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Resumo

Este estudo é dividido em três capítulos. Usando dados diários para os estados Brasileiros
e técnicas de regressão descontínua, verificamos a influência de um experimento natural, induzido
pelo Horário de Verão (HV), no cotidiano das pessoas através de dois canais: (a) distúrbios do sono
e (b) luminosidade. As seguintes variáveis de interesse são analisadas: 1) Internações hospitalares
decorrentes de complicações relacionadas a diabetes mellitus; 2) Homicídios provocados por arma
de fogo; 3) Mortes por infarto agudo do miocárdio. No primeiro capítulo, utilizando dados do Sis-
tema de Informações Hospitalares (SIH/DATASUS), do Ministério da Saúde do Brasil, exploramos
o impacto da privação do sono, provocada pelo HV, sobre as internações de indivíduos que tem
Diabetes Mellitus (DM). O estudo traz fortes indícios de que a entrada do HV aumenta internações
por DM em 6-8% nos estados adotantes da política, enquanto nenhuma variação ocorre nos esta-
dos não tratados. No segundo capítulo, usando dados do Sistema de Informação de Mortalidade
(SIM/DATASUS), analisamos o impacto dessa política sobre o número homicídios. Encontramos
evidências robustas em favor de uma redução em torno de 14% no número de homicídios nos es-
tados tratados. Este efeito se concentra principalmente em horas que antes do HV eram escuras e
após a transição passaram a ser claras. Novamente, as estimativas para os estados não tratados não
apresentam nenhuma significância. No terceiro capítulo, também com dados do SIM/DATASUS,
analisamos o efeito do HV sobre mortes decorrentes de infarto agudo do miocárdio. Nos Estados
que adotam a política, há um aumento de 7-8,5% no número dessas mortes, e nenhuma relação
estatística para os estados que não adotam a política.

Palavras-chave: Economia da Saúde; Avaliação de Políticas Públicas; Criminalidade; Desenho
de Regressão Descontínua.
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Abstract

This thesis consists of three chapters. Using daily data for Brazilian states and regression
discontinuity techniques, we assess the impact of a natural experiment, induced by Daylight Saving
Time (DST), on people’s daily life through two channels: (a) sleep disturbances, and (b) ambient
light. The following outcomes are studied: 1) Hospital admissions due to complications related to
diabetes mellitus; 2) Homicides caused by fire arms; 3) Deaths due to myocardial infarction. In the
first chapter, using data from Sistema de Informações Hospitalares (SIH/DATASUS), provided by
the Brazilian Health Ministry, we assess the impact of sleep deprivation, caused by DST transition,
on the number of hospital admissions related to Diabetes Mellitus (DM). The study provides credi-
ble findings that the DST entrance transition increases this type of hospital admission in 6-8% in the
states that adopt DST while no significant effect is found in the states that do not adopt the policy.
In the second chapter, using data from Sistema de Informação de Mortalidade (SIM/DATASUS),
we analyze the impact of this policy on the number of homicides caused by fire arms. Robust
evidence of a reduction in the number of homicides, of around 14%, is presented for the treated
states. This effect is concentrated especially in hours that were dark before DST and turned to be
illuminated after the transition. Again, estimated effects for non-treated states are not statistically
different from zero. In the third chapter, which also exploited data from SIM/DATASUS, we ana-
lyze the effect of DST transition on deaths due to acute myocardial infarction. There is a 7-8.5%
increase in the number of deaths due to this cause in the treated state and no statistically significant
change for the untreated states.

Keywords: Health Economics; Public Policy Evaluation; Crime; Regression Discontinuity De-
sign.
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CHAPTER 1

SLEEP DEPRIVATION AND DIABETES:

REGRESSION-DISCONTINUITY APPROACH1

1.1 Introduction

In this paper we investigate the unidirectional effect of short-term sleep deprivation on pa-

tients with Diabetes Mellitus, using daily data from the public health care system in Brazil over a

period of five years. We use the natural experiment induced by Daylight Saving Time as an exoge-

nous shock to sleeping patterns and analyse its impact on figures for hospitalization, total hospital

expenses and mortality of patients affected by this disease in Brazilian public hospitals.

In modern economic theory, individuals are motivated by incentives when making choices

and allocating personal resources. As the amount of time dedicated to sleeping is one of people’s

scarcest personal resources, it is natural to think of it as subject to choice and affected by the

same economic variables that affect other uses of time - an idea first highlighted in Biddle and

Hamermesh (1990). In this line, there are many evidences pointing to a strong negative correlation

between sleep duration and income e (e.g. Ásgeirsdóttir and Ólafsson, 2015), which is an evident

proxy for such economic incentives.

On the other hand, however, innumerable studies already established important associations

between less sleeping and negative health outcomes such as higher incidence of chronic diseases,

cancer, depression and early mortality.2 This suggests that a trade-off between health and personal

gains might be in place when individuals program their sleeping routines, which recently have

been turning this into an important subject matter in the economics literature (e.g. Giuntella et
1This work has as coauthors Guilherme Amorim, Lucas Silva and Breno Sampaio.
2See e Cappuccio et al. (2010) for a systematic review.

1



1.1 INTRODUCTION 2

al., 2015). Not without reason, in a larger scope, widespread incidence of sleep deprivation may

ultimately impose high risks to human capital3 and to productivity of an economy as a whole,

pushing increasingly higher spendings to its health care system as a direct consequence.

For it is still widely unclear whether poor sleep prevalently causes or is caused by poor

health, we propose to shed light on this relationship by studying its effects over patients with Dia-

betes Mellitus (DM, hereafter). DM is a condition that encompasses a group of similar metabolic

disorders, each caused by a complex iteration of genetic and environmental factors, and is char-

acterized by the phenotype of hyperglycaemia - that is, the presence of high levels of sugar in an

patient’s bloodstream (Fauci et al., 2008, p. 2275). In the course of the last two decades, its preva-

lence around the globe rose from approximately 30 million cases in 1985 to 177 million in 2000,

and if the current trend persist, more than 360 million people are estimated to have DM in the year

2030 (Wild et al., 2004). Indicators for Brazil do not lag behind the global trend: it is estimated that

the country will sustain its current 4th position in the list of countries most affected by the disease

for the next twenty years, going from the current estimated prevalence of 9% of its population in

2013 to 11.7% in 2035 (Guariguata et al., 2014). These figures also reflect increasing costs to the

Brazilian health care system since, according to the International Diabetes Federation (IDF), the

average cost of a patient with DM in Brazilian hospitals in 2014 was $1,527.60.4 In 2015, total

expenditures for DM treatments in Brazil summed up to roughly $22 billion.5

An important part of the follow-up care for DM consists in introducing improvements to

lifestyle habits such as reformulating diet composition, increasing physical activity and losing

weight - especially in the case of Type 2 DM, which comprises 90% of registered cases of DM

today and is largely an outcome of an individual’s excess body weight and physical inactivity.6

Its high prevalence and close link with patients’ personal habits have also made DM a subject of

interest in recent economics literature (e.g. Oster, 2015) and, in order to explore new treatment

routines and additional prevention strategies, much effort have been recently made in the medical

literature to investigate other external risk factors for DM. Understanding the influence that sleep

3For a recent empirical evaluation on this topic, see Jin et al. (2015).
4Source: https://www.idf.org/membership/saca/brazil. Retrieved 26 December, 2015.
5IDF Diabetes Atlas, 7th edition, 2015. Available at http://www.diabetesatlas.org/, retrieved 26 Decem-
ber 2015

6Diabetes Fact sheet No. 312. WHO. January 2015. Retrieved 12 November 2015.
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impairment may exert on preexisting DM condition has been an important part of that effort.

Evidence that restrictions on sleep quality may adversely influence the risk of DM have

been documented in various empirical studies for broad classes of DM (e.g. Gottlieb et al., 2005)

and most notably for Type 2 DM M (e.g. Ayas et al., 2003; Spiegel et al., 2005; Reichmuth et

al., 2005; Yaggi et al., 2006; Gangwisch et al., 2007). More recent studies have also narrowed

the scope of the investigation of its effect on patients with Type 1 DM (e.g. Donga et al., 2010;

Borel et al., 2013) and gestational DM (GDM) (e.g. Luque-Fernandez et al., 2013; Reutrakul

et al.,2013). Seeking to describe the prospective effects of poor sleeping on DM, most of this

research has focused on the long-term relationship between the two, by following patients with

different assessments of sleep quality over extended periods of time and comparing changes in

their levels of fasting glucose and/or glycated hemoglobin.7 Some of the unveiled mechanisms

behind this relationship include alterations in glucose metabolism, unregulation of appetite and

decreased energy expenditure (Knutson et al., 2007; Tasali et al., 2009). The unidirectional effect

of short-term sleep deprivation on DM, however, is a relationship that remains little explored so

far.8

Patients affected with DM require frequent contact with the health care system for effective

management and prevention of complications (Chaput et al., 2009). We interpret that any shock that

may affect stability of patients with DM should affect hospital admissions for that same condition

in that specific day (and possibly some of the following days owing to residual effects), which in

turn should affect figures in health care costs and mortality due to DM. However, since the design of

a proper randomized experiment is unfeasible in this context, mostly owing to legal and/or ethical

constraints, our approach will be to use an identification strategy in order to emulate such a shock

and vouch for causal interpretations: we explore the natural experiment induced by Daylight Saving

7One important drawback, however, is that most of this empirical work have so far relied on methods that strongly
depend on almost ideal unconfoundedness conditions. One very frequent approach, for example, is the calculation of
odds-ratio for changes in DM indicators given a measurement of average sleep quality, using probit/logit estimators.
In addition, assessment of quality and/or number of hours of sleep have been widely conducted through self-reporting
in field questionnaires, which can lead to problems such as mismeasurement and selection bias on the variables of
interest - a weakness generally acknowledged by the authors themselves. These considerations, when taken to the
worst scenario, may severely compromise the estimates’ accuracy and are strong caveats against validity of those
results.

8Donga et al. (2010), for example, show that partial sleep deprivation during only a single night induces insulin resis-
tance in multiple metabolic pathways in healthy subjects, which may be of relevance for variations in glucoregulation
in patients with Type 1 and Type 2 DM.
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Time policy (hereafter, DST) as an alternative potentially as good as randomization to identify the

effect of interest (Imbens and Lemieux 2008; Angrist and Pischke 2014). Our aim is to provide a

well-founded and accurate estimate of the impact of one hour less of sleep in one single night on

the risk of developing or aggravating DM in a population, using a regression discontinuity design

to assess the effect that the transition to DST have on the increase/decrease of hospital admissions,

health care costs and mortality for this specific condition in Brazil.

Our results show that, in states that adopt DST policy, transition to DST increases hospital

admissions for DM in around 6% to 8% between specifications, while no effect is observed in states

that do not adopt DST policy. We also observe no effect of leaving DST in DM hospitalization

in any state. These results are shown to remain consistent when our sample in decomposed in

macroregions. Age and gender decomposition show that this increase in hospitalization is mostly

evident in the male population above sixty years of age. Placebo tests further confirms that there is

no effect of entering DST on hospital admissions for diseases unrelated with DM, and that figures

for hospitalization, costs and mortality for DM on every other day of the year other than on DST

transition are generally not susceptible to short-term spikes. We find that transition to DST also

increases health care expenses for DM in around 18.9% and, more importantly, increases mortality

of patients with DM in around 8.5%. These estimates imply a rise in health care expenses of around

$3 million and reflect a total of 155 deaths at a social cost of $.62-1.55 billion over the 5 year sample

period we consider.

Our work mainly contributes to the literature that explores different factor risks for the dif-

ferent types of DM, particularly to the branch that explore how different forms of sleeping disorders

can affect patients’ conditions with DM. Our results extend the scope of investigation by evaluat-

ing a mechanism scarcely discussed with empirical evidence so far: the short-term, unidirectional

effect of sleep deprivation on DM. In addition, this paper is also novel for its methodological ap-

proach since, to our knowledge, it is the first in this literature to make use of robust techniques in

causal inference, allowing us to tackle important confounding issues such as endogeneity, reverse

causality and omitted variables bias. Our results are so the most robust and reliable so far in terms

of assessment of the effect of interest.

This paper is also important for more general discussions in policy design, contributing

to the collection of empirical assessments on the several costs and benefits associated with an
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institutional change such as the implementation of DST. This policy is applied in many countries

with the purpose to benefit activities that exploit sunlight after regular working hours and to have a

direct impact on energy consumption by reducing the need for lighting during the day (the actual

effect on overall energy use is heavily disputed). However, unintended consequences have been

drawn in several other spheres such as student achievement (Wong, 2012), vehicle crashes (Smith,

2016), criminal activity (Doleac and Sanders, 2015) and individual well-being (Kountouris and

Remoundou, 2014). Regarding its impact on health indicators, both positive and negative effects

have been documented, such as the increase in outdoor recreational activities (Wolff and Makino,

2012) and the increase in incidence of acute myocardial infarction (Toro, Tigre and Sampaio, 2015).

In our case, indicators are worsened with the rise in DM hospitalization, health care expenses and

mortality.

The remainder of the paper is organized as follows. In section 1.2 describes structure and

institutional framework of DST in Brazil, while sections 1.3 present the data set. In section 1.4 we

present our methodological approach. Section 1.5 discusses the results. Finally, conclusions are

presented in section 1.6.

1.2 Daylight Saving Time in Brazil

DST concerns the practice, adopted in certain countries and regions, of advancing clocks

on standard time by one hour during the summer months in order to reap the potential benefits of

a longer-lasting sunlight period during the day. It was first implemented as a nationwide policy in

Germany and former Austria-Hungary in 1916, having since then being adopted by various other

countries over several different times, particularly after the energy crisis of the 1970s.9 In the

present year of 2016, this policy will be observed in 76 countries around the world, affecting the

lives of more than 1.5 billion people.

