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Abstract

The proposal of new continuous distributions by adding one or more shape parameter(s) to

baseline models has attract researchers of many areas. Several generators have been studied

in recent years that can be described as special cases of the transformed-transformer (T -X)

method. The gamma generalized families (“gamma-G” for short), called Zografos-Balakrishnan-

G (Zografos and Balakrishnan, 2009) and Ristić-Balakrishnan-G (Ristić and Balakrishnan, 2012),

are important univariate distributions sub-families of the T -X generator. They are generated

by gamma random variables. It was found that eighteen distributions have been studied as

baselines in the gamma generalized families. Another known family of univariate distributions

is generated by extending the Weibull model applied to the odds ratio G(x)/[1 − G(x)], called

the Weibull-G (Bourguignon et al., 2014). It was found that seven distributions have been

studied in the context of the Weibull-G family. The logistic-X (Tahir et al., 2016a) is also a

sub-family on the T -X generator that was recently introduced in the literature. Considering

this approach, we discuss in this thesis the gamma-G, logistic-X and Weibull-G families by

taking the Burr XII distribution as baseline. We present density expansions, quantile functions,

ordinary and incomplete moments, generating functions, estimation of the model parameters

by maximum likelihood and provide applications to income and lifetime real data sets for the

proposed distributions. We show that the new distributions yield good adjustments for the

considered data sets and that they can be used effectively to obtain better fits than other classical

models and Burr XII generated families.

Keywords: Burr XII distribution. Gamma-G family. Logistic-X family. Weibull-G family.



Resumo

A ideia de obter novas distribuições contínuas adicionando um ou mais parâmetros a uma dis-

tribuição de base (baseline) tem atraído pesquisadores de diversas áreas. Muitos geradores de

distribuições têm sido estudados nos últimos anos. Diversos deles podem ser descritos como ca-

sos especias da família de geradores transformed-transformer (T -X). Neste contexto, as famílias

gama generalizadas (gamma-G), denominadas Zografos-Balakrishnan-G (Zografos and Balakr-

ishnan, 2009) e Ristić-Balakrishnan-G (Ristić and Balakrishnan, 2012), são importantes sub-

famílias de distribuições univariadas do gerador T -X, as quais são obtidas a partir de variáveis

aleatórias com distribuição gama. Na literatura foi possível encontrar dezoito distribuições que

foram estudadas como baselines nestas famílias. Outra conhecida sub-família do gerador T -X

é gerada a partir da distribuição de Weibull aplicada à razão de chances G(x)/[1 − G(x)], de-

nominada família Weibull-G. Na literatura foi possível encontrar sete distribuições estudadas

como baselines na família Weibull-G (Bourguignon et al., 2014). A família logistic-X (Tahir

et al., 2016a) é também uma sub-família do gerador T -X recentemente introduzida na liter-

atura. Nesta tese serão discutidas as famílias gamma-G, logistic-X e Weibull-G, considerando a

distribuição Burr XII como baseline. Serão apresentadas expansões para a função de densidade,

a função quantílica, momentos ordinários incompletos, funções geradoras de momentos e esti-

mação por máxima verossimilhança. Também são realizadas aplicações das novas distribuições

a conjuntos de dados reais de renda e de análise de sobrevivência. As distribuições propostas

obtiveram ajustes adequados para as bases de dados consideradas, podendo ser utilizadas como

alternativas efetivas a outros modelos clássicos e, também, a outras generalizações da distribuição

Burr XII.

Palavras-chave: Distribuição Burr XII. Família gamma-G. Família logistic-X. Família Weibull-G.
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Chapter 1

Introduction

New distributions can often result by introducing one or more additional shape parameters

to an existing lifetime distribution (say, a baseline model). They have been defined as the gener-

alized (or generated) G-classes of distributions. According to Tahir and Nadarajah (2015), there

are some reasons why the G-classes attract researchers of several areas. One reason might be the

computational refinement of symbolic and numerical programming software. It becomes easier

to derive some important mathematical and statistical properties. In addition, the structure of

the new generators also allows exploring its tail properties. Another reason is that the extra

parameters inducted from the G baseline models have presented evidence to improve the quality

of fit. Pescim et al. (2010) also showed that the G-classes might provide better fits than the

common distributions for skewed data.

Several generators have been studied in recent years. We refer the reader to Lee et al. (2013)

for a review of some generated methods and Tahir and Nadarajah (2015) for a more updated and

detailed survey on well-established and widely used generalized classes of continuous univariate

distributions. Many of these classes can be defined as special cases of the transformed-transformer

(T -X) method introduced by Alzaatreh et al. (2013). This technique allows deriving families of

distributions by using any probability density function (pdf) as a generator.

Let r(t) be the pdf of a random variable T ∈ [a, b] for −∞ < a < b < ∞. Let G(x) be

the baseline cumulative distribution function (cdf) of a random variable X such that W [G(x)]

satisfies the following conditions:
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• W [G(x)] ∈ [a, b];

• W [G(x)] is differentiable and monotonically non-decreasing;

• W [G(x)]→ a when x→ −∞ and W [G(x)]→ b when x→ +∞.

The T-X family cdf is defined by

F (x) =

∫ W [G(x)]

a
r(t)dt. (1.1)

The pdf corresponding to (1.1) is given by

f(x) =

{
d

dx
W [G(x)]

}
r{W [G(x)]}.

The T -X family of distributions can be classified into subfamilies. One subfamily has the same

X distribution but different T distributions, other has the same T distribution but different

X distributions. Different functions W (·), such as W (x) = − log(1 − x), x/(1 − x), log(x/1 −

x), log[− log(x)] for x ∈ (0, 1), will also define different subfamilies.

For example, consider W (x) = G(x). If T is a beta random variable, we have the beta-

generated family pionnered by Eugene et al. (2002). The Kumaraswamy generalized fam-

ily (Cordeiro and de Castro, 2011) follows when T is a Kumaraswamy random variable. The

gamma-G families (Zografos and Balakrishnan, 2009; Ristić and Balakrishnan, 2012), log-gamma

generated families (Amini et al., 2014), McDonald-generalized family (Alexander et al., 2012),

Weibull-G family (Bourguignon et al., 2014) and exponentiated half-logistic-G (Cordeiro et al.,

2014a) family are also T -X special models.

The gamma generalized family, called the gamma-G is an important class of univariate dis-

tributions generated by gamma random variables. Zografos and Balakrishnan (2009) proposed

the first type gamma-G family (ZB-G for short). They defined the ZB-G family with pdf f(x)

and cdf F (x) by

f(x) =
g(x)

Γ(a)
{− log [1−G(x)]}a−1 , (1.2)

and

F (x) =
γ (a, − log [1−G(x)])

Γ(a)
,



17

respectively, where G(x) is any baseline cdf, g(x) = dG(x)/dx, x ∈ IR, γ(a, z) =
∫ z
0 t

a−1e−tdt

is the incomplete gamma function, Γ(.) denotes the gamma function and a > 0 is a shape

parameter. For a = 1, equation (1.2) reduces to the baseline pdf. The hazard rate function (hrf)

corresponding to (1.2) becomes

h(x) =
{− log[1−G(x)]}a−1 g(x)

Γ(a,− log[1−G(x)])
,

were Γ(a, z) =
∫∞
z ta−1e−tdt is the upper incomplete gamma function.

Zografos and Balakrishnan (2009) presented several motivations for the gamma-G family,

which are also valid for the ZBXII distribution: if XL(1), ..., XL(n) are lower record values from a

sequence of independent random variables with common pdf g(·), then the pdf of the nth lower

record value has the form (1.2); if Z is a gamma random variable with unit scale parameter and

shape parameter a > 0, then X = F−1(exp(Z)) has the pdf (1.2); and, if Z is a log-gamma

random variable, then X = F−1(exp{− exp(Z)}) has the pdf (1.2).

A different type gamma-G family was introduced by Ristić and Balakrishnan (2012), so-called

the Ristić-Balakrishnan-G (RB-G) family, having pdf, cdf and hrf given by

f(x) =
g(x)

Γ(a)
{− log [G(x)]}a−1 , (1.3)

F (x) = 1− γ (a, − log [G(x)])

Γ(a)
, (1.4)

and

h(x) =
{− log[G(x)]}a−1 g(x)

Γ(a,− log[G(x)])

respectively. Note that for a = 1, equation (1.3) reduces to the baseline pdf. The ZB-G and RB-

G families have the same parameters of the baseline cdf G(x) plus an additional shape parameter

a > 0. Letting r(t) be the gamma distribution, we have that both ZB-G and RB-G families are

T -X special models with, respectively, W [G(x)] = − log[1−G(x)] and W [G(x)] = − log[G(x)].

Castellares and Lemonte (2016) pointed out the relationship between the ZB-G and RB-G

families by discussing some similarities and differences between the gamma dual Weibull model

and gamma exponentiated Weibull model. The authors proved that if the baseline G(x) is
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absolutely continuous and symmetric about the origin, then X follows the ZB-G distribution

and −X has the RB-G distribution.

It was found that eighteen distributions have been studied as baselines in the gamma-G

families. The list of authors contributions is presented in Table 1.1.

Table 1.1: Contributed work on the Gamma-G family of distributions.

Distribution Author
Gamma exponentiated exponential Ristić and Balakrishnan (2012)
Gamma Exponentiated Weibull Pinho et al. (2012)

Castellares and Lemonte (2015)
Gamma Pareto Alzaatreh et al. (2012)
Gamma uniform Torabi and Hedesh (2012)
Gamma extended Fréchet Silva et al. (2013)
Gamma half normal Alzaatreh and Knight (2013)
Gamma Dagum Oluyede et al. (2013)
Gamma log-logistic Ramos et al. (2013)
Gamma extended Weibull Nascimento et al. (2014)
Gamma linear failure rate Cordeiro et al. (2014b)
Gamma logistic Alzaatreh et al. (2014b)
Gamma normal Alzaatreh et al. (2014a)

Lima et al. (2015)
Gamma Weibull Poisson Percontini et al. (2014)
Gamma Birnbaum Saunders Cordeiro et al. (2015b)
Gamma Lindley Lima (2015)
Gamma Lomax Cordeiro et al. (2015c)
Gamma Modified Weibull Cordeiro et al. (2015a)
Gamma Nadarajah Haghighi Bourguignon et al. (2015)

Ortega et al. (2015)

Bourguignon et al. (2014) pioneered a family of univariate distributions generated by extend-

ing the Weibull model applied to the odds ratio G(x)/[1 − G(x)]. For any baseline cdf G(x),

they defined the Weibull-G family for x ∈ D ⊆ R with pdf and cdf given by

f(x) = αβ g(x)
G(x)β−1

G(x)β+1
exp

{
−α

[
G(x

G(x)

]β}
. (1.5)

and

F (x) =

∫ G(x)
1−G(x)

0
αβ tβ−1e−α t

β
dt = 1− exp

{
−α

[
G(x)

G(x)

]β}
, (1.6)
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respectively. The hrf corresponding to (1.5) is given by

h(x) =
αβ g(x)G(x)β−1

G(x)β+1
=
αβ G(x)β−1

G(x)β
τ(x),

where τ(x) = g(x)/G(x). The multiplying quantity αβ G(x)β−1/G(x)β works as a corrected

factor for the hrf of the baseline model.

The Weibull-G family has the same parameters of the G distribution plus two shape param-

eters α > 0 and β > 0. According with Bourguignon et al. (2014), these additional parameters

are sought as a manner to furnish more flexible distribution. If β = 1, it gives the exponential-

generator (Gupta et al., 1998). It was found that seven distributions have been studied in the

context of theWeibull-G family. Other two types ofWeibull-G families have also been considered.

The list of authors contributions is presented in Table 1.2.

Table 1.2: Contributed work on the Weibull-G family of distributions.
Distribution Author(s)
Weibull exponential Oguntunde et al. (2015)
Weibull Lomax Tahir et al. (2015)
Weibull Rayleigh Merovci and Elbatal (2015)
Weibull Dagum Tahir et al. (2016c)
Weibull Frechet Afify et al. (2016)
Weibull Pareto Tahir et al. (2016b)
Weibull Birnbaum-Saunders Benkhelifa (2016)
Second Weibull-G family Cordeiro et al. (2015d)
Third Weibull-G family Tahir et al. (2016d)

Recently, Tahir et al. (2016a) proposed a class of univariate distributions generated by ex-

tending the logistic distribution, called the logistic-X class (“LX” for short). The LX family is

a special model of the T -X family defined by W (x) = log{− log[1 − G(x)]} in equation (1.1)

by taking a logistic random variable for T . The cdf and pdf of T are given by (for t ∈ IR)

R(t) = (1 + e−λt)−1 and r(t) = λ e−λt(1 + e−λt)−2, respectively, where λ > 0. Thus, the LX

family cdf is defined by

F (x) =
[
1 + {− log[1−G(x)]}−λ

]−1
(1.7)
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and its pdf is given by

f(x) =
λ g(x)

1−G(x)

[
1 + [− log(1−G(x)]−λ

]−(λ+1) {
1 + [− log(1−G(x)]−λ

}−2
, (1.8)

where G(x) is any baseline cdf and g(x) = dG(x)/dx. The LX family has the same parameter

of the baseline distribution plus an additional shape parameter λ > 0. Note that the base-

line distribution is not a special case of the LX family. However, it can be interpreted as a

compounding model between the logistic and the baseline distributions. According to Tahir

et al. (2016a) this family may allow: to construct distributions with symmetric, left-skewed,

right-skewed and/or reversed-J shaped; to define models with more types for the hrf; and, to

provide competitive models to other generated families under the same baseline distribution,

among other characterizations.

This thesis is composed by independent chapters. We propose four new models defined

in the Zografos-Balakrishnan-G, Ristić-Balakrishnan-G, Weibull-G and logistic-X families by

taking the three-parameter Burr XII distribution as baseline. For each introduced distribution,

we present density expansions, quantile function, moments, incomplete moments, generating

functions, estimation of the model parameters by maximum likelihood and provide applications

to income and/or lifetime real data sets. A background for the Burr XII distribution and some

generalizations is presented in Chapter 2. In Chapter 3, we study the Zografos-Balakrishnan

Burr XII distribution. In Chapter 4, we propose the Ristić-Balakrishnan Burr XII distribution.

Chapter 5 introduces the Weibull Burr XII distribution. In Chapter 4, the logistic Burr XII

distribution is investigated. Chapter 7 presents the final conclusion and outlines some future

research lines.
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Chapter 2

On the Burr XII distribution and
generalizations: a survey

Resumo

Este capítulo apresenta uma revisão de literatura sobre a distribuição Burr XII e algumas de

suas generalizações propostas recentemente. São apresentadas quinze generalizações da Burr

XII, as quais foram introduzidas através de diferentes geradores de distribuições ou do método

de composição. Aqui, relacionamos algumas propriedades matemáticas da distribuição Burr

XII, tais como momentos, momentos incompletos e função geradora de momentos. Também

é obtida uma expressão alternativa para os momentos incompletos desta distribuição. Estes

resultados podem ser úteis para obter as propriedades matemáticas de algumas generalizações

da distribuição Burr XII a partir de combinações lineares.

Palavras-chave: Distribuição Burr XII. Distribuição Singh-Maddala. Generalizações da Dis-

tribuição Burr XII. Momentos incompletos.

Abstract

This chapter presents a review on the Burr XII distribution and some of its generalizations

introduced in the recent literature. We cite telegraphically fifteen distributions obtained by dif-

ferent gene-rated families or compounding approaches on the Burr XII distribution. We reviewed

some Burr XII mathematical properties, including moments, incomplete moments and generat-
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ing function. We also derive an alternative expression for the Burr XII incomplete moments.

These results were used to obtain the properties of some Burr XII generalizations from linear

representations.

Key-words: Burr XII distribution. Burr XII generalizations. Incomplete moments. Singh Mad-

dala distribution.

2.1 Introduction

The Burr system of distributions was pioneered by Burr (1942). It is based on cdf’s that

satisfy the general differential equation

F ′(x) = F (x) [1− F (x)] g(x),

where g(·) is a nonnegative function.

This system is defined by taking twelve choices of g(·), which are usually referred to by

number and yields a variety of density shapes. For example, the Burr I distribution is the well-

known uniform model, obtained by taking g(x) = F (x) [1− F (x)]. The Burr III, Burr X and

Burr XII (BXII) are the most commonly used distributions on the Burr system.

In this chapter, we present a survey on the BXII distribution and some of its generalizations

published in the last years. We discuss some mathematical properties of the BXII distribution

that have been used to obtain the properties of its generalizations from linear representations.

A random variable X is said to have the BXII distribution if its cdf and pdf are given by

G(x; c, d, s) = 1−
[
1 +

(x
s

)c]−d
(2.1)

and

g(x; c, d, s) = c d s−c xc−1
[
1 +

(x
s

)c]−d−1
, (2.2)

respectively, where d > 0 and c > 0 are shape parameters and s > 0 is a scale parameter. If

c > 1, the pdf in (2.2) is unimodal with mode at

x = s

[
c− 1

cd+ 1

]1/c
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and it is L-shaped if c = 1. The quantile function of the BXII distribution is

Q(u) = s
[
(1− u)−1/d − 1

]1/c
,

for u ∈ (0, 1). Hence, if U is a uniform random number from the interval (0, 1), then X = Q(U)

follows the BXII distribution.

The hazard rate function of X is given by

h(x; c, d, s) = c d s−c xc−1
[
1 +

(x
s

)c]−1
.

It allows for monotonic and upside-down bathtub shaped hazard rates. However, it does not

exhibit bathtub shape. According with Nadarajah et al. (2011) this is a weakness because most

empirical life systems have bathtub shapes for their hrf. The particular case for s = m−1 and

d = 1 gives the log-logistic (LL) distribution. The particular case for c = 1 gives the Lomax

distribution. Shao (2004) pointed out that the BXII model also has the Weibull and Pareto

distributions as limiting cases.

Various authors employed an alternative parametrization of this distribution by taking the

scale parameter s = 1. The called two-parameter BXII distribution may be more convenient

in some scale-free applications. In addition a location parameter may also be required some

situations, for example, see Shah and Gokhale (1993).

Rodriguez (1977) showed that the two-parameter BXII distribution has shape characteristics

similar to the exponential, gamma, logistic, log-normal, normal and some Pearson type distri-

butions in the skewness-kurtosis plane. Tadikamalla (1980) gives relationships among the BXII

distribution and other well known models.

