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RESUMO  
A área de Modelagem Molecular vem despertando interesse crescente 

desde que surgiu. O uso de métodos computacionais na previsão de estruturas 
e propriedades moleculares, particularmente aplicados na inovação terapêutica 
através do planejamento de fármacos, por exemplo, tem adquirido crescente 
espaço e confiabilidade na comunidade científica e na grande indústria 
farmacêutica mundial.  

Dentre as diversas abordagens computacionais aplicáveis ao 
desenvolvimento de fármacos, destacam-se os estudos da relação quantitativa 
entre estrutura molecular e atividade biológica. Esta técnica permite construir 
modelos estatísticos de regressão capazes de oferecer, a partir das estruturas 
de moléculas, uma previsão confiável de uma propriedade de interesse, como 
por exemplo, a atividade biológica (QSAR), a toxicidade (QSTR) ou a 
solubilidade (QSPR). 

O MultiMOL, desenvolvido no Laboratório de Química Teórica Medicinal 
(LQTM) da UFPE, é um software implementado em linguagem de programação 
C/C++, que oferece as técnicas de estatística multivariada mais comumente 
utilizadas nos problemas de QSAR. As suas funcionalidades incluem 
algoritmos de pré-processamento de dados (escalonamento, centrar na média, 
seleção de variáveis), diversos métodos de regressão (MLR, PCR, PLS e Q-
PLS), a validação de modelos por validação cruzada (LOO-FCV) ou por 
utilização de série de testes e a exibição dos resultados dos modelos por meio 
de gráficos bidimensionais. Importa ressaltar que o método de PLS quadrático 
(Q-PLS) não é facilmente encontrado em outros softwares disponíveis, 
tornando-se assim um importante diferencial do MultiMOL. Todas estas 
funcionalidades encontram-se disponíveis para o usuário por meio de uma 
interface gráfica (GUI) de fácil utilização. O programa foi construído com ênfase 
em desempenho, robustez e precisão numérica, a fim de ser uma alternativa 
satisfatória como ferramenta de evidente interesse para a inovação terapêutica. 

Os testes realizados, com três conjuntos de dados distintos (QSAR 
Tradicional, QSAR-3D e dados espectroscópicos), ofereceram indicativos 
satisfatórios da eficácia do software na construção de modelos de regressão. 
Dentre os modelos obtidos, podem ser destacados (i) PCR para QSAR 
Tradicional [Q² = 0,70]; (ii) PLS para QSAR-3D [Q² = 0,75]; e (iii) Q-PLS para os 
dados espectroscópicos [Q² = 0,93]. Estes resultados, aliados à precisão e ao 
bom desempenho do programa, demonstram que o MultiMOL é uma 
ferramenta adequada para tratar problemas típicos de estatística multivariada. 

Versões futuras do software poderão incluir opções de processamento 
paralelo (Grid-Computing) para cálculos que exijam maiores demandas 
computacionais, bem como a implementação de algoritmos classificatórios 
(HCA, SIMCA, KNN), com o intuito de aumentar o leque de aplicabilidade do 
programa. 



 
ABSTRACT 

The molecular modeling area has an increasing interest since it 
appeared. The application of computational methods in order to predict 
molecular structures and properties, particularly applied in therapeutic 
innovation by drug design, for example, has acquired increasing space and 
reliability in the scientific community and big pharma industry. 

Among the various computational approaches applied to drug 
development, it can be highlighted the study of quantitative structure-activity 
relationship (QSAR). This technique allows the building of statistical regression 
models which are capable to offer a reliable prediction of a property of interest, 
e.g., biological activity (QSAR), toxicity (QSTR) or solubility (QSPR). 

The MultiMOL program, developed at the Laboratório de Química 
Teórica Medicinal (LQTM), UFPE, is implemented in the programming language 
C / C++, which offers the multivariate statistical techniques most commonly 
used in QSAR problems. The features available on it include algorithms for data 
preprocessing (scaling, mean-centering, variable selection), a variety of 
regression methods (MLR, PCR, PLS and QPLS), techniques to validate 
models by cross validation (LOO- FCV) or by use of series of tests, and 
features to display the results in a graphical way. It should be emphasized that 
the method of quadratic PLS (QPLS) is not easily found in other softwares, 
becoming so an important implementation for MultiMOL. All these features are 
available to the user through a graphical user interface (GUI) for easy use. The 
program was built with an emphasis on performance, robustness and numerical 
accuracy, in order to be a satisfactory alternative as a tool of obvious interest for 
medicinal chemistry and therapeutic innovation. 

Tests performed with the program, using three different data sets 
(traditional QSAR, 3D-QSAR and spectroscopic data) have given satisfactory 
indications of its effectiveness in building regression models. Generated results 
were obtained with the performance and accuracy characteristics of the 
program. Among the models obtained, can be detached (i) PCR for traditional 
QSAR [Q ² = 0.70], (ii) PLS for 3D-QSAR [Q ² = 0.75] and (iii) Q-PLS for 
spectroscopic [Q ² = 0.93]. These results demonstrate that MultiMOL is a 
suitable tool for solving typical problems of multivariate statistics, accomplishing 
therefore with the previously established objectives. 

Future versions of software may include parallel processing options 
(Grid-Computing), for calculations that require greater computational demands, 
as well as the implementation of classification algorithms (HCA, SIMCA, KNN), 
in order to increase the range of applicability of the program. 
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1. Introdução 
 

A área de modelagem molecular vem despertando interesse crescente desde 
que surgiu. A sua evolução acompanha de perto a evolução das arquiteturas de 
computadores, cujo aumento da capacidade computacional permite o processamento, 
em tempo viável, de estruturas moleculares cada vez mais complexas. Com as 
plataformas de computadores mais modernas, já é possível calcular – com a qualidade 
desejada - os modelos computacionais de moléculas de interesse biológico. 

O processo de desenvolvimento de fármacos [AMARAL et. al., 2002] utiliza-se de 
métodos computacionais sofisticados para aumentar a rapidez e diminuir os custos 
inerentes ao planejamento de fármacos e medicamentos. Um conjunto de resultados 
obtidos por meio destas técnicas [ALLEN et. al., 1987; BERNARD et. al., 2001; 
HOPFINGER, 1985; FALCÃO, 2009] têm comprovado a sua viabilidade e 
confiabilidade, e contribuído para a sua popularização. Os chamados métodos de 
planejamento in silico de fármacos, assim, têm se mostrado uma alternativa adequada 
para a identificação de novos compostos protótipos, ou até mesmo para o 
melhoramento ou otimização de moléculas já conhecidas.  

A utilização de computadores na área de desenvolvimento de fármacos tem, 
portanto, tomado proporções significativas [HOPFINGER, 1985; COHEN et. al., 1990] , 
onde os formalismos teóricos como, por exemplo, química quântica e mecânica 
molecular, têm sido aplicados rotineiramente nas abordagens teóricas necessárias para 
o estudo e a previsão de estruturas e propriedades moleculares, principalmente. A 
incorporação de tecnologias de planejamento de fármacos assistido por computador 
(CADD – “Computer Aided Drug Design”) às abordagens de P&D pode levar a redução 
de até 50% dos custos de desenvolvimento de um fármaco [FDA, 2009; MCGEE, 2005]. 
Entre os motivos que justificam o crescente interesse da comunidade científica aos 
métodos in silico de desenvolvimento de fármacos pode-se destacar a facilidade 
crescente de acesso a arquiteturas computacionais poderosas o suficiente para abordar 
sistemas mais complexos, os bons resultados que têm sido obtidos na área, e a 
comodidade em se desenvolver novos compostos com uma fase prévia de modelagem 
molecular, precedente à obtenção experimental efetiva de novas moléculas, por 
exemplo, através de síntese orgânica. 

O interesse associado à aplicação destes métodos tem, assim, estimulado 
fortemente o desenvolvimento de modelos e metodologias que possibilitem a descrição 
fiel de propriedades destes sistemas, além da previsão e eventual confirmação de 
novas informações sobre os compostos estudados. Dentre as diversas abordagens 
computacionais existentes que podem ser aplicadas ao problema de desenvolvimentos 
de fármacos, destaca-se o estudo da relação quantitativa entre estrutura e atividade 
[AMARAL et. al., 2002; HANSCH et. al., 1962; HANSCH et. al., 1964; HANSCH, 1969], 
o qual pode ser   “tradicional”, tipicamente denominado QSAR (“Quantitative Structure-
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Activity Relationship”) ou em três dimensões (QSAR-3D) [KUBINYI, 1997; WANG et. al., 
2003]. Estas abordagens têm sido utilizadas em larga escala nos mais diversos estudos 
de química medicinal encontrados na literatura. Com estas técnicas, é possível construir 
modelos de regressão que oferecem uma previsão confiável de uma certa propriedade 
de interesse (como por exemplo, a atividade biológica, a toxicidade, a lipossolubilidade, 
etc.) de uma molécula a partir somente de sua estrutura molecular. Deste modo, é 
possível selecionar os compostos com maior potencial de resposta biológica para 
serem sintetizados e testados (in vivo ou in vitro), aumentando assim as chances de 
aumentar a rapidez e diminuir os custos do processo de desenvolvimento de novas 
moléculas bioativas. Tais técnicas vêm sendo cada vez mais amplamente utilizadas, 
justamente por causa da sua grande aplicabilidade e pela capacidade destes modelos 
em auxiliar nas decisões de modificação molecular necessárias para a potencialização 
dos efeitos farmacológicos das moléculas de interesse. 

É importante salientar que, paralelamente aos modelos de QSAR (“Quantitative 
Structure-Activity Relationship”), também existem os modelos de QSTR (“Quantitative 
Structure-Toxicity Relationship”) e QSPR (“Quantitative Structure-Property 
Relationship”). A diferença fundamental entre eles consiste apenas na função resposta 
utilizada nos modelos de regressão que, no caso de QSAR, é a atividade biológica ou 
farmacológica, em QSTR, é a toxicidade das moléculas e, em QSPR, pode ser qualquer 
propriedade físico-química, como, por exemplo, a solubilidade, ou uma propriedade 
farmacocinética qualquer. Desta forma, estes métodos são matemática ou 
estatisticamente equivalentes no que diz respeito à tentativa de correlação de 
descritores moleculares com Atividade, Toxicidade ou uma Propriedade. Assim sendo, 
ao longo deste texto, será utilizada muito freqüentemente a sigla QSAR, mas o 
programa MultiMOL possui generalidade suficiente para também ser utilizado para 
modelos QSTR e QSPR. Portanto, na grande maioria dos casos onde a sigla QSAR 
aparece, poderia ser naturalmente substituída por QSTR e QSPR, neste texto. 

O maior desafio para a abordagem de QSAR Tradicional é a escolha das 
variáveis selecionadas para a construção do modelo de regressão, ou seja, os 
descritores moleculares. São comumente utilizadas propriedades físico-químicas, como 
coeficiente de partição, contagens de determinados tipos de átomos na estrutura, 
cargas sobre átomos específicos, eletronegatividade, e diversas outras propriedades 
topológicas, eletrônicas e empíricas. Preferencialmente, estes descritores selecionados 
guardam relação com a jornada do fármaco no corpo humano até o seu alvo biológico 
(farmacocinética). Verifica-se, no entanto, que é difícil estabelecer, para o caso geral, 
uma regra universalmente válida para a seleção das variáveis (descritores) relevantes, 
sendo geralmente a escolha feita  em cada estudo específico.  

Adicionalmente, muitas das abordagens atuais para o desenvolvimento ou a 
busca de moléculas bioativas utilizam modelos de QSAR-3D [GOLBRAIKH et. al., 2000; 
HOU et. al., 2001]. Estes métodos procuram estabelecer uma correlação estatística 
significativa entre dados de atividades biológicas experimentais e variáveis estruturais, 
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através da distribuição geométrica, no espaço tridimensional (3D), de propriedades 
associadas com eventos de reconhecimento molecular. A idéia fundamental por trás 
destas metodologias é que as diferenças nas propriedades moleculares dos compostos 
podem ser freqüentemente associadas às diferenças presentes em campos não-
covalentes (“Campos Moleculares”) ao redor das moléculas de interesse. Para a 
aplicação desta metodologia, as moléculas de interesse são colocadas dentro de uma 
“caixa” tridimensional discretizada. Em seguida, estas moléculas precisam ser 
alinhadas, a fim de garantir que o valor do campo molecular calculado em cada um dos 
pontos da caixa estará adequado ao campo correspondente em cada uma das 
moléculas da série. Por fim, por meio de uma sonda capaz de calcular o campo (p.ex., 
eletrostático ou estérico) criado por aquela determinada estrutura molecular, o seu valor 
em cada um dos pontos da “caixa” é registrado para todas as moléculas em estudo. Em 
outras palavras: a partir da estrutura tridimensional da série homóloga de moléculas a 
serem estudadas, são calculados os campos moleculares para cada um dos pontos 
espacialmente localizados na vizinhança da molécula, os quais são, então, utilizados 
como descritores para a aplicação de metodologias de identificação de relações entre a 
estrutura molecular e a atividade biológica (QSAR). 

Existem alguns programas comerciais e acadêmicos que são utilizados para 
estes procedimentos, entre os quais merecem destaque o CoMFA (“Comparative 
Molecular Field Analysis”) [CRAMER et. al., 1988] e o GRID [GOODFORD, 1985]. 

Estes são baseados na utilização de sondas (“probes”) para a geração de 
campos moleculares dos tipos eletrostático e estérico, calculados na intersecção da 
malha ou grade discretizada de pontos com a região tridimensional ao redor da 
molécula. Desta forma, cada descritor tridimensional é representado por valores de 
campo eletrostático ou estérico, em um conjunto de pontos da malha 3D e funcionam 
como variáveis independentes de uma análise QSAR usando-se técnicas 
quimiométricas [SHARAF et. al., 1986], como por exemplo, regressão linear múltipla 
(MLR – “Multiple Linear Regression”), mínimos quadrados parciais (PLS – “Partial Least 
Squares”), regressão em componentes principais (PCR – “Principal Component 
Regression”) ou análise de componentes principais (PCA – “Principal Components 
Analysis”). Para a sonda eletrostática, por exemplo, este procedimento funciona como 
um mapeamento gradual das mudanças nas propriedades de interação intermolecular, 
dada pelo cálculo da energia potencial em um malha de pontos regularmente 
espaçados que envolvem as moléculas de interesse. Isto funciona na prática como uma 
simulação do processo de interação molecular entre o fármaco e o seu alvo biológico, 
na qual o caminho percorrido pela sonda mede os campos moleculares da interação da 
molécula com o seu receptor. Naturalmente, o alinhamento das moléculas, baseado em 
critérios estruturais ou critérios de superposição de campos, é um requisito necessário e 
bastante importante para a obtenção do modelo QSAR-3D.  

Note-se a importância, nestas abordagens, da utilização de uma série homóloga 
de moléculas (i.e., que se caracterizem como variações de substituintes sobre um 
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mesmo grupo farmacofórico, comum a todas), particularmente uma série que apresente 
o mesmo mecanismo de ação. Sendo homólogas, o alinhamento das moléculas 
também tende a ser mais simples e preciso, uma vez as diferenças entre as moléculas 
da série são periféricas, de substituintes, e não do grupo farmacofórico comum a todas. 

Em outras palavras, em uma amostragem apropriada dos campos moleculares 
ao redor do conjunto de moléculas alinhadas, espera-se que esteja disponível a 
informação adequada para uma melhor compreensão da justificativa molecular da sua 
atividade biológica, principalmente nos casos onde a estrutura tridimensional do sítio 
ativo não é conhecida. Esta amostragem apropriada é conseguida pelos cálculos de 
energia de interação entre cada molécula e uma sonda apropriada que percorre a 
malha tridimensional regularmente espaçada ao redor das moléculas de interesse 
alinhadas. A energia resultante é calculada a partir de funções de potencial (“campos 
de força”) simples e já bem estabelecidas na literatura, como, por exemplo, o potencial 
de Coulomb e de Lennard-Jones [ALLEN et. al., 1987]. 

O método QSAR-3D também pode ser utilizado para estudar diferenças 
fundamentais entre grupos específicos de enzimas, como foi feito por Kastenholz e 
colaboradores [KASTENHOLZ et. al., 2000]. Neste trabalho, os autores realizaram uma 
Análise de Componentes Principais Consensual sobre os descritores tridimensionais 
obtidos através da varredura de determinadas sondas sobre serina proteases 
homólogas tipo trombina, tripsina e fator Xa. É importante salientar que as regiões 
identificadas através desta metodologia, que têm uma importante “capacidade de 
localização” (i.e., possibilidade de identificação dos pontos relevantes dentro da 
estrutura tridimensional da molécula), em muitos casos são importantes para o aumento 
da seletividade das moléculas que apresentam atividade contra tais enzimas. Isto 
acontece porque os ligantes investigados podem sofrer modificações estruturais que 
permitam aumentar a afinidade para uma classe de enzimas e ao mesmo tempo 
diminuir para outra, ou seja, direcionar a atividade de tal molécula. Este procedimento 
torna-se, portanto, uma ferramenta extremamente útil para combater problemas de 
efeitos colaterais, como toxicidade, onde, muitas vezes, o problema básico por trás do 
efeito tóxico é o da necessidade de aumento da seletividade de uma determinada droga 
para um tipo específico de enzima. 

Pintore, Bernard e colaboradores [PINTORE et. al., 2001] e [BERNARD et. al., 
2001] utilizaram o programa CoMFA para estudar uma série de derivados de indol com 
atividade inibidora reversível de fosfolipase pancreática humana, tentando estabelecer 
seu potencial como drogas para o tratamento de doenças inflamatórias. Os autores 
puderam estabelecer os critérios moleculares importantes correlacionados com a 
potencialidade das drogas, através do cálculo e da visualização dos campos estérico e 
eletrostático, que são representados na Figura 1, em conjunto com a molécula que 
apresentou a maior atividade neste estudo. De uma maneira geral, os autores 
chegaram a conclusão que o potencial inibitório das drogas desta natureza poderia ser 
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aumentado empregando-se grupos volumosos na posição “R5”, grupos carregados 
positivamente na posição “R6”, e grupos carregados negativamente na posição “R2”. 

 

 
(a) (b) 

Figura 1: (a) Representação do campo molecular eletrostático calculado com o programa CoMFA. A 
capacidade inibitória da droga é potencializada aumentando cargas negativas dentro da região 

representada em vermelho ou cargas positivas dentro da região em azul. (b) Representação do campo 
molecular estérico calculado com o programa CoMFA. A capacidade inibitória da droga é potencializada 
aumentando o impedimento estérico dentro da região representada em verde ou diminuindo-o dentro da 

região em amarelo. 
 

