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Modelos Dinâmicos para Dados Temporais sob

Distribuição Simétrica Condicional: Estimação e

Diagnóstico
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Resumo

Nossa abordagem é direcionada a variáveis aleatórias simétricas observadas ao longo do tempo.
Nesse sentido, avaliamos os procedimentos de estimação e discutimos o uso da metodologia
de diagnóstico sob o enfoque de influência local para classe de modelos autorregressivos de
médias móveis simétrico, SYMARMA. Modelos sazonais também são abordados neste traba-
lho. A estimação dos parâmetros do modelo SYMARMA é feita através da maximização do
logaritmo da função de verossimilhança condicional utilizando o algoritmo escore de Fisher.
Apresentamos um estudo de robustez baseado na função de influência para avaliar a qualidade
do procedimento de estimação. Além disso, conduzimos um estudo de simulação para avaliar
a consistência e normalidade assintótica do estimador de máxima verossimilhança condicional.
Derivamos expressões mais simples para as funções escore e a matriz informação de Fisher.
Desenvolvemos medidas de diagnóstico sob o enfoque de influência local baseado nas medi-
das de curvatura de Cook (1986), inclinação de Billor e Loynes (1993) e curvatura de Lesaffre
e Verbeke (1998). Derivamos, através de simulações, marcas de referência (limiares) para
determinar se uma observação é influente. Aplicações de dados reais foram abordadas neste
trabalho.

Palavras-chave: Distribuição simétrica. Influência local. Modelos SYMARMA. Outlier.
Séries temporais.



Abstract

Our approach is applied to symmetric random variables on over time. In this sense, we develop
estimation procedures and discuss the use of local influence diagnostic methodology to class
of the autoregressive and moving average symmetric models, SYMARMA. Sazonal models
also are considered. The Fisher scoring algorithm is used to find the estimations of parame-
ters SYMARMA model maximizing the logarithm of the conditional likelihood function. We
present an robustness study based on influence function to assess the quality of the estimation
procedure and we conduct simulation studies to evaluate the consistency and asymptotic nor-
mality of the conditional maximum likelihood estimator. We derive simpler expressions for
the score function and Fisher information matrix. In order to assess local influence we develop
diagnostic measures based on Cook’s curvature (1986), slope of Billor and Loynes (1993) and
curvature of Lesaffre and Verbeke (1998). We evaluate benchmarks by simulation to identify
influential observations. Application are used to illustrate of the proposed methodology.

Keywords: Local influence. Outlier. SYMARMA models. Symmetric distributions. Time
series.
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Capítulo 1

Introdução

A suposição de normalidade para os erros em uma análise de regressão tem sido constante-

mente utilizada na descrição e investigação de fenômenos considerados aleatórios. No entanto,

em muitas situações, a suposição de normalidade dos erros não é satisfeita e, além disso, mui-

tas vezes nos deparamos com acontecimentos inesperados ou incontroláveis que dão origem a

observações atípicas que, de alguma forma, são inconsistentes com o restante da série. Tais

observações podem comprometer os procedimentos inferenciais de métodos estatísticos mais

convencionais, que assumem a distribuição normal para os erros, tal como a classe de modelos

autorregressivos de médias móveis (ARMA), podendo fornecer estimativas bastantes viesadas

para os parâmetros do modelo ou, até mesmo, uma identificação incorreta do mesmo. Após

o ajuste do modelo, técnicas de diagnóstico devem ser utilizadas para checar se as suposições

feitas para o modelo são verdadeiras. Dentre as técnicas de diagnóstico utilizadas para modelos

de séries temporais, a medida de influência local tem um papel importante por não ser baseada

na exclusão de observações do conjunto de dados que, a princípio, são dependentes.

Alguns trabalhos desenvolvidos ao longo das últimas décadas visam alternativas a suposi-

ção de normalidade. O estudo pioneiro para séries não-gaussianas foi desenvolvido por Heyde

e Feigin (1975), que definiram a família exponencial condicional de distribuições e usaram

um modelo simples que tinha um único termo autorregressivo. Cox (1981) estudou a autocor-

relação dos dados, caracterizando duas classes de modelos dependentes do tempo: modelos
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condicionados a observações passadas e modelos baseados em processos latentes. Na linha dos

modelos condicionados a observações passadas, notamos que Zeger e Qaqish (1988) desenvol-

veram um trabalho que aborda os modelos de Poisson e gama condicionais autorregressivos,

adicionando aos modelos de Heyde e Feigin (1975) termos autorregressivos e incluindo o pas-

sado e o presente de covariáveis, Li (1991) desenvolveu testes de qualidade do ajuste para tais

modelos e, em seguida, Li (1994) apresenta uma estrutura de médias móveis aos modelos de

Zeger e Qaqish (1988). Chen e Liu (1993) desenvolveram um procedimento para detecção de

outliers na classe de modelos autorregressivos integrados de médias móveis (ARIMA). Exten-

sões da classe de modelos ARMA podem ser encontradas em Shephard (1995) e Benjamin

et al. (2003) que consideram a distribuição dos dados, condicional ao passado do processo,

pertencente à família exponencial. Na mesma direção Rocha e Cribari-Neto (2009) desenvol-

veram modelos dinâmicos para variáveis aleatórias na família de distribuição beta (βARMA).

Cordeiro e Andrade (2009) incorporam a ideia de variável resposta transformada ao modelo

GARMA introduzido por Benjamin et al. (2003). Mais recentemente, Maior (2012) desen-

volve uma nova classe de modelos para dados temporais pertencentes a classe simétrica de

distribuições e Creal et al. (2013) propõem a classe de modelos GAS (Generalized Autoregres-

sive Score).

Em se tratando da análise de diagnóstico, uma das ferramentas mais úteis para dados tempo-

rais é a análise de influência local, proposta inicialmente por Cook (1986). A proposta de Cook

(1986) é baseada em uma medida de afastamento da função de verossimilhança. Na literatura,

através da Curvatura de Cook, podemos citar os trabalhos de Lesaffre e Verbeke (1998) que

utilizaram o enfoque de influência local para avaliar modelos lineares mistos, Liu (2002) que

utilizou o método de influência local para modelos de regressão linear elípticos multivariados

considerando perturbações de casos ponderados na variável explicativa e na variável resposta e,

mais recentemente, Paula et al. (2009) que consideraram os erros elípticos autorregressivos de

primeira ordem e Paula e Cysneiros (2009) que propuseram a Curvatura de Cook como método

de diagnóstico de influência local para modelos CAPM (Capital Asset Pricing Model) sob a
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suposição de distribuições simétricas.

Billor e Loynes (1993) apontam algumas dificuldades práticas e teóricas que surgem no

enfoque de influência local introduzido por Cook (1986), entre elas, a falta de invariância da

curvatura sobre reparametrizações do esquema de perturbação. Dessa forma, propõem utilizar

a máxima inclinação baseada no afatamento da função de verossimilhança modificada como

medida de influência local e aplicam a sua metodologia para avaliar modelos de regressão li-

near, considerando o esquema de perturbação na matriz de variâncias. Zhang e King (2005)

simularam a distribuição da medida de influência local proposta por Billor e Loynes (1993)

em modelos heterocedásticos autorregressivos generalizados (GARCH) com erros gaussianos,

usando a primeira derivada (inclinação de Billor e Loynes) e a segunda derivada do gráfico

de influência modificado. Esse procedimento foi denominado de limiares (benchmarks). O

trabalho de Zhang e King (2005) foi o pioneiro na aplicação de marcas de referência que deter-

minam, estatisticamente, que observações da série podem ser caracterizadas como influentes,

na maioria das vezes essa caracterização é feita por meio de uma simples análise exploratória.

Scall e Dunne (1991) apresentaram um estudo para investigar a influência local em modelos

de regressão com erros ARMA, utilizando diversos esquemas de perturbação. Finalmente, Ze-

vallos e Hotta (2012) utilizaram a metodologia dos limiares para análise de influência local em

modelos GARCH considerando, alternativamente, a curvatura de Cook ao invés da segunda

derivada do gráfico de influência modificado, obtendo uma grande vantagem de ordem compu-

tacional.

Os objetivos desse trabalho são desenvolver modelos dinâmicos para dados temporais sob

distribuição simétrica condicional e propor métodos de diagnóstico sob o enfoque de influência

local. Ampliar o leque de opções para distribuição condicional da série temporal, considerando,

por exemplo, a distribuição t-Student para os dados, tem-se mostrado uma boa alternativa no

ajuste de séries temporais na presença de observações atípicas. Neste trabalho obtemos ex-

pressões mais simplificadas para os estimadores dos parâmetros do modelo autorregressivo de

médias móveis simétrico, SYMARMA, e, pela primeira vez, avaliamos a convergência assintó-
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tica e a robustez qualitativa dos mesmos. Além disso, apresentamos propriedades relacionadas

à média, variância e covariância marginal. Para cada modelo proposto desenvolvemos análises

de diagnóstico baseadas nas medidas de influência local desenvolvidas por Cook (1986), Billor

e Loynes (1993) e Lesaffre e Verbeke (1998). Dentre os esquemas de perturbação considerados

temos a perturbação aditiva na variável resposta e a perturbação no parâmetro de dispersão.

Aplicamos a metodologia de limiares, proposta por Zhang e King (2005), para classificação de

observações influentes. Para ilustrar a metodologia desenvolvida apresentamos aplicações com

dados reais e estudos de simulação.

1.1 Motivação

Frequentemente, em séries temporais, são encontradas observações que surgem como atí-

picas face às restantes em consequência de erros de medição, influência de intervenções exó-

genas, alterações inesperadas em certas condições de um sistema físico, entre outras. Essas

observações atípicas são comumente denominadas de outliers (FOX, 1972).

Dentre os autores que discutem a influência de outliers na estimação e inferência dos pa-

râmetros em modelos estatísticos podemos citar Martin e Yohai (1985), Ota (1996) e Maior

(2012).

Para ilustrar a presença de observações atípicas em séries temporais, apresentamos, nas

Figuras 1.1 e 1.2, duas séries com essas características. A primeira série corresponde ao excesso

de retorno nos preços de fechamento diário da Microsoft, abrangendo o período entre 1 de abril

e 5 de setembro de 2002. Notamos que a série possui três pontos atípicos correspondentes as

observações y27 = 11,10%, y78 =−9,47% e y80 =−7,34%.

A segunda série refere-se à inflação no Brasil avaliada anualmente pelo Índice Geral de

Preços - Oferta Global (IGP-OG) durante o período de 1970 e 2014. Diversas observações

atípicas, correspondentes à época de hiperinflação no Brasil, estão presentes nesta série, entre

elas, podemos destacar os anos de 1986 (plano Cruzado), 1987 (plano Bresser), 1989 (plano
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Figura 1.1 Série excesso de retorno da Microsoft.

Fonte: Autoria própria.

Verão), 1990 (plano Collor I), 1991 (plano Collor II) e 1994 (plano Real).

Figura 1.2 Série inflacionária no Brasil de acordo com IGP-OG.

Fonte: Autoria própria.

Estudaremos essas séries em mais detalhes no decorrer desse trabalho e, como veremos,

considerar modelos com distribuições mais flexíveis pode ser bastante útil para modelagem de

séries na presença de outliers.
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1.2 Apresentação dos capítulos

No Capítulo 2, definimos o modelo SYMARMA e apresentamos algumas propriedades re-

lacionadas à média, variância e covariância marginal. Tratamos do problema de estimação dos

parâmetros fornecendo expressões para o vetor escore e para a matriz informação esperada de

Fisher condicional. Com o objetivo de observar o comportamento dos estimadores, realizamos

alguns estudos de simulação e apresentamos resultados relacionados a robustez, obtidos através

da função de influência. Discutimos como realizar testes de hipóteses para os parâmetros do

modelo e previsões. Finalizamos o capítulo com uma explanação sobre modelos SYMARMA

sazonais.

No Capítulo 3, apresentamos as medidas de influência local que serão aplicadas à classe de

modelos SYMARMA e, em seguida, descrevemos detalhadamente a metodologia de limiares

proposta por Zhang e King (2005) para identificar observações influentes baseada nas distri-

buições estimadas das estatísticas de Inclinação de Billor e Loynes (1993), Curvatura de Cook

(1986) e Curvatura de Lesaffre e Verbeke (1998). Consideramos os esquemas de perturbação

aditiva nos dados, perturbação no parâmetro de dispersão, perturbação no vetor de parâmetros

autorregressivos e perturbação no vetor de parâmetros de médias móveis. Ilustramos a metodo-

logia proposta através de estudos de simulação e tecemos comentários a respeito da aplicação

dessa metodologia nos modelos SYMARMA sazonais.

No Capítulo 4, apresentamos a análise de dois conjuntos de dados reais.

No Capítulo 5, evidenciamos detalhes da sintexe de comandos das rotinas elliptical.ts e

influence.ts, desenvolvidas pelo autor na plataforma R para modelagem e diagnóstico de in-

fluência local de dados de séries temporais sob distribuição simétrica condicional.

No Capítulo 6, apresentamos as contribuições, algumas conclusões e futuras linhas de pes-

quisa.

Por fim, apresentamos alguns detalhes técnicos nos Apêndices.
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Capítulo 2

Modelo Autorregressivo de Médias Móveis Simétrico

2.1 Introdução

Séries temporais evoluem em torno de uma média que, geralmente, apresenta algum tipo de

tendência totalmente arbitrária em função do tempo. Essas tendências, quando determinísticas,

podem ser ajustadas por modelos bastantes simples como, por exemplo,

Yt = µt + rt , (1)

em que µt é uma função determinística que pode ser constante, linear, quadrática, sazonal, entre

outras formas, e rt é uma variável aleatória independente e identicamente distribuída (i.i.d.)

com média zero, para todo t, ou seja, um ruído branco. Esses modelos determinísticos levam

em consideração que a tendência da série é a mesma em qualquer período considerado. Porém,

em diversas aplicações, particularmente em economia e negócios, notamos que a tendência

varia de forma aleatória ao longo do tempo. Nesses casos, considerar uma função estocástica

para média tem sido uma boa alternativa. Tais modelos são chamados de modelos estocásticos.

Os modelos estocásticos, em sua maioria, consideram que a tendência estocástica da mé-

dia pode ser representada por uma dependência linear entre as observações passadas e/ou uma

combinação linear de impactos aleatórios. A classe de modelos autorregressivos de médias mó-
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veis, denotada por ARMA, é, sem dúvida, a mais utilizada na modelagem de séries temporais

estacionárias com tendência estocástica, sendo a sua estrutura definida como

Yt =
p

∑
i=1

φiYt−i +
q

∑
j=1

θ jrt− j + rt ,

em que {rt} representa uma série de variáveis aleatórias i.i.d. com média zero e as constantes

p e q são as ordens dos polinômios autorregressivos (φ ’s) e de médias móveis (θ ’s), respecti-

vamente. Geralmente consideramos a distribuição normal de probabilidade para as variáveis

aleatórias rt’s.

Para séries não estacionárias integradas, uma alternativa é induzir estacionariedade atra-

vés de transformações nos dados como, por exemplo, o uso da escala logarítmica, o uso da

transformação de Box-Cox (BOX; COX, 1964), o uso da série diferenciada, entre outras.

A proposta da classe de modelos autorregressivos de médias móveis simétricos, denotada

por SYMARMA, é ampliar o leque de opções para a distribuição das variáveis aleatórias rt’s

nos modelos (1), que passam a pertencer a classe de distribuições simétricas. Dessa forma,

temos que, dado o conjunto de informações passadas Ht−1 = {yt−1, . . . ,y1,µt−1, . . . ,µ1}, a

distribuição condicional de Yt |Ht−1 também pertence a classe simétrica na qual encontramos

distribuições com caudas mais pesadas do que as da normal como, por exemplo, as distribui-

ções t-Student e a logística II. Distribuições com caudas pesadas tendem a acomodar melhor

observações atípicas. Diante disso, a classe de modelos SYMARMA pode ser vista como uma

alternativa para modelagem de séries temporais na presença de outliers.

Neste capítulo introduzimos o modelo SYMARMA juntamente com algumas propriedades

relacionadas a média, variância e covariância marginal. Sugerimos um método para estimação

dos parâmetros e apresentamos resultados relacionados a robustez, obtidos através da função de

influência. Finalizamos o capítulo com alguns estudos de simulação e a extensão dos modelos

SYMARMA para dados sazonais.
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2.2 Modelo autorregressivo de médias móveis simétrico

Suponhamos que os ruídos brancos {rt} em (1), para t = 1, . . . ,n, são variáveis aleatórias si-

métricas contínuas e, consequentemente, a distribuição condicional de cada Yt , dado o conjunto

de informações passadas Ht−1 = {yt−1, . . . ,y1,µt−1, . . . ,µ1}, segue uma distribuição simétrica

contínua com função de densidade de probabilidade definida como

f (yt |Ht−1,µt ,ϕ) =
1
√

ϕ
g
{
(yt−µt)

2

ϕ

}
, yt ∈ IR, µt ∈ IR e ϕ > 0, (2)

em que µt é o parâmetro de locação, ϕ é o parâmetro de dispersão e g(·) é a função geradora de

densidades, com g(u)> 0, para u > 0, sendo tal que
∫

∞

0 u−
1
2 g(u)du = 1. Essa condição é neces-

sária para que f (yt |Ht−1,µt ,ϕ) seja uma função de densidade de probabilidade. Em particular,

temos que: g(u) = (2π)−1exp{−u/2} para a distribuição normal; g(u) = νν/2

B(1/2,ν/2)(ν +u)−
ν+1

2

para a distribuição t-Student com ν graus de liberdade, em que B(·, ·) é a função beta; e

g(u) = c e−u

(1+e−u)2 para a distribuição logística I, em que c ≈ 1,484200029 é a constante nor-

malizadora obtida da relação
∫

∞

0 u−
1
2 g(u)du = 1.

Utilizamos a notação Yt |Ht−1 ∼ S(µt ,ϕ,g) para indicar que a variável Yt , condicional ao

conjunto de observações passadas, Ht−1, segue distribuição simétrica com parâmetro de loca-

ção µt , parâmetro de dispersão ϕ e função geradora de densidades g.

Se Yt |Ht−1∼ S(µt ,ϕ,g), então a função característica de Yt , definida por ζ (t)=E(exp(itY )),

fica expressa como ζ (t) = exp(itµt)h(t2ϕ), t ∈ IR, para alguma função h que depende da dis-

tribuição simétrica considerada, com h(u) ∈ IR para todo u > 0. Quando existem, a média e a

variância de Yt |Ht−1, são expressas, respectivamente, por

E(Yt |Ht−1) = µt e Var(Yt |Ht−1) = ξ ϕ,

em que ξ > 0 é uma constante igual a ξ =−2h′(0), com h′(0) = ∂h(u)/∂u|u=0. Kelker (1970)

observa que se u−
1
2 (k+1) f (u) for integrável, então o k-ésimo momento de Yt |Ht−1 existe. Dis-
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tribuições pertencentes à classe simétrica que não possuem os dois primeiros momentos finitos

não são consideradas nesse trabalho como, por exemplo, a distribuição Cauchy. Alguns valores

de ξ são apresentados para algumas distribuições simétricas na Tabela 2.1.

Tabela 2.1 Valores de ξ para algumas distribuições simétricas.

Distribuição ξ

Normal 1
t-Student v

v−2 , v > 2

t-Student generalizada s
r−2 , s > 0,r > 2

Logística-I 0,79569

Logística-II π2

3
Logística generalizada 2ψ ′(m)

Exponencial potência 2(1+k) Γ{3(k+1)/2}
Γ{(k+1)/2}

Fonte: Cysneiros (2004)

Diferentemente da classe de modelos simétricos de regressão, em que µt = x>t β , temos

na especificação da média dos modelos SYMARMA uma componente dinâmica adicional, τt ,

com termos autorregressivos e de médias móveis incluídos aditivamente. Definimos µt como

µt = x>t β + τt , (3)

em que x>t = (1,xt1,xt2, . . . ,xtk) é um vetor que contém os valores das k variáveis explicativas,

k < n, sendo n o tamanho da amostra, β = (β0,β1,β2, . . . ,βk)
> é um vetor de parâmetros

desconhecidos e τt é uma componente ARMA expressa por

τt =
p

∑
i=1

φi

{
yt−i−x>t−iβ

}
+

q

∑
j=1

θ jrt− j, (4)

sendo φ = (φ1,φ2, . . . ,φp)
> e θ = (θ1,θ2, . . . ,θq)

> os vetores de parâmetros autorregressivos e

de médias móveis, respectivamente. Os termos de médias móveis, rt’s, são ruídos brancos que
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podem ser, por exemplo, erros de medida na escala original (isto é, yt − µt), ou, resíduos de

Pearson, entre outros.

A motivação da definição da componente ARMA, τt , em (3), consiste inicialmente em

considerar ωt = yt−x>t β com sendo um processo ARMA(p,q), isto é,

ωt =
p

∑
i=1

φiωt−i +
q

∑
j=1

θ jrt− j + rt . (5)

Assumindo que E(rt |Ht−1) = 0 e tomando a esperança condicional a Ht−1 para ambos os lados

de (5), obtemos a expressão (4).

