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"I am very odd. That is to say, I am methodical, orderly and logical - and I
do not like distorting facts to support a theory. That, I find, is unusual!"
—AGATHA CHRISTIE (Hercule Poirot (or Science...) at "One, Two,

Buckle My Shoe", 1940)



Abstract

In this M.Sc. thesis, we concentrate on classical two-dimensional crystals with soft pairwise
interactions at low temperatures. Typically, the triangular lattice is the configuration which
minimizes the interaction potential energy. Such energy is calculated through a lattice sum
and we show some analytical approximations to it. We will be interested in cases where the
coarse-grained density slightly depends on position. This can be caused by an external force
on particles. Then the softness of interactions will determine how the coarse-grained density
must vary. At equilibrium, the density gradient generates an equal and opposite force, resultant
from interactions. In the limit of small gradients, the system has few defects and locally con-
serves the triangular lattice symmetry. Although the system’s configuration has a huge number
of freedom degrees, only the position dependence of coarse-grained density is our relevant in-
formation at scales much greater than the nearest-neighbors’ distance. We then investigate the
calculation of the resultant interaction force due to such density variations with position. A
simple and intuitive, but not rigorous, way to obtain the Dynamical Density Functional Theory
(DDFT) force is showed. Also, a microscopic approach giving the same result is proposed. In
equilibrium, this force gives a minimization of the total free energy and it has been successful
in many nonequilibrium systems. We show that this force fails in the case of long wavelength
longitudinal waves, giving a smaller result for the sound speed. Also, in recent computer
simulations, we obtained equilibrium configurations where the same correction in the force is
needed. We show that such correction can be obtained by adding a correction term in the free
energy, calculated as a functional of coarse-grained density.

Keywords: Soft Condensed Matter. Two-dimensional Crystals. Dynamical Density Func-
tional Theory. Sound Waves.



Resumo

Nesta tese de mestrado, nós nos concentramos em cristais clássicos bidimensionais com inter-
ações suaves entre pares e a baixas temperaturas. Tipicamente, a rede triangular é a config-
uração que minimiza a energia potencial de interação. Tal energia é calculada através de um
somatório de rede e nós mostramos algumas aproximações analíticas para ela. Nós estaremos
interessados nos casos onde a densidade coarse-grained (a densidade "olhada de longe", abor-
dada como contínua) depende levemente da posição. Isto pode ser causado por uma força ex-
terna nas partículas e, então, a suavidade das interações determinará como a densidade coarse-
grained deve variar. No equilíbrio, este gradiente de densidade gerará uma força igual e oposta,
resultante das interações. No limite de pequenos gradientes, o sistema tem poucos defeitos e
conserva localmente a simetria de rede triangular. Embora a configuração do sistema tenha
um enorme número de graus de liberdade, apenas a dependência da densidade coarse-grained
com a posição é nossa informação relevante em escalas muito maiores que a distância entre
primeiros vizinhos. Portanto, nós investigamos o cálculo da força resultante de interação de-
vido a tais variações da densidade com a posição. Uma forma simples e intutitiva, mas não
rigorosa, de obter a força da Teoria Dinâmica do Funcional de Densidade é mostrada. Além
disso, uma abordagem microscópica que fornece o mesmo resultado é proposta. Vemos que,
no equilíbrio, esta força fornece a minimização da energia livre total e tem sido bem sucedida
em vários sistemas de não-equilíbrio. Mostramos que esta força falha no caso das ondas lon-
gitudinais de longo comprimento de onda, fornecendo um resultado menor para a velocidade
do som. Em recentes simulações computacionais, nós obtivemos configurações de equilíbrio
onde a mesma correção na força é necessária. Nós mostramos que tal correção pode ser obtida
adicionando um termo de correção na energia livre, calculada como um funcional da densidade
coarse-grained.

Palavras-chave: Matéria Condensada Frágil. Cristais Bidimensionais. Teoria Dinâmica do
Funcional de Densidade. Ondas Sonoras.
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CHAPTER 1

Introduction

This M.Sc. thesis investigates crystals, two-dimensional (2D) ones [1]. We are basically in-
terested in theoretical approaches for evaluation of interaction forces between the particles
through a macroscopic viewpoint (i.e., without knowing the exact positions of particles but
only a coarse-grained density distribution of them). We will show that the functional depen-
dence of this force with the coarse-grained density is not unique.

This chapter introduces the very notion of 2D crystals. We start with a historical back-
ground, on experiments and theory, and then show some analytical considerations for the inter-
action energy in a regular 2D lattice.

Crystals are used by mankind since the Ancient Egypt, China and Sumer. Characterizations
of them were solely based on their outer morphology. Only in the 1910s, the inner structure
of crystals could be seen for the first time, by X-ray diffraction patterns ideas of Max von
Laue, with the precious help of Walter Friedrich and Paul Knipping [2]. Long before the X-ray
experiments, the first conclusion that the inner structure of a crystal must be periodic came in
1781. And it came by accident, according to what is said to have happened. As the story goes,
a prismatic calcite crystal slipped out Rene-Just Haüy hands and break into many pieces on the
floor. By analyzing the fragments, Haüy realized that there exists crystallographic planes, along
which crystals cleave. He elaborated a theory relating these planes [3] and the law of rational
indices. Thereafter, Ludwig Seeber in 1824 and Gabriel Delafosse in 1840, independently,
came up with the idea that the best description of a crystal is by an array of discrete points
generated by defined translational operations (see the Nature Milestones in Crystallography,
available from http://www.nature.com/milestones/crystallography). Many considerations about
all the possible symmetries were made during the 19th century and finally, in 1891, Arthur
Shoenflies and Evgraf Fedorov [4, 5] catalogued a total of 230 space groups in 3D and 17
wallpaper groups in 2D.

1.1 Two-dimensional crystals: Great variety found in experiments

It may be strange to think about 2D crystals. But, in fact, they are very common nowadays.
They can grow on liquids and solids, or even levitated by electromagnetic forces, and surfaces
are their preferred media. The phenomenon of adsorption is a great responsible for this [1, 6, 7].
The first observations of such crystals were made by Langmuir in the 1920s in experiments
with amphiphilic molecules (organic molecules with hydrophilic and lipophilic properties) on
the liquid-gas interface in Langmuir films [1]. Interesting occurrences of 2D crystals are, for
instance, Abrikosov’s vortices in superconducting films [8, 9], electrons trapped at a liquid

10



1.1 TWO-DIMENSIONAL CRYSTALS: GREAT VARIETY FOUND IN EXPERIMENTS 11

helium surface [10] and graphene [11].

Figure 1.1 Monolayer of xenon atoms adsorbed on the (001) surface of graphite (from [12]).

Figure 1.1 shows a monolayer of xenon adsorbed on the (001) basal plane surface of py-
rolytic graphite. The interaction between xenon atoms can be approximated by Lennard-Jones
type pairwise interaction (Vp(r) = ε[(σ/r)12 − (σ/r)6]). We can see that the Lennard-Jones
diameter is incommensurately larger than the separation between the relevant minima in the
substrate potential of the graphite, i.e., the ratio between these distances is irrational. It has
been shown that the graphite potential is weak and the system slightly differs from an ideal 2D
system [12].

In this M.Sc. thesis, we are interested in inhomogeneities in the coarse-grained density of
2D crystals. Here we show some examples of them. In Figure 1.2, millimeter-sized steel balls
are placed on a smooth aluminum substrate. Then, a few thousand volts are applied across
the substrate and an electrically conductive cover [13, 14]. The balls, touching the aluminium,
get instantaneously a mono-disperse charge and repel each other by Coulomb interaction. The
substrate is slightly tilted in Figure 1.2 (b) so that the gravity acts, forming a density gradient.
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Figure 1.2 Configuration of charged steel balls in a leveled (a) and tilted (b) substrate (from [13]).

By knowing the gravitational force on each particle and their positions, one can find the net
charge in each particle.

Figure 1.3 Configuration of magnetized steel balls in a tilted box. The "gravity rainbow" pattern (from
[15]).

Steel balls and the influence of gravitational force are also used in the experiment of Fig-
ure 1.3, but the balls repel each other through a dipole-dipole interaction. They are placed
within a flat box whose upper and lower walls were made of glass and a magnetic field is ap-
plied perpendicular to the box, inducing magnetic dipole moments [15]. The box is tilted and
a density gradient appears, minimizing the energy (with the help of a delicate shaking). The
pattern has arches remaining rainbows and it is known as "gravity rainbow".

In Figure 1.4, micrometer-sized dust melamine particles were dropped in an argon plasma
exited by parallel-plate rf discharges. The dust particles charge negatively and form a levitated
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Figure 1.4 Melamine particles dropped in radio frequency excited argon plasma (from [16]).

layer of particles where the electrostatic forces produced by the electrode plasma sheath coun-
terbalance the gravity [16]. The vertical confinement is much stronger than the horizontal one.
The interaction between the particles is approximately a Yukawa one. Theoretical approaches
for this system will be seen in chapter 2.

