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RESUMO

Este trabalho apresenta dois novos algoritmos, PSO-FPSO e FPSO-FPSO, para
a otimizacao global de redes neurais MLP (do inglés Multi Layer Perceptron) do
tipo feed-forward. O propdosito destes algoritmos € otimizar de forma simultéanea
as arquiteturas e pesos sinapticos, objetivando melhorar a capacidade de
generalizacdo da rede neural artificial (RNA). O processo de otimizacéo
automatica das arquiteturas e pesos de uma rede neural vem recebendo grande
atencdo na area de aprendizado supervisionado, principalmente em problemas
de classificacdo de padrées. Além dos Algoritmos Genéticos, Busca Tabu,
Evolucéo Diferencial, Recozimento simulado que comumente sdo empregados
no treinamento de redes neurais podemos citar abordagens populacionais como
a otimizacdo por colénia de formigas, otimizacdo por colénia de abelhas e
otimizac&o por enxame de particulas que vém sendo largamente utilizadas nesta
tarefa. A metodologia utilizada neste trabalho trata da aplicacdo de dois
algoritmos do tipo PSO, sendo empregados na otimizacdo das arquiteturas e na
calibracdo dos pesos das conexfes. Nesta abordagem os algoritmos sao
executados de forma alternada e por um namero definido de vezes. Ainda no
processo de ajuste dos pesos de uma rede neural MLP foram realizados
experimentos com enxame de particulas heterogéneos, que nada mais é que a
juncéo de dois ou mais PSOs de tipos diferentes. Para validar os experimentos
com os enxames homogéneos foram utilizadas sete bases de dados para
problemas de classificacdo de padrbes, sdo elas: cancer, diabetes, coracao,
vidros, cavalos, soja e tiredide. Para o0s experimentos com enxames
heterogéneos foram utilizadas trés bases, a saber: cancer, diabetes e coragao.
O desempenho dos algoritmos foi medido pela média do erro percentual de
classificacdo. Algoritmos da literatura sdo também considerados. Os resultados
mostraram que o0s algoritmos investigados neste trabalho obtiveram melhor
acuracia de classificacdo quando comparados com os algoritmos da literatura
mencionados neste trabalho.

Palavras-chave: Otimizacdo por Enxame de Particulas. Redes Neurais

Artificiais. Enxames Heterogéneos.



ABSTRACT

This research presents two new algorithms, PSO-FPSO e FPSO-FPSO, that can
be used in feed-forward MLP (Multi Layer Perceptron) neural networks for global
optimization. The purpose of these algorithms is to optimize architectures and
synaptic weight, at same time, to improve the capacity of generalization from
Artificial Neural Network (ANN). The automatic optimization process of neural
network’s architectures and weights has received much attention in supervised
learning, mainly in pattern classification problems. Besides the Genetic
Algorithms, Tabu Search, Differential Evolution, Simulated Annealing that are
commonly used in the training of neural networks we can mentioned population
approaches such Ant Colony Optimization, Bee Colony Optimization and Particle
Swarm Optimization that have been widely used this task. The methodology
applied in this research reports the use of two PSO algorithms, used in
architecture optimization and connection weight adjust. In this approach the
algorithms are performed alternately and by predefined number of times. Still in
the process of adjusting the weights of a MLP neural network experiments were
performed with swarm of heterogeneous patrticles, which is nothing more than the
joining of two or more different PSOs. To validate the experiments with
homogeneous clusters were used seven databases for pattern classification
problems, they are: cancer, diabetes, heart, glasses, horses, soy and thyroid. For
the experiments with heterogeneous clusters were used three bases, namely
cancer, diabetes and heart. The performance of the algorithms was measured by
the average percentage of misclassification, literature algorithms are also
considered. The results showed that the algorithms investigated in this research
had better accuracy rating compared with some published algorithms.

Keywords: Particle Swarm Optimization. Artificial Neural Networks.

Heterogeneous Swarm.
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Capitulo 1

Introducao

Este capitulo apresentard a motivacdo do trabalho, bem como os objetivos. Em
seguida, a organizacao da dissertacdo é detalhada.

1.1 Motivagéo

Redes neurais artificiais (RNAs) tém obtido bons resultados na solucdo de varios
problemas, como reconhecimento de padrées (CARVALHO; LUDERMIR, 2006c;
YANAN; XIUWEI; LI, 2010), previsdo de séries temporais (VALENCA, 2010;
VALENCA; LUDERMIR; VALENCA, 2010) aproximacdo de funcdes (GOMES;
LUDERMIR, 2008; PRUDENCIO, 2002) e outros. Por este motivo existe um interesse
crescente na aplicacdo de redes neurais em outras classes de problemas, bem como
o refinamento de técnicas utilizadas em sua constru¢cdo. Nem sempre 0 emprego de
redes neurais produz bons resultados, muitas vezes isto se da pela dificuldade em
projeta-las a um problema especifico. Por isto € cada vez mais frequente o uso das
mais diversas técnicas na constru¢ao de redes neurais artificiais (ALMEIDA, 2011;
LUDERMIR; YAMAZAKI; ZANCHETTIN, 2006).

Um dos modelos mais utilizados e conhecidos de redes neurais é o MLP (Multi Layer
Perceptron) (BRAGA; CARVALHO; LUDERMIR, 2007; HAYKIN, 1999). Este tipo
caracteriza-se por uma arquitetura disposta em camadas sendo a primeira de entrada
— definida baseada na dimensé&o do problema a ser tratado — uma ou mais camadas
ocultas, também chamadas de camadas intermediarias e uma camada de saida —
definida de acordo com o problema a ser resolvido. Definir a configuracdo da(s)
camada(s) intermediaria(s) € uma tarefa complexa, pois como eleger a quantidade
ideal de camadas e o nimero de neurdnios que cada uma delas ira possuir, sendo
pela tentativa e erro ou consulta a um especialista. Esta € uma das razdes pela qual
0 uso de técnicas inteligentes combinadas a redes neurais tem feito tanto sucesso,

comumente estas técnicas também tém sido empregadas na escolha de func¢des de
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ativacao, algoritmo de treinamento e outros parametros das redes neurais segundo
Almeida e Ludermir (2009).

O processo de treinamento de redes neurais artificiais (RNAs) MLP para problemas
de classificacao de padrdes envolvem duas fases. A primeira € a definicdo do numero
de camadas ocultas e a quantidade de neurdénios que cada uma ird possuir, enquanto
gue a segunda fase trata de ajustar os pesos das conexdes, conforme Braga, Carvalho
e Ludermir (2007). Para definir uma arquitetura 0 menos complexa possivel, podem
ser empregadas técnicas inteligentes como Evolucdo Diferencial (SILVA; MINEU;
LUDERMIR, 2009), Col6nia de Formigas (SIVAGAMINATHAN; RAMAKRISHNAN,
2007), Algoritmos Genéticos (ALMEIDA; LUDERMIR, 2009; ZANCHETTIN;
LUDERMIR, 2005), Otimizacao por Enxame de Particulas (CARVALHO; LUDERMIR,
2007; LUDERMIR; KIRANYAZ et al, 2009; YAMAZAKI; ZANCHETTIN, 2006), Coldnia
de Abelhas (KARABOGA; BASTURK, 2008; TEODOROVIC et al, 2006), Programacé&o
Evolucionaria (YAO; LIU, 1997). Estas técnicas também podem ser utilizadas no
ajuste dos pesos das conexdes da rede para substituir o conhecido algoritmo back-
propagation, pois o mesmo utiliza o gradiente descendente do erro de classificagéo
para determinar o novo valor dos pesos das conexdes. O back-propagation faz uso
do aprendizado online, o que quer dizer que, geralmente, todos os padrdes de treino
precisam ser apresentados de forma continua a medida que a fase de treinamento
avanca. Segundo Braga, Carvalho e Ludermir (2007) o uso do back-propagation em
redes neurais grandes e/ou complexas torna-se muito dificil. Outro ponto negativo em
sua utilizacdo, que ocorre durante a fase de treinamento, é o overfitting. Isto ocorre
guando a rede passa a memorizar os padrdes de entrada apresentados, diminuindo
assim a capacidade de generalizacdo da rede neural. Para resolver este problema
reserva-se uma parte do conjunto de treinamento, geralmente 25% dos dados. Este
subconjunto € chamado conjunto de validagéo e € utilizado para avaliar se durante a
fase de treinamento esta ocorrendo o overfitting. O treinamento da rede neural é
interrompido a partir do momento que o erro no conjunto de validacdo comeca a
crescer. Por outro lado, se o treinamento for interrompido muito cedo podera ocorrer
o chamado underfitting, que € a incapacidade de generalizacdo da rede, ou seja, falta

de conexdes e/ou parametros ajustaveis conforme Braga, Carvalho e Ludermir (2007).
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Alguns trabalhos tem considerado o uso Algoritmos Genéticos (AG) como Almeida e
Ludermir (2009); Zanchettin e Ludermir (2009); Evolucéo Diferencial (ED) como Zarth
(2010); Zarth e Ludermir (2009); Busca Tabu (BT) conforme Zanchettin, Ludermir e
Almeida (2011); Recozimento Simulado (RS) segundo Yamazaki (2004); Zanchettin,
Ludermir e Almeida (2011) ou mesmo duas ou mais destas técnicas juntas para definir
a configuracdo de redes neurais, como € o caso de Almeida e Ludermir (2009) que
combinou Estratégias de Evolucdo (Evolution Strategy), Algoritmos Genéticos e
Otimizacdo por Enxame de Particulas para aperfeicoar uma RNA através da escolha
do algoritmo de treinamento, do pesos das conexdes, da taxa de aprendizado, do
namero de camadas intermediarias, das funcdes de transferéncia e do bias. No
trabalho Zarth (2010) o sistema proposto buscou por arquiteturas e pesos fazendo uso
de Evolucdo Diferencial associado a uma estratégia para controle da diversidade
proveniente da Computacéo Evolucionaria Paralela. Em Eberhart e Shi (2000) foram
combinadas as técnicas de Recozimento Simulado, Busca Tabu e o algoritmo por
correcdo de erro back-propagation com o objetivo de gerar redes neurais de baixa

complexidade e alta capacidade de generalizagéo.

O uso de Otimizacao por Enxame de Particulas (PSO) tem se tornado cada vez mais
frequente em estudos relacionados ao aprendizado supervisionado. Esta técnica tenta
simular o comportamento animal na busca por recursos, por exemplo, imagine um
bando de passaros a procura de novas fontes de alimentacdo ou um local de
descanso. Neste cenario 0s passaros sao representados pelas particulas, as fontes
de alimentacéo ou o local de descanso € a fun¢éo objetivo e a area onde 0s passaros
se deslocam representa 0 espaco de busca. O PSO foi apresentado pela primeira vez
por Kennedy e Eberhart (1995) e desde entdo tem sido utilizado na melhoria de
solucbes de varios problemas na area de redes neurais artificiais (CHAURASIA;
DAWARE, 2009; GUDISE; VENAYAGAMOORTHY, 2003; ZHONG; WANG,; LI, 2009),
tendo alcancado bons resultados quando empregado a problemas de otimizacdo
numérica. Além disso o PSO é considerado um método de facil implementacao.

Este trabalho faz uso da Otimizacdo por Enxame de Particulas para definir o nimero
de neurdnios na camada intermediaria e realizar o treinamento de uma rede MLP, do

tipo feed-forward.
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1.2 Objetivos
Além de fazer uso do PSO para definir redes neurais de baixa complexidade e boa

capacidade de generalizacdo, os seguintes topicos podem ser destacados como

objetivos deste trabalho:

Avaliar o desempenho de uma variacdo recente da técnica de otimizacdo por
enxame de particulas, chamado Frankenstein PSO ou apenas FPSO, em relacdo
a técnica padréo quando aplicado a problemas de classificacdo de padrées.
Validar novos algoritmos de ajuste simultaneo das arquiteturas e pesos de uma
rede neural, cuja metodologia é similar a apresentada em Carvalho (2007).
Legitimar o uso de enxames heterogéneos no processo de treinamento de redes

neurais Multi Layer Perceptron.

1.3 Organizacéao da Dissertacao

Esta dissertacdo esta organizada em 6 capitulos, estando no capitulo primeiro a

introducéo, motivacdo, objetivos e organizacdo deste trabalho. Os demais capitulos

seguem organizados da seguinte forma:

Capitulo 2 — Otimizacdo de Redes Neurais Utilizando Enxame de Particulas: neste
capitulo apresentamos o conceito de neurbnio e rede neural artificial e alguns
métodos baseados na otimizacdo por enxame de particulas, utilizados neste
trabalho para otimizar o treinamento e a definicdo da arquitetura de redes neurais
do tipo feed-forward.

Capitulo 3 — Treinamento de Redes Neurais com PSO: E descrito o uso do
Frankenstein PSO no processo de otimizacdo dos pesos das conexdes em
problemas de classificacdo de padrdes.

Capitulo 4 — Ajuste Simultaneo de Pesos e Arquiteturas com FPSO: Trata do ajuste
simultaneo dos pesos e arquiteturas fazendo uso do Frankenstein PSO. Foram
utilizados os resultados obtidos no capitulo 3 e as mesmas bases de dados para

realizar os experimentos.
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Capitulo 5 — Enxames Heterogéneos: Apresenta o uso de enxames heterogéneos
no treinamento de redes neurais MLP.
Capitulo 6 — Conclusdes e Trabalhos Futuros: Aborda as conclusées e também

cita alguns trabalhos futuros.
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Capitulo 2

Otimizacdo de Redes Neurais Utilizando

Enxame de Particulas

Neste capitulo é apresentada a definicdo de neurénio e redes neurais artificiais, PSO
padrdo e algumas variacdes da otimizacdo por enxame de particulas utilizadas neste
trabalho.