Hou e colaboradores [HOU et al., 2001] também usaram o programa CoMFA 
para analisar uma série de cinamamidas com atividade anticonvulsiva. Pode-se notar 
novamente que a ordem de atividade destas drogas é explicada a partir do 
preenchimento dos critérios moleculares descritos pelos diversos campos calculados 
com o programa CoMFA. Além disto, espera-se que este estudo forneça informação útil 
suficiente para o planejamento de drogas ainda mais potentes. 

Isto posto, pode-se destacar, de uma maneira geral, a necessidade de 
desenvolvimento e implementação de metodologias teóricas próprias (softwares), 
implementadas com tecnologias nacionais, para o estabelecimento de modelos de 
QSAR, uma vez que estes modelos têm sido utilizados em larga escala nos mais 
diversos estudos de química medicinal encontrados na literatura, justamente por causa 
da sua grande aplicabilidade e pela capacidade destes modelos em auxiliar nas 
decisões de modificação molecular necessárias para a potencialização dos efeitos 
farmacológicos das moléculas de interesse. 

O grupo de pesquisa em Modelagem para Inovação Molecular (MODiMOL) tem 
desenvolvido um pacote de programas denominado CAMOL, constituído por 4 (quatro) 
ferramentas fundamentais e voltado especificamente para a construção de modelos de 
relação estrutura-atividade utilizados em planejamento de fármacos. O programa 
MultiMOL, alvo deste projeto de mestrado, constitui uma das importantes ferramentas 
do pacote CAMOL. Apesar de ser parte integrante do CAMOL, o programa MultiMOL é 
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um software independente e com funcionalidades próprias, que podem, inclusive, 
serem utilizadas para outras finalidades correlacionadas, que particularmente envolvam 
análises estatísticas multivariadas. 

Neste sentido, a proposta de desenvolvimento do programa MultiMOL é a de 
fornecer uma alternativa viável para a aplicação das técnicas de estatística multivariada 
mais utilizadas nos problemas de QSAR, oferecendo uma implementação precisa, 
robusta e com boa performance, de modo transparente e flexível para o usuário. 

Desenvolvido no Laboratório de Química Teórica Medicinal (LQTM) do 
Departamento de Ciências Farmacêuticas (DCFar) da Universidade Federal de 
Pernambuco (UFPE), o MultiMOL apresenta-se assim como uma alternativa aos 
softwares tradicionais de estatística multivariada, situando-se em uma área de interesse 
crescente para a química medicinal e de grande importância para a Inovação 
Terapêutica. 

 

2. Objetivos 
 

2.1. Objetivo Geral 
 

Este projeto tem o seu principal objetivo voltado para o desenvolvimento e a 
implementação do programa (“software”) MultiMOL, que pode ser aplicado para a 
geração de modelos de regressão multivariada tipicamente presentes na área de 
inovação em planejamento de fármacos.  

 

2.2. Objetivos Específicos 
 
Os objetivos específicos deste projeto englobam o desenvolvimento e 

aprimoramento, através da implementação de novas características e funcionalidades, 
do software denominado MultiMOL, que é usado na geração de modelos de regressão 
tipicamente utilizados em química medicinal, para o planejamento de fármacos, 
contribuindo, desta forma, para a inovação terapêutica. 

Os seguintes objetivos específicos fazem parte deste projeto de mestrado: 
1. a implementação do algoritmo de regressão PLS, e sua comparação com 

os demais algoritmos do MultiMOL; 
2. a implementação do algoritmo de regressão Q-PLS, utilizado para 

conjuntos de dados que possuam dependências não lineares, e a sua 
validação; 



7 
 

 

3. o desenvolvimento da Interface Gráfica do Usuário (GUI), integrada à 
parte numérica do MultiMOL, para que possa facilitar a utilização do 
programa; 

4. teste das metodologias implementadas no MultiMOL com conjuntos de 
dados estatísticos multivariados, tanto na área de química medicinal, 
quanto na área de química analítica. 

 

3. Metodologia 
 

3.1. Metodologia geral 
 

O presente projeto concentra esforços em novas e importantes implementações 
que foram realizadas no programa MultiMOL. Um dos pontos principais é o 
desenvolvimento de uma interface gráfica de usuário (GUI – “Graphical User Interface”) 
para o software, de modo a aumentar a sua usabilidade (facilidade de interação entre o 
usuário e o software), tornando-o mais amigável e prático para o usuário final. Além 
disso, este projeto também pretende desenvolver e implementar novas funcionalidades 
úteis para a geração de modelos de regressão como, por exemplo, a disponibilização 
de gráficos bidimensionais informativos (usando  a GUI) que possibilitem a 
interpretação visual e interativa dos resultados obtidos por meio dos cálculos com os 
modelos de regressão. Para desenvolver a GUI do MultiMOL, foi utilizada a biblioteca 
QT [TROLLTECH, 2008], cuja licença de uso é livre. Espera-se, desta forma, aumentar 
o potencial de aplicabilidade do programa nos diversos problemas de química medicinal 
e química analítica. 

A versão do QT utilizada na implementação da interface gráfica do programa foi 
a 4.5. O QT é um framework (um conjunto de componentes de software – no caso, de 
componentes gráficos – que podem ser combinados para a construção de aplicações) 
desenvolvido em C/C++, o que facilita a sua integração com o restante do código do 
MultiMOL, uma vez que este vem sendo desenvolvido na mesma linguagem. Para a 
geração dos gráficos bi-dimensionais foi utilizada uma biblioteca chamada Qwt, versão 
5.1.2 [QWT, 2009], completamente integrada ao QT e que oferece os componentes 
necessários à geração dos gráficos que o MultiMOL se propõe a disponibilizar em sua 
GUI. Com estas ferramentas, foi possível construir a interface gráfica do programa com 
as funcionalidades planejadas, utilizando-se uma solução open source (código aberto) 
de simples compatibilidade com a parte numérica do MultiMOL. 

Por fim, é necessário buscar continuamente conjuntos de dados utilizados em 
pesquisas na área de química medicinal ou inovação terapêutica, para os quais o 
programa possa ser útil e com os quais ele possa ser testado. Neste sentido, serão 
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utilizados conjuntos de dados disponíveis em bases existentes na internet, como, por 
exemplo, a “cheminformatics” [CHEMINFORMATICS, 2008], que disponibiliza conjuntos 
de dados (QSAR, QSTR e QSPR) interessantes e validados para a obtenção de 
modelos de regressão, com enfoque especial em química medicinal. 
 
 

3.2. Metodologia específica 
 

Para o desenvolvimento do software MultiMOL, optou-se por usar a linguagem 
de programação C/C++. Isso foi feito porque esta linguagem possibilita o 
desenvolvimento de aplicativos robustos, de bom desempenho e com todas as 
facilidades que uma linguagem de alto nível oferece aos programadores. Com ela, é 
possível obter todas as vantagens inerentes ao paradigma de orientação a objetos, no 
qual a modelagem do problema é feita considerando-se como objetos os diversos 
componentes do sistema. Isto possibilita reuso de código, otimização de recursos, 
independência entre os módulos do sistema, entre outras características. O alto 
desempenho é inerente às linguagens de programação que utilizam código compilado, 
como C/C++ (i.e., transformado em operações computacionais que são específicas 
para a plataforma onde o código está sendo executado), ao contrário do código 
interpretado, como é o caso, por exemplo, do Matlab ou Scilab, onde existe um 
interpretador responsável por traduzir, em tempo de execução, o código escrito para as 
operações que são efetivamente realizadas pelo computador – o que, desta forma, 
provoca uma perda de desempenho. Foi escolhida a representação numérica 
computacional por meio de pontos flutuantes de precisão dupla ("double") ao invés de 
simples ("float"), com o objetivo de garantir a precisão numérica dos resultados gerados 
pelo software. Espera-se que o MultiMOL seja capaz de oferecer as ferramentas 
comumente usadas para regressão multivariada, em uma variedade que lhe confira 
versatilidade, e a um custo computacional acessível. 

A etapa mais importante na construção de um modelo de QSAR (tradicional ou 
3D) consiste, basicamente, na busca por uma correlação estatística (ver Figura 2) entre 
um determinado conjunto de características ou descritores moleculares (variáveis 
independentes) calculadas e uma função resposta (variável dependente) referente à 
atividade biológica (ou propriedade físico-química, ou toxicidade) observada 
experimentalmente para uma classe homóloga de moléculas. Do ponto de vista 
matemático, trata-se de um método de regressão multivariado onde uma seqüência de 
operações matriciais é realizada com o objetivo de se construir uma função que associe 
os descritores moleculares calculados à função resposta observada ou medida 
experimentalmente. A metodologia de QSAR aplicada no MultiMOL encontra-se 
fartamente descrita na literatura [BRERETON, 2000; FERREIRA et. al., 1999; GAUDIO 
et al., 2001; ARAUJO et. al., 2001]  .  
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Figura 2: Exemplo de modelo QSAR obtido com o programa MultiMOL. Correlação entre a atividade (pk 
de 31 esteróides [WAGENER et al., 1995] frente à globulina humana carregadora de corticosteróide) 
predita pelo modelo e a observada experimentalmente. Os pontos em vermelho indicam as moléculas 

que foram utilizadas como conjunto de calibração do modelo, enquanto os pontos em azul representam 
as amostras de validação ou teste. A linha representa a diagonal, apenas para facilitar a interpretação do 

gráfico. 
 
Para o cálculo das operações matriciais elementares utilizadas nos algoritmos de 

regressão multivariada (tais como multiplicação e inversão de matrizes), foi feita a 
opção por uma biblioteca (conjunto de algoritmos de computador) pública, gratuita, com 
código aberto e com implementação já bem estável em C++, denominada NEWMAT 
[DAVIES, 1996; EDDELBUTTEL, 1996]. Essa decisão foi motivada pelo fato desta 
biblioteca já se encontrar otimizada e ter máximo desempenho já testado para cálculos 
matriciais. Ainda, o fato de ela ser escrita na mesma linguagem em que o MultiMOL foi 
desenvolvido (C++) possibilita uma integração simples entre os códigos sem maiores 
problemas de compatibilidade. Por fim, o fato de ser uma biblioteca de código aberto 
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(open source) permite que ela seja utilizada no MultiMOL sem nenhum problema de 
integração ou de direitos autorais.  

 
 

3.2.1. Construção de Modelos de Regressão 
 
A construção dos modelos de regressão compreende duas etapas distintas: a 

calibração (ou modelagem) e a validação. Conforme Ferreira e colaboradores 
[FERREIRA et al., 1999], “[o] processo geral de calibração consiste de duas etapas: 
MODELAGEM, que estabelece uma relação matemática entre X e Y no conjunto de 
calibração e a VALIDAÇÃO, que otimiza a relação no sentido de uma melhor descrição 
do(s) analito(s) de interesse”. Vale salientar que, para a química analítica, a otimização 
da relação está também compreendida na etapa de modelagem. 

Na modelagem, são construídos diversos modelos de regressão para as 
amostras que fazem parte do conjunto de calibração. Para a construção destes 
modelos, é realizada uma busca sistemática no espaço das variáveis (p.ex., no caso do 
PLS, são construídos modelos com uma variável latente, duas variáveis latentes, e 
assim sucessivamente), após a qual os modelos construídos são comparados entre si, 
a fim de que seja identificado aquele que apresenta melhores resultados – ou seja, para 
a identificação do número ótimo de Variáveis Latentes. Para tanto, na modelagem, é 
necessário que seja feita a análise estatística dos modelos gerados, a fim de se verificar 
a qualidade deles e garantir a existência de correlação estatisticamente significativa, 
excluindo correlação casual. Com este intuito foram então implementados os cálculos 
de (a) PRESS (“Predicted Residual Sum of Squares”) e (b) R² (coeficiente de 
determinação) conforme [BRERETON, 2000]. 

O primeiro é definido como a soma da diferença quadrática entre o valor da 
atividade biológica observada experimentalmente (e utilizado na construção do modelo) 
e o valor predito pelo modelo. Já o segundo é obtido quando se divide o valor de 
PRESS pelo quadrado dos desvios dos valores observados em torno a média, e este 
quociente é subtraído de 1. O R² consiste em um valor entre 0 e 1, sendo tanto mais 
significativo o modelo quanto mais próximo da unidade este valor esteja. As equações 1 
e 2 mostram a forma como estes valores são calculados. Nestas equações, yiobs 
representa o valor experimental (observado) para a i-ésima amostra; yical é o valor 
calculado pelo modelo para a i-ésima amostra; e ymed é a média dos valores 
experimentais. A diferença entre o valor calculado e o predito é que o primeiro obtém-se 
quando se projeta no modelo uma amostra que foi utilizada para a sua construção e, o 
segundo, quando a amostra projetada não foi utilizada para a sua calibração: por 
exemplo, a amostra deixada de fora na LOO-FCV (“Leave-One-Out Full-Cross-
Validation”) ou as amostras de um conjunto de validação com série de teste. 

 



11 
 

 

PRESS = ∑ (yiobs – yical)2    (equação 1) 
 

R² = 1 – [∑ (yiobs – yical)2 / ∑ (yiobs – ymed)2]  (equação 2) 
 
Foi igualmente implementado o cálculo do coeficiente de correlação da validação 

cruzada (Q²). Este coeficiente tem significado idêntico ao R², mantendo a diferença de 
que os dados aqui obtidos são provenientes da predição das amostras que foram 
deixadas de fora durante o processo de calibração dos modelos, e não após a 
construção do modelo final. Na equação 3, pode ser observada a forma como o Q² é 
calculado; nesta equação, yipred é o valor predito pelo modelo para a i-ésima amostra.  

 
Q² = 1 – [∑ (yiobs – yipred)2 / ∑ (yiobs – ymed)2] (equação 3) 

 
A validação dos modelos de QSAR, seguindo a tradição encontrada na literatura, 

é feita de duas maneiras no MultiMOL: através da validação cruzada (conjunto interno 
de validação ou teste) ou da utilização de um conjunto externo de validação ou teste 
(série de teste). A opção por uma ou outra maneira vai depender, principalmente, da 
quantidade dos dados experimentais disponíveis para a construção dos modelos de 
regressão, ou seja, do número de amostras. 

A prática de utilização dos modelos de regressão demonstra que sempre há o 
risco de que a correlação obtida entre os dados originais e sua função-resposta possa 
ser casual, i.e., não possuir significado físico verdadeiro. Como os formalismos 
matemáticos são aplicados sobre números, quaisquer que sejam eles, é forçoso que as 
metodologias de regressão forneçam sempre algum resultado, independente de haver 
ou não sentido físico aplicável ao problema concreto analisado. Verifica-se, assim, a 
necessidade de que, mesmo após obtido o melhor modelo de regressão para um 
determinado conjunto de dados, seja comprovado se a modelagem estatística está 
efetivamente condizente com a realidade experimental ou se, ao contrário, é 
meramente uma correlação numérica casual. Isto foi verificado, neste trabalho, através 
da utilização do teste F (F-Test) [GAUDIO et al., 2001]. 

Este teste é utilizado na avaliação de modelos de regressão. Segundo Gaudio 
[GAUDIO et al., 2001], “[o] teste F verifica o quanto da variabilidade de Y pode ser 
explicada pelas variáveis X1, X2, …, Xk, e o quanto pode ser atribuída ao efeito do erro 
aleatório”. Este teste simples possibilita a obtenção de um valor que, quanto maior, 
indica que mais provavelmente a correlação encontrada não é fortuita. O teste F é 
definido como uma proporção entre a variância explicada pelo modelo de regressão e a 
variância inexplicada pelos erros aleatórios; o seu resultado é então comparado com 
uma tabela de distribuição estatística [THE F-DISTRIBUTION, 2009], para avaliar o 
grau de significância da correlação mensurada. A fim de fornecer este indicador 
quantitativo da qualidade do modelo gerado, o MultiMOL implementa o teste F tanto 



12 
 

 

para a calibração dos modelos quanto para a sua validação com séries de testes 
(quando for o caso). 

 

3.2.2. Escolha dos conjuntos de testes 
 

Para a validação dos algoritmos implementados no MultiMOL e a realização dos 
testes cujos resultados serão apresentados na seção seguinte, foram selecionados 
alguns conjuntos de dados da literatura que pudessem fornecer a base para um estudo 
comparativo adequado e confiável. Foram selecionados três conjuntos de dados, de tal 
maneira que cobrissem a maior parte das aplicações do programa, possibilitando testes 
representativos das principais funcionalidades do MultiMOL com a ênfase em robustez 
e desempenho que é proposta por este projeto. Estes conjuntos doravante serão 
denominados “Conjunto A”, “Conjunto B” e “Conjunto C”, conforme a Tabela 1. 

Para os modelos de QSAR tradicional, foi utilizado um conjunto de inibidores de 
enzimas que possuem função conversora de Angiotensina (inibidores ACE, pIC50) 
estudados por Sutherland [SUTHERLAND et al., 2004]. Este conjunto possui 
descritores que foram chamados de “2.5D”, i.e., descritores tradicionais de QSAR 
acrescidos de alguns descritores tridimensionais, como volume molecular, por exemplo. 
Estes descritores não devem ser confundidos com os descritores utilizados para 
problemas de QSAR-3D, conforme explicado abaixo. 

 
Tabela 1: Conjuntos que foram utilizados nos testes do MultiMOL. 

Conjunto Breve Descrição #Amostras #Descritores Aplicabilidade 
“Conjunto A” Série homóloga de 

inibidores de 
enzimas que têm 

função conversora 
de Angiotensina. 

114 56 Usado para os testes 
de QSAR tradicional.

“Conjunto B” Série homóloga de 
esteróides, com 
afinidade para 

globulina ligadora 
de corticosteróide. 

31 1813 Usado para os testes 
de QSAR-3D. 

“Conjunto C” Conjunto de 
espectros 

simulado, gerados 
por meio da 
aplicação de 

funções numéricas 
quadráticas. 

75 300 Usado para a 
validação do 

algoritmo Q-PLS. 
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Para os modelos de QSAR-3D, foi utilizado um conjunto bem conhecido de 

esteróides [WAGENER et al., 1995], para gerar um modelo para a função-resposta 
“CBG affinity” (afinidade pela globulina ligadora de corticosteróide). Os descritores 
utilizados são os valores dos campos eletrostáticos calculados para cada um dos 
pontos da grade tridimensional em cujo interior as estruturas tridimensionais das 
moléculas foram colocadas. A figura 3 mostra esse conjunto de esteróides. 

