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RESUMO: A previsão de ventos é de extrema importância para auxiliar nos estudos de 

planejamento e programação da operação da geração eólica. Vários estudos já 

comprovaram que o potencial eólico brasileiro, principalmente no Nordeste, onde os 

ventos apresentam uma importante característica de complementaridade em relação às 

vazões do rio São Francisco, pode contribuir significativamente para o suprimento de 

energia elétrica. Entretanto, o uso das forças dos ventos para produção de energia elétrica 

produz alguns inconvenientes, tais como, incertezas na geração e a dificuldade no 

planejamento e operação do sistema elétrico. Este trabalho propõe e desenvolve modelos 

de previsões de velocidades médias horárias de ventos e geração eólica a partir de técnicas 

de Redes Neurais Artificiais, Lógica Fuzzy e Análise Wavelet. Os modelos foram ajustados 

para realizar previsões com passos variáveis de até vinte e quatro horas. Para as previsões 

realizadas com alguns dos modelos desenvolvidos, os ganhos em relação aos modelos de 

referência foram da ordem de 80% para as previsões com passo de uma hora. Os resultados 

demonstraram que a Análise Wavelet aliada às ferramentas de inteligência artificial 

fornecem previsões muito mais confiáveis do que aquelas obtidas com os modelos de 

referência, principalmente para as previsões com passos de 1 – 6 horas. 
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ABSTRACT: Wind forecasting is extremely important to assist in planning and 

programming studies for the operation of wind power generation. Several studies have 

shown that the Brazilian wind potential can contribute significantly to the supply of 

electricity, especially in the Northeast, where the winds have an important feature of 

complementarity in relation to the flows of the San Francisco River. However, the use of 

of wind to generate electricity has some drawbacks, such as uncertainties in generation and 

some difficulty in planning and operation of the power system. This work proposes and 

develops models to forecast hourly average wind speeds and wind power generation based 

on techniques of Artificial Neural Networks, Fuzzy Logic and Wavelets. The models were 

adjusted for forecasting with variable steps up to twenty-four hours ahead. The gain of 

some models developed in relation to the reference models were approximately 80% for 

forecasts in a period of one hour ahead. The results showed that the wavelet analysis 

combined with artificial intelligence tools provide forecasts more reliable than those 

obtained with the reference models, especially for forecasts in a period of 1 to 6 hours 

ahead. 
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CAPÍTULO 1 

1. INTRODUÇÃO 

Neste capítulo, o problema em estudo é contextualizado e caracterizado, os 

objetivos são descritos, e a estrutura da presente dissertação é apresentada. 

1.1 Caracterização do Problema  

Dentre todas as fontes alternativas de energia exploradas atualmente, a energia 

eólica é, sem dúvida, uma das mais bem sucedidas. Uma razão para este fato é a política de 

incentivo feita por vários países, assegurando a compra da energia elétrica produzida à 

partir das fontes eólicas, ainda que ela não ofereça preços competitivos. A Alemanha e a 

Dinamarca foram os primeiros países a adotar as políticas de incentivo ao desenvolvimento 

da geração eólio-elétrica, seguidos por diversos países, inclusive pelo Brasil, com a criação 

do “PROINFA”, Programa de Incentivo às Fontes Alternativas de Energia Elétrica [1]. 

O avanço tecnológico, tanto em pesquisa quanto em desenvolvimento, está fazendo 

com que ocorra uma rápida redução no custos de instalação e produção da energia elétrica 

à partir da energia dos ventos [1]. Este constante desenvolvimento tecnológico torna 

possível a concorrência das fontes eólicas com as tradicionais fontes de geração térmica, 

uma vez que a energia eólica proporciona a possibilidade de geração de energia elétrica em 

grandes blocos [2]. 

A energia disponibilizada pelos ventos é gratuita, logo, toda a energia elétrica 

gerada a partir de fontes eólicas é bem-vinda. Entretanto, a intermitência dos ventos é o 

grande desafio a ser enfrentado para que a energia eólica se torne uma fonte confiável para 

a produção de energia elétrica em grandes blocos. A inserção em larga escala de parques 

eólicos nos sistemas elétricos de transmissão e distribuição exige respostas para diversas 

questões, tais como, padrões para interconexão, qualidade de energia, capacidade dos 

sistemas de transmissão e suas futuras expansões, estabilidade e confiabilidade dos 

sistemas de potência, entre outras. 

Com o aumento da capacidade de geração eólica instalada, os operadores do 

sistema elétrico devem saber como lidar com esse importante montante de energia 

flutuante. Portanto, uma área de pesquisa de extrema importância para o setor elétrico está 

relacionada com as previsões de curto prazo para a geração eólica. As escalas de tempo 



2 

 

 

envolvidas nas previsões de curto prazo são da ordem de dias (para o horizonte de 

previsão) e de minutos a horas (para o passo da previsão) [3]. 

A previsão de velocidades dos ventos desempenha um papel fundamental para 

enfrentar os desafios relacionados com a geração eólica. Estas previsões fazem parte da 

previsão do tempo há muitas décadas e são utilizadas para navegação, orientação de 

mísseis, controle de tráfego aéreo e lançamento de satélites [4]. Nas duas últimas décadas, 

o vento está sendo utilizado em larga escala para geração de energia elétrica e a previsão 

de velocidades dos ventos ganhou uma atenção especial. A previsão de ventos para 

estações meteorológicas é muito diferente da previsão de ventos para a geração de energia. 

Para os parques eólicos, a previsão de ventos no curto prazo devem ser precisas para que se 

mantenha a estabilidade na geração de energia elétrica [5]. 

Os sistemas de previsão de geração eólica, em países onde existe uma forte 

participação de energia eólica na matriz elétrica, representam hoje em dia uma grande 

parcela de investimentos em centros de despacho. Notadamente, podem ser citados os 

seguintes países: Espanha, Alemanha e Dinamarca. Nestes países, existem diversos centros 

de pesquisa trabalhando continuamente para o desenvolvimento de modelos para previsão 

de geração eólica em curto prazo. 

A previsão de ventos e geração eólica é de extrema importância para auxiliar nos 

estudos de planejamento e programação da operação da geração do sistema hidrotérmico e 

eólico. Segundo [6], a previsão eficiente de ventos e geração eólica pode contribuir de 

forma positiva das seguintes maneiras: facilitando a comercialização no mercado de 

energia elétrica; subsidiando na solução do problema de otimização do despacho da 

geração do sistema hidrotérmico e eólico; e fornecendo dados para os sistemas de controles 

dos parques eólicos de geração. 

1.2 Objetivos 

O objetivo principal deste trabalho é desenvolver diversos modelos de previsão de 

velocidades de ventos e geração de energia elétrica a partir das previsões de velocidades 

utilizando-se a curva de potência dos aerogeradores. Para o desenvolvimento dos modelos 

de previsão, são utilizadas as Redes Neurais Artificiais (RNA), Lógica Fuzzy (LF) e 

Análise Wavelet. 

Os modelos propostos realizam previsões das velocidades médias horárias com 

passos de previsão que variam de uma até vinte e quatro horas. Todos os modelos 
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desenvolvidos são univariados, ou seja, as variáveis de entrada e saída do modelo são 

apenas as velocidades dos ventos. A modelagem univariada foi escolhida devido à escassez 

de dados relacionados a geração eólica no Brasil. 

Pretende-se, com este trabalho, contribuir para o desenvolvimento inicial de uma 

ferramenta computacional eficaz e confiável para a realização de previsões da geração 

eólio-elétrica de curto prazo. Para isto, optou-se por realizar o desenvolvimento dos 

modelos utilizando séries temporais de ventos da região Nordeste do Brasil, por ser uma 

região que apresenta condições de vento extremamente favoráveis. 

1.3 Estrutura da dissertação  

A estrutura desta dissertação é formada por sete capítulos. O primeiro deles é esta 

introdução. O segundo capítulo apresenta o potencial eólico da região Nordeste, trata da 

geração da energia elétrica a partir dos ventos e traz uma breve revisão bibliográfica sobre 

alguns modelos de previsão de ventos e geração eólica. No terceiro capítulo, são 

apresentadas as ferramentas de inteligência artificial utilizadas para o desenvolvimento dos 

modelos propostos nesta dissertação, e também as wavelets. O capítulo quatro trata dos 

critérios para avaliação dos modelos desenvolvidos. No quinto capítulo são apresentadas as 

topologias e os ajustes dos modelos propostos. O sexto capítulo traz os resultados das 

previsões realizadas com os melhores modelos desenvolvidos e os compara com resultados 

obtidos com modelos de referência. Com o sétimo capítulo a dissertação é concluída, 

fazendo um breve resumo dos resultados e contribuições dadas. Além disso, são 

apresentadas propostas para trabalhos futuros com os quais se possa dar continuidade às 

pesquisas no contexto aqui desenvolvido. 
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CAPÍTULO 2 

2. POTENCIAL EÓLICO E REVISÃO BIBLIOGRÁFICA 

Este capítulo apresenta, na primeira seção, uma descrição do potencial eólico da 

região Nordeste do Brasil. Em seguida, na segunda seção, são apresentados os conceitos 

básicos sobre a geração de energia elétrica a partir da energia dos ventos. A terceira e 

última seção traz uma breve revisão bibliográfica sobre alguns modelos de previsão de 

ventos e geração eólica desenvolvidos no Brasil e no mundo. 

2.1 Potencial Eólico no Nordeste Brasileiro 

A distribuição geral dos ventos sobre o Brasil é controlada pelos aspectos da 

circulação geral planetária da atmosfera próxima, conforme se apresenta na Figura 2.1. 

Dentre esses aspectos, sobressaem os sistemas de alta pressão Anticiclone Subtropical do 

Atlântico Sul e do Atlântico Norte e a faixa de baixas pressões da Depressão Equatorial 

[7]. 

 

Figura 2.1 – Distribuição geral dos ventos. Fonte: [7]. 

 

A posição média da Depressão Equatorial estende-se de oeste a leste ao longo da 

região Norte do Brasil e sobre o Oceano Atlântico adjacente. Ela coincide com a 

localização e orientação da Bacia Amazônica, no centro da qual existe uma faixa 

persistente de baixas pressões. A Depressão Equatorial é geralmente uma zona de 

pequenos gradientes de pressão e ventos fracos. Ao norte da Depressão Equatorial os 

ventos são persistentes de leste a nordeste. Ao sul, os ventos são persistentes de leste a 

sudeste entre a Depressão Equatorial e o Anticiclone Subtropical Atlântico, o qual tem uma 

posição média anual próxima a 30
o
 S, 25

o 
W. Esse perfil geral de circulação atmosférica 
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induz ventos de leste ou nordeste sobre o território brasileiro ao norte da Bacia Amazônica 

e no litoral nordeste. Os ventos próximos à superfície são geralmente fracos ao longo da 

Depressão Equatorial, porém aumentam de intensidade ao norte e ao sul dessa faixa. A 

área entre a Depressão Equatorial e a latitude de 10
o 

S é dominada pelos ventos alísios de 

leste a sudeste. Ao sul da latitude 10
o 

S, até o extremo sul brasileiro, prevalecem os efeitos 

ditados pela dinâmica entre o centro de alta pressão Anticiclone Subtropical Atlântico, os 

deslocamentos de massas polares e a Depressão do Nordeste da Argentina – centro de 

baixas pressões a leste dos Andes [7]. 

Esse perfil geral de circulação atmosférica encontra variações significativas na 

mesoescala e na microescala, por diferenças em propriedades de superfícies, tais como 

geometria e altitude de terreno, vegetação (Figura 2.2) e distribuição de superfícies de terra 

e água. Esses fatores atuantes nas escalas menores podem resultar em condições de vento 

locais que se afastam significativamente do perfil geral da larga escala da circulação 

atmosférica [7]. 

 

 

Figura 2.2 – Modelo de relevo e vegetação do Brasil. Fonte: [7]. 

 

A Zona Litorânea Norte-Nordeste é definida como a faixa costeira com cerca de 

100km de largura, que se estende entre o extremo norte da costa do Amapá e o Cabo de 

São Roque, no Rio Grande do Norte. Nessa região, os ventos são controlados 

primariamente pelos alísios de leste e brisas terrestres e marinhas. Essa combinação das 
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brisas diurnas com os alísios de leste resulta em ventos médios anuais entre 5 m/s e 7,5 m/s 

na parte norte dessa região (litorais do Amapá e Pará) e entre 6 m/s a 9 m/s em sua parte 

sul, que abrange os litorais do Maranhão, Piauí, Ceará e Rio Grande do Norte. As 

velocidades são maiores na parte sul devido a dois principais fatores: (1) os ventos alísios 

geralmente tornam-se mais fortes à medida que se afastam da Depressão Equatorial; (2) as 

brisas marinhas são significativamente acentuadas ao sul dessa região em razão dos 

menores índices de vegetação e de umidade do solo, fazendo que a superfície do solo atinja 

temperaturas mais elevadas durante as horas de sol e, conseqüentemente, acentuando o 

contraste de temperaturas terra-mar e as brisas marinhas resultantes. As maiores 

velocidades médias anuais de vento ao longo dessa região estão ao norte do Cabo de São 

Roque, abrangendo os litorais do Rio Grande do Norte e Ceará, onde circulação de brisas 

marinhas é especialmente intensa e alinhada com os ventos alísios de leste-sudeste. 

Adicionalmente, ocorrem áreas em que os ventos são acentuados por bloqueios ao 

escoamento causados por montanhas na parte continental. Entretanto, o vento médio anual 

decresce rapidamente à medida que se desloca da costa para o interior, devido ao aumento 

de atrito e rugosidade de superfície e ao enfraquecimento da contribuição das brisas 

marinhas [7]. 

As Elevações Nordeste-Sudeste são definidas como as áreas de serras e chapadas 

que se estendem ao longo da costa brasileira, desde o Rio Grande do Norte até o Rio de 

Janeiro, a distâncias de até 1.000 km da costa. Velocidades médias anuais de 6,5 m/s até 

8m/s devem ser encontradas nos cumes das maiores elevações da Chapada Diamantina e 

da Serra do Espinhaço. Essas áreas de maiores velocidades ocorrem em forma localizada, 

primariamente devido ao efeito de compressão vertical do escoamento predominante em 

larga escala, que é leste-nordeste, quando ultrapassa a barreira elevada das serras. Os 

ventos anuais mais intensos são geralmente encontrados nas maiores elevações, onde o 

efeito de compressão é mais acentuado. No entanto, o escoamento atmosférico é bastante 

complexo nessa região, existindo outras características locais com influência adicional, 

resultantes de uma combinação de fatores relacionados à topografia e ao terreno [7]. 

O potencial para a produção de energia elétrica através da fonte eólica, já 

identificado na Região Nordeste, pode dar uma contribuição significativa ao suprimento de 

energia elétrica da região, como complementar ou substituto às alternativas hidroelétricas e 

térmicas. Essa alternativa se tornou uma realidade na perspectiva atual da utilização de até 

1.100 MW de geração eólica na região Nordeste, devido ao Programa de Incentivo às 
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Fontes Alternativas de Energia Elétrica (PROINFA) e à recente autorização de estudos 

dada pela ANEEL, de aproximadamente 4.800 MW na região [8]. 

Um dos estudos realizados pelo Centro de Referência para Energia Solar e Eólica – 

CRESESB/CEPEL, denominado de Atlas do Potencial Eólico Brasileiro [7], estimou um 

potencial eólico da ordem de 75,0 GW, conforme apresentado na Figura 2.3. Este potencial 

representa quase a metade de todo potencial estimado no Brasil por este estudo. 

 

 

 
Figura 2.3 – Potencial eólico estimado para a região Nordeste do Brasil. Fonte: [7]. 

 

 

2.2 Geração de Energia Eólio-Elétrica 

Um aerogerador é composto basicamente pela turbina eólica, que captura a energia 

cinética dos ventos e a transforma em energia mecânica em um eixo que está 

mecanicamente acoplado ao rotor de um gerador elétrico. A turbina é montada no alto de 

uma torre com o objetivo de aumentar a captação da energia dos ventos. De acordo com a 

capacidade de geração de energia elétrica desejada, são instalados diversos aerogeradores 

em um determinado local para a formação de um parque eólico. Obviamente, nos locais em 
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que a velocidade dos ventos é elevada e relativamente constante, a produção de energia 

será maior ao longo do ano [9]. 

Os aerogeradores disponíveis atualmente no mercado podem ser agrupados em dois 

grupos básicos. O primeiro grupo é composto pelos aerogeradores que operam com 

velocidade de rotação constante, ou seja, utilizam a filosofia “Dinamarquesa” [10]. Neste 

caso, o gerador é diretamente acoplado à rede elétrica utilizando somente um soft-starter 

para limitar a corrente durante a etapa de conexão. Já no segundo grupo, os aerogeradores 

operam com velocidade de rotação variável, ou seja, seus rotores podem girar em qualquer 

velocidade dentro da faixa admitida. Isto é possível, graças à inclusão de conversores 

eletrônicos de potência para o acoplamento do gerador elétrico com a rede elétrica, 

melhorando o rendimento na conversão da energia dos ventos [11]. 

Em todos os casos, um transformador elevador compatibiliza os níveis de tensão da 

geração do aerogerador com o nível de tensão da rede de distribuição, a qual normalmente 

opera entre 13,8 e 34,5 kV. 

Um diagrama esquemático dos principais componentes de um aerogerador com 

filosofia construtiva “Dinamarquesa” é apresentado na Figura 2.4. 

