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Resumo

Nesta dissertação, nós investigamos partículas dipolares auto-propulsoras, suas propriedades
dinâmicas e sua capacidade de transportar matéria passiva. Nós utilizamos Dinâmia Browni-
ana, através da equação de Langevin, para modelar a interação entre as partículas e o solvente.
Inicialmente nós simulamos o sistema para vários conjuntos de parâmetros e mapeamos os di-
versos valores dos momentos de dipolo e campo externo às estruturas formadas pelas partículas
magnéticas. Analisamos então como estas estruturas poderiam ser utilizadas no transporte de
matéria passiva. Nós descobrimos que no regime diluído, a causa mais proeminente de trans-
porte era a colisão direta entre as partículas passivas e ativas, resultando em uma grande difer-
ença entre a velocidade média quadrática entre os dois tipos de partícula. Em casos densos,
nós observamos uma cristalização em sistemas com momento de dipolo pequeno, enquanto
partículas com alto momento de dipolo podiam formar veias no cristal, e até se separar em
regiões distintas. Nós também estudamos matéria ativa cuja direção do momento de dipolo era
ortogonal à direção de auto-propulsão. Nós observamos o surgimento de um novo mecanismo
de transporte, no qual a partículas ativas envolvem e varrem as partículas passivas. Esta provou
ser a forma mais eficiente de transporte de matéria passiva em regimes dilutos, resultando em
velocidade médias quadráticas até seis vezes maiores que aquelas obtidas quando a direção do
momento de dipolo e a direção da auto-propulsão eram paralelos.

Palavras-chave: Matéria Frágil. Matéria Ativa. Partículas Auto-Propulsoras. Partículas
Janus. Colóides Dipolares.



Abstract

In this MSc. Thesis we investigate the dynamical properties of dipole-like self-propelled parti-
cles and their abilities to transport otherwise passive matter. We use Brownian Dynamics, via
the Langevin equation, to model the interaction between the particles and the solvent. First, we
simulated various sets of parameters, mapping the resulting structures formed by the magnetic
active particles for several values of dipole moment and external field. Then, we analysed how
these structures could aid in the transport of passive particles. We found that in dilute regimes,
the preeminent cause of transport was the head-on collisions between active and passive parti-
cles, resulting in a large gap in the mean squared velocity of the two kinds of matter. In dense
systems, we observed a freezing of the active-passive ensemble in systems with a low dipole
moment, while particles with high dipolar moment could form veins in the crystal, and even
separate into distinct regions. We also studied the magnetic active matter whose magnetic mo-
ment direction was orthogonal to that of its self-propulsion. We observed a new mechanism of
transport arise, where the active particles would envelope and sweep the passive particles. This
proved to be the most efficient method of transport of passive matter by self-propelled particles
in dilute regimes, resulting in mean squared velocities six times larger than those obtained for
parallel active particles.

Keywords: Soft Condensed Matter. Active Matter. Self-Propelled Particles. Janus Particles.
Dipole-like Colloids.
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1 Introduction

É pequenina é miudinha é quase nada

mas não tem outra mais bonita no lugar.

—LUIZ GONZAGA (Boiadeiro)

In this work, we will study the dynamics of dipole-like active colloids. In order to make
sense of the barrage of keywords in the previous sentence, this section aims to provide a bird’s-
eye view on several topics, starting with our fundamental blocks, colloids, in Subsec. 1.1. The
idea of Brownian motion will be introduced in Subsec. 1.2. Then, in Subsec. 1.3 we will present
some uses and fabrication methods of dipole-like colloids, followed by an overview of active
matter in Subsec. 1.4.

1.1 Colloids

Colloids are ubiquitous in the modern world. Their adoption ranges from high-tech industry,
where they are used for instance in imaging, oil recovery, and liquid crystals; to the everyday
household life, where they can be found in the milk we drink and the paint which colours our
houses (HIEMENZ, 1997).

Despite being used since at least the 5th century BCE (ANGELINI et al., 2004; ARTIOLI;
ANGELINI; POLLA, 2008)1, only in 1833 were there efforts to define colloids precisely2. The
first of those definitions was conducted by Thomas Graham (GRAHAM, 1833). He studied the
diffusion of liquids through a membrane and called the solutions that did not diffuse colloidal

solutions.3

Modern definitions do not look at diffusive properties of the solution, but rather prefer to
take properties inherent to the particles – rather than those of the membrane – to characterize
the material. However, defining colloids in a way that encompasses all the instances where the

1Some sources also mention the usage of aerosol in Ayurvedic medicine over 4000 years ago (GANDEVIA,
1974; GROSSMAN, 1994).

2For a review on the usage of colloids throughout history, see (SCIAU, 2012)
3The term colloid derives from the Greek word kola, which means glue (ISLAM, 2016).

13



1.2 BROWNIAN DYNAMICS 14

term is currently used is a difficult task. Some, like (HAMLEY, 2008) and (HIEMENZ, 1997)
use the size of the particles as the defining criteria. Indeed, they define colloids as particles
whose dimensions range from 1nm to 1 µm. This definition is accepted by the International
Union of Pure and Applied Chemistry (IUPAC) (JONES et al., 2009), which defines colloids
as

2.6 colloid
A short synonym for a colloidal system.
2.7 colloidal
State of subdivision, implying that the molecules or polymolecular particles dis-
persed in a medium have at least in one direction a dimension roughly between
1 nm and 1 µm, or that in a system discontinuities are found at distances of that
order.

A more functional approach is to define colloids as particles that are small enough that they
have a non-negligible interaction with their solvent, but large enough that this interaction is
only present in a statistical sense. As summarised by (DHONT, 1996), “they are large, but not
too large”.

1.2 Brownian Dynamics

In most real life applications colloids are immersed in a solvent. As is known since the early
19th century, colloidal particles immersed in a liquid will exhibit an erratic movement (DHONT,
1996). The credit for the discovery of this random motion is often given to the botanist Robert
Brown. In 1827 he was studying the motion of granular pollen suspended in water under a
microscope. He observed that the pollen exhibited irregular motion, such as the one presented
in Fig.1.1. However, the phenomenon had already been reported by Ingen-Housz (INGEN-
HOUSZ; MOLITOR, 1784) in 1784.

At first, Brown assumed the motion was related to the living properties of the pollen par-
ticles. However, when the experiment was redone with inorganic matter, the jittery movement
was still present, removing the possibility of the source of the motion being life-related (BROWN,
1828).

The origin of this motion remained a mystery until 1863 when experiments conducted by
Wigner, who was well acquaintance with Maxwell’s kinetic theory, proved that the cause of
this movement is due to the thermal collisions with the molecules in the liquid (WIGNER,
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Figure 1.1 Time evolution of a particle in a solvent. This particle experiences an erratic movement
typical of Brownian motion.

1863). In the 20th century, Einstein (EINSTEIN, 1956), Smoluchowski (SMOLUCHOWSKI,
1906) and Langevin (LANGEVIN, 1906) provided the theoretical framework to show that the
behaviour of the Brownian particles were indeed due to the collision between the macroscopic
particle and the thermally agitated particles of the solvent. A cabal experiment was conducted
by Perrin (PERRIN; ROUEN, 1913), confirming the theoretical findings and determining the
Avogrado number. For this work he was awarded the Physics Nobel Prize, in 1926 (AB, 2014).

1.3 Dipole-like Particles

Systems of magnetic particles dispersed in liquids are very interesting to industry due to their
combination of fluid and magnetic properties, which can be exploited in various applications,
such as biomedical operations (PANKHURST et al., 2003), sealing (CABUIL, 2000), viscous
damping (ALVAREZ; KLAPP, 2013) and brakes (SCHERER; NETO, 2005).

There are several ways to synthesize dipolar particles. The simplest way is to build colloids
out of ferromagnetic materials, such as nickel (SNEZHKO; ARANSON, 2011)4. A refinement
of this approach is to envelope a magnetic nucleus with a non-metallic material (PALACCI et
al., 2013), which protects the magnetic core from abrasion.

We can also assemble a special kind of colloid, called Janus Particle (JP), with magnetic

4These simpler colloids are commercially available <https://www.alfa.com/en/catalog/A17943/>.
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Figure 1.2 (a) Nickel(II) colloids obtained by ageing Ni(NO3)2 in urea. Taken fom (PORTA et al., 1999)
(b) A polymer sphere of 3-methacryloxypropyl trimethoxysilane, surrounding most (but not all) of an
hematite cube. Taken from (PALACCI et al., 2013) (c) Poly(styrene-block-2-vinylpyridine) spheres
covered in OsO4, forming a Janus Particle. Taken from (YABU et al., 2010).

(b) (c)(a)

properties. Janus Particles are colloids which lack material uniformity. This asymmetry impart
different chemical and physical properties (WALTHER; MÜLLER, 2013). JPs can be produced
in a multitude of ways, but producing nanoscopic JPs can still be challenging. The common
strategies to prepare nanosopic Janus Particles were derived from organic chemistry, employing
self-assembly, protein engineering and polymer synthesis (WALTHER; MÜLLER, 2013). It is
possible to assemble magnetic JPs by coating monodisperse colloids with magnetic thin films,
endowing the particles with magnetic responsiveness (YAN; BAE; GRANICK, 2015).