1.2 Theory doubts their existence

The theoretical investigations on the existence of 2D crystals date back to the works of Landau
[17] and Peierls [18] in the 1930s, where they proved the existence of a logarithmic divergence
for the fluctuations of atomic displacements in a 2D system with continuous degrees of free-
dom. This implies an absence of ordered phase at any finite temperature. For the mean square
fluctuation of a particle’s position, we have

⟨u2⟩ ∼
∫ d2q

q2 , (1.1)

due to thermal agitation caused by phonons. One can see that this integral converges in three
dimensions (3D) and have a logarithmic divergence in 2D. Although they can exhibits Bragg
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peaks in scattering experiments, no true long range order exists in 2D due to long wavelength
fluctuations. This fact was sometimes used to argue the non-existence of 2D crystals and only
systems of finite size might have crystal-like properties, since the logarithmic divergence in
(1.1) is slow.

Figure 1.5 Illustration of formation and unbinding of a dislocation pair in a triangular lattice (from
[19]).

The famous Onsager’s exact solution of a 2D Ising model in 1944 [20], showing long-
range ordering, and the discovery of a liquid-solid transition for hard disks by Alder and
Wainwright in 1962 [21], using numerical simulations, motivated several studies in the 1960s
[22, 23, 24, 25, 26]. These studies (and other more rigorous [27, 28, 29]) showed that there
cannot be a spontaneous breaking of continuous symmetry in 2D (a rigorous proof for transla-
tional invariance in hard disk systems only appeared in 2002, with Ioffe et al. [30]). But the
rotational symmetry can be an exception.

Stanley and Kaplan in 1966 [31], by analyzing the extrapolation from high-temperature
expansions, discovered that the susceptibility of the 2D XY model (which was proved to have
no long-range order) diverged at some point. This suggests the intriguing idea of a phase
transition without the onset of order. Then Kosterlitz and Thouless, in 1973 [32], came up with
a new definition of order. A new phase transition accompanied by a change in "topological
order". They tried to use these ideas in the 2D solid-liquid transition, considering the unbinding
of topological defects. Halperin and Nelson [33, 34] and, independently, Young [35] dealt with
some remaining complications and completed in 1979 the famous KTHNY theory for two-
dimensional melting. This theory describes a two-stage melting. First, heating the crystal
will produce more and more dislocations pairs and then, at some temperature, the heat starts
to unbind them. In Figure 1.5, we can see the formation and unbinding of a dislocation pair
[19]. The square (triangle) particles represent sevenfold (fivefold) disclinations and each pair
of disclination with opposite sign is a dislocation. Second, at a bigger temperature, the heat
starts to unbind the disclination pairs and the system melts. The phase between these two
defect-unbinding transitions is called hexatic.
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In summary, we nowadays know that 2D crystals have orientational long-range order (they
do break rotational symmetry [36] and the shear modulus is nonzero) and translational quasi-
long-range order (power-law decay of the correlation function of displacements). Suppose the
equilibrium sites of the crystal lattice are Ri = nia1 +mia2, where a1 and a2 are the primitive
vectors and ni and mi are integers, and the instantaneous particles’ positions are [25] ri ≡
r(Ri) = Ri +u(Ri). Then we have, as |Ri −R j| → ∞,

⟨[u(Ri)−u(R j)]
2⟩ ∼ ln |Ri −R j|, (1.2)

and
⟨[r(Ri +a1)− r(Ri)] · [r(R j +a1)− r(R j)]⟩ (1.3)

goes to a constant.
In 3D, the components of the displacement field u(r), roughly defined by ri ≡ r(Ri) = Ri+

u(Ri), are the Nambu-Goldstone modes corresponding to the translational symmetry broken in
each coordinate of space. Therefore, they are "hydrodynamic modes", i.e., collective modes
characterized by slowly relaxation toward their equilibrium values. These modes can come
from conservation laws or, in the case of ordered systems, from continuous broken symmetries
[37]. Even though there is no genuine long-range translational ordering in 2D, Ziuppelius et al.
[38] considered the displacement field as hydrodynamic modes (the modes correspondent to
the rotational broken symmetry are not independent, but slaved to the displacement field) since
it relax slowly. For finite systems at very low temperatures, the 2D crystal can then be viewed
as a static lattice. This allows us to study many important mechanical properties using two
simple theoretical aspects: the energy and force due to interparticle interactions in a triangular
lattice.

We will ignore the displacement field and consider the coarse-grained density as our rel-
evant hydrodynamic mode. The properties present in crystals and absent in liquids will only
modify the energy dependency with density. This is done by considering the local triangular
lattice symmetry. We will concentrate on these aspects in the present thesis and consider classi-
cal interactions. Examples of mechanical properties to be explored are the sound speed velocity
[39, 40] and the equilibrium inhomogeneous coarse-grained density profile [41, 42].

The operation of coarse-graining in density was first introduced by Paul and Tatiana Ehren-
fest [43, 44], a century ago, as a result of density averaging in cells. The size of cells is assumed
to be small, but finite, and does not tend to zero. In fact, it is much smaller than the macroscopic
scales and much bigger than interparticle distances. We will consider that the inhomogeneity
of coarse-grained density is small, with a predominant triangular symmetry and few defects.
In this case, the coarse-grained density is related with the mean interparticle distance (mean
nearest-neighbor distance) trough the geometry of triangular lattice.

The triangular lattice is the highest-density lattice arrangement. Due to this fact, it is by
far the most common arrangement in two-dimensions. This is evident when the hamiltonian
(energy) decrease in a close packing of particles (as in interactions with an attractive part and
a hard core), i.e., in a more dense system. On the contrary, if there are repulsive interactions
and the system is confined at a given density, triangular lattice will provide the greatest nearest-
neighbor distance.
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1.3 Interaction Energy of a lattice (Madelung energy)

The total interaction energy of a single particle i of a lattice, also known as the Madelung
energy, is calculated by the sum

ϕ = ∑
j ̸=i

Vp(ri − r j), (1.4)

where ri and r j are the positions of particles i and j, respectively, and Vp(ri−r j) is the pairwise
interaction potential. We will consider identical particles (one-component crystal) and only
isotropic pair potentials, i.e., Vp(ri − r j) =Vp(|ri − r j|).

In two-dimensions, power-law interactions Vp(r) = q2/rm will result in convergence of ϕ
if m > 2. In a two-component crystal, with positive and negative charges, the sum in equa-
tion (1.4) can still have a conditional convergence if m ≤ 2. A Coulomb potential Vp(r) = q2/r
and alternating positive and negative charges in the lattice give rise to the famous Madelug
Constants, represented by conditionally convergent lattice sums.

1.3.1 Continuum approximation and self-interaction correction

When the interaction has some range λ , and Vp(r) =Vp(r/λ ), and the nearest-neighbors’ dis-
tance x is much smaller than λ , each particle sees the others in a coarse-grained way. In other
words, we do not need the exact particle positions in other to calculate ϕ with a good precision,
wich already obtained with only their mean distribution in big scales, i.e. the coarse-grained
density ρ . Then we have the continuum approximation

ϕ ≈ 2πρ
∫ ∞

0
drrVp(r). (1.5)

In a triangular lattice, the relation between ρ and x can be obtained geometrically, which gives
ρ = 2/(

√
3x2).

The continuum approximation has some kind of self-interaction. It integrates over the
whole plane, covering every lattice site, but the particle at r = 0 must not be included in the
evaluation of ϕ (equation (1.4)). The circle with Wigner-Seitz radius rWS = 1/

√πρ is a good
representation of the region to be avoided in integrating equation (1.5). A self-interaction cor-
rection can then be obtained by

ϕ ≈ 2πρ
∫ ∞

rWS

drrVp(r). (1.6)

1.3.2 Nearest-neighbors approximation and a crossover method

If the interaction range is very small, only the nearest-neighbors (which are six in triangular
lattice) have relevant contribution in equation (1.4) and then we can use the nearest-neighbors’
approximation

ϕ ≈ 6Vp(x). (1.7)

In order to obtain a simple procedure to obtain approximations for ϕ , which works well for
both limit cases of long and short-range of interaction, given by equations (1.5) and (1.7), we
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proposed a method in [45]. Such a method can be applied for 1D, 2D and 3D lattices. We will
here present it for a 2D lattice.

The Madelung Energy related to a single test particle is the total potential energy due to the
interaction between the test particle and the rest of the lattice. Figure 1.6 shows a schematic
representation of a regular lattice where the test particle was chosen to be the central particle
(see closed black circle within the central white circular region in Figure 1.6).