 

 

Figura 2.4 – Principais componentes de um aerogerador de velocidade de rotação 

constante. Fonte: [2]. 
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Na Figura 2.5 apresenta-se um diagrama do esquema de funcionamento de um 

aerogerador de velocidade de rotação variável. 

 

 

Figura 2.5 – Esquema de funcionamento de um aerogerador de rotação variável. Fonte: 

[2]. 

 

 

2.2.1 Relação entre a velocidade e a potência dos ventos 

A energia cinética (em joules) de uma massa de ar m (kg) se movimentando com 

uma velocidade v (m/s) é dada pela seguinte equação: 

 

2

2

1
mvEc  . (2.1) 

 

Sendo A a área varrida pelas pás da trubina (m
2
) e ρ a densidade volumétrica do ar 

(kg/m
3
), então a vazão mássica do ar em quilogramas por segundo é ρAv , e a potência 

mecânica do vento à montante do aerogerador é dada pela seguinte equação (em watts): 

 

3

2

1
AvPmec  . (2.2) 
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A comparação do potencial de geração de dois ou mais locais candidatos à 

instalação de um parque eólico pode ser feita através da “potência específica do vento” 

expressa em watts por metro quadrado de área varrida pelas pás rotativas. Esta potência 

também é comumente denominada “densidade de potência do local”, e é dada pela 

seguinte equação [9]: 

 

3

2

1
vPesp  . (2.3) 

 

Observa-se que esta potência varia linearmente com a densidade do ar que varre as pás do 

aerogerador e com o cubo da velocidade do vento. Na prática, as pás não podem extrair 

toda a potência disponível no vento à montante, pois parte desta potência continua 

disponível na massa de ar que flui à jusante do aerogerador com uma velocidade menor. 

 

2.2.2 Potência extraída dos ventos 

A potência que realmente é extraída pelas pás do rotor é dada pela diferença entre 

as potências à montante e jusante do aerogerador. Ela pode ser obtida através da seguinte 

equação [9]: 

 

 2

0

2

0
2

1
vvmP   , (2.4) 

 

em que, 

0P  = potência mecânica no rotor (W); 

m  = vazão mássica (kg/s); 

v   = velocidade do vento a montante das pás (m/s); 

0v  = velocidade do vento a jusante das pás (m/s). 

 

 Sob um ponto de vista macroscópico, a velocidade do ar é discontínua de v  para 
0v  

no plano das pás do rotor, com um valor médio igual à média aritmética dessas 

velocidades. A vazão mássica poderá ser obtida multiplicando-se esta velocidade média 
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pela densidade do ar e pela área varrida pelas pás do aerogerador. Portanto, a potência 

mecânica disponível no eixo do rotor será dada por [9]: 

 

   2

0

20

0
22

1
vv

vv
AP 







 
 . (2.5) 

 

 A Equação (2.5) pode ser reescrita na seguinte forma: 
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(2.6) 

 

 A potência (em watts) extraída pelas pás de um aerogerador geralmente é expressa 

como uma fração da velocidade do vento a montante como segue [9]: 

 

pCAvP 3

0
2

1
 , (2.7) 

 

em que, 

2
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v
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v
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C p . 
(2.8) 

 

 Comparando as Equações (2.2) e (2.7), pode-se dizer que pC  é a fração da potência 

do vento à montante que é extraída pelas pás do rotor e fornecida ao gerador elétrico. O 

restante da potência é dissipada no vento à jusante. O fator pC  é denominado coeficiente 

de potência do rotor ou eficiência do rotor. Na Figura 2.6 mostra-se que pC  é uma função 

que possui valor máximo igual a 0,593 quando a razão vv /0
 é igual a um terço. 

Na prática, os aerogeradores são projetados de modo que o máximo valor 

alcançável de pC  varia entre 0,4 e 0,5 para as turbinas modernas de alta velocidade, e entre 

0,2 e 0,4 para as turbinas de baixa velocidade. Considerando-se 0,5 como um valor prático 

para a máxima eficiência do rotor, a máxima potência específica na saída da turbina (em 

watts por metro quadrado de área varrida pelas pás) será dada por [9]: 
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max
4

1
vP  . (2.9) 

 

 

 

Figura 2.6 – Eficiência do rotor em função da razão das velocidades. 

 

 

2.2.3 Curva de Potência  

Na prática, o rendimento aerodinâmico das pás reduz ainda mais os valores teóricos 

obtidos para a eficiência do rotor. Para um aerogerador, existem ainda outras perdas, 

relacionadas com cada componente (rotor, transmissão, caixa multiplicadora e gerador). 

Além disto, o fato do rotor funcionar em uma faixa limitada de velocidade de vento 

também irá contribuir para reduzir a energia por ele captada, de acordo com a curva de 

potência do aerogerador. O coeficiente de potência real de um aerogerador é obtido através 

do produto da eficiência mecânica, eficiência elétrica e da eficiência aerodinâmica da 

turbina eólica. Todos estes três fatores dependem da velocidade do vento e da potência 

gerada [6]. 

A maneira mais simples de estimar a produção de energia elétrica através da 

geração eólica é utilizando a curva de potência. Esta curva relaciona a potência ativa 

fornecida pelo aerogerador com a velocidade do vento na altura do centro do eixo do rotor. 

Uma curva de potência típica de um aerogerador com potência nominal de 2.000 kW 

juntamente com a curva do coeficiente de potência são apresentadas na Figura 2.7. 
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Figura 2.7 – Curva de potência e curva do coeficiente de potência de um aerogerador. 

 

 

Observa-se, na Figura 2.7, que a potência ativa fornecida pelo gerador é nula para 

velocidades menores do que 2 m/s. Esta faixa de velocidades é denominada zona de cut-in. 

Para velocidades maiores do que 25 m/s (zona de cut-out) há um sistema de segurança que 

realiza o travamento mecânico da turbina para evitar danos causados pelos esforços 

mecânicos aos quais o aerogerador ficará submetido. A velocidade para a qual o 

aerogerador fornece a sua potência nominal é denominada velocidade nominal. 

 

2.2.4 Densidade do ar e velocidade do vento em função da altura  

A potência extraída dos ventos varia linearmente com a densidade do ar que “varre” 

as pás do aerogerador. A densidade do ar (ρ) varia com a pressão e a temperatura de acordo 

com a lei dos gases [9]: 

 

RT

p
 , (2.10) 

em que, 

p = pressão do ar; R = constante dos gases; T = temperatura na escala absoluta. 

A densidade volumétrica do ar ao nível do mar ( p = 1 atm e T = 288 K ) é igual a 

1,225 kg/m
3
. As curvas de potência são obtidas para essas condições, portanto, ao utilizá-

las para estimar a geração em uma determinada localidade, deve-se aplicar um fator de 

correção para levar em consideração as variações da densidade do ar para diferentes alturas 

e temperaturas. 
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A temperatura e a pressão variam com a altitude. O efeito combinado destas duas 

variáveis sobre a densidade do ar é dado pela seguinte equação (que é válida para uma 

elevação de até 6.000 m acima do nível do mar) [9]: 

 











 3048

297,0

225,1

mH

e , (2.11) 

 

em que, 
mH = elevação do local (m). 

O atrito entre a superfície terrestre e o vento tem como consequência um 

retardamento desse último, resultando numa variação de incremento da velocidade média 

do vento com a altura ao solo. O efeito da força de atrito vai-se desvanecendo até 

praticamente se anular a uma altura de aproximadamente 2.000 metros [8]. 

A variação da velocidade do vento depende, basicamente, da temperatura, da 

rugosidade, da topografia e dos obstáculos do local. De acordo com [9], a variação da 

velocidade de vento com a altura do solo pode ser expressa pela fórmula: 

 

  11 /)( hhvhv , (2.12) 

em que: 

1v  – velocidade na altura 1h  (conhecida); 

)(hv  – velocidade na altura h ; 

h  – altura para a velocidade )(hv ; 

1h  – altura da velocidade 1v ; 

  – coeficiente dependente da natureza do terreno. 

 

A Tabela 2.1 apresenta diversos valores do coeficiente de rugosidade ( ) com 

relação ao tipo do terreno. 

 

Tabela 2.1 – Coeficiente de rugosidade para diversos tipos de terreno. Fonte: [9]. 

TIPO DE TERRENO COEFICIENTE (α) 

Lago, oceano e solo liso 0,10 

Grama 0,15 

Cercas vivas e arbustos 0,20 

Florestas 0,25 

Pequenas cidades com poucas árvores e arbustos 0,30 

Grandes cidades com altos edifícios e construções 0,40 
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2.2.5 Distribuição das velocidades dos ventos 

A potência elétrica gerada por um aerogerador está relacionada diretamente com a 

velocidade do vento (elevada ao cubo), portanto, as velocidades são os dados mais críticos 

necessários para se avaliar o potencial energético de um local candidato. As velocidades e 

direções dos ventos não são constantes, sendo influenciadas pelo terreno, clima e pela 

altura em relação à superfície do solo. A velocidade do vento varia a cada minuto, hora, 

dia, estação, e até mesmo por ano. Com o objetivo de obter resultados mais precisos em 

relação à velocidade média anual de um determinado parque eólico, devem ser utilizados 

os dados coletados por um período de dez anos ou mais, desta forma, a avaliação do 

potencial energético fornecerá resultados mais precisos. No entanto, as medições de longo 

prazo são caras e a maioria dos projetos não pode esperar tanto tempo assim. Em tais 

situações, os dados de curto prazo, por exemplo, mais de um ano, são comparados com 

dados de longo prazo a partir de um local próximo para predizer a velocidade média anual 

do vento no local em questão [9]. 

Por ser influenciado pelo sol e pelas estações, o padrão dos ventos normalmente se 

repete ao longo do período de um ano. As variações da velocidade dos ventos durante o 

ano podem ser descritas por uma função de distribuição de probabilidades. A função que 

melhor descreve o comportamento da velocidade dos ventos é a de Weibull (h) com dois 

parâmetros: o de forma k, e o de escala c. A probabilidade da velocidade ser v durante 

qualquer intervalo de tempo é dada pela seguinte equação [9]: 

 

 

.0,)(

1
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
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
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 (2.13) 

 

 De acordo com a definição da função de probabilidade, a probabilidade de que a 

velocidade do vento esteja entre zero e infinito durante o período de tempo analisado é 

unitária, ou seja [9]: 

 

.1)(
0




dvvh  (2.14) 

 



16 

 

 

 Como o período de estudo normalmente escolhido é de um ano, a função de 

distribuição de probabilidades pode ser expressa em função do número de horas no ano, de 

modo que [9]: 

 

.
)(/

v

vveventreestávelocidadeaqueemanohorasdenúmero
h




  (2.15) 

 

 A unidade de h é horas/ano por m/s, e a integral (2.14) agora se torna 8.760 

(número total de horas em um ano) ao invés da unidade. Na Figura 2.8 ilustra-se o 

comportamento de h em função de v para três diferentes valores de k na Equação (2.13). A 

curva azul (k = 1) possui uma forte tendência para a esquerda, onde a maioria dos dias são 

sem vento (v = 0). A curva preta (k = 3) se parece mais com uma distribuição normal em 

forma de sino, em que alguns dias possuem altas velocidades de vento e outros possuem 

baixas velocidades. A curva vermelha (k = 2) é uma distribuição de velocidades de ventos 

típica encontrada na maioria dos sítios. Nesta distribuição, as velocidades são menores do 

que a média na maioria dos dias, enquanto que em alguns dias as velocidades são elevadas. 

O valor de k determina a forma da curva e, portanto, é denominado parâmetro de forma. 

 

 

Figura 2.8 – Função distribuição de probabilidades de Weibull com parâmetro de escala 

c = 10 m/s e parâmetros de forma k = 1, 2 e 3. 

 

 A distribuição de Weibull com k = 1 é denominada distribuição exponencial, sendo 

utilizada geralmente em estudos de confiabilidade. Quando k = 2, é denominada 

distribuição de Rayleigh.  Para k > 3, ela se aproxima da distribuição normal, 

frequentemente denominada Gaussiana. 
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 As curvas de distribuição correspondentes a k = 3 com diferentes valores de c 

variando entre 4 e 12 metros por segundo são apresentadas na Figura 2.9. Para valores 

maiores de c, as curvas se deslocam para a direita (para as velocidades maiores). Ou seja, 

quanto maior o valor de c, maior será o número de dias com velocidades maiores de vento. 

Devido a esse deslocamento da distribuição de horas para uma escala de velocidades 

maiores, c é denominado parâmetro de escala.  

 

 

Figura 2.9 – Função distribuição de probabilidades de Weibull com parâmetro de forma  

k = 3 e parâmetros de escala c variando entre 4 e 12 m/s. 

 

 

A velocidade média no período analisado é definida como a área total sob a curva h 

– v integrada de v = 0 a ∞ e dividida pelo número total de horas do período (8.760 se o 

período for um ano). A velocidade média anual é, portanto, a velocidade média ponderada 

e é dada por [9]: 

 

.)(
8760

1

0


 vdvvhVmed  (2.16) 

 

 A maioria das localidades possui parâmetro de escala variando entre 5 e 10 m/s, e 

parâmetro de forma variando entre 1,5 e 3,0. Para estes valores de c e k, a Equação (2.16) 

pode ser aproximada por [9]: 

 

.90,0 cVmed   (2.17) 
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2.2.6 Cálculo da energia elétrica gerada 

 Conhecendo-se o perfil de distribuição das velocidades dos ventos no local em que 

serão instalados os aerogeradores e a característica elétrica do aerogerador (curva de 

potência), pode-se definir a função de distribuição da energia e (MWh/ano/m/s) da 

seguinte maneira: 

 

.)()()( vPvhve   (2.18) 

 

As funções de distribuição das velocidades e da energia gerada são ilustradas na Figura 

2.10. Os parâmetros de forma e de escala são dados na altura do eixo do aerogerador e a 

curva de potência utilizada é igual àquela da Figura 2.7. 

 

 

Figura 2.10 – Distribuições das velocidades (k = 4 e c = 10 m/s) e da energia gerada. 

 

O valor esperado para a geração anual de energia elétrica (em MWh) é dado por: 

 

  ,
out

in

v

v
a dvveE  (2.19) 

 

em que, 
inv = velocidade de “cut-in”; 

outv = velocidade de “cut-out”. 

 A distribuição da velocidade média do vento é normalmente discreta, em classes de 

1 m/s, portanto, o cálculo da energia gerada anualmente também pode ser calculado 

utilizando-se os valores discretos das distribuições, ou seja: 
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 
out

in

v

v

a veE .  (2.20) 

 

O valor da energia anual calculado por (2.19) ou (2.20) considera a distribuição de 

ventos do local, assim como as potências calculadas para as respectivas velocidades do 

vento para a máquina em questão (através da curva de potência). Contudo, este cálculo da 

energia não considera as perdas na rede de distribuição do parque eólico, que provocarão 

um decréscimo na energia que será injetada na rede da concessionária. 

 

2.3 Revisão Bibliográfica 

Parte desta seção é baseada na referência [12], que fornece uma visão geral sobre os 

modelos de previsão de energia eólica com horizontes que variam desde alguns minutos 

até alguns dias à frente, para um único aerogerador e também para parques inteiros. Uma 

série de pesquisas em diversos artigos e periódicos foi realizada com o intuito de definir os 

modelos de previsão de ventos e geração eólica a serem utilizados no presente trabalho. 

Um resumo da literatura pesquisada será apresentado a seguir. Todos os modelos citados e 

propostos nesta dissertação terão como foco as previsões de curto prazo, com passos de 

previsão variando entre uma e vinte e quatro horas. Uma breve introdução para previsões 

de curto prazo também pode ser encontrada em [13]. 

Um dos maiores problemas da energia eólica, em comparação a eletricidade 

convencional, é sua dependência da volatilidade do vento. Esta dependência acontece em 

todas as escalas de tempo, mas duas delas são mais relevantes: uma é importante para o 

controle da turbina propriamente dita (de milissegundos a segundos), e a outra é importante 

para a integração da energia eólica na rede elétrica, sendo determinada pelas constantes de 

tempo da rede (de minutos a semanas). 

Em geral, os modelos podem ou não envolver um modelo de previsão numérica do 

tempo (Numerical Weather Prediction – NWP). Normalmente, os modelos que utilizam 

NWP fornecem melhores previsões de séries temporais para horizontes maiores do que 

cerca de algumas horas (a partir de 3 – 6 horas), o que os fazem ser utilizados pelas 

concessionárias. 

Existem dois tipos de modelagem diferentes em relação à previsão de curto prazo: a 

modelagem física e a estatística. Em alguns modelos, uma combinação das duas 
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modelagens é utilizada de modo a realizar previsões mais confiáveis. Em suma, com os 

modelos físicos se tenta utilizar variáveis físicas o maior tempo possível para chegar à 

melhor estimativa da velocidade do vento local antes de utilizar um modelo estatístico 

(Model Output Statistics – MOS) para reduzir o erro remanescente. A modelagem 

estatística tenta encontrar fortes relações entre os valores históricos da produção de energia 

elétrica (e de outros parâmetros meteorológicos) e as informações medidas em tempo real, 

recorrendo normalmente a técnicas recursivas. 

Na implementação dos modelos estatísticos utilizam-se normalmente modelos do 

tipo “caixa preta”, por exemplo, Redes Neurais Artificiais (RNA). Alguns deles podem ser 

expressos analiticamente, outros não (é o caso das redes neurais). 

