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Resumo

Apresentamos uma solugéo alternativa para a cadeia de raiqgesenca de campo com
condicbes de contorno aberta e periddica, nos ensemblescandnico e candnico, a partir
de uma perspectiva combinatoria e topoldgica unificada. &ricplar, o célculo da entropia
como func¢éo da energia revela um valor residual para camiftas, um fendbmeno para o
qual fornecemos uma interpretagéo topoldgica e uma corexa@ sequéncia de Fibonacci. A
funcdo de particdo candnica é identificada como a funcaageraombinatorial do problema
microcandnico. Uma analise detalhada da termodinamicavemiacdo do campo magneético,
incluindo temperaturas positivas e negativas, revelacteniaticas interessantes. Por fim, nos
enfatizamos que nossa abordagem combinatéria para o eleseanbnico é util no calculo ex-
ato do valor médio da caracteristica de Euler associada saondiguracdes de spin da cadeia,
a qual é descontinua nos referidos campos criticos, e cojpavamento com a temperatura
€ esperado estar associado com o comportamento criticaldec®e fato, nossos resultados
mostram que uma conjectura proposta também é vélida pademake I1singx (Tc) = 0, onde

Tc = 0 é a temperatura critica.

Palavras-chave: Transi¢cdes de Fase, Modelo de Ising, Analise Combinatéoiaoldgia



Abstract

We present an alternative solution of the Ising chain in @ figlder free and periodic bound-
ary conditions, in the microcanonical and canonical ensesyfrom a unified combinatorial
and topological perspective. In particular, the compatabf the entropy as a function of the
energy unveils a residual value for critical fields, a pheaonan for which we provide a topo-
logical interpretation and a connection with the Fibonasmuence. The canonical partition
function is identified as the combinatorial generating fiorcof the microcanonical problem.
A detailed analysis of the thermodynamics with varying negrfield, including positive and
negative temperatures, reveals interesting featured, wasemphasize that our combinatorial
approach to the canonical ensemble is suitable for the epagputation of the thermal average
value of the Euler Characteristic associated with the spitiigorations of the chain, which is
discontinuous at the referred critical fields, and whoseoenature behavior is expected to de-
termine the phase transition of the model. Indeed, our t&esbbw that the conjecture is valid
for the Ising chainy (Tc) = 0, whereTc = 0 is the critical temperature.

Keywords: Phase Transitions, Ising Model, Combinatorics, Topology
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CHAPTER 1

Introductory Remarks

1.1 Introduction

In a series of papers in the last fifteen years [7,11-16], alégpcal and geometrical approach
to the problem of phase transitions has been considered.eMws conjectures and theorems
have been established correlating phase transitions (Rffjapological and geometrical prop-
erties of the equipotential sub-manifolds in phase spadg [Hor a certain class of systems,
very strong arguments [13] have suggested that a topologygehof the configuration space
should take place during a PT. However, very recently it weasvé that these arguments fail
in the case of the®*-model [17] and claim for further investigation.

This work originated from an attempt of investigating thedtmgical approach to phase
transitions [14] in discrete symmetry lattice models. Belmgforemost and simplest represen-
tative of this class, the Ising model was the natural chaicéHis research. Several difficulties
would need to be overcome in order to establish analogids tvé well studied continuous
counterpart. While many results from differential topolagyd Morse theory are well suited
for the study of the equipotential manifolds in the continsiphase space models, the same can
not be said about the discrete Ising model phase space. ldowke fundamental idea is still
appliable: to introduce somepological invariantdirectly related to the configurations of the
studied system, which, therefore, can be expressed as tofun€ natural physical parameters
of the system, e.g., its energy or temperature. If we aretal#stablish some relation between
the topological parameter behavior, and the eventual cecoe of a phase transition in the
system, we may gain more insight about phase transitionsriergl.

A great emphasis on the microcanonical ensemble is to beceg®hen one tries to in-
vestigate a system’s phase space and its equipotentiafattini In fact, our study will be
predominantly dominated by an analysis of what happens orcaoanonical level with the
spin system. The microcanonical ensemble gives a much nioaamental explanation of
what happens with the system, and it has been recently ahebfd8] that a whole thermody-
namic formalism, based on the Boltzmann entropy definitiam, lse given, without invoking
the usual thermodynamic limit, in order to study phase items on finite systems.

Given the discrete nature of the chosen model, our inveagiigaaturally relies on the use of
a combinatorial approach in dealing with the problem of glaltng the system properties, and
unfortunately, it was only possible to treat the more singple dimensional case. In light of the
usual topological approach [14], where the topology of pgténtial manifolds is studied, we
will instead introduce a topological quantity defined focleanicrocanonical configuration, and
try to investigate the behavior of its average under the lustasistical mechanics ensembles.
Despite this difference, certain analogies are to be fouddreover, the knowledge of the

1



2 CHAPTER 1 INTRODUCTORY REMARKS

microcanonical distribution in the Ising model will be rdd to the distribution of critical
points on a related continuow3(n) spin model [19, 20], which is a crucial information in
studying the topology of the equipotential manifolds onrdlated continuous model.

Despite the simplicity of the 1d Ising model, it shows manterasting features, mainly
triggered by the introduction of an external field. As reneatkn Ref. [21], from 2005, a
throughout treatment of the statistics of domains in thislehavas absent in the literature,
and they give an expression for the average and variancesvafithe number of domains. In
spite of it, their work does not consider an external fielchigit energy, and the combinatorial
approach in which we rely in this work allows us to computeotlyssuch average and variance
as well as a function of the field. The combinatorial approastd to compute the partition
function here relies on its identification as a enumeratiagegating function. As far as we
know, this alternative solution proposed here is compfetebinal.

This text will try to be as much self contained as possiblé, smwe will develop basic re-
sults of statistical mechanics and thermodynamics in thefiong sections of this introductory
chapter, as well as certain aspects of the theory of phas&ticans. The 2nd chapter will give
a brief explanation of the methods used in the topologicpt@gch to phase transitions in the
continuously parametrized phase space case, and the gogdlapproach to models of dis-
crete symmetry as we could find in the existent literatures 3ifdl chapter gives a review of the
combinatorial approach for the Ising model. It is intemegtio note that the original solution,
proposed by Onsager, relied on the transfer matrix appr@achwas purely algebraic; due to
its intricate nature, much work progressed towards siyiplif this solution, and as a result the
approaches used thereafter were combinatorial, culmmatith the use of Pfaffians, which
we will study to some extent in that chapter. The 4th chaptews the original part of this
research, where the 1D Ising model in a field is carefully istiédnd the use of enumerating
generating functions provides the path for a new solutiatsqfartition function. A conjecture
established from Monte Carlo simulations in a arbitrary $ping model on the square lattice
that theEuler Characteristicassociated to the spins must vanish at the critical temyner&
analyzed in the 1d Ising chain, in which case its validityxactly verified.

1.2 Statistical Mechanics and Thermodynamics

1.2.1 The Basic Statistical Ensembles

Statistical mechanics aims to understand the behavior @irg/iparticle system, given a knowl-
edge of its constituents and their interactions. The folsnadeveloped here will be solely
concerned with classical systems in equilibrium, and s igito develop the basic ensembles
appearing in this work, the microcanonical and (grand)oara. While the idea of equilib-
rium has the purpose of guaranteeing that our system candoeilged by a much smaller set
of parameters, which do not change in time, the idea of enkemlrelated to the physical
fact that once we know certain macroscopic variables cheniamg our system in equilibrium,
microscopically our system can be in many different statad,therefore we imagine all these
possible states as an ensemble (collection) of systemsn dine constraints imposed by the
macroscopic variables. From this point of view, it is natucaquestion which is the proba-
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bility of a certain microscopic configuration to occur (whiof the systems in the ensemble is
actually the system we are dealing with), given the macnusamonstraints.

Notice that each microscopic configuration is actually anpwi the phase spacE, of the
system, therefore the idea of ensemble lead us to the ideaindg @ probability space structure
to the phase space. The points in phase space are colleofigneralized momenta and
coordinates(p,q) = (p1,---, PN, 01, ---, ON), @nd this space is given the structure of a probability
space therefore there exists a probability density fundfpalf), p(p,q). Averages of random
variables (functions defined on the phase space) with respéuas pdf should be interpreted
as the actual value of these functions associated to théilegun of the system. Therefore,
macroscopic parameters that we observe in our sysi&n,should be thought as originating
from averages of random variables(p,q), dependent on the microscopic configuration of
our system:

(A) = /rm<p,q>p(p,q>dpdq. (1.1)

A variational argument based on a way of quantifying our rimfation of the system will
allow us to introduce the various ensembles pdf. This ambreaas first proposed in Ref. [22].
Given a pdf, it is possible to measure the quantity of infdramawe have about our probability
space, in a very well defined manner, established by the foadtal axioms of information
theory [23]. The quantity

S=— /r p(p,9)In(p(p,q))dpdd, (1.2)

measures our uncertainty in the probability space definethisypdf. Since a pdf gives the
chances for any event in our system to occur, i.e., we knoakallut the certainties with which
something may happen, we may also expect that the pdf wdl @lsvide us with the uncer-
tainty we have in our system. We will call the function abolre éntropyof the system. The
fundamental hypotheses for a variational approach is thenimg:

The pdf describing an ensemble is the one which maximizesothesponding entropy
function, respecting the constraints imposed by the knowsraseopic parameters.

This hypothesis is strongly intuitive. Since the entropyaswges the uncertainty, if it is not
a maximum, then we would have more information than our nsompic observations actually
provides us about the system. The variational problem idyessved: we have macroscopic
known parameters(Aj) = J-Aj(p,q)p(p,q)dpdqg, j = 1,...,L, and the normalization con-
dition, [ p(p,q)dpdg = 1, equivalent toAo(p,q) = 1, such thatc Ag >= 1. If we use the
method of Lagrange multipliers, we consider the function

L L
Y=S= —/rp(p,q) (ln(p(p,q» + j;AiAJ' (p,q)) dpdq + J;Aj <Aj >, (1.3)

and a variatiordp, gives

L
SY = —/r 5p (In(p) +1+JZO/\,-AJ-> dpdg, (1.4)
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therefore, the extremum conditiodY = 0= In(p) + 1+ 3 5_¢AjA; =0, leads to

1 L
p(p.q) = - exp(— _ZlAjAj(p,qD, (1.5)
=
where
Z=ettho— / & 21 MAIPA gpdg, (1.6)
r

The last equation is a general expression for the partitimetfon of our system. It is
commonly expressed by the lettgy following Planck’s notation, called theustandssumme
(sum over states). Notice that

10z

ZOA| -

We also get an interesting relation by substituting the gathimed, Eq. (1.5), into the
expression defining the entropy, Eq. (1.2)

- <Aj>. a.7)

L
S:ZAJ<A,->-|-InZ, (1.8)
=1
and therefore Py
I 1.
d < Aj > J (1.9)

Now let us be less general and treat specific cases. If alhtbemation that we have about
our system s that itis isolated, so that its energy is caegktbut we do not know which energy
the system has, only that its pdf must be normalized, we mysbse tha#\j =0, j =1,...,L,
and therefore from Eqg. (1.5) we have a uniform probabilitytrdtbution,p = 1/Z = 1/W,
where

wzzz/ dpdg, (1.10)
r/

andrl"’ is the region of phase space that satisfies the conditiomtiraystem is isolated (it will
be a surface of constant energy in the unconstrained ipitiate space). The entropy will be
given by:

S=— [ W llnwldpdg = InW, (1.11)
r/

the well know expression proposed by Boltzmann (the Boltznwmstantks, do not appear
explicitly here only due to our original definition of entsgEq. (1.2), where it is set to unit).
This pdf defines thenicrocanonical ensembhlén practice it is much harder to carry out a closed
treatment of most of the models in this ensemble, where timgatation of the microcanonical
multiplicity of states\W, often lead to difficult combinatorial problems.

For introducing the next ensemble, we suppose that themsys#s an energy content, and
that it fluctuates, depending on its interaction with an exdgthermal reservoir Therefore we
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will impose the constraint that only the average of the hemmian functionH (p, q) is known.
According to eq. (1.5), the pdf must have the form

p(p.q) = %eBH(p’q), (1.12)
where
7 _ / e PH(PAgpdg, (1.13)
-

andp is the associated Lagrange multiplier. Only comparisoh @iphysical situation can give
us the physical meaning for this parameter. If we carry oatabmputation of this partition
function for the simple case where this hamiltonian is the f@m a system oN noninteracting
particles without an external field (and therefore theré lvélonly kinetic energy), we find the
mean energy of the system from eq. (LEx=<H >= —‘7(;?32 = % while it is well known
that an ideal gas is a model with the same assumptions fooitstituent particles, and its
internal energy can be shown to be givenbby- %’N KT, therefore, for consistency, we say that
B = % (where we will from now on always s&t= 1, and therefore temperature will have the
dimensions of energy), and we assume that this must be trgenaral. This pdf gives the
canonical ensembldf we use eq. (1.8), we g&= InZ + BE, and this motivates us to define
the free energy of the system as

F= —%Inz, (1.14)

and therefore
S= —BF +BE, (1.15)

the well known Legendre transform between the internalggnand Helmholtz free energy
representations. Notice that eq. (1.9) gives us anotheoritampt relation:

oS 1

E" B= T (1.16)
Until now we have assumed that the particle number of theesy$$ fixed. In thegrand

canonical ensemblese allow for it to fluctuate, and hence it becomes anotheroandari-

able. This requires a small change to the formalism develapgil now, for the parameters

defining the probability space, namely the generalizeddinates and momenta, are in num-

ber dependent upon the number of particles in the systemtheephase space depends on the

particle numbef ™). We proceed by considering as our probability space theidisjinion:

I = Uy and we require now that the pdf depends also on the partictbayp(p,q,N),

so that we will impose

(A) = %/F(N)A(p,q)p(p,q,N)dpdq; (1.17)
(N) = %/F(N) Np(p,q,N)dpda; (1.18)

%/ p(p.q,N)dpdg = 1. (1.19)
r(N)
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If we require only a knowledge of the average of the hamiliarfunction in the conditions
posed above, and use again Lagrange multipliers, we willhgefollowing expression for this
pdf
1
P(p,q,N) = > exp(—BH(p,q) +AN), (1.20)
which is thegrand canonicalpdf, and where the partition function will be given by

_ 5 —PH(p.a)+AN _ v N —BH(p.q)
rzo/r““)e dpdq nZoeA /ﬁN)e dpdq

== Ni N Zean(B.N), (1.21)
=0

which is the partition function for the grand canonical enbk, =, directly expressed as a gen-
erating function for the canonical partition functio@san, of the system with varying number
of particles. Now let us try to give the meaning for the Lagramultiplier appearing after

imposing the constraint on the average number of partialéisa system. If we use eq. (1.9),
we get N =< N >)

oS

N A, (1.22)
and if we want to be consistent with thermodynamics, we nmapbise that
A =—UuB, (1.23)
and therefore, eq. (1.8) leads us to
S=—-uBN+BE+Inz=, (1.24)
and so 1
—EInZ:E—TS—uN:F—uN, (1.25)
and therefore, the Gibbs potenti@ = F — uN is given by
1
G=-—=InZ, 1.26
5 (1.26)

arelation entirely analogous to the one between the caalgmactition function and the Helmholtz
free energy (1.14).

This concludes our first aim of obtaining the fundamentakamses used in statistical me-
chanics. The theory proposed up to this point provides a fmtlealculating fundamental
guantities of a system, such as its internal endigyts entropy,S, the Helmholtz and Gibbs
potentials,F andG, and so on, given a knowledge of its microscopic interastionhermo-
dynamics, on the other hand, assumes the existence of avehytlsermodynamic functions
for a macroscopic studied system, and imposes relatiomgeketthem universally valid, i.e.,
relations that must be obeyed independently of the systesitetl. However the kind of system
treated defines the thermodynamic parameters that we naust agder to specify a state of the
system. For a fluid system, for example, the volume is a pasxmeed to specify its state. For
a magnetic system we must consider its magnetization. Se#ne must be taken according
to which kind of system we are dealing with.
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1.2.2 Thermodynamic Quantities

Thermodynamics requires that for any system, its intemeigy,E, should be atate function
i.e., itis defined unambiguously for any given state of thetesy, where by state we mean any
collection of values for all the parameters that we can nreasuthe system. Furthermore, for
any transformation of state of the system, the first law ofrtfeelynamics must be respected:

dE = dQ—dW, (1.27)

which establishes that any change of the internal energlgeo§ystemgdE, occur only when
the system exchanges a quantity of hedd, or performs some workdW. It is important
to notice that whiledE depends only upon the initial and final state of the systenmduhe
transformation processlQ anddW do not have this property, and in general they depend on
the way the transformation is done.

For a fluid system we assume tlat= E(SV), the internal energy must be a function of
the entropy and the volume of the system. Therefore,

dE = (Z—E)Vd&r <Z—5)de, (1.28)
so that we define JE
<a_s>v =T; (1.29)
(3-5)82 ~P (1.30)
the temperature and the pressure respectively, and itollitv from the 1st law that
dQ=TdS (1.31)
dW = pdV. (1.32)

Besides describing the system using the internal energyraafnental thermodynamical
function, we can introduce othénermodynamic potentialhich are related to the internal
energy througt.egendre transformso that its natural variables are changed:

H=H(SP)=E+PV; (1.33)
F=F(T,V)=E-TS (1.34)
G=G(T,P)=E—-TS+PV, (1.35)

which are, respectively, the enthalpy, the Helmholtz pioéérand the Gibbs potential. Notice
that we have taken care of introducing them in the statistieahanics formalism in order that
all the above relations remain valid. It follows that

dE = TdS— PdV; (1.36)
dH =TdS+VdP, (1.37)
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dF = —-SdT-PdV; (1.38)
dG= -SdT+VdP (1.39)
Therefore we have the relations:

JE JE

T (a_s) p- (a_v)s, (1.40)

oHY\ _[(OHY |

T= (%> P, V= (ﬁ)s (1.42)
oF oF

s (a_T)V, P (a—V)T, (1.42)
0G 0G

—S= (0_T)P’ V= (ﬁ>T (1.43)

It is also useful to introduce certain derivatives of therthedynamic functions considered
up to now, which are generically calleesponse functionsThey measure the response of the
system to a variation of certain parameter of the system spheific heameasures the quantity
of heat exchanged from a variation of the temperature. Itheildefined for processes taking
place at constant volume or constant pressure:

0S JE 0°F\
o=7(5),=(55), =7 (%), 49

s oH %G
=T=—=) =|—5) =-T(=—1 . 1.4
&=1(57),= (7).~ 7(50), @49

We will also consider the response of the system’s volumeuariation on its pressure, mea-
sured by thesothermalandadiabatic compressibilities

1 /ov\ 1/dp\  1/[0°G\ .
o=y (), o (o), (o) .