2.1 Redes Neurais Artificiais

Redes Neurais Artificiais sé@o representacdes computacionais, em continuo
aperfeicoamento, que tentam reproduzir o processo de aprendizagem do cérebro
humano. Assim como o cérebro que é formado por neurdnios as redes neurais
também o possuem em sua constituicdo. Os neurénios ou nodos, como também sao
conhecidos, sao associados aos demais por meio de conexdes, que por sua vez
recebem um peso. O comportamento ou resposta de uma rede neural a determinado
estimulo é dado pela forca destas conexdes (BRAGA; CARVALHO; LUDERMIR,
2007). Isto significa que, quanto maior o peso atribuido a uma determinada conexao,
maior sera sua influéncia na saida (resposta). Na Figura 1 temos uma representagao

grafica de um neurdnio biologico.

Figura 1: Neur6nio biologico.

Dendritos

Terminagdes
do axbnio

Axdnio \
\ \
X
Corpo celular

Fonte: Autor (2011).
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De modo genérico podemos descrever a formacao e funcionamento de um neurdnio
biolégico da seguinte forma: os estimulos de entrada, provenientes de outros
neurénios, sdo captados por meio dos dendritos; o estimulo, entéo, é processado no
corpo celular e a saida ou resposta sera transmitida ao préximo neurdnio por meio do

axonio.

Na década de 40 uma simplificada representacdo do comportamento de um neurdnio
biolégico foi proposta por McCulloch e Pitts (BRAGA; CARVALHO; LUDERMIR, 2007,
HAYKIN, 1999). No modelo de neur6nio artificial MCP ou Modelo McCulloch-Pitts, os
dendritos sdo representados por n terminais de entrada, X1, X2, ..., Xn; 0 axénio (que
representa a saida ou resposta) simbolizado por uma Unica saida, y. Para representar
0 processo de transmissdo da resposta de um neurbnio a outro — sinapse — as
conexdes de entrada receberam pesos, wi, Wz, ..., w3. Deste modo para saber se o
resultado aos estimulos de entrada recebidos foi suficiente para atingir o limiar de
excitacdo do neurénio, threshold, é preciso somar todas as entradas aos respectivos
pesos, que podem assumir valores positivos ou negativos. Logo, obtemos a equacao

(1), representacao matematica do Modelo McCulloch-Pitts.

n

z x;w; =60 (1)

i=1

em que 6 representa o limiar de excitacdo ou threshold. Podemos representar o

neurénio artificial, proveniente do Modelo McCulloch-Pitts, conforme a Figura 2.

Figura 2: Esquematizacdo de um neurdnio artificial MCP.

Funcéo de

Entradas ativagdo

() p—— Saida

Somatdrio das
sinapses

Pesos sindpticos

Fonte: Braga, Carvalho e Ludermir (2007).
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No modelo MCP os neurdnios sdo binarios, ou seja, possuem saida 0 ou 1, entdo,
para determinado estimulo de entrada o neurbnio estara ativo ou ndo. No entanto a
grande maioria dos problemas da vida real sdo nao-lineares. Com o intuito de
solucionar esta limitacdo, ao longo dos anos, foram apresentadas diferentes funcdes

de ativagao, algumas delas estao dispostas na Figura 3.

Figura 3: Exemplos de funcdes de ativagao.

a) Degrau ou Limiar b) Sigmoidal

f a f

fix)=|1,sex=0 fix) = 1
0, sex=<0 1+e”
’ X
c) Linear d) Tangente hiperbdlica

F i f A

fix)=kx f(x)=tanh{x)

Y

P
-

: )

Fonte: Braga, Carvalho e Ludermir (2007).

Um Unico neurdnio possui capacidade computacional bastante limitada, no entanto se
juntarmos varios neurénios e os dispormos em forma de rede teremos a capacidade
de resolver problemas de alta complexidade. Na Redes neurais de Unica camada,
como visualizado em Figura 4. a) sdo capazes de resolver apenas problemas lineares.
Na arquitetura disposta em Figura 4. b) também temos uma rede feed-forward, no
entanto esta possui uma camada adicional, a chamada camada intermediaria ou
camada oculta. Redes neurais com esta disposicdo de neurdnios sao capazes de

resolver qualquer funcdo continua. Se adicionarmos mais uma camada intermediaria
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a esta teremos uma rede capaz de aproximar qualquer funcdo conforme Braga,
Carvalho e Ludermir (2007) e mais, se 0s neurbnios da camada intermediaria fizerem
uso de funcdes sigmoidais esta rede recebera o nome de Perceptron de Mdltiplas
Camadas ou MLP, do inglés Multi Layer Perceptron. Na Figura 4 sao apresentadas

apenas as arquiteturas utilizadas neste trabalho, redes feed-forward.

Redes neurais de Unica camada, como visualizado em Figura 4 a) sdo capazes de
resolver apenas problemas lineares. Na arquitetura disposta em Figura 4 b) também
temos uma rede feed-forward, no entanto esta possui uma camada adicional, a
chamada camada intermediaria ou camada oculta. Redes neurais com esta
disposicao de neurbnios sdo capazes de resolver qualquer fungéo continua. Segundo
Braga, Carvalho e Ludermir (2007) se adicionarmos mais uma camada intermediaria
a esta teremos uma rede capaz de aproximar qualquer funcéo e mais, se 0s neurénios
da camada intermediaria fizerem uso de func¢des sigmoidais esta rede recebera o

nome de Perceptron de Multiplas Camadas ou MLP, do inglés Multi Layer Perceptron.

Figura 4: Arquitetura de uma rede neural feed-forward.

b) Rede feedforward de duas camadas

a) Rede feedforward de Unicacamada

Fonte: Braga, Carvalho e Ludermir (2007).

Uma vez definidos a arquitetura e fungcé@o ou fungbes de ativacdo da rede neural é
preciso treina-la para que possa “aprender”. Dentre as diversas formas de
aprendizado aplicaveis as redes neurais (por competicéo, reforco, hebbiano e outros)
veremos de forma detalhada o aprendizado supervisionado, que € o método utilizado

neste trabalho.
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Neste tipo de aprendizado uma parte do conjunto de dados € reservada para realizar
o treinamento da rede. A rede deve calcular o quao distante da resposta desejada ela
se encontra, ou seja, para cada saida obtida e de acordo com a resposta desejada a
rede calcula o erro da saida e assim, ajusta 0os pesos de suas conexdes, de forma que

a resposta da rede se aproxime da saida desejada.

Apesar dos bons resultados obtidos pelas redes neurais em tarefas de classificacao,
categorizacao, otimizacdo, aproximacao e previsdo existem alguns pontos que
contam negativamente em sua aplicacdo. A exemplo podemos citar a definicdo da
guantidade ideal dos dados de entrada utilizados pelo conjunto de treinamento; a
duracéo da fase de treinamento ou aprendizagem, podendo causar problemas como
overfitting (quando a rede passa a “decorar’ os dados de entrada produzindo altas
taxas de erro na fase de teste) e underfitting (quando a fase de treinamento é muito
curta e incapacita a rede a regular os parametros ajustaveis. Também produz alta taxa
de erro durante a fase de teste); o uso de algoritmos por corre¢cdo de erro, como 0
back-propagation, que podem levar a rede a regides de minimos locais. Algumas
solucdes a estes e outros problemas é a combinacao de diferentes métodos de forma
que um seja capaz de suprir as deficiencias do outro ou mesmo para encontrar
solu¢des mais eficientes e/ou robustas. A esta combinacgéo de diferentes métodos, no
gual um deles seja uma rede neural, damos o nome de Sistemas Neurais Hibridos
(BRAGA; CARVALHO; LUDERMIR, 2007).

2.2 PSO Padréo

A Otimizacdo por Enxame de Particulas ou apenas PSO é uma técnica meta-
heuristica criada por Kennedy e Eberhart (1995) cuja motivacéo partiu da observacéo
do comportamento social de animais. Técnicas baseadas no comportamento de
populacbes sdo largamente aplicadas a um grande numero de problemas de
otimizac&o numérica. A exemplo podemos citar a Otimizacao por Coldnia de Formigas
(do inglés Ant Colony Optimization) em Sivagaminathan e Ramakrishnan (2007) e a
Otimizacéo por Colonia de Abelhas (do inglés Bee Colony Optimization) em Karaboga
e Basturk, (2008); Teodorovic et al, (2006). A idéia inicial dos autores foi reproduzir o

comportamento de passaros na busca por recursos, por exemplo, a busca por novas



24

fontes de alimentacdo. Assim como na natureza em que os individuos se movimentam
no espaco trocando informacdes entre si com o objetivo de levar o bando as melhores
regides o algoritmo do PSO também reproduz este comportamento. A seguir

descrevemos como este habito foi modelado na otimizacéo por enxame de particulas.

Seja 0 enxame um conjunto S formado por particulas p, que representam as possiveis
solugdes, cada uma delas tem dimensao n. Para cada uma delas, 1 < pi £ S, num
instante de tempo t, tem suas posigoes xi(t) € Rn e velocidades vi(t) € Rn definidas -
determinam a extensdo e direcdo do deslocamento no espaco de solugdes.
Informacdes adicionais sdo armazenadas pelas varidveis pb — responséavel por
guardar a melhor posicao visitada pela particula — e gb — armazena a melhor posicéo

visitada pelo enxame.

Outra particularidade do PSO é a maneira como as particulas trocam informacgdes
entre si. Originalmente a otimizacdo por enxame de particulas utiliza um modelo
conhecido por Gbest — global best. Neste modelo de vizinhanca a particula do enxame
gue alcancou a melhor posicao no espaco de busca, ou seja, a melhor solucéo até o
momento, influéncia o deslocamento das demais particulas. A adocdo do Gbest
proporciona uma convergéncia mais rapida, uma vez que a propagacao da informacéo
e agil. Por outro lado, existe um ponto negativo, a possibilidade de convergéncia
prematura, que pode fazer com que o enxame se desloque a uma regido sub-6tima,
minimo local. Visando minimizar o problema da convergéncia prematura, foi criado o
modelo Lbest — local best, também conhecido por Anel. Neste modelo topolégico uma
particula influéncia apenas algumas de suas vizinhas (normalmente adota-se
vizinhanca de grau 1, o que significa que a particula que alcancou a melhor posicao
no espaco de buscas influéncia suas vizinhas imediatas. No entanto, pode-se adotar
um grau de vizinhanca diferente). A Figura 5 e Figura 6 exibem uma representagao

dos modelos de vizinhanca Gbest e Lbest, respectivamente.
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Figura 5: Modelo de vizinhanca Gbest Figura 6: Modelo de vizinhanca Lbest.

P-1 P

04 &

Fonte: Autor (2011). Fonte: Autor (2011).

Para calcular a velocidade das particulas, utiliza-se a equacgéo (2) e para atualizar a
posicdo a equacéao (3). Nas duas equacdes o indice i representa a componente, no

instante t, do vetor n.

vi(t+1) = vi(t) + cara(pbi(t) — xi(t)) + carz2(gbi(t) — xi(t)) (2)
Xi(t+1) = xi(t) + vi(t+1) (3)

Algumas variacdes do PSO fazem uso do peso de inércia (w) (EBERHART; SHI, 2001;
MONTES DE OCA et al, 2009a; SHI; EBERHART, 1999; ZHENG et al, 2003), proposto
por Shi e Eberhart (1998). Este fator multiplica a velocidade da particula, no instante
t, proporcionando aumento da exploracdo (tenta cobrir a maior area possivel do
espaco de busca) nas primeiras iteracdes e explotacdo (cobre pequenas areas das
regides mais promissoras do espaco de busca) nas iteracdes finais, de acordo com o
valor que a varidvel w assume ao longo das iteragcfes. Em Shi e Eberhart (1999) o
valor do peso de inércia varia de forma linear e decrescente dentro do intervalo de 0.9
a 0.4. Deste modo a equacdao (2), utilizada para controlar o movimento das particulas

no espaco de busca, transforma-se na equacéo (4):
Vi(t+1) = wvi(t) + cara(pbi(t) — xi(t)) + car2(gbi(t) — xi(t)) 4)
Tanto na equacado (2) quanto na equacdo (4) as variaveis r1 e r2 assumem valores

randdémicos gerados no intervalo [0,1], estes valores sédo gerados a cada iteracéo para

determinar a influéncia dos fatores individuais e global na iteracdo (pb e gb,
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respectivamente). As variaveis c1 e ¢z representam os coeficientes de aceleracdo que,
por sua vez, possuem valores fixos e iguais, c1 = c2 = 2,05, valores disponiveis em
Clerc e Kennedy (2002).

Algoritmo 1: PSO padréo.
Iniciar randomicamente a populacao de particulas, P

Repita
Para cada particula pi da populacéo P faca
Se f(xi(t)) < f(pbi(t)) entdo
pbi(t) = xi(t)
Fim do se
Se f(pbi(t)) < f(ghi(t))
gbi(t) = pbi(t)
Fim do se

=
Q

Fim do para

=
=

Atualizar a velocidade e posi¢édo de pi conforme as equagoes (3) e (2)
respectivamente.

12: Até critério de parada ser satisfeito

Fonte: Montes de Oca et al (2009a).

No Algoritmo 1 apresentamos o pseudo-cédigo utilizado para representar o algoritmo
do PSO padréo. O funcionamento geral do algoritmo pode ser entendido da seguinte
forma: inicialmente as particulas tem suas posicdes e velocidades determinadas de
forma randdémica (passo 1). A partir dai segue-se 0 processo de avaliacdo das
particulas. Inicialmente verifica-se a melhor posicdo alcancada e seu valor é
armazenado na variavel pb (passo 4 e 5). A seguir a mesma verificacao é feita, sendo
agora em nivel de enxame, gb (passo 7 e 8). O préximo passo é calcular as posicoes
e velocidades para a iteracdo seguinte (passo 11). A avaliacdo das particulas repete-
se até que um critério de parada seja alcancado, definido pela funcdo objetivo - que
pode ser de maximiza¢do ou minimizacao - ou até que o numero maximo de iteracdes

seja alcancgado (passo 12).
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2.3 Frankenstein PSO
Este novo algoritmo de otimizagdo por enxame de particulas, chamado Frankenstein

PSO ou apenas FPSO foi proposto por Montes de Oca et al (2009a) e surgiu a partir

do interesse dos autores em avaliar a combinacao de diversas variagées do algoritmo

PSO apresentados a partir da proposta inicial por Kennedy e Eberhart (1995). Para

compor o FPSO foram analisadas sete variantes da técnica de otimizac&o por enxame

de particulas, sao elas:

Constricted Particle Swarm Optimizer — Trata-se de um fator contracdo adicionado
a regra de atualizacdo da velocidade por Clerc e Kennedy (2002) para evitar o
crescimento descontrolado da velocidade da particula, assim elas ndo ultrapassam
o limite da &rea de busca. Deste modo a regra de atualizagdo da velocidade foi

modificada para equacao (5):

vi(t+1) = X(vi(t) + ciUi(t)(phi(t) tz— xi(t)) + c2 Ui(t)(ghi(t) — xi(t))) (5)
X=21]|2-c-3c2- 4c| (6)

onde X é o fator de contracdo definido pela equacéo (6) e a constante ¢ possui valor

igual a 2.05.

