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RESUMO

Nessa dissertação estudamos a dinâmica de vórtices próximos a fronteiras sólidas em
um fluido ideal, através do modelo de vórtices puntiformes. Obtivemos as configurações
estacionárias de vórtices na presença de um cilindro circular colocado em um escoamento
uniforme e investigamos suas propriedades de estabilidade sob pequenas perturbações.
Dois sistemas distintos foram estudados. Consideramos inicialmente o caso clássico de
um cilindro circular colocado em um escoamento uniforme ilimitado. Nesse caso, como
se sabe, um par de vórtices com sentidos opostos é observado na esteira do cilindro, para
números de Reynolds até cerca de 50, ao passo que para números de Reynolds maiores,
essa configuração torna-se instável dando lugar à emissão alternada de vórtices. Este
sistema foi tratado analiticamente pela primeira vez, através de um modelo de vórtices
puntiformes, por Föppl em 1913. Na primeira parte dessa dissertação, o modelo de
Föppl é revisto e várias caracteŕısticas novas desse sistema são apresentadas, incluindo
a existência de um ponto de sela nilpotente no infinito, até então não percebido, cujas
órbitas homocĺınicas definem a região de estabilidade não-linear do chamado equiĺıbrio de
Föppl. Além disso, estudamos também a dinâmica não-linear resultante de perturbações
anti-simétricas do equiĺıbrio de Föppl e discutimos sua relevância para a emissão alternada
de vórtices. Na segunda parte, consideramos o movimento de um vórtice em torno de
um cilindro circular colocado acima de uma parede plana infinita. Em experimentos com
esse arranjo, um vórtice estacionário é observado na frente do cilindro, uma situação que
não é encontrada no caso clássico (i.e., sem o plano). Para estudar a dinâmica de vórtices
nessa situação, a região do fluido é inicialmente mapeada em um anel em um plano
complexo auxiliar, e o potencial complexo correspondente é então obtido em termos da
chamada função prima de Schottky-Klein, que neste caso pode ser escrita em termos de
funções eĺıpticas. As configurações estacionárias são então calculadas e suas propriedades
de estabilidade são determinadas. Discutimos também, como as soluções do modelo de
vórtice puntiforme podem ajudar a explicar as observações experimentais envolvendo a
formação de vórtices na frente de um cilindro colocado próximo a um plano.

Palavras-chave: dinâmica de vórtices, vórtice puntiforme, dinâmica hamiltoniana, par
de Föppl, domı́nio multiplamente conexo, Schottky-Klein.
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ABSTRACT

In this thesis the dynamics of vortices near solid boundaries in an ideal fluid is studied
using the point vortex model. Stationary configurations of vortices in the presence of a
circular cylinder placed in a uniform stream are obtained and their stability properties
under small disturbances are investigated. Two different systems are studied. First, the
classical case of a circular cylinder placed in a uniform stream in an otherwise unbounded
domain is considered. As is well known, in this case a pair of counter-rotating eddies is
observed downstream of the cylinder for Reynolds numbers up to about 50, whereas for
larger Reynolds number this configuration becomes unstable, leading to vortex shedding.
This system was first treated analytically using point vortices by Föppl in 1913. In the
first part of the thesis, the Föppl model is revisited and several novel features of this sys-
tem are presented, including the existence of a hitherto unnoticed nilpotent saddle point
at infinity whose homoclinic orbits define the region of nonlinear stability of the so-called
Föppl equilibrium. In addition, the nonlinear dynamics resulting from antisymmetric
perturbations of the Föppl equilibrium is studied and its relevance to vortex shedding
is discussed. In the second part, the motion of a vortex around a cylinder placed above
an infinite plane wall is considered. In experiments using this arrangement, a stationary
eddy is observed in front of the cylinder, a situation that is not found in the classical case
(i.e., without the plane). To study the vortex dynamics in this case, the flow domain is
first mapped to an annulus in an auxiliary complex plane and the corresponding complex
potential is obtained in terms of the so-called Schottky-Klein prime function, which in
this case can be written in terms of elliptic functions. The stationary configurations are
then calculated and their stability properties are determined. It is also discussed how the
solutions of the point vortex model can help to explain the experimental findings for the
vortex formation in front of a cylinder placed near a plane.

Keywords: vortex dynamics, point vortex, hamiltonian dynamics, Föppl pair, multiply
connected domain, Schottky-Klein.
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CHAPTER 1

INTRODUCTION

Vortex phenomena are very common in Nature. They occur in a wide variety of length
and velocity scales. In the next few pages we will present a collection of pictures (Figures
1.1 to 1.5) showing some of these phenomena, with lengths varying from about 107m to
10−1m.

Fig. 1.1 shows two vortex formations on the planetary and astronomical scales: on
the left side we see a satellite picture showing a von Karman vortex street near the coast
of California. On the right side is Jupiter’s Great Red Spot, a giant anticyclonic storm
lasting for more than 200 years.

Tornadoes and waterspouts like the ones shown in Fig. 1.2 are two common examples
of vortices, but these are not the only existing vortex-related atmospherical phenomena.
Fig. 1.3 shows a strange cloud formation that is created due to a vortex sheet hydrody-
namic instability, known as the Kelvin-Helmholtz instability.

Figure 1.1 (left) von Karman vortex street caused by the interaction of wind currents with an
island west of California (the wind comes from northwest). (right) Jupiter’s Great Red Spot,
an anticyclonic storm larger than the Earth, is an example of vortex lasting for more than 200
years.

1
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Figure 1.2 (left) Tornadoes and waterspouts are not commonly seen in the Northeast Region
of Brazil but in May of 2011 this unusual waterspout (right) was observed in Tamandaré, a city
about 100 km away from Recife.

Vortex phenomena are also fundamental to many important practical applications
such as the generation of lift in an airplane wing and the mixing of chemical substances.
Civil and mechanical engineers must also take into account the effect of vortex induced
vibrations in their projects. Fig. 1.4 shows the formation of a vortex structure behind
a big airplane (actually, there are two vortices, one for each wing). These wingtip vor-
tices may be dangerous for small aircrafts because if these aircraft happen to enter the
vortex core, a rotation is induced which may cause a reduction of lift. An active area of
research in Aeronautical Engineering concerns the creation of devices not only to reduce
the formation of these vortices but also to detect in advance their presence in the air
surrounding an aircraft (Ref. [1]).

Another interesting vortex-related phenomena is the vortex ring, the most common
example being the smoke ring that some skilled smokers can produce. These rings can
also be produced by making use of a box filled with smoke having a small hole in one side

Figure 1.3 (left) This frightening cloud formation is due to a vortex sheet hydrodynamic insta-
bility called the Kelvin-Helmholtz instability. These clouds may have served as an inspiration
to Van Gogh’s masterpiece Starry Night (right).
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Figure 1.4 Wingtip vortex generated by a Boeing 747 on landing approach, made visible by
industrial smoke. These vortices can be dangerous, specially for small aircrafts which can lose
lift if entering the vortex core. Wingtip devices named winglets are used to reduce the vortex
formation. Figure from Ref. [1].

and a rubber sheet attached to the other side. By giving a fast punch to the rubber sheet
it is possible to make a very stable vortex ring, as shown in Fig. 1.5. As a historical side
note, it is worth noticing that the stability of these rings and their vibrational properties
impressed so much the Irish physicist William Thomson (later known as Lord Kelvin)
that he considered the possibility that vortex rings in an etherial fluid could be the very
constituents of all matter, giving rise, therefore, to the idea of a vortex theory of matter.
Actually, this strong belief (and not the description of fluid mechanical phenomena) was
the main reason that led this famous physicist to study vortex dynamics so deeply. The
following excerpt, taken from an 1867 correspondence from Lord Kelvin to his friend,
the German physicist Hermann von Helmholtz (founder of the field of Vortex Dynamics),
describes his idea:

My dear Helmholtz - I have allowed too long a time to pass without
thanking you for your kind letter [...] Tait showed me in Edinburgh a mag-
nificent way of producing them (the vortex rings). Take one side (or the lid)
off a box (any old packing-box will serve) and cut a large hole in the opposite
side. Stop the open side loosely with a piece of cloth, and strike the middle of
the cloth with your hand. If you leave anything smoking in the box, you will
see a magnificent ring shot out by every blow. A piece of burning phosphorus
gives very good smoke for the purpose. [...] If you try it, you will easily make
rings of a foot in diameter and an inch or so in section, and be able to follow
them and see the constituent rotatory motion. The vibrations make good
subject for mathematical work. [...] The absolute permanence of the rota-
tion, and the unchangeable relation between it and the portion of the fluid
once acquiring such motion in a perfect fluid, shows that if there is a perfect
fluid all through space, constituting the substance of all matter, a vortex-ring
would be as permanent as the solid hard atoms assumed by Lucretius and
his followers (and predecessors) to account for the permanent properties of
bodies (as gold, lead, etc.) and the differences of their characters.

Although Kelvin’s ideas impressed many of the major scientific personalities of the
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Figure 1.5 Smoke rings, as those shown on the 1897 sketch above (left), are examples of vortex
rings. Dolphins like to play with bubble rings (right), which are vortex rings they produce by
quickly pushing air from their blowholes.

19th century (the Scottish physicist James Clerk Maxwell said “it satisfies more of the
conditions than any atom hitherto considers”), the vortex-atom theory was shown to be
incorrect and Kelvin himself concluded later, motivated by instability arguments, that it
could not serve as a theory of matter.

After this general motivation of the importance of vortex-related phenomena, we state
the kind of problem that we are going to address in this thesis: we are interested here
in the dynamics of vortices in the vicinity of solid obstacles. Fig. 1.6 shows an example
of a flow past a circular cylinder placed in a uniform stream. In this case a pair of
counter-rotating vortices is formed downstream of the cylinder, in the regime of low
Reynolds number (when the velocity of the incoming stream is not too high). As the
Reynolds number is increased, the vortex pair configuration becomes unstable, giving
rise to transversal oscillations that ultimately lead to the formation of the so-called von
Karman vortex street, a regime in which vortices are continuously shed from both sides
of the cylinder; see Fig. 1.7 and compare it with the left side of Fig. 1.1. The dynamics
of a vortex pair behind a cylinder will be studied in detail in Chapter 3. The instability
properties of this system are believed to constitute the basic mechanism that leads to
vortex shedding and the formation of the vortex street.

In this thesis, we will use the model of point vortices in an ideal fluid to describe

Figure 1.6 Formation of a vortex pair downstream of a cylinder. From left to right, the velocity
of the incident stream is increased by a total factor of 2.7 (figure from Ref. [2]).
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Figure 1.7 The von Karman vortex street. The cylinder is the small black circle on the extreme
left (figure from Ref. [2]).

the vortices observed in flows past a cylinder. This model will be briefly explained in
this chapter—a more detailed discussion will be deferred to Chapter 2—but first let us
introduce the important concept of vorticity, ~ω, which is defined as the curl of the velocity
field ~v:

~ω = ~∇× ~v . (1.1)

As can be easily found in the fluid mechanics literature (see, for example, Ref. [3]), the
vorticity gives twice the average angular velocity of an infinitesimal fluid element around
its center. If the vorticity in a region of the flow is zero, the fluid elements in that region
are not rotating around their centers.

In the particular case of two-dimensional (2D) flows,

~v = (u(x, y), v(x, y), 0) , (1.2)

we have
~ω = (0, 0, ω) , (1.3)

i.e., the vorticity vector is in the z direction. If the vorticity is concentrated in a single
point, we call it a point vortex. The vorticity field for a point vortex of intensity Γ located
at ~r0 = (x0, y0) is thus given by

ω(x, y) = Γδ(~r − ~r0) . (1.4)

The velocity field of such a point vortex can be calculated by the fluid mechanical analog
of Biot-Savart law and is given by

~v =
Γ

2πr
θ̂ . (1.5)
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Figure 1.8 Sketch of the velocity field due to a point vortex of positive intensity (for negative
intensity, the arrows would be clockwise).

where r = |~r − ~r0| =
√

(x− x0)2 + (y − y0)2 and θ̂ is the unit vector in the azimuthal
direction. As can be easily verified, the constant Γ gives the value of the circulation
around a contour enclosing the vortex:

∮

C

~v · d~x =

∮

C

Γ

2πr
θ̂ · d~x = Γ (1.6)

The velocity field due to a point vortex is thus strong near the vortex core and decreases
as 1/r with the distance. The streamlines (lines tangent at each point to the local velocity
vector) are circles centered at the vortex core. Fig. 1.8 shows a sketch of this velocity
field.

In this thesis we will consider only the the case of ideal fluids, for which the viscosity
is zero. In addition, we will impose two other conditions: the first one is that the fluid
is incompressible (~∇ · ~v = 0), meaning that the fluid density is constant everywhere, and
the second one is that the flow is irrotational (~ω = 0) everywhere, except at the singular
isolated points where the vortices are located. In summary, the flows to be treated in
this work will always be inviscid, incompressible and irrotational.

Considering irrotational flows when studying systems containing vortices may seem
illogical at first, but the fact that the flow is irrotational does not necessarily mean that
the fluid is not rotating. It means only that an element of fluid does not rotate around
itself. Fig. 1.9 shows an example in which two small leaves are dropped in a point vortex
flow: they rotate around the center of the vortex but they do that without rotating around
their own centers. It is in this sense that the flow is said to be irrotational.

Although an inviscid fluid is capable of maintaining vorticity, its creation is usually
due to viscous effects. Here, however, we will not analyze the mechanisms that lead to
the formation of vortices. All analyses will be carried out considering that the vortices
are already present in the flow.

The flows that we will consider here are two-dimensional, being constrained to the
x-y plane, so that gravity will not be relevant and the only force responsible for the
motion is the pressure field. The experiments we are going to refer to are also essentially
two-dimensional, in the sense that the velocity fields are always of the form ~v(x, y, z) =
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Figure 1.9 Two small leaves dropped at a point vortex flow. As time passes, they rotate
around the vortex center, but they do not rotate around themselves.

(vx(x, y), vy(x, y), 0).
Thus, in this thesis we study the dynamics of point vortices in two-dimensional clas-

sical ideal fluids, which form a simplified model of real vortical systems. We analyze
possible stationary vortex configurations and study their stability under small displace-
ments. Extensive use was made of the software Wolfram Mathematica 6.0, to generate
plots, integrate nonlinear differential equations, and aid in some complicated numerical
calculations that would otherwise take too long to be treated by hand.

The structure of this thesis is as follows. In chapter 2 we will give a brief account of
the main theoretical results of vortex dynamics in 2D classical ideal fluids. The important
theorems and mathematical techniques are presented and some simple examples will be
given. In Chapter 3 we study the well-known problem of a pair of counter-rotating
vortices in the presence of a circular cylinder placed in a uniform stream—the so-called
Föppl pair. The dynamical aspects of this system are analyzed both analytically and
numerically. Although this is a century-old problem (Föppl’s original analysis dates back
to 1913), we uncovered several new dynamical features of this system. Next, we study
vortex configurations in domains involving more than one obstacle. The analysis of the
dynamics of vortices in such a multiply connected domain is much more complicated
than the one performed in Chapter 3. A new mathematical apparatus is needed, which is
not yet found in modern textbooks on fluid mechanics. In Chapter 4, we briefly explain
the basic mathematical formalism necessary to treat the dynamics of vortices in multiply
connected domains. These results are used in Chapter 5 to study the dynamics of a
single vortex near a cylinder placed above an infinite plane boundary in a uniform stream.
Chapter 6 summarizes our main conclusions and discusses some possible extensions of
this work.



CHAPTER 2

POTENTIAL FLOWS AND VORTEX DYNAMICS

This chapter is devoted to the description of the basic formalism that will be employed in
rest of this thesis to analyze the vortex dynamics of some systems of interest. The content
of this chapter can be found in practically any textbook on Fluid Mechanics having a
chapter devoted to vortex dynamics. Nonetheless, it was thought desirable to collect
here some basic results on two-dimensional vortex dynamics to render this thesis as self-
contained as possible. In the beginning of the chapter, we will derive Bernoulli equation
and introduce the important concepts of potential flow and complex potential that will be
frequently used hereafter. The important theorems due to Kelvin and Helmholtz on the
dynamics of vortices will be presented. Next we will introduce the point-vortex model,
and the Hamiltonian nature of point-vortex dynamics will be explained. At the end of
the chapter, some simple examples will be given to illustrate the techniques presented.

2.1 BERNOULLI EQUATION

Ideal fluid flows are governed by Euler equation

ρ
D~v

Dt
= −~∇P + ρ~g , (2.1)

where ρ is the fluid density, ~v is the velocity field, P is the pressure field, ~g is the gravity,
and the differential operator on the left side of the equation is the material derivative,
meaning

D

Dt
=
∂

∂t
+ ~v · ~∇ , (2.2)

which is responsible for taking the derivative “following” the fluid particles.
Since the gravitational force is conservative, it can be written as the gradient of a

potential χ:

~g = −~∇χ , χ = gz . (2.3)

Now, plugging this into Euler equation and considering that the flow is steady, which
means ∂~u

∂t
= 0, we have

(~v · ~∇)~v = −~∇
(
P

ρ
+ χ

)

. (2.4)

Using the vector identity

(~v · ~∇)~v = (~∇× ~v)× ~v + ~∇
(
1

2
|~v|2
)

, (2.5)

8
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into Eq. (2.4), we then have

~ω × ~v = −~∇H , (2.6)

where, as already discussed, ~ω = ~∇ × ~v is the vorticity and H = P
ρ
+ 1

2
|~u|2 + χ. If we

take a scalar product of Eq. (2.6) with the velocity vector, the left side vanishes, yielding

(~v · ~∇)H = 0 . (2.7)

On the other hand, one can easily verify that the operator ~v · ~∇ corresponds to taking
the derivative along a streamline

(~v · ~∇)H = |~v|(n̂ · ~∇)H = |~v|dH
ds

(2.8)

where, n̂ is a unit vector in the direction of the velocity field and ds is an infinitesimal
element along a streamline (a line that is tangent at each point to the local velocity
vector). This leads to the following important conclusion: for an ideal fluid in a steady
flow, H is constant along a streamline.

Moreover, if the flow is irrotational, i.e. ~ω = 0, Eq. (2.6) reduces to

~∇H = 0 (2.9)

which means

H =
P

ρ
+

1

2
|~v|2 + χ = const. (2.10)

We then conclude that for an ideal fluid in an irrotational steady flow, H is constant in
the whole fluid domain. Eq. (2.10) is known as Bernoulli equation, a very useful relation
between the pressure, velocity and gravity. It is possibly the most used fluid dynamical
equation in engineering problems.

Since the systems to be treated here are all two-dimensional, constrained to the x-y
plane, the gravity will not be important and only the pressure and velocity terms will
be present in the Bernoulli equation. A general statement about fluid flows then follows:
high pressure ⇔ low velocity / low pressure ⇔ high velocity.

If we happen to find a velocity field that matches the boundary conditions to a given
problem, then Eq. (2.10) can be used to find the respective pressure field satisfying Euler
equation for an ideal irrotational steady flow. This means that, in the context of ideal
fluids, one need not to worry about the pressure. The problem then reduces to finding the
appropriate velocity field (from which the pressure can be later computed). In the next
sections, we will show how to construct the velocity fields for some useful flow systems
that satisfy the irrotationality condition.

2.2 POTENTIAL FLOW

Let us recall here the three conditions that will apply to all the flows treated in this work:
the flows are inviscid, incompressible and irrotational (except for the singular points at



2.2 POTENTIAL FLOW 10

the vortex centers). Let ~v = (u, v) be the velocity field. The irrotationality condition (in
two dimensions),

~∇× ~v =

(
∂v

∂x
− ∂u

∂y

)

k̂ = 0 , (2.11)

where k̂ is the unit vector in the z direction, implies that the velocity field can be repre-
sented as the gradient of a certain function φ,

~v = ~∇φ . (2.12)

Flows obeying this condition are called potential flows. The function φ is the velocity
potential. In two dimensions, Eq. (2.12) is written

u =
∂φ

∂x
, v =

∂φ

∂y
. (2.13)

In a similar manner, the condition of incompressibility (in two dimensions),

~∇ · ~v =
∂u

∂x
+
∂v

∂y
= 0 , (2.14)

implies that the velocity can also be expressed in terms of another function ψ in the
following manner:

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (2.15)

The derivative of ψ with respect to a given direction gives the velocity component in a di-
rection rotated by 90◦ clockwisely in relation to the direction of differentiation. Eq. (2.15)
can be written in vectorial notation as

~v = ~∇× (ψ k̂) . (2.16)

Notice that with this definition, the condition of incompressibility is automatically sat-
isfied. The function ψ is called the streamfunction because its contour lines, defined
by

ψ(x, y) = const. , (2.17)

are streamlines of the flow. To see why this is so, we consider the change in ψ as we move
from a point (x, y) to a point (x+ dx, y + dy), at a fixed time, following the direction of
the flow:

dψ = ψ(x+ dx, y + dy)− ψ(x, y)

=
∂ψ

∂x
dx+

∂ψ

∂y
dy

=
∂ψ

∂x
dx+

∂ψ

∂y

v

u
dx , (2.18)
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where we used dy = (v/u) dx, because we are considering a displacement in the direction
of the flow at the point (x, y). Using Eq. (2.15), we have

dψ =

(
∂ψ

∂x
− ∂ψ

∂x

)

dx = 0 . (2.19)

So the streamfunction ψ is constant on each streamline. To visualize a streamline pattern
of the flow, all that is necessary is to take the level set ψ(x, y) = k, for many different
values of the constant k.

2.3 COMPLEX POTENTIAL

Combining Eqs. (2.13) and (2.15) we have

∂φ

∂x
=
∂ψ

∂y
, (2.20)

∂φ

∂y
= −∂ψ

∂x
. (2.21)

These are the well-known Cauchy-Riemann equations of complex analysis. It follows then
that if the partial derivatives of Eqs. (2.20) and (2.21) are continuous, the function w
defined as

w(z) = φ(x, y) + iψ(x, y) (2.22)

is an analytic function of the complex variable z = x+ iy. The function w(z) thus defined
is called the complex potential associated with the flow. The derivative of w with respect
to the complex variable z is

dw

dz
=

∂φ

∂x
+ i

∂ψ

∂x
dw

dz
= u− iv , (2.23)

which is called the complex velocity and is simply the complex conjugate of the velocity
vector treated as a complex number. The complex potential for a particular flow can be
defined up to an additive irrelevant (complex) constant.

Notice that both the velocity potential φ and the streamfunction ψ obey the Laplace
equation, as can be readily verified by taking the derivatives of the Cauchy-Riemann
Eqs. (2.20) and (2.21):

∇2φ(x, y) =
∂2φ

∂x2
+
∂2φ

∂y2
= 0 , (2.24)

∇2ψ(x, y) =
∂2ψ

∂x2
+
∂2ψ

∂y2
= 0 . (2.25)
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In fact any analytic function satisfies Eqs. (2.24) and (2.25) for its real and imaginary
part, as is well known. So, any analytic function can represent a complex potential for
some two-dimensional potential flow. Since Laplace equation is linear, we can apply the
superposition principle and add different contributions to form another complex potential.

The boundary condition usually encountered in irrotational flows are of two types:

1. Condition on solid surfaces: on any obstacle present in the flow, the velocity compo-
nent normal to the surface must vanish. Therefore, the surface must be a streamline
of the flow.

∂φ

∂n
= 0 or

∂ψ

∂s
= 0 =⇒ ψ(x, y) = const. , (2.26)

where dn is an infinitesimal element along a direction normal to the surface and ds
is an infinitesimal element along the direction of the surface.

2. Condition at infinity: typically (for our problems) the flow at infinity will be a
uniform stream, in the, say, x direction, so the boundary condition reads

∂φ

∂x
= U ,

∂φ

∂y
= 0 or

∂ψ

∂y
= U ,

∂ψ

∂x
= 0 , (2.27)

where U is the velocity of the uniform flow.

Solving the Laplace equation for the velocity potential (or alternatively for the stream-
function) subject to these boundary conditions can be difficult. Typically what is done
is to consider the problem in the opposite way: take an analytical function w(z), ob-
tain its real and imaginary parts, which are respectively the velocity potential and the
streamfunction for some particular flow, and then see what boundary conditions are satis-
fied by this complex potential. After that, one can use the superposition principle to add
many contributions to form a different complex potential, satisfying the desired boundary
conditions.

