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Resumo
A presença de fluido ou a pressão de fluido, exerce uma influência significativa sobre a resis-
tência da rocha e deformação e isto ocorre não só na escala de grãos, mas também na escala
litosférica. Isto levou a uma necessidade de compreender os processos acoplados hidromecânicos.
E com o aparecimento de métodos de computação e a maturidade de software e hardware, o
desenvolvimento de uma ferramenta numérica adequada que pode lidar com a complexidade do
comportamento acoplado hidro-mecânica, tem sido reconhecido como uma das principais tarefas
na área de engenharia de petróleo. Na área de engenheira de petróleo na previsão e gestão de
reservatórios é a simulação numérica que tradicionalmente tem na compressibilidade dos poros
o único parâmetro geomecânico. Normalmente, apenas um valor constante deste parâmetro é
adotado para todo o reservatório. No entanto, o reservatório de rocha sofre deformações durante
a exploração de campo, o que induz a redução da porosidade e da permeabilidade. Enquanto
o primeiro efeito não é bem representado pela compressibilidade, o segundo não muda. Então
tentar modelar o acoplamento hidro-mecânica resultaria de grande importância, mais em ca-
sos onde o problema tenha uma grande quantidade de elementos, pode resultar de alto custo
computacional ao resolver-lo totalmente acoplado, visando estas análises integradas, mas sem
aumentar o custo computacional, o acoplamento sequencial pode ser uma opção para alguns
casos de engenheira do petróleo. O objetivo desta dissertação é abordar dois esquemas numéricos,
totalmente e sequencial acoplado, o esquema acoplado resolve todo o sistema de equações em
um mesmo passo de tempo, no esquema sequencial, resolve em um mesmo passo do tempo o
sistema de equações, mais desacopla o sistema de equações em dois sistemas, neste trabalho
verifica-se a precisão numérica do esquema sequencial em relação ao esquema totalmente aco-
plado utilizando o programa computacional de elementos finitos CODE-BRIGHT (COupled
DEformation and BRine, Gas and Heat Transport) para a verificação. Os resultados obtidos na
modelagem numérica para o problema do poço horizontal no regime elástico, os parâmetros
analisados foram os mesmos, no regime elasto-plástico, observo-se similitudes no analise dos
parâmetros. Para o problema da reativação da falha também obtive-se resultados satisfatórios,as
diferencias dos parâmetros analisados foram mínimas.

Palavras chave: Modelagem Hidro-Mecânica. Elementos finitos. Esquema acoplado. Esquema
seqüencial.



Abstrac
The presence of fluid or fluid pressure exerts a significant influence on rock strength and
deformation and this occurs not only on the grain scale but also on the lithospheric scale. This
has led to a need to understand hydromechanical coupled processes. And with the emergence
of computational methods and the maturity of software and hardware, the development of a
suitable numerical tool that can handle the complexity of coupled behavior of hydro-mechanical,
has been recognized as one of the main tasks in the engineering area of oil. In the field area of
petroleum engineer in the forecasting and management of reservoirs is the numerical simulation
that traditionally has in the compressibility of the pores the only geomechanical parameter.
Usually only one constant value of this parameter is adopted for the entire reservoir. However,
the rock reservoir undergoes deformations during field exploration, which induces the reduction
of porosity and permeability. While the first effect is not well represented by compressibility, the
second does not change. Then trying to model hydro-mechanical coupling would be of great
importance, but in cases where the problem has a large number of elements, it can result in a high
computational cost when solving it fully coupled, aiming these integrated analyzes, but without
increasing the computational cost, Sequential coupling may be an option for some cases of
petroleum engineer. The purpose of this dissertation is to approach two numerical schemas, fully
and sequentially coupled, the coupled scheme solves the whole system of equations in the same
time step, in the sequential schema, solves at a same time step the system of equations, further
decouples the system of equations in two systems, this work verifies the numerical precision
of the sequential scheme in relation to the fully coupled scheme using the CODE-BRIGHT
(COupled DEformation and BRine) finite element computational program for verification. The
results obtained in the numerical modeling for the horizontal well problem in the elastic regime,
the parameters analyzed were the same, in the elasto-plastic regime, similarities were observed
in the analysis of the parameters. For the problem of reactivation of the fault also obtained
satisfactory results, the differences of the analyzed parameters were minimal.

Keywords: Hydro-Mechanical Modeling. Finite elements. Coupled scheme. Sequential scheme.
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1 Introdução

1.1 Motivação
Reservatórios carbonáticos têm grande importância na indústria do petróleo, chegando a

conter metade das reservas de óleo e gás do mundo. O relatório de 2016 da Agência Internacional
de Energia (EIA, 2016), mostra que o petróleo e o gás natural, representam mais de 50% da
energia primaria consumida no mundo e até 2040 não se esperam grandes mudanças.

Porém a exploração e a produção do petróleo são matérias de estudo em muitos centros
de pesquisa e universidades. O objetivo dos pesquisadores da área de produção do petróleo
é desenvolver ferramentas que sejam orientadas para uma produção com qualidade, maximi-
zando o lucro. Uma das ferramentas que auxilia a indústria petrolífera é a simulação numérica
computacional particularmente, a simulação numérica de reservatórios de petróleo.

Mais precisamente no campo de aplicação da engenharia para a produção de petróleo, o
acoplamento fluido-mecânico tem se mostrado como explicação de diversos fenômenos ocorridos
na exploração e produção de reservatórios de petróleo. Um caso emblematicamente sempre
abordado em diversas revisões sobre o tema se refere ao campo de petróleo Ekofish na Noruega,
em que o leito marinho sofreu uma importante subsidência sob o efeito do processo de extração
de fluido do reservatório ao ponto de comprometer severamente vários poços de produção,
levando a grandes gastos no reparo e prevenção dos danos causados (OLIVEIRA, 2013).

Ainda no campo de extração de petróleo, outros exemplos de aplicação da análise
acoplada fluido-mecânica são encontrados nos casos de estabilidade de poços de petróleo,
reativação de falhas e/ou zonas de falhas, fraturamento hidráulico, produção de sólidos, efeitos de
compactação do reservatório na curva de produção de petróleo, relações tensão-permeabilidade-
deformação, etc. As análises dos fenômenos existentes no meio poroso tem se tornado cada
vez mais robustas e elaboradas na questão de se acoplar tais fenômenos, e ainda em melhores e
eficientes alternativas para solução dos sistemas que surgem desse acoplamento. Sendo está uma
área extensa já estudada, mas ainda com vasto campo de estudo por ser abordado.

A solução do problema acoplado pode ser tratada basicamente por duas alternativas:
solucionando o problema de fluxo conjuntamente com o equilíbrio mecânico, conhecido como
totalmente acoplado ou através de processos sequenciais entre o problema de fluxo e o equilibro
mecânico. (LEWIS; SCHREFLER, 1998) apresentaram uma avaliação desses dois tipos de
acoplamento para o caso de fluxo monofásico indicando as situações mais favoráveis para
a aplicação de uma e de outra alternativa. Classicamente nas aplicações em engenharia de
reservatórios de petróleo o método de acoplamento seqüencial da solução do problema onde
resolve-se os problemas em separado em que o problema mecânico é solucionado após a solução
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do problema de fluxo, definindo uma única via de acoplamento, é chamado de one-way coupling.

Embora não seja um processo totalmente acoplado quando resolve-se todos os problemas
em conjunto, os métodos sequenciais são considerados acoplados na tentativa de obter-se a
melhor resposta dos sistemas em conjunto, são diversos os trabalhos na utilização de dita
alternativa (MULLER, 2007) e (FRYDMAN, 1996). (MULLER, 2007) aponta uma avaliação do
método totalmente acoplado com o método sequencial em relação ao processamento, indicando
que o método sequencial pode apresentar melhor desempenho computacional que o esquema
totalmente acoplado. Muller ainda ressalta as vantagens de utilizar-se o método sequencial
em relação na aplicação de condições de contorno.(KIM, 2010) analisa as diversas formas
de acoplamentos entre as equações de fluxo multifásico e o equilíbrio mecânico de maneira
sequencial atentando para aspectos de estabilidade e convergência de diversos métodos.

