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RESUMO 

Crotalus durissus cascavella é uma subespécie endêmica da região Nordeste do Brasil, 

cuja peçonha difere das demais subespécies do país pela ausência de crotamina e alta 

concentração de fosfolipases A2 (PLA2) ácidas. Neste estudo, duas novas PLA2s ácidas, 

denominadas Cdca-I-PLA2 e Cdca-II-PLA2, foram purificadas da peçonha de C. d. 

cascavella através de duas e três etapas cromatográficas, respectivamente. A pureza e 

homogeneidade de ambas fosfolipases foram determinadas por SDS-PAGE e 

espectrometria de massa, apresentando uma banda única e massa de 14.247 Da (Cdca-I-

PLA2) e 14.418 Da (Cdca-II-PLA2). Ambas fosfolipases foram ativas sobre 4-nitro-3-

ácido octanoil benzóico, apresentando atividade específica de 11,51 ± 0,50 U/mg e 26,75 

± 0,15 U/mg, Km = 0,2280 mM e 0,3993 mM e Vmax = 13,15 nmol×min-1mg-1 e 39,68 

nmol×min-1mg-1, respectivamente. Ambas não apresentaram atividade sobre BApNA. A 

Cdca-I-PLA2 apresentou atividade hemaglutinante na dose de 15 µM, enquanto a Cdca-

II-PLA2 apresentou atividade sobre substrato fluorogênico de trombina nas doses de 15 

µM e 30 µM. As Cdca-I-PLA2 e Cdca-II-PLA2 reduziram a agregação plaquetária 

induzida por colágeno, adrenalina e ácido araquidônico, porém as duas enzimas (20 µM) 

não reduziram a agregação quando ADP foi utilizado como agonista. Cdca-I-PLA2 

apresentou atividade dose resposta como agonista de agregação em plaquetas lavadas e 

reduziu significativamente a atividade agregante plaquetária da trombina. Cdca-I-PLA2 

apresentou maior atividade anticoagulante, prolongando os tempos de protrombina (TP; 

30 µM; R = 22) e tromploplastina parcial ativada (TTPa; 30 µM; R = 10), porém não 

promoveu alteração do tempo de trombina (TT) na dose de 10 µM. Cdca-II-PLA2 

prolongou discretamente o TP (30 µM; R = 2) e TTPa (30 µM; R = 1,5) e 

significativamente o TT (20 µM; R = 7). Desta forma, nossos resultados sugerem que a 

Cdca-I-PLA2 é uma quimerolectina anticoagulante com importante atividade sobre 

agregação plaquetária, enquanto Cdca-II-PLA2 possui alta atividade enzimática, inibe 

tanto a agregação plaquetária quanto a coagulação, agindo como inibidor de trombina por 

meio da sua ligação com o fibrinogênio. 

Palavras chave: Fosfolipases A2. Anti-agregante plaquetária. Anti-coagulante. Inibidor de 

trombina. 

 

 



 

 

ABSTRACT 

Crotalus durissus cascavella is ana endemic subspecie from Northeast region of Brazil, 

whose venom differs from the other subspecies of the country due to the absence of 

crotamine and high concentration of acidic phospholipase A2 (PLA2). In this study, two 

new acidic PLA2s, named Cdca-I-PLA2 and Cdca-II-PLA2, were purified from C. d. 

cascavella venom by two and three chromatographic steps, respectively. The purity and 

homogeneity of both phospholipases were determined by SDS-PAGE and mass 

spectrometry, showing a single band and molecular mass of 14.247 Da (Cdca-I-PLA2) 

and 14.418 Da (Cdca-II-PLA2). Both PLA2s were active on 4-Nitro-3-(octanoyloxy) 

benzoic, presenting specific activity of 11,51 ± 0,50 U/mg and 26,75 ± 0,15 U/mg, Km = 

0,2280 mM and 0,3993 mM and Vmax = 13,15 nmol×min-1mg-1 and 39,68 nmol×min-1mg-

1, respectively. Both had no activity on BApNA. The Cdca-I-PLA2 showed 

hemagglutinating activity at the dose of 15 µM, while Cdca-II-PLA2 showed activity on 

fluorogenic thrombin substrate at the doses of 15 µM e 30 µM. The Cdca-I-PLA2 and 

Cdca-II-PLA2 reduced platelet aggregation induced by collagen, adrenaline and 

arachidonic acid, but the two enzymes (20 μM) did not reduce aggregation when ADP 

was used as an agonist. Cdca-I-PLA2 showed dose response activity as agonist of 

aggregation in washed platelets and significantly reduced thrombin platelet aggregation 

activity. Cdca-I-PLA2 presented higher anticoagulant activity, prolonging prothrombin 

time (PT; 30 μM; R = 22) and activated partial thromboplastin time (aPTT; 30 μM; R = 

10), but did not promote a change in thrombin time (TT) at a dose of 10 μM. Cdca-II-

PLA2 prolonged discreetly the PT (30 µM; R = 2) and the aPTT (30 µM; R = 1.5) and 

significantly prolonged the TT (20 µM; R = 7). Thus, our results suggest that Cdca-I-

PLA2 is an anticoagulant chimerolectin with important activity on platelet aggregation, 

while Cdca-II-PLA2 has high enzymatic activity, inhibit both platelet aggregation and 

cloagulation, acting as thrombin inhibitor through its biding to fibrinogen. 

Key words: Phospholipases A2. Antiplatelet. Anticoagulant. Thrombin inhibitor. 
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1 INTRODUÇÃO GERAL 

1.1 CASCAVÉIS 

As cascavéis são serpentes da família Viperidae, subfamília Crotalinae, encontradas 

na Ásia e nas Américas (CALVETE et al., 2009; PYRON et al., 2013). São representadas 

pelos gêneros Crotalus (LINNAEUS, 1758) e Sistrurus (GARMAN, 1884), que 

divergiram do seu ancestral comum com o gênero Agkistrodon, formando um clado 

monofilético (WÜSTER et al., 2005). O nome cascavel tem origem grega e significa 

“castanhola”, isso devido ao fato de que, com exceção de algumas espécies que vivem 

em ilhas e perderam esta característica, todas as espécies de cascavel possuem um guizo 

na ponta da cauda (CALVETE et al., 2009).  

Existem aproximadamente 32 espécies e 66 subespécies de cascavéis no mundo (ITIS, 

2017), sendo popularmente conhecidas no Brasil por cascavel, maracambóia maracá e 

boicininga (PINHO & PEREIRA, 2001). Esses animais habitam áreas abertas, áridas, 

rochosas e de baixa vegetação, sendo raramente encontrados em florestas ou na faixa 

litorânea (SOERENSEN, 1990; LIRA-DA-SILVA et al., 2009). São animais carnívoros, 

assim como todas as demais serpentes (POUGH et al., 2013), alimentando-se 

principalmente de lagartos, aves e pequenos mamíferos (VANZOLINI et al., 1980; 

McCRANIE, J.R 1993). 

Assim como os demais viperídeos, as cascavéis possuem fossetas loreais, que são 

órgãos termosensíveis, localizados em cada lado da cabeça na mandíbula superior, entre 

o olho e a narina. Este órgão de percepção de infravermelho é utilizado para detectar a 

direção e distância das presas, através da liberação de calor de seus corpos (BULLOCK 

& COWLES, 1952; BAKKEN & KROCHMAL, 2007). 

Esses animais chegaram às Américas durante o fim do Oligoceno e início do Mioceno, 

quando o leste da América do Norte se separou da Eurásia, dando espaço ao oceano 

Atlântico (CASTOE et al., 2009). 
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1.1.1 Crotalus durissus 

No Brasil existe apenas uma espécie de cascavel, Crotalus durissus, descrita por 

Linnaeus em 1758 (BSH, 2014), que se originou de uma população ancestral distribuída 

no centro norte do México (WÜSTER et al., 2005). Após o surgimento do Istmo do 

Panamá, a população de cascavéis migrou ao longo da América Central, colonizando 

progressivamente a América do Sul através do corredor transamazônico (VANZOLINI 

& HEYER, 1985; WÜSTER et al., 2002; WÜSTER et al., 2005; BOLDRINI-FRANÇA 

et al., 2010). Atualmente, esta espécie ocorre em formações sazonalmente secas desde o 

México até o norte da Argentina, mas não são encontradas nas florestas tropicais da 

América Central e na floresta Amazônica (FILHO et al., 2001; WÜSTER et al., 2005).  

No Brasil, Crotalus durissus está representada por seis subespécies: C. d. terrificus 

(região Sul e Sudeste), C. d. dryinas (Amapá), C. d. collilineatus (zonas secas da região 

Centro-oeste, Minas Gerais e São Paulo), C. d. cascavella (áreas da caatinga do 

Nordeste), C. d. ruruima (região Norte) e C. d. marajoensis (ilha de Marajó) (Figura 1) 

(JORGE & RIBEIRO, 1990; COSTA & BÉRNILS, 2014; LIRA-DA-SILVA et al., 

2009).  

Figura 1. Distribuição das supespécies de Crotalus durissus no Brasil. 

            

 

 

 

 

 

Fonte: UETZ et al. (2016). 
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Esses animais, juntamente com serpentes dos gêneros Bothrops, Lachesis e Micrurus 

são considerados de grande importância médica, devido ao grande número de 

envenenamentos: 437.365 acidentes ofídicos no Brasil durante o período de 2013 a 2015. 

Dentre os casos identificados durante este período, as cascavéis foram responsáveis por 

aproximadamente 9% dos casos. Todavia, apesar de causarem o segundo maior número 

de acidentes, as cascavéis são as responsáveis por causar o maior número de casos letais, 

com um índice de letalidade duas vezes maior do que àquele encontrado para as jararacas 

(DA SILVA et al., 2015; MINISTÉRIO DA SAÚDE/SINAN, 2015).  

Devido aos graves efeitos toxicológicos causados pela peçonha desta serpente, ao 

número de acidentes, e o fato de que Crotalus durissus cascavella (Figura 2) é endêmica 

da região Nordeste, estudar as toxinas que compõem sua peçonha torna-se muito 

importante.  

     Figura 2. Crotalus durissus cascavella. 

 

 

 

 

 

 

 

                 Foto: Miva Filho. 
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1.1 COMPOSIÇÃO DA PEÇONHA DE CASCAVÉIS 

As peçonhas de serpentes são misturas complexas de substâncias ativas que são 

designadas para agir em alvos específicos da presa ou vítima (Figura 3) (DA SILVA et 

al., 2015; ALMEIDA et al., 2016). A peçonha das cascaveis é constituída por 

componentes orgânicos e inorgânicos. Dentre os componentes inorgânicos encontram-se 

o cálcio, ferro, zinco, manganês, potássio e cobre (CALVETE et al., 2007). Os 

componentes orgânicos consistem em proteínas, na sua maioria, que podem ser 

classificados em enzimáticos e não enzimáticos, além de pequenos peptídeos (CALVETE 

et al., 2009; GUTIÉRREZ et al., 2009). 

Figura 3. Componentes encontrados na peçonha de serpentes. 

Adaptado de SILVA CUNHA (2010). 

Cerca de 90% do peso seco da peçonha das cascavéis é composto por proteínas que 

são responsáveis por interferir em diversos sistemas fisiológicos da presa (SERRANO et 

al., 2005; SOUSA et al., 2001). As principais toxinas encontradas na peçonha da serpente 

Crotalus durissus pertencem às famílias: fosfolipases A2 (fosfolipases monoméricas e 
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crotoxina), serinoproteases (giroxina), lectinas (convulxina, crotacetina), metaloproteases 

da classe PIII (PIII-SVMP) e miotoxinas de baixo peso molecular (crotamina) 

(BOLDRINI-FRANÇA et al., 2010; CUNHA & MARTINS, 2012; OGUIURA et al, 

2005; YONAMINE, 2013; RÁDIS-BAPTISTA et al., 2006; TOYAMA et al., 2006; 

GEORGIEVA et al., 2010). 

A crotoxina é a enzima mais abundante da peçonha de Crotalus durissus, e consiste 

em um complexo heterodimérico formado por uma proteína ácida, não tóxica, 

denominada crotapotina ou crotoxina A, e uma molécula básica, pouco tóxica e com 

atividade fosfolipásica denominada crotoxina B (DOS-SANTOS, 2014; BEGHINI et al., 

2000). Esta enzima é a principal responsável pelas ações da peçonha das cascavéis 

encontradas no Brasil. A crotoxina é capaz de induzir danos sistêmicos e seletivos em 

músculos esqueléticos (SALVINI et al., 2001). Além da ação miotóxica, essa enzima 

interfere na transmissão neuromuscular através do bloqueio da despolarização induzida 

por agonistas (BON et al., 1979). Esse bloqueio é realizado pela subunidade básica, a 

fosfolipase A2, e sua ação é potencializada pela subunidade ácida, a crotapotina, que 

previne a ligação inespecífica da PLA2 com sítios de baixa afinidade (DOS-SANTOS, 

2014; BON et al., 1979).  

As giroxinas são serinoproteases termolábeis, que tem ação tipo trombina, pois são 

capazes de converter o fibrinogênio em fibrina (YONAMINE, 2013). Além de sua ação 

fibrinolítica, essas toxinas são vasodilatadoras e neurotóxicas, e também apresentam uma 

ação característica, conhecida como rotação tambor, em que camundongos envenenados 

tem comportamento de fazer rotações no próprio eixo longitudinal (ALVES-DA-SILVA 

et al, 2011). 