_1/ov\ 1/dp\ _ 1/[0°H
o=y (58), 5 (59),~ v (o). (47

Furthermore we can define the system’s volume response fraamation of its temperature,
with the aid of thecoefficient of thermal expansion

1/0V
1.2.3 Thermodynamic inequalities

This section will follow the approach of Refs. [24,25] in albiag the main results. Consider a
closed system composed of three partsiealiumsupposed very large,l@dywhich interacts
with the medium in a way that the medium can exchange heat@amebk on the body, and an
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objectwhich can not exchange heat with the medium or the body, bighwdan exert work in
the body. We assume that the medium is at a temperagaed pressur, which differ from
the body’s temperaturé and pressur®. We want to know what is the maximum possible
work that the body can do in the object after it reaches dayiuiin with the medium, which is
assumed so large that its temperature and pressure wilhaage in this process. The variation
of energy of the body in the transition to equilibrium witretmedium AE, will be given by
the work done by the obje& on the body, the work done by the medium on the b&gx\Vo
(since the pressure of the medium is constant through tloisegs), and the heat transfer of
the medium to the body-ToAS (since the temperature of the medium is constant through
this process), wher&Vy andAS refer to variations in the volume and entropy of the medium,
respectively. Therefore

AE = R+ PAVy — ToAS. (1.49)

Assuming that the total volume of the medium and the body nesneonstant (possibly fluc-
tuating during the process), we know tlf = —AV (quantities without suffix pertain to the
body). Also we will use for the first time th8econd Law of Thermodynamiegth the state-
ment that for a closed system, its entropy must only increasemain constant, in which case
the process is reversible. For the situation treated hé&ertbans that

ASH+AS>0 (1.50)
Therefore, sinc® = AE — PhAVp + ToAS,
R > AE — ToAS+ RyAV. (12.51)

We conclude that the minimum work that the external objenta@in the body, occurs when
the process is reversible and it is

Rmin = A(E — ToS+ RyV), (1.52)

From this equation it is interesting to notice two caseshéftemperature of the body is initially
equal to that of the medium, and its volume does not changeeinransition to equilibrium,
then by eq. (1.52)

Rmin=A(E—-T9 = AF, (1.53)

the minimum work that an external object can do in the bodyenhachieves equilibrium with
the medium is equal to the variation in the Helmholtz freergyef the body. The second case
to notice is the one in which we assume that the body haslipittze same temperature and
pressure of the medium (but it is not in equilibrium with then by eq. (1.52)

Rmin=A(E — TS+ PV) = AG, (1.54)

and in this case the minimum work equals the variation in tiEb&free energy of the body.
In particular, notice that if there is no external object &awé mechanical contact with the body
than,R= 0, and (1.51) implies that

0> A(E—ToS+RV), (1.55)



10 CHAPTER 1 INTRODUCTORY REMARKS

and this inequality implies that, for a system composedlgaé an object in thermal and
mechanical contact with a medium, where both are initiadiyyin equilibrium, the equilibrium
is reached when the quanti/— ToS+ PV is minimized.

Now for a system in which a body has the same temperature ofi¢leum, and its volume
does not vary during the process of reaching equilibriunibie medium, then (1.55) implies
that

0>A(E-TS =AF, (1.56)

therefore equilibrium must be achieved by a decreasingeobtitdy’s Helmholtz free energy,
and we have the important conclusion that in this case équifn corresponds to a minimiza-
tion of the Helmholtz free energy of the body.

On the other hand, for a system in which a body has the sameetatnpe and pressure of
the medium, and is not in equilibrium with the medium (e.g.an experiment of dissolution,
or a chemical reaction this may be the case), then (1.55)asfat

0> A(E—TS+PV) =AG, (1.57)

therefore equilibrium is achieved when the body’s Gibbg feeergy decreases, and the im
portant conclusion is that with the assumptions posed agbegeilibrium corresponds to a
minimum of the Gibbs free energy of the body.

We return to the conclusion stated immediately after inBtyud..55). Imagine thdodyas
a very small, but macroscopic, part of the whole system, wheve can regard therefore the
remaining of the system as tineedium The quantityE — ToS+ PV, calculated with respect
to the body, is a minimum if the system is in equilibrium. Téfere, any departure from
equilibrium of the body will demand that

5E — TodS+ PydV > 0. (1.58)

We proceed by expandirtg(S V) as a power series around the equilibrium values for which
T =0E/0S=TpandP = —0dE/dV = R, until the second order terms

dE JE 1[0%E dZE 9°’E
OoE 0_858+ EV 5V+ ¥ (69)%+ deV OOV + 0V2(6V) ) (12.59)
and by plugging this into eq. (1.58) we obtain
9°E (72E i
¥ ~— (892 + 080V OOV + dvz(c‘SV) >0, (1.60)
and if this inequality will hold for arbitrarSanddV, the following must be true:
0°E oT
(ﬁ)v >0& (d_S)V > 0; (161)
9°E oP
(ave), 0= (), = o9
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92E 92E (aZE )2 0

0 ov2 \ 9sov (1.63)

From eq. (1.61) and eq. (1.44), we getC, > 0, and ifT > 0 must be true (more on this later)
we conclude that

G >0. (1.64)
On the other hand, eq. (1.62) and eq. (1.47) give us+HalV Ks < O and therefore, since
V>0

Ks> 0. (1.65)

We use Jacobians in order to rewrite eq. (1.63). We defineabebian of a 2 component
function defined in 2 variablegu(x,y),v(x,y)), as the following function

S0y~ dviox oviay (169
and it will clearly follow that the following is valid
ZEX’,% N _ggi:;?; (1.67)
g&; - (g—i)y? (1.68)
Zii ;i - f?((l: Zf?fi?) (1.69)

dd(uv) J(du/dtv) J(u,dv/dt)

— = 1.70
dtolxy) ~ oy | oty (70
Therefore, we notice that the inequality (1.63) can be résvrias
d[(9E/9S)v,(dE/dV)s]  I(T,P)
= — 0. 1.71
2(SV) oSV) ¢y
We use eq. (1.69) in order to rewrite this inequality as
O(T.,P) _9(T.P)/I(TV) (9P/0V)r T (@) 0 172
o(SV) 09(SV)/o(T,V) (0S/dT)y C,\oV /) ; '

and therefore, as have already seen @yat 0O, it follows that(dP/dV )T < 0, and from eq.
(1.46), we have the following important inequality:

Kr > 0. (1.73)
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Finally we will show a relation amon@, andC,. Using egs. (1.68 , 1.69) we write

Cy=T(0S/0T)v
=TJ(SV)/d(T,V)

_ 1 9(SV)/o(T,P)
d(T,V)/o(T,P)
(08/5T)p(dV/dP)T —(0S/0P)T(0V/0T)p
(oV /oP)T
_c _T(dS/dP)T(aV/aT)p
P (0V /9P)t
Now we use eq. (1.43) to obtain
JdS J (0G 0 (0G ov
(o), = (%), a7 (50),~(57), &
and therefore,
) TVa3
Cp—Cy=~T((V/0T)el?/(2V /0P)r = = . (1.75)
In particular we obtain another inequality:
Cp>Cy>0. (1.76)
From egs. (1.42,1.43), and the inequalities above, (1W&Jind that
%G 0S Cp
) =—(=) =—Z <o :
(59),-(8),- 3=
9°F 9S Cv
hail —[=) =—-=<0. :
(5r2), = (57),= 7 =0 (.78
Similarly, we also have that
9°G oV
(52),- (59, o
9°F oP 1
) =—(Z=) =—>0. :
(ove), = (&), v =¢ a0

1.2.4 Magnetic Systems

In treating magnetic systems it is needed to introduce dttegmodynamic parameters. First
we consider the magnetization of the systemwhich should be thought of as a measure of
how much magnetic moment the system has in its volume. Weérstglect pressure’s effects
and assume that the system’s volume is held constant ineadlytstem’s transitions studied for
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a magnetic system. So that we can forget these variableseWie by considering the 1st Law
for such systems, eq. (1.27), and if we assume that the alterergy must be a function of
the entropy and the magnetizatidh—= E(S M), it follows that

JE J0E
dE=(—=| dS+(—-— | dM 1.81
(5), 25+ () o 50
and this motivates us to define the external magnetic field (ray similar to how we intro-
duced the pressure):
9E\ _ h (1.82)
oM )g '
The remaining thermodynamic functions are introduced wtally analogous way:
H=H(Sh)=E—-hM; (1.83)
F=F(T,M)=E-TS (1.84)
G=G(T,h)=E—-TS—hM. (1.85)

From this it is a simple matter to observe the following rielas:

dE = TdS+ hdM; (1.86)

dH = TdS— Mdh (1.87)

dF = —SdT+hdM; (1.88)

dG= —SdT—Mdh, (1.89)

therefore

JE JE

(%), "= (o), .

oM\ (oM

(%), = (G). o
JF oF

oo (d_T)M’ h— (d_M)T’ (1.92)
G G

- (a_T>h’ M= (%)T. (1.93)

The response functions to be considered in a magnetic systeanalogous:

s JE d°F
=T = = == =T — : 1.94
w=7(3),= (), 7(50), o0

0S oH 0%G
Cn=T (a—T)h - (a—T)h =T (ﬁ), (1.95)
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which are the specific heats. We also considestiseeptibilities

oM 9°G
= (an )= (o). 0
= c?_M S (?Z_H (1.97)
X=\on )~ \om2)g '
Similarly, we define:
oM
an = (ﬁ)h (198)

Finally we show a relation amor(@, andCy. Using egs. (1.68, 1.69) we write

Cu = T(3S/9T)u
=To(SM)/0(T,M)
_19(EM)/o(T.h)
3(T.M)/a(T.h)
(9S/9T)n(OM/ )1 — (9S/9N)T(IM/9T)n
(OM/dh)r
(9S/dh)1(dM/9T)n
(OM/onm)r

=T

=Cy—T

Now we use eq. (1.93) to obtain:
0S 0 (0G Jd (0G oM
(%)f‘dh(ﬂ)h“ﬂ(ah)T‘(aT)h’ (199

2
T

and therefore,

Ch—Cm =T[(AM/IT)p|?/(M/dh)T = (1.100)

1.2.5 Negative Temperatures

A fundamental aspect of thermodynamics is the concept oblatestemperature, a conse-
guence of the existence of an absolute zero temperaturb.ifV@gbmes the natural question of
whether temperature must be a positive quantity. In fagetlaee many plausible arguments
in this sense which require that temperature be a positiamtijy. For systems with an un-
bounded energy spectrum, we can notice from the form of therdaal partition function,
equation (1.13), that we will have problem in the convergeoithis function (defined by a se-
ries), in the case that temperature becomes negative. é&natgument, posed in Ref. [24], is
the following: the entropy of a body must be a function of iternal energy. Suppose that we
have a body forming a closed system and at rest. Thus if w& tfithe body as many small,
but macroscopic parts, we can say that the entropy of themsyistthe sum of the entropies of
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each of these small parts. They can be in relative motiorthieubtal momentum of the system
must be zero. Then the total entropy can be written as

S=Y Su(Ea—PZ/2Ma). (1.101)

Now if the temperature of the system can be negative, thiddnmply that for a decrease of its
energy, its entropy would increase. Therefore, in orderaaimize its entropy (as required by
the 2nd Law), the system would spontaneously fragment,atoetich of its small parts would
acquire a kinetic energy that decreases the argument ohthepées in the sum above.

On the other hand there are systems, where the interactitgggra not allowed to move, so
that the kinetic energy does not enter as a possible argushéme entropy function, and also
the system’s energy spectrum may have a finite range, saibgiatrtition function converges
independently of the signal of the temperature. Magnestesys satisfy such requirements, for
their energy is determined by the interaction of fixed maigrmabments on a given lattice, and
therefore the energy spectrum is limited. In order to areafyrther this situation, we consider
a model, the two level system: there &eparticles, and each particle can be in two energy
levels, O ore. Therefore, if we know that the energy of the systeri is me, we know that
this can only happen whan of the N particles are in thexcitedstate, whileN —m are in the
groundstate. The multiplicity of microcanonical states with thigergy will be

W(E) = (N) S (1.102)

m/  m(N-m)!’
by using Stirling expansion of the factorial function to ffiosder
In(N!) = NIn(N) — N, (1.103)
we can compute the entropy of this system as a function ofygner

S(E) =In(W(E)) ~ NIn(N) —mIn(m) — (N —m)In(N —m)
=NIn(N/(N—m))+min((N—m)/m),

and defining the energy per patrticle
e=E/N=me/N,

it follows that Se e o
s(e) = N eln(e 1)—In(1 8). (1.104)

This function is plotted in Figure 1.1. Notice from eq. (1).1ftat we have negative temperature
states as well as positive, as demonstrated in the figure.eVdpproaching the absolute zero
from above, we reach the ground state for the system, andthefuncreasing its temperature
to co we reach the state of maximum entropy, where the system iynaisordered, and there
is a uniform distribution of states between the particldgs Etate should be identified with the
one where the temperature is infinitely negative as shown in the graph. A further increase
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Figure 1.1 2-level system entropy per partials. energy per particle as obtained from equation (1.104).

in temperature from this point means a decrease of its atesedue. The hottest state, where
the particles have the maximum energy, corresponds tortheTi — 0—.

Beyond this theoretical description on the possibility ajaéve temperature states, exper-
iments can be performed to show the existence of such statedure: Ref. [26, 27] considers
a paramagnetic system of nuclear moments for which the agtaxtime of the interaction
between them is much smaller than the relaxation time ofrttexaction with the lattice. Ap-
plying a strong magnetic field to the lattice, thereby maigimed it, it is reversed quickly so that
the nuclear spins no longer are in the lowest energy statethemefore they will be in a nega-
tive temperature state. The equilibrium with the latticd e attained only after a time of the
order of the relaxation time for the spin-lattice interans, and in the experiments performed
in [26, 27] this could take some minutes.

1.3 A Brief Overview on the Theory of Phase Transitions

Phase transitions represent some of the most spectac@aompiena displayed by nature and,
from a practical point of view, it is very important to undensd the conditions under which
different phases of matter do exist and what triggers thesitian from one phase to another.
Physicists try to explain these phenomena from an assumipiéb matter is constituted of many
interacting parts, and this interaction gives riseaective phenomenahich characterize the
different phases of matter. Figure 1.2 illustrates thedsiophase diagrams of a fluid and a
ferromagnetic system. Both fluid and magnetic systems exaitntical point which has the
property that 'bellow’ it the system exhibits phase bouregrwhere a discontinuity in some
property of the system (densities or magnetization) cliaraes the different phases, whereas
the critical point determines the effective disappeararigghase boundaries 'above’ it.
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Figure 1.2 Tipical phase diagram for a fluid and a magnetic system. From Ref. [1].

The thermodynamics of a system exhibiting a phase transgionarked by singularities
or discontinuities in the thermodynamic potentials dens. According to this observation,
Ehrenfest [28] first proposed a classification of phase tiians according to the order of the
derivative of the free energy in which the singularities mcdntinuities first appeared. This
classification has fallen in disuse, and nowadays it is cogtg to use instead the classification
proposed by Fisher [29] in whichfast order phase transition is characterized by a disconti-
nuity in some of the first derivatives of the free energy (as ataeady the case according to
Ehrenfest), while in aecond orderor continuous phase transition the first derivatives of the
thermodynamic potentials are continuous, but divergeao@sdiscontinuities may appear in
higher order derivatives. This loss of analyticity in thedrenergy hints a first warning on the
statistical mechanics formalism: as we may note from thef l@xposition on statistical me-
chanics, non-analyticities can not appear on the partftiotion, while we make finite sums
of boltzmann factors, which are themselves analytic; aselé kmown in mathematical analy-
sis, non-analyticities may appear however from a limitinggedure on a sequence of analytic
functions. The natural limiting procedure to be taken ingiby is to let the number of particles
become infinity, thehermodynamic limjtthe hope therefore is that the thermodynamic limit
allows for a description of non-analyticities in the freeesgy characterizing phase transitions.
The first model to show that this hope could be accomplishegditiva 2d Ising model, whose
remarkabletour de force solution by Onsager in 1944 [30] showed the power of steikt
mechanics in describing critical phenomena.

The theories initially proposed could not explain, howewaeativergence in the specific heat
at the critical point of ferromagnetic systems. We will fifjeexpose these, with the Van der
Walls phenomenological theory, and the mean field approacthet Ising model, which have
in common a negligence of fluctuation effects, preciselytite@omes relevant at the critical
point, as a result of a divergence of the correlations inylseesn, i.e., all scales become relevant
at the critical point, and therefore fluctuations becomeetated over long distances. We show
this specific divergence in correlation with a very simpled@loexhibiting it, the Ising chain,
which shows this divergence at the critical temperaflare= 0. The expectation, however,
was to derive a non-analytic behavior for the free energyararoTc. Peierls argument [31]
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gave the first proof that the 2d Ising system must exhibit theeb of order at sufficiently
low temperatures, while Kramers and Wannier duality argunf@?] from expansions of the
partition function in high and low temperatures determipegtisely the location of the critical
temperature, with the assumption that it is unique.