Portanto,

µt = x>t β +
p

∑
i=1

φi

{
yt−i−x>t−iβ

}
+

q

∑
j=1

θ jrt− j. (6)

O modelo SYMARMA é definido pela componente aleatória dada em (2) e pela compo-

nente dinâmica dada em (6). Os modelos ARMA e ARMAX são casos particulares do modelo

SYMARMA sob distribuição condicional normal, SYMARMA-normal, quando consideramos,

respectivamente, a ausência ou a presença de variáveis explicativas. Os parâmetros do modelo

podem ser selecionados utilizando, por exemplo, o critério de informação de Akaike, que em in-

glês é designado pela sigla AIC - Akaike Information Criterion, introduzido por Akaike (1973,

1974) ou, alternativamente, o critério de informação bayesiano, que em inglês é designado pela

sigla BIC - Bayesian Information Criterion, de Schwarz (1978).

2.3 Média, variância e covariância marginal

Nessa seção denotamos por Φ(B) = 1−φ1B−·· ·−φpBp o polinômio autorregressivo, por

Θ(B) = 1+θ1B+ · · ·+θqBq o polinômio de médias móveis e Bkyt = yt−k o operador de defa-

sagens.
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Teorema 1. A média marginal de Yt nos modelos SYMARMA é expressa por

E(Yt) = x>t β ,

desde que Φ(B) seja invertível.

Teorema 2. A variância marginal de Yt nos modelos SYMARMA é expressa por

Var(Yt) = ξ ϕ

∞

∑
i=0

ψ
2
i ,

em que ψi é obtido da divisão de Ψ(B) = Θ(B)Φ(B)−1 = ψ0B0 +ψ1B1 +ψ2B2 + . . . sendo

ψ0 = 1, assumindo que Φ(B) é invertível.

Teorema 3. A covariância e a correlação marginal entre Yt e Yt−k nos modelos SYMARMA

são, respectivamente, expressas por

Cov(Yt ,Yt−k) = ξ ϕ

∞

∑
i=0

ψiψi+k e Corr(Yt ,Yt−k) =

∞

∑
i=0

ψiψi+k

∞

∑
i=0

ψ2
i

.

De acordo com o Teorema 1, temos que a esperança marginal de Yt nos modelos SY-

MARMA é estacionária desde que Φ(B) seja invertível e x>t β = c para todo t, sendo c uma

constante. Enquanto que, pelo Teorema 2, a condição de estacionariedade para variância mar-

ginal de Yt nos modelos SYMARMA é que Φ(B) seja invertível. As provas dos Teoremas 1-3

são apresentadas nos Apêndice A, B e C.
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2.3.1 Casos particulares

O modelo SYMARMA(1,1), definido como

Yt = φYt−1 +θrt−1 + rt , (7)

pode ser reescrito na forma Yt =Ψ(B)rt , em que Ψ(B)=Θ(B)Φ(B)−1 = 1+ψ1B1+ψ2B2+ . . ..

Utilizando operações recursivas a partir (7) é possível mostrar que o modelo SYMARMA(1,1)

pode ser expresso por meio de um processo linear geral dado por

Yt = rt +(φ +θ)
∞

∑
j=1

φ
j−1rt− j.

Diante disso, temos que

ψ j = (φ +θ)φ j−1 para j ≥ 1. (8)

A Tabela 2.2 apresenta as expressões da variância e da covariância marginal de Yt para os

modelos SYMARMA(1,0), SYMARMA(0,1) e SYMARMA(1,1), obtidas pelos Teoremas 2 e

3 e pela equação (8). Além disso, podemos mostrar que as funções de correlação para esses

modelos são expressas por:

Modelo SYMARMA(1,0):

Corr(Yt ,Yt−k) = φ
k para k ≥ 1.

Modelo SYMARMA(0,1):

Corr(Yt ,Yt−k) =

 0 para k = 1

− θ

1+θ 2 para k ≥ 2
.
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Modelo SYMARMA(1,1):

Corr(Yt ,Yt−k) =
(φ +θ)(1+φθ)

1+2φθ +θ 2 φ
k−1 para k ≥ 1.

Tabela 2.2 Variância e covariância marginal para os modelos SYMARMA(1,0), SYMARMA(0,1) e
SYMARMA(1,1).

Modelo Var(Yt) Cov(Yt ,Yt−k)

SYMARMA(1,0) ξ ϕ

1−φ 2
ξ ϕ

1−φ 2 φ k para k = 1,2,3, . . .

SYMARMA(0,1) ξ ϕ(1+θ 2)
−ξ ϕθ

0
para k = 1
para k = 2,3,4, . . .

SYMARMA(1,1) ξ ϕ
1+2φθ+θ 2

(1−φ 2)
ξ ϕ

(φ+θ)(1+φθ)
(1−φ 2)

φ k−1 para k = 1,2,3, . . .

2.4 Estimação dos parâmetros

Nessa seção tratamos do problema de estimar os parâmetros do modelo SYMARMA com

base na série histórica observada y1,y2, ...,yn. Assumimos que um modelo já foi especificado,

isto é, que já foram especificados os valores para p e q. A proposta é utilizar o método de

máxima verossimilhança condicional às m primeiras observações, em que m=max{p,q}. Para

o modelo SYMARMA, a função de verossimilhança condicional é uma função dos parâmetros

β ’s, φ ’s, θ ’s e ϕ , expressa por

L(δ ,ϕ) =
n

∏
t=m+1

f (yt |Ht−1,µt ,ϕ),
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em que δ = (β>,φ>,θ>)> e f (yt |Ht−1,µt ,ϕ) é definida como em (2). Dessa forma, o loga-

ritmo da função de verossimilhança condicional é

`(δ ,ϕ) =−(n−m)

2
log(ϕ)+

n

∑
t=m+1

log(g(ut)), (9)

em que ut = (yt−µt)
2/ϕ e µt é definido como em (6).

Assumimos que o logaritmo da função de verossimilhança, `, é regular (COX; HINKLEY,

1974) em relação a δ e ϕ e que é possível derivar ` em relação aos parâmetros desconhecidos

e calcular alguns momentos dessas derivadas. Algumas distribuições pertencentes à classe

simétrica não satisfazem as condições de regularidade e não têm derivadas ou momentos finitos

como, por exemplo, as distribuições de Kotz, Kotz generalizada e exponencial dupla, não sendo

consideradas nesse trabalho.

Na construção do logaritmo da função verossimilhança condicional, assumimos que os q

primeiros erros são iguais a zero, desde que, condicional a Hm, os m primeiros erros são iguais

a zero (ou aproximadamente zero). As expressões para o vetor escore (U) e para a matriz

de informação de Fisher condicional (K) são obtidas, respectivamente, pelas derivadas de pri-

meira e segunda ordem do logaritmo da função de verossimilhança condicional apresentada

em (9). Sendo a função g(·) contínua e diferenciável, os vetores escore para δ e ϕ são dados,

repectivamente, por

U
δ
(δ ,ϕ) = ϕ

−1O>D(y−µ) e

Uϕ(δ ,ϕ) =
1

2ϕ
[−(n−m)+ϕ

−1(y−µ)>D(y−µ)],

em que y = (ym+1, . . . ,yn)
>, µ = (µm+1, . . . ,µn)

>, D = diag(vm+1, . . . ,vn) com vt = v(ut) =

−2Wg(ut) e Wg(ut) =
dlog(g(ut))

dut
. Temos ainda que O = (C,A,B) é uma matriz (n−m)× (p+

q+ k+1) com elementos dados por
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A =



ym−x>mβ . . . ym+1−p−x>m+1−pβ

ym+1−x>m+1β . . . ym+2−p−x>m+2−pβ

... . . . ...

yn−1−x>n−1β . . . yn−p−x>n−pβ


(n−m)×p

,

B =



ym−µm . . . ym+1−q−µm+1−q

ym+1−µm+1 . . . ym+2−q−µm+2−q

... . . . ...

yn−1−µn−1 . . . yn−q−µn−q


(n−m)×q

e

C =



1−
p
∑

i=1
φi . . . x(m+1)k−

p
∑

i=1
φix(m+1−i)k

1−
p
∑

i=1
φi . . . x(m+2)k−

p
∑

i=1
φix(m+2−i)k

... . . . ...

1−
p
∑

i=1
φi . . . x(n)k−

p
∑

i=1
φix(n−i)k


(n−m)×(k+1)

.

Expressões para Wg(ut) e W ′g(ut)=
dWg(ut)

dut
para algumas distribuições simétricas encontram-

se na Tabela 2.3.

Os estimadores de máxima verossimilhança condicional (EMVC) para o vetor de parâme-

tros δ e ϕ , dados, respectivamente, por δ̂ e ϕ̂ , são obtidos igualando-se U ao vetor de zeros.

Exceto para Uϕ , o sistema de equações não possui solução explícita e, dessa forma, deve-

mos utilizar um procedimento iterativo para estimar os parâmetros do modelo (NOCEDAL;

WRIGHT, 1999). O método escore de Fisher tem sido utilizado por diversos autores para es-

timar os parâmetros dos modelos simétricos de regressão (GALEA et al, 2003; CYSNEIROS;

PAULA, 2005). Nesse trabalho também optamos por utilizar o método escore de Fisher para

estimar os parâmetros do modelo SYMARMA. O processo iterativo é dado por

δ
(i+1) = δ

(i)+(K(i))−1U(i),
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Tabela 2.3 Expressões para Wg(u) e W ′g(u) para algumas distribuições simétricas.

Distribuição Wg(u) W ′g(u)

Normal -1
2 0

t-Student - (v+1)
2(v+u)

(v+1)
2(v+u)2

t-Student generalizada - (r+1)
2(s+u)

(r+1)
2(s+u)2

Logística-I -tanh
(u

2

)
-sech

(u
2

)
/2

Logística-II - exp(−
√

u)−1
(−2
√

u)[1+exp(−
√

u)]
2exp(−

√
u)
√

u+exp(−2
√

u)−1
−4u3/2[1+exp(−

√
u)]2

Logística generalizada - αm[exp(−α
√

u)−1]
(−2
√

u)[1+exp(−α
√

u)] -αm
4

2αexp(−α
√

u)
√

u+exp(−2α
√

u)−1
u3/2[1+exp(−α

√
u)]2

Exponencial potência - 1
2(1+k)uk/(k+1)

k
2(1+k)2u(2k+1)/(k+1)

Fonte: Cysneiros (2004)

em que K é a matriz de informação condicional esperada de Fisher para (δ ,ϕ).

A matriz K é bloco-diagonal,

K =

 Kδδ 0

0 Kϕϕ

 ,

ou seja, o vetor de parâmetros δ e ϕ são globalmente ortogonais. Conforme detalhado no Apên-

dice D, as matrizes de informação condicional esperada de Fisher Kδδ e Kϕϕ são expressas,

respectivamente, por

Kδδ = 4dgϕ−1O>O e Kϕϕ =
n−m
4ϕ2 (4 fg−1),

em que dg = E[W 2
g (U

2)U2] e fg = E[W 2
g (U

2)U4], sendo U ∼ S(0,1,g). A Tabela 2.4 apresenta

os valores de dg e fg para algumas distribuições simétricas.

As estimativas de máxima verossimilhança condicional para δ e ϕ podem ser obtidas
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Tabela 2.4 Valores de dg e fg para algumas distribuições simétricas.

Distribuição dg fg

Normal 1
4

3
4

t-Student (v+1)
4(v+3)

3(v+1)
4(v+3)

t-Student generalizada r(r+1)
4s(r+3)

3(r+1)
4(r+3)

Logística-I 0,36931 1,00345

Logística-II 1
12 0,60749

Logística generalizada α2m2

4(2m+1)
2m(2+m2ψ ′(m))

4(2m+1)

Exponencial potência Γ{(3−k)/2}
4(2k−1)(1+k)2Γ{(k+1)/2}

(k+3)
4(k+1)

Fonte: Cysneiros (2004)

resolvendo-se o seguinte sistema de equações:

δ
(i+1) =

(
O>(i)O(i)

)−1
O>(i)z(i)

δ

ϕ
(i+1) =

1
n−m

(
y−µ

(i+1)
)>

D(i+1)
(

y−µ
(i+1)

)
,

em que zδ é um vetor (n−m)×1 dado por

zδ = Oδ +(4dg)
−1D(y−µ).

Os valores iniciais para o vetor de parâmetros δ
(0) e ϕ(0) podem ser considerados como

sendo as estimativas obtivas através do ajuste do modelo ARMA.

2.5 Inferência estatística

Sob as condições de regularidade usuais e para n suficientemente grande, temos que o

EMVC converge em distribuição para uma distribuição normal, isto é,
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 δ̂

ϕ̂

 D→ N(k+p+q+2)


 δ

ϕ

 ,K−1

 , (10)

em que δ̂ e ϕ̂ são os estimadores de máxima verossimilhança condicional de δ e ϕ , respectiva-

mente, e Nr denota a distribuição normal r-dimensional. Portanto, a matriz K−1
δδ

, avaliada em

(δ̂ , ϕ̂), é um estimador consistente para a variância assintótica de δ̂ e a matriz K−1
ϕϕ , avaliada

em (δ̂ , ϕ̂), é um estimador consistente para variância assintótica de ϕ̂ . Dada a normalidade as-

sintótica do EMVC em (10), podemos facilmente construir intervalos de confiança assintóticos

para δ e ϕ .

Hipóteses envolvendo o vetor de parâmetros γ = (β>,ϕ,φ>,θ>)> podem ser expressas na

forma geral

H0 : Zγ = 0 e H1 : Zγ 6= 0, (11)

em que Z é uma matriz r× (k+ p+q+2) de posto completo r (r < k+ p+q+2). A hipótese

nula pode contemplar situações bastante simples, como, por exemplo, testar H0: β = 0 contra

H1: β 6= 0. A estatística utilizada para testar as hipóteses H0 e H1 definidas em (11) é baseada

na razão de verossimilhanças condicional dada por

λ = 2{`(γ̂)− `(γ̃)} ,

em que `(·) é o logaritmo da função de verossimilhança condicional, γ̃ é o EMVC restrito de γ

(sob a hipótese H0 em (11)) e γ̂ é o EMVC irrestrito de γ (sob a hipótese H1 em (11)).

Sob certas condições de regularidade e sob H0 temos que λ
D→ χ2

r , em que D→ denota con-

vergência em distribuição e χ2
r denota a distribuição qui-quadrado com r graus de liberdade.
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2.6 Robustez, consistência e normalidade assintótica

Nessa seção avaliamos por meio da função de influência a robustez qualitativa do pro-

cedimento de estimação dos parâmetros. Resultados de estudos de simulação para avaliar a

consistência e a normalidade assintótica do EMVC também são apresentados.

2.6.1 Função de influência

Um procedimento de estimação é considerado qualitativamente robusto quando a função de

influência (FI), definida por

FI(y,δ ,ϕ, f ) =−[E[U′(δ ,ϕ)]]−1U(δ ,ϕ), (12)

é limitada, em que U é a função escore, U′ é a sua derivada e f é a função densidade de

probabilidade associada ao modelo SYMARMA.

Consideramos a função de influência definida em (12) para os modelos SYMARMA-normal

e SYMARMA-t. As funções escores para ϕ e µt são dadas, respectivamente, por

Uϕ = − 1
2ϕ
− 1

ϕ
Wg(ut)ut e Uµt =−

2
ϕ

Wg(ut)(yt−µ).

Notamos que, para o modelo SYMARMA-normal, as funções de influência corresponden-

tes são proporcionais às suas fuções escore. Então, desde que Uϕ e Uµ são ilimitadas (ver

Figura 2.1), as correspondentes FI’s também são ilimitadas. Dessa forma, há indícios de que

o procedimento para estimação dos parâmetros baseado no modelo SYMARMA-normal não é

robusto podendo fornecer estimativas bastantes viesadas na presença de observações atípicas.

No caso do modelo SYMARMA-t, assumindo conhecido os graus de liberdade (ν), as

funções de influência para ϕ e µ também são proporcionais às suas funções escore, mas, nesse

caso, Uϕ e Uµ são limitadas e, consequentemente, as FI’s também são limitadas (ver Figura 2.2
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para ν = 4). Portanto, o procedimento para estimação dos parâmetros ϕ e µ basedo no modelo

SYMARMA-t é qualitativamente robusto.

Lucas (1997) desenvolveu um importante estudo sobre aspectos de robustez no modelo t-

Student, demonstrando que a robustez no ajuste de outliers é preservada apenas se os graus de

liberdade, ν , são mantidos fixo. Caso contrário, se os graus de liberdade também são estimados

por máxima verossimilhança, as funções de influência para ϕ e ν não são limitadas. Diante

disso, manteremos fixos todos os parâmetros extras, como, por exemplo, ν da distribuição

t-Student.

Figura 2.1 Funções escore do modelo SYMARMA-normal para ϕ e µ .

(a) (b)
Fonte: Autoria própria.

2.6.2 Consistência em erro quadrático médio e QQ-plot

Para avaliar a consistência e a normalidade assintótica dos EMVC para os parâmetros do

modelo SYMARMA, apresentamos um estudo de simulação em modelos SYMARMA com

intercepto e um parâmetro autorregressivo, dado por

yt = β0 +φ(yt−1−β0)+ rt , t = 2, ...,n, (13)
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Figura 2.2 Funções escore do modelo SYMARMA-t4 para ϕ e µ .

(a) (b)
Fonte: Autoria própria.

em que β0 = 20, φ = 0,6 e ϕ = 1. Foram geradas 10.000 réplicas de Monte Carlo do modelo

(13) considerando as distribuições normal, t-Student e logística I para yt |Ht−1. Para cada cená-

rio e combinação de tamanhos amostrais n= 50, 100 e 200, avaliamos o viés e o erro quadrático

médio (EQM) e apresentamos os gráficos quantil-quantil (QQ) para a distribuição empírica de

cada parâmetro do modelo.

De acordo com os resultados apresentados na Tabela 2.5, os vieses são próximos a zero e

os EQM decrescem com o aumento do tamanho amostral n. Esse fato evidencia a consistência

dos EMVC obtidos pelo método escore de Fisher. Observamos também que os EQM para ϕ̂ no

modelo SYMARMA-logística I é maior do que nos modelos SYMARMA-t4 e SYMARMA-

normal.

As Figuras 2.3 e 2.4 mostram os gráficos QQ para a distribuição empírica de cada estimador.

Para uma melhor visualização, os quantis empíricos são representados por diferentes tipos de

linhas que correspondem aos diferentes tamanhos amostrais. A linha reta de 45o indica onde

os pontos de uma distribuição normal padrão seriam representados no gráfico QQ. Notamos

que as distribuições dos estimadores β̂0, φ̂ e ϕ̂ se aproximam da distribuição normal à medida
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Tabela 2.5 Medidas descritivas empíricas para os EMVC dos parâmetros β0 = 20, φ = 0,6 e ϕ = 1
obtidos de 10.000 modelos SYMARMA simulados.

Medidas descritivas empíricas
Parâmetros Viés EQM

n = 50 n = 100 n = 200 n = 50 n = 100 n = 200
Normal

β0 0,0062 0,0044 0,0044 0,1273 0,0631 0,0319
φ 0,0574 0,0278 0,0138 0,0184 0,0075 0,0035
ϕ 0,0429 0,0214 0,0116 0,0403 0,0202 0,0100

Student t4
β0 0,0041 0,0024 0,0001 0,1882 0,0918 0,0451
φ 0,0441 0,0211 0,0097 0,0139 0,0057 0,0025
ϕ 0,0277 0,0145 0,0046 0,0725 0,0352 0,0170

Logística I
β0 0,0060 0,0045 0,0026 0,0619 0,0307 0,0152
φ 0,0644 0,0330 0,0169 0,0255 0,0114 0,0055
ϕ 0,6070 0,5964 0,5920 0,3805 0,3617 0,3534

que o tamanho da série aumenta. Contudo, no modelo SYMARMA-logística I a aproximação

requer tamanhos amostrais maiores.

2.7 Previsões

Para realização de previsões, devemos utilizar os EMVC de δ (δ̂ ) e ϕ (ϕ̂) para estimar µt ,

para t = m+1, . . . ,n. Essas estimativas serão denotadas por µ̂t . Temos que

µ̂t = x>t β̂ +
p

∑
i=1

φ̂i

{
yt−i−x>t−iβ̂

}
+

q

∑
j=1

θ̂ j r̂t− j.

Utilizando µ̂t , podemos obtemos as estimativas de rt , r̂t , para t = m+1, . . . ,n. Por exemplo,

se rt = yt − µt , isto é, erros mensurados na escada original, teremos r̂t = yt − µ̂t . Para N > n,

a previsão do erro rN é igual a zero. Assim, para prever o valor médio do processo no tempo

N > n, devemos utilizar:
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Figura 2.3 QQ-plot normal dos EMVC para os parâmetros β0, φ e ϕ do modelo SYMARMA-normal
(a) e do modelo SYMARMA-t4 (b), baseados em 10.000 réplicas.

(a) Modelo SYMARMA-normal (b) Modelo SYMARMA-t4
Fonte: Autoria própria.
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Figura 2.4 QQ-plot normal dos EMVC para os parâmetros β0, φ e ϕ do modelo SYMARMA-logística
I, baseados em 10.000 réplicas.

(a) Modelo SYMARMA-logística I
Fonte: Autoria própria.
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(a) os EMVC δ̂ e ϕ̂;

(b) as estimativas de µt , µ̂t , para t = m+1, . . . ,n;

(c) as estimativas de rt , r̂t , para t = m+1, . . . ,n (lembrando que E(rt) = 0 para N > n).

