para k=1,2,3,...

2.4 Estimacao dos parametros

Nessa secdo tratamos do problema de estimar os parametros do modelo SYMARMA com
base na série histérica observada yi,ys,...,y,. Assumimos que um modelo ja foi especificado,
isto é, que ja foram especificados os valores para p e g. A proposta € utilizar o método de
madxima verossimilhanca condicional as m primeiras observacdes, em que m = max{p,q}. Para
o modelo SYMARMA, a fun¢do de verossimilhanga condicional € uma funcdo dos parametros

B’s, ¢’s, 0’s e @, expressa por

H f(yl|Ht—17.ulu(P)7

t=m+1
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emqued=(B",07,.0")" e fOe|Hi—1, 1y, @) € definida como em (2). Dessa forma, o loga-

ritmo da fung¢do de verossimilhanca condicional é

(n—m)

(6,0) =~

log(¢)+ Y, log(g(u)), ©)

t=m+1

em que u; = (y; — 14;)?/ ¢ e y; é definido como em (6).

Assumimos que o logaritmo da funcio de verossimilhanca, ¢, é regular (COX; HINKLEY,
1974) em relagdo a 0 e @ e que é possivel derivar £ em relacdo aos pardmetros desconhecidos
e calcular alguns momentos dessas derivadas. Algumas distribuicdes pertencentes a classe
simétrica ndo satisfazem as condic¢des de regularidade e ndo tém derivadas ou momentos finitos
como, por exemplo, as distribuicdes de Kotz, Kotz generalizada e exponencial dupla, ndo sendo
consideradas nesse trabalho.

Na constru¢@o do logaritmo da funcdo verossimilhanga condicional, assumimos que os ¢
primeiros erros sdo iguais a zero, desde que, condicional a H,,, os m primeiros erros sio iguais
a zero (ou aproximadamente zero). As expressoes para o vetor escore (U) e para a matriz
de informacdo de Fisher condicional (K) sdo obtidas, respectivamente, pelas derivadas de pri-
meira e segunda ordem do logaritmo da funcdo de verossimilhanga condicional apresentada
em (9). Sendo a funcdo g(-) continua e diferencidvel, os vetores escore para § e ¢ sdo dados,

T epectivamente, por

Us(8,0) = ¢ '0'D(y—u) e

Up(5.9) = ﬁ[—(n—mww1<y—u>TD<y—u>1,

emque y = (Vpitr---sVn) s = (Unit, s ihn) D =diag(Vipi1,...,vs) com v, = v(u;) =
—2W,(uy) e We(u;) = %‘Ef“’)). Temos ainda que O = (C,A,B) é uma matriz (n—m) X (p+

q+k+ 1) com elementos dados por
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ym_xlﬁ ym+17p_x,—nr+1,pﬁ
- -
A — Ym+1 Xm-i—ll3 <o YmA2-p Xm-i—Z—pl3
T T
In=1 Xnilﬁ o Ynep = Xn_pﬁ (n—m)xp
Ym — W cor Ymtl—q — Mmt1—¢
Ym+1 = Hm+1 -+ Ymt2—q — Hm+2—¢
B= e
Yn—1—MHp—1 ... Yn—qg — Hn—gq (n—m)xq
p p
1— 21 i oo Xk — '21 PiX (imt1-i)k
1= 1=
p p
1= Y 0 o Xk — X OiX(mi2-ijk
C= i=1 i=1
p p
I=Y 0 . Xpk— X X
i=1 i=1 (n—m)x (k+1)
Expressdes para Wy (u;) € Wy (u) = deg—ISJ’) para algumas distribui¢des simétricas encontram-

se na Tabela 2.3.

Os estimadores de médxima verossimilhanga condicional (EMVC) para o vetor de parame-
tros 0 e ¢, dados, respectivamente, por Se ¢, sdo obtidos igualando-se U ao vetor de zeros.
Exceto para Uy, o sistema de equagdes ndo possui solucdo explicita e, dessa forma, deve-
mos utilizar um procedimento iterativo para estimar os parametros do modelo (NOCEDAL,;
WRIGHT, 1999). O método escore de Fisher tem sido utilizado por diversos autores para es-
timar os parametros dos modelos simétricos de regressdo (GALEA et al, 2003; CYSNEIROS;
PAULA, 2005). Nesse trabalho também optamos por utilizar o método escore de Fisher para

estimar os parametros do modelo SYMARMA. O processo iterativo € dado por

50D — 50 4 (K0)~1y00),
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Tabela 2.3 Expressoes para Wy (u) e Wé(u) para algumas distribui¢des simétricas.

Distribui¢do We(u) Wy ()
Normal —% 0
(v+1) (v+1)

t-Student _2(V+u) m
t-Student generalizada -2({;:4) %
Logistica-I -tanh (%) -sech ( 5 ) 2

foti exp(—vu)—1 2exp(—v/u)Vutexp(=2/u)—1
Logistica-II o) [Texp(— Vo] 21 texp(— Vi)

- . amlexp(—a+/u)—1] om 20exp(—an/u)\/u+exp(—20+/u)—1
Logistica generalizada 2 0)[LFexp(—avu)] T 1 texp(— )l
Exponencial poténcia —m T k)2u(]§k Y yiramy

Fonte: Cysneiros (2004)

em que K é a matriz de informagdo condicional esperada de Fisher para (8,¢).

A matriz K é bloco-diagonal,

ou seja, o vetor de pardmetros d e @ sdo globalmente ortogonais. Conforme detalhado no Apén-
dice D, as matrizes de informagdo condicional esperada de Fisher Kss € K¢y sdo expressas,

respectivamente, por
K5 =4d,0"'1070 e Kyp= %(4@, —1),

em que dy = E[Wgz(Uz)Uz] efe= E[Wgz(Uz)U“], sendo U ~ S(0,1,g). A Tabela 2.4 apresenta
os valores de d, € f, para algumas distribui¢des simétricas.

As estimativas de médxima verossimilhanca condicional para 0 e ¢ podem ser obtidas
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Tabela 2.4 Valores de d, e f, para algumas distribui¢des simétricas.

Distribuigao dg fe
Normal % 43'1
(v+1) 3(v+1)
t-Student 4(v+3) 3013)
t-Student generalizada % ig:iég
Logistica-I 0,36931 1,00345
Logistica-IT 5 0,60749
24/
Logistica generalizada % W
. Ane T{(3—k)/2} (k+3)
Exponencial poténcia s 2t (w72 D)

Fonte: Cysneiros (2004)

resolvendo-se o seguinte sistema de equagdes:

S+ _ (OT(i)O(i))_IOT(i)Zg)

o) = 1 <y_“(i+l))TD(i+1)<y_‘u(i+1)>7

n—m

em que zg ¢ um vetor (n—m) x 1 dado por
25 = 08 + (4dg) "' D(y — ).

Os valores iniciais para o vetor de parimetros O 0) ¢ (p(o) podem ser considerados como

sendo as estimativas obtivas através do ajuste do modelo ARMA.

2.5 Inferéncia estatistica

Sob as condicoes de regularidade usuais e para n suficientemente grande, temos que o

EMVC converge em distribuicao para uma distribuicao normal, isto é,
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)

D 6 1
— N(k+p+q+2) K ) (10)
%

<)

em que 8 e @ sdo os estimadores de mdxima verossimilhanga condicional de & e @, respectiva-

mente, e N, denota a distribui¢do normal r-dimensional. Portanto, a matriz Kgsl, avaliada em

—1

s avaliada

(3 , @), é um estimador consistente para a variancia assintética de 8 e a matriz K
em (8 ,®), ¢ um estimador consistente para variancia assintética de ¢. Dada a normalidade as-
sint6tica do EMVC em (10), podemos facilmente construir intervalos de confianga assintdticos
para d e ¢.

Hipéteses envolvendo o vetor de pardmetros y = ( BT, o, o, GT)T podem ser expressas na

forma geral

Ho:Zy=0 e H;:Zy#0, (11)

em que Z é uma matriz r X (k+ p+ g+ 2) de posto completo r (r < k+ p+ g+ 2). A hipStese
nula pode contemplar situagdes bastante simples, como, por exemplo, testar Hy: f = 0 contra
Hi: B # 0. A estatistica utilizada para testar as hipéteses Hy e H; definidas em (11) € baseada

na razdo de verossimilhangas condicional dada por

A =2{t(y)—tM},

em que £(-) é o logaritmo da fungéo de verossimilhanga condicional, 7 é o EMVC restrito de y
(sob a hipétese Hy em (11)) e ¥ é o EMVC irrestrito de 7 (sob a hipétese H; em (11)).
Sob certas condic¢des de regularidade e sob Hy temos que A 2 X2, em que 2 denota con-

vergéncia em distribui¢io e x> denota a distribui¢do qui-quadrado com r graus de liberdade.
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2.6 Robustez, consisténcia e normalidade assintética

Nessa secao avaliamos por meio da funcdo de influéncia a robustez qualitativa do pro-
cedimento de estimacdo dos parametros. Resultados de estudos de simulacdo para avaliar a

consisténcia e a normalidade assintética do EMVC também sdo apresentados.

2.6.1 Funcao de influéncia

Um procedimento de estimacao € considerado qualitativamente robusto quando a funcao de

influéncia (FI), definida por

FI(y,8,9,f) = —[E[U'(8,9)]]"'U(5,9), (12)

¢ limitada, em que U € a funcdo escore, U’ é a sua derivada e f é a funcdo densidade de
probabilidade associada ao modelo SYMARMA.
Consideramos a funcao de influéncia definida em (12) para os modelos SYMARMA-normal

e SYMARMA-¢. As fungdes escores para ¢ e U, sdo dadas, respectivamente, por

Notamos que, para 0 modelo SYMARMA-normal, as funcdes de influéncia corresponden-
tes sdo proporcionais as suas fugdes escore. Entdo, desde que Uy € Uy sdo ilimitadas (ver
Figura 2.1), as correspondentes FI’s também sdo ilimitadas. Dessa forma, ha indicios de que
o procedimento para estimacdo dos parametros baseado no modelo SYMARMA-normal ndo é
robusto podendo fornecer estimativas bastantes viesadas na presenca de observacdes atipicas.

No caso do modelo SYMARMA-#, assumindo conhecido os graus de liberdade (v), as
funcgdes de influéncia para ¢ e u também sdo proporcionais as suas fungdes escore, mas, nesse

caso, Uy e Uy sdo limitadas e, consequentemente, as FI's também sdo limitadas (ver Figura 2.2
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para v =4). Portanto, o procedimento para estimagao dos parametros ¢ e u basedo no modelo
SYMARMA-t é qualitativamente robusto.

Lucas (1997) desenvolveu um importante estudo sobre aspectos de robustez no modelo #-
Student, demonstrando que a robustez no ajuste de outliers é preservada apenas se os graus de
liberdade, v, sao mantidos fixo. Caso contrdrio, se os graus de liberdade também sio estimados
por médxima verossimilhanca, as funcdes de influéncia para @ e v nio sdo limitadas. Diante
disso, manteremos fixos todos os parametros extras, como, por exemplo, vV da distribui¢do

t-Student.

Figura 2.1 Fungdes escore do modelo SYMARMA-normal para ¢ e L.

40 50

30

L)
()
0
|

20
|

10

-10

Fonte: Autoria prépria.

2.6.2 Consisténcia em erro quadratico médio e QQ-plort

Para avaliar a consisténcia e a normalidade assint6tica dos EMVC para os parametros do
modelo SYMARMA, apresentamos um estudo de simulacdo em modelos SYMARMA com

intercepto e um parametro autorregressivo, dado por

)’z:ﬁO"“P()’t—l—ﬁO)""’t, tzz;"'vn; (13)
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Figura 2.2 Fungdes escore do modelo SYMARMA-#4 para ¢ e U.
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Fonte: Autoria prépria.

em que By =20, ¢ = 0,6 ¢ ¢ = 1. Foram geradas 10.000 réplicas de Monte Carlo do modelo
(13) considerando as distribui¢des normal, 7-Student e logistica I para y;|H,_. Para cada cena-
rio e combinag¢do de tamanhos amostrais n = 50, 100 e 200, avaliamos o viés e o erro quadratico
médio (EQM) e apresentamos os graficos quantil-quantil (QQ) para a distribui¢ao empirica de
cada parametro do modelo.

De acordo com os resultados apresentados na Tabela 2.5, os vieses sdo proximos a zero e
0os EQM decrescem com o aumento do tamanho amostral n. Esse fato evidencia a consisténcia
dos EMVC obtidos pelo método escore de Fisher. Observamos também que os EQM para ¢ no
modelo SYMARMA-logistica I é maior do que nos modelos SYMARMA-t4 e SYMARMA-
normal.

As Figuras 2.3 e 2.4 mostram os graficos QQ para a distribui¢do empirica de cada estimador.
Para uma melhor visualizagdo, os quantis empiricos sdo representados por diferentes tipos de
linhas que correspondem aos diferentes tamanhos amostrais. A linha reta de 45° indica onde
os pontos de uma distribuicao normal padrdo seriam representados no grifico QQ. Notamos

que as distribui¢des dos estimadores o, ¢ e ¢ se aproximam da distribuicio normal 2 medida
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Tabela 2.5 Medidas descritivas empiricas para os EMVC dos parAmetros By =20, ¢ = 0,6 e ¢ = 1
obtidos de 10.000 modelos SYMARMA simulados.

Medidas descritivas empiricas
Parametros Viés EQM
n=50 n=100 n=200 n=50 n=100 n=200

Normal
Bo 0,0062 0,0044 0,0044 0,1273 0,0631 0,0319
[0} 0,0574 0,0278 0,0138 0,0184 0,0075 0,0035
(0] 0,0429 0,0214 0,0116 0,0403 0,0202 0,0100
Student #4
Bo 0,0041 0,0024 0,0001 0,1882 0,0918 0,0451
[0} 0,0441 0,0211 0,0097 0,0139 0,0057 0,0025
[0} 0,0277 0,0145 0,0046 0,0725 0,0352 0,0170
Logistica I
Bo 0,0060 0,0045 0,0026 0,0619 0,0307 0,0152
[0} 0,0644 0,0330 0,0169 0,0255 0,0114 0,0055
(0] 0,6070 0,5964 0,5920 0,3805 0,3617 0,3534

que o tamanho da série aumenta. Contudo, no modelo SYMARMA-logistica I a aproximagao

requer tamanhos amostrais maiores.

2.7 Previsoes

Para realizagdo de previsdes, devemos utilizar os EMVC de 6 (3) e ¢ () para estimar L,

parat =m+1,...,n. Essas estimativas serdo denotadas por [I,;. Temos que
a s - q
i =%, B+ Z i {Yt—i - Xz—iﬁ} + Z 0;f—j-
i=1 J=1

Utilizando fI;, podemos obtemos as estimativas de r;, 7, parat =m+1,...,n. Por exemplo,
se r; = y; — I, isto €, erros mensurados na escada original, teremos 7 =y, — [I;. Para N > n,
a previsao do erro ry € igual a zero. Assim, para prever o valor médio do processo no tempo

N > n, devemos utilizar:
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Figura 2.3 QQ-plot normal dos EMVC para os pardmetros 3y, ¢ ¢ ¢ do modelo SYMARMA-normal
(a) e do modelo SYMARMA-#4 (b), baseados em 10.000 réplicas.
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Fonte: Autoria prépria.
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Figura 2.4 QQ-plot normal dos EMVC para os pardmetros fy, ¢ e ¢ do modelo SYMARMA-logistica
I, baseados em 10.000 réplicas.
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Fonte: Autoria prépria.
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(a) os EMVC Se Q;
(b) as estimativas de y, fl;, parat =m+1,...,n;

(c) asestimativas de r;, 7, parat =m+1,...,n (lembrando que E(r,) = 0 para N > n).

Essas quantidades sao suficientes para obter fI, | e, procedendo de forma andloga, podemos
obter fl; 1, e assim por diante. Por fim, devemos substituir y; por [I; se n < t < N. Dessa forma,

a estimativa para resposta média no tempo n + 1 € dada por
T oALvA T P A
Int1 =X B+ Z i {yn+1—i - Xn—H—iﬁ} + Z 0ifnr1—j-
i=1
No tempo n + 2, obtemos que
T ALV T P
Pnt2 =Xy 0B + Z ¢ {)’n+2—i - Xn+27iﬁ} +
i=1

e assim por diante.

O método bootstrap (EFRON; TIBSHIRANI, 1993) pode ser usado para obter a distribui-
¢do empirica F' dos valores futuros (y,¢). Podemos construir um intervalo de previsdo com
nivel de aproximadamente (1 — ), definindo os percentis a/2 e 1 — /2 de §,.¢. O intervalo
& (Lins:Lyup) = (F(0t/2),F(1—/2)). Geramos B séries temporais bootstrap (por exemplo,
B =1.000) Ylf yee ,Yzf b ,Y,f por simulagao do modelo SYMARMA(p,q) ajustado. Para cada

série bootstrap ¥, é calculado. Das B estimativas bootstrap ﬁf

- Podemos calcular a distri-

bui¢do empirica F'.