Time-Decreasing Inertia Weight Variant, Shi e Eberhart (1999) propuseram definir
0 peso de inércia de acordo com uma funcdo que faz o valor variar de forma
decrescente. Deste modo nas primeiras iteracdes o0 algoritmo explora o espaco de
busca e s6 depois foca nas regides mais promissoras. A funcdo usada para

calcular o valor do peso de inércia é a equacao (7):

Wi = ((Wtmax — t) / Wimax)*(Wmax - Wmin) + Wmin (7)
onde Wimax marca o momento em que Wt = Wmin, Normalmente Wimax coincide com
o tempo méximo alocado para o processo de otimizacéo.

Increasing Inertia Weight Particle Swarm Optimization Zheng et al (2003), esta
variacao da otimizacéo por enxame de particulas € o inverso da proposta anterior,

Time-Decreasing Inertia Weight Variant. Aqui a mesma formula de atualizacdo do
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peso de inércia foi adotada, exceto pelo fato de os valores das variaveis Wmax €

Wmin Serem invertidos.

Stochastic Inertia Weight Particle Swarm Optimization, Eberhart e Shi (2001),
nesta variante o vetor do peso de inércia é gerado randomicamente de acordo com
uma distribui¢cdo uniforme definida no intervalo de [0.5, 1.0) com o peso de inércia
diferente para cada dimenséo. Neste algoritmo os coeficientes de aceleracdo séo

definidos pelo produto de x * ¢i, sendo i € {1, 2}.

Fully Informed Particle Swarm Optimizer — FIPS, criado por Mendes, Kennedy e
Neves (2004), responsavel por considerar o numero de vizinhas topolégicas no
processo de atualizacdo da velocidade da particula. Esta abordagem produz,

entdo, uma nova equacao para o calculo da velocidade da particula, a equacéo

(8):

Vi(t+1) = wvi(t) + Zpm e ni @kUK(t) (pbk(t) — xi(t)) (8)

no FIPS o fator de contragéao de Clerc e Kennedy normalmente tem seu valor igual
a 4.1 Eberhart e Shi (2000), o ¢ (soma dos coeficientes de aceleragao) € distribuido

igualmente dentre as particulas vizinhas.

Self-Organizing Hierarchical PSO With Time-varying Acceleration Coefficients,
nesta variacao da otimizacao por enxame de particulas o termo de inércia na regra
de atualizacdo da velocidade € eliminado. No entanto quando algum componente
do vetor da velocidade da particula assume valor zero ou muito proximo a zero seu
valor é reinicializado proporcionalmente ao definido em Vmax. ESta reinicializacao
da ao algoritmo um comportamento de busca local no qual os valores dos
coeficientes de aceleracdo sao adaptados linearmente, ou seja, o valor do
coeficiente @1 € decrementado de 2.5 até 0.5 e o coeficiente @2, 0 inverso, o valor
€ incrementado de 0.5 a 2.5. Préximo ao final da execuc¢éo o algoritmo atinge uma
velocidade baixa, isto possibilita que as particulas se movam lentamente no
entorno da melhor regido encontrada. Esta proposta de PSO foi apresentada em
(Ratnaweera, Halgamuge e Watson (2004).
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e Adaptive Hierarchical Particle Swarm Optimizer ou AHPSO por Middendorf e
Janson (2005), responsavel pelo grau de conectividade entre as particulas, ou
seja, a topologia da rede - 0 modo como as particulas propagam as informacdes

entre si. Este processo pode ser visualizado na Figura 7.

Figura 7: Processo de atualizagédo da topologia proposta pelo algoritmo AHPSO.

(d)

Fonte: Montes de Oca et al (2009a).

O processo de atualizacdo da topologia da-se da seguinte forma: inicialmente as
particulas do FPSO ou aquelas que seguem o modelo AHPSO sao completamente
conectadas, ou seja, todas as particulas sdo vizinhas entre si - neste trabalho uma
particula é vizinha de si mesma. Ao longo das iteracBes algumas conexdes Ssao
removidas dando lugar, ao final do processo de atualizagéo, a topologia anel. Suponha
gue temos n particulas, as n(n-1)/2 arestas da topologia completamente conectada
inicialmente dardo lugar a apenas n, da topologia anel, em n-3 passos. Este processo
de remocéo é realizado seguindo um padrédo de regressao aritmética, assim a cada
iteracdo um numero decrescente de arestas € removido. Na Figura 7 n = 6, entdo em
3 passos o processo de transformacdo da topologia completamente conectada em
anel estara concluido. Vamos supor k = 12 (parametro utilizado no calculo para indicar
guando as arestas serdo removidas, seu uso pode ser visualizado no algoritmo do

FPSO, Algoritmo 2), no passo (a) o grafo € completamente conectado; no passo (b) 4
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arestas sdo removidas (linhas pontilhadas); no passo (c) outras 3 arestas sao
removidas e por fim o passo (d) as 2 ultimas arestas sdo removidas dando fim ao

processo de atualizacao da topologia.

O resultado final da anélise destas 7 variantes de PSO foi um algoritmo composto
formado a partir de trés componentes algoritmicos. Os componentes utilizados nesta
composicdo foram: Adaptive Hierarchical Particle Swarm Optimizer, Fully Informed
Particle Swarm Optimizer e Time-Decreasing Inertia Weight Variant. O funcionamento
do algoritmo do Frankenstein PSO € analogo ao do PSO padrdo. Podendo ser

sistematizado da seguinte forma:

As particulas tém suas posicbes e velocidades, inicialmente, criadas de forma
randémica; as melhores posicdes ja visitadas pelas particulas, pbi, recebem as recém-
criadas posicOes randdmicas, logo apos o vetor de vizinhanca das particulas é

preenchido.

As variaveis de controle séo inicializadas e entdo entra-se no laco principal, dentro
dele verifica-se, para cada particula, a melhor posi¢éo visitada atualizando pbi quando

necessario.

A seguir temos os trés componentes algoritmos oriundos de outras versodes de PSO,
0 médulo de controle da topologia (Algoritmo 2.2, passo 14), seguido do modulo que
calcula o valor do peso de inércia para a iteragcéo (Algoritmo 2.2, passo 23) e por ultimo
0 que incorpora o0 numero de vizinhas topoldgicas no célculo da velocidade (Algoritmo
2.2, passo 28).

Por fim, (Algoritmo 2.2, passos 35 e 36), assim como no algoritmo do PSO padréo séo

verificados os critérios de parada, funcao objetivo e numero de iteragdes.

As instrucdes do Frankenstein PSO estdo dispostas no Algoritmo 2.
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Parai=1anfaca
Criar a particula pie adiciona-la ao conjunto de particulas P
Inicialize seus vetores x; e vi com valores randémicos dentro do
espaco de busca e velocidade maximas permitidas

Definir pbi = xi
Definir Ni = P
Fim do para
Definirt=0
Definir steps =0
Repetir

Parai=1anfaca
Se f(xi) € melhor que f(pbi)
Definir pbi = x;
Fim do se
Fim do para
Set>0 A t<=k A mod k/(n-3)]= 0 entdo
Parai=1ton- (2 + steps) faca
Se | Ni| > 2 entéao
Elimine a particula prde N;
Elimine a particula pide N;

Fim do se
Fim do para
Definir steps = steps + 1

Fim do se
Se t < wtmax entao
Definir wt = ((Wtmax — t) / Wimax)*(Wmax - Wmin) + Wmin
Senéo
Definir wt = Wmin
Fim do se
Parai=1tonfaca
Gerar Um(t) Vpm € Ni
Definir ¢m = @/| Ni | Vpm € Ni
Definir vi(t+1) = w(t)vi(t) + Zpm < ni @xUk(t) (pbk(t) — xi(t))
Definir xi(t+1) = xi(t) + vi(t+1)
Fim do para
Definirt=t+1
Definir solugéo =argminyi < pf(pbi(t))
Até que o valor de f(solucdo) seja bom o suficiente ou t = tmax

Fonte: Montes de Oca et al (2009a).
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O processo de alteracao da topologia permite que nas iteragdes iniciais o algoritmo
explore uma maior &rea do espaco de buscas e compartilhe rapidamente com as
demais particulas informacdes sobre as regides mais promissoras, uma vez que a
topologia é completamente conectada a propagacdo da informacdo acontece
rapidamente. A medida que as iteragdes avancam inicia-se o0 processo de remogao
de arestas da vizinhanca das particulas e a diminuicdo do peso de inércia. Tudo isto
para garantir que as particulas permanecam em suas regides e ndo apresentem

comportamento de fuga.

As particularidades do Frankenstein PSO o tornaram um algoritmo adaptavel a
execucbes curtas ou longas apenas com 0 ajuste de alguns parametros de
configuracdo (como o responsavel pela atualizacdo da topologia — parametro k no
algoritmo do FPSO), por exemplo para execucfes curtas temos: a adocdo da
topologia completamente conectada, que proporciona uma rapida propagacao da
informacdo entre as particulas; velocidade e peso de inércia altos nas iteragdes
iniciais, que propiciam maior cobertura e deslocamento no espaco de buscas. Em
execucodes longas podemos retardar o processo de atualizacdo da topologia ou definir
gue as remocdes de arestas ocorram em um intervalo maior de iteracbes, uma vez
gue o método utilizado pelo FPSO para controle de topologia (AHPSO) permite este

ajuste.

2.4 Frankenstein PSO com Convergéncia Garantida

A convergéncia garantida ou simplesmente CG € uma técnica bastante utilizada para
evitar a convergéncia prematura do algoritmo a uma regido nao-6tima no espaco de
solucbes de acordo com Peer, Bergh e Engelbrecht (2003). Isto ocorre quando a
posicdo atual de uma particula coincide com sua melhor posicdo, pbi, e a melhor
visitada pelo enxame, gbi. Assim o deslocamento da particula fica & mercé do peso de
inércia. Se este fato ocorrer nas iteragdes finais a particula tende a permanecer na
mesma regido, uma vez que O peso de inércia possui valor proximo a zero o
deslocamento da particula seria minimo. O estacionar da particula provoca um

movimento de convergéncia por parte do enxame a uma regido sub-6tima.
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A melhoria proposta pela implementagdo desta técnica corresponde a alterar a
equacao de atualizacdo da velocidade para aquelas particulas que alcancaram a
melhor posi¢do visitada globalmente, gbi. Evitando-se assim uma indugéo a
convergéncia prematura. Logo, uma nova equacado de atualizacdo da velocidade
utilizada pelas particulas que atingirem a melhor posicéo global se faz necessaria, a

equacéo (9):
Vij(t +1) = =xi(t)+ gbj(t)+wvi(t)+p(t)(1-2ri(t)) 9

em que o termo p(t) funciona como um raio de busca em relagdo ao melhor ponto

visitado globalmente, gb. Para calcular p(t) utiliza-se a equacéo (10), disposta a seguir:
2p(t), se #sucessos > sc
p(t+1) = 0,5p(t), se #falhas > f¢ (20)

p(t), caso contrario

Sempre que a melhor area visitada globalmente, gb, for atualizada, ou seja, uma nova
melhor posi¢do € encontrada o contador de sucessos (#¥sucessos) € incrementado e
a area do raio de busca tem seu valor dobrado. Quando o contador de falhas (#falhas)
ultrapassa o valor estabelecido, f¢, 0 valor do raio de busca atribuido a ele é reduzido
pela metade. Sempre que um contador tiver seu valor atualizado, #sucessos ou
#falhas, o contador oposto tera seu valor zerado (PINGZHOU; ZHAOCAI, 2008).

2.5 Comentérios Finais

Neste capitulo apresentamos 0s neurdnios e as redes neurais artificiais, algumas
funcdes de ativacéo e arquiteturas utilizadas neste trabalho, bem como a motivacao
bioldgica e, também, algumas limitacdes da técnica. Os pontos desfavoraveis ao uso
das redes neurais artificiais deram origem a experimentacdes. Estas por sua vez
tratam de mesclar diferentes métodos, sendo um deles uma rede neural, de forma que
um seja capaz de suprir as deficiéncias do outro dando origem, assim, aos Sistemas

Neurais Hibridos.
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Métodos inspirados no comportamento animal, a exemplo da otimiza¢do por enxame
de particulas — PSO - vem sendo utilizado em problemas de otimiza¢cdo numeérica bem
como em tarefas da area de aprendizado supervisionado em redes neurais artificiais.
Este trabalho é inteiramente baseado em técnicas de otimizacdo por enxame de
particulas. A principio apresentamos a técnica padréo e a variacdo adotada nesta
pesquisa, o chamado Frankenstein PSO. Este algoritmo, apresentado pela primeira
vez em 2009, é fruto de uma andlise da combinacao de sete diferentes variacdes do
PSO, também explanados neste capitulo (Constricted Particle Swarm Optimizer;
Time-Decreasing Inertia Weight Variant; Increasing Inertia Weight Particle Swarm
Optimization; Stochastic Inertia Weight Particle Swarm Optimization; Fully Informed
Particle Swarm Optimizer; Self-organizing Hierarchical PSO With Time-Varying
Acceleration Coefficients e o Adaptive Hierarchical Particle Swarm Optimizer), tendo
sido composto por apenas trés deles (Time-Decreasing Inertia Weight Variant; Fully
Informed Particle Swarm Optimizer e o Adaptive Hierarchical Particle Swarm

Optimizer).