The BXII distribution has also appeared in the literature under other names. It was referred

to as the Pareto type IV distribution by Arnold (1983) and as the beta-p distribution by Mielke

and Johnson (1974). In economic context, it is known as Singh-Maddala distribution because

Singh and Maddala (1975, 1976) derived it through a model for the hazard rates of continuous

distributions and presented it as an alternative for modeling income data. It was also referred as

the generalized log-logistic distribution by El-Saidi et al. (1990) and q-Weibull by Brouers and

Sotolongo-Costa (2005).
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Applications of the BXII distribution have been widespread. Kleiber and Kotz (2003) listed

various empirical studies that applied this model over the second half of the twentieth century.

We can also quote some recent researches that considered the BXII distribution in different fields.

Most of these are concerned in model situations characterized by power laws behavior.

The work of Weron and Kotulski (1997) has given a physical interpretation of the BXII dis-

tribution in the theory of relaxation and reaction in complex systems. Brouers et al. (2004),

Brouers and Sotolongo-Costa (2005) and Brouers (2014a) were other related works that used

this distribution in physics context. It has also been employed by Brouers (2014b) for devel-

oping empirical isotherms, which are used in the literature to represent the sorption data of a

great number of solid-gas and solid-liquid sorbate-sorbent couples. Brouers (2015) gave a novel

interpretation of the concept of nonextensivity based on the BXII distribution.

Brzeziński (2014) considered the BXII distribution for modeling journal impact factors. Thu-

peng (2016) applied it in maximum levels of nitrogen dioxide. In meteorology literature, Papalex-

iou and Koutsoyiannis (2012) considered it to modeling daily rainfall records in different places

across the world and Li et al. (2015) concluded that the BXII distribution is suitable for modeling

the precipitation over two river basins in China.

Moore and Papadopoulos (2000), Khan and Pareek (2012) and Kumar et al. (2013) considered

this distribution to model variables on reliability context. In addition, applications of the two-

parameter BXII distribution under diferent censoring schemes have been provided by Lee et al.

(2009), Tomer et al. (2015), Panahi and Sayyareh (2016), Asl et al. (2017) and Belaghi and Asl

(2017).

Table 2.1 lists some studies that considered the BXII model in economic and actuarial ap-

plications. In this context, it has been used mostly to model individual and household income

distributions (ID), but also for poverty measures, inpatient costs and size distributions, among

others situations.

The rest of the chapter is organized as follows. In Section 2.2, we cite telegraphically fifteen

distributions obtained by different generated families and compounding approaches on the Burr

XII distribution. We review the BXII properties of moments (Section 2.3), incomplete moments
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Table 2.1: Some studies conducted considering the BXII distribution in economic applications
Purpose of the paper Author(s)
ID in United states Majumder and Chakravarty (1990)

Łukasiewicz et al. (2010)
Tanak et al. (2015)

ID in United Kingdom Jäntti and Jenkins (2010)
ID in some European countries Brzeziński (2013)
ID in Pakistan Shakeel et al. (2015)
Size distribution of Italian firms by age Cirillo (2010)
Poverty measures Chotikapanich et al. (2013)
Inpatient cost in English hospitals Jones et al. (2014)
Pricing of critical illness insurance Dodd et al. (2015)

(Section 2.4) and generating function (Section 2.5).Section 2.6 concludes this survey chapter.

2.2 Burr XII generalizations and related distributions

In this section, we provide a survey on some different BXII generalizations and related dis-

tributions introduced in at last seventeen years or so. Table 2.2 presents a summary on these

distributions in chronological order, which are derived using various well-established generating

methods. Wang (2000) introduced the additive Burr XII distribution given by the cdf

Table 2.2: Some Burr XII generalizations introduced in recent literature.
Distribution Author(s)
Aditive Burr XII Wang (2000)
Extended Burr XII Shao (2004)
Exponentiated Burr XII Al-Hussaini and Hussein (2011a)
Beta Burr XII Paranaíba et al. (2011)
Kumaraswamy Burr XII Paranaíba et al. (2013)
Marshal-Olkin extended Burr XII Al-Saiari et al. (2014)
Beta exponentiated Burr XII Mead (2014)
McDonald Burr XII Gomes et al. (2015)
Transmuted Burr XII Al-Khazaleh (2016)
Kumaraswamy exponentiated BXII Mead and Afify (2017)
Burr XII negative binomial Ramos et al. (2015)
Burr XII geometric Lanjoni et al. (2015)
Burr XII power series Silva and Cordeiro (2015)
Exponentiated Burr XII Poisson Silva et al. (2015)
Complementary exponentiated Burr XII Poisson Muhammad (2017)
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F (x) = 1−

{[
1 +

(
x

s1

)c1]−d1
−
[
1 +

(
x

s2

)c2]−d2}
, x > 0,

where c1, c2, d1 and d2 are positive shape parameters and s1 > 0 and s2 > 0 are scale parameters.

The additive Burr XII model combines two BXII distributions, one has a decreasing and another

an increasing failure rates. This distribution allows for monotonic and bathtub shaped hazard

rates, which are common situations for many mechanical and electronic components.

Another model closely related to the BXII model is the three-parameter extended Burr XII

(ExBXII) distribution, given by the pdf

f(x) = c s−c xc−1
[
1 + d

(x
s

)c] 1
d
−1
, d 6= 0,

= c s−c xc−1e−(x/s)
c
, d = 0.

For d ≤ 0 we have x ≥ 0 and for d > 0 we have that 0 ≤ x ≤ sd−1/c. Also, for d =

0, the ExBXII distribution yields the Weibull distribution. Shao et al. (2004) claim to have

developed this distribution. However, Nadarajah and Kotz (2006) point out that in fact it was

originally introduced and named as the generalized Weibull distribution by Mudholkar et al.

(1996) and Mudholkar and Sarkar (1999).

Hao and Singh (2009) presented two methods based on the principle of maximum entropy

and applied it for estimating the parameters of the ExBXII distribution. Usta (2013) evaluated

the performance of six different estimation methods on the ExBXII distribution. Shao et al.

(2004), Hao and Singh (2009) and Usta (2013) illustrated the usefulness of the ExBXII by means

of applications in hydrological data sets.

The four-parameter exponentiated Burr XII (EBXII) distribution has pdf given by

f(x) = α c d s−c xc−1
[
1 +

(x
s

)c]−d−1{
1−

[
1 +

(x
s

)c]−d}−α−1
, x > 0, (2.3)

where α > 0 is the additional shape parameter. Al-Hussaini and Hussein (2011a) obtained

the Bayesian predictive probability density function for the three-parameter EBXII distribution,

which is obtained by taking s = 1 in (2.3). Al-Hussaini and Hussein (2011b) investigated the

maximum likelihood and Bayes estimators on the three-parameter EBXII distribution.
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Paranaíba et al. (2011) introduced the five-parameter Beta Burr XII (BBXII) distribution

given by the pdf

f(x) =
c dxc−1

scB(a, b)

{
1−

[
1 +

(x
s

)c]−d }a−1 [
1 +

(x
s

)c]−(db+1)
, x > 0, (2.4)

where a > 0 and b > 0 are the aditional shape parameters and B(a, b) =
∫ 1
0 t

a−1 (1 − t)b−1dt

is the beta function. This distribution allows for increasing, decreasing, upside down bathtub

shaped and decreasing-increasing-decreasing shaped hazard rates. Domma and Condino (2017)

studied the four parameter BBXII distribution under the name of Beta Singh-Maddala. It is

obtained by taking s = 1 in (2.4).

Paranaíba et al. (2013) introduced the five-parameter Kumaraswamy Burr XII (KwBXII)

distribution given by the pdf

f(x) = a b c d s−cxc−1
[
1 +

(x
s

)c]−d−1{
1−

[
1 +

(x
s

)c]−d}a−1
×
[
1−

{
1−

[
1 +

(x
s

)c]−d}a]b−1
, x > 0, (2.5)

where a > 0 and b > 0 are the aditional shape parameters. This distribution allows for increasing,

unimodal shaped, decreasing and bathtub shaped hazard rates.

Al-Saiari et al. (2014) introduced the three-parameter Marshall-Olkin extended Burr XII

distribution given by the pdf

f(x) =
α c d xc−1 (1 + xc)−d−1

[1− (1− α)(1 + xc)−d]2
, x > 0,

where α, c and d are positive shape parameters. This distribution extends the two-parameter

BXII distribution on the family pioneered by Marshall and Olkin (1997). It allows for decreasing

and unimodal shaped hazard rates.

Mead (2014) introduced the five-parameter beta exponentiated Burr XII (BEBXII) distribu-

tion given by the pdf (for x > 0)

f(x) =
α c dxc−1

B(a, b)
(1 + xc)−d−1

[
1− (1 + xc)−d

]aα−1 {
1−

[
1− (1 + xc)−d

]}b−1
, (2.6)

where α, a, b, c and d are positive shape parameters. This distribution extends the three-parameter

EBXII distribution on the family pioneered by Eugene et al. (2002).
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Gomes et al. (2015) introduced the six-parameter McDonald Burr XII (McBXII) distribution

given by the pdf

f(x) =
α c d xc−1

scB(a, b)

[
1 +

(x
s

)c]−d−1 {
1−

[
1 +

(x
s

)c]−d }aα−1
×
[
1−

{
1−

[
1 +

(x
s

)c]−d}α]b−1
, x > 0,

where a, b, c, d and α are positive shape parameters and s > 0 is a scale parameter. This

distribution allows for monotonic, unimodal shaped and bathtub shaped hazard rates. Gomes

et al. (2015) listed fourteen distributions as McBXII special models, including the BBXII and

KwBXII distributions. We can note that the five-parameter BEBXII density in (2.6) is also a

special model of the McBXII distribution, which is obtained by taking s = 1. Cordeiro et al.

(2016) proposed an extended regression model based on the logarithm of a McBXII random

variable.

Al-Khazaleh (2016) introduced the four-parameter transmuted Burr XII (TBXII) distribution

given by the pdf

f(x) =

{
c d s−cxc−1

[
1 +

(x
s

)c]−d−1}{
1− λ+ 2λ

[
1 +

(x
s

)c]−d}
, x > 0,

where c, d and λ are positive shape parameters and s > 0 is a scale parameter. The author

presents an expansion for the TBXII distribution, the generating function, ordinary moments

and order statistics. Under the name of Transmuted Singh-Maddala distribution, Shahzad et al.

(2017) provided some other properties of the TBXII distribution and also applications to bladder

cancer patients and to the Pakistani annual household expenditure.

Mead and Afify (2017) introduced the four parameter Kumaraswamy exponentiated Burr XII

distribution given by the pdf

f(x) =
a b c d β xc−1

(1 + xc)d+1

[
1− (1 + xc)−d

]aβ−1 {
1−

[
1− (1 + xc)−d

]aβ}b−1
, x > 0,

where a, b, c, d and β are positive shape parameters. This distribution extends the three-

parameter EBXII distribution on the family pioneered by Cordeiro and de Castro (2011).
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Some BXII generalizations were also proposed using the discrete-continuous compounding

approach, pioneered by Adamidis and Loukas (1998). Ramos et al. (2015) introduced the five-

parameter Burr XII negative binomial distribution given by the pdf

f(x) =
a β c d s−c

[(1− β)−a − 1]
xc−1

[
1 +

(x
s

)c]−d−1{
1− β

[
1 +

(x
s

)c]−d}−a−1
, x > 0,

where s > 0 is a scale parameter and a > 0, c > 0, d > 0 and β ∈ (0, 1) are shape parameters. Its

hrf can be increasing, decreasing, constant and unimodal shaped. It includes as special models

the LL, BXII, Burr XII geometric (Lanjoni et al., 2015) and Burr XII Poisson distributions.

Silva and Cordeiro (2015) introduced the three-parameter Burr XII power series distribution

given by the pdf

f(x) = θ c d (1 + xc)−d−1
C ′[(1 + xc)−d]

C[θ(1 + xc)−d]
, x > 0,

where C(θ) =
∑∞

n=1 anθ
n, θ > 0 is such that C(θ) is finite and the coefficients an’s depend only

on n.

Silva et al. (2015) introduced the exponentiated Burr XII Poisson distribution given by the

pdf

f(x) =
αλ c d s−c xc−1

1− e−λ

[
1 +

(x
s

)c]−d−1{
1−

[
1 +

(x
s

)c]−d}α−1
× exp

[
−λ
{

1−
[
1 +

(x
s

)c]−d}]b−1
, x > 0,

where c, d, s, α, λ > 0. This distribution has decreasing and unimodal shaped hazard rate. This

model was motivated by applications in failures of a system. For example, suppose that a system

has N serial sub-systems functioning independently at a give time, where N is a truncated

Poisson random variable. Let Z denote the time of failure of the first out of the N functioning

systems defined by the independent random variables Y1, . . . , YN with pdf given by (2.3). Then,

Z = min(Y1, . . . , YN ) has the exponentiated Burr XII Poisson distribution.

Muhammad (2017) introduced the complementary exponentiated Burr XII Poisson distribu-
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tion given by the pdf

f(x) =
αλ c d xc−1

eλ − 1
(1 + xc)−d−1

[
1− (1 + xc)−d

]α−1
× exp

{
λ
[
1− (1 + xc)−d

]}b−1
, x > 0,

where c, d, s, α, λ > 0. Analogously to the exponentiated Burr XII Poisson distribution, this

model is obtained by taking the maximum of N random variables that follows the EBXII distri-

bution. However, on this proposal the authors considerered three-parameter EBXII distribution,

while Silva et al. (2015) used the four-parameter EBXII distribution in their study.

2.3 Moments

Suppose X is a random variable having the pdf (2.2). It follows from Zimmer et al. (1998)

the hth moment of X exists for h < c d and is given by

µ′h = sh dB(d− h c−1, 1 + h c−1). (2.7)

Rodriguez (1977) presented a similar expression for the moments of the two-parameter BXII

distribution.

Paranaíba et al. (2011, 2013), Mead (2014), Gomes et al. (2015), Ramos et al. (2015), Lanjoni

et al. (2015), Silva and Cordeiro (2015), Silva et al. (2015), Cordeiro et al. (2016), Domma and

Condino (2017), Mead and Afify (2017) and Muhammad (2017) used the result in (2.7) to obtain

the moments of their proposed distributions by linear combinations of the BXII model.

2.4 Incomplete moments

Let Th(y) =
∫ y
0 xh f(x)dx be the hth incomplete moment of X. It can be written as

Th(y) = c d

∫ y

0
xh−1

(x
s

)c [
1 +

(x
s

)c]−d−1
dx. (2.8)

Setting t =
[
1 +

(
x
s

)c]−1 in the last equation, we have

Th(y) = d sh
∫ 1

sc/(sc+yc)
td−

h
c
−1 (1− t)

h
c dt.
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Hence, the hth incomplete moment of X reduces to (for h < c d)

Th(y) = d shBsc/sc+yc
(
d− h c−1, 1 + h c−1

)
, (2.9)

where Bz(a, b) =
∫ 1
z t

a−1 (1 − t)b−1dt is the upper incomplete beta function. By setting h = 1,

we obtain the first incomplete moment of X.

Mead (2014), Gomes et al. (2015), Ramos et al. (2015), Silva and Cordeiro (2015), Silva et al.

(2015) and Mead and Afify (2017) used the result in (2.9) to obtain the incomplete moments of

their proposed distributions by linear combinations of the BXII model.

Alternatively, taking u = (x/s)c in equation (2.8), we can write

Th(y) = d sh
∫ ( ys )

c

0
uh/c(1 + u)−d−1du.

The following integral (for y > −1 and a > −1) is calculated using Mathematica

J(y, a, b) =

∫ y

0
za(z + 1)−bdz

=
ya+1

2F1(a+ 1, b; a+ 2;−y)

a+ 1
,

where 2F1 is the hypergeometric function defined by 2F1(a, b; c;x) =
∑∞

k=0
(a)k(b)k
(c)k

xk

k! , where

|x| < 1, c = 0,−1,−2, . . . and (z)n is the Pochhammer polynomial. Thus, the hth incomplete

moment of X can also be written as

Th(y) = d sh J

(
y,
h

c
, d+ 1

)
. (2.10)

The expression in (2.10) is new and previously unknown. Equations (2.9) and (2.10) are the

main results of this section.

2.5 Generating function

Paranaíba et al. (2011, 2013) provided a representation for the moment generating function
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(mgf), M(t) =
∫∞
−∞ et xf(x)dx, of X. It may require the Meijer-G function defined by

Gm,np,q

(
x

∣∣∣∣ a1, . . . , apb1, . . . , bq

)
=

1

2πi

∫
L

m∏
j=1

Γ (bj + t)

n∏
j=1

Γ (1− aj − t)

p∏
j=n+1

Γ (aj + t)

p∏
j=m+1

Γ (1− bj − t)
x−tdt,

where L denotes an integration path, see Section 9.3 in Gradshteyn and Ryzhik (2000). Many in-

tegrals with elementary and special functions are particular cases of the Meijer-G function (Prud-

nikov et al., 1986).

Thus, by assuming that c = m/d, where m and d are positive integers, µ > −1, p > 0 and

t < 0, Paranaíba et al. (2011, 2013) proved that

M(t) = mI
(
−s t, m

d
− 1,

m

d
,−d− 1

)
, (2.11)

where

I
(
p, µ,

m

d
, ν
)

=

∫ ∞
0

e−px xµ (1 + x
m
d )νdx

=
d−νmµ+ 1

2

(2π)
(m−1)

2 Γ(−ν)pµ+1
×

Gd,d+md+m,d

(
mm

pm

∣∣∣∣ ∆(m,−µ),∆(d, ν + 1)
∆(d, 0)

)
,

i =
√
−1 is the complex unit and ∆(d, a) = a

d ,
a+1
d , · · · , a+dd . The condition over the parameter

c is not restrictive since every positive real number can be approximated by a rational number.

Paranaíba et al. (2011, 2013), Gomes et al. (2015), Ramos et al. (2015),Lanjoni et al. (2015),

Silva and Cordeiro (2015), Silva et al. (2015) and Cordeiro et al. (2016) used the result in (2.11)

to obtain the mgf of their proposed distributions by linear combinations of the BXII model.

