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Abstract

In this thesis we present some advances obtained in the graph model for con�ict resolution

(GMCR). The �rst one is a new stability concept, called symmetric sequential stability (SSEQ),

which was proposed for con�icts involving n decision makers (DMs) and the relationships between

this new concept and the existing concepts in GMCR is analyzed. In addition, an extension of this

concept to other preference structures is proposed. The second advance was to propose matrix

representations to facilitate the obtaining of stable states according to the stability de�nitions

proposed in the GMCR with probabilistic preferences and also according to the SSEQ notion

proposed for such model. The third advance was to modify the GMCR allowing the DMs to

have iterated levels of unawareness about the options available to them in a con�ict, i.e., we

consider that DMs may be unaware of some of their options, or some options of their opponents

and, therefore, may have only partial knowledge of the state space of the con�ict. Finally,

the fourth and �nal advance of this thesis is to present an alternative de�nition of the stability

concept generalized metarationality for con�icts with n-DMs. Our motivation to propose such an

alternative de�nition lies on the fact that, unlike the de�nition of generalized metarationality for

n-DMs in the literature, our de�nition coincides with the generalized metarationality for con�icts

involving only two DMs. In addition, we have pointed out some problems in results that relate

this de�nition to other solution concepts in the GMCR and analyze which properties are satis�ed

by the alternative de�nition that we propose.

Keywords: Con�icts. Graph Model. Stability Concepts. Unawareness.



Resumo

Nesta tese apresentamos alguns avanços obtidos no modelo de grafos para resolução de con�i-

tos (GMCR). O primeiro deles é um novo conceito de estabilidade, chamado symmetric sequential

stability (SSEQ), o qual foi proposto para con�itos envolvendo n decisores (DMs) e analisamos

as relações entre esse novo conceito e os conceitos existentes no GMCR, além de estendermos

tal conceito para outros GMCR com diferentes estruturas de preferências. O segundo avanço

foi propor representações matriciais para facilitar a obtenção de estados estáveis de acordo com

as de�nições de estabilidades propostas no GMCR com preferências probabilísticas e também

de acordo com a noção de SSEQ proposta para tal modelo. O terceiro avanço foi modi�car

o GMCR permitindo que os DMs possam ter níveis iterados de falta de consciência sobre as

opções disponíveis para estes em um con�ito, isto é, consideramos que os DMs podem estar

inconscientes sobre algumas de suas opções, ou sobre as opções de seus oponentes e, portanto,

podem ter apenas conhecimento parcial a respeito do espaço de estados do con�ito. Finalmente,

o quarto e último avanço dessa tese consiste em apresentar uma de�nição alternativa do conceito

de estabilidade generalized metarationality, para con�itos com n-DMs. Nossa motivação para

propor tal de�nição alternativa reside no fato de que, ao contrário da de�nição de generalized

metarationality para n-DMs na literatura, nossa de�nição coincide com a de�nição generalized

metarational no caso em que o con�ito tem apenas dois DMs. Além disso, apontamos alguns

problemas em resultados que relacionam tal de�nição com outros conceitos de solução no GMCR

e analisamos quais propriedades são satisfeitas pela de�nição alternativa que propomos.

Palavras-chave: Con�itos. Modelo de Grafos. Conceitos de Estabilidade. Falta de Consciência.
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CHAPTER 1

Introduction

1.1 Game Theory and Con�ict analysis

Game theory is an important mathematical theory whose main objective is to analyze sit-

uations involving strategic interactions, such as war problems or �nancial and economic spec-

ulations. At the beginning of the 20th century, Emile Borel [1] and Von Neumann [2] began

to analyze situations like these from the skill of the agents involved, not just from the lucky

factor. In the middle of 20th century, after the publication of book Theory of Games and Eco-

nomic Behavior (Von Neumann and Morgenstern [3]) and the works of John Nash Equilibrium

Points in n-Person Games [4], Non-cooperative Games [5], The Bargaining Problem [6] and Two

Person Cooperative Games [7], this theory gained considerable prominence in economics and ap-

plied mathematics due to the mathematical techniques employed, which enabled mathematical

formalism in the analysis of strategic situations among multiple agents.

A branch of game theory that is devoted to con�ict analysis began to be broadly developed

from Howard [8] pioneering work on metagame analysis. Since then, several contributions have

emerged in the area of con�ict analysis such as [9] and [10]. Fraser and Hipel [11] proposed a

model that was based on concepts of game theory and con�ict analysis, such a model is called

the graph model for con�ict resolution (GMCR). The GMCR is a model that basically describes

a set of possible states (outcomes) that can arise in a con�ict according to actions that can be

21
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taken by individuals involved in a con�ict, called decision makers (DMs). DMs may change the

con�ict state by changing some of their actions taking into account their preferences over the set

of possible states in the con�ict and the countermoves of the other DMs.

Since DMs can behave in di�erent ways, there are several stability de�nitions (solution con-

cepts) which determine whether or not a DM has incentive to move away from a given state. In

the GMCR, there are a number of stability concepts used in con�ict resolution. Some of these

concepts are: Nash stability [5], general metarationality (GMR) [8], symmetric metarationality

(SMR) [12], sequential stability (SEQ) [12], limited-move stability of horizon h (Lh) [13] and

metarational stable states of r rounds (MRr) [14]. Such stability concepts are de�ned for a

given DM, called focal DM, which is considering whether or not to move away from a given

state. Theses concepts di�er in what are the sanctions allowed for the opponents of the focal

DM and in how far ahead the focal DM foresees the con�ict. If a state is stable for all DMs in

the con�ict according to a particular solution concept, then it is called an equilibrium according

to such concept.

In view of the many works that have been developed on the GMCR in order to extend

the model to capture the most diverse situations of con�ict that can arise in the real world,

we present in this thesis advances that we have made on the GMCR. The contributions range

from the proposal of new solution concepts, the demonstration of mathematical results that

facilitate the calculation of stable states in the GMCR with probabilistic preferences [15] and

the formulation of a GMCR that allows for lack of awareness among the DMs involved in the

con�ict.

1.2 Objectives

This thesis aims to present advances that we made in the GMCR. We present the objectives

below.

(1) Since several solution concepts have been proposed in order to represent the most varied

human behaviors, the �rst objective of this thesis was to propose a concept of stability that
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is a type of SEQ stability, but that allows a counter-reaction of the focal DM. This solution

concept, called symmetric sequential stability (SSEQ) and presented in Chapter 3, was

proposed for bilateral and multilateral con�icts. We obtained results relating SSEQ with

the previously mentioned solution concepts that are usually used in the GMCR. We also

proposed the SSEQ stability de�nition for a coalition and obtained its relationship with

the classical stability de�nitions in coalitional analysis. Additionally, we extended this

new solution concept for n-DM GMCR with uncertain [16], probabilistic [15] and fuzzy

preferences [17].

(2) Stability analysis is a fundamental procedure in con�ict analysis. Many of the usual solu-

tion concepts in the GMCR are complicated or require a lot of calculation to be used in

con�icts involving many DMs and states. In the works of Xu et al. [18] and [26], matrix

representations were proposed to facilitate the achievement of stable states according to

the usual de�nitions of GMCR stability (Nash, GMR, SMR and SEQ). [15] provided an

extension of the GMCR in which probabilistic preferences are adopted in the model. For

this model, new notions of stability were proposed, similar to the usual de�nitions in the

GMCR. The second objective of this thesis was to propose matrix results similar to those

obtained in [18] to facilitate the calculation of stable states in the GMCR with probabilis-

tic preferences. Additionally, we propose a matrix representation for the SSEQ concept

de�ned in the GMCR with probabilistic preferences.

(3) An assumption commonly adopted in most part of the GMCR literature is the common

knowledge of the DMs involved about who are the DMs in the con�ict, what are the states

of the con�ict, what are the reachable states and preferences of the DMs over the set of

states. The third objective of this thesis was to propose a GMCR in which this assumption

was removed, i.e., we modify the standard GMCR to allow for the possibility that DMs may

be unaware of some of the options available in the con�ict. Our motivation for proposing

this model is that in some con�icts having an available option that your opponents is

unaware of can be crucial to determine what kinds of con�ict resolutions can be achieved.
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For example, in a war setting developing a new weapon technology which the adversary is

unaware of can be crucial in de�ning the war resolution.

(4) As we study the concept of generalized metarationality for n-DMs [14], we observed that it

is not an extension of the generalized metarationality concept, proposed in [19], for con�icts

with 2 DMs. Moreover, we also observed that some results presented in [14] are false. For

example, there is a problem with the result that SMR is equivalent to a particular case

of generalized metarationality for n-DM con�icts. In view of these problems, the fourth

and �nal objective of this thesis is to present an alternative de�nition for generalized

metarationality that coincides with the de�nition previously proposed by [19] in the case

n = 2 and verify which of the results stated in [14] are still valid with the alternative

de�nition proposed.

1.3 Methods and procedures

The method used to elaborate this thesis consisted in making a study of the works that have

been proposed in the literature on GMCR. In particular, we investigated what were the most

recent developments in the theory, that is, what was at the frontier of science with respect to such

model. From our studies, we saw the need to propose a new de�nition (SSEQ), which would

be a re�nement of SMR and SEQ, reducing the number of stable states of the con�ict. When

analyzing the relations between this new concept (SSEQ) and the concepts of stabilities existing

in the GMCR, we found some problems in the literature, more speci�cally in the generalized

metarationality concept of Zeng et al. [14]. These problems motivated us to try to correct them

by proposing alternative generalized metarationality de�nitions to overcome some of them.

By studying the GMCR with probabilistic preferences, proposed by Rêgo and Santos [15], we

felt the need to propose a more e�cient way to calculate the parameter regions of stability for the

con�ict states. The works of Xu et al. [18] and [26] provided us ideas that were adapted to our

desired situation. Finally, we saw that there were some GMCR that allowed for the possibility

of misperception in the GMCR and that motivated us to use our familiarity with the theory of
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unawareness in the game theory literature, specially with the work of Heifetz et al. [54], and use

it to investigate the impact of unawareness in the stability analysis of the GMCR.

1.4 Thesis Organization

This thesis is divided into 6 chapters, including this introductory chapter. In Chapter 2, we

recall the GMCR and the mostly used solution concepts. In this chapter, we also present an

overview of the main theoretical and applied works that have been done in the GMCR literature.

In Chapter 3, we present the SSEQ stability and several results establishing relationships be-

tween SSEQ and other solution concepts used in the GMCR. Moreover, we provide a de�nition

of SSEQ stability for coalitions. Finally, we �nish this chapter extending the SSEQ de�ni-

tion to other GMCR models with di�erent preference structures, such as GMCR with uncertain

preferences [16], GMCR with probabilistic preferences [15] and GMCR with fuzzy preferences

[17].

In Chapter 4, we have developed matrix results, similar to those obtained in [18], to �nd

stable states in the GMCR with probabilistic preferences with n decision makers. The matrix

methods are used to determine more easily the stable states according to four stability de�nitions

proposed for this model, namely: α-Nash stability, (α, β)-metarationality, (α, β)-symmetric

metarationality and (α, β, γ)-sequential stability. Additionally, we have also proposed a matrix

result to determine (α, β, γ)-SSEQ stable states more e�ciently in the GMCR with probabilistic

preferences.

In Chapter 5 we generalize the GMCR to allow for interactive unawareness of the DMs in

bilateral and multilateral con�icts. More speci�cally, we consider a GMCR, where a DM, in some

given state, can be unconscious about some of his options, or about the options of his opponents,

and therefore, may have only a partial knowledge of the state space. Additionally, we generalize

standard solution concepts for this model.

In Chapter 6 we show that the concept of generalized metarationality for n-DMs proposed

in [14] is not an extension of the generalized metarationality concept proposed in [19], for the

particular case where n = 2. Such observation led us to seek an alternative de�nition for gen-
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eralized metarationality stability for n-DM con�icts that coincides with the de�nition proposed

earlier by [19] in the case n = 2. Moreover, we show that some of the results stated in [14] for

n-DM con�icts relating generalized metarationality and other solution concepts are not valid.

In particular, there is a problem with the result that SMR is equivalent to a particular case of

generalized metarationality for n-DM con�icts, as stated in [14]. In this chapter we proposed

an alternative generalized metarationality de�nition for n-DM con�icts that, unlike to the orig-

inal de�nition, captures the concept of SMR as a special case and coincides with the de�nition

proposed in [19] for con�icts involving only two DMs.

1.5 Computer Support

To write this thesis we use the typographic system LATEX
1, which is a tool for the production

of mathematical and scienti�c texts due to its high typographic quality. The MikTeX software

was adopted: an implementation of LATEX for use in the Windows environment. In addition, to

do the matrix algorithms, we use the statistical software R2 which is a tool used in statistical

data analysis.

1For more information and details on the typography system LATEX see De Castro (2003) or visit
http://www.tex.ac.uk/CTAN/latex.

2The software R can be found at https://cran.r-project.org/bin/windows/base/



CHAPTER 2

Theoretical background

2.1 Introduction

The graph model for con�ict resolution (GMCR) was originally proposed in [20] and is a

mathematical tool used in con�ict analysis. In the GMCR, there is a set of decision makers

(DMs) that may take some actions and a set of states (possible con�ict resolutions) that may

arise according to the actions taken by DMs. DMs can change the state of the con�ict by

changing some of their actions. DMs have preferences over the set of states and may change

states taking into account such preferences and the countermoves reachable to other DMs that

participate in the con�ict.

Various notions of stability (solution concepts) have been proposed in the GMCR literature

aiming to model the various types of behavior that can arise in a strategic con�ict. When a

state of a con�ict satis�es a particular stability de�nition for all DMs involved in the con�ict,

this state is considered an equilibrium according to that particular de�nition. In the GMCR,

there are several solution concepts, some of these are: Nash stability [5], general metarationality

(GMR) [8], symmetric metarationality (SMR) [12], sequential stability (SEQ) [12], and limited-

move stability of horizon h (Lh) [13].

Next, we present an overview about the GMCR literature, recalling the basic idea of the

GMCR and its main solution concepts for con�icts with 2-DMs, n-DMs and for coalitions, which

27
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are important for the good comprehension of the results that will be presented in this thesis.

2.2 GMCR and Solution Concepts

In this section, we recall the basic idea of the GMCR and the following stability de�nitions:

Nash stability, GMR stability, SMR stability, SEQ stability, Lh stability and CMRr stability.

Additionally, we also recall some standard stability de�nitions of coalitional analysis. The main

objective to review these solution concepts is to establish relationships between these stability

notions and the new concepts that are presented in this thesis.

2.2.1 GMCR

The GMCR was introduced by Kilgour et al. [20] and consists of a set of DMs N , with

cardinality equal to n, a set of possible states or con�ict scenarios, S = {s1, . . . , sm}, and, for

each DM i ∈ N , a preference relation over S and a directed graphDi = {S,Ai}, where Ai ⊆ S×S

determines for each state s to what states DM i can lead the con�ict, called reachable states

from s in one step.

The GMCR provides a framework in which to analyze strategic interactions among DMs,

based on the information of the options available to DMs and on what their preferences about

the con�ict states are. As in most game theoretic models, in GMCR it is assumed that the

preferences of a DM i can be expressed by a binary relation on S, denoted by �i, where s �i s1

indicates that DM i strictly prefers state s to state s1. Additionally, one can also derive the weak

preference relation �i, where s �i s1 means that DM i does not strictly prefer state s1 to state

s, and the indi�erence relation ∼i, where s ∼i s1 means that DM i does not strictly prefer state

s to state s1 and does not strictly prefer state s1 to state s.

2.2.2 Solution concepts in the GMCR

The study of possible moves and countermoves made by DMs in strategic con�icts is called

stability analysis. Several di�erent behaviors can arise in con�ict situations, so many concepts

of stability have been proposed and are still being obtained. In this section, we review six
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stability concepts used in the GMCR, namely: Nash stability, GMR stability, SMR stability,

SEQ stability and Lh stability. In order to present such de�nitions, we need to describe some

basic components that are useful in their formalization.

Let i ∈ N and denote by Ri(s) the set of all states in S that are reachable in one step for

DM i when the current state is s, i.e., Ri(s) = {s1 ∈ s : (s, s1) ∈ Ai}, and denote by R+
i (s) the

set of all states that are attainable for DM i when the current state is s and that are preferable,

for DM i, to state s, i.e. R+
i (s) = {s1 ∈ Ri(s) : s1 �i s}. As usual in the GMCR literature, we

assume that s /∈ Ri(s), ∀s ∈ S and ∀i ∈ N .

Solution concepts in the GMCR with two DMs

In some chapters of this thesis we �rst present GMCR extensions for con�icts with two DMs

and then generalize to con�icts with n-DMs. Therefore, it is necessary to recall the stability

concepts for con�icts with two or more DMs. Next, we recall the usual stability concepts in the

GMCR involving only two DMs that can be found in more details in [21].

Let N = {1, 2} and let i, j ∈ N , such that i 6= j, then the solutions concepts Nash, GMR,

SMR, SEQ and Lh stability are de�ned as follows.

De�nition 2.2.1. A state s ∈ S is Nash stable for DM i ∈ N i� R+
i (s) = ∅.

Intuitively, if a DM i is in a Nash stable state, then he or she has no incentive to move away

from it in a single step. Note that the Nash solution concept does not depend on the behavior

of the opponents of the focal DM. Thus, this concept is the same for con�icts with n-DMs.

De�nition 2.2.2. A state s ∈ S is GMR stable for DM i ∈ N i� for every s1 ∈ R+
i (s), there

exists s2 ∈ Rj(s1) such that s �i s2.

De�nition 2.2.3. A state s ∈ S is SMR stable for DM i ∈ N i� for every s1 ∈ R+
i (s), there

exists s2 ∈ Rj(s1) such that s �i s2 and s �i s3 for every s3 ∈ Ri(s2).

De�nition 2.2.4. A state s ∈ S is SEQ stable for DM i ∈ N i� for every s1 ∈ R+
i (s), there

exists s2 ∈ R+
j (s1) such that s �i s2.
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Intuitively, if a DM i is in a GMR stable state, he has no incentive to move away from it,

because he foresees a reaction of his opponent leading the con�ict to a no better situation. In an

SMR stable state, DM i cannot escape from this latter no better situation. Finally, in an SEQ

stable state, the move in the reaction of the opponent of DM i is bene�cial to him or her, but

no requirement to whether DM i may counter-react is made.

In what follows, we present the limited-move stability de�nition for con�icts with two DMs.

For this de�nition, we assume that DMs are not indi�erent between any pair of states. In order

to de�ne the limited-move stability notion we need to introduce some concepts (that can be

found in more details in [21]). Let Ki(s) be the cardinality of the set of states that are worse

than s for DM i, i.e., Ki(s) = #{s1 ∈ S : s �i s1}. Let h be a positive integer number. A DM

who foresees a sequence of length at most h is said to be a DM with horizon h. Let Gh(i, s) ∈ S,

i ∈ N , be the state that DM i believes that will be the �nal state of the con�ict when he or she

foresees a horizon h, the con�ict starts at state s and DM i moves �rst. Then (Gh(i, s), s ∈ S)

is the anticipation vector of DM i and, for convenience, G0(i, s) = s. The anticipation vector of

DM i is constructed, inductively, in the following way: If Ri(s) = ∅, then state s is stable for

DM i, because DM i is unable to move from this state. If Ri(s) 6= ∅ and h ≥ 1, then Gh(i, s) is

constructed as follows:

Gh(i, s) =

{
s if Ri(s) = ∅ or if Ki(s) ≥ Ah(i, s),

Gh−1(j,Mh(i, s)) if Ri(s) 6= ∅ and Ki(s) < Ah(i, s),

whereMh(i, s) is the unique state s∗1 ∈ Ri(s) which satis�esKi(Gh−1(j, s
∗
1)) = max{Ki(Gh−1(j, s1)) :

s1 ∈ Ri(s)}, j 6= i, and Ah(i, s) = Ki(Gh−1(j,Mh(i, s))).

Having de�ned Gh(i, s), the de�nition of Lh stability in this case is given as follows:

De�nition 2.2.5. A state s ∈ S is limited-move stable with horizon h for DM i ∈ N i� Gh(i, s) =

s.

Solution concepts in GMCR with n-DM

As previously mentioned, the Nash concept for con�icts with n-DMs is de�ned exactly as

in De�nition 2.2.1. In order to present GMR, SMR and SEQ stability de�nitions, we need to
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recall the concept of a legal sequence of movements and of unilateral improvement for a group

of DMs H ⊆ N .

Let H ⊆ N be a subset of DMs, called a coalition, and let RH(s) ⊆ S denote the set of

states that can be reached by any legal sequence of movements, where a sequence of movements

is legal if any DM may move more than once, but not twice consecutively. Let ΩH(s, s1) be the

subset of H whose members are DMs who make the last move to reach s1 in a legal sequence

of moves from s. RH(s) and ΩH(s, ·) are the smallest sets (in the sense of inclusion) satisfying:

(1) if i ∈ H and s1 ∈ Ri(s), then s1 ∈ RH(s) and i ∈ ΩH(s, s1), and (2) if s1 ∈ RH(s), i ∈ H,

ΩH(s, s1) 6= {i} and s2 ∈ Ri(s1), then s2 ∈ RH(s) and i ∈ ΩH(s, s2). Let R+
H(s) ⊆ S be the

set of all states that result from a legal sequence of unilateral improvements, starting at state s,

where a sequence unilateral improvements is legal if any DM may make unilateral improvements

more than once, but not twice consecutively. Similarly, if s1 ∈ R+
H(s), then Ω+

H(s, s1) is the set

of all last DMs in a legal sequence of unilateral improvements from s to s1. We have that R+
H(s)

and Ω+
H(s, ·) are de�ned as the smallest sets (in the sense of inclusion) satisfying: (1) if i ∈ H and

s1 ∈ R+
i (s), then s1 ∈ R+

H(s) and i ∈ Ω+
H(s, s1), and (2) if s1 ∈ R+

H(s), i ∈ H, Ω+
H(s, s1) 6= {i}

and s2 ∈ R+
i (s1), then s2 ∈ R+

H(s) and i ∈ Ω+
H(s, s2).

We can now state the de�nitions of GMR, SMR and SEQ stability, respectively, as follows:

De�nition 2.2.6. A state s ∈ S is GMR stable for DM i ∈ N i� for every s1 ∈ R+
i (s), there

exists s2 ∈ RN−{i}(s1) such that s �i s2.

De�nition 2.2.7. A state s ∈ S is SMR stable for DM i ∈ N i� for every s1 ∈ R+
i (s), there

exists s2 ∈ RN−{i}(s1) such that s �i s2 and s �i s3 for every s3 ∈ Ri(s2).

De�nition 2.2.8. A state s ∈ S is SEQ stable for DM i ∈ N i� for every s1 ∈ R+
i (s), there

exists s2 ∈ R+
N−{i}(s1) such that s �i s2.

Analogously to the respective de�nitions presented in the previous subsection, we have that,

intuitively, if a DM i is in a GMR stable state, he or she has no incentive to move away from

it, because he foresees a reaction of his opponents leading the con�ict to a no better situation.
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In an SMR stable state, DM i cannot escape from this latter no better situation. Finally, in a

SEQ stable state, all the moves in the reaction of the opponents of DM i are bene�cial to them,

but no requirement to whether DM i may counter-react is made.

2.2.3 Coalition Stability Analysis

In con�ict situations, DMs can act together in order to achieve mutual bene�ts [56]. A

coalition is a set of DMs acting together to achieve results which are desirable for all DMs in the

set. Below, we recall the solution concepts in GMCR which take into account the possibility of

coalitions formation. The coalition stability concepts recalled in this subsection are due to [56]

and [23].

Let ∅ 6= H ⊆ N be a coalition of DMs in N and ϕ(N) be the class of all coalitions of DMs

in N . In the coalitional stability analysis, the coalition improvement list from s by coalition H

is de�ned by R++
H (s) = {s1 ∈ S : s1 ∈ RH(s) and s1 �i s for all i ∈ H}. In this setting, we have

two notions of stability: for a coalition and for a DM. Coalitional Nash stability can be de�ned

as follows.

De�nition 2.2.9. (Coalitional Nash Stability for a Coalition) Let H ∈ ϕ(N). A state s ∈ S is

coalitional Nash stable for coalition H if and only if R++
H (s) = ∅.

De�nition 2.2.10. (Coalitional Nash Stability for a DM) Let i ∈ N . A state s ∈ S is coalitional

Nash stable for DM i if and only if s is coalitional Nash stable for all coalitions H ∈ ϕ(N) such

that i ∈ H.

In order to de�ne the coalitional versions of GMR, SMR and SEQ, it is necessary to review

the concepts of reachable states and of coalitional improvement by a class of coalitions of DMs.

Let C be a class of coalitions and let RC(s) be the set of reachable states by class C from s

by a legal sequence of movements. Let ΩC(s, s1) be the subset of C whose members are the sets

of DMs that make the �nal legal sequence of movements to achieve state s1 from s. Formally,

RC(s) and ΩC(s, ·) are the smallest sets (in the sense of inclusion), satisfying: (i) if H ∈ C and

s1 ∈ RH(s), then s1 ∈ RC(s) and H ∈ ΩC(s, s1), (ii) if s1 ∈ RC(s), H ∈ C, ΩC(s, s1) 6= {H} and



2.3. OVERVIEW ABOUT THE GMCR LITERATURE 33

s2 ∈ RH(s1), then s2 ∈ RC(s) and H ∈ ΩC(s, s2).

The class coalitional improvement list from state s by class C, denoted by R++
C

(s), and the

subset of C whose members are the subsets of DMs that make the last improvement movement

to achieve s1 in a legal sequence of movements from s, denoted by Ω++
C

(s, s1), are de�ned

as the smallest sets (in the sense of inclusion), satisfying: (i) if H ∈ C and s1 ∈ R++
H (s),

then s1 ∈ R++
C

(s) and H ∈ Ω++
C

(s, s1), (ii) if s1 ∈ R++
C

(s), H ∈ C, Ω++
C

(s, s1) 6= {H} and

s2 ∈ R++
H (s1), then s2 ∈ R++

C
(s) and H ∈ Ω++

C
(s, s2).

De�nition 2.2.11. (Coalitional GMR Stability for a Coalition) Let H ∈ ϕ(N). A state s ∈ S

is coalitional GMR (CGMR) stable for coalition H if and only if for every s1 ∈ R++
H (s), there

exists s2 ∈ Rϕ(N−H)(s1) such that s �i s2 for some i ∈ H.

De�nition 2.2.12. (Coalitional GMR Stability for a DM) Let i ∈ N . A state s ∈ S is CGMR

stable for DM i if and only if s is CGMR stable for all coalitions H ∈ ϕ(N) such that i ∈ H.

De�nition 2.2.13. (Coalitional SMR Stability for a Coalition) Let H ∈ ϕ(N). A state s ∈ S

is coalitional SMR (CSMR) stable for coalition H if and only if for every s1 ∈ R++
H (s), there

exists s2 ∈ Rϕ(N−H)(s1) such that s �i s2 for some i ∈ H and for every s3 ∈ RH(s2), s �j s3

for some j ∈ H.

De�nition 2.2.14. (Coalitional SMR Stability for a DM) Let i ∈ N . A state s ∈ S is CSMR

stable for DM i if and only if s is CSMR stable for all coalitions H ∈ ϕ(N) such that i ∈ H.

De�nition 2.2.15. (Coalitional SEQ Stability for a Coalition) Let H ∈ ϕ(N). A state s ∈ S

is coalitional SEQ (CSEQ) stable for coalition H if and only if for every s1 ∈ R++
H (s), there

exists s2 ∈ R++
ϕ(N−H)(s1) such that s �i s2 for some i ∈ H.

De�nition 2.2.16. (Coalitional SEQ Stability for a DM) Let i ∈ N . A state s ∈ S is CSEQ

stable for DM i if and only if s is CSEQ stable for all coalitions H ∈ ϕ(N) such that i ∈ H.

2.3 Overview about the GMCR literature

The method used to elaborate this thesis consisted in making a study of the works that have

been proposed in the literature on GMCR. In particular, we investigated what were the most
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recent developments in the theory, that is, what was at the frontier of science with respect to such

model. From our studies, we saw the need to propose a new de�nition (SSEQ), which would

be a re�nement of SMR and SEQ, reducing the number of stable states of the con�ict. When

analyzing the relations between this new concept (SSEQ) and the concepts of stabilities existing

in the GMCR, we found some problems in the literature, more speci�cally in the generalized

metarationality concept of Zeng et al. [14]. These problems motivated us to try to correct them

by proposing alternative generalized metarationality de�nitions to overcome some of them.

By studying the GMCR with probabilistic preferences, proposed by Rêgo and Santos [15], we

felt the need to propose a more e�cient way to calculate the parameter regions of stability for the

con�ict states. The works of Xu et al. [18] and [26] provided us ideas that were adapted to our

desired situation. Finally, we saw that there were some GMCR that allowed for the possibility

of misperception in the GMCR and that motivated us to use our familiarity with the theory of

unawareness in the game theory literature, specially with the work of Heifetz et al. [54], and use

it to investigate the impact of unawareness in the stability analysis of the GMCR.

The GMCR has been the object of study by several researchers and has gained a lot of

attention due to the �exibility of the model and the di�erent situations in which it can be

applied. Several extensions of the GMCR have been proposed aiming to better capture the

particularities of real situations, for example [20], [21], [23] analyze the advantages of agents

relating to each other taking into account di�erent forms of behavior, i.e., according to di�erent

stability notions.