Comparações utilizando modelos autoregressivos entre a previsão direta da energia 

eólica em relação às previsões da velocidade do vento, com subseqüente conversão para 

energia eólica [14,15], demonstraram que o uso das previsões da velocidade do vento 

como variável explicativa é importante para horizontes de previsão de até 8–12 horas. Para 

horizontes maiores, o uso de previsões de velocidade como variável explicativa não 

oferece nenhuma vantagem em relação à previsão direta da energia eólica. 

Em [16], mostra-se que ao utilizar modelos NWP é melhor aplicar um tratamento 

estatístico sobre as velocidades de ventos previstas do que sobre a potência final de saída. 

Em [17], verificou-se melhorias na raiz do erro quadrático médio (Root Mean 

Squared Error – RMSE) para passos de previsão entre 1 e 10 minutos. As melhorias 

situam-se em torno de 10% sobre o Modelo da Persistência. Esta melhoria foi conseguida 

com uma topologia bastante simples, embora com estruturas mais complexas não houve 

melhoria significativa dos resultados. Uma limitação foi encontrada em eventos extremos 

que não estavam contidos no conjunto de dados usados para treinar a rede neural. 

As diferenças entre as velocidades de ventos e as médias móveis foram utilizadas 

como dados de entrada em [18]. Para a mesma série temporal foram verificadas melhorias 

de até 13% em relação ao Modelo da Persistência, enquanto que a abordagem padrão de 

redes neurais obteve 9,5% de melhoria. 

Em [19], foram utilizadas redes neurais e o modelo ARIMA (Autoregressive 

Integrated Moving Average – ARIMA) para a previsão das séries de velocidades dos 

ventos no Reino Unido e Grécia no horizonte de uma hora. Não foram obtidas melhorias 

significativas em relação ao Modelo da Persistência para ambas as localidades ao utilizar 
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as médias horárias das velocidades. Porém, ao utilizar as velocidades médias de intervalos 

de dez minutos, a melhoria foi de 10 – 20%. 

Em [20], demonstrou-se que há melhorias ao aplicar a Transformada Wavelet 

(Wavelet Transform) às velocidades médias horárias antes de fornecê-las como entradas às 

redes neurais. Os horizontes de previsão utilizados foram iguais a 4 e 24 horas. 

O artigo [21] sugere um protocolo padronizado para a avaliação dos sistemas de 

previsão de geração eólica de curto prazo. Também descreve alguns modelos de referência 

para a previsão, e argumenta-se que o uso do Modelo da Persistência como referência leva 

a conclusões ligeiramente equivocadas e mais otimistas sobre o desempenho dos modelos 

avaliados. 

Em [22], um modelo fuzzy é sugerido para realizar a previsão da velocidade do 

vento e da energia elétrica produzida em um parque eólico. O modelo foi treinado usando 

um esquema de aprendizado baseado em algoritmos genéticos. O conjunto de treinamento 

incluia a velocidade do vento e dados de direção, medidos em locais vizinhos com até 30 

km de distância dos grupos de aerogeradores. Foram apresentados os resultados das 

previsões entre 30 minutos e 4 horas. O modelo sugerido apresentou uma melhora média 

da ordem de 15 – 20% em comparação ao Modelo da Persistência. 

Em [23], foi proposto um modelo híbrido que utiliza a Transformada Wavelet, 

Particle Swarm Optimization (PSO) e Lógica Fuzzy, para realizar a previsão da geração 

com horizontes de até 24 horas. As previsões foram realizadas para o ano de 2009 e os 

resultados foram comparados com outros 7 modelos (ARIMA, Redes Neurais, Redes 

Neurais + Lógica Fuzzy, Persistência, etc.). O modelo proposto foi o que obteve o melhor 

desempenho dentre todos os modelos comparados. 
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CAPÍTULO 3 

3.  INTELIGÊNCIA ARTIFICIAL E WAVELETS 

Este capítulo apresenta os conceitos básicos necessários para o entendimento dos 

modelos de previsão que serão descritos no Capítulo 5. As duas primeiras seções do 

presente capítulo apresentam, as Redes Neurais Artificiais (RNA) e a Lógica Fuzzy, 

respectivamente. Na terceira seção, são apresentados os conceitos da análise de sinais com 

base nas wavelets. A quarta e última seção fala do software utilizado para o 

desenvolvimento dos modelos e apresenta os parâmetros necessários para realizar os 

ajustes dos mesmos. 

 

3.1 Redes Neurais Artificiais 

Uma Rede Neural Artificial é uma ferramenta computacional cuja estrutura é 

projetada com o objetivo de simular a maneira pela qual o cérebro humano funciona. Pelo 

fato de possuir analogia neurobiológica como fonte de inspiração,  uma rede neural é 

tratada como uma “Ferramenta de Inteligência Artificial”. 

As RNA se constituem em uma técnica de inteligência artificial cuja utilização 

prática está se tornando cada vez mais presente no nosso dia-a-dia. Aplicações realizadas 

com RNA têm apresentado desempenho satisfatório em diversas áreas de pesquisas, tais 

como: classificação, reconhecimento de padrões, aproximação de funções, processamento 

de séries temporais, otimização, etc [6]. 

Atualmente, as redes neurais apresentam-se como uma abordagem alternativa aos 

métodos estatísticos de previsão de séries temporais. O emprego desta técnica é atrativo em 

uma grande variedade de problemas que envolvem relacionamentos complexos entre as 

variáveis de entrada e de saída, uma vez que para utilização não se faz necessário o 

conhecimento prévio das relações matemáticas entre estas variáveis [6]. 

As RNA são sistemas paralelos distribuídos compostos por unidades de 

processamento, chamados de neurônios artificiais, que calculam determinadas funções 

matemáticas (normalmente não lineares). Esta forma de computação não-algorítmica é 

caracterizada por sistemas que, relembram a estrutura do cérebro humano. O grande apelo 

destes modelos está em sua capacidade de “aprender”, generalizar ou extrair regras 

automaticamente de conjuntos de dados complexos [24]. 
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3.1.1 O Neurônio Artificial 

Um neurônio artificial é uma unidade de processamento da informação que é 

fundamental para a operação de uma rede neural. O modelo de um neurônio é apresentado 

na Figura 3.1, nela se identificam três partes básicas: um conjunto de sinapses (ou elos de 

conexões); um somador de sinais; e uma função de ativação. 

Cada sinapse é caracterizada por um peso, que pode possuir valores positivos ou 

negativos. O sinal de entrada de uma determinada sinapse é multiplicado pelo peso 

sináptico. O somador realiza a soma dos sinais das entradas, ponderados pelas respectivas 

sinapses. A função de ativação serve para restringir a amplitude do sinal de saída do 

neurônio artificial. Tipicamente, a amplitude do sinal de saída está restrita ao intervalo 

[0,1]. 

 
 

 

 

 

 

O modelo do neurônio artificial inclui também uma entrada fixa. O peso sináptico 

desta entrada fixa é chamado de bias. O bias tem o efeito de aumentar ou diminuir o valor 

do sinal de entrada da função de ativação. 

Em termos matemáticos, um neurônio artificial k pode ser descrito através das 

seguintes equações: 
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Figura 3.1 – Modelo de um neurônio artificial.Fonte:[6]. 
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3.1.2 Funções de Ativação 

Conforme visto na seção anterior, a função de ativação (função de transferência) 

define o sinal de saída do neurônio k em função do potencial de ativação kv . Dentre as 

diversas funções de ativação conhecidas, são apresentadas nesta seção duas funções que 

serão utilizadas para o desenvolvimento dos modelos propostos no Capítulo 5 desta 

dissertação. 

A primeira função a ser descrita é denominada Sigmóide Logística. Este tipo de 

função de transferência é o mais utilizado na construção de redes neurais. A Figura 3.2 é o 

gráfico deste tipo de função. O gráfico se assemelha a uma curva em “S”. 

 

 

Figura 3.2 – Gráfico da função Sigmóide Logística. 

 

Os valores de saída desta função pertencem ao intervalo [0,1]. Um outro aspecto 

interessante é que a função é diferenciável em todos os pontos do seu domínio. Ela tem a 

seguinte expressão: 

 

)exp(1
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k
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v
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

 . 
(3.3) 

 

 Em alguns casos, é desejável que o sinal de saída da função de ativação do neurônio 

artificial seja definida no intervalo [-1,1]. Para permitir que a função de ativação assuma 
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valores negativos, utiliza-se a função sigmoidal Tangente Hiperbólica. Na Figura 3.3 

apresenta-se um gráfico deste tipo de função. 

 

Figura 3.3 – Gráfico da função Tangente Hiperbólica. 

 

Os valores de saída desta função pertencem ao intervalo [-1,1] e ela também é 

diferenciável em todos os pontos do seu domínio, pois sua expressão é a seguinte: 
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3.1.3 Arquitetura da Rede Neural Artificial 

A estrutura (arquitetura) de uma rede neural está intimamente relacionada ao 

algoritmo de aprendizagem utilizado para treiná-la. A arquitetura das redes neurais 

utilizadas para o desenvolvimento dos modelos de previsão do presente trabalho é do tipo 

Multilayer Feedforward, ou seja, redes progressivas de múltiplas camadas. 

Em uma rede progressiva (feedforward), o sentido das conexões é sempre voltado 

para a camada de saída, ou seja, não há elos de realimentação de sinais entre as camadas. 

As redes progressivas de múltiplas camadas possuem, tipicamente, uma ou mais camadas 

intermediárias (ocultas) entre as camadas de entrada e saída. A adição de camadas 

intermediárias permite que a rede possa extrair dos sinais de entrada estatísticas de ordem 

superior. 
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O esquema de uma rede neural progressiva de três camadas é apresentada na Figura 

3.4. A rede possui quatro nós na camada de entrada, seis neurônios na camada oculta e um 

neurônio na camada de saída. Esta rede é dita completamente conectada, pois cada nó da 

rede é conectado a todos os outros nós das camadas adjacentes. Esta é a arquitetura das 

redes neurais utilizadas nos modelos de previsão propostos no Capítulo 5. 

 

 

 

 

 

 

 

 

 

 

Figura 3.4 – Esquema de uma rede progressiva de três camadas. 

 

 Os nós da camada de entrada, também chamados de nós fonte, fornecem aos 

neurônios da camada oculta os sinais aplicados à entrada da rede neural. Os sinais das 

saídas dos neurônios da camada oculta são fornecidos às entradas do neurônio da camada 

de saída. O sinal de saída do neurônio desta última camada é a resposta global da rede ao 

padrão de ativação provido pelos nós da camada de entrada. 

 

3.1.4 Processo de Aprendizagem 

As redes neurais possuem a capacidade de adquirir conhecimento mediante um 

processo de aprendizagem.  O conhecimento adquirido é armazenado nos parâmetros livres 

da rede, que são os pesos sinápticos, os bias e os parâmetros que definem as funções de 

transferência dos neurônios artificiais. 

O procedimento utilizado para o processo de aprendizagem é chamado Algoritmo 

de Aprendizagem. A função deste algoritmo é modificar de forma adaptativa os parâmetros 

livres da rede para atingir um objetivo desejado. Em outras palavras, o processo de 

aprendizagem de uma rede Multilayer Feedforward é um problema de otimização não-

Camada 

de entrada 

Camada 

oculta 

Camada 

de saída 
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linear irrestrita cujo objetivo é minimizar a soma quadrática das diferenças entre as saídas 

desejadas e a resposta da rede. 

3.1.5 Algoritmo Backpropagation 

O algoritmo backpropagation é o algoritmo de aprendizagem mais utilizado para o 

treinamento das redes progressivas de múltiplas camadas. Sua popularidade é atribuída à 

relativa simplicidade de implementação, e também ao fato de ser um poderoso dispositivo 

para armazenar o conteúdo da informação através do ajuste dos pesos sinápticos da rede. 

Quando o conjunto de dados utilizado para treinar uma rede Multilayer Feedforward é 

grande o suficiente para ser representativo, o algoritmo backpropagation fornece à rede a 

capacidade de generalização. 

O algoritmo backpropagation é composto por duas fases de treinamento. A 

primeira delas é a fase forward, na qual um padrão de dados é apresentado à rede e esta 

processa os dados, produzindo os sinais de saída (resposta). A segunda delas é a fase  

backward, que utiliza o erro obtido entre a resposta da fase forward e o resultado desejado 

(conhecido), para determinar os ajustes a serem feitos nos pesos das conexões sinápticas 

dos neurônios da rede. O algoritmo de retropropagação é apresentado a seguir. 

Seja o sinal de erro na saída do neurônio j, na iteração k, definido pela Equação 

(3.5), em que, )(kd j  é a saída desejada e )(ky j é a resposta apresentada na saída do 

neurônio. 

)()()( kykdke jjj  . (3.5) 

 

A função custo ε é a energia total do erro, obtida somando o quadrado dos erros de 

todos os neurônios da camada de saída. A função custo é dada pela seguinte equação: 
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 , (3.6) 

 

em que, n é o número de neurônios da camada de saída da rede e 
ie  é o erro do neurônio i, 

na iteração k. 

O cálculo dos deltas para a correção dos pesos depende da posição da camada. 

Considere o neurônio da camada de saída s, sendo estimulado por um conjunto de 
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ativações produzido por uma camada com m neurônios à sua esquerda. O potencial de 

ativação  do neurônio j é, portanto: 

 





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l

ljlj kykwkv
0

)()()( . (3.7) 

A função de ativação do neurônio da camada de saída define a saída do neurônio j 

na iteração k de acordo com a seguinte equação: 

 

))(()( kvky jjj  . (3.8) 

 

O algoritmo backpropagation aplica uma correção jlw  ao peso sináptico jlw , que 

é proporcional à derivada parcial )()( kwk jl . De acordo com a regra da cadeia  (do 

cálculo diferencial), este gradiente é expresso como: 
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Após manipulações algébricas, pode-se expressar o gradiente como: 
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A correção )(kw jl  aplicada a )(kw jl é definida pela regra: 
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(3.11) 

 

em que,   é a taxa de aprendizagem do algoritmo backpropagation. O uso do sinal 

negativo na Equação (3.11) indica a descida do gradiente no espaço de pesos, ou seja, 

busca uma direção para a mudança de pesos que reduz o valor de )(k . 

Finalmente, a atualização dos pesos da rede é realizada de acordo com a seguinte 

equação: 
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(3.12) 

 

em que, )1( kw jl é o valor atualizado do peso da conexão j do neurônio l. 

 

3.1.6 Algoritmo Resilient Propagation 

As redes multicamadas normalmente utilizam funções de ativação do tipo 

sigmoidal. Um problema que pode surgir durante o treinamento de uma rede Multilayer 

feedforward com funções sigmóides é que o gradiente pode ter valor muito pequeno e, 

consequentemente, as alterações nos parâmetros também serão muito pequenas, mesmo 

que estes parâmetros estejam longe de seus valores ótimos. 

O objetivo do algoritmo de treinamento Resilient Propagation, proposto em [25], é 

eliminar os efeitos indesejados causados pelos valores das derivadas parciais. Neste 

algoritmo, apenas o sinal da derivada é utilizado para determinar a direção da atualização 

dos parâmetros, a magnitude da derivada não tem efeito sobre a atualização. 

No processo de otimização do algoritmo Resilient Propagation, cada parâmetro é 

alterado individualmente através de um valor de atualização jl . Este valor é definido 

conforme a seguinte equação: 
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(3.13) 

 

em que,     10 . 

A regra de adaptação do valor de atualização é a seguinte: sempre que a derivada 

parcial em relação ao pesso correspondente jlw  muda de sinal, indicando que a última 

atualização foi muito grande e o algortimo “pulou” um mínimo local, o valor de 

atualização jl  é reduzido por um fator  . Se a derivada mantém o sinal, o valor de 
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atualização é ligeiramente aumentado por um fator   com o objetivo de acelerar o 

processo de convergência. 

Após ser realizada a adaptação de jl , a atualização dos pesos é realizada de acordo 

com uma regra bastante simples: se a derivada é positiva (indicando um aumento do erro), 

o respectivo peso é reduzido pelo seu valor de atualização, caso contrário, o peso será 

aumentado pelo seu valor de atualização (Equação (3.14)). 
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(3.14) 

 

A atualização de cada parâmetro da rede é realizada de acordo com a seguinte 

equação: 

)()()1( kwkwkw jljljl  . (3.15) 

 

Entretanto, há uma exceção: se a derivada parcial muda de sinal, ou seja, o passo anterior 

foi muito grande e o mínimo foi “perdido”, a atualização anterior do peso correspondente é 

revertida. A seguinte equação ilustra este procedimento: 
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(3.16) 

 

Com esta reversão da atualização, pode ser que a derivada mude de sinal novamente na 

próxima iteração. Para evitar uma “dupla punição do valor de atualização”, neste caso, não 

deve ser realizada a adaptação de jl  nesta última iteração. Na prática, isto pode ser feito 

atribuindo-se, na regra adaptativa de jl , o valor zero à derivada do passo anterior. 

 Os valores de atualização e os pesos são modificados após a apresentação de todo o 

conjunto de padrões à rede, ou seja, após cada “época” de treinamento. 
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3.1.7 Algoritmo Levenberg-Marquardt 

O algoritmo Levenberg-Marquardt é uma técnica iterativa de otimização utilizada 

para minimizar funções expressas como somas quadráticas de funções não-lineares. Este 

algoritmo pode ser visto como uma combinação do método do Gradiente Descendente e do 

método de Gauss-Newton. Quando a solução corrente se encontra distante da solução 

ótima, o algoritmo Levenberg-Marquardt se comporta como o método do Gradiente 

Descendente: lento, mas com convergência garantida. Quando a solução corrente está 

próxima à ótima, o algoritmo Levenberg-Marquardt se comporta como o método de 

Gauss-Newton. 