2.8 Componente sazonal

A sazonalidade em uma série corresponde as oscilacdes de subida e de queda que sempre

ocorrem em um determinado periodo do ano, do més, da semana ou do dia. A sazonalidade é
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considerada deterministica quando pressupomos um padrdo sazonal regular e estavel no tempo,
desta forma podemos prever o comportamente sazonal perfeitamente a partir de dados anteri-
ores. Quando a componente sazonal da série varia com o tempo a sazonalidade é considerada
estocastica. As Figuras 2.5 e 2.6 apresentam, respectivamente, exemplos de séries com sazo-

nalidade deterministica e com sazonalidade estocastica.

Figura 2.5 Temperatura média mensal, Dubuque, Ilowa.
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Fonte: Autoria prépria.

Figura 2.6 Niveis de diéxido de carbono mensais em Alert, NWT, Canada.
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Fonte: Autoria prépria.

Modelos de regressao produzem bons ajustes para séries com sazonalidade deterministica.
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Podemos assumir, por exemplo, que a série observada € representada por

Yl:Hl+rtv

em que E(r;) = 0, para todo ¢, e u; € uma fungdo com s pardmetros constantes, B, Bz, ..., Bs,
que fornecem o valor esperado para cada periodo. Por exemplo, s = 12 para sazonalidade

mensal e s = 2 para sazonalidade semestral. Desta forma, y; pode ser escrito como

Bi, para t=1,s+1,2s+1,...;

By, para t=2,5+2,25+2,...;
He =

\ Bs, para t=s,2s,3s,....

Em alguns casos, séries com sazonalidade deterministica podem ser modeladas através de
curvas cossenoides que incorporam a mudanca esperada de forma suave de um periodo para o

outro, preservando a sazonalidade. Consideramos que
W = Beos(2mft + D), (14)

em que 3 (> 0) é a amplitude da curva, f a frequéncia da curva e ® a fase da curva. Como ¢
varia, a curva oscila entre um maximo de 8 e um minimo de — 3. Uma reparametrizacdo mais

conveniente para (14) é dada por
Beos(2mft + @) = Bicos(2mft) + Brsen(2m f1),

em que

B=+/Bi+B3, ©=atan(—B,/P1)
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c, I eciprocamente,

B1 = Bcos(®) e B = Psen(P).

No contexto de séries temporais com sazonalidade estocdstica encontramos a classe de
modelos ARMA sazonal (SARMA), para séries estaciondrias, € ARIMA sazonal (SARIMA),
para séries ndo estaciondrias. O modelo ARMA(p,q)*x(P,Q) com periodo sazonal s € expresso
por

() @(x)Y; = 6(x)O(x)ry, (15)

em que @(-), D(+), O(-) e O(+) sdo polindmios caracteristicos, expressos por

¢(X) = 1—¢]x—¢2x2_..._¢pxp
(I)(x) = 1—-Px— q)2x2s . q)pxPs

AR

0(x) = 1+06x+6x>++0,x
MA,

G‘)(X) = 1+0 X+ ®2x2S + @QXQS
as constantes p e g sao as ordens dos parametros autorregressivos e de médias moveis, respec-

tivamente, e as constantes P e Q s@o as ordens dos parametros sazonais autorregressivos e de

médias mdveis, respectivamente.

2.8.1 Modelo SYMARMA sazonal

Nosso objetivo agora € adicionar aos modelos SYMARMA componentes sazonais estocas-
ticas. Esse fato ampliard o leque de opcdes para a distribui¢ao condicional de séries sazonais
que, a partir deste momento, é tomada como pertencente a classe de distribui¢des simétricas.

Considere a distribui¢do de Y;, dado o conjunto de observacdes passadas, H;_1, pertencente

a classe de distribuicdes simétricas com fun¢do de densidade condicional dada por (2). A
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estrutura da média y; nos modelos SYMARMA sazonais € definida como

-

=% B+, (16)
em que XtT = (1,x1,%2,...,x%) € 0 vetor que contém os valores das k varidveis explicativas,
k < n, sendo n o tamanho da amostra, B = (Bo,B1,B2,-..,B¢) | é um vetor de parimetros

desconhecidos e 7; € uma componente SARMA com periodo sazonal s, expressa por

P

oi {ytfi —X:—iﬁ} +j—i1q)j {}’z—js - XzT—st} - Z o; Z D, {ytfifjs - XzT—i—st} +

=1 j=1

S

Tt -

< I~
L

o q 0
01—+ Z O t—ms + Z 6 Z Onli—i—ms,
1 -

m=1 =1 m=1

~
Il

em que os termos 7;’s sdo ruidos brancos que podem ser, por exemplo, erros de medida na
escala original (isto é, y; — U;), ou, residuos de Pearson, entre outros.

O modelo SYMARMA sazonal € definido pela componente aleatéria dada em (2) e pela
componente dinamica dada em (16). Denotaremos o modelo SYMARMA sazonal por SYMA
RMA(p,q) < (P,0Q). Podemos verificar que, da forma como definido, os modelos SYMARMA
sazonais podem ser apresentados como modelos SYMARMA gerais. Por exemplo, a média p,

no modelo SYMARMA(1,0)x(1,1) com periodicidade s = 12 pode ser reescrita como
w=x'B+¢ {J’H - XzT_lﬁ} +60ir-1+ 01112+ 6,01r,13.

Dessa forma, o modelo SYMARMA(1,0)x(1,1) com periodicidade s = 12 pode ser apresen-
tado como um modelo SYMARMA(1,13) com 6, = 63 = --- = 611 = 0. No geral, o mo-
delo SYMARMA(p,q)*x(P,Q) com periodicidade s pode ser apresentado como um modelo
SYMARMA(p + Ps,q + Qs).

Tendo especificado um modelo SYMARMA sazonal para uma série temporal, o interesse
passa a ser estimar os pardmetros do modelo. Como podde ser observado anteriormente, 0s

modelos SYMARMA sazonais sdo casos especiais dos modelos SYMARMA. Como tal, o
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mesmo procedimento adotado para estimar os parametros do modelo SYMARMA pode ser

adotado para estimar os parametros dos modelos SYMARMA sazonais.
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Capitulo 3

Influéncia Local em Modelos Autorregressivos de Médias

Modveis Simétricos

3.1 Introducao

Quando consideramos um modelo de regressdo para uma aplicagdo, normalmente ndo te-
mos certeza se 0 mesmo € apropriado. Algumas, ou muitas, das caracteristicas do modelo,
como, por exemplo, a distribui¢do adotada para o erro, podem ndo ser apropriadas para o con-
junto de dados em estudo e, portanto, conclusdes baseadas nesses modelos podem estar erradas.
Diante disso, € importante examinar o quanto o modelo que estd sendo considerado € adequado
para os dados antes de fazer inferéncias. Essa avaliacdo do modelo € conhecida como anélise
de residuos e diagndstico, que consiste na verificacdo de possiveis afastamentos relevantes das
suposi¢Oes feitas para 0 mesmo bem como, na verificagdo da existéncia de observagdes com
alguma interferéncia desproporcional nos resultados do ajuste.

Dentre as técnicas de diagndstico utilizadas para modelos de séries temporais, a medida de
influéncia local tem um papel importante por ndo ser baseada na exclusdo de observacdes do
conjunto de dados que, a principio, sdo dependentes. A dependéncia das observagdes coletadas
ao longo do tempo faz com que técnicas como a distancia de Cook (COOK; WEISBERG,

1982) e a medida DFFITS (BESLEY et al, 1980) ndo sejam convenientes para avaliar pontos
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influentes em séries temporais.

A metodologia de diagndstico de infuéncia local foi proposta inicialmente por Cook (1986),
que sugeriu avaliar a influéncia de pequenas perturbacdes no modelo e/ou nos dados através do
afastamento da funcdo de verossimilhanga e, consequentemente, na andlise da curvatura do
grafico de influéncia. Contudo, a curvatura ndo € invariante a reparametrizacdes do modelo
e, por essa razdo, Billor e Loynes (1993) sugerem uma medida alternativa baseada no uso da
inclinagdo do gréfico de influéncia modificado. Uma outra medida de influéncia local, também
baseada na curvatura normal, pode ser encontrada em Lesaffre e Verbeke (1998), que utilizaram
o enfoque de influéncia local para avaliar modelos lineares mistos.

Em todo caso, o maior desafio na anélise de diagnostico através de influéncia local é en-
contrar a distribui¢cdo das medidas de diagndstico de inclinacdo e de curvatura, para que seja
possivel caracterizar uma observacio como influente. Na maioria das vezes, essa caracteriza¢ao
¢ feita por meio de uma simples andlise exploratéria. O primeiro trabalho a discutir a aplicagao
de marcas de referéncia para determinar se, estatisticamente, as observacgdes sao influentes, foi
proposto por Zhang e King (2005), que simularam a distribuicao das medidas de influéncia nos
modelos GARCH(1,1) com erros gaussianos, usando a primeira derivada (inclinag¢ao de Billor
e Loynes) e a segunda derivada do gréifico de influéncia modificado. Esse procedimento foi
denominado de limiares (benchmarks). Mais recentemente, Zevallos e Hotta (2012) utilizaram
a metodologia dos limiares para andlise de influéncia local em modelos GARCH considerando,
alternativamente, a curvatura de Cook ao invés da segunda derivada do grafico de influéncia
modificado, obtendo uma grande vantagem de ordem computacional.

Esse capitulo tem por objetivo desenvolver uma metodologia para andlise de diagndstico
em modelos autorregressivos de médias moéveis simétricos (SYMARMA) sob o enfoque de
influéncia local. Discutimos a aplicacdo da metodologia de marcas de referéncia (limiares),
proposta por Zhang e King (2005), na andlise de influéncia local dos modelos SYMARMA,
através das medidas de influéncia desenvolvidas por Cook (1986), Billor e Loynes (1993) e

Lesaffre e Verbeke (1998). E a primeira vez que a metodologia de limiares é aplicada 2 medida
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de influéncia local proposta por Lesaffre e Verbeke (1998). Consideramos quatro esquemas
de perturbacdo: perturbagdo aditiva na variavel resposta, perturbacdo no parametro de disper-
sdo, perturbacdo no vetor de pardmetros autorregressivos e perturbacdo no vetor de pardmetros
de médias moveis. Para ilustrar a metodologia proposta apresentamos alguns resultados de

simulagdo.

3.2 Medidas de influéncia local

As trés medidas de influéncia local estudadas neste capitulo sdo: curvatura de Cook (COOK,
1986), curvatura de Lesaffre e Verbeke (LESAFFRE; VERBEKE, 1998) e inclinacdo de Bil-
lor e Loynes (BILLOR; LOYNES, 1993). Aplicamos a metodologia de limiares, baseada em

niveis de referéncia, para avaliar a significancia relacionada a influéncia local.

3.2.1 Curvatura de Cook

Na literatura, o primeiro trabalho sobre influéncia local foi introduzido por Cook (1986). A
proposta € avaliar a influéncia de pequenas perturbacdes nos dados ou no modelo utilizando o

afastamento da funcdo de verossimilhanga, definido por

em que L(S, ¢) é a fun¢do de verossimilhang¢a do modelo postulado, L(S w, Po) € a fungio de
verossimilhanca do modelo perturbado pelo vetor ® = (@, ..., ®,)" € R"e, (6 ,0) e (Sw,(f)w)
sd0 as estimativas de méaxima verossimilhaca de L(3, @) e L(J, ¢|®), repectivamente. Sendo
y = (y1,...,yn) " 0 vetor de observagdes, podemos considerar, por exemplo, que a perturba-
¢do seja inserida na varidvel resposta y; na forma y; = y, + @y, onde y, é a varidvel resposta
perturbada por .

Em geral, o vetor @ € introduzido no modelo via @ = @y + af, em que ¢, wy € R" e
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a medem a magnitude da perturbacdo na direcdo /. Assumimos que existe um @ tal que
L(3,¢|wg) =L(J,¢) para todo 6 e ¢.

A idéia de influéncia local é estudar o comportamento da fun¢do LD (@) numa vizinhanga
de wy. Para tanto, consideramos a superficie geométrica (n + 1)-dimensional formada pelos

valores do vetor

®
Alo) =
LD(mw)

Essa superficie € denominada gréfico de influéncia e fornece informacdes importantes sobre a
sensibilidade de LD sob pequenas perturbacdes. A proposta € avaliar a maior mudanca local
na curvatura de LD. Dessa forma, tomamos a segunda derivada de LD com relacdo a a, isto &,

d’LD(w)/dada = Cy(8, ) = 2(¢T¥¢) em que F é uma matriz (n x n) definida como

i L(0w, Po)
dodw’

que pode ser expressa da forma

F=ATL7!A, (17)

em que —L é a matriz de informacao condicional observada para o modelo postulado (0 = ®y),

I.~! é a matriz inversa de I. e A é uma matriz com elementos

o _ PL(S 9lw)
Yo 8&860]- ’

avaliados em &, pewyg,comi=1,....p+qg+ke j=1,...,n Consideramos entdo o maior
autovalor de 2F, denotado por O., como medida de influéncia global e o autovetor associado

ao maior autovalor de 2F, C = (cq,...,c,) "

, como medida de influéncia individual, onde a
i-ésima componente do vetor C indica a influéncia da i-ésima observac¢do. Adicionalmente,

considerando o modelo de regressao linear, Cook propde relacionar a i-ésima componente do
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vetor C com a i-ésima componente do vetor de residuos.

3.2.2 Curvatura de Lesaffre e Verbeke

Alternativamente, Lesaffre e Verbeke (1998) sugerem avaliar a curvatura normal na dire-
¢do da i-ésima observacdo, que consiste na avaliagdo de Cy(8, @) no vetor n-dimensional, ¢;,

formado por zeros com um na i-ésima posi¢cdo. Essa curvatura ¢ denominada por
Cy, =2|Fy|.
Lesaffre e Verbeke sugerem que as observagdes tais que Cp, > 2C, tenham uma atencio especial.

3.2.3 Inclinacao de Billor e Loynes

Conforme apontado por Billor e Loynes (1993), dificuldades praticas e tedricas surgem
no enfoque de influéncia local introduzido por Cook (1986), entre elas: i) a escolha de uma
referéncia para a medida de influéncia global O, ii) a férmula explicita para O, € dificil de ser
encontrada analiticamente e iii) a falta de invariancia da curvatura sobre reparametriza¢des do
esquema de perturbagdo.

Para contornar problemas como a falta de invaridncia da curvatura de Cook sobre repara-
metrizagdes do esquema de perturbacio, Billor e Loynes (1993) consideram uma modificagdo

no afastamento da funcdo de verossimilhanga, definida por
MLD(®) = —2{L(§,9) - L( 0, P|®)},

em que L(S 0, Pw|®) é a fungdo de verossimilhan¢a do modelo perturbado avaliada sobre
(8w, Pw), que é o estimador de maxima verossimilhanca de (8¢, @) quando perturbacdes
sdo introduzidas no modelo postulado. Assim podemos estudar a superficie geométrica (n+1)-

dimensional formada pelos valores do vetor
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()]
A(w) = :
MLD(o)

para avaliar a influéncia de pequenas perturbagdes no modelo. A proposta € avaliar a maior

mudancga local na inclinacdo de MLD. Dessa forma, tomamos a primeira derivada de MLD

com relag@o a a, isto é, IMLD(®)/da = 2(€TS), em que

. aL(Sw, gf)w\a))
S= = . (18)

S| =4/X%, s?, como

Billor e Loynes propdem utilizar a norma do vetor S = (s1,...,s,) ', :

medida de influéncia global e duas vezes as componentes do vetor S, 2S, como medida de in-

fluéncia individual, onde a 2s; indica a influéncia da i-€sima observacao.

As estatisticas para as medidas de influéncia local definidas nas Secdes 3.2.1-3.2.3 podem

ser resumidas como:

Critério global:
dado por O; = ||S||. Dessa forma, a série temporal em estudo tem

pelo menos um ponto influente se Oy for grande.
Diagnéstico de

inclinagdo .
: Critério individual:
(Billor e Loynes)
a observagao y; € considerada como influente se d; = 2s; for grande,

parat =1,...,n. O vetord = (dy,...,d,)" é chamado vetor de

inclinagao.
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Critério global:
dado por O., o maior autovalor de 2F. Dessa forma, a série temporal

em estudo tem pelo menos um ponto influente se O, for grande.
Diagndstico de

curvatura

(Cook) Critério individual:

a observacgdo y; € considerada como influente se a i-ésima componente

do autovetor associado ao maior autovalor de 2F, C = (cty... ,cn)T,

for grande. O vetor C é chamado vetor de curvatura.

