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RESUMO 

A metabonômica pode ser definida como um conjunto de ferramentas, analíticas e de 

estatística multivariada, utilizadas para identificar mudanças de concentração dos 

metabólitos em um dado biofluido, associando-as à perturbação sofrida pelo organismo. 

Sendo assim, ela seria capaz de identificar qualquer doença no organismo, desde que 

seja empregado o biofluido adequado e as informações sejam corretamente extraídas. 

Para isso, a ferramenta mais empregada é a Espectroscopia de Ressonância Magnética 

Nuclear de Hidrogênio-1 (RMN de ¹H), e é necessário o uso de técnicas quimiométricas 

para extrair as informações do espectro. Neste trabalho, foram construídos modelos 

metabonômicos para: (1) identificar pacientes portadores de esteatose, e dos vírus da 

hepatite B (HBV) e da hepatite C (HCV), utilizando amostras de urina; e (2) classificar 

o grau de fibrose hepática em pacientes com hepatites crônicas por HBV ou HCV, 

utilizando amostras de soro sanguíneo. O modelo para classificação de pacientes com 

esteatose, obteve 100% de sensibilidade e de valor preditivo positivo. Para identificar 

esteatose independentemente de ser um portador de HBV ou HCV, o modelo construído 

obteve 97,9% de exatidão. Para classificar portadores de HBV e HCV, os modelos 

apresentaram sensibilidade de 100% e 92,6%, respectivamente. O modelo construído 

para diferenciar pacientes com diferentes lesões no fígado: esteaose e hepatites virais B 

ou C, obteve 94% de exatidão. Para classificar pacientes com fibrose significativa; 

fibrose avançada; e cirrose, alcançamos 98,4; 100; e 96,8% de exatidão, 

respectivamente. Através da combinação dos resultados dos modelos de fibrose 

significativa e fibrose avançada, foi possível determinar os pacientes com grau F2, no 

METAVIR, com percentual de acerto de 96,8%. Nas análises de fibrose, a exatidão 

observada para os modelos metabonômicos foram superiores aos observados para os 

métodos não-invasivos normalmente utilizados na prática clínica, APRI (do inglês, 

Aspartate aminotransferase Platelet Ratio Index) e FIB-4. A estratégia metabonômica 

demonstrou capacidade de avaliar a presença de diferentes doenças hepáticas em uma 

única análise, não invasiva, e determinar o grau de fibrose hepática, de forma 

minimamente invasiva. 

 

Palavras-chave: RMN de ¹H. HBV. HCV. Esteatose. Fibrose hepática.  



 

 

 

 

ABSTRACT 

The metabonomics can be defined as a set of analytics and multivariate statistics tools, 

used to identify the metabolite concentration changes in a certain biofluid, associating 

them to the disturbance suffered. Therefore, it would be able to identify any disease in 

the body, if employed the appropriate biofluid and correctly extract the information. The 

most commonly used tool is Nuclear Magnetic Resonance Spectroscopy for hydrogen-1 

(¹H NMR), and chemometrics techniques are used to extract the information of the 

spectrum. In this work we built metabonomics models to: (1) identify patients with 

steatosis, hepatitis B (HBV) and hepatitis C (HCV), using urine samples; and (2) 

classify the degree of liver fibrosis in patients with chronic hepatitis, HBV or HCV, 

using blood serum samples. The classification model for patients with steatosis obtained 

100% to sensitivity and positive predictive value. To identify steatosis, without regard 

the presence of HBV or HCV, the constructed model achieved 97.9% accuracy. To 

classify carriers of HBV and HCV, the models showed 100 and 92.6% of sensitivity, 

respectively. The constructed model to differentiate patients with different liver 

damage: steatosis and viral hepatitis B or C, achieved 94% accuracy. To classify 

patients with significant fibrosis; advanced fibrosis; and cirrhosis, the models reached 

98.4; 100; and 96.8% accuracy, respectively. By combining the results of significant 

fibrosis models and advanced fibrosis, it determined the patients with F2 in the 

METAVIR, with 96.8% of accuracy. In fibrosis analysis, the accuracy observed for 

metabonomics models were higher than those observed for the non-invasive methods 

commonly used in clinical practice, APRI (Aspartate aminotransferase Platelet Ratio 

Index) and FIB-4. The metabonomics strategy demonstrated ability to assess the 

presence of different liver diseases in a single non-invasive analysis and determine the 

degree of liver fibrosis, in a minimally invasive way. 

 

Keywords: ¹H NMR. HBV. HCV. Steatosis. Liver fibrosis.  
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1 INTRODUÇÃO 

Em um seminário assistido durante o primeiro ano do mestrado, ouvi um 

professor falar sobre quão complicado e demorado é o nosso sistema de saúde. Ele 

comentou sobre várias idas e vindas, muita espera e pouca resolução dos problemas. 

Se refletirmos um pouco, vamos perceber que, em geral, essa é a realidade. 

Quando alguém está com dor ou percebe algo de incomum acontecendo no seu corpo, 

vai procurar o serviço de saúde. Espera em uma longa fila para pegar uma ficha de 

atendimento. Muitas vezes, só consegue a ficha depois de dias de tentativas. Após o 

atendimento, geralmente em um ambiente precário e com tempo apertado, recebe a 

solicitação de exames. Para marcar os exames, mais filas e luta por fichas, até conseguir 

uma data meses depois. Com os exames em mãos, o paciente tem que enfrentar a 

mesma dificuldade anterior para conseguir voltar ao médico. 

Após toda essa jornada, já se passaram meses, e muitas vezes ela só começou, 

pois é necessária a consulta com um médico de outra especialidade, novos exames, mais 

filas, mais fichas e bastante tempo. 

É muita espera e burocracia para quem sente dor e/ou está sob o risco iminente de 

complicações sérias de saúde e, em casos extremos, de morte. Frequentemente, pessoas 

morrem em consequência de uma doença que, se diagnosticada previamente, teria sido 

tratada e curada. A alta taxa de mortalidade por câncer, por exemplo, é associada ao 

diagnóstico tardio.(COSTA; MIGLIORATI, 2001; TRUFELLI et al., 2008) 

O Instituto Nacional de Câncer José Alencar Gomes da Silva (INCA) atribui o 

fato de o diagnóstico ser feito em estágios avançados da doença à dificuldade de acesso 

da população aos serviços e programas de saúde; e à capacidade do Sistema Único de 

Saúde (SUS) de absorver a demanda que chega às unidades.(PANOBIANCO et al., 

2012) 

Segundo a Organização Mundial da Saúde (OMS), um atendimento primário 

eficiente é essencial para a melhoria da saúde da população, uma vez que a maioria dos 

casos podem ser resolvidos no atendimento de nível primário, mas - quando isso não 

acontece - evoluem para casos mais complicados. (WORLD; REPORT, 2003) Nos 

países mais desenvolvidos, o atendimento primário é entendido como o primeiro nível 

de atenção, porém, em países onde desafios significativos no acesso aos cuidados de 
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saúde persistem, como no Brasil, é visto mais como uma estratégia de todo o sistema. 

(WORLD; REPORT, 2003) 

Agora, podemos imaginar um sistema em que o atendimento primário seja feito 

da seguinte forma: ao sentir algum tipo de sintoma, ou simplesmente como medida 

preventiva, um indivíduo se encaminha a um hospital ou clínica, onde é atendido por 

um profissional de saúde que, além da anamnese, faz a coleta de amostras de sangue e 

urina. Durante poucas horas, são realizados testes screening de inúmeras doenças e, 

rapidamente - se for o caso - o paciente já seria encaminhado para o médico especialista 

e seriam solicitados os exames para a confirmação do diagnóstico. 

Esse seria um caminho muito mais curto, rápido e descomplicado. Uma ótima 

opção para desafogar o sistema de saúde e, ao mesmo tempo, dar o atendimento 

necessário à população. Mas como é possível uma análise rápida e capaz de identificar 

diferentes tipos de doenças? 

Parece utopia ou ficção científica, mas é uma possibilidade, a partir do estudo e 

desenvolvimento da metabonômica. 

Godoy e colaboradores, em 2010, demonstraram que a metabonômica pode ser 

uma ferramenta útil para diagnóstico de hepatites, obtendo 94% de sensibilidade e 97% 

de especificidade em um modelo metabonômico, baseado em RMN de 
1
H, para 

discriminação entre amostras de urina de pacientes com Hepatite C e voluntários 

saudáveis.(GODOY et al., 2010)Há estudos que utilizam metabonômica para diferenciar 

amostras de pacientes com cirrose hepática daqueles com CHC, com sensibilidade de 

89,5% e especificidade de 88,9% em população nigeriana infectada pelo 

HBV,(SHARIFF et al., 2010) e 81% de sensibilidade e 71% de especificidade, em 

egípcios infectados pelo HCV. (SHARIFF et al., 2011) Em outro estudo, pacientes com 

cirrose foram diferenciados de pacientes com CHC em uma população chinesa. (GAO 

et al., 2009) Demonstrando o potencial da estratégia metabonômica na identificação de 

cirrose. 

Em 2014, Kimhofer e colaboradores, apresentaram um artigo de revisão que 

incluiu 22 estudos metabonômicos feitos em plasma, soro ou urina de pacientes com 

CHC, publicados nos últimos anos. Esse número mostra o esforço empregado para 

identificar metabólitos específicos detectáveis em fluidos biológicos, tais como sangue 

ou urina, o que pode servir como biomarcadores para o diagnóstico de CHC nos 

estágios iniciais. (KIMHOFER et al., 2015) 
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A revisão desses estudos mostrou que ocorrem mudanças notáveis em vários 

metabólitos e nos níveis de proteína que se correlacionam com a presença ou progressão 

doença. Foi destacada a necessidade de padronização nos métodos de construção de 

modelo, validação e definição dos grupo, assim como de novos estudos para a 

identificação entre os graus de fibrose, presença de cirrose e progressão do câncer. 

(KIMHOFER et al., 2015) 

Como o sucesso no tratamento do câncer está intrinsicamente relacionado à sua 

prévia detecção, há trabalhos que empregam a estratégia metabonômica baseada em 

RMN de ¹H para identificação de outros tipos de câncer. Através da análise 

discriminante por mínimos quadrados parciais (PLS-DA) foi identificada a presença dos 

tumores de Ehrlich e Sarcoma 180 em camundongos, após cinco e dez dias da indução 

dos tumores, respectivamente. Lipídeos, lipoproteínas e lactato foram os biomarcadores 

mais importantes. (CAROLINE et al., 2014) 

Utilizando PLS-DA e particle swarm optimization (PSO), 99% e 85% dos 

indivíduos foram corretamente classificados nos conjuntos de treinamento e de teste, 

respectivamente, quanto à presença de câncer de pulmão. Os metabólitos discriminantes 

identificados foram: lactato, prolina, glicoproteína, glutamato, alanina, treonina, taurina, 

glicose (α- e β-), trimetilamina, glutamina, glicina, e mio-inositol.(LI et al., 2014) 

A metabonômica também foi utilizada para identificar complicações causadas 

pela radioterapia no tratamento de pacientes com câncer de colo do útero. Os pacientes 

com os sintomas intestinais agudos induzidos por radiação (RIAISs) foram identificados 

aplicando análises quimiométricas aos espectros de extratos de amostras fecais, sendo 

caracterizados pelas concentrações aumentadas de a-cetobutirato, valina, uracilo, 

tirosina, N-óxido de trimetilamina, fenilalanina, lisina, isoleucina, glutamina, creatinina, 

creatina, ácidos biliares, aminohipurato, e alanine; e reduzidas de a-glucose, N-butirato, 

metilamina, e etanol. (CHAI et al., 2015) 

Nos últimos anos, distúrbios neurológicos, fármacos e tratamentos foram objetos 

de vários estudos metabonômicos. Öhman e Forsgren empregaram análise discriminante 

ortogonal por mínimos quadrados parciais (OPLS-DA) a espectros de RMN de ¹H de 

fluido cerebrospinal de 10 pacientes portadores da doença de Parkinson (PD) e 10 

indivíduos controle. Com os grupos satisfatoriamente separados, foram identificados 

possíveis marcadores para a doença: alanina, creatinina, dimetilamina, glicose, lactato, 

manose, fenilalanina, ácido 3-hidroxiisobutírico e ácido 3-hidroxiisovalérico, e 

observou-se uma diminuição generalizada na concentração dos metabólitos dos 
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pacientes com PD em relação aos indivíduos do grupo controle. (ÖHMAN; 

FORSGREN, 2015) 

A estratégia metabonômica, utilizando cromatografia líquida de ultra-eficiência 

acoplada à espectrometria de massa (UPLC-MS) e PLS-DA, já havia sido utilizada para 

confirmar o efeito da administração de Acanthopanax senticosus Harms (EAS) em ratos 

com PD e identificar as diferenças metabólicas antes e depois do tratamento. Foi 

observado que as perturbações metabólicas causadas pela PD foram restauradas após o 

tratamento com EAS, identificando biomarcadores para a doença e propondo vias de 

regulação do metabolismo pelo efeito terapêutico da EAS. (LI et al., 2013) 

Outro estudo utilizando UPLC-MS e PLS-DA foi realizado para identificar 

biomarcadores de esquizofrenia e correlacionar com o efeito terapêutico de olanzapina. 

Foram coletadas amostras de sangue de 15 pacientes com esquizofrenia, antes e após 4 

semanas de tratamento, e de 15 voluntárias saudáveis. Treze metabólitos foram 

identificados como possíveis biomarcadores da doença, devido a diferença de 

concentração entre os grupos doentes antes do tratamento e o controle, e tenderam à 

normalização após o tratamento. (QIAO et al., 2016) 

A confirmação do efeito e elucidação de mecanismo terapêutico antidepressivo do 

medicamento icariin em ratos foi realizada por Gong et al, utilizando RMN de ¹H e 

OPLS-DA e amostras de soro, urina e extrato de tecido cerebral. Também foram 

identificados possíveis biomarcadores de depressão. (GONG et al., 2016) 

A estratégia metabonômica também pode ser empregada à indústria de alimentos, 

desde que as diferenças entre as amostras sejam decorrentes de perturbações sofridas 

pelo organismo vivo que deu origem ao alimento. Como exemplo podemos citar: 

identificação de grãos de soja submetidos a radiação gama (RIBEIRO et al., 2014); 

identificação de vinhos produzidos na região do Vale do Rio São Francisco(DA SILVA 

NETO et al., 2009); e classificação de azeites de diferentes regiões. (SACCHI; 

MANNINA, 1998) 
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2 OBJETIVOS GERAIS 

Construir modelos metabonômicos capazes de: diferenciar amostras de 

voluntários saudáveis e de pacientes com doenças hepáticas; e classificar o grau de 

fibrose hepática de pacientes portadores de hepatite C crônica. 

Na Figura 1, está ilustrado um esquema dos objetivos deste projeto. 

Figura 1: Esquema de objetivos deste trabalho. 

 

Fonte: Autoria própria. 
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3 FUNDAMENTAÇÃO TEÓRICA 

 Metabonômica 3.1

A metabonômica pode ser definida como um conjunto de ferramentas, analíticas e 

de estatística multivariada, utilizadas para identificar mudanças de concentração dos 

metabólitos em um determinado biofluido e associar essas mudanças à perturbação 

sofrida pelo organismo. 

Quando um organismo vivo sofre alguma perturbação, seja por doenças, uso de 

drogas ou toxinas, ocorre uma série de processos com o objetivo de restaurar o 

equilíbrio do sistema, causando mudanças nas concentrações de metabólitos endógenos. 

A metabonômica propõe que essas mudanças possam ser identificadas como uma 

impressão digital da perturbação.(LINDON; HOLMES; NICHOLSON, 2003; 

NICHOLSON; LINDON; HOLMES, 1999) 

Sendo assim, ela seria capaz de identificar qualquer doença no organismo, desde 

que seja empregado o biofluido adequado e as informações sejam corretamente 

extraídas. Para isso, a estratégia metabonômica, em geral, emprega a Espectroscopia de 

Ressonância Magnética Nuclear de Hidrogênio-1 (RMN de ¹H), que é uma técnica 

rápida, exige mínima preparação de amostras e o espectro obtido reflete um perfil dos 

metabólitos presentes no biofluido. A duração da análise depende do biofluido a ser 

analisado, que pode ser, por exemplo: urina, soro sanguíneo ou soro de sêmen. 

