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RESUMO: A previsdo de ventos é de extrema importancia para auxiliar nos estudos de
planejamento e programacdo da operacdo da geracdo eOlica. Vaérios estudos ja
comprovaram que o potencial edlico brasileiro, principalmente no Nordeste, onde 0s
ventos apresentam uma importante caracteristica de complementaridade em relacdo as
vazfes do rio S&o Francisco, pode contribuir significativamente para o suprimento de
energia elétrica. Entretanto, o uso das forcas dos ventos para producdo de energia elétrica
produz alguns inconvenientes, tais como, incertezas na geracdo e a dificuldade no
planejamento e operacdo do sistema elétrico. Este trabalho propde e desenvolve modelos
de previsdes de velocidades médias horarias de ventos e geragdo edlica a partir de técnicas
de Redes Neurais Artificiais, Logica Fuzzy e Analise Wavelet. Os modelos foram ajustados
para realizar previsdes com passos variaveis de até vinte e quatro horas. Para as previsoes
realizadas com alguns dos modelos desenvolvidos, os ganhos em relagcdo aos modelos de
referéncia foram da ordem de 80% para as previsdes com passo de uma hora. Os resultados
demonstraram que a Analise Wavelet aliada as ferramentas de inteligéncia artificial
fornecem previsdes muito mais confiaveis do que aquelas obtidas com os modelos de

referéncia, principalmente para as previsdes com passos de 1 — 6 horas.
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Abstract of Dissertation presented to UFPE as a partial fulfillment of the requirements for
the degree of Master in Electrical Engineering.

WIND FORECASTING AND WIND POWER GENERATION
IN BRAZILIAN NORTHEAST: ANALYZING DIFFERENT
SITES AND LOOKING FOR THE BEST MODELING BASED
ON ARTIFICIAL INTELLIGENCE
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December/2011
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Area of Concentration: Energy Processing.

Keywords: Wind Energy, Artificial Intelligence, Fuzzy Logic, Wind Forecasting, Neural
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Number of Pages: 132.

ABSTRACT: Wind forecasting is extremely important to assist in planning and
programming studies for the operation of wind power generation. Several studies have
shown that the Brazilian wind potential can contribute significantly to the supply of
electricity, especially in the Northeast, where the winds have an important feature of
complementarity in relation to the flows of the San Francisco River. However, the use of
of wind to generate electricity has some drawbacks, such as uncertainties in generation and
some difficulty in planning and operation of the power system. This work proposes and
develops models to forecast hourly average wind speeds and wind power generation based
on techniques of Artificial Neural Networks, Fuzzy Logic and Wavelets. The models were
adjusted for forecasting with variable steps up to twenty-four hours ahead. The gain of
some models developed in relation to the reference models were approximately 80% for
forecasts in a period of one hour ahead. The results showed that the wavelet analysis
combined with artificial intelligence tools provide forecasts more reliable than those
obtained with the reference models, especially for forecasts in a period of 1 to 6 hours

ahead.
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CAPITULO 1
1. INTRODUCAO

Neste capitulo, o problema em estudo € contextualizado e caracterizado, 0s

objetivos sdo descritos, e a estrutura da presente dissertagdo é apresentada.

1.1 Caracterizacdo do Problema

Dentre todas as fontes alternativas de energia exploradas atualmente, a energia
edlica é, sem davida, uma das mais bem sucedidas. Uma razdo para este fato € a politica de
incentivo feita por varios paises, assegurando a compra da energia elétrica produzida a
partir das fontes edlicas, ainda que ela ndo ofereca precos competitivos. A Alemanha e a
Dinamarca foram os primeiros paises a adotar as politicas de incentivo ao desenvolvimento
da geracao edlio-elétrica, sequidos por diversos paises, inclusive pelo Brasil, com a criacao
do “PROINFA”, Programa de Incentivo as Fontes Alternativas de Energia Elétrica [1].

O avanco tecnoldgico, tanto em pesquisa quanto em desenvolvimento, estd fazendo
com que ocorra uma rapida reducdo no custos de instalacdo e producdo da energia elétrica
a partir da energia dos ventos [1]. Este constante desenvolvimento tecnoldgico torna
possivel a concorréncia das fontes edlicas com as tradicionais fontes de geracdo térmica,
uma vez que a energia eolica proporciona a possibilidade de geracdo de energia elétrica em
grandes blocos [2].

A energia disponibilizada pelos ventos é gratuita, logo, toda a energia elétrica
gerada a partir de fontes edlicas é bem-vinda. Entretanto, a intermiténcia dos ventos é o
grande desafio a ser enfrentado para que a energia e6lica se torne uma fonte confiavel para
a producao de energia elétrica em grandes blocos. A insercdo em larga escala de parques
edlicos nos sistemas elétricos de transmissdo e distribuicdo exige respostas para diversas
questbes, tais como, padrbes para interconexdo, qualidade de energia, capacidade dos
sistemas de transmissdo e suas futuras expansOes, estabilidade e confiabilidade dos
sistemas de poténcia, entre outras.

Com o aumento da capacidade de geragdo edlica instalada, os operadores do
sistema elétrico devem saber como lidar com esse importante montante de energia
flutuante. Portanto, uma area de pesquisa de extrema importancia para o setor elétrico esta

relacionada com as previsdes de curto prazo para a geragdo eolica. As escalas de tempo



envolvidas nas previsdes de curto prazo sdo da ordem de dias (para o horizonte de
previsdo) e de minutos a horas (para o passo da previséo) [3].

A previsdo de velocidades dos ventos desempenha um papel fundamental para
enfrentar os desafios relacionados com a geracdo edlica. Estas previsdes fazem parte da
previsdo do tempo ha muitas décadas e sdo utilizadas para navegacdo, orientagdo de
misseis, controle de trafego aéreo e langamento de satélites [4]. Nas duas ultimas décadas,
0 vento esta sendo utilizado em larga escala para geracdo de energia elétrica e a previsdo
de velocidades dos ventos ganhou uma atencdo especial. A previsdo de ventos para
estacOes meteoroldgicas é muito diferente da previsao de ventos para a geracao de energia.
Para os parques eolicos, a previsao de ventos no curto prazo devem ser precisas para que se
mantenha a estabilidade na geracdo de energia elétrica [5].

Os sistemas de previsdo de geracdo eolica, em paises onde existe uma forte
participacdo de energia edlica na matriz elétrica, representam hoje em dia uma grande
parcela de investimentos em centros de despacho. Notadamente, podem ser citados os
seguintes paises: Espanha, Alemanha e Dinamarca. Nestes paises, existem diversos centros
de pesquisa trabalhando continuamente para o desenvolvimento de modelos para previsao
de geracdo edlica em curto prazo.

A previsdo de ventos e geracdo eélica € de extrema importancia para auxiliar nos
estudos de planejamento e programacdo da operacdo da geracao do sistema hidrotérmico e
edlico. Segundo [6], a previsdo eficiente de ventos e geracdo eolica pode contribuir de
forma positiva das seguintes maneiras: facilitando a comercializacdo no mercado de
energia elétrica; subsidiando na solucdo do problema de otimizacdo do despacho da
geracgdo do sistema hidrotérmico e edlico; e fornecendo dados para os sistemas de controles

dos parques eolicos de geracéo.

1.2 Objetivos

O objetivo principal deste trabalho € desenvolver diversos modelos de previsdo de
velocidades de ventos e geracdo de energia elétrica a partir das previsdes de velocidades
utilizando-se a curva de poténcia dos aerogeradores. Para o desenvolvimento dos modelos
de previsdo, sdo utilizadas as Redes Neurais Artificiais (RNA), Logica Fuzzy (LF) e
Anélise Wavelet.

Os modelos propostos realizam previsdes das velocidades médias horarias com

passos de previsdo que variam de uma até vinte e quatro horas. Todos os modelos



desenvolvidos sdo univariados, ou seja, as varidveis de entrada e saida do modelo s&o
apenas as velocidades dos ventos. A modelagem univariada foi escolhida devido a escassez
de dados relacionados a geracgéo eolica no Brasil.

Pretende-se, com este trabalho, contribuir para o desenvolvimento inicial de uma
ferramenta computacional eficaz e confidvel para a realizacdo de previsdes da geracdo
edlio-elétrica de curto prazo. Para isto, optou-se por realizar o desenvolvimento dos
modelos utilizando séries temporais de ventos da regido Nordeste do Brasil, por ser uma

regido que apresenta condi¢des de vento extremamente favoraveis.

1.3 Estrutura da dissertacao

A estrutura desta dissertacdo é formada por sete capitulos. O primeiro deles é esta
introdugdo. O segundo capitulo apresenta o potencial e6lico da regido Nordeste, trata da
geracdo da energia elétrica a partir dos ventos e traz uma breve revisdo bibliografica sobre
alguns modelos de previsdo de ventos e geracdo eolica. No terceiro capitulo, sdo
apresentadas as ferramentas de inteligéncia artificial utilizadas para o desenvolvimento dos
modelos propostos nesta dissertacdo, e também as wavelets. O capitulo quatro trata dos
critérios para avaliacdo dos modelos desenvolvidos. No quinto capitulo sdo apresentadas as
topologias e os ajustes dos modelos propostos. O sexto capitulo traz os resultados das
previsdes realizadas com os melhores modelos desenvolvidos e os compara com resultados
obtidos com modelos de referéncia. Com o sétimo capitulo a dissertacdo é concluida,
fazendo um breve resumo dos resultados e contribuicbes dadas. Além disso, séo
apresentadas propostas para trabalhos futuros com os quais se possa dar continuidade as

pesquisas no contexto aqui desenvolvido.



CAPITULO 2
2. POTENCIAL EOLICO E REVISAO BIBLIOGRAFICA

Este capitulo apresenta, na primeira secdo, uma descricdo do potencial eolico da
regido Nordeste do Brasil. Em seguida, na segunda secdo, sdo apresentados os conceitos
bésicos sobre a geracdo de energia elétrica a partir da energia dos ventos. A terceira e
ultima secdo traz uma breve revisao bibliografica sobre alguns modelos de previsao de

ventos e geracdo edlica desenvolvidos no Brasil e no mundo.

2.1 Potencial E6lico no Nordeste Brasileiro

A distribuicdo geral dos ventos sobre o Brasil é controlada pelos aspectos da
circulacdo geral planetaria da atmosfera proxima, conforme se apresenta na Figura 2.1.
Dentre esses aspectos, sobressaem os sistemas de alta pressdo Anticiclone Subtropical do

Atlantico Sul e do Atlantico Norte e a faixa de baixas pressdes da Depressdo Equatorial

[7].

Figura 2.1 — Distribuicéo geral dos ventos. Fonte: [7].

A posicdo média da Depressdo Equatorial estende-se de oeste a leste ao longo da
regido Norte do Brasil e sobre o Oceano Atlantico adjacente. Ela coincide com a
localizacdo e orientacdo da Bacia AmazlOnica, no centro da qual existe uma faixa
persistente de baixas pressdes. A Depressdo Equatorial é geralmente uma zona de
pequenos gradientes de pressdo e ventos fracos. Ao norte da Depressdo Equatorial os
ventos sdo persistentes de leste a nordeste. Ao sul, os ventos sdo persistentes de leste a
sudeste entre a Depressdo Equatorial e o Anticiclone Subtropical Atlantico, o qual tem uma
posicdo média anual proxima a 30° S, 25° W. Esse perfil geral de circulacdo atmosférica



induz ventos de leste ou nordeste sobre o territorio brasileiro ao norte da Bacia Amazénica
e no litoral nordeste. Os ventos proximos a superficie sdo geralmente fracos ao longo da
Depressao Equatorial, porém aumentam de intensidade ao norte e ao sul dessa faixa. A
area entre a Depressdo Equatorial e a latitude de 10° S é dominada pelos ventos alisios de
leste a sudeste. Ao sul da latitude 10° S, até o extremo sul brasileiro, prevalecem os efeitos
ditados pela dindmica entre o centro de alta pressdo Anticiclone Subtropical Atlantico, os
deslocamentos de massas polares e a Depressdo do Nordeste da Argentina — centro de
baixas pressdes a leste dos Andes [7].

Esse perfil geral de circulagcdo atmosférica encontra variagdes significativas na
mesoescala e na microescala, por diferengas em propriedades de superficies, tais como
geometria e altitude de terreno, vegetacdo (Figura 2.2) e distribuicdo de superficies de terra
e agua. Esses fatores atuantes nas escalas menores podem resultar em condi¢cbes de vento
locais que se afastam significativamente do perfil geral da larga escala da circulagédo

atmosfeérica [7].

Figura 2.2 — Modelo de relevo e vegetagdo do Brasil. Fonte: [7].

A Zona Litoranea Norte-Nordeste é definida como a faixa costeira com cerca de
100km de largura, que se estende entre o extremo norte da costa do Amapa e o Cabo de
Sd Roque, no Rio Grande do Norte. Nessa regido, os ventos sdo controlados

primariamente pelos alisios de leste e brisas terrestres e marinhas. Essa combinagdo das



brisas diurnas com os alisios de leste resulta em ventos médios anuais entre 5 m/s e 7,5 m/s
na parte norte dessa regido (litorais do Amapé e Para) e entre 6 m/s a 9 m/s em sua parte
sul, que abrange os litorais do Maranhdo, Piaui, Ceard e Rio Grande do Norte. As
velocidades sdo maiores na parte sul devido a dois principais fatores: (1) os ventos alisios
geralmente tornam-se mais fortes & medida que se afastam da Depressdo Equatorial; (2) as
brisas marinhas s@o significativamente acentuadas ao sul dessa regido em razdo dos
menores indices de vegetacdo e de umidade do solo, fazendo que a superficie do solo atinja
temperaturas mais elevadas durante as horas de sol e, conseqlientemente, acentuando o
contraste de temperaturas terra-mar e as brisas marinhas resultantes. As maiores
velocidades médias anuais de vento ao longo dessa regido estdo ao norte do Cabo de S&o
Roque, abrangendo os litorais do Rio Grande do Norte e Ceara, onde circulacdo de brisas
marinhas € especialmente intensa e alinhada com os ventos alisios de leste-sudeste.
Adicionalmente, ocorrem areas em que o0s ventos sdo acentuados por bloqueios ao
escoamento causados por montanhas na parte continental. Entretanto, o vento médio anual
decresce rapidamente a medida que se desloca da costa para o interior, devido ao aumento
de atrito e rugosidade de superficie e ao enfragquecimento da contribuicdo das brisas
marinhas [7].

As Elevacdes Nordeste-Sudeste sdo definidas como as areas de serras e chapadas
que se estendem ao longo da costa brasileira, desde o Rio Grande do Norte até o Rio de
Janeiro, a distancias de até 1.000 km da costa. Velocidades médias anuais de 6,5 m/s até
8m/s devem ser encontradas nos cumes das maiores elevacdes da Chapada Diamantina e
da Serra do Espinhaco. Essas areas de maiores velocidades ocorrem em forma localizada,
primariamente devido ao efeito de compressdo vertical do escoamento predominante em
larga escala, que € leste-nordeste, quando ultrapassa a barreira elevada das serras. Os
ventos anuais mais intensos sdo geralmente encontrados nas maiores elevacGes, onde o
efeito de compressdo ¢ mais acentuado. No entanto, o escoamento atmosférico é bastante
complexo nessa regido, existindo outras caracteristicas locais com influéncia adicional,
resultantes de uma combinacéo de fatores relacionados a topografia e ao terreno [7].

O potencial para a produgdo de energia elétrica através da fonte edlica, ja
identificado na Regido Nordeste, pode dar uma contribuigéo significativa ao suprimento de
energia elétrica da regido, como complementar ou substituto as alternativas hidroelétricas e
térmicas. Essa alternativa se tornou uma realidade na perspectiva atual da utilizacéo de até

1.100 MW de geracdo eolica na regido Nordeste, devido ao Programa de Incentivo as



Fontes Alternativas de Energia Elétrica (PROINFA) e a recente autorizacdo de estudos
dada pela ANEEL, de aproximadamente 4.800 MW na regiéo [8].

Um dos estudos realizados pelo Centro de Referéncia para Energia Solar e E6lica —
CRESESB/CEPEL, denominado de Atlas do Potencial Edlico Brasileiro [7], estimou um
potencial edlico da ordem de 75,0 GW, conforme apresentado na Figura 2.3. Este potencial

representa quase a metade de todo potencial estimado no Brasil por este estudo.

Regidao Nordeste
| 75,0 GW
5. 144,3 TWh/ano

35 40 45 50 55 60 65 70 75 80 85 9.0
VELOCIDADE MEDIA ANUAL DO VENTO
A 50 m DE ALTURA [m/s]

Figura 2.3 — Potencial edlico estimado para a regido Nordeste do Brasil. Fonte: [7].

2.2 Geracdo de Energia Eolio-Elétrica

Um aerogerador é composto basicamente pela turbina edlica, que captura a energia
cinética dos ventos e a transforma em energia mecanica em um eixo que esta
mecanicamente acoplado ao rotor de um gerador elétrico. A turbina é montada no alto de
uma torre com o objetivo de aumentar a captacdo da energia dos ventos. De acordo com a
capacidade de geracdo de energia elétrica desejada, sdo instalados diversos aerogeradores
em um determinado local para a formacao de um parque edlico. Obviamente, nos locais em



que a velocidade dos ventos é elevada e relativamente constante, a producdo de energia
serd maior ao longo do ano [9].

Os aerogeradores disponiveis atualmente no mercado podem ser agrupados em dois
grupos bésicos. O primeiro grupo é composto pelos aerogeradores que operam com
velocidade de rotacdo constante, ou seja, utilizam a filosofia “Dinamarquesa” [10]. Neste
caso, 0 gerador € diretamente acoplado a rede elétrica utilizando somente um soft-starter
para limitar a corrente durante a etapa de conexdo. Ja no segundo grupo, os aerogeradores
operam com velocidade de rotacao variavel, ou seja, seus rotores podem girar em qualquer
velocidade dentro da faixa admitida. Isto é possivel, gracas a inclusdo de conversores
eletronicos de poténcia para o acoplamento do gerador elétrico com a rede elétrica,
melhorando o rendimento na conversao da energia dos ventos [11].