Furthermore, Paranaíba et al. (2011, 2013) demonstrated that for c = 1 the mgf of X reduces

to

M(t) = d(−st)d exp(−st)Γ(−d,−st),

where Γ(v, x) =
∫∞
x tv−1 exp(−t)dt is the complementary incomplete gamma function. For c = 2
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and t < 0, the authors obtained that

M(t) = 1F2

(
1;

1

2
; 1− d;

s2t2

4

)
+
st

2
B
(

2, d− 1

2

)
1F2

(
1;

3

2
; d+

7

2
;
−s2t2

4

)
+

Γ(−2d)

(−st)−2d
,

where

1F2(a, b; c;x) =
∞∑
k=0

(a)k
(b)k(c)k

xk

k!

is a generalized hypergeometric function and (a)k = a(a+1) . . . (a+k−1) denotes the ascending

factorial.

2.6 Concluding remarks

The Burr XII (BXII) distribution is one of the most commonly used distributions on the Burr

system. It has also appeared in the literature under other names, such as Pareto type IV, beta-p,

generalized log-logistic and Singh and Maddala distributions. Applications have been provided

in several areas, especially in situations characterized by power law behavior. Various BXII

generalizations and related distributions have been introduced in recent years. In this chapter,

we have listed fifteen distributions obtained by different generated families and compounding

approaches on the BXII distribution. We discuss the BXII properties of moments, incomplete

moments and generating function and also derive an alternative expression for the Burr XII

incomplete moments. We noted that these results were used to obtain the properties of some

Burr XII generalizations from linear representations.
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Chapter 3

The Zografos-Balakrishnan Burr XII
distribution

Resumo

Neste capítulo propomos uma nova distribuição de quatro parâmetros, denominada Zografos-

Balakrishnan Burr XII. Esta distribuição pode ser uma alternativa útil para modelar dados

de renda e também pode ser aplicada em outras áreas, tais como ciências atuariais, finanças,

telecomunicações e em análise de sobrevivência. A distribuição proposta tem como casos especiais

alguns modelos conhecidos como, por exemplo, as distribuições log-logística, Weibull, Lomax e

Burr XII. São investigadas algumas propriedades estruturais da distribuição proposta. O método

de máxima verossimilhança é utilizado para estimar os parâmetros do modelo. Um estudo de

simulação é conduzido. Além disso, são realizadas duas aplicações para ilustrar a flexibilidade

da nova distribuição.

Palavras-chave: Distribuição Burr XII. Família gamma-G. Método de máxima verossimilhança.

Família Zografos-Balakrishnan.

Abstract

We propose a four-parameter distribution, called the Zografos-Balakrishnan Burr XII distribu-

tion. The new distribution may be a useful alternative to describe income distributions and can

also be applied in actuarial science, finance, telecommunications and modeling lifetime data, for



35

example. It contains as special models some well-known distributions, such as the log-logistic,

Weibull, Lomax and Burr XII distributions, among others. Some of its structural properties are

investigated. The method of maximum likelihood is used for estimating the model parameters

and a simulation study is conducted. We provide two applications to real data to illustrate the

flexibility of the proposed distribution.

Keywords: Burr XII distribution. Gamma-G family. Maximum likelihood estimation. Zografos-

Balakrishnan family.

3.1 Introduction

The three-parameter BXII distribution has cdf and pdf in (2.1) and (2.2) respectively. This

statistical model was originally proposed by Burr (1942). However, the BXII distribution also

appeared in the literature under different names, such as Pareto type IV (Arnold, 1983), beta-

p (Mielke and Johnson, 1974) and Singh-Maddala (Singh and Maddala, 1975, 1976).

In reliability context, the BXII distribution may be useful as a failure model under various

loss functions (Moore and Papadopoulos, 2000) and for modeling the strength of a manufac-

tured (Khan and Pareek, 2012), among other applications. Schrnittlein (1983), Wingo (1983),

Wingo (1993), Wang et al. (1996), Watkins (1999) and Shao (2004) investigated the behaviors

of the BXII maximum likelihood estimators based on uncensored and censored data.

Motivated by the extensive usage of the BXII distribution, some generalizations were pro-

posed such as the beta Burr XII (Paranaíba et al., 2011) and Kumaraswamy Burr XII (Paranaíba

et al., 2013) distributions. We also refer the reader to the exponentiated Burr XII (Al-Hussaini

and Hussein, 2011b), Marshal-Olkin extended Burr XII (Al-Saiari et al., 2014; Kumar, 2016)

and McDonald Burr XII (Gomes et al., 2015) distributions, among others. These distributions

are obtained through different generalized (or generated) G families of continuous univariate

distributions.

Following the Zografos and Balakrishnan (2009) proposal, we introduce a new four-parameter

distribution called the Zografos-Balakrishnan Burr XII (ZBXII) distribution. Once the proposed



36

distribution is quite flexible regarding pdf and hrf, it may provide an interesting alternative to

describe lifetime data and can also be applied in actuarial science, economy, finance, bioscience,

telecommunications and physics, for example.

The rest of the chapter is outlined as follows. In Section 3.2, we define the ZBXII distribution

and present some special models. In Section 3.3, we derive expansions for the pdf and cdf of

the ZBXII distribution. A range of its mathematical properties are derived in Sections 3.4-3.6.

The maximum likelihood estimation is used to estimate the model parameters in Section 3.7.

A simulation study is carried out in Section 3.8. Section 3.9 provides two applications to real

lifetime data sets. Finally, Section 3.10 presents the chapter concluding remarks.

3.2 Model definition

The ZBXII distribution is defined be taking G(x) in (1.2) to be the cdf (2.1) of the BXII

distribution. This distribution contain as special models several well-known distributions. The

BXII distribution is a particular case for a = 1. For s = m−1 and d = 1, it reduces to the gamma

log-logistic distribution (Ramos et al., 2013). For a = 1, s = m−1 and d = 1, it becomes the

log-logistic (LL) distribution. If d → ∞, it is identical to the gamma Weibull distribution. If

d → ∞ in addition to a = 1, it becomes the Weibull distribution. For c = 1 and a = c = 1, it

reduces to the gamma Lomax (Cordeiro et al., 2015c) and Lomax distributions, respectively.

The ZBXII distribution has cdf and pdf given by

F (x) =
γ
(
a, d log

[
1 +

(
x
s

)c])
Γ(a)

(3.1)

and

f(x) =
c da xc−1

sc Γ(a)

[
1 +

(x
s

)c]−d−1 {
log
[
1 +

(x
s

)c]}a−1
, (3.2)

respectively, where a > 0, d > 0 and c > 0 are shape parameters and s > 0 is a scale parameter.

If X is a random variable with density function (3.2), we write X ∼ ZBXII(a, s, d, c). The ZBXII

hrf is given by

h(x) =
c da xc−1

sc Γ
(
a, d log

[
1 +

(
x
s

)c]) [1 +
(x
s

)c]−d−1 {
log
[
1 +

(x
s

)c]}a−1
,
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where Γ(a, z) = Γ(a)− γ(a, z) =
∫∞
z ta−1e−tdt is the upper incomplete gamma function.

Figure 3.1 reveals the versatility of the proposed density for some parameter values. The

ZBXII pdf can take various forms, including power-law tails. This kind of tail is very common in

economical systems and a important characteristic in income distributions. Figure 3.2 displays

plots of the hrf for some parameter values. It reveals that the ZBXII distribution can have

decreasing, decreasing-increasing-decreasing and upside-down bathtub hazard functions. This

feature reveals that the ZBXII distribution is quite competitive with the BBXII model, which

has the same forms for the hrf but one additional shape parameter.

3.3 Useful expansions

We derive some useful expansions for equations (3.1) and (3.2). For any real parameter m

and z ∈ (0, 1), the following formula holds

[− log(1− z)]m = zm +
∞∑
i=0

pi(m) zi+m+1, (3.3)

where p0(m) = m/2, p1(m) = m (3m+5)/24, p2(m) = m (m2 +5m+6)/48, p3(m) = m (15m3 +

150m2+485m+502)/5760, etc, are Stirling polynomials. Castellares and Lemonte (2015) gave a

recursive expression for these coefficients. The proof is given in details by Flajolet and Odlyzko

(1990) (see Theorem 3A, page 227) and Flajolet and Sedgewick (2009) (see Theorem VI.2, page

385). By inserting (3.3) in equation (1.2), the ZBXII density can be expressed as

f(x) = c d s−cxc−1
[
1 +

(x
s

)c]−d−1 ∞∑
k=0

bk

{
1−

(
1 +

(x
s

)c]−d}a+k−1
, (3.4)

where b0 = 1/Γ(a), b1 = p0(a− 1)/Γ(a), b2 = p1(a− 1)/Γ(a), b3 = p2(a− 1)/Γ(a), etc. If |z| < 1

and b > 0 is real non-integer, the power series holds

(1− z)b−1 =

∞∑
r=0

(−1)r
(
b− 1

r

)
zr.

Using the above series for
{

1−
[
1 + (x/s)c

]−d}a+k−1 in (3.4) and after some algebraic mani-

pulation, we have

f(x) =
∞∑
r=0

wr g(x; s, (r + 1)d, c), (3.5)
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Figure 3.1: Pdf plots for the ZBXII model with s = 1.
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Figure 3.2: Hrf plots for the ZBXII model.



40

where

wr =
∞∑
k=0

(−1)r bk Γ(a+ k)

Γ(a+ k − r)r!(r + 1)

and g(x; s, (r+ 1)d, c) is the BXII density function with scale parameter s and shape parameters

c and (r+ 1)d. Equation (3.5) reveals that the ZBXII density is an infinite linear combination of

BXII densities. So, several structural properties of the ZBXII distribution can follow from those

BXII properties. By integrating equation (3.5) gives

F (x) =
∞∑
r=0

wrG(x; s, (r + 1)d, c). (3.6)

Equations (3.5) and (3.6) are the main results of this section.

3.4 Quantile function

By inverting (3.1), we obtain an explicit expression for the quantile function (qf) of the ZBXII

distribution, say Q(u), as

Q(u) = s

{
exp

[
1

d
Q−1(a, 1− u)

]
− 1

}1/c

, (3.7)

where Q−1(a, u) is the inverse function of Q(a, x) = 1− γ(a, x)/Γ(a). Quantities of interest can

be obtained from (3.7) by substituting appropriate values for u.

Expressions for the skweness and kurtosis may be obtained from (3.7). Kenney and Keeping

(1962) proposed the Bowley’s skewness, which is based on quartiles and is defined as

B =
Q(3/4)− 2Q(1/2) +Q(1/4)

Q(3/4)−Q(1/4)
(3.8)

whereas the Moors’ kurtosis (Moors, 1988), based on octiles, is given by

M =
Q(7/8)−Q(5/8)−Q(3/8) +Q(1/8)

Q(6/8)−Q(2/8)
. (3.9)

Plots of the skewness and kurtosis of X as functions of a and d for selected values of c and s = 1

are displayed in Figure 3.3. It suggests that Bowley’s skewness and Moors’ kurtosis increases

and stabilizes when the parameters a and d increase and c is not very large. For c = 0.2, the

Bowley’s skewness seems to be little affected, while Moors’ kurtosis takes more elevated values.

For higher values of c, we note that Bowley’s skewness gets negative values and the Moors’

kurtosis decreases towards to zero.
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Figure 3.3: Skewness and kurtosis of the ZBXII model for some parameter values.
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3.5 Moments and generating function

The hth moment of X follows directly from (3.5) using the result in equation (2.7). For

h < c d, we have

µ′h = sh d
∞∑
r=0

(r + 1)wr B((r + 1)d− h c−1, 1 + h c−1), (3.10)

where B(·, ·) is the beta function. The central moments (µs) and cumulants (κs) of X can be

expressed from (3.10) as

µs =

s∑
i=0

(
s

i

)
(−1)i µ′s1 µ

′
s−i and κs = µ′s −

s−1∑
i=1

(
s− 1

i− 1

)
κi µ

′
s−i,

respectively, where κ1 = µ′1. Thus, κ2 = µ′2 − µ′21 , κ3 = µ′3 − 3µ′2µ
′
1 + 2µ′31 , κ4 = µ′4 − 4µ′3µ

′
1 −

3µ′22 + 12µ′2µ
′2
1 −6µ′41 , etc. The skewness γ1 = κ3/κ

3/2
2 and kurtosis γ2 = κ4/κ

2
2 can be calculated

from the third and fourth standardized cumulants.

The hth incomplete moment of X is defined by Th(y) =
∫ y
0 xh f(x)dx. By using (3.5), we

obtain

Th(y) = c d

∞∑
r=0

(r + 1)wr

∫ y

0
xh−1

(x
s

)c [
1 +

(x
s

)c]−(r+1)d−1
dx.

Setting t =
[
1 +

(
x
s

)c]−1 in the last equation, we have

Th(y) = d sh
∞∑
r=0

(r + 1)wr

∫ 1

sc/(sc+yc)
t(r+1)d−h

c
−1 (1− t)

h
c dt.

Hence, the hth incomplete moment of X reduces to (for h < c d)

Th(y) = d sh
∞∑
r=0

(r + 1)wr Bsc/sc+yc
(
(r + 1)d− h c−1, 1 + h c−1

)
, (3.11)

where Bz(a, b) =
∫ 1
z t

a−1 (1− t)b−1dt is the upper incomplete beta function.

Let Md(t) be the mgf of the BXII(s, d, c) distribution. The mgf, M(t), of X can be obtained

from (3.5) as an infinite weighted sum

M(t) =

∞∑
r=0

wrM(r+1)d(t), (3.12)
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where M(r+1)d(t) is the mgf of the BXII(s, (r + 1)d, c) distribution. For t < 0, Paranaíba et al.

(2011, 2013) provided the representation for Md(t) given in equation (2.11). Hence, for t < 0,

the generating function of X follows from (3.12) as

M(t) = m
∞∑
r=0

wr I

(
−s t, m

(r + 1)d
− 1,

m

(r + 1)d
,−(r + 1)d− 1

)
. (3.13)

Equations (3.10)-(3.13) are the main results of this section.

3.6 Mean deviations

The deviations from the mean and the median are commonly used as measures of spread in

a population. They can be determined as

δ1 = 2µ′1F (µ′1)− 2T1(µ
′
1) and δ2 = µ′1 − 2T1(M),

respectively, where µ′1 = IE(X), the median M of X follows from (3.7) by M = Q(1/2), F (µ′1)

is easily obtained from (3.1) and T1(y) =
∫ y
0 x f(x)dx is the first incomplete moment. Hence, it

follows from (3.11) that

T1(y) = d s
∞∑
r=0

(r + 1)wr Bsc/sc+yc((r + 1)d− c−1, 1 + c−1).

An alternative expression for T1(y), using (3.5), takes the form

T1(y) = cds−c
∞∑
r=0

(r + 1)wr

∫ y

0
xc
[
1 +

(x
s

)c]−(r+1)d−1
dx.

Setting u = (x/s)c, we obtain

T1(y) = d s

∞∑
r=0

(r + 1)wr

∫ ( ys )
c

0
u1/c(1 + u)−(r+1)d−1du.

=
c d s yc+1

1 + c

∞∑
r=0

(r + 1)wr 2F1

[
1 +

1

c
, (r + 1)d+ 1; 2 +

1

c
; −

(y
s

)c]
,

where 2F1 is the hypergeometric function defined by

2F1(a, b; c;x) =
∞∑
k=0

(a)k(b)k
(c)k

xk

k!
,

where |x| < 1, c = 0,−1,−2, . . . and (z)n is the Pochhammer polynomial.
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The previous results are related to the Bonferroni and Lorenz curves. For a given probability

π, they are defined as B(π) = T1(q)/(πµ
′
1) and L(π) = T1(q)/µ

′
1, respectively, where q = Q(π)

is given by (3.7). If π is the proportion of units whose income is lower than or equal to q, the

values of L(π) yield fractions of the total income and B(π) refers to the relative income levels.

These curves are important in economics for studying income and poverty, but can be useful

in demography, reliability, insurance, medicine and several other fields. The Lorenz curve also

allows to obtain the Gini concentration (CG), given by CG = 1 − 2
∫ 1
0 L(π)du, and represents

the area between the curve L(π) and the straight line.

3.7 Maximum-likelihood estimation

This section addresses the estimation of the unknown parameters of the ZBXII distribution

by the maximum likelihood method. Let x1, . . . , xn be a random sample of size n from the

ZBXII(a, c, d, s) distribution. Let θ = (a, c, d, s)T be the parameter vector of interest. The

log-likelihood function for θ can be expressed as

`(θ) =n log

[
c da

sΓ(a)

]
+ (c− 1)c−1

n∑
i=1

log(ui − 1) (3.14)

− (d+ 1)
n∑
i=1

log(ui) + (a− 1)
n∑
i=1

log [log(ui)] ,

where ui = 1 +
(
xi
s

)c. The components of the score vector U(θ) are given by

Ua(θ) = n [log(d)− ψ(a)] +

n∑
i=1

log [log(ui)] ,

Uc(θ) =
n

c
+ c−1

n∑
i=1

log(ui − 1)− d+ 1

c

n∑
i=1

(ui − 1) log (ui − 1)

ui

+
a− 1

c

n∑
i=1

(ui − 1) log (ui − 1)

ui log(ui)
,

Ud(θ) =
an

d
−

n∑
i=1

log(ui),
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and

Us(θ) =
−nc
s

+
c (d+ 1)

s

n∑
i=1

(ui − 1)

ui
− c (a− 1)

s

n∑
i=1

(ui − 1)

ui log(ui)
,

where ψ(.) is the digamma function.

Setting these expressions to zero, say U(θ) = 0, and solving them simultaneously yields the

maximum likelihood estimators (MLEs) of the unknown parameters. These equations can not

be solved analytically but we can use iterative techniques.

