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Resumo

A presenca de fluido ou a pressdo de fluido, exerce uma influéncia significativa sobre a resis-
téncia da rocha e deformacdo e isto ocorre nao sé na escala de graos, mas também na escala
litosférica. Isto levou a uma necessidade de compreender os processos acoplados hidromecanicos.
E com o aparecimento de métodos de computagdo e a maturidade de software e hardware, o
desenvolvimento de uma ferramenta numérica adequada que pode lidar com a complexidade do
comportamento acoplado hidro-mecanica, tem sido reconhecido como uma das principais tarefas
na drea de engenharia de petréleo. Na drea de engenheira de petrdleo na previsao e gestao de
reservatdrios € a simulagdo numérica que tradicionalmente tem na compressibilidade dos poros
0 Unico parametro geomecanico. Normalmente, apenas um valor constante deste parametro é
adotado para todo o reservatdrio. No entanto, o reservatério de rocha sofre deformacdes durante
a exploragcdo de campo, o que induz a reducdo da porosidade e da permeabilidade. Enquanto
o primeiro efeito ndo € bem representado pela compressibilidade, o segundo ndo muda. Entao
tentar modelar o acoplamento hidro-mecéanica resultaria de grande importancia, mais em ca-
sos onde o problema tenha uma grande quantidade de elementos, pode resultar de alto custo
computacional ao resolver-lo totalmente acoplado, visando estas andlises integradas, mas sem
aumentar o custo computacional, o acoplamento sequencial pode ser uma opg¢do para alguns
casos de engenheira do petréleo. O objetivo desta dissertacdo é abordar dois esquemas numéricos,
totalmente e sequencial acoplado, o esquema acoplado resolve todo o sistema de equacdes em
um mesmo passo de tempo, no esquema sequencial, resolve em um mesmo passo do tempo o
sistema de equagdes, mais desacopla o sistema de equacdes em dois sistemas, neste trabalho
verifica-se a precisdo numérica do esquema sequencial em relacdo ao esquema totalmente aco-
plado utilizando o programa computacional de elementos finitos CODE-BRIGHT (COupled
DEformation and BRine, Gas and Heat Transport) para a verificacdo. Os resultados obtidos na
modelagem numérica para o problema do poco horizontal no regime eldstico, os parametros
analisados foram os mesmos, no regime elasto-plastico, observo-se similitudes no analise dos
parametros. Para o problema da reativacao da falha também obtive-se resultados satisfatdrios,as

diferencias dos parametros analisados foram minimas.

Palavras chave: Modelagem Hidro-Mecanica. Elementos finitos. Esquema acoplado. Esquema

seqiiencial.



Abstrac

The presence of fluid or fluid pressure exerts a significant influence on rock strength and
deformation and this occurs not only on the grain scale but also on the lithospheric scale. This
has led to a need to understand hydromechanical coupled processes. And with the emergence
of computational methods and the maturity of software and hardware, the development of a
suitable numerical tool that can handle the complexity of coupled behavior of hydro-mechanical,
has been recognized as one of the main tasks in the engineering area of oil. In the field area of
petroleum engineer in the forecasting and management of reservoirs is the numerical simulation
that traditionally has in the compressibility of the pores the only geomechanical parameter.
Usually only one constant value of this parameter is adopted for the entire reservoir. However,
the rock reservoir undergoes deformations during field exploration, which induces the reduction
of porosity and permeability. While the first effect is not well represented by compressibility, the
second does not change. Then trying to model hydro-mechanical coupling would be of great
importance, but in cases where the problem has a large number of elements, it can result in a high
computational cost when solving it fully coupled, aiming these integrated analyzes, but without
increasing the computational cost, Sequential coupling may be an option for some cases of
petroleum engineer. The purpose of this dissertation is to approach two numerical schemas, fully
and sequentially coupled, the coupled scheme solves the whole system of equations in the same
time step, in the sequential schema, solves at a same time step the system of equations, further
decouples the system of equations in two systems, this work verifies the numerical precision
of the sequential scheme in relation to the fully coupled scheme using the CODE-BRIGHT
(COupled DEformation and BRine) finite element computational program for verification. The
results obtained in the numerical modeling for the horizontal well problem in the elastic regime,
the parameters analyzed were the same, in the elasto-plastic regime, similarities were observed
in the analysis of the parameters. For the problem of reactivation of the fault also obtained

satisfactory results, the differences of the analyzed parameters were minimal.

Keywords: Hydro-Mechanical Modeling. Finite elements. Coupled scheme. Sequential scheme.
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1 Introducao

1.1 Motivacao

Reservatorios carbondticos t€ém grande importancia na industria do petréleo, chegando a
conter metade das reservas de 6leo e gds do mundo. O relatério de 2016 da Agéncia Internacional
de Energia (EIA, 2016), mostra que o petréleo e o gas natural, representam mais de 50% da

energia primaria consumida no mundo e até 2040 ndo se esperam grandes mudangas.

Porém a exploracdo e a produgdo do petréleo sdo matérias de estudo em muitos centros
de pesquisa e universidades. O objetivo dos pesquisadores da drea de produgdo do petréleo
€ desenvolver ferramentas que sejam orientadas para uma producdo com qualidade, maximi-
zando o lucro. Uma das ferramentas que auxilia a industria petrolifera é a simulacdo numérica

computacional particularmente, a simulagdo numérica de reservatdrios de petréleo.

Mais precisamente no campo de aplicacdo da engenharia para a producdo de petréleo, o
acoplamento fluido-mecanico tem se mostrado como explicac¢ao de diversos fendmenos ocorridos
na exploracdo e producdo de reservatorios de petréleo. Um caso emblematicamente sempre
abordado em diversas revisdes sobre o tema se refere ao campo de petréleo Ekofish na Noruega,
em que o leito marinho sofreu uma importante subsidéncia sob o efeito do processo de extracao
de fluido do reservatério ao ponto de comprometer severamente varios pogos de produgdo,

levando a grandes gastos no reparo e prevencdo dos danos causados (OLIVEIRA, 2013).

Ainda no campo de extracdo de petréleo, outros exemplos de aplicacdo da andlise
acoplada fluido-mecanica sdo encontrados nos casos de estabilidade de pogos de petrdleo,
reativacao de falhas e/ou zonas de falhas, fraturamento hidraulico, producgao de sélidos, efeitos de
compactacao do reservatdrio na curva de producdo de petrdleo, relacdes tensdo-permeabilidade-
deformacdo, etc. As andlises dos fendmenos existentes no meio poroso tem se tornado cada
vez mais robustas e elaboradas na questio de se acoplar tais fendmenos, e ainda em melhores e
eficientes alternativas para solugc@o dos sistemas que surgem desse acoplamento. Sendo estd uma

area extensa ja estudada, mas ainda com vasto campo de estudo por ser abordado.

A solucdo do problema acoplado pode ser tratada basicamente por duas alternativas:
solucionando o problema de fluxo conjuntamente com o equilibrio mecéanico, conhecido como
totalmente acoplado ou através de processos sequenciais entre o problema de fluxo e o equilibro
mecanico. (LEWIS; SCHREFLER, 1998) apresentaram uma avaliacdo desses dois tipos de
acoplamento para o caso de fluxo monofésico indicando as situagdes mais favordveis para
a aplicacdo de uma e de outra alternativa. Classicamente nas aplicacoes em engenharia de
reservatorios de petréleo o método de acoplamento seqiiencial da solu¢do do problema onde

resolve-se os problemas em separado em que o problema mecanico € solucionado apés a solu¢ao
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do problema de fluxo, definindo uma tnica via de acoplamento, é chamado de one-way coupling.

Embora ndo seja um processo totalmente acoplado quando resolve-se todos os problemas
em conjunto, os métodos sequenciais sdo considerados acoplados na tentativa de obter-se a
melhor resposta dos sistemas em conjunto, sao diversos os trabalhos na utilizagdo de dita
alternativa (MULLER, 2007) e (FRYDMAN, 1996). (MULLER, 2007) aponta uma avaliacdo do
método totalmente acoplado com o método sequencial em relagdo ao processamento, indicando
que o método sequencial pode apresentar melhor desempenho computacional que o esquema
totalmente acoplado. Muller ainda ressalta as vantagens de utilizar-se o método sequencial
em relacdo na aplicacdo de condi¢des de contorno.(KIM, 2010) analisa as diversas formas
de acoplamentos entre as equagdes de fluxo multifasico e o equilibrio mecanico de maneira

sequencial atentando para aspectos de estabilidade e convergéncia de diversos métodos.

1.2 Objetivos

Um dos principais desafios desta pesquisa estd em resolver o modelo geomecanico com
a discretizacdo via MEF, assim obter comparagdes entres os acoplamentos numéricos, totalmente

e seqiiencialmente acoplado para alguns casos de engenheira de petroleo.

e Analisar numericamente, em meios continuos, os mecanismos envolvidos em condicdes
monofésicas de fluxo com os acoplamentos numéricos, totalmente e seqiiencialmente acoplado
mediante o simulador numérico de CODE_BRIGHT.

e Simular alguns casos de engenheira de petr6leo no CODE_BRIGHT para ambos
acoplamentos

e Fazer comparacdes de ambos acoplamentos numéricos e observar a precisao do acopla-

mento sequencial em relacdo do esquema totalmente acoplado para os casos simulados.

1.3 Organizacdo da Tese

A presente dissertacdo divide-se principalmente em 5 capitulos, além da bibliografia.

No Capitulo 1 considera-se a introdu¢do, onde detalha-se a motivacao, os objetivos e

contribui¢do do trabalho.

No Capitulo 2, detalha-se brevemente as propriedades da rocha e fluido, em seguida
descrevemos as equacdes constitutivas e suas hipoteses simplificadoras, que finalmente sao

utilizadas para derivar as equagdes governantes.

No Capitulo 3, desenvolve-se as técnicas numéricas empregadas na solug@o das equagdes

governantes introduzidas no Capitulo 2.

No capitulo 4, resolve-se alguns problemas modelos, nos quais interpretamos os resulta-
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dos comparando com aqueles disponiveis na literatura. Estos problemas sao simulados mediante
o programa de elementos finitos CODE_BRIGHT para os acoplamentos numéricos: totalmente
acoplado e seqiiencialmente acoplado.

As conclusdes para cada acoplamento nos casos de engenheira de petréleo como estabilidade do
poco, reativacdo de falha tanto no caso elastico e elasto-plastico para a estabilidade do pogo e
elasto-plastico para a reativacdo da falha, foram-se analisados os parametros mais importantes,
como também a acurdcia do esquema sequencial em relacdo do esquema totalmente acoplado e

o custo computacional de cada esquema.

