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Resumo

Os mais variados sistemas sociais, bioldgicos, fisicos, quimicos e computacionais tem
sido investigados pela drea de Sistemas Dinamicos para formalizar o comportamento no tempo
e quantificar e qualificar variacdes paramétricas desses sistemas. Na biologia em particular,
estudos tem mostrado que a maximizacdo de aprendizado de um neurdnio pode acontecer dentro
de certas condicdes da sua dinAmica onde o processamento de informagao é otimizado. Espera-se
entdo que essas condi¢des possam ser reconhecidas e utilizadas em modelos artificiais.

Este trabalho descreve o comportamento do neurdnio artificial quantico sem peso qRAM,
desde a concepg¢do de modelos de iteragdo - visto as condi¢des fisico-matematicas da computagao
quantica que restringe a extracdo da informacao isolada do valor de saida do neurdnio a cada
etapa de tempo - até sua andlise paramétrica de onde comportamentos convergentes, amortecidos
ou oscilatorios sdao detalhados. Ferramentas dos sistemas dindmicos como diagrama de Orbitas e
séries temporais ilustram qualitativamente sua variabilidade temporal.

A principal contribuicio desse trabalho € detalhar o comportamento do neur6nio qRAM
a fim de que os resultados possam ser usados dentro da drea de aprendizagem de maquina,
acoplado com sistemas maiores e complexos, com maximiza¢ao de tarefas de aprendizado.
Como resultado, hd proposicao de mais um modelo de dindmica neuronal, o QEM, o estudo
paramétrico dos modelos de dinamicas existentes, que se identifica comportamentos subamorte-
cidos, sobreamortecidos e ndo-amortecidos na dinidmica, assim como a apresentacdo de uma
configuracdo neuronal dentro da arquitetura quantica que apresenta comportamento caético. Um

modelo de medicao quantitivo para comparar dindmicos foi também proposto.

Palavras-chave: Sistemas Dinadmicos. Computacdao Quantica. Neur6nios Sem-Peso. Oper-

adores Nao-unitdrios. Emaranhamento. Problemas NP-Completo. Caos



Abstract

A wide spectrum of social, biological, physical, chemical and computational systems
have been investigated by the tools and techniques from the field of Dynamical Systems Theory
to formalize the behaviour in time and quantify and qualify the parametric variations of those
systems. In Biology in particular, studies have shown that learning neuron maximization can
occur in specific dynamics conditions where information processing is optimized. This it may be
expected that some of those conditions can be recognized and used in artificial models.

This work studies the quantum artificial neuron weightless qRAM behavior, from the
design iteration models - taking into account the physical and mathematical conditions of quan-
tum computing that restricts the extraction of information at every time step - to its parametric
analysis where converging behaviors, damped or oscillatory, are detailed. Tools of dynamical
systems like orbits diagram and time series qualitatively illustrate its temporal variability.

The main contribution of this work is to detail the neuron gRAM behavior so that the
results can be used within the machine learning area, coupled with larger systems to achieve
maximum learning tasks. As result, we propose a novel dynamical neuron model, named
Quadratic Extraction Model (QEM), we perfom parametric studies of the existing models
where underdamped, overdamped and undamped behaviour are encountered, and we present a
presentation of a neuron configuration inside a quantum architecture with chaos behaviour. A

quantitative measure model to compare dynamics orbits was also proposed.

Keywords: Dynamical Systems. Quantum Computing. Weightless Neurons. Non-Unitary
Operators. Entanglement. NP-Complete Problems. Chaos
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Introduction

No man really becomes a fool until he stops asking questions.

—CHARLES P. STEINMETZ

The field of Dynamical Systems brings quantitative and qualitative working explanation
for any existing system which evolves in time (STROGATZ, 1994). To find the analytical
expression for the behaviour of a particular system does not necessarily lead to an understanding
of its parametric dependency, its possible temporal convergence, whether there is chaos, fractality
and bifurcation. Progress in this field is achieved by building techniques, tools and methods
to examine how the various elements of the systems, from the simplest to the most complex,
correlate themselves in time.

A dynamical model can be used to produce an expected behavior, serving as input signal
generator or even as the main module functioning as a complex system, e.g. to encrypt texts
may involve a chaotic module (BAPTISTA, 1998) or in fractals it can help either to generate
or to segment textures (CHAUDHURI; SARKAR, 1995; KELLER; CHEN; CROWNOVER,
1989). Biological neurons should work better in chaotic regime, bifurcation or phase change
(KINOUCHI; COPELLLI, 2006; TORRES; MARRO, 2015; GROSS, Online em 2015).

The fact that biological neurons can learn under certain dynamical behavior inspired
the research reported in this dissertation. A quantum artificial weightless neuron model named
qRAM was proposed by OLIVEIRA (2009). To understand gRAM quantitative and qualitative
dynamical became an important task because the qRAM is a neuron with parameters that will
influence their internal characteristics, such as its computing power and learning speed.

The analysis of the dynamical of a quantum weightless artificial neuron is an interdisci-
plinary field of study involving dynamical systems, quantum computing and artificial intelligence.
One could then offer several introductory views for this research. We choose to start from the

history of dynamical systems and to move toward the study of the dynamical of classical and



1.1. THE BIRTH OF THE FIELD OF DYNAMICAL SYSTEMS 12

quantum neurons.

1.1 The birth of the field of Dynamical Systems

The early history of Dynamical Systems goes back to the principles of science and
astronomy. It is basically the study of celestial bodies positions and velocities changing the first
contributions to the construction of the Dynamic Systems area. The philosopher Aristotle (384-
322 BC), pupil of Plato, was responsible for Western knowledge structuring and started the study
of celestial bodies dynamics. Among his treatises on Biology, Economics, Rhetoric, Aesthetics,
Ethics, Politics and Psychology, it is also his legacy in Physics. In other words, one of his main
contribution was the methodological rules organization about the investigation of the dynamical
of the Moon orbits, the Sun, the Earth and the Universe. However, underpinned by his expertise
in his few research resources, Aristotle had a qualitative and incomplete vision of celestial
mechanics. There was no quantitative predictions on the location of planets (MONTEIRO,
2006).

C. Ptolemy (85-165) continued the Aristotelian studies. After him, came T. Brahe (1546-
1601), N. Copernicus (1473-1543), J. Kepler (1571-1630) and some others. It is not our intention,
in this introduction, mention all the great things and astronomical physics disappointments, but
we can highlight that studies of celestial bodies culminated in the Treaty of Dynamic concepts,
proposed by the physicist, mathematician, astronomer and philosopher Galileo Galilei (1564-
1642). Galileo was pioneer using telescope and introduced the concept of inertia, acceleration of
bodies and gravity.

In the year of Galileo’s death, it was born E. Newton (1642-1727) who derived the law of
universal gravitation, proposed the Newton Three Laws for moving bodies: principle of inertia,
fundamental principle of dynamics and the principle of action and reaction as well he wrote the
famous Mathematical Principles of Natural Philosophy. To validate his idea, Netwon tested his
theories in the Earth-Moon system model. Newton proposed that it would be possible to describe
the motion of bodies and show that they are affected by each other. That analytical solution
is only trivial for two bodies. The following physical and mathematical scientists generations
attempted to apply the method to three bodies and after one finally proved insoluble in the sense
that you can not solve, analytically and accurately, the equations governing their movements. The
solution of that equation came only appear in 1917, given by A. Einstein (1879-1955), through
the General Theory of Relativity (MONTEIRO, 2006).

We are closer to the modern studies of the Dynamic Systems area, but we could speak
before about quantum mechanics and its uncertainty principle, proposed by WK Heisenberg
(1901-1976).

The Universe was the landscape for depth studies in Physics when scientists decided
to look their lenses toward the microscopic world. To meet at the same time, the position and
velocity of an electron was impossible within the theory of quantum mechanics. That occurs

because to measure one of the observable parameters (position, for example) of an electron
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system would need to change the system working (and also changing the object speed). To predict
the positions in macromolecular scales are theoretically trivial and possible experimentally, as
did Galileo with pendulums, inclined planes and projectiles. But that ease of calculation did not
exist at the microscopic universe. One wonders if some existing phenomena had correlation with
only quantum factors or intrinsic sensibility of the system working. For example, scientists often
cite the difficulty in temperature variation predicting and the occurrence of rain as theoretically
hard to do. The desire to understand how the systems behave and what the cases of system
sensibilities began to gain power.

JH Poincaré (1854-1912) then introduced the qualitative analysis of the systems, using
geometrical and topological techniques. His work is then pioneer on the qualitative theory since
he realized that the system could be investigated without being needed to find analytical solutions,
solving nonlinear differential equations (still non-trivial nowadays). Analyzing the background
of the problem initialized by Newton three-body problem, Poincare found that small variations
in the early system conditions led him to a final behavior entirely different. That is a narrative of
a concept that would only become formalized nearly 62 years later through the Chaos definition.

In 1962, EN Lorenz (1917-2008) became professor of atmospheric science at MIT. At
that time, to predict the temperature meant using the linear prediction method: to find the linear
coefficient weights of the various system variables (humidity, pressure, temperature the day
before, temperature in the previous hour, etc).

Lorenz wonders if any problem related to weather forecast could be solved by linear
forecasting method, as believed N. Wiener (1894-1964) (MONTEIRO, 2006). For that, Lorenz
decided to generate a time series of a nonlinear differential equation numerical solution. Such
non-linear differential equation system, the Navier-Stokes equations, modelled in a simplified
way the atmospheric circulation.

What Lorenz identified is that linear forecast model is enough to predict stationary and
periodic systems. When he found parameters in the equation system which generated aperiodic
data, Lorenz showed that the linear prediction really could not predict those series.

For to do that, Lorenz used a computing to integrate numerically during on average six
hours at every step (MONTEIRO, 2006). As he checked the program running once every day, he
had printed the value of 12 variables every 4 integration steps, with only first 3 significant digits
of each variable, appearing on the screen in a single line. Deciding view in more details the
behavior of the 12 variables, Lorenz modified his code to print more variables informations in
the middle of the list that was already being printed. However, the result was that the calculated
values were not equal now to those obtained in the previous calculation. Lorenz changed his
computers valve, believing be experiencing some electrical problem. He re-examined the data
and found that the first of the new experiment values were equal to the previous experiment, but
after some iterations, the values differed in the last decimal place and ‘“accumulate the error".
The difference between sets then increased until the numbers turn completely different. Lorenz

then understood that by modifying the code, he had inserted a tiny change in the calculation
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of number rounding, which made the series generated exponentially distanced series of the
first experiment. That analysis made him interpret that some equations had sensitivity to initial
conditions and the numerical accuracy for predicting atmospheric circulation could lead to the
calculation completely different values than expected. That sensitivity became known as butterfly
effect, “one of a butterfly wings beating in Brazil can cause the appearance of a tornado in Texas"
said Lorenz.

Because the discovery of that sensibility to initial conditions of certain systems, Lorenz
is known as "father of chaos" and the search area grew. Soon after, B. Mandelbrot (1924-2010)
understood and popularized fractals, showing that the study of dynamical systems could be in the
sciences and the arts, synthetically generating textures, understanding the biological oscillations
such as heartbeat, etc (STROGATZ, 1994).

With the advancement of computers and computer graphics, it was possible to visualize
the behavior of systems in massively repetitive calculations, avoiding manual hard working.
In 1976, J. Hubbard (1945), analyzing the dynamical of Newton’s method to find the root
of complex equations, took an important step towards the analysis of interesting patterns in
dynamical systems. Newton’s method is an example of dynamical system, because the input
value of its function is its output in the previous time (STROGATZ, 2012).

The starting point is the initial value. If it is close to the root, it converges to a root system.
In equations with two roots, the method converges to the root closest to the initial condition. In
equations with more than two roots, the algorithm is very sensitive. To display this behavior,
Hubbard ran the algorithm for thousands of different starting points on a graph and colored with
a hue in accordance with the dynamic convergence speed. It is intuitive to think that the points
near roots attract more quickly to the roots, but how behave the convergence time at equidistant
points from two roots? The result was the appearance of complex regions, with patterns that
mingled and formed repetitive but staggered figures: so it was born an area of dynamical system
called dynamical of complex number. In the figure created by Hubbard, at the border, there was
clearly a chaotic behavior: to move toward a root depends on the valuation of decimal places of
the initial condition value, an unpredictable event to be taken simply by looking at the value of
the number.

Then the area of dynamical systems focuses on 3 major concerns:

1. To simulate objects do not yet exist: through a simulation, check the object behavior

in various iterations within their environment.

2. To explain the operation of existing systems: the main task of physics, which eluci-
dates the laws governing the functioning of the Universe, in astronomical or atomic
scales. Biology, Engineering and Chemicals also make his role in the categorization

of various objects according to their iteration of the environment.

3. To understood risk situations: some systems need to be carefully studied before being

executed, such vaccination systems, or piloting an aircraft system under turbulent
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Figure 1.1: Hubbard experiment: Coloring points according to the speed of convergence
to the root of the equation show the system fractality f : z — z> — 1. The three colors are
the three roots of the system and it is possible to see the fractality (ocurrence of a same

figure in differents scales) in regions of borders.
g Q9

Y

Source: https://en.wikipedia.org/wiki/Julia_set.

conditions.

1.2 Quantum Dynamics

Iterate a quantum systems is theoretically to apply several times the same unit operator
to a quantum state. However it is considered physically hard to keep quantum states isolated
from all external perturbation (SCHLOSSHAUER, 2005). On this point of view, open quantum
systems or measurement may have nonlinear behavior (TERNO, 1999; KISS et al., 2011;
BECHMANN-PASQUINUCCI; HUTTNER; GISIN, 1998; KISS et al., 2006). This nonlinearity
had profound consequences because it is a fundamental condition for the emergence of chaotic
standards. Then, the quantum systems can be analyzed from the point of view of classical chaos
(STOCKMANN, 2007). In studies related to the dynamics and quantum computation, there
is used non-linear operators in addition to the normal measuring operators (KISS et al., 2006),
founding chaos in the dynamical of an arbitrary quantum operator using the nonlinear operator
of BECHMANN-PASQUINUCCI; HUTTNER; GISIN (1998), considering that iterated model
an purification protocol to increasing entanglement within a system (KISS et al., 2006).

T. Kiss et al. model (KISS et al., 2006) analyses the dynamics over one qubit coupled
with the nonlinear operator proposed by BECHMANN-PASQUINUCCI; HUTTNER; GISIN
(1998). The BECHMANN-PASQUINUCCI; HUTTNER; GISIN (1998) operator is employed
to distinguish optimally between two non-orthogonal spin-1/2 states. The KISS et al. (2006)
dynamics is mapped by Equation , where N is the function that normalises the qubit with a
factor. In this qubit, the factoris 1/} plzj

S
p=Sp, pij=Np}
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Thus, if we have one qubit, its transformation S proposed by Bechmann et al. is:

W) i = ©10) + BIL) > [9) e = N(?[0) + B2[1))

KISS et al. (2006) propose to include this transformation S during the dynamics over one
qubit. The rotation operator U is a generic rotation operator in the Hilbert space, with x and ¢
variables, as shown in the Equation .

cos(x sin(x)e'?

—sin(x)e cos(x)

Given a |y) qubit, an initial pure state:

(W) =N(z|0) +1))
where N is the renormalization factor 1 i Feh The quadratic operator S (BECHMANN-
Z

PASQUINUCCI; HUTTNER; GISIN, 1998) and a generic rotation operator are applied. The

application of these operations are as described below:

W) = N(Z[0) +[1)) > |y2) = N(2[0) + 1))
Ulys) = ys) = N((Pcos(x) + sin(x)e®) 0)+
+ (—sin(x)e 22 + cos(x))[1))

The state |y3) is the quantum state after the first iteration. To recovery the z value after

this dynamics, it is necessary to transform the state to the original format of pure state.

| Wourpur) = N(2'0) + 1))

In |y3) qubit, the |0) amplitude value is divided by the |1) amplitude value, the value of

z after one iteration is encountered:

72cos(x) + sin(x)e?
¢ = —le'rz()c)(e)—"‘f’z2 —iE c)os(x)
It is easy to see that the normalization rate does not need to be considered because it will
be cancelled after the division of the amplitudes.
Considering p = tan(x)e'?, the analytic formula of this dynamical model that is studied
in (KISS et al., 2006) is:

2
7+
Fpld) = — ot

_p*Z2+1

The dynamics proposed in (KISS et al., 2006) has one free variable z and one constant
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p whose the initial condition determines the existence or not of chaos during its dynamics.
After that, KISS et al. (2011) extend the purification protocol dynamics for more than one qubit

depicted in Figure 1.2. It was demonstrated that the nonlinear map of that purification protocol

Figure 1.2: Schematic representation of one iteration step of the entanglement
purification protocol.

o H )

(’T

¢

E_‘

—~
hY
~

<— H

Source: (KISS et al., 2011)

v,

=25
gx_1+x4 :

represented in Equation 1.9 using a couple of two qubits presents chaos and sensibility of initial
conditions.

In KISS et al. (2006, 2011), the dynamics studies have objective to increase entanglement
over the purification protocol. For that, the initial condition quantum state has the form either
|lw(x)) =N(x]0)+]1)) or |w(x)) = N(]00) + (x)|11)), where N is the normalization factor of the
system. This form is because the degree of entanglement of that state is completely determined
by x via its binary entropy function.

How our aims is to parametrize the qRAM neuron dynamics, in this dissertation we
introduce two other ways to iterate the quantum system state. The main differences of the
proposed iterated models in this dissertation from the other ones are (i) auxiliary qubits are in
the dynamics and the output needs to be extracted to feedback the dynamics; (ii) the parameters
of the dynamical system are the parameters of the neurons; (iii) the input system is the neuron
input; (iv) input qubit state is free of predetermined format and it can be any qubit, in opposition

of that is done in purification protocol dynamics.

1.3 Neurons Dynamics

Biological neurons receive the attention of dynamical systems researchers since the brain
is a self-feedback system (BRAGA; CARVALHO; LUDERMIR, 2000). To understand the
parameters, bifurcations and phase change of neurons help us to understand how information
processing can be maximized in the brain activities (HERZ et al., 2006; PASEMANN, 1993;
GARLIAUSKAS, 1998; KAK, 1995). In the artificial world, there is further evidence pointing

agreements between chaotic environments and Artificial Neural Networks (ANN) learnability
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(GROSS, Online em 2015). FREEMAN (1992); FREEMAN; JAKUBITH (1993) have argued
that neuron populations are predisposed to instability and bifurcation that depend on external
input and internal parameters.

Existing quantum neurons models are inspired by quantum computing or are quantum
models ZHOU; DING (2007); PANELLA; MARTINELLI (2011); SILVA; OLIVEIRA; LUDER-
MIR (2012); PAULA NETO et al. (2013). They have been proposed to solve pattern recognition
problems and in general machine learning tasks LI; ZHAO; ZHENG (2002); SILVA; OLIVEIRA;
LUDERMIR (2012); MANJU; NIGAM (2014); LIN; CHUNG; CHEN (2007).

About neuron dynamics, BEHRMAN et al. (2000) proposed to use quantum dot molecules
simulating a quantum neural computer - it is not a feed-forward network: all virtual neurons
are connected to all other virtual neurons, both forward and backward in time, by effects of the
environment. In that study, a training algorithm is associated with the energy minimization of the
system inspired in the Hopfield network HOPFIELD (1984) and it is capable to training logic
gates.

In (BEHERA; KAR; ELITZUR, 2005), a model of recurrent quantum neural network is
proposed to described eye tracking of moving targets. In that model, the fitting of parameters is
done by a feed-forward of the estimated amplitude wave output and by the desired amplitude
wave output. The estimated output is encountered considering the quantum state as a probability
density function and it is estimated by its expected value formula.

The study of quantum weightless neural networks was introduced by OLIVEIRA (2009),
in the case of quantization of logical and probabilistic neurons, Probabilistic Logic Node (PLN),
and the multi-valued probabilistic neuron, the Multi-valued Probabilistic Logic Node (MPLN)
(LUDERMIR et al., 1989). Despite its simplicity, memory-based classical RAM neural networks
have good generalization capacity and computing power (SOUTO; LUDERMIR; OLIVEIRA,
2005; DE SOUZA et al., 2009). The proposal to find the respective quantum model of these
classical weightless networks is to link simplicity, computational capacity and quantum features -
such as quantum parallelism. In recent work, there are training proposals for quantum weightless
neurons using quantum superposition and demonstrating its comprehensive computational power
(SILVA; LUDERMIR; DE OLIVEIRA, 2012).

1.4 Objectives

This dissertation aims to characterize the dynamical of the Quantum RAM Based Node
(qRAM) (OLIVEIRA, 2009) on three aspects: (1) to investigate its dynamics: it was proposed
one method of dynamical qubit extraction methods (Chapter 2) and we propose more one method
that allows a complex values manipulations (Chapter 5); (ii) to perform an algebraic analysis of
the QqRAM dynamics: we analyse what are the equations of the dynamics and its behaviours: a
study of extracted analytical equations of dynamics (Chapter 3); and finally (iii) demonstrating

how to solve complex problems in computation (Chapter 4). Each objective is presented and
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discussed in a different chapter in the form of technical reports published and accepted for journal

publication.
Finally, Chapter 6 is the conclusion, where it is possible to enumerate the results of this

study.
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Chaos in Quantum Weightless Neuron Node

Dynamics

One flap of a sea gull’s wings would be enough to alter the course of the

weather forever.