The divergences, characteristic of critical behavior,stoelied through the introduction of
critical point exponentf29] (t = (T — T¢)/Tc):

For fluid systems, the specific heat at constant volume defiregxponentr near the
critical point ¢ — 0):

Cy~ [t|77. (1.105)

The order parameter in this system, given by the differerdabensitiesp, — pg of the liquid
and vapor pressure, (which receives this name due to théhaictor temperatures bellow the
critical point temperature it is nonzero, while at the cati point temperature, and above, it
vanishes), defines the expon¢ghtfort — 0—

o —pg~ t[P. (1.106)
The isothermal compressibility diverges in a way specifigthie exponeny (t — 0):
Kt ~ [t| 7. (1.107)

The external field, in this case the pressure, as a functidgheobrder parameter defines the
exponen®, considering this function at the critical temperatured arar the critical point:

p— P~ sgn(p — pc)|p — pel°. (1.108)

For ferromagnetic systems, we can define in an analogousheagxponents, 3,y andd.
The specific heat at constant field, foe 0, definest{— 0):

Ch ~ [t| 9. (1.109)
The natural choice for an order parameter here is the magiietn, for which, as — 0—:
M ~ [t]P. (1.110)
The susceptibility diverges according to:
X~ [t (1.111)

Finally we observe that the external field varies with thesoghrameter at the critical temper-
ature according to:
h~ sgn(M)|M|° (1.112)

It is also of fundamental relevance for the study of critjaiihts the introduction of theair
correlation functiondirectly related to the response functions of the systewhtlae associated
notion ofcorrelation length In general, we may define for each system a local order paeame
Y(R), in the case of a fluid this might be the local fluctuation in tlemsity, 5p(R), for a
magnetic system this might be the local magnetic monma(R({), or the local spin valu§. In
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any case this local order parameter has a random charauotieweadefine the pair correlation
function by the average:

Ge(R,R) =< ¢(R)Y(R) > . (1.113)

Normally this function has an exponential decay, and isiglwe (r = |R — R/|):
Ge(|[R—=R/|) = Ge(r) ~ e '/¢. (1.114)

The decay parameter defines tharrelation length &. Precisely at criticality (= 0), this
function loses this behavior and becomes a power law, wraahbe viewed as a consequence
of a divergence in the correlation length, and whence we e¢ffia critical exponentg andv

(d is the dimensionality of the system):

(1.115)

Em . (1.116)

Another remarkable fact about phase transitions is thagésyscompletely different exhibit
the same set of critical exponents. This is the case whelyisgdystems with a liquid-gas
phase transition or a ferromagnetic transition, where exmants remarkably show it. The
common expression used in this case is that these systenwifiaih the sameuniversality
class An explanation of what determines the critical exponemtsies, and therefore which
kind of models fall within the same universality class, i®ypded by theRenormalization
Grouptheory, which, very briefly talking, establish a way to trfamsn hamiltonians under the
renormalization group, and the recursive iteration of¢ghesl lead to a fixed point in the space
of hamiltonians (see Figure 1.3), about which a kind of galerd formal series expansion
will lead to an understanding of the critical properties af damiltonian within the same
attractive basin correspondent to this fixed point, theetplaining why completely different
hamiltonians can lead to the same critical behavior. Theatasansforming hamiltonians is a
key point, and, speaking in terms of the momentum spacedtiisces to a problem of trying to
get rid of the large wavelengths contributions to the endhgys remaining the low wavelengths
associated to the onset of criticality, where the correfatength diverges. Notice therefore
that the fixed point, under the renormalization group, gpoads to the model where all scales
become relevant, since a change in scale will not chandeisyistem exhibit theelf-similarity
property. Moreover, it follows from these ideas on scalariance at criticality, that the free
energy, and thereby all the thermodynamic functions, velhbmogeneous on its variables, the
system possess ttsealingproperty. Therefore, thermodynamic relations will implrious
critical exponents relations, so that renormalizatiorugrtiheory also explains the experimental
observation that, independently of the system observethioalgebraic relations among the
exponents are always valid, thus the algebraic number @p@ddent exponents is reduced:
usually two or three of them are enough in order to obtain falhem [2]. We illustrate this
with the following exponent identities:
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a+2B+y=2, Rushbrooke’s identity; (1.117)
0—1=y/B, Widom’s identity; (2.118)

2—a =dv, Josephson’sidentity; (1.119)
y=(2—n)v, Fisher’s identity (1.120)

physical
critical
point

physical manifold

renormalized
critical
point

first
\ renormalized
\ manifold

Figure 1.3 Renormalization group transformations on the space of Hamiltonians. FrarjeRe

Renormalization group ideas first found its way into state@tmechanics through Kadanoff
[33] systematic procedure of reducing the degrees of fr@addhe Ising model: the block-spin
transformation, or decimation transformation, which ¢stssof summing over a subset of the
spins of the lattice in order to obtain a new partition fuontwith less degrees of freedom; by
finding the recursive equations transforming the partifiorction, one can iterate this process
and consistently reduce the degrees of freedom of the syStkase ideas were later general-
ized by Wilson who won the Nobel Prize for such generalizegiand effective application on
the Kondo problem [34].

1.3.1 Phenomenological and Mean Field Approaches

It is a formidable mathematical task to bring a theory déseg such phenomena from first
principles, e.g., assuming some particular kind of inteoacamong the constituents of matter
and using the general formalism of statistical physics tecdbe the emergence of collec-
tive behavior characterizing distinct phases of mattere Ruits inherent complexity, the first
approaches to such a problem had a much more phenomendlagpeal, and instead of a
detailed description on the interactions of the constitsi@h matter, general assumptions on
the thermodynamical quantities characterizing the systene made.

The Van der Walls theory of phase transitions proposed afination of the ideal gas law
in order to take into account the finiteness of the volume efabnstituent parts of the system
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Figure 1.4 Van der Walls isotherms. From Ref. [1].

(which amounts for a reduction of the available volume petiglav — v—b, wherev=V /N),
as well as the repulsive interaction between such parts wlose together (which amounts for
an increase in the pressure of the sys®m P+ a/v?), and therefore the equation of state
becomes:

(P+a/v?)(v—b) =kT. (1.121)

The isotherms of this system have the behavior illustratdéigure 1.4 (which are plotted as
a function of the density = 1/v). Notice that for a critical value of temperaturg;, the
isotherms lose the monotonous behavior, and acquire arregimstability where the com-
pressibility becomes negative, sing®/dV) > 0. This is corrected by Maxwell construc-
tion.

This construction consists of substituting the unstaldereof the isotherm by a flat region
of constant pressut@’, defined in an intervalv;, vg) such that the following condition holds:

V
P(vg—w) = | "Pdv. (1.122)
|

This condition comes from a tangent construction in theaegihere the Helmholtz free energy
is not convex, as illustrated in Figure 1.5.
Notice that the critical point is defined by the conditions

IP 9%P
(W>Tc 0. (W)Tc _o, (1.123)

which establishes a divergence in the compressibilityHerdritical point, and it follows that

8 a P a
27b ' ¢ 22
The critical point exponents for this theory are also eaditained:

a=0; B=1/2; y=1; ; 6=3 (1.125)
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T<T,

Figure 1.5 Helmholtz free energy and Maxwell construction for the Van der Walls mdé&m Ref.

[1].

In this model the valuer = 0 corresponds to a discontinuity in the specific heat.

An important remark to be made about the Van der Walls equatictate, is that we can
obtain it from an assumption that the particles in the systeenact through a pairwise hardcore
potential, and assuming this same interaction among altdmstituents in the system. By
using the general prescriptions of statistical mechawmicdmean fieldapproximations, which
basically consists of not taking into account the effectifumfttuation, the partition function can
be obtained from which the equation of state is derived. teoto take into account such a
mean field approach more closely we consider the Ising maoutknthis approach. The energy
of this model is given by

1
E=—-2)Joo—) ha, (1.126)
22 2

where thespin variables g, are allowed only to take the valugd.. The factor% accounts for
the double summation which will give twice the required ciimition (imposing as well that
Jii = 0). We consider the average valog=< g; >, in order to measure the fluctuation of
gi, given byag; —m. Thus, notice that the interaction term can be rewrittererms of such
fluctuations:

0i0j = [M + (i —my)][m; + (0 — mj)] = mm; +mi(gj —mj)+
+mj(0i —m) + (0 —m)(0j —mj) ~ Moj +mjc; —mm;,

where the last step consists of taking out the quadratic teritme fluctuations. Therefore the
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mean field energy of the Ising model is
1
EMF:ézJi.,jmmj—ZJi,jmﬂj—zhiUi, (1.127)
1] 1,] I

and itis assumed here thij = J; j. We have obtained therefore a linearization of the energy in
the random variableg;: in fact, we have effectively replaced the pairwise intémacbetween
spins by the interaction of each spin with an averaged eatéieid, ; ; Ji jm. This makes the
computation of the partition function immediate:

Z= e PEVFE — B3 31 %imm Z B (Zidijmi+h))o;
aizzil |_|

Z=e P22%imm [ 2cosiB(Y & jm +hy)). (1.128)
j I

Therefore, if we computey =< g, >= —%‘f we get self-consistent equations for the aver-

ages:
my = tanh(3( 2 i.imj +hi)) (1.129)
]

We can see that for varying temperature, the number of pessdtutions to this system will
change. In the simple uniform cask, = J, hj = h, we have for zero fieldh = O, that the
behavior changes from a unique possible solution when thpeeature is high, given bm=0,
to the appearance of two symmetric solutioms: +mg as well as the 'old’ solutiom= 0 when
the temperature lowers. This corresponds to the appeaddr@espontaneous magnetization
in the system, which exists bellow a critical temperaflgethe Curie temperature. This can
also be viewed by analyzing the minima of the Helmholtz freergy as a function ai. For
high enough temperatures there will be only one possiblénmim, m= 0. As the temperature
is lowered two minima appear when we reach the critical teatpee, for the zero field case,
and the ’old’ minimumm = 0 becomes a local maximum; by symmetry the minima must be
symmetrically localized;+ms, and equally likely (i.e., they correspond to a same valuief
free energy). We see therefore that the order parametdanoonsly changes from a zero value
above the critical temperature to two nonzero values bellm\critical temperature. There is
thus a continuous, or second order, transitiofat

From a knowledge of the partition function we may get alsodtitecal exponents:

a=0; B=1/2; y=1;, &6=3. (1.130)
Therefore we have found the same exponents as in the Van disrtéory. The pair correla-
tion function (in this case correlation between sping&ndoj) and the correlation length can

be also obtained from the partition function, which givesstfos model:

v=1/2; n=0 (2.131)
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1.3.2 The Ising Chain: Transfer Matrix Approach

This model was introduced in the 20’s as a simplified trial ésatibe ferromagnetism [35].

The 1d case partition function was exactly computed by Iénfbis doctoral thesis, where

he did find no transition for nonzero temperature frustgatime expectation for a statistical
mechanical description of the Curie point in ferromagnetgtems, from the basic assumption
of short range interactions. For the most simple case of amolgeneous interaction and a
external field, the energy will be given by:

E(o)=-J Z ooy —thi. (1.132)

<>

where< i, j > indicates that sum is taken only over nearest neighbors.
Considering periodic boundary conditiortg (= on+-1), the canonical partition function for
N spins is given by:

N
ZN=Y - zeﬁJzi“;laimﬁﬁhziN:lai _ Z I—leﬁ[JcrimﬁQ(cHaiH)L (1.133)
01 ON +li=
Therefore, we define thieansfer matrix Twith elements:
Ty =P 1 —POM. 7 —ePl_T1 (1.134)

thus the partition function is written as:
N
Zn = ZHTMH =tTN=AN 4 AN (1.135)
Hi=

whereA, andA_ are the eigenvalues of the transfer matrix:

_ 1+tanh(BJ) & [(1+tanBJ))? — 4tani{BJ)(1— tanh(Bh)?) /2
- 2

Therefore we compute the free energy per site in the thermaodic limit:

As (1.136)

g(T,h) = ’\lliipw—éﬁ_lln(Z) =B 1in (e/3J cosHh) + \/eZBJ sint?(Bh) +e—2BJ) '

(2.137)
Notice thatg is an analytic function ol = 1/ for all positive values off . Nevertheless the
correlations diverge in this model at the critical tempar@ic = 0, and forh = 0, there will
be a spontaneous magnetization. In fact, consider the zddoefinergy with varying coupling
constant throughout the lattice:

N—1
E=- Z Ji0i0iy1, (1.138)
i=
from which we get the partition function by a recursive rielat

Zyi= 3 Y B rii d0i0i Y PN _2coshBiv)zy,  (1.139)

o1=*x1 on==%1 O'N+1:i1
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where we have benefited from the fact that ¢gs1an even function, andy = +1, since:

ePINONINL1 — 2 cosHBINON).
OnN+1=%1

The recursion leads by iteration to the closed form expoessi
Zni1 =2V cosHBdy) .. .cosHBIN), (1.140)

satisfying already thaf; = 2. For a chain of siz&|, the pair correlation between spins in sites
jandj+r,is given by:

< Oi0j >—i 0 0 s J
Tz 0(BI) 0(BIjr1)  9(BIjzr—1)

Zn, (1.141)

which is valid due to the exponential dependence on the pted.J; cio;, 1, and the fact that
0? = 1, and therefore the "intermediary’ terms 'falling’ frometlexponentials will cancel, and
it will only remain the wanted variables in the average. Byehe of this procedure we may
set all the coupling constants equaltol herefore we obtain that:

< 0j0j4r >=tanhBJ)". (1.142)

Notice that by setting — o will make the correlations vanish, since the hyperboligtarts
are less than one in absolute value. Howevéli-at 0 the hyperbolic tangents are identically
one, and the correlation becomes independent threrefore even in the limit— oo there is a
nonzero correlation: a phase transition happenk at O for the Ising chain. Notice that the
system will have an spontaneous magnetization. From tleeeinergy above we see that this
magnetization per site is:

99 _ e?Jsinh(Bh)
oh \/eZBJ sint? Bh+ e—28J

(1.143)

If we apply a small external field, let the temperature becasr®, and thereafter make the
field vanish we obtain that:

lim lim m=+1. (1.144)
h—0+T—0

Notice that there are two possible solutions for the systame the magnetization is chosen,
the (infinite) chain will remain in it, and despite the facatlthe energy is symmetric with re-
spect to the reversal of the spir&(symmetry), the system loses this symmetry: the system is
said to have a broken symmetry. Interestingly there is dirs&iing that for systems with short
range interactions, andantinuoussymmetry (i.e. continuously parametrized group of sym-
metries), it can not exhibit a broken symmetry at finite (rem02 temperature for dimensions
not greater than 2 (Mermin-Wagner Theorem [36]). The Isihgiic 'escapes’ the conditions
for two reasons: its symmetry is discrete, and its transitiappens aic = 0. The 2d Ising
model, on the other hand has a nonzero critical temperas@ready remarked, but it still has



26 CHAPTER 1 INTRODUCTORY REMARKS

theZ, discrete symmetry, so that it breaks a discrete symmetigvbéthe critical temperature
without disrespecting the theorem statement.

The result above still leaves the question open on whethsrgbssible to have a phase
transition at a nonzero temperature in 1d systems: LandalLigshitz proved that there is no
phase transition at finite temperatures in 1d spin models stibrt range interactions [24]. In
fact, suppose only nearest neighbor interactions, andiéethain be in a completely ordered
state (all spins up, or all down). The energy cost to intredacdomain wall (e.g. by revers-
ing all the spins from one given site until one extremity o tthain) in this chain is simply
proportional to the coupling constard,j; on the other hand, the entropy that we may get by
creating domain walls is given by the logarithm of the muitipy of ways we can create do-
main walls, which is proportional tN, the number of lattice sites, therefore we get an entropy
In(N). Therefore, as we know by our discussion on thermodynartiiessystem’s free energy
F = E — TSmust be minimized, and for sufficiently largé¢ we notice that at any nonzero
temperature, however small, the system will prefer to erdamain walls in order to minimize
its free energy, conclusion: the system can not be orderetfwero temperatures in the ther-
modynamic limit. Notice how this argument depends on thatgsenplicity of the concept
of domain wall for the topology of a chain. This argument watel used to its full power by
Thouless [37] in order to prove the following generalizatid the energy of the chain is given
by E = —3; ;li— j|"®0i0j, then the critical temperature of the system as a functien ©f(a),
will be finite if a < 2, and will vanish fora > 2. In two dimensions this argument does not ap-
ply: domains walls have a non-negligible size and there wglla non-negligible energy cost
for their creation; in fact, we have the Peierls argumenhimasthat the 2d Ising lattice must
have a phase transition at a finite temperature: the basadsde measure how favorable it is
for an ordered system to hadeopletscreated in it, i.e., contiguous sets of opposing spins with
respect to the orientation chosen by the ordered lattiaeceShe energy and entropy become
proportional to the boundary size of the droplets in the Zicthe temperature will determine
whether the free energy change will be negative or positivdraplets appear in the system,
thus the system will have a nonzero temperature phaseticamom an ordered system to the
disordered one. Peierls argument applies also for the Jdtogwove that order can only exist
atT =0.

1.3.3 Loss of Analyticity: Yang-Lee Theorem

By the beginning of our discussion on phase transitions warkea that, if we aim at using the
statistical mechanics approach to explain phase transitiwe must necessarily consider the
thermodynamic limitN — oo, in order to obtain non-analyticities of the free energy.sager
solution to the 2d Ising model had the fundamental relevahsbowing that this approach was
indeed possible. Motivated by this result, Yang and Leeyereal more closely the way in which
the non-analytic behavior of the free energy manifestshagtiermodynamic limit is taken.
They considered thkattice gasmodel on the square lattice, whose grand canonical partitio
function is mapped onto the canonical partition functiontteé Ising model: the chemical
potential of the former plays the role of the external fieldha latter, and the occupation of a
lattice site on the lattice gas model corresponds to a spin thg Ising model. Therefore, for a
finite lattice, there will be a maximum allowed number of paes,M, and the grand canonical
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partition function is a polynomial on the fugacity= e®, of degreeM:
M .
Z(zT) = Z}zj(T)zl, (1.145)
=

and the coefficients of this polynomial are the associatedmaal partition functions for a
fixed number of particles in the lattice, therefore this polgial has only positive coefficients,
and all its roots are complex (besides a possible real anghysical negative root, for odd
M). This complex domain is termed tkemplex fugacity planeTlhe logarithm of this polyno-
mial will give the free energy of the system, thus the nonhadrtities of the free energy will
correspond to zeros of this polynomial.

Yang and Lee proved that for the lattice gas all the zerodiwilh an unit circle|z| = 1, and
for any finiteM there will be a contour containing no zeros of this polyndrarad containing
the whole positive real axis of the complex fugacity plareréfore all the thermodynamic
functions will be analytic for finiteM in the region delimited by this contour. Moreover, they
proved that the limit procedur® — o allows the complex roots to 'touch’ the positive real
axis, so that it is not possible anymore to have a single emrdontaining the whole positive
real axis, and also not containing any root of the grand gr@mtfunction, instead, it will be
needed two contours to cover the positive real axis of theptexrfugacity plane, which will
not contain any root in their interior. The free energy islaainside of each region delimited
by these contours, but it is not anymore analytic in the wipolgtive real axis. This is under-
stood as the appearance of a first order phase transitiothé¢hmodynamic limit allowed the
description of a two-phase system, where each phase isothiazad by its own free energy,
analytic within a delimited region.