No capitulo 5, neste capitulo as conclusdes s@o apresentadas como também as sugestdes

para futuras linhas de pesquisa a serem desenvolvidas baseados em este trabalho.
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2 Formulacao Matematica do Meio Poroso:

Abordagem continuo e Leis Basicas

Neste capitulo defina-se o meio poroso e sua representacdo matematica, logo defina-se
algumas aspectos importantes dentro do meio poroso e presume-se hipdteses simplificadoras das

quais consegues em as equagdes governantes do meio poroso.

2.1 Introducao

O comportamento mecanico do meio poroso esta claramente influenciado pelo fluido que
ocupa os poros, tal como foi estudado por (BIOT, 1941). Dada a irregularidade da matriz porosa,
como mostra-se na figura 1, os andlises de fluxo com as leis cldssicas de fluido complementadas

com a interacao de fluido-estrutura resulta impraticavel e irreal. (VAZQUEZ, 2003).

Entdo a descri¢@o do fluxo no meio poroso é complicada para escala inferiores dos poros
(para fixar ideias, escalas de 10~ cm), torna-se mais facil quando as escalas sdo maiores em
relagdo ao tamanho dos poros, entdo € conveniente uma escala maior. No estudo dos fluxos
através de meios porosos na escala VER (volume elementar representativo) este resulta ser
muito fina, de modo que estas médias sdo substituidas por médias maiores que chama-se volume
elementar representativo do meio poroso VERMP (VAZQUEZ, 2003), este volume deve ser o
suficientemente grande para abranger um numero estatisticamente significativo de poros, esta
escala também permite representar algumas leis e propriedades macroscépicas do meio poroso
tais como a lei de Darcy, permeabilidade entre outros, entdo € conveniente exigir uma quantidade

significativa dos poros.
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Figura 1 — Meio Poroso

Meio poroso

Fase dleo

/--
Matriz sdlida

Fase dgua

Volume representativo

Fonte: Sinmec projeto

2.2 Definicao do Meio Poroso Saturado

Um meio poroso saturado ¢ composto de uma matriz € um espago poroso, o tltimo sendo
preenchido por um fluido. A matriz compdese tanto da parte slida e da possivel porosidade
ocluida, saturado ou nao, o meio poroso pode ser tratado como a superposicao de dois continuos,
o continuo do esqueleto y o continuo do fluido (COUSSY, 2004), como mostra-se na figura 2.

Figura 2 — O meio poroso como a sobreposi¢do de dois meios continuos

Porosidade  Porosidade Fluido

ocluida conectada  Solido
+ @ =

Esqueleto da particula Particula fluida Volume infinitesimal
do meio poroso

Fonte: (COUSSY, 2004)

2.2.1 Abordagem Continuo

Como ja foi mencionado por (BIOT, 1941) que considera dito meio continuo como um

meio continuo equivalente a sobreposicao da duas fases com dois campos de deslocamento, uma
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para a matriz sélida e uma para o fluido (cinemadticas diferentes) que interagem e trocam energia

e material entre eles.

2.2.2 Abordagem de homogeneizacao e comportamento macroscopico

Dita homogeneizac¢do do meio poroso a escala macroscopica permite definir a0 meio
poroso, como um meio continuo, assim o VERMP ¢ definido de modo que, sempre que seja
posicionado no interior de um dominio considerado do meio poroso ele sempre contendo as duas
fases (fase so6lida e porosidade) como mostra-se na figura 3, além disso, presume-se que, dentro
do VERMP as duas fases sdo mais ou menos uniforme-mente distribuidas (VILLARO, 2004).

Figura 3 — O VERMP para o andlise no problema de desmoronamento

Homogeneizagéo Nivel “microscépico”

Fluido viscoso que enche o
volume do poro

Meios porosos
homogéneos equivalentes

Matriz solida deformavel

Fonte: (VILLARO, 2004)

2.2.3 The Averaging Approach: O Método da Média

Em este estudo utiliza-se o abordagem "the averaging approach", ela considera sempre
um VERMP em cada ponto mateméatico do dominio que contem todas las fases que existem
no problema a nivel microscépico, tratando-se de maneira independente cada una de elas, logo
obtém-se as propriedades fisicas medias do VERMP (como por exemplo a densidade), com o
objetivo final de poder chegar a definir as propriedades medias sobre todo o dominio do problema,
em seguida assume-se que estas propriedades medias sobre 0 VERMP considerado coincidem

com as do meio poroso estudado, para logo formular as equagdes a nivel macroscopico.

2.3 Revisao de Magnitudes e Equacoes Basicas

Defina-se o dominio em que os parametros e algumas varidveis sao estudadas. Seja / um
intervalo de tempo com ¢ € [ fixoe Q C R3 , com contorno dQ e n um vetor normal unitério

externo ao ponto da superficie de €2, como mostra-se na figura 4
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Figura 4 — Dominio

Defina-se uma fungio f : Q C R? — R chama-se campo escalar (exemplo densidade,

temperatura) ela comporta-se de maneira diferente a diferentes escalas como mostra-se na figura
5

Figura 5 — Valor médio do volume do VER pelo Valor médio de f

A
|
Dominio microscopico Dominio macroscépico |
heterégeno : heterégeno |
; \
h f ‘\ l : Meio heterégeno
}\ (' ‘ "\\ : [ \
5 T“UX"‘\M%W L
st —
‘g |' ‘ J )fu : ; Meio Homogéneo
g V [ '
S I ﬁ; l l
I f 7
] I l
f | l
| I
| |
[ >
0

Valor médio do volume do VER

Fonte: (LEWIS; SCHREFLER, 1998)

Mediante o processo de média feito no livro de (LEWIS; SCHREFLER, 1998) obtém-se:

2.3.1 Densidade

Para a fase fluida temos:
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Considerando-se um fluido monofésico, a densidade que depende da pressao e a tempe-

ratura do meio, entdo esta define-se como:

pr= p}ecf(Pf_P;)_ﬁf(T_To) (2.1)

Onde p;? € a densidade referencial, p € a pressao do fluido, p‘j’r ¢ a pressao do fluido referencial,
Cy a compressibilidade do fluido, T a temperatura, 7° a temperatura referencial e B¢ € coeficiente

de expansio térmica para o fluido
1 9p¢
Propy’
relacdo com um cambio da pressao.

Lembrando-se que: Cy = expressa-se como o cambio relativo do volume do fluido em

d . . . ~
Br= plf% expressa-se como o cambio relativo do volume do fluido em relagdo com um
cambio da temperatura.

As derivadas parciais € devido ao tamanho do REV que sdo quantidades infinitesimais.

2.3.2 Porosidade

Considera-se agora VERMP e fazendo o mesmo processo feito por (LEWIS; SCHRE-
FLER, 1998) para o VER, pode-se definir a porosidade como a razdo entre o volume de vazios e

o volume total do meio ou também:

v,
¢:§ com V,=V,+V, (2.2)
t

onde V), é volume de vazios, V; é volume da parte solida, V; € volume total.
Pode-se definir também o indice de vazios como:

Yy
= — 2.3
=y (2.3)

Esta pode-se escrever em funcao da porosidade da seguente forma:

[oj
=T 24
‘TI- 1) 4
e assim também a porosidade expressa-se:
e
= 2.5
=1, (2.5)

A porosidade pode servir como uma medida da capacidade de fluido que o meio tem para

armazenar.

Como j4 foi mencionado, foi considerado ao fluido, s6 monofésico, em consequéncia
nao apresenta fases dentro do fluido (por exemplo 6leo, agua e gas dentro de um meio poroso
como no interior de um reservatorio) por consequéncia também nao apresenta saturacao das

fases, como também ao fluido ser monofésico e totalmente saturado ndo apresenta capilaridade.
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2.3.3 Permeabilidade

Com mesmo andlise feito para porosidade podemos definir a permeabilidade intrinseca
ou absoluta de um meio poroso (exemplo: rocha ou solo) como uma propriedade que indica o

quanto um meio poroso permite o escoamento de um fluido.

Em geral a permeabilidade intrinseca depende das propriedades do meio poroso tais

como a geometria, tamanho e distribui¢do graos entre outros.

Assumindo que nosso meio poroso € saturado, homogéneo e isétropo (ndo necessaria-
mente para que a permeabilidade resulte ser tensor) e quando as forgas inerciais sao despreziveis

(todas estas condicdes necessdrias para que a lei de Darcy tenha validade)

Resulta que a permeabilidade intrinseca pode ser definir como um tensor de segunda
ordem (€ de segunda ordem pela natureza do dominio ) e este pode-se representar pela seguente

matriz:

k= | ky ky ki (2.6)

.  Kzy Kz

Esta matriz € simétrica e definida positiva, por consequéncia o tensor de permeabilidade

garanta uma condutividade fisica consistente.

Defina-se a condutividade hidrdulica como a capacidade para transmitir o fluxo através
do meio poroso, mais ela depende tanto das propriedades do fluido (densidade e viscosidade)

quanto do meio (permeabilidade intrinseca) e pode-se representar como:

Kk, — 28 2.7)

My
Onde py € da densidade do fluido, g € a gravidade, s € a viscosidade do fluidoek € a

permeabilidade intrinseca.

Este tensor ky, herda as propriedades do tensor de permeabilidade intrinseca k.

2.3.4 Lei de Darcy

Esta € uma lei experimental desenvolvida por Henry Darcy em 1856, que conclui que
existia uma relacdo direta entre a vazio que atravessava o leito de areia e a diferenga de carga

associada a essa vazao.

Posteriormente foi estendida a outros fluidos e generalizada, assim esta lei € para pro-
blema de escoamentos laminares de fluido Newtoniano em meios porosos com matriz sélida

rigida (Ilembrando que o meio poroso é continuo, totalmente saturado, monofasico e homogéneo).
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Esta lei estabelece uma relagdo linear entre o gradiente de pressio do fluido e a velocidade

com que o mesmo escoa (BEAR, 1972) e escreve-se como:

K
——— (Vpr—ps (2.8)
qay uf( Pr—pse)

Onde q; € o vetor velocidade do fluido ou velocidade de Darcy, k € tensor de permeabili-
dade (permeabilidade intrinseca), [ 7 € a viscosidade do fluido, ps € a pressdo do fluido e g € o

vetor gravidade

2.4 Cinematica do meio poroso

Na cinemdtica do meio poroso tem-se que considerar o seguente: Para a descri¢do da fase
solida pode-se descrever como € feito para a mecanica cldssica do continuo, € conveniente utilizar
a formulacao lagrangiana (também conhecido como descri¢do material) independentemente
baixo qualquer hipé6teses de pequenas o grandes deformacdes. Para a descri¢ao da fase fluida é
utilizada a formulac¢do euleriana (também conhecido como descri¢do espacial). Em esta seccao
estuda-se a cinemadtica da fase solida particularmente nos tensores de deformacdo para pequenas
deformagdes (para um estudo mais completo sobre o tema de cinematica do meio continuo
pode-se ler (COUSSY, 2004)), estas pequenas deformacdes acontecem por exemplo em um
reservatorio, pois quando hd variacao da pressdo dos fluidos contidos nele, durante a produgdo
de hidrocarbonetos, ha uma redistribuicao das forcas no reservatério, consequentemente sofre

mudanca referente ao seu estado inicial.

