

“TIRT: A Traceability Information Retrieval Tool for

Software Product Lines Projects”

By

Wylliams Barbosa Santos

M.Sc. Dissertation

RECIFE, SEPTEMBER/2011

Federal University of Pernambuco

Center for Informatics
Graduate in Computer Science

Wylliams Barbosa Santos

“TIRT: A Traceability Information Retrieval Tool for
Software Product Lines Projects”

A M.Sc. Dissertation presented to the Center for Informatics

of Federal University of Pernambuco in partial fulfillment

of the requirements for the degree of Master of Science in

Computer Science.

Advisor: Silvio Romero de Lemos Meira

Co-Advisor: Eduardo Santana de Almeida

RECIFE, SEPTEMBER/2011

 Catalogação na fonte
 Bibliotecária Jane Souto Maior, CRB4-571

Santos, Wylliams Barbosa

 TIRT: A traceability information retrieval tool for
software product lines projects / Wylliams Barbosa Santos
- Recife: O Autor, 2011.
 xvi, 115 folhas : il., fig., tab.

 Orientador: Silvio Romero de Lemos Meira.
 Dissertação (mestrado) - Universidade Federal de
Pernambuco. CIn, Ciência da Computação, 2011.

 Inclui bibliografia e apêndice.

 1. Ciência da Computação. 2. Engenharia de software. I.
Meira, Silvio Romero de Lemos (orientador). II. Título.

 004 CDD (22. ed.) MEI2011 – 150

I specially dedicate this dissertation with love and affection

to my father Rosenildo (In Memoriam). The best man and

friend I ever met.

Acknowledgements

Firstly to God for every blessing, protection, love and strength throughout my life.
To my father Rosenildo (in memoriam), that has always guided me, supported and

encouraged me every step of my life. I would like to thank him for his reference of
love, happiness, father and teacher, as well as their advices, words of encouragement and
support during the master degree. Finally, I would like to dedicate this work to my great,
eternal and beloved father Rosenildo, because this is the realization of our dream!

To my mother for all support, love and friendship. I am profoundly grateful for her
wisdom in understanding the distance that separates us, especially in the most delicate
and difficult moments we faced. Mother, know that even with the distance will always be
together and great friends. I also dedicate this work with all the love and affection to my
mother and friend Graça.

My friend and bride Deborah, for all love, affection, support and friendship during
this the master degree, as well as by welcome and friendly words in the most adverse
moments.

My brother Wylker, for friendship during our lives and especially during these years
we lived in Recife.

To my uncles Marcos, Kêda and their entire family, my eternal gratitude for all
comfort and affection during the most delicate moment of my life. All these feelings
were channeled in a positive way, giving me strength and support for achieving this work.

To my friends from Maceió for all support: Elinaldo da Mota, Fabiano Wandeley,
Telma Melo, Marcelo Feijó, Giordany Corado, Thiago Alves and Bruno Correia.

All RiSE members which contributed with valuable suggestions, comments and
reviews in this work, especially, to friends: Leandro Souza, Jonatas Bastos, Iuri Santos,
Thiago Fernandes, Ivonei Freitas, Raphael Pereira, Ivan Machado and Paulo Silveira.

Last but not least, my sincere thanks to my co-advisor Eduardo Almeida, for all
guidance, support and teachings. I am also very grateful to my advisor Silvio Meira who
accepted me as his student.

iv

Agradecimentos

Primeiramente a Deus, por toda benção, proteção, amor e força durante toda minha vida.
Ao meu pai Rosenildo (in memoriam), que sempre me guiou, apoiou e incentivou-me

em todas as etapas de minha vida. Gostaria de agradecê-lo pelo seu referencial de amor,
alegria, pai e mestre, assim como seus conselhos, palavras de incentivo e apoio durante a
jornada do mestrado. Por fim, gostaria de dedicar este trabalho ao meu grande, eterno e
amado pai Rosenildo, pois este é a concretização do nosso sonho!

À minha mãe por todo suporte, amor e amizade. Sou imensamente grato por sua
sabedoria em compreender a distância que nos separa, principalmente nos momentos
mais delicados e difíceis que enfrentamos. Mãe, saiba que independente da distância
sempre estaremos juntos e seremos grandes amigos. Também dedico este trabalho com
todo amor e carinho à minha mãe e amiga Graça.

À minha amiga, companheira e noiva Deborah, por todo amor, carinho, suporte e
amizade durante essa jornada, assim como pelas palavras amigas e acolhimento nos
momentos mais adversos.

Ao meu irmão Wylker, pelo companheirismo e amizade durante nossas vidas e
principalmente ao longo desses anos que moramos em Recife.

Aos meus tios Marcos, Kêda e toda sua família, minha gratidão eterna, por todo con-
forto e carinho durante o momento mais delicado de minha vida. Todos esses sentimentos
foram canalizados de forma muito positiva, dando-me forças e suporte para concretização
deste trabalho.

Aos meus amigos de Maceió por todo apoio: Fabiano Wandeley, Elinaldo da Mota,
Telma Melo, Marcelo Feijó, Bruno Correia, Giordany Corado e Thiago Alves.

A todos os membros do RiSE que contribuíram com valiosas sugestões, comentários
e revisões neste trabalho. Em especial, aos amigos: Leandro Souza, Jonatas Bastos, Iuri
Santos, Thiago Fernandes, Ivonei Freitas, Raphael Pereira, Ivan Machado e Paulo Neto.

Por fim, mas não menos importante, meus sinceros agradecimentos ao meu co-
orientador Eduardo Almeida, por todo direcionamento, apoio e ensinamentos. Também
sou muito grato ao meu orientador Silvio Meira que me acolheu como seu aluno de
mestrado.

v

De tudo ficaram três coisas:

a certeza de que estava sempre começando,

a certeza de que era preciso continuar

e a certeza de que seria interrompido antes de terminar.

Fazer da interrupção um caminho novo,

fazer da queda, um passo de dança,

do medo, uma escada,

do sonho, uma ponte,

da procura, um encontro.

—FERNANDO SABINO (1923-2004)

Resumo

Linha de Produto de Software - SPL tem provado ser a metodologia para o desenvolvi-
mento de uma diversidade de produtos de software e sistemas com custos mais baixos,
em menor tempo, e com maior qualidade. Numerosos relatos documentam significativas
experiências adquiridas através da implantação de linhas de produtos na indústria de
software.

Neste cenário, a rastreabilidade se refere à capacidade de conectar e preservar o
rastro de transformação de diferentes artefatos de softwares, portanto, é considerada uma
condição necessária para preservar a consistência dos artefatos durante a implementação,
reduzindo o tempo e o custo de desenvolvimento da SPL. No entanto, a adoção e
manutenção da rastreabilidade no contexto das linhas de produtos são consideradas
tarefas difíceis, devido ao grande número e heterogeneidade dos artefatos desenvolvidos.
Além disso, a criação manual e manutenção das relações de rastreabilidade são difíceis,
propensa a erros, lenta e complexa.

Neste sentido, esta dissertação propõe diferentes cenários de recomendação de rastre-
abilidade, onde os artefatos podem estar relacionados. Além disso, os requisitos, projeto
e desenvolvimento de uma ferramenta também são propostos. Esta ferramenta foca nas
atividades de manutenibilidade, relacionadas à rastreabilidade entre diferentes artefatos
de uma SPL através do seu sistema de recomendação. Assim, o tempo gasto nessas
atividades pode ser reduzido e menos propenso a erros. Finalmente, este trabalho também
apresenta um estudo experimental inicial, a fim de identificar a viabilidade da ferramenta
e cenários de rastreabilidade propostos.

Palavras-chave: Rastreabilidade, Linha de Produto de Software, Ferramenta, Recuper-
ação de Informação, Rastreabilidade em Linha de Produto de Software

vii

Abstract

Software Product Line - SPL has proven to be the methodology for developing a diversity
of software products and software-intensive systems at lower costs, in shorter time,
and with higher quality. Numerous reports document the significant achievements and
experience gained by introducing software product lines in the software industry.

In this scenario, traceability refers to the ability to link and preserve the trace of
transformation among different software artefacts, thus it is considered a necessary
precondition for preserving the consistency of the complete family model during de-
velopment, reducing the development time and cost in the SPL. However, the adoption
and maintenance of traceability in the context of product lines is considered a difficult
task, due to the large number and heterogeneity of assets developed during product line
engineering. Futhermore, the manual creation and management of traceability relations
is difficult, error-prone, time consuming and complex.

In this sense, this dissertation proposes different scenarios of traceability recom-
mendation, which the core assets can be related. In addition, the requirements, design
and implementation of a tool is also proposed. It focus on the maintenance activities
regarding to the traceability relationship among the different core assets in a SPL through
its recommendation system. Thus, the time spent in these activities can be reduced and
less error prone. Finally, this work also presents an initial experimental study in order to
identify the viability of the proposed tool and traceability scenarios.

Keywords: Traceability, Software Product Lines, Tool, Information Retrieval, Trace-
ability in Software Product Lines

viii

Table of Contents

List of Figures xiii

List of Tables xiv

List of Acronyms xv

1 Introduction 1
1.1 Motivation . 2
1.2 Problem Statement . 3
1.3 Overview of the Proposed Solution . 3

1.3.1 Context . 3
1.3.2 Outline of the Proposal . 6

1.4 Out of Scope . 6
1.5 Statement of the Contributions . 7
1.6 Dissertation Structure . 8

2 Software Product Lines: An Overview 9
2.1 Software Reuse . 9
2.2 Software Product Lines . 10

2.2.1 SPL Motivations and Benefits 12
Reduction of Development Costs 12
Enhancement of Quality . 13
Reduction of Time to Market 14
Reduction of Maintenance Effort 14
Coping with Evolution and Improving Cost Estimation 15
Benefits for the Customer . 15

2.2.2 SPL Essential Activities . 16
Core Asset Development . 17
Product Development . 18
Management . 20

2.2.3 SPL Strategies . 20
2.3 Chapter Summary . 21

ix

3 An Overview on Traceability and Impact Analysis 22
3.1 Traceability . 23

3.1.1 Purpose of Stakeholders . 25
3.1.2 Types of Traceability Relations 27
3.1.3 Generation of Traceability . 30

Manual Generation . 31
Semi-automatic Generation 31
Automatic Generation of Traceability Relations 32

3.2 Traceability for SPL . 33
3.2.1 Research Strategy - SPL Traceability Literature 34

Research Questions . 34
Search Strategy . 35
Data Sources . 36
Studies Selection . 38
Data Analysis . 39

3.2.2 Research Results . 39
3.2.3 Risks and Challenges . 43

3.3 Impact Analysis . 44
3.3.1 Impact Analysis for SPL . 46

Challenges . 46
3.4 Chapter Summary . 47

4 TIRT: Traceability Information Retrieval Tool 48
4.1 The Set of Requirements . 49

4.1.1 Functional Requirements . 49
4.1.2 Non-Functional Requirements 50

4.2 Traceability Recommendation Proposal 52
4.2.1 The Metamodel . 52
4.2.2 Metamodel Instantiation . 56
4.2.3 Scenarios Recommendation 56
4.2.4 Vocabulary Standardization 62
4.2.5 Impact Analysis . 64

4.3 TIRT Architecture and Technologies 66
4.3.1 TIRT’s Architecture Overview 66
4.3.2 Demoiselle Framework Architecture 69
4.3.3 Demoiselle Framework Architecture Instatiation for TIRT . . . 71

x

Visualization . 71
Text Processor . 73
Query Parser . 74
Indexer . 74

4.4 TIRT in Action . 74
4.5 Chapter Summary . 77

5 TIRT Evaluation 78
5.1 Introduction . 78
5.2 The Definition . 80

5.2.1 Goal . 80
5.2.2 Questions . 81
5.2.3 Metrics . 81

5.3 The Planning . 83
5.3.1 Context Selection . 83
5.3.2 Hypothesis Formulation . 84
5.3.3 Variable Selection . 85
5.3.4 Selection of Subjects . 85
5.3.5 Experimental Design . 86
5.3.6 Instrumentation . 87
5.3.7 Pilot Project . 88
5.3.8 Validity Evaluation . 88

5.4 The Operation . 89
5.4.1 Preparation . 90
5.4.2 Execution . 90
5.4.3 Data Validation . 91

5.5 Analysis and Interpretation . 91
5.5.1 Quantitative Analysis . 91

Hypothesis Testing . 93
5.5.2 Qualitative Analysis . 93

5.6 Conclusion . 94
5.7 Chapter Summary . 94

6 Conclusion 96
6.1 Research Contribution . 97
6.2 Future Work . 98

xi

Bibliography 100

Appendices 111

A Experiment Instruments 112
A.1 Time sheet of Core Assets Management with TIRT 112
A.2 Time sheet of Core Assets Management with SPLMT 113
A.3 Questionnaire for Subjects Profile . 114
A.4 Form for Qualitative Analysis . 115

xii

List of Figures

1.1 RiSE Labs Influences . 4
1.2 RiSE Labs Projects . 5

2.1 SPL Development Cost . 13
2.2 SPL Time to Market . 14
2.3 SPL Essential Activities . 16
2.4 Core Asset Development . 17
2.5 Product Development . 19

4.1 Software Product Line Metamodel . 53
4.2 Subset of the Software Product Line Metamodel 57
4.3 Core Assets: Feature, Requirement and Use Case 58
4.4 Scenario 1 - Feature and Parent-Features 59
4.5 Scenario 2 - Feature and Required-Features 59
4.6 Scenario 3 - Feature and Excluded-Features 60
4.7 Scenario 4 - Feature and Requirements 60
4.8 Scenario 5 - Requirement and Features 61
4.9 Scenario 6 - Requirement and Use Cases 62
4.10 Scenario 7 - Use Case and Requirements 62
4.11 Tree View of Analysis Impact . 65
4.12 System Architecture for Generic Text Mining System 67
4.13 Instantiation of Text Mining Architecture for TIRT 68
4.14 Demoiselle Framework Architecture 70
4.15 Demoiselle Layers . 71
4.16 Demoiselle Instantiation Layers for TIRT 72
4.17 Tree View of Analysis Impact . 76
4.18 Requirements Recommendation Screen 76
4.19 Help of Scenarios Recommendation 77

5.1 Overview of the Experimental Process 79
5.2 MedicWare Projects . 84
5.3 Experiment Design: One factor with two treatment design 87

xiii

List of Tables

5.1 Subject Profile . 91
5.2 Collected data during the experiment 92
5.3 Descriptive Statistics . 92
5.4 Hypothesis Analysis . 93

A.1 Time sheet used with the TIRT tool. 112
A.2 Time sheet used with the SPLMT tool. 113
A.3 Questionnaire for Subjects Profile. 114
A.4 Questionnaire for Qualitative Analysis. 115

xiv

List of Acronyms

AJAX Asynchronous Javascript and XML

AOSD Aspect-Oriented Software Development

C.E.S.A.R. Recife Center For Advanced Studies and Systems

CBD Component-Based Development

DE Domain Engineering

FR Functional Requirements

GQM Goal Question Metric

IR Information Retrieval

J2EE Java 2 Enterprise Edition

JSF Java Server Faces

LSI Latent Semantic Indexing

MVC Model-View-Controller

NFR Non-Functional Requirements

ORM Object-Relational Mapping

PLE Product Line Engineering

RiPLE Rise Product Line Engineering Process

RiSE Reuse in Software Engineering Labs

RM Risk Management

SE Software Engineering

SPL Software Product Lines

SPLMT Software Product Lines Management Tool

SQL Structured Query Language

xv

ToolDAy Tool for Domain Analysis

TIRT Traceability Information Retrieval Tool

UFPE Federal University of Pernambuco

VSM Vector Space Model

xvi

1
Introduction

Life Success comes from Leaving Your Comfort Zones.

—JONATHAN FARRINGTO

Since the time that software development started to be discussed within the industry,
researchers and practitioners have been searching for methods, techniques and tools that
would allow for improvements in costs, time-to-market and quality. Thus, an envisioned
scenario was that managers, analysts, architects, developers and testers would avoid
performing the same activities over and over. In this way, performing some kinds of reuse,
costs would be decreased, because the time that would have been necessary to repeat an
activity could be invested in others relevant tasks (Almeida et al., 2007).

However, these benefits are not assured by the application of ad-hoc reuse, which
address a not systematic, and generally restricted to source code. Systematic software
reuse is a technique that is employed to address the need for the improvement of software
development quality and efficiency, without relying on individual iniciative (Almeida
et al., 2007).

In this context, Software Product Lines Engineering has proven to be the method-
ology for developing a diversity of software products and software-intensive systems
at lower costs, in short time and with higher quality. Numerous reports document the
significant achievements and experience gained by introducing Software Product Lines
in the software industry (Pohl et al., 2005). However in the context of Software Product
Lines (SPL), one asset can be used for many applications in the product development, for
this reason, the traceability becomes more important in a Product Line environment.

Thus, the focus of this dissertation is to investigate the state-of-art of traceability in
the context of Software Product Lines and facilitate the maintenance activities of a SPL

1

1.1. MOTIVATION

based of a set recommendations senarios.
This Chapter contextualizes the focus of this dissertation and starts by presenting

its motivation in Section 1.1 and a clear definition of the problem in Section 1.2. An
overview of the proposed solution is outlined in Section 1.3, while Section 1.4 describes
some related aspects that are not directly addressed by this work. Section 1.5 presents the
main contributions of this work and, finally, Section 1.6 outlines the remainder structure
of this dissertation.

1.1 Motivation

Software Product Lines (SPL) allow companies to achieve significant improvements in
time-to-market, cost, productivity, and system quality (Clements and Northrop, 2001).
For this reason, Product Line systems have been recognized as an important paradigm for
software systems engineering. In the last years, a large number of methodologies and
approaches have been proposed to support the development of software systems based
on Product Line development, such as: FODA (Kang et al., 1990a), RSEB (Griss et al.,
1998), FORM (Kang et al., 1990b), FAST (Gupta et al., 1997), PLUS(Eriksson et al.,
2005), and RiPLE (Neiva, 2008; Oliveira, 2009; Balbino, 2010; Machado, 2010).

On the other hand, traceability has been recognized as an highly important activity in
software development (Ramesh and Jarke, 2001). In general, traceability relations can
improve the quality of the product being developed, and reduce the development time
and cost. In particular, traceability relations can support evolution of software systems,
reuse of parts of the system by comparing components of the new and existing systems,
validation that a system meets its requirements, understanding of the rationale for certain
design and implementation decisions in the system, and analysis of the implications of
changes in the system (Jirapanthong and Zisman, 2005).

However, the support for traceability in contemporary software engineering environ-
mens is not always satisfactory due the lack of tool support, and a general perception that
the effort to maintain traceability was excessive in respect to its benefits (Cleland-Huang,
2006). Other difficulties linked to traceability in SPL are: (a) there is a large number and
heterogeneity of documents (features, requirements, use cases, among others), even more
than in traditional software development; (b) one needs to have a basic understanding
of the variability consequences during the different development phases; (c) one needs
to establish relationships between product members and the product line architecture,
or relationships between the product members themselves; and (d) there is still poor
general support for managing requirements and handling complex relations (Anquetil

2

1.2. PROBLEM STATEMENT

et al., 2008). In addition, the lack of automation support for traceability, maintaining
links between artefacts is a tedious and time consuming job (Abid, 2004). According to
Spanoudakis and Zisman (2004), despite its importance and results from several years of
research, empirical studies of traceability needs, and practices in industrial organizations
have indicated that traceability support is not always satisfactory. As a result, traceability
is rarely established in existing industrial settings.

Thus, in this work we try to mitigate the dificulties in the maintenance activities in
SPL environments, based on a set of recommendations scenarios proposed in Chapter 4.
Both Software Product Lines and Traceability are futher discussed in Chapters 2 and 3
repectively.

1.2 Problem Statement

Motivated by the scenario presented in the previous Section, the goal of this dissertation
can be stated as:

This work investigates the state-of-art of Traceability in the context of Software

Product Lines, provides a tool to support and reduce the effort spent in the traceability

maintenance. This tool emcompasses some features, such as: a set of recommendations

scenarios of traceability and the standarlized vocabulary for recording the artefacts.

Moreover, the Traceability Information Retrieval Tool (TIRT) also emcompasses some

features to aid in impact analysis.

1.3 Overview of the Proposed Solution

In order to accomplish the goal of this dissertation, the TIRT is proposed. The proposed
tool supports the recommendation of core assets traceability in order to assist engineers
in the maintenance activity. This Section presents the context where it is regarded and
outlines the proposed solution.

1.3.1 Context

This dissertation is part of the Reuse in Software Engineering Labs (RiSE) 1 (Almeida
et al., 2004), formerly called RiSE Project, whose goal is to develop a robust framework
for software reuse in order to enable the adoption of a reuse program. However, it is

1http://www.rise.com.br

3

1.3. OVERVIEW OF THE PROPOSED SOLUTION

influenced by a series of areas, such as software measurement, architecture, quality,
environments and tools, and so on, in order to achieve its goal. The influence areas are
depicted in Figure 1.1.

Figure 1.1 RiSE Labs Influences

Based on these areas, the RiSE Labs is divided in several projects, as shown in Figure
1.2. This framework encompasses many different projects related to software reuse and
software engineering.

• RiSE Framework: Involves reuse processes (Almeida et al., 2004; Nascimento,
2008), component certification (Alvaro, 2009) and reuse adoption process (Garcia,
2010).

• RiSE Tools: Research focused on software reuse tools, such as the Admire Envi-
ronment (Mascena, 2006), the Basic Asset Retrieval Tool (B.A.R.T) (Santos et al.,
2006), which was enhanced with folksonomy mechanisms (Vanderlei et al., 2007),
semantic layer (Durao, 2008), facets (Mendes, 2008) and data mining (Martins
et al., 2008), and the Legacy InFormation retrieval Tool (LIFT) (Brito, 2007), and
the Tool for Domain Analysis (ToolDAy) (Lisboa, 2008).

• RiPLE: Development of a methodology for Software Product Lines (Filho et al.,
2008), composed of scoping (Balbino, 2010), requirements engineering (Neiva,

4

1.3. OVERVIEW OF THE PROPOSED SOLUTION

2008), design (Cavalcanti, 2010), implementation, test (Neto, 2010; Machado,
2010), and evolution management (Oliveira, 2009).

• SOPLE: Development of a methodology for Software Product Lines based on
services (Ribeiro, 2010; Medeiros, 2010), with some ideas of RiPLE;

• MATRIX: Investigates the area of measurement in reuse and its impact on quality
and productivity;

• BTT: Research focused on tools for detection of duplicated change requests (Cav-
alcanti, 2009; Cunha, 2009), based on text mining and software vizualization
technique.

• Exploratory Research: Investigates new research directions in software engineer-
ing and its impact on reuse;

• CX-Ray: Focused on understanding the Recife Center For Advanced Studies and
Systems (C.E.S.A.R.), and its processes and practices in software development.
C.E.S.A.R. 2 is a CMMi level 3 company with around 700 employees.

Figure 1.2 RiSE Labs Projects

This dissertation is part of the RiSE Tools and RiPLE process. Its goal is to provide
a tool for search and maintainability of traceability between different core asset with the
objective of avoiding the lose of tracebility information. In additional, this dissertation
defines an approach to traceability recommendation of core assets identified in the RiPLE

2http://www.cesar.org.br

5

1.4. OUT OF SCOPE

process, such as: features, requirements and use cases. This work was conducted in
the context of a Software Product Lines environment, where the large number and
heterogeneity of core assets generated during the development of product line systems
may cause difficulties to identify common and variable aspects among applications,
and reuse of core assets available under the product line architecture (Jirapanthong and
Zisman, 2005). In this context, is possible to see that the recommendation of traceability
links between these artefacts facilitate the matainance activity, and thus a systematic and
consistent reuse (Pohl et al., 2005).