Para a validação do algoritmo Q-PLS, foi necessária a utilização de um terceiro 
conjunto de dados, de espectros simulados, onde as dependências não lineares da 
resposta (variável dependente) foram embutidas de maneira simulada. Os detalhes 
específicos deste conjunto de dados podem ser observados no Anexo I. A função-
resposta foi construída por meio da aplicação de funções quadráticas nas variáveis 
independentes. O comportamento deste conjunto é bastante específico e conhecido a 
priori, o que permite uma avaliação robusta do modelo quadrático para ele construído, 
como será apresentado na seção seguinte. 
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Figura 3: Esteróides utilizados nos testes. As amostras de 1 a 21 foram utilizadas como conjunto de 

calibração; da 22 até a 31, são as de validação. 
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3.2.3. Leitura de arquivos 
 

Como o programa MultiMOL faz parte do pacote de programas CAMOL, ele 
precisa estar integrado com os demais programas, como por exemplo, nos formatos de 
arquivos de entrada e saída usados ou gerados nos cálculos realizados por ele. Para 
tanto, foi fundamental definir um formato padrão de leitura e de escrita de arquivos, que 
possa ser utilizado pelo MultiMOL e pelos demais programas do pacote.  

Optou-se pela utilização de arquivos ASCII (caracteres de texto) no formato “csv” 
(“comma separated value”), o que permite clareza na interpretação dos dados e 
portabilidade do arquivo de entrada, uma vez que este pode ser processado por 
softwares populares de manipulação de planilha convencionais, como o Microsoft Excel 
e tantos outros. Isto facilita bastante a obtenção dos arquivos que serão utilizados pelo 
programa. Por uma questão de independência das opções de idioma selecionadas para 
cada computador no qual porventura o software venha a ser executado, convencionou-
se que o caracter separador de valores é o ponto-e-vírgula (“;”), e não a vírgula. Isto 
porque, em português, a vírgula é convencionalmente utilizada como separador entre a 
parte inteira e valores decimais de um número real. 

Os arquivos de texto que são reconhecidos pelo MultiMOL, assim, devem  conter 
simultaneamente tanto os dados numéricos do problema quanto os nomes ("labels") 
das amostras (moléculas, em QSAR) e das variáveis (descritores, em QSAR) que 
compõem a matriz de dados original a ser utilizada pelo programa. A representação dos 
dados numéricos pode ser feita em notação normal ou científica, sendo ambas as 
formas reconhecidas pelo programa. A interface gráfica de usuário (“GUI”) permite a 
importação simples destes arquivos, os quais podem ser selecionados por meio da 
exploração dos diretórios do computador após selecionar-se a opção “importar”. Por 
fim, utilizando-se a representação dos dados no formato csv conforme acima explicado, 
o layout deste arquivo de entrada (“input”) é o seguinte (as cores indicam a legenda dos 
campos): 

 
[dimensão da matriz; número de linhas e número de colunas] – 1ª linha 
[nomes dos descritores] – 2ª linha 
[nome da amostra] [valores numéricos] – linhas seguintes 
 
Exemplo: 
31;1813  
1S000001;1S000002; (...) 1S001813;F_RESP 
mag001_b;0.072471;-0.042452; (...) -0.041185;7.77 
mag003_b;0.071409;-0.054886; (...) -0.05609;7.68 
mag004_b;0.075778;-0.064991; (...) -0.056773;7.64 
[...] 
mag091_b;0.019453;-0.088005; (...) 0.011067;5.75 
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Note-se que o formato reconhecido pelo programa precisa seguir, rigorosamente, 

o formato acima especificado: na primeira linha, as dimensões da matriz; na segunda, 
os nomes dos descritores utilizados e da função-resposta observada, que deve ocupar 
a última posição da linha; e, da terceira linha em diante, por tantas linhas quantas forem 
as amostras do conjunto, o identificador de cada amostra, seguido dos seus descritores 
(na mesma ordem em que foram anteriormente nomeados) e do valor da função-
resposta correspondente. 

 

3.2.4. Pré‐Processamento 
 
Para a correta utilização dos dados em problemas de estatística multivariada, é 

muitas vezes importante a aplicação de algum tipo de processamento prévio nos dados 
que serão utilizados para a construção dos modelos de regressão [BRERETON, 2000; 
GAUDIO et al., 2001]. Dois tratamentos matemáticos são bastante utilizados: (a) centrar 
na média, que consiste em subtrair de cada um dos elementos de cada coluna da 
matriz de dados o valor da média daquela coluna; e (b) escalonar, que consiste em 
dividir cada um dos elementos de cada coluna da matriz de dados pelo desvio padrão 
da respectiva coluna. Caso o escalonamento seja feito na matriz que já está centrada 
na média, tem-se então o que é chamado auto-escalonamento. Tais métodos têm a 
grande vantagem de não acrescentarem complexidade quase alguma ao código do 
programa, tendo, portanto, uma demanda computacional relativamente baixa, ao 
mesmo tempo em que possibilitam uma melhoria significativa na qualidade dos modelos 
obtidos. Além disso, certos tipos de problemas exigem algum tipo de processamento 
prévio como condição necessária para a correta construção dos modelos de regressão; 
por exemplo, em problemas de QSAR onde os descritores tenham significados físicos 
diferentes (que, inclusive, podem estar expressos em ordens de grandeza diferentes), o 
escalonamento da matriz de dados original é essencial para que não se verifiquem 
distorções nos resultados encontrados. Estes métodos de pré-processamento, por fim, 
possuem também a vantagem de serem procedimentos independentes do cálculo dos 
modelos de regressão, sendo possível aplicá-los apenas uma vez e, após isso, salvar a 
matriz já com os dados pré-processados, ganhando-se tempo no futuro. Por definição, 
o MultiMOL salva automaticamente uma cópia da matriz com os dados pré-processados 
antes de iniciar o cálculo da regressão. 

O procedimento de centrar na média é recomendado para a maior parte dos 
modelos de regressão construídos com base no PCR. O escalonamento é necessário 
para quaisquer problemas – notoriamente os de QSAR Tradicional, como já indicado – 
onde as grandezas mensuradas em cada um dos descritores sejam de natureza 
distinta, com variâncias diferentes.  
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3.2.5. Seleção de Variáveis 
 
Para minimizar a redundância da informação nas variáveis independentes e 

reduzir a demanda computacional exigida nestes problemas de natureza multivariada 
(por causa do elevado número de variáveis envolvidas no problema), foi implementado 
no MultiMOL um procedimento moderno e robusto (i.e. capaz de processar dados de 
grande volume – da ordem de milhares de variáveis) para uma seleção prévia das 
variáveis que serão utilizadas na construção dos modelos de regressão. Existe um 
algoritmo, utilizado normalmente em química analítica, que é denominado SPA 
(“Successive Projections Algorithm”; em português, APS, “Algoritmo de Projeções 
Sucessivas”) [ARAÚJO et al., 2001]. Ele funciona iterativamente, através da seleção, 
dentro do conjunto de vetores inicial, daqueles que possuem menos colinearidade entre 
si. Deste modo, é possível selecionar as ‘x’ primeiras variáveis menos correlacionadas, 
ou seja, aquelas que expliquem a maior variância possível dentre o conjunto original. 

O algoritmo APS original compreende, além desta seleção das variáveis, a 
construção de diversos modelos de regressão com vistas a encontrar o número ótimo 
de variáveis a serem selecionadas. Especificamente, são selecionados ‘n’ conjuntos de 
variáveis por meio da aplicação das projeções sucessivas, cada um desses conjuntos 
com números distintos de variáveis selecionadas, contendo no máximo um número ‘p’ 
de variáveis previamente informado pelo usuário. Após isso, é aplicada uma regressão 
linear múltipla (MLR) para cada um destes conjuntos; os modelos gerados são, então, 
comparados entre si, e o que apresentar melhores resultados determinará o sub-
conjunto das variáveis originais que será selecionado pelo APS como sendo o melhor 
para aquele conjunto e para os parâmetros informados. 

No MultiMOL, entretanto, não foi implementado o algoritmo APS rigorosamente 
da forma como ele se encontra na literatura, e sim uma adaptação do mesmo, conforme 
está exposto a seguir. A utilização das projeções sucessivas para selecionar as 
variáveis que possuem menor colinearidade foi mantida na íntegra. No entanto, a parte 
da otimização do número de variáveis selecionadas não foi implementada. No 
MultiMOL, o usuário informa qual o número de variáveis que ele deseja selecionar; o 
programa utiliza, então, o mesmo critério de seleção que o APS emprega, para 
selecionar exatamente aquele número de variáveis que o usuário solicitou. Em outras 
palavras, enquanto que o APS descrito na literatura constrói diversos modelos de 
regressão para selecionar o melhor número de variáveis com no máximo o valor 
informado pelo usuário, o MultiMOL aplica somente o algoritmo de seleção do APS uma 
única vez, para selecionar exatamente o número de variáveis que o usuário informou. 

Este algoritmo pode ser matematicamente expresso da seguinte maneira: seja 
Xnxp a matriz de dados original, onde ‘n’ é o número de objetos e, ‘p’, o de variáveis. 
Seja V={1,2,...,p} o conjunto das colunas de X que se referem às variáveis 
independentes. O que se almeja é selecionar q variáveis, 1 ≤ q ≤ p, do conjunto V das 
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variáveis originais e, assim, construir uma matriz X’nxq, onde q é um subconjunto de p 
com cardinalidade menor do que a de p.  

Aqui, é importante salientar que há uma diferença essencial entre esta 
abordagem e a transformação do espaço original que se obtém por meio, por exemplo, 
da PCA: o resultado da Análise de Componentes Principais é um espaço transformado 
e, por isso, distinto do espaço que está representado nos dados originais e que possui 
um significado físico. Já a seleção de variáveis permite que se esteja trabalhando com 
o mesmo espaço dos dados originais, apenas considerando-se um número menor de 
variáveis (aquelas que, matematicamente, têm maior significado estatístico, por 
possuírem menor colinearidade). Isto significa que, embora haja alguma perda de 
informação, não há nenhuma transformação teórica que comprometa o significado 
empírico dos dados com os quais se está trabalhando. 

É importante também ressaltar que correlação e colinearidade são conceitos 
próximos, mas não intercambiáveis; em um universo linear, as variáveis que possuem 
maior colinearidade serão também as mais correlacionadas entre si, mas isto deixa de 
ser válido quando se quebra a linearidade dos algoritmos matemáticos empregados na 
construção dos modelos de regressão. Então, por exemplo, na utilização do método 
quadrático Q-PLS (que será apresentando mais adiante neste texto), não 
necessariamente as variáveis menos colineares serão aquelas menos correlacionadas. 
É importante lembrar que o APS minimiza a colinearidade, e não a correlação; será 
válido dizer este último quando a relação entre as variáveis for de ordem linear, mas 
isto deixará de ser verdade quando, p.ex., a relação entre elas seja de ordem 
quadrática. Neste caso, pode acontecer que estas variáveis estejam correlacionadas 
sem, no entanto, serem colineares. O algoritmo de seleção de variáveis implementado 
no MultiMOL não trataeste problema; esta limitação precisa ser conhecida do usuário 
para que ele possa, assim, decidir pela oportunidade ou não de aplicar esta seleção de 
variáveis em cada caso concreto. 

O algoritmo APS é um algoritmo iterativo que se baseia na descoberta, dentre as 
variáveis originais, daquelas que possuem menor colinearidade entre si. O 
procedimento pelo qual isso é feito é, sucintamente, descrito abaixo: 

i) inicia-se com uma coluna da matriz de dados original (comumente, aquela 
que apresenta a maior norma); 

ii) calcula-se, para cada uma das demais colunas da matriz, a sua projeção 
relativa àquela escolhida no passo anterior; 

iii) verifica-se, dentre todas as projeções, qual aquela que apresenta maior 
norma; 

iv) seleciona-se essa e repete-se o passo (ii) para as colunas restantes. 

Ao final da execução deste procedimento, obtém-se, da matriz original, tantas 
variáveis quantas forem desejadas, dispostas em ordem crescente de colinearidade, 
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i.e., das menos colineares para as mais colineares. Em outras palavras, as primeiras 
variáveis obtidas por meio desse procedimento são – pelo menos no universo dos 
modelos de regressão linear, conforme já foi discutido – as mais independentes e 
menos correlacionadas. Essas variáveis são, portanto, as mais interessantes para 
serem selecionadas para a construção dos modelos de regressão. 

 

3.2.6. Análise de Componentes Principais 
 
O primeiro problema encontrado na construção de modelos de regressão, 

tipicamente para problemas de QSAR-3D, é a sua natureza multivariada. Esta categoria 
de problemas trabalha com um universo vasto de variáveis independentes (descritores), 
e deve-se buscar uma correlação matemática entre estes e a propriedade de interesse, 
ou seja, a variável dependente – atividade biológica, propriedade, toxicidade, 
dependendo do problema: se é atividade biológica, QSAR; se propriedade, QSPR; se 
toxicidade, QSTR, respectivamente. 

 O tamanho deste conjunto de dados original pode facilmente atingir a casa das 
dezenas (se o problema for de QSAR tradicional) ou até mesmo dos milhares (se o 
problema for de QSAR-3D). Caso a solução almejada consistisse simplesmente no 
estabelecimento de uma correlação entre uma única variável independente e a função-
resposta de interesse, a estatística básica poderia oferecer as ferramentas suficientes 
para tal, por meio de uma regressão linear simples obtida através do método de 
mínimos quadrados, por exemplo. No entanto, quando a complexidade do problema é 
tal que se torna necessário olhar não apenas para um único descritor, mas para um 
conjunto deles, é necessário utilizar-se de estatística multivariada, o ramo da estatística 
específico para o tratamento desta categoria de problemas. 

Torna-se assim necessário reduzir a dimensionalidade dos dados dos quais se 
dispõe originalmente. Um dos motivos pelos quais esta redução é necessária é a 
importância de reduzir a demanda computacional exigida para o cálculo dos modelos 
de regressão; isto pode ser conseguido por meio da aplicação de fórmulas matemáticas 
a um conjunto de dados transformado, menor do que o original, mas que pode ser 
neste diretamente mapeado. Outro motivo é para possibilitar a visualização gráfica dos 
dados com os quais se está trabalhando. Uma matriz de p colunas pode ser 
interpretada como um conjunto de pontos distribuídos em um espaço p-dimensional; 
para que seja possível obter uma representação gráfica desses pontos, é necessário 
que o número de colunas seja pequeno, especificamente, dois ou três, porque são 
estas as dimensões que podem ser visualizadas em gráficos tradicionais bi ou 
tridimensionais. Para resolver este problema é útil a aplicação de uma Análise de 
Componentes Principais (PCA – "Principal Components Analysis") aos dados originais. 
Há ainda, por fim, um terceiro motivo de ordem teórica para que seja necessário 
diminuir o espaço dos dados com os quais se deseja trabalhar: para a realização de 
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uma regressão linear múltipla, o número de variáveis selecionadas não pode ser maior 
do que o número de objetos disponíveis na construção do modelo de regressão. Esta 
limitação é inerente aos algoritmos matriciais utilizados para o cálculo dos modelos 
[FERREIRA et al., 1999]. 

A análise de componentes principais consiste basicamente na decomposição da 
matriz original em duas outras matrizes, uma de pesos (Loadings) e outra de Scores, 
por meio da diagonalização da matriz de dados original, a qual pode ser feita de 
maneira direta (SVD – “Single Value Decomposition”) ou iterativa (NIPALS – “Non-linear 
Iterative Partial Least Squares”). Cada componente principal é, assim, definida por uma 
combinação linear das variáveis originais. 

Isto é feito por meio da definição de novos eixos orientados, ortogonais entre si, 
em relação aos quais são projetados os objetos originais. Isso é interessante porque, 
na prática, devido à similaridade que as moléculas utilizadas têm entre si e à grande 
colinearidade que as variáveis medidas apresentam, esses objetos tendem a se 
organizar, no espaço multidimensional original, em padrões e agrupamentos de 
dimensionalidade muito menor. Desse modo, é possível a representação da maior parte 
da informação contida nas variáveis medidas originais em um espaço de dimensão 
consideravelmente menor e, por conseguinte, muito mais fácil de ser tratado e 
interpretado. O algoritmo utilizado para a sua implementação foi o NIPALS 
[BRERETON, 2000], que é iterativo. Isto significa que ele é construído de tal maneira 
que obtém, a cada execução, a componente principal que explica a máxima variância 
restante do conjunto de dados original (por exemplo, a primeira componente principal é 
o vetor que tem a direção da maior variância dos dados analisados; a segunda 
componente principal é o vetor, ortogonal ao primeiro, que tem a direção da segunda 
maior variância destes dados; e assim sucessivamente). Outra característica sua é que 
a porcentagem da cobertura da variância é numericamente mensurável, de tal maneira 
que é possível obter tantas componentes principais quantas forem necessárias, 
limitadas, naturalmente, à quantidade da informação constante no conjunto de dados 
original que se deseje considerar.  

Em resumo, a idéia por traz da utilização da Análise de Componentes Principais 
nos problemas de QSAR pode ser esquematizada da seguinte maneira: os objetos 
dispostos em um espaço h-dimensional (de um grande número de dimensões) tendem, 
por sua própria natureza, a organizarem-se em agrupamentos p-dimensionais (de um 
número muito menor de dimensões do que o espaço original); isto ocorre porque há 
muita variância entre os dados que é simplesmente devida ao ruído na mensuração 
experimental. Existem técnicas da Álgebra Linear que permitem encontrar um novo 
sistema de eixos orientados de tal maneira que a informação presente nos dados 
originais seja representada em um número menor de dimensões. Assim sendo, é 
interessante ter à disposição estas ferramentas matemáticas que possam ser utilizadas 
para a redução da dimensionalidade de problemas que são por sua natureza 
complexos, a fim de que eles possam ser mais eficazmente tratados. Na prática, o que 
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se tem é a necessidade de uma escolha ("trade-off"1), onde é necessário escolher o 
melhor ponto entre a perda de um pouco da informação contida na matriz de dados 
original e a troca por uma representação em dimensionalidade menor. Felizmente, é 
relativamente comum que seja encontrado, logo nas primeiras componentes principais, 
a maior parte da variância da matriz original já explicada pelo novo sistema de eixos 
ordenados e, dependendo da natureza do problema em análise, isso pode ser mais do 
que suficiente. O acréscimo de dimensões extras muitas vezes não é interessante, uma 
vez que eles acrescentam pouca informação à representação já obtida com um número 
menor de eixos, bem como podem acrescentar informação proveniente de ruído. Isso 
pode aumentar a complexidade, pode aumentar a demanda computacional dos 
cálculos, e pode fazer com que se perca a possibilidade de uma representação gráfica 
do problema. 