2.4.1 Deformacao

Dado um movimento x = x(X,#) com X € Q4y, X € £; e ty,t € 1. Para um tempo ¢ fixo,

defina-se o deslocamento u(X) = x — X como mostra-se na figura 6
Figura 6 — Deslocamento u para um tempo ¢.

Corpo no
tempo t

Corpo no
tempo t,




Capitulo 2. Formulagdo Matemdtica do Meio Poroso: Abordagem continuo e Leis Basicas 25

no sistema cartesiano pode-se escrever como u = (u,v,w) e resulta ser um campo vetorial

de deslocamento do corpo €.

O tensor de deformacdo para u € um tensor simétrico que € representado no sistema

cartesiano como:

Exx Sxy Exz
E= | Ex &y &y (2.9)
Ex & &
onde:
u vetor deslocamento

Assumindo deformacdes infinitesimais, entdo para um meio poroso cujo vetor desloca-

mento é u = (u,v,w), as componentes do tensor deformacao sio definidas por:

__ du _1(Jdu | dv
Exx = Oy Sxy—z<a—y+a)
_dv _1(du , dw
Eyy Iy Exz = ACE + Tx (210)
_dw _1(dv | dw
&z 9z gyz — 2\ 0z + Jy
ou também pode-se escrever como:
1 T
e==(V:-u+V-u 2.11
2 ) .1

2.4.2 Tensao

Como ja foi considerado o meio poroso  com contorno dQ e agora submetido ao a¢do

de forga f sobre o contorno dQ e b sobre Q como mostra-se na figura 7
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Figura 7 — Forcas atuando em o corpo Q .

as forgas atuantes sobre o corpo € podem ser de duas diferentes naturezas:
As forcas do corpo ou de volume que sdo exercidas por outros corpos sobre . Este tipo de
forca € dado por uma "densidade volumetria de for¢a"que € um campo vetorial continuo b. Um
exemplo de forca de corpo € a gravitacional.
As forgas de contacto ou de superficie € exercida sobre as fronteiras ou contorno, ela é dada por

uma densidade de superficial de forga f.

Pelo teorema da existéncia do tensor de Cauchy da mecénica do meio continuo, as forcas
atuantes sobre o corpo 2, precisam satisfazer as leis de balanco de momento linear e angular em
consequéncia implicam que para cada ponto x de € e tempo ¢ existe um tensor, em consequéncia

um campo tensorial. Este tensor é da segunda ordem e é representado por:

0= | Oy Oy Oy (2.12)

Este tensor € simétrico e satisfaz a equacdo do momento linear expressada como:

divo+b=f ; com b=pg (2.13)

onde o € o tensor de tensdes, b € o vetor da forca de corpo, p € a densidade e g € a

gravidade

Como o tensor de tensdes do corpo € € um tensor de segunda ordem e simétrico entdo

pelo teorema espectral, existe uma base ortonormal formada por auto-vetores o que significa
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que existe um sistema de coordenadas onde as tensdes cisalhantes sdao nulas e somente ha
tensdes normais. Estas tensdes normais resultam ser os auto-valores do tensor de tensdes também
conhecidas como tensdes principais.

Para o calculo dos auto-valores de o, considere-se um ¢ auto-valor (que existe porque o tensor é

simétrico) de o, entdo existe um vetor v € L tal que:

(c—ol)v=0 (2.14)

Este acaba por ser um sistema homogéneo indeterminado, logo o — ol é uma matriz

invertivel, isto implica que |0 — oI| = 0, e assim obtém-se o polinémio caracteristico:

o’+Lo’+ho+L=0 (2.15)

A solucdes a equacdo do polindmio caracteristico sdo os auto-valores de o denominadas

tensdes principais, onde 07 > 6, > 03, e Iy, I, I3 sdo os invariantes tensoriais

Ao considerar-se outra base ortonormal (uma rotacdo do sistema de coordenadas), as

componentes do tensor mudam mais os invariantes permanecem. Eles definem-se como:

Iy =tr(0) = O+ Oyy + O, (2.16)
L= zey + sz + Gyzz — (OxOxx + Gy Oy, + 0, 07;) (2.17)
L =|o] (2.18)

Outro invariante importante € a tensdo média ¢ (devido a que /; € um invariante) , que

representa o valor médio das trés tensdes principais e expressa-se como:

tr(o 1
r(o) (01+02+03) = 3 (0r + 0y +0) (2.19)

o = 3

W[ —

Esta tensdo média fornece a medida de compressao ou expansdo uniforme.

Defina-se o tensor desviador como:

S=o0-ol (2.20)
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Da mesma forma que hd os invariantes do tensor de tensdo, existe os invariante do tensor

desviador J;, Jp, J3

2.4.3 Elasticidade Linear

Na elasticidade linear, estuda-se o comportamento mecanico de corpos sélidos sujeitos a
"pequenas deformagdes"o tensor usado para caracteriza-las € o "tensor das deformagdes infinite-
simais". Assumindo que o meio poroso € isotropico linear, entao a relagcao tensdo-deformacao é

expressa pela lei de Hooke.

o =De (2.21)
onde o € o tensor de tensoes, D € o tensor constitutivo (de quarta ordem) e € € o tensor de

deformagdes. Ou também pode-se expressar como:

o =2Ge + Atr(e) (2.22)

onde G é o modulo de cisalhamento e A uma das constantes de Lame. Como o meio é

isotrépico tem-se a seguente relacio:

E

onde E é o mddulo de Young e v € o coeficiente de Poisson.

2.5 Poroelasticidade

O mecanismo de consolidacdo de solos foi inicialmente explicado por Terzaghi a partir
de experimentos em laboratdrio, o qual analisou a sedimenta¢cdo de uma coluna de solo exposta
a uma carga constante e impedida de se deslocar lateralmente (estado unidimensional). Nesta
pesquisa, Terzaghi introduziu os principios das tensdes efetivas. Apds este trabalho, Biot, expan-
diu esta teoria para um caso tridimensional considerando carga varidvel com o tempo. Biot fez

as seguintes consideracdes em seu modelo:
e Material isotropico e homogéneo,
e Reversibilidade na relacao tensdo-deformacao,
e Relagdo tensdo-deformacao linear,
e Deformacgdes infinitesimais,
e Agua contida nos poros é incompressivel,

e O liquido escoa pelo meio poroso seguindo a lei de Darcy.



Capitulo 2. Formulagdo Matemdtica do Meio Poroso: Abordagem continuo e Leis Basicas 29

O principio de Terzagui defina-se como:

o=0+psl (2.24)

onde o é o tensor de tensdes, ¢’ é o tensor de tensdes efetivo, py € a pressdo do fluido e
I € o tensor identidade. Terzaghi deduziu este conceito através de ensaios de consolidagao
unidimensional, este conceito foi generalizado para o caso tridimensional mais adiante por
(BIOT, 1941) e inclui o fator poroeléstico (também conhecido como parametro o de Biot-Willis),

e a equacdo (2.24) escreve-se agora como:

6 =0 +apsl (2.25)

onde o chama-se coeficiente de Biot. O parametro o € obtido pela relagdo entre o médulo de

rigidez do meio poroso e o médulo de rigidez da fase solida, ele é dado pela seguente equacgao:

K
=1—-— 2.2
o X (2.26)

S

onde K € mddulo de rigidez do meio poroso (bulk modulus) e Ky é mddulo de rigidez da fase
solida. O moédulo de rigidez € una propriedade dos materiais que da informacao sobre que tdo
facil € comprimir-los uniforme-mente por todos os lados

Observe-se o seguinte, considere-se a0 meio poroso como um solo tem-se, K < K; , logo o¢ =1
e considera-se uma rocha, tem-se um valor muito alto para K, logo a < 1.

Tem-se a seguinte relacdo entre a compressibilidade do solido e o médulo de rigidez do meio

com a seguente equacao:

1
C, = X (2.27)
no regime elastico linear, temos, K = 3 (115 ) onde E é o médulo de Young e v € o coeficiente

de Poisson.

Agora defina-se a deformacao volumétrica, com nossa hipétese das deformacdes infinite-
simais, se um corpo estd submetido ao um esforco, este experimenta um cambio de volume AV,
ao cociente de este entre o volume original Vj, chama-se deformagdo volumétrica e expressa-se
como:

AV

€ = —— =Ext+ &y + &y (2.28)
Vo

Para a justificativa da segunda igualdade na equacdo (2.27) da deformacao volume-
trica ver (COUSSY, 2004), (OLIVELLA; SARACfBAR, 2010), apresenta-se uma pequena
justificativa, de dita equagdo, da defini¢do temos o seguente:

AV V=V [F| V-
Vo Vo W

v
0 —|F|—1 (2.29)

&

onde F € o gradiente de deformacao, tem considerado as componentes de € infinitésimos, logo

|F| = [I+ €|, e desprezando na expressdo de seu determinante os infinitésimos de ordem superior
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a um, tem-se:

14 &4 Exy Ex;
Fl=| &x 1l+gy, ¢&; |= 1+ €+ &y + &, +0(e) 1 +1r(e) (2.30)
Ex &y 1+¢g;

logo ao substituir a equagao (2.29) na equacao (2.28) consegue-se a defini¢do da deformacgao

volumétrica dada pela equacgdo (2.27)

Pode-se observar que a equagdo proposta por Terzaghi € o caso onde & = 1, isto é, para o
caso onde os graos da matriz rochosa sdo incompreensiveis. A rigidez do meio poroso descreve

a resisténcia do material submetida a uma solicita¢@o hidrostética tr(c’) /3

tr(o’)

~ 3ir(e) 2.31)

Como € suposto que o material € isotropico linear, entdo agora a relacdo tensao-deformacao
do meio poroso € expressa pela lei de Hooke da teoria da elasticidade com um termo adicional,
que considera o efeito da pressdo do fluido no interior do meio poroso. Como o material é
isotropico, a variagdo da pressdo do fluido ndo causa deformagdes cisalhantes, assim este termo

€ acrescentado apenas nas componentes normais da deformacao (BIOT, 1941).