1.3.2 Outline of the Proposal

Thus, the goal of this dissertation is to develop a solution that consists in a Web based
application that enables engineers involved in the core assets maintenance to perform
such task more effectively. This is possible with the set of traceability recommendations

scenarios, the standardized vocabulary for recording the core assets, and the feature to

aid in impact analysis, encompassed in the TIRT tool.
Traceability has been recognized as an important activity in SPL, thus the essence of

this work is to make the maintenance activity of traceability in the context of Software
Product Line less expensive and error-prone.

1.4 Out of Scope

As the traceability process in the context of Software Product Lines is part of a broader
context, a set of related aspects are left out of its scope. Thus, the following issues are
not directly addressed by this work:

• Product Development: The creation of individual products by reusing the artefacts
is an important issue in a SPL. However, this aspect can be as complex as core
assets development, thus, it is out of the scope of this work. In this context, the
core assets focused in this work are: features, requirements and use cases.

• Analyzes of Efficiency: The TIRT tool uses a Vector Space Model (VSM) (Salton
et al., 1975) to represent core assets and perform searches that better meets our
necessity. However, the activity of analyzing how efficient is the model is out
of scope of this work. The work proposed by Salton et al. (1975), discusses for
example, the efficiency of this model.

6

1.5. STATEMENT OF THE CONTRIBUTIONS

• Evolution Management: The SPL evolution control is ensured by appropriate
practices of changes management. Inside the evolution management, it is possible
to identify some important research topics, such as: change management, build
management and release management. In this context, a recent work developed
in the RiSE Labs (Oliveira, 2009) presented the RiPLE-EM process that focus
on a systematic way to guide and manage the evolution of every management
and release management activities. For this reason, evolution management is out
of scope of this work. However, this work proposes an approach to mitigate the
change impacts in the context of TIRT tool.

1.5 Statement of the Contributions

As a result of the work presented in this dissertation, a list of main contributions can be
identified:

• An analysis of the state-of-art of the traceability area in the context of Software
Product Lines Engineering. This study was conducted using some good practices
of the Mapping Study proposed by Petersen et al. (2007), allowing an overview of
the work in the literature and gray literature.

• The TIRT tool to support the maintenance of traceability links. It specifies, designs
and implements a solution based on Text Mining (Feldman and Sanger, 2007)
and Keywords search techniques, with the objective of recommending possible
traceability links between different core assets.

• Scenarios for traceability recommendation, based on the metamodel developed
in the RiSE Labs (Cavalcanti et al., 2011).

• Standardized vocabulary for recording the artefacts, contributing to the effi-
ciency of traceability recommendations.

• Description of some scenarios to support the process of Impact Analysis in the
context of traceability maintenance, implemented in the TIRT tool.

• The definition, planning, analysis of an experimental study in order to evaluate
the proposed tool and approaches.

7

1.6. DISSERTATION STRUCTURE

1.6 Dissertation Structure

The remainder of this dissertation is organized as follows:

• Chapter 2: discusses the concepts of Software Reuse and outlines the main topics
of SPL, such as: the SPL motivations, the SPL strategies and the essential activities.

• Chapter 3: introduces the concepts of Software Traceability and the main topics
in the context of Software Product Lines. The concept of Impact Analysis also are
discussed in this Chapter.

• Chapter 4: presents the functional and non-functional requirements proposed
for the TIRT tool as well as architecture, the set of frameworks, technologies
used during the TIRT implementation. Additionally, the proposals for traceability

recommendation and the standardized vocabulary for recording the artefacts are
also explored.

• Chapter 5: presents the definition, planning, operation, analysis and interpretation
of the experimental study which evaluates the TIRT’s tool and proposed approaches.

• Chapter 6: concludes this dissertation, summarizing the findings and proposing
future enhancements to the solution, and discussing possible future work.

• Appendix A: describes the questionnaires and time sheets applied in the experi-
mental study.

8

2
Software Product Lines: An Overview

Life has no limitations, except the ones you make.

—LES BROWN (Musician)

Software product lines engineering has proven to be the methodology for developing
a diversity of software products and software-intensive systems at lower costs, in shorter
time, and with higher quality. Several reports document the significant achievements and
experience gained by introducing software product lines in the software industry (Pohl
et al., 2005).

This Chapter introduces the concepts of Software Reuse in Section 2.1 and Software
Product Lines in Section 2.2. The SPL Motivations and Benefits are discussed in Section
2.2.1. The SPL Essential Activities in Section 2.2.2 and the SPL Strategies in Section
2.2.3. The Chapter Summary is described in Section 2.3.

2.1 Software Reuse

Software reuse is the process of creating software systems from existing software rather
than building software systems from scratch. This simple yet powerful vision was
introduced in 1968 by McIlroy (1968). The concept of software reuse has been introduced
to overcome the software crisis, i.e., the problem of building large and reliable software
system in a cost effective and controlled way.

Many definitions for software reuse can be found in the literature. Krueger (1992)
defines software reuse as ”the process whereby an organization define a set of systematic
operating procedures to specify, produce, classify, retrieve, and adapt software artefacts
for the purpose of using them in its development activities”. Basili and Rombach
(1991) defines software reuse as the use of everything associated with a software project,

9

2.2. SOFTWARE PRODUCT LINES

including knowledge. According to Frakes and Isoda (1994), software reuse is defined
as the use of engineering knowledge or artefacts from existing systems to build new
ones. In a practic way, Jamwal (2010) defines software reuse as a ”solution that avoids
a repeated labor in the software development and can make use of the knowledge and
experience getting from the past software development and concentrates the especial part
of application.”

A good software reuse process facilitates the increase of productivity, quality, and
reliability, and the decrease of costs and implementation time. An initial investment is
required to start a software reuse process, however, this investment pays for itself in a
few reuses (Tracz, 1988).

Besides the issues related to non-technical aspects, a software reuse process must
also describe two essential activities: the development for reuse and the development
with reuse. In the literature, several research work that study efficient ways to develop
reusable software can be found. These work focus on two directions: domain engineering

and, currently, product lines, as can be seen in the next Sections. According to Pohl
et al. (2005), the aim of the domain engineering process is to define and realise the
commonality and the variability of the software product line.

Thus, with the use of techniques such as domain engineering or software product
lines, a set of assets (requirements, architectures, source code, test cases, etc.) can be
reused in an effective way. In this context, the reminder of this Chapter describes the
basic concepts and ideas of Software Product Lines.

2.2 Software Product Lines

The way that goods are produced has changed significantly in the course of time. Formerly
goods were handcrafted for individual customers. Along the time, the number of people
who could afford to buy various kinds of products increased. In the domain of automobiles
Ford has led the invention of the production line, which enabled the production for a
mass market much more cheaply than individual product creation on a handcrafted basis.
However, the production line reduced the possibilities for diversification. Thus, industry
was confronted with a rising demand for individualised products. This was the beginning
of mass customisation, which meant taking into account the customers’ requirements and
giving them what they wanted (Pohl et al., 2005).

Mass customisation is the large-scale production of goods tailored to individual
customers’ needs (Davis, 1987). For the customer, mass customisation means the ability

10

2.2. SOFTWARE PRODUCT LINES

to have an individualised product. For the company, mass customisation means higher
technological investments which leads to higher prices for the individualised products
and/or to lower profit margins for the company. Both effects are undesirable. Thus many
companies, especially in the car industry, started to introduce common platforms for their
different types of cars by planning beforehand which parts will be used in different car
types. The parts comprising the platform were usually the most expensive subsystem in
terms of design and manufacturing preparation costs. The use of the platform for different
car types typically led to a reduction in the production cost for a particular car type. The
platform approach enabled car manufactures to offer a large variety of products and to
reduce costs at the same time (Pohl et al., 2005).

R. Cooper and Kleinschmidt (2001) consider a platform when we can derive multiple
products. According to TechTarget (2004), a platform is any base of technologies on
which other technologies or processes are built, however, a common definition of platform
does no exist. This definition encompasses all kinds of reusable artefacts as well as all
kinds of technological capabilities.

The combination of mass customisation and a common platform allows us to reuse
a common base of technology and, at the same time, to bring out products in close
accordance with customers’ wishes. The systematic combination of mass customisation
and the use of a common platform for the development of software-intensive systems and
software products is the key focus of software product line engineering.

The strategy commonly adopted is, first, to focus on what is common to all products,
and next, to focus on what is different, designing the commonality first and differences
later. In the first step, artefacts are provided that can be reused for all products. These
artefacts may be built from scratch or derived from another platform or earlier systems
(Pohl et al., 2005).

This flexibility is a precondition for mass customisation; it also means that we can
predefine what possible realisations shall be developed. The flexibility described here is
called variability in the software product lines context. This variability is the basis for
mass customization. For Frank J. van der Linder and Schmid (2007), a key distinction of
software product line engineering from other reuse approaches is that the various assets
themselves contain explicit variability.

Variability management is a concern in any software product lines engineering ap-
proach, covering the whole life-cycle, since the early steps of scoping, covering the
implementation, testing and finally the evolution. Thus, variability is relevant to all
assets throughout software development (Frank J. van der Linder and Schmid, 2007).

11

2.2. SOFTWARE PRODUCT LINES

Consequently, it became necessary to manage carefully the trace information from a
platform to the products derived from it. Without such trace information, it is barely
possible to find out which parts of the platform have been used in which product.

Next, are described the different reasons and benefits that motivate the companies to
adopt a software product lines engineering approach.

2.2.1 SPL Motivations and Benefits

Many different reasons lead companies to adopt a software product lines approach. These
range for more process-oriented aspects such as cost and time over product qualities (e.g.
reliability to end-user aspects such as user interface consistency) (Frank J. van der Linder
and Schmid, 2007).

According to Clements and Northrop (2001), the companies adopt software product
lines in order to achieve not only benefits that they desired, but also benefits that they
absolutely needed to ensure their organizational health and in some cases their very
existence.

The following are some reasons for developing software based on the product line
engineering approach.

Reduction of Development Costs

An essential reason for introducing product line engineering is the reduction of costs.
When artefacts from the platform are reused in several different kinds of systems, this
implies a cost reduction for each system. Before the artefacts can be reused, investments
are necessary for creating them. In addition, the way in which they shall be reused has
to be planned beforehand to provide managed reuse. This means that the company has
to make an up-front investment to create the platform before it can reduce the costs per
product by reusing platform artefacts (Pohl et al., 2005).

Figure 2.1 shows the accumulated costs needed to develop n different systems. The
solid line sketches the costs of developing the systems independently, while the dashed
line shows the costs for product line engineering. In the case of a few systems, the costs
for product line engineering are relatively high, whereas they are significantly lower
for larger quantities. The location at which both curves intersect marks the break-even
point. At this point, the costs are the same for developing the systems separately as for
developing them by product line engineering. The precise location of the break-even point
depends on various characteristics of the organisation and the market it has envisaged,

12

2.2. SOFTWARE PRODUCT LINES

such as the customer base, the expertise, and the range and kinds of products (Pohl et al.,
2005).

According to McGregor et al. (2002), the strategy that is used to iniciate a product
line also influences the break-even point significantly. The strategies behind the product
line engineering paradigm are outlined in Section 2.2.3.

Figure 2.1 SPL Development Cost (Pohl et al., 2005)

Moreover, a complete study achieved by Poulin (1997) shows that the development
costs are recovered after two or three reuses.

Enhancement of Quality

Software product lines engineering also has a strong impact on the quality of the resulting
software. A new application consists, to a large extent, of matured and proven components.
This implies that the defect density of such products can be expected to be drastically
lower than products that are developed all anew (Frank J. van der Linder and Schmid,
2007).

Thus, the artefacts in the platform are reviewed and tested in many products. They
have to prove their proper functioning in more than one kind of product. The extensive
quality assurance implies a significantly higher chance of detecting faults and correcting
them, thereby increasing the quality of all products (Pohl et al., 2005).

13

2.2. SOFTWARE PRODUCT LINES

Reduction of Time to Market

According to Pohl et al. (2005), a very critical success factor for a product is the time to
market. For single-product development, it is assumed that is roughly constant, mostly
comprising the time to develop the product. Figure 2.2 shows that for product line
engineering, the time to market indeed is initially higher, as the common artefacts have
to be built first. Yet, after having passed this hurdle, the time to market is considerably
shortened as many artefacts can be reused for each new product.

Figure 2.2 SPL Time to Market (Pohl et al., 2005)

The improvements of costs and time to market are strongly correlated in software
product line engineering: the approach supports large-scale reuse during software de-
velopment (Frank J. van der Linder and Schmid, 2007). As opposed to traditional reuse
approaches (Poulin, 1997), this can be as much as 90% of the overall software. Reuse is
more cost-effetive than development by orders of magnitude. Thus, both development
costs and time do market can be dramatically reduced by product line engineering.

Reduction of Maintenance Effort

Whenever an artefact from the platform is changed, e.g., for the purpose of error correction,
the changes can be propagated to all products in which the artefact is being used. This
may be exploited to reduce maintenance effort. At best, maintenance staff does not need
to know all specific products and their parts, thus also reducing learning effort. However,
given the fact that platform artefacts are changed, testing the products is still unavoidable.
Yet, the reuse of test procedures is within the focus of product line engineering as well

14

2.2. SOFTWARE PRODUCT LINES

and helps reduce maintenance effort (Pohl et al., 2005).
Usually, along with the reduction of development costs, a reduction of maintenance

costs is also achieved. According by Frank J. van der Linder and Schmid (2007), several
aspects contribute to this reduction; the most notably is the fact that the overall amount of
code and documentation that must be maintained is dramatically reduced. As the overall
size of the application development projects is strongly reduced, the accompanying
project risk is reduced as well.

Coping with Evolution and Improving Cost Estimation

According to Pohl et al. (2005), the introduction of a new artefact into the platform
or the change of an existing one gives the opportunity for the evolution of all kinds of
products derived from the platform. Thus, the company has gains with the evolution and
propagations of new or modified artefacts.

The activity of software estimation becomes straightforward and does not include
much risk, once the core assets base used in SPL is already built. Consequently, the
platform provides a sound basis for cost estimation.

Benefits for the Customer

Customers have the guarantee of getting products adapted to their real needs and wishes.
Besides the advantages of customized products, users do not have to adapt their own way
of working to the software anymore. In the past, it often happened that customers had to
get used to a different user interface and a different installation procedure with each new
product. This annoyed them, in particular as it even happened when replacing one version
of a product by the next version. So, customers began to ask for improved software
ergonomics. Accordingly, software packages were developed to support common user
interfaces and common installation procedures. The use of such packages contributed
to the proliferation of the idea of platforms. Moreover, customers can purchase these
products at a reasonable price as product line engineering helps to reduce the production
costs (Pohl et al., 2005).

The benefits, on the oher hand, accrue with each new product release. Once the
approach is established, the organization’s productivity accelerates rapidly and the benefits
far outweigh the cost. However, an organization that attempts to institute a product line
without being aware of the cost is likely to abandon the product line concept before seeing
it through. It takes a certainn degree of maturity in the developing organization to field a

15

2.2. SOFTWARE PRODUCT LINES

product line sucessfully. Technology change is not the only barrier to sucessful product
line adoption. For instance, according to Clements and Northrop (2001), traditional
organizational structures that simply have one business unit per product are generally not
appropriate for product lines.

The following section presents the essential Software Product Lines Activities.

2.2.2 SPL Essential Activities

Each organization differs in a variety of terms, such as, the nature of this products, their
bussiness goals, culture and policies and even their software process discipline. However,
this diversity between all companies do not represents an impediment to the successfull
of a software product lines adoption.

Nevertheless, Clements and Northrop (2001) distilled universal and essental software
product line activities and practises that apply in every situation. At the highest level of
generality are three essential activities illustrated in Figure 2.3.

Figure 2.3 SPL Essential Activities (Clements and Northrop, 2001)

According to Clements and Northrop (2001), core asset development and product
development from the core assets can occur in either order: new products are built from
core assets, or core assets are extracted from existing products.

Each rotating circle described in Figure 2.3 represents one of the essential activities.
All three are linked together and in perpetual motion, showing that they are all essential,

16

2.2. SOFTWARE PRODUCT LINES

linked, and highly iterative, and can occur in any order. Moreover, the rotating arrows
indicates that revisions of existing core assets or even new core assets might, and most
often do, evolve out of product development. Thus, it is given a neutral idea in regard to
which part of the effort is launched first (Clements and Northrop, 2001).

These three essential activities are outlined in more detail next.

Core Asset Development

Core Asset Development has also been called domain engineering (Pohl et al., 2005).
The goal of the core asset development activity is to establish a production capability for
products. Figure 2.4 illustrates the core asset development activity along with its outputs
and influential contextual factors (Clements and Northrop, 2001).

Figure 2.4 Core Asset Development (Clements and Northrop, 2001)

The necessary inputs required by a production capability to develop products are the
outputs of the core asset development activity. They are Product Line Scope, Core Asset
Base and Production Plan.

Product Line Scope is a description of the products that will constitute the product
line or that the product line is capable of including. At its simplest, scope may consist of
an enumerated list of product names. For a product line to be successful, its scope must

17

2.2. SOFTWARE PRODUCT LINES

be defined carefully. The scope of product line envolves as market conditions change, as
the organization’s plans change, as new opportunities arise, or as the organization quite
simply becomes more adept at software product lines. Envolving the scope is the starting
point for evolution the product line to keep it current (Clements and Northrop, 2001).
Thus, the integration of technical and marketing-oriented product line planning is key to
successful product line adoption (Frank J. van der Linder and Schmid, 2007).

According to Helferich et al. (2006), the advantages an organization can reap from
product line engineering strongly depend on how well the product line infrastructure and
the actual products that the organisation os going to develop are aligned.

Besides the traditional forms of define product line scope, Balbino (2010) realized a
new and challenger study that presents an agile scoping process for product lines joining
the benefits of the two approaches.

Another output of the core asset development activity are the Core Assets that almost
certainly include an architecture that the products in the product line will share, as well
as software components that are developed for systematic reuse across the product line.

A product line architecture is shared across many different products. Thus, it must
capture the commonality of these products and deal with their diferences in an effective
manner (Frank J. van der Linder and Schmid, 2007).

Finally, the last output of core asset development activity is the Production Plan,
that describes how the products are produced from the core assets. The Product Plan
describes the overall scheme for how these individual process can be fitted together to
build a product. It is, in fact, the reuser’s guide to product development within the product
line (Clements and Northrop, 2001).

Therefore, these three outputs (the product line scope, core asset base, and production
plan) are necessary ingredients for feeding the product development activity, which turns
out products that serve a particular customer or market niche (Clements and Northrop,
2001).

Product Development

Product Development is also known as Application Engineering. The goal of the product
development is to derive specific applications by exploting the variability of the softwre
product line (Pohl et al., 2005).

In general way, mature product line organizations priorize the health of the overall
product line over that of individual products, but in the end, the activity of turning out the

18

2.2. SOFTWARE PRODUCT LINES

products is the ultimate product line goal (Clements and Northrop, 2001).
The product development activity depends on the three outputs outlined in the Core

Asset Development Section: the product line scope, the core assets, and the production
plan. Besides these outputs, the product development activity also uses the requirements
for individual products as input. Figure 2.5 shows these relationships.

Figure 2.5 Product Development (Clements and Northrop, 2001)

As well in the Core Asset Development section, the rotating arrows indicate interation
and intricate relationships. An appropriate example for this representation, building a
product that has previously unrecognized commonality with another product already in
the product line will create pressure to update the core assets and provide a basis for
exploiting that commonality for future products (Clements and Northrop, 2001).

In a wider way, the main goal of the application engineering is to achieve an as high as
possible reuse of the domain assets. Some specific goals are: to exploit the commonality
and the variability of the software product lines during the development of a product
line application; to document the application artefacts, i.e. application requirements,
architecture, components, tests, and relate them to the domain artefacts. Last but not least,
the activity of estimate the impacts of the differences between application and domain
requirements on architecture, components, and tests (Pohl et al., 2005).

19

2.2. SOFTWARE PRODUCT LINES

Management

Management in the context of Core Assets and Product Development has a critial role of
maintain the sucessful fielding of a product line (Pohl et al., 2005). Thus, both technical
and organizational levels must be strongly committed to the software product lines effort.
That commitment manifests itself in a number of ways that feed the product line effort
and keep it healthy and vital (Clements and Northrop, 2001).

Commonly the practice of management identifies production constraints and ulti-
mately determines the production strategy. This activity should ensure that these op-
erations and the communication paths of the product line effort are documented in an
operational concept.

According Clements and Northrop (2001), some individual or group should be desig-
nated to either fill the product line management role and act as a product line champion
or find and empower one. That champion must be a strong, visionary leader who can
keep the organization squarely pointed toward the product line goals, especially when the
going gets rough in the early stages.

2.2.3 SPL Strategies

The Software Product Lines strategy describes how the product line practices should be
employed so that the product line organization will achieve its production goals. Thus, the
production strategy for a software product lines is the high-level description of how the
production system performs both the core assets and products. The production strategy is
derived from the organization business strategy and is intended to coordinate the actions
of the core asset and product developers (Chastek et al., 2009).

There are some strategies for developing SPLs (Pohl et al., 2005): proactive, reactive,
and extractive.

With the proactive approach, the organization analyzes, designs and implements
a fresh Software Product Lines to support the full scope of products needed on the
foreseeable horizon. Consequently, from the analysis and design, a complete set of
common and varying source code, feature declarations, product definitions, and automata
are implemented.

In contrast, in the reactive approach, the organization incrementally grows an existing
Software Product Lines when the demand arises for new products or new requirements
on existing products. With this strategy, the common and varying source code, along with
the feature declarations, product definitions, and automata, are incrementally extended in

20

2.3. CHAPTER SUMMARY

reaction to new requirements (Krueger, 2002).
Finally, in the the extractive approach, the organization extracts existing products into

a Software product Lines. Thus, this high level of software reuse enables an organization
to very quickly adopt software mass customization (Krueger, 2002).

Although these approaches have different strategies to work during the process of
SPL adoption, they aren not mutually exclusive. For example, a common approach is to
bootstrap a software mass customization effort using the extractive approach and then
move on to a reactive approach to incrementally evolve the production line over time
(Krueger, 2002).

2.3 Chapter Summary

Software Product Lines is a very successful approach to achieve software reuse. A good
software reuse adoption facilitates the increase of productivity, quality, and reliability,
and the decrease of costs and implementation time. In this context, this chapter sum-
marized the basic concepts about software product lines and their aspects, such as: SPL
Motivations, the related benefits to use and adoption of SPL and the commonly strategies
used in the SPL adoption.

Next Chapter presents an overview about Traceability in order to identify the concepts
and associated techniques. Moreover, it outlines the specific aspects about the Traceability
in the context of Software Product Lines and the issues of Impact Analysis area.

21

3
An Overview on Traceability and Impact

Analysis

E não diga que a vitória está perdida

Se é de batalhas que se vive a vida

Tente outra vez!

Don’t say that the victory is lost

Because life is a succession of battles

Try one more time!

—RAUL SEIXAS (Musician)

Traceability refers to the ability to link different software artefacts, therefore, trace-
ability of software artefacts has been recognized as an important approach for supporting
various activities in the software system development process. In general, the objective of
traceability is to improve the quality of software systems. More specifically, the traceable
software artefacts can be used to support the analysis of implications and integration of
changes that occur in the software systems (Bennett and Rajlich, 2000); the maintenance
and evolution of software systems; the reuse of software system components by identi-
fying and comparing requirements of new and existing systems; the testing of software
system components; and system inspection, by indicating alternatives and compromises
made during development (von Knethen and Paech, 2002). More succinctly, Kotonya
and Sommerville (1998) emphasize that traceability is mainly concerned to maintaining
links between different core assets.

According to the various interrelationships of artefacts within a project, software

22

3.1. TRACEABILITY

traceability has been recognized by both researchers and practitioners as a key factor for
improving software development. Potential benefits of traceability include better impact
analysis, lower maintenance costs, and better assessment of product quality (Asuncion,
2008). Besides these benefits, traceability also enables system acceptance by allowing
users to better understand the system and contributes to a clear and consistent system
documentation.

In the context of Software Product Lines Engineering, the traceability of software
artefacts is an important factor when it comes to effective development and maintenance
of software system. Traceability management facilitates the SPL artefacts to remain in
synchronous state and ensure the consistency of derived products (Abid, 2004).