Como a resposta dessa análise é um espectro muito complexo, devido a 

quantidade de substâncias presentes nos biofluidos, para observar a diferença entre 

amostras de doentes e voluntários saudáveis é necessária a aplicação de técnicas 

quimiométricas à matriz de dados, visando identificar padrões e classificar as amostras. 

É comum haver uma confusão entre os termos metabonômica e metabolômica, 

que são, inclusive, usados como sinônimos em alguns trabalhos, mas, por definição, são 

técnicas diferentes. Metabonômica (do grego, meta -mudança e nomos -regras ou leis) 

foi definida por Jeremy Nicholson, Elaine Holmes e John Lindon, em 1999, como 

modelos quimiométricos que têm a capacidade de classificar mudanças no metabolismo. 

(NICHOLSON; LINDON; HOLMES, 1999)  

Por outro lado, metabolômica, é um termo com origem não muito bem definida, 

usado em publicações em 1985 e 1989 como parte da teoria do controle metabólico e 

análise de fluxo, e não era muito utilizado em publicações até o fim dos anos 90. Em 
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2011, Fiehn definiu como análise qualitativa e quantitativa de todos os metabólitos de 

um sistema.(ROBERTSON, 2005) 

Então, enquanto a metabolômica visa identificar todos os metabólitos de um 

sistema, a metabonômica procura a impressão digital de uma perturbação em um 

sistema vivo e a partir dela, busca identificar a quais metabólitos endógenos está 

relacionada. Como elas têm objetivos diferentes, são utilizadas técnicas analíticas 

diferentes. 

É comum atribuir essa escolha a fatores históricos: a metabolômica, empregada 

por cientistas que estudavam plantas, habituados a utilizar Espectrometria de Massas 

(MS); e metabonômica, empregada pelo grupo do Imperial College of London, que 

quase exclusivamente utilizava espectroscopia de Ressonância Magnética Nuclear 

(RMN) em seus trabalhos anteriores. Porém, na literatura há casos do uso inverso. Em 

teoria, qualquer técnica capaz de gerar medidas qualitativas de metabólitos, pode ser 

utilizada para metabonômica. Em geral, RMN e MS, precedida de uma técnica de 

separação de misturas, são mais comuns.(ROBERTSON, 2005) 

Uma grande vantagem é que a RMN apresenta maior reprodutibilidade, tanto 

entre amostras de um mesmo trabalho quanto para ser reproduzido por outro grupo, 

além de apresentar menor tempo de análise. Já a MS apresenta uma grande vantagem 

em relação à identificação de metabólitos, tornando-a ideal para a análise 

metabolômica. Como para a análise metabonômica somente alguns metabólitos de 

interesse são identificados, isso pode ser feito através da espectroscopia de RMN, 

devido à sua versatilidade, através de experimentos bidimensionais, por 

exemplo.(ROBERTSON, 2005) 

Então, por ser versátil, reprodutível e capaz de obter as informações necessárias 

para a estratégia metabonômica, a RMN é a técnica mais usada, e foi utilizada neste 

trabalho. 

Para compreender um pouco melhor como funciona a estratégia metabonômica, 

nas próximas seções serão abordados os princípios de espectroscopia de ressonância 

magnética nuclear e de quimiometria. Também será apresentada uma explanação sobre 

fígado e suas principais doenças, objeto desse estudo. 
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 Ressonância Magnética Nuclear 3.2

 Princípios Básicos da RMN 3.2.1

A Ressonância Magnética Nuclear (RMN) é uma técnica espectroscópica, ou seja, 

se baseia na interação entre a radiação eletromagnética e a matéria. 

Os núcleos dos átomos têm spins (I) que são o resultado da combinação dos spins 

das suas partículas nucleares. Quando I é diferente de zero, o núcleo possui um 

momento magnético μ, proporcional ao spin e à constante magnetogírica (γ), 

característica de cada núcleo, dado pela Equação 1(PAVIA; LAMPMAN; KRIZ, 2001): 

Equação 1 

  
     

  
  

Sendo h a constante de Planck. 

Quando I = 1/2, existem dois estados possíveis, normalmente identificados por α e 

β. A energia dos dois estados é a mesma, ou seja, são estados degenerados. Para se 

realizar espectroscopia é necessário quebrar a degenerescência dos estados, isso pode 

ser feito aplicando um campo magnético externo B0. 

A direção do momento angular de spin é chamada de polarização do spin. Em geral, 

partículas com spin tem a polarização apontando para todas as possíveis direções. 

Assim, a partícula de spin 1/2 não está restrita aos estados α e β, pode estar em uma 

combinação desses estados. 

O momento magnético do núcleo aponta para a mesma direção da polarização do 

spin, para um núcleo com γ > 0, ou na direção oposta da polarização do spin, para um 

núcleo com γ < 0. Para uma amostra em equilíbrio, e sem ação de campos externos, a 

distribuição dos momentos magnéticos é isotrópica, todas as direções possíveis estão 

em proporções iguais. 

Quando um campo magnético é aplicado à amostra, a polarização do spin se move 

em torno do eixo do campo. O momento magnético do spin se move formando um cone, 

mantendo constante o seu ângulo em relação ao eixo do campo aplicado. Esse 

movimento é chamado de precessão e está ilustrado na Figura 2. 

 

 

A seção 2.2 foi baseada nos livros: (1) Spin Dynamics e (2) Fundamentos e Aplicações da Ressonância 

Magnética Nuclear: Aspectos Quânticos da Ressonância Magnética Nuclear (LEVITT, 2008; VILLAR, 2002). 
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Fonte: Autoria própria. 

O estado que estiver na direção do campo terá energia mais baixa do que o estado 

que estiver alinhado em oposição ao campo, quebrando a degenerescência do sistema. 

Esse comportamento, denominado efeito Zeeman, constitui a base do fenômeno de 

ressonância magnética. Devido à existência de níveis discretos de energia, separados 

por um quantum de energia igual a ħν, é possível observar transições entre tais níveis 

através da excitação dos spins nucleares por uma radiação com frequência ν. 

Em termos clássicos, a energia do momento magnético µ em um campo magnético 

B0, é dada pela Equação 2: 

Equação 2 

     ⃗     
⃗⃗⃗⃗                        

Em que θ é o ângulo entre µ e B0. Substituindo µz, definido pela mecânica quântica, 

temos a Equação 3: 

Equação 3 

     
          

  
  

E a diferença de energia entre dois estados na Equação 4: 

Equação 4 

      
           

  
 

Em que Δml é a mudança de spin envolvida na transição e |Δml|= 1. 

Com ΔE = hν e |Δml|= 1, temos a Equação 5: 

Equação 5 

          

Figura 2: Ilustração da precessão do spin. 
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A chamada frequência de Larmor, frequência de ressonância dos diversos núcleos 

atômicos, em diferentes espécies químicas, é a mesma para núcleos com a mesma 

constante magnetogírica. Dessa forma, a utilidade da RMN seria extremamente 

limitada, pois para uma molécula heteropoliatômica obteríamos um espectro de RMN 

com um sinal para cada classe de elementos presentes. 

A Tabela 1 apresenta o spin de alguns núcleos, constante magnetogírica e 

frequência de ressonância sob a ação de um campo magnético externo de 7,05 T, assim 

como sua abundância isotópica. 

Tabela 1 - Propriedades espectroscópicas de alguns núcleos.(PAVIA; LAMPMAN; KRIZ, 

2001) 

 I 
 

(10
6
 rad. T

-1
 s

-1
) 

 

(MHz) 

Abundância 

Isotópica (%) 

1
H 1/2 267,53 300 99,98 

2
H 1 41,1 46 0,0156 

13
C  1/2 67,28 75 1,108 * 

19
F 1/2 251,7 282 100 

31
P 1/2 108,3 121 100 

* O isótopo mais abundante do carbono, 
12

C, tem spin zero. (PAVIA; LAMPMAN; KRIZ, 2001) 

Consideramos a soma das populações dos estados como igual a um, então somente 

a diferença entre populações de dois estados tem significado físico. 

A diferença entre as populações dos estados de spin indica a polarização 

longitudinal de spin, magnetização da amostra na direção do campo. O estado em que a 

população do estado α é maior que a do estado β, indica a polarização de spins ao longo 

da direção do campo externo. Similarmente, o estado no qual a população do estado α é 

menor que a do estado β, indica a polarização de spins oposta à direção do campo 

externo, ver Figura 3. 

Figura 3: Polarização de spin a favor e contra o campo, respectivamente. 

 

Fonte própria  



25 

 

 

 

Se as populações dos dois estados são iguais, então não existe polarização líquida 

na direção do campo aplicado. É importante lembrar que a população de um estado não 

indica a fração de spins que estão naquele estado, pois os spins não estão exatamente no 

estado α ou β, estão em combinações desses dois estados de energia, apontando para 

direções arbitrárias. 

Se um sistema de spins não sofre interferência por um longo intervalo de tempo, é 

esperado que atinja um estado de equilíbrio térmico com o ambiente. Segundo a 

mecânica estatística, a população dos estados ( ) em equilíbrio térmico segue a 

distribuição de Boltzmann. Então teremos as populações dos estados α e β, 

respectivamente, na Equação 6: 

Equação 6 

   
 

   
    

∑  

   
    

                               
 

   
    

∑  

   
    

 

A razão entre as populações está na Equação 7. 

Equação 7 

  

  
 

 
   
    

 
   

    

  
       

        
  

     

Em que T é a temperatura, Ei é a energia do estado i e kB é a constante de 

Boltzmann. 

A diferença entre as populações de dois estados em equilíbrio térmico depende da 

diferença de energia entre eles, comparada com a energia térmica disponibilizada pela 

temperatura da amostra. 

Como a frequência associada à diferença de energia entre os estados de spin está na 

região de radiofrequência, então a diferença de energia, ΔE, é cerca de quatro ordens de 

grandeza menor do que a energia térmica à temperatura ambiente. Consequentemente, a 

diferença de população entre os dois autoestados de Zeeman é muito pequena. 

Isso significa que, a temperatura ambiente, a energia térmica da molécula é muito 

maior do que a diferença de energia entre os estados de spin nuclear, fazendo com que o 

estado de mais alta energia seja preenchido, mas não totalmente. 

Para γ positivo, o estado de mais baixa energia, α terá uma população ligeiramente 

maior que a do estado de alta energia, β. Para γ negativo a energia dos estados se 

invertem. 
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O estado de um único spin 1/2 é, comumente, representado por uma seta, indicando 

a direção do momento angular de spin. A resposta do spin ao campo magnético pode ser 

ilustrada pela rotação desta seta em torno de diferentes eixos no espaço tridimensional. 

Similarmente, é possível representar um conjunto de spins 1/2 como um vetor 

magnetização M, indicando a magnitude e direção da magnetização. 

A magnetização longitudinal de spin nuclear é quase indetectável. A espectroscopia 

de ressonância magnética nuclear utiliza uma diferente abordagem: ao invés de medir a 

magnetização de spin nuclear ao longo do eixo do campo, mede a magnetização 

perpendicular a esse campo. 

Suponha que o sistema de spins atingiu o equilíbrio térmico, após ser submetido a 

um campo magnético externo. A magnetização ao longo da direção do campo aplicado, 

magnetização longitudinal, é Mz. Na situação de equilíbrio, todos os spins 

quimicamente equivalentes precessam em torno do campo magnético com a mesma 

frequência, ν. Não há magnetização perpendicular ao campo, pois, em equilíbrio 

térmico, a distribuição de magnetização é cilindricamente simétrica em torno do eixo z, 

portanto as componentes em x e y se cancelam. 

Não há transição espontânea entre diferentes estados de spin. É necessário um 

estímulo externo para que isso ocorra. Se aplicarmos um pulso de radiofrequência π/2 

radianos em torno de x, (π/2)x, o vetor magnetização é rotacionado de z para –y, como 

na Figura 4. 

Figura 4: Resposta do vetor magnetização ao pulso (π/2)x. 

 

Fonte: Autoria própria. 

Imediatamente após o pulso, observamos que o vetor magnetização não tem 

componente no eixo z, isso ocorre porque o pulso iguala as populações dos dois estados, 

ou seja, os spins individuais são rotacionados de forma que ao somarmos a componente 

de α e de β, de todos, obtém-se o mesmo valor para a soma de cada estado, ilustrado na 

Figura 5. 
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Figura 5: Populações após aplicação do pulso (π/2)x 

 

Fonte: Autoria própria. 

Esse momento magnético perpendicular ao campo magnético é chamado 

magnetização transversal. 

Quando o pulso é desligado, os spins retornam ao seu movimento de precessão. 

Microscopicamente, cada spin individual precessa no seu cone. Em escala 

macroscópica, o estado imediatamente após o pulso corresponde a uma polarização ao 

longo de –y, que precessa em torno de z, rotacionando no plano xy, com a frequência de 

Larmor, como na Figura 6. 

Figura 6: Oscilação do vetor magnetização transversal 

 

Fonte: Autoria própria. 

A magnetização em y, My, e em x, Mx, oscilam como uma função senoidal com a 

frequência de Larmor. Porém, a intensidade em x e y decai com o tempo, como pode ser 

observado na Figura 7. 

Figura 7: Decaimento do vetor magnetização transversal. 

 

Fonte: Autoria própria. 
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Isso acontece porque é impossível manter a sincronia entre os spins individuais e, 

aos poucos, a posição relativa entre eles vai mudando. Dessa forma, a soma vetorial 

entre os componentes em x e y vai diminuindo até alcançar o zero, enquanto a 

componente em z aumenta até voltar ao estado inicial. 

 Deslocamento Químico 3.2.2

A equação da frequência de Larmor descreve o comportamento de um único núcleo 

atômico isolado em um campo magnético B0. Porém, os sistemas moleculares são 

formados por átomos, e não simplesmente núcleos, ligados entre si através de 

densidades eletrônicas e de interações eletrostáticas. É necessário incluir os efeitos da 

presença de densidades eletrônicas e de outros núcleos atômicos na frequência de 

ressonância dos núcleos. 

Quando colocado em um campo magnético B0, o elétron tende a se movimentar em 

órbita circular perpendicular ao campo. O movimento do elétron implica na geração de 

corrente elétrica, que gera um campo magnético induzido Bi, proporcional a B0. Então o 

campo sentido pelo núcleo, BT, seria menor, devido à blindagem eletrônica, Equação 8. 

Equação 8 

                                

Sendo σ a constante de proporcionalidade entre o campo externo e o induzido, 

chamada de constante de blindagem. 

Substituindo o B0 na Equação 5 pelo encontrado na Equação 8, temos a frequência 

de ressonância dos núcleos descrita na Equação 9: 

Equação 9 

                  

Essa equação leva em consideração o efeito da densidade eletrônica na frequência 

de RMN. Como esta densidade depende do ambiente químico onde o núcleo se 

encontra, podemos utilizar a frequência de ressonância para estudar o ambiente químico 

onde se encontra os diversos átomos em uma molécula. 

A constante de blindagem deve incluir todos os efeitos no deslocamento químico 

do núcleo atômico que sejam de origem eletrônica, sendo então expressa como um 

somatório de diferentes efeitos eletrônicos: 

                   



29 

 

 

 

Que correspondem, respectivamente, às blindagens diamagnética e paramagnética, 

aos efeitos anisotrópicos, aos efeitos de campos elétricos e aos efeitos do solvente. 

 Escala e Referências 3.2.3

Como a frequência (ν) depende do campo aplicado, seria necessário indicar em qual 

campo o espectro foi obtido para identificar o núcleo. Para solucionar esse problema foi 

criada uma escala independente do campo aplicado, δ. 

Essa escala é definida utilizando um sinal como referência. Assim, para um núcleo 

com constante magnetogírica γ, temos a Equação 10: 

Equação 10 

  
     

  
   

Sendo νA, νR e ν0 as frequências do núcleo: na amostra, na referência e a do 

espectrômetro, respectivamente, dadas por: 

Equação 11 

            (
 

  
)                     (

 

  
)                      

Como a diferença no numerador está em Hz e a frequência do denominador está em 

MHz, então o δ é em partes por milhão, ppm. 