1.2 Objetivos
Um dos principais desafios desta pesquisa está em resolver o modelo geomecânico com

a discretização via MEF, assim obter comparações entres os acoplamentos numéricos, totalmente
e seqüencialmente acoplado para alguns casos de engenheira de petróleo.

•Analisar numericamente, em meios contínuos, os mecanismos envolvidos em condições
monofásicas de fluxo com os acoplamentos numéricos, totalmente e seqüencialmente acoplado
mediante o simulador numérico de CODE_BRIGHT.

• Simular alguns casos de engenheira de petróleo no CODE_BRIGHT para ambos
acoplamentos

• Fazer comparações de ambos acoplamentos numéricos e observar a precisão do acopla-
mento sequencial em relação do esquema totalmente acoplado para os casos simulados.

1.3 Organização da Tese
A presente dissertação divide-se principalmente em 5 capítulos, além da bibliografia.

No Capítulo 1 considera-se a introdução, onde detalha-se a motivação, os objetivos e
contribuição do trabalho.

No Capítulo 2, detalha-se brevemente as propriedades da rocha e fluido, em seguida
descrevemos as equações constitutivas e suas hipóteses simplificadoras, que finalmente são
utilizadas para derivar as equações governantes.

No Capítulo 3, desenvolve-se as técnicas numéricas empregadas na solução das equações
governantes introduzidas no Capítulo 2.

No capítulo 4, resolve-se alguns problemas modelos, nos quais interpretamos os resulta-
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dos comparando com aqueles disponíveis na literatura. Estos problemas são simulados mediante
o programa de elementos finitos CODE_BRIGHT para os acoplamentos numéricos: totalmente
acoplado e seqüencialmente acoplado.
As conclusões para cada acoplamento nos casos de engenheira de petróleo como estabilidade do
poço, reativação de falha tanto no caso elástico e elasto-plástico para a estabilidade do poço e
elasto-plastico para a reativação da falha, foram-se analisados os parâmetros mais importantes,
como também a acurácia do esquema sequencial em relação do esquema totalmente acoplado e
o custo computacional de cada esquema.

No capítulo 5, neste capitulo as conclusões são apresentadas como também as sugestões
para futuras linhas de pesquisa à serem desenvolvidas baseados em este trabalho.



18

2 Formulação Matemática do Meio Poroso:
Abordagem contínuo e Leis Basicas

Neste capítulo defina-se o meio poroso e sua representação matemática, logo defina-se
algumas aspectos importantes dentro do meio poroso e presume-se hipóteses simplificadoras das
quais consegues em as equações governantes do meio poroso.

2.1 Introdução
O comportamento mecânico do meio poroso esta claramente influenciado pelo fluido que

ocupa os poros, tal como foi estudado por (BIOT, 1941). Dada a irregularidade da matriz porosa,
como mostra-se na figura 1, os análises de fluxo com as leis clássicas de fluido complementadas
com a interação de fluido-estrutura resulta impraticável e irreal. (VAZQUEZ, 2003).

Então a descrição do fluxo no meio poroso é complicada para escala inferiores dos poros
(para fixar ideias, escalas de 10−5 cm), torna-se mais fácil quando as escalas são maiores em
relação ao tamanho dos poros, então é conveniente uma escala maior. No estudo dos fluxos
através de meios porosos na escala VER (volume elementar representativo) este resulta ser
muito fina, de modo que estas médias são substituídas por médias maiores que chama-se volume
elementar representativo do meio poroso VERMP (VAZQUEZ, 2003), este volume deve ser o
suficientemente grande para abranger um número estatisticamente significativo de poros, esta
escala também permite representar algumas leis e propriedades macroscópicas do meio poroso
tais como a lei de Darcy, permeabilidade entre outros, então é conveniente exigir uma quantidade
significativa dos poros.



Capítulo 2. Formulação Matemática do Meio Poroso: Abordagem contínuo e Leis Basicas 19

Figura 1 – Meio Poroso

Fonte: Sinmec projeto

2.2 Definição do Meio Poroso Saturado
Um meio poroso saturado é composto de uma matriz e um espaço poroso, o último sendo

preenchido por um fluido. A matriz compõese tanto da parte sólida e da possível porosidade
ocluída, saturado ou não, o meio poroso pode ser tratado como a superposição de dois contínuos,
o continuo do esqueleto y o continuo do fluido (COUSSY, 2004), como mostra-se na figura 2.

Figura 2 – O meio poroso como a sobreposição de dois meios contínuos

Fonte: (COUSSY, 2004)

2.2.1 Abordagem Contínuo

Como ja foi mencionado por (BIOT, 1941) que considera dito meio contínuo como um
meio continuo equivalente a sobreposição da duas fases com dois campos de deslocamento, uma
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para a matriz sólida e uma para o fluido (cinemáticas diferentes) que interagem e trocam energia
e material entre eles.

2.2.2 Abordagem de homogeneização e comportamento macroscópico

Dita homogeneização do meio poroso a escala macroscópica permite definir ao meio
poroso, como um meio contínuo, assim o VERMP é definido de modo que, sempre que seja
posicionado no interior de um domínio considerado do meio poroso ele sempre contendo as duas
fases (fase sólida e porosidade) como mostra-se na figura 3, além disso, presume-se que, dentro
do VERMP as duas fases são mais ou menos uniforme-mente distribuídas (VILLARÓ, 2004).

Figura 3 – O VERMP para o análise no problema de desmoronamento

Fonte: (VILLARÓ, 2004)

2.2.3 The Averaging Approach: O Método da Média

Em este estudo utiliza-se o abordagem "the averaging approach", ela considera sempre
um VERMP em cada ponto matemático do domínio que contem todas las fases que existem
no problema a nível microscópico, tratando-se de maneira independente cada una de elas, logo
obtém-se as propriedades físicas medias do VERMP (como por exemplo a densidade), com o
objetivo final de poder chegar a definir as propriedades medias sobre todo o domínio do problema,
em seguida assume-se que estas propriedades medias sobre o VERMP considerado coincidem
com as do meio poroso estudado, para logo formular as equações à nível macroscópico.

2.3 Revisão de Magnitudes e Equações Básicas
Defina-se o domínio em que os parâmetros e algumas variáveis são estudadas. Seja I um

intervalo de tempo com t ∈ I fixo e Ω⊆ R3 , com contorno ∂Ω e n um vetor normal unitário
externo ao ponto da superfície de Ω, como mostra-se na figura 4
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Figura 4 – Domínio

Defina-se uma função f : Ω⊆ R3 −→ R chama-se campo escalar (exemplo densidade,
temperatura) ela comporta-se de maneira diferente a diferentes escalas como mostra-se na figura
5

Figura 5 – Valor médio do volume do VER pelo Valor médio de f

Fonte: (LEWIS; SCHREFLER, 1998)

Mediante o processo de média feito no livro de (LEWIS; SCHREFLER, 1998) obtém-se:

2.3.1 Densidade

Para a fase fluida temos:
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Considerando-se um fluido monofásico, a densidade que depende da pressão e a tempe-
ratura do meio, então esta define-se como:

ρ f = ρ
◦
f eC f (p f−p◦f )−β f (T−T ◦) (2.1)

Onde ρ◦f é a densidade referencial, p f é a pressão do fluido, p◦f é a pressão do fluido referencial,
C f a compressibilidade do fluido, T a temperatura, T ◦ a temperatura referencial e β f é coeficiente
de expansão térmica para o fluido
Lembrando-se que: C f =

1
ρ f

∂ρ f
∂ p f

, expressa-se como o cambio relativo do volume do fluido em
relação com um cambio da pressão.
β f =

1
ρ f

∂ρ f
∂T expressa-se como o cambio relativo do volume do fluido em relação com um

cambio da temperatura.
As derivadas parciais é devido ao tamanho do REV que são quantidades infinitesimais.