—EDWARD LORENZ

In this chapter, we present a gqRAM dynamics study. The paper published at the Neuro-
computing Journal (PAULA NETO et al., 2016) discusses the qubit extraction limitation after
quantum operators application. We show that in quantum controlled operations the system
information can entangle itself in a quantum state, being impossible decompose it, isolating
the operated qubits (Theorem 6.1). We discuss the extraction dynamics method of information
of the qubits amplitudes, the Extraction Dynamics model, which it will have phase loss, but
it will be possible to iterate the quantum neuron (Section 6.2). In this dissertation, the Extrac-
tion Dynamics model is also named Real Extraction Model (REM). The proposed extraction
method creates a nonlinear condition in the dynamics which it assumes 3 possible behaviour:
underdamped, overdamped, undamped / oscillatory (Section 6.2.2). An evaluation measure to
compare different dynamics is discussed (Section 6.3) and some models of dynamics is compared

quantitatively.
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1. Introduction

We are surrounded by complexity and non-linearity. They
emerge from the interactions of systems of either the same or
different kinds. Biological systems, weather phenomena, fluid
turbulence, radar backscatter from the sea surface, multipath in
mobile communication systems and control systems are examples
of complex systems. Research in dynamical systems has increased
in the past few years in order to understand these systems from
initial conditions and their asymptotic behaviour [1,2] with the
increase in power of the computer systems.

Poincaré studied the three-body problem when he discovered
that small perturbations can significantly affect the solution [3].
Concepts of phase portrait, Poincaré section, periodic orbit, return
map, bifurcation and fixed point were first introduced by Poincaré
as key descriptive aspects of dynamical systems. The first repre-
sentation of a chaotic attractor was provided by Edward Norton
Lorenz [4] in his attempt to understand weather forecasting
through numerical solutions in systems of differential equations.

Since then, important advances in computer graphics, fractals
and physics stimulated developments in the field of dynamical
systems. Many systems are understood in detail and have been
classified into categories according to their number of variables
and non-linearity [5].

Chaos in classical neural node [6,7] and networks [8] have been
reported in the literature. Evidences for the importance of chaos in

* Corresponding author.
E-mail address: fmpn2@cin.ufpe.br (EM. de Paula Neto).

http://dx.doi.org/10.1016/j.neucom.2015.02.103
0925-2312/© 2015 Elsevier B.V. All rights reserved.

natural and artificial brain have been collected in a short survey by
Dave Gross in an electronically available article and in the refer-
ences there [9].

Closed quantum systems are linear (unitary) and the majority
of quantum computing literature deals with unitary evolution
despite the apparent difficulty of physically isolating quantum
systems [10]. In its turn open and measurement based systems can
be nonlinear [11-13]. Notwithstanding the traditional unitary
approach in quantum computing many studies have been carried
out employing nonlinear operators as gates [14]. We should
mention that the assumption that a fully quantised system evo-
lution is not sensitive to initial conditions is nevertheless not
unanimously accepted and sensitivity to initial conditions of
physically realisable fully quantised system has been con-
troversially reported in [15-19]. Measurement of quantum sys-
tems affects their dynamics and a non-linear behaviour can
emerge from the systems [20,12]. This nonlinear behaviour has
serious consequences in the dynamics of the systems bringing
chaotic patterns into consideration. Another line of work in this
field but not pursued here is the study of quantum systems that
are classically chaotic [21].

Some quantum algorithms are naturally iterative but com-
monly implemented in acyclic circuits subordinated by a classical
control. For example the Grover algorithm is the ®(,/n) repetition
of the Grover operator G [22]. Grover algorithm can be understood
as a set of quantum operators that, through a closed loop, reapp-
lies the output in the input, and the qubits are measured after ®
(v/n) times of iteration. Another physical system intrinsically
iterative is the control system of a quantum robot [23,24] inter-
acting with the environment for navigation or identification,
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where a quantum computer controls its operations. Despite not
being the concern here, when studying cyclic networks of quan-
tum gates is important to comprehend their relation to the halting
problem for Turing machines. In acyclic networks of gates it is
possible to determine if a algorithm will stop in contrast to cyclic
network of arbitrary complexity [25].

Feedback control in quantum computing usually can be per-
formed in the following way. A measurement is performed in
some quantum registers and the measurement result is used as
feedback. For instance, this strategy is used in [26]. In this paper,
we are interested in the alternative method proposed in [27],
where it is shown that quantum information in cyclic networks
can be beneficial when there is no measurement.

One can understand the dynamics of quantum cyclic networks
under the point of view of their operators, its phase analysis,
extracting eigenvalues and eigenstates [25]. Studies about weak
measurements back into the dynamics of ensemble of quantum
systems were presented by Lloyd and Slotine [28]. Conditional
dynamics of qubits iterated by a unitary operator coupled with a
measurement-induced nonlinearity is investigated by Kiss et al.
[20] and shown to be exponentially sensitive to initial condition
with positive Lyapunov demonstrating chaotic behaviour. The
nonlinear operator employed arises in quantum state purification
protocols where the nonlinear effects can guarantee the uncon-
ditional security of quantum cryptographic key distribution pro-
tocols. Quantum systems that interact with an environment
through measurement can be chaotic and nonlinear [29-33].

In this work we show a set of experiments and analysis of the
dynamics of the qRAM and |y)-RAM quantum weightless neuron
nodes which demonstrate high degree of sensitivity to the initial
conditions and chaotic behaviour. For that, we have used the
quantum operator of the respective node and a measurement
induced nonlinear step. After a short review of the basic notions of
Quantum Computing (Section 2), Dynamical Systems (Section 3),
Classical Weightless Neural Networks (Section 4) and Quantum
Weightless Neural Networks (Section 5) the proposed Models of
Dynamics (Section 6) is presented where is given a proof that the
target qubits after a generic controlled unitary operator cannot
always be decomposable as a product of two isolated quantum
states, i.e. they are entangled, Theorem 6.1. In Section 6.2.1 the
method for mathematically extract the amplitudes of a (possibly)
entangled states is presented while in Section 6.2.2 the experi-
ments are explained and analysed. A mathematical procedure to
recover the amplitudes of the output qubit is discussed. It is
observed high sensitivity to initial conditions and chaotic beha-
viour. After that, the results are analysed under the perspective of
Amplitude Graph and a quantitative study is introduced by a
measure of variation.

2. Quantum computing

One quantum bit (qubit) is a two-dimensional vector in the
complex vector space C2. Any qubit |y) can be written as a linear
combination of vectors (or states) of C? canonical (or computa-
tional) basis |0) =[1,0]" and |1) =[0, 1]" as viewed in the following
equation:

[w) =al0)+pI11) M

where a and f are complex numbers and |a|%+|f8|%=1.

Tensor product ® is used to represent quantum systems with
two or more qubits |ij) = |i) ® |j). Let A and B be two vector spaces
the tensor product of A and B, denoted by A ® B, is the vector
space generated by the tensor product of all vectors |a) ® |b), with
lay e A and |b) e B. Some states |y/) e A ® B cannot be written as a
product of states of its component systems A and B. States with

this property are called entangled states, for instance two entan-
gled qubits are the Bell states described in the following equation:

@) = |00>:/Lj|11>
|(p_>:|00)\;j|11)
) - Q10
IY”>=% @

Quantum operator U over n qubits is a unitary complex matrix
of order 2" x 2". For example, some operators over 1 qubit are
Identity I, NOT X and Hadamard H, described below in Egs. (3) and
(4) in matrix form and operator form. The combination of these
unitary operators forms a quantum circuit.

_[1 0710)=10) _ [0 17X|0)=11) 3
_{0 1}I|1):|1)’ _{1 0}X|1>=|0> ©

H—i[] 1 } HI0) = 1/v/2(10)+11)) @
V211 -1 H1)=1/v2(10)— 1))

The Identity operator I generates the output exactly as the input; X
operator works as the classic NOT in the computational basis;
Hadamard H generates a superposition of states when applied in a
computational basis. The CNOT operator has 2 inputs and 2 out-
puts and flips the second one if the first is 1, as shown in Fig. 1.
The operators of quantum computation can be seen as special
kinds of linear transformations, as matrices that operates in a
vector basis. These special matrices are unitary and invertible [34].

3. Dynamical systems

Systems that have variation in time can be usually dealt with
mathematical structures having time as parameter. This time
iterative process is the subject of the field Dynamical Systems
where there are many tools and concepts that help designers and
engineers to investigate the temporal behaviour of systems. Some
of these concepts are presented in this section to help under-
standing and evaluating the models investigated in this work.

3.1. Orbits

There are many problems in Science in general and in Mathe-
matics in particular that involve iteration [5]. Iteration means to
repeat a process many times. In dynamics the process that is
repeated is the application of a function. The result of the appli-
cation of a function in previous time is used as input in the same
function in the current time.

Given xgeR, we define the orbit of xo under F to be the
sequence of points xg,X; = F(Xg), X2 = F(x1), ---Xn = F(X,_1)---. The
point xg is called “seed” of the orbit.

Sometimes it is useful to deal with a family of functions para-
metrised by a constant and so it is normal to represent it as F.(z)
where ¢ is a constant. As example, we have F.(z)=2z%+c, and
F,(z) =2z% +2, where c=2. This representation helps us to cate-
gorise these families of functions.

3.2. Julia Set

Julia Set is the place where every chaotic behaviour of a com-
plex function occurs [35]. For example, the squaring map Qy(z) =
z? is chaotic in the unit circle, because if |z| <1 then |Qj(z)| -0,
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Fig. 1. CNOT operator.
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Fig. 2. Filled Julia Set of the Q.(z) =z%+c,c = —0.159054 —0.58679i.

when n— +o0, and if |z| > 1 then |Q§(2)| —» +oco when n— +oco.
Qo(2) is a notation of the orbital 0 to Q(z).

Through the Filled Julia Set is possible to identify fractals whose
the nature is very peculiar. The Filled Julia Set of Q. is the set of
points whose orbits are limited. The Julia Set of Q. is the limit of
the filled Julia Set. Ko =z||z| <1 and J,=z||z| =1 are, respec-
tively, Filled Julia Set and Julia Set examples. An example of Filled
Julia Set can be observed in Fig. 2.

The simplified algorithm to find the Filled Julia Set is described
in Algorithm 1.

Algorithm 1. Algorithm to find an approximation of Filled Julia
Set.

1 Choose a maximum number N of iterations.
2 For each point of z in the grid, compute the first N points of

the orbital z. If |Qi(z)| > max{|c|, 2}, for some i <N, then
stop iterating and colour z white.

3If \Qé(z)| < max{|c|, 2}, for all i <N, then colour z black.

4 The white points represent the orbital that escaped, and the
black points that ones did not, at least in the first N
iterations.

5 So, the black points are the approximation of the Filled Julia
Set.

4. Weightless neural network

The first model of Weightless Neural Networks (WNN) was
proposed and investigated by Igor Aleksander [36]. WNN are the
models of neural computation which have binary inputs and
outputs and there are no weights between their nodes. The
weightless neuron is based on the simple operations of a look-up
table which is best implemented by random access memory
(RAM) and where the knowledge is directly “stored” in the
memory (via “look-up tables”) of the nodes during learning.
Learning on these systems generally consists of changing the
contents of lookup table entries, which results in highly flexible
and fast learning algorithms.

4.1. RAM node

In contrast to biologically motivated nodes, RAM nodes were
initially designed as engineering tools to solve pattern recognition
problems. An N input RAM node (Fig. 3) has 2V memory locations,
addressed by the N-bit vector a=ay,ay, ..., ay. A binary signal x =
X1,X2,...,Xy on the input lines will access only one of these loca-
tions, that is, the one for which a=x. The bit, C[x], stored at this
activated memory represents the output of the node, that is,
y=C[x]. In other words, the Boolean function performed by the

- ... 1] C[2"=1]
d ~ 11...0| C[2"=2]

X : : y

: 00...1 C[1]

Xn 00...0| CJ[O0]
_—

Fig. 3. RAM Node. Given an input X, the RAM Node outputs a bit y stored in the
Clx).

neuron is determined by the contents of the RAM. There are 22"
different functions which can be performed on N address lines and
these correspond to the 2V states that the RAM node can be in.
Thus, a single RAM can compute any Boolean function of its inputs.
Despite its simplicity, RAM nodes have good computational power
[37].

4.2. Probabilistic logic node PLN

A PLN [38] node differs from a RAM node in that a 2-bit
number (rather than a single bit) is now stored at the addressed
memory location. The content of this location is turned into the
probability of firing (i.e., generating 1) at the overall output of the
node. In other words, a PLN consists of a RAM node augmented
with a probabilistic output generator. Thus, like in a RAM node, the
N binary inputs to a PLN node form an address to one of the 2N
addressable locations. Simple RAM nodes then output the stored
value directly.

In contrast, in a PLN, the content at this address is passed
through the output function which converts it into a binary node
output. Such a content could be either 0's, 1's, or u's. The unde-
fined state u implies on the node flipping its output between 0 and
1 with equal probability. The use of a third logic value, u (unde-
fined), makes possible the use of an “unknown” state in the
operation of WNNs architectures. This value is stored in all the
memory contents before the learning phase, indicating the
ignorance of the network before it was trained. The output of the
PLN node is given by:

0 if C(x]=0
y=<1 if Cx]=1 (5)
random(0,1) if C[x]=u

5. Quantum weightless neuron node

Out of many proposed models of a quantum neuron in the
literature [39-47| some work with actual quantum strategies
abiding the laws of Quantum Physics while others are only
quantum inspired strategies. The latter are classical models of
computation that uses ideas from quantum computing.

In this section we present the qRAM Node, the qPLN Node and
the |w)-RAM, as quantisation of the weightless nodes from the
previous section.

5.1. qRAM node

A quantisation of the RAM neuron was proposed in [48,49] by
de Oliveira et al. through a technique called Mathematical Quan-
tisation [50]. The fundamental idea of this method is that sets are
replaced with Hilbert spaces. The elements of a set are put in a
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one-to-one correspondence with a orthonormal basis of the
Hilbert space.

The RAM Node stores in a memory position a unique bit. In the
initial description of the qRAM Node [49] the matrix A simulates
the behaviour of a classical RAM as can be seen in the example
below in the case of one input and one output:

A I 0
(o x)

We can interpret the matrix A as an operator which “selects”
which one of the X or I operator is going to be applied to the
second qubit accordingly weather the first qubit is respectively |0)
or |1). We call then the first qubit selector register or just selector
and the second qubit parameter register or just parameter. By set-
ting the parameter register to |0), A can be seen as a sort of
memory returning the memory content |0) or [1) if the selector is
respectively |0) or |1). In this case we call A a memory matrix. To
change the memory content is to change the value of the selector
register.

A qRAM is a collection of input addressable matrix memories.
The input |i) “selects” or “addresses” the memory matrix A; which
returns its memory content. An example of the one qubit
addressable qRAM is depicted in Fig. 4. The memory Ag or A; is
addressed weather the input qubit |y) is respectively |0) or |1).
The output register |0) depends on the value of the selector |s;) as
explained above. Note that a general state, in a superposition of
the basis states, in the input may address both memories simul-
taneously resulting in a superposition of their contents.

The qRAM of n input qubits has a set of 2" of that A's, conse-
quently it has 2" selectors but one qubit of output |o) since we are
not dealing here with multiqubits stored values. A representation
of the circuit can be seen in Fig. 4. A collection of CNOT operators
helps us to choose which of the operators A;, i=1,...,2", will be
activated depending on the input qubit as can be seen in [34, p.
185]. A classical and quantum learning that change the values of
the selectors is proposed in [51].

where
AlO)|y) = 0)M]y) (6)
Al y) =11)X|y)

5.2. gPLN

In de Oliveira et al. [48] is shown that applying a Hadamard
operator in the output qubit the qRAM can simulate a PLN Node.
gPLN Node is proposed with more features beyond the PLN Node.
The qPLN model in the circuit representation is shown in Fig. 5
where the matrix A is detailed in Eq. (7). The randomness of the PLN
is ensured through the use of the state |u) = H|0) :iz(|0)+|1)), for
quantum principles [34].

where
(I) )(; g g A|000) = |00)1|0)
A= 00 H 0 A|010) =|01)X|0) @)
A|100) = |10)H|0)
00 0 U

Al110) = [11)U|0)

With N input qubits, the qPLN has 2V*! selectors |s), 1 output
qubit |o) =|0) and 2N matrices A. If the selectors are in computa-
tional basis, the qPLN Node applies the Identity operator (if
|s)y=100)), or apply the X operator (if |s)=|01)), or apply

) )
Iso) Iso)
Is1) 4 A1 Az |Hs1)
|0) |o)

Fig. 4. qRAM Node of 1 input.

) %)
) - o)
g g
}s%> Ay A |s{>
) 8)

0) o)

Fig. 5. qPLN Node of 1 input.
Hadamard operator (if |s)=]10)).! When the selectors are in
superposition, the node activates more than one operation and
executes a parallel process applying these operators. A qPLN
training algorithm is proposed in [48]. A representation of qPLN
circuit can be seen in Fig. 5.

53. |y)-RAM

Da Silva et al. [52] generalises the qPLN node in such a way that
it becomes a universal quantum gate. They proved in [52] that
qPLN Node, with the parameter register being always |0), cannot
implement the Hadamard gate. In the |)-RAM proposed in [52]
the parameter register can take any value and now it is possible to
show that this node simulates the Hadamard and Toffoli operators
[52] thus being universal for quantum computation.

6. Chaotic models of dynamics

The unitary of quantum transformations prevents exponential
sensitivity to initial conditions, despite the controversy sur-
rounding the following so-called exceptions [15-19]. However,
measurement in quantum systems affects its dynamics [20] and a
nonlinear behaviour can emerge from the system. Bechmann et al.,
in [13], propose a measurement based nonlinear quantum trans-
formation and they argue that though this transformation is
nonlinear (and it does not preserve the trace), it is physically
realisable.

Before we present our model of dynamics, we explain the
workings of the dynamics over one qubit proposed in [20] which
has inspired our model. After that, we present the proof that it is
not possible to verify completely the quantum state of the target
bit after an U-Controlled Operator over 2 qubits. Then our method
is presented and analysed both analytically and experimentally.

6.1. KJAV model of dynamics over one qubit

Kiss et al. [20] propose a model which we dub KJAV model to
analyse the dynamics over one qubit coupled with the nonlinear
operator proposed by Bechmann et al. [13]. This operator is
employed to distinguish optimally between two non-orthogonal
spin-1/2 states. This dynamics is mapped by Eq. (8), where N is the
function that normalises the qubit with a factor. In this qubit, the
factor is 1/ 3 p}.

S
p=Sp, p;=Npj ®)

Thus, if we have one qubit, its transformation S proposed by
Bechmann et al. is:

W impuc = @O +BID) = W) g = N@ 101+ 5711)) ©

! Since we must have a power of two many block 2 x 2 matrices in A we fill it
in with an extra possibly not used arbitrary 2 x 2 unitary U.
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Kiss et al. [20] propose to include this transformation S during
the dynamics over one qubit. The rotation operator U is a generic
rotation operator in the Hilbert space, with x and ¢ variables, as
shown in the following equation:

sin (x)el® )

COS (X)

COS (X)

— sin(x)e ¢ (10)

Ulx, )= (

Given a |y) qubit, a initial pure state:
) =N(zI0) +11)) an
where N is the renormalisation factor 1/4/1+ |z|2. The quadratic
operator S [13] and a generic rotation operator are applied. The
application of these operations are as described below:
W) = N@IO0)+11)>[yr) = N@Z10)+ 1))
Ulw,) = |w3) = N((z° cos (x) + sin (x)e'#)|0)

+(— sin(x)e” 22 + cos (x))[1)) (12)

The state |y ) is the quantum state after the first iteration. To
recovery the z value after this dynamics, it is necessary to trans-
form the state to the original format of pure state.

\l//ampu[> =N(Z'10)+11) (13)

In |1//3> qubit, the |0) amplitude value is divided by the |1)
amplitude value, the value of z after one iteration is encountered:
. Z2cos(x)+ sin (x)e'?

= - 14
£=z sin (x)e— %22 4 cos (x) a4

It is easy to see that the normalisation rate does not need to be
considered because it will be cancelled after the division of the
amplitudes.

Considering p = tan (x)e', the analytic formula of this dyna-
mical model that is studied in [20] is:

Z24p

BO= iy

(15)

Then the dynamics proposed in [20] has one free variable z and
one constant p whose initial condition determines the existence or
not of chaos during its dynamics.

6.2. Extraction model dynamics

The qRAM Node and the y~-RAM Node are composed of a circuit
with various Controlled Operators. We will review here that we do
not have a canonical way to always recover the target qubit after a
U-Controlled Operator, for a unitary U, and in particular the CNOT
Operator. We next state and prove a well known result but that has
been neither stated nor proved in a general formulation as we give
below.

Theorem 6.1. Superposed target qubits after the application of
Controlled-U operators can become entangled.