For fixed c, d and s, the MLE of a is given by

â(ĉ, d̂, ŝ) = ψ−1

(
n∑
i=1

log[log(ui)]

n
− log(d)

)
, (3.15)

where ψ−1(.) is the inverse digamma function. By replacing a by â in equation (3.14), we obtain

the profile log-likelihood function for θp1 = (c, d, s), expressed by

`(θp1) = (c− 1)c−1
n∑
i=1

log(ui − 1) + n

[
log
(c
s

)
+ log(d)ψ−1

(
n∑
i=1

log[log(ui)]

n
− log(d)

)]

− n log

{
Γ

[
ψ−1

(
n∑
i=1

log[log(ui)]

n
− log(d)

)]}
− (d+ 1)

n∑
i=1

log(ui)

+

[
ψ−1

(
n∑
i=1

log[log(ui)]

n
− log(d)

)
− 1

]
n∑
i=1

log [log(ui)] . (3.16)

This first profile log-likelihood may be helpful for obtaining the initial values for the para-

meters by fitting the BXII distribution and using the relationship in (3.15) for a. Alternatively,

for fixed a, c and s, we obtain the MLE of d as

d̂(â, ĉ, ŝ) = an

[
n∑
i=1

log(ui)

]−1
(3.17)

It is easy to observe in (3.17) that, fixed on x1, . . . , xn,

• d̂→∞ when â→∞,

• d̂→ 0̂+ when â→ 0̂+,

• d̂→ 0̂+ when ĉ→ 0̂+, and xi > ŝ for some i < n,

• d̂→∞ when ĉ→∞, and xi < ŝ, ∀i < n.



46

Thus, we can think of the use of more refined procedures for estimation under small values of a

and d.

By replacing d by (3.17) in equation (3.14), we have the profile log-likelihood function for

θp2 = (a, c, s). It can be expressed as

`(θp2) =n

{
log

[
c

sΓ(a)

(
1

an

n∑
i=1

log(ui)

)−a]
− a

}
+ (c− 1)c−1

n∑
i=1

log(ui − 1)

+ (a− 1)
n∑
i=1

log [log(ui)]−
n∑
i=1

log(ui). (3.18)

We can note that (3.18) is simpler than (3.16) and might be a useful option for the parameter

estimation of the ZBXII distribution. For interval estimation of the components of θ, we can

adopt the observed information matrix J(θ) given by

J(θ) = −∂
2 `(θ)

∂θ ∂θT
=


Jaa Jas Jad Jac
. Jss Jsd Jsc
. . Jdd Jdc
. . . Jcc

 ,

whose elements can be obtained from the authors upon request. Under standard regularity condi-

tions, the multivariate normal N4(0,J(θ̂)
−1

) distribution can be used to construct approximate

confidence intervals for the model parameters.

We are able to compute the maximized unrestricted and restricted log-likelihoods to obtain

likelihood ratio (LR) statistics for testing goodness-of-fit of the ZBXII model with its sub-models.

For example, we may use LR statistics to check if the fitted ZBXII distribution for a given data

set is statistically “superior" to the fitted BXII, LL and Weibull distributions. In any case,

hypothesis tests of the type H0 : θ = θ0 versus H : θ 6= θ0 can be performed using LR

statistics. For example, the LR statistic for testing H0 : a = 1 versus H : a 6= 1, which is

equivalent to compare the ZBXII and BXII distributions, is given by

w = 2{l(â, ŝ, d̂, ĉ)− l(1, s̃, d̃, c̃)},

where â, ŝ, d̂ and ĉ are the MLEs under H and s̃, d̃ and c̃ are the estimates under H0.
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3.8 Simulation study

We perform a Monte Carlo simulation to evaluate some asymptotic properties of the MLEs

for the parameters of the ZBXII distribution. We generate the ZBXII model for three different

combinations of a, c, d and s with samples of sizes n = 250, 500 and repeat the simulation

N = 10, 000 times. We use the subroutine optim in R and the simulated annealing (SANN)

algorithm for maximizing the log-likelihood in (3.14). Table 3.1 gives the mean estimates of the

MLEs and their root mean squared errors (RMSEs). As expected, the MLEs tend to be closer

to the true parameters and the RMSEs decrease as the sample size n increases.

Table 3.1: Monte Carlo results for the mean estimates and RMSEs of the ZBXII distribution.
Mean RMSE

θ n â ĉ d̂ ŝ â ĉ d̂ ŝ

(0.3, 1.7, 0.2, 0.2) 250 0.345 1.710 0.255 0.205 0.164 0.489 0.206 0.069
500 0.319 1.703 0.222 0.202 0.085 0.338 0.089 0.043

(0.5, 1.2, 0.1, 0.3) 250 0.537 1.232 0.109 0.323 0.162 0.315 0.043 0.193
500 0.517 1.213 0.104 0.310 0.097 0.160 0.027 0.127

(0.9, 1.5, 0.3, 0.1) 250 1.125 1.599 0.348 0.099 0.764 0.905 0.203 0.050
500 0.984 1.519 0.323 0.099 0.337 0.271 0.114 0.035

3.9 Applications

In this section, we present two applications to real data sets for illustrating the potentiality

of the new distribution for modeling positive data. First, we consider the stress-rupture life of

kevlar 49/epoxy strands which are subjected to constant sustained pressure at the 90% stress

level until all had failed. The real data set consists in 101 data points such that we obtain the

exact failure times in hours. Andrews and Herzberg (1985), Cooray and Ananda (2008) and,

more recently, Paranaíba et al. (2013) also analyzed these data.

The second data set represents the strengths of 1.5 cm glass fibres measured at the Na-

tional Physical Laboratory, England. It has 51 observations and is available for download at

http://www.stat.ncsu.edu/research/sas/sicl/data/. These data were previously analysed

by Smith and Naylor (1987), Cordeiro and Lemonte (2011) and Paranaíba et al. (2013), among
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others.

We compare the ZBXII distribution with some other competitive models. One of these models

is the KwBXII distribution, whose pdf is given by (2.5). The BBXII model has pdf given by (2.4).

Introduced by Mudholkar and Srivastava (1993), the exponentiated Weibull (EW) distribution

is a popular distribution in lifetime data, whose pdf is given by

g(t) = αβ λ tα−1 exp (−λ tα) [1− exp (−λ tα)]β−1, t > 0,

where α > 0 and β > 0 are shape parameters and λ > 0 is a scale parameter. The Weibull (W)

model arises from the EW model when β = 1.

We estimate the model parameters of the ZBXII in (3.2), BXII and LL models and the above

competitive models by the maximum likelihood method. Furthermore, we use the Akaike in-

formation criteria (AIC), consistent Akaike information criteria (CAIC), Bayesian information

criteria (BIC), Hannan-Quinn information criteria (HQIC) and Kolmogorov-Smirnov (KS) statis-

tic as goodness-of-fit statistics for these models. The lower are these, the better is the adjustment

to the data. The MLEs and goodness-of-fit statistics are obtained using SANN algorithm for

otimization and the AdequacyModel script in R software (Marinho et al., 2016).

3.9.1 Stress data

Table 3.2 provides a descriptive summary of the stress data. It has positive skewness and

large kurtosis. The mean and median are close but smaller than standard deviation (SD) and

variance. Moreover, the amplitude is elevated if compared with the other descriptive statistics.

Table 3.2: Descriptive statistics for stress data.

Mean Median SD Variance Skewness Kurtosis Min. Max.
1.03 0.80 1.12 1.25 3.05 14.51 0.01 7.89

Table 3.3 lists the MLEs (and the corresponding standard errors of the estimates) of the

unknown parameters for the fitted models. We note that the estimated standard errors of ŝ in

the BXII distribution is large.
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Table 3.3: The MLEs of the model parameters for stress data and corresponding standard errors
in parentheses.

c d s a b
BBXII 6.7846 0.5625 1.6275 0.1042 0.6052

(0.0023) (0.0032) (0.0198) (0.0111) (0.1172)
KwBXII 6.81899 0.54959 1.53837 0.09036 0.68182

(0.0155) (0.0051) (0.0155) (0.0131) (0.0835)
ZBXII 6.7147 0.2472 1.7822 0.1059

(0.0606) (0.0557) (0.0163) (0.0109)
BXII 0.9956 6.0925 5.2208

(0.0781) (2.9914) (2.9612)
c m

LL 1.270 0.624
(0.1069) (0.0849)

λ α β
EW 0.8212 1.0605 0.7931

(0.2658) (0.2404) (0.2877)
W 0.9900 0.9258

(0.1118) (0.0726)

Table 3.4: Goodness-of-fit statistics for the fitted models for stress data.
AIC CAIC BIC HQIC KS

BBXII 206.8734 207.5050 219.9490 212.1668 0.0637
KwBXII 206.9635 207.5951 220.0391 212.2569 0.0619
ZBXII 204.0965 204.5132 214.5570 208.3312 0.0667
BXII 211.9727 212.2201 219.8181 215.1487 0.0910
LL 229.3724 229.4948 234.6026 231.4898 0.1113
EW 211.5743 211.8218 219.4197 214.7504 0.0844
W 209.9536 210.0761 215.1839 212.0710 0.0906

According to the goodness-of-fit statistics (Table 3.4), the ZBXII distribution provides a good

fit and is quite competitive with the BBXII and KwBXII models for these data. Considering

the AIC, CAIC, BIC and HQIC, the ZBXII distribution yields a better fit than the other distri-

butions. Based on the KS statistic, it is quite competitive to the KwBXII model. Figure 3.4.a

displays some plots of the estimated densities and Figure 3.4.b the estimated and empirical cu-

mulative functions for the most competitive models. They reveal a good adjustment for these

data of the estimated densities and estimated and empirical cumulative functions of the BBXII,

KwBXII and ZBXII distributions. The last one presents better results for the information cri-

teria and has one less parameter. In conclusion, these results reveal that the ZBXII distribution
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can be used effectively to provide better fits than other lifetime models and it is a competitive

alternative for the W, LL and BXII distributions, among others.
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Figure 3.4: (a) Estimated densities of the BBXII, KwBXII and ZBXII models for stress data;
(b) estimated and empirical cumulative functions of these models for stress data

3.9.2 Fibres data

Table 3.5 gives a descriptive summary for the fibres data. The mean and median are close

and we have small values for SD and variance. It has negative skewness, positive kurtosis and

lower variability than the first data set. We can also note that the amplitude is 1.69 for these

data.

Table 3.5: Descriptive statistics for fibres data.

Mean Median SD Variance Skewness Kurtosis Min. Max.
1.44 1.52 0.33 0.11 -0.64 0.80 0.55 2.24

The MLEs of the model parameters for fibres data (with standard errors of the estimates)

are listed in Table 3.6 for the fitted models. Table 3.7 presents the goodness-of-fit statistics and

reveals that the ZBXII distribution yields a good adjustment for the fibres data. It has the
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lower values for all statistics but BIC and is quite competitive to the W distribution and other

BXII generalizations. The plots of the estimated densities and estimated empirical cumulative

functions for the most competitive models are displayed in Figure 3.5. We can note that the

ZBXII distribution is more accurate in the central measurements, being superior to the W

and KwBXII distributions for modeling this data set. Then, we can conclude that the ZBXII

distribution provides a better adjustment than the other current distributions and then it is a

good alternative for modeling these data.

Table 3.6: The MLEs of the model parameters for fibres data and corresponding standard errors
in parentheses.

c d s a b
BBXII 7.5794 17.7507 1.9162 0.4901 0.2338

(0.6201) (0.5416) (0.0989) (0.0739) (0.0916)
KwBXII 8.7788 16.8998 1.7892 0.3769 0.1756

(1.0605) (1.8126) (0.0026) (0.1460) (0.0298)
ZBXII 21.5835 0.5030 1.6843 0.2241

(1.8088) (0.2335) (0.0530) (0.0447)
BXII 5.916 5.886 2.084

(0.8826) (3.8288) (0.3186)
c m

LL 7.5390 1.4570
(0.9255) (0.0456)

λ α β
EW 0.6204 5.8931 0.8255

(0.0453) (1.5640) (0.3679)
W 1.5639 5.2152

(0.0440) (0.5615)

Table 3.7: Goodness-of-fit statistics for the fitted models for fibres data.
AIC CAIC BIC HQIC KS

BBXII 34.8875 36.2208 44.5466 38.5785 0.1993
KwBXII 31.3166 32.6500 40.9758 35.0077 0.1477
ZBXII 26.9100 27.7796 34.6373 29.8628 0.1437
BXII 33.3953 33.9059 39.1908 35.6099 0.1653
LL 40.8169 41.0669 44.6805 42.2933 0.1871
EW 33.4823 33.9930 39.2778 35.6969 0.1680
W 31.4875 31.7375 35.3511 32.9639 0.1747
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Figure 3.5: (a) Estimated densities of the BBXII, KwBXII and ZBXII models for fibres data;
(b) estimated and empirical cumulative functions of these models for fibres data

3.10 Concluding remarks

In this chapter, we introduce a four-parameter distribution, called the Zografos-Balakrishnan

Burr XII (ZBXII) distribution. Its hazard rate function allows decreasing, decreasing-increasing-

decreasing and upside-down bathtub shapes and provides a Burr XII generalization that may be

useful to still more complex situations. The new distribution may be an interesting alternative

for modeling lifetime data, among other applications. We obtain some properties of the ZBXII

distribution, provide the estimation of the parameters by maximum likelihood, a simulation

study and present two applications to real data. We illustrate that the ZBXII distribution yields

a good adjustment for both data sets and that it can be used effectively to obtain better fits

than other classical lifetime models.
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Chapter 4

The Ristić-Balakrishnan Burr XII
distribution

Resumo

Uma nova distribuição contínua de quatro parâmetros, chamada Ristić-Balakrishnan Burr XII,

é proposta e estudada. São fornecidas algumas propriedades matemáticas da nova distribuição,

incluindo expressões explícitas para a função quantílica, momentos, momentos incompletos e

função geradora de momentos. O método de máxima verossimilhança é empregado na estimação

dos parâmetros do modelo. Um estudo de simulação é realizado. Uma aplicação é realizada

para ilustrar que a distribuição proposta pode apresentar melhores ajustes que outras general-

izações das distribuições Burr XII e Weibull. Palavras-chave: Distribuição Burr XII distribution.

Família gamma-G. Método de máxima verossimilhança. Família Ristć-Balakrishnan.

Abstract

A new four-parameter continuous distribution called the Ristić-Balakrishnan Burr XII distribu-

tion is defined and studied. We provide some of its mathematical properties, including explicit

expressions for the quantile function, moments, incomplete moments and generating function.

The maximum likelihood method is employed for estimating the model parameters. A simulation

study is performed. An application is presented for illustrate that the proposed distribution may

present consistenly better fits than other Burr XII and Weibull generalizations. Keywords: Burr
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XII distribution. Gamma-G family. Maximum likelihood method. Ristiíc-Balakrishnan family.

4.1 Introduction

In a similar framework to the Pearson’s system, Burr (1942) introduced a system of twelve

diferent distributions based on solutions of a differential equation. The BXII distribution is a

frequently used model of this system. The three-parameter BXII pdf and cdf are given by (2.2)

and (2.1), respectively. It was investigated by Zimmer et al. (1998). Rodriguez (1977) and

Tadikamalla (1980) summarized some properties of the two-parameter BXII distribution and

studied its relation with other models. AL-Hussaini (1991) also gives some characterizations of

this distribution.

The BXII distribution has been used as a lifetime model by several authors. Gupta et al.

(1996) used the BXII model to analyze fibre failure strengths data. Tomer et al. (2015) obtain the

MLEs for the BXII parameters and reliability function under type-I progressive hybrid censoring

scheme. Panahi and Sayyareh (2016) developed the MLEs for the BXII distribution under unified

hybrid censoring, which is a mixture of the generalized type I and type II hybrid censoring

schemes. Asl et al. (2017) propose the use of expectation-maximization (EM) algorithm to

compute the MLEs of the BXII distribution under progressive type-II hybrid censored data.

Belaghi and Asl (2017) employ EM and stochastic EM algorithm for obtaining the MLEs based

on progressively type-I hybrid censored.

In this chapter, we introduce the four-paramerer Ristić-Balakrishnan Burr XII (RBXII) dis-

tribution . It is obtained by inserting (2.1) and (2.2) in (1.4) and (1.3). Thus, the RBXII

distribution has cdf and pdf given by

F (x) = 1−
γ
(
a, − log

{
1−

[
1 +

(
x
s

)c]−d})
Γ(a)

, (4.1)

and

f(x) =
c d xc−1

sc Γ(a)

[
1 +

(x
s

)c]−d−1{
− log

(
1−

[
1 +

(x
s

)c]−d)}a−1
, (4.2)

respectively. Figure 4.1 displays plots of the RBXII pdf for some parameter values. Note that

its pdf allows power-law tails.
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If X is a random variable with density function (4.2), we write X ∼ RBXII(a, s, d, c). The

RBXII hrf is given by

h(x) =
c d xc−1

[
1 +

(
x
s

)c]−d−1
sc γ

(
a,− log

{
1− [1 + (x/s)c]−d

}) {− log

(
1−

[
1 +

(x
s

)c]−d)}a−1
.

Figure 4.2 displays plots of the hrf for some parameter values. The RBXII hrf can have decreasing,

decreasing-increasing-decreasing and upside-down bathtub hazard functions.

The chapter unfolds as follows. In Section 4.2, we obtain expansions for the RBXII pdf

and cdf as linear combination of the BXII model. In Sections 4.3 and 4.4, we present explicit

expressions for the quantile function, moments, incomplete moments and generating function

of the RBXII model. Section 4.5 is devoted to the RBXII maximum likelihood estimators. In

Section 4.6, we carry out a simulation experiment to study the performance of these estimates.

In Section 4.7, we illustrate the potentiality of the new distribution by means of an application

to real lifetime data. Finally, Section 4.8 concludes the chapter.

4.2 Useful expansion

Useful expansions can be derived for the cdf and pdf in (4.1) and (4.2), respectively. Let

z =
[
1 +

(
x
s

)c]−d and consider the power series in (3.3). Thus, we can rewrite the RBXII density

as

f(x) = c d s−cxc−1
[
1 +

(x
s

)c]−d−1 ∞∑
k=0

bk

[
1 +

(x
s

)c]−d(a+k−1)
,

where b0 = 1/Γ(a), b1 = p0(a− 1)/Γ(a), b2 = p1(a− 1)/Γ(a), b3 = p2(a− 1)/Γ(a), etc.