Thus, the remainder of this Chapter is organized as follows. In Section 3.1, are
introduced the concepts of Software Traceability. Next, the main topics of the Traceability
area in the context of Software Product Lines are discussed in Section 3.2. The concepts
of Impact Analysis are depicted in Section 3.3 and finally, the Chapter Summary is
described in Section 3.4.

3.1 Traceability

During the software development lifecycle, a lot of software artefacts are generated at
each phases and there are huge amounts of complex traceability links among them (Zhou
et al., 2008). According to Lindvall and Sandahl (1996), the establishment of traceability
relations has makes the documentation of a system clear and consistent, and makes the
process of maintaining the system less dependent on individual experts.

von Knethen and Paech (2002) describe traceability as the ability to determine which
documentation entities of a software system are related to which other ones, according
to specific relationships. Another accepted definition given by IEEE (1990) is that
”Traceability is the degree to which a relationship can be established between two or more
products of the development process, especially products having a predecessor-successor
or master-subordinate relationship to one another; for example, the degree to which the
requirements and design of a given software component match.”

According to Spanoudakis and Zisman (2004), software traceability is the ability to
relate artefacts created during the development of a software system to describe the system
from different perspectives and levels of abstraction with each other, the stakeholders that
have contributed to the creation of the artefacts, and the rationale that explains the form
of the artefacts - has been recognized as a significant factor for any phase of a software
system development and maintenance process, thus contributing to the quality of the final

23

3.1. TRACEABILITY

product. Its importance has been widely recognized in software process standards and in
government regulations (IEEE, 1998) (Ramesh and Jarke, 2001).

Consistently, von Knethen and Paech (2002) describe that besides the tracing approach
captures and manages relationships between documentation entities, a trace should also
capture the human cooperation in the design process, that is, how stakeholders contribute
to the development (e.g., maintainer, project manager, or tester) in performing their tasks
(e.g., changing, controlling, or testing). In this way, tracing approach is used to establish
traceability.

Over the last few years, many work addressing various aspects of traceability proposed
by system engineering communities have been done to enhance traceability between
developed artefacts throughout the development lifecycle, such as following.

In the context of vizualization area, Cleland-Huang and Habrat (2007) proposed an
approach to display the candidate links to the user in a relatively bland textual format.
This work described several visualization techniques for helping analysts to evaluate sets
of candidate links.

There are also other work in the same direction conducted by Cleland-Huang and
Habrat (2007), that proposed a special visualization technique - ENVISION, which
is intended to facilitate major software traceability understanding tasks with viewing,
navigating, focusing, searching and filtering. In Addition, ENVISION provides other
useful functions like dual visualization mode, historical navigation path, round trip
visualization. ENVISION is implemented in Eclipse for a traceability visualizing (Zhou
et al., 2008).

In the context of automated traceability approaches, Alexander (2002) described
the experience with a toolkit that helped to reduce the burden of installing traces and
allowed readers to view traces with familiar tools. Three traceability tools were used:
an analyser that can automatically link Use Case references to Use Cases; a dictionary
builder that links and if need be creates definitions from marked-up terms; and an exporter
that translates a database of Use Cases into a fully-navigable and fully-indexed hypertext.

In the Information Retrieval (IR) area, Hayes et al. (2003) presented an approach
for improving requirements tracing based on framing it as an IR problem. Specifically,
they focus on improving recall and precision in order to reduce the number of missed
traceability links as well as to reduce the number of irrelevant potential links that an
analyst has to examine when performing requirements tracing.

Overall, research into software traceability has been mainly concerned with the study

24

3.1. TRACEABILITY

and definition of different types of traceability relations; support for the generation of
traceability relations, which is the focus of this work in the context of SPL; development
of architectures, tools, stakeholders’ purpose and environments for the representation and
maintenance of traceability relations; and empirical investigations into organizational
practices regarding the establishment and deployment of traceability relations in the
software development life cycle (Spanoudakis and Zisman, 2004).

3.1.1 Purpose of Stakeholders

Although traceability has been studied in practice for over two decades, there has yet
to be a consensus on what information should be captured and used as a part of a
traceability scheme. There are many different definitions of traceability, each changing
with a stakeholder’s view of the system (Ramesh et al., 1995). Different stakeholders are
interested in different types of relations. For Kotonya and Sommerville (1998), system
stakeholders are people or organisations who will be affected by the system and who have
a direct or indirect influence on the system requirements. For example, end users may be
interested in relations between requirements and design objects as a way of identifying
design components generated by or satisfying requirements; designers may be interested
in the same type of relations but as a way of identifying the constraints represented as
requirements associated with a certain design object (Spanoudakis and Zisman, 2004). In
the context of single software, stakeholders could be the customer, the project manager,
the system analyst, the system designer, the test engineer, system maintenance personnel,
or the end user of the system.

Traceability provides stakeholders with a means of showing compliance with require-
ments, maintaining system design rationale, showing when the system is complete, and
establishing change control and maintenance mechanisms.

In a general way, the purpose of a tracing approach depends on the stakeholder who
is interested in the traceability information and the task of the stakeholder that should
be supported by the traceability. In this context, purpose characterizes different tracing
approached according to the stakeholders’ view of traceability (von Knethen and Paech,
2002). These purposes are discussed following (von Knethen and Paech, 2002).

• Project Manager: Project managers use the traceability information to provide a
control project progress. The traceability matrix provides the manager a means
of tracking staff progress on the project. Consequently, some project managers
believe that proper use on traceability provides a means of showing full control of

25

3.1. TRACEABILITY

the project. The project manager uses traceability to track project status similar
to the way upper management does, only in more detail. For instance, a GANTT
chart generated from the traceability information is used by the project manager in
developing weekly project status reports (Ramesh et al., 1995). Also, traceability
helps the project manager in detecting project delays. Finally, the project manager
plans to use traceability to verify and prove to the customer that the system meets
the stated requirements and the job is complete. By using traceability to acceptance
test plans for every validated requirement, including derived requirements, the
project manager can prove to the customer that the system ”completely” meets
their needs.

• Customer: Traceability ensures the customer’s satisfaction by proving that all of
the stated requirements are met and that the job is completed. In addition, the effect
of a required change can be demonstrated. These activities are executed by the
Project manager.

• Project planner: Project planners are responsible for planning, organizing, secur-
ing and managing activities. Thus, a project planner uses a tracing approach to
perform impact analysis. Requirements can be tracked to determine the impact of a
required change.

• Tester: The system testers plan on using traceability in writing the acceptance
test plan. Being a tester is about improving the quality of the product before
it is complete. Thus, making use of the traceability tool, the testers will verify
that the Acceptance Test Plan tests all of the system requirements, thus ensuring
completeness and that it operates as it is designed to, while meeting all of the
customer’s requirements.

• System Engineering: Although the project is not at the stage of maintenance,
the system designer foresees using requirements traceability extensively in trac-
ing changes to code modules and documentation due to the complexity of the
engineering projects and management over the life of the project.

• System Designer: Designers use the traceability information to understand de-
pendencies between the requirements and to check whether all requirements are
considered by the design. The system designer also plans on using traceability to
determine which test plans and documentation are effected by a change so that they

26

3.1. TRACEABILITY

could be updated and rewritten. The software designer use traceability as a ”fit and
function” verification tool.

• Requirements engineer: Requirements engineers is responsible for manage changes
to the system requirements (Kotonya and Sommerville, 1998), thus the traceability
information is used to check correctness and consistency of the requirements.

• Validator: Validators use traceability relationships between requirements and
test plans to prove that the system ”completely” meets the needs of the customer.
In addition, test procedures can be identified that should be rerun to validate an
implemented change. This saves test resources and allows the schedule to be
streamlined.

• Maintainer: Maintainers use the traceability information to decide how a required
and accepted change will affect a system. Maintainers could identify which modules
are directly affected and which other modules will experience residual effects.
Documenting an engineer’s design rationale helps the maintainer to understand the
system. If a required change is implemented, understanding the existing solution
structure helps to prevent the system from degrading.

In a case study conducted by Ramesh et al. (1995), are identified that from the
upper level management to the system maintenance personnel, every person believes
that traceability needed for the successful completion of a project and that without it,
their organization’s success would be in jeopardy. However, there is no agreement in the
literature as to which conceptual trace models are necessary to support which stakeholder
and task.

In general way, stakeholders with different perspectives, goals and interests who are
involved in software development may contribute to the capture and use of traceability
information. Depending on their perceptions and needs, they may influence the selection
of different types of traceability relations which are used in software development projects,
and can establish project specific conventions for interpreting the meaning of such
relations (Spanoudakis and Zisman, 2004). An overview of the main types of traceability
relations that have been proposed in the literature is outlined in the following session.

3.1.2 Types of Traceability Relations

Existing approaches and tools for traceability support the representation of different types
of relations between system artefacts but the interpretation of the semantics associated

27

3.1. TRACEABILITY

with a traceability relation depends on the stakeholders, as described in the preview
Section 3.1.1.

The semantic associated with the traceability relations leads to a series of related
studies. Dick (2002) shows that in industrial settings, the traceability relations are very
shallow and it is necessary to represent deeper and richer semantic traceability relations.
He proposes the use of textual rationale and propositional logic in the construction of
traceability arguments. According to Pinheiro and Goguen (1996), traceability relations
should have precise semantic definition to avoid the problem of culture-based interpreta-
tions. On the other hand, Bayer and Widen (2002) suggested that in order to increase the
use of traceability and, therefore, compensate for its cost, traceability relations should
have a rich semantic meaning instead of being bi-directional referential relations.

In order to overcome the lack of standard semantic interpretation of traceability rela-
tions and establish meaningful forms of semantics for traceability relations, Spanoudakis
and Zisman (2004) organized various types of traceability relations proposed in the litera-
ture into eight main groups namely: dependency, generalisation, evolution, satisfaction,
overlap, conflicting, rationalisation, and contribution relations.

In a general way, traceability relations denote overlap, satisfiability, dependency,
evolution, generalization, conflict, contribution and rationalisation associations between
various software artefacts and the stakeholders that have contributed to their construction.
These groups are described next in details (Spanoudakis and Zisman, 2004) . In this
explanation about these types of traceability, is used the term element in a general way to
represent the different parts, entities, and objects in software artefacts that are traceable,
such as: stakeholders, requirements statements, classes and code statements. Thus, two
elements e1 and e2, in different or in the same software artefact can be related by more
than one type of relations.

• Dependency relations: This type of relations, an element e1 depends on an ele-
ment e2, if the existence of e1 relies on the existence of e2, or if changes in e2 have
to be reflected in e1. For instance, Ramesh and Jarke (2001) propose the use of
dependency relations between different requirements, and between requirements
and design elements.

• Generalisation relations This type of relationship is used to identify how complex
elements of a system can be broken down into components, how elements of a
system can be combined to form other elements, focusing on specific concepts
and how an element can be refined by another element (Spanoudakis and Zisman,
2004).

28

3.1. TRACEABILITY

• Evolution relations: Relations of this type means the evolution of elements of
software artefacts. In this case, an element e1 ”evolves to” an element e2, if e1

has been replaced by e2 during the development, maintenance, or evolution of the
system.

• Satisfiability relations: In this type of relations, an element e1 satisfies an element
e2, if e1 meets the expectation, needs, and desires of e2; or if e1 complies with a
condition represented by e2. This type of relations is classified within the condition
link group, which associates restrictions to requirements and contains constraints
and pre-condition links (Pohl, 1996b).

• Overlap relations: In this type of relations, an element e1 overlaps with an
element e2, if e1 and e2 refer to common features of a system or its domain.
In (Jirapanthong and Zisman, 2009), an example of this relation exists between
operations in the sequence diagram and the descriptions in the use case, since
this description contains the name of the operation and the name of the class of
the object of this operations is the sequence diagram. While in (Spanoudakis and
Zisman, 2004), overlap relations are used between requirement statements, use
cases, and analysis object model.

• Contribution relations: This type of relations are used to represent associations
between requirement artefacts and stakeholders that have contributed to the gen-
eration of the requirements. Gotel and Finkelstein (1995) present an approach,
based on modelling the dynamic contribution structures underlying requirements
artefacts, which addresses this issue. More specifically, this approach supports
requirements pre-traceability, that is the ability to relate a requirement with the
stakeholders that expressed it and contributed to its specification.

• Conflict relations: This type of relations means conflicts between two elements e1

and e2. In (Ramesh and Jarke, 2001), conflict relations are used to identify conflicts
when two requirements conflit with each other. This type of conflict relations also
are used to components, and design elements, to define issues related to these
elements, and to provide information that can help in resolving the conflicts and
issues.

• Rationalisation relations: Relations of this type are used to represent and maintain
the rationale behind the creation and evolution of elements, and decisions about

29

3.1. TRACEABILITY

the system at different levels of detail. Ramesh and Jarke (2001) capture the
rationalisation relations based on the history of actions of how elements are created.

According to Ramesh and Jarke (2001), most of the existing approaches in the
literature have proposed different types of traceability relations that relate requirements
specifications, and requirements with design specifications and requirements and design
artefacts. Ramesh and Jarke (2001) attributed this to the fact that traceability was initially
proposed to describe and follow the life of a requirement, such as requirement traceability.
In additional, Ramesh and Jarke (2001) describe in details the establishment of traceability
relations involving code specifications and other software artefacts is not an easy task.

Another classification identified in the literature is related with the dependency
of condition whether traceability relations associate elements of the same artefacts or
elements of different artefacts, they can be distinguished into vertical and horizontal
relations, respectively.

As described in this Section, much reference models have also been proposed to
support semantic interpretation of traceability relations in the literature, but they are not
an easy task, besides being error prone on the maintanence activities. In the Chapter
4, we describe in details an metamodel that proposes a representation of traceability
information including the different traceable elements and possible traceability scenarios
of recommendation.

In the following Section is outlined the different options of traceability generation
described in the literature.

3.1.3 Generation of Traceability

As described in the beginning of this Chapter, potential benefits to traceability include
better impact analysis, lower maintenance costs, and better assessment of product quality
(Asuncion, 2008). However, despite these advantages, traceability is difficult to achieve
in practice, because users still face many problems when employing traceability tools
and techniques.

The majority of contemporary requirements engineering and traceability tools offer
only limited support for traceability as they require users to create traceability relations
manually. Accordingly to Asuncion et al. (2007), these approaches are generally infea-
sible, because most of the manual approaches require high overhead and are viewed by
software engineers as imposed work.

In order to mitigate the problem, some approaches which support automatic or

30

3.1. TRACEABILITY

semi-automatic generation of traceability relations have been proposed. Soon thereafter,
are described the different approaches for traceability generation based on the level of
automation that they often which ranges from manual, to semi-automatic, and fully
automatic generation.

Manual Generation

Manual generation of traceability is normally supported by visualisation and display tool
components, in which the documents to be traced are displayed and the users can identify
the elements in the documents to be related in an easier way (Spanoudakis and Zisman,
2004).

An example of this approaches was presented in (Pohl, 1996a) that presents a re-
quirements engineering environment, called PRO-ART, which enables requirements
pre-traceability. PRO-ART is based on some main contributions: a three-dimensional
framework for requirements engineering which defines the kind of information to be
recorded; a trace-repository for structuring the trace information and enabling selective
trace retrieval.

Despite the numerous advantages, the manual creation of traceability relations is
difficult, error prone, time consuming and complex. Thus, an effective traceability is
rarely established manually in industry.

Semi-automatic Generation

Spanoudakis and Zisman (2004) classify the semi-automatic traceability generation ap-
proaches into two groups: pre-defined link group, that is concerned with the approaches
in which traceability relations are generated based on some previous user-defined links,
and process-driven group, that is concerned with the approaches in which traceability
relations are generated as a result of the software development process.

The semi-automated approach appeared in order order to overcome the issues associ-
ated with the manual generation of traceability relations. Some approaches have been
proposed in which traceability relations are generated in a semi-automatic way as follows.

In the context of a pre-defined group approach, Egyed (2003) presented an semi-
automated approach to generating and validate trace dependencies. This work addressed
the severe problem that the lack of trace information or the uncertainty of its correctness
limits the usefulness of software models during software development. It also automates
what is normally a time consuming and costly activity due to the quadratic explosion of
potential trace dependencies between development artefacts.

31

3.1. TRACEABILITY

Although the above approaches may be considered an improvement when compared
with the manual approaches, the identification of the initial user-defined links required by
some of the approaches may still cause traceability to be error prone, time consuming,
and expensive (Spanoudakis and Zisman, 2004).

Automatic Generation of Traceability Relations

In order to overcome the issues associated with the manual and semi-automated gener-
ation of traceability relations, some recently approaches have been proposed in which
traceability relations are generated in a automatic way. Spanoudakis and Zisman (2004)
identify three proposals of approaches to support automatic generation of traceability
relations. Some of these approaches use Information Retrieval - IR techniques, others use
traceability rules, special integrators and inference axioms.

In the context of Information Retrieval IR, Antoniol et al. (2002) proposed a method
based on IR to recover traceability links between source code and free text documents.
A premise of this is that programmers use meaningful names for program items, such
as functions, variables, types, classes, and methods. They believes that the application-
domain knowledge that programmers process when writing the code is often captured
by the mnemonics for identifiers; therefore, the analysis of these mnemonics can help to
associate high-level concepts with program concepts and vice-versa. This work has been
reported to produce traceability relations at low levels of precision and reasonable levels
of recall. It should be noted, however, that the relations produced by this approach could
only represent overlap relations between elements in different system artefacts that refer
to common features of a system. With the same technique, Hayes et al. (2003) present
an approach for improving requirements tracing based on framing it as an information
retrieval IR problem. Specifically, this work focus on improving recall and precision in
order to reduce the number of missed traceability links as well as to reduce the number of
irrelevant potential links that an analyst has to examine when performing requirements
tracing.

In the context of rule-based technique, Zisman et al. (2003) presents an approach for
automatic generation and maintenance of bi-directional traceability relations between
commercial and functional requirements expressed in natural language, and requirement
object models. The generation of traceability relations is based on two types of traceability
rules: requirements-to-object-model rules and inter-requirements rules.

Sherba et al. (2003) describe a framework for automating the management of trace-
ability relationships chaining, called TraceM. According to Sherba et al. (2003), a key

32

3.2. TRACEABILITY FOR SPL

contribution of TraceM is its ability to transform implicit relationships into explicit rela-
tionships by processing chains of traceability relationships. This approach uses special
integrators, which can discover and create traceability relations between software artefacts
and other previously defined relations.

In a tool called TOOR (Traceability of Object-Oriented Requirements), traceability
is defined and derived in terms of axioms. Based on these axioms, the tool allows
automatic identification of traceability relations between requirements, design, and code
specifications (Pinheiro and Goguen, 1996).

Although none of the above approaches can fully automate the generation of trace-
ability relations, they have taken significant steps toward this direction.

According to Ramesh et al. (1995), the costs associated with implementing a compre-
hensive traceability scheme can be justified in terms of better quality of the product and
the systems development and maintenance process with potentially lower life cycle costs.

Some of the points described in this Section are strongly present in software product
lines. The Mapping Study in the Traceabilify for SPL, and the relation between software
product lines and traceability are outlined in the following Section.

3.2 Traceability for SPL

The Software Product Lines methods and techniques aim at producing software system
families with high level of quality and productivity (Pohl et al., 2005). As discussed in
the preview Chapter, the development of a SPL is typically organized in domain and
application engineering. The focus of domain engineering is the production of a set of
core assets to scoping, specification and modeling of the common and variable features of
a Software Product Lines; the definition of a flexible architecture that comprise the SPL
common and variable features; and the implementation of the SPL architecture. In an
application engineering process, a feature model configuration can be used to compose
and integrate the core assets produced during the domain engineering stage in order to
generate and instance of the SPL architecture.

Several authors believe that traceability is a fundamental condition for the SPLs sucess.
According to Streitferdt (2001), traceability throughout model elements is a necessary
precondition for preserving the consistency of the complete family model during develop-
ment. Likewise, Sousa et al. (2009) show that traceability is fundamental to guarantee
and validade the quality of SPL development and to allow a better management of SPL

33

3.2. TRACEABILITY FOR SPL

variabilities. For Jirapanthong and Zisman (2005), traceability relations can improve the
quality of the product being developed, and reduce the development time and cost in
the SPL. Researchers have widely acknowledged the potential of traceability relations
in identifying reusable artefacts in the software development life-cycle. According to
Spanoudakis and Zisman (2004), these artefacts may be at different levels of abstraction
(e.g. source code, design or requirement artefacts) and can be identified and reused
through different scenarios, which require the existence of different types of traceability
relations.

Next, is outlined the Research Strategy conducted to provide an overview of Trace-
ability in the context of the Software product Lines area.

3.2.1 Research Strategy - SPL Traceability Literature

Compared to single systems development, the traceability for Software Product Lines
becomes more complex and challenging, since it involves more artefacts and more
different stakeholders. In order to address part of these challenges, some approaches have
been proposed by industry and academy. Many of these approaches are reported on the
scientific literature, thus it is necessary a strategy to map the studies that report those
approaches.

The research strategy adopted to relate the main available approaches of the Traceabil-
ity area in the context of Software Product Lines was carried out based on some practices
of the Systematic Mapping Study (Petersen et al., 2007). The Systematic mapping is
a methodology that is frequently used in medical research, but that have largely been
neglected in Software Engineering (SE). The main practices of the systematic mapping
defined by Petersen et al. (2007) are: definition of the research questions, conducting
the search for relevant papers, screening of papers, keywording of abstracts and data
extraction and mapping.

The remain of this Section presents the good practices of Systematic Mapping Study
adopted in our Research Strategy, but without using all the activities proposed by Petersen
et al. (2007).

Research Questions

The research questions guide the design of the research strategy to provide an overview
of a research area, and identify the main and relevant related work. Thus, this study is
intended to answer the following research questions:

34

3.2. TRACEABILITY FOR SPL

Q1.Which techniques and areas are addressed by the Traceability in the context
of SPL? This question aims identifing the Traceability approaches in the SPL context,
such as: rule based, information retrieval, metamodel.

Q2. Which type of traceability approaches are adopted in the context of SPL?
This question aims identifing the the types of existing traceability approaches in the
context of SPL, such as: manual generation, semi-automatic generation and automatic
generation.

Following are described how the research was conducted. If involves the steps adapted
from (Petersen et al., 2007), such as: Search Strategy and Data sources.

Search Strategy

The first strategy to conduct our research was to create the search string because the
primary studies are identified by using search strings on scientific databases or browsing
manually through relevant conference proceedings or journal publications (Petersen
et al., 2007). According to Kitchenham and Charters (2007), a good way to create the
search string is to structure them in terms of population, intervention, comparison, and
outcome. The structure should be driven by the research questions and are constructed
using boolean ANDs and ORs to combine keywords.

We used various combinations of search items to achieve a more adequate set of key-
words, they are: software product lines, software product family, product line, application
family, production line, product population, product family, domain analysis, domain en-
gineering, requirements engineering, domain, requirement, variability, variation, domain
requirement, domain requirements software reuse and reuse, as well as their syntactic
variations (e.g. plural form). Thus, this research strategy defines the two following search
strings:

• Search With Software Product Line criterias: (”Software Product Line” OR

”product line” OR ”product lines” OR ”software family” OR ”software families” OR

”spl” OR ”ple”) AND (”traceability” OR ”tracing” OR ”trace”) AND (”automate”

OR ”automated” OR ”automatic” OR ”semi-automatic” OR ”semi-automated”

OR ”rule-based” OR ”visualization” OR ”information retrieval” OR ”ontology”

OR ”ontological” OR ”semantic index” OR ”latent semantic indexing” OR ”se-

mantic indexing” OR ”generation”)

35

3.2. TRACEABILITY FOR SPL

• Search without Software Product Line criterias: (”Software”) AND (”automate”

OR ”automated” OR ”automatic” OR ”semi-automatic” OR ”semi-automated”

OR ”rule-based” OR ”visualization” OR ”information retrieval” OR ”ontology”

OR ”ontological” OR ”semantic index” OR ”latent semantic indexing” OR ”se-

mantic indexing” OR ”generation”)

Data Sources

The choice of databases was performed in search engines and digital libraries of the most
popular publishers and organizations in software engineering. Beside the analysis of
the journals, conferences, proceedings, books and technical reports, we also analyzed
the references of the gray literature. The research was done through last ten years of
conferences and journals. The used strategy is explained in three steps:

1. Since usually the most important work are published on journals (from IEEE, ACM
and Springer), they were the first place search.

