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RESUMO 

Este trabalho apresenta dois novos algoritmos, PSO-FPSO e FPSO-FPSO, para 

a otimização global de redes neurais MLP (do inglês Multi Layer Perceptron) do 

tipo feed-forward. O propósito destes algoritmos é otimizar de forma simultânea 

as arquiteturas e pesos sinápticos, objetivando melhorar a capacidade de 

generalização da rede neural artificial (RNA). O processo de otimização 

automática das arquiteturas e pesos de uma rede neural vem recebendo grande 

atenção na área de aprendizado supervisionado, principalmente em problemas 

de classificação de padrões. Além dos Algoritmos Genéticos, Busca Tabu, 

Evolução Diferencial, Recozimento simulado que comumente são empregados 

no treinamento de redes neurais podemos citar abordagens populacionais como 

a otimização por colônia de formigas, otimização por colônia de abelhas e 

otimização por enxame de partículas que vêm sendo largamente utilizadas nesta 

tarefa. A metodologia utilizada neste trabalho trata da aplicação de dois 

algoritmos do tipo PSO, sendo empregados na otimização das arquiteturas e na 

calibração dos pesos das conexões. Nesta abordagem os algoritmos são 

executados de forma alternada e por um número definido de vezes.  Ainda no 

processo de ajuste dos pesos de uma rede neural MLP foram realizados 

experimentos com enxame de partículas heterogêneos, que nada mais é que a 

junção de dois ou mais PSOs de tipos diferentes. Para validar os experimentos 

com os enxames homogêneos foram utilizadas sete bases de dados para 

problemas de classificação de padrões, são elas: câncer, diabetes, coração, 

vidros, cavalos, soja e tireóide. Para os experimentos com enxames 

heterogêneos foram utilizadas três bases, a saber: câncer, diabetes e coração. 

O desempenho dos algoritmos foi medido pela média do erro percentual de 

classificação. Algoritmos da literatura são também considerados.  Os resultados 

mostraram que os algoritmos investigados neste trabalho obtiveram melhor 

acurácia de classificação quando comparados com os algoritmos da literatura 

mencionados neste trabalho.  

Palavras-chave: Otimização por Enxame de Partículas. Redes Neurais 

Artificiais. Enxames Heterogêneos. 

  



ABSTRACT 

This research presents two new algorithms, PSO-FPSO e FPSO-FPSO, that can 

be used in feed-forward MLP (Multi Layer Perceptron) neural networks for global 

optimization. The purpose of these algorithms is to optimize architectures and 

synaptic weight, at same time, to improve the capacity of generalization from 

Artificial Neural Network (ANN). The automatic optimization process of neural 

network’s architectures and weights has received much attention in supervised 

learning, mainly in pattern classification problems. Besides the Genetic 

Algorithms, Tabu Search, Differential Evolution, Simulated Annealing that are 

commonly used in the training of neural networks we can mentioned population 

approaches such Ant Colony Optimization, Bee Colony Optimization and Particle 

Swarm Optimization that have been widely used this task. The methodology 

applied in this research reports the use of two PSO algorithms, used in 

architecture optimization and connection weight adjust. In this approach the 

algorithms are performed alternately and by predefined number of times. Still in 

the process of adjusting the weights of a MLP neural network experiments were 

performed with swarm of heterogeneous particles, which is nothing more than the 

joining of two or more different PSOs. To validate the experiments with 

homogeneous clusters were used seven databases for pattern classification 

problems, they are: cancer, diabetes, heart, glasses, horses, soy and thyroid. For 

the experiments with heterogeneous clusters were used three bases, namely 

cancer, diabetes and heart. The performance of the algorithms was measured by 

the average percentage of misclassification, literature algorithms are also 

considered. The results showed that the algorithms investigated in this research 

had better accuracy rating compared with some published algorithms. 

Keywords: Particle Swarm Optimization. Artificial Neural Networks. 

Heterogeneous Swarm.  
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Capítulo 1 

Introdução 

Este capítulo apresentará a motivação do trabalho, bem como os objetivos. Em 

seguida, a organização da dissertação é detalhada. 

 

1.1 Motivação 

Redes neurais artificiais (RNAs) têm obtido bons resultados na solução de vários 

problemas, como reconhecimento de padrões (CARVALHO; LUDERMIR, 2006c; 

YANAN; XIUWEI; LI, 2010), previsão de séries temporais (VALENÇA, 2010; 

VALENÇA; LUDERMIR; VALENÇA, 2010) aproximação de funções (GOMES; 

LUDERMIR, 2008; PRUDÊNCIO, 2002) e outros. Por este motivo existe um interesse 

crescente na aplicação de redes neurais em outras classes de problemas, bem como 

o refinamento de técnicas utilizadas em sua construção. Nem sempre o emprego de 

redes neurais produz bons resultados, muitas vezes isto se dá pela dificuldade em 

projetá-las a um problema específico. Por isto é cada vez mais frequente o uso das 

mais diversas técnicas na construção de redes neurais artificiais (ALMEIDA, 2011; 

LUDERMIR; YAMAZAKI; ZANCHETTIN, 2006). 

Um dos modelos mais utilizados e conhecidos de redes neurais é o MLP (Multi Layer 

Perceptron) (BRAGA; CARVALHO; LUDERMIR, 2007; HAYKIN, 1999). Este tipo 

caracteriza-se por uma arquitetura disposta em camadas sendo a primeira de entrada 

– definida baseada na dimensão do problema a ser tratado – uma ou mais camadas 

ocultas, também chamadas de camadas intermediárias e uma camada de saída – 

definida de acordo com o problema a ser resolvido. Definir a configuração da(s) 

camada(s) intermediária(s) é uma tarefa complexa, pois como eleger a quantidade 

ideal de camadas e o número de neurônios que cada uma delas irá possuir, senão 

pela tentativa e erro ou consulta a um especialista. Esta é uma das razões pela qual 

o uso de técnicas inteligentes combinadas a redes neurais tem feito tanto sucesso, 

comumente estas técnicas também têm sido empregadas na escolha de funções de 
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ativação, algoritmo de treinamento e outros parâmetros das redes neurais segundo 

Almeida e Ludermir (2009).  

O processo de treinamento de redes neurais artificiais (RNAs) MLP para problemas 

de classificação de padrões envolvem duas fases. A primeira é a definição do número 

de camadas ocultas e a quantidade de neurônios que cada uma irá possuir, enquanto 

que a segunda fase trata de ajustar os pesos das conexões, conforme Braga, Carvalho 

e Ludermir (2007). Para definir uma arquitetura o menos complexa possível, podem 

ser empregadas técnicas inteligentes como Evolução Diferencial (SILVA; MINEU; 

LUDERMIR, 2009), Colônia de Formigas (SIVAGAMINATHAN; RAMAKRISHNAN, 

2007), Algoritmos Genéticos (ALMEIDA; LUDERMIR, 2009; ZANCHETTIN; 

LUDERMIR, 2005), Otimização por Enxame de Partículas (CARVALHO; LUDERMIR, 

2007; LUDERMIR; KIRANYAZ et al, 2009; YAMAZAKI; ZANCHETTIN, 2006), Colônia 

de Abelhas (KARABOGA; BASTURK, 2008; TEODOROVIC et al, 2006), Programação 

Evolucionária (YAO; LIU, 1997). Estas técnicas também podem ser utilizadas no 

ajuste dos pesos das conexões da rede para substituir o conhecido algoritmo back-

propagation, pois o mesmo utiliza o gradiente descendente do erro de classificação 

para determinar o novo valor dos pesos das conexões. O back-propagation faz uso 

do aprendizado online, o que quer dizer que, geralmente, todos os padrões de treino 

precisam ser apresentados de forma continua à medida que a fase de treinamento 

avança. Segundo Braga, Carvalho e Ludermir (2007) o uso do back-propagation em 

redes neurais grandes e/ou complexas torna-se muito difícil. Outro ponto negativo em 

sua utilização, que ocorre durante a fase de treinamento, é o overfitting.  Isto ocorre 

quando a rede passa a memorizar os padrões de entrada apresentados, diminuindo 

assim a capacidade de generalização da rede neural. Para resolver este problema 

reserva-se uma parte do conjunto de treinamento, geralmente 25% dos dados. Este 

subconjunto é chamado conjunto de validação e é utilizado para avaliar se durante a 

fase de treinamento está ocorrendo o overfitting. O treinamento da rede neural é 

interrompido a partir do momento que o erro no conjunto de validação começa a 

crescer.  Por outro lado, se o treinamento for interrompido muito cedo poderá ocorrer 

o chamado underfitting, que é a incapacidade de generalização da rede, ou seja, falta 

de conexões e/ou parâmetros ajustáveis conforme Braga, Carvalho e Ludermir (2007). 
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Alguns trabalhos tem considerado o uso Algoritmos Genéticos (AG) como Almeida e 

Ludermir (2009); Zanchettin e Ludermir (2009); Evolução Diferencial (ED) como  Zarth 

(2010); Zarth e Ludermir (2009); Busca Tabu (BT) conforme Zanchettin, Ludermir e 

Almeida (2011); Recozimento Simulado (RS) segundo Yamazaki (2004); Zanchettin, 

Ludermir e Almeida (2011) ou mesmo duas ou mais destas técnicas juntas para definir 

a configuração de redes neurais, como é o caso de Almeida e Ludermir (2009) que 

combinou Estratégias de Evolução (Evolution Strategy), Algoritmos Genéticos e 

Otimização por Enxame de Partículas para aperfeiçoar uma RNA através da escolha 

do algoritmo de treinamento, do pesos das conexões, da taxa de aprendizado, do 

número de camadas intermediárias, das funções de transferência e do bias. No 

trabalho Zarth (2010) o sistema proposto buscou por arquiteturas e pesos fazendo uso 

de Evolução Diferencial associado a uma estratégia para controle da diversidade 

proveniente da Computação Evolucionária Paralela.  Em Eberhart e Shi (2000) foram 

combinadas as técnicas de Recozimento Simulado, Busca Tabu e o algoritmo por 

correção de erro back-propagation com o objetivo de gerar redes neurais de baixa 

complexidade e alta capacidade de generalização. 

O uso de Otimização por Enxame de Partículas (PSO) tem se tornado cada vez mais 

frequente em estudos relacionados ao aprendizado supervisionado. Esta técnica tenta 

simular o comportamento animal na busca por recursos, por exemplo, imagine um 

bando de pássaros a procura de novas fontes de alimentação ou um local de 

descanso. Neste cenário os pássaros são representados pelas partículas, as fontes 

de alimentação ou o local de descanso é a função objetivo e a área onde os pássaros 

se deslocam representa o espaço de busca. O PSO foi apresentado pela primeira vez 

por Kennedy e Eberhart (1995) e desde então tem sido utilizado na melhoria de 

soluções de vários problemas na área de redes neurais artificiais (CHAURASIA; 

DAWARE, 2009; GUDISE; VENAYAGAMOORTHY, 2003; ZHONG; WANG; LI, 2009), 

tendo alcançado bons resultados quando empregado a problemas de otimização 

numérica. Além disso o PSO é considerado um método de fácil implementação. 

Este trabalho faz uso da Otimização por Enxame de Partículas para definir o número 

de neurônios na camada intermediária e realizar o treinamento de uma rede MLP, do 

tipo feed-forward.  
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1.2 Objetivos 

Além de fazer uso do PSO para definir redes neurais de baixa complexidade e boa 

capacidade de generalização, os seguintes tópicos podem ser destacados como 

objetivos deste trabalho:  

 Avaliar o desempenho de uma variação recente da técnica de otimização por 

enxame de partículas, chamado Frankenstein PSO ou apenas FPSO, em relação 

à técnica padrão quando aplicado a problemas de classificação de padrões. 

 Validar novos algoritmos de ajuste simultâneo das arquiteturas e pesos de uma 

rede neural, cuja metodologia é similar a apresentada em Carvalho (2007). 

 Legitimar o uso de enxames heterogêneos no processo de treinamento de redes 

neurais Multi Layer Perceptron. 

 

1.3 Organização da Dissertação 

Esta dissertação está organizada em 6 capítulos, estando no capítulo primeiro a 

introdução, motivação, objetivos e organização deste trabalho. Os demais capítulos 

seguem organizados da seguinte forma:  

 Capítulo 2 – Otimização de Redes Neurais Utilizando Enxame de Partículas: neste 

capítulo apresentamos o conceito de neurônio e rede neural artificial e alguns 

métodos baseados na otimização por enxame de partículas, utilizados neste 

trabalho para otimizar o treinamento e a definição da arquitetura de redes neurais 

do tipo feed-forward. 

 Capítulo 3 – Treinamento de Redes Neurais com PSO: É descrito o uso do 

Frankenstein PSO no processo de otimização dos pesos das conexões em 

problemas de classificação de padrões.  

 Capítulo 4 – Ajuste Simultâneo de Pesos e Arquiteturas com FPSO: Trata do ajuste 

simultâneo dos pesos e arquiteturas fazendo uso do Frankenstein PSO. Foram 

utilizados os resultados obtidos no capítulo 3 e as mesmas bases de dados para 

realizar os experimentos. 
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 Capítulo 5 – Enxames Heterogêneos: Apresenta o uso de enxames heterogêneos 

no treinamento de redes neurais MLP. 

 Capítulo 6 – Conclusões e Trabalhos Futuros: Aborda as conclusões e também 

cita alguns trabalhos futuros.  
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Capítulo 2  

Otimização de Redes Neurais Utilizando 

Enxame de Partículas 

Neste capítulo é apresentada a definição de neurônio e redes neurais artificiais, PSO 

padrão e algumas variações da otimização por enxame de partículas utilizadas neste 

trabalho.  