Em todos os casos, um transformador elevador compatibiliza os niveis de tensdo da
geracgdo do aerogerador com o nivel de tensdo da rede de distribuicdo, a qual normalmente
opera entre 13,8 e 34,5 kV.

Um diagrama esquematico dos principais componentes de um aerogerador com

filosofia construtiva “Dinamarquesa” € apresentado na Figura 2.4.

1-Pa do Rotor

2-Hub

3-Eixo do Rotor
4-Multiplicador

5-Gerador Elétrico

6-Nacele

7-Torre

8-Controle

9-Transformador ;
10- Disjuntor de Conexao MT
11-Barramento de MT '

Figura 2.4 — Principais componentes de um aerogerador de velocidade de rotagdo
constante. Fonte: [2].



Na Figura 2.5 apresenta-se um diagrama do esquema de funcionamento de um

aerogerador de velocidade de rotacdo variével.

Energia Edlica

i : i .
| Energia ! Energia
(Cinética) ! Mecanica ! Elétrica
" 1 1
eV ! '
[ [ 1
| [ 1
e I Conversao
/ : de Torque e Conversao da
[ ! Velocidade Energia Mecanica
—_—— | | | i em Energia Elétrica
\ | !
g : : —
|
Vento { Conversor —— ‘ Rede
: Elefronico
L G | 8 . = | .
\ 1 Protecédo L E|étnca
\ ! — o Elétrica
e | 1 Multiplicador e Transformador —
! Mecanico G;ra&or‘A A Elevador
: Elétrico
" !
Turbinal | ! "
Edlica :‘ | Sistema de Supervisdo e Controle
a4 1.J !

1
1
1 = 1
' Conversao

Energia Edlica

Figura 2.5 — Esquema de funcionamento de um aerogerador de rotacdo variavel. Fonte:

[2].

2.2.1 Relagao entre a velocidade e a poténcia dos ventos

A energia cinética (em joules) de uma massa de ar m (kg) se movimentando com

uma velocidade v (m/s) € dada pela seguinte equacéo:

1
c _Emv : (21)

Sendo A a érea varrida pelas pas da trubina (m?) e p a densidade volumétrica do ar
(kg/m?), entdo a vazdo massica do ar em quilogramas por segundo é pAv , e a poténcia

mecénica do vento a montante do aerogerador € dada pela seguinte equacdo (em watts):

_ 1 3
P e _E Av©. (2.2)
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A comparacdo do potencial de geracdo de dois ou mais locais candidatos a
instalagcdo de um parque edlico pode ser feita através da “poténcia especifica do vento”
expressa em watts por metro quadrado de area varrida pelas pas rotativas. Esta poténcia
também ¢ comumente denominada “densidade de poténcia do local”, e ¢ dada pela

seguinte equacéo [9]:

Pesp :_pv3_ (23)

Observa-se que esta poténcia varia linearmente com a densidade do ar que varre as pas do
aerogerador e com o cubo da velocidade do vento. Na pratica, as pas ndo podem extrair
toda a poténcia disponivel no vento a montante, pois parte desta poténcia continua

disponivel na massa de ar que flui a jusante do aerogerador com uma velocidade menor.

2.2.2 Poténcia extraida dos ventos

A poténcia que realmente é extraida pelas pas do rotor € dada pela diferenca entre
as poténcias a montante e jusante do aerogerador. Ela pode ser obtida através da seguinte

equacéo [9]:

Py =5l —v3), (24)

em que,

P, = poténcia mecanica no rotor (W);

m = vazao massica (kg/s);

v = velocidade do vento a montante das pas (m/s);

v, = velocidade do vento a jusante das pas (m/s).

Sob um ponto de vista macroscopico, a velocidade do ar é discontinua de v para v,

no plano das pas do rotor, com um valor médio igual a média aritmética dessas

velocidades. A vazdo massica podera ser obtida multiplicando-se esta velocidade média
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pela densidade do ar e pela area varrida pelas pas do aerogerador. Portanto, a poténcia

mecénica disponivel no eixo do rotor serd dada por [9]:

1 (V+V0) 2 2
Po = E{PAT}(V ~v¢). (2.5)

A Equagéo (2.5) pode ser reescrita na seguinte forma:

o]
P, =1pAv3 . (26)

2 2

A poténcia (em watts) extraida pelas pas de um aerogerador geralmente é expressa

como uma fragéo da velocidade do vento a montante como segue [9]:

1
P, = EpAVSCp, 2.7)
em que,
v v (2.8)
C,= 5 :

Comparando as Equagdes (2.2) e (2.7), pode-se dizer que C, € a fracdo da poténcia
do vento a montante que é extraida pelas pas do rotor e fornecida ao gerador elétrico. O
restante da poténcia € dissipada no vento a jusante. O fator C, € denominado coeficiente
de poténcia do rotor ou eficiéncia do rotor. Na Figura 2.6 mostra-se que C, & uma fungéo
que possui valor maximo igual a 0,593 quando a razdo v, /v é igual a um tergo.

Na préatica, os aerogeradores sdo projetados de modo que o méaximo valor
alcancavel de C, varia entre 0,4 e 0,5 para as turbinas modernas de alta velocidade, e entre
0,2 e 0,4 para as turbinas de baixa velocidade. Considerando-se 0,5 como um valor préatico

para a maxima eficiéncia do rotor, a maxima poténcia especifica na saida da turbina (em

watts por metro quadrado de area varrida pelas pas) sera dada por [9]:
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Figura 2.6 — Eficiéncia do rotor em fungéo da razéo das velocidades.

2.2.3 Curva de Poténcia

Na prética, o rendimento aerodinamico das pas reduz ainda mais os valores tedricos
obtidos para a eficiéncia do rotor. Para um aerogerador, existem ainda outras perdas,
relacionadas com cada componente (rotor, transmissdo, caixa multiplicadora e gerador).
Além disto, o fato do rotor funcionar em uma faixa limitada de velocidade de vento
também ir& contribuir para reduzir a energia por ele captada, de acordo com a curva de
poténcia do aerogerador. O coeficiente de poténcia real de um aerogerador € obtido através
do produto da eficiéncia mecanica, eficiéncia elétrica e da eficiéncia aerodinamica da
turbina eolica. Todos estes trés fatores dependem da velocidade do vento e da poténcia
gerada [6].

A maneira mais simples de estimar a producdo de energia elétrica através da
geracdo edlica é utilizando a curva de poténcia. Esta curva relaciona a poténcia ativa
fornecida pelo aerogerador com a velocidade do vento na altura do centro do eixo do rotor.
Uma curva de poténcia tipica de um aerogerador com poténcia nominal de 2.000 kW

juntamente com a curva do coeficiente de poténcia séo apresentadas na Figura 2.7.
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Figura 2.7 — Curva de poténcia e curva do coeficiente de poténcia de um aerogerador.

Observa-se, na Figura 2.7, que a poténcia ativa fornecida pelo gerador é nula para
velocidades menores do que 2 m/s. Esta faixa de velocidades é denominada zona de cut-in.
Para velocidades maiores do que 25 m/s (zona de cut-out) ha um sistema de seguranca que
realiza o travamento mecanico da turbina para evitar danos causados pelos esforgcos
mecanicos aos quais o aerogerador ficara submetido. A velocidade para a qual o

aerogerador fornece a sua poténcia nominal é denominada velocidade nominal.

2.2.4 Densidade do ar e velocidade do vento em funcéo da altura

A poténcia extraida dos ventos varia linearmente com a densidade do ar que “varre”
as pas do aerogerador. A densidade do ar (p) varia com a pressao e a temperatura de acordo
com a lei dos gases [9]:

p=—, (2.10)

em que,
p = pressdo do ar; R = constante dos gases; T = temperatura na escala absoluta.

A densidade volumétrica do ar ao nivel domar (p=1atme T =288 K) é igual a
1,225 kg/m®. As curvas de poténcia sdo obtidas para essas condicdes, portanto, ao utiliza-
las para estimar a geracdo em uma determinada localidade, deve-se aplicar um fator de

corregéo para levar em consideragéo as variagoes da densidade do ar para diferentes alturas

e temperaturas.
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A temperatura e a pressdo variam com a altitude. O efeito combinado destas duas
variaveis sobre a densidade do ar é dado pela seguinte equacdo (que é valida para uma

elevacdo de até 6.000 m acima do nivel do mar) [9]:

0,297Hm}

p=l,225e_{ 3048 | (2.11)

em que, H = elevacdo do local (m).

O atrito entre a superficie terrestre e o vento tem como consequéncia um
retardamento desse Ultimo, resultando numa variacdo de incremento da velocidade média
do vento com a altura ao solo. O efeito da forca de atrito vai-se desvanecendo até
praticamente se anular a uma altura de aproximadamente 2.000 metros [8].

A variacdo da velocidade do vento depende, basicamente, da temperatura, da
rugosidade, da topografia e dos obstaculos do local. De acordo com [9], a variacdo da

velocidade de vento com a altura do solo pode ser expressa pela férmula:

v(h)=v,(h/h)*, (2.12)
em que:

v, — velocidade na altura h, (conhecida);
v(h) — velocidade na altura h;

h — altura para a velocidade v(h);

h, — altura da velocidade v,;

o — coeficiente dependente da natureza do terreno.

A Tabela 2.1 apresenta diversos valores do coeficiente de rugosidade (o) com
relacdo ao tipo do terreno.

Tabela 2.1 — Coeficiente de rugosidade para diversos tipos de terreno. Fonte: [9].

TIPO DE TERRENO COEFICIENTE (a)
Lago, oceano e solo liso 0,10
Grama 0,15
Cercas vivas e arbustos 0,20
Florestas 0,25
Pequenas cidades com poucas arvores e arbustos 0,30
Grandes cidades com altos edificios e construcdes 0,40
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2.2.5 Distribuicéo das velocidades dos ventos

A poténcia elétrica gerada por um aerogerador esta relacionada diretamente com a
velocidade do vento (elevada ao cubo), portanto, as velocidades sdo os dados mais criticos
necessarios para se avaliar o potencial energético de um local candidato. As velocidades e
direcdes dos ventos ndo sdo constantes, sendo influenciadas pelo terreno, clima e pela
altura em relacdo a superficie do solo. A velocidade do vento varia a cada minuto, hora,
dia, estacdo, e até mesmo por ano. Com o objetivo de obter resultados mais precisos em
relacdo a velocidade média anual de um determinado parque eolico, devem ser utilizados
os dados coletados por um periodo de dez anos ou mais, desta forma, a avaliacdo do
potencial energético fornecera resultados mais precisos. No entanto, as medic¢Ges de longo
prazo sdo caras e a maioria dos projetos ndo pode esperar tanto tempo assim. Em tais
situacOes, os dados de curto prazo, por exemplo, mais de um ano, sdo comparados com
dados de longo prazo a partir de um local proximo para predizer a velocidade média anual
do vento no local em quest&o [9].

Por ser influenciado pelo sol e pelas estagdes, o padrdo dos ventos normalmente se
repete ao longo do periodo de um ano. As variacdes da velocidade dos ventos durante o
ano podem ser descritas por uma funcéo de distribuicdo de probabilidades. A funcdo que
melhor descreve o comportamento da velocidade dos ventos é a de Weibull (h) com dois
parametros: o de forma k, e o de escala c. A probabilidade da velocidade ser v durante

qualquer intervalo de tempo ¢é dada pela seguinte equacdo [9]:

(k1) (v
h(v)=(kj(%j e(Cj , para0<v<oo. (2.13)

C

De acordo com a definicdo da funcdo de probabilidade, a probabilidade de que a
velocidade do vento esteja entre zero e infinito durante o periodo de tempo analisado é

unitaria, ou seja [9]:

j:h(v)dv =1. (2.14)
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Como o periodo de estudo normalmente escolhido é de um ano, a funcdo de
distribuicéo de probabilidades pode ser expressa em funcdo do nimero de horas no ano, de

modo que [9]:

__ndmerodehoras/anoemqueavelocidade estaentreve (v + Av)
AV '

h

(2.15)

A unidade de h é horas/ano por m/s, e a integral (2.14) agora se torna 8.760
(numero total de horas em um ano) ao invés da unidade. Na Figura 2.8 ilustra-se o
comportamento de h em funcéo de v para trés diferentes valores de k na Equagdo (2.13). A
curva azul (k = 1) possui uma forte tendéncia para a esquerda, onde a maioria dos dias sao
sem vento (v = 0). A curva preta (k = 3) se parece mais com uma distribuicdo normal em
forma de sino, em que alguns dias possuem altas velocidades de vento e outros possuem
baixas velocidades. A curva vermelha (k = 2) é uma distribuicdo de velocidades de ventos
tipica encontrada na maioria dos sitios. Nesta distribuicdo, as velocidades sdo menores do
gue a média na maioria dos dias, enquanto que em alguns dias as velocidades sdo elevadas.

O valor de k determina a forma da curva e, portanto, é denominado parametro de forma.

Percentual de horasfano
o
1

a ! 1 L L
0 =3 10 15 20 25
“elocidade do vento {m/s)

Figura 2.8 — Funcao distribuicdo de probabilidades de Weibull com parametro de escala
¢ = 10 m/s e parametros de formak =1, 2 e 3.

A distribuicdo de Weibull com k = 1 é denominada distribui¢do exponencial, sendo
utilizada geralmente em estudos de confiabilidade. Quando k = 2, é denominada
distribuicdo de Rayleigh. Para k > 3, ela se aproxima da distribuicdo normal,

frequentemente denominada Gaussiana.
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As curvas de distribuigdo correspondentes a k = 3 com diferentes valores de c
variando entre 4 e 12 metros por segundo sdo apresentadas na Figura 2.9. Para valores
maiores de c, as curvas se deslocam para a direita (para as velocidades maiores). Ou seja,
quanto maior o valor de ¢, maior sera o numero de dias com velocidades maiores de vento.
Devido a esse deslocamento da distribuigdo de horas para uma escala de velocidades

maiores, ¢ € denominado parametro de escala.

30

c=4dm's
c=6ms b
c=8ms
c=10m's
c=12m's

[ul
[42]

B
=

=]

Percentual de horasfano
&

a 5 10 15 20 28
Yelocidade do vento (m/s)

Figura 2.9 — Funcao distribuicdo de probabilidades de Weibull com parametro de forma
k = 3 e parametros de escala ¢ variando entre 4 e 12 m/s.

A velocidade média no periodo analisado € definida como a area total sob a curva h
— v integrada de v = 0 a o ¢ dividida pelo nimero total de horas do periodo (8.760 se o
periodo for um ano). A velocidade média anual é, portanto, a velocidade média ponderada
e € dada por [9]:

1
V.. =——| h(v)vdv. 2.16
med 8760 IO ( ) ( )

A maioria das localidades possui parametro de escala variando entre 5 e 10 m/s, e

pardmetro de forma variando entre 1,5 e 3,0. Para estes valores de ¢ e k, a Equacao (2.16)

pode ser aproximada por [9]:

V_, =090c. (2.17)
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Conhecendo-se o perfil de distribuicdo das velocidades dos ventos no local em que

serdo instalados os aerogeradores e a caracteristica elétrica do aerogerador (curva de

poténcia), pode-se definir a funcdo de distribuicdo da energia e (MWh/ano/m/s) da

seguinte maneira:

e(v) =h(v)-P(v).

(2.18)

As funcdes de distribuicdo das velocidades e da energia gerada s&o ilustradas na Figura

2.10. Os parametros de forma e de escala sdo dados na altura do eixo do aerogerador e a

curva de poténcia utilizada é igual aquela da Figura 2.7.
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Figura 2.10 — Distribuicdes das velocidades (k = 4 e ¢ = 10 m/s) e da energia gerada.

O valor esperado para a geracao anual de energia elétrica (em MWh) é dado por:

E, = IV Vt e(v)dv ,

n

em que, v,,= velocidade de “cut-in”; v, = velocidade de “cut-out”.

(2.19)

A distribuicéo da velocidade média do vento é normalmente discreta, em classes de

1 m/s, portanto, o célculo da energia gerada anualmente também pode ser calculado

utilizando-se os valores discretos das distribuicoes, ou seja:
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E,=> e(v). (2.20)

O valor da energia anual calculado por (2.19) ou (2.20) considera a distribuicdo de
ventos do local, assim como as poténcias calculadas para as respectivas velocidades do
vento para a maquina em questdo (através da curva de poténcia). Contudo, este calculo da
energia ndo considera as perdas na rede de distribuicdo do parque edlico, que provocardo

um decréscimo na energia que serd injetada na rede da concessionaria.

2.3 Revisao Bibliografica

Parte desta secdo é baseada na referéncia [12], que fornece uma visdo geral sobre os
modelos de previsdo de energia e6lica com horizontes que variam desde alguns minutos
até alguns dias a frente, para um Unico aerogerador e também para parques inteiros. Uma
série de pesquisas em diversos artigos e periodicos foi realizada com o intuito de definir os
modelos de previsdo de ventos e geracdo eolica a serem utilizados no presente trabalho.
Um resumo da literatura pesquisada sera apresentado a seguir. Todos os modelos citados e
propostos nesta dissertacdo terdo como foco as previsdes de curto prazo, com passos de
previsdo variando entre uma e vinte e quatro horas. Uma breve introducdo para previsoes
de curto prazo também pode ser encontrada em [13].

Um dos maiores problemas da energia eolica, em comparacdo a eletricidade
convencional, é sua dependéncia da volatilidade do vento. Esta dependéncia acontece em
todas as escalas de tempo, mas duas delas sdo mais relevantes: uma € importante para o
controle da turbina propriamente dita (de milissegundos a segundos), e a outra € importante
para a integracdo da energia edlica na rede elétrica, sendo determinada pelas constantes de
tempo da rede (de minutos a semanas).

Em geral, os modelos podem ou néo envolver um modelo de previsdo numérica do
tempo (Numerical Weather Prediction — NWP). Normalmente, os modelos que utilizam
NWP fornecem melhores previsdes de séries temporais para horizontes maiores do que
cerca de algumas horas (a partir de 3 — 6 horas), o que os fazem ser utilizados pelas
concessionarias.