Essas quantidades são suficientes para obter µ̂t+1 e, procedendo de forma análoga, podemos

obter µ̂t+2, e assim por diante. Por fim, devemos substituir yt por µ̂t se n < t < N. Dessa forma,

a estimativa para resposta média no tempo n+1 é dada por

ŷn+1 = x>n+1β̂ +
p

∑
i=1

φ̂i

{
yn+1−i−x>n+1−iβ̂

}
+

q

∑
j=1

θ̂ j r̂n+1− j.

No tempo n+2, obtemos que

ŷn+2 = x>n+2β̂ +
p

∑
i=1

φ̂i

{
yn+2−i−x>n+2−iβ̂

}
+

q

∑
j=1

θ̂ j r̂n+2− j,

e assim por diante.

O método bootstrap (EFRON; TIBSHIRANI, 1993) pode ser usado para obter a distribui-

ção empírica F̂ dos valores futuros (yn+`). Podemos construir um intervalo de previsão com

nível de aproximadamente (1−α), definindo os percentis α/2 e 1−α/2 de ŷn+`. O intervalo

é (Lin f ,Lsup) =
(
F̂(α/2), F̂(1−α/2)

)
. Geramos B séries temporais bootstrap (por exemplo,

B = 1.000) Y f
1 , . . . ,Y

f
2 , . . . ,Y

f
n por simulação do modelo SYMARMA(p,q) ajustado. Para cada

série bootstrap ŷn+` é calculado. Das B estimativas bootstrap ŷ f
n+`, podemos calcular a distri-

buição empírica F̂ .

2.8 Componente sazonal

A sazonalidade em uma série corresponde às oscilações de subida e de queda que sempre

ocorrem em um determinado período do ano, do mês, da semana ou do dia. A sazonalidade é
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considerada determinística quando pressupomos um padrão sazonal regular e estável no tempo,

desta forma podemos prever o comportamente sazonal perfeitamente a partir de dados anteri-

ores. Quando a componente sazonal da série varia com o tempo a sazonalidade é considerada

estocástica. As Figuras 2.5 e 2.6 apresentam, respectivamente, exemplos de séries com sazo-

nalidade determinística e com sazonalidade estocástica.

Figura 2.5 Temperatura média mensal, Dubuque, Iowa.

Fonte: Autoria própria.

Figura 2.6 Níveis de dióxido de carbono mensais em Alert, NWT, Canadá.

Fonte: Autoria própria.

Modelos de regressão produzem bons ajustes para séries com sazonalidade determinística.
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Podemos assumir, por exemplo, que a série observada é representada por

Yt = µt + rt ,

em que E(rt) = 0, para todo t, e µt é uma função com s parâmetros constantes, β1,β2, . . . ,βs,

que fornecem o valor esperado para cada período. Por exemplo, s = 12 para sazonalidade

mensal e s = 2 para sazonalidade semestral. Desta forma, µt pode ser escrito como

µt =



β1, para t = 1,s+1,2s+1, . . . ;

β2, para t = 2,s+2,2s+2, . . . ;
...

βs, para t = s,2s,3s, . . . .

Em alguns casos, séries com sazonalidade determinística podem ser modeladas através de

curvas cossenoides que incorporam a mudança esperada de forma suave de um período para o

outro, preservando a sazonalidade. Consideramos que

µt = βcos(2π f t +Φ), (14)

em que β (> 0) é a amplitude da curva, f a frequência da curva e Φ a fase da curva. Como t

varia, a curva oscila entre um máximo de β e um minímo de −β . Uma reparametrização mais

conveniente para (14) é dada por

βcos(2π f t +Φ) = β1cos(2π f t)+β2sen(2π f t),

em que

β =
√

β 2
1 +β 2

2 , Φ = atan(−β2/β1)
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e, reciprocamente,

β1 = βcos(Φ) e β1 = β sen(Φ).

No contexto de séries temporais com sazonalidade estocástica encontramos a classe de

modelos ARMA sazonal (SARMA), para séries estacionárias, e ARIMA sazonal (SARIMA),

para séries não estacionárias. O modelo ARMA(p,q)×(P,Q) com período sazonal s é expresso

por

φ(x)Φ(x)Yt = θ(x)Θ(x)rt , (15)

em que φ(·), Φ(·), θ(·) e Θ(·) são polinômios característicos, expressos por

φ(x) = 1−φ1x−φ2x2−·· ·−φpxp

Φ(x) = 1−Φ1xs−Φ2x2s−·· ·−ΦpxPs

 AR

e

θ(x) = 1+θ1x+θ2x2 + · · ·+θqxq

Θ(x) = 1+Θ1xs +Θ2x2s + · · ·+ΘQxQs

 MA,

as constantes p e q são as ordens dos parâmetros autorregressivos e de médias móveis, respec-

tivamente, e as constantes P e Q são as ordens dos parâmetros sazonais autorregressivos e de

médias móveis, respectivamente.

2.8.1 Modelo SYMARMA sazonal

Nosso objetivo agora é adicionar aos modelos SYMARMA componentes sazonais estocás-

ticas. Esse fato ampliará o leque de opções para a distribuição condicional de séries sazonais

que, a partir deste momento, é tomada como pertencente a classe de distribuições simétricas.

Considere a distribuição de Yt , dado o conjunto de observações passadas, Ht−1, pertencente

a classe de distribuições simétricas com função de densidade condicional dada por (2). A
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estrutura da média µt nos modelos SYMARMA sazonais é definida como

µt = x>t β + τt , (16)

em que x>t = (1,xt1,xt2, . . . ,xtk) é o vetor que contém os valores das k variáveis explicativas,

k < n, sendo n o tamanho da amostra, β = (β0,β1,β2, . . . ,βk)
> é um vetor de parâmetros

desconhecidos e τt é uma componente SARMA com período sazonal s, expressa por

τt =
p

∑
i=1

φi

{
yt−i−x>t−iβ

}
+

P

∑
j=1

Φ j

{
yt− js−x>t− jsβ

}
−

p

∑
i=1

φi

P

∑
j=1

Φ j

{
yt−i− js−x>t−i− jsβ

}
+

q

∑
l=1

θlrt−l +
Q

∑
m=1

Θmrt−ms +
q

∑
l=1

θl

Q

∑
m=1

Θmrt−l−ms,

em que os termos rt’s são ruídos brancos que podem ser, por exemplo, erros de medida na

escala original (isto é, yt−µt), ou, resíduos de Pearson, entre outros.

O modelo SYMARMA sazonal é definido pela componente aleatória dada em (2) e pela

componente dinâmica dada em (16). Denotaremos o modelo SYMARMA sazonal por SYMA

RMA(p,q)×(P,Q). Podemos verificar que, da forma como definido, os modelos SYMARMA

sazonais podem ser apresentados como modelos SYMARMA gerais. Por exemplo, a média µt

no modelo SYMARMA(1,0)×(1,1) com periodicidade s = 12 pode ser reescrita como

µt = x>t β +φ1

{
yt−1−x>t−1β

}
+θ1rt−1 +Θ1rt−12 +θ1Θ1rt−13.

Dessa forma, o modelo SYMARMA(1,0)×(1,1) com periodicidade s = 12 pode ser apresen-

tado como um modelo SYMARMA(1,13) com θ2 = θ3 = · · · = θ11 = 0. No geral, o mo-

delo SYMARMA(p,q)×(P,Q) com periodicidade s pode ser apresentado como um modelo

SYMARMA(p+Ps,q+Qs).

Tendo especificado um modelo SYMARMA sazonal para uma série temporal, o interesse

passa a ser estimar os parâmetros do modelo. Como pôde ser observado anteriormente, os

modelos SYMARMA sazonais são casos especiais dos modelos SYMARMA. Como tal, o



47

mesmo procedimento adotado para estimar os parâmetros do modelo SYMARMA pode ser

adotado para estimar os parâmetros dos modelos SYMARMA sazonais.
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Capítulo 3

Influência Local em Modelos Autorregressivos de Médias

Móveis Simétricos

3.1 Introdução

Quando consideramos um modelo de regressão para uma aplicação, normalmente não te-

mos certeza se o mesmo é apropriado. Algumas, ou muitas, das características do modelo,

como, por exemplo, a distribuição adotada para o erro, podem não ser apropriadas para o con-

junto de dados em estudo e, portanto, conclusões baseadas nesses modelos podem estar erradas.

Diante disso, é importante examinar o quanto o modelo que está sendo considerado é adequado

para os dados antes de fazer inferências. Essa avaliação do modelo é conhecida como análise

de resíduos e diagnóstico, que consiste na verificação de possíveis afastamentos relevantes das

suposições feitas para o mesmo bem como, na verificação da existência de observações com

alguma interferência desproporcional nos resultados do ajuste.

Dentre as técnicas de diagnóstico utilizadas para modelos de séries temporais, a medida de

influência local tem um papel importante por não ser baseada na exclusão de observações do

conjunto de dados que, a princípio, são dependentes. A dependência das observações coletadas

ao longo do tempo faz com que técnicas como a distância de Cook (COOK; WEISBERG,

1982) e a medida DFFITS (BESLEY et al, 1980) não sejam convenientes para avaliar pontos
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influentes em séries temporais.

A metodologia de diagnóstico de infuência local foi proposta inicialmente por Cook (1986),

que sugeriu avaliar a influência de pequenas perturbações no modelo e/ou nos dados através do

afastamento da função de verossimilhança e, consequentemente, na análise da curvatura do

gráfico de influência. Contudo, a curvatura não é invariante a reparametrizações do modelo

e, por essa razão, Billor e Loynes (1993) sugerem uma medida alternativa baseada no uso da

inclinação do gráfico de influência modificado. Uma outra medida de influência local, também

baseada na curvatura normal, pode ser encontrada em Lesaffre e Verbeke (1998), que utilizaram

o enfoque de influência local para avaliar modelos lineares mistos.

Em todo caso, o maior desafio na análise de diagnóstico através de influência local é en-

contrar a distribuição das medidas de diagnóstico de inclinação e de curvatura, para que seja

possível caracterizar uma observação como influente. Na maioria das vezes, essa caracterização

é feita por meio de uma simples análise exploratória. O primeiro trabalho a discutir a aplicação

de marcas de referência para determinar se, estatisticamente, as observações são influentes, foi

proposto por Zhang e King (2005), que simularam a distribuição das medidas de influência nos

modelos GARCH(1,1) com erros gaussianos, usando a primeira derivada (inclinação de Billor

e Loynes) e a segunda derivada do gráfico de influência modificado. Esse procedimento foi

denominado de limiares (benchmarks). Mais recentemente, Zevallos e Hotta (2012) utilizaram

a metodologia dos limiares para análise de influência local em modelos GARCH considerando,

alternativamente, a curvatura de Cook ao invés da segunda derivada do gráfico de influência

modificado, obtendo uma grande vantagem de ordem computacional.

Esse capítulo tem por objetivo desenvolver uma metodologia para análise de diagnóstico

em modelos autorregressivos de médias móveis simétricos (SYMARMA) sob o enfoque de

influência local. Discutimos a aplicação da metodologia de marcas de referência (limiares),

proposta por Zhang e King (2005), na análise de influência local dos modelos SYMARMA,

através das medidas de influência desenvolvidas por Cook (1986), Billor e Loynes (1993) e

Lesaffre e Verbeke (1998). É a primeira vez que a metodologia de limiares é aplicada à medida
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de influência local proposta por Lesaffre e Verbeke (1998). Consideramos quatro esquemas

de perturbação: perturbação aditiva na variável resposta, perturbação no parâmetro de disper-

são, perturbação no vetor de parâmetros autorregressivos e perturbação no vetor de parâmetros

de médias móveis. Para ilustrar a metodologia proposta apresentamos alguns resultados de

simulação.

3.2 Medidas de influência local

As três medidas de influência local estudadas neste capítulo são: curvatura de Cook (COOK,

1986), curvatura de Lesaffre e Verbeke (LESAFFRE; VERBEKE, 1998) e inclinação de Bil-

lor e Loynes (BILLOR; LOYNES, 1993). Aplicamos a metodologia de limiares, baseada em

níveis de referência, para avaliar a significância relacionada a influência local.

3.2.1 Curvatura de Cook

Na literatura, o primeiro trabalho sobre influência local foi introduzido por Cook (1986). A

proposta é avaliar a influência de pequenas perturbações nos dados ou no modelo utilizando o

afastamento da função de verossimilhança, definido por

LD(ω) =−2{L(δ̂ , ϕ̂)−L(δ̂ ω , ϕ̂ω)},

em que L(δ̂ , ϕ̂) é a função de verossimilhança do modelo postulado, L(δ̂ ω , ϕ̂ω) é a função de

verossimilhança do modelo perturbado pelo vetor ω = (ω1, . . . ,ωn)
> ∈ IRn e, (δ̂ ,ϕ̂) e (δ̂ ω ,ϕ̂ω )

são as estimativas de máxima verossimilhaça de L(δ ,ϕ) e L(δ ,ϕ|ω), repectivamente. Sendo

y = (y1, . . . ,yn)
> o vetor de observações, podemos considerar, por exemplo, que a perturba-

ção seja inserida na variável resposta yt na forma ỹt = yt +ωt , onde ỹt é a variável resposta

perturbada por ωt .

Em geral, o vetor ω é introduzido no modelo via ω = ω0 + a`, em que `, ω0 ∈ IRn e
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a medem a magnitude da perturbação na direção `. Assumimos que existe um ω0 tal que

L(δ ,ϕ|ω0) = L(δ ,ϕ) para todo δ e ϕ .

A idéia de influência local é estudar o comportamento da função LD(ω) numa vizinhança

de ω0. Para tanto, consideramos a superfície geométrica (n+ 1)-dimensional formada pelos

valores do vetor

λ (ω) =

 ω

LD(ω)

 .

Essa superfície é denominada gráfico de influência e fornece informações importantes sobre a

sensibilidade de LD sob pequenas perturbações. A proposta é avaliar a maior mudança local

na curvatura de LD. Dessa forma, tomamos a segunda derivada de LD com relação a a, isto é,

∂ 2LD(ω)/∂a∂a =C`(δ ,ϕ) = 2(`>F̈`) em que F̈ é uma matriz (n×n) definida como

F̈ =
∂ 2L(δ̂ ω , ϕ̂ω)

∂ω∂ω>
,

que pode ser expressa da forma

F̈ = ∆
>L̈−1

∆, (17)

em que−L̈ é a matriz de informação condicional observada para o modelo postulado (ω =ω0),

L̈−1 é a matriz inversa de L̈ e ∆ é uma matriz com elementos

∆i j =
∂ 2L(δ ,ϕ|ω)

∂δi∂ω j
,

avaliados em δ̂ , ϕ̂ e ω0, com i = 1, . . . , p+ q+ k e j = 1, . . . ,n. Consideramos então o maior

autovalor de 2F̈, denotado por Oc, como medida de influência global e o autovetor associado

ao maior autovalor de 2F̈, C = (c1, . . . ,cn)
>, como medida de influência individual, onde a

i-ésima componente do vetor C indica a influência da i-ésima observação. Adicionalmente,

considerando o modelo de regressão linear, Cook propõe relacionar a i-ésima componente do
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vetor C com a i-ésima componente do vetor de resíduos.

3.2.2 Curvatura de Lesaffre e Verbeke

Alternativamente, Lesaffre e Verbeke (1998) sugerem avaliar a curvatura normal na dire-

ção da i-ésima observação, que consiste na avaliação de C`(δ ,ϕ) no vetor n-dimensional, `i,

formado por zeros com um na i-ésima posição. Essa curvatura é denominada por

C`i = 2|F̈ii|.

Lesaffre e Verbeke sugerem que as observações tais que C`i > 2C` tenham uma atenção especial.

3.2.3 Inclinação de Billor e Loynes

Conforme apontado por Billor e Loynes (1993), dificuldades práticas e teóricas surgem

no enfoque de influência local introduzido por Cook (1986), entre elas: i) a escolha de uma

referência para a medida de influência global Oc, ii) a fórmula explícita para Oc é difícil de ser

encontrada analiticamente e iii) a falta de invariância da curvatura sobre reparametrizações do

esquema de perturbação.

Para contornar problemas como a falta de invariância da curvatura de Cook sobre repara-

metrizações do esquema de perturbação, Billor e Loynes (1993) consideram uma modificação

no afastamento da função de verossimilhança, definida por

MLD(ω) =−2{L(δ̂ , ϕ̂)−L(δ̂ω , ϕ̂ω |ω)},

em que L(δ̂ω , ϕ̂ω |ω) é a função de verossimilhança do modelo perturbado avaliada sobre

(δ̂ω , ϕ̂ω ), que é o estimador de máxima verossimilhança de (δω ,ϕω ) quando perturbações

são introduzidas no modelo postulado. Assim podemos estudar a superfície geométrica (n+1)-

dimensional formada pelos valores do vetor
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λ (ω) =

 ω

MLD(ω)

 ,

para avaliar a influência de pequenas perturbações no modelo. A proposta é avaliar a maior

mudança local na inclinação de MLD. Dessa forma, tomamos a primeira derivada de MLD

com relação a a, isto é, ∂MLD(ω)/∂a = 2(`>S), em que

S =
∂L(δ̂ω , ϕ̂ω |ω)

∂ω
. (18)

Billor e Loynes propõem utilizar a norma do vetor S= (s1, . . . ,sn)
>, ‖S‖=

√
∑

n
i=1 s2

i , como

medida de influência global e duas vezes as componentes do vetor S, 2S, como medida de in-

fluência individual, onde a 2si indica a influência da i-ésima observação.

As estatísticas para as medidas de influência local definidas nas Seções 3.2.1-3.2.3 podem

ser resumidas como:

Diagnóstico de
inclinação

(Billor e Loynes)



Critério global:

dado por Os = ‖S‖. Dessa forma, a série temporal em estudo tem

pelo menos um ponto influente se Os for grande.

Critério individual:

a observação yt é considerada como influente se dt = 2st for grande,

para t = 1, . . . ,n. O vetor d = (d1, . . . ,dn)
> é chamado vetor de

inclinação.
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Diagnóstico de
curvatura
(Cook)



Critério global:

dado por Oc, o maior autovalor de 2F̈. Dessa forma, a série temporal

em estudo tem pelo menos um ponto influente se Oc for grande.

Critério individual:

a observação yt é considerada como influente se a i-ésima componente

do autovetor associado ao maior autovalor de 2F̈, C = (c1, . . . ,cn)
>,

for grande. O vetor C é chamado vetor de curvatura.

Diagnóstico de
curvatura

(Lesa f f re e Verbeke)



Critério global:

dado por Oc, o maior autovalor de 2F̈. Dessa forma, a série temporal

em estudo tem pelo menos um ponto influente se Oc for grande.

Critério individual:

a observação yt é considerada como influente se a i-ésima componente

do vetor C`i = 2|F̈ii| for grande.

3.3 Metodologia de limiares

Diferentes critérios de diagnóstico foram propostos por Cook (1986), Lesaffre e Verbeke

(1998) e Billor e Loynes (1993) para avaliar a influência local dos dados. Em todos os casos,

as técnicas de diagnóstico propostas apresentam dois tipos de problemas. O primeiro trata das

aproximações bastante imprecisas apresentadas por Billor e Loynes (1993) para Os e por Cook

(1986) para Oc. A segunda é a determinação de que uma observação específica é influente

através da simples análise exploratória de gráficos.

Uma proposta para contornar esses problemas foi apresentada por Zhang e King (2005)

que, baseados em simulações de Monte Carlo para o modelo GARCH sob diferentes esquemas

de perturbação, construíram níveis de referência para os vetores de diagnóstico da inclinação e

da curvatura. Esta metodologia ficou conhecida como limiares (benchmarks).
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Considerando o modelo postulado, ou seja, sem perturbação, as simulações de Monte Carlo

se tornam uma importante ferramenta, pois, permitem estimar as distribuições das medidas de

influência local. Assim, através de parâmetros predeterminados, para cada replicação é gerada

uma amostra de tamanho n, e conseguinte são computadas as estatísticas globais Os e Oc e os

vetores d e C. A partir dessas replicações, podemos estimar a distribuição das estatísticas Os e

Oc. No nosso trabalho, são realizadas 2.000 replicações para cada simulação. É a primeira vez

que limiares são utilizados para simular a distribuição da estatística do diagnóstico de curvatura

sugerido por Lesaffre e Verbeke, o que trará níveis de referências mais confiáveis.

Para obtenção das marcas de referência por meio de limiares, primeiramente simulamos

2.000 vezes o modelo postulado, isto é, séries temporais de tamanho n sem perturbação. Para

a k-ésima série temporal simulada, calculamos a estatística S de acordo com a Equação (18),

a estatística Os, o vetor de inclinação dk = (dk1, . . . ,dkn), a matriz F̈ de acordo com a Equação

(17), a estatística Oc e os vetores de curvatura Ck = (ck1, . . . ,ckn) e C`k = (c`k1, . . . ,c`kn), para

k = 1, . . . ,2.000. Consideramos BS j como sendo os limires para o diagnóstico de inclinação,

BCCook
j como sendo os limiares para o diagnóstico de curvatura de Cook e BCLV

j como sendo

os limiares para o diagnóstico de curvatura de Lesaffre e Verbeke, em que j = 0,1,2. Agora,

a partir dos resultados obtidos das simulações de Monte Carlo, as marcas de referência são

calculadas da seguinte maneira.