In Brazil, DST has been adopted every year since 1986, with adopting periods (and regions)

administered by means of Federal enactments based on information of technical reports provided

by The Electric System National Operator (ONS). The National Operator indicates which states

9A review of the origins, early adoptions and further discussion on DST is presented in Aries and Newsham (2008).



1.2 DAYLIGHT SAVING TIME IN BRAZIL 6

should adopt DST as well as the duration of the regime, which usually starts on the third Sunday

of each October, when clocks skip forward from 12am to 1am, and extends to midnight of the third

Sunday of each February.

Since this policy is grounded in the variation of daily sunlight during summer solstice, and

given the country’s geographical feature of having a wide longitudinal extension, DST implementa-

tion does not provide nominal benefits for states close to the Equator line, which leads to variation in

the treatment status across the country (see Figure 1.1). This favors our identification strategy since

it provides variation in DST adoption both between (i.e., adopters vs. non-adopters) and within

states (i.e., among those that adopt; standard time vs. DST). Having non-adopter states helps us

in designing robust placebo tests, given that other factors affecting DM, besides DST, must evolve

smoothly around the transition date.10

Figure 1.1: DST policy in Brazil

Note: States in black (RS, SC, PR, SP, RJ, ES, MG, GO, MS, MT, DF) adopted DST from 2008 to 2012 and together
constitute the Midwest, Southeast and South macroregions. States in grey adopted DST in only one of the years
between 2008 and 2012 (BA in 2011 and TO in 2012). States in light grey did not adopt DST between 2008 and 2012.

Between 2008 and 2012, all states within Midwestern, Southern and Southeastern region,

where light incidence vary the most during the year, adopted DST. Bahia (Northeastern region) and
10Doleac and Sanders (2015); Smith (2016), for example, consider law changes to DST policy in the US to account

for endogeneity, since DST occurs simultaneously across 48 states (Arizona and Hawai do not observe DST) and at
approximately the same time each year.
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Tocantins (Northern region) adopted DST only in 2011 and 2012, respectively11 (see Table 1 for a

detailed list of adopters by each year). Therefore, we have 10-12 states adopting DST every year,

the treated states, and 14-15 remaining untreated during our sample period.

Table 1: Brazilian states that adopted DST from 2008 to 2012

Entry Date Exit Date Adopting states

19/10/2008 15/02/2009 RS, SC, PR, SP, RJ, ES, MG, GO, MS, MT, DF.
18/10/2009 20/02/2010 RS, SC, PR, SP, RJ, ES, MG, GO, MS, MT, DF.
17/10/2010 19/02/2011 RS, SC, PR, SP, RJ, ES, MG, GO, MS, MT, DF.
16/10/2011 25/02/2012 RS, SC, PR, SP, RJ, ES, MG, GO, MS, MT, DF, BA.
21/10/2012 16/02/2013 RS, SC, PR, SP, RJ, ES, MG, GO, MS, MT, DF, TO.

Note: data from Observatório Nacional do Ministério de Ciências e Tecnologias.
http://pcdsh01.on.br/DecHV.html

1.3 Data

We use individual-level data on hospitalizations from the SUS Hospital Admissions System

(Sistema de Internações Hospitalares - SIH-SUS). This system, managed by the Brazilian Ministry

of Health, is the government’s official registry to every patient admission in Brazilian public hos-

pitals, covering virtually all of the country’s territory. It contains daily information on the causes

of admissions following the International Classification of Diseases (ICD-10), along with several

other important variables such as the incurred cost of every hospitalization to the health care system

and whether the patient died following its hospitalization.

To ensure the best reliability of our data, we consider the years from 2008 to 2012, the

last available year. During this period, there were 713,149 registered hospitalizations due to DM as

identified by codes E100 to E149 in the ICD-10. As of 2012, each case should fall in one out of four

available categories: insulin-dependent diabetes mellitus (E10), non-insulin-dependent diabetes

mellitus (E11), malnutrition-related diabetes mellitus (E12), other specified diabetes mellitus (E13)

and unspecified diabetes mellitus (E14).12 the final aggregation accounts all forms of DM (brittle

11Results are unchanged if we exclude these two states.
12The expressions “insulin-dependent diabetes mellitus” and “non-insulin-dependent diabetes mellitus” have eventu-

ally worn out and became obsolete, being traded, respectively, for “type 1 diabetes mellitus” and “type 2 diabetes



1.3 DATA 8

and stable; ketosis-prone and nonketotic; juvenile-, adult- and maturity-onset; type 1 and type 2;

and malnutrition-related DM) and excludes similar symptoms and disorders associated with DM

but not formally classified as such (for example, glycosuria, impaired glucose tolerance, and DM

in pregnancy, childbirth and/or the puerperium).13

The dependent variables in our study are based on the number of hospitalizations, the total

amount of hospital expenses and the number of deaths caused by DM on a particular day and in a

particular state and year. We aggregate data to the state level bearing two reasons in mind. First,

the daily frequency of these hospitalizations is very small in disaggregated levels (for example,

at county level). Second, aggregation allow us to gain statistical power and to smooth out other

factors of potential bias, such as climatic conditions that could have affected hospital admissions at

the municipal level but were unlikely to have affected them statewide. Also, following a procedure

by Janszky and Ljung (2008) and also carried out in Smith (2016), we multiply the number of

hospital admissions on the first and last days of DST by 24/23 and 24/25, respectively, to account

for a possible distortion coming from the fact that the first day after the transition to DST ends up

being one hour shorter than the rest of the days in a year (23 hours) and the first day after transition

from DST to ST ends up being one hour longer (25 hours).14

In table 3 we present average number of hospital admissions, average health care expenses

and average mortality, per day, unadjusted for day-of-week and time trend, for one week prior

and one week after DST transition. We note that for states that adopted the policy, there are on

average 21.797 hospital admissions per day per state on the week prior to transition to DST. On

the week following the transition, this number increases to 23.079, an increase of almost 6%.

This pattern is not observed when looking at states that did not adopt the policy, which present

an increase of only 1.3%. This behavior is also observed when looking at average health care

mellitus” in the 2014 version of ICD-10. Fauci et al. (2008, p. 2276) note that, since many individuals with Type 2
DM will eventually need insulin treatment in order to control blood glucose levels, the previous classification have
led to many confusion among practitioners. It is at least a curious fact that 57.16% of our database are within the
categories of “other specified” and “unspecified diabetes mellitus”. We choose, therefore, not to draw evaluations
over different types of DM by disaggregating our data in the different DM categories.

13A more detailed list with the ICD-10 codes for DM is provided in the appendix.
14In table A1, presented in the appendix of this paper, we provide evidence that our results are not driven by these hour

adjustments. In comumns 1 and 2, we run estimates of the impact of DST on DM hospitalization without using the
procedure proposed by Janszky and Ljung (2008). In columns 2 and 4, we exclude the transition date (day one after
transition) altogether. In both cases, results are qualitatively identical to our main specification, presented in table
3.1.
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expenses and mortality. States that adopt the policy present an increase in health care expenses and

mortality of, respectively, 12.6% and 11.8%. Theses numbers for untreated states are 8.8% and

-1.3%, respectively.

Table 2: Average number of hospital admissions, health care costs, and mortality, per
state for one week before and one week after Daylight Saving Time

State
Hospitalization Health care costs Mortality

Week
Pre-DST

Week
Post-DST

Week
Pre-DST

Week
Post-DST

Week
Pre-DST

Week
Post-DST

(1) (2) (3) (4) (5) (6)
Treated 21.797 23.079 12,500.61 14,080.44 0.925 1.034

(19.435) (19.971) (13,146.15) (16,702.33) (1.387) (1.365)
Untreated 9.418 9.547 4,477,20 4,873.74 0.471 0.465

(9.733) (9.773) (4,540.67) (5,806.15) (0.819) (0.883)

Note: Standard deviations are in parentheses.

1.4 Empirical Strategy

In this section we present the empirical strategy we adopt to identify the causal effect of

short-term sleep deprivation on the risk of DM, measured by shifts in hospitalization, mortality

and health care costs with DM. In particular, we use transitions from standard time to DST as an

exogenous shock to sleep and compare the number of diabetes outcomes on the day before entering

DST with the number of diabetes outcomes on the first day after its initiation for states that adopted

DST using a regression discontinuity (RD) design. For that, consider the following reduced-form

model

lnDiabetesisy = τI(Transitionisy ≥ 0)+g(Transitionisy)+ εisy (1.1)

where lnDiabetesisy is the natural logarithm of the number of diabetes hospitalizations, health care

costs or mortality in day i, state s and year y, Transitionisy is defined as the number of days to

transition to DST, which is equal to zero on the first day after transition and is positive (negative)

after (before) then, g is a non-parametric function and ε is a random term. To eliminate persistent

day-of-week effects (it might be the case that the number of diabetes hospitalizations is higher
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on weekends than weekdays, for example), state differences and long-term time trends, we follow

Smith (2016) and Toro, Tigre and Sampaio (2015) and demean the log of number of diabetes

hospitalizations, mortality and costs by day-of-week, state and year.

We utilize local-polynomial regression-discontinuity point estimators with robust bias-corrected

non-parametric confidence intervals, provided by Calonico, Cattaneo and Titiunik (2014). Instead

of selecting ad-hoc bandwidths, we rely on two optimal data-driven bandwidth selectors outlined

in Imbens and Kalyanaraman (2012), hereafter IK, and Calonico, Cattaneo and Titiunik (2014),

hereafter, CCT.

In the context described above, consistently estimating our parameter of interest requires

that conditional on day-of-week, state and year fixed effects, the outcomes must evolve smoothly

around the transition date in the absence of treatment, i.e., observed and unobserved covariates

should vary continuously around the cutoff. Given our institutional setup, we have a well defined

control group, namely untreated states, to test if other unobserved factors, correlated with DST tran-

sition, are in some way responsible for shifts in the number of diabetes hospitalizations, mortality

or costs other then DST itself.

In addition to this falsification test done to all our three dependent variables, we consider two

additional placebo tests when analysing hospitalization. First, we use other diseases that in prin-

ciple should not be affected by the transition to DST and hence should not respond to treatment.

Secondly, we check for causality in the spirit of Granger (1969) and estimate the coefficients of pre-

treatment and post-treatment effects, a common test in the Differences-in-Differences framework

to provide robustness to the results (see Autor, 2003). We assign, therefore, I(Transitionisy ≥ 0)

for days preceding and following the actual DST transition. If our identifying hypothesis holds, we

expect leads and lags to have no statistical relevance in explaining shifts to DM outcomes.

1.5 Results

Our results are divided into three parts. First we investigate if sleep deprivation induced by

DST causes DM hospitalizations to increase, conducting more thorough evaluations in this part.

Second we check whether health care costs increase after transition and if this sudden disturbance
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to sleeping patterns is sufficient to change mortality figures on patients that were hospitalized for

reasons related to DM. At last we conduce placebo tests and other robustness checks to each of our

three main outcomes.

1.5.1 Results on hospitalization

Figure 3.1 presents our main results graphically. Demeaned values of lnDiabetes by day-of-

week, state and year are plotted, centered on the DST transition date. The graph on the left, which

consider states that adopted DST, shows that points to the right of the cutoff are slightly shifted

above, implying higher incidence of DM hospitalization after transition. This is not observed when

looking at untreated states, in which we see no discontinuity around the cutoff point. Note that for

untreated states, we consider as if DST was adopted in the same time period as treated states.15

Figure 1.2: DST entrance transition - residuals plot
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Note: Residuals are generated from a regression of ln(diabetes) on day-of-week, State and year dummies. Fitted lines
represent locally weighted regression.

In table 3 we present formal results considering both bandwidth selection procedures for

treated and untreated states (CCT and IK). In columns 1 through 4, we present estimates for the

effect of entering DST on DM hospitalizations for treated and untreated states. Results presented

in columns 1 and 2 imply that, after transition, DM hospitalizations increased by about 6.2 to 8.6%

in treated states. In untreated states, results are precisely zero (columns 3 and 4). This reinforces

15In this case, we estimate equation 3.1 using data on lnDiabetesisy for untreated states.
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our claim that we uncover the causal effect of sleep deprivation on DM hospitalization since, as

mentioned in the previous section, unobservables are likely to be balanced near the threshold, given

that outcomes for treated states are likely to be influenced by the same unobservables that determine

outcomes for states not affected by the policy.

Still in table 3, results in columns 5 through 8 show that leaving DST exerts no significant

effect on DM hospitalizations, in neither treated nor untreated states. Our results therefore support

the hypothesis that sleeping more than in regular routine does not increase nor reduce the risk of

developing or aggravating DM condition, as we assume that the addition of one extra hour during

nighttime would reflect an increase on sleeping time for citizens in treated states.

Table 3: RD estimates of the impact of DST on DM hospitalizations for both treated and untreated
states

Entering Leaving

Treated Untreated Treated Untreated

(1) (2) (3) (4) (5) (6) (7) (8)
DSTLAT E 0.086*** 0.062** 0.002 -0.017 0.054 -0.004 0.017 -0.037

(0.033) (0.030) (0.036) (0.031) (0.036) (0.044) (0.044) (0.032)
Bandwidth selector CCT IK CCT IK CCT IK CCT IK
Bandwidth 12 26 18 31 14 49 11 33
Obs. to the left 684 1,482 1,326 2,418 798 2,727 858 2,574
Obs. to the right 741 1.539 1,404 2,496 855 2,850 936 2,652
Total 1,425 3,021 2,720 4,914 1,653 5,577 1,794 5,226

Note: CCT refers to the bandwidth selector of Calonico, Cattaneo, and Titiunik (2012); IK is Imbens and Kalyanaraman
(2012). All specifications use a first order polynomial and a uniform kernel. Robust Standard errors in parentheses. ∗∗∗,
∗∗ and ∗ represent p<1%, p<5% and p<10% respectively.