CHAPTER 2

Topology and Phase Transitions

We presented in the end of the last chapter a brief overvieth@theory of phase transitions,
which mainly consisted of explaining the loss of analyyiof the free energy describing the
system, and therefore an explanation using statisticahar@cs necessarily needs the thermo-
dynamic limit to be taken. The famous Yang-Lee theorem mrtssa way of understanding
how non-analyticities of the free energy may arise from suthermodynamic limit prescrip-
tion. Notice however that a requirement of the thermodyedimiit was showed in fact only
for the canonical and grand canonical ensembles (as mugidassarily the case since we are
studying phase transitions through the loss of analytwitthe free energy, only derived from
such ensembles). An alternative mechanism describing ¢ber@nce of a phase transition
has been advocated [5, 6, 11, 38—40] which relies on an igetisin of what happens with
the phase space topology, and it is natural to expect th&t approach is intimately related
to an analysis of the system on a microcanonical level. éstergly, the microcanonical en-
semble allows a description of phase transitions for finystesn [18], thus a characterization
of phase transitions in terms of the phase space topologg basader range of applicability,
and a deeper understanding of the mechanisms generatisg phasitions is possible. The
topological approach is briefly reviewed in this chapterintyabased on [8, 14,41].

2.1 Morse Theory, Energy Landscape and Topology of Equipotential
Manifolds

The topological approach to phase transitions assumethihaystem is described by a set of
continuous variableg; andp;, i =1,...,N, and that the energy of the system is of the form

1 N
E=2S p?+V(t,-.-,an), (2.1)
Zi; |

the sum of a kinetic term and a potential energy. While thetlgrierm is quadratic, its contri-
bution to the partition function will give gaussian intelgrésince we are also assuming that the
potential energy does not depend on the generalized momeshiah are easily performed and
will not give rise to non-analyticities in the thermodynarfunctions. Therefore, it is sufficient
to study the topology of the configuration space, which issdibimough as analysis of the slices
(of great relevance for the microcanonical ensemble)

Zv={qeRVV(q) =}, (2.2)

29
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as well as the sets whose boundaries are those slices
My = {geRN|V(g) < v} (2.3)

Under variation of the image values= R we obtain the whole configuration space. Viewing
the configuration space as a manifold (embeddé&N)) it follows clearly that we are using the
prescription of Morse theory in order to study the topolo§yhe configuration space. In fact,
Morse theory [42] is based on the existence of a real valuedtitan, theMorse function de-
fined on a differentiable manifolill, with the property that its critical points (i.e., the paratt
which the associated differential form vanishes) are negederate (i.e., the associated hessian
matrix at the critical points is invertible). This propexyMorse functions has as a corollary
the fact that its critical points form a discrete set. Weadtrce further notation in order to
expose the main results of Morse theory: we cdéhael setof the Morse functionf, a set of
the formf~1(a) = x € M : f(x) = a; this set is called aritical level setif a is acritical value

for f, i.e., there exists a critical point dffor which the associated imageasa critical point of

f has indeX, if the associated Hessian matrix Hasegative eigenvalues. Morse functions are
used to 'slice’ its domain, thereby determining completedyopology by the following results

My = f=3((~o0,V))):

1. If the interval[a,b] contains no critical values, thévl, are all homeomorphic fov €
[a,b].

2. If the interval[a, b] contains a single critical valug; € (a,b), for which there aren> 1
critical points, with associated indicgs ..., kyn, then the sel, is homeomorphic td/,
attached with then disjointhandles Hkv ... H(km)

Figure 2.1 The process for constructing a handle. From Ref. [3].
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In the second statement abolkiandlegefer to the basic 'building blocks’ which differential
topologists use to construct manifolds (in complete analegh the CW-complexes used by
algebraic topologists). Figure 2.1 illustrates the cohcep

The topological approach to phase transitions assumeshhaiotentiaV (q) is a Morse
function. Itis argued that this is not a very strong resitctdue to the fact that Morse functions
are dense in the space®f differentiable functions defined on the same domain, anetbee,
arbitrarily small perturbations of a potential that is noVarse function, would turn it into
one. From this perspective, the critical points\bfacquire a fundamental relevance for the
description of the system, and an analysis of the statiopamyts of the potential energy are
commonly referred to asnergy landscape methop3].

Thetopological hypothesistates that a phase transition is related to a certain atinapge
in the topology of the subsekd, of equation (2.3) at the corresponding critical energyThe
first rigorous result on this direction was the following dhem (proved in [14]), establishing
that topology changes on phase space are necessary foreatpdastion in systems with a
stable, non-confining and short-range potential:

Theorem 2.1.1.LetVn(Qy, ..., ON) RN — R, be a smooth, non-singular, finite-range potential.
Denote ag, := {q € RN|W(q) = v},v € R its level sets, or equipotential hyper-surfaces, in
configuration space. Then fet=\Vy /N be the potential energy per degree of freedom. If for
any pair of values andV belonging to a given interva{= [Vo,v1] and, for anyN > No, we
have

2NV R 2NV

that is, 2Ny is diffeomorphic td gy, then the sequence of the Helmholtz free energt@$B) }nen

- wheref3 = 1/T (T is the temperature) arfsl € |g = (B, By) - is uniformly convergent at
least in¢%(1g) so thatFe € €?(15) and neither first nor second order phase transitions can
occur in the (inverse) temperature interial

Despite being a remarkable result, it is observed, for masyems of interest, that the
critical values of the potential energy become dense, ithteenodynamic limit, on the entire
image set, turning the theorem unappliable. Moreover,ablke temained of determining which
kind of topology changes actually trigger the phase traorsiin proving this theorem, itis used
the following result, establishing the way in which the ttqmy of phase space determines the
entropy function of the system (the topology contributionhe entropy):

Theorem 2.1.2.LetVn(Q,---,0N) - RN — R, be a smooth, non-singular, finite-range potential.
Denote asvl, :=Vy 1(—w,v),v € R, the generic submanifold of configuration space bounded

by . Let{qg) € ]R{N}ie[L v (v) be the set of critical points of the potential, that is, sttt
DVN(qé').) = 0, and.#(v) be the number of critical points up to the potential energyeva.

Let I'(q((;'),so) be pseudo-cylindrical neighborhoods of the critical pgirgndy;(My) be the
Morse indexes oM, then there exist real numbef$N,i, &),q; and real smooth functions
B(N,i,v,&) such that the following equation for the microcanonicalfigurational entropy
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S, (v) holds:

;:1 dc’»€o0

N
)iy — L N N 1
é\l (V) - Nlog [/MVU/V(V)r( (i) )d q+I;A(N7I7SO)g|u|(MV7€0)

JVV(V)+1

cp

+ 3 B(N,i(n),v—ve™, &)
n=1

Y

and an unbounded growth with of one of the derivative®?*S~) (v) /0VX|, fork = 3,4, and
thus the occurrence of a fir& £ 3) or a second ordek & 4) phase transition, can be entailed
only by the topological terrg N o A(N, i, £9)gi i (My_g, )-

This result is, however, of difficult applicability, as itjy@ens that the number of topology
changes occurring in a given energy interval grows unbodigdeth the system size. A further
result characterizing the way in which the topology of comfegion space gives rise to non-
analyticities in the density of states (for any finite sysemas later given by the following
result [15]:

Theorem 2.1.3.LetV : G — RN be a Morse function with a single critical poigg of index
k, HessiarHy , andN degrees of freedom in an open regénWithout loss of generality, we
assumé/(qc) = 0. The density of states can be decomposed into an analyti€©gaand a
non-analytic parf®:

On =] + O

The leading order non-analyticity is given by

(NmN/2 na

= e ) a2 e

with the universal function

(—1)K/2N=-2)/20(y), fork even
Rk mod 4(V) = $ (—1)(k+D/2yN=22~1n |y, for N evenk odd
(—1)(N-K/2(—y)(N-2)/29(—v), for N,k odd

where® is the Heaviside step function.

Notice in the expressions above for the non-analytic coation to the density of states,
that, independently of the index of the critical point, it (N — 3) /2] times continuously differ-
entiable. Therefore this result cannot be used to charaeteon-analyticities in the density of
states of an infinite system, since this limit will turn thenranalytic part smooth. Nonetheless,
this theorem allows a careful investigation of the quarﬂﬂle, containing the non-analytic
contributions from the critical points in theneighborhood of:

BU = Y y Q) (2.4)
{ve:lv—vc|<€} {0V (dc)=Nvc}
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and a detailed analysis of this quantity establishes a gemmeendition, related to the Jacobian
determinants appearing in the non-analytic contributiortbe density of state of the previous
theorem:

J(ge) = |detHy (ac) /2| /2, (2.5)

which characterizes the topology changes that will not leaa phase transition according to
the following theorem [7]:

Theorem 2.1.4. The saddle point contributiono¢ (= limy_,InB*/N) cannot induce a
phase transition at any potential energy in the intefwg- €,vo+ €) if

1. the number of critical points is bounded by 8XNl) for someC > 0 and

2. the Jacobian densities, defined by

. 1
ji(v)= fim <in ( S dw/ Y 1) ,
- Ac€Qi (Vv+e) Qc€Q (Vv+€)

whereQ (v, v+ €) denotes the set of critical poirdgs with indexk(gc) =1 (mod 4 and
with critical valuesV (qc)/N in the intervallv,v+ €|, have a thermodynamic limit with
ji <oVl €{0,1,2 3} inside the given interval.

As an illustrative example of application of this result@ligwing Ref. [4]), consider briefly
thek—trigonometric, given by the potential energy:

N
Vk(q):%_ > [1—codg,+-+0i); (2.6)

i1,...,lk=1

whereA > 0 is the coupling constant argl € [0,2m). This model undergoes a transition at
the critical energy = A, for k > 2, while no transition occurs fdt = 1. Figure 2.2 shows
both the logarithm per site of the absolute value of the Ecdl@racteristic of the manifolds
My, and the jacobian density for this model as a function ofgynédoth in the thermodynamic
limit. The Euler characteristic is ®pological invariant i.e., it is an invariant quantity under
homeomorphisms; it can be obtained via Morse theory fromalternating sum oMorse
numbers L, which are the number of critical points with indkex

x(My) = ;(—nkuk(wlv), (2.7)



34 CHAPTER 2 TOPOLOGY AND PHASE TRANSITIONS

i i 2.0 :
0.7F - k=1—— .
3 S 0 a8
0.6 |- //, \.\k:(]- 1.5 k=4
0.5 e X
1.0
0.4 v \ g
=} / =
0.3F / 0.5
0.2r
0.0
0.1
0.0F ! 0.5 . . g
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
v/A v/A

Figure 2.2 Logarithm per site of the Euler characteristic and jacobian density as fasafdhe energy
per site normalized by the coupling constant. From Ref. [4].

2.2 Mean Field and One-Dimensional Classical XY Models

The models treated in this section are relevant due to theHattheir topology changes can

be completely determined as the energy varies, in partictila Euler characteristic can be

exactly computed as a function of the energy. While the me&hrfiedel exhibits a transition,

the one dimensional XY model does not: in the former caseséen that an "abrupt’ change

in topology occurs at the critical energy value; in the lati@se no such abrupt change occurs.
The potential energy of the mean field XY model in a field is:

N
V(g) = [1—codqg —qj)]—h cosg, (2.9)
210l o

whereq; € [0,2m), thus the configuration space idNadimensional torus. This model is known
to have a second order phase transition at the potentiajeper sitev; = J/2, and vanishing
external fieldh = 0. By considering the total magnetization vector per site

Zm. = (Mg, my) = N Zlcosq., N Z\smq. (2.10)

we may rewrite the potential in a simpler form:

\|\/| v(my, my) = J(l m?) — hmy. (2.11)

This equation is suitable to find the range of the potentiakfe values:
1 h?
Vmin=—h<v< E'i‘?:vmax- (2.12)

According to the prescription of Morse theory, we shall gttlte critical points o, although
we shall see that this is not a Morse function on its entire @amThe critical points of are
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determined by the conditiondv/dq; = 0, Vi, which can be rewritten as the following set of
equations:
(mx+h)sing; —mycosg =0, Vi, (2.13)

thus, if the coefficientém, 4 h) andm, are not both zero, this equation is solved by the angles
g € {0, m}. In particular, the configuratioggy = 0, Vi corresponds to the minimum energy.

It can be proved that the critical energy values depend omlthe number of sites with angle
Ny

v(ng) = % [1—$(N—2nn)2} —%(N—Znn). (2.14)

The degeneracy of critical points with a given number of asglis:

C(np) = (rll\ln) (2.15)

entirely analogous to the density of states of a 2-levelesgsbr an Ising model in zero field
(n; being the number of excited states in the former case, or ohowalls in the latter). It can
be proved also that the index of a critical point with angles equal tat is (for sufficiently
smallh):

N, if Nz < %7

2.16
N—ng if ng> 5. (2.16)

index(ng) = {

The Morse number can be exactly computed from this resulk tlag most important thing to
notice is that, as long as< Vmax

N

U(v)=0  Vk> 5 (2.17)
06 - il :
A ™
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Figure 2.3 Logarithm of the Euler characteristic for the mean field XY model,Mo& 50,200,800
(from bottom to top) andh = 0.01. From Ref. [5].

Morse theory implies that as long &s< vnax the topology of the setdl, changes by
attachingk-handles according to the indices of the critical pointshatdritical values, so that
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only handles withk < N/2. By the inequality above, and the knowledge that at viay,
the setM, becomes the full configuration space, i.e., Melimensional torus, we see that a
major topological change occurs &fay, Which involves the sudden attaching lehandles,
with N/2 < k <N, therefore an attaching @f(N) different handles happens, coincidentally at
the critical energy of this model. Notice however that thagghtransition occurs only for= 0,
while the "abrupt’ topology change shown above occurs fgrlarthus this topology change is
not the sole reason for the phase transition in this modeln@wkedge of the Morse numbers
allows also the computation of the Euler characterigticas a function of the configurational
energyv. The function log|x|(v))/N is plotted in Figure 2.3.

A very interesting picture of the topology changes in thisdelas also possible analyzing
the associated configurational space of the macroscop@olesm, andm,, which are con-
strained to the unit disk? = {(my,my) : m2 + nﬁ < 1}. Setd = 1 andh = 0. Then notice that
while v varies from—oo to 0—, the setdy, = {(my, my) : v(my, my) < v} are emptyy = 0 corre-
sponds to the first topology change, where the unit ciréle- mg = 1appears. Forav<1/2
all the subsequent sels are homeomorphic, corresponding to rings— 2v < m2 + m)z, <1}.
Finally, atv = 1/2, the last topology change occurs, where theDsebecomes the unit disk.
This is illustrated in Figure 2.4.

00

v=0 0<v<l/2 v=1/2

Figure 2.4 Topology changes occurring for the mean field XY model. From Ref. [6].

Furthermore a knowledge of the Hessian matrix in this molli@lva an exact computation
of its jacobian density at the critical points, and it is prdvin Ref. [7] that, folN — o and
h—0,itis:

. 1 1

V) =3In2—2InPE-2v)],  1=01.23 (2.18)
This is plotted in Figure 2.5, and it shows a divergence gedgiat the critical energy value of
this modelv. = J/2, as required by the theorem 2.1.4.

Now consider the 1d classical XY model with nearest neiglteraction, whose potential
energy is:

N N
V(g) = %_Zl[l —CogGi1— )] — h_;cosqi, (2.19)

and imposing periodic boundary conditicpg, 1 = ¢1. The critical points are once again found
to be given byg; € {0, 11}, but in this case it is not only the number of angiethat determine
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Figure 2.5 Jacobian density as a function of potential energy per site, fofl, h= 0 in the mean field
XY model. From Ref. [7].

the critical energy values, but now it is needed to take ictmant also the number of domain
wall, ng, where by domain we mean naturally a connected region oftaenavhere all the
angles are O ort.

n
V(Ng; Nyp) = ﬁmnn. (2.20)

Once again, this is in complete analogy with the Ising chas:we shall show in the next
chapter, the coupling constant introduces a dependendeadriergy with the domain walls
number, while the field introduces a dependence with the eumbspins up. Therefore the
density of states for critical energy values is exactly étushe density of states of the Ising
chain. The index of a critical point withy domain walls can be proven to be:

index(ng) = ng, (2.21)

and since the number of critical points with domain walls is

N(ng) :2('\'_1), (2.22)

Ng

it follows that the Morse numbers are
N-1
i) =2(" ot . (2.23)

Therefore the Euler characteristic can be exactly compuatediis given by

x(w) =227 (1 %), (224)

and this is plotted in Figure 2.6. We note that no abrupt changtopology occurs here;
coincidentally, we know that this model exhibits no phasasition (as follows, for example,
from the Mermin Wagner theorem explained in chapter 1).
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0.6

Figure 2.6 Logarithm of the Euler characteristic for the 1d XY model, fér= 50,200 800 (from
bottom to top) andh = 0.01. From Ref. [5].

2.3 Conjecture on Necessary and Sufficient Conditions

The doctoral thesis of my co-advisor [8], Prof. Dr. F.A.N.n&ss, under orientation of my
advisor, Prof. Dr. M.D. Coutinho Filho, consisted, in pan,tbe application of the methods
described above to the XY model on tA&, chain (illustrated in Figure 2.7) in a mean field
approach, with potential energy given by:

V= Z [ZABSAI SBlj + SBZJ') + ZB‘JSBli : SBZJ' —h- (SAi + SBli + SBZi) . (225)

|11

Figure 2.7 The topology of theAB,. From Ref. [8].

This model exhibits a rich behavior for varying anti-ferragmetic couplingJ > 0, and
external field valuel. Following closely Ref. [16] we will explain the interestipynenomena
displayed by this system.

2.3.1 Mean Field FrustratedAB,-XY Model

Forh = 0 the system exhibits a frustration-induced phase tramsét zero temperature, which
is expressed by the functional change of the energy:

—4+J, 0<J< 1, ferrimagnetic phase

—~2-J, J>1, canted phaseog 6g) = 1/J.
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The canted phase occurs when the anti-ferromagnetic aaet iperfectly aligned in an anti-
parallel fashion, but are canted by a few degrég3. (Furthermore, the model exhibits also a
finite temperature phase transition at the critical eneggy 0, vJ > 0.