Existem dois tipos de modelagem diferentes em relacdo a previséo de curto prazo: a
modelagem fisica e a estatistica. Em alguns modelos, uma combina¢do das duas



20

modelagens é utilizada de modo a realizar previsdes mais confidveis. Em suma, com 0s
modelos fisicos se tenta utilizar varidveis fisicas o maior tempo possivel para chegar a
melhor estimativa da velocidade do vento local antes de utilizar um modelo estatistico
(Model Output Statistics — MOS) para reduzir o erro remanescente. A modelagem
estatistica tenta encontrar fortes relagdes entre os valores historicos da producéo de energia
elétrica (e de outros parametros meteoroldgicos) e as informagdes medidas em tempo real,
recorrendo normalmente a técnicas recursivas.

Na implementacdo dos modelos estatisticos utilizam-se normalmente modelos do
tipo “caixa preta”, por exemplo, Redes Neurais Artificiais (RNA). Alguns deles podem ser
expressos analiticamente, outros ndo (& o caso das redes neurais).

Comparacdes utilizando modelos autoregressivos entre a previsdo direta da energia
edlica em relacdo as previsdes da velocidade do vento, com subsequente conversdo para
energia eolica [14,15], demonstraram que o uso das previsdes da velocidade do vento
como variavel explicativa é importante para horizontes de previsdo de até 8-12 horas. Para
horizontes maiores, o uso de previsdes de velocidade como variavel explicativa nao
oferece nenhuma vantagem em relacdo a previsdo direta da energia edlica.

Em [16], mostra-se que ao utilizar modelos NWP é melhor aplicar um tratamento
estatistico sobre as velocidades de ventos previstas do que sobre a poténcia final de saida.

Em [17], verificou-se melhorias na raiz do erro quadritico médio (Root Mean
Squared Error — RMSE) para passos de previsdo entre 1 e 10 minutos. As melhorias
situam-se em torno de 10% sobre o Modelo da Persisténcia. Esta melhoria foi conseguida
com uma topologia bastante simples, embora com estruturas mais complexas ndo houve
melhoria significativa dos resultados. Uma limitacdo foi encontrada em eventos extremos
gue néo estavam contidos no conjunto de dados usados para treinar a rede neural.

As diferencas entre as velocidades de ventos e as médias moveis foram utilizadas
como dados de entrada em [18]. Para a mesma série temporal foram verificadas melhorias
de até 13% em relacdo ao Modelo da Persisténcia, enquanto que a abordagem padrédo de
redes neurais obteve 9,5% de melhoria.

Em [19], foram utilizadas redes neurais e 0 modelo ARIMA (Autoregressive
Integrated Moving Average — ARIMA) para a previsdo das séries de velocidades dos
ventos no Reino Unido e Grécia no horizonte de uma hora. Nao foram obtidas melhorias

significativas em relacdo ao Modelo da Persisténcia para ambas as localidades ao utilizar
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as médias horarias das velocidades. Porém, ao utilizar as velocidades médias de intervalos
de dez minutos, a melhoria foi de 10 — 20%.

Em [20], demonstrou-se que ha melhorias ao aplicar a Transformada Wavelet
(Wavelet Transform) as velocidades médias horéarias antes de fornecé-las como entradas as
redes neurais. Os horizontes de previsdo utilizados foram iguais a 4 e 24 horas.

O artigo [21] sugere um protocolo padronizado para a avaliacdo dos sistemas de
previsdo de geracdo edlica de curto prazo. Também descreve alguns modelos de referéncia
para a previsao, e argumenta-se que o uso do Modelo da Persisténcia como referéncia leva
a conclusoes ligeiramente equivocadas e mais otimistas sobre o desempenho dos modelos
avaliados.

Em [22], um modelo fuzzy € sugerido para realizar a previsdo da velocidade do
vento e da energia elétrica produzida em um parque e6lico. O modelo foi treinado usando
um esquema de aprendizado baseado em algoritmos genéticos. O conjunto de treinamento
incluia a velocidade do vento e dados de direcdo, medidos em locais vizinhos com até 30
km de distancia dos grupos de aerogeradores. Foram apresentados os resultados das
previsdes entre 30 minutos e 4 horas. O modelo sugerido apresentou uma melhora média
da ordem de 15 — 20% em comparacdo ao Modelo da Persisténcia.

Em [23], foi proposto um modelo hibrido que utiliza a Transformada Wavelet,
Particle Swarm Optimization (PSO) e Ldgica Fuzzy, para realizar a previsdo da geracao
com horizontes de até 24 horas. As previsGes foram realizadas para o ano de 2009 e o0s
resultados foram comparados com outros 7 modelos (ARIMA, Redes Neurais, Redes
Neurais + Logica Fuzzy, Persisténcia, etc.). O modelo proposto foi 0 que obteve o melhor
desempenho dentre todos os modelos comparados.
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CAPITULO 3
3. INTELIGENCIA ARTIFICIAL E WAVELETS

Este capitulo apresenta os conceitos basicos necessarios para o entendimento dos
modelos de previsdo que serdo descritos no Capitulo 5. As duas primeiras se¢Bes do
presente capitulo apresentam, as Redes Neurais Artificiais (RNA) e a Logica Fuzzy,
respectivamente. Na terceira secdo, sdo apresentados os conceitos da analise de sinais com
base nas wavelets. A quarta e ultima secdo fala do software utilizado para o
desenvolvimento dos modelos e apresenta 0s pardmetros necessarios para realizar os

ajustes dos mesmos.

3.1 Redes Neurais Artificiais

Uma Rede Neural Artificial é uma ferramenta computacional cuja estrutura é
projetada com o objetivo de simular a maneira pela qual o cérebro humano funciona. Pelo
fato de possuir analogia neurobioldgica como fonte de inspiragdo, uma rede neural é
tratada como uma “Ferramenta de Inteligéncia Artificial”.

As RNA se constituem em uma técnica de inteligéncia artificial cuja utilizacédo
pratica esta se tornando cada vez mais presente no nosso dia-a-dia. Aplicacdes realizadas
com RNA tém apresentado desempenho satisfatorio em diversas areas de pesquisas, tais
como: classificacdo, reconhecimento de padrdes, aproximacéo de funcbes, processamento
de séries temporais, otimizacao, etc [6].

Atualmente, as redes neurais apresentam-se como uma abordagem alternativa aos
métodos estatisticos de previsdo de séries temporais. O emprego desta técnica € atrativo em
uma grande variedade de problemas que envolvem relacionamentos complexos entre as
variaveis de entrada e de saida, uma vez que para utilizacdo ndo se faz necessario o
conhecimento prévio das relacbes matematicas entre estas variaveis [6].

As RNA sdo sistemas paralelos distribuidos compostos por unidades de
processamento, chamados de neurdnios artificiais, que calculam determinadas funcbes
matematicas (normalmente ndo lineares). Esta forma de computacdo nédo-algoritmica é
caracterizada por sistemas que, relembram a estrutura do cérebro humano. O grande apelo
destes modelos estd em sua capacidade de “aprender”, generalizar ou extrair regras

automaticamente de conjuntos de dados complexos [24].
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3.1.1 O Neurdnio Artificial

Um neurdnio artificial € uma unidade de processamento da informacdo que é
fundamental para a operagéo de uma rede neural. O modelo de um neurdnio é apresentado
na Figura 3.1, nela se identificam trés partes basicas: um conjunto de sinapses (ou elos de
conexdes); um somador de sinais; e uma funcéo de ativacéo.

Cada sinapse é caracterizada por um peso, que pode possuir valores positivos ou
negativos. O sinal de entrada de uma determinada sinapse € multiplicado pelo peso
sinaptico. O somador realiza a soma dos sinais das entradas, ponderados pelas respectivas
sinapses. A funcdo de ativacdo serve para restringir a amplitude do sinal de saida do
neurdnio artificial. Tipicamente, a amplitude do sinal de saida esta restrita ao intervalo
[0,1].

Funcéo de
ativacéo

Saida

o) ——> "

Sinais de <
entrada

Pesos
Sinapticos

Figura 3.1 — Modelo de um neur6nio artificial.Fonte:[6].

O modelo do neurdnio artificial inclui também uma entrada fixa. O peso sinaptico
desta entrada fixa & chamado de bias. O bias tem o efeito de aumentar ou diminuir o valor
do sinal de entrada da fungéo de ativagéo.

Em termos matematicos, um neurdnio artificial k pode ser descrito através das
seguintes equacoes:

Vi :Zwijj T W (3.1)

-1

Yi = 0V ). (3.2)
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3.1.2 Func0es de Ativacao

Conforme visto na segédo anterior, a fungdo de ativagdo (fungéo de transferéncia)
define o sinal de saida do neurdnio k em funcéo do potencial de ativagdo v, . Dentre as
diversas fungdes de ativacdo conhecidas, séo apresentadas nesta secdo duas funcdes que
serdo utilizadas para o desenvolvimento dos modelos propostos no Capitulo 5 desta
dissertacéo.

A primeira funcdo a ser descrita € denominada Sigmoide Logistica. Este tipo de
funcdo de transferéncia € o mais utilizado na construcdo de redes neurais. A Figura3.2 €0

grafico deste tipo de funcdo. O grafico se assemelha a uma curva em “S”.

Sigmaide Logistica
T T T

Saida (yk)

Potencial de ativagdo (v, )

Figura 3.2 — Gréfico da funcdo Sigmdide Logistica.

Os valores de saida desta funcdo pertencem ao intervalo [0,1]. Um outro aspecto
interessante é que a funcédo é diferencidvel em todos os pontos do seu dominio. Ela tem a

seguinte expressao:

1

(v, )= —1+ (v, ) .

(3.3)

Em alguns casos, € desejavel que o sinal de saida da funcéo de ativacdo do neurénio

artificial seja definida no intervalo [-1,1]. Para permitir que a fungdo de ativagdo assuma
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valores negativos, utiliza-se a fungdo sigmoidal Tangente Hiperbdlica. Na Figura 3.3
apresenta-se um gréfico deste tipo de funcéo.

Tangente Hiperbilica

Saida yk)

Fotencial de ativagéo (v, ]

Figura 3.3 — Grafico da funcdo Tangente Hiperbdlica.

Os valores de saida desta funcdo pertencem ao intervalo [-1,1] e ela também é

diferenciavel em todos os pontos do seu dominio, pois sua expressao € a seguinte:

-z (3.4)
o) = 1+exp(-2v,) 1

3.1.3 Arquitetura da Rede Neural Artificial

A estrutura (arquitetura) de uma rede neural estd intimamente relacionada ao
algoritmo de aprendizagem utilizado para treina-la. A arquitetura das redes neurais
utilizadas para o desenvolvimento dos modelos de previsdo do presente trabalho € do tipo
Multilayer Feedforward, ou seja, redes progressivas de multiplas camadas.

Em uma rede progressiva (feedforward), o sentido das conexdes é sempre voltado
para a camada de saida, ou seja, ndo ha elos de realimentagdo de sinais entre as camadas.
As redes progressivas de maltiplas camadas possuem, tipicamente, uma ou mais camadas
intermediarias (ocultas) entre as camadas de entrada e saida. A adicdo de camadas
intermediarias permite que a rede possa extrair dos sinais de entrada estatisticas de ordem

superior.
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O esquema de uma rede neural progressiva de trés camadas € apresentada na Figura
3.4. A rede possui quatro n6s na camada de entrada, seis neurdnios na camada oculta e um
neurdnio na camada de saida. Esta rede é dita completamente conectada, pois cada n6 da
rede é conectado a todos os outros nds das camadas adjacentes. Esta € a arquitetura das

redes neurais utilizadas nos modelos de previsdo propostos no Capitulo 5.

Camada Camada Camada
de entrada oculta de saida

Figura 3.4 — Esquema de uma rede progressiva de trés camadas.

Os no6s da camada de entrada, também chamados de nés fonte, fornecem aos
neurdnios da camada oculta os sinais aplicados a entrada da rede neural. Os sinais das
saidas dos neurdnios da camada oculta sdo fornecidos as entradas do neurénio da camada
de saida. O sinal de saida do neurénio desta ultima camada é a resposta global da rede ao

padrdo de ativacao provido pelos n6s da camada de entrada.

3.1.4 Processo de Aprendizagem

As redes neurais possuem a capacidade de adquirir conhecimento mediante um
processo de aprendizagem. O conhecimento adquirido € armazenado nos parametros livres
da rede, que sdo 0s pesos sindpticos, os bias e os parametros que definem as fungdes de
transferéncia dos neurénios artificiais.

O procedimento utilizado para o processo de aprendizagem é chamado Algoritmo
de Aprendizagem. A funcdo deste algoritmo € modificar de forma adaptativa os pardmetros
livres da rede para atingir um objetivo desejado. Em outras palavras, o processo de

aprendizagem de uma rede Multilayer Feedforward é um problema de otimizacdo nao-
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linear irrestrita cujo objetivo & minimizar a soma quadratica das diferencas entre as saidas

desejadas e a resposta da rede.

3.1.5 Algoritmo Backpropagation

O algoritmo backpropagation ¢ o algoritmo de aprendizagem mais utilizado para o
treinamento das redes progressivas de multiplas camadas. Sua popularidade ¢ atribuida a
relativa simplicidade de implementacédo, e também ao fato de ser um poderoso dispositivo
para armazenar o contetdo da informacdo através do ajuste dos pesos sinapticos da rede.
Quando o conjunto de dados utilizado para treinar uma rede Multilayer Feedforward é
grande o suficiente para ser representativo, o algoritmo backpropagation fornece a rede a
capacidade de generalizacdo.

O algoritmo backpropagation é composto por duas fases de treinamento. A
primeira delas ¢é a fase forward, na qual um padrdo de dados é apresentado a rede e esta
processa 0s dados, produzindo os sinais de saida (resposta). A segunda delas é a fase
backward, que utiliza o erro obtido entre a resposta da fase forward e o resultado desejado
(conhecido), para determinar os ajustes a serem feitos nos pesos das conexdes sinapticas
dos neur6nios da rede. O algoritmo de retropropagacao é apresentado a seguir.

Seja o sinal de erro na saida do neurénio j, na iteracdo k, definido pela Equacao

(3.5), em que, d;(k) € a saida desejada e Y;(k)é a resposta apresentada na saida do

neurdnio.
e, (k)=d; (K)-y, (k). (35)

A fungdo custo ¢ € a energia total do erro, obtida somando o quadrado dos erros de

todos os neur6nios da camada de saida. A fungdo custo é dada pela seguinte equacao:

o(k) =2 Y el (K). (36

em que, n € o numero de neurdnios da camada de saida da rede e e, € o erro do neurdnio i,

na iteracao k.
O célculo dos deltas para a correcdo dos pesos depende da posicdo da camada.

Considere o neurbnio da camada de saida s, sendo estimulado por um conjunto de
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ativagdes produzido por uma camada com m neurbnios a sua esquerda. O potencial de

ativacdo do neur6nio j é, portanto:

v, 00 = > w, (0, (6). 37)

A funcdo de ativacdo do neurdnio da camada de saida define a saida do neurénio j

na iteracao k de acordo com a seguinte equacéo:
yi(K)=;(v;(K)). (3.8)

O algoritmo backpropagation aplica uma correcdo Aw; ao peso sinapticow;, que

i
€ proporcional a derivada parcial oe(k)/ow; (k). De acordo com a regra da cadeia (do

calculo diferencial), este gradiente é expresso como:

de(k) _ oe(k) oe;(k) dy; (k) ov;(k)
ow, (k) e, (k) oy, (K) av; (k) aw, (k) (3.9)

Ap6s manipulacgdes algébricas, pode-se expressar o gradiente como:

de(K)
ow;, (k)

=—€;(K)o;"(v; (k)Y (k). (3.10)

A correcdo Aw;, (k) aplicada a w; (k) € definida pela regra:

de(K)

AWJ'I (k) = 5W,-| (k) ! (3.11)

em que, n € a taxa de aprendizagem do algoritmo backpropagation. O uso do sinal
negativo na Equacdo (3.11) indica a descida do gradiente no espaco de pesos, ou seja,
busca uma direcdo para a mudanga de pesos que reduz o valor de g(k).

Finalmente, a atualizacdo dos pesos da rede é realizada de acordo com a seguinte

equacéo:



29

oe(k)
ow, (k) : (3.12)

wy (k1) = w, () 7

em que, w; (k+1) € o valor atualizado do peso da conexao j do neurdnio |.

3.1.6 Algoritmo Resilient Propagation

As redes multicamadas normalmente utilizam fungcbes de ativacdo do tipo
sigmoidal. Um problema que pode surgir durante o treinamento de uma rede Multilayer
feedforward com funcBes sigmoides é que o gradiente pode ter valor muito pequeno e,
consequentemente, as alteracdes nos parametros também serdo muito pequenas, mesmo
gue estes parametros estejam longe de seus valores étimos.

O objetivo do algoritmo de treinamento Resilient Propagation, proposto em [25], €
eliminar os efeitos indesejados causados pelos valores das derivadas parciais. Neste
algoritmo, apenas o sinal da derivada € utilizado para determinar a dire¢do da atualizacdo
dos parametros, a magnitude da derivada nao tem efeito sobre a atualizacéo.

No processo de otimizacdo do algoritmo Resilient Propagation, cada parametro é

alterado individualmente atraves de um valor de atualizagdo &;,. Este valor ¢ definido

conforme a seguinte equacao:

pek =1 ce(k) _ o
ow, (k1) ow, ()
oe(k—1) oe(k) . .
"o, k=D awy () (3.13)
L oek—1) oK)
ow, (k=) ow, ()

a8, (k-1),

5, () =10 5, (k-1),

6jI (k _1)’

emqgue, O<a <l<a'.

A regra de adaptacdo do valor de atualizacdo é a seguinte: sempre que a derivada
parcial em relagdo ao pesso correspondente w; muda de sinal, indicando que a dltima
atualizacdo foi muito grande e o algortimo “pulou” um minimo local, o valor de

atualizagdo &, € reduzido por um fator o”. Se a derivada mantém o sinal, o valor de
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atualizacdo é ligeiramente aumentado por um fator o com o objetivo de acelerar o
processo de convergéncia.