(o v p
& = F — £ (Oyy +0z) + 3¢

Oy _ v P
&y =% — £ (Ot 0) + 35

Ozz v

Oxy ( . )
&y =126

O,

_ Y%

&= 173G

Onde p € a pressao do fluido ou poro-pressdo, E € o médulo de Young, G é médulo

cisalhante, v o coeficiente de Poisson, € K; é o modulo volumétrico da fase solida.

2.6 Equacao da Continuidade - Conservacdao de massa

O principio da conservagdo da massa diz que a massa do meio continuo € sempre a
mesma. Mostra-se a equacdo da continuidade para a descricdo espacial ou euleriana.

Sejax =x(X,t) com X € &, x € Q; e fp,7 € [ e também a propriedade y do meio (uma
funcdo continua definida no meio) na descrigdo lagrangiana escrevemos como y;(X,?) e na

descrigdo euleriana como Y, (X,?)

Para a propriedade y defina-se a derivada local na descri¢do euleriana como: % (Ye(x,1)).



Capitulo 2. Formulagdo Matemdtica do Meio Poroso: Abordagem continuo e Leis Basicas 31

E a derivada material na descrigdo lagrangiana como: £ (y;(X,1)) = % (yi1(X,1)).

Logo a derivada material na descricao euleriana ao aplicar a regra da cadeia escreve-se

COmo:

D 9 i d . d
E(‘lfe(X,l)) = E(‘lfe(X,l)) + Ea—xi(llfe) = E(%) +v- V() (2.33)

onde v = % € o vetor velocidade da particula na descricao espacial.

Logo para qualquer propriedade do meio () a equagdo anterior pode se escrever como:

D 0
D_t(.) — E(.) +  v-V(e) . (2.34)

. . . derivada convectiva
derivada material derivada local

Observe que:

%(o) ¢ a taxa de variacdo temporal da propriedade e de uma particula do meio quando

ela move-se através do espaco.
%(o) mudanca da propriedade em relagdo da taxa de tempo no ponto fixo.

v-V(e) implicitamente definido como a derivada convectiva representa a taxa do tempo
de mudanca devido ao movimento da particula de um local para outro onde as propriedades sdo

espacial-mente diferentes.

2.6.1 Equacao da continuidade para descricao espacial

Nesta sec¢do deduz-se a equag@o de conservagdo da massa, seja o corpo € de superficie
de contorno d<Q, considere-se uma regido Q' da superficie dQ com contorno I" para um tempo
¢ € I com n um vetor normal unitério externo ao um ponto de Q' , vg o vetor velocidade de dito

ponto como mostra-se na figura 8
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Figura 8 — Conservagdo de massa.

e ¥ (x,7) uma propriedade na descri¢do euleriana, entdo se cumpre que:

d dy
E/Q/ l//(x,t)dx_/glydx+ﬁy/n-vsds. (2.35)

Agora para cada elemento de massa do meio com velocidade v e considerando-se uma
regido especial Q' tal que a superficie de delimitagdo I" é anexada a um conjunto fixo de elementos
do material. Entdo, cada ponto desta superficie move-se com a velocidade do material, isto &,
Vs =V, e aregido Q' contém assim uma quantidade total fixa de massa porque nenhuma massa
atravessa a superficie limite I'. Para distinguir a taxa de variacio temporal de uma integral sobre

esta regido de material, substitui-se d/dt pelo D/Dt e escrevemos a equagio (2.35) como:

D dy
- /Q ix1)dx= /Q it ﬁ yn-vds (2.36)

que contem o material da regido, isto é, uma regido de massa total fixa, esta equacao € referida
como o teorema de transporte de Reynolds. A relacdo entre a derivada temporal apds uma regido

arbitréria e a derivada temporal apés uma regido material (massa total fixa) é

i/ y(x,1)dx = B/ w(x,t)dx—k% yn- (vs—v)ds. (2.37)
dt Jo Dt Joy r

A diferenga de velocidade v — vg € a velocidade do material medida em relagdo a

velocidade da superficie. A integral de superficie

f{ yn- (v —vg)ds,
r

mede a vazdo total da propriedade y da regido Q. Seja p(x,7) a densidade de massa de uma

regido continua. Entdo o principio de conservagdo de massa para uma regido de material fixo Q'
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requer que

o | pax=o. (2.38)

Entdo da equacdo (2.37), com W = p, segue-se que para uma regido espacial fixa Q' (isto

é, v¢ = 0) e substituindo a equacgdo (2.38) na equacao (2.37), entdo o principio da conservacao

da massa também pode-se escrever como:

d

& | pdx=— 7{ pn-vds. (2.39)

Assim, a taxa de tempo de mudanca de massa dentro de uma regido Q' € igual ao fluxo
de massa (por causa do sinal negativo) através da superficie para a regido. Na equagio (2.39), Q'

denota o volume de controle (cv) e I a superficie de controle (cs) que envolve €'.

Usando a equagdo (2.35) com ¥ = p, na equagdo (2.39) expressa-se como:

/ 9P gy = f pn-vds. (2.40)
Q/ I

Na equagdo (2.40), convertendo a integral de superficie em uma integral de volume por

meio do teorema de divergéncia que escreve-se como:

fpn-vds:/ V.- (pv)dx
r o

e reescrevendo a equacdo (2.40) obtém-se:

/ [a—p+v- (pv)} dx =0, (2.41)
Qo | dt

Como a regido Q' foi escolhida arbitrariamente e a integral é nula para qualquer regido

Q’, entdo o integrando também anula-se, assim tem-se:

ap B
— Y (pv)=0. (2.42)

Esta € a equacdo da continuidade, expressa a conservacao local da massa em qualquer

ponto em um meio continuo.

Uma derivagdo alternativa da equacdo (2.42) e a deducdo da equagdo de continuidade na

descricdo lagriana pode-se encontrar em (REDDY, 2013)
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2.6.2 Fase sdélida

A equacio da conservag@o de massa para a fase solida é descrita como:

2 1(1-6)p +V-[(1-0)pyi] =0 e43)

onde ¢ € a porosidade, ps € a densidade do solido, @ ou %—‘t‘ ¢ a derivada parcial de u em relacdo

do tempo e V o operador nabla. Também tem-se em consideracao o seguinte que a densidade

total do meio é dada por:
pr = (1—-9)ps+py (2.44)

onde p; € a densidade total, ps € a densidade da parte solida e p; € a densidade do fluido.

Na seguintes linhas fazem-se transformagdes e manipulacdes das equagdes, isto ird
permitir-se obter as equacdes para a formulagdo numérica, para isso o desenvolvimento da
derivada parcial no primeiro termo da equagao (2.43) e do gradiente no segundo termo, e utiliza-

se a derivada material na equacgdo resultante, esta derivada material pode-se apresentar como:

D J .
o (8) = (e)+1-V (o) (2.45)

Entdo ao desenvolver os operadores diferenciais da equagao (2.43) obtém-se:

d P
P59+ (1- ¢>§ps —psV(9) -+ (1-9)V(py)-u+(1-9)pV-u=0 (2.46)

Ao rearranjar os termos da equagao (2.46) tem-se:

J d
—ps[g¢ +psV(9)-ua]+(1- (P)[Epﬁv(ps) A+ (1-9)psV-u=0 (2.47)

Ao substituir a equacgdo (2.45) na equagdo (2.47) tem-se:

D D
—Ps— 1—¢)— (ps 1— sV-u=0 2.48
P (9)+(1=0) 5 (p) +(1-$)p.V - 2.48)
Como a deformacao volumétrica pode-se escrever:
& =8Ex+€y+e,=trleg]=divu=V-u (2.49)

Ao aplicar a derivada temporal na equacao (2.49) temos que:

0 . d . .
Egv =div Eu ou & =V-u (2.50)

Logo pode-se substituir a equagdo (2.50) na equagao (2.48) e tem-se:

D D .
—Psy (9)+ (1 =0) 5 (ps) + (1= 9)ps&y =0 (2.51)
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Entdo da equacdo (2.51), a derivada material da porosidade pode-se expressar como:

D (1-9) D
Dt ps Dt

(ps)+(1—9)& (2.52)

2.6.3 Fase fluida

Considera-se que o fluxo seja monofésico e tem-se que a equacao da conservacao de

massa para a fase fluida € descrita como:

d
5; (0r0) + V- (pras+9ps) =0 (2.53)

onde q € o vetor velocidade do fluido ou velocidade de Darcy.

Para a obten¢do das equacoes, aplica-se o mesmo procedimento feito para a equacdo de

conservacao da fase s6lida entdo, tem-se para a equacao da fase fluida:

d d
Pradt95pr+V: (prag) +prV(9)-a+oV(ps)-u+¢psV-u=0 (2.54)

Ao rearranjar os termos da equagio (2.54) tem-se:

2 9
prl @+ V(0) -t +9[=pr+V(py) 4] +¢pV-i=0 2.55)

Ao substituir as equacdes (2.45) e (2.53) na equagdo (2.55) tem-se:

D D :
Prp, (9)+905 (Pr) + V- (prar) +¢psV-€ =0 (2.56)

Na equacdo (2.56) ao substituir a equagdo (2.52)obtém-se:

1—-¢)D D
( ps¢) o (P)+pr(1=9)é+ 97 (pr) + V- (prar) + 9psV - € =0 (2.57)

Py
Ao Rearranjar e reduzir termos, temos:

1-¢)D
( 5 2 o P9+ V- (pran) +prés =0 (2.58)

D
¢E (ps) +py

Como a alpha de Biot pode-se expressar como na equagdo (2.26)
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E que a densidade foi definida na equagao (2.1) :
Cr(pr—p%)+o(T-T°
pf — p})e f(Pf pf)+(X( )
Ao derivar em relagdo da pressao do fluido tem-se:
d _ _
EPI _ CppleCrtesppralT=T0 _ . (2.59)
dpy :
do qual resulta a compressibilidade do fluido como:
1d
= Pt (2.60)
prdpys
Observe-se que:
K ! (2.61)

onde Ky € o modulo de rigidez do fluido

2.7 Modelo Constitutivo Elasto-plastico

Os modelos (equacdes constitutivas) elasto-plasticos sdo utilizados para representar o

comportamento mecanico dos materiais quando certos limites sdo ultrapassados em valores de

tensoes (ou deformacgdes) e dito comportamento deixa de ser representdvel por modelos mais

simples quanto eles sdo elasticos. A hipotese necessdria para os modelos elasto-plésticos tenha

validade € que as deformagdes sejam infinitesimais.