Neste capitulo também foi apresentado o FPSO com convergéncia garantida ou
FPSO:CG. Técnica utilizada para evitar a convergéncia prematura do enxame a uma
regido sub-Gtima no espacgo de solugdes. Este método consiste em estabelecer um
raio de busca para a melhor posicdo visitada pelo enxame. Para isto sdo definidos
dois contadores, #sucessos e #fracassos, no qual toda vez que uma nova melhor
posicao visitada pelo enxame € encontrada o contador #sucessos é incrementado e o
contador #fracassos € zerado, deste modo a area de busca associada ao “sucesso” é

amplificada e a area associada ao “fracasso” & reduzida.
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Capitulo 3

Treinamento de Redes Neurais com PSO

Esta contido neste capitulo a definicho da representacdo das solugbes, a
especificacdo das bases de dados utilizadas durante os experimentos, razdes que
motivaram a escolha da funcé&o de custo e como se deu o processo de treinamento
das redes neurais pelo uso do Frankenstein PSO. Também estédo especificados os
critérios de configuracdo de cada algoritmo, bem como a validacdo estatistica
aplicada.

3.1 Introducéo

O propésito do treinamento de redes neurais € delimitar a area de fronteira entre as
classes do problema, em outras palavras, significa aumentar a capacidade de
generalizacdo. E dar a rede neural a habilidade de classificar corretamente padrdes
que nao tenham sido apresentados anteriormente. Normalmente para treinar as redes
neurais utilizam-se algoritmos locais especificos — a exemplo temos o back-
propagation, Levenberg-Marquardt, Resilient-Backpropagation, Quase-Newton e
outros — e/ou técnicas de busca global — Evolucéo Diferencial, utilizado por Zarth e
Ludermir (2009), programacédo evolucionaria por Yao e Liu (1997), Otimizacédo por
Enxame de Particulas em Carvalho e Ludermir (2006b, 2006c); Pingzhou e Zhaocai
(2008); Van Wyk e Engelbrecht (2010), Algoritmos Genéticos como utilizado em
Almeida e Ludermir (2006) — que utilizam o erro de treinamento como medida de
avaliacdo. A aplicacdo de duas ou mais técnicas diferentes associadas a uma rede
neural d4 origem a Sistemas Neurais Hibridos, que geralmente combinam um
algoritmo de busca global a algoritmos de busca local (back-propagation, Levenberg-

Marquardt e outros).

Neste capitulo utilizaremos algoritmos hibridos no treinamento das redes neurais

MLP. Estes algoritmos hibridos foram formados pelo FPSO, apresentado no capitulo
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anterior (MONTES DE OCA et al, 2009a), associado a um algoritmo de busca local,

Levenberg-Marquardt ou Resilient-Backpropagation.

O restante deste capitulo segue organizado da seguinte forma: a secdo 3.2 aborda a
representacéo das solucdes; a secao 3.3 as fungdes de custo utilizadas; na se¢ao 3.4
dispomos os experimentos realizados; seguido da secao de resultados e por fim as

conclusdes.

3.2 Representacao das Solucdes.
Para representar os pesos das conexfes de uma rede neural MLP foram utilizados
vetores de reais, para calcular o tamanho destes vetores foi preciso conhecer quantos

seriam 0s pesos da rede, para isso foi utilizada a equagéo (11) a seguir:

Quantidade de Pesos=(1+1)xH+(H+1)x O (11)

em que | é a quantidade de entradas do problema (input), H a quantidade de neurdnios
e O representa o numero de saidas do problema (output). Os nimeros 1 somados a |

e H, entre os parénteses, representam o bias.

Neste trabalho foram adotadas redes neurais com arquitetura fixa, portanto H possui
valor fixo e as conexdes nao sofrem poda, ou seja, a mesma quantidade de conexdes
da rede neural € mantida do inicio ao fim do processo de otimizacdo (mantém-se a
conexdo maxima). Sendo algumas destas conexdes fortalecidas, o peso atribuido a
ela é incrementado enquanto que as outras sdo enfraquecidas, possuem valor baixo

ou proximo a zero.

Na Figura 8 temos a representacao grafica dos pesos sinapticos e bias como parte do

vetor de reais.
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Figura 8: Pesos sinapticos e bias como componentes do vetor de reais.

Camadade Camada Camada Camada
entrada 5 k<. de Saida

Camada escondida 1 Camada escondida 2 Camada de saida

Fonte: Carvalho (2007).

Para inicializar cada posi¢cédo do vetor que representam as particulas foram gerados
nameros aleatorios definidos dentro do intervalo [-2.0, +2.0] (quanto menor for o
intervalo estabelecido menor serd o espaco de busca para esta variavel). Os
parametros de velocidade e posicao fizeram uso dos valores maximos permitidos, ou

seja, Vmax = Xmax.

3.3 Funcéo de Custo

Dentre as diversas funcdes de custo que podem ser empregadas (Soma dos Erros
Quadraticos — SSE, Raiz do Erro Quadratico Médio — RMS, Percentual do Erro
Quadratico — SEP, dentre outras) e suas inumeras combinacdes, o Erro Quadratico
Médio Normalizado (NMSE) foi a medida utilizada neste trabalho para avaliar a
gualidade das solugdes. Dentre as vérias fungbes disponiveis a NMSE foi escolhida

por ser uma medida de erro suave e também por ter sido a mesma adotada em
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Carvalho (2007). O NMSE fornece uma medida do erro total cometido pela rede.
Assim é possivel saber o quanto a rede se distanciou do desempenho desejado,
enguanto que o uso do Erro Percentual de Classificacdo (CEP), equacgéao (13), deixa
claro quantos padrdes a rede classificou corretamente ou ndo. A féormula para a

medida de erro NMSE é disposta na equagéo (12).

O NMSE foi utilizado na fase de treinamento das redes neurais enquanto que o Erro
Percentual de Classificacdo (CEP) foi utilizado na fase de testes. Estas foram as

mesmas medidas adotadas em Carvalho (2007) para avaliar as solucdes.

NMSE = (100/NXC)YN_, >¢_. (7 —ol) (12)
CEP =100 x (# erros de classificacao)/N (13)

nas equacodes (12) e (13) N representa o nimero de padrdes do conjunto de dados; C
0 numero de classes do problema; t;} a saida desejada para o padrédo ‘n’ e o} a saida

real obtida para o padrao ‘n’.

O critério de classificagdo mencionado na equacao (12) foi calculado conforme a regra
do winner-takes-all (“o vencedor leva tudo”), em que o neurdnio da camada de saida
gue apresentar a mais alta taxa de ativacéo indica a classe que sera atribuida ao

padréo de entrada apresentado a rede.

3.4 Experimentos

A seguir sera descrito 0 processo de treinamento das redes neurais MLP que fizeram
uso das técnicas de otimizacdo global FPSO. Na subsecédo 3.4.1 apresentamos as
bases de dados utilizadas nos experimentos e na subsecdo 3.4.2 descrevemos a
configuracdo adotada. Ao final, a subsecao 3.4.3, 0 método estatistico empregado
para comparar o desempenho dos algoritmos.
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3.4.1 Base de Dados
Foram utilizadas sete bases de dados para problemas de classificacdo de padroes,
sendo trés da area médica, provenientes do probenl, Precheit (1994) e UCI, Frank e

Asuncion (2010). A seguir temos uma breve descricdo de cada base de dados.

e Cancer: Relacionada ao cancer de mama. Este conjunto de dados esta dividido
em duas particées, benigno e maligno, cuja classificacdo baseou-se na analise de
dados microscépicos. A propor¢cdo entre as classes é a seguinte: 65,5% dos
exemplos correspondem a classe benigna e 34,5% a classe maligna.

e Diabetes: relacionada a presenca ou ndo do diabetes em indios Pima. Leva em
conta dados pessoais e exames médicos. A propor¢do para os diabéticos € 65,1%
e para os nao diabéticos é de 34,9%.

e Coracdo: Classifica se um padrdo apresenta ou ndo doencas do coracdo. Andlise
feita por meio do calibre de vasos sanguineos.

e Vidros: esta base € resultado de uma analise quimica, de oito diferentes
componentes, mais um indice de refracdo. Esta base foi criada para auxiliar
analises forenses.

e Cavalos: Categorizam trés possiveis diagndsticos veterinarios — sobreviver, morrer
ou ser sacrificado - para um cavalo com cdélica. Para este conjunto de dados 62%
dos exemplos correspondem a classe sobreviver, 24% sdo de cavalos que
morreram e 14% para os que tiveram de ser sacrificados.

e Soja: Reconhece 19 diferentes doencas da soja. A andlise leva em conta uma
descricao do gréao da soja, da planta e mais algumas informacgdes relacionadas ao
histérico da planta.

e Tiredide: Possui trés classificacbes possiveis: hipotireoidismo, tiredide normal e
hipertireoidismo. Esta base apresenta uma discrepancia em relagcdo a
concentracdo de exemplos por classe, a hipotireoidismo conta com 5,1% dos

padrdes, a hipertireoidismo com 2,3% e a classe tiredide normal com 92,6%.

A guantidade exata de exemplos para cada um destes conjuntos pode ser conferida

na Tabela 1.
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Tabela 1: Caracterizacao e distribuicdo do nimero de padrdes por base de dados.

Base de ) N° exemplos | N° exemplos de | N° exemplos
Dados Entradas | Saidas de Treino Validacéo de Teste

Céancer 9 2 350 174 175
Diabetes 8 2 384 192 192
Coracao 35 2 460 230 230
Vidros 9 6 107 53 54

Cavalos 58 3 182 91 91

Soja 82 19 342 170 171
Tiredide 21 3 3600 1800 1800

Fonte: Autor (2011).

O numero de neurbnios na camada de entrada da rede neural (caracteristicas do
problema), ou seja, o | da equacéo (3.1) é representado pela coluna entradas. O
namero de classificacbes possiveis, O da equacdo (3.1), ou a quantidade de
neurbnios na camada de saida da rede neural € dado pela coluna saidas. Em relacéo
a camada intermediaria adotou-se uma arquitetura fixa, com seis neurdnios, conforme
mencionado na secao 3.2, representacao das solugdes. As sete bases de dados foram
divididas em trés subconjuntos seguindo a seguinte proporcdo: 50% dos dados
representam o conjunto de treinamento; 25% o conjunto de validagéo e os outros 25%
0 conjunto de teste. O conjunto de validagcéo foi utilizado para indicar 0 momento

correto de parar o processo de treinamento.

3.4.2 Configuracdes

Para facilitar a identificacdo de cada algoritmo utilizado nos experimentos foram
criadas siglas. Estas por sua vez foram formadas a partir da juncdo do FPSO mais o
algoritmo de busca local utilizado no treinamento da rede neural. Entdo temos o0s
seguintes: FPSOwm (FPSO + Levenberg-Marquardt), FPSOrprop (FPSO + Resilient-
backpropagation) e FPSO:CGLm (FPSO com convergéncia garantida + Levenberg-
Marquardt). Estes trés algoritmos foram comparados com os de busca local Resilient-
backpropagation - Rprop (uma variacao do algoritmo back-propagation, cujo propésito

€ acelerar a convergéncia do processo de treinamento. Ao invés de utilizar a taxa de
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aprendizado o Rprop faz uso do sinal do gradiente do erro para indicar a dire¢cdo do
ajuste a ser feito nos pesos. Assim evita-se que sejam necessarias mais iteracdes
para que o algoritmo alcance um ponto 6timo ou mesmo que assuma comportamento
de estagnacdo em uma regido plana na superficie de erro) e Levenberg-Marquardt —
LM (ao contrario do algoritmo back-propagation que € baseado no gradiente
descendente, o Levenberg-Marquardt utiliza taxa de aprendizado variavel. Este

algoritmo requer grande quantidade de memdéria e poder computacional).

A arquitetura das redes foi composta da seguinte maneira: camada de entrada —
camada intermediaria — camada de saida, sendo a camada intermediaria composta
por 6 neurdnios, ou seja, foram utilizadas apenas redes neurais MLP com uma Unica
camada escondida que continham 6 neurénios. Para compor o critério de classificacdo
os dados de entrada da rede neural foram submetidos a regra do “winner-takes-all’,
em gque a unidade de saida que apresentar o maior valor determina a classe do padréao
de entrada.

Tabela 2: ParAmetros de configuracdo dos algoritmos - PSO, CGPSO e CPSO-SK.

Algoritmo Descricéo Valor
Tamanho do enxame 30 particulas
Critério de parada 1000 iteracdes ou GL5*
Critério de parada para decaimento de pesos | 1000 iteragcbes

PSO Medida de qualidade NMSE
Limite do espaco de busca [-2.0, +2.0]
Fatores de aceleracao cl=c2=1.4960
Peso de inércia 0,7298

CGPSO P (raio) inicial 1
Limiar de #sucesso e #fracasso 5

CPSO-SK | Fator de particionamento k=1.3x \/M

Fonte: Carvalho (2007).

1 GLs é 0 mesmo que Critério de Parada Antecipado, utilizado no conjunto de validagio para estimar
quando a rede comeca a memorizar as nuances dos dados de treino. O treinamento da rede, entéo, é
interrompido quando o erro de validacdo, GLs, atinge 5%.
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Os parametros de configuragdo utilizados pelos algoritmos referenciados,
(CARVALHO, 2007) estao descritos na Tabela 2, enquanto que na Tabela 3 é possivel
verificar as configuracdes adotadas para os experimentos com os algoritmos FPSOvm,
FPSORrprop € FPSO:CGLm. Na Tabela 4 temos a descricdo dos parametros utilizados

pela rede neural.