Once the complex potential is obtained, the velocity field can be immediately cal-
culated, since it is given by the gradient of the velocity potential; see Eq. (2.12). The
pressure field associated with this velocity field is easily calculated by means of Bernoulli
equation (2.10). So if one finds a way to calculate the complex potential related to a
particular irrotational flow, satisfying the appropriate boundary conditions, then a solu-
tion to Euler nonlinear equation (2.1) is immediately obtained by computing the pressure
field using the Bernoulli equation (2.10).

Let ~v1 and P1 be the velocity and pressure fields, respectively, for a given flow. Let
~v2 and P2 be the same quantities for another flow. The superposition of the two flows
produce a third flow with ~v3 and P3 given by

~v3 = ~v1 + ~v2 , (2.28)

P3 = P1 + P2 − ρ~v1 · ~v2 , (2.29)
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where ρ is the fluid density. To see why the correction term to the pressure fields emerges,
let us consider again Euler equation (without the gravity term),

∂~v

∂t
+ (~v · ~∇)~v = −~∇

(
P

ρ

)

. (2.30)

Now, using the vector identity (2.5) and considering the case of irrotational flows (~∇×~v =
0), this equation can be rewritten as

∂~v

∂t
= −~∇

(
P

ρ
+

1

2
|~v|2
)

, (2.31)

which is valid for both set of variables ~v1, P1, and ~v2, P2. Adding the contributions of
these two flows, we have

∂(~v1 + ~v2)

∂t
= −~∇

(
P1 + P2

ρ
+

1

2

(
|~v1|2 + |~v2|2

)
)

= −~∇
(
P1 + P2

ρ
+

1

2

(
|~v1 + ~v2|2 − 2~v1 · ~v2

)
)

= −~∇
(
P1 + P2 − ρ~v1 · ~v2

ρ
+

1

2

(
|~v1 + ~v2|2

)
)

, (2.32)

thus showing that the Euler equation is satisfied for the velocity and pressure fields given
in Eqs. (2.28) and (2.29). In the next subsection we show examples of complex potentials
for several simple flows.

2.3.1 Uniform Flow

The velocity field due to a uniform flow of intensity U, making an angle α with the
horizontal is

~v = U cos(α)x̂+ U sin(α)ŷ , (2.33)

Figure 2.1 Streamlines (purple) and equipotential lines (red) for a uniform flow.
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which can be obtained as the gradient of the potential

φ(x, y) = U cos(α)x+ U sin(α)y . (2.34)

This function is the real part of the following analytical complex function:

w = Ue−iαz , (2.35)

as can be readily verified:

w = Ue−iαz

= U(cos(α)− i sin(α))(x+ iy)

= U(cos(α)x+ sin(α)y)
︸ ︷︷ ︸

φ

+i U(cos(α)y − sin(α)x)
︸ ︷︷ ︸

ψ

. (2.36)

The streamlines, ψ = const., are then lines making an angle α with the horizontal, as
desired. Fig. 2.1 shows the streamlines and equipotentials associated to this flow.

2.3.2 Source and Sink

A source (or sink) corresponds to a flow having the following velocity field:

~v =
m

2πr
r̂ , (2.37)

where r̂ is the unit vector in the radial direction and m is the intensity of the source
(m > 0) or sink (m < 0), representing the amount of “fluid area” injected (removed) by
the source (sink) per unit time. This velocity field (2.37) is obtained from the following
potential

φ =
m

2π
log r , (2.38)

Figure 2.2 Streamlines (purple) and equipotential lines (red) for a source (left) or a sink
(right).
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which is the real part of the complex potential

w =
m

2π
log z . (2.39)

If instead of being located at the origin, the source (sink) is located at a different point
z = z0 of the complex plane, then the complex potential reads

w =
m

2π
log (z − z0) . (2.40)

Fig. 2.2 shows the streamlines and equipotentials associated with this flow.

2.3.3 Dipole

A dipole (or doublet) is obtained in the limit that a source and a sink of equal intensity,
|m|, “merge” in such a way that the product of the intensity m and the distance between
source and sink is kept constant. To obtain the corresponding complex potential for a
dipole, let us consider a source-sink pair in the x-axis, with the source at x = −ǫ and the
sink at x = +ǫ. The complex potential for this source-sink pair is

w =
m

2π
log (z + ǫ)− m

2π
log (z − ǫ)

=
m

2π
log

(
z + ǫ

z − ǫ

)

=
m

2π
log

(

1 +
2ǫ

z
+ · · ·

)

. (2.41)

Ignoring the additive constant and terms or second order in ǫ and defining the limit
µ = mǫ/π as m→ ∞ and ǫ→ 0, we have

w =
µ

z
. (2.42)

The real and imaginary parts of this complex potential give

Figure 2.3 Streamlines for a dipole at the x-axis.



2.3 COMPLEX POTENTIAL 16

φ =
µx

x2 + y2
, (2.43)

ψ = − µy

x2 + y2
. (2.44)

The streamlines of this dipole are circles centered in the y-axis, as shown in Fig. 2.3.

2.3.4 Point Vortex

The complex potential for a point vortex can be generated from the complex potential
for a source (or sink) by simply interchanging the roles of φ and ψ. This can be easily
seen by noting that, as already discussed in Chapter 1, the streamlines for a point vortex
should be circles around the vortex center. On the other hand the equipotential lines for
a source are also circles, see Fig. 2.2. Thus, the velocity potential of a source plays the
role of the streamfunction for the vortex. This interchange can be achieved by simply
multiplying the complex potential Eq. (2.40) by ±i. To respect the convention that a
positive vortex circulation means counterclockwise flow, we pick the negative sign:

w = −i m
2π

log (z − z0) . (2.45)

Changing the nomenclature m→ Γ to denote the vortex intensity, we have

w =
Γ

2πi
log (z − z0) . (2.46)

The real and imaginary parts of this equation produce

φ =
Γ

2π
θ , (2.47)

Figure 2.4 Streamlines (purple) and equipotential lines (red) for a vortex of positive circulation
(Γ > 0).
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ψ = − Γ

2π
log r . (2.48)

Fig. 2.4 shows the streamlines and equipotential lines for a point vortex located at the
origin.

By means of the superposition principle it is possible to use the complex potentials
given above as building blocks to obtain new complex potentials, as we will discuss next.

2.3.5 Uniform Flow Past a Circular Cylinder

The complex potential for the flow consisting of a uniform stream of intensity U around
a circular cylinder of radius a, located at the origin, can be constructed by superimposing
the complex potential for a uniform stream, Eq. (2.35), with the complex potential for a
dipole, Eq. (2.42), thus yielding

w(z) = Uz +
µ

z
. (2.49)

One now has to choose the dipole intensity µ so as to satisfy the boundary condition that
the cylinder must be a streamline of the flow. This means that the imaginary part of the
complex potential (2.49) must be constant at the cylinder surface, i.e., the function

w(aeiθ) = Uaeiθ +
µ

a
e−iθ , (2.50)

must have a constant imaginary part for 0 < θ < 2π. If we make µ = Ua2,

w(aeiθ) = Uaeiθ + Uae−iθ

= 2Ua cos(θ) , (2.51)

which is purely real, and so ψ = 0 at the cylinder, thus satisfying the desired boundary
condition. So the complex potential reads

Figure 2.5 Streamline pattern for a uniform flow around a circular cylinder. The color code
in this figure (and in similar figures in the following chapters) associates lighter colors to higher
values of the streamfunction. If one follows the direction of the flow along a streamline, the
streamfunction increases to the left, therefore, the colors to the left are lighter than the ones to
the right.
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Figure 2.6 Diagram of the problem of one vortex near an infinite solid wall.

Figure 2.7 Image construction for the problem of one vortex near an infinite solid wall.

w(z) = U

(

z +
a2

z

)

. (2.52)

The streamfunction associated with this flow is obtained by taking the imaginary part of
this complex potential:

ψ(x, y) = Uy

(

1− a2

x2 + y2

)

. (2.53)

Fig. 2.5 shows a streamline pattern produced by taking the contour plot ψ(x, y) = k for
several different values of the constant k. To produce this plot we used the parameters
U = 1 and a = 1. As can be seen on the left side of the figure, the superposition of
the dipole at the origin with a uniform stream produces a circular region where no fluid
comes in and no fluid goes out. The boundary condition is then satisfied since the circle
of radius a = 1 is a streamline. It is thus the desired flow describing the situation on the
right side, where instead of the dipole there is a real solid boundary.

This example provides a first contact with the so-called method of images, which will
be explained in more details in the next section. The dipole at the origin can be thought
of as the image of the uniform stream by the cylinder, which acts like a “circular mirror”.

2.4 METHOD OF IMAGES

The method of images consists of a technique to solve Laplace equation subject to a
given set of boundary conditions. It is usually discussed in textbooks on Classical Elec-
trodynamics, as a technique to calculate the electrostatic potential (which obeys Laplace
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Figure 2.8 Streamline pattern for one vortex near a plane wall. The arrows indicate the
direction of the flow.

equation in free space) in the presence of a grounded surface (where the electrostatic
potential is held constant, say zero).

Let us use this method to solve the problem of a point vortex near an infinite wall.
Let the vortex, of intensity Γ, be located at the position z = zv in the upper half-plane.
The line y = 0 represents the solid wall. Fig. 2.6 shows the geometry of this problem.

The problem then consists of finding the complex potential satisfying the following
boundary conditions: i) the line y = 0 is a streamline, ii) the potential must approach
a constant value as |z| → ∞ (with y > 0), and iii) it must have a logarithm singularity
at the vortex position, i.e., near zv the complex potential must tend to Eq. (2.46) with
the substitution z0 → zv. It is easily verified that all these conditions are satisfied if we
introduce an image vortex with opposite circulation in the unphysical region (y < 0) at
z = z̄v. Fig. 2.7 shows this construction. The line y = 0 is a streamline because the
y-component of the velocity in this line induced by one vortex is precisely canceled by
the other, so that the resulting velocity is always horizontal.

The complex potential produced by the vortex and its image is then given by

w(z, zv) =
Γ

2πi
log(z − zv)−

Γ

2πi
log(z − z̄v) . (2.54)

The streamfunction for the flow can then be obtained by taking the imaginary part of the
complex potential above. Fig. 2.8 shows a streamline patten for this problem, considering
the parameters Γ = 1 and zv = i.

2.4.1 Milne-Thomson Circle Theorem

When the solid boundary is an infinite plane, it is generally easy to find the images, for
they are simple plane-mirror reflections of the actual flow elements. But when arbitrary
boundaries are involved, the system of images is not easily guessed. Luckily, when the
boundary is a single circle, there is a theorem due to Milne-Thomson that can be used
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to automatically calculate the images necessary to satisfy the boundary condition on the
circle.

Theorem 2.1 (Milne-Thomson Circle Theorem). Let f(z) be the complex potential for
a flow where all the singularities (vortices, sources, sinks...) are located in the region
|z| > a, then

w(z) = f (z) + f̄

(
a2

z

)

(2.55)

is the complex potential for a flow having the same singularities as f(z) in the region
|z| > a and having the circle of radius a as a streamline.

In this theorem, f̄(z) is the conjugate function of f(z) defined as

f̄(z) = f(z̄) (2.56)

To prove the theorem, first notice that since all singularities of f(z) are outside the

circle of radius a, the singularities of f̄
(
a2

z

)

are all inside this circle. So the singularities

outside the circle are the same for w(z) and f(z). Next, for any point on the circle, we
have

w(aeiθ) = f(aeiθ) + f

(
a2

aeiθ

)

= f(aeiθ) + f(aeiθ) , (2.57)

which is purely real. So the circle is a streamline of the flow.
To exemplify the use of this theorem, let us obtain once again Eq. (2.52) for the com-

plex potential of a uniform stream around a circular cylinder of radius a. The potential
without the cylinder is simply due to the uniform flow. This will be the function f(z):

f(z) = Uz . (2.58)

The potential in the presence of the circle is then

w(z) = f(z) + f

(
a2

z̄

)

= Uz + U

(
a2

z

)

= U

(

z +
a2

z

)

, (2.59)

thus reproducing Eq. (2.52), as desired. The circle theorem then automatically produces
the image terms (in this case, the dipole term) necessary to satisfy the boundary condition
on the cylinder surface.

Now let us move on to the second part of this chapter where we will state some basic
theorems and results on the dynamics of vorticity.
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2.5 VORTEX DYNAMICS

2.5.1 The Vorticity Equation

Let us consider once again Eq. (2.4), which is obtained from Euler equation (2.1) after
considering that the flow is steady and making use of the fact that the gravity is a
conservative force. After using the vector identity (2.5), Eq. (2.4) can be written in the
form

∂~v

∂t
+ ~ω × ~v = −~∇H . (2.60)

Taking the curl of this equation, we have

∂~ω

∂t
+ ~∇× (~ω × ~v) = 0 . (2.61)

Using the vector identity

~∇× (~ω × ~v) = (~v · ~∇)~ω − (~ω · ~∇)~v + ~ω ~∇ · ~v − ~v ~∇ · ~ω (2.62)

in the previous equation, we have

∂~ω

∂t
+ (~v · ~∇)~ω − (~ω · ~∇)~v + ~ω ~∇ · ~v − ~v ~∇ · ~ω = 0 . (2.63)

Now ~∇ · ~v = 0 because the flow is incompressible and ~∇ · ~ω = 0 since ~∇ · (~∇× ~v) = 0, so
Eq. (2.63) becomes

∂~ω

∂t
+ (~v · ~∇)~ω − (~ω · ~∇)~v = 0 , (2.64)

which can be rewritten as

D~ω

Dt
= (~ω · ~∇)~v . (2.65)

This is the so-called vorticity equation. Notice that the pressure field has been eliminated
from this equation—it involves only ~v and ~ω. In the particular case of two-dimensional
flows,

~v = (u(x, y), v(x, y), 0) , (2.66)

we have
~ω = (0, 0, ω) , (2.67)

which implies that (~ω · ~∇)~v = 0, and so the vorticity equation simplifies to

Dω

Dt
= 0 . (2.68)

This means that in two dimensional ideal flows the vorticity of a particular fluid element
does not change with the flow. In particular, if the flow is steady, Eq. (2.68) reduces to
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C

Figure 2.9 A vortex tube is formed by the vortex lines passing through the spatial closed curve
C (figure adapted from Ref. [3]).

(~v · ~∇)ω = 0 , (2.69)

i.e., the vorticity is constant in each streamline of a steady two-dimensional flow of an
ideal fluid, subjected only to conservative forces (like the gravity).

For the sake of completeness, in the next subsection we shall state the main theorems
of three-dimensional vortex dynamics, due to Helmholtz and Kelvin. We shall then use
these theorems to justify the point-vortex model to be introduced subsequently.

2.5.2 The Vortex Dynamics Theorems

In the study of three dimensional flows, it is useful to introduce the concept of vortex
line, which is a curve such that its tangent is always in the direction of the local vorticity
vector ~ω. Since ~∇· ~ω = 0, a vortex line cannot start or end within the fluid domain, they
have to be attached to a solid boundary, form a closed loop or extend to infinity. Consider
now a closed curve C in the interior of the fluid flow domain, which is transported by the
flow (one can think of this curve as if it were formed by dyed fluid particles). The vortex
lines that pass through this curve define a surface in space which is the boundary of a
vortex tube, see Fig. 2.9.

In his 1858 seminal paper, Helmholtz introduced the model of point vortices and
vortex lines and proved the following theorems, valid for an inviscid incompressible fluid
of constant density moving in the presence of conservative forces (like the gravity, for
example).

Theorem 2.2 (Helmholtz first theorem). The fluid elements that lie on a vortex line at
some instant will continue to lie on this vortex line, i.e, vortex lines move with the fluid.

Theorem 2.3 (Helmholtz second theorem). The circulation around a vortex tube
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Γ =

∫

C

~v · d~x =

∫

A

~ω · d ~A (2.70)

is the same for any cross-section of the vortex tube. This common value is called the
strength of the vortex tube.

Another important theorem was proved by Kelvin in 1867.

Theorem 2.4 (Kelvin theorem). Let C(t) be a closed curve made by fluid particles that
is carried within the flow of an ideal irrotational fluid, subjected only to conservative
forces. The circulation around C(t)

Γ =

∫

C(t)

~v · d~x (2.71)

is constant in time.

Notice that C is not a fixed curve in space. It denotes a “dyed” circuit. Also, notice
that it is not essential that the fluid domain inside the curve be simply connected, i.e.,
the curve could, for example, encircle a solid obstacle like an airfoil.

If one chooses the curve C(t) in Kelvin theorem to be the curve around the vortex
tube in Helmholtz theorem, one immediately concludes that the strength of a vortex
tube is time independent. As a consequence, if a region of a vortex tube is stretched, its
cross-section area is reduced and the vorticity in that region is then increased, in order to
keep the circulation constant. Thus, the stretching of a vortex tube increases the angular
velocity of the fluid particles. The proof of Kelvin and Helmholtz theorems can be found
in many textbooks on fluid mechanics, such as [3] or [7].

In the next section we will explain in details the point-vortex model that will be
employed to describe the dynamics of real vortices.

2.6 THE POINT VORTEX MODEL

From Helmholtz first theorem, we see that vortex lines move with the flow, that is to
say, each portion of the vortex line will move with the velocity of the flow there. In two
dimensional flows, the vorticity vector ~ω is perpendicular to the plane of the flow; see
Eq. (2.67). This means that the vorticity field can be treated as a scalar field ω(x, y). A
case of particular interest is the so-called vortex patch, when the vorticity ω is constant
inside a finite region and zero outside this region. The dynamics of this patch can be
analyzed by considering that each point inside it moves with the velocity induced by the
rest of the flow in that particular point, as prescribed by Helmholtz first theorem.

When the vorticity distribution is singular, as is the case of a point vortex where
the vorticity is concentrated in a single point, see Eq. (1.4), it is not straightforward to
deduce that the vortex motion will follow a similar dynamics and additional considera-
tions must be made to handle the divergence in the velocity field at the vortex position.
Using momentum conservation arguments (as discussed by Saffman in Section 2.3 of his
textbook [8]), one concludes that the motion of point vortices actually follows the same
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kind of dynamics as the vortex lines, in the sense that they will also move with the
velocity induced by the rest of the flow at the vortex position. This will be the basic
dynamical idea that will be extensively employed in this thesis to analyze the motion
of vortices. This approach originated with Helmholtz’s 1858 seminal paper on vortex
dynamics, Ref. [9], and constitutes the so-called point vortex model. Let us now obtain
the equations governing the motion of a system consisting of N point vortices, according
to this model.

2.6.1 Equations of Motion

Let us consider a system of N point vortices in an unbounded two dimensional flow,
having intensities Γk and located at the positions zk = xk + iyk, k = 1, 2, · · · , N . Each
of the vortices will move with the velocity field induced by all the other N − 1 vortices.
Mathematically this means

uj − ivj =
N∑

k=1

k 6=j

Γk
2πi

1

zj − zk
, (2.72)

where (uj, vj) is the velocity of the j-th vortex. Separating the real and imaginary parts
of this equation and making use of the correspondence (uj, vj) → (ẋj, ẏj), where the dot
means differentiation with respect to the time, we have

ẋj = −
N∑

k=1

k 6=j

Γk
2π

(yj − yk)

(xj − xk)2 + (yj − yk)2
(2.73)

ẏj =
N∑

k=1

k 6=j

Γk
2π

(xj − xk)

(xj − xk)2 + (yj − yk)2
. (2.74)

Notice that the summation excludes the contribution of the particular vortex whose ve-
locity is being calculated. If other contributions to the flow are present, such as incoming
streams or dipoles, these can be thought of as limits taken over appropriate point vortex
configurations. For example, the dipole was introduced in Sec. 2.3.3 as resulting from the
“merging” procedure of a source and a sink in the real axis, but it can also be obtained
by taking the limit corresponding to the “merging” of a pair of opposite point vortices in
the imaginary axis, i.e., in a direction perpendicular to the source-sink case. To obtain a
dipole in the negative horizontal direction, one would take the upper vortex to have neg-
ative circulation and the lower one to have positive circulation. Similarly, the incoming
stream can be thought of as a dipole placed at infinity. Therefore, Eqs. (2.73) and (2.74)
can also encompass these contributions.

To perform the analysis of the dynamics of vortices in a two dimensional ideal flow, it
is useful to introduce the concept of an “effective potential” to account for the resulting
interaction acting on each vortex. This will be explained in the next section.
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2.6.2 The Effective Potential

Since a point vortex moves in a fluid with the velocity induced by all the other elements
of the flow, it is useful to introduce a function, called the “effective potential”, obtained
from the complex potential for a given flow by removing the contribution due to the
vortex itself, so that the vortex velocity can be readily obtained as a derivative of the
“effective potential”.

Let w(z, z0) denote the complex potential for a general flow, having a point vortex of
intensity Γ located at the point z = z0 in the complex plane. The “effective potential”,
weff , for the vortex at z0 is defined as

weff (z, z0) = w(z, z0)−
Γ

2πi
log(z − z0) . (2.75)

The vortex complex velocity, u− iv, is then obtained by calculating the derivative of the
“effective potential” at the vortex position z0,

u− iv =
d

dz
weff (z, z0)

∣
∣
∣
∣
z=z0

. (2.76)

Let us apply this formalism to analyze the vortex dynamics of some simple examples.

2.6.2.1 Vortex in a uniform flow Let us start from the very simple case of a
vortex of intensity Γ at z = z0 in a uniform flow of intensity U parallel to the x-axis. It
is immediate that this vortex will be carried by the incoming flow with velocity u = U ,
but let us obtain this result making use of the formalism explained above.

The complex potential for this situation is

w(z, z0) = Uz +
Γ

2πi
log(z − z0) . (2.77)

Therefore, the effective potential is

weff (z, z0) = w(z, z0)−
Γ

2πi
log(z − z0)

= Uz , (2.78)

which is given only by the contribution of the incoming stream. The complex velocity is
calculated using Eq. (2.76),

u− iv = U =⇒ u = U , v = 0 . (2.79)

Let us move to an example slightly more complicated where a boundary is involved,
which is the case of a vortex near a plane wall.
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2.6.2.2 Vortex near a plane wall The complex potential for this system was ob-
tained using the method of images and is given in Eq. (2.54), where the notation zv was
used instead of z0. The corresponding effective potential is

weff (z, zv) = w(z, zv)−
Γ

2πi
log(z − zv)

= − Γ

2πi
log(z − z̄v) , (2.80)

Using Eq. (2.76) to calculate the vortex complex velocity, we have

u− iv =
d

dz
weff (z, zv)

∣
∣
∣
∣
z=zv

= − Γ

2πi

1

zv − z̄v
. (2.81)

Making zv = x+ iy, one obtains

u− iv =
Γ

4πy
=⇒ u =

Γ

4πy
, v = 0 . (2.82)

Therefore, a vortex near a plane wall will move parallel to it, and its speed will decrease
with the inverse of the distance y to the wall.

If we superimpose to this system a uniform stream coming from the right, with velocity
U = − Γ

4πy
it would be possible to maintain this vortex configuration stationary: the

velocity induced by the image vortex would be exactly canceled by the velocity of the
incoming stream and the vortex wold not move. In the next chapter we will be interested
in this situation when instead of a vortex near a plane, we have a pair of counter-rotating
vortices near a cylinder placed in a uniform stream. But before going into that, let us
analyze the dynamics of a single vortex placed near a cylinder (without the incoming
stream).

2.6.2.3 Vortex near a circular cylinder The potential for a point vortex of inten-
sity Γ at z = z0, near a circular cylinder of radius a and centered at the origin, can be
calculated by means of the Milne-Thomson Circle Theorem, discussed in Sec. 2.4.1. In
this case the complex potential is

w(z, z0) =
Γ

2πi
log(z − z0) +

Γ

2πi
log

(
a2

z̄
− z0

)

. (2.83)

After some algebraic manipulation and ignoring constant additive terms, the complex
potential (2.83) can be written as

w(z, z0) =
Γ

2πi
log

[

z(z − z0)

z − a2

z̄0

]

, (2.84)



2.6 THE POINT VORTEX MODEL 27

from which the effective potential can be easily calculated,

weff (z, z0) =
Γ

2πi
log

(

z

z − a2

z̄0

)

. (2.85)

The vortex velocity is calculated using Eq. (2.76), and after some algebraic manipulation
we obtain that the velocity of the vortex at z = z0 outside the cylinder is

u+ iv =
Γ

2π

a2

|z0|2 (|z0|2 − a2)
(−iz0) . (2.86)

From this expression we see that the velocity of the vortex is always perpendicular to
the vortex position vector and has the same modulus for fixed distance |z0| to the center
of the cylinder. Therefore, the vortex will rotate around the cylinder at constant speed,
maintaining the same distance to the origin. If the vortex circulation is anti-clockwise
(Γ > 0), the vortex rotates around the cylinder clockwise. Conversely, a vortex of negative
circulation (Γ < 0) rotates around the cylinder in anti-clockwise direction. Also, the closer
the vortex is to the cylinder, the faster it rotates.

