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Resumo

Apresentamos uma solução alternativa para a cadeia de Isingna presença de campo com
condições de contorno aberta e periódica, nos ensembles microcanônico e canônico, a partir
de uma perspectiva combinatória e topológica unificada. Em particular, o cálculo da entropia
como função da energia revela um valor residual para campos críticos, um fenômeno para o
qual fornecemos uma interpretação topológica e uma conexãocom a sequência de Fibonacci. A
função de partição canônica é identificada como a função geradora combinatorial do problema
microcanônico. Uma análise detalhada da termodinâmica comvariação do campo magnético,
incluindo temperaturas positivas e negativas, revela características interessantes. Por fim, nós
enfatizamos que nossa abordagem combinatória para o ensemble canônico é útil no cálculo ex-
ato do valor médio da característica de Euler associada com as configurações de spin da cadeia,
a qual é descontínua nos referidos campos críticos, e cujo comportamento com a temperatura
é esperado estar associado com o comportamento crítico da cadeia. De fato, nossos resultados
mostram que uma conjectura proposta também é válida para a cadeia de Ising:χ(TC) = 0, onde
TC = 0 é a temperatura crítica.

Palavras-chave: Transições de Fase, Modelo de Ising, Análise Combinatória, Topologia
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Abstract

We present an alternative solution of the Ising chain in a field under free and periodic bound-
ary conditions, in the microcanonical and canonical ensembles, from a unified combinatorial
and topological perspective. In particular, the computation of the entropy as a function of the
energy unveils a residual value for critical fields, a phenomenon for which we provide a topo-
logical interpretation and a connection with the Fibonaccisequence. The canonical partition
function is identified as the combinatorial generating function of the microcanonical problem.
A detailed analysis of the thermodynamics with varying magnetic field, including positive and
negative temperatures, reveals interesting features. Last, we emphasize that our combinatorial
approach to the canonical ensemble is suitable for the exactcomputation of the thermal average
value of the Euler Characteristic associated with the spin configurations of the chain, which is
discontinuous at the referred critical fields, and whose temperature behavior is expected to de-
termine the phase transition of the model. Indeed, our results show that the conjecture is valid
for the Ising chain:χ(TC) = 0, whereTC = 0 is the critical temperature.

Keywords: Phase Transitions, Ising Model, Combinatorics, Topology
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CHAPTER 1

Introductory Remarks

1.1 Introduction

In a series of papers in the last fifteen years [7,11–16], a topological and geometrical approach
to the problem of phase transitions has been considered. Numerous conjectures and theorems
have been established correlating phase transitions (PT) with topological and geometrical prop-
erties of the equipotential sub-manifolds in phase space [14]. For a certain class of systems,
very strong arguments [13] have suggested that a topology change of the configuration space
should take place during a PT. However, very recently it was shown that these arguments fail
in the case of theφ4-model [17] and claim for further investigation.

This work originated from an attempt of investigating the topological approach to phase
transitions [14] in discrete symmetry lattice models. Beingthe foremost and simplest represen-
tative of this class, the Ising model was the natural choice for this research. Several difficulties
would need to be overcome in order to establish analogies with the well studied continuous
counterpart. While many results from differential topologyand Morse theory are well suited
for the study of the equipotential manifolds in the continuous phase space models, the same can
not be said about the discrete Ising model phase space. However, the fundamental idea is still
appliable: to introduce sometopological invariantdirectly related to the configurations of the
studied system, which, therefore, can be expressed as a function of natural physical parameters
of the system, e.g., its energy or temperature. If we are ableto establish some relation between
the topological parameter behavior, and the eventual occurrence of a phase transition in the
system, we may gain more insight about phase transitions in general.

A great emphasis on the microcanonical ensemble is to be expected when one tries to in-
vestigate a system’s phase space and its equipotential manifolds. In fact, our study will be
predominantly dominated by an analysis of what happens on a microcanonical level with the
spin system. The microcanonical ensemble gives a much more fundamental explanation of
what happens with the system, and it has been recently advocated [18] that a whole thermody-
namic formalism, based on the Boltzmann entropy definition, can be given, without invoking
the usual thermodynamic limit, in order to study phase transitions on finite systems.

Given the discrete nature of the chosen model, our investigation naturally relies on the use of
a combinatorial approach in dealing with the problem of calculating the system properties, and
unfortunately, it was only possible to treat the more simpleone dimensional case. In light of the
usual topological approach [14], where the topology of equipotential manifolds is studied, we
will instead introduce a topological quantity defined for each microcanonical configuration, and
try to investigate the behavior of its average under the usual statistical mechanics ensembles.
Despite this difference, certain analogies are to be found.Moreover, the knowledge of the

1



2 CHAPTER 1 INTRODUCTORY REMARKS

microcanonical distribution in the Ising model will be related to the distribution of critical
points on a related continuousO(n) spin model [19, 20], which is a crucial information in
studying the topology of the equipotential manifolds on therelated continuous model.

Despite the simplicity of the 1d Ising model, it shows many interesting features, mainly
triggered by the introduction of an external field. As remarked in Ref. [21], from 2005, a
throughout treatment of the statistics of domains in this model was absent in the literature,
and they give an expression for the average and variance values of the number of domains. In
spite of it, their work does not consider an external field in their energy, and the combinatorial
approach in which we rely in this work allows us to compute exactly such average and variance
as well as a function of the field. The combinatorial approachused to compute the partition
function here relies on its identification as a enumerating generating function. As far as we
know, this alternative solution proposed here is completely original.

This text will try to be as much self contained as possible, and so we will develop basic re-
sults of statistical mechanics and thermodynamics in the following sections of this introductory
chapter, as well as certain aspects of the theory of phase transitions. The 2nd chapter will give
a brief explanation of the methods used in the topological approach to phase transitions in the
continuously parametrized phase space case, and the topological approach to models of dis-
crete symmetry as we could find in the existent literature. The 3rd chapter gives a review of the
combinatorial approach for the Ising model. It is interesting to note that the original solution,
proposed by Onsager, relied on the transfer matrix approach, and was purely algebraic; due to
its intricate nature, much work progressed towards simplifying this solution, and as a result the
approaches used thereafter were combinatorial, culminating with the use of Pfaffians, which
we will study to some extent in that chapter. The 4th chapter shows the original part of this
research, where the 1D Ising model in a field is carefully studied and the use of enumerating
generating functions provides the path for a new solution ofits partition function. A conjecture
established from Monte Carlo simulations in a arbitrary spinIsing model on the square lattice
that theEuler Characteristicassociated to the spins must vanish at the critical temperature is
analyzed in the 1d Ising chain, in which case its validity is exactly verified.

1.2 Statistical Mechanics and Thermodynamics

1.2.1 The Basic Statistical Ensembles

Statistical mechanics aims to understand the behavior of a many particle system, given a knowl-
edge of its constituents and their interactions. The formalism developed here will be solely
concerned with classical systems in equilibrium, and its aim is to develop the basic ensembles
appearing in this work, the microcanonical and (grand)canonical. While the idea of equilib-
rium has the purpose of guaranteeing that our system can be described by a much smaller set
of parameters, which do not change in time, the idea of ensemble is related to the physical
fact that once we know certain macroscopic variables characterizing our system in equilibrium,
microscopically our system can be in many different states,and therefore we imagine all these
possible states as an ensemble (collection) of systems, given the constraints imposed by the
macroscopic variables. From this point of view, it is natural to question which is the proba-
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bility of a certain microscopic configuration to occur (which of the systems in the ensemble is
actually the system we are dealing with), given the macroscopic constraints.

Notice that each microscopic configuration is actually a point in the phase space,Γ, of the
system, therefore the idea of ensemble lead us to the idea of giving a probability space structure
to the phase space. The points in phase space are collectionsof generalized momenta and
coordinates,(p,q) = (p1, ..., pN,q1, ...,qN), and this space is given the structure of a probability
space therefore there exists a probability density function (pdf), ρ(p,q). Averages of random
variables (functions defined on the phase space) with respect to this pdf should be interpreted
as the actual value of these functions associated to the equilibrium of the system. Therefore,
macroscopic parameters that we observe in our system,〈Ai〉, should be thought as originating
from averages of random variables,Ai(p,q), dependent on the microscopic configuration of
our system:

〈Ai〉=
∫

Γ
Ai(p,q)ρ(p,q)dpdq. (1.1)

A variational argument based on a way of quantifying our information of the system will
allow us to introduce the various ensembles pdf. This approach was first proposed in Ref. [22].
Given a pdf, it is possible to measure the quantity of information we have about our probability
space, in a very well defined manner, established by the fundamental axioms of information
theory [23]. The quantity

S=−
∫

Γ
ρ(p,q) ln(ρ(p,q))dpdq, (1.2)

measures our uncertainty in the probability space defined bythis pdf. Since a pdf gives the
chances for any event in our system to occur, i.e., we know allabout the certainties with which
something may happen, we may also expect that the pdf will also provide us with the uncer-
tainty we have in our system. We will call the function above theentropyof the system. The
fundamental hypotheses for a variational approach is the following:

The pdf describing an ensemble is the one which maximizes the corresponding entropy
function, respecting the constraints imposed by the known macroscopic parameters.

This hypothesis is strongly intuitive. Since the entropy measures the uncertainty, if it is not
a maximum, then we would have more information than our macroscopic observations actually
provides us about the system. The variational problem is easily solved: we have macroscopic
known parameters,

〈

A j
〉

=
∫

Γ A j(p,q)ρ(p,q)dpdq, j = 1, ...,L, and the normalization con-
dition,

∫

Γ ρ(p,q)dpdq = 1, equivalent toA0(p,q) = 1, such that< A0 >= 1. If we use the
method of Lagrange multipliers, we consider the function

Y = S=−
∫

Γ
ρ(p,q)

(

ln(ρ(p,q))+
L

∑
j=0

λ jA j(p,q)

)

dpdq+
L

∑
j=0

λ j < A j >, (1.3)

and a variationδρ, gives

δY =−
∫

Γ
δρ

(

ln(ρ)+1+
L

∑
j=0

λ jA j

)

dpdq, (1.4)
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therefore, the extremum condition,δY = 0=⇒ ln(ρ)+1+∑L
j=0λ jA j = 0, leads to

ρ(p,q) =
1
Z

exp(−
L

∑
j=1

λ jA j(p,q)), (1.5)

where
Z = e1+λ0 =

∫

Γ
e−∑L

j=1 λ jA j (p,q)dpdq. (1.6)

The last equation is a general expression for the partition function of our system. It is
commonly expressed by the letterZ, following Planck’s notation, called theZustandssumme
(sum over states). Notice that

1
Z

∂Z
∂λ j

=−< A j > . (1.7)

We also get an interesting relation by substituting the pdf obtained, Eq. (1.5), into the
expression defining the entropy, Eq. (1.2)

S=
L

∑
j=1

λ j < A j >+ lnZ, (1.8)

and therefore
∂S

∂ < A j >
= λ j . (1.9)

Now let us be less general and treat specific cases. If all the information that we have about
our system is that it is isolated, so that its energy is conserved, but we do not know which energy
the system has, only that its pdf must be normalized, we must impose thatA j = 0, j = 1, ...,L,
and therefore from Eq. (1.5) we have a uniform probability distribution, ρ = 1/Z = 1/W,
where

W = Z =
∫

Γ′
dpdq, (1.10)

andΓ′ is the region of phase space that satisfies the condition thatour system is isolated (it will
be a surface of constant energy in the unconstrained initialphase space). The entropy will be
given by:

S=−
∫

Γ′
W−1 lnW−1dpdq = lnW, (1.11)

the well know expression proposed by Boltzmann (the Boltzmannconstant,kB, do not appear
explicitly here only due to our original definition of entropy, Eq. (1.2), where it is set to unit).
This pdf defines themicrocanonical ensemble. In practice it is much harder to carry out a closed
treatment of most of the models in this ensemble, where the computation of the microcanonical
multiplicity of states,W, often lead to difficult combinatorial problems.

For introducing the next ensemble, we suppose that the system has an energy content, and
that it fluctuates, depending on its interaction with an external thermal reservoir. Therefore we
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will impose the constraint that only the average of the hamiltonian function,H(p,q) is known.
According to eq. (1.5), the pdf must have the form

ρ(p,q) =
1
Z

e−βH(p,q), (1.12)

where
Z =

∫

Γ
e−βH(p,q)dpdq, (1.13)

andβ is the associated Lagrange multiplier. Only comparison with a physical situation can give
us the physical meaning for this parameter. If we carry out the computation of this partition
function for the simple case where this hamiltonian is the one for a system ofN noninteracting
particles without an external field (and therefore there will be only kinetic energy), we find the
mean energy of the system from eq. (1.7),E =< H >= −∂ lnZ

∂β = 3N
2β , while it is well known

that an ideal gas is a model with the same assumptions for its constituent particles, and its
internal energy can be shown to be given byE = 3

2NkT, therefore, for consistency, we say that
β = 1

T (where we will from now on always setk = 1, and therefore temperature will have the
dimensions of energy), and we assume that this must be true ingeneral. This pdf gives the
canonical ensemble. If we use eq. (1.8), we getS= lnZ+βE, and this motivates us to define
the free energy of the system as

F =− 1
β

lnZ, (1.14)

and therefore
S=−βF +βE, (1.15)

the well known Legendre transform between the internal energy and Helmholtz free energy
representations. Notice that eq. (1.9) gives us another important relation:

∂S
∂E

= β =
1
T
. (1.16)

Until now we have assumed that the particle number of the system is fixed. In thegrand
canonical ensemblewe allow for it to fluctuate, and hence it becomes another random vari-
able. This requires a small change to the formalism developed until now, for the parameters
defining the probability space, namely the generalized coordinates and momenta, are in num-
ber dependent upon the number of particles in the system, i.e., the phase space depends on the
particle numberΓ(N). We proceed by considering as our probability space the disjoint union:
Γ =

⋃

N Γ(N) and we require now that the pdf depends also on the particle number,ρ(p,q,N),
so that we will impose

〈Ai〉= ∑
N

∫

Γ(N)
Ai(p,q)ρ(p,q,N)dpdq; (1.17)

〈N〉= ∑
N

∫

Γ(N)
Nρ(p,q,N)dpdq; (1.18)

∑
N

∫

Γ(N)
ρ(p,q,N)dpdq = 1. (1.19)
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If we require only a knowledge of the average of the hamiltonian function in the conditions
posed above, and use again Lagrange multipliers, we will getthe following expression for this
pdf

ρ(p,q,N) =
1
Z

exp(−βH(p,q)+λN), (1.20)

which is thegrand canonicalpdf, and where the partition function will be given by

Ξ =
∞

∑
N=0

∫

Γ(N)
e−βH(p,q)+λNdpdq =

∞

∑
N=0

eλN
∫

Γ(N)
e−βH(p,q)dpdq

Ξ =
∞

∑
N=0

eλNZcan(β ,N), (1.21)

which is the partition function for the grand canonical ensemble,Ξ, directly expressed as a gen-
erating function for the canonical partition functions,Zcan, of the system with varying number
of particles. Now let us try to give the meaning for the Lagrange multiplier appearing after
imposing the constraint on the average number of particles in the system. If we use eq. (1.9),
we get (N =< N >)

∂S

∂N
= λ , (1.22)

and if we want to be consistent with thermodynamics, we must impose that

λ =−µβ , (1.23)

and therefore, eq. (1.8) leads us to

S=−µβN+βE+ lnΞ, (1.24)

and so

− 1
β

lnΞ = E−TS−µN = F −µN, (1.25)

and therefore, the Gibbs potential,G= F −µN is given by

G=− 1
β

lnΞ, (1.26)

a relation entirely analogous to the one between the canonical partition function and the Helmholtz
free energy (1.14).

This concludes our first aim of obtaining the fundamental ensembles used in statistical me-
chanics. The theory proposed up to this point provides a pathfor calculating fundamental
quantities of a system, such as its internal energy,E, its entropy,S, the Helmholtz and Gibbs
potentials,F andG, and so on, given a knowledge of its microscopic interactions. Thermo-
dynamics, on the other hand, assumes the existence of every such thermodynamic functions
for a macroscopic studied system, and imposes relations between them universally valid, i.e.,
relations that must be obeyed independently of the system treated. However the kind of system
treated defines the thermodynamic parameters that we must use in order to specify a state of the
system. For a fluid system, for example, the volume is a parameter used to specify its state. For
a magnetic system we must consider its magnetization. So that care must be taken according
to which kind of system we are dealing with.
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1.2.2 Thermodynamic Quantities

Thermodynamics requires that for any system, its internal energy,E, should be astate function,
i.e., it is defined unambiguously for any given state of the system, where by state we mean any
collection of values for all the parameters that we can measure in the system. Furthermore, for
any transformation of state of the system, the first law of thermodynamics must be respected:

dE= dQ−dW, (1.27)

which establishes that any change of the internal energy of the system,dE, occur only when
the system exchanges a quantity of heat,dQ, or performs some work,dW. It is important
to notice that whiledE depends only upon the initial and final state of the system during the
transformation process,dQ anddW do not have this property, and in general they depend on
the way the transformation is done.