It is also possible to induce a dipole moment in polystyrene particles, using an alternate
current electric field (VELEV; GANGWAL; PETSEV, 2009). This approach takes advantage
of frequency-dependence polarization of the particles. The difference between dielectric per-
mittivity and conductivity of the particle and of the surrounding media will dictate the sign and
magnitude of the induced dipole moments (MORGAN; GREEN, 2003).

We can take this idea one step further, and try to induce dipolar interactions on Janus par-
ticles using AC fields. In (GANGWAL et al., 2010) polystyrene particles with gold patches
covering a sizeable portion of the colloids were used. These particles were immersed into
deionized water and confined by two glass plates, creating a quasi-bi dimensional film. How-
ever, higher multipole moments were also activated (GANGWAL et al., 2010; SCHMIDLE et
al., 2013).

1.4 Active Matter

In the last few years, a novel class of biological and physical systems, referred to as active
matter, have been a hot topic. These systems are composed of particles, defined by (RA-
MASWAMY, 2010) as “active particles contain internal degrees of freedom with the ability
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to take in and dissipate energy and, in the process, execute systematic movement”. The term
active matter was first used in (SCHIMANSKY-GEIER et al., 1995) to refer to Brownian par-
ticles that generate a field, which, in turn, influenced their motion. Later, other authors used
this term to denote self propelled particles far from equilibrium (EBELING; SCHWEITZER;
TILCH, 1999; ROMANCZUK et al., 2012). To this day, artificial self propelled particles are
one of the focusses of the area (VICSEK et al., 1995; CZIRÓK; STANLEY; VICSEK, 1997).
However, it is known that several other systems behave in an active fashion, such as flagellate
cells (ROMANCZUK et al., 2008) and groups of macroscopic animals (COUZIN et al., 2005;
SUMPTER et al., 2008; GUTTAL; COUZIN, 2010).

Currently, one of the main interests in active matter is understanding how the dynamics
of the bulk emerges from the properties of single particles (ELGETI; WINKLER; GOMP-
PER, 2015). Several papers were written studying solitary particles (BÖDEKER et al., 2010;
FRIEDRICH; JÜLICHER, 2007; HOWSE et al., 2007) and larger systems (CHATÉ; GINELLI;
MONTAGNE, 2006; BASKARAN; MARCHETTI, 2009; VICSEK et al., 1995).

Another very important feature of most active matter systems are the random fluctuations
affecting individual agents. These fluctuations need not be thermal in nature but may come from
all kinds of sources. While many indeed arise from thermal action, a good number are caused
by internal processes of the agent. One well known example are the internal reorganization
of bacteria (PATNAIK, 2012; DRESCHER et al., 2011). Most often, these fluctuations are
accounted for without explicitly solving their driving mechanisms. Instead, one can model
them by introducing random forces into the equations of motion of the particles. Thus, it is
very common to use Langevin and Fokker-Plank equations when dealing with active particles
(ROMANCZUK et al., 2012)5.

5Reviews on the theory and recent results in the area can be found in (ROMANCZUK et al., 2012) and (EL-
GETI; WINKLER; GOMPPER, 2015).



2 Simulation Techniques

Computers are like Old Testament gods; lots of rules and no mercy.

—JOSEPH CAMPBELL (The Power of Myth)

Most of the findings in this work were possible due to the usage of computer simulations. In
this section, we intend to give the reader an brief overview on the topic. In Subsection 2.1, we
present the history of Molecular Dynamics and lay its theoretical foundations. The Molecular
Dynamics Technique is adapted in Subsec. 2.2 to deal with Brownian Dynamics simulations,
using the Langevin Equation. In Subsection 2.3 we derive the integration algorithm we will use
throughout the remaining sections of this MSc. thesis. We mention ways to simulate ensembles
other than the microcanonial one in Subsec 2.4, followed by a brief discussion on numerical
stability and the choice of parameters in Subsec. 2.5.

2.1 Molecular Dynamics

The creation of Molecular Dynamics (MD) was a foregone conclusion. Most of the theoretical
tools needed to perform MD simulations were created decades, if not centuries, before the
first Molecular Dynamics program was implemented. By the 1940’s the only component still
needed was the digital computer on which the simulations were to run. As such, not many years
passed between the availability of computers and the first MD realization.

The first commercial computer, BINAC, was delivered to Northrop in 1949 (STERN, 1979) 1.
In 1957 Alder was already able to calculate statistical properties of systems using MD (ALDER;
WAINWRIGHT, 1957). In 1964 Rahman published his computational results on hard sphere
systems which agreed with experiments (RAHMAN, 1964) and by 1967 Verlet was doing a
methodical study of computer experiments in fluids (VERLET, 1967).

To understand the basics of MD, only a basic knowledge of classical mechanics and dif-
ferential calculus is required. Namely, Newton’s 2nd law in the differential form. In this

1However, only a single machine was ever delivered and it never worked properly. The first commercial
computer with some widespread usage (in 1950’s standards) was the UNIVAC (JOHNSON, 2006).

18



2.1 MOLECULAR DYNAMICS 19

dissertation we will always work with point-like, chemically inert particles. These are com-
paretively simple to simulate. However, some more complex mathematics may be required for
some other cases. For instance, had we worked with extended objects, Euler equations and
quaternions would be better suited for the job.

In Classical Mechanics, the state of three dimensional systems of N particles is fully de-
scribed by 6N quantities, the coordinates qN =(q1,q2, . . . ,q3N) and the momenta pN =(p1, p2, . . . , p3N)

of the particles. Newton’s 2nd law can be written in the following manner:

d pi

dt
= Fi(qN ,pN) =−

[
∇U(qN ,pN)

]
i , (2.1)

where Fi is the total force acting on the coordinate i, U describes the potential energy of the
system and the nabla symbol is the gradient operator. Therefore, what distinguishes two differ-
ent physical systems is their potential energy functions and their boundary conditions. We will
go through some examples of both.

2.1.0.1 Potential Energy Examples

Interaction Potentials
Undoubtedly the interparticle potential with the most widespread usage in literature is the

Lennard-Jones (LJ) potential. It was first proposed in 1924 by Lennard-Jones, long before
MD was ever implemented (JONES, 1924). Such potential was used to model neutral atoms’
interaction, incorporating in a simple and successful way both the long-range attractive force
due to van der Waals potentials and the short-range repulsion due to proximity of electron
clouds. The interaction energy between two particles, i and j, with an interparticle distance ri j

given by the following expression:

U(ri j) = 4ε

[(
σ
ri j

)12

−
(

σ
ri j

)6
]
, (2.2)

where the parameter ε dictates the depth of the potential well and σ the location of the mini-
mum. Indeed, for any given σ the minimum is located at r0 = 21/6σ .

This potential is largely used to model atomic interactions of systems both in gas (JONES,
1924) and crystals (ASHCROFT; MERMIN, 2011). Note that one of the greatest advantages
of the Lennard-Jones potential for MD simulations is its simplicity. Indeed, given the squared
distance between particles, r2

i j, it is possible to calculate U(ri j) using only five multiplications,
one division and a sum. Furthermore, using r2

i j instead of ri j we can avoid calculating an
expensive square root. These simplicities allows one to devote computational time to do larger
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Figure 2.1 Graph of the Lennard-Jones potential for the parameters σ = ε = 1.0. The minimum of the
potential is found at the value ri j = 21/6 ≈ 1.122.
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and longer simulations.
Another commonly used potential is the Yukawa potential. It was first published in 1937 as

an interaction model for the strong force between nucleons (YUKAWA, 1935). However, it was
soon noticed that such potential can be used to model the interaction between charged particles
surrounded by an ionized solvent. These particles have an external layer of free ions (DHONT,
1996) which screens the interparticle potential. That means that the potential energy decreases
at much faster rate than a simple Coulomb Potential. The Yukawa Potential can be written as

U(ri j) =
q2

ri j
e−κri j , (2.3)

where κ measures the effectiveness of the screening. As expected, when κ→ 0 we recover the
original Coulomb Potential.

However, care must be taken in this limit. When one uses Periodic Boundary Conditions
(which will be explained in detail in Subsec. 2.1.0.2) to simulate an infinite number of particles
in a three-dimensional space one must make sure that the energy integral does not diverge.
While a naïve sum may yield wrong results, techniques such as Ewald summation can solve
this issue (ALLEN; TILDESLEY, 1989).

One can should notice that both of the interaction potentials aforementioned were pair-
wise interactions. This is not the only kind of interparticle potential, but it is the most often
used. However, some effects only occur when many-body potentials are used. Silicon, for
instance, crystallizes into a diamond cubic crystal structure and to fully reproduce this lattice
in simulations, a three-body potential is necessary (RAPAPORT, 2004).

Nonetheless, avoiding many-body potentials is very common, as when using these poten-
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Figure 2.2 Yukawa potential for a few values of κ , as indicated within figure. The charge was set to
unity.
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tials the algorithm complexity grows rapidly. For instance, while the calculation of a pairwise
potential is O(N2) the algorithm to calculate a three body potential will be of class O(N3). In
general, a D-body potential will require calculations of order O(ND).

The Big-O notation used in the last paragraph describes how the number of steps needed to
complete calculation scales. For instance, O(N2) means that the computational time is expected
to grow with the second power of the number of particles. Therefore, doubling the number of
particles would increase the simulation time fourfold.