Em Carvalho (2007) CGPSO significa PSO com convergéncia garantida. Este
algoritmo utiliza os mesmos parametros que o PSO, no entanto possui dois
parametros adicionais (raio inicial e os limiares de sucesso e fracasso). CPSO-SK é
0 mesmo que PSO cooperativo e também utiliza os mesmos parametros do PSO, no

entanto possui um parametro adicional — o fator de particionamento, no caso k.

Os valores adotados para o desenvolvimento deste trabalho levaram em consideragao
as configuracdes utilizadas em Carvalho (2007), disponiveis na Tabela 1, a excecao
foi 0 nimero de iteracBes para o critério de parada. No presente trabalho o nimero de
iteracOes foi 10 vezes menor do que em Carvalho (2007), devido a restricoes de tempo

de execucao.

Tabela 3: ParAmetros de configuracdo dos algoritmos FPSOLm, FPSORrprop € FPSO:CGLm.

Algoritmo Descricao Valor

Tamanho do enxame 30 particulas
Critério de parada 100 iteragbes ou GLs
Medida de qualidade NMSE

FPSO o
Limite do espaco de busca [-2.0, +2.0]
Fator de inércia [0.9 a 0.4]
K 30
P (raio) inicial

FPSO:CG o
Limiar de #sucesso e #fracasso 5

Fonte: Autor (2011).

A medida de qualidade NMSE, assim como em Carvalho (2007), foi empregada
apenas no treinamento das particulas enquanto que na fase de testes foi utilizado o
CEP.
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Tabela 4: ParAmetros de configuracdo da rede neural.

Descricao da Rede Neural Valor
N° de neurbnios escondidos 6
Numero maximo de iteracbes 100
Funcdes de ativagéo Tangente sigmoide — Linear
Algoritmo de treino Levenberg-marquardt
N° de falhas de validacéo 5

Fonte: Autor (2011).

3.4.3 Comparacéo dos Algoritmos

Para obtencdo das médias CEP os algoritmos foram submetidos a 30 execucdes
independentes cada um. A cada nova execucdo 0s subconjuntos de dados —
treinamento, validacdo e teste — foram divididos de forma aleatéria seguindo as
propor¢cdes indicadas na subsecdo 3.4.1. Ao final de cada execucdo foram
armazenados os erros de classificacdo para os dados de teste, calculado conforme a
equacao (13).

Para validar estatisticamente os resultados obtidos, as médias finais de FPSOvrm,
FPSOrprop € FPSO:CGLm foram submetidas ao seguinte teste de hipotese, sendo
adotado a=5% ou nivel de confianca de 95% (WAYNE, 1990):

t=—X1%z (14)

2 2
S S
21,22
nq nyp

em que X representa a média, S%a varidncia e n o nimero de execucées

independentes para a amostra em questao.

Os testes estatisticos foram aplicados comparando os algoritmos FPSOLm, FPSORrprop,
FPSO:CGLm aos algoritmos de busca local LM e Rprop aplicados as mesmas bases
de dados. Primeiro foi realizado o teste bilateral para verificar se a média dos
resultados dos algoritmos era estatisticamente diferente. Se o resultado fosse

diferente, era, entéo, aplicado o teste unilateral a esquerda para verificar se a média
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dos resultados de um algoritmo era estatisticamente menor que a média dos

resultados do segundo algoritmo.

3.5 Resultados

Os resultados dos experimentos sdo apresentados na Tabela 5 que contém as médias
(1) e o desvio padrao (o) do erro percentual de classificacdo (CEP) para cada base
de dados em cada algoritmo. Os valores destacados em negrito correspondem as

menores meédias de erro por base de dados.

As siglas Lm e Rprop associados aos FPSOs na tabela acima indicam o algoritmo de
busca local empregado no treinamento da rede neural. Estes representam o
Levenberg-Marquardt e o Resilient-backpropagation respectivamente.

Tabela 5: Media e desvio padrdo do erro percentual de classificacdo para os algoritmos FPSOvw,
FPSORrprop, LM, Rprop e FPSO:CGLm utilizados no treinamento de redes neurais.

Base de FPSOum FPSORprop LM Rprop FPSO:CGLm

Dados M c M c M c M c M c

Cancer | 2,969 |1,688| 3,352 | 1,484 | 4,705 | 1,780 | 4,076 | 1,774 | 3,886 |1,337
Diabetes | 22,708 | 2,932 | 22,778 | 3,595 | 26,163 | 3,508 | 24,080 | 3,057 | 21,979 |4,711

Coracéo | 18,580 | 3,319| 21,058 | 6,023 | 21,986 | 3,237 |19,710| 2,985 | 19,159 | 3,189
Vidro 35,598 | 9,160 | 39,748 | 10,821 | 43,270 | 8,050 | 47,044 | 9,971 | 36,855 |9,133
Cavalos | 34,762 |5,174| 36,557 | 5,588 |43,150|5,242 | 37,106 | 4,869 | 35,018 5,813

Soja 38,157 | 3,542 | 63,157 | 7,150 |40,510 (4,621 |61,706|10,542 |41,784 | 7,749

Tirebide | 1,774 [ 0,398 | 5,978 | 0,504 | 3,556 |1,203| 6,337 | 0,822 | 4,526 | 1,923
Fonte: Autor (2011).

O tempo médio das execuc¢des, em segundos, para cada algoritmo e base de dados

esta registrado na Tabela 6.
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Tabela 6: Média e desvio padrédo do tempo de execugéo, em segundos, para os algoritmos FPSOvm,
FPSORprop, LM, Rprop e FPSO:CGwLm utilizados no treinamento de redes neurais.
Base de FPSOrm FPSORprop LM Rprop FPSO:CGLm

Dados vl c V] c vl c vl c I} c
Cancer 1463,69 9,92 1763,14 | 66,66 |0,43|0,12 | 0,46 |0,15| 870,78 670,54
Diabetes | 1504,08 8,60 1516,54 | 21,93 | 0,37 | 0,06 | 0,38 | 0,08 | 2012,04 | 569,09
Coragéo | 2391,57 30,73 | 907,33 | 8,84 |0,86|0,43|0,35|0,08| 2321,17 85,96

Vidro 1807,52 44,99 875,68 | 111,62 | 0,67 0,18 | 0,79 0,82 | 1736,22 50,60
Cavalos 2749,33 41,17 | 1289,85| 11,67 | 0,86 |0,22 | 0,53 | 0,14 | 2348,60 45,57
Soja 21226,23 | 4071,07 | 1613,60 | 25,31 | 8,09 |1,64|1,76 | 1,09 | 17052,38 | 2203,70

Tire6ide | 11185,60 | 946,62 | 1486,32 | 79,98 |5,87 | 4,91 |3,95|1,93 | 7882,60 | 1179,19

Fonte: Autor (2011).

O tempo de execucéo dos algoritmos hibridos notadamente sdo muito maiores aos de
busca local, Levenberg-Marquardt e Resilient-Back-propagation, entretanto o
desempenho alcangado pelos que fazem uso da técnica FPSO consorciado a um
algoritmo de busca local é compensado quando avaliamos as médias de erros obtidas.

Os tempos de execugao dos algoritmos FPSO séao elevados pelo fato de que para
cada componente i do vetor de particulas e para cada iteracdo sdo computadas as
guantidades de vizinhas topoldgicas e novos fatores de constricdo, além do lago para

retirada das arestas e redefinicdo do peso de inércia.

Os algoritmos da Tabela 6 foram comparados e os resultados dos testes de hipotese
por base de dados podem ser visualizados na Tabela 7. Apenas os resultados
relevantes estatisticamente foram relacionados, ou seja, apenas os resultados cujo

algoritmo 1 foi melhor que o algoritmo 2.
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Tabela 7: Resultado dos testes de hipotese para as sete bases de dados que utilizaram algoritmo

hibrido no treinamento de redes neurais MLP2,

Base de Dados Algoritmo 1 Algoritmo 2 Valor Obtido
FPSOtm LM -3,8761
Cancer FPSOLm Rprop -2,7857
FPSOLm FPSO: GCim -2,3325
Diabetes FPSOLm LM -4,1391
Coracao FPSOLm LM -4,0239
Vidro FPSOLm LM -3,4459
FPSOLm Rprop -4,6302
Cavalos FPSOLm LM -6,2377
FPSOLm LM -2,2135
Soja FPSOLm Rprop -11,5980
FPSOtm FPSO: GCim -2,3316
FPSOLm FPSORrprop -17,1609
FPSOLm LM -7,7028
Tiredide FPSOLm Rprop -27,3656
FPSOLm FPSO: GCim -7,6758
FPSOLm FPSORrprop -35,8553

Fonte: Autor (2011).

Na Tabela 8 sdo apresentados a média e desvio padrdo CEP dos algoritmos utilizados

em (Carvalho (2007) para as bases de dados cancer, diabetes e coracdo em

comparacdo com o desempenho do algoritmo FPSOwm, cuja média de erro obtida foi,

na maioria das vezes, a menor dentre as trés versdes apresentadas neste trabalho
(FPSOLm, FPSOrrop € FPSO:CGLm) para ajuste dos pesos de uma rede neural MLP.

2 0 algoritmo 1 adotado na comparagdo com os demais foi o FPSO_n por este ter alcangado as menores
médias de erros, conforme a Tabela 6.
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Tabela 8: Média e desvio padrédo do CEP para cada algoritmo proposto no trabalho base em relagao
ao algoritmo FPSOLm.

PSO-GLs PSO-WD GCPSO-WD
Base de| (CARVALHO, | (CARVALHO, | (CARVALHO, FPSOLm
Dados 2007) 2007) 2007)

H c H c u c u c
Cancer 3542 | 1,182 | 3,440 | 1,425 | 3,805 | 1,063 | 2,969 | 1,688
Diabetes | 24,687 | 2,345 | 23,708 | 2,606 | 22,677 | 2,566 | 22,708 | 2,932
Coracdo | 20,547 | 2,379 | 17,904 | 2,108 | 17,356 | 1,963 | 18,580 | 3,319

Fonte: Autor (2011).

A Tabela 9 mostra que o algoritmo FPSOwm apresentou melhor desempenho
estatistico que o algoritmo PSO-GL5 apenas nas bases de dados diabetes e coracéo
e ao GCPSO-WD na base cancer. No entanto é preciso salientar que 0 FPSOLm
contou com 10 vezes menos execucdes — de acordo com a Tabela 3 se comparado
com a Tabela 2 - durante o treinamento da rede neural e mesmo assim conseguiu
alcangar bons resultados. Para as demais configuracdbes o FPSOLm mostrou-se
equivalente estatisticamente aos demais.

Tabela 9: Resultado dos testes de hip6tese entre FPSOwm e 0s algoritmos de ajuste dos pesos
apresentados em Carvalho (2007).

Base de Dados Algoritmo 1 Algoritmo 2 Valor Obtido
Céancer FPSOLm GCPSO-WD -2,4381
Diabetes FPSOLm PSO-GL5 -3,1427
Coracao FPSOLm PSO-GL5 -2,8380

Fonte: Autor (2011).

3.6 Concluséo

Neste capitulo foram apresentados os aspectos gerais do uso de trés algoritmos
hibridos formados a partir de uma variacao da otimizacao por enxame de particulas,
FPSO, com algoritmos de busca local (Levenberg-Marquardt e Resilient-Back-
propagation), foram eles: FPSOLm e FPSOrprop € uma versao hibrida que utilizou a

técnica da convergéncia garantida, FPSO:CGLm, no processo de ajuste dos pesos das
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conexdes de redes neurais MLP do tipo feed-forward. O modo de representacdo das
solugdes, as bases de dados utilizadas, as configuragdes adotadas, bem como o teste

estatistico aplicado para validar os experimentos.

Nesta etapa do trabalho a comparacao dos resultados experimentais realizados entre
os algoritmos FPSOvrm, FPSORrprop € FPSO:CGLm demonstraram que 0 uso da técnica
de convergéncia garantida ndo apresentou melhoria significativa nos resultados.
Apesar de o FPSO:CGLm ter alcangado a menor média de erros em uma das bases
de dados utilizada, diabetes, o teste de hipétese ndo comprovou que este algoritmo
foi estatisticamente melhor que os demais. Por este motivo a técnica de convergéncia
garantida ndo foi empregada no processo simultaneo de otimizacdo dos pesos e
arquiteturas, descrito no capitulo a seguir. Uma equivaléncia estatistica foi
comprovada entre os algoritmos FPSOLm € FPSORrprop. NO entanto foi utilizado apenas
a versao que fez uso do algoritmo de busca local Levenberg-Marquardt, FPSOvrm, por
este ter obtido as menores médias de erro na maioria das bases de dados testadas.

Apesar de os testes estatisticos comprovarem que o FPSOwLm, que obteve as menores
meédias de erros na maioria das bases de dados foi superior a apenas 2 varia¢des de
PSO propostas em Carvalho (2007) é importante observar que o FPSOLm contou com
dez vezes menos execugdes em relacdo aos algoritmos apresentados em Carvalho
(2007).

O tempo de execucdo dos algoritmos hibridos propostos nesta pesquisa, FPSOwm,
FPSORrprop € FPSO:CGLm, foi um dos limitantes do processo de otimizagéo das redes
neurais. Se imaginarmos uma projecdo dos resultados no qual fosse possivel
adicionarmos dez vezes mais execucbes, poderiamos afirmar que os métodos
propostos seriam, sim, melhores que aqueles apresentados em Carvalho (2007). Por
este motivo devemos continuar estudando formas de diminuir o tempo de execucao
destes algoritmos, seja adotando medidas como computacdo paralela ou diminuir o
tamanho da populacdo de particulas ao longo das iteragbes, mantendo apenas
aguelas que alcancaram melhores posi¢des no espaco de busca. Esta medida evitaria
gue os algoritmos hibridos propostos investissem tempo e poder computacional em

particulas que nao proporcionam bons resultados. Este tempo entdo poderia ser
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revertido em novas iteragOes de avaliagdo para aquelas localizadas em regides do
espaco de busca mais promissor.
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Capitulo 4

Ajuste Simultaneo de Pesos e Arquiteturas com
FPSO

Este capitulo, em adicdo ao anterior - ajuste dos pesos das conexdes, quando no
treinamento da rede neural - estabelece a redefinicAo das arquiteturas. Esta
combinacdo, arquiteturas e pesos da rede neural, se d4 de modo simultaneo, ou seja,
a medida que uma melhor arquitetura € definida os pesos das conexdes da rede neural
sao recalibrados. Neste processo foram utilizados o algoritmo do Frankenstein PSO,

as mesmas bases de dados e resultados do capitulo anterior.