For a fluid system we assume thatE = E(S,V), the internal energy must be a function of
the entropy and the volume of the system. Therefore,

dE=

(

∂E
∂S

)

V
dS+

(

∂E
∂V

)

S
dV, (1.28)

so that we define
(

∂E
∂S

)

V
= T; (1.29)

(

∂E
∂V

)

S
=−P, (1.30)

the temperature and the pressure respectively, and it will follow from the 1st law that

dQ= TdS; (1.31)

dW= pdV. (1.32)

Besides describing the system using the internal energy as fundamental thermodynamical
function, we can introduce otherthermodynamic potentialswhich are related to the internal
energy throughLegendre transformsso that its natural variables are changed:

H = H(S,P) = E+PV; (1.33)

F = F(T,V) = E−TS; (1.34)

G= G(T,P) = E−TS+PV, (1.35)

which are, respectively, the enthalpy, the Helmholtz potential, and the Gibbs potential. Notice
that we have taken care of introducing them in the statistical mechanics formalism in order that
all the above relations remain valid. It follows that

dE= TdS−PdV; (1.36)

dH = TdS+VdP; (1.37)
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dF =−SdT−PdV; (1.38)

dG=−SdT+VdP. (1.39)

Therefore we have the relations:

T =

(

∂E
∂S

)

V
; −P=

(

∂E
∂V

)

S
; (1.40)

T =

(

∂H
∂S

)

P
; V =

(

∂H
∂P

)

S
; (1.41)

−S=

(

∂F
∂T

)

V
; −P=

(

∂F
∂V

)

T
; (1.42)

−S=

(

∂G
∂T

)

P
; V =

(

∂G
∂P

)

T
. (1.43)

It is also useful to introduce certain derivatives of the thermodynamic functions considered
up to now, which are generically calledresponse functions. They measure the response of the
system to a variation of certain parameter of the system. Thespecific heatmeasures the quantity
of heat exchanged from a variation of the temperature. It will be defined for processes taking
place at constant volume or constant pressure:

Cv = T

(

∂S
∂T

)

V
=

(

∂E
∂T

)

V
=−T

(

∂ 2F
∂T2

)

V
; (1.44)

Cp = T

(

∂S
∂T

)

P
=

(

∂H
∂T

)

P
=−T

(

∂ 2G
∂T2

)

P
. (1.45)

We will also consider the response of the system’s volume to avariation on its pressure, mea-
sured by theisothermalandadiabatic compressibilities:

KT =− 1
V

(

∂V
∂P

)

T
=

1
ρ

(

∂ρ
∂P

)

T
=− 1

V

(

∂ 2G
∂P2

)

T
; (1.46)

KS=− 1
V

(

∂V
∂P

)

S
=

1
ρ

(

∂ρ
∂P

)

S
=− 1

V

(

∂ 2H
∂P2

)

S
. (1.47)

Furthermore we can define the system’s volume response from avariation of its temperature,
with the aid of thecoefficient of thermal expansion:

αP =
1
V

(

∂V
∂T

)

P
. (1.48)

1.2.3 Thermodynamic inequalities

This section will follow the approach of Refs. [24,25] in obtaining the main results. Consider a
closed system composed of three parts, amediumsupposed very large, abodywhich interacts
with the medium in a way that the medium can exchange heat and do work on the body, and an
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objectwhich can not exchange heat with the medium or the body, but which can exert work in
the body. We assume that the medium is at a temperatureT0 and pressureP0, which differ from
the body’s temperatureT and pressureP. We want to know what is the maximum possible
work that the body can do in the object after it reaches equilibrium with the medium, which is
assumed so large that its temperature and pressure will not change in this process. The variation
of energy of the body in the transition to equilibrium with the medium,∆E, will be given by
the work done by the objectR on the body, the work done by the medium on the body,P0∆V0

(since the pressure of the medium is constant through this process), and the heat transfer of
the medium to the body,−T0∆S0 (since the temperature of the medium is constant through
this process), where∆V0 and∆S0 refer to variations in the volume and entropy of the medium,
respectively. Therefore

∆E = R+P0∆V0−T0∆S0. (1.49)

Assuming that the total volume of the medium and the body remains constant (possibly fluc-
tuating during the process), we know that∆V0 = −∆V (quantities without suffix pertain to the
body). Also we will use for the first time theSecond Law of Thermodynamics, with the state-
ment that for a closed system, its entropy must only increaseor remain constant, in which case
the process is reversible. For the situation treated here this means that

∆S0+∆S≥ 0 (1.50)

Therefore, sinceR= ∆E−P0∆V0+T0∆S0,

R≥ ∆E−T0∆S+P0∆V. (1.51)

We conclude that the minimum work that the external object can do in the body, occurs when
the process is reversible and it is

Rmin = ∆(E−T0S+P0V), (1.52)

From this equation it is interesting to notice two cases: If the temperature of the body is initially
equal to that of the medium, and its volume does not change in the transition to equilibrium,
then by eq. (1.52)

Rmin = ∆(E−TS) = ∆F, (1.53)

the minimum work that an external object can do in the body while it achieves equilibrium with
the medium is equal to the variation in the Helmholtz free energy of the body. The second case
to notice is the one in which we assume that the body has initially the same temperature and
pressure of the medium (but it is not in equilibrium with it),then by eq. (1.52)

Rmin = ∆(E−TS+PV) = ∆G, (1.54)

and in this case the minimum work equals the variation in the Gibbs free energy of the body.
In particular, notice that if there is no external object to have mechanical contact with the body
than,R= 0, and (1.51) implies that

0≥ ∆(E−T0S+P0V), (1.55)
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and this inequality implies that, for a system composed solely of an object in thermal and
mechanical contact with a medium, where both are initially not in equilibrium, the equilibrium
is reached when the quantityE−T0S+P0V is minimized.

Now for a system in which a body has the same temperature of themedium, and its volume
does not vary during the process of reaching equilibrium with the medium, then (1.55) implies
that

0≥ ∆(E−TS) = ∆F, (1.56)

therefore equilibrium must be achieved by a decreasing of the body’s Helmholtz free energy,
and we have the important conclusion that in this case equilibrium corresponds to a minimiza-
tion of the Helmholtz free energy of the body.

On the other hand, for a system in which a body has the same temperature and pressure of
the medium, and is not in equilibrium with the medium (e.g., in an experiment of dissolution,
or a chemical reaction this may be the case), then (1.55) implies that

0≥ ∆(E−TS+PV) = ∆G, (1.57)

therefore equilibrium is achieved when the body’s Gibbs free energy decreases, and the im-
portant conclusion is that with the assumptions posed above, equilibrium corresponds to a
minimum of the Gibbs free energy of the body.

We return to the conclusion stated immediately after inequality (1.55). Imagine thebodyas
a very small, but macroscopic, part of the whole system, whence we can regard therefore the
remaining of the system as themedium. The quantityE−T0S+P0V, calculated with respect
to the body, is a minimum if the system is in equilibrium. Therefore, any departure from
equilibrium of the body will demand that

δE−T0δS+P0δV > 0. (1.58)

We proceed by expandingE(S,V) as a power series around the equilibrium values for which
T = ∂E/∂S= T0 andP=−∂E/∂V = P0, until the second order terms

δE =
∂E
∂S

δS+
∂E
∂V

δV +
1
2

[

∂ 2E
∂S2 (δS)2+2

∂ 2E
∂S∂V

δSδV +
∂ 2E
∂V2(δV)2

]

, (1.59)

and by plugging this into eq. (1.58) we obtain

∂ 2E
∂S2 (δS)2+2

∂ 2E
∂S∂V

δSδV +
∂ 2E
∂V2(δV)2 > 0, (1.60)

and if this inequality will hold for arbitraryδSandδV, the following must be true:

(

∂ 2E
∂S2

)

V
> 0⇔

(

∂T
∂S

)

V
> 0; (1.61)

(

∂ 2E
∂V2

)

S
> 0⇔

(

∂P
∂V

)

S
< 0; (1.62)
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∂ 2E
∂S2

∂ 2E
∂V2 −

(

∂ 2E
∂S∂V

)2

> 0. (1.63)

From eq. (1.61) and eq. (1.44), we getT/Cv > 0, and ifT > 0 must be true (more on this later)
we conclude that

Cv > 0. (1.64)

On the other hand, eq. (1.62) and eq. (1.47) give us that−1/VKS < 0 and therefore, since
V > 0

KS> 0. (1.65)

We use Jacobians in order to rewrite eq. (1.63). We define the Jacobian of a 2 component
function defined in 2 variables,(u(x,y),v(x,y)), as the following function

∂ (u,v)
∂ (x,y)

=

∣

∣

∣

∣

∂u/∂x ∂u/∂y
∂v/∂x ∂v/∂y

∣

∣

∣

∣

, (1.66)

and it will clearly follow that the following is valid

∂ (v,u)
∂ (x,y)

=−∂ (u,v)
∂ (x,y)

; (1.67)

∂ (u,y)
∂ (x,y)

=

(

∂u
∂x

)

y
; (1.68)

∂ (u,v)
∂ (x,y)

=
∂ (u,v)
∂ (t,s)

.
∂ (t,s)
∂ (x,y)

; (1.69)

d
dt

∂ (u,v)
∂ (x,y)

=
∂ (du/dt,v)

∂ (x,y)
+

∂ (u,dv/dt)
∂ (x,y)

. (1.70)

Therefore, we notice that the inequality (1.63) can be rewritten as

∂ [(∂E/∂S)V ,(∂E/∂V)S]

∂ (S,V)
=−∂ (T,P)

∂ (S,V)
> 0. (1.71)

We use eq. (1.69) in order to rewrite this inequality as

∂ (T,P)
∂ (S,V)

=
∂ (T,P)/∂ (T,V)

∂ (S,V)/∂ (T,V)
=

(∂P/∂V)T

(∂S/∂T)V
=

T
Cv

(

∂P
∂V

)

T
< 0. (1.72)

and therefore, as have already seen thatCv > 0, it follows that(∂P/∂V)T < 0, and from eq.
(1.46), we have the following important inequality:

KT > 0. (1.73)
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Finally we will show a relation amongCp andCv. Using eqs. (1.68 , 1.69) we write

Cv = T(∂S/∂T)V
= T∂ (S,V)/∂ (T,V)

= T
∂ (S,V)/∂ (T,P)
∂ (T,V)/∂ (T,P)

= T
(∂S/∂T)P(∂V/∂P)T − (∂S/∂P)T(∂V/∂T)P

(∂V/∂P)T

=Cp−T
(∂S/∂P)T(∂V/∂T)P

(∂V/∂P)T
.

Now we use eq. (1.43) to obtain
(

∂S
∂P

)

T
=− ∂

∂P

(

∂G
∂T

)

P
=− ∂

∂T

(

∂G
∂P

)

T
=−

(

∂V
∂T

)

P
, (1.74)

and therefore,

Cp−Cv =−T[(∂V/∂T)P]
2/(∂V/∂P)T =

TVα2
P

KT
. (1.75)

In particular we obtain another inequality:

Cp >Cv > 0. (1.76)

From eqs. (1.42,1.43), and the inequalities above, (1.76),we find that

(

∂ 2G
∂T2

)

P
=−

(

∂S
∂T

)

P
=−Cp

T
≤ 0; (1.77)

(

∂ 2F
∂T2

)

V
=−

(

∂S
∂T

)

V
=−Cv

T
≤ 0. (1.78)

Similarly, we also have that

(

∂ 2G
∂P2

)

T
=

(

∂V
∂P

)

T
=−VKT ≤ 0; (1.79)

(

∂ 2F
∂V2

)

T
=−

(

∂P
∂V

)

T
=

1
VKT

≥ 0. (1.80)

1.2.4 Magnetic Systems

In treating magnetic systems it is needed to introduce otherthermodynamic parameters. First
we consider the magnetization of the systemM, which should be thought of as a measure of
how much magnetic moment the system has in its volume. We shall neglect pressure’s effects
and assume that the system’s volume is held constant in all the system’s transitions studied for
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a magnetic system. So that we can forget these variables. We begin by considering the 1st Law
for such systems, eq. (1.27), and if we assume that the internal energy must be a function of
the entropy and the magnetization,E = E(S,M), it follows that

dE=

(

∂E
∂S

)

M
dS+

(

∂E
∂M

)

S
dM, (1.81)

and this motivates us to define the external magnetic field (ina way similar to how we intro-
duced the pressure):

(

∂E
∂M

)

S
= h. (1.82)

The remaining thermodynamic functions are introduced in a totally analogous way:

H = H(S,h) = E−hM; (1.83)

F = F(T,M) = E−TS; (1.84)

G= G(T,h) = E−TS−hM. (1.85)

From this it is a simple matter to observe the following relations:

dE= TdS+hdM; (1.86)

dH = TdS−Mdh; (1.87)

dF =−SdT+hdM; (1.88)

dG=−SdT−Mdh, (1.89)

therefore

T =

(

∂E
∂S

)

M
; h=

(

∂E
∂M

)

S
; (1.90)

T =

(

∂H
∂S

)

h
; −M =

(

∂H
∂h

)

S
; (1.91)

−S=

(

∂F
∂T

)

M
; h=

(

∂F
∂M

)

T
; (1.92)

−S=

(

∂G
∂T

)

h
; −M =

(

∂G
∂h

)

T
. (1.93)

The response functions to be considered in a magnetic systemare analogous:

CM = T

(

∂S
∂T

)

M
=

(

∂E
∂T

)

M
=−T

(

∂ 2F
∂T2

)

M
; (1.94)

Ch = T

(

∂S
∂T

)

h
=

(

∂H
∂T

)

h
=−T

(

∂ 2G
∂T2

)

h
, (1.95)
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which are the specific heats. We also consider thesusceptibilities:

χT =

(

∂M
∂h

)

T
=−

(

∂ 2G
∂h2

)

T
; (1.96)

χS=

(

∂M
∂h

)

S
=−

(

∂ 2H
∂h2

)

S
. (1.97)

Similarly, we define:

αh =

(

∂M
∂T

)

h
. (1.98)

Finally we show a relation amongCh andCM. Using eqs. (1.68 , 1.69) we write

CM = T(∂S/∂T)M

= T∂ (S,M)/∂ (T,M)

= T
∂ (S,M)/∂ (T,h)
∂ (T,M)/∂ (T,h)

= T
(∂S/∂T)h(∂M/∂h)T − (∂S/∂h)T(∂M/∂T)h

(∂M/∂h)T

=Ch−T
(∂S/∂h)T(∂M/∂T)h

(∂M/∂h)T
.

Now we use eq. (1.93) to obtain:

(

∂S
∂h

)

T
=− ∂

∂h

(

∂G
∂T

)

h
=− ∂

∂T

(

∂G
∂h

)

T
=

(

∂M
∂T

)

h
, (1.99)

and therefore,

Ch−CM = T[(∂M/∂T)h]
2/(∂M/∂h)T =

Tα2
h

χT
. (1.100)

1.2.5 Negative Temperatures

A fundamental aspect of thermodynamics is the concept of absolute temperature, a conse-
quence of the existence of an absolute zero temperature. With it comes the natural question of
whether temperature must be a positive quantity. In fact there are many plausible arguments
in this sense which require that temperature be a positive quantity. For systems with an un-
bounded energy spectrum, we can notice from the form of the canonical partition function,
equation (1.13), that we will have problem in the convergence of this function (defined by a se-
ries), in the case that temperature becomes negative. Another argument, posed in Ref. [24], is
the following: the entropy of a body must be a function of its internal energy. Suppose that we
have a body forming a closed system and at rest. Thus if we think of the body as many small,
but macroscopic parts, we can say that the entropy of the system is the sum of the entropies of
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each of these small parts. They can be in relative motion, butthe total momentum of the system
must be zero. Then the total entropy can be written as

S= ∑
a

Sa(Ea−P2
a/2Ma). (1.101)

Now if the temperature of the system can be negative, this would imply that for a decrease of its
energy, its entropy would increase. Therefore, in order to maximize its entropy (as required by
the 2nd Law), the system would spontaneously fragment, so that each of its small parts would
acquire a kinetic energy that decreases the argument of the entropies in the sum above.

On the other hand there are systems, where the interacting parts are not allowed to move, so
that the kinetic energy does not enter as a possible argumentof the entropy function, and also
the system’s energy spectrum may have a finite range, so that the partition function converges
independently of the signal of the temperature. Magnetic systems satisfy such requirements, for
their energy is determined by the interaction of fixed magnetic moments on a given lattice, and
therefore the energy spectrum is limited. In order to analyze further this situation, we consider
a model, the two level system: there areN particles, and each particle can be in two energy
levels, 0 orε. Therefore, if we know that the energy of the system isE = mε, we know that
this can only happen whenm of theN particles are in theexcitedstate, whileN−m are in the
groundstate. The multiplicity of microcanonical states with thisenergy will be

W(E) =

(

N
m

)

=
N!

m!(N−m)!
, (1.102)

by using Stirling expansion of the factorial function to first order

ln(N!) = N ln(N)−N, (1.103)

we can compute the entropy of this system as a function of energy

S(E) = ln(W(E))≈ N ln(N)−mln(m)− (N−m) ln(N−m)

= N ln(N/(N−m))+mln((N−m)/m),

and defining the energy per particle

e= E/N = mε/N,

it follows that

s(e) =
S(e)
N

=
e
ε

ln(
ε
e
−1)− ln(1− e

ε
). (1.104)

This function is plotted in Figure 1.1. Notice from eq. (1.16) that we have negative temperature
states as well as positive, as demonstrated in the figure. While approaching the absolute zero
from above, we reach the ground state for the system, and by further increasing its temperature
to ∞ we reach the state of maximum entropy, where the system is mostly disordered, and there
is a uniform distribution of states between the particles. This state should be identified with the
one where the temperature is infinitely negative−∞ as shown in the graph. A further increase
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Figure 1.1 2-level system entropy per particlevs.energy per particle as obtained from equation (1.104).

in temperature from this point means a decrease of its absolute value. The hottest state, where
the particles have the maximum energy, corresponds to the limit T → 0−.

Beyond this theoretical description on the possibility of negative temperature states, exper-
iments can be performed to show the existence of such states in nature: Ref. [26,27] considers
a paramagnetic system of nuclear moments for which the relaxation time of the interaction
between them is much smaller than the relaxation time of the interaction with the lattice. Ap-
plying a strong magnetic field to the lattice, thereby magnetizing it, it is reversed quickly so that
the nuclear spins no longer are in the lowest energy state, and therefore they will be in a nega-
tive temperature state. The equilibrium with the lattice will be attained only after a time of the
order of the relaxation time for the spin-lattice interactions, and in the experiments performed
in [26,27] this could take some minutes.

1.3 A Brief Overview on the Theory of Phase Transitions

Phase transitions represent some of the most spectacular phenomena displayed by nature and,
from a practical point of view, it is very important to understand the conditions under which
different phases of matter do exist and what triggers the transition from one phase to another.
Physicists try to explain these phenomena from an assumption that matter is constituted of many
interacting parts, and this interaction gives rise tocollective phenomenawhich characterize the
different phases of matter. Figure 1.2 illustrates the typical phase diagrams of a fluid and a
ferromagnetic system. Both fluid and magnetic systems exhibit a critical point which has the
property that ’bellow’ it the system exhibits phase boundaries, where a discontinuity in some
property of the system (densities or magnetization) characterizes the different phases, whereas
the critical point determines the effective disappearanceof phase boundaries ’above’ it.
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Figure 1.2 Tipical phase diagram for a fluid and a magnetic system. From Ref. [1].

The thermodynamics of a system exhibiting a phase transition is marked by singularities
or discontinuities in the thermodynamic potentials derivatives. According to this observation,
Ehrenfest [28] first proposed a classification of phase transitions according to the order of the
derivative of the free energy in which the singularities or discontinuities first appeared. This
classification has fallen in disuse, and nowadays it is customary to use instead the classification
proposed by Fisher [29] in which afirst orderphase transition is characterized by a disconti-
nuity in some of the first derivatives of the free energy (as was already the case according to
Ehrenfest), while in asecond order, or continuous, phase transition the first derivatives of the
thermodynamic potentials are continuous, but divergencesand discontinuities may appear in
higher order derivatives. This loss of analyticity in the free energy hints a first warning on the
statistical mechanics formalism: as we may note from the brief exposition on statistical me-
chanics, non-analyticities can not appear on the partitionfunction, while we make finite sums
of boltzmann factors, which are themselves analytic; as is well known in mathematical analy-
sis, non-analyticities may appear however from a limiting procedure on a sequence of analytic
functions. The natural limiting procedure to be taken in physics is to let the number of particles
become infinity, thethermodynamic limit; the hope therefore is that the thermodynamic limit
allows for a description of non-analyticities in the free energy characterizing phase transitions.
The first model to show that this hope could be accomplished was the 2d Ising model, whose
remarkable,tour de force, solution by Onsager in 1944 [30] showed the power of statistical
mechanics in describing critical phenomena.

The theories initially proposed could not explain, however, a divergence in the specific heat
at the critical point of ferromagnetic systems. We will briefly expose these, with the Van der
Walls phenomenological theory, and the mean field approach to the Ising model, which have
in common a negligence of fluctuation effects, precisely what becomes relevant at the critical
point, as a result of a divergence of the correlations in the system, i.e., all scales become relevant
at the critical point, and therefore fluctuations become correlated over long distances. We show
this specific divergence in correlation with a very simple model exhibiting it, the Ising chain,
which shows this divergence at the critical temperatureTC = 0. The expectation, however,
was to derive a non-analytic behavior for the free energy at nonzeroTC. Peierls argument [31]
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gave the first proof that the 2d Ising system must exhibit the onset of order at sufficiently
low temperatures, while Kramers and Wannier duality argument [32] from expansions of the
partition function in high and low temperatures determinedprecisely the location of the critical
temperature, with the assumption that it is unique.