As DMs involved in the con�ict can behave in a variety of ways, several solution concepts

have been proposed in the GMCR, as previously mentioned. In con�icts with many DMs and

states, it is computationally challenging to obtain stable states according to some of the solution

concepts in the GMCR. Some papers in the literature on GMCR propose alternative simpler

methods to �nd stable states according to some stability concepts, as [18], [24], [25], [26] and

[27].

In the GMCR, the DMs involved have preferences over the set of states of the con�ict.

Several works on GMCR extend the usual preferences of this model to other types of preference
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structures. For example, [28], [29] extends the usual preference relation for uncertain preference,

to handle situations in which a DM may have strict preference for one state over the other,

be indi�erent between two states or be unable to compare two states. [30] proposes de�nitions

based on grey numbers to capture uncertainty in preferences, [31], [32] use fuzzy preferences

in the GMCR and in [15] and [33] the usual preference structure in the GMCR is replaced by

precise and imprecise probabilistic preference structures, respectively.

In most works on GMCR, the concepts of stabilities are proposed for con�icts with two or n-

DMs. However, given that, in con�ict situations, a group of DMs can form coalitions to respond

to a particular DM or another coalition, some works, such as [22] and [34], extend the usual

stability concepts (Nash, GMR, SMR and SEQ) for coalition analysis.

The GMCR is a very �exible model and has been applied in aquaculture to analyze a problem

about a moratorium imported by the British Columbia government on salmon farming expan-

sion [35], in the e�ective investigation of the strategic interactions that have occurred between

an owner and a general contractor on the �nancing of a construction project [36] and in water

resources management [37], where the GMCR is employed to analyze a contamination con�ict

of Groundwater. In the GMCR literature, it is also possible to �nd applications in problems

related to sustainable development [38], water exports [39] and Military Support and Peace [40].

For the advances proposed in this thesis, the following papers were used as starting points.

Adapted ideas from the works of Xu et al. [18] and [26] were used to provide a more e�cient

way of determining parameter regions of stability for the GMCR with probabilistic preferences,

as proposed by [15]. Heifetz et al. [54] introduced a generalized state space model that allos the

modeling of non-trivial unawareness among several individuals and ideas from this model were

adapted to analyze the impact of unawareness in the stability analysis of the GMCR. Finally,

in [19] and [14], a new solution concept, called generalized metarationality, is proposed in the

GMCR for two and n-DMs, respectively. Motivated by some problems found in the work of Zeng

et al. [14], we used the ideas developed in [19] to present an alternative de�nition to the concept

proposed in [14], for con�icts with n decision makers, that overcame some of the problems found

in [14].
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In the following chapter, we start by presenting a new solution concept for the GMCR that

uses ideas from the SMR and SEQ stability concepts, being a re�nement of such concepts.



CHAPTER 3

Symmetric Sequential Stability in the GMCR

Abstract

In this chapter, a new solution concept, called symmetric sequential stability (SSEQ), for the

GMCR is proposed for con�icts with two and n DMs. For con�icts with two DMs, we present

the relationship of this new concept with four stability de�nitions commonly used in the GMCR,

namely: Nash, GMR, SMR and SEQ. Next, we generalize the SSEQ stability de�nition for

n-DM con�icts and we obtain new results relating this new concept to the de�nitions previously

mentioned. We also present the SSEQ stability de�nition for a coalition and its relations with

the classical stability de�nitions of coalitional analysis. Finally, SSEQ stability is extended for

GMCR with uncertain, probabilistic and fuzzy preferences.

3.1 Introduction

In the stability analysis of the GMCR, there may be several states satisfying a certain number

of stability de�nitions. Thus, the proposal of new solution concepts which may reduce the number

of stable states in some con�icts and accommodates the way in which DMs behave in actual

con�icts is an active area of research in the GMCR literature. In this chapter we present a new

solution concept in GMCR, called symmetric sequential stability (SSEQ). In this de�nition, as

in the case of SMR stability, the con�ict is analyzed up to three steps ahead from the current

37
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state and it is required that the countermove(s) is(are) also bene�cial to the opponent(s), as in

the case of SEQ stability notion. Moreover, it is assumed that for stability the focal DM cannot

escape to a preferred state once the countermove is taken, as in the SMR stability notion.

We obtain results relating the SSEQ stability concept with four stability de�nitions in the

GMCR, namely: Nash stability, general metarational stability, symmetric metarational stability,

sequential stability, limited-move stability of horizon 3 and credible metarational stable states

of 2 rounds. We also present the SSEQ stability de�nition for a coalition and its relations

with the classical stability de�nitions of coalitional analysis. Finally, we extended this new

solution concept for n-DM con�icts in the GMCR with uncertain [16], probabilistic [15] and fuzzy

preferences [17], and present two applications to illustrate the usefulness of this new concept.

The notion of SSEQ stability for con�icts with two DMs was published in the Proceedings of

the 2015 Conference on Group Decision and Negotiation, see reference [41], and the notion SSEQ

for con�icts with n-DMs is published online in the Journal Group Decision and Negotiation [42].

The contents of this chapter were extracted from these papers.

This chapter is organized as follows. In Section 3.2, we present the SSEQ stability concept

for con�icts involving two DMs and its relations with other solution concepts in GMCR. In

Section 3.3, the SSEQ concept is generalized for con�icts with n-DMs and we introduce this

de�nition for a coalition. In Section 3.4, we extend the SSEQ stability de�nition for GMCR

with other preference structures. Finally, in Section 3.5, we present two applications to illustrate

the usefulness of this new concept.

3.2 Symmetric Sequential Stability in the GMCR with two DMs

In this section, we present the SSEQ stability concept for con�icts involving two DMs. This

de�nition, as the name implies, is a type of sequential stability in which a player, while planning

to move, consider not only the reaction of his or her opponent, but also his own counter-reaction.

De�nition 3.2.1. A state s ∈ S is symmetric sequentially (SSEQ) stable for DM i ∈ N i� for

every s1 ∈ R+
i (s), there exists s2 ∈ R+

j (s1) such that s �i s2 and s �i s3 for every s3 ∈ Ri(s2).
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It is important to emphasize that the counter-reaction does not need to be a unilateral

improvement for the DM; it is required that the resulting state cannot be better than the current

state for every possible reachable counter-reaction. This is specially important in cases where

preferences are not negatively transitive, where a preference relation � is negatively transitive if

s � t and t � q implies that s � q [43]. We now show that if DM i's preferences is negatively

transitive, then Ri(s2) could be replaced by R+
i (s2) in the SSEQ de�nition, by showing that in

this case for every s3 ∈ Ri(s2)− R+
i (s2) s �i s3. If s3 ∈ Ri(s2)− R+

i (s2), then s3 �i s2. Thus,

as s2 �i s, if �i were negatively transitive, it would follow that s3 �i s, as desired.

3.2.1 Relationships with other solution concepts

In the GMCR, there are well known relationships between the four standard stability con-

cepts. Next, we establish some relationships of the SSEQ stability with some of the existing

solution concepts.

Theorem 3.2.1. The following statements are true in the GMCR:

(a) If state s is Nash stable for DM i, then s is SSEQ stable for DM i.

(b) If state s is SSEQ stable for DM i, then s is SEQ stable for DM i.

(c) If state s is SSEQ stable for DM i, then s is SMR stable for DM i.

Proof:

For (a), if s is Nash stable for DM i, then R+
i (s) = ∅ which implies that s is SSEQ stable

for DM i.

For (b), suppose that s is SSEQ stable for DM i. Thus, for all s1 ∈ R+
i (s), there exists

s2 ∈ R+
j (s1) such that s �i s2 and s �i s3 for every s3 ∈ Ri(s2). Therefore, it is true that for all

s1 ∈ R+
i (s), there exists s2 ∈ R+

j (s1) such that s �i s2, which implies that s is SEQ stable for

DM i.

For (c) suppose that s is SSEQ stable for DM i. Thus, for all s1 ∈ R+
i (s), there exists

s2 ∈ R+
j (s1) such that s �i s2 and s �i s3 for every s3 ∈ Ri(s2). Since R+

j (s1) ⊆ Rj(s1), it

follows that for all s1 ∈ R+
i (s), there exists s2 ∈ Rj(s1) such that s �i s2 and s �i s3 for every

s3 ∈ Ri(s2), which implies that s is SMR stable for DM i.
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3.3 Symmetric sequential stability in GMCR with n-DM

In this section we generalize the SSEQ stability de�nition proposed in Section 3.2, to con�icts

with n-DMs and introduce this de�nition for a coalition. Additionally, we present results which

relate SSEQ and coalitional SSEQ to other stability de�nitions commonly used in GMCR and

we extended this new solution concept for n-DM GMCR with uncertain [16], probabilistic [15]

and fuzzy preferences [17].

3.3.1 Symmetric sequential stability

De�nition 3.3.1. A state s ∈ S is symmetric sequentially (SSEQ) stable for DM i ∈ N i�

for every s1 ∈ R+
i (s), there exists s2 ∈ R+

N−{i}(s1) such that s �i s2 and s �i s3 for every

s3 ∈ Ri(s2).

In other words, a state s is classi�ed as stable SSEQ to DM i if for any unilateral improvement

from the state s so that DM can do, there is an reaction of his or her opponents which leads to

a state worse than the state s and from that state the counter-reaction of DM i is always to go

to a state that is also not preferable to s.

3.3.2 Relations with other solution concepts

In what follows, we present generalizations of the results established in Section 3.2 and new

ones relating SSEQ stability with L3 and CMR2.

Theorem 3.3.1 states the relationship between SSEQ, Nash, SMR and SEQ stability.

Theorem 3.3.1. The following statements are true in the GMCR:

(a) If state s is Nash stable for DM i, then s is SSEQ stable for DM i.

(b) If state s is SSEQ stable for DM i, then s is SEQ stable for DM i.

(c) If state s is SSEQ stable for DM i, then s is SMR stable for DM i.

Proof:

For (a), if s is Nash stable for DM i, then R+
i (s) = ∅ which implies that s is SSEQ stable

for DM i.
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For (b), suppose that s is SSEQ stable for DM i. Thus, for all s1 ∈ R+
i (s), there exists

s2 ∈ R+
N−{i}(s1) such that s �i s2 and s �i s3 for every s3 ∈ Ri(s2). Therefore, it is true that

for all s1 ∈ R+
i (s), there exists s2 ∈ R+

N−{i}(s1) such that s �i s2, which implies that s is SEQ

stable for DM i.

For (c) suppose that s is SSEQ stable for DM i. Thus, for all s1 ∈ R+
i (s), there exists s2 ∈

R+
N−{i}(s1) such that s �i s2 and s �i s3 for every s3 ∈ Ri(s2). Since R+

N−{i}(s1) ⊆ RN−{i}(s1),

it follows that for all s1 ∈ R+
i (s), there exists s2 ∈ RN−{i}(s1) such that s �i s2 and s �i s3 for

every s3 ∈ Ri(s2), which implies that s is SMR stable for DM i.

The following hypothetical example illustrates that, in general, SMR and SEQ stability

together do not imply SSEQ stability.

Figure 3.1: Con�ict in the graph form: (a) DM i; (b) DM j.

Example 3.3.1. Consider the hypothetical con�ict shown in Figure 3.1. In this example, state

s is SMR and SEQ, but it is not SSEQ for DM j. Indeed, it is SMR since state s3 ∈ R+
j (s)

is the unique unilateral improvement from s for DM j and state s2 is accessible for DM i from

s3 such that s �j s2 and s �j s5, where s5 is unique accessible state for DM j from s2. Also, we

have that s is SEQ for DM j. Indeed, since from state s3 ∈ R+
j (s), there exists a unique state

s1 ∈ R+
i (s3) and such state satis�es s �j s1. But state s is not SSEQ for DM j because s4 �j s,

where s4 is accessible for DM j from s1.

The next theorem describes a particular case where SSEQ is equivalent to SMR and SEQ

together.
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Theorem 3.3.2. Suppose that a strategic con�ict is composed of 2 DMs. If for every s ∈ S and

i ∈ N , the cardinality of Ri(s) is at most equal to one, then a state is SSEQ if, and only if, it

is SMR and SEQ.

Proof:

Indeed, by Theorem 3.3.1, if state s is SSEQ then it is SMR and SEQ. Suppose that

s is SMR and SEQ for DM i. Thus, either R+
i (s) = ∅, in which case s is also SSEQ, or

R+
i (s) = {s1}. By hypothesis and since no state is accessible to itself, the fact that s is SEQ

implies that there exists a unique state s2 ∈ S, such that Rj(s1) = R+
j (s1) = {s2} and s �i s2.

Thus, since s is SMR it follows that s �i s3 for all s3 ∈ Ri(s2). Therefore, there exists

s2 ∈ R+
j (s1) such that s �i s2, and s �i s3 for all s3 ∈ Ri(s2), which implies that s is SSEQ for

DM i.

The following example illustrates that Theorem 3.3.2 is not true if the strategic con�ict has

more than two DMs.

Example 3.3.2. Consider a hypothetical con�ict situation in which there are 3 DMs, i, j and

k. Suppose that in this con�ict there are �ve states, states s, s1, s2, s3 and s4. Assume that

the preferences of DM i, DM j and DM k are, respectively, given by s1 �i s4 �i s �i s2 �i s3,

s1 �j s2 �j s �j s3 �j s4 and s3 �k s1 �k s �k s4 �k s2. Consider also that Ri(s) = {s1},

Rj(s1) = {s2}, Ri(s2) = Rk(s1) = {s3}, Ri(s3) = {s4} and that Ri(s1) = Ri(s4) = Rj(s) =

Rj(s2) = Rj(s3) = Rj(s4) = Rk(s) = Rk(s2) = Rk(s3) = Rk(s4) = ∅, as illustrated in Figure 3.2.

We now show that state s is SMR and SEQ for DM i, but it is not SSEQ. First, it is

SMR since from the unique unilateral improvement for DM i from s, state s1, DM j can lead

the con�ict to state s2 and from s2 DM i can only move to state s3, but states s2 and s3 are

worse than s for DM i. It is SEQ for DM i, since DM k has a unilateral improvement leading

the con�ict to state s3, which is worse than s for DM i.

On the other hand, state s is not SSEQ for DM i, since the unique unilateral improvement

from state s1 for coalition {j, k} is state s3, but from s3 DM i can move to state s4, which is

preferred to state s by DM i.
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Figure 3.2: Con�ict in the graph form: (a) DM i; (b) DM j and (c) DM k.

Examples 3.3.3 and 3.3.4 below show that there is no relation between the stability concepts

SSEQ and L3. More speci�cally, Example 3.3.3 shows that if a state s is SSEQ stable, then

this state may not be L3 stable. Conversely, Example 3.3.4 illustrates the case of a state that is

L3 stable but is not SSEQ.

Example 3.3.3. Consider the con�ict illustrated in Figure 3.3. Its state space is given by S =

{s, s1, s2, s3} and it is composed of two DMs, i and j. Suppose that Ri(s) = {s1}, Ri(s1) = {s}

and Ri(s2) = Ri(s3) = ∅. For DM j, suppose that Rj(s) = Rj(s2) = Rj(s3) = ∅ and Rj(s1) =

{s2, s3}. Consider also that the preference relation of DM i is given by s3 �i s1 �i s �i s2 and

the preference relation of DM j is given by s3 �j s2 �j s �j s1. We now argue that state s is

SSEQ for DM i, because the unique improvement for DM i from s is s1, but, from state s1, DM

j can sanction DM i going to state s2 such that s2 is better than s1 to DM j and s2 is worse

than s to DM i. As DM i can not get out of s2, we have that s is SSEQ for DM i. On the other

hand, state s is not L3 stable for DM i because from s1, the anticipated state for DM j is s3 and

not s2. Since s3 is better than s to DM i, it follows that he intends to move away from s.

Example 3.3.4. The following example illustrates that L3 stability does not imply SSEQ stabil-

ity. An example that illustrates this fact is the chicken game described in [44]. In this game, two
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Figure 3.3: Con�ict in the graph form: (a) DM i; (b) DM j.

DMs, called DM i and DM j, have the choice of either swerving, denoted by S, thereby avoiding

a collision, or continuing to drive straight ahead and hence selecting the strategy of not swerving,

D. The graph form of the chicken game is shown in Figure 3.4. The preference relation of

DM i is given by DS �i SS �i SD �i DD, and the preference relation of DM j is given by

SD �j SS �j DS �j DD. Using backward induction, working from the bottom to the top of

the diagram in Figure 3.5, we have that state SS is L3 stable for DM i. On the other hand, this

state is not SSEQ stable for DM i, because from state SS, the unique improvement of DM i is

state DS. But from DS, there is no reachable improvement for DM j. Therefore, state SS is

not SSEQ stable for DM i.

Figure 3.4: Con�ict in the graph form: (a) DM i; (b) DM j.

We have the following relationship, established in Theorem 3.3.3, between the concepts of

SSEQ and CMR2.

Theorem 3.3.3. If a state s is SSEQ for DM i, then s is CMR2 stable for DM i.

Proof:
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Figure 3.5: L3 stability analysis of state SS for DM i. Source: [21].

Suppose that s is SSEQ stable for DM i ∈ N . Let us consider two cases: (a) R+
i (s) = ∅ or

(b) R+
i (s) 6= ∅. If (a) occurs, then the unique credible metarational tree which has DM i moving

at the root s has one round and ends once DM i stays at s. Thus, s is CMR2 stable for DM i

in that case. If (b) occurs and s1 ∈ R+
i (s), then there exists a state s2 ∈ R+

N−{i}(s1) such that

s �i s2 and s �i s3, for all s3 ∈ Ri(s2). Thus, there is a sequence of unilateral improvement

moves by N −{i} from s1 leading the con�ict to s2, which is not preferred to s by DM i. If there

are more than of such sequences, choose one of them whose length is minimum, call it x. In x,

every DM moves at most once in every state in that sequence. Let us use x to de�ne credible

policies for DM j ∈ N − {i}, as follows

P cj (st) =

{
su if there is a move by DM j from st to su in x,
st otherwise.

Given that set of credible policies, since from s2 DM i cannot move to a state that is preferred

to s, it follows that there exists an i-sequence that starts with DM i moving from s to s1 of 2

rounds and results in a state that is not preferred to s by DM i. Thus, also in this case, s is

CMR2 stable for DM i.

The following example illustrates that the reciprocal of Theorem 3.3.3 is not true.

Example 3.3.5. Consider a hypothetical con�ict with 2 DMs, DM i and DM j, �ve states,

namely, s, s1, s2, s3 and s4, and suppose that accessibility between the states are Ri(s) = {s1} ,

Ri(s2) = {s3, s4} and Rj(s1) = {s2}, as illustrated in Figure 3.6.
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Figure 3.6: A con�ict where s is CMR2 stable but not SSEQ stable for DM i.

Assume that preference relations are given by s1 �i s4 �i s �i s3 �i s2, and s2 �j s1 �j

s3 �j s4 �j s. Suppose that DM i is in state s. State s is not SSEQ for DM i, since from s, DM

i can move to a better state s1, and, from s1, the unique reaction of DM j is to lead the con�ict

to state s2 which is not preferred to s by DM i but it is preferred to s1 by DM j. However, from

s2, DM i can move to states s3 and s4, and state s4 is better than s for DM i. On the other hand,

s is CMR2 stable for DM i, since there is an credible policy of DM j satisfying Pj(s1) = s2, such

that the sequence (s, i, s1, j, s2, i, s3) is an i-sequence of round 2 such that DM i does not prefer

the result of this sequence to state s.

The relationships obtained between the SSEQ stability concept and existing solution con-

cepts in the GMCR, namely: Nash stability, GMCR stability, SMR stability, SEQ stability, L3

stability and CMR2 stability are summarized in Figure 3.7. As one can see, the SSEQ stability

concept reduces the number of stable states in comparison to SEQ, SMR and CMR2. This is

specially useful in con�icts having multiple stable states.

3.3.3 Coalitional SSEQ

The coalitional stability analysis in the GMCR has been studied in recent works [56] extending

the stability analysis to situations in which DMs can act together forming a coalition. Thus, in

this context, it is possible for DMs to achieve improvements that are not possible to achieve if

they were acting individually.

De�nition 3.3.2. (Coalitional SSEQ Stability for a Coalition) Let H ∈ ϕ(N), a state s ∈ S is

coalitional SSEQ (CSSEQ) stable for coalition H if and only if for every s1 ∈ R++
H (s), there
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Figure 3.7: Implications among SSEQ and other stability de�nitions

exists s2 ∈ R++
ϕ(N−H)(s1) such that s �i s2 for some i ∈ H and for every s3 ∈ RH(s2), s �j s3

for some j ∈ H.

De�nition 3.3.3. (Coalitional SSEQ Stability for a DM) For i ∈ N , a state s ∈ S is CSSEQ

stable for DM i if and only if s is CSSEQ for all coalitions H ∈ ϕ(N) such that i ∈ H.

Similar results as those of Theorem 3.3.1 remain valid for a coalition H ⊆ N .

Theorem 3.3.4. The following statements are true in the GMCR:

(a) If state s is coalitional Nash stable for coalition H, then s is CSSEQ stable for this

coalition.

(b) If state s is CSSEQ stable for coalition H, then s is CSEQ stable for this coalition.

(c) If state s is CSSEQ stable for coalition H, then s is CSMR stable for this coalition.

Proof:

The proof of this theorem is similar to proof of Theorem 3.3.1. The only necessary changes

are to replace R+
i by R++

H , RN−{i} by Rϕ(N−H) and R
+
N−{i} by R

++
ϕ(N−H) in that proof.
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3.4 SSEQ in GMCR with other preference structures

In this section, we extend the SSEQ stability de�nition for the GMCR with uncertain [16],

probabilistic [15], and fuzzy preference [17] structures. In what follows, we review, brie�y, these

models and present the corresponding adapted version of SSEQ to each one of these three

preference structures.

3.4.1 The SSEQ stability in the GMCR with uncertain preferences

Li et al.[16] proposed to use a new preference structure in the GMCR in which DM's prefer-

ences are expressed by a triple of relations {�i,∼i, Ui}, were s �i s1 and s ∼i s1 are the strict

preference and indi�erence relations, and sUis1 means that DM i is uncertain as to whether he

or she prefers state s to state s1, prefers s1 to s, or is indi�erent between s and s1.

Let RUi (s) = {s1 ∈ Ri(s) : s1Uis} be the DM i's reachable list from state s by a unilateral

uncertain move. Let R+,U
i (s) = R+

i (s) ∪ RUi (s) = {s1 ∈ Ri(s) : s1 �i s or s1Uis} be the

DM i's reachable list from state s by a unilateral improvement or a unilateral uncertain move.

Let R+,U
H (s) denote the set of unilateral improvements or unilateral uncertain moves by coalition

H ⊆ N . If s1 ∈ R+,U
H (s), then Ω+,U

H (s, s1) is the set of all last DMs in unilateral improvements or

uncertain moves from s to s1. These sets can be formally de�ned as the smallest sets (in the sense

of inclusion) satisfying: (1) if i ∈ H and s1 ∈ R+,U
i (s), then s1 ∈ R+,U

H (s) and i ∈ Ω+,U
H (s, s1),

and (2) if s1 ∈ R+,U
H (s), i ∈ H, Ω+,U

H (s, s1) 6= {i} and s2 ∈ R+,U
i (s1), then s2 ∈ R+,U

H (s) and

i ∈ Ω+,U
H (s, s2).

Then, based on this extended preference structure we have the following SSEQ de�nitions.

First, if DM i has an incentive to move to states with uncertain preferences relative to the

status quo, but, when assessing possible sanctions, he will not consider states with uncertain

preferences, then we have the following de�nition.

De�nition 3.4.1. A state s ∈ S is SSEQ stable for DM i ∈ N , denoted by SSEQa, in a

GMCR with uncertain preferences i� for every s1 ∈ R+,U
i (s), there exists s2 ∈ R+,U

N−{i}(s1) such

that s �i s2 and s �i s3 for every s3 ∈ Ri(s2).
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Second, if DM i would only move from the status quo to preferred states and would be

sanctioned only by less preferred or equally preferred states relative to the status quo, then we

have the following de�nition:

De�nition 3.4.2. A state s ∈ S is SSEQ stable for DM i ∈ N , denoted by SSEQb, in a

GMCR with uncertain preferences i� for every s1 ∈ R+
i (s), there exists s2 ∈ R+,U

N−{i}(s1) such

that s �i s2 and s �i s3 for every s3 ∈ Ri(s2).

Third, if preference uncertainty is allowed when DM i considers both incentives to leave a

state and sanctions to deter him or her from doing so, then we have the following de�nition:

De�nition 3.4.3. A state s ∈ S is SSEQ stable for DM i ∈ N , denoted by SSEQc, in a

GMCR with uncertain preferences i� for every s1 ∈ R+,U
i (s), there exists s2 ∈ R+,U

N−{i}(s1) such

that s �i s2 or sUis2 and s �i s3 or sUis3 for every s3 ∈ Ri(s2).

Finally, if DM i is not willing to move to a state with uncertain preference relative to the

status quo, but is deterred by sanctions to states that have uncertain preference relative to the

status quo, then we have the following de�nition:

De�nition 3.4.4. A state s ∈ S is SSEQ stable for DM i ∈ N , denoted by SSEQd, in a

GMCR with uncertain preferences i� for every s1 ∈ R+
i (s), there exists s2 ∈ R+,U

N−{i}(s1) such

that s �i s2 or sUis2 and s �i s3 or sUis3 for every s3 ∈ Ri(s2).

3.4.2 The SSEQ stability in the GMCR with probabilistic preferences

In Rêgo and Santos [15], the authors replace the usual preference notion used in GMCR

by adopting probabilistic preferences [45]. According to this model, whenever a DM must state

preferences between two particular objects, he or she may do so with a certain probability. Thus,

in the GMCR with probabilistic preferences, for any two states s and s1, Pi(s, s1) expresses the

chance with which DM i strictly prefers state s over s1. This probability is de�ned on S×S and

must satisfy:

(1) Pi(s, s) = 0, ∀s ∈ S;
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(2) Pi(s, s1) ≥ 0,∀s, s1 ∈ S;

(3) Pi(s, s1) + Pi(s1, s) ≤ 1,∀s, s1 ∈ S.

Consider parameters α, β, γ lying in the interval [0, 1]. Let R+γ
i (s) be the set of γ-unilateral

improvements from state s for DM i, where a state s2 is a γ-unilateral improvement from state

s3 for DM i, if s2 ∈ Ri(s3) and Pi(s2, s3) > γ. In order to de�ne the notion of SSEQ stability

for the GMCR with probabilistic preferences, we need to present the de�nition of γ-unilateral

improvement by a coalition. Let Ω+γ
H (s, s1) be the subset of H whose members are the DMs who

make the last γ improvement move to reach s1 in a legal sequence of γ improvement moves from

state s. The sets R+γ
H (s) and Ω+γ

H (s, ·) are de�ned as the smallest sets (in the sense of inclusion)

satisfying: (1) if i ∈ H, s1 ∈ Ri(s) and Pi(s1, s) > γ, then s1 ∈ R+γ
H (s) and i ∈ Ω+γ

H (s, s1), and

(2) if s1 ∈ R+γ
H (s), i ∈ H, s2 ∈ Ri(s1), Ω+γ

H (s, s1) 6= {i} and Pi(s2, s1) > γ, then s2 ∈ R+γ
H (s)

and i ∈ Ω+γ
H (s, s2). Additionally, also consider Φ+γ

i (s) = {s1 ∈ S : Pi(s1, s) > γ} as de�ned

in [15]. In this model, we have the following SSEQ de�nition:

De�nition 3.4.5. A state s ∈ S is (α, β, γ)-SSEQ stable for DM i ∈ N i� for every s1 ∈

R
+(1−α)
i (s), there exists s2 ∈ R+γ

N−{i}(s1) ∩ (Φ
+(1−β)
i (s))c such that Ri(s2) ∩ Φ

+(1−α)
i (s) = ∅.

3.4.3 The SSEQ stability in the GMCR with fuzzy preferences

In Hipel et al. [17] is proposed the use of fuzzy preferences in the GMCR to indicate the

degree of uncertainty that a DM can have when comparing two states. Fuzzy preferences over

the set of states, S, is a fuzzy relation in S represented by the matrix A = (aij)m×m, with

membership function µA : S × S → [0, 1], where µA(si, sj) = aij , the degree of preference for si

over sj , satis�es aij + aji = 1, and aii = 0.5, for all i, j = 1, 2, . . . ,m.

The authors de�ne DM k's fuzzy relative certainty of preference for state si over sj as

αk(si, sj) = ak(si, sj) − ak(sj , si), where ak(si, sj) denotes the preference degree of state si

over sj for DM k. In this model a state si ∈ Rk(s), where k ∈ N , is called a fuzzy unilateral

improvement from s by DM k if and only if αk(si, s) ≥ γk, where γk is the fuzzy satis�cing

threshold for DM k. Let R̂+
k,γk

(s) = {si ∈ Rk(s) : αk(si, s) ≥ γk} be the fuzzy unilateral im-
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provement list for DM k. In order to de�ne the notion of SSEQ stability for the GMCR with

fuzzy preferences, we need to present the de�nition of the fuzzy unilateral improvement list by

a coalition. Let Ω̂+
H,γH

(s, s1), where γH = ×i∈Hγi, be the set of all last DMs who make the last

fuzzy improvement move in a legal sequence from s to s1.