Proof. If we consider the qubits |u) and |v):

luy=al0)+b|1), [v)=c|0)+d|1) (16)
Their tensor product is:

|u)|v) = ac|00) +ad|01) +bc|10) +bd|11) a7

If we apply to this product state an U-Controlled operation,
where U is a generic rotation operator:

cos(a) — sin(a)
U@) = sin(@)  cos(a) (18)

Then:

ac
ad

bcs cos (@) — bd sin (@)
bessin (o) + bd= cos (@)

Aylu)v) = (19)

The qubit |u) should not change for this operation and it seems
simple to think that the second qubit |v) can be recovered in its
quantum state. But this is not possible in general unless the
operator U is very restricted.

Considering then that only the second qubit is modified with
arbitrary value |v),, 1 =x|0)+y|1) and that the qubit |u) has not
changed. Their tensor product is: |uv[+1> =ax|00) +
ay|01)+bx|10)+by|11). Equating Aylu)lv) with |uv,,1), under
the condition that |u) and |v) are not in the basis states, we have
c=x, d=Yy, cxcos(a)—dssin (o) =x and cxsin (@) +d#cos (o) =y.

As we can see, the terms in function of the first qubit disappear
the final conditions and there are only conditions over the second
qubit. One of the conditions is that the target qubit before and
after the operation of the U-Controlled should be equal. This is
only possible if @ =0, in other words, U=I (Identity operator) and
that c=d =x=y, where |u) = |v) = %(|0> +11)) are equal and have
equal amplitudes in their states.o

With that restrictions, how can we iterate the output qubit if
we cannot directly recovery the amplitudes of the output qubit
lo)? The possibility to generate entangled states in general after
the application of an operator is also problematic since we cannot
isolate the output after this operation.

6.2.1. Extracting the output qubit

The proposed method extracts the output qubit amplitude
values through a mathematical algorithm. For example, if we have
a state of 2 qubits |¢p)=ao|00)+a;|01)+a,|10)+asz|11), the
quantum theory claims that the second qubit can take with
probability |ag|2+ |a,|? the value |0) and |a; |2+ |az|? the value
|1).

So in general, to obtain the last qubit amplitudes for |0) and |1)
one takes the square root of the sum of the probability of all the n-
qubit states ending with |0), |xq,..,X,_2,0) and all ending with
1), X1, ...,Xn_2, 1), respectively. For the probability one sums up
the squared norm of the even positions of the vector in the |0)
case. The same is done with odd positions for the |1). Thus, the
output |o) is calculated as:

o) = al0)+pI1) (20)
where,
lal?=>"ly;1? and [B12=) |w;l? 1)

feven foda

Amongst the solutions (positive or negative real, complex) to
Eq. (20) we use the simplest one by taking the positive real solu-
tion:

Z|l//i|2 and f= lel/il2
feven foda

An example is shown below to recover the amplitudes in qRAM
node dynamics if registers |i), |s) = |so)|s1) and |o) are:

) io s3 s9 a
Il>=<il>,so>=<sg)>, |sl>=<s}>,|o>:<ﬁ> (22)

where all amplitudes are complex numbers. The |y/> = |i>|s)|o) as
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[)-EM-1 Dynamics where
tan(ty)=1.0 and |s) = |11)

b

[)-EM-2 Dynamics where
tan(7;y)=1.0 and and |s) = |11)

Fig. 6. Filled Julia Set of the \qx)-EM Dynamics to the some different c-values of the generic operator U. In this figure, dark regions indicate fast convergence, grey regions
represent slow convergence and white regions indicate no convergence. (a) \x,z)—EM—l Dynamics where tan(ty)=1.0 and |s) = [11). (b) }yf)—EM—Z Dynamics where tan(ty)=

1.0 and |s) =|11).

entry of the qRAM Node is:

ipsQss9xxar
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When applying the entry |y) in the qRAM Node, we have the
following output:

iosJusdsar
ipsQs9xp
ipsQssixar
io#sQss]
ipss)#s{xp
ipshasYaar
ipss)s]xp
ioksus]wa
PR e
RESEN Y]
i13sQss] %
i #sQus ]
iashasQar
PEN L]
ipss)aslxp
PEEE

qRAM ) = 24

The output qubit amplitudes can be extracted via Eq. (21):
lalf,q = liosgsta|? +osgsial? + iososip1 * + iosgsifpl2

;0.0 2 s 01 2 ;1.0 2 s oolcl 2
+|i1spSia] =+ i15p51 817 + [i1SpsTa| = + | 11S¢51 B (25)

18121 = liosgsIf 12 + liossiBI% + | iosgsTal® + | ipspsial?
+1i1sgs0B1% + [insgsial > + | 1isgsiB1 > + lirsosial > (26)

resulting in the output qubit of the next iteration:

1041 =0c1110)+ B, 111) 27)

The output qubit can be entangled as seen in Theorem 6.1. This
way of obtaining the amplitudes of the output qubit is just a
mathematical operation which will help us to analyse the system
as a mathematical entity but it is not at all physically realisable
operation since the amplitudes cannot be checked or obtained in
general quantum physical systems. We can only obtain an
approximation of the amplitudes by repetitive (finitely many)
measurements, according to the Quantum Mechanics Postulates.
Note that after the extraction step the output qubit must have real
amplitudes as a result of our approach.

6.2.2. Experiments and analysis

The proposed Extraction Model (EM) uses the recover proce-
dure presented in the last section to feed the output qubit back
into the quantum node. We can do it in two ways: (a) in the EM-1
Dynamics the output qubit |o) is fed back into itself and (b) in the
EM-2 Dynamics the output qubit |o) is fed back into output and
input qubits.

We run two sets of experiments. In the first set, the |y/)-RAM
Filled Julia Set having the U operator of the |y)-RAM node as para-
meter for a family of functions is generated and depicted in Fig. 6.
The feedback value is always a real number, due to our extraction
method, and the variable z of the dynamics obtained from the output
qubit |0) = N(z|0) +1)) as the independent variable is used, inspired
by the KJAV model [20]. When the parameter register is initially set
to |0) no chaos is observed in the dynamics since the behaviour is
restricted to a subspace of the solution set in which all orbits that
have seeds a-+ bj are in the Filled Julia Set, where a, b € [ 2, 2]. So we
consider that dynamics starts with the parameter register initialised
with N(z|0)+|1)). During the dynamics Bechmann et al.'s nonlinear
operator [13] is applied to the input, the result of which is fed to the
node. In Fig. 6 the (grey) color, symmetry and shapes show the
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Fig. 8. qQRAM-EM-2, initial condition: [i) = J5(10)+1)), Iso) = J5(10)+I1)), Is1) =
[1), lo) = [1).

sensitivity to initial conditions and the boundary regions exhibit
where there is convergence.

In the second set of experiments, we analyse the dynamic of a
single qRAM and a single |y)-RAM both with one input for EM-1
and EM-2 models totalising four experiment configurations. Input,
output and selectors registers were initialised with the qubits |0)
,|11) and H|0) totalising 81 runs for each experiment configuration.
In the Appendix four tables are presented containing a summary
of statistical information for each possible input, one table for each
neural model and each extraction model.

The output qubit amplitudes during the dynamics are plotted
for the |y)-RAM model and qRAM model. The orbits can be clas-
sified having three main behaviours — undamped, under-damped
and over-damped. Small sensitivity to initial conditions and sen-
sitivity to the amplitudes decimal expansion values during the
dynamic are clearly depicted. Some orbits are plotted to show the
sensitivity to initial conditions of the models.

The under-damped behaviour in the qRAM node can be seen in
Figs. 7-9. As one can see in Fig. 7 the dynamics converges to one
value and stays in this fixed value. On the other hand, in Fig. 8, the
under-damped dynamics abruptly change its convergence to the
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Fig. 9. qRAM-EM-2, initial condition: [i) = J5(10)+|1)), Iso) = I1). Is1) = |1), lo) =
I1).
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Fig. 10. qRAM-EM-1, initial condition: [i)=5(10)+I1), Iso)= [0}, [s1)=
2500)+11)), 10) = 10).

zero value. This sensitivity is presented with the decimal values
variation and next to 40th iteration, a fast damped is presented.

In Fig. 9, the damping is not fast and has a long settling time,
presenting a non-oscillating behaviour, once the dynamics is
limited by the vertical axis in its damping. During the first itera-
tions, the dynamics is undamped but again next 40th iteration, the
decimal values variations change the dynamics to an under-
damped dynamics, showing the robustness of the sensitivity of
its values in dynamics.

Fig. 10 shows one case of the over-damped dynamics, showing
an exponential damping. The permanent oscillation, the undam-
ped case, is presented in Fig. 11.

In | )-RAM node, the three behaviours are also encountered
varying the rise time, settling time and maximum values. Fig. 12
shows the over-damped situation where the increasing and
decreasing behaviour of the over-damped are presented. Next to
the 30th iteration the dynamics is sensitive to the decimal values
and appears to converge, however it does not occur and the
dynamics is exponentially damped.

In almost all cases of the qRAM EM-1 and EM-2 dynamics, the
orbits converge in the first iteration. The summations of that
dynamics are in the majority cases 50.0, in the qRAM EM-1, and
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next to 25.0 in the qRAM EM-2. In both qRAM models, the value of
convergence is in most cases 0.5. The orbits of the |y)-RAM
models EM-1 and EM-2 are presented respectively. The con-
vergence values have more diversity in |y)-RAM than qRAM
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Fig. 11. qRAM-EM-1, initial condition: [i) = J5(10)+I1), Iso) = I1), Is1) = 1), |o) =
[1).
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Fig. 12. |y)-RAM-EM-2, initial condition: |i) =0}, [so) = Is1) = [1), Is2) = s3) = |0},
[0} = 5(10)+1)).
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models. The values of convergence in |y)-RAM model are not
necessarily 0.5 or 1.0 as in the qRAM dynamics, and have more
diversity of values.

In EM-1 Dynamics, the qRAM model has average values next to
0.5 and 1.0, despite the |)-RAM model behaviour that has vary-
ing averages. In EM-2 Dynamics, the qRAM model has average
values next to 0.25, 0.5 and 1.0. |y)-RAM model has diversity of
averages. The EM-2 Dynamics have more minimum values next to
0.0 than EM-1 Dynamics in both neuron models.

Fixing the initial input register to a predetermined value and
varying the selectors values, we can examine the convergence
behaviour of the dynamics of the point of view of the selectors.
Figs. 13 and 14 show the density graph of quantity convergence for
two different values of the selectors and two initial input register
configuration. Fig. 13 presents the quantity of amplitude con-
vergent cases varying the selector |sg) for gQRAM model and vary-
ing |so) = |s1) for y-RAM model. Fig. 14 is the same approach in the
case of variation of |s;) for the qRAM model and the variation of
|s2) = Is3) for y-RAM model.

As can be seen, the central values of probability, next to 0.5, are
the configuration which has more convergence cases, to both
selector variations, and in the extreme values the divergent cases
occur more. This is because the central values for selectors cause
more superposition of the operators applied in the qubit once the
selectors assigned in central values are more in superposition.
Extreme values to selectors decrease the participation of more
operators in the qubit dynamics.

6.3. &-Value measure

In order to compare the models in a quantitative way, we
propose a variation measure, §-Value. This measure represents the
degree of change of the amplitude values during the dynamics. It
is defined as the sum of the derivatives at the sampled points:

o)
5= ZT (28)
And in its absolute representation:
_ aa(t)
5abs = Z ot (29)
where oa(t)/at is calculated by numerical approximation
oa(t) _aft+ At]—alt] (30)

at At

|w>-RAM MM-2 (2)

qRAM MM-2 (2)

Fig. 13. Density graph to represent the quantity of convergent orbits of the Dynamics Models in the case of variation of the selector values |sp) in the qRAM model and

|So) = |s1) in the y~RAM model.
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Fig. 14. Density graph to represent the quantity of convergent orbits of the Dynamics Models in the case of variation of the selector values |s;) in the qRAM model and

|s2) = Is3) in the y~-RAM model.

Table 1
Table of the maximum and minimum values, average and variance of the s-Value
considering 81 initial configurations.

Model Max (8) Min (5) Avg (5) Var (5)

q-EM-1 1.0 -1.0 0 0.18

q-EM-2 1.0 -1.0 —0.40 0.18

|w)-EM-1 0.15 -0.67 —0.09 0.06

|w)-EM-2 0 -1.0 —-041 0.07
Table 2

Table of the maximum and minimum values, average and variance of the §,,s-Value
considering 81 initial configurations.

Model Max (éabs) Min ((Sabs) /'\Vg (5abs) Var (5abs)
q-EM-1 99.0 0.0 17.16 1399.55
q-EM-2 99.0 0.0 6.70 504.23
|w)-EM-1 4178 0.0 8.73 226.48
|w)-EM-2 21.83 0.0 242 29.07

considering At one step of iteration and « is the |0) output qubit
probability.

Varying the registers |l> |So), |s1) and |o) as H|0), |0) and |1), 81
initial configurations of the qRAM are investigated. As |y)-RAM
has 4 selectors, we repeat the selector values in pairs: |Sg) = |S1)
and |sp)=|s3) and 81 initial configuration experiments are
realised.

From these 81 initial configurations for each model, we
extracted the maximum and minimum values, the average and
variance of the §-Value and aps-Value. Tables 1 and 2 show the
results.

O6-Values in the EM-2 Dynamics have greater variance (in
magnitude) than in EM-1 Dynamics. On the other hand, the var-
iance in EM-1 Dynamics is greater than EM-2 Dynamics in the
Oabs-Value mainly because the qRAM has basically CNOT operators
that makes to oscillate the output qubit amplitudes.

The negative averages in &-Value imply that the dynamics
behaviour is tendentiously decreasing. When we disregard the
derivative sign, i.e. considering daps-Value, the variance, average
and the maximum values are greater than 6-Value, since the sum
does not have minus signs to cancel the positive ones.

7. Conclusion

In this work, we proposed a method to iterate quantum
weightless neuron nodes by mathematically extracting the qubit
to be fed back. The fact that we cannot generally recover the
output qubit amplitudes after an application of a Controlled-
Operator restricts the recovery procedure of the output qubit of
a neuron node. The extraction procedure proposed makes the
dynamics sensitive to initial conditions and, through Amplitude
Graphs, we visualised nonlinearity and curves highly sensitive to
decimal expansion values. The Julia Set images presented showed
areas upon which the independent variable is more sensitive to
initial conditions.

As future work, we intend to investigate the dynamics of more
than one neuron. A numerical analysis in terms of sensitivity to
initial conditions and a general classification of the dynamics
taking into account many parameters of these models are also
envisaged. The applications of nonlinear and chaotic methods to
quantum computing seem to be a promising line of research
particularly by the results that nonlinear quantum mechanics can
solve NP-complete problems in polynomial many steps [14,53].

The search for a physically realisable nonlinear quantum
operator and their mathematical classification may lead to real
breakthrough in Quantum and Classical Complexity Theory.

Acknowledgements

This work is supported by research grants from CNPq, CAPES
and FACEPE (Brazilian research agencies).

Appendix A. Orbits table

Tables A1 and A2 present details of the orbits from qRAM EM-1
and EM-2 dynamics respectively. And the orbits of the |y)-RAM
models EM-1 and EM-2 are presented respectively in Tables A3
and A4.
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Table A1
qRAM EM-1 Dynamics Results - values of maximum, minimum, summation, average, variance of the orbits of the iteration of each initial conditional configuration. The
convergence is assigned True if the difference of two orbit values is less than 10~ '°. The iteration and the value of the convergence are showed.

Initial configuration Max Min Sum Avg Var Converging Iteration of convergence Value of convergence
|i)1s0)Is1)]0) = |0000) 1.0 1.0 100.0 1.0 0.0 True 0.0 1.0
[i)Iso)Is1)]0) = 10001) 0.0 0.0 0.0 0.0 0.0 True 0.0 0.0
|i)1s0)Is1)10) = |000Ho) 0.5 0.5 50.0 0.5 0.0 True 0.0 0.5
|i)1s0)1s1)]0) = 0010) 1.0 1.0 100.0 1.0 0.0 True 0.0 1.0
|i)1so)Is1)]0) = 0011) 0.0 0.0 0.0 0.0 0.0 True 0.0 0.0
|i)Iso)Is1)[0) = |001Ho) 0.5 0.5 50.0 0.5 0.0 True 0.0 0.5
|i)1s0)Is1)10) = [00H0) 1.0 1.0 100.0 1.0 0.0 True 0.0 1.0
}1>|50) s1)]0) = |00Hg1) 0.0 0.0 0.0 0.0 0.0 True 0.0 0.0
[i)Is0)1s1}10) = |00HoHo) 0.5 0.5 50.0 0.5 0.0 True 0.0 0.5
|i)1s0)Is1)]0) =10100) 1.0 0.0 50.0 0.5 25.0 False - -
|i)1so0)Is1)]0) =10101) 10 0.0 50.0 0.5 25.0 False - -
|i)1s0)Is1)10) = 1010Ho) 0.5 0.5 50.0 0.5 0.0 True 0.0 0.5
|i)Iso)Is1)]0) = 10110) 1.0 0.0 50.0 0.5 25.0 False - -
|i)1s0)Is1)l0) =10111) 1.0 0.0 50.0 0.5 25.0 False - -
|i)1s0)Is1)10) = [011Ho) 0.5 0.5 50.0 0.5 0.0 True 0.0 0.5
|i)1s0)Is1)10) = [01Ho0) 1.0 0.0 50.0 0.5 25.0 False - -
}1)|so) s1)]0) =|01Hp1) 1.0 0.0 50.0 0.5 250 False - -
}1>|50> s1)]0) = |01HoHo) 0.5 0.5 50.0 0.5 0.0 True 0.0 0.5
|i)Is0)1s1}10) = |0H00) 0.5 0.5 50.0 0.5 0.0 True 0.0 0.5
|[i)Is0)Is1)]0) = |OHg01) 0.5 0.5 50.0 0.5 0.0 True 0.0 0.5
[i)Is0)Is1)]0) = [0HgOHo) 0.5 0.5 50.0 0.5 0.0 True 0.0 0.5
|i)1s0)Is1)10) = [0Ho10) 0.5 0.5 50.0 0.5 0.0 True 0.0 0.5
[i)Iso)Is1}]0) = |OHg11) 0.5 0.5 50.0 0.5 0.0 True 0.0 0.5
|i)1s0)Is1)10) = |0Ho 1Ho) 0.5 0.5 50.0 0.5 0.0 True 0.0 0.5
|i}Is0)Is1)10) = |OHoHo0) 0.5 0.5 50.0 0.5 0.0 True 0.0 0.5
|i)Is0)Is1)10) = [OHoHo 1) 0.5 0.5 50.0 0.5 0.0 True 0.0 0.5
|i)1s0)Is1)10) = |0HoHoHo) 0.5 0.5 50.0 0.5 0.0 True 0.0 0.5
[i)Iso)Is1)]0) = 11000) 1.0 1.0 100.0 1.0 0.0 True 0.0 1.0
|i)Iso)Is1)]0) = 1001) 0.0 0.0 0.0 0.0 0.0 True 0.0 0.0
|i)Is0)1s1}10) = |100Ho) 0.5 0.5 50.0 0.5 0.0 True 0.0 0.5
[i)Iso)Is1)]0) = [1010) 1.0 0.0 50.0 0.5 25.0 False - -
|i)lso)Is1)]0) =[1011) 1.0 0.0 50.0 0.5 25.0 False - -
|i)1s0)Is1)10) = 101Ho) 0.5 0.5 50.0 0.5 0.0 True 0.0 0.5
|[i)Is0)1s1}10) = |10H0) 0.5 0.5 50.0 0.5 0.0 True 0.0 0.5
|i)Iso)ls1)[0) = [10H1) 0.5 0.5 50.0 0.5 0.0 True 0.0 0.5
[i)Iso)Is1)10) = 10HoHo) 0.5 0.5 50.0 0.5 0.0 True 0.0 0.5
[i)Iso)Is1}l0) = [1100) 1.0 1.0 100.0 1.0 0.0 True 0.0 1.0
[i)so)Is1)]0) =11101) 0.0 0.0 0.0 0.0 0.0 True 0.0 0.0
|i)Iso)Is1)]0) = [110H() 0.5 0.5 50.0 0.5 0.0 True 0.0 0.5
|i)1so0)Is1)]0) =[1110) 1.0 0.0 50.0 0.5 25.0 False - -
[i)Iso)Is1)l0) =[1111) 1.0 0.0 50.0 0.5 25.0 False - -
|i)1s0)Is1)10) = 111Ho) 0.5 0.5 50.0 0.5 0.0 True 0.0 0.5
|i)Iso)Is1)]0) = [11H,0) 0.5 0.5 50.0 0.5 0.0 True 0.0 0.5
[i)1s0)Is1)10) =11Ho1) 0.5 0.5 50.0 0.5 0.0 True 0.0 0.5
[i)1s0)Is1)10) = 11HoHo) 0.5 0.5 50.0 0.5 0.0 True 0.0 0.5
|i)Iso)Is1)[0) = [1H00) 1.0 1.0 100.0 1.0 0.0 True 0.0 1.0
|i)1s0)Is1)10) = 1Ho01) 0.0 0.0 0.0 0.0 0.0 True 0.0 0.0
|i)1s0)Is1)10) = [THoOHo) 0.5 0.5 50.0 0.5 0.0 True 0.0 0.5
[i)Is0)Is1}10) = |1H10) 1.0 0.0 50.0 0.5 25.0 False - -
|i)1s0)Is1)10) = 1Ho11) 1.0 0.0 50.0 0.5 25.0 False - -
|i)1s0}Is1)10) = 1Ho1Ho) 0.5 0.5 50.0 0.5 0.0 True 0.0 0.5
|[i)1s0)Is1)10) = |1HoHo0) 0.5 0.5 50.0 0.5 0.0 True 0.0 0.5
[i)1s0)Is1)10) = [THoHo1) 0.5 0.5 50.0 0.5 0.0 True 0.0 0.5
}1>|50) s1)10) = |1HoHoHp) 0.5 0.5 50.0 0.5 0.0 True 0.0 0.5
|i)1s0)1s1)10) = |Ho000) 1.0 1.0 100.0 1.0 0.0 True 0.0 1.0
|i)1so0)Is1)10) = [Ho001) 0.0 0.0 0.0 0.0 0.0 True 0.0 0.0
[i)Iso)Is1)]0) = [HoO0H,) 0.5 0.5 50.0 0.5 0.0 True 0.0 0.5
|i)1so0)Is1)10) = [Ho010) 0.5 0.5 50.0 0.5 0.0 True 0.0 0.5
[i)1s0)Is1)10) = [Ho011) 0.5 0.5 50.0 0.5 0.0 True 0.0 0.5
[i)1s0)Is1)10) = |Ho01Ho) 0.5 0.5 50.0 0.5 0.0 True 0.0 0.5
|i)1s0)Is1)10) = |HoOHo0) 0.75 0.5 50.5 0.505 0.08083 True 31.0 0.5
|i)1s0)Is1)10) = |HoOHo1) 0.5 0.25 49.5 0.495 0.08083 True 31.0 0.5
[i)Iso0)Is1)10) = [HoOHoHo) 0.5 0.5 50.0 0.5 0.0 True 0.0 0.5
|i)1s0)Is1)10) = |Ho 100) 0.5 0.5 50.0 0.5 0.0 True 0.0 0.5
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Table A1 (continued )