Critério global:
dado por O, o maior autovalor de 2F. Dessa forma, a série temporal
Diagndstico de em estudo tem pelo menos um ponto influente se O, for grande.
curvatura
(Lesaffre e Verbeke) | Critério individual:

a observacgdo y; € considerada como influente se a i-ésima componente

do vetor C;, = 2|F;;| for grande.

3.3 Metodologia de limiares

Diferentes critérios de diagndstico foram propostos por Cook (1986), Lesaffre e Verbeke
(1998) e Billor e Loynes (1993) para avaliar a influéncia local dos dados. Em todos os casos,
as técnicas de diagndstico propostas apresentam dois tipos de problemas. O primeiro trata das
aproximacodes bastante imprecisas apresentadas por Billor e Loynes (1993) para Oy e por Cook
(1986) para O.. A segunda é a determinagdo de que uma observagdo especifica € influente
através da simples andlise exploratéria de gréficos.

Uma proposta para contornar esses problemas foi apresentada por Zhang e King (2005)
que, baseados em simula¢des de Monte Carlo para o modelo GARCH sob diferentes esquemas
de perturbacdo, construiram niveis de referéncia para os vetores de diagndstico da inclinagdo e

da curvatura. Esta metodologia ficou conhecida como limiares (benchmarks).
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Considerando o modelo postulado, ou seja, sem perturbacao, as simulacdes de Monte Carlo
se tornam uma importante ferramenta, pois, permitem estimar as distribuicdoes das medidas de
influéncia local. Assim, através de parametros predeterminados, para cada replicacdo € gerada
uma amostra de tamanho n, e conseguinte sdo computadas as estatisticas globais O e O, € 0s
vetores d e C. A partir dessas replicagdes, podemos estimar a distribuicdo das estatisticas Oy e
O.. No nosso trabalho, sdo realizadas 2.000 replicacdes para cada simulacio. E a primeira vez
que limiares sdo utilizados para simular a distribui¢do da estatistica do diagndstico de curvatura
sugerido por Lesaffre e Verbeke, o que trard niveis de referéncias mais confidveis.

Para obtencdo das marcas de referéncia por meio de limiares, primeiramente simulamos
2.000 vezes o modelo postulado, isto €, séries temporais de tamanho n sem perturbacido. Para

a k-ésima série temporal simulada, calculamos a estatistica S de acordo com a Equacdo (18),

a estatistica O, o vetor de inclinagdo dy = (diy,...,dk,), a matriz F de acordo com a Equacio
(17), a estatistica O, e os vetores de curvatura Cy = (cg1,...,cm) € Cy, = (cqy,,---,cq,, ), Para
k=1,...,2.000. Consideramos BS; como sendo os limires para o diagnéstico de inclinag@o,

BCJC-OOI‘ como sendo os limiares para o diagndstico de curvatura de Cook e BC?V como sendo
os limiares para o diagnéstico de curvatura de Lesaffre e Verbeke, em que j = 0,1,2. Agora,
a partir dos resultados obtidos das simulacdes de Monte Carlo, as marcas de referéncia sao

calculadas da seguinte maneira.

3.3.1 Limiares para as medidas de influéncia global

BSy = Percentil 95% de {Oyy, ..., 05000}

BC§?f = BCL" = Percentil 95% de {O,1,...,0:.000}

3.3.2 Limiares para as medidas de influéncia individual
Seja Y = max{|dy|,...,|dw|} parak =1,...,2.000.
BS; = Percentil 95% de {’}/1, cee ’}/2.0()()}.

BS; =Percentil 5% de {¥%,, ..., %, }-emque {ki,...,k,} € {1,...,2.000} corresponde a série
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gerada que satisfaz OSkj >BSp, j=1,...,m.

Seja & = max{[cx(p)|,-- -, |k |} parak = 1,...,2.000.
BC{?% = Percentil 95% de {&1,...,&.000}-

Bcg‘”’k = Percentil 5% de {&,,..., &, }, em que {ki,...,k,} € {1,...,2.000} corresponde a

série gerada que satisfaz Oy, > BCSOOk, j=1,....m.

Seja & = max{|cy,(1)l;---, g m |} parak =1,...,2.000.
BCY = Percentil 95% de {&i,...,&2.000}-

BCY” = Percentil 5% de {&,...,&,,}, em que {ki,...,kn} € {1,...,2.000} corresponde a

série gerada que satisfaz O, > BC{Y, j=1,...,m.

Sendo yi,...,y, a série temporal observada, primeiro calculamos o vetor de inclinacdo
d = (dy,...,d,) e a estatistica O5. Se Oy for maior que BSp, consideramos a existéncia de
pelo menos uma observacdo influente no conjunto de dados. Para identificar que observacoes
especificas sdo influentes, comparamos os valores (dy,...,d,) com o limiar BS;. Por exemplo,
se |dj| > BSj, entdo y; é individualmente influente. No entanto, esse valor de referéncia ¢é
calculado levando em conta séries temporais simuladas que ndo sdo consideradas globalmente
influentes usando os critérios gerais O;. Dessa forma, devemos comparar |d;| com o limiar BS,
se a proposta for usar as séries temporais globalmente influentes em termos de inclina¢ao. Note
que € possivel definir limiares BS ;, BCJC-‘”’", BC?V, j =0, 1 utilizando, por exemplo, o percentil
90% ou 99%, ao invés do percentil 95%. A aplicacdo para o diagndstico de curvatura € similar

ao apresentado para o diagndstico de inclinagdo.

3.4 Esquemas de perturbacao

Conforme resumido por Billor e Loynes (1993), varios esquemas de perturbagdo podem ser

introduzidos através de @, e esses sao divididos em dois grupos:
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* Perturbacdo no modelo: Este tipo de perturbacdo visa a modifica¢io das suposicdes pro-
postas para o modelo. Por exemplo, uma suposicdo de homoscedasticidade (variancia
constante) nos erros normalmente distribuidos pode ser substituida por uma suposi¢ao
heterosceddstica, ou seja, € ~ N(0, 1) é substituida por € ~ N(0, c°diag~' (®;)), onde
@; 3o as perturbagdes especificadas e diag~!(w;) é a inversa da matriz diagonal de com-

ponentes @;, parai=1,...,n.

* Perturbacdo nos dados: Perturbar a varidvel resposta ou as varidveis explicativas sao
exemplos de perturbagcdo nos dados. As duas razdes para considerar a perturba¢do nos
dados s@o os possiveis erros de medida e a existéncia de observacdes aberrantes (outli-

ers), em uma proporc¢do relativamente pequena das observagoes.

Para o estudo de influéncia local em modelos SYMARMA, consideramos quatro esquemas
de perturbacdo: perturbagdo aditiva na variavel resposta, perturbacdo no parametro de disper-
sdo, perturbacao no vetor de parametros autorregressivos e perturbacio no vetor de parametros
de médias méveis. Para cada caso, derivamos expressdes analiticas para o vetor S de acordo
com a Equacdo (18) e F de acordo com a Equacio (17), que sdo a base para encontrar os vetores
de inclinagdo e de curvatura bem como as medidas globais. A matriz de informac¢do condicio-
nal observada —i. = 92L(8)/9898 ", que nio depende do esquema de perturbacio adotado, é
apresentada no Apéndice E.

Toda metodologia desenvolvida nessa se¢do pode ser estendida aos modelos SYMARMA
sazonais. Conforme pdde ser observado no Secdo 2.8.1 do Capitulo 2, os modelos SYMARMA

sazonais s@o casos especiais dos modelos SYMARMA.

3.4.1 Perturbacio aditiva nos dados

Assumimos que uma pequena perturbacdo @, € adicionada para cada observacdo da sé-

rie. As novas observacdes (;) e os termos do logaritmo da funcdo de verossimilhanga ficam
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definidos por

)N)l = yl+a)la
t(8,0lw) = —log(e)/2+log{g(i)},

parat =m+1,...,n, em que i = (5; — fi;)?/ @, sendo [i; definido como
~ T i T d ~
=x, B+ Z i {ﬁz—i —X;_iﬁ} + Z 0{yi—j— i}
i=1 =1

O ponto de nio perturbagio é @y = (0,...,0) . No diagnéstico de inclinacio temos que

(8,0l _
S\woz%zw 'D(y—p),

em que D = diag{Vii1,...,Vn}, Vi = —2W,(u;) sendo W, (u;) = w eu = W, y=
)T euU= (.um-l-la'“nun)T-

No diagnoéstico de curvatura, para esse esquema de perturbacdo, temos que

(ym—i-]a' -y YVn

9%4(5,0|o)
A 980w ¢ '0'D,
00 =1 5265,9/0) | T | _2p-2pT
dPIw

em que a, = —2 (W (u;) +2Wy (us)us) com Wy (u;) = dvzg—bf;”), D, = diag{ani1,...,a,}, b =

(but1,---,bs) | em que by = (W (uy) +Wq (e )ur) (e — 1) € O € uma matriz (n—m) x (k+p+
g+ 1) definida na Secao 2.4.
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3.4.2 Perturbacao no parametro de dispersao

Para esse esquema de perturbagcdo temos que o parametro de dispersdo e os termos do

logaritmo da fun¢ao de verossimilhanca ficam expressos por

(pt = 0w,
t(8,pl0) = —log(¢,)/2+log{g(a)},

parat =m+1....,n, em que i; = (y; — i) /@, sendo y, definido como na Equagio (6). O
ponto de ndo perturbagio é wg = (1,...,1)".

Para o diagnéstico de inclinagdo temos que

dL(6,0|w 1 1
Sy = 20000 _ 11y,

em que D e u, sdo definidos como na Secdo 3.4.1eu = (up1,...,u,)" .

Para o diagnéstico de curvatura,

224(6.,9/0) .
A 280w 2070 Dy
=1 52%6.9l0) |~ | o ipat |
dpow

em que Dy = diag{by1,...,bn}, De = diag{cpy1,...,cn} sendo ¢, = Wy (ur) + Wy (1 )us. A

matriz O € definida como na Secdo 2.4.

3.4.3 Perturbacao no vetor de parametros autorregressivos

Para esse esquema de perturbacao temos que os paradmetros autorregressivos e os termos do

logaritmo da fun¢ao de verossimilhanga ficam expressos por

i = ¢ita,
L(6,0lw) = —log(e)/2+log{g(d)},
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parat =m+1,...,n, em que i; = (y; — fI;)> /@, sendo fi, definido como

Nt—xtﬁ+2¢zt{yt i~ X }"’Ze{yl j— Hi—j}

O ponto de ndo perturbacdo é my = (0, ... ,O)T. No diagnostico de inclinacdo temos que
ol(6,p|®)
Slw, = T 9w ¢ DDg(y — u),
em que D, y e u sdo tais como definidos como na Seg¢do 3.4.1 e Dq = diag{qm+1,-..,q,} com

P
qr =Y (y,_,-—xll- ),istoé,q:Al emquel=(1,....,1)".
i=1

No diagnéstico de curvatura,

9%((5, 9| ) .
A| 080w —¢ 0 DaDq
a) pu— =
T 28, 9lw) 20-2b'D,
dPow

em que a matriz O € definida como na Se¢do 2.4 e a matriz D, e o vetor b sdo definidos como

na Sec¢do 3.4.1.

3.4.4 Perturbacao no vetor de parametros de médias moveis

Nesse caso os parametros de médias moéveis e os termos do logaritmo da funcdo de veros-

similhanga ficam expressos por

ejt = 9]+a)t7

t(8,0l0) = —log(er)/2+log{g(i)},

parat =m+1,...,n, em que i; = (y; — fI;)> /@, sendo fi, definido como

q

Nt—xtﬁ+Z¢I{Ytz th } Z jie{yi—j — He—j}-
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O ponto de ndo perturbacio é @y = (0,...,0)". No diagnéstico de inclinagio temos que

9((8,9|0)

—1
Slo, = 0w ° DD, (y — 1),
em que D, y e u sdo tais como definidos como na Secdo 3.4.1 e Dy = diag{ry+1,...,rn} com
q
rn=1Y (yi—j—M—j),istoé,r=Blemquel=(1,...,1)".
j=1
No diagnostico de curvatura,
9%((5, 9| )
A 000w —0 10" DD,
Wy = = ,
T | 928, 0lw) 2072h D,
dpow

em que a matriz O € definida na Se¢@o 2.4 e a matriz D, e o vetor b sdo definidos como na

Secdo 3.4.1.

Valores de W,(u;) e Wy (u;) para algumas distribui¢Ses simétricas sao apresentados na Ta-

bela 2.3 do Capitulo 2. Em partircular, para distribuicdo normal temos que W,(x;) = —0,5

(v+1)
2(v+uy)

e Wy(u,) = 0 e, para distribuigdo ¢-Student com v graus de liberdade, W, (1) = —

(1)
Wé(ut) = 20tw)?

3.5 Simulacoes

As simulagdes apresentadas nessa se¢ao t€m o objetivo de estudar o comportamento das
marcas de referéncia, obtidas por meio de limiares, para séries temporais autorregressivas de
primeira ordem na presenca de observacgdes atipicas. O estudo foi realizado considerando o
ajuste do modelo SYMARMA sob distribuicdes normal e 7-Student com v = 4. Por possuir
caudas mais pesadas, esperamos que o0s pontos atipicos ndo exercam grande influéncia no ajuste
do modelo sob distribui¢do 7-Student.

O modelo SYMARMA autorregressivo de primeira ordem sem varidveis explicativas € dado
por

}’t:‘P)’t—l""”ta t:27"~7n7
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em que os r;’s sdo ruidos branco, isto €, as varidveis aleatdrias r; s3o independente e identica-
mente distribuidas com E(r;) = 0 e Var(r;) = 6, consequentemente Cov(r;,r,) = 0 para t # s.
No modelo SYMARMA consideramos que y;|H; | ~ S(0,62,g),em que H; | = {y;_1,...,y1,
M—1,..., U1 }. De acordo com os resultados apresentados na Secédo 2.3.1, podemos mostrar que

a fungdo de autocorrelago (p) e autocorrelagdo parcial (A) sdo expressas, respectivamente, por

1 7k:O ¢ ,kzl
o L k#0 0 ,k>1

em que k é o nimero de defasagens. Dessa forma, ¢ pode ser visto como parametro de corre-
lagdo.

Foram geradas quatro séries temporais com diferentes combinacdes para ¢ (¢ = 0,3, ¢ =
0,5,0=0,7¢e ¢ =0,9), o =1 e tamanho amostral n = 100. As séries foram escolhidas de tal
maneira que as estimativas de ¢ estivessem proximas aos verdadeiros valores, |q3 —¢|<0,001.
Uma vez simuladas as séries, outliers do tipo aditivo foram introduzidos nas observacgdes de
ordem yyo € ygo com magnitudes de cinco e trés desvios padrdes (0y), respectivamete, con-
forme descrito na Tabela 3.1. Outliers aditivos caracterizam-se por afetar a série em apenas
uma observacdo. Para ilustrar o efeito de outliers aditivos na série, apresentamos na Figura 3.1
uma série autorregressiva de ordem 1 com ¢ = 0,3 sujeita a esse tipo de perturbagdo. Perce-
bemos que os valores da série mantém-se inalterados exceto o das observagdes t =20 e t = 80
que tiveram os seus valores reais acrescidos de cinco e trés desvios padrdes, respectivamente,
tornando-se assim observagdes atipicas. A Tabela 3.2 apresenta os valores das séries perturba-

das e auxilia na andlise das observagdes influentes.

Os limiares foram calculados utilizando uma rotina desenvolvida pelo autor na linguagem
computacional R; www.R-project.org. Supondo conhecidos os parametros que indexam o mo-
delo, baseado em 2.000 réplicas de Monte Carlo, foram calculadas as marcas de referéncia BS;,
BCiCOOk e BCZLV parai=0,1 e 2. Nas Tabelas 3.3 - 3.8 apresentamos os resultados para o es-
quema de pertubacdo nos dados e nas Tabelas 3.9 - 3.14 temos os resutados para o esquema de
perturbacao no parametro de dispersdo. Nessa etapa foram consideradas amostras de tamanhos

n =100 e 200.



Tabela 3.1 Configuragdes das séries simuladas com r; ~ N(0, 1).

