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RESUMO

Utilizando a estratégia de hibridagdo molecular, neste trabalho foi construido uma
quimioteca de heterociclicos furanicos, triazélicos e quinolinicos contendo o nucleo
naftoquinona, reunindo caracteristicas estruturais de compostos bioativos distintos,
originando assim, moléculas hibridas com amplo potencial farmacoldgico.
Inicialmente, foram sintetizados seis derivados 2-acetoxi-3-alquinill-1,4-
naftoquinonas via reacdo de acoplamento Sonogashira entre o 2-acetoxi-3-iodo-1,4-
naftoquinona e diversos alquinos terminais funcionalizados com rendimentos que
variaram de 40-73%, que posteriormente foram submetidos a uma heterocilizagéo
intramolecular, formando os derivados furanonaftoquinonas com rendimentos bons
entre 72-85%. Os derivados 2-acetoxi-3-alquinil-1,4-naftoquinonas e o0s
furanonaftoquinonas foram submetidos a avaliagdo do potencial citotoxico em trés
linhagens de células de glioblastomas, GBMO2, GBM95 e Al172, apresentando, no
geral, resultados satisfatorios para inibicdo do crescimento celular. Os compostos 2-
acetoxi-3-feniletinil-1,4-naftoquinona, 2-acetoxi-3-(4-metoxilfeniletinil)-1,4-
naftoquinona e 2-acetoxi-3-(4-metilfeniletinil)-1,4-naftoquinona se destacaram dentre
as substancias analisadas por apresentarem menor Clsy para as trés linhagens
celulares de glioblastomas testadas, resultados estes significativos para dar
continuidade nos estudos de citotoxicidade. Em seguida, foi desenvolvida uma nova
rota sintética para obtencdo por “click chemistry” de novos compostos aminoalquil-
triazdis naftoquinbnicos através das reacdes de cicloadicdo 1,3-dipolar entre 2-
azidoalquilamino-1,4-naftoquinonas e diversos alquinos terminais, sendo
sintetizados vinte novos derivados  2-[(1H-1,2,3-triazol-1-il)alquilamino]-1,4-
naftoquinonas com rendimentos entre 70-97%. Estes heterociclicos triazolicos foram
avaliados frente as linhagens tumorais HEp-2 (carcinoma de laringe humana), NCI-
H292 (carcinoma mucoepidermoide de pulm&o humano), HT-29 (adenocarcinoma de
colon humano), MCF-7 (cancer de mama humano) e HL-60 (leucemia promielocitica
aguda). Os compostos 2-[2-(4-propil-1H-1,2,3-triazol-1-il)etilamino]-1,4-naftoquinona
e 2-{3-[4-(2-hidroxibutan-2-il)-1H-1,2,3-triazol-1-ilJpropilamino}-1,4-naftoquinona
exibiram citotoxicidade moderada frente as linhagens HL-60, HL-60 e MCF-7,
respectivamente, demonstrando acéo inibitéria seletiva. Por fim, foram sintetizados
vinte quatro derivados 6-alquilamino-5,8-quinolinoquinonas a partir de uma direta

aminacdo nucleofilica do 7-bromo-5,8-quinolinoquinona com aminas primarias e



secundarias, sendo desenvolvida uma nova estratégia sintética para a obtengédo dos
compostos 6-alquilamino-5,8-quinolinoquinonas a partir de aminas primarias. Estes
compostos sdo promissores candidatos para desenvolvimento de novas drogas

antitumorais.

Palavras Chave: 1,4-naftoquinona. Furanonaftoquinona. 1,2,3-triazol. Cicloadicao.

Sonogashira. Quinolinoquinona. Glioblastoma. Antitumoral.



RESUMO GRAFICO

Sintese de furanonaftoquinonas a partir dos derivados alquinilicos de 1,4-

naftoquinonas e avaliacdo da atividade citotéxica em glioblastomas
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Sintese e avaliacdo do potencial citotoxico de novos derivados 2-[2-(1H-1,2,3-triazol-
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Sintese dos derivados alquilamino-5,8-quinolinoguinonas
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ABSTRACT

By using the strategy of molecular hybridization, in this work it was built a chemical
library with furan, triazole and quinoline heterocyclic compounds, containing the
naphthoquinone nucleus, gathering structural characteristics of distinct bioactives
resulting in hybrid molecules with large pharmacological potencial. Initially, six 2-
acetoxy-3-alkynyl-1,4-naphthoquinone  derivatives were synthesized through
Sonogashira cross coupling reaction involving 2-acetoxy-3-iodo-1,4-naphthoquinone
and several functionalized terminal alkynes in 40-73% yields, which later were
submitted to intramolecular heterocyclization, forming the furan derivatives in 72-85%
yields. The 2-acetoxy-3-alkynyl-1,4-naphthoquinone and furanonaphthoquinone
derivatives were submitted to cytotoxic screening against three glioblastoma cell
lines GBMO2, GBM95 e A172, resulting in satisfactory results to the inhibition of
cellular growth. The 2-acetoxy-3-phenylethynyl-1,4-naphthoquinone, 2-acetoxy-3-(4-
methoxyphenylethynyl)-1,4-naphthoquinone and 2-acetoxy-3-(4-
methylphenylethynyl)-1,4-naphthoquinone stood out among the substances analyzed
by their lower ICso for the three cell lines tested glioblastomas. These results are
significant to continue in the cytotoxicity studies. Then, a new synthetic route by “click
chemistry” was developed to obtain new aminoalkyl-triazoles naphthoquinone
compounds through the reactions of 1,3-dipolar cycloaddition between 2-
azidoalkylamino-1,4-napthoquinones and several terminal alkynes. A serie of twenty
2-[(1H-1,2,3-triazole-1-yl)alkylamino]-1,4-naphthoquinones derivatives were
synthetized in 70-97% vyields. These triazole heterocyclics were tested against the
tumor cell lines HEp-2 (human laryngeal carcinoma), NCI-H292 (human
mucoepidermoid lung carcinoma), HT-29 (human colon adenocarcinoma), MCF-7
(human breast cancer) and HL-60 (human promyelocytic leukemia). The compounds
2-[2-(4-propyl-1H-1,2,3-triazole-1-yl)ethylamino]-1,4-naphthoquinone and 2-{3-[4-(2-
hydroxybut-2-yl)-1H-1,2,3-triazole-1-yl]propylamino}-1,4-naphthoquinone showed
moderated cytotoxicity against HL-60, HL-60 e MCF-7, showing a selective inhibition
profile. Finally, twenty four 6-alkylamino-5,8-quinolinequinones were obtained by
direct nucleophilic amination of 7-bromo-5,8-quinolinequinone with primary and
secondary alkylamines, providing a new synthetic strategy to the acquisition of 6-
alkylamino-5,8-quinolinequinones compounds from primary amines. These
compounds are promising candidates for the development of new antitumor drugs.

Keywords: 1,4-naphthoquinone. Furanonaphthoquinone. 1,2,3-triazole.
Cycloaddition. Sonogashira. Quinolinequinone. Glioblastoma. Antitumor.
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1 NAFTOQUINONAS

1.1 Biodiversidade e importancia farmacolégica

As naftoquinonas fazem parte de uma classe importante de produtos naturais
conhecidos como quinonas, sendo encontradas em bactérias, fungos, algas, animais
e principalmente em plantas. A citotoxicidade de quinonas tém sido extensivamente
estudada e utilizada como um modelo para compreender a toxicidade induzida
guimicamente em mecanismos celulares. As naftoquinonas sdo substancias
dicetbnicas derivadas do anel naftaleno, possuindo assim dois grupos carbonilicos
gue quando estdo dispostos nas posi¢coes 1,2 do anel naftaleno sdo chamadas de
orto-naftoquinonas (1) e quando nas posi¢cdes 1,4 de para-naftoquinonas (2) (Figura
1). Estes isdmeros naftoquindnicos apresentam diferentes propriedades fisicas e
guimicas, refletindo assim, em sua atuacéo biologica (SILVA; FERREIRA; SOUZA,
2003; BABULA et al., 2009).
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Figura 1: Estrutura quimica da 1,2-naftoquinona (1) e 1,4-naftoquinona (2)

As naftoquinonas sao consideradas substancias privilegiadas na quimica
medicinal devido a apresentarem uma imensa variedade de atividades bioldgicas,
tais como: anticancer (JARDIM et al., 2015; KISHORE et al., 2014; MALLAVADHANI
et al.,, 2014), antibacterianas, antifungicas (IBIS et al,. 2013; RAHMOUN et al.;
2012), tripanocidas (PINTO; CASTRO, 2009), moluscicidas (BARBOSA et al., 2005;
CAMARA et al., 2008), leishmanicidas (NAUJORKS et al., 2015; ARAUJO et al.,
2014), anti-inflamatérias (DEJIE et al., 2013), entre outras.

A capacidade de sintese de naftoquinonas é generalizada entre o0s
organismos fungicos de diversos géneros, tais como Fusarium, Aspergillus,
Cladosparium, Microsporium, Mollisia, Penecillium, Trichophyton e Verticillium. A
naftoquinona mais simples produzida por fungos, Verticilium dahliae, é a juglona (5-
hidroxi-1,4-naftoquinona) (3) (Figura 2) (BABULA et al., 2009). Naftoquinonas
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isoladas de fungos apresentam uma ampla gama de atividades bioldgicas, sendo
ativas contra as bactérias, leveduras, fungos e células tumorais (MEDENTSEV;
AKIMENKO, 1998). A gunacina (4) sintetizada pelo fungo Ustilago sp. apresenta
uma elevada atividade antibacteriana contra bactérias Gram-positivas, fungos e
micoplasmas (WERNER; APPEL; MERK, 1979). A 2-hidroxijuglona (5) é encontrada
naturalmente em fungos dos géneros Pyriculuria oryzae e Verticilium dahliae,
apresenta um efeito inibidor sobre os processos bioquimicos basicos e os sistemas
de membrana das células (MEDENTSEV; AKIMENKO, 1998).
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Figura 2: Naftoquinonas encontradas naturalmente em fungos

As naftoquinonas sao encontradas amplamente em diferentes organismos
marinhos. Ao longo da ultima década, os microorganismos marinhos tém sido cada
vez mais reconhecidos como fontes ricas de metabdlitos bioativos e tém sido
explorados por seu potencial medicinal (SUNASSEE; DAVIES-COLEMAN, 2012).
Han e colaboradores (2007) isolaram um conjunto de naftoquinonas dos galhos da
planta Avicennia marina (Figura 3), encontrada no mangue da costa sul continental
da China. As naftoquinonas isoladas (6-9, Figura 4) foram moderadamente
citotoxicas e também mostraram fortes propriedades antiproliferativas (HAN et al.,
2007).
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ote: Wikimedia Commons
Figura 3: Avicennia marina
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Figura 4: Naftoquinonas isoladas da planta Avicennia marina (HAN et al., 2007)

Uma nova naftoquinona citotoxica (10) (Figura 5), juntamente com um
composto similar citotéxico conhecido (11) foi isolada a partir do derivado de
actinomiceto marinho Saccharopolyspora taberi, obtido a partir de uma esponja

encontrada perto da costa da Tanzania (PEREZ et al., 2009)

Figura 5: Naftoquinonas isoladas do actinomiceto marinho Saccharopolyspora taberi



36

As naftoguinonas podem ser facilmente encontradas em plantas superiores
das familias Bignoniaceae, Boraginaceae, Droseraceae, Ebanaceae, Lythraceae,
Junglandaceae, Plumbaginaceae, entre outras (BABULA et al., 2009). As diversas
plantas que possuem estas quinonas sdo utilizadas na medicina popular no
tratamento de varias doencas (DE MOURA et al., 2004). E relatado desde o antigo
Egito que o homem utiliza extratos de plantas que possuem naftoquinonas para
diversos fins, tais como cosméticos e terapéuticos. O extrato das folhas de Lawsonia
inermis, planta que pertence a familia Lythraceae, popularmente conhecida como
henna, rico em lausona (2-hidroxi-1,4-naftoquinona), (12) (Figura 6), apresenta uma
coloracdo vermelho alaranjado que era utilizado como cosmético para a pintura de
cabelos, unhas e pele (tatuagens) e também para tecidos como seda e |&. Em
seguida, o extrato também passou a ser utilizado para fins terapéuticos no
tratamento de micoses e feridas. (FERREIRA et al., 2010; PAPAGEORGIOU et al.,
1999). A lausona tem sido relatada como um potente agente antibacteriano de
amplo espectro, bem como agente antifUngico, mas muito poucas destas atividades
biolégicas foram validadas em modelo animal adequado. Hoje em dia, a aplicacéao
de henna para tintura de cabelo, cuidados com a pele e arte do corpo nao fica
limitada apenas a tradicdo e moda, mas torna-se cientificamente comprovada sua
atuacdo nos cuidados com a pele, devido as potentes acdes antifungicas,
propriedades antimicrobianas e anti-inflamatorias (SINGH; LUQMAN; MATHUR,
2015).

J& na Europa, entre os séculos V e IV a.C, extrato de raizes de Alkanna
tinctoria, planta que pertence a familia Boraginaceae, rico em (S)-alkanina (13), era
utilizado no tratamento de Ulceras, feridas, ferimentos de guerra e picadas de cobras
(FERREIRA et al., 2010; PAPAGEORGIOU et al., 1999). Na Europa e na América do
Norte, a (S)-alkanina é usada atualmente como um pigmento para coloracdo de
alimentos e cosmeéticos. Em todo o mundo, no entanto, tem havido uma extensa
pesquisa cientifica relativa a estes produtos naturais em muitas areas, assim como
na quimica e biologia (PAPAGEORGIOU et al., 1999).
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Figura 6: Exemplos de naftoquinonas naturais

Dentro da classe das naftoquinonas naturais, destaca-se o lapachol (14), 2-
hidroxi-3-(3-metil-2-butenil)-1,4-naftoquinona, que pode ser considerado um dos
principais representantes do grupo de quinonas das tabebuias (SILVA; FERREIRA;
SOUZA, 2003). O lapachol tem despertado grande interesse pelos pesquisadores,
por apresentar um largo espectro de atividades terapéuticas, como antiulcera,
leishmanicida, antitumoral, antifingica, bactericida, anti-inflamatéria, entre outras.
Estudos tém mostrado que a atividade biolégica do lapachol esta relacionada com a
capacidade de induzir o estresse oxidativo através da formacado intracelular de
espécies reativas de oxigénio, como o peroxido de hidrogénio (H,O-), o anion-radical
superéxido (O2) e o radical hidroxila (HO'). Estas espécies reativas de oxigénio
podem causar danos a alguns componentes celulares importantes, interferindo
assim, em pontos especificos da divisdo celular e podendo levar a morte celular
programada (FERREIRA, FERREIRA, SILVA, 2010).

O lapachol foi isolado pela primeira vez por E. Paterndo em 1882, tendo sido
encontrado como constituinte de varias plantas das familias Bignoniaceae,
Sapotaceae, Verbenaceae, Malvaceae e Proteaceae, sendo que sua abundancia &
maior na familia Bignoniaceae, particularmente no género Tabebuia (Tecoma)
(HUSSAIN et al., 2007). O lapachol, substancia de coloragcdo amarela, pode ser
facilmente extraido da serragem da madeira (FERREIRA, 1996) de diversas
espécies de ipé, comumente conhecida como pau d’arco, plantas que podem ser

encontradas em todo Brasil e na fronteira com a Argentina (Figura 7).
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Fonte: HUSSAIN et al.,, 2007.
Figura 7: Tabebuia avellanedae

As naftoquinonas conhecidas como a-lapachona (15) e B-lapachona (16)
(Figura 8) possuem grande destaque na literatura, devido a apresentarem uma
gama de atividades biologicas. A B-lapachona é descrita como um dos mais
importantes cromanos derivados do lapachol (14), sendo encontrado assim como o
lapachol nas arvores da familia Bignoniaceae (FERREIRA et al., 2010). A B-
lapachona (16) exibe in vitro variados tipos de atividades farmacol6gicas contra
diferentes linhagens de células, principalmente atividades anti-proliferativas de
células malignas humanas dos canceres de pulmado, mama, colorretal, préstata,
melanona e leucemia (LI et al., 1999; HUANG; PARDEE, 1999). A B-lapachona (16)
se encontra em testes clinicos de fase Il para o tratamento do cancer de pancreas
(PINTO; CASTRO, 2009).
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15

Figura 8: Estrutura quimica da a-lapachona (15) e B-lapachona (16)

Devido as atividades biologicas, tripanocida e anticancer, que os derivados
ciclicos do lapachol (14) exibem, em destaque a B-lapachona (16), grupos de
pesquisas vém desenvolvendo suas preparagdes. A B-lapachona foi preparada pela
primeira vez em 1892 por Hooker a partir de um tratamento &acido do lapachol.
(FERREIRA, FERREIRA, SILVA, 2010). As metodologias sintéticas comumente
utilizadas para producédo da B-lapachona (16) sdo baseadas na ciclizacdo catalisada
por acido do lapachol (14), ou sintetizado a partir da lausona, 2-hidroxi-1,4-
naftoquinona (12) (FERREIRA et al., 2010; SALAS et al.,, 2008; SUN; GEISER,;
FRYDMAN, 1998). Recentemente, Ferreira e colaboradores (2009) sintetizaram a [3-
lapachona (16) em bom rendimento através de um procedimento de baixo custo,
utilizando reagentes comerciais. O mecanismo reacional passa pelo intermediario |
formado através da condensacdo tipo Knoevenagel da 2-hidroxi-1,4-naftoquinona
(12) com paraformaldeido. Em seguida, ocorre uma reagdo de cicloadi¢céo [4+2] tipo
hetero Diels-Alder entre o intermediario | produzido in situ e o isobutileno, levando a
uma mistura de a-lapachona (15) e B-lapachona (16). O tratamento da mistura com
acido sulfarico concentrado leva a piranonaftoquinona desejada (16) em rendimento
de 60% (Esquema 1) (FERREIRA et al., 2010; SILVA et al., 2009).
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Esquema 1: Sintese da 3-lapachona (16) a partir da lausona (12) (adaptado de
FERREIRA et al., 2010)

1.2 Mecanismo de acéo bioldgica das quinonas

Nas células normais ocorre um equilibrio entre a producdo e eliminacédo de
radicais livres, mantendo assim, uma condi¢do estavel, mediante um mecanismo de
regulacdo redox da célula (DEVI et al., 2000). O equilibrio redox da célula é
alcancado devido a um sistema antioxidante que neutraliza as espécies reativas de
oxigénio (EROs). Esse sistema é constituido por enzimas superoxido dismutase
(SOD), catalase, sistema glutationa, entre outros. O aumento de EROs provoca um
desequilibrio na célula que a leva a um estresse oxidativo irreversivel, induzindo
assim, a morte celular programada (apoptose) (MANDA; NECHIFOR; NEAGU,
20009).

Os compostos que sdo capazes de modular o equilibrio redox nas células
cancerosas sdo potenciais candidatos para o desenvolvimento de novos farmacos
anticancerigenos. Em geral, estes compostos aumentam 0s niveis intracelulares de
EROs, conduzindo as células a um estresse oxidativo e consequentemente a
apoptose. As quinonas pertencem a esta classe de compostos (Da Cruz et al.,
2014).
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A caracteristica quimica fundamental das quinonas é a sua facilidade de
reducdo e, consequentemente, a sua capacidade de atuar como um oxidante ou
agente de desidrogenacdo. O mecanismo de acdo das naftoquinonas nos sistemas
biol6gicos ainda n&o foi totalmente esclarecido. Mas, se sabe que parte do
mecanismo envolve a geracdo de espécies reativas de oxigénio (EROs) induzidas
pela biorreducdo do nucleo quindnico por enzimas especificas e oxigénio (BENITES
et al., 2008), e induzem apoptose e/ou interagem com topoisomerases das células
tumorais, grupo de enzimas que desempenham importante papel nos processos de
replicacdo e empacotamento de DNA (SILVA; FERREIRA; SOUZA, 2003).

O ciclo redox das naftoquinonas e formacdo das EROs sdo mostrados no
Esquema 2 de maneira sucinta, onde o substrato quindnico (Q) passa por uma
biorreducéo na presenca da coenzima NADPH, dentre outras, formando pelo ganho
de um elétron a espécie anion-radical semiquinona (Q™) in situ. O anion-radical
semiquinona formado (Q™) na presenca de oxigénio (O;) se oxida, transferindo um
elétron, gerando o anion-radical superodxido (O;7). Por sua vez, o anion-radical
superéxido (O27) sofre a acdo da enzima superdxido dismutase gerando peréxido de
hidrogénio (H»0,), e paralelamente ocorre uma reagédo de Fenton catalisada por Fe*?
gue produz o radical hidroxila (HO’) (PINTO; CASTRO, 2009; FERREIRA et al.,
2010; SILVA; FERREIRA; SOUZA, 2003).
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Esquema 2: Ciclo redox das quinonas (FERREIRA et al., 2010)

A capacidade destes compostos quindnicos produzirem espécies reativas de
oxigénio e, consequentemente, induzirem o estresse oxidativo no interior da célula,
esta relacionada com o potencial de redu¢cdo da molécula envolvida no processo
gue, por sua vez, esta associado aos substituintes presentes no anel quinénico, bem
como a posicdo em que se encontram (OLLINGER; BRUNMARK, 1991; FERREIRA
et al., 2010). Ollinger e Brunmark (1991) avaliaram o efeito do substituinte hidroxila
em diferentes posicbes da 1,4-naftoquinona em células hepaticas de rato, e
chegaram a conclusao de que a toxicidade da 1,4-naftoquinona esta relacionada
com a quantidade de substituintes presentes na molécula e a posicdo do mesmo.
Foi observado que o substituinte hidroxila no anel quindnico diminui a toxicidade do
composto, enquanto que no anel benzeno aumenta a toxicidade, causando alta
oxidacdo da glutationa, formando a glutationa dissulfeto, levando a uma diminui¢céo

da capacidade da célula de remover radicais livres (OLLINGER; BRUNMARK, 1991).

Yamashita e colaboradores (2009) avaliaram a citotoxidade dos compostos 17
e 18 (Figura 9) em trés linhagens de células tumorais, PC-3 (prostata), A549
(pulméo) e MCF-7 (mama). O composto 17 apresentou bons resultados, inibindo o
crescimento celular nas trés linhagens de células tumorais (0,14 - 0,78 uM), que foi
guase igual a da mitomicina C (19) (0,14 - 0,96 uM) e mais elevada do que a da [3-

Destruicdo de proteinas
e danos aos acidos
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lapachona (16) (1,13 - 9,96 puM). No entanto, seu efeito antiproliferativo contra
linhagens de células humanas normais foi menor do que a mitomicina C (19) (17:
3,36 - 54,5 uM; mitomicina C: 0,56 - 1,46 uM). O composto 18 que € isémero de 17,
diferenciando s6 a posicdo do grupo hidroxila no anel benzeno, apresentou menor
acao citotoxica para as trés linhagens de células tumorais testadas (1,57 - 4,31 uM),
embora comparavel com a B-lapachona (16). A comparacdo entre 0s compostos 17
e 18 mostraram que a posicdo de um substituinte hidroxila no anel aromatico afeta a
sua capacidade de inibir o crescimento das células tumorais. Assim, a presenca de
um substituinte hidroxila no C-5 parece desempenhar um papel importante no
aumento do efeito antiproliferativo (YAMASHITA et al., 2009)

Figura 9: Furanonaftoquinonas (17 e 18) e mitomicina C (19)

Devido ao processo de producdo de espécies reativas de oxigénio, as
guinonas sao citotoxicas para as células cancerigenas e normais, e também atuam
nas enzimas topoisomerases, que sao criticas para replicagdo do DNA (PARDEE; LI;
LI, 2002; FERREIRA et al., 2010).

Utilizando a estratégia da hibridagdo molecular, buscando fundamentalmente
desenhar moléculas com potencial atividade biolégica, este trabalho tem por objetivo
global construir uma variedade de compostos heterociclicos furanicos, triazélicos e
qguinolinicos contendo o ndcleo naftoquinona a partir de moléculas facilmente
disponiveis em nosso laboratério, como a 1,4-naftoquinona, lausona e 8-
hidroquinolina. E posteriomente, avaliar a atividade citotoxica em linhagens de

células tumorais.
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2 SINTESE DE FURANONAFTOQUINONAS A PARTIR DOS DERIVADOS
ALQUINILICOS DE 1,4-NAFTOQUINONAS E AVALIACAO DA ATIVIDADE
CITOTOXICA EM GLIOBLASTOMAS

2.1 Introducéo

2.1.1 Derivados alquinilicos de 1,4-naftoquinonas

Os derivados alquinilicos de naftoquinonas tém sido alvo de interesse pelos
pesquisadores devido a presenca simultanea de dois fragmentos reativos, a fracéo
do anel quinénico e o grupo alquinila, influenciando nas propriedades quimicas
gerais do composto (Figura 10). Estes compostos alquinilicos foram considerados
intermediarios promissores na sintese de quinonas heterociclicas e compostos
insaturados reativos (SHVARTSBERG; BARABANOV; FEDENOK, 2004).

OH
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Figura 10: Derivados alquinilicos da 1,4-naftoquinona

Recentemente, por nosso grupo de pesquisa, uma série de derivados 2,3-
diino-1,4-naftoquinona (24a-i; 24c'-e') foi sintetizada a partir do 2,3-dibromo-1,4-
naftoquinona (23) e diversos alquinos terminais funcionalizados usando a reacdo de
acoplamento de Sonogashira catalisada por paladio (Esquema 3). Os compostos
foram submetidos a avaliacdo do potencial citotoxico em trés linhagens de células
tumorais, OVCAR-8 (ovario), PC-3M (prostata) e NCI-H358M (pulmé&o),
apresentando, no geral, resultados satisfatorios para inibicdo do crescimento celular.
As concentracdes inibitorias (ICso) foram menores do que 10 pM para todas trés
linhagens de células tumorais testadas. Esses resultados sao significativos para
prosseguimento de estudos da citotoxicidade nesta classe de compostos bioativos
(SILVA et al., 2013).
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Esquema 3: Derivados 2,3-diino-1,4-naftoquinona

Shvartsberg e colaboradores (2009) descreveram uma nova rota para sintese
dos derivados 2-substituido benzo[flindol-4,9-dionas (27) a partir da 1,4-
naftoquinona. Descobriram que o 3-acetilamino-2-bromo-1,4-naftoquinona (25), ao
contrario do bromo amina néo acetilado, reagiam suavemente com varios acetiletos
cuprosos na presenca de Pd(PPhs),Cl, em uma mistura de DMSO e CHCI; para
originar os alquinilnaftoquinonas (Esquema 4). Posteriormente, os derivados 3-
acetilamino-2-alquinil-1,4-naftoquinonas (26) foram submetidos a uma ciclizacdo
intramolecular na presenca de K,CO3z; em acetonitrila a 80 °C, formando assim, os
derivados benzo[flindol-4,9-dionas (27) (SHVARTSBERG et al., 2009).
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Esquema 4: derivados 3-acetilamino-2-alquinil-1,4-naftoquinonas

Yamashita e colaboradores (2011) desenvolveram uma estratégia sintética

para construcdo de derivados indolnaftoquinonas (29). O primeiro passo envolve
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uma reacdo entre a halonaftoquinona (28) e um alquino terminal catalisada por
paladio e cobre para fornecer um produto de acoplamento cruzado Sonogashira. Em
seguida, ocorre uma ciclizacdo intramolecular catalisada por cobre (Esquema 5)
(YAMASHITA et al., 2011).
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Esquema 5: Derivados indolnaftoquinonas

Em derivados alquinilicos de quinonas, a ligacéao tripla é eletrofilica devido a
conjugacao com grupos carbonilas presentes na molécula. Estes compostos como
outros contendo a ligacao tripla ativada, podem sofrer adicdo com N-nucledéfilos, por
exemplo, aminas (SHVARTSBERG; BARABANOV; FEDENOK, 2004).

Kolodina e colaboradores (2007) observaram que a adicdo de HCI para o 2-
amino-3-(4-metil-3-oxopentinil)-1,4-naftoquinona (30) em CHCI; sob temperatura de
20 °C e seguida de uma reacado de ciclizacdo para formar o composto 4-cloro-2-
isopropilbenzo[g]quinolina-5,10-diona (31). O atomo de cloro neste composto pode
ser facilmente substituido por grupo dialquilamino apoés tratamento com aminas
secundérias, produzindo os derivados 4-dialquilamino-2-isopropilbenzo[g]quinolina-
5,10-diona (32) (Esquema 6). Os derivados 32 também s&o formados pela reacéo
direta da cetona de partida (30) com aminas secundarias (KOLODINA; LEBEDEVA;
SHVARTSBEG, 2007).
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Esquema 6: Sintese dos derivados 4-dialquilamino-2-isopropilbenzo[g]quinolina-
5,10-diona

2.1.2 Furanonaftoquinonas

Furanonaftoquinonas sdo moléculas consideradas de grande interesse para
0s quimicos medicinais devido a ocorréncia natural de derivados bioativos. Por
exemplo, furanonaftoquinonas isoladas a partir da familia Bignoniaceae (Figura 11),
tém demonstrado atividade antitumoral promissora contra varios tipos de linhagens
de células cancerosas (LIU et al., 2015; INAGAKI et al., 2013). Recentemente, o 2-
acetilfuranonaftoquinona (35) foi lancado com sucesso num ensaio clinico de fase |

como um novo inibidor de células-tronco do cancer (LI et al., 2015).
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Figura 11: Furanonaftoquinonas

Ribeiro e colaboradores (2011) desenvolveram métodos simples para

obtencédo de furanonaftoquinonas biologicamente ativas a partir do lapachol (14). O
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hidroxiiso-B-lapachona (38) foi obtido com um rendimento de 61% a partir da reagéo
do lapachol e MCPBA em diclorometano, utilizando Na,HPO, como base. A reacédo
do lapachol com MCPBA, seguida pela adicdo de KOH/DMSO forneceram o
stenocarpoquinona-A (37) e o avicequinona-C (39), ambos com rendimentos de
20%. Usando peroximonossulfato de potassio / acetona e NaHCOj; o
stenocarpoquinona-B (9) foi obtido com um rendimento de 50% (Esquema 7). Os
ensaios biologicos que utilizam linhagens de células tumorais demonstraram que o
lapachol é, em geral, menos toxico do que os seus derivados. Os compostos 9 e 39,
por outro lado, foram fortemente ativos contra as quatro células tumorais testadas
(RIBEIRO et al., 2011).
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c) oxone, NaHCQO;, H,0, acetona.
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Esquema 7: Obtencao de furanonaftoquinonas a partir do lapachol

Um estudo realizado por Han e colaboradores (2007) mostrou que as
furanonaftoquinonas stenocarpoquinona-B (9) e a avicequinona-C (39) possuem

atividades antiproliferativas e citotoxicas contra linhagens de células L1929
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(fibroblastos de rato), K-562 (leucemia miel6ide crénica humana) e HelLa (carcinoma
cervical humano) (HAN et al., 2007).

2.1.3 Glioblastomas

Glioblastoma multiforme (GBM), classificada pela Organizacdo Mundial de
Saude como astrocitoma grau IV, € o tumor cerebral primario mais comum no
sistema nervoso central (SNC) em adultos, sendo responsavel por mais de 50% de
todos os gliomas (WURTH; BARBIERI; FLORIO, 2014). Os GBMs s&do tumores
bastante agressivos, que apresentam caracteristicas distintas de atipia nuclear,
rapido crescimento, proliferacdo microvascular, necrose, instabilidade genética e
qguimiorresisténcia. Devido a tais caracteristicas, GBMs apresentam progndstico
pouco favoravel e a sobrevivéncia média dos pacientes diagnosticados com este
tumor, mesmo apds tratamento agressivo, incluindo cirurgia, radioterapia e
guimioterapia, € de apenas 13-16 meses, devido a sua elevada recorréncia
(MITTAL; PRADHAN; SRIVASTAVA, 2015).

O tratamento padrdo para o GBM consiste de remoc¢do cirugica do tumor,
seguida por radioterapia e quimioterapia. Na quimioterapia, a temozolomida (40),
carmustina (41) e lomustina (42) sao as poucas drogas que tém sido empregadas no
tratamento de GBM (Figura 12). A temozolomida € a droga mais comumente usada,
um agente metilante de moderada toxicidade administrada via oral, sendo
espontaneamente hidrolisada a seu metabdlito ativo no pH fisiolégico, o qual
rapidamente penetra no SNC. No entanto, a completa ressecc¢ao cirlgica associada
a tratamentos adjuvantes tem aumentado o tempo de sobrevida do paciente em
apenas alguns meses. O fracasso no tratamento esta parcialmente atribuido a
resiténcia a droga, levando a recorréncia do tumor (ABDEL-RAHMAN; FOUAD,
2015; HAAR et al., 2012). Diante disso, surge o interesse na investigacao de novas

drogas para o tratamento do GBM.



50

o)
| 0
N NZ
| N N. _NH NH N~
—y
AY c” e " O/ T “
o)
NH o

40 O// ? 41 42
temozolomida carmustina lomustina

Figura 12: Estrutura da temozolomida (40), carmustina (41) e lomustina (42)

De modo geral, compostos contendo o nucleo naftoquinona apresentam
atividades antitumorais, no entanto, pouco é conhecido sobre a atividade citotoxica

dessas moléculas em linhagens de células de glioblastomas.
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2.2 Objetivos

2.2.1 Geral

Sintetizar derivados furanonaftoquinbnicos a partir da ciclizacdo
intramolecular de derivados alquinilicos da lausona (2-hidroxi-1,4-naftoquinona) e

avaliar sua atividade antitumoral em linhagens de glioblastomas.