Esta forte correlação entre os dados encontrada em problemas desta natureza, 
de modo especial na QSAR-3D, torna particularmente importante a implementação da 
metodologia de Análise de Componentes Principais. Diz-se que duas variáveis estão 
correlacionadas quando elas têm algum tipo de associação entre as suas variações 
entre elas; por exemplo, se, quando uma variável aumenta, uma segunda aumenta 
também, elas estão positivamente correlacionadas e, se quando uma variável aumenta, 
uma segunda diminui, elas estão negativamente correlacionadas. A correlação, assim, 
acaba por inserir redundância na informação com a qual se deseja trabalhar, uma vez 
que, se duas (ou mais) variáveis estão fortemente correlacionadas, a mesma (ou quase 
a mesma) informação que pode ser extraída delas poderia ser obtida de apenas uma 
delas – variáveis obtidas de maneira independente, mas que sejam fortemente 
correlacionadas (p.ex., massa e volume), não acrescentam ao modelo uma quantidade 
significativa de informação, podendo até mesmo gerar problemas advindos da 
introdução de ruído e de informações redundantes. A existência de muita correlação no 
conjunto de dados de trabalho implica também em uma maior demanda computacional 
exigida (devido ao número excessivo de variáveis com as quais se está, 
desnecessariamente, trabalhando), 

Excessiva correlação entre os dados provoca também uma degradação dos 
modelos de regressão quando se usam as variáveis originais (devido ao fato de que 
eles estão sendo construídos levando em consideração informações que não são 
relevantes). A PCA consiste na representação dos dados originais em um espaço 
transformado, de tal maneira que este é construído como uma combinação linear das 
variáveis originais, buscando sempre, a cada componente principal, a máxima 
explicação da variância (variabilidade) restante; isto faz com que, como já foi dito, os 
dados transformados sejam significativamente mais descorrelacionados do que os 
dados originais. 
                                                 
1  O termo, comum na ciência da computação, designa uma situação tal em que é necessário estabelecer um 
ponto de equilíbrio aceitável entre duas características que estão inversamente correlacionadas, i.e., uma será tanto 
melhor quanto pior for a outra, e isto de tal maneira que não é possível otimizar ambas.  
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Como já foi indicado anteriormente, a redução da dimensionalidade é também 
indispensável para a viabilização matemática da construção dos modelos de regressão, 
uma vez que a regressão linear múltipla [FERREIRA et al., 1999] exige que o número 
de amostras presentes no conjunto original seja maior ou igual ao número de 
descritores analisados, situação que raras vezes se apresenta nos casos de QSAR 
tradicional e nunca é encontrada nos casos de QSAR-3D. Para se aplicar uma MLR em 
uma matriz de dados que possua n linhas e m colunas, é necessário que m ≥ n e, como 
a natureza física dos problemas analisados é de tal maneira que esta situação 
praticamente não se verifica, é quase sempre necessário decompor a matriz de dados 
original de tal maneira que seja matematicamente possível aplicar os algoritmos 
pertinentes. Uma das formas de se decompor a matriz original em uma matriz 
transformada de dimensionalidade menor é justamente por meio da Análise de 
Componentes Principais, e a aplicação de uma Regressão Linear Múltipla na matriz de 
Scores (novas coordenadas, nas novas variáveis, dos elementos originais) obtida a 
partir da aplicação da PCA é chamada de Regressão de Componentes Principais (PCR 
– “Principal Componentes Regression”), sendo esta a metodologia mais simples para a 
construção de modelos de regressão, como pode ser visto na seção seguinte. Existem 
outras metodologias que podem ser aplicadas na decomposição das matrizes de dados 
originais, como por exemplo o algoritmo PLS (“Partial Least Squares”), sobre as quais 
falaremos em detalhes mais adiante. 

 

3.2.7. Regressão em Componentes Principais 
 
Para o MultiMOL, optou-se pela implementação da metodologia PCR (que, como 

visto, consiste basicamente em uma Regressão Linear Múltipla precedida de uma 
Análise de Componentes Principais). Para a aplicação da PCA, optou-se pela 
implementação do algoritmo NIPALS, em detrimento de outros (como o SVD – “Singular 
Value Decomposition”-, por exemplo), porque o custo computacional do NIPALS (“Non-
linear Iterative Partial Least Squares”) é proporcional ao número de componentes 
principais desejado, uma vez que, com ele, apenas são calculadas as componentes 
principais que sejam necessárias para a construção do modelo. Com isto, não há 
desperdício de tempo computacional com o cálculo de componentes principais que não 
serão utilizadas na elaboração dos modelos de regressão. Por outro lado, o algoritmo 
SVD só pode ser aplicado na matriz inteira, para a sua decomposição em todas as 
componentes principais que ela possui, o que nem sempre será necessário para 
construir modelos QSAR.  

O algoritmo NIPALS encontra-se amplamente documentado na literatura 
[BRERETON, 2000], o que facilita quer a sua implementação e a comparação do 
MultiMOL com outros softwares e pacotes que são implementados com NIPALS, como 
por exemplo o Matlab. Além disso, a PCR exige dois módulos distintos e bem 
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separados: (i) o módulo de decomposição da matriz original em uma matriz menor, que 
contenha as componentes principais desejadas; e (ii) o módulo de regressão linear 
múltipla. Ao escolher a implementação do PCR, portanto, existe a opção de utilizar o 
segundo módulo independentemente do primeiro, aplicado diretamente à matriz de 
dados original e, assim, adiciona-se a possibilidade de fazer, além da Regressão por 
Componentes Principais, uma Regressão Linear Múltipla, o que aumenta a abrangência 
e aplicabilidade do MultiMOL e enriquece o leque de possibilidades apresentado ao 
usuário do programa. 

Uma das desvantagens da PCR em relação à MLR é que a primeira é aplicada 
em um espaço dimensional transformado; isto faz com que se perca a interpretação 
física direta dos resultados obtidos no modelo, uma vez que as variáveis utilizadas não 
são mais as variáveis originais do problema, e sim uma combinação das mesmas, 
projetadas em um espaço de dimensionalidade menor. Assim sendo, apesar do 
indiscutível ganho de desempenho advindo da aplicação de uma regressão em 
componentes principais, é necessário fazer uma minuciosa análise caso a caso, uma 
vez que, para o problema concreto que se está tratando talvez seja interessante manter 
o modelo construído tendo por base o espaço de variáveis original, mesmo às custas 
de uma maior demanda computacional. 

 

3.2.8. PLS Tradicional 
 
Uma alternativa à PCR é a utilização do algoritmo PLS (“Partial Least Squares”) 

[TOBIAS, 1999], que consiste também em uma decomposição da matriz de dados 
original em um conjunto menor que explique a maior variância possível. A principal 
diferença entre ambos os métodos é que, no PLS, é considerada também a função-
resposta (variável dependente) na decomposição, enquanto que no PCR, é utilizada 
apenas a matriz de dados com as variáveis independentes. Embora os resultados 
obtidos por qualquer um dos métodos sejam normalmente equivalentes do ponto de 
vista estatístico (preditividade), existe um grande ganho de tempo de processamento 
(performance) associado à utilização do método PLS, de modo que foi julgada relevante 
a inclusão desta opção no MultiMOL. Às variáveis que definem o espaço transformado 
por meio da execução do PLS dá-se o nome de Variáveis Latentes, para distinguir 
daquelas que são obtidas por meio da aplicação da PCA, as quais são chamadas 
Componentes Principais. Componentes Principais são espécie do gênero Variáveis 
Latentes, de tal modo que toda componente principal é uma variável latente, mas a 
recíproca não é verdadeira. 

Há dois algoritmos tradicionalmente utilizados para a decomposição da matriz 
original em uma matriz de Loadings e outra de Scores por meio do PLS: o PLS1 e o 
PLS2 [BRERETON, 2000]. O primeiro aplica uma seqüência única de transformações 
matriciais no conjunto de dados (variáveis e função-resposta), decompondo-o assim 
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nas matrizes desejadas. O segundo consiste em uma aplicação iterativa de operações 
matriciais, buscando a convergência dos valores obtidos, o que faz com que ele possua 
uma demanda computacional menor do que o PLS1. Historicamente, o PLS2 foi 
desenvolvido para que se pudesse fazer a decomposição simultânea de um conjunto de 
dados para os quais havia mais de uma função-resposta a ser considerada. Isto foi 
importante em um momento onde limitações computacionais tornavam excessivamente 
oneroso multiplicar as aplicações do PLS1 para a mesma matriz de dados, variando 
apenas a função-resposta. No entanto, com os avanços tecnológicos nos 
processadores e a facilitação do acesso a recursos computacionais mais potentes, hoje 
em dia já se torna viável aplicar diversas vezes o PLS1, para os casos em que isso se 
faça necessário, de modo que o PLS2 caiu em desuso. 

A grande vantagem de desempenho obtida com a utilização do PLS é decorrente 
do fato de que o algoritmo escolhido para implementação – o PLS1 – é baseado em 
uma única execução por variável latente, ao contrário do NIPALS (utilizado na 
implementação do PCR), que pressupõe sucessivas iterações a cada componente 
principal buscando a convergência dos "Loadings" e "Scores". 

Assim, o número de operações matemáticas executadas pelo algoritmo PLS é 
consideravelmente menor em comparação com o PCR, o que justifica a melhoria no 
desempenho. 

 

3.2.9. PLS Quadrático 
 
O PLS pode ser expandido para a obtenção de relações não-lineares entre as 

amostras e suas funções-resposta. É possível que encontremos, por exemplo, um 
determinado conjunto de descritores que, por sua própria natureza, esteja não 
linearmente, mas quadraticamente relacionado com a função-resposta das amostras 
que se está analisando. Para estes casos, é interessante que exista algum modelo que 
seja capaz de levar em consideração este elemento quadrático na elaboração das 
equações de regressão, a fim de apresentar uma melhor modelagem dos dados e 
possibilitar a construção de modelos que sejam mais adequados. Neste caso, é 
importante considerar a utilização do PLS Quadrático (Q-PLS) para obter modelos que 
sejam mais precisos, de preferência, com um menor número de variáveis latentes. É 
importante notar que o Q-PLS não está implementado em nenhum pacote de software 
comercial, de modo que o MultiMOL apresenta-se assim como uma ferramenta 
diferenciada e inovadora por disponibilizar esta funcionalidade, com benefícios para o 
usuário. 

O Q-PLS [WOLD et al., 1989], à semelhança do PLS tradicional, consiste 
também na decomposição do conjunto de dados original em duas matrizes de 
“Loadings” e “Scores”. Tais matrizes são aqui construídas de modo a considerarem a 
dependência quadrática entre as variáveis independentes e a dependente, de modo 
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que seja possível obter uma equação de regressão que inclua termos quadráticos, o 
que é capaz de fornecer uma melhora na modelagem para os problemas que têm 
intrinsecamente uma dependência desta natureza. Ao contrário do PLS tradicional 
(baseada em PLS1), no entanto, esta implementação (baseada em PLS2) exige a 
busca por convergência no cálculo de cada uma das variáveis latentes, o que torna a 
sua demanda computacional muito maior do que aquela apresentada pelo PLS. 

A sugestão de implementação de um PLS quadrático feita por Wold possui as 
seguintes características. Um modelo PLS objetiva relacionar duas matrizes, X e Y. 
Aqui estamos nos referindo aos modelos preditivos em dois blocos, PLS2, uma 
implementação ligeiramente diferente do PLS que permite a calibração em blocos, ou 
seja, modela simultaneamente um conjunto de respostas yi, organizadas como colunas 
da matriz Y, diferente do PLS1, a implementação original onde apenas uma resposta y 
é modelada por vez. Assumindo a convenção de usar letras minúsculas para vetores 
colunas, e letras minúsculas seguidas de ’ para vetores linhas, onde ’ e o operador 
transposição de matriz, as equações do PLS, escritas de uma forma mais geral, 
expressam a decomposição das matrizes X e Y como apresentado a seguir: 
 

X = tp’+ E  (equação 4) 
Y = uq’ + F  (equação 5) 

 
Tradicionalmente é assumido uma relação linear entre os escores t e u  (h 

representa o resíduo): 
u = bt + h  (equação 6) 

 
Assim é possível modelar Y por t e q  

 
Y = tq’b + F  (equação 7) 

 
uma vez que: 

u = f(t) + h  (equação 8) 
 

A ideia por tráz do QPLS é simplesmente reescrever a relação entre u e t. Assim, 
para uma relação polinomial quadrática: 
 

u = c0 + c1t + c2t2 (equação 9) 
 

O desafio na implementação desta proposta é reescrever o algoritmo do PLS 
para construir modelos que levem em conta esta relação. No QPLS isto é feito 
modificando-se o algoritmo para o PLS2, fazendo a substituição de t por Xw, onde w é 
o vetor de pesos do PLS, e definindo u = F(X,w,c). A cada iteração, t, q, e u são 
calculados segundo o PLS ordinário, c é obtido por mínimos quadrados e w é 
incrementado de um valor dw calculado a partir da linearização de u = F(X,w,c). 
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Igualmente, a inclusão do termo quadrático só apresenta resultados satisfatórios 
quando o problema que se está tentando modelar é de natureza quadrática, por isto, 
torna-se importante possuir um bom conhecimento prévio dos dados com os quais se 
está trabalhando, a fim de que seja possível tomar uma decisão acertada sobre qual 
tipo de modelo será escolhido para a regressão.  

Há várias situações em que as não linearidades podem estar presentes, como 
por exemplo: i) não homogeneidade na amostra; ii) não linearidades de detectores 
fotocondutivos; iii) não linearidades em medidas de transmitância/reflectância difusa em 
espectroscopia NIR; iv) não linearidades químicas devido a mudanças de interações 
moleculares em função da concentração, composição da matriz ou condições de 
medida; v) não linearidades na relação entre a propriedade a ser calibrada e a 
concentração, uma vez que a lei de Beer só garante a linearidade do espectro com a 
concentração, mas não do espectro com a propriedade dependente da concentração. 
Fora do contexto analítico, as relações estrutura-atividade e as superfícies de respostas 
usadas na otimização, que não são regidas pela lei de Beer, podem apresentar 
máximos ou mínimos no domínio investigado. A utilização de calibração multivariada 
não-linear continua sendo pouco aplicada, mesmo em situações onde seria vantajosa, 
como por exemplo, em modelos de previsão baseados em espectroscopia NIR (“Near-
Infrared”) e/ou QSAR. A ausência de ferramentas de fácil acesso para a realização 
dessas calibrações pode ser uma das responsáveis por esse panorama e a 
implementação atual presente no MultiMOL tenta fornecer uma alternativa viável. 

Vale a pena distinguir o algoritmo Q-PLS, implementado no MultiMOL, do PLS 
linear com projeção quadrática de X. Este último, como explica Wold [WOLD et. al., 
1989], consiste na aplicação do PLS linear à matriz de dados original acrescida dos 
termos quadráticos (xk²) e dos termos cruzados (xj * xk). Foi demonstrado que a 
projeção desta matriz estendida em um plano corresponde à projeção da matriz original 
em uma superfície quadrática. Tratam-se de duas abordagens distintas. O Q-PLS aplica 
uma metodologia de regressão de natureza quadrática a um conjunto de dados real 
para obter uma equação de regressão quadrática. O PLS linear com projeção 
quadrática aplica uma metodologia de regressão linear a um conjunto de dados 
composto pelos dados reais acrescidos de termos quadráticos e cruzados, para obter 
no final uma equação de regressão linear. Assim, no Q-PLS, o efeito quadrático é 
considerado no algoritmo de regressão e, no PLS linear com projeção quadrática, o 
efeito quadrático é introduzido por meio de uma manipulação dos dados de entrada. 

Entre as vantagens do Q-PLS em relação ao PLS linear com projeção 
quadrática, pode-se destacar o melhor desempenho do primeiro algoritmo, uma vez que 
o acréscimo dos termos quadráticos e cruzados das variáveis originais aos dados de 
entrada faz com que o programa precise trabalhar com uma matriz substancialmente 
maior. Nos problemas de QSAR, especialmente de QSAR-3D, o número de descritores 
(variáveis independentes) pode atingir facilmente a casa das centenas ou até mesmo 
dos milhares, fazendo com que a aplicação do PLS linear com projeção quadrática exija 
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recursos computacionais muito maiores, além de tornar os resultados obtidos mais 
difíceis de serem interpretados. Estes foram os motivos que guiaram a escolha do Q-
PLS como algoritmo de regressão não-linear oferecido pelo MultiMOL. 

É importante também salientar que a implementação do Q-PLS pode ser 
facilmente estendida para outros tipos de modelos não-lineares (exponenciais, 
logarítmicos, etc.), por meio de pequenas alterações no algoritmo utilizado, 
aproveitando-o em grande parte. Embora não haja previsão imediata para a 
implementação de outros modelos de regressão no MultiMOL, o programa foi concebido 
e implementado de tal maneira que pudesse ser estendido facilmente quando se 
identificar a necessidade ou a oportunidade da disponibilizar outros modelos de 
regressão. 

 

3.2.10. Validação cruzada e Validação com série de teste 
 
Para a obtenção dos modelos de regressão, é freqüentemente útil dividir o 

conjunto de dados original em dois, um para a calibração do modelo e outro para aferir 
a qualidade do modelo construído (validação). O MultiMOL fornece duas opções para 
dividir o conjunto de entrada. Na primeira delas, o usuário informa expressamente quais 
as amostras (ou o intervalo de amostras) que ele deseja reservar para o conjunto de 
validação. Na segunda opção, o programa separa automaticamente uma a cada x 
amostras, onde x é um número inteiro, informado pelo usuário, e que vai de 1 até o 
número máximo de amostras (n) do conjunto original. Como exemplo, se o usuário 
escolhe x=4, então, 1 (uma) a cada 4 (quatro) amostras vai ser escolhida para 
validação, o que significa que 25% do conjunto original de amostras vai ser destinado 
para este fim. 

Para fazer a calibração do modelo, é possível utilizar o método tradicional de 
validação cruzada “leave-one-out-full-cross-validation” (LOO-FCV), ou utilizar a série de 
teste selecionada nos procedimentos descritos logo acima. No LOO-FCV [BRERETON, 
2000], que se trata de um método comumente utilizado pela comunidade científica de 
química medicinal para validação de modelos de QSAR (principalmente quando se tem 
poucas amostras (moléculas) disponíveis), o número de componentes principais 
(variáveis latentes) é otimizado construindo-se ‘n’ modelos, cada um deles com ‘n-1’ 
amostras (onde ‘n’ é o número de amostras), e calculando-se o coeficiente de 
correlação da validação cruzada (Q²) para o conjunto dos modelos. Esta opção é 
geralmente utilizada quando o número de amostras é pequeno o bastante para impedir 
a separação dos dados em um conjunto de calibração e outro de validação. São bem 
conhecidas as dificuldades para obtenção de um conjunto de dados de porte tal que 
permita a sua divisão em dois conjuntos independentes e, por isso, a validação cruzada 
provavelmente será a alternativa utilizada em grande parte dos casos. 
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As funções estatísticas que podem ser usadas para mensurar a qualidade de um 
modelo estatístico construído com validação cruzada são as seguintes: (a) SEP 
(“Standard Error of Prediction”) e (b) Q² (coeficiente de correlação da validação 
cruzada), conforme [GAUDIO et. al., 2001]. O SEP é calculado conforme a equação 10, 
onde n é o número de amostras do conjunto de dados original. A partir de tais 
quantidades estatísticas, pode-se determinar quais são os modelos mais promissores 
dentre os que foram gerados, por exemplo, os modelos construídos com uma CP ou VL 
têm o seu valor de SEP e Q²; os modelos construídos com duas vão ter outros valores, 
e assim por diante. O MultiMOL opta, como critério de identificação de melhor número 
de Variáveis Latentes, por aquele que apresenta o menor valor de SEP (que 
corresponde ao maior valor de Q²) durante o processo de calibração.  