The divergences, characteristic of critical behavior, arestudied through the introduction of
critical point exponents[29] (t = (T −TC)/TC):

For fluid systems, the specific heat at constant volume definesthe exponentα near the
critical point (t → 0):

Cv ∼ |t|−α . (1.105)

The order parameter in this system, given by the difference of densitiesρl −ρg of the liquid
and vapor pressure, (which receives this name due to the factthat for temperatures bellow the
critical point temperature it is nonzero, while at the critical point temperature, and above, it
vanishes), defines the exponentβ : for t → 0−

ρl −ρg ∼ |t|β . (1.106)

The isothermal compressibility diverges in a way specified by the exponentγ (t → 0):

KT ∼ |t|−γ . (1.107)

The external field, in this case the pressure, as a function ofthe order parameter defines the
exponentδ , considering this function at the critical temperature, and near the critical point:

p− pc ∼ sgn(ρ −ρc)|ρ −ρc|δ . (1.108)

For ferromagnetic systems, we can define in an analogous way the exponentsα, β ,γ andδ .
The specific heat at constant field, forh= 0, defines (t → 0):

CH ∼ |t|−α . (1.109)

The natural choice for an order parameter here is the magnetization, for which, ast → 0−:

M ∼ |t|β . (1.110)

The susceptibility diverges according to:

χ ∼ |t|−γ . (1.111)

Finally we observe that the external field varies with the order parameter at the critical temper-
ature according to:

h∼ sgn(M)|M|δ (1.112)

It is also of fundamental relevance for the study of criticalpoints the introduction of thepair
correlation function, directly related to the response functions of the system, and the associated
notion ofcorrelation length. In general, we may define for each system a local order parameter
ψ(R), in the case of a fluid this might be the local fluctuation in thedensity,δρ(R), for a
magnetic system this might be the local magnetic moment (m(R)), or the local spin valueSi. In
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any case this local order parameter has a random character, and we define the pair correlation
function by the average:

Gc(R,R′) =< ψ(R)ψ(R′)> . (1.113)

Normally this function has an exponential decay, and is given by (r = |R−R′|):

Gc(|R−R′|) = Gc(r)∼ e−r/ξ . (1.114)

The decay parameter defines thecorrelation length, ξ . Precisely at criticality (t = 0), this
function loses this behavior and becomes a power law, which can be viewed as a consequence
of a divergence in the correlation length, and whence we define the critical exponentsη andν
(d is the dimensionality of the system):

Gc(r)∼
1

rd−2+η . (1.115)

ξ ∼ 1
|t|ν . (1.116)

Another remarkable fact about phase transitions is that systems completely different exhibit
the same set of critical exponents. This is the case when studying systems with a liquid-gas
phase transition or a ferromagnetic transition, where experiments remarkably show it. The
common expression used in this case is that these system fallwithin the sameuniversality
class. An explanation of what determines the critical exponents values, and therefore which
kind of models fall within the same universality class, is provided by theRenormalization
Group theory, which, very briefly talking, establish a way to transform hamiltonians under the
renormalization group, and the recursive iteration of these will lead to a fixed point in the space
of hamiltonians (see Figure 1.3), about which a kind of generalized formal series expansion
will lead to an understanding of the critical properties of any hamiltonian within the same
attractive basin correspondent to this fixed point, therebyexplaining why completely different
hamiltonians can lead to the same critical behavior. The wayof transforming hamiltonians is a
key point, and, speaking in terms of the momentum space, thisreduces to a problem of trying to
get rid of the large wavelengths contributions to the energy, thus remaining the low wavelengths
associated to the onset of criticality, where the correlation length diverges. Notice therefore
that the fixed point, under the renormalization group, corresponds to the model where all scales
become relevant, since a change in scale will not change it: the system exhibit theself-similarity
property. Moreover, it follows from these ideas on scale invariance at criticality, that the free
energy, and thereby all the thermodynamic functions, will be homogeneous on its variables, the
system possess thescalingproperty. Therefore, thermodynamic relations will imply various
critical exponents relations, so that renormalization group theory also explains the experimental
observation that, independently of the system observed, certain algebraic relations among the
exponents are always valid, thus the algebraic number of independent exponents is reduced:
usually two or three of them are enough in order to obtain all of them [2]. We illustrate this
with the following exponent identities:
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α +2β + γ = 2, Rushbrooke’s identity; (1.117)

δ −1= γ/β , Widom’s identity; (1.118)

2−α = dν , Josephson’s identity; (1.119)

γ = (2−η)ν , Fisher’s identity. (1.120)

Figure 1.3 Renormalization group transformations on the space of Hamiltonians. From Ref. [2].

Renormalization group ideas first found its way into statistical mechanics through Kadanoff
[33] systematic procedure of reducing the degrees of freedom in the Ising model: the block-spin
transformation, or decimation transformation, which consists of summing over a subset of the
spins of the lattice in order to obtain a new partition function with less degrees of freedom; by
finding the recursive equations transforming the partitionfunction, one can iterate this process
and consistently reduce the degrees of freedom of the system. These ideas were later general-
ized by Wilson who won the Nobel Prize for such generalizations and effective application on
the Kondo problem [34].

1.3.1 Phenomenological and Mean Field Approaches

It is a formidable mathematical task to bring a theory describing such phenomena from first
principles, e.g., assuming some particular kind of interaction among the constituents of matter
and using the general formalism of statistical physics to describe the emergence of collec-
tive behavior characterizing distinct phases of matter. Due to its inherent complexity, the first
approaches to such a problem had a much more phenomenological appeal, and instead of a
detailed description on the interactions of the constituents of matter, general assumptions on
the thermodynamical quantities characterizing the systemwere made.

The Van der Walls theory of phase transitions proposed a modification of the ideal gas law
in order to take into account the finiteness of the volume of the constituent parts of the system
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Figure 1.4 Van der Walls isotherms. From Ref. [1].

(which amounts for a reduction of the available volume per particle v→ v−b, wherev=V/N),
as well as the repulsive interaction between such parts whenclose together (which amounts for
an increase in the pressure of the systemP → P+ a/v2), and therefore the equation of state
becomes:

(P+a/v2)(v−b) = kT. (1.121)

The isotherms of this system have the behavior illustrated in Figure 1.4 (which are plotted as
a function of the densityρ = 1/v). Notice that for a critical value of temperature,TC, the
isotherms lose the monotonous behavior, and acquire a region of instability where the com-
pressibility becomes negative, since(∂P/∂V) > 0. This is corrected by aMaxwell construc-
tion.

This construction consists of substituting the unstable region of the isotherm by a flat region
of constant pressureP∗, defined in an interval(vl ,vg) such that the following condition holds:

P∗(vg−vl ) =
∫ vg

vl

Pdv. (1.122)

This condition comes from a tangent construction in the region where the Helmholtz free energy
is not convex, as illustrated in Figure 1.5.

Notice that the critical point is defined by the conditions
(

∂P
∂v

)

Tc

= 0 ;

(

∂ 2P
∂v2

)

Tc

= 0, (1.123)

which establishes a divergence in the compressibility for the critical point, and it follows that

vc = 3b ; kTc =
8
27

a
b

; Pc =
a

27b2 . (1.124)

The critical point exponents for this theory are also easilyobtained:

α = 0 ; β = 1/2 ; γ = 1 ; ; δ = 3. (1.125)
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Figure 1.5 Helmholtz free energy and Maxwell construction for the Van der Walls model.From Ref.
[1].

In this model the valueα = 0 corresponds to a discontinuity in the specific heat.
An important remark to be made about the Van der Walls equation of state, is that we can

obtain it from an assumption that the particles in the systeminteract through a pairwise hardcore
potential, and assuming this same interaction among all theconstituents in the system. By
using the general prescriptions of statistical mechanics,andmean fieldapproximations, which
basically consists of not taking into account the effects offluctuation, the partition function can
be obtained from which the equation of state is derived. In order to take into account such a
mean field approach more closely we consider the Ising model under this approach. The energy
of this model is given by

E =−1
2∑

i, j
Ji, jσiσ j −∑

i
hiσi , (1.126)

where thespin variables, σi, are allowed only to take the values±1. The factor12 accounts for
the double summation which will give twice the required contribution (imposing as well that
Ji,i = 0). We consider the average valuemi =< σi >, in order to measure the fluctuation of
σi, given byσi −mi. Thus, notice that the interaction term can be rewritten in terms of such
fluctuations:

σiσ j = [mi +(σi −mi)][mj +(σ j −mj)] = mimj +mi(σ j −mj)+

+mj(σi −mi)+(σi −mi)(σ j −mj)≈ miσ j +mjσi −mimj ,

where the last step consists of taking out the quadratic termon the fluctuations. Therefore the
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mean field energy of the Ising model is

EMF =
1
2∑

i, j
Ji, jmimj −∑

i, j
Ji, jmiσ j −∑

i
hiσi , (1.127)

and it is assumed here thatJi, j = Jj,i. We have obtained therefore a linearization of the energy in
the random variablesσi : in fact, we have effectively replaced the pairwise interaction between
spins by the interaction of each spin with an averaged external field,∑i, j Ji, jmi . This makes the
computation of the partition function immediate:

Z = ∑
σi=±1

e−βEMF = e−β 1
2 ∑i, j Ji, jmimj ∑

±1
∏

j
eβ (∑i Ji, jmi+h j )σ j

Z = e−β 1
2 ∑i, j Ji, jmimj ∏

j
2cosh(β (∑

i
Ji, jmi +h j)). (1.128)

Therefore, if we computemi =< σi >= −∂ lnZ
∂hi

we get self-consistent equations for the aver-
ages:

mi = tanh(β (∑
j

Ji, jmj +hi)). (1.129)

We can see that for varying temperature, the number of possible solutions to this system will
change. In the simple uniform case,Ji, j = J, hi = h, we have for zero fieldh = 0, that the
behavior changes from a unique possible solution when the temperature is high, given bym= 0,
to the appearance of two symmetric solutionsm=±ms as well as the ’old’ solutionm= 0 when
the temperature lowers. This corresponds to the appearanceof an spontaneous magnetization
in the system, which exists bellow a critical temperatureTC, the Curie temperature. This can
also be viewed by analyzing the minima of the Helmholtz free energy as a function ofm. For
high enough temperatures there will be only one possible minimum,m= 0. As the temperature
is lowered two minima appear when we reach the critical temperature, for the zero field case,
and the ’old’ minimum,m= 0 becomes a local maximum; by symmetry the minima must be
symmetrically localized,±ms, and equally likely (i.e., they correspond to a same value ofthe
free energy). We see therefore that the order parameter continuously changes from a zero value
above the critical temperature to two nonzero values bellowthe critical temperature. There is
thus a continuous, or second order, transition atTC.

From a knowledge of the partition function we may get also thecritical exponents:

α = 0 ; β = 1/2 ; γ = 1 ; δ = 3. (1.130)

Therefore we have found the same exponents as in the Van der Walls theory. The pair correla-
tion function (in this case correlation between spinsσi andσ j ) and the correlation length can
be also obtained from the partition function, which gives for this model:

ν = 1/2 ; η = 0 (1.131)
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1.3.2 The Ising Chain: Transfer Matrix Approach

This model was introduced in the 20’s as a simplified trial to describe ferromagnetism [35].
The 1d case partition function was exactly computed by Isingin his doctoral thesis, where
he did find no transition for nonzero temperature frustrating the expectation for a statistical
mechanical description of the Curie point in ferromagnetic systems, from the basic assumption
of short range interactions. For the most simple case of an homogeneous interaction and a
external field, the energy will be given by:

E(σ) =−J ∑
<i, j>

σiσ j −h∑
i

σi . (1.132)

where< i, j > indicates that sum is taken only over nearest neighbors.
Considering periodic boundary conditions (σ1 = σN+1), the canonical partition function for

N spins is given by:

ZN = ∑
σ1

...∑
σN

eβJ∑N−1
i=1 σiσi+1+βh∑N

i=1 σi = ∑
±1

N

∏
i=1

eβ [Jσiσi+1+
h
2(σi+σi+1)]. (1.133)

Therefore, we define thetransfer matrix Twith elements:

T++ = eβ (J+h) ; T−− = eβ (J−h) ; T+− = e−βJ = T−+, (1.134)

thus the partition function is written as:

ZN = ∑
±1

N

∏
i=1

Tσiσi+1 = trTN = λ N
+ +λ N

− (1.135)

whereλ+ andλ− are the eigenvalues of the transfer matrix:

λ± =
1+ tanh(βJ)± [(1+ tanh(βJ))2−4tanh(βJ)(1− tanh(βh)2)]1/2

2
(1.136)

Therefore we compute the free energy per site in the thermodynamic limit:

g(T,h) = lim
N→∞

− 1
N

β−1 ln(Z) =−β−1 ln

(

eβJ cosh(βh)+
√

e2βJ sinh2(βh)+e−2βJ

)

.

(1.137)
Notice thatg is an analytic function ofT = 1/β for all positive values ofT. Nevertheless the
correlations diverge in this model at the critical temperatureTC = 0, and forh= 0, there will
be a spontaneous magnetization. In fact, consider the zero field energy with varying coupling
constant throughout the lattice:

E =−
N−1

∑
i=1

Jiσiσi+1, (1.138)

from which we get the partition function by a recursive relation:

ZN+1 = ∑
σ1=±1

· · · ∑
σN=±1

eβ ∑N−1
i=1 Jiσiσi+1 ∑

σN+1=±1
eβJNσNσN+1 = 2cosh(βJN)ZN, (1.139)
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where we have benefited from the fact that cosh() is an even function, andσN =±1, since:

∑
σN+1=±1

eβJNσNσN+1 = 2cosh(βJNσN).

The recursion leads by iteration to the closed form expression:

ZN+1 = 2N+1cosh(βJ1) . . .cosh(βJN), (1.140)

satisfying already thatZ1 = 2. For a chain of sizeN, the pair correlation between spins in sites
j and j + r, is given by:

< σ jσ j+r >=
1

ZN

∂
∂ (βJj)

∂
∂ (βJj+1)

· · · ∂
∂ (βJj+r−1)

ZN, (1.141)

which is valid due to the exponential dependence on the productsβJiσiσi+1, and the fact that
σ2

i = 1, and therefore the ’intermediary’ terms ’falling’ from the exponentials will cancel, and
it will only remain the wanted variables in the average. By theend of this procedure we may
set all the coupling constants equal toJ. Therefore we obtain that:

< σ jσ j+r >= tanh(βJ)r . (1.142)

Notice that by settingr → ∞ will make the correlations vanish, since the hyperbolic tangents
are less than one in absolute value. However atTC = 0 the hyperbolic tangents are identically
one, and the correlation becomes independent orr, therefore even in the limitr → ∞ there is a
nonzero correlation: a phase transition happens atTC = 0 for the Ising chain. Notice that the
system will have an spontaneous magnetization. From the free energy above we see that this
magnetization per site is:

m=−∂g
∂h

=
eβJ sinh(βh)

√

e2βJ sinh2βh+e−2βJ
. (1.143)

If we apply a small external field, let the temperature becomezero, and thereafter make the
field vanish we obtain that:

lim
h→0±

lim
T→0

m=±1. (1.144)

Notice that there are two possible solutions for the system,once the magnetization is chosen,
the (infinite) chain will remain in it, and despite the fact that the energy is symmetric with re-
spect to the reversal of the spins (Z2 symmetry), the system loses this symmetry: the system is
said to have a broken symmetry. Interestingly there is a result stating that for systems with short
range interactions, and acontinuoussymmetry (i.e. continuously parametrized group of sym-
metries), it can not exhibit a broken symmetry at finite (nonzero) temperature for dimensions
not greater than 2 (Mermin-Wagner Theorem [36]). The Ising chain ’escapes’ the conditions
for two reasons: its symmetry is discrete, and its transition happens atTC = 0. The 2d Ising
model, on the other hand has a nonzero critical temperature,as already remarked, but it still has
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theZ2 discrete symmetry, so that it breaks a discrete symmetry bellow the critical temperature
without disrespecting the theorem statement.

The result above still leaves the question open on whether itis possible to have a phase
transition at a nonzero temperature in 1d systems: Landau and Lifshitz proved that there is no
phase transition at finite temperatures in 1d spin models with short range interactions [24]. In
fact, suppose only nearest neighbor interactions, and let the chain be in a completely ordered
state (all spins up, or all down). The energy cost to introduce a domain wall (e.g. by revers-
ing all the spins from one given site until one extremity of the chain) in this chain is simply
proportional to the coupling constant,Ji, j ; on the other hand, the entropy that we may get by
creating domain walls is given by the logarithm of the multiplicity of ways we can create do-
main walls, which is proportional toN, the number of lattice sites, therefore we get an entropy
ln(N). Therefore, as we know by our discussion on thermodynamics,the system’s free energy
F = E −TS must be minimized, and for sufficiently largeN we notice that at any nonzero
temperature, however small, the system will prefer to create domain walls in order to minimize
its free energy, conclusion: the system can not be ordered for nonzero temperatures in the ther-
modynamic limit. Notice how this argument depends on the great simplicity of the concept
of domain wall for the topology of a chain. This argument was later used to its full power by
Thouless [37] in order to prove the following generalization: if the energy of the chain is given
by E =−∑i, j |i− j|−aσiσ j , then the critical temperature of the system as a function ofa, TC(a),
will be finite if a≤ 2, and will vanish fora> 2. In two dimensions this argument does not ap-
ply: domains walls have a non-negligible size and there willbe a non-negligible energy cost
for their creation; in fact, we have the Peierls argument to show that the 2d Ising lattice must
have a phase transition at a finite temperature: the basic idea is to measure how favorable it is
for an ordered system to havedropletscreated in it, i.e., contiguous sets of opposing spins with
respect to the orientation chosen by the ordered lattice. Since the energy and entropy become
proportional to the boundary size of the droplets in the 2d case, the temperature will determine
whether the free energy change will be negative or positive as droplets appear in the system,
thus the system will have a nonzero temperature phase transition from an ordered system to the
disordered one. Peierls argument applies also for the 1d case to prove that order can only exist
atT = 0.

1.3.3 Loss of Analyticity: Yang-Lee Theorem

By the beginning of our discussion on phase transitions we remarked that, if we aim at using the
statistical mechanics approach to explain phase transitions, we must necessarily consider the
thermodynamic limit,N → ∞, in order to obtain non-analyticities of the free energy. Onsager
solution to the 2d Ising model had the fundamental relevanceof showing that this approach was
indeed possible. Motivated by this result, Yang and Lee analyzed more closely the way in which
the non-analytic behavior of the free energy manifests, as the thermodynamic limit is taken.
They considered thelattice gasmodel on the square lattice, whose grand canonical partition
function is mapped onto the canonical partition function ofthe Ising model: the chemical
potential of the former plays the role of the external field inthe latter, and the occupation of a
lattice site on the lattice gas model corresponds to a spin upin the Ising model. Therefore, for a
finite lattice, there will be a maximum allowed number of particles,M, and the grand canonical
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partition function is a polynomial on the fugacityz= eβ µ , of degreeM:

Ξ(z,T) =
M

∑
j=0

Z j(T)z
j , (1.145)

and the coefficients of this polynomial are the associated canonical partition functions for a
fixed number of particles in the lattice, therefore this polynomial has only positive coefficients,
and all its roots are complex (besides a possible real and nonphysical negative root, for odd
M). This complex domain is termed thecomplex fugacity plane. The logarithm of this polyno-
mial will give the free energy of the system, thus the non-analyticities of the free energy will
correspond to zeros of this polynomial.

Yang and Lee proved that for the lattice gas all the zeros willlie in an unit circle|z|= 1, and
for any finiteM there will be a contour containing no zeros of this polynomial and containing
the whole positive real axis of the complex fugacity plane, therefore all the thermodynamic
functions will be analytic for finiteM in the region delimited by this contour. Moreover, they
proved that the limit procedureM → ∞ allows the complex roots to ’touch’ the positive real
axis, so that it is not possible anymore to have a single contour containing the whole positive
real axis, and also not containing any root of the grand partition function, instead, it will be
needed two contours to cover the positive real axis of the complex fugacity plane, which will
not contain any root in their interior. The free energy is analytic inside of each region delimited
by these contours, but it is not anymore analytic in the wholepositive real axis. This is under-
stood as the appearance of a first order phase transition: thethermodynamic limit allowed the
description of a two-phase system, where each phase is characterized by its own free energy,
analytic within a delimited region.