2.3.2 Porosidade

Considera-se agora VERMP e fazendo o mesmo processo feito por (LEWIS; SCHRE-
FLER, 1998) para o VER, pode-se definir a porosidade como a razão entre o volume de vazios e
o volume total do meio ou também:

φ =
Vv

Vt
com Vt =Vv +Vs (2.2)

onde Vv é volume de vazios, Vs é volume da parte solida, Vt é volume total.
Pode-se definir também o índice de vazios como:

e =
Vv

Vs
(2.3)

Esta pode-se escrever em função da porosidade da seguente forma:

e =
φ

1−φ
(2.4)

e assim também a porosidade expressa-se:

φ =
e

1+ e
(2.5)

A porosidade pode servir como uma medida da capacidade de fluido que o meio tem para
armazenar.

Como já foi mencionado, foi considerado ao fluido, só monofásico, em consequência
não apresenta fases dentro do fluido (por exemplo óleo, agua e gás dentro de um meio poroso
como no interior de um reservatório) por consequência também não apresenta saturação das
fases, como também ao fluido ser monofásico e totalmente saturado não apresenta capilaridade.
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2.3.3 Permeabilidade

Com mesmo análise feito para porosidade podemos definir a permeabilidade intrínseca
ou absoluta de um meio poroso (exemplo: rocha ou solo) como uma propriedade que indica o
quanto um meio poroso permite o escoamento de um fluido.

Em geral a permeabilidade intrínseca depende das propriedades do meio poroso tais
como a geometria, tamanho e distribuição grãos entre outros.

Assumindo que nosso meio poroso é saturado, homogéneo e isótropo (não necessaria-
mente para que a permeabilidade resulte ser tensor) e quando as forças inerciais são desprezíveis
(todas estas condições necessárias para que a lei de Darcy tenha validade)

Resulta que a permeabilidade intrínseca pode ser definir como um tensor de segunda
ordem (é de segunda ordem pela natureza do domínio Ω) e este pode-se representar pela seguente
matriz:

k =

 kxx kxy kxz

kyx kyy kyz

kzx kzy kzz

 (2.6)

Esta matriz é simétrica e definida positiva, por consequência o tensor de permeabilidade
garanta uma condutividade física consistente.

Defina-se a condutividade hidráulica como a capacidade para transmitir o fluxo através
do meio poroso, mais ela depende tanto das propriedades do fluido (densidade e viscosidade)
quanto do meio (permeabilidade intrínseca) e pode-se representar como:

kh =
ρ f g
µ f
·k (2.7)

Onde ρ f é da densidade do fluido, g é a gravidade, µ f é a viscosidade do fluido e k é a
permeabilidade intrínseca.

Este tensor kh herda as propriedades do tensor de permeabilidade intrínseca k.

2.3.4 Lei de Darcy

Esta é uma lei experimental desenvolvida por Henry Darcy em 1856, que conclui que
existia uma relação direta entre a vazão que atravessava o leito de areia e a diferença de carga
associada a essa vazão.

Posteriormente foi estendida a outros fluidos e generalizada, assim esta lei é para pro-
blema de escoamentos laminares de fluido Newtoniano em meios porosos com matriz sólida
rígida (lembrando que o meio poroso é continuo, totalmente saturado, monofasico e homogéneo).
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Esta lei estabelece uma relação linear entre o gradiente de pressão do fluido e a velocidade
com que o mesmo escoa (BEAR, 1972) e escreve-se como:

q f =−
k
µ f

(
∇p f −ρ f g

)
(2.8)

Onde q f é o vetor velocidade do fluido ou velocidade de Darcy, k é tensor de permeabili-
dade (permeabilidade intrínseca), µ f é a viscosidade do fluido, p f é a pressão do fluido e g é o
vetor gravidade

2.4 Cinemática do meio poroso
Na cinemática do meio poroso tem-se que considerar o seguente: Para a descrição da fase

solida pode-se descrever como é feito para a mecânica clássica do continuo, é conveniente utilizar
a formulação lagrangiana (também conhecido como descrição material) independentemente
baixo qualquer hipóteses de pequenas o grandes deformações. Para a descrição da fase fluida é
utilizada a formulação euleriana (também conhecido como descrição espacial). Em esta secção
estuda-se a cinemática da fase solida particularmente nos tensores de deformação para pequenas
deformações (para um estudo mais completo sobre o tema de cinematica do meio continuo
pode-se ler (COUSSY, 2004)), estas pequenas deformações acontecem por exemplo em um
reservatório, pois quando há variação da pressão dos fluidos contidos nele, durante a produção
de hidrocarbonetos, há uma redistribuição das forças no reservatório, consequentemente sofre
mudança referente ao seu estado inicial.

2.4.1 Deformação

Dado um movimento x = x(X, t) com X ∈Ωt0 , x ∈Ωt e t0, t ∈ I. Para um tempo t fixo,
defina-se o deslocamento u(X) = x−X como mostra-se na figura 6

Figura 6 – Deslocamento u para um tempo t.
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no sistema cartesiano pode-se escrever como u = (u,v,w) e resulta ser um campo vetorial
de deslocamento do corpo Ω.

O tensor de deformação para u é um tensor simétrico que é representado no sistema
cartesiano como:

ε =

 εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

 (2.9)

onde:
u vetor deslocamento

Assumindo deformações infinitesimais, então para um meio poroso cujo vetor desloca-
mento é u = (u,v,w), as componentes do tensor deformação são definidas por:

εxx =
∂u
∂x εxy =

1
2

(
∂u
∂y +

∂v
∂x

)
εyy =

∂v
∂y εxz =

1
2

(
∂u
∂ z +

∂w
∂x

)
εzz =

∂w
∂ z εyz =

1
2

(
∂v
∂ z +

∂w
∂y

) (2.10)

ou também pode-se escrever como:

ε =
1
2
(
∇ ·u+∇ ·uT) (2.11)

2.4.2 Tensão

Como já foi considerado o meio poroso Ω com contorno ∂Ω e agora submetido ao ação
de força f sobre o contorno ∂Ω e b sobre Ω como mostra-se na figura 7
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Figura 7 – Forças atuando em o corpo Ω .

as forças atuantes sobre o corpo Ω podem ser de duas diferentes naturezas:
As forças do corpo ou de volume que são exercidas por outros corpos sobre Ω. Este tipo de
força é dado por uma "densidade volumetria de força"que é um campo vetorial continuo b. Um
exemplo de força de corpo é a gravitacional.
As forças de contacto ou de superfície é exercida sobre as fronteiras ou contorno, ela é dada por
uma densidade de superficial de força f.