The sets R̂+
k,γk

(s) and Ω̂+
H,γH

(s, ·) are de�ned as the smallest sets (in the sense of inclusion)

satisfying: (1) if i ∈ H and s1 ∈ R̂+
i,γi

(s), then s1 ∈ R̂+
H,γH

(s) and i ∈ Ω̂+
H,γH

(s, s1), and

(2) if s1 ∈ R̂+
H,γH

(s), i ∈ H, s2 ∈ R̂+
i,γi

(s1) and Ω̂+
H,γH

(s, s1) 6= {i}, then s2 ∈ R̂+
H,γH

(s) and

i ∈ Ω̂+
H,γH

(s, s2). Then, we have the following SSEQ de�nition:

De�nition 3.4.6. A state s ∈ S is SSEQ fuzzy stable for DM i ∈ N i� for every s1 ∈ R̂+
i,γi

(s),

there exists s2 ∈ R̂+
N−{i},γN−{i}

(s1) such that αi(s2, s) < γi, and α
i(s3, s) < γi for all s3 ∈ Ri(s2).

3.5 Applications

In this section, the de�nition of SSEQ stability is applied in two examples to illustrate its

usefulness. The �rst one is a hypothetical environmental con�ict involving 2 DMs and the second

one is the Ra�erty-Alameda dams con�ict, which is a real-life case involving 4 DMs.

3.5.1 Hypothetical Environmental Con�ict

We now present a modi�ed version of a hypothetical con�ict proposed by [23] to illustrate an

application of the SSEQ stability. In this con�ict, there are two DMs: environmentalist (E) and

developers (D). Environmentalists may choose to be proactive (P ) in promoting environmental

responsibility or not, in this case they are called reactive (R). Developers may choose to be

sustainable (S) or not, which is represented by (U). The set of possible states of the con�ict is:

s =(P, S), s1 =(P,U), s2 =(R,S) and s3 =(R,U). Figure 3.8 represents the graph model for

this strategic con�ict.

Table 3.1 shows the stable states, for each DM, according to the usual stability de�nitions

and also according to SSEQ stability. Each cell in the array speci�es for which DMs, if any, the

column state is stable according to the stability de�nition of the corresponding line. As it can
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Figure 3.8: Con�ict in the graph form: a) DM E; b) DM D.

be seen, although SSEQ concept has more requirements than GMR, SMR and SEQ concepts,

in this con�ict such concepts coincide, what strengthens the stability properties of the states.

Table 3.1: Stable states according to �ve stability de�nitions

s s1 s2 s3

Nash E E,D D
GMR E E,D E D
SMR E E,D E D
SEQ E E,D E D
SSEQ E E,D E D

3.5.2 The Ra�erty-Alameda Dams Con�ict

We will make now the SSEQ stability analysis for a con�ict with four DMs. This con�ict,

known as Ra�erty-Alameda dams con�ict, is a problem of dams construction in Canada that

occurred in early 1986, and can be found in more details in [46], [26] and [47].

The history of that con�ict begins when Canadian Province of Saskatchewan, seeking to

provide improvements such as the reduction of �ooding and water supply to cool a plant that

produced energy through coal, decided to build Ra�erty and Alameda dams. After the license

granted by the Minister of Environment of the Federal Government of Canada, various Envi-

ronmental Groups were opposed to the construction project and appealed to the Federal Court.

The Federal Court suspended the license granted and the Federal Environmental Review Panel

was responsible for evaluating the project and making an environmental assessment and review.

After starting the project assessments, the panel noted that the project was still being developed
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and decided to contact the Federal Government to complain, but got no answer and the panel

had decided to suspend its review.

In order to model Ra�erty-Alameda dams con�ict using the GMCR, four DMs are consid-

ered as acting in this con�ict, namely: Federal Government of Canada (Federal), called DM F ,

Saskatchewan, called DM S, Environment Groups (Groups), called DM G, and Federal Envi-

ronmental Review Panel (Panel), called DM P . The graph form of this con�ict is illustrated in

Figure 3.9. The options of DM F are: (1) seek a court order to halt the project (Court order) or

(2) to lift the license (Lift). The option of DM S is only to go ahead at full speed (Full speed).

The option of DM G is only to threaten court action to halt the project (Court action). The

options of DM P is only to resign (Resign).

Figure 3.9: Graph form of Ra�erty-Alameda dams con�ict

In this con�ict, the number of all states possible is 25. However, the set of feasible states

contains only 10 states (s, s1, s2, . . ., s9) which are determined by means of the options shown in

Table 3.2. The notation Y indicates that the DM that controls the corresponding option takes

it, while the notation N indicates that the DM that controls the corresponding option does not

take it.

We also have that the sets of reachable states and the usual DMs' preferences in this con�ict

are summarized in Table 3.3.
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Table 3.2: States in the Ra�erty-Alameda dams con�ict

Federal

1. Court order - N Y N Y N Y N Y N
2. Lift - N N N N N N N N Y

Saskatchewan

3. Full speed N Y Y Y Y Y Y Y Y -

Groups

4. Court action - N N Y Y N N Y Y -

Panel

5. Resign - N N N N Y Y Y Y -

State s s1 s2 s3 s4 s5 s6 s7 s8 s9

Table 3.3: Set of reachable states and payo�
State Number Federal Saskatchewan Groups Panel

RF pF RS pS RG pG RP pD
s ∅ 10 s1 1 ∅ 9 ∅ 10

s1 s2, s9 7 ∅ 10 s3 1 s5 1

s2 s1, s9 9 ∅ 6 s4 3 s6 3

s3 s4, s9 6 ∅ 9 s1 5 s7 2

s4 s3, s9 8 ∅ 5 s2 7 s8 4

s5 s6, s9 3 ∅ 8 s7 2 ∅ 6

s6 s5, s9 5 ∅ 4 s8 4 ∅ 8

s7 s8, s9 2 ∅ 7 s5 6 ∅ 7

s8 s7, s9 4 ∅ 3 s6 8 ∅ 9

s9 ∅ 1 ∅ 2 ∅ 10 ∅ 5

The notations pF , pS , pG and pP indicate the preference order of DMs F , S, G and P ,

respectively, where a higher number indicates a more desired state.

Table 3.4 represents the stable states in Ra�erty-Alameda dams con�ict, for each DM, ac-

cording to the notions of Nash, GMR, SMR, SEQ and SSEQ stability. Each cell in the array

speci�es for which DMs, if any, the line state is stable according to the stability de�nition of the

corresponding column.

Like the results of the previous con�ict, GMR, SMR, SEQ and SSEQ coincides in this

con�ict. Thus, even though opponents moves according to SSEQ stability are restricted in

comparison to those according to GMR or SMR, or the focal DM gets the opportunity to

counter-react, as opposed to what is allowed in SEQ, stability of the states remain the same.
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Table 3.4: Stable states according to �ve stability de�nitions

Nash GMR SMR SEQ SSEQ

s F,G, P F,G, P F,G, P F,G, P F,G, P
s1 S F, S F, S F, S F, S
s2 F, S F, S F, S F, S F, S
s3 S,G F, S,G F, S,G F, S,G F, S,G
s4 F, S,G F, S,G F, S,G F, S,G F, S,G
s5 S, P S, P S, P S, P S, P
s6 F, S, P F, S, P F, S, P F, S, P F, S, P
s7 S,G, P S,G, P S,G, P S,G, P S,G, P
s8 F, S,G, P F, S,G, P F, S,G, P F, S,G, P F, S,G, P
s9 F, S,G, P F, S,G, P F, S,G, P F, S,G, P F, S,G, P

3.6 Conclusion

This chapter presents the notion of SSEQ stability and extends this concept for n-DM

con�icts in the GMCR. The SSEQ stability is a kind of sequential stability in which the DM

who moves �rst considers not only the reaction of his or her opponents, but also his own counter-

reaction. We also present the relationships of SSEQ with six existing solution concepts in the

literature.

Additionally, we introduced the SSEQ concept for coalitional analysis and extended SSEQ

stability for GMCR with uncertain, probabilistic and fuzzy preferences in n-DM con�icts.

SSEQ stability can be applied to other preferences structures that have been recently pro-

posed to be used in the GMCR, such as Gray Preference [48] and Upper and Lower Probabilistic

Preferences [33]. The idea to extend this de�nition to models with other preference structures

is that for a state s to be SSEQ stable for DM i, it must be such that for every improvement

s1 reachable from s to DM i, there is a series of improvements for the other DMs that leads

the con�ict from state s1 to a state s2 such that s2 is not preferred to s by DM i and from s2

DM i cannot reach a state s3 which is preferred to s by DM i, where the notion of improvement

depends on the preference structure adopted.

The SSEQ concept enriches the SEQ and the SMR concepts providing for both DMs

and analysts more information regarding stability of states. It enhances the SEQ concept by
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allowing DMs to analyze the con�ict one further step and the SMR concept by restricting focal

DM opponents to use only unilateral improvement moves. Such enhancements may help DMs

make better decisions since, in general, they can reduce the number of stable states, which is

useful in con�icts having multiple stable states.

In future research, we plan to investigate how to extend the SSEQ stability notion allowing

for more rounds of con�ict analysis. We also leave for future work, the question of existence of

SSEQ equilibrium in �nite con�icts.



CHAPTER 4

Matrix representations of solutions concepts in GMCR with

probabilistic preferences

Abstract

In this chapter, matrix methods are developed to determine stable states in the graph model

for con�ict resolution with probabilistic preferences with n decision makers. The matrix methods

are used to determine more easily the stable states according to four stability de�nitions proposed

for this model, namely: α-Nash stability, (α, β)-metarationality, (α, β)-symmetric metarational-

ity and (α, β, γ)-sequential stability. Additionally, we propose a matrix representation for the

SSEQ concept de�ned in the GMCR with probabilistic preferences.

4.1 Introduction

In the GMCR with probabilistic preferences (GMCRP) [15], DMs do not simply prefer one

state over another one, but they do it with a certain probability. The authors proposed four

stability de�nitions for this model, namely: α-Nash stability, (α, β)-metarationality, (α, β)-

symmetric metarationality and (α, β, γ)-sequential stability. In this chapter, we follow the same

line of reasoning of that used by [26], where matrix representations were used to facilitate the

identi�cation of stable states in the GMCR, and we propose matrix methods to determine more

easily the stable states according to four stability de�nitions proposed in the GMCRP for n-DM

57
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con�icts and to the de�nition of SSEQ stability proposed for this model. The matrix methods

to determine more easily the stable states according to de�nitions proposed in the GMCRP

for con�icts with two DMs were published in the Proceedings of the 2015 Conference on Group

Decision and Negotiation, see reference [49]. This chapter generalizes these methods to con�icts

involving n-DMs.

This chapter is organized as follows. In Section 4.2, the GMCRP and corresponding stability

de�nitions are recalled. In Section 4.3, we present matrix representations that provide a means

to determine stable states in the GMCRP for n-DM con�icts. In Section 4.4, we present an appli-

cation to illustrate the utility of the matrix representation proposed here. Finally, in Section 4.5,

we �nish the chapter with the main conclusions found and directions for future work.

4.2 GMCR with probabilistic preferences and solution concepts

Recently, [15] replaced the usual preference notion used in the GMCR by adopting proba-

bilistic preferences [45]. According to a probabilistic preference model, whenever a DM must

state preferences between two particular objects, it may do so with a certain probability. Thus,

in the GMCRP, for any two states s and q, Pi(s, q) expresses the chance with which DM i prefers

state s over q. This probability is de�ned on S × S and must satisfy:

(1) Pi(s, q) ≥ 0, ∀s ∈ S,

(2) Pi(s, s) = 0, ∀s, q ∈ S,

(3) Pi(s, q) + Pi(q, s) ≤ 1, ∀s, q ∈ S.

The expression in (1) says that for any two states in S, we have necessarily that DM i prefer

one state to another with probability greater or equal to zero, (2) states that no DM i can

strictly prefer one state over itself with positive probability and the expression (3) says that the

sum of the probabilities that some DM i strictly prefers some state s to some other state q and

strictly prefers q over s is at most equal to 1. The di�erence 1−Pi(s, q)−Pi(q, s) represents the

probability with which DM i is indi�erent between s and q.
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4.2.1 Stability De�nitions in the GMCRP

In this subsection, we recall the solution concepts in the GMCRP proposed in [15]. Consider

parameters α, β, γ lying in the interval [0, 1]. Let R+γ
i (s) = {q ∈ Ri(s) : P (q, s) > γ} be the set

of all γ-improvements for DM i when the current state is s, i.e., a state q is a γ-improvement for

DM i from state s if q is reachable for DM i from s and DM i prefers state q over state s with

probability greater than γ. The solution concept called α-Nash stability is de�ned as follows.

De�nition 4.2.1. A state s ∈ S is α-Nash stable for DM i ∈ N i� R
+(1−α)
i (s) = ∅.

Intuitively, if DM i is in a α-Nash stable state, then he has no incentive to move away from

it in a single step with a su�ciently high probability.

In order to present (α, β)-GMR, (α, β)-SMR, (α, β, γ)-SEQ and (α, β, γ)-SSEQ stability

de�nitions, we need de�ne the set of all unilateral γ-improvement by coalition H ⊆ N from state

s.

Let H ⊆ N , and let RH(s) ⊆ S denote the set of states that can be reached by any legal

sequence of movements, as de�ned in Section 2.2.2. Let R+γ
H (s) ⊆ S be the set all γ-unilateral

improvement by coalitionH from state s. If s1 ∈ R+γ
H (s), then Ω+γ

H (s, s1) is the set of all last DMs

in a legal sequence of unilateral γ-improvement from s to s1. We have that R+γ
H (s) and Ω+γ

H (s, ·)

are de�ned as the smallest sets (in the sense of inclusion) satisfying: (1) if i ∈ H and s1 ∈ R+γ
i (s),

then s1 ∈ R+γ
H (s) and i ∈ Ω+γ

H (s, s1), and (2) if s1 ∈ R+γ
H (s), i ∈ H, Ω+γ

H (s, s1) 6= {i} and

s2 ∈ R+γ
i (s1), then s2 ∈ R+γ

H (s) and i ∈ Ω+γ
H (s, s2). Let also Φ+γ

i (s) = {q ∈ S : Pi(q, s) > γ} be

the set of all states that DM i strictly prefers to state s with probability greater that γ. Then,

we can now present the de�nitions of (α, β)-GMR, (α, β)-SMR, (α, β, γ)-SEQ, proposed in the

GMCRP [15], and the de�nition (α, β, γ)-SSEQ stability that we presented for GMCRP in the

previous chapter.

De�nition 4.2.2. A state s ∈ S is (α, β)-GMR stable for DM i ∈ N i� for every s1 ∈

R
+(1−α)
i (s), there exists s2 such that s2 ∈ RN−{i}(s1) ∩ (Φ

+(1−β)
i (s))c.

De�nition 4.2.3. A state s ∈ S is (α, β)-SMR stable for DM i ∈ N i� for every s1 ∈

R
+(1−α)
i (s), there exists s2 such that s2 ∈ RN−{i}(s1)∩(Φ

+(1−β)
i (s))c and Ri(s2)∩Φ

+(1−α)
i (s) = ∅.
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De�nition 4.2.4. A state s ∈ S is (α, β, γ)-SEQ stable for DM i ∈ N i� for every s1 ∈

R
+(1−α)
i (s), there exists s2 such that s2 ∈ R+γ

N−{i}(s1) ∩ (Φ
+(1−β)
i (s))c.

De�nition 4.2.5. A state s ∈ S is (α, β, γ)-SSEQ stable for DM i ∈ N i� for every s1 ∈

R
+(1−α)
i (s), there exists s2 such that s2 ∈ R+γ

N−{i}(s1)∩(Φ
+(1−β)
i (s))c and Ri(s2)∩Φ

+(1−α)
i (s) = ∅

Intuitively, if a state s is (α, β)-GMR stable for DM i, he has no incentive to move away

from it, because for all state s1 that i strictly prefers over s with probability greater 1−α, there

exists a reachable state s2 for the opponents of i such that i does not strictly prefer s2 over s

with probability greater than 1− β. Besides that, in an (α, β)-SMR stable state, DM i cannot

scape from this latter situation for a state that he strictly prefers over s with probability greater

1− α. In an (α, β, γ)-SEQ stable state, all the moves in the reaction of the opponents of DM i

are γ-unilateral improvements, but no requirement to whether DM i may counter-react is made.

Finally, an (α, β, γ)-SSEQ stable state, both all the moves in the reaction of the opponents

of DM i are γ-unilateral improvements and DM i cannot scape from the state to which his

opponents lead the con�ict to a state preferred over s with probability greater than 1− α.

4.3 Matrix Representations of Solution Concepts of GMCRP

In what follows, we make appropriate adjustments in the matrices proposed by [26] that

are used to �nd results similar to those obtained by those authors, i.e., we propose a way to

determine stable states, through matrix operations, according to the �ve stability notions for

GMCRP presented in the previous subsection.

Consider the |S| × |S|, 0-1 matrices Ji and J
+γ
i de�ned, respectively, as follows.

Ji(s, q) =

{
1, if q ∈ Ri(s),
0, otherwise.

(4.1)

Note that the element (s, q) of matrix Ji, called accessibility matrix, receives value 1 if state

q is reachable by DM i from state s, and receives value 0 otherwise.

Matrix J+γ
i is de�ned as
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J+γ
i (s, q) =

{
1, if q ∈ Ri(s) and Pi(q, s) > γ,
0, otherwise.

(4.2)

Similarly to matrix Ji, the element (s, q) of matrix J+γ
i receives value 1 if state q is reachable

from state s, and if DM i strictly prefers state q over s with probability greater than γ. Otherwise,

the element (s, q) receives value 0.

Matrix Ji is de�ned exactly as in [26]. On the other hand, matrix J+γ
i is di�erent since its

corresponding matrix de�ned in [26], denoted by J+
i , is the matrix whose element (s, q) receives

value 1 if state q is reachable from state s, and if DM i strictly prefers state q over s. Otherwise,

the element (s, q) receives value 0.

We now recall some matrices as de�ned in [26]. Consider Y an |S| × |S| matrix with all

elements equal to 1, and let ek denote the |s|-dimensional column vector with kth element equal

to 1 and all other elements equal to 0. LetM and N be |S|×|S| matrices and de�neW = M ◦N

as the |S| × |S| matrix with (s, q) entry W (s, q) = M(s, q) ·N(s, q). Let the matrix H = M ∨N ,

an |S| × |S| matrix with entry (s, q) de�ned as 1 if M(s, q) +N(s, q) 6= 0, and 0 otherwise. If K

is an arbitrary |S| × |S| matrix, then the matrix signal of K, denoted by sign(K), is an |S| × |S|

matrix with (s, q) entry de�ned as follows

sign[K(s, q)] =


−1, if K(s, q) < 0,
0, if K(s, q) = 0,
1, if K(s, q) > 0.

In [26], the authors de�ne preference matrices, which are useful in determining what are

the stable states according to various stability de�nitions. These matrices, denoted by P+
i , P

−
i

and P=
i , have element (s, q) equal to 1 if q �i s, s �i q and q ∼i s, respectively, and have

element (s, q) equal to zero otherwise. In addition, these authors also propose a less than or

equal preference matrix, denoted by P−,=i , which has element (s, q) equal to 1−P+
i (s, q) if s 6= q

and zero otherwise. Note that all elements in the main diagonal of P−,=i are equal to zero. As

we show in Section 4.3.1, such de�nition causes some problems in some results presented in [26].

Here, we propose similar matrices, but considering probabilistic preferences. The correspond-
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ing matrices are de�ned as follows:

Q+γ
i (s, q) =

{
1, if Pi(q, s) > γ,
0, otherwise,

(4.3)

Q−γi (s, q) =

{
1, if Pi(q, s) < γ,
0, otherwise,

(4.4)

Q=γ
i (s, q) =

{
1, if Pi(q, s) = γ,
0, otherwise.

(4.5)

Matrix Q+γ
i has element (s, q) equal to 1 if state q is strictly preferred by DM i over state s

with probability greater than γ, and has element (s, q) equal to 0 otherwise. The matrix Q−γi

has element (s, q) equal 1 if state q is strictly preferred by DM i over state s with probability

smaller than γ. Finally, in matrix Q=γ
i , the element (s, q) is equal to 1 if DM i prefers state q

over s with probability exactly equal to γ. Note that in matrix Q+γ
i state q does not need to be

achievable from state s. Finally, matrix Q−,=,γi (s, q) can be obtained in terms of matrix Q+γ
i as

follows:

Q−,=,γi (s, q) = 1−Q+γ
i (s, q). (4.6)

Note that as opposed to the de�nition of P−,=i , all elements in the main diagonal of Q−,=,γi (s, q)

are equal to one.

For a coalition H ⊆ N , let also the matricesMH(s, q) andM+γ
H (s, q) be de�ned, respectively,

by

MH(s, q) =

{
1, if q ∈ RH(s),
0, otherwise,

and

M+γ
H (s, q) =

{
1, if q ∈ R+γ

H (s),
0, otherwise.

Thus, the element (s, q) of matrix MH receives value 1 if state q is reachable by means of a

legal sequence of movements, made by DMs in H, from state s, and this element is equal to 1 in

matrix M+γ
H if q is a unilateral γ-improvement by DMs in H from state s.
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MatrixMH is de�ned exactly as in [26]. On the other hand, matrixM+γ
H is di�erent since its

corresponding matrix de�ned in [26], denoted byM+
H , is the matrix whose element (s, q) receives

value 1 if q is a unilateral improvement by DMs in H from state s and value 0, otherwise.

Xu et al. [26] shows how to obtain matrixMH in terms of the accessibility matrices Ji, i ∈ H.

If δ is the number of legal moves required for obtaining all states in the list RH(s) (δ is upper

bounded by the total number of one step moves for all DMs in the con�ict) and M t
i is a matrix

with entry (s, q) equal to 1 if q is reachable from state s in exactly t legal moves with �rst move

made by DM i and 0 otherwise, then it follows that

M t
i = sign

Ji ·
 ∨
j∈N−i

M
(t−1)
j


and

MH =
δ∨
t=1

∨
i∈H

M
(t)
i ,

where for all i ∈ N , M1
i = Ji.

Using a similar idea of the one used by Xu et al. [26], one can obtain the M+γ
H matrix in

terms of J+γ
i , for i ∈ N . Let δγ be the number of legal unilateral improvements required to �nd

all states in the list R+γ
H (δγ is upper bounded by the total number of unilateral improvement

moves for all DMs in the con�ict) and M (t,+γ)
i be a matrix with entry (s, q) equal to 1 if q is

reachable from state s in exactly t legal γ-unilateral improvement moves with �rst move made

by DM i and 0 otherwise. This result is provided by the following theorem.

Theorem 4.3.1. The matrix M+γ
H can be found inductively in the following way

M+γ
H =

δγ∨
t=1

∨
i∈H

M
(t,+γ)
i ,

where

M t,+γ
i = sign

J+γ
i ·

 ∨
j∈N−i

M
(t−1,+γ)
j


and M1,+γ

i = J+γ
i .
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The proof of the result is analogous to the proof of the correspondent results proposed in [26],

just replacing the matrices J+
i and M (t−1)

j by J+γ
i and M (t−1,+γ)

j , respectively.

Using the above matrices, results analogous to those obtained by [26] remain valid for the

GMCRP. These results are given by the following four theorems:

Theorem 4.3.2. Let i ∈ N . A state s is α-Nash stable for DM i i� e>s · J
+(1−α)
i = ~0>.

Theorem 4.3.3. Let i ∈ N . A state s ∈ S is (α, β)-metarational stable for DM i i�

M
(α,β)−GMR
i (s, s) = 0, where M

(α,β)−GMR
i = J

+(1−α)
i

[
Y − sign

(
MN−i · (Q−,=,(1−β)i )>

)]
.

Theorem 4.3.4. Let i ∈ N . A state s ∈ S is (α, β)-symmetric metarational stable for

DM i i� M
(α,β)−SMR
i (s, s) = 0, where M

(α,β)−SMR
i = J

+(1−α)
i [Y − sign(MN−i ·W )], and

W = (Q
−,=,(1−β)
i )> ◦

[
Y − sign

(
Ji · (Q+(1−α)

i )>
)]

.

Theorem 4.3.5. Let i ∈ N . A state s ∈ S is (α, β, γ)-sequential stable for DM i i�

M
(α,β,γ)−SEQ
i (s, s) = 0, where M

(α,β,γ)−SEQ
i = J

+(1−α)
i

[
Y − sign

(
M+γ
N−i · (Q

−,=,(1−β)
i )>

)]
.

The proof of the four above results are analogous to the proof of the results proposed in [26],

just replacing the matrices J+
i , P

+
i , P

−,=
i and M+

H proposed by these authors by, respectively,

the adjusted matrices J+γ
i , Q+γ

i , Q−,=,γi and M+γ
H presented in this work.

Here, we add a new result providing a matrix representation for the (α, β, γ)-symmetric

sequential stability concept.

Theorem 4.3.6. Let i ∈ N . A state s ∈ S is (α, β, γ)-symmetric sequentially stable for DM i

i� M
(α,β,γ)−SSEQ
i (s, s) = 0, where M

(α,β,γ)−SSEQ
i = J

+(1−α)
i [Y − sign(M+γ

N−i ·W )], and W =

(Q
−,=,(1−β)
i )> ◦

[
Y − sign

(
Ji · (Q+(1−α)

i )>
)]

.

Proof: Suppose without loss of generality that |S| = t. Then, we have that the diagonal element

(s, s) of matrix M (α,β,γ)−SSEQ
i can be written as

M
(α,β,γ)−SSEQ
i (s, s) =

〈
(J

+(1−α)
i )>es, (Y − sign(M+γ

N−i ·W ))es

〉
=

t∑
s1=1

J
+(1−α)
i (s, s1)

[
1− sign

(〈
(M+γ

N−i)
>es1 ,Wes

〉)]
,
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where 〈·, ·〉 denotes the scalar product of vectors. Thus M (α,β,γ)−SSEQ
i (s, s) = 0 i�

t∑
s1=1

J
+(1−α)
i (s, s1)

[
1− sign

(〈
(M+γ

N−i)
>es1 ,Wes

〉)]
= 0.

Since all terms are non-negative, the above condition is equivalent to

J
+(1−α)
i (s, s1)

[
1− sign

(〈
(M+γ

N−i)
>es1 ,Wes

〉)]
= 0, for all s1 ∈ S. (4.7)

Note that (4.7) is true i�,

(e>s1M
+γ
N−i) · (Wes) > 0, for all s1 ∈ R+(1−α)

i (s). (4.8)

Let W (s2, s) denote the (s2, s) entry of matrix W . Thus it follows that

(e>s1M
+γ
N−i) · (Wes) =

t∑
s2=1

M+γ
N−i(s1, s2) ·W (s2, s)

Therefore, (4.8) holds i�, for all s1 ∈ R+(1−α)
i (s), there exists s2 ∈ R+γ

N−i(s1) such thatW (s2, s) 6=

0.

Note that the element (s2, s) of matrix W can be written

W (s2, s) = Q
−,=,(1−β)
i (s, s2)

[
1− sign

(
t∑

s3=1

Ji(s2, s3)Q
+(1−α)
i (s, s3)

)]
.

Thus W (s2, s) 6= 0 is equivalent to

Q
−,=,(1−β)
i (s, s2) 6= 0 (4.9)

and

t∑
s3=1

Ji(s2, s3)Q
+(1−α)
i (s, s3) = 0. (4.10)

Thus M (α,β,γ)−SSEQ
i (s, s) = 0 i� for all s1 ∈ R

+(1−α)
i (s), there exists s2 ∈ R+γ

N−i(s1) such

that Q−,=,(1−β)i (s, s2) 6= 0 and Q+(1−α)
i (s, s3) = 0 for every s3 ∈ Ri(s2). Therefore, we have that

M
(α,β,γ)−SSEQ
i (s, s) = 0 i�, for all s1 ∈ R+(1−α)

i (s), there exists s2 such that s2 ∈ R+γ
N−i(s1) ∩

(Φ
+(1−β)
i (s))c and Ri(s2) ∩ Φ

+(1−α)
i (s) = ∅.
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4.3.1 A problem in the paper of Xu et al. [26]

The results obtained in the previous section are analogous to the ones obtained by Xu et

al. [26]. However, in this section, we show that there are problems in the results related to the

GMR and SEQ solution concepts obtained by such authors. We show that the GMR and SEQ

matrix results, obtained in [26], are false by means of a counter-example.

The de�nition of matrix Q−=γi (s, q) in the case of GMCRP, is similar to the de�nition of

matrix P−,=i (s, q) proposed in Xu et al. [26]. The main di�erence between such matrices is that

while the elements of the main diagonal of P−,=i are zero, those of Q−=γi are equal to one. Since

a state cannot be strictly preferred to itself, we �nd that our de�nition is more appropriate.

Moreover, using the de�nition of P−,=i makes the GMR and SEQ results presented in Xu et

al. [26] false.

In order to show that, we recall the results presented in [26] for the case of a 2-DM con�ict

next.

Theorem 4.3.7. Let i ∈ N . A state s ∈ S is GMR stable for DM i i� MGMR
i (s, s) = 0, where

MGMR
i (s, s) = J+

i

[
Y − sign

(
Jj · (P−,=i )>

)]
.

Theorem 4.3.8. Let i ∈ N . A state s ∈ S is SEQ stable for DM i i� MSEQ
i (s, s) = 0, where

MSEQ
i (s, s) = J+

i

[
Y − sign

(
J+
j · (P

−,=
i )>

)]
.

The counter-example presented below illustrates a state s which by de�nition is GMR and

SEQ stable, event though MGMR
i (s, s) 6= 0 and MSEQ

i (s, s) 6= 0.