Figure 1.6 Schematic representation of a 2D lattice where particles are indicated by closed dark circles.
The reference particle is located in the center of the figure within the white circle. The first three most
internal annuli A0, A1 and A2 are indicated, respectively, by the decreasing gray darkness regions. (From
[45].)

The method is as follows: we divide the plane of the 2D lattice in a set of concentric annuli
denoted by An (n = 0,1,2, ...) of same thickness equal to y and with average radii rn = r0+ny.
The first (A0), second (A1) and third (A2) annuli are represented, respectively, by decreasing
gray darkness regions in Figure 1.6.

Concerning the first annulus, A0, we request the following two conditions to be satisfied: 1)
the average radius r0 of the annulus A0 must have the value x, and 2) the total charge within the
annulus A0 must be equal to Nq, where N is the total number of nearest-neighbors of the lattice
(number of particles at the distance x from the test particle).

The total charge Qn of a given annulus An, in the continuous limit, is given by
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Qn =
∫

An

ρqdA = 2πρq
∫ rn+y/2

rn−y/2
rdr = 2πρqyrn. (1.8)

The value of y can be obtained by using the second requirement concerning the first annulus,
which results in the equation

N =
∫

A0

ρ(x)dA = 2πρ
∫ r0+y/2

r0−y/2
rdr, (1.9)

where r0 = x, and then

y =
N

2πρx
. (1.10)

For the last step of our method, we consider that the total charge of the annulus An is
uniformly distributed over a ring of radius rn, which is the average radius of the annulus. In
doing so, we obtain an approximative expression for the Madelung Energy, given by

ϕ(x) =
∞

∑
n=0

Qn

q
Vp(rn). (1.11)

Notice that the expression depends on the lattice’s topology via the number of nearest neighbor
particles N and the density of particles ρ .

The Yukawa potential Vp(r) = q2e−κr/r (a shielding in the Coulomb potential) has an in-
teraction range determined by the parameter κ . Yukawa lattices appear in a variety of physical
systems [46, 47, 16]. The method equation (1.11) for triangular Yukawa lattices gives the good
closed-form approximation

ϕ(x) = 6q2 e−κ ′

x(1− e−
3
√

3
2π κ ′)

, (1.12)

where κ ′ = κx. Figure 1.7 (a) shows a plot of the Dimensionless Madelung Energy (DME)
φ(κ ′) = κx2ϕ(x)/q2 obtained numerically, by the self-interaction correction (equation (1.6)),
by the nearest-neighbors approach (equation (1.7)), by the method (equation (1.12)) and by the
approximation used in [48]. The relative error is showed in Figure 1.7 (b). We can see that
it goes to zero in the continuum and nearest-neighbors asymptotic limits, κ ′ → 0 and κ ′ → ∞
respectively. Its maximum value is less than 0.5%. This relative error is well fitted by the
function

Et(κ ′) =
cκ ′2

edκ ′ −1
, (1.13)

where c = 0.00462 and d = 0.8016 (see full line in Figure 1.7 (b)). Finally, by using the latter
fit to improve the accuracy of equation (1.12), we obtain the following expression

φ imp
t (κ ′) =

φt(κ ′)

1−Et(κ ′)
. (1.14)

The maximum relative error of this semi-analytic approximation is expressively reduced to a
value smaller than 0.0007%
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1.4 Summary of the Chapter

In this introductory chapter, we review a historical background about crystals, focusing on 2D
ones. Experimental examples and an elementary discussion about the theoretical notion of 2D
crystals at finite temperatures were given. Finally, analytical approximations for the interaction
force of a lattice, which is essentially different from the liquid case, were shown in the light of
the results of a paper we previously published [45].

The next chapter presents the case of a two-dimensional Yukawa cluster where the crys-
talline structure influence the calculation of energy and force, especially at the edge. Thus, we
found good results for the coarse-grained density profile. These were the results of another
published paper [42].
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Figure 1.7 (a) Dimensionless Madelung Energy (DME) φ(κ ′) = κx2ϕ(x)/q2 of the triangular lattice
obtained numerically (circles) and by different analytical approaches as indicated within figure. (b)
Relative error Et(κ ′) = |φexact −φmethod |/φexact (circles), between the DME calculated analytically by
our method (equation (1.12)) and numerically, and fit of the error (equation (1.13), full line), as a function
of the parameter κ ′. Both figures have the horizontal axis in the same logarithmic scale. (From [45].)

(a)

(b)



CHAPTER 2

Continuum theory for two-dimensional complex
plasma clusters

In the previous chapter we introduced some notions about classical two-dimensional crystals
and their interaction energy at the zero temperature limit, considering perfect lattices.

External forces on the crystal can provoke a inhomogeneous coarse-grained density, i.e., a
position dependent ρ(r). These forces are counterbalanced by an interaction force associated
with the density gradient ∇ρ(r).

The present chapter shows entirely the manuscript we published in the New Journal of
Physics [42], with minor modifications, in accordance with the Creative Commons Attribution
3.0 Unported (CC-BY) license (https://creativecommons.org/licenses/by/3.0/). It investigates
the complex plasma cluster. An important example of classical two-dimensional crystals with
inhomogeneous coarse-grained density. Some approaches, including a new proposed one, to
the calculation of interaction force are shown. All approaches for the force reduce to the same
result for the approximations used here. But the differences between the density functional
approach and the proposed one will be important in the rest of this thesis. Here, our consider-
ation of Finite Size Effects (FSE) and of the force at the edge of the system are crucial for the
accuracy in the final results.

2.1 Introduction

In complex (dusty) plasma, monodisperse microspheres of dust can be made to float in a circu-
lar monolayer. Electrostatic and gravitational forces are used to confine them vertically. With
radial confinement and low temperature, the particles form finite crystalline clusters [49, 50].
The radial potential well is approximately parabolic and is responsible for the circular shape of
the cluster. The interaction between dust particles in the plasma is typically subject to shielding
by electrons and ions and is therefore frequently described by the Yukawa (or Debye-Hückel)
interaction [47, 51].

It is hoped that, given the external potential’s parameter, the spatial particle distribution ob-
tained from an experiment or simulation can give values for the interparticle potential param-
eters by using a suitable theoretical model [52]. In isotropically confined three-dimensional
(3D) systems [53, 54], much research has been made toward this direction. The behaviors of
the density distribution for many particles [55, 56] and of the shells’ structures for few particles
(the so called Yukawa/Coulomb Balls) [57] follow well known phenomenological and ab initio
equations. These theories give a good accuracy in almost the entire range of the parameters.
In 2D large systems with moderate and strong screening, the continuum density profile was

21
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obtained with a satisfactory accuracy [52, 41, 48]. However, the density profile or the sys-
tem’s radius for relatively small number of particles (8-500) and for weak screening (or strong
confinement) were not well predicted theoretically.

There are other methods for determination of interaction parameters in Yukawa systems
(see, e.g., [58]) but macroscopic properties, such as density and radius, can also be investi-
gated in other two-dimensional systems, and a same procedure can be used in many of them.
For instance, similar studies were made in systems with pure Coulomb [59], dipolar [60] and
superconductor vortex-vortex [61] interactions.

In this letter, we derive good approximations for the density and the radius of 2D complex
plasma clusters. The local density approximation with finite size effects, which were not con-
sidered previously in 2D, was used for the interaction energy. By considering deformations
in the triangular lattice, which is the predominant symmetry in the system, a new differential
equation for the spatial dependence of density is obtained. The general form of this differen-
tial equation is different from the ones obtained from others approaches used in the literature
[52, 41, 48]. The procedure to obtain this equation help us to find a new boundary condition
which, with the necessary careful considerations, is essential to the accuracy of the final equa-
tion. We compare the theory with results of MD simulations and find that it has a surprisingly
good accuracy for a great range of the number of particles N, even when the density cannot be
considered continuum (8 < N < 500). Moreover, from simulations we found that this system
has two regimes where the system’s size and density profile are the same but the interaction
parameters are different.

Formally, the paper is structured as follows. In the next section the model system and details
concerning the MD simulations are given. In Section 2.3, our theoretical approach is developed
and, in Section 2.4, their results are compared with those obtained from simulations. Finally,
Section 2.5 contains a summary of the main results.

2.2 Model

With a Yukawa type pair potential Vpair(ri j) = q2e−κri j/ri j and an external potential Vext(r) =
V0r2/2, the Hamiltonian of the system is given by

H =
1
2

N

∑
i

N

∑
j ̸=i

q2e−κ |ri−r j|

|ri − r j|
+

N

∑
i

V0r2
i

2
(2.1)

=
q2κ

2

N

∑
i

[
N

∑
j ̸=i

e−κ |ri−r j|

κ |ri − r j|
+

(κri)
2

α

]
, (2.2)

where N is the number of particles, q is the dust charge, κ is the screening parameter, V0 is the
confining potential parameter and α = κ3q2/V0. The rescaled particles’ radial positions κri at
the ground state are determined uniquely by α and N.