Ap0s ser realizada a adaptacdo de o ;, a atualizacdo dos pesos é realizada de acordo

il
com uma regra bastante simples: se a derivada é positiva (indicando um aumento do erro),
0 respectivo peso é reduzido pelo seu valor de atualizacdo, caso contrario, 0 peso sera

aumentado pelo seu valor de atualizagéo (Equagéo (3.14)).

5, (k), se—22K)
: ow;, (k)
B oe(k) .
Aw; (k) =1+6; (k), se o, () <0 (3.14)
0, se ce(k) =0
ow;, (k)

A atualizacdo de cada parametro da rede é realizada de acordo com a seguinte
equacéo:

W, (K +2) = w, (k) +Aw, (k). (3.15)

Entretanto, ha uma excecdo: se a derivada parcial muda de sinal, ou seja, 0 passo anterior
foi muito grande e o minimo foi “perdido”, a atualiza¢do anterior do peso correspondente €

revertida. A seguinte equacdo ilustra este procedimento:

de(k -1 ae(k) _,
ow, (k —1) ow, (k) (3.16)

Aw; (k) =—Aw; (k -1), se
Com esta reversao da atualizacdo, pode ser que a derivada mude de sinal novamente na
proxima iteracdo. Para evitar uma “dupla punicao do valor de atualizagdo”, neste caso, ndo

deve ser realizada a adaptagdo de &, nesta ultima iteragdo. Na pratica, isto pode ser feito

atribuindo-se, na regra adaptativa de 6, 0 valor zero a derivada do passo anterior.

it
Os valores de atualizacdo e os pesos sdo modificados apos a apresentacdo de todo o

conjunto de padrdes a rede, ou seja, apds cada “época” de treinamento.
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3.1.7 Algoritmo Levenberg-Marquardt

O algoritmo Levenberg-Marquardt é uma técnica iterativa de otimizacdo utilizada
para minimizar funcfes expressas como somas quadraticas de fungdes ndo-lineares. Este
algoritmo pode ser visto como uma combinacdo do método do Gradiente Descendente e do
método de Gauss-Newton. Quando a solucdo corrente se encontra distante da solucédo
6tima, o algoritmo Levenberg-Marquardt se comporta como o método do Gradiente
Descendente: lento, mas com convergéncia garantida. Quando a solugdo corrente esta
préxima a Otima, o algoritmo Levenberg-Marquardt se comporta como o método de
Gauss-Newton.

Quando a forma da funcdo objetivo é uma soma quadratica (como no caso do
treinamento de redes progressivas de multiplas camadas), entdo, a matriz Hessiana pode

ser aproximada por

H=J"J, (3.17)

e o gradiente pode ser calculado como

o3, (3.18)

em que, J é a matriz Jacobiana que contém as derivadas de primeira ordem dos erros da
rede em relagdo aos pardmetros, e r é o vetor dos residuos da rede (erros). A matriz
Jacobiana pode ser calculada através de uma técnica padréo de retropropagacéo, que é bem
mais simples do que calcular a matriz Hessiana [26].

O algoritmo Levenberg-Marquardt utiliza a aproximacdo da matriz Hessiana para
realizar a atualizacdo dos parametros da rede. A atualizacéo é realizada de maneira similar

ao método de Gauss-Newton, de acordo com a seguinte equacao:

W, =w, —[3T 3+ [Ty (3.19)

Quando o escalar u é igual a zero, trata-se do método de Gauss-Newton. Quando
u € um valor grande, ele se torna o0 método do Gradiente Descendente com um passo

pequeno. O método de Newton é mais rapido e preciso perto da solugdo 6tima, portanto, o
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objetivo do algoritmo Levenberg-Marquardt é se comportar como o método de Newton o

mais rapido possivel. Assim, p é reduzido a cada iteracdo bem sucedida (diminuicdo da

funcdo objetivo) e s6 é aumentado se o valor da funcdo objetivo para a proxima iteracéo
aumentar.

O grande incoveniente do algoritmo Levenberg-Marquardt é que ele requer o
armazenamento de algumas matrizes que podem ser muito grandes para determinados
problemas. O tamanho da matriz Jacobiana € Q x n, sendo Q o numero de conjuntos de
treinamento e n 0 nimero de parametros da rede. Porém, essa matriz ndo tem que ser
calculada e armazenada como um todo. Por exemplo, pode-se dividir a matriz Jacobiana
em duas submatrizes e posteriormente calcular a matriz Hessiana aproximada da seguinte

forma:

173
H=J"J =[Jf Jz]Ll}=Jle+JzTJz- (3.20)
2

Observe que ndo é necessario calcular a matriz Jacobiana completa de uma s6 vez. Pode-se

calcular a aproximacéo da matriz Hessiana através de uma série de somas de submatrizes.

3.2 Lodgica Fuzzy

A Logica Fuzzy, ou logica nebulosa, é baseada na teoria dos Conjuntos Fuzzy. Esta
€ uma generalizacdo da teoria dos Conjuntos Tradicionais para resolver os paradoxos
gerados a partir da classificagdo “verdadeiro ou falso” da Logica Cléassica.
Tradicionalmente, uma proposi¢do logica tem dois extremos: ou ‘“completamente
verdadeiro” ou “completamente falso”. Entretanto, na Logica Fuzzy, uma premissa varia
em grau de verdade de 0 a 1, o que leva a ser parcialmente verdadeira ou parcialmente
falsa.

A forca da Logica Fuzzy deriva da sua habilidade em inferir conclusdes e gerar
respostas baseadas em informagGes vagas, ambiguas e qualitativamente incompletas e
imprecisas. Neste aspecto, os sistemas nebulosos tém habilidade de raciocinar de forma
semelhante a dos humanos. Seu comportamento é representado de maneira muito simples e
natural, levando a construgéo de sistemas compreensiveis e de facil manutencéo.

Com a incorporagdo do conceito de “grau de verdade”, a teoria dos Conjuntos

Fuzzy estende a teoria dos Conjuntos Tradicionais. Os grupos s&o rotulados
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qualitativamente (usando termos linguisticos, tais como: quente, frio, grande, pequeno,
etc.) e os elementos deste conjuntos sdo caracterizados variando-se o grau de pertinéncia
(valor que indica o grau em que um elemento pertence a um conjunto). Por exemplo, um
homem de 2,10 metros e um homem de 2,00 metros sdo membros do conjunto “alto”,
embora o homem de 2,10 metros tenha um grau de pertinéncia maior neste conjunto.
A composicgdo bésica de um sistema fuzzy e formada pelos componentes descritos a
sequir:
I. Fuzzificador — Aplica a funcdo de pertinéncia a um valor de entrada (valor real)
e a saida serd uma valor entre 0 e 1. Cada funcdo de pertinéncia para uma dada
variavel de entrada é conhecida como uma variavel linglistica;
Il. Regras — Um conjunto de regras do tipo SE-ENTAO que sdo criadas pelos
especialistas ou extraidas de dados numeéricos;

I11. Inferéncia — E um sistema que mapeia conjuntos fuzzy de entradas em conjuntos
fuzzy de saida, determinando como as regras sdo ativadas e combinadas. Os
modelos de inferéncia mais conhecidos sdo: Modelo de Mamdani e Modelo de
Takagi-Sugeno [27];

IV. Deffuzificador — Quando se utiliza um sistema fuzzy o objetivo é encontrar um
valor de saida real para o problema. Nesta etapa, apds aplicagcdo do sistema de

inferéncia, transforma-se o valor de saida nebuloso em uma saida real.

3.2.1 Sistema de inferéncia Fuzzy

A estrutura béasica de um sistema de inferéncia fuzzy (Fuzzy Inference System — FIS)
consiste em trés componentes conceituais: a base de regras, a qual contém a selecdo de
regras fuzzy, a base de dados, a qual define a fungdo membro utilizada nas regras, e o
mecanismo de raciocinio, o qual realiza o procedimento de inferéncia sobre as regras e

fornece condigdes para derivar uma saida razoavel ou uma concluséo [28].

e Sistema de inferéncia Mandani
O modelo de inferéncia Mamdani foi um dos primeiros sistemas constituidos
utilizando a teoria de conjuntos fuzzy, sendo proposto em 1975 por Ebrahim Mandani [29].
A regra de semantica tradicionalmente utilizada para o processamento de inferéncias com o

modelo de Mamdani é chamada de inferéncia Max-Min, utilizando as operacGes de unido e
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de intersecdo entre conjuntos da mesma forma de Zadeh [29]. As regras de producdo em
um modelo de Mamdani possuem relagdes fuzzy tanto em seus antecedentes como em seus
conseqiientes. O modelo Mandani é descrito a seguir.

Seja um sistema fuzzy composto de n regras, com uma das regras do tipo Se x, = A
e X,=A, e..e X, =A, entdo y=B;, em que, X, sdo as entradas do sistema, A,... A; sdo
variaveis linguisticas definidas pelas funcdes de pertinéncia de entrada, y é a saida e B,

sdo as variaveis linglisticas definidas pelas fun¢des de pertinéncia de saida. O processo de
inferéncia pode ser dividido em cinco etapas:

12 etapa: Fuzzificacdo das Entradas

Nesta etapa, toma-se o valor de cada varidvel de entrada e determina-se o seu grau
de pertinéncia para cada uma das regras, ou seja:

b (), 1, (%), (), k=L..,n. (3.21)

22 etapa: Aplicacdo do Operador fuzzy

Com as entradas fuzzificadas, sabe-se com qual grau cada parte do antecedente
satisfaz cada regra. Precisa-se gerar o coeficiente de disparo de cada regra D%, para isso,
aplica-se o operador fuzzy presente no antecedente, por exemplo, o operador “e”.

Para aplicar o operador, o sistema de Mamdani utiliza a funcdo “min”, conforme

equacao abaixo:

D® =min[u, (x,),1f, (%), 1k (x)]. (3.22)

3?2 etapa: Aplicacdo do método de implicacdo

O método de implicacdo é definido como a modelagem do consequente com base
no coeficiente de disparo. A implicacdo se da em todas as regras. O modelo de Mamdani

utiliza a funcéo “min”, que trunca a saida do conjunto fuzzy.

S(k) — min[Dk,MBi (y)] . (3.23)
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42 etapa: Agregacdo das Saidas

Ao realizar o processo de implicacdo de cada regra, gera-se uma funcgdo de
pertinéncia truncada para a saida da regra. Como o sistema possui n regras, devem-se ter n
funcBes de pertinéncias truncadas que irdo gerar a funcdo de saida. Para isso, agregam-se
todos os gréficos de cada uma das fungdes. No modelo Mamdani utiliza-se a funcéo

GGmaX79.

Mg =max]S®]. (3.24)

52 etapa: Deffuzificacdo

Nesta etapa é realizada a conversdo fuzzy — escalar, ou seja, transformam-se
informacdes qualitativas em uma informacédo quantitativa. Os métodos mais utilizados para
realizar esta conversdo sdo os métodos do centro de massa e 0 metodo da média dos

MAaximos.

¢ Sistema de inferéncia Takagi-Sugeno

Um novo modelo de inferéncia baseado na teoria dos conjuntos fuzzy foi proposto
na década de 80. Denominado de modelo Sugeno, modelo de inferéncia fuzzy paramétrico
ou simplesmente modelo TSK. As pesquisas mostraram que este modelo conseguia
respostas satisfatdrias para problemas que fossem representados razoavelmente apenas
pelas suas relagdes entrada e saida.

Diferente do modelo de Mamdani, os modelos de inferéncia do tipo TSK néo
utilizam funcdes de pertinéncia no consequente. As relacbes de saida sdo compostas de
equacOes paramétricas que relacionam as entradas e saida do processo. O modelo TSK é
descrito a seguir.

Seja um sistema fuzzy composto de n regras, com uma das regras do tipo Se x; = A
e X,=A, e..e X;=A; entdo y= (X, X,,...,X;). O processo de inferéncia do modelo

TSK é similar ao modelo Mamdani com algumas alteracBes. Na segunda etapa do
processo, quando se calcula o valor do grau de disparo, a funcdo do operador normalmente
ndo e a funcdo “min”. Além de ndo existir etapa de defuzzificagéo.

A saida do modelo TSK é calculada como a média ponderada das saidas de cada
uma das regras que compdem o sistema, onde 0s pesos sdo os coeficientes de disparo. Seja

o coeficiente de disparo de cada regra dado por:
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D =T[uj, (%), 1y, (%) -y ()], onde  k=L..n. (3.25)

A saida do sistema TSK sera dada por:

Zn:D(k’ O(X, Xgrer X))
7=+ ' (3.26)

n
D®

A eficiéncia do modelo de TSK esta diretamente ligada a escolha dos parametros da
funcdo paramétrica de saida. Normalmente, os indices desta funcdo sdo estimados
seguindo algum indice de desempenho definido pelo usuario. A minimizacdo do erro
quadrético entre a saida do modelo de Sugeno e os dados de saida disponiveis é

normalmente utilizada como medida de desempenho.

3.2.2 Sistema Adaptativo de Inferéncia Neuro-Fuzzy

O Sistema Adaptativo de Inferéncia Neuro-Fuzzy (Adaptive Neuro Fuzzy Inference
System — ANFIS) é um sistema hibrido que utiliza de forma conjunta as vantagens das
redes neurais artificiais (RNA) e da légica fuzzy. Das redes neurais, utiliza-se a capacidade
de aprendizagem, enquanto que da légica fuzzy se utiliza a capacidade de interpretacao.

O modelo ANFIS implementa uma base de regras fuzzy do tipo Takagi-Sugeno, ou
seja, se um conjunto de condi¢cdes antecedentes é satisfeito, entdo um conjunto de
conseqientes é inferido.

Como o modelo ANFIS utiliza somente fungdes derivaveis, torna-se vidvel a
utilizacdo de um algoritmo de aprendizado padréo da teoria de redes neurais artificiais.
Para isso, uma combinacdo do algoritmo backpropagation e do método de estimacdo de
minimos quadrados é realizada. O algoritmo backpropagation € utilizado para o
aprendizado dos antecedentes das regras fuzzy, isto é, as funcbes de pertinéncia, e a
estimacdo de minimos quadrados é utilizada para determinar os coeficientes das
combinagfes nos consequentes das regras fuzzy. A estrutura de um modelo ANFIS com

duas entradas (x e y) e uma saida ( ) é apresentada na Figura 3.5.
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Figura 3.5 — Estrutura do modelo ANFIS. Fonte: [28].

No passo forward, os parametros das funcGes de pertinéncia sdo inicializados, e um
vetor entradas-saida € apresentado. Calculam-se as saidas dos nos para cada camada do
sistema, entdo os parametros do consequente sdo calculados a partir do método de minimos
quadrados. Depois de identificar os parametros do consequente, o erro é calculado como a
diferenca entre a saida do sistema e a saida desejada apresentada nos pares de treinamento.

No passo backward, os sinais do erro sdo propagados desde a saida na direcdo das
entradas. O vetor gradiente é acumulado para cada dado de treinamento. No final do passo
backward para todos os dados de treinamento, os parametros na camada 1 (0s parametros
das funcbes de pertinéncia) sdo atualizados pelo método do gradiente descendente. O
processo de aprendizado termina quando € atingida a tolerancia do erro médio quadratico
ou 0 numero maximo de épocas definido pelo usuario.

Com base na Figura 3.5, os passos que levam o ANFIS a uma adaptagéo, de acordo
com [30], sdo apresentados a seguir.

Na primeira camada, cada unidade (A; A, B; e B,) armazena 0s pardmetros para

definir uma funcédo de pertinéncia que representa um termo linguistico como sendo:

O =k, (2), (3.27)

em que,

z—éaentrada (x ouy)donoi;

C; — é a classificacdo linguistica (A; ou B; ) associada com a fungédo do no;
ke, (z) — € afuncdo de pertinéncia;

Ol — é asaida do nd i da camada 1.
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Na segunda camada, cada n6 computa o peso w; associado as funcdes de ativacgéo,

ou seja:

W, =pp (X)-pg (Y), 1=12. (3.28)

A saida de cada no6 da segunda camada representa o nivel de ativagdo de uma regra.

Cada nd na terceira camada calcula o grau de desempenho relativo das i-ésimas

regras para o somatério dos niveis de ativacao dos nos, isto €:

W, .
Wi =——, | 21,2 . (329)

Por conveniéncia, a saida da terceira camada pode ser chamada nivel de ativacao
normalizado. Na quarta camada é calculado o produto da saida do n6 i da terceira camada

pela fungéo f,, i=1,2; ou seja,

=

Of =W, - f, =W, (p;x+qy+r), (3.30)

emque: {p;, q; , r;} € 0 conjunto de pardmetros associado ao no i.

Finalmente, a quinta camada € composta por um Unico nd que computa a saida do

sistema como sendo o somatério de todos os sinais de entrada deste no, isto é,

of=f=Yw. f=L "L (3.31)

3.3 Analise Wavelet

Uma wavelet é uma forma de onda com duracdo efetivamente limitada e possui
valor médio nulo. Diferentemente das sendides, que formam a base da anéalise de Fourier e
sd0 suaves e simétricas, as wavelets tendem a ser irregulares e assimétricas.

A anélise de Fourier consiste em representar determinado sinal por uma soma de

sendides em diferentes frequéncias. De maneira similar, a analise wavelet decompde um
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determinado sinal como uma soma de wavelets deslocadas e em diferentes escalas da
versdo original da wavelet (wavelet mother). Na Figura 3.6 sdo apresentadas uma sendide e

uma wavelet do tipo “daubechies 10”.

AN

Figura 3.6 — Comparacao entre uma sendide (esquerda) e uma wavelet (direita).

As wavelets sdo funcGes matematicas que separam dados em suas diferentes
componentes freqlenciais, e extraem cada componente com uma resolucdo adequada a sua
escala. Elas tém vantagens em relacdo a analise de Fourier, pois esta Gltima analisa o sinal
como um todo, acarretando numa representacdo mais pobre para sinais que contém

descontinuidades e variacdes bruscas.