Pelo teorema da existência do tensor de Cauchy da mecânica do meio contínuo, as forças
atuantes sobre o corpo Ω, precisam satisfazer as leis de balanço de momento linear e angular em
consequência implicam que para cada ponto x de Ω e tempo t existe um tensor, em consequência
um campo tensorial. Este tensor é da segunda ordem e é representado por:

σ =

 σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 (2.12)

Este tensor é simétrico e satisfaz a equação do momento linear expressada como:

div σ +b = f ; com b = ρg (2.13)

onde σ é o tensor de tensões, b é o vetor da força de corpo, ρ é a densidade e g é a
gravidade

Como o tensor de tensões do corpo Ω é um tensor de segunda ordem e simétrico então
pelo teorema espectral, existe uma base ortonormal formada por auto-vetores o que significa
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que existe um sistema de coordenadas onde as tensões cisalhantes são nulas e somente há
tensões normais. Estas tensões normais resultam ser os auto-valores do tensor de tensões também
conhecidas como tensões principais.
Para o calculo dos auto-valores de σ , considere-se um σ auto-valor (que existe porque o tensor é
simétrico) de σ , então existe um vetor v ∈Ω tal que:

(σ −σI)v = 0 (2.14)

Este acaba por ser um sistema homogéneo indeterminado, logo σ −σI é uma matriz
invertível, isto implica que |σ −σI|= 0, e assim obtém-se o polinómio característico:

σ
3 + I1σ

2 + I2σ + I3 = 0 (2.15)

A soluções a equação do polinómio característico são os auto-valores de σ denominadas
tensões principais, onde σ1 ≥ σ2 ≥ σ3, e I1, I2, I3 são os invariantes tensoriais

Ao considerar-se outra base ortonormal (uma rotação do sistema de coordenadas), as
componentes do tensor mudam mais os invariantes permanecem. Eles definem-se como:

I1 = tr(σ) = σxx +σyy +σzz (2.16)

I2 = σ
2
xy +σ

2
xz +σ

2
yz− (σxxσxx +σyyσyy +σzzσzz) (2.17)

I3 = |σ | (2.18)

Outro invariante importante é a tensão média σ (devido a que I1 é um invariante) , que
representa o valor médio das três tensões principais e expressa-se como:

σ =
tr(σ)

3
=

1
3
(σ1 +σ2 +σ3) =

1
3
(σx +σy +σz) (2.19)

Esta tensão média fornece a medida de compressão ou expansão uniforme.

Defina-se o tensor desviador como:

S = σ −σI (2.20)
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Da mesma forma que há os invariantes do tensor de tensão, existe os invariante do tensor
desviador J1, J2, J3

2.4.3 Elasticidade Linear

Na elasticidade linear, estuda-se o comportamento mecânico de corpos sólidos sujeitos a
"pequenas deformações"o tensor usado para caracterizá-las é o "tensor das deformações infinite-
simais". Assumindo que o meio poroso é isotrópico linear, então a relação tensão-deformação é
expressa pela lei de Hooke.

σ = Dε (2.21)

onde σ é o tensor de tensões, D é o tensor constitutivo (de quarta ordem) e ε é o tensor de
deformações. Ou também pode-se expressar como:

σ = 2Gε +λ tr(ε) (2.22)

onde G é o módulo de cisalhamento e λ uma das constantes de Lame. Como o meio é
isotrópico tem-se a seguente relação:

G =
E

2(1+ v)
(2.23)

onde E é o módulo de Young e v é o coeficiente de Poisson.

2.5 Poroelasticidade
O mecanismo de consolidação de solos foi inicialmente explicado por Terzaghi a partir

de experimentos em laboratório, o qual analisou a sedimentação de uma coluna de solo exposta
à uma carga constante e impedida de se deslocar lateralmente (estado unidimensional). Nesta
pesquisa, Terzaghi introduziu os princípios das tensões efetivas. Após este trabalho, Biot, expan-
diu esta teoria para um caso tridimensional considerando carga variável com o tempo. Biot fez
as seguintes considerações em seu modelo:

•Material isotrópico e homogêneo,

• Reversibilidade na relação tensão-deformação,

• Relação tensão-deformação linear,

• Deformações infinitesimais,

• Água contida nos poros é incompressível,

• O líquido escoa pelo meio poroso seguindo a lei de Darcy.
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O principio de Terzagui defina-se como:

σ = σ
′+ p f I (2.24)

onde σ é o tensor de tensões, σ ′ é o tensor de tensões efetivo, p f é a pressão do fluido e
I é o tensor identidade. Terzaghi deduziu este conceito através de ensaios de consolidação
unidimensional, este conceito foi generalizado para o caso tridimensional mais adiante por
(BIOT, 1941) e inclui o fator poroelástico (também conhecido como parâmetro α de Biot-Willis),
e a equação (2.24) escreve-se agora como:

σ = σ
′+α p f I (2.25)

onde α chama-se coeficiente de Biot. O parâmetro α é obtido pela relação entre o módulo de
rigidez do meio poroso e o módulo de rigidez da fase solida, ele é dado pela seguente equação:

α = 1− K
Ks

(2.26)

onde K é módulo de rigidez do meio poroso (bulk modulus) e Ks é módulo de rigidez da fase
solida. O módulo de rigidez é una propriedade dos materiais que da informação sobre que tão
fácil é comprimir-los uniforme-mente por todos os lados
Observe-se o seguinte, considere-se ao meio poroso como um solo tem-se, K� Ks , logo α = 1
e considera-se uma rocha, tem-se um valor muito alto para K, logo α < 1.
Tem-se a seguinte relação entre a compressibilidade do solido e o módulo de rigidez do meio
com a seguente equação:

Cs =
1
K

(2.27)

no regime elástico linear, temos, K = E
3(1−2v) onde E é o módulo de Young e v é o coeficiente

de Poisson.

Agora defina-se a deformação volumétrica, com nossa hipótese das deformações infinite-
simais, se um corpo está submetido ao um esforço, este experimenta um cambio de volume ∆V,

ao cociente de este entre o volume original V0 chama-se deformação volumétrica e expressa-se
como:

εv =
∆V
V0

= εxx + εyy + εzz (2.28)

Para a justificativa da segunda igualdade na equação (2.27) da deformacão volume-
trica ver (COUSSY, 2004), (OLIVELLA; SARACÍBAR, 2010), apresenta-se uma pequena
justificativa, de dita equação, da definição temos o seguente:

εv =
∆V
V0

=
Vt−V0

V0
=
|F |V0−V0

V0
= |F |−1 (2.29)

onde F é o gradiente de deformação, tem considerado as componentes de ε infinitésimos, logo
|F |= |I+ ε|, e desprezando na expressão de seu determinante os infinitésimos de ordem superior
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a um, tem-se:

|F |=

∣∣∣∣∣∣∣
1+ εxx εxy εxz

εyx 1+ εyy εyz

εzx εzy 1+ εzz

∣∣∣∣∣∣∣= 1+ εxx + εyy + εzz +o(ε2)≈ 1+ tr(ε) (2.30)

logo ao substituir a equação (2.29) na equação (2.28) consegue-se a definição da deformação
volumétrica dada pela equação (2.27)

Pode-se observar que a equação proposta por Terzaghi é o caso onde α = 1, isto é, para o
caso onde os grãos da matriz rochosa são incompreensíveis. A rigidez do meio poroso descreve
a resistência do material submetida a uma solicitação hidrostática tr(σ ′)/3

K =
tr(σ ′)
3tr(ε)

(2.31)

Como é suposto que o material é isotrópico linear, então agora a relação tensão-deformação
do meio poroso é expressa pela lei de Hooke da teoria da elasticidade com um termo adicional,
que considera o efeito da pressão do fluido no interior do meio poroso. Como o material é
isotrópico, a variação da pressão do fluido não causa deformações cisalhantes, assim este termo
é acrescentado apenas nas componentes normais da deformação (BIOT, 1941).

εxx =
σxx
E −

v
E (σyy +σzz)+

p
3Ks

εyy =
σyy
E −

v
E (σxx +σzz)+

p
3Ks

εzz =
σzz
E −

v
E (σyy +σxx)+

p
3Ks

εxy =
σxy
2G

εxz =
σxz
2G

εyz =
σyz
2G

(2.32)

Onde p é a pressão do fluido ou poro-pressão, E é o módulo de Young, G é módulo
cisalhante, v o coeficiente de Poisson, e Ks é o modulo volumétrico da fase solida.

2.6 Equação da Continuidade - Conservação de massa
O principio da conservação da massa diz que a massa do meio continuo é sempre a

mesma. Mostra-se a equação da continuidade para a descrição espacial ou euleriana.