Segundo (SOUZA; PERIC; OWENS, 2008) para a formula¢gdo de um modelo elasto-

plastico sdo critérios essenciais os seguentes:
e Relacgdo elastica.
e Critério de plastificacdo.
e Existéncia de um potencial plastico.

e Leis de endurecimento € amolecimento.

2.7.1 Principio da Decomposicao Aditiva da Deformacao.

De acordo com a hipétese de pequenas deformagdes tem-se que a decomposicao do

tensor de deformacgdes totais € € igual a um tensor de deformagdes eldsticas (ou reversiveis) £¢
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mais um tensor de deformagdes plasticas (ou irreversiveis) €P, e expressa-se como:
e=¢€%4¢€P (2.62)

2.7.2 Funcao e Superficie de Fluéncia

Para um material, em um determinado tempo #, defina-se a fungdo de fluéncia F (o, h),
obtida em funcdo do estado de tensdes atuante e dos parametros pldsticos do material, parti-
cularmente h € um vetor de pardmetros de estado que controlam o endurecimento. Quando
F(0,h) < 0, o material comporta-se elasticamente, pode-se definir entdo o conjunto de tensdes
de dominio elastico como:

Es={0:F(o,h) <0} (2.63)

Quando F(0,0) < 0 chama-se dominio eldstico inicial que corresponde a uma deformagao

plastica nula ( € = h = 0) e defina-se como:
ES={c:F(c,0) <0} (2.64)

Ja quando F(o,h) =0, ocorrem as deformacdes pldsticas que considera a existéncia dos para-
metros plasticos (h # 0) , o conjunto de tensdes € uma superficie fechada que delimita a fungio

de fluéncia e chama-se superficie de fluéncia descrita como:

dEs = {0 : F(0,h) =0} (2.65)

quando o material estd em regime plastico, ou seja, deformando-se de maneira irreversivel, o

estado de tensdes sempre deve estar sobre a superficie de fluéncia.

E quando F(o,h) > 0 significa uma situagdo impossivel. Na figura 9 pode-se observar

os conjuntos definidos anteriormente.

Figura 9 — Superficie de fluéncia de F

REGIME REGIAO
PLASTICO INADMISSIVEL

sobre a superficie
/ o

,h)=0
DOMINIO
ELASTICO

Fonte: (PRAT, 2006)
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para plasticidade com endurecimento ou amolecimento h varia com as deformacdes

plésticas e a superficie de fluéncia se expande ou diminui durante o carregamento

2.7.3 Potencial plastico

Para se estabelecer a direcdo da deformacao pléstica em qualquer estado de tensdes,
considera-se como hipétese a existéncia de um potencial P que caracteriza a lei de escoamento

através da seguinte relacdo:

P
Ael = A&Gi

onde Ag! representa as seis componentes da deformagio pléstica incremental, P € a fungdo do

(2.66)

potencial de plastificagdo e A € € chamado de multiplicador pldstico e € um escalar que fornece
a magnitude da deformacao pléstica. A direcao é dada pelo gradiente de P, a funcdo potencial

plastica, obtém a forma seguente:

P(oc,m)=0 (2.67)
onde m € um vetor caracteristico dos parametros do material. A direcao da deformacdo pléstica

¢ paralela a direc@o do gradiente do potencial pléstico e, portanto, perpendicular a superficie

determinada por P, como mostra a figura 10

Figura 10 — Potencial plastico e vetor de deformagdes plasticas

6, def 4
gy
\—odﬁg
2t 0, dej

Estado de Tensdes Correntes

0y, e}

Fonte: (POTTS; ZDRAVKOVICT, 1999)

Para se favorecer simplificacdes € introduzida a consideracdo de que a fungdo potencial de

plastificagdo € igual a superficie de fluéncia P(c,m) = F (o ,h). Neste caso a lei de escoamento é
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chamada associativa. Quando se trabalha com func¢des distintas para o potencial de plastificacdo

e superficie de fluéncia, denomina-se lei de escoamento nao associada

2.7.4 Tensor Elastoplastico

Ao contrério do caso eldstico, ndo existe unicidade na relacdo de tensdo-deformacao,
um mesmo valor pode corresponder a valores infinitos da tensdo e vice-versa. O valor da
tensdo, depende alem da deformacdo também da histéria de carregamento. Para obter o tensor
constitutivo elastopldstico consideramos o seguente: No regime eldstico o tensor constitutivo foi
definido pela a lei de Hooke e denotado como, D, este pode-se reescrito como D¢ = D, tendo
em consideragdo a teoria incremental aplicado na plasticidade consegue-se o tensor constitutivo
elastoplastico denotado por: D°P, para a dedugao de este tensor pode se encontrar em (POTTS;
ZDRAVKOVICT, 1999), 6 =D°P¢

2.7.5 Modelos Constitutivos

Os critérios de escoamento mais usados sao representados no espaco das tensdes princi-
pais .Os critérios de Drucker-Prager e Von Mises sdo regularizacdes (suavizagoes) dos critérios
de Mohr-Coulomb e Tresca. A Figura 10 mostra a intersecao das superficies de escoamento
de Mohr-Coulomb, Drucker-Prager e Tresca estendido com o plano 7 . Observou-se os trés
critérios através de dados experimentais e conclui-se que o critério de Mohr —Coulomb € o que
melhor prevé a ruptura ou escoamento do solo. Apesar disso, o critério de Drucker-Prager é
muito usado por sua simplicidade, pois é func¢do apenas de dois invariantes das tensdes, enquanto

que o critério de Mohr-Coulomb necessita de ser definido em func¢ado de trés invariantes
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Figura 11 — Sec¢ao do plano 7 com as superficies de escoamento de Drucker-Prager, Tresca
Estendido e Mohr-Coulomb.

Mohr=Coulomb

Gy

Drucker-Prager

Tresca estendido

Fonte: (CABRAL, 2007)

2.7.6 Modelo de Drucker-Prager

No modelo de Mohr-Coulomb (POTTS; ZDRAVKOVICT, 1999) apresenta cantos agu-
dos quando se traga a fun¢do no espago das tensdes efetivas principais. Esses cantos implicam
em singularidades nas fun¢des de fluéncia. Uma das solu¢des mais comuns para resolver o
problema de essas singularidades € adotar uma fun¢do que envolva a superficie de plastificacao
de MohrCoulomb como é mostrado na figura 12. Essa superficie foi proposta por Drucker-Prager.
Essa simplificagdo € quando adota-se uma func¢ao que traca um cone cilindrico no espago das
tensdes principais. O modelo de Drucker Prager prevé que a plastificacdo tem inicio quando o
invariante de tensdes desviadoras, S, e a tensdo média, &, atingem uma combinacdo de valores

criticos. Para este modelo podemos definir a fun¢do de fluéncia da seguinte forma:

c

F(G,m):S—( +6>M:o (2.68)

tan@
sendo ¢ a coesdo, e ¢ o angulo de atrito, pardmetros do material e M é uma constante do material.
Esta forma de funcao de plastificac@o é frequentemente chamada por Drucker-Prager ou funcao

de Von Mises estendido.
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Figura 12 — Superficie de plastificacdo de Drucker-Prager: Espaco das tensdes principais e plano
octaédrico.

) Mohr-Coulomb

0=0,=0;

0
0;

Cone de Tragdo

Cone de Compressao

Fonte: (SOUZA; PERIC; OWENS, 2008)

2.8 Fluxo com Acoplamento Geomecanico

2.8.1 Introducao

Um problema acoplado € aquele em que dois ou mais sistemas fisicos interagem entre
si e cujo acoplamento pode ocorrer através de diferentes graus de interacdo (ZIENKIEWICZ,
2000).

2.8.2 Tipos de Acoplamento

As interacOes entre os subproblemas de fluxo e mecénico tem sido modelados utilizando
varios esquemas de acoplamento, os acoplamentos pode ser feito através de diferentes maneiras:
Acoplamento Total, acoplamento sequencial, explicito e pseudo-acoplamento (SETTARI; M.,
2002).

2.8.3 Acoplamento Implicito ou Totalmente Acoplado

Neste tipo de acoplamento, varidveis de fluxo, tais como a pressdo, temperatura, saturacao
e respostas geomecanicas, tais como tensoes e deslocamentos sdo calculados simultaneamente
através de um sistema a cada intervalo de tempo conforme apresentado na figura 11. O método
¢ chamado de totalmente acoplado ou acoplamento implicito, desde que todo o sistema seja

discretizado em um unico dominio e resolvido simultaneamente.
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Figura 13 — Esquema de acoplamento implicito modificado

v |
Resolve Iteragdes de

Newton -
| n=n+1 I p.S, T,0,u. Raphson

Fonte: (CABRAL, 2007)

Onde n € o intervalo de tempo onde sdo calculadas as varidveis, T € a temperatura, S € a

saturacdo, p € a pressdo, ¢ € a tensdo e u os deslocamentos.

Vantagens do Acoplamento Total

Normalmente oferece solucdes confidveis e precisas, que podem ser usados como bench-
mark para outras técnicas de acoplamento;
Somente uma matriz € construida para resolver o sistema de equacdes, com a mesma discreti-
zagdo, normalmente usando o método dos elementos finitos (SETTARI, 2001) Pode resolver

problemas de alto grau de acoplamento.

Desvantagens do Acoplamento Total

Alto custo computacional, tempo de CPU muito longo especialmente nos casos de campo
de grandes dimensdes;

Em geral € mais lento que o acoplamento parcial, devido ao tamanho das matrizes geradas

2.8.4 Acoplamento Sequencial

Neste tipo de acoplamento, as varidveis de fluxo e da geomecanica sdo resolvidas separa-
damente e sequencialmente, por um simulador de reservatorios e por um simulador geomecanico,
onde a troca de informacdes acontece em ambos os sentidos no final de cada intervalo de tempo.
As iteragdes sdo controladas por um critério de convergéncia que normalmente € baseado na

pressdo ou variagdes nas tensoes entre as duas ultimas iteragdes da solugao.
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Vantagens do Acoplamento Sequencial

O mdédulo geomecanico pode ser facilmente acoplado com qualquer simulador de reser-
vatdrios e vice e versa com pequenas alteracdes no codigo;
A solucdo dessa forma de acoplamento € capaz de fornecer os mesmos resultados da simulagao

totalmente acoplada, desde que ambos os simuladores convirjam;

Desvantagens do Acoplamento Sequencial

O tempo computacional pode ser bastante elevado devido a problemas de convergéncia

entre os médulos;
Figura 14 — Esquema de acoplamento iterativo.