2.6.3 Hamiltonian Dynamics

In 1876 Kirchhoff showed (Ref. [10]) that the motion of point vortices in an unbounded
domain follows a Hamiltonian dynamics. Let there be a set of N vortices of intensity Γk
located at zk = xk+iyk, k = 1, 2, · · · , N . Each one of the vortices moves with the velocity
induced by the other vortices, as given by Eqs. (2.73) and (2.74). Kirchhoff showed that
the equations of motion correspond to a Hamiltonian system of the form

Γk
dxk
dt

=
∂H

∂yk
, Γk

dyk
dt

= −∂H

∂xk
, (2.87)

where H(x1, y1, · · · , xN , yN) is the Hamiltonian, also known as the Kirchhoff-Routh path
function, given by the following expression:

H(x1, y1, · · · , xN , yN ) = − 1

4π

N∑

j=1

N∑

k=1

k 6=j

ΓjΓk log |zj − zk| (2.88)

Furthermore, Lin showed (Ref. [11]) that when solid obstacles are present, the motion
of vortices also follows a Hamiltonian dynamics, but this time the Hamiltonian is different
from Eq. (2.88). Therefore, the dynamics of vortices can be analyzed either by defining
an effective potential, as was done in the previous section, or by calculating the system
Hamiltonian. In the following chapters we will make use of both approaches according
to our convenience. The Hamiltonian approach is particularly useful when one wants
to obtain the vortex trajectories in the case when only one vortex is involved. In this
case, to calculate the vortex trajectory with initial conditions (x0, y0), one only needs to
calculate the level set H(x, y) = H(x0, y0), since the Hamiltonian is a constant of motion.
We will be using this approach extensively in the next chapters.
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Let us now obtain the Hamiltonians governing the motion of the three simple examples
given in the previous section.

2.6.3.1 Vortex in a uniform flow The Hamiltonian yielding the velocity field in
Eq. (2.79) is simply

H(x, y) = ΓUy , (2.89)

where the subscript from the coordinate (x, y) was dropped, since only one vortex is
involved. By applying Hamilton equations (2.87), and identifying (u, v) with (ẋ, ẏ), it
is immediate to see that this Hamiltonian produces the desired velocity field. Also, the
vortex trajectories can be calculated by taking the level sets H(x, y) = const., yielding
the lines y = const., as expected.

2.6.3.2 Vortex near a plane wall The velocity field for this case is given by
Eq. (2.82). The associate Hamiltonian is then

H(x, y) =
Γ2

4π
log y . (2.90)

Once again, the vortex trajectories H(x, y) = const. are the lines y = const., meaning
that the vortex will move parallel to the wall, as expected.

2.6.3.3 Vortex near a circular cylinder The velocity field is expressed in Eq. (2.86).
Making z0 = x+ iy, this equation can be written as

u+ iv =
Γy

2π

(
1

x2 + y2 − a2
− 1

x2 + y2

)

+ i
Γx

2π

(
1

x2 + y2
− 1

x2 + y2 − a2

)

. (2.91)

The Hamiltonian that yields this velocity field is

H(x, y) =
Γ2

4π
log

(
x2 + y2 − a2

x2 + y2

)

. (2.92)

It is easy to verify that the curves defined by H(x, y) = const. are circles centered at the
origin of radius r > a. A vortex near a cylinder then tends to rotate around the cylinder,
as already anticipated.

We are now in position to apply the formalism just presented to analyze some vortex
configurations of more practical interest. In the next chapter we study the so-called Föppl
system, a pair of counter-rotating vortices formed behind a circular cylinder in a uniform
stream.



CHAPTER 3

VORTEX DYNAMICS AROUND A CYLINDER: THE

FÖPPL SYSTEM

In this chapter we analyze the dynamics of the pair of counter-rotating vortices formed
downstream of a circular cylinder placed in a uniform flow. The treatment of this prob-
lem by means of a point-vortex model was first done by Ludwig Föppl in 1913, and the
system became known as the Föppl pair of vortices. We will revisit Föppl’s original
solution and show several new features of this system. Part of the analysis present in
Föppl’s original paper was in error. Here we will make the appropriate corrections and
present some extensions of the problem. Initially, we calculate the stationary configura-
tions of the vortex pair and perform the linear stability analysis of these configurations.
Some dynamical features that went previously unnoticed will be clarified, including the
existence of a fixed point at infinity that plays a crucial role in the elucidation of the
system’s phase portrait. The Hamiltonian governing the vortex motion restricted to the
symmetrical subspace is obtained and the nonlinear dynamics of the pair of vortices re-
stricted to this subspace will be studied. This case corresponds to the situation in which
the vortices move symmetrically with respect to the middle plane, a restriction that can
be experimentally imposed by placing a splitter plate in that plane. We will also ana-
lyze the motion resulting from antisymmetrical perturbations of the stationary position,
which is believed to be responsible for the instability that leads to vortex shedding, and
ultimately gives rise to the so-called von Karman vortex street. The main results of this
chapter can be found in our recent (2011) publication, Ref. [12], enclosed in this thesis
in Appendix A.

3.1 STATEMENT OF THE PROBLEM

The formation of recirculating eddies in the wake of solid bodies placed in a stream is a
rather common fluid dynamical event. It can be seen for example in the flow surrounding
a bridge structure in a river, near the cables of an oil platform in the ocean, or even, in a
much smaller scale, in the surroundings of a spoon that is used to stir an espresso coffee.
In a laboratory this experiment can be done in a controlled environment by placing an
obstacle, for example, a circular cylinder, in a uniform stream. The experiment can be
performed in an open channel or in a Hele-Shaw cell, which is a device made by placing
two glass plates together, leaving only a small gap between them where the fluid can flow
in an “almost two-dimensional” domain. In this chapter we will study the pair of vortices
formed downstream of a circular cylinder, which was shown in Fig. 1.6 in Chapter 1, and
is reproduced here, in Fig. 3.1, for convenience.

The Reynolds number Re is a dimensionless parameter that measures the ratio of
inertial to viscous forces in a given flow. It is given by the expression

29
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Figure 3.1 Pair of counter-rotating vortices formed downstream of a cylinder. The Reynolds
number varies from left to right: a) Re = 9.6, b) Re = 13.1 and c) Re = 26.0 (figure from
Ref. [2]).

Re =
UL

ν
(3.1)

where, U is a typical velocity, L is a typical length and ν is the kinematic viscosity of the
fluid (ν = µ/ρ, where µ is the dynamic viscosity and ρ is the fluid density).

For the experiments shown in Fig. 3.1, the Reynolds number increases from left to
right, as the speed of the incoming flow is increased. In a) Re = 9.6, b) Re = 13.1 and
c) Re = 26.0. The pair of vortices formed downstream of the cylinder are observed in
the range of Re < 40. If the Reynolds number is increased further, this pair of vortices
becomes unstable and a new regime starts where vortices are alternately shed from both
sides of the cylinder giving rise to the so-called von Karman vortex street, see Ref. [13].
This pattern occurs for Reynolds number in the range 40 < Re < 300; see Fig. 1.7, which
shows an experiment in which the Reynolds number is Re = 140. For Re > 300, the flow
is turbulent and no vortical structure can be visually identified, although if one considers
an average of the velocity field over time, a recirculating region in the near wake of the
cylinder can still be found, see Ref. [14].

In this chapter, we focus our attention on a point vortex model introduced by Föppl
in Ref. [15] to study the formation of stationary vortex configurations behind a cylinder.
In this model the fluid is treated as inviscid and incompressible, and the vorticity is
concentrated at isolated points, namely, at the positions of the vortices. In spite of these
simplifications, the results obtained from this idealized model are in good qualitative
agreement with experimental observations, as we will see later in this chapter. In the
next section we start our analysis by defining the complex potential associated with the
Föppl system.

3.2 THE COMPLEX POTENTIAL

Fig. 3.2 shows a diagram of the situation we want to treat. To define the complex potential
in the presence of a circular cylinder, first we will find the complex potential without the
cylinder (that we will call f) and then apply the circle theorem described in Sec. 2.4.1
to obtain the desired complex potential with the cylinder. The complex potential for a
pair of counter-rotating vortices of intensities ±Γ located respectively at z1 = x1 + iy1
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G < 0

-G > 0

U

Figure 3.2 Diagram of the Föppl system. As can be seen from the experiments (Fig. 3.1), the
upper (lower) vortex has negative (positive) circulation, as indicated in this diagram.

Figure 3.3 Diagram showing the images (inside the cylinder) for the Föppl system.

and z2 = x2 + iy2 in an incident stream of intensify U is

f(z, z1, z2) = Uz +
Γ

2πi
log(z − z1)−

Γ

2πi
log(z − z2) . (3.2)

Applying the circle theorem, we have,

w(z, z1, z2) = f (z, z1, z2) + f

(
a2

z̄
, z1, z2

)

(3.3)

which, after some algebraic manipulation (including the neglect of some additive con-
stants), yields

w(z, z1, z2) = U

(

z +
a2

z

)

+
Γ

2πi
log

(

z − z1

z − a2

z̄1

)

− Γ

2πi
log

(

z − z2

z − a2

z̄2

)

. (3.4)

The first two terms correspond to the incident stream and its image by the cylinder, a
dipole at the origin, as explained before [see Eq. (2.59)]. The other two terms are the
vortices at z = z1 and z = z2 (outside the cylinder) and their images at z = a2/z̄1 and
z = a2/z̄2 (inside the cylinder), see Fig. 3.3.

It is convenient to introduce the dimensionless variables

z′ =
z

a
, t′ =

U

a
t, w′ =

w

Ua
, κ = − Γ

2πUa
, (3.5)

where κ > 0 (see Fig. 3.2). With these new variables, the complex potential (3.4) reads
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w(z, z1, z2) = z +
1

z
+ iκ log




(z − z1)

(

z − 1
z̄2

)

(z − z2)
(

z − 1
z̄1

)



 , (3.6)

where we have already dropped the prime notation, with the understanding that from
now on the variables are dimensionless. We now define the effective potential acting on
the vortex at z = z1 by removing the term related to this vortex from Eq. (3.6):

weff (z, z1, z2) = z +
1

z
+ iκ log





(

z − 1
z̄2

)

(z − z2)
(

z − 1
z̄1

)



 (3.7)

Next we calculate the complex velocity of the vortex at z = z1, by taking the derivative
of the effective potential at the vortex position,

u1 − iv1 =
d

dz
weff (z, z1, z2)

∣
∣
∣
∣
z=z1

(3.8)

u1 − iv1 = 1− 1

z21
− iκ

(
1

z1 − z2
− z̄1

1− z1z̄1
+

z̄2
1− z1z̄2

)

. (3.9)

Now, separating the real and imaginary parts of this equation we have,

u1 = 1− x21 − y21
r41

− κ

[
y1 − y2

r21 + r22 − 2(x1x2 + y1y2)
+

y1
r21 − 1

− y1r
2
2 − y2

1 + r21r
2
2 − 2(x1x2 + y1y2)

]

,

(3.10)

v1 = −2
x1y1
r41

+ κ

[
x1 − x2

r21 + r22 − 2(x1x2 + y1y2)
+

x1
r21 − 1

− x1r
2
2 − x2

1 + r21r
2
2 − 2(x1x2 + y1y2)

]

,

(3.11)
where r2i = x2i + y2i . These are the equations governing the motion for the upper vortex.
To obtain the equations for the lower vortex, a similar procedure can be taken, this time
defining an effective potential acting on the vortex at z = z2. But, from the symmetry
of the system, we note that the equations for the lower vortex can be obtained by simply
interchanging the indexes 1 ↔ 2 and letting κ→ −κ in Eqs. (3.10) and (3.11).

From the up-down symmetry of the problem (see Fig. 3.2), we find that a vortex
configuration that is initially symmetrical with respect to the middle plane, will maintain
this symmetry as time goes by. That is to say, if x1 = x2 and y1 = −y2 at t = 0, then
u1 = u2, v1 = −v2 and therefore the system will evolve having z2(t) = z1(t) for any time
t > 0. The up-down symmetry is thus preserved (or, saying it differently, the symmetric
subspace is invariant under the dynamics).

The dynamics of the pair of counter-rotating vortices possesses another kind of sym-
metry, that we will call conjugation symmetry, which we now explain. Consider a pair
of counter rotating vortices of intensities ±Γ, with initial positions z1,0 and z2,0 respec-
tively. The trajectories of the vortices are described by the functions z1(t; z1,0, z2,0) and
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Figure 3.4 Diagram showing the physical origin of the vortex pair conjugation symmetry.

z2(t; z1,0, z2,0). Let us suppose that the vortex trajectories are like the ones shown on the
left side of Fig. 3.4. If we now rotate the system around the horizontal axis, the dynamics
is of course symilar, and the trajectories are as shown on the right side of the figure. One
can think that such a rotation may correspond simply to a change in the position of the
observer in the laboratory. But the trajectories on the right, corresponds to the motion
resulting from the initial conditions z2,0 and z1,0, for the vortices of intensity ±Γ, respec-
tively. Therefore, if we know the trajectory resulting from the pair of initial conditions
(z1,0, z2,0), we automatically know the trajectory associated with the conjugate pair of
initial conditions (z2,0, z1,0). Mathematically, this symmetry reads

z1(t; z2,0, z1,0) = z2(t; z1,0, z2,0) , (3.12)

z2(t; z2,0, z1,0) = z1(t; z1,0, z2,0) . (3.13)

A stationary configuration, or equilibrium position, of the dynamical system given
in Eqs. (3.10) and (3.11) is obtained by making u = 0 and v = 0 for both vortices. It
is reasonable to guess that such a configuration (if it exists at all) is symmetrical with
respect to the middle plane. With this in mind, let us first calculate the vortex velocity
subject to the symmetry condition x1 = x2 and y1 = −y2. Substituting this condition
into Eqs. (3.10) and (3.11) for the motion of the upper vortex, we have

u = 1− x2 − y2

r4
+ κy

[
r2 + 1

(r2 − 1)2 + 4y2
− 1

r2 − 1
− 1

2y2

]

, (3.14)

v = −2
xy

r4
− κx

[
r2 − 1

(r2 − 1)2 + 4y2
− 1

r2 − 1

]

, (3.15)

where the subscripts have been dropped. Since we are considering now the symmetrical
case, once the motion of the upper vortex is known, the motion of the lower one is
obtained by simply considering it as the “mirror image” of the upper vortex.

To analyze the stationary configuration, we must solve Eqs. (3.14) and (3.15) for
u = v = 0. This will be done in the next section.
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Figure 3.5 Streamline pattern of a vortex pair on the normal line. The incoming flow is
U = 1 and the vortices are located at the points (0,±2). The dimensionless vortex intensity is
κ = 75/31

3.3 STATIONARY CONFIGURATIONS

Three types of equilibria have been found for this system: equilibrium on the normal line,
the Föppl equilibrium and equilibrium at infinity.

3.3.1 Equilibrium on the normal line

By inspection of Eq. (3.15), one immediately sees that v = 0 if the vortex is located at
the normal line x = 0. It is still necessary to satisfy the condition u = 0 to have an
equilibrium position. Making x = 0 and y = b (b > 1, since the vortex is outside the
cylinder) in Eq. (3.14), and solving it for u = 0, we have,

0 = 1 +
b2

b4
+ κb

[
b2 + 1

(b2 − 1)2 + 4b2
− 1

b2 − 1
− 1

2b2

]

. (3.16)

Solving for κ in this equation, yields

κ =
2(b2 + 1)(b4 − 1)

b(b4 + 4b2 − 1)
. (3.17)

Therefore, any point of the form (0, b) with b > 1 can sustain a stationary vortex
configuration with the condition that the dimensionless vortex intensity κ is given by
Eq. (3.17). Fig. 3.5 shows the streamline pattern for a pair of vortices located at the
points (0,±2). Fig. 3.6 shows the stationary positions curve (simply the normal line
x = 0) and a plot of κ as a function of b.

Although this stationary configuration on the normal line does not appear on the
experiments, the existence of this fixed point plays an important role in the understanding
of the phase portrait of this system, as we will see later.
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k

Figure 3.6 (left) Stationary positions on the normal line x = 0. (right) Plot of the dimension-
less vortex intensity κ as a function of the position y = b > 1 on the normal line.

3.3.2 Föppl equilibrium

This is the equilibrium related to the experimental observations shown in Fig. 3.1, i.e.,
the pair of vortices downstream of the cylinder. If x 6= 0, the condition v = 0 is not
immediately satisfied and we will have to work with both Eq. (3.14) and Eq. (3.15) in
order to find a stationary condition (for which u = v = 0). Making x2 = r2 − y2 on
Eq. (3.14), we have, after some simplification,

u = 1− r2 − 2y2

r4
− κ

(r2 − 1)3 + 8y4

2y(r2 − 1) [(r2 − 1)2 + 4y2]
. (3.18)

The condition u = 0 then gives

r2(r2 − 1) + 2y2

r4
= κ

(r2 − 1)3 + 8y4

2y(r2 − 1)[(r2 − 1)2 + 4y2]
. (3.19)

Similarly, after some simplification, Eq. (3.15) reads

v = −2
xy

r4
+ κ

4xy2

(r2 − 1) [(r2 − 1)2 + 4y2]
, (3.20)

and the condition v = 0, implies

1

r4
= κ

2y

(r2 − 1) [(r2 − 1)2 + 4y2]
. (3.21)

Now, solving for κ in Eq. (3.21) and substituting the result into Eq. (3.19), we obtain
after some algebra:

r2 − 1 = ±2ry . (3.22)

This expression defines a curve, the so-called Föppl curve, which corresponds to the
positions where a stationary vortex configuration can be found. Substituting y from
Eq. (3.22) into Eq. (3.21) and solving for κ, we obtain

κ =
(r2 − 1)(r4 − 1)

r5
(3.23)
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Fig. 3.7 shows the streamline pattern of a Föppl pair located at a distance r = 2 to the
origin. Fig. 3.8 shows the Föppl curve (left) and a three-dimensional plot of the vortex
intensity κ for points on that curve (right). Since κ is a function of the vortex distance
r only, we could visualize it by making a simple two-dimensional plot, but we find it
helpful here to introduce this kind of three-dimensional plot because plots like this are
going to appear again later in this thesis, in situations where a simple two-dimensional
plot is not very suitable. In Fig. 3.9 we show a visual comparison between an experiment
and a streamline pattern produced using the point vortex approximation to the flow.

We observe that the x dependence on the Föppl curve, Eq. (3.22), is only by means
of the term r =

√

x2 + y2 and, therefore, we can have stationary positions both for x > 0
(downstream of the cylinder) and for x < 0 (upstream of the cylinder). Nevertheless,
because of the mechanisms involved in the creation of vorticity in a flow around an
obstacle, only the configuration downstream of the cylinder appears in the experiments.
A case in which a vortex configuration upstream of the cylinder is observed will be treated
in Chapter 5. There, in addition to the cylinder, there will be also a secondary boundary,
a plane wall, placed below the cylinder.

3.3.3 Equilibrium at infinity

Very far from the origin, the “perturbation” induced by the cylinder in the uniform flow is
negligible and the situation is like if there were only a pair of counter rotating vortices in
a uniform stream. This situation is identical to the case treated in Sec. 2.6.2, concerning
the motion of a vortex near a plane wall. As we saw there, an equilibrium configuration
can be achieved if the incoming stream has velocity U = − Γ

4πy
, or, saying it differently,

the configuration is stationary if the distance y from the vortex to the middle plane is
y = − Γ

4πU
. In terms of the dimensionless variables, this means that the equilibrium

positions are

x = ±∞ , y =
κ

2
. (3.24)

Plugging these values for x and y into Eqs. (3.14) and (3.15) one can easily verify that this
is indeed a stationary configuration. As far as we know, this equilibrium point at infinity
was not noted before. This equilibrium position, together with the equilibrium position
on the normal line, plays a very important role in the characterization of the nonlinear
dynamics of the vortex pair in the particular case in which the vortex trajectories are
symmetrical with respect to the middle plane, as we will see later in this chapter.

Now that we have calculated the stationary configurations associated with this sys-
tem, let us move on to the analysis of the stability of these configurations under small
displacements.

3.4 LINEAR STABILITY ANALYSIS

In this section we will perform the linear stability analysis of the stationary configurations
studied, under symmetrical and antisymmetrical perturbations. First of all, let us clarify
what we mean by these two types of perturbations.



3.4 LINEAR STABILITY ANALYSIS 37

Figure 3.7 Streamline pattern of a Föppl pair. The incoming flow is U = 1 and the vortices
are located at a distance r = 2 to the origin. The dimensionless vortex intensity is κ = 45/32.

k

Figure 3.8 (left) Föppl curve for stationary vortex configurations. (right) Three-dimensional
plot of the dimensionless vortex intensity κ as a function of the position for points on the Föppl
curve.

Figure 3.9 Comparison between the experimental measurement obtained for the Reynolds
number Re = 13.1 and a streamline pattern produced with the point vortex approximation to
the flow.
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symmetric perturbation antisymmetric perturbation

Figure 3.10 Scheme for the symmetrical (left) and antisymmetrical (right) perturbations,
shown exaggerated in the figure. The blue and red dots on the Föppl curve are the stationary
positions z0 and z̄0.

Let z0 and z̄0 be, respectively, the stationary positions for the upper and lower vortices.
Let ∆z1 = ξ1 + iη1 and ∆z2 = ξ2 + iη2 be the (small) perturbations from the equilibrium
position. If ∆z2 = ∆z1 the perturbation is said to be symmetric. If, otherwise, ∆z2 =
−∆z1, then the perturbation is called antisymmetric. Fig. 3.10 exemplifies these two
types of perturbations.

Since a generic perturbation can always be written in terms of a symmetric and
an antisymmetric components, it suffices to consider these two types of perturbations
separately

3.4.1 Stability under symmetrical perturbations

To study the stability of vortex configurations in the symmetric subspace we will make
use of Eqs. (3.14) and (3.15) for the motion of the upper vortex. Let z0 = x0+ iy0 denote
a stationary position. The velocity (u, v) at a position z0 + ∆z, where ∆z = ξ + iη is
a small perturbation, can be obtained by a linearization of the velocity field around the
stationary position,

u(x0 + ξ, y0 + η) = u(x0, y0) +
∂u

∂x

∣
∣
∣
∣
0

ξ +
∂u

∂y

∣
∣
∣
∣
0

η (3.25)

v(x0 + ξ, y0 + η) = v(x0, y0) +
∂v

∂x

∣
∣
∣
∣
0

ξ +
∂v

∂y

∣
∣
∣
∣
0

η , (3.26)

where the subscript 0 means that the derivatives must be evaluated at the stationary
position (x0, y0). Since u(x0, y0) = v(x0, y0) = 0 it is useful to write this pair of equations
in matricial form. Identifying (u, v) with (ξ̇, η̇), we have

(

ξ̇
η̇

)

= A

(
ξ
η

)

, (3.27)
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where the matrix A reads

A =

(
A11 A12

A21 A22

)

=

( ∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)∣
∣
∣
∣
0

. (3.28)

Note that, since the motion of vortices follows a Hamiltonian dynamics, the trace of
the matrix A always vanishes because

A11 =
∂u

∂x
=

∂

∂x

1

Γ

∂H

∂y
=

∂

∂y

1

Γ

∂H

∂x
= −∂v

∂y
= −A22 . (3.29)

This is also expected from Liouville theorem: in a Hamiltonian system a finite element of
volume in the phase space is always preserved by the dynamics. We will now perform the
linear stability analysis under symmetric perturbations of the three types of equilibria
calculated in the previous section.