CHAPTER 2

Topology and Phase Transitions

We presented in the end of the last chapter a brief overview onthe theory of phase transitions,
which mainly consisted of explaining the loss of analyticity of the free energy describing the
system, and therefore an explanation using statistical mechanics necessarily needs the thermo-
dynamic limit to be taken. The famous Yang-Lee theorem presents a way of understanding
how non-analyticities of the free energy may arise from sucha thermodynamic limit prescrip-
tion. Notice however that a requirement of the thermodynamic limit was showed in fact only
for the canonical and grand canonical ensembles (as must be necessarily the case since we are
studying phase transitions through the loss of analyticityof the free energy, only derived from
such ensembles). An alternative mechanism describing the occurrence of a phase transition
has been advocated [5, 6, 11, 38–40] which relies on an investigation of what happens with
the phase space topology, and it is natural to expect that such approach is intimately related
to an analysis of the system on a microcanonical level. Interestingly, the microcanonical en-
semble allows a description of phase transitions for finite system [18], thus a characterization
of phase transitions in terms of the phase space topology hasa broader range of applicability,
and a deeper understanding of the mechanisms generating phase transitions is possible. The
topological approach is briefly reviewed in this chapter, mainly based on [8,14,41].

2.1 Morse Theory, Energy Landscape and Topology of Equipotential
Manifolds

The topological approach to phase transitions assumes thatthe system is described by a set of
continuous variablesqi andpi, i = 1, . . . ,N, and that the energy of the system is of the form

E =
1
2

N

∑
i=1

p2
i +V(q1, . . . ,qN), (2.1)

the sum of a kinetic term and a potential energy. While the kinetic term is quadratic, its contri-
bution to the partition function will give gaussian integrals (since we are also assuming that the
potential energy does not depend on the generalized momenta), which are easily performed and
will not give rise to non-analyticities in the thermodynamic functions. Therefore, it is sufficient
to study the topology of the configuration space, which is done through as analysis of the slices
(of great relevance for the microcanonical ensemble)

Σv = {q∈ R
N|V(q) = v}, (2.2)

29
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as well as the sets whose boundaries are those slices

Mv = {q∈ R
N|V(q)≤ v}. (2.3)

Under variation of the image valuesv∈ R we obtain the whole configuration space. Viewing
the configuration space as a manifold (embedded inR

N), it follows clearly that we are using the
prescription of Morse theory in order to study the topology of the configuration space. In fact,
Morse theory [42] is based on the existence of a real valued function, theMorse function, de-
fined on a differentiable manifoldM, with the property that its critical points (i.e., the points at
which the associated differential form vanishes) are non-degenerate (i.e., the associated hessian
matrix at the critical points is invertible). This propertyof Morse functions has as a corollary
the fact that its critical points form a discrete set. We introduce further notation in order to
expose the main results of Morse theory: we call alevel setof the Morse function,f , a set of
the form f−1(a) = x∈ M : f (x) = a; this set is called acritical level setif a is acritical value
for f , i.e., there exists a critical point off for which the associated image isa; a critical point of
f has indexk, if the associated Hessian matrix hask negative eigenvalues. Morse functions are
used to ’slice’ its domain, thereby determining completelyits topology by the following results
(Mv = f−1((−∞,v])):

1. If the interval[a,b] contains no critical values, thenMv are all homeomorphic forv ∈
[a,b].

2. If the interval[a,b] contains a single critical value,vc ∈ (a,b), for which there arem≥ 1
critical points, with associated indicesk1, . . . ,km, then the setMb is homeomorphic toMa

attached with themdisjointhandles H(k1), . . . ,H(km).

Figure 2.1 The process for constructing a handle. From Ref. [3].
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In the second statement above,handlesrefer to the basic ’building blocks’ which differential
topologists use to construct manifolds (in complete analogy with the CW-complexes used by
algebraic topologists). Figure 2.1 illustrates the concept.

The topological approach to phase transitions assumes thatthe potentialV(q) is a Morse
function. It is argued that this is not a very strong restriction, due to the fact that Morse functions
are dense in the space ofC ∞ differentiable functions defined on the same domain, and therefore,
arbitrarily small perturbations of a potential that is not aMorse function, would turn it into
one. From this perspective, the critical points ofV acquire a fundamental relevance for the
description of the system, and an analysis of the stationarypoints of the potential energy are
commonly referred to asenergy landscape methods[43].

Thetopological hypothesisstates that a phase transition is related to a certain abruptchange
in the topology of the subsetsMv of equation (2.3) at the corresponding critical energyvc. The
first rigorous result on this direction was the following theorem (proved in [14]), establishing
that topology changes on phase space are necessary for a phase transition in systems with a
stable, non-confining and short-range potential:

Theorem 2.1.1.LetVN(q1, ...,qN) : RN →R, be a smooth, non-singular, finite-range potential.
Denote asΣv := {q ∈ R

N|VN(q) = v},v ∈ R its level sets, or equipotential hyper-surfaces, in
configuration space. Then let̄v=VN/N be the potential energy per degree of freedom. If for
any pair of values̄v andv̄′ belonging to a given intervalIv̄ = [v̄0, v̄1] and, for anyN > N0, we
have

ΣNv̄ ≈ ΣNv̄′

that is,ΣNv̄ is diffeomorphic toΣNv̄′ , then the sequence of the Helmholtz free energies{FN(β )}N∈N
- whereβ = 1/T (T is the temperature) andβ ∈ Iβ = (βv̄0,βv̄1) - is uniformly convergent at
least inC 2(Iβ ) so thatF∞ ∈ C 2(Iβ ) and neither first nor second order phase transitions can
occur in the (inverse) temperature intervalIβ .

Despite being a remarkable result, it is observed, for many systems of interest, that the
critical values of the potential energy become dense, in thethermodynamic limit, on the entire
image set, turning the theorem unappliable. Moreover, the task remained of determining which
kind of topology changes actually trigger the phase transition. In proving this theorem, it is used
the following result, establishing the way in which the topology of phase space determines the
entropy function of the system (the topology contribution to the entropy):

Theorem 2.1.2.LetVN(q1, . . . ,qN) :RN →R, be a smooth, non-singular, finite-range potential.
Denote asMv := V−1

N (−∞,v),v∈ R, the generic submanifold of configuration space bounded

by Σv. Let {q(i)c ∈ R
N}i∈[1,N (v)] be the set of critical points of the potential, that is, such that

∇VN(q
(i)
c ) = 0, andN (v) be the number of critical points up to the potential energy value v.

Let Γ(q(i)c ,ε0) be pseudo-cylindrical neighborhoods of the critical points, andµi(Mv) be the
Morse indexes ofMv, then there exist real numbersA(N, i,ε0),gi and real smooth functions
B(N, i,v,ε0) such that the following equation for the microcanonical configurational entropy
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S(−)
N (v) holds:

S(−)
N (v) =

1
N

log

[

∫

Mv
⋃N (v)

i=1 Γ(q(i)c ,ε0)
dNq+

N

∑
i=0

A(N, i,ε0)giµi(Mv−ε0)

+
N

ν(v)+1
cp

∑
n=1

B(N, i(n),v−vν(v)
c ,ε0)

]

,

and an unbounded growth withN of one of the derivatives|∂ kS(−)(v)/∂vk|, for k = 3,4, and
thus the occurrence of a first (k= 3) or a second order (k= 4) phase transition, can be entailed
only by the topological term∑N

i=0A(N, i,ε0)giµi(Mv−ε0).

This result is, however, of difficult applicability, as it happens that the number of topology
changes occurring in a given energy interval grows unboundedly with the system size. A further
result characterizing the way in which the topology of configuration space gives rise to non-
analyticities in the density of states (for any finite system!) was later given by the following
result [15]:

Theorem 2.1.3.Let V : G→ R
N be a Morse function with a single critical pointqc of index

k, HessianHV , andN degrees of freedom in an open regionG. Without loss of generality, we
assumeV(qc) = 0. The density of states can be decomposed into an analytic part Ωa

N and a
non-analytic partΩna

N :
ΩN = Ωa

N +Ωna
N .

The leading order non-analyticity is given by

Ωna
N (v) =

(Nπ)N/2

NΓ(N/2)
√

|det[HV(qc)/2]|
hna

N,k mod 4(v),

with the universal function

hna
N,k mod 4(v) =











(−1)k/2v(N−2)/2Θ(v), for k even,

(−1)(k+1)/2v(N−2)/2π−1 ln |v|, for N even,k odd

(−1)(N−k)/2(−v)(N−2)/2Θ(−v), for N,k odd;

whereΘ is the Heaviside step function.

Notice in the expressions above for the non-analytic contribution to the density of states,
that, independently of the index of the critical point, it is⌊(N−3)/2⌋ times continuously differ-
entiable. Therefore this result cannot be used to characterize non-analyticities in the density of
states of an infinite system, since this limit will turn the non-analytic part smooth. Nonetheless,
this theorem allows a careful investigation of the quantityBv0,ε

N , containing the non-analytic
contributions from the critical points in theε-neighborhood ofv0:

Bv0,ε
N = ∑

{vc:|v−vc|<ε}
∑

{qc:V(qc)=Nvc}
Ωna

N (v), (2.4)
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and a detailed analysis of this quantity establishes a geometric condition, related to the Jacobian
determinants appearing in the non-analytic contributionsto the density of state of the previous
theorem:

J(qc) = |det[HV(qc)/2]|−1/2, (2.5)

which characterizes the topology changes that will not leadto a phase transition according to
the following theorem [7]:

Theorem 2.1.4.The saddle point contributionbv0,ε (= limN→∞ lnBv0,ε
N /N) cannot induce a

phase transition at any potential energy in the interval(v0− ε,v0+ ε) if

1. the number of critical points is bounded by exp(CN) for someC> 0 and

2. the Jacobian densities, defined by

j l (v) = lim
N→∞

1
N

ln

(

∑
qc∈Ql (v,v+ε)

J(qc)/ ∑
qc∈Ql (v,v+ε)

1

)

,

whereQl (v,v+ ε) denotes the set of critical pointsqc with indexk(qc) = l (mod 4) and
with critical valuesV(qc)/N in the interval[v,v+ ε], have a thermodynamic limit with
j l < ∞ ∀l ∈ {0,1,2,3} inside the given interval.

As an illustrative example of application of this results (following Ref. [4]), consider briefly
thek−trigonometric, given by the potential energy:

Vk(q) =
∆

Nk−1

N

∑
i1,...,ik=1

[1−cos(qi1 + · · ·+qik)], (2.6)

where∆ > 0 is the coupling constant andqi ∈ [0,2π). This model undergoes a transition at
the critical energyv = ∆, for k ≥ 2, while no transition occurs fork = 1. Figure 2.2 shows
both the logarithm per site of the absolute value of the Eulercharacteristic of the manifolds
Mv, and the jacobian density for this model as a function of energy, both in the thermodynamic
limit. The Euler characteristic is atopological invariant, i.e., it is an invariant quantity under
homeomorphisms; it can be obtained via Morse theory from thealternating sum ofMorse
numbers, µk, which are the number of critical points with indexk:

χ(Mv) = ∑
k

(−1)kµk(Mv), (2.7)

σ(v) = lim
N→∞

ln |χ(Mv)|
N

(2.8)
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Figure 2.2 Logarithm per site of the Euler characteristic and jacobian density as functions of the energy
per site normalized by the coupling constant. From Ref. [4].

2.2 Mean Field and One-Dimensional Classical XY Models

The models treated in this section are relevant due to the fact that their topology changes can
be completely determined as the energy varies, in particular, the Euler characteristic can be
exactly computed as a function of the energy. While the mean field model exhibits a transition,
the one dimensional XY model does not: in the former case it isseen that an ’abrupt’ change
in topology occurs at the critical energy value; in the latter case no such abrupt change occurs.

The potential energy of the mean field XY model in a field is:

V(q) =
J

2N

N

∑
i, j=1

[1−cos(qi −q j)]−h
N

∑
i=1

cosqi , (2.9)

whereqi ∈ [0,2π), thus the configuration space is aN-dimensional torus. This model is known
to have a second order phase transition at the potential energy per sitevc = J/2, and vanishing
external fieldh= 0. By considering the total magnetization vector per site

m =
1
N

N

∑
i=1

mi = (mx,my) = (
1
N

N

∑
i=1

cosqi ,
1
N

N

∑
i=1

sinqi), (2.10)

we may rewrite the potential in a simpler form:

V
N

= v(mx,my) =
J
2
(1−m2)−hmx. (2.11)

This equation is suitable to find the range of the potential per site values:

vmin =−h≤ v≤ 1
2
+

h2

2
= vmax. (2.12)

According to the prescription of Morse theory, we shall study the critical points ofv, although
we shall see that this is not a Morse function on its entire domain. The critical points ofv are
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determined by the conditions∂v/∂qi = 0, ∀i, which can be rewritten as the following set of
equations:

(mx+h)sinqi −mycosqi = 0, ∀i, (2.13)

thus, if the coefficients(mx+h) andmy are not both zero, this equation is solved by the angles
qi ∈ {0,π}. In particular, the configurationqi = 0, ∀i corresponds to the minimum energy−h.
It can be proved that the critical energy values depend only on the number of sites with angle
nπ :

v(nπ) =
1
2

[

1− 1
N2(N−2nπ)

2
]

− h
N
(N−2nπ). (2.14)

The degeneracy of critical points with a given number of anglesπ is:

C(nπ) =

(

N
nπ

)

, (2.15)

entirely analogous to the density of states of a 2-level system, or an Ising model in zero field
(nπ being the number of excited states in the former case, or domain walls in the latter). It can
be proved also that the index of a critical point withnπ angles equal toπ is (for sufficiently
smallh):

index(nπ) =

{

nπ , if nπ ≤ N
2 ,

N−nπ , if nπ > N
2 .

(2.16)

The Morse number can be exactly computed from this result, and the most important thing to
notice is that, as long asv< vmax:

µk(v) = 0 ∀k>
N
2
. (2.17)

Figure 2.3 Logarithm of the Euler characteristic for the mean field XY model, forN = 50,200,800
(from bottom to top) andh= 0.01. From Ref. [5].

Morse theory implies that as long asv < vmax, the topology of the setsMv changes by
attachingk-handles according to the indices of the critical points at the critical values, so that
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only handles withk ≤ N/2. By the inequality above, and the knowledge that atv = vmax,
the setMv becomes the full configuration space, i.e., theN-dimensional torus, we see that a
major topological change occurs atvmax, which involves the sudden attaching ofk-handles,
with N/2< k≤ N, therefore an attaching ofO(N) different handles happens, coincidentally at
the critical energy of this model. Notice however that the phase transition occurs only forh= 0,
while the ’abrupt’ topology change shown above occurs for any h, thus this topology change is
not the sole reason for the phase transition in this model. A knowledge of the Morse numbers
allows also the computation of the Euler characteristic,χ, as a function of the configurational
energyv. The function log(|χ|(v))/N is plotted in Figure 2.3.

A very interesting picture of the topology changes in this model is also possible analyzing
the associated configurational space of the macroscopic variablesmx andmy, which are con-
strained to the unit diskD = {(mx,my) : m2

x +m2
y ≤ 1}. SetJ = 1 andh= 0. Then notice that

while v varies from−∞ to 0−, the setsDv = {(mx,my) : v(mx,my)≤ v} are empty.v= 0 corre-
sponds to the first topology change, where the unit circlem2

x+m2
y = 1 appears. For 0< v< 1/2

all the subsequent setsDv are homeomorphic, corresponding to rings:{1−2v≤ m2
x+m2

y ≤ 1}.
Finally, atv = 1/2, the last topology change occurs, where the setDv becomes the unit disk.
This is illustrated in Figure 2.4.

Figure 2.4 Topology changes occurring for the mean field XY model. From Ref. [6].

Furthermore a knowledge of the Hessian matrix in this model allows an exact computation
of its jacobian density at the critical points, and it is proved in Ref. [7] that, forN → ∞ and
h→ 0, it is:

j l (v) =
1
2

ln2− 1
4

ln[J(J−2v)], l = 0,1,2,3. (2.18)

This is plotted in Figure 2.5, and it shows a divergence precisely at the critical energy value of
this model,vc = J/2, as required by the theorem 2.1.4.

Now consider the 1d classical XY model with nearest neighborinteraction, whose potential
energy is:

V(q) =
1
4

N

∑
i=1

[1−cos(qi+1−qi)]−h
N

∑
i=1

cosqi , (2.19)

and imposing periodic boundary conditionsqN+1 = q1. The critical points are once again found
to be given byqi ∈ {0,π}, but in this case it is not only the number of anglesπ that determine
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Figure 2.5 Jacobian density as a function of potential energy per site, forJ = 1, h= 0 in the mean field
XY model. From Ref. [7].

the critical energy values, but now it is needed to take into account also the number of domain
wall, nd, where by domain we mean naturally a connected region of the chain where all the
angles are 0 orπ:

v(nd;nπ) =
nd

2N
+hnπ . (2.20)

Once again, this is in complete analogy with the Ising chain:as we shall show in the next
chapter, the coupling constant introduces a dependence of the energy with the domain walls
number, while the field introduces a dependence with the number of spins up. Therefore the
density of states for critical energy values is exactly equal to the density of states of the Ising
chain. The index of a critical point withnd domain walls can be proven to be:

index(nd) = nd, (2.21)

and since the number of critical points withnd domain walls is

N(nd) = 2

(

N−1
nd

)

, (2.22)

it follows that the Morse numbers are

µk(nd) = 2

(

N−1
nd

)

Θ(nd −k). (2.23)

Therefore the Euler characteristic can be exactly computed, and is given by

χ(Mv) = 2(−1)nd(v)
(

N−2
nd(v)

)

, (2.24)

and this is plotted in Figure 2.6. We note that no abrupt change in topology occurs here;
coincidentally, we know that this model exhibits no phase transition (as follows, for example,
from the Mermin Wagner theorem explained in chapter 1).
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Figure 2.6 Logarithm of the Euler characteristic for the 1d XY model, forN = 50,200,800 (from
bottom to top) andh= 0.01. From Ref. [5].

2.3 Conjecture on Necessary and Sufficient Conditions

The doctoral thesis of my co-advisor [8], Prof. Dr. F.A.N. Santos, under orientation of my
advisor, Prof. Dr. M.D. Coutinho Filho, consisted, in part, on the application of the methods
described above to the XY model on theAB2 chain (illustrated in Figure 2.7) in a mean field
approach, with potential energy given by:

V =
Nc

∑
i, j=1

1
Nc

[

zABSA i · (SB1j +SB2j)+zBJSB1i ·SB2j −h · (SA i +SB1i +SB2i)
]

. (2.25)

Figure 2.7 The topology of theAB2. From Ref. [8].

This model exhibits a rich behavior for varying anti-ferromagnetic coupling,J > 0, and
external field valuesh. Following closely Ref. [16] we will explain the interestingphenomena
displayed by this system.

2.3.1 Mean Field FrustratedAB2-XY Model

Forh= 0 the system exhibits a frustration-induced phase transition at zero temperature, which
is expressed by the functional change of the energy:

vmin(J) =

{

−4+J, 0≤ J < 1, ferrimagnetic phase,

−2
J −J, J ≥ 1, canted phase,cos(θB) = 1/J.

(2.26)



2.3 CONJECTURE ON NECESSARY AND SUFFICIENT CONDITIONS 39

The canted phase occurs when the anti-ferromagnetic order is not perfectly aligned in an anti-
parallel fashion, but are canted by a few degrees (θB). Furthermore, the model exhibits also a
finite temperature phase transition at the critical energyvc = 0, ∀J > 0.

