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Abstract

The Birnbaum-Saunders distribution has been widely studied in the literature, being used to

analyze different kind of data, like the lifetime of objects being exposed to fatigue activity and

quantities corresponding to air pollution, for example. It was also extended to more general

settings by several authors. This dissertation is composed of two main and independent chap-

ters. In the first work, we investigate problems related to maximum likelihood estimation in a

bimodal extension of the Birnbaum-Saunders distribution. We propose a penalization scheme

that, when applied to the log-likelihood function, greatly reduces the frequency of convergence

failures. Hypothesis testing inference based on the penalized log-likelihood function is inves-

tigated. In the second essay, we develop a bimodal Birnbaum-Saunders regression model. We

discuss point estimation, interval estimation and hypothesis testing inference. We also pro-

pose two residuals and develop local influence analyses. Bootstrap-based prediction intervals

are also presented and different model selection criteria for the proposed model are discussed.

Additionally, we present results from Monte Carlo simulations and from some empirical appli-

cations.

Keywords: Bimodal Birnbaum-Saunders distribution. Diagnostic methods. Nonnested hy-

pothesis test. Penalized likelihood.
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Resumo

A distribuição Birnbaum-Saunders tem sido amplamente estudada na literatura, sendo utilizada

para analisar diferentes tipos de dados, como tempo de vida de materias sujeitos à fadiga e

quantidades referentes a poluição atmosférica, por exemplo. Essa distribuição foi estendida

para modelos mais gerais por diversos autores. Essa dissertação é composta de dois capí-

tulos principais e independentes. No primeiro trabalho, investigamos problemas relaciona-

dos com estimação por máxima verossimilhança em uma extensão bimodal da distribuição

Birnbaum-Saunders. Propomos um esquema de penalização que, quando aplicado à função de

log-verossimilhança, reduz bastante a frequência de falhas de convergência. Inferência através

de testes de hipóteses baseada na função de log-verossimilhança penalizada é investigada. No

segundo ensaio, desenvolvemos um modelo de regressão Birnbaum-Saunders bimodal. Dis-

cutimos sobre inferências por estimação pontual, estimação intervalar e testes de hipóteses.

Também propomos dois resíduos e desenvolvemos análise de influência local. Intervalos de

predição baseados em reamostragem bootstrap também são apresentados e diferentes critérios

de seleção de modelos para o modelo proposto são discutidos. Adicionalmente, apresentamos

resultados de simulação de Monte Carlo e algumas aplicações empíricas.

Palavras-chave: Distribuição Birnbaum-Saunders Bimodal. Métodos de diagnóstico. Testes

de hipóteses não-encaixados. Verossimilhança penalizada.
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Preliminaries

In this chapter we present a brief outline of this dissertation, which is composed by two

main chapters with independent works. The subject of the dissertation is bimodal Birnbaum-

Saunders modeling, where we present and develop some new methodologies for bimodal exten-

sions of the distribution initially proposed by Birnbaum and Saunders (1969a). Many variations

of the Birnbaum-Saunders distribution have been proposed in the last decades, likewise its ap-

plications in different fields of research through a variety of statistical models, as Leiva (2015)

presents in a extensive discussion on Birnbaum-Saunders models. Our motivation is to give

a contribution on the literature of Birnbaum-Saunders modeling by investigating two bimodal

versions of this distribution recently proposed in the literature.

In Chapter 2 we address the issue of performing inference on the parameters of a bimodal

extension of the Birnbaum-Saunders distribution proposed by Olmos et al. (2016). We show

that maximum likelihood point estimation can be problematic since the standard nonlinear

optimization algorithms may fail to converge. To deal with this problem, we penalize the

log-likelihood function of this model. The numerical evidence we present show that maxi-

mum likelihood estimation based on such penalized function is made considerably more re-

liable. We also consider hypothesis testing inference based on the penalized log-likelihood

function. In particular, we consider likelihood ratio, signed likelihood ratio, score and Wald

tests. Bootstrap-based testing inference is also considered and we derive analytical corrections

to some tests statistics. Moreover, we use a nonnested hypothesis test to distinguish between

two bimodal Birnbaum-Saunders laws.

In Chapter 3 we introduce an extension of the log-linear Birnbaum-Saunders model based

on another version of the Birnbaum-Saunders distribution, discussed by Owen and Ng (2015)

which is more flexible than the standard Birnbaum-Saunders law since its density may assume

both unimodal and bimodal shapes. We show how to perform point estimation, interval estima-

tion and hypothesis testing inferences on the parameters of the regression model we propose.

We also present some diagnostic tools, such as residual analysis, local influence, generalized

leverage, generalized Cook’s distance and model misspecification tests. Additionally, we in-

vestigate the usefulness of model selection criteria and the accuracy of prediction intervals for

the proposed model.

Each chapter contains results of Monte Carlo simulations and empirical applications. More-

over, the notation and terminology used is consistent within each chapter. The programming

routines for Monte Carlo simulations were carried out in the OX matrix programming language

(Doornik, 2009) and all figures in this dissertation were generated in the R programming lan-

guage (R Core Team, 2016).
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Inference in a bimodal Birnbaum-Saunders model

2.1 Introduction

The Birnbaum-Saunders distribution was proposed by Birnbaum and Saunders (1969a) to

model failure time due to fatigue under cyclic loading. In such a model, failure follows from

the development and growth of a dominant crack. Based on that setup, the authors obtained the

following distribution function:

F(x) = Φ

[
1

α

(√
x

β
−
√

β

x

)]
, x > 0, (2.1)

where α > 0 and β > 0 are shape and scale parameters, respectively, and Φ(·) is the standard

normal distribution function. We write X ∼ BS (α,β ).
Maximum likelihood estimation of the parameters that index the BS distribution was first

investigated by Birnbaum and Saunders (1969b). Bias-corrected estimators were obtained by

Lemonte et al. (2007) and Lemonte et al. (2008). Improved maximum likelihood estimation

of the BS parameters was developed by Cysneiros et al. (2008). Ng et al. (2003) compared

the finite-sample performance of maximum likelihood estimators (MLEs) to that of estimators

obtained using the modified method of moments. For details on the BS distribution, its main

properties and applications, readers are referred to Leiva (2015).

Several extensions of the BS distribution have been proposed in the literature aiming at

making the model more flexible. For instance, Díaz-García and Leiva (2005) and Sanhueza

et al. (2008) used non-Gaussian kernels to extend the BS model. The BS distribution

was also extended through the inclusion of additional parameters; see, e.g., Díaz-García and

Domınguez-Molina (2006), Owen (2006) and Owen and Ng (2015). More recently, extensions

of the BS model were proposed by Bourguignon et al. (2014), Cordeiro et al. (2013), Cordeiro

and Lemonte (2014) and Zhu and Balakrishnan (2015). Alternative approaches are the use of

scale-mixture of normals, as discussed by Balakrishnan et al. (2009) and Patriota (2012), for

example, and the use of mixtures of BS distributions, as in Balakrishnan et al. (2011). Again,

details can be found in Leiva (2015).

A bimodal BS distribution was proposed by Olmos et al. (2016). The authors used the

approach described in Gómez et al. (2011) to obtain a variation of the BS model that can

assume bimodal shapes. Another variant of the BS distribution that exhibits bimodality was

discussed by Díaz-García and Domınguez-Molina (2006) and Owen and Ng (2015), which the

latter authors denoted by G BS 2. In their model, bimodality takes place when two parameter

values exceed certain thresholds. In what follows we shall work with the BBS model instead

14



CHAPTER 2 INFERENCE IN A BIMODAL BIRNBAUM-SAUNDERS MODEL 15

of the G BS 2 distribution because in the former bimodality is controlled by a single parameter.

Even though we shall focus on the BBS distribution, in some parts of this dissertation we

shall consider the G BS 2 law as an alternative model.

A problem with the BBS distribution we detected is that log-likelihood maximizations

based on Newton or quasi-Newtons methods oftentimes fail to converge. In this chapter we

analyze some possible solutions to such a problem, such as the use of resampling methods and

the inclusion of a penalization term in the log-likelihood function.

As a motivation, consider the data provided by Folks and Chhikara (1978) that consist of 25

observations on runoff amounts at Jug Bridge, in Maryland. Figure 2.1a shows log-likelihood

contour curves obtained by varying the values of α and γ while keeping the value of β fixed.

Notice that there is a region apparently flat of the profile log-likelihood function, which might

be making the optimization process fail to converge. In Figure 2.1b we present similar contour

curves for a penalized version of the log-likelihood function. It can be seen that plausible

estimates are obtained. We shall return to this application in Section 2.7.
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Figure 2.1 Contour curves of the profile log-likelihood of α and γ with β = 0.69 (fixed) for the runoff

amounts data. Panel (a) corresponds to no penalization and panel (b) follows from penalizing the log-

likelihood function.

The chief goal of this chapter is to provide a solution to the convergence failure and implau-

sible parameter estimates associated with log-likelihood maximization in the BBS model.

We compare different estimation procedures and propose a penalization term in the log-likelihood

function. In particular, regions of the parameter space where the likelihood is flat or nearly flat

are heavily penalized. That approach considerably improves maximum likelihood parameter

estimation. We also focus on hypothesis testing inference based on the penalized log-likelihood

function. For instance, a one-sided hypothesis test is used to test whether the variate follows

the BBS law with two modes. Analytical and bootstrap corrections are proposed to im-

prove the finite sample performances of such test. Moreover, we present nonnested hypothesis

tests that can be used to distinguish between two bimodal extensions of the BS distribution,
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the BBS and G BS 2 models. The finite sample performances of all tests are numerically

evaluated using Monte Carlo simulations.

This chapter unfolds as follows. Section 2.2 presents the BBS distribution and its main

properties. We outline some possible solutions to the numerical difficulties associated with

BBS log-likelihood maximization on Section 2.3. Two-sided hypothesis tests in the BBS

model are discussed in Section 2.4. In Section 2.5 we focus on one-sided tests where the

main interest lies in detecting bimodality. Section 2.6 describes nonnested hypothesis testing

inference. Empirical applications are presented and discussed in Section 2.7. Finally, some

concluding remarks are offered in Section 2.8.

2.2 The bimodal Birnbaum-Saunders distribution

The Birnbaum-Saunders distribution proposed by Olmos et al. (2016) can be used to model

positive data and is more flexible than the original BS distribution since it can accommo-

date bimodality. A random variable X is BBS (α , β , γ) distributed if its probability density

function (pdf) is given by

f (x) =
x−3/2(x+β )

4αβ 1/2Φ(−γ)
φ(|t|+ γ), x > 0, (2.2)

where α,β > 0, γ ∈ IR, t = α−1(
√

x/β −
√

β/x) and φ(·) is the standard normal pdf. Fig-

ure 2.2 shows plots of the density in (2.2) for some parameter values. We note that when γ < 0

the density is bimodal.
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Figure 2.2 BBS (α ,β ,γ) densities for some parameter values.

The cumulative distribution function (cdf) of X is

F(x) =

[
Φ(t − γ)

2Φ(−γ)

]I(x,β )[
1

2
+

Φ(t − γ)−Φ(γ)

2Φ(−γ)

]1−I(x,β )

, x > 0, (2.3)



CHAPTER 2 INFERENCE IN A BIMODAL BIRNBAUM-SAUNDERS MODEL 17

where

I(x,β ) =

{
1 if x < β
0 if x ≥ β

,

and Φ(·) denotes the standard normal cdf. Some key properties of the BS distribution also

hold for BBS model, such as proportionality and reciprocity closure, i.e., aX ∼ BBS (α ,

aβ , γ) and X−1 ∼ BBS
(
α,β−1,γ

)
, respectively, where a is a positive scalar.

An expression for the rth ordinary moment of X is

IE(X r) =
β r

Φ(−γ)

r

∑
k=0

k

∑
j=0

m

∑
s=0

(
2r

2k

)(
k

j

)(
m

s

)(α

2

)m

(−γ)m−sds(γ), (2.4)

where r ∈ IN and da(r) is the rth standard normal incomplete moment:

dr(a) =
∫ ∞

a
trφ(t)dt.

Using Equation (2.4) we computed the skewness and kurtosis coefficients of the BBS

distribution to evaluate how γ affects the shape of the BBS density. Plots of these two

measures are presented in Figure 2.3. Note that the largest values of the skewness coefficient

correspond to values of γ close to zero. Moreover, we also note that positive values of γ lead to

large values of the kurtosis coefficient, which are associated with leptokurtic densities.
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Figure 2.3 BBS (α ,β ,γ) skewness (a) and kurtosis (b) coefficients as a function of γ for some fixed

values of α and β .
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A useful stochastic representation is Y = |T |+ γ . Here, Y follows the truncated standard

normal distribution with support in (γ,∞), T = (
√

X/β −
√

β/X)/α and X ∼BBS (α,β ,γ).
This relationship can be used to compute moments of the BBS distribution.

2.3 Log-likelihood functions

Consider a row vector x = (x1, . . . ,xn) of independent and identically distributed (iid) ob-
servations from the BBS (α,β ,γ) distribution. Let θ = (α,β ,γ) be the vector of unknown

parameters to be estimated. The log-likelihood function is

ℓ(θ) =−n log
{

4αβ 1/2Φ(−γ)(2π)1/2
}
− 3

2

n

∑
i=1

log(xi)+
n

∑
i=1

log(xi +β )

− 1

2

n

∑
i=1

(|ti|+ γ)2.

Differentiating the log-likelihood function with respect to each parameter we obtain the score

function Uθ = (Uα ,Uβ ,Uγ), where

Uα =
∂ℓ(θ)

∂α
=− n

α
+

1

2

n

∑
i=1

t2
i +

γ

α

n

∑
i=1

|ti|,

Uβ =
∂ℓ(θ)

∂β
=− n

2β
+

n

∑
i=1

1

xi +β
+

n

∑
i=1

sign(ti)(|ti|+ γ)

2αβ 3/2

(
x

1/2
i +

β

x
1/2
i

)
,

Uγ =
∂ℓ(θ)

∂γ
= n

φ(γ)

Φ(−γ)
−nγ −

n

∑
i=1

|ti|,

and sign(·) represents the sign function.

The parameters maximum likelihood estimators, namely θ̂ = (α̂, β̂ , γ̂), can be obtained by

solving Uθ = 0. They cannot be expressed in closed-form and parameter estimates are obtained

by numerically maximizing the log-likelihood function using a Newton or quasi-Newton algo-

rithm. To that end, one must specify an initial point for the iterative scheme. We propose using

as starting values for α and β their modified method of moments estimates (Ng et al., 2003),

and also using γ = 0 as a starting value; the latter means that the algorithm starts at the BS

law. We used such starting values in the numerical evaluations, and they proved to work well.

Based on several numerical experiments we noted a serious shortcoming: iterative numer-

ical maximization of the BBS log-likelihood function may fail to converge and may yield

implausible parameter estimates. Indeed, that is very likely to happen, especially when γ > 0.

It is not uncommon to obtain very large (thus implausible) BBS parameter estimates, which

is indicative that the likelihood function may be monotone; see Pianto and Cribari-Neto (2011).

We shall address this problem in the sections that follow.

2.3.1 Log-likelihood function penalized by the Jeffreys prior

An interesting estimation procedure was proposed by Firth (1993), where the score function

is modified in order to reduce the bias of the maximum likelihood estimator. An advantage of

this method is that maximum likelihood estimates need not be finite since the correction is
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applied in a preventive fashion. For models in the canonical exponential family, the correction

can be applied directly to the likelihood function:

L∗(θ |x) = L(θ |x)|K|1/2,

where |K| is the determinant of the expected information matrix. Thus, penalization of the

likelihood function entails multiplying the likelihood function by the Jeffreys invariant prior.

Even though the BBS distribution is not a member of the canonical exponential family,

we shall consider the above penalization scheme. In doing so, we follow Pianto and Cribari-

Neto (2011) who used the same approach in speckled imagery analysis. We seek to prevent

cases of monotone likelihood function that might lead to frequent optimization nonconver-

gences and implausible estimates. The BBS (α,β ,γ) expected information matrix was ob-

tained by Olmos et al. (2016). Its determinant is

|K|=
[

Lββ +
1

α2β 2
+

γ(γ −ω)

4β 2

][
(γ −ω)ω(3− γω − γ2)+2

α2

]
,

where ω = φ(γ)/Φ(−γ) and Lββ = IE
[
(X +β )−2

]
. Thus, the log-likelihood function penal-

ized by the Jeffreys prior can be written as

ℓ∗(θ) =−n log
{

4αβ 1/2Φ(−γ)(2π)1/2
}
− 3

2

n

∑
i=1

log(xi)+
n

∑
i=1

log(xi +β )

− 1

2

n

∑
i=1

(t2
i +2|ti|γ + γ2)+

1

2
log

[
Lββ +

1

α2β 2
+

γ(γ −ω)

4β 2

]

+
1

2
log

[
(γ −ω)ω(3+ γ(γ −ω))+2

α2

]
.

If the likelihood function is monotone, the function becomes very flat for large parame-

ter values and the Jeffreys penalization described above essentially eliminates such parameter

range from the estimation. The frequency of nonconvergences taking place and implausible

estimates being obtained should be greatly reduced.

2.3.2 Log-likelihood function modified by the better bootstrap

An alternative approach uses the method proposed by Cribari-Neto et al. (2002), where

bootstrap samples are used to improve maximum likelihood estimation similarly to the ap-

proach introduced by Efron (1990) and known as ‘the better bootstrap’. The former, how-

ever, does not require the estimators to have closed-form expressions. Based on the sample

x = (x1, . . . ,xn) of n observations, we obtain pseudo-samples x∗ of the same size by sampling

from x with replacement. Let P∗
i denote the proportion of times that observation xi is se-

lected, i = 1, . . . ,n. We obtain the row vector P∗b = (P∗b
1 , · · · ,P∗b

n ) for the bth pseudo-sample,

b = 1, . . . ,B. Now compute

P∗(·) = 1

B

B

∑
b=1

P∗b
n ,
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i.e., compute the vector of mean selection frequencies using the B bootstrap samples. The

vector P∗(·) is then used to modify the log-likelihood function in the following manner:

ℓ(θ) =−n log
{

4αβ 1/2Φ(−γ)(2π)1/2
}
− 3n

2
P∗(·) log(x)⊤+nP∗(·) log(x+β )⊤− n

2
P∗(·)t⊤γ ,

where log(x) = (log(x1), . . . , log(xn)), log(x + β ) = (log(x1 +β ),. . .,log(xn + β )) and tγ =
((|t1|+ γ)2, . . . ,(|tn|+ γ)2) are row vectors. The motivation behind the method is to approx-

imate the ideal bootstrap estimates (which corresponds to B = ∞) faster than with the usual

nonparametric bootstrap approach. In this chapter we shall investigate whether this method

is able to attenuate the numerical difficulties associated with BBS log-likelihood function

maximization.