4.1 Introducao

O processo de treinamento de redes neurais com ajuste simultaneo de arquiteturas e
pesos diferencia-se do mencionado no Capitulo 3 pelo fato de, agora, 0 processo
contemplar os dois passos o de estabelecer a arquitetura adequada e ajustar os pesos
das conexdes recém estabelecidas. Na primeira etapa define-se a quantidade de
camadas intermediarias bem como a quantidade de neurdnios ou nodos que cada
uma possuira. Em um segundo momento séo calibrados os pesos das conexdes

definidos pela primeira etapa.

A definicdo da arquitetura de uma rede neural ndo € uma tarefa facil, pois quando a
rede possui parametros além do necessario ocorre overfitting (VAN WYK;
ENGELBRECHT, 2010) (significa que a rede memoriza os dados de treinamento e
guando é apresentada a dados desconhecidos — dados de teste — produz altas taxas
de erro) e quando possui parametros a menos ocorre o inverso, underfitting (a rede
ndo possui conexdes suficientes, com isso apenas parte das caracteristicas do

problema séo aprendidas. O que também causa alta taxa de erro).

Normalmente esta parte do processo de treinamento € realizada na base da tentativa

e erro ou através da consulta a um especialista. Por este motivo sdo cada vez mais
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frequentes o desenvolvimento e aplicacdo de técnicas computacionais com o
propaosito de definir automaticamente a arquitetura da rede. O objetivo destes métodos
e fixar redes neurais de baixa complexidade (a complexidade € dada pelo tamanho do
vetor de pesos, quanto maior o vetor maior € a complexidade da rede) que produzam

erros dentro de uma faixa minima aceitavel.

Neste capitulo apresentamos uma metodologia automética para otimizacdo de
arquiteturas e ajuste dos pesos de redes neurais MLP do tipo feed-forward
fundamentadas no algoritmo de otimizacdo por enxame de particulas FPSO. Esta
metodologia faz uso dos resultados obtidos no capitulo 3 e agora além do ajuste dos
pesos também realiza a definicdo do ndmero de neurbnios na Unica camada
escondida considerada — assim como em Carvalho (2007). Neste trabalho
consideramos redes neurais de arquitetura fixa, cujo Unico parametro variavel € a
guantidade de neurbnios na Unica camada intermediéria, ou seja, as arquiteturas sao
do tipo: camada de entrada — uma camada intermediaria — camada de saida, de

acordo com a Figura 9.

Figura 9: Esquema de uma rede neural MLP do tipo feed-forward.

Camada de Camada Camada de
Entrada Intermediaria Saida

Fonte: Autor (2011).
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Este capitulo segue organizado da seguinte forma: na secéo 4.2 sao apresentados 0s
aspectos gerais relativos a otimizag¢do simultanea dos pesos e arquiteturas; na se¢ao
seguinte, a 4.3, sdo detalhados os experimentos realizados nas 7 bases de dados. Na
secado 4.4 dispomos os resultados obtidos e por fim temos as conclusdes na secéo
4.5.

4.2 Otimizacao dos pesos e arquiteturas com PSO

A abordagem utilizada neste trabalho é similar a apresentada em Carvalho (2007), em
que dois algoritmos sdo executados simultaneamente, sendo um para definir o
namero de neurdnios na Unica camada intermediaria e 0 outro para ajustar 0s pesos
das conexdes da rede neural. Os dois enxames (0 de arquitetura e o de pesos)
utilizaram diferentes particdes do conjunto de dados. A proporcdo dos subconjuntos
de dados foram as mesmas da subsecéo 3.4.1. O conjunto de treinamento foi utilizado
pelo algoritmo responsavel pelo ajuste dos pesos; o conjunto de validacdo pelo
algoritmo responsavel pela definicdo da arquitetura e o conjunto de teste utilizado no

final do processo para avaliar a melhor configuracdo encontrada.

Os algoritmos desenvolvidos neste trabalho seguiram a mesma metodologia que a
apresentada em Carvalho (2007) sendo o FPSOLm sempre utilizado no ajuste dos
pesos enquanto que na definicdo da arquitetura foram utilizados o PSO e o FPSO.
Portanto os novos algoritmos desenvolvidos foram: PSO-FPSOLm e FPSO-FPSOLnm,
em que o primeiro termo indica o algoritmo utilizado para definir as arquiteturas e o

segundo representa o algoritmo utilizado para o treinamento da rede neural.

4.2.1 Representacéo das Solucdes

O algoritmo responséavel pela definicdo da arquitetura (PSO ou FPSO) possui uma
estrutura de dados diferenciada. Nesta estrutura sdo armazenados dois valores, além
das configurac@es inerentes ao algoritmo em questdo (PSO ou FPSO), sdo eles: um
namero natural — para representar o numero de neurdnios na camada escondida — e
um vetor de reais para armazenar os melhores pesos sinapticos encontrados até o

momento. Este vetor com os melhores pesos sinapticos é referenciado aqui por net.
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O algoritmo que calibra os pesos das conexdes utiliza a mesma abordagem descrita
na subsecao 3.2, ou seja, utiliza vetores de reais onde cada componente representa

um peso da rede neural.

4.2.2 Algoritmo de otimizagéo das arquiteturas e pesos
O método de otimizacao utilizado neste trabalho consiste na execucdo simultanea de
dois algoritmos de otimizacao por enxame de particulas, sendo um para a definicdo
da arquitetura, baseado no erro do conjunto de validac&o, e o outro para ajuste dos
pesos sinapticos — baseado no erro do conjunto de treinamento. A seguir o pseudo-
cadigo para a otimizacao das arquiteturas e pesos.

Algoritmo 3: Pseudo-codigo da otimizag&o para a definicdo das arquiteturas e ajuste dos pesos de

uma rede neural MLP.
Inicializar randomicamente a populacéo de arquiteturas A,

Repita
Para cada particular Ai da populacéo A faca
Iniciar P
Inserir Ai.net em P;
Executar Pi por titeragdes utilizando o conjunto de treinamento
Ai.net = Pi.y

Avaliar f(Ai.net) utilizando o conjunto de validag&o

Fim do para

=
Q

Para cada particula Ai da populacéo A faca

o
=

Atualize velocidade e posigdo de Ai de acordo com a equacao
(4) e equacéo (2).

12: Atualize ai.net para a nova arquitetura representada por Ai

13 Fim do para

14: Até que o critério de parada seja satisfeita (por exemplo: n°® maximo de

execucao ou taxa de erro minimo alcancado).

Fonte: Carvalho (2007).

Para cada arquitetura considerada € iniciado um processo de otimizacdo dos pesos.

Sempre uma das particulas é iniciada com o melhor vetor de pesos sinapticos
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encontrados até o momento (vetor net — definido pela particula de arquitetura).
Quando o processo de otimizacdo dos pesos estiver sido concluido, o melhor vetor

encontrado até o momento é armazenado de volta na particula de arquitetura, net.

O processo de otimizacdo simultanea das arquiteturas e pesos € muito mais lento se
comparado apenas com o0 ajuste dos pesos. Por isso adotamos a seguinte

configuracdo em relacdo a adotada em Carvalho (2007).

Tabela 10: Configura¢des dos algoritmos de otimiza¢do simultdnea das arquiteturas e pesos em
relagdo ao trabalho base.

Configuragao Presente Trabalho (CARVALHO, 2007)
N° de particulas do 20 20
algoritmo de arquitetura
N° de iteracbes do 10 15

algoritmo de arquitetura
N° de iteracfes do 100 100

algoritmo de pesos

Fonte: Autor (2011).

E possivel observar que na Tabela 10 apenas o nimero de iteracdes do algoritmo de
otimizacdo por enxame de particulas responsavel pela definicdo das arquiteturas
possui valor diferente ao utilizado no trabalho base. Este valor foi reduzido para 10
devido ao tempo total de execucdo do algoritmo de otimizacdo das arquiteturas e

pesos.

4.3 Experimentos

Nos experimentos realizados com a metodologia simultdnea de otimizacdo das
arquiteturas e pesos foram comparados os desempenhos dos algoritmos PSO-
FPSOLm e FPSO-FPSOLm com outros presentes na literatura. Foram utilizadas nos
experimentos as mesmas 7 (sete) bases de dados relacionadas na subsecédo 3.4.1 e

a mesma estratégia de validacao estatistica.

Os parametros de configuragéo dos algoritmos PSO-FPSOLm e FPSO-FPSOLm estao

descritos na Tabela 11.
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Tabela 11: ParAmetros de configuracdo dos algoritmos de ajuste simultdneo dos pesos e arquiteturas.

ARQUITETURAS

PSO

Tamanho do enxame 20

Numero de iteracOes de avaliagdo da arquitetura 10

Medida de Qualidade NMSE (con;j. de validacao)
Limite do espaco de busca [1, 12]

Coeficiente de aceleracao 1,4960

Peso de inércia 0,7298

FPSO

Tamanho do enxame 20

Numero de itera¢des de avaliacdo da arquitetura 10

Medida de Qualidade NMSE (con;j. de validacao)
Limite do espaco de busca [1, 12]

Peso de inércia (o)

0,9 a 0,4, linearmente

decrescente
K 20
PESOS
FPSO
Tamanho do enxame 30
Numero de iteracOes de avaliacdo dos pesos 100

Algoritmo de busca local
Medida de Qualidade

Limite do espaco de busca
Peso de inércia (o)

K

Levenberg-Marquardt (Lm)
NMSE (con;j. de treino)
[-2.0, 2.0]

0,9 a 0,4, linearmente
decrescente

30

Fonte: Autor (2011).

Assim como no ajuste dos pesos sinapticos, Capitulo 3, em que as redes neurais

possuiam arquitetura fixa — 6 neurénios na camada escondida - 0 processo de ajuste

simultaneo da arquitetura e pesos também assumiu redes neurais com arquitetura fixa

— apenas uma camada intermediaria, sendo, no entanto 12 o nimero maximo de
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nodos na camada escondida. O critério de classificacdo também foi 0 mesmo adotado

no capitulo anterior, winner-takes-all, ou seja, o vencedor leva tudo.

4.4 Resultados

Na Tabela 12 temos os resultados experimentais dos algoritmos PSO-FPSOwm €
FPSO-FPSOLm em que estéo dispostas as médias () e desvios padréo (o) dos erros
percentuais de classificacdo (CEP) para cada algoritmo em cada uma das bases de

dados. Em negrito destacamos a menor média de erro alcangcada em cada base.

Tabela 12: Média e desvio padrao do erro percentual de classificacdo para os algoritmos PSO-
FPSOLm € FPSO-FPSOLm.

PSO-FPSOLm FPSO-FPSOum
Base de dados
H c M c

Céncer 3,676 1,761 3,333 1,334
Diabetes 22,205 4,183 21,849 4,173
Coracao 19,015 2,866 17,136 4,518
Vidros 39,436 6,955 36,118 4,836
Cavalos 35,092 5,395 33,603 5,828
Soja 58,2661 4,300 39,467 5,985
Tiredide 3,715 2,542 2,715 1,557

Fonte: Autor (2011).

O tempo das execucdes segue disposto em segundos (s) na Tabela 13. Se
compararmos a Tabela 6 com a Tabela 13 podemos perceber a grande diferenca entre
o tempo médio das execucdes. Isto se da pelo fato de que a primeira ajusta apenas
0s pesos das conexdes da rede neural enquanto que na Ultima para cada particula de

arquitetura existem outras 30 particulas para ajuste dos pesos.
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Tabela 13: Média e desvio padrao do tempo de execugdo em segundos para os algoritmos PSO-
FPSOLm e FPSO-FPSOLm.

PSO-FPSOwm FPSO-FPSOim
Base de dados
M c U c

Céancer 3335,308 924,725 59068,385 33948,658
Diabetes 3521,203 474,382 117453,378 18715,534
Coracao 5848,261 2050,429 132743,420 19116,983
Vidros 16957,091 2274,115 84166,164 57430,114
Cavalos 8178,1218 4015,4315 37583,445 79219,158
Soja 121769,5872 | 12957,6078 | 154797,125 | 87358,3498
Tiredide 216468,636 31404,085 238144,236 | 105228,3308

Fonte: Autor (2011).

Os resultados experimentais demonstram que o algoritmo FPSO-FPSOLm obteve o0s
melhores resultados em todas as sete bases de dados testadas (ver Tabela 13).
Entretanto para afirmar que a utilizacao do algoritmo FPSO-FPSOLm obteve, de fato,
o0 melhor desempenho ele foi comparado ao PSO-FPSOwm - desenvolvido neste
trabalho - e a outros algoritmos encontrados na literatura - PSO-PSO:WD, PSO-
GCPSO:WD, PSO-GCPSO:GL5 e GaTSa.

Os trés primeiros algoritmos foram desenvolvidos pelo mesmo autor e estéao definidos
em Carvalho e Ludermir (2007). Trata-se da aplicacéo do PSO padréo para a definicao
das arquiteturas e uso de trés diferentes variacdes do PSO ao ajuste dos pesos. Estas
combina¢Bes foram: PSO:WD - que € o PSO padrdo combinado a técnica de
decaimento de pesos; GCPSO:WD — PSO com convergéncia garantida associado a
técnica de decaimento de pesos e GCPSO:GL5 — PSO com convergéncia garantida

associado a contagem de erros do conjunto de validacéao (GL5).

Na Tabela 14 dispomos as médias e desvios-padrdo CEP obtidos por outros trabalhos
encontrados na literatura que realizam o ajuste dos pesos e definicdo da arquitetura
de redes neurais MLP. Podemos observar que o algoritmo apresentado neste

trabalho, FPSO-FPSOLm, obteve as menores médias de erros.
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Tabela 14: Média e desvio padrao dos algoritmos PSO-FPSOLm e FPSO-FPSOLm em relacéo a outros
trabalhos presentes na literatura que propuseram a definicdo das arquiteturas e ajuste dos pesos de
uma rede neural MLP.