 
SEP = √[∑ (yiobs – yical)2 / n]   (equação 10) 

 
O processo iterativo de validação dos modelos por meio de LOO-FCV pode ser 

resumido da seguinte forma: 
 

i. Calcula-se a primeira CP ou VL; 
ii. Constroem-se tantos modelos quanto forem as amostras, deixando cada 

uma delas de fora (LOO-FCV); 
iii. Calculam-se os valores estatísticos para estes modelos; 
iv. Calcula-se a CP ou VL seguinte; 
v. Caso não haja mais CPs ou VLs a serem calculadas, o algoritmo termina 

aqui; em outro caso, volta-se ao passo “ii”.  
 
Obtendo-se os valores de SEP e Q² para cada um destes conjuntos de modelos, 

é possível identificar qual é o número ótimo de CPs ou VLs para um determinado 
problema. 

Um dos maiores problemas identificados na utilização da LOO-FCV é a alta 
demanda computacional exigida por estes procedimentos: é necessária a construção 
de tantos modelos quantos forem o número de amostras do conjunto de calibração, e 
isto se aplica a tantas CPs ou VLs, quantas se deseje obter. Num processo exploratório 
tradicional, onde são construídos todos os modelos com todas as CPs ou VLs para que 
seja identificado o número ótimo delas, o número de regressões realizadas é 
geralmente da ordem de N², onde N é o número total de amostras contidas no conjunto 
de calibração. 

 Por outro lado, se o usuário escolhe a opção de validação com série de teste, 
um único modelo é construído para cada número de VLs com o conjunto de calibração, 
e projeta-se neste modelo o conjunto de validação (série de teste). Neste caso, o 
número de VLs é escolhido como melhor modelo por meio da otimização do coeficiente 
de correlação da predição (R²pred) sobre a série de teste. Esta opção, naturalmente, só 
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se torna disponível se o usuário escolhe uma das duas formas de seleção de amostras 
que o programa oferece para a escolha da série de teste. Esta alternativa é geralmente 
mais vantajosa em relação à validação interna por causa da maior independência entre 
os conjuntos de calibração e validação. 

Ela consiste na construção de um único modelo, para cada número de variáveis 
latentes, com as amostras que fazem parte do conjunto de calibração; neste modelo, 
serão projetadas as amostras da série de teste (o conjunto de validação) e, por meio da 
comparação entre esses vários modelos, será identificado o número ótimo de variáveis 
latentes para o conjunto informado. Neste caso, o algoritmo de calibração do modelo 
será como segue: 

 
i. Calcula-se a primeira CP ou VL; 
ii. Constrói-se um único modelo, com as amostras do conjunto de calibração, 

no qual serão projetadas as amostras do conjunto de validação; 
iii. Calculam-se os valores estatísticos para este modelo; 
iv. Calcula-se a CP ou VL seguinte; 
v. Caso não haja mais CPs ou VLs a serem calculadas, o algoritmo termina 

aqui; em outro caso, volta-se ao passo “ii”.  
 
O critério utilizado para a determinação do número ótimo de variáveis latentes é 

o mesmo da validação cruzada: aquele modelo que apresentar o menor valor de SEP 
será o escolhido. Há uma diferença de terminologia entre os dois algoritmos que é 
digna de nota: enquanto que, na validação cruzada, calcula-se o coeficiente de 
correlação da validação cruzada (Q²), nesta validação com série de testes utiliza-se o 
coeficiente de determinação para as amostras preditas (R²pred), cuja fórmula é 
exatamente a mesma apresentada na Equação 3. A diferença é meramente conceitual: 
enquanto que, para o cálculo do Q², o “valor predito” de cada amostra foi obtido de um 
modelo diferente (i.e., do modelo construído sem ela), para o cálculo do R²pred todos os 
valores preditos são obtidos de um mesmo modelo (o modelo construído com o 
conjunto de calibração inteiro). Matematicamente, as fórmulas são idênticas e o 
significado de ambos os valores é também o mesmo: trata-se de um coeficiente que 
ilustra quanto da variância do modelo é explicada deterministicamente. 

É, por fim, importante notar que o MultiMOL permite também que seja feita a 
divisão do conjunto original de amostras e, mesmo assim, seja aplicada a validação 
LOO-FCV no conjunto de calibração para otimização do número de variáveis latentes 
(VLs), com posterior projeção nele das amostras da série de teste. Neste caso, a série 
de testes é utilizada para aferir a qualidade de um modelo que foi obtido por meio de 
validação cruzada. Esta metodologia consiste também na separação do conjunto de 
dados em dois subconjuntos: um deles será utilizado para a construção do modelo de 
regressão (conjunto de calibração), por meio da validação cruzada LOO-FCV, e o outro 
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será usado exclusivamente para a validação ou teste da capacidade preditiva do 
modelo de regressão.  

Aqui é importante notar que a avaliação crítica do modelo fica ao encargo do 
responsável pela pesquisa: o melhor modelo obtido através da validação cruzada pode 
apresentar uma capacidade preditiva aquém da que seria desejada e, portanto, não ser 
um modelo adequado, a despeito dos bons resultados porventura obtidos durante na 
calibração e auto-predição. Note-se que se distinguem aqui três coisas: a calibração, 
tradicionalmente feita através da validação cruzada; a auto-predição (projeção das 
amostras que foram utilizadas na construção do modelo), que indica a capacidade 
explicativa do modelo; e, por fim, a predição com a série de teste (projeção de amostras 
que não foram utilizadas na construção do modelo), onde está indicada a capacidade 
preditiva do modelo.  

No caso particular do QSAR, um problema que surge desta abordagem é o 
seguinte: como garantir que as amostras deixadas de fora estão compreendidas, 
interpolativamente, entre aquelas que foram utilizadas para a construção do modelo? 
Não se tem conhecimento, até onde foi possível averiguar, de uma resposta definitiva 
para este problema. Por isto, torna-se importante enfatizar, mais uma vez, a 
necessidade da escolha de um conjunto de moléculas que formem uma série 
homóloga, pois a presença de um grupo farmacofórico em todas elas, ao qual são 
meramente adicionados (ou subtraídos) alguns substituintes, tem garantido resultados 
experimentais que corroboram a tese de que é possível trabalhar desta maneira. 

 

4. Resultados e Discussões 
 

O registro dos resultados obtidos neste projeto foi feito com o intuito de 
comprovar a realização dos objetivos propostos originalmente. Para os resultados, 
foram utilizados os conjuntos de testes apresentados na seção 3.2.2. Por motivos de 
espaço, não serão apresentados na presente seção os arquivos de saída, gerados pelo 
programa, correspondentes a cada um dos modelos apresentados na seção 4.3. Todas 
as figuras apresentadas nesta seção foram obtidas do próprio MultiMOL. 
 

4.1. Características do programa MultiMOL 
 

O MultiMOL possui mais de 8.000 linhas de código, distribuídas entre 29 
arquivos C++, sem levar em consideração aqueles que foram obtidos de bibliotecas 
públicas e incorporados ao software (NEWMAT). Foram escritos procedimentos para 
diversas funcionalidades: não somente na codificação dos algoritmos de regressão, 
mas também leitura e escrita de arquivos, interação com o usuário, definição e controle 
de componentes gráficos, estruturas de controle, processamento interno de dados, 
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contabilização de tempo de processamento, visualização de resultados, entre outras 
funcionalidades necessárias ao funcionamento do programa. 

A opção pela representação dos valores numéricos com uma precisão dupla 
("double") foi feita por meio da utilização do tipo de dado específico que a própria 
linguagem de programação (C++) disponibiliza; como já foi dito, esta escolha foi 
motivada pela necessidade de se obter resultados numéricos mais precisos. As 
matrizes foram representadas com as estruturas disponíveis na biblioteca NEWMAT, 
nas quais já estão incluídas as operações matriciais mais comumente utilizadas, como 
transposição, inversão e multiplicação de matrizes. Estas operações possuem já 
precisão e desempenho otimizados, o que se confirmou nos testes que foram 
executados; portanto, não foi necessário fazer nenhuma adaptação no código da 
biblioteca para atender às necessidades do MultiMOL. Como foi explicado na seção 
3.2., a biblioteca NEWMAT é open source, o que significa que o seu código-fonte é 
aberto, é disponibilizado junto com a biblioteca e pode ser modificado para atender às 
necessidades específicas de cada aplicação que a utilize. No caso do MultiMOL não foi 
necessário fazer nenhuma alteração no código. No entanto, para que esta decisão 
fosse tomada, foi realizado um trabalho detalhado de análise do código-fonte desta 
biblioteca matemática para, enfim, chegar à conclusão de que ele, na forma como 
estava, atendia bem aos propósitos do software. Cabe lembrar que “open source” 
significa que não há custo monetário associado à licença de software, e que o código-
fonte do software é disponibilizado na íntegra, podendo ser analisado e, se necessário, 
modificado. A biblioteca NEWMAT é gratuita e “open source”. Todos os demais 
algoritmos utilizados pelo programa MultiMOL para a obtenção dos modelos de 
regressão (MLR, NIPALS, PLS, Q-PLS) foram implementados por nós. 

Para a leitura dos arquivos de entrada, optou-se por uma representação em 
ASCII (caracteres de texto). Isto permite uma manipulação dos dados mais simples pelo 
usuário, que pode ser feita através de programas de edição de texto comuns, como foi 
explicado na seção anterior (ver seção 3.2.3). 

Todas as opções referentes à construção do modelo estão acessíveis ao usuário 
por meio da Interface Gráfica (GUI). Após selecioná-las, basta clicar no botão de 
executar para que o programa execute o cálculo dos modelos com base nos 
parâmetros informados pelo usuário (ver seção 4.2. para mais detalhes).  

O procedimento de validação cruzada tradicionalmente utilizado para a 
identificação automática do número ótimo de variáveis latentes exige que sejam 
construídos diversos modelos de regressão. Para conjuntos de dados que possuam um 
grande número de amostras, a quantidade de memória exigida para os cálculos destes 
modelos pode facilmente ultrapassar a memória física disponível no sistema. Por conta 
disso, o MultiMOL permite que os cálculos da validação cruzada sejam realizados tanto 
em memória (opção padrão) quanto através do armazenamento dos modelos 
intermediários em arquivos temporários no disco rígido. Esta última opção permite que 
sejam processados conjuntos de dados que, de outra maneira, exigiriam recursos de 
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hardware que talvez não estivessem disponíveis. O processamento realizado em disco 
faz com que um único modelo esteja carregado na memória de cada vez e, ao final dos 
cálculos, ele é armazenado no disco em um arquivo temporário, que será carregado em 
memória quando for necessário recuperar e atualizar este modelo. Devido ao grande 
número de operações de leitura e escrita de disco ("I/O") envolvidas neste 
procedimento, o desempenho do programa diminui em relação à opção padrão de 
cálculos realizados totalmente na memória. No entanto, o armazenamento temporário 
em disco permite que sejam processados conjuntos de dados muito maiores, o que 
incrementa grandemente a robustez do programa e aumenta o seu leque de aplicações 
possíveis. 

Os arquivos de saída (“output”) são também escritos em ASCII, como os de 
entrada, de modo a facilitar a sua interpretação pelo usuário. Têm o formato 
“exit_AAAAMMDD_HHMMSS.txt”, onde “AAAA” são os quatro dígitos do ano, “MM” são 
os dois dígitos do mês (de 01 a 12), “DD” são os dois dígitos do dia dentro do mês, “HH” 
são os dois dígitos da hora (em formato 24 horas), “MM” são os dois dígitos dos 
minutos e, “SS”, os dois dígitos dos segundos. Estes dados são obtidos da data e hora 
atuais do sistema.  

Para os arquivos de saída, foram levadas em consideração as informações sobre 
a construção do modelo mais relevantes, como as informações escolhidas para o 
modelo (pré-processamento, tipo de regressão, utilização de validação com série de 
teste, etc.), os resultados estatísticos obtidos (R², Q², F-Test, etc.) e os valores de 
predição obtidos pelo modelo. No caso em que seja reservado um subconjunto dos 
dados para a validação com série de teste, esta informação é também exibida no 
“output” do programa, em local específico e identificado como tal. Um exemplo2 destes 
arquivos de saída pode ser visto a seguir: 

 
 
 
 
[informações sobre o modelo; contém as opções que foram selecionadas pelo 

usuário para a regressão] 
 
####################### 
Informações do Modelo: 
Removeu as colunas com variância igual a zero: NÃO. 
Centrou os dados na Média: NÃO. 
Escalonou os dados: SIM. 
Aplicou o APS: NÃO. 

                                                 
2  Dados deste modelo: “conjunto A” (QSAR “2.5D”), PCR limitado a dez componentes principais, dados 
escalonados mas não centrados na média, LOO-FCV para calibração e divisão sistemática do conjunto original, 
reservando-se uma amostra a cada 4 (quatro) para fazer a validação com conjunto de teste.  
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Usou intercept: NÃO. 
Deixou amostras para validação com série de teste: SIM. 
Algoritmo de Regressão: PCR. 
####################### 
 
 
[tempo total de processamento, seguido dos resultados da validação-cruzada; 

indica os valores de SEP e de Q² para cada número de variáveis latentes que foi 
utilizado na obtenção do melhor modelo] 

 
Processamento concluído! 
Tempo total de processamento: 16.406 segundos. 
 
Resultados Gerais: 
Número PCs   SEP      Q^2 
  1         2.15604886        0.07832135463    
  2        1.529422274         0.5362145174    
  3        1.520649568         0.5415197692    
  4        1.534585876         0.5330775865    
  5         1.56107862         0.5168167394    
  6        1.559711718         0.5176625331    
  7        1.551674575         0.5226206637    
  8        1.304893407         0.6623922545    
  9        1.302979109          0.663382079    
 10        1.311074151         0.6591864617    
 
 
[resultados do melhor modelo obtido pela validação cruzada] 
 
Melhor modelo construido: 
#PCs: 9 
#Amostras: 86 
PRESS: 119.4265143 
SEP: 1.302979109 
Q^2: 0.663382079 
R^2: 0.7246629633 
F: 2.097500539 
s: 1.253555545 
sd: 2.2589603 

 
[tabela que mostra o resultado da validação interna, LOO-FCV] 
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Amostra   V. Obs.  V. Pred.    Res. Pred.      V. Cal.       Res. Cal. 
MOL_07        6.1100001      6.7633101     -0.6533099      6.7355530     -0.6255529 
MOL_08        9.0000000      6.6622025      2.3377975      7.0814386      1.9185614 
MOL_09        7.6399999      5.3034915      2.3365084      5.4133345      2.2266653 
MOL_14        7.3099999      6.3525666      0.9574334      6.3981046      0.9118953 
 
[...] 
 
SQ29852_2H 7.1900001      9.5244980     -2.3344979      9.6322859     -2.4422858 
THIOL_22 8.7700005      5.8540369      2.9159636      5.6877070      3.0822934 
THIOL_28 9.6400003      6.7031399      2.9368605      6.4624844      3.1775159 
sd:  2.2835044      1.8650802      2.7871960      1.9018282      2.8006006 

 
[dados da validação com série de teste] 
 
Melhor modelo construido - Dados validacao com serie de teste: 
#Amostras: 28 
PRESS: 73.19038 
SEP: 1.616769 
R^2: 0.5118976 
F: 2.097501 

 
[tabela que mostra o resultado da validação com série de teste] 
 
Amostra    V. Obs.   V. Pred.  Diferenca. 
MOL_12        7.3099999          6.2783344          1.0316655 
MOL_18        8.9200001          6.8706991          2.0493010 
MOL_22        9.2200003          7.9456324          1.2743678 
MOL_29        8.1499996          7.0729399          1.0770598 
 
[...] 
 
MOL_67        5.0799999          6.7033762         -1.6233763 
SQ29852_2P        6.4699998          9.2128233         -2.7428235 
THIOL_12        3.5899999          5.4845326         -1.8945327 
sd:       2.331705         1.724782        1.599726 

 
 
Como pode ser visto, no cabeçalho do arquivo de saída encontram-se as 

informações gerais sobre todas as opções que foram utilizadas na construção do 
modelo. Os principais parâmetros que foram selecionadas pelo usuário – tais como pré-
processamento dos dados, remoção de colunas com variância igual a zero, divisão do 
conjunto de entrada, etc. – podem ser encontrados nesta área do arquivo de saída 
gerado pelo programa. Em seguida, são apresentados os resultados do processo de 
calibração do modelo, em uma tabela na qual são exibidas, em número crescente, as 
variáveis latentes, com seus respectivos valores de SEP e de Q². Note-se que, 
conforme dito anteriormente, o número de variáveis latentes que tenha menor valor de 
SEP é aquele escolhido pelo programa como sendo o melhor modelo encontrado. Em 
seguida, após o programa calcular e prever os dados no modelo que tenha este número 
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ótimo de variáveis latentes, são apresentados os dados deste modelo (auto-predição): o 
valor do coeficiente de determinação, de PRESS, do Teste F, entre outros. É também 
apresentada uma tabela que resume a etapa de construção do modelo, contendo o 
valor observado, predito (na calibração – no caso, LOO-FCV) e calculado (após a 
identificação do melhor modelo: auto-predição) para cada uma das amostras que fazem 
parte do conjunto original. Por fim, caso exista um conjunto de validação como série de 
teste, é apresentado um pequeno cabeçalho com informações estatísticas sobre este 
conjunto (contendo o seu número de amostras, o valor do PRESS, do SEP, do R² e do 
Teste F), seguido de uma tabela. Esta é análoga àquela exibida para a validação 
interna, contendo os valores observados e preditos para estas amostras que ficaram de 
fora do cálculo do modelo. 