Convulxina e crotacetina são lectinas do tipo C-símile, ou seja, moléculas não 

enzimáticas, dependentes de Ca2+ e que possuem alta afinidade por carboidratos (KINI, 

2006; RÁDIS-BAPTISTA et al., 2006; LU et al., 2005). A convulxina é uma molécula 

heterodimérica capaz de ativar e agregar plaquetas (RÁDIS-BAPTISTA et al., 2006). A 

crotacetina, além de possuir ação pró-agregante plaquetária, também é capaz de inibir o 

crescimento de bactérias gram-negativas e gram-positivas (RÁDIS-BAPTISTA et al., 

2005). 
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As L-amino ácido oxidases são flavoenzimas encontradas nos mais diversos 

organismos vivos, e nas serpentes, são as responsáveis pela cor amarelada característica 

de algumas peçonhas (SOUZA et al., 2007). Estas enzimas são encontradas em forma de 

dímeros e possuem ação agregante plaquetária e antibacteriana (TOYAMA et al., 2006). 

As toxinas CRISP são proteínas secretórias ricas em cisteínas que também estão 

presentes na peçonha de C. d. cascavella em uma pequena proporção (cerca de 1% das 

proteínas totais da peçonha) (BOLDRINI-FRANÇA et al., 2010). 

As toxinas conhecidas como PIII-SVMPs são metaloproteases da classe III, ou seja, 

são hidrolases de alto peso molecular que necessitam de um metal para realizar sua 

atividade enzimática (CUNHA & MARTINS, 2012) e possuem ação sobre a hemostasia, 

atuando como fator hemorrágico (COMINETTI et al., 2007). Essas toxinas foram 

recentemente encontradas na peçonha de C. d. terrificus e C. d. cascavella em uma 

concentração menor do que 1% das proteínas totais (BOLDRINI-FRANÇA et al., 2010).  

As svVEGF, mais conhecidas como fator de crescimento vascular endotelial, são 

peptídeos que aumentam a permeabilidade dos vasos sanguíneos, e também atuam na 

estimulação para o surgimento de novos vasos (GEORGIEVA et al., 2010).  

As desintegrinas são comumente encontradas na peçonha de serpentes da família 

Viperidae, e são caracterizadas como peptídeos de baixo peso molecular que se ligam à 

integrinas (CUNHA & MARTINS, 2012). Estas toxinas são os inibidores de agregação 

plaquetária mais bem estudados, e representam menos de 1% da peçonha da subespécie 

Crotalus durissus cascavella (KINI, 2011; BOLDRINI-FRANÇA et al., 2010).  

Na peçonha de algumas subespécies de cascavel do Brasil, podem-se encontrar 

moléculas conhecidas como crotaminas. Essas toxinas são peptídeos pertencentes à 

família das miotoxinas básicas e apresentam baixo peso molecular (4880 Da), formadas 

por uma cadeia constituída por 42 resíduos de aminoácidos (CUNHA & MARTINS, 

2012; OGUIURA et al, 2005; PEIGNEUR et., 2012). Essas miotoxinas causam 

mionecrose das fibras musculares, causando paralisia nos músculos através da 

despolarização do potencial da membrana das células musculares (CUNHA & 

MARTINS, 2012). 
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 Por fim, as toxinas conhecidas como 3-finger toxins (3FTx) são neurotoxinas bem 

caracterizadas da peçonha de serpentes as quais apresentam uma estrutura proteica 

altamente conservada, as quais consistem em três loops que se assemelham a dedos, que 

se extendem de um núcleo central compacto (TSETLIN, 1999). Essas toxinas exibem 

além de neurotoxicidade, efeitos farmacológicos como inibição enzimática, 

cardiotoxicidade, anticoagulação e citotoxicidade (KINI & DOLEY, 2010). 

     Ao longo da dispersão e diversificação desses animais da América Central em 

direção à América do Sul houve uma tendência pedomórfica e um traço adaptativo na 

composição da peçonha dos mesmos (WÜSTER et al., 2002; CALVETE et al., 2010). As 

populações de cascavéis encontrada na América do Norte e América Central possuem 

diferença na composição das toxinas entre adultos e neonatos (CALVETE et al., 2010; 

LOMONTE et al., 1983). A peçonha dos adultos de cascavéis norte americanas apresenta 

alta atividade hemorrágica, edematogênica e proteolítica (GUTIÉRREZ et al., 1991; 

SARAVIA et al., 2002), enquanto a dos filhotes apresenta alta atividade neurotóxica, que 

está associada basicamente à presença de crotoxina (KINI, 1997). A população da 

América do Sul apresenta toxinas que causam, principalmente, efeitos neurotóxicos, 

miotóxicos (atribuído à presença de crotamina) e coagulantes (OGUIURA et al., 2005; 

AZEVEDO-MARQUES et al., 2003). Mackessy (2008) classificou a peçonha das 

espécies de Crotalus em dois grupos, um pertencente às cascavéis encontradas ao norte 

do continente e que possuem altos níveis de metaloproteases e baixa toxicidade, e o outro 

pertencente às encontradas ao sul, incluindo o Brasil, que é altamente tóxica e não 

apresenta metaloproteases. 

Além disso, a espécie Crotalus durissus também possui diferença na composição das 

toxinas de sua peçonha nas diferentes subespécies encontradas no Brasil, de acordo com 

sua distribuição geográfica (BOLDRINI-FRANÇA et al., 2010).  Esta diferença está 

relacionada com uma tendência no aumento das concentrações de crotoxina e crotamina 

ao longo do eixo norte-sul do país, coincidindo com a rota de dispersão do gênero 

Crotalus no país (CALVETE et al., 2010). As subespécies encontradas mais ao norte, 

como por exemplo, a subespécie Crotalus durissus cascavella, possuem uma maior 

concentração das fosfolipases ácidas D49, ao mesmo tempo em que há uma diminuição 

da expressão da crotoxina e crotamina em comparação com as subespécies mais ao sul 
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(BOLDRINI-FRANÇA et al., 2010). As fosfolipases ácidas D49 podem chegar a 

representar 18% da composição da peçonha de Crotalus durissus cascavella, não sendo 

observadas nas outras subespécies de cascavéis do Brasil (BOLDRINI-FRANÇA et al., 

2010). 

1.2 FOSFOLIPASES A2 

As fosfolipases são enzimas lipolíticas, classificadas de acordo com o sítio de 

hidrólise, em cinco grupos: PLA1, PLA2, PLB, PLC e PLD (Figura 4) (DENNIS, 1994). 

As PLA1 são enzimas que catalisam a hidrólise na posição sn-1 e são encontradas em 

diferentes organismos e tecidos (GATT, 1968; SHILOAH et al., 1973). As PLA2s clivam 

lisofosfolipídeos na posição sn-2 (KUDO, 2004). As fosfolipases B (PLB), também 

chamadas de lisofosfolipases, são enzimas capazes de clivar as ligações sn-1 e sn-2, 

simultaneamente (VAN DEN BOSCH et al., 1968). As fosfolipases C (PLC) são 

fosfodiesterases com importante ação na sinalização celular em mamíferos (REBECCHI 

& PENTYALA, 2000; HARDEN & SONDEK, 2006). Por fim, as fosfolipases D (PLD) 

que hidrolisam glicerofosfolipídeos e também catalisam reações de trasfosfatidilação 

(ULBRICH-HOFMANN et al., 2005). 

As fosfolipases A2 (PLA2) são enzimas intra e extracelulares amplamente distribuídas 

na natureza e constituindo secreções pancreáticas, exudatos inflamatórios e peçonhas de 

artrópodes, abelhas, cnidários e serpentes (Heo et al., 2016; Silveira et al. 2012; 

VALENTIN & LAMBEAU, 2000). Além de serem responsáveis pelo quadro de 

envenenamento causado por diversos animais, as PLA2s representam o principal 

componente da peçonha de serpentes da família Viperidae (SILVEIRA et al., 2012). 

As PLA2 são enzimas estruturalmente relacionadas, cálcio dependentes, e como já 

mencionado, catalisam a hidrólise de fosfolipídeos na posição sn-2, liberando ácidos 

graxos biologicamente ativos e lisofosfolipídeos (DENNIS, 1994). Um dos ácidos graxos 

liberados por essa reação, denominado ácido araquidônico, além de ser conhecido como 

substrato para a biossíntese de mediadores lipídicos da inflamação (e.g. prostaglandinas, 

tromboxanos e leucotrienos), é o precursor de eicosanoides, os quais podem mediar à 

resposta inflamatória e induzir edema (DENEGRI et al., 2010). 
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Figura 4. Sítio de hidrólise das fosfolipases. X: álcool polar como colina, serina, 

etanolamina, mio-inositol, glicerol e fosfatidilglicerol. R1 e R2: cadeias hidrocarbônicas 

de ácidos graxos. Adaptado de KINI (1997).  

 

 

 

 

 

 

 

 

Fonte: ARAÚJO (2014).  

Nas últimas duas décadas, as fosfolipases receberam diferentes classificações de 

acordo com suas origens, funções, massa molecular e resíduos catalíticos (ver revisão em 

DENNIS et al., 2011). A superfamília das fosfolipases pode ser dividida em fosfolipases 

secretórias (s-PLA2), citosólicas (c-PLA2), independentes de cálcio (i-PLA2), lisossomais 

(Lp-PLA2), PAF-AH e adiposa (Ad-PLA2), as quais distribuem-se em 15 grupos (GI a 

GXV) e seis subgrupos (A, B, C, D, E, F e suas variáveis) (Tabela 1) (DENNIS et al., 

2011). 
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Tabela 1. Superfamília das fosfolipases A2.  

Tipo Grupo Subgrupo 

Massa 

molecular 

(kDa) 

Resíduo catalítico 

sPLA2 

GI A,B 13-15 

His/Asp 

GII A,B,C,D,E,F 13-17 

GIII  15-18 

GV  14 

GIX  14 

GX  14 

GXI A,B 12-13 

GXII A,B 19 

GXIII  <10 

GXVI  13-19 

cPLA2 GIV 
A(α), B(β), C(γ), 

D(δ), E(ε), F(ζ) 
60-114 Ser/Asp 

iPLA2 GVI 
A(β), B(γ), C(δ), 

D(ε), E(ζ), F(η) 
84-90 Ser/Asp 

PAF-AH 
GVII 

A(Lp-PLA2), 

B(PAF-AH II) 
40-45 

Ser/His/Asp 

GVIII A(α1), B(α2), β 26-40 

LpPLA2 GXVI  45 Ser/His/Asp 

AdPLA2 GXVI  18 His/Cys 

Fonte: DENNIS et al. (2011).  

 

Os grupos I e II das PLA2 secretórias são encontrados na peçonha de serpentes, 

compreendendo proteínas estáveis, versáteis, relativamente pequenas (~13-17 kDa), 

dependentes de cálcio e ricas em pontes dissulfeto (SCHALOSKE & DENNIS, 2006). 

As sPLA2s do grupo I foram isoladas do pâncreas de mamíferos e da peçonha de serpentes 

das famílias Hydrophiidae (serpentes marinhas) e Elapidae (corais verdadeiras, najas e 

mambas), enquanto as sPLA2 II são encontradas na peçonha de serpentes da família 

Viperidae (jararacas, surucucus e cascavéis) (SOARES et al., 2003; MARCUSSI et al., 

2007). A atividade catalítica dessas enzimas sobre membranas celulares de tecidos 

específicos sugere um importante papel na toxicidade da peçonha, constatando assim a 

multifuncionalidade dessas proteínas e seu grande potencial para aplicações 

biotecnológicas na área médica, bem como sua excelência como modelos para o estudo 

de diferentes mecanismos de ação intra ou extracelular (SILVEIRA et al., 2012).  
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Apesar de compartilharem grande identidade e aparente simplicidade molecular, estas 

enzimas, de um modo geral, induzem, nas mais diferentes intensidades, uma grande 

variedade de efeitos farmacológicos: neurotoxicidade (KINI, 2003), citotoxicidade 

(CASTILLO et al., 2012), formação de edema (KINI, 2006), atividade bactericida 

(MENSCHIKOWSKI et al., 2006), miotoxicidade (GUTIÉRREZ & LOMONTE, 2003), 

convulsão (FULY et al., 2004),  hipotensão (KINI, 2003a), inibição ou indução de 

agregação plaquetária (LOSCALZO, 2001; TEIXEIRA et al., 2011; KINI & EVANS, 

1995) e inibição da coagulação (VALENTÍN & LAMBEAU, 2000). 

Portanto, as PLA2s da peçonha dos viperídeos estão classificadas como do tipo 

secretória, grupo II e subgrupo A (sPLA2 - IIA) (DENNIS et al., 2011). As enzimas deste 

subgrupo podem ainda ser separadas em dois subgrupos: as enzimaticamente ativas que 

possuem um resíduo de aspartato na posição 49 (Asp49 PLA2, mais comuns) ou uma 

serina (Ser49); e as que possuem baixa ou nenhuma atividade catalítica por possuírem a 

substituição desses resíduos na posição 49 por lisina (Lys49), arginina (Arg49), glicina 

(Gly 49), glutamina (Gln49), alanina (Ala49) ou asparagina (Asn49) (LOMONTE et al., 

2003; TEIXEIRA et al., 2011; SILVEIRA et al., 2012; WEI et al., 2006). 