Céancer | Diabetes | Coracdo | Vidros | Cavalos | Soja | Tiredide
M|(3,676 |22,205 19,015 (39,436 |35,092 |58,266 |3,715
PSO-FPSOnm
c|1,761 |4,183 2,866 6,955 5,395 4,300 |2,542
pi(3,333 [21,849 17,136 |36,118 |33,603 [39,468 |2,715
FPSO-FPSO.n
c|1,334 [4,173 4,518 4,836 5,828 5985 |1,557
PSO- M (4,754 | 24,906 19,383 |- - - -
GCPSO:GL5
(CARVALHO;
c|4,427 |3,529 2,268 - - - -
LUDERMIR,
2007)
PSO-PSO:WD M[4,137 [23,541 24,906 |- - - -
(CARVALHO;
LUDERMIR, c|1,506 |3,159 3,529 - - - -
2007)
PSO- p(4,560 |23,604 19,383 |- - - -
GCPSO:WD
(CARVALHO;
c|1,461 |3,013 2,268 - - - -
LUDERMIR,
2007)
GaTSa {7,192 27,062 |- 55,143 |38,700 |62,941 |7,151
(ZANCHETTIN;
LUDERMIR; c|4,031 |3,109 - 6,082 1,585 5,679 0,890
ALMEIDA, 2011)

Fonte: Autor (2011).

O algoritmo GaTSa apresentado em Zanchettin e Ludermir (2009) também foi
desenvolvido para definir a arquitetura e ajustar os pesos de uma rede neural MLP. O
GaTSa é um algoritmo hibrido composto por Algoritmo Genético, Tabu Search,
Simulated Annealing e o algoritmo de busca local back-propagation. Este algoritmo
possui duas fases bem definidas. A primeira consiste de uma busca global, na qual
novas solucdes sdo geradas, esta capacidade foi herdada do Algoritmo Genético, bem

como o uso de memoria, caracteristica do Tabu Search. Em um segundo momento o
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algoritmo entra na fase de busca local. Nesta hora o GaTSa faz uso de caracteristicas

provenientes do back-propagation, que proporciona uma solucao mais precisa.

De forma geral podemos dizer que o GaTSa funciona da seguinte maneira: Uma
arquitetura com tamanho minimo é definida como a solugéo inicial; a partir dai novas
solugcbes sao geradas - como em um algoritmo genético. O custo de cada nova
solucdo é avaliado e a melhor delas é escolhida como no Tabu Search. Entretanto
esta solucdo poderd ou ndo ser aceita, o critério de aceitacdo é 0 mesmo que o
utilizado no Simulated Annealing — se a nova solucao tiver um custo menor ela é
aceita, sendo poderéa ser rejeitada conforme o calculo da probabilidade. Solucées
previamente encontradas sdo marcadas como tabu — assim como no Tabu Search.
Durante a busca por novas solucées o tamanho do cromossomo é aumentado a fim
de encontrar a melhor solucéo conforme os critérios de aceitacdo. Ao final do processo

apenas a melhor solugéo é retornada.

4.5 Concluséao

Neste capitulo apresentamos o método de otimizacdo das arquiteturas e pesos
sindpticos para redes neurais MLP, do tipo feed-forward que fizeram uso de uma nova
variacao publicada recentemente da otimizacdo por enxame de particulas, chamado
Frankenstein PSO ou FPSO (MONTES DE OCA et al, 2009a).

A metodologia empregada no desenvolvimento dos dois novos algoritmos - PSO-
FPSOLm e FPSO-FPSOLm - foi a mesma disposta em Carvalho (2007). Na qual o autor
utilizou de forma alternada dois algoritmos PSO, um para definir a arquitetura e outro

para calibrar os pesos das conexdes da rede neural MLP.

O algoritmo FPSO-FPSOvwm foi superior ao algoritmo PSO-FPSOLm em termos da
média do erro percentual de classificacdo para todas as bases de dados investigadas
nesse trabalho. Contudo, como esperado, o algoritmo FPSO-FPSOwm foi inferior ao

algoritmo PSO-FPSOLm em termos da média de tempo de execucao.

Em comparacdo com os algoritmos da literatura PSO-GCPSO:GL5, PSO-PSO:WD e
PSO-GCPSO:WD disponiveis em Carvalho e Ludermir (2007) e GaTSa em Zanchettin
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e Ludermir (2009), o algoritmo FPSO-FPSOwm € claramente melhor do que esses
algoritmos em termos da média do erro percentual de classificacdo para as bases de
dados adotadas nessa dissertacdo. Os resultados referentes a este capitulo

encontram-se publicados em Lima e Ludermir (2011).
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Capitulo 5

Enxames Heterogéneos

Neste capitulo ha uma breve introducdo as possiveis classificacbes quanto a
heterogeneidade do enxame. Os parametros de configuracdo adotados, base de
dados utilizadas, disposic&o do processo de treinamento da rede neural e resultados

obtidos sdo também apresentados.

5.1 Introducao

Os modelos de otimizacéo por enxame de particulas discutidos até o0 momento neste
trabalho — PSO padréo e FPSO - sao ditos homogéneos porque todas as particulas
seguem a mesma regra de atualizagao, possuem a mesma quantidade de vizinhos ou
utilizam os mesmos parametros na regra de atualizacdo da velocidade (exceto os
parametros randémicos) Montes de Oca et al (2009b). O enxame como um todo se

comporta da mesma forma, ndo existem especificidades entre as particulas.

Para que um enxame seja considerado heterogéneo ele deve conter no minimo duas
particulas diferentes, ou seja, o espaco de solugbes deve ser analisado de forma
diferente. Seja pela adocdo de diferentes parametros de configuracdo, seja pelo
modelo de vizinhanca ou outro aspecto. Diante desta diferenciacdo foram sugeridas
classificagbes quanto a heterogeneidade que um enxame pode apresentar, conforme

Montes de Oca et al (2009b). Estas, por sua vez, sdo brevemente esplanadas a seguir.

5.1.1 Modelo de Influéncia

Neste tipo de heterogeneidade as particulas do enxame possuem diferentes
mecanismos para definir como sera a influéncia de uma particula sobre as outras, ou
seja, quanto uma particula podera interferir no movimento das demais. Para efeito de
exemplo podemos citar 0 seguinte: em um enxame parte das particulas adota o

modelo de topologia completamente conectada (também conhecido por gbest)
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engquanto que as demais utilizam topologia anel (também chamada Ibest ou ring)

conforme mencionado na secéo 2.2 PSO Padréo.

5.1.2 Regra de Atualizacao

Como o proprio nome sugere este tipo determina o uso de diferentes regras para a
atualizacdo da velocidade das particulas. Isto permite que o espaco de busca seja
explorado de forma completamente diferente pelas particulas, obviamente que o

desempenho desta abordagem dependera da configuracdo adotada.

5.1.3 Heterogeneidade de vizinhanca

Caracteriza-se pelos diferentes graus de vizinhanca ao longo do enxame. Imagine que
a populacdo de particulas seja um grafo, para pertencer a esta classe de
heterogeneidade ao menos duas particulas devem possuir diferentes graus de

vizinhanca.

5.1.4 Parametros

Configura-se por dispor de diferentes parametros de configuracao para as particulas.
Para que um enxame heterogéneo se enquadre nesta categoria € preciso que um
subgrupo de particulas utilize a mesma regra de atualiza¢do e, no minimo, duas delas

utilizem diferentes parametros.

A heterogeneidade ainda pode sofrer uma nova classificagédo, quanto ao modo como
as configuracdes sdo aplicadas ao longo do tempo (ciclo evolucionario). Por exemplo,
para que tenhamos uma heterogeneidade dinamica, as alteracdes devem ser
realizadas a medida que as iteracdes avancam. Se isso nao ocorre 0 tipo
correspondente € o estatico. Temos ainda o tipo adaptativo, podemos considerar este
como um caso particular do tipo dinamico, caracteriza-se por aplicar novas
configuragbes em resposta a um determinado comportamento apresentado pelo

enxame.

O restante do capitulo é organizado da seguinte forma: Secdo 5.2 descreve os
experimentos e € seguida da Secéo 5.3 que apresenta os resultados, por fim a Secao

5.4 com a concluséao.
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5.2 Experimentos

Nesta secao descrevemos como se deu 0 processo de treinamento das redes neurais
MLP através da utilizacao de trés algoritmos heterogéneos. Estes, por sua vez, foram
compostos pelos algoritmos de otimizacéo por enxames de particulas PSO padréo e
FPSO descritos nas secdes 2.2 e 2.3 respectivamente. O objetivo da aplicagéo dos
enxames heterogéneos na tarefa de ajustar os pesos das conexdes foi avaliar a

capacidade de generalizacédo da rede em relagcédo ao algoritmo padréao.

Para representar as solu¢des nés utilizamos o mesmo modelo disposto na secéo 3.2
e também as mesmas func¢bes de custo, secdo 3.3. A subsecao 5.2.1 apresenta as
configuracdes adotadas para a realizagcdo dos experimentos.

5.2.1 Configuragdes

Uma das acdes necessarias para a construcdo de algoritmos heterogéneos € o
estabelecimento da proporcdo entre os tipos. Para a realizacdo dos experimentos
foram utilizadas medidas similares as apresentadas em Montes de Oca et al (2009b).
A proporcdo utilizada por cada algoritmo esta indicada ao lado de cada tipo, por
exemplo, FPSO70PSO30 significa que 70% do numero total de particulas do enxame
sédo do tipo FPSO e os 30% restantes sdo do tipo PSO padrédo. A quantidade de
particulas destinadas a cada um dos dois tipos, PSO padrdo e FPSO, estao presentes
na Tabela 16.

Para a realizacdo dos experimentos ndés adotamos grande parte das configuracdes
utilizadas pelos algoritmos PSO padrdo e FPSO quando estes foram aplicados
separadamente no treinamento das redes neurais. Os parametros de configuracao
utilizados pelos algoritmos heterogéneos sao apresentados na Tabela 15. Foram
utilizadas as mesmas sete bases de dados descritas na Subsecéo 3.4.1 e a mesma
disposicao de arquitetura da rede, ou seja, redes com arquitetura fixa compostas por
n° de caracteristicas do problema (camada de entrada) — 6 neurbnios (camada
intermediéria) — n° de classificagdes possiveis (camada de saida).
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O critério de classificacdo aplicado aos algoritmos heterogéneos foi calculado

conforme a regra do winner-takes-all — 0 mesmo critério adotado nos capitulos

anteriores.
Tabela 15: Pardmetros de configuracdo dos algoritmos heterogéneos.
Algoritmo Descricao Valor
Critério de parada 100 iteracbes
Medida de qualidade NMSE
PSO Limite do espago de busca [-2.0, 2.0]
Fatores de aceleracéo (c1e c2) c1=c2=1.4960
Peso de inércia (o) 0,7298
Critério de parada 100 iteracBes
Medida de qualidade NMSE
Limite do espaco de busca [-2.0, +2.0]
FPSO Fator de inércia (o) [0.9 a 0.4]
Soma dos coeficientes de aceleracgéo (@) | 4.1
K lgual a quantidade de
particulas do tipo FPSO
N° de neurdnios escondidos 6
Rede Numero maximo de iteracbes 100
Neural Funcdes de ativacao Tangente sigmoide — Linear

Algoritmo de treino

N° de falhas de validacao

Levenberg-Marquardt
5

Fonte: Autor (2011).

Tabela 16: Quantidade de particulas, por tipo, utilizadas pelos algoritmos heterogéneos no
treinamento de redes neurais MLP.

Algoritmo N° de Particulas do tipo FPSO | N° de Particulas do tipo PSO
FPSO70PSO30 21 9
FPSO30PSO70 9 21
FPSOs50PSOs0 15 15

Fonte: Autor (2011).
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5.3 Resultados

Na Tabela 17 dispomos as médias e desvios-padrdao do erro percentual de
classificacdo dos algoritmos heterogéneos para as sete bases de dados descritas na
Tabela 1. O niumero presente ao lado de cada variacdo da otimizagao por enxame de
particulas indica a proporcao seguida pelo algoritmo para distribuir as particulas, por

exemplo, FPSOv7o indica que 70% das particulas sao do tipo FPSO, ou seja, do total

de 30 particulas, 21 séo deste tipo.

Tabela 17: Média e desvio padrao do erro percentual de classificacéo para os trés algoritmos
heterogéneos, FPSO70-PS0O30, FPSO30.PS0O70, FPSOs50.PSOs0.

Base de FPSO70PSO30 FPSO3PSO7o FPSOs50PSOso
Dados Media Desvio Media Desvio Media Desvio
Cancer 4,138 1,482 3,755 1,305 3,793 1,573
Diabetes 23,351 3,967 22,500 3,421 24,670 3,872
Coracao 21,290 3,122 22,464 4,994 23,015 6,158
Vidros 35,472 8,516 42,076 9,912 40,189 9,597
Cavalos 35,202 6,495 33,919 5,486 33,480 5,534
Soja 38,686 6,341 33,841 4,433 39,506 6,836
Tiredide 5,785 1,996 5,002 2,238 4,806 1,874

Fonte: Autor (2011).

Tabela 18: Média e desvio padrio do tempo de execugdo, em segundos, para os trés algoritmos
heterogéneos, FPSO70-PSO30, FPSO30-PSO70, FPSOs0-PSOso.

Base de FPSO70PSO30 FPSO30PSO70 FPSOs0PSOso
Dados M c M c M c
Céancer 1288,996 203,601 | 650,219 87,511 641,984 54,402
Diabetes 796,080 25,318 852,351 53,702 1004,574 128,214
Coracao 1213,322 41,176 1167,846 157,837 1228,124 84,366
Vidros 1010,646 51,518 965,613 79,517 1042,211 79,983
Cavalos 1635,130 46,599 1372,587 156,338 1487,576 100,453
Soja 18122,550 | 932,439 |17632,490 |2533,459 |17068,465 | 875,474
Tiredide 6806,700 690,462 | 8475,499 906,362 9739,833 858,960

Fonte: Autor (2011).