A referência mais utilizada é o tetrametilsilano, TMS. Por definição, os spins do 

TMS têm δ= 0 ppm. É um composto inerte, com um intenso e definido sinal de RMN. 

A escala δ sempre aumenta da direita para esquerda do espectro, uma convenção em 

RMN. 

  PRESAT e CPMG 3.2.4

Há sequências de pulsos utilizadas para suprimir seletivamente alguns sinais, 

como por exemplo: PRESAT e CPMG (Carr-Pucell-Meiboom-Gill). 

PRESAT consiste na aplicação de um pulso de baixa potência, em um tempo 

relativamente longo, numa frequência pré-determinada, tipicamente a frequência 

atribuída ao sinal da água. Este pulso iguala as populações dos dois estados e, 

consequentemente, sinais não são observados nessa frequência. Esta sequência de 

pulsos é particularmente útil para as amostras aquosas ou que tem um sinal muito 

intenso, que dificulte a observação dos sinais de interesse. 
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A sequência de pulsos CPMG, quando utilizada como filtro de T2 (tempo de 

relaxação transversal), tem o objetivo de eliminar os sinais provenientes de moléculas 

com T2 curto e possibilitar a análise dos sinais de moléculas menores. Para isso, como 

observado na Figura 8: é aplicado um pulso de 90º, enviando a magnetização para o 

plano xy. Em seguida, são aplicados sucessivos pulsos de 180° entre intervalos de 

tempo τ, até que os spins com valores menores de T2 tenham relaxado, e o espectro é 

adquirido contendo apenas as ressonâncias de interesse. 

A combinação do pulso de 180º entre os intervalos de tempo τ, servem para 

refocar a magnetização, pois durante o tempo τ os spins precessam e a magnetização 

gira em um ângulo α no sentido horário, por exemplo. Ao aplicar o pulso, a 

magnetização inverte em relação ao eixo, e com o segundo intervalo τ, a magnetização 

gira no mesmo sentido e com o mesmo ângulo, voltando à posição inicial, como na 

Figura 9. Porém, núcleos com T2 curto relaxam durante os intervalos τ, até que seus 

spins voltem totalmente ao eixo z e não apareçam seus sinais. 

 

Figura 8: Sequência de pulsos CPMG. 

 

Fonte: Autoria própria. 

 

Figura 9: Magnetização durante o processo de refocagem. 

 

Fonte: Autoria própria. 
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 Sinal de RMN 3.2.5

A magnetização transversal, obtida pela rotação da magnetização longitudinal 

através da aplicação de um pulso de radiofrequência – 90º ou 45º em x ou y – , é muito 

pequena, apesar disso, é detectável, porque oscila a uma frequência bem definida. 

Um momento magnético oscilante gera um campo magnético oscilante que pode 

gerar corrente elétrica oscilante em uma bobina. Essa corrente elétrica gerada pode ser 

detectada por um sensor de radiofrequência. 

Os spins nucleares em uma amostra são detectados utilizando o decaimento livre de 

indução (FID, do inglês, free- induction decay), a detecção da corrente elétrica oscilante 

induzida pela precessão nuclear da magnetização transversal. 

O decaimento da magnetização transversal é uma função do tempo, como vimos na 

Figura 7. Aplicando a transformada de Fourier, é possível visualizar os componentes 

individuais do sinal e obter o gráfico das intensidades em função das frequências, ou 

seja, o espectro de RMN. 

 Transformação do Espectro em Matriz de Dados 3.2.6

Cada espectro é dividido em regiões de mesma largura em ppm, denominadas 

bins, e é convertido em uma matriz linha, na qual os elementos são preenchidos com a 

integral do bin correspondente a cada coluna. É construída então uma matriz com cada 

caso (amostra) correspondendo a uma linha, e as colunas correspondendo às faixas de 

deslocamento químico pré-selecionadas, os bins. 

É determinada a janela espectral (limites de deslocamento químico de interesse 

para a análise) baseada no conhecimento do espectro do biofluido, como sua 

composição e localização de sinais correspondentes a determinados metabólitos, 

podendo ser incluídos ou excluídos regiões e sinais específicos.(BERRUETA; 

ALONSO-SALCES; HÉBERGER, 2007) 
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 Quimiometria 3.3

Quimiometria é uma área da química que utiliza métodos matemáticos e 

estatísticos para: planejar ou selecionar condições ótimas para medidas e experimentos; 

ou extrair o máximo de informações relevantes a partir de análise de dados 

químicos.(BRUNS; FAIGLE, 1984) 

Em sistemas com poucas variáveis é fácil encontrar a solução do problema, por 

exemplo: em uma dissolução de sal em água, a pressão e temperatura ambiente, 

podemos facilmente relacionar a quantidade de sal dissolvido à quantidade de água. 

Mas em um sistema em que se tenham dois sais sendo dissolvidos, com variação de 

temperatura e de pressão, essa relação não é tão direta, fazendo com que a quimiometria 

seja muito útil, tanto na escolha de condições ótimas para o procedimento, quanto para 

obter a relação final entre a dissolução do sal e os fatores que interferem. 

Sistemas dessa natureza, multivariados, são muito comuns na química, como: 

reações que dependem de temperatura, pH, solvente, concentração dos reagentes; e 

utilização de espectros de Infravermelho (IR), ressonância magnética nuclear (RMN), 

espectrometria de massas (MS), e outras técnicas espectrométricas, para a determinação 

de concentração de um analito ou classificação de amostras a partir da sua impressão 

digital.(BERRUETA; ALONSO-SALCES; HÉBERGER, 2007; BRUNS; FAIGLE, 

1984) 

Como os dados químicos utilizados pela estratégia metabonômica são espectros 

de RMN das amostras, que são dados multivariados, se faz necessário o uso de 

tratamentos quimiométricos para extrair as informações relacionadas à impressão digital 

da perturbação. Dessa forma, o conjunto de dados é organizado na forma de uma matriz 

de dados. As linhas correspondentes aos espectros de cada amostra são agrupadas em 

uma única matriz, contendo as amostras nas linhas (os casos) e os bins nas colunas (as 

variáveis). A matriz de dados está ilustrada na Figura 10. 
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Figura 10: Matriz de dados. Elemento xpn representa o valor da variável n para a amostra p. 

 

Fonte: Autoria própria. 

Para extrair as informações dessas matrizes de dados são utilizadas as técnicas de 

Reconhecimento de Padrões (RP), ferramentas que buscam identificar, caracterizar e 

avaliar similaridades e diferenças entre amostras de um conjunto de dados. As técnicas 

de RP são divididas em supervisionadas e não supervisionadas.(BERRUETA; 

ALONSO-SALCES; HÉBERGER, 2007; BRUNS; FAIGLE, 1984) 

As técnicas não supervisionadas recebem esse nome por não utilizarem as 

informações de classe na etapa de construção do modelo. São normalmente usadas para 

Análise Exploratória dos Dados (EDA), que visa obter um conhecimento do grupo de 

amostras e simplificação dos dados, removendo as informações redundantes e ruídos 

sem perder as informações importantes. Um exemplo de técnica de RP não 

supervisionada é a Análise de Componentes Principais (PCA).(BERRUETA; 

ALONSO-SALCES; HÉBERGER, 2007; BRUNS; FAIGLE, 1984) 

As técnicas de RP supervisionadas utilizam a informação de classe das amostras 

para construir modelos de classificação, capazes de predizer a qual classe pertence uma 

amostra desconhecida. Neste trabalho utilizamos duas técnicas de RP supervisionadas: 

Análise Discriminante por Mínimos Quadrados Parciais (PLS-DA) e Análise 

Discriminante Linear (LDA). 

Antes de aplicar as técnicas de RP à matriz de dados, é necessário pré-processar 

os dados para corrigir alguns fatores que podem fazer com que algumas amostras ou 
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variáveis influenciem mais no resultado da análise, sem ter essa real importância, como 

variáveis em ordens de grandeza diferentes e amostras em diferentes concentrações. 

Como as amostras usadas são de biofluidos, há uma diferença de diluição, isso 

acontece principalmente na urina. Para evitar que amostras mais concentradas pesem 

mais na construção dos modelos, há vários tipos de normalizações, como normalização 

pela soma e Standard Normal Variate (SNV). 

A normalização pela soma consiste em dividir cada bin (xi) pela soma de todos os 

bins da amostra, Equação 12. SNV subtrai de cada bin (xi) o valor da média ( ̅) de todos 

os bins da amostra e divide pelo desvio padrão ( ), Equação 13. 

Nas variáveis, é utilizado o autoescalonamento, necessário quando há um 

metabólito, ou um grupo de metabólitos, que aparece em grande concentração no 

biofluido, para todas as amostras. Pois, quando há variáveis com valores que variam em 

ordens de grandeza diferentes, a comparação direta entre elas atribui uma ponderação 

maior às variáveis com maior valor numérico, dessa forma os sinais de maior 

intensidade dariam contribuições muito maiores para o modelo criado. Porém, têm que 

se tomar cuidado para não dar a mesma importância para sinais de metabólitos e ruídos. 

O autoescalonamento utiliza a mesma equação que o SNV, porém, é aplicado às 

variáveis. 

Equação 12: Normalização pela soma. 

  
  

  

∑ 
 

Equação 13: SNV para as amostras e autoescalonamento para as variáveis. 

  
  

    ̅

 
 

Em que x’i é o valor da amostra na variável i após a normalização, xi é o valor da 

amostra na variável i antes da normalização,  ̅ é a média dos valores de todas as 

variáveis naquela amostra e σ é o desvio padrão, no caso do SNV. Para o 

autoescalonamento, x’i é o valor da variável na amostra i após a normalização, xi é o 

valor da variável na amostra i antes da normalização,  ̅ é a média e σ é o desvio padrão 

dos valores de todas as amostras naquela variável. 
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 Análise de Componentes Principais 3.3.1

A análise de componentes principais (PCA) consiste em transformar as variáveis 

originais em um novo grupo de variáveis não correlacionadas, chamadas de 

Componentes Principais (PC). As componentes principais são eixos ortogonais 

construídos a partir de combinações lineares das variáveis originais e que representam 

as direções de maior variância dos dados. A primeira componente principal (PC1) 

explica a maior variância dos dados, a segunda componente principal (PC2) explica o 

máximo da variância residual, e assim sucessivamente até que toda a variância dos 

dados seja explicada.(BERRUETA; ALONSO-SALCES; HÉBERGER, 2007; NETO; 

MIOTA, 1998) As duas primeiras componentes principais de um grupo de dados 

hipotético estão ilustradas na Figura 11. 

Figura 11: Rotação das variáveis originais para obtenção das componentes principais. 

 

Fonte: Autoria própria. 

Cada componente principal é definida pela variância explicada, o conjunto de 

pesos das variáveis e o conjunto de escores das amostras. Os pesos das variáveis, ou 

loadings, são definidos a partir da matriz de covariância e correspondem ao cosseno do 

ângulo entre o eixo da PC e das variáveis originais, dando origem à matriz de pesos, L. 

O escore é a coordenada da amostra no eixo da PC. É obtido pelo somatório do 

valor do peso de cada variável, naquela componente principal, multiplicado pelo valor 

da variável original para aquela amostra, Equação 14. 
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Equação 14 

    ∑      
 

 

Sendo tih o escore da amostra i na componente h, xij o valor da variável j na 

amostra i e ljh o peso da variável j na componente h.(DE SOUZA; POPPI, 2012) Os 

escores de todas as amostras nas componentes principais construídas compõem a matriz 

de escores, T. 

Podemos então representar o modelo PCA na sua forma matricial a partir da 

Equação 15. 

Equação 15 

         

Em que X é a matriz de dados originais, T é a matriz de escores, L é a matriz de 

pesos e E é a matriz de erro, que corresponde aos resíduos do modelo.(DE SOUZA; 

POPPI, 2012; LEE; GILMORE, 2006) 

A PCA permite visualizar a estrutura dos dados e encontrar a similaridade entre 

amostras, através da observação de agrupamentos das amostras quando projetadas nas 

componentes principais. 

Também é utilizada para detecção de amostras anômalas, ou outliers, que são 

amostras que se apresentam fora do padrão ou agrupamento mostrado pela grande 

maioria das amostras. É importante que essas amostras sejam excluídas pois estarão 

adicionando, aos modelos construídos, informações que não correspondem ao grupo 

estudado. Mas, para ser considerada uma amostra anômala, é necessário avaliar o 

resíduo, distância da amostra para o modelo, e a sua influência na construção da 

componente principal. 

A PCA permite a redução da dimensionalidade dos dados, uma vez que remove as 

informações redundantes e os ruídos. Além disso, como as componentes são construídas 

de forma decrescente em variância explicada, a maior parte das informações 

significativas estarão nas primeiras componentes.(BERRUETA; ALONSO-SALCES; 

HÉBERGER, 2007) 

 Análise Discriminante por Mínimos Quadrados Parciais 3.3.2

A PLS-DA é uma técnica supervisionada, portanto, utiliza uma matriz que contém 

as informações correspondentes às classes das amostras na etapa de construção do 

modelo (Y). O número de colunas de Y é igual a quantidade de classes das amostras, os 
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casos pertencentes àquela classe recebem o valor 1 e os que não pertencem, recebem o 

valor 0. A Figura 12 mostra um exemplo das matrizes X e Y, para duas classes A e B. 

A PLS-DA se baseia em encontrar componentes que melhor expliquem as 

variações das variáveis em X que sejam relacionadas aos valores de Y, dando menos 

pesos às variações não correlacionadas a Y e aos ruídos. 

Figura 12: Exemplo de matrizes X e Y. 

 

Fonte: Autoria própria. 

Na PCA, as componentes principais são calculadas com a mínima correlação entre 

si e que maximizam a variância em X. Já a PLS-DA modela X e Y simultaneamente, 

procurando Variáveis Latentes (LV), combinações lineares das variáveis originais assim 

como as componentes principais, que expliquem a máxima correlação entre as matrizes. 

Geometricamente, as variáveis latentes podem ser interpretadas como uma rotação das 

componentes principais que visa aumentar a correlação entre X e Y.(BERRUETA; 

ALONSO-SALCES; HÉBERGER, 2007; WOLD; SJÖSTRÖM; ERIKSSON, 2001) 

Uma limitação desse método é que inclui erros de ambas as matrizes, portanto é 

mais indicado para conjuntos de dados com pouco ruído. Uma forma de evitar esses 

erros é não utilizar um grande número de variáveis latentes para construir o modelo de 

classificação.(BERRUETA; ALONSO-SALCES; HÉBERGER, 2007) 

Na construção do modelo, as duas matrizes são decompostas simultaneamente em 

matrizes de escores e loadings, encontrando pesos que determinem as mesmas 

projeções, matriz de escores T, para X e Y. As equações usadas na construção das 

variáveis latentes são Equação 16 e Equação 17.(LEE; GILMORE, 2006) 

 

Equação 16 
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Equação 17 

         

Em que X é a matriz das variáveis independentes, Y é a matriz das variáveis 

dependentes (classes), T é a matriz de escores, P é a matriz de pesos e E é a matriz de 

erro, ambas de X, enquanto, Q é a matriz de pesos e F é a matriz de erro, de Y.(LEE; 

GILMORE, 2006) 

Para classificar amostras desconhecidas, as equações 16 e 17 são utilizadas para 

encontrar o valor de Y e um ponto de corte é definido para classificar a amostra. 

Normalmente é utilizado 0,5, a partir desse valor em Y, a amostra é considerada 

pertencente à classe. 

Ao se analisar P, é possível identificar variáveis importantes para a classificação. 

No caso da metabonômica, essas variáveis indicam regiões do espectro que são mais 

intensas em alguma das categorias, caracterizando metabólitos presentes em 

concentrações diferentes devido à perturbação estudada. 

 Análise Discriminante Linear 3.3.3

Análise discriminante linear (LDA) se baseia em procurar uma função linear que 

permita a discriminação entre pontos relativos a amostras de duas diferentes categorias. 