As fosfolipases A2 da peçonha de serpentes podem exibir pontos isoelétricos (pI) 

distintos, tanto ácidos, neutros, quanto básicos (VARGAS et al., 2012). Diversas 

isoformas podem estar presentes na peçonha de uma mesma espécie (SAIKIA et al., 

2012).  

Curiosamente, todas as PLA2s ácidas que foram caracterizadas apresentam um 

resíduo Asp na posição 49 e não induzem efeitos tóxicos significativos quando 

comparados com às homólogas básicas (FERNANDÉZ et al., 2010; VARGAS et al., 

2012). Isto porque etapas adicionais, envolvidas no reconhecimento e interação interfacial 

com os alvos biológicos, são necessárias para o desenvolvimento da toxicidade dessas 

enzimas (JIMENEZ-CHARRIS et al., 2016).  

Devido a grande concentração das  isoformas ácidas na peçonha de determinadas 

serpentes e ao alto custo energético para expressá-las, alguns autores sugerem três 

possíveis explicações. A primeira envolve o fato de que algumas PLA2 ácidas podem 

atuar sinergisticamente com as PLA2 básicas, ou até mesmo com outros componentes da 
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peçonha, como metaloproteases e citotoxinas, potencializando os efeitos toxicológicos 

destas moléculas (MORA-OBANDO et al., 2014b; BUSTILLO et al., 2014; JIMENEZ-

CHARRIS et al., 2016; RESENDE et al., 2017). A segunda inclui as fosfolipases A2 

ácidas como enzimas que atuam na digestão da presa desses animais (FERNANDÉZ et 

al., 2010). Por último, outros autores defendem a hipótese de que estas isoformas possuem 

ações tóxicas que ainda não foram exploradas (FERNANDÉZ et al., 2010). 

1.3 HEMOSTASIA 

A circulação sanguínea desempenha um papel muito importante na vida dos 

vertebrados, pois é através dela que ocorre o fornecimento de oxigênio e nutrientes para 

os tecidos, além da remoção do dióxido de carbono (CO2) e produtos residuais. Ademais, 

a circulação é responsável pelo transporte de células imunes e exerce papel vital para a 

defesa do organismo contra patógenos (KINI, 2011). Este sistema é regulado 

rigorosamente visando prevenir e sanar injúrias (VERRASTRO, 2006). 

Hemostasia é o mecanismo fisiológico responsável por manter o sangue fluido. Este 

mecanismo evoluiu para reagir à um ferimento, com o objetivo de interromper a perda de 

sangue por meio do fechamento da lesão na parede do vaso, prevenindo uma hemorragia 

(BERGER et al., 2014; ERHARDTSEN, 2002). O sistema hemostático envolve diversos 

fatores (vasculares, plaquetários, coagulantes, anticoagulantes, fibrinolíticos, pressão e 

fluxo sanguíneo) e três etapas principais: (1) a vasoconstrição, que é o processo de 

contração dos vasos com objetivo de diminuir seu diâmetro para evitar a perda de sangue; 

(2) a agregação plaquetária, responsável por formar o primeiro tampão no local da ferida; 

e (3) a coagulação sanguínea, encarregada de formar o coágulo de fibrina através da 

ativação de vários fatores do plasma, gerando o coágulo final e interrompendo o 

sangramento (BERGUER et al., 2014; VERRASTRO, 2006).  

A agregação plaquetária se inicia com a lesão ao tecido vascular e consiste em três 

fases principais (CASTRO et al., 2006). Quando a camada subendotelial de um vaso é 

lesada os componentes da matriz são expostos, fazendo com que plaquetas sejam 

recrutadas para o local da ferida. A primeira fase consiste na adesão plaquetária, na qual 

receptores da membrana da plaqueta, GpIb/IX/V e GpVI se ligam, respectivamente, aos 

componentes subendoteliais, fator von Willebrand (FvW) e colágeno, fazendo com que 



27 

 

 

elas fiquem aderidas ao local da lesão (HEEMSKERK et al., 2005; ROBERTS et al., 

2004; CASTRO et al., 2006; CLEMETSON, 1997). Além disso, as plaquetas também 

mudam sua estrutura conformacional, deixando de ser discóides e passando a apresentar 

pseudópodes (ALLEN et al., 1979; ANDREWS & BERNDT, 2004). Com isto, as 

plaquetas liberam alguns fatores, como ADP e adrenalina que, juntamente com outros já 

presentes no plasma como, por exemplo, a trombina, aumentam a adesão e ativação das 

mesmas, expondo seus receptores e sítios de ligação. Estas plaquetas, agora ativadas, 

continuam liberando fatores no plasma, ativando novos receptores e recrutando novas 

plaquetas, as quais se ligam entre si firmemente, caracterizando assim, a segunda fase, a 

agregação propriamente dita (CASTRO et al., 2006; VERRASTRO, 2006, BRASS, 

2010). Na referida fase, o receptor de membrana plaquetária mais abundante, conhecido 

como integrina αIIbβ3 (ou GpIIb/IIIa), atrai moléculas de fibrinogênio para, além de 

serem os responsáveis pela conexão entre as plaquetas, compor o tampão plaquetário em 

formação, dando-lhe maior consistência (BANNO & GINSBERG, 2008; KASIRER-

FRIEDE et al., 2004). A terceira fase, denominada secreção, ocorre quando as plaquetas 

liberam tromboxana A2 (formada a partir da lise do ácido araquidônico presente na 

membrana das plaquetas através da enzina cicloxigenase), bem como ADP e serotonina, 

fatores pró-agregantes responsáveis pelo recrutamento e agregação de novas plaquetas 

(VERRASTRO, 2006; CASTRO et al., 2006; FLAUMENHAFT, 2003). Embora 

separadas para fins didáticos, as três fases da agregação plaquetária ocorrem de maneira 

concomitante (Figura 5).    
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Figura 5. Fases e fatores da agregação plaquetária. Após se ligarem aos fatores 

presentes na matriz subendotelial, as plaquetas mudam sua estrutura discoide, passando 

a apresentar pseudópodos. O fenômeno de agregação envolve três etapas: adesão 

(deposição das plaquetas na matriz exposta), agregação (se ligam firmemente umas às 

outras através do fibrinogênio) e secreção (liberação de moléculas dos grânulos 

plaquetário). ADP = difosfato de adenosina; Gp = glicoproteína; PDGF = fator de 

crescimento derivado de plaqueta; TSP = trombospondina; FvW = fator de von 

Willebrand. 

Adaptado de LEUNG (2012). 

Paralelamente ao processo de agregação plaquetária, ocorre a coagulação sanguínea, 

tendo o coágulo de fibrina como produto final. Durante muitos anos o modelo proposto 

por Macfarlane e Davie & Ratnoff (1946) e conhecido como cascata da coagulação foi 

utilizado. Nesse modelo ocorre a ativação seriada de zimógenos (enzimas precursoras) 

em proteases, também conhecidos como fatores de coagulação, resultando na conversão 

do fibrinogênio (proteína solúvel) em fibrina (polímero insolúvel) pela ação da trombina 

(FRANCO, 2001). 
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 Atualmente, um novo modelo é reconhecido, baseado em superfícies celulares e, 

que ao contrário do modelo inicial, onde duas vias (extrínseca e intrínseca) que 

culminavam em uma via comum, é caracterizado por uma série de estágios ou fases que 

consideram a interrelação de processos celulares, bioquímicos e físicos. As etapas que 

descrevem esse novo modelo são: iniciação, amplificação, propagação e finalização 

(FERREIRA et al., 2010; VINE, 2009) (Figura 6). 

 Figura 6. Novo modelo de coagulação sanguínea baseado em superfícies celulares, 

demonstrando as fases de iniciação, amplificação e propagação. Fator tecidual (FT), 

ativado (a). 

Adaptado de VINE (2009). 

A fase da iniciação ocorre nas células que expressam o fator tecidual (FT), onde 

o mesmo é exposto aos componentes do sangue no local da lesão. O FT interage com 

FVII, ativando-o e formando o complexo FVIIa/FT, responsável pela ativação de outros 

fatores (HOFFMAN, 2003; FERREIRA et al., 2010). Na fase da amplificação, pequenas 

quantidades de trombina, sintetizadas pelas células que expressam FT, interagem com as 

plaquetas, fazendo com que as mesmas exponham seus receptores e sítios de ligação 
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(HOFFMAN & MONROE, 2001). Com isso, as plaquetas têm a permeabilidade de sua 

membrana alterada, resultando na entrada e saída de moléculas que atraem fatores de 

coagulação (PÉREZ-GÓMEZ & BOVER, 2007). A trombina também ativa os co-fatores 

FV e FVIII que irão mediar a adesão e agregação plaquetária, além da ativação do FXI 

na superfície das plaquetas (FERREIRA et al., 2010; HOFFMAN, 2003; VINE, 2009). 

Durante a etapa da propagação há uma grande síntese de trombina, formação do tampão 

plaquetário pelo recrutamento de plaquetas e produção dos complexos tenase e 

protrombinase na superfície dessas plaquetas ativadas (MONROE & HOFFMAN, 2006). 

Com o complexo protrombinase ativado uma grande quantidade de protrombina é 

convertida em trombina gerando a quebra do fibrinogênio em fibrina, que resultará no 

coágulo sobre a área lesada (RIDDEL et al., 2007). Na última etapa, a finalização, ocorre 

a ativação de anticoagulantes naturais a fim de evitar que o coágulo não obstrua o vaso 

de forma trombótica (FERREIRA et al., 2010). 

O tempo de tromboplastina parcial ativado (TTPa), o tempo de protrombina (TP) e o 

tempo de trombina (TT) são ensaios realizados para analisar diferentes etapas da 

coagulação (HOFFMAN, 2003; LEUNG, 2012). Esses métodos visam avaliar as vias 

extrínseca e comum através do TP, intrínseca e comum, por meio do TTPa, e a via comum 

através do TT. Com o novo modelo de coagulação, o TP passa a avaliar os níveis de 

fatores procoagulantes que estão envolvidos na etapa da iniciação da coagulação, 

enquanto o TTPa analisa os níveis de fatores procoagulantes envolvidos na fase de 

propagação (FERREIRA et al., 2010; MONROE & HOFFMAN, 2006). Por outro lado, 

o TT avalia as irregularidades na conversão do fibrinogênio em fibrina na fase de 

propagação (Figura 7) (LEUNG, 2012; JESPERSEN & SIDELMAN, 1982).  
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Figura 7. Fatores plasmáticos envolvidos nas vias da coagulação e e seus métodos de 

avaliação. Tempo de tromboplastina parcial ativada (TTPa), Tempo de Protrombina 

(TP), Tempo de Trombina (TT).  

 

 

 

 

 

 

 

 

 

 

1.4.1 Ação das PLA2s na hemostasia 

Muitas proteínas presentes na peçonha das serpentes tem ação sobre a hemostasia, 

visando à imobilização e morte das presas (KINI, 2011).  Em razão do papel fundamental 

que as plaquetas exercem para o equilíbrio deste sistema, as mesmas representam um alvo 

para as enzimas encontradas nessas peçonhas (SAIKIA et al., 2012; FULY et al., 2004). 

Tanto a alteração na agregação plaquetária quanto na coagulação sanguínea são efeitos 

característicos das toxinas presentes na peçonha das serpentes pertencentes à família 

Viperidae (OSIPOV et al., 2010). Os efeitos famacológicos que afetam esses sistemas 

podem ser produzidos por proteínas de diversas famílias, como por exemplo: 

metaloproteases (FOX & SERRANO, 2005), serinoproteases (SERRANO & MAROUN, 

2005), fosfolipases A2 (KINI, 2005), ADPases, L-amino ácido oxidases (KINI, 2011), 

Etapa de Iniciação Etapa de Propagação 

Etapa de Propagação – 
conversão Fibrinogênio em 

fibrina 



32 

 

 

lectinas (MORITA, 2005), desintegrinas (GAN et al., 1988), e toxinas tipo 3 dedos 

(3FTxs) (KINI & DOLEY, 2010).  

As PLA2s de serpentes foram classificadas em três grupos distintos de acordo com 

sua atuação na agregação plaquetária. O primeiro grupo inclui as PLA2s que induzem a 

agregação, o segundo grupo é formado por PLA2s que inibem a agregação induzida por 

diferentes agonistas e o terceiro grupo inclui aquelas PLA2s que possuem efeito bifásico, 

ou seja, em certas doses inibem a agregação, e em outras doses são capazes de agregar 

plaquetas (ANDREWS & BERNDT, 2000; KINI & EVANS, 1990). Teixeira e 

colaboradores (2011) sugerem que o efeito dessas enzimas sobre as plaquetas podem 

ocorrer devido à intervenção direta ao sítio catalítico, através da região C-terminal destas 

PLA2. 