Example 4.3.1. (Counter-Example) Consider the following con�ict with 2 DMs, i and j. Sup-

pose that Ri(s) = {q}, Rj(q) = {s}, Ri(q) = Rj(s) = ∅ and that the ordinal preferences are

q �i s and s �j q, as shown in Figure 4.3.1.

It is easy to see that, by de�nition, state s is GMR and SEQ stable for DM i. However, we

argue that MGMR
i (s, s) 6= 0 and MSEQ

i (s, s) 6= 0. Indeed, we have that matrices Ji, Jj, J
+
i , J

+
j

and P−=i are given, respectively, by
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Figure 4.1: Counter-Example

Ji = J+
i =

[
0 1
0 0

]
and

Jj = J+
j = P−=i =

[
0 0
1 0

]
.

Using the de�nitions according to Theorems 4.3.7 and 4.3.8, respectively, we have thatMGMR
i =

MSEQ
i =

[
1 0
0 0

]
.

Therefore, MGMR
i (s, s) = MSEQ

i (s, s) = 1, which according to Theorem 4.3.7 (resp., 4.3.8)

implies that state s is not GMR and (resp., not SEQ) stable for DM i, which is a contradiction.

It is easy to see that Theorems 4.3.7 and 4.3.8 would become true if either the main diagonal of

P−=i have all elements equal to one instead of zero or if we add the restriction that Ji ◦JTN−i = 0̂,

where 0̂ is the null matrix of same dimension of Ji and JN−i. This latter restriction implies the

opponents of DM i cannot return the con�ict to its initial state after DM i's �rst move, which

for us is a too demanding requirement in general. We emphasize that this assumption is not

mentioned in Xu et al. [26].

4.4 Application

We now present a modi�ed version, presented in [50], of a hypothetical con�ict proposed

by [51] to illustrate an application of how to obtain the stable states using the matrix represen-

tations described in the previous section. In this con�ict, there are two DMs: environmentalist
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(E) and developers (D). Environmentalists may choose to be proactive (P ) in promoting envi-

ronmental responsibility or not, in this case they are called reactive (R). Developers may choose

to be sustainable (S), or not, which is represented by U . The set of possible states of the con�ict

is: (P, S), (P,U), (R,U), and (R,S). Figure 4.4 represents the graph model for this strategic

con�ict.

Figure 4.2: Con�ict in the graph form: a) DM E; b) DM D.

Consider that DM D has two possible types, denoted by DS and DU , and consider the

probability distribution which describes the chance that the developers are of one of these types

is given by P (D = DS) = 0.3 and P (D = DU ) = 0.7. We have that the matrices JE , and JD

are given, respectively, by

JE =


1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

 ,

JD =


1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

 ,
where, (P, S), (R,S), (P,U) and (R,U) are represented in lines (columns) 1, 2, 3 and 4, respec-

tively.

The probabilistic preferences of the DMs E and D, are given in the Tables 4.1 and 4.2,
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respectively.

Table 4.1: Probabilistic preferences of DM E

DM E (P, S) (R,S) (P,U) (R,U)
(P, S) 0.0 1.0 1.0 1.0
(R,S) 0.0 0.0 1.0 1.0
(P,U) 0.0 0.0 0.0 1.0
(R,U) 0.0 0.0 0.0 0.0

Table 4.2: Probabilistic preferences of DM D

DM E (P, S) (R,S) (P,U) (R,U)
(P, S) 0.0 0.0 0.3 0.3
(R,S) 1.0 0.0 0.3 0.3
(P,U) 0.7 0.7 0.0 0.0
(R,U) 0.7 0.7 1.0 0.0

In Tables 4.1 and 4.2, each cell expresses the probability that the respective DM prefers the

line state over the column state.

Considering, for example, the parameter values α = 0.3, β = 0.8 and γ = 0.5, we have that

the matrices J+(1−α)
E , J+γ

D , Q+(1−β)
E and Q+(1−α)

E are given, respectively, by

J
+(0.7)
E =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

 ,

J
+(0.5)
D =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 ,
and

Q
+(0.2)
E =


1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

 ,

Q
+(0.7)
E =


0 0 0 0
1 0 0 0
1 1 0 0
1 1 1 0

 .
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Using Theorem 4.3.2, we conclude that states (P, S) and (P,U) are 0.3-Nash stable for DM

E, because the rows of the matrix J
+(0.7)
E , corresponding to these states, are all null. And

using Theorems 4.3.3, 4.3.4, 4.3.5 and 4.3.6, we conclude that diag(M) =
[

0 0 0 1
]
. Thus,

states (P, S), (R,S) and (P,U) are (0.3, 0.8)-metarational, (0.3, 0.8)-symmetric metarational,

(0.3, 0.8, 0.5)-sequentially stable and (0.3, 0.8, 0.5)-symmetric sequentially stable for DM D, but

state (R,U) is not.

More generally, in Figures 4.3, 4.4, 4.5, 4.6, 4.7, 4.8 4.9 and 4.10 we have established pa-

rameter regions in which the above con�ict states are stable according to the de�nitions (α, β)-

metarationality, (α, β)-symmetric metarationality, (α, β, γ)-sequential stability and (α, β, γ)-sy

mmetric sequential stability, respectively, for DM E. The dark regions in the graphs refer to α,

β and γ values, for which the states (P, S), (R,S), (P,U) and (R,U), denoted in the graphs by

1, 2, 3 and 4, respectively, are stable according to these four stability de�nitions for DM E and

DM D, denoted by DM 1 and DM 2, respectively.

4.5 Conclusion

Following a similar idea as that used by Xu et al. [26], we propose matrix representations

to determine stable states in 2-DM and n-DM con�icts in the GMCR with probabilistic prefer-

ences, according to the de�nitions proposed in [15] and [42], namely: α-Nash stability, (α, β)-

metarationality, (α, β)-symmetric metarationality, (α, β, γ)-sequential and (α, β, γ)-symmetric

sequential stability. The methodology presented in this chapter can help to �nd con�ict resolu-

tions using the GMCR. It combines the advantages of probabilistic preference models, which are

more �exible to accommodate preference features of DMs in real con�icts, and of matrix repre-

sentations of solution concepts in GMCR, which are more e�ective in determining stabilities and

in predicting equilibria, especially in complex con�ict models with many feasible states. Using

the approached proposed here, one can more easily determine for which set of parameters' values

a given state is stable and, as suggested by [15], such information can be relevant to compare the

equilibrium robustness of the states. We are currently investigating an extension of matrix rep-

resentations to other solution concepts, such as limited-move stability [21], nonmyopic stability
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Figure 4.3: (α, β)-GMR stability region for DM E

[52] and Stackelberg equilibrium [53].



4.5. CONCLUSION 72

Figure 4.4: (α, β)-GMR stability region for DM D
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Figure 4.5: (α, β)-SMR stability region for DM E
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Figure 4.6: (α, β)-SMR stability region for DM D
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Figure 4.7: (α, β, γ)-SEQ stability region for DM E
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Figure 4.8: (α, β, γ)-SEQ stability region for DM D
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Figure 4.9: (α, β, γ)-SSEQ stability region for DM E
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Figure 4.10: (α, β, γ)-SSEQ stability region for DM D



CHAPTER 5

Interactive Unawareness in the Graph Model for Con�ict

Resolution

Abstract

In this Chapter, we present a generalization of the Graph Model for Con�ict Resolution

(GMCR) to model interactive unawareness of decision makers (DMs) about the options available

to them in the con�ict. More speci�cally, we consider a GMCR with two and n DMs in which

a DM, in some given state, can be unconscious about some of his options, or about the options

available to his opponent(s), and therefore, may have only a partial knowledge of the state space.

We present generalizations of the usual stability concepts in the GMCR and we have obtained

some results relating such new concepts.

5.1 Introduction

We modify the standard GMCR model to allow for the possibility that DMs may be unaware

of some of the options available in the con�ict. Our motivation for proposing this model is that

in some con�icts having an available option that your opponents is unaware of can be crucial

to determine what kinds of con�ict resolutions can be achieved. For example, in a war setting

developing a new weapon technology which the adversary is unaware of can be crucial in de�ning

the war resolution.

79
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Our approach is to adapt a model of interactive unawareness proposed by [54] to the GMCR

setting. In this proposed setting, instead of a single state space common to all DMs involved in

the con�ict, there are several state spaces and associated to each one of them, there is a set of

options available to the DMs in the con�ict, according to the viewpoint of a DM who believes

the con�ict is described by such state space. Thus, if a DM is in a given state in some state

space, he may believe that he is in another state space, because he might not be aware of all

options available. Moreover, even if he is aware of all options available he might believe that his

opponent is not.

In this model, we allow for an arbitrary number of levels of iterated unawareness, in the sense

that DM i may be unaware that DM j is unaware that DM i is unaware that DM j has a certain

option available, and so on. We discuss the case with two and n-DMs and generalize the usual

notions of stability for the GMCR with interactive unawareness. The GMCR with interactive

unawareness for con�icts with two DMs was published in the Proceedings of the 16th Meeting on

Group Decision and Negotiation, see reference [55]. In this chapter, we extend this model further

to deal with n-DM con�icts.

This chapter is organized as follows. In Section 5.2, we present the GMCR with interactive

unawareness. In Section 5.3, we present the solution concepts for con�icts with two DMs and

establish some relationships between the proposed solution concepts. In Section 5.4, we presents

the solution concepts for con�icts with n-DMs and establish relationships between the proposed

solution concepts. In Section 5.5, we present an application of the proposed model to highlight

its usefulness. Finally, in Section 5.6, we �nish the paper with the main conclusions found.

5.2 Interactive Unawareness in the GMCR

The study of misperceptions in game theory has a long history starting with the work of

Bennett [61] who de�ned the notion of hypergames to model how DMs perceive a con�ict.

Takahashi et al. [62] developed a methodology to analyze hypergames using an adaption of the

sequential stability notion. Wang et al. [63, 64] present de�nitions and properties of solution

concepts used in hypergames analysis.
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In the last decade, the game theory literature has devoted increased attention to the modeling

of a particular kind of misperception, called unawareness. In such literature, DMs might not

conceive all relevant aspects (contingencies, actions, DMs involved) of a strategic situation, but

once they are aware of something, they cannot hold arbitrary false beliefs about what they are

aware of. The idea is to understand what are the implications that unawareness can have on

strategic behavior. For example, Feinberg [65] showed that even with a small uncertainty about

unawareness of actions, rational DMs can cooperate in the �nitely repeated prisoner's dilemma.

Halpern and Rêgo [59] proposed a model of extensive form games, where players may be unaware

of some actions available in the game. Chen and Zhao [60] proposed a framework to analyze the

behavior of unaware agents in the classical principal-agent model. Heifetz et al. [54] introduced a

generalized state-space model that allows for non-trivial unawareness among several individuals.

Aligned with what has been done in the game theory literature, in this chapter, we want to

propose a model that is able to analyze what are the implications of unawareness as the only

source of misperception in the GMCR stability analysys. In our model, DMs may be unaware

about some options available in the con�ict but not false beliefs about what they are aware of.

As opposed to the perceptual graph model, in this setting, we allow for higher order unawareness

levels, so that we can model a situation where DM i may be unaware that DM j is aware that

DM i is aware of option a. We only discuss the case of con�icts with two DMs and extend the

usual notions of stability for the GMCR with interactive unawareness.

Although in a practical scenario, it is likely that besides being unaware of some options, DMs

may have wrong perceptions about the true con�ict, the aim of this chapter is to understand the

impact of unawareness in the stability analysis of con�icts modeled by the GMCR. As we said

before, other kinds of misperceptions have already being modeled in the GMCR by other works.

5.2.1 Modeling Interactive Unawareness in GMCR

Our approach is to adapt a model of interactive unawareness proposed by Heifetz et al. [54]

to the GMCR setting. We suppose instead of a single state space common to all DMs involved

in the con�ict, there are several state spaces and associated to each one of them, there is a set



5.2. INTERACTIVE UNAWARENESS IN THE GMCR 82

of options available to the DMs in the con�ict. Thus, if a DM believes that he is in some state

space, then he is only aware of the options available in such space. Therefore, we suppose that

if a DM is in a given state in some state space, he may believe that he is in another state space,

because he might not be aware of all options available. We present formally the model as follows.

Let A be the set of all options available to all DMs in the con�ict. Let A∗ be some non-empty

subset of the power set of A. In order to allow for interactive unawareness, we need several states

spaces, S = {Sα}α∈A∗ , where with each state space is associated a unique subset of the options

available in the con�ict. Denote by
∑

= ∪α∈A∗Sα the union of these spaces. If α
′ ⊆ α, then

Sα is considered as more re�ned than Sα′ , i.e., it describes better the con�ict. Sα′ is said to

be less expressible than Sα and this is denoted by Sα ≥ Sα′ . As in [54], we de�ne a surjection

rS
′

S : S
′ → S that associates each state in a more re�ned state space with some state in a less

re�ned state space, which is the restriction of the more re�ned state to the options available in

the less re�ned state space.

In each state space Sα, we de�ne a usual GMCR with a set of directed graphs with common

state space Sα, (Sα, A
Sα
i ), and a preference relation on Sα, denoted by �Sαi , for each DM i ∈ N ,

which represent their possible moves and preferences among the states in Sα if they were aware

of all the options available in α. As opposed to the usual GMCR, states now describe not only

the options taken by DMs but also the options, expressible in the state, that they are aware of.

For each s ∈ Sα, let RSαi (s) and R+,Sα
i (s) be the set of reachable states from s by DM i and of

unilateral improvements from s by DM i, respectively.

The awareness level of DM i, i ∈ N , in a given state s is modeled by an awareness function,∏
i :
∑
→
∑
, which speci�es what state DM i believes to be in, while at state s. Such awareness

function must satisfy some conditions in order to explicit capture unawareness as the only source

of misperception of the DMs. The conditions that we require on the awareness function are

(a) Con�nedness: If s ∈ Sα, then
∏
i(s) ∈ Sα′ , for some Sα ≥ Sα′ ;

(b) If s
′ ∈ R

S
α
′′

i (s),
∏
i(s
′
) ∈ Sα′ and

∏
i(s) ∈ Sα, then Sα = Sα′ ;

(c) If s
′ ∈ R

S
α
′′

j (s),
∏
i(s
′
) ∈ Sα′ and

∏
i(s) ∈ Sα, then Sα′ ≥ Sα;
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(d) Stationarity:
∏
i(s) =

∏
i(
∏
i(s));

(e) Coherent Accessibility: If Sα′ ≥ Sα, s ∈ Sα′ ,
∏
i(s) ∈ Sα and t ∈ RSαi (

∏
i(s)), then there

is a unique state s
′ ∈ Sα′ such that s

′ ∈ R
S
α
′

i (s) and r
S
α
′

Sα
(s
′
) = t.

(f) Generalized Re�exivity: If s ∈ Sα and
∏
i(s) ∈ Sα′ , then

∏
i(s) = rSα

S′α
(s);

(g) Projections Preserve Ignorance: If s ∈ Sα′ , and Sα′ ≥ Sα, then
∏↑
i (s) ⊆

∏↑
i (r

S
′
α
Sα

(s)), where

for any s∗ ∈ Sα, (s∗)↑ = {s ∈
∑

: r
Sα′
Sα

(s) = s∗, for some Sα′}.

(h) Projections Preserve Knowledge: If Sα′′ ≥ Sα′ ≥ Sα, s ∈ Sα′′ , and
∏
i(s) ∈ Sα′ , then∏

i(r
S
α
′′

Sα
(s)) = r

S
α
′

Sα
(
∏
i(s)) = r

S
′′
α
Sα

(s);

For the results of this chapter, the only necessary conditions are (a), (c), (d) and (e). Such

conditions are not so strong. Con�nedness (a) requires that for any Sα, at a given state s ∈ Sα,

DMs cannot be aware of any non-existing option in α. As shown by Heifeltz et al. [54] and

Halpern and Rêgo [66], Stationarity (d) means that knowledge satis�es positive introspection,

i.e., if a DM knows some option is (or is not) taken at a given state, then he knows that he knows

it. Coherent accessibility (e) implies that DMs with higher awareness level can understand the

moves that other DMs with lower awareness levels believe that they can make (as we see, in

Section 5.3, Condition (e) is necessary for extending the notions of GMR, SMR, SEQ and

SSEQ to this model).

The other conditions, although not necessary for the results, capture our intuition regarding

unawareness. Condition (b) states that no DM can believe that he can reach a state where he

is aware of options that he is currently unaware of (otherwise, the DM would already be aware

of those options). Conditions (f), (g) and (h) are taken from Heiftez et al. [54]. Condition (f)

implies that DMs cannot have false beliefs about what they are aware of. As opposed to Heiftez

et al. [54] that modeled both uncertain and unawareness, here we only allow for unawareness,

since Πi is a function and not a correspondence. Thus, Generalized Re�exivity implies that

projections to lower state spaces determine the awareness function of agents.
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Heiftez et al. [54] interpreted conditions (g) and (h) in terms of projections, but they do not

made explicit what would these conditions imply in terms of DMs awareness and beliefs. We do

that in the following paragraphs.

Thus, consider condition (g). Assume that s ∈ Sα′ and Πj(s) ∈ Sα, by Con�nedness, it

follows that Sα′ ≥ Sα and by Generalized Re�exivity, we know that Πj(s) = r
Sα′
Sα

(s). Therefore,

condition (g) implies that Πi(s) be projected in a state space at least as rich as the one in which

Πi(Πj(s)) is projected. Since Πi(Πj(s)) represents what DM j believes that DM i is aware of, it

follows that DM j cannot believe that DM i is aware of options that DM i is unaware of.

Regarding condition (h), assume that Sα′′ ≥ Sα′ ≥ Sα, s ∈ Sα′′ , Πi(s) ∈ Sα′ and Πj(s) ∈ Sα,

thus DM i is aware of more options than DM j. By Generalized Re�exivity, Πi(s) = r
Sα′′
Sα′

(s)

and Πj(s) = r
Sα′′
Sα

(s). Thus, condition (h), can be rewritten as Πi(Πj(s)) = Πj(s), which implies

that DM j believes that DM i is aware of the same options that he (DM j) is aware of.

Heiftez et al. [54] also mention another property, called projections preserve awareness, but,

as they observe, it follows from the assumption that projections preserve knowledge, so we do

not consider it in this thesis.

Here it is worth pointing out that, in general, only the analyst may know the set of all DMs'

options in the con�ict. Indeed, a DM does not have the same model as the analyst, but from

his perspective the con�ict can be described by another GMCR with interactive unawareness,

where the more re�ned state space describes only the options that such DM is aware of.

It is easy to verify that a standard GMCR (S, (Ai)i∈N , (�i)i∈N ) can be represented by a

GMCR with interactive unawareness, where A∗ = {A}, SA = S, �SAi is the same preference

relation as �i, ∀i ∈ N , and
∏
i(s) = s, ∀s ∈ SA and i ∈ N . We call such model the canonical

GMCR with interactive unawareness.

5.3 Stability in the GMCR with Int. Unawareness with two DMs

In terms of such awareness function, we generalize �ve stability notions for the GMCR with

interactive unawareness with two DMs, namely: Nash, GMR, SMR, SEQ and SSEQ stability.
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De�nition 5.3.1. (GNash) A state s ∈ Sα is generalized Nash stable for DM i i� R
+,S

α
′

i (
∏
i(s)) =

∅, where
∏
i(s) ∈ Sα′ .

De�nition 5.3.2. (GGMR) A state s ∈ Sα is generalized GMR stable for DM i i� for every

q ∈ R
+,S

α
′

i (
∏
i(s)), where

∏
i(s) ∈ Sα′ , there exists u ∈ R

S
α
′′

j (
∏
j(q)), where

∏
j(q) ∈ Sα′′ , such

that
∏
i(s) �

S
α
′

i v, where v is the unique state such that v ∈ R
S
α
′

j (q) and u = r
S
α
′

S
α
′′ (v).

De�nition 5.3.3. (GSMR) A state s ∈ Sα is generalized SMR stable for DM i i� for every

q ∈ R
+,S

α
′

i (
∏
i(s)), where

∏
i(s) ∈ Sα′ , there exists u ∈ R

S
α
′′

j (
∏
j(q)), where

∏
j(q) ∈ Sα′′ , such

that
∏
i(s) �

S
α
′

i v, where v is the unique state such that v ∈ R
S
α
′

j (q) and u = r
S
α
′

S
α
′′ (v), and∏

i(s) �
S
α
′

i w, for all w ∈ R
S
α
′

i (v).

De�nition 5.3.4. (GSEQ) A state s ∈ Sα is generalized SEQ stable for DM i i� for every

q ∈ R
+,S

α
′

i (
∏
i(s)), where

∏
i(s) ∈ Sα′ , there exists u ∈ R

+,S
α
′′

j (
∏
j(q)), where

∏
j(q) ∈ Sα′′ ,

such that
∏
i(s) �

S
α
′

i v, where v is the unique state such that v ∈ R
S
α
′

j (q) and u = r
S
α
′

S
α
′′ (v).

De�nition 5.3.5. (GSSEQ) A state s ∈ Sα is generalized SSEQ stable for DM i i� for every

q ∈ R
+,S

α
′

i (
∏
i(s)), where

∏
i(s) ∈ Sα′ , there exists u ∈ R

+,S
α
′′

j (
∏
j(q)), where

∏
j(q) ∈ Sα′′ ,

such that
∏
i(s) �

S
α
′

i v, where v is the unique state such that v ∈ R
S
α
′

j (q) and u = r
S
α
′

S
α
′′ (v), and∏

i(s) �
S
α
′

i w, for all w ∈ R
S
α
′

i (v).

Figure 5.1 illustrates that states the appear in the de�nitions of the generalized stability

concepts proposed here. Intuitively, if a DM i is in a GNash stable state, s, then he has no

incentive to move away in a single step from the state that he believes to be in,
∏
i(s), which

is determined by his awareness function. Moreover, if a DM i is in a GGMR stable state s, he

has no incentive to move away from the state that he believes to be in,
∏
i(s), because for every

possible unilateral improvement move that he believes to have, q, his opponent believes to have a

reachable state from
∏
j(q) leading the con�ict to a state u, which corresponds to a unique state

v according to DM i's description of the con�ict (the existence and uniqueness of such state v is

guaranteed by the Coherent Accessibility property of the awareness function) and v is no better

than
∏
i(s) for DM i. Here is worth pointing out that property (b) of the awareness function
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guarantees that
∏
i(q) = q and that properties (c) and (d) ensures that

∏
i(v) = v, making it

reasonable to compare state
∏
i(s) and v, since they are in the same state space from the point

of view of DM i. In a GSMR stable state, s, DM i cannot escape from this latter no better

situation v to a better state w. Since
∏
i(v) = v, property (b) guarantees that

∏
i(w) = w,

making it reasonable to compare state
∏
i(s) and w, since they are in the same state space from

the point of view of DM i. In a GSEQ stable state, the reaction of DM i's opponent which leads

the con�ict to u is also bene�cial to the opponent, but no requirement is made as to whether DM

i may counter-react. Finally, in a GSSEQ stable state, s, it is required both that the reaction

of DM i's opponent must be bene�cial to the opponent and that DM i has no counter-reaction

that leads the con�ict from v to a situation better than what he believes to be the initial state,∏
i(s), for him.

Figure 5.1: Illustration of states in the de�nitions of generalized stability concepts.
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5.3.1 Results

In the GMCR, there are well known relationships between the �ve standard stability concepts

mentioned above. Analogous results for the generalized stability de�nitions in the GMCR with

interactive unawareness remain valid. Theorem 5.3.1 summarizes the results.

Theorem 5.3.1. In the GMCR with interactive unawareness, there exist the following relation-

ships between the stability concepts:

(a) If state s is GNash stable for DM i, then s is GGMR, GSMR, GSEQ and GSSEQ stable

for DM i.

(b) If state s is GSMR stable for DM i, then s is GGMR stable for DM i.

(c) If state s is GSEQ stable for DM i, then s is GGMR stable for DM i.

(d) If state s is GSSEQ stable for DM i, then s is GSEQ stable for DM i.

(e) If state s is GSSEQ stable for DM i, then s is GSMR stable for DM i.

Proof: For (a), if s is GNash stable for DM i, then R+,Sα′
i (Πi(s)) = ∅, where Πi(s) ∈ Sα′ , which

implies that s is GGMR, GSMR, GSEQ and GSSEQ stable for DM i.

For (b), if s ∈ Sα is GSMR stable for DM i i� for every q ∈ R
+,S

α
′

i (
∏
i(s)), where

∏
i(s) ∈

Sα′ , there exists u ∈ R
S
α
′′

j (
∏
j(q)), where

∏
j(q) ∈ Sα′′ , such that

∏
i(s) �

S
α
′

i v, where v

is the unique state such that v ∈ R
S
α
′

j (q) and u = r
S
α
′

S
α
′′ (v), and

∏
i(s) �

S
α
′

i w, for all w ∈

R
S
α
′

i (v). Therefore, it follows that for all q ∈ R
+,S

α
′

i (
∏
i(s)), where

∏
i(s) ∈ Sα′ , there exists

u ∈ R
S
α
′′

j (
∏
j(q)), where

∏
j(q) ∈ Sα′′ , such that

∏
i(s) �

S
α
′

i v, where v is the unique state such

that v ∈ R
S
α
′

j (q) and u = r
S
α
′

S
α
′′ (v), which implies that s is GGMR for DM i.

For (c), suppose that s is GSEQ stable for DM i. Thus, for all q ∈ R
+,S

α
′

i (
∏
i(s)), where∏

i(s) ∈ Sα′ , there exists u ∈ R
+,S

α
′′

j (
∏
j(q)), where

∏
j(q) ∈ Sα′′ , such that

∏
i(s) �

S
α
′

i v,

where v is the unique state such that v ∈ R
S
α
′

j (q) and u = r
S
α
′

S
α
′′ (v). Since R

+,S
α
′

j (
∏
j(q)) ⊆

R
S
α
′

j (
∏
j(q)), it follows that for all q ∈ R

+,S
α
′

i (
∏
i(s)), where

∏
i(s) ∈ Sα′ , there exists u ∈
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R
S
α
′′

j (
∏
j(q)), where

∏
j(q) ∈ Sα′′ , such that

∏
i(s) �

S
α
′

i v, where v is the unique state such that

v ∈ R
S
α
′

j (q) and u = r
S
α
′

S
α
′′ (v), which implies that s is GGMR stable for DM i.

For (d), suppose that s is GSSEQ stable for DM i. Thus, for all q ∈ R
+,S

α
′

i (
∏
i(s)), where∏

i(s) ∈ Sα′ , there exists u ∈ R
+,S

α
′′

j (
∏
j(q)), where

∏
j(q) ∈ Sα′′ , such that

∏
i(s) �

S
α
′

i v,

where v is the unique state such that v ∈ R
S
α
′

j (q) and u = r
S
α
′

S
α
′′ (v), and

∏
i(s) �

S
α
′

i w, for all

w ∈ R
S
α
′

i (v). Therefore, it follows that for all q ∈ R
+,S

α
′

i (
∏
i(s)), where

∏
i(s) ∈ Sα′ , there

exists u ∈ R
+,S

α
′′

j (
∏
j(q)), where

∏
j(q) ∈ Sα′′ , such that

∏
i(s) �

S
α
′

i v, where v is the unique

state such that v ∈ R
S
α
′

j (q) and u = r
S
α
′

S
α
′′ (v), which implies that s is GSEQ stable for DM i.

For (e) suppose that s is GSSEQ stable for DM i. Thus, for all q ∈ R
+,S

α
′

i (
∏
i(s)), where∏

i(s) ∈ Sα′ , there exists u ∈ R
+,S

α
′′

j (
∏
j(q)), where

∏
j(q) ∈ Sα′′ , such that

∏
i(s) �

S
α
′

i v,

where v is the unique state such that v ∈ R
S
α
′

j (q) and u = r
S
α
′

S
α
′′ (v), and

∏
i(s) �

S
α
′

i w, for all

w ∈ R
S
α
′

i (v). Since R
+,S

α
′

j (
∏
j(q)) ⊆ R

S
α
′

j (
∏
j(q)), it follows that for all q ∈ R

+,S
α
′

i (
∏
i(s)),

where
∏
i(s) ∈ Sα′ , there exists u ∈ R

S
α
′′

j (
∏
j(q)), where

∏
j(q) ∈ Sα′′ , such that

∏
i(s) �

S
α
′

i v,

where v is the unique state such that v ∈ R
S
α
′

j (q) and u = r
S
α
′

S
α
′′ (v), and

∏
i(s) �

S
α
′

i w, for all

w ∈ R
S
α
′

i (v), which implies that s is GSMR stable for DM i.

Figure 5.3.1 summarizes the relationships between the stability concepts provided by Theo-

rem 5.3.1. The arrows represent the implications of the solution concepts.

Figure 5.2: Implications among the generalized stability de�nitions

We also obtained results relating stability of a given state with the stability of the state that
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a DM believes to be true.

Theorem 5.3.2. State s ∈ Sα is stable for DM i according to some stability notion i�
∏
i(s) is

stable for DM i according to the same stability notion.

Proof: The demonstration of this result follows from the Stationarity property of the Awareness

function, i.e.,
∏
i(s) =

∏
i(
∏
i(s)). Next, we prove the theorem for each one of the solution

concepts presented in Subsection 5.3.

(1) (GNash) State s ∈ Sα is GNash stable for DM i i� R
+,S

α
′

i (
∏
i(s)) = ∅, where

∏
i(s) ∈ Sα′ .