As it happens for the XY model on the linear chain, it provesfulsto introduce the mag-
netization vectors associated to all the spingd\andB sites, and to understand the associated
topology changes occurring for the equipotential mangpks we vary the potential energy.
For the zero field case, the potential energy reduces to:

v(mA,mB) = 4mAXmBX+Jn%X—Jn‘%y. (2.27)

Notice that this expression is already quadratiengy, and in order to obtain a quadratic de-
pendence in all the variables, we must diagonalize the n@aahatic part, thereby introducing
variablesmy andny, (linear combinations ofmax andmgy), and eigenvalued; andA;:

A + Ao — Ingy = v, (2.28)

this makes clear the way in which the equipotential surfatesge for varying values of a
hyperboloid of one sheet far< 0; a cone fov = v; = 0; a hyperboloid of two sheets for> 0.
On the other hand, the valuasy, mex andmgy are allowed to vary only in the solid cylinder
G = {(MaxmexMey) 1 —1 < may < 1L, mg, + m%y < 1}. The fact that the energy quadratic
form is not diagonal in these variables means that the etpngial surfaces described above
intersect this cylinder in a non-trivial manner. Physigatieaningful states are the result of
these intersections which are nonemptyvigh < v < Vmax and, within this interval, topology
changes happen only foxmin < v < vrmax, which defines the minimumvmin) and maximum
(vrmax) energies for the occurrence of topology changes, whickeangedtopological energies
While the maximum topological energy has no change of behakig,x= Ermax =4+ J, VJ;

it is interesting that the coupling = 2 determines a change of behavior for the minimum
topological energy:

—44+7, if0<J<2
VTmin_{ ! - = (229)

-3, if J> 2.

Therefore Vmin < Vymin, for J > 1 thus there will be a discontinuity &min for any topolog-
ical invariant computed as a function of the enexwgyf J > 1. Furthermore,) = 2, which
corresponds to a change of behavionghin, is related also to a special behavior of the mag-
netization, which vanishes identically for any temperatas shown in Figure 2.8, where the
magnetization as a function of temperature is plotted,Herzero field cask = 0.

The special behavior of the magnetizationJat 2, is understood as a highly symmetric
state, where the spins on each unit cell tend to have an arggparation of 120at the mini-
mum energwmin = —3, and the surface corresponding to this energy igthéen hyperboloid
given by the quadratic:

_<1+2\/§>m§_ (1_2\/§>m§+m%y:1, (2.30)

which has this name due to the appearance of the golden ratitsaconjugate as coefficients.
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Figure 2.8 Magnetizatiorvs. temperature for the mean field frustratl,-XY model. From Ref. [8].

A careful study of the critical points and associated Hesgmiatrices and Morse numbers
was undertaken for this model, in order to compute numdyidalth the Euler characteristic
and the jacobian densities already considered above. Itouasl that topology changes occur
only within the energy intervalvmin, vymax) of minimum and maximum topological energies,
beyond which the Euler characteristic vanishes. The Etiaracteristic is computed from an
approximation based on the fact that the number of criticéhts grows exponentially with
the number of cellsN;, from which follows that Itix (My)) ~ In(ax(Vv)), whereax(v) is the
density of states of the critical points, i.e., the micramainal distribution of critical points.

It is proven that for the zero field case, the isolated ciifimants of the potential energy
correspond taja, g, € {0, 11} in complete analogy with the XY model on a linear chain, and
the index of a critical point depends only on the number ofil@gn siteA andB which are
1T, N andngg, respectively. Denoting this index tyna, nys,J), we have:

K(Nma, N, J) = iNda(Nya, N, J) 4 iNde (N, N, J), (2.31)
where
Nra, if ng > &,
iNda(nNra, g, J) = § Ne— N, if Nrg < B¢, (2.32)
0, if ng = 5.
Nrg, if 2(1— 2pm) + (1 %) > 0,
indg(Nyza, g, J) = § Ne— N, i 2(1— 52) +3(1— ) <0, (2.33)
0, if 2(1— ) + (1 Ze) =0,

These results resemble the expression for the index of a freddiXY linear chain, equa-
tion (2.16). Notice that the critical energy values are:

2 2 2 2
v(nma,Nms) =4 1— A (428 | g(q_ima) (2.34)
Nc N¢ Nc
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As a result we have that the Morse numbers are simply:

N Nc
o= 3 (nm) (nnB), (2.35)

K(NypanrB-d) =K

since the multiplicity of critical points with the paramet@,;» andn,g is (n’\]';) (n'i;) These
results are enough to obtain the Euler characteristic asciéun of energy. The analysis of
the Hessian matrix diagonal elements at the isolated afioints described above gives also
the jacobian density. Both of these functions are shown imr€i@.9: Euler characteristic
in (a), jacobian density in (b) (notice that= 2 corresponds also to a change in behavior of
the 'tail’ of the jacobian density), as well as the energiéshe ground stateymin(J), and
the minimum topological energy;min(J) as functions of the anti-ferromagnetic coupling in
(c). The computation of the Euler characteristic throughMorse numbers, as prescribed by
Morse theory, demands too much computational effort, agpaped to the simple formula in

terms of the microcanonical density of critical points.
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Figure 2.9 Mean field frustrated\B,-XY model. (a) Logarithmic density of the absolute value of the
Euler characteristigs. energy. (b) Jacobian density of critical points energy. (c) Minimum energies,
and minimum topological energss. the anti-ferromagnetic coupling. From Ref. [8].

Notice the cusp-like pattern of the Euler characteristcwell as the diverging jacobian
density, at the critical energy valwg = 0, which is naturally interpreted as a evidence of the
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topological origin of the finite temperature phase traosiin this model. Let us 'destroy’ this
finite temperature phase transition, by considering thdéicgifn of a staggered external field
which constrain the system to satisfiuy = —1. The energy becomes:

V= —4mgx+J(Mg, — MG, :J(mgx—é)z—\]rrﬁy—%, (2.36)

therefore the equipotential surfaces simplify to hypesbdh themgy vs. ngy plane. This
system is seen to have precisely the same functgig) andvymin(J). Interestingly, the
functional form ofvymin for J > 2, namely—4/J, appears naturally here as determining the
change of transverse axis in the way shown in the figure: fgrfixed J, if v < —4/J, the
transverse axis is along tiesy axis; if v= —4/J, the hyperbola degenerates to its asymptotes;
if v> —4/J, the transverse axis is along thgy axis. This is seen in part (a) of Figure 2.10,
and the same figure shows in part (b) the Euler characteiogi@eithmic density, and in part (c)
the jacobian density. The system does not possess a phasiéidrg and, correspondingly, the
cusp-like behavior of the Euler characteristic disappddate also that, despite the absence of
a phase transition, the jacobian density still divergebeaptrevious value of critical energy.

e ]
i
e ]

1 1
.
E_(T=0)

S

Figure 2.10 Mean field frustrated\B,-XY Model with A sublattice 'frozen’. (a) Configuration space
and equipotential surfaces. (b) Logarithmic density of the absolute valhe &uler characteristies.
energy. (c) Jacobian density of critical points energy. From Ref. [8].
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2.3.2 Mean FieldAB,-XY Model in a Field

This case treats the imposition &= 0, and considers varyingapplied along the direction.
The potential energy can be expressed as

v(Ma, Mg) = 4(MaxMex+ MayMey) — h(Max+ 2mgy). (2.37)

The physically meaningful configurations are restrictedhi® set%y = {(ma,mg) : m,%x+

m,%y <1, n’éx-l— m%y < 1,may = —2mgy}, Where the last condition imposes that the transverse
magnetization vanishes. Let us follow exactly the samesséspin the frustrated case. First
we analyze the minimum energy and minimum topological gnéiige maximum topological
energy has no relevance to the analysis, once again, angeris lgyvymax = 4+ 3h).

—4—h, 0<h<2, ferrimagnetic phase
Vmin(J) = { —"* —5 2<h<#, spin-flop PTah=2, (2.38)
4—3h, h>6, fully polarized

—4—h, if0<h<4
VTmin:{ | - = (239)

4-3h ifh>4

These results indicate that a discontinuity in topologioghriants must exist akrmin for 2 <
h < 6.

In order to compute the Euler characteristic and jacobiasities, the treatment is entirely
analogous to what was made in the previous case: the isaatiedl points are determined by
the same conditions (angles equal to O®yrand therefore their multiplicity is the same. The
index,k(nza, N, ), is

K(nma, Nis, ) = inda(Nya, Nis, ) + indg(Npa, Ns, h), (2.40)
where
N, if h> 4(1—2),
inda(Nma, N, ) = § Ne— N, if h < 4(1— 28, (2.41)
© if h=4(1— 2ye).
(N, if h>2(1— 2,
indg(Nyza, g, h) = S Ne— s, if h < 2(1— 2), (2.42)
© if h=2(1—Z).

The critical energy values are:

V(N Nig) = 4 (1— 2:;?) (1— 2&’:3) _h [(1— ZE’CTB) +2 <1— 2&’?)] . (2.43)

As a result we have that the Morse numbers are simply:

N N
=3 (nHA> (nnB), (2.44)

k(nza,npg;h)=k
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since the multiplicity of critical points with the parameg@ s andnys is () <n’\;l§3) These
results are enough to obtain the Euler characteristic asaifun of energy. The analysis of the
Hessian matrix diagonal elements at the isolated critioaitp described above gives also the
jacobian density. Both of these functions are shown in Figuté:logarithmic density of the
Euler characteristic in (a), jacobian density in (b), ashaslthe energies of the ground state,

Vmin(J), and the minimum topological energymin(J) as functions of the magnetic field in (c).
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Figure 2.11 Mean fieldAB,-XY model in a field. (a) Logarithmic density of the absolute value of the
Euler characteristigs. energy. (b) Jacobian density of critical points energy. (c) Minimum energies,
and minimum topological energss. the magnetic field. From Ref. [8].

Notice that the simultaneous occurrence of a cusp-like\nehand divergence of the jaco-
bian density happens only for= 0, precisely at the critical energy value correspondindnéo t
finite temperature phase transition of this model (whichpess in finite temperature only for
the).

2.3.3 Conjecture

Ref. [16] treats also the mean field XY model in a linear chaid i&is once again found that
the finite temperature transition of the model correspoond$fi¢ simultaneous presence of a
cusp-like behavior of the logarithmic density of the Eulbaracteristic as a function of the
energy, and the divergence of the jacobian density as aifunet the energy, both happening
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at the critical energy value associated to the finite temipe¥gohase transition, as shown in
Figure 2.12. These results motivated the authors to fortatitee following conjecture:

A necessary and sufficient condition for the occurrence ohitefiemperature topology-
induced phase transition is that the the Euler characteristust exhibit a cusp-like pattern,
and, moreover, the jacobian density of critical points dies at the critical energy [16].
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Figure 2.12 Mean field XY model in a field on the linear chain. (a) Logarithmic density of tremhute
value of the Euler characteristics. energy. (b) Jacobian density of critical points. energy. (c)
Minimum and maximum energies, and topological energiethe external field. From Ref. [8].

2.4 Perspectives on the Discrete Case

Up to this point we have considered many models where thegrgational variables entering
in the potential energy are continuous. This property addwhe conversion, through Morse
theory, of the problem of a topological approach to phasesttians to a mathematical analysis
problem of calculating properties related to the criticaihps of the potential energy. Neverthe-
less, many relevant models are left out by this proceduge, discrete spin models, such as the
Ising model, or they-state Potts model. The principal aim of this Master’s prbyeas to con-
sider how the topological approach should be consideresicdn discrete spin models. Due to
its fundamental relevance in statistical mechanics, ting Imodel was chosen, and the student
was only able to provide original results for the 1d casehapresence of a field, which are
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presented at the final chapter of this dissertation. Theogmbrundertaken in the Ising chain is
fundamentally motivated by the consideration of a topaabguantity associated to the spins
of ag-state Potts model and Ising model with arbitrary spin: thkeEcharacteristic, introduced
in Refs. [9,44], and a conjecture for this quantity, arisimgr numerical simulations, related
its behavior to the occurrence of a phase transition at thaceated critical temperature. This is
very similar to the usual topological approach to phasestt@ms considered until now: intro-
duce a topological quantity, and expect to determine aiogldetween its functional behavior
with temperature or energy, and the presence of a phasditans the model.

This section will explain the Euler characteristic, as dadim Refs. [9, 44], and the results
that led to the conjecture relating its behavior to a phaaesttion in the Ising model with
arbitrary spin.

2.4.1 Clusters Topology, Euler Characteristic and Phase Tnasitions

As we have remarked while describing the theory of phasesitians in the last chapter, the
analysis of clusters play a major role in the descriptiongiiase transitions. Criticality may be
understood in terms of them: clusters of all length scalepegsent in the system, so that cor-
relations propagate throughout the entire system, sinde g@ale correlates to the next higher
order scale, and therefore the correlation length beconfasté at criticality. Furthermore,
cluster analysis is the key point in the Peierls argumentessribed briefly on the previous
chapter. In the particular problem of sites or bond peramfadn infinite lattices, cluster analy-
sis plays a major rule through the observation of the mearbeuwof clusters, which, for infinite
lattices, are written in terms of a series expansions on thlegbility of site occupation (den-
sity). These series may possess a very interestiagghingproperty, which relate their high
density expansion to the low density expansion through ammireg polynomial. This property
depends on the graph considered, and the introduction d&ulex characteristic proves useful
in determining the matching polynomial [45], and therebg thitical percolation probability
can be determined for certain lattices.

The Euler-Poincaré characteristic is a topological irasrii.e., invariant through homeo-
morphisms, which can be defined in several manners. It wasfirsidered in the solution of
theProblem of the Seven Bridges of Kdnigsbége Figure 2.13), where it is useful in proving
that a necessary condition for a connected graph to haweubarian path(a path that visits
each edge exactly once) is that it must have at most two esrt€ odd degree (Euler proved
also that a sufficient condition is that all vertices musteheven degree, and therefdalerian
graphsare nowadays characterized by this condition; they arisgaldy in the 2d Ising model,
as we shall see in the next chapter). This is considered todr st theorem in graph theory!

In terms ofsimplicial complexesEuler characteristic can be defined in a very simple man-
ner. First let us define what a simplicial complex is. It isfus® think of it as a generalization
of the concept of graph to higher dimensions. While a graplh#acterized by its vertices
and edges, which are the connections between vertices,plicgahcomplex is characterized
by a collection ofk-simplices, wheré refers to the dimensionality: O-simplices arertices
1-simplices areedges 2-simplices ardaces and so on. The boundary of eakfsimplex is
composed ofk — 1)-simplices (as the boundary of edges are vertices in graghsimplicial
complex is therefore a collectidasimplices with the associated connectivity relationsi¢h
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Figure 2.13 Is it possible to walk through all the bridges visiting each one exactly once?

give the notion of neighborhood for this special kind of tlmggical space). Given a simplicial
complexS let § denote the number d¢simplices. The Euler characteristic of the simplicial
complexSis:

X=%-S+S—...+(-1)"S,. (2.45)

This is a useful expression for calculating this quantityd dave a natural combinatorial in-
terpretation, however, in order to prove that this is a togmlal invariant, and to give a more
topological characterization of it, it is also useful to yedhat the following relation holds:

X(S) =bo(S) —b1(S) +b2(S) — ...+ (—1)"bn(9), (2.46)

whereby(S) denotes the rank of tHeth homology group o8 (in a similar fashion, the number
& is the rank of thék-th chain group associated $since thek-simplices of a simplicial com-
plex constitute a base for theth chain group); they constitute tiigetti numbersassociated
to the simplicial complexS. These numbers characterize important topological pteseof
the spacely gives the number of connected componebis;also termedconnectivity num-
ber, gives the largest number of closed curves that do not ditidespace into two or more
disconnected pieces (For an account on these results sed¢4®ef]).
Refs. [9, 44] considered, respectively, tipstate Potts model and the arbitrary spin Ising

model, on the square lattice, which are given by the follg/energies:

E/(i—PottS: — z 50i70j , (2.47)

<0j,0j>€eN
whereay belongs to the set af possible 'colors{1,2,...,q}, andA C Z2.

E,(\g_'smg:— > oo, (2.48)

<0j,0j>€eN
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wheregy belongs to the set @+ 1 possible sping—Q, —Q+2,...,Q}, andA c Z2.

Notice that these models coincide fip= 2, Q = 1, and this special case is of fundamental
relevance for statistical mechanics, as emphasized inrdtecfiapter. Both models exhibit a
phase transition for varying values @for Q. It is rigorously proved [48] that, for thg-state
Potts model in 2 dimensions, for2q < 4, there occurs a second order transition, amdif5,
the transition is first order: the mean energy becomes distmus at a critical temperature.
This critical temperature is rigorously proved tofe= 1/In(1+,/G). On the other hand, the

Q-Ising model also exhibits a phase transitiv@ > 1 at critical temperature"ﬁcQ satisfying
T > T, VQ, as proved in Ref. [49].

The introduction of the Euler characteristic in these meaehatural, once we think about
the random microcanonical configurations: there will belan clusters, and in order to exam-
ine them more closely we can think of them as random simplcieplexes, as illustrated in
Figure 2.14, simply consider the vertices (0-simpliceghwhe same color (or spin), the bonds
(1-simplices) between two vertices with the same color,theglaquetes (2-simplices) limited
by these bonds, i.e., having all the four vertices of the saohar. Such simplicial complexes
give rise to an Euler characteristic associated to eaclocaconical configuration. According
to the prescriptions of statistical mechanics we know hown&asure the probability of any
given microcanonical configuration, therefore we know a weagompute the average of such
guantity.

;\cz-’.L

A~

beBy )

Figure 2.14 A simplicial complex with 25 vertices, 19 edges and 2 faces in the square ldlicean
be thought as a random cluster arising in a microcanonical configurdtaog-Bott or aQ-Ising model.
From Ref. [9].

Numerical simulation has been performed for thetate Potts model near the critical tem-
perature in Ref. [9], and it is remarkably shown that while¢hie a second order transition the
average Euler characteristic vanishes at the correspgrmuditical temperature, while for the
first order transition cases, this average changes sigihigrg a discontinuity at the critical
temperature.

For theQ-Ising model, numerical simulations show that the averagierecharacteristic in
the canonical ensemble is nonvanishing@ot 3, while it vanishes identically foB > (; [44].
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This led the authors to formulate the following conjecture:

In the thermodynamic limit, the average Euler charactéiger site in the canonical en-
semblex(B) is such thaty(B) > O, for B < B, andx(B) =0 for B > .

The fact that this was a conjecture based on numerical strootamotivated the search for
a theoretical proof of it during my Master’s project work. fdriunately | was only able to treat
the 1d case. This led me naturally to consider combinatorethods to treat the Ising model,
and | will review in the next chapter a brief account on thestat combinatorial approaches
to this model in various dimensions.






CHAPTER 3

Combinatorics of the Ising Model

In this chapter we review partially the combinatorial pexsive already found in the literature
for the Ising model. Due to its discrete nature, both for thet that it is defined on a lattice,
as well as for its configurational variables (the spin vdaajo;) being discrete valued, it is
to be expected that combinatorics plays a crucial role irutiderstanding of this model. We
present first a general elucidation of this fact in arbitrdirmensions, for a regular lattice with
z nearest neighbors per site [50]. Thereafter we present dioatorial approach to the Ising
chain following Ref. [21]. Finally we present the combinaterexploited in the solution of the
2D Ising models relating it to the problem of dimer coveripg].