After some algebra, we obtain

f(x) =

∞∑
k=0

vk g(x; s, (a+ k)d, c), (4.3)

where vk = bk
a+k and g(x; s, (a+ k)d, c) is the BXII density function with scale parameter s and

shape parameters c and d(a + k). Equation (4.3) reveals that the RBXII density is an infinite

linear combination of BXII densities. By integrating equation (4.3) gives

F (x) =

∞∑
r=0

vrG(x; s, (a+ k)d, c). (4.4)

Equations (4.3) and (4.4) are de main result of this section.
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Figure 4.1: Pdf plots for the RBXII for s = 1.
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Figure 4.2: Hrf plots for the RBXII.
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4.3 Quantile function

The explicit expression for the qf of the RBXII distribution, say Q(u), is

Q(u) = s

{[
1− 1

exp (Q−1(a, u))

]− 1
d

− 1

}1/c

, (4.5)

where Q−1(a, u) is the inverse function of Q(a, x) = 1 − γ(a, x)/Γ(a). The median M and

other quantiles of the RBXII distribution follow from (4.5) by replacing appropriate values for u.

Therefore, it is easy to simulate the RBXII distribution. Let U be a continuous uniform variable

on the unit interval. Using the inverse transformation method, the random variable X = Q(U)

has the RBXII.

The qf is also a useful tool to obtain alternative expressions for the skewness and kurtosis

coefficients. The Bowley’s skewness (Kenney and Keeping, 1962) and Moors’ kurtosis (Moors,

1988) are given by (3.8) and (3.9), respectively.

4.4 Moments and generating function

In this section, we derive expressions for hth ordinary and incomplete moments and the

generating function of the RBXII distribution. Let µ′h be hth moment of X and µ′dh be the hth

moment of the BXII(c, d, s) distribution. We can provide an expression for the hth moment of

X from (4.3) as

µ′h =
∞∑
k=0

vk µ
′
(a+k)dh

.

Thus, using the result from Zimmer et al. (1998) given in equation (2.7), we have (for h < c d)

µ′h = sh d
∞∑
k=0

(a+ k)vr B((a+ k)d− h c−1, 1 + h c−1), (4.6)

where B(·, ·) is the beta function. By setting h = 1, we obtain the mean of X. The moments are

also helpful to determine the central moments and cumulants. Thus, the skewness and kurtosis

coefficients can be obtained from well-known relationships.

Let Th(y) and Tdh(y) be the hth incomplete moment of the RBXII(a, c, d, s) and BXII(c, d, s)

distributions, respecively. A formula for the hth moment of X can be derived directly from (4.3)
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as

Th(y) =
∞∑
k=0

vk T(a+k)dh(y). (4.7)

By replacing (2.9) in equation (4.7), we obtain (for h < c d)

Th(y) = shd
∞∑
k=0

(a+ k)vk Bsc/sc+yc
(
(a+ k)d− h c−1, 1 + h c−1

)
. (4.8)

Alternatively, the hth incomplete moment can be obtained by inserting (2.10) in equation (4.7).

Thus, it can also be expressed as

Th(y) = shd
∞∑
k=0

(a+ k)vk J

(
y,
h

c
, (a+ k)d+ 1

)
, (4.9)

where

J(y, a, b) =

∫ y

0
za(z + 1)−bdz

=
ya+1

2F1(a+ 1, b; a+ 2;−y)

a+ 1

and 2F1 is the hypergeometric function.

The deviations from the mean and the median are important measures that apply the concept

of incomplete moments. They can be determined as δ1 = 2µ′1F (µ′1) − 2T1(µ
′
1) and δ2 = µ′1 −

2T1(M), respectively. The quantity µ′1 = IE(X) is the mean of X, the median M follows from

(3.7), F (µ′1) is easily obtained from (4.1) and T1(y) =
∫ y
0 x f(x)dx is the first incomplete moment,

which arises from Th(y) by taling h = 1. The Bonferroni and Lorenz curves are other related

applications. They are defined by B(π) = T1(q)/(πµ
′
1) and L(π) = T1(q)/µ

′
1,, where π is a given

probability and q = Q(π) is obtained from (3.7).

We can obtain the mgf of X can be obtained from (3.5) as

M(t) =
∞∑
k=0

vkM(a+k)d(t), (4.10)

where M(r+1)d(t) is the mgf of the BXII(s, (r + 1)d, c) distribution. For t < 0, Paranaíba et al.

(2011, 2013) provided a representation for the BXII mgf, which is given in equation (2.11). By

inserting this result in (4.10), we have that the mgf of X can be expressed as (for t < 0)

M(t) = m

∞∑
k=0

vk I

(
−s t, m

(a+ k)d
− 1,

m

(a+ 1)d
,−(a+ k)d− 1

)
. (4.11)

Equations (4.6), (4.7), (4.9) and (4.11) are the main results of this section.
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4.5 Maximum likelihood estimation

Here, we consider the estimation of the unknown parameters of the RBXII distribution

by the maximum likelihood method. Let x1, . . . , xn be a random sample of size n from the

RBXII(a, c, d, s) distribution. The log-likelihood function for the parameter vector θ = (a, c, d, s)T

is

l(θ) =n log

[
c d

sΓ(a)

]
+ (c− 1)c−1

n∑
i=1

log(ui − 1)− (d+ 1)

n∑
i=1

log(ui) (4.12)

+ (a− 1)

n∑
i=1

log
[
− log(1− u−di )

]
,

where ui = 1 +
(
xi
s

)c. The components of the score vector U(θ) are given by

Ua(θ) = −nψ(a) +

n∑
i=1

log
[
− log(1− u−di )

]
,

Uc(θ) =
n

c
+

n∑
i=1

log(ui − 1)− d+ 1

c

n∑
i=1

(ui − 1) log (ui − 1)

ui

+
(a− 1) d

c

n∑
i=1

(ui − 1)ud−1i log (ui − 1)

(1− udi ) log(1− udi )
,

Ud(θ) =
n

d
−

n∑
i=1

log(ui)− (a− 1)

n∑
i=1

udi log(ui)

(1− udi ) log(1− udi )
,

and

Us(θ) =
−nc
s

+
c (d+ 1)

s

n∑
i=1

(ui − 1)

ui
+
c d (a− 1)

s

n∑
i=1

(ui − 1) ud−1i

(1− udi ) log(1− udi )
,

where ψ(.) is the digamma function. Setting these expressions, U(θ) = 0, and solving them

simultaneously yields the MLEs of the unknown parameters for the RBXII distribution.

Note that the we can express MLE of a can be expressed in a semi-closed form. For fixed c, d

and s, we obtain

â(ĉ, d̂, ŝ) = ψ−1

(
1

n

n∑
i=1

log
[
− log(1− u−di )

])
.
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By replacing a by â in equation (4.12), we have the profile log-likelihood function for θp = (c, d, s).

It can be expressed as

`(θp) =n log(c d) + (c− 1)c−1
n∑
i=1

log(ui − 1)− (d+ 1)
n∑
i=1

log(ui)

+

[
ψ−1

(
1

n

n∑
i=1

log
[
− log(1− u−di )

])
− 1

]
n∑
i=1

log
[
− log(1− u−di )

]
− n log

{
sΓ

[
ψ−1

(
1

n

n∑
i=1

log
[
− log(1− u−di )

])]}
.

where ψ−1(.) is the inverse digamma function.

The observed information matrix of X, denoted by J(θ), can be expressed as

J(θ) = −∂
2 `(θ)

∂θ ∂θT
=


Jaa Jas Jad Jac
. Jss Jsd Jsc
. . Jdd Jdc
. . . Jcc

 .

The elements J(θ) can be obtained from the authors upon request and are useful for interval

estimation and hypothesis test.

4.6 Simulation study

In this section, a simulation study is carried out in order to evaluate the asymtotic perfor-

mance of the MLEs for the parameters of the RBXII distribution. We consider five parameter

combinations and the process is repeated 10,000 times. The subroutine optim and SANN al-

gorithm in R software is used for maximizing the log-likelihood in (4.12) for the sample sizes

n = 100, 250 and 500. The mean estimates and the RMSEs of the MLEs are listed in Table 4.1.

We note that the maximum likelihood method performs well for estimating the model param-

eters. As expected, the biases and RMSEs of the MLEs decrease as the sample size increases.

4.7 Application

In this section, we use a data set corresponding to the failure times of 20 mechanical com-

ponents. It is reported in Murthy et al. (2004). We provide some statistics for these data in
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Table 4.1: Monte Carlo results for the mean estimates and RMSEs of the RBXII distribution.
Mean RMSE

θ n â ĉ d̂ ŝ â ĉ d̂ ŝ

(8, 5, 3, 0.1) 100 8.393 5.169 3.699 0.103 2.567 0.907 2.264 0.030
250 8.214 5.081 3.382 0.101 1.833 0.645 1.732 0.021
500 8.125 5.045 3.231 0.100 1.425 0.505 1.458 0.016

(3.5, 0.2, 4.5, 9) 100 4.129 0.219 4.477 9.110 1.787 0.051 2.260 2.843
250 3.839 0.209 4.485 9.061 1.279 0.036 1.821 2.202
500 3.737 0.206 4.442 9.068 1.002 0.027 1.517 1.868

(0.5, 7, 3.5, 0.4) 100 1.262 8.024 3.443 0.428 1.877 1.889 2.131 0.0915
250 0.656 7.282 3.454 0.404 0.412 0.803 1.636 0.026
500 0.642 7.230 3.338 0.402 0.391 0.635 1.405 0.017

(0.9, 2.5, 0.1, 0.2) 100 0.920 2.807 0.197 0.247 0.727 1.079 0.246 0.184
250 0.808 2.665 0.177 0.208 0.533 0.697 0.165 0.078
500 0.779 2.560 0.175 0.199 0.464 0.456 0.154 0.054

(7.5, 0.2, 5, 3) 100 7.848 0.207 5.101 3.168 1.887 0.036 2.175 2.115
250 7.645 0.202 5.044 3.092 1.351 0.024 1.742 1.786
500 7.581 0.201 5.020 3.055 1.045 0.018 1.453 1.525

Table 4.2. It has positive skewness and kurtosis. Its mean is higher than the median and we can

note that the amplitude is 0.41 for this data set.

Table 4.2: Descriptive statistics for the mechanical components failure time data.

Mean Median SD Variance Skewness Kurtosis Min. Max.
0.12 0.10 0.09 0.01 3.59 12.20 0.07 0.48

For modeling these data, we consider the RBXII distribution and other six competitive models

described as follows (for x > 0):

• The BXII distribution, with pdf given in (2.2).

• The BBXII distribution, with pdf given in (2.4).

• The KwBXII distribution, with pdf given in (2.5).

• The generalized power Weibull (GPW) distribution, with pdf given by

g(t) = αλγtγ−1(1 + λtα)β−1 exp{1− (1 + λtα)β}, (4.13)

where λ > 0 is a scale parameter and α and β are positive shape parameters.
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• The EW distribution, with pdf given by

g(t) = αβ λxα−1 exp (−λxα) [1− exp (−λxα)]β−1,

where α > 0 and β > 0 are shape parameters and λ > 0 is a scale parameter.

• The W distribution, wich arises from the GPW and EW distribution by taking β = 1. It

is also a special case of the RBXII distribution for d→∞ and a = 1.

Table 4.3 presents the MLEs of the model parameters. Note that the parameters of all fitted

distributions are significant. The MLEs and goodness-of-fit statistics are determined using SANN

algorithm in the AdequacyModel script in the R software Marinho et al. (2016). We evaluate

AIC, CAIC, BIC, HQIC and KS statistics for the fitted models (Table 4.4). The lower are these

statistics, the better is the fit to the data.

Table 4.3: The MLEs of the model parameters for the mechanical components failure time data
and corresponding standard errors in parentheses.

c d s a b
BBXII 2.3098 3.7239 0.0919 3.1998 0.3627

(0.5843) (1.8053) (0.0232) (1.5787) (0.1745)
KwBXII 4.7744 3.1877 0.0861 2.1213 0.2324

(0.3387) (0.5130) (0.0094) (0.5582) (0.0867)
RBXII 9.4081 1.5709 0.0743 0.1755

(0.1135) (0.1696) (0.0057) (0.0482)
BXII 5.54265 0.51927 0.0868

(1.4591) (0.2106) (0.0107)
λ α β

GPW 0.0666 5.4595 0.1809
(0.0083) (1.6523) (0.0593)

EW 1.9999 17.8650 0.0391
(0.0024) (0.0137) (0.0087)

W 0.1374 1.6519
(0.0198) (0.2316)

According to all good-of-fit statistics, the RBXII distribution provides the smallest values for

them. So, this distribution gives the best fit among the fitted models under these statistics. Thus,

the RBXII is quite competitive with the Weibull and BXII generalizations. More information

are provided by a visual comparison among the histogram and the three estimated densities
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Table 4.4: Goodness-of-fit statistics for the fitted models for the mechanical components failure
time data.

AIC CAIC BIC HQIC KS
BBXII -60.3299 -56.0442 -55.3513 -59.3580 0.1810
KwBXII -65.7308 -61.4451 -60.7521 -64.7589 0.1129
RBXII -69.5934 -66.9268 -65.6105 -68.8159 0.0979
BXII -68.0884 -66.5884 -65.1012 -67.5053 0.1413
GPW -61.7213 -60.2213 -58.7341 -61.1382 0.2335
W -48.8432 -48.1373 -46.8517 -48.4544 0.2631
EW -26.3297 -24.8297 -23.3425 -25.7465 0.4990

with best fits (Figure 4.3.a). The fitted cdfs of these models are also displayed in Figure 4.3.b.

The plots confirm that the WBXII, Weibull and BXII models provide good fits to these data.

Clearly, the RBXII presents a better adjustment for both plots. Therefore, we can conclude that

the RBXII distribution is a competitive alternative for other BXII and Weibull generalizations

in real applications. This distribution can be chosen as the best model for this data.
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Figure 4.3: (a) Estimated densities of the BBXII, KwBXII and RBXII models for the mechanical
components failure time data; (b) estimated and empirical cumulative functions of these models
for the mechanical components failure time data
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4.8 Concluding remarks

In this chapter, we propose a new four-parameter distribution, called the Ristić-Balakrishnan

BXII (RBXII) distribution. We demonstrate that the RBXII density and cumulative distribu-

tion functions can be expressed as infinite linear combinations of the BXII baseline. We also

study some of its mathematical properties, providing explicit expressions for the quantile func-

tion, moments, incomplete moments and generating function. The maximum likelihood method

is employed for estimating the model parameters and a simulation study is performed. An ap-

plication is presented for illustrative purposes. The proposed distribution presented consistenly

better fits than other competing models. Therefore, the RBXII may be a competitive alternative

for other BXII and Weibull generalizations.
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Chapter 5

The Weibull Burr XII distribution

Resumo

Neste capítulo propomos uma nova distribuição de cinco parâmetros, denominada Weibull Burr

XII. O novo modelo pode ser uma alternativa útil para descrever a distribuição de renda, podendo

também ser aplicada em ciências atuariais, finanças, análise de sobrevivência e diversas outras

áreas. A distribuição proposta contém como casos especiais as distribuições Weibull log-logística,

Weibull Lomax e generalized power Weibull. São investigadas algumas propriedades do modelo

proposto. O método de máxima verossimilhança é utilizado para a estimação dos parâmetros

do modelo. Um estudo de simulação é realizado. Também são apresentadas duas aplicações em

conjuntos de dados reais, as quais ilustram a utilidade da distribuição proposta para modelar

dados de renda e também de análise de sobrevivência. Além disso, as aplicações mostram que o

novo modelo é bastante competitivo com generalizações das distribuições Burr XII e Weibull.

Palavras-chave: Distribuição Burr XII. Distributição de renda. Método de máxima verossimil-

hança. Família Weibull-G.

Abstract

In this chapter, we introduce a five-parameter model called the Weibull Burr XII distribution.

The new model may be a useful alternative to describe income distributions and can also be

applied in actuarial science, finance and lifetime data and several other areas. It contains as spe-

cial models the Weibull log-logistic, Weibull Lomax and generalized power Weibull distributions,
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among others. Some of its properties are investigated. The method of maximum likelihood is

used for estimating the model parameters. A simulation study is provided. We also present two

applications to real data sets. They illustrate the usefulness of the proposed distribution for

modeling income and lifetime data and also show that the new distribution is quite competitive

with other Burr XII and Weibull generalizations.

Keywords: Burr XII distribution. Income distributions. Maximum likelihood method. Weibull-

G family.

5.1 Introduction

The BXII model has a wide usage in the context of income distributions, see (Jäntti and

Jenkins, 2010; Brzeziński, 2013; Shakeel et al., 2015; Tanak et al., 2015) for recent examples.

Cirillo (2010) also applied this model for analysing the size distribution of Italian firms by age.

Chotikapanich et al. (2013) considered it for calculating poverty measures in countries from South

and Southeast Asia. Kumar et al. (2013) estimated the BXII distribution on reliability context.

In this chapter, we define the Weibull-Burr XII (WBXII) distribution by inserting (2.1)

and (2.2) in equations (1.5) and (1.6). Thus, the WBXII pdf reduces to (for x > 0)

f(x) =
αβ c d s−cxc−1

[1 + (x/s)c]1−d
exp

{
−α [(1 + (x/s)c)d − 1]β

}
[(1 + (x/s)c)d − 1]β−1, (5.1)

where α > 0, β > 0, d > 0 and c > 0 are shape parameters and s > 0 is a scale parameter. The

corresponding cdf is given by

F (x) = 1− exp
{
−α [(1 + (x/s)c)d − 1]β

}
. (5.2)

If X is a random variable with density function (5.1), we write X ∼WBXII(c, d, s, a, b). Plots of

the WBXII density function for selected parameter values are displayed in Figure 5.1. It can take

various forms and has as special models the GPW (Nikulin and Haghighi, 2006) for α = β = 1

and λ = 1/s, Weibull log-logistic for d = 1 and s = m−1 and Weibull Lomax (Tahir et al., 2015)

for c = 1.
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Figure 5.1: Pdf plots for the WBXII distribution with s = 1
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The hrf of X reduces to

h(x) = αβ c d s−cxc−1 [1 + (x/s)c]d−1 [(1 + (x/s)c)d − 1]β−1.

Figure 5.2 provides some plots of the hrf for selected parameter values. It reveals that the

proposed distribution can have decreasing, increasing, upside-down bathtub and bathtub-shaped

hazard functions. This characteristic makes this distribution very attractive for real applications.

It can be applied in the context of engineering, income distributions, finance and lifetime data,

for example.