As it happens for the XY model on the linear chain, it proves useful to introduce the mag-
netization vectors associated to all the spins onA andB sites, and to understand the associated
topology changes occurring for the equipotential manifolds, as we vary the potential energy.
For the zero field case, the potential energy reduces to:

v(mA,mB) = 4mAxmBx+Jm2
Bx−Jm2

By. (2.27)

Notice that this expression is already quadratic inmBy, and in order to obtain a quadratic de-
pendence in all the variables, we must diagonalize the non-quadratic part, thereby introducing
variablesm1 andm2 (linear combinations ofmAx andmBx), and eigenvaluesλ1 andλ2:

λ1m2
1+λ2m2

2−Jm2
By = v, (2.28)

this makes clear the way in which the equipotential surfaceschange for varying values ofv: a
hyperboloid of one sheet forv< 0; a cone forv= vc = 0; a hyperboloid of two sheets forv> 0.
On the other hand, the valuesmAx,mBx andmBy are allowed to vary only in the solid cylinder
CM = {(mAxmBxmBy) : −1 ≤ mAx ≤ 1,m2

Bx+m2
By ≤ 1}. The fact that the energy quadratic

form is not diagonal in these variables means that the equipotential surfaces described above
intersect this cylinder in a non-trivial manner. Physically meaningful states are the result of
these intersections which are nonempty forvmin ≤ v≤ vmax, and, within this interval, topology
changes happen only forvTmin ≤ v≤ vTmax, which defines the minimum (vTmin) and maximum
(vTmax) energies for the occurrence of topology changes, which aretermedtopological energies.
While the maximum topological energy has no change of behavior: Emax= ETmax = 4+J, ∀J;
it is interesting that the couplingJ = 2 determines a change of behavior for the minimum
topological energy:

vTmin =

{

−4+J, if 0 ≤ J ≤ 2,

−4
J , if J > 2.

(2.29)

Therefore,vmin < vTmin, for J > 1 thus there will be a discontinuity atvTmin for any topolog-
ical invariant computed as a function of the energyv, if J > 1. Furthermore,J = 2, which
corresponds to a change of behavior ofvTmin, is related also to a special behavior of the mag-
netization, which vanishes identically for any temperature, as shown in Figure 2.8, where the
magnetization as a function of temperature is plotted, for the zero field caseh= 0.

The special behavior of the magnetization atJ = 2, is understood as a highly symmetric
state, where the spins on each unit cell tend to have an angular separation of 120◦ at the mini-
mum energyvmin=−3, and the surface corresponding to this energy is thegolden hyperboloid,
given by the quadratic:

−
(

1+
√

5
2

)

m2
1−
(

1−
√

5
2

)

m2
2+m2

By = 1, (2.30)

which has this name due to the appearance of the golden ratio and its conjugate as coefficients.
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Figure 2.8 Magnetizationvs. temperature for the mean field frustratedAB2-XY model. From Ref. [8].

A careful study of the critical points and associated Hessian matrices and Morse numbers
was undertaken for this model, in order to compute numerically both the Euler characteristic
and the jacobian densities already considered above. It wasfound that topology changes occur
only within the energy interval(vTmin,vTmax) of minimum and maximum topological energies,
beyond which the Euler characteristic vanishes. The Euler characteristic is computed from an
approximation based on the fact that the number of critical points grows exponentially with
the number of cells,Nc, from which follows that ln(χ(Mv)) ≈ ln(ωc(v)), whereωc(v) is the
density of states of the critical points, i.e., the microcanonical distribution of critical points.

It is proven that for the zero field case, the isolated critical points of the potential energy
correspond toqAi ,qBi ∈ {0,π} in complete analogy with the XY model on a linear chain, and
the index of a critical point depends only on the number of angles on sitesA andB which are
π, nπA andnπB, respectively. Denoting this index byk(nπA,nπB,J), we have:

k(nπA,nπB,J) = indA(nπA,nπB,J)+ indB(nπA,nπB,J), (2.31)

where

indA(nπA,nπB,J) =











nπA, if nπB > Nc
2 ,

Nc−nπA, if nπB < Nc
2 ,

0, if nπB = Nc
2 .

(2.32)

indB(nπA,nπB,J) =











nπB, if 2(1− 2nπA
Nc

)+J(1− 2nπB
Nc

)> 0,

Nc−nπB, if 2(1− 2nπA
Nc

)+J(1− 2nπB
Nc

)< 0,

0, if 2(1− 2nπA
Nc

)+J(1− 2nπB
Nc

) = 0.

(2.33)

These results resemble the expression for the index of a meanfield XY linear chain, equa-
tion (2.16). Notice that the critical energy values are:

v(nπA,nπB) = 4

(

1− 2nπA

Nc

)(

1− 2nπB

Nc

)

+J

(

1− 2nπA

Nc

)2

. (2.34)
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As a result we have that the Morse numbers are simply:

µk(v) = ∑
v(nπA,nπB)≤v

k(nπA,nπB,J)=k

(

Nc

nπA

)(

Nc

nπB

)

, (2.35)

since the multiplicity of critical points with the parameters nπA andnπB is
( Nc

nπA

)( Nc
nπB

)

. These
results are enough to obtain the Euler characteristic as a function of energy. The analysis of
the Hessian matrix diagonal elements at the isolated critical points described above gives also
the jacobian density. Both of these functions are shown in Figure 2.9: Euler characteristic
in (a), jacobian density in (b) (notice thatJ = 2 corresponds also to a change in behavior of
the ’tail’ of the jacobian density), as well as the energies of the ground state,vmin(J), and
the minimum topological energy,vTmin(J) as functions of the anti-ferromagnetic coupling in
(c). The computation of the Euler characteristic through the Morse numbers, as prescribed by
Morse theory, demands too much computational effort, as compared to the simple formula in
terms of the microcanonical density of critical points.

Figure 2.9 Mean field frustratedAB2-XY model. (a) Logarithmic density of the absolute value of the
Euler characteristicvs.energy. (b) Jacobian density of critical pointsvs.energy. (c) Minimum energies,
and minimum topological energyvs. the anti-ferromagnetic coupling. From Ref. [8].

Notice the cusp-like pattern of the Euler characteristic, as well as the diverging jacobian
density, at the critical energy valuevc = 0, which is naturally interpreted as a evidence of the
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topological origin of the finite temperature phase transition in this model. Let us ’destroy’ this
finite temperature phase transition, by considering the application of a staggered external field
which constrain the system to satisfymAx =−1. The energy becomes:

v=−4mBx+J(m2
Bx−m2

By) = J(mBx−
2
J
)2−Jm2

By−
4
J
, (2.36)

therefore the equipotential surfaces simplify to hyperbolas in themBx vs. mBy plane. This
system is seen to have precisely the same functionsvmin(J) and vTmin(J). Interestingly, the
functional form ofvTmin for J ≥ 2, namely−4/J, appears naturally here as determining the
change of transverse axis in the way shown in the figure: for any fixed J, if v < −4/J, the
transverse axis is along themBy axis; if v=−4/J, the hyperbola degenerates to its asymptotes;
if v> −4/J, the transverse axis is along themBx axis. This is seen in part (a) of Figure 2.10,
and the same figure shows in part (b) the Euler characteristiclogarithmic density, and in part (c)
the jacobian density. The system does not possess a phase transition, and, correspondingly, the
cusp-like behavior of the Euler characteristic disappears. Note also that, despite the absence of
a phase transition, the jacobian density still diverges at the previous value of critical energy.

Figure 2.10 Mean field frustratedAB2-XY Model with A sublattice ’frozen’. (a) Configuration space
and equipotential surfaces. (b) Logarithmic density of the absolute value of the Euler characteristicvs.
energy. (c) Jacobian density of critical pointsvs.energy. From Ref. [8].
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2.3.2 Mean FieldAB2-XY Model in a Field

This case treats the imposition ofJ = 0, and considers varyingh applied along thex direction.
The potential energy can be expressed as

v(mA,mB) = 4(mAxmBx+mAymBy)−h(mAx+2mBx). (2.37)

The physically meaningful configurations are restricted tothe setCM = {(mA,mB) : m2
Ax+

m2
Ay ≤ 1,m2

Bx+m2
By ≤ 1,mAy = −2mBy}, where the last condition imposes that the transverse

magnetization vanishes. Let us follow exactly the same steps as in the frustrated case. First
we analyze the minimum energy and minimum topological energy (the maximum topological
energy has no relevance to the analysis, once again, and is given byvTmax = 4+3h).

vmin(J) =











−4−h, 0≤ h≤ 2, ferrimagnetic phase,

−h2

4 −5, 2≤ h≤ 6, spin-flop PT ath= 2,

4−3h, h≥ 6, fully polarized.

(2.38)

vTmin =

{

−4−h, if 0 ≤ h≤ 4,

4−3h, if h> 4.
(2.39)

These results indicate that a discontinuity in topologicalinvariants must exist atvTmin for 2<
h< 6.

In order to compute the Euler characteristic and jacobian densities, the treatment is entirely
analogous to what was made in the previous case: the isolatedcritical points are determined by
the same conditions (angles equal to 0 orπ), and therefore their multiplicity is the same. The
index,k(nπA,nπB,h), is

k(nπA,nπB,h) = indA(nπA,nπB,h)+ indB(nπA,nπB,h), (2.40)

where

indA(nπA,nπB,h) =











nπA, if h> 4(1− 2nπB
Nc

),

Nc−nπA, if h< 4(1− 2nπB
Nc

),

0, if h= 4(1− 2nπB
Nc

).

(2.41)

indB(nπA,nπB,h) =











nπB, if h> 2(1− 2nπA
Nc

),

Nc−nπB, if h< 2(1− 2nπA
Nc

),

0, if h= 2(1− 2nπA
Nc

).

(2.42)

The critical energy values are:

v(nπA,nπB) = 4

(

1− 2nπA

Nc

)(

1− 2nπB

Nc

)

−h

[(

1− 2nπB

Nc

)

+2

(

1− 2nπA

Nc

)]

. (2.43)

As a result we have that the Morse numbers are simply:

µk(v) = ∑
v(nπA,nπB)≤v

k(nπA,nπB,h)=k

(

Nc

nπA

)(

Nc

nπB

)

, (2.44)
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since the multiplicity of critical points with the parameters nπA andnπB is
( Nc

nπA

)( Nc
nπB

)

. These
results are enough to obtain the Euler characteristic as a function of energy. The analysis of the
Hessian matrix diagonal elements at the isolated critical points described above gives also the
jacobian density. Both of these functions are shown in Figure2.11:logarithmic density of the
Euler characteristic in (a), jacobian density in (b), as well as the energies of the ground state,
vmin(J), and the minimum topological energy,vTmin(J) as functions of the magnetic field in (c).

Figure 2.11 Mean fieldAB2-XY model in a field. (a) Logarithmic density of the absolute value of the
Euler characteristicvs.energy. (b) Jacobian density of critical pointsvs.energy. (c) Minimum energies,
and minimum topological energyvs. the magnetic field. From Ref. [8].

Notice that the simultaneous occurrence of a cusp-like behavior and divergence of the jaco-
bian density happens only forh= 0, precisely at the critical energy value corresponding to the
finite temperature phase transition of this model (which happens in finite temperature only for
the).

2.3.3 Conjecture

Ref. [16] treats also the mean field XY model in a linear chain, and it is once again found that
the finite temperature transition of the model corresponds to the simultaneous presence of a
cusp-like behavior of the logarithmic density of the Euler characteristic as a function of the
energy, and the divergence of the jacobian density as a function of the energy, both happening
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at the critical energy value associated to the finite temperature phase transition, as shown in
Figure 2.12. These results motivated the authors to formulate the following conjecture:

A necessary and sufficient condition for the occurrence of a finite-temperature topology-
induced phase transition is that the the Euler characteristic must exhibit a cusp-like pattern,
and, moreover, the jacobian density of critical points diverges at the critical energy [16].

Figure 2.12 Mean field XY model in a field on the linear chain. (a) Logarithmic density of the absolute
value of the Euler characteristicvs. energy. (b) Jacobian density of critical pointsvs. energy. (c)
Minimum and maximum energies, and topological energiesvs. the external field. From Ref. [8].

2.4 Perspectives on the Discrete Case

Up to this point we have considered many models where the configurational variables entering
in the potential energy are continuous. This property allowed the conversion, through Morse
theory, of the problem of a topological approach to phase transitions to a mathematical analysis
problem of calculating properties related to the critical points of the potential energy. Neverthe-
less, many relevant models are left out by this procedure, e.g., discrete spin models, such as the
Ising model, or theq-state Potts model. The principal aim of this Master’s project was to con-
sider how the topological approach should be considered forsuch discrete spin models. Due to
its fundamental relevance in statistical mechanics, the Ising model was chosen, and the student
was only able to provide original results for the 1d case, in the presence of a field, which are
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presented at the final chapter of this dissertation. The approach undertaken in the Ising chain is
fundamentally motivated by the consideration of a topological quantity associated to the spins
of aq-state Potts model and Ising model with arbitrary spin: the Euler characteristic, introduced
in Refs. [9, 44], and a conjecture for this quantity, arising from numerical simulations, related
its behavior to the occurrence of a phase transition at the associated critical temperature. This is
very similar to the usual topological approach to phase transitions considered until now: intro-
duce a topological quantity, and expect to determine a relation between its functional behavior
with temperature or energy, and the presence of a phase transition in the model.

This section will explain the Euler characteristic, as defined in Refs. [9,44], and the results
that led to the conjecture relating its behavior to a phase transition in the Ising model with
arbitrary spin.

2.4.1 Clusters Topology, Euler Characteristic and Phase Transitions

As we have remarked while describing the theory of phase transitions in the last chapter, the
analysis of clusters play a major role in the description of aphase transitions. Criticality may be
understood in terms of them: clusters of all length scales are present in the system, so that cor-
relations propagate throughout the entire system, since each scale correlates to the next higher
order scale, and therefore the correlation length becomes infinite at criticality. Furthermore,
cluster analysis is the key point in the Peierls argument, asdescribed briefly on the previous
chapter. In the particular problem of sites or bond percolation on infinite lattices, cluster analy-
sis plays a major rule through the observation of the mean number of clusters, which, for infinite
lattices, are written in terms of a series expansions on the probability of site occupation (den-
sity). These series may possess a very interestingmatchingproperty, which relate their high
density expansion to the low density expansion through a matching polynomial. This property
depends on the graph considered, and the introduction of theEuler characteristic proves useful
in determining the matching polynomial [45], and thereby the critical percolation probability
can be determined for certain lattices.

The Euler-Poincaré characteristic is a topological invariant, i.e., invariant through homeo-
morphisms, which can be defined in several manners. It was first considered in the solution of
theProblem of the Seven Bridges of Königsberg(see Figure 2.13), where it is useful in proving
that a necessary condition for a connected graph to have anEulerian path(a path that visits
each edge exactly once) is that it must have at most two vertices of odd degree (Euler proved
also that a sufficient condition is that all vertices must have even degree, and thereforeEulerian
graphsare nowadays characterized by this condition; they arise naturally in the 2d Ising model,
as we shall see in the next chapter). This is considered to be the first theorem in graph theory!

In terms ofsimplicial complexes, Euler characteristic can be defined in a very simple man-
ner. First let us define what a simplicial complex is. It is useful to think of it as a generalization
of the concept of graph to higher dimensions. While a graph is characterized by its vertices
and edges, which are the connections between vertices, a simplicial complex is characterized
by a collection ofk-simplices, wherek refers to the dimensionality: 0-simplices arevertices;
1-simplices areedges; 2-simplices arefaces, and so on. The boundary of eachk-simplex is
composed of(k−1)-simplices (as the boundary of edges are vertices in graphs). A simplicial
complex is therefore a collectionk-simplices with the associated connectivity relations (which
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Figure 2.13 Is it possible to walk through all the bridges visiting each one exactly once?

give the notion of neighborhood for this special kind of topological space). Given a simplicial
complexS, let Sk denote the number ofk-simplices. The Euler characteristic of the simplicial
complexS is:

χ(S) = S0−S1+S2− . . .+(−1)nSn. (2.45)

This is a useful expression for calculating this quantity, and have a natural combinatorial in-
terpretation, however, in order to prove that this is a topological invariant, and to give a more
topological characterization of it, it is also useful to prove that the following relation holds:

χ(S) = b0(S)−b1(S)+b2(S)− . . .+(−1)nbn(S), (2.46)

wherebk(S) denotes the rank of thek-th homology group ofS(in a similar fashion, the number
Sk is the rank of thek-th chain group associated toS, since thek-simplices of a simplicial com-
plex constitute a base for thek-th chain group); they constitute theBetti numbersassociated
to the simplicial complexS. These numbers characterize important topological properties of
the space:b0 gives the number of connected components;b1, also termedconnectivity num-
ber, gives the largest number of closed curves that do not dividethe space into two or more
disconnected pieces (For an account on these results see Refs. [46,47]).

Refs. [9, 44] considered, respectively, theq-state Potts model and the arbitrary spin Ising
model, on the square lattice, which are given by the following energies:

Eq−Potts
Λ =− ∑

<σi ,σ j>∈Λ
δσi ,σ j , (2.47)

whereσk belongs to the set ofq possible ’colors’{1,2, . . . ,q}, andΛ ⊂ Z
2.

EQ−Ising
Λ =− ∑

<σi ,σ j>∈Λ
σiσ j , (2.48)



48 CHAPTER 2 TOPOLOGY AND PHASE TRANSITIONS

whereσk belongs to the set ofQ+1 possible spins{−Q,−Q+2, . . . ,Q}, andΛ ⊂ Z
2.

Notice that these models coincide forq= 2, Q= 1, and this special case is of fundamental
relevance for statistical mechanics, as emphasized in the first chapter. Both models exhibit a
phase transition for varying values ofq or Q. It is rigorously proved [48] that, for theq-state
Potts model in 2 dimensions, for 2≤ q≤ 4, there occurs a second order transition, and ifq≥ 5,
the transition is first order: the mean energy becomes discontinuous at a critical temperature.
This critical temperature is rigorously proved to beTc = 1/ ln(1+

√
q). On the other hand, the

Q-Ising model also exhibits a phase transition∀Q ≥ 1 at critical temperaturesTQ
c satisfying

TQ
c ≥ T1

c , ∀Q, as proved in Ref. [49].
The introduction of the Euler characteristic in these models is natural, once we think about

the random microcanonical configurations: there will be random clusters, and in order to exam-
ine them more closely we can think of them as random simplicial complexes, as illustrated in
Figure 2.14, simply consider the vertices (0-simplices) with the same color (or spin), the bonds
(1-simplices) between two vertices with the same color, andthe plaquetes (2-simplices) limited
by these bonds, i.e., having all the four vertices of the samecolor. Such simplicial complexes
give rise to an Euler characteristic associated to each microcanonical configuration. According
to the prescriptions of statistical mechanics we know how tomeasure the probability of any
given microcanonical configuration, therefore we know a wayto compute the average of such
quantity.

Figure 2.14 A simplicial complex with 25 vertices, 19 edges and 2 faces in the square lattice,this can
be thought as a random cluster arising in a microcanonical configuration of a q-Pott or aQ-Ising model.
From Ref. [9].

Numerical simulation has been performed for theq-state Potts model near the critical tem-
perature in Ref. [9], and it is remarkably shown that while there is a second order transition the
average Euler characteristic vanishes at the corresponding critical temperature, while for the
first order transition cases, this average changes sign, exhibiting a discontinuity at the critical
temperature.

For theQ-Ising model, numerical simulations show that the average Euler characteristic in
the canonical ensemble is nonvanishing forβ < βc, while it vanishes identically forβ ≥ βc [44].
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This led the authors to formulate the following conjecture:
In the thermodynamic limit, the average Euler characteristic per site in the canonical en-

semble,χ(β ) is such thatχ(β )> 0, for β < βc, andχ(β ) = 0 for β > βc.
The fact that this was a conjecture based on numerical simulations motivated the search for

a theoretical proof of it during my Master’s project work. Unfortunately I was only able to treat
the 1d case. This led me naturally to consider combinatorialmethods to treat the Ising model,
and I will review in the next chapter a brief account on the existent combinatorial approaches
to this model in various dimensions.