2.2.2 Especificos

Sintetizar o 2-hidroxi-3-iodo-1,4-naftoquinona (44) a partir da lausona (12).

Sintetizar os derivados 2-acetoxi-3-alquinil-1,4-naftoquinonas (49a-f) através
do acoplamento cruzado entre o 2-acetoxi-3-iodo-1,4-naftoquinona (48) e diversos

alquinos terminais catalisados por complexos de paladio.

Sintetizar derivados furanonaftoquinonas (53a-f) através da heterociclizacdo

intramolecular dos derivados 2-acetoxi-3-alquinil-1,4-naftoquinonas (49a-f).

Avaliar a citotoxicidade dos compostos sintéticos obtidos em linhagens de

células tumorais de glioblastomas.
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2.3 Resultados e discussao

2.3.1 Sintese do 2-hidroxi-3-iodo-1,4-naftoquinona

Um dos problemas gerais com a introducdo de iodo em alguns compostos,
assim como um substituinte num anel aromético € a falta de reatividade de iodo
molecular. Este problema é resolvido pelo uso de equivalentes de ions iod6nios (I)
ou uma combinacgdo de reagentes que geram espécies de iodo eletrofilico (GARDEN
et al., 2001).

Para a sintese do 2-hidroxi-3-iodo-1,4-naftoquinona (44) foram utilizadas duas
metodologias a partir da lausona (12) (2-hidroxi-1,4-naftoquinona). Seguindo a
metodologia de Perez e colaboradores (2004) foi utilizado um complexo de iodo-
morfolina (43) preparado in situ para iodacéo da lausona na posi¢ao 3 (Esquema 8).
Através deste procedimento sintético foi possivel obter o composto desejado (44)

com 85% de rendimento.

0] o
OH o/\ 1—1  K,CO,, H,0 OH
+ — >
K/N\H t.a, 3h, 85% |
O 43
12 44

Esquema 8: Sintese do 2-hidroxi-3-iodo-1,4-naftoquinona com morfolina

O mecanismo desta reacao € mostrado no Esquema 9. Acredita-se que o iodo
sofre uma inducdo de polaridade na presenca de morfolina, tornando-se mais
eletrofilico e possivel de um ataque nucleofilico dos elétrons 1 da lausona. Em
seguida, a base presente no meio reacional remove um hidrogénio e o sistema
conjugado é regenerado (PEREZ; LAMOUREUX; HERRERA, 2004).
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Esquema 9: Mecanismo para sintese do 2-hidroxi-3-iodo-1,4-naftoquinona

A segunda metodologia para sintese do 2-hidroxi-3-iodo-1,4-naftoquinona (44)
foi adaptado do procedimento descrito por Garden e colaboradores (2001), que
utiliza uma solucdo aquosa de dicloroiodato de potassio (KICl;) como agente de
lodacdo (Esquema 10). Essa solucéo foi preparada previamente (LARSEN et al.,
1955) e adicionada a uma solucdo de metanol e lausona (12) sob agitacéo
magnética e temperatura ambiente. Apds 15 minutos verificou-se através de CCDA
0 consumo da lausona e o precipitado formado foi filtrado e lavado com agua

destilada. O composto iodado (44) foi obtido com 98% de rendimento.

O o

ooa—Ngg e
MeOH [
i 0,
o t.a, 15 min, 98% o

12 44

Esquema 10: Sintese do 2-hidroxi-3-iodo-1,4-naftoquinona com KICl;

No espectro de infravermelho (p. 187) foi possivel observar uma absor¢cédo em
3164 cm™ que é caracteristica de uma deformac&o axial da ligacdo O-H em ligacdo
de hidrogénio intermolecular, como também uma banda de absorcdo em 1672 cm™

referente a deformacéao axial da ligacdo C=0 caracteristica de dicetonas conjugadas.

Ja na andlise do espectro de RMN 'H (DMSO-ds, 300 MHz, p. 187), foi
observado na regido de hidrogénios aromaticos um multipleto em & 8,00 (2H)
referentes aos hidrogénios aromaticos ligados aos carbonos em posi¢cdo orto aos
grupos carbonila do anel quinona (H-5, 8) e um multipleto em & 7,80 (2H) atribuido

aos hidrogénios arométicos ligados aos carbonos em posigdo meta as carbonilas da
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quinona (H-6, 7). O espectro de RMN **C (DMSO-ds, 75 MHz, p. 188) apresentou 0s
sinais esperados para o 2-hidroxi-3-iodo-1,4-naftoquinona, onde pode ser observado
dois sinais em © 180,2 e 177,8 referentes as carbanilas (C-1, 4), dois sinais em &
162,8 e 93,3 atribuidos aos carbonos olefinicos ligados a hidroxila e ao iodo,

respectivamente, entre outros sinais caracteristicos do anel benzénico.

2.3.2 Tentativa de sintese dos derivados 2-hidroxi-3-alquinil-1,4-naftoquinona

Inicialmente, tentou-se sintetizar os derivados 2-hidroxi-3-alquinil-1,4-
naftoquinona (45) utilizando as condi¢des das reacdes de acoplamento cruzado de
Sonogashira a partir do 2-hidroxi-3-iodo-1,4-naftoquinona (44) e alquinos terminais
(SONOGASHIRA; TOHDA; HAGIHARA, 1975). Recentemente, usando esta
metodologia, nosso grupo de pesquisa sintetizou uma série de derivados 2,3-diino-
1,4-naftoquinona a partir do 2,3-dibromo-1,4-naftoquinona e diversos alquinos
terminais funcionalizados (SILVA et al., 2013).

A primeira tentativa foi para produzir o 2-hidroxi-3-feniletinil-1,4-naftoquinona
(45a) através do acoplamento do fenilacetieno com o 2-hidroxi-3-iodo-1,4-
naftoquinona (44), sendo usado trietilamina (EtzN) como base em uma mistura de
DMSO e DCM (1:1) como solvente, um complexo catalitico, Pd(PPh3),Cl,, e Cul
como co-catalisador da reacdo (Esquema 11). A mistura reacional foi mantida em
agitacdo magnética e temperatura ambiente sob atmosfera de arg6nio, sendo
acompanhada por CCDA. Ap6s 30 minutos observou-se a formagdo de um produto
e 0 consumo de todo reagente, o novo composto foi isolado por coluna
cromatografica de silica gel. O solido amarelo obtido apresentou semelhangcas com a

lausona (12), mostrando-se com o0 mesmo Rf e ponto de fuséo.
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R= Ph (a), C(CH3),OH (b)
Esquema 11: Tentativa de sintese do 2-hidroxi-3-feniletinil-1,4-naftoquinina

Paralelamente, tentou-se acoplar o alquino 2-metil-3-butin-2-ol na posi¢cado 3
do 2-hidroxi-3-iodo-1,4-naftoquinona (44) utilizando o mesmo método e as mesmas
condicOes reacionais anteriores, sendo obtido um produto bastante semelhante da
reagdo com o fenilacetileno. Esses fatos nos levam a concluir que ndo ocorreram os
acoplamentos Sonogashira entre a halonaftoquinona (44) e os alquinos terminais, e
gue os compostos obtidos nas duas reacdes eram 0s mesmos, e que se tratavam do
composto inicial desalogenado, ou seja, do 2-hidroxi-1,4-naftoquinona (lausona, 12).
Outros complexos cataliticos (Pd(PPhs)s, Pd(OAc),.PPh3) foram testados nas
mesmas condi¢cdes reacionais, mas o0s resultados indesejados se mantinham
inalterados. O uso de diferentes solventes (DMF, MeCN, THF) na reacdo também

nao levaram ao produto de acoplamento (45).

Bakherad (2013) divulgou os recentes desenvolvimentos da reacdo de
Sonogashira em meio aquoso, mostrando que a utilizagdo de agua como um
solvente em reagbes organicas apresentam numerosas vantagens em termo de
eficiéncia de reacéo, preocupacdes ambientais e econdmicas (BAKHERAD, 2013).
Reddy e colaboradores (2008) relataram uma eficiente sintese para os derivados 2-
alquinilquinolinas (47) através de uma reacdo de acoplamento cruzado catalisado
por paladio entre o 2-cloroquinolina (46) e uma variedade de alquinos terminais,
sendo utilizado 10% Pd/C-PPhs-Cul como catalisador e trietilamina como base em
agua a 80 °C (Esquema 12). A reacdo ocorreu bem com alquinos terminais
hidrofilicos e hidrofébicos, e ndo foram observadas reacfes colaterais significativas,
tais como a formacdo de dimeros entre alquinos terminais ou hidrélise do 2-
cloroquinolina (46) (REDDY et al., 2008).
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Esquema 12: Sintese dos derivados 2-alquinilquinolinas

Empregando essa metodologia, tentamos obter os derivados 2-hidroxi-3-
alquinil-1,4-naftoquinonas (45) (Esquema 13). Inicialmente, foi utilizado o alquino
terminal fenilacetileno, um complexo catalitico formado por 10% Pd/C-PPhs-Cul, e
trietilamina como base em agua. A reacdo foi mantida em constante agitacdo a 80
°C e acompanhada por CCDA. Ap6s 24 horas de reacdo foi observado que gquase
todo reagente inicial tinha sido consumido e formado um novo composto de Rf
diferente. Investigando o composto isolado, foi visto que n&o se tratava um produto
de acoplamento cruzado, mas sim de uma desalogenacéo, obtemos novamente a
lausona (12). Repetindo a reacao utilizando o carbonato de potassio (K.,CO3) como

base, obtemos o0 mesmo resultado.
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U e O
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| 10% Pd/C, PPh,, Cul
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44 45
R= Ph (a), C(CH),0H (b)

Esquema 13: Tentativa de sintese dos derivados 2-hidroxi-3-alquinil-1,4-

naftoquinonas

Bhattacharya e Sengupta (2004) mostraram o acoplamento entre alquino
terminais e haletos de arila em agua pura, sem guaisquer aditivos ou catalisadores
de transferéncia de fase, sendo utilizado 0,5% molar de Pd(PPhs), como catalisador
(Esquema 14). Este protocolo forneceu os produtos de acoplamento notavelmente

rapido (30 minutos) com elevados rendimentos.
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Pd(PPh;),, Cul, base
Ar—X + =—/—R » Ar———R
H,0, 70 °C, 30 min

(75 - 92%)
X=1,Br

Base = DIEA (para X =)
Pirrolidina (para X = Br)

Esquema 14: Acoplamento entre alquino terminais e haletos de arila em agua

Baseando-se no procedimento descrito por Bhattacharya e Sengupta (2004),
repetimos a reagdo com o fenilacetileno e o 2-hidroxi-3-iodo-1,4-naftoquinona (44)
utilizando agua como o Unico solvente da reacao, trietilamina, Cul e o complexo
Pd(PPhs), como catalisador. A reacdo ficou sob vigorosa agitacdo a temperatura
ambiente, sendo acompanhada por CCDA. Ap6s 24 horas de reacdao ndo foi
observado formacédo de algum composto novo, sendo assim, a temperatura foi
aumentada para 70 °C. Entretanto, verificou-se que o reagente inicial manteve-se
inalterado, mesmo apds 48 horas. Outros catalisadores foram testados, tais como o
Pd(PPhs3),Cl,, PdCl,.PPh3, Pd(OAc),.PPh; e Pd(CH3CN),Cl,, mas ndo ocorreu a
formacé&o do produto desejado.

2.3.3 Sintese do 2-acetoxi-3-iodo-1,4-naftoquinona

Devido ao insucesso da sintese do produto 45, resolveu-se verificar se a
protecdo da hidroxila livre na forma de acetato da 3-iodolausona (36) resultaria em

uma melhora na reacgao.

Para a reacdo de acetilacdo da 3-iodolausona (44) foi utilizado um
procedimento eficiente descrito na literatura por De Oliveira e colaboradores (2014),
gue utiliza anidrido acético e argila montmorillonita K-10 em ultrassom. Na primeira
tentativa a reagéo foi acompanhada por CCDA e observou-se que apds 2 horas em
ultrassom o reagente inicial (3-iodolausona) nao foi totalmente consumido. A mistura
reacional ficou sob as mesmas condi¢cfes por mais algumas horas e mesmo assim,
nao foi observado evolugcdo no consumo da 3-iodolausona. Diante disso, o produto

acetilado (48) foi isolado, resultando em 35% de rendimento. Devido ao baixo
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rendimento inicial, o procedimento reacional foi modificado com adi¢cdo de &cido
sulfarico concentrado (gotas) para ativar a argila, melhorando assim, a catélise acida
(Esquema 15). Observou-se que apos 2 horas todo reagente inicial foi consumido e

o produto acetilado (48) foi isolado com 6timo rendimento, 93%.
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Esquema 15: Sintese do 2-acetoxi-3-iodo-1,4-naftoquinona

A formacdo do produto pode ser evidenciada na andlise do espectro de
infravermelho do composto 48 (p. 188), onde foi possivel observar a auséncia da
deformacgdo axial caracteristica da ligacdo O-H presente no espectro do composto
44 (p. 187) e uma absorcéo forte em 1778 cm™ caracteristica de deformac&o axial

da ligacdo C=0 de éster alifatico.

No espectro de RMN *H (CDCls, 300 MHz, p. 189) foi observado um simpleto
em & 2,47 com integracdo para trés hidrogénios referente aos hidrogénios do grupo
metila em posicdo a a carbonila do éster, que sdo desblindados pelo campo
anisotrépico do grupo carbonila. Ainda no espectro de RMN 'H foram observados
dois multipleto em & 8,21 e & 8,15 que correspondem aos hidrogénios aromaticos do
carbono em posicdo orto as carbonilas da quinona, e outro multipleto em & 7,78 que
é referente aos hidrogénios em posicédo meta. No espectro de RMN **C (CDCls, 75
MHz, p. 189) foram observados 0s sinais que caracterizam o composto. Além dos
sinais referentes ao ndcleo da naftoquinona, péde-se visualizar um sinal em 6 166,5

atribuido a carbonila do éster e outro em & 20,6 referente ao carbono metilico.

2.3.4 Sintese dos derivados 2-acetoxi-3-alquinil-1,4-naftoquinona
Para obtencdo dos derivados 2-acetoxi-3-alquinil-1,4-naftoquinona (49a-f) a
partir 2-acetoxi-3-iodo-1,4-naftoquinona (48) e alquinos terminais foi empregada a

metodologia de acoplamento Sonogashira. Inicialmente, tentou-se preparar o
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composto 2-acetoxi-3-feniletinil-1,4-naftoquinona (49a) utilizando o reagente iodado
e o alquino fenilacetileno em dimetilsulféxido (DMSO), usando uma base
nitrogenada (EtsN) e Cul como co-catalisador da reacdo, além de um complexo
catalitico de paladio, Pd(PPh3),Cl,, em atmosfera de argénio. A evolugcédo da reacéo
foi acompanhada por CCDA, onde se observou apds 90 minutos o consumo total do
reagente inicial (48) e a formacéo de varios compostos de Rf diferentes do composto
jodado. O produto desejado (49a) foi obtido apos isolamento por coluna
cromatografica de silica gel em rendimento de 5%. Diante desse resultado, foram
modificadas algumas condi¢cOes reacionais. Inicialmente, trocamos o solvente,
realizando o procedimento em tetraidrofurano (THF). Essa mudanca aumentou o
tempo reacional para 120 minutos, mas também aumentou o rendimento do produto
de acoplamento para 38%. Além do produto desejado inicialmente, foi obtido em 7%
de rendimento outro composto, possivelmente uma furanonaftoquinona (50)
proveniente da ciclizacdo intramolecular do 2-acetoxi-3-feniletinil-1,4-naftoquinona
(49a). Outros solventes foram testados e os resultados estdo sumarizados na Tabela
1. A reacao realizada na mistura de DMSO e DCM (1:1) reduziu a resinificacéo
produzida nas condicfes anteriores e forneceu o produto de acoplamento (49a) em
rendimento de 73% e a furanonaftoquinona (50) em 4%. Sabendo-se da importancia
do catalisador para formacédo do produto de acoplamento, o complexo Pd(PPhj3), foi
utilizado nas mesmas condicfes reacionais, e observou-se a formagcao do produto
no mesmo tempo, 120 minutos, mas com um rendimento de 57%. Outros
catalisadores de paladio como o Pd(OAc), e o PdCI, foram utilizados na reacdo de
acoplamento, mas nao forneceram o produto de interesse. Empregando-se agitacao
com ultrassom, o produto de acoplamento (49a) foi obtido em menor tempo

reacional, 75 minutos, mas com rendimento de 62%.
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Tabela 1: Condi¢Ges testadas para obtencdo do composto 49a

O
COCY Segisge
Ph
I © Catalisador, Cul, Et, N %
Solvente, Ar, t.a

o)
48 0
Rend. (%)
Entrada Catalisador Solvente Tempo (min) —
49a 50
1 Pd(PPhs),Cl, DMSO 90 5 -
2 Pd(PPhs).Cl, THF 120 38 7
3 Pd(PPhs),Cl, EtsN 60 - -
4 Pd(PPhs),Cl, DMF 120 30 8
5 Pd(PPh3),Cl, 1,4-Dioxano 60 - -
6 Pd(PPhs),Cl;, MeCN 60 50 15
7 Pd(PPhs),Cl; DMSO / DCM 120 73 4
8 Pd(PPhs)s DMSO / DCM 120 57 9
9 Pd(OAc)./PPhs DMSO / DCM 300 - -
10 PdCI,/PPh3 DMSO / DCM 300 - -
11~ Pd(PPhs3),Cl; DMSO / DCM 75 62 4
* Ultrassom

Devido as condigdes reacionais da entrada 7 na Tabela 1 apresentar melhor
rendimento para formagdo do composto 49a, este foi 0 método escolhido para ser
utilizado na reacdo de acoplamento do 2-acetoxi-3-iodo-1,4-naftoquinona (48) com
os diversos alquinos terminais, sendo produzidos os derivados 2-acetoxi-3-alquinil-

1,4-naftoquinona (49a-f), todos com estruturas inéditas, conforme Tabela 2.



61

Tabela 2: Derivados 2-acetoxi-3-alquinil-1,4-naftoquinonas

o) o)
0 —_ 0
=R
LT - Oy
. © Pd(PPhy),CL,, Cul, ELN, S)
o DMSO/DCM, Ar, t.a o R
48 49a-f
R = Ph (a), 4-MeOCgH, (b), 4-MeCzH, (c), C(CH 3),0H (d), CH,CH,CHj (e), CH,(CH,),CH; (f).
Produto Rend. (%)* Tempo (h) P.F. (°C)
73 2 132 -133
61 1 143 - 144
40 1 156 - 157
56 5 120 - 121
60 1 120 -121
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O‘ 0 53 1 92 - 93
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49f

* Ap6s isolamento em coluna cromatografica

O mecanismo exato da reacdo de Sonogashira catalisada por paladio e co-
catalisada por cobre ainda possui alguns pontos obscuros, mas é conhecido que o
ciclo catalitico envolve basicamente uma seqiiéncia de trés etapas: adicdo oxidativa,
transmetalacéo e eliminacéo redutiva (SONOGASHIRA, 2002).

Em conformidade com o Esquema 16, o complexo de paladio (ll),
Pd(PPhs3),Cl,, se coordena com acetiletos que sdo formados no meio reacional a
partir do alquino fenilacetileno, Cul, e uma base nitrogenada, trietilamina, ocorrendo
assim a formacdao do complexo Pd(PPh3),(C=C-Ph),. Logo apéds, por reacdo de
eliminacdo redutiva, o complexo Pd(PPhs),(C=C-Ph), gera o complexo de paladio
(0), Pd°(PPhs),, 0 componente ativo no ciclo catalitico. Neste processo também é
formado um subproduto de homoacoplamento entre alquinos, o difenilbutadiino Ph-
C=CC=C-Ph. O complexo ativo, Pd°(PPhs), sofre uma réapida adicdo oxidativa na
presenca do iodeto vinilico (NQ-I), resultando no complexo intermediario de paladio
(1), Pd(PPh3),NQIl. Em seguida, ocorre a etapa de transmetalacdo, onde o
intermediario Pd(PPh3).NQI, perde um ion iodeto (I") e se coordena com um acetileto
do meio para forma o intermediario de paladio (II), Pd(PPhs),NQ(C=C-Ph). Por
ultimo, este complexo por reacdo de eliminacdo redutiva forma o produto de
acoplamento desejado (NQ-C=C-Ph), regenerando o complexo de paladio (0),
Pd°(PPhs),, que da inicio a um novo ciclo catalitico (CHEN; HONG; HOU, 2008;
CHINCHILLA; NAJERA, 2007; SONOGASHIRA, 2002; SONOGASHIRA; TOHDA,
HAGIHARA, 1975).
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Esquema 16: Ciclo catalitico da reacdo de Sonogashira

O espectro de infravermelho (Figura 13) do composto 49a apresentou uma
absorgao caracteristica de deformacéo axial da ligagdo C=C em 2202 cm™, onde a
intensidade da banda se mostrou mais forte do que o esperado devido a conjugacao
com um grupo carbonila. Observou-se uma absorcdo forte em 1776 cm™
caracteristica de deformacéo axial da ligacdo C=0 de éster, que foi movida para
uma frequéncia mais alta devido ao efeito retirador de elétrons da quinona. Ainda foi
possivel observar uma absorcdo de intensidade forte em 1674 cm™ atribuida a uma
deformacéo axial da ligagdo C=0 da dicetona conjugada.
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Figura 13: Espectro de infravermelho (KBr, cm™) do composto 49a

O espectro de RMN *H (CDCls, 400 MHz, Figura 14) apresentou um simpleto
em 0 2,45 (s, 3H) referente aos hidrogénios do grupo metila (H-2"") em posigédo a a
carbonila do éster. Ja na regido de hidrogénios aromaticos foi observado um sinal
em & 8,16 e outro em & 8,12 que correspondem aos hidrogénios aromaticos ligados
aos carbonos em posicéao orto (H-5 e H-8) aos grupos carbonila do anel quinona, e
um sinal & 7,77 atribuido aos hidrogénios em posi¢cdo meta (H-6 e H-7) as carbonilas
da quinona. Referentes aos hidrogénios da fenila foram observados dois sinais, um
em 6 7,59 e outro em 7,39 atribuidos, respectivamente, aos hidrogénios orto (H-2") e

hidrogénios meta e para (H-3" e H-4").
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Figura 14: Espectro de RMN*H (CDCls, 400 MHz) do composto 49a

Quanto a andlise do espectro de RMN **C (CDCl;, 100 MHz, Figura 15), foi
possivel observar 18 sinais. Os sinais em 6 180,9 e 6 177,6 foram atribuidos aos
carbono C-1 e C-4, que é caracteristico de carbonilas de cetonas conjugadas. O
carbono carbonilico do éster (C-1"") mostrou sinal em & 167,1 e o carbono do grupo
metila em posicado a a carbonila do éster (C-2") em & 20,4. Os sinais em & 79,3 e
108,2 correspondem aos carbonos acetilénicos C-1' e C-2’, respectivamente. Outros

sinais que caracterizam o composto sao mostrados na Figura 15.
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Figura 15: Espectro de RMN**C (CDCl;, 100 MHz) do composto 49a

2.3.5 Sintese dos derivados furanonaftoquinonas

Shvartsberg e colaboradores (2012) descreveram uma rota sintética
(Esquema 17) para obtencdo de derivados benz[f]indol-4,9-dionas (52) a partir da
ciclizacdo intramolecular dos 3-acetilamino-2-alquinil-1,4-naftoquinonas (51) na
presenca de uma quantidade equimolar de K,CO3; em acetonitrila a 80 °C
(SHVARTSBERG et al., 2012).

o) R' o)
| =
O L o Vs
N No MeCN, 80°C | N
H
R o R o
51 52

Esquema 17: Sintese dos derivados benz[flindol-4,9-dionas
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Empregando a metodologia descrita anteriormente, o0s derivados
furanonaftoquinonas (53a-f) foram sintetizados a partir da ciclizacdo intramolecular
dos derivados 2-acetoxi-3-alquinil-1,4-naftoquinonas (49a-f) com K,CO3; em
acetonitrila/dgua e temperatura ambiente (Esquema 18). Nestas condi¢cdes
reacionais, 0s compostos com 0s anéis furanicos foram obtidos em 10 minutos em

rendimentos bons que variaram entre 72 e 85% (Tabela 3).

I I
o 40 K,CO, O
LT - W
MeCN /H,O
X 2 |
e} R t.a., 10 min. 0]
49a-f 53a-f

R = Ph (@), 4-MeOCgH, (b), 4-MeCgH, (c), C(CH),OH (d),
CH,CH,CHj (e), CH,(CH.),CHj (f).

Esquema 18: Sintese dos derivados furanonaftoquinonas

Os rendimentos e tempos reacionais dos derivados furanonaftoquinonas (53a-
f) obtidos foram semelhantes, mostrando assim, de modo geral, que os variados

substituintes alquinilicos néo influenciaram na reatividade da ciclizagéao.

Tabela 3: Derivados furanonaftoquinonas

Composto Rend. (%) P.F. (°C)
o)
| o)
O‘ p O 80 220 - 221
(|) 53a
I
0
| Q 0 83 217 - 218
LI \
| 53b
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85 267 - 268
Cl 53c
0]
o o
» 77 158 - 159
T o
O
CU0_
w 75 110 - 111
C|) 53e
0]
| o
| 72 110 - 111
.

O mecanisco desta reacdo (Esquema 19) é iniciado por um ataque
nucleofilico do ion hidroxido, proveniente da hidrélise do carbonato de potassio, ao
grupo carbonila do éster (49), formando assim o intermediario tetraédrico aniénico
(), que logo ap6s uma transferéncia de préton forma o intermediario Il. A
dissociacao do intermediario tetraédrico Il produz o intermediario anibnico Il e, logo
em seguida, ocorre uma ciclizacdo intramolecular para formar o composto de anel
furdnico (53). A ciclizagdo intramolecular 5-endo-dig é favoravel de ocorrer de
acordo com as Regras de Baldwin (BALDWIN, 1976; GILMORE; ALABUGIN, 2011).
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Esquema 19: Mecanismo para sintese dos derivados furanonaftoquinonas

Por meio das analises dos espectros de infravermelhos dos produtos
formados nas reacfes, sdo observadas algumas evidéncias das desacetilacdes e
ciclizacbes dos derivados 2-acetoxi-3-alquinil-1,4-naftoquinonas. Utilizando como
exemplo o espectro de infravermelho (KBr) do composto 53c e, fazendo uma
comparagdo com o0 espectro do composto inicial (49c), podemos observar a
auséncia da banda de absorcdo em 2202 cm™ caracteristico de estiramento da
ligacdo C=C, e também da banda de absorcdo em 1778 cm™ caracteristico de
estiramento da ligacdo C=0 do éster (Figura 16).

o

K

+
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Figura 16: Espectros de infravermelho (KBr, cm™) dos compostos 49c¢ e 53c

O espectro de RMN 'H (CDCl;, 300 MHz, Figura 17) do composto 53c
mostrou-se coerente com estrutura da furanonaftoquinona. Além dos sinais dos
hidrogénios do anel benzénico da naftoquinona e do substituinte p-metilbenzeno,
gue se encontram também no 2-acetoxi-3-(4-metilfeniletinil)-1,4-naftoquinona, é
possivel observar um simpleto em & 6,98 com integragdo para um hidrogénio que é
referente ao hidrogénio olefinico do anel furano. Ja o espectro de RMN *3C (CDCl;,
75 MHz, p. 206) apresentou 17 sinais. Podemos notar as auséncias de alguns sinais
gue evidenciam a desacetilacéo e ciclizacdo do composto 49¢, como da carbonila (&
167,2) e do carbono metilico (& 20,5) do grupo acetila, como também dos carbonos

acetilénicos.
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Figura 17: Espectro de RMN *H (CDCls, 300 MHz) do composto 53¢

As estruturas quimicas desses compostos furanicos ja foram descritas na
literatura. Mas em relacdo a atividade biolégica, somente o composto 53d, que pode
ser encontrado em plantas da espécie Avicennia marina (JAIN et al., 2014), possui
avaliacdo da atividade antitumoral, especificamente em linhagem de células de
cancer de ovario humano (WILLIAMS et al., 2006). O composto 53a possui estudo
guanto a atividade antioxidante e citotoxicidade em Artemia salina (BERGHOT et al.,
2014) e o 53f avaliacdo da atividade antimalarica (DURAN-LENGUA et al., 2014). J4
0s compostos 53b, 53c e 53e ndo sao relatados qualquer tipo de atividade bioldgica.
Vale ressaltar que nenhuma das furanonaftoquinonas sintetizadas neste trabalho
teve anteriormente um estudo quanto a sua citotoxicidade em linhagens de células
de glioblastomas, demostrando assim, originalidade dos compostos na quimioteca

frente a atividade biologica desejada.
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2.3.6 Avaliagdo do potencial citotoxico em células de glioblastomas

Este estudo foi realizado em colaboracdo com o grupo de pesquisa da
professora Magna Suzana Alexandre Moreira do Instituto de Ciéncias Biologicas e
da Saude — UFAL.

Os derivados 2-acetoxi-3-alquinil-1,4-naftoquinonas  (49a-f) e os
furanonaftoquinonas (53a-f) tiveram suas citotoxicidades testadas frente as
linhagens de glioblastomas, GBMO2, GBM95 e Al172 in vitro através do método
MTT, que consiste em uma andlise colorimétrica baseada na conversédo do sal 3-
(4,5-dimetil-2-tiazol)-2,5-difenil-2-H-brometo de tetrazélio (MTT) para formazan, pela
atividade da enzima succinil-desidrogenase presente na mitocondria da célula viavel,
permitindo dessa maneira, quantificar a porcentagem de células vivas (MOSMANN,
1983).

Os compostos 48, 49b, 49c, 49d, 49e, 49f, 53a, 53b, 53e e 53f apresentaram
efeito inibitério do crescimento da linhagem GBMO02, nos tempos de 24, 48 e 72
horas apds os tratamentos. O 49a apresentou esse efeito nos tempos de 48 e 72
horas. O derivado 53b inibiu a proliferacdo da linhagem GBMO02 nos tempos de 24 e
48 horas e 0 53c, somente no tempo de 72 horas (Tabela 4). A temozolamida (TMZ),
nas concentracdes testadas, ndo apresentou atividade inibitoria sobre o crescimento

de nenhuma das trés linhagens de glioblastomas.

Todos compostos 2-acetoxi-3-alquinil-1,4-naftoquinonas (49a-f) apresentaram
atividade contra a linhagem GBMO02. Os derivados 49a, 49b e 49 c, que possuem 0s
substituntes fenila, apresentaram elevadas citotoxicidades, com valores de Clsg entre
0,2 e 0,4 pM. As Clsp no tempo de 48 e 72 horas desses compostos foram muito
menores do que no tempo de 24 horas, demonstrando que o aumento do tempo de
contato intensificou o efeito citotoxico. Foi observado que grupos doadores de
elétrons, como metdxi (49b) e metil (49c), em posicdo para a fenila, né&o

influenciaram em suas citotoxicidades.

No entanto, os compostos furanonaftoquinonas 53a, 53b e 53c obtidos a
partir dos 2-acetoxi-3-alquinil-1,4-naftoquinonas 49a, 49b e 49c, respectivamente,
apresentaram uma significante diminuicdo do potencial citotoxico. Mostrando assim,

no geral, que a estrutura ciclizada mostra menor atividade citotoxica do que seu
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precursor sintético. Entretanto, todos os derivados furanonaftoquinonas mostraram
consideraveis citotoxicidades frente a linhagem de glioblastoma GBMO02. Os
furanonaftoquinonas 53e e 53f, que possuem os substituintes propil e butil no
carbono C-2, respectivamente, apresentaram os melhores Clsg dos compostos

furanicos.

Tabela 4: Efeito dos derivados 2-acetoxi-3-alquinil-1,4-naftoquinonas e 0s
furanonaftoquinonas sobre a viabilidade de glioblastomas da linhagem GBMO02 no

ensaio de MTT.

24 horas 48 horas 72 horas
Clso Emax Clso Emax Clso Emax
Tratamento
(ULM£E.P.M)2  (%+E.P.M.)3 (UM+E.P.M.)2 (%z*E.P.M.)3 (UM+E.P.M.)2 (%z*E.P.M.)3a
T™MZ >100 NT >100 NT >100 NT
48 >100 42,5 £ 6,5** >100 48,3 £ 3,1** 84,0 £5,0 56,2 + 3,2**
49a >100 NT 0,2+0,1 57,7 + 3,3** 0,3+0,1 68,2 + 2 4%+
49b >100 42,6 £ 2,6* 0,3+0,1 63,2 + 4,8** 0,3+0,03 71,8 £ 1,5%**
49c >100 37,3 +2,6* 0,4+0,01 61,2 + 0,4** 0,4+0,01 73,9 £ 0,8%*
49d 92,0 £ 6,2 53,9 + 13,3** 64,5+ 3,3 77,4 + 3,6%** 68,3+1,7 82,7 +1,8%*
49e >100 49,7 +1,8* >100 49,3 + 3,3** 77,6 6,0 63,4 + 6,2%**
49f >100 29,8 £ 8,4* 85,0+7,3 55,4 + 4,5** 59,0+4,0 71,2 + 2 5%+
53a 68,0+1,2 74,3 £ 1,7+ 58,7+ 3,3 82,5 +1,2%* 65,404 85,9 + 0,3***
53b >100 30,1 +1,1* >100 38,7 £ 5,3* >100 NT
53c >100 NT >100 NT >100 26,7 +4,3*
53d 615+20 79,0+0,3**  398+3,0 80,4+ 1,0~  63,7+0,8 86,0 £ 0,7***
53e 329+7,0 82,4104 8,7+0,8 83,7 £ 1,6%** 19,7 +8,0 89,2 + 0,5%**
53f 63,6 £ 2,6 69,8 + 0,1*** 17,8 +6,8 78,3 £ 1 1%+ 26,1+44 86,9 + 0,4***
@]
O o
@) | Y/ R
o @]
Y b '
e} @] R O
| 49a-f 53a-f

R = Ph (a), 4-MeOCgzH, (b), 4-MeCgH, (c),
C(CH3),0H (d), CH,CH,CH3 (e), CH,(CH,),CHj (f).
Os resultados referem-se a: 2Concentracgao inibitéria de 50% calculada através de curvas concentra¢do-resposta.

