

Pós-Graduação em Ciência da Computação

NATÁLIA FLORA DE LIMA

FRANKENSTEIN PSO NA DEFINIÇÃO DAS

ARQUITETURAS E AJUSTE DOS PESOS E USO DE

PSO HETEROGÊNEO NO TREINAMENTO DE REDES

NEURAIS FEED-FORWARD

Universidade Federal de Pernambuco
posgraduacao@cin.ufpe.br

www.cin.ufpe.br/~posgraduacao

RECIFE
2011

NATÁLIA FLORA DE LIMA

“FRANKENSTEIN PSO NA DEFINIÇÃO DAS ARQUITETURAS E AJUSTE

DOS PESOS E USO DE PSO HETEROGÊNEO NO TREINAMENTO DE

REDES NEURAIS FEED-FORWARD”

Dissertação apresentada à Pós-Graduação em Ciência da

Computação do Centro de Informática da Universidade

Federal de Pernambuco como requisito parcial para

obtenção do grau de Mestre em Ciência da Computação.

ORIENTADORA: Profa. Dra. Teresa Bernarda Ludermir

RECIFE
2011

Catalogação na fonte

Bibliotecária Joana D’Arc Leão Salvador CRB 4-572

L732f Lima, Natália Flora de.

 Frankenstein PSO na definição das arquiteturas e ajustes dos pesos e uso de PSO
heterogêneo no treinamento de redes neurais feed-forward / Natália Flora de Lima. – 2011.

 80 f.: fig., tab.

 Orientadora: Teresa Bernarda Ludemir.
 Dissertação (Mestrado) – Universidade Federal de Pernambuco. CIN. Ciência da

Computação, Recife, 2011.
 Inclui referências.
 1. Inteligência artificial. 2. Redes neurais (Computação). I. Ludemir, Teresa Bernarda
 (Orientadora). II. Titulo.

 006.3 CDD (22. ed.) UFPE-MEI 2016-72

Dissertação de Mestrado apresentada por Natália Flora de Lima à Pós-Graduação em

Ciência da Computação do Centro de Informática da Universidade Federal de

Pernambuco, sob o título “Frankenstein PSO na Definição das Arquiteturas e Ajuste

dos Pesos e Uso de PSO Heterogêneo no Treinamento de Redes Neurais Feed-

Forward” orientada pela Profa. Teresa Bernarda Ludermir e aprovada pela Banca

Examinadora formada pelos professores:

 __

 Prof. Cleber Zanchettin

 Centro de Informática / UFPE

 __

 Prof. Wilson Rosa de Oliveira Junior

 Departamento de Estatística e Informática /UFRPE

 Profa. Teresa Bernarda Ludermir

 Centro de Informática / UFPE

Visto e permitida a impressão.

Recife, 29 de agosto de 2011.

Prof. Nelson Souto Rosa
Coordenador da Pós-Graduação em Ciência da Computação do

Centro de Informática da Universidade Federal de Pernambuco.

Este trabalho é dedicado à minha mãe e amigos.

AGRADECIMENTOS

Agradeço à Prof.ª Dr.ª Teresa Bernarda Ludermir pela orientação,

esclarecimentos e apoio no desenvolvimento deste trabalho e à amiga Teresa

pelas palavras de conforto e apoio incondicional no período mais difícil de minha

vida, fase em que perdi a minha mãe.

Obrigada a Fundação de Amparo à Ciência e Tecnologia do Estado de

Pernambuco – FACEPE – pelo aporte financeiro, sem o qual não teria

conseguido desenvolver este trabalho.

Não posso deixar de mencionar meus amigos e parceiros para todas as horas:

Elaine Cristina, Danielle Nathália, Anderson Paulo, Adenilton, Cristiano, Breno,

Maria Yêda e Renata Maria. O meu muito obrigada aos professores Cléber

Zanchettin e principalmente a Wilson Rosa, que me acompanha desde a

graduação, por participarem da minha banca. Ao professor Jones Albuquerque

pelo incentivo à continuidade dos estudos. Agradecida a todos que direta ou

indiretamente contribuíram com o desenvolvimento deste trabalho.

Por fim meu agradecimento especial a Helena Flora de Lima, por seu amor

extremo, cuidado, por uma vida de dedicação e renúncias em prol da minha

educação. Nunca poderia ter desejado uma mãe melhor, pena ela não estar mais

ao meu lado, fisicamente, para acompanhar minhas vitórias. Mãe, eu te amo,

obrigado Deus por ter me dado Helena de presente!

RESUMO

Este trabalho apresenta dois novos algoritmos, PSO-FPSO e FPSO-FPSO, para

a otimização global de redes neurais MLP (do inglês Multi Layer Perceptron) do

tipo feed-forward. O propósito destes algoritmos é otimizar de forma simultânea

as arquiteturas e pesos sinápticos, objetivando melhorar a capacidade de

generalização da rede neural artificial (RNA). O processo de otimização

automática das arquiteturas e pesos de uma rede neural vem recebendo grande

atenção na área de aprendizado supervisionado, principalmente em problemas

de classificação de padrões. Além dos Algoritmos Genéticos, Busca Tabu,

Evolução Diferencial, Recozimento simulado que comumente são empregados

no treinamento de redes neurais podemos citar abordagens populacionais como

a otimização por colônia de formigas, otimização por colônia de abelhas e

otimização por enxame de partículas que vêm sendo largamente utilizadas nesta

tarefa. A metodologia utilizada neste trabalho trata da aplicação de dois

algoritmos do tipo PSO, sendo empregados na otimização das arquiteturas e na

calibração dos pesos das conexões. Nesta abordagem os algoritmos são

executados de forma alternada e por um número definido de vezes. Ainda no

processo de ajuste dos pesos de uma rede neural MLP foram realizados

experimentos com enxame de partículas heterogêneos, que nada mais é que a

junção de dois ou mais PSOs de tipos diferentes. Para validar os experimentos

com os enxames homogêneos foram utilizadas sete bases de dados para

problemas de classificação de padrões, são elas: câncer, diabetes, coração,

vidros, cavalos, soja e tireóide. Para os experimentos com enxames

heterogêneos foram utilizadas três bases, a saber: câncer, diabetes e coração.

O desempenho dos algoritmos foi medido pela média do erro percentual de

classificação. Algoritmos da literatura são também considerados. Os resultados

mostraram que os algoritmos investigados neste trabalho obtiveram melhor

acurácia de classificação quando comparados com os algoritmos da literatura

mencionados neste trabalho.

Palavras-chave: Otimização por Enxame de Partículas. Redes Neurais

Artificiais. Enxames Heterogêneos.

ABSTRACT

This research presents two new algorithms, PSO-FPSO e FPSO-FPSO, that can

be used in feed-forward MLP (Multi Layer Perceptron) neural networks for global

optimization. The purpose of these algorithms is to optimize architectures and

synaptic weight, at same time, to improve the capacity of generalization from

Artificial Neural Network (ANN). The automatic optimization process of neural

network’s architectures and weights has received much attention in supervised

learning, mainly in pattern classification problems. Besides the Genetic

Algorithms, Tabu Search, Differential Evolution, Simulated Annealing that are

commonly used in the training of neural networks we can mentioned population

approaches such Ant Colony Optimization, Bee Colony Optimization and Particle

Swarm Optimization that have been widely used this task. The methodology

applied in this research reports the use of two PSO algorithms, used in

architecture optimization and connection weight adjust. In this approach the

algorithms are performed alternately and by predefined number of times. Still in

the process of adjusting the weights of a MLP neural network experiments were

performed with swarm of heterogeneous particles, which is nothing more than the

joining of two or more different PSOs. To validate the experiments with

homogeneous clusters were used seven databases for pattern classification

problems, they are: cancer, diabetes, heart, glasses, horses, soy and thyroid. For

the experiments with heterogeneous clusters were used three bases, namely

cancer, diabetes and heart. The performance of the algorithms was measured by

the average percentage of misclassification, literature algorithms are also

considered. The results showed that the algorithms investigated in this research

had better accuracy rating compared with some published algorithms.

Keywords: Particle Swarm Optimization. Artificial Neural Networks.

Heterogeneous Swarm.

LISTA DE ALGORITMOS

Algoritmo 1: PSO padrão. ... 26

Algoritmo 2: Frankenstein PSO. ... 31

Algoritmo 3: Pseudo-código da otimização para a definição das arquiteturas e ajuste dos
pesos de uma rede neural MLP...53

LISTA DE FIGURAS

Figura 1: Neurônio biológico. ... 19

Figura 2: Esquematização de um neurônio artificial MCP. .. 20

Figura 3: Exemplos de funções de ativação. .. 21

Figura 4: Arquitetura de uma rede neural feed-forward. ... 22

Figura 5: Modelo de vizinhança Gbest .. 25

Figura 6: Modelo de vizinhança Lbest. .. 25

Figura 7: Processo de atualização da topologia proposta pelo algoritmo AHPSO 29

Figura 8: Pesos sinápticos e bias como componentes do vetor de reais. 37

Figura 9: Esquema de uma rede neural do tipo Feed-forward.......................................51

LISTA DE TABELAS

Tabela 1: Caracterização e distribuição do número de padrões por base de dados. 40

Tabela 2: Parâmetros de configuração dos algoritmos referenciados - PSO, CGPSO e

CPSO-SK. ..41

Tabela 3: Parâmetros de configuração dos algoritmos FPSOLm, FPSORprop e FPSO:CGLm.

..42

Tabela 4: Parâmetros de configuração da rede neural..42

Tabela 5: Media e desvio padrão do erro percentual de classificação para os algoritmos

FPSOLM, FPSORprop, LM, Rprop e FPSO:CGLm utilizados no treinamento de redes

neurais..44

Tabela 6: Média e desvio padrão do tempo de execução, em segundos, para os

algoritmos FPSOLm, FPSORprop, LM, Rprop e FPSO:CGLm utilizados no treinamento de

redes neurais ..45

Tabela 7: Resultado dos testes de hipótese para as sete bases de dados que utilizaram

algoritmo híbrido no treinamento de redes neurais MLP...46

Tabela 8: Média e desvio padrão do CEP para cada algoritmo proposto no trabalho base

em relação ao algoritmo FPSOLm...47

Tabela 9: Resultado dos testes de hipótese entre FPSOLM e os algoritmos de ajuste dos

pesos apresentados em Carvalho (2007) ...47

Tabela 10: Configurações dos algoritmos de otimização simultânea das arquiteturas e

pesos em relação ao trabalho base...54

Tabela 11: Parâmetros de configuração dos algoritmos de ajuste simultâneo dos pesos

e arquiteturas...55

Tabela 12: Média e desvio padrão do erro percentual de classificação para os algoritmos

PSO-FPSOLm e FPSO-FPSOLm..56

Tabela 13: Média e desvio padrão do tempo de execução em segundos para os

algoritmos PSO-FPSOLm e FPSO-FPSOLm..57

Tabela 14: Média e desvio padrão dos algoritmos PSO-FPSOLm e FPSO-FPSOLm em

relação a outros trabalhos presentes na literatura que propuseram a definição das

arquiteturas e ajuste dos pesos de uma rede neural MLP...58

Tabela 15: Parâmetros de configuração dos algoritmos heterogêneos...........................64

Tabela 16: Quantidade de partículas, por tipo, utilizadas pelos algoritmos heterogêneos

no treinamento de redes neurais MLP..64

Tabela 17: Média e desvio padrão do erro percentual de classificação para os três

algoritmos heterogêneos, FPSO70-PSO30, FPSO30-PSO70, FPSO50-PSO50...........................65

Tabela 18: Média e desvio padrão do tempo de execução, em segundos, para os três

algoritmos heterogêneos, FPSO70-PSO30, FPSO30-PSO70, FPSO50-PSO50...........................65

Tabela 19: Resultado dos testes de hipótese para os algoritmos heterogêneos, FPSO70-

PSO30, FPSO30-PSO70, FPSO50-PSO50, apenas os resultados no qual os algoritmos

heterogêneos obtiveram melhor desempenho foram relacionados...............................66

Tabela 20: Média e desvio padrão nos algoritmos heterogêneos em relação aos

algoritmos FPSOLM, FPSORPROP, LM, RPROP e FPSO:CGLm...67

Tabela 21: Resultado do teste de hipótese no qual o algoritmo heterogêneo obteve

melhor desempenho em relação aos demais testados neste trabalho para o treinamento

de redes neurais MLP..68

SUMÁRIO

Capítulo 1 ... 14

Introdução ... 14

1.1 Motivação.. 14

1.2 Objetivos ... 17

1.3 Organização da Dissertação .. 17

Capítulo 2 ... 19

Otimização de Redes Neurais Utilizando Enxame de Partículas 21

2.1 Redes Neurais Artificiais .. 21

2.2 PSO Padrão .. 23

2.3 Frankenstein PSO .. 27

2.4 Frankenstein PSO com Convergência Garantida ... 32

2.5 Comentários Finais .. 33

Capítulo 3 ... 35

Treinamento de Redes Neurais com PSO .. 35

3.1 Introdução ... 35

3.2 Representação das Soluções. .. 36

3.3 Função de Custo .. 37

3.4 Experimentos .. 38

3.4.1 Base de Dados ... 40

3.4.2 Configurações .. 43

3.4.3 Comparação dos Algoritmos ... 44

3.5 Resultados ... 47

3.6 Conclusão .. 50

Capítulo 4 ... 50

Ajuste Simultâneo de Pesos e Arquiteturas com FPSO .. 50

4.1 Introdução ... 50

4.2 Otimização dos pesos e arquiteturas com PSO ... 52

4.2.1 Representação das Soluções ... 52

4.2.2 Algoritmo de otimização das arquiteturas e pesos 53

4.3 Experimentos .. 54

4.4 Resultados ... 56

4.5 Conclusão .. 59

Capítulo 5 ... 61

Enxames Heterogêneos ... 61

5.1 Introdução ... 61

5.1.1 Modelo de Influência ... 61

5.1.2 Regra de Atualização ... 62

5.1.3 Heterogeneidade de vizinhança .. 62

5.1.4 Parâmetros .. 62

5.2 Experimentos .. 63

5.2.1 Configurações .. 63

5.3 Resultados ... 65

5.4 Conclusão .. 68

Capítulo 6 ... 70

Conclusões e Trabalhos Futuros .. 70

6.1 Conclusões .. 70

6.2 Trabalhos Futuros.. 72

Referências...74

14

Capítulo 1

Introdução

Este capítulo apresentará a motivação do trabalho, bem como os objetivos. Em

seguida, a organização da dissertação é detalhada.

1.1 Motivação

Redes neurais artificiais (RNAs) têm obtido bons resultados na solução de vários

problemas, como reconhecimento de padrões (CARVALHO; LUDERMIR, 2006c;

YANAN; XIUWEI; LI, 2010), previsão de séries temporais (VALENÇA, 2010;

VALENÇA; LUDERMIR; VALENÇA, 2010) aproximação de funções (GOMES;

LUDERMIR, 2008; PRUDÊNCIO, 2002) e outros. Por este motivo existe um interesse

crescente na aplicação de redes neurais em outras classes de problemas, bem como

o refinamento de técnicas utilizadas em sua construção. Nem sempre o emprego de

redes neurais produz bons resultados, muitas vezes isto se dá pela dificuldade em

projetá-las a um problema específico. Por isto é cada vez mais frequente o uso das

mais diversas técnicas na construção de redes neurais artificiais (ALMEIDA, 2011;

LUDERMIR; YAMAZAKI; ZANCHETTIN, 2006).

Um dos modelos mais utilizados e conhecidos de redes neurais é o MLP (Multi Layer

Perceptron) (BRAGA; CARVALHO; LUDERMIR, 2007; HAYKIN, 1999). Este tipo

caracteriza-se por uma arquitetura disposta em camadas sendo a primeira de entrada

– definida baseada na dimensão do problema a ser tratado – uma ou mais camadas

ocultas, também chamadas de camadas intermediárias e uma camada de saída –

definida de acordo com o problema a ser resolvido. Definir a configuração da(s)

camada(s) intermediária(s) é uma tarefa complexa, pois como eleger a quantidade

ideal de camadas e o número de neurônios que cada uma delas irá possuir, senão

pela tentativa e erro ou consulta a um especialista. Esta é uma das razões pela qual

o uso de técnicas inteligentes combinadas a redes neurais tem feito tanto sucesso,

comumente estas técnicas também têm sido empregadas na escolha de funções de

15

ativação, algoritmo de treinamento e outros parâmetros das redes neurais segundo

Almeida e Ludermir (2009).