 

2.1 Redes Neurais Artificiais 

Redes Neurais Artificiais são representações computacionais, em contínuo 

aperfeiçoamento, que tentam reproduzir o processo de aprendizagem do cérebro 

humano. Assim como o cérebro que é formado por neurônios as redes neurais 

também o possuem em sua constituição. Os neurônios ou nodos, como também são 

conhecidos, são associados aos demais por meio de conexões, que por sua vez 

recebem um peso. O comportamento ou resposta de uma rede neural a determinado 

estímulo é dado pela força destas conexões (BRAGA; CARVALHO; LUDERMIR, 

2007). Isto significa que, quanto maior o peso atribuído a uma determinada conexão, 

maior será sua influência na saída (resposta). Na Figura 1 temos uma representação 

gráfica de um neurônio biológico. 

Figura 1: Neurônio biológico. 

 

Fonte: Autor (2011). 
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De modo genérico podemos descrever a formação e funcionamento de um neurônio 

biológico da seguinte forma: os estímulos de entrada, provenientes de outros 

neurônios, são captados por meio dos dendritos; o estímulo, então, é processado no 

corpo celular e a saída ou resposta será transmitida ao próximo neurônio por meio do 

axônio.  

Na década de 40 uma simplificada representação do comportamento de um neurônio 

biológico foi proposta por McCulloch e Pitts (BRAGA; CARVALHO; LUDERMIR, 2007; 

HAYKIN, 1999). No modelo de neurônio artificial MCP ou Modelo McCulloch-Pitts, os 

dendritos são representados por n terminais de entrada, x1, x2, ..., xn; o axônio (que 

representa a saída ou resposta) simbolizado por uma única saída, y. Para representar 

o processo de transmissão da resposta de um neurônio a outro – sinapse – as 

conexões de entrada receberam pesos, w1, w2, ..., w3. Deste modo para saber se o 

resultado aos estímulos de entrada recebidos foi suficiente para atingir o limiar de 

excitação do neurônio, threshold, é preciso somar todas as entradas aos respectivos 

pesos, que podem assumir valores positivos ou negativos. Logo, obtemos a equação 

(1), representação matemática do Modelo McCulloch-Pitts. 

∑ 𝑥𝑖𝑤𝑖 ≥ 𝜃

n

𝑖=1

 (1) 

 

em que 𝜃 representa o limiar de excitação ou threshold. Podemos representar o 

neurônio artificial, proveniente do Modelo McCulloch-Pitts, conforme a Figura 2. 

Figura 2: Esquematização de um neurônio artificial MCP. 

 

Fonte: Braga, Carvalho e Ludermir (2007). 
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No modelo MCP os neurônios são binários, ou seja, possuem saída 0 ou 1, então, 

para determinado estímulo de entrada o neurônio estará ativo ou não. No entanto a 

grande maioria dos problemas da vida real são não-lineares. Com o intuito de 

solucionar esta limitação, ao longo dos anos, foram apresentadas diferentes funções 

de ativação, algumas delas estão dispostas na Figura 3. 

Figura 3: Exemplos de funções de ativação. 

 

Fonte: Braga, Carvalho e Ludermir (2007). 

Um único neurônio possui capacidade computacional bastante limitada, no entanto se 

juntarmos vários neurônios e os dispormos em forma de rede teremos a capacidade 

de resolver problemas de alta complexidade. Na Redes neurais de única camada, 

como visualizado em Figura 4. a) são capazes de resolver apenas problemas lineares. 

Na arquitetura disposta em Figura 4. b) também temos uma rede feed-forward, no 

entanto esta possui uma camada adicional, a chamada camada intermediária ou 

camada oculta. Redes neurais com esta disposição de neurônios são capazes de 

resolver qualquer função contínua. Se adicionarmos mais uma camada intermediária 



22 
 

 
 

a esta teremos uma rede capaz de aproximar qualquer função conforme Braga, 

Carvalho e Ludermir (2007) e mais, se os neurônios da camada intermediária fizerem 

uso de funções sigmoidais esta rede receberá o nome de Perceptron de Múltiplas 

Camadas ou MLP, do inglês Multi Layer Perceptron. Na Figura 4 são apresentadas 

apenas as arquiteturas utilizadas neste trabalho, redes feed-forward. 

Redes neurais de única camada, como visualizado em Figura 4 a) são capazes de 

resolver apenas problemas lineares. Na arquitetura disposta em Figura 4 b) também 

temos uma rede feed-forward, no entanto esta possui uma camada adicional, a 

chamada camada intermediária ou camada oculta. Redes neurais com esta 

disposição de neurônios são capazes de resolver qualquer função contínua. Segundo 

Braga, Carvalho e Ludermir (2007) se adicionarmos mais uma camada intermediária 

a esta teremos uma rede capaz de aproximar qualquer função e mais, se os neurônios 

da camada intermediária fizerem uso de funções sigmoidais esta rede receberá o 

nome de Perceptron de Múltiplas Camadas ou MLP, do inglês Multi Layer Perceptron. 

Figura 4: Arquitetura de uma rede neural feed-forward. 

Fonte: Braga, Carvalho e Ludermir (2007). 

 
Uma vez definidos a arquitetura e função ou funções de ativação da rede neural é 

preciso treiná-la para que possa “aprender”. Dentre as diversas formas de 

aprendizado aplicáveis as redes neurais (por competição, reforço, hebbiano e outros) 

veremos de forma detalhada o aprendizado supervisionado, que é o método utilizado 

neste trabalho.  
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Neste tipo de aprendizado uma parte do conjunto de dados é reservada para realizar 

o treinamento da rede. A rede deve calcular o quão distante da resposta desejada ela 

se encontra, ou seja, para cada saída obtida e de acordo com a resposta desejada a 

rede calcula o erro da saída e assim, ajusta os pesos de suas conexões, de forma que 

a resposta da rede se aproxime da saída desejada.  

Apesar dos bons resultados obtidos pelas redes neurais em tarefas de classificação, 

categorização, otimização, aproximação e previsão existem alguns pontos que 

contam negativamente em sua aplicação. A exemplo podemos citar a definição da 

quantidade ideal dos dados de entrada utilizados pelo conjunto de treinamento; a 

duração da fase de treinamento ou aprendizagem, podendo causar problemas como 

overfitting (quando a rede passa a “decorar” os dados de entrada produzindo altas 

taxas de erro na fase de teste) e underfitting (quando a fase de treinamento é muito 

curta e incapacita a rede a regular os parâmetros ajustáveis. Também produz alta taxa 

de erro durante a fase de teste); o uso de algoritmos por correção de erro, como o 

back-propagation, que podem levar a rede a regiões de mínimos locais.  Algumas 

soluções a estes e outros problemas é a combinação de diferentes métodos de forma 

que um seja capaz de suprir as deficiências do outro ou mesmo para encontrar 

soluções mais eficientes e/ou robustas. A esta combinação de diferentes métodos, no 

qual um deles seja uma rede neural, damos o nome de Sistemas Neurais Híbridos 

(BRAGA; CARVALHO; LUDERMIR, 2007). 

 

2.2 PSO Padrão 

A Otimização por Enxame de Partículas ou apenas PSO é uma técnica meta-

heurística criada por Kennedy e Eberhart (1995) cuja motivação partiu da observação 

do comportamento social de animais. Técnicas baseadas no comportamento de 

populações são largamente aplicadas a um grande número de problemas de 

otimização numérica. A exemplo podemos citar a Otimização por Colônia de Formigas 

(do inglês Ant Colony Optimization) em Sivagaminathan e Ramakrishnan (2007) e a 

Otimização por Colônia de Abelhas (do inglês Bee Colony Optimization) em Karaboga 

e Basturk, (2008); Teodorovic et al, (2006). A idéia inicial dos autores foi reproduzir o 

comportamento de pássaros na busca por recursos, por exemplo, a busca por novas 
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fontes de alimentação. Assim como na natureza em que os indivíduos se movimentam 

no espaço trocando informações entre si com o objetivo de levar o bando as melhores 

regiões o algoritmo do PSO também reproduz este comportamento. A seguir 

descrevemos como este hábito foi modelado na otimização por enxame de partículas. 

Seja o enxame um conjunto S formado por partículas p, que representam as possíveis 

soluções, cada uma delas tem dimensão n. Para cada uma delas, 1 ≤ pi ≤ S, num 

instante de tempo t, tem suas posições xi(t) ∈ n e velocidades vi(t) ∈ n definidas - 

determinam a extensão e direção do deslocamento no espaço de soluções. 

Informações adicionais são armazenadas pelas variáveis pb – responsável por 

guardar a melhor posição visitada pela partícula – e gb – armazena a melhor posição 

visitada pelo enxame. 

Outra particularidade do PSO é a maneira como às partículas trocam informações 

entre si.  Originalmente a otimização por enxame de partículas utiliza um modelo 

conhecido por Gbest – global best. Neste modelo de vizinhança a partícula do enxame 

que alcançou a melhor posição no espaço de busca, ou seja, a melhor solução até o 

momento, influência o deslocamento das demais partículas. A adoção do Gbest 

proporciona uma convergência mais rápida, uma vez que a propagação da informação 

é ágil. Por outro lado, existe um ponto negativo, a possibilidade de convergência 

prematura, que pode fazer com que o enxame se desloque a uma região sub-ótima, 

mínimo local. Visando minimizar o problema da convergência prematura, foi criado o 

modelo Lbest – local best, também conhecido por Anel. Neste modelo topológico uma 

partícula influência apenas algumas de suas vizinhas (normalmente adota-se 

vizinhança de grau 1, o que significa que a partícula que alcançou a melhor posição 

no espaço de buscas influência suas vizinhas imediatas. No entanto, pode-se adotar 

um grau de vizinhança diferente). A Figura 5 e Figura 6 exibem uma representação 

dos modelos de vizinhança Gbest e Lbest, respectivamente.  
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Figura 5: Modelo de vizinhança Gbest Figura 6: Modelo de vizinhança Lbest. 

 

Fonte: Autor (2011). 

 

Fonte: Autor (2011). 

 

Para calcular a velocidade das partículas, utiliza-se a equação (2) e para atualizar a 

posição a equação (3). Nas duas equações o índice i representa a componente, no 

instante t, do vetor n.  

vi(t+1) = vi(t) + c1r1(pbi(t) – xi(t)) + c2r2(gbi(t) – xi(t)) (2) 

xi(t+1) = xi(t) + vi(t+1) (3) 

 

Algumas variações do PSO fazem uso do peso de inércia (w) (EBERHART; SHI, 2001; 

MONTES DE OCA et al, 2009a; SHI; EBERHART, 1999; ZHENG et al, 2003), proposto 

por Shi e Eberhart (1998). Este fator multiplica a velocidade da partícula, no instante 

t, proporcionando aumento da exploração (tenta cobrir a maior área possível do 

espaço de busca) nas primeiras iterações e explotação (cobre pequenas áreas das 

regiões mais promissoras do espaço de busca) nas iterações finais, de acordo com o 

valor que a variável w assume ao longo das iterações. Em Shi e Eberhart (1999) o 

valor do peso de inércia varia de forma linear e decrescente dentro do intervalo de 0.9 

a 0.4. Deste modo a equação (2), utilizada para controlar o movimento das partículas 

no espaço de busca, transforma-se na equação (4): 

vi(t+1) = wvi(t) + c1r1(pbi(t) – xi(t)) + c2r2(gbi(t) – xi(t)) (4) 

 

Tanto na equação (2) quanto na equação (4) as variáveis r1 e r2 assumem valores 

randômicos gerados no intervalo [0,1], estes valores são gerados a cada iteração para 

determinar a influência dos fatores individuais e global na iteração (pb e gb, 
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respectivamente). As variáveis c1 e c2 representam os coeficientes de aceleração que, 

por sua vez, possuem valores fixos e iguais, c1 = c2 = 2,05, valores disponíveis em 

Clerc e Kennedy (2002). 

Algoritmo 1: PSO padrão. 

1: Iniciar randomicamente a população de partículas, P 

2: Repita 

3: Para cada partícula pi da população P faça 

4: Se f(xi(t)) < f(pbi(t)) então 

5: pbi(t) = xi(t) 

6: Fim do se 

7: Se f(pbi(t)) < f(gbi(t)) 

8: gbi(t) = pbi(t) 

9: Fim do se 

10: Fim do para 

11: Atualizar a velocidade e posição de pi conforme as equações (3) e (2) 

respectivamente. 

12: Até critério de parada ser satisfeito 

Fonte: Montes de Oca et al (2009a). 

No Algoritmo 1 apresentamos o pseudo-código utilizado para representar o algoritmo 

do PSO padrão. O funcionamento geral do algoritmo pode ser entendido da seguinte 

forma: inicialmente as partículas tem suas posições e velocidades determinadas de 

forma randômica (passo 1). A partir daí segue-se o processo de avaliação das 

partículas. Inicialmente verifica-se a melhor posição alcançada e seu valor é 

armazenado na variável pb (passo 4 e 5). A seguir a mesma verificação é feita, sendo 

agora em nível de enxame, gb (passo 7 e 8). O próximo passo é calcular as posições 

e velocidades para a iteração seguinte (passo 11). A avaliação das partículas repete-

se até que um critério de parada seja alcançado, definido pela função objetivo - que 

pode ser de maximização ou minimização - ou até que o número máximo de iterações 

seja alcançado (passo 12). 
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2.3 Frankenstein PSO 

Este novo algoritmo de otimização por enxame de partículas, chamado Frankenstein 

PSO ou apenas FPSO foi proposto por Montes de Oca et al (2009a) e surgiu a partir 

do interesse dos autores em avaliar a combinação de diversas variações do algoritmo 

PSO apresentados a partir da proposta inicial por Kennedy e Eberhart (1995). Para 

compor o FPSO foram analisadas sete variantes da técnica de otimização por enxame 

de partículas, são elas: 

 Constricted Particle Swarm Optimizer – Trata-se de um fator contração adicionado 

à regra de atualização da velocidade por Clerc e Kennedy (2002) para evitar o 

crescimento descontrolado da velocidade da partícula, assim elas não ultrapassam 

o limite da área de busca. Deste modo a regra de atualização da velocidade foi 

modificada para equação (5): 

vi(t+1) = X(vi(t) + c1Ui(t)(pbi(t) tz– xi(t)) + c2 Ui(t)(gbi(t) – xi(t))) (5) 

X = 2 / |2 – c - √𝑐2–  4𝑐
2

| (6) 

 

onde X é o fator de contração definido pela equação (6) e a constante c possui valor 

igual a 2.05. 