3aMédia + erro padrdo da média do efeito maximo em triplicatas de um experimento representativo. *p<0,05
**p<0,01 ***p<0,001 em relagdo ao grupo DMSO. NT: Substancia ndo apresenta atividade.
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Ao avaliar o efeito inibitério dos compostos frente ao crescimento da linhagem
GBMO95, pode-se observar que os derivados 49a, 49b, 49c, 49d, 49e, 49f, 53a, 53d,

53e e 53f inibiram a proliferacdo celular nos tempos de 24, 48 e 72 horas. O

composto 48 apresentou esse efeito somente no tempo de 72 horas e 0 53b, no de

24 horas (Tabela 5). Os derivados 2-acetoxi-3-alquinil-1,4-naftoquinonas (49a-f)

apresentaram, no geral, Clsg semelhantes entre si frente a linhagem GBM95,

demostrando assim, a nao influéncia dos diferentes substituintes. Ja entre os

derivados furénicos, o 53e se destacou apresentando menor Clso da série. O 53c

nao apresentou atividade citotoxica.

Tabela 5: Efeito dos derivados 2-acetoxi-3-alquinil-1,4-naftoquinonas e o0s

furanonaftoquinonas sobre a viabilidade de glioblastomas da linhagem GBM95 no

ensaio de MTT.

Tratamento

T™MZ
48
49a
49b
49c
49d
49e
49f
53a
53b
53c
53d
53e
53f

24 horas
Clso Emax
(UM+E.P.M.)2  (%=*E.P.M.)2
>100 NT
>100 NT
>100 32,8+12,6%
64,7 +5,3 77,0 £ 1 5%+
>100 43,9 £ 10,5**
65,8 +2,7 83,1 + 0,3***
>100 43,0 + 10,7*
>100 42,1 +1,9**
64,7 +9,5 75,3 £ 2,1%*
>100 31,4 +5,9*
>100 NT
63,8+2,1 81,7 + 0,4**
16,5+12,8 84,7 +£0,5*
>100 48,0 + 4,6**

48 horas
Clso Emax

(UM+E.P.M.)2  (%+*E.P.M.)2

>100 NT

>100 NT
>100 43,1 £ 3,8*
78,3+14,5 59,1 + 5,0**
>100 39,0 + 0,9**
67,4+4.2 76,3 £ 0,3**
89,0+0,9 56,4 + 0,5**
82,1+4,0 60,2 + 1,9**
70,1+2.8 75,1 £ 0,3***

>100 NT

>100 NT
74+172 78,1 £ 0,7**
6,6 +1,3 83,0 £ 0,6%**
59,3+7,5 76,1 +1,8%*

72 horas
Clso Emax
(UIM+E.P.M.)2  (%=*E.P.M.)2
>100 NT
>100 41,3 + 3,9**
843+24 59,3 + 1,4**
72,379 68,3 + 2,0%**
629+58 70,9 £ 2,8%*
66,6 + 3,3 74,5 + 0,4**
350+50 80,8+1,3"*
58,7+5,1 74,1 + 2, 7%+
7,610 72,4 + 0,1%*
>100 NT
>100 NT
63,0+ 2,2 75,0 + 0,6%**
6,5+0,9 80,8 + 1,8***
67,0+£3,2  74,6+0,5%*

Os resultados referem-se a: 2Concentracgéo inibitéria de 50% calculada através de curvas concentra¢do-resposta.
3aMédia + erro padrdo da média do efeito maximo em triplicatas de um experimento representativo. *p<0,05
**p<0,01 ***p<0,001 em relagdo ao grupo DMSO. NT: Substancia ndo apresenta atividade.

Os derivados 48, 49a, 49b, 49c, 49e, 49f, 53b, 53d, 53e e 53f inibiram

significativamente o crescimento da linhagem A172 nos tempos de 24, 48 e 72 horas
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apos os tratamentos. Os derivados 53a e 49d apresentaram esse efeito nos tempos
de 48 e 72 horas e 0 53c, somente no de 24 horas (Tabela 6). Todos os compostos
citotoxica. Os derivados 2-acetoxi-3-alquinil-1,4-
e 49c

citotoxicidades, com valores Clso na faixa 0,3 uM. Na série das furanonaftoquinas, 0s

apresentaram  atividade

naftoquinonas 49a, 49b destacaram-se, demonstraram elevadas
derivados 53e e 53f apresentaram os melhores desempenhos na atividade

citotoxica.

Tabela 6: Efeito dos derivados 2-acetoxi-3-alquinil-1,4-naftoquinonas e o0s
furanonaftoquinonas sobre a viabilidade de glioblastomas da linhagem A172 no
ensaio de MTT.

24 horas 48 horas 72 horas
Tratamento Clsp Emaéx Clg, Emaéx Clsp Emaéx

(UME.P.M.)2  (%+E.P.M.)2@ (UM+E.P.M.)2 (%*E.P.M.)2 (UM+E.P.M.)2 (%zE.P.M.)2a
T™MZ >100 NT >100 NT >100 NT
48 39,6 + 28,8 55,0 £ 5,2** 93,7+5,0 50,5+ 1,7** >100 445 + 2,8**
49a 0,4+0,2 58,4 + 8,6** 0,25+0,10 62,2 +1,3* 0,3+0,1 74,6 + 2,6%**
49b 1,0+0,7 57,3 + 2,4** 0,4+0,1 69,7 + 7,4%* 0,3+0,1 76,8 £ 1,1%**
49c 0,3+0,1 55,8 + 7,3** 0,3+0,1 69,7 + 7,2%** 0,3+0,1 72,4 + 3,0%**
49d >100 NT 73,3+0,9 76,2 £ 0,3%* 725+25 82,7 + 0,2%**
49e 545+7,7 69,4 £ 1,1%** >100 33,7 £ 2,9% 72,9+5,8 67,3 £ 1,9%**
49f >100 49,5 + 0,3** >100 34,2 + 8,8*% 62,8 + 3,8 75,7 £ 1,3%**
53a >100 NT 7,1+0,2 77,5 % 0,9%** 51,8+7,2 81,9 + 0,5***
53b 91,1+6,1 53,4 + 6,6** >100 40,1 + 5,0** >100 36,2 + 7,5*
53c 57,9+4,3 81,2 + 0,5%** >100 NT >100 NT
53d 39,0+12,7 79,0+0,3*** 76,9+1,3 76,7 + 0,4%** 719+1,3 82,6 + 0,3***
53e 8,2+0,3 83,4 + 0,3%** 247+1,0 79,2 +1,8%* 7,0+0,2 84,8 £ 0,2%**
53f 9,0+0,6 80,3 £ 0,3*** 6,7+0,5 79,7 £ 0,9%** 9,1+0,2 83,5 +1,1%**

Os resultados referem-se a: 2Concentracgao inibitéria de 50% calculada através de curvas concentragao-resposta.
aaMeédia + erro padrdo da média do efeito maximo em triplicatas de um experimento representativo. *p<0,05
**n<0,01 ***p<0,001 em relagdo ao grupo DMSO. NT: Substancia ndo apresenta atividade.

Os compostos 49a, 49b e 49c se destacaram dentre as substancias
analisadas por apresentarem menor Clso para as trés linhagens celulares de
glioblastomas testadas, resultados estes significativos para dar continuidade nos
estudos de citotoxicidade. Avaliar os efeitos citotoxicos dos compostos sobre a

proliferacdo de células n&o tumorais, a atividade hemolitica e estudo do mecanismo
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de acdo sdo necessarios para um melhor entendimento do efeito citotoxico de cada

amostra e para determinacdo de seu potencial como um futuro agente antitumoral.
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2.4 Consideragoes finais

O composto 2-hidroxi-3-iodo-1,4-naftoquinona (44) foi obtido com rendimento

de 98% a partir da lausona (12) em uma solugcao aquosa de KICl,.

N&o foi possivel sintetizar os derivados 2-hidroxi-3-alquinil-1,4-naftoquinonas
(45) através do acoplamento cruzado entre o 2-hidroxi-3-iodo-1,4-naftoquinona e
alquinos terminais. As condicbes reacionais empregadas levaram a uma

desalogenacao do reagente inicial ou ndo alteracdo do mesmo.

O composto 2-acetoxil-1,4-naftoquinona (48) foi sintetizado com rendimento

de 93%.
o) O o)
OH OH OY
|
Cor oo oI
| N R O
44 © 45 © 48
Os derivados 2-acetoxi-3-alquinil-1,4-naftoquinonas (49a-f), inéditos na
literatura, foram sintetizados em rendimentos que variaram de 40 a 73% a partir do

2-acetoxi-3-iodo-1,4-naftoquinona (48) e alquinos terminais empregando a

metodologia de acoplamento Sonogashira.

Os derivados furanonaftoquinonas (53a-f) foram sintetizados a partir da
ciclizacdo intramolecular dos derivados 2-acetoxi-3-alquinil-1,4-naftoquinonas (49a-f)

com rendimentos bons que variaram de 72 a 85%.

O O
g °
O‘l ! Vami
A
(@) R (@)
49a-f 53a-f

R = Ph (@), 4-MeOCgH, (b), 4-MeCgH, (c),
C(CH3),0H (d), CH,CH,CH3 (e), CH,(CH,),CHs (f).

Os derivados  2-acetoxi-3-alquinil-1,4-naftoquinonas (49a-f) e os

furanonaftoquinonas (53a-f) apresentaram efeito inibitério do crescimento frente as
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linhagens de glioblastomas, GBM02, GBM95 e Al72, o que 0s caracterizam
potentes agentes citotdéxicos. Os compostos 49a, 49b e 49c se destacaram dentre
as substancias analisadas por apresentarem menor Clsg para as trés linhagens
celulares de glioblastomas testadas, resultados estes significativos para dar

continuidade nos estudos de citotoxicidade.
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3 SINTESE E AVALIACAO DO POTENCIAL CITOTOXICO DE NOVOS
DERIVADOS 2-[2-(1H-1,2,3-TRIAZOL-1-IL)ALQUILAMINO]-1,4-
NAFTOQUINONAS

3.1 Introducéo

3.1.1 Heterociclicos triazdlicos e sua importancia farmacoldgica

Os compostos heterociclicos sdo encontrados amplamente na natureza,
sendo suas funcdes de fundamental importancia nos processos biolégicos dos
organismos vivos. Nos ultimos anos, os compostos heterociclicos tem atraido grande
interesse pelos pesquisadores devido as suas propriedades farmacologicas (WAHI;
SINGH, 2011). Podemos encontrar um grande numero desses compostos (Figura
18) sendo consumidos mundialmente como drogas para diversas atividades
farmacoldgicas: antifungica (fluconazol, 54), antitumoral (carbamato de fluorouracila,
55), anti-inflamatdria e analgésica (dipirona, 56), antiprotozodria (metronidazol, 57) e

antimicrobiana (benzilpenicilina, 58).

N
72
< 0 N
N N—N | I\
F N /
i HN v o,
Nso N OH E k | | \\ /O Na
N =
07" N © 730
(@)
54 0% o 56
fluconazol  \_ | dipirona
55
carbamato de fluorouracila
N H S
N O H =
o +£N>’ I /éNj o
\’}'\ \\\ NH i 'l/
(0] HO
OH ©)
57 .58 o
metronidazol benzilpenicilina

Figura 18: Farmacos com estruturas heterociclicas

Dentro da classe dos compostos heterociclicos se encontram os triazois,
compostos que possuem trés atomos de nitrogénios dispostos em um anel de cinco

membros aromatico. Os triazois e seus derivados possuem uma grande importancia
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na quimica medicinal e durante as Ultimas décadas, uma atencdo consideravel tem
sido dedicada a sintese de derivados triazolicos, devido ao sua facilidade de
obtencdo e amplo espectro de atividades biologicas, tais como anticonvulsivante,
antidepressivo,  antibacteriana,  antifingica, anti-inflamatéria, = analgésica,
anticancerigena, entre outras (SIDDIQUI et al., 2011; SINGHAL et al., 2011).

O anel triazélico funciona como um bioisdstero do grupo amida por apresentar
propriedades fisico-quimicas semelhantes, capazes de exibir propriedades
biolégicas similares. Na Figura 19 podemos visualizar algumas caracteristicas
semelhantes entre a estrutura do anel triazélico e o grupo amida. Em contraste, o
nucleo 1,2,3-triazol é estavel contra a hidrolise acida e basica, bem como contra
condicbes oxidativas e redutivas, refletindo uma resisténcia a degradacéo
metabdlica (LAURIA et al., 2014).

aceptor de ligagado H
aceptor de ligacdo H

distancia 3,9 A / \
N

9 - _N_ )
/H\R carbono eletrofilico N= N—R

R l}l T JQ<
f H Rlv/
carbono eletrofl'li;o\ \

doador de li doH
oador de ligacdo doador de ligagéo +
distancia 5,0 A

Figura 19: Similaridade estutural entre o anel triazolico e o grupo amida (LAURIA et
al., 2014).

3.1.1.1 Atividade anticancer

O cancer é a segunda causa de morte no Brasil e na maioria dos paises
desenvolvidos atualmente, perdendo apenas para doencgas cardiovasculares. E
caracterizada pelo crescimento descontrolado e disseminacdo de células anormais.
A alta taxa de mortalidade causada por este grupo de doencas € uma indicacdo da
eficiéncia limitada das terapias atuais, incluindo a radiagdo, quimioterapia e cirurgia.

Por conseguinte, o desenvolvimento de novos agentes anticancer é um foco
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importante para os pesquisadores de todo o mundo, despertando assim, o interesse

na busca de drogas mais eficazes e menos toxicas (KHAZIR et al., 2014).

Recentemente, Khazir e colaboradores (2014) sintetizaram uma série de
compostos 1,2,3-triazéis derivados da coronopilina e avaliaram a sua citotoxicidade
contra um painel de seis linhagens de células cancerigenas humanas, PC-3
(prostata), THP-1 (leucemia), HCT-15 (célon), HelLa (cervical), A-549 (pulmao) e
MCF-7 (mama). Embora muitos compostos exibiram significativa atividade
anticancer, o composto 59 (Figura 20), apresentou ser o analogo mais promissor
nesta série com valores de ICso de 3,1 uM na linhagem de célula PC-3 (KHAZIR et
al., 2014).

Figura 20: 1,2,3-triazol coronopilina

Derivados 1-H-1,2,3-triazélicos conjugados a 1,4-naftoquinona (Figura 21)
foram sintetizados recentemente por nosso grupo de pesquisa e avaliados contra
varias linhagens de células tumorais humanas (sangue, ovario, mama, sistema
nervoso central, colon, prostata e melanoma), mostrando, para alguns deles, os
valores de ICsy abaixo de 2 uM. As estruturas triazélicas ligadas a bis-naftoquinonas
(62a-c) e ao glicosideo contendo bromo na posi¢cdo 3 da 1,4-naftoquinona (61b),
foram ativas contra as linhagens tumorais humanas e apresentaram bom indice de
seletividade, sendo portanto substéncias candidatas a futuras investigagées. Em
geral, os compostos podem representar novos derivados promissores para o

desenvolvimento de farmacos anticancer (DA CRUZ et al., 2014).
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Figura 21: Derivados 1-H-1,2,3-triazdlicos conjugados a 1,4-naftoquinona (DA CRUZ
et al., 2014)

3.1.1.2 Atividade anti-inflamato6ria

Drogas anti-inflamatérias ndo esterdides (AINEs) sdo amplamente utilizadas
para reduzir a dor e edema associados com inflamacéo e representam uma area em

continuo e crescente desenvolvimento (ASSIS et al., 2012).

Silva e colaboradores (2013) sintetizaram diversos glicosideos triazolicos
(64a-e) a partir da reacao entre a azida de 2,3,4,6-tetra-O-acetil-B-D-glicopiranosila
(63) e alquinos terminais (Esquema 20), obtendo rendimentos moderados a
excelentes (63-99%). Os compostos benzo-heterociclicos mostraram de moderada a
boa atividade anti-inflamatéria aguda. Os resultados atuais mostram que esses
glicoconjugados representam um ponto de partida promissor para posterior

elaboracao de potenciais drogas anti-inflamatorias (SILVA et al., 2013).



83

OAc OAc N\ g
Cul 10%, Et,N, CH,CI \ J/
AcO&ONN3 + —R v e ACO(/)&O&/N /

AcO O t.a, 20-30 min, ))))

j S—s N\
@Q\ (L (ZNQ
@;\ys% @Z\%Spg

(d) )

Esquema 20: Sintese de 1,2,3-triazdis ligados a benzoeterociclos (SILVA et al.,
2013)

Recentemente, Assis e colaboradores (2012) sintetizaram derivados 1,2,3-
triazol-ftalimida (65a-c; 66a-c) com uma potente atividade anti-inflamatoria (Figura
22). Os compostos foram sintetizados em bons rendimentos, a partir da reacgao de
cicloadicdo 1,3-dipolar a partir de N-(azido-alquil)ftalimidas e alquinos terminais. A
atividade anti-inflamatéria foi determinada por injecdo de carragenina através da
pata traseira direita de ratos brancos suicos para produzir inflamacdo. Todos o0s
compostos exibiram uma importante atividade anti-inflamatéria; a melhor atividade
foi encontrada para os compostos 65b e 66¢, que diminuiram em 69% e 56%,
respectivamente, o edema induzido por carragenina em ratos. Os derivados 1H-
(1,2,3-triazol)ftalimidas sédo substancias interessantes devido ao seu potencial
atividade anti-inflamatéria, assim merecendo mais estudos para entender o

mecanismo de acdo (ASSIS et al., 2012).
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Figura 22: Derivados 1H-(1,2,3-triazol)ftalimidas (ASSIS et al., 2012)

3.1.1.3 Atividade anti-Trypanosoma cruzi

A doenca de Chagas ou tripanossomiase americana foi descoberta e descrita
pelo médico sanitarista Carlos Chagas em 1909. E uma infecgdo transmissivel
causada pelo parasito Trypanosoma cruzi, que pode provocar danos ao coragao
(cardiomiopatia), bem como os 6rgdos do aparelho digestivo. O T. cruzi é um
protozoario flagelado da ordem Kinetoplastida, familia Trypanosomatidae e género
Trypanosoma caracterizado pela presenca de um unico flagelo e do cinetoplasto,
uma organela que contém DNA e se localiza na mitocondria. Suas formas evolutivas
sdo os tripomastigotas (infectante), epimastigotas (formas de multiplicacdo no vetor
e em culturas) e amastigotas (multiplicam-se dentro das células do hospedeiro)
(DIAS et al., 2009).

A doenca de Chagas pode ser dividida em duas fases: aguda e crbnica. A
fase aguda é caracterizada por febre, linfadenopatia e hepato-esplenomegalia, no
entanto, normalmente ela passa despercebida, visto que seus sintomas sao
semelhantes aos de varias outras infec¢cdes. Na fase crénica ocorre a forma
indeterminada, na qual o paciente ndo apresenta sintomatologia importante do ponto
de vista clinico, nem resultados anormais dos exames complementares do coracéo e
do tubo digestorio, sendo assim, um portador assintomatico da doenca de Chagas
(SOBRINHO et al., 2007; DIAS et al., 2009).

Atualmente existem apenas dois farmacos para o tratamento da doenca de

Chagas, o nifurtimox, 4-(5-nitrofurfurilideno)-amino-1,1-diéxido-3-metiltiomorfolina
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(67), e 0 benznidazol, N-benzil-2-nitro-1-imidazolacetamida (68), sendo que no Brasil
o nifurtimox é atualmente proibido devido ao seu alto grau de toxidade (Figura 23).
No Brasil, o tratamento da doenca de Chagas dispde unicamente do benznidazol,
produzido pelo Laboratério Farmacéutico do Estado de Pernambuco (LAFEPE). No
entanto, esta droga, somente apresenta eficacia na fase aguda da doenca e provoca
varias reacfes adversas graves. Em consequéncia disso, seu uso é limitado ou até
mesmo impedido (SOBRINHO et al., 2007).

N
o _
K/SZO 0~ "NH
67 5 68

Figura 23: Estruturas quimicas do nifurtimox (67) e do benznidazol (68)

Dentre 0os compostos testados contra o Trypanosoma cruzi nas ultimas
décadas, os derivados triazélicos (Figura 24) sao considerados bons candidatos no
desenvolvimento de novos farmacos. Os ensaios pré-clinicos de dois deles, o
posaconazol (69) e o ravuconazol (70), demostram atividade anti-trypanosoma cruzi
promissora (BUCKNER; URBINA, 2012).
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69 .

Figura 24: Estruturas quimicas do posaconazol (69) e do ravuconazol (70)

Recentemente, Diogo e colaboradores (2013) sintetizaram uma série de
novos derivados triazolicos (73a-c). Entre os compostos sintetizados, trés foram
obtidos a partir da reacéo de cicloadicdo 1,3-dipolar envolvendo a 3-azido-nor-[3-
lapachona (71) e os alquinos terminais aminonaftoquindnicos (72), conforme o
Esquema 21. Estes compostos foram avaliados em relacdo a forma tripomastigota,
forma sanguinea circulante e infectante, da Trypanosoma cruzi. Os triazéis 73a, 73b
e 73c mostraram-se mais potentes do que o padréo terapéutico atual, o benznidazol
(68), com valores de ICso entre 6,8 e 80,8 pM. O composto 73c foi 12 vezes mais
ativo do que o benznidazol, apresentando ser um candidato promissor para uma

investigacao mais aprofundada, como avaliacéo in vivo (DIOGO et al., 2013).
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Esquema 21: Sintese dos 1,2,3-triazdis ligados a nor-B-lapachona (DIOGO et al.,
2013)

Recentemente, Nascimento e colaboradores (2011) prepararam novos
derivados 1,2,3-triazolicos 1,4-dissubstituidos (75a-h) a partir da reacdo de
cicloadicdo 1,3-dipolar entre o 2-azido-1,4-naftoquinona (74) e diversos alquinos
terminais na presenca de iodeto de cobre (I) em acetonitrila (Esquema 22)
(NASCIMENTO; CAMARA; OLIVEIRA, 2011). Estes compostos foram submetidos a
avaliacdo contra as formas Trypanosoma cruzi e apresentaram resultados
promissores. Os triazois 75a e 75f mostraram ser mais potentes do que o
benznidazol, com valores de ICsp, 10,9 pM e 17,7 pM, respectivamente (DA SILVA
JUNIOR et al., 2012).

O o) N=N
N, — = N \/)“R
(] -
Cul, CH,CN
o !
74 75a-h

R =Ph (a), 4-MeOCgH, (b), 4-BrCgH, (c), 4-NO,CgH, (d), 4-MeCgH, (e),
CH,OH (f), C(CH3),0H (g), CO,CH,CH, (h).

Esquema 22: Derivados 2-[(4-substituido 1H-1,2,3-triazol-1-il)-1,4-naftoquinona
(NASCIMENTO; CAMARA; OLIVEIRA, 2011)
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3.2 Objetivos

3.2.1 Geral

Sintetizar novos derivados  2-[2-(1H-1,2,3-triazol-1-il)alquilamino]-1,4-
naftoquinonas através da reacéo de cicloadicdo 1,3-dipolar entre azidas e alquinos

terminais e avaliar a atividade antitumoral.

3.2.2 Especificos

Obter os derivados 2-hidroxialquilamino-1,4-naftoquinonas (76a-c) a partir da

reacdo entre a 1,4-naftoquinona (2) e os aminoalcoois.

Sintetizar os derivados 2-azidoalquilamino-1,4-naftoquinona (78a-c) a partir
de reacBes Sy2 dos tosilatos (77a-c) com azida de sédio.

Sintetizar os derivados 2-[2-(1H-1,2,3-triazol-1-il)alquilamino]-1,4-naftoquinonas
(79a-j; 80a-j) a partir da reacdo click entre os 2-(2-azidoalquilamino)-1,4-

naftoquinonas (78a-b) e variados alquinos terminais.

Avaliar a citotoxicidade dos novos derivados 2-[2-(1H-1,2,3-triazol-1-

ilalquilamino]-1,4-naftoquinonas (79a-j; 80a-j) em linhagens de células tumorais

humanas.
/N
Lt i i
NH _N
Iy cicloadi¢do NHMN3 IGF NHMOH
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3.3 Resultados e discusséao

3.3.1 Sintese dos derivados 2-hidroxialquilamino-1,4-naftoquinonas

Os derivados 2-hidroxialquilamino-1,4-naftoquinonas (76a-c) foram obtidos
através da modificacdo da metodologia sintética descrita na literatura por Bouffier e
colaboradores (2012). A reacdo entre 1,4-naftoquinona (2) e os aminoalcoois, 2-
aminoetanol, 3-aminopropanol e 4-aminobutanol, utilizando acetonitrila como
solvente em temperatura ambiente por tempo reacional de 3 horas, resultaram nos
compostos 76a, 76b e 76c¢, respectivamente (Esquema 23). Os rendimentos variam

entre 66 e 76% apos purificacdo por coluna cromatografica de silica gel.

i i
H,N_ _OH
NH _OH
() — LY
MeCN
| t.a, 3h |
(@]
2 76a-c

n=2(a), 3 (b), 4 (c).
73% 67% 66%

Esquema 23: Sintese dos derivados 2-hidroxialquilamino-1,4-naftoquinonas

O mecanismo desta reacéo € iniciado por um ataque nucleofilico do nitrogénio
do aminoalcool ao sistema a,p-insaturado da naftoquinona (2), adicao tipo Michael,
formando assim o intermediario |, que por uma transferéncia de préton
(prototropismo) forma o intermediério Il (Esquema 24). Em seguida, o hidrogénio em
posicdo a a carbonila é removido pela agado basica do aminoalcool para forma o
intermediario Ill, que logo apos uma transferéncia de proton forma o intermediario

dienol 1V. Por ultimo, este dienol sofre uma oxidac&o para forma o produto obtido.
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Esquema 24: Mecanismo para sintese dos derivados 2-hidroxialquilamino-1,4-

naftoquinonas

O espectro de infravermelho (KBr, cm™) do composto 76a (Figura 25) mostrou
uma banda de absorcdo forte em 3345 cm™ caracteristico de deformacédo axial da
ligacdo N-H de amidas secundarias, devido a formacado de ligacdo de hidrogénio
intermolecular a banda de absor¢céo N-H foi deslocada para uma menor frequéncia.
Nao foi possivel visualizar isoladamente a banda de absorcdo referente a
deformagdo axial da ligacdo O-H, devido a superposicdo das frequéncias de
deformacédo axial de N-H e de O-H. Ainda foi possivel observar uma absorcdo em

1674 cm™ atribuida a uma deformagcéo axial da ligagdo C=0 da dicetona conjugada.

76a

1000 450

Figura 25: Espectro de infravermelho (KBr, cm™) do composto 76a
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Na andlise do espectro de RMN 'H (DMSO-ds, 400 MHz, Figura 26) do
composto 76a, foram observados um dupleto em & 7,98 (d, 1H, J = 7,4 Hz) e outro &
7,94 (d, 1H, J = 7,8 Hz) relativos aos hidrogénios dos carbonos em posicao orto as
carbonilas da quinona. Dois tripletos de dupletos foram observados em & 7,83 (id,
1H,J=74e12Hz)e d 7,72 (td, 1H, J = 7,4 e 1,2 Hz) referentes aos hidrogénios
dos carbonos em posicdo meta as carbonilas da quinona. Ainda na regiao dos
hidrogénios aromaticos foi visualizado um tripleto em & 7,32 (t, 1H, J = 5,5 Hz)
caracteristico de NH. O simpleto em & 5,74 foi atribuido ao hidrogénio H-3 da
naftoquinona e o simpleto & 4,89 ao hidrogénio do grupo OH. Outros sinais foram
observados, como o tripleto em & 3,61 (t, 2H, J = 5,1 Hz) e o quarteto em & 3,25 (q,
2H, J = 5,8 Hz) atribuidos aos hidrogénios metilénicos H-2' e H-1', respectivamente.
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Figura 26: Espectro de RMN*H (DMSO-dg, 400 MHz) do composto 76a

Ja no espectro de RMN **C (DMSO-ds, 100 MHz, Figura 27) do composto
76a, podemos visualizar sinais em 6 181,4 e & 181,2 referentes aos carbonos C-1 e
C-4, respectivamente, caracteristicos de carbonilas de cetonas conjugadas. Foram
observados sinais em & 148,6 e © 99,4 atribuidos aos carbonos olefinicos C-2 e C-3

da quinona, respectivamente. O sinal em & 58,3 é caracteristico de carbono ligado a
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oxigénio e o sinal & 44,5 é referente ao grupo metilénico vizinho do grupo NH.
Outros sinais podem ser observados na Figura 27.
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Figura 27: Espectro de RMN**C (DMSO-ds, 100 MHz) do composto 76a

3.3.2 Sintese dos derivados 2-(tosilalquilamino)-1,4-naftoquinonas

A tosilacdo de &lcoois é uma transformagdo comum que muitas vezes é
usada para facilitar as reacdes de substituicdo nucleofilica subsequentes, devido ao
grupo p-toluenossulfonato (TsO") ser um grupo de saida muito bom. A partir dos
derivados 2-hidroxialquilamino-1,4-naftoquinona 76a, 76b e 76c foram obtidos os
derivados tosilados 77a, 77b e 77c, respectivamente, com rendimentos que variam
de 68 a 84%. As reacfes foram realizadas utilizando cloreto de tosila e trietilamina
em diclorometano sob atmosfera de argbnio e temperatura ambiente (Esquema 25).
Este procedimento foi adaptado da metodologia classica da literatura que utiliza
cloroférmio e piridina (KABALKA et al., 1986).
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Esquema 25: Sintese dos derivados 2-(tosilalquilamino)-1,4-naftoquinonas

3.3.3 Sintese dos derivados 2-azidoalquilamino-1,4-naftoquinonas

Os derivados 2-azidoalquilamino-1,4-naftoquinona (78a, 78b, 78c) foram
obtidos a partir de reacdes de substituicdo nucleofilica bimolecular (Sy2) dos
respectivos tosilatos (77a, 77b, 77c) com azida de sédio em dimetilsulfoxido a 50 °C
sob atmosfera de argbnio (Esquema 26). As reacdes foram concluidas em apenas

10 minutos, obtendo os produtos em rendimentos quantitativos.

I i
NH _OTs
O sy
| DMSO, 50 °C,
') Ar, 10 min |
(@]
77a-c 78a-c

n=2(a), 3 (b), 4 (c). n=2(a), 3 (b), 4(c).

Esquema 26: Sintese dos derivados 2-azidoalquilamino-1,4-naftoquinonas

Os derivados 2-azidoalquilamino-1,4-naftoquinona  (78a-c)  foram
caracterizados por espectroscopia de ressonancia magnética nuclear de 'H e *3C,
infravermelho e espectrometria de massas de alta resolu¢cdo. Como exemplo,
podemos visualizar algumas andlises para o composto 78a. O espectro de
infravermelho (Figura 28) apresentou uma banda de absorcdo em 2103 cm™
caracteristica de estiramento axial do grupo azida, evidenciando assim, a formacéo

do produto. Ainda podemos observar uma absorcdo em 3237 cm™ referente ao
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estiramento axial da ligacdo N-H e, uma absorcdo em 1682 cm™ caracteristica do

estiramento axial da ligacdo C=0 da dicetona conjugada.
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Figura 28: Espectro de infravermelho do composto 78a

No espectro de RMN 'H (CDCls, 400 MHz, Figura 29) do composto 78a
podemos observar dois dupletos em & 8,08 e 6 8,04, e dois tripletos de dupletos em
0 7,72 e & 7,62, referentes aos hidrogénios aromaticos ligados aos carbonos em
posicdes orto e meta, repectivamente, as carbonilas da quinona. O simpleto em &
5,78 foi atribuido ao hidrogénio olefinico (H-3). Ja o tripleto em & 3,61 e o sinal em &
3,40 sao referentes aos hidrogénios metilénicos H-1' e H-2’, respectivamente.
Quanto ao espectro de RMN **C (CDCl;, 100 MHz, Figura 30) podemos visualizar os
sinais caracteristicos das carbonilas da quinona em & 183,0 e & 181,4. Os sinais em
0 1476 e & 101,4 foram atribuidos aos carbonos olefinicos C-2 e C-3,
respectivamente. Ja& os sinais referentes ao anel benzénico da naftoquinona
apareceram entre 6 134,8 e 126,2. Os sinais dos carbanos metilélicos vizinhos ao
grupo azido e ao grupo NH podem ser observados em 0 49,2 e & 41,6,

respectivamente.
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Figura 29: Espectro de RMN "H (CDCl3, 400 MHz) do composto 78a
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Figura 30: Espectro de RMN **H (CDCls, 100 MHz) do composto 78a
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3.34 Sintese dos derivados @ 2-[2-(1H-1,2,3-triazol-1-il)etilamino]-1,4-
naftoquinonas

Apdés a sintese e caracterizagdo dos derivados 2-azidoalquilamino-1,4-
naftoquinona (78a-c), objetivou-se a sintese dos compostos 1,2,3-triazélicos a partir
de diversos alquinos terminais funcionalizados, utilizando a metodologia
desenvolvida pelo grupo do Meldal (TORNGE; CHRISTENSEN; MELDAL, 2002)

para a reacao de cicloadicao 1,3-dipolar catalisada por Cu(l).