Our next steps will be to investigate the uncovered effect over different forms of decompo-

sitions in our data. Also, from here on we will be presenting our results considering only the CCT

bandwidth selector, for it is to this date the most robust theory-based mechanism for calculating

confidence interval estimators of local average treatment effects in RD designs.16 In table 4, we

separately estimate the impact of DST on DM hospitalizations on each of the five geographical

regions in Brazil. The estimated treatment effects are consistent for the Midwest, Southeast and

South regions (columns 1 through 3), which comprise together all of the adopting states of DST

16See Calonico, Cattaneo and Titiunik (2014). All of the following results remains qualitatively unchanged when using
IK as optimal bandwidth selector and are available upon request.



1.5 RESULTS 13

policy. For the North and Northeast regions (columns 4 and 5), the effects are null, as expected.

Table 4: RD estimates of the impact of entering DST on incidence of diabetes
mellitus decomposed per geographic regions

Treated Untreated

Midwest Southeast South Northeast North

(1) (2) (3) (4) (5)
DSTLAT E 0.112* 0.144*** 0.167*** -0.013 0.018

(0.059) (0.045) (0.056) (0.041) (0.051)
Bandwidth selector CCT CCT CCT CCT CCT
Bandwidth 19 16 12 19 24
Obs. to the left 380 320 180 836 816
Obs. to the right 400 340 195 880 850
Total 780 660 375 1,716 1,666

Note: CCT refers to the bandwidth selector of Calonico, Cattaneo, and Titiunik (2012). All
specifications use a first order polynomial and a uniform kernel. Robust Standard errors in
parentheses. ∗∗∗, ∗∗ and ∗ represent p<1%, p<5% and p<10% respectively.

In table 5, estimates for the impact of entering DST are discriminated by gender and age

groups. Results show that DST impact on DM hospitalizations are mainly driven by the male pop-

ulation above 60 years of age, with an estimated increase of more than 20%, statistically significant

at the 1% level (panel A, column 4), although positive coefficients are also observed for females

between 21 and 40 years of age.
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Table 5: RD estimates of the impact of entering DST on DM
hospitalizations discriminated by age groups.

Age in years 0-20 21-40 41-60 60+

(1) (2) (3) (4)

Panel A: Impact on male subjects

DSTLAT E -0.037 -0.037 0.072 0.203***
(0.035) (0.038) (0.045) (0.050)

Bandwidth selector CCT CCT CCT CCT
Bandwidth 25 26 18 12
Obs. to the left 1,425 1,482 1,026 684
Obs. to the right 1,482 1,539 1,083 741
Total 2,907 3,021 2,109 1,425

Panel B: Impact on female subjects

DSTLAT E 0.000 0.091** 0.048 0.063
(0.042) (0.042) (0.045) (0.048)

Bandwidth selector CCT CCT CCT CCT
Bandwidth 18 20 20 15
Obs. to the left 1,026 1,140 1,140 855
Obs. to the right 1,083 1,197 1,197 912
Total 2,109 2,337 2,337 1,767

Note: CCT refers to the bandwidth selector of Calonico, Cattaneo, and
Titiunik (2012). All specifications use a first order polynomial and a uni-
form kernel. Robust Standard errors in parentheses. ∗∗∗, ∗∗ and ∗ represent
p<1%, p<5% and p<10% respectively.

This goes along with previous evidences that DM increase with age and is particularly

prevalent in the male population with more than 60 years old (Fauci et al., 2008, p. 2277), and with

evidence suggesting that older patients with DM are more often hospitalized than those without DM

(Rosenthal et al., 1998). It serves also as an additional indicator that our sample is mostly formed

of hospitalizations due to Type 2 DM, since “(it is) overwhelmingly the most common incident and

prevalent type (of DM) in older age-groups,” according to o Kirkman et al.(2012).

1.5.2 Results on health care costs and mortality

Alternatively to our previous specifications, another way to investigate whether short-term

sleep deprivation poses as a risk factor for DM is to analyse the impact of transition to DST on total
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costs with DM hospitalizations. As discussed in the introduction, several statistical surveys have

pointed to the connection between the growing prevalence of DM and its reflection in rising costs

for the health care system in the long term. It is natural to suppose that such relationship would

also hold in the short term, which might contribute as an additional evidence to the ones brought

up by the results in hospitalization. We maintain our hypothesis that such impact, if shown to exist,

is driven by the exogenous effect of DST transition on the available sleeping time of individuals in

treated states, with every other relevant covariate varying smoothly under treatment assignment.

We measure the impact of transition to DST in daily costs with hospitalizations for DM in

table 6, which reports RD treatment effects on treated and untreated states. Results show that the

financial burden on DM treatment for the health care system increases by 18.9% in treated states,

as shown in column 1. Given the average cost per day for treated states with DM treatment in our

data is around R$754,509, back of the envelope calculations imply an increase of about R$143,357

per day. If the effect we estimate persists for the first 7 days after transition, costs increase in

R$5,017,484 (around $2,918,562) within the first week of DST over the 5 year sample period. On

states not affected by the policy, we observe no changes in hospital expenses, presented in column

2. Proceeding in a similar way as before, we show that there is no significant effect of leaving DST

on hospital expenses in treated or untreated states.

Table 6: RD estimates of the impact of entering DST on total
costs with hospitalizations for DM

Entering Leaving

Treated Untreated Treated Untreated

(1) (2) (3) (4)
DSTLAT E 0.189*** 0.049 -0.040 0.072

(0.069) (0.137) (0.068) (0.181)
Bandwidth 18 23 17 13
Obs. to the left 1,026 1,794 912 1,014
Obs. to the right 1,083 1,872 969 1,092
Total 2,109 3,666 1,881 2,106

Note: We use the bandwidth selector of Calonico, Cattaneo, and Titiunik
(2012). All specifications use a first order polynomial and a uniform kernel.
Robust Standard errors in parentheses. ∗∗∗, ∗∗ and ∗ represent p<1%, p<5%
and p<10% respectively.

Now, in order to hold the claim that the effect of DST transition over DM hospitalization
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is an indicator of the significant risk behind short-term sleep deprivation, we must assume that

the spike in DST transition is not overestimated by patients being overly cautious about their own

condition, hasting to the hospitals following one night sleep curtailment but carrying no real im-

plications to their overall health. The following results in this section explores this possibility by

measuring the impact of transition to DST on mortality figures related to DM. Since conditions that

lead to death are obviously less controllable than a simple individual decision to attend a hospital,

we expect our outcomes on mortality to carry a more clear evidence on the effect of DST on the

risk of DM.

In tables 7 and 8 we present two separate, yet closely related set of results. Table 7 contains

RD estimates for the effect of entering and leaving DST on the number of deaths due to DM in

treated and untreated states, along the lines of our previous expositions. We argue that this alone is

a good enough indicator for the risk of diabetes.17 The effect of DST transition on DM mortality,

by number of patients, is positive and significant. After transition, the number of victims increase

by 8.5% (column 1), and no effect is observed in states not adopting DST (column 2). The effect

of leaving DST is negative and significant in treated states, which means that the number of deaths

decreases after transition to regular time and no risk of a short-term widening in sleeping time can

therefore be inferred.

Table 7: RD estimates of the impact of entering DST on DM
mortality

Entering Leaving

States Treated Untreated Treated Untreated

(1) (2) (3) (4)
DSTLAT E 0.085* 0.034 -0.129** 0.010

(0.045) (0.032) (0.056) (0.037)
Bandwidth 16 15 11 14
Obs. to the left 912 1,170 570 1,092
Obs. to the right 969 1,248 627 1,270
Total 1,881 2,418 1,197 2,362

Note: We use the bandwidth selector of Calonico, Cattaneo, and Titiunik
(2012). All specifications use a first order polynomial and a uniform kernel.
Robust Standard errors in parentheses. ∗∗∗, ∗∗ and ∗ represent p<1%, p<5%
and p<10% respectively.

17The number of deaths due to DM in our database also accounts for individuals that have been hospitalized in days
prior to DST transition. That is, this number is the sum of the number of deaths by entrance date.
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In columns 1 and 2 of table 8 we present estimates of the impact of DST on the proportion

of deaths by hospitalization due to DM in a day. We interpret that, if this proportion remains fairly

constant, the profile of medical treatments being carried over in hospitals in DST transition day

will correspond to that of any other regular day. This would allow us to more securely relate any

unveiled effect in mortality to our previous results regarding hospitalization. In columns 3 and 4,

we present estimates of the impact of DST on the number of counties having at least one death in

treated and untreated states. This specification has the benefit of being less sensitive to outliers,

such as an unusually large change in the number of deaths on the transition day in a specific large

city. To be consistent with our story, we expect not only changes in total number of deaths after

transition, but also changes in total number of counties having at least one fatality.

Results obtained are again in accordance with our predictions. The proportion between

number of deaths and number of hospitalizations, at best, varies very little in treated states (a

increase in 1% is identified in column 3) and none in untreated states (column 4). Finally, we

observe that DST results in an 8.3% increase in the number of counties having at least one fatality

related to patients hospitalized with DM condition.

Table 8: RD estimates of the impact of entering DST on DM
mortality

Probability of
Mortality rate death occurring

States Treated Untreated Treated Untreated

(1) (2) (3) (4)
DSTLAT E 0.009* 0.000 0.083*** -0.015

(0.005) (0.006) (0.031) (0.028)
Bandwidth 20 24 12 17
Obs. to the left 1,134 1,737 684 1,326
Obs. to the right 1,192 1,798 741 1,404
Total 2,326 3,535 1,425 2,730

Note: We use the bandwidth selector of Calonico, Cattaneo, and Titiunik
(2012). All specifications use a first order polynomial and a uniform kernel.
Robust Standard errors in parentheses. ∗∗∗, ∗∗ and ∗ represent p<1%, p<5%
and p<10% respectively.

These results on mortality from DM call for more insightful interpretations concerning the

social cost they imply, as they represent the direct outcome of an interference brought up by policy
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on a subject as delicate as the loss of human lives (and the value society put on these lives). A estab-

lished approach in the economic literature is the concept of Value of Statistical Life (VSL), which

correspond to the subjective value, in monetary figures, of a marginal change in the likelihood of

death of one individual. It is widely used to evaluate wage-fatality risks trade-offs in the labour

market and comes normally from econometric estimates using occupational and demographic vari-

ables, but applications have been widened to assess mortality costs in a broad range of issues. It

is beyond the scope of this paper to thoroughly calculate such estimates from the case we observe

here, but back of envelope calculations should suffice in providing a rough estimate on what these

costs represent. Building on the VSL in Knieser et al (2012), which ranges from $4 to $10 million,

and given we observe about 52 deaths per day on treated states, we estimate DST causes an increase

of 4.42 deaths per day, leading to 155 death increase at a social cost of $.62-1.55 billion within the

first of week of DST over the five year sample period we analyze.

1.5.3 Robustness Checks

Following the common practice in causal inference literature, we provide support for the

identifying assumption by estimating placebo causal treatment effects which, under the hypothe-

sis of identification, are supposed not to be statistically significant (Imbens, 2004). Naturally, not

rejecting the hypothesis that a similar effect is zero is not sufficient to prove that identification

is achieved, but makes this assumption considerably more plausible. We also provide additional

robustness by evaluating how our empirical model respond to restrictions in the sample of observa-

tions and to changes in its technical parameters. The set of results shown below therefore support

the hypothesis that the discontinuity found in DST entrance transition is not a mere statistical coin-

cidence.

Our first exercise is to propose a falsification test by estimating treatment effects on different

groups of diseases that should not respond to the transition to DST. Table 4 displays estimates of

the impact of entering DST on hospital admissions for two different groups of respiratory diseases:

one is Influenza and Pneumonia, which is identifyed with codes J09-J18 at ICD-10; and the other is

Bronchitis and Asthma, which is identifyed with codes J40-J47 and J20-J22. As it is the case with

DM, these conditions also have strong impact over the older population, figuring among the main
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causes of hospitalizations for Brazilian adults with 60 years old or more (Loyola Filho et al., 2004).

Other risk factors such as smoking/drinking habits, use of medications and emotional problems

are commonly referred to be independently associated with reports for respiratory diseases in that

population in Brazil (DonalisioI et al., 2006; Daufenbachet al., 2009) but, to our knowledge, no

relationship have so far been established with any kind of sleeping disorder. Our placebo tests

confirm that the two groups of respiratory diseases evolve smoothly around the transition date.

Table 9: RD estimates of the impact of entering
DST on incidence of placebo diseases

Influenza and
Pneumonia

Bronchitis and
Asthma

(1) (2)
DSTLAT E 0.040 0.035

(0.025) (0.034)
Bandwidth 24 22
Obs. to the left 1,368 1,254
Obs. to the right 1,425 1,311
Total 2,793 2,565

Note: We use the bandwidth selector of Calonico, Catta-
neo, and Titiunik (2012). All specifications use a first or-
der polynomial and a uniform kernel. Robust Standard er-
rors in parentheses. ∗∗∗, ∗∗ and ∗ represent p<1%, p<5% and
p<10% respectively.

Our next exercise is to assign placebo treatments to other days in the year not correspondent

to the actual DST transition and estimate their respective coefficients, in order to evaluate their

responses on our outcomes of interest. We have theorised that the investigated effect happens due

to the one hour curtailment on the length of the day in which transition to DST takes place, so as

this policy obviously imposes no changes on the number of hours of preceding and posterior days,

it would not be plausible to observe too many false-positives with this exercise - that is, statistically

significant shifts to DM outcomes in other days of the year brought about by a false transition to

DST.