Tamanho  Coeficiente Posicao Magnitude dos outliers

amostral de correlagdo dos outliers em valor absoluto
Sériel n=100 ¢ =0,3 Y20 € Y80 50y e 30,
Série2 n=100 ¢ =0,5 Y20 € Y80 50y e 30,
Série3 n=100 ¢ =0,7 Y20 € Y80 50y e 30,
Série4 n=100 ¢ =0,9 Y20 € Y80 50y e 30y
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Figura 3.1 Série autorregressiva de ordem 1 simulada como ¢ = 0,3, perturbada (linha descontinua)
com outliers aditivos.

Série com outliers aditivos

Indice

Fonte: Autoria prépria.

Nas Tabelas 3.3 e 3.6, os resultados obtidos sob o esquema de perturbacio nos dados mos-

tram que, para ambas distribuicdes consideradas (normal ou #4), quando a correlagcdo (¢) e o

percentil sdo mantidos fixos, os limiares para o diagndstico de inclinagdo, baseados no critério

global BSy, aumentam quando o tamanho amostral aumenta. No entanto, para o diagndstico de

curvatura, quando mantemos constantes o percentil e ¢, os limiares BCy decrescem quando o

tamanho amostral aumenta. Isto €, as marcas de referéncia baseadas no critério global variam

com o tamanho amostral. Por exemplo, considerando o percentil 95% e ¢ = 0,5 a marca de

referéncia BSq passa de 11,3460 para 15,4247 quando o tamanho amostral aumenta de n = 100

para n = 200. Para tamanhos amostrais e percentis fixos, a variacdo de ¢ nao altera o compor-
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Tabela 3.2 Introducdo de outliers nas séries simuladas.

Y18 Y19 Y20 y21 Y22 Wy = 50y Y20 = y20 + @y
Sériel 0,5167 1,2029  1,5022 1,7611 -0,1634 5,1780 6,6802
Série2 -1,1541 -0,6133 -0,1234  2,8437  1,9235 6,8271 -6,9505
Série3 -0,3967 -1,3079 -1,6943 -0,2116 -0,6658 6,6796 -8,3739
Série4 -0,3810 0,3035 -1,0938 -1,1296 -0,7429 12,0751 -13,1689

V78 Y79 Y80 81 V82 Wy =30, Y30 = yg0 + W,
Série1 -0,9767 -0,8202 -0,0236 -0,3030 0,8970 3,1068 -3,1304
Série2 1,2492  3,2600 2,2446 -0,5822  1,0099 4,0963 6,3409
Série3  1,7929 1,1222  1,7959 -0,4767 -1,0530 4,0078 5,8037
Série4 1,3107  2,9523 1,3095 0,2941 -1,2203 7,2451 8,5546

tamento dos limiares BSy e BCy. Portanto, existem indicios de que os limiares para o critério
global ndo sdo sensiveis a variagdo de ¢. Por fim, de uma maneira geral, os limiares sob distri-
buicdo #4 sdo menores que os limiares sob distribuicao normal. Resultados similares podem ser
observados para o esquema de perturbacio no parametro de dispersdo (ver Tabelas 3.9 e 3.12).

Considerando agora os limiares BSy, BCICOOk e BC%V, baseados no critério individual, os
resultados apresentados nas Tabelas 3.4, 3.7, 3.10 e 3.13 mostram que, fixando o parametro ¢
e o percentil, os limiares BClc"Ok e BCfV decrescem quando o tamanho amostral aumenta. Para
as marcas de referéncia BS| temos um comportamento praticamente constante. Considerando
agora os valores de n e o percentil fixos, os limiares sob disribui¢do normal permanecem uni-
formes quando a correlacdo ¢ aumenta, ou seja, ha indicios de que o critério BS;, BCICO"" e
BC{V sejam robustos quanto a variagdo de ¢. No entando, para distribui¢do 74, o limiar BC%V
tem comportamento monétono decrescente. Por exemplo, para o esquema de perturbag@o nos
dados (ver Tabela 3.7), considerando o pecentil 95% e o tamanho amostral n» = 200, variando ¢
de 0,3 a 0,9 o valor do limiar BC%V passa de 0,7495 para 0,2726. Portanto, existem indicios de
que os limiares para o diagndstico de curvatura sob o enfoque de Lesaffre e Verbeke, baseados
no critério individual, s@o mais sensiveis a variacdo de ¢.

Nas Tabelas 3.5 e 3.11, para ambos esquemas de perturbagdo sob distribui¢do normal, se a

correlagdo aumenta, mantendo fixos o percentil e tamanho amostral, os limiares baseados nos
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critérios individuais BS,, BCSOOk e BC%V tém suas magnitudes estdveis; sob distribui¢ao #4 (ver
Tabelas 3.8 e 3.14) o limiar BC%V tem comportamento mondtono decrescente.

As Tabelas 3.15 e 3.17 apresentam as estatisticas O € O, para o esquema de perturbagdo
nos dados, calculadas para as séries de 1 a 4 considerando o ajuste dos modelos SYMARMA-
normal e SYMARMA-#4, respectivamente. Considerando os critérios BSy e BCy, avaliados
através do percentil 95% (ver Tabelas 3.3 e 3.6), para as quatro séries geradas, ndo existem
indicios de influéncia global. Esse fato ndo descarta a hipdtese de alguma observagdes exercer
influéncia de forma individual. Os resutados para o esquema de perturbacido no parametro de
dispersdo sao apresentados nas Tabelas 3.16 e 3.18 para o ajuste dos modelos SYMARMA-
normal e SYMARMA-14, respectivamente. Nesse caso, para o modelo sob distribui¢do normal
as estatisticas Oy e O, sdo maiores que as marcas de referéncia BSy e BCy, respectivamente,
dando indicios de influéncia global. Por exemplo, para série 1 Oy = 14,0948 ¢ O, = 9,5888
sdo maiores que as marcas de referéncia BSy = 8,3364 e BCy = 3,9331 apresentadas na Tabela
3.9. Quando consideramos o ajuste sob distribui¢do #4 ndo encontramos indicios de influéncia
global nas séries de 1 a 4.

Os diagnésticos de influéncia individual para as séries de 1 a 4, avaliados pelos limiares BS;,
BCZ.C""k e BCI.LV parai =1 e 2, sdo ilustrados nas Figuras 3.2-3.9 sob o esquema de perturbagdo
nos dados e nas Figuras 3.10-3.17 sob o esquema de perturbacdo no parametro de dispersao.
Em cada uma das figuras sdo apresentados quatro graficos sendo o primeiro (na parte superior)
correspondente a série com outliers, o segundo correspondente aos valores obtidos na dire¢ao
da inclinacao de Billor e Loynes, o terceiro correspondente aos valores obtidos na dire¢do da
curvatura de Cook e, por fim, o quarto (na parte inferior) correspondente aos valores obtidos na
direcdo da curvatura de Lesaffre e Verbeke.

Discutimos inicialmente os resultados obtidos a partir da perturbagdo nos dados. Para a
série 1, ilustrada nas Figuras 3.2 e 3.3 considerando o ajuste dos modelos SYMARMA-normal
e SYMARMA-14, respectivamente, notamos que o outlier gerado na observagao de ordem 20,
y20 = 6,6802, € identificado como influente pelos critérios BS; e BCg"Ok apenas no modelo
SYMARMA-normal. O mesmo resultado ocorre nas demais séries (ver Figuras 3.4-3.9). Con-

siderando o critério BC%V o outlier yy( foi identificado como influente por ambos modelos
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apenas na série 1. Baseado nas Figuras 3.2-3.9 podemos notar que no modelo SYMARMA-
normal, as observagdes adjacentes ao outlier apresentam valores para os vetores de diagndstico
de inclinacdo (d) e de curvatura (C) que tendem a caracterizd-las como influentes, quando
na verdade nao foram geradas como tais. Enquanto que no ajuste do modelo SYMARMA-#4
esse fato nao foi observado. Notamos que a observagao ygg, gerada como outlier, também foi
identificada como influente pelo critério Bcgook no ajuste do modelo SYMARMA -normal.
Para o esquema de perturbacdo no pardmetro de dispersdo (ver Figuras 3.10-3.17), resul-
tados similares aos apresentados para a perturbacdo nos dados podem ser obtidos. Conforme
podemos notar, quando consideramos o ajuste sob distribui¢ao #4 ndo encontramos indicios de

influéncia dos outliers gerados nas séries de 1 a 4.
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Tabela 3.3 Estatisticas globais BSy e BCy para o modelo SYMARMA-normal sob o esquema de per-
turbacdo nos dados.

Tamanho Medida Percentis [
amostral (%) 0,3 0,5 0,7 0,9
90 10,9922 10,9910 11,0292 11,0292
BSo 95 11,3119 11,3108 11,3460 11,3628
99 11,9575 11,9461 11,8294 11,9535
n =100 90 4,8820 4,8809 49148 49149
BCy 95 5,1700  5,1691  5,2013  5,2167

99 57771 5,7660  5,6539  5,7732
90 15,1428 15,1190 15,1316 15,1432

BSy 95 15,4649 15,4129 15,4247 15,4216

99 15,9448 15,9631 15,9411 15,8911

n =200 90 4,6091  4,5947 4,6023  4,6094
BCy 95 4,8073  4,7750 47823  4,7804

99 5,1103  5,1220  5,1079  5,0759

Tabela 3.4 Estatisticas individuais BS;, BC{*** ¢ BC} para o modelo SYMARMA-normal sob o es-
quema de perturbacdo nos dados.

Tamanho Medida Percentis [0
amostral (%) 0,3 0,5 0,7 0,9
90 6,6985 6,6755 6,6347 6,6552
BS; 95 7,1035 7,0751 77,0698 7,0832

99 7,9590 17,9537 17,8778 7,8975

90 0,3241 0,3238 0,3254 0,3227

n=100 BCS* 95 0,3430 0,3410 03431 0,3414
99 0,3767 0,3810 0,3816 0,3719

90 0,4763 04759 04727 0,4686

BCY 95 0,5332  0,5269 0,5384 0,5350

99 0,6717 0,6783 0,6761 0,6677

90 6,9974 17,0598 7,0333 7,0423

BS; 95 7,3930 17,3968 17,3949 7,4555

99 8,1134 8,1800 8,0694 8,0928

90 0,2435 0,2438 0,2451 0,2459

n=200 BC{* 95 0,2560 0,2562 02562 0,2581
99 0,2806 0,2800 0,2807 0,2793

90 0,2584 0,2642 02639 0,2633

BCY 95 0,2863 0,2875 0,2899 0,2945

99 0,3494 10,3491 0,3428 0,3397
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Tabela 3.5 Estatisticas individuais BS,, BCS?°* e BCSY para o modelo SYMARMA-normal sob o es-
quema de perturbacdo nos dados.

Tamanho Medida  Estatisticas (0]
amostral 0,3 0,5 0,7 0,9
Minimo 46971 4,7517 4,6668 5,0767
Quartil (5%) 5,1841 52422 5,0741 5,2200
BS, Méximo 8,5345 10,2087 10,0126 8,7458
Média 6,4618 6,5726 6,3427 6,4850
Desvio Padrio  0,9003 0,9138  0,9290 0,8891
Minimo 0,2076  0,2093 00,2050 0,2178
Quartil (5%) 0,2240 02307 0,2195 0,2246
n=100 BCS** Méximo 0,3670 04464 0,4232 0,3768
Média 0,2760 02812 0,2721 0,2762
Desvio Padrdio 0,0369 0,0389  0,0396 0,0364
Minimo 0,2635 0,2457 0,2961 0,2862
Quartil (5%) 0,3213 03136  0,3042 0,3293
BCY Miximo 0,8569 1,0587 1,0380 0,8370
Média 0,4673 04781 0,4460 0,4706
Desvio Padrao 00,1279 0,1332 0,1238 0,1219
Minimo 52206 5,1500 52076 5,3464
Quartil (5%) 5,6882 5,6897 5,5964 5,6226
BS, Méximo 9,0150 8,1973  8,9544 9,0096
Média 6,6356 6,6351  6,6673 6,5779
Desvio Padrio 0,7074 0,6692  0,8535 0,7324
Minimo 0,1666 0,1668 0,1664 0,1707
Quartil (5%) 0,1817 0,1823  0,1745 0,1799
n=200 BC§** Maéximo 0,2892 0,2627 02849 0,2877
Média 0,2107 0,2106 02117 0,2094
Desvio Padrao 00,0226 0,0205 0,0267 0,0230
Minimo 0,1582 10,1343 0,1557 0,1578
Quartil (5%) 0,1760 0,1722  0,1697 0,1658
BCLY Maiximo 0,4421 0,3491  0,4035 0,4097
Média 0,2410 0,2408 0,2421 0,2370
Desvio Padrao 00,0500 0,0477  0,0587 0,0498
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Tabela 3.6 Estatisticas globais BSy e BC( para o modelo SYMARMA-#4 sob o esquema de perturbagado
nos dados.

Tamanho Medida Percentis 0
amostral (%) 0,3 0,5 0,7 0,9
90 09,6469 9,5862 9,5885 9,6158
BSo 95 9,9725 9,9704 9,9410 9,9462
99 10,6684 10,5475 10,5319 10,6044
n =100 90 3,1879  3,1806  3,1631  3,1992
BCy 95 34431 34104 3,3897 3,3884

99 39204 3,8474 3,8076  3,8643
90 13,0835 13,0703 13,0630 13,0336

BSy 95 13,3938 13,3919 13,3617 13,3973

99 14,0754 13,9449 13,9826 13,9035

n =200 90 29176 29154 29161  2,8983
BCy 95 3,0596  3,0521 3,0476  3,0413

99 3,3563  3,2719  3,3361  3,2533

Tabela 3.7 Estatisticas individuais BSy, BC?”OI‘ e BC%v para o modelo SYMARMA-#4 sob o esquema
de perturbagdo nos dados.

Tamanho Medida Percentis [
amostral (%) 0,3 0,5 0,7 0,9
90 2,8430 2,8516 12,8405 2,8530
BS 95 29746 29553 29423 29512

99 3,1502 3,1280 13,1205 3,1234
90 0,1929 0,1889 0,1810 0,1690

n=100 BC{* 95 0,2267 022176 0,2028 0,1812
99 0,3235 0,3188 0,3064 0,2153

90 0,7994 0,7093 0,5697 0,3781

BCY 95 1,0589 10,9454 0,7202 0,4407

99 1,6641 1,3423 1,0883 0,5653

90 2,7383 27364 2,7372 12,7289

BS; 95 2,8039 2,7957 2,7960 12,7917

99 2,9303 29187 29264 2,8968

90 0,1278 0,1232 0,1179 0,1143

n=200 BC§* 95 0,1409 0,1357 0,1273 0,1199
99 0,1982 0,1871 0,1548 10,1388

90 0,5808 0,4971 0,3970 0,2312

BCY 95 0,7495 0,6486 0,4982 0,2726

99 1,2881 1,0064 0,7715 0,4022
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Tabela 3.8 Estatisticas individuais BS,, BC%""" e BC%V para o modelo SYMARMA-#4 sob 0 esquema
de perturbacdo nos dados.

Tamanho Medida  Estatisticas ()
amostral 0,3 0,5 0,7 0,9

Minimo 2,8732 2.8450 2,8310 2,8605
Quartil (5%) 2,9123 2,9223 28971 2,9024

BS, Méximo 3,3043 3,5604 3,5350 3,3013

Média 3,0600 3,0525 3,0472 3,0465

Desvio Padrdio  0,0963 0,1129 0,1162 0,0971

Minimo 0,1290 0,1270 0,1263 0,1302

Quartil (5%) 0,1336 0,1355 0,1338 0,1353

n=100 BC§* Méximo 0,3418 0,2437 0,6134 0,1903
Média 0,1559 0,1524 0,1651 0,1499

Desvio Padrao 0,0309 0,0208 0,0597 0,0125

Minimo 0,2494 0,2403 0,2005 0,1535

Quartil (5%) 0,3239 0,2685 0,2697 0,2098

BCYY Maiximo 2,4110 2,3235 1,9717 0,6831

Média 0,7027 0,6131 0,4970 0,3551

Desvio Padrao 0,4475 0,3838 0,2723 0,1121

Minimo 2,6861 2,7293 27173 27035
Quartil (5%) 2,7722 2,7579 2,7657 2,7582

BS, Méximo 3,1759 3,3020 3,1348 3,3442

Média 2,8736 2,8689 2.,8681 12,8567

Desvio Padrao 0,0897 0,0932 0,0841 0,1032

Minimo 0,0931 0,0956 0,0951 0,0942

Quartil (5%) 0,0957 0,0977 0,0962 0,0961

n=200 BCSF  Midximo 02527 0,1991 0,1659 0,1430
Média 0,1081 0,1089 0,1050 0,1035

Desvio Padrio 0,0185 0,0162 0,0106 0,0072

Minimo 0,1140 0,1172 0,1096 0,0936

Quartil (5%) 0,1851 0,1614 0,1428 0,1122

BCYY Maéximo 22744 21545 1,1741 0,5267

Média 0,4329 0,4062 0,3004 0,1977

Desvio Padrio 0,2801 0,2947 0,1616 0,0866
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Tabela 3.9 Estatisticas globais BSy e BCy para o modelo SYMARMA-normal sob o esquema de per-
turbacdo no parametro de dispersao.