3.4.1.1 Equilibrium on the normal line The elements of the matrix A for points
of the form (x0, y0) = (0, b), are given by

A11 = −A22 = 0 , (3.30)

A12 =
b8 + 10b6 − 8b4 + 14b2 − 1

b3(b2 − 1)(b4 + 4b2 − 1)
, (3.31)

A21 =
2(b2 − 1)(3b2 − 1)

b3(b4 + 4b2 − 1)
. (3.32)

The eigenvalues λ of this matrix are

λ2 =
2 (3b2 − 1) (b8 + 10b6 − 8b4 + 14b2 − 1)

b6(b4 + 4b2 − 1)2
> 0 , (3.33)

for b > 1. This matrix then yields a pair of real eigenvalues with opposite signs λ± =
±
√
λ2. Therefore this fixed point is a saddle, having a stable and an unstable direc-

tion. It is easy to verify that the eigenvectors ~w± associated with the eigenvalues λ± are
respectively,

~w± =

(

±
√

A12/A21

1

)

. (3.34)

Fig. 3.11 shows an example of motion resulting from a symmetrical perturbation of
the pair of vortices at stationary positions (0,±2). To generate this figure, we numer-
ically integrated the equations of motion given in Eqs. (3.14) and (3.15), after making
ẋ = u and ẏ = v. To integrate this system of ODEs, we used the NDSolve routine of
Mathematica. According to the Mathematica documentation, “for ordinary differential
equations, NDSolve by default uses an LSODA approach, switching between a non-stiff
Adams method and a stiff Gear backward differentiation formula method”, see Refs. [16]
and [17] for additional information concerning these methods. This procedure was used
to perform all integrations of ODEs in this thesis.
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Figure 3.11 Motion of the vortex pair symmetrically displaced from the equilibrium position on
the normal curve. The trajectories are obtained by the numerical integration of Eqs. (3.14) and
(3.15). The stationary positions are (0,±2) and the dimensionless vortex intensity is κ = 75/31.
The green curves are the trajectories resulting from a displacement ∆z = i0.1 and the orange
curves are for ∆z = −i0.1.

3.4.1.2 Föppl equilibrium We compute now the elements of the matrix A for points
(x0, y0) on the Föppl curve, Eq. (3.22). After taking the appropriate derivatives, see
Eq. (3.28), one obtains the following matrix elements:

A11 = −A22 = −x0(r
4
0 − 3r20 + 2)

r80
, (3.35)

A12 =
4r80 + 5r60 + 2r40 − 5r20 + 2

2r90
, (3.36)

A21 = −2x20(r
4
0 + r20 + 2)

r70(r
2
0 + 1)

. (3.37)

The eigenvalues λ of this matrix are

λ2 = −3r60 + 5r40 + 13r20 − 5

r100
< 0 . (3.38)

The eigenvalues are then a pair of conjugate purely imaginary numbers, which means that
the Föppl equilibrium is a center. Therefore, if the vortex pair is displaced symmetrically
from the equilibrium position downstream of the cylinder, the vortices continuously rotate
around the respective equilibrium positions. The upper (lower) vortex rotates clockwisely
(anticlockwisely), see Fig. 3.12. This result is at variance with the one obtained by Föppl
himself in his 1913 paper (Ref. [15]), where he mistakenly found that the eigenvalues were
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Figure 3.12 Motion of the vortex pair symmetrically displaced from the equilibrium position
(black dot on the Föppl curve). The trajectories are obtained by the numerical integration of
Eqs. (3.14) and (3.15). The equilibrium position is at the distance r = 2 to the origin. The
vortex dimensionless intensity is κ = 45/32. The trajectories are the orange, purple and green
curves respectively, for three separate perturbations. The closer the vortex is to the stationary
position, the faster it rotates.

a pair of conjugate complex numbers having a negative real part, which would correspond
to a stable focus. Such a fixed point, of course, could not occur in a 2D Hamiltonian
system, because in such a system, the sum of the two eigenvalues must vanish. (A focus
in the phase portrait would act as a “sink of phase portrait volume”, which is not allowed
by Liouville theorem.) In other words, in a 2D Hamiltonian system, only centers and
saddles are possible. Therefore, in the light of the Liouville’s theorem, the Hamiltonian
approach allows a fast identification of Föppl’s mistake.

3.4.1.3 Equilibrium at infinity To linearize the equations of motion around the
fixed point at x = ∞, y = κ

2
, we introduce the following perturbations:

ξ = xc − x , xc = ∞ , (3.39)

η = y − yc , yc =
κ

2
. (3.40)

The elements of the linearized matrix A for the point at infinity are given by

A11 = −A22 = 0 , (3.41)

A12 = −2

κ
, (3.42)

A21 = 0 , (3.43)

as can be easily checked. The matrix A is then of the form

A = −2

κ

(
0 1
0 0

)

. (3.44)



3.4 LINEAR STABILITY ANALYSIS 42

Figure 3.13 Typical trajectories near a generic nilpotent saddle point.

In this case, A is a nilpotent matrix of degree 2, which means that A2 is the zero
matrix. It has, therefore, zero eigenvalues and to study the dynamics around the fixed
point at infinity, one has to analyze the contributions of the nonlinear terms in the
expansion of the velocity around this equilibrium position. In the limit (x, y) → (∞, κ

2
),

the first relevant term for the y component of the velocity is

ẏ = − κ

x3
(3.45)

From the theory of ordinary differential equations (Ref. [18]), it follows that the fixed
point at infinity is a degenerate or nilpotent saddle, for which the two eigenvectors are
the same. Fig. 3.13 shows an example of the trajectories near a generic nilpotent saddle.
Physically, the vortex motion around the nilpotent fixed point is as follows: if the vortex
is placed very far downstream (|x| ≫ 1) and above the line y = κ/2, the vortex moves
downstream, thus approaching the fixed point at infinity. Conversely, if it is released
below the line y = κ/2, it will move in the other direction, against the flow, towards the
cylinder. A similar analysis can be done for the case in which the vortex is placed very
far upstream of the cylinder. In this case, if the vortex is placed above the line y = κ/2,
it moves towards the cylinder and if it is below it, the motion will be to the left, against
the incoming flow.

Let us move on now to the second part of this instability analysis that concerns the
motion resulting from antisymmetric perturbations of the equilibrium positions.

3.4.2 Stability under antisymmetrical perturbations

To study antisymmetrical perturbations, we can no longer make use of Eqs. (3.14) and
(3.15) to calculate the vortex velocity, since these equations already include the fact that
the vortices move symmetrically with respect to the middle plane. We must, therefore,
use the full set of Eqs. (3.10) and (3.11) for the velocities (u1, v1) and (u2, v2) of the upper
and lower vortices, respectively. Nevertheless, since the antisymmetric subspace is also
invariant under the linear dynamics (although not under the general nonlinear dynamics),
we can proceed with the linear stability analysis focusing only on the upper vortex.

Let ui(x1, x2, y1, y2) and vi(x1, x2, y1, y2) denote respectively the horizontal and vertical
components of the velocity of the vortex i, i = 1, 2. Let once again z0 = x0 + iy0 and
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z̄0 = x0 − iy0 denote the stationary positions of the upper and lower vortex. Since
the perturbation is antisymmetric, the vortex positions after the perturbation will be
z1 = z0 + ∆z and z2 = z̄0 − ∆z, where ∆z = ξ + iη. Recalling that u = v = 0 at the
stationary positions, the linearization of the velocity field near this equilibrium is

u1(x0 + ξ, x0 + ξ, y0 + η, y0 − η) =

[
du1
dx1

+
du1
dx2

]

0

ξ +

[
du1
dy1

− du1
dy2

]

0

η (3.46)

v1(x0 + ξ, x0 + ξ, y0 + η, y0 − η) =

[
dv1
dx1

+
dv1
dx2

]

0

ξ +

[
dv1
dy1

− dv1
dy2

]

0

η , (3.47)

where the subscript 0 means that the derivatives must be evaluated at the stationary
position (x0, x0, y0,−y0). Writing these equations in matricial form, we have

(

ξ̇
η̇

)

= B

(
ξ
η

)

, (3.48)

where

B =

(
B11 B12

B21 B22

)

=

(
du1
dx1

+ du1
dx2

du1
dy1

− du1
dy2

dv1
dx1

+ dv1
dx2

dv1
dy1

− dv1
dy2

)∣
∣
∣
∣
∣
0

. (3.49)

We will now analyze the equilibrium properties under antisymmetric perturbation for the
stationary positions on the normal line and on the Föppl curve.

3.4.2.1 Equilibria on the normal line The elements of the matrix B for the equi-
librium on the normal line (x0, y0) = (0, b), are

B11 = B22 = 0 , (3.50)

B12 =
2 (3b6 + b4 + 5b2 − 1)

b3(b2 − 1) (b4 + 4b2 − 1)
, (3.51)

B21 =
b2 − 1

b3
. (3.52)

The eigenvalues, λ, of this matrix are given by

λ2 =
2 (3b6 + b4 + 5b2 − 1)

b6 (b4 + 4b2 − 1)
> 0 . (3.53)

The eigenvalues are a pair of real numbers with opposite signs, λ± = ±
√
λ2. Therefore,

as in the case of symmetric perturbations, the equilibrium position on the normal line
is also a saddle point with respect to antisymmetric perturbations. The eigenvectors are
respectively

~w± =

(

±
√

B12/B21

1

)

. (3.54)
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Fig. 3.14 shows an example of motion resulting from an antisymmetrical perturbation
of the pair of vortices at stationary positions (0,±2). To obtain this trajectory, we
integrated the full set of equations of motion for u1, v1, u2, v2, since the antisymmetry
between the upper and lower vortices is broken in the nonlinear regime.

3.4.2.2 Föppl equilibrium Now let us compute the elements of the matrix B for
points (x0, y0) on the Föppl curve, Eq. (3.22). In this case, one obtains

B11 = −B22 =
x0 (r

4
0 + 3r20 − 2)

r80
, (3.55)

B12 =
3r60 − 5r20 + 2

2r90
, (3.56)

B21 =
4r80 + 3r60 − 4r40 − 5r20 + 2

2r90
. (3.57)

Computing the eigenvalues of this matrix, we obtain

λ2 =
3r60 + 3r40 − 3r20 + 1

r100
> 0 . (3.58)

Differently from the symmetric case, the eigenvalues of the Föppl equilibrium for an
antisymmetric perturbation are a pair of real numbers with opposite signs, λ± = ±

√
λ2.

The fixed point is, thus, a saddle. Eq. (3.58) is also at variance with the results obtained
by Föppl in Ref. [15]. Although Föppl obtained a pair of real eigenvalues for this case,
his original expressions are in error. In fact, upon comparison of our matrix B above
with the equivalent expressions given in Eq. (17) of Ref. [15], we identified an error in
Föppl’s formula for the matrix element X ′, which in our notation corresponds to B21.
To allow a more direct comparison between Föppl’s formulae and our expressions, let us
mention that in Eq. (17) of Ref. [15] the symbols ξ and η correspond, in our notation, to
the coordinates x0 and y0 of the fixed point. One can then verify that there is an extra
factor of η in the last term of Föppl’s expression for the matrix element X ′.

The eigenvectors associated with the saddle point are respectively given by

~w± =

(
(λ± +B11)/B21

1

)

. (3.59)

Fig. 3.15 shows an example of trajectory resulting from an antisymmetric perturba-
tion of the stationary position on the Föppl curve. On the left side, both vortices are
displaced by an amount ∆z = 0.045i from the equilibrium position, and on the right
side, ∆z = −0.045i. Analyzing the trajectory on the left, we see that the upper vortex
moves downstream all the time, while the lower vortex initially moves upstream, until a
moment when it turns, and then goes downstream. The situation is interchanged on the
right side, the lower vortex goes downstream while the upper one initially goes upstream.
We notice that the trajectory on the right is a reflection of the one on the left. This is
expected, because of the conjugation symmetry of this system, since the initial conditions
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Figure 3.14 Motion of the vortex pair antisymmetrically displaced from the equilibrium po-
sition on the normal curve. The trajectories are obtained by the numerical integration of
Eqs. (3.10) and (3.11) and their respective counterparts for the lower vortex. The stationary
positions are (0,±2) and the dimensionless vortex intensity is κ = 75/31. The green curves
are the trajectories resulting from a displacement ∆z = i0.1 and the orange curves are for
∆z = −i0.1.
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Figure 3.15 Motion of the vortex pair antisymmetrically displaced from the equilibrium posi-
tion (black dot on the Föppl curve). The trajectories are obtained by the numerical integration
of Eqs. (3.10) and (3.11) and their respective counterparts for the lower vortex. The equilibrium
position is at the distance r = 2 to the origin. The vortex dimensionless intensity is κ = 45/32.
On the detail we show a zoom in the region around the upper and lower stationary position.
The orange and blue dashed lines are, respectively, the unstable and stable directions.

for the vortices on the right are conjugated (in the sense explained in Sec. 3.2) to the
initial conditions for the vortices on the left. Notice also that far from the cylinder the
vortex trajectories become parallel, with one of the vortices (the upper one in the left
panel, lower one in the right panel) moving a little bit ahead of the other.

If a generic perturbation is given to a Föppl pair, it can be decomposed into a sym-
metric and an antisymmetric component. The symmetric component tend to rotate
around the fixed point (a center for symmetric perturbations) while the antisymmetric
component will eventually move away from the fixed point (a saddle for antisymmet-
ric perturbations). For larger times, the antisymmetric component associated with the
positive eigenvalue dominates the dynamics and the vortices will move away from the
equilibrium position, see Fig. 3.16.

We will now analyze the Hamiltonian dynamics of the pair of vortices in the symmetri-
cal subspace, in which the vortices move symmetrically with respect to the middle plane.
As mentioned previously in this chapter, this situation can be achieved experimentally
by placing a splitter plate in the middle of the flow and considering the motion of the
upper vortex only. Finally, we will produce the phase portrait of this system and verify
many of the characteristics already anticipated regarding the stability properties of the
fixed points.

3.5 HAMILTONIAN DYNAMICS

As discussed previously in Chapter 2, the motion of point vortices in the vicinity of solid
obstacles follows a Hamiltonian dynamics. In the present case, we are considering the
motion of a pair of point vortices in the vicinity of a circular cylinder in a uniform flow.
When restricted to the symmetric subspace, in which the two vortices move like “mirror
images” of each other, we can think of this system as being formed by a single vortex,
moving in the upper half-plane having a half cylinder placed at the origin, see Fig. 3.17.



3.5 HAMILTONIAN DYNAMICS 47

Figure 3.16 Motion resulting from the perturbation ∆z1 = ∆z2 = −0.25 + 0.0015i from the
equilibrium position. This perturbation is almost symmetric, but the existence of the very small
antisymmetric component makes the trajectories to move away from the equilibrium positions
for larger times. The trajectories are obtained by the numerical integration of Eqs. (3.10) and
(3.11) and their respective counterparts for the lower vortex.

Figure 3.17 The restriction of the vortex motion to the symmetric subspace can be achieved
by placing a splitter plate in the middle plane of the flow and then considering only the upper
vortex motion.

As stated before, the motion in this symmetric subspace is governed by Eqs. (3.14)
and (3.15). These equations can be obtained from Hamilton equations

ẋ =
∂H

∂y
, ẏ = −∂H

∂x
, (3.60)

with the following Hamiltonian:

H(x, y) = y

(

1− 1

r2

)

− κ

2
log

y (r2 − 1)
√

(r2 − 1)2 + 4y2
. (3.61)

Notice that, since we are using dimensionless variables, Hamilton equations do not include
the vortex intensity Γ.

Since this is a two dimensional system, it is possible to compute its phase portrait by
simply calculating the level sets H(x, y) = k, for several different values of the constant k,
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Figure 3.18 Phase portrait for the symmetric Föppl pair obtained by making a contour plot
of the Hamiltonian (3.61) with κ = 45/32. The blue curves are the vortex trajectories and
the arrows indicate the direction of the motion. In this Figure one can easily see the centers
upstream and downstream the cylinder and the saddle point on the normal line.

see Fig. 3.18. The analysis of this figure immediately shows the centers upstream and
downstream of the cylinder, at the Föppl equilibrium, and the saddle point on the y-axis,
the normal line equilibrium. The analysis also suggests that the trajectories arising from
the stable and unstable branches associated with the saddle point on the normal line,
and with the nilpotent saddle at infinity, act as separatrices of the vortex dynamics.

To calculate the separatrices associated with the saddle point on the normal line,
we will look for the level set H(x, y) = H(0, b), where (0, b) is the stationary point on
the normal line for the particular value of κ we are treating (in the case of Fig. 3.18,
κ = 45/32). The value of b is calculated by numerically inverting Eq. (3.17), which yields
b = 1.52679 for κ = 45/32. Therefore, the separatrices associated with the normal line
saddle point are obtained by computing the level set H(x, y) = H(0, 1.52679). Similarly,
to obtain the separatrices related to the nilpotent saddle point at infinity, we must look
for the level set H(x, y) = H(x0, y0), where (x0, y0) is the fixed point at infinity given
by Eq. 3.24. Computationally, we can take a very large value for x0, for example, x0 =
105. So, to calculate this separatrix for κ = 45/32, we take the level set H(x, y) =
H(105, 45/64), since the equilibrium occurs at y0 = κ/2.

Fig. 3.19 shows a superposition of the separatrices just computed with some of the
trajectories of Fig. 3.18. Although not seen in the figure, the branches associated with
the nilpotent saddle point at infinity get together to form a homoclinic loop (thick solid
line in the figure), which defines the region of nonlinear stability of the Föppl pair under
symmetric disturbances. This means that any initial condition inside these loops yields
periodic trajectories, with the vortex circulating around the Föppl equilibrium position.

In addition to the trajectories rotating around the Föppl fixed point inside the nilpo-
tent homoclinic loops, several other types of trajectories can be identified in Fig. 3.19.
If a vortex is placed above the upper dashed separatrix, it is simply carried away by the
incoming stream, since it is very far from the cylinder and the plane to feel their influ-
ence. If placed upstream the cylinder, in the region below the dashed curve and above
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Figure 3.19 Phase portrait including separatrices. The dashed line denotes the separatrices
associated with the fixed point at the normal line. The thick solid line is the nilpotent saddle
loop which defines the region of nonlinear stability of the Föppl equilibrium.

the thick solid line, the vortex will move along towards the cylinder until it is “reflected
back”, first by its image inside the cylinder and then by the image by the plane which
will make the vortex move upstream. Another curious trajectory occurs if the vortex is
placed far downstream of the cylinder, and very close to the plane, below the lower dashed
separatrix. In this case, the vortex moves upstream along the plane, then it overcomes
the cylinder and finally move off to upstream infinity, against the incoming flow.

3.6 DISCUSSION

In this chapter we have investigated the dynamics of the Föppl system: a pair of counter-
rotating point vortices placed in the vicinity of a circular cylinder, in a uniform stream.
We have obtained the stationary configurations for the vortices and analyzed the stability
properties of the fixed points.

In real flows, governed by the Navier-Stokes equations, the vortex pair is formed
at Reynolds numbers in the range Re < 40. As the Reynolds numbers increases, the
configuration loses its symmetry and becomes unstable. New vortices are alternately shed
from each side of the cylinder and the system evolves to the formation of the von Karman
vortex street (40 < Re < 300). The point vortex model studied in this chapter can shed
some light into this process. The two basic unstable modes±~w+, see Eq. (3.59), associated
with antisymmetric perturbations of the Föppl equilibrium (Fig. 3.15), are consistent with
the early stages of the vortex shedding phenomenon. This scenario is also supported by
Tang and Aubry (Ref. [19]), which showed, using direct numerical simulations (DNS),
that the stable and unstable directions calculated from the point vortex model, Eq. (3.59),
are in qualitative agreement with the motion observed in numerical experiments. It is
also known that the vortex shedding can be suppressed by placing a splitter plate in the
middle plane of the flow (Ref. [20]). This fact is also in agreement with the point vortex
results, since the splitter plate forces the system to stay in the symmetric subspace (see
Fig. 3.17), where the Föppl equilibrium is a center. The suppression of vortex shedding
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by a splitter plate is thus consistent with the scenario where the antisymmetric modes
are responsible for the development of the instability, which ultimately gives rise to the
von Karman vortex street.

The problem of vortex flows around a circular cylinder with patches of constant vor-
ticity was addressed numerically by Elcrat et al. in Ref. [21]. The stationary positions for
the vortex patches in the vicinity of the cylinder found by the authors are the same of the
equivalent point vortex model, namely the normal line and Föppl equilibria presented in
Secs. 3.3.1 and 3.3.2.

With this we conclude the study of the Föppl system. We will now move to the
analysis of vortex dynamics in domains with more than one boundary, called multiply-
connected domains. In the next chapter, we will present the mathematical apparatus
that will be necessary to treat vortex dynamics in multiply-connected domains. This
apparatus will be employed in Chapter 5 to study the dynamics of vortices around a
cylinder that is placed above an infinite plane wall.



CHAPTER 4

VORTEX DYNAMICS IN MULTIPLY CONNECTED

DOMAINS: FORMALISM

In this chapter we will introduce the basic mathematical formalism that is used to treat
the dynamics of vortices in multiply connected domains. This formalism will be applied
in Chapter 5 to analyze the dynamics of a point vortex in the vicinity of a circular cylinder
in a uniform stream placed above a plane wall.

In the systems treated so far we have considered the motion of vortices in domains
with a single boundary, namely, only one cylinder. The complex potential produced by
the vortex configuration was then easily calculated by means of the Milne-Thomson circle
theorem which provides the appropriate images in the unphysical domain (interior of the
cylinder) in order to satisfy the boundary conditions.

When more than one boundary is involved the circle theorem is no longer helpful to
find the vortex images, and other techniques are needed. Our approach to this problem
will be based on the method devised by Crowdy and Marshall in Ref. [22] that makes use
of the so-called Schottky-Klein prime function to produce the appropriate images.

In applying this method, we are going to make use of a circular domain in an auxiliary
complex ζ-plane on which the complex potential and the Hamiltonian (the Kirchhoff-
Routh path function) are calculated first. These functions are then translated into the
physical domain in the z-plane by means of an appropriate conformal mapping. The
complex potential is invariant by this conformal mapping but the Hamiltonian must be
appropriately corrected, as will be discussed later.

To better understand the basic steps that will be used hereafter, we will consider first
the simple case when there is only one vortex in the vicinity of a single cylinder. This
case was discussed in Chapter 2, but we study it again using an alternative approach that
will be generalized later to the case of multiple boundaries.

4.1 ONE VORTEX NEAR A CYLINDER

As we have seen in Chapter 2, the complex potential for a vortex of intensity Γ at z = z1
near a cylinder of radius a, with vanishing circulation around the cylinder is given by
Eq. (2.84), rewritten below with the change in notation z0 → z1:

w(z) =
Γ

2πi
log

[

z(z − z1)

z − a2

z̄1

]

. (4.1)

Let us now introduce a conformal mapping, z(ζ), from the domain Dζ corresponding
to the interior of the unit circle in the complex ζ-plane onto the fluid region Dz, i.e.,
the exterior of the disk of radius a, in the physical complex z-plane. The location of the

51
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z

1

Figure 4.1 Auxiliary complex ζ-plane and physical complex z-plane.

vortex in the ζ-plane is denoted by ζ1, so that the corresponding position of the vortex
in the z-plane is z(ζ1); see Fig. 4.1.

The complex potential, w(ζ), in the ζ-plane, produced by one vortex at ζ = ζ1 can
be calculated by applying the circle theorem,

w(ζ) =
Γ

2πi
log




ζ(ζ − ζ1)
(

ζ − 1
ζ̄1

)



 . (4.2)

The potential (4.2) satisfies the boundary condition at the unit circle |ζ| = 1 but, since
the vortex image at the origin has the same sign of the vortex itself, the circulation around
the unit circle is +2. It is then necessary to change the sign of the vortex at the origin
to make the circulation vanish,

w(ζ) =
Γ

2πi
log




(ζ − ζ1)

ζ
(

ζ − 1
ζ̄1

)



 . (4.3)

Now let us transpose the solution to the physical complex z-plane. The conformal
map from the interior of the unit circle in the ζ-plane onto the exterior of the disc of
radius a in the z-plane is

z(ζ) =
a

ζ
. (4.4)

The complex potential is invariant by conformal mapping, so the complex potential in
the z-plane is simply given by

w(z) = w(ζ(z)) . (4.5)

Here, in an abuse of notation, we are using the same symbol w to denote the complex
potential in the z-plane. Substituting Eqs. (4.3) and (4.4) into Eq. (4.5) yields:
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w(z) =
Γ

2πi
log

[
a
z
− a

z1
a
z

(
a
z
− z̄1

a

)

]

=
Γ

2πi
log

[

1− z
z1

a2−zz̄1
za

]

=
Γ

2πi
log

[

z(z − z1)

z − a2

z̄1

a

z1z̄1

]

. (4.6)

Neglecting the constant term (independent of z), we get:

w(z) =
Γ

2πi
log

[

z(z − z1)

z − a2

z̄1

]

, (4.7)

recovering thus Eq. (4.1).
We also want to obtain once again the Hamiltonian (2.92) using this auxiliary-plane

approach, but differently from the complex potential the hamiltonian is not invariant
under conformal mapping, so we will postpone this discussion to a later section.