To search for equilibrium configurations of this system, we use a simulated annealing
scheme. This is summarized as follows: first, for a given set of parameters, particles are placed
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at random positions and the solvent is set at a high initial temperature. Then, the solvent tem-
perature is slowly decreased down to T = 0 at a constant rate. The time evolution of the system
at a temperature T is modeled by overdamped Langevin equations of motion. These are inte-
grated via Euler finite difference steps following the algorithm

ri(t +∆t) = ri(t)+Fi(t)∆t +g
√

2T ∆t, (2.3)

where Fi(t) = −∑ j ∇iVpair(ri j) is the total force applied to the particle, ∆t is the time step
and the components of the two-dimensional vector g are independent random variables with
standard normal distribution which accounts for the Langevin kicks.

2.3 Theoretical Development

2.3.1 Interaction Energy and the Local Density Approximation

In a continuum approximation for the particle density ρ(r), the total potential over a particle
located at r is given by

ϕ(r) =
∫

r′≤Rm

ρ(r′)
q2e−κ|r−r′|

|r− r′|
d2r′, (2.4)

where Rm is the system’s radius. When the range of the potential, 1/κ , is small compared to
the system size (i.e., when κRm ≫ 1), a small region around r gives the main contribution to
the integral of equation (2.4). In this case, the effective region of integration is approximately
a circle with radius of the order of 1/κ and centered at the position vector r. For such a
circular symmetry in the region of integration, we can expand ρ(r′) around r (that is, ρ(r′) =
ρ(r)+(r′−r) ·∇ρ(r)+ |r′−r|2∇2ρ(r)/4+ ...) and one can see that the second term vanishes
in the integral of ρ(r′)e−κ |r−r′|/|r− r′|. Therefore, the use of just the first term, i.e., of the
local density ρ(r), may give a good approximation for ϕ(r). This is called the local density
approximation (LDA).

On the other hand, when Rm is equal to a few units of 1/κ or less, finite size effects (FSE)
must be considered. These effects were taken into account only in the 3D case by C. Henning
et al. [56] and we will use a similar FSE consideration in 2D. Even with a constant density,
the integral of equation (2.4) cannot be given in terms of elementary functions. In this case, we
consider a position independent FSE by simply integrating over the region |r′− r| ≤ Rm, i.e., a
disk of radius Rm centered at r, which gives

ϕ(r) = ϕ(ρ(r)) = ρ(r)
∫
|r′−r|≤Rm

q2e−κ |r−r′|

|r− r′|
d2r′ =

2πq2ρ(r)
κ

(1− e−κRm). (2.5)

As the system has locally a predominant triangular lattice symmetry, the density is related
to the nearest particles’ distance x by ρ = 2/(

√
3x2). In the limit of strong screening, i.e., a big

value of κ and therefore a short range of the pair potential, each particle effectively interacts
only with its nearest-neighbors. In this case, the total potential ϕ(r) is approximately equal to
6 (the number of nearest-neighbors of the triangular lattice) times Vpair(x(r)).



2.3 THEORETICAL DEVELOPMENT 24

Now we make the consideration that each particle in the cluster always interacts with only
six effective particles at a distance x (see Figure 2.1 (a)) through an effective potential given by
Ve f f (x) = ϕ(x)/6, even when the interaction has a long-range character. In fact, each effective
particle is in a nearest-neighbor position but represents the interaction with all the particles in
one sixth of the system as is shown in Figure 2.1 (a). In the short-range case, the effective
potential becomes the pair potential and the effective particles become the nearest-neighbor
particles. We considered that the total potential over a particle can be given explicitly in terms
of x, i.e., ϕ(r) = ϕ(ρ(r)) = ϕ(x(r)), which is always true for the LDA without a position
dependent FSE.

Equation (2.5) is a continuum approximation and therefore it is accurate only when the
interaction range 1/κ is much bigger than the particles’ spacing x (κx≪ 1). In fact, for Yukawa
systems, this approximation fails when κx ≫ 1, or even κx ∼ 1 [45], and one should consider
correlation (discretization) effects. In this case, each particle interacts, effectively, only with
few particles in its neighborhood. As those particles have a triangular lattice-like arrangement,
we approximate their interaction energy by that given by a perfect triangular lattice. A good
approximation for this energy was obtained in [45] by summing up a set of well-defined rings.
To include the FSE, we must perform the sum up to the ring of radius ≈ Rm, which yields

ϕ(x) =
6q2e−κx

x(1− e−
3
√

3
2π κx)

(1− e−κRm). (2.6)

Notice that in the regime of κx ≪ 1 (or ρ/κ2 ≫ 1) the equation (2.5) is recovered. In the rest
of this letter, we will use equation (2.5) and concentrate on 10−4 ≤ α ≤ 101. Nevertheless,
the already good results obtained for average and great values of α (∝ κ3) [41, 48] can still be
further improved by using equation (2.6).

Figure 2.1 (a) Effective particles and their respective sixth part of the plane. (b) Relative positions of
the effective particles in the presence of an external force Fext =−V0rr̂.
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2.3.2 Differential equation for the density

In order to compensate the external force, Fext =−V0rr̂, one must consider a deformation of the
original hexagon formed by the effective particles. To do so, we choose the dislocation shown
in Figure 2.1 (b). In this case, the distance between the central particle and the three effective
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particles in the positive (negative) direction of r̂ was increased (decreased) by ∆x/2. The angle
between two neighbor particles remains π/3 and the total potential remains the same up to the
first order in ∆x.

The magnitude of the force due to an effective particle is F(x) = −∂Ve f f
∂x = −1

6
∂ϕ
∂x . There-

fore, from Figure 2.1 (b) and from the equilibrium of forces, we have

(1+2cos(π/3)) [F(x−∆x/2)−F(x+∆x/2)] =V0r, (2.7)

which, for small ∆x, becomes

−2
∂F
∂x

∆x =V0r. (2.8)

For a smooth dependence of x with r we associate ∆x/x to the derivative of x with respect to
r. This is based on the fact that the variation of the nearest-neighbor distance from the bottom
rhombus to the top one, i.e., the difference between their sides, in Figure 2.1 (b), is ∆x and the
radial distance between their centers is x. By substituting ∆x = x(dx/dr) in equation (2.8), we
obtain the following differential equation

x
3

∂ 2ϕ
∂x2

dx
dr

=V0r. (2.9)

This last equation written in terms of the density becomes(
∂ϕ
∂ρ

+
2
3

ρ
∂ 2ϕ
∂ρ2

)
∇ρ +∇Vext = 0, (2.10)

where Vext(r) represents a general external potential.
The obtained differential equation has a general form different from other well-known ap-

proaches. In a variational approach [41], the minimization of the total potential energy func-
tional

U [ρ ] =
1
2

∫
r≤Rm

ρ(r)ϕ(ρ(r),r)d2r+
∫

r≤Rm

ρ(r)Vext(r)d2r, (2.11)

under the constraint
∫

ρ(r)d2r = N, gives

1
2

∇
(

ϕ +ρ
∂ϕ
∂ρ

)
+∇Vext = 0. (2.12)

Whilst in a hydrostatic approach [48], the Euler equation

∇P
ρ

+∇Vext = 0, (2.13)

where P =−∂ (ϕ/2)/∂ (1/ρ) = (ρ2/2)∂ϕ/∂ρ is the pressure, gives

1
ρ

∇
(

ρ2

2
∂ϕ
∂ρ

)
+∇Vext = 0. (2.14)
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In spite of the differences between equations (2.10), (2.12) and (2.14), by using an approxima-
tion for ϕ of the form ϕ(r) = Bρ(r), where B is a constant, they provide the same result for the
density, i.e., ρ(r) = ρ0 −Vext(r)/B where ρ0 is a constant of integration. The differences be-
tween these equations appear when ϕ has other dependencies with ρ and r. These differences
will be investigated in future work. Now we use the result ρ(r) = ρ0 −Vext(r)/B together with
the approximation of equation (2.5) and the external potential Vext(r) = V0r2/2 to obtain the
following equation for the density

ρ(r)
κ2 =

ρ(0)
κ2 − κ2r2

4πα (1− e−κRm)
. (2.15)

The values of ρ(0)/κ2 and κRm are obtained from the boundary and normalization conditions.
As remarked in Section 2.2, they must depend only on the parameters α and N.

2.3.3 Boundary and normalization conditions

A continuum approximation for the density must satisfy the normalization condition
∫

ρ(r)d2r =
N, which in our case is written as

2π
∫ Rm

0
ρ(r)rdr = N. (2.16)

This equation can be used to eliminate one unknown term of equation (2.15), while the second
one can be eliminated from a boundary condition.