Além de atuarem na agregação plaquetária, as fosfolipases A2 tem sido 

consideradas as principais responsáveis pelos efeitos anticoagulantes de grande parte das  

peçonhas, atuando em diferentes fases da coagulação (Figura 8) (DENEGRI et al., 2010; 

KINI, 2005). Estas enzimas podem ser classificadas em três classes em relação ao seu 

efeito na coagulação: aquelas fortemente anticoagulantes, que inibem a coagulação 

sanguínea em concentrações da enzima menores do que 2 µg/ml; as fracamente 

anticoagulantes, que apresentam efeitos entre 3 e 10 µg/ml ; e as que são pró coagulantes 

(KINI, 2006; BOFFA & BOFFA, 1976). Essa classe de proteínas pode apresentar 

diversas isoformas que diferem na habilidade de afetar a coagulação, podendo interferir 

na fase da iniciação (fracamente anticoagulantes) ou em ambas fases, da iniciação e no 

complexo protrombinase (fortemente anticoagulantes) (KINI, 2005).  

Devido a presença de fosfolipídeos na superfície dos complexos da coagulação, 

diversos pesquisadores acreditaram por muito tempo que o papel das PLA2 na coagulação 

envolvia a hidrólise e destruição física desses fosfolipídeos (KINI, 2005; KINI, 2011).  

Contudo, alguns experimentos sugerem que além da hidrólise, essencial para os efeitos 

anticoagulantes exibidos por essas enzimas, a ligação dessas enzimas a alguns fatores da 

coagulação, como por exemplo, fator Xa e trombina podem ser essenciais para essa 

atividade (KINI, 2006; KINI, 2005; SHARMA et al., 2016).  
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Figura 8. Fosfolipases A2 da peçonha de serpentes que interferem na coagulação. 

PLA2 que interferem através da proteólise de fatores específicos (flecha espessa), outras 

PLA2 interferem através de ligação (linha tracejada). 

Adaptado de KINI (2011). 
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2 OBJETIVOS 

2.1 OBJETIVO GERAL 

Purificar e caracterizar fofolipases A2 ácidas da peçonha de Crotalus durissus 

cascavella.  

2.2  OBJETIVOS ESPECÍFICOS 

1. Purificar fosfolipases A2 ácidas da peçonha de C. d. cascavella.  

2. Caracterizar a estrutura das fosfolipases isoladas.  

3. Caracterizar as atividades biológicas das fosfolipases isoladas. 
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3 ISOLAMENTO E CARACTERIZAÇÃO ESTRUTURAL E 

BIOLÓGICA DE FOSFOLIPASES ÁCIDAS DA PEÇONHA DE 

CASCAVEL (Crotalus durissus cascavella) 

 

 

 

 

 

 

(Manuscrito a ser submetido para publicação no  

periódico Biochemical Pharmacology) 
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3.1 INTRODUÇÃO 

 

Crotalus durissus (Família Viperidae), única espécie de cascavel encontrada no 

Brasil (WÜSTER et al., 2005), possui grande importância médica por apresentar a maior 

letalidade dentre as serpentes peçonhentas do país (MINISTÉRIO DA SAÚDE/SINAN, 

2013). A espécie subdivide-se em sete subespécies dependendo da região geográfica do 

país (UETZ & HOŠEK, 2015), que possuem diferenças na composição das toxinas da sua 

peçonha (CALVETE et al., 2010). A peçonha das cascavéis das espécies C. d. 

collilineatus e C. d. terrificus (encontradas na região Sul do país) possui altos níveis de 

crotoxina e crotamina, mas baixos níveis de fosfolipases A2 ácidas, 4,6% e 2,1% 

respectivamente (BOLDRINI-FRANÇA et al., 2010). Por outro lado, a peçonha da única 

subespécie de cascavel localizada no nordeste do Brasil (C. d. cascavella) é caracterizada 

pela ausência de crotamina (SANTORO et al., 1999) e por apresentar alta concentração 

de fosfolipases A2 ácidas (18%) (GEORGIEVA et al., 2010; BOLDRINI-FRANÇA et 

al., 2010). 

Fosfolipases A2 (PLA2s; E.C.3.1.1.4) são enzimas que catalisam a hidrólise de 

glicerofosfolipídeos de membrana na posição sn-2, liberando ácido araquidônico, ácidos 

graxos e lisofosfolipídeos (KINI, 2003; OLIVEIRA et al., 2008; VIJA et al., 2009; 

ROMERO-VARGAS et al., 2010; MUKHERJEE, 2014; GIMENES et al., 2014). Estas 

enzimas podem ser classificadas em cinco principais grupos, de acordo com o número de 

pontes dissulfeto, massa molecular e sequência de aminoácidos (BAO et al., 2005; 

SCHALOSKE & DENNIS, 2006; BURKE & DENNIS, 2008). As PLA2s encontradas na 

peçonha de cascavéis pertencentem ao subgrupo IIA (SIX & DENNIS, 2000; DE PAULA 

et al., 2009) e apresentam uma grande variedade de efeitos farmacológicos, como 

neurotoxicidade, miotoxicidade, cardiotoxicidade, além de efeitos sobre o sistema 

hemostático (MAGRO et al., 2004; SCHALOSKE & DENNIS, 2006, TEIXEIRA et al., 

2011; TSAI et al., 2012). Devido a essa multiplicidade de atividade, as PLA2 

desempenham um papel muito importante na fisiopatologia do envenenamento. 

As PLA2s da peçonha de cascavéis são caracterizadas por apresentarem 120-125 

resíduos de aminoácidos, sete pontes dissulfeto e massa molecular que varia entre 13 a 

15 kDa (DENNIS et al., 2011; KINI, 1997). Essas enzimas podem ser subdivididas de 
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acordo com o resíduo encontrado na posição 49 em D49 PLA2 que são cataliticamente 

ativas, e as que possuem baixa ou nenhuma atividade catalítica por possuírem a 

substituição desse resíduo por K, R, Q, A ou N (LOMONTE et al., 2003; TEIXEIRA et 

al., 2011; SILVEIRA et al., 2012; WEI et al., 2006).  

As PLA2 também podem ser classificadas de acordo com sua carga líquida, podendo 

ser ácidas (carga negativa), neutras ou básicas (carga positiva) (ANDRIÃO-ESCARSO 

et al., 2002; JAYANTHI & GOWDA, 1988). As PLA2s ácidas possuem alta atividade 

catalítica e menos letais em camundongos quando comparadas às básicas (ANDRIÃO-

ESCARSO et al., 2002; FERNANDÉZ et al., 2010; DENEGRI et al., 2010). Apesar disto, 

as PLA2s ácidas podem induzir efeitos significativos como hipotensão, inibição da 

agregação plaquetária, além de efeitos anti-tumorais e bactericidas (SERRANO et al., 

1999; FULY et al., 2002). 

As PLA2 presentes na peçonha das serpentes tem ação sobre a hemostasia, visando à 

imobilização e morte das presas (KINI, 2011). Essas enzimas atuam na agregação 

plaquetária, podendo ter efeitos indutores, inibidores ou aquelas que possuem efeito 

bifásico, ou seja, que podem induzir ou agregar a agregação das plaquetas dependendo da 

dose (ANDREWS & BERNDT, 2000). As PLA2s também podem causar efeitos na 

coagulação, sendo classificadas como pró ou anti-coagulantes, interferindo nas diversas 

fases da cascata de coagulação (KINI, 2005; KINI, 2006). 

A maior parte das toxinas da peçonha da cascavel brasileira já foi caracterizada, 

mas as PLA2s ácidas dessa espécie ainda permanecem desconhecidas, provavelmente 

devido baixa concentração (2%) de PLA2s ácidas na peçonha da subespécie mais estudada 

(C. d. terrificus) (BOLDRINI-FRANÇA et al., 2010; CUNHA & MARTINS, 2012; 

YONAMINE, 2013; MARLAS, 1982). Portanto, o presente trabalho pretende isolar as 

fosfolipases A2 ácidas da peçonha de C. d. cascavella em estado puro, caracterizar 

estrutura e atividade biológica das mesmas. 
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3.2 MATERIAL E MÉTODOS 

3.2.1 Peçonha e reagentes 

 Um pool de peçonha foi coletado, manualmente, de 45 serpentes da subespécie 

Crotalus durissus cascavella adultas, de ambos os sexos, mantidas no serpentário do 

Laboratório de Animais Peçonhentos e Toxinas da Universidade Federal de Pernambuco 

(Licença SISBIO Nº 2611.29885/2009-PE), através de compressão manual das glândulas 

de peçonha. O substrato NOB (4-nitro-3-ácido octanoil benzóico, BML-ST506) foi 

obtido pela Enzo Life Sciences. Todos os demais reagentes utilizados foram de maior 

pureza disponível comercialmente. 

3.2.2 Purificação 

3.2.2.1 Cdca-I-PLA2 e Cdca-II-PLA2 

Alíquotas de 40 mg (peso seco) da peçonha de C. d. cascavella liofilizada foram 

diluídas em tampão A (Tris-HCl 25 mM, pH 8,0) e submetidas à centrifugação (5000 

rpm, 10 minutos, 4°C). A peçonha foi aplicada em uma coluna Resource Q pré-

equilibrada com tampão A, em um fluxo de 5 ml/min.  As proteínas ligadas foram eluídas 

por gradiente de tampão B (Tris-HCl 25mM, pH 8,0, contendo NaCl 1M).  A principal 

fração eluída foi aplicada em coluna C18, previamente equilibrada com ácido 

trifluoroacético (TFA) 0,1% (tampão A). As corridas foram realizadas aplicando-se 5 a 

50 ml da amostra, sendo as frações eluídas em gradiente linear de 5-100% de ácido 

trifluoroacético 0,1% em acetonitrila 50% (tampão B), em fluxo 10 ml/min.  

Uma segunda fração proveniente da coluna Resource Q foi submetida a 

cromatografia em coluna Resource S pré-equilibrada com Tris-HCl 50 mM, pH 7,3, 

contendo uréia 6M (tampão A). A fração eluída antes do gradiente de tampão B (tampão 

A contendo NaCl 1M) foi submetida à coluna C18, previamente equilibrada com ácido 

trifluoroacético (TFA) 0,1% (tampão A). As corridas foram realizadas aplicando-se 5 a 

50 ml da amostra, sendo as frações eluídas em gradiente linear de 5-100% ácido 

trifluoroacético 0,1% em acetonitrila 60% (tampão B), em fluxo 10 ml/min.  

A dosagem de proteínas foi determinada pela densidade óptica em 280 nm. A 

massa molecular das PLA2s foi determinada por eletroforese em gel poliacrilamida (SDS-
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PAGE) e espectrometria de massa. A SDS-PAGE com e sem agente denaturante (2-

mercaptoetanol) foi realizada segundo a técnica descrita por Laemmli (1970). A massa 

molecular das PLA2s foi determinada por MALDI-TOF MS em um aparelho Voyager 

DE-PRO (Perseptive Biosytems, EUA). A matriz (3,5-dimethoxy-4-hydroxycinnamic 

acid) foi preparada na concentração de 7-10 mg/mL em acetonitrila 30% - TFA 0,3 %, 

sendo aplicada (0,5 μl) sobre a placa metálica de análise. Sobre a gota da matriz foram 

aplicadas as amostras (0,5 μl) e, após 5 min, a placa contendo os cristais amostra-matriz 

foi inserida no espectrômetro de massas e irradiada com feixes de laser de nitrogênio (337 

nm). A análise foi realizada no modo positivo linear, com calibração externa.  

3.2.3 Caracterização Bioquímica 

3.2.3.1 Determinação da atividade específica 

A atividade fosfolipásica A2 foi determinada segundo método de Lee et al. (1999) 

adaptado por Toyama et al. (2003) para placa de 96 poços. Para tanto, 220 μl de tampão 

(Tris-HCl 50 mM, CaCl2 10 mM, KCl 150 mM, pH 7,5), 20 μl de substrato (4-nitro-3-

ácido octanoil benzóico - NOB, BML-ST506, Enzo Life Sciences) diluído em acetonitrila 

e 20 μl de amostra (10 μg) foram incubados por 40 min a 37 ºC e a leitura a 425 nm foi 

realizada em intervalos de 10 min, em um espectrofotômetro Packard SpectraCount. A 

atividade específica foi expressa pela velocidade inicial da reação (Vo), baseada no 

aumento da densidade óptica após 40 minutos, obtida através da medida do número de 

moles de cromóforo liberados por minuto (Nº moles/min ou U) por miligrama de proteína. 

3.2.3.2 Efeito da temperatura e pH na atividade fosfolipásica 

Para avaliação da sensibilidade térmica, as PLA2s foram aquecidas por 30 minutos a 

25, 35, 45, 55, 65, 75, 85, e 95ºC e resfriadas em banho de gelo. Para análise da 

estabilidade a diferentes pHs, as fosfolipases foram diluídas em acetato/fosfato/borato 

(PBA) 10 mM, nos valores de pH 2,0; 4,0; 6,0; 8,0; 10 e 12. As amostras incubadas em 

diferentes temperaturas e pHs foram realizadas em duplicatas e submetidas a dosagem de 

atividade fosfolipásica segundo a metodologia descrita anteriormente. 
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3.2.3.3 Determinação da cinética enzimática 

Para determinação do Km e Vmax das PLA2s, a mesma metodologia descrita 

anteriormente foi realizada, utilizando 20 μl das fosfolipases (0,5 mg/ml) e diferentes 

concentrações do substrato NOB 0,125; 0,25; 0,5; 0,75; 1,0; 1,5; 2,0; 2,5 mM para a Cdca-

I-PLA2 e 0,06; 0,12; 0,24; 0,4; 0,5; 0,65; 0,08 e 1,0 mM para a Cdca-II-PLA2 para um 

volume final de reação de 260 μl. Os ensaios foram realizados em triplicata. O gráfico e 

os valores de Km e Vmax foram obtidos a partir da utilização do programa GraphPadPrism 

5.0.  