Seja x = x(X, t) com X ∈Ωt0 , x ∈Ωt e t0, t ∈ I e também a propriedade ψ do meio (uma
função continua definida no meio) na descrição lagrangiana escrevemos como ψl(X, t) e na
descrição euleriana como ψe(x, t)

Para a propriedade ψ defina-se a derivada local na descrição euleriana como: ∂

∂ t (ψe(x, t)).
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E a derivada material na descrição lagrangiana como: D
Dt (ψl(X, t)) = ∂

∂ t (ψl(X, t)).

Logo a derivada material na descrição euleriana ao aplicar a regra da cadeia escreve-se
como:

D
Dt

(ψe(x, t)) =
∂

∂ t
(ψe(x, t))+

∂xi

∂ t
∂

∂xi
(ψe) =

∂

∂ t
(ψe)+v ·∇(ψe) (2.33)

onde v = ∂x
∂ t é o vetor velocidade da partícula na descrição espacial.

Logo para qualquer propriedade do meio (•) a equação anterior pode se escrever como:

D
Dt

(•)︸ ︷︷ ︸
derivada material

=
∂

∂ t
(•)︸ ︷︷ ︸

derivada local

+ v ·∇(•)︸ ︷︷ ︸
derivada convectiva

. (2.34)

Observe que:

D
Dt (•) é a taxa de variação temporal da propriedade • de uma partícula do meio quando

ela move-se através do espaço.

∂

∂ t (•) mudança da propriedade em relação da taxa de tempo no ponto fixo.

v ·∇(•) implicitamente definido como a derivada convectiva representa a taxa do tempo
de mudança devido ao movimento da partícula de um local para outro onde as propriedades são
espacial-mente diferentes.

2.6.1 Equação da continuidade para descrição espacial

Nesta secção deduz-se a equação de conservação da massa, seja o corpo Ω de superfície
de contorno ∂Ω, considere-se uma região Ω′ da superfície ∂Ω com contorno Γ para um tempo
t ∈ I com n um vetor normal unitário externo ao um ponto de Ω′ , vs o vetor velocidade de dito
ponto como mostra-se na figura 8
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Figura 8 – Conservação de massa.

e ψ(x, t) uma propriedade na descrição euleriana, então se cumpre que:

d
dt

∫
Ω′

ψ(x, t)dx =
∫

Ω′

∂ψ

∂ t
dx+

∮
Γ

ψn ·vsds. (2.35)

Agora para cada elemento de massa do meio com velocidade v e considerando-se uma
região especial Ω′ tal que a superfície de delimitação Γ é anexada a um conjunto fixo de elementos
do material. Então, cada ponto desta superfície move-se com a velocidade do material, isto é,
vs = v, e a região Ω′ contém assim uma quantidade total fixa de massa porque nenhuma massa
atravessa a superfície limite Γ. Para distinguir a taxa de variação temporal de uma integral sobre
esta região de material, substituí-se d/dt pelo D/Dt e escrevemos a equação (2.35) como:

D
Dt

∫
Ω′

ψ(x, t)dx =
∫

Ω′

∂ψ

∂ t
dx+

∮
Γ

ψn ·vds (2.36)

que contem o material da região, isto é, uma região de massa total fixa, esta equação é referida
como o teorema de transporte de Reynolds. A relação entre a derivada temporal após uma região
arbitrária e a derivada temporal após uma região material (massa total fixa) é

d
dt

∫
Ω′

ψ(x, t)dx =
D
Dt

∫
Ω′

ψ(x, t)dx+
∮

Γ

ψn · (vs−v)ds. (2.37)

A diferença de velocidade v− vs é a velocidade do material medida em relação à
velocidade da superfície. A integral de superfície

∮
Γ

ψn · (v−vs)ds,

mede a vazão total da propriedade ψ da região Ω′. Seja ρ(x, t) a densidade de massa de uma
região contínua. Então o princípio de conservação de massa para uma região de material fixo Ω′
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requer que

D
Dt

∫
Ω′

ρdx = 0. (2.38)

Então da equação (2.37), com ψ = ρ , segue-se que para uma região espacial fixa Ω′ (isto
é, vs = 0) e substituindo a equação (2.38) na equação (2.37), então o princípio da conservação
da massa também pode-se escrever como:

d
dt

∫
Ω′

ρdx =−
∮

Γ

ρn ·vds. (2.39)

Assim, a taxa de tempo de mudança de massa dentro de uma região Ω′ é igual ao fluxo
de massa (por causa do sinal negativo) através da superfície para a região. Na equação (2.39), Ω′

denota o volume de controle (cv) e Γ a superfície de controle (cs) que envolve Ω′.

Usando a equação (2.35) com ψ = ρ , na equação (2.39) expressa-se como:

∫
Ω′

∂ρ

∂ t
dx =−

∮
Γ

ρn ·vds. (2.40)

Na equação (2.40), convertendo a integral de superfície em uma integral de volume por
meio do teorema de divergência que escreve-se como:

∮
Γ

ρn ·vds =
∫

Ω′
∇ · (ρv)dx

e reescrevendo a equação (2.40) obtém-se:

∫
Ω′

[
∂ρ

∂ t
+∇ · (ρv)

]
dx = 0. (2.41)

Como a região Ω′ foi escolhida arbitrariamente e a integral é nula para qualquer região
Ω′, então o integrando também anula-se, assim tem-se:

∂ρ

∂ t
+∇ · (ρv) = 0. (2.42)

Esta é a equação da continuidade, expressa a conservação local da massa em qualquer
ponto em um meio contínuo.

Uma derivação alternativa da equação (2.42) e a dedução da equação de continuidade na
descrição lagriana pode-se encontrar em (REDDY, 2013)



Capítulo 2. Formulação Matemática do Meio Poroso: Abordagem contínuo e Leis Basicas 34

2.6.2 Fase sólida

A equação da conservação de massa para a fase solida é descrita como:

∂

∂ t
[(1−φ)ρs]+∇ · [(1−φ)ρsu̇] = 0 (2.43)

onde φ é a porosidade, ρs é a densidade do solido, u̇ ou ∂u
∂ t é a derivada parcial de u em relação

do tempo e ∇ o operador nabla. Também tem-se em consideração o seguinte que a densidade
total do meio é dada por:

ρt = (1−φ)ρs +φρ f (2.44)

onde ρt é a densidade total, ρs é a densidade da parte solida e ρ f é a densidade do fluido.

Na seguintes linhas fazem-se transformações e manipulações das equações, isto irá
permitir-se obter as equações para a formulação numérica, para isso o desenvolvimento da
derivada parcial no primeiro termo da equação (2.43) e do gradiente no segundo termo, e utiliza-
se a derivada material na equação resultante, esta derivada material pode-se apresentar como:

D
Dt

(•) = ∂

∂ t
(•)+ u̇ ·∇(•) (2.45)

Então ao desenvolver os operadores diferenciais da equação (2.43) obtém-se:

−ρs
∂

∂ t
φ +(1−φ)

∂

∂ t
ρs−ρs∇(φ) · u̇+(1−φ)∇(ρs) · u̇+(1−φ)ρs∇ · u̇ = 0 (2.46)

Ao rearranjar os termos da equação (2.46) tem-se:

−ρs[
∂

∂ t
φ +ρs∇(φ) · u̇]+ (1−φ)[

∂

∂ t
ρs +∇(ρs) · u̇]+ (1−φ)ρs∇ · u̇ = 0 (2.47)

Ao substituir a equação (2.45) na equação (2.47) tem-se:

−ρs
D
Dt

(φ)+(1−φ)
D
Dt

(ρs)+(1−φ)ρs∇ · u̇ = 0 (2.48)

Como a deformação volumétrica pode-se escrever:

εv = εxx + εyy + εzz = tr[ε] = div u = ∇ ·u (2.49)

Ao aplicar a derivada temporal na equação (2.49) temos que:

∂

∂ t
εv = div

∂

∂ t
u ou ε̇v = ∇ · u̇ (2.50)

Logo pode-se substituir a equação (2.50) na equação (2.48) e tem-se:

−ρs
D
Dt

(φ)+(1−φ)
D
Dt

(ρs)+(1−φ)ρsε̇v = 0 (2.51)
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Então da equação (2.51), a derivada material da porosidade pode-se expressar como:

D
Dt

(φ) =
(1−φ)

ρs

D
Dt

(ρs)+(1−φ)ε̇v (2.52)

2.6.3 Fase fluida

Considera-se que o fluxo seja monofásico e tem-se que a equação da conservação de
massa para a fase fluida é descrita como:

∂

∂ t

(
ρ f φ

)
+∇ ·

(
ρ f q f +φρ f u̇

)
= 0 (2.53)

onde q f é o vetor velocidade do fluido ou velocidade de Darcy.