3.3.1 Limiares para as medidas de influência global

BS0 = Percentil 95% de {Os1, . . . ,Os2.000}

BCCook
0 = BCLV

0 = Percentil 95% de {Oc1, . . . ,Oc2.000}

3.3.2 Limiares para as medidas de influência individual

Seja γk = max{|dk1|, . . . , |dkn|} para k = 1, . . . ,2.000.

BS1 = Percentil 95% de {γ1, . . . ,γ2.000}.

BS2 = Percentil 5% de {γk1, . . . ,γkm}, em que {k1, . . . ,km} ∈ {1, . . . ,2.000} corresponde a série
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gerada que satisfaz Osk j > BS0, j = 1, . . . ,m.

Seja ξk = max{|ck(1)|, . . . , |ck(n)|} para k = 1, . . . ,2.000.

BCCook
1 = Percentil 95% de {ξ1, . . . ,ξ2.000}.

BCCook
2 = Percentil 5% de {ξk1, . . . ,ξkm}, em que {k1, . . . ,km} ∈ {1, . . . ,2.000} corresponde a

série gerada que satisfaz Ock j > BCCook
0 , j = 1, . . . ,m.

Seja ξk = max{|c`k(1)|, . . . , |c`k(n)|} para k = 1, . . . ,2.000.

BCLV
1 = Percentil 95% de {ξ1, . . . ,ξ2.000}.

BCLV
2 = Percentil 5% de {ξk1, . . . ,ξkm}, em que {k1, . . . ,km} ∈ {1, . . . ,2.000} corresponde a

série gerada que satisfaz Ock j > BCLV
0 , j = 1, . . . ,m.

Sendo y1, . . . ,yn a série temporal observada, primeiro calculamos o vetor de inclinação

d = (d1, . . . ,dn) e a estatística Os. Se Os for maior que BS0, consideramos a existência de

pelo menos uma observação influente no conjunto de dados. Para identificar que observações

específicas são influentes, comparamos os valores (d1, . . . ,dn) com o limiar BS1. Por exemplo,

se |d j| > BS1, então y j é individualmente influente. No entanto, esse valor de referência é

calculado levando em conta séries temporais simuladas que não são consideradas globalmente

influentes usando os critérios gerais Os. Dessa forma, devemos comparar |d j| com o limiar BS2

se a proposta for usar as séries temporais globalmente influentes em termos de inclinação. Note

que é possível definir limiares BS j, BCCook
j , BCLV

j , j = 0,1 utilizando, por exemplo, o percentil

90% ou 99%, ao invés do percentil 95%. A aplicação para o diagnóstico de curvatura é similar

ao apresentado para o diagnóstico de inclinação.

3.4 Esquemas de perturbação

Conforme resumido por Billor e Loynes (1993), vários esquemas de perturbação podem ser

introduzidos através de ω , e esses são divididos em dois grupos:
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• Perturbação no modelo: Este tipo de perturbação visa a modificação das suposições pro-

postas para o modelo. Por exemplo, uma suposição de homoscedasticidade (variância

constante) nos erros normalmente distribuídos pode ser substituída por uma suposição

heteroscedástica, ou seja, ε ∼ N(0,σ2I) é substituída por ε ∼ N(0,σ2diag−1(ωi)), onde

ωi são as perturbações especificadas e diag−1(ωi) é a inversa da matriz diagonal de com-

ponentes ωi, para i = 1, . . . ,n.

• Perturbação nos dados: Perturbar a variável resposta ou as variáveis explicativas são

exemplos de perturbação nos dados. As duas razões para considerar a perturbação nos

dados são os possíveis erros de medida e a existência de observações aberrantes (outli-

ers), em uma proporção relativamente pequena das observações.

Para o estudo de influência local em modelos SYMARMA, consideramos quatro esquemas

de perturbação: perturbação aditiva na variável resposta, perturbação no parâmetro de disper-

são, perturbação no vetor de parâmetros autorregressivos e perturbação no vetor de parâmetros

de médias móveis. Para cada caso, derivamos expressões analíticas para o vetor S de acordo

com a Equação (18) e F̈ de acordo com a Equação (17), que são a base para encontrar os vetores

de inclinação e de curvatura bem como as medidas globais. A matriz de informação condicio-

nal observada −L̈ = ∂ 2L(δ )/∂δ∂δ
>, que não depende do esquema de perturbação adotado, é

apresentada no Apêndice E.

Toda metodologia desenvolvida nessa seção pode ser estendida aos modelos SYMARMA

sazonais. Conforme pôde ser observado no Seção 2.8.1 do Capítulo 2, os modelos SYMARMA

sazonais são casos especiais dos modelos SYMARMA.

3.4.1 Perturbação aditiva nos dados

Assumimos que uma pequena perturbação ωt é adicionada para cada observação da sé-

rie. As novas observações (ỹt) e os termos do logaritmo da função de verossimilhança ficam
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definidos por

ỹt = yt +ωt ,

`t(δ ,ϕ|ω) = −log(ϕ)/2+ log{g(ũt)},

para t = m+1, . . . ,n, em que ũt = (ỹt− µ̃t)
2/ϕ , sendo µ̃t definido como

µ̃t = x>t β +
p

∑
i=1

φi

{
ỹt−i−x>t−iβ

}
+

q

∑
j=1

θ j{ỹt− j− µ̃t− j}.

O ponto de não perturbação é ω0 = (0, . . . ,0)>. No diagnóstico de inclinação temos que

S|ω0 =
∂`(δ ,ϕ|ω)

∂ω
=−ϕ

−1D(y−µ),

em que D = diag{vm+1, . . . ,vn}, vt =−2Wg(ut) sendo Wg(ut) =
dlog(g(ut))

dut
e ut =

(yt−µt)
2

ϕ
, y =

(ym+1, . . . ,yn)
> e µ = (µm+1, . . . ,µn)

>.

No diagnóstico de curvatura, para esse esquema de perturbação, temos que

∆|ω0 =


∂ 2`(δ ,ϕ|ω)

∂δ∂ω

∂ 2`(δ ,ϕ|ω)

∂ϕ∂ω

=

 ϕ−1O>Da

−2ϕ−2b>

 ,
em que at = −2

(
Wg(ut)+2W ′g(ut)ut

)
com W ′g(ut) =

dWg(ut)
dut

, Da = diag{am+1, . . . ,an}, b =

(bm+1, . . . ,bn)
> em que bt = (Wg(ut)+W ′g(ut)ut)(yt−µt) e O é uma matriz (n−m)× (k+ p+

q+1) definida na Seção 2.4.



59

3.4.2 Perturbação no parâmetro de dispersão

Para esse esquema de perturbação temos que o parâmetro de dispersão e os termos do

logaritmo da função de verossimilhança ficam expressos por

ϕ̃t = ϕωt ,

`t(δ ,ϕ|ω) = −log(ϕ̃t)/2+ log{g(ũt)},

para t = m+ 1. . . . ,n, em que ũt = (yt − µt)
2/ϕ̃t sendo µt definido como na Equação (6). O

ponto de não perturbação é ω0 = (1, . . . ,1)>.

Para o diagnóstico de inclinação temos que

S|ω0 =
∂`(δ ,ϕ|ω)

∂ω
=−1

2
+

1
2

Du,

em que D e ut são definidos como na Seção 3.4.1 e u = (um+1, . . . ,un)
>.

Para o diagnóstico de curvatura,

∆|ω0 =


∂ 2`(δ ,ϕ|ω)

∂δ∂ω

∂ 2`(δ ,ϕ|ω)

∂ϕ∂ω

=

 2ϕ−1O>Db

ϕ−1Dcu>

 ,
em que Db = diag{bm+1, . . . ,bn}, Dc = diag{cm+1, . . . ,cn} sendo ct = Wg(ut)+W ′g(ut)ut . A

matriz O é definida como na Seção 2.4.

3.4.3 Perturbação no vetor de parâmetros autorregressivos

Para esse esquema de perturbação temos que os parâmetros autorregressivos e os termos do

logaritmo da função de verossimilhança ficam expressos por

φ̃it = φi +ωt ,

`t(δ ,ϕ|ω) = −log(ϕt)/2+ log{g(ũt)},
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para t = m+1, . . . ,n, em que ũt = (yt− µ̃t)
2/ϕ , sendo µ̃t definido como

µ̃t = x>t β +
p

∑
i=1

φ̃it

{
yt−i−x>t−iβ

}
+

q

∑
j=1

θ j{yt− j−µt− j}.

O ponto de não perturbação é ω0 = (0, . . . ,0)>. No diagnóstico de inclinação temos que

S|ω0 =
∂`(δ ,ϕ|ω)

∂ω
= ϕ

−1DDq(y−µ),

em que D, y e µ são tais como definidos como na Seção 3.4.1 e Dq = diag{qm+1, . . . ,qn} com

qt =
p
∑

i=1

(
yt−i−x>t−iβ

)
, isto é, q = A1 em que 1 = (1, . . . ,1)>.

No diagnóstico de curvatura,

∆|ω0 =


∂ 2`(δ ,ϕ|ω)

∂δ∂ω

∂ 2`(δ ,ϕ|ω)

∂ϕ∂ω

=

 −ϕ−1O>DaDq

2ϕ−2b>Dq

 ,
em que a matriz O é definida como na Seção 2.4 e a matriz Da e o vetor b são definidos como

na Seção 3.4.1.

3.4.4 Perturbação no vetor de parâmetros de médias móveis

Nesse caso os parâmetros de médias móveis e os termos do logaritmo da função de veros-

similhança ficam expressos por

θ̃ jt = θ j +ωt ,

`t(δ ,ϕ|ω) = −log(ϕt)/2+ log{g(ũt)},

para t = m+1, . . . ,n, em que ũt = (yt− µ̃t)
2/ϕ , sendo µ̃t definido como

µ̃t = x>t β +
p

∑
i=1

φi

{
yt−i−x>t−iβ

}
+

q

∑
j=1

θ̃ jt{yt− j−µt− j}.
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O ponto de não perturbação é ω0 = (0, . . . ,0)>. No diagnóstico de inclinação temos que

S|ω0 =
∂`(δ ,ϕ|ω)

∂ω
= ϕ

−1DDr(y−µ),

em que D, y e µ são tais como definidos como na Seção 3.4.1 e Dr = diag{rm+1, . . . ,rn} com

rt =
q
∑
j=1

(
yt− j−µt− j

)
, isto é, r = B1 em que 1 = (1, . . . ,1)>.

No diagnóstico de curvatura,

∆|ω0 =


∂ 2`(δ ,ϕ|ω)

∂δ∂ω

∂ 2`(δ ,ϕ|ω)

∂ϕ∂ω

=

 −ϕ−1O>DaDr

2ϕ−2b>Dr

 ,
em que a matriz O é definida na Seção 2.4 e a matriz Da e o vetor b são definidos como na

Seção 3.4.1.

Valores de Wg(ut) e W ′g(ut) para algumas distribuições simétricas são apresentados na Ta-

bela 2.3 do Capítulo 2. Em partircular, para distribuição normal temos que Wg(ut) = −0,5

e W ′g(ut) = 0 e, para distribuição t-Student com v graus de liberdade, Wg(ut) = − (v+1)
2(v+ut)

e

W ′g(ut) =
(v+1)

2(v+ut)2 .

3.5 Simulações

As simulações apresentadas nessa seção têm o objetivo de estudar o comportamento das

marcas de referência, obtidas por meio de limiares, para séries temporais autorregressivas de

primeira ordem na presença de observações atípicas. O estudo foi realizado considerando o

ajuste do modelo SYMARMA sob distribuições normal e t-Student com ν = 4. Por possuir

caudas mais pesadas, esperamos que os pontos atípicos não exerçam grande influência no ajuste

do modelo sob distribuição t-Student.

O modelo SYMARMA autorregressivo de primeira ordem sem variáveis explicativas é dado

por

yt = φyt−1 + rt , t = 2, . . . ,n,
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em que os rt’s são ruídos branco, isto é, as variáveis aleatórias rt são independente e identica-

mente distribuídas com E(rt) = 0 e Var(rt) = σ2, consequentemente Cov(rt ,rs) = 0 para t 6= s.

No modelo SYMARMA consideramos que yt |Ht−1 ∼ S(0,σ2,g), em que Ht−1 = {yt−1, . . . ,y1,

µt−1, . . . ,µ1}. De acordo com os resultados apresentados na Seção 2.3.1, podemos mostrar que

a função de autocorrelação (ρ) e autocorrelação parcial (λ ) são expressas, respectivamente, por

ρk =

 1 , k = 0

φ k , k 6= 0
e λk =

 φ , k = 1

0 , k > 1
,

em que k é o número de defasagens. Dessa forma, φ pode ser visto como parâmetro de corre-

lação.

Foram geradas quatro séries temporais com diferentes combinações para φ (φ = 0,3, φ =

0,5, φ = 0,7 e φ = 0,9), ϕ = 1 e tamanho amostral n = 100. As séries foram escolhidas de tal

maneira que as estimativas de φ estivessem próximas aos verdadeiros valores, |φ̂−φ |< 0,001.

Uma vez simuladas as séries, outliers do tipo aditivo foram introduzidos nas observações de

ordem y20 e y80 com magnitudes de cinco e três desvios padrões (σy), respectivamete, con-

forme descrito na Tabela 3.1. Outliers aditivos caracterizam-se por afetar a série em apenas

uma observação. Para ilustrar o efeito de outliers aditivos na série, apresentamos na Figura 3.1

uma série autorregressiva de ordem 1 com φ = 0,3 sujeita a esse tipo de perturbação. Perce-

bemos que os valores da série mantêm-se inalterados exceto o das observações t = 20 e t = 80

que tiveram os seus valores reais acrescidos de cinco e três desvios padrões, respectivamente,

tornando-se assim observações atípicas. A Tabela 3.2 apresenta os valores das séries perturba-

das e auxilia na análise das observações influentes.

Os limiares foram calculados utilizando uma rotina desenvolvida pelo autor na linguagem

computacional R; www.R-project.org. Supondo conhecidos os parâmetros que indexam o mo-

delo, baseado em 2.000 réplicas de Monte Carlo, foram calculadas as marcas de referência BSi,

BCCook
i e BCLV

i para i = 0,1 e 2. Nas Tabelas 3.3 - 3.8 apresentamos os resultados para o es-

quema de pertubação nos dados e nas Tabelas 3.9 - 3.14 temos os resutados para o esquema de

perturbação no parâmetro de dispersão. Nessa etapa foram consideradas amostras de tamanhos

n = 100 e 200.
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Tabela 3.1 Configurações das séries simuladas com rt ∼ N(0,1).

Tamanho Coeficiente Posição Magnitude dos outliers
amostral de correlação dos outliers em valor absoluto

Série 1 n = 100 φ = 0,3 y20 e y80 5σy e 3σy

Série 2 n = 100 φ = 0,5 y20 e y80 5σy e 3σy

Série 3 n = 100 φ = 0,7 y20 e y80 5σy e 3σy

Série 4 n = 100 φ = 0,9 y20 e y80 5σy e 3σy

Figura 3.1 Série autorregressiva de ordem 1 simulada como φ = 0,3, perturbada (linha descontínua)
com outliers aditivos.

Fonte: Autoria própria.

Nas Tabelas 3.3 e 3.6, os resultados obtidos sob o esquema de perturbação nos dados mos-

tram que, para ambas distribuições consideradas (normal ou t4), quando a correlação (φ ) e o

percentil são mantidos fixos, os limiares para o diagnóstico de inclinação, baseados no critério

global BS0, aumentam quando o tamanho amostral aumenta. No entanto, para o diagnóstico de

curvatura, quando mantemos constantes o percentil e φ , os limiares BC0 decrescem quando o

tamanho amostral aumenta. Isto é, as marcas de referência baseadas no critério global variam

com o tamanho amostral. Por exemplo, considerando o percentil 95% e φ = 0,5 a marca de

referência BS0 passa de 11,3460 para 15,4247 quando o tamanho amostral aumenta de n = 100

para n = 200. Para tamanhos amostrais e percentis fixos, a variação de φ não altera o compor-
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Tabela 3.2 Introdução de outliers nas séries simuladas.

y18 y19 y20 y21 y22 ωy = 5σy ỹ20 = y20 +ωy

Série 1 0,5167 1,2029 1,5022 1,7611 -0,1634 5,1780 6,6802
Série 2 -1,1541 -0,6133 -0,1234 2,8437 1,9235 6,8271 -6,9505
Série 3 -0,3967 -1,3079 -1,6943 -0,2116 -0,6658 6,6796 -8,3739
Série 4 -0,3810 0,3035 -1,0938 -1,1296 -0,7429 12,0751 -13,1689

y78 y79 y80 y81 y82 ωy = 3σy ỹ80 = y80 +ωy

Série 1 -0,9767 -0,8202 -0,0236 -0,3030 0,8970 3,1068 -3,1304
Série 2 1,2492 3,2600 2,2446 -0,5822 1,0099 4,0963 6,3409
Série 3 1,7929 1,1222 1,7959 -0,4767 -1,0530 4,0078 5,8037
Série 4 1,3107 2,9523 1,3095 0,2941 -1,2203 7,2451 8,5546

tamento dos limiares BS0 e BC0. Portanto, existem indícios de que os limiares para o critério

global não são sensíveis a variação de φ . Por fim, de uma maneira geral, os limiares sob distri-

buição t4 são menores que os limiares sob distribuição normal. Resultados similares podem ser

observados para o esquema de perturbação no parâmetro de dispersão (ver Tabelas 3.9 e 3.12).

Considerando agora os limiares BS1, BCCook
1 e BCLV

1 , baseados no critério individual, os

resultados apresentados nas Tabelas 3.4, 3.7, 3.10 e 3.13 mostram que, fixando o parâmetro φ

e o percentil, os limiares BCCook
1 e BCLV

1 decrescem quando o tamanho amostral aumenta. Para

as marcas de referência BS1 temos um comportamento praticamente constante. Considerando

agora os valores de n e o percentil fixos, os limiares sob disribuição normal permanecem uni-

formes quando a correlação φ aumenta, ou seja, há indícios de que o critério BS1, BCCook
1 e

BCLV
1 sejam robustos quanto a variação de φ . No entando, para distribuição t4, o limiar BCLV

1

tem comportamento monótono decrescente. Por exemplo, para o esquema de perturbação nos

dados (ver Tabela 3.7), considerando o pecentil 95% e o tamanho amostral n = 200, variando φ

de 0,3 a 0,9 o valor do limiar BCLV
1 passa de 0,7495 para 0,2726. Portanto, existem indícios de

que os limiares para o diagnóstico de curvatura sob o enfoque de Lesaffre e Verbeke, baseados

no critério individual, são mais sensíveis a variação de φ .

Nas Tabelas 3.5 e 3.11, para ambos esquemas de perturbação sob distribuição normal, se a

correlação aumenta, mantendo fixos o percentil e tamanho amostral, os limiares baseados nos
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critérios individuais BS2, BCCook
2 e BCLV

2 têm suas magnitudes estáveis; sob distribuição t4 (ver

Tabelas 3.8 e 3.14) o limiar BCLV
2 tem comportamento monótono decrescente.

As Tabelas 3.15 e 3.17 apresentam as estatísticas Os e Oc para o esquema de perturbação

nos dados, calculadas para as séries de 1 a 4 considerando o ajuste dos modelos SYMARMA-

normal e SYMARMA-t4, respectivamente. Considerando os critérios BS0 e BC0, avaliados

através do percentil 95% (ver Tabelas 3.3 e 3.6), para as quatro séries geradas, não existem

indícios de influência global. Esse fato não descarta a hipótese de alguma observações exercer

influência de forma individual. Os resutados para o esquema de perturbação no parâmetro de

dispersão são apresentados nas Tabelas 3.16 e 3.18 para o ajuste dos modelos SYMARMA-

normal e SYMARMA-t4, respectivamente. Nesse caso, para o modelo sob distribuição normal

as estatísticas Os e Oc são maiores que as marcas de referência BS0 e BC0, respectivamente,

dando indícios de influência global. Por exemplo, para série 1 Os = 14,0948 e Oc = 9,5888

são maiores que as marcas de referência BS0 = 8,3364 e BC0 = 3,9331 apresentadas na Tabela

3.9. Quando consideramos o ajuste sob distribuição t4 não encontramos indícios de influência

global nas séries de 1 a 4.

Os diagnósticos de influência individual para as séries de 1 a 4, avaliados pelos limiares BSi,

BCCook
i e BCLV

i para i = 1 e 2, são ilustrados nas Figuras 3.2-3.9 sob o esquema de perturbação

nos dados e nas Figuras 3.10-3.17 sob o esquema de perturbação no parâmetro de dispersão.

Em cada uma das figuras são apresentados quatro gráficos sendo o primeiro (na parte superior)

correspondente à série com outliers, o segundo correspondente aos valores obtidos na direção

da inclinação de Billor e Loynes, o terceiro correspondente aos valores obtidos na direção da

curvatura de Cook e, por fim, o quarto (na parte inferior) correspondente aos valores obtidos na

direção da curvatura de Lesaffre e Verbeke.