External Potentials
Not only interparticle potentials play a role in MD. Commonly external traps are used to

confine colloids (LÖWEN, 2009). Examples of confinements are optical tweezers (CHOWD-
HURY; ACKERSON; CLARK, 1985) and external electromagnetic fields (ZAHN; MÉNDEZ-
ALCARAZ; MARET, 1997; LÖWEN et al., 2005). The simplest way to model either of these
is the parabolic external potential.

V (ri) = κr2
i . (2.4)

The gradient of Eq. 2.4 in cartesian coordinates will depend linearly on the coordinates.
Thus there is no need to calculate ri or even r2

i , avoiding any expensive calculations. Another
advantage is that the previous equation is very generic. Any confining potential can be cast
in the shape of Eq. 2.4 by a Taylor expansion up to second order. For a generic confining
potential φ(ri) centered around the origin we can calculate the value of the spring constant as
κ = (d2φ/dr2

i )|ri=0.
Quantum Effects
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As mentioned in the first paragraph of the previous subsection, the theoretical foundations
of MD are those of Classical Mechanics, which were laid from the 17th century to late 19th
century. Then it should come as no surprise that while MD only flourished in the second part
of the 20th century it completely ignored two of its most important theoretical breakthroughs:
Quantum Mechanics and Relativity.

Ignoring Relativity poses no big issue to the description of the systems presented in this
dissertation. The velocities of atoms in crystals are much smaller than the speed of light and
the distances are small enough that within the time discretization, information spreads in sub-
luminal speeds and causality is not broken. However, one might rightfully complain that these
same small distances force our system to fall well within the Quantum Mechanics (QM) va-
lidity region. Moreover, Molecular Dynamics is based upon the idea that is possible to have
complete knowledge of the system’s positions and momenta at any given instance. This is in
grave contrast to QM and its founding principle of uncertainty.

These issues can be partially solved by a wise usage of the freedom of choice in the potential
energy function U . For instance, it is possible to follow a semi-classical approach and include
effects that, while quantum in nature, can be cast in a classical vesture (MAITLAND et al.,
1983). This allows MD to be used in an even broader range of problems. The three-body
interactions are common examples of the necessity of this semi-classical approach. Its heart
lay in quantum mechanics (RAPAPORT, 2004), but it is possible to create models of potential
energies that mimic satisfactorily the real system (STILLINGER; WEBER, 1985).

2.1.0.2 Boundary Conditions

Alone, Eq. 2.1 describes objects in an infinite, homogeneous and boundless space. When
dealing with colloidal systems, this is rarely the case as colloids are mostly found in containers
of some kind. Consequently, one would expect the simulation to also include boundaries.

Based on the real world, a first idea might be that of hard-wall boundaries. In microscopic
terms, this means that a particle which hits the simulation box boundary has its velocity re-
flected around the normal vector of the wall. That way, one restricts the movement of the
particles only to a finite region in space.

However, this is rarely the most efficient condition. In real world systems most of the
particles are located in the bulk of the system, rather than at the borders. For a three dimensional
system of N ≈ 1023 particles at liquid density the amount of particles at the border is about
N2/3 ≈ 1015. That is, one particle in every 108.

By today’s standards, a rather large simulation would have N in the order of tens of thou-
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sands2. We can use the same argument as before to find that the number of particles in the
border is N2/3 ≈ 103 or one in every ten particles. Therefore, the border effects, which in real
world systems matter for a relative tiny amount of particles would be much more noticeable in
simulations.

Unless the object of research is the interaction between colloids and containers it would be
useful to use a boundary condition that allows us to focus our computational efforts in the bulk
of the system rather than at the brink. This can be achieved with periodic boundary conditions
(PBC).

The implementation of PBC is rather simple. Whenever a particle reaches the limits of the
simulation box it is transported to the opposite side of the box, with its momentum unchanged.
A schematic representation of hard-wall conditions and PBC can be seen in Fig. 2.3.

Figure 2.3 A single particle being simulated with hard-wall boundaries (left) and PBC (right). In the
left figure the momentum in the x-axis is reflected and in the right figure the momentum is kept constant
while the x-coordinate is wrapped.

PBC has the advantage that it allows us to understand properties of an infinite system while
using only a finite number of particles. Indeed, by using as few as 256 hard-spheres and PBC
it is possible to reproduce well known statistical properties, such as the phase diagram and the
velocity distribution of the system, as expected by the Statistical Mechanics theory (HAILE,
1992).

2.2 Simulating Brownian Dynamics

As mentioned in Subsec 1.2, colloids are most commonly found in solutions, surrounded by a
fluid. A simplistic approach to simulate this system would be to run calculations for both kind

2But by no means would that simulation be considered immense. In (WATANABE; SUZUKI; ITO, 2011), for
instance, 4,096,000,000 particles interacting via Lennard-Jones potential were simulated.
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of particles, the colloids and the molecules of the solvent. This is a terrible idea.
The molecules in the liquid exhibit a relaxation time in the order of 10−14s, while col-

loidal relaxation times are closer to 10−9s (DHONT, 1996). This difference of five orders
of magnitude makes simulating the fluid and the colloids using MD prohibitively expensive.
Far too much computational time would be spent simulating the liquid, as the number of such
molecules far exceed that of colloids and many more time steps would be needed to see any
representative movement of the colloids.

It is much wiser to use a macroscopic approach on this problem and take advantage of the
theory developed in the beginning of the last century by Einstein, Smoluchowski and Langevin,
as mentioned in Subsec. 1.2. In doing so, we abandon Newton’s 2nd Law and use Langevin’s
equation to describe the system dynamics instead. For a system of N particles with masses m

and interaction potential U , the Langevin’s equation is (DHONT, 1996)

m
d2ri

dt2 = F(t)− γ
dri

dt
+η(t), (2.5)

where γ is the drag constant and η is a white noise satisfying

〈η(t)〉= 0,
〈
η(t)η(t ′)

〉
= 2γkBT δ (t− t ′), (2.6)

where brackets indicate an average over the generalized coordinates qN and pN . Besides the
Brownian motion, the liquid also has a viscosity and commonly in experimental setups, the
solvent is viscous enough that causes it the colloidal accelerations to be very small. In other
words, the system will present an overdamped motion, where d2ri

dt2 ≈ 0. In that way, we can
rewrite Langevin’s equation as

dri

dt
=

1
γ
(F(t)+η(t)) . (2.7)

Do notice, however, that this equation has an stochastic term, η , which cannot be dealt by
the classical methods to solve ODEs, such as Runge-Kutta (RK), Verlet and Leapfrog. Indeed,
a whole new class of algorithms is needed to simulate these equations.
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2.3 First Order Stochastic Runge-Kutta

In this subsection we will deduce the first-order member of a family named Stochasic Runge-
Kutta (SRK). The classic RK methods can be seen as a special case of these new algorithms and
are recovered when the noise is null. In this subsection, we will closely follow the derivation
presented in (HONEYCUTT, 1992).

First we will analyse the one-variable, first order stochastic equation,

dx
dt

= f (t)+g(t). (2.8)

This equation has a deterministic part, f (t) and a stochastic part, g(t). The latter is a white-
noise gaussian process, with properties

〈g(t)〉= 0
〈g(t)g(t ′)〉= 2Dδ (t− t ′),

(2.9)

where D is some constant and δ (t) is Dirac’s delta. We can develop our algorithm in the
following manner: first, integrate Eq. 2.9 from t = 0 to t = δ t,

x(δ t) = x(0)+
∫ δ t

0
f (t ′)dt ′+Γ(δ t) (2.10)

where Γ(δ t) =
∫ δ t

0 g(t ′)dt ′. Next we suppose that f(t) is constant in the integration time. That
is, the resulting algorithm will only be first order. Thus, the last can be rewritten as

x(δ t) = x(0)+ f (0)δ t +Γ(δ t). (2.11)

Now, we will deduce the properties of Γ(δ t). First, as 〈g(t)〉= 0, the average of Γ will also
be null. To calculate the variance, one more piece is needed, 〈Γ(t)Γ(t ′)〉.
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〈
Γ(t)Γ(t ′)

〉
=

∫ ∫ (∫ t ′

0
g(τ ′)dτ ′

∫ t ′′

0
g(τ ′′)dτ ′′

)
dqNdpN

=
∫ ∫ (∫ t ′

0

∫ t ′′

0
g(τ ′)g(τ ′′)dτ ′′dτ ′

)
dqNdpN

=
∫ t ′

0

∫ t ′′

0

(∫ ∫
g(τ ′)g(τ ′′)dqNdpN

)
dτ ′′dτ ′

=
∫ t ′

0

∫ t ′′

0

〈
g(τ ′)g(τ ′′)

〉
dτ ′′dτ ′

=
∫ t ′

0

∫ t ′′

0
2Dδ (τ ′− τ ′′)dτ ′′dτ ′

=
∫ t ′

0
2Ddτ ′

= 2Dt ′

As stated above, this algorithm is only first order. However, by following a similar scheme
one can deduce algorithms of arbitrary order. The interested reader is encouraged to see (HON-
EYCUTT, 1992) for a detailed discussion on higher-order Stochastic Runge-Kutta.

Now, one can readily make the following identifications: x→ ri, f → 1
γ F , g→ 1

γ Γ and
D→ γkBT . These result in the following algorithm

ri(δ t) = ri(0)+
1
γ

F(0)δ t +H(δ t), (2.12)

where H(t) is a gaussian white noise with properties

〈H(t)〉= 0
〈H(t)H(t ′)〉= 2γkBT δ t.