The use of an auxiliary ζ-plane to calculate the complex potential w(z) was not nec-
essary for the analyses of the systems treated in the previous chapters, because there
we had only a single solid boundary and so the analysis could be carried out directly in
the physical plane. It turns out, however, that for the study of systems with multiple
boundaries, such as the dynamics of a vortex in the vicinity of many disconnected ob-
stacles, it will be essential to make use of the auxiliary ζ-plane to compute the complex
potential (and also the Hamiltonian, as we will see later). To analyze the motion of a
vortex outside a collection of solid obstacles, we must find first the conformal mapping
from a special circular domain Dζ in the complex ζ-plane onto the physical domain Dz

in the complex z-plane. Such mappings will be discussed in the next section.

4.2 CONFORMAL MAPPING BETWEEN MULTIPLY CONNECTED DOMAINS

The Riemann mapping theorem for simply connected domains was generalized by Koebe
[23] to include the case of multiply connected domains: any multiply connected domain
Dz having M + 1 boundaries is conformally equivalent to a multiply connected circular
domain Dζ with M inner boundaries. The circular domain Dζ consists of the unit circle
with M inner circles excised from it. Let Cj, for j = 1, . . . ,M , denote the boundaries of
the M inner circles in the circular domain Dζ . Also let C0 denote the boundary of the
unit circle. The circular domain Dζ is completely specified by the set of parameters δj
and qj, called conformal moduli, corresponding respectively to the centers and radii of
the M excised circles.

To exemplify the procedure, let us consider an example taken from Ref. [4] with
three cylinders. In this case, the fluid region corresponds to the outside of three circular
cylinders of radii s whose centers are located at 0, −d and +d on the x-axis, see Fig. 4.2.
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Figure 4.2 Map from the auxiliary ζ-plane to the physical z-plane (figure adapted from
Ref. [4]).

The circular domain must then be the unit circle with 2 circles excised from it. The
conformal map

z(ζ) =
s

ζ
(4.8)

takes the unit disc C0 to the disc at the origin on the z-plane. It also maps ζ = 0 to
z = ∞. In order to make the discs in the ζ-plane to be mapped into the discs at ±d, we
must choose:

q =
s2

d2 − s2
, δ =

sd

d2 − s2
. (4.9)

The conformal moduli are then specified by the geometrical parameters of the physical
system.

For each excised disc from the ζ-plane one defines a Möbius transformation by

θj(ζ) = δj +
q2j ζ

1− δ̄jζ
. (4.10)

This set of transformations will be used later in the definition of the Schottky-Klein prime
function.

In the next section we explain the method, based on the Schottky-Klein prime func-
tion, that will be used in this chapter to compute the complex potential for a vortex in
the presence of multiple solid boundaries. We anticipate here that in order to apply this
method it will be necessary to know:

The circular domain Dζ (unit circle with M inner circles excised from it);

The conformal map from Dζ onto the physical domain Dz (whereM+1 boundaries
are present in Dz);

The set of M Möbius transformations θj(ζ).
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4.3 THE SCHOTTKY-KLEIN PRIME FUNCTION

To analyze the dynamics of vortices in multiply connected domains, it is necessary first
to find the complex potential that satisfies the appropriate boundary conditions, namely,
that each solid boundary is a streamline of the flow. The potential due to a single vortex
of unit circulation close to one cylinder is given in the auxiliary ζ-plane by Eq. (4.3), with
Γ = 1. This yields a flow without circulation around the cylinder. In fact, any potential
of the form

w(ζ) =
1

2πi
log




(ζ − ζ1)

∣
∣ζ̄1
∣
∣

(

ζ − 1
ζ̄1

)



+
γ

2πi
log(ζ) + constant (4.11)

satisfies the boundary condition on the cylinder, namely, that the cylinder is a streamline
of the flow: Im[w(ζ)] = const. on the cylinder. After mapping this region to the physical
domain in the z-plane, this potential gives a total circulation of −γ − 1 around the
cylinder. The reason why the potential was written in this way will become clear later.

Let us now denote by G0 the first function in the Eq. (4.11), that is (making the
change ζ1 → α),

G0(ζ, α) =
1

2πi
log

[

(ζ − α)

|ᾱ|
(
ζ − 1

ᾱ

)

]

. (4.12)

Introducing the notation

ω(ζ, α) = (ζ − α) , (4.13)

Eq. (4.12) can be rewritten as

G0(ζ, α) =
1

2πi
log

[

ω(ζ, α)

|ᾱ|ω
(
ζ, 1

ᾱ

)

]

. (4.14)

Recall that this is the complex potential in the ζ-plane due to a vortex of intensity Γ = 1
at ζ = α (inside the unit disk) and its image (outside the disk). After the conformal
mapping z(ζ) from the ζ-plane to the outside of the disk (or any other object) in the
z-plane, this will yield the potential of a vortex, with intensity Γ = 1 located at z(α),
and its image(s). The flow thus generated has circulation −1 around the obstacle.

We would like to obtain an expression equivalent to Eq. (4.14) valid for the multiply
connected case. The remarkable fact proved by Crowdy and Marshall in Ref. [22] is that
this expression is exactly the same as Eq. (4.14), with the only difference that ω(ζ, α) will
now be given by a special function, the so-called Schottky-Klein prime function. This
function contains the infinite vortex images necessary to satisfy the boundary conditions
on the surface of the obstacles, i.e., all boundaries are streamlines of the flow.

After the conformal mapping from Dζ to the physical domain Dz, the function G0

gives the complex potential of a vortex of unit intensity in the vicinity of a given set of
obstacles, with circulation −1 around the obstacle C ′

0, whose pre-image in the ζ-plane is
the unit circle C0, and vanishing circulation around all of the other obstacles, see Fig. 4.3.
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Figure 4.3 Scheme for the potential G0. The arrows close to each circle on the z-plane denote
the value of the circulation around each obstacle.

In order to make the circulation around C ′
0 vanish, it is necessary to add a term equivalent

to a point vortex of opposite circulation at infinity in the physical plane. The potential
due to such a vortex of unit circulation at infinity in the auxiliary ζ-plane is given by

G0(ζ, β) =
1

2πi
log




ω(ζ, β)

∣
∣β̄
∣
∣ω
(

ζ, 1
β̄

)



 , (4.15)

where β is the point such that z(β) = ∞. To find, for example, the potential for a vortex
located at z = zv, having intensity Γ and zero circulation around all the obstacles, one
would compute the following function:

Γ (G0 (ζ (z) , ζ (zv))−G0 (ζ (z) , β)) . (4.16)

By superimposing expressions like the one above one can generate the complex potential
due to a collection of point vortices with arbitrary intensities and positions.

It is also possible to add circulation around any of the other obstacles. According to
Ref. [4], to add circulation γj around the object whose pre-image is the inner circle Cj,
j = 0, . . . ,M , in the ζ-plane, it suffices to add to Eq. (4.16) a term of the form

−γjGj(ζ, β) , (4.17)

where

Gj(ζ, β) =
1

2πi
log




ω(ζ, β)

∣
∣β̄
∣
∣ω
(

ζ, θj

(
1
β̄

))



 . (4.18)

Here θj , j = 0, . . . ,M , are the Möbius transformations defined by Eq. (4.10), with θ0
being the identity map.
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From the preceding discussion we thus conclude that in order to obtain the complex
potential for a given vortex configuration with a given set of obstacles, all we have to
do is to compute the corresponding Schottky-Klein (SK) prime function ω(ζ, α). With
the knowledge of ω(ζ, α), it is possible to find the complex potential for any number of
vortices outside the collection of obstacles. It is also possible to control the circulation
around these obstacles.

For example, consider the case of a system of 2 vortices in the vicinity of 3 circles,
having intensities Γi, and positions ζi, i = 1, 2, in the ζ-plane and circulation γj around
the circle whose pre-image is Cj, j = 0, 1, 2. The complex potential w(ζ) for this case is
given by

w(ζ) =
2∑

i=1

ΓiG0(ζ, ζi))

︸ ︷︷ ︸

vortices

cancel circulation
around C0

︷ ︸︸ ︷

−
2∑

i=1

ΓiG0(ζ, β) −
2∑

j=0

γjGj(ζ, β)

︸ ︷︷ ︸

add circulations

. (4.19)

The dependence on the geometrical parameters (conformal moduli) is not explicitly in-
dicated in the expression above. These parameters only enter in the definition of the SK
prime function, as we will see next.

4.3.1 Computing the SK Prime Function

For each circle Cj, j = 1, . . . ,M , in the interior of the unit circle C0 in the ζ-plane, we
define a Möbius map θj by Eq. (4.10). With these basic maps one can define a group Θ,
called the Schottky group, including all compositions of the M basic maps, their inverses
and the identity map. Some examples of elements of this group are θ1(ζ), θ2(θ1(ζ)),
θ−1
1 (θ−1

2 (ζ)), θ1(θ2(θ5(ζ))). A map θj(ζ) is called a level 1 map because it involves only
one of the basic maps, while θi(θj(ζ)) is a level 2 map, and so on. Let us define a special
subset Θ′′ of the Schottky group formed by excluding from Θ the identity and all inverse
maps. For example if we choose to include the element θ2(θ1(ζ)) in Θ′′, then θ−1

1 (θ−1
2 (ζ))

shall not be included.
The Schottky-Klein prime function is defined by

ω(ζ, γ) = (ζ − γ)ω′(ζ, γ), (4.20)

where the function ω′(ζ, γ) is given by

ω′(ζ, γ) =
∏

θi∈Θ′′

(θi(ζ)− γ)(θi(γ)− ζ)

(θi(ζ)− ζ)(θi(γ)− γ)
. (4.21)

Notice that here the prime does not indicate derivatives.
When computing the SK prime function one has to truncate the infinite product in

Eq. (4.21). A natural way to do this is to choose the maps in Θ′′ up to a certain level, as
we will discuss later.
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Notice that the SK prime function encompasses all the geometrical features of the
domain Dζ , since the conformal moduli, namely, the parameters δj and qj corresponding
to the centers and radii of the circles Cj, are included in the definition of each θj.

Summarizing our procedure thus far, one must carry out the following routine in order
to find the complex potential for a vortex configuration in a multiply connected domain:

1. Determine the circular domain, Dζ , in the auxiliary complex ζ-plane and a confor-
mal mapping z(ζ) taking this domain onto the physical domain, Dz, in the complex
z-plane. If Dz has a number M + 1 of obstacles, Dζ must consist of the unit disk
with M inner circles excised from it. The centers δj and radii qj of the M inner
circles will form the conformal moduli. Each of the circles (including the unit disk)
in the auxiliary ζ-plane must be conformally mapped into one of the obstacles in
the z-plane.

2. After determining the conformal moduli of the domain Dζ , define the set of M
Möbius transformations θj via Eq. (4.10).

3. Compute the SK prime function via (4.20) and (4.21), choosing a proper level to
truncate the series.

4. The complex potential for a point vortex of unit intensity in Dζ , having circulation
−1 around the obstacle whose pre-image is the circle C0, is then given by (4.14).

5. Multiply this complex potential by the desired vortex intensity Γ and superimpose
as many terms as necessary to form the complex potential w(ζ) for the number of
vortices in question. Manipulate, as desired, the value of the circulation around the
obstacles as in (4.19).

6. From w(ζ), obtain the complex potential w(z) in the physical domain Dz via the
conformal mapping determined in step 1, as shown in Eq. (4.5).

In the next section we will explain how to construct the Hamiltonian governing the
motion of point vortices in a multiply connected domain.

4.4 HAMILTONIAN DYNAMICS

4.4.1 The Hydrodynamic Green’s Function

As we have seen before (Sec. 2.6.3), the equations of motion for N point vortices in
an unbounded domain can be formulated as a Hamiltonian system, as first shown by
Kirchhoff in 1876 (Ref. [10]). In 1941 Lin showed that the motion of N point vortices in
a multiply connected domain also follows a Hamiltonian dynamics (Ref. [11]). To prove
this he introduced a certain hydrodynamic Green’s function G(x, y, x0, y0) with respect
to two points (x, y) and (x0, y0), possessing a specific set of properties. He then showed
that G, defined in accordance with those given properties, existed uniquely and obeyed
a reciprocity condition:
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G(x, y, x0, y0) = G(x0, y0, x, y) . (4.22)

He also showed this important Lemma:

Lemma 4.1. If N vortices of intensities Γk are present in an incompressible fluid at
positions (xk, yk), k = 1, . . . , N , in a general region D consisting of fixed boundaries, the
streamfunction of the flow is given by

ψ(x, y, x1, y1, . . . , xN , yN ) = ψ0(x, y) +
N∑

k=1

ΓkG (x, y, xk, yk) , (4.23)

where ψ0(x, y) is a streamfunction due to outside agents, such as incoming streams or
vortices placed at infinity (to add circulation around obstacles).

The function G(x, y, x0, y0) thus defined has a logarithmic singularity at (x0, y0, x0, y0).
Let us consider the function g(x, y, x0, y0) which is the “regular part” of G(x, y, x0, y0),

g(x, y, x0, y0) = −G(x, y, x0, y0)−
1

2π
log r0 , (4.24)

where r0 =
√

(x− x0)2 + (y − y0)2. We define now the so-called Robin function as the
above function taken at the singularity position:

R(x0, y0) = g(x0, y0, x0, y0) . (4.25)

With knowledge of G(x, y, x0, y0) and R(x0, y0), it is possible to find the Hamiltonian
governing the motion of the point vortices in this multiply connected domain. The
following theorem, due to Lin, shows how to compute the Hamiltonian:

Theorem 4.1. For the motion of vortices of intensities Γk, k = 1, . . . , N , in a general mul-
tiply connected domain D, with fixed boundaries, there exists a functionH(x1, y1, . . . , xN , yN)
such that,

Γk
dxk
dt

=
∂H

∂yk
, Γk

dyk
dt

= −∂H

∂xk
, (4.26)

where H(x1, y1, . . . , xN , yN ) is given by

H(x1, y1, . . . , xN , yN) =
N∑

k=1

Γkψ0(xk, yk) +
N∑

k1,k2=1

k1>k2

Γk1Γk2G(xk1 , yk1 , xk2 , yk2)

−1

2

N∑

k=1

Γ2
kR(xk, yk). (4.27)
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If we define the rescaled variables x′k =
√
Γkxk and y′k =

√
Γkyk, Eq. (4.26) can be

cast in the canonical Hamiltonian form. The physical interpretation of the three terms
in the Hamiltonian (4.27) is the following: the first term is responsible for the interaction
of a vortex with outside agents, such as an incoming stream or vortices placed at infinity
(to add circulation around obstacles). The second term is responsible for the interaction
between one vortex and the other vortices (including their images). Finally, the third
term is due to the interaction of one vortex with its own images.

To compute the Hamiltonian, it is necessary first to calculate the hydrodynamic
Green’s function G(x, y, x0, y0). For convenience, let us make use of complex notation
and denote it as G(ζ, α), where ζ = x + iy and α = x0 + iy0. Although Lin [11] proved
the existence of such function, he did not provide any mechanism to actually compute
this function. Using the SK prime function technique, Crowdy and Marshall gave in [22]
an explicit mechanism to calculate G(ζ, α): the hydrodynamic Green’s function is the
imaginary part of the complex potential, i.e., the streamfunction, associated with a point
vortex of unit intensity:

G(ζ, α) = Im[G0(ζ, α)] . (4.28)

G0 was already computed in (4.14), with the SK prime function ω(ζ, α) being calculated
via (4.20) and (4.21).

Making use of the SK prime function technique together with theorem 4.1, it is then
possible to compute the Hamiltonian H(ζ) governing the vortex dynamics in a multiply
connected circular domain Dζ in the ζ-plane. We show next how to use the Hamiltonian
H(ζ) to obtain the desired Hamiltonian H(z) in the physical domain Dz. For conve-
nience we will keep using the complex notation on a first moment: instead of writing
H(ζ)(ξ1, η1, . . . , ξn, ηn) and H

(z)(x1, y1, . . . , xn, yn) we will write H(ζ)(ζ1, ζ̄1, ..., ζn, ζ̄n) and
H(z)(z1, z̄1, ..., zn, z̄n).

4.4.2 Transformation of the Hamiltonian under Conformal Mappings

Differently from the complex potential, the Hamiltonian is not invariant under conformal
mappings, i.e.,

H(z)(z1, z̄1, ..., zn, z̄n) 6= H(ζ)(ζ1(z1), ζ1(z1), ..., ζn(zn), ζn(zn)) (4.29)

It is thus necessary to add an extra term in order to make Hamilton equations still valid
in the new domain Dz. Lin showed (Ref. [24]) that under a conformal mapping z(ζ), the
Hamiltonian transforms as

H(z)(z1, z̄1, ..., zn, z̄n) = H(ζ)(ζ1, ζ̄1, ..., ζn, ζ̄n) +
N∑

k=1

Γ2
k

4π
log

∣
∣
∣
∣

dz

dζ
(ζk)

∣
∣
∣
∣
, (4.30)

where the sum is over all the k vortices present and zk and ζk are the vortex positions on
the z and ζ-plane, respectively.
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By using this result it is possible to calculate the Hamiltonian H(z) in any domain
Dz conformally equivalent to the circular domain Dζ for which we already know how to
compute H(ζ).

In summary, the steps one must follow in order to produce the Hamiltonian governing
the dynamics of a set of N point vortices outside a collection of obstacles are:

1. Follow steps 1-4 stated in the final of Sec. 4.3.1 to compute SK and obtain the
complex potential G0(ζ, α) for a point vortex located at ζ = α in the auxiliary
domain Dζ .

2. Compute the hydrodynamic Green function G(x, y, x0, y0) by taking the imaginary
part of G0(ζ, α), Eq. (4.28), where ζ = x+ iy and α = x0 + iy0.

3. Compute the Robin function R(x0, y0) using Eqs. (4.24) and (4.25).

4. Use Eq. (4.27) to calculate the Hamiltonian H(ζ)(ξ1, η1, . . . , ξN , ηN) in the auxiliary
complex ζ-plane.

5. Convert the Hamiltonian H(ζ) in the auxiliary ζ-plane into the Hamiltonian H(z)

in the physical z-plane by adding Lin’s correction term, via Eq. (4.30).

In the next chapter we will explicitly apply this method to analyze the dynamics of a
point vortex near a circular cylinder in a uniform stream, placed above a plane wall. But
before going into that, let us return to the example discussed in Sec. 4.1, i.e., a vortex
near a single cylinder (without the plane) and see how Lin’s correction term is used to
obtain the desired Hamiltonian H(z) in the physical z-plane from the Hamiltonian H(ζ)

in the auxiliary ζ-plane.

4.4.2.1 Example: One Vortex near a Cylinder In Chapter 2, we obtained the
Hamiltonian governing the motion of one point vortex of intensity Γ at z = x+ iy, near a
circular cylinder of radius a, Eq. (2.92). For convenience we rewrite this equation below

H(x, y) =
Γ2

4π
log

(
x2 + y2 − a2

x2 + y2

)

. (4.31)

Our goal in this section is to obtain this result again by first computing the Hamiltonian
in the auxiliary ζ-plane and then transposing it to the physical z-plane using Eq. (4.30).
From the complex potential in the ζ-plane, Eq. (4.3), the effective potential weff (ζ) is
calculated:

weff (ζ)(ζ) = w(ζ)− Γ

2πi
log(ζ − ζ1)

=
Γ

2πi
log




1

ζ
(

ζ − 1
ζ̄1

)



 , (4.32)
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where, we recall, ζ = ζ1 is the vortex position. The complex velocity in the ζ-plane is
then

u− iv =

[
d

dζ
weff (ζ)

]

ζ=ζ1

= − Γ

2πi

1

ζ1
− Γ

2πi

1

ζ1 − 1
ζ̄1

. (4.33)

Making ζ1 = ξ1 + iη1 in Eq. (4.32) and separating the real and imaginary parts of the
velocity, we have

dξ

dt
=

Γ

2πi

(
η

ξ2 + η2
+

η

ξ2 + η2 − 1

)

, (4.34)

dη

dt
= − Γ

2πi

(
ξ

ξ2 + η2
+

ξ

ξ2 + η2 − 1

)

, (4.35)

where the subscripts have been dropped for convenience. The Hamiltonian yielding these
equations of motion in the ζ-plane is

H(ζ)(ξ, η) =
Γ2

4π
log
[
(ξ2 + η2 − 1)(ξ2 + η2)

]
, (4.36)

as can be readily verified. Eq. (4.36) can be rewritten in terms of the variable ζ = ξ + iη
as

H(ζ)(ζ, ζ̄) =
Γ2

4π
log
[
(ζζ̄ − 1)(ζζ̄)

]
, (4.37)

To transpose this Hamiltonian to the physical z-plane it is necessary to add Lin’s correc-
tion via Eq. (4.30)

H(z)(z, z̄) = H(ζ)(ζ, ζ̄) +
Γ2

4π
log

∣
∣
∣
∣

dz

dζ

∣
∣
∣
∣
. (4.38)

Using the conformal map z(ζ) given in Eq. (4.4) we have

H(z)(z, z̄) =
Γ2

4π
log

[(
a2

zz̄
− 1

)(
a2

zz̄

)]

+
Γ2

4π
log

∣
∣
∣
∣
−z

2

a

∣
∣
∣
∣

=
Γ2

4π
log

[(
zz̄ − a2

zz̄

)(−a2
zz̄

)(zz̄

a

)]

. (4.39)

Ignoring additive constants (unimportant to the dynamics) and writing z = x + iy, we
have

H(z)(z, z̄) =
Γ2

4π
log

(
x2 + y2 − a2

x2 + y2

)

, (4.40)

thus obtaining once again Eq. (4.31).



CHAPTER 5

VORTEX DYNAMICS AROUND A CYLINDER NEAR

A PLANE BOUNDARY

This chapter is devoted to the analysis of the dynamics of a point vortex near a circular
cylinder placed above a plane wall. Since more than one boundary is involved, it will
be necessary to employ the formalism presented in the previous chapter to perform the
study.

Our motivation to study this system comes from a 2009 paper by Wei-Jung Lin
et al. [5] on which a vortex configuration upstream of the cylinder was observed using
particle trajectory photography, a technique in which a fine powder (in this case aluminum
powder) is used as a tracer to make the fluid particles observable, see Fig. 5.1. Such a
configuration is not usually observed in experiments with only one cylinder, so the plane
boundary is decisive in its formation upstream of the cylinder. Flows around a cylinder
placed near a plane boundary were studied previously by several other authors, including
Bearman and Zdravkovich in 1978 (Ref. [25]) and Price et al. in 2002 (Ref. [26]).

As done in the case of the Föppl pair in Chapter 3, our study starts by the definition
of the complex potential associated with the flow, which is the topic of the following
section.

Figure 5.1 Vortex formation upstream of the cylinder. The ratio between the gap and the
diameter of the cylinder is G/D = 0.1 (figure from Ref. [5]).
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U

G

Figure 5.2 Scheme of one vortex close to cylinder and wall under a constant incident flux.

5.1 COMPLEX POTENTIAL

In this section we analyze the problem of one vortex of intensity Γ < 0 located at z = zv
close to a cylinder and a plane boundary. The cylinder is not touching the plane so that
there is a small gap between the cylinder and the plane through which water can flow. A
uniform stream of velocity U passes by the cylinder, above the plane. Let s be the radius
of the cylinder and d the vertical distance from its center to the plane. A scheme for
this problem is shown in Fig. 5.2. Note that, similarly to what we have done in Fig. 3.17
for the Föppl case, this problem could also be studied considering it as a flow passing by
two identical cylinders, with a pair of counter-rotating vortices with up-down symmetry
imposed. However, this time we prefer to avoid this alternative approach, because now
the imposition of up-down symmetry could lead to some complications later (additional
terms would be necessary during the calculation of the Hamiltonian).

Our goal is to use the formalism devised in the previous section to analyze a point-
vortex model for the system shown in 5.2 and test if a stationary configuration similar
to the one observed in the experiments can be predicted by the model. First we consider
the case without the incident flux, i.e., U = 0.