Discutimos inicialmente os resultados obtidos a partir da perturbação nos dados. Para a

série 1, ilustrada nas Figuras 3.2 e 3.3 considerando o ajuste dos modelos SYMARMA-normal

e SYMARMA-t4, respectivamente, notamos que o outlier gerado na observação de ordem 20,

ỹ20 = 6,6802, é identificado como influente pelos critérios BS2 e BCCook
2 apenas no modelo

SYMARMA-normal. O mesmo resultado ocorre nas demais séries (ver Figuras 3.4-3.9). Con-

siderando o critério BCLV
2 o outlier ỹ20 foi identificado como influente por ambos modelos
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apenas na série 1. Baseado nas Figuras 3.2-3.9 podemos notar que no modelo SYMARMA-

normal, as observações adjacentes ao outlier apresentam valores para os vetores de diagnóstico

de inclinação (d) e de curvatura (C) que tendem a caracterizá-las como influentes, quando

na verdade não foram geradas como tais. Enquanto que no ajuste do modelo SYMARMA-t4

esse fato não foi observado. Notamos que a observação ỹ80, gerada como outlier, também foi

identificada como influente pelo critério BCCook
2 no ajuste do modelo SYMARMA-normal.

Para o esquema de perturbação no parâmetro de dispersão (ver Figuras 3.10-3.17), resul-

tados similares aos apresentados para a perturbação nos dados podem ser obtidos. Conforme

podemos notar, quando consideramos o ajuste sob distribuição t4 não encontramos indícios de

influência dos outliers gerados nas séries de 1 a 4.
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Tabela 3.3 Estatísticas globais BS0 e BC0 para o modelo SYMARMA-normal sob o esquema de per-
turbação nos dados.

Tamanho Medida Percentis φ

amostral (%) 0,3 0,5 0,7 0,9
90 10,9922 10,9910 11,0292 11,0292

BS0 95 11,3119 11,3108 11,3460 11,3628
99 11,9575 11,9461 11,8294 11,9535

n = 100 90 4,8820 4,8809 4,9148 4,9149
BC0 95 5,1700 5,1691 5,2013 5,2167

99 5,7771 5,7660 5,6539 5,7732
90 15,1428 15,1190 15,1316 15,1432

BS0 95 15,4649 15,4129 15,4247 15,4216
99 15,9448 15,9631 15,9411 15,8911

n = 200 90 4,6091 4,5947 4,6023 4,6094
BC0 95 4,8073 4,7750 4,7823 4,7804

99 5,1103 5,1220 5,1079 5,0759

Tabela 3.4 Estatísticas individuais BS1, BCCook
1 e BCLV

1 para o modelo SYMARMA-normal sob o es-
quema de perturbação nos dados.

Tamanho Medida Percentis φ

amostral (%) 0,3 0,5 0,7 0,9
90 6,6985 6,6755 6,6347 6,6552

BS1 95 7,1035 7,0751 7,0698 7,0832
99 7,9590 7,9537 7,8778 7,8975
90 0,3241 0,3238 0,3254 0,3227

n = 100 BCCook
1 95 0,3430 0,3410 0,3431 0,3414

99 0,3767 0,3810 0,3816 0,3719
90 0,4763 0,4759 0,4727 0,4686

BCLV
1 95 0,5332 0,5269 0,5384 0,5350

99 0,6717 0,6783 0,6761 0,6677
90 6,9974 7,0598 7,0333 7,0423

BS1 95 7,3930 7,3968 7,3949 7,4555
99 8,1134 8,1800 8,0694 8,0928
90 0,2435 0,2438 0,2451 0,2459

n = 200 BCCook
1 95 0,2560 0,2562 0,2562 0,2581

99 0,2806 0,2800 0,2807 0,2793
90 0,2584 0,2642 0,2639 0,2633

BCLV
1 95 0,2863 0,2875 0,2899 0,2945

99 0,3494 0,3491 0,3428 0,3397
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Tabela 3.5 Estatísticas individuais BS2, BCCook
2 e BCLV

2 para o modelo SYMARMA-normal sob o es-
quema de perturbação nos dados.

Tamanho Medida Estatísticas φ

amostral 0,3 0,5 0,7 0,9
Mínimo 4,6971 4,7517 4,6668 5,0767

Quartil (5%) 5,1841 5,2422 5,0741 5,2200
BS2 Máximo 8,5345 10,2087 10,0126 8,7458

Média 6,4618 6,5726 6,3427 6,4850
Desvio Padrão 0,9003 0,9138 0,9290 0,8891

Mínimo 0,2076 0,2093 0,2050 0,2178
Quartil (5%) 0,2240 0,2307 0,2195 0,2246

n = 100 BCCook
2 Máximo 0,3670 0,4464 0,4232 0,3768

Média 0,2760 0,2812 0,2721 0,2762
Desvio Padrão 0,0369 0,0389 0,0396 0,0364

Mínimo 0,2635 0,2457 0,2961 0,2862
Quartil (5%) 0,3213 0,3136 0,3042 0,3293

BCLV
2 Máximo 0,8569 1,0587 1,0380 0,8370

Média 0,4673 0,4781 0,4460 0,4706
Desvio Padrão 0,1279 0,1332 0,1238 0,1219

Mínimo 5,2206 5,1500 5,2076 5,3464
Quartil (5%) 5,6882 5,6897 5,5964 5,6226

BS2 Máximo 9,0150 8,1973 8,9544 9,0096
Média 6,6356 6,6351 6,6673 6,5779

Desvio Padrão 0,7074 0,6692 0,8535 0,7324
Mínimo 0,1666 0,1668 0,1664 0,1707

Quartil (5%) 0,1817 0,1823 0,1745 0,1799
n = 200 BCCook

2 Máximo 0,2892 0,2627 0,2849 0,2877
Média 0,2107 0,2106 0,2117 0,2094

Desvio Padrão 0,0226 0,0205 0,0267 0,0230
Mínimo 0,1582 0,1343 0,1557 0,1578

Quartil (5%) 0,1760 0,1722 0,1697 0,1658
BCLV

2 Máximo 0,4421 0,3491 0,4035 0,4097
Média 0,2410 0,2408 0,2421 0,2370

Desvio Padrão 0,0500 0,0477 0,0587 0,0498
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Tabela 3.6 Estatísticas globais BS0 e BC0 para o modelo SYMARMA-t4 sob o esquema de perturbação
nos dados.

Tamanho Medida Percentis φ

amostral (%) 0,3 0,5 0,7 0,9
90 9,6469 9,5862 9,5885 9,6158

BS0 95 9,9725 9,9704 9,9410 9,9462
99 10,6684 10,5475 10,5319 10,6044

n = 100 90 3,1879 3,1806 3,1631 3,1992
BC0 95 3,4431 3,4104 3,3897 3,3884

99 3,9204 3,8474 3,8076 3,8643
90 13,0835 13,0703 13,0630 13,0336

BS0 95 13,3938 13,3919 13,3617 13,3973
99 14,0754 13,9449 13,9826 13,9035

n = 200 90 2,9176 2,9154 2,9161 2,8983
BC0 95 3,0596 3,0521 3,0476 3,0413

99 3,3563 3,2719 3,3361 3,2533

Tabela 3.7 Estatísticas individuais BS1, BCCook
1 e BCLV

1 para o modelo SYMARMA-t4 sob o esquema
de perturbação nos dados.

Tamanho Medida Percentis φ

amostral (%) 0,3 0,5 0,7 0,9
90 2,8430 2,8516 2,8405 2,8530

BS1 95 2,9746 2,9553 2,9423 2,9512
99 3,1502 3,1280 3,1205 3,1234
90 0,1929 0,1889 0,1810 0,1690

n = 100 BCCook
1 95 0,2267 0,2176 0,2028 0,1812

99 0,3235 0,3188 0,3064 0,2153
90 0,7994 0,7093 0,5697 0,3781

BCLV
1 95 1,0589 0,9454 0,7202 0,4407

99 1,6641 1,3423 1,0883 0,5653
90 2,7383 2,7364 2,7372 2,7289

BS1 95 2,8039 2,7957 2,7960 2,7917
99 2,9303 2,9187 2,9264 2,8968
90 0,1278 0,1232 0,1179 0,1143

n = 200 BCCook
1 95 0,1409 0,1357 0,1273 0,1199

99 0,1982 0,1871 0,1548 0,1388
90 0,5808 0,4971 0,3970 0,2312

BCLV
1 95 0,7495 0,6486 0,4982 0,2726

99 1,2881 1,0064 0,7715 0,4022
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Tabela 3.8 Estatísticas individuais BS2, BCCook
2 e BCLV

2 para o modelo SYMARMA-t4 sob o esquema
de perturbação nos dados.

Tamanho Medida Estatísticas φ

amostral 0,3 0,5 0,7 0,9
Mínimo 2,8732 2,8450 2,8310 2,8605

Quartil (5%) 2,9123 2,9223 2,8971 2,9024
BS2 Máximo 3,3043 3,5604 3,5350 3,3013

Média 3,0600 3,0525 3,0472 3,0465
Desvio Padrão 0,0963 0,1129 0,1162 0,0971

Mínimo 0,1290 0,1270 0,1263 0,1302
Quartil (5%) 0,1336 0,1355 0,1338 0,1353

n = 100 BCCook
2 Máximo 0,3418 0,2437 0,6134 0,1903

Média 0,1559 0,1524 0,1651 0,1499
Desvio Padrão 0,0309 0,0208 0,0597 0,0125

Mínimo 0,2494 0,2403 0,2005 0,1535
Quartil (5%) 0,3239 0,2685 0,2697 0,2098

BCLV
2 Máximo 2,4110 2,3235 1,9717 0,6831

Média 0,7027 0,6131 0,4970 0,3551
Desvio Padrão 0,4475 0,3838 0,2723 0,1121

Mínimo 2,6861 2,7293 2,7173 2,7035
Quartil (5%) 2,7722 2,7579 2,7657 2,7582

BS2 Máximo 3,1759 3,3020 3,1348 3,3442
Média 2,8736 2,8689 2,8681 2,8567

Desvio Padrão 0,0897 0,0932 0,0841 0,1032
Mínimo 0,0931 0,0956 0,0951 0,0942

Quartil (5%) 0,0957 0,0977 0,0962 0,0961
n = 200 BCCook

2 Máximo 0,2527 0,1991 0,1659 0,1430
Média 0,1081 0,1089 0,1050 0,1035

Desvio Padrão 0,0185 0,0162 0,0106 0,0072
Mínimo 0,1140 0,1172 0,1096 0,0936

Quartil (5%) 0,1851 0,1614 0,1428 0,1122
BCLV

2 Máximo 2,2744 2,1545 1,1741 0,5267
Média 0,4329 0,4062 0,3004 0,1977

Desvio Padrão 0,2801 0,2947 0,1616 0,0866
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Tabela 3.9 Estatísticas globais BS0 e BC0 para o modelo SYMARMA-normal sob o esquema de per-
turbação no parâmetro de dispersão.

Tamanho Medida Percentis φ

amostral (%) 0,3 0,5 0,7 0,9
90 7,9144 7,9012 7,9720 7,8618

BS0 95 8,3364 8,3285 8,3528 8,2347
99 9,2219 9,1204 9,1410 9,0863

n = 100 90 3,6705 3,6468 3,6991 3,6327
BC0 95 3,9331 3,9742 3,9779 3,9032

99 4,6249 4,5941 4,6411 4,5363
90 10,9668 10,9445 10,9464 10,9537

BS0 95 11,2842 11,3638 11,3173 11,3081
99 12,0953 12,0338 12,0998 12,1682

n = 200 90 3,4803 3,4833 3,4779 3,4913
BC0 95 3,6229 3,6492 3,6563 3,6446

99 4,0380 4,0941 4,0335 4,0671

Tabela 3.10 Estatísticas individuais BS1, BCCook
1 e BCLV

1 para o modelo SYMARMA-normal sob o
esquema de perturbação no parâmetro de dispersão.

Tamanho Medida Percentis φ

amostral (%) 0,3 0,5 0,7 0,9
90 9,4022 9,3776 9,4844 9,3091

BS1 95 10,6505 10,5133 10,6511 10,5380
99 13,0501 13,3724 13,4190 12,6927
90 0,6065 0,6013 0,6067 0,6040

n = 100 BCCook
1 95 0,6546 0,6457 0,6626 0,6573

99 0,7324 0,7415 0,7492 0,7402
90 1,3522 1,3584 1,3829 1,3519

BCLV
1 95 1,6897 1,6034 1,7119 1,6484

99 2,3631 2,4439 2,5742 2,3684
90 10,7993 10,8320 10,9561 11,0309

BS1 95 12,0416 12,0650 12,0619 12,2592
99 14,6723 14,5972 14,6762 14,5303
90 0,4866 0,4902 0,4876 0,4957

n = 200 BCCook
1 95 0,5302 0,5273 0,5291 0,5372

99 0,6001 0,6119 0,6141 0,6083
90 0,8494 0,8697 0,8766 0,9035

BCLV
1 95 1,0167 1,0297 1,0353 1,0663

99 1,4518 1,4556 1,4839 1,3948
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Tabela 3.11 Estatísticas individuais BS2, BCCook
2 e BCLV

2 para o modelo SYMARMA-normal sob o
esquema de perturbação no parâmetro de dispersão.

Tamanho Medida Estatísticas φ

amostral 0,3 0,5 0,7 0,9
Mínimo 6,9378 7,6498 6,9198 7,2294

Quartil (5%) 8,4962 8,7358 8,3266 8,1135
BS2 Máximo 17,2156 18,7294 19,4608 16,3588

Média 11,6099 11,5968 11,6695 11,3375
Desvio Padrão 1,9704 2,1599 2,3497 1,9671

Mínimo 0,4700 0,4456 0,4430 0,4371
Quartil (5%) 0,5106 0,5157 0,5199 0,4892

n = 100 BCCook
2 Máximo 0,8221 0,8425 0,8569 0,8248

Média 0,6467 0,6420 0,6614 0,6495
Desvio Padrão 0,0846 0,0923 0,0977 0,0943

Mínimo 0,8947 1,0170 0,9327 0,9299
Quartil (5%) 1,1451 1,1961 1,2291 1,0417

BCLV
2 Máximo 3,9542 4,7055 4,8919 4,4143

Média 1,9452 1,9521 2,0813 1,9531
Desvio Padrão 0,6068 0,6518 0,7098 0,6772

Mínimo 7,6851 7,8361 7,7808 7,9401
Quartil (5%) 8,4430 9,1621 8,8751 9,3422

BS2 Máximo 18,9896 19,6263 18,4937 21,5050
Média 12,4249 12,5647 12,4716 12,4584

Desvio Padrão 2,5092 2,3805 2,2745 2,3137
Mínimo 0,3179 0,3250 0,3466 0,3248

Quartil (5%) 0,3710 0,3958 0,3888 0,3878
n = 200 BCCook

2 Máximo 0,7313 0,7210 0,7118 0,7016
Média 0,5114 0,5103 0,5187 0,5139

Desvio Padrão 0,0892 0,0845 0,0841 0,0869
Mínimo 0,4709 0,4183 0,5656 0,4022

Quartil (5%) 0,5814 0,6813 0,6471 0,6368
BCLV

2 Máximo 2,5337 2,6514 2,1431 2,6191
Média 1,1213 1,1229 1,1430 1,1466

Desvio Padrão 0,4107 0,3973 0,3687 0,4102
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Tabela 3.12 Estatísticas globais BS0 e BC0 para o modelo SYMARMA-t4 sob o esquema de perturba-
ção no parâmetro de dispersão.

Tamanho Medida Percentis φ

amostral (%) 0,3 0,5 0,7 0,9
90 5,6829 5,6650 5,6740 5,6756

BS0 95 5,7897 5,7780 5,7768 5,7756
99 6,0030 5,9828 5,9497 5,9964

n = 100 90 1,3029 1,2837 1,2405 1,1897
BC0 95 1,4266 1,3910 1,3466 1,2598

99 1,7090 1,5766 1,5513 1,4074
90 7,9014 7,8953 7,8920 7,9031

BS0 95 8,0245 8,0195 8,0042 8,0039
99 8,1939 8,1956 8,1892 8,1714

n = 200 90 1,2180 1,2054 1,1634 1,1403
BC0 95 1,3119 1,2804 1,2363 1,1894

99 1,4822 1,4481 1,3563 1,2844

Tabela 3.13 Estatísticas individuais BS1, BCCook
1 e BCLV

1 para o modelo SYMARMA-t4 sob o esquema
de perturbação no parâmetro de dispersão.

Tamanho Medida Percentis φ

amostral (%) 0,3 0,5 0,7 0,9
90 3,7370 3,7344 3,7400 3,7315

BS1 95 3,8039 3,7981 3,8007 3,7999
99 3,9149 3,9274 3,9333 3,9165
90 0,5200 0,4971 0,4327 0,3654

n = 100 BCCook
1 95 0,5826 0,5489 0,4807 0,3981

99 0,6982 0,6421 0,5843 0,4423
90 0,3475 0,3162 0,2473 0,1674

BCLV
1 95 0,4539 0,3992 0,3037 0,1942

99 0,6517 0,5748 0,4326 0,2543
90 3,8008 3,8037 3,7988 3,8133

BS1 95 3,8637 3,8649 3,8603 3,8634
99 3,9429 3,9397 3,9457 3,9431
90 0,4449 0,4162 0,3650 0,2942

n = 200 BCCook
1 95 0,5081 0,4722 0,4073 0,3194

99 0,6261 0,5900 0,5233 0,3811
90 0,2475 0,2125 0,1629 0,1047

BCLV
1 95 0,3203 0,2718 0,1998 0,1222

99 0,5487 0,4797 0,3420 0,1710
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Tabela 3.14 Estatísticas individuais BS2, BCCook
2 e BCLV

2 para o modelo SYMARMA-t4 sob o esquema
de perturbação no parâmetro de dispersão.

Tamanho Medida Estatísticas φ

amostral 0,3 0,5 0,7 0,9
Mínimo 2,9514 3,0435 3,0422 3,0605

Quartil (5%) 3,3025 3,2850 3,2233 3,1814
BS2 Máximo 3,9697 3,9767 3,9843 3,9846

Média 3,6042 3,5789 3,5669 3,5555
Desvio Padrão 0,1971 0,1946 0,2120 0,2303

Mínimo 0,2924 0,2914 0,2513 0,2455
Quartil (5%) 0,3426 0,3184 0,2884 0,2714

n = 100 BCCook
2 Máximo 0,8894 0,8948 0,7599 0,4909

Média 0,5178 0,4683 0,4100 0,3431
Desvio Padrão 0,1140 0,1129 0,0987 0,0540

Mínimo 0,1538 0,1433 0,0938 0,0903
Quartil (5%) 0,1903 0,1593 0,1341 0,1145

BCLV
2 Máximo 2,0596 1,3563 1,2403 0,4143

Média 0,4739 0,3702 0,2878 0,1806
Desvio Padrão 0,2642 0,2078 0,1772 0,0605

Mínimo 3,0182 3,3041 3,2559 3,2032
Quartil (5%) 3,3608 3,3700 3,3739 3,3545

BS2 Máximo 3,9815 3,9816 3,9589 3,9832
Média 3,6593 3,6603 3,6486 3,6583

Desvio Padrão 0,1737 0,1651 0,1550 0,1712
Mínimo 0,2338 0,2196 0,2022 0,1869

Quartil (5%) 0,2832 0,2490 0,2366 0,2165
n = 200 BCCook

2 Máximo 0,7748 0,8498 0,7313 0,4728
Média 0,4599 0,4263 0,3636 0,2793

Desvio Padrão 0,1358 0,1293 0,1174 0,0527
Mínimo 0,0859 0,0715 0,0559 0,0511

Quartil (5%) 0,1099 0,0935 0,0793 0,0641
BCLV

2 Máximo 2,4161 1,0280 1,6984 1,2966
Média 0,3588 0,2873 0,2133 0,1098

Desvio Padrão 0,2949 0,1831 0,2065 0,0459
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Tabela 3.15 Estatísticas globais Os e Oc e seus respectivos limiares BS0 e BC0 para o ajuste do modelo
SYMARMA-normal sob o esquema de perturbação nos dados. (n = 100)

Medida φ 0,3 0,5 0,7 0,9

Os 8,2845 6,4144 6,8179 4,6936
Oc 2,7730 1,6624 1,8781 0,8901

BS0 11,3119 11,3108 11,3460 11,3628
BC0 5,1700 5,1691 5,2013 5,2167

Limiares BS0 e BC0 obtidos do percentil 95%.

Tabela 3.16 Estatísticas globais Os e Oc e seus respectivos limiares BS0 e BC0 para o ajuste do modelo
SYMARMA-normal sob o esquema de perturbação no parâmetro de dispersão. (n = 100)

Medida φ 0,3 0,5 0,7 0,9

Os 14,0948 12,2482 15,8804 21,6032
Oc 9,5888 7,4990 11,2089 20,9583

BS0 8,3364 8,3285 8,3528 8,2347
BC0 3,9331 3,9742 3,9779 3,9032

Limiares BS0 e BC0 obtidos do percentil 95%.

Tabela 3.17 Estatísticas globais Os e Oc e seus respectivos limiares BS0 e BC0 para o ajuste do modelo
SYMARMA-t4 sob o esquema de perturbação nos dados. (n = 100)

Medida φ 0,3 0,5 0,7 0,9

Os 9,7934 7,7477 9,2608 8,5628
Oc 3,2140 2,1174 3,2287 2,8541

BS0 9,9725 9,9704 9,9410 9,9462
BC0 3,4431 3,4104 3,3897 3,3884

Limiares BS0 e BC0 obtidos do percentil 95%.