Para isso, as classes devem seguir uma distribuição normal e serem linearmente 

separáveis.(BRUNS; FAIGLE, 1984) 

Assim como a PCA, a LDA projeta dados de grandes dimensões em planos de 

dimensões menores. No entanto, enquanto a PCA seleciona a direção que retém a 

máxima variância dos dados em uma dimensão inferior, LDA seleciona a direção que 

alcança a máxima separação entre classes e minimiza a separação intra - 

classes.(BERRUETA; ALONSO-SALCES; HÉBERGER, 2007) 

Para se obter uma função discriminante linear, como está ilustrado na Figura 13, 

determina-se o centro de gravidade para cada classe e, então, uma linha reta é traçada 

entre eles. Perpendicular a essa reta, equidistante dos centros de gravidade, é traçado um 

plano de decisão, a função discriminante. O espaço fica, então, dividido em duas 

regiões. Projetando-se uma amostra de categoria desconhecida, é possível classificá-la 

de acordo com a região na qual aparece. Em um espaço tridimensional, como na Figura 

13, temos um plano discriminante, mas em espaços de quatro ou mais dimensões, a 
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função linear será uma superfície, um hiperplano, de dimensão m-1, em que m é o 

número de variáveis usadas. (BRUNS; FAIGLE, 1984) 

A LDA tem uma limitação: o número de variáveis não pode ser maior que o 

número de amostras. Mas esse problema pode ser facilmente resolvido aplicando-se um 

método de seleção de variáveis ou de redução de dimensionalidade. 

Métodos de seleção de variáveis são muito utilizados, além do caso em que o 

número de objetos é relativamente pequeno e o número de variáveis é grande, quando 

há variáveis que contêm informações redundantes ou ruído, para que o modelo não 

perca sua capacidade de generalização. (BERRUETA; ALONSO-SALCES; 

HÉBERGER, 2007) 

Figura 13: Esquema da construção da função linear discriminante 

 

Fonte: Autoria própria. 

Para análise discriminante, um tipo de seleção de variáveis busca, entre todos os 

possíveis subconjuntos de variáveis, o que melhor discriminar as classes segundo um 

determinado critério, como por exemplo, o Lambda de Wilks. 

O lambda de Wilks é um parâmetro similar ao teste F, um teste de variância só 

que para dados multivariados. O valor do Lambda de Wilks é calculado para todo os 

subconjuntos de variáveis para testar a hipótese de que as duas (ou mais) classes são 

diferentes.(CRICHTON, 2000) 

Quando existem muitas variáveis e diversos tamanhos de subconjuntos, o número 

total de subconjuntos possíveis e o tempo de processamento podem se tornar 
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excessivamente grandes. Nesses casos, é indicado utilizar um método de redução de 

dimensionalidade e determinar um tamanho específico para os subconjuntos testados. 

Uma opção é utilizar a PCA como técnica de redução da dimensão das variáveis, 

excluindo as informações redundantes e ruídos, antes de submeter ao método de seleção 

de variáveis para a construção do modelo LDA. 

A PLS-DA tem a capacidade de construir modelos satisfatórios com um número 

de variáveis maior que o número de casos. Contudo, é preciso estar atento ao 

sobreajuste do modelo PLS-DA, quando o número de variáveis latentes usadas for 

maior que o necessário, e ao sub-ajuste, quando é menor que o 

necessário.(BERRUETA; ALONSO-SALCES; HÉBERGER, 2007) 

As duas técnicas de RP supervisionadas apresentadas (PLS-DA e LDA) não 

contemplam a possibilidade de a amostra pertencer a uma categoria ainda não definida, 

ou seja, a amostra sempre será classificada como pertencente a uma das categorias 

modeladas.(BRUNS; FAIGLE, 1984) 

Após a construção do modelo é feita a validação. Essa etapa tem como objetivos 

avaliar: o carácter representativo dos dados utilizados para produzir o modelo; o número 

de variáveis necessárias para caracterizar o conjunto de dados; e a capacidade do 

modelo de predizer amostras desconhecidas. 

A validação externa é usada quando há amostras suficientes para criar grupos de 

treinamento, usado para construção do modelo, e de teste, usado para avaliar o modelo, 

cada um contendo amostras representativas de cada classe. Mas é comum a quantidade 

de amostras disponíveis não ser suficiente para dividir em dois grupos representativos, 

nesses casos, a validação cruzada é aplicada. 

Um exemplo de validação cruzada muito utilizado é a Validação Cruzada Total 

(LOOCV, do inglês, Leave-One-Out Cross Validation). A LOOCV consiste em retirar 

uma amostra do conjunto de treinamento, construindo um novo modelo sem a amostra 

retirada, e usá-la para validá-lo. Em seguida, o mesmo procedimento é realizado com a 

próxima amostra, até que todas as amostras sejam retiradas do conjunto de treinamento 

e usadas como conjunto de teste. Há outros tipos de validação cruzada, nas quais se tira 

uma quantidade diferente de amostras do conjunto de treinamento, para constituir o 

conjunto de teste. A exatidão (porcentagem de acertos) é calculada para cada modelo e a 

performance na validação cruzada é a média das exatidões obtidas em todos os modelos. 

Quando as categorias às quais as amostras pertencem são relacionadas a doenças, 

é comum representar os resultados por meio da tabela de contingência e, a partir dela, 
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calcular sensibilidade, especificidade, Valor Preditivo Positivo (VPP), Valor Preditivo 

Negativo (VPN) e exatidão. Sensibilidade expressa a proporção de doentes, 

identificados pelo padrão ouro para o diagnóstico de determinada doença, que foram 

corretamente classificados pelo novo teste. Especificidade indica a proporção de 

saudáveis, também comparando com padrão ouro, corretamente classificados pelo novo 

teste. Valor preditivo positivo indica qual a chance de acerto quando o novo teste der 

positivo, e valor preditivo negativo indica a chance de acerto quando o novo teste der 

negativo. 

Na Figura 14 está ilustrada uma tabela de contingência genérica e como calcular 

os parâmetros de avaliação do modelo. 

Figura 14: Tabela de contingência e parâmetros para avaliação de um teste. 

 

Fonte: Autoria própria. 

Em que a é a quantidade de doentes classificados pelo novo teste como doentes, b 

é a quantidade de saudáveis classificados como doentes, c é a quantidade de doentes 

classificados como saudáveis e d é a quantidade de saudáveis classificados como 

saudáveis. 
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 Fígado 3.4

O fígado é o maior órgão interno do corpo humano, em um adulto normal pesa de 

1200 a 1600 g, constituindo aproximadamente 2,5% do peso corporal.(KUMAR et al., 

2006) (SHERLOCK; DOOLEY, 1997) 

Este órgão possui duas vias de entrada de sangue: 60 a 70% do sangue é levado do 

intestino e baço pela veia porta, e é rico em produtos bacterianos, toxinas e antígenos 

alimentares; os outros 30 a 40% são fornecidos por vascularização da artéria hepática. 

No interior do fígado, a veia porta, a artéria hepática e os ductos biliares se ramificam 

paralelamente em tratos portais, de até 17 a 20 ordens de ramos.(KUMAR et al., 2006) 

(SHERLOCK; DOOLEY, 1997) 

De acordo com o modelo lobular, o fígado é constituído pelos lóbulos esquerdo e 

direito, separados por ligamentos, sendo o direito cerca de seis vezes maior que o 

esquerdo, conforme ilustrados na Figura 15. O lóbulo direito tem dois seguimentos 

menores: lóbulos quadrado e caudado. (SHERLOCK; DOOLEY, 1997) No centro dos 

lóbulos há terminais da veia hepática e, nas periferias, há tratos portais.(KUMAR et al., 

2006) 

Figura 15: Vista frontal do fígado. 

 

Fonte: Autoria própria. 

Cerca de 80% do volume do fígado é formado por hepatócitos, entre 60 a 70% das 

células desse órgão. Estão organizados em placas, que vão das veias hepáticas terminais 

até os tratos portais. Entre essas placas estão os sinusoides, canais por onde passa o 

sangue. Os hepatócitos vizinhos à veia hepática terminal são chamados de 

centrolobulares e os situados próximos ao trato portal são chamados periportais. Os 

outros 20% são formados por células não parênquimas, como endoteliais, células de 

Kupffer (macrófagos capazes de fagocitar bactérias e outras matérias estranhas do 

sangue) e linfócitos.(SHERLOCK; DOOLEY, 1997)  
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O fígado tem a capacidade de se regenerar. Acredita-se que durante a regeneração 

hepática, os hepatócitos se repliquem uma ou duas vezes até atingir o tamanho e volume 

hepático normal, voltando ao estado de repouso.(KUMAR et al., 2006) 

Os hepatócitos são responsáveis por suprir as necessidades de metabolização e 

desintoxicação do organismo.(HALL; GUYTON, 2011; KUMAR et al., 2006) 

O fígado tem muitas funções diferentes, o que fica evidente quando ocorre uma 

disfunção neste órgão, pois percebe-se várias alterações no organismo ocorrendo 

simultaneamente. Elas podem ser resumidas em: 

Reservatório de sangue: O volume sanguíneo normal do fígado é cerca de 450 

mL, ou 10% do volume sanguíneo corporal. Porém, como é um órgão expansível, tem a 

capacidade de armazenar em suas veias e sinusoides de 0,5 a 1 L de sangue extra. 

Filtração de sangue: O sangue que flui pelo trato digestivo recolhe muitas 

bactérias. Elas entram no fígado pelas veias porta e à medida que passam pelos 

sinusoides, são fagocitados pelas células Kupffer, permanecendo alojadas até serem 

digeridas. Estima-se que menos de 1% das bactérias que entram no sangue porta consiga 

atravessar o fígado e atingir a circulação sistêmica. 

Armazenamento de vitaminas e ferro: É capaz de armazenar vitamina A suficiente 

para suprir a necessidade do corpo por 10 meses; vitamina D para 3 ou 4 meses; e 

vitamina B12 para, pelo menos, um ano. Além disso, armazena a maior proporção de 

ferro do organismo, depois da hemoglobina sanguínea, sob a forma de ferritina. 

Função metabólica do fígado: Este órgão é um grande grupamento celular 

quimicamente reativo, que processa e sintetiza muitas substâncias que são transportadas 

para outras partes do corpo. Suas principais atividades metabólicas são: metabolismo de 

carboidratos (importante na manutenção do nível de glicose no sangue), de gorduras 

(importante para a produção de energia e sais biliares) e de proteínas (forma cerca de 

90% das proteínas plasmáticas, assim como alguns aminoácidos e outras substâncias a 

partir deles). 

Formação de fatores de coagulação: É responsável pela sintetização de várias 

substâncias sanguíneas utilizadas na coagulação. 

Formação de bile e excreção de hormônios e substâncias estranhas ao organismo: 

É conhecido pela sua capacidade de desintoxicar o organismo. Metaboliza e/ou excreta 

fármacos, hormônios e outras substâncias. A excreção dessas substâncias é feita através 

da bile, passando para o intestino e sendo liberadas nas fezes. (HALL; GUYTON, 2011) 
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Geralmente as doenças hepáticas têm um processo insidioso, no qual os sintomas 

só aparecem muito tempo após ocorrer a lesão, quando o quadro já está avançado. Por 

isso, a maioria dos pacientes são encaminhados para hepatologistas quando apresentam 

doença hepática crônica.(KUMAR et al., 2006) 

As principais doenças do fígado são as hepatites virais, a Doença Hepática 

Alcoólica (DHA), a Doença Hepática Gordurosa Não Alcoólica (DHGNA) e o 

Carcinoma Hepatocelular (CHC). Porém, a lesão hepática também pode ocorrer devido 

a algumas outras doenças, como descompensação cardíaca, câncer disseminado e 

infecções.(KUMAR et al., 2006) 

 Esteatose 3.4.1

A DHGNA é considerada a forma mais comum do grupo de doenças hepáticas 

atribuídas a distúrbios do metabolismo, adquiridos ou hereditários, e à má nutrição. É a 

causa mais frequente de distúrbio hepático em muitos países desenvolvidos, e a 

principal causa de doença hepática crônica nos Estados Unidos afetando, em suas várias 

formas, mais de 30% da população. Mas essa estimativa pode estar subestimando a 

incidência e prevalência desta doença, que muitas vezes é assintomática.(KUMAR et 

al., 2006; SHERLOCK; DOOLEY, 1997)  

Na Europa, a prevalência da DHGNA é estimada em 20 a 30% da população 

geral, e 2,6 a 10% na população pediátrica.(LABRECQUE et al., 2014) 

A DHGNA pode se manifestar como esteatose simples ou acompanhada por uma 

inflamação mínima, mas, geralmente, não apresenta problemas clínicos significativos. 

Porém, quando há o excesso do acúmulo de gordura no fígado subsequente de 

inflamação hepática, tem-se a esteato-hepatite Não Alcoólica (EHNA), na qual ocorre 

lesão de hepatócitos. É uma das causas mais comuns de cirrose, evoluindo em 10 a 20% 

dos casos.(KUMAR et al., 2006) 

Apesar de não apresentar sintomas e grandes problemas clínicos, a esteatose pode 

evoluir para problemas mais graves, como esteato-hepatite e, posteriormente, cirrose ou 

CHC. Além disso, as diferentes formas de DHGNA contribuem para a progressão de 

outras doenças hepáticas, como infecção por vírus da hepatite C (HCV) e CHC. 

Portanto é importante que seja feito o diagnóstico no início da doença.(KUMAR et al., 

2006) 
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O acúmulo de gordura no fígado pode ser observado por exames de imagem, mas 

o padrão ouro para seu diagnóstico é a biópsia hepática, que identifica também a 

extensão da lesão, a presença de EHNA e o grau de fibrose.(KUMAR et al., 2006) 

 Hepatites Virais B e C 3.4.2

O termo “hepatites virais” é aplicado às infecções hepáticas causadas por um 

grupo de vírus que possuem uma afinidade particular pelo fígado, conhecidos como 

vírus hepatotrópicos. Estão incluídos os vírus das hepatites A, B, C, D e E.(KUMAR et 

al., 2006) Vamos tratar especificamente das hepatites virais B e C. 

O vírus da hepatite B (HBV) pode se manifestar de várias formas: hepatite aguda 

com recuperação e eliminação do vírus; hepatite crônica não progressiva; doença 

crônica progressiva terminando em cirrose; ou um estado de portador 

assintomático.(KUMAR et al., 2006; SHERLOCK; DOOLEY, 1997) 

A doença hepática decorrente da infecção pelo HBV constitui um enorme 

problema de saúde pública global, pois cerca de um terço da população mundial, 2 

bilhões de pessoas, está infectada pelo HBV.(KUMAR et al., 2006) 

Na maioria das pessoas, é assintomática durante a fase aguda, no entanto, algumas 

apresentam sintomas que podem durar várias semanas, como icterícia, fadiga extrema, 

náuseas, vômitos e dor abdominal. Estima-se que mais de 90% dos adultos saudáveis 

infectados por HBV se recuperam naturalmente dentro do primeiro ano, e menos de 5% 

desenvolvem infecção crônica. A estimativa é de que haja 240 milhões de pessoas 

cronicamente infectadas por HBV, no mundo.(ORGANIZATION, 2015a) 

A hepatite crônica é definida como a evidência sintomática, bioquímica ou 

sorológica de doença hepática contínua ou recorrente por mais de 6 meses.(KUMAR et 

al., 2006). O principal objetivo do tratamento da hepatite B crônica consiste em reduzir 

o risco de progressão da doença hepática e de seus desfechos primários, especificamente 

cirrose, hepatocarcinoma e, consequentemente, o óbito. (MINISTÉRIO DA SAÚDE; 

SECRETARIA DE VIGILÂNCIA EM SAÚDE; DEPARTAMENTO DE DST, 2011) 

Em cerca de 20 a 30% dos indivíduos infectados pelo HBV, a hepatite crônica 

pode evoluir para cirrose e CHC. Entre 1990 e 2010, mais de 780 mil pessoas morriam 

a cada dia, devido às complicações de hepatite B. (ORGANIZATION, 2015a) 

O modo de transmissão do HBV varia, em áreas com alta prevalência, a 

transmissão perinatal - durante o parto - representa 90% dos casos. Em áreas de baixa 
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prevalência, os principais modos de disseminação são a relação sexual sem proteção e o 

abuso de drogas intravenosas.(KUMAR et al., 2006) 

O HBV tem um período de incubação prolongado, de 4 a 26 semanas, e 

permanece no sangue durante a hepatite aguda e crônica. Esse vírus consiste em uma 

molécula de DNA circular de fita parcialmente dupla, que apresenta aproximadamente 

3.200 nucleotídeos, e é membro de uma família de vírus DNA que causa hepatite em 

várias espécies animais, Hepadnaviridae. Foram identificadas dez variações genotípicas 

do HBV (CROAGH; DESMOND; BELL, 2015) com distribuição geográfica ao redor 

do mundo.(KUMAR et al., 2006; SHERLOCK; DOOLEY, 1997) 

O diagnóstico da infecção pelo HBV é baseado no exame laboratorial sorológico 

através das técnicas de ensaio imunoenzimático (ELISA, do inglês, enzyme-linked 

immunosorbent assay), ensaio enzimático de micropartículas (MEIA, do inglês, 

microparticle enzyme immunoassay), ou de quimioluminescência que analisa a presença 

dos antígenos HBsAg e HBeAg, e dos anticorpos anti-HBc, anti-HBs e anti-HBe. 