3.2.3.4 Determinação do conteúdo de carboidratos 

A concentração total de açúcar neutro em Cdca-I-PLA2 e Cdca-II-PLA2 (15 e 30 µM) 

foi mensurada utilizando o método do fenol-ácido sulfúrico em placa de 96 poços, de 

acordo com Masuko e colaboradores (2005), através de uma curva padrão de D (+) -

manose. Em cada poço foram adicionados 50 µl de manose (0-10 µg) ou 50 µl de cada 

fosfolipase (50 µg), 150 µl de ácido sulfúrico concentrado e 30 µl de fenol 5% (p/v) em 

água. A placa foi aquecida por cinco minutos a 90°C e resfriada a temperatura ambiente 

por cinco minutos. A leitura foi realizada a 490 nm em um leitor de microplaca Spectra 

Count™. 

3.2.3.5 Determinação da sequência de aminoácidos 

A sequência das PLA2s foi analisada por MALDI-TOF/MS (Matrix Assisted Laser 

Desorption Ionization – Time Of Flight/Mass Spectrometry). As PLA2 foram 

desnaturadas e reduzidas pela adição de 200 µL de tampão Tris-HCl 0,25 M, pH 8,5 

contendo guanidina-HCl 6,0 M e EDTA 1mM, homogeneizado com 5 mg de ditiotreitol. 

A reação foi incubada no escuro, a 37ºC por 2 horas, sob atmosfera de nitrogênio. 

Posteriormente, as amostras foram alquiladas com iodoacetamida e submetidas a uma 

digestão com tripsina, quimotripsina, Asp-N e Lys-C, utilizando uma razão 

enzima/proteína de 1:50. Peptídeos gerados pela digestão das fosfolipases foram 

adicionados a 1 μl da matriz de ácido alfa-ciano-4-hidroxicinâmico saturada (10 mg/ml), 

e esta reação foi colocada na placa de aço do espectrômetro de massa, a temperatura 

ambiente. Os calibrantes utilizados foram insulina, ubiquitina, citocromo C e mioglobina. 
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O espectro de massa foi obtido em um espectrômetro Bruker Daltonics Microflex LT 

(Billerica, EUA). Os espectros foram obtidos em modo refletor com ionização positiva. 

As sequências de peptídeos obtidas foram comparadas com outras sequências de 

fosfolipases depositadas em banco de dados. Para a comparação, o programa protein blast, 

acessível em: http://blast.ncbi.nlm.nih.gov/ foi utilizado, e o alinhamento das sequências 

foi realizado utilizando o programa Multalin (MultipleAlignement), acessível em: 

http://multalin.toulouse.inra.fr/multalin/. 

 

3.2.4 Caracterização Biológica 

3.2.4.1 Atividade proteolítica 

As atividades serinoprotease das PLA2s foram realizadas utilizando o substrato 

cromogênico sintético N-benzoil-DL-arginina pnitroanilida (BApNA) e Tos-gly-Pro-

Arg-AMC (0,5 M) para atividades tipo tripsina e trombina, respectivamente. As 

fosfolipases (15 e 30 μM) foram incubadas com o BApNA por 60 minutos a 37°C em 

placa de 96 poços. A liberação da cor pela ação enzimática foi monitorada a cada 5 min, 

a 405 nm, usando o espectrotofômetro Packard, SpectraCount. A atividade enzimática foi 

analisada com o tampão Tris-HCl 0,1M, pH 8,0 contendo 0,02% CaCl2, v/v. Para a 

atividade tipo trombina, as PLA2s (15 e 30 μM) foram incubadas por 40 minutos a 37°C 

com o substrato fluorogênico Tos-gly-Pro-Arg-AMC (0,5 M) em placa de 96 poços. A 

liberação do fluoróforo foi monitorada a cada 10 minutos, a 440 nm, usando o 

espectrotofômetro Packard, SpectraCount. A atividade enzimática foi analisada com o 

tampão Tris-HCl 0,05M, pH 8,0 contendo NaCl 0,15M, polietilenoglicol (PEG) 8000 

0,1%. 

3.2.4.2 Determinação da atividade hemaglutinante (AH) 

Para avaliar a capacidade das PLA2 em aglutinar eritrócitos, foram realizados ensaios 

de atividade hemaglutinante (CORREIA & COELHO, 1995) utilizando a suspensão de 

eritrócitos humanos (A+) fixados com glutaraldeído a 1%, em microplaca de 96 poços 

com fundo côncavo. Para isso, inicialmente 50 µl de NaCl a 0,15 M foram adicionados 

em cada poço da placa. Em seguida, foram adicionados 50 µl de Cdca-I-PLA2 ou Cdca-
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II-PLA2 a 30 µM e sucessivas diluições foram realizadas. O controle positivo foi realizado 

utilizando 50 µl de Concanavalina A (400 µg), diluídos serialmente com salina. O 

controle negativo foi realizado adicionando NaCl a 0,15M nos poços da primeira coluna 

da placa. Após a preparação das amostras e controles, 50 µl da suspensão de eritrócitos 

tratados com glutaraldeído a 1% foram adicionados em cada poço. A atividade 

hemaglutinante foi observada a olho nu, após incubação da microplaca a temperatura 

ambiente por 45 minutos e definida como a menor concentração de proteína capaz de 

aglutinar eritrócitos. 

3.2.4.3 Atividade sobre plaquetas 

Sangue venoso foi coletado de doadores saudáveis em uma solução de 3,8% de citrato 

de sódio e centrifugado a 141 g por 12 minutos a temperatura ambiente, para a obtenção 

do plasma rico em plaquetas (PRP). O plasma pobre em plaquetas (PPP) foi obtido pela 

centrifugação do sangue a 1200 g por 15 minutos. O número de plaquetas foi computado 

em um contador de células Counter KX-21N e ajustado para uma concentração final de 

3 x 108/ml com PPP. Uma bolsa de plaquetas lavadas foi obtida da Associação 

Beneficente de Coleta de sangue (COLSAN). A agregação plaquetária foi acompanhada 

pelo método turbidimétrico de Born e Cross (1963). As frações provenientes da 

cromatografia em C18 (50 μl) foram incubadas com PRP (450 μl), ácido araquidônico 

(0,5 mM), ADP (10 µM), adrenalina (50 mM) e colágeno (2 µg/ml) e a agregação foi 

monitorada a 37ºC por 6 min em um agregômetro da Chrono-log Corporation. Os ensaior 

foram realizados em duplicata e os controles de cada experimento foram realizados com 

solução salina 0,15M. Para os testes de inibição, diferentes concentrações de Cdca-I-

PLA2 e Cdca-II-PLA2 foram adicionadas ao plasma 5 minutos antes da adição dos 

agonistas.  

3.2.4.4 Atividade coagulante 

3.2.4.4.1 Tempo de tromboplastina parcial ativada (TTPa) 

O sangue foi coletado de doadores adultos saudáveis, em uma solução de citrato de 

sódio 3,8% (p/v). O plasma foi obtido por centrifugação a 1726 g, por 10 minutos, a 

temperatura ambiente (25º C). Para a obtenção do TTPa, um pool de plasma humano (50 

μl) foi adicionado a 50 μl das PLA2s, seguido da adição de 50 μl do reagente para TTPa 
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(Dade actin activated cephaloplastin). A reação foi incubada por 120 segundos a 37º C. 

Após a incubação, foram adicionados 50 μl de CaCl2 0,025M e o tempo de formação do 

coágulo foi aferido em um coagulômetro da marca Dade Berhring. Como controle foi 

utilizado 50 μl de NaCl 0,15 M. Os ensaios foram realizados em duplicata e os resultados 

expressos em função de R (razão entre tempo de coagulação de cada amostra e o tempo 

de coagulação do controle). A concentração de PLA2 capaz de inibir 50% da coagulação 

(IC50), quando comparada ao controle, foi determinada pelo GraphPad Prism5. 

3.2.4.4.2 Tempo de protrombina (TP) 

Para a obtenção do TP, um pool de plasma humano (50 μl) foi adicionado a 50 μl das 

PLA2s. A reação foi incubada por 60 segundos a 37º C. Após a incubação, foram 

adicionados 100 μl do reagente para TP (Thromborel S) e o tempo de formação do 

coágulo foi aferido em um coagulômetro da marca Dade Berhring. Como controle foi 

utilizado 50 μl de NaCl 0,15 M. Os ensaios foram realizados em duplicata e os resultados 

expressos em função de R (razão entre tempo de coagulação de cada amostra e o tempo 

de coagulação do controle) A concentração de PLA2 capaz de inibir 50% da coagulação 

(IC50), quando comparada ao controle, foi determinada pelo GraphPad Prism 5.  

3.2.4.4.3 Tempo de Trombina (TT) 

Para a obtenção do TT, inicialmente 5 μl de trombina (0,1 U/ μl) foram incubados 

com 70 μl de NaCl 0,15 M (controle) ou Cdca-I-PLA2 (concentração final 10 μM) ou 

Cdca-II-PLA2 (concentração final 10 μM ou 20 μM). Após 2 minutos a 37º C, um pool 

de plasma humano (75 μl) foi adicionado e o tempo de formação do coágulo foi aferido 

em um coagulômetro da marca Dade Berhring. Os ensaios foram realizados em duplicata 

e os resultados expressos em função de R (razão entre tempo de coagulação de cada 

amostra e o tempo de coagulação do controle). 
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3.2 RESULTADOS  

3.3.1 Purificação  

3.3.1.1 Cdca-I-PLA2 

A fosfolipase, denominada Cdca-I-PLA2, foi purificada a partir de duas etapas 

cromatográficas: a separação da peçonha bruta de C. d. cascavella em coluna Resource 

Q em seis principais frações (Figura 9A), seguida da cromatografia de Q5 em coluna C18 

(Figura 9B). A Cdca-I-PLA2 apresentou atividade fosfolipásica específica de 11,51 ± 0,5 

U/mg, uma única banda em SDS-PAGE (Figura 9C) e massa molecular de 14.247 Da, 

além de sua forma duplamente ionizada de 7.125 Da estimada por espectrometria de 

massa  (Figura 9D) .  

3.3.1.2 Cdca-II-PLA2 

A fosfolipase denominada Cdca-II-PLA2, foi purificada a partir de três etapas 

cromatográficas: fração Q2 (Figura 10A), proveniente da separação da peçonha bruta de 

C. d. cascavella em coluna Resource Q, foi submetida à cromatografia em coluna 

Resource S (Figura 10B). A fração eluída antes do gradiente de tampão B (Q2S) foi 

cromatografada em coluna C18 (Figura 10C) e a pureza da Cdca-II-PLA2 foi confirmada 

por SDS-PAGE (Figura 10D) e espectrometria de massa, apresentando uma massa 

molecular de 14.418 Da (Figura 10E) e atividade fosfolipásica específica de 26,75 ± 0,15 

U/mg.  
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Figura 9. Purificação da Cdca-I-PLA2. A: Cromatografia da peçonha C. d. cascavella 

em coluna Resource Q (6 ml). A corrida foi realizada utilizando 40 mg de peçonha 

diluídas em 1 ml de tampão Tris-HCl 25 mM pH 8 (A), seguida de eluição em gradiente 

de tampão Tris-HCl 25 mM pH 8 contendo 1 M de NaCl, em fluxo de 5 ml/min. B: 

Cromatografia de fase reversa da fração Q5 da peçonha de C. d. cascavella aplicada em 

coluna C18. A corrida foi realizada em TFA 0,1%, seguida de eluição em gradiente linear 

(5-100%) em tampão acetonitrila 50% contendo TFA 0,1%, em fluxo de 10 ml/min C: 

análise da comparação da eletroforese em gel de poliacrilamida 15% (SDS-PAGE) entre 

Cdca-I-PLA2 sem agente denaturante (NR) ou com agente denaturante (R) e padrão de 

eletroforese Thermo Fisher.D: espectrometria de massa MALDI-TOF da Cdca-I-PLA2. 

  A 
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D 
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Figura 10. Purificação da Cdca-II-PLA2. A: Cromatografia da peçonha C. d. 

cascavella em coluna Resource Q (6 ml). A corrida foi realizada utilizando 40 mg de 

peçonha diluídas em 1 ml de tampão Tris-HCl 25 mM pH 8 (A), seguida de eluição em 

gradiente de tampão Tris-HCl 25 mM pH 8 contendo 1 M de NaCl, em fluxo de 5 ml/min. 

B: Cromatografia de troca iônica da fração Q2 em coluna Resource S. As corridas foram 

realizadas em Tris-HCl 50Mm pH 7,3 contendo uréia 6M (tampão A), seguida de 

gradiente de tampão B (tampão A contendo NaCl 1M). C: A fração eluída antes do 

gradiente foi submetida à coluna C18, realizada em TFA 0,1%, seguida de eluição em 

gradiente linear (5-100%) em tampão acetonitrilo 60% contendo TFA 0,1%, em fluxo de 

10 ml/min previamente equilibrada com ácido trifluoroacético (TFA) 0,1% (tampão A). 