Tabela 3.18 Estatísticas globais Os e Oc e seus respectivos limiares BS0 e BC0 para o ajuste do modelo
SYMARMA-t4 sob o esquema de perturbação no parâmetro de dispersão. (n = 100)

Medida φ 0,3 0,5 0,7 0,9

Os 4,6160 5,0710 5,4948 5,5152
Oc 0,9029 1,4951 0,9975 0,9066

BS0 5,7897 5,7780 5,7768 5,7756
BC0 1,4266 1,3910 1,3466 1,2598

Limiares BS0 e BC0 obtidos do percentil 95%.
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Figura 3.2 Diagnóstico de influência local na série 1 (φ = 0,3, ϕ = 1 e n = 100) sob o esquema de
perturbação nos dados para o modelo SYMARMA-normal.

Fonte: Autoria própria.
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Figura 3.3 Diagnóstico de influência local na série 1 (φ = 0,3, ϕ = 1 e n = 100) sob o esquema de
perturbação nos dados para o modelo SYMARMA-t4.

Fonte: Autoria própria.
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Figura 3.4 Diagnóstico de influência local na série 2 (φ = 0,5, ϕ = 1 e n = 100) sob o esquema de
perturbação nos dados para o modelo SYMARMA-normal.

Fonte: Autoria própria.
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Figura 3.5 Diagnóstico de influência local na série 2 (φ = 0,5, ϕ = 1 e n = 100) sob o esquema de
perturbação nos dados para o modelo SYMARMA-t4.

Fonte: Autoria própria.
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Figura 3.6 Diagnóstico de influência local na série 3 (φ = 0,7, ϕ = 1 e n = 100) sob o esquema de
perturbação nos dados para o modelo SYMARMA-normal.

Fonte: Autoria própria.
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Figura 3.7 Diagnóstico de influência local na série 3 (φ = 0,7, ϕ = 1 e n = 100) sob o esquema de
perturbação nos dados para o modelo SYMARMA-t4.

Fonte: Autoria própria.
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Figura 3.8 Diagnóstico de influência local na série 4 (φ = 0,9, ϕ = 1 e n = 100) sob o esquema de
perturbação nos dados para o modelo SYMARMA-normal.

Fonte: Autoria própria.
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Figura 3.9 Diagnóstico de influência local na série 4 (φ = 0,9, ϕ = 1 e n = 100) sob o esquema de
perturbação nos dados para o modelo SYMARMA-t4.

Fonte: Autoria própria.
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Figura 3.10 Diagnóstico de influência local na série 1 (φ = 0,3, ϕ = 1 e n = 100) sob o esquema de
perturbação no parâmetro de dispersão para o modelo SYMARMA-normal.

Fonte: Autoria própria.
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Figura 3.11 Diagnóstico de influência local na série 1 (φ = 0,3, ϕ = 1 e n = 100) sob o esquema de
perturbação no parâmetro de dispersão para o modelo SYMARMA-t4.

Fonte: Autoria própria.
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Figura 3.12 Diagnóstico de influência local na série 2 (φ = 0,5, ϕ = 1 e n = 100) sob o esquema de
perturbação no parâmetro de dispersão para o modelo SYMARMA-normal.

Fonte: Autoria própria.
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Figura 3.13 Diagnóstico de influência local na série 2 (φ = 0,5, ϕ = 1 e n = 100) sob o esquema de
perturbação no parâmetro de dispersão para o modelo SYMARMA-t4.

Fonte: Autoria própria.
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Figura 3.14 Diagnóstico de influência local na série 3 (φ = 0,7, ϕ = 1 e n = 100) sob o esquema de
perturbação no parâmetro de dispersão para o modelo SYMARMA-normal.

Fonte: Autoria própria.
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Figura 3.15 Diagnóstico de influência local na série 3 (φ = 0,7, ϕ = 1 e n = 100) sob o esquema de
perturbação no parâmetro de dispersão para o modelo SYMARMA-t4.

Fonte: Autoria própria.
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Figura 3.16 Diagnóstico de influência local na série 4 (φ = 0,9, ϕ = 1 e n = 100) sob o esquema de
perturbação no parâmetro de dispersão para o modelo SYMARMA-normal.

Fonte: Autoria própria.
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Figura 3.17 Diagnóstico de influência local na série 4 (φ = 0,9, ϕ = 1 e n = 100) sob o esquema de
perturbação no parâmetro de dispersão para o modelo SYMARMA-t4.

Fonte: Autoria própria.
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Capítulo 4

Aplicações a Dados Reais

4.1 Introdução

Nessa seção apresentamos dois exemplos práticos com o qual pretendemos avaliar a quali-

dade do ajuste e a capacidade preditiva do modelo SYMARMA perante séries temporais com

outliers. O primeiro conjunto de dados é o excesso de retorno nos preços de fechamento diário

da Microsoft, considerando como covariável o excesso de retorno fornecido pelo mercado, me-

dido pelo índice S&P500, abrangendo o período entre 1 de abril e 5 de setembro de 2002. O

segundo conjunto de dados é composto por observações anuais da inflação no Brasil, medida

pelo Índice Geral de Preços - Oferta Global (IGP-OG), entre os anos de 1970 e 2014.

Consideramos os esquemas de perturbação aditiva nos dados e no parâmetro de dispersão.

Três medidas de influência são estudadas: Curvatura de Cook (1986), Curvatura de Lesaffre

e Verbeke (1998) e Inclinação de Billor e Loynes (1993). A técnica de limiares, proposta na

Seção 3.3 do Capítulo 3, é utilizada para identificar observações influentes através dos critérios

globais BS0 e BC0 e dos critérios individuais BSi, BCCook
i e BCLV

i para i = 1 e 2.

Todas as funções para estimação, testes de hipóteses e diagnóstico foram desenvolvidas

pelo autor a partir de rotinas construídas utilizando o ambiente de programação R em sua

versão 3.1.2. Esta linguagem foi criada por Ross Ihak e Robert Gentleman na Universidade de

Auck land. O R encontra-se disponível gratuitamente em http://www.r-project.org.

A seguir apresentamos os resultados obtidos pelo ajuste dos modelos SYMARMA sob dis-

tribuições condicional normal, t-Student e exponencial potência para os conjuntos de dados



93

citados acima. A suspeita é que distribuições com caudas pesadas acomodam melhor as ob-

servações atípicas presentes nas séries estudadas, fazendo com que elas não exerçam grande

influência na modelagem dos dados e, por esse motivo, não são detectadas pelas medidas de

influência local propostas. Por outro lado, na modelagem realizada a partir do modelo SY-

MARMA sob distribuição normal, esses mesmos pontos atípicos devem ser destacados pelos

gráficos de influência.

4.2 Excesso de retorno da Microsoft

O conjunto de dados utilizado nessa seção corresponde a série excesso de retorno da Mi-

crosoft (Y ) e o excesso de retorno do índice S&P500 (X) entre 1 de abril e 5 de setembro de

2002, totatizando uma amostra de 109 observações. Essa mesma série, para o período corres-

pondente de 2 de novembro de 2001 até 31 de janeiro de 2003, foi utilizada anteriormente por

Maior e Cysneiros (2009) tendo sido ajustado o modelo CAPM (Capital Asset Pricing Model)

para estimar o risco sistemático da Microsoft. Os excessos de retornos estudados são definidos

como

yt = rt− r f t e xt = rmt− r f t ,

em que rt denota o retorno líquido1 da ação no período t, r f t indica a taxa livre de risco durante

o t-ésimo período avaliada pela taxa T-bill2 e rmt é o retorno fornecido pelo mercado medido por

algum índice, por exemplo, no caso do Brasil o IBOVESPA e no caso do mercado norteameri-

cano, o índice S&P500. Uma breve descrição do conjunto de dados completo pode ser encon-

trada em Ruppert (2004, p.239). Os dados podem ser obtidos em http : //www.de.ufpe.br/∼

cysneiros/elliptical/time_series.html.

Os valores máximo e mínimo para o excesso de retorno da Microsoft são 11,10% e -9,47%,

respectivamente. A inspeção direta do gráfico na Figura 4.1 sugere que a série não apresenta

tendência e podemos notar a presença de outliers. A Figura 4.2 mostra a relação entre o excesso

de retorno da S&P500 e o excesso de retorno da Microsoft. Podemos notar uma forte tendência

1O retorno líquido é definido como rt = (pt − pt−1)/pt−1, em que pt é o preço da ação no tempo t.
2A taxa T-bill foi dividida por 100 para conversão do valor percentual e, em seguida, por 253 para conversão

em um taxa diária (RUPPERT, 2004).
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linear entre os excessos de retornos; coeficiente de correlação igual a 0,79.

Figura 4.1 Série excesso de retorno da Microsoft.

Fonte: Autoria própria.

Figura 4.2 Excesso de retorno da S&P500 versus excesso de retorno da Microsoft.

Fonte: Autoria própria.

Observando a Figura 4.3 notamos o decaimento exponencial da correlação, o que sugere

a estacionariedade da série. E ainda, a partir do gráfico da correlação parcial, temos indícios

que um modelo autorregressivo de ordem 12 pode explicar bem o comportamento dessa série.

Por fim, o boxplot destaca um ponto atípico e podemos suspeitar que a distribuição dos dados

é simétria com caudas pesadas.
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Figura 4.3 Função de autocorrelação, autocorrelação parcial e boxplot da série excesso de retorno da
Microsoft.

Fonte: Autoria própria.

Inicialmente, ajustamos o modelo ARMA, isto é, o modelo SYMARMA-normal, dado por

yt = βXt +φ{Yt−12−βXt−12}+ rt , t = 13, . . . ,109. (19)

Baseado no procedimento desenvolvido por Chen e Liu (1993) para detecção de outliers

em modelos da classe ARIMA, os pontos y27 = 11,10% e y80 = −7,34% são considerados

outliers aditivos. O histograma, boxplot e o gráfico normal de probabilidades dos resíduos

obtidos pelo ajuste do modelo SYMARMA-normal são apresentados nas Figuras 4.4 e 4.5,

respectivamente. A partir dessas figuras, podemos considerar que os dados são simétricos com
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caudas pesadas. Adicionalmente, os coeficientes de assimetria e curtose empíricos são −0,227

e 4,465, respectivamente.

Figura 4.4 Histograma (a) e boxplot (b) dos resíduos obtidos pelo ajuste do modelo SYMARMA-
normal

Fonte: Autoria própria.

Figura 4.5 Gráfico normal de probabilidades com envelope para o ajuste dos modelos SYMARMA-
normal (a) e SYMARMA-t5 (b).

Fonte: Autoria própria.

Como proposta para acomodar melhor as observações atípicas presentes na série, reajusta-

mos o modelo (19) considerando duas outras distribuições de probabilidade com caudas mais

pesadas: as distribuições t-Student e exponencial potência. Utilizamos os critérios AIC, BIC e
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a raiz do erro médio quadrático (RMSE) para selecionar os graus de liberdade (ν) do modelo

t-Student, SYMARMA-t, e o parâmetro κ do modelo exponencial potência, SYMARMA-EP.

A Tabela 4.1 apresenta os resultados para alguns valores de ν entre 3 e 15 sendo selecionado

o modelo SYMARMA-t com ν = 5. Similarmente, na Tabela 4.2 temos os resultados para al-

guns valores do parâmetro κ variando entre 0 e 1 sendo selecionado o modelo SYMARMA-EP

com κ = 0,3. O parâmetro κ é responsável pela curtose da distribuição exponencial potência;

quanto maior o valor de κ , maior a curtose. Além disso, as distribuições normal e Laplace são

casos particulares obtidos quando κ = 0 e κ = 1, respectivamente.

Tabela 4.1 Valores para algumas medidas de comparação obtidas do ajuste de modelos SYMARMA-t
para a série excesso de retorno da Microsoft.

Modelo AIC BIC RMSE

SYMARMA-t3 413,91 419,06 3,427
SYMARMA-t4 412,26 417,41 3,364
SYMARMA-t5 411,68 416,83 3,340
SYMARMA-t8 411,74 416,89 3,345
SYMARMA-t12 412,47 417,63 3,393
SYMARMA-t15 412,96 418,11 3,429

Tabela 4.2 Valores para algumas medidas de comparação obtidas do ajuste de modelos SYMARMA-EP
para a série excesso de retorno da Microsoft.

Modelo AIC BIC RMSE

SYMARMA-EP(0,1) 414,49 419,64 3,657
SYMARMA-EP(0,3) 412,78 417,92 3,622
SYMARMA-EP(0,5) 412,58 417,73 3,643
SYMARMA-EP(0,7) 413,32 418,47 3,681
SYMARMA-EP(0,9) 414,49 419,63 3,979

As estimativas e os erros-padrão assintóticos das estimativas dos parâmetros dos três mode-
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los ajustados, juntamente com algumas medidas de comparação do ajuste, são apresentadas na

Tabela 4.3. Notamos que o modelo SYMARMA-t5 obteve o menor valor para as medidas AIC,

BIC e RMSE. Além disso, as estimativas dos parâmetros β , φ e ϕ do modelo SYMARMA-t5

têm menores erros-padrão assintóticos quando comparado aos modelos SYMARMA-normal e

SYMARMA-EP.

Tabela 4.3 Estimativas e erros-padrão assintóticos (em parênteses) das estimativas dos parâmetros dos
três modelos ajustados e algumas medias de comparação - série excesso de retorno da Microsoft.

Modelo Parâmetro Estimativas AIC BIC RMSE

SYMARMA-normal β 1,327 (0,105)
φ -0,132 (0,100) 416,20 421,35 3,728
ϕ 4,103 (0,589)

SYMARMA-t5 β 1,273 (0,097)
φ -0,162 (0,093) 411,68 416,83 3,340
ϕ 2,628 (0,477)

SYMARMA-EP(0,3) β 1,299 (0,100)
φ -0,134 (0,096) 412,78 417,92 3,622
ϕ 2,310 (0,378)

Os gráficos de correlação e correlação parcial dos resíduos obtidos pelo ajuste do modelo

SYMARMA-t5 e o gráfico normal de probabilidades com envelope indicam uma boa adequação

do modelo (ver Figuras 4.6 e 4.5).

O teste de Ljung-Box (LJUNG; BOX, 1978), utilizado aqui para avaliar a aleatoriedade dos

resíduos, obteve valor p igual a 0,891 indicando que os resíduos do ajuste são não correlaciona-

dos ao nível de 5% de significância. Na Figura 4.7 apresentamos a série ajustada pelo modelo

SYMARMA-t5 juntamente com a série original indicando um bom ajuste.

A Tabela 4.4 apresenta as previsões 12 passos à frente e a RMSE para os modelos SY-

MARMA ajustados. Baseado na RMSE, o modelo SYMARMA-normal teve uma melhor de-

sempenho a curto prazo e o modelo SYMARMA-t5 a longo prazo.

A partir de agora vamos avaliar a influência local das observações considerando dois esque-
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Figura 4.6 Função de autocorrelação e autocorrelação parcial dos resíduos obtidos do ajuste do modelo
SYMARMA-t5 - série excesso de retorno da Microsoft.

Fonte: Autoria própria.

Figura 4.7 Série original (linha preta) e série ajustada pelo modelo SYMARMA-t5 (linha azul) - série
excesso de retorno da Microsoft.

Fonte: Autoria própria.

mas de perturbação: perturbação aditiva nos dados e perturbação no parâmetro de dispersão.

Primeiramente, para cada esquema de perturbação, calculamos o vetor de inclinação e o vetores

de curvatura a partir das expressões derivadas nas Seções 3.2 e 3.4 do Capítulo 3. Em seguida,

estimamos os limiares BSi, BCCook
i e BCLV

i para i = 0,1 e 2, definidos na Seção 3.3 do Capítulo
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3, a partir de 2.000 simulações dos modelos estimados sob distribuição normal e t-Student. Os

resultados são apresentadas nas Tabelas 4.5 e 4.6. Por fim, comparamos os vetores de inclina-

ção e de curvatura com os limiares seguindo o procedimento descrito na Seção 3.3 do Capítulo

3.
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Informações relacionadas ao diagnóstico de influência são apresentadas nas Tabelas 4.7 e

4.8. Os limiares para análise de influência global, BS0 e BC0, foram calculados a partir do

percentil 95%. E, os limiares para análise de influência individual BS2, BCCook
2 e BCLV

2 foram

calculados a partir do percentil 5%.

Discutimos inicialmente o caso do modelo SYMARMA-normal (ver Tabela 4.7). Para

ambos esquemas de perturbação, as três medidas de influência local adotadas sugerem que a

série excesso de retorno da Microsoft possui pelo menos uma observação influente (Os > BS0

e Oc > BC0). Baseado nos limiares BS2, BCCook
2 e BCLV

2 , encontramos 12 pontos influentes

sob o esquema de perturbação nos dados e 2 pontos influentes sob o esquema de perturbação

no parâmetro de dispersão. Notamos que as observações y27 e y80 foram classificadas como

influentes por todas as medidas de diagnóstico e esquemas de perturbação considerados. Além

disso, os valores ajustados ŷ27 e ŷ80 estão associados aos maiores resíduos.

Para o modelo SYMARMA-t5 (ver Tabela 4.8), não encontramos nenhuma significância

global, ou seja, Os < BS0 e Oc < BC0 para ambos esquemas de perturbação e medidas de

diagnóstico consideradas. Sob o esquena de perturbação nos dados, também não foram encon-

trados indícios de observações individualmente influentes. Por outro lado, duas observações

foram destacadas pelo diagnóstico de curvatura sob o esquema de perturbação no parâmetro de

dispersão. Essas observações correspondem aos pontos y28 e y81. Tais pontos correspondem

a observações posteriores aos outliers detactados pelo procedimento desenvolvido por Chen e

Liu (1993). Notamos, ainda, que essas observações não estão associadas a grandes resíduos.

Nas Figuras 4.8 e 4.9, apresentamos (em valores absolutos) os vetores de inclinação e

de curvatura para as perturbações nos dados e no parâmetro de dispersão, respectivamente.

Os limiares BSi, BCCook
i e BCLV

i estão representados por linhas contínuas (para i = 1) e por

linhas tracejadas (para i = 2). Em quase todos os cenários, o modelo SYMARMA-normal

destaca pontos que não estão presentes no diagnóstico baseado no modelo SYMARMA-t5,

evidenciando a robustez do modelo SYMARMA-t.
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Figura 4.8 Diagnóstico de influência local na série excesso de retorno da Microsoft sob o esquema de
perturbação nos dados para os modelos SYMARMA-normal (lado esquerdo) e SYMARMA-t5 (lado
direito).

Fonte: Autoria própria.
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Figura 4.9 Diagnóstico de influência local na série excesso de retorno da Microsoft sob o esquema
de perturbação no parâmetro de dispersão para os modelos SYMARMA-normal (lado esquerdo) e
SYMARMA-t5 (lado direito).

Fonte: Autoria própria.
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4.3 Índice Geral de Preços - Oferta Global

A série histórica estudada nessa seção contém 45 observações anuais do Índice Geral de

Preços - Oferta Global (IGP-OG). Este é um dos índices inflacionários utilizados no Brasil,

calculado pela Fundação Getúlio Vargas (FGV). O período considerado corresponde aos anos

de 1970 até 2014. O IGP-OG é obtido pela média ponderada das parcelas Índice de Preços por

Atacado (IPA), Índice de Preços ao Consumidor (IPC) e Índice Nacional de Custo da Constru-

ção (INCC), com pesos iguais a 6, 3 e 1, respectivamente.

A série inflacionária em estudo é apresentada na Figura 4.10. Dados de inflação avaliados

por meio do IGP também foram estudados por Cribari-Neto e Cassiano (2005) que propuse-

ram quatro medidas robustas para checar impacto de choques econômicos no longo prazo. Da

Figura 4.10 observamos que a partir dos anos 80 a série é caracterizada por crescimentos acen-

tuados, que levaram o país à hiperinflação em 1989 e 1993. Conforme relatam Cribari-Neto e

Cassiano (2005): “Desde 1979 a história econômica brasileira foi marcada por muitas interven-

ções governamentais repentinas destinadas a controlar a inflação. Porém, alguns destes planos

de choque não obtiveram o efeito esperado, nem mesmo a curto prazo, e por isso não intro-

duziram inliers significativos na série, uma vez que não conseguiram baixar o nível das taxas

inflacionárias. Este foi o caso dos planos de choque Delfim I, Delfim II, Delfim III, Dornelles,

Arroz com Feijão, Éris, Marcílio e o Programa de Açao Imediata”.

Dentre as diversas observações atípicas presentes na série, podemos destacar os anos de

1986 (plano Cruzado), 1987 (plano Bresser), 1989 (plano Verão), 1990 (plano Collor I), 1991

(plano Collor II) e 1994 (plano Real). No período considerado, a maior taxa de inflação regis-

trada foi de 2.710,13% ao ano que ocorreu em 1993. Uma deflação de -1,40% também pôde

ser observada no ano de 2009.

O correlograma e o correlograma parcial da série são apresentados na Figura 4.11. Intui-

tivamente é razoável considerar que a inflação no Brasil segue um processo estacionário; a

inflação tende a flutuar em torno de algum patamar ao longo do tempo. Esse fato, somado à

evidência apresentada no correlograma, permite considerar que a série inflação no Brasil se-

gue um processo estacionário. A inspeção direta do correlograma sugere a presença de um

parâmetro de médias móveis e o correlograma parcial dá indícios de um possível parâmetro
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Figura 4.10 Série inflacionária no Brasil de acordo com IGP-OG.