In the histograms shown in Figure 1.3, we calculate t-statistics of the estimates for 364 days

of the year not correspondent to transition day to DST, ordered by their position as leads or lags

from DST transition. The calculated values are displayed in the horizontal axis of the graph and
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a red vertical line marks the correspondent null hypothesis of zero. The actual effect of DST is

indicated in the figure with an arrow. We also exclude outlying observations that are likely influ-

enced by holidays, elections and other such relevant events, for the purpose of designing a proper

comparison with regular days not affected by any other exogenous factor. Results thus obtained

are also in consonance with our previous findings. For two of our main outcomes, hospitalization

and costs, the placebo effects follow a bell-shaped distribution around zero and the real observed

effects of DST are between the very few positive estimated values surpassing two standard de-

viations. For mortality, the distribution of the placebo effects follows a same pattern but with a

somewhat higher kurtosis, and although the real effect of DST does not reach two standard devia-

tions (p-value = 0.058), it is still between the very few statistically significant estimated values at

the positive extreme of the histogram.
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Figure 1.3: Histograms with t-statistics of RD estimates for pre-treatment and post-treatment im-
pacts of entering DST
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Note: Calculated values are displayed in the horizontal axis, measured in units of standard deviations. The values
correspond to preceding and following days to the actual DST transition plus the actual effect of DST, indicated in the
figure with an arrow. A red vertical line marks the correspondent null hypothesis of zero.

In the next exercise, we design a more conservative comparison between treated and non-

treated estimates by looking at those municipalities which are allegedly more balanced in terms of

geographical features. Geography is a very influential factor to economic development in Brazil.

Regions with milder climate such as the South and Southeast have historically prospered from

climate-dependent economic activities such as agriculture and extensive livestock, whereas de-

velopment in much of the Northeast is still hampered by dry weather and strong droughts. Such
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conditions are certainly reflected in many municipality-level socioeconomic indices such as poverty

and health.

The idea is to truncate our whole sample of observations conditional on their municipality

falling within a certain distance from the geographical border dividing the group of states that are

treated from the group that is not treated. The border is drawn as an imaginary line separating

the Midwest, Southeast and South regions (treated) from the North and Northeast regions (non

treated)18 We exclude all data corresponding to 2011 and 2012 since Bahia and Tocantins adopted

DST in those respective years, thus changing the geographical border defined between adopting

and non-adopting states for the years of 2008 through 2010. By focusing on municipalities that are

closer to state borders, we also avoid possible outlying values from large urbanized areas such as

state capitals, which are all located further from this imaginary line.

Results are summarized in the three graphics presented in figure 1.4. The value of each

estimate is measured in the y-axis and conditioning distance from the border (in km) is indicated

in the x-axis. Black dots correspond to estimated RD values using observations in the treated side

and grey dots are the same for the non-treated side. 90% confidence intervals for each value based

on their standard deviations are also given. Estimates are noticeably more striking for our main

outcome of interest, DM hospitalizations, where every estimate of the effect of DST transition in

treated states is positive and statistically different from zero (except only for the truncated sample

of 300 km from the border) and the same estimates for non-treated states are indifferent from

zero. This same pattern is observed in estimates for costs and mortality, although estimates of the

effect of DST transition in treated states are less regular in terms of statistical significance. For

these outcomes, most estimates for treated states are positive and for non-treated states they are

invariably null.

18See figure 2.1. The imaginary line is the one dividing states in black (RS, SC, PR, SP, RJ, ES, MG, GO, MS, MT,
DF) from states in grey and light grey (AC, AM, RR, PA, AP, MA, PI, CE, RN, PB, PE, AL, SE, TO, BA).
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Figure 1.4: Graphics with RD estimates for impacts of entering DST.
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Note: Samples are conditional to distance from the boundary between treated and non-treated states. The value of
each estimate is measured in the y-axis and conditioning distance from the border (in km) is indicated in the x-axis.
Black dots correspond to estimated RD values using observations in the treated side and grey dots are the same for the
non-treated side. 90% confidence intervals for each value are given.

As a final robustness exercise, we examine whether the estimated effect is robust to sev-

eral assumptions concerning alternative bandwidths, RD polynomials and kernels, as in Dell et al.

(2015). Results for these alternative specifications are displayed in panels A, B and C of table

10, in that respective order. We observe no substantial departures in terms of values or statistical

significance from our main results, presented in table 3.



1.6 CONCLUDING REMARKS 24

Table 10: RD estimates of the impact of entering DST on DM: Alternative Bandwidths, Polynomials and Kernels

Panel A: Alternative bandwidths Panel B: Alternative polynomials Panel C: Alternative kernels

Treated Untreated Treated Untreated Treated Untreated

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
DM hospitalizations

DSTLAT E 0.075** 0.036* 0.004 0.002 0.107*** 0.073* 0.051 0.080 0.077** 0.077** -0.001 0.001
(0.030) (0.022) (0.035) (0.024) (0.033) (0.043) (0.045) (0.055) (0.032) (0.031) (0.033) (0.033)

Bandwidth CCT CCT CCT CCT CCT CCT CCT CCT
30 60 30 60 28 29 22 26 15 17 23 25

Polynomial Order 1 1 1 1 2 3 2 3 1 1 1 1
Kernel Uni Uni Uni Uni Uni Uni Uni Uni Epa Tri Epa Tri
Obs. 3,477 6,897 4,758 9,438 3,249 3,363 3,510 4,134 1,767 1,995 3,666 3,978

Costs with hospitalizations for DM
DSTLAT E 0.145** 0.099* 0.120 0.016 0.134* 0.184* -0.001 0.0127 0.184*** 0.167** 0.055 0.060

(0.067) (0.052) (0.157) (0.109) (0.072) (0.098) (0.168) (0.208) (0.068 ) (0.066) (0.139) (0.139)
Bandwidth CCT CCT CCT CCT CCT CCT CCT CCT

30 60 30 60
Polynomial Order 1 1 1 1 2 3 2 3 1 1 1 1
Kernel Uni Uni Uni Uni Uni Uni Uni Uni Epa Tri Epa Tri
Obs.

DM mortality
DSTLAT E 0.087** 0.057* 0.014 -0.023 0.094** 0.087 0.028 0.028 0.089** 0.087** 0.032 0.032

(0.043) (0.030) (0.030) (0.022) (0.046) (0.058) (0.036) (0.039) (0.044) (0.044) (0.033) (0.032)
Bandwidth CCT CCT CCT CCT CCT CCT CCT CCT

30 60 30 60
Polynomial Order 1 1 1 1 2 3 2 3 1 1 1 1
Kernel Uni Uni Uni Uni Uni Uni Uni Uni Epa Tri Epa Tri
Obs.

Notes: CCT refers to the bandwidth selector of Calonico, Cattaneo, and Titiunik (2012). Indicated otherwise, all specifications use a first order polynomial and a uniform
kernel. Robust Standard errors in parentheses. ∗∗∗, ∗∗ and ∗ represent p<1%, p<5% and p<10% respectively.

1.6 Concluding Remarks

We provide empirical evidence that short-term restrictions on sleeping time can impact the

risk of developing or aggravating conditions of DM. Most particularly, we estimate, using a regres-

sion discontinuity design, that the reduction of one hour of sleep in one single night provoked by

DST policy (which induces individuals’ routines in adopting states to be abruptly advanced in one

hour on transition day) increases the amount of admissions for this specific condition in Brazilian

hospitals in around 6% to 8% between specifications, while no effect is observed in states that do

not adopt DST policy. We also find no impact of leaving DST on hospital admissions due to DM

in any of the adopting states, which further implies that there is no significant effect on the risk of

DM provoked by a short-term increase on sleeping time.

These results are shown to remain consistent when our sample in decomposed in macrore-

gions. Furthermore, age and gender decomposition show that this increase in hospitalization is
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mostly evident in the male population above sixty years of age, which ties with previous studies

showing that DM is slightly more prevalent in that group, specifically. Carrying forth our analysis,

we find that health care expenses for diabetes treatment and mortality also respond to the policy and

increase in around 18.9% and 8.5%, respectively, both serving as additional evidence of the risks

implied by sleep deprivation over DM. As with hospitalization, none of these changes are observed

in states that do not adopt DST policy. Our estimates imply DST increases health care expenses by

around $3 million, and cause a total of 155 deaths at a social cost of $.62-1.55 billion over the 5

year sample period we analyze.

Patients with DM are required to constantly regulate their blood sugar levels and to prevent

several other complications which are knowingly sensitive to even the most transient shocks in their

routines in order to manage stability over their conditions, making them highly prone to frequent

visits to the health care system. It has also been shown that the impact of partial sleep deprivation

during only a single night can be sufficient to induce insulin resistance even in healthy individuals.

These facts lead to the reasoning that the immediate impact of a one-hour sleep restriction on DM

management is evident through the observed increase in DM hospitalization during transition day

to DST. Regardless of the underlying mechanism, our results show a clear causal link from DST

transition to hospitalization, health care costs and number of deaths of patients with DM.
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1.8 Appendix

1.8.1 DM subgroups in ICD-10

The list below depicts the details of the diseases included in the group Diabetes Mellitus

(E10-E14) from the chapter IV of the International Statistical Classification of Diseases and Related

Health Problems 10th Revision (ICD-10), versions of 2008 and 2010.

E10: Insulin-dependent diabetes mellitus

Includes:
diabetes (mellitus):

• brittle
• juvenile-onset
• ketosis-prone
• type I

Excludes:
diabetes mellitus (in):

• malnutrition-related (E12.-)
• neonatal (P70.2)
• pregnancy, childbirth and the puerperium (O24.-)

glycosuria:

• NOS (R81)
• renal (E74.8)

impaired glucose tolerance (R73.0)
postsurgical hypoinsulinaemia (E89.1)

E11: Non-insulin-dependent diabetes mellitus

Includes:
diabetes (mellitus)(nonobese)(obese):

• adult-onset
• maturity-onset
• stable
• type II

non-insulin-dependent diabetes of the young

Excludes:
diabetes mellitus (in):

• malnutrition-related (E12.-)
• neonatal (P70.2)
• pregnancy, childbirth and the puerperium (O24.-)

glycosuria:

• NOS (R81)
• renal (E74.8)

impaired glucose tolerance (R73.0)
postsurgical hypoinsulinaemia (E89.1)

E12: Malnutrition-related diabetes mellitus

Includes:
malnutrition-related diabetes mellitus:

• insulin-dependent

• non-insulin-dependent

Excludes:
diabetes mellitus in pregnancy, childbirth and the puerperium (O24.-)
glycosuria:

• NOS (R81)
• renal (E74.8)

impaired glucose tolerance (R73.0)
neonatal diabetes mellitus (P70.2)
postsurgical hypoinsulinaemia (E89.1)

E13: Other specified diabetes mellitus

Excludes:
diabetes mellitus (in):

• insulin-dependent (E10.-)
• malnutrition-related (E12.-)
• neonatal (P70.2)
• non-insulin-dependent (E11.-)
• pregnancy, childbirth and the puerperium (O24.-)

glycosuria:

• NOS (R81)
• renal (E74.8)

impaired glucose tolerance (R73.0)
postsurgical hypoinsulinaemia (E89.1)

E14: Unspecified diabetes mellitus

Includes:
diabetes NOS

Excludes:
diabetes mellitus (in):

• insulin-dependent (E10.-)
• malnutrition-related (E12.-)
• neonatal (P70.2)
• non-insulin-dependent (E11.-)
• pregnancy, childbirth and the puerperium (O24.-)

glycosuria:

• NOS (R81)
• renal (E74.8)

impaired glucose tolerance (R73.0)
postsurgical hypoinsulinaemia (E89.1)
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1.8.2 Additional Tables

Table A1: RD estimates of the impact of DST on DM hospitalizations for
treated states - additional robustness

No Conversion No Transition

(1) (2) (3) (4)
DSTLAT E 0.095*** 0.053* 0.073* 0.062*

(0.031) (0.031) (0.037) (0.033)
Bandwidth CCT IK CCT IK

17 26 11 25
Obs. to the left 969 1,482 627 1,425
Obs. to the right 1,026 1,539 627 1,425
Total 1,995 3,021 1,254 2,850

Note: CCT refers to the bandwidth selector of Calonico, Cattaneo, and Titiunik (2012); IK is
Imbens and Kalyanaraman (2012). All specifications use a first order polynomial and a uniform
kernel. Robust Standard errors in parentheses. ∗∗∗, ∗∗ and ∗ represent p<1%, p<5% and p<10%
respectively.



CHAPTER 2

AMBIENT LIGHT AND HOMICIDES1

2.1 Introduction

In this paper we use hourly data on mortality over a period of six years to investigate the

influence of additional light-time on homicide occurrences. For that we use the natural experi-

ment induced by Daylight Saving Time (hereafter, DST) as an exogenous shock to ambient light.

Although recent literature has already exploited DST to identify causal effects on crime, there is

scarce evidence about its effect on homicides.

For the purpose of this exercise we analyze one of the most violent countries in the world

– Brazil. In 2012, the country led the ranking in homicide counts with 50,108 deaths, way above

the second place, India, which hosted 43,355 intentional homicides (UNODC, 2013). In that same

year, the homicide rate in the country was 25.2 per 100,000 and , approximately seven times the

rate observed in the United States and more than eight times that observed in Europe. Like many

developing countries, much of this violence is associated with drugs and wide availability of guns in

the black market, with young, male citizens being both main victims and perpetrators (Reichenheim

et al., 2011). Matching this profile, homicide represents the leading cause of death for men aged

15-44 in Brazil, with 90% of the cases involving firearms (De Souza et al., 2007).