Because the WBXII distribution has pdf and hrf quite flexible, it can also be a useful alterna-

tive to the BXII model and its generalizations. Considering different generalized (or generated)

G families of continuous univariate distributions, we can cite the beta Burr XII (Paranaíba

et al., 2011), Kumaraswamy Burr XII (Paranaíba et al., 2013), exponentiated Burr XII (Al-

Hussaini and Hussein, 2011b), Marshal-Olkin extended Burr XII (Al-Saiari et al., 2014) and

McDonald Burr XII (Gomes et al., 2015) distributions, among others. Therefore, the introduced

distribution may provide an interesting alternative to describe still more complex situations. For

example, the characterization and understanding of the income distribution, which is still an

open problem in economic science (Moura Jr and Ribeiro, 2009).

The rest of the chapter is organized as follows. Useful expansions for the WBXII cdf and pdf

are derived in Section 5.2. In Section 5.3, we investigate some of its mathematical properties

such as the qf, ordinary and incomplete moments, mean deviations and generating function. In

Section 5.5, we perform a simulation study. The maximum likelihood method is used to estimate

the model parameters in Section 5.4. Two applications to lifetime and income data are addressed

in Section 5.6. Section 5.7 offers some concluding remarks.
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Figure 5.2: Hrf plots for the WBXII distribution with s = 1
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5.2 Useful expansions

Some useful expansions for equations (5.1) and (5.2) can be derived by using power series. It

follows from Bourguignon et al. (2014) that the Weibull-G density function can be expressed as

f(x) =
∞∑

j,k=0

υj,k g(x)G(x)[β(k+1)+j−1]−1,

where

υj,k =
(−1)k β αk+1 Γ(β(k + 1) + j + 1)

k! j! Γ(β(k + 1) + 1)
.

By replacing G(x) for (2.1) and g(x) for (2.2), we have

f(x) = c d s−c
∞∑

j,k=0

υj,k x
c−1u−d−1

(
1− u−d

)β(k+1)+j−2
, (5.3)

where u = 1 +
(
x
s

)c. Note that if |z| < 1 and b > 0 is a real non-integer, the power series holds

(1− z)b−1 =

∞∑
r=0

(−1)rΓ(b)

r! Γ(b− r)
zr.

Using the above expansion for
(
1 − u−d

)[β(k+1)+j−1]−1 in equation (5.3) and after some

algebraic manipulation, we obtain

f(x) =
∞∑
r=0

wr g(x; c, (r + 1)d, s), (5.4)

where (for r = 0, 1, . . .)

wr =
∞∑

k,j=0

(−1)r υj,k Γ(β(k + 1) + j − 1)

Γ(β(k + 1) + j − r − 1)r! (r + 1)

and g(x; c, (r+ 1)d, s) is the BXII density function with scale parameter s and shape parameters

(r + 1)d and c. Equation (5.4) reveals that the WBXII density is an infinite linear combination

of BXII densities. So, several structural properties of the WBXII distribution can follow from

those BXII properties. By integrating equation (5.4) gives

F (x) =
∞∑
r=0

wrG(x; c, (r + 1)d, s). (5.5)

Equations (5.4) and (5.5) are the main results of this section.
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5.3 Mathematical properties

In this section, we investigate some mathematical properties of the WBXII distribution in-

cluding quantile and random number generation, ordinary and incomplete moments, mgf, mean

deviations and Bonferroni and Lorenz curves. By determining analytical expressions for those

mathematical quantities for the WBXII distribution can be more efficient than computing them

directly by numerical integration of its density function.

5.3.1 Quantile function and random number generation

The qf of X follows by inverting (5.2) as

Q(u) = s


[(
− log(1− u)

α

)1/b

+ 1

]1/d
− 1


1/c

. (5.6)

By setting u = 0.5 in (5.6) gives the median M of X. Other quantiles of interest can also

be obtained from (5.6) by replacing appropriate values for u. Simulating the WBXII random

variable is straightforward by using the inverse transformation method. If U is a uniform variate

on the unit interval (0, 1), then the random variable X = Q(U) has pdf given by (5.1).

5.3.2 Moments

The nth ordinary moment of X can be determined from (5.4) as

µ′n = E(Xn) =
∞∑
r=0

wr

∫ ∞
0

xn g(x; d, (r + 1)d, s)dx,

where B(·, ·) is the beta function.

Using a result in Zimmer et al. (1998) in (2.7), we have (for n < c d)

µ′n = sn d
∞∑
r=0

(r + 1)wr B((r + 1)d− n c−1, 1 + n c−1), (5.7)

where B(·, ·) is the beta function. The central moments (µs) and cumulants (κs) of X follow

recursively from (5.7) as

µs =

p∑
i=0

(
s

i

)
(−1)i µ′s1 µ

′
s−i and κs = µ′s −

s−1∑
i=1

(
s− 1

i− 1

)
κi µ

′
s−i,
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respectively, where κ1 = µ′1. The skewness and kurtosis measures can be evaluated from the

ordinary moments using well-known relationships.

Alternative expressions for the skweness and kurtosis can be based on quantile measures,

i.e., they can be obtained from (5.6). These measures are less sensitive to outliers and may exist

even for distributions without moments. Figure 5.3 displays plots of Bowley’s skewness (3.8) and

Moors’ kurtosis (3.9) for some parameter values. They indicate that the proposed distribution is

quite flexible in terms of variation of the skewness and kurtosis. Note that the WBXII distribution

allows negative and positive values for the skewness.

5.3.3 Incomplete moments

The hth incomplete moment of X is defined by Th(y) =
∫ y
0 xh f(x)dx. It can be expressed

as

Th(y) = c d
∞∑
r=0

(r + 1)wr

∫ y

0
xh−1

(x
s

)c [
1 +

(x
s

)c]−(r+1)d−1
dx.

By setting t =
[
1 +

(
x
s

)c]−1 in the last equation, we obtain

Th(y) = d sh
∞∑
r=0

(r + 1)wr

∫ 1

sc/(sc+yc)
t(r+1)d−h

c
−1 (1− t)

h
c dt.

Hence, the hth incomplete moment of X reduces to (for h < c d)

Th(y) = d sh
∞∑
r=0

(r + 1)wr Bsc/sc+yc((r + 1)d− h c−1, 1 + h c−1), (5.8)

where Bz(a, b) =
∫ 1
z t

a−1 (1− t)b−1dt is the upper incomplete beta function.

5.3.4 Mean deviations

An important application of the first incomplete moment refers to the mean deviations about

the mean and the median defined by

δ1 = 2µ′1F (µ′1)− 2T1(µ
′
1) and δ2 = µ′1 − 2T1(M),

respectively, where µ′1 = E(X), the median M of X can by determined from (5.6) by M =

Q(1/2), F (µ′1) is easily obtained from (5.2) and (for c d > 1) T1(y) is the first incomplete
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moment given by (5.8) with h = 1. An alternative expression for the first incomplete moment

comes from (5.4) as

T1(y) = cds
∞∑
r=0

(r + 1)wr

∫ y

0
xc
[
1 +

(x
s

)c]−(r+1)d−1
dx.

Setting z = (x/s)c, we obtain

T1(y) = d s
∞∑
r=0

(r + 1)wr

∫ ( ys )
c

0
z1/c(1 + z)−(r+1)d−1dz.

=
c d s yc+1

1 + c

∞∑
r=0

(r + 1)wr 2F1

[
1 +

1

c
, (r + 1)d+ 1; 2 +

1

c
; −

(y
s

)c]
,

where 2F1 is the hypergeometric function defined by

2F1(a, b; c;x) =

∞∑
k=0

(a)k(b)k
(c)k

xk

k!
,

where |x| < 1, c = 0,−1,−2, . . . and (z)n is the Pochhammer polynomial.

The above results are related to the Bonferroni and Lorenz curves. These curves are important

in economics for studying income and poverty, but can be useful in demography, reliability,

insurance, medicine and several other fields. For a given probability π, they are defined by

B(π) = T1(q)/(πµ
′
1) and L(π) = T1(q)/µ

′
1, respectively, where q = Q(π) is given by (5.6). If

π is the proportion of units whose income is lower than or equal to q, the values of L(π) yield

fractions of the total income and B(π) refers to the relative income levels.

The Lorenz curve allows us to obtain the Gini concentration (CG) defined by CG = 1 −

2
∫ 1
0 L(u)du. It represents the area between the curve L(u) and the straight line. Clearly, CG

can be evaluated by numerical integration.

5.3.5 Generating function

The mgf of X is defined by M(t) = E(etX). We denote by Md(t) the mgf of the BXII(c, d, s)

distribution. Thus, the mgf of the WBXII distribution can be obtained from (5.4) as

M(t) =

∞∑
r=0

wrM(r+1)d(t), (5.9)

where M(r+1)d(t) is the mgf of the BXII(s, (r + 1)d, c) distribution. For t < 0, we have

Md(t) = c d

∫ ∞
0

exp(y s t) yc−1 (1 + yc)−(d+1)dy.
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The above representation is provided by Paranaíba et al. (2011, 2013). The authors also demon-

strated that Md(t) can be expressed in terms of the Meijer G-function. Hence, for t < 0, the mgf

of X can be obtained by inserting (2.11) in (5.9) as

M(t) = m
∞∑
r=0

wr I

(
−s t, m

(r + 1)d
− 1,

m

(r + 1)d
,−(r + 1)d− 1

)
. (5.10)

Equations (5.9) and (5.10) are the main results of this section.

5.4 Maximum likelihood estimation

In this section, we estimate the five parameters of the WBXII distribution by the maximum

likelihood method. Let x1, . . . , xn be a random sample of size n from the WBXII(c, d, s, α, β)

distribution. Let θ = (c, d, s, α, β)T be the parameter vector. The log-likelihood function for θ

can be expressed as

`(θ) =n log(αβ c d s−1) + (c− 1)c−1
n∑
i=1

log(ui − 1) + (d− 1)
n∑
i=1

log ui (5.11)

− α
n∑
i=1

(
udi − 1

)β
+ (β − 1)

n∑
i=1

log
(
udi − 1

)
,

where ui = 1 +
(
xi
s

)c. The estimates of the model parameters can be obtained by maximiz-

ing (5.11).

Alternatively, we can differentiating (5.11) and solving the resulting nonlinear likelihood

equations. The components of the score vector U(θ) are given by

Uc(θ) =n c−1 + c−1
n∑
i=1

log(ui − 1) + (d− 1) c−1
n∑
i=1

(ui − 1) log (ui − 1)u−1i

− αβ d (c s)−1
n∑
i=1

(ui − 1) log (ui − 1)ud−1i

(
udi − 1

)β−1
+ d (β − 1) (c s)−1

n∑
i=1

(ui − 1) log (ui − 1)ud−1i

(
udi − 1

)−1
,
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Ud(θ) =nd−1 +

n∑
i=1

log ui + (β − 1)

n∑
i=1

udi log ui

(
udi − 1

)−1
− αβ

n∑
i=1

udi log ui

(
udi − 1

)β−1
,

Us(θ) = − c n s−1 + c(d− 1)s−1
n∑
i=1

(ui − 1)u−1i

− c d (β − 1) s−1
n∑
i=1

(ui − 1)ud−1i

(
udi − 1

)−1
+ αβ c d s−1

n∑
i=1

(ui − 1)ud−1i

(
udi − 1

)β−1
,

Uα(θ) =nα−1 −
n∑
i=1

(
udi − 1

)β
,

and

Uβ(θ) = nβ−1 +
n∑
i=1

log
(
udi − 1

)
− α

n∑
i=1

(
udi − 1

)β
log
(
udi − 1

)
.

Setting these expressions to zero, U(θ) = 0, and solving them simultaneously yields the MLEs

of the five parameters. These equations cannot be solved analytically but statistical software can

be used to solve them numerically using iterative methods such as the quasi-Newton BFGS and

Newton-Raphson type algorithms, see Press et al. (2007).

Note that, for fixed c, d, s and β, the MLE of α is given by

α̂(ĉ, d̂, ŝ, β̂) =
n∑n

i=1(u
−d
i − 1)β

(5.12)

It is easy to observe in (5.12) that, fixed on x1, . . . , xn,

• α̂→ 1 when β̂ → 0̂+,

• α̂→∞ when ŝ→∞,

• α̂→ 0̂+ when ŝ→ 0̂+,
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• α̂→ 0̂+ when d̂→∞,

• α̂→∞ when d̂→ 0̂+

Thus, we can think of the use of more refined procedures for estimation under small values of

a and s. By replacing α by (5.12) in equation (5.11) and letting θp = (c, d, s, β), the profile

log-likelihood function for θp can be expressed as

`(θp) = n log(nβ c d s−1) + (c− 1)c−1
n∑
i=1

log(ui − 1) + (d− 1)
n∑
i=1

log ui (5.13)

− n log
n∑
i=1

(
udi − 1

)β
+ (β − 1)

n∑
i=1

log
(
udi − 1

)
− n,

The corresponding score vector of (5.13), U(θp), has components

Uc(θp) = n c−1 + c−1
n∑
i=1

log(ui − 1) + (d− 1)c−1
n∑
i=1

(ui − 1) log(ui − 1)u−1i

− nβ d c−1
[

n∑
i=1

(
udi − 1

)β]−1 n∑
i=1

(ui − 1)ud−1i

(
udi − 1

)β−1
log (ui − 1)

+ d (β − 1) c−1
n∑
i=1

(ui − 1)ud−1i

(
udi − 1

)−1
log (ui − 1) ,

Ud(θp) = nd−1 +
n∑
i=1

log ui + (β − 1)
n∑
i=1

udi

(
udi − 1

)−1
log ui

− nβ

[
n∑
i=1

(
udi − 1

)β]−1 n∑
i=1

udi

(
udi − 1

)β−1
log ui,

Us(θp) = −n c s−1 + c(d− 1)s−1
n∑
i=1

(ui − 1)u−1i

− c d (β − 1) s−1
n∑
i=1

(ui − 1)ud−1i

(
udi − 1

)−1
+ nβ c d s−1

[
n∑
i=1

(
udi − 1

)β]−1 n∑
i=1

(ui − 1)ud−1i

(
udi − 1

)β−1
,
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and

Uβ(θp) = nβ−1 +

n∑
i=1

log
(
udi − 1

)
− n

[
n∑
i=1

(
udi − 1

)β]−1 n∑
i=1

(
udi − 1

)β
log
(
udi − 1

)
.

Solving the equations U(θp) = 0 simultaneously yields the MLEs of c, d, s and β. The MLE

of α is just α̂(ĉ, d̂, ŝ, β̂). The maximization of the profile log-likelihood might be simpler since it

involves only four parameters.

For interval estimation on the model parameters, we require the observed information matrix

J(θ) given by

J(θ) = −∂
2 `(θ)

∂θ ∂θT
=


Jcc Jcd Jcs Jcα Jcβ
. Jdd Jds Jdα Jdβ
. . Jss Jsα Jsβ
. . . Jαα Jαβ
. . . . Jββ

 ,

whose elements can be obtained from the authors upon request. Under standard regularity

conditions, the approximate confidence intervals for the individual model parameters can be

constructed based the multivariate normal N5(0,J(θ̂)
−1

) distribution.

5.5 Simulation study

In this section, our aim is to evaluate the MLEs of the parameters of the WBXII distribution.

We conduct a Monte Carlo simulation experiment based on 10,000 replications. We considered

five different parameter combinations and set the sample size at n = 100, 250 and 500. The

simulation study is conducted using the subroutine optim and SANN algorithm in R software

for maximizing the log-likelihood in (5.11). Table 5.1 reports the empirical mean estimates and

corresponding RMSEs. We note that, for all parameter combinations the empirical biases and

RMSEs decrease as the sample size increases. Considering the asymptotic properties of the

MLEs, these results are expected.

5.6 Applications

In this section, we illustrate the usefulness of the WBXII distribution for modeling income and

lifetime data. The first data set represents the time to failure (103 h) of 40 suits of turbochargers
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in one type of diesel engine (Xu et al., 2003). These data was previously considered by Benkhelifa

(2016). The second data set consists in annual salaries of 862 professional baseball players of the

Major League Baseball for the season 2016. The data is mesuared in American dollars and is ava-

iable for download at https://www.usatoday.com/sports/mlb/salaries/2016/player/all/.

We use these two data sets to compare the fits of the WBXII distribuition with other six

related models, i.e., the BBXII, KwBXII, BXII, LL, GPW, and W distributions. Their densities

are given by equations (2.4), (2.5), (2.2), by taking s = m−1 and d = 1 in (2.2), (4.13) and by

taking β = 1 in (4.13), respectively.

In each case, the parameters are estimated by maximum likelihood using the AdequacyModel

script in R software (Marinho et al., 2016). We report the MLEs, their corresponding standard

errors the statistics AIC, CAIC, BIC, HQIC and KS. The lower values of these statistics are

associated with the better fits.

5.6.1 Turbochargers failure time

Table 5.2 describes some descreptive statistics of the turbochargers failure time data. Note

that these data presents negative skewness and kurtosis coefficients and have an amplitude of

7.4. We also have close values for the mean and median. This descriptive summary indicates

that the turbochargers data set follows a power law distribution with left-skewed tail.

Table 5.3 lists the MLEs for the fitted models and their corresponding standard errors. For

all considered models, the parameter estimates are significant. Table 5.4 gives the goodness-

of-fit statistics. The WBXII distribution has the lowest values for all statistics but BIC. Note

that for the BIC, the WBXII is quite competitive with the W distribution. However, the W

model may not be an effective alternative for modeling left-skewed data. Figure 5.4 displays the

histogram and the estimated densities with lower values for goodness-of-fit statistics. We note

that the WBXII yields a good adjustment for the current data. It is more accurate than the

W distribution for modeling the left tail and is quite competitive with the BBXII distribution.

Thus, we can conclude from Figure 5.4 and Table 5.4 that the WBXII model provides the better

fit for the turbocharges failure time data.
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Figure 5.4: Histogram and estimated densities of the WBXII, BBXII and W models for the
turbochargers failure time data.

5.6.2 Baseball players salaries

Some descriptive statistics for the baseball players data are provided in Table 5.5. These data

presents positive values for the skewness and kurtosis coefficients, indicating right-skew data. We

have high amplitude, variance and SD. We also note that the mean and median are not so close.

This bevavior is quite common in income data sets.

Table 5.6 provides the MLEs and their standard errors for the seven models fitted for the

baseball players data set. We have significant estimates for all the parameters of these models.