Para à obtenção das equações, aplica-se o mesmo procedimento feito para a equação de
conservação da fase sólida então, tem-se para a equação da fase fluida:

ρ f
∂

∂ t
φ +φ

∂

∂ t
ρ f +∇ · (ρ f qf)+ρ f ∇(φ) · u̇+φ∇(ρ f ) · u̇+φρ f ∇ · u̇ = 0 (2.54)

Ao rearranjar os termos da equação (2.54) tem-se:

ρ f [
∂

∂ t
φ +∇(φ) · u̇]+φ [

∂

∂ t
ρ f +∇(ρ f ) · u̇]+φρ f ∇ · u̇ = 0 (2.55)

Ao substituir as equações (2.45) e (2.53) na equação (2.55) tem-se:

ρ f
D
Dt

(φ)+φ
D
Dt

(
ρ f
)
+∇ · (ρ f qf)+φρ f ∇ · ε̇v = 0 (2.56)

Na equação (2.56) ao substituir a equação (2.52)obtém-se:

ρ f
(1−φ)

ρs

D
Dt

(ρs)+ρ f (1−φ)ε̇v +φ
D
Dt

(
ρ f
)
+∇ · (ρ f qf)+φρ f ∇ · ε̇v = 0 (2.57)

Ao Rearranjar e reduzir termos, temos:

φ
D
Dt

(
ρ f
)
+ρ f

(1−φ)

ρs

D
Dt

(ρs)+∇ · (ρ f qf)+ρ f ε̇v = 0 (2.58)

Como a alpha de Biot pode-se expressar como na equação (2.26)

α = 1− K
Ks
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E que a densidade foi definida na equação (2.1) :

ρ f = ρ
0
f eC f (p f−p0

f )+α(T−T 0)

Ao derivar em relação da pressão do fluido tem-se:

dρ f

d p f
=C f ρ

0
f eC f (p f−p0

f )+α(T−T 0) =C f ρ f (2.59)

do qual resulta a compressibilidade do fluido como:

C f =
1

ρ f

dρ f

d p f
(2.60)

Observe-se que:

K f =
1

C f
(2.61)

onde K f é o modulo de rigidez do fluido

2.7 Modelo Constitutivo Elasto-plástico
Os modelos (equações constitutivas) elasto-plásticos são utilizados para representar o

comportamento mecânico dos materiais quando certos limites são ultrapassados em valores de
tensões (ou deformações) e dito comportamento deixa de ser representável por modelos mais
simples quanto eles são elásticos. A hipótese necessária para os modelos elasto-plásticos tenha
validade é que as deformações sejam infinitesimais.

Segundo (SOUZA; PERIC; OWENS, 2008) para a formulação de um modelo elasto-
plástico são critérios essenciais os seguentes:

• Relação elástica.

• Critério de plastificação.

• Existência de um potencial plástico.

• Leis de endurecimento e amolecimento.

2.7.1 Principio da Decomposição Aditiva da Deformação.

De acordo com a hipótese de pequenas deformações tem-se que a decomposição do
tensor de deformações totais ε é igual à um tensor de deformações elásticas (ou reversíveis) εe
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mais um tensor de deformações plásticas (ou irreversíveis) εp, e expressa-se como:

ε = ε
e + ε

p (2.62)

2.7.2 Função e Superfície de Fluência

Para um material, em um determinado tempo t, defina-se a função de fluência F(σ ,h),
obtida em função do estado de tensões atuante e dos parâmetros plásticos do material, parti-
cularmente h é um vetor de parâmetros de estado que controlam o endurecimento. Quando
F(σ ,h)< 0, o material comporta-se elasticamente, pode-se definir então o conjunto de tensões
de domínio elástico como:

Eσ = {σ : F(σ ,h)< 0} (2.63)

Quando F(σ ,0) < 0 chama-se domínio elástico inicial que corresponde a uma deformação
plástica nula ( εe = h = 0) e defina-se como:

E0
σ = {σ : F(σ ,0)< 0} (2.64)

Já quando F(σ ,h) = 0, ocorrem as deformações plásticas que considera a existência dos parâ-
metros plásticos (h 6= 0) , o conjunto de tensões é uma superfície fechada que delimita a função
de fluência e chama-se superfície de fluência descrita como:

∂Eσ = {σ : F(σ ,h) = 0} (2.65)

quando o material está em regime plástico, ou seja, deformando-se de maneira irreversível, o
estado de tensões sempre deve estar sobre a superfície de fluência.

E quando F(σ ,h)> 0 significa uma situação impossível. Na figura 9 pode-se observar
os conjuntos definidos anteriormente.

Figura 9 – Superfície de fluência de F

Fonte: (PRAT, 2006)
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para plasticidade com endurecimento ou amolecimento h varia com as deformações
plásticas e a superfície de fluência se expande ou diminui durante o carregamento

2.7.3 Potencial plástico

Para se estabelecer a direção da deformação plástica em qualquer estado de tensões,
considera-se como hipótese a existência de um potencial P que caracteriza a lei de escoamento
através da seguinte relação:

∆ε
p
i = Λ

∂P
∂σi

(2.66)

onde ∆ε
p
i representa as seis componentes da deformação plástica incremental, P é a função do

potencial de plastificação e Λ é é chamado de multiplicador plástico e é um escalar que fornece
a magnitude da deformação plástica. A direção é dada pelo gradiente de P, a função potencial
plástica, obtém a forma seguente:

P(σ ,m) = 0 (2.67)

onde m é um vetor característico dos parâmetros do material. A direção da deformação plástica
é paralela a direção do gradiente do potencial plástico e, portanto, perpendicular a superfície
determinada por P, como mostra a figura 10

Figura 10 – Potencial plástico e vetor de deformações plásticas

Fonte: (POTTS; ZDRAVKOVICT, 1999)

Para se favorecer simplificações é introduzida a consideração de que a função potencial de
plastificação é igual à superfície de fluência P(σ ,m) = F(σ ,h). Neste caso a lei de escoamento é
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chamada associativa. Quando se trabalha com funções distintas para o potencial de plastificação
e superfície de fluência, denomina-se lei de escoamento não associada

2.7.4 Tensor Elastoplástico

Ao contrário do caso elástico, não existe unicidade na relação de tensão-deformação,
um mesmo valor pode corresponder a valores infinitos da tensão e vice-versa. O valor da
tensão, depende alem da deformação também da história de carregamento. Para obter o tensor
constitutivo elastoplástico consideramos o seguente: No regime elástico o tensor constitutivo foi
definido pela a lei de Hooke e denotado como, D, este pode-se reescrito como De = D, tendo
em consideração a teoria incremental aplicado na plasticidade consegue-se o tensor constitutivo
elastoplástico denotado por: Dep, para a dedução de este tensor pode se encontrar em (POTTS;
ZDRAVKOVICT, 1999), σ̇ = Depε̇

2.7.5 Modelos Constitutivos

Os critérios de escoamento mais usados são representados no espaço das tensões princi-
pais .Os critérios de Drucker-Prager e Von Mises são regularizações (suavizações) dos critérios
de Mohr-Coulomb e Tresca. A Figura 10 mostra a interseção das superfícies de escoamento
de Mohr-Coulomb, Drucker-Prager e Tresca estendido com o plano π . Observou-se os três
critérios através de dados experimentais e conclui-se que o critério de Mohr –Coulomb é o que
melhor prevê a ruptura ou escoamento do solo. Apesar disso, o critério de Drucker-Prager é
muito usado por sua simplicidade, pois é função apenas de dois invariantes das tensões, enquanto
que o critério de Mohr-Coulomb necessita de ser definido em função de três invariantes
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Figura 11 – Secção do plano π com as superfícies de escoamento de Drucker-Prager, Tresca
Estendido e Mohr-Coulomb.