(2.13)

That is to say, the stochast term H(δ t) will be result into a discrete translation in a random
direction. This is the final form of the integration scheme we will use in the following sections.

2.4 The Ensembles

The attentive reader might have noticed one fundamental thing changed when we started using
Langevin’s Equation instead of Newton’s 2nd Law. No longer are we simulating a NVE en-
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semble3. Now, instead of the energy, the temperature is kept constant, which means that we are
simulating the NVT ensemble. This does not present an issue here, as most experiments are
done in exactly these conditions.

We would like one to notice, however, that Brownian Dynamics is not the only way to
simulate the NVT ensemble. Standard MD can be modified in another way: Instead of using
Langevin’s Equation it is possible to extend the Hamiltonian of the system by adding a virtual
“friction”4 that will be responsible for keeping the temperature constant. This has the advantage
of keeping the system well withing the tooling of Classical Mechanics. Indeed, in this fashion
it is possible to simulate any other ensemble by adding different constraints for pressure (AN-
DERSEN, 1980), temperature (NOSÉ, 1984; NOSÉ, 1991) or chemical potential (LYNCH;
PETTITT, 1997).

Another method to achieve the non-microcanonical ensemble relies on the addition of
stochastic thermostats alongside the hamiltonian equations of motion. This has the disadvan-
tage of any analyses on properties of the algorithm must be done via Markov Chains rather than
via Hamiltonian Dynamics (ANDERSEN, 1980).

2.5 Further Considerations and Numerical Stability

Part of the art of Molecular Dynamics is how to find the proper simulation parameters. It
is possible to do theoretical analyses of algorithms, but only for very simple systems. For
anything more complicated than a few basic examples there is no hard and fast rule on how to
set the simulation parameters and its values must be found in a somewhat empirical fashion.
Choose an excessively small value of δ t, for instance, and the simulations will take a long time
to finish, wasting computational time. On the other hand, with a large value of δ t errors will
accumulate and spurious values will result.

Another unavoidable source of error in computer simulations is the finiteness of the floating
point representation used in modern computers. This topic is out of the scope of this work, but
a good primer on this subject can be found in (GOLDBERG, 1991).

3That is, the number of particles, N, the volume, V , and the temperature, T are kept constant.
4The resulting quantity can only be called friction in a very loose sense, as it is possible the value of the friction

will be negative, thereby increasing the energy of the system.



3 Dynamical Structures

You are the way and the wayfarers.

—KAHLIL GIBRAN (The Prophet)

In order to understand the transport of passive matter, we first analyse the formations assem-
bled by active particles. We will use the methods layed in the previous section to run computer
simulations of active particles in isolation and study their structural possibilites. The knowl-
edge of these structures will pave the way into the actual transport of passive matter, and guide
us into the possibilities of transportation.

This section is organized as follows. In Subsection 3.1, we describe the model we used,
the simulations details. We specify how the measurements were performed in Subsec. 3.2. In
Subsection 3.3, we present the results, for systems in low and high magnetic field regimens.
Finally, in Subsection 3.4 we summarize the results found in the current section.

3.1 The Model and Simulation Details

In this section, we will investigate the dynamical properties of a two-dimensional system, com-
posed of N monodisperse active particles, which interact via a dipole-dipole potential. The
interaction potential is

U(ri j) =USC(ri j)+UD(ri j), (3.1)

where ri j is the distance between particles i and j, USC denotes a short-range soft core poten-
tial and UD a dipole-dipole pairwise interaction potential. The explicit expressions for these
potentials are

USC(ri j) =ε
(

D
ri j

)n

(3.2)

28
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and

UD(ri j) =ε
µ2

r3
i j
[ûi · û j−3(ûi · r̂i j)(û j · r̂i j)], (3.3)

where µ is the modulus of the magnetic moment of the particle, ûi is the orientation of the
particle i, and n control the hardness of the spheres, D is the diameter of the particle, and a hat
over a vector denotes a normalized vector. ε and D are defined to be the unit of energy and
length, respectively. The parameters used in this section are summarized in Table 3.1.

A schematic plot of the interpaticle potential is seen in Fig. 3.1, where the roman numbers
relate the potential curve to the particle configuration on the right side of the figure. In the
latter, we observe that the energy presents a strong dependence on the particles’ orientations.
Namely, the system can be found in a bounded state only in configurations (III) and (VIII),
where the latter is the ground state. For this reason, the particles tends to align into chains of
particles.

The potential associated with the magnetic field is

V =−~µi · ~H, (3.4)

where ~H is the external magnetic field. During this work, the magnetic field will be aligned
with the y-axis.

The dipolar potential and the magnetic field generate torque on the particles. The interpar-
ticle potential makes particles align with each other, while the magnetic field tends to align the
particles with the y-axis. The torques are given by

τD
i j =

µ2

r3
i j

[
3(ûi× r̂i j)(û j× r̂i j) − ûi× û j], (3.5)

τH
i =~µi× ~H. (3.6)

Applying equations 3.2 and 3.3 on Eq. 2.1, we obtain

~FSC
i j (ri j) =12

D
r13

i j
~ri j, (3.7)
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Figure 3.1 Interparticle potential defined by Eq. 3.1 for several particle configurations, as indicated in
the right side of the figure. Depending on the orientation of the particles, the system can transition
between a bound state and an unbounded one.
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and

~FD
i j (ri j) =

3µ2

r4
i j

[
(û j · r̂i j)ûi +(ûi · r̂i j)û j)+(ûi · û j)r̂i j

]
(3.8)

−3µ2

r4
i j

[
5(ûi · r̂i j)(û j · r̂i j)r̂i j

]
,

with the total force on particle i being given by

~Fi = f ûi +∑
j

(
~FSC

i j +~FD
i j

)
, (3.9)

where the first term on the right hand side is responsible for the self propulsion of the particle.
In the current section, the propulsion and the magnetic moments are aligned within a particle
and f is set to unity. A similar situation, where the propulsion and dipolar moments are aligned,
is found on the magnetotactic bacteria (BLAKEMORE, 1982; ARAUJO et al., 1990).

We would like to note that, while we adopt the notation of magnetic dipoles (and explicitly
refer to the active particles as magnetic throughout the text), the energy equations for both,
electric and magnetic dipoles are analogous. This means that the results obtained in this work
are valid for any dipole-like particle, be it of electric or magnetic nature (JACKSON, 1975).

To model both, the translation and rotational movements, we will use the overdamped
Langevin equation, given by Eq. 2.7. That is, our equations of movement will be
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dri

dt
= Fi(t)+η(t), (3.10)

and

dθi

dt
= τi(t)+ξ (t), (3.11)

where we have set γ = 1. In the same way as Eq. 3.9, the total torque on particle i is given by

τi = τH
i +∑

j
τD

i j . (3.12)

To integrate Eqs. 3.10 and 3.11, we used the algorithm described in Subsection 2.3. Initially
the particles were distributed in a squared grid with a random orientation following an uniform
distribution in the range [0,2π). The simulation ran for a total of NSteps = 6× 106 time steps
where the system was allowed to stabilize for 3×106 time steps. This value was chosen after
careful examination of the convergence of the measured properties of the system and a wide
margin of subsecurity was given. In that way, we avoid any influence of transient effects in our
measurements. The simulations were performed in a square box with size L = 50 with periodic
boundary conditions in both x and y axis.

In order to compare the results in this dissertation with experimental values, one must con-
nect the dimensionless values presented to the real ones. This can be done by setting a few,
basic units, and deriving the interesting quantities from the relations necessary to adimension-
alize the final Hamiltonian. Using this procedure, one can find that having chosen, for instance,
the unit of length, r̄, the unit of mass m̄, and the unit of dipolar moment, µ̄ , it is possible to
calculate the unit of time as t̄ = ke,mr̄2/µ̄ , the unity of energy ε̄ = ke,mµ̄2/r̄2 and the unit of
external field H̄ = ke,mµ̄/r̄2. In the previous equations, ke,m stands for the electric and magnetic
constants, ke = 1/4πε0 and km = µ0/4π .

Iron(II) Oxide, for instance, has a molecular weight of 71.844g/mol and a density of 5.745g/cm3

(PATNAIK, 2003) and each FeO group carries around 5D1. Colloidal particles made with
this compound, have a diameter anywhere from 10nm to 100nm (HOU; XU; SUN, 2007).
Thereby, for particles with diameter around 10nm, we can estimate the mass of each particle as
3.01×10−21kg and a dipole moment up to 4.20×10−25Cm, if we suppose that all the domains
are properly aligned. In that way, we can choose our units to be m̄ = 3.01×10−21kg, r̄ = 10nm

1Here D denotes Debye, the cgs unit for electric dipole. Its SI value is 3.336×10−30 Cm.
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Table 3.1 Parameters used in this section’s simulations, given in dimensionless units.
Parameter Value

N 384
L 50
D 1
φ 0.12
ε 1
n 12
δ t 5 ·10−4

µ 1.0, 2.0, 3.0
H [0.0, 0.5]

and µ̄ = 10−25Cm, and use the equation in the previous paragraph to calculate any quantity.
For instance, the external field unit is found to to be H̄ = 8.99V .