Initial configuration Max Min Sum Avg Var Converging Iteration of convergence Value of convergence
|i)1so)Is1)10) = [Ho101) 0.5 0.5 50.0 0.5 0.0 True 0.0 0.5
|i)1s0)Is1)10) = [Ho10Ho) 0.5 0.5 50.0 0.5 0.0 True 0.0 0.5
[i)Is0)1s1}10) = |Ho110) 10 0.0 50.0 0.5 25.0 False - -
[i)Is0)Is1)10) = [Ho111) 1.0 0.0 50.0 0.5 25.0 False - -
|i)1so0)Is1)10) = [Ho11Ho) 0.5 0.5 50.0 0.5 0.0 True 0.0 0.5
|i)1s0)Is1)10) = [Ho 1Ho0) 0.625 0.25 49.83333 0.49833 0.08306 True 32.0 0.5
[i)Iso)Is1}10) = [Ho1Ho1) 0.75 0.375 50.16667 0.50167 0.08306 True 32.0 0.5
[i)Iso)1s1)10) = |[Ho1HoHo) 0.5 0.5 50.0 0.5 0.0 True 0.0 0.5
|i)1s0)Is1)10) = [HoHo00) 0.75 0.5 50.5 0.505 0.08083 True 31.0 0.5
|i)1so)Is1)10) = [HoHo01) 0.5 0.25 49.5 0.495 0.08083 True 31.0 0.5
|[i)Iso)1s1)]0) = [HoHoOHo) 0.5 0.5 50.0 0.5 0.0 True 0.0 0.5
|i)1s0)Is1)10) = [HoHo10) 0.625 0.25 49.83333 0.49833 0.08306 True 32.0 0.5
|i)1so0)Is1)10) = [HoHo11) 0.75 0.375 50.16667 0.50167 0.08306 True 32.0 0.5
|i)1s0)Is1)10) = |HoHo1Ho) 0.5 0.5 50.0 0.5 0.0 True 0.0 0.5
[i)Is0)1s1}]0) = [HoHoHo0) 0.5 0.5 50.0 0.5 0.0 True 0.0 0.5
|i)1so0)Is1)10) = [HoHoHo1) 0.5 0.5 50.0 0.5 0.0 True 0.0 0.5
|i)1s0)Is1)10) = [HoHoHoHo) 0.5 0.5 50.0 0.5 0.0 True 0.0 0.5
Table A2

qRAM EM-2 Dynamics Results - values of maximum, minimum, summation, average, variance of the orbits of the iteration of each initial conditional configuration. The
convergence is assigned True if the difference of two orbit values is less than 10~ '°. The iteration and the value of the convergence are showed.

Initial configuration Max Min Sum Avg Var Converging Iteration of convergence Value of convergence
|i)1s0)Is1)]0) = |0000) 1.0 1.0 100.0 1.0 0.0 True 0.0 1.0
[i)Iso)Is1)]0) = |0001) 0.0 0.0 0.0 0.0 0.0 True 0.0 0.0
|i)1s0)Is1)10) = [000Ho) 0.5 0.0 25.94794 0.25948 5.99101 True 0.0 0.5
|i)1s0)Is1)10) = 0010) 1.0 1.0 100.0 1.0 0.0 True 0.0 1.0
|i)1s0)Is1)10) = 0011) 1.0 0.0 99.0 0.99 0.99 True 1.0 1.0
|i)Is0)1s1}10) = |001Ho) 0.5 0.0 25.94794 0.25948 5.99101 True 0.0 0.5
|i)1s0)Is1)10) = [00H0) 1.0 0.0 50.21329 0.50213 23.99955 True 0.0 1.0
|i)1s0)Is1)10) = [00Ho1) 0.5 0.0 24.79114 0.24791 5.99956 True 1.0 0.5
|i)1s0)Is1)10) = [00HoHo) 0.5 0.0 25.08363 0.25084 5.99993 True 0.0 0.5
|i)1s0)Is1)]0) =10100) 0.0 0.0 0.0 0.0 0.0 True 0.0 0.0
|i)1so)Is1)l0) =10101) 1.0 0.0 1.0 0.01 0.99 True 1.0 0.0
|i)1s0)Is1)10) = [010Ho) 0.5 0.0 25.94794 0.25948 5.99101 True 0.0 0.5
[i)Iso)Is1)]0) = 10110) 1.0 0.0 50.0 0.5 25.0 False - -
|i)1so)Is1)]0) =10111) 1.0 0.0 50.0 0.5 25.0 False - -
|i)1s0)Is1)10) = [011Ho) 0.5 0.0 25.94794 0.25948 5.99101 True 0.0 0.5
|i)1s0)Is1)10) = [01Ho0) 0.5 0.0 24.79114 0.24791 5.99956 True 1.0 0.5
[i)Iso)Is1}l0) = |01Hp1) 1.0 0.0 25.17995 0.2518 6.49968 True 2.0 0.5
|i)1so)Is1)10) =01HoHo) 0.5 0.0 25.08363 0.25084 5.99993 True 0.0 0.5
|i)1s0)Is1)10) = [0Ho00) 0.5 0.0 25.58363 0.25584 5.99659 True 0.0 0.5
[i)Is0)1s1}]0) = |0H01) 0.5 0.0 25.58363 0.25584 5.99659 True 0.0 0.5
|i)1s0)Is1)10) = [0HoOHo) 0.5 0.0 25.08363 0.25084 5.99993 True 0.0 0.5
|i)1s0)Is1)10) = [0Ho10) 0.5 0.0 25.58363 0.25584 5.99659 True 0.0 0.5
|i)1s0)Is1)10) = [0Ho11) 0.5 0.0 25.58363 0.25584 5.99659 True 0.0 0.5
|[i)Is0)1s1}10) = |0Hg1Hp) 0.5 0.0 25.08363 0.25084 5.99993 True 0.0 0.5
|i)1s0)Is1)10) = [0HoHo0) 0.5 0.0 24.82152 0.24822 5.99968 True 0.0 0.5
|i)1so0)Is1)10) = [0HoHo1) 0.5 0.0 24.82152 0.24822 5.99968 True 0.0 0.5
[i)Iso)1s1}10) = |0HoHoHo) 0.5 0.0 24.82152 0.24822 5.99968 True 0.0 0.5
|i)Iso)Is1)]0) = |1000) 1.0 1.0 100.0 1.0 0.0 True 0.0 1.0
|i)1so)Is1)]0) =[1001) 0.0 0.0 0.0 0.0 0.0 True 0.0 0.0
|i)1s0)1s1)10) = [100Ho) 0.5 0.0 25.94794 0.25948 5.99101 True 0.0 0.5
[i)Iso)Is1)]0) =|1010) 1.0 0.0 99.0 0.99 0.99 True 1.0 1.0
[i)Iso)Is1)]0) =1011) 1.0 1.0 100.0 1.0 0.0 True 0.0 1.0
|i)1s0)Is1)10) = [101Ho) 0.5 0.0 25.94794 0.25948 5.99101 True 0.0 0.5
|i)1s0)Is1)10) = [10Ho0) 0.5 0.0 25.58363 0.25584 5.99659 True 0.0 0.5
[i)Iso)Is1}10) = [10Ho 1) 0.5 0.0 25.58363 0.25584 5.99659 True 0.0 0.5
[i)Is0)1s1}10) = |10HoHo) 0.5 0.0 25.08363 0.25084 5.99993 True 0.0 0.5
|i)1s0)Is1)10) = 1100) 1.0 0.0 1.0 0.01 0.99 True 1.0 0.0
[i)Iso)Is1}l0) =1101) 0.0 0.0 0.0 0.0 0.0 True 0.0 0.0
|[i)Is0)1s1}10) = |110Ho) 0.5 0.0 25.94794 0.25948 5.99101 True 0.0 0.5
|i)1so)Is1)]0) =11110) 1.0 0.0 50.0 0.5 25.0 False - -
|i)Iso0)Is1)l0) =[1111) 1.0 0.0 50.0 0.5 25.0 False - -
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Table A2 (continued )

Initial configuration Max Min Sum Avg Var Converging Iteration of convergence Value of convergence
[i)Iso)Is1)10) = |111Hg) 0.5 0.0 25.94794 0.25948 5.99101 True 0.0 0.5
|[i)1s0)Is1)10) = 11Ho0) 0.5 0.0 25.58363 0.25584 5.99659 True 0.0 0.5
[i)Iso)Is1}10) = [11Ho1) 0.5 0.0 25.58363 0.25584 5.99659 True 0.0 0.5
[i)Iso)Is1)10) = [11HoHo) 0.5 0.0 25.08363 0.25084 5.99993 True 0.0 0.5
|i)1s0)Is1)10) = 1Ho00) 1.0 0.0 25.79114 0.25791 6.49374 True 1.0 0.5
|i)1s0)Is1)10) = [1Ho01) 0.0 0.0 0.0 0.0 0.0 True 0.0 0.0
[i)Is0)1s1)10) = |1HgOHp) 0.5 0.0 25.08363 0.25084 5.99993 True 0.0 0.5
[i)Is0)Is1)10) = |1H10) 1.0 0.0 25.17995 0.2518 6.49968 True 2.0 0.5
|[i)1s0)Is1)10) = [1Ho11) 1.0 0.0 25.79114 0.25791 6.49374 True 1.0 0.5
[i)Iso)Is1}10) = |1Ho1Hp) 0.5 0.0 25.08363 0.25084 5.99993 True 0.0 0.5
[i)Is0)1s1)10) = [1HgH0) 0.5 0.0 24.82152 0.24822 5.99968 True 0.0 0.5
|i)1s0}Is1)10) = 1HoHo1) 0.5 0.0 24.82152 0.24822 5.99968 True 0.0 0.5
|i)1s0}Is1)10) = |THoHoHo) 0.5 0.0 24.82152 0.24822 5.99968 True 0.0 0.5
|i)Is0)1s1}10) = |[Ho000) 1.0 0.0 51.66725 0.51667 23.9722 True 0.0 1.0
|[i)Is0)Is1)10) = |[Ho001) 0.0 0.0 0.0 0.0 0.0 True 0.0 0.0
|i)1s0)Is1)10) = |HoO0Ho) 0.5 0.0 25.44794 0.25448 5.99799 True 0.0 0.5
|i)1s0)Is1)10) = [Ho010) 0.5 0.0 25.94794 0.25948 5.99101 True 0.0 0.5
[i)Iso)Is1)10) = |[Ho011) 0.5 0.0 25.94794 0.25948 5.99101 True 0.0 0.5
|i)1s0}Is1)10) = [Ho01Ho) 0.5 0.0 25.44794 0.25448 5.99799 True 0.0 0.5
|i)1s0}Is1)10) = [HoOHo0) 0.75 0.0 25.82282 0.25823 6.49118 True 55.0 0.0
|i)1s0)Is1)10) = |HoOHo1) 0.5 0.0 24.86352 0.24864 5.88456 True 56.0 0.0
[i)Is0)1s1)10) = [HoOHoHo) 0.5 0.0 25.08363 0.25084 5.99993 True 0.0 0.5
|i)1s0)Is1)10) = |H100) 0.5 0.0 25.94794 0.25948 5.99101 True 0.0 0.5
|i)1so0)Is1)10) = [Ho101) 0.5 0.0 25.94794 0.25948 5.99101 True 0.0 0.5
|[i)1s0)Is1)10) = |Ho10Ho) 0.5 0.0 25.44794 0.25448 5.99799 True 0.0 0.5
|i)1so0)Is1)10) = |Ho110) 1.0 0.0 25.58355 0.25584 18.53853 True 56.0 0.0
|i)s0)Is1)10) = [Ho111) 1.0 0.0 26.08371 0.26084 18.77995 True 57.0 0.0
|[i)1s0)Is1)10) = [Ho11Ho) 0.5 0.0 25.44794 0.25448 5.99799 True 0.0 0.5
[i)Is0)1s1}10) = [Ho1Ho0) 0.5625 0.0 25.09566 0.25096 5.96191 True 56.0 0.0
|i)1s0}Is1)10) = [Ho1Ho1) 0.75 0.0 25.18704 0.25187 6.1513 True 55.0 0.0
|i)1s0}Is1)10) = |Ho1HoHo) 0.5 0.0 25.08363 0.25084 5.99993 True 0.0 0.5
|i)1s0)Is1)10) = |HoHo00) 0.75 0.0 25.57731 0.25577 6.24667 True 56.0 0.0
[i)Is0)Is1}10) = |[HoHo01) 0.5 0.0 24.36585 0.24366 5.74598 True 56.0 0.0
|i)1s0}Is1)10) = |HoHoOHo) 0.5 0.0 25.08363 0.25084 5.99993 True 0.0 0.5
|i)1s0)Is1)10) = |HoHo10) 0.6875 0.0 24.99026 0.2499 6.0533 True 55.0 0.0
[i)Iso)Is1}10) = [HoHo11) 0.75 0.0 25.51967 0.2552 6.1713 True 56.0 0.0
[i)Iso)1s1)10) = [HoHo1Ho) 0.5 0.0 25.08363 0.25084 5.99993 True 0.0 0.5
|i)1s0}Is1)10) = |HoHoHo0) 0.5 0.0 24.82152 0.24822 5.99968 True 0.0 0.5
|i)1s0)Is1)10) = |HoHoHo1) 0.5 0.0 24.82152 0.24822 5.99968 True 0.0 0.5
|[i)Iso)1s1)10) = [HoHoHoHo) 0.5 0.0 24.76893 0.24769 5.99947 True 0.0 0.5
Table A3

w-RAM EM-1 Dynamics Results — values of maximum, minimum, summation, average, variance of the orbits of the iteration of each initial conditional configuration. The
convergence is assigned True if the difference of two orbit values is less than 10~ '°. The iteration and the value of the convergence are showed.

Initial configuration Max Min Sum Avg Var Converging  Iteration of convergence  Value of convergence
|i)1s0)Is1)1s2)s3)|0) = |000000) 1.0 1.0 100.0 1.0 0.0 True 0.0 1.0
[i)Is0)1s1}1s2)Is3)0) = |000001) 0.0 0.0 0.0 0.0 0.0 True 0.0 0.0
|[i)Is0)151}152) Is3)]0) = [00000H,) 0.5 0.5 50.0 0.5 0.0 True 0.0 0.5
[i)Iso)Is1)1s2)1s3)|0) = |000110) 1.0 1.0 100.0 1.0 0.0 True 0.0 1.0
}1)|su> 51)1S2)1s3)|0) =1000111) 0.0 0.0 0.0 0.0 0.0 True 0.0 0.0
|[i)Is0)1s1}1s2)Is3)10) = |00011Ho) 0.5 0.5 50.0 0.5 0.0 True 0.0 0.5
|[i)Is0)151)152) Is3)]0) = [000HgH0) 1.0 1.0 100.0 1.0 0.0 True 0.0 1.0
|[i)1s0)Is1)1s2)Is3)]0) = [000HoHo 1) 0.0 0.0 0.0 0.0 0.0 True 0.0 0.0
|i)1s0)Is1)152)1s3)|0) = |000HoHoHo) 0.5 0.5 50.0 0.5 0.0 True 0.0 0.5
[i)Is0)1s1}1s2)Is3)]0) = [011000) 0.57797  0.02432  15.20368  0.15204 1.72195 False - -
|i)1s0)Is1)1s2)Is3)]0) = 011001) 0.42203 0.0 21.10141 0.21101 445269  False - -
|i)1s0)Is1)1s2)Is3)]0) = [01100Ho) 0.34596 0.00612  17.60406  0.17604 2.8874 False - -
[i)1s0)Is1)1s2)1s3)10) = 1011110} 0.57797  0.02432  15.20368  0.15204  1.72195 False - -
[i)Iso)Is1)Is2)Is3)10) = 011111) 0.42203 0.0 21.10141 0.21101 445269  False - -
|i)1s0)Is1)1s2)Is3)]0) = [01111Hp) 034596 0.00612  17.60406  0.17604 2.8874 False - -
|[i)1s0)Is1)1s2)Is3)10) = 1011HoHo0) 0.57797  0.02432  15.20368  0.15204  1.72195 False - -
[i)1s0)Is1)1s2)Is3)10) = [011HoHo1) 0.42203 0.0 21.10141 0.21101 445269  False - -

0.34596  0.00612  17.60406  0.17604 2.8874 False - -
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Table A3 (continued )