The most simple boundary condition is to say that ρ(Rm) = 0. However it does not in-
deed happen, although becomes a good approximation in the large N limit where, as observed
in experiments and simulations, limN→∞ ρ(Rm)/ρ(0) = 0 ∀α . The use of this condition and
equation (2.16) in equation (2.15) gives

ρ(κr)
κ2 =

κ2R2
m −κ2r2

4πα (1− e−κRm)
, (2.17)

where
(κRm)

4

α(1− e−κRm)
= 8N. (2.18)

Except by the factor (1− e−κRm) descendant from FSE, this result was obtained by H. Totsuji
et al. [41] by using a variational approach. There, the result ρ(Rm) = 0 comes out from the
minimization of the total energy obtained from the LDA without FSE and correlation effects.
When the latter effects were considered [41], a nonzero density at the edge came out naturally,
satisfying limN→∞ ρ(Rm)/ρ(0) = 0.

Notice that, from the effective particles approach of Figure 2.1 (b), a straightforward bound-
ary condition appears. When the central particle of Figure 2.1 (b) is at the boundary of the
cluster, the three effective particles at the top do not exist. Therefore, the equilibrium of forces
considered in equation (2.7) is now written as (1+2cos(π/3))F(xm) =V0Rm, where xm is the
nearest-neighbor distance at the boundary, or equivalently

− 1
3

∂ϕ
∂x

∣∣∣
xm

=V0Rm. (2.19)
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Despite the consideration of just 3 effective particles in this case, the effective potential contin-
ues to be given by ϕ(x)/6. This is in fact a correction for our choice of the term (1− e−κRm)
for the FSE. This choice overestimates the potential at the edge by a factor that approximates
the number 2 as κRm increases.

By placing the potential ϕ of equation (2.5) into (2.19), we obtain an expression relating xm
and Rm

− 1
3

[
−8πq2
√

3κx3
m

](
1− e−κRm

)
=V0Rm. (2.20)

Figure 2.2 A particle located at the edge of the system has only a half of its hexagonal Wigner-Seitz
cell inside the circle of radius Rm.

An important and non-trivial consideration must be made here: for a particle at the edge,
just a fraction of its Wigner-Seitz cell is inside the circle of radius Rm (see Figure 2.2). This
fraction is approximately one half for Rm/xm > 1. Due to this fact, the density (given by the
inverse of Wigner-Seitz cell area) at the edge is related to xm by

ρ(Rm) =
4√
3x2

m
. (2.21)

This correction in the density should be made always that the superior limit of integration of
the normalization condition shown in equation (2.16) is Rm. In this case, the total area occupied
by all Wigner-Seitz cells must be equal to πR2

m but it is overestimated if we always have AWS =
1/ρ =

√
3x2/2 (see equation (2.2)). This problem has not been considered previously in the

literature but it becomes important in small systems. Equation (2.21) is not exact but gives a
good approximation to correct this problem.

Using equations (2.21) and (2.20), we obtain

ρ(Rm)

κ2 =
√

3
(

κRm

πα (1− e−κRm)

)2/3

. (2.22)
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The above equation is one of the main theoretical results obtained in this article. It will be
determinant for the good accuracy of the theory at small number of particles. By using equa-
tion (2.22) in (2.15), we can find ρ(0) in terms of Rm. Finally, the density at any point is then
given by

ρ(κr)
κ2 =

√
3
(

κRm

πα (1− e−κRm)

)2/3

+
κ2(R2

m − r2)

4πα (1− e−κRm)
, (2.23)

where κRm can be found by using equation (2.16), which gives

√
3
( √

π(κRm)
4

α (1− e−κRm)

)2/3

+
(κRm)

4

8α(1− e−κRm)
= N. (2.24)

2.3.4 Scale invariance

For a given number of particles, equations (2.23) and (2.24) inform that the distances in the
system scale with Rm, i.e.,

ρ(r) = R−2
m f (N,r/Rm), (2.25)

where f (N,r/Rm) is independent on the potentials’ parameters. This would imply that the
values of κ and α cannot be obtained separately from the final configuration of an experiment,
but only from a relation between them. Another experiment with a different N must be done in
order to get a new relation.

A density profile obeying equation (2.25) can be obtained when the potential ϕ is, up to
a constant, approximated by ϕ(r) = Bρ(r). By using this approximation, the method of the
previous two subsections (i.e., any of equations (2.10), (2.12) and (2.14) together with ρ(Rm) =
4/(

√
3x2

m) and equation (2.19)) gives

R2
mρ(r) = f (N,r/Rm) =

√
3c2 +

c3

4

(
1− r2

R2
m

)
, (2.26)

where c = c(N) is obtained from

c3 +8
√

3c2 = 8N/π, (2.27)

and Rm is related to B by
2V0R4

m = Bc3. (2.28)

The factor B can be a function of N, Rm and of the potentials’ parameters; and may be
obtained, for example, by: (a) an integral of the pairwise potential B =

∫
Vp(r)d2r, as it was

done in equation (2.5), or (b) by a derivative of the Madelung energy (equation (2.6)), B =
∂ϕ/∂ρ , evaluated at the mean density ρ̄ = N/πR2

m. Indeed, the approximation ϕ = Bρ is very
general and can be used in many systems beyond Yukawa [61, 62], and so does equations (2.26)
and (2.27).

The scale invariance of the theory is broken when position dependent FSE (small κRm)
or correlation effects (small ρ/κ2) are taken into account. Using the latter, C. Totsuji et al.
[63] were able to obtain approximate values of κ and q2, for a given V0, by considering the
α-dependence of R2

mρ(0). Their results are applicable with the assumption that α ≫ 1. But, as
we will see in Section 2.4, if all values of α are possible a priori, α can be a bi-valued function
of R2

mρ(0).
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2.4 Results

Equations (2.24) and (2.26) for the radius and the density, respectively, developed in the latter
section, were compared with the results obtained from Molecular Dynamics simulations in
order to verify the accuracy of our theory.

We defined the system’s radius as the radial distance of the outermost particle. Although,
in the theory, we have made considerations that demand great values of κRm and ρ/κ2, which
implies in the need of great number of particles since N = πR2

mρ̄ , we still found satisfactory
results even for N < 500. Figure 2.3 (a) shows the N-dependence of κRm, obtained from
equation (2.24) (lines) and simulations (symbols) for α = 101, 1, 10−1, 10−2, 10−3 and 10−4. In
Figure 2.3 (b), we compare equation (2.24), equation (2.24) using ρ(Rm) = 2/(

√
3x2

m) instead
of (2.21), equation (2.18) and the equations obtained in [48] and [41] (with cohesive energy)
in the case of α = 10−2. It can be seen the great improvement obtained for small systems by
using the boundary condition of equation (2.22).

The surprisingly good agreement of the theory for small number of particles is evidenced
in Figure 2.4 where α = 10−2 and no logarithm scale is used. The dotted and dashed lines
represent equations (2.18) and (2.24), respectively. One can see that the boundary condition of
equation (2.22) was responsible for a great improvement in the theory.

The inset of Figure 2.4, which is a zoom for 2 < N < 21, shows that, although the radius
obtained from simulations is discontinuous for small N, the theory gives a good smooth ap-
proximation. A good accuracy starts as N > 8, when the structural transition (1,7) 7→ (2,7)
occurs for all α [64]. For N ≤ 8, the particles are located at the vertices of a regular polygon
centered at the origin with one or none particle at the center. In these cases, the exact values of
κRm can be easily obtained theoretically. For α = 10−2, the relative error of equation (2.24) is
less than 5% for any N > 8.

The radial density profile was calculated by dividing the system in annuli and counting the
number of particles in each annulus. This number is then divided by the area of the respective
annulus and this is taken as the density at the mean radius of the annulus. For a smooth profile,
the width of the annuli cannot be too small. Such smoothness can only be obtained for N & 100.

Since the accuracy of the theory for the radius is already known from Figure 2.3, we now
investigate the accuracy for the density by showing only how R2

mρ depends on r/Rm. By doing
this, the scale invariance predicted by the theory in Section 2.3.4 is also investigated.Figure 2.5
shows R2

mρ versus r/Rm for many values of α (the same of Figure 2.3 (a)) and for (a) N =
10000, (b) N = 1000 and (c) N = 100. In the figure is shown the results from our theory, which
is given by equation (2.26) and does not depend on α , and from the one developed in [41] (with
cohesive energy) for α = 10−4 and α = 101 (the curves for other values of α are between the
two and so are the ones obtained by the theory of [48]). As it can be seen, our theory gives a
good approximation even for values of N between 100 and 1000, which are more easy to be
achieved in experiments.