Também são utilizados testes de biologia molecular específicos como a reação em 

cadeia da polimerase (PCR, do inglês, polymerase chain reaction), método que 

amplifica as sequências genéticas específicas de modo que uma única molécula de DNA 

seja detectada dentre milhões, para detectar o HBV-DNA.(BRANDÃO et al., 2001; 

LIANG, 2009) Os marcadores serológicos estão resumidos na Tabela 2. (KUMAR et 

al., 2006; SHERLOCK; DOOLEY, 1997) 

Também são medidos os níveis séricos de alanina e aspartato aminotransferase 

(ALT, AST), que começam a subir após a infecção.(LIANG, 2009) 

Há uma vacina de prevenção a HBV, que consiste em HBsAg purificado e induz a 

produção de anticorpos anti-HBs em mais de 95% dos casos.(KUMAR et al., 2006; 

ORGANIZATION, 2015a) 

A OMS estima que cerca de 3% da população mundial está infectada por HCV e 

que cerca de 170 milhões de portadores crônicos estão em risco de desenvolver cirrose 

ou CHC. (ORGANIZATION, 2015b) A incidência de HCV em algumas regiões do 

mundo está disposta na Tabela 3. Além disso, cerca de 60-70% das infecções agudas de 

HCV são assintomáticas, dificultando a obtenção de dados mais exatos. (ALTER, 2007; 

LAVANCHY, 2011) Aproximadamente 4,1 milhões de norte-americanos, ou 1,6% da 

população, apresentam infecção crônica por HCV, a infecção transmitida pelo sangue 

mais comum e responsável por quase metade de todos os indivíduos com doença 

hepática crônica nos EUA.(KUMAR et al., 2006) 
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Tabela 2: Marcadores sorológicos de HBV. 

Marcador Detalhes Significância 

HBsAg 
Aparece antes do início dos sintomas e 
diminui até níveis indetectáveis em 3 a 6 
meses. 

Presença de hepatite B 
aguda ou crônica 

IgM anti-HBc 
Detectável no soro pouco tempo antes 
do início dos sintomas. 

Hepatite B aguda 

IgG anti-HBc 
Após alguns meses IgM anti-HBc é 
substituído por IgG anti-HBc. 

Exposição a hepatite B (sem HBsAg) 

Hepatite B crônica (com HBsAg) 

HBV DNA 
Permanece no sangue durante hepatite 
aguda e crônica. 

Infecção continuada 

HBeAg 
Aparece no soro logo após HBsAg e 
indica replicação viral ativa. 

Persistência indica provável 
hepatite B crônica 

Anti-HBe 
Aparece quando a hepatite aguda atingiu 
seu pico e está declinando. 

Convalescença 

Anti-HBs 
Detectável após o desaparecimento do 
HBsAg e pode persistir por toda a vida. 

Imune a hepatite B 

Fonte: KUMAR et al., 2006; SHERLOCK; DOOLEY, 1997 

 

Tabela 3: Número de infectados por HCV em diferentes regiões 
Região Número de infectados por HCV 

África 28.100.000 

Américas 14.000.000 

Ásia 83.000.000 

Austrália e Oceania 400.000 

Europa 17.500.000 

Oriente Médio 16.000.000 

Total 159.000.000 

Fonte:(LAVANCHY, 2011) 
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Em aproximadamente 85% dos indivíduos, o curso clínico da infecção aguda é 

assintomático e facilmente ignorado. Em contraste com o HBV, 80% dos casos de 

hepatite C aguda progridem para infecção crônica; 10 a 20% desenvolvem cirrose, que 

pode desenvolver-se ao longo de 5 a 20 anos após a infecção; 1 a 5% apresentam CHC; 

e 7 a 8% evoluem para óbito. De mais de 500 mil casos de câncer de fígado que 

ocorrem por ano, aproximadamente, 22% são atribuídos à infecção por HCV. (KUMAR 

et al., 2006; LAVANCHY, 2011; NIEDERAU et al., 1998) 

De acordo com dados de 2008 dos Centros para Controle de Doenças nos EUA, as 

formas mais comuns de infecção por HCV são: abuso de drogas intravenosas; múltiplos 

parceiros sexuais ; realização de cirurgia nos últimos 6 meses ; ferimento por picada de 

agulha; contatos múltiplos com uma pessoa infectada por HCV; e atividade profissional 

na área médica ou odontológica.(KUMAR et al., 2006) 

O HCV é um vírus de RNA pequeno, envelopado, de fita única, com um genoma 

de 9,6 kb, membro da família Flaviviridae. O HCV tem múltiplos genótipos e subtipos, 

em qualquer paciente, o vírus circula como uma população de variantes conhecidas 

como quase-espécies. Com o tempo, dezenas de quase-espécies podem ser detectadas 

em um indivíduo e mapeadas como derivadas da HCV original que infectou o paciente. 

Isso dificulta seriamente os esforços para desenvolver uma vacina contra o HCV. O 

período de incubação da hepatite por HCV varia de 2 a 26 semanas, com uma média de 

6 a 12 semanas.(KUMAR et al., 2006) 

Um aspecto característico da infecção por HCV consiste em surtos repetidos de 

lesão hepática, resultantes da reativação de uma infecção preexistente ou do 

aparecimento de uma variação nova do vírus, resultado de uma mutação recente. HCV-

RNA é detectável no sangue após 1 a 3 semanas da infecção, coincidindo com as 

elevações de ALT e AST. Em mais de 90% dos pacientes com infecção crônica, o 

HCV-RNA persiste apesar da presença de anticorpos neutralizantes.(KUMAR et al., 

2006) 

O diagnóstico da infecção pelo HCV é frequentemente realizado pela detecção 

dos anticorpos e antígenos específicos do vírus. Para isso, são usados testes de 

rastreamento como o ELISA, que utiliza proteínas recombinantes ou peptídeos 

sintéticos para a captação do anti-HCV. O teste ELISA está na quarta geração e 

apresenta uma sensibilidade de 97%.(BRANDÃO et al., 2001) 

Contudo, resultados positivos no ELISA podem ser devido a uma infecção já 

curada, visto que os anticorpos podem permanecer por anos após a cura da doença. Por 
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isso, o padrão ouro no diagnóstico de hepatite C é a determinação do RNA do vírus 

através da PCR.(BRANDÃO et al., 2001) 

Espera-se que o número de casos de cirrose e CHC aumentem significativamente 

na próxima década, pois estudos mostram que os índices de prevalência das hepatites B 

e C aumentaram desde a última estimativa,(LAVANCHY, 2011) e doenças do fígado 

podem se desenvolver anos depois da infecção, além dos casos não diagnosticados e 

não tratados.(ALTER, 2007) Portanto, infecção por HBV ou HCV caracteriza um 

grande problema de saúde pública em todo o mundo. 

É importante que haja a disponibilidade de diferentes testes de diagnóstico, o que 

viabiliza o diagnóstico precoce, minimizando o potencial para disseminação da infecção 

e proporcionando a possibilidade de controle e tratamento da doença, evitando que 

ocorra o desenvolvimento de complicações mais graves como cirrose e CHC. 

 Fibrose Hepática 3.4.3

Como a hepatite crônica causa lesão nas células hepáticas, começam a ocorrer 

eventos de regeneração e reparo dessas células. A regeneração resulta na restituição 

completa do tecido perdido ou lesado. O reparo pode restaurar algumas estruturas 

originais, mas pode causar desarranjos estruturais, pois consiste em uma combinação de 

regeneração das células originais e formação de cicatriz pela deposição de 

colágeno.(KUMAR et al., 2006) 

Os hepatócitos têm a capacidade de se regenerar rapidamente, porém, quando há 

presença de inflamação, por causa da hepatite crônica, o processo de formação de 

cicatriz fica mais forte, e as células parenquimais são substituídas por colágeno e outros 

componentes da matriz celular, formando o que é chamado de fibrose.(KUMAR et al., 

2006) O grau de fibrose hepática caracteriza o nível de comprometimento do fígado e é, 

geralmente, classificado pelo índice METAVIR, que vai de F0, sem fibrose, a F4, 

cirrose. 

O tratamento das hepatites crônicas é recomendado em pacientes que apresentam 

fibrose hepática mais severa, METAVIR F3 ou F4, ou que tenham diagnóstico de F2 há 

mais de 3 anos. Os demais pacientes devem ser monitorados periodicamente até que se 

configure uma indicação de terapia. (CALVARUSO; CRAXÌ, 2012; 

ORGANIZATION, 2015b) Portanto, o conhecimento do grau de fibrose hepática, 

decorrente da infecção crônica por HBV ou HVC, é de fundamental importância. 
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Segundo a OMS e o Ministério da Saúde, o padrão ouro para definição do grau de 

acometimento hepático é biópsia hepática. A biópsia hepática é muito útil no 

diagnóstico de outras doenças hepáticas concomitantes, como a doença gordurosa, que 

impactam de maneira significativa a evolução dos casos. Entretanto, é um procedimento 

invasivo que requer uma estrutura, nem sempre disponível. Quando disponível, a 

principal limitação da biópsia é o erro de amostragem muitas vezes relacionado ao 

tamanho do fragmento e ao local em que foi coletado. (“Protocolo Clínico e Diretrizes 

Terapêuticas para Hepatite C e Coinfecções”, 2015) 

Além disso, existe a dificuldade no acesso ao serviço de saúde e aos 

procedimentos de média e alta complexidade, como a biópsia. Essa dificuldade é muito 

comum em locais remotos ou até mesmo devido à precariedade do sistema de saúde. 

Portanto, é importante que hajam opções não invasivas de avaliação do grau de fibrose, 

principalmente por causa de pacientes que não preenchem os critérios necessários ou 

que apresentam contraindicações. 

Quando a biópsia é considerada de inviável realização, seja por questões de custo-

efetividade, indisponibilidade, falta de treinamento para o método ou ainda 

contraindicação clínica, são indicados, métodos não invasivos como a elastografia 

hepática ou os índices APRI (do inglês, Aspartate aminotransferase Platelet Ratio 

Index) e FIB-4. Os índices podem ser utilizados tanto para identificar a fibrose avançada 

e a cirrose, quanto para deferir o tratamento da infecção após avaliação médica, na 

ausência de métodos preferenciais com biópsia. (“Protocolo Clínico e Diretrizes 

Terapêuticas para Hepatite C e Coinfecções”, 2015) 

O tratamento também é indicado para pacientes com sinais clínicos de cirrose 

hepática. Esses pacientes não necessitam de biópsia hepática ou outro método para 

iniciar o tratamento. (CALVARUSO; CRAXÌ, 2012; ORGANIZATION, 2015b) 

A cirrose é responsável pela maioria das mortes relacionadas ao fígado. As causas 

mais importantes de cirrose no mundo todo são o abuso de álcool, a hepatite viral e 

EHNA.(KUMAR et al., 2006) 

A cirrose hepática se caracteriza pela destruição das células parenquimatosas 

hepáticas, sendo substituídas por tecido fibroso, que, eventualmente, se contrai em torno 

dos vasos sanguíneos, impedindo assim o fluxo de sangue pelo fígado. 

Aproximadamente 40% dos indivíduos com cirrose são assintomáticos até um ponto 

tardio na evolução da doença.(KUMAR et al., 2006) Portanto, é necessário que existam 

exames para diagnosticar precocemente a cirrose.  
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4 DIAGNÓSTICO DE HEPATITES VIRAIS, B E C, E ESTEATOSE 

Em 2009, nosso grupo demonstrou que a metabonômica era capaz de 

identificar portadores de HCV, com altas sensibilidade e especificidade, utilizando 

amostras de urina.(GODOY et al., 2010) Visto que a obtenção de amostras de urina é 

não-invasiva, decidimos investigar a capacidade dos modelos metabonômicos em 

identificar portadores de HBV, que se caracterizaria como um método prático e não 

invasivo de diagnóstico. Como tínhamos alguns pacientes com esteatose e também 

portadores de HBV ou HCV, decidimos investigar também se é possível discriminar 

amostras de urina de portadores de HBV ou HCV de não portadores, 

independentemente de terem esteatose ou não. Posteriormente, foram construídos 

modelos para identificar a presença de esteatose, independentemente de os indivíduos 

serem portadores de HBV ou HCV. 

 Objetivos Específicos 4.1

Construir modelos metabonômicos a partir da análise de RMN de ¹H de amostras 

de urina com a finalidade de diagnosticar as hepatites virais B e C, e esteatose; assim 

como diferenciar amostras de portadores de hepatites virais, B ou C, de amostras de 

pacientes com esteatose. 

 Metodologia 4.2

 Amostras 4.2.1

Foram utilizadas amostras de urina de pacientes com diagnóstico de esteatose e 

hepatite crônica ou cirrose por HBV e HCV, do ambulatório de hepatologia do Hospital 

das Clínicas da UFPE, com idade acima de 18 anos, de ambos os sexos, e que 

concordaram em participar do estudo, após leitura e assinatura do termo de 

consentimento livre e esclarecido (TCLE). Pacientes com doença hepática 

esquistossomótica, esteatohepatite, síndrome de imunodeficiência adquirida, hepatite 

auto-imune, hepatopatia metabólica, neoplasia e alcoolismo (consumo de etanol > 

210g/semana em homens e 140 g/semana em mulheres) foram excluídos do estudo. 
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Após a consulta, foram colhidos 50 mL de urina, em jejum, e coletados 10 mL de 

sangue, em veia periférica, no Laboratório Central do HC-UFPE, onde, em seguida, foi 

separado o soro. 

Na amostra de soro, foram determinadas as dosagens dos níveis séricos de: alanina 

aminotransferase, aspartato aminotransferase, fosfatase alcalina, gama-glutamil 

transferase, bilirrubina, albumina, plaquetas e INR, nos setores de hematologia e 

bioquímica; e HBsAg, anti-HBs, anti-HBc e anti-HCV através de ensaio 

imunoenzimático (Abbott®), no setor de sorologia. A pesquisa do HCV-RNA e genoma 

dos pacientes com o anti-HCV positivo e do HBV-DNA em pacientes HBsAg positivos 

foi realizada através da técnica PCR, no Laboratório Central da Secretaria de Saúde de 

Pernambuco (LACEN-PE). 

O diagnóstico de DHGNA foi feito por Ultrassonografia (US), realizada no Centro 

de Imagens (Diagimagem) do Hospital das Clínicas – UFPE, com o aparelho GE – 

Healthcare, Logic P6. 

Uma alíquota de 2 mL de urina foi enviada à Central Analítica do Departamento de 

Química Fundamental (DQF) da UFPE para obtenção dos espectros de RMN de 
1
H e 

construção dos modelos metabonômicos. 

 Aquisição dos espectros de RMN de ¹H 4.2.2

Na Central Analítica do DQF - UFPE, obtivemos espectros de RMN de 
1
H de 400 

µL de urina em 200 µL de solução-tampão (Na2HPO4 / NaH2PO4 – 0,2 mol L
-1

), 

utilizando um aparelho de RMN VARIAN Unity Plus 300. 

Utilizamos a sequência de pulsos PRESAT, para supressão do sinal da água. Foram 

utilizadas 128 repetições, line broadening (lb) igual a 0,3 Hz e tempo de espera, delay, 

igual a 2 segundos. 