2. After that, the papers were searched in important conferences in the Software
Engineering. The searched conferences were:

• International Conference of Software Engineering (ICSE);

• International Conference on Software Reuse (ICSR);

• International Conference on Software Maintenance (ICSM);

• International Requirements Engineering Conference (IREC);

• International Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA);

• Software Product Line Conference (SPLC);

• International Conference on Enterprise Information Systems (ICEIS);

• International Conference on Software Process (ICSP);

• International Conference/Workshop on Program Comprehension (ICPC);

• International Conference on Information Reuse and Integration (IRI);

• European Conference for Object-Oriented Programming (ECOOP);

• Empirical Software Engineering and Measurement (ESEM);

36

3.2. TRACEABILITY FOR SPL

• European Software Engineering Conference (ESEC);

• European Conference on Software Architecture (ECSA);

• International Conference and Workshop on the Engineering of Computer-
Based Systems (ECBS);

• Asia Pacific Software Engineering Conference (APSEC);

• International Conference on Automated Software Engineering (ASE);

• International Computer Software and Applications Conference (COMPSAC);

• International Conference on Advanced Information Systems Engineering
(CAiSE);

• European Conference on Software Maintenance and Reengineering (CSMR);

• Technology of Object-Oriented Languages and Systems Conference (TOOLS);

• Working IEEE/IFIP Conference on Software Architecture (WICSA);

• Working Conference on Reverse Engineering (WCRE);

• Fundamental Approaches to Software Engineering (FASE);

• International Conference on Quality Software (QSIC);

• Euromicro Conference on Software Engineering and Advanced Applica-
tions(SEAA);

• International Conference on Generative Programming and Component Engi-
neering (GPCE);

• International Conference on Software Engineering and Knowledge Engineer-
ing (SEKE);

• International Conference on Composition-Based Software Systems (ICCBSS);

• International Conference on the Quality of Software Architectures (QoSA);

• International Symposium on Component-based Software Engineering (CBSE);

• International Conference on Model Driven Engineering Languages and Sys-
tems (MODELS).

3. As next step, the search string defined just above was used to filter potential work
that are not found in the second step. The main databases used to find these papers
were: Scopus, IEEEXPlore, ACM and SpringLink.

4. Finally, papers referenced by the authors of the found papers were also analyzed.

37

3.2. TRACEABILITY FOR SPL

Studies Selection

As soon as the potentially relevant primary studies have obtained, according to the match
of the search items and research questions, the studies found needed to be assessed for
their actual relevance. In order to obtain these results, are shown shortly after the inclusion
and exclusion of the objects. According to Petersen et al. (2007), inclusion/exclusion
criteria are used to exclude studies that are not relevant to answer the research questions,
thus it useful to exclude papers which only mentioned our main focus, traceability and
Software Product Lines in the abstract. This was important since traceability and Software

Product Lines are the central concepts in the area, thus is frequently used in abstracts
without papers really addressing it any further. The criteria are next detailed:

Inclusion Criteria: Studies that present at least one of the following topics:

• Traceability for Software Product Lines.

• SPL Meta-models. It is directly related with traceability for SPL.

• Software Product Lines Variability. Variability is a key concept for SPL modeling
and the traceability aspects are important points that must be analyzed.

The inclusion criteria establish the reasons for each study found in the previous step.
The abstract explicitly mentions these following topics, because from the abstract, the
researcher is able to deduce that focus of the paper contributes to traceability in the
context of software product lines engineering.

Exclusion Criteria: the criteria that describes the reasons to discart studies found in
the previous step are:

• The paper lies outside the software engineering domain.

• A work where traceability and software product lines are not part of the contribu-
tions of the paper or with insufficient information in traceability.

• A work that is not an approach. It involves only concepts or issues related with
traceability for software product lines.

• A work that the term are only mentioned in the general introductory sentences of
the abstract.

• Finally, the duplicate studies are ignored when has been published in more than
one publication, the most complete version will be used.

38

3.2. TRACEABILITY FOR SPL

In general, for each selected study was applied the reading of the following elements:
titles, abstract, keywords, conclusion and references. These studies were analyzed with
focus on the inclusion and exclusion criteria. The results of this research strategy is
vizualized in the Section 3.2.2 (related works), which are described the main available
and relevant works in the area.

Data Analysis

The first stage resulted in a set of 66 studies raised from the web search, through the use
of search strategy described previously. However, titles are not always clear indicators of
what a study is about. The possibility of finding not so relevant studies was considerated,
therefore in a next stage inclusion and exclusion criteria described previously were
applied to them, which resulted in the reduction of studies. It basically comprised a brief
analysis of abstract and conclusion. This strategy is claimed to be useful for giving the
researcher more detailed information on the subject (Kitchenham and Charters, 2007). In
the next stage, the whole text was visited in order to have a critical viewpoint on the topic
addressed by the study. Finally, in the end of this stage, many studies that lies out of the
inclusion criteria was excluded.

Finally, these good practices addressed the research strategy to the process of identi-
fication the main related and available work in the gray literature. A description about
some selected approaches in the area are outlined in detail in the next Section.

3.2.2 Research Results

According to the research approach based on some good practices of Systemactic Mapping
Studies proposed by Petersen et al. (2007) and 28 studies were selected.. The following
works bring differents traceability approaches in the context of Software Product Lines.

In order to apply SPL practically and to automate SPL process, elements of artefacts
and their relationships should be precisely specified. In this context, Streitferdt (2001)
proposed a requirements metamodel for system family development. As mentioned
in the beginning of the Chapter, Streitferdt (2001) puts traceability throughout model
element as a necessary precondition for preserving the consistency of the complete family
model during development. According to Streitferdt (2001), current methods such as
FODA (Kang et al., 1990a) and FeatuRSEB (Griss et al., 1998) address the requirements

39

3.2. TRACEABILITY FOR SPL

engineering phase by high level constructs such as use-cases. This is insufficient, since
not all systems are workflow oriented being needed a lower level approach. Thus, the
proposed solution consists of a metamodel upon which a low level model of requirements
can be built for developing system families. In addition, this work identifid the necessity
of a tool to perform consistency checking and analyses. The prototype was used in
academic projects and a cooperation project with industry partners, to evaluate, refine
and validate the proposed metamodel in practice.

Likewise, Kim et al. (2005) proposed a generic Product Line Engineering (PLE)
process based on a survey to identify the representative PLE approaches. Then, this work
defined a meta-model of PLE artefacts, to show how each artefact can be represented at
conceptual and physical levels. Finally, were specified an overall traceability map, trace
links and mapping relationships. For Kim et al. (2005), through the foundation of PLE
traceability, the PLE artefacts such as core assets and instantiated products can be more
efficiently and correctly developed. According to this proposal, family development based
on the metamodel guarantees traceability by the inclusion of all development artefacts in
a single and consistent model.

Another work suggested a metamodeling approach to support the tracing of variability
in requirements and architecture in a product line (Moon et al., 2007). Two metamodels
representing the domain requirements and domain architecture with variability were
proposed. In a general way, the variations in artefact constituents are determined based
on several trace matrices. It must be demonstrated that decisions as to whether properties
of the requirements are common or optional are rational, because these decisions affect
the properties of subsequent core assets.

The work proposed by Moon et al. (2007) realized a study and verified that many
features modeling approaches are used to represent variability in the problem space, i.e.,
at the requirements level, or in the solution space, i.e., at the architecture or source code
level. However, Moon et al. (2007) emphasized that while these approaches appropriately
address variability issues at each level of abstractions in a product line development, they
do not address issues with regard to tracing between the requirements and the architecture.
In other words, they only describe the means of mapping features to the architecture or
design elements and they do not describe traceability with respect to variation points in the
requirements and architecture, which are considered crucial for consistent and efficient
development of product line based applications. Although Berg et al. (2005) describe
the importance of tracing variability in a product line and proposes a conceptual model
for traceability, it does not provide a detailed description of traceability dependencies

40

3.2. TRACEABILITY FOR SPL

between requirement and architecture, such as requirement and architecture models and
specific dependencies with respect to the variability between these.

In summary, this work presents a metamodel, the basis for tracing the variabilities
with a clear description between two phases in a product line.

Another work conducted by Sousa et al. (2009) proposed a traceability framework
for implementing forward and backward trace links among different artefacts from SPL
development, using model-driven engineering techniques. This framework requires the
definition of a variability model to allow the tracing of SPL common and variable features
along the domain and application engineering stages. The variability model is used in this
approach as the main reference to trace the SPL artefacts. In addition, it is implemented
as a flexible framework in order to allow its customization to different SPL traceability
scenarios.

This work also delineates a survey of existing traceability tools development. This
survey was conducted in the context of the AMPLE project (AMPLE, 2011). According
to Sousa et al. (2009), the objectives of this survey were to investigate the current
features provided by existing tools in order to assess their strengths and weaknesses and
their suitability to address SPL development. The tools were evaluated in terms of the
following criteria: management of traceability links; traceability queries; traceability
views; extensibility; and support for Software Product Lines, Model Driven Engineering
and Aspect-Oriented Software Development (AOSD).

In this context, Sousa et al. (2009) concluded that none of the investigated tools had
built-in support for SPL development, and a vast majority of them are closed, so they
cannot be adapted to deal with the issues raised by SPL. In additional, this work also
identifies that many tools are still in an experimental state and does not cover traceability
up to a degree that is desirable. Another relevat aspect detected in this survey is that many
tools do not support advanced and specific support to deal with change impact analysis or
requirement/feature covering in the context of SPL development. This is a specific gap
that will be covered in our approach in Chapter 4.

Finally, the conclusions draws from this survey were that existing traceability tools
do not provide a sucient support to address the traceability problem in SPL development.

In the context of automatic generation of traceability relations, Jirapanthong and
Zisman (2009) define a traceability reference model with nine different types of traceabil-
ity relations for eight types of documents. The traceability rules used in this work are
classified into two groups namely: direct rules, which support the creation of traceability

41

3.2. TRACEABILITY FOR SPL

relations that do not depend on the existence of other relations, and indirect rules, which
require the existence of previously generated relations. This rule-based approach allows
automatic generation of traceability relations between elements of documents created
during the development of product line systems.

In general, rules assist and automate decision making, allow for standard ways of
representing knowledge that can be used to infer data, facilitate the construction of
traceability generators for large data sets, and support representation of dependencies
between elements in the documents. In addition, the use of rules in this approach allows
for the generation of new relations based on the existence of other relations, supports
the heterogeneity of documents being compared, and supports data inference in similar
applications (Jirapanthong and Zisman, 2009).

This work is an extension of the work of (Jirapanthong and Zisman, 2005). It
presented some initial ideas about the approach, an initial version of the traceability
reference model, and few examples of traceability rules.

A prototype tool called XTraQue was implemented. This tool allows the generation of
traceability relations by interpreting traceability rules. It also offers support for creating
new traceability rules and translating documents into XML format.

In order to illustrate and evaluate this work, the researchers used a case study from a
mobile phone product line system. According to Jirapanthong and Zisman (2009), the
results of these experiments are encouraging and comparable with other approaches that
support automatic generation of traceability relations. The results of these experiments
have shown an average precision of 85.3% and an average recall of 83.5%. These results
are comparable to other approaches that support automatic generation of traceability
relations between requirements specifications and source code, requirements, use cases,
and object models, and requirements and design models (Jirapanthong and Zisman, 2009).

In the context of Information Retrieval - IR approaches, Lucia et al. (2007) have
improved an artefact management system with a traceability recovery tool based on
Latent Semantic Indexing (LSI), an information retrieval technique. Although several
research and commercial tools are available to support traceability between artefacts,
the main drawback of these tools is the lack of automatic or semi-automatic traceability
link generation and maintenance (Alexander, 2002). According to Lucia et al. (2007),
several researches have recently applied Information Retrieval techniques to the problem
of recovering traceability links between artefacts of different types. IR-based methods
recover traceability links on the basis of the similarity between the text contained in
the software artefacts. The rationale behind them is the fact that most of the software

42

3.2. TRACEABILITY FOR SPL

documentation is text based or contains textual descriptions and that programmers use
meaninful domain terms to define source code identifier.

This work has assessed LSI in relation to strengths and limitations of using information
retrieval techniques for traceability recovery and devised the need for an incremental
approach. LSI is an advanced IR method that is able to achieve the same performances
without as the classical probabilistic or VSM without requiring preliminary morphological
analysis of the document words.

Another contribution of this work are the definition and implementation of a tool that
helps the software engineer to discover emerging traceability links during the software
evolution, as well as to monitor previously traced links.

Finally, Lucia et al. (2007) concluded that although tools based on information
retrieval provide a useful support for the identification of traceability links during software
development, they are still far to support a complete semi-automatic recovery of all links.
The results they experience have also shown that such tools can help to identify quality
problems in the textual description of traced artefacts.

Following are outlined the main risks and challenges of the traceability adoption in
the context of Software Product Lines Engineering.

3.2.3 Risks and Challenges

The large number and heterogeneity of documents generated is considerated as the
biggest challenge to the adoption and maintenance of traceability in the development of
product lines. Systems may cause difficulties to identify common and variable aspects
among applications, and to reuse core assets that are available under the product line
(Jirapanthong and Zisman, 2009). Moreover, according to Kim et al. (2005), a precise
mapping and relationship among the artefacts are yet to define. In order to apply PLE
practically and to automate PLE process, elements of artefacts and their relationships
should be precisely specified.

In general, most of authors agree that despite the advantages and benefits of current
traceability methods and techniques, most of them do not provide automatic mechanisms
or tools to address the traceability between the produced artefacts in both domain and
application engineering process. Sousa et al. (2009) argue that this is fundamental to
guarantee and validate the quality of SPLs development and to allow a better management
of SPL variabilities. On the other hand, current traceability tools do not provide support
to address the new artefacts, such as variability model or processes of SPL development.

43

3.3. IMPACT ANALYSIS

As a result, they do not allow the explicit modeling and management of SPL features.
For Lucia et al. (2007), the support for traceability in contemporary software engineering
environments and tools is not satisfatory. Lucia et al. (2007) also complete that this
inadequate traceability is one of the main factor that contributes to project overruns and
failures. According to (Alexander, 2002), the main drawback of these tools is the lack of
automatic or semi-automatic traceability links generation and maintenance.

Beside all these topics discussed previously, the traceability area in the context of
SPL has some limitation, because the majority of the approaches concerning traceability
for product line systems focus on traceability metamodel and do not provide ways of
generating traceability relations automatically. This is one of the main concerns of this
work.

Finally, Moon et al. (2007) show that traceability issues are even more important in
the context of product line because the impact of changes in a product line can involve
all the product line-based applications, thus the impact analysis is considered as another
challenge in this area. The main topics of Impact Analysis are outlined in next session.

3.3 Impact Analysis

Since the process proposed by Royce (1987), popularly known as waterfall process,
the maintenance was considered a post-production activity. According to the waterfall
process, maintenance is the last phase of the software life-cycle, after the delivery and
deployment of the software. This classical view on maintenance has governed the
industrial practice in software development and is still in use today by several companies
(Mens and Demeyer, 2008).

As analyzed by Oliveira (2009), it took a while before the software engineers have
realized the limitations of this waterfall model, given the fact that the separation in
phases were too strict and inflexible. Commonly, it is unrealistic to assume that all
requirements are know before starting the design phase of the software. One example is
that in many cases, the software requirements continues to change until the end of the
software life-cycle.

Software process more evolutionary have been proposed, such as the change mini-
cycle, which introduced new important activities such as change impact analysis and
change propagation (Yau et al., 1993).

According to Abma (2009), when a system is designed with evolvability in mind,
a good change process can improve the implementation of changes. Such process is

44

3.3. IMPACT ANALYSIS

called change management and provides a common communication channel between
maintenance staff, users, project managers and operations staff, and it provides a directory
of changes to the system, for status reporting, project management, auditing and quality
control.

According to Moreton (1996), change management needs at least the following steps:
impact analysis, system release planning, change design, implementation, testing and
system release and integration. One of the interests of this work are in the first stage:
impact analysis. In general, impact analysis is the activity of identifing what to modify
to accomplish a change, or of identifying the potential consequences of a change. For
Arnold and Bohner (1996), software change impact analysis is the process of identifying
the potential consequences of a proposed change. It can be used to estimate what has to be
modified in an implementation to accomplish a change. Another definition is providen by
Pfleeger (2001), as the evaluation of the many risks associated with the change, including
estimates of effects on resources, effort, and schedule.

Arnold and Bohner (1996) summarize that an important aspect that all definitions
have in common is that impact analysis normally does not change anything but for their
understanding of the system and the effect of the proposed change. Arnold and Bohner
(1996) still identified two types of impact analysis being supported in tools. The first type
works based on analyzing the source code using techniques like program slicing, cross-
referencing and control flow analyzing. The second type is more life-cycle-document
oriented and is based on creating relations between artefacts from the beginning of the
project, instead of the end.

According to Lientz and Swanson (1980), software evolution can be categorized by
the type of changes that are being peformed into four different ”dimensions”:

• Adaptive: related to maintenance performed in response to changes in data and
processing environments;

• Perfective: maintenance performed to eliminate processing inefficiencies, enhance
performance, improve maintainability, or which is response to new user require-
ments;

• Corrective: maintenance performed in response to failures; and

• Preventive: where the objective is to prevent problems in the future.

The adaptive, perfective and corrective activities are reactive evolution management
activities, since it concerns with managing the arrived changes and controlling them in

45

3.3. IMPACT ANALYSIS

order to maintain the stability and integrity of the systems. On the other hand, preventive
activities can be seen as a proactive evolution management activity, since the efforts are
on improving the evolvability, and preventing future problems.

3.3.1 Impact Analysis for SPL

In the context of Software Product Lines, the evolution mechanisms still appling in general.
However, acoording to Galvão et al. (2008), Software Product Lines pose additional
challenges regarding their evolution. The evolution in product line is complicated by
the fact that an asset is shared among products, and any change in this asset may affect
on several products (McGregor, 2003). Thus, this makes evolution management more
challenging than in traditional single software development (Pussinen, 2002).

A recent work developed in the RiSE Labs by Oliveira (2009) presented the RiPLE-
EM process to evolution management. This process is a systematic way to guide and
manage the evolution of every asset and product in a product line context, handling
change management, build management and release management activities.

Following are described the main Impact Analysis Challenges in the context of
Software Product Lines.

Challenges

The main challenges identified by Galvão et al. (2008) are described in order to preserve
the benefits of the Software Product Lines approach:

• Declining quality: As with single systems development, the product line is subject
to decline quality unless measures are taken to preserve the quality of the product
line. Therefor changes to software artefacts need to be kept track of avoid the devi-
ation of core assets from the general architecture, or even disconnection between
assets and products.

• Corrective maintenance: Differently than single systems development, corrective
maintenance on SPL may impact several application products. We can discern
between maintenance to core assets and custom assets, where the maintenance on
core assets potentially impacts a higher number of products, while maintenance to
custom assets only affects a smaller number. In any case, corrective changes need
to be evaluated carefully in order to ascertain the applicability of the performed
changes to all involved products (Galvão et al., 2008).

46

3.4. CHAPTER SUMMARY

3.4 Chapter Summary

This Chapter presented the main concepts about the Traceability area, including traceabil-
ity in the context of Software Product Lines and Impact Analysis.

Traceability refers to the ability to link different information, therefore, traceability of
software artefacts has been recognized as an important approach for supporting various
activities in the software system development process.

Existing approaches and tools for traceability support the representation of different
types of relations (dependency, generalization, evolution, satisfiability, overlap, contri-
bution, conflit and rationalisation) between system artefacts but the interpretation of the
semantics associated with a traceability relation depends on the stakeholders, as described
in the Section 3.1.1. Traceability provides stakeholders with a means of showing compli-
ance with requirements, maintaining system design rationale, showing when the system
is complete, and establishing change control and maintenance mechanisms. The different
options of traceability generation (manual, semi-automatic and automatic) described in
the literature also were described in Section 3.1.3.

In the context of Software Product Lines Engineering, software artefact traceabily is
an important factor when it comes to effective development and maintenance of software
system. Traceability management facilitates the SPL artefacts to remain in synchronous
state and ensure the consistency of derived products (Abid, 2004).

A preliminary Mapping Study (Petersen et al., 2007) on Traceability for SPL was
performed and several related and important works were selected.

Finally, software change impact analysis was discussed in the context of Software
Product Lines. Impact Analysis is the process of identifying the potential consequences
of a proposed change (Arnold and Bohner, 1996). Impact analysis in the context of SPL
is complicated by the fact that an asset is shared among products, and any change in this
asset may affect on several products.

Next Chapter presents in details the proposed approach to traceability recommendation
in the context of Software Product Lines. Still in the following Chapter are outlined the
set of requirements, functionalities and architecture of the TIRT.

47

4
TIRT: Traceability Information Retrieval

Tool

Whether you think you can or can’t, you’re right.

—HENRY FORD (Engineer)

Traceability of software artefacts has been recognized as an important approach for
supporting various activities in the software development process. Potential benefits of
traceability include better impact analysis, lower maintenance costs, and better assessment
of product quality (Bennett and Rajlich, 2000). Besides these benefits, traceability
also enables system acceptance by allowing users to better understand the system and
contributes to a clear and consistent system documentation. In this way, traceability
improves the quality of software system (Asuncion, 2008).

However, as discussed in the previous Chapter, the adoption and maintenance of
traceability in the context of product lines is considered a difficult task, due to the
large number and heterogeneity of assets developed during product lines engineering.
Futhermore, the manual creation and management of traceability relations is difficult,
error-prone, time consuming and complex.

In this Chapter, a metamodel is described, which was developed by the RiSE Labs
which proposes a representation of traceability information, including the different
traceable elements (Features, Requirements, Use Case and Test). This metamodel is the
basis for the traceability recommendation proposal and the tool called TIRT (Traceability
Information Retrieval Tool).

TIRT goal is to facilitate the creation and mainly the maintenance activities regarding
to the traceability relationship among the different core assets in a Software Product Line

48

4.1. THE SET OF REQUIREMENTS

through its recommendation system. In addition, the tool was also built in order to help
in the process of impact analysis. Thus, the time spent in these activities can be reduced
and less error prone.

This Chapter is organized as follows: Section 4.1 presents set of Functional and
Non-Functional requirements proposed for the tool and Section 4.2 presents the the
proposal for traceability recommendation. Section 4.3 describes the architecture, the set
of frameworks and technologies used during the TIRT implementation, while Section 4.4
shows the operation of the tool and, finally, Section 4.5 summarizes this Chapter.

4.1 The Set of Requirements

According to Kotonya and Sommerville (1998), the requirements define the services that
the system should provide and the set out constraints on the system’s operation.

4.1.1 Functional Requirements

Functional Requirements (FR) define the functions of a system, which can be, for example,
manipulation of data, implementation of data, implementation of algorithms, and the
technical details on the system implementation (Kotonya and Sommerville, 1998). In the
TIRT specification, the following Functional Requirements were defined:

• FR1. Keyword-based Search in Core Assets base: The tool must provide fea-
tures for core assets search in the database, as in web search engines. This was
used since that people are familiar with web search engines.

• FR2. Core Asset Traceability Recomendation: After the inclusion or update
of some core asset, the system has to provide possible recommendation of the
core assets traceability, showing the link between them. The recommendations
are accomplished based on the recommendation scenarios defined in Section 4.2.3.
This semi-automatic approach aims to mitigate the inconsistencies of traceability
and maintainability problems, since every update realized to a core asset, some
possible suggestions of traceability are proposed.