Fonte: Autoria própria.

autorregressivo no modelo.

Figura 4.11 Função de autocorrelação e autocorrelação parcial da série IGP-OG.

Fonte: Autoria própria.

Considerando que a série segue um processo estacionário, variantes do modelo ARMA,

isto é, SYMARMA-normal, foram estimados. O critério de seleção utilizado para selecionar o

modelo final, dentre os modelos estimados, foi o BIC. Os resultados são apresentados na Tabela

4.9 e, como podemos notar, dentre os modelos estimados o que melhor descreveu a dinâmica
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dos dados foi o modelo SYMARMA(1,1),

yt = β +φ{Yt−1−β}+θrt−1 + rt , t = 2, . . . ,45, (20)

pois apresentou menor BIC e também maior valor para o logaritmo da função de verossimi-

lhança.

Tabela 4.9 Modelos SYMARMA-normal ajustados a série inflacionária no Brasil, para diferentes con-
figurações, e seus respectivos valores do critério BIC e o logaritmo da função de verossimilhança.

Modelo BIC `(δ̂ , ϕ̂)

SYMARMA(0,1)-normal 676,46 -332,52
SYMARMA(1,1)-normal 674,51 -329,64
SYMARMA(2,0)-normal 680,37 -332,57
SYMARMA(2,1)-normal 678,31 -329,64

A partir de agora vamos considerar distribuições mais flexível para ajustar os dados com o

objetivo de acomodar melhor as observações atípicas presentes na série. Foram ajustados mo-

delos SYMARMA-t com os graus de liberdade variando entre 3 e 12, e modelos SYMARMA-

EP com o parâmetro κ variando entre 0 e 1; ver Tabelas 4.10 e 4.11, respectivamente. De

acordo com as medidas de comparação adotadas, os modelos SYMARMA-t com 3 graus de

liberdade e SYMARMA-EP com o parâmetro κ = 0,5 obteverem os melhores ajustes dentre

os modelos considerados.

As estimativas e os erros-padrão assintóticos das estimativas dos parâmetros dos três mode-

los ajustados, juntamente com algumas medidas de comparação do ajuste, são apresentadas na

Tabela 4.12. Notamos que, para todas as medidas utilizadas, o modelo SYMARMA-t3 supera

a modelagem usual do modelo ARMA. Além disso, o modelo SYMARMA-t3 possui menores

erros padrão assintóticos para as estimativas dos parâmetros do modelo. Por fim, a dispersão

da série é melhor acomodada pelo modelo SYMARMA-t3.

A Figura 4.12 apresenta os gráficos de correlação e correlação parcial dos resíduos obtidos

do ajuste do modelo SYMARMA-t3. O teste de Ljung-Box, utilizado para checar a aleatorie-
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Tabela 4.10 Valores para algumas medidas de comparação obtidas do ajuste de modelos SYMARMA-t
para a série IGP-OG.

Modelo AIC BIC RMSE

SYMARMA-t3 574,22 581,36 3,1405
SYMARMA-t4 592,54 599,68 3,5842
SYMARMA-t5 606,06 613,20 4,1795
SYMARMA-t8 627,62 634,76 7,2037
SYMARMA-t12 637,70 644,84 10,7221

Tabela 4.11 Valores para algumas medidas de comparação obtidas do ajuste de modelos SYMARMA-
EP para a série IGP-OG.

Modelo AIC BIC RMSE

SYMARMA-EP(0,1) 647,83 654,97 14,5577
SYMARMA-EP(0,3) 636,20 643,34 6,5921
SYMARMA-EP(0,5) 621,78 628,92 5,3017
SYMARMA-EP(0,7) 621,48 628,62 8,3588

dade dos resíduos, sugere a não correlação dos resíduos ao nível de 5% de significância (valor

p igual a 0,8038). As séries ajustadas pelos modelos SYMARMA-normal e SYMARMA-t3,

juntamente com a série original, são apresentadas na Figura 4.13. Os resultados mostram os

valores ajustados pela distribuição normal foram bastante influenciados pelos outliers presentes

na série, enquanto que, os valores ajustados pelo modelo SYMARMA-t3 permanecem estáveis

ao longo de todo período.

A previsão fornecida pelo modelo SYMARMA-t3 para inflação no ano de 2015, baseada

na série histórica do índice IGP-OG, foi de 4,97%.

A partir de agora vamos avaliar a influência local das observações através das medidas de

influência propostas na Seção 3.2 do Capítulo 3 e o ajuste dos modelos SYMARMA-normal

e SYMARMA-t3. Utilizamos dois esquemas de perturbação: perturbação aditiva nos dados
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Figura 4.12 Função de autocorrelação e autocorrelação parcial dos resíduos obtidos do ajuste do mo-
delo SYMARMA-t3 - série IGP-OG.

Fonte: Autoria própria.

Figura 4.13 Série original (linha preta), série ajustada pelo modelo SYMARMA-normal (linha laranja)
e série ajustada pelo modelo SYMARMA-t3 (linha azul) - série IGP-OG.

Fonte: Autoria própria.
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Tabela 4.12 Estimativas e erros-padrão assintóticos (em parênteses) das estimativas dos parâmetros dos
três modelos ajustados e algumas medias de comparação - série IGP-OG.

Modelo Parâmetro Estimativas AIC BIC RMSE

SYMARMA-normal β 7,158 (3,818)
φ 0,465 (0,127) 667,28 674,51 21,45
θ 0,594 (0,197)
ϕ 137.729,6 (29.372,6)

SYMARMA-t3 β 0,535 (0,559)
φ 0,482 (0,017) 574,22 581,36 3,14
θ 0,503 (0,027)
ϕ 1.638,64 (494,1)

SYMARMA-EP(0,5) β -0,420 (3,110)
φ 0,455 (0,098) 621,78 628,92 5,30
θ 0,612 (0,151)
ϕ 37.907,45 (9.898,3)

e perturbação no parâmetro de dispersão. Os limiares BSi, BCCook
i e BCLS

i para i = 0,1 e 2,

definidos na Seção 3.3 do Capítulo 3, são estimados a partir de 2.000 simulações de Monte

Carlo.

Nas Tabelas 4.13 e 4.14 apresentamos, respectivamente, para os modelos SYMARMA-

normal e SYMARMA-t3, as marcas de referência obtidas para a análise de diagnóstico do vetor

de inclinação e do vetor de curvatura. Informações relacionadas ao diagnóstico de influência

são apresentadas nas Tabelas 4.15 e 4.16. Os limiares para análise de influência global, BS0

e BC0, foram calculados a partir do percentil 95%. Os limiares para análise de influência

individual, BS2, BCCook
2 e BCLV

2 , foram calculados a partir do percentil 5%.

De acordo com os resultados apresentados para o modelo SYMARMA-normal, as medidas

Os e Oc são significativas sob o critério global para a perturbação no parâmetro de dispersão.

Sob o critério individual, as observações y24 e y25 são identificadas como influentes para ambos

esquemas de perturbação e medidas de influência. Notamos também que essas observações

estão associadas a grandes resíduos. As observações y20 e y23, que também estão associadas a

grandes resíduos, foram destacadas pela curvatura de Cook sob o esquema de perturbação nos

dados.
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Analisando os resultados obtidos para o modelo SYMARMA-t3, identificamos influência

global ao nível de 95% apenas para o diagnóstico de inclinação sob o esquema de perturbação

no parâmetro de dispersão. Alguns pontos, como, por exemplo, as observações y24 e y25, são

classificados como individualmente influentes.

As Figuras 4.14 e 4.15 ilustram o comportamento dos vetores de diagnóstico d, C e C` (em

valores absolutos), calculados a partir do ajuste dos modelos SYMARMA-normal e SYMARMA-

t3, para a perturbação aditiva na variável resposta e a perturbação no parâmetro de dispersão,

respectivamente. Os limiares BSi e BCi estão representados por linhas contínuas (para i = 1)

e por linhas tracejadas (para i = 2). Notamos que os valores de di, ci e c`i para o modelo

SYMARMA-t3 são muito próximos as margens de referência BS2, BCCook
2 e BCLV

2 . Dessa

forma, recalculamos os limiares para análise de influência individual (BS2, BCCook
2 e BCLV

2 ),

considerando agora as séries que foram classificadas como globalmente influentes a partir do

percentil 99%. Os resultados mostraram que as observações, anteriormente classificadas como

influentes no ajuste do modelo SYMARMA-t3, não são mas significativas sob o critério in-

dividual; com excessão apenas para o diagnóstico de curvatura de Lesaffre e Verbeke sob o

esquema de perturbação nos dados. Para o ajuste do modelo SYMARMA-normal, as conclu-

sões permaneceram inalteradas.
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Figura 4.14 Diagnóstico de influência local na série inflacionária IGP-OG sob o esquema de perturba-
ção nos dados para os modelos SYMARMA-normal (lado esquerdo) e SYMARMA-t3 (lado direito).

Fonte: Autoria própria.



121

Figura 4.15 Diagnóstico de influência local na série inflacionária IGP-OG sob o esquema de perturba-
ção no parâmetro de dispersão para os modelos SYMARMA-normal (lado esquerdo) e SYMARMA-t3
(lado direito).

Fonte: Autoria própria.
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Capítulo 5

Rotinas elliptical.ts e influence.ts

É importante que toda a teoria desenvolvida nesta tese esteja disponível em algum software.

Com esta preocupação foram desenvolvidos macros no software R (IHAKA; GENTLEMAN,

1996). O R é um ambiente integrado que possui grandes facilidades para a manipulação de

dados, a geração de gráficos e a modelagem estatística. Devido ao seu código fonte ser aberto, o

mesmo tem recebido inúmeras contribuições de várias comunidades científicas. O R encontra-

se disponível em http://www.r-project.org, bem como diversos macros, que são implementações

das mais variadas áreas de estudo.

Com a ideia de difundir a modelagem estatística para dados temporais, desenvolvemos as

funções elliptical.ts, QQplot e influence.ts. A função elliptical.ts consiste em um conjunto de

rotinas computacionais que permitem a definição de distribuições pertencentes a classe simé-

trica e o ajuste dos parâmetros autoregressivos, de médias móveis e de dispersão do modelo

SYMARMA pelo método de máxima verossimilhança condicional. A função QQplot per-

mite gerar o gráfico normal de probabilidade com envelope e, por fim, a função influence.ts

possui rotinas que permitem o diagnóstico de influência local em séries temporais a partir

da metodologia de limiares proposta por Zhang e King (2005). Estes conjuntos de rotinas

encontram-se disponíveis gratuitamente para uso acadêmico em http://www.de.ufpe.br/∼cys

neiros/elliptical/time_series.html.

Vamos agora apresentar a sintaxe do comando para o ajuste de um modelo SYMARMA

sob uma particular distribuição simétrica condicional.
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elliptical.ts <- function(Y, X=cbind(seq(1,1,length=length(Y))), family="Normal",

epsilon=0.0001, maxit=100, trace="F", np, nq, df=3, epw=0.3, dfs=1, alpha=1, mp=1,

epsi=1, sigmap=1, fixed=NULL, ...)

A função elliptical.ts depende do pacote Matrix. Covariáveis precisam ser listadas em uma

matriz de dimensão n× k, em que n é o número de observações e k é o número de covariáveis.

O intercepto é considerado uma covariável de uns. Após o ajuste do modelo utilizando a função

elliptical.ts ficará disponível uma lista de objetos gerados, tais como:

coefficients: coeficientes autorregressivos e de médias móveis do modelo ajustado;

dispersion: coeficiente de dispersão do modelo ajustado;

residuals: resíduo (y−µ)/
√

ϕ;

fitted.values: valores ajustados;

loglik: o logaritmo da função de verossimilhança maximizada do modelo ajustado;

Wg: os valores da função Wg(u);

Wgder: os valores da função W ′g(u);

iter: número de iterações;

scale: 4dg;

scaledispersion: 4 fg - 1;

scalevariance: ξ ;

DesP.C: desvio-padrão assintótico das estimativas dos coeficientes autoregressivos e de mé-

dias móveis do modelo ajustado;

DesP.D: desvio-padrão assintótico da estimativa do parâmetro de dispersão do modelo ajus-

tado;
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rmse: raiz do erro médio quadrático.

Na opção family, definimos a família de distribuição a ser ajustada. Esta função, até o

presente momento, está definida para as distribuições abaixo:

Normal: family = Normal();

t de Student: family = Student(d f );

t de Student Generalizada: family = Gstudent(c(d f ,d f s));

Logística-I: family = LogisticI();

Logística-II: family = LogisticII();

Logística Generalizada: family = Glogistic(c(α ,mp));

Exponencial Potência: family = ExpPower(epw).

As opções epsilon e maxit definem o erro e o número máximo de iterações para convergên-

cia, respectivamente. As opções np e nq definem as ordens dos parâmetros autorregressivos e de

médias móveis, respectivamente. A opção trace permite a impressão dos resultados do ajuste.

Por fim, a opção fixed=c(ar,ma,X) permite selecionar apenas alguns parâmetros para serem es-

timados, por exemplo, para estimar apenas o parâmetro φ3 em um modelo SYMARMA(3,0)

utilizaremos fixed=c(0,0,NA). O gráfico normal de probabilidade com envelope é gerado pela

função QQplot.

QQplot<- function(fit, B=300)

A opção fit define o modelo SYMARMA ajustado e B o número de iterações.

Vamos agora apresentar a sintaxe do comando para análise de diagnóstico sob o enfoque de

influência local considerando o ajuste de um modelo SYMARMA sob uma particular distribui-

ção simétrica condicional.
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influence.ts <- function(adjust.model, esq.pert="aditive", diag="incl", seed=2015,

benchmarks.rep=2000, perc.ind1=95, perc.ind2=5, plot="TRUE", trace="TRUE")

Na opção adjust.model definimos o modelo SYMARMA ajustado pela função elliptical.ts,

na opção esq.pert definimos o esquema de perturbação, na opção diag temos a medida de

influência local adotada, o comando plot permite gerar o gráfico sob o diagnóstico de influên-

cia individial. Por fim, trace fornece alguns resultados gerais e as opção benchmarks.rep,

perc.ind1, perc.ind2 e seed definem os parâmetros para o cálculo dos limiares.

Até o presente momento, as funções QQplot e influence.ts estão definidas para as distribui-

ções normal e t-Student, a opção esq.pert para as perturbações: perturbação aditiva na variável

resposta (“aditive") e perturbação no parâmetro de dispersão (“dispersion"), e a opção diag para

as medidas de influência local propostas por Billor e Loynes (1993), Cook (1986) e Lesaffre e

Verbeke (1989), através dos comandos “incl", “cook"e “lv", respectivamente.

Após a análise de diagnóstico utilizando a função influence.ts ficará disponível uma lista de

objetos gerados, tais como:

B0: marca de referência para a medida de influência global;

B1: marca de referência para a medida de influência individual 1;

B2: marca de referência para a medida de influência individual 2;

glob: medida de influência para série em estudo - critério global;

indiv: vetor de influência para série em estudo - critério individual.

Vamos agora utilizar a série dos exessos de retorno nas ações da Microsoft (ver Seção 4.2,

Capítulo 4), para ilustrar algumas saídas disponibilizadas pelas funções implementadas consi-

derando o ajuste do modelo SYMARMA-t5. Os comandos utilizados são apresentados a seguir.

library(Matrix)

dat <- scan(what=list(msf=0,sp500=0,tbill=0))

30.09 1146.54 1.76
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28.55 1136.76 1.76

28.07 1125.40 1.75
...

23.83 893.92 1.62

attach(dat)

.tbill <- tbill/253

N <- length(tbill)

.sp500 <- ((sp500[2:N]-sp500[1:(N-1)])/sp500[1:(N-1)])*100

.msf <- ((msf[2:N]-msf[1:(N-1)])/msf[1:(N-1)])*100

X <- .sp500-.tbill[1:(N-1)]

Y <- .msf-.tbill[1:(N-1)]

X <- cbind(X)

fit2 <- elliptical.ts(Y, X, family="Student", df=5, np=12, nq=0,

trace=TRUE, fixed=c(0,0,0,0,0,0,0,0,0,0,0,NA,NA))

Call:

symarma(12,0) - family: Student

Coefficients:

. Estimative s.d.

intercept 1.2732547 0.09657443

ar1 0.0000000 0.00000000

ar2 0.0000000 0.00000000

ar3 0.0000000 0.00000000

ar4 0.0000000 0.00000000

ar5 0.0000000 0.00000000

ar6 0.0000000 0.00000000

ar7 0.0000000 0.00000000
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ar8 0.0000000 0.00000000

ar9 0.0000000 0.00000000

ar10 0.0000000 0.00000000

ar11 0.0000000 0.00000000

ar12 -0.1619578 0.09284748

varphi estimated as 2.6282 (s.d. = 0.4774)

log likelihooh = -203.8393

rmse = 3.34

rstand.t <- fit2$residuals

QQplot(fit2)

influence.ts(fit2,esq.pert="aditive",diag="incl")

"Benchmarks - 00% ..."

"Benchmarks - 25% ..."

"Benchmarks - 50% ..."

"Benchmarks - 75% ..."

"Benchmarks - 100%"

Call:

symarma(12,0) - family: Student

Billor & Loynes

Measures of local influence:

Inclination 5.320019

Benchmarks:
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BS0 6.309945

BS1 1.968821

BS2 1.937233

influence.ts(fit2,esq.pert="dispersion",diag="cook")

"Benchmarks - 00% ..."

"Benchmarks - 25% ..."

"Benchmarks - 50% ..."

"Benchmarks - 75% ..."

"Benchmarks - 100%"

Call:

symarma(12,0) - family: Student

Cook

Measures of local influence:

Curvature 21.07709

Benchmarks:

BC0 37.1777248

BC1 0.4220557

BC2 0.2913184
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Capítulo 6

Conclusões e Considerações Finais

Nessa tese trabalhamos com a classe de modelos SYMARMA que estende a classe de

modelos autorregressivos de médias móveis gaussiano (ARMA) para séries temporais perten-

centes à classe de distribuições simétricas. Foram apresentadas expressões mais simples para

o vetor escore a para matriz informação esperada de Fisher. Estudos de simulação apontaram

que os estimadores de máxima verossimilhança condicional para os parâmetros do modelo são

consistentes em erro quadrático médio e normalmente distribuídos. Resultados de simulação

baseados na função de influência dão indícios de que o procedimento para estimação dos parâ-

metros do modelo SYMARMA-normal não é robusto, podendo fornecer estimativas bastantes

viesadas para séries perante outliers, enquanto que, o procedimento para estimação dos pa-

râmetros no modelo SYMAMRA-t é considerado qualitativamente robusto. Adicionalmente,

acrescentamos componentes sazonais aos modelos SYMARMA dando origem aos modelos

SYMARMA sazonais.

A maior contribuição dessa tese é a utilização do uso da metodologia de limiares, proposta

por Zhang e King (2005), no diagnóstico de influência local para modelos SYMARMA. A

partir dessa metodologia foi possível estabelecer marcas de referência que determinam, estatis-

ticamente, que observações da série podem ser caracterizadas como influentes. Na maioria das

vezes essa caracterização é feita por meio de uma simples análise exploratória. Foram deriva-

das as expressões das medidas de influência local propostas por Cook (1986), Billor e Loynes

(1993) e Lesaffre e Verbeke (1998), considerando os esquemas de perturbação nos dados, per-

turbação no parâmetro de dispersão, perturbação no vetor de parâmetros autorregressivos e
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perturbação no vetor de parâmetros de médias móveis.

Realizamos estudos de simulação em modelos SYMARMA-normal e SYMARMA-t, e

dessa forma foi possível verificar que, baseados na técnica de limiares, o modelo SYMARMA-

t tende a acomodar melhor outliers em séries temporais não destacando-os como influentes.

Esse fato evidencia a robustez dos modelos SYMARMA com caudas mais pesadas no ajuste

de séries temporais que apresentem outliers.

Desenvolvemos as bibliotecas elliptical.ts e influence.ts que consistem em um conjunto de

rotinas computacionais que permitem a definição de distribuições pertencentes a classe simé-

trica e o ajuste dos parâmetros autorregressivos, de médias móveis e de dispersão do modelo

SYMARMA pelo método de máxima verossimilhança condicional. Além disso, permitem o

diagnóstico de influência local em séries temporais a partir da metodologia de limiares.

Através de dois exemplos práticos, notamos que os modelos SYMARMA-t e SYMARMA-

EP acomodaram melhor as observações atípicas presentes nas séries estudadas, quando com-

parados aos resultados fornecidos pelo modelo SYMARMA-normal.

Vários trabalhos podem ser desenvolvidos a partir dos resultados apresentados nessa tese.