Recentemente, nosso grupo de pesquisa sintetizou diversos triazois-
naftoquinbnicos com rendimentos que variaram de 51-90% em tempo reacional de
15-20 horas, empregando iodeto de cobre como catalisador em acetonitrila
(NASCIMENTO; DE OLIVEIRA; CAMARA, 2011).

Inicialmente, foram obtidos os derivados 2-[2-(1H-1,2,3-triazol-1-il)etilamino]-
1,4-naftoquinona (79a-j) a partir da reacdo click entre o 2-(2-azidoetilamino)-1,4-
naftoquinona (78a) e variados alquinos terminais na presenca de iodeto de cobre,
trietilamina e dimetilsulfoxido como solvente sob atmosfera de argbnio e temperatura
ambiente (Esquema 27). Nestas condicbes reacionais, obtivemos 0S compostos
triazdlicos com rendimentos de bons a excelentes entre 72 e 97% com tempos
reacionais entre 2 e 5 horas. Acreditamos que o uso do solvente com uma alta
constante diéletrica e a catalise basica contribuiram para os satisfatérios

rendimentos e tempos reacionais.

0
|

I
NH
—R
o™ CO™
R

| Cul, Et;N, DMSO
78a Ar, ta. O  79aj

R = Ph (a), 4-MeOC_H, (b), 4-MeCH, (c), CHOHPh (d), CH,OH (€), C(CH,),OH (f),

OH
<:>< (9), C(CH,)(OH)CH,CH, (h), CH,CH,CH, (i), CH,(CH,),CH, (j).

Esquema 27: Sintese dos derivados 2-[2-(1H-1,2,3-triazol-1-il)etilamino]-1,4-

naftoquinonas
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No Esquema 28 é mostrado o ciclo catalitico para a formacdo dos 1,2,3-
triazois envolvendo um intermediario com dois atomos de cobre. O mecanismo
inicia-se com a complexagao 1 entre o cobre (I) e o alquino terminal, tornando o
proton do alquino mais acido, e assim facilitando sua abstracdo para formacao do
acetileto de cobre. Posteriormente, ocorre a formagédo do complexo azida-acetileto
de cobre, onde o carbono B do acetileto realiza uma adigdo ao N-3 da azida e,
paralelamente, o N-1 é coordenado com um atomo de cobre formando a estrutura
IV. Em seguida, ocorre a adicdo do N-1 ao carbono C-1 ligado diretamente no cobre
para formar o intermediario triazolita de cobre V. Por ultimo, temos uma eliminagéo
do cobre via protondlise, formando assim, o composto 1,2,3-triazol-1,4-dissubstituido
VI (WORRELL; MALIK; FOKIN, 2013).
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Esquema 28: Ciclo catalitico para a formacgéo dos 1,2,3-triazéis (WORRELL; MALIK;
FOKIN, 2013)

A Tabela 7 mostra os derivados 2-[2-(1H-1,2,3-triazol-1-il)etilamino]-1,4-
naftoquinona (79a-j) com seus respectivos rendimentos, tempo reacional e ponto de
fusao.



Tabela 7: Derivados 2-[2-(1H-1,2,3-triazol-1-il)etilamino]-1,4-naftoquinona

Composto Rend. (%) Tempo (h) P.f. (°C)

I
O‘ I g
| = 96 2 231 - 232
0 79a
0

NH\/\N/N\;N
—

| 97 5 195 - 196
o} 79b
O—
I
SORAS
ro 89 5 192 - 193
(6]
O
| NH\/\N/[\k
O‘ ~/ 84 3 193 - 194
79d
© HO
O
NH\/\N/N\\N
\§<\ 72 2 193 - 194
79e OH

I
o

O

NH\/\N/N
SN
O‘ — 86 2 170-171
| 79f

@) HO
0]
I

NH\/\N/N\\N
= 74 2 178 - 179
5 799  HO
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o)
| NH_ A~ N
NN
O‘ - 94 2,5 160 - 161
| 79h
HO

NH\/\ /N
N NN
O‘ — 76 3 149 - 150
79i

o)
i
NH\/\N/N\\N
— 85 5 169 - 170
| 79j
o)

Os compostos 2-[2-(1H-1,2,3-triazol-1-il)etilamino]-1,4-naftoquinona (79a-j)
foram caracterizados por espectroscopia de ressonancia magnética nuclear de 'H e

3¢, infravermelho e espectrometria de massas de alta resolucéo.

No espectro de RMN 'H (DMSO-ds, 400 MHz) do composto 79e foram
observados sinais caracteristicos para a estrutura desejada. Na regido dos
hidrogénios aromaticos foi observado um simpleto em & 7,99 (s, 1H) referente ao
hidrogénio H-5" presente no heterociclico triazolico e outros sinais que s&o
atribuidos aos hidrogénios do anel quinénico e ao hidrogénio ligado ao nitrogénio. O
simpleto em & 5,75 e o tripleto em & 5,08 foram atribuidos ao hidrogénio H-3 da
naftoquinona e ao hidrogénio do grupo hidroxila, respectivamente. Ja o dupleto em &
4,48 foi atribuido aos hidrogénios metilénicos alfa a hidroxila Outros sinais podem

ser visualizados na Figura 31.
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Figura 31: Espectro de RMN*H (DMSO-dg, 400 MHz) do composto 79e

No espectro de RMN **C (DMSO-ds, 100 MHz), Figura 32, podemos visualizar
0s sinais que caracterizam o composto 79e, como os sinais & 182,1 e 6 181,8
referentes as carbonilas da quinona, os sinais em & 148,7 e & 100,7 dos carbonos
olefinicos C-2 e C-3, respectivamente. Os sinais em & 55,5, 6 47,6 e & 42,4 sao
atribuidos aos carbonos metilénicos. J& os sinais em & 1485 e & 123,6 sdo

referentes aos carbonos olefinicos do anel triazolico.
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Figura 32: Espectro de RMN**C (DMSO-ds, 100 MHz) do composto 79e

3.3.5 Sintese dos derivados 2-[3-(1H-1,2,3-triazol-1-il)propilamino]-1,4-
naftoquinona

Os derivados 2-[3-(1H-1,2,3-triazol-1-il)propilamino]-1,4-naftoquinona (80a-j)
foram obtidos utilizando a mesma metodologia anterior, a partir da reacdo de
cicloadicdo entre o 2-(2-azidopropilamino)-1,4-naftoquinona (78b) e diversos
alquinos terminais funcionalizados em DMSO/Cul/Et;N sob atmosfera de argdnio e
temperatura ambiente (Esquema 29). Nestas condi¢cdes reacionais, 0S compostos

triazolicos foram obtidos com bons rendimentos entre 70 e 86% com tempos
reacionais entre 2 e 5 horas.
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O‘ NH_ A~ Ns — R | NH/\/N\/)\R
| Cul, Et,N, DMSO G ‘

o Ar, t.a. o)

78b 80a-]
R = Ph (a), 4-MeOCH, (b), 4-MeC_H, (c), CHOHPh (d), CH,OH (e), C(CH,),OH (f),

OH
<:>< (g), C(CH,)(OH)CH,CH, (h), CH,CH,CH, (i), CH,(CH,),CH, (i).
Esquema 29: Sintese dos derivados 2-[3-(1H-1,2,3-triazol-1-il)propilamino]-1,4-
naftoquinona

A Tabela 8 mostra os derivados 2-[2-(1H-1,2,3-triazol-1-il)propilamino]-1,4-
naftoquinonas (80a-j) com seus respectivos rendimentos, tempo reacional e ponto

de fusao.

Tabela 8: Derivados 2-[2-(1H-1,2,3-triazol-1-il)propilamino]-1,4-naftoquinonas

Composto Rend. (%) Tempo (h) P.f.(°C)
o) ’I\I:N
NH\/\/N\/}\Q
O‘ 86 2 223 -224
80a
(@]
0 N=N
|
NH\/\/N\/}\Q\O
O‘ \ 71 2 218 - 219
| 80b
(@]
o) |I\1:N
| NH\/\/NJ’\Q\
O‘ 84 2 234 - 235
| 80c
(@]

O‘ NH_~_ N/ - 86 2 176 - 177

80d




O‘ or 70 188 - 189
80e
(@]
0 rI\JzN
A
) T a 107 108
80f
(0]
0 rl\lzN
o 50
O‘ HO 70 209 - 210
| 80¢g
(@]
o) N=N
NH\/\/’\II\/)\—/\\
O‘ HO 75 166 - 167
| 80h
(6]
o} ’I\I;N
| NH\/\/N\/}\\\
O‘ 81 187 - 188
80i
(e}
N=N
182 - 183

o}
| NH\/\/I\II Y4
() &
|
o}
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No espectro de RMN 'H (DMSO-ds, 400 MHz) do composto 80f foram
observados sinais condizentes com a sua estrutura. Na regidao dos hidrogénios

aromaticos além dos sinais caracteristicos do anel quindnico, foi observado um

simpleto em & 7,89 (s, 1H) referente ao hidrogénio H-5" presente no heterociclico

triazolico e um tripleto em & 7,62 (t, 1H) atribuido ao hidrogénio ligado ao nitrogénio.

O simpleto em & 5,64 foi atribuido ao hidrogénio H-3 da naftoquinona. Outros sinais

caracteristicos dos grupos metilénicos e metilicos podem ser visualizados na Figura

33.
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Figura 33: Espectro de RMN*H (DMSO-ds, 400 MHz) do composto 80f

3.3.6 Avaliagdo do potencial citotéxico em células tumorais

Este estudo foi realizado em colaboracdo com o grupo de pesquisa da
professora Teresinha Goncgalves da Silva do Departamento de Antibiéticos — UFPE.

Os derivados 2-[2-(1H-1,2,3-triazol-1-il)alquilamino]-1,4-naftoquinonas (79a-j;
80a-j) tiveram suas citotoxicidades testadas frente as linhagens HEp-2 (carcinoma
de laringe humana), NCI-H292 (carcinoma mucoepidermoide de pulmao humano),
HT-29 (adenocarcinoma de colén humano), MCF-7 (cancer de mama humano) e HI-

60 (leucemia promielocitica aguda) através do método do MTT (MOSMANN, 1983).

De acordo com o percentual de inibicdo de crescimento celular em, pelo
menos uma linhagem de célula, os compostos foram classificados com atividade (95
a 100% de inibicdo), com atividade moderada (70 a 90% de inibicdo) e sem
atividade (inibigdo menor que 50%) (RODRIGUES et al., 2014).



105

A maioria dos compostos na concentragdo de 25 pg/mL ndo apresentaram
citotoxicidade frente as linhagens testadas (Tabela 9). Apenas os compostos 79i e
80h apresentaram citotoxicidade moderada frente as linhagens HL-60, HL-60 e

MCF-7, respectivamente, mostrando assim, agao inibitéria seletiva.

Tabela 9: Inibicdo da proliferacdo (%) realizada em quadruplicata pelo método do

MTT apds 72 horas de incubacao em cinco linhagens de células tumorais humana.

% de inibicéo

Composto

NCI-H292 DP Hep-2 DP MCF-7 DP HL-60 DP HT-29 DP

79a 38,1 0,5 12,7 3,3 40,4 2,7 326 0,0 16,7 1,2
79b 39,8 2,6 0,0 0,0 37,7 0,0 31,2 0,0 247 1,0
79c 16,0 0,0 0,0 0,0 26,7 0,9 234 00 194 0,0
79d 21,4 0,0 3190 3,18 47,8 1,9 38,7 0,0 31,3 1.1
79e 31,7 2,6 36,1 2,5 61,9 1,1 58,8 2,3 60,3 44
79f 39,0 0,7 37,7 1,4 53,7 0,6 54,6 2,7 51,3 5,2
799 28,8 0,0 28,5 2,1 60,6 0,3 450 0,1 380 2.2
79h 27,6 2,1 24,7 2,9 59,0 3,1 50,0 0,3 24,3 0,0
79i 55,8 39 5421 186 64,4 2,6 70,1 1,2 325 18
79 51,1 3,9 0,0 0,0 60,9 4,4 52,6 15 21,4 0,0
80a 58,7 12 11,36 4,42 0,0 0,0 31,8 01 109 0,2
80b 15,3 0,0 0,0 0,0 21,9 0,0 1,2 0,0 155 0,9
80c 40,8 2,6 0,0 0,0 0,0 0,0 0,0 0,0 18,9 0,0
80d 61,1 0,7 30,4 0,0 43,5 3,0 23,3 1,0 296 0,9
80e 16,3 0,6 0,0 0,0 34,9 2,1 250 21 108 04
80f 2,7 0,0 0,0 0,0 51,7 2,0 246 24 27,7 2,8
80g 29,3 2,1 0,0 0,0 22,2 0,8 6,0 0,0 10,6 0,2
80h 22,4 1,7 32,74 2,10 72,3 2,8 75,8 0,0 28,4 04
80i 68,8 2,6 23,9 0,0 27,4 0,0 28,7 0,0 36,6 0,0
80j 42,2 2,1 0,0 0,0 32,4 1.4 44,4 0,0 325 2,7
Doxorrubicina 94,15 2,0 79,4 2,6 74,8 2,1 92,9 0,6 64,1 1,1

e
NH N\/)\R
L™

o n =2 (79a-), n = 3 (80a-j)

R = Ph (a), 4-MeOCH, (b), 4-MeCH, (c), CH,OHPh (d), CH,OH (e), C(CH,),OH (f),

OH
<:>< (9), C(CH,)(OH)CH,CH;, (h), CH,CH,CH;, (i), CH,(CH,),CH, (j).
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A citotoxicidade do composto 79i pode ser atribuido a um fator intriseco de
interacdo da molécula com a linhagem celular especifica, ja que o composto 79j com
substituinte semelhante (grupo alquila) ndo apresentou consideravel inibicdo do
crescimento celular, assim como o analogo 80i apresentando o0 mesmo substituinte
ligado ao anel triazolico, diferenciando por uma unidade CH, entre o ndcleo
naftoquinona e o anel triazélico, também nédo apresentou citotoxicidade. O mesmo

se observa para o composto ativo 80h e seus analogos.

As linhagens NCI-H292, HEp-2 e HT-29 nd&o mostraram sensibilidades
consideraveis a nenhum dos compostos testados. De modo geral, os variados
substituintes ligados ao anel triazélico, assim como a cadeia carbdnica com dois e
trés carbonos que espaca o nucleo naftoquindnico e o triazélico, ndo apresentaram
uma significante influéncia na inibicdo do crescimento celular nas linhagens

testadas.

O composto 80h se destacou dentre as substancias analisadas por
apresentar maior percentual de inibicdo do crescimento celular em duas linhagens
celulares, resultado este significativo para dar continuidade nos estudos de

citotoxicidade.
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3.4 Considerac0es finais

Uma nova rota sintética foi desenvolvida para a obtencdo de novos

compostos aminoalquil-triazéis naftoquindnicos.

Os derivados 2-hidroxialquilamino-1,4-naftoquinonas (76a-c) foram obtidos

em rendimentos de 66 a 73%.

A partir dos derivados 2-hidroxialquilamino-1,4-naftoquinona 76a, 76b e 76¢
foram obtidos os derivados tosilatos 77a, 77b e 77c, respectivamente, com

rendimentos que variam de 68 a 84%.

Os derivados 2-azidoalquilamino-1,4-naftoquinona (78a, 78b, 78c) foram
obtidos a partir de reacgdes de substituicdo nucleofilica bimolecular (Sn2) dos
respectivos tosilatos (77a, 77b, 77c) em rendimentos quantitativos.

| | I
NH, L, OH NH, _OTs NH, _N
" " 4
n n n
| | |
O 0 O

76a-c 77a-c 78a-c
n=2(a),3(b) 4 (c) n=2(a), 3 (b), 4 (c). n=2(a), 3 (b), 4 (c).

A partir das reacdes de cicloadiacdo 1,3-dipolar foram obtidos vinte novos
derivados 2-[2-(1H-1,2,3-triazol-1-il)alquilamino]-1,4-naftoquinonas (79a-j; 80a-j) com
rendimentos entre 70 e 97%.

n =2 (79a-), n = 3 (80a-)

R = Ph (a), 4-MeOC H, (b), 4-MeC H, (c), CH,OHPh (d), CH,OH (e), C(CH,),OH (f),

OH
<:>< (9), C(CH,)(OH)CH,CH, (h), CH,CH,CH, (i), CH,(CH,),CH, ().
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A maioria dos derivados 2-[2-(1H-1,2,3-triazol-1-il)alquilamino]-1,4-
naftoquinonas ndo apresentaram citotoxicidade frente as linhagens tumorais
testadas. Os compostos 79i e 80h exibiram citotoxicidade moderada frente as
linhagens HL-60, HL-60 e MCF-7, respectivamente, demosntrando ac¢do inibitoria
seletiva. O composto 80h se destacou dentre as substancias analisadas por
apresentar maior percentual de inibicdo do crescimento celular em duas linhagens
celulares, resultado este significativo para dar continuidade nos estudos de

citotoxicidade.
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3.5 Perspectivas
Sintetizar os derivados 2-[2-(1H-1,2,3-triazol-1-il)butilamino]-1,4-naftoquinonas

a partir do 2-azidobutilamino-1,4-naftoquinona e diversos alquinos terminais.

|O o
|
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Submeter os novos derivados 2-[2-(1H-1,2,3-triazol-1-il)alquilamino]-1,4-

naftoquinonas a testes de atividades bioldgicas.
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4 SINTESE DOS DERIVADOS 6-ALQUILAMINO-5,8-QUINOLINOQUINONAS

4.1 Introducéo

4.1.1 Quinolinas

Quinolina (81) e seus derivados sdo compostos que tém atraido o interesse
constante dos pesquisadores de diversas areas, devido a gama de aplicacdes na
guimica medicinal, industrial e organica sintética. Os derivados quinolinicos podem
ser naturalmente encontrados em plantas de diversas familias, incluindo
Berberidaceae, Fumariaceae, Papavaraceae e Rutaceae. Estes compostos sao
heterociclicos nitrogenados caracterizados por uma estrutura biciclica formada por

um anel benzénico fundido a um piridinico em dois atomos de carbono adjacentes

(Figura 34) (SOLOMON; LEE, 2011).
\
/

81
Figura 34: Quinolina

As quinolinas naturais e sintéticas sdo substancias que apresentam potentes
e variados tipos de atividades biolégicas (KUMAR; BAWA; GUPTA, 2009) como
antimalaria (SINGH; SINGH, 2014), anticancer (AFZAL et al., 2015), antifugica,
antibacteriana (KHARB; KAUR, 2013), anti-inflamatéria (MUKHERJEE; PAL, 2013),
leishmanicida (GOPINATH et al., 2013) e antipsicoticos (ZAJDEL et al., 2013).

A quinina (82), cloroquina (83), mefloquina (84) e primaquina (85) (Figura 35)
sdo exemplos de alguns compostos que possuem o anel quinolinico que se
destacam como antimalarico (SINGH; SINGH, 2014).
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Figura 35: Compostos quinolinicos

Outros compostos proeminentes (Figura 36) sdo 0s anticancerigenos
camptotecina (86), irinotecano (87) e topotecano (88); os antibacterianos
ciprofloxacina (89) e sparfloxacina (90); o antifangico clioquinol (91) e os

antipsicaéticos aripiprazol (92) e brexpiprazol (93) (AFZAL et al., 2015).

| | NH, O O
F OH F l l 1
H
| T N
K\N N ﬁN N 7
HNJ 89 A HN\) %0 A o
. : 91
ciprofloxacina " sparfloxacina clioquinol
Cl |o
Cl S
HN h'\'
| N
N/\ |
A "
92 % // : |
o S brexpiprazol o
aripiprazol

Figura 36: Compostos quinolinicos
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4.1.2 5,8-quinolinoquinona

As quinolinoquinonas (94) sdo moléculas que possuem em sua estrutura tanto
a funcéo quinolina quanto a de quinona (Figura 37). E assim como as quinolinas,
relatadas anteriormente, os derivados 5,8-quinolinoquinonas tem despertado a
atencdo dos pesquisadores, devido a apresentarem uma extensa gama de
atividades bioldgicas, tais como antitumoral, antibacteriana, antifungica, anti-
inflamatéria e antimalarico (CHOI; CHI, 2004).

0]

N
Z
N

94 0O
Figura 37: Quinolinoquinona

Dentre as quinolinoquinonas encontradas naturalmente, destacam-se a
estreptonigrina (95) e a lavendamicina (96) (Figura 38). A estreptonigrina € um
antibiotico antitumoral que foi isolado pela primeira vez em 1959 da bactéria
Streptomyces flocculus (RAO; CULLEN, 1959), apresenta atividade antitumoral
contra linfomas, melanomas e cancer de pulméo, mama e cervical, além de possuir
uma ampla atividade biolégica contra bactérias, fungos e virus (BOLZAN; BIANCHI,
2001). A lavendamicina € um antibiotico antitumoral com propriedades semelhantes
a da estreptonigrina, foi isolada pela primeira vez a partir da Streptomyces
lavendulae (BALITZ et al., 1982). Embora lavendamicina ndo seja adequada para
uso clinico, devido a sua toxicidade, os seus analogos sdo menos toxicos e, por

conseguinte tém potenciais como agentes antitumorais (KEYARI et al., 2013).
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estreptonigrina lavendamicina

Figura 38: Quinolinoquinonas naturais

Na busca por novos compostos com o anel 5,8-quinolinoquinona, Choi e
colaboradores (2002) relataram um método de sintese para a preparacao de varios
7-amino-2-metil-5,8-quinolinoquinonas (101), por aminac¢do nucleofilica do 6,7-
dibromo-2-metil-5,8-quinolinoquinona  (97), seguido por desbromacdo apos
tratamento com A&cido bromidrico (Esquema 30). Mas este método apresenta
problema na etapa da desbromacé&o, ndo sendo possivel preparar certos tipos de
compostos alquilamino, tais como 2-metilaziridina, benzilamina e t-butilamina, que

séo instaveis em condi¢cBes acidas devido a desalquilagdo (CHOI; KIM; CHI, 2002).

i

»
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O

97
HBr A HBr
100 O 101

Esquema 30: Sintese de 7-amino-2-metil-5,8-quinolinoquinonas

Para contornar o problema na preparacdo de algumas 7-amino-2-metil-5,8-
quinolinoquinonas (101), Choi e Chi (2004) desenvolveram uma nova rota sintética
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para as obtenc¢des das mesmas, por aminagcdo nucleofilica a partir do 6-bromo-2-
metil-5,8-quinolinoquinona (102) (Esquema 31). Usando este método, podem-se
preparar os amino-2-metil-5,8-quinolinoquinonas que nao pode ser preparado pelo
método de desbromacao (CHOI; CHI, 2004).

I
| XN Br R NH
N~ | CH CI
O

Esquema 31: Preparacdo de 7-amino-2-metil-5,8-quinolinoquinonas

Recentemente, Abdelwahab e colaboradores (2014) sintetizam uma série de
6-amino-5,8-quinolinoquinonas a partir da 7-bromo-5,8-quinolinoquinona (103) e
aminas heterociclicas, alifaticas e aromaticas (Esquema 32). Os novos compostos
sintetizados foram testados quanta toxicidade frente a Artemia salina, indicando
atividade citotéxica potente (95-100%) (ABDELWAHAB et al., 2014).
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Esquema 32: Sintese de 6-amino-5,8-quinolinoquinonas

H,N—Ar
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A sintese de 5,8-quinolinoquinonas com substituintes na posi¢cédo 6 e 7, tais
como amino, hidroxi, metoxi, tiol e halogéneo vem sendo explorados, pois é
conhecido na literatura que estes substituintes melhoram as suas atividades
biol6gicas (Ryu et al., 2000). Uma comparacdo entre as atividades biolégicas de
uma série de derivados 6-alquilamino-5,8-quinolinoquinonas podem fornecer
informacdes importantes a cerca da forma do padrdo de substituicdo que afeta a
atividade biologica e, destacara fatores fundamentais para o desenvolvimento de

uma melhor e mais especifica droga a base de quinolinoquinona.
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4.2 Objetivos

4.2.1 Geral

Sintetizar novos derivados 6-alquilamino-5,8-quinolinoquinonas a partir de

uma aminacao nucleofilica direta do 7-bromo-5,8-quinolinoquinona.

4.2.2 Especificos

Sintetizar o 7-bromo-5,8-quinolinoquinona (103) a partir da 8-hidroxiquinolina
(109).

Sintetizar os derivados 6-alquilamino-5,8-quinolinoquinona (107 e 108)
através da adicao nucleofilica de aminas (primérias e secundarias) no 7-bromo-5,8-
quinolinoquinona (103).

con oot leetloe

110 OH
107 R =Br

108R =H
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4.3 Resultados e discussao

4.3.1 Sintese do 7-bromo-5,8-quinolinogquinona

Seguindo o procedimento de Choi e Chi (2004), o composto 7-bromo-5,8-
quinolinoquinona (103) foi sintetizado em duas etapas reacionais (CHOI; CHI, 2004).
Inicialmente, o 8-hidroquinolina (109), obtido comercialmente, reagiu com bromo em
uma solucdo metandlica de bicarbonato de sédio a temperatura ambiente por 5
minutos, fornecendo assim, o 5,7-dibromo-8-hidroxiquinolina (110) com 92% de
rendimento. Em seguida, o 5,7-dibromo-8-hidroxiquinolina (110) foi oxidado usando
uma mistura de acido sulfarico concentrado e acido nitrico para obter o 7-bromo-5,8-

qguinolinoquinona (103) em 65% de rendimento (Esquema 33).

Br O
N Br,, MeOH N HNO;, X |
— = — ||
N/ ta,ggo/mlm N/ Br HZSO4 N/ | Br
109 OH ° 110 OH 65% 103 O

Esquema 33: Preparacdo do 7-bromo-5,8-quinolinoquinona

O composto 103 foi caracterizado por infravermelho e RMN de 'H e *C. No
espectro de infravermelho (p. 270) é observado uma banda de absor¢cdo em 1694
cm™ que é caracteristico de estiramento axial de ligacdo C=O de dicetonas
conjugadas, evidenciando assim, a formacao do anel quinona. O Espectro de RMN
'H (CDCI;, 300 MHz, Figura 39) apresentou na regido dos hidrogénios aromaticos,
trés dupletos de dupletos em & 9,08, 8,44 e 7,76, que sao referentes aos hidrogénios
H-2, H-4 e H-3, respectivamente, presentes no anel piridinico da quinolinoquinona e
um simpleto em & 7,61 referente ao hidrogénio olefinico da quinona. Ja no espectro
de RMN **C (p. 271) foi observado os nove sinais de carbonos, entre estes os
carbonilicos em 6 181,8 e 176,0. Estes fatos corroboram a estrutura do 7-bromo-5,8-

quinolinoquinona.
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Figura 39: Espectro de RMN *H (CDCls, 300 MHz) do 7-bromo-5,8-quinolinoquinona

4.3.2 Sintese dos derivados 6-alquilamino-7-bromo- e 6-alquilamino-5,8-

guinolinoquinonas

Os derivados aminoquinolinoquinonas foram obtidos a partir de uma direta
aminacdo nucleofilica do 7-bromo-5,8-quinolinoquinona (103). Inicialmente, como
primeira tentativa, reagiu-se a amina piperidina (1,5 equivalente) com o 7-bromo-5,8-
guinolinoquinona (103) em acetonitrila e temperatura ambiente. Apds 5 minutos foi
confirmado o consumo total do reagente inicial e os produtos foram isolados por
coluna cromatografica de silica gel, sendo assim, obtido o 6-(piperidin-1-il)-7-bromo-
5,8-quinolinoquinona (107a) e o 6-(piperidin-1-il)-5,8-quinolinoquinona (108a), ambos
com 48% de rendimento (Esquema 34). Recentemente, Abdelwahab e
colaboradores (2014) sintetizaram estes compostos por condicdes semelhantes
(ABDELWAHAB et al., 2014).
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Esquema 34: Sintese do 6-(piperidin-1-il)-7-bromo- e 6-(piperidin-1-il)-5,8-

quinolinoquinona

De acordo com Choi e Chi (2004), a regiosseletividade do ataque nucleofilico
da amina no carbono 6 da quinolinoquinona € devido ao efeito estérico do atomo de
bromo ligado ao carbono 7. O mecanismo reacional (Esquema 35) é iniciado com
uma adicdo nucleofilica do nitrogénio da amina ao sistema a,B-insaturado da
quinona, formando assim o intermediario | que pode adquirir tanto a forma ceto (ll)
com a enol (lll), sendo a forma enol mais estavel devido a ligacdo de hidrogénio
intramolecular entre 0 OH no carbono 8 e o nitrogénio 1. Em seguida, o intermediario
enol é oxidado pelo oxigénio do ar formando o 6-alquilamino-7-bromo-5,8-
quinolinoquinona (107). J& no intermediario ceto, o bromo é eliminado formando o 6-
alquilamino-5,8-quinolinoquinona (108) (CHOI; CHI, 2004; ABDELWAHAB et al.,
2014).

| NR, |
X H NR2
L P12
0 108 O
forma ceto
tautomerlzagao
Br
107o

forma enol

Esquema 35: Proposta mecanistica na sintese dos 6-alquilamino-5,8-
quinolinoquinonas (CHOI; CHI, 2004; ABDELWAHAB et al., 2014)
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Através do procedimento descrito anteriormente e diversas aminas

secundarias foi possivel obter o0s derivados 6-alquilamino-7-bromo-5,8-
guinolinoquinonas (107a-g) com rendimento entre 38 e 57% e, os 6-alquilamino-5,8-
quinolinoquinona (108a-g) entre 21 e 48%. J& as reagbes com aminas primarias
produziram exclusivamente os alquilamino-7-bromo-5,8-quinolinoquinonas (107h-I)

com bons rendimentos entre 62 e 80% (Tabela 10).

Tabela 10: Derivados 6-alquilamino-7-bromo-5,8-quinolinoquinonas e 6-alquilamino-

5,8-quinolinoquinona

“ ? HNR, N I \ |
W " F L smi Sy - |
103 O 107 © 108 O
NR, 107 (%) 108 (%) Rend. Total
(%)
piperidinil 107a (48) 108a (48) 96
pirrolidinil 107b (56)* 108b (30) 86
morfolinil 107c (47) 108c (37) 84
tiomorfolinil 107d (44)* 108d (29)* 73
4-metilpiperazinil 107e (57) 108e (35) 92
dietilamino 107f (47)* 108f (23) 70
dipropilamino 107g (38)* 108g (21)* 59
n-butilamino 107h (80)* - 80
benzilamino 107i (65)* - 65
alilamino 107j (66)* - 66
2-metoxietilamino 107k (67)* - 67
2-hidroxietilamino 1071 (62)* - 62

* Compostos inéditos na literatura

A reacdo com a amina primaria n-butilamina foi realizada fazendo algumas

modificacdes no procedimento inicial na tentativa de obter o produto resultante da
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eliminagcdo do bromo, o 6-butilamino-5,8-quinolinoquinona. Mas a reagdao com 3
equivalentes da amina priméaria em agitacao por 3 horas, assim como, na presenca
de trietilamina por 24 horas, nao forneceram o produto desbromado. O rendimento
do 6-butilamino-7- bromo-5,8-quinolinoquinona (107h) manteve-se praticamente

inalterado com 80%.

Recentemente, Abdelwahab e colaboradores (2014) também mostraram que
a aminacdo do 7-bromo-5,8-quinolinoquinona usando aminas primarias formam
exclusivamente 0s

analogos 6-alquilamino-7-bromo-5,8-quinolinoquinona

(ABDELWAHAB et al., 2014).

Analisando a proposta mecanistica mostrada anteriormente, podemos
compreender que a reagdo com amina primaria favorece o intermediario enol, que
rapidamente é oxidado para forma o produto bromado. Para minimizar a oxidacao e
direcionar a reacdo para formar o intermediario ceto, as reagcbes com aminas
primarias foram realizadas em atmosfera inerte de argdnio por 12 horas. Através
desta estratégia sintética foi possivel obter os derivados 6-alquilamino-5,8-
guinolinoquinona (108h-I) a partir de aminas priméarias com rendimento entre 34 e
51% (Tabela 11).