 Processamento dos Espectros de RMN 
1
H 4.2.3

Com auxílio do software MestreNova, realizamos o processamento dos espectros: 

□ Correção manual de linha de base e fase; 

□ Referência de deslocamento químico, utilizando o simpleto atribuído ao 

grupo metil da creatinina em 3,06ppm; 
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□ Divisão dos espectros, de 0 a 10ppm, em bins de 0,05ppm, formando uma 

matriz linha para cada amostra, excluindo a região onde se encontram os 

sinais atribuídos à água e à ureia (intervalo entre 4,2 e 6,4ppm). 

Para cada investigação, agrupamos as matrizes linhas das amostras em uma única 

matriz, contendo as amostras (casos) nas linhas e os bins nas colunas (variáveis), e 

adicionamos uma coluna com a classificação das amostras (variável de classe). Em 

seguida, submetemos as matrizes às análises quimiométricas. 

 Análise Estatística Multivariada 4.2.4

As análises de componentes principais foram realizadas utilizando a plataforma 

online MetaboAnalyst ou o software Statistica, para observar se as amostras se 

agrupavam nas classes de interesse; para detecção de amostras anômalas; e, em alguns 

casos, como método de redução de dimensionalidade. 

Com o objetivo de classificar as amostras, construímos modelos de PLS-DA e/ou 

LDA, na plataforma MetaboAnalyst ou no software Statistica, respectivamente. Para a 

construção dos modelos LDA, utilizamos o Lambda de Wilks como método de seleção 

de variáveis. 

Como o número de amostras é reduzido, devido à dificuldade de obtenção das 

amostras de biofluidos e perda de material, tanto por falta de exames essenciais para o 

diagnóstico quanto por falhas no processo de coleta das amostras, armazenamento e 

encaminhamento para a análise de RMN 
1
H, não temos amostras suficientes para uma 

validação externa, portanto, utilizamos a LOOCV. 

 Resultados e Discussão 4.3

Os resultados aqui apresentados são os modelos construídos com amostras de 

urina para o diagnóstico de hepatites virais e esteatose. O mérito desta abordagem está 

associado ao fato de, a partir de uma única análise espectroscópica (RMN de 
1
H), obter 

informações relativas à presença - ou não - de esteatose e infecção viral por HBV ou 

HCV. 

Na Figura 16 podemos ver um exemplo de espectro de urina, com sinais de alguns 

metabólitos indicados. 
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Figura 16: Espectro de RMN de ¹H (Na2HPO4 / NaH2PO4 – 0,2 mol L
-1

, 300 MHz) de uma 

amostra de urina. 

 

 HBV versus Controle - puros 4.3.1

A matriz de dados continha os espectros de RMN de ¹H de urina de 28 portadores de 

HBV, foram excluídos desta análise indivíduos que apresentavam esteatose, e 10 

voluntários saudáveis, totalizando 38 amostras e 155 variáveis. 

Foram utilizados os pré-processamentos SNV e normalização pela soma, nas 

amostras, e autoescalonamento nas variáveis. 

A PCA não demonstrou agrupamento das amostras nas classes de interesse, também 

não foram identificadas amostras anômalas. Mas foi utilizada como método de redução 

de variáveis, para a construção de um modelo de classificação com LDA. Os modelos 

foram construídos com os escores de cinco componentes principais, escolhidas pelo 

método de seleção de variáveis Lambda de Wilks. A PLS-DA não conseguiu construir 

modelos de classificação com resultados satisfatórios. 

O modelo que apresentou a melhor performance foi utilizando SNV como pré-

processamento, com 92,9% de sensibilidade na LOOCV. Na Tabela 4, estão 

apresentados os resultados da validação do modelo. 
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Tabela 4: Resultados de modelo LDA para predição de HBV utilizando as componentes 

principais 

  HBV Controle Sensibilidade Especificidade VPP VPN Exatidão 

M
o

d
e

lo
 

M
e

ta
b

o
n

ô
m

ic
o

    (%) (%) (%) (%) (%) 

HBV 26 2 

92,9 80,0 92,9 80,0 89,5 
Controle 2 8 

VPP: Valor preditivo positivo, VPN: valor preditivo negativo. 

Este resultado demonstra que a estratégia metabonômica tem potencial para 

identificar portadores de HBV de voluntários saudáveis, a partir de amostras de urina. 

 HBV versus Controle – independentemente de esteatose 4.3.2

Nesta análise, consideramos pacientes que apresentaram esteatose, tanto no grupo 

HBV, quanto no grupo controle. À matriz de dados utilizada no modelo só com 

pacientes HBV puros (sem esteatose), foram acrescentados espectros de RMN de ¹H de 

urina de: quatro portadores de HBV e oito voluntários saudáveis, totalizando 32 

amostras no grupo doença e 18 no grupo controle. 

Testamos normalização pela soma, SNV e autoescalonamento, como pré-

processamentos para a matriz de dados originais. 

Não observamos agrupamento nas classes de interesse, nem amostras anômalas, na 

PCA. Os modelos PLS-DA construídos não conseguiram classificar satisfatoriamente as 

amostras. 

Utilizamos a PCA como método de redução de dimensionalidade para a construção 

de modelos LDA com os escores das cinco componentes principais que melhor 

discriminaram os grupos, escolhidas por Lambda de Wilks. 

O modelo de classificação que demonstrou o melhor desempenho, foi construído 

com LDA a partir dos escores das componentes principais obtidas pela PCA da matriz 

de dados pré-processada com SNV. Os resultados da LOOCV estão dispostos na Tabela 

5. 

O modelo foi capaz de classificar corretamente todos os pacientes com HBV. Apesar 

da especificidade não ter sido muito alta, o resultado é favorável para uma técnica de 

screening, muito útil na ideia de com uma única análise, se investigar várias doenças. 

Principalmente pela sensibilidade ter sido 100%, pode ser usada como uma avaliação 

inicial da infecção por HBV, assim como a avaliação de outras doenças com um único 
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exame, e no caso de resultado positivo, ser feito outro exame, mais invasivo, para 

confirmação. 

Tabela 5: Resultados de modelo LDA para predição de HBV, independentemente da presença 

de esteatose. 
  HBV Controle Sensibilidade Especificidade VPP VPN Exatidão 

M
o

d
e

lo
 

M
e

ta
b

o
n

ô
m

ic
o

    (%) (%) (%) (%) (%) 

HBV 32 4 

100 77,8 88,9 100 92,0 
Controle 0 14 

VPP: Valor preditivo positivo, VPN: valor preditivo negativo. 

 HCV versus Controle – independentemente de esteatose 4.3.3

A análise incluiu amostras de urina de 27 portadores de HCV, grupo HCV, e de 18 

voluntários saudáveis, grupo controle, ou seja, 45 casos e 155 variáveis. 

Aplicamos SNV, normalização pela soma e autoescalonamento à matriz original, 

como pré-processamento. 

Não observamos agrupamentos das amostras nos grupos HCV e controle, nem 

amostras anômalas na PCA. A PLS-DA não foi capaz de construir modelos que 

classificassem satisfatoriamente as amostras. Os escores das componentes principais 

foram usados para construção de modelos de classificação LDA, e o melhor modelo 

encontrado foi com cinco componentes principais, escolhidas por Lambda de Wilks, 

utilizando normalização pela soma como pré-processamento. Após a validação, por 

LOOCV, o modelo apresentou 92,6% de sensibilidade. Mais detalhes do resultado são 

apresentados na Tabela 6. 

Tabela 6: Resultados de modelo LDA para predição de HCV, independentemente da presença 

de esteatose. 
  HCV Controle Sensibilidade Especificidade VPP VPN Exatidão 

M
o

d
e

lo
 

M
e

ta
b

o
n

ô
m

ic
o

    (%) (%) (%) (%) (%) 

HCV 25 4 

92,6 77,8 86,2 87,5 86,7 
Controle 2 14 

VPP: Valor preditivo positivo, VPN: valor preditivo negativo. 
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 Esteatose versus Controle - puros 4.3.4

A matriz de dados continha os espectros de RMN de ¹H de urina de 10 

voluntários saudáveis e 20 pacientes com esteatose, foram excluídos desta análise 

indivíduos com infecção por HBV ou HCV, totalizando 30 amostras e 155 variáveis. 

Para corrigir a diferença de concentração das amostras, foi feita a normalização pela 

soma. 

Na PCA não foi observada separação entre as classes de interesse e também não 

foram identificadas amostras anômalas. 

Foi construído um modelo de classificação PLS-DA. O melhor resultado utilizou 

três variáveis latentes, porém não foi satisfatório, pois a exatidão foi de 73,33%. Apesar 

disso, achamos importante avaliar o gráfico das variáveis mais influentes para a 

construção do modelo, gráfico VIP, na Figura 17, pois mesmo a quantidade de acertos 

não sendo suficiente para um teste de diagnóstico, ele ainda conseguiu acertar mais de 

73% das amostras, portanto, os bins indicados, devem estar relacionados à informação 

química em comum entre amostras de mesma classe. 

No eixo das ordenadas estão os deslocamentos químicos e no eixo das abscissas 

está o peso correspondente. Na escala de cores ao lado, podemos observar em que classe 

aquela região é mais intensa, por exemplo: 4,1ppm, 3,05ppm e 3,1ppm têm sinais mais 

intensos nas amostras do grupo controle; enquanto 3,7ppm, 7,6ppm e 4,0ppm, são mais 

intensos no grupo esteatose. 

Figura 17: Gráfico de variáveis importantes para a construção do modelo PLS-DA. 

 

Fonte: MetaboAnalyst 
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Paralelamente, obtivemos o espectro médio das amostras de cada classe, após 

aplicação de SNV, e então subtraímos a média do grupo controle da média do grupo 

esteatose, como exposto na Figura 18. É possível perceber que o resultado concorda 

com o observado no gráfico VIP do PLS-DA: 7,6ppm, 7,65ppm 7,85ppm, 4,0ppm, 

3,7ppm, 2,7ppm, 2,6ppm e 1,95ppm são mais intensos no grupo esteatose; enquanto 

4,1ppm, 3,25ppm, 3,1ppm e 3,05ppm são mais intensos no grupo controle. 

Figura 18: Subtração do espectro médio controle do espectro médio esteatose 

 

Fonte: Autoria própria. 

Estas regiões foram selecionadas e usadas como variáveis para a construção de 

um modelo LDA usando cinco variáveis, selecionadas usando o lambda de Wilks. 

Aplicamos LOOCV ao modelo construído, que classificou incorretamente três amostras 

do grupo controle e uma do grupo esteatose, como pode ser visto na Tabela 7. 

Tabela 7: Resultados de modelo LDA para predição de esteatose usando deslocamentos da 

subtração de espectros médios 
  Esteatose Controle Sensibilidade Especificidade VPP VPN Exatidão 

M
o

d
e

lo
 

M
e

ta
b

o
n

ô
m

ic
o

    (%) (%) (%) (%) (%) 

Esteatose 19 3 

95,5 70,0 86,4 87,5 86,7 
Controle 1 7 

VPP: Valor preditivo positivo, VPN: valor preditivo negativo. 

Foi realizada a atribuição dos sinais das regiões usadas no LDA, resumidas na 

Tabela 8. As estruturas dos metabólitos e respectivos sinais identificados estão 

dispostos na Figura 19. (MIAO et al., 2015) 
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Tabela 8: Identificação dos principais metabólitos discriminantes, bins correspondentes e níveis 

urinários relativos em cada grupo. 

+ mais concentrado no grupo; – menos concentrado no grupo; δ deslocamento químico. 

Figura 19: Estruturas dos metabólitos identificados e deslocamentos químicos no espectro de 

RMN de ¹H. 

 

Fonte: Autoria própria. 

Os sinais em 3,05ppm e 4,10ppm são atribuídos à creatinina (MIAO et al., 

2015), e estão mais intensos no grupo controle, o que indica que a creatinina tem uma 

concentração menor na urina dos pacientes com esteatose. 

Existem trabalhos que relatam alterações nos níveis séricos de creatinina na 

presença de doenças hepáticas: Soga e colaboradores identificaram alterações nos níveis 

séricos de creatinina quando investigados pacientes com infecção por HBV ou HCV, 

lesão hepática induzida por drogas, cirrose, hepatocarcinoma, esteato-hepatite não 

alcoólica e esteatose simples (SOGA et al., 2011); Chen e colaboradores observaram 

redução nos níveis séricos de creatinina de pacientes com hepatocarcinoma (CHEN et 

al., 2011); e, Cocchetto e colaboradores, relataram redução na produção de creatinina 

em pacientes com doença hepática. (COCCHETTO; TSCHANZ; BJORNSSON, 1983) 

Os sinais em 4,00, 7,65, 7,60 e 7,85ppm, atribuídos ao hipurato, estão mais 

intensos nas amostras de urina do grupo esteatose. Há trabalhos que observaram que 

pacientes com diabetes têm níveis urinários maiores de hipurato, associando ao 

metabolismo alterado da glicose(CALVANI et al., 2010), e de acetato, que também se 

Metabólitos δ (ppm) Esteatose Controle 

Acetato 1,95 + – 
Citrato 2,60 e 2,70 + – 

Creatinina 3,05 - 3,10 e 4,10 – + 
Hipurato 4,00, 7,60, 7,65 e 7,85 + – 
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apresenta mais intenso nos pacientes com esteatose.(MESSANA et al., 1998) Visto isso, 

observamos que os 20 pacientes com esteatose do nosso estudo têm níveis séricos de 

glicose maiores que os do grupo controle (esteatose: 120,15 ± 40,7 mg/dL e controle: 

72,68 ± 13,14 mg/dL, p < 0,001), portanto, os maiores níveis de hipurato e acetato 

encontrados podem ser associados ao metabolismo alterado da glicose. 

Os sinais em 2,60 e 2,70ppm, são atribuídos ao citrato, mais intensos no grupo 

esteatose. O grupo esteatose apresentou um nível sérico de triglicerídeos maior que o 

grupo controle (esteatose: 231,64 ± 221,64 mg/dL e controle: 104,20 ± 48,22 mg/dL, p 

= 0,008). Podemos associar a maior concentração de citrato à de triglicerídeos, já que 

este é metabolizado formando glicerol, que por sua vez forma piruvato, que é 

convertido a citrato no ciclo de Krebs. (KIM et al., 2009) 

Com o intuito de buscar um modelo de classificação que tivesse uma 

performance melhor, usamos a PCA como método de redução de dimensionalidade dos 

dados, pré-processados com SNV, para construir um modelo LDA. O modelo foi 

construído com as cinco componentes principais que melhor separavam as classes (1, 3, 

5, 6 e 8), escolhidas usando Lambda de Wilks, e alcançou 100% de sensibilidade e de 

valor preditivo negativo, após a aplicação da LOOCV. Este resultado está descrito na 

Tabela 9. 

Tabela 9: Resultados de modelo LDA para predição de esteatose usando componentes 

principais. 
 

 Esteatose Controle Sensibilidade Especificidade VPP VPN Exatidão 

M
o

d
e

lo
 

M
e

ta
b

o
n

ô
m

ic
o

    (%) (%) (%) (%) (%) 

Esteatose 20 2 

100 80,0 90,9 100 93,3 
Controle 0 8 

VPP: Valor preditivo positivo, VPN: valor preditivo negativo. 

Combinando os pesos das componentes principais utilizadas na construção do modelo e os 

modelo e os coeficientes da função canônica discriminante, encontramos as regiões do espectro 

espectro mais importantes para a discriminação ( 

Figura 20). Comparando com as regiões que aparecem no VIP do PLS-DA e na 

subtração dos espectros médios, podemos observar que há mais regiões consideradas 

como importante, por isso o modelo teve um maior número de acertos. 

Há duas opções a se considerar: há outros metabólitos capazes de discriminar os 

grupos esteatose e controle, que não foram considerados no modelo anterior; ou o 
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segundo modelo está superajustado aos dados, incluindo informações relacionadas a 

amostras individuais, fazendo com que sejam corretamente classificadas. 