• FR3. Extract useful information from the traceability’s recommendations:
After making a search in the tool of possible core assets recommendations, the
submitters can view each possible core assets from the recommendation list. Thus,
when a core asset is being view, the tool must extract relevant information from

49

4.1. THE SET OF REQUIREMENTS

it, such as descriptions, related core assets, restrictions, and so on; Such supple-
mentary information may be useful in the analysis made by the domain analyst to
ascertain whether the relationship among these artefacts is consistent.

• FR4. Impact Analysis: When a core asset is updated, its traceability matrix is
shown with the purpose of identifying the impact analysis (forward and backward)
of the evolution or correction, in the relation to the SPL assets. With this feature,
the domain analyst can analyze the impacts that could occur, before the update be
performed.

• FR5. Metamodel Implementation: The TIRT tool should implement the enti-
ties and relationships defined in the metamodel described in Section 4.2.1. The
metamodel is in accordance with the proposal of this work, since this metamodel
can easily understand the relationships among the SPL assets, communicate to the
stakeholders, facilitate the evolution and maintenance of the SPL.

• FR6. Core Asset Addition: The tool should allow the user to add new core assets
(e.g. features, requirements, and use cases), according to metamodel.

• FR7. Rank search results based on core assets similarity rate: The search
result must be ranked according to the similarity of textual description of core
assets according to recommendations scenarios on Section 4.2.3.

• FR8. Core Assets Status Report: Project managers have interest in reports such
as: relatioship between core assets, list of features, requirements, or results based
on core assets similarity rate.

• FR8. Core Assets Status Report: Project managers have interest in reports
such as: relationship between core assets, list of features, use cases. All these
information can be helpfull to the management of the SPL, since the manager can
use this information to inspect their product line.

4.1.2 Non-Functional Requirements

For Kotonya and Sommerville (1998), Non-Functional Requirements (NFR) are require-
ments which are not specifically concerned with the functionality of a system. They
place restrictions on the product being developed and the development process, and they
specify constraints that the product must meet. Non-functional requirements include

50

4.1. THE SET OF REQUIREMENTS

safety, security, usability, reliability, and peformance requirements, among others. In the
TIRT specification, the following Non-Functional Requirements were defined:

• NFR1. Web-based interface: Engineers and Domain Analysts can be located
remotely, thus the tool must run on a web-server which enables them to access the
system independently of their location.

• NFR2. Usability: The traceability maintenance can be an exausting activity. Thus,
the tool must optimize the usability experience, providing a aesthetic and minimalist
design, according to the usability heuristic proposed by Nielsen (2011).

• NFR3. Access Control: Since the tool is web-based, it is necessary to keep the
access control in the application in order to guarantee the core assets integrity.

• NFR4. Log users actions: In order to perform the evolution the tool, some
indicators should be collected regarding to the tool usage. Thus, the tool must log
all engineers actions. With the log it is possible to analyze these indicators in order
to provide some customizations or corrections in the tool.

• NFR5. Maintainability and Reusability: The tool must be developed under the
properties of maintainability and reusability. As mentioned in Chapter 1, TIRT
project is part of the RiSE Labs. Thus, software reuse researchers (Krueger, 1992)
advocate that the systems should be developed in form of buildable components, in
order to provide good maintainability and reusability. The demoiselle framework
outlined in Section 4.3.2 allows this kind of development.

• NFR7. Help for Vocabulary and Scenario Recommendation: The tool should
provide a detailed explanation about the vocabulary characterization. Its vocabulary

proposes some suggestions to the fields registration. Its aims the improvement
of traceability recommendation among the core asset artefacts. This vocabulary

characterization is outlined in Section 4.2.4. In additional, the system should
also provide details regarding to the recommendation scenarios that is outlined in
Section 4.2.3.

Next Section outlines the Proposal for Traceability Recommendation. These ideas
presented in the following Section formed the basis for implementation and aplicability
of the Functional and Non-Functional requirements described previously.

51

4.2. TRACEABILITY RECOMMENDATION PROPOSAL

4.2 Traceability Recommendation Proposal

In order to apply PLE systematically and to automate its process, artefacts and their
relationships need to be precisely specified (Kim et al., 2005).

In this context, the RiSE Labs have been focused on the development of the Rise
Product Line Engineering Process (RiPLE), an effort to build a framework for SPL
development, that encompasses a set of disciplines that comprise SPL life-cycle, such as
risk management, scoping, requirements, design, testing, evolution and product derivation.
In addition, they have working in a metamodel that is the basis for maintaining the
traceability among different assets.

4.2.1 The Metamodel

The Product Line success depends on some factors that should be considered, such as:
mature software engineering, planning and reuse, adequate practices of management and
development, as well as the ability to deal with organizational issues and architectural
complexity. Thus, the development must be supported by auxiliary methods and tools
which helps the development process (Birk and Heller, 2007).

In this context, a recent work (Cavalcanti et al., 2011) presented a metamodel which
aims to coordinate SPL activities, by managing different SPL phases and to maintain the
traceability and variability among different artefacts. The metamodel was built for a SPL
project in a private company working on the medical information management domain,
which includes four products.

In this work, the metamodel is used as basis for the traceability recommendations
described in Section 4.2.3 and development of the TIRT tool, outlined in Section 4.4.
This metamodel serves as basis to understand the relationship among the SPL assets,
communicate them to the stakeholders, and facilitate the evolution and maintenance of
the SPL. Thus, the basis of constructing a SPL metamodel is a strong linkage among all
elements/assets involved in a SPL development (Cavalcanti et al., 2011).

The metamodel is composed of five sub-models: scoping, requirements, testing,
project and risk management, each of them, representing a SPL phase (Cavalcanti et al.,
2011). It was described using UML notation (Booch et al., 2005), according to Figure 4.1
described next. Figure 4.1 shows the complete view of the metamodel, where the dashed
boxes specify the phase of the metamodel.

• Scoping Module: In the scoping module, the Feature objects are grouped into

52

4.2. TRACEABILITY RECOMMENDATION PROPOSAL

Figure 4.1 Software Product Line Metamodel (Cavalcanti et al., 2011)

53

4.2. TRACEABILITY RECOMMENDATION PROPOSAL

Module objects, which are then grouped into Product objects. The Module objects
can be viewed also as the sub-domains of the Product objects, since it better
represents the SPL project. During scoping phase, the feature model is assembled
based on the method to identify those features assets (Kang et al., 1990a). The
tree is built containing all the features types, such as mandatory, alternative and
optional features. In the scoping model, a Feature object also has BindingTime and
VariabilityType associated with it. Kang et al. (1990a) describe examples of biding
time, such as before compilation, compile time, link time, load time, run-time; and
examples of variability as Mandatory, Alternative, Optional, and Or.

In addition, the feature model proposed in the scoping model also enables other
relationship between features, such as: required and excluded features (Cavalcanti
et al., 2011). In this sence, the composite design pattern (Gamma et al., 1995) is a
good representation using UML diagrams for the feature model proposed by Kang
et al. (1990a), hence it was used to dependencies to be represented in a form of tree,
where features can represent the feature model. This pattern enables the features
and their subfeatures recursively.

• Requirements Module: The two main assets from this SPL phase are the re-

quirements and use cases. This phase also involves the requirement engineering
traceability and interactions issues, considering the variability and commonality
in the SPL products. The Requirement object is composed by name, description,
priority. During its elicitation, it should envisage the variations over the foresee-
able SPL life-cycle, considering the products requirements and the SPL variations
(Cavalcanti et al., 2011).

Some scoping outputs serve as source of information in this phase. For instance,
during the requirements elicitation, the feature model is one of the primary artefacts.
The relationship between feature and requirements is many-to-many in both ways,
which means that one feature can encompass many requirements and different
requirements can conglomerate many features (Neiva, 2008).

Cavalcanti et al. (2011) highlight three scenarios where a requirement may be
described: (i) the requirement is a variation point; (ii) the requirement is a variant
of a variation point; and (iii) the requirement has variation points. The same
scenarios are used when eliciting use cases, it also can be composed of variation
points and variants, described in the model by flow and sub-flow, respectively. In
addition, the same many-to-many association is used between requirements and

54

4.2. TRACEABILITY RECOMMENDATION PROPOSAL

use cases, in which one requirement could encompass many use cases, and an use

case could be related by many requirements. The Use Case model is composed
of name, description, preCondition and posCondition. The alternative flows are
represented by the flows and sub-flows.

• Testing Module: The metamodel developed also encompasses testing issues in
terms of how system test cases interact with other artefacts. The Test Cases are
derived from Use Cases, as can be seen in Figure 4.1. This model expands on the
abstract use case definition, in which variability is represented in the use cases.
According to Cavalcanti et al. (2011), a use case is herein composed of the entity
AbstractFlow, that comprises the subentity Flow, which actually represent the use
case steps. Every step can be associated with a subflow, which can represent a
variation point. Considering that a use case can generate several test cases, the
strategy to represent each step in a use case and enable it to be linked to a variation
point, supporting the building of test cases which also consider the variation points.
This way, several test cases can be instantiated from a use case, which describes the
variation points. Variability is preserved in the core asset test artefacts to facilitate
reuse.

It allows that every change in the use case and/or variation points and their variants
are properly propagated to the test cases and their steps (variable or not), due the
strong traceability represented in the metamodel (Cavalcanti et al., 2011).

• Project Management Module: The main objective of this module is to coordinate
the SPL activities. It supports the SPL management by keeping track of SPL phases
and the staff responsible for that. Thus, through this model it is possible to define
information about the SPL project, as well as details, such as: the SPL phases,
which are the tasks supported, the members responsible for these tasks and the roles
of each one. In addition, the decisions about the SPL project can be documented
using the Decision entity, by describing the decisions, alternatives, justification

and notes, also registering their occurence and the involved staff (Cavalcanti et al.,
2011).

• Risk Management Module: According to Sommerville (2007), Risk Management
(RM) is particularly important for software projects since of the uncertainties that
most projects face. In this context, this RM involves activities that encompass all
SPL phases. These activities performed by this metamodel are: risk identification,
documentation, analysis, planning and risk monitoring. These activities are based

55

4.2. TRACEABILITY RECOMMENDATION PROPOSAL

on the definition proposed by Sommerville (2007), however it was adapted to this
context, based on the needs with feedback in risk identification stage. (Cavalcanti
et al., 2011).

The risks detected according to these activities are identified and then their main
characteristics are documented. The characteristics are: the risk description, type,
status, mitigation strategy, and contingency plans. In addition, as the RM process
is a continuous activity, it is necessary to keep track of the history about the
management of these risks. Thus, the risks likelihood and impact are documented
according to their occurrence, which happens in different moments throughout the
project development (Cavalcanti et al., 2011).

4.2.2 Metamodel Instantiation

The TIRT tool implements the traceability scenarios of recommendation proposed in the
next Section. These scenarios are based on part of the metamodel outlined in the previous
Section. Figure 4.2 describes the subset of the Software Product Lines Metamodel
highlighting the Project Management, Scoping and Requirements modules, focus of this
work.

As mentioned in Chapter 1, the creation of individual products by reusing the artefacts
is an important issue in a SPL. However, this aspect can be as complex as core assets
development, thus, this work is restricted to features, requirements, use cases and the
existing traceability among them.

4.2.3 Scenarios Recommendation

Recommendation Scenarios are likely occurrences of updates, which map their impacts
and correlations. The recommendation scenarios of traceability are described in order
to facilitate the maintenance activities of SPL. This recommendation approach aids the
decision making, supporting representation of dependencies between different core assets.

The engineer or domain analyst interact with the collection of core assets in order to
examine existing similarity relationship after the updating of these artefacts. In order to
verify whether a core asset is related, the engineer should perform searches in the system
and interact with this artefact in order to verify the consistency of this relationship.

In this way, the main motivation of traceability recommendations of core assets is
to support the involved stakeholder during the maintenance activities. The maintenance
process are influenced by the different change dimensions (Lientz and Swanson, 1980)

56

4.2. TRACEABILITY RECOMMENDATION PROPOSAL

Figure 4.2 Subset of the Software Product Line Metamodel

57

4.2. TRACEABILITY RECOMMENDATION PROPOSAL

which occurs during the software evolution, such as adaptative, perfective, corrective and
preventive. According to Lientz and Swanson (1980), these dimensions of changes are
intrinsic in the life-cycle of the system, because the adaptive and perfective changes are
driven by the improvements or adaptations. On the other hand, corrective is peformed in
response to changes in data and documents. Since the preventive changes are concerned
to prevent problems in the future.

We identified and defined seven different scenarios in which the core assets can be
modified. Figure 4.3 depict the three core assets (Feature, Requirement and Use Case)
analyzed in the context of this work and the relationship among them. After that, all
seven modification scenarios are detailed.

Figure 4.3 Core Assets: Features, Requirements and Use Cases

• Scenario 1: Given a reference scenario that represents all modifications between a
Feature and Parent-Feature in Figure 4.4 which describes the relationship between
these two core assets, where the Feature F5 is initially related with the Parent-

Feature F2. Imagine that a Feature F5 should be modified to F5’ in order to reflect
a change, due to a evolution or corrective action in the SPL. In this moment,
according to the recommendation system, another Parent-Feature is recommended
to be related to Feature F5’. Considering these two versions, the original Feature

F5 is related to Parent-Feature F2, and the new one is related to Parent-Feature F3
that the engineer considers as a relevant and consistent relationship.

• Scenario 2: Given a reference scenario with Feature and Required-Feature in
Figure 4.5 that describes the relationship between these two core assets, where the
Feature F5 is initially related only to some Required-Features F1 and F2. Imagine
that a Feature F5 should be modified to F5’ in order to reflect a change, due to
a evolution or corrective action in the SPL. In this moment, according to the
recommendation system, a new Related-Feature is recommended to be related to
Feature F5’. Considering these two versions, the original Feature F5 related to

58

4.2. TRACEABILITY RECOMMENDATION PROPOSAL

Figure 4.4 Scenario 1 - Feature and Parent-Feature

Related-Features F1 and F2, and the new one is related to Related-Features F1, F2
and F3 that the engineer considers as a relevant and consistent relationship.

Figure 4.5 Scenario 2 - Feature and Required-Features

• Scenario 3: Given a reference scenario with Feature and Excluded-Feature in
Figure 4.5 that describes the relationship between these two core assets, where the
Feature F5 is initially related only to some Excluded-Features F1 and F2. Supose
that a Feature F5 should be modified to F5’ in order to reflect a change, due to
a evolution or corrective action in the SPL. In this moment, according to the
recommendation system, a new Excluded-Feature is recommended to be related
to Feature F5’. Considering these two versions, the original Feature F5 related to
Excluded-Features F1 and F2, and the new one is related to Excluded-Features F1,
F2 and F3 that the engineer considers as a relevant and consistent relationship.

59

4.2. TRACEABILITY RECOMMENDATION PROPOSAL

Figure 4.6 Scenario 3 - Feature and Excluded-Features

• Scenario 4: Given a reference scenario with Feature and Requirement in Figure 4.7
that describes the relationship between these two core assets, where the Feature F1
is initially related only to some Requirements R1 and R2. Imagine that a Feature

F1 should be modified to F1’ in order to reflect a change, due to a evolution or
corrective action in the SPL. In this moment, according to the recommendation
system, a new Requirement is recommended to be related to Feature F1’. Consid-
ering these two versions, the original Feature F1 related to Requirements R1 and
R2, and the new one is related to Requirements R1, R2 and R3 that the engineer
considers as a relevant and consistent relationship.

Figure 4.7 Scenario 4 - Feature and Requirements

• Scenario 5: Given a reference scenario with Requirement and Feature in Fig-
ure 4.8 that describes the relationship between these two core assets, where the

60

4.2. TRACEABILITY RECOMMENDATION PROPOSAL

Requirement R1 is initially related only to some Features F1 and F2. Imagine
that a Requirement R1 should be modified to R1’ in order to reflect a change,
due to a evolution or corrective action in the SPL. In this moment, according
to the recommendation system, a new Feature is recommended to be related to
Requirement R1’. Considering these two versions, the original Requirement R1
related to Features F1 and F2, and the new one is related to Features F1, F2 and
F3 that the engineer considers as a relevant and consistent relationship.

Figure 4.8 Scenario 5 - Requirement and Features

• Scenario 6: Given a reference scenario with Requirement and Use Case in
Figure 4.9 that describes the relationship between these two core assets, where the
Requirement R1 is initially related only to some Use Cases UC1 and UC2. Imagine
that a Requirement R1 should be modified to R1’ in order to reflect a change, due
to a evolution or corrective action in the SPL. In this moment, according to
the recommendation system, a new Use Case is recommended to be related to
Requirement R1’. Considering these two versions, the original Requirement R1
related to Use Cases UC1 and UC2, and the new one is related to Use Cases UC1,
UC2 and UC3 that the engineer considers as a relevant and consistent relationship.

• Scenario 7: Given a reference scenario with Use Case and Requirement in Figure
4.10 that describes the relationship between these two core assets, where the Use

Case UC1 is initially related only to some Requirements R1 and R2. Imagine that
a Use Case UC1 should be modified to UC1’ in order to reflect a change, due
to a evolution or corrective action in the SPL. In this moment, according to the
recommendation system, a new Requirement is recommended to be related to Use

61

4.2. TRACEABILITY RECOMMENDATION PROPOSAL

Figure 4.9 Scenario 6 - Requirement and Use Cases

Case UC1’. Considering these two versions, the original Use Case UC1 related to
Requirements R1 and R2, and the new one is related to Requirements R1, R2 and
R3 that the engineer considers as a relevant and consistent relationship.

Figure 4.10 Scenario 7 - Use Case and Requirements

In the following Section, are mentioned the vocabulary adopted in order to obtain a
better and consistent recommendation of core assets according to the scenarios depicted
previously.

4.2.4 Vocabulary Standardization

Some experiments performed by Lucia et al. (2007) showed that the quality of textual
description of the fields registred in the systems influency in the process and quality

62

4.2. TRACEABILITY RECOMMENDATION PROPOSAL

of information extraction. According to Lancaster (1986), a common and well defined
vocabulary for registration the fields could help to finding the related core assets in the
recommendation process.

In this context, we propose some suggestions to the fields registration. It aims the
improvement of traceability recommendation between the core asset artefacts. The TIRT
tool helps the software engineer to discover potential core assets relations, according
to the descriptions expressed in natural language. However, these core assets might
apply some suggestions of registration described following, aiming to minimize quality
problem, in terms of poor textual description.

A recent work developed in the RiSE Labs by Neiva (2008) defined a requirement
engineering process by providing activities for correct requirements development and
management for Software Product Lines. Basically, this process called RiPLE-RE
consists of a guideline to implement three activities: Model Scope, Define Requirements

and Define Use Case. Although the process details some guidelines for requirements
engineering, some specific aspects of the registration form are left out.

In face the problem of the different forms of core assets specification, we were
encouraged to propose some suggestions of core assets registration, because the real
language are not perfectly punctuated, and this problem influence negatively in the
recommendation process. There are many difficult problems to consider in the context of
core assets vocabulary, such as: abbreviations, multi-component words, token-boundaries,
contractions and sence-initial. According to Kaplan (2005), many applications that work
with text-processing ignore the treatment of these kind of limitations and difficulties. The
text-processing is one of the main functionalities of the TIRT tool, as will be discussed in
Section 4.3.

Most core assets express the text in natural language, based on textual description,
written in narrative manner as the name and description properties. Based on some
performed analyses in the tokenization context (Kaplan, 2005), we detailed and proposed
some suggestions for registration these core assets. There is not a grammatical formalism
that are closed under composition with regular relation, but instead, we propose some
desirable properties, such as:

• Abreviation: The english string chap. can be taken as either an abbreviation for
the word Chapter or as the word chap appearing at the end of the sentence, and Jan.
can be regarded neither as an abbreviation for January or as a sentence final proper
name. Thus, we recommend avoiding the registration of abbreviations.

• Multi-Component Words: One of the token boundaries used in the TIRT tool is

63

4.2. TRACEABILITY RECOMMENDATION PROPOSAL

the white-space, but there are some multi-component words in english that include
white spaces as internal characters, e.g., General Motors, a priori. Thus, we do
not recommend the hyphenation between these words as an alternative to represent
these multi-component words.

• Token-boundaries: Another difficult in the context of text-processing is related to
the token-boundaries, such as: quotes and commas. Thus, we do not recommend
the use of quotes or commas in the core assets registrations.

Finally, the name of an use case have a particular formalization. We recommend that
this name start with a verb. According to Larman (2004), a common exception to one use
case per goal is to collapse CRUD (create, retrieval, update, delete) separate goals into
one CRUD use case, idiomatically called Manage <X>. For example, the goals edit user,
delete user, and so forth are all satisfied by the Manage Users use case.

In general, the punctuation is one of the main problem in the context of text-processing,
but with these patterns described previously, we can mitigate these problems.

4.2.5 Impact Analysis

The TIRT tool supports the impact analysis approach, providing a traceability matrix
to trace the impact analysis of some changes in the context of SPL. Moreover, the tool
proposes a way of alerting and presenting to user the impact that could occur in the core
asset if its was updated.

Arnold and Bohner (1996) summarize that an important aspect that all definitions
have in common is that impact analysis normally does not change anything but for their
understanding of the system and the effect of the proposed change. Arnold and Bohner
(1996) still identified two types of impact analysis being supported in tools. The first
type works based on analyzing the source code using techniques like program slicing,
cross-referencing and control flow analyzing. The second type, that is the focus of this
work is more life-cycle-document oriented and is based on, creating relations between
artefacts from the beginning of the project, instead of the end.

The graphical representations details the traces and their direction between two core
asserts. Therefore, with this representation it is possible to find the forward and backward
traces between them. When an artefact in the SPL has been changed, this matrix view
also shows which target artefacts can be affected by this change. In this context, the TIRT
tool provides a way to perform an impact analysis to determine the affected artefacts. The
matrix view is represented as a tree view component, or formally called in the literature

64

4.2. TRACEABILITY RECOMMENDATION PROPOSAL

(Diehl, 2007) as the indented component, organized as a horizontal tree, that is presented
before the update of some core asset, ensuring the engineer’s analysis of the correlated
core assets and the analysis of the change impact that could accur with these changes.
In the horizontal tree, vertical lines show the extent of clocks, and vertically stretched
oval lines show that of loops. This kind of structure between artefacts has to create a
structure among artefacts to make clear which artefacts are predecessors or successors of
an artefact.

Accordingly to Abma (2009), normally a change affects artefacts in more the two
phases. Therefore, the system, to detect mappings that have to be changed or preserved
between two phases, has to be extended so it taked in account the mappings in and
between multiple phases.

The details view for a particular artefact can be used to see which other artefacts are
directly linked to this one. By doing this again for all these linked artefacts and their links
it is possible to analyze the impact (Abma, 2009). Figure 4.11 presents an sample of the
indented component that represent the traceability matrix. In this picture, the use case
artefact willbe updated, thus its relationships forward and backward are detailed in order
to enable the analyze of the software engineer.

Figure 4.11 Tree View of Analysis Impact

65

4.3. TIRT ARCHITECTURE AND TECHNOLOGIES

4.3 TIRT Architecture and Technologies

As mentioned in the beginning of this Chapter, TIRT goal is to provide a system for
core asset registrations and recommendation of possible traceability relationship among
them in the Software Product Lines context, thus, the time spent in these activities can be
reduced, less error prone and less exhausted. To achieve this goal, the tool meets all the
requirements previously defined.

Next section presents the architecture, the set of frameworks and technologies used in
TIRT project.

4.3.1 TIRT’s Architecture Overview

The recommendation search for core assets is one of the main and most important services
that the TIRT tool provides for the software engineer. It is possible through the extraction
and mining of core assets candidates. Thus, this type of activities follows the way a
generic application of Text Mining.

Feldman and Sanger (2007) define Text Mining as a knowledge-intensive process
in which a user interacts with a document collection over time by using a suite of
analysis tools. In a manner analogous to data mining, text mining seeks to extract useful
information from data sources through the identification and exploration of interesting
patterns. In the case of text mining, however, the data sources are document collections,
and interesting patterns are found not among formalized database records but in the
unstructured textual data in the documents in these collections.