3.1 General Case

For an arbitrary lattice, we may define discrete parametessacterizing the microcanonical
configurationsN, (N_) is the number of sites with spins (—); N is the total number of sites;
N, _ is the number of n.n. bonds with opposite spin variabMs..(N__) is the number of
bonds between n.n. such that both vertexes have gpins).

Notice the trivial (and useful) relation§’; 0; = Ny —N_, andy ; j~ 0i0j =Ny + N__ —
N._. These can be simplified by noting that the variables are magpendent, sinchl =
N; + N_, and for periodic boundary conditions (P.B.C2N; = 2N, +N;_, andzN_ =
2N__ + Ny _. Such relations are proved as follows. Imagine we mark thmeld@onnecting
the sites with a+ spin, and count how many marks we do in such a procedure. Vieothtain
the first equation; indeed the left side comes from the faatt tiiere arez bonds arising from
any lattice site, givingN, marks, while the right side comes from the fact thatkthe bonds
contribute twice to the total number of marks, giving therté&tN. ,, while theN,_ bonds
contribute just once, givinhy, _ to the total number of marks. The second equation is obtained
by the same reasoning. Therefore it follows that

Z
Z O]O-J :N+++N,,—N+,:§N—2N+,, (31)
<L ]>

and we can clearly see now that the spin interaction termeoétiergy is dependent only on the
number of bonds between opposing spins, for PBC and an agdiittice. Considering further
an external magnetic field, we must consider the term

ZGi:N+—N_:2N+—N, (32)
I
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therefore in order to solve the microcanonical density afest for the Ising model in the pres-
ence of a field, in any lattice, we must solve the combinat@rablem of enumerating the
number of states for fixed values bff N, andN,_. This problem is by no means simple
already in 2d, e.g., for the square lattice, where no salugixists for arbitrary external field
(which adds the dependence Hn). In the next section we present a solution to this problem
given in 2005 for the 1d case [21]. As a matter of fact, we didesthis case without knowl-
edge of this solution and we also give an alternative apréadt in the final chapter where
we present our results. Finally, it seems appropriate tegmehere the crucial idea linking
the development above to our original solution of the cacelnénsemble, in counterpart to
the usual transfer matrix approach (purely algebraic). dtgad above, we have rewritten the
energy in terms of fewer variables:

E=-J 3% aiaj—hZai:ZJM—(h+ZEJ)N++(h—ZEJ)N, (3.3)

<hL]>

as a consequence, the canonical partition function is alsdtten as

Z= ze—BE = % W(N,,N_, D)aN+—uN+dN- (3.4)
N,.N_.D

where
a—e 2P y=egfh+%) q_egBh-%) (3.5)

The expression above for the canonical partition functionidate an alternative approach for
computing it: we must solve the combinatorial problem ofedeiining the microcanonical
ensemble from the enumerating generating function appraace we introduce the variables
a, u andd. This goal was accomplished for the simple 1d case under PBG-B, and is
presented in the final chapter of this work. As far as we knawpther work is published
using this approach. On the other hand, this way of viewirgprtition function as certain
generating function of a combinatorial problem, is by no nseariginal. As we will see in the
final section of this chapter, it is exactly this propertylod partition function that is the key to
the combinatorial approach in two dimensions.

3.2 1d Case

Despite the old age of the 1d Ising model, a complete charaat®n of the statistics of its
domains was not present in the literature until the recenky&i], as remarked by the au-
thors. Such an analysis necessarily involves a combidipproach, and Ref. [21] gives the
enumeration of states, considering FBC, by fixing the numbesmhs up,s, up domainsp,
and domain wallsk, as well as the size of the first up domdinThe number of such states is
termedKn (s, p,k,1). For a chain of siz&\ it is proved that

S —5—
Kn(s pk 1) = (14 & 2p-1) (p52+A:pk|) (Nk_sp 1), (3.6)



3.2 1D CASE 53

whereAgpy = d500p,0% 00 0, andg;  is the Kronecker symbol. Considering that the energy of
the model is given only by nearest neighbor exchange irtieres; and imposing FBC, it can

be written as
N—1

En({0i}) =-J3 Y gigii=—-J(N-1)+23k 3.7)
=1
and therefore the probability of any configuration wktHomain walls in the canonical ensem-
ble is

Wh (k) = 5PN 283K 38)
N

where the partition function is well known to & = 2N cosh3J)N-1. These results imply
that any of the configurations characterized by the varg)lp, k andl, defined above, occur
with a probability:

Ru(s p.k 1) =Wh(K)Kn(s, p.k, ). (3.9)
By a careful sum over the variablssp, k or | it is possible to obtain other joint probability
functions in fewer variables. The distribution flors binomial:

Pu(k) = (N ‘ 1)rk<1— N1k, (3.10)

wherer = (14 €?Y)~1, and therefore the average and variance of the number ofideragee:
<k>=(N-1r, 2= (N-=1)(1—r)r. (3.11)

We emphasize here that our original solution of the Isingrcleaables us to generalize the
result above for non-zero field. From this point, the authoeke an interesting remark. If
BJ is large we have that k >~ (N — 1)e~?PJ, therefore if we require that k >< 1, we
must have BJ > InN, which is a requirement for the system to be magnetized. di this
guarantees that the system will be in one of the two states +1 or g; = —1 for all i. It
is possible to estimate the transition time between thedesst,, using the Arrhenius-Neel
law [52], by considering the Ising chain as a limit of the sladHeisenberg model with strong
uni-axial anisotropy. This argument gives = 1oelN-"UP2Y  wherety is the spin precession
time, andAU is the height of the potential barrier between two equilibridirections of each
spin. Therefore a3 — 0 we see thaty, — . We conclude therefore that, for finite,
there exists a range of low temperatures whete>< 1 andt;, > 1, I.€., the transition time
between the two possible magnetized states is much lagethle measurement tinmg, so the
system is considered to be ferromagnetically ordered. cddtirther that the thermodynamic
limit breaks down this argument, since the conditiok >< 1 will be only satisfied foll =0,
and therefore ferromagnetic order will exist only o= 0 in infinite chains, as required by the
Landau argument presented in chapter 1.

The joint probability function expressed in Eqg. (3.9) isdise determine two more inter-
esting distributions: the distribution of the number of dons upPy(p), and the distribution
of the size of a domaiR(l):

2
D) = 5 5 (L) )PP —r 2 (3.12)

NI =
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termed by the authorsmodified binomial distributionfrom which the average and variance
are given by:

—~~
Z
|
(IR
~—
-
Q
TN
I
ool

1 1 1 _
+5 +Z(N—1)(1—r)r+§(1—2r)N L (3.13)

NI =

<p>=

By the same token

J@=rN=1j2, 1=0,1=N,
H\‘(I)_{r(l—r)'—l, 1<I1<N-1, (314)

termed by the authorsfanite geometric distributionfrom which the average and variance are
given by:
> = 2—Nr(1—r)N-1_2(1—r)N
= 2r g
of = (RN - (3.15)

-1

CN[L— 20+ (1- )N (1)) (1;r)N'

3.3 2d Case

Originally, the first computation of the canonical partitifunction of the 2d Ising model, pro-
posed by Onsager in 1944 [30], was given for the zero extdildl case on a square lattice,
with two coupling constants along the vertical and horiabbbnds. This solution is gener-
ically referred to as dour de force due to its intricate and extensive nature. Onsager ap-
proach was purely algebraic, and did not rely on combinegoriA few years later, in 1952,
Kac and Ward [53] proposed an alternative combinatorial matation of the partition func-
tion. Later, another combinatorial formulation in termsRi¥&ffians, provided by Kasteleyn
and Fisher [51, 54], related the Ising model to a dimer cogeproblem. The original intricate
algebraic approach, based on the introduction of the teamsatrix, was later given greater rel-
evance through a paper by Schultz, Mattis and Lieb [55], eleelation between the 2d Ising
model and a many-fermions system is given. NeverthelessPfaffian formulation is also
amenable to a formulation in terms of grassmann integralshwiaturally maps this model to
a system of noninteracting fermions [56, 57].

A combinatorial approach to the Ising model is done throdgh following observation
about the Boltzmann factor:

ePI9% — cosi{BJ)(1+ giojtaniBJ)), (3.16)

which is clearly true sincejo; = +1. Therefore, the partition function can be rewritten as a
generating function ahdmissible subgraphsas proven first by Van der Waerden [58]:

o 1
Z= P99 — cosh(BJ)BI2N — (1+agiojt)
211 2 1]

Z = coshBJ)BI2V ¢ (t). (3.17)
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|B| is the number of bonds in the lattice. The functiéft) is a generating function for the
number of graphs in the lattice which &telerian, i.e., all of its vertices have even degree (as
remarked in the previous chapter). In fact, the sum ovehalpbssibilities foo; will vanish, if

it appears with an odd power as a result of the products shbaveatherefore it must appear
only in even powers, and hence will contribute with a factafter summation (this explains the
introduction of the overall normalization factor in the s[]lyﬁZNz). Consequently, the expansion
in powers of£’(t) has the significance that the coefficient'dfs the number of even subgraphs
of the lattice withn bonds. With a knowledge of the final answer needed by thidenojsolved
years before by Onsager, Feynman proposed a conjecturadsraity relating this generating
function to an expansion over weighted paths in the lattidech was later proved by Sherman
[59]. We will not follow this solution (very well explainediRef. [60]), and instead we will
consider the relation of this problem to the problem of dimevering or perfect matchings,
solved by the Pfaffian method. We follow the excellent exptaoms of Refs. [10,61].

Given a graphG(V,E), associate to each edges E a weightwe (which do not need to
assume numerical values, rather can be only a formal vatiétiis enables algebraic manipu-
lations to be performed, and 'combinatorial informationcarried with them), so that we can
'mark’ any subgrapl@’(V,E’) of G by the product:

Wg = |_| We. (3.18)
ecE’
Such marks can be suitably used for a enumerating purposensidering polynomials in
these weights, namely, generating functions:

F(w) =5 W, (3.19)
G/

where we mean bw all the weights given to the edges@ Now, if we give anorientation
to the edges of5, we can consider the associated skew-symméific< |V | matrix, T (w),

called theTutte matrix which stores all the combinatorial information given by tveights
and orientations o6:

We, if e=(i,])
Tij(w) = § —We, if e=(j,i) (3.20)
0, otherwise

Let us define what is the dimer covering problem@nA dimer covering ofG is a selection
of its edges such that every vertex@belongs to exactly one edge selected (thus the covering
will be possible only for an even number of vertices), whea Happens we say that we have
a perfect matchingf G. The dimer covering problem consists of enumerating allpbssi-
ble dimer coverings ofs. Notice that each covering by dimers can be viewed as a sphgra
G/(V,E’) of G, and therefore we can consider the generating functionwditamn (3.19) for all
possible coverings. Notice further that each perfect miagebf G corresponds to bipartition
of G (i.e., a partition of its vertex saf = V;UV, and corresponding selection of a subset of
edges with vertices in each of these subsets) such that esdex has degree one.

The enumeration of dimer coverings can be solved by uBifadfians for planarG, the
generating function of dimer coverings can be written asRfadfian of the matrix defined
above, once we give a correct orientatior@oThis was first proved by Kasteleyn [51].
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The Pfaffian of a skew-symmetric matrix of even ordgiw), is the polynomial:
pfr (W) = | det(T (w)). (3.21)

Another definition is the following: for each perfect matopiof G, M = {ey, e, ..., &}, where

& = (u,V;), let (M) denote the product of the corresponding Tutte matrix elespeM) =

Tupvi Tupvs - - - Tuys furthermore, let sgiM) denote the sign of the permutati@um, vi, Uz, Vo, . . ., Ug, Vi),
which is well defined since a change in the order of the elesnri¥l will correspond to an

even number of transpositions in the permutation. Theeedach perfect matching & de-
termines the functions(M) and sgiiM), from which we define the Pfaffian of the weighted
digraph(i.e., oriented graph{ as the polynomial:

pfe(w) = ESQY(M)"(M), (3.22)

where the sum is taken over all perfect matchivgsf G. It follows from this definition that
if the Tutte polynomial vanishes (in the sense of the polyiabineing identically zero), no
perfect matchings db exist.

Notice that while one definition of the Pfaffian refers to aglgymmetric matrix, the other
one refers to a weighted digraph. Naturally, the questiagsearwhen both definitions are
equivalent. This happens precisely if there exists an tatem of G that gives the same sign to
all the terms in the determinant expansion. An orientatidh this property is termedRfaffian
orientation Therefore, given a weighted digraph, and its corresponding Tutte matrik, the
following relation holds ifG admits a Pfaffian orientation:

pfe(w)? = pfr(W)* = [de(T (w))]. (3.23)

A general characterization of graphs that admit Pfaffiaergétions is not known, however, as
remarked above, Kasteleyn proved that all planar graphstd&faffian orientations, and this
result was crucial in order to solve the dimer covering peabl

N,
[
N,
Ve
AN
/'
N,
4

EZERZEN

NN
DVZERNZEN
A A A
DVZER VN
A A
DVZE VN

AN

G Gt

Figure 3.1 The decorated lattice to be considered in order to map the Ising model onlerpraitdimer
coverings. From Ref. [10]

The Ising problem on the square latti€= Lmn (M by n lattice), which we showed above
that is equivalent to a problem of finding the generating fimmcof Eulerian paths, is mapped



3.3 2D CASE 57

into a dimer covering problem by considering a decoraticthefsquare latticeG!, where each
vertex is substituted by the complete graph on 4 vertiggsas ilustrated in Figure 3.1. We
denote the original edges & in the decorated lattic&' as theexternaledges, while those
inside eactK, of G! are theinternal edges. The ma@ — G' allows us to turn Eulerian paths
on G into perfect matchings B!, simply by mapping the edges of the Eulerian path into the
corresponding external edges®@f and by selecting the remaining internal edges oktfiéhat

will connect vertices not yet connected in order to obtairedgzt matching; that this can all
always be done is clear, since vertices that belong to arriBnlpath ofG must, by definition,
have even degree, therefore, e&ghin the decorated lattice corresponding to a vertex of the
Eulerian path will have either all of its 4 vertices alreadyldmging to some edge (this means
that the vertex ofG corresponding to thi&, has degree 4), or else 2 of its vertices already
belong to some edge (this means that the verte® obrresponding to thi&, has degree 2)
and we must connect the unique internal edge remaining $rKthin order to match these 2
remaining vertices; nonetheless this correspondenceotberone-to-one: the isolated vertices
of G will give rise to aKy in Gt for which we can have three possible choices of pairs of edges
in order to get a perfect matching. This entire discussiaeryg easily understood by looking

at Figure 3.2, where we show a map of an Eulerian path iofto G'.
j
>< \' >
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<

AN
N NS

1

2
.

VN

Figure 3.2 Map of an Eulerian path o& into G'. Bold lines inG! represent the edges of the Eulerian
path after we decorate the lattice; dashed lines represent the possibke @hiaternal edge in thi, in
order to complete the perfect matching. Notice further that isolated si8sane mapped into isolated
K4 in G': the selection of internal edges is not unique in order to obtain a perféchmg inG'. From
Ref. [10]

The non-uniqueness of choice of matching in an isol&tged a trouble which we can get
rid of very easily: we give an orientation to eagh that will take into account just one choice
of matching in the resulting generation function, while @aling the other 2 possible choices.
The remaining edges @', namely the external edges, must have an orientation tlahake
the overall orientation fo6' Pfaffian. This is done by letting all the external verticagjes to
point in a same direction, and all the external horizontglesdalso. This Pfaffian orientation is
shown in Figure 3.3.

By assigning weights 1 in the unoriented internal edge§'ofandt in the unoriented
external edges d®!, we can construct the Tutte matrix corresponding to the iteoriented
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Figure 3.3 A Pfaffian orientation foG! that gets rid of the degeneracy of perfect matchings correspond-
ing to a given Eulerian path @. From Ref. [10]

graphG', with the orientation illustrated in Figure 3.3. This Tutbatrix solves the problem of
determining the Eulerian paths generating function fos thitice and we have the following
result (proven rigorously in [10]):

&(t) = |det(T(t))|¥? (3.24)

The computation of this determinant is an open problem fendpoundary conditions. Im-
position of toroidal boundary conditions (periodicity imethorizontal and vertical directions),
turns the corresponding Tutte matrix determinant mandgeatowever the result above de-
pends on the lattice considered, and, by changing thedattimother proof of the result above is
required. Since the interesting physics appears by letti@tattice become infinite, i.e., impos-
ing boundary conditions, it follows that indeed anothergbraf the result above is not indeed
necessary: boundary condition effects disappear withhrtodynamic limit in this case. An
extensive algebraic analysis is required at this pointnaukting with Onsager’s famous result:

Theorem 3.3.1. (OnsagerYhe partition function of the 2d Ising model @3 is given by

 In(z(BJ 1
ARW:' PP

21T 21T
/0 /O Q(BI, o1, @) dud ey, (3.25)

where
Q(BJ, @1, ®) = In [cosi(2BJ)? — sinh(2BJ)?(cosgr + cos@)] . (3.26)



CHAPTER 4

Ising Chain in a Field: Combinatorics and
Topology

A topological approach to phase transitions in discretesptsgpace models was sought in the
beginning of this research, as a complement to the wellstucibntinuous counterpart, briefly
exposed in chapter 2. As a result we have obtained a carefilysas of the Ising chain in

a field, where many interesting features are unveiled, teesipé deceptive simplicity of the
model.

In chapter 2 we have seen that the topological approach ts B&aded on Morse theory
tools [42] to calculate topological invariants as a functad the energy, such as the Euler char-
acteristic, in models with a continuous phase space. Intlaeftritical points of the configura-
tional energy are necessary for a proper description ofriregy landscape [43] of continuous
models. Notwithstanding, not much emphasis has been govémetanalysis of such a topo-
logical approach on discrete phase space models, in whgghtba classical Morse theory and
the familiar methods of differential geometry are not dikeeapplicable. Moreover, it is well
known that the isolated critical points of several contumsispin models?, ?,12,16] are Ising
configurations. This feature unfolds the relevance of theroaianonical approach to the Ising
model.