Quando a forma da função objetivo é uma soma quadrática (como no caso do 

treinamento de redes progressivas de múltiplas camadas), então, a matriz Hessiana pode 

ser aproximada por 

 

JJH T , (3.17) 

 

e o gradiente pode ser calculado como 

 

rJg T , 
(3.18) 

 

em que, J  é a matriz Jacobiana que contém as derivadas de primeira ordem dos erros da 

rede em relação aos parâmetros, e r  é o vetor dos resíduos da rede (erros). A matriz 

Jacobiana pode ser calculada através de uma técnica padrão de retropropagação, que é bem 

mais simples do que calcular a matriz Hessiana [26].  

 O algoritmo Levenberg-Marquardt utiliza a aproximação da matriz Hessiana para 

realizar a atualização dos parâmetros da rede. A atualização é realizada de maneira similar 

ao método de Gauss-Newton, de acordo com a seguinte equação: 

 

  rJIJJww TT

kk

1

1



  . (3.19) 

 

 Quando o escalar   é igual a zero, trata-se do método de Gauss-Newton. Quando 

  é um valor grande, ele se torna o método do Gradiente Descendente com um passo 

pequeno. O método de Newton é mais rápido e preciso perto da solução ótima, portanto, o 
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objetivo do algoritmo Levenberg-Marquardt é se comportar como o método de Newton o 

mais rápido possível. Assim,   é reduzido a cada iteração bem sucedida (diminuição da 

função objetivo) e só é aumentado se o valor da função objetivo para a próxima iteração 

aumentar. 

 O grande incoveniente do algoritmo Levenberg-Marquardt é que ele requer o 

armazenamento de algumas matrizes que podem ser muito grandes para determinados  

problemas. O tamanho da matriz Jacobiana é Q x n, sendo Q o número de conjuntos de 

treinamento e n o número de parâmetros da rede. Porém, essa matriz não tem que ser 

calculada e armazenada como um todo. Por exemplo, pode-se dividir a matriz Jacobiana 

em duas submatrizes e posteriormente calcular a matriz Hessiana aproximada da seguinte 

forma: 

  2211
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Observe que não é necessário calcular a matriz Jacobiana completa de uma só vez. Pode-se 

calcular a aproximação da matriz Hessiana através de uma série de somas de submatrizes. 

 

3.2 Lógica Fuzzy 

A Lógica Fuzzy, ou lógica nebulosa, é baseada na teoria dos Conjuntos Fuzzy. Esta 

é uma generalização da teoria dos Conjuntos Tradicionais para resolver os paradoxos 

gerados à partir da classificação “verdadeiro ou falso” da Lógica Clássica. 

Tradicionalmente, uma proposição lógica tem dois extremos: ou “completamente 

verdadeiro” ou “completamente falso”. Entretanto, na Lógica Fuzzy, uma premissa varia 

em grau de verdade de 0 a 1, o que leva a ser parcialmente verdadeira ou parcialmente 

falsa. 

A força da Lógica Fuzzy deriva da sua habilidade em inferir conclusões e gerar 

respostas baseadas em informações vagas, ambíguas e qualitativamente incompletas e 

imprecisas. Neste aspecto, os sistemas nebulosos têm habilidade de raciocinar de forma 

semelhante à dos humanos. Seu comportamento é representado de maneira muito simples e 

natural, levando à construção de sistemas compreensíveis e de fácil manutenção.  

Com a incorporação do conceito de “grau de verdade”, a teoria dos Conjuntos 

Fuzzy estende a teoria dos Conjuntos Tradicionais. Os grupos são rotulados 
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qualitativamente (usando termos linguísticos, tais como: quente, frio, grande, pequeno, 

etc.) e os elementos deste conjuntos são caracterizados variando-se o grau de pertinência 

(valor que indica o grau em que um elemento pertence a um conjunto). Por exemplo, um 

homem de 2,10 metros e um homem de 2,00 metros são membros do conjunto “alto”, 

embora o homem de 2,10 metros tenha um grau de pertinência maior neste conjunto. 

A composição básica de um sistema fuzzy é formada pelos componentes descritos a 

seguir: 

I. Fuzzificador – Aplica a função de pertinência a um valor de entrada (valor real) 

e a saída será uma valor entre 0 e 1. Cada função de pertinência para uma dada 

variável de entrada é conhecida como uma variável lingüística; 

II. Regras – Um conjunto de regras do tipo SE-ENTÃO que são criadas pelos 

especialistas ou extraídas de dados numéricos; 

III. Inferência – É um sistema que mapeia conjuntos fuzzy de entradas em conjuntos 

fuzzy de saída, determinando como as regras são ativadas e combinadas. Os 

modelos de inferência mais conhecidos são: Modelo de Mamdani e Modelo de 

Takagi-Sugeno [27]; 

IV. Deffuzificador – Quando se utiliza um sistema fuzzy o objetivo é encontrar um 

valor de saída real para o problema. Nesta etapa, após aplicação do sistema de 

inferência, transforma-se o valor de saída nebuloso em uma saída real. 

 

3.2.1 Sistema de inferência Fuzzy 

A estrutura básica de um sistema de inferência fuzzy (Fuzzy Inference System – FIS) 

consiste em três componentes conceituais: a base de regras, a qual contém a seleção de 

regras fuzzy, a base de dados, a qual define a função membro utilizada nas regras, e o 

mecanismo de raciocínio, o qual realiza o procedimento de inferência sobre as regras e 

fornece condições para derivar uma saída razoável ou uma conclusão [28]. 

 

 Sistema de inferência Mandani 

O modelo de inferência Mamdani foi um dos primeiros sistemas constituídos 

utilizando a teoria de conjuntos fuzzy, sendo proposto em 1975 por Ebrahim Mandani [29]. 

A regra de semântica tradicionalmente utilizada para o processamento de inferências com o 

modelo de Mamdani é chamada de inferência Máx-Mín, utilizando as operações de união e 
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de interseção entre conjuntos da mesma forma de Zadeh [29]. As regras de produção em 

um modelo de Mamdani possuem relações fuzzy tanto em seus antecedentes como em seus 

conseqüentes. O modelo Mandani é descrito a seguir. 

Seja um sistema fuzzy composto de n regras, com uma das regras do tipo Se 11 Ax   

e 22 Ax   e ...e jj Ax   então iBy  , em que, kx  são as entradas do sistema, jAA ...1  são 

variáveis linguísticas definidas pelas funções de pertinência de entrada, y  é a saída e iB   

são as variáveis lingüísticas definidas pelas funções de pertinência de saída. O processo de 

inferência pode ser dividido em cinco etapas: 

 

1ª etapa: Fuzzificação das Entradas 

Nesta etapa, toma-se o valor de cada variável de entrada e determina-se o seu grau 

de pertinência para cada uma das regras, ou seja: 
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2ª etapa: Aplicação do Operador fuzzy 

 Com as entradas fuzzificadas, sabe-se com qual grau cada parte do antecedente 

satisfaz cada regra. Precisa-se gerar o coeficiente de disparo de cada regra D
(k)

, para isso, 

aplica-se o operador fuzzy presente no antecedente, por exemplo, o operador “e”. 

 Para aplicar o operador, o sistema de Mamdani utiliza a função “min”, conforme 

equação abaixo: 
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3ª etapa: Aplicação do método de implicação 

 O método de implicação é definido como a modelagem do conseqüente com base 

no coeficiente de disparo. A implicação se dá em todas as regras. O modelo de Mamdani 

utiliza a função “min”, que trunca a saída do conjunto fuzzy. 
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4ª etapa: Agregação das Saídas 

 Ao realizar o processo de implicação de cada regra, gera-se uma função de 

pertinência truncada para a saída da regra. Como o sistema possui n regras, devem-se ter n 

funções de pertinências truncadas que irão gerar a função de saída. Para isso, agregam-se 

todos os gráficos de cada uma das funções. No modelo Mamdani utiliza-se a função 

“max”. 

.]max[ )(
'

k

B
S  (3.24) 

 

5ª etapa: Deffuzificação 

 Nesta etapa é realizada a conversão fuzzy – escalar, ou seja, transformam-se 

informações qualitativas em uma informação quantitativa.  Os métodos mais utilizados para 

realizar esta conversão são os métodos do centro de massa e o método da média dos 

máximos. 

 

 Sistema de inferência Takagi-Sugeno 

           Um novo modelo de inferência baseado na teoria dos conjuntos fuzzy foi proposto 

na década de 80. Denominado de modelo Sugeno, modelo de inferência fuzzy paramétrico 

ou simplesmente modelo TSK. As pesquisas mostraram que este modelo conseguia 

respostas satisfatórias para problemas que fossem representados razoavelmente apenas 

pelas suas relações entrada e saída. 

Diferente do modelo de Mamdani, os modelos de inferência do tipo TSK não 

utilizam funções de pertinência no conseqüente. As relações de saída são compostas de 

equações paramétricas que relacionam as entradas e saída do processo. O modelo TSK é 

descrito a seguir. 

Seja um sistema fuzzy composto de n regras, com uma das regras do tipo Se 11 Ax   

e 22 Ax   e ...e jj Ax   então ),...,,( 21 jxxxy  . O processo de inferência do modelo 

TSK é similar ao modelo Mamdani com algumas alterações. Na segunda etapa do 

processo, quando se calcula o valor do grau de disparo, a função do operador normalmente 

não é a função “min”. Além de não existir etapa de defuzzificação. 

A saída do modelo TSK é calculada como a média ponderada das saídas de cada 

uma das regras que compõem o sistema, onde os pesos são os coeficientes de disparo. Seja 

o coeficiente de disparo de cada regra dado por: 
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A saída do sistema TSK será dada por: 
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 A eficiência do modelo de TSK está diretamente ligada à escolha dos parâmetros da 

função paramétrica de saída. Normalmente, os índices desta função são estimados 

seguindo algum índice de desempenho definido pelo usuário. A minimização do erro 

quadrático entre a saída do modelo de Sugeno e os dados de saída disponíveis é 

normalmente utilizada como medida de desempenho. 

 

3.2.2 Sistema Adaptativo de Inferência Neuro-Fuzzy 

O Sistema Adaptativo de Inferência Neuro-Fuzzy (Adaptive Neuro Fuzzy Inference 

System – ANFIS) é um sistema híbrido que utiliza de forma conjunta as vantagens das 

redes neurais artificiais (RNA) e da lógica fuzzy. Das redes neurais, utiliza-se a capacidade 

de aprendizagem,  enquanto que da lógica fuzzy se utiliza a capacidade de interpretação.  

O modelo ANFIS implementa uma base de regras fuzzy do tipo Takagi-Sugeno, ou 

seja, se um conjunto de condições antecedentes é satisfeito, então um conjunto de 

conseqüentes é inferido. 

Como o modelo ANFIS utiliza somente funções deriváveis, torna-se viável a 

utilização de um algoritmo de aprendizado padrão da teoria de redes neurais artificiais. 

Para isso, uma combinação do algoritmo backpropagation e do método de estimação de 

mínimos quadrados é realizada. O algoritmo backpropagation é utilizado para o 

aprendizado dos antecedentes das regras fuzzy, isto é, as funções de pertinência, e a 

estimação de mínimos quadrados é utilizada para determinar os coeficientes das 

combinações nos consequentes das regras fuzzy. A estrutura de um modelo ANFIS com 

duas entradas (x e y) e uma saída ( f ) é apresentada na Figura 3.5. 
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Figura 3.5 – Estrutura do modelo ANFIS. Fonte: [28]. 

 

No passo forward, os parâmetros das funções de pertinência são inicializados, e um 

vetor entradas-saída é apresentado. Calculam-se as saídas dos nós para cada camada do 

sistema, então os parâmetros do consequente são calculados a partir do método de mínimos 

quadrados. Depois de identificar os parâmetros do consequente, o erro é calculado como a 

diferença entre a saída do sistema e a saída desejada apresentada nos pares de treinamento.  

No passo backward, os sinais do erro são propagados desde a saída na direção das 

entradas. O vetor gradiente é acumulado para cada dado de treinamento. No final do passo 

backward para todos os dados de treinamento, os parâmetros na camada 1 (os parâmetros 

das funções de pertinência) são atualizados pelo método do gradiente descendente. O 

processo de aprendizado termina quando é atingida a tolerância do erro médio quadrático 

ou o número máximo de épocas definido pelo usuário. 

Com base na Figura 3.5, os passos que levam o ANFIS a uma adaptação, de acordo 

com [30], são apresentados a seguir. 

Na primeira camada, cada unidade (A1, A2, B1 e B2) armazena os parâmetros para 

definir uma função de pertinência que representa um termo lingüístico como sendo: 

 

)(1 zO
iCi  , (3.27) 

em que, 

z – é a entrada (x ou y) do nó i; 

Ci – é a classificação lingüística (Ai ou Bi ) associada com a função do nó; 

    )(z
iC  – é a função de pertinência; 

Oi
1
 – é a saída do nó i da camada 1. 

Camada 1 

Camada 2 Camada 3 

Camada 4 

Camada 5 
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Na segunda camada, cada nó computa o peso wi  associado às funções de ativação, 

ou seja: 

2,1),()(  iyxw
ii BAi . (3.28) 

 

A saída de cada nó da segunda camada representa o nível de ativação de uma regra.  

Cada nó na terceira camada calcula o grau de desempenho relativo das i-ésimas 

regras para o somatório dos níveis de ativação dos nós, isto é: 

2,1,
21




 i
ww

w
w i

i . (3.29) 

 

Por conveniência, a saída da terceira camada pode ser chamada nível de ativação 

normalizado. Na quarta camada é calculado o produto da saída do nó i da terceira camada 

pela função
if ,  i = 1,2; ou seja, 

 

)(4

iiiiiii ryqxpwfwO  , (3.30) 

 

em que: { ip , iq  , ir } é o conjunto de parâmetros associado ao nó i. 

Finalmente, a quinta camada é composta por um único nó que computa a saída do 

sistema como sendo o somatório de todos os sinais de entrada deste nó, isto é, 

 







i i

i ii

iii
w

fw
fwfO5 . (3.31) 

 

3.3 Análise Wavelet 

 Uma wavelet é uma forma de onda com duração efetivamente limitada e possui 

valor médio nulo. Diferentemente das senóides, que formam a base da análise de Fourier e 

são suaves e simétricas, as wavelets tendem a ser irregulares e assimétricas. 

 A análise de Fourier consiste em representar determinado sinal por uma soma de 

senóides em diferentes frequências. De maneira similar, a análise wavelet decompõe um 
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determinado sinal como uma soma de wavelets deslocadas e em diferentes escalas da 

versão original da wavelet (wavelet mother). Na Figura 3.6 são apresentadas uma senóide e 

uma wavelet do tipo “daubechies 10”. 

 

 

Figura 3.6 – Comparação entre uma senóide (esquerda) e uma wavelet (direita). 

 

 As wavelets são funções matemáticas que separam dados em suas diferentes 

componentes freqüenciais, e extraem cada componente com uma resolução adequada à sua 

escala. Elas têm vantagens em relação à análise de Fourier, pois esta última analisa o sinal 

como um todo, acarretando numa representação mais pobre para sinais que contêm 

descontinuidades e variações bruscas.  

  

3.3.1 Transformada Wavelet 

 A Transformada Wavelet (TW) é uma transformada linear que pode ser utilizada na 

análise de sinais não estacionários para extrair informações das variações em freqüência 

desses sinais e para detectar suas estruturas temporalmente e/ou espacialmente localizadas  

[6]. Para a TW, os dados são representados via superposição de wavelets com diferentes 

posições e escalas, cujos coeficientes essencialmente quantificam a força da contribuição 

das wavelets naquelas posições e escalas.  

 A Figura 3.7 é de funções de base wavelet da família daubechies, os ladrilhos e o 

plano tempo  frequência de cobertura. Para frequências mais altas, tem-se uma resolução 

alta no tempo e baixa na frequência. Já para frequências mais baixas, tem-se uma resolução 

baixa no tempo e alta na frequência. Isto se deve ao fato de que sinais com componentes 

em alta frequência possuem rápidas alterações no domínio temporal, e sinais com 

componentes de baixa frequência apresentam alterações mais lentas no domínio temporal. 
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Figura 3.7 – Esquema de um plano tempo x frequência. Fonte: [6]. 

 

3.3.2 Transformada Wavelet Contínua 

A Transformada Wavelet Contínua (TWC) é calculada realizando contínuas 

translações e mudanças de escala de uma função, Wavelet Mother (WM), sobre um sinal, 

calculando uma correlação entre eles. Para calcular a Transformada Wavelet Contínua o 

procedimento é o seguinte: 

1) Definir a WM a ser utilizada e compará-la a parte inicial do sinal em análise; 

2) Calcular a correlação (C) entre a parte inicial do sinal e a WM; 

 

 

 

Figura 3.8 – Passo 2 da Transformada Wavelet Contínua. 

  

3) Transladar a wavelet para direita e repetir os passos 1 a 3 até que tenha varrido 

todo o sinal; 

 

 

Figura 3.9 – Passo 3 da Transformada Wavelet Contínua. 

 

4) Aumentar a escala da wavelet e repetir os passos de 1 a 3; 

Tempo 

Frequência 
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Figura 3.10 – Passo 4 da Transformada Wavelet Contínua. 