Tamanho Medida Percentis [
amostral (%) 0,3 0,5 0,7 0,9
90 79144 79012  7,9720 7,8618
BSy 95 8,3364  8,3285  8,3528  8,2347
99 9,2219  9,1204  9,1410  9,0863
n =100 90 3,6705  3,6468  3,6991  3,6327
BCy 95 3,9331  3,9742  3,9779  3,9032

99 4,6249 45941 46411 4,5363
90 10,9668 10,9445 10,9464 10,9537

BSo 95 11,2842 11,3638 11,3173 11,3081

99 12,0953 12,0338 12,0998 12,1682

n =200 90 3,4803  3,4833 34779 3,4913
BCy 95 3,6229  3,6492  3,6563  3,6446

99 4,0380 4,0941 4,0335 4,0671

Tabela 3.10 Estatisticas individuais BS;, BC$°** e BCY" para o modelo SYMARMA-normal sob o
esquema de perturbag@o no parametro de dispersao.

Tamanho Medida Percentis (0]
amostral (%) 0,3 0,5 0,7 0,9
90 9,4022 9,3776  9,4844  9,3091
BS; 95 10,6505 10,5133 10,6511 10,5380

99 13,0501 13,3724 13,4190 12,6927
90 0,6065 0,6013 0,6067 0,6040

n=100 BC§* 95 0,6546  0,6457 0,6626  0,6573
99 0,7324  0,7415  0,7492  0,7402

90 1,3522  1,3584 1,3829 1,3519

BCY 95 1,6897 1,6034 1,7119 1,6484

99 2,3631 24439 25742 23684

90 10,7993 10,8320 10,9561 11,0309

BS; 95 12,0416 12,0650 12,0619 12,2592

99 14,6723 14,5972 14,6762 14,5303

90 0,4866 0,4902 04876 0,4957

n=200 BC§* 95 0,5302 0,5273  0,5291  0,5372
99 0,6001 0,6119 06141  0,6083

90 0,8494 0,8697 0,8766 0,9035

BCY 95 1,0167 1,0297 1,0353  1,0663

99 1,4518 1,4556 14839  1,3948
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Tabela 3.11 Estatisticas individuais BS;, BC5°* e BCY para o modelo SYMARMA-normal sob o
esquema de perturbagc@o no parametro de dispersao.

Tamanho Medida  Estatisticas (0]
amostral 0,3 0,5 0,7 0,9
Minimo 6,9378 77,6498 69198 7,2294
Quartil (5%)  8,4962 8,7358  8,3266  8,1135
BS, Miéximo 17,2156 18,7294 19,4608 16,3588
Média 11,6099 11,5968 11,6695 11,3375
Desvio Padrio  1,9704 2,1599 23497  1,9671
Minimo 0,4700 04456 04430 0,4371
Quartil (5%) 0,5106 0,5157 0,5199  0,4892
n=100 BC§** Maéximo 0,8221 0,8425 0,8569 0,8248
Média 0,6467 0,6420 0,6614  0,6495
Desvio Padrao 00,0846  0,0923  0,0977 0,0943
Minimo 0,8947 1,0170 09327 0,9299
Quartil (5%)  1,1451 1,1961  1,2291  1,0417
BCYY Miximo 3,9542  4,7055 4,8919 4,4143
Média 1,9452  1,9521 2,0813  1,9531
Desvio Padrao 00,6068 0,6518 0,7098  0,6772
Minimo 7,6851 17,8361 17,7808  7,9401
Quartil (5%) 84430 9,1621  8,8751  9,3422
BS, Méximo 18,9896 19,6263 18,4937 21,5050
Média 12,4249 12,5647 12,4716 12,4584
Desvio Padrio  2,5092  2,3805 22745 2,3137
Minimo 0,3179 03250 0,3466 0,3248
Quartil (5%) 0,3710 0,3958 0,3888  0,3878
n=200 BC§** Méximo 0,7313 0,7210 0,7118 0,7016
Média 0,5114 0,5103 0,5187 0,5139
Desvio Padrao 00,0892  0,0845 0,0841  0,0869
Minimo 0,4709 04183 0,5656 0,4022
Quartil (5%) 0,5814 0,6813 0,6471  0,6368
BCY Maéximo 2,5337  2,6514 21431 26191
Média 1,1213  1,1229 11,1430  1,1466
Desvio Padrao 00,4107 0,3973  0,3687 00,4102
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Tabela 3.12 Estatisticas globais BSy e BCy para o modelo SYMARMA-#,; sob o esquema de perturba-
¢80 no parametro de dispersao.

Tamanho Medida Percentis [
amostral (%) 0,3 0,5 0,7 0,9
90 5,6829 5,6650 5,6740 35,6756
BSy 95 5,7897 5,7780 5,7768 5,7756
99 6,0030 59828 5,9497 5,9964
n =100 90 1,3029 11,2837 1,2405 1,1897
BCy 95 1,4266 1,3910 1,3466 1,2598

99 1,7090 1,5766 1,5513 1,4074
90 7,9014 77,8953 7,8920 7,9031

BSy 95 8,0245 88,0195 38,0042 38,0039

99 8,1939 8,1956 88,1892 8,1714

n =200 90 1,2180 1,2054 1,1634 1,1403
BCy 95 1,3119 11,2804 11,2363 11,1894

99 1,4822 11,4481 11,3563 11,2844

Tabela 3.13 Estatisticas individuais BS;, BC{“’* ¢ BCLV para o modelo SYMARMA-#, sob o esquema
de perturbacdo no pardmetro de dispersao.

Tamanho Medida Percentis [0
amostral (%) 0,3 0,5 0,7 0,9
90 3,7370 13,7344 13,7400 3,7315
BS; 95 3,8039 3,7981 3,8007 3,7999

99 3,9149 39274 3,9333 3,9165
90 0,5200 0,4971 04327 0,3654

n=100 BCS* 95 0,5826 0,5489 0,4807 0,3981
99 0,6982 0,6421 0,5843 10,4423

90 0,3475 0,3162 02473 0,1674

BCY 95 0,4539 0,3992 0,3037 0,1942

99 0,6517 0,5748 04326 0,2543

90 3,8008 3,8037 3,7988 3,8133

BS; 95 3,8637 3,8649 3,8603 3,8634

99 3,9429 39397 3,9457 3,9431

90 0,4449 0,4162 0,3650 0,2942

n=200 BC§* 95 0,5081 04722 04073 0,3194
99 0,6261 0,5900 0,5233 0,3811

90 0,2475 0,2125 0,1629 0,1047

BCY 95 0,3203 0,2718 0,1998 0,1222

99 0,5487 0,4797 0,3420 0,1710
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Tabela 3.14 Estatisticas individuais BS,, BCS?f e BCLY para o modelo SYMARMA-#4 sob o esquema
de perturbacdo no pardmetro de dispersao.

Tamanho Medida  Estatisticas (0]
amostral 0,3 0,5 0,7 0,9
Minimo 29514 3,0435 3,0422 3,0605
Quartil (5%) 3,3025 3,2850 3,2233 13,1814
BS, Maximo 3,9697 3,9767 3,9843 3,9846
Média 3,6042 3,5789 3,5669 3,5555
Desvio Padrdao 0,1971 0,1946 0,2120 0,2303
Minimo 0,2924 0,2914 0,2513 0,2455
Quartil (5%) 0,3426 0,3184 0,2884 0,2714
n=100 BCgOOk Maximo 0,8894 00,8948 0,7599 0,4909
Média 0,5178 0,4683 0,4100 0,3431
Desvio Padrao 00,1140 0,1129 0,0987 0,0540
Minimo 0,1538 0,1433 0,0938 0,0903
Quartil (5%) 0,1903 0,1593 0,1341 0,1145
BCYY Méximo 2,0596 1,3563 11,2403 0,4143
Média 0,4739 0,3702 0,2878 0,1806
Desvio Padrao 0,2642 0,2078 0,1772 0,0605
Minimo 3,0182 3,3041 3,2559 3,2032
Quartil (5%) 3,3608 3,3700 3,3739 3,3545
BS, Maximo 3,9815 3,9816 3,9589 3,9832
Média 3,6593 3,6603 3,6486 3,6583
Desvio Padrao 0,1737 0,1651 0,1550 0,1712
Minimo 0,2338 0,2196 0,2022 0,1869
Quartil (5%) 0,2832 0,2490 0,2366 0,2165
n =200 BCgOOk Maximo 0,7748 0,8498 0,7313 0,4728
Média 0,4599 0,4263 0,3636 0,2793
Desvio Padrao 0,1358 0,1293 0,1174 0,0527
Minimo 0,0859 0,0715 0,0559 0,0511
Quartil (5%) 0,1099 0,0935 0,0793 0,0641
BCYY Maximo 2,4161 11,0280 1,6984 1,2966
Média 0,3588 0,2873 0,2133 0,1098
Desvio Padrao 00,2949 0,1831 0,2065 0,0459
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Tabela 3.15 Estatisticas globais Oy e O, e seus respectivos limiares BSy e BC para o ajuste do modelo
SYMARMA-normal sob o esquema de perturbagcdo nos dados. (n = 100)

Medida ¢ 0,3 0,5 0,7 0,9
Oq 8,2845 6,4144 6,8179  4,6936
O, 2,7730  1,6624  1,8781  0,8901

BSp 11,3119 11,3108 11,3460 11,3628
BCy 5,1700  5,1691  5,2013  5,2167

Limiares BSg e BCy obtidos do percentil 95%.

Tabela 3.16 Estatisticas globais O; e O, e seus respectivos limiares BSy e BCy para o ajuste do modelo
SYMARMA-normal sob o esquema de perturbacdo no pardmetro de dispersdo. (n = 100)

Medida ¢ 0,3 0,5 0,7 0,9
Oy 14,0948 12,2482 15,8804 21,6032
O, 9,5888  7,4990 11,2089 20,9583

BSp 8,3364 83285  8,3528  8,2347
BCy 39331 39742  3,9779  3,9032

Limiares BSg e BCy obtidos do percentil 95%.

Tabela 3.17 Estatisticas globais Oy e O, e seus respectivos limiares BSy e BC para o ajuste do modelo
SYMARMA-#4 sob o esquema de perturbacdo nos dados. (n = 100)

Medida ¢ 0,3 0,5 0,7 0,9
Oy 9,7934 777477 9,2608 8,5628
O, 3,2140 2,1174 3,2287 12,8541

BSo 9,9725 99704 9,9410 9,9462
BCy 3,4431 3,4104 3,3897 3,3884

Limiares BSy e BCy obtidos do percentil 95%.

Tabela 3.18 Estatisticas globais Oy e O, e seus respectivos limiares BSy e BC para o ajuste do modelo
SYMARMA-#4 sob o esquema de perturbac@o no pardmetro de dispersdo. (n = 100)

Medida ¢ 0,3 0,5 0,7 0,9
Oy 4,6160 5,0710 5,4948 5,5152
O, 0,9029 1,4951 0,9975 0,9066

BSp 5,7897 5,77780 35,7768 5,7756

1,4266 11,3910

1,3466 1,2598

Limiares BSy e BCy obtidos do percentil 95%.
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Figura 3.2 Diagnéstico de influéncia local na série 1 (¢ = 0,3, @ =1 e n = 100) sob o esquema de
perturbagdo nos dados para o modelo SYMARMA-normal.
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Figura 3.3 Diagnéstico de influéncia local na série 1 (¢ = 0,3, @ =1 e n = 100) sob o esquema de
perturbagdo nos dados para o modelo SYMARMA-#4.
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Figura 3.4 Diagnéstico de influéncia local na série 2 (¢ = 0,5, @ =1 e n = 100) sob o esquema de
perturbagdo nos dados para o modelo SYMARMA-normal.
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Figura 3.5 Diagnéstico de influéncia local na série 2 (¢ = 0,5, @ =1 e n = 100) sob o esquema de
perturbagdo nos dados para o modelo SYMARMA-#4.
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Figura 3.6 Diagnéstico de influéncia local na série 3 (¢ = 0,7, @ =1 e n = 100) sob o esquema de
perturbagdo nos dados para o modelo SYMARMA-normal.
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Figura 3.7 Diagnéstico de influéncia local na série 3 (¢ = 0,7, @ =1 e n = 100) sob o esquema de
perturbagdo nos dados para o modelo SYMARMA-#4.
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Figura 3.8 Diagnéstico de influéncia local na série 4 (¢ = 0,9, ¢ =1 e n = 100) sob o esquema de
perturbagdo nos dados para o modelo SYMARMA-normal.
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Figura 3.9 Diagnéstico de influéncia local na série 4 (¢ = 0,9, ¢ =1 e n = 100) sob o esquema de
perturbagdo nos dados para o modelo SYMARMA-#4.
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Figura 3.10 Diagnéstico de influéncia local na série 1 (¢ = 0,3, ¢ =1 e n = 100) sob o esquema de
perturbagdo no parametro de dispersdo para o modelo SYMARMA-normal.
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Figura 3.11 Diagnéstico de influéncia local na série 1 (¢ = 0,3, ¢ =1 e n = 100) sob o esquema de
perturbag@o no parametro de dispersdo para o modelo SYMARMA-14.
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Figura 3.12 Diagnéstico de influéncia local na série 2 (¢ = 0,5, ¢ =1 e n = 100) sob o esquema de
perturbagdo no parametro de dispersdo para o modelo SYMARMA-normal.
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Figura 3.13 Diagnéstico de influéncia local na série 2 (¢ = 0,5, ¢ =1 e n = 100) sob o esquema de
perturbag@o no parametro de dispersdo para o modelo SYMARMA-14.

Série 2 com outliers: y; =0,5y,_ + 1,

-2
|

& 4
1

0 20 40 60 80 100

Indice

Valor na Dire¢éo da Inclinag&o e Limiares

20

— Percentil 95% - BS1
---- Percentil 5% - BS2

15

10

Indice

Valor na Dire¢éo da Curvatura de Cook e Limiares

1.0

— Percentil 95% - BC1
---- Percentil 5% - BC2

08

06

04

i DHH|]HI]HDUHDDDDuHUD_UHHHHH,,HE.IL.Munuu_HuuHHu[ln-_u[lﬂumuﬂ.uI]HHHHUDuHHHuﬂnnﬂunuﬂu_uuuunuu_uunﬂ_nuﬂu

0.2

0.0

Indice

Valor na Dire¢éo da Curvatura de Lesaffre & Verbeke e Limiares

10

— Percentil 95% - BC1
---- Percentil 5% - BC2

Indice

Fonte: Autoria prépria.



88

Figura 3.14 Diagnéstico de influéncia local na série 3 (¢ = 0,7, ¢ = 1 e n = 100) sob o esquema de
perturbagdo no parametro de dispersdo para o modelo SYMARMA-normal.
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Figura 3.15 Diagnéstico de influéncia local na série 3 (¢ = 0,7, ¢ =1 e n = 100) sob o esquema de
perturbag@o no parametro de dispersdo para o modelo SYMARMA-14.
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Figura 3.16 Diagnéstico de influéncia local na série 4 (¢ = 0,9, ¢ =1 e n = 100) sob o esquema de
perturbagdo no parametro de dispersdo para o modelo SYMARMA-normal.
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Figura 3.17 Diagnéstico de influéncia local na série 4 (¢ = 0,9, ¢ =1 e n = 100) sob o esquema de
perturbag@o no parametro de dispersdo para o modelo SYMARMA-14.
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Capitulo 4

Aplicacoes a Dados Reais

4.1 Introducao

Nessa se¢do apresentamos dois exemplos praticos com o qual pretendemos avaliar a quali-
dade do ajuste e a capacidade preditiva do modelo SYMARMA perante séries temporais com
outliers. O primeiro conjunto de dados € o excesso de retorno nos precos de fechamento didrio
da Microsoft, considerando como covaridvel o excesso de retorno fornecido pelo mercado, me-
dido pelo indice S&P500, abrangendo o periodo entre 1 de abril e 5 de setembro de 2002. O
segundo conjunto de dados € composto por observacdes anuais da inflagdo no Brasil, medida
pelo Indice Geral de Precos - Oferta Global (IGP-OG), entre os anos de 1970 e 2014.