CHAPTER 3

Combinatorics of the Ising Model

In this chapter we review partially the combinatorial perspective already found in the literature
for the Ising model. Due to its discrete nature, both for the fact that it is defined on a lattice,
as well as for its configurational variables (the spin variables, σi) being discrete valued, it is
to be expected that combinatorics plays a crucial role in theunderstanding of this model. We
present first a general elucidation of this fact in arbitrarydimensions, for a regular lattice with
z nearest neighbors per site [50]. Thereafter we present a combinatorial approach to the Ising
chain following Ref. [21]. Finally we present the combinatorics exploited in the solution of the
2D Ising models relating it to the problem of dimer coverings[51].

3.1 General Case

For an arbitrary lattice, we may define discrete parameters characterizing the microcanonical
configurations:N+(N−) is the number of sites with spins+ (−); N is the total number of sites;
N+− is the number of n.n. bonds with opposite spin variables.N++(N−−) is the number of
bonds between n.n. such that both vertexes have spins+ (−).

Notice the trivial (and useful) relations:∑i σi = N+−N−, and∑<i, j>σiσ j = N+++N−−−
N+−. These can be simplified by noting that the variables are not independent, sinceN =
N+ +N−, and for periodic boundary conditions (P.B.C.):zN+ = 2N++ +N+−, andzN− =
2N−−+N+−. Such relations are proved as follows. Imagine we mark the bonds connecting
the sites with a+ spin, and count how many marks we do in such a procedure. We thus obtain
the first equation; indeed the left side comes from the fact that there arez bonds arising from
any lattice site, givingzN+ marks, while the right side comes from the fact that theN++ bonds
contribute twice to the total number of marks, giving the term 2N++, while theN+− bonds
contribute just once, givingN+− to the total number of marks. The second equation is obtained
by the same reasoning. Therefore it follows that

∑
<i, j>

σiσ j = N+++N−−−N+− =
z
2

N−2N+−, (3.1)

and we can clearly see now that the spin interaction term of the energy is dependent only on the
number of bonds between opposing spins, for PBC and an arbitrary lattice. Considering further
an external magnetic field, we must consider the term

∑
i

σi = N+−N− = 2N+−N, (3.2)

51
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therefore in order to solve the microcanonical density of states for the Ising model in the pres-
ence of a field, in any lattice, we must solve the combinatorial problem of enumerating the
number of states for fixed values ofN,N+ and N+−. This problem is by no means simple
already in 2d, e.g., for the square lattice, where no solution exists for arbitrary external field
(which adds the dependence onN+). In the next section we present a solution to this problem
given in 2005 for the 1d case [21]. As a matter of fact, we did solve this case without knowl-
edge of this solution and we also give an alternative approach to it in the final chapter where
we present our results. Finally, it seems appropriate to present here the crucial idea linking
the development above to our original solution of the canonical ensemble, in counterpart to
the usual transfer matrix approach (purely algebraic). As noticed above, we have rewritten the
energy in terms of fewer variables:

E =−J ∑
<i, j>

σiσ j −h∑
i

σi = 2JN+−− (h+
zJ
2
)N++(h− zJ

2
)N−, (3.3)

as a consequence, the canonical partition function is also rewritten as

Z = ∑e−βE = ∑
N+,N−,D

W(N+,N−,D)aN+−uN+dN−, (3.4)

where
a= e−2βJ, u= eβ (h+ zJ

2 ), d = e−β (h− zJ
2 ). (3.5)

The expression above for the canonical partition function elucidate an alternative approach for
computing it: we must solve the combinatorial problem of determining the microcanonical
ensemble from the enumerating generating function approach, once we introduce the variables
a, u andd. This goal was accomplished for the simple 1d case under PBC and FBC, and is
presented in the final chapter of this work. As far as we know, no other work is published
using this approach. On the other hand, this way of viewing the partition function as certain
generating function of a combinatorial problem, is by no means original. As we will see in the
final section of this chapter, it is exactly this property of the partition function that is the key to
the combinatorial approach in two dimensions.

3.2 1d Case

Despite the old age of the 1d Ising model, a complete characterization of the statistics of its
domains was not present in the literature until the recent work [21], as remarked by the au-
thors. Such an analysis necessarily involves a combinatorial approach, and Ref. [21] gives the
enumeration of states, considering FBC, by fixing the number of: spins up,s, up domains,p,
and domain walls,k, as well as the size of the first up domain,l . The number of such states is
termedKN(s, p,k, l). For a chain of sizeN it is proved that

KN(s, p,k, l) = (1+δk,2p−1)

(

s− l −1
p−2+∆spkl

)(

N−s−1
k− p

)

, (3.6)
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where∆spkl= δs,0δp,0δk,0δl ,0, andδi, j is the Kronecker symbol. Considering that the energy of
the model is given only by nearest neighbor exchange interactions, and imposing FBC, it can
be written as

EN({σi}) =−J
N−1

∑
j=1

σiσi+1 =−J(N−1)+2Jk, (3.7)

and therefore the probability of any configuration withk domain walls in the canonical ensem-
ble is

WN(k) =
1

ZN
eβJ(N−1)−2βJk, (3.8)

where the partition function is well known to beZN = 2N cosh(βJ)N−1. These results imply
that any of the configurations characterized by the variables s, p, k andl , defined above, occur
with a probability:

PN(s, p,k, l) =WN(k)KN(s, p,k, l). (3.9)

By a careful sum over the variabless, p, k or l it is possible to obtain other joint probability
functions in fewer variables. The distribution fork is binomial:

PN(k) =

(

N−1
k

)

rk(1− r)N−1−k, (3.10)

wherer = (1+e2βJ)−1, and therefore the average and variance of the number of domains are:

< k>= (N−1)r, σ2
k = (N−1)(1− r)r. (3.11)

We emphasize here that our original solution of the Ising chain enables us to generalize the
result above for non-zero field. From this point, the authorsmake an interesting remark. If
βJ is large we have that< k >≈ (N− 1)e−2βJ, therefore if we require that< k >≪ 1, we
must have 2βJ ≫ lnN, which is a requirement for the system to be magnetized. In fact, this
guarantees that the system will be in one of the two statesσi = +1 or σi = −1 for all i. It
is possible to estimate the transition time between these statesτtr , using the Arrhenius-Neel
law [52], by considering the Ising chain as a limit of the classic Heisenberg model with strong
uni-axial anisotropy. This argument givesτtr = τ0e(N−1)β∆U , whereτ0 is the spin precession
time, and∆U is the height of the potential barrier between two equilibrium directions of each
spin. Therefore asT → 0 we see thatτtr → ∞. We conclude therefore that, for finiteN,
there exists a range of low temperatures where< k>≪ 1 andτtr ≫ τm, i.e., the transition time
between the two possible magnetized states is much larger than the measurement timeτm, so the
system is considered to be ferromagnetically ordered. Notice further that the thermodynamic
limit breaks down this argument, since the condition< k>≪ 1 will be only satisfied forT = 0,
and therefore ferromagnetic order will exist only forT = 0 in infinite chains, as required by the
Landau argument presented in chapter 1.

The joint probability function expressed in Eq. (3.9) is used to determine two more inter-
esting distributions: the distribution of the number of domains upPN(p), and the distribution
of the size of a domainPN(l):

PN(p) =
1
2

2

∑
n=0

(1+δ1,n)

(

N−1
2p−n

)

r2p−n(1− r)N−1−2p+n, (3.12)
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termed by the authors amodified binomial distribution, from which the average and variance
are given by:

< p>=
1
2
+

1
2
(N−1)r, σ2

p =
1
8
+

1
4
(N−1)(1− r)r +

1
8
(1−2r)N−1. (3.13)

By the same token

PN(l) =

{

(1− r)N−1/2, l = 0, l = N,

r(1− r)l−1, 1≤ l ≤ N−1,
(3.14)

termed by the authors afinite geometric distribution, from which the average and variance are
given by:

< l > = 2−Nr(1−r)N−1−2(1−r)N

2r ,

σ2
l = 1−r

r2 − (N
2 )

2[2+(1− r)N−1](1− r)N−1+

−N[1−2r +(1− r)N] (1−r)N−1

r +[r − (1− r)N] (1−r)N

r2 .

(3.15)

3.3 2d Case

Originally, the first computation of the canonical partition function of the 2d Ising model, pro-
posed by Onsager in 1944 [30], was given for the zero externalfield case on a square lattice,
with two coupling constants along the vertical and horizontal bonds. This solution is gener-
ically referred to as atour de force, due to its intricate and extensive nature. Onsager ap-
proach was purely algebraic, and did not rely on combinatorics. A few years later, in 1952,
Kac and Ward [53] proposed an alternative combinatorial computation of the partition func-
tion. Later, another combinatorial formulation in terms ofPfaffians, provided by Kasteleyn
and Fisher [51,54], related the Ising model to a dimer covering problem. The original intricate
algebraic approach, based on the introduction of the transfer matrix, was later given greater rel-
evance through a paper by Schultz, Mattis and Lieb [55], where a relation between the 2d Ising
model and a many-fermions system is given. Nevertheless, the Pfaffian formulation is also
amenable to a formulation in terms of grassmann integrals which naturally maps this model to
a system of noninteracting fermions [56,57].

A combinatorial approach to the Ising model is done through the following observation
about the Boltzmann factor:

eβJσiσ j = cosh(βJ)(1+σiσ j tanh(βJ)), (3.16)

which is clearly true sinceσiσ j = ±1. Therefore, the partition function can be rewritten as a
generating function ofadmissible subgraphs, as proven first by Van der Waerden [58]:

Z = ∑
±1

∏
<i, j>

eβJσiσ j = cosh(βJ)|B|2N2 1

2N2 ∑
±1

∏
<i, j>

(1+σiσ jt)

Z = cosh(βJ)|B|2N2
E (t). (3.17)
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|B| is the number of bonds in the lattice. The functionE (t) is a generating function for the
number of graphs in the lattice which areEulerian, i.e., all of its vertices have even degree (as
remarked in the previous chapter). In fact, the sum over all the possibilities forσi will vanish, if
it appears with an odd power as a result of the products shown above, therefore it must appear
only in even powers, and hence will contribute with a factor 2after summation (this explains the
introduction of the overall normalization factor in the sum1/2N2

). Consequently, the expansion
in powers ofE (t) has the significance that the coefficient oftn is the number of even subgraphs
of the lattice withn bonds. With a knowledge of the final answer needed by this problem, solved
years before by Onsager, Feynman proposed a conjecture of anidentity relating this generating
function to an expansion over weighted paths in the lattice,which was later proved by Sherman
[59]. We will not follow this solution (very well explained in Ref. [60]), and instead we will
consider the relation of this problem to the problem of dimercovering or perfect matchings,
solved by the Pfaffian method. We follow the excellent explanations of Refs. [10,61].

Given a graphG(V,E), associate to each edgee∈ E a weightwe (which do not need to
assume numerical values, rather can be only a formal variable, this enables algebraic manipu-
lations to be performed, and ’combinatorial information’ is carried with them), so that we can
’mark’ any subgraphG′(V,E′) of G by the product:

wG′ = ∏
e∈E′

we. (3.18)

Such marks can be suitably used for a enumerating purpose by considering polynomials in
these weights, namely, generating functions:

F(w) = ∑
G′

wG′ , (3.19)

where we mean byw all the weights given to the edges inG. Now, if we give anorientation
to the edges ofG, we can consider the associated skew-symmetric|V| × |V| matrix, T(w),
called theTutte matrix, which stores all the combinatorial information given by the weights
and orientations ofG:

Ti j (w) =











we, if e= (i, j)

−we, if e= ( j, i)

0, otherwise

(3.20)

Let us define what is the dimer covering problem onG. A dimer covering ofG is a selection
of its edges such that every vertex ofG belongs to exactly one edge selected (thus the covering
will be possible only for an even number of vertices), when this happens we say that we have
a perfect matchingof G. The dimer covering problem consists of enumerating all thepossi-
ble dimer coverings ofG. Notice that each covering by dimers can be viewed as a subgraph
G′(V,E′) of G, and therefore we can consider the generating function of equation (3.19) for all
possible coverings. Notice further that each perfect matching of G corresponds to abipartition
of G (i.e., a partition of its vertex setV = V1∪̇V2 and corresponding selection of a subset of
edges with vertices in each of these subsets) such that everyvertex has degree one.

The enumeration of dimer coverings can be solved by usingPfaffians: for planarG, the
generating function of dimer coverings can be written as thePfaffian of the matrix defined
above, once we give a correct orientation toG. This was first proved by Kasteleyn [51].
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The Pfaffian of a skew-symmetric matrix of even order,T(w), is the polynomial:

pfT(w)
2 = |det(T(w))|. (3.21)

Another definition is the following: for each perfect matching ofG, M = {e1,e2, . . . ,ek}, where
ei = (ui ,vi), let π(M) denote the product of the corresponding Tutte matrix elements,π(M) =
Tu1,v1Tu2,v2 . . .Tuk,vk; furthermore, let sgn(M) denote the sign of the permutation(u1,v1,u2,v2, . . . ,uk,vk),
which is well defined since a change in the order of the elements in M will correspond to an
even number of transpositions in the permutation. Therefore each perfect matching ofG de-
termines the functionsπ(M) and sgn(M), from which we define the Pfaffian of the weighted
digraph(i.e., oriented graph)G as the polynomial:

pfG(w) = ∑
M

sgn(M)π(M), (3.22)

where the sum is taken over all perfect matchingsM of G. It follows from this definition that
if the Tutte polynomial vanishes (in the sense of the polynomial being identically zero), no
perfect matchings ofG exist.

Notice that while one definition of the Pfaffian refers to a skew-symmetric matrix, the other
one refers to a weighted digraph. Naturally, the question arises when both definitions are
equivalent. This happens precisely if there exists an orientation ofG that gives the same sign to
all the terms in the determinant expansion. An orientation with this property is termed aPfaffian
orientation. Therefore, given a weighted digraph,G, and its corresponding Tutte matrix,T, the
following relation holds ifG admits a Pfaffian orientation:

pfG(w)
2 = pfT(w)

2 = |det(T(w))|. (3.23)

A general characterization of graphs that admit Pfaffian orientations is not known, however, as
remarked above, Kasteleyn proved that all planar graphs admit Pfaffian orientations, and this
result was crucial in order to solve the dimer covering problem.

Figure 3.1 The decorated lattice to be considered in order to map the Ising model on a problem of dimer
coverings. From Ref. [10]

The Ising problem on the square lattice,G= Lm,n (mby n lattice), which we showed above
that is equivalent to a problem of finding the generating function of Eulerian paths, is mapped
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into a dimer covering problem by considering a decoration ofthe square lattice,Gt , where each
vertex is substituted by the complete graph on 4 vertices,K4, as ilustrated in Figure 3.1. We
denote the original edges ofG in the decorated latticeGt as theexternaledges, while those
inside eachK4 of Gt are theinternal edges. The mapG→ Gt allows us to turn Eulerian paths
on G into perfect matchings ofGt , simply by mapping the edges of the Eulerian path into the
corresponding external edges ofGt , and by selecting the remaining internal edges of theK4 that
will connect vertices not yet connected in order to obtain a perfect matching; that this can all
always be done is clear, since vertices that belong to an Eulerian path ofG must, by definition,
have even degree, therefore, eachK4 in the decorated lattice corresponding to a vertex of the
Eulerian path will have either all of its 4 vertices already belonging to some edge (this means
that the vertex ofG corresponding to thisK4 has degree 4), or else 2 of its vertices already
belong to some edge (this means that the vertex ofG corresponding to thisK4 has degree 2)
and we must connect the unique internal edge remaining in this K4 in order to match these 2
remaining vertices; nonetheless this correspondence cannot be one-to-one: the isolated vertices
of G will give rise to aK4 in Gt for which we can have three possible choices of pairs of edges
in order to get a perfect matching. This entire discussion isvery easily understood by looking
at Figure 3.2, where we show a map of an Eulerian path ofG into Gt .

Figure 3.2 Map of an Eulerian path ofG into Gt . Bold lines inGt represent the edges of the Eulerian
path after we decorate the lattice; dashed lines represent the possible choice of internal edge in theK4 in
order to complete the perfect matching. Notice further that isolated sites inG are mapped into isolated
K4 in Gt : the selection of internal edges is not unique in order to obtain a perfect matching inGt . From
Ref. [10]

The non-uniqueness of choice of matching in an isolatedK4 is a trouble which we can get
rid of very easily: we give an orientation to eachK4 that will take into account just one choice
of matching in the resulting generation function, while canceling the other 2 possible choices.
The remaining edges ofGt , namely the external edges, must have an orientation that will make
the overall orientation forGt Pfaffian. This is done by letting all the external vertical edges to
point in a same direction, and all the external horizontal edges also. This Pfaffian orientation is
shown in Figure 3.3.

By assigning weights 1 in the unoriented internal edges ofGt , and t in the unoriented
external edges ofGt , we can construct the Tutte matrix corresponding to the weighted oriented



58 CHAPTER 3 COMBINATORICS OF THE ISING MODEL

Figure 3.3 A Pfaffian orientation forGt that gets rid of the degeneracy of perfect matchings correspond-
ing to a given Eulerian path ofG. From Ref. [10]

graphGt , with the orientation illustrated in Figure 3.3. This Tuttematrix solves the problem of
determining the Eulerian paths generating function for this lattice and we have the following
result (proven rigorously in [10]):

E (t) = |det(T(t))|1/2 (3.24)

The computation of this determinant is an open problem for open boundary conditions. Im-
position of toroidal boundary conditions (periodicity in the horizontal and vertical directions),
turns the corresponding Tutte matrix determinant manageable. However the result above de-
pends on the lattice considered, and, by changing the lattice, another proof of the result above is
required. Since the interesting physics appears by lettingthe lattice become infinite, i.e., impos-
ing boundary conditions, it follows that indeed another proof of the result above is not indeed
necessary: boundary condition effects disappear with the thermodynamic limit in this case. An
extensive algebraic analysis is required at this point, culminating with Onsager’s famous result:

Theorem 3.3.1. (Onsager)The partition function of the 2d Ising model onZ2 is given by

lim
n→∞

ln(Z(βJ))
n2 = ln2+

1
2(2π)2

∫ 2π

0

∫ 2π

0
Q(βJ,φ1,φ2)dφ1dφ2, (3.25)

where
Q(βJ,φ1,φ2) = ln

[

cosh(2βJ)2−sinh(2βJ)2(cosφ1+cosφ2)
]

. (3.26)



CHAPTER 4

Ising Chain in a Field: Combinatorics and
Topology

A topological approach to phase transitions in discrete phase space models was sought in the
beginning of this research, as a complement to the well studied continuous counterpart, briefly
exposed in chapter 2. As a result we have obtained a careful analysis of the Ising chain in
a field, where many interesting features are unveiled, despite the deceptive simplicity of the
model.

In chapter 2 we have seen that the topological approach to PT is based on Morse theory
tools [42] to calculate topological invariants as a function of the energy, such as the Euler char-
acteristic, in models with a continuous phase space. In fact, the critical points of the configura-
tional energy are necessary for a proper description of the energy landscape [43] of continuous
models. Notwithstanding, not much emphasis has been given to the analysis of such a topo-
logical approach on discrete phase space models, in which case the classical Morse theory and
the familiar methods of differential geometry are not directly applicable. Moreover, it is well
known that the isolated critical points of several continuous spin models [?,?, 12,16] are Ising
configurations. This feature unfolds the relevance of the microcanonical approach to the Ising
model.