In the context of the TIRT tool, the data sources are the core assets and the user is the
domain analyst, software engineer or another stakeholder responsible for maintenance of
the core asset traceability. The software interacts with the collection of these core assets
in the maintenance process, where one artefact should be modified in order to reflect a
change, due to a evolution or corrective action in the SPL. Thus, in the moment of the
update, a core asset relation is indicated according the traceability scenarios defined in
Section 4.2.3.

Accordingly to Figure 4.12, some classic data mining applications are roughly di-
visible into four main areas: (a) preprocessing tasks, (b) core mining operations, (c)

presentation layer components and browsing functionality, and (d) refinement techniques

(Feldman and Sanger, 2007). However, the TIRT does not implement all areas of a
generic architecture of text mining. Some modifications were performed in order to
support the TIRT domain. As can be observed in schematic Figure 4.13, we removed

66

4.3. TIRT ARCHITECTURE AND TECHNOLOGIES

from the original architecture described in Figure 4.12 the module Text Mining Discovery

Algorithms. We also removed the Document Fetching/Crawling module, since the tool
peforms the searchs from a single base. The core assets are our unique source, so we
reduced the scope of the type of documents. In summary, this architecture was refined to
cover only the issues to search based on by keywords, indexing, information extraction
and visualization of possible recommended core assets.

Figure 4.12 System Architecture for Generic Text Mining System (Feldman and Sanger, 2007)

67

4.3. TIRT ARCHITECTURE AND TECHNOLOGIES

Figure 4.13 Instantiation of Text Mining Architecture for TIRT

68

4.3. TIRT ARCHITECTURE AND TECHNOLOGIES

4.3.2 Demoiselle Framework Architecture

The Demoiselle Framework project is a platform for Java1 development that aims the
reuse. This platform is a Brazilian system developed by SERPRO2, a public Brazilian
company specialized in data processing sevices for the government. The framework
project implements the concepts of integrator framework of technologies. It performs an
integration between amount specialized frameworks and garantee the evolution, mainte-
nance and compatibility between each of them (Demoiselle, 2011). According to Tiboni
et al. (2009), the major framework’s contribution is giving the real direction in the use of
technologies.

Although the framework has been developed from the federal Brazilian government,
the Demoiselle Framework is an open source, available under the LGPL 33 and any
component that are available or developed for it must be compatible with this licence.
Its development is realized in the colaborative way, thus, anyone can colaborate with
development or in the documentation development.

The motivation for choosing the Demoiselle Framework was its guidance in the use of
technologies, web support, largest community supporting, besides its flexibility with text
processing, which is an essential task for TIRT. Futhermore, recent work (Tiboni et al.,
2009) has showed that reuse is the greatest contribution of the framework during the
development process. The languages used to developed both, Demoiselle and TIRT tool
were Java, JavaScript, Java Server Faces (JSF) and Structured Query Language (SQL).

The demoiselle framework consists of a high level layer called Architectural Frame-

work, that establishes padronized interfaces to be used for the applications. According to
Figure 4.14, the lower layers, consists of the widely frameworks used in the industry. The
framework was built on the premises to be extensible, easy to use, stable, configurable,
reliable, and have their published documentation.

Futhermore, the Component-Based Development (Component-Based Development
(CBD)) with the independenty life-cycle of the architectural framework allows the inde-
pendence of modules, that could be developed in a colaborative way (Tiboni et al., 2009).
The components is not part of the architectural framework, considering that they have an
independent life-cycle.

Next are described the modules of the framework. One of the main goal of the
framework is the flexibility, therefore components developed by third parties, since uses

1http://www.sun.com/java/
2http://www.serpro.gov.br
3http://www.opensource.org/licenses/LGPL-3.0

69

4.3. TIRT ARCHITECTURE AND TECHNOLOGIES

Figure 4.14 Demoiselle Framework Architecture (Demoiselle, 2011)

the interfaces defined by Demoiselle.

• Core: set of specifications that are in the basis of the framework, enabling stan-
darlization, extension and integration between the layers of applications based on
it.

• Persistence: performs system integration with other management systems, ensur-
ing efficiency of data to retrieve, store and process information.

• Util: contains utility components that facilitate the work of other features of the
framework and its logic modules.

• View: contains implementations of specific interface user based on the JSF specifi-
cation.

• Web: implementation of the logic module for Web applications (Java 2 Enter-
prise Edition (J2EE)), provides common utilities web applications that facilitates
treatment for the user’s sessions and their requests.

The reference modules proposed for the demoiselle framework is based on layers,
as shown in Figure 4.15. However, besides the classical layers defined by the Model-

70

4.3. TIRT ARCHITECTURE AND TECHNOLOGIES

View-Controller (MVC) pattern, its is distinguished as the persistence layer, transaction,
security, injection dependency and message.

Figure 4.15 Demoiselle Layers (Tiboni et al., 2009)

4.3.3 Demoiselle Framework Architecture Instatiation for TIRT

In order to support the TIRT purpose, the demoiselle framework architecture was instanti-
ated. The main goal of this instantiation was made to accomplish the activities and a way
to support the components specified in the Figure 4.13. As can be observed in Figure
4.16, we added the new functionalities in the the layers of the MVC model. In the Per-
sistence layer, were added the Query Parser and Indexer, since the Text Processor was
incorporated in the Business layer, and finally, the View layer received the Visualization.
All these components are following outlined.

Visualization

For Diehl (2007), software visualization is defined as the visualization of artefacts related
to software and its development process. Thus, this TIRT module provides a visualization

71

4.3. TIRT ARCHITECTURE AND TECHNOLOGIES

Figure 4.16 Demoiselle Instantiation Layers for TIRT

72

4.3. TIRT ARCHITECTURE AND TECHNOLOGIES

of the traceability matrix. This matrix is represented with the indented component,
organized as a horizontal tree that is presented before the update of some core asset,
enabling the analysis of the correlated core assets and the analysis of the change impact
that can happen with these changes. This analysis can be peformed by the domain analyst,
software engineer or another stakeholder responsible for maintenance of the core asset
traceability in the SPL.

Text Processor

This module is responsible to process the text from core assets database. Some of the
features of this module are: text tokenization, stop-words removal, and stemming. These
modules are detailed below:

• Text Tokenization: The approach involves breaking the text into sentences and
words (Feldman and Sanger, 2007). The stream of characters in a natural language
text must be broken up into distinct meaningful tokens before any language process-
ing beyond the character level can be performed. Accordingly to Kaplan (2005),
this would be a trivial thing to do, however the language have to be perfectly pontu-
ated, which rarely happens. For this reason, the vocabulary proposed in Section
4.2.4 is essential.

• Stop-word removal: This module removes the function words and in general the
common words of the language that do not contribute to the semantics of the core
assets descriptions and have no real added value. According to Feldman and Sanger
(2007), most of these words are irrelevant and can be dropped with no harm to the
performance and may even result in improvement owing to noise reduction.

• Stemming: Removing suffixes from words by automatic means is an operation
which is especially useful in the field of information extraction (Porter, 1980).
According to Strzalkowski (1994), word stemming has been an effective way of
improving document recall since it reduce words to their common morphological
root, thus allowing more successful matches. On the other hand, Strzalkowski
(1994) analyzes that stemming tends to decrease retrieval precision, if care is not
taken to prevent situations where otherwise unrelated words are reduced to the
same stem. In this context, we applied the Poter algorithm (Porter, 1980) for
reducing words with a common stem to its radical. For example, the words connect,
connected, connecting and connection are reduced to connect.

73

4.4. TIRT IN ACTION

Query Parser

This module provides the ability to create queries, where the software engineer interacts
with the system in order to identify possible core assets recommendations. These core
assets are stored in the PostgreSQL4, on open source object-relational database system.
It has more than 15 years of active development and a proven architecture that has
earned it a strong reputation for reliability, data integrity, and correctness. This database
system was also selected because of its advanced indexing features. In additional, the
Hibernate5 was used in order to facilitate the storage and retrieval of Java domain objects
via Object-Relational Mapping (ORM).

Indexer

This module is responsible for processing the contents of each core asset in the database.
The index structure is created and maintained by the PostgreSQL engine. As mentioned
previously, the PostgreSQL database provides the full text searching or just text search
capability to identify natural-language documents that satisfy a query, and optionally to
sort them by relevance to the query. In the TIRT context, this type of search is applied in
order to identify relevants core assets to recommendation.

4.4 TIRT in Action

This Section presents the TIRT from the user’s point view, exposing its main operations
and its main screens, showed in Figures 4.17, 4.18 and 4.19.

Beyond the support for recommendation of core assets traceability and support
for change analysis, TIRT also focus on usability, following many of the usability
heuristics proposed by (Nielsen, 2011), resulting in an clean and intuitive user interface.
In additional, Asynchronous Javascript and XML (AJAX) technology were also used in
order to improve the user experience with an interative application. The main activities
of TIRT are following described:

1. Menu Bar: The engineer or domain analyst interact with this area of the tool in
order to access all modules of the system. As depicted in Figure 4.17, the menu bar
are initially composed by the Project Configurations menu, that offers access to
the Project, Product, Module and Actors management. Therefore, the Core Assets

4http://www.postgresql.org/
5http://www.hibernate.org/

74

4.4. TIRT IN ACTION

menu provides access to the Feature, Requirement and Use Case management.
Finally, the Help menu provides instructions and some tips about the Vocabulary

and Scenario Recommendation.

2. Core Asset Management: In this part, are provided the basic functionality of the
tool, which performs the registration of core assets (e.g. features, requirements and
use cases), according to metamodel defined in Section 4.2.1. This activity is also
showed in Figure 4.17.

3. Traceability Matrix: This area of the tool is responsible for making possible the
impact analysis by the engineer or domain analyst. This information is displayed
when a core asset is updated, and the traceability matrix is shown with the purpose
of identify the impact analysis (forward and backward) that may accur in the SPL
contexting. The matrix view is represented as a indented component, organized
as a horizontal tree. In this picture, the use case artefact will be updated, thus its
relationships (forward and backward) are detailed in order to enable the analyze by
the software engineer.

4. Traceability Recommendation: This part of the tool presents the search recom-
mendation for core assets, which is one of the main and most important function-
alities that TIRT tool provides for the software engineer. It is possible through
the extraction and mining of core assets candidates. The software interact with
the collection of these core assets in the maintenance process, where one artefact
should be modified in order to reflect a change, due to a evolution or corrective
action in the SPL. Thus, in the moment of update, a core asset relation is indicated
according to the traceability scenarios defined in Section 4.2.3. In addition, when a
core asset is being view, the tool must extract relevant information from it, such as
descriptions, related core assets, restrictions, and so on;

5. Help: TIRT provides a detailed explanation about the characterization of the
vocabulary, as was outlined in Section 4.2.4. Moreover, the system also must
provide details about the scenarios of recommendation that are outlined in Section
4.2.3.

75

4.4. TIRT IN ACTION

Figure 4.17 Tree View of Analysis Impact

Figure 4.18 Requirements Recommendation Screen

76

4.5. CHAPTER SUMMARY

Figure 4.19 Help of Scenarios Recommendation

4.5 Chapter Summary

This Chapter presented the main aspects of TIRT tool, including the set of functional and
non-functional requirements, architecture, frameworks and technologies adopted during
its construction.

Futhermore, it presented the proposal for traceability recommendation, that outlines
the recommendation scenarios of traceability, described in order to facilitate the main-
tenance activities of SPL. This recommendation approach aids the decision making,
supporting representation of dependencies between different core assets. Finally, this
Chapter presented the TIRT from the user’s point view, exposing its main operations.

Next Chapter presents the evaluations peformed with a group of subjects to verify the
tool helpfulness to the maintenance traceability activity.

77

5
TIRT Evaluation

If you can dream it, you can do it.

—WALT DISNEY (Cartoonist)

New methods, techniques, languages and tools should not just be suggested, published
and marked. It is crusial to evaluate these new inventions and proposals. Experimentation
provides this opportunity and should be used. In other words, we should use the methods
and strategies available when conducting research in software engineering (Wohlin et al.,
2000). In this way, this Chapter presents the experimental study in order to to evaluate
the proposed tool and the approaches outlined in the previous Chapter.

The remainder of this Chapter is organized as follows. Section 5.1 introduces some
definitions to clarify the steps and concepts of the experimental study. Section 5.2 presents
the definition of the experiment. Section 5.3 presents the planning of the experiment. The
details about the operation of the experiment are presented in Section 5.4. Section 5.5
presents the analysis and interpretation of the results. Section 5.6 presents the conclusion
and finally, the Chapter summary is described in Section 5.7.

5.1 Introduction

This dissertation presented TIRT - Traceability Information Retrieval Tool, that focus on
the maintenance activities regarding to the traceability relationship among the different
core assets in a Software Product Lines through its recommendation system. In additional,
the tool was also built in order to aid in the process of impact analysis. Thus, we believe
that the time spent in these activities can be reduced and less error prone. In order to
evaluate the tool, a controlled experiment was performed with 10 subjects.

so that mode, conclusive results can be obtained.

78

5.1. INTRODUCTION

This experimental study is based on the process proposed in (Wohlin et al., 2000), see
Figure 5.1. It is divided into the following main activities: the definition is the first step,
where the experiment is defined in terms of problem, objective and goals. The planning
comes next, where the design of the experiment is determined, the instrumentation is con-
sidered and the threats to the experiment are evaluated. The operation of the experiment
follows from the design. In the operational phase, measurements are collected, analysed
and evaluated in the analysis and interpretation. Finally, the results are presented and
packaged in the conclusion.

Figure 5.1 Overview of the Experimental Process (Wohlin et al., 2000)

The process detailed in Figure 5.1 is not supposed to be a ”true” waterfall model,
because it is an iterative and it may be necessary to go back and refine a previous activity
before continuing with the experiment.

The main objetive of an experiment is mostly to evaluate a hypothesis. Hypothesis
testing normally refers to the former and the latter is foremost a matter of building a
relational model based on the data collected. In additional, two kinds of variable are
studied in an experiment, independent and dependent. These variables are studied in
order to analyse their outcomes when are varied some of the input variable to a process.
The variables that are objects of the study which see the effect of the changes in the

79

5.2. THE DEFINITION

independent variables are called dependent variables. All variables in a process that are
manipulated and controlled are called independent variables (Wohlin et al., 2000).

According to Wohlin et al. (2000), an experiment studies the effect of changing one
or more independent variables. Those variables are called factors. The other independent
variables are controlled at a fixed level during the experiment, or else it would not be
possible to determine if the factor or another variable causes the effect. A treatment is
one particular value of a factor.

The treatments are being applied to the combination of objects and subjects. An object
can, for example, be a traceability matrix that will be updated using different systems.
The people that apply the treatment are called subjects. In general, an experiment consists
of a set of tests where each test is a combination of treatment, subject and object (Wohlin
et al., 2000).

5.2 The Definition

The first activity is definition. In this phase, the foundations of the experiment are
determined, presenting why the experiment will be conducted. In addition, the hypothesis
has to be stated clearly. Futhermore, the objective and goals of the experiment must be
defined.

In order to define the experiment, the Goal Question Metric (GQM) paradigm (Basili
et al., 1994) was used. The GQM is based upon the assumption that for an organization to
measure in a purposeful way it must first specify the goals for itself and its projects, then
it must trace those goals to the data that are intended to define those goals operationally,
and finally provide a framework for interpreting the data with respect to the stated
goals. According to (Basili et al., 1994), the result of the application of the GQM is
the specification of a measurement system targeting a particular set of issues and a set
of rules for the interpretation of the measurement data. The resulting measurement
model is composed of: Goal, Question and Metric. The metrics also are defined later as
independent variables.

5.2.1 Goal

According to the paradigm, the main objective of this experiment is:
G1: To analyse the tool for the purpose of evaluating it with respect to the recall and

precision of recommendation of core assets traceability and effort (time saving), in the
view point of software engineers.

80

5.2. THE DEFINITION

Object of Study (What is studied?): The objective of study is the tool used to analyse
and perform the recommendation of core assets traceability and their ability in term of
effort reduction (save time).

Purpose (What is the intention?): The purpose is to evaluate the recommendation

activities of core assets. We would like to understand if the tool can bring benefits to
maintenance of core asset traceability, according to the scenario recommendation and
vocabulary proposed.

Quality Focus (Which effect is studied?): The benefits gains obtained by the use of
the tool is the recommendation of core assets traceability. Moreover, we also analyse
effort reduction (time saving) in the core asset maintenance.

Perspective (Whose view?): The perspective is from the software engineer’s point of
view.

5.2.2 Questions

In order to achieve this goal, we defined quantitative and qualitative questions. The
first ones are related to the data collected during the period that the experiment will be
executed, and the last one concerned with the subjects’ feedback about the new approach
adoption. The questions are described as follow:

• Q1: Is there increase of the effectiveness of core assets management with the recom-

mendation approach performed in the new tool adoption? In order to understand if
the recommendation of core assets traceability provides effective recommendations,
the recall and precision are analysed.

• Q2: Is there reduction of the effort (time) that software engineers spend to perform
the core assets management? This quantitative issue is observed in order to analyse
if TIRT tool provides saving time.

• Q3: Did the software engineers have difficult to use the tool? In order to understand
the difficult that the submitters will face during the experimentation, they will be
asked to describe the difficulties encountered during the experiment.

5.2.3 Metrics

The metrics are a set of data that is associated with every question in order to answer it in
a quantitative way.

81

5.2. THE DEFINITION

Two fundamental metrics are used to assess the efficiency of any information retrieval
mechanism: recall and precision (Kowalski and Maybury, 2002). Both recall and
precision take on values between 0 and 1.

M1: Precision of core assets relationship that were recommended; The capacity of
avoiding irrelevant results is measured by the precision metric. The following equation is
used to calculate this metric.

P =
TP

TP + FP

�
 �	5.1

TP: True-Positive. FP: False-Positive.

M2: Recall of core assets relationship that were recommended; The capacity of a
mechanism of retrieving relevant results is measured by the recall metric. The following
equation is used to calculate this metric.

R =
TP

TP + FN

�
 �	5.2

TP: True-Positive. FN: False-Negative.

M3: Effort Variation (EV) of core asset management (Basili et al., 1996); The
following equation is used to calculate effort metric.

EV =
ETIRT

ESPLMT

�
 �	5.3

ETIRT: Average Effort to subjects execute the core asset management using the
Traceability Information Retrieval Tool (TIRT), a different tool.

ESPLMT: Average Effort to subjects execute the core asset management using
Software Product Lines Management Tool (SPLMT), the tool used to initially mod-
eling the MedicWare’s core assets.

The Effort Variation metric has range [0, N], where EV 0 indicates the maximun
effort Time Spent reduction when using the TIRT tool, and EV >= 1 indicates that the
effort to execute the core asset management using TIRT tool is equals, or even higher
than using SPLMT tool.

82

5.3. THE PLANNING

5.3 The Planning

After the definition of the experiment, the planning activity takes place. The definition

determines the foundation for the experiment - why the experiment is conducted - while
the planning prepares for how the experiment is conducted. The Planning phase of an
experiment can be divided in some steps. Based on the experiment definition, the context
of the experiment is determined in details, as well as the hypothesis and an alternative
hypothesis. The next step in the planning activity is to determine the independent and
dependent variables. The subjects of the study are also identified. Futhermore, the
questions of validity of results also are consider. Validity can be divided into three major
classes: internal, external, and conclusion validity (Wohlin et al., 2000).

5.3.1 Context Selection

The experiment will be performed as an off-line experiment. It will run using software
engineers of Pitang Software Factory1. In addition, the experiment will be performed
distributed, which means that the subjects are free to choose their work environment,
such as their home or company laboratories.

Regarding the data used in the experiment, the subjects will use core assets from
a private company working in the medical information management domain, called
MedicWare Informatics System LTDA2 which has negociated a cooperation project with
RiSE Labs.

MedicWare works with software development for the medical domain since 1994 and
is located at Salvador, Bahia, Brazil. The company was created in 1994 offering strategic
and operational solutions integrated for hospitals, clinics, labs and private doctor’s office.

The company has four products presented in the decreasing order according to their
size. The first one (SmartHealth) is a product of 35 modules or sub-domains, and manages
the whole area of a hospital, from financial to patient aspects. The second one (SmartClin),
composed of 28 modules, performs the clinical management supporting activities related
to medical exams, diagnostics and so on. The third one (SmartLab) has 28 modules and
integrates a set of features to manage labs of clinical pathology. Finally, the last one
((SmartDoctor) is the only web product and composed of 11 modules to manage the tasks
and routines of a doctor’s office. Figure 5.2 shows the correlation among the products.

1http://www.pitang.com/ - Pitang is the Software Factory of C.E.S.A.R., offering system development,
consulting, software factory, testing factory, legacy migration and outsourcing services.

2http://www.medicware.com.br/

83

5.3. THE PLANNING

As it can be seen in the figure, SmartHealth is the biggest product and some of its features
compose the other ones.

Figure 5.2 MedicWare Projects

This experiment is concerned with the adoption of a tool developed to aid the main-
tenance of core assets links, focusing on analysis of recommendation of core assets
traceability. The Traceability Information Retrieval Tool (TIRT) will be compared with
the Software Product Lines Management Tool (SPLMT), that was used to modeling the
MedicWare core assets. In addition, it is important to highlight that SPLMT tool does
not have the recommendation approach, proposed and developed in TIRT. Thus, the
subjects will use both tools and it will be analysed the effort reduction (time saved) and
recommendation of core assets traceability performed by the tool. Initially, the subjects
will be trained in several aspects of SPL and in usage of the tool.

5.3.2 Hypothesis Formulation

The basis for the statistical analysis of an experiment is the hypothesis testing. If the
hypothesis can be rejected then conclusions can be drawn, based on the hypothesis
testing under given risks. According to Wohlin et al. (2000), in the planning phase, the
experiment definition is formalized into two hypotheses: Null Hypothesis and Alternative

Hypothesis.
Null Hypothesis: The null hypothesis determines that there is no benefits of using

TIRT to perform the recommendation of core assets traceability, besides not have time

saved. The null hypothesis are:

H0: µ effort(time saved) with TIRT > 1

84

5.3. THE PLANNING

H0: µ precision TIRT < 50%
H0: µ recall TIRT < 50%

Alternative Hypothesis: The alternative hypothesis determines that TIRT can save

more time and that there is benefits of using TIRT to perform the recommendation of core

assets traceability.

H1: µ effort(time saved) with TIRT <= 1
H1: µ precision TIRT >= 50%
H1: µ recall TIRT >= 50%

We perform the effort (time saved) measurements between the TIRT and SPLMT
tools, but we also perform an analysis of the hypotheses in terms of precision and recall

(Kowalski and Maybury, 2002) measurements, considering the percentage greater than or
above of 50% as encouraging results in the context of TIRT tool recommendation.

5.3.3 Variable Selection

Before any design can start, we have to choose the dependent and independent variables.
The independent variables are those variables that we control and changes in the ex-
periment. On the other hand, the effect of the treatments is measured in the dependent
variable or variables (Wohlin et al., 2000).

In this experiment we have only one independent variable, which is the tool used to
perform the recommendation of core assets traceability. The dependent variables for this
experiment are (a) precision, (b) recall of core assets recommendation and (b) the effort

(time spent) with maintenance of core assets.

5.3.4 Selection of Subjects

The subjects of this experiment will be selected by the technique of convenience sampling,
which the nearest and most convenient persons are selected as subjects (Wohlin et al.,
2000). The subjects of this study are software engineers of Pitang Software Factory. For
this evaluation will be selected ten (10) subjects. The questionnaire in Appendix A.3
were used to gather data about subjects education and background.

85

5.3. THE PLANNING

5.3.5 Experimental Design

An experiment consists of a serie of tests of the treatments. A design of an experiment
describes how the tests are organized and run. When designing an experiment, many
aspects must be considered, however, the general design principles are randomization,
blocking and balancing.