Consideramos os esquemas de perturbagdo aditiva nos dados e no parametro de dispersao.
Trés medidas de influéncia sao estudadas: Curvatura de Cook (1986), Curvatura de Lesaffre
e Verbeke (1998) e Inclinacdo de Billor e Loynes (1993). A técnica de limiares, proposta na
Secao 3.3 do Capitulo 3, € utilizada para identificar observacdes influentes através dos critérios
globais BSy e BCy e dos critérios individuais BS;, BCiCO"k e BCiLV parai=1¢e?2.

Todas as fungdes para estimacdo, testes de hipoteses e diagndstico foram desenvolvidas
pelo autor a partir de rotinas construidas utilizando o ambiente de programag¢do R em sua
versao 3.1.2. Esta linguagem foi criada por Ross Thak e Robert Gentleman na Universidade de
Auck land. O R encontra-se disponivel gratuitamente em http://www.r-project.org.

A seguir apresentamos os resultados obtidos pelo ajuste dos modelos SYMARMA sob dis-

tribui¢des condicional normal, 7-Student e exponencial poténcia para os conjuntos de dados
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citados acima. A suspeita é que distribuicdes com caudas pesadas acomodam melhor as ob-
servacgoes atipicas presentes nas séries estudadas, fazendo com que elas ndo exercam grande
influéncia na modelagem dos dados e, por esse motivo, nao sdo detectadas pelas medidas de
influéncia local propostas. Por outro lado, na modelagem realizada a partir do modelo SY-
MARMA sob distribuicao normal, esses mesmos pontos atipicos devem ser destacados pelos

graficos de influéncia.

4.2 Excesso de retorno da Microsoft

O conjunto de dados utilizado nessa se¢do corresponde a série excesso de retorno da Mi-
crosoft (Y) e o excesso de retorno do indice S&P500 (X) entre 1 de abril e 5 de setembro de
2002, totatizando uma amostra de 109 observacdes. Essa mesma série, para o periodo corres-
pondente de 2 de novembro de 2001 até 31 de janeiro de 2003, foi utilizada anteriormente por
Maior e Cysneiros (2009) tendo sido ajustado o modelo CAPM (Capital Asset Pricing Model)
para estimar o risco sistematico da Microsoft. Os excessos de retornos estudados sao definidos

como

Ye=Tt—=Tfr © Xy =Tm —Tft,

em que 7, denota o retorno liquido' da a¢do no perfodo ¢, rf; indica a taxa livre de risco durante
o t-ésimo perfodo avaliada pela taxa T-bill> e r,,; é o retorno fornecido pelo mercado medido por
algum indice, por exemplo, no caso do Brasil o IBOVESPA e no caso do mercado norteameri-
cano, o indice S&P500. Uma breve descricao do conjunto de dados completo pode ser encon-
trada em Ruppert (2004, p.239). Os dados podem ser obtidos em http : / /www.de.ufpe.br/ ~
cysneiros/elliptical / time_series.html.

Os valores maximo e minimo para o excesso de retorno da Microsoft sdo 11,10% e -9,47%,
respectivamente. A inspec¢do direta do grifico na Figura 4.1 sugere que a série ndo apresenta
tendéncia e podemos notar a presenca de outliers. A Figura 4.2 mostra a relagc@o entre o excesso

de retorno da S&P500 e o excesso de retorno da Microsoft. Podemos notar uma forte tendéncia

'O retorno liquido é definido como r; = (p; — p;—1)/p:—1, em que p; é o preco da agiio no tempo ¢.
%A taxa T-bill foi dividida por 100 para conversio do valor percentual e, em seguida, por 253 para conversio
em um taxa diaria (RUPPERT, 2004).
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linear entre os excessos de retornos; coeficiente de correlacao igual a 0,79.

Figura 4.1 Série excesso de retorno da Microsoft.
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Figura 4.2 Excesso de retorno da S&P500 versus excesso de retorno da Microsoft.
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Observando a Figura 4.3 notamos o decaimento exponencial da correlacdo, o que sugere
a estacionariedade da série. E ainda, a partir do grafico da correlagdo parcial, temos indicios
que um modelo autorregressivo de ordem 12 pode explicar bem o comportamento dessa série.
Por fim, o boxplot destaca um ponto atipico e podemos suspeitar que a distribuicdo dos dados

¢ simétria com caudas pesadas.
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Figura 4.3 Funcao de autocorrelacdo, autocorrelacio parcial e boxplot da série excesso de retorno da
Microsoft.
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Fonte: Autoria prépria.

Inicialmente, ajustamos o modelo ARMA, isto €, o modelo SYMARMA-normal, dado por

Yt = ﬁXt‘i‘(P{thlZ _ﬁXl‘*IZ}_‘_rta = 1377109 (19)

Baseado no procedimento desenvolvido por Chen e Liu (1993) para deteccdo de outliers
em modelos da classe ARIMA, os pontos yy7 = 11,10% e ygo = —7,34% sdo considerados
outliers aditivos. O histograma, boxplot e o grafico normal de probabilidades dos residuos
obtidos pelo ajuste do modelo SYMARMA-normal sdo apresentados nas Figuras 4.4 e 4.5,

respectivamente. A partir dessas figuras, podemos considerar que os dados sdo simétricos com
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caudas pesadas. Adicionalmente, os coeficientes de assimetria e curtose empiricos sao —0,227

e 4,465, respectivamente.

Figura 4.4 Histograma (a) e boxplot (b) dos residuos
normal
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Fonte: Autoria prépria.

Figura 4.5 Grafico normal de probabilidades com envelope para o ajuste dos modelos SYMARMA-

normal (a) e SYMARMA-t5 (b).
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Fonte: Autoria prépria.

Como proposta para acomodar melhor as observagdes atipicas presentes na série, reajusta-

mos 0 modelo (19) considerando duas outras distribui¢des de probabilidade com caudas mais

pesadas: as distribui¢Oes #-Student e exponencial poténcia. Utilizamos os critérios AIC, BIC e
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a raiz do erro médio quadritico (RMSE) para selecionar os graus de liberdade (v) do modelo
t-Student, SYMARMA-¢, e o parametro k¥ do modelo exponencial poténcia, SYMARMA-EP.
A Tabela 4.1 apresenta os resultados para alguns valores de v entre 3 e 15 sendo selecionado
o modelo SYMARMA-f com v = 5. Similarmente, na Tabela 4.2 temos os resultados para al-
guns valores do parametro k variando entre O e 1 sendo selecionado o modelo SYMARMA-EP
com kK = 0,3. O parametro K € responsavel pela curtose da distribui¢do exponencial poténcia;
quanto maior o valor de x, maior a curtose. Além disso, as distribui¢cdes normal e Laplace sdo

casos particulares obtidos quando Kk = 0 e Kk = 1, respectivamente.

Tabela 4.1 Valores para algumas medidas de comparacio obtidas do ajuste de modelos SYMARMA-¢
para a série excesso de retorno da Microsoft.

Modelo AIC BIC RMSE

SYMARMA-t; 41391 419,06 3,427
SYMARMA-1, 412,26 417,41 3,364
SYMARMA-t5 411,68 416,83 3,340
SYMARMA-tg 411,74 416,89 3,345
SYMARMA-t, 412,47 417,63 3,393
SYMARMA-t;5 412,96 418,11 3,429

Tabela 4.2 Valores para algumas medidas de comparagao obtidas do ajuste de modelos SYMARMA-EP
para a série excesso de retorno da Microsofft.

Modelo AIC BIC RMSE

SYMARMA-EP(0,1) 414,49 419,64 3,657
SYMARMA-EP(0,3) 412,78 417,92 3,622
SYMARMA-EP(0,5) 412,58 417,73 3,643
SYMARMA-EP(0,7) 413,32 418,47 3,681
SYMARMA-EP(0,9) 414,49 419,63 3,979

As estimativas e os erros-padrao assintoticos das estimativas dos parametros dos trés mode-
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los ajustados, juntamente com algumas medidas de comparagdo do ajuste, sdo apresentadas na
Tabela 4.3. Notamos que o modelo SYMARMA-#5 obteve o menor valor para as medidas AIC,
BIC e RMSE. Além disso, as estimativas dos parametros 3, ¢ e @ do modelo SYMARMA-#5
tém menores erros-padrdo assintoticos quando comparado aos modelos SYMARMA-normal e

SYMARMA-EP.

Tabela 4.3 Estimativas e erros-padrdo assint6ticos (em parénteses) das estimativas dos parametros dos
tr€s modelos ajustados e algumas medias de comparagao - série excesso de retorno da Microsoft.

Modelo Parametro  Estimativas AIC BIC RMSE

1,327 (0,105)

-0,132 (0,100) 416,20 421,35 3,728
4,103 (0,589)

SYMARMA -normal

SYMARMA s 1,273 (0,097)
0,162 (0,093) 411,68 416,83 3,340
2,628 (0,477)
SYMARMA-EP(0,3) 1,299 (0,100)
20,134 (0,096) 412,78 417,92 3,622
2,310 (0,378)

S ™ S S ™ S S ™

Os gréficos de correlacdo e correlacdo parcial dos residuos obtidos pelo ajuste do modelo
SYMARMA-t5 e o grafico normal de probabilidades com envelope indicam uma boa adequacao
do modelo (ver Figuras 4.6 € 4.5).

O teste de Ljung-Box (LJUNG; BOX, 1978), utilizado aqui para avaliar a aleatoriedade dos
residuos, obteve valor p igual a 0,891 indicando que os residuos do ajuste sao ndo correlaciona-
dos ao nivel de 5% de significancia. Na Figura 4.7 apresentamos a série ajustada pelo modelo
SYMARMA-t5 juntamente com a série original indicando um bom ajuste.

A Tabela 4.4 apresenta as previsoes 12 passos a frente e a RMSE para os modelos SY-
MARMA ajustados. Baseado na RMSE, o modelo SYMARMA-normal teve uma melhor de-
sempenho a curto prazo e o modelo SYMARMA-#5 a longo prazo.

A partir de agora vamos avaliar a influéncia local das observagdes considerando dois esque-
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Figura 4.6 Funcio de autocorrelacdo e autocorrelagdo parcial dos residuos obtidos do ajuste do modelo

SYMARMA-t5 - série excesso de retorno da Microsoft.
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Fonte: Autoria prépria.

Figura 4.7 Série original (linha preta) e série ajustada pelo modelo SYMARMA-#5 (linha azul) - série
excesso de retorno da Microsofft.
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Fonte: Autoria prépria.

mas de perturbacdo: perturbacdo aditiva nos dados e perturbacdo no parametro de dispersao.

Primeiramente, para cada esquema de perturbacao, calculamos o vetor de inclinacdo e o vetores

de curvatura a partir das expressoes derivadas nas Secdes 3.2 e 3.4 do Capitulo 3. Em seguida,

estimamos os limiares BS;, BC$?° ¢ BCY parai =0, 1 e 2, definidos na Segdo 3.3 do Capitulo
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3, a partir de 2.000 simulacdes dos modelos estimados sob distribuicdo normal e #-Student. Os
resultados sdo apresentadas nas Tabelas 4.5 e 4.6. Por fim, comparamos os vetores de inclina-
¢do e de curvatura com os limiares seguindo o procedimento descrito na Secao 3.3 do Capitulo

3.
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Informagdes relacionadas ao diagndstico de influéncia sdo apresentadas nas Tabelas 4.7 e
4.8. Os limiares para andlise de influéncia global, BSy e BCy, foram calculados a partir do
percentil 95%. E, os limiares para anélise de influéncia individual BS,, BCgOOk e BC%V foram
calculados a partir do percentil 5%.

Discutimos inicialmente o caso do modelo SYMARMA-normal (ver Tabela 4.7). Para
ambos esquemas de perturbacao, as trés medidas de influéncia local adotadas sugerem que a
série excesso de retorno da Microsoft possui pelo menos uma observacao influente (05 > BSy
e O, > BCy). Baseado nos limiares BS,, Bcgook e BCLY, encontramos 12 pontos influentes
sob o esquema de perturbacdo nos dados e 2 pontos influentes sob o esquema de perturbacao
no parametro de dispersdo. Notamos que as observagdes y7 € ygo foram classificadas como
influentes por todas as medidas de diagndstico e esquemas de perturbagdo considerados. Além
disso, os valores ajustados y,7 € ygo estdo associados aos maiores residuos.

Para o0 modelo SYMARMA-#5 (ver Tabela 4.8), ndo encontramos nenhuma significancia
global, ou seja, Oy < BSp e O, < BCy para ambos esquemas de perturbacdo e medidas de
diagndstico consideradas. Sob o esquena de perturbagdo nos dados, também nao foram encon-
trados indicios de observacdes individualmente influentes. Por outro lado, duas observagdes
foram destacadas pelo diagndstico de curvatura sob o esquema de perturbacio no parametro de
dispersdo. Essas observacdes correspondem aos pontos ypg € yg. Tais pontos correspondem
a observacdes posteriores aos outliers detactados pelo procedimento desenvolvido por Chen e
Liu (1993). Notamos, ainda, que essas observagdes nao estao associadas a grandes residuos.

Nas Figuras 4.8 e 4.9, apresentamos (em valores absolutos) os vetores de inclinagdo e
de curvatura para as perturbagdes nos dados e no parametro de dispersdo, respectivamente.
Os limiares BS;, BCiCOOk e BC{‘V estdo representados por linhas continuas (para i = 1) e por
linhas tracejadas (para i = 2). Em quase todos os cendrios, o0 modelo SYMARMA-normal
destaca pontos que ndo estdo presentes no diagndstico baseado no modelo SYMARMA-#s,

evidenciando a robustez do modelo SYMARMA-t.
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Figura 4.8 Diagnéstico de influéncia local na série excesso de retorno da Microsoft sob o esquema de
perturbacdo nos dados para os modelos SYMARMA-normal (lado esquerdo) e SYMARMA-#5 (lado

direito).
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Fonte: Autoria prépria.
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Figura 4.9 Diagnéstico de influéncia local na série excesso de retorno da Microsoft sob o esquema
de perturbacdo no pardmetro de dispersdo para os modelos SYMARMA-normal (lado esquerdo) e
SYMARMA-t5 (lado direito).

Modelo SYMARMA - normal Modelo SYMARMA - normal

Modelo SYMARMA - normal

12 14

10

08

08

04

02

0.0

20

15

1.0

05

0.0

Valor na Direg&o da Inclinagéo e Limiares

— Percentil 95% - BS1
---- Percentil5% - BS2

L. il

Ll || LI |“| |l|]|]|| ill

Indice

Il Hﬂﬂl]ﬂ Aol

Valor na Diregéo da Curvatura de Cock e Limiares

— Percentil95% - BC1
---- Percentil5% - BC2

u,.ﬂH.unnuﬂuu.nuuﬂﬂ,,ﬂﬂ,n Hl”llﬂ.”ﬂlﬂm.ﬂ|.ﬂl|ﬂll ﬂ|l||

indice

.H_._.uﬂl,.u.nﬂ.uu_.uu|n_.ﬂn._u._u.m.ﬂn.,ﬂ.

Valor na Dire¢éo da Curvatura de Lesaffre & Verbeke e Limiares

— Percentil95% - BC1
---- Percentil5% - BC2

"nﬂﬂnﬂn " ”" [ H” 1.l

I do

indice

Fonte: Autoria prépria.
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4.3 Indice Geral de Precos - Oferta Global

A série histérica estudada nessa secio contém 45 observacdes anuais do Indice Geral de
Precos - Oferta Global (IGP-OG). Este ¢ um dos indices inflaciondrios utilizados no Brasil,
calculado pela Fundacdo Getulio Vargas (FGV). O periodo considerado corresponde aos anos
de 1970 até 2014. O IGP-OG é obtido pela média ponderada das parcelas Indice de Precos por
Atacado (IPA), Indice de Precos ao Consumidor (IPC) e Indice Nacional de Custo da Constru-
¢do (INCC), com pesos iguais a 6, 3 e 1, respectivamente.

A série inflaciondria em estudo € apresentada na Figura 4.10. Dados de inflacdo avaliados
por meio do IGP também foram estudados por Cribari-Neto e Cassiano (2005) que propuse-
ram quatro medidas robustas para checar impacto de choques econdmicos no longo prazo. Da
Figura 4.10 observamos que a partir dos anos 80 a série € caracterizada por crescimentos acen-
tuados, que levaram o pais a hiperinflacdo em 1989 e 1993. Conforme relatam Cribari-Neto e
Cassiano (2005): “Desde 1979 a histéria econdmica brasileira foi marcada por muitas interven-
¢cdes governamentais repentinas destinadas a controlar a inflacdo. Porém, alguns destes planos
de choque ndo obtiveram o efeito esperado, nem mesmo a curto prazo, € por isso ndo intro-
duziram inliers significativos na série, uma vez que nao conseguiram baixar o nivel das taxas
inflaciondrias. Este foi o caso dos planos de choque Delfim I, Delfim II, Delfim III, Dornelles,
Arroz com Feijdo, Eris, Marcilio e o Programa de Acao Imediata”.