 Time-Decreasing Inertia Weight Variant, Shi e Eberhart (1999) propuseram definir 

o peso de inércia de acordo com uma função que faz o valor variar de forma 

decrescente. Deste modo nas primeiras iterações o algoritmo explora o espaço de 

busca e só depois foca nas regiões mais promissoras. A função usada para 

calcular o valor do peso de inércia é a equação (7): 

Wt = ((wtmax – t) / wtmax)*(wmax - wmin) + wmin (7) 

 

onde Wtmax marca o momento em que Wt = Wmin, normalmente Wtmax coincide com 

o tempo máximo alocado para o processo de otimização. 

 Increasing Inertia Weight Particle Swarm Optimization Zheng et al (2003), esta 

variação da otimização por enxame de partículas é o inverso da proposta anterior, 

Time-Decreasing Inertia Weight Variant. Aqui a mesma fórmula de atualização do 
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peso de inércia foi adotada, exceto pelo fato de os valores das variáveis wmax e 

wmin serem invertidos. 

 Stochastic Inertia Weight Particle Swarm Optimization, Eberhart e Shi (2001), 

nesta variante o vetor do peso de inércia é gerado randomicamente de acordo com 

uma distribuição uniforme definida no intervalo de [0.5, 1.0) com o peso de inércia 

diferente para cada dimensão. Neste algoritmo os coeficientes de aceleração são 

definidos pelo produto de x * φi, sendo i € {1, 2}. 

 Fully Informed Particle Swarm Optimizer – FIPS, criado por Mendes, Kennedy e 

Neves (2004), responsável por considerar o número de vizinhas topológicas no 

processo de atualização da velocidade da partícula. Esta abordagem produz, 

então, uma nova equação para o cálculo da velocidade da partícula, a equação 

(8): 

vi(t+1) = wvi(t) + Pm  Ni φkUk(t) (pbk(t) – xi(t)) (8) 

 

no FIPS o fator de contração de Clerc e Kennedy normalmente tem seu valor igual 

a 4.1 Eberhart e Shi (2000), o φ (soma dos coeficientes de aceleração) é distribuído 

igualmente dentre as partículas vizinhas. 

 Self-Organizing Hierarchical PSO With Time-varying Acceleration Coefficients, 

nesta variação da otimização por enxame de partículas o termo de inércia na regra 

de atualização da velocidade é eliminado. No entanto quando algum componente 

do vetor da velocidade da partícula assume valor zero ou muito próximo a zero seu 

valor é reinicializado proporcionalmente ao definido em Vmax. Esta reinicialização 

dá ao algoritmo um comportamento de busca local no qual os valores dos 

coeficientes de aceleração são adaptados linearmente, ou seja, o valor do 

coeficiente φ1 é decrementado de 2.5 até 0.5 e o coeficiente φ2, o inverso, o valor 

é incrementado de 0.5 a 2.5. Próximo ao final da execução o algoritmo atinge uma 

velocidade baixa, isto possibilita que as partículas se movam lentamente no 

entorno da melhor região encontrada. Esta proposta de PSO foi apresentada em 

(Ratnaweera, Halgamuge e Watson (2004). 
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 Adaptive Hierarchical Particle Swarm Optimizer ou AHPSO por Middendorf e 

Janson (2005), responsável pelo grau de conectividade entre as partículas, ou 

seja, a topologia da rede - o modo como as partículas propagam as informações 

entre si. Este processo pode ser visualizado na Figura 7. 

Figura 7: Processo de atualização da topologia proposta pelo algoritmo AHPSO. 

 

Fonte: Montes de Oca et al (2009a). 

O processo de atualização da topologia dá-se da seguinte forma: inicialmente as 

partículas do FPSO ou aquelas que seguem o modelo AHPSO são completamente 

conectadas, ou seja, todas as partículas são vizinhas entre si - neste trabalho uma 

partícula é vizinha de si mesma. Ao longo das iterações algumas conexões são 

removidas dando lugar, ao final do processo de atualização, a topologia anel. Suponha 

que temos n partículas, as n(n-1)/2 arestas da topologia completamente conectada 

inicialmente darão lugar a apenas n, da topologia anel, em n-3 passos. Este processo 

de remoção é realizado seguindo um padrão de regressão aritmética, assim a cada 

iteração um número decrescente de arestas é removido. Na Figura 7 n = 6, então em 

3 passos o processo de transformação da topologia completamente conectada em 

anel estará concluído. Vamos supor k = 12 (parâmetro utilizado no cálculo para indicar 

quando as arestas serão removidas, seu uso pode ser visualizado no algoritmo do 

FPSO, Algoritmo 2), no passo (a) o grafo é completamente conectado; no passo (b) 4 
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arestas são removidas (linhas pontilhadas); no passo (c) outras 3 arestas são 

removidas e por fim o passo (d) as 2 últimas arestas são removidas dando fim ao 

processo de atualização da topologia. 

O resultado final da análise destas 7 variantes de PSO foi um algoritmo composto 

formado a partir de três componentes algorítmicos. Os componentes utilizados nesta 

composição foram: Adaptive Hierarchical Particle Swarm Optimizer, Fully Informed 

Particle Swarm Optimizer e Time-Decreasing Inertia Weight Variant. O funcionamento 

do algoritmo do Frankenstein PSO é análogo ao do PSO padrão. Podendo ser 

sistematizado da seguinte forma: 

As partículas têm suas posições e velocidades, inicialmente, criadas de forma 

randômica; as melhores posições já visitadas pelas partículas, pbi, recebem as recém-

criadas posições randômicas, logo após o vetor de vizinhança das partículas é 

preenchido.  

As variáveis de controle são inicializadas e então entra-se no laço principal, dentro 

dele verifica-se, para cada partícula, a melhor posição visitada atualizando pbi quando 

necessário.  

A seguir temos os três componentes algoritmos oriundos de outras versões de PSO, 

o módulo de controle da topologia (Algoritmo 2.2, passo 14), seguido do módulo que 

calcula o valor do peso de inércia para a iteração (Algoritmo 2.2, passo 23) e por último 

o que incorpora o número de vizinhas topológicas no cálculo da velocidade (Algoritmo 

2.2, passo 28).  

Por fim, (Algoritmo 2.2, passos 35 e 36), assim como no algoritmo do PSO padrão são 

verificados os critérios de parada, função objetivo e número de iterações. 

As instruções do Frankenstein PSO estão dispostas no Algoritmo 2. 
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Algoritmo 2: Frankenstein PSO. 

1: Para i = 1 a n faça 

2: Criar a partícula pi e adicioná-la ao conjunto de partículas P 

3: 

Inicialize seus vetores xi e vi com valores randômicos dentro do 

espaço de busca e velocidade máximas permitidas 

4: 

Definir pbi = xi 

Definir Ni = P 

5: Fim do para 

6: Definir t = 0 

7: Definir steps = 0 

8: Repetir 

9: Para i = 1 a n faça 

10: Se f(xi) é melhor que f(pbi) 

11: Definir pbi = xi 

12: Fim do se 

13: Fim do para 

14: Set > 0  t < = k  modk/(n-3) = 0 então 

15: Para i = 1 to n – (2 + steps) faça 

16: Se | Ni | > 2 então 

17: Elimine a partícula pr de Ni 

18: Elimine a partícula pi de Ni 

19: Fim do se 

20: Fim do para 

21: Definir steps = steps + 1 

22: Fim do se 

23: Se t  wtmax  então 

24: Definir wt = ((wtmax – t) / wtmax)*(wmax - wmin) + wmin 

25: Senão 

26: Definir wt = wmin 

27: Fim do se 

28: Para i = 1 to n faça 

29: Gerar Um(t) pm  Ni 

30: Definir φm = φ/| Ni | pm  Ni 

31: Definir vi(t+1) = w(t)vi(t) + Pm  Ni φkUk(t) (pbk(t) – xi(t)) 

32: Definir xi(t+1) = xi(t) + vi(t+1)  

33: Fim do para 

34: Definir t = t + 1 

35: Definir solução =argminpi  Pf(pbi(t)) 

36: Até que o valor de f(solução) seja bom o suficiente ou t = tmax 

Fonte: Montes de Oca et al (2009a). 
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O processo de alteração da topologia permite que nas iterações iniciais o algoritmo 

explore uma maior área do espaço de buscas e compartilhe rapidamente com as 

demais partículas informações sobre as regiões mais promissoras, uma vez que a 

topologia é completamente conectada a propagação da informação acontece 

rapidamente. À medida que as iterações avançam inicia-se o processo de remoção 

de arestas da vizinhança das partículas e a diminuição do peso de inércia. Tudo isto 

para garantir que as partículas permaneçam em suas regiões e não apresentem 

comportamento de fuga. 

As particularidades do Frankenstein PSO o tornaram um algoritmo adaptável a 

execuções curtas ou longas apenas com o ajuste de alguns parâmetros de 

configuração (como o responsável pela atualização da topologia – parâmetro k no 

algoritmo do FPSO), por exemplo para execuções curtas temos: a adoção da 

topologia completamente conectada, que proporciona uma rápida propagação da 

informação entre as partículas; velocidade e peso de inércia altos nas iterações 

iniciais, que propiciam maior cobertura e deslocamento no espaço de buscas. Em 

execuções longas podemos retardar o processo de atualização da topologia ou definir 

que as remoções de arestas ocorram em um intervalo maior de iterações, uma vez 

que o método utilizado pelo FPSO para controle de topologia (AHPSO) permite este 

ajuste.  

 

2.4 Frankenstein PSO com Convergência Garantida 

A convergência garantida ou simplesmente CG é uma técnica bastante utilizada para 

evitar a convergência prematura do algoritmo a uma região não-ótima no espaço de 

soluções de acordo com Peer, Bergh e Engelbrecht (2003). Isto ocorre quando a 

posição atual de uma partícula coincide com sua melhor posição, pbi, e a melhor 

visitada pelo enxame, gbi. Assim o deslocamento da partícula fica à mercê do peso de 

inércia. Se este fato ocorrer nas iterações finais a partícula tende a permanecer na 

mesma região, uma vez que o peso de inércia possui valor próximo a zero o 

deslocamento da partícula seria mínimo. O estacionar da partícula provoca um 

movimento de convergência por parte do enxame a uma região sub-ótima. 
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A melhoria proposta pela implementação desta técnica corresponde a alterar a 

equação de atualização da velocidade para aquelas partículas que alcançaram a 

melhor posição visitada globalmente, gbi. Evitando-se assim uma indução a 

convergência prematura. Logo, uma nova equação de atualização da velocidade 

utilizada pelas partículas que atingirem a melhor posição global se faz necessária, a 

equação (9): 

vi j(t +1) = −xij(t)+ gbj(t)+wvij(t)+p(t)(1−2rij(t)) (9) 

em que o termo p(t) funciona como um raio de busca em relação ao melhor ponto 

visitado globalmente, gb. Para calcular p(t) utiliza-se a equação (10), disposta a seguir: 

p(t+1) = 

2p(t), se #sucessos > sc  

0,5p(t), se #falhas > fc (10) 

p(t), caso contrário  

 

Sempre que a melhor área visitada globalmente, gb, for atualizada, ou seja, uma nova 

melhor posição é encontrada o contador de sucessos (#sucessos) é incrementado e 

a área do raio de busca tem seu valor dobrado. Quando o contador de falhas (#falhas) 

ultrapassa o valor estabelecido, fc, o valor do raio de busca atribuído a ele é reduzido 

pela metade. Sempre que um contador tiver seu valor atualizado, #sucessos ou 

#falhas, o contador oposto terá seu valor zerado (PINGZHOU; ZHAOCAI, 2008). 

 

2.5 Comentários Finais 

Neste capítulo apresentamos os neurônios e as redes neurais artificiais, algumas 

funções de ativação e arquiteturas utilizadas neste trabalho, bem como a motivação 

biológica e, também, algumas limitações da técnica. Os pontos desfavoráveis ao uso 

das redes neurais artificiais deram origem a experimentações. Estas por sua vez 

tratam de mesclar diferentes métodos, sendo um deles uma rede neural, de forma que 

um seja capaz de suprir as deficiências do outro dando origem, assim, aos Sistemas 

Neurais Híbridos.  
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Métodos inspirados no comportamento animal, a exemplo da otimização por enxame 

de partículas – PSO - vem sendo utilizado em problemas de otimização numérica bem 

como em tarefas da área de aprendizado supervisionado em redes neurais artificiais. 

Este trabalho é inteiramente baseado em técnicas de otimização por enxame de 

partículas.  A princípio apresentamos a técnica padrão e a variação adotada nesta 

pesquisa, o chamado Frankenstein PSO. Este algoritmo, apresentado pela primeira 

vez em 2009, é fruto de uma análise da combinação de sete diferentes variações do 

PSO, também explanados neste capítulo (Constricted Particle Swarm Optimizer; 

Time-Decreasing Inertia Weight Variant; Increasing Inertia Weight Particle Swarm 

Optimization; Stochastic Inertia Weight Particle Swarm Optimization; Fully Informed 

Particle Swarm Optimizer; Self-organizing Hierarchical PSO With Time-Varying 

Acceleration Coefficients e o Adaptive Hierarchical Particle Swarm Optimizer), tendo 

sido composto por apenas três deles (Time-Decreasing Inertia Weight Variant; Fully 

Informed Particle Swarm Optimizer e o Adaptive Hierarchical Particle Swarm 

Optimizer).   