Devido ao pequeno número de amostras, é muito provável que a PCA esteja 

incluindo informações de amostras individuais, que estão sendo posteriormente 

utilizadas pelo LDA, já que este busca a combinação de componentes que apresente a 

melhor performance, ou seja, classifique corretamente um maior número de amostras. Já 

na subtração dos espectros médios, é mais difícil ser incluída informação de amostras 

individuais, portanto, acreditamos que a segunda opção é a mais provável. 

Observamos que havia diferença de média de idade e sexo entre os grupos. A 

média de idade do grupo doença era de 55, enquanto do grupo controle era 37 anos. No 

grupo esteatose, 30% era do sexo masculino, e 80% no grupo de voluntários saudáveis. 

Levantamos, então, a hipótese da LDA estar usando informações de sexo e idade, além 

da doença, para separar os grupos. 

Para avaliar esta hipótese, inicialmente, fizemos os gráficos de escores das 

componentes principais usadas, indicando as amostras de acordo com a idade e com o 

sexo, separadamente. Não foi observada separação das amostras por sexo ou idade, nas 

componentes utilizadas. Em seguida, construímos o gráfico dos escores das amostras no 

modelo LDA construído, em função de cada uma das classes, sexo e idade, para 

identificar se tinha algum ponto de corte que separasse as amostras. 

Na Figura 21, podemos observar que as amostras de indivíduos do sexo 

feminino (valor zero no eixo das abscissas) estão distribuídas de 0 a 1,04 nos escores do 

LDA (eixo das ordenadas), assim como as amostras do sexo masculino (valor um no 

eixo das abscissas), estão distribuídas de 0 a 1,3, não podendo ser separadas por essa 

função discriminante linear em nenhum ponto de corte. 

Na Figura 22, podemos observar que as amostras das diferentes idades estão 

aleatoriamente distribuídas nos escores de 0 a 1,3, não podendo ser separadas por essa 

função discriminante. 

Conseguimos construir um modelo capaz de identificar satisfatoriamente 

pacientes com esteatose e voluntários saudáveis, assim como identificar os metabólitos 

envolvidos. Porém, muito dos pacientes com esteatose são portadores de hepatites B ou 

C, decidimos então construir um modelo para separar indivíduos com esteatose de 

indivíduos sem esteatose, independentemente de serem portadores de HBV ou HCV. 
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Figura 20: Variáveis importantes para o modelo LDA construído a partir das componentes 

principais 

 

Fonte: Autoria própria. 

 

 

Figura 21: Escores do LDA em função do sexo dos indivíduos, no qual 0 indica feminino e 1 

masculino. 

 
Fonte: Autoria própria.  
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Figura 22: Escores do LDA em função da idade dos indivíduos. 

 

Fonte: Autoria própria. 

 Esteatose versus Controle – independentemente de vírus 4.3.5

O grupo esteatose incluía 40 pacientes com esteatose, portadores ou não de HBV 

ou HCV, e o grupo controle incluía 57 indivíduos sem esteatose, portadores ou não de 

HBV ou HCV. A matriz de dados originais continha o espectro de RMN de ¹H de 

amostras de urina dos 97 casos e 155 variáveis. 

Foram testados os pré-processamentos: normalização pela soma e SNV, nas 

linhas; e autoescalonamento nas colunas. Em nenhum dos casos observamos separação 

das amostras nas classes esteatose e controle, na PCA, e não obtivemos resultados 

satisfatórios construindo modelos de classificação PLS-DA, que alcançou, no máximo, 

61% de exatidão. 

Foi então usada a PCA como método de redução de dimensionalidade da matriz 

de dados, pré-processada com SNV, para aplicação da LDA. O modelo foi construído 

com as três componentes principais que melhor discriminaram as amostras de diferentes 

classes, 5, 6 e 7, escolhidas utilizando Lambda de Wilks. Aplicada a LOOCV, o modelo 

apresentou 100% de sensibilidade e de valor preditivo negativo, pois classificou 

corretamente todas as amostras de pacientes com esteatose. Os resultados estão 

descritos na Tabela 10. 

Mostramos, então que os modelos metabonômicos são capazes de classificar 

pacientes com e sem esteatose, independentemente da presença outras lesões no fígado. 
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Tabela 10: Resultados de modelo LDA para predição de esteatose usando componentes 

principais. 
 

 Esteatose Controle Sensibilidade Especificidade VPP VPN Exatidão 

M
o

d
e

lo
 

M
e

ta
b

o
n

ô
m

ic
o

 

   (%) (%) (%) (%) (%) 

Esteatose 40 2 

100 96,5 95,2 100 97,9 
Controle 0 55 

VPP: Valor preditivo positivo, VPN: valor preditivo negativo. 

É de se esperar que alguns metabólitos sejam diferentes dos encontrados no 

modelo anterior, pois parte deles indicava lesão no fígado, independentemente de ser 

por esteatose ou hepatites virais. Neste modelo, os metabólitos característicos de lesões 

no fígado sem levar em conta a sua causa não devem ser tidos como importantes, 

ganhando destaque os relacionados diretamente à agressão específica pela esteatose. 

Então avaliamos, neste modelo, o peso dos bins relacionados aos metabólitos 

destacados no modelo anterior. 

Dos cinco metabólitos anteriormente identificados, somente os bins associados 

aos sinais do hipurato foram importantes para a construção do modelo de classificação 

de pacientes com esteatose, independentemente de serem portadores de HBV ou HCV. 

Na Figura 23 estão identificados os sinais correspondentes aos hidrogênios do hipurato 

em um espectro de urina. 

Figura 23: Sinais do hipurato no espectro de RMN de ¹H de amostra de urina. 

 

Fonte: Autoria própria. 

Para confirmar que esses sinais são do hipurato, fizemos um experimento 

COSY, que identifica as correlações entre hidrogênios acoplados por 
3
JHH, já que nesse 
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metabólito há hidrogênios que acoplam a três ligações. Conseguimos observar as 

correlações esperadas entre os hidrogênios 1 e 2, e entre os hidrogênios 2 e 3, como 

mostrado na Figura 24. 

Figura 24: Ampliação da região entre 6,8 e 9ppm do espectro COSY de uma amostra de urina. 

 

Fonte: Autoria própria. 

Portanto, podemos inferir que a concentração relativa do hipurato entre os 

grupos, maior no grupo de doentes, teve um papel importante na identificação de 

pacientes com esteatose. Além disso, devido à presença de portadores de HBV ou HCV 

em ambos os grupos, acreditamos que o hipurato esteja diretamente relacionado à 

esteatose, e não a doenças hepáticas no geral. 

A partir disso, surgiu o questionamento se modelos metabonômicos seriam 

capazes de diferenciar esteatose de hepatites virais. 

 Esteatose versus Hepatites Virais 4.3.6

A matriz de dados foi construída com espectros de RMN de ¹H de amostras de 

urina de 20 pacientes com esteatose e 47 portadores de HBV ou HCV, totalizando 155 

variáveis e 67 casos. Foram testados os pré-processamentos SNV e normalização pela 

soma amostras, e autoescalonamento nas variáveis. 

Na PCA não foram observados agrupamentos das amostras nas classes esteatose 

e hepatites virais, e também não foram identificadas amostras anômalas. A PLS-DA não 

obteve resultados satisfatórios com nenhum dos pré-processamentos testados. 
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Foram construídos modelos LDA a partir da seleção de componentes principais 

construídas pela PCA a partir das matrizes com os pré-processamentos citados. O 

modelo LDA construído com cinco componentes principais, selecionadas pelo método 

do Lambda de Wilks, a partir da matriz de dados normalizada pela soma e 

autoescalonada, obteve 94% de exatidão. Analisando a Tabela 11, constatamos que a 

estratégia metabonômica é capaz de diferenciar as lesões hepáticas consequente de 

acúmulo de gordura no fígado das causadas por infecção por vírus HBV ou HCV. 

Tabela 11: Resultados de modelo LDA para discriminação entre esteatose e hepatites virais 
 

 Esteatose 
Hepatites 

Virais 
Sensibilidade Especificidade VPP VPN Exatidão 

M
o

d
e

lo
 

M
e

ta
b

o
n

ô
m

ic
o

 

   (%) (%) (%) (%) (%) 

Esteatose 18 2 

90,0 95,7 90,0 95,7 94,0 
Hepatites 

Virais 
2 45 

VPP: Valor preditivo positivo, VPN: valor preditivo negativo. 
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 Conclusão 4.4

Observando a Figura 25, percebemos que estratégia metabonômica aplicada a 

amostras de urina obteve excelente resultados para, em um único exame: identificar se 

indivíduos são portadores de HBV e HCV, independentemente de terem outro tipo de 

lesão no fígado, como esteatose; reconhecer pacientes com esteatose, tanto com a 

presença de hepatites virais HBV ou HCV, quanto em pacientes sem hepatites virais; e 

diferenciar pacientes com esteatose de pacientes com hepatites virais dos tipos B ou C. 

Podemos então inferir que a estratégia metabonômica demonstrou capacidade de 

avaliar diferentes doenças hepáticas em uma única análise, identificando 

simultaneamente a presença de esteatose e dos vírus HBV e HCV, caracterizando-se 

como uma eficaz técnica de screening não invasiva para doenças no fígado. 

Figura 25: Resumo dos resultados de diagnóstico de hepatites virais e esteatose. 

 

Fonte: Autoria própria. 
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 Perspectivas 4.5

□ Obter um número maior de amostras para fazer validação externa dos 

modelos para discriminação entre pacientes com esteatose e voluntários 

saudáveis; 

□ A partir do resultado da validação externa, decidir se o modelo está 

sobreajustado; 

□ Fazer um estudo com esteato-hepatite; 

□ Determinar quais são os metabólitos responsáveis pela classificação e 

associar às rotas metabólicas do organismo. 
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5 ESTADIAMENTO DE FIBROSE HEPÁTICA EM PACIENTES COM HCV 

Baseados na necessidade da prática clínica, construímos modelos para fibrose 

significativa, avançada e cirrose. Comparamos a performance dos modelos 

metabonômicos a testes de diagnóstico não invasivos que são recomendados, pela 

Organização Mundial da Saúde e Ministério da Saúde, como alternativas para 

identificação do grau de fibrose, APRI e FIB-4. (“Protocolo Clínico e Diretrizes 

Terapêuticas para Hepatite C e Coinfecções”, 2015) 

 

 Objetivos Específicos 5.1

Construir modelos metabonômicos, a partir da análise de RMN de ¹H de amostras 

de soro de pacientes com hepatite crônica por HCV, com a finalidade de avaliar o grau 

de fibrose hepática. 

 Metodologia 5.2

 Amostras 5.2.1

Foram utilizadas amostras de soro de pacientes com diagnóstico de hepatite crônica 

ou cirrose por HCV, do ambulatório de hepatologia do Hospital das Clínicas da UFPE, 

com idade acima de 18 anos, de ambos os sexos, e que concordaram em participar do 

estudo, após leitura e assinatura do termo de consentimento livre e esclarecido (TCLE). 

Pacientes com doença hepática esquistossomótica, esteatohepatite, síndrome de 

imunodeficiência adquirida, hepatite auto-imune, hepatopatia metabólica, neoplasia e 

alcoolismo (consumo de etanol > 210g/semana em homens e 140 g/semana em 

mulheres) foram excluídos do estudo. 

Após a consulta, foram coletados 10 mL de sangue, em veia periférica, no 

Laboratório Central do HC-UFPE, onde, em seguida, foi separado o soro, que foi 

dividido em duas alíquotas. Na primeira alíquota de soro foram realizadas as análises já 

descritas no item 4.2.1 do Capítulo 2. 

Os pacientes cirróticos foram caracterizados pelo quadro clínico e por alterações 

sugestivas de doença hepática crônica e/ou hipertensão portal à US, como: textura 

hepática heterogênea; ecogenicidade aumentada; diminuição do tamanho do fígado; 
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aumento do calibre da veia porta; presença de circulação colateral e/ou esplenomegalia; 

e alterações sugestivas de hipertensão portal à endoscopia digestiva alta (EDA), como a 

presença de varizes esofageanas, varizes gástricas e/ou gastropatia hipertensiva. 

O grau de fibrose hepática em pacientes com hepatites crônicas por HCV foi 

determinado por biópsias hepáticas, realizadas no Serviço de Gastroenterologia do 

Hospital das Clínicas/UFPE, conforme indicação clínica. Os fragmentos de tecido 

hepático foram processados, analisados e classificados utilizando o sistema METAVIR, 

no Departamento de Patologia Clínica do HC/UFPE, por um patologista com 

experiência no diagnóstico das doenças hepáticas. 

A segunda alíquota de soro, das 63 amostras obtidas, foi enviada para a Central 

Analítica do Departamento de Química Fundamental (DQF) da UFPE para obtenção 

dos espectros de RMN de 
1
H e construção dos modelos metabonômicos. 

 Aquisição dos espectros de RMN de ¹H 5.2.2

Na Central Analítica do DQF - UFPE, obtivemos espectros de RMN de 
1
H de 400 

µL de soro sanguíneo diluído em 200 µL de água deuterada utilizando um aparelho de 

RMN VARIAN Unity Plus 300. 

Utilizamos as sequências de pulsos: PRESAT, para supressão do sinal da água; e 

CPMG, filtro de Tempo de Relaxação Transversal (T2) para eliminar os sinais de 

moléculas de alto peso molecular, com o objetivo de otimizar os tratamentos 

quimiométricos. Foram utilizadas 128 repetições, line broadening (lb) igual a 0,3 Hz e 

tempo de espera, delay, igual a 2 segundos. A sequência de refocagem foi repetida 88 

vezes, com o valor de τ igual a 361,3 µs. 

 Processamento dos Espectros de RMN 
1
H 5.2.3

Com auxílio do software MestreNova, realizamos o processamento dos espectros: 

□ Correção manual de linha de base e fase; 

□ Referência com um sinal conhecido, dupleto atribuído ao grupo metil do 

lactato em 1,33ppm; 

□ Divisão dos espectros de 0 a 8ppm em bins de 0,04ppm, formando uma 

matriz linha para cada amostra, excluindo a região onde se encontra o sinal 

atribuído à água, entre 4,5 e 5,2ppm. 
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Para cada investigação, agrupamos as matrizes linhas das amostras em uma única 

matriz, contendo as amostras (casos) nas linhas e os bins nas colunas (variáveis), e 

adicionamos uma coluna com a classificação das amostras (variável de classe). Em 

seguida, submetemos as matrizes às análises quimiométricas. 

 Análise Estatística Multivariada 5.2.4

Fizemos PCA das amostras, na plataforma MetaboAnalyst ou no software Statistica, 

para observar se as amostras se agrupavam nas classes de interesse, para detecção de 

amostras anômalas e, em alguns casos, como método de redução de variáveis. 

Com o objetivo de construir modelos de classificação das amostras, construímos 

modelos de PLS-DA e/ou LDA, na plataforma MetaboAnalyst ou no software Statistica, 

respectivamente. Para a construção dos modelos LDA, utilizamos o Lambda de Wilks 

como método de seleção de variáveis. 

Como o número de amostras é reduzido, devido à dificuldade de obtenção das 

amostras de biofluidos e perda de material, tanto por falta de exames essenciais para o 

diagnóstico quanto por falhas no processo de coleta das amostras, armazenamento e 

encaminhamento para a análise de RMN 
1
H, não temos amostras suficientes para uma 

validação externa, portanto, utilizamos a LOOCV. 

 APRI e FIB-4 5.2.5

O APRI é calculado a partir da Equação 18. (WAI et al., 2003) 

Equação 18 

      
   

         
      

E o FIB-4 é calculado de acordo com a Equação 19. (STERLING et al., 2006) 

Equação 19 

      
           

            √   
 

 

Sendo, AST, nível sérico de aspartato aminotransferases em unidades normalizadas 

por litro, Plaquetas em 10
9
 unidades por litro, e ALT, nível sérico de alanina 

aminotransferases, em unidades normalizadas por litro. 

Todos os resultados de APRI e FIB-4 têm um paciente a menos em relação aos 

resultados dos modelos metabonômicos, apresentando 62 amostras analisadas, pois 
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ambos dependem do valor de plaquetas e não tínhamos essa informação de um dos 

pacientes. 