Initial configuration Max Min Sum Avg Var Converging  Iteration of convergence  Value of convergence
|i)1s0)Is1)1s2)1s3)|0) = [011HoHoHo)

|i)150)151)152)s3)10) = [0HoH000) 0.51949  0.50159  50.17776  0.50178  0.00032  True 6.0 0.50159
|i)1s0)Is1)152)s3)10) = [0HoH001) 0.50159 048051 50.13719  0.50137  0.00044  True 6.0 0.50159
[1Y1s0)1s1)152)153)10) = [0HoHoO0H,) 050159  0.50153 5015906  0.50159 0.0 True 5.0 0.50159
[i)Is0)Is1)Is2)Is3)10) = |0HoHo 110) 0.51949 050159 5017776  0.50178  0.00032  True 6.0 0.50159
|i)1s0)Is1)1s2)s3)10) = [0HoH111) 0.50159  0.48051 50.13719  0.50137  0.00044  True 6.0 0.50159
|i)150)1s1)152)183)10) = |0HoHo 11Ho) 0.50159  0.50153  50.15906  0.50159 0.0 True 5.0 0.50159
|i)150)Is1)152)1s3)|0) = |0HoHoHoHo0) 0.51949 050159 5017776  0.50178  0.00032  True 6.0 0.50159
|i)1s0)Is1)152)1s3)|0) = |0HoHoHoHo1) 0.50159  0.48051  50.13719  0.50137  0.00044  True 6.0 0.50159
|i)1s0)Is1)152)1s3)10) = [0HoHoHoHoHo) 0.50159  0.50153  50.15906  0.50159 0.0 True 5.0 0.50159
|[i)Is0)1s1}1s2)Is3)10) = [100000) 1.0 1.0 100.0 1.0 0.0 True 0.0 1.0
\>|sg) Is1)]s2)1s3)]0) = [100001) 0.0 0.0 0.0 0.0 0.0 True 0.0 0.0
|i}Is0)Is1)1s2)1s3)10) = |10000H0) 0.5 0.5 50.0 0.5 0.0 True 0.0 0.5
[i)Is0)1s1}1s2)Is3)10) = [100110) 0.57797  0.02432  15.20368  0.15204  1.72195 False - -
[i)1s0)Is1)1s2)Is3)10) = [100111) 042203 0.0 21.10141 021101  4.45269  False - -
[i)Is0)Is1)1s2)1s3)10) = [10011Hg) 0.34596 0.00612  17.60406  0.17604  2.8874 False - -
|i)1s0)Is1)1s2)s3)10) = [100HoH,0) 0.51949  0.50159  50.17776  0.50178  0.00032  True 6.0 0.50159
|i)1s0)Is1)1s2)s3)10) = [100HoH,1) 0.50159  0.48051 50.13719  0.50137  0.00044  True 6.0 0.50159
[1Y1s0)Is1)152)1s3)10) = 1100HoHoHo) 050159  0.50153 5015906  0.50159 0.0 True 5.0 0.50159
|iYIs0)Is1)Is2)1s3)10) = 1111000) 1.0 1.0 100.0 1.0 0.0 True 0.0 1.0
[1)1s0)Is1)Is2)1s3)10) = 1111001) 0.0 0.0 0.0 0.0 0.0 True 0.0 0.0
[i)Is0)151}152)Is3)10) = [11100Ho) 0.5 0.5 50.0 0.5 0.0 True 0.0 0.5
[i)Iso)Is1)1s2)Is3)|0) = [111110) 0.57797  0.02432 1520368 0.15204 172195  False - -
|i)1s0)Is1)Is2)Is3)l0) = [111111) 042203 0.0 21.10141 021101  4.45269  False - -
|i)150)Is1)152)1s3)10) = [11111Hp) 034596 0.00612 17.60406  0.17604  2.8874 False - -
|i)Is0)1s1)1s2)1s3)10) = [111HgH,0) 0.51949  0.50159  50.17776  0.50178  0.00032  True 6.0 0.50159
|i)Iso)Is1)Is2)Is3)10) = [111HgHo1) 0.50159  0.48051  50.13719  0.50137  0.00044  True 6.0 0.50159
|i)150)1s1)152)1s3)|0) = [111HoHoHo) 0.50159  0.50153  50.15906  0.50159 0.0 True 5.0 0.50159
|i)Is0)1s1)1s2)1s3)10) = [1HoHo000) 1.0 1.0 100.0 1.0 0.0 True 0.0 1.0
|i)Is0)Is1)1s2)1s3)10) = [1HoHo001) 0.0 0.0 0.0 0.0 0.0 True 0.0 0.0
|i)Is0)Is1)1s2)1s3)10) = [1HoHoO0Ho) 0.5 0.5 50.0 0.5 0.0 True 0.0 0.5
|i)1s0)Is1)152)s3)10) = [1HoH110) 0.57797  0.02432 1520368 0.15204 172195  False - -
|i)1s0)Is1)1s2)Is3)10) = [1HoHo111) 042203 0.0 21.10141 021101  4.45269  False - -
[i)Is0)Is1)1s2)1s3)10) = [1HoHo11Ho) 0.34596 0.00612  17.60406  0.17604  2.8874 False - -
[i)Is0)1s1)1s2)1s3)10) = [1HoHoHoH00) 0.51949  0.50159  50.17776  0.50178  0.00032  True 6.0 0.50159
|i)1s0)Is1)1s2)1s3)|0) = [1HoHoHoHo1) 0.50159  0.48051 50.13719  0.50137  0.00044  True 6.0 0.50159
|i)Is0)1s1)1s2)1s3)10) = [1HoHoHoHoHo) 0.50159  0.50153  50.15906  0.50159 0.0 True 5.0 0.50159
|i}1s0}Is1)1s2)Is3)10) = |Ho00000) 1.0 1.0 100.0 1.0 0.0 True 0.0 1.0
|iY1s0)Is1)1s2)1s3)10) = |H00001) 0.0 0.0 0.0 0.0 0.0 True 0.0 0.0
|[i)Is0)151)152)Is3)10) = [HoO000H) 0.5 0.5 50.0 0.5 0.0 True 0.0 0.5
[i)Is0)Is1)1s2)1s3)]0) = [Ho00110) 0.78899  0.11988  13.13405 0.13134  0.56728  True 6.0 0.11988
|i)1s0)Is1)152)s3)10) = [Ho00111) 021101  0.11988  12.09072  0.12091  0.00833  True 4.0 0.11988
|i)1s0)Is1)1s2)s3)10) = [Ho0011Ho) 025306  0.11988  12.14449  0.12144  0.01801  True 4.0 0.11988
[1Y1s0)1s1)152)1s3)10) = [HoOOHHo0) 0.75975 050159  50.69607 050696  0.08835  True 32.0 0.50159
|i)1s0)1s1)152)1s3)|0) = [HoOOHoHo1) 0.50159  0.24025 49.61494 0.49615 0.09063  True 32.0 0.50159
|i)150)1s1)152)1s3)|0) = [HoOOHoHoHo) 0.50159  0.50076  50.15741 0.50157 0.0 True 24.0 0.50159
|i)1s0)Is1)1s2)s3)10) = [Ho11000) 0.78899  0.11988  13.13405 0.13134  0.56728  True 6.0 0.11988
[1Y1s0)1s1)152)1s3)[0) = |Hp11001) 021101 011988  12.09072 012091  0.00833  True 4.0 0.11988
|i)1s0)Is1)1s2)s3)10) = [Ho1100H,) 025306  0.11988  12.14449  0.12144  0.01801  True 4.0 0.11988
|i)1s0)Is1)1s2)s3)10) = [Ho11110) 0.57797  0.02432 1520368 0.15204 172195  False - -
[i)1s0)Is1)152)1s3)10) = [Ho11111) 042203 0.0 21.10141 021101  4.45269  False - -
|i)1s0)Is1)1s2)s3)]0) = [Ho1111Ho) 034596 0.00612  17.60406  0.17604  2.8874 False

[i)Is0)1s1)1s2)1s3)10) = [Ho11HoH(0) 0.54873  0.25974 2634257 0.26343  0.08222  True 11.0 0.26055
|i)1s0)Is1)152)1s3)10) = |[Ho11HoHo1) 045127 025025 26.23706  0.26237  0.03615  True 12.0 0.26055
|i)150)Is1)152)1s3)10) = |[Ho11HoHoHo) 026174  0.25382  26.04936  0.26049  5e-05 True 11.0 0.26055
[i)Is0)1s1)1s2)1s3)10) = [HoHoHo000) 0.75975 050159  50.69607 0.50696  0.08835  True 32.0 0.50159
|i)150)Is1)152)1s3)|0) = [HoHoH001) 0.50159  0.24025 49.61494 0.49615 0.09063  True 32.0 0.50159
|i)150)1s1)152)153)|0) = [HoHoHo00Ho) 0.50159  0.50076  50.15741 0.50157 0.0 True 24.0 0.50159
[i)Is0)1s1)1s2)1s3)10) = [HoHoHo110) 0.54873  0.25974 2634257 0.26343  0.08222  True 11.0 0.26055
[i)Iso)Is1)1s2)1s3)10) = [HoHoHo111) 045127  0.25025 26.23706  0.26237  0.03615  True 12.0 0.26055
|i)1s0)Is1)152)1s3)|0) = [HoHoHo11Ho) 026174  0.25382  26.04936  0.26049  5e-05 True 11.0 0.26055
|i)1s0)Is1)152)1s3)10) = [HoHoHoHoHo0) 0.51949  0.50159  50.17776  0.50178  0.00032  True 6.0 0.50159
[1Y1s0)Is1)1s2)153)10) = IHoHoHoHoHo 1) 050159 048051 5013719 050137  0.00044 True 6.0 0.50159
[iYIs0)Is1)Is2)Is3)10) = [HoHoHoHoHoHo) ~ 0.50159  0.50153  50.15906  0.50159 0.0 True 5.0 0.50159
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Table A4
w-RAM EM-2 Dynamics Results — values of maximum, minimum, summation, average, variance of the orbits of the iteration of each initial conditional configuration. The
convergence is assigned True if the difference of two orbit values is less than 10~ '°. The iteration and the value of the convergence are showed.

Initial configuration Max Min Sum Avg Var Converging  Iteration of convergence  Value of convergence
[i)Is0)1s1}1s2) Is3)]0) = |000000) 1.0 1.0 100.0 1.0 0.0 True 0.0 1.0
[1Y1s0)Is1)1s2)1s3)|0) = |000001) 0.0 0.0 0.0 0.0 0.0 True 0.0 0.0
[i)1s0)1s1)152)153)10) = |00000H,) 0.5 0.0 2594794  0.25948  5.99101 True 0.0 0.5
}1>I50> 51)]52)153)|0) =000110) 1.0 1.0 100.0 1.0 0.0 True 0.0 1.0
[i)Is0)Is1)Is2)Is3)10) = |000111) 042203 0.0 6.6133 0.06613  0.48011 True 58.0 0.0
[1Y1s0)1s1)12)1s3)[0) = [00011Ho) 0.5 0.0 6.76432 0.06764  0.56439 True 57.0 0.0
[i)Is0)Is1)152)153)10) = [000HH00) 1.0 0.0 4991844 049918  23.99993  True 0.0 1.0
[i)1s0)Is1)1s2)153)10) = [000HoH( 1) 050159 0.0 24.4529 024453  6.01344 True 55.0 0.0
[i)1s0)1s1)152)153)10) = [000HoHoHo) 050159 0.0 2482886  0.24829  6.03596 True 55.0 0.0
[i)Is0)Is1)Is2)1s3)l0) = |011000) 0.57797 0.0 7.21512 0.07215  0.67313 True 58.0 0.0
[i)Is0)Is1)Is2)1s3)10) = 1011001) 042203 0.0 7.014 0.07014  0.53157 True 58.0 0.0
})Iso) S1)152)153)10) =01100H) 0.11981 0.0 4.80489 0.04805 0.28175 True 56.0 0.0
[1Y1s0)Is1)1s2)1s3)l0) = 1011110} 057797 0.0 8.2827 0.08283  1.55907 True 58.0 0.0
[i)Is0)Is1)Is2)Is3)l0) = [011111) 042203 0.0 1112623 011126  3.36908 True 57.0 0.0
[i)1s0)Is1)Is2)1s3)10) = [01111Ho) 0.34596 0.0 8.80801 0.08808  2.15839 True 56.0 0.0
})Iso) S1)1S2)153)|0) = |011HgH(0) 0.57797 0.0 16.58469 0.16585 2.79488 True 55.0 0.0
[i)Is0)Is1)Is2)1s3)10) = [011HoHo 1) 042203 0.0 1653523 016535  2.69112 True 55.0 0.0
[i)1s0)1s1)1s2)153)10) = [011HoHoHo) 048016 0.0 1638449 016384  2.72023 True 55.0 0.0
[i)1s0)1s1)152)153)10) = [0HoHo000) 051949 0.0 2487717 024877  6.05647 True 55.0 0.0
[i)Is0)151)1s2)Is3)|0) = [OHoHo001) 0.50159 0.0 24.81217 0.24812 6.0156 True 55.0 0.0
[i)1s0)1s1)152)153)10) = [0HoHoO0Ho) 050159 0.0 24.89069  0.24891  6.03783 True 18.0 0.50159
[i)1s0)1s1)152)153)10) = [0OHoHo 110) 051949 0.0 7.9796 0.0798 0.77056 True 15.0 0.1515
[i)Is0)Is1)1s2)1s3)10) = [0HoHo 111) 048051 0.0 7.92639 0.07926  0.72922 True 17.0 0.1515
[i)1s0)1s1)152)153)10) = [0HoHo11Ho) 050153 0.0 7.94106 0.07941  0.75103 True 16.0 0.1515
[i)1s0)1s1)Is2)153)10) = |0HoHoHoHo0) 051949 0.0 2459575  0.24596  6.04557 True 6.0 0.50159
[i)1s0)Is1)Is2)153)10) = |0HoHoHoHo1) 050159 0.0 24.60256  0.24603  6.02542 True 6.0 0.50159
|[i)1s0)Is1)152)1s3)10) = |0HoHoHoHoHo) 0.50159 0.0 24.53733  0.24537  6.03528 True 5.0 0.50159
[1Y1s0)Is1)1s2)1s3)|0) = |100000) 1.0 1.0 100.0 1.0 0.0 True 0.0 1.0
}1>|SU> Is1)1S2)1s3)|0) =(100001) 0.0 0.0 0.0 0.0 0.0 True 0.0 0.0
|[i)Is0)1s1}1s2)Is3)10) = [10000Ho) 0.5 0.0 25.94794  0.25948  5.99101 True 0.0 0.5
[i)Is0)1s1)Is2)Is3)]0) = [100110) 0.57797 0.0 6.94702 0.06947  0.67807 True 57.0 0.0
[i)Is0)Is1)Is2)1s3)10) = 1100111) 042203 0.0 6.6133 0.06613  0.48011 True 57.0 0.0
[i)1s0)1s1)1s2)1s3)10) = [10011Ho) 0.34389 0.0 6.21134 0.06211  0.42096 True 56.0 0.0
[i)Is0)Is1)152)153)10) = [100HHo0) 051949 0.0 2493063 024931  6.05768 True 55.0 0.0
|[i)1s0}Is1)1s2)Is3)]0) = [100HoHo1) 0.50159 0.0 24.80868  0.24809  6.01663 True 55.0 0.0
[i)1s0)1s1)152)153)10) = [100HoHoHo) 050159 0.0 2492745 024927  6.03796 True 55.0 0.0
[i)Is0)1s1}1s2)Is3)10) = [111000) 1.0 0.0 8.21512 0.08215 1.51883 True 59.0 0.0
[i)Is0)Is1)1s2)Is3)10) = [111001) 0.0 0.0 0.0 0.0 0.0 True 0.0 0.0
|i)1s0)Is1)1s2)Is3)10) = [11100H0) 0.5 0.0 6.99805 0.06998  0.60015 True 57.0 0.0
[i)Is0)Is1)Is2)Is3)10) = 111110) 057797 0.0 8.2827 0.08283  1.55907 True 58.0 0.0
[i)Iso)Is1)Is2)Is3)l0) = [111111) 042203 0.0 1112623 011126  3.36908 True 57.0 0.0
[1Y1s0)Is1)1s2)1s3)[0) = [11111Ho) 034596 0.0 8.80801 0.08808 215839 True 56.0 0.0
[1Y1s0)Is1)1s2)1s3)10) = [111HoH,0) 051949 0.0 16.61976  0.1662 2.7492 True 55.0 0.0
[i)Is0)Is1)Is2)Is3)10) = [111HoHo 1) 048051 0.0 16.5853 016585  2.7231 True 55.0 0.0
[i)1s0)Is1)1s2)1s3)10) = [111HoHoHo) 050153 0.0 16.66332  0.16663  2.73674 True 55.0 0.0
|i)1s0)Is1)1s2)Is3)10) = |1HoHo000) 1.0 0.0 25.50404 025504  6.55349 True 55.0 0.0
}1>|sg) IS1)]s2)1s3)]0) = [1THoH001) 0.0 0.0 0.0 0.0 0.0 True 0.0 0.0
[i)1s0)151)12)153)10) = [1HoHoO0Ho) 050159 0.0 24.82542 024825  6.03595 True 55.0 0.0
[i)Is0)Is1)1s2)1s3)10) = [1HoHo110) 057797 0.0 8.0997 0.081 0.84109 True 17.0 0.1515
[1Y1s0)Is1)1s2)1s3)10) = 1HoHo111) 042203 0.0 7.83464 0.07835  0.67596 True 17.0 0.1515
[i)Is0)Is1)Is2)1s3)10) = [1HoHo11Ho) 0.34679 0.0 7.62818 0.07628  0.62135 True 18.0 0.1515
[i)1s0)Is1)1s2)1s3)10) = |1HoHoHoHo0) 051949 0.0 24.5586 0.24559  6.0452 True 6.0 0.50159
[1Y1s0)Is1)1s2)1s3)10) = [1THoHoHoHo 1) 050159 0.0 2452748 024527  6.02464 True 6.0 0.50159
[i)Is0)Is1)Is2)1s3)10) = |1HoHoHoHoHo) 050159 0.0 2453733 024537  6.03528 True 5.0 0.50159
}1>|50) 51)152)153)]0) = |Ho00000) 1.0 0.0 51.66725 0.51667 23.9722 True 0.0 1.0
[1)1s0)1s1)152)1s3)10) = [Ho00001) 0.0 00 00 0.0 0.0 True 0.0 0.0
[1Y150)I1)1s2)153)10) = |[HoO000H,) 0.5 0.0 25.44794  0.25448  5.99799 True 0.0 0.5
[i)Is0)Is1)Is2)1s3)10) = |Ho00110) 0.78899 0.0 7.70889 0.07709  1.35229 True 56.0 0.0
[i)Is0)Is1)Is2)1s3)10) = [H00111) 0.21101 0.0 6.1908 0.06191  0.3659 True 56.0 0.0
[i)1s0)Is1)1s2)1s3)10) = [Ho0011Ho) 025306 0.0 6.26432 0.06264  0.37953 True 56.0 0.0
[i)Is0)1s1)152)153)10) = [Ho00HoH0) 075975 0.0 2583173 025832  6.58231 True 55.0 0.0
[i)Is0)1s1)152)153)10) = [Ho00HoHo 1) 050159 0.0 2468056  0.24681  5.91258 True 55.0 0.0
[i)1s0)1s1)152)153)10) = |Ho00Ho HoHo) 050159 0.0 24.82557  0.24826  6.03674 True 55.0 0.0
[i)1s0)1s1)12)153)10) = |Ho11000) 0.78899 0.0 7.30021 0.073 0.94741 True 57.0 0.0
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Table A4 (continued )

Initial configuration Max Min Sum Avg Var Converging  Iteration of convergence  Value of convergence
|i)1s0)Is1)1s2)s3)]0) = [H11001) 0.21101 0.0 6.49274 0.06493  0.39207 True 57.0 0.0
[1Y150)I51)152)153)10) = [Ho 1100Hy) 025306 0.0 649805 0.06498  0.41763 True 56.0 0.0
\i>|50)|sl)|sz)\53)|o) =|Hp11110) 0.57797 0.0 7.93186 0.07932 1.52721 True 56.0 0.0
|i)Is0)Is1)1s2)1s3)10) = [Ho11111) 0.42203 0.0 10.95365  0.10954  3.3335 True 57.0 0.0
|i)1s0)Is1)1s2)Is3)]0) = [Ho1111Ho) 034596 0.0 8.71117 0.08711 214234 True 55.0 0.0
[1Y150)I51)152)153)10) = [Ho 11HoHo0) 054873 00  16.605 016605  2.7711 True 55.0 0.0
[1Y1s0)I51)152)153)10) = [Ho 11HoHo 1) 045127 00 1643846 016438 270564  True 54.0 0.0
|i)1s0)Is1)1s2)1s3)|0) = |[Ho11HoHoHo) 0.37498 0.0 16.42626 0.16426 2.6517 True 55.0 0.0
[1Y1s0)I51)152)153)10) = IHoHoHo000) 075975 0.0 2533199 025332  6.30605 True 55.0 0.0
\i>|50)|sl)|sz)\53)|o) = |HoHoHo001) 0.50159 0.0 2415084 0.24151 5.75755 True 55.0 0.0
|[i)Is0)151}152)Is3)10) = [HoHoHo00Ho) 0.50159 0.0 2490932 024909  6.0371 True 55.0 0.0
|i)1s0)Is1)1s2)1s3)|0) = [HoHoH110) 0.54873 0.0 8.01227 0.08012 0.80474 True 16.0 0.1515
[1Y1s0)Is1)152)1s3)10) = IHoHoHo111) 045127 00  7.86117 0.07861  0.70142 True 17.0 0.1515
|i)150)Is1)152)1s3)10) = [HoHoHo11Ho) 0.25382 0.0 7.6445 0.07644 0.57643 True 15.0 0.1515
|[i)Is0)151}1s2)Is3)10) = [HoHoHoHoHo0) 0.51949 0.0 24.59575 0.24596  6.04557 True 6.0 0.50159
[1Y1s0)Is1)152)153)10) = IHoHoHoHoHo 1) 050159 0.0  24.60256  0.24603  6.02542 True 6.0 0.50159
|i)Is0}Is1)1s2)1s3)10) = IHoHoHoHoHoHo) ~ 0.50159 0.0 2453733 024537  6.03528 True 5.0 0.50159
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Fitting Parameters on Quantum Weightless

Neuron Dynamics

In this chapter, we present our proposal of the analytical equations analysis for the
gRAM neuron dynamics which uses the information extraction model from the qubit amplitudes,
Extraction Model Dynamics (EMD), described in the previous Chapter. This paper was published
in the Brazilian Congress on Intelligent Systems (BRACIS) 2015 (PAULA NETO et al., 2015a).
We detail the system behaviour in the parameter space where it is possible visualize how the
dynamics behaves itself to different possible selectors values (Section V). A general view of the
dynamics behaviours according the selectors variation is shown (Section VI). The results from

that work allow to understand the system behaviour in function of its parameters.
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Fitting Parameters on Quantum Weightless Neuron Dynamics
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Abstract—A parametric analysis of a quantum neuron
node dynamics is proposed using an output qubit extrac-
tion protocol employed in previous works. The proposed
classification method is composed of 5 different types of
dynamics which explain the parameter changing behavior.
The initial conditions analysis for each dynamics type
is investigated. This parametric analysis gives a better
understanding of the dynamics suggesting how fine-tune
the system parameters can influence the system expected
behaviour allowing e.g. for applications in patten recogni-
tion and information retrieval.

Keywords-Dynamical systems; Control systems; Quan-
tum computing; Convergent Dynamics; Weightless neuron;
Learnability;

I. INTRODUCTION

Complex and non-linear systems are everywhere
around us, emerging from natural and artificial sys-
tems interacting with each other. Dynamical systems
research has grown to understand these systems from
their initial conditions and parameters aspects [1] [2].

The Poincaré three-body problem [3] and Lorenz
work on weather forecasting through numerical solu-
tions in systems of differential equations [4] landmarks
in the field of Dynamical Systems, introducing the
chaos concept where systems have sensibility of initial
conditions. Lorenz showed how small changes in the
initial conditions could lead to far apart differential
equation solutions in such systems.