By Stationarity, we have that
∏
i(s) =

∏
i(
∏
i(s)), i.e., R

+,S
α
′

i (
∏
i(
∏
i(s))) = R

+,S
α
′

i (
∏
i(s))

= ∅. Therefore s is GNash stable for DM i i�
∏
i(s) is GNash stable for DM i.

(2) (GGMR) By Stationarity,
∏
i(s) =

∏
i(
∏
i(s)), which implies that R

+,S
α
′

i (
∏
i(
∏
i(s))) =

R
+,S

α
′

i (
∏
i(s)). Thus, s ∈ Sα is GGMR stable for DM i i� for all q ∈ R

+,S
α
′

i (
∏
i(
∏
i(s))),

where
∏
i(
∏
i(s)) ∈ Sα′ , there exists u ∈ R

S
α
′′

j (
∏
j(q)), where

∏
j(q) ∈ Sα′′ , such that∏

i(
∏
i(s)) �

S
α
′

i v, where v is the unique state such that v ∈ R
S
α
′

j (q) and u = r
S
α
′

S
α
′′ (v).

Finally, this last statement is equivalent to the de�nition of Πi(s) being GGMR stable for

DM i.

(3) (GSMR) By Stationarity,
∏
i(s) =

∏
i(
∏
i(s)), which implies that R

+,S
α
′

i (
∏
i(
∏
i(s))) =

R
+,S

α
′

i (
∏
i(s)). Thus, s ∈ Sα is GSMR stable for DM i i� for all q ∈ R

+,S
α
′

i (
∏
i(
∏
i(s))),

where
∏
i(
∏
i(s)) ∈ Sα′ , there exists u ∈ R

S
α
′′

j (
∏
j(q)), where

∏
j(q) ∈ Sα′′ , such that∏

i(
∏
i(s)) �

S
α
′

i v, where v is the unique state such that v ∈ R
S
α
′

j (q) and u = r
S
α
′

S
α
′′ (v),

and Πi(Πi(s)) �
S
α
′

i w, for all w ∈ R
S
α
′

i (v). Finally, this last statement is equivalent to the

de�nition of Πi(s) being GSMR stable for DM i.

(4) (GSEQ) By Stationarity,
∏
i(s) =

∏
i(
∏
i(s)), which implies that R

+,S
α
′

i (
∏
i(
∏
i(s))) =

R
+,S

α
′

i (
∏
i(s)). Thus, s ∈ Sα is GSEQ stable for DM i i� for all q ∈ R

+,S
α
′

i (
∏
i(
∏
i(s))),

where
∏
i(
∏
i(s)) ∈ Sα′ , there exists u ∈ R

+,S
α
′′

j (
∏
j(q)), where

∏
j(q) ∈ Sα′′ , such that∏

i(
∏
i(s)) �

S
α
′

i v, where v is the unique state such that v ∈ R
S
α
′

j (q) and u = r
S
α
′

S
α
′′ (v).
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Finally, this last statement is equivalent to the de�nition of Πi(s) being GSEQ stable for

DM i.

(5) (GSSEQ) By Stationarity,
∏
i(s) =

∏
i(
∏
i(s)), which implies that R

+,S
α
′

i (
∏
i(
∏
i(s))) =

R
+,S

α
′

i (
∏
i(s)). Thus, s ∈ Sα is GSSEQ stable for DM i i� for all q ∈ R

+,S
α
′

i (
∏
i(
∏
i(s))),

where
∏
i(
∏
i(s)) ∈ Sα′ , there exists u ∈ R

S
+,α
′′

j (
∏
j(q)), where

∏
j(q) ∈ Sα′′ , such that∏

i(
∏
i(s)) �

S
α
′

i v, where v is the unique state such that v ∈ R
S
α
′

j (q) and u = r
S
α
′

S
α
′′ (v),

and Πi(Πi(s)) �
S
α
′

i w, for all w ∈ R
S
α
′

i (v). Finally, this last statement is equivalent to the

de�nition of Πi(s) being GSSEQ stable for DM i.

Theorem 5.3.3 shows that if both DMs have the same awareness level at some state, then

generalized stability of such state is equivalent to the corresponding standard stability of the

state they believe to be in with respect to the standard GMCR, whose state space is the one

that they believe to be in.

Theorem 5.3.3. If
∏
i(s) =

∏
j(s) ∈ Sα′ , then s ∈ Sα is equilibrium according to some general-

ized stability notion i�
∏
i(s) is an equilibrium according to the corresponding standard stability

notion in the standard GMCR (Sα′ , (A
S
α
′

i )i∈N , (�
S
α
′

i )i∈N ).

Proof: Next, we prove the result for each one of the solution concepts presented in Subsection 5.3.

(1) (GNash) State s ∈ Sα is equilibrium according to the GNash concept i� R
+,S

α
′

i (
∏
i(s)) =

R
+,S

α
′

j (
∏
j(s)) = ∅. If

∏
i(s) =

∏
j(s), then s is equilibrium according to this concept i�∏

i(s) is equilibrium in the standard GMCR (Sα′ , (A
S
α
′

i )i∈N , (�
S
α
′

i )i∈N ).

(2) (GGMR) State s ∈ Sα is equilibrium according to the GGMR concept i�:

(i) For all q ∈ R
+,S

α
′

i (
∏
i(s)), where

∏
i(s) ∈ Sα′ , there exists u ∈ R

S
α
′′

j (
∏
j(q)), where∏

j(q) ∈ Sα′′ , such that
∏
i(s) �

S
α
′

i v, where v is the unique state such that v ∈

R
S
α
′

j (q) and u = r
S
α
′

S
α
′′ (v).
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(ii) For all q ∈ R
+,S

α
′

j (
∏
j(s)), where

∏
j(s) ∈ Sα′ , there exists u ∈ R

S
α
′′

i (
∏
i(q)), where∏

i(q) ∈ Sα′′ , such that
∏
j(s) �

S
α
′

j v, where v is the unique state such that v ∈

R
S
α
′

i (q) and u = r
S
α
′

S
α
′′ (v).

Since
∏
i(s) =

∏
j(s) ∈ Sα′ , we now prove that Sα′ = Sα′′ in the previous stability

de�nitions. First, note that by Stationarity,
∏
j(
∏
i(s)) =

∏
j(
∏
j(s)) =

∏
j(s) ∈ Sα′ .

Since Sα′′ is the state space containing
∏
j(q) ∈ Sα′′ , where q ∈ R

+,S
α
′

i (
∏
i(s)), property

(c) of the awareness function implies that Sα′′ ≥ Sα′ . On the other hand, by Con�nedness,

it follows that Sα′ ≥ Sα′′ . Therefore, Sα′ = Sα′′ , which implies that u = r
S
α
′

S
α
′′ (v) = v.

Thus, we have that GGMR stability for DM i can be rewritten as:

� For all q ∈ R
+,S

α
′

i (
∏
i(s)), there exists u ∈ R

S
α
′

j (q) such that
∏
i(s) �

S
α
′

i u.

Therefore,
∏
i(s) is GMR stable in the standard GMCR (Sα′ , (A

S
α
′

i )i∈N , (�
S
α
′

i )i∈N ) for

DM i.

Similarly, we conclude that
∏
i(s) is GMR stable in the standard GMCR

(Sα′ , (A
S
α
′

i )i∈N , (�
S
α
′

i )i∈N ) for DM j.

(3) (GSMR) State s ∈ Sα is equilibrium according to the GSMR concept i�:

(i) For all q ∈ R
+,S

α
′

i (
∏
i(s)), where

∏
i(s) ∈ Sα′ , there exists u ∈ R

S
α
′′

j (
∏
j(q)), where∏

j(q) ∈ Sα′′ , such that
∏
i(s) �

S
α
′

i v, where v is the unique state such that v ∈

R
S
α
′

j (q) and u = r
S
α
′

S
α
′′ (v), and

∏
i(s) �

S
α
′

i w for all w ∈ R
S
α
′

i (v).

(ii) For all q ∈ R
+,S

α
′

j (
∏
j(s)), where

∏
j(s) ∈ Sα′ , there exists u ∈ R

S
α
′′

i (
∏
i(q)), where∏

i(q) ∈ Sα′′ , such that
∏
j(s) �

S
α
′

j v, where v is the unique state such that v ∈

R
S
α
′

i (q) and u = r
S
α
′

S
α
′′ (v), and

∏
j(s) �

S
α
′

j w for all w ∈ R
S
α
′

j (v).

Using a similar argument to that of part (2) of this theorem, we have that GSMR stability

for DM i can be rewritten as

� For all q ∈ R
+,S

α
′

i (
∏
i(s)), there exists u ∈ R

S
α
′

j (q) such that
∏
i(s) �

S
α
′

i u and∏
i(s) �

S
α
′

i w for all w ∈ R
S
α
′

i (u).
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Therefore,
∏
i(s) is SMR stable in the standard GMCR (Sα′ , (A

S
α
′

i )i∈N , (�
S
α
′

i )i∈N ) for

DM i.

Similarly, we conclude that
∏
i(s) is SMR stable in the standard GMCR

(Sα′ , (A
S
α
′

i )i∈N , (�
S
α
′

i )i∈N ) for DM j.

(4) (GSEQ) State s ∈ Sα is equilibrium according to the GSEQ concept i�:

(i) For all q ∈ R
+,S

α
′

i (
∏
i(s)), where

∏
i(s) ∈ Sα′ , there exists u ∈ R

+,S
α
′′

j (
∏
j(q)),

where
∏
j(q) ∈ Sα′′ , such that

∏
i(s) �

S
α
′

i v, where v is the unique state such that

v ∈ R
S
α
′

j (q) and u = r
S
α
′

S
α
′′ (v).

(ii) For all q ∈ R
+,S

α
′

j (
∏
j(s)), where

∏
j(s) ∈ Sα′ , there exists u ∈ R

+,S
α
′′

i (
∏
i(q)),

where
∏
i(q) ∈ Sα′′ , such that

∏
j(s) �

S
α
′

j v, where v is the unique state such that

v ∈ R
S
α
′

i (q) and u = r
S
α
′

S
α
′′ (v).

Using a similar argument to that of part (2) of this theorem, we have that GSEQ stability

for DM i can be rewritten as

� For all q ∈ R
+,S

α
′

i (
∏
i(s)), there exists u ∈ R

+,S
α
′

j (q), such that
∏
i(s) �

S
α
′

i u.

Therefore,
∏
i(s) is SEQ in the standard GMCR (Sα′ , (A

S
α
′

i )i∈N , (�
S
α
′

i )i∈N ) for DM i.

Similarly, we conclude that
∏
i(s) is SEQ stable in the standard GMCR

(Sα′ , (A
S
α
′

i )i∈N , (�
S
α
′

i )i∈N ) for DM j.

(5) (GSSEQ) State s ∈ Sα is equilibrium according to the GSSEQ concept i�:

(i) For all q ∈ R
+,S

α
′

i (
∏
i(s)), where

∏
i(s) ∈ Sα′ , there exists u ∈ R

+,S
α
′′

j (
∏
j(q)),

where
∏
j(q) ∈ Sα′′ , such that

∏
i(s) �

S
α
′

i v, where v is the unique state such that

v ∈ R
S
α
′

j (q) and u = r
S
α
′

S
α
′′ (v), and

∏
i(s) �

S
α
′

i w for all w ∈ R
S
α
′

i (v).

(ii) For all q ∈ R
+,S

α
′

j (
∏
j(s)), where

∏
j(s) ∈ Sα′ , there exists u ∈ R

+,S
α
′′

i (
∏
i(q)),

where
∏
i(q) ∈ Sα′′ , such that

∏
j(s) �

S
α
′

j v, where v is the unique state such that

v ∈ R
S
α
′

i (q) and u = r
S
α
′

S
α
′′ (v), and

∏
j(s) �

S
α
′

j w for all w ∈ R
S
α
′

j (v).
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Using a similar argument to that of part (2) of this theorem, we have that GSSEQ stability

for DM i can be rewritten as

� For all q ∈ R
+,S

α
′

i (
∏
i(s)), there is u ∈ R

+,S
α
′

j (q), such that
∏
i(s) �

S
α
′

i u and∏
i(s) �

S
α
′

i w for all w ∈ R
S
α
′

i (u).

Therefore,
∏
i(s) is SSEQ stable in the standard GMCR (Sα′ , (A

S
α
′

i )i∈N , (�
S
α
′

i )i∈N ) for

DM i.

Similarly, we conclude that
∏
i(s) is SSEQ stable in the standard GMCR

(Sα′ , (A
S
α
′

i )i∈N , (�
S
α
′

i )i∈N ) for DM j.

Theorem 5.3.4 shows that the standard solution concepts for the standard GMCR are spe-

cial cases of the generalized solution concepts proposed here for the GMCR with interactive

unawareness.

Theorem 5.3.4. State s satis�es some stability notion in the standard GMCR Φ = (S, (Ai)i∈N , (�i

)i∈N ) for DM i i� it satis�es the corresponding generalized stability notion in the canonical rep-

resentation of Φ as a GMCR with interactive unawareness, denoted by Φ′.

Proof:

In order to prove this theorem we consider individually each of the �ve usual stability concepts

in the GMCR presented in Section 2.2.2 and the corresponding generalized concepts in the GMCR

with interactive unawareness presented in Section 5.3.

(1) We prove that state s is Nash stable for DM i ∈ N in Φ i� it is GNash for DM i ∈ N

in Φ
′
. Indeed, state s is Nash stable for DM i ∈ N in Φ i� R+

i (s) = ∅. As we have that∏
i(s) = s for all s ∈ SA, then R+,SA

i (
∏
i(s)) = R+

i (s) = ∅, i. e., s is Nash stable in Φ i�

it is GNash stable in Φ
′
.

(2) We prove that state s is GMR stable for DM i ∈ N in Φ i� it is GGMR for DM i ∈ N

Φ
′
. Indeed, state s is GMR stable for DM i ∈ N in Φ i� for every s1 ∈ R+

i (s), there exists
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s2 ∈ Rj(s1) such that s �i s2. But as, in Φ
′
, we have that

∏
i(s) = s and

∏
j(s) = s for

all s ∈ SA, implying that R+,SA
i (

∏
i(s)) = R+

i (s) and RSAj (
∏
j(s)) = Rj(s) for all s ∈ SA.

Thus, state s is GMR stable for DM i ∈ N in Φ i� for every s1 ∈ R+,SA
i (

∏
i(s)) there

exists s2 ∈ RSAj (
∏
j(s1)), such that

∏
i(s) �

SA
i s2, where s2 is the unique state such that

s2 ∈ RSAj (s1) and s2 = rSASA (s2), which is equivalent to s being GGMR stable for DM i in

Φ′.

(3) We prove that state s is SMR stable for DM i ∈ N in Φ i� it is GSMR for DM i ∈ N

Φ
′
. Indeed, state s is SMR stable for DM i ∈ N in Φ i� for every s1 ∈ R+

i (s), there

exists s2 ∈ Rj(s1) such that s �i s2 and s2 �i s3 for all s3 ∈ Ri(s2). But as, in Φ
′
,

we have that
∏
i(s) = s,

∏
j(s) = s for all s ∈ SA, implying that RSAi (

∏
i(s)) = Ri(s),

R+,SA
i (

∏
i(s)) = R+

i (s) and RSAj (
∏
j(s)) = Rj(s) for all s ∈ SA. Thus, state s is SMR

stable for DM i ∈ N in Φ i� for every s1 ∈ R+,SA
i (

∏
i(s)) there exists s2 ∈ R

SA
j (
∏
j(s1)),

such that
∏
i(s) �i s2, where s2 is the unique state such that s2 ∈ R

SA
j (s1) and s2 = rSASA (s2)

and
∏
i(s) �i s3 for all s3 ∈ R

SA(s2)
i , which is equivalent to s being GSMR stable for DM

i in Φ′.

(4) We prove that state s is SEQ stable for DM i ∈ N in Φ i� it is GSEQ for DM i ∈ N

Φ
′
. Indeed, state s is SEQ stable for DM i ∈ N in Φ i� for every s1 ∈ R+

i (s), there exists

s2 ∈ R+
j (s1) such that s �i s2. But as, in Φ

′
, we have that

∏
i(s) = s and

∏
j(s) = s

for all s ∈ SA, implying that R+,SA
i (

∏
i(s)) = R+

i (s) and R+,SA
j (

∏
j(s)) = R+

j (s) for all

s ∈ SA. Thus, state s is SEQ stable for DM i ∈ N in Φ i� for every s1 ∈ R+,SA
i (

∏
i(s))

there exists s2 ∈ R+,SA
j (

∏
j(s1)), such that

∏
i(s) �

SA
i s2, where s2 is the unique state

such that s2 ∈ R+,SA
j (s1) and s2 = rSASA (s2), which is equivalent to s being GSEQ stable

for DM i in Φ′.

(5) We prove that state s is SSEQ stable for DM i ∈ N in Φ i� it is GSSEQ for DM i ∈ N

Φ
′
. Indeed, state s is SSEQ stable for DM i ∈ N in Φ i� for every s1 ∈ R+

i (s), there exists

s2 ∈ R+
j (s1) such that s �i s2 and s2 �i s3 for all s3 ∈ Ri(s2). But as, in Φ

′
, we have that∏

i(s) = s,
∏
j(s) = s for all s ∈ SA, implying that RSAi (

∏
i(s)) = Ri(s), R

+,SA
i (

∏
i(s)) =
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R+
i (s) and R+,SA

j (
∏
j(s)) = R+

j (s) for all s ∈ SA. Thus, state s is SSEQ stable for DM

i ∈ N in Φ i� for every s1 ∈ R+,SA
i (

∏
i(s)) there exists s2 ∈ R+,SA

j (
∏
j(s1)), such that∏

i(s) �i s2, where s2 is the unique state such that s2 ∈ R+,SA
j (s1) and s2 = rSASA (s2) and∏

i(s) �i s3 for all s3 ∈ R
SA(s2)
i , which is equivalent to s being GSSEQ stable for DM i in

Φ′.

5.4 Stability in the GMCR with Int. Unawareness with n-DMs

In order to generalize the stability de�nitions and results presented in Section 5.3 for con-

�icts with n-DMs, it is necessary to de�ne some sets, such as the set of accessible states and

improvements for a particular DM and for a group of DMs. Next, we formally de�ne these sets

and present the solution concepts and some results obtained for the GMCR with interactive

unawareness with multiple DMs.

Let USα′j (s1) = {s2 ∈ R
S
α
′

j (s1) : ∃s3 ∈ R
S
α
′′

j (
∏
j(s1)) such that

∏
j(s1) ∈ Sα′′ , and s3 =

r
S
α
′

S
α
′′ (s2)} be the subset of R

S
α
′

j (s1) consisting of all states in Sα′ reachable for DM j from

state s1 in one step considering that at s1, DM j may not be aware of all options in α′. Let

also U+,Sα′
j (s1) = {s2 ∈ R

S
α
′

j (s1) : ∃s3 ∈ R
+,S

α
′′

j (
∏
j(s1)) such that

∏
j(s1) ∈ Sα′′ , and s3 =

r
S
α
′

S
α
′′ (s2)} be the subset of R

S
α
′

j (s1), consisting of all states in Sα′ that are unilateral improvement

moves from s1 by DM j, considering that at s1, DM j may not be aware of all options in α′.

We are now able to de�ne a legal sequence of movements in a GMCR with interactive un-

awareness. Let H be some coalition and let U
S
α
′

H (s) denote the set of all states in space Sα′ that

can be reached by any legal sequence of movements, considering that the DMs in H may not be

aware of all options in α′ while moving in the sequence. Let also Ω
S
α
′

H (s, s1) be the subset of

H whose members are DMs that make the last move to reach s1 in a legal sequence of moves

from s, considering that DMs may be unaware of some options in α′ while moving. Formally,

U
S
α
′

H (s) and Ω
S
α
′

H (s, ·) are the smallest sets (in the sense of inclusion) satisfying: (1) if j ∈ H

and s1 ∈ U
Sα′
j (s), then s1 ∈ U

S
α
′

H (s) and j ∈ Ω
S
α
′

H (s, s1), and (2) if s1 ∈ U
S
α
′

H (s), j ∈ H,
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Ω
S
α
′

H (s, s1) 6= {j} and s2 ∈ U
S
α
′

j (s1), then s2 ∈ U
S
α
′

H (s) and j ∈ Ω
S
α
′

H (s, s2).

Similarly, let U
+,S

α
′

H (s) ⊆ S be the set of all states that result from a legal sequence of

unilateral improvements, starting at state s, taking into account that DMs in H may not be

aware of all options in α′. Finally, if s1 ∈ U
+,S

α
′

H (s), then Ω
+,S

α
′

H (s, s1) is the set of all last DMs

in a legal sequence of unilateral improvements from s to s1, considering that DMs in H may be

unaware of all options in α′. We have that U
+,S

α
′

H (s) and Ω
+,S

α
′

H (s, ·) are de�ned as the smallest

sets (in the sense of inclusion) satisfying: (1) if j ∈ H and s1 ∈ U
+,Sα′
j (s), then s1 ∈ U+,S

H (s)

and j ∈ Ω
+,S

α
′

H (s, s1), and (2) if s1 ∈ U
+,S

α
′

H (s), j ∈ H, Ω
+,S

α
′

H (s, s1) 6= {j} and s2 ∈ U
+,Sα′
j (s1),

then s2 ∈ U
+,S

α
′

H (s) and j ∈ Ω
+,S

α
′

H (s, s2).

We are now able to provide stability de�nitions for the GMCR with interactive unawareness

and multiple DMs.

De�nition 5.4.1. (GNash) A state s ∈ Sα is generalized Nash stable for DM i i� R
+,S

α
′

i (
∏
i(s)) =

∅, where
∏
i(s) ∈ Sα′ .

De�nition 5.4.2. (GGMR) A state s ∈ Sα is generalized GMR stable for DM i i� for every

s1 ∈ R
+,S

α
′

i (
∏
i(s)), where

∏
i(s) ∈ Sα′ , there exists s2 ∈ U

Sα′
H (s1), such that

∏
i(s) �

S
α
′

i s2.

De�nition 5.4.3. (GSMR) A state s ∈ Sα is generalized GMR stable for DM i i� for every

s1 ∈ R
+,S

α
′

i (
∏
i(s)), where

∏
i(s) ∈ Sα′ , there exists s2 ∈ U

Sα′
H (s1), such that

∏
i(s) �

S
α
′

i s2 and∏
i(s) �

S
α
′

i s3 for all s3 ∈ R
S
α
′

i (s2).

De�nition 5.4.4. (GSEQ) A state s ∈ Sα is sequential SEQ stable for DM i i� for every

s1 ∈ R
+,S

α
′

i (
∏
i(s)), where

∏
i(s) ∈ Sα′ , there exists s2 ∈ U

+,Sα′
H (s1), such that

∏
i(s) �

S
α
′

i s2.

De�nition 5.4.5. (GSSEQ) A state s ∈ Sα is symmetric sequential SSEQ stable for DM i

i� for every s1 ∈ R
+,S

α
′

i (
∏
i(s)), where

∏
i(s) ∈ Sα′ , there exists s2 ∈ U

+,Sα′
H (s1), such that∏

i(s) �
S
α
′

i s2 and
∏
i(s) �

S
α
′

i s3 for all s3 ∈ R
S
α
′

i (s2).

In other words, if a DM i is in a GNash stable state, s, then he has no incentive to move

away in a single step from the state that he believes to be in,
∏
i(s), which is determined by his

awareness function. Moreover, if a DM i is in a GGMR stable state s, he has no incentive to
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move away from the state that he believes to be in,
∏
i(s), because for every possible unilateral

improvement move that he believes to have, s1, his opponents may react reaching a state s2 that

is no better than
∏
i(s) for DM i. In a GSMR stable state, s, DM i cannot escape from this

latter no better situation s2. In a GSEQ stable state, the reactions of DM i's opponents which

lead the con�ict to s2 are also bene�cial to the opponents, but no requirement is made as to

whether DM i may counter-react. Finally, in a GSSEQ stable state, s, it is required both that

the reactions of DM i's opponents must be bene�cial to them and that DM i has no counter-

reaction that leads the con�ict from s2 to a situation better for him than what he believes to be

the initial state,
∏
i(s).

5.4.1 Results

Analogous results to the obtained in Section 5.2 for the generalized stability de�nitions in the

GMCR with interactive unawareness with multiple DMs remain valid. Theorem 5.4.1 summarizes

the results.

Theorem 5.4.1. In the GMCR with interactive unawareness with multiple DMs, there exist the

following relationships between the stability concepts:

(a) If state s is GNash stable for DM i, then s is GGMR, GSMR, GSEQ and GSSEQ stable

for DM i.

(b) If state s is GSMR stable for DM i, then s is GGMR stable for DM i.

(c) If state s is GSEQ stable for DM i, then s is GGMR stable for DM i.

(d) If state s is GSSEQ stable for DM i, then s is GSEQ stable for DM i.

(e) If state s is GSSEQ stable for DM i, then s is GSMR stable for DM i.

Proof: The proof of this theorem are similar to the respective theorem presented in previous

section.
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We also obtained results relating stability of a given state with the stability of the state that

a DM believes to be true. This results generalized the respective result obtained in Rêgo and

Vieira for con�icts with n-DMs.

Theorem 5.4.2. State s ∈ Sα is stable for DM i according to some stability notion i�
∏
i(s) is

stable for DM i according to the same stability notion.

Proof: The demonstration of this result follows from the Stationarity property of the Awareness

function, i.e.,
∏
i(s) =

∏
i(
∏
i(s)). Next, we prove the theorem for each one of the solution

concepts presented in Subsection 2.2.2.

(1) State s ∈ Sα is GNash stable for DM i i� R
+,S

α
′

i (
∏
i(s)) = ∅, where

∏
i(s) ∈ Sα′ . By

Stationarity, we have that
∏
i(s) =

∏
i(
∏
i(s)), i.e., R

+,S
α
′

i (
∏
i(
∏
i(s))) = R

+,S
α
′

i (
∏
i(s)) =

∅. Therefore s is GNash stable for DM i i�
∏
i(s) is GNash stable for DM i.

(2) (GGMR) By Stationarity,
∏
i(s) =

∏
i(
∏
i(s)), which implies that R

+,S
α
′

i (
∏
i(
∏
i(s))) =

R
+,S

α
′

i (
∏
i(s)). Thus, s ∈ Sα is GGMR stable for DM i i� for all s1 ∈ R

+,S
α
′

i (
∏
i(
∏
i(s))),

where
∏
i(
∏
i(s)) ∈ Sα′ , there exists s2 ∈ U

Sα′
H (s1), such that

∏
i(
∏
i(s)) �

S
α
′

i s2. Finally,

this last statement is equivalent to the de�nition of Πi(s) being GGMR stable for DM i.

(3) (GSMR) By Stationarity,
∏
i(s) =

∏
i(
∏
i(s)), which implies that R

+,S
α
′

i (
∏
i(
∏
i(s))) =

R
+,S

α
′

i (
∏
i(s)). Thus, s ∈ Sα is GSMR stable for DM i i� for all s1 ∈ R

+,S
α
′

i (
∏
i(
∏
i(s))),

where
∏
i(
∏
i(s)) ∈ Sα′ , there exists s2 ∈ U

Sα′
H (s1), such that

∏
i(
∏
i(s)) �

S
α
′

i s2, and

Πi(Πi(s)) �
S
α
′

i s3, for all s3 ∈ R
S
α
′

i (s2). Finally, this last statement is equivalent to the

de�nition of Πi(s) being GSMR stable for DM i.

(4) (GSEQ) By Stationarity,
∏
i(s) =

∏
i(
∏
i(s)), which implies that R

+,S
α
′

i (
∏
i(
∏
i(s))) =

R
+,S

α
′

i (
∏
i(s)). Thus, s ∈ Sα is GSEQ stable for DM i i� for all s1 ∈ R

+,S
α
′

i (
∏
i(
∏
i(s))),

where
∏
i(
∏
i(s)) ∈ Sα′ , there exists s2 ∈ U

+,Sα′
H (s1), such that

∏
i(
∏
i(s)) �

S
α
′

i s2. Finally,

this last statement is equivalent to the de�nition of Πi(s) being GSEQ stable for DM i.

(5) (GSSEQ) By Stationarity,
∏
i(s) =

∏
i(
∏
i(s)), which implies that R

+,S
α
′

i (
∏
i(
∏
i(s))) =

R
+,S

α
′

i (
∏
i(s)). Thus, s ∈ Sα is GSSEQ stable for DM i i� for all s1 ∈ R

+,S
α
′

i (
∏
i(
∏
i(s))),
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where
∏
i(
∏
i(s)) ∈ Sα′ , there exists s2 ∈ U

+,Sα′
H (s1), such that

∏
i(
∏
i(s)) �

S
α
′

i s2, and

Πi(Πi(s)) �
S
α
′

i s3, for all s3 ∈ R
S
α
′

i (s2). Finally, this last statement is equivalent to the

de�nition of Πi(s) being GSSEQ stable for DM i.

Theorem 5.4.3 shows that if all DMs in an coalition H have the same awareness level at

some state, then generalized stability of such state is equivalent to the corresponding standard

stability of the state they believe to be in with respect to the standard GMCR, whose state space

is the one that they believe to be in.

Theorem 5.4.3. If
∏
i(s) =

∏
j(s) ∈ Sα′ for all j ∈ N−{i}, then s ∈ Sα is equilibrium according

to some generalized stability notion i�
∏
i(s) is an equilibrium according to the corresponding

standard stability notion in the standard GMCR (Sα′ , (A
S
α
′

i )i∈N , (�
S
α
′

i )i∈N ).

Proof: Next, we prove the result for each one of the solution concepts presented in Subsection 5.3.