Since the physical domain consists of two boundaries, namely, the plane and the
cylinder, the domain Dζ in the auxiliary ζ-plane will be the unitary disk with only one
disk excised from it. Let us then consider Dζ to be the annulus r0 ≤ |ζ| ≤ 1. From the
geometry of the boundaries (lines and circles) the conformal map z(ζ) from the annulus
Dζ onto the physical domain Dz must be a Möbius transformation of the form

z(ζ) = A
ζ +B

ζ + C
. (5.1)

We take the outer circle, |ζ| = 1, of the annulus to be mapped onto the plane boundary,
y = 0, while the inner circle, |ζ| = r0, is mapped into the cylinder, see Fig. 5.3. We also
map the point ζ = i to the origin, i.e., z(i) = 0, and the point ζ = −i to infinity, i.e.,
z(−i) = ∞. These conditions determine the constants B and C in Eq. (5.1):

z(i) = 0 =⇒ B = −i , (5.2)

z(−i) = ∞ =⇒ C = i . (5.3)
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Figure 5.3 Auxiliary domain Dζ and physical domain Dz.

To determine the constant A and the radius r0 of the inner circle of the annulus, we
choose to map the points ζ = ±ir0 to the points z = i(d∓ s). These conditions give

z(ir0) = i(d− s)
z(−ir0) = i(d+ s)

}

⇒







A = −i
√
d2 − s2

r0 =
1−

√

d−s
d+s

1+
√

d−s
d+s

. (5.4)

The map finally reads

z(ζ) = −i
√
d2 − s2

ζ − i

ζ + i
, (5.5)

and its inverse is

ζ(z) = −iz − i
√
d2 − s2

z + i
√
d2 − s2

. (5.6)

A plot showing the action of such a map is shown in Fig. 5.4. The gap between the
cylinder and the plane is chosen to be 0.3 and the cylinder radius is s = 1.

From our choice for the domain Dζ (annulus), it is clear that the conformal moduli
are:

z z

z(z)

Figure 5.4 Plot of the conformal map z(ζ) given in Eq. (5.5).
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δ1 = 0 , q1 = r0 =
1−

√
d−s
d+s

1 +
√

d−s
d+s

. (5.7)

Since the domain Dζ has only one inner circle, there is only one basic Möbius map:

θ1(ζ) = q21ζ = r20ζ. (5.8)

To compute the SK prime function via Eqs. (4.20) and (4.21), let us first obtain the
elements of the subset Θ′′ of the Schottky group Θ to be used. Since there is only one
Möbius map for this problem, the elements of the subset Θ′′ are:

θ1(ζ) = r20ζ

θ1 ◦ θ1(ζ) = r40ζ
...

θ1 ◦ · · · ◦ θ1(ζ)
︸ ︷︷ ︸

n times

= r2n0 ζ (5.9)

...

The infinite product in (4.21) then reads

ω′(ζ, α) =
∞∏

n=1

(r2n0 ζ − α)(r2n0 α− ζ)

(r2n0 ζ − ζ)(r2n0 α− α)
, (5.10)

or more conveniently,

ω′(ζ, α) =
1

∏∞

n=1(r
2n
0 − 1)2

∞∏

n=1

[

1− r2n0

(
ζ

α

)][

1− r2n0

(
ζ

α

)−1
]

. (5.11)

Finally, using Eq. (4.20) to compute the SK prime function, we obtain

ω(ζ, α) =
(ζ − α)

∏∞

n=1(r
2n
0 − 1)2

∞∏

n=1

[

1− r2n0

(
ζ

α

)][

1− r2n0

(
ζ

α

)−1
]

, (5.12)

which can be rewritten as

ω(ζ, α) = −α

C
P

(
ζ

α
, r0

)

, (5.13)

where

C =
∞∏

n=1

(
1− r2n0

)
(5.14)

is a constant, and the function P (x, y) is defined by

P (x, y) = (1− x)
∞∏

n=1

(
1− y2nx

) (
1− y2nx−1

)
. (5.15)
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We note here that the problem of vortex dynamics around two obstacles (without
the incoming stream) was solved before by a different approach, using elliptical functions
(see, for example, Ref. [27]). The reason why the solution (5.12) was written in Eq. (5.13)
in terms of the P function defined in Eq. (5.15) is because this function is closely related
to the first Jacobi theta function Θ1 that appears in the previous solutions. The method
based on the SK prime function formalism thus presented recovers the results obtained
before for the doubly connected case, as was previously shown in Ref. [28].

For computational purposes, the infinite product in the SK function defined in Eq. (5.12)
must be truncated, as discussed before. In all computations in this chapter, we will con-
sider products up to n = 5. This corresponds to taking up to level 5 Möbius maps in the
set Θ′′ used in the definition of SK. Calculations of the P function defined in Eq. (5.15)
using n = 5 and n = 6 differ by less than 10−4, so we are safe to use n = 5.

The complex potential due to this single vortex is then given by Eq. (4.14) multiplied
by the vortex intensity Γ, with ω(ζ, α) given by Eq. (5.13). Using the map in (5.5) to
transpose the solution to the physical plane, we have

ΓG0(ζ(z), ζ(zv)) =
Γ

2πi
log




ω(ζ(z), ζ(zv))

∣
∣
∣ζ(zv)

∣
∣
∣ω
(

ζ(z), 1

ζ(zv)

)



 , (5.16)

where zv is the vortex position in the physical domain Dz, ω is the SK prime function,
given by Eq. (5.12), and ζ(z) is the inverse of the map z(ζ) given by Eq. (5.6).

Since the obstacle whose pre-image is C0 is the infinite plane we do not need to worry
about the circulation around this particular boundary. A contour plot of the streamline
function ψ (imaginary part of the potential G0) for a Γ = −10 vortex at zv = −1.5+0.5i
is shown in Fig. 5.5. The cylinder radius is 1 and the gap between cylinder and wall is 0.3.
The arrows indicate the flow direction. Notice that the boundary condition is satisfied
both in the cylinder and in the plane.

Figure 5.5 Streamline pattern for one vortex without the incident flux.

Let us now include the incoming flux. Crowdy shows in Ref. [4] that the complex
potential, wU(ζ), in the ζ-plane due to a uniform stream of velocity U in the presence of
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Figure 5.6 Streamline pattern for the incident flux.

a given set of boundaries (in this case, the cylinder and the plane) is given by

wU(ζ) = 2πUa i

(
∂G0

∂ᾱ
− ∂G0

∂α

)∣
∣
∣
∣
α=β

, (5.17)

where β is the point that satisfies z(β) = ∞ and a is the residue of the conformal map
z(ζ) at ζ = β, i.e., a is a constant such that close to β, the conformal map behaves as

z(ζ) =
a

ζ − β
+ analytic function . (5.18)

In our case, U = 1 and a = −2
√
d2 − s2, as can be easily checked from Eq. (5.5).

Moreover, β = −i, which lies on the boundary of the outer circle (mapped to the plane).
Due to the fact that β lies on the boundary of the circular domain, the factor of 2 in the
potential wU , Eq. (5.17), is not present, resulting in

wU(ζ) = −2πi
√
d2 − s2

(
∂G0

∂ᾱ
− ∂G0

∂α

)∣
∣
∣
∣
α=−i

. (5.19)

Fig. 5.6 shows a streamline pattern for this uniform flow.
It is worth noticing that in the ζ-plane the complex potential wU(ζ) looks like a dipole

placed in the point that is mapped to infinity (ζ = β), just as in the case of a uniform
stream around a single cylinder, where the image of the incident flux is a dipole placed
at the origin. Fig. 5.7 shows the streamline pattern for the complex potential wU(ζ) in
the ζ-plane.

Now, by superimposing the complex potential given in Eq. (5.17), for the incident
flux, with the complex potential given in Eq. (5.16), for the vortex, we obtain the full
complex potential for this problem:

w(z, zv) = wU(ζ(z)) + ΓG0(ζ(z), ζ(zv)) . (5.20)

A streamline pattern of the flow with Γ = −10, zv = −1.5 + 0.5i and U = 1 is shown in
Fig. 5.8.

The problem of finding the complex potential (and then the streamline pattern) for
one vortex in the presence of a circular cylinder and a plane in a uniform stream is thus
solved. Our next step is to deal with the dynamics involved, i.e., compute the Hamiltonian
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(Kirchhoff-Routh path function) and then obtain a phase portrait depicting some vortex
trajectories and the stationary positions.

5.2 HAMILTONIAN

5.2.1 Computing the Hamiltonian H(ζ)

Let us now compute the Hamiltonian governing the motion of a single vortex in the
presence of a cylinder and a plane wall in a uniform stream, making use of theorem 4.1.
First, notice that since there is only one vortex involved (N = 1), the second term in
Eq. (4.27) will not be present. The dynamics is generated by the interaction of the vortex
with the incoming flow and the infinite set of vortex images by the boundaries (cylinder
and plane). The Hamiltonian then reads

H(ζ)(ζ1, ζ̄1) = Γψ0(ζ1, ζ̄1)−
1

2
Γ2R(ζ1, ζ̄1) , (5.21)

where the Robin function R in the second term is responsible for the vortex infinite images
and ψ0 is the streamfunction associated with the outside agents, such as the incoming
streams or vortices placed at infinity to control the circulation around the obstacles. For
the moment, let us consider just the case in which the circulation around the cylinder
is zero. Therefore, ψ0 just accounts for the streamfunction associated with the incoming
stream, which is given by the imaginary part of Eq. (5.17):

ψ0(ζ, ζ̄) = Im [wU(ζ)] . (5.22)

To compute the Robin function, we must first calculate the hydrodynamic Green’s
function G(ζ, ζ1). Making α → ζ1 in Eq. (4.28) and using Eq. (4.14) we have

z

Figure 5.7 Streamline pattern of the uniform flow potential in the ζ-plane. The point marked
in red is mapped to infinity by the conformal map.
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Figure 5.8 Streamlines pattern of the full potential, for a point vortex (Γ = −10) and an
incident flux (U = 1).

G(ζ, ζ1) = Im[G0(ζ, ζ1)]
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Next we need to compute the g function, corresponding to the regular part of G(ζ, ζ1).
Using Eqs. (4.20), (4.24) and (5.23), we obtain

g(ζ, ζ1) = −G(ζ, ζ1)−
1

2π
log |ζ − ζ1|

=
1
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log
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. (5.24)

For the specific problem in consideration (in which the boundaries are the cylinder and
the plane), the SK prime function is given by Eq. (5.13). Defining the function P ′(x, y)
as

P ′(x, y) =
∞∏

n=1

(
1− y2nx

) (
1− y2nx−1

)
, (5.25)
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we see, considering Eq. (5.12) that

ω′(ζ, ζ1) =
1

C
P ′

(
ζ

ζ1
, r0

)

, (5.26)

where C is the constant given in Eq. (5.14). Eq. (5.24) can then be rewritten as

g(ζ, ζ1) =
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log
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1
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∣
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. (5.27)

Using (4.25) to compute the Robin function,

R
(
ζ1, ζ̄1

)
=

1

2π
log

∣
∣
∣
∣
∣

P ′ (1, r0)

P
(
ζ1ζ̄1, r0

)

∣
∣
∣
∣
∣
, (5.28)

and inserting this result into Eq. (5.21), we obtain

H(ζ)
(
ζ1, ζ̄1

)
= Γ ψ0

(
ζ1, ζ̄1

)
− Γ2

4π
log

∣
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∣
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P ′ (1, r0)
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ζ1ζ̄1, r0

)

∣
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. (5.29)

This is the Hamiltonian H(ζ) calculated in the circular domain Dζ , which consists in this
case of the annulus r0 < |ζ| < 1. Next we shall add Lin’s correction term via Eq. (4.30)
to obtain the desired Hamiltonian H(z) in the physical domain Dz.

5.2.2 Computing the Hamiltonian H(z)

By using the transformation rule (4.30) we can obtain the HamiltonianH(z) in the physical
domain Dz. The conformal map from Dζ to Dz is, according to Eq. (5.5), given by

z(ζ) = −i
√
d2 − s2

ζ − i

ζ + i
. (5.30)

The additional correction term in Eq.(4.30) reads
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∣
, (5.31)

thus the Hamiltonian H(z) is

H(z) (z1, z̄1) = Γ ψ0

(
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∣
.

(5.32)
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Figure 5.9 Phase portrait for Γ = −10 generated by a contour plot of the Hamiltonian.

where the inverse map ζ(z) is given by Eq. (5.6). Making z1 = x + iy in the equation
above, we obtain the desired Hamiltonian in terms of the Cartesian coordinates of the
vortex, to be used in connection with Hamilton equations (4.26) to generate the dynamics.

Since H(x, y) is conserved in the dynamics, one way to obtain a phase portrait of
this system is to take a contour plot H(x, y) = c for various values of the constant c.
An example of such a plot is shown in Fig. 5.9 for Γ = −10. In this figure, we notice
the existence of four fixed points: two centers (upstream and downstream the cylinder)
and two saddle points (above and below the cylinder). There must also be a nilpotent
saddle point at infinity, just as in the Föppl case, which will be responsible for defining
the nonlinear stability region of the centers. Notice also that trajectories close to the
cylinder tend to circle around it, as expected, since the first image inside the cylinder is
very close to the vortex and consequently gives the dominant contribution in comparison
with all other images.

Although this approach to compute the phase portrait, based on contour plots, pro-
duces good results, it is computationally ineffective, taking several minutes to generate
the desired portrait. It is then preferable to take a different approach, by defining an
effective potential and numerically integrating the resulting equations of motion.

5.3 EFFECTIVE POTENTIAL

To obtain the desired equations of motion for the vortex, we must first define the effec-
tive potential acting on it, by removing from the full complex potential, Eq. (5.20), the
contribution of the vortex itself. The resulting effective potential then accounts for the
interaction of the vortex with all its images and with the incoming flow:
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weff (z, zv) = w(z, zv)−
Γ

2πi
log(z − zv)

= wU(ζ(z)) + Γ

[

G0(ζ(z), ζ(zv))−
1

2πi
log(z − zv)

]

. (5.33)

Since the complex potential is invariant by a conformal mapping, G0(ζ(z), ζ(zv)) =
G0(z, zv) and the term inside the square brackets in Eq. (5.33) represents the effective po-
tential acting on a vortex of unit intensity at zv, due only to its images by the boundaries.
Let us denote this term by G0eff ,

G0eff (z, zv) = G0(z, zv)−
1

2πi
log(z − zv) . (5.34)

Then, the equation for the effective potential acting on the vortex of intensity Γ at zv
reads,

weff (z, zv) = wU(ζ(z)) + ΓG0eff (z, zv) . (5.35)

The handling of the singularity at z = zv in the right side of Eq. (5.34) is not straightfor-
ward. To deal with it, it is preferable to work in the auxiliary ζ-plane and then transform
the result back to the z-plane. Let α be the point in the auxiliary ζ-plane that is mapped
into zv, in the z-plane, that is, zv = z(α). Eq. (5.34) then reads,

G0eff (z, zv) = G0(z(ζ), z(α))−
1

2πi
log [z(ζ)− z(α)] . (5.36)

Using Eq. (5.5), the term under the log in Eq. (5.36) can be written as

z(ζ)− z(α) = (ζ − α)
2Ai

(ζ + i)(α + i)
, (5.37)

where A is the constant given by Eq. (5.4). Plugging Eq. (5.37) into Eq. (5.36), and
recalling that G0(z(ζ), z(α)) = G0(ζ, α), we have

G0eff (z, zv) = G0(ζ, α)−
1

2πi
log

[

(ζ − α)
2Ai

(ζ + i)(α + i)

]

= G0(ζ, α)−
1

2πi
log(ζ − α)− 1

2πi
log

[
2Ai

(ζ + i)(α + i)

]

. (5.38)

writing the last term as a function of z and zv, we have,

G0eff (z, zv) = G0(ζ, α)−
1

2πi
log(ζ − α) +

1

2πi
log

[
2Ai

(z − A)(zv − A)

]

. (5.39)

The first two terms on the right side define the effective potential in the ζ-plane acting
on a vortex of unit intensity at ζ = α,
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G0eff (z, zv) = G0eff (ζ, α) +
1

2πi
log

[
2Ai

(z − A)(zv − A)

]

, (5.40)

where,

G0eff (ζ, α) = G0(ζ, α)−
1

2πi
log(ζ − α) . (5.41)

Differently from Eq. (5.34), the singularity at ζ = α in Eq. (5.41) is easy to handle.
Recall that, in the auxiliary ζ-plane, G0 is calculated in terms of the Schottky-Klein
prime function, and is given by Eq. (4.14). Plugging this equation into Eq. (5.41), we
have

G0eff (ζ, α) =
1

2πi
log

(

ω(ζ, α)

|ᾱ|ω
(
ζ, 1

ᾱ

)

)

− 1

2πi
log(ζ − α) . (5.42)

The SK prime function can be factored as ω(ζ, α) = (ζ−α)ω′(ζ, α), see Eq. (4.20). Using
this in Eq. (5.42), we have

G0eff (ζ, α) =
1

2πi
log

(

ω′(ζ, α)

|ᾱ|ω
(
ζ, 1

ᾱ

)

)

, (5.43)

where ω′ and ω are given respectively by Eqs. (5.11) and (5.12). Using Eqs. (5.40) and
(5.43) we finally conclude that the effective potential on the z-plane acting on a vortex
of unit intensity at z = zv is given by

G0eff (z, zv) = G0eff (ζ(z), ζ(zv)) +
1

2πi
log

[
2Ai

(z − A)(zv − A)

]

. (5.44)

Thus, G0eff (z, zv) has no singularity in z = zv anymore. The total effective potential
acting on a vortex of intensity Γ at z = zv in the z-plane, due to the superposition of the
incoming stream and the vortex images is given by Eq. (5.35), with G0eff (z, zv) given by

Eq. (5.44). Differently from the complex potential G
(ζ)
0 , for which

G0(z, zv)) = G0(ζ(z), ζ(zv)) , (5.45)

the effective potential due to the vortex images does not conformally transform to the
z-plane, that is,

G0eff (z, zv) 6= G0eff (ζ(z), ζ(zv)) . (5.46)

It is necessary then to add an appropriate correction term: this correction term guarantees
that the vortex complex velocity in the z-plane can be obtained by simply differentiating
G0eff (z, zv) and evaluating the derivative at the vortex position z = zv, i.e.,

u− iv =
d

dz
weff (z, zv)

∣
∣
∣
∣
z=zv

. (5.47)
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Figure 5.10 Phase portrait for Γ = −10 generated by the numerical integration of the equa-
tions of motion.

Making zv = x + iy after the differentiation and identifying ẋ = u and ẏ = v, one
obtains two nonlinear differential equations [real and imaginary parts of Eq. (5.47)] gov-
erning the vortex dynamics. This system of equations can now be numerically integrated
to generate the vortex trajectories.

Fig. 5.10 shows a phase portrait analogous to the one shown in Fig. 5.9, which was
obtained via a contour plot of the Hamiltonian. In Fig. 5.10, on the other hand, we
numerically integrated the system of equations consisting of the real and imaginary parts
of Eq. (5.47) to generate the vortex trajectories. This approach is computationally much
faster than the one based on a contour plot of the Hamiltonian, taking only a few seconds
to produce the desired phase portrait. To produce these trajectories, the initial conditions
were x(0) = ±2 and y(0) = 0.8 + 0.2j, j = 1, . . . , 20, and the time interval in the
integration is −100 ≤ t ≤ 100.

Now, having the knowledge of the complex potential (5.20), the effective complex
potential (5.35) and the Hamiltonian (5.32) associated with the problem of a single vortex
in the vicinity of a circular cylinder near a plane wall in a uniform stream, we are in
position to complete the analysis of this problem, which will be carried on in the next
section. This time the analysis will be entirely based on numerical computations since
the expressions involved are too complicated to be treated analytically.

5.4 ANALYSIS AND DISCUSSION

5.4.1 Stationary Positions

To calculate a stationary configuration, we must find the roots of Eq. (5.47). This can be
done using the FindRoot routine of the software Wolfram Mathematica, but we preferred
to take an alternative approach which proved to be computationally faster. Since this is
a Hamiltonian system, the dynamics obeys Hamilton equations (4.26), so the stationary
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|G|

Figure 5.11 (left) Stationary positions curve upstream of the cylinder for gap = 0.2. The
vortex intensity varies along the curve from Γ = −0.1 (closer to the plane) to Γ = −10 (away
from the plane). The stationary positions curve for the fixed point downstream of the cylinder
is just a reflexion of this one. (right) Three-dimensional plot of the vortex intensity |Γ| for
points on the stationary positions curve.

position is an extremum of the Hamiltonian (in this case a maximum):

∂H(z)

∂x
= 0 , (5.48)

∂H(z)

∂y
= 0 . (5.49)

We then used Mathematica’s routine NMaximize to numerically find the points (x, y) that
maximizes the Hamiltonian (5.32). To make sure this numerical method produces the
correct results, we calculated a few points using the FindRoot routine and compared the
results, the difference being of the order of 10−5 which is irrelevant for plot visualizations.

Fig. 5.11 shows on the left a plot of the stationary positions curve for the fixed point
upstream of the cylinder (center) for the gap value of 0.2. On the right side of Fig. 5.11
is shown a 3D plot of the vortex intensity |Γ| that makes the vortex configuration sta-
tionary (in analogy to Fig. 3.8 for the Föppl pair). If the cylinder-plane gap is increased
(decreased), the stationary positions curve is shifted to the left (right), see Fig. 5.12. If
the cylinder touches the plane (i.e., the gap is zero), the fluid domain becomes simply
connected. In this case, the problem could be in principle analyzed by considering a
conformal mapping from the fluid domain to, say, the upper half-plane, where the calcu-
lations can be easily performed. However, such a conformal map is not trivially obtained,
since there is a cusp at the point where the cylinder touches the plane.

Fig. 5.13 shows the dependence of the vortex intensity |Γ| with the position of the
fixed point above the cylinder (right curve) and below the cylinder (left curve) for the
gap value of 0.2. We see that, differently from the centers, these fixed points change their
positions very little with an increase in |Γ|. This is because close to the cylinder the
velocity induced by the first image inside the cylinder dominates. Moreover, the saddle
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Figure 5.12 Stationary positions curve upstream of the cylinder for gap values of 0.01, 0.1,
0.2, 0.3, 0.4 and 0.5. The vortex intensity varies along the curve from Γ = −0.1 (closer to the
plane) to Γ = −10 (away from the plane). The thick red curve corresponds to the one shown
in Fig. 5.11.

point located below the cylinder is constrained to stay within the gap even for very large
Γ. Numerically we check that for Γ → ∞, the stationary position goes to the middle
point between the cylinder and the wall. This is because in this regime the incident flux
is negligible and the vortex is balanced between the first images by the cylinder and the
plane which act in opposite directions.

Now that we can calculate the fixed points of this system, let us compute the separat-
ices of the phase portrait. Having these it will be possible to characterize all the regions
of the phase portrait with respect to the type of trajectory in it.

5.4.2 Separatrices

In the case of the Föppl pair of vortices restricted to the symmetrical subspace studied in
Chapter 3, there were separatrices from the saddle point above the cylinder and from the
degenerate saddle point at infinity. Now, in addition to these, there are also separatrices
from the saddle point below the cylinder. Since the Hamiltonian is a constant of motion,
one way of calculating these curves is by plotting the following contour of the Hamiltonian:

H(z)(x, y) = H(z)(x0, y0) , (5.50)

where (x0, y0) is the fixed point (saddles) for given values of the gap and vortex intensity.
Although this produces the correct results, in this multiply connected system this method
is computationally inefficient, as we discussed before, taking several minutes to determine
the set of points (x, y) satisfying this equation. We take then an alternative approach:
since the separatrices are themselves vortex trajectories in the phase portrait, we proceed
a direct integration of the equations of motion resulting from the effective potential, i.e.,
we integrate the complex velocity, Eq. (5.47), just as we did before in the production
of Fig. 5.10, but this time we choose the appropriate initial conditions to reconstruct
precisely the separatrices.
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|G|

Figure 5.13 Dependence of the vortex intensity |Γ| with the position for the saddle points
below the cylinder (left curve) and above the cylinder (right curve), for gap = 0.2.