In this work, we use a distinct topological approach to PT, which is suitable to discrete
models [9,44], although some analogies with the continuouscase are apparent, as discussed in
Section 2.C. In the discrete case, the average Euler characteristic, which was studied in the con-
text of the canonical ensemble [9, 44], is defined here through microcanonical configurations,
rather than looking at the equipotential submanifolds. As is remarked in Ref. [9], the consider-
ation of such a topological quantity was already useful in the theory of percolation [45]. Here,
we compute the average Euler characteristic of the Ising chain in the presence of a field [35],
which is shown to be equal to the number of domains in the chain. A throughout combinatorial
treatment of the statistics of domains in this model has beenput forward [21]. In fact, combina-
torics has proved very useful for a geometrical and topological characterization of the partition
function in two [53] and three [62] spatial dimensions. In the same token, we approach the one
dimensional (1d) case using generating function methods, from which the equivalence of en-
sembles becomes evident. This procedure also allows the computation of the thermal average
value of the Euler characteristic.

This chapter is written as follows: In section 4.1.1 we present the microcanonical solution
to the Ising chain in a field, including the computation of theentropy for open boundary con-
ditions. We point out that, although the authors in Ref. [21] have not included the magnetic
field contribution to the energy, his results for the multiplicity of states are equivalent. In sec-
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tion 4.1.2 we discuss that for ferromagnetic coupling and negative temperature, there appears a
residual entropy for critical field values. This is verified in many variants of the Ising model, in
particular for anti-ferromagnetic coupling and positive temperatures, including the 1d [63, 64]
and 2d [65] cases. On the other hand, models with competing interactions also exhibit this
behavior for critical values of the ratio of competing coupling constants, as studied in 1d [66],
2d [67] and 3d [68] systems; a residual entropy can also appear due to geometric frustration
in the model, as in the well known case of the triangular lattice [69], as well as in magnetic
systems with the pyrochlore structure, generically calledspin ice [70] due to the similarity with
Pauling’s description of the residual entropy of ice [71]. Here, we present a topological in-
terpretation for the emergence of a residual entropy at the critical fields. In section 4.1.3, we
introduce the Euler characteristic, defined for each microcanonical configuration of the chain.
This definition is motivated by a restriction of the one givenon the 2D case [9, 44]. In section
4.2.1 we solve the canonical partition function from our combinatorial solution by interpreting
it as the generating function associated with the combinatorial problem for determining the mi-
crocanonical density of states. We also analyze finite-sizeeffects on the canonical free energy
under free and periodic boundary conditions. We stress thatalthough much effort has been
made to provide a combinatorial approach [53,59] to the Onsager algebraic solution [30,48] of
the 2d case in zero field, little attention to such a solution has been devoted to the Ising chain
in a field, where the usual approach is to solve the model directly in the canonical ensemble by
the transfer matrix method. In order to achieve the expectedequivalence of ensembles we must
consider the negative temperature range [27], as in the caseof a two-level system, which hap-
pens to map on the Ising chain in zero field. In section 4.2.2 the thermodynamics of the model
is analyzed, and the Euler characteristic thermal average per site is exactly computed. As re-
marked before, this quantity satisfies the expected result posed as a conjecture:〈χ〉(TC) = 0,
whereTC = 0 is the critical temperature.

4.1 The Microcanonical Ensemble of the Ising Chain in a Field

A. Combinatorial Solution

The energy functional of the Ising chain is given by

E(σ) =−J ∑
<i, j>

σiσ j −h∑
i

σi , (4.1)

where the summation is over nearest neighbor (n.n) sites,σi = ±1 is the spin variable on site
i, h is the external field, andJ is the exchange interaction constant. We define the often used
discrete parameters, characterizing the microcanonical configurations:N+(N−) is the number
of sites with spins+ (−); N is the total number of sites;N+− is the number of n.n. bonds
with opposite spin variables.N++(N−−) is the number of bonds between n.n. such that both
vertexes have spins+ (−).

Such definitions allow us to rewrite the energy as a function of fewer variables [35, 50],
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for we have the trivial relations:∑i σi = N+ −N−, and ∑<i, j>σiσ j = N++ +N−− −N+−.
These can be simplified by noting that the variables are not independent, sinceN = N++N−,
and for periodic boundary conditions (PBC): 2N+ = 2N+++N+−, and 2N− = 2N−−+N+−.
Such relations are proved as follows. Imagine we mark the bonds connecting the sites with
a + spin, and count how many marks we do in such a procedure. We thus obtain the first
equation; indeed the left side comes from the linear chain topology, since each site with a+
spin contributes twice to the total number, giving 2N+, while the right side comes from the
fact that theN++ bonds contribute twice to the total number of marks, giving the term 2N++,
while the N+− bonds contribute just once, givingN+− to the total number of marks. The
second equation is obtained by the same reasoning. For free boundary conditions (FBC) we
must be more careful, and we shall separate the analysis in three different cases according to
the kind of spin at the beginning and the end of the chain. If both spins are+, we need to
recognize that the connection between the first and last spinis not accounted for inN++, so
that we have: 2N+ = 2N+++N+−+ 2 and 2N− = 2N−−+N+−. By the same reasoning, if
both spins are−, we have: 2N+ = 2N+++N+− and 2N− = 2N−−+N+−+2. Now, if the chain
starts and ends with different spin species, we must recognize that the connection between the
first and last sites is not accounted for inN+−, so that we have: 2N+ = 2N+++N+−+1 and
2N− = 2N−−+N+−+1. In summary:

N+++N−− = N++N−−N+−, for PBC, (4.2)

while
N+++N−− = N++N−−N+−−1, for FBC. (4.3)

Let us now define the number of domains of a given configurationof the chain,D, as the
number of maximal connected pieces of spins of the same species in the chain, i.e., without
bonds between n.n. of different spins. We can relate the number of walls in the chain,N+−,
with its domain number: for PBC, it is clear thatD is always an even number, andN+− = D;
while in the FBC case we have thatN+− = D− 1, and it can have any parity. With such
simplifications, the energy functional (4.1) may be writtenas

EP(N+,N−,D) =−(J+h)N+− (J−h)N−+2JD , for PBC, (4.4)

while
EF(N+,N−,D) = EP(N+,N−,D)−J , for FBC. (4.5)

These expressions have the importance of clearly showing uswhich combinatorial problem we
are concerned with and, by keeping constant the variables appearing on these expressions, we
can enumerate the degeneracy of a level with energyE, i.e., the thermodynamic weight,W(E),
and thus find the microcanonical ensemble solution.

We shall separate the study of the microcanonical solution according to the parity of the
number of domains. Note that for PBC we always have thatD = 2k, k ∈ N, which will be
the case for FBC only if the chain extremities have different spin species; in fact, by closing
the chain extremities in the referred FBC case, we map onto 2k domains under PBC. On the
other hand, under FBC, if the chain’s extremities have the samespin species, we have 2k+1
domains, which, by closing the chain extremities, we map onto 2k domains under PBC.
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Given the above explanation on the connection between the parity of the number of do-
mains and boundary conditions, we shall carry out the solution for the FBC case but, by the
above reasoning, the multiplicity of states for fixed valuesof N+,N− and D, shall be used
also for the PBC case. We thus want to solve the combinatorial problem of determining how
many distinct configurations exist, under fixed values ofN,N+ andD. This was done first by
Ising [35], and more recently in the context of the statistics of domains [21]. Here we present
a similar procedure to achieve the solution to this combinatorial problem and use it to calcu-
late the entropy, its residual value for critical fields, andthe average Euler characteristic over
microcanonical spin configurations. Consider first the caseD = 2k; then,N+ ≥ k = D/2 and
N− =N−N+ ≥ k=D/2. With such conditions satisfied, our combinatorial problem reduces to
analyze the number of different solutions of a system of two equations in nonnegative integer
variables, with each variable being the number of spins in the domainj:







u1 + . . . + uk = N+−k,

d1 + . . . + dk = N−−k= N−N+−k,
(4.6)

whereu j +1,d j +1∈ N∪{0},∀ j, represent the number of spins+ and− in the j-th domain,
respectively. The number of different solutions is simply:

l =

(

N+−1
k−1

)(

N−−1
k−1

)

Θ
(

N+− D
2

)

Θ
(

N−N+− D
2

)

, (4.7)

however, as we have an extra degeneracy given by the choice ofthe kind of spin on the leftmost
domain in the chain, the total number of configurations is

Weven= 2l = 2

(

N+−1
k−1

)(

N−−1
k−1

)

Θ
(

N+− D
2

)

Θ
(

N−N+− D
2

)

. (4.8)

Now consider the caseD = 2k+1. Then, according to our previous reasoning, we must have
the same kind of spin on both extremities of the chain, so thatwe have two possibilities:k+1
domains of spin+ andk of spin−, or vice versa. In the first situation, we have the constraints:
N+ ≥ k+1 = (D+1)/2 andN− = N−N+ ≥ k = (D−1)/2; while for the other possibility:
N+ ≥ k = (D− 1)/2 andN− = N−N+ ≥ k+ 1 = (D+ 1)/2. In the first case, the problem
to find the degeneracy of configurations is equivalent to the problem of finding the number of
solutions of a system of equations similar to (4.6), withk → k+1 only in the first equation.
The multiplicity of states for an odd number of domains is thus

W± =

(

N±−1
k

)(

N∓−1
k−1

)

Θ
(

N+− D±1
2

)

Θ
(

N−N+− D∓1
2

)

, (4.9)

which implies
Wodd=W++W−. (4.10)

It is easily verified that the previous microcanonical solution sums up to give the total
expected number of possible configurations for a chain of size N, i.e. 2N. We simply need to
recall the identity:
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n−k

∑
m=k

(

m
k

)(

n−m
k

)

=

(

n+1
2k+1

)

. (4.11)

Indeed, by summing the degeneracies ofWevenandWodd, given by Eqs. (4.8) and (4.9-4.10),
respectively, first by varying the number of spins over the possible range indicated by the Heav-
iside functions, we find for the cases with even and odd numberof domains:

N−k

∑
N+=k

Weven= 2

(

N−1
2k−1

)

= 2

(

N−1
D−1

)

; (4.12)

∑
N+

Wodd=
N−k

∑
N+=k+1

W++
N−k−1

∑
N+=k

W− = 2

(

N−1
2k

)

= 2

(

N−1
D−1

)

. (4.13)

We notice that the above Ising density of states correspondsto the density of isolated critical
points of the 1d XY model in the zero field limit [?, 14]. Finally, by summing up over the
number of domains we get the expected total number of microstates:

N

∑
D=1

2

(

N−1
D−1

)

= 2N. (4.14)

Lastly, the derived multiplicity of statesWevenandWodd in Eqs. (4.8) and (4.9, 4.10), re-
spectively, can now be used to compute the entropy per site asa function of the energy of the
chain under the chosen boundary condition, i.e.,E = EF(N+,N−,D) or E = EP(N+,N−,D):

SP,F(E/N)

N
=

k
N

ln





 ∑
N+,D

EP,F (N+,N−,D)=E

Wodd+Weven






. (4.15)

We must note that the pigeonhole principle imposes the following restrictions:d/2 ≤ n+ ≤
1−d/2, whered = limN→∞ D/N, andn+ = limN→∞ N+/N, as explicitly shown for finiteN by
the Heaviside functions appearing in the multiplicity of states expressions. Since the energy
is written as a function ofn+ and d, we can represent the configuration space as the two-
dimensional spacen+ vs. d. Therefore, the referred restrictions mean that the allowed spin
configuration are inside the triangular region illustratedin Fig. 4.1 (note that in the lined = 0
only the pointsn+ = 0 andn+ = 1 belong to this domain). So, in order to compute the entropy
in Eq. (4.15) we must sum up microstates corresponding to points inside the triangle of Fig.
4.1 and over isoenergetic levels. Note also that the range ofthe energy per site,e= E/N, is
derived from Eq. (4.5): ifJ > 0,h > 0, the minimum energy level isemin = −(h+ J), with
n+ = N+/N = 1 andd = D/N = 1/N → 0, as shown in Fig. 4.1 by dotted lines for a few
values ofh; while the maximum energy level isemax= J, with n+ = 1/2 andd = 1, if h≤ 2J,
or emax= h− J, with n+ = 0 andd → 0, if h ≥ 2J, as shown in Fig. 4.1 by full lines for a
few values ofh. These results are exact in the thermodynamic limit, with additive corrections
of O(1/N). The results for negative values of the magnetic field (andJ > 0) are completely
analogous, and we infer that the field can induce qualitativechanges in the magnetic behavior of
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the chain; indeed, the maximum value of energy is attained for antiferromagnetic configurations
if |h|< 2J, while, if |h|> 2J, it is attained for ferromagnetic configurations.

We now proceed with the description of the numerical computation of (4.15) under FBC,
with J = 1 andN = 1000: for fixede, we vary the discrete parametersN+,D, and verify if
the corresponding energyeF = EF(N+,N−,D)/N, given by Eq. (4.5), lies within the interval
(e− δe,e+ δe), where we have chosenδe= 0.005. If it does, we sum up the corresponding
multiplicity of states given by Eq. (4.8), forD even, or by Eqs. (4.9, 4.10), forD odd. The
total sum of all the possible multiplicity of states in the energy neighborhood(e− δe,e+ δe)
is the thermodynamic weight of the entropy in (4.15), which is plotted in Fig. 4.2 for various
magnetic field values. We notice that the transfer matrix method [72] has been used to compute
numerically such entropy curves for small values ofN, in 2d.
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Figure 4.2 Entropy per site as a function of the
energy per site, forN = 1000,J = 1,δ (E/N) =
0.005, under FBC for various magnetic field val-
ues.

The branch of high energy values in Fig. 4.2, i.e.,E/N > 0, associated with the decreasing in
entropy, is in the negative range of temperatures, as verified by the relation1

T = ∂S
∂E . Therefore,

we identifyT = 0+ ≡ 0 (T = 0−) with the minimum (maximum) energy level. Notice, how-
ever, that negative temperature states correspond to positive temperature states with reversed
signs inJ andh. Indeed, the Boltzmann factor exp(−βE), and the energy of the Ising chain,
Eq. (4.1), explicitly shows this correspondence: reversing the temperature sign, or rather re-
versing theJ andh signs will give us the same partition function (as we are dealing with a
model with bounded allowed energy states, negative temperatures do not lead to problems with
the convergence of the partition function). The high energystates forJ > 0 correspond there-
fore to low energy states withJ < 0. In fact, the observed residual entropy in Fig. 4.2, for the
critical field h= 2J, corresponds to the well known residual entropy for an antiferromagnetic
Ising chain in the regime of positive temperatures [63,64].



4.1 THE MICROCANONICAL ENSEMBLE OF THE ISING CHAIN IN A FIELD 65

B. Residual Entropy at h=±2J

We see in Eq. (4.4) that the energy per site in the Ising chain for a given chain size, external
magnetic field and coupling constant, is determined by the two parameters:n+ = N+/N and
d = D/N. If e is the energy per site in the thermodynamic limit we have fromEq. (4.4) that

e=−2hn++2Jd− (J−h). (4.16)

Notice that a fixed value ofedefines a straight line whose allowed states are inside the triangle
in the "‘phase space"’ shown in Fig. 4.1, with slopeJ/h. Varying the energy, for a fixed ratio
J/h, corresponds just to a translation of such lines. Furthermore, the entropy is obtained as a
function of energy by taking the logarithm of the total multiplicity of states lying on the overlap
of such lines with the region of allowed microscopic states.Such a perspective of the 2d Ising
microstates is given in a magnetizationversusenergy space in Ref. [73].

Figure 4.3 Configuration spacen+ vs. dshowing the energy contour map for different values of mag-
netic field, and the isoenergetic straight line of maximum energy. Note that ath= 2J the straight line
overlaps with the lower edge of the triangle of allowed states.

From this perspective we can understand what happens to the entropy per site as a function
of energy and plotted for various magnetic fields in Fig. 4.2.For a magnetic field value different
from ±2J, the contribution of each isoenergetic line to the total multiplicity of states per site
becomes arbitrarily small at the points of minimum (T = 0) and maximum (T = 0−) energy,
since the lines pass through the corners of the triangle shown in Fig. 4.3, which displays only
positive field values, but the negative cases are symmetric with respect to the linen+ = 1/2. For
the casesh=±2J these contributions display special behavior when the energy is a maximum,
since in these cases the isoenergetic lines are exactly coincident with the nonvertical equal
edges of the triangle. In fact, the associated multiplicityof states is exponentially large and
gives rise to a residual entropy. We have thus witnessed a topological change at the critical
field h= 2J as shown in Fig. 4.3: the measure of the set representing the overlap of the domain
of available macroscopic states and the maximum energy level (straight line) is non-null.

Interestingly, the multiplicity of states at the two nonvertical sides of the triangle is exactly
the(N+2)-th term of the Fibonacci sequence, and, therefore, the residual entropy per site for
such a magnetic field at the maximum energy is exactly equal tothe golden ratio. One easy
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way to see why the multiplicity of states in this specific situation is given by the terms of the
Fibonacci sequence is to search for the kind of configurations of the chain that maximize the
energy ath= 2J andE = J(−4N++2D+N); notice that 2J is exactly the energy needed to
have a spin with two immediate neighbors of opposing spin. The maximum energyE = NJ
is then attained in this case by those configurations where all spins are down (more generally,
contrary to the field), except for some isolated sites where the spins are up (therefore having the
same sense of the field). Now, for simplicity, assume FBC. Let uscall f (N) the total number
of configurations ofN spins in a chain, where the spins up must be isolated from any other spin
up. It is a simple matter to get a recurrence: if the leftmost spin is not up, there aref (N−1)
ways to organize the remaining of the chain; if it is up, thereare f (N−2) ways to organize the
remaining of the chain, therefore:

f (N) = f (N−1)+ f (N−2) (4.17)

As f (1) = 2 and f (2) = 3, we see thatf (N) will be the (N+ 2)-th term in the Fibonacci
sequence.

It is worth noticing that the residual entropy appearing forthe critical fields in the simple
case of an Ising chain can be made to correspond to residual entropies of more general models.
Indeed, a decimation transformation of decorated Ising models can map them to the simple
Ising chain studied, and by imposing on the effective coupling constant,J∗(T,h), and effective
magnetic field,h∗(T,h), the conditionsh∗ =±2J∗, we obtain curves in theT −h plane where
the system will have a residual entropy. This is the case, e.g., of the AB2 Ising chain in a
field [74], where the decimation of theB sites maps this model on a linear Ising chain in the
presence of an effective field and an effective coupling between theA sites.

C. Euler Characteristic

From Ref. [9], we can consider a very simple definition for the Euler characteristic in the 1D
case: given a configuration of the chain, the Euler characteristic associated with spin+ (−)
sites,χ+ (χ−), is defined as the Euler characteristic of the graph whose vertex set is made of
spin+ (−) sites, and the edge set is made of the bonds of n.n. with spin+ (−) vertex. We thus
have thatχ+ =N+−N++ (χ− =N−−N−−), and using the relations (4.2 , 4.3), it can be written
asχ+ = N+−

2 = D
2 (χ− = N+−

2 = D
2 ) in the periodic case, while for the free case we have three

cases to be considered according to the spin variables on theextremities of the chain:χ+ = D+1
2

(χ− = D−1
2 ), when they are both+ spins,χ+ = D−1

2 (χ− = D+1
2 ), when they are both−, and

χ+ = D
2 (χ− = D

2 ), when they are different. As we obtain a kind of complementary behavior
for the Euler characteristic with respect to+ and− sites, we define the Euler characteristic of
the chain simply as the sum of both:χ = χ++ χ− = D, in all cases equivalent to the number
of domains. Therefore, the Euler characteristic as a function of energy is obtained from the
microcanonical distribution according to the prescription:

χ(Ising)(E) =
1

2N ∑
N+,D

EF ;P(N+,N−,D)=E

D(Wodd+Weven); (4.18)
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which, in zero field reads:

χ(Ising)(E) =
D

2N−1

(

N−1
D−1

)

. (4.19)

With the microcanonical distribution obtained in the last section, it is a simple matter to
obtain numerically the value of the logarithm of the averageEuler characteristic, per site, as a
function of the energy, whose values are just downward shifts of ln(2) on the corresponding
entropy curves for the same chain size, as in Fig. 4.2 (N = 1000).