(1) (GNash) We have that s ∈ Sα is equilibrium according to the GNash concept i�

R
+,S

α
′

i (
∏
i(s)) = R

+,S
α
′

j (
∏
j(s)) = ∅, for all j ∈ N − {i}. If

∏
i(s) =

∏
j(s) for all

j ∈ N − {i}, then s is equilibrium according to this concept i�
∏
i(s) is equilibrium in the

standard GMCR (Sα′ , (A
S
α
′

i )i∈N , (�
S
α
′

i )i∈N ).

(2) (GGMR) State s ∈ Sα is equilibrium according to the GGMR concept i�:

(i) For every s1 ∈ R
+,S

α
′

i (
∏
i(s)), where

∏
i(s) ∈ Sα′ , there exists s2 ∈ U

S
α
′

H (s1), such

that
∏
i(s) �

S
α
′

i s2.

(ii) For every s1 ∈ R
+,S

α
′

j (
∏
j(s)), where

∏
j(s) ∈ Sα′ and j ∈ N − {i}, there exists

s2 ∈ U
S
α
′

H (s1), such that
∏
j(s) �

S
α
′

j s2.

Since
∏
i(s) =

∏
j(s) ∈ Sα′ , we now prove that U

S
α
′

H (s1) = R
S
α
′

H (s1) for all i ∈ N .

First, note that by Stationarity,
∏
j(
∏
i(s)) =

∏
j(
∏
j(s)) =

∏
j(s) ∈ Sα′ ∀j ∈ N − {i}.

Since Sα′′ is the state space containing
∏
j(s1), for a arbitrary DM j ∈ N − {i} where
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s1 ∈ R
+,S

α
′

i (
∏
i(s)), property (c) of the awareness function implies that Sα′′ ≥ Sα′ . On

the other hand, by Con�nedness, it follows that Sα′ ≥ Sα′′ . As Sα′ = Sα′′ then
∏
j(s1) =

r
S
α
′

S
α
′ (s1) = s1. Thus,

∏
j(s1) = s1 for all j ∈ N−{i}. Let now s2 ∈ R

S
α
′

j (q), if k ∈ N−{j} is

an DM moving from s2, then similarly we have that
∏
k(s2) = s2 ∈ Sα′ for all k ∈ N −{j},

and so on.

Thus, with similar reasoning to employee above, we can show that in every state, the

awareness levels of DMs moving in such state is the same and the states that they believe to

be the true state of con�ict is always in the state space Sα′ , which ensures that U
S
α
′

H (s1) =

R
S
α
′

H (s1) for all i ∈ N .

Thus, we have that GGMR stability for DM i can be rewritten as:

� For every s1 ∈ R
+,S

α
′

i (
∏
i(s)), where

∏
i(s) ∈ Sα′ , there exists s2 ∈ R

S
α
′

H (s1), such

that
∏
i(s) �

S
α
′

i s2.

Therefore,
∏
i(s) is GMR stable in the standard GMCR (Sα′ , (A

S
α
′

i )i∈N , (�
S
α
′

i )i∈N ) for

DM i.

Similarly, we conclude that
∏
i(s) is GMR stable in the standard GMCR

(Sα′ , (A
S
α
′

i )i∈N , (�
S
α
′

i )i∈N ) for every DM j ∈ N − {i}.

(3) (GSMR) State s ∈ Sα is equilibrium according to the GSMR concept i�:

(i) For every s1 ∈ R
+,S

α
′

i (
∏
i(s)), where

∏
i(s) ∈ Sα′ , there exists s2 ∈ U

S
α
′

H (s1), such

that
∏
i(s) �

S
α
′

i s2 and
∏
i(s) �

S
α
′

i s3 for all s3 ∈ R
S
α
′

i (s2).

(ii) For every s1 ∈ R
+,S

α
′

j (
∏
j(s)), where

∏
j(s) ∈ Sα′ and j ∈ N − {i}, there exists

s2 ∈ U
S
α
′

H (s1), such that
∏
j(s) �

S
α
′

j s2 and
∏
j(s) �

S
α
′

j s3 for all s3 ∈ R
S
α
′

j (s2).

Using a similar argument to that of part (2) of this theorem, we have that GSMR stability

for DM i can be rewritten as
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� For every s1 ∈ R
+,S

α
′

i (
∏
i(s)), where

∏
i(s) ∈ Sα′ , there exists s2 ∈ R

S
α
′

H (s1), such

that
∏
i(s) �

S
α
′

i s2 and
∏
i(s) �

S
α
′

i s3 for all s3 ∈ R
S
α
′

i (s2).

Therefore,
∏
i(s) is SMR stable in the standard GMCR (Sα′ , (A

S
α
′

i )i∈N , (�
S
α
′

i )i∈N ) for

DM i.

Similarly, we conclude that
∏
i(s) is SMR stable in the standard GMCR

(Sα′ , (A
S
α
′

i )i∈N , (�
S
α
′

i )i∈N ) for every DM j ∈ N − {i}.

(4) (GSEQ) State s ∈ Sα is equilibrium according to the GSEQ concept i�:

(i) For every s1 ∈ R
+,S

α
′

i (
∏
i(s)), where

∏
i(s) ∈ Sα′ , there exists s2 ∈ U

+,S
α
′

H (s1), such

that
∏
i(s) �

S
α
′

i s2.

(ii) For every s1 ∈ R
+,S

α
′

j (
∏
j(s)), where

∏
j(s) ∈ Sα′ and j ∈ N − {i}, there exists

s2 ∈ U
+,S

α
′

H (s1), such that
∏
j(s) �

S
α
′

j s2.

Using a similar argument to that of part (2) of this theorem, we have that GSEQ stability

for DM i can be rewritten as

� For all s1 ∈ R
+,S

α
′

i (
∏
i(s)), there exists s2 ∈ R

+,S
α
′

H (s1), such that
∏
i(s) �

S
α
′

i s2.

Therefore,
∏
i(s) is SEQ in the standard GMCR (Sα′ , (A

S
α
′

i )i∈N , (�
S
α
′

i )i∈N ) for DM i.

Similarly, we conclude that
∏
i(s) is SEQ stable in the standard GMCR

(Sα′ , (A
S
α
′

i )i∈N , (�
S
α
′

i )i∈N ) for DM j.

(5) (GSSEQ) State s ∈ Sα is equilibrium according to the GSSEQ concept i�:

(i) For every s1 ∈ R
+,S

α
′

i (
∏
i(s)), where

∏
i(s) ∈ Sα′ , there exists s2 ∈ U

+,S
α
′

H (s1), such

that
∏
i(s) �

S
α
′

i s2 and
∏
i(s) �

S
α
′

i s3 for all s3 ∈ R
S
α
′

i (s2).

(ii) For every s1 ∈ R
+,S

α
′

j (
∏
j(s)), where

∏
j(s) ∈ Sα′ and j ∈ N − {i}, there exists

s2 ∈ U
+,S

α
′

H (s1), such that
∏
j(s) �

S
α
′

j s2 and
∏
j(s) �

S
α
′

j s3 for all s3 ∈ R
S
α
′

j (s2).
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Using a similar argument to that of part (2) of this theorem, we have that GSSEQ stability

for DM i can be rewritten as

� For every s1 ∈ R
+,S

α
′

i (
∏
i(s)), where

∏
i(s) ∈ Sα′ , there exists s2 ∈ R

+,S
α
′

H (s1), such

that
∏
i(s) �

S
α
′

i s2 and
∏
i(s) �

S
α
′

i s3 for all s3 ∈ R
S
α
′

i (s2).

Therefore,
∏
i(s) is SSEQ stable in the standard GMCR (Sα′ , (A

S
α
′

i )i∈N , (�
S
α
′

i )i∈N ) for

DM i.

Similarly, we conclude that
∏
i(s) is SSEQ stable in the standard GMCR

(Sα′ , (A
S
α
′

i )i∈N , (�
S
α
′

i )i∈N ) for every DM j ∈ N − {i}.

Theorem 5.4.4 shows that the standard solution concepts for the standard GMCR are spe-

cial cases of the generalized solution concepts proposed here for the GMCR with interactive

unawareness with n-DMs.

Theorem 5.4.4. State s satis�es some stability notion in the GMCR Φ = (S, (Ai)i∈N , (�i

)i∈N ) for DM i i� it satis�es the corresponding generalized stability notion in the canonical

representation of Φ as a GMCR with interactive unawareness, denoted by Φ′.

Proof: In order to prove this theorem we consider individually each of the �ve usual stability

concepts in the GMCR presented in Section 2.2.2 and the corresponding generalized concepts in

the GMCR with interactive unawareness with n-DMs presented in Section 5.4.

(1) We prove that state s is Nash stable for DM i ∈ N in Φ i� it is GNash for DM i ∈ N

in Φ
′
. Indeed, state s is Nash stable for DM i ∈ N in Φ i� R+

i (s) = ∅. As we have that∏
i(s) = s for all s ∈ SA, then R+,SA

i (
∏
i(s)) = R+

i (s) = ∅, i. e., s is Nash stable in Φ i�

it is GNash stable in Φ
′
.

(2) We prove that state s is GMR stable for DM i ∈ N in Φ i� it is GGMR for DM i ∈ N

Φ
′
. Indeed, state s is GMR stable for DM i ∈ N in Φ i� for every s1 ∈ R+

i (s), there exists

s2 ∈ RN−{i}(s1) such that s �i s2. But as, in Φ
′
, we have that

∏
i(s) = s for all i ∈ N and
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s ∈ SA, implying that R+,SA
i (

∏
i(s)) = R+

i (s) and USAH (
∏
j(s)) = RH(s) for all s ∈ SA.

Thus, state s is GMR stable for DM i ∈ N in Φ i� for every s1 ∈ R+,SA
i (

∏
i(s)) there

exists s2 ∈ USAH (
∏
j(s1)), such that

∏
i(s) �

SA
i s2, which is equivalent to s being GGMR

stable for DM i in Φ′.

(3) We prove that state s is SMR stable for DM i ∈ N in Φ i� it is GSMR for DM i ∈ N

Φ
′
. Indeed, state s is SMR stable for DM i ∈ N in Φ i� for every s1 ∈ R+

i (s), there

exists s2 ∈ RN−{i}(s1) such that s �i s2 and s2 �i s3 for all s3 ∈ Ri(s2). But as, in Φ
′
,

we have that
∏
i(s) = s,

∏
j(s) = s for all s ∈ SA, implying that RSAi (

∏
i(s)) = Ri(s),

R+,SA
i (

∏
i(s)) = R+

i (s) and USAH (
∏
j(s)) = RH(s) for all s ∈ SA. Thus, state s is SMR

stable for DM i ∈ N in Φ i� for every s1 ∈ R+,SA
i (

∏
i(s)) there exists s2 ∈ U

SA
H (

∏
j(s1)),

such that
∏
i(s) �i s2, and

∏
i(s) �i s3 for all s3 ∈ R

SA(s2)
i , which is equivalent to s being

GSMR stable for DM i in Φ′.

(4) We prove that state s is SEQ stable for DM i ∈ N in Φ i� it is GSEQ for DM i ∈ N

Φ
′
. Indeed, state s is SEQ stable for DM i ∈ N in Φ i� for every s1 ∈ R+

i (s), there exists

s2 ∈ RN−{i}(s1) such that s �i s2. But as, in Φ
′
, we have that

∏
i(s) = s and

∏
j(s) = s

for all s ∈ SA, implying that R+,SA
i (

∏
i(s)) = R+

i (s) and U+,SA
H (

∏
j(s)) = R+

H(s) for all

s ∈ SA. Thus, state s is SEQ stable for DM i ∈ N in Φ i� for every s1 ∈ R+,SA
i (

∏
i(s))

there exists s2 ∈ U+,SA
H (

∏
j(s1)), such that

∏
i(s) �

SA
i s2, which is equivalent to s being

GSEQ stable for DM i in Φ′.

(5) We prove that state s is SSEQ stable for DM i ∈ N in Φ i� it is GSSEQ for DM i ∈ N

Φ
′
. Indeed, state s is SSEQ stable for DM i ∈ N in Φ i� for every s1 ∈ R+

i (s), there

exists s2 ∈ RN−{i}(s1) such that s �i s2 and s2 �i s3 for all s3 ∈ Ri(s2). But as, in Φ
′
,

we have that
∏
i(s) = s,

∏
j(s) = s for all s ∈ SA, implying that RSAi (

∏
i(s)) = Ri(s),

R+,SA
i (

∏
i(s)) = R+

i (s) and U+,SA
H (

∏
j(s)) = R+

H(s) for all s ∈ SA. Thus, state s is SSEQ

stable for DM i ∈ N in Φ i� for every s1 ∈ R+,SA
i (

∏
i(s)) there exists s2 ∈ U

+,SA
H (

∏
j(s1)),

such that
∏
i(s) �i s2 and

∏
i(s) �i s3 for all s3 ∈ R

SA(s2)
i , which is equivalent to s being

GSSEQ stable for DM i in Φ′.
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5.5 Application

In what follows, we provide an application that illustrates the usefulness of the model pro-

posed in this work.

Hypothetical Con�ict

Consider a hypothetical con�ict with two decision makers, Country 1 (C1) and Country 2

(C2). Suppose that C2 intends to invade C1. Admit that C1 to defend its territory can either

use a conventional weapon (DC) or a secret weapon (DS). On the other hand, C2 has only a

conventional weapon (AC) to attack. Suppose that C1 is aware of all options available in the

con�ict, while C2 is unaware of the secret weapon. Moreover, suppose that C2 can learn about

the secret weapon either if he attacks C1 and C1 uses it or if C1 decides to reveal that he has

such secret weapon. Finally, suppose that C2 has a successful attack i� C1 does not use DS.

Thus, the set of options available in this con�ict is A = {DC,DS,AC}. We need two state

spaces to represent such con�ict. The richer state space, where all options are available, and the

less expressible state space, where C2 is unaware of DS. The richer state space is described in

Table 5.1. Note that in the richer state space, the sates describe which options are taken by the

DMs and also what options they are aware of at those states. At state s3, C2 becomes aware

of DS because it attacks C1 and C1 uses the secret weapon. On the other hand, the states s7

to s11 represent the situations where C1 informs C2 that it has the option to defend itself with

the secret weapon even if it does not plan to use it, as it is the case in all these states except for

state s9.

From the point view of C2, if he is unaware of DS, then the state space that such country

considers possible is described in Table 5.2. Note that at all states in the less expressible state

space, DMs are unaware of DS.

Table 5.3 provides the reachable states and the preference ranking in the richer space of the

two countries involved in the con�ict, where higher numbers indicate more preferable states.
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Table 5.1: The Richer State Space

C1

1.DC Y Y N N N N Y Y N N N
2.DS N N Y Y N N N N Y N N
A1 A A A A A A A A A A A

C2

1.AC Y N Y N Y N Y N N Y N
A2 A−DS A−DS A A−DS A−DS A−DS A A A A A

State s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

Table 5.2: Less Expressible State Space

C1

1. DC Y Y N N
A1 A−DS A−DS A−DS A−DS

C2

1. AC Y N Y N
A2 A−DS A−DS A−DS A−DS

State s
′
1 s

′
2 s

′
3 s

′
4

Table 5.3: Reachable states and preference ranking - richer space
State Number Country 1 Country 2

R1 p1 R2 p2
s1 s3, s5, s7, s10 4 s2 8

s2 s4, s6, s8, s9, s11 9 s1 3

s3 s7, s10 5 s9 1

s4 s2, s6, s8, s9, s11 8 s3 4

s5 s1, s3, s7, s10 2 s6 10

s6 s2, s4, s8, s9, s11 11 s5 2

s7 s3, s10 3 s8 9

s8 s9, s11 7 s7 6

s9 s8, s11 6 s3 7

s10 s3, s7 1 s11 11

s11 s8, s9 10 s10 5

Table 5.4 provides the reachable states and preference ranking in the less expressible space of

the two countries involved in the con�ict, where higher numbers indicate more preferable states.

Figure 5.3 illustrates the awareness function of Country C2, where self-loops are omitted.
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Table 5.4: Reachable states and preference ranking - less expressible space
State Number Country 1 Country 2

R1 p1 R2 p2
s′1 s′3 2 s′2 3

s′2 s′4 3 s′1 2

s′3 s′1 1 s′4 4

s′4 s′2 4 s′3 1

Figure 5.3: States spaces and the Awareness function of C2 (Π2)(self loops are omitted).

Table 5.5: Stability Analysis - richer space
s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

GNash C2 C1 C2 C1 C2 C2 C2 C1

GGMR C2 C1 C1 C1 C2 C1 C2 C1, C2 C1, C2 C2 C1, C2

GSMR C2 C1 C1 C1 C2 C1 C2 C1 C1, C2 C2 C1

GSEQ C2 C1 C1 C1 C2 C1 C2 C1, C2 C1, C2 C2 C1, C2

GSSEQ C2 C1 C1 C1 C2 C1 C2 C1 C1, C2 C2 C1

Since Country C1 is always aware of all options available, it follows that
∏

1(s) = s, ∀s ∈ Σ.

Table 5.5 summarizes for which country a particular state in the richer state space satis�es

each of the generalized stability de�nitions proposed for the GMCR with interactive unawareness,

while Table 5.6 does the same for the less expressible state space.

Note that s9 is the state in the richer state space that is equilibrium according to a greater

number of generalized stability notions and represents the situation where C1 tells C2 about DS,

plan to use DS, if attacked, and C2 does not attack.

On the other hand, in the less expressible state space, which represents the con�ict from
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Table 5.6: Stability Analysis - less expressible space
s′1 s′2 s′3 s′4

GNash C1, C2 C2 C1

GGMR C1, C2 C1 C2 C1

GSMR C1, C2 C1 C2 C1

GSEQ C1, C2 C1 C2 C1

GSSEQ C1, C2 C1 C2 C1

the viewpoint of an unaware C2, he falsely believes that s′1 is an equilibrium according to all

generalized notions of stability. Such state represents a situation where C2 attacks and C1 defends

himself using DC.

5.6 Conclusion

In this chapter, we propose a modi�cation in the GMCR, for con�icts with two and n-DMs,

in order to allow the representation of con�icts where DMs may be unaware of some options

available for them or for their opponents in the con�ict. We de�ne the model adapting ideas

from Heifetz et al. [54] to the GMCR setting. This model is more �exible, in the extent that

it does not require that all DMs have the same awareness level about the options available in

the con�ict. We propose �ve notions of stability in the GMCR with interactive unawareness,

providing results that relate such notions and also showed that standard solution concepts for

the GMCR are special cases of the notions proposed here where no lack of awareness is presented.



CHAPTER 6

Generalized Metarationalities for n-DM Con�icts Revisited

Abstract

In this chapter, we present an alternative de�nition for the generalized metarational sta-

bility concept for con�icts with n-decision makers (DMs) in the context of the graph model

for con�ict resolution. Our motivation to present this proposal lies on the fact that unlike the

original de�nition of generalized metarationality for n-DMs, our de�nition coincides with the

de�nition of generalized metarationality in the particular case where the con�ict has only two

DMs. Moreover, this work points out problems in some results that relate the concept of gener-

alized metarationality for n-DMs with other solution concepts in the GMCR and analyzes which

properties are satis�ed by the proposed alternative de�nition.

6.1 Introduction

In [19] and [14], a new solution concept, called generalized metarationality, is proposed in the

GMCR for two and n-DMs, respectively. The importance of this concept lies on the fact that,

for con�icts with 2 DMs, it generalizes some common concepts, such as Nash stability, GMR,

SMR and SEQ.

This concept takes into account variable horizons for the focal DM and is a �exible tool in

the stability analysis insofar as it takes into account various movements of reaction and counter-

108
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reaction of DMs involved in the con�ict. Thus, the understanding of the possible extensions of

such solution concept to con�icts with n-DMs is important.

In this chapter, we show that the concept of generalized metarationality for n-DMs proposed

in [14] is not a generalization of the concept proposed in [19], for the particular case where n = 2,

which led us to seek an alternative de�nition for generalized metarationality that coincides with

the de�nition proposed earlier by [19] in the case n = 2. Moreover, we show that some of the

results obtained in [14] for con�icts with n-DMs relating generalized metarationality and other

solution concepts are not valid. In particular, there is a problem with the result that SMR is

equivalent to a particular case of generalized metarationality for n-DMs, proposed in [14]. Unlike

to the original de�nition, our alternative de�nition captures the concept of SMR as a special

case.

This chapter is organized as follows. In Section 6.2, we recall the de�nitions of the general-

ized metarationality concept and three problems involving this concept for con�icts with n-DMs,

proposed in [14], are pointed out. In Section 6.3, an alternative de�nition of generalized meta-

rationality concept for n-DM con�icts is presented. In Section 6.4, a study of the properties of

this new solution concept and of the relationship with other existing solution concepts is made,

and �nally, in Section 6.5, we �nish the article with the main conclusions found.

6.2 Generalized Metarationality

Similarly to the concept of strategy in an extensive form game, Zeng et al. [19] de�ne the

notion of policy in GMCR as a function that determines what each DM does in every possible

state of the con�ict. Formally, a policy of DM i ∈ N , denoted by Pi, is a function Pi : S → S

such that Pi(s) ∈ Ri(s) ∪ {s}. Thus, for example, if DM i is the �rst to move from the initial

state s0, then according to his or her policy, Pi, the con�ict is taken to state s1 = Pi(s0). After

such initial move made by DM i, if DM j ∈ N − {i} is the second one to move in the con�ict,

then the con�ict is taken to state s2 = Pj(Pi(s0)), and so on. A policy of DM i ∈ N is said to

be credible, denoted by Pci , if it only allows DM i to move to states more preferable than the

current state, i.e., Pci (s) ∈ R+
i (s) ∪ {s}.
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Given an initial state s0, a set of policies, Pi, i ∈ N , and a sequence of DMs I = (i1, i2, i3, . . .)

such that ik 6= ik+1, k = 1, 2, . . ., we have that the sequence of states that the con�ict must go

through if it starts in state s0, the DMs move according to the order in I using policies Pi's, is

the sequence (s0, Pi1(s0), Pi2(Pi1(s0)), . . .). Whenever some DM stays in some state, the con�ict

terminates at that state. In order to comprehend the notion of generalized metarationality, an

analysis of the possible alternate sequences of states and DMs that can arise in a con�ict is

necessary. Such alternating sequence of states and DMs is called a sequence of moves and is

formally de�ned next.

De�nition 6.2.1. Given a set of policies, Pi, i ∈ N , (Pi)i∈N -based sequence of moves is an

alternate list of states and DMs such that:

(1) Every sequence of moves starts in some state.

(2) Every �nite sequence of moves ends in some state.

(3) If the triplet (s, i, s1) appears in some part of the sequence of moves, then s1 = Pi(s).

(4) There is no triplet of the form (i, s1, i) in any part of any sequence of moves.

(5) A triplet of the form (s, i, s) can only appear at the end of a sequence of moves, which, in

this case, is called a terminated sequence.

(6) Every in�nite sequence of moves is also called terminated.

In other words, De�nition 6.2.1 establishes that, in a sequence of moves, the DMs always

move from one state to another state in accordance with pre-established policies. Moreover, it

is not permitted to any DM to move twice consecutively in any sequence of moves and if some

DM stays in a given state the sequence ends at that state.

A particular DM i, while examining the possibility of moving away from the current state

s, can consider all possible sequences of states that can arise given a particular set of policies,

Pj , j ∈ N − {i}, for his or her opponents, and that DM i always has the option of choosing any
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reachable state while moving, without the restriction to use any policy, Pi. Thus, we need the

following de�nition:

De�nition 6.2.2. Given a set of policies, Pj, j ∈ N −{i}, (Pj)j∈N−{i}-based sequence of moves

for DM i is an alternate list of states and DMs such that:

(1) Every sequence of moves for DM i starts in some state and has i as its second element.

(2) Every �nite sequence of moves for DM i ends in some state.

(3) If the triplet (s, i, s1) appears in some part of the sequence of moves for DM i, then s1 ∈

Ri(s).

(4) If the triplet (s, j, s1), j 6= i, appears in some part of the sequence of moves for DM i, then

s1 = Pj(s).

(5) There is no triplet of the form (j, s1, j), j ∈ N , in any part of any sequence of moves for

DM i.

(6) A triplet of the form (s, j, s), j ∈ N , can only appear at the end of a sequence of moves for

DM i, which, in this case, is called a terminated sequence.

(7) Every in�nite sequence of moves for DM i is also called terminated.

Similarly, given a set of credible policies, P cj , j 6= i, a credible sequence moves for DM i

based on P cj , j 6= i, can be de�ned by replacing Pj and Ri by P cj and R+
i , respectively, in

De�nition 6.2.2.

The result of a sequence of moves (for DM i) is given by the �nal state if the sequence is

�nite, or by the �rst state s∗ that repeats for the �rst time followed by the same DM i∗, i.e., s∗

is the �rst state from which the con�ict repeats itself in in�nite cycles (the fact that N and S

are �nite guarantee the existence of such cycles in every in�nite sequence of moves).

The length or horizon of a sequence of moves is given by the number of times that states

appear in the sequence less 1. A sequence of moves for DM i is said to be of r rounds if DM i
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appears r times in the sequence. A sequence of moves of r rounds for DM i is called an i-sequence

of r rounds if it ends with the last movement made by DM i, i.e., it ends with the triplet (s1, i, s2)

for some s1, s2 ∈ S, and is called an ī-sequence of r rounds, otherwise.

Note that, even with the same �xed policies, di�erent sequences of moves that di�er from

one another according to the order in which the DMs move in the sequence can arise. In order to

�x a certain order of DMs' moves, the notion of a metarational tree is given in De�nition 6.2.3.

Such notion is used in the alternative generalized metarational stability de�nition proposed in

this paper.

De�nition 6.2.3. Given a set of policies Pj, j ∈ N − {i}, a metarational tree, Ari (s), based on

Pj, j ∈ N − {i}, for DM i from state s with r rounds is a set of all possible sequences of moves

based on Pj, j 6= i, for DM i starting in s such that:

(1) If (s, i, ..., sn) is not a terminated sequence in the tree, then there is a unique DM j such

that (s, i, ..., sn, j, sn+1) is the initial part of some sequence of the tree.

(2) If (s, i, ..., sn) is a terminated sequence in the tree, then there is no other sequence in the

tree which contain (s, i, ..., sn) as its �rst part.

(3) No sequence of the tree has the DM i appearing more than r times.

In other words, policies, Pj , j ∈ N −{i}, determine how other DMs move in the states in the

metarational tree for DM i and the tree branches out every time DM i moves considering that

he or she can move to any state in Ri(s1) ∪ {s1}, while moving at an arbitrary state s1 in the

tree. Condition (1) establishes that in a metarational tree there is no doubt about who moves

in every state of some sequence of movements for DM i, i.e., each tree determines who moves

in each state every moment. Condition (2) states that once any DM stays at a given state, the

con�ict ends at that state. Finally, Condition (3) establishes that no sequence of moves for DM

i can have more than r rounds in a metarational tree for DM i with r rounds.

A metarational tree for DM i is said to be credible if all of its sequences of moves for DM i

are credible.
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Note that there are several metarational trees based on the same policies Pj , j 6= i, for DM

i from s which di�er according to the order in which the DMs move in the states. In the case

n = 2, this tree is unique because DMs alternate moves and there is no doubt about the order

in which DMs move.

In case of con�icts with more than two DMs, it is also necessary to de�ne a particular type

of metarational tree for DM i which guarantees that all sequences end in states to which DM i

moved, i.e., guarantees that DM i always has the last word.

De�nition 6.2.4. Given a set of policies Pj, j ∈ N − {i}, a metarational tree, based on Pj,

j 6= i, for DM i from state s with r rounds is said to be regular if

(1) There is no sequence in the tree that contains a part of the form (j, sn, k, sn), in that j and

k are di�erent from i.

(2) There is no in�nite sequence in the tree.

Note that with the required conditions for regularity, a sequence may only be terminated by

DM i or in the �rst movement of a DM j 6= i, after DM i's move, which means that DM j stays

in the state for which DM i moved to. Although this condition does not appear explicitly in [14],

it is necessary for the equivalence of some solution concepts, as discussed below. Note that, in

the case n = 2, every metarational tree with r rounds is regular.

We are now able to review the generalized metarational stability de�nitions for con�icts with

2-DMs and n-DMs, proposed in Zeng et al. [19] and [14], respectively. In the case of con�icts

with 2 DMs, there are two notions of stability, one that makes use of a metarational tree and

another that makes use of a credible metarational tree.

De�nition 6.2.5 ([19]). A state s is (resp., credibly) metarationally stable with horizon h (MRh)

(resp., CMRh) for DM i, denoted by s ∈ SMRh
i (resp., s ∈ SCMRh

i ), if there is a (resp., credible)

policy Pj (resp., P
c
j ) of DM j with, j 6= i and Pj(s) = s (resp., P cj (s) = s), such that the result of

every sequence of length h and every terminated sequence of length smaller than h in the (resp.,

credible1) metarational tree for DM i is not preferable to s by DM i.

1We believe that this is the correct de�nition of CMRh stable states intended by Zeng et al. [19] according to
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In con�icts with n-DMs, one not only considers whether sequences are credible or not, but

also analyzes if the last move is from DM i or from his or her opponents. Therefore, we have the

following de�nitions:

De�nition 6.2.6 ([14]). A state s is i-metarationally (resp., i-credibly metarationally) stable

with r rounds for DM i, denoted by s ∈ SMRr
i (resp., s ∈ SCMRr

i ), if for every s1 ∈ Ri(s)

(resp., s1 ∈ R+
i (s)), there is a set of (resp., credible) policies Pj (resp., P cj ), for every DM

j, j ∈ N − {i}, and an (resp., a credible) i-sequence, based on Pj (resp., P
c
j ), j 6= i, for DM i

starting with (s, i, s1) of r rounds or less such that DM i does not prefer the result of this sequence

to state s.