(=0 ]

———

m IteracBes de
Resolve p,T, k, ¢ Newton-

Raphson

Iteracdes

de
Acoplamento

n=n+1

Resolve u, .0

Atualizaggo ¢

Convergiu?

NAO

Fonte: (CABRAL, 2007)

Na referéncia (CABRAL, 2007) tanto os primeiros acoplamento descritos como 0s

seguentes acoplamentos pode-se encontrar descritos mais detalhadamente.

2.8.5 Acoplamento Explicito

Este tipo de acoplamento (€ a forma mais fraca para a comunicacgado entre o fluxo no
reservatorio e as deformagdes) desde que a informagdo seja levada somente do simulador de
reservatorios para o médulo geomecanico. Isso significa que mudancas de poro-pressio induzem

a alteracdes nas tensdes e deformacdes do campo, mas o inverso ndo acontece

2.8.6 Pseudo Acoplamento

Este acoplamento foi definido para os métodos simplificados de se introduzir a geomeca-

nica nos simuladores de reservatorios. Nesta forma de acoplamento o simulador de reservatdrios
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pode calcular algumas respostas geomecanicas, como compactagdo e variagdes na tensao hori-
zontal, por simples relagdes entre porosidades e deslocamentos verticais e entre porosidades e

tensoes, respetivamente.
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3 Formulacao Numeérica

Como ja visto o modelo matematico formulado a partir das equagdes diferenciais defi-
nidas no capitulo anterior, resulta em um sistema de EDPs que necessita ser resolvido. Porém,
diante da complexidade do problema acoplado, torna-se necessario o emprego de métodos
numéricos para se obter a solucdo através de modelagem computacional. As equacdes numéricas
do modelo de fluxo monofésico adotado e também do modelo mecanico utilizado nos problemas
propostos serdo detalhadas, com a adi¢do do termo de acoplamento hidro-geomecanico e o es-
quema numérico utilizado. Neste trabalho foi utilizado o Método dos Elementos Finitos-Galerkin
para resolver numericamente os problemas de aplicacao do esquema IMPES modificado. A
ferramenta computacional adotada (processador) foi o programa de elementos finitos CODE-
BRIGHT (Coupled Deformation Brine Gas and Heat Transport). Este programa € capaz de

resolver problemas termo-hidro-quimico-mecanicos de maneira acoplada em meios porosos.

3.1 Meétodo dos Elementos Finitos

Segundo (CARVALHO, 2005) o Método dos Elementos Finitos apresenta propriedades
matematicas e numéricas de grande interesse, tais como este método sempre produzir matrizes
simétricas condicionadas ao operador diferencial ser simétrico, bem como apresenta fungdes de
aproximacdo que levam a matrizes esparsas onde apenas os vizinhos mais proximos contribuem
nas equagOes nodais. Variacdes deste método sao aplicadas de forma bastante difundida tais

como o Método dos Elementos Finitos Misto e Petrov-Galerkin.

No presente trabalho nao € feito a discretizacdo de todos os termos como sao o termo
de fluxo, termo armazenamento, etc via MEF, s6 mostraremos o do problema mecanico, o
tratamento dos termos pode-se encontrar nas seguentes referencias (FERNANDES, 2009) e
(BESERRA, 2015) (CUNHA, 2015),

3.2 Problema Mecanico

Considera-se um sélido de dominio Q e contorno I', como mostra a Figura , e sendo o
contorno separado em duas partes, I, onde s@ao impostos deslocamentos, I'; que estd sujeito a
uma tensdo prescrita. As equagdes basicas que regem o problema de equilibrio sdo apresentadas

a seguir
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Figura 15 — Dominio do problema de equilibrio

Fonte: (BESERRA, 2015)

Ao desprezar os efeitos inerciais, a equagdo do momento linear 2.13 escreve-se como:

divo+b=0 (3.1)

onde o € o tensor de tensodes, b € o vetor da for¢a de corpo, sujeito as condi¢des de contorno
tanto I',, como em I';.O vetor de deslocamentos € aproximado linearmente utilizando fungdes de

forma e somando para todos os nds do elemento, logo:

nnel
u= ) wN; (3.2)
i

Aplica-se o método de residuos ponderados a equagdo 3.1 obtendo-se a forma forte
da equacdo e depois se reduz a ordem do termo de segunda ordem através do Teorema da
Divergéncia (Forma Fraca) e logo aplica-se Galerkin, resultando assim na Forma Integral da

Equacao de Equilibrio, que expressa-se como:

/ B! ou,dQ = / NibdQ + / NjtdT’ (3.3)
Q Q r

nnel
Onde B; = VI.N;,o=D Y Bju; e os termos b e t sdo, respetivamente, os vetores de

J
forca de corpo e for¢a de superficie (condi¢cdo de contorno) onde seus termos integrais resultam
no vetor de forcas aplicadas ao corpo F,,; . A parcela do lado direito da equacgdo, que envolve

implicitamente o vetor de tensdes, consiste no termo de tensdes internas. A Matriz de Rigidez
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€SCreve-se como:

nnel
R= / B/D Y BidQ (3.4)
4 j

Portanto, o problema € solucionado através da obtencao dos deslocamentos em fun¢do das cargas,
por meio da relagdo constitutiva carga-deslocamento, que depende da matriz de rigidez global.

Esta relagdo pode-se expressar por:

U=R 1 Fey (3.5)

3.3 Problema da porosidade

Para o tratamento da porosidade considere-se o seguinte ao problema como isotérmico,
logo como a densidade ps esta em funcdo da temperatura temos que p; € constante, e ao solido

incompressivel entdo K tende ao infinito.

Assim na equacdo (2.52), como o fluido € incompressivel tem-se p; € constante, D% (ps) =

0, logo:

—(0)=(1-9)& (3.6)

Observe-se que:
Da equacdo (3.6) pode-se expressar de forma explicita ou implicita

Por exemplo explicitamente tem-se:

k1 _ gk k1 _ gk
e (Pe — (1 . e]<+1)( Ve ve> (37)
At At
Logo ao simplificar e arranjar os termos da equagdo consegue-se:
<8k+1 _ gk )
e =0+ (1 gt e (3.8)

At
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Novamente com a hip6tese assumida na equagao (2.58) tem-se:

D
o (pr) +V-(prag) +pre, =0 (3.9)

Ao aplicar a regra da cadeia no termo 1% (p f) em relacdo do tempo na equacao (3.9)

tem-se:

dpr D

d_pr (py)+V-(prar) +pré =0 (3.10)

Ao substituir a equacao (2.60) na equacdo anterior obtém-se:

D .
prl9Cs o (Pr) + &1+ V- (prar) =0 (3.11)

Ao resolver todos os sistemas simultaneamente resolve-se o sistema em modo totalmente

acoplado.

Ao considerar o seguente p; dependente de: py, (pressdo do fluido) T (Temperatura)
e p’ (Tensdo efetiva media), ou ps(py, T, p’), logo ao aplicar a derivada material para py, ela

pode-se expressar mediante a regra da cadeia como:

5y = 5o o)+ 3 B (D4 G 5 ) a1
Ao Multiplicar a equagio (3.12) por -, tem-se:
é%(pﬁzijg;l%(pfﬂé%g( >+I}S§—’;§(p’) (3.13)
Ao renomear alguns termos da equacio (3.13) temos:
S (09 = e () =By () = = o () G.19
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onde nés mantido em conta o seguinte:
1 _ 19ps

Ky = ps apf

Bs = 0. 9T O coeficiente de expansdo térmica para o solido
S

1.9ps
ps dp’

E ao considerar a rigidez efetiva ao seguinte: K} = (1 — ¢)K; e lembrando que a tenséo

efetiva media: |
P = gtr(G’) (3.15)

Ao introduzir agora uma nova relacdo constitutiva para o primeiro invariante de tensdes, como:

o) =k (o) ep (T)+ 1 () 316

Na equagdo (3.14) ao substituir a equagdo (3.16) obtemos:

1 1 . 1
L b= () e (N o (8B (D + 2 (p)) @D

Ao considerar o problema isotérmico, temos que 7' constante logo l% (T)=0

Agora ao substituir na equacdo (3.17) tem-se:

LD I D K (., 1D
EE(R‘)_KD;(W) (1_¢)Ks<v+KDt (Pf)) (3.18)

D2,(¢> =(1-9¢) (KLSDBI(Pﬁ —ﬁ < ‘V+I§ 11))1 (pf))> +(1-9)& (319

Ao realizar as contas tem-se:

D 1 D K., KD .
i () =0 =05 (Pr) = &= gy (1) (1= )% (3.20)

S



Capitulo 3. Formulagdo Numérica 50

Ao arranjar os termos da equacao e colocando em evidencia termos comuns tem-se:

DBt((P):KLSDBt(‘Df) ((l—gb—g))—s‘v <(1—¢_§)) 3.21)

S N

Comoa=1- Kﬁ, entdo ao substituir-la na equacdo anterior e fatorizar termos comuns
S

obtém-se:
D 1 D
e 1D 3 3.22
5@ =(@-0) (o (1) +4) (322
Tem-se £, (¢) falta por obter 5 (py)

Pode-se observar que ao considerar ao solido como incompressivel entdo o modulo

volumétrico da fase solida K tende ao infinito logo o = 1, na qual a equacgdo (3.22) fica como:

D

o () =(1-9)& (3.23)

Agora tem-se mais uma relacao % ( p f) e a porosidade, mais para py, este depende de
Py, (pressdo do fluido) 7' (Temperatura) ou py(ps,T) ao aplicar a derivada material para py,

ela pode-se expressar mediante a regra da cadeia como:
= =4 —— (T 3.24
pr (P7) &prt(pf)+8TDt( ) (5.24)

Ao renomear alguns termos da equacio (3.24) temos:

1 D 1 D D
p; DI (pr) = X, Dr (Pr) = Brg; (T) (3.25)

Onde mantido-se em conta o seguinte:
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1 _ 19

Ky~ prdpy
B _1.9py
~ py dT

E By é coeficiente de expansdo térmica para o fluido
Ky € 0 modulo de compressibilidade do fluido

Como o problema foi considerado isotérmico, temos que 1% (T) =0, logo:

1 D 1 D

Entdo ao substituir na equagdo (3.25) temos:

‘Z’K_E(pf)‘i‘l)f(l—‘?) <I;DDt(pf) ﬁ( +I§Il)) (pf)>)+v‘(Pfo)+Pfév:0
(3.27)

Ao arranjar os termos da equacao e colocando em evidencia o termo comum tem-se:

D 1-¢) D K 1 D '
Pr (%E(Pf)+( quj)D_t(pf) X <€v+E3(pf))+€V>+V'(Pqu>:0 (3.28)

Assim tem-se outra relacdo entre a porosidade e % (p f) este permite a solucao do

sistema totalmente acoplado.