We can see from figures 2.5(a) and 2.5(b) that the density behavior is approximately parabolic
and depends on α . We interpolate this density using a one-parameter fitting function given by

R2
mρ =

2N
π(2−d)

(
1−d

r2

R2
m

)
, (2.29)
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where d = d(α ,N) is the fitting parameter. This function is parabolic on r and attends the con-
ditions of equation (2.16) and of continuity of its gradient for |r| < Rm. Figure 2.6 (a) shows
the values of d for N = 10000 as a function of α obtained by interpolations of equation (2.29)
with simulation results (symbols) compared with the value predicted by the theory (line). We
can see that the fitting results have a well-behaved dependence on α . However, it is not in-
jective, i.e., it does not have a one-to-one correspondence. For instance, the scaled densities
of α = 10−4 and α = 105, for N = 10000, are shown in Figure 2.6 (b) and one can see that
they are almost the same. This implies in a limitation of any theory for the density: there can
be two possible values for each of the system’s parameters (κ , q and V0) which can result in
the same values of Rm and ρ(r) coming from an experiment or simulation. Also, just a theory
which accounts non-local, finite size and correlational effects can predict these two regimes at
the same time, giving the two possible values of the parameters.

2.5 Conclusions

The density profile and the system’s size of 2D complex plasma clusters confined by a parabolic
potential are obtained analytically. For the calculation of the interaction energy, we used the
LDA with a position independent FSE. A differential equation for the density was obtained by
a new method. By using the proposed interaction energy, this differential equation gives the
same result of the variational [41] and pressure [48] approaches, however our method gives
light to an important new boundary condition.

The density resulted from our approximation scales with the radius, implying that the values
of κ and α cannot be calculated separately from the final configuration of a single experiment.
In fact, the real density does not have this scale invariance but it is showed that there are systems
with different α but identical normalized density profiles.

The boundary condition and the FSE were determinant to provide surprisingly good results
in systems with relatively small number of particles (8 < N < 500). For instance, for α = 10−2,
the relative error of the theoretical maximum radius is less than 5% for any N > 8.

2.6 Summary of the Chapter

We investigated a system where a great number of particles interact via Yukawa interaction and
are trapped in a parabolic well (generating an external force which is linear with the distance
from the center). The interaction energy was approximated by the continuum approach with
inclusion of finite size effects. A simple method to find the force is proposed and edge effects
were considered, providing good results.

The proposed method will be further developed in the next Chapter and we will see that it
provides the same result of Density Functional Theory.



2.6 SUMMARY OF THE CHAPTER 31

Figure 2.3 (a) Scaled radius κRm versus number of particles N in logarithm scale obtained from sim-
ulations (symbols) and equation (2.24) (lines) for α = 1, 10−1, 10−2, 10−3 and 10−4. (b) Comparison
between our theoretical results and the ones developed in [48] and [41].



2.6 SUMMARY OF THE CHAPTER 32

Figure 2.4 Scaled radius κRm versus number of particles N in normal scale for α = 10−2 obtained
by equation (2.24) (dashed line), equation (2.18) (dotted line) and by simulations (symbols). The inset
shows a zoom for 2 < N < 21.
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Figure 2.5 Scaled density R2
mρ versus scaled radial distance r/Rm obtained by the theory (line) and by

simulations (symbols) for several values of α and (a) N = 10000, (b) N = 1000 and (c) N = 100.
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Figure 2.6 (a) Coefficient d versus α obtained by interpolations (symbols) and by theory (horizontal
line). (b) Scaled density R2

mρ versus r/Rm obtained from simulations for α = 10−4 and α = 105.



CHAPTER 3

DDFT force due to density gradient in 2D crystals

The Dynamical Density Functional Theory (DDFT) to nonequilibrium statistical mechanics
has been successfully applied to many systems (see [65, 66, 67, 68, 69] and references therein).
Despite the success of the theory, it rests upon an adiabatic approximation. Within such ap-
proach, it is assumed that the nonequilibrium two-body correlations are approximately equal
to those of an imagined equilibrium situation with the same instantaneous one-body density
distribution ρ̂(r, t) [68, 70]. Before we show the DDFT result for the force, lets present some
definitions.

The one-body density distribution is related to the probability distribution of particle posi-
tions at time t, P(r1,r2, ...,rN , t)≡ P({ri}, t), by

ρ̂(r1, t) = N
∫

d2r2d2r3...d2rNP({ri}, t), (3.1)

or, equivalently,

ρ̂(r, t) =
N

∑
i
⟨δ (r− ri)⟩. (3.2)

Moreover, the probability distribution P({ri}, t) is related to the statistical phase-space distri-
bution function f ({ri},{pi,}, t) by a integration in phase space

P({ri}, t) =
∫

d2 p1...d2 pN f ({ri},{pi,}, t), (3.3)

where {pi} stand for the momenta. Also, we can define the pair density distribution by

ρ̂(2)(r1,r2, t) = N(N −1)
∫

d2r3...d2rNP({ri}, t) =
N

∑
i, j

′
⟨δ (r− ri)δ (r− r j)⟩, (3.4)

where the prime indicates that the sum goes over i ̸= j, and then define the conditional distribu-
tion by ρ̂(r2|r1, t) = ρ̂(2)(r1,r2, t)/ρ̂(r1, t), which is the average particle density at r2 given a
particle fixed at r1. Notice that, at low temperatures and finite time scales, ρ̂(r, t) approximates
to a sum of sharp gaussians and then it differs from the coarse-grained density.

3.1 Density Functionals

Classical Density Functional Theory (DFT) [71] splits the grand potential into four contribu-
tions of one-body density functionals,

F [ρ̂] = Fid[ρ̂]+Fex[ρ̂ ]+
∫

d2rρ̂(r)Vext(r)−µ
∫

d2rρ̂(r), (3.5)

35
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where Vext(r) is the external potential, µ is the chemical potential, Fid[ρ̂ ] = kBT
∫

d2rρ̂(r)[lnΛ3ρ̂(r)−
1] is the exact ideal gas contribution and Fex[ρ̂] is the excess part of Helmholtz free energy due
to interparticle interactions. At zero temperature, Fid = 0 and Fex is expected to be simply
the total potential energy of interparticle interactions. Equilibrium DFT [68] says that the total
interaction force on a particle is given by

F(r) =−
∫

d2r2ρ̂(r2|r1)∇1Vp(r12) =−∇
δFex[ρ̂(r)]

δ ρ̂
. (3.6)

In the next section we show a simple but non-rigorous derivation of this force in the limit
of low temperatures. The assumption that equation (3.6) remains valid in nonequilibrium is
the so-called adiabatic approximation assumed in DDFT [68]. It is equivalent to assuming
that the pair density ρ̂(2)(r1,r2, t) relaxes instantaneously to the equilibrium pair-density cor-
responding to the current one-body density ρ̂(r1, t). The DDFT force then has the same form
of equation (3.6), together with equation (3.5), adding temporal dependence labels.

In the limit of zero temperature, small inhomogeneity and short-range interaction on the
crystal, we can use the Local Density Approximation (Section 2.3) and the interaction and the
external potential energy can be expressed as functionals of the coarse-grained density ρ(r)
(which results from a coarse-graining of ρ̂(r)), given by

Uint [ρ] =
1
2

∫
ρ(r)ϕ(ρ(r))d2r (3.7)

and
Uext [ρ] =

∫
d2rρ(r)Vext(r), (3.8)

respectively. ϕ(ρ(r)) is the Madelung Energy, given by the lattice sum of equation (1.4).
Our main objective is this thesis is to investigate if, for some suitable coarse-grained density

functional Fex[ρ ], the force given by equation (3.6) is still valid in the limits described above.
And if this suitable excess free energy functional is exactly the interaction potential energy
(equation (3.7)).

3.2 Simple intuitive but non-rigorous derivation of DDFT force

Consider, at time t, a dislocation of particle i of the system from ri(t) to ri(t)+dr. We assume
the approximation that other particle positions remain unchanged and the variation in density,
for low temperatures, is given by δ ρ̂(r, t)≈ δ (r−ri(t)−dr)−δ (r−ri(t)). Then, the variation
in the total free energy is given by

δF =
∫

d2r
δF

δ ρ̂
[ρ̂(r, t)]δ ρ̂(r, t) (3.9)

=
δF

δ ρ̂
[ρ̂(ri(t)+dr, t)]− δF

δ ρ̂
[ρ̂(ri(t), t)].

The force on particle i at ri will be the negative of variation in energy, in the direction where it is
maximum, divided by |dr| in the limit where this goes to zero. Therefore, from equation (3.9),
we obtain the same result of equation (3.6).
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3.3 Microscopic approach

The same force of equation (3.6) can be obtained in a microscopic approach of interparticle
interactions. This can be achieved in a better investigation of the approach proposed in Sec-
tion 2.3.2.