Neste capítulo também foi apresentado o FPSO com convergência garantida ou 

FPSO:CG. Técnica utilizada para evitar a convergência prematura do enxame a uma 

região sub-ótima no espaço de soluções. Este método consiste em estabelecer um 

raio de busca para a melhor posição visitada pelo enxame. Para isto são definidos 

dois contadores, #sucessos e #fracassos, no qual toda vez que uma nova melhor 

posição visitada pelo enxame é encontrada o contador #sucessos é incrementado e o 

contador #fracassos é zerado, deste modo à área de busca associada ao “sucesso” é 

amplificada e a área associada ao “fracasso” é reduzida. 
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Capítulo 3 

Treinamento de Redes Neurais com PSO 

Está contido neste capítulo a definição da representação das soluções, a 

especificação das bases de dados utilizadas durante os experimentos, razões que 

motivaram a escolha da função de custo e como se deu o processo de treinamento 

das redes neurais pelo uso do Frankenstein PSO. Também estão especificados os 

critérios de configuração de cada algoritmo, bem como a validação estatística 

aplicada. 

 

3.1 Introdução 

O propósito do treinamento de redes neurais é delimitar a área de fronteira entre as 

classes do problema, em outras palavras, significa aumentar a capacidade de 

generalização. É dar a rede neural a habilidade de classificar corretamente padrões 

que não tenham sido apresentados anteriormente. Normalmente para treinar as redes 

neurais utilizam-se algoritmos locais específicos – a exemplo temos o back-

propagation, Levenberg-Marquardt, Resilient-Backpropagation, Quase-Newton e 

outros – e/ou técnicas de busca global – Evolução Diferencial, utilizado por Zarth e 

Ludermir (2009), programação evolucionária por Yao e Liu (1997), Otimização por 

Enxame de Partículas em Carvalho e Ludermir (2006b, 2006c);  Pingzhou e Zhaocai 

(2008); Van Wyk e Engelbrecht (2010), Algoritmos Genéticos como utilizado em 

Almeida e Ludermir (2006) – que utilizam o erro de treinamento como medida de 

avaliação. A aplicação de duas ou mais técnicas diferentes associadas a uma rede 

neural dá origem a Sistemas Neurais Híbridos, que geralmente combinam um 

algoritmo de busca global a algoritmos de busca local (back-propagation, Levenberg-

Marquardt e outros). 

Neste capítulo utilizaremos algoritmos híbridos no treinamento das redes neurais 

MLP. Estes algoritmos híbridos foram formados pelo FPSO, apresentado no capítulo 
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anterior (MONTES DE OCA et al, 2009a), associado a um algoritmo de busca local, 

Levenberg-Marquardt ou Resilient-Backpropagation. 

O restante deste capítulo segue organizado da seguinte forma: a seção 3.2 aborda a 

representação das soluções; a seção 3.3 as funções de custo utilizadas; na seção 3.4 

dispomos os experimentos realizados; seguido da seção de resultados e por fim as 

conclusões. 

 

3.2 Representação das Soluções. 

Para representar os pesos das conexões de uma rede neural MLP foram utilizados 

vetores de reais, para calcular o tamanho destes vetores foi preciso conhecer quantos 

seriam os pesos da rede, para isso foi utilizada a equação (11) a seguir: 

Quantidade de Pesos = (I + 1) x H + (H + 1) x O (11) 

em que I é a quantidade de entradas do problema (input), H a quantidade de neurônios 

e O representa o número de saídas do problema (output). Os números 1 somados a I 

e H, entre os parênteses, representam o bias.  

Neste trabalho foram adotadas redes neurais com arquitetura fixa, portanto H possui 

valor fixo e as conexões não sofrem poda, ou seja, a mesma quantidade de conexões 

da rede neural é mantida do início ao fim do processo de otimização (mantém-se a 

conexão máxima). Sendo algumas destas conexões fortalecidas, o peso atribuído a 

ela é incrementado enquanto que as outras são enfraquecidas, possuem valor baixo 

ou próximo a zero.  

Na Figura 8 temos a representação gráfica dos pesos sinápticos e bias como parte do 

vetor de reais. 
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Figura 8: Pesos sinápticos e bias como componentes do vetor de reais. 

 

Fonte: Carvalho (2007). 

Para inicializar cada posição do vetor que representam as partículas foram gerados 

números aleatórios definidos dentro do intervalo [-2.0, +2.0] (quanto menor for o 

intervalo estabelecido menor será o espaço de busca para esta variável). Os 

parâmetros de velocidade e posição fizeram uso dos valores máximos permitidos, ou 

seja, Vmax = Xmax. 

 

3.3 Função de Custo 

Dentre as diversas funções de custo que podem ser empregadas (Soma dos Erros 

Quadráticos – SSE, Raiz do Erro Quadrático Médio – RMS, Percentual do Erro 

Quadrático – SEP, dentre outras) e suas inúmeras combinações, o Erro Quadrático 

Médio Normalizado (NMSE) foi a medida utilizada neste trabalho para avaliar a 

qualidade das soluções. Dentre as várias funções disponíveis a NMSE foi escolhida 

por ser uma medida de erro suave e também por ter sido a mesma adotada em 
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Carvalho (2007). O NMSE fornece uma medida do erro total cometido pela rede. 

Assim é possível saber o quanto a rede se distanciou do desempenho desejado, 

enquanto que o uso do Erro Percentual de Classificação (CEP), equação (13), deixa 

claro quantos padrões a rede classificou corretamente ou não.  A fórmula para a 

medida de erro NMSE é disposta na equação (12).  

O NMSE foi utilizado na fase de treinamento das redes neurais enquanto que o Erro 

Percentual de Classificação (CEP) foi utilizado na fase de testes. Estas foram as 

mesmas medidas adotadas em Carvalho (2007) para avaliar as soluções. 

NMSE = (100/NxC)∑ ∑ (𝑡𝑘
𝑛𝐶

𝑘=1
𝑁
𝑛=1 −𝑜𝑘

𝑛) (12) 

CEP = 100 x (# erros de classificação)/N (13) 

nas equações (12) e (13) N representa o número de padrões do conjunto de dados; C 

o número de classes do problema; 𝑡𝑘
𝑛 a saída desejada para o padrão ‘n’ e 𝑜𝑘

𝑛 a saída 

real obtida para o padrão ‘n’. 

O critério de classificação mencionado na equação (12) foi calculado conforme a regra 

do winner-takes-all (“o vencedor leva tudo”), em que o neurônio da camada de saída 

que apresentar a mais alta taxa de ativação indica a classe que será atribuída ao 

padrão de entrada apresentado a rede. 

 

3.4 Experimentos 

A seguir será descrito o processo de treinamento das redes neurais MLP que fizeram 

uso das técnicas de otimização global FPSO. Na subseção 3.4.1 apresentamos as 

bases de dados utilizadas nos experimentos e na subseção 3.4.2 descrevemos a 

configuração adotada. Ao final, a subseção 3.4.3, o método estatístico empregado 

para comparar o desempenho dos algoritmos. 
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3.4.1 Base de Dados 

Foram utilizadas sete bases de dados para problemas de classificação de padrões, 

sendo três da área médica, provenientes do proben1, Precheit (1994) e UCI, Frank e 

Asuncion (2010). A seguir temos uma breve descrição de cada base de dados. 

 Câncer: Relacionada ao câncer de mama. Este conjunto de dados está dividido 

em duas partições, benigno e maligno, cuja classificação baseou-se na análise de 

dados microscópicos. A proporção entre as classes é a seguinte: 65,5% dos 

exemplos correspondem à classe benigna e 34,5% à classe maligna. 

 Diabetes: relacionada à presença ou não do diabetes em índios Pima. Leva em 

conta dados pessoais e exames médicos. A proporção para os diabéticos é 65,1% 

e para os não diabéticos é de 34,9%. 

 Coração: Classifica se um padrão apresenta ou não doenças do coração. Análise 

feita por meio do calibre de vasos sanguíneos. 

 Vidros: esta base é resultado de uma análise química, de oito diferentes 

componentes, mais um índice de refração. Esta base foi criada para auxiliar 

análises forenses. 

 Cavalos: Categorizam três possíveis diagnósticos veterinários – sobreviver, morrer 

ou ser sacrificado - para um cavalo com cólica. Para este conjunto de dados 62% 

dos exemplos correspondem à classe sobreviver, 24% são de cavalos que 

morreram e 14% para os que tiveram de ser sacrificados.  

 Soja: Reconhece 19 diferentes doenças da soja. A análise leva em conta uma 

descrição do grão da soja, da planta e mais algumas informações relacionadas ao 

histórico da planta.  

 Tireóide: Possui três classificações possíveis: hipotireoidismo, tireóide normal e 

hipertireoidismo. Esta base apresenta uma discrepância em relação à 

concentração de exemplos por classe, a hipotireoidismo conta com 5,1% dos 

padrões, a hipertireoidismo com 2,3% e a classe tireóide normal com 92,6%. 

A quantidade exata de exemplos para cada um destes conjuntos pode ser conferida 

na Tabela 1.  
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Tabela 1: Caracterização e distribuição do número de padrões por base de dados. 

Base de 

Dados 
Entradas Saídas 

Nº exemplos 

de Treino 

Nº exemplos de 

Validação 

Nº exemplos 

de Teste 

Câncer 9 2 350 174 175 

Diabetes 8 2 384 192 192 

Coração 35 2 460 230 230 

Vidros 9 6 107 53 54 

Cavalos 58 3 182 91 91 

Soja 82 19 342 170 171 

Tireóide 21 3 3600 1800 1800 

Fonte: Autor (2011). 

O número de neurônios na camada de entrada da rede neural (características do 

problema), ou seja, o I da equação (3.1) é representado pela coluna entradas. O 

número de classificações possíveis, O da equação (3.1), ou a quantidade de 

neurônios na camada de saída da rede neural é dado pela coluna saídas. Em relação 

à camada intermediária adotou-se uma arquitetura fixa, com seis neurônios, conforme 

mencionado na seção 3.2, representação das soluções. As sete bases de dados foram 

divididas em três subconjuntos seguindo a seguinte proporção: 50% dos dados 

representam o conjunto de treinamento; 25% o conjunto de validação e os outros 25% 

o conjunto de teste. O conjunto de validação foi utilizado para indicar o momento 

correto de parar o processo de treinamento. 

 

3.4.2 Configurações 

Para facilitar a identificação de cada algoritmo utilizado nos experimentos foram 

criadas siglas. Estas por sua vez foram formadas a partir da junção do FPSO mais o 

algoritmo de busca local utilizado no treinamento da rede neural. Então temos os 

seguintes: FPSOLm (FPSO + Levenberg-Marquardt), FPSORprop (FPSO + Resilient-

backpropagation) e FPSO:CGLm (FPSO com convergência garantida + Levenberg-

Marquardt). Estes três algoritmos foram comparados com os de busca local Resilient-

backpropagation - Rprop (uma variação do algoritmo back-propagation, cujo propósito 

é acelerar a convergência do processo de treinamento. Ao invés de utilizar a taxa de 
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aprendizado o Rprop faz uso do sinal do gradiente do erro para indicar a direção do 

ajuste a ser feito nos pesos. Assim evita-se que sejam necessárias mais iterações 

para que o algoritmo alcance um ponto ótimo ou mesmo que assuma comportamento 

de estagnação em uma região plana na superfície de erro) e Levenberg-Marquardt – 

LM (ao contrário do algoritmo back-propagation que é baseado no gradiente 

descendente, o Levenberg-Marquardt utiliza taxa de aprendizado variável. Este 

algoritmo requer grande quantidade de memória e poder computacional). 

A arquitetura das redes foi composta da seguinte maneira: camada de entrada – 

camada intermediária – camada de saída, sendo a camada intermediária composta 

por 6 neurônios, ou seja, foram utilizadas apenas redes neurais MLP com uma única 

camada escondida que continham 6 neurônios. Para compor o critério de classificação 

os dados de entrada da rede neural foram submetidos à regra do “winner-takes-all”, 

em que a unidade de saída que apresentar o maior valor determina a classe do padrão 

de entrada. 

Tabela 2: Parâmetros de configuração dos algoritmos - PSO, CGPSO e CPSO-SK. 

Algoritmo Descrição Valor 

PSO 

Tamanho do enxame 30 partículas 

Critério de parada 1000 iterações ou GL51 

Critério de parada para decaimento de pesos 1000 iterações 

Medida de qualidade NMSE 

Limite do espaço de busca [-2.0, +2.0] 

Fatores de aceleração c1 = c2 = 1.4960 

Peso de inércia 0,7298 

CGPSO 
P (raio) inicial 1 

Limiar de #sucesso e #fracasso 5 

CPSO-SK Fator de particionamento k  1.3 x √𝑝𝑒𝑠𝑜𝑠 

Fonte: Carvalho (2007). 

                                            

1 GL5 é o mesmo que Critério de Parada Antecipado, utilizado no conjunto de validação para estimar 

quando a rede começa a memorizar as nuances dos dados de treino. O treinamento da rede, então, é 

interrompido quando o erro de validação, GL5, atinge 5%. 
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Os parâmetros de configuração utilizados pelos algoritmos referenciados, 

(CARVALHO, 2007) estão descritos na Tabela 2, enquanto que na Tabela 3 é possível 

verificar as configurações adotadas para os experimentos com os algoritmos FPSOLm, 

FPSORprop e FPSO:CGLm. Na Tabela 4 temos a descrição dos parâmetros utilizados 

pela rede neural. 

Em Carvalho (2007) CGPSO significa PSO com convergência garantida. Este 

algoritmo utiliza os mesmos parâmetros que o PSO, no entanto possui dois 

parâmetros adicionais (raio inicial e os limiares de sucesso e fracasso).  CPSO-SK é 

o mesmo que PSO cooperativo e também utiliza os mesmos parâmetros do PSO, no 

entanto possui um parâmetro adicional – o fator de particionamento, no caso k. 