These alarming numbers, combined with existing estimates showing the direct costs associ-

ated with violence and crime to range from 3 to 5 percent of annual GDP (Heinemann and Verner,

2006; World Bank, 2006), were preponderant for the Government to adopt several policies to reduce

1This work has as coauthors Robson Tigre e Breno Sampaio.

31



2.1 INTRODUCTION 32

crime in the mid-2000s. In 2003, for instance, the Government passed laws aimed at controlling

the flow of firearms into the country, instituting strict background checks for gun purchases and

registration, and made it illegal for civilians to conceal even registered guns outside their home or

business. Those measures, according to recent estimates, saved between 2,000 and 2,750 lives from

2004 to 2007 in cities with more than 50,000 inhabitants in the state of São Paulo alone (Cerqueira

and De Mello, 2015).

None of these changes, however, were sufficient to shift the dynamics of homicides sub-

stantially in the country. In 2014, the number of registered intentional homicides was 52,336, 3.8%

larger than the numbers registered in 2013. Many blame low levels of law enforcement and a wide

sense of impunity for this persistence, which ultimately lead a considerable share of the nation to

believe that good criminals are dead criminals.2

While the national media portraits perpetrators as risk-loving individuals unafraid of getting

caught, empirical findings suggest that criminal decision-making relates intimately to the standard

labor-supply model, in which individuals’ decision to participate in the market is based on the ratio

of expected benefits and expected costs (Abrams, 2012; Doleac and Sanders, 2015). Considering

the gains in utility derived from a successful criminal engagement, agents’ cost is function of two

main parameters: (a) the probability of getting caught, and (b) the disutility from punishment, once

caught. While there are convincing theoretical arguments for how changes in those parameters

individually affect criminal decision (Becker, 1968), empirical evidence to support such models

usually suffer from at least two important shortcomings. First, the effectiveness of law enforcement,

which affects the probability of getting caught, can barely be disentangled from characteristics of

the legal structure, which explains the magnitude of disutility derived from punishment. Second,

even when a variation in one of those factors does not depend on the other, there is still a challenge

of overcoming simultaneity bias, as long acknowledged in Levitt (2002).

In this context, we follow the rationale from the literature on crime deterrence that states
2http://www1.folha.uol.com.br/internacional/en/brazil/2015/10/1690283-half-of-brazil-believes-that-good-criminals-
are-dead-criminals.shtmlFolha de Sao Paulo, “Half of Brazil Believes That ‘the Only Good Criminal Is a Dead
Criminal’.” Accessed on January 21st of 2016.
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luminosity during otherwise high-crime hours facilitate witnesses and law enforcement agents to

detect perpetrators (Doleac and Sanders, 2015), thus increasing perpetrators’ expected cost, and

exploit an exogenous intra-day shift in light period caused by Daylight Saving Time to estimate the

effect of additional light-time on homicide occurrences. The natural experiment induced by Day-

light Saving Time (hereafter, DST) can serve as an alternative potentially as good as randomization

to identify the effect of interest, as the source of variation is completely exogenous to criminal

decision-makers (Imbens and Lemieux, 2008; Angrist and Pischke, 2014).

Although recent empirical literature has already exploited DST to identify causal effects on

a broad range of outcomes, including criminal activity (Doleac and Sanders, 2015),3 to the best of

our knowledge the present paper is the first to find robust evidence of additional light time influ-

encing homicide occurrence. Efforts to estimate the effect of light on homicides have already been

registered in (Doleac and Sanders, 2015), but due to the rarity of homicides in the U.S. compared

to Brazilian levels, they lost statistical power to detect the desired effect, finding only statistically

significant effects for robberies. This analysis is specially important for a developing country like

Brazil, where the lack of public presence falls disproportionally heavier on those less well-off. If

we consider intensity of night light a proxy for public outside illumination, while the average pop-

ulation density in Brazil is 600% greater than in Canada, both countries have a similar pattern in

intensity and distribution of night time illumination (Henderson et al., 2012). Our findings thus

may suggest that policies as simple as providing adequate public illumination can significantly

deter lethal violence.

Given the tremendous role firearms play on homicides in Brazil, we focus on deaths for

which firearm discharge was the cause, using data from the Information System on Mortality

(SIM) implemented by the Brazilian Ministry of Health. To provide a statistically well-founded

and accurate estimate of the effect of light on homicides deterrence during transition from standard

time to daylight saving time, we use local-polynomial regression-discontinuity estimators with

3Other examples are Kountouris and Remoundou (2014), who analyse the impact of DST on individual well-being,
Smith (2016), who studies the impact of this variation on fatal vehicle crashes, and Toro et al. (2015) which investigate
the effect of sleep disturbances on myocardial infarction.
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bias-corrected non-parametric confidence intervals (Henderson et al., 2012). We provide results

using two data-driven bandwidth selectors; the optimal-selection procedure recently proposed in

(Calonico et al., 2014), hereafter CCT, and, as benchmark, that outlined in Imbens and Kalyanara-

man (2012), hereafter IK.

We first document that redistribution in lightness significantly disincentives homicides, de-

creasing its occurrence by 14.4% on the days after the transition. Using hourly registered crimes,

we then show that our findings are consistent with more specific theoretical predictions that sug-

gest a strong decrease in criminal behavior in the hours most affected by DST policy, those around

sunset. We also examine whether the estimated effect is robust to several assumptions concerning

alternative bandwidths, RD polynomials, and kernels, as in Dell (2015).

While those results are consistent with previous findings and predictions, a constant concern

in empirical studies is the possibility of the treatment being correlated with unobservable factors,

leading to a spurious estimated effect. In our framework, this means that the timing of DST adop-

tion may coincide with an event neglected by the analysis that is the actual driver of homicide

deterrence, though through channels other than ambient light. Regarding this possible scenario,

and in contrast with other papers that exploit DST variation, we propose a falsification test on the

basis of a well defined control group, namely Brazilian states not affected by the policy, to show

that homicides evolve smoothly around the period of transition to DST in the absence of DST. We

then proceed by using this state variation in treatment status in a differences-in-differences frame-

work to estimate the effect of DST not only on the transition but also on the three-month period in

which the policy is adopted. We find that homicides by firearms decreased during DST months by

about 3%. More importantly, this effect is mostly concentrated on the hours around sunset, which

observe a decrease of 6.5-8.1%.

These estimates imply Daylight Saving Time is responsible for saving about 3,850 potential

victims from 2006-2011. This number is 30% above the total number of homicides that occurred

in 2013 in the nineteen countries located in Northern and Western Europe. Building on the value

of statistical life in Kniesner et al. (2012), which ranges from $4 to $10 million, we estimate DST
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resulted in $2.57 billion in annual social cost savings from avoided homicides. In addition to this

massive direct effect, a significant reduction in homicides could also have large long-lasting indirect

effects. For instance, recent estimates provided by Koppensteiner and Manacorda (2016) using data

from Brazil show that exposure to a homicide during the first trimester of pregnancy considerably

reduces gestational length and birth-weight. This further reinforces the importance of our empirical

findings.

The remainder of the article is organized as follows. Section 2.2 describes structure and

institutional framework of DST in Brazil, while sections 2.3 and 2.4 present the data set and empir-

ical strategies we exploit. Finally, section 2.5 discusses the results and conclusions are presented in

section 2.6.

2.2 Daylight Saving Time in Brazil

DST is an energy policy adopted worldwide that takes advantage of variation in the distribu-

tion of sunlight time between seasons and reallocates ambient light to the evenings by shifting the

relationship between clock time and sunset by (usually) one hour.4 This policy is observed in 76

countries in 2016 and affects more than 1.5 billion people yearly. In Brazil, DST has been adopted

every year since 1986.

Historically DST in Brazil has been governed by Federal enactments, usually based on in-

formation from technical reports provided by The Electric System National Operator (ONS). The

National Operator suggests to the Federal Government which states should adopt DST and the du-

ration of the regime, which usually starts on the third Sunday of each October, when clocks skip

forward from 12am to 1am, and extends until midnight of the third Sunday of each February, when

clocks fall back one hour to standard time. Given the core of this policy, which is the summer sol-

stice in the Southern Hemisphere, DST implementation does not provide benefits for states closer

4A review of the origins, early adoptions and further discussion on DST is presented in Aries and Newsham (2008).
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to the Equator line, which leads to variation in the treatment status across the country. Its technical

basis, provided by the ONS, jointly with the compliance enforced by Federal legislation favor our

identification strategy since it provides variation in DST adoption both between (i.e., adopters vs.

non-adopters) and within states (i.e., among those that adopt; standard time vs. DST). Having non-

adopter states helps us in designing a robust placebo test, given other factors affecting homicides

besides DST must evolve smoothly around the transition date in states that did not adopt it.5

Figure 2.1: DST policy in Brazil

Note: States in black adopted DST from 2006 to 2011 and together constitute the Midwest, Southeast and South
administrative regions. States in grey adopted DST in only once in this period (Bahia in 2011). States in light grey did
not adopt DST between 2006 and 2011.

Throughout the entire time span we analyze (2006-2011), all Brazilian states within Mid-

western, Southern and Southeastern administrative regions, where light incidence vary the most

across seasons, adopted DST, while no states in Northern and Northeastern geopolitical regions

did, except for Bahia, which adopted DST in 2011 for political reasons.6 This is illustrated in

Figure 2.1. A detailed list of adopters by each year is provided in Table 1 below.

5Doleac and Sanders (2015) and Smith (2016), for example, consider law changes to DST policy in the U.S. to account
for endogeneity, since DST occurs simultaneously across 48 states (Arizona and Hawaii do not observe DST) and at
approximately the same time each year.

6Results are qualitatively the same regardless the inclusion of this state in our estimations.
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Table 1: List of adopters by years

Year and Begin End Length (days) States
2006-2007 Nov 5 2006 Feb 25 2007 112 RS, SC, PR, SP, RJ, ES,

MG, GO, MT, MS, DF.
2007-2008 Oct 14 2007 Feb 17 2008 126 RS, SC, PR, SP, RJ, ES,

MG, GO, MT, MS, DF.
2008-2009 Oct 19 2008 Feb 15 2009 119 RS, SC, PR, SP, RJ, ES,

MG, GO, MT, MS, DF.
2009-2010 Oct 18 2009 Feb 21 2010 126 RS, SC, PR, SP, RJ, ES,

MG, GO, MT, MS, DF.
2010-2011 Oct 17 2010 Feb 20 2011 126 RS, SC, PR, SP, RJ, ES,

MG, GO, MT, MS, DF.
2011-2012 Oct 16 2011 Feb 26 2012 133 RS, SC, PR, SP, RJ, ES,

MG, BA, GO, MT, MS, DF.

Note: In this table we present a detailed list of the Brazilian states that adopted DST
from 2006-2011. We report also the date of transition from standard time (ST) to DST
and from DST to ST. Source: http://www.mme.gov.br/. State codes: RS - Rio
Grande do Sul; SC - Santa Catarina; PR - Paraná; SP - São Paulo; RJ - Rio de Janeiro;
ES - Espírito Santo; MG - Minas Gerais; BA - Bahia; GO - Goiás; MT - Mato Grosso;
MS - Mato Grosso do Sul; DF - Distrito Federal.

2.3 Data

We use data on homicides for the period of 2006-2011 retrieved from the Sistema de In-

formações sobre Mortalidade (SIM), the national information system on mortality, implemented

by the Brazilian Ministry of Health. The System was designed to provide daily individual-level

information on mortality to local and federal authorities, claiming global coverage within national

borders. To this end SIM relies on legal certificates of death as its data input, which are strictly

regulated by the Federal Government.7

Official declarations of death contain two features that help us support our claims, namely

time and cause of death according to the most recent revision of the International Classification

of Diseases, ICD-10. Among the “environmental events and circumstances” listed in ICD-10, we

7Published in October 9th of 2003, Federal Ordinance MS/SVS nº 20 provides a rulebook on the filling out of declara-
tion of death forms, which are standardized and distributed by the Ministry of Health.
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focus on deaths caused by firearm discharge, as they play an important role in criminal interactions

in Brazil (De Souza et al., 2007; Reichenheim et al., 2011). Since there is serious evidence of a

large share of intentional homicides being misclassified as fatal incidents of undetermined intent

(Cerqueira, 2012, 2013), we consider both deaths due to assault and with undetermined intent in this

study.8 The complete list of ICD-10 codes we use to construct our dependent variable is provided

in Table 2.

It is important to notice that fatal incidents of undetermined intent do not include accidental

deaths caused by firearms, which are classified under the ICD-10 codes W32-W34. Additionally,

we opt to exclude homicides resulting from legal intervention from our estimates, since according

to ICD’s methodology those are the result of law-enforcement agents on duty in the course of

arresting or attempting to arrest lawbreakers, and therefore would mistakenly favor our hypothesis

by inflating estimates as deaths from legal intervention are expected to be positively correlated with

lethal criminal activity.

Table 2: ICD-10 - homicides involving firearm discharge

Code Description
X93 Assault by handgun discharge
X94 Assault by rifle, shotgun and larger firearm discharge
X95 Assault by other and unspecified firearm discharge
Y22 Handgun discharge, undetermined intent
Y23 Rifle, shotgun and larger firearm discharge, undetermined intent
Y24 Other and unspecified firearm discharge, undetermined intent

Note: In this table we present a detailed list of ICD-10 codes we use to construct our
dependent variable.

In all specifications our dependent variable is the natural log of the number of homicides

according to the definition presented in Table 2 (hereafter homicides). To eliminate persistent day-

of-week effects (for instance, it might be the case that homicide occurrence is higher on weekends

than weekdays), state differences and long-term time trends, we follow Smith (2016) and Toro et

8In fact, evidence regarding systematic misclassification comes from the Institute for Applied Economic Research
(Ipea), a federal public institution directly linked to the Secretariat of Strategic Affairs of the Presidency of the Re-
public (SAE/PR).
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al. (2015) and demean the log of homicides by day-of-week, state and year.