3.2 Order Parameters

In order to quantify the dynamical properties of the system, we will use a few quantities. The
first of these will be the mean squared velocities, defined as

〈
v2

y
〉
=

1
N

N

∑
i

(
1
t

t

∑
tm

viy(tm)

)2

, (3.13)

and

〈
v2

θ
〉
=

1
N

N

∑
i

(
1
t

t

∑
tm

viθ (tm)

)2

, (3.14)

where vy(tm) =
y(tm+1)−y(tm)

tm+1−tm
, vθ (tm) =

θ(tm+1)−θ(tm)
tm+1−tm

. Additionally, tm iterates over the measure-
ments, and we set the time interval between two consubsecutive measurements to be 200δ t.
That is, tm ∈ {0δ t,200δ t,400δ t, · · ·}. In a system composed of auto-propelled particles de-
scribed by Eq. 3.11 with no interactions, the equations of motion for a single particle are

dx
dt

= vx = f cosθ (3.15)
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and
dy
dt

= vy = f sinθ . (3.16)

Thus, in an ensemble of free self-propelled particles, we expect to find
〈
v2

y
〉
=
〈

f 2 sin2 θ
〉
=

f 2/2. However, if these particles are now allowed to interact with an external magnetic field as
described above, it will be energetically favourable to align with the y-axis. This has the effect
of nullify vx while maximizing vy, that is,

〈
v2

y
〉
= f 2. In that way, by using the mean squared

velocity we might be able to differentiate between the several configurations that will occur.
Some authors also measure the diffusion of the particle. The quantities in our interest would

be the angular diffusion and the diffusion in the y direction. These are given by

Dy(t) =
1

2Nt ∑
i
(yi(t)− yi(0))

2 , (3.17)

Dθ (t) =
1

2Nt ∑
i
(θi(t)−θi(0))

2 , (3.18)

Lets take a moment to analyse the long-time behaviour of Dy(t) for two selected systems.
The first system we will analyse will be that composed of Brownian (also called passive) par-
ticles. For an ensemble composed of those particles,

〈
y2〉→ 2Dt (FEYNMAN; LEIGHTON;

SANDS, 1963), where D is translated to γkBT in Eq. 2.6. Therefore,

Dy(t) =
1
2t

2Dt = D, (3.19)

is a constant. However, our system contains active, rather than passive particles. At low tem-
perature a free active particle will drift with a constant speed. Its movement equation will
be

dy
dt

= f sin(θ) = f ′, (3.20)

which has the trivial solution y(t) = f ′t + y(0). Therefore, for an ensemble of free active
particles,
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Figure 3.2 Schematic representation of particles. In (a) they face the same direction thus being consid-
ered neighbors, while in (b) they do not face the same direction and are not neighbors.

(b)(a)

Dy(t) =
1
2t

〈
( f cos(θ)t)2

〉

=
1
2t

f 2t
〈
cos2(θ)

〉
,

=
f 2t
4

. (3.21)

Thus, due to the self propulsion, we expect to find a Dy constant only when the system
is somehow bound. For an interacting system Dy(t) ∼ β tα , where α will have value in the
interval [0,1].

However, this quantity is more complex than the mean squared velocity, and while we did
measure it for this section’s simulations, they provided no new information.

We observed in some simulations the occurrence of small, short lived clusters, as seen in
Fig. 3.4 (a) and Fig. 3.6 (a).

In order to identify these clusters, we devised the following algorithm. First, we calculated
the interparticle distances ri j, and initially considered any pair of colloids with ri j < 1.5D as
neighbors. Due to the angular nature of the interaction potential in this work, we could not use
only the proximity factor to must define an angular condition to complement our neighborhood
condition. That is, we filtered the neighbor list, selecting those particles that face the same gen-
eral direction as being neighbors. We tested various values of angular distance as the filtering
condition and found a robust value to be π/2. In that way, the two particles in Fig. 3.2 (a) are
considered neighbors, while the particles in (b) are not.

This allowed the creation of a graph of neighbors, with the particles as vertexes. Where we
identify each disjoint subgraph as a cluster. We measured the average size of the clusters as the
average number of particles in each cluster.

Measuring the lifetime of the cluster, however, is far trickier than measuring its size, as
it involves solving the ontological problem of what constitutes the entity and whether it did
change or go out of existence.

We tracked the clusters in the following manner. Initially, we identify the clusters and
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choose them as model-clusters. At each measurement step, we check if each model-cluster is
similar to the new clusters. If so, the model-cluster is still considered active. Otherwise its
lifetime is saved, and it is considered dead. Any new cluster that does not correspond to any
similar model is considered a new model-cluster and its creation time is saved. We define that
two clusters A and B are similar if half of the particles in A are also in B. This condition was
robust, in that, while we arbitrarily chose the continuity condition as 50%, the measurements
did not change greatly for reasonable variables on this value.

Finally, in order to account for possible growth of the clusters, we consider a cluster that
is similar to and larger than a model-cluster as the new model-cluster, inheriting its predeces-
sor creation time stamp. We then consider the old model-cluster dead, but its lifetime is not
measured. In the occasion that two clusters merge, the smaller one is considered dead, and its
lifetime is saved.

3.3 Results

In this subsection we will investigate how the values of µ and H influence the dynamics of the
system. We simulate system of N = 384 particles, with filling factor φ = NπD2/4L2 = 0.12.

We also ran a few tests with N = 1152 and did not observe any new behaviours. Thus, we
expect that simulations with N = 384 should be representative of the real system and provide a
good balance between fidelity and computational effort.

We investigated the magnetic field and the dipole moment in the ranges 0.0≤ H ≤ 0.5 and
0.0 ≤ µ ≤ 3.0. We observed that the system saturates for H > 0.5, with no new structures
arising after that value. Unfortunately, we could now simulate systems with µ > 3.0, due to
numerical instabilities. To tackle this issue, we would need to use a much smaller time step δ t,
incompatible with our computational resources.

In the simulated ranges, we could identify a few distinct structures, such as annular for-
mations, unordered motions and labyrinths. These structures mirror the known orderings for
two-dimensional dipole-like colloids (HELGESEN et al., 1988; SCHMIDLE et al., 2012).

Figure 3.3 shows the values of
〈
v2

θ
〉

and
〈
v2

y
〉

for a few values of µ and varying values
of H, calculated via Eqs. 3.13 and 3.14, respectively. In Figure 3.3 (top) we can observe two
effects. Firstly, we notice that for low magnetic fields, systems with µ = 1.0 and µ = 2.0 have
nearly no angular velocity. Indeed,

〈
v2

θ
〉

in these systems diverges from those of systems with
µ = 3.0 by nearly an order of magnitude. Second, one can observe in Figure 3.3 (bottom) that
for most values of H, systems with intermediate value of magnetic dipole moment, i.e., those
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with µ = 2.0, are more aligned with the y-axis than systems with either extremal µ = 1.0 and
µ = 3.0.

Both effects described in the last paragraph stem from the same source: the energetic com-
petition between the interparticle potential, which depends on the square of magnetic dipole
moment, and the external potential, which varies linearly with µ and the angular noise.

Figure 3.3 Mean squared velocities (MSV) for some values of µ and varying H, as indicated within the
figures. (top) presents the angular MSV, while (bottom) presents the MSV in the y-axis, that is, parallel
to the magnetic field.
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For instance, when µ = 1.0, the angular noise is strong enough to destabilize any potential
structures, allowing only short-lived lines to form and preventing the system from aligning
properly with the magnetic field, as seen in Fig. 3.5 (a). Indeed, the average lifespan of the
string is (4.2±0.4)×103δ t and contains in average 3.7±0.2 particles.

As we increase the value of µ to 2.0, most of the particles align with the external field.
But, if we increase the value of µ further, the dipole-dipole interaction becomes energetically
favourable, and the particles will align among themselves, rather than with the external field.
This is the reason why systems with dipole moment = 2.0 present the highest MSV in the y-
axis, as seen in Fig. 3.3 (bottom). The high angular velocity for µ = 3.0 can be explained by
the ring structures described in the following subsubsection.

For didactic purposes, in the next two subsubsections we will focus on the extreme condi-
tions of H = 0 and H = 0.5, as the structures mentioned on the first paragraph of this subsection
are more easily seen in these regimes. We did not observe different phenomena for intermedi-
ate strengths of the magnetic field. Rather, these systems will gradually align with the external
magnetic field and will present structures of both extremes, in proportion to the value of the
magnetic field.
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3.3.1 Null Magnetic Field: H = 0.0

Lets analyse systems with no external magnetic field. In Figure 3.4 we present snapshots of
the configurations for a few values of µ . The particles are shown in red, with a green triangle
pointing towards the direction of the magnetic moment of each particle. For µ = 1.0 , the
system has nearly no structure at all (see Fig. 3.4 (a)), presenting only short-lived strings of
particles. As we increase µ , these lines stabilize, and their length increases. At µ = 2.0, they
coalesce into long lines and often percolate, as shown in Fig. 3.4 (b). As more lines are formed,
the line-line interaction tends to align them in a single direction.

Figure 3.4 Formation of dipole rings for a null field. For µ = 1.0 (a), the system has little structure,
being in a liquid-like state. When the value of µ is increased to 2.0, we start to see the formation of
lines, which percolate. Finally, for µ = 3.0 (c), the system assembles into rings.