3.4 Resumo das Equacdes dos Esquemas Numéricos: Total e Se-

quencial

Mostra-se as equacdes utilizadas para um mesmo problema hidro-mecanico, nos seguin-
tes esquemas numéricos, totalmente acoplado e sequencialmente desacoplado, alem da descri¢do

do método utilizado por ambos esquemas.

Totalmente Acoplado

As equacdes governantes de fluxo e mecanicas, sio resolvidas simultaneamente a cada

passo de tempo. A solu¢@o do problema de acoplamento é geralmente obtida usando o método de
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Newton-Raphson. Este tipo de acoplamento € incondicionalmente estdvel, porém, dependendo
do problema a ser resolvido, a simulagdo pode apresentar um custo computacional bastante
elevado e de dificil convergéncia.

e Atualizacdo da porosidade:

D
— =(1—9¢)¢ 3.29
= (0)=(1-9)& (3.29)
e Equacao de fluxo:
D .
9. (Pr) +V - (Pras) +ps& =0 (3.30)
e Problema mecéanico:
divo+b=0 (3.31)
o=0"+p/l (3.32)
6 =D¢ (3.33)

Neste sistema de equagdes ao resolver as equagdes simultaneamente em um mesmo
passo de tempo chamasse totalmente acoplado devido as varias dependentes aparecem equagdes

do sistema.

Sequencial Desacoplado

As equacoes governantes de fluxo ou o do problema mecénico € resolvido primeiro,
e entdo o outro problema é resolvido empregando a solucdo intermedidria do primeiro. Esta
sequencia € iterada em cada passo de tempo até a obtencdo da convergéncia . A solucdo deste
tipo de acoplamento € idéntica a obtida usando a abordagem totalmente acoplada.
Apresenta-se quatro esquemas dentro do desacoplamento:
(i) Decomposi¢do drenada (drained split);
(i1) Decomposi¢io nao-drenada (undrained split);
(iii) Deformacdo fixada (fixed strain) e;
(iv) Tensdo fixada (fixed stress)
Neste trabalho considero-se o desacoplamento do tipo tensao fixada

e Atualizagdo da porosidade:

5 (0)=(1-0)¢, (3.34)
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e Equacdo de fluxo:

D .
9. (Pr) + V- (Prar) +ps& =0 (3.35)
e Problema mecanico:

divo+b=0 (3.36)
o =0+ psl (3.37)
6 =D"¢ (3.38)

__—
g=1 -0 (3.39)

KS S

Neste sistema de equagdes a equacdo (3.39) permite desacoplar ao sistema e facilitar
o calculo computacional e resolve-se em um mesmo passo ambos sistemas mais separada-
mente, esta equacao (3.39) descacopla do sistema as equacdes (3.34) e (3.35), devido a seguinte
substituigio &/ = jsK, (MURAD et al., 2013).

Na seguinte figura 16 mostra-se o procedimentos de cada esquema numérico:

Figura 16 — Esquemas dos métodos totalmente acoplados (superior) e acoplados iterativamente
(inferior).

. e )
xn d xml xm2
M : Mecanico
Totalmente acoplado .
P F : Fluxo
’/\ ‘/\\
xn ‘\ ll x’”l \\ i x"‘z

Sequencialmente acoplado

Fonte: (KIM, 2010)
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3.5 Algoritmo de Integracdo Implicita-Explicita (IMPLEX) para o
Modelo de DRUCKER PRAGER

No trabalho feito por (BESERRA, 2010) dentro dos resultados conseguidos pela autora,
propde uma nova maneira de estimar o multiplicador pléstico, esta permanece constante no
algoritmo de retorno e elimina as oscilacdes observadas pelos autores do algoritmo original
(OLIVER; HUESPE; CANTE, 2008), para problemas de estados de tensdes uniformes. Essa
melhor aproximacio do multiplicador plastico no algoritmo de retorno também resulta numa
menor violagdo da condi¢do de consisténcia.

Para uma estimativa do multiplicador pléstico consegui-se a partir da projecao das deformagdes
totais do tempo anterior.

Posteriormente, com esta projecdo das deformagdes totais estima-se um estado de tensdes de
prova.

Logo, com base no estado de tensdes de prova verifica-se o estado de plastificagdo do material.
Se caso haja violagdo da superficie de fluéncia, obtém-se o multiplicador pléstico para o passo
do tempo atual mediante operacdes da funcdo de fluéncia obtida como o estado de tensdes de
prova e outros parametros (para major detalhe ver (BESERRA, 2010) ).

Esta forma de calcular o multiplicador plastico € diferente em relagdo ao calculo do multiplicador
plastico feito por (OLIVER; HUESPE; CANTE, 2008), este, faz-se uma extrapolacdo explicita
do multiplicador plastico do passo atual, este € feito escalonado pelos incrementos de tempos
dos passos atual e anterior.

Continua-se o algoritmo do método IMPLEX de forma igual a integracdo implicita feita por
(OLIVER; HUESPE; CANTE, 2008) .
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4 Simulacao Numérica e Discussoes de Re-

sultados

Os casos simulados no presente trabalho tem com objetivo comparar as dois formas de
acoplamentos (totalmente acoplado e sequencialmente acoplado) verificar a precisdo do esquema
sequencial em relacao ao esquema totalmente acoplado.

Realizarem-se os seguintes problemas:

1. Na modelagem acoplada Hidro-geomecanica da perfuracido de pogos horizontais em rochas
fragies também se faz a comparacdo de ambos acoplamentos tanto no regime eldstico como
plastico

2. Comparou-se os dos sistemas, na modelagem de um caso de reativacdo de falha com acopla-
mento hidro-mecéanica como (CABRAL, 2007).

4.1 Simulac3o, Analise e Comparacao na Perfuracdao de Pocos Ho-

rizontais

O processo de escavagdo em meios rochosos induzem uma redistribui¢ao do estado de
tensdes no macico que acarreta no fissuramento das regides proximas a execugdo da perfuragao.
O aparecimento de fissuras conduz a um aumento na permeabilidade da rocha que, por sua vez,
afeta da redistribui¢do das poro-pressoes. (SOULEY, 2001). Devido a essa distribui¢do nao
uniforme de tensdes pode ocorrer o break-out, na figura mostra uma imagem de ultrassom de um

poco que sofreu break-out, tal fendémeno muda a sec¢do do poco de circular para eliptica.

Figura 17 — Exemplo de breakout de um poco tirada por uma camera de fundo.

Fonte: (TINGAY:; REINECKER; MULLER, 2008)
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4.2 Dados da Perfuracao de Pocos Horizontais

Foi feita a simulacio de perfuracdo de poco horizontal em material fragil (folhelho)
considerando a influéncia da alteracdo da permeabilidade durante o processo de escavacao.
Para simular tal problema de forma acoplada(equagdes hidraulicas e mecanicas) foi utilizado o
algoritmo de integracdo IMPLEX para o modelo de Drucker Prager. A malha possui 2072 nés e
3984 elementos e o raio do pogo € 0.127m a discretiza¢do da geometria bem como as condi¢des

de contorno adotadas estdo expostas na seguinte figura:

Figura 18 — Geometria do problema e malha de elementos finitos

[TTT 11111
<

QOO o]ele;

Na seguinte tabela 1 apresenta-se os pardmetros do nosso caso estudado.
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Tabela 1 — Parametros do material do macico escavado

| Parametros | Elastico | Plastico
Moddulo de Young 5400 MPa | 5400 MPa
Coeficiente de Poisson 0,35 0,35
Pardmetro de Biot-Willis 1,00 1,00
Permeabilidade intrinseca inicial 10~ em/s | 10717 cm/s
Porosidade inicial 0,20 0,20
Pressdo de poros inicial pg 25 MPa 25 MPa
Pressdo de fluido aplicada na perfuragcdo | 30 MPa 30 MPa

Comparacao na Perfuracdo de Pocos Horizontais no caso elastico

Tem-se a comparagdo entres os dois tipos de acoplamentos para alguns parametros no

regime eldstico:
a) O grafico correspondente ao esquema CUP

b) O grafico correspondente ao esquema SEQ

Figura 19 — Distribuicao da pressao de liquido
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22

Figura 20 — Varia¢do da porosidade
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Figura 21 — Varia¢do da permeabilidade
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Tem-se os analises de alguns parametros dos seguintes nodos,como mostra-se na figura
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Figura 22 — Analise dos nodos préximos ao pogo

tem-se analise de alguns pardmetros como mostra-se na figuras seguintes:

Figura 23 — Evolugdo do deslocamento vertical
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Figura 24 — Evolucao da pressao

Evolugéo da Presséo
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Nas figuras 23 e 24 mostra-se a evolucdo do deslocamento vertical e a evolucdo da
pressao respetivamente para ambos acoplamentos, em todos os casos tiverem comportamento

quase idéntico.

Tem feito os seguintes analises para alguns parametros dos seguintes elementos préximos

a0 po¢o que mostra-se na figura 25

Figura 25 — Analise dos elementos préximos ao pogo
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Figura 26 — Evolucao da porosidade

Evolugao da porosidade
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Figura 27 — Evolucao da permeabilidade
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Em todos os elementos analisados, note-se que o comportamento similar dos graficos

para ambos casos de acoplamento no caso eléstico.

Tem-se alguns dados computacionais obtidos pelo programa de CODE_ BRITGH na

seguinte tabela 2 mostra-se os resultados
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Tabela 2 — Dados da simula¢do numérica no regime eldstico

| Dados de simulac¢ao | 610) | SEQ
Tempo total acumulado do CPU 0.399440E+03 | 0.317144E+03
Tempo do CPU na solugdo do sistema | 0.143064E+03 | 0.104344E+03
Radio do sistema/total 0.358161E+00 | 0.329011E+00
Numero total de N-R iteracdes 429 399
Numero total de intervalos de tempo | 363 1114
Radio iteracdes por passo de tempo 1.18 1.14

Pode-se observar na tabela que o tempo de simulagdo foi menor no esquema numérico

sequencial, em este caso também se observa que o numero de iteragdes foi menor também no

esquema numérico sequencial.