As in Smith (2016), we aggregate our outcome to the state level for two reasons. First, the

frequency of homicides occurring daily at more desegregate level (i.e., municipalities) tends to zero

for many units. Second, aggregating allows us to gain statistical power and smooths out potential

confounders that could affect homicides at the county level but are less likely to affect homicides

at the state level. Finally, following a procedure by Janszky and Ljung (2008) and also carried out

in Smith (2016), we multiply the number of homicides on the first day of DST by 24/23 to account

for a possible distortion coming from the fact that the first day after the transition to DST ends up

being one hour shorter than the rest of the days in a year (23 hours).9

In table 3 we present average number of homicides, unadjusted for day-of-week and time

trend, for one week prior and one week after DST transition. The first column shows averages

across all states and years within a window of one week around the transition. In columns 2 and

3 we consider homicides per day while in columns 4 and 5 we consider only those around sunset.

We note that for states that adopted the policy, there are on average 3.264 homicides per day on the

week prior to transition to DST. On the week following transition, this number decreases to 2.962,

a reduction of almost 10%. If we look only at those occurring around sunset, we observe a decrease

of about 42%. These patterns are not observed when looking at states that did not adopt the policy.

A reduction of 1.4% is observed when looking at daily totals and an increase of 1.5% is observed

when looking at those around sunset.

9We provide evidence that our results are not driven by this hour adjustment.
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Table 3: Average number of homicides per state for one week before and one week after
Daylight Saving Time

States Total All-day Sunset

Week Pre-DST Week Post-DST Week Pre-DST Week Post-DST
(1) (2) (3) (4) (5)

Treated 3.101 3.264 2.962 0.396 0.229
(2.862) (3.013) (2.734) (0.725) (0.554)

Untreated 2.037 2.051 2.022 0.266 0.270
(3.051) (3.097) (3.006) (0.610) (0.625)

Note: All-day homicides represent the average number of homicides per day on the week
prior and week after DST per state. Sunset hour data are the average of total homicides
occurring in the hour of sunset and that directly following sunset (dusk). Standard deviations
are in parentheses.

2.4 Empirical Strategy

2.4.1 Regression Discontinuity

In this section we present the empirical strategy used to identify the short-term causal effect

of light on the number of homicides in Brazil using a regression discontinuity design (RDD). In

particular, for an optimally-chosen time interval, we compare the number of homicides before

entering DST to the number of homicides after its initiation for those states that adopted DST (as

listed in table 1). For that, consider the following reduced-form model.

logHomicidesisy = τI(Transitionisy ≥ 0)+g(Transitionisy)+ εisy (2.1)

where logHomicidesisy is the natural logarithm of the number of homicides in day i, state s

and year y. Transitionisy is the running variable, defined as the number of days to/from transition

to DST, which is equal to zero on the first day after transition and positive (negative) after (before),

while g is a non-parametric function of that variable and ε is a random error term.

We use local-polynomial point estimators and recently developed robust bias-corrected non-

parametric confidence intervals (Calonico et al., 2014). In this framework bandwidth selection is
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crucial since it imposes a trade-off between bias and variance. Therefore, in contrast with previous

literature on the field, we rely on optimal data-driven bandwidth selectors to set time interval used

for comparison around the transition date. Specifically, we show results using two bandwidth

selectors: that outlined in Imbens and Kalyanaraman (2012), hereafter IK, and our preferred one,

proposed in Calonico et al. (2014), hereafter CCT.10

Consistently estimating the parameter of interest requires the outcome to evolve smoothly

around the transition date in the absence of treatment once we control for day-of-week and other

fixed effects, an assumption that cannot be directly tested due to the nature of observational coun-

terfactual analysis. Given the institutional setup of DST policy in Brazil, we use a well defined

control group of untreated states to test whether unobserved factors at the national level correlate

with the period of DST transition and are the real cause for shifts in homicides and provide several

robustness exercises and falsifications tests to support results obtained through our main specifica-

tion.

We first consider the effect of DST on daily homicide rates. In this way we may estimate the

net effect of light on criminal activity. Nevertheless, the number of homicides may not respond to

the transition if criminals relocate their activity from hours directly affected by the shift in daylight

to other dark hours. In this scenario DST would have an insignificant effect on homicides even

though light might still affect criminal behavior. To investigate this possibility, we then estimate

the effect of interest by hour of the day. Following the crime deterrence rationale, we expect to see

a strong decrease in homicides on hours of the day that are directly affected by the transition, i.e.,

hours that were dark before transition and light after transition.

10As discussed in Calonico et al. (2014), previous bandwidth selectors tend to yield large bandwidths, leading to
biased confidence intervals. Therefore, we adopt CCT as our main procedure and present results using IK mainly for
comparison. Estimations using ad hoc bandwidth selections are also presented.
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2.4.2 Differences-in-Differences

The RDD strategy discussed provides a local average treatment effect, which means that

comparisons are made for a subset composed by observations around the transition date within DST

adopters. Moreover, the non-parametric estimator usually exploited in RDD estimation assigns

greater weights the closer observations are to the cutoff. While those features are responsible for

most of the appeal of regression discontinuity design due to the incontestable internal validity it

provides, it is of interest to provide generalizable estimates for the policy in question. In addition to

exploiting the within-state variability on the adopters, we take advantage of variation in treatment

status between states using a fixed effects model. Equation 2.2 displays a general specification to

this approach, in which logHomicidesisy is the natural logarithm of the number of homicides in day

i, state s and year y, DSTisy is an indicator variable that assumes value one for adopters states as

from the date of transition, and λi, λs, and λy represent respectively day, state and year fixed effects.

logHomicidesisy = β0 +β1DSTisy +WeekDayi +λi +λs +λy + εisy (2.2)

Note that the parameter β1 identified here has a different meaning from the τ obtained from

estimating equation 2.1. The former measures the average effect of the whole period of DST when

compared to the rest of the year, exploiting not only time variation within treated states around the

transition but also variation in the treatment status, i.e., states that adopted and states that did not

adopt. This framework lends itself to a differences-in-differences estimation, given the existence of

well defined treatment and control groups, and a treatment that is exogenous to individual decision

makers in its technical basis and compliance, which is enforced by the Federal government. In this

set up, we also provide results for specifications including state-specific time trends, municipality-

level daily precipitation, daily maximum temperature and daily minimum temperature (Jacob et al.,

2007).
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2.5 Results

2.5.1 Main results

Figure 2.2 displays our main finding graphically for logHomicides demeaned by day-of-

week, state, and year around the DST transition date. In the top panel, which represents states that

adopted DST, we observe that points to the right of the cutoff are slightly shifted below, implying

lower incidence of homicides after transition even when we partial out day-of-week and other fixed

effects. The panel on the bottom of figure 2.2 considers contemporaneous homicide levels for the

untreated states. As expected, we find no significant discontinuity around the cutoff for those states

that did not adopt DST.11

Figure 2.2: DST entrance transition
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Note: Crosses represent residuals from the regression of lnHomicides on day-of-week, state and year dummies while
solid lines are predicted outcome values based on a local linear regression as specified by equation 2.1.

In table 4 we present detailed results of what we showed above for treated and untreated

states. Results imply that after transition homicides decreased by about 14% in treated states while

on states that did not adopt the policy the difference in homicide levels after the transition is statis-

tically zero. Since unobservables are likely to be balanced near the threshold, given that outcomes

11Estimations for non-adopters follow a general equation of the form shown in equation 2.1 unless stated otherwise.
Although non-adopters do not experience an actual transition into DST, their indicator function I(Transitionisy ≥ 0)
assumes value one contemporaneously to the transition actually experienced by adopters.
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for treated states are likely to be influenced by the same unobservables that determine outcomes

for untreated states, those results make a strong case for the reduced form causal relation between

DST and crime. This number is substantially larger than the one previously obtained by Doleac and

Sanders (2015), who find no consistent impacts for murder using data from the U.S. and a similar

identification strategy.

Table 4: RD estimates of the im-
pact of entering DST on Homicides
for treated and untreated states

States Treated Not treated

(1) (2)
DSTLAT E -0.144** -0.015

(0.056) (0.043)
Bandwidth CCT CCT

25 28
Obs. to the left 1,650 2,688
Obs. to the right 1,716 2,784
Total 3,366 5,472

Note: CCT refers to the bandwidth se-
lector of Calonico, Cattaneo, and Titiunik
(2012). Robust Standard errors in paren-
theses. ∗∗∗, ∗∗ and ∗ represent p<1%,
p<5% and p<10% respectively.

The results presented above indicate a net decrease in homicide levels when we aggregate

the outcome daily, and provide evidence of a reduced form relationship between DST and crime

occurrence. However, the supposed channel through which DST affects homicides is by shift-

ing ambient light to hours otherwise dark and of typically high crime occurrence, as previously

discussed. Therefore, in table 5, instead of providing results on the daily-level of homicides, we

restrict the sample to hours around sunset. As in Doleac and Sanders (2015), we expect homicides

to decrease mostly on those hours directly affect by the transition, namely those in the periods cov-

ering the hour of sunset and that directly following sunset (dusk). Our results strongly support the

idea that ambient light has a substantial influence on crime, since we observe a significant decrease

(around 12%) in homicides exactly on the hours mostly affected by Daylight Saving Time.12 Note

12Here we focus on the entrance transition. Unfortunately, as shown on table 1, the transition back from DST to
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that we observe no change on hours prior to sunset or following dusk. For states not affected by

the policy, presented in panel B of table 5, results are precisely zero for all three time intervals we

consider.

Table 5: RD estimates of the impact of entering DST on Homicides for
both treated and not treated states for hours around sunset

Hours before Sunset Sunset Hours after Sunset

3/2 0/1 2/3
Panel A: Treated states

DSTLAT E -0.018 -0.117*** 0.009
(0.035) (0.038) (0.047)

Bandwidth CCT CCT CCT
25 25 26

Obs. to the left 1,650 1,650 1,716
Obs. to the right 1,716 1,716 1,782
Total 3,366 3,366 3,498

Panel B: Untreated states
DSTLAT E -0.007 0.013 -0.008

(0.019) (0.028) (0.027)
Bandwidth CCT CCT CCT

31 28 28
Obs. to the left 2,976 2,688 2,688
Obs. to the right 3,072 2,784 2,784
Total 6,048 5,472 5,472

Note: CCT refers to the bandwidth selector of Calonico, Cattaneo, and Titiunik (2012).
Robust Standard errors in parentheses. ∗∗∗, ∗∗ and ∗ represent p<1%, p<5% and p<10%
respectively. Regressions are grouped in two hour periods, as indicated in the columns.
Hours since sunset are calculated using data on the hour of sunset for each county on the
day prior to the beginning of Daylight Saving Time (DST).

Although quite convincing, this hourly approach is not without caveat, since intra-day dis-

aggregation is more prone to systematic measurement error in the recording of time of death than

daily data, what would bias our estimates. As an example, there can be a considerable time lapse

between the events of getting shot and end up dying; the victim may be hospitalized hours before

being declared dead. We tackle this potential issue in the Robustness Checks section by further

restricting the sample to observations for which victims died on site and show consistent results

ST coincides with the annual Brazilian Carnival. This introduces difficulties in isolating the effect of carnival on
homicides from that of light on homicides.



2.5 RESULTS 46

that support our claims.

An additional remark regarding our main results is that so far our regressions considered

variation in logHomicidesisy for states within a given treatment status; to say, we compared what

happened in terms of homicides before and after crossing the DST transition to states that adopted

DST and, separately, to states that did not adopt DST, which is the standard in this literature that

exploits variation caused by DST (Doleac and Sanders, 2015; Smith, 2016; Toro et al., 2015). This

approach is exceptionally convincing since unobservables are likely to be balanced near the thresh-

old and, at the national level, outcomes for treated states are likely to be influenced by the same

unobservables that determine outcomes for untreated states. However, to provide comparability be-

tween the two groups (at a cost of lesser internal validity) for a wider time span, we exploit both (a)

variation across the transition date within DST adopters, and (b) treatment status variation between

adopters and non adopters using a fixed effects model.

In table 6 we provide Differences-in-Differences estimates for varying sets of fixed effects,

time trend and municipality-level controls such as daily precipitation, daily maximum temperature

and daily minimum temperature (Jacob et al., 2007). In columns 1-3 we obtain that homicides de-

crease by about 3% throughout DST period. Note that the inclusion of additional control variables

as well as state-specific time trends marginally changes the parameter of interest, adding robustness

to our causal claim. In columns 4-7 we estimate the same model, but considering only crimes that

occurred around sunset. The effect is negative and statistically significant on the period mostly

affected by the Daylight Saving Time, and even larger when we include state-specific time trends.

We observe a reduction of about 6.5-8.1% on the periods covering sunset and dusk.
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Table 6: Differences-in-Differences estimates of impact of entering DST on Homicides - Adopters vs Non-adopters

All-day Before sunset Sunset After sunset

2/1 0/1 2/3
(1) (2) (3) (4) (5) (6) (7)

DST -0.033*** -0.032*** -0.028** 0.007 -0.065*** -0.081*** 0.009
(0.010) (0.010) (0.013) (0.006) (0.007) (0.009) (0.007)

Additional controls No Yes Yes Yes Yes Yes Yes
Weekday fixed effect Yes Yes Yes Yes Yes Yes Yes
Day-of-year fixed effect Yes Yes Yes Yes Yes Yes Yes
State fixed effect Yes Yes Yes Yes Yes Yes Yes
Year fixed effect Yes Yes Yes Yes Yes Yes Yes
State-specific time trend No No Yes No No Yes No
R2 0.62 0.62 0.62 0.13 0.17 0.17 0.23
Obs. 59,157 59,157 59,157 59,157 59,157 59,157 59,157

Note: Additional controls included here are daily precipitation (mm), daily maximum temperature (◦C) and daily minimum temperature (◦C).
∗∗∗, ∗∗ and ∗ represent p<1%, p<5% and p<10% respectively.