O processo de treinamento de redes neurais artificiais (RNAs) MLP para problemas

de classificação de padrões envolvem duas fases. A primeira é a definição do número

de camadas ocultas e a quantidade de neurônios que cada uma irá possuir, enquanto

que a segunda fase trata de ajustar os pesos das conexões, conforme Braga, Carvalho

e Ludermir (2007). Para definir uma arquitetura o menos complexa possível, podem

ser empregadas técnicas inteligentes como Evolução Diferencial (SILVA; MINEU;

LUDERMIR, 2009), Colônia de Formigas (SIVAGAMINATHAN; RAMAKRISHNAN,

2007), Algoritmos Genéticos (ALMEIDA; LUDERMIR, 2009; ZANCHETTIN;

LUDERMIR, 2005), Otimização por Enxame de Partículas (CARVALHO; LUDERMIR,

2007; LUDERMIR; KIRANYAZ et al, 2009; YAMAZAKI; ZANCHETTIN, 2006), Colônia

de Abelhas (KARABOGA; BASTURK, 2008; TEODOROVIC et al, 2006), Programação

Evolucionária (YAO; LIU, 1997). Estas técnicas também podem ser utilizadas no

ajuste dos pesos das conexões da rede para substituir o conhecido algoritmo back-

propagation, pois o mesmo utiliza o gradiente descendente do erro de classificação

para determinar o novo valor dos pesos das conexões. O back-propagation faz uso

do aprendizado online, o que quer dizer que, geralmente, todos os padrões de treino

precisam ser apresentados de forma continua à medida que a fase de treinamento

avança. Segundo Braga, Carvalho e Ludermir (2007) o uso do back-propagation em

redes neurais grandes e/ou complexas torna-se muito difícil. Outro ponto negativo em

sua utilização, que ocorre durante a fase de treinamento, é o overfitting. Isto ocorre

quando a rede passa a memorizar os padrões de entrada apresentados, diminuindo

assim a capacidade de generalização da rede neural. Para resolver este problema

reserva-se uma parte do conjunto de treinamento, geralmente 25% dos dados. Este

subconjunto é chamado conjunto de validação e é utilizado para avaliar se durante a

fase de treinamento está ocorrendo o overfitting. O treinamento da rede neural é

interrompido a partir do momento que o erro no conjunto de validação começa a

crescer. Por outro lado, se o treinamento for interrompido muito cedo poderá ocorrer

o chamado underfitting, que é a incapacidade de generalização da rede, ou seja, falta

de conexões e/ou parâmetros ajustáveis conforme Braga, Carvalho e Ludermir (2007).

16

Alguns trabalhos tem considerado o uso Algoritmos Genéticos (AG) como Almeida e

Ludermir (2009); Zanchettin e Ludermir (2009); Evolução Diferencial (ED) como Zarth

(2010); Zarth e Ludermir (2009); Busca Tabu (BT) conforme Zanchettin, Ludermir e

Almeida (2011); Recozimento Simulado (RS) segundo Yamazaki (2004); Zanchettin,

Ludermir e Almeida (2011) ou mesmo duas ou mais destas técnicas juntas para definir

a configuração de redes neurais, como é o caso de Almeida e Ludermir (2009) que

combinou Estratégias de Evolução (Evolution Strategy), Algoritmos Genéticos e

Otimização por Enxame de Partículas para aperfeiçoar uma RNA através da escolha

do algoritmo de treinamento, do pesos das conexões, da taxa de aprendizado, do

número de camadas intermediárias, das funções de transferência e do bias. No

trabalho Zarth (2010) o sistema proposto buscou por arquiteturas e pesos fazendo uso

de Evolução Diferencial associado a uma estratégia para controle da diversidade

proveniente da Computação Evolucionária Paralela. Em Eberhart e Shi (2000) foram

combinadas as técnicas de Recozimento Simulado, Busca Tabu e o algoritmo por

correção de erro back-propagation com o objetivo de gerar redes neurais de baixa

complexidade e alta capacidade de generalização.

O uso de Otimização por Enxame de Partículas (PSO) tem se tornado cada vez mais

frequente em estudos relacionados ao aprendizado supervisionado. Esta técnica tenta

simular o comportamento animal na busca por recursos, por exemplo, imagine um

bando de pássaros a procura de novas fontes de alimentação ou um local de

descanso. Neste cenário os pássaros são representados pelas partículas, as fontes

de alimentação ou o local de descanso é a função objetivo e a área onde os pássaros

se deslocam representa o espaço de busca. O PSO foi apresentado pela primeira vez

por Kennedy e Eberhart (1995) e desde então tem sido utilizado na melhoria de

soluções de vários problemas na área de redes neurais artificiais (CHAURASIA;

DAWARE, 2009; GUDISE; VENAYAGAMOORTHY, 2003; ZHONG; WANG; LI, 2009),

tendo alcançado bons resultados quando empregado a problemas de otimização

numérica. Além disso o PSO é considerado um método de fácil implementação.

Este trabalho faz uso da Otimização por Enxame de Partículas para definir o número

de neurônios na camada intermediária e realizar o treinamento de uma rede MLP, do

tipo feed-forward.

17

1.2 Objetivos

Além de fazer uso do PSO para definir redes neurais de baixa complexidade e boa

capacidade de generalização, os seguintes tópicos podem ser destacados como

objetivos deste trabalho:

 Avaliar o desempenho de uma variação recente da técnica de otimização por

enxame de partículas, chamado Frankenstein PSO ou apenas FPSO, em relação

à técnica padrão quando aplicado a problemas de classificação de padrões.

 Validar novos algoritmos de ajuste simultâneo das arquiteturas e pesos de uma

rede neural, cuja metodologia é similar a apresentada em Carvalho (2007).

 Legitimar o uso de enxames heterogêneos no processo de treinamento de redes

neurais Multi Layer Perceptron.

1.3 Organização da Dissertação

Esta dissertação está organizada em 6 capítulos, estando no capítulo primeiro a

introdução, motivação, objetivos e organização deste trabalho. Os demais capítulos

seguem organizados da seguinte forma:

 Capítulo 2 – Otimização de Redes Neurais Utilizando Enxame de Partículas: neste

capítulo apresentamos o conceito de neurônio e rede neural artificial e alguns

métodos baseados na otimização por enxame de partículas, utilizados neste

trabalho para otimizar o treinamento e a definição da arquitetura de redes neurais

do tipo feed-forward.

 Capítulo 3 – Treinamento de Redes Neurais com PSO: É descrito o uso do

Frankenstein PSO no processo de otimização dos pesos das conexões em

problemas de classificação de padrões.

 Capítulo 4 – Ajuste Simultâneo de Pesos e Arquiteturas com FPSO: Trata do ajuste

simultâneo dos pesos e arquiteturas fazendo uso do Frankenstein PSO. Foram

utilizados os resultados obtidos no capítulo 3 e as mesmas bases de dados para

realizar os experimentos.

18

 Capítulo 5 – Enxames Heterogêneos: Apresenta o uso de enxames heterogêneos

no treinamento de redes neurais MLP.

 Capítulo 6 – Conclusões e Trabalhos Futuros: Aborda as conclusões e também

cita alguns trabalhos futuros.

19

Capítulo 2

Otimização de Redes Neurais Utilizando

Enxame de Partículas

Neste capítulo é apresentada a definição de neurônio e redes neurais artificiais, PSO

padrão e algumas variações da otimização por enxame de partículas utilizadas neste

trabalho.

2.1 Redes Neurais Artificiais

Redes Neurais Artificiais são representações computacionais, em contínuo

aperfeiçoamento, que tentam reproduzir o processo de aprendizagem do cérebro

humano. Assim como o cérebro que é formado por neurônios as redes neurais

também o possuem em sua constituição. Os neurônios ou nodos, como também são

conhecidos, são associados aos demais por meio de conexões, que por sua vez

recebem um peso. O comportamento ou resposta de uma rede neural a determinado

estímulo é dado pela força destas conexões (BRAGA; CARVALHO; LUDERMIR,

2007). Isto significa que, quanto maior o peso atribuído a uma determinada conexão,

maior será sua influência na saída (resposta). Na Figura 1 temos uma representação

gráfica de um neurônio biológico.

Figura 1: Neurônio biológico.

Fonte: Autor (2011).

20

De modo genérico podemos descrever a formação e funcionamento de um neurônio

biológico da seguinte forma: os estímulos de entrada, provenientes de outros

neurônios, são captados por meio dos dendritos; o estímulo, então, é processado no

corpo celular e a saída ou resposta será transmitida ao próximo neurônio por meio do

axônio.

Na década de 40 uma simplificada representação do comportamento de um neurônio

biológico foi proposta por McCulloch e Pitts (BRAGA; CARVALHO; LUDERMIR, 2007;

HAYKIN, 1999). No modelo de neurônio artificial MCP ou Modelo McCulloch-Pitts, os

dendritos são representados por n terminais de entrada, x1, x2, ..., xn; o axônio (que

representa a saída ou resposta) simbolizado por uma única saída, y. Para representar

o processo de transmissão da resposta de um neurônio a outro – sinapse – as

conexões de entrada receberam pesos, w1, w2, ..., w3. Deste modo para saber se o

resultado aos estímulos de entrada recebidos foi suficiente para atingir o limiar de

excitação do neurônio, threshold, é preciso somar todas as entradas aos respectivos

pesos, que podem assumir valores positivos ou negativos. Logo, obtemos a equação

(1), representação matemática do Modelo McCulloch-Pitts.

∑ 𝑥𝑖𝑤𝑖 ≥ 𝜃

n

𝑖=1

 (1)

em que 𝜃 representa o limiar de excitação ou threshold. Podemos representar o

neurônio artificial, proveniente do Modelo McCulloch-Pitts, conforme a Figura 2.

Figura 2: Esquematização de um neurônio artificial MCP.

Fonte: Braga, Carvalho e Ludermir (2007).

21

No modelo MCP os neurônios são binários, ou seja, possuem saída 0 ou 1, então,

para determinado estímulo de entrada o neurônio estará ativo ou não. No entanto a

grande maioria dos problemas da vida real são não-lineares. Com o intuito de

solucionar esta limitação, ao longo dos anos, foram apresentadas diferentes funções

de ativação, algumas delas estão dispostas na Figura 3.

Figura 3: Exemplos de funções de ativação.

Fonte: Braga, Carvalho e Ludermir (2007).

Um único neurônio possui capacidade computacional bastante limitada, no entanto se

juntarmos vários neurônios e os dispormos em forma de rede teremos a capacidade

de resolver problemas de alta complexidade. Na Redes neurais de única camada,

como visualizado em Figura 4. a) são capazes de resolver apenas problemas lineares.

Na arquitetura disposta em Figura 4. b) também temos uma rede feed-forward, no

entanto esta possui uma camada adicional, a chamada camada intermediária ou

camada oculta. Redes neurais com esta disposição de neurônios são capazes de

resolver qualquer função contínua. Se adicionarmos mais uma camada intermediária

22

a esta teremos uma rede capaz de aproximar qualquer função conforme Braga,

Carvalho e Ludermir (2007) e mais, se os neurônios da camada intermediária fizerem

uso de funções sigmoidais esta rede receberá o nome de Perceptron de Múltiplas

Camadas ou MLP, do inglês Multi Layer Perceptron. Na Figura 4 são apresentadas

apenas as arquiteturas utilizadas neste trabalho, redes feed-forward.

Redes neurais de única camada, como visualizado em Figura 4 a) são capazes de

resolver apenas problemas lineares. Na arquitetura disposta em Figura 4 b) também

temos uma rede feed-forward, no entanto esta possui uma camada adicional, a

chamada camada intermediária ou camada oculta. Redes neurais com esta

disposição de neurônios são capazes de resolver qualquer função contínua. Segundo

Braga, Carvalho e Ludermir (2007) se adicionarmos mais uma camada intermediária

a esta teremos uma rede capaz de aproximar qualquer função e mais, se os neurônios

da camada intermediária fizerem uso de funções sigmoidais esta rede receberá o

nome de Perceptron de Múltiplas Camadas ou MLP, do inglês Multi Layer Perceptron.

Figura 4: Arquitetura de uma rede neural feed-forward.

Fonte: Braga, Carvalho e Ludermir (2007).

Uma vez definidos a arquitetura e função ou funções de ativação da rede neural é

preciso treiná-la para que possa “aprender”. Dentre as diversas formas de

aprendizado aplicáveis as redes neurais (por competição, reforço, hebbiano e outros)

veremos de forma detalhada o aprendizado supervisionado, que é o método utilizado

neste trabalho.

23

Neste tipo de aprendizado uma parte do conjunto de dados é reservada para realizar

o treinamento da rede. A rede deve calcular o quão distante da resposta desejada ela

se encontra, ou seja, para cada saída obtida e de acordo com a resposta desejada a

rede calcula o erro da saída e assim, ajusta os pesos de suas conexões, de forma que

a resposta da rede se aproxime da saída desejada.

Apesar dos bons resultados obtidos pelas redes neurais em tarefas de classificação,

categorização, otimização, aproximação e previsão existem alguns pontos que

contam negativamente em sua aplicação. A exemplo podemos citar a definição da

quantidade ideal dos dados de entrada utilizados pelo conjunto de treinamento; a

duração da fase de treinamento ou aprendizagem, podendo causar problemas como

overfitting (quando a rede passa a “decorar” os dados de entrada produzindo altas

taxas de erro na fase de teste) e underfitting (quando a fase de treinamento é muito

curta e incapacita a rede a regular os parâmetros ajustáveis. Também produz alta taxa

de erro durante a fase de teste); o uso de algoritmos por correção de erro, como o

back-propagation, que podem levar a rede a regiões de mínimos locais. Algumas

soluções a estes e outros problemas é a combinação de diferentes métodos de forma

que um seja capaz de suprir as deficiências do outro ou mesmo para encontrar

soluções mais eficientes e/ou robustas. A esta combinação de diferentes métodos, no

qual um deles seja uma rede neural, damos o nome de Sistemas Neurais Híbridos

(BRAGA; CARVALHO; LUDERMIR, 2007).

2.2 PSO Padrão

A Otimização por Enxame de Partículas ou apenas PSO é uma técnica meta-

heurística criada por Kennedy e Eberhart (1995) cuja motivação partiu da observação

do comportamento social de animais. Técnicas baseadas no comportamento de

populações são largamente aplicadas a um grande número de problemas de

otimização numérica. A exemplo podemos citar a Otimização por Colônia de Formigas

(do inglês Ant Colony Optimization) em Sivagaminathan e Ramakrishnan (2007) e a

Otimização por Colônia de Abelhas (do inglês Bee Colony Optimization) em Karaboga

e Basturk, (2008); Teodorovic et al, (2006). A idéia inicial dos autores foi reproduzir o

comportamento de pássaros na busca por recursos, por exemplo, a busca por novas

24

fontes de alimentação. Assim como na natureza em que os indivíduos se movimentam

no espaço trocando informações entre si com o objetivo de levar o bando as melhores

regiões o algoritmo do PSO também reproduz este comportamento. A seguir

descrevemos como este hábito foi modelado na otimização por enxame de partículas.

Seja o enxame um conjunto S formado por partículas p, que representam as possíveis

soluções, cada uma delas tem dimensão n. Para cada uma delas, 1 ≤ pi ≤ S, num

instante de tempo t, tem suas posições xi(t) ∈ n e velocidades vi(t) ∈ n definidas -

determinam a extensão e direção do deslocamento no espaço de soluções.

Informações adicionais são armazenadas pelas variáveis pb – responsável por

guardar a melhor posição visitada pela partícula – e gb – armazena a melhor posição

visitada pelo enxame.

Outra particularidade do PSO é a maneira como às partículas trocam informações

entre si. Originalmente a otimização por enxame de partículas utiliza um modelo

conhecido por Gbest – global best. Neste modelo de vizinhança a partícula do enxame

que alcançou a melhor posição no espaço de busca, ou seja, a melhor solução até o

momento, influência o deslocamento das demais partículas. A adoção do Gbest

proporciona uma convergência mais rápida, uma vez que a propagação da informação

é ágil. Por outro lado, existe um ponto negativo, a possibilidade de convergência

prematura, que pode fazer com que o enxame se desloque a uma região sub-ótima,

mínimo local. Visando minimizar o problema da convergência prematura, foi criado o

modelo Lbest – local best, também conhecido por Anel. Neste modelo topológico uma

partícula influência apenas algumas de suas vizinhas (normalmente adota-se

vizinhança de grau 1, o que significa que a partícula que alcançou a melhor posição

no espaço de buscas influência suas vizinhas imediatas. No entanto, pode-se adotar

um grau de vizinhança diferente). A Figura 5 e Figura 6 exibem uma representação

dos modelos de vizinhança Gbest e Lbest, respectivamente.

25

Figura 5: Modelo de vizinhança Gbest Figura 6: Modelo de vizinhança Lbest.