(a) (b) (c)

H

Finally, by increasing µ even further one increases the lines’ self-interaction, leading to
the destabilization of the strings, which results in the ringed structures seen in Fig. 3.4 (c).
These rings are stable rotating structures that, if not disturbed by external forces, keep their
shapes indefinitely. As such, they are responsible for the high angular velocity observed in
Figure 3.3(a).

3.3.2 Magnetic Field H = 0.5

In this subsection, we will discuss the dynamics of systems embedded in a strong magnetic
field, with value H = 0.5. In this scenario, we observe a movement predominantly on the
positive y-direction, as expected due to the energetically favourable alignment between the
particles and the magnetic field. Here, the dynamics of particles with µ = 1.0 are similar to
those in the previous subsubsection, that is, they also are dominated by short-lived structures.
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However, due to the strong magnetic field, they align in a single direction and, by transitivity,
among themselves. This alignment allows for a longer, but still finite, life for the strings.

In Fig. 3.5 we present a quiver plot of two systems, both with µ = 1.0, but with different
magnetic field magnitude. That is, in (a) we show a system with H = 0, while in (b), H = 0.5.
In this figure, the arrows represent the velocity of the particles, with the speed being represented
by the length of the arrow. By contrasting Fig. 3.5 (a) and (b) it is easy to notice that, while both
systems are formed by unstable strings of particles, the influence of the magnetic field alone is
enough to create longer lines.

We observed a nearly two fold increase in the average life span of strings when compared
with systems at null magnetic field, from (4.2± 0.4)× 103δ t to (7.3± 0.9)× 103δ t. The
average number of particles per string also increased, to (5.1±0.3).

Figure 3.5 Quiver plot of velocities for two systems with µ = 1.0. In (a), H = 0.0, and in (b), H = 0.5.
In these plots, the length of the arrow is proportional to the speed of the particle.

(b)(a)

H

When we increase the value of the magnetic moment, the lines observed in Fig. 3.4 (b)
align with the magnetic field, as seen in Fig. 3.6 (b). One thing to be noted, is that some of the
lines have bifurcations, forming labyrinths. As we increase the value of the particles’ magnetic
moment, these bifurcations grow in number, creating highly-branched structures such as the
one seen in the right-most part of Fig. 3.6(c). The structures in (c) seems to share its topology
with the diffusion-limited aggregation (DLA). It is know that a cluster of interacting colloids
would assemble into a DLA cluster in the abscense of a magnetic field (PASTOR-SATORRAS;
RUBÍ, 1995). However, reliably measuring the fractal dimension of these clusters was out of
the scope of this MSc. Thesis.
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Figure 3.6 Formation of labyrinths. For µ = 1.0 (a), the particles assemble into short and fast-lived
strings. As µ is increased to 2.0 (b), percolated lines and bifurcations on these lines are found, forming
labyrinthine structures. In (c) we can see a system with µ = 3.0. In this system, the line-line interaction
compresses them.

(a) (b) (c)

H

3.4 Summary of Section

In this section, we used Langevin dynamics to investigate the dynamical structures of self-
propelled particles in two dimensions, assuming they interacted via a short range hard-core
potential and a longer range dipole-dipole potential. We found that the system can organize
into various configurations, depending on the dipole magnetic moment and the magnetic field.

In the absence of magnetic fields, the system could be found in a disordered, liquid-like
state, comprised of short-lived strings of particles. In systems with stronger magnetic dipole
moments, percolated lines and annular structures were also obtained.

The dynamics of the system can be strongly influenced by an external magnetic field, break-
ing the symmetry of the system. The influence of the magnetic field makes the particle align-
ment in the y-axis energetically favourable, collimating the percolated lines and destroying the
rings obtained at null magnetic field. A Secondary effect of the magnetic field is extending the
life expectancy of the strings of the disordered states.

The transition between the null magnetic field regime and the high magnetic field regime
was continous. That is to say, at intermiate magnetic fields, we could observe structures be-
longing to both regimes, and no new phenomena were observed.



4 Transport of passive matter

(. . . ) vêm e vão, vão e vêm, até que ficam.

—JOSÉ SARAMAGO (O Homem Duplicado)

In medicine, one of the current challenges is that of vectorization, which consists of the
careful delivery of chemical compounds to a specific organ, tissue or even cell. The vec-
torization process, maximizes the drug potency while decreasing its toxicity, which ensures
maximum treatment safety (SOUSSAN et al., 2009). The knowledge of how self-propelled
materials behave in the presence of passive matter may assist in developing this application
even further.

In Section 3 we encountered several dynamical structures. We found that the resulting phase
of system depends on both, intrinsic characteristics of the particles (such as its dipole moment)
and extrinsic factors (for instance, the external magnetic field).

Among the structures found, the most promising to transport passive matter was the labyrinthine
structures and its associated pockets, mentioned in Subsec. 3.3.2. It is possible that these pock-
ets can envelope the passive particles and transport them in the direction dictated by the external
magnetic field.

In this section, we will investigate whether it is possible to take advantage of the structures
found in the previous section to transport passive matter.

4.1 Modifications to the model

We introduce NP passive particles in our simulation. These particles interact via hard-core
potential, given by Eq. 3.2, and are not self-propelled. Their equation of movement is

drP
i

dt
= FP

i (t)+η(t) (4.1)

where

40
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~FP
i =

NA

∑
j

~FSC
i j +

NP

∑
j

~FSC
i j , (4.2)

and FSC
i j is given by Eq. 3.7, and superscripts A or P indicate if the equation is related to active

or passive particles. Similarly, Eq. 3.9 is modified to

~FA
i = f ûi +

NA

∑
j

(
~FSC

i j +~FD
i j

)
+

NP

∑
j

~FSC
i j . (4.3)

The passive particles are isotropic, thus their orientation is not relevant for the Hamiltonian
and do not interfere in the dynamics of the system. For that reason, it is superfluous and was
not simulated.

The simulations were realized in a similar manner as those in Section 3. First, the passive
particles were assigned to random sites of a square grid. Secondly, the active particles were
distributed in the remaining sites and oriented randomly. The system then was allowed to
stabilize for 3× 106 times steps and the measurments were realized in the next 3× 106 time
steps. Except where explicitly noted otherwise, the simulation parameters are the same as in
the previous section, which were summarized in Table 3.1.

In passive systems, it is well know that solutions of dipolar colloids at high density can
crystallize into a solid (SCHMIDLE et al., 2012). For this reason, we study systems with both,
low and high filling factors. These systems present distinct dynamics and transport capabilities,
which will be presented in the next two subsubsections.

4.2 Low filling factor

We begin this part of the investigation by adding NP = N = 384 passive particles into the
system. Thus, the filling factor doubles, reaching φ = 0.24. Tests were also conducted with
NP = 128 and NP = 256, with similar results.

Figure 4.1 shows the mean squared velocity on the y-axis for both kinds of particles, active
and passive, denoted by

〈
v2

y
〉A and

〈
v2

y
〉P, respectively. The curves for the active particles are

very similar to those in Fig. 3.3 (bottom), while for weaker magnetic fields the systems with
µ = 2.0 are able to have a better alignment with the y-axis than those systems with µ = 1.0 or
µ = 3.0. However, our initial expectations that the labyrinths could sweep the passive particles
were not met. Such a factor is demonstrated in Figure 4.1 (bottom), which shows that only
systems with µ = 1.0 transport passive matter, and even so, very slowly. In fact, the maximum
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Figure 4.1 Mean squared velocity for active (top) and passive particles (bottom). The kind of parti-
cle is denoted by a superscript A or P. The active particles’ MSV does not differ qualitatively from
Fig.3.3 (top). However, the mean squared velocity for passive particles shows that only systems with a
small magnetic dipole moment transport passive particles.
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MSV in this case is 0.020.
The pockets in the labyrinths have little use in the transport of passive particles, as the

dipole-dipole interaction at the bifurcation isn’t strong enough to hold the passive matter. We
found that microscopically, the actual process of transport is done by collisions between active
and passive particles. As the particles with large magnetic moment assemble into labyrinths,
the collision mechanism is minimized.

The difference between the cross section of the liquid-like state and that of the labyrinths
is exemplified in Figure 4.2. In this figure we show the active particles in red and the green
triangles indicate the direction of the magnetic dipole moment while the passive particles were
painted in blue.

We can see a clear mixing of active and passive particles in Fig. 4.2 (a), where the passive
particles obstruct the movement of the active particle, resulting in a MSV smaller than in sys-
tems with magnetic dipole moment µ = 2.0 or µ = 3.0. In these later two systems, there is
a separation between the two kinds of particles, with the active particles organizing into the
aforementioned labyrinths and the passive particles organize into stripes, as seen in Fig. 4.2
(b) and (c). The mixing of the particle species shown in Fig. 4.2 (a) is responsible for the
non-negligible transport of passive particles, as it maximizes the active-passive interface, and
consequentially, the frequency of the collisions.

Furthermore, we observe a decrease in the transport capacity of passive particles even for
systems with µ = 1.0 when subjected to magnetic fields higher than H ≈ 0.5. This decreasing
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Figure 4.2 Snapshots of systems with (a) µ = 1.0, (b) µ = 2.0 and (c) µ = 3.0 and external magnetic
field ~H = 1.0. In (a), the system does not present a well defined structure, maximizing the frequency
of collisions between active and passive particles. In (b) and (c), the spatial separation between the two
kinds of particles is clear, where the active particles assemble into labyrinths and the passive particles
assemble into stripes filling the remaining space.