Os valores adotados para o desenvolvimento deste trabalho levaram em consideração 

as configurações utilizadas em Carvalho (2007), disponíveis na Tabela 1, a exceção 

foi o número de iterações para o critério de parada. No presente trabalho o número de 

iterações foi 10 vezes menor do que em Carvalho (2007), devido a restrições de tempo 

de execução. 

Tabela 3: Parâmetros de configuração dos algoritmos FPSOLm, FPSORprop e FPSO:CGLm. 

Algoritmo Descrição Valor 

FPSO 

Tamanho do enxame 

Critério de parada 

Medida de qualidade 

Limite do espaço de busca 

Fator de inércia 

K 

30 partículas 

100 iterações ou GL5 

NMSE 

[-2.0, +2.0] 

[0.9 a 0.4] 

30 

FPSO:CG 
P (raio) inicial 

Limiar de #sucesso e #fracasso 

1 

5 

Fonte: Autor (2011). 

 

A medida de qualidade NMSE, assim como em Carvalho (2007), foi empregada 

apenas no treinamento das partículas enquanto que na fase de testes foi utilizado o 

CEP. 
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Tabela 4: Parâmetros de configuração da rede neural. 

Descrição da Rede Neural Valor 

Nº de neurônios escondidos 

Número máximo de iterações 

Funções de ativação 

Algoritmo de treino 

Nº de falhas de validação 

6 

100 

Tangente sigmóide – Linear 

Levenberg-marquardt 

5 

Fonte: Autor (2011). 

 

3.4.3 Comparação dos Algoritmos 

Para obtenção das médias CEP os algoritmos foram submetidos a 30 execuções 

independentes cada um. A cada nova execução os subconjuntos de dados – 

treinamento, validação e teste – foram divididos de forma aleatória seguindo as 

proporções indicadas na subseção 3.4.1. Ao final de cada execução foram 

armazenados os erros de classificação para os dados de teste, calculado conforme a 

equação (13). 

Para validar estatisticamente os resultados obtidos, as médias finais de FPSOLm, 

FPSORprop e FPSO:CGLm foram submetidas ao seguinte teste de hipótese, sendo 

adotado α=5% ou nível de confiança de 95% (WAYNE, 1990): 

t =
𝑥̅1−𝑥̅2

√
𝑆1

2

𝑛1
 + 

𝑆2
2

𝑛2
  

 (14) 

em que 𝑥̅ representa a média, 𝑆2a variância e n o número de execuções 

independentes para a amostra em questão.  

Os testes estatísticos foram aplicados comparando os algoritmos FPSOLm, FPSORprop, 

FPSO:CGLm aos algoritmos de busca local LM e Rprop aplicados as mesmas bases 

de dados. Primeiro foi realizado o teste bilateral para verificar se a média dos 

resultados dos algoritmos era estatisticamente diferente. Se o resultado fosse 

diferente, era, então, aplicado o teste unilateral à esquerda para verificar se a média 
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dos resultados de um algoritmo era estatisticamente menor que a média dos 

resultados do segundo algoritmo.  

 

3.5 Resultados 

Os resultados dos experimentos são apresentados na Tabela 5 que contém as médias 

(µ) e o desvio padrão () do erro percentual de classificação (CEP) para cada base 

de dados em cada algoritmo. Os valores destacados em negrito correspondem às 

menores médias de erro por base de dados. 

As siglas Lm e Rprop associados aos FPSOs na tabela acima indicam o algoritmo de 

busca local empregado no treinamento da rede neural. Estes representam o 

Levenberg-Marquardt e o Resilient-backpropagation respectivamente.  

Tabela 5: Media e desvio padrão do erro percentual de classificação para os algoritmos FPSOLM, 
FPSORprop, LM, Rprop e FPSO:CGLm utilizados no treinamento de redes neurais. 

Base de 

Dados 

FPSOLm FPSORprop LM Rprop FPSO:CGLm 

µ  µ  µ  µ  µ  

Câncer 2,969 1,688 3,352 1,484 4,705 1,780 4,076 1,774 3,886 1,337 

Diabetes 22,708 2,932 22,778 3,595 26,163 3,508 24,080 3,057 21,979 4,711 

Coração 18,580 3,319 21,058 6,023 21,986 3,237 19,710 2,985 19,159 3,189 

Vidro 35,598 9,160 39,748 10,821 43,270 8,050 47,044 9,971 36,855 9,133 

Cavalos 34,762 5,174 36,557 5,588 43,150 5,242 37,106 4,869 35,018 5,813 

Soja 38,157 3,542 63,157 7,150 40,510 4,621 61,706 10,542 41,784 7,749 

Tireóide 1,774 0,398 5,978 0,504 3,556 1,203 6,337 0,822 4,526 1,923 

Fonte: Autor (2011). 

 

O tempo médio das execuções, em segundos, para cada algoritmo e base de dados 

está registrado na Tabela 6. 
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Tabela 6: Média e desvio padrão do tempo de execução, em segundos, para os algoritmos FPSOLm, 
FPSORprop, LM, Rprop e FPSO:CGLm utilizados no treinamento de redes neurais. 

Base de 

Dados 

FPSOLm FPSORprop LM Rprop FPSO:CGLm 

µ  µ  µ  µ  µ  

Câncer  1463,69 9,92 1763,14 66,66 0,43 0,12 0,46 0,15 870,78 670,54 

Diabetes  1504,08 8,60 1516,54 21,93 0,37 0,06 0,38 0,08 2012,04 569,09 

Coração  2391,57 30,73 907,33 8,84 0,86 0,43 0,35 0,08 2321,17 85,96 

Vidro 1807,52 44,99 875,68 111,62 0,67 0,18 0,79 0,82 1736,22 50,60 

Cavalos 2749,33 41,17 1289,85 11,67 0,86 0,22 0,53 0,14 2348,60 45,57 

Soja 21226,23 4071,07 1613,60 25,31 8,09 1,64 1,76 1,09 17052,38 2203,70 

Tireóide 11185,60 946,62 1486,32 79,98 5,87 4,91 3,95 1,93 7882,60 1179,19 

Fonte: Autor (2011). 

 

O tempo de execução dos algoritmos híbridos notadamente são muito maiores aos de 

busca local, Levenberg-Marquardt e Resilient-Back-propagation, entretanto o 

desempenho alcançado pelos que fazem uso da técnica FPSO consorciado a um 

algoritmo de busca local é compensado quando avaliamos as médias de erros obtidas. 

Os tempos de execução dos algoritmos FPSO são elevados pelo fato de que para 

cada componente i do vetor de partículas e para cada iteração são computadas as 

quantidades de vizinhas topológicas e novos fatores de constrição, além do laço para 

retirada das arestas e redefinição do peso de inércia. 

Os algoritmos da Tabela 6 foram comparados e os resultados dos testes de hipótese 

por base de dados podem ser visualizados na Tabela 7. Apenas os resultados 

relevantes estatisticamente foram relacionados, ou seja, apenas os resultados cujo 

algoritmo 1 foi melhor que o algoritmo 2. 
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Tabela 7: Resultado dos testes de hipótese para as sete bases de dados que utilizaram algoritmo 
híbrido no treinamento de redes neurais MLP2. 

Base de Dados Algoritmo 1 Algoritmo 2 Valor Obtido 

Câncer 

FPSOLm LM -3,8761 

FPSOLm Rprop -2,7857 

FPSOLm FPSO: GCLm -2,3325 

Diabetes FPSOLm LM -4,1391 

Coração FPSOLm LM -4,0239 

Vidro 
FPSOLm LM -3,4459 

FPSOLm Rprop -4,6302 

Cavalos FPSOLm LM -6,2377 

Soja 

FPSOLm LM -2,2135 

FPSOLm Rprop -11,5980 

FPSOLm FPSO: GCLm -2,3316 

FPSOLm FPSORprop -17,1609 

Tireóide 

FPSOLm LM -7,7028 

FPSOLm Rprop -27,3656 

FPSOLm FPSO: GCLm -7,6758 

FPSOLm FPSORprop -35,8553 

Fonte: Autor (2011). 

 

Na Tabela 8 são apresentados a média e desvio padrão CEP dos algoritmos utilizados 

em (Carvalho (2007) para as bases de dados câncer, diabetes e coração em 

comparação com o desempenho do algoritmo FPSOLm, cuja média de erro obtida foi, 

na maioria das vezes, a menor dentre as três versões apresentadas neste trabalho 

(FPSOLm, FPSORrop e FPSO:CGLm) para ajuste dos pesos de uma rede neural MLP.  

 

 

                                            

2 O algoritmo 1 adotado na comparação com os demais foi o FPSO Lm por este ter alcançado as menores 

médias de erros, conforme a Tabela 6. 
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Tabela 8: Média e desvio padrão do CEP para cada algoritmo proposto no trabalho base em relação 

ao algoritmo FPSOLm. 

Base de 

Dados 

PSO-GL5 

(CARVALHO, 

2007) 

PSO-WD 

(CARVALHO, 

2007) 

GCPSO-WD 

(CARVALHO, 

2007) 

FPSOLm 

µ  µ  µ  µ  

Câncer 3,542 1,182 3,440 1,425 3,805 1,063 2,969 1,688 

Diabetes 24,687 2,345 23,708 2,606 22,677 2,566 22,708 2,932 

Coração 20,547 2,379 17,904 2,108 17,356 1,963 18,580 3,319 

Fonte: Autor (2011). 

 

A Tabela 9 mostra que o algoritmo FPSOLm apresentou melhor desempenho 

estatístico que o algoritmo PSO-GL5 apenas nas bases de dados diabetes e coração 

e ao GCPSO-WD na base câncer. No entanto é preciso salientar que o FPSOLm 

contou com 10 vezes menos execuções – de acordo com a Tabela 3 se comparado 

com a Tabela 2 - durante o treinamento da rede neural e mesmo assim conseguiu 

alcançar bons resultados. Para as demais configurações o FPSOLm mostrou-se 

equivalente estatisticamente aos demais. 

Tabela 9: Resultado dos testes de hipótese entre FPSOLM e os algoritmos de ajuste dos pesos 

apresentados em Carvalho (2007). 

Base de Dados Algoritmo 1 Algoritmo 2 Valor Obtido 

Câncer FPSOLm GCPSO-WD -2,4381 

Diabetes FPSOLm PSO-GL5 -3,1427 

Coração FPSOLm PSO-GL5 -2,8380 

Fonte: Autor (2011). 

 

3.6 Conclusão 

Neste capítulo foram apresentados os aspectos gerais do uso de três algoritmos 

híbridos formados a partir de uma variação da otimização por enxame de partículas, 

FPSO, com algoritmos de busca local (Levenberg-Marquardt e Resilient-Back-

propagation), foram eles: FPSOLm e FPSORprop e uma versão híbrida que utilizou a 

técnica da convergência garantida, FPSO:CGLm, no processo de ajuste dos pesos das 
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conexões de redes neurais MLP do tipo feed-forward. O modo de representação das 

soluções, as bases de dados utilizadas, as configurações adotadas, bem como o teste 

estatístico aplicado para validar os experimentos. 

Nesta etapa do trabalho a comparação dos resultados experimentais realizados entre 

os algoritmos FPSOLm, FPSORprop e FPSO:CGLm demonstraram que o uso da técnica 

de convergência garantida não apresentou melhoria significativa nos resultados. 

Apesar de o FPSO:CGLm ter alcançado a menor média de erros em uma das bases 

de dados utilizada, diabetes, o teste de hipótese não comprovou que este algoritmo 

foi estatisticamente melhor que os demais. Por este motivo a técnica de convergência 

garantida não foi empregada no processo simultâneo de otimização dos pesos e 

arquiteturas, descrito no capítulo a seguir. Uma equivalência estatística foi 

comprovada entre os algoritmos FPSOLm e FPSORprop. No entanto foi utilizado apenas 

a versão que fez uso do algoritmo de busca local Levenberg-Marquardt, FPSOLm, por 

este ter obtido as menores médias de erro na maioria das bases de dados testadas. 

Apesar de os testes estatísticos comprovarem que o FPSOLm, que obteve as menores 

médias de erros na maioria das bases de dados foi superior a apenas 2 variações de 

PSO propostas em Carvalho (2007) é importante observar que o FPSOLm contou com 

dez vezes menos execuções em relação aos algoritmos apresentados em Carvalho 

(2007). 

O tempo de execução dos algoritmos híbridos propostos nesta pesquisa, FPSOLm, 

FPSORprop e FPSO:CGLm, foi um dos limitantes do processo de otimização das redes 

neurais. Se imaginarmos uma projeção dos resultados no qual fosse possível 

adicionarmos dez vezes mais execuções, poderíamos afirmar que os métodos 

propostos seriam, sim, melhores que aqueles apresentados em Carvalho (2007). Por 

este motivo devemos continuar estudando formas de diminuir o tempo de execução 

destes algoritmos, seja adotando medidas como computação paralela ou diminuir o 

tamanho da população de partículas ao longo das iterações, mantendo apenas 

aquelas que alcançaram melhores posições no espaço de busca. Esta medida evitaria 

que os algoritmos híbridos propostos investissem tempo e poder computacional em 

partículas que não proporcionam bons resultados. Este tempo então poderia ser 



49 
 

 
 

revertido em novas iterações de avaliação para aquelas localizadas em regiões do 

espaço de busca mais promissor.  
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Capítulo 4  

Ajuste Simultâneo de Pesos e Arquiteturas com 

FPSO 

Este capítulo, em adição ao anterior - ajuste dos pesos das conexões, quando no 

treinamento da rede neural - estabelece a redefinição das arquiteturas. Esta 

combinação, arquiteturas e pesos da rede neural, se dá de modo simultâneo, ou seja, 

à medida que uma melhor arquitetura é definida os pesos das conexões da rede neural 

são recalibrados. Neste processo foram utilizados o algoritmo do Frankenstein PSO, 

as mesmas bases de dados e resultados do capítulo anterior. 