2.3.3 Log-likelihood function with a modified Jeffreys prior penalization

Monotone likelihood cases can arise with considerable frequency in models based on the

asymmetric normal distribution, with some samples leading to situations where maximum like-

lihood estimates of the asymmetry parameter may not be finite, as noted by Liseo (1990). A

solution to such problem was proposed by Sartori (2006), who used the score function trans-

formation proposed by Firth (1993) in the asymmetric normal and Student-t models. A more

general solution was proposed by Azzalini and Arellano-Valle (2013), who penalized the log-

likelihood function as follows:

ℓ∗(θ) = ℓ(θ)−Q,

where ℓ(θ) and ℓ∗(θ) denote the log-likelihood function and its modified version, respectively.

The authors imposed some restrictions on Q, namely: (i) Q ≥ 0; (ii) Q = 0 when the asym-

metry parameter equals zero (values close to zero can lead to monotone likelihood cases in

the asymmetric normal model); (iii) Q → ∞ when the asymmetry parameter in absolute value

tends to infinity. Additionally, Q should not depend on the data or, at least, be Op(1). Accord-

ing to Azzalini and Arellano-Valle (2013), when these conditions are satisfied, the estimators

obtained using ℓ∗(θ) are finite and have the same asymptotic properties as standard MLEs,

such as consistency and asymptotic normality.

We shall now use a similar approach for the BBS model. In particular, we propose mod-

ifying the Jeffreys penalization term so that the new penalization satisfies the conditions listed

by Azzalini and Arellano-Valle (2013). Since the numerical problems are mainly associated

with α and γ , only terms involving these parameters were used. We then arrive at the following

penalization term:

Q = Qγ +Qα =−1

2
log

{
(γ −ω)ω[3+ γ(γ −ω)]

2
+1

}
+

1

2
log(1+α2),

where, as before, ω = φ(γ)/Φ(−γ).
We note that Qα ≥ 0. Additionally, Qα → 0 when α → 0, and Qα → ∞ when α → ∞. It

can be shown that Qγ → ∞ when γ → ∞, Qγ → 0 when γ →−∞ and that Qγ ≥ 0. Figure 2.4

shows the penalization terms as a function of the corresponding parameters. The quantities Qγ

and Qα penalize large positive values of γ and α , helping avoid estimates that are unexpectedly



CHAPTER 2 INFERENCE IN A BIMODAL BIRNBAUM-SAUNDERS MODEL 21

−4 −2 0 2 4

0
1

2
3

4

γ

Q
γ

0 1 2 3 4

0
.0

1
.0

2
.0

α

Q
α

Figure 2.4 Qα and Qγ , modified Jeffreys penalization.

large. Therefore, the proposed penalization satisfies the conditions indicated by Azzalini and

Arellano-Valle (2013). An advantage of the penalization scheme we propose is that, unlike

the Jeffreys penalization, it does not require the computation of Lββ . In what follows we

shall numerically evaluate the effectiveness of the proposed correction when performing point

estimation.

2.3.4 Numerical evaluation

A numerical evaluation of the methods described in this Section was performed. We con-

sidered different BBS estimation strategies. In what follows we shall focus on the estimation

of the bimodality parameter γ .

The Monte Carlo simulations were carried out using the OX matrix programming language

(Doornik, 2009). Numerical maximizations were performed using the the BFGS quasi-Newton

method. We considered alternative nonlinear optimization algorithms such as Newton-Raphson

and Fisher’s scoring, but they did not outperform the BFGS algorithm. We then decided to

employ the BFGS method, which is typically regarded as the best performing method (Mittel-

hammer et al., 2000, Section 8.13). The results are based on 5,000 Monte Carlo replications

for values of γ ranging from −2 to 2 and samples of size n = 50. In each replication, maximum

likelihood estimates were computed and it was verified whether the nonlinear optimization

algorithm converged. At the end of the experiment, the frequency of nonconvergences (propor-

tion of samples for which there was no convergence) was computed for each method (denoted

by pnf). Figure 2.5 shows the proportion of nonconvergences corresponding to the standard

MLEs, the MLEs obtained using the better bootstrap (MLEbboot) and the MLEs obtained from

the log-likelihood function penalized using the Jeffreys prior (MLEjp) and its modified version

(MLEp) as a function of γ . Notice that the MLE and the MLEbboot are the worst performers
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when γ > 0; they display the largest rates of nonconvergence. The methods based on penalized

log-likelihood function display the smallest values of pnf, with slight advantage for MLEjp.

In order to evaluate the impact of the sample size on nonconvergence rates, a numerical

study similar to the previous one was performed, but now with the value of the bimodality

parameter fixed at γ = 1. The samples sizes are n ∈ {30,45,60,75, . . .,300}. The number of

Monte Carlo replications was 5,000 for each value of n. The results are displayed in Figure 2.6.

We note that the sample size does not seem to influence the MLE and MLEbboot nonconvergence

rates. The corresponding optimizations failed in approximately 40% of the samples regardless

of the sample size. In contrast, the MLEjp and MLEp failure rates display a slight increase

and then stabilize as n increases. Recall that one of the conditions imposed by Azzalini and

Arellano-Valle (2013) on the penalization term is that it should remain Op(1) as n → ∞, i.e.,

the penalization influence seems to decrease as larger sample sizes are used, which leads to

slightly larger nonconvergence frequencies in larger samples.

A second set of Monte Carlo simulations was carried out, this time only considering the

estimator that uses the better bootstrap resampling scheme and also estimators based on the

two penalized likelihood functions, i.e., we now only consider MLEbboot, MLEjp and MLEp.

Again, 5,000 Monte Carlo replications were performed. We estimated the bias (denoted by B)

and mean squared errors (denoted by MSE) of the three estimators. The number of nonconver-

gences is denoted by nf. Tables 2.1, 2.2 and 2.3 contain the results for the estimates of α , β
and γ , respectively, with these estimators. Overall, MLEp outperforms MLEjp. For instance,

when n = 30 in the last combination of parameter values, the MSEs of α̂jp, β̂jp and γ̂jp are, re-

spectively, 0.0211, 0.0022 and 2.6671, whereas the corresponding values for α̂p, β̂p and γ̂p are

0.0167, 0.002 and 2.0471. MLEbboot is typically less biased when it comes to the estimation of

α and γ , but there are more convergence failures when computing better bootstrap estimates.

Overall, the estimator based on the log-likelihood function that uses the penalization term we

proposed typically yields more accurate estimates than MLEjp and outperforms MLEbboot in

terms of convergence rates.

Next, we shall evaluate how changes in the penalization term impact the frequency of non-

convergences when computing MLEp. In particular, we consider the following penalized log-

likelihood function:

ℓ∗φ(θ) = ℓ(θ)−Qφ ,

with φ > 0 fixed. This additional quantity controls for the penalization strength, with φ = 1

resulting in MLEp and different values of φ leading to stronger or weaker penalizations. A

Monte Carlo study was performed to evaluate the accuracy of the parameter estimates for γ ∈
{0,0.1, . . . ,2.0} and φ ∈ {0.1,0.2, . . . ,2.1}. The parameter values are α = 0.5 and β = 1, and

the sample size is n = 50. Again, 5,000 replications were performed for each combination of

values of φ and γ . Samples for which there was convergence failure were discarded. Figure 2.7

shows the estimated MSEs and the number of nonconvergences for each combination of γ and

φ . Figures 2.7a and 2.7b show that estimates of α are less accurate than those of β , both being

considerably more accurate than the estimates of γ (Figure 2.7c). The MSE of the estimator of

γ tends to be smaller when the value of φ is between 0.4 and 1, especially for larger values of

γ . Visual inspection of Figure 2.7d shows that larger values of γ lead to more nonconvergences,

which was expected in light of our previous results. Furthermore, nf tends to decrease when
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Table 2.1 Bias and mean squared error of MLEjp, MLEp and MLEbboot for estimates of α in some

combinations of parameter values

MLEjp MLEp MLEbboot

n B̂(α̂jp) M̂SE(α̂jp) nf B̂(α̂p) M̂SE(α̂p) nf B̂(α̂bboot) M̂SE(α̂bboot) nf

α = 0.5, β = 1 and γ =−1

30 −0.0851 0.0134 1 −0.0575 0.0114 12 −0.0283 0.0141 126

50 −0.0567 0.0079 7 −0.0364 0.0072 4 −0.013 0.0086 38

100 −0.0303 0.0038 2 −0.019 0.0035 0 −0.0075 0.004 2

150 −0.0208 0.0025 0 −0.0128 0.0025 0 −0.0041 0.0027 0

α = 0.5, β = 1 and γ = 0

30 −0.1532 0.0303 67 −0.1163 0.0236 214 −0.0811 0.0281 1494

50 −0.1103 0.0184 124 −0.0804 0.0151 240 −0.0476 0.0177 1224

100 −0.0692 0.0095 185 −0.0477 0.0082 287 −0.0215 0.0093 860

150 −0.0484 0.0061 181 −0.0323 0.0057 318 −0.0138 0.0061 657

α = 0.5, β = 1 and γ = 1

30 −0.2295 0.0585 373 −0.1965 0.0474 857 −0.1609 0.0498 4640

50 −0.1865 0.0403 729 −0.1535 0.0321 1398 −0.1203 0.038 5096

100 −0.1332 0.0229 1520 −0.1058 0.0185 2200 −0.0735 0.0228 5877

150 −0.107 0.0164 2115 −0.0815 0.0136 2688 −0.0562 0.0154 5926

α = 0.3, β = 1 and γ =−1

30 −0.052 0.0048 5 −0.0326 0.0042 14 −0.0159 0.005 150

50 −0.0353 0.0029 2 −0.0197 0.0025 7 −0.009 0.0031 43

100 −0.0174 0.0013 2 −0.0102 0.0013 1 −0.004 0.0015 2

150 −0.0119 0.0009 1 −0.0065 0.0009 0 −0.0032 0.0009 0

α = 0.3, β = 1 and γ = 0

30 −0.0914 0.0109 86 −0.0682 0.0085 252 −0.0472 0.0101 1543

50 −0.0663 0.0067 127 −0.0474 0.0053 298 −0.028 0.007 1252

100 −0.0401 0.0033 205 −0.0277 0.0029 349 −0.0127 0.0034 813

150 −0.0298 0.0022 208 −0.019 0.0020 349 −0.0090 0.0023 698

α = 0.3, β = 1 and γ = 1

30 −0.1380 0.0211 419 −0.1161 0.0167 979 −0.0983 0.0179 4528

50 −0.1114 0.0144 745 −0.0920 0.0116 1475 −0.0716 0.0131 5128

100 −0.0808 0.0084 1652 −0.0624 0.0067 2491 −0.0428 0.0094 5844

150 −0.0649 0.0059 2211 −0.0478 0.0049 3066 −0.0328 0.0059 6142
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Table 2.2 Bias and mean squared error of MLEjp, MLEp and MLEbboot for estimates of β in some

combinations of parameter values

MLEjp MLEp MLEbboot

n B̂(β̂jp) M̂SE(β̂jp) nf B̂(β̂p) M̂SE(β̂p) nf B̂(β̂bboot) M̂SE(β̂bboot) nf

α = 0.5, β = 1 and γ =−1

30 −0.0048 0.0118 1 0.0078 0.0121 12 0.0091 0.0121 126

50 −0.0032 0.0068 7 0.0006 0.0068 4 0.0035 0.007 38

100 −0.0025 0.0032 2 0.0018 0.0032 0 0.0017 0.0033 2

150 −0.0016 0.0021 0 0.0004 0.0021 0 0.0018 0.0021 0

α = 0.5, β = 1 and γ = 0

30 −0.0037 0.0103 67 0.0035 0.01 214 0.0056 0.0093 1494

50 −0.0017 0.0057 124 0.0042 0.0056 240 0.0038 0.0054 1224

100 −0.0002 0.0026 185 0.0015 0.0026 287 0.0001 0.0025 860

150 −0.0006 0.0017 181 0.0009 0.0017 318 0.0001 0.0016 657

α = 0.5, β = 1 and γ = 1

30 0.0001 0.0064 373 0.0035 0.0057 857 0.003 0.0053 4640

50 −0.0018 0.0031 729 0.0002 0.0029 1398 0.0026 0.0028 5096

100 −0.0009 0.0012 1520 0.0003 0.0011 2200 0.0003 0.0012 5877

150 −0.0005 0.0008 2115 0.0011 0.0007 2688 0.0001 0.0007 5926

α = 0.3, β = 1 and γ =−1

30 0.0004 0.005 5 0.0012 0.0049 14 0.0016 0.0049 150

50 −0.0005 0.0028 2 0.0005 0.0029 7 0.0028 0.0029 43

100 −0.0013 0.0013 2 0.0005 0.0013 1 0.0008 0.0013 2

150 −0.0003 0.0009 1 0.0002 0.0009 0 0.0008 0.0008 0

α = 0.3, β = 1 and γ = 0

30 −0.0023 0.0039 86 0.0012 0.0036 252 0.0024 0.0034 1543

50 −0.0018 0.0022 127 0.002 0.0021 298 0.0000 0.002 1252

100 −0.0003 0.001 205 0.0012 0.0009 349 0.0003 0.0009 813

150 0.0000 0.0006 208 0.0005 0.0006 349 0.0007 0.0006 698

α = 0.3, β = 1 and γ = 1

30 0.0002 0.0022 419 0.0005 0.0020 979 0.0007 0.0019 4528

50 0.0001 0.0011 745 −0.0005 0.0010 1475 0.0002 0.0010 5128

100 −0.0009 0.0004 1652 0.0000 0.0004 2491 0.0004 0.0004 5844

150 0.0000 0.0003 2211 0.0005 0.0003 3066 0.0000 0.0003 6142
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Table 2.3 Bias and mean squared error of MLEjp, MLEp and MLEbboot for estimates of γ in some

combinations of parameter values

MLEjp MLEp MLEbboot

n B̂(γ̂jp) M̂SE(γ̂jp) nf B̂(γ̂p) M̂SE(γ̂p) nf B̂(γ̂bboot) M̂SE(γ̂bboot) nf

α = 0.5, β = 1 and γ =−1

30 −0.4369 0.377 1 −0.3129 0.3151 12 −0.1575 0.3221 126

50 −0.2844 0.2022 7 −0.1918 0.173 4 −0.0761 0.1898 38

100 −0.1498 0.0876 2 −0.0999 0.0795 0 −0.043 0.0861 2

150 −0.1018 0.0574 0 −0.067 0.0546 0 −0.023 0.0568 0

α = 0.5, β = 1 and γ = 0

30 −0.8487 0.9668 67 −0.6441 0.7143 214 −0.4596 0.7186 1494

50 −0.5798 0.5201 124 −0.4358 0.4199 240 −0.2658 0.4071 1224

100 −0.3523 0.2476 185 −0.2505 0.2069 287 −0.1192 0.2052 860

150 −0.2412 0.151 181 −0.1697 0.1369 318 −0.078 0.1365 657

α = 0.5, β = 1 and γ = 1

30 −1.5358 2.6802 373 −1.3012 2.0986 857 −1.0607 1.9644 4640

50 −1.1795 1.636 729 −0.9703 1.2726 1398 −0.7657 1.2973 5096

100 −0.8061 0.8366 1520 −0.6446 0.6702 2200 −0.4606 0.7213 5877

150 −0.6337 0.5793 2115 −0.4877 0.4739 2688 −0.3442 0.4782 5926

α = 0.3, β = 1 and γ =−1

30 −0.4429 0.3812 5 −0.2940 0.3119 14 −0.1554 0.3204 150

50 −0.2874 0.2068 2 −0.1725 0.1672 7 −0.0820 0.1927 43

100 −0.1400 0.0875 2 −0.0909 0.0846 1 −0.0384 0.0883 2

150 −0.0970 0.0578 1 −0.0590 0.0556 0 −0.0292 0.0551 0

α = 0.3, β = 1 and γ = 0

30 −0.8477 0.9736 86 −0.6436 0.7375 252 −0.4434 0.7141 1543

50 −0.5873 0.5309 127 −0.4288 0.4085 298 −0.2633 0.4315 1252

100 −0.3406 0.2366 205 −0.2424 0.2034 349 −0.115 0.2104 813

150 −0.2472 0.1512 208 −0.1686 0.134 349 −0.0823 0.1416 698

α = 0.3, β = 1 and γ = 1

30 −1.5331 2.6671 419 −1.281 2.0471 979 −1.0801 1.9779 4528

50 −1.1799 1.6382 745 −0.9769 1.2924 1475 −0.7586 1.2703 5128

100 −0.8149 0.8538 1652 −0.6381 0.6761 2491 −0.4492 0.7788 5844

150 −0.645 0.5863 2211 −0.4844 0.4685 3066 −0.3410 0.5082 6142
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larger values of φ are used.
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Figure 2.7 Mean squared errors of the estimators of α (a), β (b) and γ (c), and the number of noncon-

vergences nf (d), for different values of γ and φ .

We note from Figure 2.7 that the estimates of γ are the ones most sensitive to changes in the

values of γ and φ . Figure 2.8 presents the number of nonconvergences (right vertical axis) and

the MSE of γ̂ (left vertical axis) as a function of γ for three different values of φ . Figure 2.8a

shows that, although φ = 0.5 yields more accurate estimates it also leads to more nonconver-

gences. For φ = 1.5, the number of nonconvergences did not exceed 1400, but M̂SE(γ̂) was

larger relative to other values of φ . Overall, φ = 1 seems to balance well accuracy and the

likelihood of convergence. In what follows we shall use φ = 1.

2.4 Two-sided hypothesis tests

In this section we consider two-sided hypothesis tests in the BBS model. Our interest lies

in investigating the finite-sample performances of tests based on the penalized log-likelihood

function by the modified Jeffreys prior. The first test we consider is the penalized likelihood
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Figure 2.8 Number of nonconvergences (solid line) and MSE of γ̂ (dashed line) for different values of

γ with φ ∈ {0.5,1.0,1.5}. The nf values are shown in the left vertical axis and the values of M̂SE(γ̂) are

shown in the right vertical axis.

ratio test, denoted by LR. Consider a model parametrized by θ = (ψ,λ ), where ψ is the pa-

rameter of interest and λ is a nuisance parameter vector. Our interest lies in testing H0 : ψ = ψ0

against a two-sided alternative hypothesis. The LR test statistic is

W = 2{ℓ∗(θ̂)− ℓ∗(θ̃)},

where θ̂ is the unrestricted MLEp of θ , i.e., θ̂ is obtained by maximizing ℓ∗(θ) without im-

posing restrictions on the parameters, and θ̃ is the restricted MLEp, which follows from the

maximization of ℓ∗(θ) subject to the restrictions in H0. Critical values at the ε ×100% signifi-

cance level are obtained from the null distribution of W which, based on the results in Azzalini

and Arellano-Valle (2013), can be approximated by χ2
1 when ψ is scalar. When ψ is a vector

of dimension q (≤ 3), the test is performed in similar fashion with the single difference that the

critical value is obtained from χ2
q .