(b) (c)(a)

H

is also due to the alignment of the particles with the external magnetic field, as it reduces the
strings cross-section area.

At this point, one may be discouraged to use magnetic particles in passive matter transport,
as the mean squared velocity of active and passive matter differ by no less than two orders of
magnitude, as seen in Fig. 4.1. We hypothesise that it is possible to overcome this issue by a
judicious usage of the reduction in the mean square velocity in systems embedded in magnetic
fields stronger than 0.5.

In a finite system one can apply a magnetic field of medium strength (that is, ~H = 0.5ŷ)
until the active particles aggregate on the upper-most part of the cell and then apply a stronger
inverted magnetic field (say, ~H = −1.0ŷ). Once the active matter is now concentrated at the
bottom of the cell, the magnetic field is returned to its original state, pointing towards the
positive y-axis. By repeating this cycle, one can take the most advantage of the peak in Fig. 4.1
(bottom).

To test this hypothesis, we simulated a cell with PBC in the x-axis and hard walls in the
y-axis, with dimensions Lx = 50 and Ly = 100. All the other parameters are the same as the
ones in Table 3.1. All particles start in the lower half of the box, rendering the upper part of
box empty. Then, the external magnetic field is set to ~H = 0.5ŷ.

The system is iterated until more than 50% of the active particles are found in upper 20%
of the box. At this point, the magnetic field is flipped, being set to ~H = −1.0ŷ. The system
is once again simulated until the system inverts and most of the active particles concentrate in
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Figure 4.3 Percentage of passive particles found in the upper half of the simulation box. In this experi-
ment, the magnetic field is varied between two distinct values, H = −1.0ŷ and H = 0.5ŷ. The moment
of alternation is dictated by the number of active particles on each side of the box, as explained in the
text.
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the bottom 10% of the simulation cell. We repeat this procedure until the amount of passive
particles in the upper half of the box is fixed.

The result of this computational experiment is shown Fig. 4.3. This figure shows the per-
centage of passive particles in the upper half of the simulation cell. Despite the expected fluc-
tuations, an upwards trend is clearly visible in this figure. This is mirrored in Fig. 4.4, where
we see that, despite starting in a mixed state, the passive particles starting mixed with the active
particles, they soon are found in the upper box, even if in a disordered state. After a number of
cycles, the pressure imparted by the active particles tends to organize the passive matter into a
triangular lattice.

In this way, it is possible to physically separate the two kinds of particles into completely
different sides of the simulation box, indicating that the alternating-field solution is indeed
viable.

4.3 High Filling Fraction

In the previous subsection we observed that in sparse systems the main mechanism of transport
of passive particles were the active-passive collisions. However, this tell us little about the
transport in denser systems. In these systems, the higher density may force the particles into
a crystalline structures, possibly inhibiting the formation observed in the previous section and
consequently, allow new mechanisms of transport.

In order to study these new phenomena, we simulated systems with L = 35 (φ = 0.49), that
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Figure 4.4 System with alternating asymmetrical magnetic field, as indicated in the text. From top to
bottom, the snapshots were taken at times t = 0, t = 435, t = 525 and t = 9145.

x

y
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Figure 4.5 Mean squared velocity for active (top) and passive particles (bottom) in a high density en-
vironment. On both graphs, we can easily see a separation between MSV systems with µ = 3.0 and
those with smaller values of dipole moment. Comparing the values of

〈
v2

y
〉A and

〈
v2

y
〉P, one can see that

systems with µ ≤ 2.0 transport passive particles at a much faster rate than active particles in a dilute
system.
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is, dense enough for a system composed solely of passive particles to crystallize.
We show in Fig. 4.5 the mean square velocity of the active and passive particles. The

differences between Fig. 4.1 and Fig. 4.5 are striking, with two specially noteworthy effects
appearing. First, for systems with magnetic moment µ = 1.0 and µ = 2.0, the value of

〈
v2

y
〉A

has decreased to one fifth of their values in Fig. 4.1 (bottom), while
〈
v2

y
〉P has increased by an

order of magnitude, bringing the mean squared velocity of the passive particles on pair with
those of active particles, at least for the aforementioned values of µ .

This increase can be understood by looking Fig. 4.6 (a), where we observe that the system
self-assembles into a triangular lattice, where both kinds of particles are positioned in the lattice
sites, moving with the same speed. Despite the presence of some branching between active
particle in Fig. 4.6 (b), these lines are imbued in the crystalline structure, rather than in a
distinct region. In that way, even systems with µ = 2.0 are in a solid state, and drift nearly in
sync.

The second effect is that there is a gap in
〈
v2

y
〉A between the curves with µ = 3.0 and those

with µ = 2.0 and µ = 1.0 in Fig. 4.5 (top). This disparity occurs because, unlike systems
with smaller dipole moments, for µ = 3.0, the stronger pairwise interaction enables the active
particles to overcome the potential barrier. We can see in Fig. 4.6 (c) that particles congregate
into different regions, each having a characteristic speed. Moreover, the active particles in
Fig. 4.6 (c) organize themselves into a rhombic lattice.

Due to the angular dependence of the dipole-dipole potential, the interaction between two



4.3 HIGH FILLING FRACTION 47

Figure 4.6 Snapshots of systems with (a) µ = 1.0, (b) µ = 2.0 and (c) µ = 3.0 and external field
~H = 1.0. Here we present the quiver plot of the particles’ velocities, where both, the length and the
colour of the arrows indicate the particles’ speed. The colour of the circles are used to distinguish
between active (red) and passive (blue) particles. On the top row, we show the whole system and on the
bottom row, we show a zoomed version of the region delimited by the dashed box.

(a) (b) (c)
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Figure 4.7 Schematic representation of two pairs of lines. In (a), the particles are aligned center-to-
center. In (b), there is a step of one radius between particles in each line.

(a) (b)

Figure 4.8 Mean squared velocity of active (blue) and passive (green) particles. We observe that the
system is in an arrested state until µ ≈ 1.9.
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lines can be repulsive or attractive, depending on the pairing of the particles in the two lines. If
the particles are perfectly paired, as shown in Fig. 4.7 (a), there will be a net repulsion between
the two lines. On the other hand, if there is a misalignment between the particles, the resulting
interaction can be attractive. In Fig. 4.7 (b) we see the condition where the attraction reaches
the maximum, that is, when the misstep is exactly half of the lines’ pitch, thus creating the
rhombic lattice observed in Fig. 4.6 (c).

In order to understand the transition from an arrested state to that of localized motion seen
in Fig. 4.6, we realized one more set of simulations, but this time keeping ~H constant, with
value ~H = 1.0ŷ, and varying µ in the range 1.0≤ µ ≤ 3.0.

In Fig. 4.8 the solid blue line represents the MSV of active particles, and the broken green
line represents the MSV of the passive particles. We observe that the system is kept in the
frozen state observed in Fig. 4.6 (a) until the dipole moment reaches approximately 1.9. At
this point the lines diverge, indicating that active particles start to form veins, such as those
observed in Fig. 4.6 (b), which have a larger mobility. As the value of the dipole moment is
further increased, the veins’ attraction allows them to assemble into the regions observed in
Fig. 4.6 (c).
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4.4 Conclusions

In this section we investigated systems with a mix of active and passive particles at low and high
filling factors. At low filling factors, only active particles with µ = 1.0 were able to transport
passive matter. Our initial prediction that the labyrinths would envelope and carry passive
particles was not fulfilled. Indeed, we observed that most of the passive particles movement
is due to the direct collision between active and passive matter, rather than the envelope-and-
sweep mechanism that we had expected.

A disparate dynamics arose in systems in a higher density, where we observed a solidifica-
tion of the system. In this regime, active particles with µ . 1.9 were locked into the sites of
a triangular lattice, forcing the whole crystal to move synchronously. Particles with a higher
magnetic moment were able to overcome the potential barrier created by the passive particles
and firstly organizing into veins embedded in the crystal and later into distinct regions.



5 Transport of passive matter by orthogonal active
matter

I find the great thing in this world is not so much where we stand, as in

what direction we are moving.

—OLIVER WENDELL HOLMES (The Autocrat of the Breakfast Table)

In the previous section, we investigated how active particles could transport passive matter,
and discovered that the main transportation mechanism in dilute systems were the direct col-
lisions between the two kinds of particles. Using this mechanism, we showed that, while it is
indeed possible to conduct passive matter, this movement was slow and cumbersome, requiring
several alternations of the magnetic field.

In the current section, we dwell further in the transport of passive matter in the dilute regime,
using active particles whose dipole orientation is orthogonal to its direction of self-propulsion.

In Subsection 1.3, we mentioned several ways to synthesize magnetic particles, including
the process of covering a magnetic core with a non-metallic material. We hypothesize that it is
possible for a skilled experimentalist to coat the aforementioned particles with a metallic layer,
creating Janus Particles (JP). These JPs can then be used as self-propelled particles (GOLESTA-
NIAN; LIVERPOOL; AJDARI, 2005; GOLESTANIAN; LIVERPOOL; AJDARI, 2007). The
main advantage of this process would be the fact that the moment of dipole generated by the
metallic core and the self-propulsion due to the metallic layering can be chosen in any orienta-
tion if the first phase of the synthesis is done carefully.