D: análise da comparação da eletroforese em gel de poliacrilamida 15% (SDS-PAGE) 

entre Cdca-II-PLA2 sem agente denaturante (NR) ou com agente denaturante (R) e padrão 

de eletroforese Thermo Fisher. E: espectrometria de massa MALDI-TOF da Cdca-II-

PLA2. 
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3.3.2 Caracterização Bioquímica 

3.3.2.1 Efeito do pH e temperatura na atividade fosfolipásica 

As fosfolipases foram igualmente sensíveis à mudança de pH, apresentando 

atividade diretamente proporcional ao aumento do pH (Figura 11A e 11B). Ambas as 

PLA2 apresentaram atividade enzimática em todas as temperaturas testadas, com 

pequenas reduções da atividade nas temperaturas mais altas e mais baixas.  

Figura 11. Efeito do pH e temperatura na atividade fosfolipásica. Efeito do pH do 

tampão de amostra na atividade fosfolipásica de Cdca-I-PLA2 (A) e Cdca-II-PLA2 (B). 

Efeito da temperatura de incubação prévia (10 minutos) sobre a atividade fosfolipásica 

de Cdca-I-PLA2 (C) e Cdca-II-PLA2 (D) (*p> 0,05; **p>0,01; ***p>0,001 em relação à 

maior atividade detectada). 
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3.3.2.2 Determinação da cinética enzimática 

Ambas PLA2s apresentaram atividade sobre o substrato NOB, porém Cdca-II-

PLA2 foi mais ativa que Cdca-I-PLA2. As velocidades máximas estimadas para Cdca-

I-PLA2 e Cdca-II-PLA2 foram 13,15 e 39,68 nmol×min-1mg-1 e Km foram 0,2280 e 

0,3993 mM, respectivamente (Figura 12). 

Figura 12. Cinética enzimática determinada de Cdca-I-PLA2 e Cdca-II-PLA2. O 

ensaio foi realizado seguindo o método de Lee et al. (1999) adaptado por Toyama et al. 

(2003) para placa de 96 poços. A: Cdca-I-PLA2 (0,5 mg/ml) testada sobre as diferentes 

concentrações de substrato NOB (0,125; ,25; 0,5;1,0; 1,5. 2,0 e 2,5). B: Cdca-II-PLA2 

(0,5 mg/ml) testada sobre as diferentes concentrações de substrato NOB (0,125; ,25; 

0,5;1,0; 1,5. 2,0 e 2,5). 

 

 

 

 

 

 

 

 

3.3.2.3 Determinação do conteúdo de carboidratos 

Em ambas PLA2s foi detectada a presença de carboidratos neutros, em uma proporção 

de 2,72% e 2,92%, respectivamente. 

3.3.2.4 Determinação de sequência de aminoácidos 

O sequenciamento de aminoácidos de Cdca-I-PLA2 resultou na obtenção de uma 

sequência contendo 24 resíduos, apresentando homologia com outras sequências na 

posição 64 a 88. Essa sequência tem similaridade com outras isoformas de PLA2 ácidas 

purificadas da peçonha de várias serpentes da família Viperidae: Trimeresurus 

gramineus, Crotalus viridis viridis, Trimeresurus stejnegeri, Gloydius blomhoffii, G. 

halys e Bothrops alternatus (Figura 13). 
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Figura 13. Alinhamento múltiplo da sequência da Cdca-I-PLA2 ((Número de acesso: 

199376) e outras fosfolipases de peçonha de serpentes. PLA2-IV-Tg: PLA2 ácida de 

Trimeresurus gramineus (81479), Pts-A1: precursor da PLA2 ácida Ts-A1 de 

Trimeresurus stejnegeri (Q6H3D0), III-Tg: PLA2 ácida III de Trimeresurus gramineus 

(P81480), PA2-II-Gb: PLA2 ácida PA2-II de Gloydius blomhoffii (P20249), svPLA2-Gh: 

PLA2 ácida Sv-PLA2 de Gloydius halys (O42192), pCvv-E6b: precursor da PLA2 ácida  

Cvv-E6b de Crotalus viridis viridis (Q7ZTA6), pCvv-E6e: precursor da PLA2 ácida Cvv- 

E6e de C. v. viridis (Q7ZTA7), pCvv-E6b: precursor da PLA2 ácida Cvv-E6b de C. v. 

viridis (Q7ZTA8), SpIIRP4-Ba: PLA2 ácida SpIIRP4 de Bothrops alternatus (P86456). 

O peptídeo sinal foi omitido das sequências dos precursores. 

 

 

 

 

  

 

 

 

A partir do sequenciamento de Cdca-II-PLA2 foi possível obter três sequências 

que totalizaram 72 resíduos de aminoácidos. A sequência N-terminal apresentou oito 

resíduos de aminoácidos sequenciados. A segunda sequência apresentou 30 resíduos entre 

as posições 13 a 42, e por fim, a terceira sequência contendo 34 aminoácidos apresentou 

homologia nas posições de 67 a 114 das fosfolipases de outras serpentes da família 

Viperidae. Essa fosfolipase A2 apresentou homologia principalmente para moléculas 

precursoras de isoformas de crotapotina ou similares clonadas das peçonhas de Crotalus 

durissus terrificus, Crotalus scutulatus scutulatus e Sistrurus catenatus tergeminus, bem 

como com várias isoformas ácidas clonadas de Crotalus atrox, Crotalus adamanteus, 

Crotalus horridus, Crotalus viridis viridis, Trimeresurus gramineus e Trimeresurus 

stejnegeri (Figura 14). 
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Figura 14. Alinhamento múltiplo da sequência da Cdca-II-PLA2 (Número de acesso: 

6480) e outras fosfolipases de peçonha de serpentes. Prec-Ctd: PLA2 ácida precursora 

da crotapotina de Crotalus durissus terrificus (P08878 ), Prec-Css: PLA2 ácida precursora 

da subunidade ácida da Mojave toxina de Crotalus scutulatus scutulatus (P18998 ), Prec-

Sct: PLA2 ácida precursora da subunidade ácida da sustroxina A de Sistrurus catenatus 

tergeminus (Q6EAN6), Prec-Cat: Precursor da PLA2 ácida de Crotalus atrox (P00624), 

Prec-Cad: Precursor de PLA2 ácida beta de Crotalus adamanteus (P00623), Prec-Ch: 

Precursor de PLA2 ácida  CH-E6 de Crotalus horridus (D6MKR0), Prec-Cvv: Precursor 

de PLA2 ácida Cvv-E6a de Crotalus viridis viridis (Q800C4), PLA2 ac-Gb: PLA2 ácida 

PA2-II de Ghoydius blomhoffii (P20249), Prec-Tg: Precursor de PLA2 ácida sv-PLA2 de 

Trimeresurus gramineus (P70088),    Prec-T2: Precursor de PLA2 ácida TS-A6 de 

Trimeresurus stejnegeri (Q6H3C8).  O peptídeo sinal foi omitido das sequências dos 

precursores. 
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3.3.3 Caracterização Biológica 

3.3.3.1 Atividade proteolítica 

Tanto a Cdca-I-PLA2 quanto a Cdca-II-PLA2 não apresentaram atividade tipo 

tripsina sobre o substrato BApNA. Por outro lado, embora a enzima Cdca-I-PLA2 não 

tenha apresentado atividade tipo trombina, a Cdca-II-PLA2 mostrou atividade dose 

dependente (Figura 15). 

Figura 15. Atividade tipo trombina das fosfolipases. Cdca-I-PLA2 e Cdca-II-PLA2 

incubadas durante 40 minutos a 37°C com o substrato fluorogênico Tos-gly-Pro-Arg-

AMC (0,5 M), em microplaca, e as leituras realizadas a 440 nm. 

 

 

 

 

 

3.3.3.2 Determinação da atividade hemaglutinante (AH) 

A Concanavalina A (controle positivo) apresentou atividade hemaglutinante com 

título de 128 e dose mínima hemaglutinante de 6,25 µM. A Cdca-I-PLA2 apresentou um 

titulo de 4, correspondendo a uma dose mínima hemaglutinante de 15 µM. Por outro lado, 

a Cdca-II-PLA2 não apresentou atividade aglutinante quando testada em hemácias 

humanas do tipo A +.  

3.3.3.3 Atividade sobre plaquetas 

Ambas PLA2s não apresentaram efeito sobre agregação plaquetária em PRP quando  

utilizadas como agonistas, e também não promoveram qualquer alteração na agregação 

plaquetária induzida por ADP (dados não mostrados). Por outro lado, apesar de ambas 

apresentarem efeito inibitório na agregação plaquetária em PRP quando colágeno, 

adrenalina e ácido araquidônico foram utilizados como agonistas, a ação das duas PLA2s 

não foi idêntica. 
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Cdca-I-PLA2 inibiu a agregação de plaquetas de forma dose dependente quando 

induzida por colágeno (a partir da dose de 2 µM, p<0,001) (Figura 16A) e adrenalina (0,2 

µM, p<0,01) (Figura 16B). Em relação à agregação induzida pelo ácido araquidônico, a 

Cdca-I- PLA2 inibiu completamente a agregação nas doses de 0,7 µM a 20 µM (p<0,001), 

perdendo a capacidade de inibição na dose de 0,2 µM (Figura 8C).  Nesses experimentos 

não foi observado um efeito dose resposta (Figura 16C).  

A Cdca-II-PLA2 apresentou atividade inibitória dose resposta na agregação induzida 

por colágeno (Figura 17A) e ácido araquidônico (Figura 17C)  nas  doses de 0,2 µM a 20 

µM. Essa PLA2 apresentou efeito inibitório sobre plaquetas (PRP) quando a adrenalina 

foi utilizada como agonista, inibindo completamente a agregação plaquetária em todas as 

doses testadas (0,02 µM a 20 µM) (Figura 17B).  
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Figura 16. Efeito da Cdca-I-PLA2 na agregação plaquetária em PRP. (A) Efeito sobre 

a agregação plaquetária induzida por colágeno. (B) Efeito sobre a agregação plaquetária 

induzida por adrenalina. (C) Efeito sobre a agregação plaquetária induzida por ácido 

araquidônico. A agregação plaquetária foi determinada em agregômetro. As barras 

representam as médias ± desvio padrão. Os resultados foram obtidos em dois ensaios 

independents e em duplicata. (**p>0,01; ***p>0,001). 
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Figura 17. Efeito da Cdca-II-PLA2 na agregação plaquetária em PRP. A. Efeito sobre 

a agregação plaquetária induzida por colágeno. B. Efeito sobre a agregação plaquetária 

induzida por adrenalina. C Efeito sobre a agregação plaquetária induzida por ácido 

araquidônico. A agregação plaquetária foi determinada em agregômetro. As barras 

representam as médias ± desvio padrão. Os resultados foram obtidos em dois ensaios 

independents e em duplicata. (*p> 0,05; **p>0,01; ***p>0,001). 
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 Os resultados dos ensaios com plaquetas lavadas identificaram diferenças na 

resposta das duas fosfolipases. Ao invés de inibirem a agregação, a Cdca-I-PLA2 induziu 

agregação quando utilizada como agonista de forma dose dependente (3,5 µM a 14 µM) 

e a Cdca-II–PLA2, mesmo na dose de 28 µM, não apresentou qualquer efeito nas 

plaquetas lavadas (Figura 18).  

Figura 18. Efeito da Cdca-I-PLA2 e Cdca-II-PLA2 na agregação de plaquetas 

lavadas. Efeito de diferentes doses das fosfolipases como agonistas de agregação. A 

agregação plaquetária foi determinada em agregômetro. As barras representam as médias 

± desvio padrão. Os resultados foram obtidos em duplicata. (*p> 0,05; ***p>0,001). 

 

Por outro lado, quando comparamos quatro diferentes formas de testar a agregação 

plaquetária induzida por trombina com as PLA2 (capacidade de agregação plaquetária da 

trombina em si; efeito de cada PLA2 na agregação das plaquetas;  efeito de cada PLA2 na 

agregação plaquetária quando incubada previamente com trombina por 5 minutos; e a 

adição de trombina às plaquetas 5 minutos após a adição de cada PLA2) observamos que 

a Cdca-I-PLA2 reduziu significativamente a capacidade da trombina agregar as plaquetas 

em ambos os experimentos (Figura 19A), enquanto a Cdca-II-PLA2 não apresentou 

qualquer efeito (Figura 19B). 
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Figura 19. Efeito das fosfolipases na agregação de plaquetas lavadas na presença e 

ausência de trombina. (A)  Efeito da Cdca-I-PLA2. (B)  Efeito da Cdca-II-PLA2. 