3.3.1 Transformada Wavelet

A Transformada Wavelet (TW) é uma transformada linear que pode ser utilizada na
analise de sinais ndo estacionarios para extrair informacdes das variagdes em frequéncia
desses sinais e para detectar suas estruturas temporalmente e/ou espacialmente localizadas
[6]. Para a TW, os dados séo representados via superposi¢do de wavelets com diferentes
posicOes e escalas, cujos coeficientes essencialmente quantificam a forca da contribuicéo
das wavelets naquelas posicOes e escalas.

A Figura 3.7 é de fungdes de base wavelet da familia daubechies, os ladrilhos e o
plano tempo x frequéncia de cobertura. Para frequéncias mais altas, tem-se uma resolugao
alta no tempo e baixa na frequéncia. J& para frequéncias mais baixas, tem-se uma resolucéo
baixa no tempo e alta na frequéncia. Isto se deve ao fato de que sinais com componentes
em alta frequéncia possuem rapidas alteracdes no dominio temporal, e sinais com

componentes de baixa frequéncia apresentam alteracdes mais lentas no dominio temporal.
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Frequéncia

Tempo

Figura 3.7 — Esquema de um plano tempo x frequéncia. Fonte: [6].

3.3.2 Transformada Wavelet Continua

A Transformada Wavelet Continua (TWC) € calculada realizando continuas
translacdes e mudancas de escala de uma funcdo, Wavelet Mother (WM), sobre um sinal,
calculando uma correlacéo entre eles. Para calcular a Transformada Wavelet Continua o
procedimento é o seguinte:

1) Definira WM a ser utilizada e compara-Ila a parte inicial do sinal em analise;

2) Calcular a correlacéo (C) entre a parte inicial do sinal e a WM;

:

C=0.0102

Figura 3.8 — Passo 2 da Transformada Wavelet Continua.

3) Transladar a wavelet para direita e repetir 0s passos 1 a 3 até que tenha varrido

~

Figura 3.9 — Passo 3 da Transformada Wavelet Continua.

todo o sinal;

4

4) Aumentar a escala da wavelet e repetir os passos de 1 a 3;
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>

C =0.2247
Figura 3.10 — Passo 4 da Transformada Wavelet Continua.

5) Repetir os passos de 1 a 4 até que todas as escalas definidas sejam varridas.

Ao realizar o processamento computacional de sinais utilizando dados do mundo
real, deve-se ter em mente que os calculos serdo executados a partir de um sinal discreto,
ou seja, sobre um sinal que foi medido em intervalos discretos. Portanto, o que é
"continuo” sobre a TWC, e o que a distingue da Transformada Wavelet Discreta (que sera
discutida na se¢do seguinte), € o conjunto de escalas e posi¢coes em que a TWC opera.

Ao contrario da Transformada Wavelet Discreta, a TWC pode operar em qualquer
escala, desde a escala do sinal original até uma escala maxima que pode ser determinada de
acordo com a necessidade de detalhamento requerida na analise, e também de acordo com
a poténcia computacional disponivel. A TWC também ¢é continua em termos de
deslocamento: durante a computacdo, a wavelet em anélise é deslocada suavemente sobre o

dominio completo da funcdo analisada (Figura 3.11).

Figura 3.11 — Deslocamento da wavelet na Transformada Wavelet Continua.

3.3.3 Transformada Wavelet Discreta

Realizar o célculo dos coeficientes de correlacdo entre a wavelet e o sinal analisado
a cada possivel escala utilizada é extremamente oneroso e gera uma grande quantidade de
dados, dos quais muitos sdo redundantes.

A Transformada Wavelet Discreta (TWD) foi desenvolvida com o intuito de

proporcionar uma eficiéncia maior a analise wavelet. Diferentemente da TWC, a aplicacao
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da TWD ndo necessita que a wavelet seja transladada nem redimensionada continuamente,
mas sim em intervalos discretos. Isto pode ser feito com uma pequena modificacdo na

Wavelet Continua, de acordo com a equacéo a seguir:

1 t—b 1 t —nb,ag'
Wap (t) = _W(T) = WYin (t) = W( am ] ! (332)

g a5 :

em que, m e n sdo nimeros inteiros, a, >1 € um parametro de escala fixo, b, e o fator de

deslocamento (que depende do fator de escala), e y representa a wavelet mother.

Os coeficientes no dominio da transformada correspondem a pontos em um
reticulado bidimensional no plano escala x translacdo. A grade ¢é indexada por dois inteiros
m e n, sendo o0 primeiro associado aos passos na escala discreta e 0 segundo aos passos das

translagOes discretas [6]. A Figura 3.12 ilustra o reticulado.

m (escala)

* * * L] + >

L - * L] L] * L] L * L] L} L

2 9 4 T FF TR AT REY YRRy

n (translacéo)

Figura 3.12 — Reticulado no plano escala x translacéo para a TWD. Fonte: [6].

Um caso particular amplamente utilizado para a aplicacdo da TWD é baseado na
escolha das escalas e translagbes com base em poténcias de dois, as chamadas escalas e
translagdes diadicas. A aplicacdo da TWD utilizando estes parametros ¢é bastante eficiente
e, normalmente, possui precisdo suficiente para a realizacdo da analise wavelet desejada.

De modo geral, as transformadas continuas sdo primordialmente empregadas na
deducdo de propriedades das transformadas. Formas discretas sdo atraentes do ponto de

vista de implementacdo e do ponto de vista computacional [6].
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3.3.4 Andlise de Multiresolucéo

Andlise de multiresolu¢do € uma técnica originada na area de processamentos de
sinais, que no contexto das wavelets, constitui-se na forma padrdo de construcéo das bases
de wavelets e da implementacédo das transformadas wavelets ortonormais [6].

Uma forma de implementar computacionalmente a transformada wavelet diadica
ortonormal pode ser obtida através do algoritmo baseado na representacdo multiresolugéo
de sinais que, assim como a transformada wavelet, decompde o sinal em escalas com
diferentes resolugdes no tempo e na freqliéncia [31].

As wavelets estdo associadas a uma filtragem passa-faixa interativa na qual a banda
passante dos filtros consecutivos adjacentes é a metade de seu antecessor. Entretanto, para
se evitar um numero infinito de filtros analisadores é usado um Unico filtro para baixas
frequiéncias, quando a faixa de freqiéncia € suficientemente pequena [32].

A funcdo escala (Low Pass Filter — LPF), denotada geralmente por ¢(t), foi
introduzida por Mallat [33]. O principio fundamental € analisar o sinal através de uma
combinacdo de uma funcdo escala ¢(t) (passa-baixa) e wavelet y(t) (passa-faixa). Esta

idéia é essencial na codificacdo em sub-bandas e na analise de multiresolucéo [6].

3.3.5 Filtragem em um estagio: aproximacdes e detalhes

Para muitos sinais, 0 conteido de baixa freqiiéncia é a parte mais importante. E o
que da ao sinal a sua identidade. O conteldo de alta frequéncia, por outro lado, da nuance
ou o “tom”. Considere a voz humana. Se as componentes de alta freqtiéncia forem
retiradas, a voz soa diferente, mas ainda assim pode-se entender o que foi dito. No entanto,
ao remover uma quantidade suficiente de componentes de baixa frequéncia, o contetdo
restante soara como uma “gritaria” e sera impossivel entender o que foi dito.

Na andlise wavelet, é comum se falar em aproximacBes e detalhes. As
aproximacdes sdo as componentes do sinal que possuem alta escala e baixa frequéncia. Os
detalhes sdo as componentes do sinal que possuem baixa escala e alta frequéncia. O
processo de filtragem basico mais utilizado na analise de sinais consiste em projetar filtros

passa-alta (High-Pass) e passa-baixa (Low-Pass), conforme a Figura 3.13.
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Figura 3.13 — Processo basico de filtragem de sinais.
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Infelizmente, ap0s a execucdo do processo basico de filtragem sobre um verdadeiro

sinal digital, a quantidade de dados resultantes é igual ao dobro da quantidade de dados

antes da filtragem. Por exemplo, suponha que o sinal original S é composto por 1.000

amostras de dados. Em seguida, cada um dos sinais resultantes terd 1.000 amostras,
totalizando 2.000 dados.

Existe uma maneira mais sutil para realizar a decomposicdo utilizando wavelets.

Ainda considerando o exemplo acima, para cada um dos sinais de saida, pode-se guardar

apenas um de cada dois dados sequenciais para obter as informacdes mais relevantes a

respeito destes sinais. Este processo é conhecido como downsampling (Figura 3.14). O

processo a direita, que inclue o downsampling, produz os coeficientes da TWD.

I

S | ~1.000 amostras

_..D__..

A

~1.000 amostras

~1.000 amostras

-0

~1.000 amostras

—EHO-

cD

chA

~ 500 coeficientes

~ 500 coeficientes

Figura 3.14 — Filtragem de sinais utilizando downsampling.

Na Figura 3.15 é esquematizada a filtragem em um estégio aplicando a TWD sobre

uma sendide pura, distorcida pela adi¢cdo de um ruido de alta frequéncia.
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cD Alta Frequéncia

~ 500 coeficientes da TWD

S

AVAVAN

1.000 amostras cA Baixa Frequéncia

—-O-/VVA

~ 500 coeficientes da TWD

Figura 3.15 — Obtencao dos coeficientes da TWD através da filtragem em Unico estagio.

Na realidade, o tamanho real dos sinais de aproximac&o e detalhe € um pouco maior
do que a metade do tamanho do sinal original. Isso se deve ao processo de filtragem, que €

implementado através da convolugéo do sinal com um filtro.

3.3.6 Decomposicdo em multiplos niveis

O processo de decomposicdo em maltiplos niveis pode ser realizado por sucessivas
filtragens de Unico nivel, de modo que um sinal original pode ser decomposto em varios
sinais com menores resolucoes.

Este processo de filtros consecutivos é conhecido como algoritmo piramidal. Este
algoritmo possibilita obter “aproximacdes” e “detalhes” de um dado sinal de interesse.
Uma aproximacao é uma representacao de baixa freqiiéncia do sinal original, enquanto que
um detalhe é a diferenca entre duas representacGes sucessivas da aproximacgdo do sinal
original. Uma aproximacao contem a tendéncia geral do sinal original, enquanto que um
detalhe exibe os componentes de alta freqtiéncia do sinal de entrada [6].

Na Figura 3.16 apresenta-se um exemplo de decomposi¢do de um dado sinal S em

trés niveis de sua arvore de decomposigéo.
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Figura 3.16 — Arvore de decomposic&o de um sinal em trés niveis. Fonte: [6].

Por se tratar de um processo iterativo, em teoria, 0 processo de decomposi¢do em
maultiplos niveis pode ser mantido indefinidamente. Na realidade, a decomposi¢do s6 pode
prosseguir até que os detalhes individuais sejam constituidos de uma Gnica amostra. Na
pratica, ao realizar-se a decomposicdo em multiplos niveis, deve-se escolher um nimero
adequado de niveis com base na natureza do sinal analisado ou em algum critério

adequado.

3.4 Software e parametros utilizados

Para realizar a manipulacdo dos dados (armazenamento, tratamento estatistico,
processamento de célculos diversos, geracdo de graficos) e o desenvolvimento dos
modelos de previsio propostos, utilizou-se o software MATLAB® em sua versdo
7.10.0.499 (R2010a). O processador de 64 bits utilizado foi o Intel(R) Core(TM)2 Duo
CPU T6600 @ 2,20GHz 2,20GHz, com 4,00 GB de memdria RAM, e com 0 sistema
operacional Windows 7 — 64 bits.

Para criar as redes neurais e efetuar os treinamentos, foram utilizadas funcoes
existentes no toolbox Neural Network. Os algoritmos de treinamento utilizados foram o
Resilient Propagation, através da funcdo trainrp, e o Levenberg-Marquardt, através da
funcdo trainlm. As redes neurais utilizadas foram do tipo Multilayer Feedforward, e os
parametros utilizados para criar as redes e realizar o treinamento com os dois algoritmos

foram os seguintes:
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= net.divideFcn = 'divideind’;

» net.divideParam.trainlnd = ind_tr; % indices do conjunto de treinamento
= net.divideParam.vallnd = ind_val; % indices do conjunto de validacéo
» net.divideParam.testind = ind_tst; % indices do conjunto de teste

= net.inputs{1}.processFcns = {};

= net.inputs{1}.processParams = {} ;

= net.outputs{2}.processFcns = {} ;

» net.outputs{2}.processParams = {} ;

» net.performFcn = ‘mse’;

» net.trainFcn = ‘trainlm’; % ou ‘trainrp’

= net.trainParam.show = NaN;

= net.trainParam.showWindow = 0;

= net.trainParam.showCommandLine = 1;

= net.trainParam.epochs = 500;

» net.trainParam.goal = 0;

= net.trainParam.max_fail = 10.

Para os demais parametros necessarios a realizacdo dos treinamento e que ndo foram
listados acima, foram utilizados os préprios valores default do toolbox Neural Network.

Para criar os sistemas de inferéncia Fuzzy e realizar o treinamento com o ANFIS,
foram utilizadas fungbes existentes no toolbox Fuzzy Logic. Os sistemas de inferéncia
foram criados a partir dos conjuntos de treinamento utilizando-se a fungéo genfis2. A
funcdo anfis foi utilizada para adaptar as func¢des de pertinéncia dos sistemas de inferéncia
gerados. Os conjuntos de treinamento e validacdo foram utilizados para realizar a
adaptacdo, e o nimero de épocas utilizado foi igual a 100.

Em relacdo as wavelets, utilizou-se o toolbox Wavelet para aplicar a Transformada
Wavelet Discreta na decomposi¢do em multiplos niveis de determinados sinais de entrada
(velocidades médias horarias dos ventos). Dentre as bases wavelets testadas, aquelas que se
demonstraram mais apropriadas & aplicacdo para os modelos desenvolvidos (ver Capitulo
5) foram as da familia Daubechies, mais especificamente, as wavelets do tipo “daubechies
10”.
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CAPITULO 4

4. AVALIANQAO DE DESEMPENHO DOS MODELOS DE
PREVISAO

Neste capitulo definem-se os critérios utilizados para avaliar os modelos de
previsao propostos nesta dissertacdo. A secdo inicial do capitulo apresenta alguns conceitos
sobre séries temporais. A segunda se¢do traz as notagdes que sdo comumente utilizadas
pela comunidade de previsdo de geracdo eolica (ver [21]). Na terceira secdo, sao
apresentados os modelos que servirdo de referéncia para a comparacdo com as previsoes
dos modelos propostos. Na quarta secdo séo definidos os erros de previsao e, finalmente,
na quinta secédo, sdo apresentados os critérios de comparagdo do desempenho dos modelos.

4.1 Séries Temporais

Uma série temporal é um conjunto de observacdes de uma dada variavel, ordenado
segundo o parametro tempo, geralmente em intervalos equidistantes. Se Z; representa o
valor da varidvel aleatéria Z no instante t, a série temporal pode ser denotada por Z;, Z5,...,
Zy, sendo N o tamanho da série ou 0 numero de observacdes seriais da variavel [34]. As
séries temporais abordadas nesta dissertacdo sdo discretas, ou seja, séries cujo nimero de

observacdes N é finito.

4.1.1 Previsdo de Séries Temporais

A previsdo de uma série temporal é simplesmente o estabelecimento dos valores
futuros da série. Uma previsdo é uma estimativa quantitativa (ou conjunto de estimativas)
acerca da verossimilhanga de eventos futuros baseados na informagéo atual e passada [34].
Uma caracteristica dos modelos de previsdo de séries temporais propostos nesta
dissertacdo é que eles sdo univariados, ou seja, sdo fundamentados apenas na analise das
observacdes da série de interesse para a especificagdo de algum modelo que descreva essas
observacgoes.

O horizonte de previsdo € o comprimento de tempo, contado a partir de uma origem
especificada, chamada origem das previsdes, no sentido do futuro, para o qual as previsoes

devem ser determinadas. O horizonte de previsao ird variar de acordo com o propdésito ou
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uso final das previsdes. Denomina-se 0 nimero de intervalos de tempo (periodos) para

frente, a partir da origem das previsdes, como o numero de passos de uma previséo [34].

4.1.2 Autocorrelacdo

A autocorrelacao serve para medirmos o comprimento da memdria de um processo,
ou seja, a extensdo para a qual o valor tomado no tempo t depende daquele tomado no
tempo t—k [33]. A autocorrelacdo € uma medida que informa o quanto o valor de uma
realizacdo de uma variavel aleatéria é capaz de influenciar seus vizinhos, por exemplo, o
quanto a existéncia de valor mais alto condiciona valores também altos de seus vizinhos.
Por definicdo, o valor da autocorrelacdo esta entre 1 (correlacdo perfeita) e —1, o que
significa anti-correlacdo perfeita. O valor 0 (zero) significa total auséncia de correlacdo. A
autocorrelacdo de uma dada varidvel se define pela distancia, ou atraso com que se deseja
medi-la. Quando essa distancia € zero, tem-se o0 valor maximo 1, pois trata-se da variavel
correlacionada com ela mesma. Outros valores devem ser calculados caso a caso.

No presente trabalho, a série temporal discreta € um vetor contendo as velocidades
médias horérias da respectiva estacdo anemométrica. Para o calculo das autocorrelacbes

utiliza-se a seguinte expressao:

PAUEIIUIE
fo=""3 ’ (4.1)

Z(Vi _M)Z

i=1

em que,

Vi _¢é 0 i-ésimo elemento do vetor das velocidades;

u — € a média do vetor das velocidades;

N _ ¢ o comprimento do vetor das velocidades;

k — é o deslocamento no tempo;

"_ éa autocorrelacdo entre elementos do vetor das velocidades deslocados no tempo.


http://pt.wikipedia.org/wiki/Correla%C3%A7%C3%A3o
http://pt.wikipedia.org/w/index.php?title=Anti-correla%C3%A7%C3%A3o&action=edit&redlink=1
http://pt.wikipedia.org/w/index.php?title=Atraso&action=edit&redlink=1

4.2 Notacoes

inst *

v(t+k) :
V(t+k]|t)
P(t+k) :
Pt+k|t)

e, (t+k|t) :

e, (t+k|t) :

e (t+k]t) :

e (t+K(D) :

Poténcia instalada do parque edlico;

Poténcia meédia gerada pelo parque edlico durante
determinado periodo;

Passo da previsao (nimero de horas a frente);

Maximo passo da previsao;

Numero de dados utilizados para a avaliagdo do modelo;
Velocidade medida no instante t +k ;

Velocidade prevista na origem t para o instante t+k ;
Poténcia medida no instante t +k ;

Poténcia prevista na origem t para o instante t+k ;

Erro correspondente ao instante t+k para a previsdo da
velocidade realizada na origem t;

Erro correspondente ao instante t+k para a previsdo da
poténcia realizada na origem t;

Erro da previsdo de poténcia normalizado pela poténcia
instalada;

Erro da previsao de poténcia normalizado pela poténcia média

gerada.
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Cabe ressaltar que, nesta dissertacdo, as poténcias sdo extraidas da curva de

poténcia do aerogerador. Por exemplo, para obter o valor de P(t +Kk), verifica-se na curva

de poténcia do aerogerador qual é a poténcia gerada quando a velocidade do vento é

v(t+K).