Dentre eles podemos citar:

1. Dar continuidade aos estudos acerca dos modelos SYMARMA. Como por exemplo, es-

tudar o comportamento dos limiares e, consequentemente, das medidas de influência

local em modelos SYMARMA sazonais considerando também a presença de outliers de

inovação;

2. Desenvolver a classe de modelos SYMARMA para distribuições condicionais simétri-

cas contínuas com heteroscedasticidade e estudar medidas de diagnóstico para esta nova

classe de modelos;

3. Incorporar a ideia de variável resposta transformada a classe de modelos SYMARMA e

desenvolver procedimentos para estimação dos parâmetros e análise de diagnóstico. A

ideia de variável resposta transformada para dados temporais foi utilizada por Cordeiro

e Andrade (2009) no desenvolvimento do modelo TGARMA, autorregressivo de médias

móveis generalizado transformado.
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Por fim, esperamos que este estudo possa ampliar os conhecimentos a respeito de séries

temporais não-gaussianas, inspirando novas pesquisas nesse campo.



133

Referências

AKAIKE, H. Information theory and an extension of the maximum likelihood principle. Se-
cond International Symposium on Information Theory, p. 267-281, 1973.

AKAIKE, H. A new look at the statistical model identification. IEEE Transactions on auto-
matic control, V. 19, p. 716-723, 1974.

BENJAMIN, M. A.; RIGBY, R.A.; STASINOPOULOS, M. Generalized autoregressive mo-
ving average models. Journal of the American Statistical Association, v. 98, p. 214-223, 2003.

BESLEY, D. A.; KUH, E.; WELSCH, R. E. Regression diagnostics. New York: John Wiley,
1980.

BILLOR, N.; LOYNES, R. M. Local influence: A new approach. Communications in Statis-
tics Theory and Methods, v. 22, p. 1595-1611, 1993.

BOX, G. E. P.; COX, D. R. An analysis of transformations. Journal of the Royal Statistical
Society, v. 26, p. 211-252, 1964.

CHEN, C.; LUI, L. M. Joint estimation of model parameters and outlier effects in time series.
Journal of the American Statistical Association, v. 88, p. 284-297, 1993.

COOK, R. D.; WEISBERG, S. Residuals and influence in regression. New York: Chapman
and Hall, 1982.

COOK, R. D. Assessment of local influence (with discussion). Journal of the Royal Statistical
Society, v. 48, p. 133-169, 1986.

CORDEIRO G. M.; DE ANDRADE, M. G. Transformed generalized linear models. Journal
of Statistical Planning and Inference, v. 139, p. 2970-2987, 2009.

COX, D. R.; HINKLEY, D. V. Theoretical statistics. London: Chapman and Hall, 1974.

COX, D. R. Statistical analysis of time series: some recent developments. Scandinavian Jour-
nal of Statistics, v. 8, p. 93-115, 1981.

CREAL, D.; KOOPMAN, S. J.; LUCAS, A. Generalized autoregressive score models with
applications. Journal of Applied Econometrics, v. 28, p. 777-795, 2013.



134

CRIBARI-NETO, F.; CASSIANO, K. M. Uma análise da dinâmica inflacionária brasileira.
Revista Brasileira de Economia, v. 59, p. 535-566, 2005.

CYSNEIROS, F. J. A. Métodos restritos e validação de modelos simétricos de regressão. Tese
de doutorado, Departamento de Estatística, Universidade de São Paulo, Brasil, 2004.

CYSNEIROS, F. J. A.; PAULA, G. A. Restricted methods in symmetrical linear regression
models. Computation Statistics and Data Analysis, v. 49, p. 689-708, 2005.

EFRON, B.; TIBSHIRANI, R. J. An Introduction to the Bootstrap. New York: Chapman and
Hall, 1993.

FANG, K. T.; KOTZ, S.; NG, K. W. Symmetric multivariate and related distributions. London:
Chapman and Hall, 1990.

FOX, A. J. Outliers in times series. Journal of the Royal Statistical Society, v. 34, p. 350-363,
1972.

GALEA, M.; PAULA, G. A.; URIBE-OPAZO, M. On influence diagnostic in univariate ellip-
tical linear regression models. Statistical Papers, v. 44, p. 23-45, 2003.

HEYDE, C. C.; FEIGIN, P. D. On efficiency and exponential families in stochastic process
estimation. Statistical Distributions in Scientific Work, v. 1, p. 227-240, 1975.

IHAKA, R.; GENTLEMAN, R. R: A language for data analysis and graphics. Journal of
Computational Graphical and Statistics, v. 5, p. 299-314, 1996.

KELKER, D. Distribution theory of spherical distributions and a location-scale parameter
generalization. Sankhyã, v. 32, p. 419-430, 1970.

LESAFFRE, F.; VERBEKE, G. Local influence in linear mixed models. Biometrics, v. 38, p.
963-974, 1998.

LI, W. K. Testing model adequacy for some Markov regression models for time series. Bio-
metrika, v. 78, p. 83-89, 1991.

LI, W. K. Time series models based on generalized linear models: some further results. Bio-
metrics, v. 50, p. 506-511, 1994.

LIU, S. Local influence in multivariate elliptical linear regression models. Linear Algebra an
Its Applications, v. 354, p. 159-174, 2002.

Ljung, G.M. e Box, G.E.P. (1978). On a measure of a lack of fit in time series models. Biome-
trika, 65, 297-303.

LUCAS, A. Robustness of the Student-t based M-estimator. Communications in Statistics
Theory and Methods, v. 26, p. 1165-1182, 1997.

MAIOR, V. Q. S.; CYSNEIROS, F. J. A. Estimação do risco sistemático em modelos CAPM
com erros normais assimétricos. Revista Brasileira de Biometria, v. 27, p. 197-209, 2009.



135

MAIOR, V. Q. S. SYMARMA: Um modelo dinâmico para dados temporais sob distribuição
simétrica condicional. Dissertação de mestrado, Departamento de Estatística Universidade
Federal de Pernambuco, Brasil, 2012.

MARTIN, R. D.; YOHAI, V. J. Robustness in time series and estimating ARMA models.
Handbook of Statistics, v. 5, p. 119-155, 1985.

NOCEDAL, J.; WRIGHT, S. J. Numerical optimization. New York: Springer, 1999.

OTA, R. Valores aberrantes em séries temporais: teste de detecção e efeito na previsão de
valores agregados. Dissertação de mestrado, Departamento de Estatística, UNICAMP, Brasil,
1996.

PAULA, G. A.; MEDEIROS, M.; VILCA-LABRAB, F. E. Influence diagnostics for linear
models with first-order autoregressive elliptical errors. Statistics and Probability Letters, v.
79, p. 339-346, 2009.

PAULA, G. A.; CYSNEIROS, F. J. A. Systematic risk estimation in symmetric models. Ap-
plied Economics Letters, v. 16, p. 217-221, 2009.

ROCHA, A. V.; CRIBARI-NETO, F. Beta autoregressive moving average models. Test (Ma-
drid), v. 18, p. 529-545, 2009.

RUPPERT, D. Statistics and Finance. New York: Springer, 2004.

SCHALL, R.; DUNNE, T. T. Diagnostics for Regression-ARMA Time Series. New York:
Springer, 1991.

SCHWARZ, G. E. Estimating the dimension of a model. Annals of Statistics, v. 6, p. 461-464,
1978.

SHEPHARD, N. Generalized linear autoregressions. Technical report, Nuffield College, Ox-
ford University, 1995.

ZEGER, S. L.; QAQISH, B. Markov regression models for time series: a quasi-likelihood
approach. Biometrics, v. 44, p. 1019-1031, 1988.

ZEVALLOS, M.; HOTTA, L. K. Influential observations in GARCH models. Journal of Sta-
tistical Computation and Simulation, v. 82, p. 1571-1589, 2012.

ZHANG, X.; KING, M. L. Influence diagnostics in generalized autoregressive conditional
heteroscedasticity processes. Journal of Business and Economic Statistics, v. 23, p. 118-129,
2005.



136

Apêndice A

Prova do Teorema 1

Prova: Denote Φ(B) = 1− φ1B− ·· · − φpBp o polinômio autorregressivo, Θ(B) = 1+
θ1B+ · · ·+θqBq o polinômio de médias móveis e Bkyt = yt−k o operador de defasagens. Pode-
mos reescrever o modelo SYMARMA como

Φ(B)(Yt−x>t β ) = Θ(B)rt ,

e, desde que Φ(B) seja invertível,

Yt = x>t β +Ψ(B)rt ,

em que rt’s são resíduos tais que E(rt)= 0 e E(rtr j)= 0, para cada t 6= j, e Ψ(B)=Θ(B)Φ(B)−1.
Desta forma, assumindo que Φ(B) é invertível, a média marginal de Yt é dada por

E(Yt) = x>t β .
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Apêndice B

Prova do Teorema 2

Prova: Seja Yt = µt + rt em que rt’s são resíduos não correlacionados com média zero.
Temos que

Var(rt) = E(r2
t ) = E(E(r2

t |Ht−1)) = E(Var(rt |Ht−1)) = E(Var(Yt−µt |Ht−1))

= E(Var(yt |Ht−1)) = E(ξ ϕ) = ξ ϕ.

Note que µt , definido em (6), é Ht−1-mensurável. Portanto, desde que Φ(B) seja invertível,
a variância marginal de Yt , Var(Yt), é dada por

Var(Yt) = Var(x>t β +Ψ(B)rt) = Var(Ψ(B)rt) = E[(Ψ(B)rt)
2]

=
∞

∑
i=0

∞

∑
j=0

ψiψ jE(rt−irt− j) =
∞

∑
i=0

ψ
2
i E(r2

t−i) =
∞

∑
i=0

ψ
2
i Var(rt−i)

= ξ ϕ

∞

∑
i=0

ψ
2
i .
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Apêndice C

Prova do Teorema 3

Prova: Pelos Teoremas 1 e 2, obtemos que

E(Yt) = x>t β e Var(Yt) = ξ ϕ

∞

∑
i=0

ψ
2
i .

Utilizando o modelo SYMARMA expresso por meio de um processo linar geral,

Yt = x>t β +Ψ(B)rt = x>t β +
∞

∑
i=0

ψirt−i,

temos que a função de covariância fica definida como

Cov(Yt ,Yt−k) = Cov(x>t β +
∞

∑
i=0

ψirt−i,x>t−kβ +
∞

∑
i=0

ψirt−k−i)

= Cov(ψ0rt +ψ1rt−1 + · · · ,ψ0rt−k +ψ1rt−k−1 + · · ·)

= Var(rt)
∞

∑
i=0

ψiψi+k

= ξ ϕ

∞

∑
i=0

ψiψi+k,
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em que ψ0 = 1. Adicionalmente,

Corr(Yt ,Yt−k) =
Cov(Yt ,Yt−k)√

Cov(Yt ,Yt)Cov(Yt−k,Yt−k)

=

ξ ϕ
∞

∑
i=0

ψiψi+k

ξ ϕ
∞

∑
i=0

ψ2
i

=

∞

∑
i=0

ψiψi+k

∞

∑
i=0

ψ2
i

.
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Apêndice D

Matriz de informação condicional esperada de
Fisher para modelos SYMARMA(p,q)

Apresentamos nesse apêndice os elementos que compõem a matriz informação condicinal
esperada de Fisher, K, isto é, as expressões resultantes de

Kωrωs =−E
[

∂ 2`(δ ,ϕ)

∂ωr∂ωs
|Ht−1

]
= E

[
∂`(δ ,ϕ)

∂ωr

∂`(δ ,ϕ)

∂ωs
|Ht−1

]
,

em que ωr e ωs representam parâmetros do modelo e ` é o logaritmo da função de verossimi-
lhança condicional expresso por

`(δ ,ϕ) =
n

∑
t=m+1

log f (yt |Ht−1),

sendo m = max{p,q} em que p e q são as ordens dos parâmetros autoregressivos e de médias
móveis, respectivamente. Dessa forma,

`(δ ,ϕ) =−(n−m)

2
log(ϕ)+

n

∑
t=m+1

log(g(ut)), (21)

em que ut = (yt−µt)
2/ϕ e

µt = x>t β +
p

∑
i=1

φi

{
yt−i−x>t−iβ

}
+

q

∑
j=1

θ j(yt− j−µt− j).
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D.1 Resultados gerais
Sob condições de regularidade usuais

E
(

∂`t(δ ,ϕ)

∂ µt
|Ht−1

)
= E

(
∂ log f (yt |Ht−1)

∂ µt

)
=
∫

∞

−∞

∂ log f (yt |Ht−1)

∂ µt
f (yt |Ht−1)dµt

=
∫

∞

−∞

(
1

f (yt |Ht−1)

∂ f (yt |Ht−1)

∂ µt

)
f (yt |Ht−1)dµt

=
∫

∞

−∞

∂ f (yt |Ht−1)

∂ µt
dµt =

∂

∂ µt

∫
∞

−∞

f (yt |Ht−1)dµt = 0. (22)

Após de algumas manipulações algébricas, temos que

∂`t(δ ,ϕ)

∂ µt
=− 2
√

ϕ
Wg(ut)zt ,

em que Wg(ut) = ∂ log(g(ut))/∂ut e zt =
√

ut = (yt−µt)/
√

ϕ . Portanto, utilizando o resultado
em (22), temos que

E(Wg(ut)zt |Ht−1) = 0. (23)

Temos ainda que as expressões

∂ µt

∂βl
= xtl−

p

∑
i=1

φix(t−i)l,
∂ µt

∂φi
= yt−i−x>t−iβ e

∂ µt

∂θ j
= yt− j−µt− j (24)

são Ht−1-mensuráveis.

D.2 Elementos da matriz K
δδ

Temos que

E
(

∂`t(δ ,ϕ)

∂δi

∂`t(δ ,ϕ)

∂δ j
|Ht−1

)
= E

[(
−2Wg(ut)√

ϕ

∂ µt

∂δi
zt

)(
−2Wg(ut)√

ϕ

∂ µt

∂δ j
zt

)
|Ht−1

]
=

4
ϕ

E
[
W 2

g (ut)z2
t

∂ µt

∂δi

∂ µt

∂δ j
|Ht−1

]
=

4
ϕ

E
[
W 2

g (ut)z2
t |Ht−1

] ∂ µt

∂δi

∂ µt

∂δ j

=
4
ϕ

dg
∂ µt

∂δi

∂ µt

∂δ j
,

em que dg = E
[
W 2

g (ut)z2
t |Ht−1

]
, ou seja, dg = E

[
W 2

g (U
2)U2|Ht−1

]
, sendo U ∼ S(0,1,g).

Utilizando os resultados em (24) podemos facilmente encontrar as expressões para os ele-
mentos de K

δδ
.
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D.3 Elementos da matriz Kϕϕ

Da equação (21) obtemos que

E
(

∂`t(δ ,ϕ)

∂ϕ

∂`t(δ ,ϕ)

∂ϕ
|Ht−1

)
= E

[(
− 1

2ϕ
−

Wg(ut)

ϕ
ut

)(
− 1

2ϕ
−

Wg(ut)

ϕ
ut

)
|Ht−1

]
= E

[
1

4ϕ2 +
Wg(ut)ut

ϕ2 +
W 2

g (ut)u2
t

ϕ2 |Ht−1

]
=

1
4ϕ2 +

1
ϕ2 E [Wg(ut)ut |Ht−1]+

1
ϕ2 E

[
W 2

g (ut)u2
t |Ht−1

]
=

1
4ϕ2 +

1
ϕ2

(
−1

2

)
+

1
ϕ2 fg

=
1

ϕ2 fg−
1

4ϕ2 =
1

4ϕ2 (4 fg−1) ,

em que fg = E
[
W 2

g (ut)u2
t |Ht−1

]
, ou seja, fg = E

[
W 2

g (U
2)U4|Ht−1

]
, sendo U ∼ S(0,1,g). O

resultado E [Wg(ut)ut |Ht−1] =−1/2 foi retirado de Fang et al. (1990, p. 94).
Utilizando o resultado acima obtemos que

Kϕϕ =
n

∑
t=m+1

1
4ϕ2 (4 fg−1) =

(n−m)

4ϕ2 (4 fg−1) .

D.4 Elementos da matriz K
δ ϕ

Temos que

E
(

∂`t(δ ,ϕ)

∂δi

∂`t(δ ,ϕ)

∂ϕ
|Ht−1

)
= E

[(
−2Wg(ut)√

ϕ

∂ µt

∂δi
zt

)(
− 1

2ϕ
−

Wg(ut)

ϕ
ut

)
|Ht−1

]
= E

[
Wg(ut)

ϕ
√

ϕ
zt |Ht−1

]
∂ µt

∂δi
+E

[
2W 2

g (ut)

ϕ
√

ϕ
ztut |Ht−1

]
∂ µt

∂δi

=
1

ϕ
√

ϕ

{
E [Wg(ut)zt |Ht−1]+2E

[
W 2

g (ut)ztut |Ht−1
]} ∂ µt

∂δi

= 0.

O resultado E
[
W 2

g (ut)ztut |Ht−1
]
= 0 foi retirado de Fang et al. (1990, p. 94) e de (23),

temos que E [Wg(ut)zt |Ht−1] = 0.
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Apêndice E

Matriz de informação condicional observada de
Fisher para modelos SYMARMA(p,q)

Esse apêndice contém as expressões que compõem a matriz de derivadas parciais de se-
gunda ordem do logaritmo da função de verossimilhança condicional do modelo SYMARMA,
dado por

`(δ ,ϕ) =−(n−m)

2
log(ϕ)+

n

∑
t=m+1

log(g(ut)), (25)

em que ut = (yt−µt)
2/ϕ e

µt = x>t β +
p

∑
i=1

φi

{
yt−i−x>t−iβ

}
+

q

∑
j=1

θ j(yt− j−µt− j).

E.1 Resultados gerais
As derivadas de primeira e segunda ordem do logaritmo da função de verossimilhança con-

dicional `t(δ ,ϕ) com relação a µt são expressas, respectivamente, por

∂`t(δ ,ϕ)

∂ µt
=− 2

ϕ
Wg(ut)(yt−µt) e

∂ 2`t(δ ,ϕ)

∂ µ2
t

=
2
ϕ

(
Wg(ut)+2W ′g(ut)ut

)
,

em que Wg(ut) = ∂ log(g(ut))/∂ut e W ′g(ut) = ∂Wg(ut)/∂ut .
Após agumas manipulações algébricas temos que

∂ µt

∂βl
= xtl−

p
∑

i=1
φix(t−i)l,

∂ µt

∂φi
= yt−i−x′t−iβ ,

∂ µt

∂θ j
= yt− j−µt− j,

∂ 2µt

∂βl∂φi
=−x(t−i)l,

∂ 2µt

∂φi∂θ j
= 0 e

∂ 2µt

∂βl∂θ j
= 0.
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E.2 Derivadas de segunda ordem entre elementos do vetor δ

Da equação (25) obtemos que

∂ 2`(δ ,ϕ)

∂δi∂δ j
=

n

∑
t=m+1

∂

∂δ j

(
∂`t(δ ,ϕ)

∂ µt

∂ µt

∂δi

)
=

n

∑
t=m+1

∂ 2`t(δ ,ϕ)

∂ µ2
t

∂ µt

∂δ j

∂ µt

∂δi
+

∂`t(δ ,ϕ)

∂ µt

∂ 2µt

∂δi∂δ j

=
n

∑
t=m+1

2
ϕ

(
Wg(ut)+2W ′g(ut)ut

) ∂ µt

∂δ j

∂ µt

∂δi
− 2

ϕ
Wg(ut)(yt−µt)

∂ 2µt

∂δi∂δ j

=
n

∑
t=m+1

− 1
ϕ

{
2st

∂ 2µt

∂δi∂δ j
+at

∂ µt

∂δ j

∂ µt

∂δi

}
,

em que st =Wg(ut)(yt−µt) e at =−2
{

Wg(ut)+2W ′g(ut)ut
}

.
Utilizando os resultados da Seção E.1 podemos facilmente encontrar as expressões para as

derivadas de segunda ordem entre os elementos do vetor δ .

E.3 Derivadas de segunda ordem entre elementos do vetor δ

e ϕ

Nesse caso, temos que

∂ 2`(δ ,ϕ)

∂δi∂ϕ
=

n

∑
t=m+1

∂

∂δ j

(
− 1

2ϕ
−

Wg(ut)

ϕ
ut

)
=

n

∑
t=m+1

1
ϕ

[
2W ′g(ut)

(yt−µt)

ϕ

∂ µt

∂δi
ut +2Wg(ut)

(yt−µt)

ϕ

∂ µt

∂δi

]
=

n

∑
t=m+1

2
ϕ2

[
W ′g(ut)ut +Wg(ut)

]
(yt−µt)

∂ µt

∂δi

=
n

∑
t=m+1

2
ϕ2 bt

∂ µt

∂δi
,

em que bt =
{

Wg(ut)+W ′g(ut)ut
}
(yt−µt).

Dessa forma, com auxílio dos resultados apresentados na Seção E.1, podemos encontrar as
expressões para as derivadas de segunda ordem entre o vetor de parâmetros δ e ϕ .
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E.4 Derivadas de segunda ordem do parâmetro ϕ

Temos que

∂ 2`(δ ,ϕ)

∂ϕ2 =
n

∑
t=m+1

∂

∂ϕ

(
− 1

2ϕ
−

Wg(ut)

ϕ2 (yt−µt)
2
)

=
n

∑
t=m+1

1
2ϕ2 +

2Wg(ut)

ϕ3 (yt−µt)
2 +

1
ϕ2W ′g(ut)

(yt−µt)
2

ϕ2 (yt−µt)
2

=
n

∑
t=m+1

1
ϕ2

[
1
2
+2Wg(ut)ut +W ′g(ut)u2

t

]
.