2.5.2 Robustness Checks

In this section, we present results of a wide variety of robustness checks and placebo tests

to support the findings discussed above.

As a first exercise, we address the issue that some RD specifics may require a judgment call

from the econometrician, such as the order of polynomials used in the specification. As pointed

by Angrist and Pischke (2014), there is a risk that researchers will cherry pick the model that

produces the most appealing results from a subset of RD possibilities when in fact estimates should

not be substantially sensitive to marginal changes in the specification. In that regard, we follow

Dell (2015) and report supplementary results on how our estimates behave when some aspects

of the regression model are changed. Not only we address the possibility of higher degrees of

nonlinearity, by including polynomials of higher order, but we also consider different kernels and

alternative ad-hoc bandwidths.

Results presented in panel A of table 7 are quite stable across specifications, specially when

using the optimal bandwidth selector provided by Calonico et al. (2014) (columns 4-9). Results

range from a minimum of 10.3% to a maximum of 14.4% decrease in homicides. When considering

ad-hoc bandwidths, results still show significant decreases in homicides (7.3-13.5%), although we
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lose significance due to a larger variance from the smaller bandwidth (the point estimate, however,

is virtually unchanged in columns 1 and 2). In panel B, we report estimates for untreated states.

Accordingly, estimates are all statistically insignificant and close to zero.

Table 7: Robustness of RD estimates of the impact of entering DST on homicides: Alternative bandwidths, polyno-
mials and kernels

Alternative bandwidths Alternative polynomials Alternative kernels

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Panel A: Treated states

DSTLAT E -0.131 -0.135** -0.072* -0.103** -0.119* -0.125* -0.144** -0.125** -0.130**
(0.094) (0.062) (0.043) (0.043) (0.067) (0.071) (0.056) (0.055) (0.056)

Bandwidth 15 30 60 CCT CCT CCT CCT CCT CCT
19 32 45 25 30 29

Polynomial Order 2 2 2 1 3 4 2 2 2
Kernel Uni Uni Uni Uni Uni Uni Uni Tri Epa
Obs. to the left 990 1,980 3,960 1,254 2,112 2,970 1,650 1,980 1,914
Obs. to the right 1,056 2,046 3,982 1,320 2,178 3,036 1,716 2,046 1,980
Total 2,046 4,026 7,942 2,574 4,290 6,006 3,366 4,026 3,894

Panel B: Untreated states
DSTLAT E 0.013 0.015 -0.010 -0.016 0.021 0.013 -0.015 0.000 -0.003

(0.074) (0.049) (0.034) (0.032) (0.052) (0.061) (0.043) (0.043) (0.043)
Bandwidth 15 30 60 CCT CCT CCT CCT CCT CCT

22 33 39 28 32 30
Polynomial Order 2 2 2 1 3 4 2 2 2
Kernel Uni Uni Uni Uni Uni Uni Uni Tri Epa
Obs. to the left 1.440 2,880 5,760 2,112 3,168 3,744 2,688 3,072 2,880
Obs. to the right 1.536 2,976 5,792 2,208 3,264 3,840 2,784 3,168 2,976
Total 2,976 5,856 11,552 4,320 6,432 7,584 5,472 6,240 5,856

Notes: Robust Standard errors in parentheses. ∗∗∗, ∗∗ and ∗ represent p<1%, p<5% and p<10% respectively.

Secondly, for comparison, we consider estimating our main RD specification using the op-

timal data-driven bandwidth selector proposed by Imbens and Kalyanaraman (2012), although, as

argued by Calonico et al. (2014), the bandwidth provided by IK is likely to be larger than the one

obtained by CCT due to a first-order bias in the distributional approximation. According to the

numbers presented in table 8, this is precisely what we observe, bandwidths are more than twice

those presented in tables 1 and 5. Moving to our estimates, column 1 shows the effect of entering

DST on homicides occurring during the entire day. As expected, we observe a statistically signifi-

cant reduction on the number of homicides of 7.5%. This number is substantially larger when we

look at hours directly affect by the transition, with homicides decreasing in around 23% around
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sunset, reinforcing even further our empirical findings. Again, estimates for states that did not

adopt the policy are statistically insignificant.

Table 8: RD estimates of the impact of entering DST on Homicides for treated
states: Results using Imbens and Kalyanaraman (2012) bandwidth

All-day Hours before Sunset Sunset Hours after Sunset

2/1 0/1 2/3
(1) (2) (3) (4)

Panel A: Treated states
DSTLAT E -0.0755* -0.039 -0.234* 0.024

(0.039) (0.026) (0.124) (0.033)
Bandwidth IK IK IK IK

58 55 126 102
Obs. to the left 3,828 3.630 8,316 6,732
Obs. to the right 3,872 3.696 4,818 4,818
Total 7,700 7,326 13,134 10,550

Panel B: Untreated states
DSTLAT E -0.065 0.001 0.009 0.000

(0.045) (0.026) (0.063) (0.080)
Bandwidth IK IK IK IK

107 96 91 111
Obs. to the left 10,272 9,216 8,736 10,656
Obs. to the right 7,008 7,008 7,008 7,008
Total 17,280 16,224 15,744 17,664

Note: IK is Imbens and Kalyanaraman (2012). Robust Standard errors in parentheses. ∗∗∗, ∗∗ and
∗ represent p<1%, p<5% and p<10% respectively.

Third, since the first day of DST has one hour less than the day before due to the one hour

shift in the relationship between clock time and sunset, adjustments to account for 23 instead of 24

hour of records on the outcome are necessary and a common practice in the recent temporal RD

literature (Smith, 2016), as we discuss above. To address eventual concerns about this adjustment

being a source of bias responsible for the significance of the estimated effects, in columns 1 and

2 of table 9 we provide the following robustness checks: in column 1 we estimate our main RD

equation without any hour adjustment; and in column 2 we draw from Barreca et al. (2011) and

provide results for a “donut” regression discontinuity in which we exclude observations in the

exact day of the transition. If the underlying hypotheses are valid, although we may incur in a
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loss of precision due to less information available in the sample, we expect to find point estimates

similar to those presented in our main specification (Table 1). Results are quite stable and show

that homicides decrease by 13.3-15% after transition. These estimates are 5-10 times larger than

that observed for untreated states, which are small and statistically insignificant.

A fourth and important issue relates to whether increased mortality around the hours most

affected by DST results from a lagged effect of higher crime levels in early hours that ended up

being spuriously captured by our regressions. For instance, it is possible that some victims got

shot several hours before the ones most affected by DST (around sunset) but ended up dying only

during sunset hours due to over crowded hospitals or to reduced hospital staff caused by work shift

friction due to DST. Unfortunately, we are not able to match the time of death of deceased patients

to the time they were admitted to the hospital in order to check for this potential spurious effect.

To tackle this issue, however, we estimate the effect around sunset as in the previous tables while

restricting the sample to observations for which victims died on site (i.e., before a possible hospital

admission), thus eliminating the possibility of unrelated causes being driving our results. This

is a conservative estimate, since we lose observations for which the victim got shot, was quickly

admitted to a hospital and ended up dying briefly after admission. Columns 3-5 of table 9 show

that the effect is only statistically significant on hours around sunset; we find that the number of

victims that where declared dead before being admitted to hospital decrease by 7.2%.
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Table 9: RD estimates of the impact of DST on homicides for treated states: additional robustness

First DST day Death before admission Dummy if municipality
to hospital had at least a homicide

No Conversion No Transition Hours before Sunset Sunset Hours after Sunset
(1) (2) (3) (4) (5) (6)

Panel A: Treated states
DSTLAT E -0.133** -0.150** -0.027 -0.072*** 0.018 -0.094*

(0.058) (0.061) (0.023) (0.026) (0.035) (0.050)
Bandwidth CCT CCT CCT CTT CCT CCT

16 25 32 33 31 25
Obs. to the left 1,584 1,650 2,112 2,178 2,046 1,650
Obs. to the right 1,650 1,650 2,178 2,444 2,112 1,716
Total 3,234 3,300 4,290 4,622 4,158 3,366

Panel B: Untreated states
DSTLAT E -0.015 -0.031 -0.011 0.016 -0.009 -0.001

(0.042) (0.061) (0.017) (0.021) (0.023) (0.037)
Bandwidth CCT CCT CCT CCT CCT CCT

28 31 23 35 25 28
Obs. to the left 2,688 2,976 2,208 3,360 2,400 2,688
Obs. to the right 2,784 2,976 2,304 3,456 2,496 2,784
Total 5,472 5,952 4,512 6,816 4,896 5,472

Note: CCT refers to the bandwidth selector of Calonico, Cattaneo, and Titiunik (2012). Robust Standard errors in parentheses. ∗∗∗, ∗∗ and ∗ represent p<1%,
p<5% and p<10% respectively. Hours since sunset are calculated using data on the hour of sunset for each county on the day prior to the beginning of Daylight
Saving Time (DST).

Based on this sample of victims that died before a possible hospital admission, for which

we have a more precise estimate to hourly homicides, we investigate the possibility of intra-day

reallocation of crime across the day. Figure 2.3 plots RD point estimates along with 95% confi-

dence intervals for regressions restricted to two-hour periods around the normalized sunset hour,

extending the results presented in table 5 to hours throughout the day. We show that for the treated

states there is no significant estimated effect along the day but for the hours around “sunset”, which

displays a strongly significant decrease in homicides. Specifically, this indicates absence of real-

location of homicidal activity within the day, suggesting the net effect obtained in 1 is exclusively

due to the hours affected by ambient light. Note that the same pattern does not hold true for the

untreated states, for which none of the estimates is statistically significant.
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Figure 2.3: DST entrance transition: estimates by hours since sunset
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Note: RD estimates along with 95% confidence intervals for regressions restricted to two-hour periods the normalized
sunset hour. Dashed line represents threshold for a null estimated effect.

Still, one may argue that an event not related to DST may cause specific (large) cities to ex-

perience unusual shocks to homicides, thus increasing total homicides observed statewide, biasing

our estimates. To test for this, we proceed in three ways. A first test involves estimating our RD

model using as dependent variable the total number of municipalities that experienced a positive

number of homicides in a specific day and state. This specification has the advantage of being less

sensitive to outliers, since a large shock to mortality in a large city wont cause changes to the de-
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pendent variable. Results considering this outcome are presented in column 6 of table 9 for treated

and control states. We observe a decrease of 9.4% on the number of municipalities experiencing at

least one homicide per day after transition. For untreated states, the point estimate is -0.001 and we

observe no statistical difference between the days before and following transition.

As a second exercise, we assign I(Transitionisy ≥ 0) to weeks preceding the actual DST

transition, an exercise analogous to that proposed in (Autor, 2003) to check for the existence of

anticipatory effects. Results are shown in Figure 2.4. If our identifying assumption holds, we expect

leads to have no statistical relevance in explaining shifts in homicides. In a dynamic framework,

anticipatory effects can naturally arise from expectation adjustments of forward-looking agents

(Malani and Reif, 2015). In the present setup and for the channels through which light is argued to

affect criminal behavior however, there is no reason to expect anticipation in homicides if not with

a positive sign, i.e., individuals anticipating crimes to previous weeks due to the deterrence effect

they will face in the future, which is very unlikely. For this exercise, we restrict the sample to the

years of 2007, 2009 and 2011, since elections are held on Sundays coincidentally 14 days before

DST transition on even years. We estimate regressions assigning placebo DST transitions for one

to seven weeks before the actual transition and show absence of any anticipatory effects, regardless

of the sign.
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Figure 2.4: DST entrance transition: weeks preceding actual transition
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Note: RD estimates along with 95% confidence intervals for regressions restricted to weeks preceding actual DST
transition. Dashed line represents threshold for a null estimated effect.

As a third and final empirical exercise, we draw on Dell (2010) and Lalive et al. (2014),

and design a more conservative comparison between treated and non-treated estimates by looking

at those municipalities which are allegedly more balanced in terms of geographical features. Geog-

raphy is a very influential factor to economic development in Brazil. Regions with milder climate

such as the South and Southeast have historically prospered from climate-dependent economic ac-

tivities such as agriculture and extensive livestock, whereas development in much of the Northeast

is still hampered by dry weather and strong droughts. Such conditions are certainly reflected in

many municipality-level socioeconomic characteristics such as poverty, illiteracy, unequal educa-

tional opportunities and crime.

The idea is to truncate our whole sample of observations conditional on their municipality

falling within a certain distance from the geographical border dividing the group of states that are

treated from the group that is not treated. The border is drawn as an imaginary line separating

the Midwest, Southeast and South regions (treated) from the North and Northeast regions (non

treated)13 We exclude data corresponding to Bahia in 2007 since this state adopted DST in that

13See figure 2.1. The imaginary line is the one dividing states in black (RS, SC, PR, SP, RJ, ES, MG, GO, MS, MT,
DF) from states in grey and light grey (AC, AM, RR, PA, AP, MA, PI, CE, RN, PB, PE, AL, SE, TO, BA).
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year and thus is not eligible to be part of this analysis. By focusing on municipalities that are closer

to state borders, we also avoid possible outlying values from large urbanized areas such as state

capitals, which are all located further from this imaginary line.