Dentre as diversas observagdes atipicas presentes na série, podemos destacar os anos de
1986 (plano Cruzado), 1987 (plano Bresser), 1989 (plano Verao), 1990 (plano Collor I), 1991
(plano Collor II) e 1994 (plano Real). No periodo considerado, a maior taxa de inflagdo regis-
trada foi de 2.710,13% ao ano que ocorreu em 1993. Uma deflacio de -1,40% também pdde
ser observada no ano de 2009.

O correlograma e o correlograma parcial da série sao apresentados na Figura 4.11. Intui-
tivamente € razodvel considerar que a inflagdo no Brasil segue um processo estaciondrio; a
inflacdo tende a flutuar em torno de algum patamar ao longo do tempo. Esse fato, somado a
evidéncia apresentada no correlograma, permite considerar que a série inflacdo no Brasil se-
gue um processo estaciondrio. A inspe¢do direta do correlograma sugere a presenca de um

parametro de médias méveis e o correlograma parcial d4 indicios de um possivel parametro



Figura 4.10 Série inflaciondria no Brasil de acordo com IGP-OG.
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Fonte: Autoria prépria.

Figura 4.11 Funcio de autocorrelacio e autocorrelagdo parcial da série IGP-OG.

Correlagéo
D_
o
A I
g = I
15}
3
3
5
B
@
3
i “
b LA = |““““‘
£
5
w
o Tl
39 T
T T T T
0 5 10 15
Defasagem

Fungéo de autocorrelagdo parcial

0.0 02 04 0.6

02

Correlagéo parcial

Defasagem

Fonte: Autoria prépria.

110

Considerando que a série segue um processo estaciondrio, variantes do modelo ARMA,

isto ¢, SYMARMA -normal, foram estimados. O critério de selecdo utilizado para selecionar o

modelo final, dentre os modelos estimados, foi o BIC. Os resultados sdo apresentados na Tabela

4.9 e, como podemos notar, dentre os modelos estimados o que melhor descreveu a dindmica
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dos dados foi 0 modelo SYMARMA(1,1),

yt:ﬁ+¢{Yt71_ﬁ}+9rtfl+rt7 [:2""'7457 (20)

pois apresentou menor BIC e também maior valor para o logaritmo da funcdo de verossimi-

lhanca.

Tabela 4.9 Modelos SYMARMA-normal ajustados a série inflaciondria no Brasil, para diferentes con-
figuragdes, e seus respectivos valores do critério BIC e o logaritmo da fun¢do de verossimilhanga.

Modelo BIC /(5,9)

SYMARMA(O,1)-normal 676,46 -332,52
SYMARMA(,1)-normal 674,51 -329,64
SYMARMA(2,0)-normal 680,37 -332,57
SYMARMA(2,1)-normal 678,31 -329,64

A partir de agora vamos considerar distribui¢cdes mais flexivel para ajustar os dados com o
objetivo de acomodar melhor as observacdes atipicas presentes na série. Foram ajustados mo-
delos SYMARMA-f com os graus de liberdade variando entre 3 e 12, e modelos SYMARMA-
EP com o parametro k variando entre 0 e 1; ver Tabelas 4.10 e 4.11, respectivamente. De
acordo com as medidas de comparagao adotadas, os modelos SYMARMA-¢ com 3 graus de
liberdade e SYMARMA-EP com o parametro k¥ = 0,5 obteverem os melhores ajustes dentre
os modelos considerados.

As estimativas e os erros-padrao assintoticos das estimativas dos parametros dos trés mode-
los ajustados, juntamente com algumas medidas de comparagdo do ajuste, sdo apresentadas na
Tabela 4.12. Notamos que, para todas as medidas utilizadas, o modelo SYMARMA-#3 supera
a modelagem usual do modelo ARMA. Além disso, o modelo SYMARMA-#3 possui menores
erros padrdo assintéticos para as estimativas dos parametros do modelo. Por fim, a dispersao
da série € melhor acomodada pelo modelo SYMARMA-#3.

A Figura 4.12 apresenta os gréficos de correlacio e correlag@o parcial dos residuos obtidos

do ajuste do modelo SYMARMA-#3. O teste de Ljung-Box, utilizado para checar a aleatorie-



112

Tabela 4.10 Valores para algumas medidas de comparacio obtidas do ajuste de modelos SYMARMA-¢
para a série IGP-OG.

Modelo AIC BIC RMSE

SYMARMA-1; 574,22 581,36 3,1405
SYMARMA-#, 592,54 599,68 3,5842
SYMARMA-t5 606,06 613,20 4,1795
SYMARMA-tg 627,62 634,76 7,2037
SYMARMA-t;; 637,70 644,84 10,7221

Tabela 4.11 Valores para algumas medidas de comparagéo obtidas do ajuste de modelos SYMARMA-
EP para a série IGP-OG.

Modelo AIC BIC RMSE

SYMARMA-EP(0,1) 647,83 654,97 14,5577
SYMARMA-EP(0,3) 636,20 643,34 6,5921
SYMARMA-EP(0,5) 621,78 628,92 5,3017
SYMARMA-EP(0,7) 621,48 628,62 8,3588

dade dos residuos, sugere a ndo correlagdo dos residuos ao nivel de 5% de significancia (valor
p igual a 0,8038). As séries ajustadas pelos modelos SYMARMA-normal e SYMARMA-13,
juntamente com a série original, sdo apresentadas na Figura 4.13. Os resultados mostram os
valores ajustados pela distribui¢do normal foram bastante influenciados pelos outliers presentes
na série, enquanto que, os valores ajustados pelo modelo SYMARMA-#; permanecem estaveis
ao longo de todo periodo.

A previsdo fornecida pelo modelo SYMARMA-#3 para inflacdo no ano de 2015, baseada
na série histérica do indice IGP-OG, foi de 4,97%.

A partir de agora vamos avaliar a influéncia local das observagdes através das medidas de
influéncia propostas na Secdo 3.2 do Capitulo 3 e o ajuste dos modelos SYMARMA-normal

e SYMARMA-#3. Utilizamos dois esquemas de perturbacdo: perturbagao aditiva nos dados
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Figura 4.12 Funcdo de autocorrelagdo e autocorrelacdo parcial dos residuos obtidos do ajuste do mo-
delo SYMARMA-#; - série IGP-OG.
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Figura 4.13 Série original (linha preta), série ajustada pelo modelo SYMARMA-normal (linha laranja)
e série ajustada pelo modelo SYMARMA-#; (linha azul) - série IGP-OG.
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Tabela 4.12 Estimativas e erros-padrdo assintéticos (em parénteses) das estimativas dos parametros dos
trés modelos ajustados e algumas medias de comparagdo - série IGP-OG.

Modelo Parametro Estimativas AIC BIC RMSE

SYMARMA-normal 7,158 (3,818)
0,465 (0,127) 667,28 674,51 21,45
0,594 (0,197)

137.729,6 (29.372,6)

SYMARMA-#3 0,535 (0,559)

0,482 (0,017) 57422 581,36 3,14
0,503 (0,027)
1.638,64 (494,1)

SYMARMA-EP(0,5) -0,420 (3,110)

0,455 (0,098) 621,78 628,92 5,30
0,612 (0,151)
37.907,45 (9.898,3)

S DS ™ S DS ™ S e ™

e perturbacdo no parametro de dispersd@o. Os limiares BS;, BCiCOOk e BCiLS parai=0,1¢ 2,
definidos na Secado 3.3 do Capitulo 3, sdo estimados a partir de 2.000 simulacdes de Monte
Carlo.

Nas Tabelas 4.13 e 4.14 apresentamos, respectivamente, para os modelos SYMARMA-
normal e SYMARMA-#3, as marcas de referéncia obtidas para a andlise de diagnéstico do vetor
de inclinacao e do vetor de curvatura. Informagdes relacionadas ao diagnéstico de influéncia
sdo apresentadas nas Tabelas 4.15 e 4.16. Os limiares para andlise de influéncia global, BSg
e BCy, foram calculados a partir do percentil 95%. Os limiares para andlise de influéncia
individual, BS,, Bcgook e BC%V, foram calculados a partir do percentil 5%.

De acordo com os resultados apresentados para o modelo SYMARMA-normal, as medidas
O; e O, sao significativas sob o critério global para a perturbag¢do no pardmetro de dispersao.
Sob o critério individual, as observagdes yy4 € y»5 sdo identificadas como influentes para ambos
esquemas de perturbacdo e medidas de influéncia. Notamos também que essas observagoes
estdo associadas a grandes residuos. As observacdes yyg € y23, que também estio associadas a
grandes residuos, foram destacadas pela curvatura de Cook sob o esquema de perturbag¢ao nos

dados.
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Analisando os resultados obtidos para o modelo SYMARMA-#3, identificamos influéncia
global ao nivel de 95% apenas para o diagnéstico de inclinacdo sob o esquema de perturbagao
no parametro de dispersdo. Alguns pontos, como, por exemplo, as observacoes ys4 € Y5, Sa0
classificados como individualmente influentes.

As Figuras 4.14 e 4.15 ilustram o comportamento dos vetores de diagndstico d, C e C; (em
valores absolutos), calculados a partir do ajuste dos modelos SYMARMA-normal e SYMARMA-
13, para a perturbacao aditiva na varidvel resposta e a perturbacdo no parametro de dispersao,
respectivamente. Os limiares BS; e BC; estdo representados por linhas continuas (para i = 1)
e por linhas tracejadas (para i = 2). Notamos que os valores de d;, ¢; e ¢, para 0 modelo
SYMARMA-#3 sd@o muito proximos as margens de referéncia BS,, BCS""" e BC%V. Dessa
forma, recalculamos os limiares para andlise de influéncia individual (BS,, BCS"”k e BC%V),
considerando agora as séries que foram classificadas como globalmente influentes a partir do
percentil 99%. Os resultados mostraram que as observacdes, anteriormente classificadas como
influentes no ajuste do modelo SYMARMA-#3, ndo sdao mas significativas sob o critério in-
dividual; com excessdo apenas para o diagnéstico de curvatura de Lesaffre e Verbeke sob o
esquema de perturbacdo nos dados. Para o ajuste do modelo SYMARMA-normal, as conclu-

sOes permaneceram inalteradas.
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Figura 4.14 Diagnéstico de influéncia local na série inflaciondria IGP-OG sob o esquema de perturba-
¢a0 nos dados para os modelos SYMARMA-normal (lado esquerdo) e SYMARMA-#; (Iado direito).
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Figura 4.15 Diagnéstico de influéncia local na série inflaciondria IGP-OG sob o esquema de perturba-
¢20 no pardmetro de dispersdo para os modelos SYMARMA-normal (lado esquerdo) e SYMARMA-13
(lado direito).
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Capitulo 5

Rotinas elliptical.ts e influence.ts

E importante que toda a teoria desenvolvida nesta tese esteja disponivel em algum software.
Com esta preocupacgdo foram desenvolvidos macros no software R (IHAKA; GENTLEMAN,
1996). O R é um ambiente integrado que possui grandes facilidades para a manipulagdo de
dados, a geragdo de graficos e a modelagem estatistica. Devido ao seu c6digo fonte ser aberto, o
mesmo tem recebido indmeras contribui¢des de varias comunidades cientificas. O R encontra-
se disponivel em http://www.r-project.org, bem como diversos macros, que sao implementagdes
das mais variadas édreas de estudo.

Com a ideia de difundir a modelagem estatistica para dados temporais, desenvolvemos as
funcdes elliptical.ts, QQplot e influence.ts. A fungdo elliptical.ts consiste em um conjunto de
rotinas computacionais que permitem a definicao de distribui¢des pertencentes a classe simé-
trica e o ajuste dos parametros autoregressivos, de médias méveis e de dispersdo do modelo
SYMARMA pelo método de maxima verossimilhanca condicional. A fung¢do QQplot per-
mite gerar o grafico normal de probabilidade com envelope e, por fim, a fungdo influence.ts
possui rotinas que permitem o diagndstico de influéncia local em séries temporais a partir
da metodologia de limiares proposta por Zhang e King (2005). Estes conjuntos de rotinas
encontram-se disponiveis gratuitamente para uso académico em http://www.de.ufpe.br/~cys
neiros/elliptical/time_series.html.

Vamos agora apresentar a sintaxe do comando para o ajuste de um modelo SYMARMA

sob uma particular distribui¢ao simétrica condicional.
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elliptical.ts <- function(Y, X=cbind(seq(1,1,length=Ilength(Y))), family="Normal",
epsilon=0.0001, maxit=100, trace="F", np, ngq, df=3, epw=0.3, dfs=1, alpha=1, mp=1,
epsi=1, sigmap=1, fixed=NULL, ...)

A funcdo elliptical.ts depende do pacote Matrix. Covaridveis precisam ser listadas em uma
matriz de dimensdo n X k, em que n é o nimero de observagdes e k € o nimero de covariaveis.
O intercepto € considerado uma covaridvel de uns. Apos o ajuste do modelo utilizando a fungdo

elliptical.ts ficard disponivel uma lista de objetos gerados, tais como:

coefficients: coeficientes autorregressivos e de médias méveis do modelo ajustado;
dispersion: coeficiente de dispersdo do modelo ajustado;

residuals: residuo (y —u)/\/@;

fitted.values: valores ajustados;

loglik: o logaritmo da funcdo de verossimilhanca maximizada do modelo ajustado;
Wg: os valores da funcdo W, (u);

Weder: os valores da fungio Wy (u);

iter: numero de iteragdes;

scale: 4dg;

scaledispersion: 4f, - 1;

scalevariance: &;

DesP.C: desvio-padrio assintético das estimativas dos coeficientes autoregressivos e de mé-

dias méveis do modelo ajustado;

DesP.D: desvio-padrio assintético da estimativa do parametro de dispersdao do modelo ajus-

tado;
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rmse: raiz do erro médio quadratico.

Na opcao family, definimos a familia de distribui¢do a ser ajustada. Esta funcdo, até o

presente momento, estd definida para as distribui¢cdes abaixo:

Normal: family = Normal();

t de Student: family = Student(d f);

t de Student Generalizada: family = Gstudent(c(d f,dfs));
Logistica-1: family = Logisticl();

Logistica-II: family = Logisticll();

Logistica Generalizada: family = Glogistic(c(a,mp));
Exponencial Poténcia: family = ExpPower(epw).

As opgdes epsilon e maxit definem o erro e o nimero maximo de iteracdes para convergén-
cia, respectivamente. As opg¢des np e nq definem as ordens dos parametros autorregressivos e de
médias moveis, respectivamente. A opc¢ao trace permite a impressao dos resultados do ajuste.
Por fim, a op¢do fixed=c(ar,ma,X) permite selecionar apenas alguns parametros para serem es-
timados, por exemplo, para estimar apenas o parametro ¢3 em um modelo SYMARMA(3,0)

utilizaremos fixed=c(0,0,NA). O grafico normal de probabilidade com envelope é gerado pela

funcdo QQplot.

QO0plot<- function(fit, B=300)

A opcao fit define 0 modelo SYMARMA ajustado e B o numero de iteragoes.
Vamos agora apresentar a sintaxe do comando para anélise de diagndstico sob o enfoque de
influéncia local considerando o ajuste de um modelo SYMARMA sob uma particular distribui-

¢ao simétrica condicional.
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influence.ts <- function(adjust.model, esq.pert="aditive", diag="incl", seed=2015,

benchmarks.rep=2000, perc.ind1=95, perc.ind2=35, plot="TRUE", trace="TRUE")

Na op¢ao adjust.model definimos o modelo SYMARMA ajustado pela funcio elliptical.ts,
na opg¢ao esq.pert definimos o esquema de perturbacdo, na op¢ao diag temos a medida de
influéncia local adotada, o comando plot permite gerar o grafico sob o diagnéstico de influén-
cia individial. Por fim, frace fornece alguns resultados gerais e as opcdo benchmarks.rep,
perc.indl, perc.ind2 e seed definem os parametros para o calculo dos limiares.

Até o presente momento, as fungdes QQplot e influence.ts estao definidas para as distribui-
coes normal e #-Student, a opcao esq.pert para as perturbacoes: perturbagdo aditiva na varidvel
resposta (‘“‘aditive") e perturbagdo no parametro de dispersao (‘“‘dispersion"), e a op¢ao diag para
as medidas de influéncia local propostas por Billor e Loynes (1993), Cook (1986) e Lesaffre e
Verbeke (1989), através dos comandos “incl”, “cook"e “1v", respectivamente.