4.3 Modelos de Referéncia

Os modelos de referéncia resultam de consideragc6es simples e ndo exigem esforcos

de modelagem. Portanto, s6 é vantajoso desenvolver e implementar uma ferramenta

avancada de previsdo de geracdo eolica se ela for capaz de superar os modelos de
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referéncia, ou seja, se a ferramenta fornecer resultados melhores do que aqueles obtidos
com os modelos de referéncia [21]. Provavelmente, o modelo de referéncia mais
comumente utilizado na previséo de energia edlica ou no campo meteoroldgico é o0 Modelo
da Persisténcia. Este modelo simples assume que a medida no instante tempo t +k é igual

ao Ultimo valor medido (em t), ou seja,
Voers (L +K [ 1) =v(t) . (4.2)

Apesar de sua aparente simplicidade, este modelo pode ser dificil de ser batido para
0S primeiros passos de previsdo (em torno de 4 — 6 horas), pois a escala de mudancas na
atmosfera € lenta [21]. Uma generalizacdo do Modelo da Persisténcia é obtida ao substituir

0 Ultimo valor medido pela média dos Gltimos n valores medidos:
13 .
Vo o (LK |t):HZv(t—|). (4.3)
i=0

As vezes, tais modelos s&o referidos como previsores de média mével. Assintoticamente

(quando n tende ao infinito), eles tendem a média global:
U, (t+K 1) =v(t). (4.4)

Este Gltimo modelo também pode servir como um modelo de referéncia, mas como
ele ndo é muito dindmico, o seu desempenho pode ser ruim para horizontes de previsdo
curtos. No entanto, para horizontes mais longos, a sua habilidade de previsdo é melhor do
que a do Modelo da Persisténcia [21]. A fim de obter um melhor desempenho ao longo de
toda a gama de horizontes de previsdo, 0s autores propuseram a fusdo dos dois modelos,

que levou a um novo modelo de referéncia
Vaewrer (LK (1) =akv(t)+(l_ak)@1 (4.5)

em que o, € o coeficiente de autocorrelagao entre v(t) e v(t +k). Os valores de \ﬁ e a,

devem ser estimados ou determinados a partir do conjunto de treinamento.
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4.4 Definicdo dos Erros de Previsao

No campo de previsbes de séries temporais em geral, o erro € definido como a
diferenca entre os valores medido e previsto. Para cada passo, 0S erros da previsdo sao

definidos como:

e, (t+k|t) =v(t+Kk)—0(t+k|t), (4.6)

ep(t+k|t)=Pt+k)—P(t+k|t). 4.7)

E conveniente normalizar e, em fungio da poténcia instalada com a finalidade de

produzir resultados em valores percentuais para compara-los adequadamente com 0s

resultados de outras localidades:

en (t+k|t)= 100[@} . (4.8)

inst

Esta normalizacdo pode levar a valores de erro muito baixos para parques com capacidade
instalada elevada. Para obter valores mais conservadores, se sugere a normalizacdo pela

poténcia média gerada [35]:

ep (t+Kk]D) :100[@]. (4.9)

med

Qualquer erro de previsdo pode ser decomposto como a soma de duas parcelas,

sendo uma delas denominada erro sistematico (., ), e a outra, erro aleatorio (&, ) [21].

e=p, +&,, (4.10)

em que, u, é um valor constante, enquanto que &, e uma variavel aleatoria cuja média é

zero. O erro sistematico € igual ao valor médio do erro de previséo sobre todo o periodo de

avaliacdo e é calculado para cada passo de previsdo de acordo com a seguinte equacgao:
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fiu (k) =€) = <= De(t +k 1), @.11)

Os quatro tipos bésicos de erros utilizados nesta dissertacdo para medir o
desempenho de um modelo de previsdo sdo: o erro absoluto médio (Mean Absolut Error —
MAE), o erro absoluto percentual médio (Mean Absolut Percentage Error — MAPE), 0 erro
quadratico médio (Mean Squared Error — MSE) e a raiz do erro quadratico médio (Root
Mean Squared Error — RMSE). As equagfes utilizadas para calculd-los sdo definidas a

sequir:

MAE, (k) = %i]ev (t+k|t), (4.12)
100 & fe, (t+K | 1)]

MAPE, (k) = N ; R (4.13)

MSE, (k) :%iev(t+k 11)?, (4.14)

RMSE, (k) = /MSE, (k) . (4.15)

As expressdes do MAE, MSE e RMSE também se aplicam para as poténcias geradas. Nao
se deve utilizar o MAPE para as poténcias, pois P(t+k) sera nula se houver instantes nos
quais v(t+k) é menor do que a velocidade de cut-in do aerogerador.

Estatisticamente, os valores do erro meédio e do MAE estdo associados com 0
momento de primeira ordem do erro de previsdo, e portanto, séo medidas que estdo
relacionadas diretamente com a energia produzida. Os valores do RMSE estdo associados
com o momento de segunda ordem, e portanto, estdo relacionados com a variancia do

modelo de previsao [21].
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4.5 Critérios para Comparacédo dos Modelos

Ao propor um novo modelo de previsdo, € muito importante destacar e quantificar
0s ganhos obtidos em relacdo aos modelos de referéncia [21]. A férmula utilizada para

calcular estes ganhos percentuais para cada passo de previsao é a seguinte:

(4.16)

CAref ( k )

Gru cn(k) =100(CA'“ (k) _CA(k)J |

em que,
CA, (k) —é o critério de avaliacdo do modelo de referéncia;

CA(k) — é o critério de avaliacdo do modelo proposto.

O critério de avaliacdo pode ser o MAE, MAPE, MSE ou RMSE. Obviamente, ao calcular o
ganho, 0 mesmo critério deve ser utilizado para os dois modelos que estdo sendo
comparados.

Uma outra maneira de avaliar o desempenho dos modelos é o coeficiente de
determinacdo R?. Para cada passo de previsdo, calcula-se o valor de R? pela seguinte
equacéo:

ZN:eV(t+k |t)?
R (k) =1- t=1N . (4.17)

> v(t +k)?

Este coeficiente representa a habilidade que o modelo possui para explicar a variancia dos
dados. O valor de R* deve estar situado entre zero e um. Quanto mais proximo da unidade

estiver o valor de R?, melhor serd o modelo de previsio.

Ha ainda diversas ferramentas que podem ser utilizadas para a analise exploratéria
e comparacdo das previsdes obtidas com diferentes modelos. Algumas delas s&o mais
adequadas a previsdo de geracdo edlica, pois permitem uma visdo mais profunda sobre o
desempenho dos modelos que estdo sendo analisados. Uma ferramenta util € o grafico dos
erros quadraticos médios acumulados, pois pode-se analisar visualmente o comportamento

do modelo de previsdo ao longo de determinado periodo [21]. Também é importante tracar
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os diagramas de dispersdo dos valores medidos e as respectivas previsdes. Nestes
diagramas, quanto maior a proximidade dos pontos em relacdo a reta, maior sera a

correlacdo entre a série temporal medida e as previsoes.
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CAPITULO5
5. DESENVOLVIMENTO DOS MODELOS DE PREVISAO

O presente capitulo apresenta a metodologia utilizada para o desenvolvimento dos
modelos de previsdo. A secdo inicial do capitulo apresenta uma estatistica descritiva das
séries de velocidades médias horarias utilizadas para realizar os ajustes dos modelos. A
segunda secdo apresenta os modelos propostos. Na terceira secdo, sdo apresentados 0s
procedimentos para o treinamento e ajustes destes modelos. Finalmente, na quarta secao,

séo definidos os melhores modelos de previséo para cada localidade estudada.

5.1 Seéries de Velocidades Médias Horarias

As séries de velocidades utilizadas nesta dissertagdo sdo publicadas pelo Instituto
Nacional de Meteorologia (INMET) na internet (http://www.inmet.gov.br/). As séries
correspondem aos dados medidos nas estagdes meteoroldgicas de superficie automaticas
situadas no estado do Rio Grande do Norte, nas cidades de Macau, Mossoro e Natal.

Uma estacdo meteoroldgica de superficie automatica é composta de uma unidade
de memoria central (datalogger) ligada a varios sensores dos parametros meteorologicos
(pressdo atmosférica, temperatura e umidade relativa do ar, precipitacdo, radiacdo solar,
direcdo e velocidade do vento, etc.) que integra os valores observados minuto a minuto e
calcula o valor médio atualizando os dados automaticamente a cada hora. Os dados das
estacOes automaticas estdo disponiveis no site do INMET por apenas trés meses.

Conforme dito anteriormente, os modelos de previsdo de séries temporais propostos
neste trabalho séo univariados, logo, todas as variaveis de entrada e saida dos modelos de
previsdo serdo apenas as Vvelocidades meédias horarias. As velocidades previstas
correspondem a altura de 10 metros acima do nivel do solo, pois os dados de velocidade

das estacOes de superficie automatica do INMET sdo medidos nesta altura.

5.1.1 Estatistica Descritiva

A estatistica descritiva € um ramo da estatistica que trata da extracdo de
informacdes contidas em conjuntos de dados. A apresentacdo destas informacdes pode ser

feita utilizando-se a representacdo tabular, a representacdo por parametros e a


http://www.inmet.gov.br/
http://pt.wikipedia.org/wiki/Estat%C3%ADstica
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representacdo grafica, que possibilita uma rapida visdo geral dos dados. Objetivando a
eliminacdo de erros capazes de provocar futuros enganos de apresentagdo e analise, deve-
se realizar uma revisdo critica dos dados. Apds a revisdo, convém organizar os dados de
maneira pratica e racional, para que se obtenha um melhor entendimento do fenémeno
estudado.

Para cada uma das esta¢des de superficie automaticas, os dados (velocidades) foram
armazenados em um vetor de comprimento igual ao nimero de amostras N, de modo a
facilitar a analise e manipulacdo dos mesmos. O armazenamento dos dados em forma de
vetores facilita a programacdo computacional, permitindo que os diversos célculos e
medidas estatisticas sejam realizados de forma rapida e eficaz. S&o apresentados, na Tabela
5.1, os periodos e o total de amostras (tamanho das seéries) utilizadas para o

desenvolvimento dos modelos de previsdo de cada estacdo de superficie automatica.

Tabela 5.1 — Dados utilizados para o desenvolvimento dos modelos de previséo.

Estacdo Periodo Total de Amostras (N)

MACAU | Janeiro a Dezembro — 2008 8.784
MOSSORO | Janeiro a Dezembro — 2008 8.784

NATAL Janeiro a Dezembro — 2008 8.784

Na Figura 5.1 sdo apresentadas as séries de velocidades e os histogramas para as
estacbes de MACAU, MOSSORO e NATAL, respectivamente. Os histogramas permitem
que seja feita uma analise das faixas de velocidade para as quais ocorrem as maiores
frequéncias de observacGes dos dados. Os valores minimos, maximos, as médias e 0s

desvios padrdes das series de velocidades das trés estacdes sdo apresentados na Tabela 5.2.

Tabela 5.2 — Estatisticas das séries de velocidades de MACAU, MOSSORO e NATAL.
Minima | Maxima Meédia Desvio padréo

Estacéo

[m/s] [m/s] [m/s] [m/s]
MACAU 0,20 11,60 4,48 1,99
MOSSORO | 0,10 9,40 3,32 1,95

NATAL 0,09 10,50 4,70 1,81
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Figura 5.1 — Séries de velocidades e histogramas de MACAU, MOSSORO e NATAL.

H& uma pequena quantidade de velocidades menores ou iguais a 2 m/s para
MACAU e NATAL, correspondendo a 10,19% e 7,17% dos dados, respectivamente. Ja
para MOSSORO, 33,40% das velocidades estdo situadas nessa faixa. Outra caracteristica
das trés estacdes é que a grande maioria das velocidades possui valor menor ou igual a 7
m/s. Para MACAU, 88,35% das velocidades sdo menores ou iguais a 7 m/s, e para
MOSSORO e NATAL, estes valores percentuais correspondem a 97,32% e 90,08% dos
dados, respectivamente.

Na Figura 5.2 sdo apresentados os dias tipicos e as sazonalidades das velocidades
dos ventos para as trés localidades. A composicdo do dia tipico de uma determinada
localidade é obtida calculando-se a média aritmética das velocidades correspondentes para
cada hora do dia ao longo de todo o ano em estudo. Observa-se claramente que a
velocidade dos ventos possui uma variagdo ciclica didria nas trés localidades. As
velocidades diminuem ao longo do dia, atingindo seu valor minimo entre 08:00 — 09:00
horas (Coordinated Universal Time — UTC). Posteriormente, as velocidades aumentam até
atingirem seu valor maximo entre 15:00 — 19:00 horas (UTC). A sazonalidade pode ser
visualizada nos graficos das médias mensais das velocidades dos ventos. O comportamento
sazonal dos ventos na regido Nordeste é de extrema importancia para a geracéo eolica, pois
h& a possibilidade de utilizar este tipo de geracdo como uma forma complementar a
geracdo hidrelétrica, uma vez que nos periodos de poucas chuvas o0s ventos sdo mais

favoraveis, e nos periodos imidos os ventos sdo mais fracos.
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Figura 5.2 — Dia tipico e comportamento sazonal de MACAU, MOSSORO e NATAL.
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As autocorrelacOes das séries temporais abordadas podem ser analisadas na Figura

5.3, cujos graficos sdo muito semelhantes. Ha valores minimos de autocorrelacdo para

deslocamentos multiplos de 12 horas, e valores maximos de autocorrelacdo para

deslocamentos multiplos de 24 horas. O méximo deslocamento utilizado para o calculo da

autocorrelacdo foi de 48 horas. Quando este deslocamento tende para um valor muito

grande, a autocorrelacdo tende a zero.

08H

Coeficientes de Autocorrelagdo

02
o

0EH

04 f

02H(

MACAU
T T T

i

i 1 1 i L
6 12 18 24 30 3}/ 42
Deslocamenta (h)

48

Coeficientes de Autocorrelagdo

MOSSORO
T T T

paff i : -
oel - -
0all[ ] : il
2 b T

iell s

0z i I i I i i 1
1] B 12 18 24 30 3}/ 42 48
Deslacamenta (h)

NATAL
T T T

06 [gde Y

ol ; H S THH

Coeficientes de Autocorrelagdo

Ml 4

02 i ; i I i i 1
1] B 12 18 24 30 3B/ 42 48
Deslocamento (h)

Figura 5.3 — Coeficientes de autocorrelagio de MACAU, MOSSORO e NATAL.
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5.2 Modelos de Previsao

Seis diferentes modelos para a previsdo das velocidades médias horarias dos ventos
sdo propostos nesta dissertacdo. Quatro deles utilizam as Redes Neurais Artificias (RNA)
do tipo Multilayer Feedforward, e os outros dois utilizam o Adaptive Neuro-Fuzzy
Inference System (ANFIS). Estas ferramentas de inteligéncia artificial foram detalhadas no

Capitulo 3.

5.2.1 Modelos RNA(LM), RNA(RP) e ANFIS

Estes trés modelos possuem os mesmos padrfes de entrada e saida, isto é, quatro
entradas e uma saida. Os dados de entrada sdo as quatro ultimas velocidades médias
horérias e a saida corresponde a velocidade média horéria prevista para o passo de previsao
k. A Figura 5.4 é um esquema entradas-saida dos modelos.

v(t—23)
vt—2) Mo[[))EELo
N 0t +k |t
v(t-1) PREVISAO v(t+klY
v(t)

Figura 5.4 — Entradas e saida dos modelos RNA(LM), RNA(RP) e ANFIS.

Os modelos RNA(LM) e RNA(RP) sdo formados por redes cujos algoritmos de
treinamento sdo o Levenberg-Marquardt (LM) e o Resilient Propagation (RP),
respectivamente. A arquitetura destas redes é formada por uma camada de entrada com
quatro entradas, uma camada intermediaria (oculta) e uma camada de saida com uma saida.

A quantidade de neurdnios da camada oculta dos modelos neurais é determinada
variando-se o numero de neurdnios desta camada, sendo selecionada a quantidade que
fornecer o melhor desempenho durante os treinamentos. Os neur6nios da camada oculta
utilizam a funcédo de ativacdo Tangente Hiperbolica. A camada de saida possui apenas um
neurdnio, pois ha apenas uma saida. A funcdo de ativacdo deste neurdnio é a Sigmoide

Logistica.



61

O modelo ANFIS também possui quatro entradas e uma saida. A sele¢do do melhor
sistema de inferéncia foi realizada a partir da técnica subtractive clustering. O
comprimento do raio de influéncia de cada cluster é determinado variando-se o seu valor,
sendo selecionado aquele comprimento que fornecer o melhor desempenho durante os

treinamentos.

5.2.2 Modelos TWRNA(LM), TWRNA(RP) e TWANFIS

As diferencas destes trés modelos em relacdo aos anteriores sdo: o numero de
entradas e os tipos de sinais fornecidos as ferramentas de inteligéncia artificial. Os modelos
TWRNA(LM), TWRNA(RP) e TWANFIS possuem 16 entradas, definidas da seguinte
maneira:

e Aplica-se ao vetor das velocidades a decomposicdo em trés niveis da

Transformada Wavelet Discreta;
e Montam-se quatro vetores de mesma ordem do vetor das velocidades, sendo
eles: Az — vetor de aproximacao do 3° nivel; D3 — vetor de detalhe do 3° nivel; D,

— vetor de detalhe do 2° nivel; D; — vetor de detalhe do 1° nivel.