The studies of fractals and dynamical systems has
had an exponential increase with the visualization
tools introduced by computer graphics technologies
and advances in Physics. Dynamical system have been
categorized according to number of variables, non-
linearity and parameter behavior [5].

Many classical/quantum algorithms follow a cyclic
iterative dynamics. For instance, the Grover algorithm
repeats the Grover operator ©(y/n) times [6]. Dy-
namics are important in quantum control systems [7]
[8] as well in classical control systems. To feedback
the results to guarantee error decreasing and system
adjustment, we need to understand parameters be-
haviour in that system. One has to be careful since

Wilson R. de Oliveira, Adenilton J. da Silva
Departamento de Estatistica e Informitica
Universidade Federal Rural de Pernambuco

Recife, Pernambuco
Email: wilson.rosa@gmail.com, ajs@deinfo.ufrpe.br

properties of cyclic algorithm can be reduced to te
Halting Problems for Turing machines [9].

Neural networks have been used to solve a variety of
problems in many areas. Quantum models of neuron
and neural networks were proposed, using parallelism
and other characteristics of quantum computation [10].
The iterative neuron dynamics process has been used
to better understand the relationship of learnability
and non linear and chaotic behavior of that dynamics.
A short survey wrote by Dave Gross, in an electron-
ically available article [11] elucidate the relationship
chaos versus learning. A study of convergence and
learnability is introduced in [12] from which some
important concepts are used in this paper in terms of
useful behaviors for neuron learning capability.

In [13], a qubit extraction model of a quantum neu-
ron node was proposed. The extraction model dynam-
ics presents great parametric sensibility. In this paper
we give a detailed analysis of the system behavior
under the extraction model dynamical system param-
eters configuration. The parameters are separated in
regions of behavior each detailed in relation to the
initial conditions and the changing of their parameters.

This paper is organized as follows. In Section II, we
give basic concepts of control systems. In Section III,
basic quantum computing concepts and the quantum
weightless neuron nodes are presented. In Section IV,
the extraction method of the quantum neuron node
output is explained. The proposed model of param-
eters fitting is explained in Section V. Finally, the
conclusion is presented in Section VII.

II. CONTROL SYSTEM

The basic concepts of control systems is presented
here to fix the notation used in the analysis in the
next sections. We follow [14] closely. A control system
consists of subsystems and processes assembled for the
purpose of obtaining a desired output with a desired
performance, given a specified input [14]. The second
order control systems are classified according to their
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parameters which are related to their behavior in time,
as shown in Figure 1.

s [
“| s2+as+b

Figure 1. Second order system block diagram in the Laplacian
representation where parameters ‘a’” and 'b” are not defined.

O(sz
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In the second order control systems, when the roots
of the denominator are real, negative and different, the
system in time is over-damped (or critically damped,
if the roots are real, negative and equal). When the
denominator roots have real and complex parts, it has
a under-damped behavior in time, because it has a
oscillator component included by the complex root
part. When the roots have only complex parts, the
behavior is undamped.

The three types of behavior are shown in Figure 2.
Control systems engineers change these parameters
also to vary the settling time (time to stabilize the
signal in a constant value), peak value (maximum
value) and others shapes parameters of the signal in
control.

el

Undamped
20
18|
16
14 Uniler-
12
Critically
10
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Figure 2. Over, under and undamped behaviors plots comparison.

III. QUANTUM COMPUTING

A quantum bit, qubit, is a complex bidimensional
unitary vector. The computational basis for a single
qubit is |0) = [1,0]T and [1) = [0,1]T vectors. A qubit
|¢) can be written as shown in Equation (1), where
« and B are complex numbers and |a|*> + B> = 1.
Quantum systems are qubit composition using tensor
products: |ij) = |i) ® |j).

) = «|0) + B[1) 1)

A quantum system is altered by a unitary operator
or a set of operators that change the qubit amplitude

values. A quantum operator U over n qubits is a
2" x 2" complex unitary matrix. Some main operators
over one qubit are the identity operator I, not operator
X and Hadamard H operator, described in Equation (2)
and Equation (3). A quantum circuit is a combination
of unitary operators applied to one or some set of
qubits.

1 07 10)=10 0 1] X0)=11
I_[o 1}11?—}15 X_[l 0]X1;=I0§
2

B 1 1 H|0) =1/v2(]0) + [1))
H_\}E[l 1} H|1) = 1/v2(|0) — |1)) ©

The identity operator I outputs the input; flip op-
erator X behaves as the classical NOT on the compu-
tational basis; Hadamard transformation H generates
superposition of states. The CNOT operator has 2
input qubits and 2 output qubits and flips the second
qubit if the first one is 1 as show in Figure III

b —b— adb

Figure 3. Circuit representation of CNOT operator.

A. gqRAM - Quantum Neuron RAM-based Node

In [15] and [16], the quantum RAM based neuron
was defined as quantization of the weightless neural
networks proposed in [17].

The RAM node stores in its memory one bit ad-
dressed by an input bit string. The qRAM represents
that bit storage by the gate A, as showed below. The
gate A is the classical behavior of a memory addressed
by one bit:

I 0 where
A= (0 X) A|00) = |0)I]0) (4)
A|10) = |1)X]0)

If the first input bit is zero, A matrix outputs |0) in
the second position. Otherwise, A matrix outputs |1)
in the second position. Then, the first bit called selector
is changed to modify the content loaded. The second
bit is always zero and is considered a output register
because is only accessed in the final. A qRAM of input
n-qubits has a collection of 2" A’s. Each operator A
has its selector to change its content loaded. qRAM
circuit representation is showed in Figure 4. To train a
qRAM circuit one needs to change the selectors values
to answer correctly with the input.
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In general, given an input qubit, qRAM model
chooses the selectors that will be applied in the output.
If the chosen selector value is one, the output qubit
will be one. Otherwise, the output qubit will be zero.
If the input qubit is in superposition state, the selectors
will be chosen in superposition, resulting in an output
qubit in superposition.

To train a qRAM circuit one needs to change the
selectors values to output correctly for an input in a
pattern set [18].
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Figure 4. qRAM node with two inputs, four selectors and one
output representation.

IV. QUANTUM OUTPUT EXTRACTION MODEL

In [13], an extraction model of the output qubit
during a qRAM neuron dynamics was proposed. The
proposed method extracts the even and odds ampli-
tudes of the final state during an iteration to recover
the output qubit. The recovered output qubit can be
fed back in any input register. The example below
shows an output extraction of a qRAM node with one
input (see Figure 5).

. a c e
= (@)= (@) 0= () = ()
©)
where amplitudes are complex numbers. Making [s) =
Iso)|s1), the [ip) = |i)|s)|o) as entry of the qRAM Node
is:

|) = aceg|0000) + aceh|0001) + acfg|0010)+
acfh|0011) + adeg|0100) + adeh|0101) + adfg|0110)+
adfh|0111) + bceg|1000) + beeh|1001) + befg|1010)+
bcfh|1011) + bdeg|1100) + bdeh|1101) + bd fg|1110)+
bd fh|1111)
(6)

When the qRAM node N is applied in the |¢), we
have:

N|g) = |¢") = aceg|0000) + aceh|0001) 4 acfg|0010)+
acfh|0011) + adeh|0100) + adeg|0101)+
adfh|0110) + adfg|0111) + bceg|1000)+
beeh|1001) + be fh[1010) + befg|1011)+
bdeg|1100) + bdeh|1101) + bd f7[1110)+

bdfg|1111)
@)
The output qubit amplitudes can be extracted by:
ot = 3 [gif? (®)
ieven
B =) lyiP ©)

iodd
since the output qubit is |0) in the even |¢’) am-
plitude positions and is |1) in odd |¢’) amplitude
positions.
For the case described above, the output qubit re-
covered amplitudes « and B are:

|a[?,; =laceg|* + |acfg|* + |adeh|* + |ad fh|*+ (10)
|beeg|2 + |befh|2 + |bdeg |? + bd fh|?

|BI2,1 =laceh|* + |acfh|* + |adeg|* + |adfg|*+
|beeh|* + |befg|* + |bdeh|* + |bdfg|*

It is possible to recover the output qubit for feed
back itself in the next iteration:

1D

0) 41 = @41[0) + Brya[1) (12)

V. PROPOSED MODEL OF PARAMETERS FITTING

The extraction model dynamics finds an function of
the input variables. As qRAM node is defined in [16]
as always having output qubit set to zero, ie. g =1
and & = 0, and by definition that a quantum qubits
have unit norm, we can find b, d,f, g, by its respective
amplitude values, ie. b = vV—a?2+1,d = V—c2+1,
f=+v—-e2+1, g =+/—g>+1. Then the function can

be represented only by:

a?(a,ce) = a*c?

— a%e® + ¢ (13)

To study the dynamics of this function with three
variables and to understand the parameters variations
behavior, we restrict the function to fewer parameters
by setting some variable to constants. Considering
the parameter configuration, resetting or making the
selectors equal, the dynamics behavior takes over a
transition of shapes that can be studied as general

behavior categories.
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In the studied dynamics, the output extracted via
Equation 13 (EM) is fedback in the qRAM input reg-
ister, as shown in Figure 5. That feedback process is
called iteration and it is done many times. The values
set for these iterations is called in studies of Dynamical
System as orbit [19]. The orbit plotting shows the
dynamics shape.
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Figure 5. In extraction model dynamics, the output qubit extracted
via EM block and it is feed back in input register many times
(iterations), as explained in Section IV.

The dynamics types names are chosen to represent
the dynamics behavior when the function parameter
is increased. We talk about these five types below. We
see the over-damped, under-damped and undamped
function behaviors as is shown in [13]. The undamped
behavior is also called "nondamped" to help in ab-
breviations. Here we talk of the function behavior
in function of the parameters, showing the analytical
function extracted from the reduced parameter space.

A. Type 1 - Fixed-Under-damped-Nondamped dynamics

In this type, the selector |sg) is set to |1), i.e. ¢ = 0.
The iteration function is then:

filx) =xf =€ (1—x7) (14)

Type-1 dynamics starts with 0 as fixed point, when
e = 0. The orbits behavior becomes under-damped
as e is increased. When e is maximum, ie. e = 1,
the dynamics is non-damped. The range of dynamics
values in undamped behaviour depends of the initial
value of x, xp. Settling time and maximum value
increase as x( increasing.

gqRAM Dynamics
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Figure 6. Type-1 dynamics orbits to different values of e = k and
when xp = 0.4. We can observe the orbits making an under-damped
behavior as k is increased. The non-damped is reached when k is
maximum, k = 1.

B. Type 2 - Fixed-Over-damped-Fixed dynamics

When the selector |sq) is set as [1), ie. e = 0, the
function is:

fo(x) =27,y = *xf (15)

In this dynamics type, orbits are fixed in 0, when ¢ =
0. Increasing c value, the orbits becomes over-damped,
converging to zero. Settling time is increased as xp is
increased. When c is maximum, i.e. ¢ = 1, the dynamics
orbits is a xp fixed point. Therefore, there is a superior
and inferior horizontal limits, imposed by the x¢ and
0 respectively as c is increased.

qRAM Dynamics
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Figure 7. Type-2 orbits to different values of constant ¢ = k and
xg = 0.8. We can observe the orbits reach horizontal axis in zero
value when k = 0. The over-damped behavior is presented when
0 < k <1.0. In k = 1.0 configuration, the orbits are fixed to xo = 0.8.

C. Type 3 - Fixed dynamics
When the selectors are equal, i.e. |sg) = |s1) = c|0) +
d|1) = e|0) + f|1), the iteration function is:

fa(x) = x%H =% =2 (16)
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This dynamics is always fixed depending of the
value of the selectors.

D. Type 4 - Fixed-over-damped-Fixed dynamics

In this type, the selector |sg) is set to zero, |sp) = |0),
i.e. ¢ = 1. The iteration function is:

fa(x) =27 =27 (1— %) + ¢ (17)

This dynamics orbit goes from xy as fixed point
when e = 0, pass to over-damping orbits converging
to one value as ¢ is increased, and takes the one fixed
point with e = 1. However, the over-damping here
is the complement of the Type-2, i.e. the dynamics
orbits is growing to one. Here also there is a superior
and inferior horizontal limits, imposed by the 1 and
xp respectively as ¢ is increased. This type can be
understood as the complement of the Type-2.
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Figure 8. Type-4 orbits to different values of constant ¢ = k and
xp = 0.2. In this figure, we can see to k = 0 the orbits are fixed to
xg. Increasing the k value, the orbits are an over-damping dynamics
tending to one value. When k is maximum, the orbits dynamics is
fixed to one.

E. Type 5 - Nondamped-Under-damped-Fixed dynamics

Finally, the selector |s) is set to one, |s1) = |0),
i.e. e = 1. The iteration function is:

f5(x) :xfﬂ :xf(cz—l)—kl (18)

This dynamics has non-damped behavior with ¢ = 0.
The dynamics transforms to an under-damped dy-
namics as c is increased and finally when ¢ = 1 the
dynamics is always 1 independently of xy.
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Figure 9. Type-5 orbits to different values of constant ¢ = k and
xg = 0.3. To k = 0, the orbits are nondamped dynamics. To 0 < k <1
the dynamics shape is under-damped and when k = 1 the dynamics
is fixed to one.

VI. CLASS ZONES

Figure 10 shows the zones representation with the
parameter variations. In the middle of the graph, a line
divides over-damped and under-damped zones. In this
line, the Type-3 is reached. The zones are labelled with
the name according the behavior as parameter values
are increased (from |0) to |1)).
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Figure 10. Representation of the parameter configuration zones.

Each one classification type discussed in last section is positioned in
the graph. In the middle of the graph, a line divides over-damped
and under-damped zones. In this line, the Type-3 is reached. Each
one zone is labelled according the values of parameter is increased
(from |0) to |1)). The description "FUN" in the horizontal axis is, for
example, what happens when the |s;) = |0) and [sp) goes from |0)
(Fixed), between 0 < ¢ < 1 (Under-damped), to |1) (Non-damped).

In [12], a study of convergent activation dynamics in
recurrent networks is proposed. Convergent dynamics
are useful to accomplish many interesting tasks such
as pattern recognition and classification, combinatorial
optimization, conversion of printed documents to spo-
ken words and so on. Convergent dynamics are also
desired dynamics to retrieve information because it is
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natural to want this information to be in the form of a
single unchanging n-tuple of numbers. For oscillatory
dynamics, given an input value, the periodic orbit
saves some type of information. How can we retrieve
the information embodied in the cycle? It can be the
period of the cycle, the amplitude, or some function of
Fourier coefficients of its components, or the average
of some function over the cycle [12].

Following that, the expected configuration for a
quantum weightless neurons to further increase the
information retrieval capabilities lies in all of those
which are convergent. In our investigation, this occurs
in all space that is not [sg) = |1) (ie. ¢ = 0) and
|s1) = ]0) (i.e. ¢ = 1). Type-1 and Type-5 depends of
the ¢ and e parameter setting to be a convergent or
not dynamics. Although some dynamics converge to
same point, their orbit can be explored to represent
different information when an input configuration is
iterated, implying in an orbit representation of an input
configuration.

VII. CONCLUSION

In this paper, we showed a parametric classification
of the qubit extraction dynamics model proposed in
[13]. The understanding of the dynamics by its param-
eters implies in controlling its behavior and using its
outputs in similar systems. Then, the qRAM neuron
nodes dynamics can be used coupled with others
systems governed by the node parameters.

The dynamics classification proposed divided the
space of parameters in 5 classes of behavior and
showed how its orbits change with the parameters.
These dynamics classes explore the under-damping,
over-damping and nondamped behavior, as cited in
[13], but here their control is analytically more clear.

As shown in [12], the neuron convergent dynamics
is desirable for information retrieval and we show the
conditions where it occurs for the quantum neuron.

The use of qRAMs network dynamics is the next
step of this work, extending the behavior analysis of
only one node to more nodes. The output feedback in
quantum registers as the selectors can also be investi-
gated.
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Solving NP-complete Problems using Quan-
tum Weightless Neuron Nodes

In this chapter, we show how a non-unitary operator together with a quantum weightless
neuron can solve NP-Complete Problems in polynomial time. This work (PAULA NETO
et al., 2015b) was published in the Brazilian Congress on Intelligent Systems (BRACIS) 2015.
Although the paper result depends on whether that non unitary operator exists or not, this implies
the wide computational complexity of the nonunitary gates. The quantum algorithm proposed
can be used in practical problems where there is unknown solution in a classical computing. The
gRAM neurons are attached to non-unitary operators to solve the 3-SAT Problem representing

each one a clause in a logical function (Section V).
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Abstract—Despite neural networks have super-Turing
computing power, there is no known algorithm for obtain-
ing a classical neural networks that solves NP-complete
problems in polynomial time. However this paper shows
that a quantum neural networks model coupled with a
non-unitary operator can solve 3-SAT in polynomial time.
The proposed method uses a network circuit to represent a
Boolean logic function and a non-unitary operator to decide
the satisfiability. The parameters of the network is set
deterministically and manually, accordingly to the problem
at hand with neither quantum nor classical learning.

Keywords-Quantum computing; Weightless neuron; NP-
complete problem; Non unitary;

I. INTRODUCTION

Classical computers apparently have limitations to
efficiently solve complex problems such as those in
the NP-complete class. The travelling salesman, the
graph coloring, the knapsack and the satisfiability
(SAT) problems, are examples that are in NP-complete
class and are so hard that solve one them in polynomial
time implies we can also solve all problems in NP [18].
These are technically called NP-complete problems.

Neural networks have been used to solve problems
inductively, using a training set to adjust their param-
eters. In the supervised training there are expected
targets in each training example so the network has
its parameters adjusted for minimising the measured
error in relation of the expected value. That inductive
learning gives an approximate solution not necessarily
the best one. Several neural network models were
proposed to solve NP-complete problems but none
always gives a precise correct solution due to its
stochastic behaviour and limitation of heuristic method
of updating the network parameters [11][10].

Quantum neural networks were firstly proposed
in the nineties and several works propose concrete
models of quantum neural networks [3][6]. Some ad-
vantages of quantum neural networks are the capacity
of a single neuron to solve non-linearly separable
patterns, learning algorithms with polynomial cost in

Wilson R. de Oliveira, Adenilton J. da Silva
Departamento de Estatistica e Informitica
Universidade Federal Rural de Pernambuco

Recife, Pernambuco
Email: wilson.rosa@gmail.com, ajs@deinfo.ufrpe.br

relation to the number of patterns in training set and
an exponential gain in memory capacity [7].

Non-unitary and non-linear operators [1][19][20]
combined with quantum gates solve analytically NP-
complete problems in polynomial time [13][15]. In this
paper, we show how to solve 3-SAT problem using
a quantum weightless neuron circuit [6] and a non-
unitary gate [12].

This paper is organized as follows. In Section II
and Section III we discuss quantum computing and
quantum weightless neuron nodes, respectively. 3-
SAT Problem is defined in Section IV and the 3-SAT
proposed solution using qRAM circuit representation
for Boolean logic functions is presented in Section V,
followed by an example. The conclusions are presented
in Section VI

II. QUANTUM COMPUTING

A quantum bit, qubit, is a special complex bidi-
mensional unitary vector. The computational basis for
the vector space, C2, of all qubits is composed of
the vectors written in the Dirac or bra-ket nottion:
|0) = [1,0]7 and |1) = [0,1]T. An arbitrary qubit
|¢) can be written as linear combination (superposition)
of the computational basis as shown in Equation (1),
where « and B are complex numbers and subject to
the restriction that |a|2 + |3|> = 1. Qubits represents
the states of a single quantum system. Composition of
quantum systems are obtained with tensor products:

i) = 1)) @ j)-
) = al0) + B[1) 1)

Quantum system evolves by a unitary operators
that change the state amplitude values. A quantum
operator U over n qubits is a 2" x 2" complex unitary
matrix. Some main operators over one qubit are the
identity operator I, the flip operator X and Hadamard
H operator, described in Equation (2) and Equation (3).
A quantum circuit is a combination of unitary opera-
tors applied to one or some set of qubits.
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X[0) = [1)

X:H H xI1) = [0)

H_1[1 1] H|0) = 1/v/2(]0) + [1))
V21 =1 ] H]1)=1/v2(|0) - 1))

The identity operator I outputs the input; the flip
operator X behaves as the classical NOT on the compu-
tational basis; Hadamard transformation H generates
an even superposition of states. The CNOT operator
has two input qubits and two output qubits and flips
the second qubit if the first one is 1 as show in Figure 1.

®)

b —H— adb

Figure 1. The CNOT operator

III. QUANTUM NEURONS

Many quantum neurons have been proposed gener-
alising the (classical) artificial neural networks [7][16].
Some of them are only quantum inspired but their
working is not intrinsically quantum once their learn-
ing algorithms interfere with network parameters vio-
lating some quantum postulates [4]. The gqRAM neuron
node [6][5] studied here is a generalisation of RAM
based nodes, used in many applications of pattern
recognition and classification tasks [14]. The RAM
based nodes have good generalization capabilities [9]
and computational power [8].

A. qRAM - Quantum Neuron RAM-based Node

In [6] and [5], the quantum RAM based neuron
was defined as quantization of the weightless neural
networks proposed in [2].