Trombina + Cdca: medida da agregação por trombina e PLA2, incubadas a 37º C, por 5 

minutos, antes da adição às plaquetas. Trombina após Cdca: medida da agregação devido 

a trombina adicionada 5 minutos após a incubação Cdca às plaquetas. O efeito da 

agregação plaquetária foi determinada em agregômetro. As barras representam as médias 

± desvio padrão. Os resultados foram obtidos em duplicata. (**p>0,01; ***p>0,001). 
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3.3.3.4 Atividade coagulante 

Os resultados da determinação do TTPa e TP mostraram que as duas PLA2s 

apresentaram atividade anticoagulante dose dependente nas concentrações de 10 a 30 µM, 

prolongando mais o TP do que o TTPa.  Na maior dose testada, o TP foi prolongado em 

mais de 20 vezes por ação das Cdca-I-PLA2 (IC50 = 0,22 µM, Figura 20A) e, 

aproximadamente, duas vezes pelo efeito da Cdca-II-PLA2 (IC50 = 5,9 µM, Figura 20B). 

A maior atividade anticoagulante da Cdca-I-PLA2 (IC50 = 1,4 µM) também foi 

evidenciada pelos resultados do TTPa, promovendo um aumento de mais de 10 vezes no 

mesmo (Figura 20C), enquanto a Cdca-II-PLA2 (IC50 = 1,1 µM) induziu apenas discreto 

prolongamento deste tempo (R< 1,5) (Figura 20D). 

Devido a pequena quantidade de amostra, o TT só foi realizado na dose de 10 µM 

de Cdca-I-PLA2 não apresentando qualquer alteração em relação ao controle. Por outro 

lado, embora a Cdca-II-PLA2 não tenha alterado o TT na dose de 10 µM, a mesma 

apresentou significativa atividade anticoagulante na dose de 20 µM, prolongando 

aproximadamente 7 vezes o TT em relação ao controle (Figura 20E).  
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Figura 20. Efeito das fosfolipases na coagulação. Tempo de tromboplastina parcial 

ativada (TTPa) de Cdca-I-PLA2 (A) e de Cdca-II-PLA2 (B). Tempo de Protrombina (TP) 

de Cdca-I-PLA2 (C) e de Cdca-II-PLA2 (D). Tempo de Trombina (TT) de Cdca-I-PLA2 

e Cdca-II-PLA2 (E). As barras representam as médias ± desvio padrão. Os resultados 

foram obtidos em dois ensaios independents e em duplicata. (*p< 0,05; **p< 0,01; ***p< 

0,001 em relação ao controle com NaCl 0,15M).  
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3.4 DISCUSSÃO 

Dentre as toxinas que compõem a peçonha das serpentes estão as fosfolipases A2, 

enzimas que representam um dos principais componentes desta secreção. As PLA2 

apresentam uma grande variedade de atividades tóxicas, apesar das restrições estruturais 

impostas por sua estrutura conservada e rica em pontes dissulfeto (KINI, 2003; 

JIMENEZ-CHARRIS et al., 2016; RESENDE et al., 2017). 

Neste estudo, duas novas fosfolipases A2 ácidas com ação na hemostasia e com 

atividades ainda não descritas para esta classe, Cdca-I-PLA2, possívelmente, uma 

quimerolectina e Cdca-II-PLA2 um inibidor de trombina, foram purificadas com sucesso 

da peçonha de C. d. cascavella.  

Os resultados da atividade fosfolipásica e espectrometria de massa das frações 

cromatográficas sugerem que na primeira etapa de purificação (Resource Q), comum às 

duas novas fosfolipases, ocorreu a eluição da maior parte da crotoxina na forma dimérica 

(fração Q2), bem como das subunidades isoladas: fosfolipásica básica (fração não retida) 

e crotapotina ácida (fração Q5). Estes resultados foram confirmados pelo monitoramento 

da atividade fosfolipásica A2 em cada fração eluída da coluna Resource Q (dados não 

mostrados), onde o pico Q2 apresentou maior atividade fosfolipásica, sugerindo que a 

crotoxina, toxina com atividade fosfolipásica mais abundante da peçonha de Crotalus 

durissus (BOLDRINI-FRANÇA et al., 2010), eluiu nesta fração.  

A Cdca-I-PLA2 é uma fosfolipase ácida, provavelmente com pI entre 3 e 4 por 

comparação com a crotapotina (pI 3,4) que foi eluída na mesma fração na primeira etapa 

de purificação. A presença da crotapotina nessa fração foi confirmada por espectrometria 

de massas (dados não mostrados). A Cdca-I-PLA2 foi purificada em apenas duas etapas 

cromatográficas e está em baixa concentração na peçonha de C.d. cascavella, em torno 

de 0,3%.   

Para isolar a Cdca-II-PLA2 foi necessário incluir mais uma etapa cromatográfica, 

porque a Cdca-II-PLA2 foi eluída na mesma fração da crotoxina (pI 4,7) na cromatografia 

em Resource Q (fração Q2), o que confirmou o seu caráter ácido (HANASHIRO et al., 

1978; DOS-SANTOS, 2014). Uma vez que ambas a crotoxina e a Cdca-II-PLA2 possuem 

atividade fosfolipásica, posteriormente, foi utilizada uma cromatografia em Resource S 
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na presença de 6M de ureia (RANGEL-SANTOS et al., 2004), visando a separação das 

subunidades da crotoxina e das fosfolipases ácida e básica. A fração não retida contendo 

a Cdca-II-PLA2 foi obtida após cromatografia de fase reversa, representando 

aproximadamente 3% do conteúdo total da peçonha. A Cdca-II-PLA2 apresentou três 

vezes mais atividade sobre NOB do que Cdca-I-PLA2, e também maior atividade 

fosfolipásica quando comparada à PLA2s purificadas de C. d. colillineatus (PONCE-

SOTO et al., 2002) e de Porthidium hyoprora (MARQUES et al., 2015). 

Os métodos cromatográficos utilizados nesse estudo também tem sido empregados 

com sucesso na purificação de outras PLA2 de peçonha de serpentes Viperidae 

(FERNANDÉZ et al., 2010; CORREA et al., 2016). A baixa concentração de Cdca-I-

PLA2 e o fato de que Cdca-II-PLA2 eluir inicialmente com a crotoxina podem justificar 

o fato de que até o momento essas toxinas não haviam sido isoladas.  

A pureza de ambas PLA2s foi confirmada por espectrometria de massa e SDS-PAGE. 

A Cdca-I-PLA2 apresentou apenas a forma de monômero, com uma massa molecular de 

14.246 Da, em similaridade com outras PLA2s ácidas caracterizadas da peçonha de 

serpentes da família Viperidae (FERREIRA et al., 2013; JIMENEZ-CHARRIS et al., 

2016; RESENDE et al., 2017). Em contrapartida, a Cdca-II-PLA2 como monômero 

possui massa de 14.418 Da, mas também apresentou dímeros e trímeros, detectados por 

espectrometria de massa, indicando um processo de oligomerização destas moléculas. 

Este fenômeno pode proporcionar um efeito conhecido como cooperatividade, que é 

característico de enzimas alostéricas, e pode ser observado em algumas PLA2 crotálicas 

(BEGHINI et al., 2000; PONCE-SOTO et al., 2002; DENEGRI et al., 2010). O processo 

de dimerização de PLA2 pode ampliar a capacidade de ligação das mesmas ao substrato, 

através do aumento da hidrofobicidade na ligação dos canais de cálcio, resultando assim 

na intensificação de sua atividade enzimática (SUN et al., 2009).   

Ambas PLA2 purificadas neste trabalho obedeceram a cinética de Michaelis-Mentem, 

onde a taxa de catálise progride com o aumento da concentração de substrato, e a síntese 

do produto é proporcional à reação da enzima. Ao longo da reação, todas as moléculas da 

enzima são saturadas com o substrato e a aceleração diminui (TOYAMA et al., 2014; 

RESENDE et al., 2017). Embora a Cdca-II-PLA2 tenha apresentado maior atividade 
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fosfolipásica específica, a Cdca-I-PLA2 apresentou maior afinidade pelo substrato, uma 

vez que apresentou um menor valor de Km (NELSON & COX, 2014). 

 Cdca-I-PLA2 e Cdca-II-PLA2 apresentaram comportamento semelhante em 

relação ao efeito da temperatura de incubação das mesmas na atividade fosfolipásica, 

sendo ambas termorresistentes. Essa característica também foi observada em outras 

PLA2s, descritas como enzimas altamente estáveis devido à presença de até sete pontes 

dissulfeto em sua estrutura (TEIXEIRA et al., 2011; DENEGRI et al., 2010; FERREIRA 

et al., 2013).  

Com relação ao pH, a Cdca-I-PLA2 e a Cdca-II-PLA2 apresentaram comportamento 

similar, sendo sensíveis a pHs mais ácidos, semelhante à outras PLA2 purificadas da 

peçonha de  serpentes (BREITHAUPT, 1976; TEIXEIRA et al., 2011; RESENDE et al., 

2017). No entanto, as PLA2 purificadas nesse trabalho apresentaram maior atividade 

enzimática proporcionalmente ao aumento do pH do ensaio tendo, portanto, maior 

atividade em pHs mais básicos. Esse comportamento não é observado em outras PLA2, 

visto que essas normalmente possuem maior atividade em  pH 8,  sendo reduzida 

conforme o pH do meio aumenta (PONCE-SOTO et al., 2002; TEIXEIRA et al., 2011; 

MARQUES et al., 2015; RESENDE et al., 2017). 

Cdca-I-PLA2  e  Cdca-II-PLA2 apresentaram alta similaridade com outras PLA2 

ácidas da peçonha de serpentes da família Viperidae (COGO et al., 2006; DENEGRI et 

al., 2010; FERREIRA et al., 2013). Cdca-II-PLA2 também apresentou similaridade com 

a molécula precursora da crotapotina de Crotalus durissus terrificus e de proteínas 

similares encontradas em outras duas espécies de cascavel. Essa molécula foi 

primeiramente identificada por Bouchier e colaboradores (1991) como uma PLA2 

responsável por constituir, através de clivagens pós transducionais, as três cadeias 

polipeptídicas da subunidade ácida da crotoxina, a crotapotina (CA) (BOUCHIER et al., 

1991; FAURE et al., 1991; FAURE et al., 2011). A PLA2 precursora da crotapotina é 

também conhecida como pró-CA, e mantém todos os aminoácidos responsáveis pela 

ligação ao substrato e pelo mecanismo catalítico presente nas PLA2s (BOUCHIER et al., 

1991; BOLDRINI-FRANÇA et al., 2008). Estes resultados, provavelmente, se devem ao 

fato de que a espécie Crotalus durissus compartilha a mesma origem filogenética da 

população da América do Norte (WÜSTER et al., 2005), possuindo então semelhança na 
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codificação genética com essas proteínas. Por outro lado, ambas PLA2 purificadas nesse 

estudo não apresentaram muita similaridade com a única PLA2 ácida identificada por 

clonagem na glândula de peçonha da subespécie C.d.cascavella (GUARNIERI et al., 

2009), nem com outras PLAs2 ácidas de cascavéis.  

Várias PLA2s da peçonha de serpentes são conhecidas por apresentarem atividade 

hemolítica, ou seja, induzem a lise da membrana de hemácias, embora possam não 

apresentar atividade hemolítica direta (SOARES et al., 2001; KETELHUT et al., 2003; 

DENEGRI et al., 2010; FERREIRA et al., 2010).  No entanto, até o momento não se 

conhecia nenhuma PLA2 purificada da peçonha de serpente com atividade 

hemaglutinante. A Cdca-I-PLA2 foi capaz de aglutinar hemácias, o que sugere que a 

mesma seja uma quimerolectina (PEUMANS & VAN DAMME et al., 1998), uma vez 

que possui pelo menos um sítio de ligação para carboidratos, além de um domínio com 

ação enzimática (CORDARA et al., 2011).  Algumas proteínas já purificadas e 

classificadas como quimerolectinas incluem as proteínas inativadoras de ribossomos 

(RIPs) (BARBIERI et al., 1993), quitinases da classe I (COLLINGE et al., 1993) e 

aglutininas de um fungo da espécie  Marasmius oreades (MOA) (CORDARA et al., 

2011). Estudos futuros usando diferentes carboidratos e glicoproteínas como inibidores 

serão utilizados para determinar a importância do domínio lectínico nas atividades da 

Cdca-I-PLA2 observadas sobre a hemostasia. Considerando que muitos receptores 

plaquetários e fatores da coagulação são glicoproteínas (CASTRO et al., 2006), é possível 

que o domínio lectínico esteja envolvido na ligação à essas proteínas. 

As PLA2s agem na hemostasia tanto sobre a agregação plaquetária, quanto sobre a 

coagulação sanguínea (FULY et al., 2004; KINI, 2006). Com relação à agregação, as 

PLA2 podem ser classificadas em três grupos, baseados na forma como essas enzimas 

interferem na função das plaquetas (ANDREWS & BERNDT, 2000). O grupo I é 

representado pelas PLA2 capazes de induzir a agregação plaquetária, o grupo II é 

constituído por PLA2 que inibem a agregação das plaquetas induzida por diferentes 

agonistas, e o grupo III é formado por PLA2s que apresentam um efeito bifásico, isto é, 

que em determinadas concentrações são agregantes e em outras atuam como inibidores 

(KINI & EVANS, 1990; SAJEVIC et al., 2011). Ambas PLA2s purificadas neste trabalho 

fazem parte do grupo II, uma vez que inibiram a agregação induzida por adrenalina, ácido 



63 

 

 

araquidônico e colágeno, apesar de não terem atuado na agregação induzida por ADP. 