Tabela 11: Derivados 6-alquilamino-5,8-quinolinoquinona

I i
| ~ | HNR, N NR, “ |
> +
N sr  MeCN N Br | N
| t.a., 12h ol |
103 © Argdnio 107 108 O
Rend. Total
NR, 107 (%) 108 (%)
(%)
n-butilamino 107h (30)* 108h (42) 72
benzilamino 107i (38)* 108i (50) 65
alilamino 107j (26)* 108j (34)* 60
2-metoxietilamino 107k (39)* 108k (51)* 90
2-hidroxietilamino 1071 (39)* 108l (45)* 84

* Compostos inéditos na literatura
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Todos compostos aminoquinolinoguinonas foram caracterizados por
espectroscopia de ressonancia magnética nuclear de 'H e *3C, infravermelho e
espectrometria de massas de alta resolucdo. O espectro de RMN *H (CDCl;, 300
MHz) do composto  6-(piperidin-1-il)-7-bromo-5,8-quinolinoquinona  (107a)
apresentou trés sinais na regido dos hidrgénios aromaticos em & 8,96 (d, 1H, J=4,7
Hz), 8,32 (d, 1H, J=7,6 Hz) e 7,60 (dd, 1H, J=7,6 e 4,7 Hz) referentes aos
hidrogénios do anel piridinico da quinolinoquinona e, mais dois sinais em & 3,56 (t,
4H, J=4,7 Hz) e 1,77 (m, 6H) relativos aos hidrogénios do substituinte piperidinil
(Figura 40). O espectro de RMN **C (CDCl;, 75 MHz) mostrou os sinais das
carbonilas em & 181,2 e 176,5, além de mais sete sinais pertencentes ao anel
qguinolinoquinona entre & 154,5 e 116,6. Ja& os sinais referentes ao substituinte

piperidinil apareceram em & 53,5, 26,8 e 23,9 (Figura 41).
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Figura 40: Espectro de RMN *H (CDCls, 300 MHz) do 6-(piperidin-1-il)-7-bromo-5,8-

guinolinoquinona
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Figura 41: Espectro de RMN **C (CDCls, 75 MHz) do 6-(piperidin-1-il)-7-bromo-5,8-

quinolinoquinona

Os espectros de RMN 'H e '*C do composto 6-(piperidin-1-il)-5,8-
quinolinoquinona (108a) foram semelhantes aos do composto mostrado
anteriormente. A principal diferenca no RMN 'H est4 na presenca de um sinal em &
6,17 (s, 1H) referente ao hidrogénio olefinico da quinona, caracterizando assim, a

auséncia do atomo de bromo no carbono 7 (Figura 42).
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Figura 42: Espectro de RMN *H (CDCls, 300 MHz) do 6-(piperidin-1-il)-7-bromo-5,8-

quinolinoquinona

Através da aminacdo nucleofilica direta do 7-bromo-5,8-quinolinoquinona
foram sintetizados vinte quatro aminoquinolinoquinonas, entre estes, quatorze sao
inéditos na literatura (107b, 107d, 107f-l, 108d, 108g, 108j-1). Entre os compostos
com estrutura quimica ja relatada, somente o 108b possui avaliacdo quanto a
atividade antitumoral, mostrando especificidade e potente acao citotoxica, Cls igual
a 3,74 uM, para a linhagem de célula de cancer de pulméo (FRYATT et al., 2004).
Os compostos 107a, 107c, 107e, 108a, 108c e 108e, recentemente, foram avaliados
guanto a atividade antibacteriana e citotoxicidade em Artemia salina (ABDELWAHAB
et al.,, 2014). Entretando, apesar das aminoquinolinoquinonas 108f, 108h e 108i
terem suas estruturas anteriormente descritas, hdo possuem estudos relacionados a
atividade biolégica. Cabe destacar que todas as aminoquinolinoguinonas
sintetizadas neste trabalho ndo possuem estudos da citotoxicidade em linhagens de
células de glioblastomas e, com excec¢do da 108b, em outras linhagens de células
tumorais, demostrando assim, originalidade dos compostos na quimioteca frente a
atividade biolégica desejada. Estes compostos sdo promissores candidatos para

desenvolvimento de novas drogas antitumorais.
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4.4 Consideragdes finais

O 7-bromo-5,8-quinolinoquinona (103) foi sintetizado com 60% de rendimento

global em duas etapas reacionais a partir do 8-hidroxiquinolina (109).

Os derivados aminoquinolinoquinonas foram obtidos a partir de uma direta
aminacdo nucleofilica do 7-bromo-5,8-quinolinoquinona: as reacfes com aminas
secundarias forneceram os 6-alquilamino-7-bromo-5,8-quinolinoquinonas (107a-g)
com rendimento entre 38 e 57% e, 0s 6-alquilamino-5,8-quinolinoquinona (108a-g)
entre 21 e 48%; ja as reacfes com aminas primarias produziram exclusivamente os
alquilamino-7-bromo-5,8-quinolinoquinonas (107h-l) com bons rendimentos entre 62
e 80%.

Uma nova estratégia sintética foi desenvolvida para a obtencdo dos
compostos 6-alquilamino-5,8-quinolinoquinonas (108h-l) a partir de aminas

primarias, sendo obtidos com rendimento entre 34 e 51%.

0 o)
N | NR, N | NR,
i L |
N B
N | r N
| P 107a4 © 108a- ©
N | Br
103 O NR, = piperidinil (a), pirrolidinil (b), morfolinil (c), tiomorfolinil (d),

4-metilpiperazinil €), dietilamino (f), dipropilamino @), n-butilamino (),

benzlamino (), alilamino (), 2-metoxietilamino k), 2-hidroxietilamino ().
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4.5 Perspectivas

Avaliar a citotoxicidade dos compostos sintéticos obtidos em linhagens de

céluas tumorais.
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5 PARTE EXPERIMENTAL

5.1 Materiais e equipamentos

Durante a execucao deste trabalho foram utilizados os seguintes reagentes e
solventes: 1,4-naftoquinona, 2-hidroxi-1,4-naftoquinona, morfolina, carbonato de
potassio, anidrido acético, 2-aminoetanol, 3-aminopropanol, 4-aminobutanol, cloreto
de tosila, azida de sodio, 2-metilbut-3-in-2-ol, fenilacetileno, 4-metoxifenilacetileno, 4-
metilfenilacetileno, 1-etinil-1-cicloexanol, 3-metilpent-1-in-3-ol, prop-2-in-1-ol, 1-
hexino, 1-pentino, iodeto de cobre, trifenilfosfina, cloreto de paladio (l1), trietilamina,
piperidina, pirrolidina, morfolina, tiomorfolina, 4-metilpiperazina, dietilamina,
dipropilamina, n-butilamina, benzilamina, alilamina, 2-metoxietilamina, 2-
hidroxietilamina, dimetilsulfoxido, metanol, diclorometano, acetonitrila, n-hexano,

acetato de etila.

Nas analises de cromatografia em camada delgada analitica (CCDA) foram
utilizadas placas de (2,0 X 4,0 cm) de silica gel (Fzs4 - Merck), visualizadas em luz
ultravioleta (254 e 365 nm) e em casos especificos reveladas em solugcédo de 2,4-
dinitrofenilhidrazina. Os produtos foram purificados em coluna cromatografica
utilizando gel de silica 60 (230 - 400 mesh — Merck) na fase estacionaria, e como

eluente, uma mistura de solventes adequados.

Os espectros de ressonancia magnética nuclear de hidrogénio e de carbono
(RMN'H e RMN*3C) foram obtidos na Central Analitica do DQF-UFPE em aparelho
Varian Unitty Plus 300 MHz ou Varian UNMRS 400 MHz. Os valores de
deslocamento quimico (&) estdo expressos em partes por milhdo (ppm) e as
constantes de acoplamento (J) em Hertz (Hz).

Os espectros na regidao do infravermelho (IV) foram obtidos em
espectrofotometro FT-IR-BOMEM MB-Series-100, utilizando pastilhas de brometo
de potéassio (KBr). Os valores para as absor¢6es sao referidos em namero de ondas,
utilizando a unidade de centimetro reciproco (cm™). Os experimentos de
espectrometria de massas com ionizagao por “electrospray” foram realizados em um
LC/MS-IT-TOF da Shimadzu Liquid Chron MS ou Waters Xevo GS-2 Q-TOF. As
medidas do ponto de fusdo foram realizadas no aparelho BIO.SAM-PFM I

(Biosanlab).
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5.2 Material — avaliacdo citotoxica

As linhagens de glioblastomas utilizadas, GBM02, GBM95 e A172, foram
cedidas pelo Prof. Dr. Vivaldo Moura Neto da Universidade Federal do Rio de
Janeiro (UFRJ). As células foram cultivadas em meio DMEM/F12, suplementadas
com 10 % de soro fetal bovino e 1 % de antibidticos, mantidas em estufa a 37 °C e

atmosfera contendo 5% de COo.

Ja as linhagens de células tumorais HEp-2 (carcinoma de laringe humana),
NCI-H292  (carcinoma mucoepidermoide de pulm&o humano), HT-29
(adenocarcinoma de colén humano), MCF-7 (cancer de mama humano) e HI-60
(leucemia promielocitica aguda) foram obtidas do Banco de Células do Rio de
Janeiro e mantidas no Laboratério de Cultura de Células do Departamento de
Antibidticos da Universidade Federal de Pernambuco. As linhagens HEp-2, NCI-
H292 e HT-29 mantidas em meio de cultura DMEM e MCF-7 e HI-60 mantidas em
meio de cultura RPMI 1640. Os meios foram suplementados com 10 % de soro fetal
bovino e 1 % de solucéo de antibidtico (penicilina e estreptomicina). As células foram

mantidas em estufa a 37 °C em atmosfera iumida enriquecida com 5 % de CO..

5.3 Método — avaliacéo citotdxica

As citotoxicidades das amostras foram avaliadas de acordo com o método de
Mosmman (1983). As células das linhagens GBMO02, GBM95 e A172 foram
plaqueadas em placas de 96 pocos, na concentracdo de 1x10° células/100 pL. Apds
encontrarem-se aderidas as células foram incubadas com as amostras e com a
temozolamida, farmaco padrdo ouro amplamente utilizado no tratamento de
glioblastomas, durante os tempos de 24, 48 e 72 horas, em concentracdes que
variaram entre 0,1 a 100 uM. Apés esses tempos foi adicionado a cada poco 20 pL
de uma solugédo de MTT (5 mg/mL) em meio DMEM/F12. Apos 4 horas de incubacgao
0s sobrenadantes foram retirados para em seguida ser adicionado 150 uL de DMSO
em cada poco e realizada a leitura da placa através de um leitor de microplacas na

absorbancia de 530 nm.

As células MCF-7, HEp-2, NCI-H292 e HT-29 (105 células/mL) e HL-60 (3 x
105 células/mL) foram plaqueadas em placas de 96 pocos e incubadas por 24 h. Em

seguida as amostras dissolvidas em DMSO (1%) foram adicionadas aos po¢os em
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concentracéo final de 25 pg/mL. O farmaco doxorrubicina (5 pg/mL ) foi utilizada
como padrdo. Apés 72 h de reincubacéo foi adicionado 25 pL de MTT (5 mg/mL) e
depois de 3 h de incubacédo, o meio de cultura com o MTT foram aspirados e 100 pL
de DMSO foi adicionado a cada poco. A absorbancia foi medida em um leitor de
microplacas no comprimento de onda de 560 nm. Os experimentos foram realizados
em quadruplicata e a percentagem de inibicdo foi calculada no programa GraphPad

Prism 5.0 demo.

5.4 Sintese do 2-hidroxi-3-iodo-1,4-naftoquinona

O 0]
OH O/\ 1—1  K,CO,, H,0 OH
+ e
QN\H t.a, 3h, 85% |
O
12 44

Método A: Em um baldo de 250 mL foi adicionado 1,74 g (10 mmol) de
lausona, 2-hidroxi-1,4-naftoquinona (12), 50 mL de agua destilada e 4,20 g (30
mmol) de carbonato de potassio (K,CO3). A mistura ficou sob agitacdo magnética e
temperatura ambiente por 2 minutos, e logo apés, foi adicionado 3,17g (25 mmol) de
iodo e 1,08 g (12,5 mmol) de morfolina. A mistura continuou sob agitacdo magnética
e acompanhada por CCDA. Ap0s o tempo reacional de 3 horas, a mistura foi
submetida a uma filtracdo simples e o filtrado foi acidificado com uma solucdo de
H,SO, 1% até pH aproximadamente 2. O precipitado amarelo formado foi filtrado a
vacuo, lavado com agua destilada gelada e seco a vacuo. O produto (44), sélido
amarelo, foi obtido com 85% (2,55 g, 8,5 mmol) de rendimento e apresentou ponto
de fusdo entre 176 - 177 °C (177 - 179 °C) (PEREZ et al., 2004).

O O

Ly e o
—_—
MeOH |
1 0
o t.a, 15 min, 98% o

12 44
Método B: Em um baldo de 250 mL cotendo 50 mL de metanol foi adicionado
1,74 g (10 mmol) de lausona (12). Logo apds, adicionou-se 20 mL da solugéo KICl,

2N (GARDEN et al., 2001). A mistura reacional foi mantida em agitacdo magnética e
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temperatura ambiente. Em 15 minutos verificou-se por CCDA o consumo de toda
lausona e adicionou 100 mL de &gua destilada gelada, o precitado formado foi
filtrado a vacuo. O produto (44), sélido amarelo, depois de seco apresentou
rendimento de 98% (2,95 g, 9,8 mmol) e ponto de fusdo entre 175 - 176 °C (177 —
179 °C) (PEREZ et al., 2004).

IV (KBI) vmax (M) 3164 (O-H); 1672 (C=0); 1622 e 1579 (C=C); 1258 (C-O); 721
(C-H).

RMN'H (DMSO-de, 300 MHz, ppm) 8,00 (m, 2H); 7,80 (m, 2H).

RMN*C (DMSO-dg, 75 MHz, ppm) 180,2; 177,8; 162,7; 134,9; 133,9; 131,3; 130,1;
127,2; 126,9; 93,3.

5.5 Sintese do 2-acetoxi-3-iodo-1,4-naftoquinona

o) o)
OH Ac,0, K-10 OY
2~ |
@ - (LI
| H,SO,, t.a, 2 h |
0 ))) 0
44 ) 48

Em um baldo de 100 mL foram adicionados em ordem, 0s seguintes
reagentes: 2,0 g (6,67 mmol) do 2-hidroxi-3-iodo-1,4-naftoquinona (44), 4,0 g da
argila montmorillonita K-10, 10 g (98 mmol) de anidrido acético e 5 gotas
(aproximadamente 0,25 mL) de acido sulfurico concentrado. A mistura reacional foi
submetida a energia de ultrassom em temperatura ambiente por 2 hora, sendo
monitorada por CCDA. Ap6s o término da reacdo, adicionou-se 50 mL de
diclorometano e o K-10 foi retirado através de uma filtracdo simples. O filtrado foi
neutralizado com uma solucédo concentrada de NaHCO3 (3 x 100 mL) em um funil de
separacdo, e a fase organica seca com Na,SO,4 anidro. O produto (48), sélido
amarelo claro, foi obtido com 93% (2,11 g, 6,15 mmol) de rendimento e ponto de
fusao entre 149 - 150 °C.

IV (KBr) vmax (cm™) 1778 (C=0 éster); 1674 (C=0O quinona); 1600 (C=C); 1217 e
1165 (C-0); 722 (C-H).
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RMNH (CDCl3, 300 MHz, ppm) 8,21 (m, 1H); 8,15 (m, 1H); 7,78 (m, 2H); 2,47 (s,
3H).

RMN'C (CDCls, 75 MHz, ppm) 178,9; 174,8; 166,5; 158,7; 134,4; 134,3; 130,4;
130,3; 128,2; 127,4; 113,8; 20,6.

5.6 Sintese dos derivados 2-acetoxi-3-alquinil-1,4-naftoquinona

O

0
OY = R OY
| - |
0
| Pd(PPh,),Cl,, Cul, Et,N,
0
48

o)
NV
DMSO/DCM. Ar, t.a i R .

49a-
R = Ph (a), 4-MeOCgH,, (b), 4-MeCgH, (c), C(CH3),0H (d), CH,CH,CHs (e), CH,(CH,),CHs (f).

Em um baldo de 25 mL contendo 3 mL de DMSO e 2 mL de diclorometano,
adicionou-se em ordem e em atmosfera de argonio 0,115 g (0,60 mmol) de Cul, 0,60
mmol do alquino terminal (a-f) e 0,04 g (0,4 mmol) de trietilamina. Apds alguns
segundos a solucéo ficou amarela, evidenciando a formacédo do acetileto de cobre
(). Em seguida, adicionou-se 0,114 g (0,34 mmol) de 2-acetil-3-iodo-1,4-
naftoquinona (48) e 5 mg (0,007 mmol) do complexo catalitico Pd(PPhz),Cl,. Deixou-
se a mistura em agitacdo magnética sob atmosfera de argbnio e acompanhou-se a
formacdo do produto através de placas de CCDA. Apds o consumo do reagente
inicial, rotaevaporou-se o diclorometano e adicionou-se agua gelada a mistura
reacional, o precipitado formado foi filtrado a vacuo e o sdélido obtido dissolvido em
50 mL de diclorometano, seco com Na,SO4 anidro e submetida a uma nova filtracéo
através uma fina camada de celite (terra de diatoméaceas) para retencdo dos sais de
cobre e outros inorganicos na mistura. A massa bruta foi obtida submetida a coluna

cromatografica de silica gel para isolamento do produto desejado (49a-f).

5.6.1 Sintese do 2-acetoxi-3-feniletinil-1,4-naftoquinona

O produto 49a foi purificado em coluna de silica
gel utilizando diclorometano e hexano (40:60) como
eluente, obtendo-se um sdélido amarelo em rendimento

de 73% (0,77 g, 0,24 mmol) e ponto de fusdo entre
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132-133 °C.

IV (KBr) vmax (cm™) 2202 (C=C); 1776 (C=0 éster); 1674 (C=0 quinona); 1608, 1592
e 1573 (C=C); 1172 (C-0); 946, 761, 724 e 704 (C-H).

RMN'H (CDCls, 400 MHz, ppm) 8,16 (t, 1H, J = 3,9 Hz); 8,12 (t, 1H, J = 3,9 Hz);
7,77 (t, 2H, J = 4,3 Hz); 7,59 (d, 2H, J = 6,7 Hz); 7,39 (m, 3H): 2,45 (s, 3H).

RMN®C (CDCls, 100 MHz, ppm) 180,9; 177,5; 167,1; 154,3; 134,3; 134,2; 132,2;
131,6; 130,9; 130,0; 128,5; 127,0; 126,8; 123,8; 121,6; 108,2; 79,3; 20,4.

LC / MS [(C2oH1204)+H]" calculado: 317,0814; encontrado: 317,0791

5.6.2 Sintese do 2-acetoxi-3-(4-metoxilfeniletinil)-1,4-naftoquinona

O produto 49b foi purificado em coluna de
silica gel utilizando diclorometano e hexano (1:1)
como eluente, obtendo-se um solido vermelho em
rendimento de 61% (70 mg, 0,202 mmol) e ponto

o de fusao entre 143-144 °C.

IV (KBr) vmax (cm™) 2198 (C=C); 1773 (C=0 éster); 1678 e 1665 (C=O quinona);
1596 e 1509 (C=C); 1306, 1277, 1258, 1187 e 1172 (C-0); 944, 832, 706 (C-H).

RMN'H (CDCls, 400 MHz, ppm) 8,08 (m, 1H); 8,05 (m, 1H); 7,69 (m, 2H); 7,47 (d,
2H, J = 9,0 Hz); 6,83 (d, 2H, J = 9,0 Hz); 3,77 (s, 3H); 2,38 (s, 3H).

RMN®C (CDCls, 100 MHz, ppm) 181,0; 177,5; 167,2; 161,1; 153,6; 134,2; 134,1;
131,6; 131,0; 127,0; 126,8; 124,2; 114,2; 114,3; 114,2; 113,7; 109,3; 78,9; 55,3;
20,4.

5.6.3 Sintese do 2-acetoxi-3-(4-metilfeniletinil)-1,4-naftoquinona

O produto 49c foi purificado em coluna de silica
gel utilizando diclorometano e hexano (40:60) como
eluente, obtendo-se um sélido amarelo em
rendimento de 40% (44 mg, 0,133 mmol) e ponto de
fuséo entre 156-157 °C.
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IV (KBr) vmax (cm™) 2922 (C-H); 2202 (C=C); 1778 (C=0 éster); 1676 e 1662 (C=0
quinona); 1597 (C=C); 1277 e 1174 (C-O); 944, 821, 732, 705 (C-H).

RMNH (CDCls, 400 MHz, ppm) 8,14 (2H); 7,77 (s, 2H): 7,49 (d, 2H, J = 7,8 H2);
7,20 (d, 2H, J = 7,4 Hz); 2,45 (s, 3H); 2,39 (s, 3H).

RMN*3C (CDCIls;, 100 MHz, ppm) 180,9; 177,5; 167,1; 154,0; 140,6; 134,2; 132,2;
131,6; 131,0; 129,3; 127,0; 126,8; 124,0; 118,6; 109,0; 79,0; 29,6; 21,6 20,4.

5.6.4 Sintese do 2-acetoxi-3-(3-hidroxi-3-metilbut-1-in-1-il)-1,4-naftoquinona
0 O produto 49d foi purificado em coluna de silica gel
| utilizando acetato de etila e hexano (30:70) como eluente,

0
O‘ Y obtendo-se um sélido amarelo em rendimento de 56% (56

0
| \\ mg, 0,188 mmol) e ponto de fusédo entre 120-121 °C.
0

49d HO IV (KBr) vmax (cm™) 3456 (O-H); 2987 (C-H); 1769 (C=0O
éster); 1669 (C=0 quinona); 1625 e 1590 (C=C); 1186 (C-0); 736 e 714 (C-H).

RMN'H (CDCls, 300 MHz, ppm) 8,09 (m, 2H); 7,75 (m, 2H); 2,40 (s, 3H); 1,64 (s,
6H).

RMN®*C (CDCls, 75 MHz, ppm) 181,3; 177,9; 167,3; 155,0; 134,6; 131,7; 131,1;
127,3; 127,1; 123,5; 113,4; 72,1; 65,9; 31,2; 20,6.

LC / MS [(C17H1405)+Na]" calculado: 321,0739; encontrado: 321,0713.

5.6.5 Sintese do 2-acetoxi-3-(pent-1-in-1-il)-1,4-naftoquinona

0 O produto 49e foi purificado em coluna de silica gel
O Om/ utilizando diclorometano e hexano (40:60) como eluente,
O obtendo-se um sélido amarelo em rendimento de 60% (56

B

o mg, 0,198 mmol) e ponto de fuséo entre 120-121 °C.
49e

IV (KBr) vmax (cm™) 2959 e 2872 (C-H); 2218 (C=C); 1773 (C=0 éster); 1678 e 1671
(C=0 quinona); 1605, 1577 e 1461 (C=C); 1294 e 1173 (C-O); 724 e 703 (C-H).

RMNH (CDCls, 400 MHz, ppm) 8,13 (m, 1H); 8,10 (m, 1H); 7,76 (m, 2H); 2,55 (t,
2H, J = 7,0 Hz); 2,41 (s, 3H); 1,68 (sex, 2H, J = 7,0 Hz); 1,08 (t, 3H, J = 7,4 Hz).
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RMN*C (CDCls, 100 MHz, ppm) 181,3; 177,8; 167,2; 154,6; 134,2; 134,1; 131,6;
130,9; 127,0; 126,8; 124,4; 111,5; 71,2; 22,3; 21,7; 20,4; 13,3.
5.6.6 Sintese do 2-acetoxi-3-(hex-1-in-1-il)-1,4-naftoquinona

0
504
|
ol
a9f

O produto 49f foi purificado em coluna de silica

gel utilizando diclorometano e hexano (40:60) como

:<

o eluente, obtendo-se um soélido amarelo em
AN rendimento de 53% (52 mg, 0,175 mmol) e ponto de
fusdo entre 92-93 °C.

IV (KBr) vmax (cm™) 2966, 2937 e 2864 (C-H); 2216 (C=C); 1769 (C=0 éster); 1674
(C=0 quinona); 1607 e 1595 (C=C); 1293, 1196 e 1180 (C-0O); 703 (C-H).

RMN*H (CDCls, 400 MHz, ppm) 8,12 (m, 2H); 7,76 (m, 2H); 2,58 (t, 2H, J = 7,0 Hz);
2,41 (s, 3H); 1,64 (qui, 2H, J = 7,8 Hz); 1,51 (sex, 2H, J = 7,8 Hz); 0,96 (t, 3H, J = 7,4
Hz).

RMN*C (CDCl3, 100 MHz, ppm) 181,3; 177,7; 167,1; 154,6; 134,2; 134,1; 131,6;
130,9; 127,0; 126,7; 124,3; 111,6; 71,0; 30,1; 21,8; 20,3; 20,0; 13,5.

5.7 Sintese dos derivados furanonaftoquinonas

O (@]
O
COry = o
\O MeCN, H,0 %
o A R 10 min, t.a.
49a-f 53a-f o

R = Ph (a), 4-MeOC4H, (b), 4-MeCgH, (c), C(CH3),OH (d), CH,CH,CHj (€), CH,(CH),CH5 (f).

Em um baldo de fundo redondo de 25 mL contendo 5 mL de acetonitrila e 2
mL de agua, foram adicionados, 0,25 mmol do 2-acetoxi-3-alquinil-1,4-naftoquinona
(a, b, c,d, eef)e 69 mg (0,50 mmol) de carbanato de potassio (K.COs). A mistura
reacional ficou sob agitagdo magnética em temperatura ambiente por 10 minutos,
sendo monitorada por CCDA. Apés o término da reacdo, adicionou-se 15 mL de
agua destilada e acido acético para neutralizar a solugcéo. A solucéo foi submetida a
extragcdo com diclorometano e a fase organica seca com Na,SO4 anidro. O produto

foi purificado em uma rapida coluna cromatografica de silica gel.
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5.7.1 2-fenilnafto[2,3-b]furan-4,9-diona

O composto 53a foi purificado em coluna de

| silica gel utilizando hexano e diclorometano (20:70)

0
O‘ / Q como eluente, obtendo-se um sélido vermelho com

| ponto de fusdo entre 220 - 221 °C (249 - 251 °C)
(LIU et al., 2015) e rendimento de 80% (55 mg, 0,20

mmol).

IV (KBr) vmax (cm™) 1671 (C=0); 1580, 1486, 1452 e 1430 (C=C); 1217 (C-O); 897,
760 e 685 (C-H).

RMN'H (CDCls, 400 MHz, ppm) 8,08 (d, 1H, J=7,4 Hz); 7,80 (d, 1H, J=7,4 Hz); 7,74
(d, 2H, J=7,1 Hz); 7,68 (td, 1H, J=7,4 e 1,6 Hz); 7,46 (m, 3H); 7,39 (m,1H); 7,03 (s,
1H).

RMN'C (CDCls, 100 MHz, ppm) 183,0; 177,1; 162,4; 159,4; 138,1; 133,3; 132,8;
131,9; 131,7; 131,5; 131,3; 131,1; 127,1; 125,9; 124,9; 105,5.

LC / MS [(C1gH1003)+H]" calculado: 275,0702; encontrado: 275,0695.

5.7.2 2-(4-metoxifenil)nafto[2,3-b]furan-4,9-diona
¢} O composto 53b foi purificado em coluna de
| o , silica gel utilizando diclorometano como eluente,
O‘ Y Q ©  obtendo-se um sélido azul violeta com ponto de
ol 53b fusdo entre 218 - 219 °C (215 - 216 °C) (LIU et al.,
2015) e rendimento de 83% (63 mg, 0,21 mmol).

IV (KBF) vmax (cm™®) 1668 (C=0); 1501 e 1485 (C=C); 1259, 1216, 1180 e 1018 (C-
0); 821, 786 e 684 (C-H).

RMN'H (CDCl3, 300 MHz, ppm) 8,44 (d, 1H, J=7,6 Hz); 8,14 (d, 1H, J=7,0 Hz); 8,04
(d, 2H, J=8,8 Hz); 8,03 (t, 1H, J=7,0 Hz); 7,82 (t, 1H, J=7,6 Hz); 7,64 (s, 1H); 7,35 (d,
2H, J=8,8 Hz); 4,25 (s, 3H).

RMN®C (CDCl;, 75 MHz, ppm) 180,5; 174,5; 160,4; 159,3; 156,9; 135,4; 130,5;
129,9; 128,7; 128,6; 126,0; 123,4; 122,0; 121,5; 114,5; 101,1; 55,4.
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LC / MS [(C19H1204)+H]" calculado: 305,0808; encontrado: 305,0802.

5.7.3 2-(4-metilfenil)nafto[2,3-b]furan-4,9-diona

O composto 53c foi purificado em coluna de

O
|
O silica gel utilizando diclorometano como eluente,
| Y Q obtendo-se um vermelho escuro com ponto de fuséo
cl 53c entre 267 - 268 °C (266 - 267 °C) (LIU et al., 2015) e
rendimento de 85% (61 mg, 0,21 mmol).

IV (KBF) vmax (cm™) 1673 (C=0); 1577, 1499 e 1485 (C=C); 1218 (C-O), 898, 805,
762 e 683 (C-H).

RMN'H (CDCl3, 300 MHz, ppm) 8,08 (d, 1H, J=7,6 Hz); 7,79 (d, 1H, J=7,6 Hz); 7,67
(td, 1H, J=7,6 e 1,2 Hz); 7,64 (d, 2H, J=8,2 Hz); 7,46 (td, 1H, J=7,6 e 1,2 Hz); 7,27
(d, 2H, J=8,2 Hz); 6,98 (s, 1H); 2,41 (s, 3H).

RMN*®C (CDCl3, 75 MHz, ppm) 180,5; 174,5; 159,5; 157,0; 139,4; 135,4; 130,6;
130,1; 129,7; 128,8; 128,6; 125,9;: 124,4; 123,4; 102,1; 21,4.

LC / MS [(C19H1,03)+H]" calculado: 289,0859; encontrado: 289,0853.

5.7.4 2-(2-hidroxipropan-2-il)nafto[2,3-b]furan-4,9-diona

|O O composto 53d foi purificado em coluna de silica
o OH gel utilizando acetato de etila e diclorometano (10:90) como

| Y eluente, obtendo-se um sélido vermelho com ponto de
- fusdo entre 158 - 159 °C (137 - 138 °C) (RIBEIRO et al.,

2011) e rendimento de 77% (49 mg, 0,19 mmol).

IV (KBr) vmax (cm™) 3404 e 3359 (O-H); 2924 e 2855 (C-H); 1679 e 1665 (C=0O);
1580 (C=C): 1283, 1210, 1175, 1149 e 1090 (C-O); 774 (C-H).

RMN'H (CDCls, 300 MHz, ppm) 8,07 (d, 1H, J=7,8 Hz); 7,73 (d, 1H, J=7,8 Hz); 7,65
(td, 1H, J=7,8 e 1,2 Hz); 7,46 (td, 1H, J=7,8 e 1,2 Hz); 6,67 (s, 1H); 1,68 (s, 6H).

RMN®C (CDCl;, 75 MHz, ppm) 180,4; 174,5; 163,5; 159,9; 135,3; 130,6; 130,2;
128,9; 128,8; 128,4; 122,3; 102,7; 68,8; 28,6.

LC / MS [(C15H1204)+H]" calculado: 257,0808; encontrado: 257,0808.
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5.7.5 2-propilnafto[2,3-b]furan-4,9-diona

o} O composto 53e foi purificado em coluna de
| o) silica gel utilizando diclorometano e hexano (50:50)

| Y como eluente, obtendo-se um sélido amarelo com
c|) 53e ponto de fusdo entre 110 - 111 °C e rendimento de

75% (45 mg, 0,19 mmol).

IV (KBr) vmax (CmM™) 2963, 2926 e 2899 (C-H); 1672 (C=0); 1593 e 1530 (C=C);
1274, 1219 e 1194 (C-O): 967, 951 e 715 (C-H).

RMN'H (CDCIs, 400 MHz, ppm) 8,20 (m, 1H); 8,15 (m, 1H); 7,72 (m, 2H); 6,62 (s,
1H); 2,79 (t, 2H, J=7,4 Hz); 1,80 (sex, 2H, J=7,4 Hz); 1,02 (t, 3H, J=7,4 H2z).

RMN*3C (CDCls, 100 MHz, ppm) 180,9; 173,1; 164,6; 151,5; 133,7; 133,5; 133,1;
132,5; 131,7; 126,8; 126,7; 104,2; 30,2; 20,9; 15,6.

LC / MS [(C15H1203)+H]" calculado: 241,0859; encontrado: 241,0857.

5.7.6 2-butilnafto[2,3-b]furan-4,9-diona

0 O composto 53f foi purificado em coluna de silica
| o) gel utlizando diclorometano e hexano (50:50) como

| Y eluente, obtendo-se um sélido amarelo com ponto de
o| 53f fusdo entre 110 - 111 °C (102 - 103 °C) (AMEER et al.,

2002) e rendimento de 72% (46 mg, 0,18 mmol).

IV (KBr) vmax (€m™) 2959, 2930 e 2872 (C-H); 1667 (C=0); 1593, 1534 e 1423
(C=C); 1218 e 1186 (C-O); 962, 948, 795 e 716 (C-H).

RMN'H (CDCIs3, 300 MHz, ppm) 8,20 (m, 1H); 8,15 (m, 1H); 7,72 (m, 2H); 6,60 (s,
1H); 2,81 (t, 2H, J=7,6 HZz); 1,74 (quin, 2H, J=7,6 Hz); 1,42 (sex, 2H, J=7,6 Hz); 0,96
(t, 3H, J=7,6 Hz).

RMN®C (CDCl;, 75 MHz, ppm) 180,9; 173,1; 164,8; 151,5; 133,8; 133,5; 133,1;
132,6; 131,8; 126,8; 126,7; 104,1; 29,5; 28,0; 22,2; 13,7.

LC / MS [(C16H1403)+Na]" calculado: 277,0829; encontrado: 277,0812.
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5.8 Sintese dos derivados 2-hidroxialquilamino-1,4-naftoquinona

i i
H,N_ _OH
NH, _OH
(L) XY
MeCN
| t.a, 3h |
(@]
2 76a-c

n=2(a), 3 (b), 4 (c).

Em um baldo de 100 mL contendo 40 mL de acetonitrila foi adicionado 3,16 g
(0,02 mol) de 1,4-naftoquinona. Em seguida, foi adicionado lentamente a solucéo
sob agitacdo magnética 0,03 mol do aminoalcool. A mistura reacional ficou sob
constante agitacao e temperatura ambiente. A reacdo foi acompanhada por CCD até
0 consumo do reagente inicial (1,4-naftoquinona), que ocorreu em 3 horas. Apds o
tempo reacional, o solvente foi rotaevaporado e a massa bruta submetida a coluna

cromatografica de silica gel utilizando acetato de etila na fase movel.