 

5) Repetir os passos de 1 a 4 até que todas as escalas definidas sejam varridas. 

 

Ao realizar o processamento computacional de sinais utilizando dados do mundo 

real, deve-se ter em mente que os cálculos serão executados a partir de um sinal discreto, 

ou seja, sobre um sinal que foi medido em intervalos discretos. Portanto, o que é 

"contínuo" sobre a TWC, e o que a distingue da Transformada Wavelet Discreta (que será 

discutida na seção seguinte), é o conjunto de escalas e posições em que a TWC opera. 

Ao contrário da Transformada Wavelet Discreta, a TWC pode operar em qualquer 

escala, desde a escala do sinal original até uma escala máxima que pode ser determinada de 

acordo com a necessidade de detalhamento requerida na análise, e também de acordo com 

a potência computacional disponível. A TWC também é contínua em termos de 

deslocamento: durante a computação, a wavelet em análise é deslocada suavemente sobre o 

domínio completo da função analisada (Figura 3.11). 

 

 

Figura 3.11 – Deslocamento da wavelet na Transformada Wavelet Contínua. 

 

3.3.3 Transformada Wavelet Discreta 

Realizar o cálculo dos coeficientes de correlação entre a wavelet e o sinal analisado 

a cada possível escala utilizada é extremamente oneroso e gera uma grande quantidade de 

dados, dos quais muitos são redundantes. 

A Transformada Wavelet Discreta (TWD) foi desenvolvida com o intuito de 

proporcionar uma eficiência maior à análise wavelet. Diferentemente da TWC, a aplicação 
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da TWD não necessita que a wavelet seja transladada nem redimensionada continuamente, 

mas sim em intervalos discretos. Isto pode ser feito com uma pequena modificação na 

Wavelet Contínua, de acordo com a equação a seguir: 
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(3.32) 

 

em que, m  e n  são números inteiros, 10 a  é um parâmetro de escala fixo, 
0b é o fator de 

deslocamento (que depende do fator de escala), e   representa a wavelet mother. 

Os coeficientes no domínio da transformada correspondem a pontos em um 

reticulado bidimensional no plano escala x translação. A grade é indexada por dois inteiros 

m e n, sendo o primeiro associado aos passos na escala discreta e o segundo aos passos das 

translações discretas [6]. A Figura 3.12 ilustra o reticulado.  

 
Figura 3.12 – Reticulado no plano escala x translação para a TWD. Fonte: [6]. 

 

Um caso particular amplamente utilizado para a aplicação da TWD é baseado na 

escolha das escalas e translações com base em potências de dois, as chamadas escalas e 

translações diádicas. A aplicação da TWD utilizando estes parâmetros é bastante eficiente 

e, normalmente, possui precisão suficiente para a realização da análise wavelet desejada. 

De modo geral, as transformadas contínuas são primordialmente empregadas na 

dedução de propriedades das transformadas. Formas discretas são atraentes do ponto de 

vista de implementação e do ponto de vista computacional [6]. 

 

m (escala) 

n (translação) 
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3.3.4 Análise de Multiresolução 

Análise de multiresolução é uma técnica originada na área de processamentos de 

sinais, que no contexto das wavelets, constitui-se na forma padrão de construção das bases 

de wavelets e da implementação das transformadas wavelets ortonormais [6].  

Uma forma de implementar computacionalmente a transformada wavelet diádica 

ortonormal pode ser obtida através do algoritmo baseado na representação multiresolução 

de sinais que, assim como a transformada wavelet, decompõe o sinal em escalas com 

diferentes resoluções no tempo e na freqüência [31]. 

As wavelets estão associadas a uma filtragem passa-faixa interativa na qual a banda 

passante dos filtros consecutivos adjacentes é a metade de seu antecessor. Entretanto, para 

se evitar um número infinito de filtros analisadores é usado um único filtro para baixas 

freqüências, quando a faixa de freqüência é suficientemente pequena [32]. 

A função escala (Low Pass Filter – LPF), denotada geralmente por (t), foi 

introduzida por Mallat [33]. O princípio fundamental é analisar o sinal através de uma 

combinação de uma função escala (t) (passa-baixa) e wavelet (t) (passa-faixa). Esta 

idéia é essencial na codificação em sub-bandas e na análise de multiresolução [6]. 

 

3.3.5 Filtragem em um estágio: aproximações e detalhes 

Para muitos sinais, o conteúdo de baixa freqüência é a parte mais importante. É o 

que dá ao sinal a sua identidade. O conteúdo de alta freqüência, por outro lado, dá nuance 

ou o “tom”. Considere a voz humana. Se as componentes de alta freqüência forem 

retiradas, a voz soa diferente, mas ainda assim pode-se entender o que foi dito. No entanto, 

ao remover uma quantidade suficiente de componentes de baixa frequência, o conteúdo 

restante soará como uma “gritaria” e será impossível entender o que foi dito. 

Na análise wavelet, é comum se falar em aproximações e detalhes. As 

aproximações são as componentes do sinal que possuem alta escala e baixa frequência. Os 

detalhes são as componentes do sinal que possuem baixa escala e alta frequência. O 

processo de filtragem básico mais utilizado na análise de sinais consiste em projetar filtros 

passa-alta (High-Pass) e passa-baixa (Low-Pass), conforme a Figura 3.13. 
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Figura 3.13 – Processo básico de filtragem de sinais. 

 

 

Infelizmente, após a execução do processo básico de filtragem sobre um verdadeiro 

sinal digital, a quantidade de dados resultantes é igual ao dobro da quantidade de dados 

antes da filtragem. Por exemplo, suponha que o sinal original S é composto por 1.000 

amostras de dados. Em seguida, cada um dos sinais resultantes terá 1.000 amostras, 

totalizando 2.000 dados. 

Existe uma maneira mais sutil para realizar a decomposição utilizando wavelets. 

Ainda considerando o exemplo acima, para cada um dos sinais de saída, pode-se guardar 

apenas um de cada dois dados sequenciais para obter as informações mais relevantes a 

respeito destes sinais. Este processo é conhecido como downsampling (Figura 3.14). O 

processo à direita, que inclue o downsampling, produz os coeficientes da TWD. 

 

 

Figura 3.14 – Filtragem de sinais utilizando downsampling. 

 

Na Figura 3.15 é esquematizada a filtragem em um estágio aplicando a TWD sobre 

uma senóide pura, distorcida pela adição de um ruído de alta frequência. 

 

FILTROS 
Passa-baixa Passa-alta 

~ 1.000 amostras 

~ 1.000 amostras 

~ 1.000 amostras 

~ 1.000 amostras 

~ 500 coeficientes 

~ 500 coeficientes 
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Figura 3.15 – Obtenção dos coeficientes da TWD através da filtragem em único estágio. 

 

Na realidade, o tamanho real dos sinais de aproximação e detalhe é um pouco maior 

do que a metade do tamanho do sinal original. Isso se deve ao processo de filtragem, que é 

implementado através da convolução do sinal com um filtro. 

 

3.3.6 Decomposição em múltiplos níveis 

O processo de decomposição em múltiplos níveis pode ser realizado por sucessivas 

filtragens de único nível, de modo que um sinal original pode ser decomposto em vários 

sinais com menores resoluções. 

Este processo de filtros consecutivos é conhecido como algoritmo piramidal. Este 

algoritmo possibilita obter “aproximações” e “detalhes” de um dado sinal de interesse. 

Uma aproximação é uma representação de baixa freqüência do sinal original, enquanto que 

um detalhe é a diferença entre duas representações sucessivas da aproximação do sinal 

original. Uma aproximação contém a tendência geral do sinal original, enquanto que um 

detalhe exibe os componentes de alta freqüência do sinal de entrada [6]. 

Na Figura 3.16 apresenta-se um exemplo de decomposição de um dado sinal S em 

três níveis de sua árvore de decomposição. 

 

1.000 amostras 

cD   Alta Frequência 

cA   Baixa Frequência 

~ 500 coeficientes da TWD 

~ 500 coeficientes da TWD 
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Figura 3.16 – Árvore de decomposição de um sinal em três níveis. Fonte: [6]. 

 

Por se tratar de um processo iterativo, em teoria, o processo de decomposição em 

múltiplos níveis pode ser mantido indefinidamente. Na realidade, a decomposição só pode 

prosseguir até que os detalhes individuais sejam constituídos de uma única amostra. Na 

prática, ao realizar-se a decomposição em múltiplos níveis, deve-se escolher um número 

adequado de níveis com base na natureza do sinal analisado ou em algum critério 

adequado. 

3.4 Software e parâmetros utilizados 

Para realizar a manipulação dos dados (armazenamento, tratamento estatístico, 

processamento de cálculos diversos, geração de gráficos) e o desenvolvimento dos 

modelos de previsão propostos, utilizou-se o software MATLAB
®
 em sua versão 

7.10.0.499 (R2010a). O processador de 64 bits utilizado foi o Intel(R) Core(TM)2 Duo 

CPU T6600 @ 2,20GHz  2,20GHz, com 4,00 GB de memória RAM, e com o sistema 

operacional Windows 7 – 64 bits. 

Para criar as redes neurais e efetuar os treinamentos, foram utilizadas funções 

existentes no toolbox Neural Network. Os algoritmos de treinamento utilizados foram o 

Resilient Propagation, através da função trainrp, e o Levenberg-Marquardt, através da 

função trainlm. As redes neurais utilizadas foram do tipo Multilayer Feedforward, e os 

parâmetros utilizados para criar as redes e realizar o treinamento com os dois algoritmos 

foram os seguintes: 
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 net.divideFcn  =  'divideind'; 

 net.divideParam.trainInd = ind_tr;   % índices do conjunto de treinamento 

 net.divideParam.valInd = ind_val;   % índices do conjunto de validação 

 net.divideParam.testInd = ind_tst;   % índices do conjunto de teste 

 net.inputs{1}.processFcns = {} ; 

 net.inputs{1}.processParams = {} ; 

 net.outputs{2}.processFcns = {} ; 

 net.outputs{2}.processParams = {} ; 

 net.performFcn = ‘mse’; 

 net.trainFcn = ‘trainlm’;     % ou ‘trainrp’ 

 net.trainParam.show = NaN; 

 net.trainParam.showWindow = 0; 

 net.trainParam.showCommandLine = 1; 

 net.trainParam.epochs = 500; 

 net.trainParam.goal = 0; 

 net.trainParam.max_fail = 10. 

 

Para os demais parâmetros necessários à realização dos treinamento e que não foram 

listados acima, foram utilizados os próprios valores default do toolbox Neural Network. 

Para criar os sistemas de inferência Fuzzy e realizar o treinamento com o ANFIS, 

foram utilizadas funções existentes no toolbox Fuzzy Logic. Os sistemas de inferência 

foram criados a partir dos conjuntos de treinamento utilizando-se a função genfis2. A 

função anfis foi utilizada para adaptar as funções de pertinência dos sistemas de inferência 

gerados. Os conjuntos de treinamento e validação foram utilizados para realizar a 

adaptação, e o número de épocas utilizado foi igual a 100. 

Em relação às wavelets, utilizou-se o toolbox Wavelet para aplicar a Transformada 

Wavelet Discreta na decomposição em múltiplos níveis de determinados sinais de entrada 

(velocidades médias horárias dos ventos). Dentre as bases wavelets testadas, aquelas que se 

demonstraram mais apropriadas à aplicação para os modelos desenvolvidos (ver Capítulo 

5) foram as da família Daubechies, mais especificamente, as wavelets do tipo “daubechies 

10”. 
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CAPÍTULO 4 

4. AVALIAÇÃO DE DESEMPENHO DOS MODELOS DE 

PREVISÃO 

Neste capítulo definem-se os critérios utilizados para avaliar os modelos de 

previsão propostos nesta dissertação. A seção inicial do capítulo apresenta alguns conceitos 

sobre séries temporais. A segunda seção traz as notações que são comumente utilizadas 

pela comunidade de previsão de geração eólica (ver [21]). Na terceira seção, são 

apresentados os modelos que servirão de referência para a comparação com as previsões 

dos modelos propostos. Na quarta seção são definidos os erros de previsão e, finalmente, 

na quinta seção, são apresentados os critérios de comparação do desempenho dos modelos. 

 

4.1 Séries Temporais 

Uma série temporal é um conjunto de observações de uma dada variável, ordenado 

segundo o parâmetro tempo, geralmente em intervalos equidistantes. Se Zt representa o 

valor da variável aleatória Z no instante t, a série temporal pode ser denotada por Z1, Z2,..., 

ZN, sendo N o tamanho da série ou o número de observações seriais da variável [34]. As 

séries temporais abordadas nesta dissertação são discretas, ou seja, séries cujo número de 

observações N é finito. 

 

4.1.1 Previsão de Séries Temporais 

A previsão de uma série temporal é simplesmente o estabelecimento dos valores 

futuros da série. Uma previsão é uma estimativa quantitativa (ou conjunto de estimativas) 

acerca da verossimilhança de eventos futuros baseados na informação atual e passada [34]. 

Uma característica dos modelos de previsão de séries temporais propostos nesta 

dissertação é que eles são univariados, ou seja, são fundamentados apenas na análise das 

observações da série de interesse para a especificação de algum modelo que descreva essas 

observações. 

O horizonte de previsão é o comprimento de tempo, contado a partir de uma origem 

especificada, chamada origem das previsões, no sentido do futuro, para o qual as previsões 

devem ser determinadas. O horizonte de previsão irá variar de acordo com o propósito ou 
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uso final das previsões. Denomina-se o número de intervalos de tempo (períodos) para 

frente, a partir da origem das previsões, como o número de passos de uma previsão [34]. 

 

4.1.2 Autocorrelação 

A autocorrelação serve para medirmos o comprimento da memória de um processo, 

ou seja, a extensão para a qual o valor tomado no tempo t  depende daquele tomado no 

tempo kt   [33]. A autocorrelação é uma medida que informa o quanto o valor de uma 

realização de uma variável aleatória é capaz de influenciar seus vizinhos, por exemplo, o 

quanto a existência de valor mais alto condiciona valores também altos de seus vizinhos. 

Por definição, o valor da autocorrelação está entre 1 (correlação perfeita) e –1, o que 

significa anti-correlação perfeita. O valor 0 (zero) significa total ausência de correlação. A 

autocorrelação de uma dada variável se define pela distância, ou atraso com que se deseja 

medi-la. Quando essa distância é zero, tem-se o valor máximo 1, pois trata-se da variável 

correlacionada com ela mesma. Outros valores devem ser calculados caso a caso. 

No presente trabalho, a série temporal discreta é um vetor contendo as velocidades 

médias horárias da respectiva estação anemométrica. Para o cálculo das autocorrelações 

utiliza-se a seguinte expressão: 
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em que,  

iv
 – é o i-ésimo elemento do vetor das velocidades; 

  – é a média do vetor das velocidades; 

N – é o comprimento do vetor das velocidades; 

k  – é o deslocamento no tempo; 

kr
–  é a autocorrelação entre elementos do vetor das velocidades deslocados no tempo. 

 

http://pt.wikipedia.org/wiki/Correla%C3%A7%C3%A3o
http://pt.wikipedia.org/w/index.php?title=Anti-correla%C3%A7%C3%A3o&action=edit&redlink=1
http://pt.wikipedia.org/w/index.php?title=Atraso&action=edit&redlink=1
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4.2 Notações 

 

instP  : Potência instalada do parque eólico; 

medP  : Potência média gerada pelo parque eólico durante 

determinado período; 

max...,,2,1 kk   : Passo da previsão (número de horas à frente); 

maxk  : Máximo passo da previsão; 

N  : Número de dados utilizados para a avaliação do modelo; 

)( ktv   : Velocidade medida no instante kt  ; 

)|(ˆ tktv   : Velocidade prevista na origem t  para o instante kt  ; 

)( ktP   : Potência medida no instante kt  ; 

)|(ˆ tktP   : Potência prevista na origem t  para o instante kt  ; 

)|( tktev   : Erro correspondente ao instante kt   para a previsão da 

velocidade realizada na origem t ; 

)|( tkteP   : Erro correspondente ao instante kt   para a previsão da 

potência realizada na origem t ; 

)|( tkt
instP   : Erro da previsão de potência normalizado pela potência 

instalada; 

)|( tkt
medP   : Erro da previsão de potência normalizado pela potência média 

gerada. 

 

Cabe ressaltar que, nesta dissertação, as potências são extraídas da curva de 

potência do aerogerador. Por exemplo, para obter o valor de )( ktP  , verifica-se na curva 

de potência do aerogerador qual é a potência gerada quando a velocidade do vento é 

)( ktv  . 