Várias PLA2s purificadas de peçonhas de serpentes também são classificadas no mesmo 

grupo, como BE-I-PLA2 (Bothrops erythromelas) (ALBUQUERQUE-MODESTO et al., 

2006) que atua de forma semelhante às PLAs isoladas nesse estudo,  BmooTX-I 

(Bothrops moojeni) (SANTOS-FILHO et al., 2008), CC-PLA2-1 e CC-PLA2-2 (Cerastes 

cerastes) (ZOUARI-KESSENTINI et al., 2009) e Bp-PLA2 (B. pauloensis) 

(RODRIGUES et al., 2007).  

Cdca-I-PLA2 atuou como agonista em plaquetas lavadas, além de ter inibido a 

agregação induzida por trombina no mesmo sistema. Estes resultados sugerem que a 

Cdca-I-PLA2 compete com a trombina pelos seus receptores plaquetários específicos, 

ocupando-os e impedindo que a trombina induza a agregação das plaquetas. Este 

comportamento inibitório foi evidenciado pelo ensaio onde a Cdca-I-PLA2, tanto 

previamente incubada com as plaquetas antes da adição de trombina quanto pré-incubada 

com a trombina, reduziu significativamente a agregação das plaquetas lavadas. Além de 

uma possível ação direta sobre os receptores plaquetários para trombina, um outro 

possível mecanismo de ação da Cdca-I-PLA2 seria a sua ligação à trombina, impedindo-

a de ligar-se aos seus receptores plaquetários. A agregação em plaquetas lavadas induzida 

pela Cdca-I-PLA2 também pode ter resultado de sua fração lectínica, uma vez que os 

receptores plaquetários são glicoproteínas com diferentes níveis de glicosilação 

(LAKHTIN, 1995; RAMASAMY, 2004; BERGER et al., 2014). As lectinas podem 

interagir com os receptores plaquetários, podendo induzir a agregação e a secreção dos 

grânulos das plaquetas, além de induzirem a ativação de um sistema de segundos 

mensageiros, ou também podem agir aglutinando as membranas das plaquetas 

(GREENBERG & JAMIESON, 1984; TORTI et al., 1995; SAMAL et al., 1998; 

SMINORVA & KHASPEKOVA, 1998; CLEMETSON, 2012). Um dos maiores 

receptores das plaquetas, GpIb, é a proteína mais glicosilada da membrana plaquetária, 

sendo 50 % da sua massa molecular constituída por carboidratos, e o complexo formado 

por esta glicoproteína (GpIb-IX-V) é o receptor do Fator von Willebrand (FvW), além de 

conter um sítio para a trombina (LAKHTIN, 1995; REZENDE-NETO, 2003). As lectinas 

também podem ter efeito inibitório na iniciação da adesão e agregação plaquetária pelo 

colágeno, ADP e trombina (KARPATKIN & KARPATKIN, 1974; RALPH & 

LAWRENCE, 1982).  
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A diferença na forma como essas enzimas atuam mostra que as mesmas podem agir 

em diferentes receptores plaquetários, por meio de diversos sítios farmacológicos 

presentes em sua estrutura (KINI, 2003). A atividade das PLA2 isoladas de peçonhas sobre 

a agregação plaquetária ainda não é bem compreendida. A inibição da agregação pode 

ocorrer de maneira independende da atividade catalítica da enzima, sugerindo então que 

existe um sítio funcional separado do sítio catalítico, onde ocorre a inibição, ou através 

da região C-terminal dessas proteínas (SAJEVIC et al., 2011; TEIXEIRA et al., 2011). 

Por outro lado, o mecanismo de ação mais comum das PLA2 da peçonha de serpentes na 

inibição da agregação plaquetária é através dos cofatores do plasma, principalmente por 

meio dos fatores lipoprotéicos (HDL e LDL) (YUAN et al., 1995).  

As PLA2s hidrolisam essas lipoproteínas liberando lisofosfatidilcolina (LPC), que por 

sua vez, é capaz de inibir a mudança conformacional das plaquetas, a síntese de 

tromboxano A2, além de inibir a agregação plaquetária induzida por diversos agonistas 

(YUAN et al., 1995; HUANG et al., 1997). Algumas PLA2s também interferem na 

agregação plaquetária através da clivagem de fosfolipídios da membrana das plaquetas, 

liberando ácido araquidônico e seus metabólitos, como a prostaciclina, que atuam na 

inibição da agregação plaquetária, e o tromboxano, que atuam na ativação da agregação 

(FULY et al., 2004). Outras PLA2s ácidas interagem com a membrana das plaquetas, 

induzindo um aumento da concentração de AMPc, além da disruptura do citoesqueleto 

das plaquetas, inibindo a agregação plaquetaria induzida por vários agonistas (HUANG 

et al., 1984). Outros estudos deverão ser realizados para determinar o mecanismo de ação 

das PLA2s isoladas nesse estudo. 

Além de atuarem na agregação plaquetária, as PLA2s também podem ter ações sobre 

a coagulação, sendo classificadas em três classes: as fortemente anticoagulantes que 

inibem a coagulação sanguínea em concentrações menores que 2 µg/ml, as fracamente 

anticoagulantes que induzem a inibição da coagulação em concentrações entre 3 e 10 

µg/ml e aquelas que são pró coagulantes (BOFFA & BOFFA, 1976; KINI, 2006). Ambas 

PLA2s purificadas neste estudo são classificadas como fracamente anticoagulantes, pois 

a menor concentração capaz de induzir inibição da coagulação foi 142,5 µg/ml para Cdca-

II-PLA2 e 72,1 µg/ml e 288 µg/ml para Cdca-II-PLA2, considerando os resultados do 

TTPA e o TP, respectivamente. Apesar de pertencerem a mesma classe, essas enzimas 
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apresentam diferenças na sua ação anticoagulante quando comparadas entre si, sendo a 

Cdca-I-PLA2  mais anticoagulante do que a Cdca-II-PLA2.  

As PLA2s da peçonha de serpentes são conhecidas por induzir efeitos anticoagulantes 

através da interação com os complexos de coagulação (complexo tenase extrínseco e 

intrínseco e/ou complexo protrombinase), através da hidrólise de fosfolipídeos de 

membrana ou por ligação proteína-proteína (MOUNIER et al., 2001; KINI, 2005). A 

região responsável pela atividade anticoagulante das PLA2s pode incluir o sítio catalítico, 

a superficie de ligação interfacial que é formada por resíduos positivamente carregados, 

o C-terminal e o segmento localizado entre os resíduos 53 e 77 da sequência da 

aminoácidos (KINI, 2005). Nas PLA2s mais potentes alguns resíduos entre a região 53 e 

77 contém aminoácidos positivamente carregados, que quando substituídos tornam as 

PLA2s fracamente anticoagulantes, especialmente se esses resíduos forem carregados 

negativamente, podendo também ser substituídos por resíduos neutros (KINI, 2005; 

KINI, 2006). Quando analisamos as sequências obtidas,  Cdca-II-PLA2 apresentou um 

resíduo de glutamato, que é negativamente carregado, na posição 77, enquanto a Cdca-I-

PLA2 apresentou um resíduo de glicina (apolar) na mesma posição, o que justifica a 

atividade coagulante observada.  

As PLA2s fracamente anticoagulantes atuam  na via extrínseca, inibindo a ativação 

do fator X em Xa pelo complexo tenase extrínseco (KINI, 2005), ou atuando de forma 

enzimática através da degradação dos fosfolipídeos importantes para a formação do 

complexo tenase (MOUNIER et al., 2001). O aumento expressivo do TP, pequeno 

aumento do TTPa e ausência de alteração no TT sugere que a Cdca-I-PLA2 inibe a 

coagulação sanguínea através de uma ação no complexo tenase extrínseco. Três 

fosfolipases A2, denominadas CM-I, CM-II e CM-IV, purificadas da peçonha de Naja 

nigricollis, apresentaram comportamento semelhante (STEFANSSON et al., 1990; KINI, 

2005). O discreto aumento do TP em relação ao TTPa, a intensa atividade fosfolipásica e 

o significante aumento do TT induzido pela Cdca-II-PLA2 sugerem que a mesma tenha 

ação sobre o complexo tenase extrínseco, bem como na via comum da coagulação. 

Daboxin P, uma PLA2 purificada da peçonha de Daboia russelii (SHARMA et al., 2016), 

tem ação sobre as mesmas vias de forma semelhante à Cdca-II-PLA2.  



66 

 

 

Muitas enzimas da peçonha de serpentes são conhecidas por apresentarem atividade 

trombina-símile (MOUNIER et al., 2001), no entanto, até o momento apenas uma PLA2 

de peçonha de serpente é conhecida por apresentar essa ação. Denominada Gln49-PLA2, 

esta enzima foi purificada da peçonha de Gloydius ussuriensis (ZHANG et al., 2007). As 

enzimas classificadas como trombina símile desencadeiam a coagulação de fibrinogênio 

e liberação de fibrinopeptídeos A e/ou B, porém, diferentemente da trombina, estas 

enzimas não podem ativar o factor XIII (factor de estabilização da fibrina), formando 

coágulos anormais de fibrina (MARSH & WILLIAMS, 2005).  

Nossos resultados mostraram que a Cdca-II-PLA2 foi capaz de degradar o substrato 

de trombina, sugerindo que esta enzima pode ter uma atividade trombina-símile. 

Entretanto, ao contrário da sua rápida ação anticoagulante, medida em segundos, a 

degradação do substrato de trombina pela Cdca-II-PLA2 só teve início 10 minutos após a 

incubação enzima-substrato, sugerindo uma ação pro-coagulante tardia. Em estudo 

paralelo recente, Castro Melo (2016) demonstrou que a Cdca-II-PLA2 apresenta baixa 

atividade específica (1,82 U/mg) e baixa afinidade (Km = 26,55 mM) ao substrato de 

trombina, além da mesma não ter sido capaz de coagular o fibrinogênio até 300 segundos 

de incubação. Ainda segundo Castro Melo (2016), a Cdca-II-PLA2 não foi capaz de 

degradar as cadeias ,  e  do fibrinogênio até 20 minutos de incubação, indicando que 

a ação anticoagulante desta enzima não seria resultante de uma ação fibrinogenolítica. 

Por outro lado, esta enzima foi capaz de formar complexos com o fibrinogênio já nos 

primeiros segundos de incubação evidenciados em gel de eletroforese, sugerindo que a 

ação anticoagulante da Cdca-II-PLA2 é resultante, ao menos em parte, da inibição da 

conversão do fibrinogênio em fibrina, pela trombina. 

Até o momento, há poucos estudos envolvendo PLA2 ácidas da peçonha de serpentes 

da família Viperidae. Neste trabalho, duas novas PLA2 ácidas foram purificadas da 

peçonha de Crotalus durissus cascavella, tendo sido as mesmas caracterizadas quanto a 

sua estrutura e efeitos biológicos. Outros ensaios são requeridos para uma melhor 

compreensão do mecanismo de ação dessas PLA2s. 
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3.5 CONCLUSÕES 

 Neste trabalho duas fosfolipases A2 ácidas, denominadas Cdca-I-PLA2 e Cdca-II-

PLA2, foram purificadas da peçonha de Crotalus durissus cascavella. Ambas enzimas são 

as primeiras PLA2 ácidas purificadas e caracterizadas da peçonha da espécie Crotalus 

durissus. 

Cdca-I-PLA2 possui peso molecular de 14.246 Da e atividade fosfolipásica de 

11,51± 0,5 U/mg sendo considerada termorresistente e ácido sensível, apresentando 

maior atividade proporcionalmente ao aumento do pH. Sua sequência de aminoácidos 

possui homologia com outras PLA2 ácidas de cascavéis. Possui atividade antiagregante 

plaquetária induzida por colágeno, ácido araquidônico e adrenalina, além de ser agregante 

plaquetária em plaquetas lavadas e inibidora da agregação de plaquetas lavadas através 

da ação sobre o receptor de trombina. Essa PLA2 é anticoagulante agindo no complexo 

tenase extrínseco e/ou complexo protrombinase. Pode ser  considerada a primeira PLA2 

da peçonha de serpente classificada como uma quimerolectina.  

Cdca-II-PLA2 apresenta peso molecular de 14.418 Da e atividade fosfolipásica 

específica de 26,75 ± 0,15 U/mg, sendo mais ativa do que a primeira. Também é 

considerada termorresistente e ácido sensível, com maior atividade proporcionalmente ao 

aumento do pH. Sua sequência de aminoácidos indica que essa PLA2 é a molécula 

precursora da crotapotina. Possui atividade antiagregante plaquetária em PRP induzida 

por colágeno, ácido araquidônico e adrenalina. É capaz de inibir a coagulação sanguínea 

através do complexo tenase extrínseco e por meio da ação sobre o fibrinogênio. A Cdca-

II-PLA2 é a primeira PLA2 purificada da peçonha de serpente classificada como inibidora 

de trombina, formando complexo com eo fibrinogênio e degradando-o de forma muito 

lenta.  

Portanto, Cdca-I-PLA2 pode ser classificada, possivelmente, como uma 

quimerolectina anticoagulante com importante atividade sobre agregação plaquetária, 

enquanto Cdca-II-PLA2 é uma fosfolipase com alta atividade enzimática, inibindo tanto 

a agregação plaquetária quanto a coagulação atuando, provavelmente, como um inibidor 

de trombina. 
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