It is also possible to test H0 : ψ = ψ0 against H1 : ψ 6= ψ0 using the score and Wald tests.

To that end, we use the score function and the expected information matrix obtained using the

penalized log-likelihood function. The score and Wald test statistics are given, respectively, by

WS =U∗(θ̃)⊤K∗(θ̃)−1U∗(θ̃),

WW = (ψ̂ −ψ0)
2/K∗(θ̂)ψψ ,

where U∗(θ) and K∗(θ) denote the score function and the expected information, respectively,

obtained using the penalized log-likelihood function and K∗(θ)ψψ is the diagonal element of

the inverse of K∗(θ) corresponding to ψ . Both test statistics are asymptotically distributed as

χ2
1 under the null hypothesis.

A Monte Carlo simulation study was performed to evaluate the finite sample performances

of the LR, score (denoted by S) and Wald tests in the BBS model. Log-likelihood maximiza-

tions were carried out using the BFGS quasi-Newton method. The number of Monte Carlo
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replications is 5,000 replications, the sample sizes are n ∈ {30,50,100,150} and the signif-

icance levels are ε ∈ {0.1,0.05,0.01}. The tests were performed for each parameter of the

model BBS (0.5,1,0). It is noteworthy that by testing H0 : γ = 0 against H1 : γ 6= 0 we test

whether the data follows the BS law, i.e., the original version of the Birnbaum-Saunders dis-

tribution. The data were generated according to the model implied by the null hypothesis and

samples for which convergence did not take place were discarded.

Table 2.4 Null rejection rates of the LR, score, Wald, LRpb, LRbbc and Spb tests for testing of H0 : α =
0.5 against H1 : α 6= 0.5 in the BBS (0.5,1,0) model

n LR S Wald LRpb LRbbc Spb

ε = 0.1
30 0.2660 0.2166 0.4460 0.1010 0.0934 0.0994

50 0.2008 0.1656 0.3374 0.0990 0.0970 0.0964

100 0.1472 0.1288 0.2392 0.1006 0.1026 0.0988

150 0.1346 0.1202 0.2078 0.0950 0.0970 0.0940

ε = 0.05

30 0.1632 0.1116 0.3850 0.0542 0.0388 0.0500

50 0.1156 0.0820 0.2836 0.0484 0.0420 0.0466

100 0.0844 0.0664 0.1914 0.0510 0.0520 0.0488

150 0.0716 0.0574 0.1524 0.0474 0.0484 0.0486

ε = 0.01

30 0.0508 0.0104 0.2706 0.0100 0.0038 0.0082

50 0.0352 0.0100 0.1822 0.0096 0.0058 0.0108

100 0.0230 0.0094 0.1094 0.0106 0.0102 0.0106

150 0.0166 0.0084 0.0766 0.0096 0.0096 0.0110

Tables 2.4 to 2.6 contain the null rejection rates of the tests of H0 : α = 0.5, H0 : β = 1

and H0 : γ = 0, respectively, against two-sided alternative hypotheses. We note that all tests are

considerably liberal when the sample size is small (30 or 50). We also note that the score test

outperforms the competitors. The Wald test was the worst performer.

The tests null rejection rates converge to the corresponding nominal levels as n → ∞. Such

convergence, however, is rather slow. More accurate testing inference can be achieved by

using bootstrap resampling; see Davison and Hinkley (1997). The tests employ critical values

that are estimated in the bootstrapping scheme instead of asymptotic (approximate) critical

values. A number of B bootstrap samples are generated imposing the null hypothesis and the

test statistic is computed for each artificial sample. The critical value of level ε × 100% is

obtained as the 1− ε upper quantile of the B test statistics, i.e., of the test statistics computed

using the bootstrap samples. The bootstrap tests are indicated by the subscript ‘pb’. We also

use bootstrap resampling to estimate the Bartlett correction factor to the likelihood ratio test as

proposed by Rocke (1989). The bootstrap Bartlett corrected test is indicated by the subscript

‘bbc’. For details on bootstrap tests, Bartlett-corrected tests and Bartlett corrections based on

the bootstrap, the reader is referred to Cordeiro and Cribari-Neto (2014). Since the Wald test

proved to be considerably unreliable, we shall not consider it.
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Table 2.5 Null rejection rates of the LR, score, Wald, LRpb, LRbbc and Spb tests for testing of H0 : β = 1

against H1 : β 6= 1 in the BBS (0.5,1,0) model

n LR S Wald LRpb LRbbc Spb

ε = 0.1
30 0.1692 0.0832 0.2728 0.1088 0.1088 0.1104

50 0.1416 0.0826 0.2116 0.1064 0.1054 0.1096

100 0.1190 0.0894 0.1650 0.1016 0.1002 0.1164

150 0.1170 0.0934 0.1494 0.1048 0.1058 0.1140

ε = 0.05

30 0.1040 0.0340 0.2162 0.0496 0.0490 0.0514

50 0.0802 0.0370 0.1480 0.0532 0.0528 0.0538

100 0.0620 0.0442 0.1090 0.0538 0.0524 0.0574

150 0.0558 0.0438 0.0808 0.0510 0.0510 0.0554

ε = 0.01

30 0.0298 0.0048 0.1094 0.0108 0.0100 0.0114

50 0.0218 0.0080 0.0734 0.0092 0.0094 0.0112

100 0.0112 0.0076 0.0354 0.0102 0.0112 0.0102

150 0.0112 0.0090 0.0268 0.0098 0.0106 0.0104

Table 2.6 Null rejection rates of the LR, score, Wald, LRpb, LRbbc and Spb tests for testing H0 : γ = 0

against H1 : γ 6= 0 in the BBS (0.5,1,0) model

n LR S Wald LRpb LRbbc Spb

ε = 0.1
30 0.2570 0.2434 0.3704 0.1034 0.0948 0.1022

50 0.1974 0.1920 0.2896 0.1040 0.1028 0.1014

100 0.1368 0.1320 0.2014 0.0980 0.1012 0.0976

150 0.1364 0.1326 0.1774 0.0986 0.0992 0.1014

ε = 0.05

30 0.1678 0.1522 0.2992 0.0522 0.0392 0.0492

50 0.1208 0.1076 0.2134 0.0532 0.0488 0.0514

100 0.0860 0.0762 0.1454 0.0464 0.0488 0.0458

150 0.0734 0.0660 0.1140 0.0468 0.0488 0.0456

ε = 0.01

30 0.0520 0.0334 0.1632 0.0094 0.0030 0.0106

50 0.0336 0.0234 0.1100 0.0098 0.0062 0.0106

100 0.0218 0.0150 0.0658 0.0082 0.0078 0.0088

150 0.0154 0.0114 0.0474 0.0082 0.0080 0.0082
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Figure 2.9 Quantile-quantile plots for the LR and LRbbc test statistics with n = 50, for the tests on α
(a), on β (b) and on γ (c).

Next we shall numerically evaluate the finite sample performances of the LRpb, LRbbc and

Spb tests under the same scenarios considered in the previous simulation. The number of Monte

Carlo replications is as before. Samples for which the optimization methods failed to reach

convergence were discard, even for bootstrap samples. The same 1,000 bootstrap samples

(B = 1,000) were used in all tests. The null rejection rates of the tests for making inferences on

α , β and γ are also presented in Tables 2.4, 2.5 and 2.6, respectively. It is noteworthy that the

tests size distortions are now considerably smaller. For instance, when making inference on α
based on a sample of size n = 30 and ε = 0.05, the LR and score null rejection rates are 16.32%

and 11.16% (Table 2.4), whereas the corresponding figures for their bootstrap versions LRbp,

LRbbc and Sbp are 5.42%, 3.88% and 5%, respectively, which are much more closer to 5%.

When testing restrictions on β with n = 30 and ε = 0.10, the LR and score null rejection rates

are, respectively, 16.92% and 8.32% (Table 2.5) whereas their bootstrap versions, LRbp, LRbbc

and Sbp, display null rejection rates of 10.88%, 10.88% and 11.04%, respectively. Finally,

when the interest lies in making inferences on γ with n = 30 and ε = 0.01, the LR and score

null rejection rates are 5.20% and 3.34% (Table 2.6); for the bootstrap-based tests LRbp, LRbbc

and Sbp we obtain 0.94%, 0.3% and 1.06%, respectively. Figure 2.9 shows the quantile-quantile

(QQ) plots of the LR and LRbbc test statistics for samples of size n= 50. It is noteworthy that the

empirical quantiles of the LRbbc test statistic are much closer of the corresponding asymptotic

quantiles than those of W . Hence, we note that testing inference in small samples can be made

considerably more accurate by using bootstrap resampling.
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2.5 One-sided hypothesis tests

One-sided tests on a scalar parameter can be performed using the signed likelihood ratio

(SLR) test, which is particularly useful in the BBS model since it allows practitioners to

make inferences on γ in a way that makes it possible to detect bimodality. The signed penalized

likelihood ratio test statistic is

R = sign(ψ̂ −ψ0)
√

W = sign(ψ̂ −ψ0)

√
2{ℓ∗(θ̂)− ℓ∗(θ̃)}. (2.5)

The statistic R is asymptotically distributed as standard normal under the null hypothesis. An

advantage of the SLR test over the tests described in Section 2.4 is that it can be used to perform

two-sided and one-sided tests. In this section, we shall focus on one-sided hypothesis testing

inference. Our interest lies in detecting bimodality. The null hypothesis is H0 : γ ≥ 0 which is

tested against H1 : γ < 0. Rejection of H0 yields evidence that the data came from a bimodal

distribution. On the other hand, when H0 is not rejected, there is evidence that the data follows

a distribution with a single mode.

Consider the sample x = (x1, . . . ,xn) for a model with vector parameter θ = (ψ,λ ) with

dimension 1 × p, where the parameter of interest ψ is a scalar and the vector of nuisance

parameters λ has dimension 1×(p−1). The test statistic R, given in Equation (2.5), is asymp-

totically distributed as standard normal with error of order O(n−1/2) when the null hypothesis

is true. Such an approximation may not be accurate when the sample size is small. Some ana-

lytical corrections for R were proposed in the literature. They can be used to improve the test

finite sample behavior.

An important contribution was made by Barndorff-Nielsen (1986, 1991). The author pro-

posed a correction term U of the form

R∗ = R+ log(U /R)/R,

where R represents the SLR statistic and R∗ is its corrected version. Let ℓ(θ) be the log-

likelihood function of the parameters. Its derivatives will be denoted here by

ℓθ (θ) =
∂ℓ(θ)

∂θ
and ℓθθ (θ) =

∂ 2ℓ(θ)

∂θ∂θ⊤ .

The observed information matrix is given by Jθθ (θ) = −ℓθθ (θ). To obtain the correction

proposed by Barndorff-Nielsen (1986), the sufficient statistic has to be of the form (θ̂ ,a), where

θ̂ is the MLE of θ and a is an ancillary statistic. Additionally, it is necessary to compute sample

space derivatives of the log-likelihood, such as

ℓ
;θ̂ (θ) =

∂ℓ(θ)

∂ θ̂
and ℓθ ;θ̂(θ) =

∂ℓ
;θ̂ (θ)

∂θ⊤ ,

where derivatives are taken with respect to some functions of the sample while keeping other

terms fixed, as explained in Severini (2000). The quantity U is given by

U =

∣∣∣∣
ℓ

;θ̂ (θ̂)− ℓ
;θ̂(θ̃)

ℓλ ;θ̂ (θ̃)

∣∣∣∣
∣∣Jλλ (θ̃)

∣∣1/2 ∣∣Jθθ (θ̂)
∣∣1/2

,
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where θ̃ is the restricted MLE of θ and the indices indicate which components are being used

in each vector or matrix.

The null distribution of R∗ is standard normal with error of order O(n−3/2). Although the

null distribution of R∗ is better approximated by the limiting distribution than that of R, the

computation of U is restricted to some specific classes of models, such as exponential family

and transformation models (Severini, 2000).

Some alternatives to R∗ were proposed in the literature. They approximate the sample space

derivatives used in U . For instance, approximations were obtained by DiCiccio and Martin

(1993), Fraser et al. (1999) and Severini (1999). They were computed by Wu and Wong (2004)

for the BS model and by Lemonte and Ferrari (2011) for a Birnbaum-Saunders regression

model. Other recent contributions are made by Ferrari and Pinheiro (2016) and Smith et al.

(2015).

In this section, we apply the approximations proposed by Severini (1999) and Fraser et al.

(1999) using the log-likelihood without penalization. Our interest is to evaluate the perfor-

mance of the corrections when applied for the statistic R, calculated using the penalized log-

likelihood function, comparing the performance of the corrected tests with the SLR and its

bootstrap version.

Using the same notation as Lemonte and Ferrari (2011), the approximation proposed by

Fraser et al. (1999) (denoted by SLRc1) for U can be written as

U1 =

∣∣∣∣
Γθ

Ψλθ

∣∣∣∣
∣∣Jλλ (θ̃)

∣∣1/2 ∣∣Jθθ (θ̂)
∣∣1/2

,

where

Γθ = [ℓ;x(θ̂)− ℓ;x(θ̃)]V (θ̂)[ℓθ ;x(θ̂)V (θ̂)]−1Jθθ(θ̂),

with

Ψθθ =

[
Ψψθ

Ψλθ

]
= ℓθ ;x(θ̃)V (θ̂)[ℓθ ;x(θ̂)V (θ̂)]−1Jθθ (θ̂),

where ℓ;x(θ) = ∂ l(θ)/∂x is a 1×n vector, ℓθ ;x(θ̃) = ∂ 2ℓ(θ)/∂θ⊤∂x is a p×n matrix and

V (θ) =−
[

∂z(x;θ)

∂x

]−1[∂z(x;θ)

∂θ⊤

]

is an n× p matrix, z(x;θ) being a vector of pivotal quantities.

The corrected SLR statistic obtained using the approximation given by Fraser et al. (1999)

is Rc1 = R+ log(U1/R)/R, which has asymptotic standard normal distribution with error of

order O(n−3/2) under the null hypothesis. We computed the quantities needed to obtain U1 in

the BBS model, which are presented below.

Consider the variable Y = |T |+γ , where T =α−1(
√

X/β −
√

β/X) and X ∼BBS (α , β ,

γ). We used the distribution function of Y = |T |+ γ to obtain SLRc1 in the BBS model. The
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distribution of Y is truncated standard normal distribution with support (γ,∞), its distribution

function being given by

FY (y) =

{
0 if y < γ,
Φ(y)−Φ(γ)

1−Φ(γ) if y ≥ γ.

Therefore, Z = FY (Y ) is uniformly distributed in the standard interval (0,1). Hence, it is a

pivotal quantity that can be used for obtaining the approximations to sample space derivatives

proposed by Fraser et al. (1999). Let x = (x1, . . . ,xn) be a random BBS (α,β ,γ) sample. It

follows that ∂ zi/∂x j = 0 when i 6= j and ∂ zi/∂xi = φ(yi)sign(ti)(xi+β )/[Φ(−γ)2αβ 1/2x
3/2
i ],

with ti = α−1(
√

xi/β −
√

β/xi). Moreover, ∂ zi/∂α = −φ(yi)sign(ti)ti/Φ(−γ)α , ∂ zi/∂β =

−φ(yi)sign(ti) [
√

xi/β +
√

β/xi]/[Φ(−γ)2αβ ] and ∂ zi/∂γ = [Φ(yi)−Φ(γ)]φ(γ)/Φ2(−γ)+

[φ(yi)−φ(γ)]/Φ(−γ), where yi = |ti|+ γ and zi = FY (yi). Therefore, vαi = 2β 1/2x
3/2
i ti/(xi +

β ), vβ i = xi/β and vγ i = −2αβ 1/2x
3/2
i {[Φ(yi)− Φ(γ)]φ(γ)/Φ(−γ) + φ(yi)− φ(γ)}/[φ(yi)

sign(ti)(xi +β )]. The vectors vα , vβ and vγ are used to form the matrix V (θ). For instance,

vα = (vα1, . . . ,vαn)
⊤ is a n×1 vector. Here, V (θ) =

[
vα vβ vγ

]
. Furthermore, we have that

ℓ;xi
(θ) =

−3

2xi
+

1

xi +β
− (|ti|+ γ)sign(ti)

(xi +β )

2αβ 1/2x
3/2
i

,

ℓα;xi
(θ) =

sign(ti)(xi +β )

2β 1/2x
3/2
i α2

(2|ti|+ γ),

ℓβ ;xi
(θ) =

(−1)

(xi +β )2
+

(xi +β )

4α2β 3/2x
3/2
i

(
x

1/2
i

β 1/2
+

β 1/2

x
1/2
i

)
+

sign(ti)(|ti|+ γ)(xi −β )

4αβ 3/2x
3/2
i

,

ℓγ ;xi
(θ) =−sign(ti)(xi +β )

2αβ 1/2x
3/2
i

.

The method proposed by Severini (1999)(denoted by SLRc2) approximates the sample

space derivatives by covariances of the log-likelihood function. The main idea is to use the

sample to obtain the covariance values empirically. Using again the notation of Lemonte and

Ferrari (2011), the approximation of U proposed by Severini (1999) is given by

U2 =

∣∣∣∣
∆θ

Σλθ

∣∣∣∣
∣∣Jλλ (θ̃)

∣∣1/2 ∣∣Jθθ (θ̂)
∣∣1/2

,

with

∆θ = [Q(θ̂ ; θ̂)−Q(θ̃ ; θ̂)]I(θ̂ ; θ̂ )−1Jθθ (θ̂)

and

Σθθ =

[
Σψθ

Σλθ

]
= I(θ̃ ; θ̂)I(θ̂ ; θ̂)−1Jθθ (θ̂),
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where Q(θ ;θ0) = ∑n
i=1 ℓ

(i)(θ)ℓ
(i)
θ (θ0)

⊤ is a 1× p vector and I(θ ;θ0) = ∑n
i=1 ℓ

(i)
θ (θ)ℓ

(i)
θ (θ0)

⊤ is

a p× p matrix, the index (i) indicating that the quantity corresponds to the ith sample obser-

vation. The corrected statistic proposed by Severini (1999) is Rc2 = R+ log(U2/R)/R. Its null

distribution is standard normal with error of order O(n−1). The score function and the observed

information matrix, which can be found in Olmos et al. (2016), are used to obtain U2 in the

BBS model.