Fonte: Autor (2011).

Fonte: Autor (2011).

Para calcular a velocidade das partículas, utiliza-se a equação (2) e para atualizar a

posição a equação (3). Nas duas equações o índice i representa a componente, no

instante t, do vetor n.

vi(t+1) = vi(t) + c1r1(pbi(t) – xi(t)) + c2r2(gbi(t) – xi(t)) (2)

xi(t+1) = xi(t) + vi(t+1) (3)

Algumas variações do PSO fazem uso do peso de inércia (w) (EBERHART; SHI, 2001;

MONTES DE OCA et al, 2009a; SHI; EBERHART, 1999; ZHENG et al, 2003), proposto

por Shi e Eberhart (1998). Este fator multiplica a velocidade da partícula, no instante

t, proporcionando aumento da exploração (tenta cobrir a maior área possível do

espaço de busca) nas primeiras iterações e explotação (cobre pequenas áreas das

regiões mais promissoras do espaço de busca) nas iterações finais, de acordo com o

valor que a variável w assume ao longo das iterações. Em Shi e Eberhart (1999) o

valor do peso de inércia varia de forma linear e decrescente dentro do intervalo de 0.9

a 0.4. Deste modo a equação (2), utilizada para controlar o movimento das partículas

no espaço de busca, transforma-se na equação (4):

vi(t+1) = wvi(t) + c1r1(pbi(t) – xi(t)) + c2r2(gbi(t) – xi(t)) (4)

Tanto na equação (2) quanto na equação (4) as variáveis r1 e r2 assumem valores

randômicos gerados no intervalo [0,1], estes valores são gerados a cada iteração para

determinar a influência dos fatores individuais e global na iteração (pb e gb,

26

respectivamente). As variáveis c1 e c2 representam os coeficientes de aceleração que,

por sua vez, possuem valores fixos e iguais, c1 = c2 = 2,05, valores disponíveis em

Clerc e Kennedy (2002).

Algoritmo 1: PSO padrão.

1: Iniciar randomicamente a população de partículas, P

2: Repita

3: Para cada partícula pi da população P faça

4: Se f(xi(t)) < f(pbi(t)) então

5: pbi(t) = xi(t)

6: Fim do se

7: Se f(pbi(t)) < f(gbi(t))

8: gbi(t) = pbi(t)

9: Fim do se

10: Fim do para

11: Atualizar a velocidade e posição de pi conforme as equações (3) e (2)

respectivamente.

12: Até critério de parada ser satisfeito

Fonte: Montes de Oca et al (2009a).

No Algoritmo 1 apresentamos o pseudo-código utilizado para representar o algoritmo

do PSO padrão. O funcionamento geral do algoritmo pode ser entendido da seguinte

forma: inicialmente as partículas tem suas posições e velocidades determinadas de

forma randômica (passo 1). A partir daí segue-se o processo de avaliação das

partículas. Inicialmente verifica-se a melhor posição alcançada e seu valor é

armazenado na variável pb (passo 4 e 5). A seguir a mesma verificação é feita, sendo

agora em nível de enxame, gb (passo 7 e 8). O próximo passo é calcular as posições

e velocidades para a iteração seguinte (passo 11). A avaliação das partículas repete-

se até que um critério de parada seja alcançado, definido pela função objetivo - que

pode ser de maximização ou minimização - ou até que o número máximo de iterações

seja alcançado (passo 12).

27

2.3 Frankenstein PSO

Este novo algoritmo de otimização por enxame de partículas, chamado Frankenstein

PSO ou apenas FPSO foi proposto por Montes de Oca et al (2009a) e surgiu a partir

do interesse dos autores em avaliar a combinação de diversas variações do algoritmo

PSO apresentados a partir da proposta inicial por Kennedy e Eberhart (1995). Para

compor o FPSO foram analisadas sete variantes da técnica de otimização por enxame

de partículas, são elas:

 Constricted Particle Swarm Optimizer – Trata-se de um fator contração adicionado

à regra de atualização da velocidade por Clerc e Kennedy (2002) para evitar o

crescimento descontrolado da velocidade da partícula, assim elas não ultrapassam

o limite da área de busca. Deste modo a regra de atualização da velocidade foi

modificada para equação (5):

vi(t+1) = X(vi(t) + c1Ui(t)(pbi(t) tz– xi(t)) + c2 Ui(t)(gbi(t) – xi(t))) (5)

X = 2 / |2 – c - √𝑐2– 4𝑐
2

| (6)

onde X é o fator de contração definido pela equação (6) e a constante c possui valor

igual a 2.05.

 Time-Decreasing Inertia Weight Variant, Shi e Eberhart (1999) propuseram definir

o peso de inércia de acordo com uma função que faz o valor variar de forma

decrescente. Deste modo nas primeiras iterações o algoritmo explora o espaço de

busca e só depois foca nas regiões mais promissoras. A função usada para

calcular o valor do peso de inércia é a equação (7):

Wt = ((wtmax – t) / wtmax)*(wmax - wmin) + wmin (7)

onde Wtmax marca o momento em que Wt = Wmin, normalmente Wtmax coincide com

o tempo máximo alocado para o processo de otimização.

 Increasing Inertia Weight Particle Swarm Optimization Zheng et al (2003), esta

variação da otimização por enxame de partículas é o inverso da proposta anterior,

Time-Decreasing Inertia Weight Variant. Aqui a mesma fórmula de atualização do

28

peso de inércia foi adotada, exceto pelo fato de os valores das variáveis wmax e

wmin serem invertidos.

 Stochastic Inertia Weight Particle Swarm Optimization, Eberhart e Shi (2001),

nesta variante o vetor do peso de inércia é gerado randomicamente de acordo com

uma distribuição uniforme definida no intervalo de [0.5, 1.0) com o peso de inércia

diferente para cada dimensão. Neste algoritmo os coeficientes de aceleração são

definidos pelo produto de x * φi, sendo i € {1, 2}.

 Fully Informed Particle Swarm Optimizer – FIPS, criado por Mendes, Kennedy e

Neves (2004), responsável por considerar o número de vizinhas topológicas no

processo de atualização da velocidade da partícula. Esta abordagem produz,

então, uma nova equação para o cálculo da velocidade da partícula, a equação

(8):

vi(t+1) = wvi(t) + Pm  Ni φkUk(t) (pbk(t) – xi(t)) (8)

no FIPS o fator de contração de Clerc e Kennedy normalmente tem seu valor igual

a 4.1 Eberhart e Shi (2000), o φ (soma dos coeficientes de aceleração) é distribuído

igualmente dentre as partículas vizinhas.

 Self-Organizing Hierarchical PSO With Time-varying Acceleration Coefficients,

nesta variação da otimização por enxame de partículas o termo de inércia na regra

de atualização da velocidade é eliminado. No entanto quando algum componente

do vetor da velocidade da partícula assume valor zero ou muito próximo a zero seu

valor é reinicializado proporcionalmente ao definido em Vmax. Esta reinicialização

dá ao algoritmo um comportamento de busca local no qual os valores dos

coeficientes de aceleração são adaptados linearmente, ou seja, o valor do

coeficiente φ1 é decrementado de 2.5 até 0.5 e o coeficiente φ2, o inverso, o valor

é incrementado de 0.5 a 2.5. Próximo ao final da execução o algoritmo atinge uma

velocidade baixa, isto possibilita que as partículas se movam lentamente no

entorno da melhor região encontrada. Esta proposta de PSO foi apresentada em

(Ratnaweera, Halgamuge e Watson (2004).

29

 Adaptive Hierarchical Particle Swarm Optimizer ou AHPSO por Middendorf e

Janson (2005), responsável pelo grau de conectividade entre as partículas, ou

seja, a topologia da rede - o modo como as partículas propagam as informações

entre si. Este processo pode ser visualizado na Figura 7.

Figura 7: Processo de atualização da topologia proposta pelo algoritmo AHPSO.

Fonte: Montes de Oca et al (2009a).

O processo de atualização da topologia dá-se da seguinte forma: inicialmente as

partículas do FPSO ou aquelas que seguem o modelo AHPSO são completamente

conectadas, ou seja, todas as partículas são vizinhas entre si - neste trabalho uma

partícula é vizinha de si mesma. Ao longo das iterações algumas conexões são

removidas dando lugar, ao final do processo de atualização, a topologia anel. Suponha

que temos n partículas, as n(n-1)/2 arestas da topologia completamente conectada

inicialmente darão lugar a apenas n, da topologia anel, em n-3 passos. Este processo

de remoção é realizado seguindo um padrão de regressão aritmética, assim a cada

iteração um número decrescente de arestas é removido. Na Figura 7 n = 6, então em

3 passos o processo de transformação da topologia completamente conectada em

anel estará concluído. Vamos supor k = 12 (parâmetro utilizado no cálculo para indicar

quando as arestas serão removidas, seu uso pode ser visualizado no algoritmo do

FPSO, Algoritmo 2), no passo (a) o grafo é completamente conectado; no passo (b) 4

30

arestas são removidas (linhas pontilhadas); no passo (c) outras 3 arestas são

removidas e por fim o passo (d) as 2 últimas arestas são removidas dando fim ao

processo de atualização da topologia.

O resultado final da análise destas 7 variantes de PSO foi um algoritmo composto

formado a partir de três componentes algorítmicos. Os componentes utilizados nesta

composição foram: Adaptive Hierarchical Particle Swarm Optimizer, Fully Informed

Particle Swarm Optimizer e Time-Decreasing Inertia Weight Variant. O funcionamento

do algoritmo do Frankenstein PSO é análogo ao do PSO padrão. Podendo ser

sistematizado da seguinte forma:

As partículas têm suas posições e velocidades, inicialmente, criadas de forma

randômica; as melhores posições já visitadas pelas partículas, pbi, recebem as recém-

criadas posições randômicas, logo após o vetor de vizinhança das partículas é

preenchido.

As variáveis de controle são inicializadas e então entra-se no laço principal, dentro

dele verifica-se, para cada partícula, a melhor posição visitada atualizando pbi quando

necessário.

A seguir temos os três componentes algoritmos oriundos de outras versões de PSO,

o módulo de controle da topologia (Algoritmo 2.2, passo 14), seguido do módulo que

calcula o valor do peso de inércia para a iteração (Algoritmo 2.2, passo 23) e por último

o que incorpora o número de vizinhas topológicas no cálculo da velocidade (Algoritmo

2.2, passo 28).

Por fim, (Algoritmo 2.2, passos 35 e 36), assim como no algoritmo do PSO padrão são

verificados os critérios de parada, função objetivo e número de iterações.

As instruções do Frankenstein PSO estão dispostas no Algoritmo 2.

31

Algoritmo 2: Frankenstein PSO.

1: Para i = 1 a n faça

2: Criar a partícula pi e adicioná-la ao conjunto de partículas P

3:

Inicialize seus vetores xi e vi com valores randômicos dentro do

espaço de busca e velocidade máximas permitidas

4:

Definir pbi = xi

Definir Ni = P

5: Fim do para

6: Definir t = 0

7: Definir steps = 0

8: Repetir

9: Para i = 1 a n faça

10: Se f(xi) é melhor que f(pbi)

11: Definir pbi = xi

12: Fim do se

13: Fim do para

14: Set > 0  t < = k  modk/(n-3) = 0 então

15: Para i = 1 to n – (2 + steps) faça

16: Se | Ni | > 2 então

17: Elimine a partícula pr de Ni

18: Elimine a partícula pi de Ni

19: Fim do se

20: Fim do para

21: Definir steps = steps + 1

22: Fim do se

23: Se t  wtmax então

24: Definir wt = ((wtmax – t) / wtmax)*(wmax - wmin) + wmin

25: Senão

26: Definir wt = wmin

27: Fim do se

28: Para i = 1 to n faça

29: Gerar Um(t) pm  Ni

30: Definir φm = φ/| Ni | pm  Ni

31: Definir vi(t+1) = w(t)vi(t) + Pm  Ni φkUk(t) (pbk(t) – xi(t))

32: Definir xi(t+1) = xi(t) + vi(t+1)

33: Fim do para

34: Definir t = t + 1

35: Definir solução =argminpi  Pf(pbi(t))

36: Até que o valor de f(solução) seja bom o suficiente ou t = tmax

Fonte: Montes de Oca et al (2009a).

32

O processo de alteração da topologia permite que nas iterações iniciais o algoritmo

explore uma maior área do espaço de buscas e compartilhe rapidamente com as

demais partículas informações sobre as regiões mais promissoras, uma vez que a

topologia é completamente conectada a propagação da informação acontece

rapidamente. À medida que as iterações avançam inicia-se o processo de remoção

de arestas da vizinhança das partículas e a diminuição do peso de inércia. Tudo isto

para garantir que as partículas permaneçam em suas regiões e não apresentem

comportamento de fuga.

As particularidades do Frankenstein PSO o tornaram um algoritmo adaptável a

execuções curtas ou longas apenas com o ajuste de alguns parâmetros de

configuração (como o responsável pela atualização da topologia – parâmetro k no

algoritmo do FPSO), por exemplo para execuções curtas temos: a adoção da

topologia completamente conectada, que proporciona uma rápida propagação da

informação entre as partículas; velocidade e peso de inércia altos nas iterações

iniciais, que propiciam maior cobertura e deslocamento no espaço de buscas. Em

execuções longas podemos retardar o processo de atualização da topologia ou definir

que as remoções de arestas ocorram em um intervalo maior de iterações, uma vez

que o método utilizado pelo FPSO para controle de topologia (AHPSO) permite este

ajuste.

2.4 Frankenstein PSO com Convergência Garantida

A convergência garantida ou simplesmente CG é uma técnica bastante utilizada para

evitar a convergência prematura do algoritmo a uma região não-ótima no espaço de

soluções de acordo com Peer, Bergh e Engelbrecht (2003). Isto ocorre quando a

posição atual de uma partícula coincide com sua melhor posição, pbi, e a melhor

visitada pelo enxame, gbi. Assim o deslocamento da partícula fica à mercê do peso de

inércia. Se este fato ocorrer nas iterações finais a partícula tende a permanecer na

mesma região, uma vez que o peso de inércia possui valor próximo a zero o

deslocamento da partícula seria mínimo. O estacionar da partícula provoca um

movimento de convergência por parte do enxame a uma região sub-ótima.

33

A melhoria proposta pela implementação desta técnica corresponde a alterar a

equação de atualização da velocidade para aquelas partículas que alcançaram a

melhor posição visitada globalmente, gbi. Evitando-se assim uma indução a

convergência prematura. Logo, uma nova equação de atualização da velocidade

utilizada pelas partículas que atingirem a melhor posição global se faz necessária, a

equação (9):

vi j(t +1) = −xij(t)+ gbj(t)+wvij(t)+p(t)(1−2rij(t)) (9)

em que o termo p(t) funciona como um raio de busca em relação ao melhor ponto

visitado globalmente, gb. Para calcular p(t) utiliza-se a equação (10), disposta a seguir:

p(t+1) =

2p(t), se #sucessos > sc

0,5p(t), se #falhas > fc (10)

p(t), caso contrário

Sempre que a melhor área visitada globalmente, gb, for atualizada, ou seja, uma nova

melhor posição é encontrada o contador de sucessos (#sucessos) é incrementado e

a área do raio de busca tem seu valor dobrado. Quando o contador de falhas (#falhas)

ultrapassa o valor estabelecido, fc, o valor do raio de busca atribuído a ele é reduzido

pela metade. Sempre que um contador tiver seu valor atualizado, #sucessos ou

#falhas, o contador oposto terá seu valor zerado (PINGZHOU; ZHAOCAI, 2008).

2.5 Comentários Finais

Neste capítulo apresentamos os neurônios e as redes neurais artificiais, algumas

funções de ativação e arquiteturas utilizadas neste trabalho, bem como a motivação

biológica e, também, algumas limitações da técnica. Os pontos desfavoráveis ao uso

das redes neurais artificiais deram origem a experimentações. Estas por sua vez

tratam de mesclar diferentes métodos, sendo um deles uma rede neural, de forma que

um seja capaz de suprir as deficiências do outro dando origem, assim, aos Sistemas

Neurais Híbridos.

34

Métodos inspirados no comportamento animal, a exemplo da otimização por enxame

de partículas – PSO - vem sendo utilizado em problemas de otimização numérica bem

como em tarefas da área de aprendizado supervisionado em redes neurais artificiais.