O paradigma de linguagem de programação escolhido, orientado a objetos, 
facilita a modelagem do problema. No MultiMOL existem cerca de 15 (quinze) classes. 
Em linguagens de programação orientadas a objeto, “classes” designam um conjunto 
de linhas de código que modelam um determinado comportamento desejado pelo 
desenvolvedor do software. No caso específico do MultiMOL, por exemplo, o 
comportamento “executar regressão linear simples” pode ser  efetivamente modelado 
como sendo uma classe que executa esta operação, a qual pode ser utilizada em 
diversos pontos do programa, conforme seja necessário. No contexto do presente 
trabalho, é este o sentido no qual o termo é aplicado e deve ser entendido, não sendo 
aplicável o conceito clássico da estatística e/ou da quimiometria, no qual “classes” 
definem agrupamentos de objetos que possuam algumas propriedades de interesse em 
comum. As classes do MultiMOL foram modeladas para a execução dos algoritmos 
utilizados pelo programa (MLR, PCR, NIPALS, PLS, etc), para a geração de arquivos de 
saída, para o cálculo das variáveis estatísticas, para a representação dos componentes 
gráficos, etc. O conceito de herança foi utilizado para a otimização do código-fonte, 
permitindo a reutilização de procedimentos e evitando a duplicidade de linhas de 
código. Desta forma, por exemplo, a regressão linear múltipla (MLR) pode ser usada 
como ferramenta de regressão aplicada diretamente nos dados de entrada, ou pode ser 
utilizada nas componentes principais obtidas destes dados de entrada, para fazer uma 
regressão em componentes principais (PCR). A mesma implementação do algoritmo é 
utilizada em ambas, eliminando a redundância. Durante o trabalho de desenvolvimento 
do software foi também levada em consideração a modularização do código, pois ela 
facilita o trabalho de manutenção futura e possibilita o reuso dos algoritmos, como foi 
explicado acima. O conceito, bastante utilizado em linguagens de programação, tem um 
significado bastante intuitivo: um programa está estruturado em “módulos” quando ele é 
composto por diversas partes, relativamente autônomas, que se comunicam para a 
execução de procedimentos mais complexos. Assim, por exemplo, o MultiMOL possui 
um módulo de escrita de arquivos de saída (“output”), que em si é independente dos 
algoritmos de cálculo do modelo, encarregando-se somente de exibir os dados de uma 
maneira tal, em uma ordem tal, etc. – como foi mostrado no exemplo de output 
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anteriormente mostrado. Isso possibilita que o formato do arquivo de saída seja sempre 
o mesmo, qualquer que seja o algoritmo de regressão utilizado. 

O resultado de tudo isso é, enfim, um programa baseado em um código-fonte de 
considerável complexidade, robusto e bem estruturado, planejado e implementado de 
maneira modularizada e otimizada, que é capaz de produzir os resultados que serão 
apresentados nesta seção. 

Segue um exemplo prático de como as características do código do MultiMOL, 
acima apresentadas, comportam-se em uma utilização típica do programa. Suponha-se 
um usuário que tenha em mãos, em uma planilha do Excel, uma série de moléculas 
com conhecida atividade inibidora de enzimas ACE, tendo calculado uma série de 
descritores para cada molécula da série e possuindo também, ao final, a atividade 
inibitória expressa em termos de IC50

3, e deseje construir um modelo QSAR para tentar 
explicar a atividade biológica destas moléculas em termos dos descritores que ele 
selecionou. Estes dados estão praticamente prontos para serem utilizados pelo 
MultiMOL, bastando para isso exportá-los no formato .csv e acrescentar, na primeira 
linha do arquivo, as dimensões da matriz (número de amostras e número de 
descritores). 

Por meio da interface do programa, o usuário seleciona, do seu computador, o 
arquivo .csv que contém os dados com os quais quer trabalhar, que serão carregados e 
exibidos em uma tabela do programa. Internamente, esta tabela é representada como 
uma matriz de ‘m’ linhas por ‘n’ colunas. Sabendo que os seus descritores representam 
variáveis de diferentes grandezas e unidades de medida, e querendo evitar que um 
determinado descritor tenha um peso maior na construção do modelo de regressão 
unicamente por estar expresso em uma variável numericamente maior, o usuário 
escolhe a opção de escalonar os dados. Sabendo que estas amostras estão 
homogeneamente dispostas ao longo do seu conjunto e querendo reservar uma parcela 
dele para fazer a validação do modelo com uma série de teste, o usuário decide fazer 
uma separação sistemática do conjunto original, reservando seqüencialmente uma 
amostra a cada quatro para compor o conjunto de validação. Seleciona, assim, esta 
opção na interface gráfica.  

Por se tratar de um conjunto relativamente pequeno de amostras, o usuário 
acredita que o seu computador possui memória suficiente para realizar as operações 
necessárias e, portanto, marca a opção de “Usar a Memória” para os cálculos. O 
algoritmo de regressão apresentado por “default” (opção padrão) é o PCR e, neste 
primeiro teste, o usuário não o modifica. Aperta o botão para executar o cálculo do 
modelo. 

                                                 
3  Trata-se precisamente do “Conjunto A” exposto na seção 3.2.2., o qual foi também usado para a obtenção 
do “output” exibido na seção 4.1. 
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O programa, então, lê todos os dados informados na interface gráfica e os 
repassa para as classes4 nas quais estão implementados os algoritmos de regressão, 
que realizam a calibração do modelo5. Após os procedimentos de Validação Cruzada 
“Leave-One-Out”, é identificado o número ótimo de componentes principais, com o qual 
é construído o modelo final. Neste, são projetadas as amostras que ficaram de fora da 
calibração do modelo, e os seus valores estatísticos são calculados. Estes cálculos são 
todos realizados com precisão e bom desempenho computacional. Os resultados 
obtidos são armazenados em um arquivo de saída (“output”), em cujo nome está o dia e 
a hora no qual foi executado o MultiMOL. 

O usuário acompanha, no console da interface gráfica, o procedimento de 
construção do modelo. Ao final, são exibidos na tela dois gráficos, entre os quais o 
usuário pode alternar clicando nas abas que o programa oferece: um que mostra os 
valores “observados e preditos” tanto para o conjunto de calibração quanto para o de 
validação; e, outro, que mostra o valor do Q² obtido para cada número de componentes 
principais durante o processo de calibração. Após analisar estes resultados, o usuário 
abre o arquivo de saída para ver mais detalhes do modelo que obteve, em um editor de 
texto padrão. 

Caso deseje, por exemplo, comparar este modelo PCR com outro, PLS, o 
usuário pode simplesmente alterar o tipo de algoritmo de regressão na interface gráfica, 
mantendo inalteradas todas as outras opções. Após todos os cálculos, serão exibidos 
na tela os novos gráficos referentes ao modelo construído com o PLS. O novo arquivo 
“output” terá um nome diferente por causa do horário diferente em que o programa foi 
rodado, desta forma, não sobrescrevendo o resultado anterior e possibilitando, assim, 
que estes resultados sejam recuperados facilmente no futuro. Os dois modelos poderão 
também ser facilmente comparados com base nos arquivos de saída, uma vez que o 
formato de ambos será exatamente o mesmo, variando apenas os valores numéricos 
gravados em cada um. 

 

4.2. A Interface Gráfica (GUI) 
 
A parte gráfica do MultiMOL foi desenvolvida com o duplo objetivo de facilitar a 

utilização do software pelo usuário e, ao mesmo tempo, oferecer novas funcionalidades 
capazes de aumentar a aplicabilidade do programa. É por meio dela que se realiza toda 
a interação entre o usuário e o programa, desde a importação/edição dos dados até a 
visualização dos resultados gerados pelo programa. 

                                                 
4  “Classes”, vale lembrar, no contexto de linguagens de programação.  
5  Este é outro exemplo da aplicabilidade da modularização do programa: os parâmetros do modelo são aqui 
obtidos por meio da interface gráfica, mas para as classes que executam os procedimentos numéricos é indiferente de 
onde os parâmetros venham: da execução do programa em “linha de comando”, com os parâmetros digitados 
manualmente pelo usuário, ou de maneira automática, através da interface gráfica (GUI). 
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As figuras 4-a, 4-b e 4-c mostram as telas principais do MultiMOL. São as três 
“abas” do programa, onde o usuário pode visualizar e/ou editar os dados de entrada do 
programa, bem como obter os resultados dos modelos de regressão. A primeira aba 
consiste em uma tabela ou planilha, aos moldes dos softwares mais populares de 
estatística multivariada, na qual as linhas representam as amostras (moléculas, em 
QSAR) e, as colunas, representam as variáveis (descritores, em QSAR). Ao lado 
esquerdo de cada linha, encontra-se o nome ("label") da amostra correspondente; 
acima de cada coluna, encontra-se o "label" da variável correspondente. A última 
coluna armazena os valores da função-resposta ou variável dependente (atividade 
biológica, em QSAR); as colunas subseqüentes são as variáveis independentes que 
serão utilizadas para a construção do modelo de regressão. 

Na segunda aba, podem ser visualizados os dados mais importantes do modelo 
que foi construído. No lado direito, existe um console através do qual o usuário pode 
acompanhar o andamento do cálculo, durante o procedimento de calibração do modelo. 
As principais informações sobre o que o programa está fazendo no momento são 
exibidas neste console. Do lado esquerdo, há um gráfico onde, após o término do 
cálculo do modelo de regressão, são apresentados os valores observados e os preditos 
para todas as amostras que constam na tabela da aba anterior. Os dados que foram 
utilizados para calibrar o modelo (o conjunto de calibração) são apresentados com a cor 
vermelha; os dados externos (o conjunto de validação) são exibidos com a cor azul. O 
gráfico possui opções de escala para ambos os eixos, bem como opções de 
customização (tamanho, formato) dos pontos que são nele exibidos. A linha diagonal 
que aparece na Figura 4-b, ligando o canto inferior esquerdo do gráfico ao superior 
direito, é opcional e pode ser exibida caso a opção correspondente seja marcada pelo 
usuário. Existe ainda a opção de exportar a imagem no formato “.png”6, de modo a 
salvá-la no computador e, posteriormente, recuperá-la com qualquer programa de 
edição de imagens. 

Por fim, na terceira aba (Figura 4-c), são apresentados os resultados da 
calibração do modelo. O gráfico representa o valor do Q² para cada um dos números de 
componentes principais que foi utilizado na validação cruzada ou validação com série 
de teste. As mesmas opções de customização que existem para o gráfico de valores 
observados por valores preditos (Figura 4-b) estão também disponíveis aqui: assim, é 
possível alterar a escala dos dois eixos, a figura que representa cada um dos pontos do 
gráfico e também salvar a imagem no computador. Naturalmente, neste gráfico não 
existe a opção de exibir a diagonal, uma vez que ela não faz sentido para o tipo de 
informação nele representada. 

Após o cálculo da regressão, o MultiMOL exibe na tela da GUI os resultados 
mais importantes do modelo. São apresentados os valores do coeficiente de correlação 

                                                 
6  “Portable Network Graphics”, um formato de dados para imagens amplamente utilizado na internet. Como 
o .jpg, é perfeitamente reconhecível pela quase totalidade dos softwares visualizadores / editores de imagem. 
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da autopredição (R²) e do coeficiente de correlação da validação (Q² ou R²pred, 
dependendo da opção escolhida), bem como o tempo total de processamento. Há dois 
gráficos que são imediatamente carregados pelo programa após o término do 
processamento: i) “Observado x Predito”, que mostra, para cada uma das amostras, a 
diferença entre a função-resposta (informada no conjunto de dados de entrada) e o 
valor previsto pelo modelo de regressão; ii) “Q²”, que mostra a evolução dos valores do 
coeficiente de correlação da validação em função do número de variáveis latentes 
utilizadas. Igualmente, é gerado um arquivo de saída (“output”) no formato TXT (ASCII), 
com informações mais detalhadas, ou seja, as opções utilizadas para a regressão, os 
valores observados, preditos e calculados para cada uma das amostras, o tempo de 
processamento, além de outras informações estatísticas importantes do modelo 
(“Standard Error of Prediction” – SEP, “Prediction Error Sum of Squares” – PRESS, 
“Standard Deviation” – SD, etc.). 
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Figura 4-a: Tela principal do MultiMOL. 
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Figura 4-b: Tela principal do MultiMOL. 
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Figura 4-c: Tela principal do MultiMOL.
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Os dados podem ser importados de um arquivo no formato csv (“comma 

separated value”), que possua o layout que já foi descrito anteriormente (v. seção 
3.2.3). Uma vez importado o arquivo, os dados podem ser editados pelo usuário: os 
valores numéricos podem ser alterados, podem ser incluídas novas linhas ou novas 
colunas, e é possível remover linhas ou colunas existentes. Após a realização de todas 
as alterações necessárias, é possível salvar os dados editados, a fim de reutilizá-los no 
futuro, utilizando-se o menu “File”. 

Por meio da parte superior da tela principal do programa (que pode ser vista na 
Figura -4-a, na Figura 4-b e na Figura 4-c, pois é a mesma para todas as abas do 
software), o usuário tem acesso a todas as opções de regressão que o MultiMOL 
oferece. Do lado superior esquerdo estão as opções de pré-processamento: o usuário 
pode selecionar se deseja escalonar os dados, centrá-los na média ou aplicar o 
algoritmo de seleção de variáveis. Em seguida (da esquerda para a direita), estão as 
opções de algoritmos de regressão: o usuário escolhe se deseja utilizar MLR, PCR, 
PLS ou Q-PLS. Ele também pode selecionar se deseja limitar o número máximo de 
variáveis latentes (componentes principais) a algum valor pré-estabelecido; caso ele o 
faça, o processo de calibração só irá construir modelos com, no máximo, o número 
informado. Caso esta opção não seja marcada, o programa vai construir todos os 
modelos de calibração, até que a variância da matriz original esteja esgotada -  número 
que, conforme já exposto, é limitado pelo menor número entre o de objetos e o de 
descritores [FERREIRA et al., 1999]. 

Para MLR e PCR, é também possível marcar a opção de usar o “intercept”, que 
consiste em incluir uma constante na equação de regressão, forçando a reta de 
regressão a passar pela origem dos eixos. Isto foi feito acrescentando-se uma coluna 
(variável independente) com valores unitários na matriz de dados original. 

Em seguida, é possível escolher a forma que o programa utilizará para a 
calibração dos modelos. Por limitações de tempo, não foi implementada a opção de 
salvar, em arquivos temporários, os modelos intermediários gerados pelo programa: 
estão somente disponíveis as opções de armazená-los na memória ou refazer, para 
cada número de componentes principais, os cálculos de todos os modelos precedentes. 

É também possível escolher as opções de divisão de conjunto de dados. O 
usuário, então, escolhe se não deseja dividir os arquivos ou, caso o deseje, se quer 
fazê-lo informando expressamente quais são as amostras que deseja deixar de fora do 
processo de calibração ou se quer deixar o programa reservar, automaticamente, uma 
amostra a cada ‘x’ (valor que ela informa) para compor o conjunto externo. Por fim, o 
usuário escolhe também a forma que será utilizada pelo programa para fazer a 
calibração do modelo: pode optar por fazer uma validação cruzada (LOO-FCV) ou por 
utilizar o conjunto externo para otimizar o número de variáveis latentes (validação com 
série de teste – v. seção 3.2.10). 
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Após selecionar todas as opções que deseja, o usuário simplesmente clica no 
botão “run” (canto superior direito) e, então, o MultiMOL vai construir o modelo com os 
parâmetros selecionados. Durante os cálculos, é apresentada uma barra de progresso 
indicando que o programa está em execução, impedindo que o usuário submeta 
novamente um cálculo que já se encontra em processamento. Também durante a 
execução do programa, como já foi dito, o console da segunda aba da tela principal do 
MultiMOL informa o andamento do cálculo. Por fim, após o seu término, a interface 
gráfica carrega automaticamente os resultados obtidos na segunda e na terceira aba, 
os quais podem ser facilmente visualizados pelo usuário. A partir daqui, a exibição dos 
gráficos pode ser customizada e os mesmos podem ser salvos no computador, como já 
foi explicado. 

Com estas facilidades, espera-se oferecer ao usuário as opções mais comuns de 
visualização e manipulação de dados numéricos, aumentando a usabilidade do 
programa e tornando-o mais amigável (“user-friendly”7). 

 

4.3. Resultados dos testes 
 
Para testar a qualidade e a robustez do código do MultiMOL, foram realizados 

vários testes, cujos resultados serão apresentados a seguir.  
 

4.3.1. Conjunto ‘A’: QSAR Tradicional 
 
O primeiro conjunto de dados testado consiste em uma série de 114 amostras 

para as quais foram utilizados 56 descritores de QSAR Tradicional. Há claramente a 
necessidade de que os dados sejam pré-processados, escalonando-os, uma vez que 
os descritores representam variáveis de grandezas distintas (unidades de medida 
diferentes) e, portanto, estão também mensurados em escalas distintas. Para os testes 
realizados neste conjunto, utilizou-se o auto-escalonamento da matriz de dados original. 

O conjunto de dados apresenta um número de amostras (114) maior do que o 
número de escritores (56) e, por isso, é possível obter um modelo por meio de uma 
regressão MLR simples. Os resultados “observados x preditos” obtidos por este modelo 
estão expostos na figura 5. 

 
 
 

                                                 
7  A expressão é comum na área de ciência da computação e designa um software cuja interface gráfica é 
construída de tal maneira que facilita a interação do usuário com o programa. Há toda uma área, na informática, 
associada ao estudo de interfaces e de usabilidade de software. 
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Figura 5: MLR aplicado sobre matriz auto-escalonada, conjunto A 

 
Este modelo possui as seguintes características: 
 
Número de variáveis selecionadas: 18 
Número de Amostras: 114 
PRESS: 456.1206029 
SEP: 1.350359817   
Q²: 0.6459049577    
R²: 0.223045346 
 
Percebe-se que o modelo obtido apresenta uma boa explicabilidade dos dados 

analisados; com as primeiras dezoito variáveis, obtém-se um Q² (obtido com Validação-
Cruzada “LOO-FCV”) de 0,65. A figura 6 mostra a evolução do valor de Q² para as 
primeiras quinze variáveis. 
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Figura 6: Valores de Q² para as primeiras quinze variáveis utilizadas do Conjunto A. 

 
Embora as ferramentas da estatística utilizadas sejam comum a ambos, é 

importante diferenciar um problema da Química Medicinal (em particular, QSAR) de 
outro da Química Analítica. Este exemplo é de QSAR; nesta metodologia, está-se 
geralmente interessado em resultados de certo modo qualitativos. Mais importante do 
que saber exatamente o quanto cada um dos descritores contribui para a propriedade 
de interesse analisada, estamos interessados em identificar quais são os descritores 
(as propriedades, no caso do QSAR tradicional, ou os pontos da molécula no caso de 
QSAR-3D) que estão relacionados com a função-resposta. Isto acontece porque é já 
bastante relevante uma conclusão que identifique (p.ex.) quais as áreas da molécula 
estudada que estão mais relacionadas com a atividade biológica do fármaco, mesmo 
que não se saiba o valor quantitativo preciso desta contribuição. 