Alternatively, bootstrapping resampling can be used to obtain critical values for the SLR

test. Since we test H0 : γ ≥ 0 against H1 : γ < 0, the critical value of level ε ×100% is obtained

as the ε quantile of the B test statistics computed using the bootstrap samples.

Table 2.7 Null rejection rates of the SLR, SLRc1, SLRc2 and SLRbp tests of H0 : γ ≥ 0 against H1 : γ < 0

in a sample of size 30 of the model BBS (0.5,1,γ)

ε SLR SLRc1 SLRc2 SLRbp

γ =−1

0.10 0.7488 0.5768 0.6310 0.4960

0.05 0.6300 0.4276 0.4728 0.3488

0.01 0.3560 0.1910 0.2100 0.1376

γ =−0.5
0.10 0.4634 0.2766 0.3300 0.2248

0.05 0.3242 0.1762 0.2042 0.1326

0.01 0.1328 0.0588 0.0652 0.0376

γ = 0

0.10 0.2614 0.1334 0.1678 0.1042

0.05 0.1658 0.0746 0.0892 0.0498

0.01 0.0486 0.0202 0.0210 0.0106

γ = 0.5
0.10 0.1546 0.0722 0.0928 0.0526

0.05 0.0890 0.0378 0.0442 0.0222

0.01 0.0214 0.0098 0.0102 0.0046

γ = 1

0.10 0.1144 0.0488 0.0640 0.0340

0.05 0.0606 0.0246 0.0292 0.0150

0.01 0.0144 0.0050 0.0046 0.0022

A simulation study was performed to evaluate the sizes and powers of the SLR, SLRc1,

SLRc2 and SLRbp tests. We tested H0 : γ ≥ 0 against H1 : γ < 0. The true parameter values

are γ ∈ {−1,−0.5,0,0.5,1}. The most reliable tests are those with large power (i.e., higher

probability of rejecting H0 when γ < 0) and small size distortions. Again, 5,000 Monte Carlo

replications were performed. The SLRbp test is based on 1,000 bootstrap samples. The simula-

tion results are presented in Table 2.7. The most powerful tests are SLR, SLRc2 and SLRc1, in

that order, whereas the tests with the smallest size distortions are SLRbp, SLRc1 and SLRc2. We

recommend testing inference to be based on either SLRc1 or SLRc2, since these tests display a

good balance between size and power.
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2.6 Nonnested hypothesis tests

In the previous section we presented a test that is useful for detecting whether the data came

from a bimodal BBS law or not. That was done by testing a restriction on γ . In this section

we shall present tests that are useful for distinguishing between BBS model and another

extension of the BS distribution that can display bimodality.

As noted in the Introduction, another variation of the BS distribution that can exhibit

bimodality is the model recently discussed by Owen and Ng (2015), which the authors denoted

by GBS 2. Let X ∼ G BS 2(α,β ,ν). Its probability density function is given by

g(x) =
ν

αx

[(
x

β

)ν

+

(
β

x

)ν]
φ

(
1

α

[(
x

β

)ν

−
(

β

x

)ν])
, x > 0,

where α > 0, β > 0 and ν > 0. According to Owen and Ng (2015), the G BS 2 density is

bimodal when α > 2 and ν > 2 (simultaneously).

Therefore, when bimodality is detected, the data analysis may be carried out with either the

BBS distribution or the G BS 2 model. It would then be useful to have a hypothesis test that

could be used to distinguish between the two models. Obviously, the tests discussed so far can-

not be used to that end. Model selection criteria for the BS distribution were considered by

Leiva (2015) and Leiva et al. (2015). Model selection is usually based on the Bayes factor and

also on the Schwarz and Akaike information criteria. We shall use a different approach, devel-

oping tests for nonnested hypotheses. Notice that the G BS 2 distribution cannot be obtained

from the BBS distribution by imposing restrictions on the model parameters, and vice-versa.

Hence, the two models are not nested.

The literature of nonnested models began with Cox (1961, 1962). The author introduced

likelihood ratio tests for some nonnested models. His main results were generalized by Vuong

(1989), who considered nested, nonnested and overlapping models and derived the required

asymptotics. For nonnested models, Vuong (1989) established a relationship between the likeli-

hood ratio statistic and the Kullback-Leibler information. Let F and G be competing nonnested

models. The author presented a test of the null hypothesis H0 that both models are equivalent,

the alternative hypotheses being H f : model F is better and Hg: model G is better. An alterna-

tive approach for testing of nonnested models was considered by Williams (1970) and Lewis

et al. (2011). The authors only considered tests of the hypothesis H f and Hg. They proposed to

consider H f and Hg sequentially.

We shall consider the hypothesis involving the BBS and G BS 2 models as:

• H f - the data came from the BBS distribution,

• Hg - the data came from the G BS 2 distribution.

The test statistic we considered is the following likelihood ratio statistic:

Wne = log

(
f̂

ĝ

)
= ℓ̂ f − ℓ̂g,

where f̂ and ĝ denote the likelihood functions of the BBS and G BS 2 models, respectively,

evaluated at their respective MLE estimates, ℓ representing the log-likelihood function of the
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model indicated by its index. Then, for a given sample x, a large positive value of Wne yields

evidence in favor H f and against Hg; on the other hand, a large negative value of Wne favors Hg.

The BBS parameters are estimated using the penalized log-likelihood function and those of

G BS 2 are estimated using the standard log-likelihood function.

In the test discussed by Vuong (1989) for nonnested models, the asymptotic null distribution

is standard normal. On some Monte Carlo simulations not reported here, this test, based on

asymptotic critical values, was observed to indicate equivalence of the models at a large rate.

Since this test is based on large sample approximations, a bootstrap resampling method could

be used as an alternative to provide more accurate critical values and to indicate only one of

the models with higher frequency. On the other hand, application of bootstrap resampling is

not straightforward for this kind of test because we would have to define a model equivalent to

BBS and G BS 2 to generate pseudo-samples under the null distribution. Thus, an approach

similar to the one taken by Lewis et al. (2011) will be used in this section, considering only the

hypothesis H f and Hg in the test. Then, taking H f as null hypothesis, the bootstrap test is done

using the following procedures:

1. Calculate the value of Wne for the sample x;

2. With the MLE estimates of the parameters from the BBS model, generate a bootstrap

sample x∗, and then compute W ∗
ne for this sample;

3. Execute step 2 for B times and obtain the p-value bootstrap: pb =
#{W ∗

ne<Wne}+1
B+1

.

Hence, at the significance level of ε×100%, H f is rejected if pb < ε , i.e., we reject that the data

was originated from a BBS and accept that the G BS 2 distribution is more adequate. The

same can be done taking Hg as null hypothesis. In this case, the procedures are the following:

1. Calculate the value of Wne for the sample x;

2. With the MLE estimates of the parameters from the G BS 2 model, generate a bootstrap

sample x∗, and then compute W ∗
ne for this sample;

3. Execute step 2 for B times and obtain the p-value bootstrap: pb =
#{W ∗

ne>Wne}+1
B+1

.

It is noteworthy that the step 3 is different from the corresponding step in the first procedure,

since the rejection region changes when we consider Hg as null hypothesis. Again, at the

significance level of ε ×100%, the null hypothesis considered is rejected if pb < ε , but in this

case it means that we reject the hypothesis Hg that the data comes from a G BS 2 distribution

and accept that BBS model is more adequate.

The problem with this approach is that four inferences results are possible to happen, as

cited by Williams (1970) and Lewis et al. (2011):

R1- Both hypothesis H f and Hg are not rejected, indicating that both models are adequate;

R2- We do not reject H f , but Hg is rejected, indicating that the BBS model is more ade-

quate;
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R3- We do not reject Hg, but H f is rejected, indicating that the G BS 2 model is more ade-

quate;

R4- We reject both H f and Hg, indicating that both models are not adequate;

Under some regularity conditions, Vuong (1989) has shown that, in nonnested models, an

adjusted likelihood ratio tends to infinity under H f when n → ∞ and that under Hg it tends to

minus infinity when n → ∞. This way, the test statistic tends to indicate the correct model as

the sample size increases. Therefore, for a situation where we obtain the result R1, a way to

choose between the two models is to use the statistic Wne calculated for the sample, opting for

the BBS distribution in case Wne > 0 and for the G BS 2 distribution in case Wne < 0.
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Figure 2.10 Densities BBS (0.2,1,−1) (solid line) and G BS 2(5,1,5) (dashed line).

A simulation study was done to evaluate the performance of the nonnested hypothesis tests

involving the BBS and G BS 2 distributions. The models considered were BBS (0.2, 1,

−1) and G BS 2(5,1,5). Figure 2.10 shows their density plots, where we can see they have

close density shapes. The number of Monte Carlo replications used was 5,000. First, we

considered the case when the true distribution is BBS (0.2,1,−1); in each replication, B =
1,000 bootstrap samples were generated under H f and another B = 1,000 under Hg, obtaining

then, one of the results previously cited (R1, R2, R3 or R4) for the test in each replication

analyzed. Table 2.8 contains the proportion of times each result occurred for this simulation

and the proportion of time each distribution is chosen as the most suitable model, which is: the

BBS model, when we obtain result R1 and Wne > 0 or we obtain result R2; the G BS 2 model,

when we obtain result R1 and Wne < 0 or we obtain result R3; none of the distributions, when we

obtain result R4. The same procedures were done when the true model is the G BS 2(5,1,5)
distribution, with results presented in Table 2.9.

From the results contained in Table 2.8, we can note that the null rejection rates of the

true hypothesis (H f ), are close of the nominal levels considered. For instance, when n = 30

and ε = 0.10, adding the cells corresponding to R3 and R4, we see that the rejection rate of

H f is 9.46%, a rate close to the nominal level considered. We can also note that for small or

moderate sample sizes the tests tend to indicate equivalence of both models, but when the value
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Table 2.8 Proportions of outcomes of the test of H f against Hg when the data generating function is

BBS (0.2,1,−1) (first four columns), and proportions of BBS and G BS 2 model selection and

porportion of no model selected, with the test significance level being ε

ε R1 R2 R3 R4 BBS G BS 2 None

n = 30

0.10 0.6676 0.2378 0.0946 0.0000 0.4354 0.5646 0.0000

0.05 0.8284 0.1322 0.0394 0.0000 0.4354 0.5646 0.0000

0.01 0.9650 0.0292 0.0058 0.0000 0.4354 0.5646 0.0000

n = 50

0.10 0.5454 0.3578 0.0968 0.0000 0.5574 0.4426 0.0000

0.05 0.7230 0.2326 0.0444 0.0000 0.5572 0.4428 0.0000

0.01 0.9174 0.0754 0.0072 0.0000 0.5572 0.4428 0.0000

n = 100

0.10 0.3420 0.5538 0.1036 0.0006 0.6952 0.3042 0.0006

0.05 0.5344 0.4138 0.0518 0.0000 0.6940 0.3060 0.0000

0.01 0.8024 0.1884 0.0092 0.0000 0.6940 0.3060 0.0000

n = 150

0.10 0.1920 0.6908 0.1138 0.0034 0.7682 0.2284 0.0034

0.05 0.3772 0.5646 0.0582 0.0000 0.7656 0.2344 0.0000

0.01 0.6720 0.3118 0.0162 0.0000 0.7654 0.2346 0.0000

Table 2.9 Proportions of outcomes of the test of H f against Hg when the data generating function

is G BS 2(5,1,5) (first four columns), and proportions of BBS and G BS 2 model selection and

porportion of no model selected, with the test significance level being ε

ε R1 R2 R3 R4 BBS G BS 2 None

n = 30

0.10 0.4438 0.1080 0.4482 0.0000 0.1784 0.8216 0.0000

0.05 0.6658 0.0538 0.2804 0.0000 0.1784 0.8216 0.0000

0.01 0.9040 0.0112 0.0848 0.0000 0.1784 0.8216 0.0000

n = 50

0.10 0.2204 0.1010 0.6786 0.0000 0.1270 0.8730 0.0000

0.05 0.4502 0.0466 0.5032 0.0000 0.1238 0.8762 0.0000

0.01 0.7624 0.0090 0.2286 0.0000 0.1238 0.8762 0.0000

n = 100

0.10 0.0146 0.0662 0.8804 0.0388 0.0672 0.8940 0.0388

0.05 0.1068 0.0560 0.8350 0.0022 0.0712 0.9266 0.0022

0.01 0.4000 0.0112 0.5888 0.0000 0.0674 0.9326 0.0000

n = 150

0.10 0.0002 0.0158 0.8968 0.0872 0.0158 0.8970 0.0872

0.05 0.0136 0.0310 0.9344 0.0210 0.0320 0.9470 0.0210

0.01 0.1610 0.0122 0.8268 0.0000 0.0322 0.9678 0.0000
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of n increases, the tests tend to indicate the BBS model as the most suitable with higher

frequency. When ε = 0.05, for example, in the column corresponding to R2, this happens

13.22% of the time for n = 30, while for n = 150, in 56.46% of the time the BBS distribution

is considered the most adequate model. This can be observed also in the fifth column, where

we can see that as n increases, the BBS is chosen more frequently.

Table 2.9 contains the results when Hg is the true hypothesis. Once again, the null rejection

rates stayed close of the nominal levels. When n = 30 and ε = 0.05, adding the cells relative to

R2 and R4, we see that the null rejection rate of Hg is 5,38%, a value close of the nominal level

considered. Moreover, we could observe that the results of Table 2.9 were better than when

H f is the true hypothesis. In the column corresponding to R3 are presented the proportion of

time that only the G BS 2 is chosen as the most adequate model without considering the sign

of Wne. When ε = 0.05, for n = 30 this happens 28.04% of time and for n = 150 it happens

93.44% of time, a superior performance of when H f is true. This can also be seen in the sixth

column, where we can observe that the proportion of time the G BS 2 distribution is correctly

chosen are higher than the corresponding values in the fifth column of Table 2.8.

Therefore, we can note from these results that the nonnested hypothesis tests with bootstrap

proposed for the BBS and G BS 2 models presented satisfactory performances. For both

distributions the null rejection rates are close of the nominal levels when the generation is

made under the correct null hypothesis. We can also observe that, as n increases, the tests tend

to indicate the true distribution at higher rates. We also noted that, for the models considered,

the tests presented better performance when the true model is the G BS 2 distribution. Hence,

we recommend the use of the nonnested hypothesis test presented above when both BBS

and the G BS 2 laws are plausible for the application at hand since the test was shown to be a

reliable tool for distinguishing between the two models, especially when the sample size is not

small.

2.7 Empirical applications

2.7.1 Runoff amounts

We shall now return to the data set remarked on Section 2.1, which we used to illustrate how

the problem of nonconvergence of optimization processes during the parameters estimation

can occur in practical situations with the BBS model. The data, provided by Folks and

Chhikara (1978), consists of 25 runoff amounts at Jug Bridge, in Maryland. Table 2.10 contains

some descriptive statistics of this data set. We can observe that the data has a large kurtosis

coefficient, i.e., it has a leptokurtic distribution and low variance, which might indicate the data

is concentrated around the mean and median values; these characteristics might be an indicative

we are dealing with a unimodal data set.

Table 2.10 Descriptive statistics from the runoff data

min max median mean variance asymmetry kurtosis

0.17 2.92 0.7 0.84 0.3459 1.7953 6.7493
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The models fitted were the BS (α,β ) and BBS (α,β ,γ) distributions. The parameter

estimates of the first model were α̂ = 0.66 (0.0936) and β̂ = 0.69 (0.0865), with standard errors

in parenthesis. For the second model, the maximum likelihood estimates were not possible to

be obtained because the optimization process failed to reach convergence. As was showed in

Figure 2.1a, the log-likelihood have a region apparently flat for some values of the parameter

α and γ , with the value of β being fixed at 0.69. Nonetheless, using the estimator MLEp

the process reaches convergence and, as we can see in Figure 2.1b, the penalization modified

the log-likelihood function in a way that a maximum point is possible to be reached by the

optimization process. The parameters estimates of the BBS model using the MLEp were

α̂ = 0.63 (0.2287), β̂ = 0.69 (0.0817) and γ̂ = −0.13 (0.8449). We can observe that the

standard error of γ̂ is large relative to the point estimate and indicates the BS model is more

adequate.

Figure 2.11 contains the histogram of the data set and the fitted densities. We can note that

the estimates obtained for the models lead to very similar densities. Since the BS distribution

is simpler than the BBS distribution, it seems more suitable than the bimodal distribution.

To evaluate this, we tested the hypothesis H0 : γ = 0 against a two-sided alternative. The p-

values of the tests LR, score, Wald, LRpb, LRbbc and Spb were 0.85, 0.81, 0.87, 0.92, 0.89

and 0.91, respectively. Therefore, we have strong evidences that the fit obtained with the BS

distribution is better.

In summary, this example illustrates how is possible to find cases where the optimization

process being used to obtain maximum likelihood estimates in the BBS model fails to reach

convergence, but that might be possible to solve this by using a penalized log-likelihood func-

tion, allowing to carry on further analysis that might indicate whether the BBS is suitable or

the BS provides a better fit.
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Figure 2.11 Histogram of the runoff data with the fitted densities obtained with BS (0.66, 0.69)

(dashed line) and BBS (0.63,0.69,-0.13) (dotted line).
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2.7.2 Depressive condition data

The second application example is a data set about 134 children’s emotional condition, with

their measures of depression. The data was analyzed, for example, by Leiva et al. (2010) and

Balakrishnan et al. (2011), where both works involved mixture of distribution in the analysis.

Table 2.11 presents some descriptive statistics of this data set, where we can see the data

is right-skewed, has leptokurtic distribution and quite large variance. The fitted model were

BS , BBS and G BS 2, obtaining the Akaike (AIC) and Schwarz (BIC) information criteria

for each fit. The estimates, with standard error in parenthesis, of the parameters from the

BS model were α̂ = 0.603 (0.0368) and β̂ = 7.58 (0.3773), providing AIC and BIC values

of 780.09 and 785.89, respectively. The parameters estimates from the BBS model were

α̂ = 0.42 (0.0481), β̂ = 7.54 (0.2645) and γ̂ = −0.85 (0.2569), with AIC and BIC values of

776.26 and 784.95, respectively. For the G BS 2 model the estimates were α̂ = 2.38 (0.6290),

β̂ = 7.74 (0.3045) and ν̂ = 1.53 (0.2525), with AIC and BIC values of 771.78 and 780.47,

respectively. The histogram of the data set with the fitted densities of these models are presented

in Figure 2.12.