Este trabalho é inteiramente baseado em técnicas de otimização por enxame de

partículas. A princípio apresentamos a técnica padrão e a variação adotada nesta

pesquisa, o chamado Frankenstein PSO. Este algoritmo, apresentado pela primeira

vez em 2009, é fruto de uma análise da combinação de sete diferentes variações do

PSO, também explanados neste capítulo (Constricted Particle Swarm Optimizer;

Time-Decreasing Inertia Weight Variant; Increasing Inertia Weight Particle Swarm

Optimization; Stochastic Inertia Weight Particle Swarm Optimization; Fully Informed

Particle Swarm Optimizer; Self-organizing Hierarchical PSO With Time-Varying

Acceleration Coefficients e o Adaptive Hierarchical Particle Swarm Optimizer), tendo

sido composto por apenas três deles (Time-Decreasing Inertia Weight Variant; Fully

Informed Particle Swarm Optimizer e o Adaptive Hierarchical Particle Swarm

Optimizer).

Neste capítulo também foi apresentado o FPSO com convergência garantida ou

FPSO:CG. Técnica utilizada para evitar a convergência prematura do enxame a uma

região sub-ótima no espaço de soluções. Este método consiste em estabelecer um

raio de busca para a melhor posição visitada pelo enxame. Para isto são definidos

dois contadores, #sucessos e #fracassos, no qual toda vez que uma nova melhor

posição visitada pelo enxame é encontrada o contador #sucessos é incrementado e o

contador #fracassos é zerado, deste modo à área de busca associada ao “sucesso” é

amplificada e a área associada ao “fracasso” é reduzida.

35

Capítulo 3

Treinamento de Redes Neurais com PSO

Está contido neste capítulo a definição da representação das soluções, a

especificação das bases de dados utilizadas durante os experimentos, razões que

motivaram a escolha da função de custo e como se deu o processo de treinamento

das redes neurais pelo uso do Frankenstein PSO. Também estão especificados os

critérios de configuração de cada algoritmo, bem como a validação estatística

aplicada.

3.1 Introdução

O propósito do treinamento de redes neurais é delimitar a área de fronteira entre as

classes do problema, em outras palavras, significa aumentar a capacidade de

generalização. É dar a rede neural a habilidade de classificar corretamente padrões

que não tenham sido apresentados anteriormente. Normalmente para treinar as redes

neurais utilizam-se algoritmos locais específicos – a exemplo temos o back-

propagation, Levenberg-Marquardt, Resilient-Backpropagation, Quase-Newton e

outros – e/ou técnicas de busca global – Evolução Diferencial, utilizado por Zarth e

Ludermir (2009), programação evolucionária por Yao e Liu (1997), Otimização por

Enxame de Partículas em Carvalho e Ludermir (2006b, 2006c); Pingzhou e Zhaocai

(2008); Van Wyk e Engelbrecht (2010), Algoritmos Genéticos como utilizado em

Almeida e Ludermir (2006) – que utilizam o erro de treinamento como medida de

avaliação. A aplicação de duas ou mais técnicas diferentes associadas a uma rede

neural dá origem a Sistemas Neurais Híbridos, que geralmente combinam um

algoritmo de busca global a algoritmos de busca local (back-propagation, Levenberg-

Marquardt e outros).

Neste capítulo utilizaremos algoritmos híbridos no treinamento das redes neurais

MLP. Estes algoritmos híbridos foram formados pelo FPSO, apresentado no capítulo

36

anterior (MONTES DE OCA et al, 2009a), associado a um algoritmo de busca local,

Levenberg-Marquardt ou Resilient-Backpropagation.

O restante deste capítulo segue organizado da seguinte forma: a seção 3.2 aborda a

representação das soluções; a seção 3.3 as funções de custo utilizadas; na seção 3.4

dispomos os experimentos realizados; seguido da seção de resultados e por fim as

conclusões.

3.2 Representação das Soluções.

Para representar os pesos das conexões de uma rede neural MLP foram utilizados

vetores de reais, para calcular o tamanho destes vetores foi preciso conhecer quantos

seriam os pesos da rede, para isso foi utilizada a equação (11) a seguir:

Quantidade de Pesos = (I + 1) x H + (H + 1) x O (11)

em que I é a quantidade de entradas do problema (input), H a quantidade de neurônios

e O representa o número de saídas do problema (output). Os números 1 somados a I

e H, entre os parênteses, representam o bias.

Neste trabalho foram adotadas redes neurais com arquitetura fixa, portanto H possui

valor fixo e as conexões não sofrem poda, ou seja, a mesma quantidade de conexões

da rede neural é mantida do início ao fim do processo de otimização (mantém-se a

conexão máxima). Sendo algumas destas conexões fortalecidas, o peso atribuído a

ela é incrementado enquanto que as outras são enfraquecidas, possuem valor baixo

ou próximo a zero.

Na Figura 8 temos a representação gráfica dos pesos sinápticos e bias como parte do

vetor de reais.

37

Figura 8: Pesos sinápticos e bias como componentes do vetor de reais.

Fonte: Carvalho (2007).

Para inicializar cada posição do vetor que representam as partículas foram gerados

números aleatórios definidos dentro do intervalo [-2.0, +2.0] (quanto menor for o

intervalo estabelecido menor será o espaço de busca para esta variável). Os

parâmetros de velocidade e posição fizeram uso dos valores máximos permitidos, ou

seja, Vmax = Xmax.

3.3 Função de Custo

Dentre as diversas funções de custo que podem ser empregadas (Soma dos Erros

Quadráticos – SSE, Raiz do Erro Quadrático Médio – RMS, Percentual do Erro

Quadrático – SEP, dentre outras) e suas inúmeras combinações, o Erro Quadrático

Médio Normalizado (NMSE) foi a medida utilizada neste trabalho para avaliar a

qualidade das soluções. Dentre as várias funções disponíveis a NMSE foi escolhida

por ser uma medida de erro suave e também por ter sido a mesma adotada em

38

Carvalho (2007). O NMSE fornece uma medida do erro total cometido pela rede.

Assim é possível saber o quanto a rede se distanciou do desempenho desejado,

enquanto que o uso do Erro Percentual de Classificação (CEP), equação (13), deixa

claro quantos padrões a rede classificou corretamente ou não. A fórmula para a

medida de erro NMSE é disposta na equação (12).

O NMSE foi utilizado na fase de treinamento das redes neurais enquanto que o Erro

Percentual de Classificação (CEP) foi utilizado na fase de testes. Estas foram as

mesmas medidas adotadas em Carvalho (2007) para avaliar as soluções.

NMSE = (100/NxC)∑ ∑ (𝑡𝑘
𝑛𝐶

𝑘=1
𝑁
𝑛=1 −𝑜𝑘

𝑛) (12)

CEP = 100 x (# erros de classificação)/N (13)

nas equações (12) e (13) N representa o número de padrões do conjunto de dados; C

o número de classes do problema; 𝑡𝑘
𝑛 a saída desejada para o padrão ‘n’ e 𝑜𝑘

𝑛 a saída

real obtida para o padrão ‘n’.

O critério de classificação mencionado na equação (12) foi calculado conforme a regra

do winner-takes-all (“o vencedor leva tudo”), em que o neurônio da camada de saída

que apresentar a mais alta taxa de ativação indica a classe que será atribuída ao

padrão de entrada apresentado a rede.

3.4 Experimentos

A seguir será descrito o processo de treinamento das redes neurais MLP que fizeram

uso das técnicas de otimização global FPSO. Na subseção 3.4.1 apresentamos as

bases de dados utilizadas nos experimentos e na subseção 3.4.2 descrevemos a

configuração adotada. Ao final, a subseção 3.4.3, o método estatístico empregado

para comparar o desempenho dos algoritmos.

39

3.4.1 Base de Dados

Foram utilizadas sete bases de dados para problemas de classificação de padrões,

sendo três da área médica, provenientes do proben1, Precheit (1994) e UCI, Frank e

Asuncion (2010). A seguir temos uma breve descrição de cada base de dados.

 Câncer: Relacionada ao câncer de mama. Este conjunto de dados está dividido

em duas partições, benigno e maligno, cuja classificação baseou-se na análise de

dados microscópicos. A proporção entre as classes é a seguinte: 65,5% dos

exemplos correspondem à classe benigna e 34,5% à classe maligna.

 Diabetes: relacionada à presença ou não do diabetes em índios Pima. Leva em

conta dados pessoais e exames médicos. A proporção para os diabéticos é 65,1%

e para os não diabéticos é de 34,9%.

 Coração: Classifica se um padrão apresenta ou não doenças do coração. Análise

feita por meio do calibre de vasos sanguíneos.

 Vidros: esta base é resultado de uma análise química, de oito diferentes

componentes, mais um índice de refração. Esta base foi criada para auxiliar

análises forenses.

 Cavalos: Categorizam três possíveis diagnósticos veterinários – sobreviver, morrer

ou ser sacrificado - para um cavalo com cólica. Para este conjunto de dados 62%

dos exemplos correspondem à classe sobreviver, 24% são de cavalos que

morreram e 14% para os que tiveram de ser sacrificados.

 Soja: Reconhece 19 diferentes doenças da soja. A análise leva em conta uma

descrição do grão da soja, da planta e mais algumas informações relacionadas ao

histórico da planta.

 Tireóide: Possui três classificações possíveis: hipotireoidismo, tireóide normal e

hipertireoidismo. Esta base apresenta uma discrepância em relação à

concentração de exemplos por classe, a hipotireoidismo conta com 5,1% dos

padrões, a hipertireoidismo com 2,3% e a classe tireóide normal com 92,6%.

A quantidade exata de exemplos para cada um destes conjuntos pode ser conferida

na Tabela 1.

40

Tabela 1: Caracterização e distribuição do número de padrões por base de dados.

Base de

Dados
Entradas Saídas

Nº exemplos

de Treino

Nº exemplos de

Validação

Nº exemplos

de Teste

Câncer 9 2 350 174 175

Diabetes 8 2 384 192 192

Coração 35 2 460 230 230

Vidros 9 6 107 53 54

Cavalos 58 3 182 91 91

Soja 82 19 342 170 171

Tireóide 21 3 3600 1800 1800

Fonte: Autor (2011).

O número de neurônios na camada de entrada da rede neural (características do

problema), ou seja, o I da equação (3.1) é representado pela coluna entradas. O

número de classificações possíveis, O da equação (3.1), ou a quantidade de

neurônios na camada de saída da rede neural é dado pela coluna saídas. Em relação

à camada intermediária adotou-se uma arquitetura fixa, com seis neurônios, conforme

mencionado na seção 3.2, representação das soluções. As sete bases de dados foram

divididas em três subconjuntos seguindo a seguinte proporção: 50% dos dados

representam o conjunto de treinamento; 25% o conjunto de validação e os outros 25%

o conjunto de teste. O conjunto de validação foi utilizado para indicar o momento

correto de parar o processo de treinamento.

3.4.2 Configurações

Para facilitar a identificação de cada algoritmo utilizado nos experimentos foram

criadas siglas. Estas por sua vez foram formadas a partir da junção do FPSO mais o

algoritmo de busca local utilizado no treinamento da rede neural. Então temos os

seguintes: FPSOLm (FPSO + Levenberg-Marquardt), FPSORprop (FPSO + Resilient-

backpropagation) e FPSO:CGLm (FPSO com convergência garantida + Levenberg-

Marquardt). Estes três algoritmos foram comparados com os de busca local Resilient-

backpropagation - Rprop (uma variação do algoritmo back-propagation, cujo propósito

é acelerar a convergência do processo de treinamento. Ao invés de utilizar a taxa de

41

aprendizado o Rprop faz uso do sinal do gradiente do erro para indicar a direção do

ajuste a ser feito nos pesos. Assim evita-se que sejam necessárias mais iterações

para que o algoritmo alcance um ponto ótimo ou mesmo que assuma comportamento

de estagnação em uma região plana na superfície de erro) e Levenberg-Marquardt –

LM (ao contrário do algoritmo back-propagation que é baseado no gradiente

descendente, o Levenberg-Marquardt utiliza taxa de aprendizado variável. Este

algoritmo requer grande quantidade de memória e poder computacional).

A arquitetura das redes foi composta da seguinte maneira: camada de entrada –

camada intermediária – camada de saída, sendo a camada intermediária composta

por 6 neurônios, ou seja, foram utilizadas apenas redes neurais MLP com uma única

camada escondida que continham 6 neurônios. Para compor o critério de classificação

os dados de entrada da rede neural foram submetidos à regra do “winner-takes-all”,

em que a unidade de saída que apresentar o maior valor determina a classe do padrão

de entrada.

Tabela 2: Parâmetros de configuração dos algoritmos - PSO, CGPSO e CPSO-SK.

Algoritmo Descrição Valor

PSO

Tamanho do enxame 30 partículas

Critério de parada 1000 iterações ou GL51

Critério de parada para decaimento de pesos 1000 iterações

Medida de qualidade NMSE

Limite do espaço de busca [-2.0, +2.0]

Fatores de aceleração c1 = c2 = 1.4960

Peso de inércia 0,7298

CGPSO
P (raio) inicial 1

Limiar de #sucesso e #fracasso 5

CPSO-SK Fator de particionamento k  1.3 x √𝑝𝑒𝑠𝑜𝑠

Fonte: Carvalho (2007).

1 GL5 é o mesmo que Critério de Parada Antecipado, utilizado no conjunto de validação para estimar

quando a rede começa a memorizar as nuances dos dados de treino. O treinamento da rede, então, é

interrompido quando o erro de validação, GL5, atinge 5%.

42

Os parâmetros de configuração utilizados pelos algoritmos referenciados,

(CARVALHO, 2007) estão descritos na Tabela 2, enquanto que na Tabela 3 é possível

verificar as configurações adotadas para os experimentos com os algoritmos FPSOLm,

FPSORprop e FPSO:CGLm. Na Tabela 4 temos a descrição dos parâmetros utilizados

pela rede neural.

Em Carvalho (2007) CGPSO significa PSO com convergência garantida. Este

algoritmo utiliza os mesmos parâmetros que o PSO, no entanto possui dois

parâmetros adicionais (raio inicial e os limiares de sucesso e fracasso). CPSO-SK é

o mesmo que PSO cooperativo e também utiliza os mesmos parâmetros do PSO, no

entanto possui um parâmetro adicional – o fator de particionamento, no caso k.

Os valores adotados para o desenvolvimento deste trabalho levaram em consideração

as configurações utilizadas em Carvalho (2007), disponíveis na Tabela 1, a exceção

foi o número de iterações para o critério de parada. No presente trabalho o número de

iterações foi 10 vezes menor do que em Carvalho (2007), devido a restrições de tempo

de execução.

Tabela 3: Parâmetros de configuração dos algoritmos FPSOLm, FPSORprop e FPSO:CGLm.

Algoritmo Descrição Valor

FPSO

Tamanho do enxame

Critério de parada

Medida de qualidade

Limite do espaço de busca

Fator de inércia

K

30 partículas

100 iterações ou GL5

NMSE

[-2.0, +2.0]

[0.9 a 0.4]

30

FPSO:CG
P (raio) inicial

Limiar de #sucesso e #fracasso

1

5

Fonte: Autor (2011).

A medida de qualidade NMSE, assim como em Carvalho (2007), foi empregada

apenas no treinamento das partículas enquanto que na fase de testes foi utilizado o

CEP.

43

Tabela 4: Parâmetros de configuração da rede neural.

Descrição da Rede Neural Valor

Nº de neurônios escondidos

Número máximo de iterações

Funções de ativação

Algoritmo de treino

Nº de falhas de validação

6

100

Tangente sigmóide – Linear

Levenberg-marquardt

5

Fonte: Autor (2011).

3.4.3 Comparação dos Algoritmos

Para obtenção das médias CEP os algoritmos foram submetidos a 30 execuções

independentes cada um. A cada nova execução os subconjuntos de dados –

treinamento, validação e teste – foram divididos de forma aleatória seguindo as

proporções indicadas na subseção 3.4.1. Ao final de cada execução foram

armazenados os erros de classificação para os dados de teste, calculado conforme a

equação (13).

Para validar estatisticamente os resultados obtidos, as médias finais de FPSOLm,

FPSORprop e FPSO:CGLm foram submetidas ao seguinte teste de hipótese, sendo

adotado α=5% ou nível de confiança de 95% (WAYNE, 1990):

t =
𝑥̅1−𝑥̅2

√
𝑆1

2

𝑛1
 +

𝑆2
2

𝑛2

 (14)

em que 𝑥̅ representa a média, 𝑆2a variância e n o número de execuções

independentes para a amostra em questão.

Os testes estatísticos foram aplicados comparando os algoritmos FPSOLm, FPSORprop,

FPSO:CGLm aos algoritmos de busca local LM e Rprop aplicados as mesmas bases

de dados. Primeiro foi realizado o teste bilateral para verificar se a média dos

resultados dos algoritmos era estatisticamente diferente. Se o resultado fosse

diferente, era, então, aplicado o teste unilateral à esquerda para verificar se a média

44

dos resultados de um algoritmo era estatisticamente menor que a média dos

resultados do segundo algoritmo.