In this work, we use a distinct topological approach to PTiclwhs suitable to discrete
models [9, 44], although some analogies with the continwage are apparent, as discussed in
Section 2.C. In the discrete case, the average Euler chaséictevhich was studied in the con-
text of the canonical ensemble [9, 44], is defined here tHrauigrocanonical configurations,
rather than looking at the equipotential submanifolds. Amarked in Ref. [9], the consider-
ation of such a topological quantity was already useful enttieory of percolation [45]. Here,
we compute the average Euler characteristic of the Isinghéhahe presence of a field [35],
which is shown to be equal to the number of domains in the cifathroughout combinatorial
treatment of the statistics of domains in this model has lpeeforward [21]. In fact, combina-
torics has proved very useful for a geometrical and topclgiharacterization of the partition
function in two [53] and three [62] spatial dimensions. e #ame token, we approach the one
dimensional (1d) case using generating function methads) fvhich the equivalence of en-
sembles becomes evident. This procedure also allows thputation of the thermal average
value of the Euler characteristic.

This chapter is written as follows: In section 4.1.1 we pnéslee microcanonical solution
to the Ising chain in a field, including the computation of émropy for open boundary con-
ditions. We point out that, although the authors in Ref. [24ydrnot included the magnetic
field contribution to the energy, his results for the muitpy of states are equivalent. In sec-

59
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tion 4.1.2 we discuss that for ferromagnetic coupling arghtiee temperature, there appears a
residual entropy for critical field values. This is verifiedmany variants of the Ising model, in
particular for anti-ferromagnetic coupling and positieenperatures, including the 1d [63, 64]
and 2d [65] cases. On the other hand, models with competiegaictions also exhibit this
behavior for critical values of the ratio of competing canglconstants, as studied in 1d [66],
2d [67] and 3d [68] systems; a residual entropy can also apgheato geometric frustration
in the model, as in the well known case of the triangulardat{69], as well as in magnetic
systems with the pyrochlore structure, generically cadigid ice [70] due to the similarity with
Pauling’s description of the residual entropy of ice [71]erkl we present a topological in-
terpretation for the emergence of a residual entropy at tiieat fields. In section 4.1.3, we
introduce the Euler characteristic, defined for each memoaical configuration of the chain.
This definition is motivated by a restriction of the one giventhe 2D case [9, 44]. In section
4.2.1 we solve the canonical partition function from our dmatorial solution by interpreting
it as the generating function associated with the combireforoblem for determining the mi-
crocanonical density of states. We also analyze finite-efieets on the canonical free energy
under free and periodic boundary conditions. We stressattiadugh much effort has been
made to provide a combinatorial approach [53,59] to the @asalgebraic solution [30, 48] of
the 2d case in zero field, little attention to such a solutias been devoted to the Ising chain
in a field, where the usual approach is to solve the modelttiregcthe canonical ensemble by
the transfer matrix method. In order to achieve the expestieilzalence of ensembles we must
consider the negative temperature range [27], as in theafasévo-level system, which hap-
pens to map on the Ising chain in zero field. In section 4.22Hkrmodynamics of the model
is analyzed, and the Euler characteristic thermal averagsite is exactly computed. As re-
marked before, this quantity satisfies the expected resskgas a conjecturéy) (Tc) =0,
whereTc = 0 is the critical temperature.

4.1 The Microcanonical Ensemble of the Ising Chain in a Field

A. Combinatorial Solution

The energy functional of the Ising chain is given by

E(0)=-J ) agoj—h} a, (4.1)

<>

where the summation is over nearest neighbor (n.n) skes,+1 is the spin variable on site
i, his the external field, and is the exchange interaction constant. We define the ofteth use
discrete parameters, characterizing the microcanonargigurations:N; (N_) is the number
of sites with spinst+ (—); N is the total number of site\l, _ is the number of n.n. bonds
with opposite spin variablesN, ; (N__) is the number of bonds between n.n. such that both
vertexes have spins (—).

Such definitions allow us to rewrite the energy as a functibfewer variables [35, 50],
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for we have the ftrivial relationsy;oi = N —N_, andy _; j~ 6i0j = Ny +N__ —N;_.
These can be simplified by noting that the variables are mgpandent, sincl = N, +N_,
and for periodic boundary conditions (PBCN2=2N;; +N;_, and N_ =2N__ + N, _.
Such relations are proved as follows. Imagine we mark thael®@onnecting the sites with
a + spin, and count how many marks we do in such a procedure. Véedbiain the first
equation; indeed the left side comes from the linear chagoltyy, since each site with-a
spin contributes twice to the total number, givinly.2 while the right side comes from the
fact that theN, ;. bonds contribute twice to the total number of marks, givimg term A, .,
while the N, _ bonds contribute just once, giving, _ to the total number of marks. The
second equation is obtained by the same reasoning. For digedhry conditions (FBC) we
must be more careful, and we shall separate the analysisaa thfferent cases according to
the kind of spin at the beginning and the end of the chain. thispins aret+, we need to
recognize that the connection between the first and lastispiot accounted for iftN, ,, so
that we have: R, = 2N, +N,_+2and N_ =2N__ + N, _. By the same reasoning, if
both spins are-, we have: R, =2N,;; +N;_ and 2N_ =2N__+ N, _ +2. Now, if the chain
starts and ends with different spin species, we must rezeghat the connection between the
first and last sites is not accounted forNn_, so that we have: R, = 2N, ; +N;_ +1 and
Z2N_ =2N__ +N;_ +1. In summary:

N++ + N__ = N+ + N_ — N+_, fOI‘ PBC, (42)

while
N++ + N,, - N+ —|— N, - NJF, - 1, fOI’ FBC (43)

Let us now define the number of domains of a given configuraifahe chainD, as the
number of maximal connected pieces of spins of the sameespatithe chain, i.e., without
bonds between n.n. of different spins. We can relate the sumibwalls in the chainN, _,
with its domain number: for PBC, it is clear thtis always an even number, ahd _ = D;
while in the FBC case we have thiit. . = D — 1, and it can have any parity. With such
simplifications, the energy functional (4.1) may be writéen

Ep(Ny,N_,D) = —(J+h)N; — (J—h)N_ +2JD, for PBC, (4.4)

while
Er(N,,N_,D) = Ep(N;,N_,D) —J, for FBC. (4.5)

These expressions have the importance of clearly showimdnich combinatorial problem we
are concerned with and, by keeping constant the variablesaaymg on these expressions, we
can enumerate the degeneracy of a level with enErgye., the thermodynamic weighw/ (E),
and thus find the microcanonical ensemble solution.

We shall separate the study of the microcanonical solutcmoraing to the parity of the
number of domains. Note that for PBC we always have hat 2k, k € N, which will be
the case for FBC only if the chain extremities have differgnh species; in fact, by closing
the chain extremities in the referred FBC case, we map okttoihains under PBC. On the
other hand, under FBC, if the chain’s extremities have the sgpimespecies, we hav&k2- 1
domains, which, by closing the chain extremities, we map @idomains under PBC.
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Given the above explanation on the connection between thiy d the number of do-
mains and boundary conditions, we shall carry out the swmiuor the FBC case but, by the
above reasoning, the multiplicity of states for fixed valoés\N,,N_ and D, shall be used
also for the PBC case. We thus want to solve the combinataiidllgm of determining how
many distinct configurations exist, under fixed value®NoN, andD. This was done first by
Ising [35], and more recently in the context of the statssb€ domains [21]. Here we present
a similar procedure to achieve the solution to this comloinait problem and use it to calcu-
late the entropy, its residual value for critical fields, dhd average Euler characteristic over
microcanonical spin configurations. Consider first the dase 2k; then,N, > k=D/2 and
N_ =N-—N, > k=D/2. With such conditions satisfied, our combinatorial prabteduces to
analyze the number of different solutions of a system of tgpea¢ions in nonnegative integer
variables, with each variable being the number of spinserdibmain;:

u + ... + uw = Np—Kk
(4.6)
d + ... + &k = N_—k=N-N; -k

whereu; +1,dj +1 € NU {0}, V], represent the number of spirsand— in the j-th domain,
respectively. The number of different solutions is simply:

(e Yoln D) e

however, as we have an extra degeneracy given by the chdiee kind of spin on the leftmost
domain in the chain, the total number of configurations is

Weven= 2l = Z(Nl:__ll) (Nk___ll) S (N+ — g) O (N — Ny — g) . (4.8)

Now consider the cade = 2k+ 1. Then, according to our previous reasoning, we must have
the same kind of spin on both extremities of the chain, sowlealhave two possibilitiesk 4 1
domains of spint andk of spin—, orvice versaln the first situation, we have the constraints:
Ny >k+1=(D+1)/2andN_ =N—N; > k= (D—1)/2; while for the other possibility:

Ny >k=(D—-1)/2andN_ =N—-N; > k+1=(D+1)/2. In the first case, the problem

to find the degeneracy of configurations is equivalent to tiedlpm of finding the number of
solutions of a system of equations similar to (4.6), with> k+ 1 only in the first equation.
The multiplicity of states for an odd number of domains issthu

N+ —1\ /N-—-1 Dx1 DF1
w (M) (o (v -B o (v 23). o

which implies
Wogg =W, +W_. (4.10)
It is easily verified that the previous microcanonical solutsums up to give the total

expected number of possible configurations for a chain @fNiz.e. 2. We simply need to
recall the identity:
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:;kk (rl?) (n;m) B (21111) (4.11)

Indeed, by summing the degeneracied\gfenandWsqqg, given by Eqgs. (4.8) and (4.9-4.10),
respectively, first by varying the number of spins over thesgae range indicated by the Heav-
iside functions, we find for the cases with even and odd nurobdomains:

N—k
N—-1 N—-1
=
N—k N—-k-1
N-—-1 N-—-1
gWodd: W, + Z W_ = 2( ok ) = Z(D 1). (4.13)
T N; =k+1 N, =k o

We notice that the above Ising density of states corresptntle density of isolated critical
points of the 1d XY model in the zero field limi?[14]. Finally, by summing up over the
number of domains we get the expected total number of matest

N _/N-1 N
D;z(D_l) = 2N, (4.14)

Lastly, the derived multiplicity of statéfkyenandWygg in Egs. (4.8) and (4.9, 4.10), re-
spectively, can now be used to compute the entropy per sag@sction of the energy of the
chain under the chosen boundary condition, Ee= EF(N;,N_,D) or E = Ep(N;,N_,D):

E/N k
w =N In sz Wodd +Weven| - (4.15)

L+,
Epfr (N} N_D)=E

We must note that the pigeonhole principle imposes thewiatig restrictions:d/2 < n; <
1—d/2, whered = limyn_,. D/N, andn;. = limy_,. N1 /N, as explicitly shown for finiteN by

the Heaviside functions appearing in the multiplicity cditss expressions. Since the energy
is written as a function oh, andd, we can represent the configuration space as the two-
dimensional space,; vs. d Therefore, the referred restrictions mean that the allbsmn
configuration are inside the triangular region illustraiteéig. 4.1 (note that in the lind =0
only the pointsn, = 0 andn, = 1 belong to this domain). So, in order to compute the entropy
in Eq. (4.15) we must sum up microstates corresponding tetpanside the triangle of Fig.
4.1 and over isoenergetic levels. Note also that the rangleeonergy per sites = E/N, is
derived from Eq. (4.5): ifl > 0,h > 0, the minimum energy level ignin = —(h+ J), with

ny =N;y/N=1andd =D/N=1/N — 0, as shown in Fig. 4.1 by dotted lines for a few
values ofh; while the maximum energy level &nax=J, withn,. =1/2 andd =1, if h < 2],

or émax=h—J, withn, =0 andd — 0O, if h > 2J, as shown in Fig. 4.1 by full lines for a
few values ofh. These results are exact in the thermodynamic limit, witthtaa corrections

of O(1/N). The results for negative values of the magnetic field (and0) are completely
analogous, and we infer that the field can induce qualitatieages in the magnetic behavior of
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the chain; indeed, the maximum value of energy is attainedrfoferromagnetic configurations
if |h| <23, while, if |h| > 2J, it is attained for ferromagnetic configurations.

We now proceed with the description of the numerical comjmrteof (4.15) under FBC,
with J =1 andN = 1000: for fixede, we vary the discrete parameté¥s, D, and verify if
the corresponding energy¢ = Er(N,N_,D)/N, given by Eq. (45), lies within the interval
(e— de e+ de), where we have chose¥e = 0.005. If it does, we sum up the corresponding
multiplicity of states given by Eq. (4.8), fd even, or by Eqgs. (4.9, 4.10), f@ odd. The
total sum of all the possible multiplicity of states in theeegy neighborhoode — de, e+ de)
is the thermodynamic weight of the entropy in (4.15), whislplotted in Fig. 4.2 for various
magnetic field values. We notice that the transfer matrixhme{72] has been used to compute
numerically such entropy curves for small valuedNoin 2d.

1 =
‘ T I= -
= = | — 1z
o7’ 1 Lds %- h=4)
I
i
L 4 0.4+ -
= 0.5 ! <
L 1 > (7]
!
0.25- i .
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Figure 4.1 Region of allowed values of the num- _ .

ber of spins up and domains per site associated Figure 4.2 Entropy per site as a function of the
with the multiplicity of microstates in the thermo-  €N€rgy per site, foN = 1000,J = 1,5(E/N) =
dynamic limit. Minima (maxima) energy levels 0.005, under FBC for various magnetic field val-
are shown by dotted (full) lines for various mag- Y€S-

netic field values.

The branch of high energy values in Fig. 4.2, iEe/N > 0, associated with the decreasing in
entropy, is in the negative range of temperatures, as \@bfiehe relation% = g—g. Therefore,
we identify T = 0+ = 0 (T = 0—) with the minimum (maximum) energy level. Notice, how-
ever, that negative temperature states correspond taveosmperature states with reversed
signs inJ andh. Indeed, the Boltzmann factor epE), and the energy of the Ising chain,
Eq. (4.1), explicitly shows this correspondence: reveysire temperature sign, or rather re-
versing theJ andh signs will give us the same partition function (as we are idgalith a
model with bounded allowed energy states, negative terhypesado not lead to problems with
the convergence of the partition function). The high enestgyes forJ > 0 correspond there-
fore to low energy states with< 0. In fact, the observed residual entropy in Fig. 4.2, for the
critical field h = 2J, corresponds to the well known residual entropy for an antiimagnetic
Ising chain in the regime of positive temperatures [63, 64].
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B. Residual Entropy ath = +2J

We see in Eq. (4.4) that the energy per site in the Ising chai@ fgiven chain size, external
magnetic field and coupling constant, is determined by tfeegarametersn, = N, /N and
d =D/N. If eis the energy per site in the thermodynamic limit we have fin (4.4) that

e=—2hn, +2Jd— (J—h). (4.16)

Notice that a fixed value & defines a straight line whose allowed states are insideitimgte

in the "phase space" shown in Fig. 4.1, with slapé. Varying the energy, for a fixed ratio
J/h, corresponds just to a translation of such lines. Furthegbe entropy is obtained as a
function of energy by taking the logarithm of the total mpiiitity of states lying on the overlap
of such lines with the region of allowed microscopic stat&sch a perspective of the 2d Ising
microstates is given in a magnetizatiogrsusenergy space in Ref. [73].

0
0 05 d 1 0 05 d 1 0 05 d 1 0 05 d 1 0 05 d 1

Figure 4.3 Configuration space, vs. dshowing the energy contour map for different values of mag-
netic field, and the isoenergetic straight line of maximum energy. Note tletal) the straight line
overlaps with the lower edge of the triangle of allowed states.

From this perspective we can understand what happens totiogg per site as a function
of energy and plotted for various magnetic fields in Fig. #£&. a magnetic field value different
from +2J, the contribution of each isoenergetic line to the totaltiplitity of states per site
becomes arbitrarily small at the points of minimuin-£ 0) and maximumT = 0—) energy,
since the lines pass through the corners of the triangle showig. 4.3, which displays only
positive field values, but the negative cases are symmeitticespect to the line, = 1/2. For
the cased = +2J these contributions display special behavior when theggnera maximum,
since in these cases the isoenergetic lines are exactlgidemt with the nonvertical equal
edges of the triangle. In fact, the associated multiplicitystates is exponentially large and
gives rise to a residual entropy. We have thus witnessed@adgigal change at the critical
field h=2J as shown in Fig. 4.3: the measure of the set representing/érap of the domain
of available macroscopic states and the maximum energy(&vaight line) is non-null.

Interestingly, the multiplicity of states at the two nonveal sides of the triangle is exactly
the (N + 2)-th term of the Fibonacci sequence, and, therefore, thduabkentropy per site for
such a magnetic field at the maximum energy is exactly equtde@olden ratio. One easy
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way to see why the multiplicity of states in this specific attan is given by the terms of the
Fibonacci sequence is to search for the kind of configuratairthe chain that maximize the
energy ath = 2J andE = J(—4N. + 2D + N); notice that 3 is exactly the energy needed to
have a spin with two immediate neighbors of opposing spine aximum energf = NJ

is then attained in this case by those configurations whéspis are down (more generally,
contrary to the field), except for some isolated sites whegespins are up (therefore having the
same sense of the field). Now, for simplicity, assume FBC. Lefalisf (N) the total number
of configurations ofN spins in a chain, where the spins up must be isolated from @y spin
up. Itis a simple matter to get a recurrence: if the leftmo#t & not up, there aré(N — 1)
ways to organize the remaining of the chain; if it is up, themef (N — 2) ways to organize the
remaining of the chain, therefore:

f(N)= f(N=1)+ f(N—2) (4.17)

As f(1) =2 and f(2) = 3, we see thaf (N) will be the (N + 2)-th term in the Fibonacci
sequence.

It is worth noticing that the residual entropy appearingtfa critical fields in the simple
case of an Ising chain can be made to correspond to residwapess of more general models.
Indeed, a decimation transformation of decorated Isingetsodan map them to the simple
Ising chain studied, and by imposing on the effective captionstant)*(T, h), and effective
magnetic fieldh*(T, h), the condition$* = +2J*, we obtain curves in th& — h plane where
the system will have a residual entropy. This is the case, efghe AB, Ising chain in a
field [74], where the decimation of tH# sites maps this model on a linear Ising chain in the
presence of an effective field and an effective coupling betwtheA sites.