From the information criteria, we would conclude that the most adequate model is the

G BS 2 distribution, followed by the BBS distribution. To test which of these two models

is the most suitable for this data, a nonnested hypothesis test was performed, providing a test

statistic of value Wne =−0.0167 with p-value of 0.0189 under H f (supposing the BBS dis-

tribution is the true model) and p-value of 0.6453 under Hg (supposing the G BS 2 is the true

model). Then, we conclude that the G BS 2 distribution is more adequate for the emotional

condition data set.

Table 2.11 Descriptive statistics of the depressive condition data

min max median mean variance asymmetry kurtosis

3 28 8 8.96 28.73 1.11 3.88

2.7.3 Adhesive strength

The third data set analyzed is provided by Ehsani et al. (1996) and was also analyzed by

Olmos et al. (2016), who used the BBS distribution in the analysis. The data is consisted of

48 observations about adhesive strength to concrete of bars reinforced with glass fibre. Some

descriptive statistics are presented in Table 2.12, where we can observe that the data presents

high kurtosis coefficient, with value greater than 5, is right-skewed and has a variance value

much greater than the mean and median.

Table 2.12 Descriptive statistics of the adhesive strength data

min max median mean variance asymmetry kurtosis

3.4 25.5 5.95 8.08 23.7017 1.448 5.0345

Once more, the fitted models were BS , BBS and G BS 2. For the first model the

parameters estimates were α̂ = 0.54 (0.0553) and β̂ = 7.05 (0.5316), providing AIC and BIC
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Figure 2.12 Histogram of the depressive condition data with the fitted densities obtained with

BS (0.60,7.58) (solid line), BBS (0.42, 7.54, -0.85) (dashed line) and G BS 2(2.38, 7.74, 1.53) (dot-

ted line).

values of 264.52 and 268.26, respectively. The parameter estimates of the second model were

α̂ = 0.31 (0.0460), β̂ = 7.39 (0.3162) and γ̂ =−1.38 (0.3525), providing AIC and BIC values

of 260.06 and 265.67, respectively. For the G BS 2 model, the parameter estimates were α̂ =
3.19 (1.5536), β̂ = 8.05 (0.5371) and ν̂ = 1.99 (0.5203), providing AIC and BIC values of

262.26 and 267.88, respectively. The histogram of the fitted densities is shown in Figure 2.13.

For this data set, the best fit according to the information criteria was the BBS distri-

bution, followed by the G BS 2 model. The nonnested hypothesis test of these two models

provided a test statistic of value Wne = 0.0229, with p-value of 0.6543 under H f and with p-

value of 0.0489 under Hg, and then, we can see that there is evidence at the 5% significance

level that the BBS distribution is the most adequate model for this data.

Adopting the BBS as the most suitable model, tests to verify if the data has a bimodal

distribution were done. The hypothesis tested were H0 : γ ≥ 0 and H1 : γ < 0. The p-values of

the tests SLR, SLRc1, SLRc2 and SLRbp were 0.0002, 0.0007, 0.0006 and 0.002, respectively,

i.e., in all tests we reject H0 in favor of H1. Hence, there is strong evidences that γ < 0, which

indicates the data comes from a bimodal distribution.

2.8 Conclusion

Optimization processes might fail to reach convergence with considerable frequency during

maximum likelihood estimation in the BBS model. A penalization in the log-likelihood was

proposed using a modification of the Jeffreys prior. Different methods were tried to solve

the nonconvergence problems and the ones that use some penalization in the log-likelihood

presented the lowest rates of nonconvergence. In general, the log-likelihood penalized with

the modified Jeffreys prior presented the best performance, considering the trade off between

quality of the estimates and the nonconvergence rates of the methods analyzed.
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Figure 2.13 Histogram of the adhesive strength data with the fitted densities BS (0.54,7.05) (solid

line), BBS (0.31, 7.39, -1.38) (dashed line) and G BS 2(3.19, 8.05, 1.99) (dotted line).

Hypothesis tests with the BBS model were studied with the penalized log-likelihood,

using the modified Jeffreys prior penalization. We analyzed the likelihood ratio, score and

Wald tests, observing that the tests are quite liberal, but that their null rejection rates tend to

the nominal levels as the sample size increases. The first two tests had the best performances,

and we could note that bootstrap resampling can provide much better results. One-sided tests

using the signed likelihood ratio were also investigated. We compared the sizes and powers

of the test without corrections, with analytical and with bootstrap corrections; the tests with

analytical corrections presented the best performances in terms of size and power. Nonnested

tests with bootstrap were also considered, providing a way to choose between the BBS model

and another version of the Birnbaum-Saunders distribution that exhibits bimodality. Since in

this case there are two distributions, the test was held considering two null hypothesis at time.

Besides this difficulty, we could note that null rejection rates of the true hypothesis gets closer

to the true nominal level as the sample size increases and that the test tends to indicate the true

model more frequently.

An example with real data where the optimization process fails to reach convergence during

estimation with the BBS model was presented, illustrating how this problem can appear in

practice and that plausible estimates can be obtained using a penalized log-likelihood. Another

two examples with real data were discussed for the nonnested hypothesis tests with distinct

results. For the data where the BBS distribution is chosen as the most suitable model, unilat-

eral tests were performed to verify if their distribution is unimodal, proving results compatible

with the empirical distribution of the data set.



Log-linear bimodal Birnbaum-Saunders regression model

3.1 Introduction

The Birnbaum-Saunders distribution (BS ) was proposed by Birnbaum and Saunders (1969a)

to analyze fatigue lifetime data. It has been widely discussed in the literature and was used as

the baseline for several related probability distributions. A concise review on the Birnbaum-

Saunders distribution and its extensions can be found in Leiva (2015).

Regression models based on the Birnbaum-Saunders distribution were also discussed in the

literature, the first model being introduced by Rieck and Nedelman (1991), who proposed the

log-linear Birnbaum-Saunders regression model (BSRM). Their model was later analyzed by

Galea et al. (2004), who developed some diagnostic tools for the model, and by Xie and Wei

(2007), who provided additional tools for detecting atypical observations.

The BSRM was extended in several different directions. For instance, Barros et al. (2008)

developed a model using the Student-t Birnbaum-Saunders distribution and Lemonte and Cor-

deiro (2009) proposed a nonlinear version of the BSRM. A mixed model for censored data

based on the Birnbaum-Saunders distribution was introduced by Villegas et al. (2011) and

Lemonte (2013) proposed a log-linear model based on a extended Birnbaum-Saunders distri-

bution. The log-linear Birnbaum-Saunders power regression model was proposed by Martínez-

Flórez et al. (2016), who also introduced the nonlinear sinh-power-normal regression model.

Model misspecification tests for the BSRM were proposed by Santos and Cribari-Neto (2015).

Bayesian inference for the BSRM was developed by Tsionas (2001). More recently, Vilca

et al. (2016) introduced the nonlinear sinh-normal/independent regression model, which en-

compasses several other BS regression models and developed Bayesian inference for such a

model.

The chief goal of this chapter is to propose a log-linear regression model based on a bimodal

version of the Birnbaum-Saunders distribution that has been recently introduced by Owen and

Ng (2015). Such a distribution is more flexible than the original BS law and we use it as

the basis for developing a regression model that is more general than the BSRM introduced by

Rieck and Nedelman (1991). Parameter estimation and standard inferential strategies are pre-

sented. A second goal of this chapter is to provide diagnostic tools for the proposed regression

model, thus allowing practitioners to verify whether the model assumptions are satisfied and

making it possible for them to detect atypical observations, much in the same spirit as done

for the BSRM by Galea et al. (2004) and Xie and Wei (2007). We also present a RESET-like

misspecification test which is similar to the one introduced by Santos and Cribari-Neto (2015)

for the log-linear Birnbaum-Saunders model. It can be used to check whether the model’s

45
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functional form is correctly specified. In addition, we consider the issue of performing model

selection based on model selection criteria and the construction of prediction intervals for the

regression model we propose similarly to what was done by Bayer and Cribari-Neto (2015)

and Espinheira et al. (2014), respectively, for beta regressions. In summary, we propose a

new regression model which is more flexible than the classic BSRM model and develop model

selection strategies, prediction intervals, residuals and diagnostic tools for the proposed model.

The remainder of the chapter is organized as follows. In Section 3.2, the bimodal Birnbaum-

Saunders distribution is presented as well as some of its key properties. The log-linear model

for responses that follow such a bimodal Birnbaum-Saunders distribution is proposed in Section

3.3. A broad variety of diagnostic tools for the proposed model are presented in Section 3.4. In

Section 3.5 we address the issue of constructing prediction intrevals for non-observed response

values and in Section 3.6 we consider different model selection strategies. Results from Monte

Carlo simulations are reported in Section 3.7, and an empirical application is presented and

discussed in Section 3.8. Finally, Section 3.9 offers some concluding remarks.

3.2 The bimodal Birnbaum-Saunders distribution

The generalized Birnbaum-Saunders distribution considered in this chapter was introduced

by Díaz-García and Domınguez-Molina (2006). They obtained it by adding a second shape

parameter to the BS distribution function. More recently, Owen and Ng (2015) analyzed

the distribution, which the authors denoted by G BS 2, in a paper where they investigated the

relationship among the inverse Gaussian, BS and G BS 2 distributions.

A random variable T is said to follow the G BS 2(α,η,ν) law if its distribution function

is given by

FT (t|α,η,ν) = Φ

(
1

α

[(
t

η

)ν

−
(η

t

)ν
])

, t > 0, (3.1)

where Φ(·) denotes the standard normal distribution function, α > 0, η > 0 and ν > 0. Here, η
is the scale parameter whereas α and ν are shape parameters. The probability density function

of T is

fT (t|α,η,ν) =
ν

tα
√

2π

[(
t

η

)ν

+
(η

t

)ν
]

exp

{
− 1

2α2

[(
t

η

)ν

−
(η

t

)ν
]2
}
, t > 0.

The G BS 2 distribution has a noteworthy advantage over the original BS distribution:

the density of the former can be unimodal and bimodal whereas that of the latter does not allow

for more than one mode. According to Owen and Ng (2015), the G BS 2 density is bimodal

whenever α > 2 and ν > 2 simultaneously. Figure 3.1 contains G BS 2 density plots for

different values of α , η and ν . It is noteworthy (Figure 3.1a) that the G BS 2 density becomes

more symmetric as the value of ν increases and the values of the remaining parameters are held

constant. The value of α also impacts the distribution asymmetry; the distribution becomes

less asymmetric as the value of α decreases (Figure 3.1b). In Figure 3.1c we see an example

of a bimodal density when we take α > 2 and ν > 2. Notice that the GBS 2 density is quite

flexible, since it may assume a variety of different shapes.
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Figure 3.1 G BS 2(α ,η ,ν) densities for some parameter values.

Several useful properties of the G BS 2 distribution were obtained by Owen and Ng (2015),

some of them also holding for the BS distribution. For instance, it was shown that η is the

distribution median, which can be easily verified from Equation (3.1). Additionally, the G BS 2

distribution is closed under reciprocity and proportionality, i.e., T−1 ∼ G BS 2(α,η−1,ν) and

aT ∼ G BS 2(α,aη,ν), for a > 0. Pseudo-random number generation from T ∼ G BS 2 can

be performed using the following stochastic representation:

T = η


αZ

2
+

√(
αZ

2

)2

+1




1/ν

,

where Z follows the standard normal distribution.

Another stochastic representation for the G BS 2 distribution, as noted by Owen and Ng

(2015), is as follows: if T ∼ G BS 2(α,η,ν), then Y = log(T ) is distributed as hyperbolic sine

normal (S H N ), whose distribution function is

FY (y|α,µ,σ) = Φ

(
2

α
sinh

(
y−µ

σ

))
, y ∈ IR,

where µ = log(η), σ = 1/ν and sinh(·) denotes the hyperbolic sine function. We shall write

Y ∼ S H N (α,µ,σ), α being a shape parameter, σ being a scale parameter and µ being a

location parameter and mean of the distribution.

The relationship between the BS and S H N distributions was established by Rieck

and Nedelman (1991), who noted that the log-Birnbaum-Saunders is a particular case of the

S H N distribution: the latter reduces to the former when σ = 2. The authors have also

presented several properties of the S H N distribution and used the relationship between the

two distributions to propose the log-linear Birnbaum-Saunders regression model.

Using the results developed by Rieck (1999), who obtained closed-form expressions for

integer and fractional BS moments, Owen and Ng (2015) obtained an expression for the rth
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G BS 2 moment:

IE(T r) = ηr exp(α−2)

α
√

2π

[
K(r/ν+1)/2(α

−2)+K(r/ν−1)/2(α
−2)
]
,

where Kω(z) denotes the modified Bessel function of the third kind of order ω , i.e.,

Kω(z) =
1

2

∫ ∞

−∞
exp[−zcosh(x)−ωx]dx,

cosh(·) denoting the hyperbolic cosine function.

3.3 Log-linear G BS 2 regression model

We use the relationship between the G BS 2 and S H N distributions to propose a log-

linear G BS 2 regression model, the response variable being Y = log(T ), where T follows the

G BS 2 law. Consider n independent random variables T1, . . . ,Tn, where Ti ∼GBS 2(α,ηi,ν),
i = 1, . . . ,n. The log-linear G BS 2 regression model (GBS2RM) is defined by

yi = x⊤i βββ + εi, i = 1, . . . ,n,

where yi = log(ti), with t1, . . . , tn representing observations on the random variables T1, . . . ,Tn.

Here, xi = (xi1, . . . ,xip)
⊤ is a vector of explanatory variables associated with the response vari-

able, βββ=(β1, . . . ,βp)
⊤ is a p-vector of unknown parameters and εi

iid∼ S H N (α,0,ν−1), iid

indicating that the random variables are independent and identically distributed. Note that

ti = exp(x⊤i βββ )eεi , where eεi ∼ G BS 2(α,1,ν). Since G BS 2 distribution is closed under

proportionality, it follows that Ti is G BS 2(α,exp(x⊤i βββ ),ν) distributed.

Estimation of θθθ = (βββ ,α,ν)⊤, the GBS2RM parameter vector, can be carried out by maxi-

mum likelihood. The log-likelihood function is given by

ℓ(θθθ) =
n

∑
i=1

{
log

(
2√
2π

)
+ log(ξi1)−

1

2
ξ 2

i2

}
,

where ξi1 = να−1 cosh[ν(yi −µi)] and ξi2 = 2α−1 sinh[ν(yi −µi)], µi = x⊤i βββ being the linear

predictor, i = 1, . . . ,n. The first derivatives of ℓ(θθθ) with respect to the model’s parameters are

ℓβββ =
∂ℓ(θθθ )

∂βββ
= X⊤a,

ℓα =
∂ℓ(θθθ )

∂α
=

n

∑
i=1

{
1

α

(
ξ 2

i2 −1
)}

,

ℓν =
∂ℓ(θθθ )

∂ν
=

n

∑
i=1

{
1

ν
+

ξi2

ξi1

ν

2
(yi −µi)−ξi1ξi2

2

ν
(yi −µi)

}
,
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where X = (x1, . . . ,xn)
⊤ is an n× p full column rank matrix and a = (a1, . . . ,an)

⊤, where

ai = 2ξi1ξi2 −
ν2

2

ξi2

ξi1
.

The maximum likelihood estimator (MLE) θ̂θθ = (β̂ββ , α̂, ν̂)⊤ of the parameters that index

the model are obtained by solving ℓθθθ = 0, where ℓθθθ = ∂ℓ(θθθ)/∂θθθ . They cannot be expressed

in closed-form. Estimates can be obtained by numerically maximizing ℓ(θθθ) using a Newton

(e.g., Newton-Raphson) or quasi-Newton (e.g., BFGS) nonlinear optimization algorithm. To

that end, one must select a starting point for the iterative scheme. We suggest using the least

squares estimate βββ 0 = (X⊤X)−1X⊤y as a starting value for β̂ββ , where y = (y1, . . . ,yn)
⊤, along

with ν0 = 0.5 as a starting point for ν , which is the value of ν that corresponds to the BS

distribution. For α̂ we propose using

α0 =

√
4

n

n

∑
i=1

sinh2[ν0(yi −x⊤i βββ 0)],

which corresponds to the solution of ℓα |(βββ ,ν)=(βββ 0,ν0)
= 0.

The model Hessian matrix is

ℓθθθθθθ =
∂ 2ℓ(θθθ)

∂θθθ∂θθθ⊤ =




X⊤VX X⊤d X⊤g

d⊤X tr[D(b)] tr[D(c)]

g⊤X tr[D(c)] tr[D(f)]


 ,

where V = diag{v1, . . . ,vn}, D(b) = diag{b1, . . . ,bn}, D(c) = diag{c1, . . . ,cn}, D(f) = diag{ f1,

. . ., fn}, d = (d1, . . . ,dn)
⊤ and g = (g1, . . . ,gn)

⊤, with diag denoting a diagonal matrix and tr

denoting the trace operator. The components of these vectors and matrices are

vi = ν2

{
1

cosh2[ν(yi −µi)]
− 4

α2
cosh[2ν(yi −µi)]

}
,

bi =− 3

α2
ξ 2

i2 +
1

α2
,

ci =
4

αν
ξi1ξi2(yi −µi),

di =− 4

α
ξi1ξi2,

fi =− 1

ν2
+

[
(yi −µi)ν

αξi1

]2

− 4

α2
(yi −µi)

2 cosh[2ν(yi −µi)],

gi =
−ν(yi −µi)

cosh2[ν(yi −µi)]
− tanh[ν(yi −µi)]+

4ν

α2
cosh[2ν(yi −µi)](yi −µi)+

2

α2
sinh[2ν(yi −µi)].

Under mild regularity conditions (Severini, 2000), it can be shown that θ̂θθ is asymptotically

distributed as Np+2(θθθ ,Σθθθ ). The asymptotic covariance of θ̂θθ , Σθθθ , can be approximated by

−ℓ̂−1
θθθθθθ , where ℓ̂θθθθθθ denotes ℓθθθθθθ evaluated at θ̂θθ . Hence, based on the asymptotic normality of θ̂θθ ,
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it is possible to obtain an approximated 100× (1− γ)% confidence region for θθθ , 0 < γ < 1,

which is given by the set of values of θθθ such that

(θ̂θθ −θθθ)⊤(−ℓ̂θθθθθθ )(θ̂θθ −θθθ )≤ χ2
p+2(γ),

where χ2
p+2(γ) denotes the 1− γ quantile of the chi-square distribution with p+2 degrees of

freedom.