5.8.1 Sintese do 2-(2-hidroxietilamino)-1,4-naftoquinona
<|3 O produto 76a foi obtido com 73% (3,18 g, 14,64

NH/\OH mmol) de rendimento. O sélido vermelho apresentou
ponto de fusdo entre 158 - 159 °C.

|
O
76a IV (KBr) vmax (cm™) 3345 (N-H); 1674 (C=0); 1597, 1556
e 1516 (C=C); 732 (C-H).

RMNH (DMSO-dg, 400 MHz, ppm) 7,98 (d, 1H, J=7,4 Hz); 7,94 (d, 1H, J=7,8 Hz);
7,82 (td, 1H, J=7,4 e 1,2 Hz); 7,72 (td, 1H, J=7,4 e 1,2 Hz); 7,32 (t, 1H, J=5,5 H2);
5,74 (s, 1H); 4,89 (s, 1H); 3,61 (t, 2H, J=5,1 Hz); 3,25 (g, 2H, J=5,8 Hz).

RMN®C (DMSO-dg, 100 MHz, ppm) 181,4; 181,2; 148,6; 134,7; 133,0; 132,0; 130,2;
125,7; 125,2; 99,4, 58,3; 44,5.
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LC / MS [(C12H11NO3)-H] calculado:216,0661; encontrado: 216,0678.

5.8.2 Sintese do 2-(3-hidroxipropilamino)-1,4-naftoquinona

|O O produto 76b (sdlido vermelho) foi obtido com
NH_~_COH 67% (3,08 g, 13,32 mmol) de rendimento e apresentou
ponto de fuséo entre 135 - 136 °C.

76b IV (KBr) vmax (cm™) 3470 (O-H); 3337 (N-H); 1672
(C=0); 1597, 1567, 1513 e 1459 (C=C); 728 (C-H).

RMN'H (DMSO-dg, 400 MHz, ppm) 7,95 (d, 1H, J=7,8 Hz): 7,92 (d, 1H, J=7,8 Hz);
7,80 (t, 1H, J=7,4 Hz); 7,69 (t, 1H, J=7,4 Hz); 7,54 (t, 1H, J=5,9 Hz); 5,66 (s, 1H);
4,64 (s, 1H); 3,49 (t, 2H, J=5,9 Hz); 3,23 (q, 2H, J=6,6 Hz); 1,73 (qui, 2H, J=6,6 Hz).

RMN*3C (DMSO-dg, 100 MHz, ppm) 181,4; 181,0; 148,4; 134,6; 133,0; 131,9; 130,2;
125,7; 125,1; 99,0; 55,5; 30,2.

LC / MS [(C13H13NO3)-H] calculado:230,0818; encontrado: 230,0833.

5.8.3 Sintese do 2-(4-hidroxibutilamino)-1,4-naftoquinona

(|D O produto 76¢ (sdélido vermelho) foi obtido
NH/\/\OH com 66% (3,24 g, 13,21 mmol) de rendimento e
apresentou ponto de fuséo entre 146 - 147 °C.

|
o
76c IV (KBF) vmax (cm™) 3474 (O-H); 3339 (N-H); 1687
(C=0); 1597, 1565, 1519 e 1474 (C=C); 728 (C-H).

RMN*H (DMSO-ds, 400 MHz, ppm) 8,01 (d, 1H, J=7,8 Hz); 7,97 (d, 1H, J=7,4 Hz);
7,85 (t, 1H, J=7,4 Hz); 7,75 (t, 1H, J=7,4 Hz); 7,63 (t, 1H, J=5,9 Hz); 5,71 (s, 1H);
4,50 (s, 1H); 3,47 (s, 2H); 3,22 (q, 2H, J=6,7 Hz); 1,66 (qui, 2H, J=7,4 Hz); 1,51 (qui,
2H, J=6,7 Hz).
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RMN*®C (DMSO-dg, 100 MHz, ppm) 182,0; 181,6; 148,9; 135,2; 133,6; 132,5; 130,8;
126,2; 125,7; 99,6; 60,8; 42,2; 30,3; 24,5.

LC / MS [(C14H15sNO3)-H] calculado: 244,0974; encontrado: 244,0958.

5.9 Sintese dos derivados 2-(tosilalquilamino)-1,4-naftoquinona

0
? NH__OH <::> i i ﬁ-<::>}~_
NH _O—S
(@]
Et,N, CH,Cl,,

Y

t.a, Ar, 5h
76a-c 77a-c
n=2(a), 3 (b), 4 (c). n=2(a), 3 (b), 4 (c).

Em um baldo de 100 mL contendo 20 mL de diclorometano foi adicionado
4,00 mmol do 2-hidroxialquilamino-1,4-naftoquinona (76a-c). Em seguinda, sob
agitacdo magnética, foram adicionados 0,92 g (4,80 mmol) de cloreto de tosila e
0,49 g (4,80 mmol) de trietilamina. A mistura reacional foi deixada sob constante
agitacdo magnética em temperatura ambiente por 5 horas. Apds o tempo reacional,
o solvente foi removido e a massa bruta submetida a coluna cromatogréfica de silica

gel utilizando diclorometano na fase movel.

5.9.1 Sintese do 2-(2-tosiletilamino)-1,4-naftoquinona
O sodlido laranja (77a) foi obtido com
(|) Q, /©/ 68% (1,02 g, 2,75 mmol) de rendimento e
NH ~ .S x
O‘ 07 apresentou ponto de fusdo entre 174 - 175
°C.
(l 77a

IV (KBr) vmax (cm™) 3383 e 3365 (N-H); 1678 (C=0); 1633, 1605, 1574 e 1508
(C=C); 1361 e 1341 (S=Oassim); 1177 (S=Osim); 1008 e 912 (S-O).
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RMNH (DMSO-de, 400 MHz, ppm) 8,18 (d, 1H, J=7,4 Hz); 8,12 (d, 1H, J=7,8 Hz);
8,04 (t, 1H, J=7,4 Hz); 7,95 (t, 1H, J=7,4 Hz); 7,77 (d, 2H, J=7,8 Hz); 7,67 (t, 1H,
J=5,5 Hz); 7,41 (d, 2H, J=7,8 Hz); 5,82 (s, 1H); 4,39 (t, 2H, J=4,7 Hz); 3,66 (d, 2H,
J=4,7 Hz); 2,24 (s, 3H).

RMN*3C (DMSO-dg, 100 MHz, ppm) 181,8; 181,5; 148,2; 145,2; 135,2; 133,2; 132,7;
132,2; 130,7; 130,3; 128,1; 126,6; 125,7; 100,4; 67,6; 21,1.

5.9.2 Sintese do 2-(3-tosilpropilamino)-1,4-naftoquinona

o O sdlido laranja (77b) foi obtido com
{/ 81% (1,25 g, 3,24 mmol) de rendimento e

I
NH/\/O\S
//
0 \©\ apresentou ponto de fusdo entre 162 - 163
|

0
o 77b C.

IV (KBF) vmax (cm™Y) 3263 (N-H); 1683 (C=0); 1628, 1596, 1567 e 1518 (C=C); 1356
(S=Oassim); 1174 (S=Osim); 947 € 843 (S-O).

RMN'H (DMSO-ds, 300 MHz, ppm) 7,95 (dd, 1H, J=5,3 e 1,2 Hz); 7,92 (dd,1H,
J=5,3 e 1,2 Hz); 7,81 (td, 1H, J=7,6 e 1,2 Hz); 7,73 (d, 2H, J=8,2 Hz); 7,69 (dd, 1H,
J=7,6 € 1,2 Hz); 7,43 (t, 1H, J=5,9 Hz); 7,36 (d, 2H, J=8,2 Hz); 5,58 (s, 1H); 4,09 (t,
2H, J=6,5 Hz); 3,12 (g, 2H, J=6,5 Hz); 2,26 (s, 3H); 1,88 (qui, 2H, J=6,5 Hz).

RMN*®C (DMSO-de, 75 MHz, ppm) 181,3; 148,3; 144,8; 134,7; 133,0; 132,2; 132,1;
130,3; 130,0; 127,5; 125,8; 125,3; 99,6; 68,6; 38,0; 26,6; 20,9.

5.9.3 Sintese do 2-(4-tosilbutilamino)-1,4-naftoquinona

O solido laranja (77c) foi obtido

(|) Q, /©/ com 84% (1,35 g, 3,38 mmol) de

O‘ NH\/v\o/s\\o rendimento e apresentou ponto de fus&o
entre 145 - 146 °C.

| 77¢
0
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IV (KBI) vmax (cm™) 3347 (N-H); 1672 (C=0); 1619, 1599, 1569 e 1513 (C=C); 1358

RMNH (DMSO-dg, 400 MHz, ppm) 7,95 (d, 1H, J=7,4 Hz); 7,92 (d, 1H, J=7,8 Hz);
7,80 (t, 1H, J=7,4 Hz): 7,76 (d, 2H, J=7,8 Hz); 7,70 (t, 1H, J=7,4 Hz); 7,54 (t, 1H,
J=6,2 Hz); 7,42 (d, 2H, J=8,2 Hz); 5,62 (s, 1H); 4,04 (t, 2H, J=5,5 Hz); 3,10 (q, 2H,
J=6,3 Hz); 2,36 (s, 3H); 1,60 (M, 2H); 1,54 (m, 2H).

RMN*C (DMSO-dg, 100 MHz, ppm) 181,9; 181,7; 148,9; 145,2; 135,2; 133,6; 132,9;
132,5; 130,8; 130,5; 127,9; 126,3; 125,7;: 99,7;: 71,1; 41,4; 26,2; 23,7; 21,5.

5.10 Sintese dos derivados 2-azidoalquilamino-1,4-naftoquinona

@)

| O
O‘ NHMHOTS NaN, . O NHMnNg,
| DMSO, 50_°C, -
le) Ar, 10 min c|)
77a-c 78a-c
n=2(a) 3 (b) 4(c). n=2 (), 3 (b), 4 (c).

Em um baldo de 100 mL contendo 7 mL de dimetilsulfoxido (DMSO) foram
adicionados: 2 mmol do 2-(tosilalquilamino)-1,4-naftoquinona (77a-c) e 0,20 g (3
mmol) de azida de sédio (NaN3). A mistura reacional ficou sob agitacdo magnética,
atmosfera de argonio e temperatura de 50 °C. A reacao foi acompanhada por CCDA
e verificou-se 0 consumo de todo composto tosilado em 10 minutos. Logo em
seguida, adicionou-se 80 mL de agua destilada e o precipitado formado foi filtrado e

Seco a vacuo.
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5.10.1 Sintese do 2-(2-azidoetilamino)-1,4-naftoquinona

o O produto 78a (solido laranja) foi obtido com

|
O‘ NH/\NS rendimento de 99% (0,48 g, 1,98 mmol) e ponto de fusdo

entre 123 — 124 °C.
|
(@]
78a IV (KBr) vmax (cm™) 3237 (N-H); 2103 (N3); 1682 (C=0);
1605 e 1568 (C=C); 729 (C-H).

RMN'H (CDCls, 400 MHz, ppm) 8,08 (d, 1H, J=7,4 Hz); 8,04 (d, 1H, J=7,4 Hz); 7,72
(td, 1H, J=7,4 e 1,2 Hz); 6,62 (td, 1H, J=7,4 e 1,2 Hz); 6,09 (s, 1H); 5,78 (s, 1H); 3,61
(t, 2H, J=5,5 Hz); 3,40 (s, 2H).

RMNC (CDCls, 100 MHz, ppm) 183,0; 181,4; 147,6; 134,8; 133,3; 132,2; 130,4;
126,4; 126,2; 101,4; 49,1; 41,5.

LC / MS [(C12H10N4O5)-H] calculado: 241,0727; encontrado: 241,0701.

5.10.2 Sintese do 2-(3-azidopropilamino)-1,4-naftoquinona

O O produto 78b (sélido laranja) foi obtido com

|
O‘ NH_~_-Ns rendimento de 99% (0,51 g, 1,99 mmol) e ponto de

fusdo entre 129 — 130 °C.

78b IV (KBr) vmax (cm™) 3341 (N-H); 2099 (Nj); 1672
(C=0); 1622, 1602 e 1571 (C=C); 727 (C-H)

RMN*H (CDCls, 400 MHz, ppm) 8,08 (d, 1H, J=7,8 Hz); 8,03 (d, 1H, J=7,8 Hz); 7,71
(t, 1H, J=7,4 Hz); 7,60 (t, 1H, J=7,8 Hz); 6,03 (s, 1H); 5,75 (s, 1H); 3,45 (t, 2H, J=6,3
Hz); 3,31 (s, 2H); 1,94 (qui, 2H, J=6,7 Hz).

RMNC (CDCl;, 100 MHz, ppm) 182,8; 181,6; 147,8; 134,8; 133,4; 132,0; 130,4;
126,3; 126,2; 100,9; 49,0; 44,0; 27,4.
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LC / MS [(C13H10N4O5)-H] calculado: 255,0883; encontrado: 255,2313.

5.10.3 Sintese do 2-(4-azidobutilamino)-1,4-naftoquinona

O O produto 78c (solido laranja) foi obtido com

|
O‘ NHW\Ns rendimento de 100% (0,54 g, 2,00 mmol) e ponto de

fusdo entre 135 — 136 °C.

@]
78¢ IV (KBI) vmax (cm™) 3340 (N-H); 2114 (Na); 1673
(C=0); 1619, 1600, 1569 e 1515 (C=C); 731 (C-H).

RMN'H (CDCl3, 400 MHz, ppm) 8,80 (d, 1H, J=7,8 Hz); 8,03 (d, 1H, J=7,8 Hz): 7,71
(t, 1H, J=7,4 Hz); 7,60 (t, 1H, J=7,8 HZz); 5,94 (s, 1H); 5,74 (s, 1H); 3,35 (t, 2H, J=6,3
Hz); 3,22 (s, 2H); 1,78 (qui, 2H, J=7,0 Hz); 1,69 (qui, 2H, J=7,0 HZz).

RMN*3C (CDCIls, 100 MHz, ppm) 182,8; 181,7; 147,9; 134,8; 133,5; 132,0; 130,4;
126,3; 126,2; 100,8; 50,9; 42,0; 26,4; 25,5.

5.11 Sintese dos derivados 2-[2-(1H-1,2,3-triazol-1-il)etilamino]-1,4-

naftoquinona
I

O
NH —
= NPT
- N
R

| Cul, Et,N, DMSO

78a Ar, t.a. o 7921

R = Ph (a), 4-MeOC_H, (b), 4-MeCH, (c), CHOHPh (d), CH,OH (€), C(CH,),OH (f),

OH
<:>< (9), C(CH,)(OH)CH,CH, (h), CH,CH,CH, (i), CH,(CH,),CH, (j).

Em um baldo de 25 mL contendo 2 mL de DMSO foram adicionados os
seguintes reagentes: 100 mg (0,413 mmol) do 2-(2-azidoetilamino)-1,4-naftoquinona;

12 mg (0,06 mmol) de Cul; 0,62 mmol do alquino terminal e uma gota de trietilamina.
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A reacao ficou sob agitagdo magnética a temperatura ambiente em atmosfera de
argonio por um tempo que variou de 2 a 5 horas. Apds o consumo de todo reagente
inicial (azida), verificado através de placas CCDA, adicionou-se 15 mL de uma
solucdo saturada de cloreto de sodio e o precipitado formado foi filtrado e seco a
pressao reduzida.

5.11.1 Sintese do 2-[2-(4-fenil-1H-1,2,3-triazol-1-il)etilamino]-1,4-naftoquinona

o} O produto 79a, sélido vermelho, foi obtido
O NH\/\N/N\\N com 96% (137 mg, 0,398 mmol) de rendimento e
S5 ponto de fuséo entre 231 - 232 °C.
c|) 79a

IV (KBr) vmax (cm™) 3297 (N-H): 1676 (C=O);
1612 e 1571 (C=C); 730 (C-H).

RMN'H (DMSO-ds, 400 MHz, ppm) 8,57 (s, 1H); 7,95 (d, 1H, J=7,3 Hz); 7,90 (d, 1H,
J=7,6 Hz); 7,78 (d, 2H, J=8,3 Hz); 7,69 (t, 1H, J=7,1 Hz); 7,55 (t, 1H, J=5,4 Hz); 7,40
(t, 2H, J=7,4 Hz); 7,29 (t, 1H, J=7,1 Hz); 5,80 (s, 1H); 4,62 (t, 2H, J=5,7 Hz); 3,72 (q,
2H, J=5,7 Hz).

RMN*C (DMSO-ds, 100 MHz, ppm) 182,1; 181,7; 148,7; 146,7; 135,2; 133,4; 132,7;
131,2; 130,8; 129,2; 128,2; 126,3; 125,7; 125,5; 122,3; 100,6; 47,9; 42,2.

LC / MS [(CxoH16N4O2)-H] calculado: 343,1196; encontrado: 343,1132.

5.11.2 Sintese do 2-{2-[4-(4-metoxifenil)-1H-1,2,3-triazol-1-il]etilamino}-1,4-

naftoquinona

|O O produto 79b, sdlido laranja, foi obtido
A com 97% (150 mg, 0,401 mmol) de rendimento
N
O‘ S5 e ponto de fuséo entre 195 - 196 °C.
|
o 79b

IV (KBr) vmax (cm™) 3279 (N-H); 1677 (C=0);
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1606, 1570 e 1500 (C=C); 1249 (C-O); 728 (C-H).

RMN*H (DMSO-dg, 400 MHz, ppm) 8,46 (s, 1H); 7,96 (d, 1H, J=7,6 Hz); 7,92 (d, 1H,
J=7,6 Hz); 7,80 (t, 1H, J=7,6 Hz); 7,70 (m, 3H); 7,55 (t, 1H, J=5,9 Hz); 6,98 (dd, 2H,
J=9,1 e 2,2 Hz); 5,81 (s, 1H); 4,60 (t, 2H, J=5,1 Hz); 3,77 (s, 3H); 3,71 (g, 2H, J=6,1
Hz).

RMN®C (DMSO-dg, 100 MHz, ppm) 182,1; 181,7; 159,4; 148,7; 146,7; 135,2; 133,4;
132,7; 130,8; 126,9; 126,3; 125,7; 123,8; 121,4; 114,7; 100,6; 55,6; 47,8; 42,2.

LC / MS [(C21H18N4O3)-H] calculado: 373,1302; encontrado: 373,1228.

5.11.3 Sintese do 2-{2-[4-(4-metilfenil)-1H-1,2,3-triazol-1-il]etilamino}-1,4-

naftoquinona

O O produto 79c, solido laranja, foi obtido
O NH/\N/N\\N com 89% (132 mg, 0,368 mmol) de rendimento e
S5 ponto de fuséo entre 192 - 193 °C.
O| 79c

IV (KBr) vmax (cm™) 3247 (N-H): 1680 (C=O);
1609, 1569 e 1509 (C=C); 727 (C-H).

RMN'H (DMSO-dg, 400 MHz, ppm) 8,51 (s, 1H); 7,96 (d, 1H, J=7,6 Hz); 7,91 (d, 1H,
J=7,6 Hz); 7,80 (t, 1H, J=7,4 Hz); 7,72 (d, 1H, J=7,4 Hz); 7,67 (d, 2H, J=7,4 HZz); 7,55
(t, 1H, J=6,4 Hz); 7,22 (d, 2H, J=7,6 Hz); 4,61 (t, 2H, J=5,4 Hz); 3,71 (q, 2H, J=6,0
Hz); 2,30 (s, 3H).

RMN*3C (DMSO-dg, 100 MHz, ppm) 182,1; 181,7; 148,7; 146,8; 137,5; 135,2; 133,4;
132,7; 130,8; 129,7; 128,5; 126,3; 125,7; 125,5; 121,9; 100,6; 47,8; 42,2; 21,2.

LC / MS [(C21H18N4O5)-H] calculado: 357,1353; encontrado: 357,1290.
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5.11.4 Sintese do 2-{2-[4-(hidroxifenilmetil)-1H-1,2,3-triazol-1-ilJetilamino}-1,4-

naftoquinona

O O produto 79d foi purificado em coluna de
O NH/\N/N\\N silica gel utlizando acetato de etila e
= diclorometano (70:30) como eluente, obtendo-se
o| 79d OH um sélido laranja com ponto de fusdo entre 193 -
194 °C e rendimento de 84% (130 mg, 0,347

mmol).

IV (KBF) vmax (cm™) 3308 (N-H); 1677 (C=0); 1618, 1597, 1565 e 1503 (C=C): 728
(C-H).

RMNH (DMSO-de, 400 MHz, ppm) 7,96 (d, 1H, J=7,6 Hz); 7,93 (d, 1H, J=8,0 H2);
7,92 (s, 1H): 7,82 (t, 1H, J=7,6 Hz); 7,72 (t, 1H, J=7,6 Hz); 7,52 (t, 1H, J=5,9 Hz);
7,31 (d, 2H, J=7,6 Hz); 7,20 (m, 3H); 5,91 (d, 1H, J=4,6 Hz); 5,76 (d, 1H, J=4,6 Hz);
5,73 (s, 1H); 4,56 (t, 2H, J=5,9 Hz); 3,65 (g, 2H, J=6,0 Hz).

RMN*®C (DMSO-dg, 100 MHz, ppm) 181,5; 181,2; 151,4; 148,2; 143,9; 134,8; 132,9;
132,2; 130,2; 127,8; 126,8; 126,3; 125,8; 125,3; 122,5; 99,9; 67,9; 47,3; 41,7.

LC / MS [(C21H18N40O3)-H] calculado: 373,1302; encontrado: 373,1347.

5.11.5 Sintese do 2-[2-(4-hidroximetil-1H-1,2,3-triazol-1-il)-etilamino]-1,4-
naftoquinona

o O produto 79e, sdlido laranja, foi obtido com

NHOA~N 72% (88 mg, 0,295 mmol) de rendimento e ponto de
N AN

= fusdo entre 193 - 194 °C.
| 79e

HO
IV (KBr) vmax (cm™) 3335 (N-H); 1669 (C=0); 1607,

1569 e 1522 (C=C); 729 (C-H).
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RMN'H (DMSO-dg, 400 MHz, ppm) 7,99 (s, 1H); 7,96 (d, 1H, J=7,6 Hz); 7,92 (d, 1H,
J=7,1 Hz); 7,80 (td, 1H, J=7,6 e 1,0 Hz); 7,71 (td, 1H, J=7,6 e 1,2 Hz); 7,47 (t, 1H,
J=6,1 Hz); 5,75 (s, 1H); 5,08 (t, 1H, J=5,6 Hz); 4,57 (t, 2H, J=6,1 Hz); 4,48 (d, 2H,
J=5,4 Hz); 3,65 (q, 2H, J=6,1 HZz).

RMN*3C (DMSO-dg, 100 MHz, ppm) 182,1; 181,7; 148,7; 148,4; 135,2; 133,4; 132,7;
130,8; 126,3; 125,7; 123,5; 100,6; 55,5; 47,6; 42,3.

LC / MS [(C1sH14N4O3)-H] calculado: 297,0989; encontrado: 297,0947.

5.11.6 Sintese do 2-{2-[4-(2-hidroxipropan-2-il)-1H-1,2,3-triazol-1-il]etilamino}-
1,4-naftoquinona

(|3 O produto 79f, sdlido laranja, foi obtido com
NHJ\N/N\\N 86% (116 mg, 0,355 mmol) de rendimento e ponto
= de fuséo entre 170 - 171 °C.
| 79f
o) HO

IV (KBr) vmax (M) 3345 (O-H); 3277 (N-H); 1678 (C=0); 1616, 1599, 1566 ¢ 1498
(C=C); 728 (C-H).

RMNH (DMSO-de, 400 MHz, ppm) 7,95 (d, 1H, J=7,6 Hz); 7,90 (d, 1H, J=7,6 H2);
7,89 (s, 1H); 7,80 (td, 1H, J=7,6 e 1,2 Hz); 7,70 (td, 1H, J=7,6 e 1,4 Hz); 7,48 (t, 1H,
J=6,1 Hz); 5,65 (s, 1H); 4,95 (s, 1H); 4,54 (t, 2H, J=6,4 Hz); 3,64 (q, 2H, J=6,1 HZ);
1,38 (s, 6H).

RMN*3C (DMSO-dg, 100 MHz, ppm) 182,0; 181,7; 156,3; 148,7; 135,2; 133,4; 132,6;
130,7; 126,3; 125,7; 121,4; 100,4; 67,4; 47,8; 42,4; 31,1.

LC / MS [(C17H18N403)-H] calculado: 325,1302; encontrado: 325,1232.
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5.11.7 Sintese do 2-{2-[4-(1-hidroxicicloexil)-1H-1,2,3-triazol-1-il]etilamino}-1,4-
naftoquinona

o O produto 79g, sélido vermelho, foi obtido

|
O‘ NH/\N/NYN com 74% (112 mg, 0,306 mmol) de rendimento e

= oy Ponto de fusdo entre 178 - 179 °C.
O| 799
IV (KBr) vmax (cm™) 3260 (N-H); 2933 (C-H); 1674
(C=0); 1609 e 1571 (C=C); 729 (C-H).

RMN'H (DMSO-ds, 400 MHz, ppm) 7,88 (dt, 1H, J=7,6 e 2,4 Hz); 7,90 (dt, 1H, J=8,0
e 2,2 Hz); 7,88 (s, 1H); 7,80 (it, 1H, J=7,6 e 2,4 Hz); 7,70 (tt, 1H, J=7,6 e 2,4 Hz);
7,46 (t, 1H, J=6,0 Hz); 5,63 (s, 1H); 4,69 (d, 1H, J=4,6 Hz); 4,55 (t, 2H, J=5,6 Hz);
3,65 (g, 2H, J=5,9 Hz); 1,79 (t, 2H, J=10,0 Hz); 1,58 (m, 4H); 1,41 (m, 1H).

RMN*C (DMSO-ds, 100 MHz, ppm) 182,0; 181,7; 155,9; 148,7; 135,2; 133,4; 132,6;
130,7; 126,3; 125,7; 122,0; 100,4; 68,3; 47,9; 42,3; 25,6; 22,1.

LC / MS [(CxoH22N403)-H] calculado: 365,1615; encontrado: 365,1538.

5.11.8 Sintese do 2-{2-[4-(2-hidroxibutan-2-il)-1H-1,2,3-triazol-1-il]etilamino}-1,4-

naftoquinona

|O O produto 79h, sélido laranja, foi obtido
NH/\N/N\\N com 94% (132 mg, 0,388 mmol) de rendimento e
= ponto de fuséo entre 160 - 161 °C.
| 79h OH
@)

IV (KBI) vmax (€cm™) 3349 (N-H); 1672 (C=0);
1610, 1570 e 1525 (C=C); 728 (C-H).

RMNH (DMSO-de, 400 MHz, ppm) 7,79 (d, 1H, J=7,6 Hz); 7,74 (d, 1H, J=7,6 Hz);
7,69 (s, 1H); 7,63 (td, 1H, J=7,4 e 1,0 Hz); 7,54 (td, 1H, J=7,6 e 1,0 Hz); 7,30 (t, 1H,
J=6,4 Hz); 5,49 (s, 1H); 4,61 (s, 1H); 4,39 (t, 2H, J=6,1 Hz); 3,49 (g, 2H, J=6,1 HZ);
1,48 (m, 2H); 1,18 (s, 3H); 0,47 (t, 3H, J=7,4 Hz).
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RMN*C (DMSO-ds, 100 MHz, ppm) 182,0; 181,7; 155,2; 148,7; 135,2; 133,4; 132,6;
130,7; 126,3; 125,7; 122,2; 100,4; 70,1; 47,9; 42,3; 35,9; 28,6; 8,6.

LC / MS [(C1gH20N4O3)-H] calculado: 339,1459; encontrado: 339,1397.

5.11.9 Sintese do 2-[2-(4-propil-1H-1,2,3-triazol-1-il)etilamino]-1,4-naftoquinona

0 O produto 79i foi purificado em coluna
O NH/\N/N\\N cromatografica de silica gel utilizando na fase
S5 moével acetato de etila e diclorometano (50:50),

ol 79i onde foi obtido um sdlido laranja com ponto de

fusdo entre 149 - 150°C e rendimento de 76% (97
mg, 0,312 mmol).

IV (KBI) vmax (€M) 3362 (N-H); 2954 (C-H); 1674 (C=0); 1629, 1608 1571 e 1515
(C=C): 726 (C-H).

RMN*H (DMSO-ds, 400 MHz, ppm) 7,95 (d, 1H, J=7,6 Hz); 7,91 (d, 1H, J=7,6 Hz);
7,87 (s, 1H); 7,81 (t, 1H, J=7,6 Hz); 7,71 (t, 1H, J=7,6 Hz); 7,52 (t, 1H, J=5,9 Hz);
5,68 (s, 1H); 4,53 (t, 2H, J=5,9 Hz); 3,64 (q, 2H, J=6,1 Hz); 2,52 (t, 2H, J=7,3 H2z);
1,52 (sex, 2H, J=7,3 Hz); 0,82 (t, 2H, J=7,4 Hz).

RMN®C (DMSO-dg, 100 MHz, ppm) 181,5; 181,2; 148,2; 146,6; 134,7; 132,9; 132,2;
130,2; 125,8; 125,2; 122,3; 99,8; 47,3; 41,8; 26,9; 22,1; 13,4.

LC / MS [(C17H18N4O2)-H] calculado: 309,1353; encontrado: 309,1395.

5.11.10 Sintese do 2-[2-(4-butil-1H-1,2,3-triazol-1-il)etilamino]-1,4-naftoquinona

T) O produto 79j foi purificado em coluna
NH/\N/N‘N cromatogréafica de silica gel utilizando na fase
= moével acetato de etila e diclorometano (50:50),

cl 79j onde foi obtido um sélido laranja com ponto de
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fusdo entre 169 - 170°C e rendimento de 85% (114 mg, 0,351 mmol).

IV (KBT) vimax (cm™) 3285 (N-H); 2926 (C-H); 1680 (C=0); 1610, 1569 e 1499 (C=C);
728 (C-H).

RMN'H (DMSO-ds, 400 MHz, ppm) 7,62 (dd, 1H, J=7,8 e 0,8 Hz); 7,55 (dd, 1H,
J=7,8 e 1,1 Hz); 7,50 (s, 1H); 7,47 (td, 1H, J=7,4 e 1,1 Hz); 7,37 (td, 1H, J=7,4 e 1,6
Hz); 7,13 (t, 1H, J=5,9 Hz); 5,32 (s, 1H); 4,20 (t, 2H, J=5,8 Hz); 3,31 (g, 2H, J=5,8
Hz); 2,21 (t, 2H, J=7,4 Hz); 1,14 (qui, 2H, J=7,8 Hz); 0,89 (sex, 2H, J=7,4 Hz); 0,45
(t, 3H, J=7,4 Hz).

RMN*3C (DMSO-dg, 100 MHz, ppm) 182,0; 181,7; 148,7; 147,3; 135,2; 133,4; 132,6;
130,7; 126,2; 125,7; 122,7; 100,4; 47,8; 42,3; 31,5; 25,0; 21,9; 14,0.

LC / MS [(C1gH20N40O5)-H] calculado: 323,1510; encontrado: 323,1449.

5.12 Sintese dos derivados 2-[3-(1H-1,2,3-triazol-1-il)propilamino]-1,4-
naftoquinona

Q 0 N=N

!
O‘ NH_ A~ Ns — R | NH/\/N\/)\R
| Cul, Et,N, DMSO e ‘
Ar, t.a. ')
78b 80a-j
R = Ph (a), 4-MeOC H, (b), 4-MeCH, (c), CHOHPh (d), CH,OH (e), C(CH,),OH (),

OH
<:>< (9), C(CHZ)(OH)CH,CH, (h), CH,CH,CH; (i), CH,(CH,),CH; ().

Em um baldo de 25 mL contendo 2 mL de DMSO foram adicionados os
seguintes reagentes: 50 mg (0,195 mmol) do 2-(3-azidopropilamino)-1,4-
naftoquinona; 5,6 mg (0,03 mmol) de Cul; 0,30 mmol do alquino terminal e uma gota
de trietilamina. A reacao ficou sob agitacdo magnética a temperatura ambiente em
atmosfera de argbnio. Apds o consumo de todo reagente inicial (azida) verificado
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através de placas CCDA, a mistura reacional foi extraida em funil de separacdo com
diclorometano e agua. A fase organica foi submetida a coluna cromatografica de

silica gel para isolamento do produto desejado.

5.12.1 Sintese do 2-[3-(4-fenil-1H-1,2,3-triazol-1-il)propilamino]-1,4-naftoquinona

N O produto 80a foi purificado em

O
, e oy
| NHJ\/N\/)\Q coluna de silica gel utilizando na fase
O‘ movel acetato de etila e diclorometano
80a (40:60), obtendo-se assim, um sodlido
0 laranja em rendimento de 86% (60 mg,

0,167 mmol) e ponto de fuséo entre 223 - 224 °C.

IV (KBI) vmax (cm™) 3340 (N-H); 1673 (C=0); 1623, 1601, 1571 e 1515 (C=C); 728
(C-H).