Ao contrário, na Química Analítica (um exemplo da qual pode ser visto na seção 
4.3.3., mais adiante), os compostos que fazem parte de uma mistura já são geralmente 
conhecidos a priori. O que se busca com a construção de modelos de regressão, neste 
caso, é identificar a concentração exata de cada um deles e, portanto, os critérios 
quantitativos são aqui muito mais rigorosos. É por isso que um valor de Q² de 0,65 
como o apresentado é considerado bom para um problema de QSAR, mas no entanto 
seria inaceitável em um problema da Química Analítica. Como será visto mais adiante, 
os números obtidos em problemas que envolvam espectroscopia são diferentes dos 
obtidos na construção de modelos de QSAR. 

Um dos problemas com a regressão linear múltipla, como já foi dito, é que a 
qualidade dos modelos de regressão está diretamente relacionada com a relevância 
dos descritores que foram selecionados para o conjunto de calibração. O MultiMOL não 
oferece nenhum algoritmo para otimizar a escolha dessas variáveis, de modo que a 
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otimização do número de variáveis é feita de maneira sistemática. O modelo que tem 
uma variável é aquele que utiliza a primeira variável; o modelo com duas variáveis, é 
aquele que usa as duas primeiras variáveis. Se houvesse, digamos, uma combinação 
de variáveis particularmente explicativa das propriedades de interesse da série de 
moléculas analisadas (digamos, o primeiro descritor junto com o quarto), o programa 
não seria capaz de identificá-la: um modelo que usasse estes dois descritores iria usar 
também, o segundo e o terceiro. 

Isto posto, é relevante enfatizar a importância de que, para os problemas de 
QSAR Tradicional nos quais serão aplicados modelos de regressão construídos a partir 
de MLR, os descritores estejam dispostos em ordem de prioridade. Isto acontece 
porque o programa busca o melhor modelo utilizando-se os 'p' primeiros descritores da 
matriz de dados original. Ou seja, o modelo com um descritor vai utilizar o primeiro 
descritor; o modelo com dois descritores vai utilizar o primeiro e o segundo; e assim 
sucessivamente.  

Neste caso, com os descritores originais colocados em ordem de importância 
(primeiro o mais significativo, em seguida o segundo mais significativo, etc.) garante-se 
que a busca sistemática irá acrescentar, a cada iteração, o próximo descritor mais 
explicativo do fenômeno que está sendo estudado. Se os descritores estiverem 
dispostos aleatoriamente, a busca sistemática implementada no MultiMOL não garantirá 
a convergência dos modelos para aquele que é mais explicativo. Ao contrário do que 
acontece, por exemplo, nos modelos construídos com PCR ou PLS (onde a primeira 
variável latente é a mais importante na explicação do modelo), não existe nenhuma 
garantia de que o primeiro descritor utilizado para o MLR seja “o melhor descritor”. 
Assim, pode ser útil também a construção de diversos modelos, nos quais a ordem dos 
descritores esteja alterada. 

Para este conjunto, executou-se também uma Análise de Componentes 
Principais antes da aplicação da MLR, ou seja, um procedimento PCR, a fim de 
compará-la com a regressão linear múltipla. Os mesmos parâmetros de pré-
processamento e de calibração do modelo foram adotados: a matriz de dados foi auto-
escalonada e, a validação, foi feita por meio de LOO-FCV. Nas Figuras 7 e 8 é possível 
ver, respectivamente, os gráficos de valores observados por preditos e o da evolução 
do Q² ao longo das primeiras quinze componentes principais. 

A diferença na explicabilidade do modelo faz-se sentir: com a PCR, é possível 
obter um Q² de 0,70. Entretanto, não existe ganho real no número ótimo de variáveis 
latentes utilizadas na construção do modelo, pois este Q² é obtido com a utilização de 
dezoito componentes principais, o que é um número alto. 
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Figura 7: Valores “observados x preditos” para o conjunto A; PCR aplicada sobre conjunto de 

dados auto-escalonado. 
 

 
Figura 8: Evolução dos valores de Q² para as primeiras quinze componentes principais.  
 
As características deste modelo são as seguintes: 
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Número de PCs: 18 
Número de Amostras: 114 
PRESS: 134.6991481 
SEP: 1.249123409 
Q²: 0.6970077441 
R²: 0.7705538199 
F: 17.72446953 
 
Em especial, a Figura 8 mostra a vantagem de se construir modelos com 

variáveis que sejam combinações dos descritores originais. Enquanto que, na Figura 6, 
o valor do coeficiente de correlação aumenta aos saltos e oscila demasiadamente ao 
longo do número de variáveis utilizados, na Figura 8 nós vemos uma evolução paulatina 
e constante. Isso se explica porque o ganho de informação relevante quando se 
acrescenta a próxima componente principal é verdadeiro. Por outro lado, o simples 
acréscimo de um descritor aleatório pode acrescentar, ao modelo, mais ruído do que 
informação verdadeiramente relevante. 

 

4.3.2. Conjunto ‘B’: QSAR‐3D 
 
O conjunto de QSAR-3D é composto por 31 esteróides, para cada um dos quais 

foi calculado o valor do campo eletrostático em 1813 pontos localizados espacialmente 
no interior de uma caixa discretizada. Os detalhes deste procedimento de obtenção dos 
descritores de QSAR-3D serão mostrados em um manuscrito que encontra-se 
atualmente em preparação, envolvendo o trabalho de outros integrantes do nosso 
grupo de pesquisa. Devido às dimensões do conjunto de entrada, não é possível 
realizar uma Regressão Linear Múltipla. Como é comum nos casos de QSAR-3D, é 
necessária a decomposição da matriz de dados original por meio de uma PCR ou do 
PLS. 

Todos os descritores são da mesma natureza e, portanto, representam valores 
de mesma grandeza, de modo que não é necessário realizar o escalonamento dos 
dados. Para que fosse verificada a eficácia da seleção de variáveis do programa, uma 
Regressão em Componentes Principais foi aplicada sobre o conjunto de dados original 
e, depois, sobre as primeiras vinte e seis (26) variáveis selecionadas pelo software 
através do algoritmo APS.  

A fim de conseguir melhores modelos, de ambos os modelos foram retirados do 
conjunto de calibração os esteróides número “1” e número “31” da série apresentada na 
Figura 3, pois se tratam de amostras que normalmente se comportam como “outliers” 
(amostras com comportamento fora do padrão) na maioria dos modelos de regressão 
publicados na literatura [COATS, 1998] e, portanto, que prejudicariam a calibração do 
modelo. Diz-se que uma determinada amostra de um conjunto é um “outlier” quando ela 
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tem um comportamento que se distingue do das demais amostras da série. Amostras 
“outliers” prejudicam a qualidade dos modelos de regressão construídos, o que torna 
importante a sua identificação. Os resultados estão dispostos na Figura 9. 

Ao lado de resultados numericamente equivalentes, a grande vantagem de 
aplicação da seleção de variáveis é a economia de demanda computacional. De fato, a 
utilização do algoritmo para reduzir a dimensionalidade do conjunto de dados original 
reduz drasticamente o tempo computacional gasto pelo programa para o cálculo dos 
modelos. Isto mostra que (i) os descritores utilizados nos problemas de QSAR-3D são 
extremamente correlacionados; (ii) o algoritmo de seleção de variáveis implementado 
no MultiMOL é eficaz na escolha das variáveis que são as menos correlacionadas entre 
si e, portanto, cumpre aquilo a que se propõe; e (iii) portanto, esta redução da 
dimensionalidade é uma alternativa válida para a execução de cálculos onerosos sem 
comprometer a qualidade dos modelos de regressão obtidos. 

Desta forma, o procedimento de seleção prévia de variáveis mostrou-se uma 
excelente maneira de reduzir a demanda computacional exigida pelos problemas de 
QSAR, viabilizando a execução de cálculos complexos em um tempo viável.  

Os resultados obtidos por estes dois modelos pode ser visualizado na Tabela 2. 
Para cada um dos dois conjuntos foram aplicados os mesmos procedimentos: 
otimização do número de componentes principais por meio de validação cruzada, e 
regressão feita com PCR. 

Note-se que, para ambos os modelos, o valor de R² é o mesmo. Além disso, 
foram colocadas na legenda da figura também as variáveis estatísticas de avaliação de 
modelos de regressão – R², F-test, número de componentes principais e tempo de 
processamento – para os dois modelos. 

Pode-se notar também que o modelo construído com as 26 variáveis 
selecionadas pelo APS é ainda ligeiramente melhor do que o modelo construído com as 
variáveis originais, em todos os aspectos nos quais ambos podem ser comparados: é 
melhor em performance, pois o seu tempo de execução é menor, como foi dito 
anteriormente; é melhor em robustez, porque utiliza-se de um terço a menos de 
componentes principais do que o modelo que foi construído a partir dos dados originais; 
apresenta um melhor coeficiente de correlação de validação cruzada (0.81, contra 0,70 
do modelo com todas as 1813 variáveis) e, por conseguinte, um menor erro padrão de 
predição (SEP), enquanto que a sua explicabilidade permanece rigorosamente à 
mesma, o que pode ser visto tanto pela comparação dos dois gráficos da Figura 8 
quanto analisando-se os valores de R² dos dois modelos. 
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Tabela 2 – Variáveis estatísticas dos modelos QSAR construídos sem seleção de variáveis 
e com seleção de variáveis. 

 
 1813 Variáveis 26 Variáveis 

Tempo de 
Processamento 3 minutos e 9 segundos 7.5 segundos 

Q² 0,70 0,81 
SEP 0,60 0,47 
R² 0,90 0,90 

Número de PCs 12 8 
F-Test 11,82 23,47 

 
Estes resultados são bastante interessantes, uma vez que, por meio deles, é 

possível concluir que a utilização de uma seleção prévia de variáveis pode reduzir a 
demanda computacional exigida para o cálculo do modelo, mantendo, no entanto, a sua 
explicabilidade. Portanto, é possível verificar que esta abordagem de seleção de 
variáveis aplicada aos problemas de QSAR-3D é, ao mesmo tempo, coerente, robusta e 
satisfatória para a sua resolução. 

Para este conjunto dos esteróides, foi também construído um modelo de 
regressão por meio do algoritmo PLS. Os resultados obtidos estão expostos nas 
Figuras 9 e 10. 
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Figura 9: Gráfico “Observados x Preditos”, Conjunto ‘B’, PLS 

 

 
Figura 10: Gráfico de Q² para as primeiras 15 Variáveis Latentes 
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Nota-se que, conforme esperado, os resultados obtidos pelo algoritmo PLS são 
próximos daqueles obtidos por meio da Regressão em Componentes Principais (PCR). 
No entanto, o PLS é significativamente mais rápido do que o PCR, sendo executado, 
em média, em 25% do tempo. Vale também salientar que, quanto maior o número de 
componentes principais (variáveis latentes), maior o tempo gasto pelos algoritmos, mas 
este aumento de demanda computacional não é linear, uma vez que cada variável 
latente adicional calculada pelo PLS é obtida por meio de um algoritmo mais simples (o 
PLS1) do que o utilizado para adicionar uma componente principal no PCR (o NIPALS). 
O algoritmo PLS1 executa uma única vez para cada variável latente, conforme pode ser 
visto na seção 3.2.8. Já o NIPALS executa uma série de vezes para cada componente 
principal, buscando convergência de valores. Isto é o que justifica o melhor 
desempenho do primeiro. 

 

4.3.3. Conjunto ‘C’: Espectro simulado 
 
A validação do Q-PLS utilizou o conjunto de dados de espectro simulado, que foi 

apresentado na seção anterior. Isto foi feito para que se pudesse demonstrar a 
aplicabilidade do PLS Quadrático na descrição do comportamento de um conjunto de 
dados onde a relação existente entre as variáveis independentes (X) e a variável 
dependente (Y) é de natureza sabidamente não-linear. Foram realizados testes 
comparativos entre os métodos PLS e Q-PLS, para o conjunto de dados de espectros 
simulados – denominado conjunto (C). O número ótimo de variáveis latentes do 
modelo, para ambos os casos, foi identificado automaticamente por meio de validação 
cruzada LOO-FCV. Podem-se observar nos gráficos da Figuras 11: os valores de Q² 
para as primeiras vinte variáveis latentes dos modelos construídos com PLS tradicional 
e quadrático (Q-PLS).  
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Figura 11: Comparação entre valores de Q² ao longo do número de componentes principais para o 
“Conjunto C”. 

 
Nos gráficos da Figura 11 podem-se observar a evolução da qualidade dos 

modelos de regressão obtidos por cada um dos algoritmos, conforme se aumenta o 
número de variáveis latentes utilizadas. Dada a natureza quadrática do conjunto de 
dados com o qual se está trabalhando, torna-se perceptível que a aplicação do Q-PLS é 
mais adequada do que a do PLS tradicional: o primeiro algoritmo consegue, para cada 
número de variáveis latentes, valores maiores de Q² do que a sua versão tradicional. 

Conjunto C – PLS 

Conjunto C – Q-PLS 
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Isso corrobora a implementação do algoritmo feita pelo MultiMOL, uma vez que o 
comportamento previsto foi efetivamente observado nos testes realizados.  

A capacidade preditiva dos modelos PLS e Q-PLS este conjunto pode ser 
observada nos gráficos da Figura 12, onde estão apresentadas as comparações entre 
os valores preditos e observados para as variáveis dependentes de cada conjunto. 
Trata-se novamente de um gráfico de valores preditos versus valores observados, onde 
a maior capacidade preditiva do modelo é indicada pela maior proximidade dos pontos 
em relação à reta diagonal. Desta vez, foi utilizado um conjunto de validação com série 
de teste para aferir a qualidade do modelo de regressão. 

A utilização da validação com série de teste é importante porque, como já foi 
dito, geralmente a capacidade do modelo de prever amostras que não foram utilizadas 
na calibração de um modelo de regressão é uma característica mais importante do que 
a sua capacidade de calcular as amostras usadas para construí-lo. Também é 
desejável que um modelo possa ser validado através de amostras que não foram 
usadas para a sua construção, pois isto oferece um indicativo mais seguro de que os 
resultados encontrados não são fortuitos.   

Os dados destes modelos são os apresentados na Tabela 3. 
 

Tabela 3 – Dados dos modelos PLS e Q-PLS contruídos para o Conjunto C. 
 

PLS Q-PLS 
Conjunto de calibração: 
Número de VLs: 6 
Número de Amostras: 25 
PRESS: 3.775160383 
SEP: 8.195463265 
Q²: 0.9204952437 
R²: 0.9998212519 
F: 35.28282514 
 
Conjunto de validação: 
Número de Amostras: 50 
PRESS: 4368.357 
SEP: 9.347039 
R²: 0.8311719 
F: 35.28283 

Conjunto de calibração: 
Número de VLs: 4 
Número de Amostras: 25 
PRESS: 473.1156878 
SEP: 7.759438809 
Q²: 0.9287300064 
R²: 0.977598689 
F: 288.4557707 
 
Conjunto de validação: 
Número de Amostras: 50 
PRESS: 971.2496 
SEP: 4.407379 
R²: 0.9624632 
F: 288.4558 
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Figura 12: Gráfico de predição para o conjunto de espectro simulado (“Conjunto C”).  

Em azul, amostras de validação e em vermelho, de calibração. 
 
Os modelos construídos com os dois algoritmos são relativamente próximos, 

mas é clara a vantagem que leva o PLS Quadrático na previsibilidade dos dados. Como 
os dados utilizados para o teste são de natureza quadrática, fica clara a insuficiência do 

Conjunto C 
PLS 

Conjunto C 
Q-PLS 
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modelo linear (PLS) para a explicação deste fenômeno e a pertinência da aplicação de 
um modelo não-linear, como o Q-PLS. 

É oportuno lembrar que este algoritmo funciona por meio da introdução, na 
equação de regressão, de um termo quadrático capaz de modelar a natureza não-linear 
do conjunto de dados, nos casos em que o processo de calibração não identifica 
dependência quadrática entre os descritores informados e a função resposta, o termo 
quadrático tende a ser anulado. Assim, o modelo Q-PLS tende a se aproximar do 
modelo PLS para conjuntos que não possuem dependência quadrática, não havendo 
prejuízo na explicabilidade dos dados. A única perda significativa, neste caso, é de 
desempenho: como o Q-PLS exige uma demanda computacional muito maior do que o 
PLS, os resultados obtidos por aquele levam um tempo consideravelmente maior para 
estarem disponíveis ao usuário. 

Verifica-se, assim, a importância do conhecimento prévio a respeito do problema 
que está sendo tratado. A opção pelo uso de um algoritmo não-linear em um problema 
simples, passível de ser modelado adequadamente por meio dos métodos de regressão 
lineares, pode acrescentar uma complexidade desnecessária ao estudo do problema e 
alongar o tempo exigido para os testes dos modelos de regressão. Os benefícios 
advindos do emprego de uma metodologia de regressão quadrática, nestes casos, não 
seriam proporcionais ao ônus inerente a ela. 

Na figura 12, a aplicação do algoritmo de Q-PLS para o modelo de regressão 
mostrou-se satisfatória e obteve resultados melhores do que o modelo linear (PLS). Isto 
é refletido também nos números obtidos para os coeficientes de correlação, melhores 
em 0,1 para o Q-PLS, em comparação com o PLS. 

Estes testes mostraram que o Q-PLS é adequado para a modelagem de 
problemas de natureza quadrática, os quais não são tratados de maneira adequada 
pelos modelos lineares. O comportamento do algoritmo em relação ao conjunto de 
dados de espectro simulado foi o esperado: como tal conjunto possui uma relação 
quadrática previamente conhecida entre as variáveis independentes e a variável 
dependente, o modelo quadrático apresenta melhores resultados do que o linear, 
justamente por levar em consideração um componente quadrático na construção da 
equação de regressão. 

O comportamento do algoritmo Q-PLS nos conjuntos de dados que não 
possuíam dependência quadrática foi também o esperado: a ausência de correlação 
quadrática entre os descritores e a função-resposta modelada pelo software faz com 
que o termo quadrático tenha, na equação de regressão, um valor bem próximo de 
zero. Assim, o modelo Q-PLS reduz-se, na prática, a uma regressão de PLS linear, com 
resultados que se aproximam daqueles obtidas pela aplicação direta do algoritmo PLS. 
Para estes conjuntos que não possuem dependência não-linear, os modelos lineares 
apresentaram melhores resultados, uma vez que levam em consideração somente 
aspectos que são relevantes, por encontrarem-se justificados na natureza física do 
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problema com o qual se está trabalhando. Por conta disso, o desempenho deles é 
substancialmente melhor. 

Tais resultados mostraram, assim, a importância de um conhecimento 
aprofundado sobre a natureza do problema em estudo: os modelos que apresentam 
melhores resultados de predição são aqueles matematicamente adaptados aos dados 
que se deseja modelar.  