3.5 Resultados

Os resultados dos experimentos são apresentados na Tabela 5 que contém as médias

(µ) e o desvio padrão () do erro percentual de classificação (CEP) para cada base

de dados em cada algoritmo. Os valores destacados em negrito correspondem às

menores médias de erro por base de dados.

As siglas Lm e Rprop associados aos FPSOs na tabela acima indicam o algoritmo de

busca local empregado no treinamento da rede neural. Estes representam o

Levenberg-Marquardt e o Resilient-backpropagation respectivamente.

Tabela 5: Media e desvio padrão do erro percentual de classificação para os algoritmos FPSOLM,
FPSORprop, LM, Rprop e FPSO:CGLm utilizados no treinamento de redes neurais.

Base de

Dados

FPSOLm FPSORprop LM Rprop FPSO:CGLm

µ  µ  µ  µ  µ 

Câncer 2,969 1,688 3,352 1,484 4,705 1,780 4,076 1,774 3,886 1,337

Diabetes 22,708 2,932 22,778 3,595 26,163 3,508 24,080 3,057 21,979 4,711

Coração 18,580 3,319 21,058 6,023 21,986 3,237 19,710 2,985 19,159 3,189

Vidro 35,598 9,160 39,748 10,821 43,270 8,050 47,044 9,971 36,855 9,133

Cavalos 34,762 5,174 36,557 5,588 43,150 5,242 37,106 4,869 35,018 5,813

Soja 38,157 3,542 63,157 7,150 40,510 4,621 61,706 10,542 41,784 7,749

Tireóide 1,774 0,398 5,978 0,504 3,556 1,203 6,337 0,822 4,526 1,923

Fonte: Autor (2011).

O tempo médio das execuções, em segundos, para cada algoritmo e base de dados

está registrado na Tabela 6.

45

Tabela 6: Média e desvio padrão do tempo de execução, em segundos, para os algoritmos FPSOLm,
FPSORprop, LM, Rprop e FPSO:CGLm utilizados no treinamento de redes neurais.

Base de

Dados

FPSOLm FPSORprop LM Rprop FPSO:CGLm

µ  µ  µ  µ  µ 

Câncer 1463,69 9,92 1763,14 66,66 0,43 0,12 0,46 0,15 870,78 670,54

Diabetes 1504,08 8,60 1516,54 21,93 0,37 0,06 0,38 0,08 2012,04 569,09

Coração 2391,57 30,73 907,33 8,84 0,86 0,43 0,35 0,08 2321,17 85,96

Vidro 1807,52 44,99 875,68 111,62 0,67 0,18 0,79 0,82 1736,22 50,60

Cavalos 2749,33 41,17 1289,85 11,67 0,86 0,22 0,53 0,14 2348,60 45,57

Soja 21226,23 4071,07 1613,60 25,31 8,09 1,64 1,76 1,09 17052,38 2203,70

Tireóide 11185,60 946,62 1486,32 79,98 5,87 4,91 3,95 1,93 7882,60 1179,19

Fonte: Autor (2011).

O tempo de execução dos algoritmos híbridos notadamente são muito maiores aos de

busca local, Levenberg-Marquardt e Resilient-Back-propagation, entretanto o

desempenho alcançado pelos que fazem uso da técnica FPSO consorciado a um

algoritmo de busca local é compensado quando avaliamos as médias de erros obtidas.

Os tempos de execução dos algoritmos FPSO são elevados pelo fato de que para

cada componente i do vetor de partículas e para cada iteração são computadas as

quantidades de vizinhas topológicas e novos fatores de constrição, além do laço para

retirada das arestas e redefinição do peso de inércia.

Os algoritmos da Tabela 6 foram comparados e os resultados dos testes de hipótese

por base de dados podem ser visualizados na Tabela 7. Apenas os resultados

relevantes estatisticamente foram relacionados, ou seja, apenas os resultados cujo

algoritmo 1 foi melhor que o algoritmo 2.

46

Tabela 7: Resultado dos testes de hipótese para as sete bases de dados que utilizaram algoritmo
híbrido no treinamento de redes neurais MLP2.

Base de Dados Algoritmo 1 Algoritmo 2 Valor Obtido

Câncer

FPSOLm LM -3,8761

FPSOLm Rprop -2,7857

FPSOLm FPSO: GCLm -2,3325

Diabetes FPSOLm LM -4,1391

Coração FPSOLm LM -4,0239

Vidro
FPSOLm LM -3,4459

FPSOLm Rprop -4,6302

Cavalos FPSOLm LM -6,2377

Soja

FPSOLm LM -2,2135

FPSOLm Rprop -11,5980

FPSOLm FPSO: GCLm -2,3316

FPSOLm FPSORprop -17,1609

Tireóide

FPSOLm LM -7,7028

FPSOLm Rprop -27,3656

FPSOLm FPSO: GCLm -7,6758

FPSOLm FPSORprop -35,8553

Fonte: Autor (2011).

Na Tabela 8 são apresentados a média e desvio padrão CEP dos algoritmos utilizados

em (Carvalho (2007) para as bases de dados câncer, diabetes e coração em

comparação com o desempenho do algoritmo FPSOLm, cuja média de erro obtida foi,

na maioria das vezes, a menor dentre as três versões apresentadas neste trabalho

(FPSOLm, FPSORrop e FPSO:CGLm) para ajuste dos pesos de uma rede neural MLP.

2 O algoritmo 1 adotado na comparação com os demais foi o FPSO Lm por este ter alcançado as menores

médias de erros, conforme a Tabela 6.

47

Tabela 8: Média e desvio padrão do CEP para cada algoritmo proposto no trabalho base em relação

ao algoritmo FPSOLm.

Base de

Dados

PSO-GL5

(CARVALHO,

2007)

PSO-WD

(CARVALHO,

2007)

GCPSO-WD

(CARVALHO,

2007)

FPSOLm

µ  µ  µ  µ 

Câncer 3,542 1,182 3,440 1,425 3,805 1,063 2,969 1,688

Diabetes 24,687 2,345 23,708 2,606 22,677 2,566 22,708 2,932

Coração 20,547 2,379 17,904 2,108 17,356 1,963 18,580 3,319

Fonte: Autor (2011).

A Tabela 9 mostra que o algoritmo FPSOLm apresentou melhor desempenho

estatístico que o algoritmo PSO-GL5 apenas nas bases de dados diabetes e coração

e ao GCPSO-WD na base câncer. No entanto é preciso salientar que o FPSOLm

contou com 10 vezes menos execuções – de acordo com a Tabela 3 se comparado

com a Tabela 2 - durante o treinamento da rede neural e mesmo assim conseguiu

alcançar bons resultados. Para as demais configurações o FPSOLm mostrou-se

equivalente estatisticamente aos demais.

Tabela 9: Resultado dos testes de hipótese entre FPSOLM e os algoritmos de ajuste dos pesos

apresentados em Carvalho (2007).

Base de Dados Algoritmo 1 Algoritmo 2 Valor Obtido

Câncer FPSOLm GCPSO-WD -2,4381

Diabetes FPSOLm PSO-GL5 -3,1427

Coração FPSOLm PSO-GL5 -2,8380

Fonte: Autor (2011).

3.6 Conclusão

Neste capítulo foram apresentados os aspectos gerais do uso de três algoritmos

híbridos formados a partir de uma variação da otimização por enxame de partículas,

FPSO, com algoritmos de busca local (Levenberg-Marquardt e Resilient-Back-

propagation), foram eles: FPSOLm e FPSORprop e uma versão híbrida que utilizou a

técnica da convergência garantida, FPSO:CGLm, no processo de ajuste dos pesos das

48

conexões de redes neurais MLP do tipo feed-forward. O modo de representação das

soluções, as bases de dados utilizadas, as configurações adotadas, bem como o teste

estatístico aplicado para validar os experimentos.

Nesta etapa do trabalho a comparação dos resultados experimentais realizados entre

os algoritmos FPSOLm, FPSORprop e FPSO:CGLm demonstraram que o uso da técnica

de convergência garantida não apresentou melhoria significativa nos resultados.

Apesar de o FPSO:CGLm ter alcançado a menor média de erros em uma das bases

de dados utilizada, diabetes, o teste de hipótese não comprovou que este algoritmo

foi estatisticamente melhor que os demais. Por este motivo a técnica de convergência

garantida não foi empregada no processo simultâneo de otimização dos pesos e

arquiteturas, descrito no capítulo a seguir. Uma equivalência estatística foi

comprovada entre os algoritmos FPSOLm e FPSORprop. No entanto foi utilizado apenas

a versão que fez uso do algoritmo de busca local Levenberg-Marquardt, FPSOLm, por

este ter obtido as menores médias de erro na maioria das bases de dados testadas.

Apesar de os testes estatísticos comprovarem que o FPSOLm, que obteve as menores

médias de erros na maioria das bases de dados foi superior a apenas 2 variações de

PSO propostas em Carvalho (2007) é importante observar que o FPSOLm contou com

dez vezes menos execuções em relação aos algoritmos apresentados em Carvalho

(2007).

O tempo de execução dos algoritmos híbridos propostos nesta pesquisa, FPSOLm,

FPSORprop e FPSO:CGLm, foi um dos limitantes do processo de otimização das redes

neurais. Se imaginarmos uma projeção dos resultados no qual fosse possível

adicionarmos dez vezes mais execuções, poderíamos afirmar que os métodos

propostos seriam, sim, melhores que aqueles apresentados em Carvalho (2007). Por

este motivo devemos continuar estudando formas de diminuir o tempo de execução

destes algoritmos, seja adotando medidas como computação paralela ou diminuir o

tamanho da população de partículas ao longo das iterações, mantendo apenas

aquelas que alcançaram melhores posições no espaço de busca. Esta medida evitaria

que os algoritmos híbridos propostos investissem tempo e poder computacional em

partículas que não proporcionam bons resultados. Este tempo então poderia ser

49

revertido em novas iterações de avaliação para aquelas localizadas em regiões do

espaço de busca mais promissor.

50

Capítulo 4

Ajuste Simultâneo de Pesos e Arquiteturas com

FPSO

Este capítulo, em adição ao anterior - ajuste dos pesos das conexões, quando no

treinamento da rede neural - estabelece a redefinição das arquiteturas. Esta

combinação, arquiteturas e pesos da rede neural, se dá de modo simultâneo, ou seja,

à medida que uma melhor arquitetura é definida os pesos das conexões da rede neural

são recalibrados. Neste processo foram utilizados o algoritmo do Frankenstein PSO,

as mesmas bases de dados e resultados do capítulo anterior.

4.1 Introdução

O processo de treinamento de redes neurais com ajuste simultâneo de arquiteturas e

pesos diferencia-se do mencionado no Capítulo 3 pelo fato de, agora, o processo

contemplar os dois passos o de estabelecer a arquitetura adequada e ajustar os pesos

das conexões recém estabelecidas. Na primeira etapa define-se a quantidade de

camadas intermediárias bem como a quantidade de neurônios ou nodos que cada

uma possuirá. Em um segundo momento são calibrados os pesos das conexões

definidos pela primeira etapa.

A definição da arquitetura de uma rede neural não é uma tarefa fácil, pois quando a

rede possui parâmetros além do necessário ocorre overfitting (VAN WYK;

ENGELBRECHT, 2010) (significa que a rede memoriza os dados de treinamento e

quando é apresentada a dados desconhecidos – dados de teste – produz altas taxas

de erro) e quando possui parâmetros a menos ocorre o inverso, underfitting (a rede

não possui conexões suficientes, com isso apenas parte das características do

problema são aprendidas. O que também causa alta taxa de erro).

Normalmente esta parte do processo de treinamento é realizada na base da tentativa

e erro ou através da consulta a um especialista. Por este motivo são cada vez mais

51

frequentes o desenvolvimento e aplicação de técnicas computacionais com o

propósito de definir automaticamente a arquitetura da rede. O objetivo destes métodos

é fixar redes neurais de baixa complexidade (a complexidade é dada pelo tamanho do

vetor de pesos, quanto maior o vetor maior é a complexidade da rede) que produzam

erros dentro de uma faixa mínima aceitável.

Neste capítulo apresentamos uma metodologia automática para otimização de

arquiteturas e ajuste dos pesos de redes neurais MLP do tipo feed-forward

fundamentadas no algoritmo de otimização por enxame de partículas FPSO. Esta

metodologia faz uso dos resultados obtidos no capítulo 3 e agora além do ajuste dos

pesos também realiza a definição do número de neurônios na única camada

escondida considerada – assim como em Carvalho (2007). Neste trabalho

consideramos redes neurais de arquitetura fixa, cujo único parâmetro variável é a

quantidade de neurônios na única camada intermediária, ou seja, as arquiteturas são

do tipo: camada de entrada – uma camada intermediária – camada de saída, de

acordo com a Figura 9.

Figura 9: Esquema de uma rede neural MLP do tipo feed-forward.

Camada de
Entrada

Camada
Intermediária

Camada de
Saída

Fonte: Autor (2011).

52

Este capítulo segue organizado da seguinte forma: na seção 4.2 são apresentados os

aspectos gerais relativos à otimização simultânea dos pesos e arquiteturas; na seção

seguinte, a 4.3, são detalhados os experimentos realizados nas 7 bases de dados. Na

seção 4.4 dispomos os resultados obtidos e por fim temos as conclusões na seção

4.5.

4.2 Otimização dos pesos e arquiteturas com PSO

A abordagem utilizada neste trabalho é similar à apresentada em Carvalho (2007), em

que dois algoritmos são executados simultaneamente, sendo um para definir o

número de neurônios na única camada intermediária e o outro para ajustar os pesos

das conexões da rede neural. Os dois enxames (o de arquitetura e o de pesos)

utilizaram diferentes partições do conjunto de dados. A proporção dos subconjuntos

de dados foram as mesmas da subseção 3.4.1. O conjunto de treinamento foi utilizado

pelo algoritmo responsável pelo ajuste dos pesos; o conjunto de validação pelo

algoritmo responsável pela definição da arquitetura e o conjunto de teste utilizado no

final do processo para avaliar a melhor configuração encontrada.

Os algoritmos desenvolvidos neste trabalho seguiram a mesma metodologia que a

apresentada em Carvalho (2007) sendo o FPSOLm sempre utilizado no ajuste dos

pesos enquanto que na definição da arquitetura foram utilizados o PSO e o FPSO.

Portanto os novos algoritmos desenvolvidos foram: PSO-FPSOLm e FPSO-FPSOLm,

em que o primeiro termo indica o algoritmo utilizado para definir as arquiteturas e o

segundo representa o algoritmo utilizado para o treinamento da rede neural.

4.2.1 Representação das Soluções

O algoritmo responsável pela definição da arquitetura (PSO ou FPSO) possui uma

estrutura de dados diferenciada. Nesta estrutura são armazenados dois valores, além

das configurações inerentes ao algoritmo em questão (PSO ou FPSO), são eles: um

número natural – para representar o número de neurônios na camada escondida – e

um vetor de reais para armazenar os melhores pesos sinápticos encontrados até o

momento. Este vetor com os melhores pesos sinápticos é referenciado aqui por net.

53

O algoritmo que calibra os pesos das conexões utiliza a mesma abordagem descrita

na subseção 3.2, ou seja, utiliza vetores de reais onde cada componente representa

um peso da rede neural.

4.2.2 Algoritmo de otimização das arquiteturas e pesos

O método de otimização utilizado neste trabalho consiste na execução simultânea de

dois algoritmos de otimização por enxame de partículas, sendo um para a definição

da arquitetura, baseado no erro do conjunto de validação, e o outro para ajuste dos

pesos sinápticos – baseado no erro do conjunto de treinamento. A seguir o pseudo-

código para a otimização das arquiteturas e pesos.

Algoritmo 3: Pseudo-código da otimização para a definição das arquiteturas e ajuste dos pesos de

uma rede neural MLP.

1: Inicializar randomicamente a população de arquiteturas A,

2: Repita

3: Para cada particular Ai da população A faça

4: Iniciar Pi

5: Inserir Ai.net em Pi

6: Executar Pi por t iterações utilizando o conjunto de treinamento

7: Ai.net = Pi.ŷ

8: Avaliar f(Ai.net) utilizando o conjunto de validação

9: Fim do para

10: Para cada partícula Ai da população A faça

11: Atualize velocidade e posição de Ai de acordo com a equação

(4) e equação (2).

12: Atualize ai.net para a nova arquitetura representada por Ai

13 Fim do para

14: Até que o critério de parada seja satisfeita (por exemplo: nº máximo de

execução ou taxa de erro mínimo alcançado).

Fonte: Carvalho (2007).