To simulate these new particles, a complementary change in the model is needed. Now,
Eq. 4.3 (which is based in Eq. 3.9) reads

~FA
i = f û⊥i +

NA

∑
j

(
~FSC

i j +~FD
i j

)
+

NP

∑
j

~FSC
i j , (5.1)

where û⊥i = (ûiy,−ûix). That is, the self-propulsion is orthogonal to the magnetic dipole mo-
ment. In previous sections, we calculated the mean squared velocity in the y direction, as it
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Figure 5.1 Mean squared velocity for active (top) and passive particles (bottom). The kind of particle
is denoted by a superscript A, for active particles, or P, for passive ones.
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matched the direction of motion of most particles, due to the magnetic alignment between the
particles and the magnetic field. Now, as the direction of self-propulsion is orthogonal to the
particles’ dipole direction, we expect that the movement will happen mostly in the x direction.
Therefore, we will calculate

〈
v2

x
〉D and

〈
v2

x
〉P and analyse how it changes as a function of the

magnetic field.
For systems with magnetic dipole µ = 1.0, the MSV of the active particles is much larger

than that of the passive particles, as seen in Fig. 5.1. Despite the values of
〈
v2

x
〉

obtained in
Fig. 5.1 for systems with µ = 1.0 being similar to those of Fig. 4.1, the transport is not done
via collisions, as was the case in the previous section, but rather the active particles sweep the
passive ones.

In the column (a) of Figure 5.2 we see that the active particles in systems with µ = 1.0 be-
come organized in strings, that, while perennial (in stark opposition to those found in Sections 3
and 4), are not resilient enough to envelope passive matter.

Increasing the magnetic dipole moment we also strengthen the string, allowing them to
transport more passive cargo. In Fig. 5.2 (b), we observe, that, despite the passive particles
indeed being transported, the strings are still subject to breakage, which we indicated by the
large arrows within the figure.

We learned in Subsec. 3.3.2 that percolated lines can form in systems with µ > 2.0. When
the self-propulsion and the magnetic moment are orthogonal, these lines sweep the passive
particles, allowing for a greater transport of those particles.

This is also the case seen in systems with high magnetic dipole (that is, µ = 3.0), observed
in Fig. 5.2 (c). In this last situation, not only the active particles sweep the passive particles, as
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they did in systems with µ = 2.0, but they are also able to envelope them, creating true pockets
of passive particles, as indicated by the arrows in Fig. 5.2 (c). Thereby, the most efficient way to
transport passive matter when the self-propelled particles’ dipole and propulsion are orthogonal
is by using particles with high dipole moment. This is the opposite of the results obtained in
the previous sections, on which a smaller dipole moment resulted in a larger mobility for the
passive matter.

Figure 5.2 Snapshots of systems with (a) µ = 1.0, (b) µ = 2.0 and (c) µ = 3.0 with ~H = 1.0x̂. In the
upper row we present the quiver plot of the particles’ velocities, where both, the length and the colour
of the arrows indicate the particles’ speed. The colour of the circles are used to distinguish between
active (red) and passive (blue) particles. In the lower row the active and passive particles follow the
same colour code as in the upper row. Furthermore, the active particles are drawn with a green triangle
indicating the orientation of the particle’s dipole moments.
In (a) we see that the passive particles are clusterized and only a small portion of the active particles are
responsible for the clusters movement. On the other hand, in (b) most of active matter carry the passive
cluster and in (c) not only they transport passive matter, but also encase the passive particles.

H

(a) (b) (c)
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5.1 Conclusion

In this section we investigated the transport of passive particles by active matter whose mag-
netic dipole moment was orthogonal to the propulsion direction. We observed the rising of
a new mechanism of transport, where the lines in Subsection 3.3.2 now sweep and envelope
the passive particles. This has the consequence that particles with a higher dipole moment can
transport passive matter more efficiently than those with a smaller dipole moment. This is the
opposite situation found in the previous section, on which particles with the smallest dipole
moment had the best capacity in transporting passive matter.

Indeed, among the studied systems, the particles in this section have the most capacity in
the transportation of materials, but at the cost of a possibly more intricate fabrication.



6 Conclusion and Perspectives

"Begin at the beginning," the King said, very gravely, "and go on till you

come to the end: then stop."

—LEWIS CARROL (Alice in Wonderland)

In the Introduction of this work, we mentioned that colloids and active matter have several
uses, ranging from the pharmaceutical industry to the recovery of waste heat in thermoelectric
generators. Inspired by the possibility of vectorization, that is, finely controlled drug delivery,
we decided to investigate systems composed of active magnetic particles and their capacity
in transporting passive matter. We used Brownian Dynamics to model the solvent-colloid in-
teractions and integrated the resulting equations of motion using a Stochastic Runge-Kutta
algorithm.

As the stepping stone for this study, we investigated the structures formed by the magnetic
self-propelled particles for various values of external field and dipole moment. In this first part
of the work, we expected the particles to be crafted in such a way that the dipole moment and
the self-propulsion direction were parallel and we observed several distinct structures arise. In
low dipole moments regimes, we encountered intermittent short strings whose lengths could be
controlled by a careful choice of the external magnetic strength. When we increased the dipole
moment, annular formations began to form in the absence of magnetic fields and branched
structures, named labyrinths, formed in the presence of magnetic field.

We observed that the labyrinths had potential use in the transport of passive matter. To
test this idea, we prepared systems composed of equal parts of passive and active matter, and
studied its behaviour for various sets of parameters both at low and high density. As a result,
in systems at low density, we observed was that, contrary to our expectations, the labyrinths
were not able to carry passive particles. However, systems with a lower value of dipole moment
could transport passive matter, even if at slow rate. This happened because the main mecha-
nism of transport in this situation were the heads-on collisions between the active and passive
particles. As shorter strings present a larger total cross section than labyrinths, they increase
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the passive particles’ mobility. We also observed that the transport capabilities of the strings
reach a maximum for magnetic field strength around H = 0.5, decreasing after such value.
We showed that this decrease can be used to transport passive particles in the presence of an
asymmetrically alternating magnetic field.

In dense systems the formation of strings and labyrinths were inhibited, and we observed
that, for systems with small dipole moment, the particles crystallized in a triangular lattice, as
expected, moving in synchrony. As we increased the value of the dipole moment, the active par-
ticles firstly formed veins imbued in the larger crystalline structure and as we further increased
the value of the dipole moment, we observed the creation of distinct regions, containing solely
active or passive particles, with distinct velocities.

Finally, we studied magnetic particles whose self-propulsion and dipole moment were or-
thogonal. We found that even at low dipoles moments the transport improved three fold when
compared to the previous simulations. Moreover, at high dipole moments, the active particles
would truly envelope and sweep passive particles, allowing for a transportation seven times
faster than the best case found in systems whose dipole moment was parallel to its self propul-
sion. Thereby, this has been proven to be the most efficient method to transport passive matter
in sparse systems.

Despite the extensive studies we presented in the previous three sections, there are still some
important issues to address in systems composed of magnetic active particles. For instance,
one topic that can be better understood by further study is the possibility of transportation of
passive matter by the labyrinths obtained in Section 3. In a broader inspection of the parameter
space, it might be possible to find a set of parameters that would allow the use the pockets in
the transportation of passive matter. For instance, decreasing the mass of the passive particles
might allow its transportation. A second possibility is to increase the value of µ , increases the
mechanic strength of the labyrinths, enabling the sweeping of heavier passive matter. Finally,
through a careful assembly process, it is possible to add patchy sites to the magnetic dipoles,
thereby increasing not only the particle-particle adherence but also controlling the frequency of
branching in the labyrinths.

A complete understanding of the studied system cannot be developed only by an extension
of the investigated parameters. Rather, one must also increase the realism of the simulations
itself, including, for instance, hydrodynamics interactions between the particles. This can be
done firstly by using the Oseen Tensor to construct a force field dependent on the particles’
positions and momenta, emulating the interaction between the particles caused by ripples and
vortexes in the solvent. Still, in order to simulate all the hydrodynamics effects, one needs
to use specialized algorithms that allow the simulation of the two entities, colloids and sol-
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vent, by two different methods. For instance, it is possible to simulate the particles using the
standard Molecular Dynamics techniques and to simulate the fluid using Lattice-Boltzmann or
Multiparticle Collision Methods.

Another natural extension of this study would be the investigation of similar systems in 2.5
and 3 dimensions. The first case comprises systems that, while three-dimension in nature, have
their motion in one of the dimensions handicapped. This handicap can be caused, for instance,
by external potentials or simply by a simulation box much smaller in one direction than in the
other two. An example of a real world 2.5 dimensional system is that of particles in a liquid-air
interface, where the gravity pulls the colloids downwards while the buoyancy keeps them on the
surface. In that way, the particles have some ability go over or under other particles using the z

direction, but not full freedom to move in that direction. In this case, we do not expect major
changes in the structures and mobilities, expect, perhaps, in the high density case presented in
Section 4.

On the other hand, we expect that realizing full-fledged three dimensional simulation will
result in different structures, even if they follow the trend of string-like clusters. Furthermore,
we expect that the ability to transport passive particles would be grandly diminished when
compared to its two dimensional version, as the passive matter would be able to circumvent
the one-dimensional formations favoured by the dipole potential. Thus, new mechanisms of
transport might be investigated for three dimensional systems.
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