To calculate the separatrices from the saddle points above and below the cylinder,
we must choose initial conditions in the eigendirections determined by the eigenvectors
of the linearized vortex velocity field in the vicinity of each fixed point. The linearized
equations of motion around a fixed point (x0, y0) are:

(

ξ̇
η̇

)

= A

(
ξ
η

)

, (5.51)

where ξ = x − x0 and η = y − y0 are the coordinates relative to the fixed point (x0, y0)
and the matrix A is

A =

( ∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)∣
∣
∣
∣
0

, (5.52)

evaluated at the point (x0, y0). Using Hamilton equations (4.26) to evaluate u and v, we
get

A =

(
1
Γ
∂2H
∂x∂y

1
Γ
∂2H
∂y2

− 1
Γ
∂2H
∂x2

− 1
Γ
∂2H
∂x∂y

)∣
∣
∣
∣
∣
0

, (5.53)

This matrix has a vanishing trace, as expected. From the left-right symmetry of the
problem, we see that on the y-axis (where the saddle points are), the vortex velocity is
always horizontal, so

v(0, y0) = 0 ⇒ ∂v

∂y
(0, y0) = 0 ⇒ ∂2H

∂x∂y
(0, y0) = 0 , (5.54)

and the matrix A reads:

A =

(
0 B
C 0

)∣
∣
∣
∣
0

, (5.55)
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G =  -5

Figure 5.14 Separatrices associated with this system. The vortex intensity is Γ = −5 and the
gap is 0.3.

where,

B =
1

Γ

∂2H

∂y2
, C = − 1

Γ

∂2H

∂x2
. (5.56)

It is easy to check that the directions of the eigenvectors are

ν

ξ
= ±

√

C

B
. (5.57)

So, to integrate the equations of motion along the separatrices from the saddle points,
we must choose initial conditions of the form

x(0) = x0 ± ǫ , y(0) = y0 ± ǫ

√

C

B
. (5.58)

where ǫ is a small number. In the computations performed, we used ǫ = 10−3.
For the trajectory associated with the positive eigenvalue the integration interval is

0 < t < tmax. For the trajectory associated with the negative eigenvalue, the integration
must be performed “backwards” and the integration interval is tmin < t < 0. We used
tmax = −tmin = 50.

It is still necessary to calculate the separatrix associated with the (degenerate) saddle
point at infinity. Just like in the Föppl case, these separatrices will determine the region
of nonlinear stability of the centers. To calculate the separatrix downstream (upstream)
we take an initial condition very far from the cylinder in the x-axis and slightly below
(above) the line y = |Γ|/4π. In the calculations performed we used:

x(0) = ±1000 , y(0) =
|Γ|
4π

∓ 10−3 . (5.59)

This time the integration must be performed over a very long interval, for the vortex to
have time to come from very far downstream, close to the cylinder, and back again to far
downstream. To make sure the time interval was large enough, we used tmax = 500000.
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An example of phase portrait showing only the separatrices is shown in Fig. 5.14. The
arrows show the velocity direction and the black dots mark the stationary positions. The
thin lines are the separatrices from the saddle points above the cylinder (dashed lines)
and below the cylinder (solid lines). The thick line is the separatrix from the degenerate
saddle point at infinity. There are some interesting features of this phase portrait to
be highlighted. First notice that, just like in the Föppl case, the separatrix from the
degenerate saddle point at infinity (thick line) defines the nonlinear stability region of
the centers. Also, notice that trajectories very close to the cylinder tend to circle around
it anti-clockwisely and trajectories very close to the plane tend to follow parallel to it,
going to the left. This is expected to happen because very close to these boundaries,
the first image of the vortex by the boundaries dominates the dynamics and the effect of
the other images is negligible. The trajectories are then the same of the single boundary
systems analyzed in Chapter 2.

Notice also that, for this choice of parameters, the saddle point above the cylinder
produces a homoclinic loop that encloses all closed trajectories around the cylinder. In
this case, a vortex coming from far upstream can either go to infinite downstream passing
above the cylinder, if it is located above the upper dashed separatrix, or below it, if it is
located between the upper dashed separatrix and the upper solid thin separatrix. It is
also possible that the vortex comes close to the gap but instead of passing through it, is
“reflected” back to infinity upstream. This happens if the initial condition lies between
the upper thin solid line and the thick line. Other trajectories can be deduced by looking
at the arrows in the figure.

5.4.3 Topological Transitions

If we change the vortex intensity, the fixed points will move as we have seen in the last
subsection. The saddle points positions do not change much, as discussed earlier, but the
centers do: they follow the curve of Fig. 5.11. As the vortex intensity grows larger, the
centers move away and the upper separatrix from the lower saddle (solid thin line) gets
closer and closer to the upper saddle separatrices (dashed lines), see Fig. 5.15 a and b,
and then, at a certain critical value of the vortex intensity (numerically estimated to be
approximately Γc = −7.763428), the separatrices come together and a heteroclinic loop
is formed connecting the two saddle points (Fig. 5.15 c). At this point, it is not possible
anymore to have a vortex trajectory starting upstream, going below the cylinder and
finally moving downstream. As the vortex intensity increases past the critical value, the
heteroclinic loop breaks up and a new homoclinic loop is formed, but this time associated
with the saddle point below the cylinder (Fig. 5.15 d and e). In this case a very unusual
trajectory occurs: for initial positions lying downstream the cylinder in the narrow space
between the two thin separatrices close to the plane, the vortex moves left under the
effect of its image by the plane, until a moment when it gets close enough to the cylinder,
after which it circles the cylinder almost completely, and then finally goes off to infinity
upstream, moving closely to the plane.

The topology of the phase portrait can also undergo a similar transition if, instead
of the vortex intensity, we vary the cylinder-plane gap. The qualitative behavior is that
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Figure 5.15 Transition in the phase portrait as the vortex intensity Γ increases while the
cylinder gap is kept constant at 0.3 (the arrows are omitted and can be inferred from the
previous figure).
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a)

b)

c)

Figure 5.16 Transition in the phase portrait as the cylinder gap decreases while the vortex
intensity is kept constant at Γ = −5.

the change in the gap acts in opposition to the change in the vortex intensity, i.e., to
obtain a transition like the one depicted in Fig. 5.15, it is necessary to decrease the gap,
without changing Γ. Fig. 5.16 shows such a transition for a fixed value of the vortex
intensity Γ = −5. It is observed that the critical gap value for which the heteroclinic
loop is formed is approximately gapc = 0.1517. Fig. 5.17 shows a diagram illustrating the
topological patterns in phase space. Phase transitions similar to these were also observed
by Sakajo in a system consisting of the dynamics of a single vortex in the region between
three circular cylinders and an outer circular boundary (Ref. [29] Fig. 3b-c in particular).

It is possible to observe in this Fig. 5.16 that the stationary positions corresponding
to the centers move away from the cylinder as the gap is increased. This result is in
qualitative agreement with the experimental measurements made by Wei-Jung Lin et
al. [5] as we will see later.

5.4.4 Comparison with Experiments: Stationary Positions

Fig. 5.18 shows a superposition between the experimental observation by Wei-Jung Lin
et al. [5], and the calculated curve of equilibria (red curve) for a gap equal to 0.2. As
can be readily verified, the experimental stationary position does not lie on the predicted
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Figure 5.17 Diagram illustrating the topological changes in the phase portrait due to the
variation of the plane-cylinder gap.
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Figure 5.18 Comparison between the experimental observation and the calculated stationary
positions curve for cylinder-plane gap of 0.2.

stationary configurations curve. To attain a better agreement, it is necessary to make use
of an additional degree of freedom that was not considered so far: the flow circulation
around the cylinder.

As discussed earlier in Sec. 4.3, the circulation γ around the cylinder can be controlled
by properly placing vortices at the infinity. The complex potential for the case of one
vortex of intensity Γ in an incident stream, with circulation γ around the cylinder is
obtained by adding to the previously calculated complex potential, Eq. (5.20), the term
related to the vortex at infinity, using Eq. (4.17). The complex potential then reads

W (z, zv) = WU(ζ(z)) + ΓG0(ζ(z), ζ(zv))− γG1(ζ(z), β) , (5.60)

where β is the point at the complex ζ-plane that is mapped to infinity (in the present
case, β = −i) and G1 is calculated using Eq. (4.18),

G1(ζ, β) =
1

2πi
log




ω(ζ, β)

∣
∣β̄
∣
∣ω
(

ζ, θ1

(
1
β̄

))



 , (5.61)

where θ1 is given by Eq. (5.8).
To calculate the stationary positions for this new situation where the circulation γ

around the cylinder does not vanish, it is necessary to change the Hamiltonian H(z)

given in Eq. (5.32) to account for the vortex at infinity. This is done by including the
streamfunction due to such a vortex in the definition of ψ0 which was given in Eq. (5.22)
in the case of vanishing circulation. The HamiltonianH(z) is given by the same Eq. (5.32),
rewritten below:

H(z) (z1, z̄1) = Γ ψ0

(

ζ(z1), ζ(z1)
)

− Γ2
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log
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(5.62)
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g = 0
g = -10

Figure 5.19 Stationary position curves for gap = 0.2. Following each curve the vortex intensity
varies from Γ = −0.1 (closer to the plane) to Γ = −10 (away from the plane). Each curve is for
a fixed integer value of the circulation γ around the cylinder.

with

ψ0

(
ζ, ζ̄
)
= Im [WU(ζ)− γG1(ζ, β)] . (5.63)

With these modifications it is possible to calculate the new stationary positions as we
change the circulation γ around the cylinder and the vortex intensity Γ. Fig. 5.19 shows
a set of 11 stationary position curves, each for a fixed integer value of the circulation γ
around the cylinder. The thick red curve on the left corresponds to γ = 0, which is the
case treated before, shown in Fig. 5.18.

By comparing Fig. 5.19 with the experimental observation in Fig. 5.18, we see that the
curve corresponding to the value of γ = −3 (orange) is the one that best approximates
the experimental stationary configuration, see Fig. 5.20. The point on the curve where
the stationary position lies is zv = −1.6939+0.5257i and the vortex intensity is Γ = −4.5.
Fig. 5.21 is a streamline pattern obtained by introducing the experimental parameters
estimated in Fig. 5.20 (U = 1, zv = −1.6939 + 0.5257i, Γ = −4.5, γ = −3) into the
complex potential (5.60).

The necessity to impose a negative (clockwise) circulation around the cylinder to
approximate the stationary configuration observed is in qualitative agreement with the
experiments. To see this, first we recall that in the case of flows past a cylinder (with no
other boundaries) studied in Chapter 3, the circulation is zero because of the up-down
symmetry of the system. When the additional plane boundary is present, the flow is no
longer symmetrical and one expects a non-vanishing circulation around the cylinder. For
this circulation to be negative, the average velocity above the cylinder must be higher
than below it, and this is indeed observed in the experiments. According to Lin’s paper
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Figure 5.20 Comparison between the experimental observation and the calculated stationary
position curves for γ = 0 (red) and γ = −3 (orange).

Figure 5.21 Streamline pattern produced with the estimated experimental parameters U = 1,
zv = −1.6939 + 0.5257 i, Γ = −4.5 and γ = −3.

[5]: “The recirculating eddy upstream of the circular cylinder forms just like an obstacle
to the approaching flow near the plane boundary. As the gap ratio decreases, enlargement
of this eddy prominently deflects part of the fluid from upstream of the plane boundary
over the top of the circular cylinder and thus reduces the flow passing through the gap.”

As anticipated at the end of the previous section, the stationary position tends to move
away from the cylinder as the gap increases. Fig. 5.22 shows three different measurements
made by Lin [5] that illustrate the change in the vortex position. For each configuration,
we estimated the experimental parameters for the vortex intensity Γ and the circulation
around the cylinder γ. The fact that the circulation around the cylinder tends to decrease
(in modulus) as the gap increases is expected, since the flow above and below the cylinder
tends to be “more symmetric” as the distance between the cylinder and the wall increases.
Also, since the vortex intensity is smaller in the case of the largest gap, the deflection of
the incoming stream by the vortex is reduced, therefore contributing to the reduction of
the circulation around the cylinder.

Thus said, it is fair to mention that the point vortex model not only explains the exis-
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tence of a stationary configuration upstream the cylinder, but is also in good qualitative
agreement with several experimental observations.

Figure 5.22 On the left, the experimental measurements made by Lin [5]. The estimated
experimental parameters are shown on the right of the figure. The red curve corresponds to the
system having circulation around the cylinder γ = 0, while the orange curve is for the value of
γ estimated on the right.



CHAPTER 6

CONCLUSIONS

In this thesis, we have applied the point vortex model to study the dynamics of vortices
in the presence of solid obstacles. Two different systems were treated: the Föppl system,
in which a pair of vortices move in a uniform stream around a circular cylinder in an
otherwise unbounded domain, and the system consisting of a single vortex near a circular
cylinder placed above an infinite plane wall, also in a uniform stream.

In the first problem, we obtained, using standard complex analysis techniques, the
vortices stationary positions and showed that, in addition to the Föppl equilibrium and
the equilibrium on the normal line, found in Föppl’s original paper (Ref. [15]), the system
possesses a hitherto unnoticed nilpotent saddle point at infinity, whose homoclinic loops
define the region of nonlinear stability of the Föppl equilibrium. This important obser-
vation allowed us to completely characterize the phase portrait of this system within the
symmetric subspace. We have also performed the linear stability analysis of the fixed
points under symmetric and antisymmetric perturbations. We obtained the eigenvalues
and eigenvectors for each fixed point, and, by numerically integrating the nonlinear equa-
tions of motion, we studied the dynamics resulting from antisymmetrical perturbations
of the equilibrium configurations. We argued that the dynamics resulting from these per-
turbations of the Föppl equilibrium is responsible for the instability that leads to vortex
shedding and the development of the so-called von Karman vortex street, a hypothesis
first confirmed by Tang and Aubry [19] via direct numerical simulations (DNS) of the
Navier-Stokes equations.

Next, we studied the problem of a single vortex near a cylinder placed above a plane
wall. The presence of a secondary boundary (the plane) makes this problem much harder
to treat analytically. A recent mathematical apparatus, based on the so-called Schottky-
Klein prime function, was used to study the vortex dynamics in this multiply connected
domain. The stationary positions were calculated by numerically maximizing the Hamil-
tonian and the phase portrait of the system was computed. We showed that the point
vortex model could explain the existence of the stationary configuration upstream the
cylinder observed in the experiments. Moreover, the model results are in qualitative
agreement with some experimentally observed features of this system such as: (i) the
negative circulation around the cylinder; (ii) the reduction of the absolute value of this
circulation as the cylinder-plane gap increases; (iii) the variation of the stationary po-
sitions as the gap changes. We also observed that the phase portrait of the system
undergoes a topological transition, as we vary either the vortex intensity or the cylinder-
plane gap beyond some critical values. Topological transitions like the one observed in
our system were reported by Sakajo in Ref. [29]. In particular, in Fig. 3b-c of this paper,
a transition very similar to the one we found is reported in the analysis of the dynamics
of a single vortex inside a circular domain with obstacles.

88
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Figure 6.1 Configuration with four vortices observed in the flow of superfluid helium around
a cylinder placed in a channel (figure from Ref. [6]).

Figure 6.2 Configurations with both vortex pairs having the same signs (left) and opposite
signs (center). Configuration including the channel, without the rectangular symmetry (right).

One possible extension of this work is to consider systems involving a higher number
of vortices. In a recent publication Zhang and Sciver [6] observed a very interesting
four-vortex configuration in the flow of superfluid helium around a cylinder placed in
a channel, as shown in Fig. 6.1. An analytical study of this system by means of the
point vortex model would be very interesting. As an initial step towards it we have
analyzed the problem of a pair of vortex pairs in the vicinity of a circular cylinder in an
otherwise unbounded domain. We have reproduced the known stationary configuration
(Ref. [21]) where the vortex pairs have the same signs before and after the cylinder,
and are symmetrically located, see the scheme on left side of Fig. 6.2. However, for the
case observed in the experiments of Fig. 6.1, where the vortex pairs have opposite signs,
there is no possible stationary configuration with the same rectangular symmetry, shown
schematically on the center of Fig. 6.2. A next step would be to consider the problem
of a pair of vortex pairs around the cylinder in a channel, as shown in the right side of
Fig. 6.2. To attack this problem, one should first find a conformal map from the fluid
domain to some other simpler region, say, an annulus, where the analysis could be done
via the Schottky-Klein prime function formalism presented in Chapter 4.

In the case of flows around a cylinder placed above a plane wall, there are several
studies regarding the influence of the wall in the vortex shedding phenomenon (see for
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example Refs. [5], [25] and [26]). In this situation, because the system does not have the
up-down symmetry present in the Föppl case, maybe it could have a Föppl-like stationary
configuration behind the cylinder in which one of the vortices is stronger than the other.
Also, it has been experimentally observed by Price et al. in Ref. [26] that the boundary
layers from above and below the cylinder clearly separate differently from each other
for small gap values. The analysis of the stability properties of a (possible) Föppl-like
stationary configuration of a pair of point vortices behind the cylinder may shed some
light into these important questions.
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The motion of a pair of counter-rotating point vortices placed in a uniform flow around a circular

cylinder forms a rich nonlinear system that is often used to model vortex shedding. The phase

portrait of the Hamiltonian governing the dynamics of a vortex pair that moves symmetrically with

respect to the centerline—a case that can be realized experimentally by placing a splitter plate in

the center plane—is presented. The analysis provides new insights and reveals novel dynamical

features of the system, such as a nilpotent saddle point at infinity whose homoclinic orbits define

the region of nonlinear stability of the so-called Föppl equilibrium. It is pointed out that a vortex

pair properly placed downstream can overcome the cylinder and move off to infinity upstream.

In addition, the nonlinear dynamics resulting from antisymmetric perturbations of the Föppl

equilibrium is studied and its relevance to vortex shedding discussed.VC 2011 American Institute of

Physics. [doi:10.1063/1.3667269]

I. INTRODUCTION

Flow around a circular cylinder is a classical topic in

hydrodynamics that is of fundamental importance to many

scientific fields with numerous applications.1,2 Of particular

interest is the formation, at moderate Reynolds numbers, of

vortex eddies behind a circular cylinder, which then go

unstable at higher Reynolds numbers and evolve into a Kar-

man vortex street.3,4 Since an analytic treatment of the prob-

lem in terms of the Navier-Stokes equation is difficult and

the computational cost of direct numerical simulation (DNS)

is very high, a particularly useful approach to study the basic

features of vortex shedding from bluff bodies is to consider

the dynamics of point vortices in an inviscid fluid.

A point-vortex model for the formation of two recircu-

lating, symmetric eddies in the wake of a circular cylinder

was first introduced by Föppl.5 He obtained stationary solu-

tions for a pair of vortices behind the cylinder in a uniform

stream and found that the centers of the eddies observed in

the experiments lie on the locus of such equilibria—now

called the Föppl curve. In addition, Föppl found that these

equilibria, although stable against perturbations that are sym-

metric with respect to the centerline, were unstable against

nonsymmetric perturbations. This instability is believed to

constitute the origin of the vortex shedding process that leads

to the formation of the Karman vortex street.6 It was later

found out independently by several authors7–9 that Föppl’s

stability analysis for symmetric perturbations was in error in

that the stationary solution behind the cylinder is not expo-

nentially but only marginally stable. Physically, marginal

stability implies, for instance, that if a splitter plate is placed

behind the cylinder in the center plane of the wake to sup-

press vortex shedding,10–12 oscillating forces on the cylinder

may still arise owing to the cyclic motion of the vortices

around their equilibrium position.13

Despite many contributions to the problem, it is fair to

say that the nonlinear dynamics of the Föppl system is not

yet fully understood. In particular, a more complete picture

of vortex-pair dynamics in the presence of symmetric pertur-

bations is lacking, and several aspects of the nonlinear dy-

namics for nonsymmetric perturbations remain unclear. To

address these two issues is the main motivation of the present

paper. It should be emphasized at the outset that a better

understanding of the dynamical structure underlying the

Föppl model is of interest not only because of its practical

relevance for vortex shedding but also in its own theoretical

right from the viewpoint of nonlinear dynamics.

The Föppl model has inspired a number of studies on

several related problems, such as the modeling of vortex

wake behind slender bodies in terms of multiple pairs of

point vortices,14–17 the Hamiltonian structure of a circular

cylinder interacting dynamically with point vortices,18–20 the

control of vortex shedding,21–23 and the stability of symmet-

ric and asymmetric vortex pairs over three-dimensional slen-

der conical bodies.12,24,25 The related problem of

desingularization of the Föppl pair in terms of vortex patches

of finite area was also studied.26,27 A recent review on vortex

motion past solid bodies with additional references to the

Föppl model and related problems can be found in Ref. 28.

After formulating the problem of a pair of counter-

rotating point vortices placed in a uniform stream around a

circular cylinder in Sec. II, we begin our analysis of the

Föppl system in Sec. III by studying its Hamiltonian dynam-

ics restricted to the invariant subspace where the vortices

move symmetrically with respect to the centerline. A phase

portrait of the system is presented that fully characterizes the

dynamics within this symmetric subspace. In particular, we

point out that in addition to the two previously known sets of

equilibria, namely, the Föppl equilibrium and the equilib-

rium on the axis bisecting the cylinder perpendicularly to the

uniform flow, the system possesses a hitherto unnoticed nil-

potent saddle at infinity. We show, furthermore, that the

homoclinic orbits associated with this nilpotent saddle
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delimit the region of closed orbits around the Föppl equilib-

rium. We proceed in Sec. IV to study the linear and nonlin-

ear dynamics resulting from antisymmetric perturbations of

the Föppl equilibrium. In the linear regime, a mistake that

went undetected in Föppl’s expressions5 for the correspond-

ing eigenvalues is now corrected. As for the nonlinear dy-

namics, the unstable manifold associated with the Föppl

equilibrium is computed numerically, and its close relation

to the vortex shedding instability is pointed out. The linear

stability analysis of the equilibria on the normal line with

respect to symmetric and antisymmetric perturbations is also

presented—for the first time, it seems—and the respective

nonlinear dynamics is investigated numerically. A discussion

of the physical relevance of our findings and our main con-

clusions are presented in Sec. V.

II. PROBLEM FORMULATION

We consider the motion of a pair of point vortices of

same strength and opposite polarities around a circular cylin-

der of radius a and in the presence of a uniform stream of ve-

locity U, as illustrated in Fig. 1. It is convenient to work in

the complex z-plane, where z¼ xþ iy, and place the center

of the cylinder at the origin. The upper and lower vortices

are located at positions z1¼ x1þ iy1 and z2¼ x2þ iy2, respec-

tively. The complex potential w(z)¼/(x, y)þ iw(x, y), with

/ being the velocity potential and w the stream function, is

given by29

wðzÞ ¼ U zþ a2

z

� �

þ C

2pi
ln

z� z1

z� a2=�z1
� C

2pi
ln

z� z2

z� a2=�z2
;

(1)

where C is the circulation of the vortex at z1 and bar denotes

complex conjugation. In Eq. (1), the first two terms represent

the incoming flow and its image (a doublet at the origin)

with respect to the cylinder, the third term gives the contribu-

tions to the complex potential from the upper vortex and its

image, and similarly, the last term contains the contributions

from the lower vortex and its image. As can be inferred from

Fig. 1, a necessary condition for a steady configuration to

exist is that the upper (lower) vortex be of negative (positive)

circulation, hence, only the case C< 0 is of interest to us

here.

In dimensionless variables

z0 ¼ z

a
; t0 ¼ U

a
t; w0 ¼ w

Ua
; j ¼ � C

2pUa
> 0; (2)

the complex potential (1) becomes

wðzÞ ¼ zþ 1

z
þ ij ln

ðz� z1Þ 1� �z2zð Þ
ðz� z2Þ 1� �z1zð Þ ; (3)

where the prime notation has been dropped. According to

standard theory of point vortices in an inviscid fluid, any

given vortex moves with the velocity of the flow computed

at the position of that vortex, excluding its own contribution

to the flow. It then follows from Eq. (3) that the velocity

u1¼ (u1, v1) of the vortex located at z1 is given by

u1 � iv1 ¼ 1� 1

z21
� ij

1

z1 � z2
� �z1

1� z1�z1
þ �z2

1� z1�z2

� �

;

(4)

or more explicitly,

u1 ¼ 1� x21 � y21
r41

� j
y1 � y2

r21 þ r22 � 2ðx1x2 þ y1y2Þ

�

þ y1

r21 � 1
� y1r

2
2 � y2

1þ r21r
2
2 � 2ðx1x2 þ y1y2Þ

�

; (5a)

v1 ¼ �2
x1y1

r41
þ j

x1 � x2

r21 þ r22 � 2ðx1x2 þ y1y2Þ

�

þ x1

r21 � 1
� x1r

2
2 � x2

1þ r21r
2
2 � 2ðx1x2 þ y1y2Þ

�

; (5b)

where r2i ¼ x2i þ y2i , i¼ 1, 2. The velocity u2¼ (u2, v2) of the

second vortex is obtained by simply interchanging the

indexes 1$ 2 in Eq. (5) and letting j! �j.