Para cada arquitetura considerada é iniciado um processo de otimização dos pesos.

Sempre uma das partículas é iniciada com o melhor vetor de pesos sinápticos

54

encontrados até o momento (vetor net – definido pela partícula de arquitetura).

Quando o processo de otimização dos pesos estiver sido concluído, o melhor vetor

encontrado até o momento é armazenado de volta na partícula de arquitetura, net.

O processo de otimização simultânea das arquiteturas e pesos é muito mais lento se

comparado apenas com o ajuste dos pesos. Por isso adotamos a seguinte

configuração em relação à adotada em Carvalho (2007).

Tabela 10: Configurações dos algoritmos de otimização simultânea das arquiteturas e pesos em
relação ao trabalho base.

Configuração Presente Trabalho (CARVALHO, 2007)

Nº de partículas do

algoritmo de arquitetura

20 20

Nº de iterações do

algoritmo de arquitetura

10 15

Nº de iterações do

algoritmo de pesos

100 100

Fonte: Autor (2011).

É possível observar que na Tabela 10 apenas o número de iterações do algoritmo de

otimização por enxame de partículas responsável pela definição das arquiteturas

possui valor diferente ao utilizado no trabalho base. Este valor foi reduzido para 10

devido ao tempo total de execução do algoritmo de otimização das arquiteturas e

pesos.

4.3 Experimentos

Nos experimentos realizados com a metodologia simultânea de otimização das

arquiteturas e pesos foram comparados os desempenhos dos algoritmos PSO-

FPSOLm e FPSO-FPSOLM com outros presentes na literatura. Foram utilizadas nos

experimentos as mesmas 7 (sete) bases de dados relacionadas na subseção 3.4.1 e

a mesma estratégia de validação estatística.

Os parâmetros de configuração dos algoritmos PSO-FPSOLm e FPSO-FPSOLm estão

descritos na Tabela 11.

55

Tabela 11: Parâmetros de configuração dos algoritmos de ajuste simultâneo dos pesos e arquiteturas.

ARQUITETURAS

PSO

Tamanho do enxame 20

Número de iterações de avaliação da arquitetura 10

Medida de Qualidade NMSE (conj. de validação)

Limite do espaço de busca [1, 12]

Coeficiente de aceleração 1,4960

Peso de inércia 0,7298

FPSO

Tamanho do enxame 20

Número de iterações de avaliação da arquitetura 10

Medida de Qualidade NMSE (conj. de validação)

Limite do espaço de busca [1, 12]

Peso de inércia ()
0,9 a 0,4, linearmente

decrescente

K 20

PESOS

FPSO

Tamanho do enxame 30

Número de iterações de avaliação dos pesos 100

Algoritmo de busca local Levenberg-Marquardt (Lm)

Medida de Qualidade NMSE (conj. de treino)

Limite do espaço de busca [-2.0, 2.0]

Peso de inércia ()
0,9 a 0,4, linearmente

decrescente

K 30

Fonte: Autor (2011).

Assim como no ajuste dos pesos sinápticos, Capítulo 3, em que as redes neurais

possuíam arquitetura fixa – 6 neurônios na camada escondida - o processo de ajuste

simultâneo da arquitetura e pesos também assumiu redes neurais com arquitetura fixa

– apenas uma camada intermediária, sendo, no entanto 12 o número máximo de

56

nodos na camada escondida. O critério de classificação também foi o mesmo adotado

no capítulo anterior, winner-takes-all, ou seja, o vencedor leva tudo.

4.4 Resultados

Na Tabela 12 temos os resultados experimentais dos algoritmos PSO-FPSOLm e

FPSO-FPSOLm em que estão dispostas as médias (µ) e desvios padrão () dos erros

percentuais de classificação (CEP) para cada algoritmo em cada uma das bases de

dados. Em negrito destacamos a menor média de erro alcançada em cada base.

Tabela 12: Média e desvio padrão do erro percentual de classificação para os algoritmos PSO-
FPSOLm e FPSO-FPSOLm.

Base de dados
PSO-FPSOLm FPSO-FPSOLm

µ  µ 

Câncer 3,676 1,761 3,333 1,334

Diabetes 22,205 4,183 21,849 4,173

Coração 19,015 2,866 17,136 4,518

Vidros 39,436 6,955 36,118 4,836

Cavalos 35,092 5,395 33,603 5,828

Soja 58,2661 4,300 39,467 5,985

Tireóide 3,715 2,542 2,715 1,557

Fonte: Autor (2011).

O tempo das execuções segue disposto em segundos (s) na Tabela 13. Se

compararmos a Tabela 6 com a Tabela 13 podemos perceber a grande diferença entre

o tempo médio das execuções. Isto se dá pelo fato de que a primeira ajusta apenas

os pesos das conexões da rede neural enquanto que na última para cada partícula de

arquitetura existem outras 30 partículas para ajuste dos pesos.

57

Tabela 13: Média e desvio padrão do tempo de execução em segundos para os algoritmos PSO-
FPSOLm e FPSO-FPSOLm.

Base de dados
PSO-FPSOLm FPSO-FPSOLm

µ  µ 

Câncer 3335,308 924,725 59068,385 33948,658

Diabetes 3521,203 474,382 117453,378 18715,534

Coração 5848,261 2050,429 132743,420 19116,983

Vidros 16957,091 2274,115 84166,164 57430,114

Cavalos 8178,1218 4015,4315 37583,445 79219,158

Soja 121769,5872 12957,6078 154797,125 87358,3498

Tireóide 216468,636 31404,085 238144,236 105228,3308

Fonte: Autor (2011).

Os resultados experimentais demonstram que o algoritmo FPSO-FPSOLm obteve os

melhores resultados em todas as sete bases de dados testadas (ver Tabela 13).

Entretanto para afirmar que a utilização do algoritmo FPSO-FPSOLm obteve, de fato,

o melhor desempenho ele foi comparado ao PSO-FPSOLm - desenvolvido neste

trabalho - e a outros algoritmos encontrados na literatura - PSO-PSO:WD, PSO-

GCPSO:WD, PSO-GCPSO:GL5 e GaTSa.

Os três primeiros algoritmos foram desenvolvidos pelo mesmo autor e estão definidos

em Carvalho e Ludermir (2007). Trata-se da aplicação do PSO padrão para a definição

das arquiteturas e uso de três diferentes variações do PSO ao ajuste dos pesos. Estas

combinações foram: PSO:WD – que é o PSO padrão combinado a técnica de

decaimento de pesos; GCPSO:WD – PSO com convergência garantida associado a

técnica de decaimento de pesos e GCPSO:GL5 – PSO com convergência garantida

associado a contagem de erros do conjunto de validação (GL5).

Na Tabela 14 dispomos as médias e desvios-padrão CEP obtidos por outros trabalhos

encontrados na literatura que realizam o ajuste dos pesos e definição da arquitetura

de redes neurais MLP. Podemos observar que o algoritmo apresentado neste

trabalho, FPSO-FPSOLm, obteve as menores médias de erros.

58

Tabela 14: Média e desvio padrão dos algoritmos PSO-FPSOLm e FPSO-FPSOLm em relação a outros
trabalhos presentes na literatura que propuseram a definição das arquiteturas e ajuste dos pesos de

uma rede neural MLP.

 Câncer Diabetes Coração Vidros Cavalos Soja Tireóide

PSO-FPSOLm
µ 3,676 22,205 19,015 39,436 35,092 58,266 3,715

 1,761 4,183 2,866 6,955 5,395 4,300 2,542

FPSO-FPSOLm
µ 3,333 21,849 17,136 36,118 33,603 39,468 2,715

 1,334 4,173 4,518 4,836 5,828 5,985 1,557

PSO-

GCPSO:GL5

(CARVALHO;

LUDERMIR,

2007)

µ 4,754 24,906 19,383 - - - -

 4,427 3,529 2,268 - - - -

PSO-PSO:WD

(CARVALHO;

LUDERMIR,

2007)

µ 4,137 23,541 24,906 - - - -

 1,506 3,159 3,529 - - - -

PSO-

GCPSO:WD

(CARVALHO;

LUDERMIR,

2007)

µ 4,560 23,604 19,383 - - - -

 1,461 3,013 2,268 - - - -

GaTSa

(ZANCHETTIN;

LUDERMIR;

ALMEIDA, 2011)

µ 7,192 27,062 - 55,143 38,700 62,941 7,151

 4,031 3,109 - 6,082 1,585 5,679 0,890

Fonte: Autor (2011).

O algoritmo GaTSa apresentado em Zanchettin e Ludermir (2009) também foi

desenvolvido para definir a arquitetura e ajustar os pesos de uma rede neural MLP. O

GaTSa é um algoritmo híbrido composto por Algoritmo Genético, Tabu Search,

Simulated Annealing e o algoritmo de busca local back-propagation. Este algoritmo

possui duas fases bem definidas. A primeira consiste de uma busca global, na qual

novas soluções são geradas, esta capacidade foi herdada do Algoritmo Genético, bem

como o uso de memória, característica do Tabu Search. Em um segundo momento o

59

algoritmo entra na fase de busca local. Nesta hora o GaTSa faz uso de características

provenientes do back-propagation, que proporciona uma solução mais precisa.

De forma geral podemos dizer que o GaTSa funciona da seguinte maneira: Uma

arquitetura com tamanho mínimo é definida como a solução inicial; a partir daí novas

soluções são geradas - como em um algoritmo genético. O custo de cada nova

solução é avaliado e a melhor delas é escolhida como no Tabu Search. Entretanto

esta solução poderá ou não ser aceita, o critério de aceitação é o mesmo que o

utilizado no Simulated Annealing – se a nova solução tiver um custo menor ela é

aceita, senão poderá ser rejeitada conforme o cálculo da probabilidade. Soluções

previamente encontradas são marcadas como tabu – assim como no Tabu Search.

Durante a busca por novas soluções o tamanho do cromossomo é aumentado a fim

de encontrar a melhor solução conforme os critérios de aceitação. Ao final do processo

apenas a melhor solução é retornada.

4.5 Conclusão

Neste capítulo apresentamos o método de otimização das arquiteturas e pesos

sinápticos para redes neurais MLP, do tipo feed-forward que fizeram uso de uma nova

variação publicada recentemente da otimização por enxame de partículas, chamado

Frankenstein PSO ou FPSO (MONTES DE OCA et al, 2009a).

A metodologia empregada no desenvolvimento dos dois novos algoritmos - PSO-

FPSOLm e FPSO-FPSOLm - foi a mesma disposta em Carvalho (2007). Na qual o autor

utilizou de forma alternada dois algoritmos PSO, um para definir a arquitetura e outro

para calibrar os pesos das conexões da rede neural MLP.

O algoritmo FPSO-FPSOLm foi superior ao algoritmo PSO-FPSOLm em termos da

média do erro percentual de classificação para todas as bases de dados investigadas

nesse trabalho. Contudo, como esperado, o algoritmo FPSO-FPSOLm foi inferior ao

algoritmo PSO-FPSOLm em termos da média de tempo de execução.

Em comparação com os algoritmos da literatura PSO-GCPSO:GL5, PSO-PSO:WD e

PSO-GCPSO:WD disponíveis em Carvalho e Ludermir (2007) e GaTSa em Zanchettin

60

e Ludermir (2009), o algoritmo FPSO-FPSOLm é claramente melhor do que esses

algoritmos em termos da média do erro percentual de classificação para as bases de

dados adotadas nessa dissertação. Os resultados referentes a este capítulo

encontram-se publicados em Lima e Ludermir (2011).

61

Capítulo 5

Enxames Heterogêneos

Neste capítulo há uma breve introdução as possíveis classificações quanto a

heterogeneidade do enxame. Os parâmetros de configuração adotados, base de

dados utilizadas, disposição do processo de treinamento da rede neural e resultados

obtidos são também apresentados.

5.1 Introdução

Os modelos de otimização por enxame de partículas discutidos até o momento neste

trabalho – PSO padrão e FPSO – são ditos homogêneos porque todas as partículas

seguem a mesma regra de atualização, possuem a mesma quantidade de vizinhos ou

utilizam os mesmos parâmetros na regra de atualização da velocidade (exceto os

parâmetros randômicos) Montes de Oca et al (2009b). O enxame como um todo se

comporta da mesma forma, não existem especificidades entre as partículas.

Para que um enxame seja considerado heterogêneo ele deve conter no mínimo duas

partículas diferentes, ou seja, o espaço de soluções deve ser analisado de forma

diferente. Seja pela adoção de diferentes parâmetros de configuração, seja pelo

modelo de vizinhança ou outro aspecto. Diante desta diferenciação foram sugeridas

classificações quanto a heterogeneidade que um enxame pode apresentar, conforme

Montes de Oca et al (2009b). Estas, por sua vez, são brevemente esplanadas a seguir.

5.1.1 Modelo de Influência

Neste tipo de heterogeneidade as partículas do enxame possuem diferentes

mecanismos para definir como será a influência de uma partícula sobre as outras, ou

seja, quanto uma partícula poderá interferir no movimento das demais. Para efeito de

exemplo podemos citar o seguinte: em um enxame parte das partículas adota o

modelo de topologia completamente conectada (também conhecido por gbest)

62

enquanto que as demais utilizam topologia anel (também chamada lbest ou ring)

conforme mencionado na seção 2.2 PSO Padrão.

5.1.2 Regra de Atualização

Como o próprio nome sugere este tipo determina o uso de diferentes regras para a

atualização da velocidade das partículas. Isto permite que o espaço de busca seja

explorado de forma completamente diferente pelas partículas, obviamente que o

desempenho desta abordagem dependerá da configuração adotada.

5.1.3 Heterogeneidade de vizinhança

Caracteriza-se pelos diferentes graus de vizinhança ao longo do enxame. Imagine que

a população de partículas seja um grafo, para pertencer a esta classe de

heterogeneidade ao menos duas partículas devem possuir diferentes graus de

vizinhança.

5.1.4 Parâmetros

Configura-se por dispor de diferentes parâmetros de configuração para as partículas.

Para que um enxame heterogêneo se enquadre nesta categoria é preciso que um

subgrupo de partículas utilize a mesma regra de atualização e, no mínimo, duas delas

utilizem diferentes parâmetros.

A heterogeneidade ainda pode sofrer uma nova classificação, quanto ao modo como

as configurações são aplicadas ao longo do tempo (ciclo evolucionário). Por exemplo,

para que tenhamos uma heterogeneidade dinâmica, as alterações devem ser

realizadas à medida que as iterações avançam. Se isso não ocorre o tipo

correspondente é o estático. Temos ainda o tipo adaptativo, podemos considerar este

como um caso particular do tipo dinâmico, caracteriza-se por aplicar novas

configurações em resposta a um determinado comportamento apresentado pelo

enxame.

O restante do capítulo é organizado da seguinte forma: Seção 5.2 descreve os

experimentos e é seguida da Seção 5.3 que apresenta os resultados, por fim a Seção

5.4 com a conclusão.

63

5.2 Experimentos

Nesta seção descrevemos como se deu o processo de treinamento das redes neurais

MLP através da utilização de três algoritmos heterogêneos. Estes, por sua vez, foram

compostos pelos algoritmos de otimização por enxames de partículas PSO padrão e

FPSO descritos nas seções 2.2 e 2.3 respectivamente. O objetivo da aplicação dos

enxames heterogêneos na tarefa de ajustar os pesos das conexões foi avaliar a

capacidade de generalização da rede em relação ao algoritmo padrão.

Para representar as soluções nós utilizamos o mesmo modelo disposto na seção 3.2

e também as mesmas funções de custo, seção 3.3. A subseção 5.2.1 apresenta as

configurações adotadas para a realização dos experimentos.

5.2.1 Configurações

Uma das ações necessárias para a construção de algoritmos heterogêneos é o

estabelecimento da proporção entre os tipos. Para a realização dos experimentos

foram utilizadas medidas similares as apresentadas em Montes de Oca et al (2009b).

A proporção utilizada por cada algoritmo está indicada ao lado de cada tipo, por

exemplo, FPSO70PSO30 significa que 70% do número total de partículas do enxame

são do tipo FPSO e os 30% restantes são do tipo PSO padrão. A quantidade de

partículas destinadas a cada um dos dois tipos, PSO padrão e FPSO, estão presentes

na Tabela 16.

Para a realização dos experimentos nós adotamos grande parte das configurações

utilizadas pelos algoritmos PSO padrão e FPSO quando estes foram aplicados

separadamente no treinamento das redes neurais. Os parâmetros de configuração

utilizados pelos algoritmos heterogêneos são apresentados na Tabela 15. Foram

utilizadas as mesmas sete bases de dados descritas na Subseção 3.4.1 e a mesma

disposição de arquitetura da rede, ou seja, redes com arquitetura fixa compostas por

nº de características do problema (camada de entrada) – 6 neurônios (camada

intermediária) – nº de classificações possíveis (camada de saída).