De�nition 6.2.7 ([14]). A state s is ī-metarationally (resp., ī-credibly metarationally) stable

with r rounds for DM i, denoted by s ∈ SMRr
i (resp., s ∈ SCMRr

i ), if for every s1 ∈ Ri(s)

(resp., s1 ∈ R+
i (s)), there is a set of (resp., credible) policies Pj (resp., P cj ), for every DM

j, j ∈ N − {i}, and an (resp., a credible) ī-sequence, based on Pj (resp., P
c
j ), j 6= i, for DM i

starting with (s, i, s1) of r rounds or less such that DM i does not prefer the result of this sequence

to state s.

In [14], two other equilibrium concepts for con�icts with n-DMs called Policy Equilibrium

and Credible Policy Equilibrium were proposed. These concepts determine con�ict equilibria

in terms of a set of (credible) policies of the DMs involved in the con�ict. Such de�nitions are

formalized as follows:

De�nition 6.2.8 (Policy Equilibrium). The (resp., credible) policies P1, P2, . . . , Pn (resp., P
c
1 , P

c
2 ,

. . . , P cn) form an equilibrium in (resp., credible) policies with respect to the current state s if the

following occurs:

(i) Pi(s) = s (resp., P ci (s) = s), for all i = 1, 2, . . . , n;

(ii) For all i ∈ N and (resp., credible) policies P ∗i (resp., P c,∗i ) such that P ∗i (s) 6= s (resp.,

P c,∗i (s) 6= s), there is a (resp., credible) sequence of moves based on the policies P1, P2, . . . , Pi−1,

what is illustrated in Figure 7 of [19], even though this is not what is written in the formal de�nition CMRh
in [19].
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P ∗i , Pi+1, . . . , Pn (resp., P c1 , P
c
2 , . . . , P

c
i−1, P

c,∗
i , P ci+1, . . . , P

c
n) starting with (s, i)2

such that the result of this sequence is not preferable to state s by DM i.

The set of all possible states for which there are (resp., credible) policies of DMs that form an

equilibrium in (resp., credible) policies with respect to them is denoted by SPSS (resp., SPSS
c
).

6.2.1 Clarifying some results

Three problems that were observed in some results in [14] are pointed out here. The �rst one

refers to the fact that one of the motivations highlighted in [14] was to generalize the de�nition

of MRh (CMRh) stability proposed in [19], to con�icts with two or more DMs. However, we

show by means of a counter-example that the de�nition proposed in [14] in case where n = 2 is

not equivalent to the de�nition in [19]. The second problem refers to a result that establishes an

equivalence between MR2 and SMR stable states. We show, by means of a counter-example,

that such result is false if we consider the de�nition proposed in [14]. The third problem refers

to the fact that, in [14], there is a theorem that establishes that SMRr ⊆ SPSS . However, also

by means of a counter-example, we illustrate this claim is not valid.

First Problem

[14] intended to de�ne a generalization of the concept of MRh stable states for con�icts

with n-DMs. They claim that De�nitions 6.2.6 and 6.2.7 are generalizations of De�nition 6.2.5

to con�icts with n-DMs. In order to note that this is not true, we must �rst observe that

in case n = 2, an i-sequence (resp., ī-sequence) with r rounds has length h = 2r − 1 (resp.,

h = 2r). Therefore, if De�nitions 6.2.6 and 6.2.7 were generalizations of De�nition 6.2.5 to

con�icts with n-DMs, then the following equalities would have to be true: SMRr = SMRh=2r−1

and SMRr = SMRh=2r .

Example 6.2.1 shows that SMRr=2 6= SMRh=3 and SMRr=2 6= SMRh=4 .

2Although in the original de�nition, it is not explicit that DM i must be the one who moves at s, we believe
that is what the authors intended to de�ne, otherwise every state would trivially satisfy the de�nition, since if
another DM moves at s, he or she will stay at s and the sequence will end at s.
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Example 6.2.1. Consider a hypothetical con�ict with two DMs, i and j, and seven states, s,

s1, s2, s3, s4, s5 and s6. We show that s is MRr=2 but not MRh=4 stable for DM i. Admit

that DMs i and j's reachability and preferences relations are, respectively, given by Ri(s) = s1,

Ri(s2) = {s3, s4}, s5 �i s3 �i s1 �i s �i s4 �i s6 �i s2 and Rj(s1) = {s2}, Rj(s3) = {s5},

Rj(s4) = {s6} and s2 �j s �j s1 �j s6,�j s4 �j s5 �j s3.

This con�ict, in the graph form, is illustrated in Figure 6.1.

Figure 6.1: Con�ict in the graph form: a) DM i and b) DM j.

Figure 6.2 illustrates the metarational tree for DM i based on Pj, where Pj is the policy where

DM j always moves away from the current state. There are other metarational trees for DM i,

where DM j could stay in some of the states s1, s3 or s4.

Figure 6.2: Metarational tree for DM i based on Pj , where Pj(s1) = s2, Pj(s3) = s5 and
Pj(s4) = s6.

The sequence (s, i, s1, j, s2, i, s4) based on the policy Pj(s1) = s2 is enough to ensure that state

s is MRr=2 stable for DM i. However, s is not MRh=3 stable for DM i, because there is no
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policy Pj such that Pj(s) = s and the result of every sequence of length 3 and of every terminated

sequence with length smaller than 3 is not preferable to s by DM i. In order to see this, note that

if Pj(s1) = s1, then the terminated sequence (s, i, s1, j, s1) has result s1 which is preferable to s

by DM i, and if Pj(s1) = s2, then the sequence of length 3 (s, i, s1, j, s2, i, s3) results in s3 which

is also preferable to s by DM i.

Moreover, the sequence (s, i, s1, j, s2, i, s4, j, s6) based on the policy Pj(s1) = s2, Pj(s4) = s6

is enough to ensure that state s is MRr=2 stable for DM i. However, s is not MRh=4 stable for

DM i, because there is no policy Pj such that Pj(s) = s and the result of every sequence of length

4 and every terminated sequence of length smaller than 4 is not preferable to s by DM i. Note

that analyzing all possibilities for Pj, there exists a sequence that ends in s1, s3 or s5 and all of

these states are preferable to state s by DM i. Thus s is not MRh=4 stable for DM i.

Since the sequences in Example 6.2.1 are all credible, these same examples illustrate that

SCMRr=2 6= SCMRh=3 and SCMRr=2 6= SCMRh=4 , respectively.

It is worth pointing out that the main reason that makes these equivalences invalid is that

while in the de�nition of MRh (resp., CMRh) stability the result of every sequence of length

h and every terminated sequence of length smaller than h is required not to be preferable to s

by DM i, in the de�nitions of MRr and MRr (resp., CMRr and CMRr) stabilities, it is only

required the existence of an i-sequence and of an ī-sequence, respectively, whose result is not

preferable to s by DM i.

Second Problem

The third part of Theorem 1 in [14] states that there is an equivalence between the notion of

MRr=2 and SMR stability. However, this result is not true if we consider De�nition 6.2.6. For

example, state s in Example 6.2.1 is MRr=2 but not SMR stable for DM i.

It is worth pointing out that the main reason that makes the equivalence between SMR and

MRr=2 invalid is that while in the de�nition of SMR stability for each unilateral improvement

from s by DM i, there exists a legal sequence of unilateral moves from the opponents of DM i

leading the con�ict to a state s2 that is not preferable to s by DM i and from such state s2, the
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result of every unilateral move from DM i is also not preferable to s by DM i, in the de�nition of

MRr=2 stability for each unilateral improvement from s by DM i, there exists a legal sequence

of unilateral moves from the opponents of DM i leading the con�ict to a state s2 that is not

preferable to s by DM i and from such state s2, there exists a unilateral move from DM i whose

result is also not preferable to s by DM i.

Third Problem

Theorem 3 in [14] states that SMRr ⊆ SPSS , for all r ≥ 1. Example 6.2.2 illustrates that

this claim is not valid.

Example 6.2.2. Consider a hypothetical con�ict with three DMs, i, j and k, and state space

given by S = {s, s1, s2, s3}. Suppose that Ri(s) = Rk(s) = {s1}, Rj(s) = Rj(s2) = Rj(s3) = ∅,

Ri(t) = Rk(t) = ∅, for all t ∈ {s1, s2, s3} and Rj(s1) = {s2, s3}. Consider also that DMs

i, j and k's preference relations are given by s3 �i s1 �i s �i s2, s3 �j s2 �j s1 �j s, and

s2 �k s1 �k s �k s3. Figure 6.3 illustrates that con�ict.

Figure 6.3: Con�ict in the graph form: a) DM i; b) DM j and c) DM k.

Let us prove that s is not a policy equilibrium, but it is an equilibrium according to MR2. In

fact, note that in this example DM j has three possible policies that di�er in what he or she does

in state s1. Such policies are (a) P 1
j (s1) = s1, (b) P

2
j (s1) = s2 or (c) P 3

j (s1) = s3. Note also

that DM i (resp., k) has only two possible policies that di�er in what he or she does in state s:

(a) P 1
i (s) = s (resp., P 1

k (s) = s) and (b) P 2
i (s) = s1 (resp., P 2

k (s) = s1).
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Part (a) of Figure 6.4 illustrates a metarational tree for DM i based on P 2
j and an arbitrary

Pk. On part (b) of Figure 6.4, we have a metarational tree for DM k based on P 3
j and an arbitrary

Pi. There are other metarational trees for DMs i and k that di�er in the other in which DMs

move and also in the policies used by the DMs.

Figure 6.4: (a) Metarational tree for DM i based on P 2
j and an arbitrary Pk and (b) Metarational

tree for DM k based on P 3
j and an arbitrary Pi.

Then, by de�nition of policy equilibrium, we have to verify if some DM has an incentive to

deviate from using a policy that stays in state s. Let us �rst consider the case where DM j uses

policy P 1
j . In this case, both DMs i and k have an incentive to use their policies P 2

i and P 2
k ,

respectively, because it always results in sequences whose �nal state is s1 that is preferable to s

for both DMs i and k. If DM j uses policy P 2
j (resp., P 3

j ), then DM k (resp., DM i) has an

incentive to use policy P 2
k (resp., P 2

i ), which results either in state s1 or in state s2 (resp., s3)

which are preferable to state s by DM k (resp., i). Therefore, s /∈ SPSS.

On the other hand, s is MR1 and consequently MR2 stable for DM j and MR2 stable for

DMs i and k. In order to verify that s is MR2 stable for DM i (resp., k), consider the policy P 2
j

(resp., P 3
j ) of DM j and the metarational tree illustrated in Part (b) (resp. (b)) of Figure 6.4,

which results in state s2 (resp., s3), which is not preferable to s by DM i (resp., k).

Note that as every possible policy in Example 6.2.2 is credible, this same example illustrates

that SCMR2 is not a subset of SPSS
c
.

It is worth pointing out that the main reason that makes the inclusion SMRr ⊆ SPSS invalid

is that while analyzing MRr stability for di�erent DMs, there may be no relation about the



6.3. A NEW GENERALIZED METARATIONALITY 120

policies being used by their opponents. On the other hand, in order to be a policy equilibrium,

we need to �x a whole set of policies for all DMs such that none of them has incentive for

deviating from such �xed policy.

6.3 A New Generalized Metarationality

Motivated by the problems found in the de�nition of MRr and MRr stable states proposed

in [14], we present the following alternative de�nitions of generalized metarational stable states for

con�icts with n DMs, which solves the �rst and the second problems pointed out in Section 6.2.1.

De�nition 6.3.1 (Alternatives to MRr and CMRr). A state s ∈ S is i-metarationally (resp.,

i-credibly metarationally) stable with r rounds for DM i, denoted by s ∈ S
MRnewr
i (resp., s ∈

S
CMRnewr
i ), if there is a set of (resp., credible) policies Pj (resp., P

c
j ), for all j ∈ N − {i}, and a

(resp., credible) regular metarational tree, based on Pj (resp., P
c
j ), j 6= i, of r rounds such

that the result of every (resp., credible) i-sequence of r rounds and of every (resp., credible)

terminated sequence with less than r rounds is not preferable to s by DM i.

Intuitively, in a MRr (resp., CMRr) stable state for DM i, there exists a set of (resp.

credible) policies for the opponents of DM i such that there is no way that he can move (resp.

using unilateral improvements) at most r times and �nish in a more preferred state, where

opponents can respond to at most r− 1 moves of DM i and can stay only at states to which DM

i moved to.

De�nition 6.3.2 (Alternatives to MRr and CMRr). A state s ∈ S is ī-metarationally (resp.,

i-credibly metarationally) stable with r rounds for DM i, denoted by s ∈ S
MR

new
r

i (resp., s ∈

S
CMR

new
r

i ), if there is a set of (resp., credible) policies Pj (resp., P
c
j ), for all j ∈ N − {i}, and

a (resp., credible) metarational tree, based on Pj (resp., P cj ), j 6= i, of r rounds such that

the result of every (resp., credible) ī-sequence of r rounds, which is not an initial part of

another (resp., credible) ī-sequence of r rounds, of every (resp., credible) terminated i-

sequence of r rounds and every (resp., credible) terminated sequence with less than r rounds is

not preferable to s by DM i.
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Intuitively, in a MRr (resp., CMRr) stable state for DM i, there exists a set of (resp.

credible) policies for the opponents of DM i such that there is no way that he can move (resp.

using unilateral improvements) at most r times and �nish in a more preferred state, where

opponents can respond to at most r moves of DM i.

6.4 Properties of these new Solution Concepts

In this section, in order to investigate which results stated in [14] remain valid for our al-

ternative de�nitions, we analyze the relationship between the alternative de�nitions proposed

in Section 6.3 and the solution concepts of Nash stability, GMR, SMR, SEQ, SSEQ and

PSS. We also obtain some results involving the various alternative solution concepts proposed

in Section 6.3.

Theorem 6.4.1 states that De�nitions 6.3.1 and 6.3.2 are generalizations of De�nition 6.2.5

for con�icts with n-DMs.

Theorem 6.4.1. If n = 2, then: (a) S
MRh=2r−1

i = S
MRnewr
i and (b) SMRh=2r

i = S
MR

new
r

i .

Proof: Let us consider part (a) �rst. If n = 2, then note that the set of all sequences of length

h = 2r−1 is equal to the set of all i-sequences with r rounds. Furthermore, the set of terminated

sequences with length smaller than 2r − 1 is equal to the set of all terminated sequences with

less than r rounds. Thus, if s is MRh=2r−1 stable for DM i in a con�ict with two DMs, i and

j, then there exists a policy Pj of DM j with Pj(s) = s such that the result of every sequence

of length equal to 2r− 1 and every terminated sequence with length smaller than 2r− 1, i.e., of

every i-sequence with r rounds and of every terminated sequence with less than r rounds is not

preferable to state s by DM i. Thus, s is also MRnewr stable for DM i.

In order to prove the other direction of part (a), consider that state s is MRnewr stable for

DM i. Thus, there exists a policy Pj of DM j and a regular metarational tree of r rounds such

that the result of every i-sequence with r rounds or every terminated sequence with less than

r rounds is not preferable to s by DM i. De�ne the policy P#
j such that P#

j (t) = t if s �i t

and P#
j (t) = Pj(t), otherwise. Thus, it follows that P#

j (s) = s. By de�nition of P#
j , if some
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sequence of moves is in the metarational tree based on P#
j of r rounds for DM i that starts in

state s but not in the metarational tree based on Pj of r rounds for DM i that starts in state

s, then the result of this sequence is not preferable to s by DM i. Moreover, since the result of

every sequence of length 2r− 1 or terminated sequence of length smaller than 2r− 1 that are in

the metarational tree based on Pj is not preferable to s by DM i, we have that s is MRh=2r−1

stable for DM i.

The proof of part (b) is similar and is omitted.

Note that with an argument similar to the one used in the proof of Theorem 6.4.1, only

changing the metarational tree by a credible metarational tree for DM i and DM j policy by

a credible policy, we can get that if n = 2, then S
CMRh=2r−1

i = S
CMRnewr
i and SCMRh=2r

i =

S
CMR

new
r

i , i.e., CMRnewr and CMR
new
r are generalizations for con�icts with n-DMs of the notion

of CMRh stability for h odd and even, respectively.

Theorem 6.4.2 establishes an equivalence between the set of MRnew1 (resp., CMRnew1 ) stable

states with the set of Nash stable states.

Theorem 6.4.2. A state s is MRnew1 (resp., CMRnew1 ) stable for DM i i� it is Nash stable for

DM i.

Proof: The proof of this result follows a similar idea of the proof of the corresponding result

obtained in [14]. Thus, we omit it here.

Theorem 6.4.3 establishes an equivalence between the set of MR
new
1 stable states with the

set of GMR stable states.

Theorem 6.4.3. A state s is MR
new
1 stable for DM i i� it is GMR stable for DM i.

Proof: If state s is MR
new
1 stable for DM i, then there exists a set of policies Pj , j ∈ N − {i},

and a metarational tree of 1 round, based on Pj , j ∈ N − {i}, such that the result of every

ī-sequence with 1 round, which is not an initial part of another ī-sequence in the metarational

tree, is not preferable to s by DM i. As R+
i (s) ⊆ Ri(s), then for each state s1 ∈ R+

i (s), there

exists a state s2 ∈ RN−{i}(s1), determined by the policies of DMs j, j ∈ N − {i}, and the

metarational tree, such that s �i s2. Therefore, s is GMR stable for DM i.
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Suppose now that state s is GMR stable for DM i. Let R+
i (s) = {s1, s2, . . . , sW }. Thus, for

each sw, w = 1, 2, . . . ,W , there exists s′w ∈ RN−i(sw) such that s′w is not preferable to s by DM

i. Therefore, there is a legal sequence of moves of DMs j, j ∈ N − {i}, which takes the con�ict

from state sw to state s′w, for w = 1, 2, . . . ,W . Consider the shortest sequence of legal moves of

DMs j, j ∈ N − {i}, denoted by swx , that takes the con�ict from sw to some state s′w such that

s′w is not preferable to s by DM i. In swx , there is no cycles and, furthermore, all states appearing

in swx before s′w must be preferable to s by DM i, otherwise swx would not be a sequence with the

shortest length that takes the con�ict from sw to some state that is not preferable to s by DM

i. De�ne DMs j, j ∈ N − {i}, policies as follows:

(i) For all u ∈ S and DM j, j ∈ N − {i}, if the pair (u, j) does not appear in any of the

sequences swx , for w = 1, 2, . . . ,W , then Pj(u) = u;

(ii) Let w∗ be the smallest w value such that the pair (u, j) appear in the sequence swx . Since

sw
∗

x does not contain cycles, then there is only one state t ∈ S such that (u, j, t) is a triplet

in sw
∗

x , then de�ne Pj(u) = t.

From the above policy de�nition, we have that Pj(u) = u for every u ∈ S and DM j 6= i such

that s �i u, since the pair (u, j) does not appear in any of the sequences swx . Thus, consider

the metarational tree based on Pj , j 6= i, consisting of sequences of the form (and their initial

parts) (s, i, swx ), for w = 1, 2, . . . ,W , together with sequences of the form (and their initial parts)

(s, i, u, j, u), for every u ∈ Ri(s) ∩ (R+
i (s))c and some DM j, j ∈ N − {i}. Then, there is a

metarational tree of 1 round based on Pj , j 6= i, for DM i starting at state s such that the result

of every ī-sequence of 1 round, which is not an initial part of another ī-sequence of 1 round in

the metarational tree, and every terminated i-sequence of 1 round is not preferable s by DM i.

Therefore, s is MR
new
1 stable for DM i.

Theorem 6.4.4 establishes an equivalence between the set of MRnew2 stable states and the set

of SMR stable states.

Theorem 6.4.4. A state s is MRnew2 stable for DM i i� it is SMR stable for DM i.
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Proof: The proof of this result follows a similar idea as that of the proof of the Theorem 6.4.3

and is left to the Appendix.

Theorem 6.4.5 establishes an equivalence between the set of CMR
new
1 stable states and the

set of SEQ stable states.

Theorem 6.4.5. A state s is CMR
new
1 stable for DM i i� it is SEQ stable for DM i.

Proof: It is similar to the proof of Theorem 6.4.3, only changing the metarational tree by a

credible metarational tree for DM i and DMs j, j 6= i, policies by credible policies.

Next, we recall the de�nition of a negative transitive binary relation [43], which will be useful

for the comprehension of the result of the following theorem.

De�nition 6.4.1. Let X be a set of outcomes and let B an binary relation on X. B is a negative

transitive relation if ¬xBy and ¬yBz implies ¬xBz, where the notation ¬xBy means (x, y) /∈ B.

Theorem 6.4.6 establishes a relationship between the concepts of SSEQ and CMRnew2 sta-

bility.

Theorem 6.4.6. If a state s is SSEQ stable for DM i, then s is CMRnew2 stable for DM i. The

reciprocal is true if DM i's preference is negatively transitive.

Proof: The proof that SSEQ implies CMRnew2 stability is similar to the proof that SMR

implies MRnew2 stability and is omitted.

For the reciprocal, suppose that �i is negatively transitive. Thus, we have that �i is transi-

tive. Suppose s is CMRnew2 stable for DM i, then there is a set of credible policies P cj , j 6= i, and

a credible regular metarational tree with two rounds based on P cj such that the result of every

credible i-sequence with two rounds and of every credible terminated sequence with one round

is not preferable to s by DM i. Since the credible metarational tree is regular, there is a unique

credible terminated sequence of 1 round, which is (s, i, s). Moreover, for each state s1 ∈ R+
i (s),

there exists a state s2 ∈ R+
N−{i}(s1), determined by the credible policies of DMs j, j 6= i, and

the credible regular metarational tree, such that s �i s2 and s �i s3 for all s3 ∈ R+
i (s2), since

s is CMRnew2 stable for DM i. It remains to consider the case where s4 ∈ Ri(s2) − R+
i (s2). In
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this case, we have s2 �i s4 and by the transitivity of �i, we have that s �i s4. Thus, s is SSEQ

stable for DM i, if �i is negatively transitive.

The following example illustrates that if DM i's preference relation is not negatively transitive,

then the converse of Theorem 6.4.6 is not true. This often occurs in real con�icts, where DM i,

for some reason, does not know how to compare some states.

Example 6.4.1. Consider a hypothetical con�ict with 2 DMs, i and j, and four sates, s, s1, s2

and s3. Suppose that the relations are given by Ri(s) = s1, Ri(s2) = s3 and Rj(s1) = s2. The

con�ict is illustrated in Figure 6.5.

Figure 6.5: Con�ict in the graph form: a) DM i and b) DM j.

Assume that in this con�ict DM i does not have a very great knowledge about the state s2 and

does not know how to compare it to any other state of the con�ict. Then, assume that DMs i and

j's preference of relations are given by s1 �i s, s �i s2, s2 �i s3, s3 �i s and s2 �j s1, s1 �j s,

s �j s3, s3 �j s2, respectively. Suppose DM i is in state s. Note that state s is not SSEQ stable

for DM i, because from s DM i can move to a better state s1 and from s1 the unique unilateral

improvement reaction of DM j is to go to state s2 that is not preferable to s by DM i, and from

s2 DM i can move to s3, which is preferable to s by DM i. Moreover, s is CMRnew2 stable for

DM i, since if P cj (s1) = s2, the con�ict ends at s2, since there is no unilateral improvement from
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s2 for DM i and s2 is not preferable to s by DM i. Figure 6.6 illustrates the credible metarational

tree for DM i based on P cj (s1) = s2.

Figure 6.6: Credible metarational tree for DM i based on P cj (s1) = s2.

Here it is worth pointing out that if in the de�nition of CMRnewr stability, we replace the

existence of a credible regular metarational tree by the existence of a regular metarational tree,

then we would have equivalence between CMRnew2 and SSEQ stability. However with such

modi�cation, if n = 2, then CMRnewr would only be equivalent to CMRh=2r−1 if preferences

were negatively transitive. Since our main objective was to propose a new de�nition of generalized

metarationality that coincides with De�nition 6.2.5 for con�icts with 2 DMs, we preferred to use

De�nition 6.3.1.

Theorem 6.4.7 establishes that MRnewr stability implies MR
new
r stability, for all r ≥ 1.

Theorem 6.4.7. If a state s is MRnewr stable for DM i, then it is MR
new
r stable for DM i, for

all r ≥ 1.

Proof: Suppose that s is MRnewr stable for DM i, then there are policies Pj , j ∈ N − {i}, and

a regular metarational tree with r rounds, denoted by Ar, based on Pj , j ∈ N − {i}, for DM

i starting at state s such that the result of every i-sequence of r rounds and every terminated

sequence of less than r rounds is not preferable to s by DM i. Then consider the modi�ed policies

for DMs j, j ∈ N − {i}, such that P#
j (t) = t, if s �i t and P#

j (t) = Pj(t), otherwise. Let A#
r

be a metarational tree of r rounds, based on P#
j , j ∈ N − {i}, for DM i starting at state s such

that:
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(i) If sx ∈ Ar is a sequence such that for all states t, in which some DM j, j ∈ N −{i}, moves

in sx, t is preferable to s by DM i, then sx ∈ A#
r ;

(ii) If sx = (s, i, s1, j1, s2, j2, . . . , sm) ∈ Ar and there is some sw, for w = 1, 2, . . . ,m − 1 such

that jw 6= i and s �i sw, then let w∗ be the smallest w value for which sw satisfy these

conditions. Thus, we have that the sequence (s, i, s1, j1, . . . , jw∗−1, sw∗ , jw∗ , sw∗) ∈ A#
r , for

some jw∗ 6= jw∗−1.

Note that all sequences in A#
r that are not in Ar end in some state sw∗ that is not preferable

to s by DM i. Note also that the result of every terminated sequence of less than r rounds in

A#
r ∩Ar is not preferable to s by DM i, because s is MRnewr stable for DM i. Finally, suppose a

terminated sequence of r rounds in A#
r ∩Ar. If this sequence is an i-sequence, then its result is

not preferable to s by DM i, since s is MRnewr stable for DM i. If this sequence is an ī-sequence,

it must �nish in the �nal state of the i-sequence of r rounds that is equal to its initial part,

since Ar is regular. Thus, since all the �nal states of the i-sequences of r rounds in Ar are not

preferable to s by DM i, we have that the �nal results of the ī-sequences of r rounds in A#
r are

not preferable to s by DM i. Therefore, s is MR
new
r stable for DM i.

Similarly, we can obtain a theorem that states that if a state is CMRnewr stable for DM i,

then it is CMR
new
r stable for DM i, for all r ≥ 1. The proof of this fact is similar to the proof

of Theorem 6.4.7, just changing the regular metarational tree for DM i by a credible regular

metarational tree for DM i and DMs j's, j ∈ N − {i}, policies Pj by credible policies P cj .

Theorem 6.4.8 relates ī-metarational stability with r rounds with ī-metarational stability

with a smaller number of rounds.

Theorem 6.4.8. If a state s is MR
new
r stable for DM i, then it is MR

new
l stable for DM i, for

all 1 ≤ l ≤ r − 1.

Proof: The proof os this result follows a similar idea of proof of the corresponding theorem

obtained in [14]

Theorem 6.4.8 remains valid if we replace MR
new
r by CMR

new
r stability. The proof of this

fact is similar to the proof of Theorem 6.4.8, just changing the metarational tree for DM i by a
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credible metarational tree for DM i and DMs j's, j ∈ N − {i}, policies Pj by credible policies

P cj .

According to the alternative de�nition of states MRnewr stability proposed in this paper, it

is not true that if a state is MRnewr stable for DM i, then it is MRnewr+1 stable for DM i, for

all positive integer r in con�icts with n-DM. This relationship fails because of the regularity

condition required in the de�nition of MRnewr stability.

We point out that if this regularity condition were removed from the MRnewr stability def-

inition, then it would follow that MRnewr implies MRnewr+1 stability, but on the other hand the

equivalence results between SMR and MRnew2 and SSEQ and CMRnew2 would no longer be

true.

Example 6.4.2 illustrates this fact, by showing that MRnew3 stability does not imply MRnew4

stability.

Example 6.4.2. Consider a hypothetical con�ict composed by three DMs, i, j and k, and seven

states {s, s1, s2, s3, s4, s5, s6}. Suppose that DMs reachability relations are given by: Ri(s) =

{s1, s6}, Ri(s3) = {s4}, Ri(s5) = {s2}, Rj(s1) = Rk(s6) = {s2}, Rj(s2) = {s3}, Rk(s2) =

{s3}, Rk(s4) = {s5} and that the reachability relations of all DMs in all states that are not

speci�ed above are equal to the empty set. Suppose also that DMs' preferences are given by:

s6 �i s4 �i s1 �i s �i s2 �i s3 �i s5, s4 �j s6 �j s3 �j s2 �j s �j s1 �j s5 and

s3 �k s2 �k s5 �k s1 �k s4 �k s6 �k s. Consider the policies of DMs j and k that always move

out from the state where they are. Thus, there is a regular metarational tree of 3 rounds for DM

i starting at s as illustrated in Figure 6.7

Note that the result of every i-sequence of 3 rounds and of every terminated sequence of less

than 3 rounds is not preferable to s by DM i, i.e., s is MRnew3 stable for DM i. On the other

hand, for all policies of DMs j and k and all regular metarational tree for DM i based on these

policies of 4 rounds starting at s, there exists a sequence of moves that either ends in s1, s6 or

s4 if one of the DMs j or k stays in those states or there exists an i-sequence of 4 rounds with

�nal state s4, i.e., for any policies of DMs j and k and any regular metarational tree based on
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Figure 6.7: Metarational tree for DM i based on Pj and Pk, where Pj(s1) = s2, Pj(s2) = Pk(s2) =
s3, Pk(s4) = s5 and Pk(s6) = s2.

these policies, there is an i-sequence of 4 rounds or a terminated sequence of less than 4 rounds

whose result is preferable to s by DM i. Thus, s is not MRnew4 stable for DM i.