Cada entrada v(z) dos modelos anteriores € substituida pelas quatro entradas
correspondentes a,(z),d,(z),d,(z) e d,(r),emque r=t-3,t—2,t-1ou t. A Figura 5.5

é um esquema entradas-saida dos modelos.

v(t-3) > ~alte9 - MODELO
v(t—2) —»| Transformada - a_3(t_2) - DE
v(t-1) - Wavelet - PREVISAO V(t+k|t)
D) o> > dy(t-1) -
- di(t)

Figura 5.5 — Entradas e saida dos modelos TWRNA(LM), TWRNA(RP) e TWANFIS.
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5.3 Procedimentos para o treinamento e ajuste dos modelos
5.3.1 Normalizagdo dos dados

Os dados de entrada dos modelos que utilizam as RNA devem ser normalizados.
Segundo [6], a normalizacdo € necessaria para assegurar que todas as variaveis usadas nos
modelos tenham igual atencdo durante o treinamento. Além disto, os neurénios artificiais,
geralmente, sdo compostos de funcOes de ativacdo que sdo limitadas. Assim, a
normalizacdo deve limitar os valores dos dados utilizados nos extremos das funcdes de
ativacdo.

Para que os valores normalizados estejam contidos no intervalo [0,1] a

normalizacdo é realizada empregando-se a seguinte expressao:

X(r) = —);(T) : :::: , (5.1)

mex
em que,

X(z) — é o valor normalizado do dado de entrada correspondente ao instante z ;
X(z) —é o valor real do dado de entrada correspondente ao instante 7 ;

X, — & 0 valor da menor componente do vetor ao qual pertence o dado de entrada;

X — € 0 Vvalor da maior componente do vetor ao qual pertence o dado de entrada.

Para os modelos TWRNA(LM) e TWRNA(RP), devem ser realizadas duas
normalizagdes distintas. Uma delas se aplica ao vetor Az, a outra se aplica a concatenacao

dos vetores D3, D, e Dy. Para a normalizagdo destes vetores, x.;, corresponde ao valor
minimo das trés séries de detalhes concatenadas, e x,,, corresponde ao valor maximo.

O valor de saida dos quatro modelos que utilizam as RNA é normalizado, logo, 0s

valores de X, € X, Utilizados para o ajuste dos modelos devem ser armazenados para

que se possa realizar a desnormalizagdo de V(t+k|t).
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5.3.2 Particdo das bases de dados

Antes de realizar os treinamentos dos modelos, montou-se, para cada uma das
séries de velocidades, e para cada passo de previsdo (1 — 24 horas), uma matriz dos padrdes
de entradas e saida. Para cada linha destas matrizes de padrdes, nas primeiras colunas estéo
as entradas e na ultima coluna a saida. Para os modelos RNA(LM), RNA(RP) e ANFIS,
estas matrizes possuem cinco colunas, enquanto que para os modelos TWRNA(LM),
TWRNA(RP) e TWANFIS, as matrizes tém dezessete colunas. No total, foram montadas
432 matrizes de padrdes.

Os padrdes de treinamento dos modelos que utilizam redes neurais devem ser
normalizados, portanto, as matrizes dos padrdes foram normalizadas antes de realizar os
treinamentos dos modelos RNA(LM), RNA(RP), TWRNA(LM) e TWRNA(RP).

A partir de cada uma das matrizes de padrdes, foram criados os conjuntos de
treinamento, com 60% das linhas, validacdo, com outros 30%, e teste, com o0s 10%
restantes. Para os modelos que utilizam redes neurais, as matrizes normalizadas foram

utilizadas para a criacdo destes conjuntos.

5.3.3 Determinacéo do numero de neur6nios da camada oculta

De acordo com a regra utilizada em [20], o numero de neurdnios na camada oculta
¢ determinado por tentativas, sendo eleito o que corresponder ao melhor desempenho
durante os treinamentos. Para cada um dos quatro modelos que utilizam redes neurais
propostos nesta dissertacdo, o procedimento para determinar a quantidade de neurdnios da

camada oculta foi o seguinte:

I. Criou-se uma rede com trés neur6nios na camada oculta;

Il. Atribuiu-se pesos aleatorios para todas as conexdes da rede, realizou-se o
treinamento através do algoritmo especifico para o0 modelo (LM ou RP) e
calculou-se o MAE, MSE, RMSE e MAPE para cada um dos conjuntos
(treinamento, validacéo e teste);

I1l. O passo Il foi repetido dez vezes. Apds a décima repeticdo, foram calculadas as
médias do MAE, MSE, RMSE e MAPE, seguindo posteriormente ao proximo
passo;

IV. Foi adicionado mais um neur6nio na camada intermediaria, retornou-se ao passo

I1, e esse “loop” continuou até a rede possuir quinze neurdnios na camada oculta;
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V. Escolheu-se a arquitetura da rede que apresentou menor media do MAPE para o
conjunto de validagéo.

Depois de realizados o0s passos descritos anteriormente, o nimero de neurdnios na
camada intermediaria para cada um dos modelos e para cada uma das localidades
consideradas (MACAU, MOSSORO e NATAL) estava determinado. As quantidades de
neurdnios para 0s modelos sdo apresentadas na Figura 5.6. Para cada uma das localidades,
observa-se que os valores sdo bastante variados para 0s passos de previsdo considerados.
De uma maneira geral, pode-se dizer que os modelos que utilizam o algoritmo Resilient
Propagation necessitam de uma quantidade maior de neur6nios na camada oculta para

fornecer melhores resultados de previsao.
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Figura 5.6 — NUmero de neurénios na camada oculta.

Os tempos médios para realizar uma inicializacdo dos pesos e o treinamento das
redes sdo apresentados nas Figura 5.7 e Figura 5.8. Os tempos gastos pelos modelos
RNA(LM) e RNA(RP) (para alguns passos) séo apresentados na Figura 5.7. Observa-se que,
em geral, o tempo gasto € maior com 0 aumento do ndmero de neurdnios na camada
oculta, e reduz com o aumento do passo da previsdo. O tipo de algoritmo de treinamento
também influenciou significativamente nos tempos médios, sendo o Resilient Propagation

aquele que exigiu mais tempo de treinamento.
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Figura 5.7 — Tempos médios de treinamento dos modelos RNA(LM) e RNA(RP).

Na Figura 5.8, séo apresentados os tempos gastos pelos modelos TWRNA(LM) e

TWRNA(RP) (para alguns passos). Por possuirem uma quantidade maior de entradas, estes

modelos exigiram maiores tempos de treinamento. Novamente, observa-se que, de uma

maneira geral, 0 tempo gasto aumenta com o aumento do nimero de neurénios na camada

oculta, e reduz com o aumento do passo da previsao. Além disto, verifica-se também que o

tipo de algoritmo de treinamento influenciou significativamente nos tempos medios,

entretanto, para estes modelos, o algoritmo Levenberg-Marquardt exigiu maiores tempos
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Figura 5.8 — Tempos médios de treinamento dos modelos TWRNA(LM) e TWRNA(RP).
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Os gréficos comparativos do MAPE do conjunto de validagdo para as melhores
arquiteturas séo apresentados na Figura 5.9 para efeito de comparacdo. Na parte superior,
estdo tracados os graficos para os modelos que utilizam o algoritmo Levenberg-Marquardt
e na parte inferior, os graficos para os modelos que utilizam o algoritmo Resilient
Propagation. Observa-se que o desempenho dos modelos que utilizam a Transformada
Wavelet € superior para praticamente todos os passos de previsdo. Além disto, dentre os
modelos que utilizam a TW, o algoritmo LM forneceu melhores previsdes, principalmente
para 0s passos mais curtos. Ainda em relagcdo a Figura 5.9, observa-se que os valores do
MAPE para MOSSORO sio mais elevados. Isto se deve principalmente ao fato de que ha
um grande numero de velocidades baixas para esta estacdo, o que contribui para 0 aumento
do MAPE.
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Figura 5.9 — MAPE do conjunto de validacéo para as melhores arquiteturas das redes.

5.3.4 Escolha da melhor rede para cada modelo neural

Apos a determinacdo da quantidade de neurdnios nas camadas ocultas, a qual
fornece as arquiteturas finais das redes, falta ainda descobrir aquelas que se adaptem
melhor ao problema abordado. Em outras palavras, falta definir quais redes possuem
melhor capacidade de generalizacdo para as previsdes das velocidades de cada localidade e

para cada um dos passos de previsao considerados.
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A metodologia utilizada para a escolha da melhor rede foi baseada em [6]. Para
realizar esta escolha, aplicou-se o método de validacdo cruzada mdaltipla, também
conhecido como k-fold cross-validation, em que, k representa o nimero de particdes
geradas aleatoriamente a partir das matrizes dos padrGes para treinar, testar e validar as
redes. Nesse método, os padrdes sdo divididos em k particbes mutuamente exclusivas. A
cada iteracdo do método, uma particao diferente é utilizada para testar o sistema e todas as

outras (k — 1) parti¢bes sdo utilizadas para treinar e validar o treinamento das redes [6].

A partir de cada uma das matrizes dos padrdes, para facilitar a implementacéo do
método, montou-se uma matriz com “3 dimensdes”, possibilitando a criagdo de dez
experimentos por matriz. Para cada um dos experimentos, construiram-se 0s conjuntos de
treinamento (seis particdes), validacdo (trés particdes) e teste (uma particdo). Pode-se

observar, na Figura 5.10, como as matrizes k-fold foram montadas.

a

Figura 5.10 — Representacao esquematica da matriz k-fold.

A montagem da matriz k-fold torna mais facil a definicdo dos conjuntos de
experimentos utilizados para realizar treinamentos com dados diferentes. Foram criados 10

experimentos, e para cada experimento, foram realizadas 10 inicializagdes dos pesos.

Na Tabela 5.3 descreve-se a formacdo dos conjuntos de treinamento, validacdo e
teste, bem como identificam-se as redes, ou seja, a inicializagcdo de cada experimento, que

utilizaram os respectivos conjuntos.
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Tabela 5.3 — Experimentos realizados no método de validacdo cruzada. Fonte: [6].

Experimento Redes Treina.mento Valio.lagéo Te?te
(particdes) (particdes) | (particéo)
1 1-10 56,7,8,9,10 2,3,4 1
2 11-20 1,6,7,8,9,10 3,4,5 2
3 21-30 1,2,7,8,9,10 4,5,6 3
4 31-40 1,2,3,8,910 5,6,7 4
5 41 -50 1,2,3,4,9,10 6,7,8 )
6 51-60 1,2,3,4,5,10 7,89 6
7 61-70 1,2,3,4,5,6 8,9,10 7
8 71-80 2,3,4,56,7 9,10,1 8
9 81-90 3,4,5,6,7,8 1,2,10 9
10 91-100 4,5,6,7,8,9 1,2,3 10

Espera-se, com aplicacdo da técnica de validacdo cruzada, que os valores médios de
MSE e MAPE, obtidos em cada experimento no conjunto de teste, sejam considerados

como o resultado esperado para as redes Multilayer Feedforward [6].

A escolha do melhor modelo neural, para cada um dos modelos propostos, foi
realizada a partir do experimento que forneceu o menor valor médio do MAPE das 10
inicializacbes para o conjunto de teste. Apés a determinacdo deste experimento, escolheu-
se a rede que apresentou o menor MAPE para o conjunto de teste do experimento
determinado. Os graficos comparativos do MAPE para as previsdes dos modelos
escolhidos ap6s a validacdo cruzada sdo apresentados na Figura 5.11. As mesmas
observac0es feitas para os graficos da Figura 5.9 também se aplicam aos graficos da Figura
5.11.
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Figura 5.11 — MAPE do conjunto de teste para as melhores redes.

5.3.5 Escolha do melhor Sistema de Inferéncia Fuzzy

O melhor Sistema de Inferéncia Fuzzy (Fuzzy Inference System — FIS) foi escolhido

adotando-se o seguinte procedimento:

V.

Utilizando a técnica subtractive clustering, a partir do conjunto de treinamento,
gerou-se inicialmente o FIS com o tamanho do raio de influéncia igual a 0,3;
Em seqguida, as fungdes de pertinéncia do FIS foram adaptadas com o ANFIS.
Os conjuntos de treinamento e validacdo foram utilizados para realizar a
adaptacdo dessas funcdes;

O conjunto de teste foi simulado e em seguida foram calculados o MAE, MSE,
RMSE e MAPE;

Gerou-se um novo FIS incrementando o tamanho do raio em 0,1 e retornou-se
ao passo Il. Apés calcular o MAE, MSE, RMSE e MAPE para o FIS com o
raio igual a 0,7, passou-se para 0 passo V;

Escolheu-se o melhor FIS de acordo com o menor MAPE para 0 conjunto de

teste.

Este procedimento foi utilizado para MACAU, MOSSORO e NATAL, e para cada um dos
modelos, ANFIS e TWANFIS.



70

Depois de realizados 0s passos descritos anteriormente, os melhores modelos
ANFIS e TWANFIS para MACAU, MOSSORO e NATAL estavam determinados. Os raios
de influéncias dos centros dos clusters para os modelos escolhidos sdo apresentados na
Figura 5.12.
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Figura 5.12 — Raios dos clusters para os modelos ANFIS e TWANFIS.

Os tempos gastos para realizar o treinamento dos modelos ANFIS e TWANFIS (para
alguns passos) sdo apresentados nas Figura 5.13 e Figura 5.14. Os tempos gastos pelos
modelos ANFIS séo apresentados na Figura 5.13. Observa-se que o tempo gasto diminui
com o0 aumento do raio. Para a estacdo de NATAL, os tempos gastos durante o treinamento

com os raios 0,3 e 0,4 foram consideravelmente maiores.
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Figura 5.13 — Tempos de treinamento dos modelos ANFIS.

Na Figura 5.14, séo apresentados os tempos gastos pelos modelos TWANFIS. Para
estes modelos, os tempos sofreram um acréscimo significativo. Novamente, observa-se que
0 tempo gasto diminui com o aumento do raio. Para a estacdo de NATAL, os tempos
gastos durante o treinamento com os raios 0,3 foram bastante elevados, chegando a atingir
cerca de 8.200 segundos para o0 passo de previsao igual 12 horas.
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Figura 5.14 — Tempos de treinamento dos modelos TWANFIS.
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Os gréficos do MAPE do conjunto de teste para os melhores modelos ANFIS e
TWANFIS de MACAU, MOSSORO e NATAL séo apresentados na Figura 5.15 para efeito
de comparacdo. Observa-se que o desempenho dos modelos que utilizam a Transformada
Wavelet é superior, principalmente para os passos de previsao mais curtos. Os valores do
MAPE para MOSSORO sio mais elevados, devido principalmente ao fato de que ha um
grande numero de velocidades baixas para esta estacdo, o que contribui para 0 aumento do
MAPE.
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Figura 5.15 — MAPE do conjunto de teste para os melhores Sistemas de Inferéncia Fuzzy.

Como foi visto neste capitulo, os modelos de previsao propostos apresentaram bons
desempenhos de previsao, principalmente para 0s passos mais curtos. No proximo capitulo
serdo apresentadas as comparacOes entre as previsdes obtidas com os modelos
TWRNA(LM) e TWANFIS, com as previsdes obtidas com os modelos de referéncia
apresentados no Capitulo 4. Além das previsdes das velocidades, serdo apresentadas as
previsdes de geracdo obtidas através da curva de poténcia do aerogerador.
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CAPITULO 6
6. PREVISOES E COMPARACOES ENTRE OS MODELOS

Comparactes dos desempenhos dos modelos TWRNA(LM) e TWANFIS com os
desempenhos dos modelos de referéncia PERSISTENCIA e NEWREF para a estacdo de
MACAU serdo apresentadas agora. Os modelos TWRNA(LM) e TWANFIS foram
escolhidos por terem apresentado, na maioria dos casos, as menores médias do MAPE para
0S conjuntos de teste.

O critério de selecdo do periodo de previsdo foi baseado na escolha de meses
consecutivos que nao apresentavam falhas nos dados de velocidades. O periodo escolhido
para a avaliacdo dos modelos é formado pelas 8.016 velocidades médias horarias
correspondentes a hora zero (UTC) do dia 01/01/2009 até a hora 23 (UTC) do dia
30/11/2009.

6.1 Previsdes de velocidades para MACAU

A Figura 6.1 é o grafico dos diferentes valores do MAE para 0s passos de previsao

variando entre 1 e 24 horas.
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] it I S ot TWANFIS

i

MAE [rmis]

0.5

]

S A R
12 3 4 5 B 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Passo da previsdo [h)]

Figura 6.1 — MAE das previsdes de velocidades em MACAU.



74

As Figura 6.2 e Figura 6.3 sdo dos valores do RMSE e MAPE para 0s passos de

previsdo variando de 1 a 24 horas.
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Figura 6.2 — RMSE das previsoes de velocidades em MACAU.
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Figura 6.3 — MAPE das previsoes de velocidades em MACAU.

Observa-se, nos graficos do MAE, RMSE e MAPE, que os modelos TWRNA(LM) e

TWANFIS fornecem previsdes mais confiaveis do que os modelos de referéncia para todos
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0s passos de previsdo considerados. Os ganhos desses dois modelos em relagdo ao modelo
da PERSISTENCIA ficam ainda mais evidentes na Figura 6.4, bem como os ganhos do
modelo NEWREF. No sentido da esquerda para a direita, podem ser observados os ganhos
do MAE, RMSE e MAPE, para as previsoes de velocidades do vento em MACAU. Os
ganhos obtidos com os modelos propostos sdo consideraveis e, além disto, sdo maiores do
que aqueles obtidos com 0 modelo NEWREF para todos os passos de previsao. Observa-se,
no grafico do Gpers mare, que apenas para passos entre 8 e 17 horas o modelo NEWREF

possui um desempenho superior ao do modelo da PERSISTENCIA.
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Figura 6.4 — Ganhos das previsdes de velocidades em MACAU.