 

4.3 Modelos de Referência 

Os modelos de referência resultam de considerações simples e não exigem esforços 

de modelagem. Portanto, só é vantajoso desenvolver e implementar uma ferramenta 

avançada de previsão de geração eólica se ela for capaz de superar os modelos de 
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referência, ou seja, se a ferramenta fornecer resultados melhores do que aqueles obtidos 

com os modelos de referência [21]. Provavelmente, o modelo de referência mais 

comumente utilizado na previsão de energia eólica ou no campo meteorológico é o Modelo 

da Persistência. Este modelo simples assume que a medida no instante tempo kt   é igual 

ao último valor medido (em t ), ou seja, 

 

)()|(ˆ tvtktvPERS  . (4.2) 

 

Apesar de sua aparente simplicidade, este modelo pode ser difícil de ser batido para 

os primeiros passos de previsão (em torno de 4 – 6 horas), pois a escala de mudanças na 

atmosfera é lenta [21]. Uma generalização do Modelo da Persistência é obtida ao substituir 

o último valor medido pela média dos últimos n valores medidos: 
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Às vezes, tais modelos são referidos como previsores de média móvel. Assintoticamente 

(quando n tende ao infinito), eles tendem à média global: 

 

)()|(ˆ
0 tvtktv  . (4.4) 

 

Este último modelo também pode servir como um modelo de referência, mas como 

ele não é muito dinâmico, o seu desempenho pode ser ruim para horizontes de previsão 

curtos. No entanto, para horizontes mais longos, a sua habilidade de previsão é melhor do 

que a do Modelo da Persistência [21]. A fim de obter um melhor desempenho ao longo de 

toda a gama de horizontes de previsão, os autores propuseram a fusão dos dois modelos, 

que levou a um novo modelo de referência 

 

)()1()()|(ˆ tvtvtktv kkNEWREF  , (4.5) 

 

em que 
k  é o coeficiente de autocorrelação entre )(tv  e )( ktv  . Os valores de )(tv  e 

k  

devem ser estimados ou determinados a partir do conjunto de treinamento. 
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4.4 Definição dos Erros de Previsão 

 

No campo de previsões de séries temporais em geral, o erro é definido como a 

diferença entre os valores medido e previsto. Para cada passo, os erros da previsão são 

definidos como: 

 

)|(ˆ)()|( tktvktvtktev  , (4.6) 

)|(ˆ)()|( tktPktPtkteP  . (4.7) 

 

É conveniente normalizar Pe  em função da potência instalada com a finalidade de 

produzir resultados em valores percentuais para compará-los adequadamente com os 

resultados de outras localidades: 
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Esta normalização pode levar a valores de erro muito baixos para parques com capacidade 

instalada elevada. Para obter valores mais conservadores, se sugere a normalização pela 

potência média gerada [35]: 
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Qualquer erro de previsão pode ser decomposto como a soma de duas parcelas, 

sendo uma delas denominada erro sistemático (
e ), e a outra, erro aleatório (

e ) [21]. 

 

eee  , (4.10) 

 

em que, 
e  é um valor constante, enquanto que 

e  é uma variável aleatória cuja média é 

zero. O erro sistemático é igual ao valor médio do erro de previsão sobre todo o período de 

avaliação e é calculado para cada passo de previsão de acordo com a seguinte equação: 
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Os quatro tipos básicos de erros utilizados nesta dissertação para medir o 

desempenho de um modelo de previsão são:  o erro absoluto médio (Mean Absolut Error – 

MAE), o erro absoluto percentual médio (Mean Absolut Percentage Error – MAPE), o erro 

quadrático médio (Mean Squared Error – MSE) e a raiz do erro quadrático médio (Root 

Mean Squared Error – RMSE). As equações utilizadas para calculá-los são definidas a 

seguir: 
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)()( kMSEkRMSE vv  . (4.15) 

 

As expressões do MAE, MSE e RMSE também se aplicam para as potências geradas. Não 

se deve utilizar o MAPE para as potências, pois )( ktP   será nula se houver instantes nos 

quais )( ktv   é menor do que a velocidade de cut-in do aerogerador. 

 Estatisticamente, os valores do erro médio e do MAE estão associados com o 

momento de primeira ordem do erro de previsão, e portanto, são medidas que estão 

relacionadas diretamente com a energia produzida. Os valores do RMSE estão associados 

com o momento de segunda ordem, e portanto, estão relacionados com a variância do 

modelo de previsão [21]. 
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4.5 Critérios para Comparação dos Modelos 

Ao propor um novo modelo de previsão, é muito importante destacar e quantificar 

os ganhos obtidos em relação aos modelos de referência [21]. A fórmula utilizada para 

calcular estes ganhos percentuais para cada passo de previsão é a seguinte: 
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em que,  

)(kCAref  – é o critério de avaliação do modelo de referência; 

)(kCA  – é o critério de avaliação do modelo proposto. 

 

O critério de avaliação pode ser o MAE, MAPE, MSE ou RMSE. Obviamente, ao calcular o 

ganho, o mesmo critério deve ser utilizado para os dois modelos que estão sendo 

comparados. 

 Uma outra maneira de avaliar o desempenho dos modelos é o coeficiente de 

determinação 2R . Para cada passo de previsão, calcula-se o valor de 2R  pela seguinte 

equação: 
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Este coeficiente representa a habilidade que o modelo possui para explicar a variância dos 

dados. O valor de 2R  deve estar situado entre zero e um. Quanto mais próximo da unidade 

estiver o valor de 2R , melhor será o modelo de previsão. 

Há ainda diversas ferramentas que podem ser utilizadas para a análise exploratória 

e comparação das previsões obtidas com diferentes modelos. Algumas delas são mais 

adequadas à previsão de geração eólica, pois permitem uma visão mais profunda sobre o 

desempenho dos modelos que estão sendo analisados. Uma ferramenta útil é o gráfico dos 

erros quadráticos médios acumulados, pois pode-se analisar visualmente o comportamento 

do modelo de previsão ao longo de determinado período [21]. Também é importante traçar 
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os diagramas de dispersão dos valores medidos e as respectivas previsões. Nestes 

diagramas, quanto maior a proximidade dos pontos em relação à reta, maior será a 

correlação entre a série temporal medida e as previsões. 
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CAPÍTULO 5 

5. DESENVOLVIMENTO DOS MODELOS DE PREVISÃO 

O presente capítulo apresenta a metodologia utilizada para o desenvolvimento dos 

modelos de previsão. A seção inicial do capítulo apresenta uma estatística descritiva das 

séries de velocidades médias horárias utilizadas para realizar os ajustes dos modelos. A 

segunda seção apresenta os modelos propostos. Na terceira seção, são apresentados os 

procedimentos para o treinamento e ajustes destes modelos. Finalmente, na quarta seção, 

são definidos os melhores modelos de previsão para cada localidade estudada. 

 

5.1  Séries de Velocidades Médias Horárias 

As séries de velocidades utilizadas nesta dissertação são publicadas pelo Instituto 

Nacional de Meteorologia (INMET) na internet (http://www.inmet.gov.br/). As séries 

correspondem aos dados medidos nas estações meteorológicas de superfície automáticas 

situadas no estado do Rio Grande do Norte, nas cidades de Macau, Mossoró e Natal. 

Uma estação meteorológica de superfície automática é composta de uma unidade 

de memória central (datalogger) ligada a vários sensores dos parâmetros meteorológicos 

(pressão atmosférica, temperatura e umidade relativa do ar, precipitação, radiação solar, 

direção e velocidade do vento, etc.) que integra os valores observados minuto a minuto e 

calcula o valor médio atualizando os dados automaticamente a cada hora. Os dados das 

estações automáticas estão disponíveis no site do INMET por apenas três meses. 

Conforme dito anteriormente, os modelos de previsão de séries temporais propostos 

neste trabalho são univariados, logo, todas as variáveis de entrada e saída dos modelos de 

previsão serão apenas as velocidades médias horárias. As velocidades previstas 

correspondem à altura de 10 metros acima do nível do solo, pois os dados de velocidade 

das estações de superfície automática do INMET são medidos nesta altura. 

 

5.1.1 Estatística Descritiva 

A estatística descritiva é um ramo da estatística que trata da extração de 

informações contidas em conjuntos de dados. A apresentação destas informações pode ser 

feita utilizando-se a representação tabular, a representação por parâmetros e a 

http://www.inmet.gov.br/
http://pt.wikipedia.org/wiki/Estat%C3%ADstica
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representação gráfica, que possibilita uma rápida visão geral dos dados. Objetivando a 

eliminação de erros capazes de provocar futuros enganos de apresentação e análise, deve-

se realizar uma revisão crítica dos dados. Após a revisão, convém organizar os dados de 

maneira prática e racional, para que se obtenha um melhor entendimento do fenômeno 

estudado. 

Para cada uma das estações de superfície automáticas, os dados (velocidades) foram 

armazenados em um vetor de comprimento igual ao número de amostras N, de modo a 

facilitar a análise e manipulação dos mesmos. O armazenamento dos dados em forma de 

vetores facilita a programação computacional, permitindo que os diversos cálculos e 

medidas estatísticas sejam realizados de forma rápida e eficaz. São apresentados, na Tabela 

5.1, os períodos e o total de amostras (tamanho das séries) utilizadas para o 

desenvolvimento dos modelos de previsão de cada estação de superfície automática. 

 

Tabela 5.1 – Dados utilizados para o desenvolvimento dos modelos de previsão. 

Estação Período  Total de Amostras (N) 

MACAU Janeiro a Dezembro – 2008 8.784 

MOSSORÓ Janeiro a Dezembro – 2008 8.784 

NATAL Janeiro a Dezembro – 2008 8.784 

 

Na Figura 5.1 são apresentadas as séries de velocidades e os histogramas para as 

estações de MACAU, MOSSORÓ e NATAL, respectivamente. Os histogramas permitem 

que seja feita uma análise das faixas de velocidade para as quais ocorrem as maiores 

frequências de observações dos dados. Os valores mínimos, máximos, as médias e os 

desvios padrões das séries de velocidades das três estações são apresentados na Tabela 5.2. 

 

Tabela 5.2 – Estatísticas das séries de velocidades de MACAU, MOSSORÓ e NATAL.  

Estação 
Mínima 

[m/s]  

Máxima 

[m/s] 

Média 

[m/s] 

Desvio padrão 

[m/s] 

MACAU 0,20 11,60 4,48 1,99 

MOSSORÓ 0,10 9,40 3,32 1,95 

NATAL 0,09 10,50 4,70 1,81 
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Figura 5.1 – Séries de velocidades e histogramas de MACAU, MOSSORÓ e NATAL. 

 

Há uma pequena quantidade de velocidades menores ou iguais a 2 m/s para 

MACAU e NATAL, correspondendo a 10,19% e 7,17% dos dados, respectivamente. Já 

para MOSSORÓ, 33,40% das velocidades estão situadas nessa faixa. Outra característica 

das três estações é que a grande maioria das velocidades possui valor menor ou igual a 7 

m/s. Para MACAU, 88,35% das velocidades são menores ou iguais a 7 m/s, e para 

MOSSORÓ e NATAL, estes valores percentuais correspondem a 97,32% e 90,08% dos 

dados, respectivamente. 

Na Figura 5.2 são apresentados os dias típicos e as sazonalidades das velocidades 

dos ventos para as três localidades. A composição do dia típico de uma determinada 

localidade é obtida calculando-se a média aritmética das velocidades correspondentes para 

cada hora do dia ao longo de todo o ano em estudo. Observa-se claramente que a 

velocidade dos ventos possui uma variação cíclica diária nas três localidades. As 

velocidades diminuem ao longo do dia, atingindo seu valor mínimo entre 08:00 – 09:00 

horas (Coordinated Universal Time – UTC). Posteriormente, as velocidades aumentam até 

atingirem seu valor máximo entre 15:00 – 19:00 horas (UTC). A sazonalidade pode ser 

visualizada nos gráficos das médias mensais das velocidades dos ventos. O comportamento 

sazonal dos ventos na região Nordeste é de extrema importância para a geração eólica, pois 

há a possibilidade de utilizar este tipo de geração como uma forma complementar à 

geração hidrelétrica, uma vez que nos períodos de poucas chuvas os ventos são mais 

favoráveis, e nos períodos úmidos os ventos são mais fracos. 
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Figura 5.2 – Dia típico e comportamento sazonal de MACAU, MOSSORÓ e NATAL. 

 

As autocorrelações das séries temporais abordadas podem ser analisadas na Figura 

5.3, cujos gráficos são muito semelhantes. Há valores mínimos de autocorrelação para 

deslocamentos múltiplos de 12 horas, e valores máximos de autocorrelação para 

deslocamentos múltiplos de 24 horas. O máximo deslocamento utilizado para o cálculo da 

autocorrelação foi de 48 horas. Quando este deslocamento tende para um valor muito 

grande, a autocorrelação tende a zero. 

 

 

Figura 5.3 – Coeficientes de autocorrelação de MACAU, MOSSORÓ e NATAL. 
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5.2 Modelos de Previsão 

Seis diferentes modelos para a previsão das velocidades médias horárias dos ventos 

são propostos nesta dissertação. Quatro deles utilizam as Redes Neurais Artificias (RNA) 

do tipo Multilayer Feedforward, e os outros dois utilizam o Adaptive Neuro-Fuzzy 

Inference System (ANFIS). Estas ferramentas de inteligência artificial foram detalhadas no 

Capítulo 3. 

 

5.2.1 Modelos RNA(LM), RNA(RP) e ANFIS 

Estes três modelos possuem os mesmos padrões de entrada e saída, isto é, quatro 

entradas e uma saída. Os dados de entrada são as quatro últimas velocidades médias 

horárias e a saída corresponde à velocidade média horária prevista para o passo de previsão 

k. A Figura 5.4 é um esquema entradas-saída dos modelos. 
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Figura 5.4 – Entradas e saída dos modelos RNA(LM), RNA(RP) e ANFIS. 

 

Os modelos RNA(LM) e RNA(RP) são formados por redes cujos algoritmos de 

treinamento são o Levenberg-Marquardt (LM) e o Resilient Propagation (RP), 

respectivamente. A arquitetura destas redes é formada por uma camada de entrada com 

quatro entradas, uma camada intermediária (oculta) e uma camada de saída com uma saída. 

A quantidade de neurônios da camada oculta dos modelos neurais é determinada 

variando-se o número de neurônios desta camada, sendo selecionada a quantidade que 

fornecer o melhor desempenho durante os treinamentos. Os neurônios da camada oculta 

utilizam a função de ativação Tangente Hiperbólica. A camada de saída possui apenas um 

neurônio, pois há apenas uma saída. A função de ativação deste neurônio é a Sigmóide 

Logística. 

 

MODELO 

DE 

PREVISÃO 
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O modelo ANFIS também possui quatro entradas e uma saída. A seleção do melhor 

sistema de inferência foi realizada a partir da técnica subtractive clustering. O 

comprimento do raio de influência de cada cluster é determinado variando-se o seu valor, 

sendo selecionado aquele comprimento que fornecer o melhor desempenho durante os 

treinamentos. 

 

5.2.2 Modelos TWRNA(LM), TWRNA(RP) e TWANFIS 

As diferenças destes três modelos em relação aos anteriores são: o número de 

entradas e os tipos de sinais fornecidos às ferramentas de inteligência artificial. Os modelos 

TWRNA(LM), TWRNA(RP) e TWANFIS possuem 16 entradas, definidas da seguinte 

maneira:  

 Aplica-se ao vetor das velocidades a decomposição em três níveis da 

Transformada Wavelet Discreta; 

 Montam-se quatro vetores de mesma ordem do vetor das velocidades, sendo 

eles: A3 – vetor de aproximação do 3º nível; D3 – vetor de detalhe do 3º nível; D2 

– vetor de detalhe do 2º nível; D1 – vetor de detalhe do 1º nível. 

 

Cada entrada )(v  dos modelos anteriores é substituída pelas quatro entradas 

correspondentes )(),(),( 233  dda  e )(1 d , em que 1,2,3  ttt  ou t . A Figura 5.5 

é um esquema entradas-saída dos modelos. 
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Figura 5.5 – Entradas e saída dos modelos TWRNA(LM), TWRNA(RP) e TWANFIS. 
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5.3 Procedimentos para o treinamento e ajuste dos modelos 

5.3.1 Normalização dos dados 

Os dados de entrada dos modelos que utilizam as RNA devem ser normalizados. 

Segundo [6], a normalização é necessária para assegurar que todas as variáveis usadas nos 

modelos tenham igual atenção durante o treinamento. Além disto, os neurônios artificiais, 

geralmente, são compostos de funções de ativação que são limitadas. Assim, a 

normalização deve limitar os valores dos dados utilizados nos extremos das funções de 

ativação.  

Para que os valores normalizados estejam contidos no intervalo [0,1] a 

normalização é realizada empregando-se a seguinte expressão: 

 

minmax

min)(
)(~

xx

xx
x







 , 

(5.1) 

em que, 

)(~ x  – é o valor normalizado do dado de entrada correspondente ao instante  ; 

)(x  – é o valor real do dado de entrada correspondente ao instante  ; 

minx  – é o valor da menor componente do vetor ao qual pertence o dado de entrada; 

maxx  – é o valor da maior componente do vetor ao qual pertence o dado de entrada. 

 

Para os modelos TWRNA(LM) e TWRNA(RP), devem ser realizadas duas 

normalizações distintas. Uma delas se aplica ao vetor A3, a outra se aplica à concatenação 

dos vetores D3, D2 e D1. Para a normalização destes vetores, minx  corresponde ao valor 

mínimo das três séries de detalhes concatenadas, e 
maxx corresponde ao valor máximo. 

O valor de saída dos quatro modelos que utilizam as RNA é normalizado, logo, os 

valores de minx  e 
maxx utilizados para o ajuste dos modelos devem ser armazenados para 

que se possa realizar a desnormalização de )|(ˆ tktv  . 
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5.3.2 Partição das bases de dados 

 Antes de realizar os treinamentos dos modelos, montou-se, para cada uma das 

séries de velocidades, e para cada passo de previsão (1 – 24 horas), uma matriz dos padrões 

de entradas e saída. Para cada linha destas matrizes de padrões, nas primeiras colunas estão 

as entradas e na última coluna a saída. Para os modelos RNA(LM), RNA(RP) e ANFIS, 

estas matrizes possuem cinco colunas, enquanto que para os modelos TWRNA(LM), 

TWRNA(RP) e TWANFIS, as matrizes têm dezessete colunas. No total, foram montadas 

432 matrizes de padrões. 