Results are presented in table 10. Each column represents an estimate conditional on a given

distance from the boarder (in km). Panels A and C present estimates for treated states. In panel A

we use daily data while in panel C we analyze only thos homicides occuring around sunset. We

observe that estimates are statistically significant for all distances, either using daily data or hourly

data around sunset. In panels B and D we present estimates for untreated states. Accordingly,

estimates are statistically insignificant.
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Table 10: RD estimates using Distance to DST boarder

Distance 200km 400km 600km 800km 1000km
(1) (2) (3) (4) (5)

Panel A: All-day treated states
DSTLAT E -0.067** -0.069* -0.092* -0.112** -0.158***

(0.028) (0.041) (0.050) (0.049) (0.054)
Bandwidth CCT CCT CCT CCT CCT

28 23 22 23 20
Total 3,762 3,102 2,960 3,102 2,706

Panel B: All-day untreated states
DSTLAT E 0.019 0.012 -0.016 0.026 -0.026

(0.014) (0.018) (0.024) (0.034) (0.035)
Bandwidth CCT CCT CCT CCT CCT

35 30 33 27 31
Total 6,816 5,856 6,432 5,280 6,048

Panel C: Sunset treated states
DSTLAT E -0.026** -0.048*** -0.059** -0.061** -0.097***

(0.012) (0.019) (0.023) (0.029) (0.031)
Bandwidth CCT CCT CCT CCT CCT

20 21 25 23 25
Total 2,706 2,838 3,366 3,102 3,366

Panel D: Sunset untreated states
DSTLAT E 0.004 0.003 0.021* -0.004 -0.003

(0.009) (0.018) (0.012) (0.023) (0.022)
Bandwidth CCT CCT CCT CCT CCT

28 27 27 24 34
Total 5,472 5,280 5,280 4,704 6,624

Note: CCT refers to the bandwidth selector of Calonico, Cattaneo, and Titiunik
(2012)). All specifications use a second order polynomial and a uniform kernel. Ro-
bust Standard errors in parentheses. ∗∗∗, ∗∗ and ∗ represent p<1%, p<5% and p<10%
respectively.

2.6 Conclusion

We exploit variation in daylight hours caused by transition from Standard to Daylight Saving

Time (DST) to estimate the influence of ambient light on the number of homicides by firearms

in Brazil. Using daily data on mortality and regression discontinuity techniques, our framework

allows us to carry out both within and between-states comparisons around the transition date. We
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find robust evidence in favor of a significant decrease to the number of homicides in Brazilian

treated states (14%), but no statistical relationship among untreated states. Moreover, comparing

treated to untreated states in a Differences-in-Differences approach, we find that homicides by

firearms decreased during DST months by about 3%. These effects are persistent especially for dark

evening hours that were more affected by the shift in clock time. Finally, robustness checks show

that our findings are consistent across alternative polynomials, kernels and bandwidths Angrist and

Pischke (2014), and falsification tests find no discontinuity for weeks before the actual transition

nor for a set of deaths theoretically not directly affected by DST.
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CHAPTER 3

DAYLIGHT SAVING TIME AND INCIDENCE OF MYOCARDIAL

INFARCTION: EVIDENCE FROM A REGRESSION DISCONTINUITY

DESIGN1

3.1 Introduction

Empirical researchers in epidemiology and related disciplines have for long been interested

in estimating the causal effect of circadian variations in the incidence of acute myocardial infarction

(hereafter, AMI).2 Most literature on the subject, however, lack proper identification strategies

needed to vouch for causal interpretation. Since randomization is unfeasible, generally owing to

ethical constraints, the natural experiment induced by Daylight Saving Time (hereafter, DST) serves

as an alternative potentially as good as randomization to identify the effect of interest (Imbens and

Lemieux, 2008; Angrist and Pischke, 2014).

This sudden disturbance caused by DST to individuals’ daily routine has recently been

shown to affect outcomes such as fatal vehicle crashes (Smith, 2014), criminal activity (Doleac

and Sanders, 2015) and individual well-being (Kountouris and Remoundou, 2014) using robust

econometric techniques. In the medical literature, Janszky and Ljung (2008) provide one of the

first recognized piece of evidence relating DST and the incidence of AMI. Since then, other papers

1This work has as coauthors Robson Tigre e Breno Sampaio. It was published in Economics Letters. http://www.
sciencedirect.com/science/journal/01651765/136

2According to experimental evidence, circadian variations caused by disturbance in sleep patterns may increase high-
sensitivity C-reactive protein (CRP) levels, a stable marker of inflammation, which has been shown to be predictive
of cardiovascular morbidity (Meier-Ewert et al., 2004).
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using specific-hospital admissions have flourished. Their analyses are usually based on incidence

ratios calculated by dividing the incidence just after transition by the incidence two weeks before

transition, therefore considering small (and selected) samples, ad-hoc definitions for bandwidths

around the discontinuity and strategies that strongly depend on almost ideal unconfoundedness

conditions. Our aim in this paper is therefore to provide a well-founded and accurate estimate of

the effect of DST on AMI using Brazilian data and a regression discontinuity design.

In Brazil, DST is governed annually by means of Federal enactments based on informa-

tion of technical reports provided by The Electric System National Operator (ONS). The National

Operator indicates the States that should adopt DST as well as the duration of the regime, which

usually starts on the third Sunday of each October, when clocks skip forward from 12am to 1am,

and extends to midnight of the third Sunday of each February. This policy favors our identification

since it provides variation in DST adoption within and across States. Having non-adopter States

helps us in designing a robust placebo test, given other factors affecting AMI, besides DST, must

evolve smoothly around the transition date.3

The remainder of the article is organized as follows. In section 3.2 we present the data

set and methodological approaches. Section 3.3 discusses the results. Finally, conclusions are

presented in section 3.4.

3.2 Data and Empirical Strategy

In this section we present the data and the empirical strategy we adopt to identify the causal

effect of DST on AMI. In particular, we compare the incidence of AMI on the day before entering

DST with the incidence of AMI on the first day after its initiation for States that adopted DST using

a regression discontinuity (RD) design. For that, consider the following reduced-form model

3Deleac and Sanders (2015) and Smith (2014), for example, consider law changes to DST policy in the US to account
for endogeneity, since DST occurs simultaneously across 48 states (Arizona and Hawaii do not observe DST) and at
approximately the same time each year.
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lnAMIisy = τI(Transitionisy ≥ 0)+g(Transitionisy)+ εisy (3.1)

where lnAMIisy is the logarithm of AMI in day i, state s and year y, Transitionisy is defined as the

number of days to transition to DST, which is equal to zero on the first day after transition and

is positive (negative) after (before) then, g is a non-parametric function and ε is a random term.

To eliminate persistent day-of-week effects (it might be the case that AMI incidence is higher on

weekends than weekdays, for example), State differences and long-term time trends, we follow

Smith (2014) and demean the log of AMI incidence by day-of-week, State and year.

We utilize local-polynomial regression-discontinuity point estimators with robust bias-corrected

non-parametric confidence intervals (Calonico et al., 2014). Instead of ad-hoc bandwidths adopted

by previous literature, we rely on two optimal data-driven bandwidth selectors outlined in Imbens

and Kalyanaraman (2012; hereafter, IK) and Calonico, Cattaneo, and Titiunik (2014; hereafter,

CCT), and on an alternative cross-validation method, as done by Ludwig and Miller (2007; here-

after, CV). We also propose falsification tests on the basis of (a) a well defined control group,

namely untreated States, and (b) placebo diseases that in principle should not be affect by the tran-

sition.

We use individual-level mortality data from the Mortality Information System (SIM), com-

piled by the Brazilian Ministry of Health. The system provides almost global coverage within the

Brazilian territory, containing daily information on cause of death following International Classi-

fication of Diseases (ICD) codes. To ensure the best reliability of our data, we consider the years

from 2007 to 2012. During this period, all states within Midwestern, Southern and Southeastern

region, where light incidence vary the most during the year, adopted DST. Bahia (Northeastern

region) and Tocantins (Northern region) adopted DST only in 2011 and 2012, respectively.4

4Results are unchanged if we exclude these two States.
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3.3 Results

Figure 3.1 presents our main results graphically. Demeaned values of log(AMI) by day-of-

week, State and year are plotted, centered on the DST transition date. The graph on the left, which

consider States that adopted DST, shows that points to the right of the cutoff are slightly shifted

above, implying higher incidence of AMI after transition. This is not observed when looking at

untreated States.5 Table 1 presents formal results considering all bandwidth selection procedures

for treated and untreated States. After transition, AMI incidence increased by about 7.4-8.5% for

treated States.6 For untreated States, results are precisely zero.

Figure 3.1: DST entrance transition - residuals plot
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Note: Residuals are generated from a regression of ln(infarction) on day-of-week, State and year dummies. Fitted lines
represent locally weighted regression.

5For untreated States, we consider as if DST was adopted in the same time period as treated States. Hence, in this
falsification test, we estimate equation 3.1 using data on lnAMIisy for untreated States.

6These numbers are slightly higher than the ones previously obtained in this literature. For example, Janszky and Ljung
(2008) find that incidence of myocardial infraction increased by 5.1% using data from the Swedish registry of acute
myocardial infarction.
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Table 1: RD estimates of the impact of entering DST on incidence of AMI

Treated States Untreated States

(1) (2) (3) (4) (5) (6)

DSTLAT E 0.085∗∗ 0.071∗∗ 0.074∗ 0.008 0.011 0.018
(0.038) (0.033) (0.042) (0.057) (0.041) (0.041)

Bandwidth selector CCT IK CV CTT IK CV
Bandwidth 17 34 26 25 63 76
Obs. to the left 969 1,938 1,482 1,950 4,914 5,928
Obs to the right 1,026 1,995 1,539 2,028 4,992 5,835
Total 1,995 3,933 3,021 3,978 9,906 11,763

Notes: ∗∗∗, ∗∗ and ∗ represent p<1%, p<5% and p<10% respectively.

A common practice in causal inference literature suggests support for the identifying as-

sumption can be offered by estimation of the causal effect of a treatment that, under the hypothesis

of identification, is supposed not to have any effect (Imbens, 2004). Not rejecting the hypothesis

that a similar effect is zero would not prove that identification is achieved, but would make this

assumption considerably more plausible. Below we provide a set of results to support that the dis-

continuity found in DST entrance transition is not a mere statistical coincidence. First, we show in

table 2 that there is no significant effect of leaving DST on incidence of AMI for both treated and

untreated states.

Table 2: RD estimates of the impact of leaving DST on incidence of AMI

Treated States Untreated States

(1) (2) (3) (4) (5) (6)

DSTLAT E 0.065 0.021 -0.032 -0.010 -0.012 -0.010
(0.059) (0.047) (0.034) (0.064) (0.053) (0.049)

Bandwidth selector CCT IK CV CCT IK CV
Bandwidth 10 36 45 20 58 54
Obs. to the left 570 2,052 2,565 1,482 3,784 3,769
Obs to the right 627 2,109 2,622 1,560 4,524 4,290
Total 1,197 4,161 5,227 3,042 8,308 8,059

Notes: ∗∗∗, ∗∗ and ∗ represent p<1%, p<5% and p<10% respectively.

Secondly, we check for causality in the spirit of Granger (1969) and estimate the coefficients

of pretreatment or anticipatory effects, a common test in the Differences-in-Differences framework
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to provide robustness to the results (see Autor, 2003). We assign, therefore, I(Transitionisy ≥ 0)

for Sundays preceding the actual DST entrance transition. If our identifying hypothesis holds,

we expect leads to have no statistical relevance in explaining shifts to AMI incidence. Results

presented in table 3 confirm this hypothesis.7

Table 3: RD estimates of anticipatory impact of entering DST on weeks preceding
the actual DST entrance transition

1 week before 2 weeks before 3 weeks before 4 weeks before

(1) (2) (3) (4)

DSTLAT E 0.005 -0.036 0.010 0.017
(0.039) (0.038) (0.036) (0.035)

Bandwidth 18 20 21 23
Obs. to the left 1,026 1,140 1,197 1,311
Obs to the right 1,083 1,197 1,254 1,368
Total 2,109 2,337 2,451 2,679

Notes: ∗∗∗, ∗∗ and ∗ represent p<1%, p<5% and p<10% respectively.

Finally, we propose a falsification exercise by testing different groups of diseases that should

not respond to the transition. Table 4 displays estimates of the impact of entering DST on incidence

of neoplasia, viral infections and parasitic diseases. Our placebo tests confirm these diseases evolve

smoothly around the transition date.

Table 4: RD estimates of the impact of entering DST on incidence
of placebo diseases

Neoplasia Viral infections Parasitic diseases

(1) (2) (3)

DSTLAT E 0.028 -0.010 0.049
(0.033) (0.045) (0.041)

Bandwidth 16 18 20
Obs. to the left 912 1,026 1,140
Obs to the right 969 1,083 1,197
Total 1,881 2,109 2,337

Notes: ∗∗∗, ∗∗ and ∗ represent p<1%, p<5% and p<10% respectively.

7For the sake of brevity and saving space, we provide only results for the CCT bandwidth selector in tables 3 and 4.
All other strategies, IK and CV, also yielded statistically insignificant results (available upon request).
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3.4 Conclusion

We analyze the effects of acute minor sleep deprivation and circadian rhythm disturbances

induced by DST on the incidence of AMI using daily data for Brazil and a regression discontinuity

design. We find robust evidence in favor of significant increases (7.4-8.5%) to the number of AMIs

in Brazilian treated States, but no statistical relationship among untreated States. These effects are

quite large when compared to other factors that affect AMI. For instance, Teo et al. (2006) show the

risk of AMI increases by 5.6% for every additional cigarette smoked daily. Using simple back-of-

the-envelope calculations, if the effect we estimated persists for the first 7 days after transition, our

numbers imply an increase of 196.35 deaths per year.8 Over a period of 10 years, this yields a social

cost ranging from $7.9 to $19.6 billion.9 Finally, our falsification tests show no discontinuities to

exist on weeks prior to transition and on a set of diseases theoretically not directly affected by DST.
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