Fonte: (CABRAL, 2007)

2.7.6 Modelo de Drucker-Prager

No modelo de Mohr-Coulomb (POTTS; ZDRAVKOVICT, 1999) apresenta cantos agu-
dos quando se traça a função no espaço das tensões efetivas principais. Esses cantos implicam
em singularidades nas funções de fluência. Uma das soluções mais comuns para resolver o
problema de essas singularidades é adotar uma função que envolva a superfície de plastificação
de MohrCoulomb como é mostrado na figura 12. Essa superfície foi proposta por Drucker-Prager.
Essa simplificação é quando adota-se uma função que traça um cone cilíndrico no espaço das
tensões principais. O modelo de Drucker Prager prevê que a plastificação tem início quando o
invariante de tensões desviadoras, S, e a tensão média, σ , atingem uma combinação de valores
críticos. Para este modelo podemos definir a função de fluência da seguinte forma:

F (σ ,m) = S−
(

c
tanϕ

+σ

)
M = 0 (2.68)

sendo c a coesão, e ϕ o ângulo de atrito, parâmetros do material e M é uma constante do material.
Esta forma de função de plastificação é frequentemente chamada por Drucker-Prager ou função
de Von Mises estendido.



Capítulo 2. Formulação Matemática do Meio Poroso: Abordagem contínuo e Leis Basicas 41

Figura 12 – Superfície de plastificação de Drucker-Prager: Espaço das tensões principais e plano
octaédrico.

Fonte: (SOUZA; PERIC; OWENS, 2008)

2.8 Fluxo com Acoplamento Geomecânico

2.8.1 Introdução

Um problema acoplado é aquele em que dois ou mais sistemas físicos interagem entre
si e cujo acoplamento pode ocorrer através de diferentes graus de interação (ZIENKIEWICZ,
2000).

2.8.2 Tipos de Acoplamento

As interações entre os subproblemas de fluxo e mecânico tem sido modelados utilizando
vários esquemas de acoplamento, os acoplamentos pode ser feito através de diferentes maneiras:
Acoplamento Total, acoplamento sequencial, explicito e pseudo-acoplamento (SETTARI; M.,
2002).

2.8.3 Acoplamento Implícito ou Totalmente Acoplado

Neste tipo de acoplamento, variáveis de fluxo, tais como a pressão, temperatura, saturação
e respostas geomecânicas, tais como tensões e deslocamentos são calculados simultaneamente
através de um sistema a cada intervalo de tempo conforme apresentado na figura 11. O método
é chamado de totalmente acoplado ou acoplamento implícito, desde que todo o sistema seja
discretizado em um único domínio e resolvido simultaneamente.
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Figura 13 – Esquema de acoplamento implícito modificado

Fonte: (CABRAL, 2007)

Onde n é o intervalo de tempo onde são calculadas às variáveis, T é a temperatura, S é a
saturação, p é a pressão, σ é a tensão e u os deslocamentos.

Vantagens do Acoplamento Total

Normalmente oferece soluções confiáveis e precisas, que podem ser usados como bench-
mark para outras técnicas de acoplamento;
Somente uma matriz é construída para resolver o sistema de equações, com a mesma discreti-
zação, normalmente usando o método dos elementos finitos (SETTARI, 2001) Pode resolver
problemas de alto grau de acoplamento.

Desvantagens do Acoplamento Total

Alto custo computacional, tempo de CPU muito longo especialmente nos casos de campo
de grandes dimensões;
Em geral é mais lento que o acoplamento parcial, devido ao tamanho das matrizes geradas

2.8.4 Acoplamento Sequencial

Neste tipo de acoplamento, as variáveis de fluxo e da geomecânica são resolvidas separa-
damente e sequencialmente, por um simulador de reservatórios e por um simulador geomecânico,
onde a troca de informações acontece em ambos os sentidos no final de cada intervalo de tempo.
As iterações são controladas por um critério de convergência que normalmente é baseado na
pressão ou variações nas tensões entre as duas últimas iterações da solução.
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Vantagens do Acoplamento Sequencial

O módulo geomecânico pode ser facilmente acoplado com qualquer simulador de reser-
vatórios e vice e versa com pequenas alterações no código;
A solução dessa forma de acoplamento é capaz de fornecer os mesmos resultados da simulação
totalmente acoplada, desde que ambos os simuladores convirjam;

Desvantagens do Acoplamento Sequencial

O tempo computacional pode ser bastante elevado devido a problemas de convergência
entre os módulos;

Figura 14 – Esquema de acoplamento iterativo.

Fonte: (CABRAL, 2007)

Na referência (CABRAL, 2007) tanto os primeiros acoplamento descritos como os
seguentes acoplamentos pode-se encontrar descritos mais detalhadamente.

2.8.5 Acoplamento Explicito

Este tipo de acoplamento (é a forma mais fraca para a comunicação entre o fluxo no
reservatório e as deformações) desde que a informação seja levada somente do simulador de
reservatórios para o módulo geomecânico. Isso significa que mudanças de poro-pressão induzem
a alterações nas tensões e deformações do campo, mas o inverso não acontece

2.8.6 Pseudo Acoplamento

Este acoplamento foi definido para os métodos simplificados de se introduzir a geomecâ-
nica nos simuladores de reservatórios. Nesta forma de acoplamento o simulador de reservatórios
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pode calcular algumas respostas geomecânicas, como compactação e variações na tensão hori-
zontal, por simples relações entre porosidades e deslocamentos verticais e entre porosidades e
tensões, respetivamente.
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3 Formulação Numérica

Como já visto o modelo matemático formulado a partir das equações diferenciais defi-
nidas no capítulo anterior, resulta em um sistema de EDPs que necessita ser resolvido. Porém,
diante da complexidade do problema acoplado, torna-se necessário o emprego de métodos
numéricos para se obter a solução através de modelagem computacional. As equações numéricas
do modelo de fluxo monofásico adotado e também do modelo mecânico utilizado nos problemas
propostos serão detalhadas, com a adição do termo de acoplamento hidro-geomecânico e o es-
quema numérico utilizado. Neste trabalho foi utilizado o Método dos Elementos Finitos-Galerkin
para resolver numericamente os problemas de aplicação do esquema IMPES modificado. A
ferramenta computacional adotada (processador) foi o programa de elementos finitos CODE-
BRIGHT (Coupled Deformation Brine Gas and Heat Transport). Este programa é capaz de
resolver problemas termo-hidro-químico-mecânicos de maneira acoplada em meios porosos.

3.1 Método dos Elementos Finitos
Segundo (CARVALHO, 2005) o Método dos Elementos Finitos apresenta propriedades

matemáticas e numéricas de grande interesse, tais como este método sempre produzir matrizes
simétricas condicionadas ao operador diferencial ser simétrico, bem como apresenta funções de
aproximação que levam a matrizes esparsas onde apenas os vizinhos mais próximos contribuem
nas equações nodais. Variações deste método são aplicadas de forma bastante difundida tais
como o Método dos Elementos Finitos Misto e Petrov-Galerkin.