Os padrões de treinamento dos modelos que utilizam redes neurais devem ser 

normalizados, portanto, as matrizes dos padrões foram normalizadas antes de realizar os 

treinamentos dos modelos RNA(LM), RNA(RP), TWRNA(LM) e TWRNA(RP). 

A partir de cada uma das matrizes de padrões, foram criados os conjuntos de 

treinamento, com 60% das linhas, validação, com outros 30%, e teste, com os 10% 

restantes. Para os modelos que utilizam redes neurais, as matrizes normalizadas foram 

utilizadas para a criação destes conjuntos. 

5.3.3 Determinação do número de neurônios da camada oculta 

De acordo com a regra utilizada em [20], o número de neurônios na camada oculta 

é determinado por tentativas, sendo eleito o que corresponder ao melhor desempenho 

durante os treinamentos. Para cada um dos quatro modelos que utilizam redes neurais 

propostos nesta dissertação, o procedimento para determinar a quantidade de neurônios da 

camada oculta foi o seguinte: 

 

I. Criou-se uma rede com três neurônios na camada oculta; 

II. Atribuiu-se pesos aleatórios para todas as conexões da rede, realizou-se o 

treinamento através do algoritmo específico para o modelo (LM ou RP) e 

calculou-se o MAE, MSE, RMSE e MAPE para cada um dos conjuntos 

(treinamento, validação e teste); 

III. O passo II foi repetido dez vezes. Após a décima repetição, foram calculadas as 

médias do MAE, MSE, RMSE e MAPE, seguindo posteriormente ao próximo 

passo; 

IV. Foi adicionado mais um neurônio na camada intermediária, retornou-se ao passo 

II, e esse “loop” continuou até a rede possuir quinze neurônios na camada oculta; 
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V. Escolheu-se a arquitetura da rede que apresentou menor média do MAPE para o 

conjunto de validação. 

 

Depois de realizados os passos descritos anteriormente, o número de neurônios na 

camada intermediária para cada um dos modelos e para cada uma das localidades 

consideradas (MACAU, MOSSORÓ e NATAL) estava determinado. As quantidades de 

neurônios para os modelos são apresentadas na Figura 5.6. Para cada uma das localidades, 

observa-se que os valores são bastante variados para os passos de previsão considerados. 

De uma maneira geral, pode-se dizer que os modelos que utilizam o algoritmo Resilient 

Propagation necessitam de uma quantidade maior de neurônios na camada oculta para 

fornecer melhores resultados de previsão. 

 

Figura 5.6 – Número de neurônios na camada oculta. 

 

Os tempos médios para realizar uma inicialização dos pesos e o treinamento das 

redes são apresentados nas Figura 5.7 e Figura 5.8. Os tempos gastos pelos modelos 

RNA(LM) e RNA(RP) (para alguns passos) são apresentados na Figura 5.7. Observa-se que, 

em geral, o tempo gasto é maior com o aumento do número de neurônios na camada 

oculta, e reduz com o aumento do passo da previsão. O tipo de algoritmo de treinamento 

também influenciou significativamente nos tempos médios, sendo o Resilient Propagation 

aquele que exigiu mais tempo de treinamento. 
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Figura 5.7 – Tempos médios de treinamento dos modelos RNA(LM) e RNA(RP). 

 

Na Figura 5.8, são apresentados os tempos gastos pelos modelos TWRNA(LM) e 

TWRNA(RP) (para alguns passos). Por possuírem uma quantidade maior de entradas, estes 

modelos exigiram maiores tempos de treinamento. Novamente, observa-se que, de uma 

maneira geral, o tempo gasto aumenta com o aumento do número de neurônios na camada 

oculta, e reduz com o aumento do passo da previsão. Além disto, verifica-se também que o 

tipo de algoritmo de treinamento influenciou significativamente nos tempos médios, 

entretanto, para estes modelos, o algoritmo Levenberg-Marquardt exigiu maiores tempos 

de treinamento. 

 
Figura 5.8 – Tempos médios de treinamento dos modelos TWRNA(LM) e TWRNA(RP). 
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Os gráficos comparativos do MAPE do conjunto de validação para as melhores 

arquiteturas são apresentados na Figura 5.9 para efeito de comparação. Na parte superior, 

estão traçados os gráficos para os modelos que utilizam o algoritmo Levenberg-Marquardt 

e na parte inferior, os gráficos para os modelos que utilizam o algoritmo Resilient 

Propagation. Observa-se que o desempenho dos modelos que utilizam a Transformada 

Wavelet é superior para praticamente todos os passos de previsão. Além disto, dentre os 

modelos que utilizam a TW, o algoritmo LM forneceu melhores previsões, principalmente 

para os passos mais curtos. Ainda em relação à Figura 5.9, observa-se que os valores do 

MAPE para MOSSORÓ são mais elevados. Isto se deve principalmente ao fato de que há 

um grande número de velocidades baixas para esta estação, o que contribui para o aumento 

do MAPE.  

 

 
Figura 5.9 – MAPE do conjunto de validação para as melhores arquiteturas das redes. 

 

 

5.3.4 Escolha da melhor rede para cada modelo neural 

Após a determinação da quantidade de neurônios nas camadas ocultas, a qual 

fornece as arquiteturas finais das redes, falta ainda descobrir aquelas que se adaptem 

melhor ao problema abordado. Em outras palavras, falta definir quais redes possuem 

melhor capacidade de generalização para as previsões das velocidades de cada localidade e 

para cada um dos passos de previsão considerados.  
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A metodologia utilizada para a escolha da melhor rede foi baseada em [6]. Para 

realizar esta escolha, aplicou-se o método de validação cruzada múltipla, também 

conhecido como k-fold cross-validation, em que, k representa o número de partições 

geradas aleatoriamente a partir das matrizes dos padrões para treinar, testar e validar as 

redes. Nesse método, os padrões são divididos em k partições mutuamente exclusivas. A 

cada iteração do método, uma partição diferente é utilizada para testar o sistema e todas as 

outras (k – 1) partições são utilizadas para treinar e validar o treinamento das redes [6].  

A partir de cada uma das matrizes dos padrões, para facilitar a implementação do 

método, montou-se uma matriz com “3 dimensões”, possibilitando a criação de dez 

experimentos por matriz. Para cada um dos experimentos, construíram-se os conjuntos de 

treinamento (seis partições), validação (três partições) e teste (uma partição). Pode-se 

observar, na Figura 5.10, como as matrizes k-fold foram montadas.  

 

 
Figura 5.10 – Representação esquemática da matriz k-fold. 

 

 

A montagem da matriz k-fold torna mais fácil a definição dos conjuntos de 

experimentos utilizados para realizar treinamentos com dados diferentes. Foram criados 10 

experimentos, e para cada experimento, foram realizadas 10 inicializações dos pesos. 

Na Tabela 5.3 descreve-se a formação dos conjuntos de treinamento, validação e 

teste, bem como identificam-se as redes, ou seja, a inicialização de cada experimento, que 

utilizaram os respectivos conjuntos. 
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Tabela 5.3 – Experimentos realizados no método de validação cruzada. Fonte: [6]. 

Experimento Redes 
Treinamento 

(partições) 

Validação 

(partições) 

Teste 

(partição) 

1 1 – 10 5, 6, 7, 8, 9, 10 2, 3, 4 1 

2 11 – 20 1, 6, 7, 8, 9, 10 3, 4, 5 2 

3 21 – 30 1, 2, 7, 8, 9, 10 4, 5, 6 3 

4 31 – 40 1, 2, 3, 8, 9, 10 5, 6, 7 4 

5 41 – 50 1, 2, 3, 4, 9, 10 6, 7, 8 5 

6 51 – 60 1, 2, 3, 4, 5, 10 7, 8, 9 6 

7 61 – 70 1, 2, 3, 4, 5, 6 8, 9, 10 7 

8 71 – 80 2, 3, 4, 5, 6, 7 9, 10, 1 8 

9 81 – 90 3, 4, 5, 6, 7, 8 1, 2, 10 9 

10 91 – 100 4, 5, 6, 7, 8, 9 1, 2, 3 10 

 

Espera-se, com aplicação da técnica de validação cruzada, que os valores médios de 

MSE e MAPE, obtidos em cada experimento no conjunto de teste, sejam considerados 

como o resultado esperado para as redes Multilayer Feedforward [6]. 

A escolha do melhor modelo neural, para cada um dos modelos propostos, foi 

realizada a partir do experimento que forneceu o menor valor médio do MAPE das 10 

inicializações para o conjunto de teste. Após a determinação deste experimento, escolheu-

se a rede que apresentou o menor MAPE para o conjunto de teste do experimento 

determinado. Os gráficos comparativos do MAPE para as previsões dos modelos 

escolhidos após a validação cruzada são apresentados na Figura 5.11. As mesmas 

observações feitas para os gráficos da Figura 5.9 também se aplicam aos gráficos da Figura 

5.11. 
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Figura 5.11 – MAPE do conjunto de teste para as melhores redes. 

 

 

5.3.5 Escolha do melhor Sistema de Inferência Fuzzy 

O melhor Sistema de Inferência Fuzzy (Fuzzy Inference System – FIS) foi escolhido 

adotando-se o seguinte procedimento: 

 

I. Utilizando a técnica subtractive clustering, a partir do conjunto de treinamento, 

gerou-se inicialmente o FIS com o tamanho do raio de influência igual a 0,3; 

II. Em seguida, as funções de pertinência do FIS foram adaptadas com o ANFIS. 

Os conjuntos de treinamento e validação foram utilizados para realizar a 

adaptação dessas funções; 

III. O conjunto de teste foi simulado e em seguida foram calculados o MAE, MSE, 

RMSE e MAPE; 

IV. Gerou-se um novo FIS incrementando o tamanho do raio em 0,1 e retornou-se 

ao passo II. Após calcular o MAE, MSE, RMSE e MAPE para o FIS com o 

raio igual a 0,7, passou-se para o passo V; 

V. Escolheu-se o melhor FIS de acordo com o menor MAPE para o conjunto de 

teste. 

Este procedimento foi utilizado para MACAU, MOSSORÓ e NATAL, e para cada um dos 

modelos, ANFIS e TWANFIS. 
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Depois de realizados os passos descritos anteriormente, os melhores modelos 

ANFIS e TWANFIS para MACAU, MOSSORÓ e NATAL estavam determinados. Os raios 

de influências dos centros dos clusters para os modelos escolhidos são apresentados na 

Figura 5.12. 

 

 

Figura 5.12 – Raios dos clusters para os modelos ANFIS e TWANFIS. 

 

 

Os tempos gastos para realizar o treinamento dos modelos ANFIS e TWANFIS (para 

alguns passos)  são apresentados nas Figura 5.13 e Figura 5.14. Os tempos gastos pelos 

modelos ANFIS são apresentados na Figura 5.13. Observa-se que o tempo gasto diminui 

com o aumento do raio. Para a estação de NATAL, os tempos gastos durante o treinamento 

com os raios 0,3 e 0,4 foram consideravelmente maiores. 
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Figura 5.13 – Tempos de treinamento dos modelos ANFIS. 

 

 

 

Na Figura 5.14, são apresentados os tempos gastos pelos modelos TWANFIS. Para 

estes modelos, os tempos sofreram um acréscimo significativo. Novamente, observa-se que 

o tempo gasto diminui com o aumento do raio. Para a estação de NATAL, os tempos 

gastos durante o treinamento com os raios 0,3 foram bastante elevados, chegando a atingir 

cerca de 8.200 segundos para o passo de previsão igual 12 horas. 

 

 
Figura 5.14 – Tempos de treinamento dos modelos TWANFIS. 
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Os gráficos do MAPE do conjunto de teste para os melhores modelos ANFIS e 

TWANFIS de MACAU, MOSSORÓ e NATAL são apresentados na Figura 5.15 para efeito 

de comparação. Observa-se que o desempenho dos modelos que utilizam a Transformada 

Wavelet é superior, principalmente para os passos de previsão mais curtos. Os valores do 

MAPE para MOSSORÓ são mais elevados, devido principalmente ao fato de que há um 

grande número de velocidades baixas para esta estação, o que contribui para o aumento do 

MAPE.  

 

 
 

Figura 5.15 – MAPE do conjunto de teste para os melhores Sistemas de Inferência Fuzzy. 

 

  

Como foi visto neste capítulo, os modelos de previsão propostos apresentaram bons 

desempenhos de previsão, principalmente para os passos mais curtos. No próximo capítulo 

serão apresentadas as comparações entre as previsões obtidas com os modelos 

TWRNA(LM) e TWANFIS, com as previsões obtidas com os modelos de referência 

apresentados no Capítulo 4. Além das previsões das velocidades, serão apresentadas as 

previsões de geração obtidas através da curva de potência do aerogerador. 
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CAPÍTULO 6 

6. PREVISÕES E COMPARAÇÕES ENTRE OS MODELOS 

Comparações dos desempenhos dos modelos TWRNA(LM) e TWANFIS com os 

desempenhos dos modelos de referência PERSISTÊNCIA e NEWREF para a estação de 

MACAU serão apresentadas agora. Os modelos TWRNA(LM) e TWANFIS foram 

escolhidos por terem apresentado, na maioria dos casos, as menores médias do MAPE para 

os conjuntos de teste.  

O critério de seleção do período de previsão foi baseado na escolha de meses 

consecutivos que não apresentavam falhas nos dados de velocidades. O período escolhido 

para a avaliação dos modelos é formado pelas 8.016 velocidades médias horárias 

correspondentes à hora zero (UTC) do dia 01/01/2009 até a hora 23 (UTC) do dia 

30/11/2009. 

 

6.1 Previsões de velocidades para MACAU 

A Figura 6.1 é o gráfico dos diferentes valores do MAE para os passos de previsão 

variando entre 1 e 24 horas. 

 

 

Figura 6.1 – MAE das previsões de velocidades em MACAU. 
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As Figura 6.2 e Figura 6.3 são dos valores do RMSE e MAPE para os passos de 

previsão variando de 1 a 24 horas. 

 

 

Figura 6.2 – RMSE das previsões de velocidades em MACAU. 

 

 

 

Figura 6.3 – MAPE das previsões de velocidades em MACAU. 

 

Observa-se, nos gráficos do MAE, RMSE e MAPE, que os modelos TWRNA(LM) e 

TWANFIS fornecem previsões mais confiáveis do que os modelos de referência para todos 
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os passos de previsão considerados. Os ganhos desses dois modelos em relação ao modelo 

da PERSISTÊNCIA ficam ainda mais evidentes na Figura 6.4, bem como os ganhos do 

modelo NEWREF. No sentido da esquerda para a direita, podem ser observados os ganhos 

do MAE, RMSE e MAPE, para as previsões de velocidades do vento em MACAU. Os 

ganhos obtidos com os modelos propostos são consideráveis e, além disto, são maiores do 

que aqueles obtidos com o modelo NEWREF para todos os passos de previsão. Observa-se, 

no gráfico do GPERS,MAPE, que apenas para passos entre 8 e 17 horas o  modelo NEWREF 

possui um desempenho superior ao do modelo da PERSISTÊNCIA. 

 

 

Figura 6.4 – Ganhos das previsões de velocidades em MACAU. 

 

 

Os gráficos dos erros quadráticos acumulados para as previsões com passos iguais a 

uma hora, doze horas e vinte e quatro horas, respectivamente, são apresentados nas Figura 

6.5, Figura 6.6 e Figura 6.7. A análise destes gráficos é bastante importante, pois pode-se 

visualizar de forma clara a evolução das previsões ao longo do tempo para um determinado 

modelo de previsão, ou seja, os gráficos dos erros quadráticos acumulados permitem que 

se analise de forma qualitativa o comportamento dos modelos de previsão. A inclinação 

(tendência) destes gráficos permite identificar a qualidade das previsões. Quanto menor for 

a inclinação, melhores serão as previsões obtidas com um determinado modelo de previsão 

ao longo de determinado período. Observa-se, na Figura 6.6, que os erros de previsão 

obtidos para o passo de 12 horas são mais acentuados nos períodos de fortes ventos (faixas 
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nas quais a inclinação dos gráficos é mais acentuada). Este comportamento é observado 

mais claramente nos modelos de referência. 

 

 

Figura 6.5 – Erros quadráticos acumulados das previsões de velocidades em MACAU 

com passo de 1 hora. 

 

 

 

Figura 6.6 – Erros quadráticos acumulados das previsões de velocidades em MACAU 

com passo de 12 horas. 
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Figura 6.7 – Erros quadráticos acumulados das previsões de velocidades em MACAU 

com passo de 24 horas. 

 

 

Os gráficos dos erros quadráticos acumulados confirmam que, para MACAU, os 

modelos TWRNA(LM) e TWANFIS fornecem, em média, previsões de velocidades de 

ventos muito mais confiáveis do que aquelas obtidas com os modelos de referência, 

principalmente as previsões com passos mais curtos. 

 Os diagramas de dispersão para os passos de previsão iguais a uma hora, doze horas 

e vinte e quatro horas são apresentados nas Figura 6.8, Figura 6.9 e Figura 6.10, 

respectivamente. Ao realizar uma análise visual destes diagramas (análise qualitativa), 

deve-se observar o quão próximos da reta estão os pontos. Quanto mais próximos da reta 

estiverem estes pontos, melhor será o modelo de previsão. Juntamente com os diagramas 

de dispersão, são apresentados também os coeficientes de determinação 2R  para cada um 

dos modelos. O coeficiente de determinação é um indicador quantitativo da qualidade do 

modelo de previsão (quanto mais próximo da unidade, melhor a qualidade do modelo). 