In the following, an interesting example of the relation between the topological approaches
for phase transitions in models with discrete [9, 44] or continuous [14] symmetry provides a
quantitative basis in the context of the Ising chain and the 1d XY model, respectively. In fact,
for the 1d XY model the Euler characteristic in the zero field limit, χ(XY), is given by [?]

|χ(XY)|= 2

(

N−2
nd

)

, (4.20)

wherend is the number of domain walls, and a domain is defined for contiguous pieces of the
chain where all angles, associated with the isolated critical points of the model [12], are 0 orπ.
The equations above imply

lim
N→∞

ln(χ(Ising))

N
= lim

N→∞

ln(|χ(XY)|)
N

− ln(2). (4.21)

Therefore, in the thermodynamic and zero field limits, the logarithm of the absolute value of
the Euler characteristic, per site, in the XY model is equal to the entropy per site of the Ising
chain, Eq. (4.15), apart from arbitrariness in the choice ofthe coupling constant and the zero
energy level. This result is in general agreement with expectations from the renormalization
group and critical phenomena [?], as well as from connections between discrete and continuous
models in the context of statistical mechanics and quantum field theory [?].

4.2 Equivalence of Ensembles for the Ising Chain in a Field

A. Combinatorial Solution

We first notice the fact that the generating function associated with the combinatorial problem
of determining the microcanonical distribution can be identified with the canonical partition
function of the model:

ZP(N;a,u,d) = ∑
N+,N−,D

WP(N+,N−,D)aDuN+dN−; (4.22)

e−βJZF(N;a,u,d) = ∑
N+,N−,D

WF(N+,N−,D)aDuN+dN−. (4.23)
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Indeed, according to the definition

ZP,F = ∑
N+,N−,D

WP,F(N+,N−,D)e−βEP,F (N+,N−,D), (4.24)

and Eqs. (4.4, 4.5), we identify

a= e−2βJ,u= eβ (J+h),d = eβ (J−h). (4.25)

We have thus provided a combinatorial interpretation for the Laplace transform, Eq. (4.24),
between the canonical and microcanonical ensembles, in agreement with general prescriptions
of statistical mechanics. The aim here is thereby to computethe sums above by examining
the underlying combinatorial problem in light of the theoryof enumerating generating func-
tions [?]. On the other hand, Ising [35] was able to carry out the sum inEq. (4.23) from the
knowledge of the exact format of the power series and by considering the expansion of the
grand canonical partition function in powers of the fugacity z= eβ µ , whose coefficients are the
canonical partition functions for different chain sizes. At some stage of our procedure bellow,
we also compute the grand canonical partition function.

Let us start by analyzing the microcanonical ensemble from agenerating function view-
point. We make use of ‘artificial variables’,xi, for the purpose of indicating how many sites of
the chain exist inside thei-th domain. By this, we mean that a power,xsi

i , indicates that there
aresi sites of the chain inside that domain. Therefore, the function

f (x1, ...,x2k) = (x1+x2
1+ ...)...(x2k+x2

2k+ ...)

=
x1...x2k

(1−x1)...(1−x2k)
,

(4.26)

is such that it combines all the possible termsxs1
1 ...x

s2k
2k , with si ≥ 1, i.e., all the ways of con-

structing chains withsi sites inside of the domaini. For the Ising chain, we see that by impos-
ing x2 j−1 = u andx2 j = d, for 1≤ j ≤ k, the coefficient of the termuN+dN− in the function
g′k(u,d)≡ f (u,d, . . . ,u,d) tells us the number of ways of placingN+ spins+ in k domains and
N− spins− in k domains, where the leftmost domain is of one fixed kind. To account for the
possibility of having the leftmost domain as a+ or− domain, we simply must include an extra
multiplicative factor 2 in our generating function:

g(I)k (u,d) = 2g
′(I)
k (u,d) =

2ukdk

(1−u)k(1−d)k , (4.27)

whose power series expansion generates coefficients associated to termsuN+dN−, symbolically
denoted by

[

uN+dN−
]

g(I)k (u,d), are identified with the microcanonical distributionWevenin Eq.
(4.8):

[

uN+dN−
]

g(I)k (u,d) = 2

(

N+−1
k−1

)(

N−−1
k−1

)

. (4.28)
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We also need to account for the possibility of having the two extremities of the chain with sites
of the same domain type, as these possible configurations arenot counted in the generating
function given above. Therefore, we define:

f2k+1(x1, ...,x2k+1) = (x1+x2
1+ ...)...(x2k+1+x2

2k+1+ ...)

=
x1...x2k+1

(1−x1)...(1−x2k+1)
,

(4.29)

with x2 j−1 = u, for 1 ≤ j ≤ k+ 1, andx2 j = d, for 1 ≤ j ≤ k, thus obtainingg(II )k (u,d) ≡
f2k+1(u,d, . . . ,u,d,u). Alternatively, we can impose thatx2 j−1 = d, for 1 ≤ j ≤ k+ 1, and

x2 j = u, for 1≤ j ≤ k, which impliesg(III )k (u,d) ≡ f2k+1(d,u, . . . ,d,u,d). Therefore, the mi-
crocanonical distributionsW± in Eq. (4.9) are recovered:

[

uN+dN−
]

g(i)k (u,d) =

(

N±−1
k

)(

N∓−1
k−1

)

, i = II , III . (4.30)

Now, we shall allow for all possibilities of domain numbers.Besides this information, we
must also distinguish the PBC and FBC cases: for FBC, the coefficients(II ) and(III ) above are
associated with spin configurations containing one domain more than the configurations related
to the coefficient(I); while, for PBC, all three coefficients are associated with configurations
with the same domain number. Henceforth, we define:

Ξ(I)
F (a,u,d) =

∞

∑
k=1

g(I)k (u,d)a2k =
2αγ

1−αγ
= αγΞ(I)

P (a,u,d); (4.31)

Ξ(i)
F (a,u,d) =

∞

∑
k=0

g(i)k (u,d)a2k+1 =
α(i)

1−αγ
= aΞ(i)

P (a,u,d), i = II , III , (4.32)

whereα(II ) = α =
au

1−u
andα(III ) = γ =

ad
1−d

. On the other hand, the combinatorial problem

subjected to the condition that the chain has a specified size, N = N++N−, can be obtained
by looking at the series expansions of the three contribution for the grand canonical partition
functions,Ξ(I),(II ),(III )

P,F (a,zu,zd), in powers of the fugacityz= eβ µ :

Ξ(I),(II ),(III )
P,F (a,zu,zd) =

∞

∑
N=0

Z(I),(II ),(III )
P,F (N;a,u,d)zN, (4.33)

whereZ(I),(II ),(III )
P,F (N,a,u,d) are the three contributions for the canonical partition functions for

chains ofN sites and FBC or PBC. Moreover, by using Eqs. (4.31) and (4.32) with u,d→ zu,zd
and definingp(z) = 1− (u+ d)z+ ud(1− a2)z2, the grand canonical partition functions for
FBC [35] and PBC are respectively given by

ΞF =
a(u+d)z+2aud(a−1)z2

p(z)
; ΞP =

2− (u+d)z
p(z)

. (4.34)
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In the following, we discuss the main steps leading to the canonical partition functions in
Eq. (4.33). First note thatp(z) is such thatp(z) = (z−λ1)(z−λ2)ud(1−a2), with

λ1,2 =
1

ud(1−a2)

[

(u+d)
2

± 1
2

√

(u−d)2+4uda2

]

= λ1λ2σ±, (4.35)

and

σ± =
(u+d)

2
± 1

2

√

(u−d)2+4uda2. (4.36)

These are exactly the eigenvalues of the transfer matrix forthe Ising chain in a field, after we
make the suitable substitution of variables (4.25). Using the polynomial roots in Eqs. (4.35,
4.36) and expandingp(z)−1 in Eq. (4.34) in a geometric series, we find for the FBC case:

ΞF(a,zu,zd) =
a(u+d)z+2aud(a−1)z2

ud(1−a2)

1
λ1λ2

[

∞

∑
i=0

(

z
λ1

)i
][

∞

∑
i=0

(

z
λ2

)i
]

, (4.37)

whose coefficients ofzN read:

[

zN]ΞF(a,zu,zd) = 2aud(a−1)Λ(N−1)+a(u+d)Λ(N), (4.38)

where we have used that

1
λ q

2
− 1

λ q
1
=

λ q
1 −λ q

2

(λ1λ2)
q = σq

+−σq
−, ∀q∈ N; (4.39)

Λ(N) =
σN
+ −σN

−
σ+−σ−

. (4.40)

Analyzing the periodic case in the same way, we obtain that

ZP(N;a,u,d) = 2Λ(N+1)−
[

2(u+d)+a(u2+d2)
]

Λ(N)+ud[2−a(u+d)]Λ(N−1). (4.41)

Using Eq. (4.25) into Eqs. (4.38) and (4.41), we find after some algebra:

ZF = eβJ
(

σN
+

σ+−σ−
e−2βJ (σ+− tanh(βJ)σ−)+

σN
−

σ+−σ−
e−2βJ (tanh(βJ)σ+−σ−)

)

;

(4.42)
ZP = σN

+ +σN
− ; (4.43)

σ± = eβJ
(

cosh(βh)±
√

sinh2(βh)+e−4βJ

)

, (4.44)

Our results in Eqs. (4.42, 4.44) and (4.43, 4.44) are in agreement with the canonical partition
function expressions for FBC [35] and PBC [50], respectively.This concludes our alternative
combinatorial solution for the ensembles associated to theIsing chain, under free and periodic
boundary conditions.
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From the canonical partition functions above we get the Gibbs free energy per site for the
system:

gP,F = GP,F/N =−T ln(ZP,F)/N, (4.45)

and a study will be made on the distinct finite-size effect dueto different boundary conditions.
In both cases, it is trivial to notice that they have the same thermodynamic limit, namely:

g∞ = lim
N→∞

GP,F/N =−T ln(σ+). (4.46)

The finite size corrections to the free energy in the periodiccase are

N [gP(N)−g∞] =−T
∞

∑
j=1

(−1) j−11
j

(

σ−
σ+

)N j

, (4.47)

while in the free case we have

N [gF(N)−g∞] =−J−T ln(A)−T
∞

∑
j=1

(−1) j−11
j
B j
(

σ−
σ+

)N j

, (4.48)

where

A=
a

σ+−σ−

(

σ+− 1−a
1+a

σ−

)

= e−2βJ σ+− tanh(βJ)σ−
σ+−σ−

; (4.49)

B=
1−a
1+aσ+−σ−

σ+− 1−a
1+aσ−

=
tanh(βJ)σ+−σ−
σ+− tanh(βJ)σ−

. (4.50)

Since σ−
σ+

< 1, we notice that for very largeN the first term in the series is the dominant one
and, therefore, we have the asymptotic behavior:

N [gP(N)−g∞] =−Te−N/ξ ; (4.51)

N [gF(N)−g∞] =−J−T ln(A)−TBe−N/ξ , (4.52)

where we have introduced in the expressions above thecorrelation lengthof the model [75]:

ξ =

[

ln

(

σ+

σ−

)]−1

, (4.53)

which implies exponential correction in the case of PBC, whileusing FBC a power law correc-
tion 1

N is clearly identified.

B. Thermodynamics, Euler Characteristic and Phase Transition

The Gibbs free energy per site in the thermodynamic limit, Eq. (4.46), is useful in obtaining the
thermodynamic functions for the model, such as the energy, the entropy and the magnetization
per site, whose closed expressions in the thermodynamic limit are, respectively,
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e=
∂ (g∞/T)

∂β
=−J−h

2eβJ sinh(βh)
σ+−σ−

+2J
2e−2βJ

σ+ (σ+−σ−)
; (4.54)

s=−∂g∞
∂T

= k ln(σ+)+kβe; (4.55)

m=−∂g∞
∂h

=
2eβJ sinh(βh)

σ+−σ−
. (4.56)

It is worth noticing thate ands are even functions ofh, while m is an odd function. All such
thermodynamic functions have been plotted and are shown in Figs. (4.4, 4.5, 4.6), where we
have fixedJ = 1> 0 and chosen only nonnegative values ofh.
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Figure 4.4 Energy per site in the thermodynamic
limit as a function of the temperature for various
magnetic field values.
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Figure 4.5 Entropy per site in the thermody-
namic limit as a function of the temperature for
various magnetic field values.

As discussed in Section 2.A, the maximum value of energy isJ (|h| − J) at T = 0− for
|h| ≤ 2J (|h| > 2J) and corresponds to antiferromagnetic (ferromagnetic) spin configurations.
On the other hand, the entropy as a function of temperature inFig. (4.5) shows no loss of
continuity except at the critical fieldsh = ±2J, where the residual entropy corresponding to
the golden ratio degeneracyφ = 1+

√
5

2 appears. We also emphasize that the entropy is always
a convex function of the temperature, showing the stabilityof states for any magnetic field and
temperature. Moreover, the magnetization as a function of temperature in Fig. (4.6) loses its
usual monotonous behavior for|h| < 2J and approaches the antiferromagnetic state asT →
0−. At the critical fields±2J it assumes the values∓ 1√

5
. Notice also that forh = 0 the

magnetization is identically equal to zero for any nonzero temperature; however, at the critical
temperatureTC = 0 it can have two possible values,±1, indicated by the black dots in the figure
and associated with the long-range order in the chain. The above-mentioned results are valid
for J > 0, while forJ < 0 the corresponding ones follow in accordance with the discussion in
Section 2.A.
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Last, an exact expression for the Euler characteristic per site in the thermodynamic limit as
a function of the temperature can be calculated from Eqs. (4.22, 4.23), by noting that, in the
periodic case:

〈χ〉= lim
N→∞

1
N

1
ZP

∑
N+,N−,D

DWP(N+,N−,D)aDuN+dN−, (4.57)

which implies the simple relation:

〈χ〉= lim
N→∞

1
N

a
ZP

∂ZP

∂a
. (4.58)

By proper substitution of variables, we find that:

〈χ〉= 2e−2βJ

σ+ (σ+−σ−)
. (4.59)

The expression above, which is an even function ofh and hence it is plotted in Fig. (4.7) only
for positive values ofh, shows us that indeed the conjecture proposed in Ref. [44] is verified, as
the Euler characteristic is non-vanishing for all temperaturesT > 0, while it vanishes atTC = 0,
which is the critical temperature of the model. The loss of continuity at T = 0 and|h| ≤ 2J
is easily understood if one recalls that the Euler characteristic is the average of the number of
domains; in fact, atT = 0− the low energy states are ferromagnetic, while the high energy ones
are antiferromagnetic. Interestingly, we have noticed that from Eqs. (4.54), (4.56), and (4.59)
we can verify the simple relation:

−e+2J〈χ〉−hm= J. (4.60)
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Figure 4.6 Magnetization per site in the thermo-
dynamic limit as a function of the temperature for
various magnetic field values.
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CHAPTER 5

Conclusions

We have studied important aspects of the theory of phase transitions, with the aim of providing
a topological approach to a distinct class of models in statistical mechanics, namely, those with
a discretely defined configurational variables. This dissertation work reflects the development
of reasoning needed in order to achieve this approach.

In chapter 1 we have described the very basic aspects of statistical mechanics, as well as
thermodynamics, whose knowledge is needed in any derived branch, such as the theory of
phase transitions. While describing the theory of phase transitions, we have touched briefly
upon several points: we have introduced the classification of phase transitions according to the
loss of analyticity of thermodynamic functions and the relevance of critical point exponents
in describing them; the renormalization group approach wasbriefly explained in order to take
into account the phenomena of universality and scaling; in describing the phenomenological
theories we have emphasized their negligence of fluctuations, which become relevant precisely
at the critical point, hence their failure in obtaining the correct critical point exponents; the
significance of providing exact solutions to models was explained, so that phenomena such as
phase transitions can be also considered within the realm ofstatistical mechanics, as Onsager
first proved with his exact solution of the 2d Ising model; finally we have taken into account
the first mathematical explanation of the mechanism throughwhich the loss of analyticity of
thermodynamic functions appears in taking the thermodynamic limit, as described by the Yang-
Lee circle theorem.

In chapter 2 we have briefly described the recent progresses made to understand phase
transitions as related to topological changes in the configurational space, the so-called topo-
logical approach to phase transitions. Under the conditionthat the configurational variables
are continuous, Morse theory is used to transform the problem of analyzing the topology of
configurational equipotential sub-manifolds into a mathematical analysis problem of studying
the critical points of the potential energy function; necessary conditions for the occurrence of a
phase transition are described: topology change of the equipotential sub-manifolds, for a cer-
tain class of potential energy functions; divergence of thejacobian density at the critical energy
value. Furthermore, a brief explanation of the work done by my advisor and co-advisor in the
AB2 XY model is explained, and we state their conjecture for a necessary and sufficient con-
dition (first proposal of this kind in the literature) for theoccurrence of a phase transition: a
cusp-like pattern of the Euler characteristic at the critical energy value, as well as a divergence
of the jacobian density. The final section of this chapter concerns what can be done for a topo-
logical approach for models with a discrete configurationalvariable. It is shown a proposal
present in the literature for studying the behavior of the thermal average of the Euler character-
istic as a function of the temperature, in order to characterize a phase transition. This quantity

75



76 CHAPTER 5 CONCLUSIONS

is intimately related to connectivity properties of the spins of a same kind in the lattice, and
resembles an analysis of droplets of spins. A conjecture based on numerical work relating this
quantity to phase transitions is stated in the literature: the Euler characteristic per site, in the
thermodynamic limit, vanishes bellow the critical temperature and is positive above it.

In chapter 3 we have presented several combinatorial descriptions of the Ising model ac-
cording to its dimension. Combinatorics plays a crucial rolein this model given its discrete
nature. When we restrict the definition of the Euler characteristic present in the literature for
the 2d case, as defined in the last section of chapter 2, to the 1d case, it is shown to be equivalent
to the number of domains in the chain. A throughout treatmentof this quantity was considered
only recently, for the Ising chain without an external field;this chapter explains their results,
which depend on a combinatorial approach to this model. The combinatorial approach to the 2d
case is also briefly presented, according to the use of Pfaffians. Graph theory emerges naturally
in this situation, and the partition function of the Ising model can be interpreted as a generating
function for the number of Eulerian subgraphs in the lattice, according to its number of edges.
The interpretation of the canonical partition function as an enumerating generating function is
the crucial step in the original solution to the Ising chain in a field that we present in the next
chapter.

In chapter 4, the main original contributions of this work are presented. The enumera-
tion of the degeneracy of the microscopic states of the system is discussed in detail, which
allows the computation of the entropy as a function of energyunder free or periodic bound-
ary conditions. We observed that in the microcanonical ensemble the logarithm of the Euler
characteristic differs from the entropy only by ln2. Furthermore, a residual entropy is found
for critical field values, a phenomenon for which we provide atopological interpretation and a
connection with the Fibonacci sequence. We also identified the canonical partition function as
the combinatorial generating function of the microcanonical problem, and a detailed analysis
of the thermodynamics with varying magnetic field is provided in the regimes of positive and
negative temperatures.

On the other hand, our combinatorial approach to the canonical ensemble was shown to
be suitable for the exact computation of the thermal averagevalue of the Euler Characteristic
associated with the spin configurations of the chain. Furthermore, this topological invariant
is discontinuous at the referred critical fields and satisfy〈χ〉(TC) = 0, whereTC = 0 is the
critical temperature, thus confirming a conjecture in the literature. Finally, we expect that the
reported results will contribute to stimulate further progress on the topological approach to
phase transitions in systems exhibiting discrete symmetryand its relationship with continuous
symmetry models.
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