64

O critério de classificação aplicado aos algoritmos heterogêneos foi calculado

conforme a regra do winner-takes-all – o mesmo critério adotado nos capítulos

anteriores.

Tabela 15: Parâmetros de configuração dos algoritmos heterogêneos.

Algoritmo Descrição Valor

PSO

Critério de parada

Medida de qualidade

Limite do espaço de busca

Fatores de aceleração (c1 e c2)

Peso de inércia ()

100 iterações

NMSE

[-2.0, 2.0]

c1 = c2 = 1.4960

0,7298

FPSO

Critério de parada 100 iterações

Medida de qualidade NMSE

Limite do espaço de busca [-2.0, +2.0]

Fator de inércia () [0.9 a 0.4]

Soma dos coeficientes de aceleração (φ) 4.1

K
Igual à quantidade de

partículas do tipo FPSO

Rede

Neural

Nº de neurônios escondidos

Número máximo de iterações

Funções de ativação

Algoritmo de treino

Nº de falhas de validação

6

100

Tangente sigmóide – Linear

Levenberg-Marquardt

5

Fonte: Autor (2011).

Tabela 16: Quantidade de partículas, por tipo, utilizadas pelos algoritmos heterogêneos no
treinamento de redes neurais MLP.

Algoritmo Nº de Partículas do tipo FPSO Nº de Partículas do tipo PSO

FPSO70PSO30 21 9

FPSO30PSO70 9 21

FPSO50PSO50 15 15

Fonte: Autor (2011).

65

5.3 Resultados

Na Tabela 17 dispomos as médias e desvios-padrão do erro percentual de

classificação dos algoritmos heterogêneos para as sete bases de dados descritas na

Tabela 1. O número presente ao lado de cada variação da otimização por enxame de

partículas indica a proporção seguida pelo algoritmo para distribuir as partículas, por

exemplo, FPSO70 indica que 70% das partículas são do tipo FPSO, ou seja, do total

de 30 partículas, 21 são deste tipo.

Tabela 17: Média e desvio padrão do erro percentual de classificação para os três algoritmos
heterogêneos, FPSO70-PSO30, FPSO30-PSO70, FPSO50-PSO50.

Base de

Dados

FPSO70PSO30 FPSO30PSO70 FPSO50PSO50

Media Desvio Media Desvio Media Desvio

Câncer 4,138 1,482 3,755 1,305 3,793 1,573

Diabetes 23,351 3,967 22,500 3,421 24,670 3,872

Coração 21,290 3,122 22,464 4,994 23,015 6,158

Vidros 35,472 8,516 42,076 9,912 40,189 9,597

Cavalos 35,202 6,495 33,919 5,486 33,480 5,534

Soja 38,686 6,341 33,841 4,433 39,506 6,836

Tireóide 5,785 1,996 5,002 2,238 4,806 1,874

Fonte: Autor (2011).

Tabela 18: Média e desvio padrão do tempo de execução, em segundos, para os três algoritmos

heterogêneos, FPSO70-PSO30, FPSO30-PSO70, FPSO50-PSO50.
Base de

Dados

FPSO70PSO30 FPSO30PSO70 FPSO50PSO50

µ  µ  µ 

Câncer 1288,996 203,601 650,219 87,511 641,984 54,402

Diabetes 796,080 25,318 852,351 53,702 1004,574 128,214

Coração 1213,322 41,176 1167,846 157,837 1228,124 84,366

Vidros 1010,646 51,518 965,613 79,517 1042,211 79,983

Cavalos 1635,130 46,599 1372,587 156,338 1487,576 100,453

Soja 18122,550 932,439 17632,490 2533,459 17068,465 875,474

Tireóide 6806,700 690,462 8475,499 906,362 9739,833 858,960

Fonte: Autor (2011).

Na Tabela 18 temos o tempo médio, em segundos, e desvio-padrão das execuções

nas sete bases de dados. Na Tabela 19 dispomos os resultados dos testes

66

estatísticos, nela apenas os resultados relevantes estatisticamente foram

relacionados, ou seja, apenas os resultados cujo algoritmo 1 foi melhor que o algoritmo

2.

Tabela 19: Resultado dos testes de hipótese para os algoritmos heterogêneos, FPSO70-PSO30,
FPSO30-PSO70, FPSO50-PSO50, apenas os resultados no qual os algoritmos heterogêneos obtiveram

melhor desempenho foram relacionados.

Base de dados Algoritmo 1 Algoritmo 2 Valor t Calculado

Câncer FPSO30PSO70 RN -2,3582

Diabetes FPSO70PSO30 RN -2,9085

Vidros

FPSO70PSO30 FPSO30PSO70 -2,7680

FPSO70PSO30 FPSO50PSO50 -2,0136

FPSO70PSO30 LM -3,6448

FPSO70PSO30 Rprop -4,8337

Cavalos

FPSO50PSO50 FPSORprop -2,1430

FPSO50PSO50 LM -6,9484

FPSO50PSO50 Rprop -2,6944

Soja

FPSO30PSO70
FPSO70PSO30 -3,4299

FPSO30PSO70
FPSO50PSO50 -3,8083

FPSO30PSO70
FPSORprop -19,0866

FPSO30PSO70
FPSOLM -4,1661

FPSO30PSO70
LM -5,7043

FPSO30PSO70
Rprop -13,3457

FPSO30PSO70
FPSO:CGLm -4,8733

Tireóide

FPSO50PSO50 FPSORprop -3,3079

FPSO50PSO50 Rprop -4,0978

Fonte: Autor (2011).

67

Após a realização dos experimentos os algoritmos heterogêneos FPSO70PSO30,

FPSO30PSO70 e FPSO50PSO50 foram comparados com os algoritmos relacionados na

Seção 3.5. Os resultados estão listados na Tabela 20.

De acordo com a Tabela 20, é possível verificar que os algoritmos heterogêneos

alcançaram as menores médias de erros em três das sete bases de dados. Cada

proporção do algoritmo heterogêneo foi melhor em uma determinada base de dados,

não tendo sido possível identificar uma proporção ideal para todas as bases testadas.

Tabela 20: Média e desvio padrão nos algoritmos heterogêneos em relação aos algoritmos FPSOLM,
FPSORPROP, LM, RPROP e FPSO:CGLm.

 Câncer Diabetes Coração Vidros Cavalos Soja Tireóide

FPSOLM
µ 2,969 22,708 18,580 35,598 34,762 38,157 1,774

s 1,688 2,932 3,319 9,160 5,174 3,542 0,398

FPSORPROP
µ 3,352 22,778 21,058 39,748 36,557 63,157 5,978

s 1,484 3,595 6,023 10,821 5,588 7,150 0,504

LM
µ 4,705 26,163 21,986 43,270 43,150 40,510 3,556

s 1,780 3,508 3,237 8,050 5,242 4,621 1,203

RPROP
µ 4,076 24,080 19,710 47,044 37,106 61,706 6,337

s 1,774 3,057 2,985 9,971 4,869 10,542 0,822

FPSO:CGLm
µ 3,886 21,979 19,159 36,855 35,018 41,784 4,526

s 1,337 4,711 3,189 9,133 5,813 7,749 1,923

FPSO70PSO30
µ 4,138 23,351 21,290 35,472 35,202 38,686 5,785

s 1,482 3,967 3,122 8,516 6,495 6,341 1,996

FPSO30PSO70
µ 3,755 22,500 22,464 42,076 33,919 33,841 5,002

s 1,305 3,421 4,994 9,912 5,486 4,433 2,238

FPSO50PSO50
µ 3,793 24,670 23,015 40,189 33,480 39,506 4,806

s 1,573 3,872 6,158 9,597 5,534 6,836 1,874

Fonte: Autor (2011).

O teste de hipótese foi aplicado para verificar o quão bom foi o desempenho dos

algoritmos heterogêneos em relação aos demais algoritmos relacionados na Tabela

20. Apenas o resultado no qual o algoritmo heterogêneo foi comprovadamente melhor

aos demais está relacionado na Tabela 21.

68

Tabela 21: Resultado do teste de hipótese no qual o algoritmo heterogêneo obteve melhor
desempenho em relação aos demais testados neste trabalho para o treinamento de redes neurais

MLP.

Base de dados Algoritmo 1 Algoritmo 2
Valor t

Calculado

Soja FPSO30PSO70 FPSOLM -4,166

Fonte: Autor (2011).

Conforme a Tabela 21 o algoritmo FPSO30PSO70 foi o único algoritmo heterogêneo

com desempenho comprovadamente melhor em relação aos demais algoritmos

testados no Capítulo 3, nos demais casos os algoritmos heterogêneos apresentaram

equivalência estatística e alguns casos, produziram resultados piores.

5.4 Conclusão

Neste capítulo fizemos uso de uma abordagem apresentada em Montes de Oca et al

(2009b). Este trabalho objetiva aplicar especificidade ao nível de partícula,

promovendo assim algumas diferenciações. A intenção é possuir ao menos duas

partículas que analisam de forma diferenciada o espaço de soluções. Diferentes

parâmetros podem ser adotados para que um enxame possa ser considerado

heterogêneo. Por exemplo, podemos ter duas ou mais partículas que possuem

diferentes regras de atualização ou mesmo possuam diferentes parâmetros de

configuração em relação as demais partículas do enxame.

Nos experimentos que utilizaram enxame de partículas heterogêneo foram criados

três novos algoritmos. Estes algoritmos caracterizam-se por possuírem diferentes

concentrações de tipos, são eles: FPSO70PSO30, FPSO30PSO70 e FPSO50PSO50.

Os resultados dos testes de hipótese realizados nos algoritmos FPSO70PSO30,

FPSO30PSO70 e FPSO50PSO50 comprovaram que o uso de enxames heterogêneos é

capaz de melhorar a capacidade de generalização de uma rede neural (algoritmo

FPSO30PSO70 aplicado à base de dados Soja), no entanto houve casos em que a

utilização da técnica produziu resultados piores.

69

No decorrer destes experimentos não foi possível identificar uma proporção ideal entre

os dois tipos de PSO, dentre as três utilizadas (30%, 50% e 70%), capaz de produzir

resultados melhores, estatisticamente, em todas as bases de dados. Este problema,

com certeza, será um dos objetos de estudo para os enxames heterogêneos.

70

Capítulo 6

Conclusões e Trabalhos Futuros

Este capítulo aponta os resultados obtidos durante esta pesquisa; identifica pontos de

melhorias e também novas oportunidades de estudo levantadas durante os

experimentos.

6.1 Conclusões

Esta dissertação abordou uma tarefa importante na área de aprendizado

supervisionado, treinamento de redes neurais MLP e a definição da arquitetura e

ajuste dos pesos sinápticos, para problemas de classificação de padrões (BRAGA;

CARVALHO; LUDERMIR, 2007).

Para tanto fizemos uso de duas diferentes abordagens durante o treinamento das

redes neurais MLP. Foram utilizados enxames não-heterogêneos e enxames

heterogêneos. Para os algoritmos não-heterogêneos foram utilizados exames do tipo

Frankenstein PSO – FPSO (MONTES DE OCA et al, 2009a) e algumas variações

propostas; FPSOLm – Frankenstein PSO associado ao Levenberg-Marquardt,

FPSORprop – Frankenstein PSO associado ao Resilient-Backpropagation e

FPSO:CGLm – Frankenstein PSO com convergência garantida associado ao

Levenberg-Marquardt). Também foram utilizados os algoritmos LM (Levenberg-

Marquardt) e Rprop (Resilient back-propagation). Em um segundo momento foram

utilizados os enxames heterogêneos (MONTES DE OCA et al, 2009b) – utilizamos

esta nomenclatura quando em um enxame ao menos duas partículas analisam o

espaço de buscas de maneiras diferentes. Enxames heterogêneos podem ser

classificados de diferentes maneiras, como por exemplo: quanto ao modelo de

influência, a regra de atualização, a heterogeneidade de vizinhança e aos parâmetros

de configuração.

Os exames heterogêneos foram definidos seguindo a seguinte proporção:

FPSO70PSO30, FPSO30PSO70 e FPSO50PSO50. O número ao lado do FPSO ou PSO

71

identifica a porcentagem utilizada para cada tipo, por exemplo: FPSO30PSO70 indica

que 30% do total de partículas do enxame são do tipo FPSO e o restante, 70%, são

do tipo PSO.

Os algoritmos desenvolvidos aqui para ajuste automático das arquiteturas e ajuste dos

pesos das conexões da rede neural - PSO-FPSOLm e FPSO-FPSOLm - basearam-se

na metodologia disposta em Carvalho (2007). Na qual dois algoritmos PSO são

utilizados simultaneamente para definir a arquitetura e treinar as redes neurais MLP

(nesta fase para compor nosso enxame utilizamos apenas partículas do tipo FPSOLm,

que foram aquelas que obtiveram o melhor desempenho na fase de treinamento das

redes).

Este processo de treinamento se deu em duas fases: na primeira foram avaliados os

desempenhos de algumas variações do PSO e dois algoritmos de busca local no

ajuste dos pesos da rede neural com arquitetura fixa. Em um segundo momento foram

utilizados os algoritmos PSO-FPSOLm e FPSO-FPSOLm para definir o número de

neurônios na única camada intermediária considerada e treinar as redes neurais.

Os algoritmos utilizados na primeira parte foram: FPSOLm, FPSORprop, FPSO:CGLm,

Resilient back-propagation (Rprop) e Levenberg-Marquardt (LM). O uso do

Frankenstein PSO proporcionou melhores resultados porque para cada fase do

processo evolucionário acentuou-se a influência de determinado comportamento na

composição da solução (o fato de o FPSO apresentar inicialmente uma topologia

completamente conectada favoreceu uma rápida propagação da melhor solução. Esta

configuração aplicada nas iterações iniciais propiciou ao algoritmo a chance de

encontrar soluções de boa qualidade. Em contrapartida a topologia anel retardou a

propagação da melhor região encontrada nas iterações finais – propiciando maior

explotação - associada a isto o uso do peso de inércia baixo evitou que o restante do

enxame se locomovesse a regiões menos promissoras).

Realizamos avaliação experimental e dois critérios foram usados para medir o

desempenho dos algoritmos: erro percentual de classificação e o tempo de execução.

Essa avaliação permitiu concluir que o algoritmo FPSO-FPSOLm obteve melhor

72

acurácia de classificação se comparado ao algoritmo PSO-FPSOLm em contrapartida

este último apresentou menor tempo de execução.

A utilização de enxames heterogêneos na fase de treinamento da rede neural

proporcionou boas médias de erros de classificação, no entanto não foi possível

estabelecer uma proporção ideal aplicável a todas as bases de dados testadas.

6.2 Trabalhos Futuros

Os bons resultados obtidos pelos algoritmos propostos incentivam o aprimoramento

das pesquisas sobre o assunto, principalmente no estudo de meios que possam

melhorar o tempo de execução. Uma solução a este problema poderia ser a

reimplementação dos algoritmos em linguagens de baixo nível.

Outra ideia é investir no estudo de uma redução no tamanho do enxame de partículas

ao longo das iterações, mantendo somente as ‘x’ melhores partículas (podemos

considerar a definição deste ‘x’ como uma nova linha de pesquisa), o que garantiria

mais iterações de avaliação usando o mesmo tempo de execução atingido hoje (isto

porque o tempo investido nas partículas que não produzem bons resultados seria

revertido para aquelas localizadas em regiões mais promissoras do espaço de busca).

Avaliar a aplicação dos algoritmos heterogêneos e não-heterogêneos ou, neste caso,

homogêneos em outras classes de problemas; otimizar outros parâmetros como taxa

de aprendizado, quantidade de camadas intermediárias, funções de ativação,

algoritmos de treinamento; bem como propor novas combinações para os algoritmos

heterogêneos. A exemplo podemos ter combinações entre algoritmos FPSO e PSO

Barebones (O PSO Barebones substitui as equações de atualização da velocidade e

posição por um método estatístico), o que geraria o “FPSO-PSOBarebones” ou mesmo

PSO com outras técnicas de otimização.

Outra linha de pesquisa pode estar voltada ao estudo das concentrações por tipo em

algoritmos heterogêneos. Evitando-se a experimentação em busca de uma

quantidade ideal para determinado tipo de problema. Uma solução seria compor um

algoritmo capaz de controlar dinamicamente as concentrações dos tipos, análogo ao

73

que é feito hoje pela convergência garantida em que uma variável controla o tamanho

do raio de busca de uma partícula.

O próximo passo como continuidade a este trabalho é a aplicação dos algoritmos

heterogêneos na definição das arquiteturas da rede neural MLP. Verificar seu

comportamento nos dois contextos, ajuste dos pesos sinápticos e definição do número

de camadas e neurônios escondidos.