Consider now the following partition of the parameter vector: θθθ = (ψψψ,λλλ )⊤, where ψψψ =
(ψ1, . . . ,ψr)

⊤ is the vector of parameters of interest and λλλ = (λ1, . . . ,λs)
⊤ is the vector of

nuisance parameters, with r + s = p+ 2. We shall focus on the test of H0 : ψψψ = ψψψ0 against

H1 : ψψψ 6=ψψψ0 in the context the GBS2RM model. The likelihood ratio statistic is given by

W = 2{ℓ(θ̂θθ)− ℓ(θ̃θθ)},

where θ̃θθ denotes the restricted maximum likelihood estimator of θθθ , which is obtained by max-

imizing ℓ(θθθ) subject to ψψψ =ψψψ0, i.e., imposing the null hypothesis. Under standard regularity

conditions, the asymptotic distribution of W under H0 is chi-squared with r degrees of freedom.

Therefore, the null hypothesis is rejected at significance level γ if W > χ2
r (γ).

The coefficient of determination, R2, is widely used in the classic linear regression to mea-

sure how well the model fits the data. It assumes values in the interval [0,1] and the larger the

R2, the better the model fit. A generalization of such a measure was proposed by Nagelkerke

(1991), which we shall denote by R2
N . It can be computed for different regression models,

including the GBS2RM, where R2
N can be viewed as a pseudo-R2. Denoting the full model

likelihood function by L(θ̂θθ ) and the likelihood function obtained only using the intercept in the

linear predictor by L(0), Nagelkerke’s pseudo R2 is given by

R2
N =

1−{L(0)/L(θ̂θθ)}2/n

1−L(0)2/n
,

where n is the sample size. Similarly to R2, the closer to 1 the coefficient R2
N is, the better will

be the fitted model.

3.4 Diagnostic methods

Diagnostic analysis tools allow practitioners to verify whether a fitted regression model

represents well the data at hand. In particular, such tools can be used to verify whether the

model assumptions are satisfied and also whether parameter estimation is considerably affected

by a few atypical observations. In what follows we shall develop some diagnostic analysis tools

for the GBS2RM model.

3.4.1 Residual analysis

We propose two different residuals for the GBS2RM model. They can both be easily com-

puted. The first residual we introduce is based on the stochastic relationship between the normal
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and S H N distributions, namely: if Y ∼S H N (α,µ,ν−1), then Z = 2α−1 sinh[ν(Y −µ)]
follows the standard normal distribution. Let µ̂µµ = (µ̂1, . . . , µ̂n)

⊤ be the estimated linear predic-

tor. The first residual is given by

rSHNi
=

2

α̂
sinh(ν̂(yi − µ̂i)) = ξ̂i2, i = 1, . . . ,n.

It is standard normally distributed if the model’s distributional assumptions are correct.

The second proposed residual is the generalized Cox-Snell residual, which in the GBS2RM

is given by

rCSGi
=− log

(
1−FY (yi|θ̂θθ)

)
=− log

(
1−Φ(ξ̂i2)

)
.

This residual is expected to be exponentially distributed with unit mean if the model’s distribu-

tional assumptions hold true.

A common practice is to use the idea outlined by Atkinson (1985) when performing a

residual analysis. He suggested constructing confidence bands for quantile-quantile (QQ) plots

of the residuals. That can be easily done in the context of the GBS2RM model, as we shall

now explain. Given a vector θ̂θθ of estimates and given a vector of residuals r = (r1, . . . ,rn)
⊤ for

which we want to obtain confidence bands, we can proceed as follows:

1. Generate εεε∗ = (ε∗1 , . . . ,ε
∗
n )

⊤ from S H N (α̂,0,1/ν̂) and obtain a simulated sample:

y∗ = Xβ̂ββ +εεε∗.

2. Fit a GBS2RM model using y∗ as the response variable and X as the matrix of explanatory

variables, and obtain the corresponding residuals: rb = (rb
1, . . . ,r

b
n)

⊤.

3. Execute steps 1 and 2 a large number of times, say B. Then, obtain the ordered residuals

rb
ord = (rb

(1), . . . ,r
b
(n))

⊤, where rb
(i) is the ith order statistic of rb, b = 1, . . . ,B. Obtain a

(1−ρ) confidence interval for r(i), the ith order statistic of r, by computing the ρ/2 and

1−ρ/2 quantiles of r1
(i), . . . ,r

B
(i), the residuals obtained from the simulation, i = 1, . . . ,n.

Then, the (1−ρ) confidence bands for the residuals are obtained by plotting the empirical

quantiles of r along with its respective 1−ρ confidence intervals against the theoretical

quantiles of residuals’ reference distribution.

One can then compute confidence bands for the residuals rSHN and rCSG and use them to check

whether the fitted model represents well the data.

3.4.2 Local influence

Practitioners are oftentimes interested in measuring the impact of different observations on

the resulting parameter estimates. That can be accomplished using the local influence method

proposed by Cook (1986), which is based on the likelihood displacement LD(ωωω) = 2[ℓ(θ̂θθ)−
ℓ(θ̂θθ |ωωω)] as a function of a given perturbation vector ωωω ∈ Ω. Here, ωωω is a q×1 vector, Ω is an

open subset of IRq and θθθ = (θ1, . . . ,θp)
⊤ is the model parameter vector. The no perturbation

vector ωωω0 yields the minimal likelihood displacement and is such that ℓ(θ̂θθ) = ℓ(θ̂θθ |ωωω0). The
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interest lies in evaluating the behavior of LD(ωωω) around ωωω0 by analyzing the normal curvature

of the plot of LD(ωωω0 +al) against a, where a ∈ IR and l is the unit norm direction. According

to Cook (1986), such a curvature is given by

Cl(θ̂θθ) = 2|l⊤∆⊤ℓ−1
θθθθθθ ∆l|,

where ∆ is the perturbation matrix, whose (i, j) element is

∆i j =
∂ 2ℓ(θθθ |ωωω)

∂θi∂ω j

, i = 1, . . . , p and j = 1, . . . ,q.

This matrix is evaluated at both θθθ = θ̂θθ and ωωω =ωωω0.

According to Cook (1986), the main interest lies in the maximal curvature, Cmax, which is

given by the largest eigenvalue of the matrix B = ∆⊤ℓ−1
θθθθθθ ∆. The direction lmax is the eigenvector

of B corresponding to Cmax. The index plot of lmax may reveal which data points lead to the

largest changes in LD(ωωω). It can thus be used to detect influential observations.

Consider the partition of the parameter vector as θθθ = (θθθ 1,θθθ 2)
⊤ and suppose the interest lies

in evaluating the influence on θθθ 1. Cook (1986) showed that the normal curvature is Cl(θ̂θθ 1) =
2|l⊤∆⊤(ℓ−1

θθθθθθ −B1)∆l|, where

B1 =

[
0 0

0 ℓ−1
θθθ2θθθ 2

]
,

where ℓθθθ2θθθ 2
= ∂ 2ℓ(θθθ)/∂θθθ 2θθθ⊤

2 . Hence, an analysis of influence can be based on the index plot

of the eigenvector corresponding to the largest eigenvalue of ∆⊤(ℓ−1
θθθθθθ −B1)∆. Similarly, when

the interest lies θθθ 2, the normal curvature is given by Cl(θ̂θθ 2) = 2|l⊤∆⊤(ℓ−1
θθθθθθ −B2)∆l|, where

B2 =

[
ℓ−1

θθθ1θθθ 1
0

0 0

]
.

Here, ℓθθθ1θθθ1
= ∂ 2ℓ(θθθ)/∂θθθ 1θθθ⊤

1 . Again, the analysis is based on the index plot of the eigenvector

corresponding to the largest eigenvalue of ∆⊤(ℓ−1
θθθθθθ −B2)∆.

We shall consider three different perturbation schemes for the local influence analysis in the

GBS2RM, namely: case-weights perturbation, response variable perturbation, and explanatory

variables perturbation. In the following subsections, we shall provide closed-form expressions

for the perturbation matrix in such perturbation schemes.

3.4.2.1 Case-weights perturbation

In this scheme, the weight ωi represents the contribution of yi to the log-likelihood, i =
1, . . . ,n. The perturbed log-likelihood function is thus given by

ℓ(θθθ |ωωω) =
n

∑
i=1

ωiℓi(θθθ |ωωω),



CHAPTER 3 LOG-LINEAR BIMODAL BIRNBAUM-SAUNDERS REGRESSION MODEL 53

where ℓi(θθθ |ωωω)= log(2/
√

2π)+log(ξi1)−ξ 2
i2/2. The no perturbation vector is ωωω0 =(1, . . . ,1)⊤

and it is possible to show that the components of the perturbation matrix are

∆βββ = X⊤D(a),

∆αi = (ξ 2
i2 −1)/α,

∆νi =
1

ν
+

ξi2

ξi1

ν

2
(yi −µi)−ξi2ξi1

2

ν
(yi −µi),

where a is as before. Let ∆α = (∆α1 · · ·∆αn) and ∆ν = (∆ν1 · · ·∆νn) be row vectors. The

perturbation matrix can be expressed as ∆ = (∆⊤
βββ ,∆

⊤
α ,∆

⊤
ν )

⊤, a matrix of dimension (p+2)×n.

3.4.2.2 Response variable perturbation

In this perturbation scheme, a modified response variable of the form yiω = yi+ωiSy is con-

sidered, i= 1, . . . ,n, where ωi is the ith component of the perturbation vector ωωω = (ω1, . . . ,ωn)
⊤

and Sy is a scaling factor, usually taken to be the standard deviation of y = (y1, . . . ,yn)
⊤. The

no perturbation vector is ωωω0 = (0, . . . ,0)⊤. After some algebra, we obtained

∆βββ = SyX⊤D(m),

∆αi = 4ξi1ξi2Sy/α,

∆νi =
νSy(yi −µi)

cosh2[ν(yi −µi)]
+Sy tanh[ν(yi −µi)]−

4νSy

α2
(yi −µi)cosh[2ν(yi −µi)]

− 4Sy

α2
sinh[ν(yi −µi)]cosh[ν(yi −µi)],

where D(m) = diag{m1, . . . ,mn}, with mi = ν2
[
4α−2 cosh[2ν(yi −µi)]− cosh−2[ν(yi −µi)]

]
.

The perturbation matrix is given by ∆ = (∆⊤
βββ
,∆⊤

α ,∆
⊤
ν )

⊤.

3.4.2.3 Explanatory variables perturbation

This scheme is considered when we are interested in analyzing the impact of a perturbation

on a specific explanatory variable, of index j say. The perturbation here is of the form xk jω =
xk j +ωkSx, where j ∈ {1, . . . , p}, k = 1, . . . ,n and Sx is a scaling factor, usually equal to the

standard deviation of (x1 j, . . . ,xn j)
⊤. The no perturbation vector is ωωω0 = (0, . . . ,0)⊤. It is

possible to show that the perturbation matrix is composed by

∆βββ = Sxβ jX
⊤D(o1)+Sxq( j)o⊤2 ,

∆αi =−4Sxβ jξi1ξi2/α,

∆νi =−Sxβ j

{
(yi −µi)ν

3

α2ξ 2
i1

+
νξi2

2ξi1
− 4ν

α2
(yi −µi)cosh[2ν(yi −µi)]−

2

ν
ξi2ξi1

}
,
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where o1 = (o11, . . . ,o1n)
⊤ and o2 = (o21, . . . ,o2n)

⊤, with

o1i = ν2

{
1

cosh2[ν(yi −µi)]
− 4

α2
cosh[2ν(yi −µi)]

}
,

o2i = ν

{
2

α2
sinh[2ν(yi −µi)]− tanh[ν(yi −µi)]

}
,

and q( j) is a vector with one in the jth position and zero elsewhere. The perturbation matrix is

once again given by ∆ = (∆⊤
βββ ,∆

⊤
α ,∆

⊤
ν )

⊤.

3.4.3 Generalized leverage

The generalized leverage method was proposed by Wei et al. (1998) and aims at measuring

the influence of observed values on predicted values. Let ỹ = (ỹ1, . . . , ỹn)
⊤ be the vector of

predicted values. The generalized leverage is given by ∂ ỹi/∂y j, i.e., it is the change in the ith

predicted value induced by the jth response value. The leverage matrix proposed by the authors

is given by

GL(θ) = Dθθθ (−ℓθθθθθθ )
−1(ℓθθθy),

where ℓθθθy = ∂ 2ℓ(θθθ)/∂θθθ∂y⊤ and Dθθθ = ∂µµµ/∂θθθ⊤, µµµ denoting the expected value of y. Such

a matrix is evaluated at the maximum likelihood estimate θ̂θθ and the leverage points are those

observations with large values of GLii, the ith diagonal element of GL(θ), i = 1, . . . ,n.

In the GBS2RM we have that µµµ = Xβββ , thus Dθθθ = [X 0 0], an n× (p+2) matrix, where 0

denotes an n-vector of zeros. Additionally,

ℓθθθy = (−1)




X⊤V

d⊤

g⊤


 ,

where the expressions of V , d and g are given in Section 3.3.

When we only focus on the vector βββ , we obtain Dβββ = X , ℓβββy = −X⊤V and ℓββββββ = X⊤VX .

Consequently, the leverage matrix for the regression parameters is given by

GL(βββ ) = X
(

X⊤V X
)−1

X⊤V.

3.4.4 Generalized Cook’s distance

According to Xie and Wei (2007) and Cook and Weisberg (1982), the generalized Cook

distance is given by

GDi =
(

θ̂θθ (i)−θθθ
)⊤

M
(

θ̂θθ (i)−θθθ
)
,

where θ̂θθ (i) denotes the estimate of θθθ obtained after excluding the ith observation from the

sample and M is a nonnegative definite matrix, usually taken to be M = −ℓθθθθθθ , the observed

information matrix.
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Obtaining θ̂θθ (i) may be computationally cumbersome when the sample size is large. An

alternative is to use the one-step approximation to θ̂θθ (i) as proposed by Xie and Wei (2007) for

the log-linear Birnbaum-Saunders model. The one-step approximation is given by

θ̂θθ
1

(i) = θ̂θθ +{−ℓθθθθθθ}−1ℓθθθ(i),

where ℓθθθ(i) = ∂ℓ(i)(θθθ)/∂θθθ , with ℓ(i) denoting the log-likelihood function of model without the

ith observation. The terms on the right hand side of the equality are evaluated at the maximum

likelihood estimates. The index 1 in θ̂θθ
1

(i) indicates that we are using the one-step approximation.

Following Xie and Wei (2007) and using the fact that ℓθθθ |θθθ=θ̂θθ = 0, it can be shown that the

components of ℓθθθ(i) are

∂ℓ(i)(θθθ)

∂βl

∣∣∣∣
θθθ=θ̂θθ

= xil

{
ν2

2

ξi2

ξi1
−2ξi2ξi1

}∣∣∣∣
θθθ=θ̂θθ

, l = 1, . . . , p,

∂ℓ(i)(θθθ)

∂α

∣∣∣∣
θθθ=θ̂θθ

=

{
1−ξ 2

i2

α

}∣∣∣∣
θθθ=θ̂θθ

,

∂ℓ(i)(θθθ)

∂ν

∣∣∣∣
θθθ=θ̂θθ

=

{
ξi2ξi1

2(yi −µi)

ν
− 1

ν
− ξi2

ξi1

ν

2
(yi −µi)

}∣∣∣∣
θθθ=θ̂θθ

.

Since θ̂θθ
1

(i)− θ̂θθ = {−ℓθθθθθθ}−1ℓθθθ(i), using M = {−ℓθθθθθθ} we obtain that the generalized Cook

distance can be approximated by

GD1
i = ℓ⊤θθθ(i){−ℓθθθθθθ}−1ℓθθθ(i)

∣∣∣
θθθ=θ̂θθ

.

In order to evaluate the impact of the ith observation on βββ , α or ν , we approximate GDi in

each of these cases in the following manner, respectively:

GD1
i (βββ ) = ℓ⊤βββ (i){[−ℓθθθθθθ ]

−1}ββββββ ℓβββ(i)

∣∣∣
θθθ=θ̂θθ

,

GD1
i (α) = ℓ⊤α(i){[−ℓθθθθθθ ]

−1}ααℓα(i)

∣∣∣
θθθ=θ̂θθ

,

GD1
i (ν) = ℓ⊤ν(i){[−ℓθθθθθθ ]

−1}ννℓν(i)

∣∣∣
θθθ=θ̂θθ

,

where {·}θθθ jθθθ j represents the diagonal block corresponding to θθθ j in the matrix.

3.4.5 A misspecification test

A key assumption of the GBS2RM is that the variable y is linearly related to the vector of

regression parameters βββ , which may not hold true in some applications. Other misspecifications

may take place, such as the omission of an important covariate or of interactions between

covariates. Therefore, it is important to test whether the functional form of a fitted GBS2RM is

adequate. In short, we wish to test whether the GBS2RM is misspecified.
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The effect of model misspecification on the residuals of classic linear regression models was

investigated by Ramsey (1969), who proposed the RESET test (Regression Specification Error

Test) that can be used to determine whether a given classic linear model is correctly specified.

Given a classic linear model, the test procedure consists of augmenting the model using one

or more testing variables and then testing their exclusion. Rejection of the null hypothesis

indicates that the model specification is in error. The testing variables can be taken as powers

of the model fitted values, as proposed by Ramsey and Gilbert (1972).

A RESET-type test for the log-linear Birnbaum-Saunders model was considered by Santos

and Cribari-Neto (2015), who investigated the test size distortions in small samples and its

power under different types of misspecification. The authors noted that the test is capable of

detecting model misspecification, especially when the sample size is large. The same approach

can be applied for the GBS2RM. The misspecification test for the GBS2RM model can be

carried out as follows:

1. Estimate the parameters of the GBS2RM

yi = xi1β1 + xi2β2 + · · ·+ xipβp+ εi, i = 1, . . . ,n,

and obtain the predicted values µ̂µµ = (µ̂1, . . . , µ̂n)
⊤.

2. Estimate the parameters of the augmented GBS2RM, given by

yi = xi1β1 + xi2β2 + · · ·+ xipβp+ γ1µ̂2
i + · · ·+ γk−1µ̂k

i + εi, i = 1, . . . ,n,

where k is an integer greater or equal to 2.