 
Estes testes foram suficientes para demonstrar que o MultiMOL é aplicável, com 

performance e robustez, tanto a problemas de QSAR Tradicional quanto de QSAR-3D. 
Partindo-se do mesmo princípio, i.e., de que a natureza matemática dos algoritmos 
implementados pelo programa independem da aplicação concreta que se lhes será 
dada, pode-se expandir as conclusões obtidas dos resultados recém-expostos e afirmar 
que o MultiMOL é também aplicável a outros problemas de natureza distinta daqueles 
envolvidos na relação entre estrutura molecular e atividade biológica (QSAR), como por 
exemplo os problemas de regressão multivariada em química analítica, utilizando dados 
espectroscópicos, por exemplo. Os modelos de regressão obtidos pelo MultiMOL 
podem ser, assim, utilizados em quaisquer áreas de conhecimento às quais a 
metodologia estatística multivariada seja aplicável. 

 

5. Conclusões 
 

A área de desenvolvimento de fármacos assistido por computador tem 
apresentado um interesse crescente para a comunidade científica, devido à segurança 
das metodologias utilizadas e aos benefícios associados à incorporação destas 
técnicas ao processo de desenvolvimento de fármacos. O programa MultiMOL, 
desenvolvido no departamento de Farmácia da UFPE, pelo grupo de pesquisa em 
Modelagem para Inovação Molecular (MODiMOL), encaixa-se nesta área do 
conhecimento, propondo-se a fornecer as ferramentas computacionais exigidos para a 
realização de estudos de modelagem molecular, notadamente o estabelecimento dos 
modelos de QSAR, de forma precisa e robusta, com bom desempenho e fácil utilização. 
Conforme foi mostrado, o software cumpre com os objetivos que se propõe a atingir, 
apresentando-se como uma interessante alternativa para regressão multivariada na 
quimiometria. 

O presente projeto de mestrado consistiu na otimização e no desenvolvimento de 
novas funcionalidades para o programa MultiMOL, especificamente no que se refere à 
incorporação de novas metodologias ao programa e ao desenvolvimento de uma 
Interface Gráfica do Usuário, de modo a ampliar o leque de aplicações do programa e 
tornar a sua utilização mais amigável para o usuário. Ao final do projeto, podemos dizer 
que o software apresenta as características mais importantes de uma ferramenta para 
aplicações que envolvam problemas de estatística multivariada, tanta na química 
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medicinal como em outras áreas da ciência onde estas ferramentas se façam 
necessárias. Os testes que foram realizados no programa garantem a sua ampla 
aplicabilidade, com o desempenho, a robustez e a precisão originalmente propostas. 

Merece destaque o excelente desempenho obtido pelo PLS, por meio do qual é 
possível obter modelos tão precisos quanto aqueles obtidos com PCR utilizando-se, no 
entanto, de um processamento computacional muito menor. Estes bons resultados são 
devidos à escolha do algoritmo PLS1, que foi implementado no MultiMOL. 

O Q-PLS foi implementado de maneira inovadora, pois não é comum encontrá-lo 
nem mesmo nos pacotes de software comerciais. A validação do algoritmo foi feita por 
meio de testes feitos com um conjunto de dados específico, de natureza quadrática 
previamente conhecida, por meio do qual foi possível atestar a aplicabilidade do Q-PLS. 

Foram também realizadas discussões comparativas entre os dois métodos, PLS 
e Q-PLS, mostrando os pontos positivos e negativos de cada um deles e 
estabelecendo, assim, em suas linhas mais gerais, os critérios que devem ser utilizados 
na escolha do algoritmo de regressão que deve ser aplicado em cada problema 
concreto. Em particular, foi mostrado que o custo computacional do algoritmo Q-PLS é 
bem maior do que aquele exigido pelo PLS Tradicional; no entanto, o PLS Quadrático é 
capaz de modelar melhor do que o PLS os problemas onde a relação entre as variáveis 
e a função resposta não é de natureza linear. 

Todos os testes apresentados nesta dissertação de mestrado foram realizados 
em três conjuntos de dados, escolhidos de modo a cobrir as principais áreas de 
aplicação que o MultiMOL se propõe a atender. Foram testados conjuntos de QSAR 
Tradicional, de QSAR-3D e da Química Analítica (espectros simulados), de diversos 
tamanhos e distintas naturezas, a fim de abranger um grande leque de aplicações para 
as quais o MultiMOL pode ser útil. As funcionalidades do programa foram aqui 
apresentadas através das exigências concretas de cada um dos problemas que foi 
tratado, em uma harmônica cooperação entre precisão e custo computacional. 

Foi também realizada a completa integração entre a Interface Gráfica do 
programa (GUI) e o seu módulo numérico, aumentando assim a usabilidade do 
software. Foram apresentadas as principais telas do programa, com uma explicação 
detalhada de cada uma das opções que elas oferecem ao usuário do MultiMOL. Foram 
apresentados diversos gráficos, obtidos dos testes realizados e, todos eles, gerados 
pelo próprio programa. 

O esforço associado à pesquisa na literatura sobre os algoritmos, à busca 
contínua sobre a sua otimização, à sua implementação em C++ para utilização no 
MultiMOL e à sua integração ao conjunto do programa perfizeram uma parte 
considerável deste projeto de mestrado, correspondendo a uma parcela significativa do 
trabalho por ele demandado. Ao final do projeto, estando concluídas as tarefas de 
codificação e testes dos novos algoritmos de construção de modelos de regressão, 
podemos concluir que hoje o programa MultiMOL representa uma opção viável para 
grupos de pesquisa que precisem trabalhar com ferramentas de estatística multivariada. 
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6. Perspectivas Futuras 
 

Além das novas funcionalidades, é igualmente necessária a elaboração de um 
manual do usuário, que contenha uma descrição detalhada de todas as funcionalidades 
do MultiMOL, de modo a facilitar a sua utilização. Este manual precisará conter as 
opções existentes na versão atual do programa, e o modo como estas opções estão 
implementadas. A confecção de tutoriais práticos que ensinem os procedimentos de 
uso do software também é desejada. Toda esta informação poderá ser disponibilizada 
através de acesso on-line ao website que será desenvolvido e dedicado a este projeto. 

Conforme a proposta de projeto de Mestrado submetida ao Programa de Pós-
Graduação em Inovação Terapêutica (PPGIT) e por este aprovada, os resultados 
apresentados nesta dissertação correspondem àqueles que foram originalmente 
propostos e, portanto, pode-se considerar o presente projeto concluído com sucesso. 
Não obstante, no decorrer do projeto, foram identificadas diversas funcionalidades e 
melhorias que poderiam ser agregadas ao MultiMOL, aumentando assim o seu leque 
de aplicabilidade e contribuindo para consolidá-lo como uma ferramenta quimiométrica 
de porte e de ampla usabilidade. 

A primeira perspectiva futura que o MultiMOL apresenta é o módulo de Grid-
Computing. Foi identificado no MultiMOL a oportunidade de uma aplicação de 
computação distribuída no procedimento de validação interna dos modelos de 
regressão, notadamente na validação cruzada (LOO-FCV). A computação distribuída 
(”GRID-Computing”) consiste em uma arquitetura computacional onde duas ou mais 
máquinas estão interligadas e dividem a execução de tarefas independentes cujos 
resultados, depois, serão utilizados para a composição do resultado total da 
computação. Distingue-se o GRID-Computing da arquitetura de “clusters” porque esta 
última exige compartilhamento de recursos (exige, por exemplo, que a memória seja 
compartilhada por todas as máquinas que fazem parte do cluster), enquanto que no 
GRID-Computing essa exigência não existe: é suficiente que as máquinas estejam 
interligadas numa rede de computadores para que possam ser utilizadas. Além disso, 
verificou-se que, no GRID-Computing, é possível obter, em alguns casos, um 
escalonamento das tarefas praticamente linear em proporção ao número de máquinas 
utilizadas: duas máquinas realizam a atividade na metade do tempo em que a realizaria 
uma máquina única, quatro máquinas, em 25% do tempo, etc. Identificou-se que grande 
parte da demanda computacional utilizada nos cálculos computacionais realizados para 
a construção dos modelos de regressão é proveniente do procedimento de identificação 
do número ótimo de variáveis latentes, por meio da validação cruzada. Foi identificado 
também que os diversos modelos de regressão construídos nesta etapa da execução 
do programa são temporal e logicamente independentes entre si, constituindo um 
problema conhecido como B-O-T (“Bag-Of-Tasks”), o que os torna passíveis de serem 
executados em um ambiente de computação distribuída, especialmente através da 
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utilização de um “GRID Computing”. A possível utilização de “GRID Computing” 
ocasionaria um ganho enorme de desempenho, diminuindo o tempo de processamento 
precisamente onde a demanda computacional é mais elevada, ou seja, no gargalo 
computacional da geração dos modelos de regressão. Foram pesquisadas as 
tecnologias que podem dar suporte a esta aplicação distribuída, e foi feita a revisão 
conceitual da arquitetura do MultiMOL de modo a adequá-la a uma aplicação de “GRID 
Computing”. Decidiu-se pela utilização da tecnologia OurGrid [OURGRID COMMUNITY, 
2009], um ambiente para computação distribuída que já foi testado no nosso grupo de 
pesquisa e já apresentou resultados bastante satisfatórios, possibilitando um 
escalamento quase linear na redução do tempo de processamento em relação ao 
número de máquinas utilizadas na distribuição do cálculo. Além disso, este ambiente é 
de fácil utilização e grande portabilidade, permitindo a construção de sistemas 
distribuídos sobre arquiteturas computacionais diversas com bastante simplicidade e 
praticidade. No presente momento, o projeto encontra-se em um estágio adequado 
para iniciar o desenvolvimento desta nova funcionalidade. 

Dentre as outras futuras atividades que podem ser realizadas para dar 
continuidade ao desenvolvimento do software e que poderão ser, em conjunto ou 
individualmente, adotadas como objetivos de futuros projetos, julgamos importante 
destacar as seguintes: 

- Implementar o módulo de escrita em disco dos modelos temporários utilizados 
(principalmente) durante o processo de validação cruzada, a fim de viabilizar o cálculo 
de conjuntos de dados de porte bem acentuado, em um tempo computacional aceitável. 

- Aprimoramentos na Interface Gráfica do MultiMOL, acrescentando opções de 
visualização de outros tipos de gráficos ou, até mesmo, dando ao usuário a 
possibilidade de escolher, dentre os diversos resultados gerados pelo modelo, quais 
exatamente ele deseja graficar. 

- Desenvolver um sistema de registro de atividades realizadas pelo programa 
(arquivo “.log”), por meio do qual pudessem ser registradas as regressões que o usuário 
realizou e, através da qual, resultados de cálculos feitos anteriormente pudessem ser 
reproduzidos sem a necessidade de se refazer novamente toda a configuração das 
opções desejadas para o cálculo do modelo de regressão na interface gráfica. 

- Desenvolver um sistema de armazenamento e recuperação dos modelos 
produzidos pelo MultiMOL, a fim de que um modelo, uma vez calculado, possa ser 
salvo no computador e, posteriormente, recuperado sem que haja necessidade de se o 
recalcular; e possibilitando, ainda, que novas amostras possam ser projetadas em 
modelos anteriormente calibrados. 

- Disponibilizar uma versão em língua inglesa do programa, a fim de atingir 
potenciais usuários que se encontrem fora do Brasil. 

- Implementar o princípio da parcimônia (Navalha de Ockham), para otimizar a 
convergência do número de variáveis latentes utilizadas nos modelos de regressão. 



62 
 

 

- Implementar o algoritmo APS conforme se encontra na literatura, que não 
somente faça a seleção de um número ‘x’ de variáveis mas que, por meio da realização 
de sucessivas regressões, seja capaz de encontrar o número ótimo de variáveis a 
serem selecionadas no conjunto de dados original. 

- Implementar algoritmos classificatórios e exaploratórios (PCA, HCA, KNN, 
SIMCA, dentre outros), que possam ser utilizados em um módulo do programa 
independente da construção de modelos de regressão. 

- Expandir o algoritmo PLS Quadrático para que ele seja capaz de modelar 
também outras funções não-lineares de natureza não-quadrática, e verificar a qualidade 
dos modelos gerados com esta nova implementação.  
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ANEXO I – Detalhes da geração do conjunto de dados de espectro simulado, utilizados 

para a validação do algoritmo Q-PLS 

A simulação do banco de dados foi realizada utilizando usando o programa GNU 
Octave 2.1.73 seguindo um planejamento de misturas para calibração de Brereton 
(2003) com introdução de ruído aos espectros, com coeficientes arbitrários, seguindo os 
seguintes passos: 

 
 

• Gerar as constantes de emissão 
 

Foram assumidos espectros com 300 comprimentos de onda, referentes a mistura 
de três componentes com máximos de emissão nas variáveis 120, 150 e 180, 
respectivamente. 
As primeiras e as últimas 50 variáveis não possuem informação. 
 
octave:1> x = 1:300; 
octave:2> window = [zeros(1,50) ones(1,200) zeros(1,50)]; 
octave:3> k1 = exp(-(x-120).ˆ2/1000).*window; 
octave:4> k2 = exp(-(x-150).ˆ2/1000).*window; 
octave:5> k3 = exp(-(x-180).ˆ2/1000).*window; 
octave:6> K = [k1;k2;k3]; 
 

• Gerar espectros de calibração 
 

Para construir o conjunto de amostras de calibração admitiu-se a mistura dos 
três componentes em cinco níveis de concentração: 1, 3, 5, 7 e 9, seguindo um 
planejamento de misturas para calibração de Brereton com 25 amostras [8]. Os 
espectros foram gerados em seguinda fazendo-se o produto da matriz de 
concentrações pela matriz das constantes de emissão. 
 
octave:7> Ccal=[5 5 5 
5 1 1 
1 1 9 ... (matriz truncada para simplificar a visualização) 
octave:8> Xcal=Ccal*K; 
 

• Introduzir ruído 
 
octave:9> nivel ruido = 0.03 + (x-150).ˆ4/(10*150ˆ4); 
octave:10> randn(’state’,0); % Reseta o gerador de ruido gaussiano 
octave:11> Xcal = Xcal + repmat(nivel ruido,25,1).*randn(25,300); 
 

Após a introdução do ruído os espectros de calibração já estão definidos. A 
figura 1 reproduz os espectros simulados. 
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Figura 1: Espectros simulados de uma mistura ternária. Conjunto de calibração. 

 
 

• Obtenção das respostas simuladas 
 
As quatro respostas com dependência quadrática são apresentadas a baixo: 
 

Y1 = b.c2
2 

onde c2 é a concentração do componente 2. 
 

Y2 = b0 + b1
.c2 + b2

.c2
2 

Y3 = b1
.c2

2 + b2
.c2

2 

 

que simula o caso em que a resposta depende quadraticamente de dois componentes; 
e  
 

Y4 = b2
.c1

2 + b23
.c2

.c3 
 

onde a resposta depende  quadraticamente de um componente e do produto dos outros 
dois. Os coeficientes usados nessas expressões foram definidos arbitrariamente 
 
octave:12> y1cal = Ccal(:,2).ˆ2; 
octave:13> y2cal = Ccal(:,2).ˆ2 + 5*Ccal(:,2)+4; 
octave:14> y3cal = 2*Ccal(:,1).ˆ2+3*Ccal(:,2).ˆ2; 
octave:15> y4cal = 3*Ccal(:,1).ˆ2+C(:,2).*C(:,3) 
 

A tabela 1 mostra das respostas simuladas para as 50 amostras do conjunto de 
validação.  

 
Tabela 01: Respostas com dependência quadrática com a concentração para os 
espectros simulados a partir do planejamento Brereton de misturas de calibração. 
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• Gerar os espectros do conjunto de validação e suas respostas. 
 

Foram gerados 50 espectros para o conjunto de validação  
 
octave:16> rand(’state’,0); % Reseta o gerador de distribuicao uniforme; 
octave:17> Cval(:,1)=8*rand(50,1)+1; 
octave:18> Cval(:,2)=8*rand(50,1)+1; 
octave:19> Cval(:,3)=8*rand(50,1)+1; 
octave:20> Xval = Cval*K; 
octave:21>Xval = Xval + repmat(nivel ruido,50,1).*randn(50,300); 
 

A figura 2 reproduz os espectros simulados para o conjunto de validação. 
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Figura 2: Espectros simulados para o conjunto de validação 

 
 
octave:22> y1val = Cval(:,2).ˆ2 
octave:23> y2val = Cval(:,2).ˆ2 + 5*Cval(:,2)+4 
octave:24> y3val = 2*Cval(:,1).ˆ2+3*Cval(:,2).ˆ 2 
octave:25> y4val = 3*Cval(:,1).ˆ2+Cval(:,2).*Cval(:,3) 
 

A tabela 2 mostra os valores das respostas simuladas para as 50 amostras do 
conjunto de validação. 
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Tabela 2: Conjunto de validação, valores das quatro repostas para as misturas 
simuladas. 
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ANEXO II – Trabalhos apresentados em congressos 

Como resultado, também, foi apresentado (Figura 12) um trabalho no XV 
Simpósio Brasileiro de Química teórica, que ocorreu em Poços de Caldas no período de 
18 a 21 de outubro de 2009, mostrando o estudo comparativo entre os três conjuntos 
de dados e os modelos de regressão construídos com os algoritmos PLS e Q-PLS que 
foi apresentado acima. Este trabalho foi apresentado na forma de pôster. 
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Anexo III – Manuscrito submetido para publicação na revista Química Nova, com carta 

de confirmação da submissão on-line. 

 

Programa MultiMOL: uma nova ferramenta quimiométrica para 
regressão multivariada 

 
Jorge Ferraz de Oliveira Filho, Bruno Feitosa Marques, Marcelo Zaldini 
Hernandes*  

 
Laboratório de Química Teórica Medicinal – LQTM, Departamento de Ciências 

Farmacêuticas, Universidade Federal de Pernambuco, Rua Prof. Arthur de Sá, s/n, 

Cidade Universitária CEP: 50740-521, Recife-PE, Brasil. 

 
Wallace Duarte Fragoso 

 
Departamento de Química, Universidade Federal da Paraíba, CEP: 58051-970, João 

Pessoa-PB, Brasil. 

 

 
Abstract 

 

The challenge to build regression models with chemometric multivariate 

techniques for medicinal chemistry (QSAR) or analytical chemistry is well known. In this 

work, we present a new software named MultiMOL, written in C/C++ and with a QT-

based GUI, that provides the tools typically used in multivariate regressions (MLR, PCR 

and PLS). It also provides an algorithm for quadratic PLS, named QPLS. The main 

advantage of MultiMOL is its high performance because of the optimized 

implementation. The program was validated with typical examples, showing optimistic 

results concerning the robustness and the accuracy of the regression models.  

 
Keywords: MultiMOL, multivariate regression, software
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