Table 5.7 lists the goodness-of-fit measures considered. The WBXII distribution presents the

lowest values for all statistics. These results indicate that the WBXII distribution performs better

fits than the other competitive models considered for the baseball players data set. Figure 5.5

displays the fitted WBXII, BBXII and KwBXII densities and the histogram for the baseball

players data. They confirm that the WBXII model yields a better fit. Finally, we can conclude

that the WBXII is an effective alternative to modeling lifetime (see the first data set) and income

(see the second data set) data, specially when they present power law tails. It is quite competitive

to the classical Weibull lifetime distribution and to other BXII generalizations.
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Figure 5.5: Histogram and estimated densities of the WBXII, BBXII and KwBXII models for
the baseball players data.

5.7 Concluding remarks

The five-parameter Weibull Burr XII distribution is introduced and studied. Its hazard rate

function can be increasing, decreasing, upside-down bathtub and bathtub-shaped. It is also very

flexible in terms of the density function and skewness and kurtosis coefficients. Some mathe-

matical properties of the proposed model are presented including the ordinary and incomplete

moments, quantile and generating functions and mean deviations. We estimate the model para-

meters using maximum likelihood and present the components of the score vector. A simulation

study is carried out. We also present two applications to real lifetime and income data sets.

They illustrate the usefulness of the proposed distribution for modeling these kind of data and

also show that the WBXII distribution is quite competitive with other Burr XII and Weibull

generalizations.
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Table 5.2: Descriptive statistics for turbochargers data.

Mean Median SD Variance Skewness Kurtosis Min. Max.
6.25 6.50 1.96 3.82 -0.66 -0.36 1.60 9.00

Table 5.3: The MLEs of the model parameters for the turbochargers failure time data and
corresponding standard errors in parenthese.

c d s α β

WBXII 13.4956 7.5404 8.8931 1.1128 0.2216
(2.7613) (3.6805) (0.7060) (0.3671) (0.0576)

c d s a b
BBXII 15.4893 11.1316 11.2702 0.1666 4.5249

(0.0395) (0.1854) (0.1994) (0.0282) (2.0589)
KwBXII 15.1758 6.2322 9.2966 0.1559 0.7550

(0.1931) (0.9355) (0.3827) (0.0398) (0.2306)
BXII 3.8290 3.9620 9.6190

(0.5506) (1.8934) (1.5960)
c m

LL 4.8540 6.2340
(0.6551) (0.3477)

α λ β
GPW 3.5830 7.7010 1.3300

(0.5466) (1.4125) (0.6152)
W 3.8720 6.9240

(0.5174) (0.2951)

Table 5.4: Goodness-of-fit statistics for the fits to the turbochargers failure time data.
AIC CAIC BIC HQIC KS

WBXII 165.8103 167.5750 174.2547 168.8635 0.0532
BBXII 166.9631 168.7278 175.4075 170.0163 0.0744
KwBXII 167.0753 168.8400 175.5197 170.1286 0.0579
BXII 174.8080 175.4746 179.8746 176.6399 0.1029
LL 181.4142 181.7386 184.7920 182.6355 0.1440
GPW 169.6197 170.2864 174.6863 171.4516 0.1066
W 168.9513 169.2756 172.3290 170.1725 0.1069

Table 5.5: Descriptive statistics for baseball players data.

Mean Median SD Variance Skewness Kurtosis Min. Max.
4,529,859.69 1.5× 106 6,070,096 3.684606× 1013 1.98 3.74 507,500 34,416,666
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Table 5.6: The MLEs of the model parameters for baseball players data and corresponding
standard errors in parentheses.

c d s α β

WBXII 0.5527 0.0796 1.8716 2.4141 7.4298
(0.0686) (0.0115) (0.8292) ( 1.0993) (0.3079)

c d s a b
BBXII 1.8134 0.0487 5.7723 12.3094 6.2716

(0.1742) (0.0046) (0.7939) (0.6308) (0.5546)
KwBXII 3.92390 0.03251 2.59116 9.16545 4.0435

(0.2031) (0.0016) (0.4065) (0.5123) (0.2463)
BXII 6.8459 0.0102 2.6500

(0.6858) (0.0010) (0.3534)
c m

LL 0.1289 14.2324
(0.0036) (1.7615)

α λ β
GPW 1.6123 10.1363 0.0400

(0.1926) (1.2913) (0.0047)
W 0.0646 9.9377

(0.0015) (1.2611)

Table 5.7: Goodness-of-fit statistics for the fitted models for baseball players data.
AIC CAIC BIC HQIC KS

WBXII 28023.5004 28023.5705 28047.2967 28032.6096 0.2168
BBXII 28977.3246 28977.3947 29001.1209 28986.4338 0.3812
KwBXII 29077.1495 29077.2196 29100.9458 29086.2586 0.3858
BXII 31195.1989 31195.2268 31209.4766 31200.6643 0.5745
LL 31825.4901 31825.5040 31835.0086 31829.1337 0.7943
GPW 30421.9845 30422.0125 30436.2623 30427.4500 0.6359
W 32146.5307 32146.5447 32156.0492 32150.1744 0.8667
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Chapter 6

The logistic Burr XII distribution

Resumo

Neste capítulo propomos uma nova distribuição de quatro parâmetros, denominada logistic Burr

XII. Esta distribuição é obtida inserindo a distribuição Burr XII com três parâmetros no gerador

logistic-X. O modelo proposto é uma alternativa útil para modelar dados de renda, podendo

também ser aplicada em outras áreas do conhecimento. Nós mostramos que a nova distribuição

pode assumir as formas decrescente e banheira invertida para a função de risco e que sua densi-

dade pode ser escrita como combinação linear da densidade da Burr XII. Algumas propriedades

matemáticas da distribuição proposta são apresentadas, tais como a função quantílica, momentos

ordinários e incompletos e função geradora de momentos. Nós também obtemos os estimadores

de máxima verossimilhança para os parâmetros do modelo e realizamos um estudo de simulação

de Monte Carlo. A potencialidade da nova distribuição é ilustrada através de duas aplicações

em dados de renda.

Palavras-chave: Distribuição Burr XII. distribuição de renda. Estimação de máxima verossimil-

hança. Família logistic-X. Momentos.

Abstract

In this chapter, we introduce the four-parameter logistic Burr XII distribution. It is obtained by

inserting the three-parameter Burr XII distribution as baseline in the logistic-X family and may

be a useful alternative to model income distribution and applied to other areas. We prove that
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the new distribution can have decreasing and upside-down bathtub hazard functions and that

its density function is an infinite linear combination of Burr XII densities. Some mathematical

properties of the proposed model are determined such as the quantile function, ordinary and

incomplete moments and generating function. We also obtain the maximum likelihood estimators

of the model parameters and perform a Monte Carlo simulation study. The potentiality of the

new distribution is illustrated by means of two applications to income data sets.

Keywords: Burr XII distribution. Income distribution. Logistic-X family. Maximum likelihood

estimation. moments.

6.1 Introduction

The Burr XII (BXII) distribution first appears as part of the Burr system of distributions.

This system was introduced in 1942 by Irving W. Burr and comprises twelve distributions which

yield a variety of density shapes, see Burr (1942). In the economic context, the BXII distribution

is known under the name of Singh-Maddala, see Singh and Maddala (1975, 1976). Since then, it

has received special attention in the literature of income distributions.

Several studies have been conducted considering the BXII distribution for modeling per-

sonal or family incomes in different countries, such as Czech Republic (Brzeziński, 2013), Hun-

gary (Brzeziński, 2013), Pakistan (Shakeel et al., 2015), Poland (Brzeziński, 2013), Slovak Repub-

lic (Brzeziński, 2013), United Kingdom (Henniger and Schmitz, 1989; Jäntti and Jenkins, 2010)

and United States (Majumder and Chakravarty, 1990; McDonald and Xu, 1995; Łukasiewicz

et al., 2010; Tanak et al., 2015). Brzeziński (2014) also suggested that the BXII distribution is

useful for empirical modelling of the distribution of journal impact factors. Jones et al. (2014)

applied it to modelling inpatient cost in English hospitals.

The three-parameter BXII distribution has cdf and pdf given by (2.1) and (2.2) respectively.

Shao (2004) and Shao et al. (2004) studied the maximum likelihood estimation and the models for

extremes for the three-parameter BXII distribution, respectively. Wu et al. (2007) discussed the

estimation problems using this distribution based on progressive type II censoring with random
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removals. Silva et al. (2008) proposed a location-scale regression model based on this distribution.

In this chapter, we introduce a new four-parameter distribution called de logistic-Burr XII

(LBXII) distribution. It is defined by inserting the three-parameter Burr-XII (BXII) distribution

as baseline in equations (1.7) and (1.8). Our purpose is to provide a BXII generalization that may

be useful to model power law situations. For example, Pareto suggested that income distribution

follows a power law for those with high income (Pareto, 1987). However, subsequent studies

found that this conjecture applies only to a small percentage of the population (Guo and Gao,

2012). Therefore, the characterization and understanding of the income distribution for the

remaining majority of the population is still an open problem (Moura Jr and Ribeiro, 2009).

The LBXII distribution has cdf given by (for x > 0)

F (x) =

{
1 +

[
d log

{
1 +

(x
s

)c}]−λ}−1
, (6.1)

where λ > 0, d > 0 and c > 0 are shape parameters and s > 0 is a scale parameter. The

corresponding pdf is given by

f(x) =
λ c d s−cxc−1

1 + (x/s)c

[
d log

{
1 +

(x
s

)c}]−(λ+1)
{

1 +
[
d log

{
1 +

(x
s

)c}]−λ}−2
. (6.2)

Henceforth, if X is a random variable with density function (6.2), we write X ∼ LBXII(c, d, s, λ).

Figure 6.1 displays plots of the LBXII density function for selected parameter values. It can take

various forms and has as special models some well-known distributions. For d = 1 and s = m−1,

we have the logistic-log-logistic distribution. The log-logistic (LL) distribution is obtained when

λ = 1, d = 1 and s = m−1. For c = 1 and λ = c = 1, it becomes the logistic-Lomax (LLo) and

Lomax models, respectively. The hrf of X can be expressed as

h(x) =
λ c s−cxc−1

log [1 + (x/s)c]

[
1 +

(x
s

)c ]−1{
1 +

[
d log

{
1 +

(x
s

)c}]−λ}−1
.

Figure 6.2 provides plots of the hrf for some parameter values. It reveals that the LBXII

distribution can have decreasing and upside-down bathtub hazard functions. The proposed

distribution is quite flexible regarding the pdf and hrf and may be a useful alternative to the BXII
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Figure 6.1: Plots of the LBXII density for s = 1.
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Figure 6.2: Plots of the LBXII hrf for s = 1.

model and its generalizations. Therefore, it can be considered for modeling income distribution

and also in actuarial science, bioscience and lifetime data, among other areas.

The rest of the chapter is organized as follows. We derive useful expansions for the cdf

and pdf of the new distribution in Section 6.2. In Section 6.3, some mathematical properties

of the LBXII distribution are investigated. In Section 6.4, the maximum likelihood method is

presented to estimate the model parameters. A simulation study is performed in Section 6.5. In

Section 6.6, we illustrate the flexibility of the new model using two real income data sets. Some

concluding remarks are offered in Section 6.7.

6.2 Useful expansions

Tahir et al. (2016a) demonstrated that the LX pdf can be expressed as an infinite linear

combination of exponentiated-G (exp-G) densities. See Mudholkar and Srivastava (1993) for

the definition of the exp-G distribution. In this section, we derive useful expansions for the

LBXII pdf not from exponentiated models but based on our baseline model. Inserting (2.1) in
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equation (1.7), the LBXII cdf can be rewritten as

F (x) =
1

1 +
[
− log

(
1−

{
1− [1 + (x/s)c]−d

})]−λ . (6.3)

Using the Mathematica software, we obtain a power series for w = 1 + [− log(1− y)]a as

w =1 +

[
1 +

a

2
y +

1

24
(3a2 + 5a) y2 +

1

48
(a3 + 5a2 + 6a) y3

+
1

5760
(15a4 + 150a3 + 485a2 + 502a) y4

]
ya +O(ya+5).

Applying this power series for y = 1− [1 + (x/s)c]−d in (6.3) and after some algebraic manipu-

lation, we have

F (x) =

{
1− [1 + (x/s)c]−d

}λ
{

1− [1 + (x/s)c]−d
}λ

+
∑∞

k=0 pk

{
1− [1 + (x/s)c]−d

}k , (6.4)

where the pk’s are p0 = 1, p1 = λ/2, p2 = λ (3λ + 5)/24, p3 = λ (λ2 + 5λ + 6)/48, p4 =

λ (15λ3 +150λ2 +485λ+502)/5760, etc. For any λ > 0 real non-integer, the following expansion

holds since the left-side expression is a cdf

{1− [1 + (x/s)c]}λ =
∞∑
k=0

qk {1− [1 + (x/s)c]}k,

where

qk =
∞∑
j=k

(−1)k+j
(
λ

j

)(
j

k

)
.

Thus, equation (6.4) can be rewritten as

F (x) =

∑∞
k=0 qk {1− [1 + (x/s)c]}k∑∞
k=0 υk {1− [1 + (x/s)c]}k

, (6.5)

where υk = qk + pk. The coefficients of the quotient of the two power series in (6.5) can be

determined from the recurrence equation (for k ≥ 0)

ωk =
1

υ0

(
qk −

1

υ0

k∑
l=0

υr ωk−l

)
and then equation (6.5) reduces to

F (x) =

∞∑
k=0

ωkHk(x), (6.6)
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where Hk(x) =
{

1−
[
1 +

(
x
s

)c]−d}k
. By differentiating (6.6), we obtain

f(x) =
∞∑
k=0

ωk+1 hk+1(x)

= ω1 g(x; s, d, c)

+
∞∑
k=1

ωk+1 (k + 1) c d s−c xc−1
[
1 +

(x
s

)c]−d−1{
1−

[
1 +

(x
s

)c]−d}k
, (6.7)

where hk+1(x) is the exp-BXII pdf with power parameter k + 1. Using the binomial theorem

(for k ≥ 1), we can write

{
1−

[
1 + (x/s)c

]−d}k
=

k∑
r=0

(−1)r
(
k

r

)
[1 + (x/s)c]−r d (6.8)

Inserting (6.8) in equation (6.7) and after some algebra, we obtain

f(x) =
∞∑
k=0

k∑
r=0

(−1)r (k + 1)ωk+1

r + 1

(
k

r

)
g(x; s, (r + 1)d, c),

where g(x; s, (r+1)d, c) is the BXII density function with scale parameter s and shape parameters

c and (r + 1)d. Since the sums in the above expressions vary in equal sets of indices, we can

change
∑∞

k=0

∑k
r=0 by

∑∞
r=0

∑∞
k=r. Therefore, the LBXII pdf can be reduced to

f(x) =

∞∑
r=0

ρr g(x; s, (r + 1)d, c), (6.9)

where

ρr =

∞∑
k=r

(−1)r (k + 1)ωk+1

r + 1

(
k

r

)
.

Equation (6.9) is the main result of this section. So, the LBXII pdf is an infinite linear combi-

nation of BXII densities. Thus, some mathematical properties of X can be derived from those

BXII properties.

6.3 Mathematical properties

In this section, we obtain some structural properties of the LBXII distribution by establishing

algebraic expansions. It might be better than computing those directly by numerical integration

of the density function of X. We obtain quantile function, ordinary and incomplete moments

and generating function.



93

6.3.1 Quantile function

The qf of X is determined by inverting (6.1). We have

Q(u) = s

[
exp

{
1

d

(
1

u
− 1

)− 1
λ

}
− 1

] 1
c

. (6.10)

If U has the uniform distribution in (0, 1), the random variable X = Q(U) has the LBXII

distribution. Thus, simulating the random variable X is straightforward by using the inverse

transform method. We can also have any quantiles of interest by setting appropriate values of

u. For example, u = 1/2 in (6.10) gives de median M of X.

Further, we have alternative expressions for the skewness and kurtosis coefficients based

on quantile measures that can be obtained from (6.10). The Bowley’s skewness (Kenney and

Keeping, 1962) is given by (3.8). The Moors’ kurtosis (Moors, 1988) is defined by (3.9). Some

plots of B are displayed in Figure 6.3. They reveal the variation of the skewness for different

shape parameters.
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Figure 6.3: Skewness of the LBXII distribution for some parameter values.
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6.3.2 Ordinary moments

A result from Zimmer et al. (1998) gives the hth ordinary moment of the BXII distribution

as (2.7). Thus, the hth ordinary moment of X can be expressed directly from (6.9) as (for

h < c d)

µ′h = sh d
∞∑
r=0

(r + 1)ρr B((r + 1)d− h c−1, 1 + h c−1), (6.11)

where B(·, ·) is the beta function.

By setting h = 1, we obtain the mean of X. The moments are most commonly taken about

the mean. These so-called central moments (µs) follow recursively from (6.11) as

µs =
s∑
i=0

(
s

i

)
(−1)i µ′s1 µ

′
s−i.

The central cumulants (κs) of X can also be determined recursively as

κs = µ′s −
s−1∑
i=1

(
s− 1

i− 1

)
κi µ

′
s−i,

where κ1 = µ′1. Thus, κ2 = µ′2−µ′21 , κ3 = µ′3−3µ′2µ
′
1+2µ′31 , κ4 = µ′4−4µ′3µ

′
1−3µ′22 +12µ′2µ

′2
1 −6µ′41 ,

etc.

6.3.3 Incomplete moments

Let Th(y) be the hth incomplete moment of X. It can be derived using the linear represen-

tation (6.9) as

Th(y) =
∞∑
r=0

ρr T(r+1)dh(y), (6.12)

where T(r+1)dh(y) is the hth incomplete moment of a BXII(c, (r + 1)d, s) random variable.

Hence, using the result in (2.9), the hth incomplete moment of X reduces to (for h < c d)

Th(y) = d sh
∞∑
r=0

(r + 1)ρr Bsc/sc+yc
(
(r + 1)d− h c−1, 1 + h c−1

)
.

The first incomplete moment of X is obtained by setting h = 1. In equation (2.10) is pre-

sented an alternative expression for the hth incomplete moment of the BXII distribution. By
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inserting (2.10) in (6.12) we can also write

Th(y) = d sh
∞∑
r=0

(r + 1)ρr J

(
y,
h

c
, (r + 1)d+ 1

)
.