74

REFERÊNCIAS

ALMEIDA, L. M.; LUDERMIR, T. B., A hybrid method for searching near-optimal
artificial neural networks. In: International Conference on Hybrid Intelligent
Systems, 6., 2006, Rio de Janeiro. [S.l.: s.n] p 36-39.

ALMEIDA, L. M.; LUDERMIR, T. B., A Multi-Objective Memetic and Hybrid
Methodology for Optimizing the Parameters and Performance of Artificial Neural
Networks. Neurocomputing Journal. Disponível em:
<www.elsevier.com/locate/neucom>. Acesso: 09 jan. 2010. p 1438-1450.

ALMEIDA, L. M., Uma Metodologia de Busca por Redes Neurais Artificiais
Quase-Ótimas. 2011. 102 f. Dissertação (Mestrado em Ciência da Computação)-
Centro de Informática, Universidade Federal de Pernambuco, Recife, 2011.

ATYABI, A.; PHON-AMNUAISUK, S.; HO, C. K., Cooperative Learning of
Homogeneous and Heterogeneous Particles in Area Extension PSO. In: IEEE
Congress on Evolutionary Computation (CEC), 2008, Hong Kong. [S.l.: s.n] p
3889-3896.

BERTSIMAS, D.; TSITSIKLIS, J., Simulated Annealing. In: Statistical Science.
[S.l.:s.n], 1993. p 10-15. v. 8, n.1.

BRAGA, A. P.; CARVALHO, A. P. L. F.; LUDERMIR, T. B., Redes Neurais
Artificiais – Teoria e Aplicações. [S.l.]: LTC, 2007. 248 p. 2 ed.

CARVALHO, M.; LUDERMIR, T. B., Hybrid Training of Feed-Forward Neural
Networks with PSO. In: International Conference on Neural Information
Processing (ICONIP). [S.l.:s.n], 2006. v. 4233, p 1061-1070.

CARVALHO, M.; LUDERMIR, T. B., An Analysis Of PSO Hybrid Algorithms For
Feed-Forward Neural Networks Training. In: Brazilian Symposium on Neural
Networks (SBRN), 9., Ribeirão Preto: [s.n], 2006. p 6-11.

CARVALHO, M.; LUDERMIR, T. B., Particle Swarm Optimization of Feed-Forward
Neural Networks with Weight Decay. In: International Conference on Hybrid
Intelligent Systems (HIS). Rio de Janeiro: [s.n], 2006. p 5-8.

75

CARVALHO, M. R., Uma Análise da Otimização de Redes Neurais MLP por
Enxame de Partículas. 2007. 66 f. Dissertação (Mestrado em Ciência da
Computação)-Centro de Informática, Universidade Federal de Pernambuco, Recife,
2007.

CARVALHO, M.; LUDERMIR, T. B., Particle Swarm Optimization of Neural Network
Architectures and Weights. In: International Conference on Hybrid Intelligent
Systems (HIS). Washington: [s.n], 2007. p 336-339.

CHAURASIA, S.; DAWARE, S., Implementation of Neural Network in Particle Swarm
Optimization (PSO) Techniques. In: International Conference on Intelligent Agent
& Multi-Agent Systems (IAMA). Chennai: [s.n], 2009. p 1-2.

CLERC, M.; KENNEDY, J., The particle swarm–explosion, stability, and
convergence in a multidimensional complex space. IEEE Transactions on
Evolutionary Computation Journal, New Jersey, Feb. 2002. Disponível em:
<http://dl.acm.org/citation.cfm?id=2221574>. Acesso em: 19 maio 2010. . v. 6, n. 1.
p 58-73.

Eberhart, R.; Shi, Y., Comparing Inertia Weights and Constriction Factors in Particle
Swarm Optimization. In: Proceedings of the Congress on Evolutionary
Computation, 2000, La Jolla, CA [s.n]. v. 1, p 84-88.

EBERHART, R.; SHI, Y., Tracking and optimizing dynamic systems with particle
swarms, In: Proceedings of the Congress on Evolutionary Computation, 2001,
Seoul. [S.l.:s.n] v. 1, p 94-100.

ENGELBRECHT, A., Scalability of A Heterogeneous Particle Swarm Optimizer. In:
IEEE Symposium on Swarm Intelligence (SIS), Paris: [s.n], 2011. p 1-8.

A. FRANK; A. ASUNCION., UCI Machine Learning Repository, California
University, Sch. Inform. Comput. Sci., Irvine, CA: [s.n], 2007. Disponível em:
<http://archive.ics.uci.edu/ml>. Acesso em: 01 jun. 2010.

GIMMLER, J.; STÜTZLE, T.; EXNER, T. E., Hybrid Particle Swarm Optimization: An
examination of the influence of iterative improvement algorithms on Performance. In:
International Workshop (ANTS), 6., [S.l.:s.n], 2006. v. 4150 p 436-443.

76

GLOVER, F.; LAGUNA, M., Tabu Search. Massachusetts: Kluwer Academic
Publishers Norwell, 1997. 382 p.

GOMES, G. S. S.; LUDERMIR, T. B., Aproximação de funções através de redes
neurais artificiais com funções de ativação complemento log-log e probit. In:
Workshop on Computational Intelligence (WCI), 2., 2008, Salvador: [s.n]. Anais...
Porto Alegre: Sociedade Brasileira de Computação, 2008.

GUDISE, V. G.; VENAYAGAMOORTHY, G. K., Comparison of Particle Swarm
Optimization and backpropagation as training algorithms for neural networks. In:
Swarm Intelligence Symposium (SIS), 3., Indianapolis: [s.n], 2003. p 100-117.

HAYKIN, S., Neural Networks: A Comprehensive Foundation. [S.l.:] Prentice
Hall, 1999, 842 p. Second edition.

KARABOGA, D.; BASTURK, B., On the performance of artificial bee colony (ABC)
algorithm. In: Applied Soft Computing, [S.l.:s.n], 2008. p 687-697. v. 8, issue 1.

KENNEDY, J.; EBERHART, R., Particle Swarm Optimization. In: IEEE International
Conference on Neural Networks, Piscataway: [s.n], 1995. p 1942-1948.

KIRANYAZ, S.; INCE, T.; YILDIRIM, A.; GABBOUJ, M., Evolutionary artificial neural
networks by multi-dimensional particle swarm optimization. In: Neural Networks
Journal, [S.l.:s.n], 2009. v. 22, Issue 10, Disponível em:
<http://www.sciencedirect.com/science/article/pii/S0893608009001038> v. 22 n. 10,
p 1448-1462. Acesso em: 14 dez 2010.

KIRKPATRICK, S.; GELLAT JR, C. D.; VECCHI, M. P., Optimization by Simulated
Annealing. In: Science, 1983, [S.l.:] New Series. v. 220, n. 4598. p 671-680.
LIMA, N. F.; LUDERMIR, T. B., Frankenstein PSO Applied to Neural Network
Weights and Architectures. In: IEEE Congress on Evolutionary Computation
(CEC), 2011, New Orleans: [s.n], 2011. p 2452-2456.

LING, S. H.; NGUYEN, H. T.; CHAN, K., A New Particle Swarm Optimization
Algorithm for Neural Network Optimization. In: International Conference on
Network and System Security, 3., 2009, [S.l.:s.n], 2009. v. 3971, Issue 5-6, p 516
- 521.

77

LUDERMIR, T. B.; YAMAZAKI, A.; ZANCHETTIN, C., An Optimization Methodology
for Neural Network Weights and Architectures. In: IEEE Transactions on Neural
Networks, 2006, [S.l.:s.n], 2006. v. 17 n. 6, p 1452-1459.

MENDES, R.; KENNEDY, J.; NEVES, J., The Fully Informed Particle Swarm:
Simpler, Maybe Better. In: IEEE Transactions Evolucionary Computation, 2004,
[S.l.:s.n], 2004. v. 8 n. 3, p. 204-210.

MIDDENDORF, M.; JANSON, S., A Hierarchical Particle Swarm Optimizer and Its
Adaptive Variant. In: IEEE Transactions on Systems, Man, and Cybernetics. Part
B – Cybernetics, 2005, [S.l.:s.n], 2005. v. 35 n. 6, p. 1272-1282.

MONTES DE OCA, M.; STÜTZLE, T.; BIRATTARI, M.; DORIGO, M., Frankenstein's
PSO: A Composite Particle Swarm Optimization Algorithm. In: IEEE Transactions
on Evolutionary Computation, 2009, [S.l.:s.n], 2009. v 13 n. 5, p 1120-1132.

MONTES DE OCA, M. A.; PEÑA, J.; STÜTZLE, T.; PINCIROLI, C.; DORIGO, M.,
Heterogeneous Particle Swarm Optimizers. In: IEEE Congress on Evolutionary
Computation (CEC), 2009, Trondheim: [s.n], 2009. p 698-705.

NINOMIYA, H.; ZHANG, Q.-J., Particle with Abitlity of Local search Swarm
Optimization: PALSO for Training of Feed-forward Neural Networks. In:
International Joint Conference on Neural Networks (IJCNN), 2008, Hong Kong:
[s.n], 2008. p 3009-3014.

PEER, E.; BERGH, F. D.; ENGELBRECHT, A., Using Neighbourhoods with the
Guaranteed Convergence PSO. In: Proceedings of the Swarm Intelligence
Symposium (SIS), 2003, [S.l.:s.n], 2003. p 235-242.

PINGZHOU T.; ZHAOCAI X., The Research on BP Neural Network Model Based on
Guaranteed Convergence Particle Swarm Optimization. In: International
Symposium on Intelligent Information Technology Application, 2., 2008,
Shanghai: [s.n], 2008. v. 2. p 13-16.

PRECHEIT, L., Proben1 – A Set of Neural Network Benchmark Problems and
Benchmark Rules. In: Fakultät für infortamik, 1994, Universität Karlsruhe: [s.n],
1994. 38 p.

78

PRUDÊNCIO, R. C., Projeto Híbrido de Redes Neurais. 2002. 101 f. Dissertação
(Mestrado em Ciência da Computação)-Centro de Informática, Universidade
Federal de Pernambuco, Recife, 2002.

RATNAWEERA, A.; HALGAMUGE, S. K.; WATSON, H. C., Self-organizing
hierarchical particle swarm optimizer with time-varying acceleration coefficients. In:
IEEE Transactions Evolution Computation, 2004, [S.l.:s.n], 2004. v. 8 n. 3. p. 240-
255.

SHI, Y.; EBERHART, R., A Modified Particle Swarm Optimizer. In: IEEE World
Congress on Computational Intelligence, 1998, Anchorage: [s.n], 1998. p 69-73.

SHI, Y.; EBERHART, R., Empirical Study of Particle Swarm Optimization. In: IEEE
Congress Evolutionary Computation, 1999, Washington: [s.n], 1999. v. 3 p 1945-
1950.

SILVA, A. J., MINEU, N. L., LUDERMIR, T. B., Evolving Artificial Neural Networks
Using Adaptive Differential Evolution. In: Proceedings of Ibero-American
conference on Advances in artificial intelligence (IBERAMIA) 12., Bahía Blanca,
Argentina: [s.n], 2010. v. 6433. p 396-405.

Sivagaminathan, R. K.; Ramakrishnan, S., A hybrid Approach for Feature Subset
Selection Using Neural Networks and Ant Colony Optimization. In: Expert Systems
with Applications, 2007, [S.l.:s.n], 2007. v. 33 n. 1. p 49-60.

STORN, R., Differential evolution - A Simple and Efficient Adaptive Scheme for
Global Optimization Over Continuous Spaces. In: International Computer Science
Institute, 1995, Berkeley: [s.n], 1995. Technical Report TR-95-012, ICSI. 15 p.
Disponivel em: <ftp.icsi.berkeley.edu>. Acesso em: 22 fev 2011.

TEIXEIRA, L.; OLIVEIRA, F.; OLIVEIRA, A.; BASTOS FILHO, C., Adjusting Weights
and Architecture of Neural Networks through PSO with Time-Varying Parameters
and Early Stopping. In: Brazilian Symposium on Neural Networks (SBRN), 10.,
2008, Salvador: [s.n], 2008. p 33-38.

TEODOROVIC, D.; LUCIC, P.; MARKOVIC, G.; DELL' ORCO, M., Bee Colony
Optimization: Principles and Applications. In: Seminar on Neural Network
Application in Eletrical Engineering (NEUREL) 8., 2006, Belgrade, Serbia &
Montenegro: [s.n], 2006. p 151-156.

79

VALENÇA, I. C., Modelos Híbridos Baseados em Redes Neurais, Lógica Fuzzy
e Busca para Previsão de Séries Temporais. 2010. 83 f. Dissertação (Mestrado
em Ciência da Computação)-Centro de Informática, Universidade Federal de
Pernambuco, Recife, 2010.

VALENÇA, I. C.; LUDERMIR, T. B.; VALENCA, M., Hybrid Systems to Select
Variables for Time Series Forecasting Using MLP and Search Algorithms. In:
Brazilian Symposium on Neural Networks (SBRN), 11., 2010, São Paulo: [s.n],
2010. p 247-252.

VAN WYK, A. B.; ENGELBRECHT, A. P., Overfitting by PSO Trained Feed-forward
Neural Networks. In: IEEE Congress on Evolutionary Computation (CEC), 2010,
Barcelona: [s.n], 2010. p 1-8.

WAYNE, D. W., Applied Nonparametric Statistics. [S.l.:] Duxbury Resource
Center, 1990. 656 p. Second edition.

YAMAZAKI, A., Uma Metodologia para Otimização de Arquiteturas e Pesos de
Redes Neurais. 2004. 135 f. Tese (Doutorado em Ciência da Computação)-Centro
de Informática, Universidade Federal de Pernambuco, Recife, 2004.

YANAN, M.; XIUWEI, F.; LI, F., Application of Neural Network Trained by Adaptive
Particle Swarm Optimization to Fault Diagnosis for Steer-by-Wire System. In:
International Conference on Measuring Technology and Mechatronics
Automation, (ICMTMA), 2010, Changsha: [s.n], 2010. v. 1. p 652-655.

YAO, X.; LIU, Y., A New Evolutionary System for Evolving Artificial Neural Networks.
In: IEEE Transactions on Neural Networks, 1997, [S.l.:s.n], 1997. v. 8 n. 3. p 694-
713.

ZANCHETTIN, C.; LUDERMIR, T. B., Técnica Híbrida de Otimização para Pesos e
Arquiteturas de Redes Neurais Artificiais. In: Congresso da Sociedade Brasileira
de Computação, 25, 2005, Rio Grande do Sul: [s.n], 2005. p 902-911.

ZANCHETTIN, C.; LUDERMIR, T. B., Hybrid Optimization Technique for Artificial
Neural Networks. In: International Conference on Enterprise Information
Systems, 2009, Milão: [s.n], 2009. p 242-247.

ZANCHETTIN, C.; LUDERMIR, T. B.; ALMEIDA, L. M., Hybrid Training Method for
MLP: Optimization of Architecture and Training. In: IEEE Trasactions on Systems,

80

Man, and Cybernetics - Part B: Cybernetics, 2011, [S.l.:s.n], 2011. v. 41 n. 4. p
1097-1109.

ZARTH, A. M.; LUDERMIR, T. B., Optimization of Neural Networks Weights and
Architecture: A Multimodal Methodology. In: International Conference on
Intelligent Systems Design and Applications (ISDA), 9., 2009, Pisa, Italy: [s.n],
2009. p 209-214.

ZARTH, A. M., Otimização Evolucionária Multimodal de Redes Neurais
Artificiais com Evolução Diferencial. 2010. 71 f. Dissertação (Mestrado em
Ciência da Computação)-Centro de Informática, Universidade Federal de
Pernambuco, Recife, 2010.

ZHANG, W.; LIU, Y.; CLERC, M., An Adaptive PSO Algorithm for Reactive Power
Optimization. In: International Conference on Advances in Power System
Control, Operation and Management (APSCOM), 6., 2003, Hong Kong: [s.n],
2003. p 302-307.

ZHENG, Y.-L; MA, L.-H; ZHANG, L.-Y; QIAN, J.-X., Empirical study of particle swarm
optimizer with an increasing inertia weight. In: IEEE Congress on Evolutionary
Computation (CEC), 2003, [S.l.:s.n], 2003. v. 1. p 221–226.

ZHONG, B.; WANG, D.; LI, T., Application of Optimized Neural Network Based on
Particle Swarm Optimization Algorithm in Fault Diagnosis. In: IEEE International
Conference on Cognitive Informatics (ICCI), 8., 2009, Kowloon: [s.n], 2009. p 476-
480.