III. DYNAMICS ON THE SYMMETRIC SUBSPACE

It is not difficult to see from Eq. (5) that if the vortices

are initially placed at positions symmetrically located with

respect to the centerline, i.e., z2ð0Þ ¼ �z1ð0Þ, then this symme-

try is preserved for all later times, i.e., z2ðtÞ ¼ �z1ðtÞ for t> 0.

In this section, we study the dynamics within this invariant

symmetric subspace, where the motion of the lower vortex is

simply the mirror image of that of the upper vortex with

respect to the centerline. Symmetry can be enforced experi-

mentally by placing a splitter plate behind the cylinder in the

center plane of the wake.5,10

With x2¼ x1 and y2¼�y1, Eq. (5) reduces to

u ¼ 1� x2 � y2

r4
þ jy

r2 þ 1

ðr2 � 1Þ2 þ 4y2
� 1

r2 � 1
� 1

2y2

" #

;

(6a)

v ¼ �2
xy

r4
� jx

r2 � 1

ðr2 � 1Þ2 þ 4y2
� 1

r2 � 1

" #

: (6b)

FIG. 1. A pair of vortices behind a circular cylinder in a uniform stream.
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Here, the subscripts have been dropped with the understand-

ing that in the remainder of the section we restrict our atten-

tion to the upper vortex.

A. Hamiltonian dynamics and phase portrait

As is well known, the equations of motion for point vor-

tices in a two-dimensional inviscid flow, first derived by

Kirchhoff, can be formulated as a Hamiltonian system.3,4

The dynamics of point vortices in the presence of closed,

rigid boundaries was shown by Lin30 to be also Hamiltonian

with the same canonical symplectic structure as in the ab-

sence of boundaries. For a vortex pair placed in a uniform

stream around a circular cylinder, the phase space is four-

dimensional and has a two-dimensional (2D) invariant sub-

space corresponding to symmetric orbits. The Hamiltonian

restricted to the 2D symmetric subspace is given by31

Hðx; yÞ ¼ y 1� 1

r2

� �

� j

2
ln

yðr2 � 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr2 � 1Þ2 þ 4y2
q : (7)

The corresponding dynamical equations

_x ¼ @H

@y
; _y ¼ � @H

@x
; (8)

where dot denotes time derivative, yield Eq. (6) upon identi-

fying (u, v) with ð _x; _yÞ.
A phase portrait of this Hamiltonian system for

j¼ 45=32 is presented in Fig. 2, where the curves shown are

(unevenly spaced) level sets of the Hamiltonian Equation

(7). [For convenience, these curves were obtained from a

direct numerical integration of Eq. (6).] A detailed descrip-

tion of the main features of this phase portrait will be given

below, starting with an analysis of the various equilibrium

points and their stability. The related problem of the sym-

metric “moving Föppl system,” where the cylinder advances

through the fluid followed by the vortex pair, was recently

considered by Shashikanth et al.,18 but there the phase por-

trait19 is quite different from the one shown in Fig. 2,

because of the additional degrees of freedom related to the

velocity of the moving cylinder.

B. Equilibrium points

The equilibrium positions for the vortex are obtained by

setting u¼ v¼ 0 in Eq. (6). Three types of equilibrium points

can be identified.

1. Föppl equilibria

The locus of possible equilibrium positions (x0, y0) for

the upper vortex found by Föppl5 is the curve

r20 � 1 ¼ 2r0y0; (9)

with corresponding strength

j ¼ ðr20 þ 1Þðr20 � 1Þ2

r50
: (10)

Along the Föppl curve (9), the vortex strength increases with

distance from the center of the cylinder and diverges linearly

for r0 ! 1. For the equilibrium point on the edge of the cyl-

inder (r0 ! 1), the strength vanishes. Notice that Eq. (9)

yields two branches of solution: one in which the vortex pair

is behind the cylinder (x0> 0) and the other where the vortex

pair is in front of the cylinder (x0< 0). The former case mod-

els the formation of vortex eddies behind a cylinder in a uni-

form stream and was the primary motivation of Föppl’s

original study.5 The latter case has attracted far less atten-

tion, because it is not usually observed in experiments. We

note, however, that recirculating eddies are observed in front

of a circular cylinder near a plane boundary when the gap

between the cylinder and the plane is sufficiently small.32 In

this context, the Föppl equilibrium upstream of the cylinder

may eventually be relevant for flows around a half-cylinder

placed on a plane wall (or for the closely related situation

where a splitter plate is attached to the front of the cylinder),

although we are unaware of specific experiments in this

setting.

2. Equilibria on the normal line

This corresponds to the upper vortex being located on

the line bisecting the cylinder perpendicularly to the incom-

ing flow,15 that is,

x ¼ 0; y ¼ b; b > 1; (11)

with strength

j ¼ 2ðb2 � 1Þðb2 þ 1Þ2
bðb4 þ 4b2 � 1Þ : (12)

As in the Föppl solution, the strength tends to zero when the

edge of the cylinder is reached (b ! 1) and diverges linearly

with distance from the center of the cylinder. At large distan-

ces, the vortex strength for this equilibrium is about twice

that of a Föppl pair located at the same distance from the

origin.

3. Equilibrium at infinity

Equation (6) also yields equilibrium points at the

positions

FIG. 2. Phase portrait for the symmetric Föppl system with j¼ 45=32. The
isolated black dots are the Föppl equilibria. The dashed curves are the stable

and unstable branches of the separatrix associated with the equilibrium point

on the normal line, and the thick solid lines are the homoclinic loops of the

equilibrium point at infinity; see text.
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x ¼ 61; y1 ¼ j

2
: (13)

To the best of our knowledge, the existence of this additional

equilibrium point at infinity was not noted before. Its physi-

cal origin, however, can be easily understood, as it corre-

sponds to the equilibrium configuration for a vortex pair

placed in a uniform stream (without the cylinder). At points

infinitely far from the cylinder, the flow induced by the

image system (inside the cylinder) becomes negligible, and

hence, a stationary configuration is possible if the vortices

with given circulation 6j are placed at the appropriate dis-

tance (¼j) from each other.

C. Stability analysis

The linear stability analysis of the equilibria described

above is presented next, together with a discussion of the

nonlinear stability of the Föppl equilibrium.

1. Föppl equilibria

Consider a perturbation of the Föppl equilibrium (9) par-

ameterized as z¼ z0þDz, where Dz¼ nþ ig, with n and g

being infinitesimal (real) quantities. Linearization of Eq. (6)

then yields the following dynamical system:

_n

_g

� �

¼ A
n

g

� �

; (14)

where the matrix A reads

A11 ¼ �A22 ¼ � x0ðr40 � 3r20 þ 2Þ
r80

; (15)

A12 ¼
4r80 þ 5r60 þ 2r40 � 5r20 þ 2

2r90
; (16)

A21 ¼ � 2x20ðr40 þ r20 þ 2Þ
r70ðr20 þ 1Þ : (17)

Its eigenvalues k are given by

k2 ¼ � 3r60 þ 5r40 þ 13r20 � 5

r100
< 0; (18)

for r0> 1. The eigenvalues are, thus, purely imaginary and

not a complex pair with negative real part as found by

Föppl.5 In other words, the Föppl equilibrium is a center and

not a stable focus. Our Eq. (18) agrees with the expression

for the eigenvalues of the symmetric modes obtained in

Ref. 7 from the linearization of the full 4D dynamical sys-

tem. As can be seen from Fig. 2, the Föppl solution is in fact

a nonlinearly stable center, meaning that when the vortex is

displaced from its equilibrium position by a small (but finite)

amount, it executes a periodic motion around that point, cor-

responding to the closed orbits in the figure. This periodic

motion around the Föppl equilibrium has been observed in

numerical simulations of the model carried out by de Laat

and Coene.13 Note that since the eigenvalues given in

Eq. (18) do not depend explicitly on the coordinate x0, it

follows that the two Föppl equilibria, downstream and

upstream of the cylinder, have identical stability properties,

as is evident from Fig. 2. This means, in particular, that if

vorticity can be generated upstream of the cylinder then sta-

tionary recirculating eddies could form in front of the cylin-

der—a situation observed, for instance, in flows around a

cylinder placed above a plane wall.32

2. Equilibria on the normal line

Linearization of Eq. (6) around the equilibrium point

z¼ ib yields, for the matrix A,

A11 ¼ A22 ¼ 0; (19)

A12 ¼
b8 þ 10b6 � 8b4 þ 14b2 � 1

b3ðb2 � 1Þðb4 þ 4b2 � 1Þ ; (20)

A21 ¼
2ðb2 � 1Þð3b2 � 1Þ
b3ðb4 þ 4b2 � 1Þ : (21)

The eigenvalues k of this matrix are determined by

k2 ¼ 2 3b2 � 1ð Þ b8 þ 10b6 � 8b4 þ 14b2 � 1
� �

b6ðb4 þ 4b2 � 1Þ2
> 0; (22)

which yields a pair of real eigenvalues, k6 ¼ 6
ffiffiffiffiffi

k2
p

. The

equilibrium point on the normal line is, therefore, a saddle,

having a stable and unstable direction, as is also evident

from the phase portrait shown in Fig. 2. The eigenvectors

w6 associated with the eigenvalues k6, respectively, read

w6 ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A12=A21

p

1

� �

: (23)

Although it was known from numerical simulations13 that

the equilibrium point on the normal line is unstable (against

generic symmetric perturbations), it seems that an explicit

linear stability analysis for this case was not carried out

before, perhaps because these equilibria were not considered

physically relevant since they are not observed in experi-

ment.5 However, when the full nonlinear dynamics is consid-

ered, the stable and unstable eigendirections w6 give origin

to the respective stable and unstable separatrices, indicated

by the dashed curves in Fig. 2. In this sense, the existence of

an equilibrium point on the normal line is dynamically felt

by a vortex even if it is placed far from this “unphysical”

equilibrium.

3. Equilibrium at infinity

The matrix A of the linearized system around the equi-

librium point at infinity is given by

A ¼ � 2

j

0 1

0 0

� �

; (24)

which is nilpotent and has two zero eigenvalues. To study

the stability of this equilibrium point, one needs to examine

the nonlinear contributions. To this end, we note that for

jxj ! 1 and y � y1, Eq. (6b) assumes the form
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_y ¼ � j

x3
: (25)

It then follows from a theorem in ordinary differential equa-

tions33 that, in view of the cubic term in Eq. (25), the equilib-

rium point is a degenerate or nilpotent saddle,34 for which

the two eigenvectors are the same. The behavior of trajecto-

ries in the neighborhood of a generic nilpotent saddle is illus-

trated in Fig. 3. The behavior near the nilpotent saddle at

x¼61 and y¼ y1 can be described as follows. A vortex

placed very far downstream and below (above) the line

y¼ y1 will move away from (towards) the equilibrium point

at x¼1. Similarly, a vortex placed very far upstream will

move away from (towards) the equilibrium point at x¼�1
if y> y1 (y< y1).

The stable and unstable separatrices associated with the

nilpotent saddle at infinity form two homoclinic loops,34

called nilpotent saddle loops, which are indicated in Fig. 2

by thick solid lines and correspond to the level curves pass-

ing through this equilibrium point,

Hðx; yÞ ¼ Hð61; y1Þ ¼ j

2
1� ln

j

2

� �

: (26)

The nilpotent saddle loops encircle the Föppl equilibria and

define their region of nonlinear stability, in the sense that

vortex trajectories are closed for initial positions inside the

loops and unbounded otherwise. In this way, the nilpotent

saddle at infinity, which went unnoticed until now, allows us

to fully characterize the nonlinear stability of the Föppl

equilibrium.

For unbounded orbits, the long-time asymptotic behav-

ior depends on the location of the vortex initial position with

respect to the separatrices associated with the equilibrium

point on the normal line. A vortex placed downstream of the

cylinder between the nilpotent saddle loop and the separatri-

ces of the equilibrium point on normal line will eventually

be convected away by the free stream; see Fig. 2. In particu-

lar, if the vortex starts very far behind the cylinder at a posi-

tion that is below the nilpotent saddle loop and above the

stable separatrix, it first moves towards the cylinder, turns

around the Föppl equilibrium, and is then “reflected” back to

infinity. Even more surprising trajectories arise if the vortex

is placed downstream below the stable separatrix, for it will

be close enough to its image below the centerline to be able

to overcome the cylinder and move off to infinity upstream.

(A related phenomenon occurs in the inviscid coupled

motion of a cylinder initially at rest and a vortex pair starting

at infinity with no imposed background flow.35 When the

cylinder is less dense than the fluid, it is found that if the vor-

tices are released sufficiently above the centerline they

reverse relative to the moving cylinder; otherwise, they

move over and past the cylinder.) Unbounded trajectories for

the Föppl system also result for initial positions upstream of

the cylinder: (1) if placed above the stable separatrix, the

vortex moves downstream to infinity and (2) if placed

between the stable separatrix and the nilpotent saddle loop,

the vortex goes around the Föppl equilibrium in front of the

cylinder and returns to infinity upstream; see Fig. 2. It is

again the hitherto unnoticed nilpotent saddle at infinity, to-

gether with the precise nature of the equilibrium point on the

normal line, which allows us to go beyond linear stability

analysis and capture the full phase portrait in the symmetric

subspace.

We stress that closed orbits exist only when the flow is

symmetric. Nonsymmetric perturbations inevitably cause the

vortex pair to move off to infinity, as we demonstrate next.

IV. NONSYMMETRIC DYNAMICS

In this section, the effect of antisymmetric perturbations

on the equilibria of the Föppl system is studied. We begin by

observing that the dynamics of two counter-rotating point

vortices possesses a conjugation symmetry. To describe this

symmetry, let z1(t; z1,0, z2,0) and z2(t; z1,0, z2,0) denote the tra-

jectories of the upper and lower vortices, respectively, with

initial positions z1,0 and z2,0. For the dynamical system

defined by Eq. (5) and the corresponding equation for the

second vortex, one can verify that the following relations

hold:

z1ðt; �z2;0; �z1;0Þ ¼ z2ðt; z1;0; z2;0Þ; (27a)

z2ðt; �z2;0; �z1;0Þ ¼ z1ðt; z1;0; z2;0Þ: (27b)

In other words, for any given pair of initial positions, z1,0 and

z2,0, there exists a “conjugate pair” of initial positions, �z2;0
and �z1;0, such that the vortex trajectories of the first pair are

the complex conjugate of those of the second pair.

Any perturbation of a vortex-pair equilibrium can be

written as the superposition of a symmetric perturbation and

an antisymmetric one. To be precise, antisymmetric pertur-

bations are of the form

z1 ¼ z0 þ Dz; z2 ¼ �z0 � Dz; (28)

where z0 denotes a generic equilibrium point and

Dz¼ nþ ig. Since the antisymmetric subspace of the full 4D

phase space is invariant under linear dynamics, we can focus

on the upper vortex in carrying out our linear stability

analysis.

A. Föppl equilibria

Linearization of Eq. (5) around the Föppl equilibrium

(9) with respect to antisymmetric perturbations (28) yieldsFIG. 3. Trajectories near a nilpotent saddle.
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_n

_g

� �

¼ B
n

g

� �

; (29)

where the matrix B is given by

B11 ¼ �B22 ¼
x0 r40 þ 3r20 � 2
� �

r80
; (30)

B12 ¼
3r60 � 5r20 þ 2

2r90
; (31)

B21 ¼
4r80 þ 3r60 � 4r40 � 5r20 þ 2

2r90
: (32)

This matrix has a pair of real eigenvalues, k6 ¼ 6
ffiffiffiffiffi

k2
p

,

where

k2 ¼ 3r60 þ 3r40 � 3r20 þ 1

r100
: (33)

The Föppl equilibrium is, therefore, a saddle with respect to

antisymmetric perturbations, while it is a center with respect

to symmetric perturbations, as seen earlier. That is, the Föppl

equilibrium is a saddle-center of the full 4D dynamical sys-

tem.36 We note in passing that, although Föppl obtained a

pair of real eigenvalues for the case of antisymmetric pertur-

bations, his original formulae for the eigenvalues are in

error.37 Our expression (33) is in agreement with the eigen-

values of the skew-symmetric modes obtained by Smith7

from the linearization of the full dynamical system. The

eigenvectors w6 associated with the eigenvalues k6 are

readily computed, with the result

w6 ¼ ðk6 þ B11Þ=B21

1

� �

: (34)

In Fig. 4, we show in solid curves the pair of vortex trajecto-

ries obtained by slightly displacing the vortices from their

equilibrium positions in the directions defined by the unsta-

ble eigenvector wþ, while the trajectories obtained by

slightly displacing the vortices in the opposite directions are

shown in dashed curves. The latter pair of trajectories is the

complex conjugate of the former by conjugation symmetry.

Note that for the first pair of trajectories, the lower vortex

initially moves towards the centerline and upstream, while

the upper vortex moves away from the centerline and down-

stream. At later times, the vortex pair moves off to infinity

with the lower vortex trailing behind the upper vortex. For

the second pair of trajectories, the upper and lower vortices

switch roles; see Fig. 4. In the flow of a real fluid past a cyl-

inder, the two basic instabilities associated with displace-

ments along the unstable directions 6w1 happen alternately

and constitute the origin of vortex shedding that leads to the

formation of the Karman vortex street.6 In like manner, the

suppression of vortex shedding by placing a splitter plate

behind the cylinder10,11 is consistent with the fact that the

Föppl equilibrium is nonlinearly stable with respect to sym-

metric perturbations; see Sec. V for further discussions on

vortex shedding and its suppression by a splitter plate.

For small, generic antisymmetric perturbations, the vor-

tices move along trajectories that follow closely the ones

depicted in Fig. 4. Whether a vortex pair eventually moves

up or down is determined by the initial position of the upper

vortex relative to the stable direction w�, which is indicated

in Fig. 4 by the short straight line passing through the Föppl

equilibrium. If the initial position of the upper vortex is to

the right (left) of the stable direction, then the vortex pair

asymptotically moves upwards (downwards). This explains

the behavior seen in the numerical simulations reported in

Ref. 25, where nearby initial positions around the Föppl

equilibrium were found to lead to close-by trajectories.

Since any degree of antisymmetry in the initial perturba-

tion causes the vortex pair to move off to infinity, the Föppl

equilibrium is unstable under generic perturbations. As an

example, Fig. 5 shows vortex trajectories obtained by dis-

placing the Föppl pair (at r0¼ 2) by the amounts

Dz1¼Dz2¼�0.25þ i0.005. During the linear stage, the tra-

jectories are a superposition of a symmetric orbit and a grow-

ing mode associated with the antisymmetric component of

the perturbation, which ultimately leads to asymptotic trajec-

tories with the vortices moving parallel to each other.

FIG. 4. Vortex trajectories for antisymmetric perturbations of the Föppl

equilibrium for j¼ 45=32, in which case x0 ¼
ffiffiffiffiffi

55
p

=4 and y0¼63=4 (black

dots). The solid and dashed curves are the trajectories starting along the

unstable directions wþ and �wþ, respectively, while the short straight lines
indicate the axes defined by the stable direction w�. The dotted lines repre-

sent the loci of the Föppl equilibria.

FIG. 5. Trajectories resulting from a generic perturbation Dz1¼Dz2
¼�0.25þ i0.005 of the Föppl pair at r0¼ 2 (black dots).
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B. Equilibria on the normal line

For antisymmetric perturbations of the equilibrium (11)

on the normal line, the matrix B assumes the form

B11 ¼ B22 ¼ 0; (35)

B12 ¼
2 3b6 þ b4 þ 5b2 � 1
� �

b3ðb2 � 1Þ b4 þ 4b2 � 1ð Þ ; (36)

B21 ¼
b2 � 1

b3
; (37)

with eigenvalues k given by

k2 ¼ 2 3b6 þ b4 þ 5b2 � 1
� �

b6 b4 þ 4b2 � 1ð Þ > 0: (38)

This yields a pair of real eigenvalues, k6 ¼ 6
ffiffiffiffiffi

k2
p

, with

respective eigenvectors,

w6 ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B12=B21

p

1

� �

: (39)

In Fig. 6, we show the vortex trajectories (solid curves)

obtained by slightly displacing the vortices from their equi-

librium position along the unstable direction wþ for b¼ 2.

The initial motion here is somewhat similar to what is seen

for a Föppl pair, in the sense that one vortex moves upstream

towards the centerline and the other moves downstream

away from the centerline. The main difference is that for

later times, the vortices now end up moving upstream. The

long-time dynamics in this case is also more sensitive on the

initial conditions; for somewhat larger perturbations, the vor-

tices are eventually carried away by the free stream. An

example where this happens is indicated by the dashed

curves in Fig. 6, which represent the vortex trajectories for

the antisymmetric perturbation Dz¼ 0.16.

As already argued in Sec. III C 2, although the equilib-

rium point on the normal line is not directly observed in

experiments, it is important to know its instability properties

under both symmetric and antisymmetric perturbations. This

knowledge contributes to a better understanding not only of

the full nonlinear dynamics of the Föppl system but also of

more general flows, such as the case of stationary vortex

patches above and below the cylinder in a uniform stream,

where similar unstable modes are observed.27

V. DISCUSSION AND CONCLUSIONS

In this paper, we have investigated a two-dimensional

vortex model for the formation of recirculating eddies behind

a fixed cylinder placed on a uniform stream. The model,

which was first introduced by Föppl5 almost a century ago,

has two main simplifying assumptions: (1) the fluid is treated

as inviscid, and hence the flow is potential and (2) the size of

the vortex core is neglected, and so the vortices are consid-

ered to be point-like. In spite of these simplifications, the

model is known to be in qualitative agreement with real

flows past a cylinder, as was already pointed out by Föppl in

his original paper. Several novel features of the Föppl model

have been obtained in the present work, which help one to

better understand the basic dynamics of vortex shedding

behind a cylinder.

In real flows, governed by the Navier-Stokes equations,

stationary vortices behind a cylinder are formed at moderate

Reynolds number (Re< 50). As the Reynolds number

increases past Re � 50, the configuration loses its symmetry

and becomes unstable. New vortices then start to form alter-

nately on both sides of the cylinder, while the vortices fur-

ther downstream break away and develop into a Karman

vortex street, as described by Föppl.5 It has been argued by

Roshko10 that “possibly the breaking away should be

regarded as primary, resulting in asymmetry.” The analysis

presented in Sec. IV A makes it clear that the reverse sce-

nario is more plausible; the asymmetrical disturbances

induce the instability of the vortex pair which then breaks

away from the cylinder. As vorticity is continuously gener-

ated from the separated boundary layer on both sides of the

cylinder, new vortices are formed and alternately shed into

the far wake of the cylinder according to the unstable modes

shown in Fig. 4. DNSs of two-dimensional flows past a cyl-

inder performed by Tang and Aubry6 have confirmed that

the mechanism for the instability of the symmetric eddies in

real flows is qualitatively described by the instability of the

point-vortex model.

It is experimentally observed10,11 that vortex shedding is

suppressed if a splitter plate is installed behind the cylinder

in the center plane of the wake. The presence of the splitter

plate tends to enforce symmetry of the flow with respect to

the centerline, thus effectively reducing the appearance of

antisymmetric disturbances behind the cylinder. The

suppression of vortex shedding in this case is thus entirely

consistent with the fact that the Föppl equilibria of the

vortex-point model are nonlinearly stable against symmetric

perturbations and that vortex shedding is induced by unstable

antisymmetric modes, as discussed above. This scenario has

been confirmed by DNS of flows past a cylinder with sym-

metry imposed along the centerline recently performed by

Kumar et al.38 The problem of stationary configurations for

vortex flows past a cylinder with patches of constant vortic-

ity has also been studied numerically by Elcrat et al.26,27

FIG. 6. Vortex trajectories (solid curves) associated with the unstable direc-

tion wþ of the equilibrium at z¼62i (black dots). The dashed curves are

trajectories resulting from the antisymmetric perturbation Dz¼ 0.16.
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These authors found two families of solutions, representing

desingularized versions of the Föppl and the normal equili-

bria, respectively, which have the same stability properties

as the corresponding point-vortex equilibria.

In conclusion, we have seen that the Föppl model, where

a pair of counter-rotating point vortices move around a circu-

lar cylinder in the presence of a uniform stream, is a rich

nonlinear dynamical system whose features—notably its sta-

bility properties—bear a direct relevance to our understand-

ing of the vortex shedding mechanism in real flows. The

results obtained here should, in principle, carry over to more

general geometries, such as vortex motion around a plate or

around a cylinder with noncircular cross section.
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