The RAM node stores in its memory one bit ad-
dressed by an input bit string. The qRAM represents
that bit storage by the gate A, as showed below. The
gate A is the classical behavior of a memory addressed
by one bit:

I 0 where
A= A[00) = [0)1]0) 4)
<° X> Al10) = [1)X]0)

If the first input bit is zero, A matrix outputs |0) in
the second position. Otherwise, A matrix outputs |1)
in the second position. Then, the first bit called selector
is changed to modify the content loaded. The second
bit is always zero and is considered an output register
because is only accessed in the final. A qRAM of input

s
D1 H H
s3) 1 A1 — As — As — As |
o1 H H |
4
Figure 2.  qRAM node with two inputs, four selectors and one

output representation.

n-qubits has a collection of 2" A’s. Each operator A
has its selector to change its content loaded. qRAM
circuit representation is shown in Figure 2. To train a
qRAM circuit one needs to change the selectors values
to answer correctly with the input.

In general, given an input qubit, the qRAM model
chooses the selectors that will be applied to the output.
If the chosen selector value is one, the output qubit
will be one. Otherwise, the output qubit will be zero.
If the input qubit is in superposition state, the selectors
will be chosen in superposition, resulting in an output
qubit in superposition.

One can represent the qRAM with the implicit se-
lector representation as shown in Figure 3. This no-
tation is introduced in [6] as q-ROM, quantum read-
only memory, since the addressed content cannot be
modified and the quantum operators U that implicitly
represent the selectors are fixed. Training a q-ROM,
shown in Figure 3, is to choose the operator U; for
each i positions.

Figure 3.
gates.

q-PLN node, where U;, i = 0,1,...,2" —1, can be I or X

IV. 3-SAT PROBLEM

The Boolean Satisfiability Problem (SAT) is, given a
propositional logic expression ¢(x1, x5..., x,), to decide
if there are logical values for each x; that turn the
expression ¢ true.

The 3-SAT problem restricts the SAT logic expression
format. A literal is a Boolean variable or a negated
Boolean variable. A clause is a disjunction of literals
and a 3-clause is a disjunction of exactly 3 literals. A 3-
SAT expression is formed by conjunctions of 3-clauses.
Since each clause contains exactly three literals, the
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expression will be at most (21)% = 8n® clauses, where
n is the number of variables.

A problem p is NP-complete if satisfies two con-
ditions (a) it is in NP, and (b) every problem in NP
is polynomial time reducible to p. These problems
equally difficult to solve and have to date only be
solved by algorithms with an exponential number of
steps as function of the input size. In this class of
problems, there is no known polynomial time solution.
3-SAT problem is NP-complete [17].

V. SOLVING 3-SAT USING QRAM

In this Section, we use the quantum node qRAM in
the solution of the 3-SAT using a non-unitary opera-
tor. The qRAM nodes are used to represent the logic
expressions. The non-unitary operator applied to the
qRAM circuit provides a null vector as output only if
the logic expression is not satisfiable and provides a
superposition vector in case the expression is satisfi-
able.

A. Logic expression as gRAM circuits

To set a logic expression in a qRAM circuit, we
configure the selectors |s) of each qRAM node to
represent a logic operation of each clause. As example,
for a logic expression of two variables a e b formed by
the disjunction a V b, the selectors |s1), |s2) and |s3) are
set to |1) and the selector |sg) is set to |0). The disjunc-
tion operation qRAM representation is presented in
Figure 4. For a conjunction representation, the selector
|s3) is set to |1) and the others selectors are set to |0).
That procedure is extended for gJRAMs with more than
two inputs.

[51) = 10)
[s2) = 1) 1 -
|s3) = |1) 1 A1 Ay As Ag
|54) = [1) -
10) -
Figure 4. qRAM representing disjunction operation of two inputs

|a) and |b).

A logic expression is formed by a circuit with
qRAMs where each one represents a clause. Quantum
ancillary registers load partial results for each opera-
tion. The last qRAM node calculates the conjunction
of the partial outputs giving the final output. In a
conjunctive normal form which has ¢ clauses, it is
necessary ¢ + 1 output registers |o).

In a general construction, a clause with n variables,
i.e. a logic expression which executes a disjunction
operator in the n inputs, the qRAM selector |sg) is set
to |0), and all the others ones |s1,s...,5o1) are set to
[1,...,1). In the case the operation is a conjunction, only
the selector sp» is set to |1), and the others are set to
|0).

Some Boolean expressions have negated variables
|£). For representing these variables, it is proposed to
use one additional input in the qRAM. The quantum
circuit designer is responsible to feed in that input the
negated representation of the respective variable |x).
This is done simply by the negation of the variable
by the NOT gate X. In this way, expressions of n free
variables, qRAM circuits will have 2n inputs.

)
lim) —o—o0
lin) —

0y 111X

Figure 5. Example of qROM prepared to a conjunctive operation
with no selectors representation. The gates I e X do the configuration
role. This example considers the m and n-th register as input.

To process a clause in a qRAM circuit, a qRAM node
needs to choose what variables will be used as input
in the operation. It is possible the neuron does not
need use them alls. A qRAM (Sj‘llj applies its disjunction
operation in the set of positions S C {t|]1 < t < p},
where n is the quantity of input variables, m is the
clauses quantity, and p = 2" + m + 1 and the output is
load in the k-th output register. Figure 5 represents a
qROM setting for a conjunction operation and Figure 6
show the same circuit but in this representation the
internal configuration is hidden for better displaying
the image.
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1)

ind OR
GRAME,
|in)

10)

Figure 6.  Representation of qRAM node. The selectors and U
matrices are hidden in the circuit representation to simplify the
notation. This example considers the m and n-th registers of input
and put the result of the OR operation in the k-th register

In Figure 7, it is shown an example of qRAM circuit
of the Boolean logic that express ¢(x1,x2) = (x1V
x2) A (1 V x2) A (31 V x2) A (¥ V&) using quantum
ROMs. For simplify our notation, we use qRAMs
notation even in the qROMs configurations, i.e. when
the selectors are hidden.

1) Solving 3-SAT: Then, to solve a 3-SAT problem, a
qRAM circuit is created to represent a Boolean expres-
sion. To calculate all possibles values in a single shot
operation, the inputs are prepared in superposition.
The output registers are set to zero. The neuron circuit
calculates the logic expression and the non-unitary
operator verifies if any input configuration turns the
expression true [12].

As some inputs of the circuits are in negated repre-
sentation of some variables, we cannot put all inputs
in the superposition as |x, £) would be wrongly set to
1(]00) 4 |01) + [10) + [11)). In the case which negated
inputs are used, a Bell state for this couple qubit is cre-
ated, as described in Figure 8: |x, ) = £(|01> + |10)).

|0) ———b—

Figure 8. To solve 3-SAT problems, the qRAM circuit receives all
inputs in superposition. In the case in which variables and their
negated representation are input, a Bell state is set to input these
couple of qubits, since the possible values are |01) e |10) and not all
values.

After applying the inputs in the gRAM circuit, the
next step is apply the non-unitary operator [12] in the

last output qubit:
0o 00
=2"1y 1 )

That operator does a check if some final output qubit
was flipped to |1), i.e. if some input value turns the
logic expression true. To a circuit with n variables and
k clauses, we have 2n registers of input, k + 1 output
registers, then m = 2n + k + 1 registers in total. To
apply the non-unitary operator described in Equation
5 only in the last total output register, the operator
above is used:

oM = (" 1) ® 0 ©)

where [ is identity gate. Finally, the operator O plays
the role for checking the output. This is done by
applying the operator O and verifying if the result is
a null vector or not. Since O|0) = 2"|1)(1||0) = 0, then
if our final quantum vector is null, no input turns the
final output register to |1), i.e. the logic expression is
not satisfiable.

Otherwise, if there is one solution, the final output
qubit is |1), even in superposition state, our final
quantum vector is not a null vector. For example, given
a superposition state, applying the operator O results
in O(a9/0) + Bol1)) = ao2"|1){1][0) + ay2[1)(1][1) =
0+ 12" [1) = a12"[1) [12].

As an example, given an expression

P(x1,x2,x3,x4) = (B, Va Vxg) A (2 VagVagA

(xl Vfg\/X4)/\ (X]Vf2Vf4) A(xZVf3Vf4)A (7)

(2 \/X3\/XA4>/\ (x1Vx3Vx3) /\(fl\/fz\/fg,)

We need six qRAMs, five ones are used to do a
disjunction in each clause and one qRAM does a
conjunctive composition of the partial outputs.

Analytically, the input in superposition to apply in
the qRAM circuit:

|1~P> = ‘xlr x\lr X2, f2/ X3, J6\31 X4, J6\4/ 01,02,03,04, 05, 06>

= (75(101) + [10)) & —=(J01) + [10))&
%(IMH 110)) ®%(|01> 1]10))) ® (|000000))
®)
Distributively, the input vector is also equal to:
|@) = |x1, %1, X2, 2, X3, X3, X4, X4, 01,02,03,04, 05, 06)
= 101010101)|000000) + [01010110) |000000) +
101011001)|000000) + [01011010)|000000) +-
|01100101)|000000) + [01100110)|000000)+
|01101001)|000000) + [01101010)|000000
|10010101)|000000) + [10010110)|000000
|10011001)|000000) + |10011010)|000000
|10100101)|000000) + |10100110)|000000
[10101001)|000000) + |10101010)|000000

©)

_|_
+
_|_
+

~ ~— ~ ~— ~ ~—
RN N
R Ny

)
)
)
)
)
)
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qRAMOR qRAMOR qRAMOR qRAM{AND olm) b

{5,6,7,8}|9

{1,3}|5 {2,3}]6 {1,4}|7 {2,4}|8

)
)
)
)
01) gRAMOR
)
)
)
)

Figure 7. qRAM Circuit representing the logic function ¢(x1,x2) = (x1 Vx2) A (1 V x2) A (x1 V %2) A (#1 V %2). Each qRAM node gRAMg,
has its indexes input set and define the k-th output to load its result. The register o; loads the result of the i-th clause and the register os
loads the final output. The non-unitary operator O(") verifies if the input values satisfies the equation. If the final state is a null vector the
input vector does not satisfy the equation. Otherwise, it satisfies.

When the first gqRAM processes the first clause, (¥1 V  vector is:

Xy V X4? the first register |01) is updated and the input |x1, 1, X2, %2, X3, X3, X4, ¥4, 01, 02,03, 04, 05, 06) =

vector is: 01010101)|111000000) + |01010110)|111000000)+
|1, %1, %2, X3, X3, X3, X4, X4, 01, 02, 03, 04, 05, 05) = 101011001)|111000000) + [01011010)|111000000)+
101010101) |100000000) + [01010110)|100000000) +- 101100101)110000000) -+ [01100110) [110000000) +
101011001) |100000000) + [01011010)|100000000) +- 101101001)[110000000) - 01101010} 110000000} +
|01100101) |100000000) - [01100110)|100000000) +- 110010101)111000000) -+ [10010110) [111000000) +
101101001) |100000000) + [01101010)|100000000) +- 110011001 111000000 - | 10011010} 111000000)+
10010101) |100000000) + [10010110)|100000000) +- 110100101)|011000000) -+ [10100110)|011000000) +
110011001) |100000000) + [10011010)|100000000) +- 110101001)|011000000) -+ [10101010)011000000)
110100101)|000000000) -+ |10100110)|000000000)+ (12)
110101001) |000000000) + [10101010)]000000000)

Finally, when the sixth first qRAMs process the dis-
(10) junction of the clauses, the input vector is:
When the second qRAM processes the second clause,
(%2 V x3 V x4), the second output register |o0p) is up-
dated and the input vector is: ¥) =

|X1, x/'\ll X2, le X3, f?)/ X4, xA4/ 01,02,03, 04,05, O6> =

(X1, £1, 52, £, 3 £, s £3, 01, 0 03 04, 05, 06) = 01010101)|111011110) + |01010110)[111011110)+
(01010101){110000000) 4+ [01010110) 110000000) + 01011001)|111011110) + |01011010)[111011110)+
101011001)|110000000) + [01011010)|110000000)+ 01100101)[110111110) +{01100110)[110111110)+
101100101)|110000000) -+ [01100110)|110000000)+ (01101001 [110111110) + 01101010} 110111110)+
101101001)|110000000) + [01101010)|110000000)+ 110010101)[111110110) -+ 10010110) 111110110) +
110010101} 110000000} 4 (10010110} [ 110000000} + 110011001)|111110110) + |10011010)|111110110)+
110011001)|110000000) -+ [10011010)|110000000)+ |1010(1)101>|0ﬁﬁ$0> * ‘10102110”031113@*
110100101)|010000000) -+ [10100110)|010000000)+ 1101010010 0) +[10101010)]0 0) 13)
110101001)|010000000) -+ [10101010)|010000000)

(11) As can be seen, in each state there is at least one

register set to zero in some output register |0y, ..., 0g).
When the third QqRAM processes the third clause, (x; V' Then, the last qRAM in the circuit will not alter the
X3V x4), the third register |o3) is updated and the input  final output register |o9) by the conjunction operation.
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Applying Equation 5 in the output quantum state, the
state |ip) transforms to |¢p)’:

om = (" 'L)®0 (14)

) = 0™ |yp) (15)

Verifying the value of |¢)’, we check that is a null vec-
tor 0, as expected, since the expression is not satisfiable:

') = 0.
VI. CONCLUSION

In this paper, we demonstrate that it is possible to
solve the 3-SAT problem using a non-unitary oper-
ator quantum gate and a quantum weightless neu-
ral network in polynomial time. Each logic function
clause is represented by a qRAM node, setting the
selectors according its operation. The non-unitary op-
erator verifies weather the function is satisfiable or
not. No one knows if there is a configuration of a
classical weightless neuron networks to solve 3-SAT,
this would implies that P = NP, but using a quan-
tization of weightless neuron node, 3-SAT problem
is solved in polynomial time. There are controversies
about physical implementation of non-unitary opera-
tors, notwithstanding there are some papers showing
its working [19] [20].

The logic function representation can be studied fur-
ther improved as regarding the circuit size, although it
grows polynomially in the input size. Further studies
in quantum approximated heuristic solutions for NP-
complete problems are envisioned [20].
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Quantum Neuron Chaotic Filtering Dynam-

ics

In this chapter, we propose a new quantum dynamics information extraction method. That
method was inspired in the quadratic operator S proposed by BECHMANN-PASQUINUCCI;
HUTTNER; GISIN (1998). For this reason we name it the Quadratic Extraction Model.
Trough that method, it is possible to visualize quadratic functions which consider complex
numbers during its dynamics. We use this method to set up a chaotic configuration of the qRAM
dynamics and to observe bifurcation and chaos as the parameters are changed. The presence of
chaos in orbit diagrams is observed.

We show how the Quadratic Extraction Model works (Section 5) and we present the
gRAM dynamics orbit diagrams for that model which have bifurcation and chaos when its
parameter is varied (Section 6). The fixed points movement is presented during parameters fitting
and any learning algorithms can be use that information to make the neuron learns or adapts
itself. The contribution of this work in mainly the complex values iteration for RAM dynamics
where present chaos and bifurcation in orbit diagrams. In Section 6.1 we show the Quadratic
Extraction Model (QEM) circuit can represent logic operations training its parameters from a
simple delta rule.

An extended version of this chapter is being prepared to be sent to a computing journal.
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Quantum Neuron Chaotic Filtering Dynamics
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Abstract

Natural neuron dynamics activities have shown that phase transition and
chaos provide optimal behaviour for information processing. In artificial neural
models, that behaviour is expected also to maximize the neuron learnability.
In this work, we propose a new quantum information extraction model during
the quantum node RAM dynamics where complex values are iterated and
chaos is shown in its orbit diagram. In that way, we show experimentally
that it is possible to view bifurcation and chaos varying their parameters.

Keywords: Quantum weightless neurons, Weightless neurons, Dynamical
systems, Chaos, Dynamics parameterization

1. Introduction

Biological neurons receive the attention of dynamical systems researchers
because the brain is a self-feedback system. The information about the
parameters, bifurcations and phase change of neurons helps scientists to un-
derstand how information processing can be maximized in the brain activities
[1, 2,3, 4]. In the artificial world, there is further evidence pointing agreements
between nonlinearity and chaotic environments and artificial neuron networks
learnability [5, 6, 3]. It is argued that neuron populations are predisposed
to instability and bifurcation that depend on external input and internal
parameters [7, 8.

To find the analytical expression of a particular system does not neces-
sarily imply to understand its parametric dependency, its possible temporal
convergence, chaos and fractality existence, bifurcation, and other dynamics

Preprint submitted to XXX March 2, 2016
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behaviour [9]. The natural (chemical, biological, physics) or artificial (artifi-
cial neural networks, computing networks, data centers) systems dynamics
need to be understood in quantitative and qualitative behaviours to be used
as useful subsystems. A dynamics that is understood can be induced to
produce an expected behavior, e.g. either serving as input signal generator
or working as specific task module in a complex system. Encrypt texts may
involve a chaotic module [10]. Fractals can help either to generate or to
segment textures [11, 12]. Biological neurons can learn fast in chaotic regime,
bifurcation or phase change [13, 14, 5].

Existing quantum neurons are inspired by quantum computing or are
quantum models [15, 16, 17, 18]. Quantum neurons have been used to solve
pattern recognition problems and machine learning tasks [19, 17, 20, 21].

The fact that biological neurons can learn more under certain dynamics
conditions leads us to investigate a kind of neuron model and its behaviour
in time. In this work, we analyze the dynamics of a quantum artificial
weightless neuron model named qRAM in [22]. The qRAM parameters need
to be adjusted and influence their internal characteristics. The parameter
choice can induce certain set of behaviors in qRAl\/Iin this work we define a
extraction model that search for a chaotic qRAM parametric setting. There is
evidence that in a chaotic configuration a neural model will work at maximum
efficiency for specific tasks of machine learning, pattern recognition and
artificial intelligence in general [1, 2, 3, 4, 7, §].

In [23] we show that neuron operation will entangle the qubits representing
the neuron input, output and parameters. The neuron entangled configuration
does not allow to view the qRAM output result separated from the other
qubits. The output can be estimated by the Real Extraction Model (REM)
proposed in [23]. The estimated output is feedback in the input. The REM
estimates qubits amplitudes norms and it does not enable complex values
manipulation. Other works investigate chaos in quantum systems but the
states are in predetermined format to increase their entanglement [24, 25, 26].
The REM experiments shown that real values iteration is not enough to
generate chaos in orbit diagrams of this gqRAM system.

Based on REM, this paper presents a new quantum qubit extraction model
to work with complex values named Quadratic Extraction Model (QEM). We
use QEM to find a qRAM configuration that generates chaos and bifurcations
in neurons dynamics. The advantage of QEM over REM is the capacity
to generate a qRAM chaotic configuration that can be visualized through a
orbit diagram. The system parameters are the neuron selectors parameters.
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The system initial condition is the initial neuron input. The qRAM chaotic
configuration found in this paper should help artificial computing designers to
fit neurons to invoke specific chaotic behaviour or oscillatory dynamics. The
experimental results show the qualitatively changing of dynamical critical
points during its parameter variation.

This paper is organized as follows: Section 2 presents basic concepts of
quantum computing; Section 3 describes the working of quantum weightless
neuron nodes; Section 4 explains the REM dynamics and in Section 5
the proposed method QEM dynamics is presented; Section 6 shows the
experiments of the QEM dynamics chaotic configuration where it is possible
to see orbit diagrams showing bifurcations and chaos. The conclusion is
presented in Section 7.

2. Quantum Computing

A quantum bit, qubit, is a complex bidimensional unit vector. In spite of
fact that 0 and 1 bits can be represented by any orthogonal base of C?, the
mostly used one is the canonical (or computational) basis defined as the pair
of vectors |0) = [1,0]" and |1) = [0,1]7. A qubit |¢)) can be written as shown
in Equation 1, where o and 8 are complex numbers and |a|* + 3] = 1. In

quantum computing it is not possible to make a copy of an unknown state [27].
Composite quantum systems are formed using tensor product: |ij) = |i) ® |j).

) = |0) + S[1) (1)

A quantum system is altered by operator or a set of operators that

change the qubit amplitude values. A quantum operator U over n qubits is

a 2" x 2" complex unitary matrix. Some operators over one qubit are the

identity operator I, not operator X and Hadamard H operator, described

in Equation (2) and Equation (3). A quantum circuit is a combination of
operators applied to one or some set of qubits.

|1 0] I0)=0) 0 1] X]0)y=]1)
1_{0 1} )= 7|1 0] X1)=10) 2)
H=1 L1 H|0) = 1/\/5(’0) + 1)) (3)

V2T -1} HJL) =1/v2(|0) - 1))
The identity operator I outputs the input; flip operator X behaves as
the classical NOT on the computational basis; Hadamard transformation H
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generates superposition of states. The CNOT operator has 2 input qubits
and 2 output qubits and flips the second qubit if the first one is 1 as show in
Figure 1.

b —D— adb

Figure 1: Circuit representation of CNOT operator.

Usually the operators are unitary but many non-unitary operators have
been used [28]. The non-linearity is useful for overcoming “the difficulties
connected with the ordinary linear quantum components” [16]. In this paper,
a non-unitary operator is used to filter the dynamics amplitudes.