• Randomization: The randomization applies on the allocation of the objects, sub-
jects and in which order the tests are performed. Randomization is also used to
select subjects that is representative of the population of interest (Wohlin et al.,
2000). Since all subjects will participate in both treatments, no randomization is
required.

• Blocking: is used to systematically eliminate the indesired effect in the comparison
among the treatments (Wohlin et al., 2000). We believe the division of subjects are
not necessary, since all work in the same company with similar knowledge degree.
The questionnaire in Appendix A.3 were used to gather data about education and
background, which determined that blocking design were needed.

• Balancing: Whe have a balanced design, which means that there is the same
number of persons in each group.

The experimental design used to perform the experiment is one factor with two

treatments design. With this design, we would like to compare the two treatments against
each other (Wohlin et al., 2000). In such case, the factor is TIRT. Thus, there is a
treatment with such tool and another with the SPLMT tool. It is important to note that
the data used in the experiment was the result of cooperation between the RiSE and
MedicWare, in order to identify the core assets of the company. The two treatments are
described as follows and depicted in Figure 5.3:

• Treatment 1: In the first treatment, the subjects will use the SPLMT tool in order
to perform the core assets update, according to the firt list and traceability matrix.
In addition, the subjects have to register the time spent in this activity timesheet in
Appendix A.2.

• Treatment 2: In the second treatment, the subjects will receive the second list

and its corresponding traceability matrix. The subjects also have to register the
time spent in this activity in a timesheet. After the update, the TIRT tool will

86

5.3. THE PLANNING

Figure 5.3 Experiment Design: One factor with two treatment design

recommend possible core asset traceabilities. Thus, the subjects also have to
quantify the recommendations results, such as: correct results, incorrect results and
unlisted recommendations. It is important to highlight that we had to translate the
original data to the English language, because the stop-word removal and stemming

algorithms detailed in Chapter 4 and implemented in TIRT tool only considers the
English language. It is a limitation to be solved in the future.

In both of treatments, the experiment was applied in the context of one traceability
scenario (Use Case and Requirement). The remainder of traceability scenarios proposed
also could be analysed. It did not happen, because the time constraint to conduct the
experiment, however, in in order to obtain more conclusive results, other experiments can
be performed, as detailed in the following Chapter.

5.3.6 Instrumentation

In order to guide the subjects in the experiment, we provided the experiment descrip-
tion and guidelines with all support material, the list of core asset modifications, and
questionnaires.

The results of the experiments, such as recall, precision and effort (time saved) will
be collected. In order to guarantee more precision for the data collected, the participants

87

5.3. THE PLANNING

will be oriented to use timesheet to register the time, while performing the core assets

management. In addition, questionnaires will be elaborated to gather qualitative data
from subjects. The instruments are presented in Appendix A.

5.3.7 Pilot Project

Before performing the study, a pilot project was conducted with the same structure of
the Definition and Planning. The pilot project was performed by two subjects, who were
trained in SPL and tool usage. During training, we highlight some aspects related to the
core assets and manipulation of tool. The training was performed for approximately 2
hours. These subjects are not part of the subject identified in the Selection of Participants.
In this way, the pilot project provided a feedback about the questions, metrics and design

adopted in this experiment.

5.3.8 Validity Evaluation

A fundamental question concerning results from an experiment is how valid the results
are. In this study, we have the following types of threats to validity the experiment.

Conclusion Validation: This validation is concerned with the relationship between
the treatment and the outcome (Wohlin et al., 2000). In order to evaluate and interpret the
results of the experiment, the descriptive statistics and statistical hypothesis testing will
be collected during the experiment.

Internal Validity: Threats to internal validity are influences that can affect the inde-
pendent variable with respect to causality, without the researcher’s knowledge (Wohlin
et al., 2000). This study is evaluated with 10 (ten) subjects with similar background on
core assets management, providing a good internal validity.

External Validity: Threats to external validity are conditions that limit out ability to
generalize the results of our experiment to industrial practice (Wohlin et al., 2000). Thus,
the following external validity were identified:

• Generalization of subjects: The study will be conducted with Software engineers
who have similar background. Thus, the subjects will not be selected from a
general population. In this case, if these professionals succeed using the tool and
approach, we cannot conclude that tool would use it succesfuly with another groups

88

5.4. THE OPERATION

too. On the other hand, negative conclusions have external validity, because if the
professionals fail in using the tool, then this is strong evidence that another practice
would fail too;

• Time constraint: We identified that due to the time constraints, the scope of
experiment was recuced, which could affect the experiment results. Thus, it can be
considered as a external validity.

Validity Threats: There is a conflit between some of the types of validity threats
(Wohlin et al., 2000). Thus, the following validity treatments were identified:

• Internet connection contraints: The tool will run in the web, thus the time to
manage the core assets might be comprised by the quality of Internet connection
from the subject environment. In this way, the results can be imprecise.

• Environment: The subjects will be free to do the task for the experiment in a place
that suits them best. Thus, the different environments can have positive or negative
influences for the correct execution of the experiment.

• Boredom: The subjects may be disappointed or even upset during the experiment,
since the experiment will be conducted for a long period of time, but in order to
reduce the boredom of the experiment, we recommended short interval during the
experiment execution.

5.4 The Operation

When an experiment has been designed and planned it must be carried out in order to
collect the data that should be analysed. This is what we mean with the operation of
an experiment. In the operational phase of an experiment, the treatments, depicted in
Section 5.3.5 are applied to the subjects. Thus, this means that this part of an experiment
is the part where the experimenter meets the subjects (Wohlin et al., 2000).

The operational phase of this experiment consists of three steps: preparation where
subjects are chosen and informed and the material is prepared, execution where the
subjects perform their tasks according to the treatment and the data is collected, and data
validation where the collected data is validated (Wohlin et al., 2000).

89

5.4. THE OPERATION

5.4.1 Preparation

The subjects of this experiment were selected by probability technique of convenience

sampling, which the nearest and most convenient persons are selected as subjects (Wohlin
et al., 2000). The subjects of this study are software engineers of Pitang Software Factory.
For this evaluation were selected 10 (ten) subjects.

Before the experiment can be executed, all experiment instruments defined in Section
5.3.6 must be prepared. After that, a list of core assets with its traceability matrix is given
to each subject. This traceability matrix contains the relationship between two core assets
of MedicWare project. In this sence, the subjects have to update each core asset in order
to relate with its correct core asset relationship. Nevertheless in the TIRT situation, the
tool will recommend possible core asset traceabilities. Thus, the subjects also have to
quantify the recommendations results in order to understand and analyse its results, such
as: correct results, incorrect results and unlisted recommendations.

As mentioned in the Planning Section 5.3, we had to translate the original data to the
English language, because the stop-word removal and stemming algorithms detailed in
Chapter 4 and implemented in TIRT tool only considers the English language.

5.4.2 Execution

The experimental study was conducted in July of 2011 with the subjects described
previously. The participants were free to do the experimentation in a place that suits
them best. In addition, information about the experiment execution were detailed, via
email and skype, to the subjects. The questionnaires and timesheet used in this study are
presented in Appendix A.

The experiment focus on analysis of recommendation of core assets traceability.
The Traceability Information Retrieval Tool (TIRT) will be compared with the Software

Product Lines Management Tool (SPLMT), because the SPLMT does not have the
recommendation approach, developed in the TIRT tool.

The treatmens and design detailed in Section 5.3.5 were aplied in this phase. Initially
a SPL training was performed, because most subjects have no expertise in the reuse
area, since all work in the same company with similar knowledge degree. As mentioned
before, the questionnaire in Appendix A.3 was used to gather data about education and
background.

Table 5.1 details the profile of each subject. The Subject IDs are represented in the
first column, the Graduation column represents the quantifier of years since graduation,

90

5.5. ANALYSIS AND INTERPRETATION

the amount of projects that subjects participated are described in the third column, the
Project Roles are represented in the fourth column, and finally, Software Reuse and SPL

columns represent the expertise in these areas respectively.

ID Graduation Pro jects Roles So f tware Reuse SPL
1 0.5 5 Developer Low None
2 0.5 8 Developer Medium None
3 1.5 6 Developer Medium None
4 3 8 Developer Medium Low
5 1 4 Tester None None
6 3.5 7 Developer/Tester Low None
7 3.5 7 Developer/Architect High Low
8 3 8 Tester/Developer Low None
9 0.5 3 Tester/Developer None None

10 1 4 Developer Low None

Table 5.1 Subject Profile

5.4.3 Data Validation

Data was collected from ten (10) subject, however, two of them (Subjects ID 2 and 7) did
not participate of treatments and qualitative questionnaire, affecting the data validation.
In this way, we had eight (8) subjects for statistical and quality analysis.

5.5 Analysis and Interpretation

After collecting experimental data in the operation phase, we would like to be able to
draw conclusions based on it. Nevertheless, to be able to draw valid conclusions, we must
interpret the experiment data (Wohlin et al., 2000). In this phase, the quantitative and
qualitative data were analysed.

5.5.1 Quantitative Analysis

Table 5.2 details the collected data during the experiment. The column IDs represents
the subjects identifications. It is important to highlight that the subjects #2 and #7 were
excluded of this analysis, because they did not participate of treatments and qualitative
questionnaire, affecting the data validation. The next columns represent the time spent
in minutes on analysis of both tools SPLMT and TIRT respectively. Finally, the table
depicts the Precision and Recall metrics obtained with the TIRT tool.

91

5.5. ANALYSIS AND INTERPRETATION

ID SPLMT (min) T IRT (min) T IRT Precision (%) T IRT Recall (%)
1 14.41 23 64.5 40.5
3 40 44.30 64.5 40.5
4 32 42.10 64.5 40.5
5 34.30 35 58.2 30.3
6 22.30 35 55.2 28.7
8 35 37.3 64.5 40.5
9 20 36.40 64.5 40.5

10 23 33 64.5 40.5

Table 5.2 Collected data during the experiment

From Table 5.2 we can indicate that subjects using SPLMT to analysis the core assets
traceability spent less time than using TIRT. However, it is important to highlight that
during the analysis of recommendations in TIRT, participants also had to quantify the
quality of the recommendations, enumerating the total, correct, incorrect and unlisted

recommendations. Thus, these activities can be impacted and justify the excess time of
TIRT.

Table 5.3 details descriptive statistics about the experiment results. According to
Wohlin et al. (2000), descriptive statistics can be used to describe and presenting interest-
ing aspects of the data set. Regarding the time spent on analysis, SPLMT had mean value
of 27.43 minutes, minimum of 14.41 and maximum of 40 minutes, while TIRT had mean

value of 35.51 minutes, minimum of 23 and maximum of 44.30 minutes. In addition,
Table 5.3 also brings descriptive statitics about the precision and recall metrics of TIRT
tool. Regarding the precision metric, the mean value is 62.55 percent, the minimum 55.2
and maximum value 64.5, while the recall metric has mean value of 37.75, minimum of
28.7 and maximum value of 40.5.

SPLMT (min) T IRT (min) T IRT Precision (%) T IRT Recall (%)
Mean 27.43 35.51 62.55 37.75

Minimum 14.41 23 55.2 28.7
Maximum 40 44.30 64.5 40.5

Table 5.3 Descriptive Statistics

From Table 5.3, it indicates that although TIRT spent more time in the analysis of
core assets traceability, its bring the recommendation feature with acceptable data of
precision.

92

5.5. ANALYSIS AND INTERPRETATION

Hypothesis Testing

The objective of hypothesis testing is to verify if it is possible to reject a certain null
hypothesis (H0) (Wohlin et al., 2000), defined in the Subsection 5.3.2.

The results detailed in Table 5.4 shows that it spent more time using TIRT in the
core assets analysis. Thus, it does not reject the null hypothesis (H01): µ effort(time

saved) with TIRT > 1. The metric used to evaluate the precision of the traceability
recommendation presents the value of 62.55%. Thus, it rejects the null hypothesis (H02):
µ precision TIRT < 50%. Finally, the metric used to evaluate the recall of the traceability
recommendation presents the value of 37.75%. Thus, it does not reject the null hypothesis
(H03): µ recall TIRT < 50%.

Null Hypothesis Results Re jected
H01 µ effort(time saved) with T IRT > 1 1.29 No
H02 µ precision T IRT < 50% 62.55% Yes
H03 µ recall T IRT < 50% 37.75% No

Table 5.4 Hypothesis Analysis

As mentioned previously, it is important to highlight that during the analysis of recom-
mendations in TIRT, participants also had to quantify the quality of the recommendations,
enumerating the total, correct, incorrect and unlisted recommendations. Thus, these
activities can be impacted and justify the excess time of TIRT.

5.5.2 Qualitative Analysis

The questionnaire presented in Appendix A.4 were elaborated to gather qualitative
information about the TIRT usability and functionality. These qualitative information are
summarized as follows:

The eight (8) subject were unanimous in declaring that TIRT traceability recommen-

dation feature is useful for the core asset management activity. Six (6) subjects reported
that the tree view component is really useful in order to verify the impact analysis, on
the other hand, two participants reported that using this type of component, a serious
performance problem can arise as the database grows, because it loads all the related data
field, forward and backward.

The subjects also reported that the the details of traceability recommendations pre-
sented were helpful to perform the analysis, however, two (2) subjects of them also
justified that adding more fields, the reading of these data cold be impaired. Moreover,
these participants also informed that the user interface is clear and intuitive.

93

5.6. CONCLUSION

5.6 Conclusion

The analysis performed in this experimet showed that TIRT had a lower performance
(spent time) compared to SPLMT. The results also indicated that the evaluation about
the recall metric did not provide good results. However the precision metric presents a
significant result, helping the subjects in the traceability management. In this way, the
descriptive analysis do not provide a concrete conclusion. Moreover, the experiment was
applied in the context of one traceability scenario (Use Case and Requirement). The
remainder of traceability scenarios proposed also could be analysed. It did not happen
because the time constraint to conduct the experiment, however, in in order to obtain
more conclusive results, other experiments can be performed.

As analysed in the 5.5.1, only one of three null hypothesis was rejected. However,
the qualitative analysis showed that TIRT has many favorable aspects to be taken into
consideration when selecting which tool should be used. The subjects reported the main
following contributions and improvements: (a) the TIRT can contribute to impact analysis
with the tree view component; (b) the TIRT recommendation of core asset traceability
can contribute to the maintenance of core assets in a SPL project.

5.7 Chapter Summary

This Chapter presented the experimental studies conducted in order to evaluate the TIRT
tool. This experimental study was based on the proposed process in (Wohlin et al.,
2000), divided into the following main activities: the definition, planning, operation
and Analysis and Interpretation.

The experiment was conducted with 10 subjects, however, two of them (Subjects

ID #2 and #7) did not participated of treatments and qualitative questionnaire, affecting
the data validation. In this way, we had 8 subjects for statistical and quality analysis.
The results of the experiment pointed out that the null hypothesis of effort has not been
rejected, as well as the recall metric. On the other hand, the precision metric presented
favorable results.

Although the quantitative analysis showed that only one hypothesis of three was
rejected, the subjects reported in the qualitative analysis that traceability recommendation

feature is useful for the core asset management activity. In addition, subjects reported
that the tree view component is really useful in order to verify the impact analysis.

Next Chapter will present the conclusions of this work, its main contributions and

94

5.7. CHAPTER SUMMARY

directions for future work.

95

6
Conclusion

Sonho que se sonha só

É só um sonho que se sonha só

Mas sonho que se sonha junto é realidade.

Dream you dream alone

It is just a dream you dream alone

But dream you dream together is reality.

—RAUL SEIXAS (Musician)

Software reuse is an important aspect to minimize costs and time-to-market, and
maximize quality and productivity (Clements and Northrop, 2001). In this sence, Software
Product Lines Engineering has proven to be the methodology for developing a diversity
of software products and software-intensive systems at lower costs, in shorter time, and
with higher quality. Many reports document the significant achievements and experience
gained by introducing software product lines in the software industry (Pohl et al., 2005).
Chapter 2 summarized the basic concepts about software product lines and their aspects,
such as: SPL motivations, the related benefits from its use and some strategies used in
the SPL adoption.

Regarding to Traceability, there are difficults to be addressed by the SPL approaches.
Chapter 3 presented the main concepts about the Traceability area, Traceability in Soft-
ware Product Lines and Impact Analysis. In the context of Software Product Lines
Engineering, software artefact traceabily is an important factor when it comes to effective
development and maintenance of software system. Traceability management facilitates
the SPL artefacts to remain in synchronous state and ensure the consistency of derived

96

6.1. RESEARCH CONTRIBUTION

products (Abid, 2004).
From this scenario, Chapter 4 described the tool and the proposal for traceability

recommendation, that outline the recommendation scenarios of traceability, described
in order to facilitate the maintenance activities of SPL. This recommendation approach
assist support the decision making, supporting representation of dependencies between
different core assets.

6.1 Research Contribution

The main contributions of this work can be summarized according to the following
aspects: (a) state of the art of Traceability in Software Product Lines, emphasizing the
traceability approaches and key challenges; (b) a tool, called TIRT, was proposed in
order to mitigate the maintenance traceability problem; (c) the standardization of the
vocabulary; (d) finally, it was performed an experimental study with 10 subject to evaluate
the proposed tool.

• State of the art and Prelimiray Mappy Study on Traceability for SPL: I pre-
sented an study and identification of the main work about Traceability in the context
of Software Product Lines, emphasizing the key challenges. This study was con-
ducted based on some good practices of Systematic Mapping Studies proposed by
Petersen et al. (2007), several related and important work were selected.

• TIRT: A prototype tool to support the traceability scenarios was proposed. It must
be involved, including other techniques, features, and core assets. TIRT’s goal is
to facilitate the creation and mainly the maintenance activities regarding to the
traceability relationship among the different core assets in a Software Product Lines
projects. The prototype tool supports the traceability recommendation proposal
in the context of Software Product Lines. Recommendation scenarios are likely
occurrences of updates, which were mapped their impacts and correlations. The
recommendation scenarios of traceability are described in order to facilitate the
maintenance activities of SPL. This recommendation approach can aid the decision
making, supporting representation of dependencies between different core assets.

• Vocabulary: The proposal of some suggestions to the fields registration. It aims
the improvement of traceability recommendation between the core asset artefacts.

• Experimental Study: An experiment conducted in order to evaluate the TIRT
tool was based on the proposed process defined in (Wohlin et al., 2000), which is

97

6.2. FUTURE WORK

composed of the following main activities: the definition, planning, operation and
conclusion. However, the quantitative analysis showed that only one hypothesis of
three was rejected, users reported satisfactory results using the tool.

6.2 Future Work

Due to the time constraints imposed on the master degree, this work can be seen as an
initial climbing towards the efficient, usable and effective traceability management in the
context of Software Product Lines. Thus, there are interesting topics to improve what was
started, and new paths to explore. In this way, the following issues should be investigated
as future work:

• Systematic Mapping Study: A complete Systematic Mapping Studies about
Traceability in Software Product Lines in order to identify more relevant work and
build a classification scheme and structure this area.

• Improvements of the prototype: In order to optimize the TIRT, enhancements
and new features must be implemented, as well as some problems must be fixed.
These improvements and some defects reported by users are detailed as follows:
(a) the recommendation system of tool must support the Portuguese language,
because in the current version, the stop-word removal and streamming algorithms
implemented in TIRT only considers the English language. (b) the tool should
enabling the option of enable or not the impact analysis component, because some
users related that performance problems can arise as the database grows, because it
loads all the related data field, foward and backward. (c) the users also reported the
implementation of new differents visualization components, in order to facilitate
the software traceability and impact analysis. In addition to the improvements
reported by users, it is also important to note that the tool will need to be adapted,
according to the evolution and adaptation of the metamodel.

• Automation of Traceability: Another area is the automation and optimization
of the generation of traceability relations in Software Product Lines, because
we believe that this automation can bring considerable gains related to time and
maintainability.

• Analysis of vocabulary: A tool to analyze the consistency of adoption of recom-
mended vocabulary.

98

6.2. FUTURE WORK

• Extension of the Experiment: Since the experiment performed in this dissertation
was applied in the context of one traceability scenario (Use Case and Requirement),
thus it is necessary to perform a more elaborated experimental study, applying
the other proposed scenarios. It did not happen in this current version, since the
limitation of time, but we believe that the extension of the experiment could provide
more conclusive results. In this way, the experiment should involve more subjects.

99

Bibliography

Abid, S. B. (2004). Resolving Traceability Issues In Product Derivation For Software
Product Lines. 4th International Conference for Software and Data Technologies,
pages 99–104.

Abma, B. (2009). Evaluation of requirements management tools with support for

traceability-based change impact analysis. Master’s thesis, University of Twente,
Enschede, The Netherlands.

Alexander, I. (2002). Towards Automatic Traceability in Industrial Practice. In In Proc.

of the 1st Int. Workshop on Traceability, pages 26–31.

Almeida, E. S., Alvaro, A., Lucrédio, D., Garcia, V. C., and Meira, S. R. L. (2004). Rise
Project: Towards a Robust Framework for Software Reuse. In IEEE International

Conference on Information Reuse and Integration (IRI), pages 48–53, Las Vegas, NV,
USA.

Almeida, E. S., Alvaro, A., Garcia, V. C., Jorge, Burégio, V. A., Nascimento, L. M., Lu-
crédio, D., and Silvio (2007). C.R.U.I.S.E: Component Reuse in Software Engineering.
C.E.S.A.R e-book, Recife, 1st edition.

Alvaro, A. (2009). A Software Component Quality Framework. Ph.d. thesis, CIn -
Informatics Center, UFPE - Federal University of Pernambuco, Recife-PE, Brazil.

AMPLE (2011). Project AMPLE: Aspect-Oriented, Model-Driven Product Line Engi-
neering. http://ample.holos.pt/.

Anquetil, N., Grammel, B., Galvao Lourenco da Silva, I., Noppen, J. A. R., Shakil Khan,
S., Arboleda, H., Rashid, A., and Garcia, A. (2008). Traceability for Model Driven,
Software Product Line Engineering. In ECMDA Traceability Workshop Proceedings,

Berlin, Germany, pages 77–86, Norway. SINTEF.

Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., and Merlo, E. (2002). Recovering
Traceability Links between Code and Documentation. IEEE Transactions on Software

Engineering, 28, 970–983.

Arnold, R. S. and Bohner, S. (1996). Software Change Impact Analysis. IEEE Computer
Society Press, Los Alamitos, CA, USA.

100

BIBLIOGRAPHY

Asuncion, H. U. (2008). Towards Practical Software Traceability. In Companion of the

30th international conference on Software engineering, ICSE Companion ’08, pages
1023–1026, New York, NY, USA. ACM.

Asuncion, H. U., François, F., and Taylor, R. N. (2007). An end-to-end industrial software
traceability tool. In Proceedings of the the 6th joint meeting of the European software

engineering conference and the ACM SIGSOFT symposium on The foundations of

software engineering, ESEC-FSE ’07, pages 115–124, New York, NY, USA. ACM.

Balbino, M. (2010). RiPLE-SC: An Agile Scoping Process for Software Product Lines.
Master’s thesis, Federal University of Pernambuco, Recife, Pernambuco, Brazil.

Basili, V., Caldiera, G., and Rombach, D. H. (1994). The Goal Question Metric Approach.
In J. Marciniak, editor, Encyclopedia of Software Engineering. Wiley.

Basili, V. R. and Rombach, H. D. (1991). Support for Comprehensive Reuse. Software

Engineering Journal, Special issue on software process and its support, 6(5), 303–316.

Basili, V. R., Briand, L. C., and Melo, W. L. (1996). How Reuse Influences Productivity
in Object-Oriented Systems. Communications of the ACM, 39(10), 104–116.

Bayer, J. and Widen, T. (2002). Introducing Traceability to Product Lines. In Revised

Papers from the 4th International Workshop on Software Product-Family Engineering,
PFE ’01, pages 409–416, London, UK. Springer-Verlag.

Bennett, K. H. and Rajlich, V. T. (2000). Software maintenance and evolution: a Roadmap.
In Proceedings of the Conference on The Future of Software Engineering (ICSE’00),
pages 73–87, New York, NY, USA. ACM Press.