Comparacado na Perfuracdo de Pocos Horizontais no regime elasto-

plastico

Tem-se os seguintes resultados no regime elasto-plastico com os pardmetros de simulacio

da tabela 1
a) O grafico correspondente ao esquema CUP

b) O grafico correspondente ao esquema SEQ

Figura 28 — Distribuicdo da pressao de liquido
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Figura 29 — Deformagdes pldsticas
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Figura 30 — Variacdo de porosidade
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Figura 31 — Variacdo de permeabilidade
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Nas figuras 28 mostra-se a distribui¢ao da pressdo do liquido, esta permanece muito
similar que no caso eldstico, na figura 30 a porosidade mostra-se algumas pequenas diferencias
para alguns elementos, mais termos gerais o0 comportamento foi similar como consequéncia a 31

a permeabilidade apresenta pequenas diferencias mais em termos gerais similar comportamento

Ao analisar alguns pardmetros dos seguintes nos que mostra-se na figura 22, tem-se:

Figura 32 — Evolugdo do deslocamento vertical

Evolugéo do deslocamento vertical
0.002

Legenda
Nodo A cup —@—
Nodo A seq —&—
Nodo B cup
Nodo B seq

0.0015 -

0.001 §+

0.0005 |-

uy
o

-0.0005 |

-0.001 :

-0.0015

-0.002

L !
20000 40000 60000 80000 100000
Tempo (segundos)



Capitulo 4. Simulagdo Numérica e Discussoes de Resultados 65

Figura 33 — Evolucao da pressao
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Os comportamentos sao similares quanto no deslocamento vertical como na evolucdo da

pressdo para ambos acoplamentos.

Ao analisar alguns parametros dos seguintes elementos proximos do po¢o que mostra-se

na figura 25

Figura 34 — Evolucao da porosidade
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Figura 35 — Evolugao da permeabilidade

Evolugao da permeabiliade vertical
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Figura 36 — Trajetoria de tensoes
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Em todos os elementos analisados, note-se que o comportamento similar dos graficos

para ambos casos de acoplamentos no caso plastico.

Tem-se alguns dados computacionais obtidos pelo programa de CODE_ BRIGHT na
seguinte tabela 3 mostra-se os resultados
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Tabela 3 — Dados da simulacdo numérica no regime elasto-plastico

’ Dados de simulagdo \ cup \ SEQ ‘
Tempo total acumulado do CPU 0.188559E+05 | 0.140497E+05
Tempo do CPU na solucgao do sistema | 0.706759E+04 | 0.566977E+04
Radio do sistema/total 0.374822E+00 | 0.403552E+00
Numero total de N-R iteracdes 22531 18763
Numero total de intervalos de tempo | 14874 11038
Radio iteracdes por passo de tempo 1.51 1.70

Pode-se observar na tabela que o tempo de simulagdo foi menor no esquema numérico
sequencial, em este caso também se observa que o numero de iteracdes foi menor também no
esquema numérico sequencial, como era de esperar o caso plastico demorou mais tempo na

simulag@o que o caso eldstico.

4.3 Simulacao, Andlise e Comparacdo na Ativacao de uma Falha

As descontinuidades geoldgicas, como falhas, sdo inerentes a maioria das formacdes de
petréleo. Um plano de falha (ou zona de falha) € uma descontinuidade na massa de rocha, bastante
comum na maioria das bacias sedimentares. Pode ser formado, entre outros, por tectonismo.
Uma caracteristica-chave do problema de reativacao de falha € a grande variedade de variagao
de parametros hidraulicos e mecanicos nesta zona altamente heterogénea. Além disso, a falta de

dados experimentais confidveis associados aos materiais na zona de danos € bastante comum.
(CABRAL, 2007)

4.4 Dados da Ativacao de uma Falha

Na reativagdo de falha, o problema consiste na andlise de reativacdo de uma falha selante
que corta um campo da base da rocha inferior (“underburden”) até a superficie do fundo do mar,
passando pelo reservatorio e pela rocha acima deste (“overburden™), nas figuras 37 e 38 pode-se

observar os dados da falha em 2D.
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Figura 37 — Seccio transversal geoldgica 2D tipica

Fonte: (CABRAL, 2013)

Figura 38 — Geometria do modelo: o reservatdrio é um arenito consolidado, de 50 m de espessura
incorporado a 400 m e localizado numa regido de profundidade de dgua de 130 m.

Water level

Injection Well Production Well

Fonte: (CABRAL, 2013)
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Figura 39 — Geometria do problema e malha de elementos finitos, a malha possui 7225 nés e
14228 elementos
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Na seguinte tabela 4 apresenta-se os parametros do nosso caso estudado, chama-se zona

de danos externos (ZDE) e zona de danos internos (ZDI).

Tabela 4 — Parametros do reservatdrio para caso eldstico

Zona geologica | K(MD) | ¢ E |v

Reservatorio 50 0,2 (30103
Overburden le> ]001|42]037
Underburden | e | 0,01 | 26 | 0,26

Nicleo le™? 01 [8 |03
ZDE le? 02 [8 |03
ZDI le™> 03 |6 025

Onde K € a permeabilidade intrinseca, ¢ porosidade, E mddulo de Young, v coeficiente

de Poisson.

Comparacao na Ativacao de uma Falha no regime elasto-plastico

Os resultados ao comparar os dois acoplamentos no regime eldsto-plastico mostra-se nas
seguintes figuras.
a) O grafico correspondente ao esquema CUP

b) O gréfico correspondente ao esquema SEQ
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Figura 40 — Deslocamento em Y
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Figura 41 — Distribuicdo da pressao de liquido
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Figura 42 — Distribuicao da permeabilidade
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Nos graficos anteriores para este regime elasto-plastico observar-se pequenas diferencias
ao finalizar o tempo de simula¢@o, mais mantém-se as mesmas formas de comportamento quanto

na distribuicdo da pressdo como o deslocamento vertical e permeabilidade.

Figura 43 — Distribuicao da deformagdes plésticas cisalhantes
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Figura 44 — Distribuicao da deformagdes plasticas volumétricas
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Como ¢ elasto-plastico, ao ter uma mudanga de pressdes no reservatério ao correr
do tempo, isso produz deformacdes plasticas cisalhantes e volumétricas em a falha, pode-se
observar que o esquema totalmente acoplado conseguiu obter uma melhor descricao grafica de

dito fendmeno.

Na seguinte figura mostra-se os dois nodos para seu posterior analise.

Figura 45 — Nodos préximos a falha

Na seguinte figura 46 mostra-se a evolugdo da pressdo de liquido para os dois nodos

escolhidos na figura 45.
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Figura 46 — Evolucao da pressao
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Na figura anterior mostra-se a diferencia da pressao em ambos lados do reservatorio,
no nodo "A"a pressdo é maior que nodo "B"devido que do lado de nodo "A"encontra-se o
injetor e do lado do nodo "B"encontra-se o produtor, alem disso em termos gerais o acoplamento

sequencial foi muito preciso em relacdo ao acoplamento total durante todo o tempo de simulagao.
Na seguinte figura mostra-se os elementos para seu posterior analise.

Figura 47 — Elementos préximos a falha

ELEMENTO A

¥
L
- -

Na as seguintes figuras mostra-se o comportamento de os dois esquemas numéricos em
relacdo de alguns parametros
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Figura 48 — Evolucao da porosidade
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Figura 49 — Trajetoria de tensoes
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Em relagcdo aos parametros observados nos gréficos anteriores ambos acoplamentos
tiverem comportamento muito similar para alguns elementos mais em outros elementos nao
aconteceu o mesma semelhanca, sobre tudo em os elementos muito préximos que produz-se o
fendmeno de plastificacdo, mesmo assim o acoplamento sequencial feito pelo CODE-BRIGHT

capturo dito fenémeno.
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Tabela 5 — Dados da simulacado numérica no regime elasto-plastico

’ Dados de simulagdo \ cup \ SEQ ‘
Tempo total acumulado do CPU 0.188559E+05 | 0.140497E+05
Tempo do CPU na solucgao do sistema | 0.706759E+04 | 0.566977E+04
Radio do sistema/total 0.374822E+00 | 0.403552E+00
Numero total de N-R iteracdes 22531 18763
Numero total de intervalos de tempo | 14874 11038
Radio iteracdes por passo de tempo 1.51 1.70

No parametros computacionais pode-se observar que o tempo de simula¢ido no esquema
sequencial foi menor, respeito do esquema total e similarmente aconteceu no numero de iteragdes.
Outra observacgdo € que regime plastico demanda mais tempo de simulagdo, alem disso este

capturo o fenémeno de plastificagdo em ambos esquemas.
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5 Conclusao e Trabalhos Futuros

Este trabalho foi formulado mediante equa¢des matematicas que aproximam tanto o
comportamento fisico do movimento dos fluidos (problema hidrdulico) quanto o deformacional
das rochas (problema mecanico). Também tive-se a necessidade de estudar algumas leis constitu-
tivas que regem estes fendmenos e, por fim, para logo formular matematicamente o acoplamento

fisico entre os problemas.

Assumiu-se dois estratégias de acoplamento a total e sequencial, ambos esquemas
resultaram ser eficientes, sobre tudo para casos de acoplamento hidro-mecanico. No problema
da escavagdo do pogo foi possivel identificar a formacdo de um caminho preferencial de fluxo na
direcdo horizontal, onde houve maior plastificacdo do material, em ambos esquemas, no regime
pléstico ele tive diferencias ndo significativas. No problema de reativacao de falha, verificou-se
para o caso pldstico, que a pressurizac¢do do reservatdrio altera o comportamento mecanico das
rochas, levando a plastificagdo da falha, ambos esquemas consegue mostrar dito fendmeno. Com
a ocorréncia das deformacodes plasticas, a falha € reativada em funcao da deformacao pléstica
cisalhante, aumentando a permeabilidade, em ambos esquemas, acontece que o fluxo comecga
a fluir pela falha. Se a verificado a precisdao do esquema sequencial em relacdo ao esquema
totalmente acoplado, este esquema pode ser uma via eficiente para a simulag@o de alguns casos

da engenheira de petréleo no cédigo de elementos finitos CODE-BRIGTH.

Como proposta de continuidade ao trabalho desenvolvido propde-se fazer simulacdes em
casos de trés dimensdes no CODE-BRIGHT, para ter uma maior evidencia em as diferencias
entre ambos esquemas e possiveis ganhos computacionais. Também os casos simulados foram
feitas com a hipdtese de totalmente saturado onde ndo existia fases, seria conveniente fazer
simulagdes o modificacdes no cédigo do programa de CODE-BRIGHT para conseguir simular
problemas bifasico a mas, de igual maneira pode-se fazer modifica¢des no c6digo para simular

casos com a hipdtese ndo totalmente saturado e em consequéncia fazer com diferentes hipotese.
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