Ap6s a andlise de diagndstico utilizando a func¢ao influence.ts ficard disponivel uma lista de

objetos gerados, tais como:

B0: marca de referéncia para a medida de influéncia global;

B1: marca de referéncia para a medida de influéncia individual 1;
B2: marca de referéncia para a medida de influéncia individual 2;
glob: medida de influéncia para série em estudo - critério global;

indiv: vetor de influéncia para série em estudo - critério individual.

Vamos agora utilizar a série dos exessos de retorno nas acdes da Microsoft (ver Secao 4.2,
Capitulo 4), para ilustrar algumas saidas disponibilizadas pelas fun¢gdes implementadas consi-

derando o ajuste do modelo SYMARMA-#5s. Os comandos utilizados sdo apresentados a seguir.

library(Matrix)
dat <- scan(what=list(msf=0,sp500=0,tbill=0))
30.09 1146.54 1.76



28.55 1136.76 1.76
28.07 112540 1.75

23.83 893.92 1.62

attach(dat)

.thill <- thill/253
N <- length(tbill)

.sp500 <- ((sp500[2:N]-sp500[1:(N-1)])/sp500[1:(N-1)])*100
.msf <- (msf[2:N]-msf[1:(N-1)])/msf[1:(N-1)])*100

X <- .sp500-.tbill[ 1:(N-1)]
Y <- .msf-thill[1:(N-1)]

X <- cbind(X)

fit2 <- elliptical.ts(Y, X, family="Student", df=5, np=12, nq=0,
trace=TRUE, fixed=c(0,0,0,0,0,0,0,0,0,0,0,NA,NA))

Call:

symarma(12,0) - family: Student

Coefficients:
Estimative
intercept  1.2732547
arl 0.0000000
ar2 0.0000000
ar3 0.0000000
ard 0.0000000
ars 0.0000000
arb 0.0000000

ar7 0.0000000

s.d.
0.09657443
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
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ar8 0.0000000 0.00000000
ar9 0.0000000 0.00000000
arl0 0.0000000 0.00000000
arll 0.0000000 0.00000000
arl2 -0.1619578 0.09284748

varphi estimated as 2.6282 (s.d. = 0.4774)
log likelihooh = -203.8393
rmse = 3.34

rstand.t <- fit2$residuals

QQplot(fir2)

influence.ts(fit2,esq.pert="aditive",diag="incl")

"Benchmarks - 00% ..."
"Benchmarks - 25% ..."
"Benchmarks - 50% ..."
"Benchmarks - 75% ..."
"Benchmarks - 100%"

Call:
symarma(12,0) - family: Student

Billor & Loynes

Measures of local influence:

Inclination 5.320019

Benchmarks:
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BSO 6.309945
BSI 1.968821
BS2 1.937233

influence.ts(fit2,esq.pert="dispersion",diag="cook")

"Benchmarks - 00% ..."
"Benchmarks - 25% ..."
"Benchmarks - 50% ..."
"Benchmarks - 75% ..."
"Benchmarks - 100%"

Call:
symarma(12,0) - family: Student
Cook

Measures of local influence:

Curvature 21.07709

Benchmarks:
BCO 37.1777248
BC1 0.4220557
BC2 0.2913184



Billor and Loynes

IIIII

IIIII
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Capitulo 6

Conclusoes e Consideracoes Finais

Nessa tese trabalhamos com a classe de modelos SYMARMA que estende a classe de
modelos autorregressivos de médias méveis gaussiano (ARMA) para séries temporais perten-
centes a classe de distribuicdes simétricas. Foram apresentadas expressoes mais simples para
0 vetor escore a para matriz informacao esperada de Fisher. Estudos de simulagdo apontaram
que os estimadores de maxima verossimilhang¢a condicional para os parametros do modelo sdao
consistentes em erro quadritico médio e normalmente distribuidos. Resultados de simulagdo
baseados na func¢do de influéncia dao indicios de que o procedimento para estimacado dos para-
metros do modelo SYMARMA-normal nédo € robusto, podendo fornecer estimativas bastantes
viesadas para séries perante outliers, enquanto que, o procedimento para estimacdo dos pa-
rametros no modelo SYMAMRA-t € considerado qualitativamente robusto. Adicionalmente,
acrescentamos componentes sazonais aos modelos SYMARMA dando origem aos modelos
SYMARMA sazonais.

A maior contribuicao dessa tese € a utilizacdo do uso da metodologia de limiares, proposta
por Zhang e King (2005), no diagndstico de influéncia local para modelos SYMARMA. A
partir dessa metodologia foi possivel estabelecer marcas de referéncia que determinam, estatis-
ticamente, que observagdes da série podem ser caracterizadas como influentes. Na maioria das
vezes essa caracterizacao € feita por meio de uma simples andlise exploratoria. Foram deriva-
das as expressoes das medidas de influéncia local propostas por Cook (1986), Billor e Loynes
(1993) e Lesaffre e Verbeke (1998), considerando os esquemas de perturbac¢do nos dados, per-

turbacdo no parametro de dispersdo, perturbacdo no vetor de parametros autorregressivos e
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perturbagd@o no vetor de parametros de médias moveis.

Realizamos estudos de simulacdo em modelos SYMARMA-normal e SYMARMA-t, e
dessa forma foi possivel verificar que, baseados na técnica de limiares, o modelo SYMARMA-
t tende a acomodar melhor outliers em séries temporais ndo destacando-os como influentes.
Esse fato evidencia a robustez dos modelos SYMARMA com caudas mais pesadas no ajuste
de séries temporais que apresentem outliers.

Desenvolvemos as bibliotecas elliptical.ts e influence.ts que consistem em um conjunto de
rotinas computacionais que permitem a definicao de distribui¢des pertencentes a classe simé-
trica e o ajuste dos parametros autorregressivos, de médias méveis e de dispersao do modelo
SYMARMA pelo método de méxima verossimilhanga condicional. Além disso, permitem o
diagnostico de influéncia local em séries temporais a partir da metodologia de limiares.

Através de dois exemplos praticos, notamos que os modelos SYMARMA-t e SYMARMA-
EP acomodaram melhor as observagdes atipicas presentes nas séries estudadas, quando com-
parados aos resultados fornecidos pelo modelo SYMARMA-normal.

Virios trabalhos podem ser desenvolvidos a partir dos resultados apresentados nessa tese.

Dentre eles podemos citar:

1. Dar continuidade aos estudos acerca dos modelos SYMARMA. Como por exemplo, es-
tudar o comportamento dos limiares e, consequentemente, das medidas de influéncia
local em modelos SYMARMA sazonais considerando também a presenca de outliers de

inovagao;

2. Desenvolver a classe de modelos SYMARMA para distribuicdes condicionais simétri-
cas continuas com heteroscedasticidade e estudar medidas de diagndstico para esta nova

classe de modelos;

3. Incorporar a ideia de varidvel resposta transformada a classe de modelos SYMARMA e
desenvolver procedimentos para estimacao dos parametros e andlise de diagndstico. A
ideia de varidvel resposta transformada para dados temporais foi utilizada por Cordeiro
e Andrade (2009) no desenvolvimento do modelo TGARMA, autorregressivo de médias

moveis generalizado transformado.
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Por fim, esperamos que este estudo possa ampliar os conhecimentos a respeito de séries

temporais ndo-gaussianas, inspirando novas pesquisas nesse campo.
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Apéndice A

Prova do Teorema 1

Prova: Denote ®(B) =1— ¢ B—---— ¢,B” o polindmio autorregressivo, @(B) = 1 +
0B+ ---+ 6,B7 o polindmio de médias mdveis e B*y; = y,_; o operador de defasagens. Pode-
mos reescrever o modelo SYMARMA como

P(B)(Y; —x/ B) = ©(B)r,
e, desde que ®(B) seja invertivel,
Y, = Xt—rﬁ +¥(B)r,

em que 7;’s sdo resfduos tais que E(r;) =0e E(r,7;) =0, paracadat # j,e ¥(B) = ©(B)®(B) .
Desta forma, assumindo que ®(B) é invertivel, a média marginal de Y¥; é dada por

E(Y,) =x/B.
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Apéndice B

Prova do Teorema 2

Prova: Seja Y; = U +r; em que ry’s sdo residuos ndo correlacionados com média zero.
Temos que

Var(r) = E(r7) =E(E(r7|H;—1)) = E(Var(r,|H,_)) = E(Var(Y¥; — t;[H;_1))
= E(Var(y:[H—1)) =E(S ) =& 0.

Note que 1, definido em (6), é H,_|-mensurével. Portanto, desde que ®(B) seja invertivel,
a varifincia marginal de ¥;, Var(Y;), é dada por

Var(Y;) = Var( { B+¥(B)r:) = Var(¥(B)r;) =E[(¥(B)r:)?]

[es) (o)

= Z Z ViV E(ri—iri—j) = ZV’,‘Z "t i) Z Var (re—i)
i=0

i=0 j=0

= Eo) v
i=0
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Apéndice C

Prova do Teorema 3

Prova: Pelos Teoremas 1 e 2, obtemos que
B07) =x/B e Varll) =0 L v?
i=
Utilizando o modelo SYMARMA expresso por meio de um processo linar geral,
Yi=x'B+¥(B)ri=x/B+ i,)‘l’irr—i,
im
temos que a fun¢do de covariancia fica definida como

Cov(Y,,Y;—x) = Cov(x/B+ ) Virr—is X, B+ Y viri—i—i)
i=0 i=0

= Cov(yors+vyir—1+- ,Wor—x+Wirr—x—1+---)

(o)

= Var(n) Y Wiviix
i=0

= oY ViV,
i=0
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em que Yy = 1. Adicionalmente,

COV(YN Yt—k)
\/COV(Y1‘7 YZ‘)COV(thkv Yl‘*k)

COIT(Yhthk) =
P X ViVick
SoL v}

_;0 YiVirk
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Apéndice D

Matriz de informacao condicional esperada de
Fisher para modelos SYMARMA (p,q)

Apresentamos nesse apéndice os elementos que compdem a matriz informagdo condicinal
esperada de Fisher, K, isto €, as expressdes resultantes de

9%(3.9)

Koo, = —E [— |Ht_1} _E {35(5#’) 9L(3,9)

0w, 0wy

H;_
0,0 @, [He1

em que ®, e @, representam pardmetros do modelo e ¢ € o logaritmo da fun¢do de verossimi-
lhanc¢a condicional expresso por

U(8,9) =), logf(y|H;-1),

t=m+1

sendo m = max{p,q} em que p e g sdo as ordens dos pardmetros autoregressivos e de médias
moveis, respectivamente. Dessa forma,

" og(g)+ Y Tos(su) 21

t=m+1

(6,0) =~

em que u; = (v, —t)*/@ e

P q
My = XtTB + Z i {yt—i _X;T_[ﬁ} + Z Gj(y,_j _.ut—j)~
i=1

j=1
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D.1 Resultados gerais

Sob condig¢des de regularidade usuais

94,(8,9) _ dlogf(yi[Hi—1)\ _ [ dlogf(y:[Hi—1)
E (— ‘ Htl) = E( EM ) = /oo ol f e[ He—1)dpy

_ [ ! af(y,\H,_l))
- /—°° (f(yt’Htl) ALy f(ilHi—1)dpy

= 0 f(y|Hs-
/_w%d / JSe[H—1)dp, = 0. (22)

Uy =

a“t

Ap6s de algumas manipulagcdes algébricas, temos que

8&(67 (P) 2
= — We (uy)zs,
Iy Vo )
em que Wy (1;) = dlog(g(u;))/du; e z; = \/u; = (y: — ls) //@. Portanto, utilizando o resultado
em (22), temos que

E(Wg(ut)zt|Ht_1) =0. (23)

0 P 0 d
_H; =X = ) 9iX(is .Uz. =yi-i—%_ip © ﬁ =Yi—j—H-j (24

sdo H,_{-mensuraveis.

D.2 Elementos da matriz K 58

Temos que
34 (0,9) A4 (0,9) B —2We (u;) J —2W, (u,)%

E( 35, o5, 1) = BT 57367 )\ Te as, ) M
_ 4 2 2 OM; Ol
= (pE[Wg(u)t8686 |H;—1

4 du I

= aE |:W (MI)Z[|H1‘ 1] aét 861‘
_ 4y Kol
N Q g86,~85j’

em que dy = E [WZ ()7 |H, 1], ou seja, dy = E [WZ(U*)U?H,_1], sendo U ~ 5(0,1,g).
Utilizando os resultados em (24) podemos facilmente encontrar as expressoes para os ele-
mentos de K5 5.
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D.3 Elementos da matriz K,

Da equagdo (21) obtemos que

E(%((S,fp) M’(‘S"P)m”) _E [(_L_MW) (_L_ Wg(”f)ut) |H,1]

e X0 2¢ () 2¢ ¢
1 We (s )y W (ur)u?
) EL(p2 P e

11 1
= 107 +-— P — B [W, (e ) [H, 1] + @E [Wgz(”f)uﬂH’_l}

_ol iy
T 42 T2\ T2) T g2le
1 1 1
= Efg_mzw(‘vg_l)y
em que fy = B [WZ(u;)uf|H,_1], ou seja, f, = E [WZ(U*)U*H,_1], sendo U ~ S(0,1,g). O

resultado E [W, (u;)u;[H;—1] = —1/2 foi retirado de Fang ez al. (1990, p. 94).
Utilizando o resultado acima obtemos que

D.4 Elementos da matriz K So

Temos que

2(Ma ™ e mer) = (U a) (o ) e
)

W, P J

_ E[(p\(/) ;|Hz 1] ag;—kE[ (P\/(¢ Ztut| t— 1] 8‘;
0

— {E (u)ze|H;—1] +2E [W (ute )z [Hy 1]} =

= 0

O resultado E [W2(u;)ziu,|H;—1] = 0 foi retirado de Fang er al. (1990, p. 94) e de (23),
temos que E [W, (u,)z;|H;—1] = 0.
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Apéndice E

Matriz de informacao condicional observada de
Fisher para modelos SYMARMA (p,q)

Esse apéndice contém as expressdes que compdem a matriz de derivadas parciais de se-
gunda ordem do logaritmo da funcdo de verossimilhanca condicional do modelo SYMARMA,
dado por

(5.0)= " og(g) + Y. toa(eu)) 25)

em que u; = (y; — tu)*/p e

T 4 T -
W=x, B+ Z o; {}’t—i - Xz—iﬁ} + Z 6;(yi—j — Mi—j)-
i=1

J=1

E.1 Resultados gerais

As derivadas de primeira e segunda ordem do logaritmo da funcdo de verossimilhanga con-
dicional 4(8, @) com relagdo a p, sdo expressas, respectivamente, por

24(8,0) 2 %0,(8,9) 2
a—‘llt = —EWg(u[)(yt — [.L[) c a—‘uqz = 6 (Wg(”[) +2Wg/(l/lt)l/l[) N
em que W, (u;) = dlog(g(u;))/dus € Wy(u) = OWy(u)/duy.
Ap6s agumas manipulacdes algébricas temos que

au p au au

a_ﬁ; = Xz — ig} (P,')C([_i)l, a(PZ =Vt—i— X;_i ) a—ej =Yt—j— Me—j,
azﬂt 82u, azﬂt

SBag i 96190, " © 9pae "
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E.2 Derivadas de segunda ordem entre elementos do vetor 6
Da equagdo (25) obtemos que
2(8,9) & 9 [4(8,9) I
861'85]' N 86] a,u, 851

_ 3 PU0)ondw  96(8.9) Ou
N 8;13 85, 831 8;1; 85185,

t=m+1

t=m+1
_ "D , u; oy 2 R
= X Ol 20 ) 55— CW) = ) 55
v 1 9’ H Uy Iy
N z:;"ﬂ_a {2sza5i85j +at95j 25 } ’

em que s; = W (ur) (yr — ly) € a; = =2 { Wy (ur) +2Wy (ur )us }
Utilizando os resultados da Secao E.1 podemos facilmente encontrar as expressdes para as
derivadas de segunda ordem entre os elementos do vetor J.

E.3 Derivadas de segunda ordem entre elementos do vetor
¢

Nesse caso, temos que

PUs9) g i(_i_Mut)

9809 (=t 198\ 20 @
_ ,_;1% [zwg’(ut)(yt_“t)g—guﬁzwg(ut)(y’_“t) gg
= l_;rl % (W (s Y + W (ur)] (31 —.ur)g—g;

em que by = { W, (uy) +Wé(ut)ut} (v — ly).
Dessa forma, com auxilio dos resultados apresentados na Sec¢do E.1, podemos encontrar as
expressoes para as derivadas de segunda ordem entre o vetor de pardmetros J e @.
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E.4 Derivadas de segunda ordem do parametro ¢

Temos que
9*((8,9) -0 1 We(w) 2
a—q)z = l_g—H%(_%_ q)z (yt_,ut))
Lol 2W(u —w)?
= ¥ s P W) P
t