Berg, K., Bishop, J., and Muthig, D. (2005). Tracing Software Product Line Variability:
from Problem to SSpace. In Proceedings of the 2005 annual research conference of

the South African institute of computer scientists and information technologists on IT

research in developing countries, SAICSIT ’05, pages 182–191, Republic of South
Africa. South African Institute for Computer Scientists and Information Technologists.

Birk, A. and Heller, G. (2007). Challenges for requirements engineering and management
in software product line development. In Proceedings of the 13th international working

conference on Requirements engineering: foundation for software quality, REFSQ’07,
pages 300–305, Berlin, Heidelberg. Springer-Verlag.

101

BIBLIOGRAPHY

Booch, G., Rumbaugh, J., and Jacobson, I. (2005). The Unified Modeling Language.
Addison-Wesley, 2nd edition.

Brito, K. (2007). LIFT: A Legacy InFormation retrieval Tool. Master’s thesis, CIn -
Informatics Center, UFPE - Federal University of Pernambuco, Recife, Pernambuco,
Brazil.

Cavalcanti, R. (2010). Extending the RiPLE-Design Process with Quality Attribute

Variability Realization. M.sc. dissertation, CIn - Informatics Center, UFPE - Federal
University of Pernambuco, Recife-PE, Brazil.

Cavalcanti, Y. a. C., do Carmo Machado, I., da Mota, P. A., Neto, S., Lobato, L. L.,
de Almeida, E. S., and de Lemos Meira, S. R. (2011). Towards metamodel support
for variability and traceability in software product lines. In Proceedings of the 5th

Workshop on Variability Modeling of Software-Intensive Systems, VaMoS ’11, pages
49–57, New York, NY, USA. ACM.

Cavalcanti, Y. C. (2009). A Bug Report Analysis and Search Tool. M.sc. dissertation, CIn
- Informatics Center, UFPE - Federal University of Pernambuco, Recife-PE, Brazil.

Chastek, G. J., Donohoe, P., and McGregor, J. D. (2009). Formulation of a Production
Strategy for a Software Product Line. Technical report, Software Engineering Institute.

Cleland-Huang, J. (2006). Just Enough Requirements Traceability. In Proceedings of the

30th Annual International Computer Software and Applications Conference - Volume

01, pages 41–42, Washington, DC, USA. IEEE Computer Society.

Cleland-Huang, J. and Habrat, R. (2007). Visual Support In Automated Tracing. In
Proceedings of the Second International Workshop on Requirements Engineering

Visualization, REV 2007, pages 4–9, Washington, DC, USA. IEEE Computer Society.

Clements, P. and Northrop, L. (2001). Software Product Lines: Practices and Patterns,
volume 0201703327. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA.

Cunha, C. (2009). A Visual Bug Report Analysis and Search Tool. M.sc. dissertation, CIn
- Informatics Center, UFPE - Federal University of Pernambuco, Recife-PE, Brazil.

Davis, S. M. (1987). Future Perfect. Addison-Wesley, Boston, Massachusetts.

Demoiselle (2011). Demoiselle Framework. http://www.frameworkdemoiselle.gov.br/.

102

BIBLIOGRAPHY

Dick, J. (2002). Rich Traceability. In Proceedings of the 1st International Workshop on

Traceability for Emerging forms of Software Engineering, page 2005, Edinburgh, UK.

Diehl, S. (2007). Software Visualization: Visualizing the Structure, Behaviour, and

Evolution of Software. Springer, Berlin.

Durao, F. (2008). Semantic Layer Applied to a Source Code Search Engine. Master’s
thesis, Federal University of Pernambuco, Recife, Pernambuco, Brazil.

Egyed, A. (2003). A Scenario-Driven Approach to Trace Dependency Analysis. IEEE

Transactions on Software Engineering, 29, 116–132.

Eriksson, M., Börstler, J., and Borg, K. (2005). The PLUSS Approach Domain Modeling
with Features, Use Cases and Use Case Realizations. In In Proceedings of the 9th

International Software Product Line Conference, pages 33–44.

Feldman, R. and Sanger, J. (2007). The Text Mining Handbook: advanced approaches in

analyzing unstructured data. Cambridge University Press.

Filho, E. D. S., Cavalcanti, R. O., Neiva, D. F. S., Oliveira, T. H. B., Lisboa, L. B.,
Almeida, E. S., and Meira, S. R. L. (2008). Evaluating Domain Design Approaches
Using Systematic Review. In R. Morrison, D. Balasubramaniam, and K. E. Falkner,
editors, 2nd European Conference on Software Architecture (ECSA’08), volume 5292
of Lecture Notes in Computer Science, pages 50–65. Springer.

Frakes, W. B. and Isoda, S. (1994). Success Factors of Systematic Software Reuse. IEEE

Software, 11(01), 14–19.

Frank J. van der Linder, E. R. and Schmid, K. (2007). Software Product Lines in Action.
Springer, New York, USA.

Galvão, I., Shakil, S., Nopper, J., Rummler, A., and Sánchez, P. (2008). Definition of a

traceability framework (including the metamodel and the modelling of processes and

artefacts to allow traceability in the presence of uncertainty) for SPLs. Master’s thesis.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. M. (1995). Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley, Boston, MA, USA.

Garcia, V. C. (2010). RiSE Reference Model for Software Reuse Adoption in Brazilian

Companies. Ph.d. thesis, CIn - Informatics Center, UFPE - Federal University of
Pernambuco, Recife-PE, Brazil.

103

BIBLIOGRAPHY

Gotel, O. and Finkelstein, A. (1995). Contribution Structures. In Proceedings of 2nd

International Symposium on Requirements Engineering, (RE ’95, pages 100–107.
Society Press.

Griss, M. L., Favaro, J., and Alessandro, M. d. (1998). Integrating Feature Modeling
with the RSEB. In Proceedings of the 5th International Conference on Software Reuse,
ICSR ’98, pages 76–, Washington, DC, USA. IEEE Computer Society.

Gupta, N. K., Gupta, N. K., Jagadeesan, L. J., Jagadeesan, L. J., Koutsofios, E. E.,
Koutsofios, E. E., Weiss, D. M., and Weiss, D. M. (1997). Auditdraw: Generating
Audits the FAST Way. In In Proceedings of the 3rd IEEE International Symposium on

Requirements Engineering, pages 188–197, Washington, DC, USA.

Hayes, J. H., Dekhtyar, A., and Osborne, J. (2003). Improving requirements tracing via
information retrieval. Information Retrieval, pages 138–150.

Helferich, A., Schmid, K., and Herzwurm, G. (2006). Reconciling Marketed and Engi-
neered Software Product Lines. Software Product Line Conference, International, 0,
23.

IEEE (1990). IEEE Std.610.12-1990. Standard Glossary of Software Engineering Termi-
nology. http://standards.ieee.org/findstds/standard/610.12-1990.html.

IEEE (1998). IEEE Std 830-1998 - IEEE Recommended Practice for Software Require-
ments Specifications. http://standards.ieee.org/findstds/standard/830-1998.html.

Jamwal, D. (2010). Software Reuse: A Systematic Review. In Proceedings of the 4th

National Conference.

Jirapanthong, W. and Zisman, A. (2005). Supporting Product Line Development through
Traceability. 12th Asia-Pacific Software Engineering Conference (APSEC’05), pages
506–514.

Jirapanthong, W. and Zisman, A. (2009). XTraQue: Traceability for Product Line
Systems. Software and Systems Modeling, 8, 117–144. 10.1007/s10270-007-0066-8.

Kang, K., Cohen, S., Hess, J., Nowak, W., and Peterson, S. (1990a). Feature-Oriented
Domain Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21.

104

BIBLIOGRAPHY

Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., and Peterson, A. S. (1990b). Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Technical report, Carnegie-
Mellon University Software Engineering Institute.

Kaplan, R. M. (2005). Inquiries into Words, Constraints and Contexts. Stanford Universit,
Stanford, CA.

Kim, S. D., Chang, S. H., and La, H. J. (2005). Traceability Map: Foundations to
Automate for Product Line Engineering. Software Engineering Research, Management

and Applications, ACIS International Conference on, 0, 340–347.

Kitchenham, B. and Charters, S. (2007). Guidelines for performing Systematic Literature
Reviews in Software Engineering. Technical report, Keele University and Durham
University Joint Report.

Kotonya, G. and Sommerville, I. (1998). Requirements Engineering - Processes and

Techniques. John Wiley & Sons Ltd.

Kowalski, G. and Maybury, M., editors (2002). Information Storage and Retrieval

Systems. Kluwer Academic Publishers.

Krueger, C. W. (1992). Software Reuse. ACM Comput. Surv., 24, 131–183.

Krueger, C. W. (2002). Easing the Transition to Software Mass Customization. In Revised

Papers from the 4th International Workshop on Software Product-Family Engineering,
PFE ’01, pages 282–293, London, UK. Springer-Verlag.

Lancaster, F. W. (1986). Vocabulary Control for Information Retrieval. Information
Resources Press, 2 edition.

Larman, C. (2004). Applying UML and Patterns: An Introduction to Object-Oriented

Analysis and Design and Iterative Development (3rd Edition). Prentice Hall PTR,
Upper Saddle River, NJ, USA.

Lientz, B. P. and Swanson, E. B. (1980). Software Maintenance Management. Addison-
Wesley, Boston, MA, USA.

Lindvall, M. and Sandahl, K. (1996). Practical implications of traceability. Software

Practice and Experience, 26, 1161–1180.

105

BIBLIOGRAPHY

Lisboa, L. (2008). ToolDAy - A Tool for Domain Analysis. Master’s thesis, CIn -
Informatics Center, UFPE - Federal University of Pernambuco, Recife, Pernambuco,
Brazil.

Lucia, A. D., Fasano, F., Oliveto, R., and Tortora, G. (2007). Recovering traceability
links in software artifact management systems using information retrieval methods.
ACM Transactions on Software Engineering and Methodology, 16.

Machado, I. (2010). RiPLE-TE : A Software Product Lines Testing Process. Master’s
thesis, CIn - Informatics Center, UFPE - Federal University of Pernambuco, Recife,
Pernambuco, Brazil.

Martins, A. C., Garcia, V. C., Almeida, E. S., and Meira, S. R. L. (2008). Enhancing
components search in a reuse environment using discovered knowledge techniques.
In 2nd Brazilian Symposium on Software Components, Architectures, and Reuse

(SBCARS’08), Porto Alegre, Brazil.

Mascena, J. C. C. P. (2006). ADMIRE: Asset Development Metric-based Integrated Reuse

Environment. Master’s thesis, CIn - Informatics Center, UFPE - Federal University of
Pernambuco, Recife, Pernambuco, Brazil.

McGregor, J. D. (2003). The Evolution of Product Line Assets. Technical report, Software
Engineering Institute.

McGregor, J. D., Northrop, L. M., Jarrad, S., and Pohl, K. (2002). Initiating Software
Product Lines. IEEE Software, 19(4), 24–27.

McIlroy, D. (1968). Mass-Produced Software Components. In Proceedings of the 1st

International Conference on Software Engineering, Garmisch Pattenkirchen, Germany,
pages 88–98.

Medeiros, F. M. (2010). SOPLE-DE: An Approach to Design Service-Oriented Product

Line Architecture. M.sc. dissertation, CIn - Informatics Center, UFPE - Federal
University of Pernambuco, Recife-PE, Brazil.

Mendes, R. C. (2008). Search and Retrieval of Reusable Source Code using Faceted

Classification Approach. Master’s thesis, CIn - Informatics Center, UFPE - Federal
University of Pernambuco, Recife, Pernambuco, Brazil.

Mens, T. and Demeyer, S. (2008). Software Evolution. Springer, Springer.

106

BIBLIOGRAPHY

Moon, M., Chae, H. S., Nam, T., and Yeom, K. (2007). A Metamodeling Approach to
Tracing Variability between Requirements and Architecture in Software Product Lines.
Computer and Information Technology, International Conference on, 0, 927–933.

Moreton, R. (1996). A Process Model for Software Maintenance Software. Change
Impacty Analysis. IEEE Computer Society.

Nascimento, L. (2008). Core Assets Development in SPL - Towards a Practical Approach

for the Mobile Game Domain. Master’s thesis, Federal University of Pernambuco,
Recife, Pernambuco, Brazil.

Neiva, D. (2008). RiPLE-RE : A Requirements Engineering Process for Software Prod-

uct Lines. Master’s thesis, CIn - Informatics Center, UFPE - Federal University of
Pernambuco, Recife, Pernambuco, Brazil.

Neto, P. (2010). A Regression Testing Approach for Software Product Lines Architectures.
M.sc. dissertation, CIn - Informatics Center, UFPE - Federal University of Pernambuco,
Recife-PE, Brazil.

Nielsen, J. (2011). Ten Usability Heuristics.
http://www.useit.com/papers/heuristic/heuristic_list.html/.

Oliveira, T. B. (2009). RiPLE-EM : A Process to Manage Evolution in Software Product

Lines. Master’s thesis, Federal University of Pernambuco, Recife, Pernambuco, Brazil.

Petersen, K., Feldt, R., Mujtaba, S., and Mattsson, M. (2007). Systematic Mapping
Studies in Software Engineering. 12th International Conference on Evaluation and

Assessment in Software Engineering, 17(1), 1–10.

Pfleeger, S. L. (2001). Software Engineering: Theory and Practice. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 2nd edition.

Pinheiro, F. A. C. and Goguen, J. A. (1996). An Object-Oriented Tool for Tracing
Requirements. IEEE Software, 13, 52–64.

Pohl, K. (1996a). PRO-ART: Enabling Requirements Pre-Traceability. IEEE Interna-

tional Conference on Requirements Engineering, 0, 76.

Pohl, K. (1996b). Process-Centered Requirements Engineering. John Wiley & Sons, Inc.,
New York, NY, USA.

107

BIBLIOGRAPHY

Pohl, K., Böckle, G., and van der Linden, F. (2005). Software Product Line Engineering:

Foundations, Principles, and Techniques. Springer.

Porter, M. F. (1980). An algorithm for suffix stripping. Program, 3(14), 130–137.

Poulin, J. S. (1997). Measuring Software Reuse - Principles, Practices, and Economic

Models. Assison-Wesley, Boston, MA, USA.

Pussinen, M. (2002). A survey on software product-line evolution. Technical report,
Institute of Software Systems.

R. Cooper, S. E. and Kleinschmidt, E. (2001). Portfolio Management for new Products.
Perseus Publishing, Philadelphia, USA.

Ramesh, B. and Jarke, M. (2001). Toward Reference Models for Requirements Traceabil-
ity. IEEE Transactions on Software Engineering, 27, 58–93.

Ramesh, B., Powers, T., Stubbs, C., and Edwards, M. (1995). Implementing requirements
traceability: a case study. In Proceedings of the Second IEEE International Symposium

on Requirements Engineering, RE ’95, pages 89–95, Washington, DC, USA. IEEE
Computer Society.

Ribeiro, H. B. (2010). An Approach to Implement Core Assets in Service-Oriented

Product Lines. M.sc. dissertation, CIn - Informatics Center, UFPE - Federal University
of Pernambuco, Recife-PE, Brazil.

Royce, W. W. (1987). Managing the development of large software systems: concepts
and techniques. In Proceedings of the 9th international conference on Software

Engineering, ICSE ’87, pages 328–338, Los Alamitos, CA, USA. IEEE Computer
Society Press.

Salton, G., Wong, A., and Yang, C. S. (1975). A Vector Space Model for Automatic
Indexing. Commun. ACM, 18(11), 613–620.

Santos, E. C. R., ao, F. A. D., Martins, A. C., Mendes, R., Melo, C., Garcia, V. C.,
Almeida, E. S., and Meira, S. R. L. (2006). Towards an effective context-aware
proactive asset search and retrieval tool. In 6th Workshop on Component-Based

Development (WDBC’06), pages 105–112, Recife, Pernambuco, Brazil.

Sherba, S. A., Anderson, K. M., and Faisal, M. (2003). A Framework for Mapping
Traceability Relationships. In 2 nd International Workshop on Traceability in Emerging

108

BIBLIOGRAPHY

Forms of Software Engineering at 18th IEEE International Conference on Automated

Software Engineering, pages 32–39.

Sommerville, I. (2007). Software Engineering. Addison Wesley, 8 edition.

Sousa, A., Kulesza, U., Rummler, A., Anquetil, N., Fct, C. D. I., Lisboa, U. N. D., and
Darmstadt, T. U. (2009). A Model-Driven Traceability Framework to Software Product
Line Development. Software Systems Modeling, 9, 427–451–451.

Spanoudakis, G. and Zisman, A. (2004). Software Traceability: A Roadmap. In Handbook

of Software Engineering and Knowledge Engineering, pages 395–428. World Scientific
Publishing.

Streitferdt, D. (2001). Traceability for System Families. In Proceedings of the 23rd Inter-

national Conference on Software Engineering, ICSE ’01, pages 803–804, Washington,
DC, USA. IEEE Computer Society.

Strzalkowski, T. (1994). Robust text processing in automated information retrieval. In
Proceedings of the fourth conference on Applied natural language processing, ANLC
’94, pages 168–173, Stroudsburg, PA, USA. Association for Computational Linguistics.

TechTarget (2004). SearchCIO.com Definitions, whatis.techtarget.com.
http://www.whatis.techtarget.com. Last acess on May/2011.

Tiboni, A. C., da Silva Lisboa, F. G., and Mota, L. C. (2009). Uma plataforma livre
para padronização do desenvolvimento de sistemas no Governo Federal. COLIBRI -

Colóquio de informática - Brasil - INRIA.

Tracz, W. (1988). Software reuse: emerging technology. IEEE Software, pages 62–67.

Vanderlei, T. A., ao, F. A. D., Martins, A. C., Garcia, V. C., Almeida, E. S., and Meira, S.
R. L. (2007). A cooperative classification mechanism for search and retrieval software
components. In Proceedings of the 2007 ACM symposium on Applied computing

(SAC’07), pages 866–871, New York, NY, USA. ACM.

von Knethen, A. and Paech, B. (2002). A Survey on Tracing Approaches in Practice and
Research. Fraunhofer IESE, (095), 1–49.

Wohlin, C., Runeson, P., Martin Höst, M. C. O., Regnell, B., and Wesslén, A. (2000).
Experimentation in Software Engineering: An Introduction. The Kluwer Internation

109

BIBLIOGRAPHY

Series in Software Engineering. Kluwer Academic Publishers, Norwell, Massachusets,
USA.

Yau, S. S., Collofello, J. S., and MacGregor, T. M. (1993). Software engineering metrics
i. In M. Shepperd, editor, Software engineering metrics I, pages 71–82, New York, NY,
USA. McGraw-Hill, Inc.

Zhou, X., Huo, Z., Huang, Y., and Xu, J. (2008). Facilitating Software Traceability
Understanding with ENVISION. Computer Software and Applications Conference,

Annual International, 0, 295–302.

Zisman, A., Spanoudakis, G., mi nana, E. P., and Krause, P. (2003). Tracing Software
Requirements Artefacts. In In: The 2003 International Conference on Software

Engineering Research and Practice (SERP’03). 2003. Las Vegas, pages 448–455.

110

Appendices

111

A
Experiment Instruments

A.1 Time sheet of Core Assets Management with TIRT

ID Start time End time Total∗ Correct∗ Incorrect∗ Unlisted∗
1 : :
2 : :
3 : :
4 : :
5 : :
6 : :
7 : :
8 : :
9 : :
10 : :

Table A.1 Time sheet used with the TIRT tool.

*Indicators about the core assets recommendation.

112

A.2. TIME SHEET OF CORE ASSETS MANAGEMENT WITH SPLMT

A.2 Time sheet of Core Assets Management with SPLMT

ID Start time End time
1 : :
2 : :
3 : :
4 : :
5 : :
6 : :
7 : :
8 : :
9 : :

10 : :

Table A.2 Time sheet used with the SPLMT tool.

113

A.3. QUESTIONNAIRE FOR SUBJECTS PROFILE

A.3 Questionnaire for Subjects Profile

Questionnaire for Subjects Profile
How many years since graduation?

[] years.

How many projects do you have participated according to the following categories?

[] Low complexity.
[] Medium complexity.
[] High complexity.

In case you have already participated in projects cited before, what was your role?
Cite the number of times you played each role.

How do you define your experience in Software Reuse?

[] None.
[] Low.
[] Medium.
[] High.

How do you define your experience in Software Product Lines?

[] None.
[] Low.
[] Medium.
[] High.

Have you used any CASE tool to core assets management?

[] Yes. [] No.

Table A.3 Questionnaire for Subjects Profile.

114

A.4. FORM FOR QUALITATIVE ANALYSIS

A.4 Form for Qualitative Analysis

Questionnaire for Qualitative Analysis
Was the traceability recommendation useful for the core asset management activ-
ity?
[] Yes. [] No.

Was the tree view component useful in order to verify the impact analysis?
[] Yes. [] No.

Did you have any problem with the traceability recommendation?
[] Yes. [] No. Cite them:

Do you believe the details of traceability recommendations presented were helpful
to perform the analysis?
[] Yes. [] No.

Do you think there is any other important information that must be present in the
list of traceability recommendation?
[] Yes. [] No. Cite them:

Did you use the help provided by TIRT?
[] Yes. [] No.

In your opinion, TIRT provides a clean and useful interface?

Did you found any other problems that were not mentioned before? Cite them.

In your opinion, what are the strengths of the TIRT tool?

Please, write down any suggestion you think might would be useful for TIRT.

Table A.4 Questionnaire for Qualitative Analysis.

115

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Problem Statement
	Overview of the Proposed Solution
	Context
	Outline of the Proposal

	Out of Scope
	Statement of the Contributions
	Dissertation Structure

	Software Product Lines: An Overview
	Software Reuse
	Software Product Lines
	SPL Motivations and Benefits
	Reduction of Development Costs
	Enhancement of Quality
	Reduction of Time to Market
	Reduction of Maintenance Effort
	Coping with Evolution and Improving Cost Estimation
	Benefits for the Customer

	SPL Essential Activities
	Core Asset Development
	Product Development
	Management

	SPL Strategies

	Chapter Summary

	An Overview on Traceability and Impact Analysis
	Traceability
	Purpose of Stakeholders
	Types of Traceability Relations
	Generation of Traceability
	Manual Generation
	Semi-automatic Generation
	Automatic Generation of Traceability Relations

	Traceability for SPL
	Research Strategy - SPL Traceability Literature
	Research Questions
	Search Strategy
	Data Sources
	Studies Selection
	Data Analysis

	Research Results
	Risks and Challenges

	Impact Analysis
	Impact Analysis for SPL
	Challenges

	Chapter Summary

	TIRT: Traceability Information Retrieval Tool
	The Set of Requirements
	Functional Requirements
	Non-Functional Requirements

	Traceability Recommendation Proposal
	The Metamodel
	Metamodel Instantiation
	Scenarios Recommendation
	Vocabulary Standardization
	Impact Analysis

	TIRT Architecture and Technologies
	TIRT's Architecture Overview
	Demoiselle Framework Architecture
	Demoiselle Framework Architecture Instatiation for TIRT
	Visualization
	Text Processor
	Query Parser
	Indexer

	TIRT in Action
	Chapter Summary

	TIRT Evaluation
	Introduction
	The Definition
	Goal
	Questions
	Metrics

	The Planning
	Context Selection
	Hypothesis Formulation
	Variable Selection
	Selection of Subjects
	Experimental Design
	Instrumentation
	Pilot Project
	Validity Evaluation

	The Operation
	Preparation
	Execution
	Data Validation

	Analysis and Interpretation
	Quantitative Analysis
	Hypothesis Testing

	Qualitative Analysis

	Conclusion
	Chapter Summary

	Conclusion
	Research Contribution
	Future Work

	Bibliography
	Appendices
	Experiment Instruments
	Time sheet of Core Assets Management with TIRT
	Time sheet of Core Assets Management with SPLMT
	Questionnaire for Subjects Profile
	Form for Qualitative Analysis