Lets start from zero. Consider a classical two-dimensional crystal with triangular lattice
symmetry and particles interacting via an isotropic pairwise potential Vp(ri j). Consider also
that the effective range of Vp(ri j) is of the order of x (the nearest neighbor’s distance of the
crystal).

Let a particle of this triangular lattice be at the origin with its six neighbors at {ri} (i =
1,2, ...,6), as is shown in Figure 3.1 (a). We have |ri|= |ri+1−ri|= x0 where x0 is the nearest-
neighbors’ distance, related to the coarse-grained particle density ρ0 by ρ = 2/(

√
3x2). Also,

let θ 0
1 and θ 0

i+1 = θ 0
i +π/3 be the angles between ri and some axis ŷ (see Figure 3.1 (a)).

Now, consider a perturbation on this lattice such that a small density gradient antiparallel to
ŷ is formed, as is shown in Figure 3.1 (b). The nearest-neighbors’ distances have now a position
dependence x= x(r). This gradient provokes deformations in the crystal (deformations in {ri})
and now we have angle perturbations δθi = θi − θ 0

i and perturbations in the twelve nearest-
neighbors’ distances δxi = xi − x0 and δx′i = x′i − x0, which are given by xi = |ri| and x′i =
|ri+1 − ri| and are defined at the mean positions of their neighbors, i.e., ri/2 and (ri+1 + ri)/2,
respectively. We are considering the case of a particle with 6 neighbors far from lattice defects.
Topological lattice defects are inevitable, in general, in a inhomogeneous system but important
to locally sustain a triangular lattice symmetry [72].

To be more precise in what we mean by a small density gradient, consider that the relative
variations in the nearest-neighbors’s distances shown in Figure 3.1 (b) are small. In other words,
δxi/x0 and δx′i/x0 ≪ 1 for all i, and since the denominator is of the order of the distances
between the positions where xi and x′i are defined, we have |∇x| ≪ 1, or

|∇ρ | ≪ ρ3/2, (3.10)

to be satisfied in the crystal.
If the particles interacts with short-range pairwise repulsive potential Vp(r), the total force

F = F ŷ on the origin particle due to its neighbors, after the perturbation, will no longer be zero.
Instead, it will be given by

F =
6

∑
i=1

V ′
p(xi)cosθi

= V ′′
p (x0)

6

∑
i=1

δxi cosθ 0
i −V ′

p(x0)
6

∑
i=1

δθi sinθ 0
i , (3.11)

up to first order in perturbations. Notice that the perturbations δx′i relates δxi and δθi by
δx′i = (δxi +δxi+1)/2+

√
3x0(δθi+1 −δθi)/2.

The density gradient ∇ρ is a coarse-graining definition and so is ∇x. If such gradient is
formed infinitely slowly, the system can adapt its configuration remaining close to equilibrium.
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Figure 3.1 (a) A particle and its 6 neighbors in a perfect triangular lattice. The angles θi are defined
from the direction of ŷ (b) Deformations in the lattice forming a density gradient antiparallel to ŷ.
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Then the microscopic variations of xi and x′i in Figure 3.1 (b) obey ∇x, even in such a small
scale. Then we have

xi = x0 +∇x · ri

2
⇒ δxi =

x0 cosθ 0
i |∇x|

2
, (3.12)

and

x′i=x0 +∇x · (ri+ri+1)

2
⇒ δx′i=

√
3x0 cos(θ 0

i +π/6)|∇x|
2

. (3.13)

These equations give ∑6
i=1 δxi cosθ 0

i = 3x0|∇x|/2 and ∑6
i=1 δθ 0

i sinθ 0
i = 3|∇x|/2. Realize that

x0 = ∑6
i=1 xi/6 = ∑6

i=1 x′i/6. Equation (3.11) then becomes

F =
3
2
[
x0V ′′

p (x0)−V ′
p(x0)

]
∇x. (3.14)

By a change of variables and considering that the force acts on a particle at r, where x0 = x(r)
is the average of its nearest-neighbors’ distances, equation (3.14) can be written as

F(r, t) =−
[

dϕ(ρ(r, t))
dρ

+
ρ(r, t)

2
d2ϕ(ρ(r, t))

dρ2

]
∇ρ(r, t), (3.15)

where ϕ(ρ) = 6Vp(x(ρ)) is the total potential energy in the limit of short range.
In Section 2.3 we used the notion that the neighbor particles can act as effective particles,

carrying the total interaction of the whole sixth part of the lattice they represent. The triangular
lattice is made of a collection of hexagons with different orientations, where the particles are
in their vertices, and we can use the same procedure presented above for all of them, since the
result is independent of the direction ŷ. The total result for the force of the entire is the same of
equation (3.15) where ϕ(ρ) is a lattice sum, with contributions of second and farther neighbors.
The same result obtained from the consideration of effective particles.

The procedure described above, resulting in equation (3.15), gives the same force obtained
from equation (3.6) where the free energy is simply the interaction potential energy

F [ρ(r, t)] =U [ρ(r, t)] =
1
2

∫
ρ(r, t)ϕ(ρ(r, t))dr, (3.16)
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where the Madelung energy ϕ = ϕ(ρ) = ϕ(x) is given by the lattice sum

ϕ = ∑
i

Vp(ri) = ∑
i

Vp(xpi), (3.17)

where pi = ri/x depends only on the crystal’s lattice symmetry. Notice that, in the limits of short
range interaction, where ϕ(ρ) = 6Vp(x(ρ)), and small density gradient (equation (3.10)) used
in the present case, the local density approximation can be used and equation (3.16) becomes
exact.

3.4 Summary of the Chapter

This Chapter showed some approaches to find the interaction force acting in a particle in the
crystalline state. The first and second sections do not needed to use any crystalline property.
Although Section 3.3 used the triangular lattice geometry, the result obtained was the same
(inside the limitations of validity). The next Chapter will present cases where the force assumes
a different dependence with the coarse-grained density.



CHAPTER 4

Residual free energy

The nonequilibrium case of long wavelength longitudinal waves contains small density gradi-
ents, obeying equation (3.10), but we will see that the force given by equation (3.15) does not
provide the correct result for the velocity of these waves, i.e„ for the crystal’s sound speed. The
correction for the force comes from an additional term in the free energy. We then construct a
simple equilibrium case where the same correction is needed.

4.1 Long wavelength longitudinal waves (sound waves)

For the analysis of wave spectra (see, e.g., [39]), consider the continuity,

∂ρ
∂ t

+∇ · (ρv) = 0, (4.1)

and force equation,

m
(

∂v
∂ t

+v ·∇v
)
+mγv =−∇

δFex[ρ̂(r)]
δ ρ̂

, (4.2)

for the coarse-grained density ρ(r, t) and the velocity field v(r, t), where γ is the drag coefficient
and m is the mass of each particle. We will suppose that the excess free energy is given by the
interaction potential energy plus a residual term, Fex[ρ] =U [ρ]+Fres[ρ], both functionals of
coarse-grained density. Taking a time derivative of the second equation and using the first one,
we obtain

m
[

∂ 2v
∂ t2 +

∂ (v ·∇v)
∂ t

]
+mγ

∂v
∂ t

=

[
dϕ
dρ

+
ρ
2

d2ϕ
dρ2 +

d
dρ

(
δFres[ρ ]

δρ

)]
∇[∇ · (ρv)]. (4.3)

By making a perturbation of the form ρ(r, t) = ρ0(r)+ δρ0ei(k·r−ωt) for the density and
v(r, t) = δv0ei(k·r−ωt) for the velocity, linearizing and taking the limit k → 0, we find ω(ω +
iγ) = c2k2, where the sound speed c is given by

c2 =
ρ
m

(
dϕ(ρ)

dρ
+

ρ
2

d2ϕ(ρ)
dρ2

)
+

ρ
m

d
dρ

(
δFres[ρ]

δρ

)
. (4.4)

The same result can be obtained by a perturbation in the Dynamic Density Functional Theory
(DDFT) equation for finite viscosity [73]

∂ 2ρ
∂ t2 + γ

∂ρ
∂ t

=
1
m

∇ ·
[

ρ∇
δF [ρ ]

δρ

]
. (4.5)
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On the other hand, the system of Newton’s equations for all particles

m
∂ 2ri

∂ t2 +mγ
∂ri

∂ t
=−∑

j ̸=i
∇Vp(ri j) =−∑

j ̸=i
r̂i jV ′

p(ri j), (4.6)

where ri is the position of particle i and r̂i j = (ri − r j)/|ri − r j|, will give an exact result. By
making a perturbation of the form ri = r0i + δri on the lattice positions and linearizing, we
have

m
∂ 2δri

∂ t2 +mγ
∂δri

∂ t
=−∑

j ̸=i

{
[δri j − r̂0i j(δri j · r̂0i j)]

V ′
p(r0i j)

r0i j
+ r̂0i j(δri j · r̂0i j)V ′′

p (r0i j)

}
.