 

4.1 Introdução 

O processo de treinamento de redes neurais com ajuste simultâneo de arquiteturas e 

pesos diferencia-se do mencionado no Capítulo 3 pelo fato de, agora, o processo 

contemplar os dois passos o de estabelecer a arquitetura adequada e ajustar os pesos 

das conexões recém estabelecidas. Na primeira etapa define-se a quantidade de 

camadas intermediárias bem como a quantidade de neurônios ou nodos que cada 

uma possuirá. Em um segundo momento são calibrados os pesos das conexões 

definidos pela primeira etapa. 

A definição da arquitetura de uma rede neural não é uma tarefa fácil, pois quando a 

rede possui parâmetros além do necessário ocorre overfitting (VAN WYK; 

ENGELBRECHT, 2010) (significa que a rede memoriza os dados de treinamento e 

quando é apresentada a dados desconhecidos – dados de teste – produz altas taxas 

de erro) e quando possui parâmetros a menos ocorre o inverso, underfitting (a rede 

não possui conexões suficientes, com isso apenas parte das características do 

problema são aprendidas. O que também causa alta taxa de erro). 

Normalmente esta parte do processo de treinamento é realizada na base da tentativa 

e erro ou através da consulta a um especialista. Por este motivo são cada vez mais 
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frequentes o desenvolvimento e aplicação de técnicas computacionais com o 

propósito de definir automaticamente a arquitetura da rede. O objetivo destes métodos 

é fixar redes neurais de baixa complexidade (a complexidade é dada pelo tamanho do 

vetor de pesos, quanto maior o vetor maior é a complexidade da rede) que produzam 

erros dentro de uma faixa mínima aceitável. 

Neste capítulo apresentamos uma metodologia automática para otimização de 

arquiteturas e ajuste dos pesos de redes neurais MLP do tipo feed-forward 

fundamentadas no algoritmo de otimização por enxame de partículas FPSO. Esta 

metodologia faz uso dos resultados obtidos no capítulo 3 e agora além do ajuste dos 

pesos também realiza a definição do número de neurônios na única camada 

escondida considerada – assim como em Carvalho (2007). Neste trabalho 

consideramos redes neurais de arquitetura fixa, cujo único parâmetro variável é a 

quantidade de neurônios na única camada intermediária, ou seja, as arquiteturas são 

do tipo: camada de entrada – uma camada intermediária – camada de saída, de 

acordo com a Figura 9. 

Figura 9: Esquema de uma rede neural MLP do tipo feed-forward. 

 

Camada de 
Entrada 

Camada 
Intermediária 

Camada de 
Saída 

Fonte: Autor (2011). 
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Este capítulo segue organizado da seguinte forma: na seção 4.2 são apresentados os 

aspectos gerais relativos à otimização simultânea dos pesos e arquiteturas; na seção 

seguinte, a 4.3, são detalhados os experimentos realizados nas 7 bases de dados. Na 

seção 4.4 dispomos os resultados obtidos e por fim temos as conclusões na seção 

4.5. 

 

4.2 Otimização dos pesos e arquiteturas com PSO 

A abordagem utilizada neste trabalho é similar à apresentada em Carvalho (2007), em 

que dois algoritmos são executados simultaneamente, sendo um para definir o 

número de neurônios na única camada intermediária e o outro para ajustar os pesos 

das conexões da rede neural. Os dois enxames (o de arquitetura e o de pesos) 

utilizaram diferentes partições do conjunto de dados. A proporção dos subconjuntos 

de dados foram as mesmas da subseção 3.4.1. O conjunto de treinamento foi utilizado 

pelo algoritmo responsável pelo ajuste dos pesos; o conjunto de validação pelo 

algoritmo responsável pela definição da arquitetura e o conjunto de teste utilizado no 

final do processo para avaliar a melhor configuração encontrada. 

Os algoritmos desenvolvidos neste trabalho seguiram a mesma metodologia que a 

apresentada em Carvalho (2007) sendo o FPSOLm sempre utilizado no ajuste dos 

pesos enquanto que na definição da arquitetura foram utilizados o PSO e o FPSO. 

Portanto os novos algoritmos desenvolvidos foram: PSO-FPSOLm e FPSO-FPSOLm, 

em que o primeiro termo indica o algoritmo utilizado para definir as arquiteturas e o 

segundo representa o algoritmo utilizado para o treinamento da rede neural. 

 

4.2.1 Representação das Soluções 

O algoritmo responsável pela definição da arquitetura (PSO ou FPSO) possui uma 

estrutura de dados diferenciada. Nesta estrutura são armazenados dois valores, além 

das configurações inerentes ao algoritmo em questão (PSO ou FPSO), são eles: um 

número natural – para representar o número de neurônios na camada escondida – e 

um vetor de reais para armazenar os melhores pesos sinápticos encontrados até o 

momento. Este vetor com os melhores pesos sinápticos é referenciado aqui por net. 
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O algoritmo que calibra os pesos das conexões utiliza a mesma abordagem descrita 

na subseção 3.2, ou seja, utiliza vetores de reais onde cada componente representa 

um peso da rede neural. 

 

4.2.2 Algoritmo de otimização das arquiteturas e pesos 

O método de otimização utilizado neste trabalho consiste na execução simultânea de 

dois algoritmos de otimização por enxame de partículas, sendo um para a definição 

da arquitetura, baseado no erro do conjunto de validação, e o outro para ajuste dos 

pesos sinápticos – baseado no erro do conjunto de treinamento. A seguir o pseudo-

código para a otimização das arquiteturas e pesos. 

Algoritmo 3: Pseudo-código da otimização para a definição das arquiteturas e ajuste dos pesos de 

uma rede neural MLP. 

1: Inicializar randomicamente a população de arquiteturas A, 

2: Repita 

3: Para cada particular Ai da população A faça 

4: Iniciar Pi 

5: Inserir Ai.net em Pi 

6: Executar Pi por t iterações utilizando o conjunto de treinamento 

7: Ai.net = Pi.ŷ 

8: Avaliar f(Ai.net) utilizando o conjunto de validação 

9: Fim do para 

10: Para cada partícula Ai da população A faça 

11: Atualize velocidade e posição de Ai de acordo com a equação 

(4) e equação (2). 

12: Atualize ai.net para a nova arquitetura representada por Ai 

13 Fim do para 

14: Até que o critério de parada seja satisfeita (por exemplo: nº máximo de 

execução ou taxa de erro mínimo alcançado). 

Fonte: Carvalho (2007). 

Para cada arquitetura considerada é iniciado um processo de otimização dos pesos. 

Sempre uma das partículas é iniciada com o melhor vetor de pesos sinápticos 
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encontrados até o momento (vetor net – definido pela partícula de arquitetura). 

Quando o processo de otimização dos pesos estiver sido concluído, o melhor vetor 

encontrado até o momento é armazenado de volta na partícula de arquitetura, net. 

O processo de otimização simultânea das arquiteturas e pesos é muito mais lento se 

comparado apenas com o ajuste dos pesos. Por isso adotamos a seguinte 

configuração em relação à adotada em Carvalho (2007). 

Tabela 10: Configurações dos algoritmos de otimização simultânea das arquiteturas e pesos em 
relação ao trabalho base. 

Configuração Presente Trabalho (CARVALHO, 2007) 

Nº de partículas do 

algoritmo de arquitetura 

20 20 

Nº de iterações do 

algoritmo de arquitetura 

10 15 

Nº de iterações do 

algoritmo de pesos 

100 100 

Fonte: Autor (2011). 

É possível observar que na Tabela 10 apenas o número de iterações do algoritmo de 

otimização por enxame de partículas responsável pela definição das arquiteturas 

possui valor diferente ao utilizado no trabalho base. Este valor foi reduzido para 10 

devido ao tempo total de execução do algoritmo de otimização das arquiteturas e 

pesos. 

 

4.3 Experimentos 

Nos experimentos realizados com a metodologia simultânea de otimização das 

arquiteturas e pesos foram comparados os desempenhos dos algoritmos PSO-

FPSOLm e FPSO-FPSOLM com outros presentes na literatura. Foram utilizadas nos 

experimentos as mesmas 7 (sete) bases de dados relacionadas na subseção 3.4.1 e 

a mesma estratégia de validação estatística. 

Os parâmetros de configuração dos algoritmos PSO-FPSOLm e FPSO-FPSOLm estão 

descritos na Tabela 11. 
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Tabela 11: Parâmetros de configuração dos algoritmos de ajuste simultâneo dos pesos e arquiteturas. 

ARQUITETURAS 

PSO 

Tamanho do enxame 20 

Número de iterações de avaliação da arquitetura 10 

Medida de Qualidade NMSE (conj. de validação) 

Limite do espaço de busca [1, 12] 

Coeficiente de aceleração 1,4960 

Peso de inércia 0,7298 

FPSO 

Tamanho do enxame 20 

Número de iterações de avaliação da arquitetura 10 

Medida de Qualidade NMSE (conj. de validação) 

Limite do espaço de busca [1, 12] 

Peso de inércia () 
0,9 a 0,4, linearmente 

decrescente 

K 20 

PESOS 

FPSO 

Tamanho do enxame 30 

Número de iterações de avaliação dos pesos 100 

Algoritmo de busca local Levenberg-Marquardt (Lm) 

Medida de Qualidade NMSE (conj. de treino) 

Limite do espaço de busca [-2.0, 2.0] 

Peso de inércia () 
0,9 a 0,4, linearmente 

decrescente 

K 30 

Fonte: Autor (2011). 

 
Assim como no ajuste dos pesos sinápticos, Capítulo 3, em que as redes neurais 

possuíam arquitetura fixa – 6 neurônios na camada escondida -  o processo de ajuste 

simultâneo da arquitetura e pesos também assumiu redes neurais com arquitetura fixa 

– apenas uma camada intermediária, sendo, no entanto 12 o número máximo de 
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nodos na camada escondida. O critério de classificação também foi o mesmo adotado 

no capítulo anterior, winner-takes-all, ou seja, o vencedor leva tudo.  

 

4.4 Resultados 

Na Tabela 12 temos os resultados experimentais dos algoritmos PSO-FPSOLm e 

FPSO-FPSOLm em que estão dispostas as médias (µ) e desvios padrão () dos erros 

percentuais de classificação (CEP) para cada algoritmo em cada uma das bases de 

dados. Em negrito destacamos a menor média de erro alcançada em cada base. 

Tabela 12: Média e desvio padrão do erro percentual de classificação para os algoritmos PSO-
FPSOLm e FPSO-FPSOLm. 

Base de dados 
PSO-FPSOLm FPSO-FPSOLm 

µ  µ  

Câncer 3,676 1,761 3,333 1,334 

Diabetes 22,205 4,183 21,849 4,173 

Coração 19,015 2,866 17,136 4,518 

Vidros 39,436 6,955 36,118 4,836 

Cavalos 35,092 5,395 33,603 5,828 

Soja 58,2661 4,300 39,467 5,985 

Tireóide 3,715 2,542 2,715 1,557 

Fonte: Autor (2011). 

 
O tempo das execuções segue disposto em segundos (s) na Tabela 13. Se 

compararmos a Tabela 6 com a Tabela 13 podemos perceber a grande diferença entre 

o tempo médio das execuções. Isto se dá pelo fato de que a primeira ajusta apenas 

os pesos das conexões da rede neural enquanto que na última para cada partícula de 

arquitetura existem outras 30 partículas para ajuste dos pesos. 
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Tabela 13: Média e desvio padrão do tempo de execução em segundos para os algoritmos PSO-
FPSOLm e FPSO-FPSOLm. 

Base de dados 
PSO-FPSOLm FPSO-FPSOLm 

µ  µ  

Câncer 3335,308 924,725 59068,385 33948,658 

Diabetes 3521,203 474,382 117453,378 18715,534 

Coração 5848,261 2050,429 132743,420 19116,983 

Vidros 16957,091 2274,115 84166,164 57430,114 

Cavalos 8178,1218 4015,4315 37583,445 79219,158 

Soja 121769,5872 12957,6078 154797,125 87358,3498 

Tireóide 216468,636 31404,085 238144,236 105228,3308 

Fonte: Autor (2011). 

 
Os resultados experimentais demonstram que o algoritmo FPSO-FPSOLm obteve os 

melhores resultados em todas as sete bases de dados testadas (ver Tabela 13). 

Entretanto para afirmar que a utilização do algoritmo FPSO-FPSOLm obteve, de fato, 

o melhor desempenho ele foi comparado ao PSO-FPSOLm - desenvolvido neste 

trabalho - e a outros algoritmos encontrados na literatura - PSO-PSO:WD, PSO-

GCPSO:WD, PSO-GCPSO:GL5 e GaTSa. 

Os três primeiros algoritmos foram desenvolvidos pelo mesmo autor e estão definidos 

em Carvalho e Ludermir (2007). Trata-se da aplicação do PSO padrão para a definição 

das arquiteturas e uso de três diferentes variações do PSO ao ajuste dos pesos. Estas 

combinações foram: PSO:WD – que é o PSO padrão combinado a técnica de 

decaimento de pesos; GCPSO:WD – PSO com convergência garantida associado a 

técnica de decaimento de pesos e GCPSO:GL5 – PSO com convergência garantida 

associado a contagem de erros do conjunto de validação (GL5). 

Na Tabela 14 dispomos as médias e desvios-padrão CEP obtidos por outros trabalhos 

encontrados na literatura que realizam o ajuste dos pesos e definição da arquitetura 

de redes neurais MLP. Podemos observar que o algoritmo apresentado neste 

trabalho, FPSO-FPSOLm, obteve as menores médias de erros.  
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Tabela 14: Média e desvio padrão dos algoritmos PSO-FPSOLm e FPSO-FPSOLm em relação a outros 
trabalhos presentes na literatura que propuseram a definição das arquiteturas e ajuste dos pesos de 

uma rede neural MLP. 