Os graficos dos erros quadraticos acumulados para as previsdes com passos iguais a
uma hora, doze horas e vinte e quatro horas, respectivamente, sdo apresentados nas Figura
6.5, Figura 6.6 e Figura 6.7. A analise destes graficos € bastante importante, pois pode-se
visualizar de forma clara a evolucdo das previsdes ao longo do tempo para um determinado
modelo de previsdo, ou seja, os graficos dos erros quadraticos acumulados permitem que
se analise de forma qualitativa o comportamento dos modelos de previsdo. A inclinagao
(tendéncia) destes graficos permite identificar a qualidade das previsdes. Quanto menor for
a inclinagdo, melhores serdo as previsoes obtidas com um determinado modelo de previsao
ao longo de determinado periodo. Observa-se, na Figura 6.6, que 0s erros de previsdo

obtidos para o passo de 12 horas sdo mais acentuados nos periodos de fortes ventos (faixas
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nas quais a inclinacdo dos gréficos é mais acentuada). Este comportamento é observado

mais claramente nos modelos de referéncia.

1

Erro gquadrético acurmulado [m2/s?]

Figura 6.5 — Erros quadraticos acumulados das previsfes de velocidades em MACAU

Erro quadratico acurnulado [rm2/s2]

Figura 6.6 — Erros quadraticos acumulados das previsoes de velocidades em MACAU
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Figura 6.7 — Erros quadraticos acumulados das previsdes de velocidades em MACAU
com passo de 24 horas.

Os gréaficos dos erros quadraticos acumulados confirmam que, para MACAU, o0s
modelos TWRNA(LM) e TWANFIS fornecem, em média, previsdes de velocidades de
ventos muito mais confidveis do que aquelas obtidas com os modelos de referéncia,
principalmente as previsfes com passos mais curtos.

Os diagramas de dispersédo para os passos de previsdo iguais a uma hora, doze horas
e vinte e quatro horas sdo apresentados nas Figura 6.8, Figura 6.9 e Figura 6.10,
respectivamente. Ao realizar uma andlise visual destes diagramas (analise qualitativa),
deve-se observar 0 qudo proximos da reta estdo os pontos. Quanto mais proximos da reta
estiverem estes pontos, melhor serd 0 modelo de previsdo. Juntamente com os diagramas
de dispersdo, sdo apresentados também os coeficientes de determinagio R® para cada um
dos modelos. O coeficiente de determinacdo é um indicador quantitativo da qualidade do

modelo de previsao (quanto mais proximo da unidade, melhor a qualidade do modelo).
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Figura 6.8 — Diagramas de disperséo das previsoes de velocidades em MACAU com passo
de 1 hora.
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Figura 6.9 — Diagramas de disperséo das previsoes de velocidades em MACAU com passo
de 12 horas.
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Figura 6.10 — Diagramas de dispersdo das previsdes de velocidades em MACAU com
passo de 24 horas.

Os diagramas de dispersdo e os coeficientes de determinacédo apresentados para as
previsdes de velocidades da estacdo de MACAU confirmam a qualidade dos modelos
propostos, sobretudo para as previsdes de velocidades com passo de uma hora. Para passos
de 12 horas, observa-se que as previsdes do modelo NEWREF sdo praticamente iguas a
média, pois o coeficiente de autocorrelacdo para velocidades deslocadas de 12 horas é
muito pequeno.

Todos os critérios de analises realizados para as previsdes das velocidades de vento
em MACAU refletiram o excelente desempenho dos modelos TWRNA(LM) e TWANFIS
quando confrontados com os modelos de referéncia PERSISTENCIA e NEWREF.
Observou-se que, para passos diferentes, a qualidade das previsdes obtidas com os modelos
de referéncia € fortemente influenciada pela autocorrelagdo da série temporal. J& para os
modelos propostos, observou-se que a aplicacdo da Transformada Wavelet melhora
significativamente as previsdes para 0s passos de até 12 horas. A partir dai, pode-se dizer
que o MAE, RMSE e MAPE dos previsores propostos praticamente ndo variam com 0

passo da previsao.
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6.2 Previsdes de geracdo para MACAU

A Figura 6.11 é a curva de poténcia utilizada para realizar as simula¢@es da geragdo
desta dissertacdo. Trata-se de um aerogerador com poténcia nominal de 2.300 kW e a

altura do cubo é igual a 57 metros.
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Figura 6.11 — Curva de poténcia do aerogerador.

Os fabricantes fornecem apenas alguns pontos da curva (pontos em vermelho),
logo, para estimar a poténcia (em kW) fornecida para qualquer velocidade compreendida
entre as velocidade de cut-in (igual a 2 m/s para o aerogerador considerado) e cut-out
(igual a 25 m/s para o aerogerador considerado), realizou-se a parametrizacdo da curva em
quatro intervalos através da minimizacdo do MSE (método dos minimos quadrados). A
parametrizagdo utilizada é definida em (6.1).

P(v)=0 parav <2m/s;
P(v) =0,93v® +6,42v* —40,18v + 51,89 para 2m/s <v <10m/s;

P(v) =1,31v® —87,17v? +1774,24v —9109,71 para 10m/s <v <16m/s;
P(v)=2310 para v>16m/s.

(6.1)

As velocidades previstas séo referentes a altura de 10 metros, logo, para realizar as

previsbes de geracdo foi necessario utilizar (2.12) para converter as velocidades para a
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altura do cubo do aerogerador, que é igual a 57 metros. O coeficiente de rugosidade do
terreno (o) utilizado foi igual a 0,10.

Com exce¢do do MAPE, os mesmos critérios utilizados para a analise do
desempenho das previsdes de velocidades também sdo utilizados para as previsdes de
geracdo obtidas através da curva de poténcia do aerogerador. As Figura 6.12 e Figura 6.13

sdo do MAE e o RMSE das previsoes de geracao, respectivamente.

MACAU - 01/01/2009 a 30/11/2009
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Figura 6.12 — MAE das previsdes de geracdo de MACAU.
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Figura 6.13 — RMSE das previsdes de geracao de MACAU.
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Na Figura 6.14, sdo apresentados 0s ganhos das geracGes obtidas através da curva

de poténcia utilizando-se as velocidades previstas (convertidas para a altura do cubo do
aerogerador) com os modelos TWRNA(LM), TWANFIS e NEWREF, em relacdo ao modelo

da PERSISTENCIA.
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B0 B fr
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13 24
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Figura 6.14 — Ganhos das previsdes de geracdo de MACAU.

Os gréaficos dos erros quadraticos acumulados para as previsdes de geracdo com

passo de uma hora séo apresentados na Figura 6.15.
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Figura 6.15 — Erros quadraticos acumulados das previsdes de geracdo de MACAU com
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Nas Figura 6.16 e Figura 6.17 apresentam-se os graficos dos erros quadraticos
acumulados para as previsoes de geracdo com passos 12 e 24 horas, respectivamente. Os
gréficos dos erros quadraticos acumulados apresentam claramente o efeito que os erros de
previsdo de velocidades causam nas previsdes de geracdo (aumento na inclinacdo dos

graficos), principalmente nos meses em que a média das velocidades é maior.
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(Passo da previsdo = 12 h)

Figura 6.16 — Erros quadraticos acumulados das previsGes de geracdo de MACAU com
passo de 12 horas.
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Figura 6.17 — Erros quadraticos acumulados das previsdes de geracdo de MACAU com
passo de 24 horas.
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Os diagramas de dispersdo e os coeficientes de determinagdo R? para as previsoes
de geracdo com passos iguais a 1, 12 e 24 horas séo apresentados nas Figura 6.18, Figura
6.19 e Figura 6.20, respectivamente. Nestes diagramas, 0 eixo horizontal representa as

geracOes obtidas através da curva de poténcia utilizando-se as velocidades medidas.
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Figura 6.18 — Diagramas de dispersdo das previsdes de geracdo de MACAU com passo
de 1 hora.
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Figura 6.19 — Diagramas de disperséo das previsdes de geracdo de MACAU com passo
de 12 horas.
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Figura 6.20 — Diagramas de disperséo das previsdes de geracdo de MACAU com passo
de 24 horas.

O coeficiente de determinacdo para as previsdes de 12 horas com o modelo da
PERSISTENCIA possui um valor negativo (ver Figura 6.19). Isto acontece quando este
modelo é utilizado para realizar previsGes com passos para 0s quais a autocorrelacdo da
série temporal seja pequena. Nestes casos, a variancia dos erros de previsdo para o modelo
da PERSISTENCIA se torna maior do que a média global dos dados observados.

As frequéncias percentuais dos erros de geragdo obtidos com os quatro modelos
considerados neste capitulo sdo apresentadas na Figura 6.21. No grafico a esquerda, pode-
se visualizar o percentual dos erros de previsao positivos (quando o valor real € maior do
que o valor previsto). Observa-se que a maioria dos erros das previsées obtidas com o
modelo TWRNA(LM) sdo sempre positivos para todos 0s passos considerados, pois a
frequéncia percentual é maior do que 50%. O comportamento inverso é observado para as
previsdes do modelo NEWREF. Para o modelo da PERSISTENCIA, a maioria dos erros de
previsdo sdo negativos, exceto para 0s passos iguais a 8 e 9 horas. Para 0 modelo
TWANFIS, a maioria dos erros sdo negativos para 0s passos entre 8 e 13 horas. No grafico
a direita, observa-se a frequéncia dos erros de previsdo nulos (previsdes exatas). Apesar do
modelo da PERSISTENCIA realizar um maior ndmero de previsdes exatas para passos

maiores, este ndo é o melhor modelo de previséo.
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Figura 6.21 — Frequéncia percentual dos erros de geracdo de MACAU.

Para finalizar o capitulo, sdo apresentadas, nas Figura 6.22 e Figura 6.23, as curvas
de geracdo obtidas a partir das previsdes com passo de uma hora para dois dias distintos.
Os graficos da Figura 6.22 sdo referentes ao dia 01/01/2009, e os gréaficos da Figura 6.23,
referentes ao dia 01/06/2009. Optou-se pela escolha destes dois dias porque o primeiro
deles se encaixa no periodo de fortes ventos, ja o segundo, se encaixa no periodo de ventos

mais fracos.
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Figura 6.22 — PrevisOes de gera¢éo de MACAU para o dia 01/01/2009.
(Passo de 1 hora).
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Figura 6.23 — PrevisOes de geracdo de MACAU para o dia 01/06/2009.

(Passo de 1 hora).
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Todas as andlises realizadas neste capitulo para a MACAU também foram

aplicadas a MOSSORO e NATAL. As figuras apresentando os resultados das analises para

estas duas localidades podem ser visualizadas no Apéndice A.
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CAPITULO 7
7. CONCLUSOES E PROPOSTAS PARA TRABALHOS FUTUROS

Neste capitulo sdo apresentadas as conclusdes gerais do trabalho realizado,
incluindo comentarios sobre os modelos desenvolvidos e os resultados obtidos. Além disto,
sdo identificados alguns aspectos relevantes que podem originar novos trabalhos de

pesquisa.

7.1 Conclusdes

Os modelos desenvolvidos basearam-se na analise de séries temporais de
velocidades de vento através da inteligéncia computacional. Os horizontes de previsdo
apresentados enquadram-se no horizonte temporal de curto prazo, para previsdes de até
vinte e quatro horas e uma discretiza¢do em intervalos de uma hora. Entende-se que este é
um horizonte adequado para subsidiar o planejamento da operacdo dos sistemas
hidrotérmico e edlico, uma vez que a entrada em operacdo de uma usina termoelétrica
precisa ser definida com antecedéncia e o tempo de partida varia de uma planta para outra.

Boas previsdes foram obtidas com os modelos desenvolvidos para todos os 24
passos de previsdo considerados, principalmente para aqueles passos mais curtos.
Verificou-se que a qualidade das previsGes € fortemente influenciada pela autocorrelacdo
das séries temporais, tanto para os modelos de referéncia adotados quanto para os modelos
que ndo utilizam as wavelets.

A decomposicdo das séries de velocidades empregando wavelets possibilitou a
extracdo de informagBes relevantes sobre o comportamento ciclico e sazonal das
velocidades dos ventos. Estas informagdes contidas nos sinais de aproximagéo e detalhes
foram decisivas para a melhoria significativa das previsdes com os modelos que utilizam
estes sinais como entradas.

Com base nas analises realizadas, verificou-se que o comportamento dos erros de
previsdo com a variacdo dos passos de previsdo foi bastante semelhante para MACAU,
MOSSORO e NATAL. A metodologia adotada para o desenvolvimento dos modelos foi
bastante adequada, 0 que garantiu previsdes bastante confidveis estatisticamente, ou seja,

0s modelos adquiriram capacidade de generalizacdo sem se tornarem tendenciosos.
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7.2 Propostas para trabalhos futuros

Mesmo os modelos de previsdo desenvolvidos tendo dado bons resultados eles

ainda podem ser aprimorados. Este processo de melhoria continua deve ser realizado com

0 intuito de se obter previsdes mais confiaveis, reduzindo assim o0s erros entre os valores

previstos e reais. E fato que sempre existird um erro entre os valores previsto e verificado,

portanto, o desafio sera sempre buscar minimizé-lo.

Como sugestéo de trabalhos futuros voltados para o melhoramento dos modelos se

apresentam:

Em virtude do aumento dos dados relativos a geracao edlica no Brasil, é oportuno
desenvolver modelos de previsdo que fornecam como saida a poténcia gerada.
Desta forma, a curva de poténcia estaria incorporada aos parametros do proprio
modelo (por exemplo, nos pesos sinapticos das redes neurais);

Buscar uma base de dados mais extensa com o objetivo de desenvolver os modelos
para previsoes sazonais;

Utilizar dados anemométricos medidos em alturas mais elevadas, de modo que a
influéncia da rugosidade do terreno seja reduzida;

Investigar a utilizacdo de wavelets como func¢des de ativacdo para os neurdnios das
redes neurais;

Desenvolver modelos multivariados, considerando outras séries temporais como
dados de entrada;

Estudar o funcionamento das redes neurais do tipo Reservoir Computing e

pesquisar a possibilidade de desenvolver modelos hibridos.
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APENDICE A

As figuras deste apéndice sdo referentes as previsdes de velocidades de ventos e
geragio eolica para MOSSORO e NATAL. Para realizar as previsdes de geragio,
utilizaram-se 0s mesmos pardmetros aplicados as geracbes de MACAU, ou seja, mesma
curva de poténcia, mesma altura do hub e mesmo coeficiente de rugosidade de terreno (ver

Secdo 6.2).

A.1 Previsdes para MOSSORO

Para MOSSORO, o periodo escolhido para a avaliagdo dos modelos é formado
pelas 4.416 velocidades médias horarias correspondentes a hora zero (UTC) do dia
01/03/2009 até a hora 23 (UTC) do dia 31/08/20009.
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Figura A.1 — MAE das previsdes de velocidades em MOSSORO.
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Figura A.2 — RMSE das previses de velocidades em MOSSORO.
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Figura A.3 — MAPE das previses de velocidades em MOSSORO.
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Figura A.4 — Ganhos das previsdes de velocidades em MOSSORO.
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Figura A.6 — Erros quadréaticos acumulados das previsées de velocidades em MOSSORO

com passo de 12 horas.
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Figura A.7 — Erros quadréaticos acumulados das previsées de velocidades em MOSSORO
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Figura A.20 — Frequéncia percentual dos erros de geragdo de MOSSORO.
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Figura A.21 — Previsdes de geracdo de MOSSORO para o dia 01/03/2009.

(Passo de 1 hora).
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Figura A.22 — Previsdes de geracdo de MOSSORO para o dia 01/08/2009.

A.2 Previsdes para NATAL
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Figura A.23 — MAE das previsdes de velocidades em NATAL.
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Figura A.24 — RMSE das previsoes de velocidades em NATAL.
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Figura A.25 — MAPE das previsoes de velocidades em NATAL.
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Figura A.28 — Erros quadraticos acumulados das previsdes de velocidades em NATAL
com passo de 12 horas.

NATAL - 01/10/2009 a 310372010

6000 T T T T T T T T
—FPERS : : : : :
— NEWREF
soon H —— TWWRMALMY 4
_ — TWANFIS
N\’.O H
E : : : 5 5 5 5 5
Ea‘lDDD ............. B LR e [ERERETETRRR e RREREY TR L o
= : : : : : . : .
=
= .
£ : : : : : : : :
§ 3000 .............. e ............. s S Lot S .......... a
o : . : : : :
=2
o : : : d . : .
o000k TR R S L AP e L ERRRRREE .
= : : : : : : :
2
”‘j B : : : . : .
OO R e DOV g ............. P PPN ............. SRR 4
i} 1 ] i ] i ] ] i
500 1000 1500 2000 2500 3000 3800 4000

Mamero de horas previstas
(Passo da previsdo = 24 h)

Figura A.29 — Erros quadraticos acumulados das previsoes de velocidades em NATAL
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Figura A.30 — Diagramas de disperséao das previsoes de velocidades em NATAL com
passo de 1 hora.
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Figura A.31 — Diagramas de dispersao das previsoes de velocidades em NATAL com
passo de 12 horas.
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Figura A.32 — Diagramas de dispersao das previsoes de velocidades em NATAL com

passo de 24 horas.
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Figura A.33 — MAE das previsoes de geracao de NATAL.
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Figura A.34 — RMSE das previsdes de geracao de NATAL.
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Figura A.35 — Ganhos das previsdes de geracdo de NATAL.
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Figura A.37 — Erros quadraticos acumulados das previsdes de geracdo de NATAL com
passo de 12 horas.
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Figura A.38 — Erros quadraticos acumulados das previsdes de geracdo de NATAL com

passo de 24 horas.
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Figura A.40 — Diagramas de dispersao das previsdes de geracdo de NATAL com passo de

12 horas.
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Figura A.41 — Diagramas de dispersao das previsoes de gera¢ao de NATAL com passo de
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Figura A.42 — Frequéncia percentual dos erros de geracdo de NATAL.
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Figura A.43 — Previsoes de geracédo de NATAL para o dia 01/10/2009.
(Passo de 1 hora).
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Figura A.44 — Previsdes de geracdo de NATAL para o dia 01/03/2010.
(Passo de 1 hora).
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