RMN'H (DMSO-ds, 400 MHz, ppm) 8,55 (s, 1H); 7,95 (d, 1H, J=7,8 Hz); 7,92 (d, 1H,
J=7,8 Hz); 7,80 (d, 3H, J=7,4 Hz); 7,69 (t , 1H, J=7,4 Hz); 7,57 (s, 1H); 7,41 (t, 2H,
J=7,4 Hz): 7,30 (t, 1H, J=7,4 Hz); 5,69 (s, 1H): 4,47 (t, 2H, J=7,0 Hz); 2,20 (qui, 2H,
J=7,0 Hz).

RMN®C (DMSO-dg, 100 MHz, ppm) 181,9; 181,8; 149,0; 146,7; 134,2; 133,6; 132,5;
131,3; 130,9; 129,2; 128,2; 126,2; 125,7; 125,5; 121,9; 100,1; 47,8; 28,3.

LC / MS [(C21H18N4O2)-H] calculado: 357,1353; encontrado: 357,1296.

5.12.2 Sintese do 2-{3-[4-(4-metoxifenil)-1H-1,2,3-triazol-1-il]propilamino}-1,4-
naftoquinona

o N O produto 80b foi purificado em
| NHJ\/'\G\/}\Q\O coluna de silica gel utilizando na fase
O‘ \' mével acetato de etila e
|

80b diclorometano (40:60), obtendo-se um
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sélido laranja em rendimento de 71% (54 mg, 0,139 mmol) e ponto de fusdo entre
218 - 219 °C.

IV (KBr) vmax (cm™) 3338 (N-H); 1672 (C=0); 1624, 1603, 1571, 1516 e 1502 (C=C);
1252 (C-0); 729 (C-H).

RMN'H (DMSO-ds, 400 MHz, ppm) 8,43 (s, 1H); 7,95 (d, 1H, J=7,4 Hz); 7,92 (d, 1H,
J=7,8 Hz); 7,80 (t, 1H, J=7,0 Hz); 7,72 (d, 2H, J=8,2 Hz); 7,57 (s, 1H); 6,97 (d, 2H,
J=8,2 Hz); 5,69 (s, 1H); 4,45 (t, 2H, J=6,6 Hz); 3,76 (s, 3H); 2,18 (t, 2H, J=7,0 Hz).

RMN®C (DMSO-dg, 100 MHz, ppm) 181,3; 181,2; 158,8; 148,4; 146,1; 134,7; 133,0;
132,1: 130,3; 126,4; 125,8; 125,2;: 123,3; 120,5; 114,1; 99,5; 55,0: 47,2; 27,7.

LC / MS [(C22H20N403)-H] calculado: 387,1459; encontrado: 387,1396.

5.12.3 Sintese do 2-{3-[4-(4-metilfenil)-1H-1,2,3-triazol-1-il]propilamino}-1,4-
naftoquinona

o n=N O produto 80c foi purificado em

| NHJ\/I\II\/)\Q\ coluna de silica gel utilizando na fase

O‘ movel acetato de etila e diclorometano

O| 80c (40:60), obtendo-se um solido laranja

em rendimento de 84% (61 mg, 0,169

mmol) e ponto de fusdo entre 234 - 235 °C.

IV (KBI) vmax (€M) 3341 (N-H); 1672 (C=0); 1623, 1602, 1572 e 1515 (C=C); 728
(C-H).

RMN'H (DMSO-ds, 400 MHz, ppm) 8,49 (s, 1H); 7,95 (d, 1H, J=7,8 Hz); 7,92 (d, 1H,
J=7,8 Hz); 7,80 (t, 1H, J=7,1 Hz); 7,71 (s, 1H); 7,68 (d, 2H, J=7,8 Hz): 7,57 (s, 1H);
7,22 (d, 2H, J=6,6 Hz): 5,69 (s, 1H); 4,46 (t, 2H, J=6,6 Hz); 2,30 (s, 3H); 2,19 (t, 2H,
J=7,0 Hz).



154

RMN*®C (DMSO-dg, 100 MHz, ppm) 181,3; 181,2; 148,4; 146,2; 136,9; 134,6; 133,0;
132,0; 130,3; 129,2; 127,9; 125,7; 125,1; 124,9; 120,9; 99,5, 47,2; 27,7, 20,6.

LC / MS [(C22H20N405)-H] calculado: 371,1510; encontrado: 371,1556.

5.12.4 Sintese do 2-{3-[4-(hidroxifenilmetil)-1H-1,2,3-triazol-1-il]propilamino}-

1,4-naftoquinona

o) N=N OH O produto 80d foi purificado em
| NH/\/'\’I % coluna de silica gel utilizando acetato de
O‘ etla e diclorometano (70:30) como
c|> 80d eluente, obtendo-se um sélido laranja com

ponto de fusdo entre 176 - 177 °C e
rendimento de 86% (65 mg, 0,167 mmol).

IV (KBF) vmax (cm™®) 3336 (N-H); 1673 (C=0); 1597, 1562 e 1513 (C=C); 728 (C-H).

RMN'H (DMSO-dg, 400 MHz, ppm) 7,97 (dd, 1H, J=7,6 e 0,8 Hz); 7,93 (dd, 1H,
J=7,8 e 1,0 Hz); 7,91 (s, 1H); 7,81 (td, 1H, J=7,6 e 1,2 Hz); 7,71 (td, 1H, J=7,6 e 1,2
Hz); 7,63 (t, 1H, J=5,9 Hz); 7,39 (d, 2H, J=7,1 Hz); 7,30 (t, 2H, J=7,1 Hz); 7,22 (t, 1H,
J=7,4 Hz); 5,94 (d, 1H, J=5,6 Hz); 5,80 (s, 1H); 5,66 (s, 1H); 4,38 (t, 2H, J=6,8 Hz);
3,18 (q, 2H, J=6,4 Hz); 2,10 (qui, 2H, J=6,6 Hz).

RMN®C (DMSO-dg, 100 MHz, ppm) 181,4; 181,3; 148,5; 144,0; 134,7; 133,0; 132,1;
130,4; 127,9; 126,9; 126,3; 125,8; 125,2; 122,1; 99,5; 67,9; 54,8; 47,0; 28,0.

LC / MS [(C22H20N40O3)-H] calculado: 387,1459; encontrado: 387,1525.

5.12.5 Sintese do 2-[3-(4-hidroximetil-1H-1,2,3-triazol-1-il)propilamino]-1,4-
naftoquinona
0 =N O produto 80e foi purificado em coluna

|
O‘ NH/\/N\/)\\OH de silica gel utilizando acetato de etila como

| 80e
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eluente, obtendo-se um sélido laranja com ponto de fusdo entre 188 - 189 °C e
rendimento de 70% (43 mg, 0,138 mmol).

IV (KBI) vmax (cm™) 3335 (N-H); 1671 (C=0): 1621, 1597, 1569 e 1514 (C=C); 729
(C-H).

RMN'H (DMSO-dg, 400 MHz, ppm)

RMN®C (DMSO-dg, 100 MHz, ppm) 181,4; 181,3; 148,5; 148,3; 134,7; 133,1; 133,0;
132,1; 130,4; 125,8; 125,2; 122,8; 99,5; 55,0; 47,0; 28,0.

LC / MS [(C16H16N4O3)-H] calculado: 311,1145; encontrado: 311,1188.

5.12.6 Sintese do 2-{3-[4-(2-hidroxipropan-2-il)-1H-1,2,3-triazol-1-
ilJpropilamino}-1,4-naftoquinona

o} n=N O produto 80f foi purificado em coluna
| NH¢\/|\’1\/)\‘/\ de silica gel utilizando na fase movel acetato
O‘ "o de etila e diclorometano (80:20), obtendo-se
c|) 80f assim, um solido laranja com ponto de fuséo

entre 197 - 198 °C e rendimento de 81% (54
mg, 0,159 mmol).

IV (KBr) vmax (cm™) 3347 (N-H): 2972 (C-H): 1672 (C=0); 1621, 1603, 1570 e 1518
(C=C); 729 (C-H).

RMN'H (DMSO-dg, 400 MHz, ppm) 7,95 (dd, 1H, J=7,8 e 1,2 Hz): 7,91 (dd, 1H,
J=7,8 Hz); 7,89 (s, 1H); 7,80 (td, 1H, J=7,4 e 1,4 Hz); 7,70 (td, 1H, J=7,4 e 1,4 Hz);
7,62 (t, 1H, J=5,9 Hz); 5,63 (s, 1H); 5,02 (s, 1H); 4,36 (t, 2H, J=6,8 Hz); 3,19 (q, 2H,
J=6,4 Hz); 2,10 (qui, 2H, J=6,6 Hz); 1,42 (s, 6H).

RMN*3C (DMSO-dg, 100 MHz, ppm) 181,9; 181,8; 156,2; 148,9; 135,2; 133,5; 132,6;
130,8; 126,3; 125,7; 121,0; 100,0; 67,4; 47,4; 31,1; 28,5.
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LC / MS [(C18H20N403)-H] calculado: 339,1459; encontrado: 339,1500.

5.12.7 Sintese do 2-{3-[4-(1-hidroxicicloexil)-1H-1,2,3-triazol-1-il]propilamino}-
1,4-naftoquinona

o n=N O produto 80g foi purificado em

| NHJ\/IL\/)@ coluna de silica gel utilizando na fase
O‘ HO movel acetato de etila e diclorometano
| 80g (80:20), obtendo-se assim, um soélido
© laranja com ponto de fusdo entre 209 -

210 °C e rendimento de 70% (52 mg, 0,137 mmol).

IV (KBI) vmax (€M) 3417 (O-H); 3341 (N-H): 2940 (C-H); 1673 (C=0); 1596, 1561,
1515 e 1474 (C=C); 727 (C-H).

RMNH (DMSO-de, 400 MHz, ppm) 7,95 (d, 1H, J=7,6 Hz); 7,91 (d, 1H, J=7,6 Hz);
7,60 (s, 1H); 7,80 (td, 1H, J=7,6 e 1,0 Hz); 7,70 (td, 1H, J=7,5 e 1,0 Hz); 7,62 (t, 1H,
J=5,6 Hz); 5,64 (s, 1H); 4,77 (s, 1H); 4,37 (t, 2H, J=7,0 Hz); 3,19 (g, 2H, J=6,4 HZ);
2,10 (qui, 2H, J=6,8 Hz); 1,82 (2H); 1,64 (m, 4H); 1,45 (s, 1H); 1,37 (2H); 1,23 (1H).

RMN*C (DMSO-dg, 100 MHz, ppm) 181,9; 181,8; 148,9; 135,2; 133,5; 132,6; 130,8;
126,3; 125,7; 121,6; 100,0; 68,3; 47,4, 28,5; 25,6; 22,1.

LC / MS [(C21H24N40O3)-H] calculado: 379,1772; encontrado: 379,1832.

5.12.8 Sintese do 2-{3-[4-(2-hidroxibutan-2-il)-1H-1,2,3-triazol-1-il]propilamino}-
1,4-naftoquinona

o n=N O produto 80h foi purificado em
I
| NH/\/N\/)\/\\ coluna de silica gel utilizando na fase moével
HO
O‘ acetato de etila e diclorometano (80:20),

(|) 80h obtendo-se assim, um sdlido laranja com

ponto de fusdo entre 166 - 167 °C e
rendimento de 75% (52 mg, 0,147 mmol).
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IV (KBI) vmax (cm™) 3339 (N-H): 2968 (C-H); 1672 (C=0); 1623, 1601, 1570, 1514 e
1470 (C=C); 727 (C-H).

RMN'H (DMSO-dg, 400 MHz, ppm) 7,56 (dd, 1H, J=7,8 e 1,0 Hz): 7,52 (dd, 1H,
J=7,6 e 1,0 Hz); 7,46 (s, 1H); 7,40 (td, 1H, J=7,4 e 1,5 Hz): 7,30 (td, 1H, J=7,6 e 1,2
Hz); 7,19 (t, 1H, J=6,1 Hz); 5,23 (s, 1H): 4,44 (s, 1H); 3,98 (t, 2H, J=7,9 Hz); 2,78 (q,
2H, J=6,4 Hz); 1,71 (qui, 2H, J=6,8 Hz); 1,30 (q, 2H, J=7,3 Hz); 0,99 (s, 3H); 0,31 (t,
3H, J=7,3 H2).

RMNC (DMSO-dg, 100 MHz, ppm) 181,9; 181,8; 155,1; 148,9; 135,2; 133,5; 132,5;
130,8; 126,2; 125,7; 121,8; 100,0; 70,1; 47,4: 35,8; 28,6; 28,5; 8,7.

LC / MS [(C19H22N403)-H] calculado: 353,1615; encontrado: 353,1651.

5.12.9 Sintese do 2-[3-(4-propil-1H-1,2,3-triazol-1-il)propilamino]-1,4-

naftoquinona

e} n=N O produto 80i foi purificado em
| NH/\/'\’l\/)J\ coluna cromatogréafica de silica gel
O‘ utilizando na fase mdvel acetato de etila e
o| 80i diclorometano (50:50), onde foi obtido um

sélido laranja com ponto de fusao entre 187
- 188°C e rendimento de 81% (51 mg, 0,157 mmol).

IV (KBI) vmax (cm™) 3338 (N-H); 1673 (C=0); 1622, 1600, 1571 e 1515 (C=C); 729
(C-H).

RMN'H (DMSO-dg, 400 MHz, ppm) 7,58 (dd, 1H, J=7,6 e 1,2 Hz); 7,53 (dd, 1H,
J=7,6 e 1,2 Hz); 7,46 (s, 1H); 7,42 (td, 1H, J=7,6 e 1,2 Hz); 7,32 (td, 1H, J=7,6 e 1,2
Hz); 7,21 (t, 1H, J=5,6 Hz); 5,25 (s, 1H); 3,98 (t, 2H, J=6,8 Hz); 2,80 (q, 2H, J=6,4
Hz); 2,16 (t, 2H, J=7,4 Hz); 1,72 (qui, 2H, J=6,8 Hz); 1,18 (sex, 2H, J=7,6 Hz); 0,49
(t, 3H, J=7,3 Hz).
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RMN*C (DMSO-ds, 100 MHz, ppm) 181,4; 181,3; 148,4; 146,6; 134,7; 133,8; 132,1;
130,3; 125,8; 125,2; 121,8; 99,5; 46,9; 27,9; 27,0; 22,1; 13,5.

LC / MS [(C1gH20N40O5)-H] calculado: 323,1510; encontrado: 323,1556.

5.12.10 Sintese do 2-[3-(4-butil-1H-1,2,3-triazol-1-il)propilamino]-1,4-

naftoquinona

|O |’\|;N O produto 80j foi purificado em
NH_~ N/ coluna cromatografica de silica gel

O‘ utilizando na fase movel acetato de etila e
c|) 80j diclorometano (50:50), onde foi obtido um

sélido laranja com ponto de fusdo entre
182 - 183°C e rendimento de 82% (54 mg, 0,159 mmol).

IV (KBr) vmax (cm™) 3339 (N-H); 2921 (C-H): 1672 (C=0); 1622, 1601, 1571 e 1515
(C=C); 729 (C-H).

RMN'H (DMSO-dg, 400 MHz, ppm) 7,79 (dd, 1H, J=7,6 e 1,2 Hz); 7,75 (dd, 1H,
J=7,6 e 1,2 Hz); 7,67 (s, 1H); 7,63 (td, 1H, J=7,4 e 1,2 Hz); 7,53 (td, 1H, J=7,3 e 1,2
Hz); 7,42 (t, 1H, J=6,1 Hz); 5,46 (s, 1H); 4,19 (t, 2H, J=6,8 Hz); 3,01 (g, 2H, J=6,4
Hz); 2,39 (t, 2H, J=7,3 Hz); 1,93 (qui, 2H, J=6,8 Hz); 1,36 (qui, 2H, J=7,6 Hz); 1,11
(sex, 2H, J=7,6 Hz); 0,68 (t, 3H, J=7,4 HZz).

RMN®C (DMSO-dg, 100 MHz, ppm) 181,9; 181,8; 148,9; 147,2; 140,1; 135,2; 133,5;
132,6; 130,8; 126,3; 125,7; 122,3; 100,0; 47,4, 31,5; 28,4, 25,1, 22,1; 14,1.

LC / MS [(C19H22N4O3)-H] calculado: 337,1666; encontrado:337,1708.
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5.13 Sintese do 5,7-dibromo-8-hidroxiquinolina

Br
AN Br,, MeOH AN
_ : - _
N 5 min, t.a. N Br
109 OH 110 OH

Em um baldo 250 mL contendo 50 mL de metanol foi adicionado 4,5 g (31,0
mmol) de 8-hidroxiquinolina e 5,0 g (59,5 mmol) de bicarbonato de sddio (NaHCO3).
Em seguida, sob agitacdo magnética e temperatura ambiente, foi adicionado a
mistura 5 mL de bromo dissolvido em 50 mL de metanol. A mistura reacional ficou
sob constante agitacdo magnética e temperatura ambiente por 5 minutos. Logo
apos, foi adicionado 2,5 g (19,8 mmol) de sulfito de sédio (Na,SO3) e o precipitado
formado foi filtrado, lavado com agua e seco a vacuo. O produto, sélido bege, depois
de seco apresentou rendimento de 92% (8,64 g, 28,5 mmol) e ponto de fusdo entre
198 — 199 °C.

IV (KBr) vmax (cm™) 3068 (O-H); 1611, 1582, 1570, 1490 (C=C): 1201 (C-O); 809,
652 (C-H).

RMN'H (DMSO-ds, 400 MHz, ppm) 8,96 (dd, 1H, J=4,3 e 1,2 Hz); 8,43 (dd, 1H,
J=8,6 e 1,2 Hz); 8,03 (s, 1H); 7,76 (dd, 1H, J=8,6 e 4,3 Hz); 3,52 (s, 1H).

RMN®C (DMSO-dg, 100 MHz, ppm) 149,5; 148,2; 137,3; 133,9; 131,7; 124,9; 122,1;
107,3; 103,6.
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5.14 Sintese do 7-bromo-5,8-quinolinoquinona

Br @]

| AN HNO, AN

_
N Br H,SO, N
110 OH 103 O

Em um baldo de 250 mL foi dissolvido 5,18 g (17,1 mmol) de 5,7-dibromo-8-
hidroxiquinolina em 20 mL de H,SO,4. Em seguida, foi adicionado por 30 minutos 2,5
mL de HNO3 (61%) em banho de gelo e agitagdo magnética. Logo apds o tempo
reacional, foi adicionado 200 mL de agua gelada e o produto extraido com
diclorometano. O produto, sélido amarelo esverdeado, apresentou rendimento de
65% (2,65 g, 11,1 mmol) e ponto de fuséo entre 177 — 178 °C.

IV (KBF) vinax (cm™%) 3046 (C-H sp®); 1694 (C=0); 1654, 1591, 1574 (C=C); 697 (C-

H).

RMN'H (CDCls, 400 MHz, ppm) 9,08 (dd, 1H, J=4,7 e 2,0 Hz); 8,44 (dd, 1H, J=7,8 e
2,0 Hz): 7,76 (dd, 1H, J=7,8 e 4,7 Hz); 7,61 (s, 1H).

RMN*C (CDCls, 100 MHz, ppm) 181,8; 176,0; 154,8; 146,6; 140,8; 139,6; 134,9;
128,9; 128,1.

5.15 Sintese dos derivados 6-alquilamino-7-bromo e 6-alquilamino-5,8-

guinolinoquinonas

i ; j
| N HNR, | SN NR; N | NR,
> + |
— pZ
| t.a, 5 min S |
103 © 107a-l 108a. ©

NR, = piperidinil (a), pirrolidinil (b), morfolinil (c), iomorfolinil (d),
4-metilpiperaznil ), dietilamino (f), dipropilamino @), n-butilamino (),

benzlamino (), alilamino (), 2-metoxietilamino k), 2-hidroxietilamino ().
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Em um baldo de 25 mL contendo 5 mL de acetonitrila foi adicionado 238 mg
(1,0 mmol) de 7-bromo-5,8-quinolinoquinona. Em seguida, sob agitacdo magnética,
foi adicionado lentamente 1,5 mmol da amina primaria ou secundaria. A mistura
reacional ficou sob constante agitagdo e temperatura ambiente por 5 minutos. Apds
o tempo reacional, o solvente foi rotaevaporado e a massa bruta submetida a coluna
cromatografica de silica gel. Para obtencdes dos derivados 6-amino-5,8-
guinolinoquinonas a partir das aminas primarias, as reacdes deverao ser realizadas

em atmosfera inerte de argonio.

5.15.1 6-(piperidin-1-il)-7-bromo-5,8-quinolinoquinona
o O produto 107a foi purificado em coluna de silica gel
(Ii’\@ utilizando acetato de etila e diclorometano (20:80) como
| P eluente, obtendo-se um solido vermelho com ponto de fuséo
N | o entre 124 — 125 °C (95 °C) (ABDELWAHAB et al., 2014) e
rendimento de 48% (154 mg, 0,479 mmol).

107a O

IV (KBF) vimax (cm™%) 2926, 2836 (C-H sp?); 1669 (C=0); 1574, 1552 (C=C); 807 (C-
H).

RMN'H (CDCls, 300 MHz, ppm) 8,96 (d, 1H, J=4,7 Hz); 8,32 (d, 1H, J=7,6 Hz); 7,60
(dd, 1H, J=7,6 € 4,7 Hz); 3,56 (t, 4H, J=4,7 Hz); 1,77 (m, 6H).

RMN®C (CDCls, 75 MHz, ppm) 188,2; 176,5; 154,7; 147,0; 134,9; 128,1; 126,6;
53,5: 26,8; 23,9.

LC / MS [(C14H13BrN,O)+H]" calculado: 321,0233; encontrado: 321,0233.

5.15.2 6-(piperidin-1-il)-5,8-quinolinoquinona
o O O produto 108a foi purificado em coluna de silica gel
N

utilizando metanol e acetato de etila (10:90) como eluente,

X
| _ obtendo-se um solido vermelho com ponto de fuséo entre 142
N
c|) — 143 °C (149 °C) (ABDELWAHAB et al., 2014) e rendimento
108a

de 48% (116 mg, 0,479 mmol).
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IV (KBr) vmax (cm™) 2930, 2855 (C-H sp®); 1682, 1633 (C=0); 1576, 1558 (C=C); 799
(C-H).

RMN'H (CDCls, 300 MHz, ppm) 8,93 (dd, 1H, J=4,1 e 1,2 Hz); 8,28 (dd, 1H, J=6,4 e
1,2 Hz); 7,54 (dd, 1H, J=7,6 e 4,7 Hz); 6,17 (s, 1H): 3,52 (t, 4H, J=4,7 Hz); 1,70 (m,
6H).

RMN*C (CDCl3, 75 MHz, ppm) 182,8; 181,7; 154,4; 153,0; 148,2; 134,6; 129,4;
126,3; 110,7; 50,5; 25,8; 24,2.

LC / MS [(C14H14N20,)+H]" calculado: 243,1128; encontrado: 243,1109.

5.15.3 6-(pirrolidin-1-il)-7-bromo-5,8-quinolinoquinona
O produto 107b foi purificado em coluna de silica gel
[

0
N | utilizando acetato de etila e diclorometano (20:80) como eluente,
| _ obtendo-se um solido vermelho com ponto de fuséo entre 108 —
N B 109 °C e rendimento de 56% (172 mg, 0,560 mmol).

107b O
IV (KBr) vinax (cm™)

RMN*H (CDCls, 400 MHz, ppm) 8,95 (dd, 1H, J=4,7 e 2,0 Hz); 8,24 (dd, 1H, J=7,8 e
1,6 Hz); 8,04 (dd, 1H, J=7,8 e 4,7 Hz); 3,98 (m, 4H); 1,97 (m, 4H).

RMN®C (CDCls, 100 MHz, ppm) 181,7; 174,8; 154,1; 150,9; 147,2; 133,8; 127,2;
125,6; 120,9; 54,1; 25,2.

LC / MS [(C13H11BrN,O,)+H]" calculado: 307,0076; encontrado: 307,0074.

5.15.4 6-(pirrolidin-1-il)-5,8-quinolinoquinona

0 O produto 108b foi purificado em coluna de silica gel

SN | NO utilizando metanol e acetato de etila (10:90) como eluente,

| _ obtendo-se um solido vermelho com ponto de fuséo entre 166 —
10NSb 5 167 °C (196 — 197 °C) (FRYATT et al., 2004) e rendimento de

30% (68 mg, 0,298 mmol).
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IV (KBr) vinax (cm™)

RMN*H (CDCl3, 400 MHz, ppm) 8,98 (dd, 1H, J=4,7 e 1,6 Hz); 8,34 (dd, 1H, J=7,8 e
1,6 Hz); 7,55 (dd, 1H, J=7,8 e 4,7 Hz); 5,96 (s, 1H); 3,99 (s, 2H); 3,40 (s, 2H); 2,03
(m, 4H).

RMN3Cc (CDCl3, 100 MHz, ppm) 185,4; 183,2; 157,2; 151,5; 150,9; 137,0; 130,9;
128,5; 108,6; 32,3.

LC / MS [(C13H12N20,)+H]" calculado: 229,0971; encontrado: 229,0914.

5.15.5 6-(morfolin-4-il)-7-bromo-5,8-quinolinoquinona

o O produto 107c foi purificado em coluna de silica gel
N | N\) utilizando acetato de etila e diclorometano (20:80) como
| _ eluente, obtendo-se um sélido vermelho com ponto de fuséo
N B
c|) r entre 139 — 140 °C (174 — 176 °C) (ABDELWAHAB et al.,
107c

2014) e rendimento de 47% (152 mg, 0,470 mmol).
IV (KBr) vimax (cm™) 2971, 2891 (C-H sp®); 1662 (C=0); 1548 (C=C); 684 (C-H).

RMN*H (CDCls, 300 MHz, ppm) 9,00 (dd, 1H, J=4,7 e 1,2 Hz); 8,35 (dd, 1H, J=8,2 e
1,2 Hz); 7,63 (dd, 1H, J=7,6 e 4,7 Hz); 3,88 (t, 4H, J=4,7 Hz); 3,65 (t, 4H, J=5,3 Hz).

RMN®C (CDCls, 75 MHz, ppm) 181,5: 176,9; 155,2; 152,0; 147,3; 135,5; 128,5;
127,6; 118,5; 67,9; 52,7.

LC / MS [(C13H1:BrN,O3)+H]" calculado: 323,0025; encontrado: 322,9955.

5.15.6 6-(morfolin-4-il)-5,8-quinolinoquinona

o o O produto 108c foi purificado em coluna de silica gel
SN | N\) utilizando metanol e acetato de etila (10:90) como eluente,
| _ obtendo-se um solido vermelho vinho com ponto de fuséo
N
cl entre 193 — 194 °C (202 — 205 °C) (JIANG; WANG, 2009) e
108c

rendimento de 37% (90 mg, 0368 mmol).
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IV (KBr) vimax (cm™) 2965 (C-H sp®); 1682, 1628 (C=0); 1578, 1559 (C=C).

RMN'H (CDCls, 300 MHz, ppm) 8,98 (dd, 1H, J=4,7 e 1,2 Hz); 8,33 (dd, 1H, J=8,2 e
1,2 Hz); 7,59 (dd, 1H, J=7,6 e 4,7 Hz); 6,18 (s, 1H); 3,86 (t, 4H, J=4,7 Hz); 3,54 (t,
4H, J=4,7 H2).

RMN®C (CDCls, 75 MHz, ppm) 182,4: 182,0; 154,6; 152,7; 147,8; 134,7; 129,3;
126,6; 112,1; 66,4; 49,1.

LC / MS [(C13H12N,03)+H]" calculado: 245,0920; encontrado: 245,0878.

5.15.7 6-(tiomorfolin-4-il)-7-bromo-5,8-quinolinoquinona

O produto 107d foi purificado em coluna de silica gel
@) S
| @ utilizando acetato de etila e diclorometano (20:80) como

| A eluente, obtendo-se um sélido vermelho com ponto de fusdo
gz
N | Br entre 143 — 144 °C e rendimento de 44% (149 mg, 0,439
107d © mmol).

IV (KBr) Vmax (cm™) 2894 (C-H sp®); 1670 (C=0); 1574, 1550 (C=C).

RMNH (CDCls, 300 MHz, ppm) 8,98 (d, 1H, J=4,7 Hz); 8,34 (dd, 1H, J=7,6 e 1,2
Hz): 7,63 (dd, 1H, J=8,2 e 4,7 Hz); 3,78 (t, 4H, J=5,3 Hz); 2,84 (t, 4H, J=5,3 Hz).

RMN®C (CDCls, 75 MHz, ppm) 181,0; 176,7; 154,7; 152,9; 146,7; 135,0; 128,1;
127,2; 120,3; 54,2; 28,1.

LC / MS [(C13H11BrN,0,S)+H]" calculado: 338,9797; encontrado: 338,9732.

5.15.8 6-(tiomorfolin-4-il)-5,8-quinolinoquinona

o} s O produto 108d foi purificado em coluna de silica gel
SN | N\) utilizando metanol e acetato de etila (10:90) como eluente,
| _ obtendo-se um solido vermelho vinho com ponto de fuséo
N
o| entre 180 — 181 °C e rendimento de 29% (75 mg, 0,288
108d

mmol).
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IV (KBr) vmax (cm™) 2962, 2923 (C-H sp®); 1681, 1629 (C=0); 1577, 1560 (C=C); 797
(C-H).

RMN'H (CDCl3, 300 MHz, ppm) 8,96 (d, 1H, J=4,7 Hz); 8,30 (d, 1H, J=8,2 Hz); 7,58
(dd, 1H, J=8,2 e 4,7 Hz); 6,19 (s, 1H); 3,88 (t, 4H, J=5,3 Hz); 2,80 (t, 4H, J=5,3 Hz).

RMN®C (CDCls, 75 MHz, ppm) 182,5: 181,8; 154,6; 152,2; 134,7; 129,3; 126,5;
111,8; 51,9; 27,1.

LC / MS [(C13H12N20,S)+H]" calculado: 261,0692; encontrado: 261,0685.

5.15.9 6-(4-metilpiperazin-1-il)-7-bromo-5,8-quinolinoquinona

o (\N/ O produto 107e foi purificado em coluna de silica gel
| . : _
N N\) utilizando metanol e acetato de etila (20:80) como eluente,
| _ obtendo-se um sdlido vermelho com ponto de fusdo entre
N I Br 107 — 108 °C (ABDELWAHAB et al., 2014) e rendimento de
107e

57% (192 mg, 0571 mmol).
IV (KBr) Vmax (cm™) 2839, 2794 (C-H sp®); 1655 (C=0); 1572, 1547 (C=C).
RMN™H (CDCls, 300 MHz, ppm) 8,97 (dd, 1H, J=4,7 e 1,8 Hz); 8,33 (dd, 1H, J=8,2 e

1,7 Hz); 7,60 (dd, 1H, J=8,2 e 4,7 Hz): 3,67 (t, 4H, J=4,7 Hz); 2,64 (t, 4H, J=4,7 HZ);
2,37 (s, 3H).

RMN®C (DMSO-ds, 75 MHz, ppm) 181,1; 176,5; 154,7; 151,9; 146,9; 135,0; 128,0;
127,1; 117,7; 55,5; 51,6; 46,0.

LC / MS [(C14H14BrN3O,)+H]" calculado: 336,0342; encontrado: 336,0221.

5.15.10 6-(4-metilpiperazin-1-il)-5,8-quinolinoquinona

o (\N/ O produto foi 108e purificado em coluna de silica gel
S | N\) utilizando metanol e acetato de etila (20:80) como eluente,
| _ obtendo-se um solido vermelho vinho com ponto de fuséo

N
O| entre 166 — 167 °C (168 °C) (ABDELWAHAB et al., 2014) e
108e
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rendimento de 35% (90 mg, 0,350 mmol).

IV (KBr) Vmax (cm™).

RMN'H (CDCls, 300 MHz, ppm) 8,99 (dd, 1H, J=4,7 e 1,2 Hz); 8,33 (dd, 1H, J=7,6 e
1,8 Hz); 7,59 (dd, 1H, J=8,2 e 4,7 Hz); 6,22 (s, 1H); 3,61 (t, 4H, J=4,7 Hz); 2,69 (t,
4H, J=4,7 Hz); 2,39 (s, 3H).

RMN®C (CDCls, 75 MHz, ppm) 182,4; 181,9; 154,4; 152,7; 147,9; 134,7; 129,3;
126,6; 112,2; 54,1; 48,4; 45,4.
LC / MS [(C14H15N30,)+H]" calculado: 258,1237; encontrado: 258,1227.

5.15.11 6-(dietilamino)-7-bromo-5,8-quinolinoquinona

O produto 107f foi purificado em coluna de silica gel

O
S | N__~ utlizando acetato de etila e diclorometano (20:80) como
| _ eluente, obtendo-se um solido vermelho com ponto de fuséo
N B
| r entre 103 — 104 °C e rendimento de 47% (145 mg, 0,469
107f ©
mmol).

IV (KBr) vinax (cm™)

RMN'H (CDCls, 400 MHz, ppm) 8,97 (d, 1H, J=3,5 Hz); 8,33 (dd, 1H, J=7,8 e 1,6
Hz); 7,60 (dd, 1H, J=7,8 e 4,7 Hz); 3,61 (q, 4H, J=7,0 Hz); 1,21 (t, 6H, J=7,0 Hz).

RMN®C (CDCls, 100 MHz, ppm) 181,7; 176,5; 154,5; 153,0; 147,0; 134,9; 128,3;
126,9; 118,7,; 47,2; 13,9.

LC / MS [(C13H13BrN»O,)+H]" calculado: 309,0233; encontrado: 309,0156.
5.15.12 6-(dietilamino)-5,8-quinolinoquinona

O produto 108f foi purificado em coluna de silica gel

N._~ utilizando acetato de etila como eluente, obtendo-se um solido

/

108f O
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vermelho com ponto de fusdo entre 134 — 135 °C e rendimento de 23% (53 mg,
0,230 mmol).