Since in Example 6.4.2 all sequences are based on unilateral improvements of DM i and

credible policies of DMs j, j ∈ N − {i}, the same example illustrates that CMRnew3 stability

does not imply CMRnew4 stability.

Theorem 6.4.9 establishes an implication between the set of CMRnewr stable states and the

set of MRnewr stable states.

Theorem 6.4.9. If a state s is CMRnewr stable for DM i, then it is MRnewr stable for DM i.

Proof: This proof is similar to the proof of Theorem 6.4.7 and is left to the Appendix.

Theorem 6.4.10 establishes an implication between the set of CMR
new
r stable states and the

set of MR
new
r stable states.

Theorem 6.4.10. If a state s is CMR
new
r stable for DM i, then it is MR

new
r stable for DM i.

Proof: The proof of this result follows a similar idea of proof of Theorem 6.4.7 and is left to the

Appendix.

Theorem 6.4.11 establishes a relationship between MR
new
r stability and policy equilibrium.
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Theorem 6.4.11. SPSS ⊆ SMR
new
r , for all r ≥ 1.

Proof: Let s ∈ SPSS . Thus, there is a set of policies P ∗i , i ∈ N , satisfying P ∗i (s) = s, such that

for every policy P#
i satisfying P#

i (s) 6= s, there is a sequence that starts with (s, i) based on

policies P#
i (s) and P ∗j (s), for all j ∈ N − {i}, whose result is not preferable to state s by DM i.

Thus, for every sw ∈ Ri(s), there is a legal sequence of moves, swx beginning with (s, i, sw) and

ending in s′w such that s′w is not preferable to s by DM i. Let A be the metarational tree for

DM i starting at s and based on policies P ∗j (s), for all j ∈ N − {i}, that contains all sequences

of the type swx , along with the sequence (s, i, s). Denote by Ar the metarational tree that results

from removing all sequences in A with more than r rounds. Then, every terminated sequence in

Ar is also terminated in A and must result in a state non-preferable to s by DM i.

Furthermore, for each ī-sequence of r rounds in Ar, which is not the initial part of another

ī-sequence of r rounds in Ar, denoted by sx, one of the following situations must occur: (a) DM i

move at the �nal state of sx in A or (b) sx is a �nite or in�nite terminated sequence in A. In the

case (b), it follows that the result of the sequence is not preferable to s by DM i, since s ∈ SPSS .

Finally, in case (a), the �nal state of sx is not preferable to s by DM i, otherwise, since DM i

always has the opportunity to stay in the �nal state, this would result in a terminated sequence

in A whose result is preferable to s by DM i, which would be a contradiction since s ∈ sPSS .

Therefore, for every i ∈ N , s must also be MR
new
r stable for DM i.

With a proof similar to that of Theorem 6.4.11, one can show that SPSS
c ⊆ SCMR

new
r , for

all r ≥ 1.

On the other hand, Example 6.2.2 also illustrates a con�ict where SMRnew2 * SPSS .

6.5 Conclusion

This chapter presents some problems found in the de�nition of generalized metarational sta-

bility proposed in [14] for con�icts with n-DMs. In particular, it shows that such de�nition is

not a generalization of generalized metarational stability for con�icts with 2 DMs, as proposed

in [19]. Motivated by that fact, we introduce an alternative de�nition for generalized metara-
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tionality for con�icts with n-DMs that overcomes this problem. We proved many results that

relate our proposed solution concept to other solution concepts common in the GMCR literature.

A summary of those results can be found in Tables 6.1 and 6.2.

Table 6.1: Equivalences between solution concepts in the GMCR

Equivalences

S
MRh=2r−1

i = S
MRnewr
i , if n = 2.

SMRh=2r
i = S

MR
new
r

i , if n = 2.
S
CMRh=2r−1

i = S
CMRnewr
i , if n = 2.

SCMRh=2r
i = S

CMR
new
r

i , if n = 2.

SNashi = S
MRnew1
i = S

CMRnew1
i .

SGMR
i = S

MR
new
1

i .

SSMR
i = S

MRnew2
i .

SSEQi = S
CMR

new
1

i .

Table 6.2: Implications between solution concepts in the GMCR

Implications

SSSEQi ⊆ SCMRnew2
i .

S
CMRnew2
i ⊆ SSSEQi , if DM i's preference is negatively transitive.

S
MRnewr
i ⊆ SMR

new
r

i , for all r ≥ 1.

S
CMRnewr
i ⊆ SCMR

new
r

i , for all r ≥ 1.

S
MR

new
r

i ⊆ SMR
new
l

i , for all 1 ≤ l ≤ r − 1.

S
CMR

new
r

i ⊆ SCMR
new
l

i , for all 1 ≤ l ≤ r − 1.
S
CMRnewr
i ⊆ SMRnewr

i , for all r ≥ 1.

S
CMR

new
r

i ⊆ SMR
new
r

i , for all r ≥ 1.
SPSS ⊆ SMR

new
r , for all r ≥ 1.

Having a better understanding of such solution concept is of key importance to the stability

analysis of con�icts with n-DMs, since such concept generalizes the most usual solution concepts

of the literature to allow for DMs to analyze the con�ict with variable horizons.

In future research, we plan to investigate whether there exists a computationally e�cient way

of �nding such generalized metarationally stable states.



CHAPTER 7

Conclusions and Directions for future work

7.1 Conclusions

In this thesis, we present various advances in the graph model for con�ict resolution. Such

advances range from the proposal of new concepts of stability, e�cient methods to obtain stability

in the GMCR with probabilistic preferences and a generalization of the GMCR to handle possibly

unaware players. More speci�cally, we propose the notion of SSEQ stability and extended this

concept for n-DM con�icts in the GMCR. We also presented the relationships among SSEQ

with six solution concepts commonly used in the GMCR. Additionally, we introduced the SSEQ

concept for coalitional analysis and extended SSEQ stability for the GMCR with uncertain,

probabilistic and fuzzy preferences in n-DM con�icts.

We adapted matrix methods proposed by Xu et al. [18] and [24] to determine stable states in

2-DM and n-DM con�icts in the GMCRP according to �ve stability de�nitions that have been

proposed for such model. We also proposed a generalization of the GMCR, for con�icts with

two and n-DMs, in order to allow the representation of con�icts where DMs may be unaware of

some options available for them or for their opponents in the con�ict. We propose �ve notions of

stability in the GMCR with interactive unawareness, providing results that relate such notions

and also showed that standard solution concepts for the GMCR are special cases of the notions

proposed.
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We also present some problems found in the de�nition of generalized metarational stability

proposed in Zeng et al. [14] for con�icts with n-DMs and motivated by that fact, we introduced

an alternative de�nition for generalized metarationality for con�icts with n-DMs that overcomes

some of the problems in Zeng et al. [14]. We also study some properties of our proposed de�nition.

7.2 Directions for future work

In future research we intend:

(1) Propose the SSEQ stability de�nition for an arbitrary horizon, i.e., considering several

moves of reaction and counter-reaction according to this concept.

(2) Extend the GMCR with iterative unawareness by adopting other preference structures,

such as the probability structure of Rêgo and Santos [15], uncertain preference of Li et

al. [16] and Fuzzy preference of Hipel et al. [17].

(3) Propose matrix representations to facilitate the obtaining of stable states according to the

stability concepts proposed in the GMCR with interactive unawareness.
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APPENDIX B

Proofs

• Proof of Theorem 6.4.4.

Proof: If state s is MRnew2 stable for DM i, then there is a set of policies Pj , j 6= i, and

a regular metarational tree with two rounds, based on Pj , such that the result of every

i-sequence with two rounds and every terminated sequence with one round is not preferable

to s by DM i. Since the metarational tree is regular, every terminated sequence of 1 round

either has length one if the DM i stays in s, or two, if some DM j, j 6= i, stays in a state

s1 ∈ Ri(s) − R+
i (s). Moreover, for each state s1 ∈ R+

i (s), there exists s2 ∈ RN−{i}(s1),

determined by policies of DMs j, j ∈ N −{i}, and the regular metarational tree, such that

s �i s2 and s �i s3 for every s3 ∈ Ri(s2), since s is MRnew2 stable for DM i. Thus, s is

SMR stable for DM i.

Suppose now that s is SMR stable for DM i. Let R+
i (s) = {s1, s2, . . . , sW }. Thus, for

each state sw, w = 1, 2, . . . ,W , there is s′w ∈ RN−{i}(sw) such that s′w is not preferable

to s by DM i and for all s′′w ∈ Ri(s
′
w), s′′w is not preferable to s by DM i. Therefore,

there is a legal sequence of moves of DMs j, j ∈ N − {i}, taking the con�ict from state

sw to s′w, for w = 1, 2, . . . ,W . Consider the shortest sequence of legal moves of DMs j,

j ∈ N − {i}, denoted by swx , that takes the con�ict from sw to some state s′w such that s′w

is not preferable to s by DM i and for all s′′w ∈ Ri(s′w), s′′w is not preferable to s by DM i.
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In swx , there is no cycles and, moreover, for every state in t in s
w
x that appears before to s′w,

either it is preferable to s by DM i, or there must be some state at Ri(t) that is preferable

to s by DM i, otherwise swx would not be a sequence with the shortest length that takes

the con�ict from sw to any state that is not preferable to s by DM i and such that from

this state DM i can not go to a state preferable to s by DM i. De�ne DMs j, j ∈ N −{i},

policies as follows:

(i) For all state u ∈ S and DM j, j ∈ N − {i}, if the pair (u, j) does not appear in any

of the sequences swx , for w = 1, 2, . . . ,W , then Pj(u) = u;

(ii) Let w∗ be the smallest w value such that the pair (u, j) appears in the sequence swx .

Since sw
∗

x does not contain cycles, then there is only one state t ∈ S such that (u, j, t)

is a triplet in sw
∗

x , then de�ne Pj(u) = t.

Consider the regular metarational tree based on Pj , j 6= i, consisting of sequences of the

form (and their initial parts) (s, i, swx , i, s
′′
w), for s′′w ∈ Ri(s′w) ∪ {s′w} and w = 1, 2, . . . ,W ,

along with sequences of the form (and their initial parts) (s, i, u, j, u), for some DM j,

j ∈ N − {i}, and all u ∈ Ri(s) ∩ (R+
i (s))c such that u does not appear in any of the

sequences swx , for w = 1, 2, . . . ,W , and sequences of the form (and their initial parts)

(s, i, uw
∗

x , i, s′′w∗), where s
′′
w∗ ∈ Ri(s′w∗)∪{s′w∗} and w∗ is the smallest w value such that the

pair (u, j) appears in the sequence swx and uw
∗

x is the subsequence of sw
∗

x that starts in u

and ends at the same state, s′w∗ , as s
w∗
x , for all u ∈ Ri(s) ∩ (R+

i (s))c such that u appears

in at least one of the sequences skx.

Therefore, there is a regular metarational tree of 2 rounds based on Pj , j 6= i, for DM i

starting at state s such that the result of every i-sequence of 2 rounds and every terminated

sequence of 1 round is not preferable to s by DM i. Therefore, s is MRnew2 stable for DM

i.

• Proof of Theorem 6.4.8.

Proof: Suppose by way of contradiction that state s is not MR
new
l DM i, for some
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l ∈ {1, 2, . . . , r− 1}. Then, given any set of policies Pj , for all DMs j, j ∈ N −{i}, and all

metarational trees of l rounds that starts at s based on Pj , there exists (a) an ī-sequence of

l rounds, which is not the initial part of another ī-sequence of l rounds, or (b) a terminated

i-sequence of l-rounds or (c) a terminated sequence of less than l rounds that ends in a

state s1 such that s1 �i s. In cases (b) and (c) it is evident that there is a terminated

sequence of less than r rounds which ends in a preferable state to the s to DM i. In case

(a), there are 2 possibilities: (a1) n = 2 and DM i must move in the �nal state of the

ī-sequence of l rounds, (a2) the ī-sequence of l rounds is terminated. In case (a2), there is

a terminated sequence of less than r rounds which terminates in a state preferable to s by

DM i. Finally, in case (a1) as DM i always has the option to stay in the �nal state of the

ī-sequence, then there is an i-sequence of r rounds or less whose result is preferable to s

by DM i. Therefore, s is not MR
new
r stable for DM i.

• Proof of Theorem 6.4.9.

Proof:

If a state s is CMRnewr stable for DM i, then there is a set of credible policies P cj , for all

j ∈ N−{i}, and a credible regular metarational tree, denoted by Ar, based on P cj , j 6= i, of

r rounds such that the result of every credible i-sequence of r rounds and of every credible

terminated sequence with less than r rounds is not preferable to s by DM i. Consider the

set of policies P#
j , for all j ∈ N −{i}, de�ned in the following way: P#

j (t) = P cj (t) if t �i s

and P#
j (t) = t, otherwise. Let A#

r be the regular metarational tree based on P#
j , j 6= i,

for DM i starting at state s such that:

(i) If sx ∈ Ar is a sequence such that for all states t, where some DM j, j ∈ N − {i},

moves in sx, t is preferable to s by DM i, then sx ∈ A#
r ;

(ii) If sx = (s, i, s1, j1, s2, j2, . . . , sm) ∈ Ar and there is some sw, for k = 1, 2, . . . ,m − 1

such that jw 6= i and s �i sw, then let w∗ be the smallest w value for which sw satisfy

these conditions. Thus, we have that the sequence (s, i, s1, j1, . . . , jw∗−1, sw∗ , jw∗ , sw∗) ∈

A#
r , for some jw∗ 6= jw∗−1.
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Note that all sequences in A#
r that are not in Ar end in some state sw∗ that is not

preferable to s by DM i. Note also that the result of every i-sequence of r rounds and of

every terminated sequence of less than r rounds in A#
r ∩ Ar is not preferable to s by DM

i, since s is CMRnewr stable for DM i. Therefore, s is MRnewr stable for DM i.

• Proof of Theorem 6.4.10.

Proof: If state s is CMR
new
r stable for DM i, then there is a set of credible policies P cj , for

all j ∈ N − {i}, and a credible metarational tree, denoted by Ar, based on P cj , j 6= i, of r

rounds such that the result of every credible ī-sequence of r rounds, which is not an initial

part of another credible ī-sequence of r rounds, of every credible terminated i-sequence

with r rounds and of every credible terminated sequence with less than r rounds is not

preferable to s by DM i. Consider the set of policies P#
j , for all j ∈ N − {i}, de�ned

in the following way: P#
j (t) = P cj (t) if t �i s and P#

j (t) = t, otherwise. Let A#
r be the

metarational tree based on P#
j , j 6= i, for DM i starting at state s such that:

(i) If sx ∈ Ar is a sequence such that for all states t, in which some DM j, j ∈ N − {i},

moves in sx, t is preferable to s by DM i, then sx ∈ A#
r ;

(ii) If sx = (s, i, s1, j1, s2, j2, . . . , sm) ∈ Ar and there is some sw, for w = 1, 2, . . . ,m − 1

such that jw 6= i and s �i sw, then let w∗ be the smallest w value for which sw satisfy

these conditions. Thus, we have that the sequence (s, i, s1, j1, . . . , jw∗−1, sw∗ , jw∗ , sw∗) ∈

A#
r , for some jw∗ 6= jw∗−1.

Note that all sequences in A#
r that are not in Ar end in some state sw∗ that is not preferable

to s by DM i. Note also that the result of every ī-sequence of r rounds, which is not an

initial part of another ī-sequence of r rounds, of every terminated i-sequence with r rounds

and of every terminated sequence with less than r rounds in A#
r ∩Ar is not preferable to s

by DM i, since s is CMR
new
r stable for DM i. Therefore, s is MR

new
r stable for DM i.



APPENDIX C

Computational Codes

C.1 GMR Code

Figure C.1: Flowchart of GMR Code

147



C.1. GMR CODE 148

res <- function(J1, J2, P1, a, b)

{

N <- sqrt(length(J))

J1 <- matrix(J, nrow=N, ncol=N, byrow=TRUE)

J2 <- matrix(J2, nrow=N, ncol=N, byrow=TRUE)

J_I=Q <- matrix(NA, nrow=N, ncol=N, byrow=TRUE)

P1 <- matrix(P, nrow=N, ncol=N, byrow=TRUE)

Y <- matrix(1, nrow=N, ncol=N, byrow = TRUE)

for(i in 1:N)

{

for(j in 1:N)

{

if(J1[i,j]==1 && P1[j, i] > 1-a) {J_I[i,j] <- 1}

else{J_I[i,j] <- 0}

if(P1[j, i] > 1-b) {Q[i,j] <- 1}

else{Q[i,j] <- 0}

}

}

SINAL <- sign(J2%*%t(Y-Q))

M <- diag(J_I %*%( Y- SINAL))

return(M)

}

gmr <- function(J1, J2, P1, P2, a, b, state, dm)
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# Função que plota os pontos que o estado "state" é GMR estável para o

# DM "dm"

# J1: Matriz Acessibilidade do DM 1 (Ji)

# J2: Matriz Acessibilidade do DM 2 (Jj)

# P1: Matriz de Preferência do DM 1 (Pri)

# P2: Matriz de Preferência do DM 2 (Prj)

# a: valores de alpha para testar

# b: valores de beta para testar

# state: estado para testar

# dm: DM focal

{

N <- sqrt(length(J1))

Na <- length(a)

Nb <- length(b)

alpha <- matrix()

beta <- matrix()

if(state>=1 && state <=N && dm >= 1 && dm <= 2) {

if(dm==1) {

for(i in 1:Na){

for(j in 1:Nb){

R <- res(J1,J2,P1,a[i],b[j])

if(R[state]==0) {

alpha=rbind(alpha,a[i])

beta=rbind(beta,b[j])

}
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}

}

plot(alpha,beta,type= "p", main = paste("State", state, "(alpha,beta)-GMR Stability

Region for DM 1"), col = "black", cex = .8, pch = 15, lwd = 1)

}

else{

for(i in 1:Na){

for(j in 1:Nb){

R <- res(J2,J1,P2,a[i],b[j])

if(R[state]==0) {

alpha=rbind(alpha,a[i])

beta=rbind(beta,b[j])

}

}

}

plot(alpha,beta,type= "p", main = paste("State", state, "(alpha,beta)-GMR Stability

Region for DM 2"), col = "black", cex = .8, , pch = 15, lwd = 1)

}

}

else{

print("Erro na Entrada")}

}
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C.2 SMR Code

Figure C.2: Flowchart of SMR Code
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res <- function(J1, J2, P1, a, b)

{

N <- sqrt(length(J))

J1 <- matrix(J, nrow=N, ncol=N, byrow=TRUE) # matriz de acessibilidade do DM i

J2 <- matrix(J2, nrow=N, ncol=N, byrow=TRUE) # matriz de acessibilidade do DM j

J_I=Q_1 = Q_2 <- matrix(NA, nrow=N, ncol=N, byrow=TRUE)

P1 <- matrix(P, nrow=N, ncol=N, byrow=TRUE) # matriz de probabilidades

Y <- matrix(1, nrow=N, ncol=N, byrow = TRUE) # matriz de uns

for(i in 1:N)

{

for(j in 1:N)

{

if(J1[i,j]==1 && P1[j, i] > 1-a) {J_I[i,j] <- 1}

else{J_I[i,j] <- 0}

if(P1[j, i] > 1-a) {Q_1[i,j] <- 1}

else{Q_1[i,j] <- 0}

if(P1[j, i] > 1-b) {Q_2[i,j] <- 1}

else{Q_2[i,j] <- 0}

}

}

SINALa <- sign(J1%*%t(Q_1)) # ultima matriz sinal do teorema

SINALb <- sign(J2%*%(t(Y-Q_2)*(Y-SINALa)))

M <- diag(J_I %*%( Y- SINALb))

return(M)

}
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smr <- function(J1, J2, P1, P2, a, b, state, dm)

# Função plota os pontos que o estado "state" SMR estável para o

# DM "dm"

# J1: Matriz Acessibilidade do DM 1

# J2: Matriz Acessibilidade do DM 2

# P1: Matriz de Preferência do DM 1

# P2: Matriz de Preferência do DM 2

# a: valores de alpha para testar

# b: valores de beta para testar

# state: estado para testar

# dm: DM focal

{

{

N <- sqrt(length(J1))

Na <- length(a)

Nb <- length(b)

alpha <- matrix()

beta <- matrix()

if(state>=1 && state <=N && dm >= 1 && dm <= 2) {

if(dm==1)

{

for(i in 1:Na) {

for(j in 1:Nb) {

R <- res(J1,J2,P1,a[i],b[j])

if(R[state]==0) {
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alpha=rbind(alpha,a[i])

beta=rbind(beta,b[j])

}

}

}

plot(alpha,beta,type= "p", xlim=c(0,1), ylim=c(0,1), main = paste("State", state,

"(alpha,beta)-SMR Stability

Region for DM 1"), col = "black", cex = .8, pch = 15, lwd = 1)

}

else{

for(i in 1:Na){

for(j in 1:Nb){

R <- res(J2,J1,P2,a[i],b[j])

if(R[state]==0) {

alpha=rbind(alpha,a[i])

beta=rbind(beta,b[j])

}

}

}

plot(alpha,beta,type= "p", xlim=c(0,1), ylim=c(0,1), main = paste("State", state, "(alpha,beta)-

SMR Stability

Region for DM 2"), col = "black", cex = .8, , pch = 15, lwd = 1)

}

}

else{

print("Erro na Entrada")}

}
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C.3 SEQ Code

Figure C.3: Flowchart of SEQ Code
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require(scatterplot3d)

res <- function( J1, K, P1, S, a, b, d)

{

N <- sqrt(length(J))

J1 <- matrix(J, nrow=N, ncol=N, byrow=TRUE)

K <- matrix(K, nrow=N, ncol=N, byrow=TRUE)

J_I <- matrix(NA, nrow=N, ncol=N, byrow=TRUE)

Q <- matrix(NA, nrow=N, ncol=N, byrow=TRUE)

J_J <- matrix(NA, nrow=N, ncol=N, byrow=TRUE) #matriz de melhoria do DM j

S <- matrix(S, nrow=N, ncol=N, byrow=TRUE) #matriz de probabilidade do DM j

P1 <- matrix(P, nrow=N, ncol=N, byrow=TRUE) #matriz de probabilidade do DM i

Y <- matrix(1, nrow=N, ncol=N, byrow = TRUE)

for(i in 1:N)

{

for(j in 1:N)

{

if(J1[i,j]==1 && P1[j, i] > 1-a) {J_I[i,j] <- 1}

else{J_I[i,j] <- 0}

if(K[i,j]==1 && S[j, i] > d) {J_J[i,j] <- 1}

else{J_J[i,j] <- 0}

if(P[j, i] > 1-b) {Q[i,j] <- 1}

else{Q[i,j] <- 0}

}
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}

SINAL <- sign(J_J%*%t(Y-Q))

M <- diag(J_I %*%( Y-SINAL))

return(M)

}

SEQ <- function(J1, J2, P1, P2, a, b, d, state, dm)

# Função plota os pontos que o estado "state" SEQ estável para o

# DM "dm"

# J1: Matriz Acessibilidade do DM 1

# J2: Matriz Acessibilidade do DM 2

# P1: Matriz de Preferência do DM 1

# P2: Matriz de Preferência do DM 2

# a: valores de alpha para testar

# b: valores de beta para testar

# d: valores de gama para testar

# state: estado para testar

# dm: DM focal

{

N <- sqrt(length(J1))

Na <- length(a)

Nb <- length(b)

Nd <- length(d)

alpha <- matrix()

beta <- matrix()
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gama <-matrix()

if(state>=1 && state <=N && dm >= 1 && dm <= 2) {

if(dm==1) {

for(i in 1:Na){

for(j in 1:Nb) {

for(k in 1:Nd) {

R <- res(J1,J2,P1,P2,a[i],b[j],d[k])

if(R[state]==0) {

alpha=rbind(alpha,a[i])

beta=rbind(beta,b[j])

gama=rbind(gama,d[k])

}

}

}

}

scatterplot3d(alpha, beta, gama, highlight.3d=TRUE, col.axis="blue", xlim=c(0,1),

ylim=c(0,1), zlim=c(0,1),

col.grid="lightblue", main = paste("State", state, "(alpha,beta,gama)-SEQ Stability Region for

DM 1"),

pch=20)

}

else{

for(i in 1:Na){

for(j in 1:Nb) {

for(k in 1:Nd) {

R <- res(J2,J1,P2,P1,a[i],b[j],d[k])

if(R[state]==0) {
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alpha=rbind(alpha,a[i])

beta=rbind(beta,b[j])

gama=rbind(gama,d[k])

}

}

}

}

scatterplot3d(alpha, beta, gama, highlight.3d=TRUE, col.axis="blue", xlim=c(0,1),

ylim=c(0,1), zlim=c(0,1),

col.grid="lightblue", main = paste("State", state, "(alpha,beta,gama)-SEQ Stability Region for

DM 2"),

pch=20)

}

}

else{

print("Erro na Entrada")}

}
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C.4 SSEQ Code

Figure C.4: Flowchart of SSEQ Code
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require(scatterplot3d)

res <- function( J, K, P, S, a, b, d)

{

N <- sqrt(length(J))

J <- matrix(J, nrow=N, ncol=N, byrow=TRUE)

K <- matrix(K, nrow=N, ncol=N, byrow=TRUE)

J_I=Q_1 = Q_2 <- matrix(NA, nrow=N, ncol=N, byrow=TRUE)

Q <- matrix(NA, nrow=N, ncol=N, byrow=TRUE)

J_J <- matrix(NA, nrow=N, ncol=N, byrow=TRUE) #matriz de melhoria do DM j

S <- matrix(S, nrow=N, ncol=N, byrow=TRUE) #matriz de probabilidade do DM j

P <- matrix(P, nrow=N, ncol=N, byrow=TRUE) #matriz de probabilidade do DM i

Y <- matrix(1, nrow=N, ncol=N, byrow = TRUE)

for(i in 1:N)

{

for(j in 1:N)

{

if(J[i,j]==1 && P[j, i] > 1-a) {J_I[i,j] <- 1}

else{J_I[i,j] <- 0}

if(K[i,j]==1 && S[j, i] > d) {J_J[i,j] <- 1}

else{J_J[i,j] <- 0}

if(P[j, i] > 1-a) {Q[i,j] <- 1}

else{Q[i,j] <- 0}

if(K[i,j]==1 && S[j, i] > d) {J_J[i,j] <- 1}

else{J_J[i,j] <- 0 }
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if(P[j, i] > 1-b) {Q_2[i,j] <- 1}

else{Q_2[i,j] <- 0}

}

}

SINALa <- sign(J%*%t(Q_1)) # ultima matriz sinal do teorema

SINALb <- sign(J_J%*%(t(Y-Q_2)*(Y-SINALa)))

M <- diag(J_I %*%( Y-SINAL))

return(M)

}

sseq <- function(J1, J2, P1, P2, a, b, d, state, dm)

# Função plota os pontos que o estado "state" SSEQ estável para o

# DM "dm"

# J1: Matriz Acessibilidade do DM 1

# J2: Matriz Acessibilidade do DM 2

# P1: Matriz de Preferência do DM 1

# P2: Matriz de Preferência do DM 2

# a: valores de alpha para testar

# b: valores de beta para testar

# d: valores de gama para testar

# state: estado para testar

# dm: DM focal

{

N <- sqrt(length(J1))
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Na <- length(a)

Nb <- length(b)

Nd <- length(d)

alpha <- matrix()

beta <- matrix()

gama <-matrix()

if(state>=1 && state <=N && dm >= 1 && dm <= 2) {

if(dm==1) {

for(i in 1:Na){

for(j in 1:Nb) {

for(k in 1:Nd) {

R <- res(J1,J2,P1,P2,a[i],b[j],d[k])

if(R[state]==0) {

alpha=rbind(alpha,a[i])

beta=rbind(beta,b[j])

gama=rbind(gama,d[k])

}

}

}

}

scatterplot3d(alpha, beta, gama, angle=125, highlight.3d=TRUE, col.axis="blue", xlim=c(0,1),

ylim=c(0,1), zlim=c(0,1),

col.grid="lightblue", main = paste("State", state, "(alpha,beta,gama)-SSEQ Stability Region

for DM 1"),

pch=20)

}
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else{

for(i in 1:Na){

for(j in 1:Nb) {

for(k in 1:Nd) {

R <- res(J2,J1,P2,P1,a[i],b[j],d[k])

if(R[state]==0) {

alpha=rbind(alpha,a[i])

beta=rbind(beta,b[j])

gama=rbind(gama,d[k])

}

}

}

}

scatterplot3d(alpha, beta, gama, angle=125, highlight.3d=TRUE, col.axis="blue",

xlim=c(0,1), ylim=c(0,1), zlim=c(0,1),

col.grid="lightblue", main = paste("State", state, "(alpha,beta,gama)-SSEQ Stability Region

for DM 2"),

pch=20)

}

}

else{

print("Erro na Entrada")}

}