  Câncer Diabetes Coração Vidros Cavalos Soja Tireóide 

PSO-FPSOLm 
µ 3,676 22,205 19,015 39,436 35,092 58,266 3,715 

 1,761 4,183 2,866 6,955 5,395 4,300 2,542 

FPSO-FPSOLm 
µ 3,333 21,849 17,136 36,118 33,603 39,468 2,715 

 1,334 4,173 4,518 4,836 5,828 5,985 1,557 

PSO-

GCPSO:GL5 

(CARVALHO; 

LUDERMIR, 

2007) 

µ 4,754 24,906 19,383 - - - - 

 4,427 3,529 2,268 - - - - 

PSO-PSO:WD 

(CARVALHO; 

LUDERMIR, 

2007) 

µ 4,137 23,541 24,906 - - - - 

 1,506 3,159 3,529 - - - - 

PSO-

GCPSO:WD 

(CARVALHO; 

LUDERMIR, 

2007) 

µ 4,560 23,604 19,383 - - - - 

 1,461 3,013 2,268 - - - - 

GaTSa 

(ZANCHETTIN; 

LUDERMIR; 

ALMEIDA, 2011) 

µ 7,192 27,062 - 55,143 38,700 62,941 7,151 

 4,031 3,109 - 6,082 1,585 5,679 0,890 

Fonte: Autor (2011). 

 
O algoritmo GaTSa apresentado em Zanchettin e Ludermir (2009) também foi 

desenvolvido para definir a arquitetura e ajustar os pesos de uma rede neural MLP. O 

GaTSa é um algoritmo híbrido composto por Algoritmo Genético, Tabu Search, 

Simulated Annealing e o algoritmo de busca local back-propagation. Este algoritmo 

possui duas fases bem definidas. A primeira consiste de uma busca global, na qual 

novas soluções são geradas, esta capacidade foi herdada do Algoritmo Genético, bem 

como o uso de memória, característica do Tabu Search. Em um segundo momento o 



59 
 

 
 

algoritmo entra na fase de busca local. Nesta hora o GaTSa faz uso de características 

provenientes do back-propagation, que proporciona uma solução mais precisa. 

De forma geral podemos dizer que o GaTSa funciona da seguinte maneira: Uma 

arquitetura com tamanho mínimo é definida como a solução inicial; a partir daí novas 

soluções são geradas - como em um algoritmo genético. O custo de cada nova 

solução é avaliado e a melhor delas é escolhida como no Tabu Search. Entretanto 

esta solução poderá ou não ser aceita, o critério de aceitação é o mesmo que o 

utilizado no Simulated Annealing – se a nova solução tiver um custo menor ela é 

aceita, senão poderá ser rejeitada conforme o cálculo da probabilidade. Soluções 

previamente encontradas são marcadas como tabu – assim como no Tabu Search. 

Durante a busca por novas soluções o tamanho do cromossomo é aumentado a fim 

de encontrar a melhor solução conforme os critérios de aceitação. Ao final do processo 

apenas a melhor solução é retornada. 

 

4.5 Conclusão 

Neste capítulo apresentamos o método de otimização das arquiteturas e pesos 

sinápticos para redes neurais MLP, do tipo feed-forward que fizeram uso de uma nova 

variação publicada recentemente da otimização por enxame de partículas, chamado 

Frankenstein PSO ou FPSO (MONTES DE OCA et al, 2009a). 

A metodologia empregada no desenvolvimento dos dois novos algoritmos - PSO-

FPSOLm e FPSO-FPSOLm - foi a mesma disposta em Carvalho (2007). Na qual o autor 

utilizou de forma alternada dois algoritmos PSO, um para definir a arquitetura e outro 

para calibrar os pesos das conexões da rede neural MLP. 

O algoritmo FPSO-FPSOLm foi superior ao algoritmo PSO-FPSOLm em termos da 

média do erro percentual de classificação para todas as bases de dados investigadas 

nesse trabalho. Contudo, como esperado, o algoritmo FPSO-FPSOLm foi inferior ao 

algoritmo PSO-FPSOLm em termos da média de tempo de execução.  

Em comparação com os algoritmos da literatura PSO-GCPSO:GL5, PSO-PSO:WD e 

PSO-GCPSO:WD disponíveis em Carvalho e Ludermir (2007) e GaTSa em Zanchettin 
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e Ludermir (2009), o algoritmo FPSO-FPSOLm é claramente melhor do que esses 

algoritmos em termos da média do erro percentual de classificação para as bases de 

dados adotadas nessa dissertação. Os resultados referentes a este capítulo 

encontram-se publicados em Lima e Ludermir (2011). 
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Capítulo 5 

Enxames Heterogêneos 

Neste capítulo há uma breve introdução as possíveis classificações quanto a 

heterogeneidade do enxame. Os parâmetros de configuração adotados, base de 

dados utilizadas, disposição do processo de treinamento da rede neural e resultados 

obtidos são também apresentados.  

 

5.1 Introdução 

Os modelos de otimização por enxame de partículas discutidos até o momento neste 

trabalho – PSO padrão e FPSO – são ditos homogêneos porque todas as partículas 

seguem a mesma regra de atualização, possuem a mesma quantidade de vizinhos ou 

utilizam os mesmos parâmetros na regra de atualização da velocidade (exceto os 

parâmetros randômicos) Montes de Oca et al (2009b). O enxame como um todo se 

comporta da mesma forma, não existem especificidades entre as partículas. 

Para que um enxame seja considerado heterogêneo ele deve conter no mínimo duas 

partículas diferentes, ou seja, o espaço de soluções deve ser analisado de forma 

diferente. Seja pela adoção de diferentes parâmetros de configuração, seja pelo 

modelo de vizinhança ou outro aspecto. Diante desta diferenciação foram sugeridas 

classificações quanto a heterogeneidade que um enxame pode apresentar, conforme 

Montes de Oca et al (2009b). Estas, por sua vez, são brevemente esplanadas a seguir. 

 

5.1.1 Modelo de Influência 

Neste tipo de heterogeneidade as partículas do enxame possuem diferentes 

mecanismos para definir como será a influência de uma partícula sobre as outras, ou 

seja, quanto uma partícula poderá interferir no movimento das demais. Para efeito de 

exemplo podemos citar o seguinte: em um enxame parte das partículas adota o 

modelo de topologia completamente conectada (também conhecido por gbest) 
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enquanto que as demais utilizam topologia anel (também chamada lbest ou ring) 

conforme mencionado na seção 2.2 PSO Padrão. 

5.1.2 Regra de Atualização 

Como o próprio nome sugere este tipo determina o uso de diferentes regras para a 

atualização da velocidade das partículas. Isto permite que o espaço de busca seja 

explorado de forma completamente diferente pelas partículas, obviamente que o 

desempenho desta abordagem dependerá da configuração adotada. 

5.1.3 Heterogeneidade de vizinhança 

Caracteriza-se pelos diferentes graus de vizinhança ao longo do enxame. Imagine que 

a população de partículas seja um grafo, para pertencer a esta classe de 

heterogeneidade ao menos duas partículas devem possuir diferentes graus de 

vizinhança. 

5.1.4 Parâmetros 

Configura-se por dispor de diferentes parâmetros de configuração para as partículas. 

Para que um enxame heterogêneo se enquadre nesta categoria é preciso que um 

subgrupo de partículas utilize a mesma regra de atualização e, no mínimo, duas delas 

utilizem diferentes parâmetros.  

A heterogeneidade ainda pode sofrer uma nova classificação, quanto ao modo como 

as configurações são aplicadas ao longo do tempo (ciclo evolucionário). Por exemplo, 

para que tenhamos uma heterogeneidade dinâmica, as alterações devem ser 

realizadas à medida que as iterações avançam. Se isso não ocorre o tipo 

correspondente é o estático. Temos ainda o tipo adaptativo, podemos considerar este 

como um caso particular do tipo dinâmico, caracteriza-se por aplicar novas 

configurações em resposta a um determinado comportamento apresentado pelo 

enxame. 

O restante do capítulo é organizado da seguinte forma: Seção 5.2 descreve os 

experimentos e é seguida da Seção 5.3 que apresenta os resultados, por fim a Seção 

5.4 com a conclusão. 
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5.2 Experimentos 

Nesta seção descrevemos como se deu o processo de treinamento das redes neurais 

MLP através da utilização de três algoritmos heterogêneos. Estes, por sua vez, foram 

compostos pelos algoritmos de otimização por enxames de partículas PSO padrão e 

FPSO descritos nas seções 2.2 e 2.3 respectivamente. O objetivo da aplicação dos 

enxames heterogêneos na tarefa de ajustar os pesos das conexões foi avaliar a 

capacidade de generalização da rede em relação ao algoritmo padrão. 

Para representar as soluções nós utilizamos o mesmo modelo disposto na seção 3.2 

e também as mesmas funções de custo, seção 3.3. A subseção 5.2.1 apresenta as 

configurações adotadas para a realização dos experimentos. 

 

5.2.1 Configurações 

Uma das ações necessárias para a construção de algoritmos heterogêneos é o 

estabelecimento da proporção entre os tipos. Para a realização dos experimentos 

foram utilizadas medidas similares as apresentadas em Montes de Oca et al (2009b). 

A proporção utilizada por cada algoritmo está indicada ao lado de cada tipo, por 

exemplo, FPSO70PSO30 significa que 70% do número total de partículas do enxame 

são do tipo FPSO e os 30% restantes são do tipo PSO padrão. A quantidade de 

partículas destinadas a cada um dos dois tipos, PSO padrão e FPSO, estão presentes 

na Tabela 16.  

Para a realização dos experimentos nós adotamos grande parte das configurações 

utilizadas pelos algoritmos PSO padrão e FPSO quando estes foram aplicados 

separadamente no treinamento das redes neurais. Os parâmetros de configuração 

utilizados pelos algoritmos heterogêneos são apresentados na Tabela 15. Foram 

utilizadas as mesmas sete bases de dados descritas na Subseção 3.4.1 e a mesma 

disposição de arquitetura da rede, ou seja, redes com arquitetura fixa compostas por 

nº de características do problema (camada de entrada) – 6 neurônios (camada 

intermediária) – nº de classificações possíveis (camada de saída). 
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O critério de classificação aplicado aos algoritmos heterogêneos foi calculado 

conforme a regra do winner-takes-all – o mesmo critério adotado nos capítulos 

anteriores. 

Tabela 15: Parâmetros de configuração dos algoritmos heterogêneos. 

Algoritmo Descrição Valor 

PSO 

Critério de parada 

Medida de qualidade 

Limite do espaço de busca 

Fatores de aceleração (c1 e c2) 

Peso de inércia () 

100 iterações 

NMSE 

[-2.0, 2.0] 

c1 = c2 = 1.4960 

0,7298 

FPSO 

Critério de parada 100 iterações 

Medida de qualidade NMSE 

Limite do espaço de busca [-2.0, +2.0] 

Fator de inércia () [0.9 a 0.4] 

Soma dos coeficientes de aceleração (φ) 4.1 

K 
Igual à quantidade de 

partículas do tipo FPSO 

Rede 

Neural 

Nº de neurônios escondidos 

Número máximo de iterações 

Funções de ativação 

Algoritmo de treino 

Nº de falhas de validação 

6 

100 

Tangente sigmóide – Linear 

Levenberg-Marquardt 

5 

Fonte: Autor (2011). 

 

Tabela 16: Quantidade de partículas, por tipo, utilizadas pelos algoritmos heterogêneos no 
treinamento de redes neurais MLP. 

Algoritmo Nº de Partículas do tipo FPSO Nº de Partículas do tipo PSO 

FPSO70PSO30 21 9 

FPSO30PSO70 9 21 

FPSO50PSO50 15 15 

Fonte: Autor (2011). 
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5.3 Resultados 

Na Tabela 17 dispomos as médias e desvios-padrão do erro percentual de 

classificação dos algoritmos heterogêneos para as sete bases de dados descritas na 

Tabela 1. O número presente ao lado de cada variação da otimização por enxame de 

partículas indica a proporção seguida pelo algoritmo para distribuir as partículas, por 

exemplo, FPSO70 indica que 70% das partículas são do tipo FPSO, ou seja, do total 

de 30 partículas, 21 são deste tipo. 

Tabela 17: Média e desvio padrão do erro percentual de classificação para os três algoritmos 
heterogêneos, FPSO70-PSO30, FPSO30-PSO70, FPSO50-PSO50. 

Base de 

Dados 

FPSO70PSO30 FPSO30PSO70 FPSO50PSO50 

Media Desvio Media Desvio Media Desvio 

Câncer 4,138 1,482 3,755 1,305 3,793 1,573 

Diabetes 23,351 3,967 22,500 3,421 24,670 3,872 

Coração 21,290 3,122 22,464 4,994 23,015 6,158 

Vidros 35,472 8,516 42,076 9,912 40,189 9,597 

Cavalos 35,202 6,495 33,919 5,486 33,480 5,534 

Soja 38,686 6,341 33,841 4,433 39,506 6,836 

Tireóide 5,785 1,996 5,002 2,238 4,806 1,874 

Fonte: Autor (2011). 

 

Tabela 18: Média e desvio padrão do tempo de execução, em segundos, para os três algoritmos 

heterogêneos, FPSO70-PSO30, FPSO30-PSO70, FPSO50-PSO50. 
Base de 

Dados 

FPSO70PSO30 FPSO30PSO70 FPSO50PSO50 

µ  µ  µ  

Câncer  1288,996 203,601 650,219 87,511 641,984 54,402 

Diabetes  796,080 25,318 852,351 53,702 1004,574 128,214 

Coração  1213,322 41,176 1167,846 157,837 1228,124 84,366 

Vidros 1010,646 51,518 965,613 79,517 1042,211 79,983 

Cavalos 1635,130 46,599 1372,587 156,338 1487,576 100,453 

Soja 18122,550 932,439 17632,490 2533,459 17068,465 875,474 

Tireóide 6806,700 690,462 8475,499 906,362 9739,833 858,960 

Fonte: Autor (2011). 