C. Euler Characteristic

From Ref. [9], we can consider a very simple definition for thaeE characteristic in the 1D
case: given a configuration of the chain, the Euler charastiteassociated with spip- (—)
sites, x+ (x_), is defined as the Euler characteristic of the graph whosewset is made of
spin+ (—) sites, and the edge set is made of the bonds of n.n. withisgin) vertex. We thus
have thaty, =N, —N, (x- =N_—N__), and using the relations (4.2, 4.3), it can be written
asyx; = NLZ— =D (x_.= N+T— = D) in the periodic case, while for the free case we have three
cases to be considered according to the spin variables @xtiemities of the chainy.,. = DT“

(x— = B51), when they are both- spins,x;. = 251 (x_ = 2}1), when they are both-, and

X+ = 2 (x- = 3), when they are different. As we obtain a kind of complemsnkeehavior
for the Euler characteristic with respecttoand— sites, we define the Euler characteristic of
the chain simply as the sum of botlg:= x; + x— = D, in all cases equivalent to the number
of domains. Therefore, the Euler characteristic as a fanadf energy is obtained from the
microcanonical distribution according to the prescriptio

1
X(Ising) (E> = 2_N nzb D(Wodd+WeverD; (4-18)

-+
Er:p(N4.N_,D)=E
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which, in zero field reads:

X(Ising)(E) = % (g . i) . (4.19)

With the microcanonical distribution obtained in the lasttson, it is a simple matter to
obtain numerically the value of the logarithm of the averkgéer characteristic, per site, as a
function of the energy, whose values are just downwardssbifin(2) on the corresponding
entropy curves for the same chain size, as in Fig. M.2(1000).

In the following, an interesting example of the relationvibe¢n the topological approaches
for phase transitions in models with discrete [9, 44] or tardus [14] symmetry provides a
guantitative basis in the context of the Ising chain and th&Y model, respectively. In fact,
for the 1d XY model the Euler characteristic in the zero figtit, x(xy), is given by [7]

N-—2
|X(xv)|=2( g ) (4.20)

whereny is the number of domain walls, and a domain is defined for gaotis pieces of the
chain where all angles, associated with the isolated alifioints of the model [12], are O ar.
The equations above imply
In i In
lim (X(Ismg)) — Iim (‘X(XY)D
N—o0 N N—o0

~In(2). (4.21)

Therefore, in the thermodynamic and zero field limits, thgalithm of the absolute value of

the Euler characteristic, per site, in the XY model is eqaahe entropy per site of the Ising

chain, Eq. (4.15), apart from arbitrariness in the choicthefcoupling constant and the zero
energy level. This result is in general agreement with etgtiens from the renormalization

group and critical phenomen@][ as well as from connections between discrete and conisuo
models in the context of statistical mechanics and quanteiah iheory [?].

4.2 Equivalence of Ensembles for the Ising Chain in a Field

A. Combinatorial Solution

We first notice the fact that the generating function assediaith the combinatorial problem
of determining the microcanonical distribution can be itfesd with the canonical partition
function of the model:

Zrp(N;a,u,d) = % We (N4, N_, D)aPuNrdN-; (4.22)
N, ,N_.D

e PIze(N;a,u,d) = % WE (N, N_, D)aPuMN+dN-. (4.23)
N, ,N_,D
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Indeed, according to the definition

ZoF = Wb (Ny,N_,D)e PERF(NeN-D), (4.24)
N, N_,D

and Egs. (4.4, 4.5), we identify

a=e 2P u=efth ¢ =¢efl-n. (4.25)

We have thus provided a combinatorial interpretation fer lthplace transform, Eq. (4.24),
between the canonical and microcanonical ensembles, @eagmt with general prescriptions
of statistical mechanics. The aim here is thereby to comghgesums above by examining
the underlying combinatorial problem in light of the theafyenumerating generating func-
tions [?]. On the other hand, Ising [35] was able to carry out the sugn (4.23) from the
knowledge of the exact format of the power series and by densig the expansion of the
grand canonical partition function in powers of the fugaeit= €®#, whose coefficients are the
canonical partition functions for different chain sized.sdme stage of our procedure bellow,
we also compute the grand canonical partition function.

Let us start by analyzing the microcanonical ensemble frogergerating function view-
point. We make use of ‘artificial variables,, for the purpose of indicating how many sites of
the chain exist inside thieth domain. By this, we mean that a powxq?‘,, indicates that there
ares sites of the chain inside that domain. Therefore, the foncti

f(XtyoXok) = (Ka+X2+ ) (Xok+ X5 + ..
(4.26)

is such that it combines all the possible ten@i’s..xgi", with s > 1, i.e., all the ways of con-
structing chains witls sites inside of the domain For the Ising chain, we see that by impos-
ing X2j_1 = U andxy; = d, for 1 < j <k, the coefficient of the termN+dN- in the function

g (u,d) = f(u,d,...,u,d) tells us the number of ways of placifyy. spins+ in k domains and
N_ spins— in k domains, where the leftmost domain is of one fixed kind. Teaotfor the
possibility of having the leftmost domain as-aor — domain, we simply must include an extra
multiplicative factor 2 in our generating function:

k 4k
(1) () _ 2u'd

whose power series expansion generates coefficients assbtd terms™N+dN-, symbolically
denoted by{uN+dN*} gl(:)(u,d), are identified with the microcanonical distributidgyenin Eqg.

(4.8):
[uN-dN-] o (u,d) = 2(Nk+__1l) (Nk__ll) . (4.28)
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We also need to account for the possibility of having the twioegnities of the chain with sites
of the same domain type, as these possible configurationsoareounted in the generating
function given above. Therefore, we define:

for1 (X, Xoke1) = (xa+x5+ ---)---(X2k+1+X%k+1+ )

X1... X2k+1 (4-29)

(1—X1)...(1—X2k+1)7

with xzj,l —u, for 1< j <k+1, andxpj = d, for 1< j <k, thus obtainingg," (u,d) =

fat1(u,d,...,u,d,u). Alternatively, we can impose thap;_; =d, for 1 < j <k-+1, and
Xoj = u, for 1 < j <k, which |mpI|esg|((”')(u,d) = fyia(d,u,...,d,u,d). Therefore, the mi-
crocanonical distributiond/. in Eq. (4.9) are recovered:

[uN+dN-] o) (u,d) = (Nik_ 1) (NJ__ll), i=11,111. (4.30)

Now, we shall allow for all possibilities of domain numbeBesides this information, we
must also distinguish the PBC and FBC cases: for FBC, the coetfigi¢ ) and(I11 ) above are
associated with spin configurations containing one domairerthan the configurations related
to the coefficien{l); while, for PBC, all three coefficients are associated withfigomations
with the same domain number. Henceforth, we define:

2ay — =0 .
(a,u,d) Z gk (u,d)a =1 ay ay=p’(a,u,d); (4.31)
— K agi — .
=0 (a,u,d) = Z o) (u,d)a?+ = oy = =a=p)(a,u,d), i=11,1Il, (4.32)
au ad : .
wherea ) =a = 1a andag ) =y= 14 On the other hand, the combinatorial problem

subjected to the condition that the chain has a specified NizeN, + N_, can be obtained
by looking at the series expansions of the three contribuio the grand canonical partition

functlons,_é,,):(”) (1 )(a,zu zd), in powers of the fugacity = efH:
=5p " (@ zuzd) = N; zor "M (N; 8, u, )2, (4.33)

whereZé,')F’(II . )(N, a, u,d) are the three contributions for the canonical partitiorcfions for
chains oiN sites and FBC or PBC. Moreover, by using Egs. (4.31) and (4.3®)udl — zu zd
and definingp(z) = 1 — (u+d)z+ud(1— a?)Z, the grand canonical partition functions for
FBC [35] and PBC are respectively given by

a(u+d)z+2audla—1)z22 _ 22— (u+d)z

o2 I e (4.34)

—F =
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In the following, we discuss the main steps leading to theonaral partition functions in
Eq. (4.33). First note thai(z) is such thap(z) = (z— A1)(z— A2)ud(1 —a?), with

1 (u+d) 1 2 _
Ml_uml—é)[ 2 :tiww_d)+mM¥}_AMﬂ&’ (439
and (u+d) 1
_ (u+ 1/ 2
O =-—5— + 2\/(u d)“ +4ude?. (4.36)

These are exactly the eigenvalues of the transfer matrighioising chain in a field, after we
make the suitable substitution of variables (4.25). Usheygolynomial roots in Eqgs. (4.35,
4.36) and expanding(z)~ in Eq. (4.34) in a geometric series, we find for the FBC case:

=r(a,zuzd) = alu d)uZdJ(rlzil;C;()a— g )\11)\2 [Ii ()Tzl) i] lli <)\_22) i] ; (4.37)

whose coefficients afN read:

[2N] ZF (a,zu zd) = 2aud@a— )ANY 1-au+d)AM), (4.38)

where we have used that

1 1 A3=A2
3930 Gt = 98— 0% vae (4.39
N N
Nmzi_?. (4.40)

Analyzing the periodic case in the same way, we obtain that

Zp(N;a,u,d) = 2ANTY — [2(u+d) +a(u? +d?)] AN ud[2—au+d)AN-Y. (4.41)

Using Eq. (4.25) into Eqs. (4.38) and (4.41), we find after s@aigebra:

Zr =P (U—Ee‘zﬁJ (04 —tanh(BJ)o )Jr—aN e P (tanh(B)o, —0_) );
Oy —0- * - oy —0_ * N ’

(4.42)

Zp =0} + 0, (4.43)

oy =e? (Cosf(Bh) + \/Sinhz(Bh) +e—4l3J> , (4.44)

Our results in Egs. (4.42, 4.44) and (4.43, 4.44) are in agea¢ with the canonical partition
function expressions for FBC [35] and PBC [50], respectiv@lyis concludes our alternative
combinatorial solution for the ensembles associated tésihg chain, under free and periodic
boundary conditions.
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From the canonical partition functions above we get the &iiobe energy per site for the
system:
OpF :GRF/N:—TM(ZRF)/N, (4.45)

and a study will be made on the distinct finite-size effect dudifferent boundary conditions.
In both cases, it is trivial to notice that they have the sameenhodynamic limit, namely:

0w = lim Gpr /N = —-TIn(0oy). (4.46)
N— 00

The finite size corrections to the free energy in the periodse are

S 1)i- 11 = " 4.47
Ngr(N) z o) (4.47)

while in the free case we have

00 . . Nj
=1
where
o'+_0'_ 1+a O-+_ 0-
. ﬁm -0 tank(BJ)m —0_ (4.50)
o, — mo’f oy — tanf’(BJ)CL

Slnce— < 1, we notice that for very largH the first term in the series is the dominant one
and, therefore we have the asymptotic behavior:

N[gp(N) — gu] = —Te V%, (4.51)

N [gr (N) —ge] = —J—TIn(A) —TBe N/¢, (4.52)

where we have introduced in the expressions abovedhrelation lengthof the model [75]:

= [In (%)1 _1, (4.53)

which implies exponential correction in the case of PBC, whdeg FBC a power law correc-
tion % is clearly identified.

B. Thermodynamics, Euler Characteristic and Phase Transition

The Gibbs free energy per site in the thermodynamic limit, Bg16), is useful in obtaining the
thermodynamic functions for the model, such as the enengyentropy and the magnetization
per site, whose closed expressions in the thermodynamiicdne, respectively,
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_9(9-/T) _ 2ePJ sinh(Bh) 26281
e_T__J_h o, —0_ +2JO'+(O'+—0_)’ (4.54)
> _(Z% =kin(o) +kpBe, (4.55)

09w 26PIsinh(Bh)
~ oh o.—-0_
It is worth noticing thate ands are even functions df, while mis an odd function. All such

thermodynamic functions have been plotted and are showigs 4.4, 4.5, 4.6), where we
have fixed] = 1 > 0 and chosen only nonnegative valuefiof

(4.56)

[ 11
=gl i s
o

gpeo

Figure 4.4 Energy per site in the thermodynamic Figure 4.5 Entropy per site in the thermody-
limit as a function of the temperature for various namic limit as a function of the temperature for
magnetic field values. various magnetic field values.

As discussed in Section 2.A, the maximum value of energy (| —J) at T = 0~ for
|h| <23 (]h| > 2J) and corresponds to antiferromagnetic (ferromagnetiir) spnfigurations.
On the other hand, the entropy as a function of temperatufégn (4.5) shows no loss of
continuity except at the critical fields= +2J, where the residual entropy corresponding to

the golden ratio degeneraqy= # appears. We also emphasize that the entropy is always
a convex function of the temperature, showing the stallitytates for any magnetic field and
temperature. Moreover, the magnetization as a functioeraperature in Fig. (4.6) loses its
usual monotonous behavior fdn < 2J and approaches the antiferromagnetic stat& as

0~. At the critical fields+2J it assumes the value$¢ig. Notice also that foh = 0 the

magnetization is identically equal to zero for any nonzeragerature; however, at the critical
temperatur@c = 0 it can have two possible values], indicated by the black dots in the figure
and associated with the long-range order in the chain. Theealmentioned results are valid
for J > 0, while forJ < 0 the corresponding ones follow in accordance with the disiom in
Section 2.A.
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Last, an exact expression for the Euler characteristicipemsthe thermodynamic limit as
a function of the temperature can be calculated from Eq22(41.23), by noting that, in the
periodic case:

_gim 21 D N: gN-
(X)= |\Lw NZo N+%_.D DWh (N4, N_,D)a"u™d™, (4.57)
which implies the simple relation:
. 1 aodzp
(X)= l\lllinooﬁz_p_o"'a - (4.58)

By proper substitution of variables, we find that:

2e2BJ
oy (0p—0)

(X (4.59)

The expression above, which is an even functioh ahd hence it is plotted in Fig. (4.7) only
for positive values oh, shows us that indeed the conjecture proposed in Ref. [44}iBed, as
the Euler characteristic is non-vanishing for all tempemedT > 0, while it vanishes aic =0,
which is the critical temperature of the model. The loss oftrwity atT = 0 and|h| < 2J

is easily understood if one recalls that the Euler charatieis the average of the number of
domains; in fact, at = 0~ the low energy states are ferromagnetic, while the highggnemes
are antiferromagnetic. Interestingly, we have noticed fiteem Eqgs. (4.54), (4.56), and (4.59)
we can verify the simple relation:

—e+2J(x)—hm=J. (4.60)
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Figure 4.6 Magnetization per site in the thermo- Figure 4.7 Euler characteristic per site in the
dynamic limit as a function of the temperature for thermodynamic limit as a function of the temper-
various magnetic field values. ature for various magnetic field values.






CHAPTER 5

Conclusions

We have studied important aspects of the theory of phassitiars, with the aim of providing
a topological approach to a distinct class of models ingttaéil mechanics, namely, those with
a discretely defined configurational variables. This dissien work reflects the development
of reasoning needed in order to achieve this approach.

In chapter 1 we have described the very basic aspects dftgtatimechanics, as well as
thermodynamics, whose knowledge is needed in any derivadchy such as the theory of
phase transitions. While describing the theory of phasesitians, we have touched briefly
upon several points: we have introduced the classificafiphase transitions according to the
loss of analyticity of thermodynamic functions and the valece of critical point exponents
in describing them; the renormalization group approach bveefly explained in order to take
into account the phenomena of universality and scaling;escdbing the phenomenological
theories we have emphasized their negligence of fluctugtihich become relevant precisely
at the critical point, hence their failure in obtaining tharrect critical point exponents; the
significance of providing exact solutions to models was &xygd, so that phenomena such as
phase transitions can be also considered within the reaktatftical mechanics, as Onsager
first proved with his exact solution of the 2d Ising model; liynave have taken into account
the first mathematical explanation of the mechanism thraulgich the loss of analyticity of
thermodynamic functions appears in taking the thermodynamit, as described by the Yang-
Lee circle theorem.

In chapter 2 we have briefly described the recent progressee o understand phase
transitions as related to topological changes in the cordtganal space, the so-called topo-
logical approach to phase transitions. Under the conditiam the configurational variables
are continuous, Morse theory is used to transform the pmoldfanalyzing the topology of
configurational equipotential sub-manifolds into a matagoal analysis problem of studying
the critical points of the potential energy function; nesagyg conditions for the occurrence of a
phase transition are described: topology change of thepetgiitial sub-manifolds, for a cer-
tain class of potential energy functions; divergence ofdlsebian density at the critical energy
value. Furthermore, a brief explanation of the work done lyyaaivisor and co-advisor in the
AB; XY model is explained, and we state their conjecture for aeasary and sufficient con-
dition (first proposal of this kind in the literature) for tloecurrence of a phase transition: a
cusp-like pattern of the Euler characteristic at the @altenergy value, as well as a divergence
of the jacobian density. The final section of this chapterceons what can be done for a topo-
logical approach for models with a discrete configuratioralable. It is shown a proposal
present in the literature for studying the behavior of trexnial average of the Euler character-
istic as a function of the temperature, in order to charaex phase transition. This quantity

75
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is intimately related to connectivity properties of therspof a same kind in the lattice, and
resembles an analysis of droplets of spins. A conjecturecbas numerical work relating this

guantity to phase transitions is stated in the literatune: Euler characteristic per site, in the
thermodynamic limit, vanishes bellow the critical tempeara and is positive above it.

In chapter 3 we have presented several combinatorial gisers of the Ising model ac-
cording to its dimension. Combinatorics plays a crucial inléhis model given its discrete
nature. When we restrict the definition of the Euler chargtierpresent in the literature for
the 2d case, as defined in the last section of chapter 2, taltbasE, it is shown to be equivalent
to the number of domains in the chain. A throughout treatroétitis quantity was considered
only recently, for the Ising chain without an external fielllis chapter explains their results,
which depend on a combinatorial approach to this model. ®h&matorial approach to the 2d
case is also briefly presented, according to the use of Rfaffaraph theory emerges naturally
in this situation, and the partition function of the Isingaebcan be interpreted as a generating
function for the number of Eulerian subgraphs in the lattameording to its number of edges.
The interpretation of the canonical partition function assaumerating generating function is
the crucial step in the original solution to the Ising chairaifield that we present in the next
chapter.

In chapter 4, the main original contributions of this worle gresented. The enumera-
tion of the degeneracy of the microscopic states of the systediscussed in detail, which
allows the computation of the entropy as a function of enengger free or periodic bound-
ary conditions. We observed that in the microcanonical mbée the logarithm of the Euler
characteristic differs from the entropy only by In2. Furthere, a residual entropy is found
for critical field values, a phenomenon for which we provideological interpretation and a
connection with the Fibonacci sequence. We also identifiedcanonical partition function as
the combinatorial generating function of the microcanahproblem, and a detailed analysis
of the thermodynamics with varying magnetic field is prodide the regimes of positive and
negative temperatures.

On the other hand, our combinatorial approach to the caabeitsemble was shown to
be suitable for the exact computation of the thermal avevagiee of the Euler Characteristic
associated with the spin configurations of the chain. Funtbee, this topological invariant
is discontinuous at the referred critical fields and satigfy(Tc) = 0, whereTc = 0 is the
critical temperature, thus confirming a conjecture in tkerditure. Finally, we expect that the
reported results will contribute to stimulate further pregs on the topological approach to
phase transitions in systems exhibiting discrete symnagtdyits relationship with continuous
symmetry models.
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