 



78 

 

 

 

Figura 6.8 – Diagramas de dispersão das previsões de velocidades em MACAU com passo 

de 1 hora. 

 

 

 

Figura 6.9 – Diagramas de dispersão das previsões de velocidades em MACAU com passo 

de 12 horas. 
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Figura 6.10 – Diagramas de dispersão das previsões de velocidades em MACAU com 

passo de 24 horas. 

 

 

Os diagramas de dispersão e os coeficientes de determinação apresentados para as 

previsões de velocidades da estação de MACAU confirmam a qualidade dos modelos 

propostos, sobretudo para as previsões de velocidades com passo de uma hora. Para passos 

de 12 horas, observa-se que as previsões do modelo NEWREF são praticamente iguas à 

média, pois o coeficiente de autocorrelação para velocidades deslocadas de 12 horas é 

muito pequeno. 

Todos os critérios de análises realizados para as previsões das velocidades de vento 

em MACAU refletiram o excelente desempenho dos modelos TWRNA(LM) e TWANFIS 

quando confrontados com os modelos de referência PERSISTÊNCIA e NEWREF. 

Observou-se que, para passos diferentes, a qualidade das previsões obtidas com os modelos 

de referência é fortemente influenciada pela autocorrelação da série temporal. Já para os 

modelos propostos, observou-se que a aplicação da Transformada Wavelet melhora 

significativamente as previsões para os passos de até 12 horas. A partir daí, pode-se dizer 

que o MAE, RMSE e MAPE dos previsores propostos praticamente não variam com o 

passo da previsão. 
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6.2  Previsões de geração para MACAU 

A Figura 6.11 é a curva de potência utilizada para realizar as simulações da geração 

desta dissertação. Trata-se de um aerogerador  com potência nominal de 2.300 kW e a 

altura do cubo é igual a 57 metros. 

 

Figura 6.11 – Curva de potência do aerogerador. 

 

 

Os fabricantes fornecem apenas alguns pontos da curva (pontos em vermelho), 

logo, para estimar a potência (em kW) fornecida para qualquer velocidade compreendida 

entre as velocidade de cut-in (igual a 2 m/s para o aerogerador considerado) e cut-out 

(igual a 25 m/s para o aerogerador considerado), realizou-se a parametrização da curva em 

quatro intervalos através da minimização do MSE (método dos mínimos quadrados). A 

parametrização utilizada é definida em (6.1). 
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 (6.1) 

 

As velocidades previstas são referentes à altura de 10 metros, logo, para realizar as 

previsões de geração foi necessário utilizar (2.12) para converter as velocidades para a 
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altura do cubo do aerogerador, que é igual a 57 metros. O coeficiente de rugosidade do 

terreno ( ) utilizado foi igual a 0,10. 

Com exceção do MAPE, os mesmos critérios utilizados para a análise do 

desempenho das previsões de velocidades também são utilizados para as previsões de 

geração obtidas através da curva de potência do aerogerador. As Figura 6.12 e Figura 6.13 

são do MAE e o RMSE das previsões de geração, respectivamente. 

 

 

Figura 6.12 – MAE das previsões de geração de MACAU. 

 

 

 

Figura 6.13 – RMSE das previsões de geração de MACAU. 
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Na Figura 6.14, são apresentados os ganhos das gerações obtidas através da curva 

de potência utilizando-se as velocidades previstas (convertidas para a altura do cubo do 

aerogerador)  com os modelos TWRNA(LM), TWANFIS e NEWREF, em relação ao modelo 

da PERSISTÊNCIA. 

 

Figura 6.14 – Ganhos das previsões de geração de MACAU. 

 

 Os gráficos dos erros quadráticos acumulados para as previsões de geração com 

passo de uma hora são apresentados na Figura 6.15. 

 

Figura 6.15 – Erros quadráticos acumulados das previsões de geração de MACAU com 

passo de 1 hora. 
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 Nas Figura 6.16 e Figura 6.17 apresentam-se os gráficos dos erros quadráticos 

acumulados para as previsões de geração com passos 12 e 24 horas, respectivamente. Os 

gráficos dos erros quadráticos acumulados apresentam claramente o efeito que os erros de 

previsão de velocidades causam nas previsões de geração (aumento na inclinação dos 

gráficos), principalmente nos meses em que a média das velocidades é maior. 

 

 

Figura 6.16 – Erros quadráticos acumulados das previsões de geração de MACAU com 

passo de 12 horas. 

 

 

 

Figura 6.17 – Erros quadráticos acumulados das previsões de geração de MACAU com 

passo de 24 horas. 
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 Os diagramas de dispersão e os coeficientes de determinação 2R  para as previsões 

de geração com passos iguais a 1, 12 e 24 horas são apresentados nas Figura 6.18, Figura 

6.19 e Figura 6.20, respectivamente. Nestes diagramas, o eixo horizontal representa as 

gerações obtidas através da curva de potência utilizando-se as velocidades medidas. 

 

Figura 6.18 – Diagramas de dispersão das previsões de geração de MACAU com passo 

de 1 hora. 

 

 

Figura 6.19 – Diagramas de dispersão das previsões de geração de MACAU com passo 

de 12 horas. 
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Figura 6.20 – Diagramas de dispersão das previsões de geração de MACAU com passo 

de 24 horas. 

 

 

O coeficiente de determinação para as previsões de 12 horas com o modelo da 

PERSISTÊNCIA possui um valor negativo (ver Figura 6.19). Isto acontece quando este 

modelo é utilizado para realizar previsões com passos para os quais a autocorrelação da 

série temporal seja pequena. Nestes casos, a variância dos erros de previsão para o modelo 

da PERSISTÊNCIA se torna maior do que a média global dos dados observados. 

As frequências percentuais dos erros de geração obtidos com os quatro modelos 

considerados neste capítulo são apresentadas na Figura 6.21. No gráfico à esquerda, pode-

se visualizar o percentual dos erros de previsão positivos (quando o valor real é maior do 

que o valor previsto). Observa-se que a maioria dos erros das previsões obtidas com o 

modelo TWRNA(LM) são sempre positivos para todos os passos considerados, pois a 

frequência percentual é maior do que 50%. O comportamento inverso é observado para as 

previsões do modelo NEWREF. Para o modelo da PERSISTÊNCIA, a maioria dos erros de 

previsão são negativos, exceto para os passos iguais a 8 e 9 horas. Para o modelo 

TWANFIS, a maioria dos erros são negativos para os passos entre 8 e 13 horas. No gráfico 

à direita, observa-se a frequência dos erros de previsão nulos (previsões exatas). Apesar do 

modelo da PERSISTÊNCIA realizar um maior número de previsões exatas para passos 

maiores, este  não é o melhor modelo de previsão. 
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Figura 6.21 – Frequência percentual dos erros de geração de MACAU. 

 

Para finalizar o capítulo, são apresentadas, nas Figura 6.22 e Figura 6.23, as curvas 

de geração obtidas a partir das previsões com passo de uma hora para dois dias distintos. 

Os gráficos da Figura 6.22 são referentes ao dia 01/01/2009, e os gráficos da Figura 6.23, 

referentes ao dia 01/06/2009. Optou-se pela escolha destes dois dias porque o primeiro 

deles se encaixa no período de fortes ventos, já o segundo, se encaixa no período de ventos 

mais fracos. 

 

 

Figura 6.22 – Previsões de geração de MACAU para o dia 01/01/2009. 

(Passo de 1 hora). 



87 

 

 

 

Figura 6.23 – Previsões de geração de MACAU para o dia 01/06/2009. 

(Passo de 1 hora). 

 

 Todas as análises realizadas neste capítulo para a MACAU também foram 

aplicadas a MOSSORÓ e NATAL. As figuras apresentando os resultados das análises para 

estas duas localidades podem ser visualizadas no Apêndice A. 
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CAPÍTULO 7 

7.  CONCLUSÕES E PROPOSTAS PARA TRABALHOS FUTUROS 

Neste capítulo são apresentadas as conclusões gerais do trabalho realizado, 

incluindo comentários sobre os modelos desenvolvidos e os resultados obtidos. Além disto, 

são identificados alguns aspectos relevantes que podem originar novos trabalhos de 

pesquisa. 

7.1 Conclusões 

Os modelos desenvolvidos basearam-se na análise de séries temporais de 

velocidades de vento através da inteligência computacional. Os horizontes de previsão 

apresentados enquadram-se no horizonte temporal de curto prazo, para previsões de até 

vinte e quatro horas e uma discretização em intervalos de uma hora. Entende-se que este é 

um horizonte adequado para subsidiar o planejamento da operação dos sistemas 

hidrotérmico e eólico, uma vez que a entrada em operação de uma usina termoelétrica 

precisa ser definida com antecedência e o tempo de partida varia de uma planta para outra. 

Boas previsões foram obtidas com os modelos desenvolvidos para todos os 24 

passos de previsão considerados, principalmente para aqueles passos mais curtos. 

Verificou-se que a qualidade das previsões é fortemente influenciada pela autocorrelação 

das séries temporais, tanto para os modelos de referência adotados quanto para os modelos 

que não utilizam as wavelets. 

A decomposição das séries de velocidades empregando wavelets possibilitou a 

extração de informações relevantes sobre o comportamento cíclico e sazonal das 

velocidades dos ventos. Estas informações contidas nos sinais de aproximação e detalhes 

foram decisivas para a melhoria significativa das previsões com os modelos que utilizam 

estes sinais como entradas. 

Com base nas análises realizadas, verificou-se que o comportamento dos erros de 

previsão com a variação dos passos de previsão foi bastante semelhante para MACAU, 

MOSSORÓ e NATAL. A metodologia adotada para o desenvolvimento dos modelos foi 

bastante adequada, o que garantiu previsões bastante confiáveis estatisticamente, ou seja, 

os modelos adquiriram capacidade de generalização sem se tornarem tendenciosos. 
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7.2 Propostas para trabalhos futuros 

Mesmo os modelos de previsão desenvolvidos tendo dado bons resultados eles 

ainda podem ser aprimorados. Este processo de melhoria contínua deve ser realizado com 

o intuito de se obter previsões mais confiáveis, reduzindo assim os erros entre os valores 

previstos e reais. É fato que sempre existirá um erro entre os valores previsto e verificado, 

portanto, o desafio será sempre buscar minimizá-lo. 

Como sugestão de trabalhos futuros voltados para o melhoramento dos modelos se 

apresentam: 

 Em virtude do aumento dos dados relativos à geração eólica no Brasil, é oportuno 

desenvolver modelos de previsão que forneçam como saída a potência gerada. 

Desta forma, a curva de potência estaria incorporada aos parâmetros do próprio 

modelo (por exemplo, nos pesos sinápticos das redes neurais); 

 Buscar uma base de dados mais extensa com o objetivo de desenvolver os modelos 

para previsões sazonais; 

 Utilizar dados anemométricos medidos em alturas mais elevadas, de modo que a 

influência da rugosidade do terreno seja reduzida; 

 Investigar a utilização de wavelets como funções de ativação para os neurônios das 

redes neurais; 

 Desenvolver modelos multivariados, considerando outras séries temporais como 

dados de entrada; 

 Estudar o funcionamento das redes neurais do tipo Reservoir Computing e 

pesquisar a possibilidade de desenvolver modelos híbridos. 
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APÊNDICE A 

As figuras deste apêndice são referentes às previsões de velocidades de ventos e 

geração eólica para MOSSORÓ e NATAL. Para realizar as previsões de geração, 

utilizaram-se os mesmos parâmetros aplicados às gerações de MACAU, ou seja, mesma 

curva de potência, mesma altura do hub e mesmo coeficiente de rugosidade de terreno (ver 

Seção 6.2). 

 

A.1 Previsões para MOSSORÓ 

Para MOSSORÓ, o período escolhido para a avaliação dos modelos é formado 

pelas 4.416 velocidades médias horárias correspondentes à hora zero (UTC) do dia 

01/03/2009 até a hora 23 (UTC) do dia 31/08/2009. 

 

 

 

Figura A.1 – MAE das previsões de velocidades em MOSSORÓ. 
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Figura A.2 – RMSE das previsões de velocidades em MOSSORÓ. 

 

 

 

 

Figura A.3 – MAPE das previsões de velocidades em MOSSORÓ. 
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Figura A.4 – Ganhos das previsões de velocidades em MOSSORÓ. 

 

 

 

 

 

Figura A.5 – Erros quadráticos acumulados das previsões de velocidades em MOSSORÓ 

com passo de 1 hora. 
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Figura A.6 – Erros quadráticos acumulados das previsões de velocidades em MOSSORÓ 

com passo de 12 horas. 

 

 

 

 

 

Figura A.7 – Erros quadráticos acumulados das previsões de velocidades em MOSSORÓ 

com passo de 24 horas. 
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Figura A.8 – Diagramas de dispersão das previsões de velocidades em MOSSORÓ com 

passo de 1 hora. 

 

 

 

 

Figura A.9 – Diagramas de dispersão das previsões de velocidades em MOSSORÓ com 

passo de 12 horas. 
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Figura A.10 – Diagramas de dispersão das previsões de velocidades em MOSSORÓ com 

passo de 24 horas. 

 

 

 

 

 

Figura A.11 – MAE das previsões de geração de MOSSORÓ. 
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Figura A.12 – RMSE das previsões de geração de MOSSORÓ. 

 

 

 

 

 

Figura A.13 – Ganhos das previsões de geração de MOSSORÓ. 
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Figura A.14 – Erros quadráticos acumulados das previsões de geração de MOSSORÓ 

com passo de 1 hora. 

 

 

 

 

Figura A.15 – Erros quadráticos acumulados das previsões de geração de MOSSORÓ 

com passo de 12 horas. 
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Figura A.16 – Erros quadráticos acumulados das previsões de geração de MOSSORÓ 

com passo de 24 horas. 

 

 

 

 

Figura A.17 – Diagramas de dispersão das previsões de geração de MOSSORÓ com 

passo de 1 hora. 
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Figura A.18 – Diagramas de dispersão das previsões de geração de MOSSORÓ com 

passo de 12 horas. 

 

 

 

 

 

Figura A.19 – Diagramas de dispersão das previsões de geração de MOSSORÓ com 

passo de 24 horas. 
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Figura A.20 – Frequência percentual dos erros de geração de MOSSORÓ. 

 

 

 

 

 

Figura A.21 – Previsões de geração de MOSSORÓ para o dia 01/03/2009. 

(Passo de 1 hora). 
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Figura A.22 – Previsões de geração de MOSSORÓ para o dia 01/08/2009. 

(Passo de 1 hora). 

 

A.2 Previsões para NATAL 

Para NATAL, o período escolhido para a avaliação dos modelos é formado pelas 

4.368 velocidades médias horárias correspondentes à hora zero (UTC) do dia 01/10/2009 

até a hora 23 (UTC) do dia 31/03/2010. 

 

 

Figura A.23 – MAE das previsões de velocidades em NATAL. 
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Figura A.24 – RMSE das previsões de velocidades em NATAL. 

 

 

 

 

Figura A.25 – MAPE das previsões de velocidades em NATAL. 
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Figura A.26 – Ganhos das previsões de velocidades em NATAL. 

 

 

 

 

 

Figura A.27 – Erros quadráticos acumulados das previsões de velocidades em NATAL 

com passo de 1 hora. 
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Figura A.28 – Erros quadráticos acumulados das previsões de velocidades em NATAL 

com passo de 12 horas. 

 

 

 

 

 

Figura A.29 – Erros quadráticos acumulados das previsões de velocidades em NATAL 

com passo de 24 horas. 
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Figura A.30 – Diagramas de dispersão das previsões de velocidades em NATAL com 

passo de 1 hora. 

 

 

 

Figura A.31 – Diagramas de dispersão das previsões de velocidades em NATAL com 

passo de 12 horas. 
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Figura A.32 – Diagramas de dispersão das previsões de velocidades em NATAL com 

passo de 24 horas. 

 

 

 

 

 

Figura A.33 – MAE das previsões de geração de NATAL. 
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Figura A.34 – RMSE das previsões de geração de NATAL. 

 

 

 

 

 

Figura A.35 – Ganhos das previsões de geração de NATAL. 
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Figura A.36 – Erros quadráticos acumulados das previsões de geração de NATAL com 

passo de 1 hora. 

 

 

 

 

Figura A.37 – Erros quadráticos acumulados das previsões de geração de NATAL com 

passo de 12 horas. 
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Figura A.38 – Erros quadráticos acumulados das previsões de geração de NATAL com 

passo de 24 horas. 

 

 

 

Figura A.39 – Diagramas de dispersão das previsões de geração de NATAL com passo de 

1 hora. 
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Figura A.40 – Diagramas de dispersão das previsões de geração de NATAL com passo de 

12 horas. 

 

 

 

 

 

Figura A.41 – Diagramas de dispersão das previsões de geração de NATAL com passo de 

24 horas. 
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Figura A.42 – Frequência percentual dos erros de geração de NATAL. 

 

 

 

 

 

Figura A.43 – Previsões de geração de NATAL para o dia 01/10/2009. 

(Passo de 1 hora). 
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Figura A.44 – Previsões de geração de NATAL para o dia 01/03/2010. 

(Passo de 1 hora). 
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