Na Tabela 18 temos o tempo médio, em segundos, e desvio-padrao das execucdes

nas sete bases de dados. Na Tabela 19 dispomos os resultados dos testes
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relevantes estatisticamente foram

relacionados, ou seja, apenas os resultados cujo algoritmo 1 foi melhor que o algoritmo

2.

Tabela 19: Resultado dos testes de hipétese para os algoritmos heterogéneos, FPSO70-PSO3o,
FPS030-PSO70, FPSOs0-PSOs0, apenas os resultados no qual os algoritmos heterogéneos obtiveram
melhor desempenho foram relacionados.

Base de dados Algoritmo 1 Algoritmo 2 Valor t Calculado
Cancer FPSO%PSOmn RN 2.3582
Diabetes FPSO,,PSO3 RN -2,9085

FPSO70PS0z0 FPS030PSO0 -2,7680
FPSO70PSOz0 FPSOs0PSOs0 -2.0136
Vidros
FPSO70PSOs0 || -3,6448
FPSO70PSO0 | Rprop -4,8337
FPSOs0PSOs0 FPSORprop -2,1430
Cavalos FPSO5,PSOs5 LM -6,9484
FPSO50PSO50 Rprop -2,6944
FPS030PSO10 FPSO70PSOs0 -3,4299
FPSOsPSO7 FPSOs0PSOso -3,8083
FPSOsPSO7 FPSOrprop -19,0866
Soja FPSOxPSO7,  |FPSOw -4,1661
FPSO3PSO70 LM -5,7043
FPSO3PSO70 Rprop -13,3457
FPSOPSO7 | FPSO:CGum -4,8733
FPSO50PSOs0 | EpgORyep -3,3079
Tiredide
FPSOs50PSOs0 Rprop -4,0978

Fonte: Autor (2011).
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ApoOs a realizacdo dos experimentos os algoritmos heterogéneos FPSO70PSOs3o,
FPSO30PSO70 e FPSOs0PSOs0 foram comparados com os algoritmos relacionados na

Secdao 3.5. Os resultados estao listados na Tabela 20.

De acordo com a Tabela 20, é possivel verificar que os algoritmos heterogéneos
alcancaram as menores médias de erros em trés das sete bases de dados. Cada
proporcao do algoritmo heterogéneo foi melhor em uma determinada base de dados,

nao tendo sido possivel identificar uma proporcéao ideal para todas as bases testadas.

Tabela 20: Média e desvio padrao nos algoritmos heterogéneos em rela¢éo aos algoritmos FPSOvw,
FPSOrprop, LM, RPROP e FPSO:CGvm.

Cancer | Diabetes | Coracdo | Vidros |Cavalos| Soja |Tiredide

M 12,969 |22,708 [18,580 |35,598 |34,762 |38,157 |1,774
FPSOwwm

s |1,688 (2,932 3,319 9,160 |5,174 |3,542 |0,398

no13,352 |22,778 21,058 39,748 |36,557 |63,157 |5,978
FPSOrprror

s 1,484 3,595 6,023 10,821 {5,588 |7,150 |0,504
M M 14,705 26,163 (21,986 43,270 {43,150 |40,510 |3,556

s [1,780 3,508 3,237 8,050 |5,242 (4,621 |1,203
RPROP M 14,076 |24,080 |19,710 (47,044 |37,106 |61,706 6,337

s |1,774 3,057 2,985 9,971 |4,869 |10,542 (0,822

p 13,886 21,979 (19,159 36,855 |35,018 [41,784 (4,526
FPSO:CGLm

s |1,337 (4,711 3,189 9,133 |5,813 |7,749 |1,923

M 14,138 23,351 |21,290 35,472 |35,202 |38,686 |5,785
FPSO70PSO30

s 1,482 (3,967 3,122 8,516 |6,495 [6,341 |1,996

M [3,755 22,500 [22,464 (42,076 |33,919 |33,841 |5,002
FPSO30PSO70

s [1,305 (3,421 4,994 9,912 |5,486 [4,433 |2,238

M 13,793 24,670 |23,015 40,189 |33,480 |39,506 |4,806
FPSO50PSOs0

s |1,573 (3,872 6,158 9,597 |5534 |6,836 (1,874

Fonte: Autor (2011).

O teste de hipétese foi aplicado para verificar o qudo bom foi o desempenho dos
algoritmos heterogéneos em relacdo aos demais algoritmos relacionados na Tabela
20. Apenas o resultado no qual o algoritmo heterogéneo foi comprovadamente melhor

aos demais esta relacionado na Tabela 21.
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Tabela 21: Resultado do teste de hipétese no qual o algoritmo heterogéneo obteve melhor
desempenho em relacdo aos demais testados neste trabalho para o treinamento de redes neurais

MLP.
_ _ Valor t
Base de dados Algoritmo 1 Algoritmo 2
Calculado
Soja FPSO30PSO70 FPSOwm -4,166

Fonte: Autor (2011).

Conforme a Tabela 21 o algoritmo FPSO30PSO7o foi 0 Unico algoritmo heterogéneo
com desempenho comprovadamente melhor em relagdo aos demais algoritmos
testados no Capitulo 3, nos demais casos 0s algoritmos heterogéneos apresentaram

equivaléncia estatistica e alguns casos, produziram resultados piores.

5.4 Concluséao

Neste capitulo fizemos uso de uma abordagem apresentada em Montes de Oca et al
(2009b). Este trabalho objetiva aplicar especificidade ao nivel de particula,
promovendo assim algumas diferenciagcfes. A intencdo é possuir ao menos duas
particulas que analisam de forma diferenciada o espaco de solugcdes. Diferentes
parametros podem ser adotados para que um enxame possa ser considerado
heterogéneo. Por exemplo, podemos ter duas ou mais particulas que possuem
diferentes regras de atualizacdo ou mesmo possuam diferentes parametros de

configuracdo em relacdo as demais particulas do enxame.

Nos experimentos que utilizaram enxame de particulas heterogéneo foram criados
trés novos algoritmos. Estes algoritmos caracterizam-se por possuirem diferentes
concentragdes de tipos, sdo eles: FPSO70PSO30, FPSO30PSO70 € FPSO50PSOso.

Os resultados dos testes de hipotese realizados nos algoritmos FPSO70PSOzo,
FPSO30PSO70 e FPSOs50PSOs0 comprovaram que o uso de enxames heterogéneos &
capaz de melhorar a capacidade de generalizacdo de uma rede neural (algoritmo
FPSO30PSO70 aplicado a base de dados Soja), ho entanto houve casos em que a
utilizacdo da técnica produziu resultados piores.
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No decorrer destes experimentos ndo foi possivel identificar uma proporcao ideal entre
os dois tipos de PSO, dentre as trés utilizadas (30%, 50% e 70%), capaz de produzir
resultados melhores, estatisticamente, em todas as bases de dados. Este problema,

com certeza, sera um dos objetos de estudo para os enxames heterogéneos.
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Capitulo 6

Conclusdes e Trabalhos Futuros

Este capitulo aponta os resultados obtidos durante esta pesquisa; identifica pontos de
melhorias e também novas oportunidades de estudo levantadas durante os

experimentos.

6.1 Conclusdes

Esta dissertacdo abordou uma tarefa importante na area de aprendizado
supervisionado, treinamento de redes neurais MLP e a definicdo da arquitetura e
ajuste dos pesos sinapticos, para problemas de classificacdo de padrbes (BRAGA,
CARVALHO; LUDERMIR, 2007).

Para tanto fizemos uso de duas diferentes abordagens durante o treinamento das
redes neurais MLP. Foram utilizados enxames nao-heterogéneos e enxames
heterogéneos. Para os algoritmos nao-heterogéneos foram utilizados exames do tipo
Frankenstein PSO — FPSO (MONTES DE OCA et al, 2009a) e algumas variacoes
propostas; FPSOLm — Frankenstein PSO associado ao Levenberg-Marquardt,
FPSOrprop — Frankenstein PSO associado ao Resilient-Backpropagation e
FPSO:CGLm — Frankenstein PSO com convergéncia garantida associado ao
Levenberg-Marquardt). Também foram utilizados os algoritmos LM (Levenberg-
Marquardt) e Rprop (Resilient back-propagation). Em um segundo momento foram
utilizados os enxames heterogéneos (MONTES DE OCA et al, 2009b) — utilizamos
esta nomenclatura quando em um enxame ao menos duas particulas analisam o
espago de buscas de maneiras diferentes. Enxames heterogéneos podem ser
classificados de diferentes maneiras, como por exemplo: quanto ao modelo de
influéncia, a regra de atualizacéo, a heterogeneidade de vizinhanca e aos parametros

de configuragéo.

Os exames heterogéneos foram definidos seguindo a seguinte proporcao:
FPSO70PS0O30, FPSO30PSO70 € FPSO50PS0Os0. O niimero ao lado do FPSO ou PSO
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identifica a porcentagem utilizada para cada tipo, por exemplo: FPSO30PSO7o indica
que 30% do total de particulas do enxame séo do tipo FPSO e o restante, 70%, sao
do tipo PSO.

Os algoritmos desenvolvidos aqui para ajuste automatico das arquiteturas e ajuste dos
pesos das conexdes da rede neural - PSO-FPSOLm e FPSO-FPSOwm - basearam-se
na metodologia disposta em Carvalho (2007). Na qual dois algoritmos PSO séo
utilizados simultaneamente para definir a arquitetura e treinar as redes neurais MLP
(nesta fase para compor nosso enxame utilizamos apenas particulas do tipo FPSOwm,
gue foram aquelas que obtiveram o melhor desempenho na fase de treinamento das

redes).

Este processo de treinamento se deu em duas fases: na primeira foram avaliados os
desempenhos de algumas variacdes do PSO e dois algoritmos de busca local no
ajuste dos pesos da rede neural com arquitetura fixa. Em um segundo momento foram
utilizados os algoritmos PSO-FPSOLm e FPSO-FPSOwm para definir o nimero de

neurdnios na Unica camada intermediaria considerada e treinar as redes neurais.

Os algoritmos utilizados na primeira parte foram: FPSOLm, FPSORrprop, FPSO:CGLm,
Resilient back-propagation (Rprop) e Levenberg-Marquardt (LM). O uso do
Frankenstein PSO proporcionou melhores resultados porque para cada fase do
processo evolucionario acentuou-se a influéncia de determinado comportamento na
composicao da solucédo (o fato de o FPSO apresentar inicialmente uma topologia
completamente conectada favoreceu uma rapida propagacédo da melhor solugéo. Esta
configuracdo aplicada nas iteracdes iniciais propiciou ao algoritmo a chance de
encontrar solugdes de boa qualidade. Em contrapartida a topologia anel retardou a
propagacdo da melhor regido encontrada nas iteracdes finais — propiciando maior
explotacao - associada a isto o uso do peso de inércia baixo evitou que o restante do

enxame se locomovesse a regides menos promissoras).

Realizamos avaliagdo experimental e dois critérios foram usados para medir o
desempenho dos algoritmos: erro percentual de classificacédo e o tempo de execucéo.

Essa avaliacdo permitiu concluir que o algoritmo FPSO-FPSO.m obteve melhor
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acuracia de classificacdo se comparado ao algoritmo PSO-FPSOLm em contrapartida

este Ultimo apresentou menor tempo de execucao.

A utilizacdo de enxames heterogéneos na fase de treinamento da rede neural
proporcionou boas médias de erros de classificacdo, no entanto ndo foi possivel

estabelecer uma proporcéao ideal aplicavel a todas as bases de dados testadas.

6.2 Trabalhos Futuros

Os bons resultados obtidos pelos algoritmos propostos incentivam o aprimoramento
das pesquisas sobre o assunto, principalmente no estudo de meios que possam
melhorar o tempo de execucdo. Uma solucdo a este problema poderia ser a

reimplementacao dos algoritmos em linguagens de baixo nivel.

Outra ideia € investir no estudo de uma reducdo no tamanho do enxame de particulas
ao longo das iteragdes, mantendo somente as X’ melhores particulas (podemos
considerar a definicdo deste X’ como uma nova linha de pesquisa), 0 que garantiria
mais iteracdes de avaliacdo usando o mesmo tempo de execuc¢ao atingido hoje (isto
porque o tempo investido nas particulas que nao produzem bons resultados seria

revertido para aguelas localizadas em regides mais promissoras do espaco de busca).

Avaliar a aplicacdo dos algoritmos heterogéneos e ndo-heterogéneos ou, neste caso,
homogéneos em outras classes de problemas; otimizar outros parametros como taxa
de aprendizado, quantidade de camadas intermediarias, funcbes de ativacéo,
algoritmos de treinamento; bem como propor novas combinacdes para os algoritmos
heterogéneos. A exemplo podemos ter combinacdes entre algoritmos FPSO e PSO
Barebones (O PSO Barebones substitui as equagdes de atualizagéo da velocidade e
posi¢cdo por um método estatistico), o que geraria 0 “FPSO-PSOgarebones” OU mesmo
PSO com outras técnicas de otimizagao.

Outra linha de pesquisa pode estar voltada ao estudo das concentragdes por tipo em
algoritmos heterogéneos. Evitando-se a experimentagdo em busca de uma
guantidade ideal para determinado tipo de problema. Uma solucdo seria compor um

algoritmo capaz de controlar dinamicamente as concentracdes dos tipos, analogo ao
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gue é feito hoje pela convergéncia garantida em que uma variavel controla o tamanho

do raio de busca de uma particula.

O préximo passo como continuidade a este trabalho é a aplicacdo dos algoritmos
heterogéneos na definicdo das arquiteturas da rede neural MLP. Verificar seu
comportamento nos dois contextos, ajuste dos pesos sinapticos e definicdo do numero

de camadas e neurdnios escondidos.
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