3. Test H0 : γ1 = · · ·= γk−1 = 0 (correct model specification) against H1 that γ j 6= 0 for at

least one j ∈ {1, . . . ,k−1} (model misspecification).

4. If the null hypothesis is rejected, reject the model under evaluation. However, if H0 is

not rejected, there is evidence that the model functional form is adequate.

3.5 Prediction intervals

In this section we address the issue of obtaining prediction intervals for a non-observed

response value. We shall use an approach similar to that developed by Stine (1985) for linear

models. Stine’s proposal involves the use bootstrap resampling to estimate the prediction error

distribution, which is then used to obtain the prediction intervals. In similar fashion, Davison

and Hinkley (1997) provide an algorithm to compute bootstrap prediction intervals for general-

ized linear models, which was recently extended by Espinheira et al. (2014) for beta regression

models. In fact, building upon the work of Mojirsheibani and Tibshirani (1996) on confidence

intervals for parameters based on future samples, Espinheira et al. (2014) proposed a method

that can be used to compute BCa (bias-corrected and accelerated) prediction intervals, which

we shall now apply to the GBS2RM.

Consider a sample y1, . . . ,yn of the response variable and let X be the corresponding matrix

of covariates. The goal lies in computing a prediction interval for a non-observed response
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value y+ based on a new observation of the covariates, denoted by x+. We must consider a

prediction error function R(y; µ), which is a monotonic function of y, has constant variance

and whose ρth quantile is denoted by δρ . Here, µ denotes the mean of y. The lower and upper

prediction limits of a 1−ρ prediction interval for y+ are, respectively, y+,ρ/2 and y+,1−ρ/2, such

that R(y+,ρ/2; µ) = δρ/2 and R(y+,1−ρ/2; µ) = δ1−ρ/2. Since the distribution of R(y+; µ) is

usually unknown, we make use of resampling methods to estimate it. Espinheira et al. (2014)

propose a method to construct BCa (Efron, 1987) prediction intervals by using the estimate

ρ̃ = Φ

(
ẑ0 +

ẑ0 + zρ

1− â(ẑ0 + zρ)

)
,

where ẑ0 is a bias correction constant, â is a factor known as acceleration constant and zρ is the

ρth standard normal quantile. The following estimates for z0 and a are used for constructing

the prediction intervals for new response observations:

ẑ0 = Φ−1

(
#{R∗

+ < Rm}
B

)
and a =

√
n IE(ℓ̇3

+)

6Var(ℓ̇+)3/2
,

where Rm is the median of the prediction errors R1, . . . ,Rn of the fitted model, R∗
+ denotes the

bootstrap estimate of the prediction error for the non-observed response value, B is the number

of bootstrap replications used and ℓ̇= ∂ log fY (y+|θθθ)/∂ µ .

In the GBS2RM, a = 0. To see that notice that ℓ̇ = 2ξ1ξ2 − ν2ξ2/(2ξ1), where ξ1 =
ν cosh[ν(y−µ)]/α and ξ2 = 2sinhν(y−µ)]/α . Therefore, the numerator of a is proportional

to

IE(ℓ̇3) =−ν6

8
IE

(
ξ 3

2

ξ 3
1

)
+

3ν4

2
IE

(
ξ 3

2

ξ1

)
−6ν2IE

(
ξ1ξ 3

2

)
+8ν2IE

(
ξ 3

1 ξ 3
2

)
.

Using the fact that ξ1 = ν
√

1+(αξ2/2)2/2 and that expected values of odd functions of a

standard normal random variable equal zero, it is possible to show that IE(ℓ̇3) = 0 and, as

a consequence, a = 0. Hence, in the GBS2RM the BCa method reduces to the BC (bias-

corrected) method proposed by Efron (1981), where the estimate of ρ turns out to be

ρ̃ = Φ
(
2ẑ0 + zρ

)
. (3.2)

We consider the rSHN residual as the prediction error function for the GBS2RM, where

Ri = rSHNi
, i = 1, . . . ,n. Moreover, we notice that such a prediction error function is monotonic

in y and has constant variance, since the reference distribution of the rSHN residual is standard

normal.

For a given estimate θ̂θθ , a new observation of the covariates x+ and the residuals rSHN =
(rSHN1

,. . ., rSHNn
)⊤ from the fitted model, the algorithm for computing prediction intervals for

y+ in the GBS2RM model can be outlined as follows:

1. Draw a random sample from rSHN with replacement to construct r∗ = (r∗1, . . . ,r
∗
n)

⊤, and

then, obtain a bootstrap sample of the response variable y∗i = sinh−1(α̂r∗i /2)/ν̂ + µ̂i,

where µ̂i = x⊤i β̂ββ , i = 1, . . . ,n.
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2. Fit the GBS2RM using y∗ = (y∗1, . . . ,y
∗
n)

⊤ and X , obtaining θ̂θθ
∗
= (β̂ββ

∗
, α̂∗, ν̂∗)⊤.

3. Randomly draw r∗ from rSHN and then compute y∗+ = sinh−1(α̂r∗/2)/ν̂ + µ̂+, where

µ̂+ = x⊤+β̂ββ . Now compute the bootstrap prediction error R
∗
+ = 2sinh(ν̂∗(y∗+− µ̂∗

+))/α̂∗,

where µ̂∗
+ = x⊤+β̂ββ

∗
.

4. Execute steps 1, 2 and 3 for B times. Considering the order statistics of the bootstrap

prediction errors R∗
+(1) ≤ ·· · ≤ R∗

+(B), compute the BCa quantiles δ BCa

+(ρ̃/2)
= R∗

+(⌈Bρ̃/2⌉)
and δ BCa

+(1−ρ̃/2) = R∗
+(⌈B(1−ρ̃/2)⌉), where ρ̃ is given in Equation (3.2). Finally, the lower

and upper limits of the 1−ρ BCa prediction interval are, respectively,

y+,ρ̃/2 =
1

ν̂
sinh−1


 α̂δ BCa

+(ρ̃/2)

2


+ µ̂+ and y+,1−ρ̃/2 =

1

ν̂
sinh−1


 α̂δ BCa

+(1−ρ̃/2)

2


+ µ̂+.

This algorithm can also be used to compute a 1−ρ confidence percentile prediction interval,

which is obtained setting ẑ0 = 0 in Equation (3.2) in the step 4. Prediction intervals for several

unobserved response values can be obtained by using the above algorithm for each missing data

value.

3.6 Model selection criteria

Model specification is of paramount importance in regression analysis. It is oftentimes

based on model selection criteria, i.e., on criteria that seek to identify the best fitting model.

The most commonly used model selection criteria are the Akaike information criteria (AIC),

proposed by Akaike (1973), and the Schwarz information criteria (SIC), introduced by Schwarz

(1978). For a detailed account of the different model selection criteria and their use in regres-

sion modeling, readers are referred to McQuarrie and Tsai (1998). Our goal in what follows is

to present some model selection criteria that can be used with the GBS2RM. We follow Bayer

and Cribari-Neto (2015), who considered model selection in the class of varying dispersion

beta regressions.

Several model selection criteria were developed as extensions of previously existing criteria,

such as the AIC. Akaike (1973) derived the AIC as an estimator of the quantity ∆(θ0,k) =
IE0 [−2log f (y|θθθ)] |θθθ=θ̂θθ , a measure of the discrepancy between the true model f (y|θθθ 0) and a

fitted candidate model f (y|θ̂θθ), where IE0 indicates that the expectation is computed with respect

to the true model and k is the dimension of θθθ . The AIC is given by −2log f (y|θ̂θθ)+2k, the term

−2log f (y|θ̂θθ) being Akaike’s estimator of ∆(θ0,k) and 2k being an asymptotic bias correction.

The AIC is the most commonly used model selection criterion. Nonetheless, it may perform

poorly in small samples, as pointed out by Hurvich and Tsai (1989). This occurs because the

AIC becomes progressively more negatively biased as k becomes larger relative to n, which

leads the AIC to often select over-specified models. As a consequence, bias-adjusted variants

of the AIC have been proposed and investigated in the literature. They are typically obtained

by deriving bias corrections that are superior to 2k. The AICc of Sugiura (1978) and Hurvich
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and Tsai (1989) is given by

AICc =−2log f (y|θ̂θθ)+2k
n

n− k−2
.

Furthermore, some authors suggested using bootstrap resampling to estimate the bias of the

term −2log f (y|θ̂θθ); see, e.g., Ishiguro and Sakamoto (1991), Cavanaugh and Shumway (1997)

and Shibata (1997). Using the same notation as in Bayer and Cribari-Neto (2015), some of the

bootstrap-based variants of the AIC can be expressed as:

EIC1 =−2log f (y|θ̂θθ)+ 1

B

B

∑
b=1

[
2log f (yb|θ̂θθ b

)−2log f (y|θ̂θθ b
)
]
,

EIC2 =−2log f (y|θ̂θθ)+ 1

B

B

∑
b=1

[
4log f (y|θ̂θθ)−4log f (y|θ̂θθ b

)
]
,

EIC3 =−2log f (y|θ̂θθ)+ 1

B

B

∑
b=1

[
4log f (yb|θ̂θθ b

)−4log f (yb|θ̂θθ)
]
,

EIC4 =−2log f (y|θ̂θθ)+ 1

B

B

∑
b=1

[
4log f (yb|θ̂θθ)−4log f (y|θ̂θθ b

)
]
,

EIC5 =−2log f (y|θ̂θθ)+ 1

B

B

∑
b=1

[
4log f (yb|θ̂θθ b

)−4log f (y|θ̂θθ)
]
,

where B denotes the number of bootstrap replications used, yb denotes the bth bootstrap re-

sponse value and θ̂θθ
b

is the bth bootstrap estimate, b = 1, . . . ,B, obtained by maximizing the

function log f (yb|θθθ) with respect to θθθ . The criteria EIC1 and EIC2 were proposed by Ishiguro

and Sakamoto (1991) and by Cavanaugh and Shumway (1997), respectively. Shibata (1997)

showed that the EIC1 and EIC2 are asymptotically equivalent and proposed the EIC3, EIC4 and

EIC5 criteria.

The five bootstrap-based information criteria listed above differ in the way they estimate the

bias term, the goodness of fit factor −2log f (y|θ̂θθ) being the same for all of them. Following

Pan (1999), Bayer and Cribari-Neto (2015) proposed a bootstrap model selection criterion that

focuses on the goodness of fit term rather than on the bias. The authors introduced the BQCV

(bootstrap quasi cross-validation) criterion, which is given by

BQCV =
1

B

B

∑
b=1

−2log f (y|θ̂θθ b
),

where the bootstrap is carried out parametrically. As noted by Bayer and Cribari-Neto (2015),

the BQCV criterion estimates the discrepancy between the true model and a candidate model

directly, but can overestimate ∆(θ0,k). Hence, the authors proposed using the following the

criterion:

632QCV = 0.368× [−2log f (y|θ̂θθ)]+0.632×BQCV
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which follows from the results in Pan (1999) and from the fact that −2log f (y|θ̂θθ) and BQCV

underestimate and overestimate ∆(θ0,k), respectively. Thus, 632QCV aims at balancing these

two terms.

Several other (not AIC-based) criteria were proposed in the literature, such as the afore-

mentioned SIC, the SICc derived by McQuarrie (1999), the HQ proposed by Hannan and Quinn

(1979) and its corrected version presented by McQuarrie and Tsai (1998) for the normal linear

model. Such criteria are given by:

SIC =−2log f (y|θ̂θθ)+ k log(n),

SICc =−2log f (y|θ̂θθ)+ k log(n)n/(n− k−2),

HQ =−2log f (y|θ̂θθ)+2k log(log(n)),

HQc =−2log f (y|θ̂θθ)+2k log(log(n))n/(n− k−2).

The finite sample performances of the criteria listed above were investigated in the literature

for a wide variety of models, such as regression, time series and nonparametric models; for

details, see McQuarrie and Tsai (1998). In the next section we shall numerically evaluate how

well model selection schemes based on model selection criteria work in the log-linear G BS 2

model.

3.7 Numerical evaluations

In this section we shall present results from Monte Carlo simulation studies that were con-

ducted to numerically evaluate the finite performances of maximum likelihood estimators of

the parameters that index the GBS2RM model and to evaluate the quality of the approximation

of the rSHN and rCSG residuals distributions by their respective reference distributions. Addi-

tionally, we shall numerically evaluate the finite sample performance of the RESET-type test

for misspecification of the GBS2RM model, prediction intervals for non-observed response

values and model selection schemes. The simulations were performed using the OX matrix

programming language (Doornik, 2009). Log-likelihood maximizations were carried out using

the BFGS quasi-Newton nonlinear optimization algorithm with analytical first derivatives.

3.7.1 Maximum likelihood estimation

In our simulation study, the parameter vector is θθθ =(β1,β2,α,ν)⊤ and the regression model

is

yi = β1 +β2xi + εi, i = 1, . . . ,n, (3.3)

where εi
iid∼ S H N (α,0,ν−1). The parameter values are β1 = 1, β2 = 0.5, α = 1 and ν = 1

and the starting points for the log-likelihood maximization were obtained by using the proposal

made in Section 3.3.
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The covariates values were randomly generated from three different distributions: uniform

U (0,1), exponential with unit mean, and standard normal. We shall denote such data genera-

tion schemes by E1, E2 and E3, respectively. The values of all covariates were kept constant

during the simulations.

The results we report are based on 10,000 Monte Carlo replications, the sample sizes being

n ∈ {30,60,90}. We computed the mean squared error (MSE) of the MLE of each parameter

and also the corresponding relative biases: [IE(θ̂θθ j)−θθθ j]/θθθ j, j = 1, . . . ,4. The results for the

different covariates generation schemes are presented in Table 3.1. We note that the MSEs

tend to decrease as larger sample sizes are used, as expected. The estimates of the regression

parameters β1 and β2 are more accurate than those of α and ν . All estimators perform well

when n = 60 and n = 90. The results for the three covariates generation schemes are similar.

Table 3.1 Relative bias (RB) and mean squared error (MSE), Model (3.3)

Generation n Statistic β1 β2 α ν

E1

30
RB 0.0003 −0.0052 1.5198 0.9057

MSE 0.1711 0.3156 2.3377 1.2659

60
RB 0.0019 −0.0077 0.6301 0.4362

MSE 0.1093 0.2078 1.0530 0.7104

90
RB 0.0017 −0.0061 0.3922 0.2829

MSE 0.0934 0.1650 0.7314 0.5285

E2

30
RB −0.0016 0.0020 1.4943 0.8875

MSE 0.1354 0.0999 2.3341 1.2546

60
RB −0.0006 0.0015 0.6219 0.4318

MSE 0.0900 0.0567 1.0415 0.7050

90
RB −0.0003 0.0014 0.3859 0.2789

MSE 0.0705 0.0498 0.7232 0.5242

E3

30
RB −0.0004 0.0004 1.5218 0.8988

MSE 0.0875 0.0926 2.3787 1.2661

60
RB 0.0002 −0.0009 0.6344 0.4387

MSE 0.0606 0.0586 1.0576 0.7101

90
RB 0.0002 −0.0002 0.3919 0.2836

MSE 0.0484 0.0458 0.7236 0.5234

3.7.2 Empirical distribution of the residuals

The second simulation study was performed to evaluate how well the distributions of the

residuals rSHN and rCSG are approximated by the corresponding reference distributions. The

results are for Model (3.3) and the sample size is n = 60. The covariates values are obtained as

in the previous simulation. Based on all 10,000 replications, we computed the means, standard

deviations, asymmetries and kurtosis of the two residuals. For the rSHN residual, whose distri-

bution is expected to be approximately standard normal, we expect such statistics to be close

to 0, 1, 0 and 3, respectively. For the rCSG residual, whose reference distribution is exponential

with unit mean, such statistics are expected to be close to 1, 1, 2 and 6, respectively. The results
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are presented in Table 3.2. They show that the distribution of rSHN is better approximated by its

reference distribution than that of rCSG. Nonetheless, the results for the residual rCSG were also

satisfactory, the means and standard deviations being quite close to one. It is then possible to

conclude that the distributions of the proposed residuals are well approximated by the respec-

tive reference distributions. Practitioners can then compare the quantiles of residuals obtained

from a fitted GBS2RM with those of the corresponding reference distributions.

Table 3.2 Means, standard deviations (SD), asymmetries and kurtosis of the residuals rSHN and rCSG,

Model (3.3)

Generation Residual Mean SD Asymmetry Kurtosis

E1
rSHN −2.11×10−5 0.9989 0.0003 2.9700

rCSG 1.0000 0.9928 1.7866 6.7611

E2
rSHN −8.85×10−5 0.9989 0.0007 2.9720

rCSG 0.9999 0.9931 1.7905 6.7936

E3
rSHN 0.0003 0.9988 0.0001 2.9712

rCSG 1.0003 0.9929 1.7871 6.7705

3.7.3 RESET-type misspecification test

Next, we performed a set of Monte Carlo simulations to evaluate the finite sample perfor-

mance of the RESET-type misspecification test. Since the previous results were similar for the

different schemes of covariates values generation, we shall only report results obtained using

standard uniform draws. The number of Monte Carlo replications is 10,000 and the sample

sizes are n ∈ {30,60,90}. The testing variable is the vector of squared predicted values and the

test was performed using the likelihood ratio test criterion. The significance levels are 10%,

5% and 1%.

The first simulation study was carried out to compute the RESET-type test null rejec-

tion rates. In each Monte Carlo replication we generated yi = 1− 0.5x2i + 1.3x3i + εi, where

εi
iid∼ S H N (1,0,1), i = 1, . . . ,n, fitted the GBS2RM and obtained the predicted values. We

then fitted the model yi = β1+β2x2i+β3x3i+γµ̂2
i +εi and tested the null hypothesis H0 : γ = 0

against a two-sided alternative hypothesis. The test null rejection rates are presented in Ta-

ble 3.3. We note that the test is considerably size-distorted when the sample size is small

(n = 30); such distortions become much smaller when the sample size increases to n = 60 and

n = 90. With 90 observations, the test null rejection rate at the 5% nominal level is 6.9%.