IV (KBr) vinax (cm™)

RMNH (CDCl3, 400 MHz, ppm) 8,95 (dd, 1H, J=4,7 e 1,6 Hz); 8,28 (dd, 1H, J=7,8 e
1,6 Hz); 7,53 (dd, 1H, J=7,8 e 4,7 Hz); 6,07 (s, 1H); 3,54 (q, 4H, J=7,0 Hz); 1,30 (t,
6H, J=7,0 Hz).

RMN*3C (CDCIls, 100 MHz, ppm) 183,0; 180,9; 154,3; 150,1; 148,4; 134,4; 129,1;
126,0; 106,5; 46,9; 12,5.

LC / MS [(C13H14N20,)+H]" calculado: 231,1128; encontrado: 231,1113.

5.15.13 6-(dipropilamino)-7-bromo-5,8-quinolinoquinona

O produto 107g foi purificado em coluna de silica gel
| utiizando acetato de etila e diclorometano (20:80) como
AN N eluente, obtendo-se um sélido vermelho com ponto de
| N/ 5 fusdo entre 93 — 94 °C e rendimento de 38% (128 mg,
| r
107g O 0,379 mmol).

IV (KBF) vmax (cM™Y) 2961, 2926, 2875 (C-H sp?); 1678, 1650 (C=0); 1540 (C=C), 683
(C-H).

RMN'H (CDCls, 300 MHz, ppm) 8,96 (dd, 1H, J=4,7 e 1,8 Hz); 8,33 (dd, 1H, J=8,2 e
1,7 Hz); 7,60 (dd, 1H, J=8,2 e 4,7 Hz); 3,51 (t, 4H, J=7,0 Hz); 1,58 (sex, 4H, J=7,0
Hz); 0,87 (t, 6H, J=7,0 HZz).

RMN®C (CDCl;, 75 MHz, ppm) 181,4; 176,6; 154,5; 153,5; 146,9; 135,0; 128,2;
126,9; 119,1, 54,9; 21,8; 11,1.

LC / MS [(C15H17BrN,O,)+H]" calculado: 337,0546; encontrado: 337,0527.



168

5.15.14 6-(dipropilamino)-5,8-quinolinoquinona

O produto 108g foi purificado em coluna de silica gel
| utilizando metanol e acetato de etila (10:90) como eluente,
AN N obtendo-se um sélido vermelho com ponto de fusdo entre
| N/ 122 — 123 °C e rendimento de 21% (54 mg, 0,209 mmol).
|
108g O IV (KBr) vmax (cm™) 2962, 2926, 2875 (C-H sp®); 1675,

1626 (C=0); 1574, 1555 (C=C); 798 (C-H).

RMN*H (CDCls, 300 MHz, ppm) 8,94 (d, 1H, J=4,7 Hz); 8,28 (d, 1H, J=7,6 Hz); 7,53
(dd, 1H, J=8,2 e 4,7 Hz); 6,03 (s, 1H); 3,44 (t, 4H, J=7,6 Hz); 1,72 (sex, 4H, J=7,6
Hz); 0,96 (t, 6H, J=7,6 Hz).

RMN*C (CDCls, 75 MHz, ppm) 183,1; 180,9; 154,3; 150,2; 148,4; 134,4; 129,2;
126,0; 106,8; 54,8; 20,6; 11,2.
LC / MS [(C15H1gN,05)+H]" calculado: 259,1441; encontrado: 259,1373.

5.15.15 6-(butilamino)-7-bromo-5,8-quinolinoquinona

O produto 107h foi purificado em coluna de silica gel

o)
N | N._~ utilizando acetato de etila e diclorometano (20:80) como
| _ eluente, obtendo-se um sélido vermelho com ponto de fuséo
N .
| entre 124 — 125 °C e rendimento de 80% (247 mg, 0,799
107h ©
mmol).

IV (KBr) vmax (cm™) 3349 (N-H): 2955, 2933, 2862 (C-H sp’); 1679, 1638 (C=0);
1593, 1562 (C=C).

RMN'H (CDCls, 300 MHz, ppm) 8,98 (dd,1H, J=4,7 e 1,2 Hz); 8,33 (dd, 1H, J=7,6 e
1,2 Hz); 7,57 (dd, 1H, J=7,6 e 4,7 Hz); 6,02 (s, 1H); 3,88 (m, 2H); 1,68 (m, 2H); 1,44
(m, 2H): 0,97 (t, 3H, J=7,6 Hz).
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RMN®*C (CDCls, 75 MHz, ppm) 179,8; 155,1; 148,0; 145,9; 134,7; 126,7; 126,4;
45,2; 32,8; 19,8; 13,7.

LC / MS [(C13H13BrN,O,)+H]" calculado: 309,0233; encontrado:

5.15.16 6-(butilamino)-5,8-quinolinoquinona

o O produto 108h foi purificado em coluna de silica

N | NH__~__~ ¢gel utilizando acetato de etila e diclorometano (40:60)

| _ como eluente, obtendo-se um soélido vermelho com ponto
1'\:)8h O| de fuséo entre 145 — 146 °C (148 — 150 °C) (YOSHIDA et

al., 1988) e rendimento de 42% (96 mg, 0,417 mmaol).
IV (KBr) Vmax (cm™)
RMN*H (CDCl3, 300 MHz, ppm) 8,99 (dd, 1H, J=4,7 e 1,8 Hz); 8,34 (dd, 1H, J=8,2 e

1,8 Hz); 7,55 (dd, 1H, J=8,2 e 4,7 Hz); 5,91 (s, 2H); 3,20 (m, 2H); 1,68 (m, 2H); 1,42
(m, 2H): 0,96 (t, 3H, J=7,6 Hz).

RMN*C (CDCl3, 75 MHz, ppm) 181,8; 155,0; 149,3; 147,4; 134,1; 127,2; 126,0;
101,8; 42,3; 30,1; 20,1; 13,6.

LC / MS [(C13H14N20,)+Na]" calculado: 253,0942; encontrado: 253,0899.

5.15.17 6-(benzilamino)-7-bromo-5,8-quinolinoquinona

o O produto 107i foi purificado em coluna de silica
| NH/© gel utilizando acetato de etila e diclorometano (20:80)

X

| P como eluente, obtendo-se um solido vermelho com
N [ B ponto de fus&o entre 119 — 120 °C e rendimento de 73%
107i O

(250 mg, 0,728 mmol).

IV (KBr) vmax (€m™) 3320 (N-H); 3075 (C-H sp?): 1676, 1647 (C=0): 1599, 1567,
1503 (C=C); 684 (C-H).
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RMN'H (CDCls, 300 MHz, ppm) 8,99 (dd, 1H, J=4,7 e 1,2 Hz); 8,33 (dd, 1H, J=8,2 e
1,2 Hz); 7,58 (dd, 1H, J=8,2 4,7 Hz); 7,35 (m, 5H); 6,20 (s, 1H); 5,07 (d, 2H, J=6,4
Hz).

RMN'C (CDCls, 75 MHz, ppm) 179,6; 174,8; 155,1; 147,8; 145,8; 137,4; 134,8;
129,1; 128,2; 127,6; 126,8; 126,5; 49,5.
LC / MS [(C16H11BrN,O)+H]" calculado: 343,0076 ; encontrado: 343,0063.

5.15.18 6-(benzilamino)-5,8-quinolinoquinona

O produto 108i foi purificado em coluna de silica

O - . ,
| NH/@ gel utilizando acetato de etila e diclorometano (30:70)
X

| como eluente, obtendo-se um sdlido laranja com ponto

N/ | de fusdo entre 182 — 183 °C (201 - 204 °) (JIANG;
108i ©O WANG, 2009) e rendimento de 50% (132 mg, 0,499
mmol).

IV (KBI) vmax (cm™) 3291 (N-H); 2923, 2862 (C-H sp®); 1684 (C=0); 1597, 1567
(C=C).

RMN'H (CDCls, 300 MHz, ppm) 9,01 (dd, 1H, J=4,7 e 1,8 Hz); 8,37 (dd, 1H, J=7,6 e
1,7 Hz); 7,58 (dd, 1H, J=7,6 e 4,7 Hz); 7,36 (m, 5H): 6,23 (s, 1H): 5,98 (s, 1H); 4,40
(d, 2H, J=5,9 Hz).

RMN®C (CDCl;, 75 MHz, ppm) 181,5; 181,3; 155,1; 147,2; 135,4; 134,2; 129,1;
128,3; 127,6; 127,3; 126,2; 102,8; 46,9.

LC / MS [(C16H12N»0,)+H]" calculado: 265,0971 ; encontrado: 265,0975.

5.15.19 6-(prop-2-en-ilamino)-7-bromo-5,8-quinolinoquinona

T) O produto 107j foi purificado em coluna de silica gel
AN NHJ\ utilizando acetato de etila e diclorometano (20:80) como
| _ eluente, obtendo-se um soélido vermelho com ponto de

N Br
| fusédo entre 138 — 139 °C e rendimento de 66% (193 mag,
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0,658 mmol).

IV (KBr) vmax (€m™) 3323 (N-H); 3084 (C-H sp?): 1680, 1641 (C=0); 1597, 1563,
1506 (C=C); 684 (C-H).

RMN'H (CDCls, 300 MHz, ppm) 8,99 (dd, 1H, J=4,7 e 1,8 Hz); 8,34 (dd, 1H, J=8,2 e
1,8 Hz); 7,58 (dd, 1H, J=7,6 e 4,7 Hz); 6,07 (s, 1H); 5,98 (ddd, 1H, J=22,3, 10,6 e 5,3
Hz); 5,31 (d, 1H, J=11,8 Hz); 5,26 (d, 1H, J=4,7 Hz); 4,51 (t, 2H, J=5,8 Hz).

RMN'C (CDCls, 75 MHz, ppm) 179,6; 174,8; 155,1; 147,8; 145,9; 134,8; 133,7;
126,8; 126,6; 117,8; 104,0; 47,5.
LC / MS [(C12H9BrN,O,)+H]" calculado: 292,9920; encontrado: 292,9901.

5.15.20 6-(prop-2-en-ilamino)-5,8-quinolinoquinona

O produto 108;j foi purificado em coluna de silica gel

O
| . . : _
N NH_ utilizando acetato de etila e diclorometano (50:50) como
| _ eluente, obtendo-se um sélido vermelho com ponto de
N i fusdo entre 169 — 170 °C e rendimento de 34% (72 mg,
108; 0,336 mmol).

IV (KBr) vmax (cm™) 3300 (N-H); 3158 (C-H sp?); 3010, 2855 (C-H sp®); 1691, 1691
(C=0); 1601, 1566 (C=C).

RMN'H (CDCls, 300 MHz, ppm) 9,00 (dd, 1H, J=4,7 e 1,8 Hz); 8,36 (dd, 1H, J=7,6 e
1,8 Hz); 7,57 (dd, 1H, J=7,6 e 4,7 Hz); 6,03 (s, 1H); 5,94 (s, 1H); 5,86 (m, 1H); 5,30
(m, 2H): 3,86 (t, 2H, J=5,9 Hz).

RMN®C (CDCl;, 75 MHz, ppm) 181,5; 181,2; 155,0; 147,2; 134,1; 131,2; 127,3;
126,2; 118,6; 102,6; 44,9.

LC / MS [(C12H10N20,)+H]" calculado: 215,0815; encontrado: 215,0811.
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5.15.21 6-[(2-metoxietil)amino]-7-bromo-5,8-quinolinoquinona

o O produto 107k foi purificado em coluna de silica

N | NHJ\O/ gel utilizando acetato de etila e diclorometano (30:70)

| _ como eluente, obtendo-se um solido vermelho com ponto
ka O| B de fuséo entre 116 — 117 °C e rendimento de 67% (208

mg, 0,668 mmaol).

IV (KBF) vimax (€m™) 3339 (N-H); 3068 (C-H sp?); 2933, 2897, 2872 (C-H sp’); 1672
(C=0); 1594, 1561, 1505 (C=C); 1117 (C-O); 683 (C-H).

RMN'H (CDCls, 300 MHz, ppm) 8,98 (dd, 1H, J=4,7 e 1,8 Hz); 8,33 (dd, 1H, J=8,2 e
1,8 Hz); 7,57 (dd, 1H, J=7,6 e 4,7 Hz); 6,36 (s, 1H): 4,07 (q, 2H, J=5,3 Hz): 3,63 (t,
2H, J=5,3 Hz); 3,41 (s, 3H).

RMN*C (CDCl3, 75 MHz, ppm) 179,7; 174,7; 155,0; 147,9; 146,2; 134,7; 126,8;
126,5; 70,9; 59,0; 45,0.

LC / MS [(C12H11BrN,O3)+Na]" calculado: 332,9839; encontrado: 332,9784.

5.15.22 6-[(2-metoxietil)amino]-5,8-quinolinoquinona

o] O produto 108k foi purificado em coluna de silica

AN | NHJ\O/ gel utilizando acetato de etila como eluente, obtendo-se

| _ um solido vermelho com ponto de fusdo entre xxx — yyy
:IOSK A °C e rendimento de 51% (118 mg, 0,508 mmol).

IV (KBr) vmax (cm™) 3350 (N-H); 2923 (C-H): 1677 (C=0); 1605, 1566, 1513,1450
(C=C): 1120 (C-O); 678 (C-H).

RMN'H (CDCls, 300 MHz, ppm) 8,98 (dd, 1H, J=4,7 e 1,8 Hz); 8,34 (dd, 1H, J=7,6 e
1,8 Hz); 7,55 (dd, 1H, J=8,2 e 4,7 Hz); 6,18 (s, 1H); 5,91 (s, 1H); 3,64 (t, 2H, J=4,7
Hz); 3,39 (s, 3H); 3,37 (t, 2H, J=5,3 Hz).

RMN'C (CDCl;, 75 MHz, ppm) 181,3; 181,2; 155,0; 147,5; 134,2; 127,3; 126,2;
102,0; 69,2; 58,9; 42,2.



173

LC / MS [(C12H12N,03)+H]" calculado: ; encontrado:

5.15.23 6-[(2-hidroxietil)amino]-7-bromo-5,8-quinolinoquinona

O O produto 1071 foi purificado em coluna de silica

AN | NH/\OH gel utilizando metanol e acetato de etila (10:90) como

| N/ B eluente, obtendo-se um so6lido vermelho com ponto de

1071 c|) fuséo entre 168 — 169 °C e rendimento de 62% (184 mg,
0,619 mmol).

IV (KBr) vimax (cm™) 3278 (O-H); 3078 (C-H sp?); 2933, 2878 (C-H sp°); 1681 (C=0):
1604, 1574 (C=C); 678 (C-H).

RMN'H (DMSO-dg, 300 MHz, ppm) 8,94 (dd, 1H, J=4,7 e 1,8 Hz): 8,31 (dd, 1H,
J=7,6 e 1,2 Hz); 7,74 (dd, 1H, J=7,6 e 4,7 Hz); 7,16 (s, 1H); 4,94 (t, 1H, J=5,3 Hz);
3,85 (g, 2H, J=5,9 Hz); 3,60 (g, 2H, J=5,9 Hz).

RMN*3C (DMSO-dg, 75 MHz, ppm) 180,2; 173,1; 158,0; 154,8; 150,5; 134,9; 133,6;
127,3; 126,2; 94,0; 47,0.

LC / MS [(C11H9BrN,O3)+H]" calculado: 296,9869; encontrado: 296,9844.
5.15.24 6-[(2-hidroxietil)amino]-5,8-quinolinoquinona

O produto 108l foi purificado em coluna de silica

| NH¢\OH gel utilizando metanol e acetato de etila (15:85) como

N
| _ eluente, obtendo-se um solido vermelho com ponto de
N
o| fusdo entre xxx — yyy °C e rendimento de 45% (98 mg,
108l

0,449 mmol).
IV (KBr) Vmax (cm™) 3278 (O-H); 2926 (C-H); 1686 (C=0); 1603; 1564 (C=C).
RMN'H (DMSO-dg, 300 MHz, ppm) 8,95 (dd, 1H, J=4,7 e 1,8 Hz); 8,33 (dd, 1H,

J=7,6 e 1,8 Hz); 7,71 (dd, 1H, J=8,2 e 5,3 Hz); 7,39 (t, 1H, J=5,9 Hz); 5,85 (s, 1H);
4,88 (s, 1H); 3,60 (t, 2H, J=5,3 Hz); 3,25 (g, 2H, J=5,9 Hz).
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RMN*C (DMSO-dg, 75 MHz, ppm) 182,0; 180,5; 155,0; 149,1; 148,8; 134,3; 127,8;
126,9; 101,3; 58,9; 45,1.

LC / MS [(C11H10N203)+H]" calculado: 219,0764; encontrado: 219,0714.
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Espectro 16: Espectro de RMN *H (3, CDCl;, 400 MHz) de 49c
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Espectro 30: Espectro de RMN *H (3, CDCl;, 400 MHz) de 53a
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Espectro 34: Espectro de RMN *H (5, CDCls, 300 MHz) de 53b
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Espectro 38: Espectro de RMN *H (5, CDCl;, 300 MHz) de 53c
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Espectro 42: Espectro de RMN *H (5, CDCl;, 300 MHz) de 53d
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Espectro 44: Espectro de infravermelho de 53e (KBr, cm™)
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Espectro 46: Espectro de RMN *H (3, CDCls, 400 MHz) de 53e
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Espectro 50: Espectro de RMN *H (3, CDCl;, 300 MHz) de 53f
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Espectro 53: Espectro de RMN *H (5, DMSO-ds, 400 MHz) de 76a
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Espectro 86: Espectro de RMN *3C (5, DMSO-ds, 100 MHz) de 79a
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Espectro 102: Espectro de massas (ESI-MS) de alta resolucéo de 79e
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Espectro 115: Espectro de massas (ESI-MS) de alta resolucéo de 79h
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Espectro 121: Espectro de massas (ESI-MS) de alta resolugéo de 79i
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Espectro 124: Espectro de RMN **C (5, DMSO-ds, 100 MHz) de 79j
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Espectro 125: Espectro de massas (ESI-MS) de alta resolucéo de 79j
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Espectro 129: Espectro de RMN *C (5, DMSO-dgs, 100 MHz) de 80a
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Espectro 130: Espectro de massas (ESI-MS) de alta resolucéo de 80a
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Espectro 131: Espectro de infravermelho de 80b (KBr, cm™)

MS Spectrum Graph
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Espectro 132: Espectro de massas (ESI-MS) de alta resolugédo de 80b
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Espectro 136: Espectro de RMN *H (5, DMSO-dg, 400 MHz) de 80c
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Espectro 138: Espectro de massas (ESI-MS) de alta resolu¢éo de 80c
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Espectro 140: Espectro de RMN *H (3, DMSO-ds, 400 MHz) de 80d
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Espectro 142: Espectro de massas (ESI-MS) de alta resolucdo de 80d
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Espectro 147: Espectro de massas (ESI-MS) de alta resolugéo de 80f
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Espectro 148: Expansdo do espectro de RMN *H (5, DMSO-dgs, 400 MHz) de 80f
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Espectro 150: Espectro de RMN *3C (3, DMSO-dg, 100 MHZ) de 80f
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Espectro 152: Espectro de RMN *H (5, DMSO-dg, 400 MHZ) de 80g
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Espectro 154: Espectro de RMN *3C (5, DMSO-dg, 100 MHz) de 80g
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Espectro 157: Espectro de massas (ESI-MS) de alta resolucdo de 80h
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Espectro 159: Expansao do espectro de RMN *H (5, DMSO-ds, 400 MHz) de 80h
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Espectro 165: Espectro de RMN *H (5, DMSO-dg, 400 MHz) de 80j
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Espectro 166: Espectro de RMN *3C (5, DMSO-dg, 100 MHz) de 80j
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Espectro 167: Espectro de massas (ESI-MS) de alta resolucéo de 80j
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Espectro 169: Espectro de RMN *H (5, CDCls, 300 MHz) de 110
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Espectro 171: Espectro de infravermelho de 103 (KBr, cm™)
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Espectro 172: Espectro de RMN *H (5, CDCls, 300 MHz) de 103
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Espectro 173: Espectro de RMN **C (5, CDCls, 75 MHz) de 103
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Espectro 175: Espectro de massas (ESI-MS) de alta resolucao de 107a
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Espectro 176: Espectro de RMN *H (5, CDCls, 300 MHz) de 107a
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Espectro 179: Espectro de massas (ESI-MS) de alta resolucéo de 108a
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Espectro 181: Espectro de RMN *°C (5, CDCls, 75 MHz) de 108a
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Espectro 183: Espectro de RMN *H (5, CDCls, 400 MHz) de 107b
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Espectro 184: Espectro de RMN **C (3, CDCls, 100 MHz) de 107b
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Espectro 185: Espectro de massas (ESI-MS) de alta resolugcao de 108b
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Espectro 187: Espectro de RMN *C (5, CDCl;, 100 MHz) de 108b
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Espectro 189: Espectro de massas (ESI-MS) de alta resolugéo de 107c
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Espectro 190: Espectro de RMN “H (8, CDCl3, 300 MHz) de 107c
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Espectro 191: Espectro de RMN **C (3, CDCls, 75 MHz) de 107c
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Espectro 193: Espectro de massas (ESI-MS) de alta resolucdo de 108c
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Espectro 194: Espectro de RMN *H (5, CDCls, 300 MHz) de 108c
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Espectro 195: Espectro de RMN **C (3, CDCls, 75 MHz) de 108c
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Espectro 197: Espectro de massas (ESI-MS) de alta resolucéo de 107d
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Espectro 198: Espectro de RMN *H (5, CDCls, 300 MHz) de 107d
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Espectro 199: Espectro de RMN *3C (3, CDCls, 75 MHz) de 107d
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Espectro 201: Espectro de massas (ESI-MS) de alta resolucéo de 108d
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Espectro 203: Espectro de RMN *3C (5, CDCls, 75 MHz) de 108d
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Espectro 231: Espectro de RMN *3C (5, CDCls3, 75 MHz) de 107h
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New Strategies for Molecular Diversification of 2-[Aminoalkyl-(1H-1,2,3-triazol-1-
yD]-1,4-naphthoquinones Using Click Chemistry

Ronaldo N. de Oliveira,** Mauro G. da Silva,** Moara Targino da Silva," Valentina N.
Melo,** Wagner O. Valenga,* Josinete Angela da Paz® and Celso A. Camara®

“Laboratdrio de Sintese de Compostos Bioativos, Universidade Federal Rural de Pernambuco,

52171-900 Recife-PE, Brazil

'Departamento de Quimica Fundamental, Universidade Federal de Pernambuco,
50740-540 Recife-PE, Brazil

Click chemistry-based strategics for the synthesis of 2-amino-alkyl-1,2 3 trinzole-1,4-
naphthoquinone derivatives make it possible to obtain desired products from 1,4-naphthoquinone
(1,4-NQ), and bio-based lawsone, nor-lapachol and lapachol, The first route (Strategy A) starung
from 1,4-NQ and amino alcohols, then 2-amino-alkyl-1,4-NQ alcohols, were tosylated. The
azide ion displaced the tosylate group 1o afford 2-azide-alkyl-1.4-NQ, which was submitted 10 a
copper-catalyzed azide alkyne cycloaddition (CuAAC) condition. The triazole- nuphthoquinones
were obtained in an overall yield of roughly 47%. Another pathway (Strategy B) substituted
bromo-alkyl-phthalimides using NaN, as the nucleophile, sequentinl CuAAC and deprotection
of phthalimide group with hydeazine producing amino-triazoles. The subsequent reaction with
1,4-NQ produced 2-amino-alkyl-1,2 3-1nazole-1 4-NQ derivatives in an overall yield of 45-76%
in four steps, After we developed these two strategies, linear synthesis (Strategy A) was chosen to
prepare 2-[(2-(1H-1,2.3-mnazol-1-ylethylamino)}-3-(3-methylpropeny ) | 4-naphthoquinones from
lawsone with an overall yield of approximately 27% in six steps. On the other hand, convergent
synthesis (Strategy B) was employed for the synthesis of 2-[(4-phenyl-1 H-1,2 3-triazol- 1 -yljalkyl-
amino)]-3-(3-methylbut-2-en-1-yl)- 1 4-naphthoquinones from the reaction between 2-methoxy-
lzpachol with amino-triazoles with i globul yield of about 21%. These synthetic strategies might
lead us 10 pew opportunities to build smali-molecule libraries for future biological explonution.

Keywords: click chemistry, amino-naphthoguinone, lspachol, mor-lupachol, 1,2, 3-triazole

Introduction

The synthesis of New Chemical Entities (NCE) remuains
unaffected by changes in the focus of chemical science.!
A number of synthetic strategies have been developed
recently to allow organic chemists to create a great variety
of molecules. In order to access novel and diverse chemical
libraries of compounds with potential biological activity
the usc of catalytic methods is prominent.

From a synthetic point of view, the Huisgen 1,3-dipolar
cycloaddition reaction between organic azides and terminal
alkynes has been a straightforward method o assemble
i large number of molecules, especially since Sharpless
and co-workers® and Meldal and co-workers® proposed the
copper-catalyzed azide-alkyne cycloaddition (CuAAC).

*c-minl: ronaldo noliveira @ ufrpe be

This protocol has permitted casy access to molecular
diversity of 1,2 3-triazoles and encouraged synthetic
chemists to design projects based on this scaffold.* "
This reaction has provided the opportunity to synthesize
molecules having new propertics or biological activities, '
including anti-tuberculosis,' antiviral," antitumoral,'*™*
antifungal, " antibiotic (¢.g., tazobactam, sce Figure la),”
among others. as can be found in the literature.” Morcover,
naphthoguinones moicties such as potent trypanocidal
and leishmanicidal activities have been synthesized
(Figure la)

Since molecular hybridization between
I 4-naphthoquinone (1,4-NQ) and 1,2,3-triazole nucleus
appeared as an important pharmacophore,* ™ this
type of derivatives has become attractive as bioactive
compounds. Various approaches have been focused on the
connection between these derivatives. As a consequence,

N
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1.23-Triazole-, arylamino- and thio-substi p
tively) were synthesized in moderate yields and evaluated against several human cancer cell lines (biood,
ovarian, breast, central nervous system. colon, and prostate cancers and melanoma), showing, for some of
them, ICy, values below 2 uM. The cytotoxic potential of the tested naphthoquincnes was also assayed on
non-tumor cefls such as human peripheral blood monoaucluear cells (PBMC) and two murine fibroblase
fines (1929 and V79 cells). «-lapachane- and nor-a-lapachone-based 1.23-triazoles and arylamino-

4 nanhrh "
.

(24, B, and 2 representatives, respec-

m oquinowe substituted naphthoquinones showed potent cytotoxicity against different cancer cell lines. The com-
u'pmml pounds may represent promising new lead derivatives for anticancer drug development, The electro-
12.3-Triazoles chemical properties of selected compounds were evaluated In an attempt to correlate them with
Click chemistry antitumor activity.

Cancer © 2014 Elsevier Ltd, All rights reserved.
1. Introduction Compounds that are able to modulate the redox balance in can-

Reactive oxygen species (ROS) are important participants in
regulating normal cellular processes, A deregulated redox balance
may contribute to the development of several human diseases,
including cancers, as recently reported by Nogucira and Hay.' Sev-
eral types of cancer cells exhibit disturbed intracellular redox bal-
ance, differentiating them from their non-cancerous counterparts.”
ROS may act directly with DNA, lipids, and proteins to induce cell
damage.’ The alkylation of crucial proteins and nucleic adds can
also cause cell damage.” Compared to non-cancerous cells, the
reactive oxygen species (ROS) levels are considerably closer to
the critical redox threshold at which cell death s induced.” These
biochemical differences between healthy and malignant tissues
are significant and may be exploited in the design of selective
drugs.’

* Corresponding author, Tel: 55 31 34005720: fax: +55 31 34095700,
E-mail address: euliao@ufimg br (EN. da Silva Janior}.

heep/rdxdoc omg 101016/ benc 201401 .01

0968-0896/¢ 2014 Elsevier Ltd. All rights reserved.

cer cells are potential candidates for the development of anticancer
drugs.”  In general, these compounds catalyze the oxidation of re-
dox-sensitive, thiol-containing proteins and enzymes and/or sig-
nificantly increase intracellular ROS levels. These features relate
to subsequent processes that lead to apoptosis.” Quinones belong
to this class of compounds, as they are capable of increasing intra-
cellular ROS levels over a critical threshold and therefore may in-
duce apoptosis in cancer cells.

Electrochemistry is the standard method for studying redox
systems. Electrochemical techniques applied to biclogy are contin-
uously described in the literature and provide both kinetic and
thermodynamic information.” Electrochemical methods are useful
in the characterization and ultimately the design of redox-modu-
lating natural products and drugs, including potential antioxidants
and anticancer agents.” Among these techniques, cyclic voltamme-
try can rapidly evaluate the redox properties of some of those com-
pounds, including quinones. The usual parameters normally
obtained and employed, especially in cyclic voltammetry, are the



322

Bioorganic & Medicinal Chemistry 21 (X1 3) G237 4348

bt

P

Vet
L3

s

Ps
2
s &

Bioorganic & Medicinal Chemistry

journal homepage: www.elsevier.com/locate/bme —

Contents lists available at ScienceDirect

Synthesis and anti-Trypanosoma cruzi activity of
naphthoquinone-containing triazoles: Electrochemical studies

@Cmsam:k

on the effects of the quinoidal moiety

Emilay B. T. Diogo *, Gleiston G. Dias’, Bernardo L. Rodrigues”, Tiago T. Guimardes ’, Wagner O. Valenga“,
Celso A. Camara ", Ronaldo N. de Oliveira *, Mauro G. da Silva“, Vitor F. Ferreira“, Yen Galdino de Paiva’,
Marilia O. F. Goulart ', Rubem F. S. Menna-Barreto *, Solange L. de Castro*, Eufranio N. da Silva Janior **

* lustinuto de Ciéncias Exatas, Departumento de Quimvica, UFMEG, 31270-907 Belo Norizonte, MG, Brazil
" Nilcleo de Pesquisas de Produtos Neturais, UFRY, 21941.971 Rio de Janeiro, RY, Brazil

* Departamenro de C¥nclas Molecukaves, UFRPE, 52171-900 Recife, PE, Brazit

“ Universidade Federal de Pernambuco. UFPE, S0670-901 Recife, PE, Rruail

" instituto de Quismica, UFF, 24020-150 Niterds, K1, Brazil

"instirute de Quimica ¢ Biotecnologin, UFAL, Tabuleiro do Martins, 57072-970 Maceié, AL Frazil

* Laborutdrio de Biologha Cefular, JOC, FIOCRUZ, 21045-900 Rio de Janeiro, RY, frazil

ARTICLE INFO

ABSTRACT

Article hatory:

Recetved 15 June 2013

Revised 18 August 2013

Accepted 26 August 2013
Avaitable online & September 2013

Keywords:
Lapachel
p-Lapachone
Quinooe

In our continued search for novel trypanocidal compounds, twenty-six derivatives of para- and ortho-
naphthoquinones coupled to 1,2 3-triazoles were synthesized. These compounds were evaluated against
the Infective bloodstream form of Trypanasoma cnezi, the etiological agent of Chagas disease. Compounds
17-24, 28-30 and 36-38 are described herein for the first time. Three of these novel compounds (28-30)
were found to be more potent than the standard drug benznidazole, with 1G24 h values between 6.8
and 808 pM, Analysis of the toxicity to heart mascle cells led to LCs¢/24 h of <125, 63.1 and 281.6 uM
for 28, 29 and 30, respectively. Displaying a selectivity index of 34.3, compound 30 will be further eval-
uared in vive, The electrochemical properties of selected compounds were evaluated in an attempt to find
correlations with trypanocidal activity, and it was observed that more electrophilic quinones were gen-

Chagas disease erally more potent.

Trypomastigote
Click chemistry
EBlectrochemical parameters
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1. Introduction

Chagas disease {CD) is caused by the protozoan Trypanosoma
cruzi and affects approximately eight million individuals in Latin
America, Approximately 30-40% of these patients have, or will de-
velop, cardiomyopathy, digestive mega-syndromes, or both.'
Although vectorial {Triatoma infestans) and transfusional transmis-
sion of CD have declined steadily as a result of multinational initia-
tives,” this disease can also be orally transmitted through the
ingestion of food or liquid contaminated with 7. cruzi, This route
of transmission is the cause of regional outbreaks of acute infection
in areas devoid of domiciled insect vectors.” Several outbreaks of
severe acute CD, each numbering in the hundreds of cases, have
been reported in the Amazon Region in recent decades.' Maost of
these outbreaks were the result of oral transmission, The emer-
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gence of CD in non-endemic areas, such as North America and
Europe, is another major concern. This development is due to the
immigration of infected individuals and subsequent transmission
via the blood, organ transplantation and congenital routes. " Other
challenges remaining to be overcome in the fight against CD in-
clude the development of sustainable public health policies, vector
control strategies and educational approaches, "

CD is charactenized by a short acute phase defined by patent
parasitemia followed by a long and progressive chronic phase,
Up to 40-50% of chronically infected patients develop progressive
cardiomyopathy, motility disturbances of the esophagus and colon,
or all of these symptoms, CD is the most severe parasitic infection
of the heart, which is the organ most often affected in chronic
patients." The avallable chemotherapy for €D is not satisfactory
and depends on two nitroheterocyclic agents: the S-nitrofuran nif-
urtimox and the 2-nitroimidazole benznidazole, These compounds
are effective against acute infections, but they show poor activity
in the later chronic phase. These drugs also cause severe off-target