One important application of the first incomplete moment refers to the mean deviations

about the mean and the median of X. They are given by δ1 = 2µ′1F (µ′1) − 2T1(µ
′
1) and δ2 =

µ′1 − 2T1(M), respectively. The quantity F (µ′1) is easily obtained from (6.1), T1(µ′1) is the

first incomplete moment of X at the mean µ′1 and T1(M) at the median M . Other useful

applications are the Bonferroni and Lorenz curves. For a given probability π, they are defined

by B(π) = T1(q)/(πµ
′
1) and L(π) = T1(q)/µ

′
1, respectively. The quantity q = Q(π) is obtained

from (6.10). These curves are useful in economics for studying income and poverty, but can be

applied in several other fields.

6.3.4 Generating function

Let Md(t) be the mgf of the BXII(c, d, s) distribution. Here, we provide a formula for the

mgf, M(t) =
∫∞
−∞ et xf(x)dx, of X. Clearly, it can be obtained from (6.9) as

M(t) =
∞∑
r=0

(r + 1)ρrM(r+1)d(t), (6.13)

where M(r+1)d(t) is the mgf of the BXII(c, (r + 1)d, s) distribution.

By assuming that c = m/d, wherem and d are positive integers, µ > −1, p > 0 and t < 0, the

BXII mgf can be expressed as in (2.11) (Paranaíba et al., 2011, 2013). Note that the condition

over the parameter c is not restrictive since every positive real number can be approximated by

a rational number. Inserting (2.11) in (6.13), we obtain the generating function of X (for t < 0)

as

M(t) = m

∞∑
r=0

(r + 1)ρr I

(
−s t, m

(r + 1)d
− 1,

m

(r + 1)d
,−(r + 1)d− 1

)
.

Furthermore, Paranaíba et al. (2011, 2013) also presented the special cases c = 1 and c = 2.

6.4 Maximum likelihood estimation

In this section, we determine the MLEs of the model paremeters for the proposed distribution.

Let θ = (λ, s, d, c)T be the vector of the model parameters of the LBXII(λ, s, d, c) distribution
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and let x1, . . . , xn be a random sample of size n from this distribution. The log-likelihood function

for θ is given by

`(θ) = n log(λ c d s−1)− n (λ+ 1) log d−
n∑
i=1

log ui + (c− 1)c−1
n∑
i=1

log(ui − 1) (6.14)

− (λ+ 1)
n∑
i=1

log log ui − 2
n∑
i=1

log
[
1 + (d log ui)

−λ
]
,

where ui = 1 +
(
xi
s

)c. The MLE of θ can be evaluated numerically by maximizing (6.14).

The components of U(θ) are given by

Uλ(θ) =nλ−1 − n log d−
n∑
i=1

log log ui + 2
n∑
i=1

log [d log ui]

1 + (d log ui)
λ
,

Uc(θ) =n c−1 +

[
c3 + 2c− 1

c2
− 1

] n∑
i=1

log(ui − 1) + c−1
n∑
i=1

(ui − 1) log (ui − 1)u−1i

− (λ+ 1) c−1
n∑
i=1

(ui − 1) log(ui − 1)

ui log ui
+ 2λ c−1

n∑
i=1

(ui − 1) log(ui − 1)

ui + ui (d log ui)
λ
,

Ud(θ) = 2λ d−1
n∑
i=1

1

1 + (d log ui)λ
− λnd−1

and

Us(θ) = c s−1
n∑
i=1

(ui − 1)u−1i

[
1 + (λ+ 1)

n∑
i=1

1

log ui
− 2 d λ

n∑
i=1

1

1 + (d log ui)
λ

]
− (n+ c− 1)s−1.

Setting the score vector U(θ) equal to zero and solving the equations simultaneously yields

the MLEs of the four parameters. These equations cannot be solved analytically but there

are routines for numerical maximization that may be used. For interval estimation and testing

of hypotheses, we require the asymptotic normality of the MLEs. Under standard regularity



97

conditions, the distribution of
√
n(λ̂−λ, ŝ−s, d̂−d, ĉ−c) can be approximated by a multivariate

normal N4(0,J(θ̂)
−1

) distribution. Here, J(θ) is the observed information matrix given by

J(θ) = −∂
2 `(θ)

∂θ ∂θT
=


Jλλ Jλc Jλd Jλs
. Jcc Jcd Jcs
. . Jdd Jds
. . . Jss

 ,

whose elements can be obtained from the authors upon request.

6.5 Simulation study

In this section, we conduct a Monte Carlo experiment to investigate some asymptotic pro-

perties of the MLEs for the parameters of the LBXII distribution. Based on the LBXII qf, we use

the inverse transform method to generate five different combinations of parameters λ, c, d and s

for the LBXII model. Four samples sizes are considered (n = 50, 100, 250, 500) and the number

of replications is 10, 000. For maximizing the log-likelihood (6.14), we use the subroutine optim

and SANN algorithm in R. Table 6.1 presents the mean estimates of the MLEs and their RMSEs.

As expected, the MLEs tend to be closer to the true parameters and the RMSEs decrease when

the sample size n increases.

6.6 Applications

In this section, we present two examples to illustrate the potentiality of the LBXII distribution

for modeling income data. The first data set consists in the annual salaries of professional hockey

players of the American National Hockey League for the season 2012-2013. It has 714 observations

in American dollars and is available for download at https://www.usatoday.com/sports/nhl/

salaries/. The second example represents the individual payroll income of 5,024 Italian house-

holds with positive income. These data are obtained from a Survey of Household Income and

Wealth (SHIW) of the Bank of Italy for 2014. The observations are measured in euros.

We fit the LBXII model for both data sets and compare with other six competitive models.

They are defined bellow (for x > 0):
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Table 6.1: Monte Carlo simulation results for the LBXII mean estimates and RMSEs.
Mean RMSE

θ n λ̂ ĉ d̂ ŝ λ̂ ĉ d̂ ŝ

(3, 0.2, 2.5, 5) 50 3.270 0.243 3.029 5.259 1.616 0.142 2.130 3.507
100 3.278 0.224 2.791 5.172 1.443 0.104 1.428 3.040
250 3.192 0.212 2.638 5.080 1.135 0.073 0.839 2.437
500 3.155 0.206 2.566 5.048 0.918 0.056 0.561 1.984

(6, 4, 5, 0.5) 50 6.656 4.094 5.534 0.535 2.069 1.305 2.458 0.157
100 6.423 4.080 5.280 0.518 1.670 1.088 1.984 0.109
250 6.244 4.044 5.198 0.510 1.265 0.844 1.539 0.073
500 6.137 4.044 5.119 0.505 1.013 0.693 1.227 0.055

(9, 1.7, 5, 0.1) 50 9.162 1.774 5.326 0.108 1.527 0.396 1.598 0.044
100 9.054 1.752 5.210 0.104 1.224 0.300 1.270 0.028
250 9.027 1.725 5.093 0.102 0.901 0.203 0.911 0.018
500 8.993 1.716 5.067 0.100 0.668 0.148 0.699 0.013

(10.5, 4.2, 6.5, 0.2) 50 10.602 4.295 6.580 0.201 1.106 0.620 1.157 0.017
100 10.539 4.263 6.540 0.200 0.881 0.474 0.955 0.012
250 10.517 4.231 6.528 0.200 0.694 0.343 0.747 0.010
500 10.511 4.217 6.517 0.200 0.557 0.266 0.597 0.007

(14.1, 0.5, 0.1, 5.4) 50 14.539 0.545 0.175 5.544 1.282 0.481 0.157 1.401
100 14.438 0.540 0.164 5.487 0.995 0.445 0.138 1.194
250 14.325 0.526 0.152 5.470 0.714 0.395 0.115 0.943
500 14.255 0.522 0.143 5.466 0.551 0.352 0.100 0.798

• The KwBXII density is given by

f(x) = a b c d s−cxc−1
[
1 +

(x
s

)c]−d−1{
1−

[
1 +

(x
s

)c]−d}a−1
×[

1−
{

1−
[
1 +

(x
s

)c]−d}a]b−1
,

where a > 0 and b > 0 are shape parameters.

• The BBXII density is given by

f(x) =
c d xc−1

scB(a, b)

{
1−

[
1 + (x/s)c

]−d}a−1[
1 + (x/s)c

]−(d b+1)
,

where a > 0 and b > 0 are shape parameters.

• The BXII density is given in (2.2).

• The exponentiated Weibull density (Mudholkar and Srivastava, 1993) is given by

g(t) = αβ λxα−1 exp (−λxα) [1− exp (−λxα)]β−1,
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where α > 0 and β > 0 are shape parameters and λ > 0 is a scale parameter.

• The W density, which arises from the EW density when β = 1.

• The LL density obtained from the BXII density with s = m−1 and d = 1.

We use the AdequacyModel script in R software (Marinho et al., 2016) to obtain the MLEs and

goodness-of-fit statistics. The statistics considered for these models are: AIC, CAIC, BIC, HQIC

and KS. The lower are the goodness-of-fit statistics, the better is the distribution adjustment to

the data.

6.6.1 Hockey players salaries

Table 6.2 provides a descriptive summary of the hockey players data. We have a higher value

for the SD and an amplitude of 13,475,000. This indicates that the current data have great

variability. The skewness is positive, and the kurtosis is large. Further, the mean and median

are not so close. These statistics suggest that the hockey players salaries follow a power law

distribution, which is very common in income data sets.

Table 6.2: Descriptive statistics for hockey players data.

Mean Median SD Skewness Kurtosis Min. Max.
2,450,815.39 1.675× 10−6 2,112,878 1.61 3.35 5.25× 105 1.4× 107

The MLEs and their standard errors for all fitted distributions are listed in Table 6.3. We

note that the parameter estimates are significant for all considered models. Table 6.4 presents

the goodness-of-fit statistics and reveals that the LBXII distribution yields a good adjustment for

the hockey players data. It has the lowest values for all statistics, thus indicating a competitive

alternative to the classical W, EW and other BXII generalizations and special models.

The three estimated densities with lower values for the goodness-of-fit statistics and the

histogram of the data are given in Figure 6.4. It agrees with what was discussed in the descriptive

summary and the results in Table 6.4. Thus, the LBXII model is very competitive with the other

fitted distributions and provides a better adjustment for the current data.
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Table 6.3: The MLEs of the model parameters and their standard errors for hockey players data.
c d s a b

BBXII 0.6639 0.1238 6.1887 12.3249 7.0895
(0.0459) (0.0087) (0.9562) (0.7336) (0.5711)

KwBXII 5.3659 0.0240 2.9941 8.1383 3.5522
(0.4790) (0.0021) (0.4481) (0.4410) (0.2546)

c d s λ
LBXII 0.4665 0.1676 5.0797 13.8981

(0.0183) (0.0069) (1.5760) (0.4894)
BXII 7.7501 0.0093 3.2532

(0.8155) (0.0010) (0.4724)
λ α β

EW 1.5782 0.0411 8.5690
(0.2285) (0.0059) (1.1925)

W 10.4164 0.0683
(1.3816) (0.0018)

c m
LL 0.1296 12.6759

(0.0040) (1.7147)

Table 6.4: Goodness-of-fit statistics for the fitted models to the hockey players data.
AIC CAIC BIC HQIC KS

BBXII 23764.9605 23765.0452 23787.8149 23773.7870 0.3836
KwBXII 23954.2392 23954.3239 23977.0936 23963.0656 0.4249
LBXII 22660.5691 22660.6256 22678.8527 22667.6303 0.1957
BXII 25640.6040 25640.6378 25654.3166 25645.8999 0.5767
EW 25032.8320 25032.8658 25046.5446 25038.1279 0.6477
W 26436.5128 26436.5297 26445.6546 26440.0434 0.8768
LL 26192.7199 26192.7368 26201.8617 26196.2505 0.7987

6.6.2 Individual payroll income

Table 6.5 provides a descriptive summary of the individual payroll income data. For these

data, the mean and median are close and the SD is higher. We also note large values for the

skewness and kurtosis coefficients. The amplitude is 134,900 for these data. Just like for the

first data set, the descriptive statistics indicate that the payroll income may follow a power law

distribution with a right-skew tail.

Tables 6.6 and 6.7 present the MLEs with their standard errors and the goodness-of-fit

statistics, respectively. These results are obtained for the LBXII distribution and six competitive
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Figure 6.4: Histogram and estimated densities of the LBXII, BBXII and KwBXII models for
hockey players data.

Table 6.5: Descriptive statistics for payroll income data.

Mean Median SD Skewness Kurtosis Min. Max.
16714.67 16200.00 9218.184 2.62 19.29 100.00 135000.00

models. The parameter estimates are significant for all fitted models, and the LBXII distribution

exhibits the lower values for all goodness-of-fit statistics. Similarly to the first empirical example,

the LBXII model shows up as a competitive alternative to the other fitted models.

Figure 6.5 displays the histogram and some plots of the estimated densities for the three

most competitive models according to the goodness-of-fit statistics to the payroll income data.

These plots are in agreement with the results in Table 6.7. Similarly to the first data set, the

LBXII distribution can be used effectively to provide better fits than other considered income

distributions for these data and it is a very competitive alternative to the W and EW models.

6.7 Concluding remarks

We introduce the four-parameter logistic Burr XII (LBXII) distribution. It can have de-

creasing and upside-down bathtub hazard functions and can be considered for modeling income

distributions, among other applications. We demonstrate that the LBXII density function is an
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Table 6.6: The MLEs of the model parameters and their standard errors for payroll income data.
c d s a b

BBXII 1.8301 0.0876 8.4148 18.3223 8.3320
(0.0614) (0.0029) (0.3872) (0.4026) 0.283278

KwBXII 5.3594 0.0354 3.8626 8.828 5.4490
(0.0987) (0.0007) (0.2147) (0.2225) (0.1341)

c d s λ
LBXII 1.1934 0.1057 5.3612 14.1480

(0.0310) (0.0027) (0.3478) (0.1928)
BXII 1.8585 0.0812 20.4626

(0.1622) (0.0071) (0.8067)
λ α β

EW 2.7063 0.0408 11.2836
(0.1329) (0.0020) (0.4695)

W 16.8256 0.1169
(0.6817) (0.0013)

c m
LL 0.2512 32.2073

(0.0032) (1.2346)

Table 6.7: Goodness-of-fit statistics for the fitted models to the payroll income data.
AIC CAIC BIC HQIC KS

BBXII 112144.5514 112144.5634 112177.1613 112155.9779 0.2825
KwBXII 114423.2534 114423.2654 114455.8633 114434.6799 0.3159
LBXII 107006.6913 107006.6992 107032.7792 107015.8325 0.2010
BXII 125013.2791 125013.2839 125032.8450 125020.1350 0.5063
EW 122416.3162 122416.3210 122435.8822 122423.1721 0.5575
W 131889.9303 131889.9327 131902.9743 131894.5009 0.8148
LL 129319.9984 129320.0008 129333.0424 129324.5690 0.7323

infinite linear combination of BXII densities. Thus, some mathematical properties of the new

distribution are obtained using this result, such as the ordinary and incomplete moments and

generating function. We also determine the quantile function for the LBXII distribution, which is

useful to obtain any quantiles of interest, to simulate LBXII random variables and provide some

alternative expressions for the skewness and kurtosis. We estimate the model parameters by the

maximum likelihood method, and a simulation study is provided by a Monte Carlo experiment.

We present two applications to illustrate the potentiality of the LBXII distribution for modeling

income data. Both data sets exhibit characteristics of a power law distribution, which is very

common in income data sets. We note that the LBXII distribution has a good adjustment in
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Figure 6.5: Histogram and estimated densities of the LBXII, BBXII and KwBXII models for
payroll income data.

both cases, thus being a competitive model to the classical Weibull distribution, exponentiated

Weibull model, other BXII generalizations and special models. Finally, the LBXII model may

provide an attractive alternative to describe and understand the income distribution behavior.
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Chapter 7

Final conclusion and future works

In this thesis we proposed four new continuous distributions by taking the three-parameter

Burr XII model as baseline in some generated families, which are defined as special cases of

the transformed-transform method. This parameter induction have been attracted researches

because it allows adding flexibility to the baseline model and improving the quality of fit. In

this context, our purpose is to provide Burr XII generalizations that may be useful to model

situations characterized by power law behavior.

This feature is very common in income data and can also be observed in some lifetime

examples. Therefore, for each introduced distribution, we considered applications to real data

sets in order to illustrate their potentiality for fit these kind of data. The new models have

proved to be very appropiate in these situations, but they could also be applied in other areas.

In Chapter 2, we presented a brief survey on the Burr XII distribution and some of its

generalizations already introduced in the literature. We discussed some mathematical properties

of the Burr XII distribution and realized that they have been used to obtain the properties of

its generalizations from linear representations.

In Chapter 3, the Zografos-Balakrishnan Burr XII distribution is defined from the generated

family pioneerd by Zografos and Balakrishnan (2009). In Chapter 4, the Ristić-Balakrishnan

Burr XII distribution is obtained from the generated family proposed by Ristić and Balakrishnan

(2012). Chapter 5 introduces the Weibull Burr XII distribution, which is a special model of the

Weibull-G family. Finally, the logistic Burr XII model is proposed by taking the three-parameter
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Burr XII distribution as baseline in the logistic-X family. We study some mathematical prop-

erties of these new distributions, estimate their parameters by maximum likelihood method,

perform simulation studies to investigate some of their asymptotic properties and illustrate their

potentiality by means of applications to real data sets.

Next, we list some future topics to be investigated:

• Cordeiro et al. (2014a) defined the exponentiated half-logistic family. Thus, a future re-

search line is to study the exponentiated half-logistic Burr XII distribution, obtained by

inserting the Burr XII model as baseline in this family. This extended model can be other

alternative for modeling power law tailed data.

• Silva et al. (2008) considered the class of location-scale models for introduce a regres-

sion model based on the Burr XII distribution. They defined Y = log(T ), where T

is a BXII(c, d, s) random variable and considered the reparametrization c = 1/σ and

s = exp(µ). Hence, the log-Burr XII regression model is given by

Y = µ+ σZ,

where the random variable Z = Y−µ
σ and the scale parameter µ depends on the (n × p)

matrix of explanatory variables X, this is, µi = xT
i β, where β = (β1, · · · , βp)T , (−∞ <

βj < ∞, j = 1, · · · , p) is a vector of unknown parameters. Following a similar approach,

we can introduce regression models based on the Burr XII generalizations proposed in this

thesis.
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