(4.7)
Using δri(t) = δr0ei(k·r0i−ωt),

mω(ω+iγ)δro = ∑
j ̸=i

(1−cos(k · r0i j))

{
r̂0i j(δri j · r̂0i j)

[
V ′′

p (r0i j)−
V ′

p(r0i j)

r0i j

]
+δri j

V ′
p(r0i j)

r0i j

}
.

(4.8)
There are two types of waves satisfying ω(ω + iγ) = c2k2 for long wavelengths. They are the
longitudinal (δr0 ∥ k) and transversal (δr0 ⊥ k) waves. After taking the limit k → 0, the sound
speed of longitudinal waves is independent of r0i and given by the lattice sum [40]

c2 = ∑
i

r2
i cos2 θi

2m

{
V ′′

p (ri)cos2 θi +
V ′

p(ri)

ri
sin2 θi

}
. (4.9)

In a triangular lattice, we can separate the sum in a collection of hexagons. For each term with
angle θi in this sum, there are other five with same radius and angles θi+nπ/3 (n = 1,2, ...,5).
Using the properties

5

∑
n=0

cos4
(

θi +n
π
3

)
= 6⟨cos4 θ⟩= 9

4
, (4.10)

5

∑
n=0

cos2
(

θi +n
π
3

)
sin2

(
θi +n

π
3

)
= 6⟨cos2 θ sin2 θ⟩= 3

4
, (4.11)

and then, using ri = xpi, we finally obtain the sound speed

c2 = ∑
i

ri

16m

[
V ′

p(ri)+3riV ′′
p (ri)

]
(4.12)

=
x

16m

[
∑

i
piV ′

p(xpi)+3x∑
i

p2
i V ′′

p (xpi)

]
(4.13)

=
x

16m

[
d

dx ∑
i

Vp(xpi)+3x
d2

dx2 ∑
i

Vp(xpi)

]
(4.14)

=
x

16m

[
dϕ(x)

dx
+3x

d2ϕ(x)
dx2

]
(4.15)

=
ρ
m

[
dϕ(ρ)

dρ
+

3
4

ρ
d2ϕ(ρ)

dρ2

]
, (4.16)
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where we used ri = xpi for each particle and the proportionality factor pi depends on the lattice
geometry.

Comparing equations (4.4) and (4.16) we can see that the dynamics of wave propagation
needs an additional force given by

Fres =−ρ
4

d2ϕ(ρ)
dρ2 ∇ρ, (4.17)

which can come from a residual free energy, given by

Fres[ρ(r, t)] =−1
2

∫
ψ(ρ(r, t))d2r, (4.18)

where

ψ(ρ) =
∫ ρ

0
ϕ(ρ ′)dρ ′− ρϕ(ρ)

2
+Aρ +B, (4.19)

and A and B are constants of integration.
Notice that −Fres[ρ ] has properties of entropy when d2ψ/dρ2 ≤ 0 by choosing A and B

such that ψ(0) = ψ(1) = 0 [61]. Also, the convexity property,

d2ψ(ρ)
dρ2 =−ρ

2
d2ϕ(ρ)

dρ2 ≤ 0, (4.20)

is valid for many types of interaction such as power-law Vp(r) ∝ 1/rm, for m > 2 (which is
also a necessary condition for convergency of equation (3.17)), and Yukawa Vp(r) ∝ e−κr/r
interactions. The latter can be easily observed through the closed form approximations of ϕ(ρ)
investigated in Section 1.3. Moreover, notice that, when the interaction range is much bigger
than x and much smaller than the scale of density variations, one can use the approximation
ϕ(ρ(r))≈

∫
ρ(r′)Vp(|r− r′|)d2r′ ≈ ρ(r)

∫
Vp(r′)d2r′ and then the influence of Fres[ρ ] is neg-

ligible.
For power law interactions ϕ(ρ) =Cmq2/xm ∝ ρm/2, where Cm is a constant resulted from

a lattice sum, Fres[ρ ] can have the form of a Tsallis entropy [61],

ψ(ρ) = k
[(ρ/A)ν − (ρ/A)]

1−ν
, (4.21)

for appropriate choices of k and A, where the entropic-index ν is equal to 1+m/2. J. S. Andrade
Jr. et al. showed in [61] that the the negative of interaction potential energy (equation (3.16))
has the form of a Tsallis entropy with index ν = 2. But, in fact, it is not a true entropy.

4.2 An equilibrium system

We recently performed computer simulations where a perfect crystal inside a retangular box
(with periodic boundary conditions) is subject to an external force in the x-coordinate direction
with potential of the type

Vext =V0cos(2πx/L), (4.22)
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where V0 is its amplitude, x is the position in one of the box directions and L is the box length in
the x-direction. The interaction potential was a power law one, with power m = 6, i.e., Vp(r) =
q2/r6. This potential is short-ranged and simple for computations. At small temperatures, the
crystal, initially homogeneous (see Figure 4.1), evolves overdampedly towards an equilibrium
inhomogeneous coarse-grained density (see Figure 4.2).

Figure 4.1 Initial state of our simulations, which is homogeneous. The particles are in a prefect trian-
gular lattice configuration. Periodic boundary conditions are used.

We simulated with many different number of particles up to 105 and found that, for small V0
and consequently small density variations, the equilibrium configuration remains a triangular
lattice without forming defects, but more elongated in some regions than in others. The force
in this case relates to the density in the same way as in the case of sound waves. In fact, the
density profile which minimizes the free energy Uext [ρ ]+Uint [ρ ]+Fres[ρ] fits the simulation
results much better than the one without Fres[ρ ]. The same results are found at zero and low
finite temperatures.

These startling simulations exhibit a low temperature equilibrium system where the usual
potential energy is not minimized. In fact, this is due to the initial configuration. On the other
hand, initiating at the liquid state (high temperature) and then freezing and annealing till zero
temperature, we obtain a configuration with defects, which tries to minimize the usual potential
energy Uext [ρ ]+Uint [ρ ]. The perfect crystal, at low temperatures, fails in forming defects when
the external perturbation is sufficiently small.
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Figure 4.2 Final state of our simulations, which is inhomogeneous. The particles are in a configuration
of triangular lattice with distortions. Periodic boundary conditions are used.

4.3 Summary of the Chapter

In this Chapter, we found that the equation for the force can be different, than that obtained
in the previous one, in some systems where the inhomogeneity of coarse-grained density is
produced without formation of any topological defects in the lattice. This is shown for long
wavelenght longitudinal waves and an equilibrium system with a cosine type external potential.
In these cases the force can be corrected by adding a residual term in the free energy.



CHAPTER 5

Conclusions

In this M.Sc. thesis, we investigated formulas for interaction forces and energy of two-dimensional
crystals when inhomogeneity of coarse-grained density comes to play, at the zero temperature
limit.

The interaction energy of a perfect crystal, with constant coarse-grained density, is given
by a lattice sum and we called it Madelung energy. Some analytical approximations to it,
investigated in a previous work, were showed. The relative error of a proposed method goes
to zero in the continuum and nearest-neighbors asymptotic limits. The method is especially
efficient in the case of Yukawa interactions, where closed forms and small relative errors are
obtained.

In order to introduce a little bit about the importance and applicability of calculations of en-
ergy and forces in inhomogeneous systems, we presented a previous published work [42]. The
density profile and the system’s size of 2D complex plasma clusters confined by a parabolic
potential are obtained analytically. For the calculation of the interaction energy, we used the
Local Density Approximation with a position independent finite size effects. A differential
equation for the density was obtained by a new method. Using the proposed interaction energy,
this differential equation gives the same result of the variational and pressure approaches, how-
ever our method gives insight to a new important boundary condition. The boundary condition
and the FSE were determinant to provide surprisingly good results in systems with relatively
small number of particles (8 < N < 500). For instance, for α = 10−2, the relative error of the
theoretical maximum radius of the system is less than 5% for any N > 8.

Then we look at the density functional way to obtain the interaction force due to a in-
homogeneous density by means of DDFT. We presented a simple intuitive, but non-rigorous,
derivation of this force. The microscopic approach developed for the complex plasma clusters
is revisited and the same result of DDFT is obtained.

Thereafter, we investigated the calculation of the sound speed, the velocity of long wave-
length longitudinal waves. The exact value of the sound speed can be obtained by perturbations
in the system of Newton’s equations for each particle. It turns out that the DDFT needs an ad-
ditional term in the free energy in order to obey the correct value of the sound speed and use
functionals of coarse-grained density.

Finally, recent simulations showed that the same correction term is needed when the crystal
responds to a weak external potential, becoming inhomogeneous without forming any lattice
defects. The defects would decrease the potential interaction energy. The additional term in the
free energy will be subject of study in future works.
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