 Resultados e Discussão 5.3

 Obtenção de Espectros e Processamento dos Dados 5.3.1

Como a quantidade de água nos biofluidos é muito grande em relação aos demais 

metabólitos, ao realizar a análise de RMN de 
1
H das amostras só é observado o sinal 

atribuído a água,  4,70ppm, como podemos observar na Figura 26. Portanto, é 

necessária a utilização da sequência de pulsos de supressão do sinal da água, PRESAT. 

Após a utilização do PRESAT podemos observar outros sinais, ver Figura 27. Há 

sinais muito alargados e sobrepostos na região entre 0,50 e 4,00ppm, atribuídos às 

moléculas de grande massa molar, como os lipídios, que se apresentam nessa região 

espectral e tem T2 curto. Para aumentar a resolução do espectro e viabilizar os 

tratamentos estatísticos, buscamos suprimir esses sinais através da utilização da 

sequência de pulsos CPMG acoplada à sequência PRESAT, obtendo o espectro da 

Figura 28. 
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Figura 26: Espectro de RMN de ¹H (D2O, 300 MHz) de uma amostra de soro. 
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Figura 28: Espectro de RMN de 
1
H (D2O, 300 MHz) da amostra de soro após aplicação da 

sequência de pulsos CPMG. 

 

Uma vantagem do CPMG em relação à forma de supressão de sinal do PRESAT é 

que os sinais das espécies de alta massa molar foram suprimidos, porém os demais 

sinais na mesma região não foram afetados, fazendo com que não fossem perdidas mais 

informações. No caso da PRESAT, todos os sinais com o deslocamento químico na 

região da supressão também são perdidos. 
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Figura 27: Espectro de RMN de 
1
H (D2O, 300 MHz) da amostra de soro utilizando a sequência 

de pulsos PRESAT. 

CLN_21_10_S_CPMG

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 -1 -2

Chemical Shift (ppm)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
o

rm
a
li
z
e

d
 I
n
te

n
s
it
y

 



74 

 

 

 

 Fibrose Significativa 5.3.2

Originalmente, o APRI foi desenvolvido utilizando a classificação Ishak e somente 

para pacientes com hepatite C. (WAI et al., 2003) Como as biopsias foram realizadas 

considerando a escala METAVIR, foi então necessário fazer a conversão entre os 

escores Ishak e METAVIR, para determinar os grupos. Na Tabela 12 estão as 

equivalências entre os dois escores. 

Tabela 12: Conversão entre Ishak e METAVIR 

Ishak METAVIR 

0 0 

1 - 2 1 

3 2 

4 - 5 3 

6 4 
Fonte: (GAMAL; ZALATA, 2011) 

Fibrose significativa foi considerada pelos autores como Ishak maior ou igual a 3, 

usando os pontos de corte: APRI < 0,5, sem fibrose ou fibrose leve; e APRI > 1,5, 

fibrose significativa.(WAI et al., 2003) Consideramos então, no nosso grupo de 

amostras, fibrose significativa quando a classificação METAVIR for maior ou igual a 2. 

A matriz foi construída com espectros de RMN de ¹H de amostras de soro de 63 

pacientes portadores de HCV, sendo 39 com fibrose significativa, escore METAVIR ≥ 

2, e 24 com fibrose não significativa, escore METAVIR ≤ 1, e 184 variáveis. Foi 

utilizado o pré-processamento SNV na matriz de dados originais. 

Na PCA, não observamos agrupamento natural das amostras nos grupos de interesse 

e também não foram identificadas amostras anômalas. Mas foi utilizada como técnica 

de redução de variáveis, para aplicação da LDA. A LDA utilizou as cinco componentes 

principais que melhor discriminaram as duas classes, selecionadas utilizando o Lambda 

de Wilks, para construir um modelo de classificação. Aplicamos a LOOCV ao modelo 

construído, obtendo os resultados apresentados na Tabela 13. 

O índice APRI foi calculado para cada paciente e, segundo os pontos de corte 

anteriormente definidos, foram calculados os valores de: sensibilidade, especificidade, 

VPP, VPN e exatidão do APRI no nosso grupo de estudo. 

Na Tabela 13 podemos observar que a performance do modelo metabonômico foi 

muito superior à do APRI, enquanto o primeiro teve seu menor resultado acima de 95%, 

o outro não chegou a 88%. 
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O trabalho original obteve como maior valor de: sensibilidade, 91%; especificidade, 

85%; VPP, 88%; e VPN, 86%, nos pontos de corte de fibrose significativa. (WAI et al., 

2003) Portanto, o modelo metabonômico construído teve um poder de classificação 

maior que o de um teste largamente utilizado na prática médica. 

Tabela 13: Resultados para predição de fibrose significativa 

 
F2-

F4 

F0-

F1 
Sensibilidade Especificidade VPP VPN Exatidão 

APRI   (%) (%) (%) (%) (%) 

≤0.5 34 10 
87,2 56,5 77,3 72,2 75,8 

>0.5 5 13 

≤1.5 15 3 
38,5 87,0 83,3 45,5 56,5 

>1.5 24 20 

Modelo 

Metabonômico 
       

Significativa 39 1 

100 95,8 97,5 100 98,4 Não 

significativa 
0 23 

VPP: Valor preditivo positivo, VPN: valor preditivo negativo 

 Fibrose Avançada 5.3.3

O FIB-4 foi construído e validado para identificar pacientes com fibrose hepática, 

coinfectados com HCV e HIV, utilizando a classificação Ishak. (STERLING et al., 

2006) Posteriormente, foi validado para pacientes monoinfectados com o vírus HCV, 

utilizando a classificação METAVIR, convertida do Ishak segundo a Tabela 12, com os 

mesmos pontos de corte do trabalho original: escore FIB-4 < 1,45, fibrose leve ou 

moderada (escore METAVIR ≤ 2); e escore FIB-4 > 3,25, fibrose avançada (escore 

METAVIR ≥ 3). (VALLET-PICHARD et al., 2007) 

Um estudo mostra que a exatidão do FIB-4, no ponto de corte 3,25, diminui com o 

aumento da idade. (KUROSAKI; IZUMI, 2008) Como nossa população era mais velha 

que a dos trabalhos originais e o FIB-4 depende da idade, comparamos os acertos do 

FIB-4 no nosso grupo e no grupo estudado por Kurosaki e colaboradores. Obtivemos 

87% de acerto para pacientes com idades ≤ 50 anos; 82% de acerto entre 51 e 60 anos; e 

77% de acerto para > 60 anos, enquanto o estudo apresentou, 68%, 48% e 49%, 

respectivamente. Nossos resultados foram muito acima dos resultados desse trabalho, e 

tivemos 85% de acertos no total, o mesmo valor da área sob a curva ROC (do inglês, 
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Receiver Operating Characteristics) do trabalho de validação. (VALLET-PICHARD et 

al., 2007) Com isso, demonstramos que a média de idade superior na população que 

investigamos não apresentou significativa diminuição da performance do FIB-4. 

Para a construção dos modelos metabonômicos, os 63 pacientes foram classificados 

como: 22 com fibrose avançada e 41 com fibrose leve ou moderada. A matriz utilizada 

foi a mesma do modelo construído para fibrose significativa, mudando somente as 

classes das amostras. Também foi utilizado SNV na matriz de dados. 

Pela PCA, não observamos tendência de agrupamento de acordo com a fibrose 

avançada ou leve/moderada, mas usamos as componentes construídas como método de 

redução da dimensionalidade, para construir um modelo LDA. A validação foi feita por 

LOOCV, na qual o modelo não errou nenhuma amostra, apesar de ter sido construído 

utilizando apenas quatro componentes principais. 

O modelo metabonômico apresentou uma performance melhor em todos os quesitos, 

como podemos atestar na Tabela 14. 

Combinando os pesos das componentes principais utilizadas na construção do 

modelo e os coeficientes da função canônica discriminante, encontramos as regiões do 

espectro mais importantes para a discriminação. Na Figura 29, estão dispostos os 15 

bins que tiveram maior influência na construção do modelo de classificação das 

amostras em fibrose avançada ou leve/moderada. 

 

Tabela 14: Resultados para predição de fibrose avançada 

 F3-F4 F0-F2 Sensibilidade Especificidade VPP VPN Exatidão 

FIB-4   (%) (%) (%) (%) (%) 

≤1.45 20 25 
90,9 37,5 44,4 88,2 56,5 

>1.45 2 15 

≤3.25 17 4 
77,3 90,0 81,0 87,8 85,5 

>3.25 5 36 

Modelo 
Metabonômico 

       

Avançada 22 0 
100 100 100 100 100 

Não Avançada 0 41 

VPP: Valor preditivo positivo, VPN: valor preditivo negativo 
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Figura 29: Variáveis importantes para o modelo de fibrose avançada. 

 

Fonte: Autoria própria. 

 Cirrose 5.3.4

O artigo original no FIB-4 também classifica cirrose, como Ishak maior ou igual a 5. 

(STERLING et al., 2006) Como 4 e 5 no Ishak são correspondentes a 3 no METAVIR, 

não pudemos usar esse método para comparar com o resultado de cirrose do 

METAVIR. 

Há estudos que validaram o APRI para determinação de cirrose, escore igual a 4 no 

METAVIR. Porém, haviam discordâncias entre os valores de ponto de corte, como 

mostrada numa meta-análise de 2011. (LIN et al., 2011) Para assegurar a melhor 

performance do APRI, construímos uma curva ROC, Figura 30, para encontrar os 

pontos de corte que melhor se ajustassem à população em estudo. A área sob a curva foi 

de 0.81, e os pontos escolhidos foram: APRI < 1,0, sem cirrose; e APRI > 2,00, com 

cirrose. As 63 amostras de soro da matriz de dados foram divididas em: 16 pacientes 

com cirrose, clinicamente atestada ou com escore METAVIR igual 4; e 47 sem cirrose, 

escore METAVIR ≤ 3. Foi utilizado o pré-processamento SNV na matriz de dados 

originais. 

Assim como para as duas classificações anteriores, não foi identificado agrupamento 

das amostras nas classes de interesse, mas a PCA foi utilizada para redução de variáveis. 

O LDA foi construído utilizando apenas três componentes principais. Avaliado por 

0.96

1.4

1.36

0.92

4.16

3.32

1.48

4.12

1.44

1.64

2.84

0.88

1.88

1.04

2.24
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LOOCV, o modelo de classificação apresentou: 94% de sensibilidade; 98% de 

especificidade; e 97% de exatidão. 

Figura 30: Curva ROC do APRI para predizer cirrose. 

 

Fonte: Autoria própria. 

Ao avaliar a Tabela 15, percebemos que o modelo metabonômico construído para 

identificar pacientes com cirrose é bastante superior aos melhores resultados obtidos 

pelo APRI. 

Tabela 15: Resultados para predição de cirrose 

 F4 F0-F3 Sensibilidade Especificidade VPP VPN Exatidão 

APRI   (%) (%) (%) (%) (%) 

≤1.0 11 10 
68,8 78,3 52,4 87,8 75,8 

>1.0 5 36 

≤2.0 9 5 
56,3 89,1 64,3 85,4 80,6 

>2.0 7 41 

Modelo 
Metabonômico 

       

Cirrose 15 1 
93,8 97,9 93,8 97,9 96,8 

Sem cirrose 1 46 

VPP: Valor preditivo positivo, VPN: valor preditivo negativo 
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 Pacientes com Classificação F2 no METAVIR 5.3.5

Devido à importância da classificação desse estágio, construímos modelos de 

classificação utilizando PLS-DA e LDA, com o objetivo de separar as amostras com 

grau F2 das demais. Porém, não obtivemos sucesso. Acreditamos que o problema estava 

em reunir graus de fibrose F0 e F1 com F3 e F4, que devem ter perfis bioquímicos 

muito distintos. Pois como as técnicas utilizadas tentam construir um modelo que 

maximize a diferença intercalasses e minimize as diferenças intraclasses, eles buscaram 

dar ênfase a semelhanças entre amostras muitos diferentes, como um paciente sem 

fibrose (F0) e um com cirrose (F4). Buscamos, então, uma estratégia diferente: utilizar 

os modelos de fibrose significativa e avançada para classificar as amostras F2. 

As amostras estão classificadas em: F0, F1, F2, F3 e F4. O grupo fibrose 

significativa engloba F2, F3 e F4. Já o grupo fibrose avançada, inclui F3 e F4, podendo 

ser interpretado como um subgrupo do fibrose significativa. Dessa forma, se retirarmos 

os elementos F3 e F4, grupo fibrose avançada, do fibrose significativa, só restarão os 

elementos F2, como ilustrado na Figura 31. 

Seguindo esse raciocínio, selecionamos as amostras classificadas pelo modelo 

metabonômico como fibrose significativa e excluímos as classificadas como fibrose 

avançada, obtendo as amostras classificadas como grau F2. Construímos a tabela de 

contingência do teste (Tabela 16) e encontramos 100% de sensibilidade e valor 

preditivo negativo. 
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Figura 31: Esquema da determinação de amostras F2. 

 

Fonte: Autoria própria. 

Tabela 16: Resultados para predição de F2 por modelos metabonômicos 
 

 F2 Outros Sensibilidade Especificidade VPP VPN Exatidão 

M
o

d
e

lo
s

 

M
e

ta
b

o
n

ô
m

ic
o

s
 

 

   (%) (%) (%) (%) (%) 

F2 17 2 

100 95,6 89,5 100 96,8 
Outros 0 44 

VPP: Valor preditivo positivo, VPN: valor preditivo negativo. Outros: F0, F1, F3 e F4. 
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 Conclusão 5.4

Na Figura 32, é possível notar como os modelos metabonômicos apresentaram uma 

performance melhor que o APRI e o FIB-4 na população de estudo. Outra vantagem dos 

modelos metabonômicos em relação ao APRI e FIB-4, é que todos os pacientes são 

classificados, enquanto os outros dois métodos têm uma região duvidosa, entre os dois 

pontos de corte escolhidos, na qual não se pode atribuir classificação à fibrose hepática 

do paciente, fazendo-se necessária a utilização de outro método de diagnóstico. 

Figura 32: Comparação entre modelos metabonômicos e FIB-4 e APRI 

 

Fonte: Autoria própria. 
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 Perspectivas 5.5

□ Validação externa dos modelos construídos – conseguimos mais amostras de 

soro de pacientes com grau de fibrose hepática definido por biópsia, então 

esta etapa já está em andamento; 

□ Estudar os deslocamentos químicos mais importantes na construção dos 

modelos, para determinar quais são os metabólitos associados aos diferentes 

graus de fibrose hepática e associar às rotas metabólicas do organismo. 
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6 CONCLUSÕES GERAIS 

A metabonômica se mostrou uma ferramenta com potencial para identificar, 

simultaneamente, diferentes lesões no fígado: hepatites virais por HBV ou HCV; e 

esteatose, utilizando amostras de urina, caracterizando-se como uma análise rápida e 

não invasiva. 

Além disso, utilizando amostras de soro sanguíneo, se apresentou como uma 

alternativa, minimamente invasiva, à biópsia hepática, para classificação do grau de 

fibrose hepática, importante para determinação do estadiamento da doença e indicação 

para tratamento. Foram construídos modelos para classificar fibrose significativa, 

fibrose avançada e cirrose, alcançando 98,4, 100 e 96,8% de exatidão, respectivamente.  

Os resultados obtidos foram superiores a outros testes alternativos para 

estadiamento da fibrose hepática, largamente empregados na prática médica, APRI e 

FIB-4, empregados ao mesmo conjunto de dados. Além disso, o modelo metabonômico 

permitiu identificar o estágio F2 (no METAVIR), que não é possível com esses testes 

mais simples. 



84 

 

 

 

7 PERSPECTIVAS GERAIS 

□ Obter amostras suficientes para serem divididas em um grupo de treinamento e 

um grupo de teste com amostras representativas de cada classe; 

□ Fazer estudos dos metabólitos responsáveis pelas classificações e associar às 

rotas metabólicas do organismo; 

□ Utilizar a estratégia metabonômica para o diagnóstico e acompanhamento de 

outras doenças. 
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ANEXO A – APROVAÇÃO DO COMITÊ DE ÉTICA PARA PROJETO DE 

DIAGNÓSTICO DE DOENÇAS HEPÁTICAS 
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