Na Tabela 18 temos o tempo médio, em segundos, e desvio-padrão das execuções 

nas sete bases de dados. Na Tabela 19 dispomos os resultados dos testes 
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estatísticos, nela apenas os resultados relevantes estatisticamente foram 

relacionados, ou seja, apenas os resultados cujo algoritmo 1 foi melhor que o algoritmo 

2. 

Tabela 19: Resultado dos testes de hipótese para os algoritmos heterogêneos, FPSO70-PSO30, 
FPSO30-PSO70, FPSO50-PSO50, apenas os resultados no qual os algoritmos heterogêneos obtiveram 

melhor desempenho foram relacionados. 

Base de dados Algoritmo 1 Algoritmo 2 Valor t Calculado 

Câncer FPSO30PSO70 RN -2,3582 

Diabetes FPSO70PSO30 RN -2,9085 

Vidros 

FPSO70PSO30 FPSO30PSO70 -2,7680 

FPSO70PSO30 FPSO50PSO50 -2,0136 

FPSO70PSO30 LM -3,6448 

FPSO70PSO30 Rprop -4,8337 

Cavalos 

FPSO50PSO50 FPSORprop -2,1430 

FPSO50PSO50 LM -6,9484 

FPSO50PSO50 Rprop -2,6944 

Soja 

FPSO30PSO70 
FPSO70PSO30 -3,4299 

FPSO30PSO70 
FPSO50PSO50 -3,8083 

FPSO30PSO70 
FPSORprop -19,0866 

FPSO30PSO70 
FPSOLM -4,1661 

FPSO30PSO70 
LM -5,7043 

FPSO30PSO70 
Rprop -13,3457 

FPSO30PSO70 
FPSO:CGLm -4,8733 

Tireóide 

FPSO50PSO50 FPSORprop -3,3079 

FPSO50PSO50 Rprop -4,0978 

Fonte: Autor (2011). 
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Após a realização dos experimentos os algoritmos heterogêneos FPSO70PSO30, 

FPSO30PSO70 e FPSO50PSO50 foram comparados com os algoritmos relacionados na 

Seção 3.5. Os resultados estão listados na Tabela 20. 

De acordo com a Tabela 20, é possível verificar que os algoritmos heterogêneos 

alcançaram as menores médias de erros em três das sete bases de dados. Cada 

proporção do algoritmo heterogêneo foi melhor em uma determinada base de dados, 

não tendo sido possível identificar uma proporção ideal para todas as bases testadas. 

Tabela 20: Média e desvio padrão nos algoritmos heterogêneos em relação aos algoritmos FPSOLM, 
FPSORPROP, LM, RPROP e FPSO:CGLm. 

  Câncer Diabetes Coração Vidros Cavalos Soja Tireóide 

FPSOLM 
µ 2,969 22,708 18,580 35,598 34,762 38,157 1,774 

s 1,688 2,932 3,319 9,160 5,174 3,542 0,398 

FPSORPROP 
µ 3,352 22,778 21,058 39,748 36,557 63,157 5,978 

s 1,484 3,595 6,023 10,821 5,588 7,150 0,504 

LM 
µ 4,705 26,163 21,986 43,270 43,150 40,510 3,556 

s 1,780 3,508 3,237 8,050 5,242 4,621 1,203 

RPROP 
µ 4,076 24,080 19,710 47,044 37,106 61,706 6,337 

s 1,774 3,057 2,985 9,971 4,869 10,542 0,822 

FPSO:CGLm 
µ 3,886 21,979 19,159 36,855 35,018 41,784 4,526 

s 1,337 4,711 3,189 9,133 5,813 7,749 1,923 

FPSO70PSO30 
µ 4,138 23,351 21,290 35,472 35,202 38,686 5,785 

s 1,482 3,967 3,122 8,516 6,495 6,341 1,996 

FPSO30PSO70 
µ 3,755 22,500 22,464 42,076 33,919 33,841 5,002 

s 1,305 3,421 4,994 9,912 5,486 4,433 2,238 

FPSO50PSO50 
µ 3,793 24,670 23,015 40,189 33,480 39,506 4,806 

s 1,573 3,872 6,158 9,597 5,534 6,836 1,874 

Fonte: Autor (2011). 

 
O teste de hipótese foi aplicado para verificar o quão bom foi o desempenho dos 

algoritmos heterogêneos em relação aos demais algoritmos relacionados na Tabela 

20. Apenas o resultado no qual o algoritmo heterogêneo foi comprovadamente melhor 

aos demais está relacionado na Tabela 21. 
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Tabela 21: Resultado do teste de hipótese no qual o algoritmo heterogêneo obteve melhor 
desempenho em relação aos demais testados neste trabalho para o treinamento de redes neurais 

MLP. 

Base de dados Algoritmo 1 Algoritmo 2 
Valor t 

Calculado 

Soja FPSO30PSO70 FPSOLM -4,166 

Fonte: Autor (2011). 

 

Conforme a Tabela 21 o algoritmo FPSO30PSO70 foi o único algoritmo heterogêneo 

com desempenho comprovadamente melhor em relação aos demais algoritmos 

testados no Capítulo 3, nos demais casos os algoritmos heterogêneos apresentaram 

equivalência estatística e alguns casos, produziram resultados piores. 

 

5.4 Conclusão 

Neste capítulo fizemos uso de uma abordagem apresentada em Montes de Oca et al 

(2009b). Este trabalho objetiva aplicar especificidade ao nível de partícula, 

promovendo assim algumas diferenciações. A intenção é possuir ao menos duas 

partículas que analisam de forma diferenciada o espaço de soluções. Diferentes 

parâmetros podem ser adotados para que um enxame possa ser considerado 

heterogêneo. Por exemplo, podemos ter duas ou mais partículas que possuem 

diferentes regras de atualização ou mesmo possuam diferentes parâmetros de 

configuração em relação as demais partículas do enxame. 

Nos experimentos que utilizaram enxame de partículas heterogêneo foram criados 

três novos algoritmos. Estes algoritmos caracterizam-se por possuírem diferentes 

concentrações de tipos, são eles: FPSO70PSO30, FPSO30PSO70 e FPSO50PSO50. 

Os resultados dos testes de hipótese realizados nos algoritmos FPSO70PSO30, 

FPSO30PSO70 e FPSO50PSO50 comprovaram que o uso de enxames heterogêneos é 

capaz de melhorar a capacidade de generalização de uma rede neural (algoritmo 

FPSO30PSO70 aplicado à base de dados Soja), no entanto houve casos em que a 

utilização da técnica produziu resultados piores.  
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No decorrer destes experimentos não foi possível identificar uma proporção ideal entre 

os dois tipos de PSO, dentre as três utilizadas (30%, 50% e 70%), capaz de produzir 

resultados melhores, estatisticamente, em todas as bases de dados. Este problema, 

com certeza, será um dos objetos de estudo para os enxames heterogêneos. 
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Capítulo 6 

Conclusões e Trabalhos Futuros 

Este capítulo aponta os resultados obtidos durante esta pesquisa; identifica pontos de 

melhorias e também novas oportunidades de estudo levantadas durante os 

experimentos. 

 

6.1 Conclusões 

Esta dissertação abordou uma tarefa importante na área de aprendizado 

supervisionado, treinamento de redes neurais MLP e a definição da arquitetura e 

ajuste dos pesos sinápticos, para problemas de classificação de padrões (BRAGA; 

CARVALHO; LUDERMIR, 2007). 

Para tanto fizemos uso de duas diferentes abordagens durante o treinamento das 

redes neurais MLP. Foram utilizados enxames não-heterogêneos e enxames 

heterogêneos. Para os algoritmos não-heterogêneos foram utilizados exames do tipo 

Frankenstein PSO – FPSO (MONTES DE OCA et al, 2009a) e algumas variações 

propostas; FPSOLm – Frankenstein PSO associado ao Levenberg-Marquardt, 

FPSORprop – Frankenstein PSO associado ao Resilient-Backpropagation e 

FPSO:CGLm – Frankenstein PSO com convergência garantida associado ao 

Levenberg-Marquardt). Também foram utilizados os algoritmos LM (Levenberg-

Marquardt) e Rprop (Resilient back-propagation). Em um segundo momento foram 

utilizados os enxames heterogêneos (MONTES DE OCA et al, 2009b) – utilizamos 

esta nomenclatura quando em um enxame ao menos duas partículas analisam o 

espaço de buscas de maneiras diferentes. Enxames heterogêneos podem ser 

classificados de diferentes maneiras, como por exemplo: quanto ao modelo de 

influência, a regra de atualização, a heterogeneidade de vizinhança e aos parâmetros 

de configuração. 

Os exames heterogêneos foram definidos seguindo a seguinte proporção: 

FPSO70PSO30, FPSO30PSO70 e FPSO50PSO50. O número ao lado do FPSO ou PSO 
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identifica a porcentagem utilizada para cada tipo, por exemplo: FPSO30PSO70 indica 

que 30% do total de partículas do enxame são do tipo FPSO e o restante, 70%, são 

do tipo PSO.  

Os algoritmos desenvolvidos aqui para ajuste automático das arquiteturas e ajuste dos 

pesos das conexões da rede neural - PSO-FPSOLm e FPSO-FPSOLm - basearam-se 

na metodologia disposta em Carvalho (2007). Na qual dois algoritmos PSO são 

utilizados simultaneamente para definir a arquitetura e treinar as redes neurais MLP 

(nesta fase para compor nosso enxame utilizamos apenas partículas do tipo FPSOLm, 

que foram aquelas que obtiveram o melhor desempenho na fase de treinamento das 

redes). 

Este processo de treinamento se deu em duas fases: na primeira foram avaliados os 

desempenhos de algumas variações do PSO e dois algoritmos de busca local no 

ajuste dos pesos da rede neural com arquitetura fixa. Em um segundo momento foram 

utilizados os algoritmos PSO-FPSOLm e FPSO-FPSOLm para definir o número de 

neurônios na única camada intermediária considerada e treinar as redes neurais. 

Os algoritmos utilizados na primeira parte foram: FPSOLm, FPSORprop, FPSO:CGLm, 

Resilient back-propagation (Rprop) e Levenberg-Marquardt (LM). O uso do 

Frankenstein PSO proporcionou melhores resultados porque para cada fase do 

processo evolucionário acentuou-se a influência de determinado comportamento na 

composição da solução (o fato de o FPSO apresentar inicialmente uma topologia 

completamente conectada favoreceu uma rápida propagação da melhor solução. Esta 

configuração aplicada nas iterações iniciais propiciou ao algoritmo a chance de 

encontrar soluções de boa qualidade. Em contrapartida a topologia anel retardou a 

propagação da melhor região encontrada nas iterações finais – propiciando maior 

explotação - associada a isto o uso do peso de inércia baixo evitou que o restante do 

enxame se locomovesse a regiões menos promissoras). 

Realizamos avaliação experimental e dois critérios foram usados para medir o 

desempenho dos algoritmos: erro percentual de classificação e o tempo de execução.  

Essa avaliação permitiu concluir que o algoritmo FPSO-FPSOLm obteve melhor 
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acurácia de classificação se comparado ao algoritmo PSO-FPSOLm em contrapartida 

este último apresentou menor tempo de execução. 

A utilização de enxames heterogêneos na fase de treinamento da rede neural 

proporcionou boas médias de erros de classificação, no entanto não foi possível 

estabelecer uma proporção ideal aplicável a todas as bases de dados testadas. 

 

6.2 Trabalhos Futuros 

Os bons resultados obtidos pelos algoritmos propostos incentivam o aprimoramento 

das pesquisas sobre o assunto, principalmente no estudo de meios que possam 

melhorar o tempo de execução. Uma solução a este problema poderia ser a 

reimplementação dos algoritmos em linguagens de baixo nível.  

Outra ideia é investir no estudo de uma redução no tamanho do enxame de partículas 

ao longo das iterações, mantendo somente as ‘x’ melhores partículas (podemos 

considerar a definição deste ‘x’ como uma nova linha de pesquisa), o que garantiria 

mais iterações de avaliação usando o mesmo tempo de execução atingido hoje (isto 

porque o tempo investido nas partículas que não produzem bons resultados seria 

revertido para aquelas localizadas em regiões mais promissoras do espaço de busca).  

Avaliar a aplicação dos algoritmos heterogêneos e não-heterogêneos ou, neste caso, 

homogêneos em outras classes de problemas; otimizar outros parâmetros como taxa 

de aprendizado, quantidade de camadas intermediárias, funções de ativação, 

algoritmos de treinamento; bem como propor novas combinações para os algoritmos 

heterogêneos. A exemplo podemos ter combinações entre algoritmos FPSO e PSO 

Barebones (O PSO Barebones substitui as equações de atualização da velocidade e 

posição por um método estatístico), o que geraria o “FPSO-PSOBarebones” ou mesmo 

PSO com outras técnicas de otimização.  

Outra linha de pesquisa pode estar voltada ao estudo das concentrações por tipo em 

algoritmos heterogêneos. Evitando-se a experimentação em busca de uma 

quantidade ideal para determinado tipo de problema. Uma solução seria compor um 

algoritmo capaz de controlar dinamicamente as concentrações dos tipos, análogo ao 
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que é feito hoje pela convergência garantida em que uma variável controla o tamanho 

do raio de busca de uma partícula. 

O próximo passo como continuidade a este trabalho é a aplicação dos algoritmos 

heterogêneos na definição das arquiteturas da rede neural MLP. Verificar seu 

comportamento nos dois contextos, ajuste dos pesos sinápticos e definição do número 

de camadas e neurônios escondidos. 
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