Table 3.3 Null rejection rates of the RESET-type test for the GBS2RM

n
Significance level

10% 5% 1%

30 0.2107 0.1367 0.0437

60 0.1388 0.0808 0.0218

90 0.1268 0.0690 0.0170
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Other simulations were performed to evaluate the power of the RESET-type test under dif-

ferent sources of model misspecification. We consider four different data generation processes

(schemes), denoted by P1, P2, P3 and P4. In scheme P1, yi = 1+ 0.5x2i + 1.8x3i + 1.8x2i ×
x3i + εi; notice the interaction between the two covariates. In scheme P2, yi = 1+ 0.5x2i +
1.8x3i +1.8x2

i2 +εi; notice that the linear predictor includes a squared regressor. In scheme P3,

yi = 1+0.5x2i +1.8x3i +1.5x4i + εi; notice the covariate x4. In scheme P4, the data generat-

ing process is nonlinear: yi = (1+0.5x2i +1.8x3i)
ϕ + εi, ϕ ∈ IR. In the simulations, we used

ϕ = 1.7. In all four schemes, εi
iid∼ S H N (1,0,1), i = 1, . . . ,n, and the following (misspeci-

fied) model was estimated: yi = β1+β2x2i+β3x3i+εi. Since the test is liberal, testing inference

here was based on exact critical values which were estimated in the previous simulations (size

simulations). We thus compute the power of a size-corrected test. The test nonnull rejection

rates are presented in Table 3.4. We note that the RESET-type test for the GBS2RM displays

good power, with nonnull rejection rates increasing when larger sample sizes are considered.

The test was more powerful under scheme P4, where linearity is incorrectly assumed.

Table 3.4 Nonnull rejection rates of the RESET-type test for the GBS2RM model under different

schemes of model misspecification

Scheme n
Significance level

10% 5% 1%

P1

30 0.2456 0.1573 0.0496

60 0.4778 0.3405 0.1407

90 0.6471 0.5183 0.2856

P2

30 0.1845 0.1103 0.0316

60 0.3226 0.2083 0.0718

90 0.4428 0.3234 0.1522

P3

30 0.2090 0.1243 0.0354

60 0.5286 0.3635 0.1276

90 0.7724 0.6314 0.3428

P4

30 0.3601 0.2470 0.0959

60 0.6571 0.5212 0.2631

90 0.8352 0.7320 0.5104

3.7.4 Prediction intervals

A simulation study was performed to evaluate the performances of the percentile and BCa

prediction intervals for a non-observed occurrence y+ of the response variable given a new

observation of the covariate in a GBS2RM model. The data generating process is yi = 1+

0.5x2i +εi, where εi
iid∼ S H N (α,0,1/ν), i = 1, . . . ,n. The results are presented in Table 3.5.

The sample sizes considered were as in the previous simulation studies, the number of Monte

Carlo replications used was 5,000 and the covariate values were obtained as random draws from

U (0,1). We used B = 1,000 bootstrap replications for constructing 95% confidence prediction

intervals. In Table 3.5 we present the empirical coverages of the percentile and BCa prediction

intervals and the proportions of the replications for which y+ was smaller (larger) than the
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lower (upper) prediction intervals. The figures in Table 3.5 show that both prediction intervals

display empirical coverages close to 95% and that the non-coverages are well distributed in both

sides. The percentile intervals perform slightly better than the BCa intervals. Additionally, the

performances of both intervals improve as the sample size increases, as expected. It is thus

noteworthy that bootstrap prediction intervals perform well when used with the GBS2RM,

especially the percentile method.

Table 3.5 Empirical coverages and left and right non-coverages of 95% prediction intervals in a

GBS2RM for different values of α and ν

n
Percentile BCa

Left Coverage Right Left Coverage Right

θθθ = (1,0.5,1,1)⊤

30 0.027 0.942 0.031 0.029 0.939 0.032

60 0.026 0.946 0.028 0.025 0.945 0.030

90 0.026 0.947 0.027 0.027 0.945 0.028

θθθ = (1,0.5,0.5,1.5)⊤

30 0.028 0.941 0.031 0.029 0.937 0.034

60 0.025 0.950 0.025 0.025 0.948 0.027

90 0.024 0.950 0.026 0.025 0.950 0.025

θθθ = (1,0.5,1.5,0.5)⊤

30 0.029 0.945 0.026 0.029 0.941 0.030

60 0.026 0.949 0.025 0.026 0.949 0.025

90 0.028 0.949 0.023 0.028 0.949 0.023

3.7.5 Model selection criteria

We performed a simulation study to evaluate the finite sample performances of the model

selection criteria presented in Section 3.6. The simulation is similar to that conducted by Hur-

vich and Tsai (1989) for linear models. The true model is yi =−1+ x2i + x3i + x4i + εi, where

εi
iid∼ S H N (1,0,1), i = 1, . . . ,n, and the true vector parameter θθθ 0 has dimension k0 = 6. We

consider the n×6 matrix of candidate regressors X̃ , whose first column is a vector of ones. The

first four columns of such a matrix contain the regressors that are present in the true data gen-

erating process. The models were fitted in nested fashion using as covariates the first 2,3, . . . ,6
columns of X̃ . The number of Monte Carlo and bootstrap replications are as before, as well

as the sample sizes considered. All covariate values in X̃ were obtained as random standard

uniform draws. The bootstrap extensions of the AIC criteria as well as BQCV and 632QCV

were computed using parametric resampling. Nonparametric bootstrap resampling leads to

very similar results which are not presented for brevity. We computed the proportion of model

under-specification, over-specification and correct specification for each criterion. The results

are presented in Table 3.6. They show that AIC tends to select over-specified models, especially

for small sample sizes. The bootstrap extensions of the AIC performed well when n = 60 and

n = 90. For instance, for n = 60 the largest frequency of correct model selection was achieved

by the EIC1. The performances of the EIC2 and EIC4 were also very good for n = 90, with
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proportions of correct specification in excess of 97%. Overall and on balance, the SICc was the

best performer. It outperformed all competing criteria when n = 30 and was very competitive

with the bootstrap criteria when n = 60 and n = 90. Additionally, SICc does not entail the com-

putational burden of performing data resampling. We thus recommend that model selection be

based on such a criterion when performing GBS2RM modeling.

Table 3.6 Proportions of model under-specification (k < k0), correct specification (k = k0) and over-

specification (k > k0) of a GBS2RM using the selection criteria discussed in Section 3.6

n = 30 n = 60 n = 90

< k0 = k0 > k0 < k0 = k0 > k0 < k0 = k0 > k0

AIC 0.018 0.454 0.527 0.000 0.676 0.324 0.000 0.723 0.277

AICc 0.052 0.658 0.290 0.000 0.762 0.238 0.000 0.775 0.225

SIC 0.052 0.625 0.323 0.001 0.887 0.112 0.000 0.929 0.071

SICc 0.151 0.741 0.107 0.004 0.936 0.060 0.000 0.960 0.039

HQ 0.031 0.517 0.451 0.001 0.790 0.209 0.000 0.844 0.156

HQc 0.083 0.705 0.212 0.001 0.866 0.133 0.000 0.890 0.110

EIC1 0.909 0.088 0.003 0.021 0.945 0.034 0.000 0.941 0.059

EIC2 0.953 0.045 0.002 0.099 0.887 0.014 0.000 0.978 0.022

EIC3 0.059 0.576 0.365 0.001 0.781 0.219 0.000 0.790 0.210

EIC4 0.954 0.044 0.002 0.099 0.888 0.012 0.000 0.976 0.024

EIC5 0.059 0.607 0.334 0.001 0.778 0.221 0.000 0.766 0.234

BQCV 0.898 0.098 0.004 0.013 0.930 0.057 0.000 0.886 0.114

BQCV632 0.830 0.161 0.009 0.002 0.890 0.107 0.000 0.776 0.224

3.8 Empirical applications

We shall now use the GBS2RM to analyze real (not simulated) data. The data contain

information on patients who suffered from an acute type of leukemia and are provided by

Feigl and Zelen (1965). The variable of interest is the patient’s lifetime (in weeks) since the

disease diagnosis. One of the covariates is the patient’s white blood cells count upon leukemia

diagnosis. The other covariate marks the presence or absence of a specific factor in the patient

white cells, which can be classified as AG positive or AG negative, respectively.

Let yi = log(ti) be the logarithm of the ith patient lifetime, xi2 = log(Wi) be the logarithm

of the patient’s white blood cells count and xi3 be a dummy variable that equals one if the ith

patient is AG positive and zero otherwise, i = 1, . . . ,33. Figure 3.2 contains boxplots of y and

x2 for different levels of x3 and a scatterplot of y vs. x2. We note from Figure 3.2a that lifetime

tends to decrease as the white cells count increases and that AG negative patients (x3 = 0) seem

to display lower lifetimes than AG positive patients (x3 = 1), which can also be observed in

Figure 3.2b. Figure 3.2c shows that there is no clear relationship between x2 and x3.

We estimated the following log-linear model G BS 2:

yi = β1 +β2xi2 +β3xi3 + εi, (3.4)
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Figure 3.2 Scatterplot of the response variable vs. x2 (a) and boxplots for different levels of x3 (b and

c).

where εi
iid∼ S H N (α,0,ν−1). The maximum likelihood estimates of the parameters (stan-

dard errors in parentheses) are β̂1 = 6.159 (0.8280), β̂2 =−0.360 (0.0828), β̂3 = 0.055 (0.2786),
α̂ = 6.914 (3.8980) and ν̂ = 1.272 (0.2794). It is noteworthy that the standard error of β3 is

large, which might be an indicative that the variable x3 is not relevant for the analysis at hand.

Indeed, for the the model in Equation (3.4) SICc = 120.97 whereas when the model is fit-

ted without the covariate x3 SICc = 115.92. Simultaneous removal of x2 and of the intercept

yielded a larger value of the model selection criterion. The other selection criteria also led to

the same conclusions. We shall address the significance of the factor AG later in this section.

The likelihood ratio test statistic for testing H0 : ν = 0.5 against H1 : ν 6= 0.5 equals 4.65, the

corresponding p-value being 0.0309. That is, there is evidence (at the 5% significance level)

that the GBS2RM is superior to the BSRM for analyzing these data.

The value of Nagelkerke’s pseudo-R2 for the GBS2RM model was R2
N = 0.3501. Figure 3.3

contains residual (rSHN and rCSG) plots. In Figures 3.3a and 3.3b we see plots of residuals

against predicted values µ̂µµ with 95% confidence bands. Notice that most residuals lie inside

the intervals and that there is no noticeable pattern in the residuals. Visual inspection of Fig-

ures 3.3c and 3.3d reveal that all residuals are inside the confidence regions, thus indicating that

the distributional assumptions hold. We also performed the RESET-type test for model mis-

specification using the square of the predicted values (µ̂µµ) as testing variable. The test statistic

equals 0.73, the corresponding p-value being 0.3916. That is, there is no evidence of model

misspecification at the usual significance levels.

Local influence analysis for the GBS2RM model should be able to identify data points that

might be largely influencing the parameters estimates. Figure 3.4 contains local influence plots

relative to the regression and shape parameters using the three perturbation schemes discussed

earlier. It is noteworthy that the most influential data points are observations 14, 15 and 17.

We computed the generalized Cook distance for each observation. The GD measures for the

model parameters are presented in Figure 3.5. Notice that such results agree with those obtained

using local influence analysis, i.e., observations 14, 15 and 17 are singled out as atypical.
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Figure 3.3 Predicted values µ̂µµ against the residuals rSHN (a) and rCSG (b), and simulated envelopes with

bands of 95% of confidence for the residuals rSHN (c) and rCSG (d). The dashed lines in the panels (a)

and (b) indicate approximate confidence regions (95% confidence).

Generalized leverage measures are presented in Figure 3.6. Observations 2 and 21 stand

out. The former corresponds to the patient with the lowest white cells count among all AG

positive patients, whereas the latter corresponds to the patient with the lowest white cells count

among all AG negative patients.

We sequentially removed each atypical observation from the data and fitted the model af-

ter each data point removal. In each case, we computed the absolute relative change in the

estimates, i.e., we computed |(θ̂θθ j(i)− θ̂θθ j)/θ̂θθ j|, where θ̂θθ j represents the jth parameter estimate

obtained using the complete data and θ̂θθ j(i) represents the corresponding estimate obtained after

the ith observation removal. Additionally, we tested the significance of each regressor when

the reduced data was used. We also tested whether ν was significantly different from 0.5, i.e.,

whether the testing inference still suggested that the GBS2RM was superior to the log-linear

Birnbaum-Saunders model. The main goal is to determine whether any relevant inferential de-

cision was reversed after the atypical observations were removed from the data. The relative

changes in the parameter estimates and in the tests p−values are presented in Table 3.7.
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Figure 3.4 Local influence measures for the regression parameters (first column) and for the shape

parameters α and ν (second column). The perturbation schemes considered were: case-weights pertur-

bation, in panels (a) and (b); response variable perturbation, in panels (c) and (d); perturbation on the

covariate x2, panels (e) and (f).
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Figure 3.5 Generalized Cook distance for each observation of the data for the vector parameter θθθ (a),

the vector βββ (b) and the shape parameters α and ν (c).
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The figures in Table 3.7 show that the intercept is statistically different from zero and the

regressor that accounts for white cells count is statistically significant in all scenarios at the

usual significance levels. We also note that the G BS 2-based model remains superior to that

based on the BS law at the 10% significance level, thus strengthening the evidence in favor

of the GBS2RM. The most intriguing result relates to x3. Such a regressor is not statistically

significant at the usual significance levels when all observations are used in the model fit, as

noted earlier. However, after observation 14 or observation 15 is removed from the data the

estimate of β2 changes considerably. Such observations were detected as influential data points

and correspond to AG positive patients with short lifetimes but that present high counts of

white blood cells, contrary to what is implied by the fitted model. When the model is fitted

without these two observations in the data the covariate x3 becomes statistically significant.

Additionally, the SICc for the model without x3 becomes 104.68 whereas the model fitted

with such a regressor yields SICc = 101.01, i.e., the SICc also provides indication that the AG

factor impacts the patients’ lifetime. Most of the other selection criteria also lead to the same

conclusion. Simultaneous removal of cases 14, 15 and 17 leads to the same testing inference,

i.e., x3 is found to be statistically significant. Hence, observations 14 and 15 are the cases

responsible for the reversal in the inference decision regarding the statistical significance of x3.

Table 3.7 Absolute relative changes in the parameter estimates of Model (3.4) with tests p-values in

parentheses after removal of the indicated data point(s), where the null hypotheses are H0 : β j = 0,

j = 1,2,3, and H0 : ν = 0.5

Deleted β̂1 β̂2 β̂3 α̂ ν̂

None — (< 0.001) — (< 0.001) — (0.8428) — — (0.0309)

obs. 2 0.025 (< 0.001) 0.044 (< 0.001) 0.417 (0.7808) 0.053 0.023 (0.0316)

obs. 14 0.041 (< 0.001) 0.058 (0.0006) 2.503 (0.4781) 0.119 0.018 (0.0554)

obs. 15 0.041 (< 0.001) 0.058 (< 0.001) 2.503 (0.4781) 0.119 0.018 (0.0554)

obs. 17 0.100 (< 0.001) 0.178 (< 0.001) 0.842 (0.9695) 0.035 0.056 (0.0245)

obs. 21 0.022 (< 0.001) 0.037 (< 0.001) 0.187 (0.8202) 0.117 0.048 (0.0819)

obs. 14 and 15 0.315 (< 0.001) 0.504 (0.0175) 10.669 (0.0029) 0.610 0.419 (0.0014)

obs. 14, 15 and 17 0.304 (< 0.001) 0.487 (0.0288) 10.587 (0.0067) 0.444 0.367 (0.0033)

We decided to consider the model fitted without the atypical cases (observations 14 and 15)

in the data. The parameter estimates (standard errors in parentheses) are β̂1 = 4.219 (0.7047),

β̂2 = −0.179 (0.0691), β̂3 = 0.643 (0.1701), α̂ = 11.135 (6.2724) and ν̂ = 1.807 (0.3499).
The pseudo-R2 value is R2

N = 0.4176, i.e., the fit seems to be superior to that obtained using

the complete data. The correct model specification is not rejected by the RESET-type test at

the usual nominal levels. In Figure 3.7 are presented prediction intervals obtained with this

model for values of x2 ranging between 6 and 12, for each level of x3. We note that patients

for whom the presence of the AG factor was detected tend to live longer than AG negative

patients, thus corroborating the evidence in Figure 3.2. Moreover, we note that higher white

blood cells counts in the patients are significantly associated with lower lifetimes, as can be

observed in Figure 3.2. Furthermore, nearly all points in Figure 3.7 lie inside the respective

prediction intervals, but the observations 14 and 15 are clearly atypical data points.
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Figure 3.7 95% percentile (a) and BCa (b) prediction intervals for y. Solid lines indicate the intervals

for AG negative patients (x3 = 0) and dashed lines indicate intervals for AG positive patients (x3 = 1).

3.9 Conclusion

Log-linear Birnbaum-Saunders regression models have been frequently used in the litera-

ture. The model is based on the standard Birnbaum-Saunders distribution. In this chapter, we

propose a log-linear model based on a bimodal version of the Birnbaum-Saunders law. The

log-linear Birnbaum-Saunders regression model is a particular case of our model. Parameter

estimation is carried out by maximum likelihood. We provide an expression for the observed

information matrix, discuss hypothesis testing inference and explain how a pseudo-R2 can be

easily computed. Several different diagnostic tools for the proposed model were discussed and

two different residuals were introduced. We explained how to perform local influence anal-

yses under three different perturbation schemes (case-weights perturbation, response variable

perturbation and explanatory variable perturbation), derived generalized leverage measures and

the generalized Cook distance, and outlined a model misspecification test. We also provide an

algorithm that can be used to construct prediction intervals for out of sample responses. In

addition, we investigated the finite sample performances of different model selection criteria

for the proposed model. Simulation results and a empirical application were presented and

discussed.



Concluding Remarks

In this thesis we investigated two bimodal versions of the Birnbaum-Saunders distribution that

have been recently discussed in the literature, consisting in a new branch of the Birnbaum-

Saunders modeling topic. In Chapter 2 we discussed some numerical difficulties that might

arise when performing maximum likelihood estimation on the parameters of a bimodal Birnbaum-

Saunders distribution and how this problem can be handled by using a penalized log-likelihood

function. We also evaluated how different hypothesis tests can be performed using the es-

timates obtained from the solution proposed and verified that they tend to perform well for

finite samples. In Chapter 3 we conducted an analysis on another bimodal Birnbaum-Saunders

law, which we used to propose a new log-linear regression model. Along with this regression

model, we also provided different tools to perform diagnostic analysis, model selection and to

construct prediction intervals.

In future work, we shall address the following issues:

• Consider the use of a log-linear G BS 2 regression model with censored data.

• Develop a nonlinear GBS2RM.

• Propose an autoregressive bimodal Birnbaum-Saunders model for time series data.
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