3. Quantum Weightless Networks

The quantum RAM based neuron qRAM [29] was defined as the quan-
tisation of the RAM node which is the neural unit of the weightless neural
networks first proposed in [30] and reviewed in [31].

In its simplest form a RAM node stores in its memory one bit addressed
by an input bit string. The corresponding qRAM represents the stored bit
by selectors. To change that selector values will simulate the changing of the
stored value in the RAM memory. In spite of the simplicity of the RAM-based
nodes, RAM-based networks have good generalisation and computational
power and they have been used in several of machine learning applications
(32, 33, 34, 35, 36, 37].

Rather than giving a general definition (see [29]) let us look at the par-
ticular one input neuron which we have been analysing [23, 18, 38, 39]. The
circuit for the gRAM node is represented in Figure 2. Given a qubit, [¢),
in the input register, a qRAM node uses a controlled operation to choose
which the operator, A; or Ay, will be applied to the selector registers, |sgs1),
and output register (a qubit which will hold the output, |0’)), initially set
to o) = |0). Each A; is a CNOT operation and we use this notation A
because the possible generalizations described in [40]. If the chosen selector
value, |so) or |s1), is one, the output register will be one, |1). Otherwise, the
output register will be zero, |0), as shown in Figure 3. If the input qubit is in



superposition state, the selectors will be chosen in superposition, resulting in
an output register in superposition.

input register = |1/)> Q * |77/}> <= input register
selector registers = |50> |50> <= selector registers
|51) Ay Ay |51)
output register = ’0> |0/> <= output register

Figure 2: qRAM of one input.

Figure 3: Structure of gqRAM A operators

To train a qRAM circuit one needs to change the selectors values to correctly
output to an input in a pattern set [17]. That method was generalised for
arbitrary operators acting in a convenient vector space in [41].

4. Real Extraction Model

For iterate a system, we need to extract the system output and feed
it back in the system input. An extraction model of the output qubit for
using in its dynamics was proposed in [23]. The REM method extracts the
amplitudes norms to build the output qubit. That model is explained in this
section. In the next section, another gRAM dynamics model named QEM is
proposed considering the summation of the squared amplitudes to build the
output qubit. QEM allows that the dynamics manipulates complex numbers
generated during its iteration.

Given a quantum state of size n represented by its superposition basis
states

[¥) = ao|0) + a1[1) + a2[2)...an|m) (4)
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to check the real values of |0) and |1) amplitudes of the last qubit, we calculate
the probabilities of those events occur. It can be done for

o’ = ) lal’ B =2 laf’

i even i odd

In that way, the output quantum state of the last qubit recovered is

[0)i41 = @r1|0) + Biga|1) ()

The example below shows an output extraction of a qRAM node with one
input. Given the following qubits

= (5) 0= (5) 1= (5) 1= (1) 0

where those amplitudes are complex numbers. Considering the composition
of qubits [¢) = |i)]so)|s1)|o):

[4) = aceg|0000) + aceh|0001) + acfg|0010) 4+ acfh|0011) + adeg|0100)+
adeh|0101) + adf ¢|0110) + adfh|0111) 4 bceg|1000) + beeh|1001)+
befg|1010) + befh|1011) + bdeg|1100) 4 bdeh|1101) + bdf g|1110) + bdfh|1111)
(7)

When the qRAM node operator N [22] is applied in the [¢)), we have:

N|) = [¢") = aceg|0000) + aceh|0001) + acfg|0010) + acfh|0011) + adeh|0100)+
adeg|0101) 4+ adf h|0110) + adfg|0111) + beeg|1000) + bceh|1001) + be fh|1010)
+ befg|1011) 4 bdeg|1100) + bdeh|1101) + bdf h|1110) 4 bdfg|1111)
(8)

The output qubit amplitudes can be extracted by:

o= [yl B =" |y

i even i odd
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because the last qubit or output qubit is |0) in the even |¢)') amplitude
positions and is |1) in odd [¢)') amplitude positions. For the case described
above, the output qubit recovered amplitudes « and ( are:

]a!fﬂ :]aceg|2 + |acfg|2 + |adeh\2 + ]adfh]2+

9
|bceg|? + |befh|? + |bdeg|? + [bdf h|? (9)

8171 =|aceh|* + |acfh|* + |adeg]* + |adf g|*+

10
lbceh|* + |befgl? + |bdeh|* + |bdf g|* (10)

Then it is possible to recover the output qubit for feed back itself as input
qubit in the next iteration:

0)41 = @41]0) + Bria|1) (11)

The main characteristic of REM model is the feedback real values. The
parameters of the system is the neuron parameters and the input of the
system is the input neuron state. The iterated quantum system state is not
in predetermined format as it is done in other works [24, 25, 26]. In the next
Section, a modification of that model is proposed, where the summation of
squared amplitudes are considered, being possible to manipulate complex
values and to enrich the dynamics.

5. Quadratic Extraction Model

The Real Extraction Method allows the dynamics to deal with only real
values, since only the module of values are added. Here, the REM method is
extended to recover the value of the output register through the summation
of the squared amplitudes and not the summation of squared module of the
amplitudes. This model is not statistical but it is built in a quantum circuit
with projective operators.

The following steps show firstly how to square the amplitudes of a quantum
state. After that, we see how to filter the amplitudes and to sum some of
them. The main idea is to use a pair of the same neuron output qubit as
in [42, 24] and to flag the states of interest to erase all other ones with a
projective operator. Finally, we use a non-unitary operator to choose the
amplitudes of interest to build the output qubit.
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5.1. Squaring amplitudes

We use a pair of the same quantum state after the qRAM operation [42] to
square its amplitudes. Considering the result of the qRAM operation: gRAM
1) = apl0) + a1|1) + - - + a15|15), when we put together the pair (QRAM
1)) (QRAM [¢)) = |¢), the resulting state is:

[¢) = aopao|0)[0) +apa;|0)|1) +- - - +apai5|0)|15) +- - - +ai5a15/15)[15) (12)
or in its binary representation
|p) = anap|0000)|0000) + aga;|0000)|0001) + - - - 4+ ajsais|1111)|1111). (13)

In Equation 13, we need to erase the amplitudes a;a; where ¢ # j. One
see that the cases where |¢) has aja; amplitudes are in the states |j)|j).

5.2. Flagging interested states

One need to flag the states where the first four qubits are the same as the
last four qubits. We use the CNOT operator four times, where the control
qubits are the b-th qubits and their target qubits respectively are the (b+4)-th
qubits, for 0 < b < 4. The CNOT operator will set the last four qubits of the
17)]j) states to |0000).

5.3. FErasing non-interesting states

To erase the states which their amplitudes are not in the form a; * a;, we
use the projective operator [ ®2P§92 inspired in [42]. Those states that are
flagged in the previous step will not be altered, keeping themselves after the
projective operator and all other ones will be erased. The I®? operator is the
4x4 identity matrix and P$? is the matrix (]0)(0])®2.

The result of the projective operation is the ‘z@>|0000> qubit state, where
the ‘1ﬁ> state is the qRAM [¢) state with squared amplitudes. The squared

operation is represented in circuit in Figure 4.
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Figure 4: Quantum circuit to square the output amplitudes of the qRAM neuron. The |1))
state is created from known initial conditions - this is not a cloning.

Finally, to extract the output qubit of the ‘1$>, we apply the non-unitary

Oy operator. The output filtering is done by O; Operator which selects some
amplitudes and combines them.

P,0) P,1) P2 - Pog) - Pmn)
Pao) Pan) Pa,2) 0 P@ay) 0 Pam)
Of = 0 0 0 0 ce 0 0 (14)
0 0 0 0 ce 0 0

When one needs to add the even (odd) amplitudes and assign as |0)
(]1)) state, the configuration of Oy matrix is po;) = pa,i+1) = 1 and pg ;) =
P@,j+1) = 0, where ¢ is even and j is odd, and 0 < 4,7 < 15.

The circuit of filtering operation is represented in Figure 5 showing the
position of the extracted output .

0)
)= 0, 0

0)
<~ |Oertract>

Figure 5: Isolating the output qubit for the dynamics.
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5.4. Normalizing the output qubit

In REM dynamics, the dynamics feedback is always a real value, restrict-
ing the annihilation of complex values. Complex values is possible in the
dynamics of QEM, but it has so many divergent orbits. To control that
divergence, we normalize the extracted output quantum state as used in
quantum dynamics in previous works [25, 24].

Then the final output qubit |0cztract) 18

|Oextract> - N(Z a?p(0,2)|0> + Z azzp(l,z)|1>> (15>

which can be feed it back in the input circuit again for the dynamics iteration
as represented by Figure 6. The N operator is the normalize operator.
Through that extraction method (QEM), the extracted output qubit is now
the sum of the squared complex amplitudes, in contrast to [23], where only
the real values are feedback as input.

bt |
04 H ot
QEM

Is1) 4 A1 — A2 H -
o) — H

Figure 6: Quadratic Extraction Method (QEM) of a qRAM dynamics.

5.5. Generalisation of Quadratic Quantum Circuit Dynamics

It is easy to generalise the QEM for any quantum circuit C' with n inputs.
This method can then be used to generate an arbitrary nonlinear chaotic
dynamics [9].

10
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Figure 7: Quantum circuit to square the output state amplitudes of an arbitrary quantum
circuit.

If the quantum circuit C' has an output register, as the qRAM circuit, it
is possible to extract it using a 2" x 2" Oy operator. Through that proposed
extraction (QEM), the extracted output qubit is now the sum of the quadratic
of the amplitudes, being possible to explore the complex values during its
working for any circuit.

6. Experiments

In this Section, experiments are done using QEM dynamics environment
to invoke chaos during its dynamics. During the REM dynamics, we did
not encounter chaos in orbit diagrams. In this Section we show the orbit
diagrams with chaos when the QEM dynamics is used. Three steps of QEM
dynamics are followed: (a) first, the amplitudes are squared through the
circuit explained in previous section; (b) after that, the qubit is filtered by
the Oy operator which some output qubit amplitudes are passed to build |0)
and |1) states; (c) the output extracted qubit is normalized.

Values for the p index of the Oy are chosen experimentally. Considering
Pk = 1, ke {0, 1,2,7,8,11, 12}, Do,m) = -1, me {5, 15}, D) = 1, for
g € {1,5,11}, pawy = —1, for w € {7,15}, all other positions equal to zero of
filtering operator Oy, the QEM dynamics formula for output qubit in time
t+1is

11

10)

10)
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VJCZ;I = f(xs, yi,ce) = 2.002621'? 2.0c%e?y? + 2.0c%y?
—2.0e?x? + 2.0e*y? 4+ 1.027 — 1.0y
Vero = 9(xe .y, ce) = yi(—e + 1) +e’af(—c? + 1) (16)
—xf(CQ —1(e? = 1) —yi(c® = 1)(e* — 1)
o)t = L0) + vt t1)

where the output qubit in time ¢ (o), = 24/0) + y|1)) is feedback in the
input qubit |7) in the time ¢ + 1 and the selectors have the configuration
|s0) = ¢|0) + /1 — |c[?|]1) and |s1) = €|0) + /1 — |e]?|1).

Note that many other combinations result is possible through the Oy
filtering operation. Further works must be targeted in future to generalize
the Oy generation. Those values for this experiment were chosen empirically.
Even using a combination of amplitudes, as it is done in O operator, the
REM dynamics has not encounter chaos in its orbit diagrams.

To analyse the dynamics behaviour that has two parameters (¢ and e)
we set one as constant and variate the other one [38]. The experiments
show chaotic behaviour from the neuron setting proposed. Through the
orbit diagrams we can check the critical bifurcation points modifications
qualitatively and quantitatively.

In the orbit diagram we plot the parameters ¢ (Figure 8) or e (Figure 9)
(selectors amplitude values) on the horizontal axis and in vertical axis the
asymptotic values of 1’2,@- By asymptotic points it means that one do not plot
the first few iterations (usually 100, as in this experiment) and plot the next
1000 points. By not plotting the first few iterations, we have eliminated the
“transient behavior” of the orbit [43]. In this Section, j is the complex number
V-1

Analysing the orbit diagram of QEM dynamics, one see that the bifurca-
tion points vary by the parameters changing as in the bifurcation points in
Figures 8(a-c). The movement of critical points allows to collapse themselves
and also to generate chaos. In Figure 8(f-h), one see the chaos appearance
when parameter e is initialized in range [0.8,1.0] value and ¢ is modified
between —j and j. In Figures 8(a-e) the orbit diagrams present few critical
points and for e > 0.7 chaos and many critical points appear in Figures 8(f-h).

In Figure 9, the orbit diagrams are presented varying the e parameter and
considering the ¢ parameter as a constant. All orbit diagram have xq = 1.0.
The chaos orbits starts to appear in the extremities of e values Figures 9(b-f)

12
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(either next to e = 0.0 or next to e = j). As c is increased, the movement of
critical points does the chaos orbits collapse themselves and appear only one
critical point after ¢ > 0.8.

(a) e=0.0 (b) e=10.3
< >
(c)e=0.4 (d) e=0.5

(e) e=0.7
nr R Al
! i
ifl;] HEM
" {
(g) e=0.9 (h) e=1.0

Figure 8: Orbit diagrams where e parameter value is fixed and ¢ varies between —j and j.
There is a movement of dynamics critical points as the e parameter is increased and the
appearance of chaos in e > 0.7.

13
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(e) ¢=0.6 (f) e=0.7

(8) c=038 (h) ¢=1.0

Figure 9: Orbit diagrams which ¢ parameter is fixed and e varies between —j and j.
Bifurcations and chaos are present in ¢ < 0.7. After that the dynamics is transformed in
an unique critical point.

We plot in Figure 10 two orbit diagrams where ¢ = 0.5 and e varies between
[—7, 4] and [—1, 1] respectively. It is possible to see that the dynamics is very
sensitive to complex values, amplifying its bifurcation power.

14
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(a) ¢ = 0.5 and e varies between —j and j.

(b) ¢ =0.5 and e varies between —1 and 1.

Figure 10: Neuron Chaotic Orbit Diagrams showing its bifurcation sketches and chaos
zones where e is varied in real and complex values respectively. In Figure 10(a) one observes
the complexity of chaos orbits in almost all e value, where the dark lines are the bifurcation
points flattened as ¢ is increased. In Figure 10(b) the e varies in real values showing
amount of bifurcation points and chaos in its center. The figures show the sensibility of
that dynamics to its parameter values.

Two orbits are plotted in Figure 11 to show the dynamics sensibility to
initial conditions. A difference of initial conditions in a decimal case invokes
different behaviour during its dynamics.

15
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Figure 11: Two orbit series starting with initial conditions * = 0.1 and = =
0.1000000000000001 as chaotic parameter ¢ = 0.5 and e = 0.965 and differing completely
with the other next to 90—th iteration.

6.1. Logic gates representation

Here we show that the QEM circuit can represent logic gates after a
simple classical training algorithm that learns the qRAM parameters. We use
the simple delta rule [44] to train the parameters of the qRAM circuit, ¢ and
e selectors values which are set initially with random values. This experiment
considers the two input variables i; and i, as the input quantum state in
the format [i) = i1|0) + i5|1). The QEM circuit outputs the logic operation
result in the |0) amplitude of the extracted output state.

The training sets are Qanp = {{0,0},0},{{0,1},0}, {{1,0},0}, {{1, 1}, 1},

QOR = {{07 0}7 O}a {{07 1}7 1}a {{17 0}7 1}7 {{17 1}7 1} and

Qxor = {{0,0},0},{{0, 1}, 1}, {{1,0},1},{{1,1},0}. The procedure to train
the parameters of the qRAM is updating the ¢ and e values through delta
rule described in Equation 17 below

W1 = we + 0% (§ —y) * 2 (17)
where w is the parameter ¢ and e, 7 is the learning rate empirically defined as
0.1, y the system output and y the expected value from the training set. In
some steps of learning, the ¢ and e parameters are adjusted and the desired
configuration is encountered. To compare the result with the training set
examples the amplitude of |0) is considered 1 if it is bigger than 0.5 or 0

16
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otherwise. If all the examples, in the training set, match with the amplitude
output qubit, the algorithm ends.

In that way, the QEM circuit can represent the AND, OR and XOR logic
gates. As example, if the parameters are set randomly as ¢ = 0.502741811814
and e = 0.923462993432, the algorithm executes 14 times to encounter the
parameters to match the Q4yp training set, ¢ = 0.323571712677 and e =
0.744292894296. Similarly, if the parameters are set as ¢ = 0.00812963753783
and e = 0.830240020655, in 4 iterations the training algorithm encounters
¢ = —0.600648681131 and e = 0.221461701987 to solve the Qpg training set.
For the last, if ¢ = 0.852644066708 and e = 0.974984538593, the algorithm
executes 13 times to find ¢ = 1.55419414381 and e = 1.6765346157 and solves
the Qxor problem.

7. Conclusion

In this work, we present a new quantum qubit extraction model named
QEM to evaluate a qRAM dynamics. QEM allows complex values iterations
and a qRAM chaotic dynamics configuration is encountered in its orbit diagram,
unlike the REM model. The result of this work should be used as parameter
configuration for neuron learning since the chaos and bifurcation are present
and many previous works demonstrated the relation between chaos and
learnability.

The QEM dynamics was inspired in [23, 38, 25] works where dynamics
were analytically studied. The results show chaotic behaviour easily viewed
experimentally and the critical points collapsing during the parameter varia-
tion. The chaos sensibility of initial conditions as shown in Figure 11 allows
either to cryptography images or texts [45, 46] or to understand the role of
biological networks [47, 48]. The extraction model showed to represent the
AND, OR and XOR logic gates through a simple training algorithm.

A possible future is about a generalization of the filtering operator Oy
to understand quantitatively the producing of chaos in that dynamics. The
analysis of quantum weightless neuron networks dynamics are also expected.
Another possible future work is to train (quantum weightless) neural networks
using the information of chaotic parametrization found in this work [49].
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Conclusion

The artificial intelligence area has proposed increasingly varied and complexes intelligent
models. On the other hand, there are few studies about how those models behave in time with
their parameter variations and initial conditions. In this work, we studied the iteration and some
parametrization conditions of the quantum weightless neuron qRAM dynamics.

To investigate a neuron dynamics, we need to feedback the system output in the input
iteratively. In this work, we showed in Theorem 6.1 (Chapter 2) that there is no way to recovery
the output qubit after a Controlled-Not operation, even in analytical mathematical manipulation,
because the system can be entangled. The output system information is then recovered for
two proposed novel methods in this work: (a) in Chapter 2, trough the Extraction Model,
where the recovered output is get by a statistical method which has phase loss; (b)in Chapter 5,
trough a Quadratic Extraction Method, which sum the squared amplitudes considering the phase
information using a non-unitary operator.

These two dynamics models were studied in this dissertation. The main contributions can
be encountered: (a) in Chapter 2, the Real Extraction Dynamics Model is studied from the phase
space where 3 behaviour are encountered: undamped / oscillatory, underdamped, overdamped.
A measure to compare different dynamics is also proposed in the Chapter 2; (b) In Chapter 3, we
analyzed analytical equations of the Real Extraction Model presented in Chapter 2 generating
a configuration behaviour map in function of selectors values; (b) In Chapter 4, we use the
gRAM attached with a nonunitary operator to solve a 3-SAT Problem. Each qRAM represents
the logic function clause use to represent a 3-SAT expression. With that representation, we
showed the powerful of non-unitary operators when used with neuron nodes; (c) In Chapter 5,
a chaotic dynamics configuration is presented using the Quadratic Extraction Model. Orbits
diagram are showed presenting chaos behaviour and bifurcation sensibility. We perceived that
as parameters are increased, the fixed points are in movement and chaotic zones appears with
parametric sensibility. Chaotic zones can be used in future to solve complex problems as OHYA;
VOLOVICH (1999) did.
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6.1 Main Results

The main contributions of this works:

» From the identification of physics structure limitation due information entanglement
generated by the CNOT Operators, the proposition of two methods of quantum
information extraction for any quantum system. One model is purely real in its
iteration and other one uses non-unitary operators where amplitudes of quantum

states are squared and a dynamics with complex values is possible to be done;

= Behaviour categorization of convergence inside a phase space trough parametric

changing of the Real Extraction Model Dynamics;

= Proposition of a quantity measure to compare dynamical systems of the Extraction

Dynamics Model;

» Proposition of a non-unitary algorithm to solve NP-Complete Problems using qRAM

nodes.

= Proposition of a chaotic configuration using the proposed Quadratic Extraction Model
in the gqRAM dynamics where there are bifurcation which can be used to improve the

gRAM learning.

6.2 Future Works

This study can be continued in many branches of investigations:

= Dynamics analysis of a qRAM network considering how its topology influences the
information management, entropy and information maximization (YUAN; XIONG;
HUALI, 2003; KOUTSOUGERAS; PAPACHRISTOU, 1988; MOLLER; PEIXOTO,
2015).

» Dynamics categorical extrapolation on the view of the quantum operators, consid-
ering more than one qRAM and extending for circuit connexions with many layers
(DEVANEY, 1992; STROGATZ, 1994; STOCKMANN, 2007).

= Investigation of the recurrent quantum neuron networks and the proposition of models
which training using with chaotic behaviour (GANDHI et al., 2015; GANJEFAR;
TOFIGHI; KARAMI, 2015; ZHAO et al., 2015; STROGATZ, 1994).
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