No presente trabalho não é feito à discretização de todos os termos como são o termo
de fluxo, termo armazenamento, etc via MEF, só mostraremos o do problema mecânico, o
tratamento dos termos pode-se encontrar nas seguentes referencias (FERNANDES, 2009) e
(BESERRA, 2015) (CUNHA, 2015),

3.2 Problema Mecânico
Considera-se um sólido de domínio Ω e contorno Γ, como mostra a Figura , e sendo o

contorno separado em duas partes, Γu onde são impostos deslocamentos, Γt que está sujeito a
uma tensão prescrita. As equações básicas que regem o problema de equilíbrio são apresentadas
a seguir
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Figura 15 – Domínio do problema de equilíbrio

Fonte: (BESERRA, 2015)

Ao desprezar os efeitos inerciais, a equação do momento linear 2.13 escreve-se como:

div σ +b = 0 (3.1)

onde σ é o tensor de tensões, b é o vetor da força de corpo, sujeito as condições de contorno
tanto Γu como em Γt .O vetor de deslocamentos é aproximado linearmente utilizando funções de
forma e somando para todos os nós do elemento, logo:

ũ =
nnel

∑
i

ũiNi (3.2)

Aplica-se o método de resíduos ponderados à equação 3.1 obtendo-se a forma forte
da equação e depois se reduz a ordem do termo de segunda ordem através do Teorema da
Divergência (Forma Fraca) e logo aplica-se Galerkin, resultando assim na Forma Integral da
Equação de Equilíbrio, que expressa-se como:

∫
Ω

BT
i σuidΩ =

∫
Ω

NibdΩ+
∫
Γ

NitdΓ (3.3)

Onde Bi = ∇T ·Ni , σ = D
nnel
∑
j

Biui e os termos b e t são, respetivamente, os vetores de

força de corpo e força de superfície (condição de contorno) onde seus termos integrais resultam
no vetor de forças aplicadas ao corpo Fext . A parcela do lado direito da equação, que envolve
implicitamente o vetor de tensões, consiste no termo de tensões internas. A Matriz de Rigidez
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escreve-se como:

R =
∫
Ω

BT
i D

nnel

∑
j

BidΩ (3.4)

Portanto, o problema é solucionado através da obtenção dos deslocamentos em função das cargas,
por meio da relação constitutiva carga-deslocamento, que depende da matriz de rigidez global.
Esta relação pode-se expressar por:

U̇ = R−1 · Ḟext (3.5)

3.3 Problema da porosidade
Para o tratamento da porosidade considere-se o seguinte ao problema como isotérmico,

logo como a densidade ρs esta em função da temperatura temos que ρs é constante, e ao solido
incompressível então Ks tende ao infinito.

Assim na equação (2.52), como o fluido é incompressível tem-se ρs é constante, D
Dt (ρs) =

0, logo:

D
Dt

(φ) = (1−φ)ε̇v (3.6)

Observe-se que:

Da equação (3.6) pode-se expressar de forma explicita ou implícita

Por exemplo explicitamente tem-se:

φ k+1
e −φ k

e
∆t

= (1−φ
k+1
e )

(εk+1
ve
− εk

ve
)

∆t
(3.7)

Logo ao simplificar e arranjar os termos da equação consegue-se:

φ
k+1
e = φ

k
e +(1−φ

k+1
e )

(εk+1
ve
− εk

ve
)

∆t
(3.8)
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Novamente com a hipótese assumida na equação (2.58) tem-se:

φ
D
Dt

(
ρ f
)
+∇ · (ρ f qf)+ρ f ε̇v = 0 (3.9)

Ao aplicar a regra da cadeia no termo D
Dt

(
ρ f
)

em relação do tempo na equação (3.9)
tem-se:

φ
dρ f

d p f

D
Dt

(
p f
)
+∇ · (ρ f qf)+ρ f ε̇v = 0 (3.10)

Ao substituir a equação (2.60) na equação anterior obtém-se:

ρ f [φC f
D
Dt

(
p f
)
+ ε̇v]+∇ · (ρ f qf) = 0 (3.11)

Ao resolver todos os sistemas simultaneamente resolve-se o sistema em modo totalmente
acoplado.

Ao considerar o seguente ρs dependente de: p f , (pressão do fluido) T (Temperatura)
e p′ (Tensão efetiva media), ou ρs(p f ,T, p′), logo ao aplicar a derivada material para ρs, ela
pode-se expressar mediante a regra da cadeia como:

D
Dt

(ρs) =
∂ρs

∂ p f

D
Dt

(
p f
)
+

∂ρs

∂T
D
Dt

(T )+
∂ρs

∂ p′
D
Dt

(
p′
)

(3.12)

Ao Multiplicar a equação (3.12) por 1
ρs

, tem-se:

1
ρs

D
Dt

(ρs) =
1
ρs

∂ρs

∂ p f

D
Dt

(
p f
)
+

1
ρs

∂ρs

∂T
D
Dt

(T )+
1
ρs

∂ρs

∂ p′
D
Dt

(
p′
)

(3.13)

Ao renomear alguns termos da equação (3.13) temos:

1
ρs

D
Dt

(ρs) =
1
Ks

D
Dt

(
p f
)
−βs

D
Dt

(T )− 1
(1−φ)Ks

D
Dt

(
p′
)

(3.14)
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onde nós mantido em conta o seguinte:
1

Ks
= 1

ρs

∂ρs
∂ p f

βs =
1
ρs

∂ρs
∂T O coeficiente de expansão térmica para o sólido

d p′
(1−φ)Ks

= 1
ρs

∂ρs
∂ p′

E ao considerar a rigidez efetiva ao seguinte: K′s = (1−φ)Ks e lembrando que a tensão
efetiva media:

p′ =
1
3

tr(σ ′) (3.15)

Ao introduzir agora uma nova relação constitutiva para o primeiro invariante de tensões, como:

D
Dt

(
p′
)
= K

(
D
Dt

(εv)−βs
D
Dt

(T )+
1
Ks

D
Dt

(
p f
))

(3.16)

Na equação (3.14) ao substituir a equação (3.16) obtemos:

1
ρs

D
Dt

(ρs) =
1
Ks

D
Dt

(
p f
)
−βs

D
Dt

(T )− K
(1−φ)Ks

(
ε̇v−βs

D
Dt

(T )+
1
Ks

D
Dt

(
p f
))

(3.17)

Ao considerar o problema isotérmico, temos que T constante logo D
Dt (T ) = 0

Agora ao substituir na equação (3.17) tem-se:

1
ρs

D
Dt

(ρs) =
1
Ks

D
Dt

(
p f
)
− K

(1−φ)Ks

(
ε̇v +

1
Ks

D
Dt

(
p f
))

(3.18)

D
Dt

(φ) = (1−φ)

(
1
Ks

D
Dt

(
p f
)
− K

(1−φ)Ks

(
ε̇v +

1
Ks

D
Dt

(
p f
)))

+(1−φ)ε̇v (3.19)

Ao realizar as contas tem-se:

D
Dt

(φ) = (1−φ)
1
Ks

D
Dt

(
p f
)
− K

Ks
ε̇v−

K
K2

s

D
Dt

(
p f
)
+(1−φ)ε̇v (3.20)
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Ao arranjar os termos da equação e colocando em evidencia termos comuns tem-se:

D
Dt

(φ) =
1
Ks

D
Dt

(
p f
)(

(1−φ − K
Ks

)

)
− ε̇v

(
(1−φ − K

Ks
)

)
(3.21)

Como α = 1− K
Ks
, então ao substituir-la na equação anterior e fatorizar termos comuns

obtém-se:

D
Dt

(φ) = (α−φ)

(
1
Ks

D
Dt

(
p f
)
+ ε̇v

)
(3.22)

Tem-se D
Dt (φ) falta por obter D

Dt

(
p f
)

Pode-se observar que ao considerar ao solido como incompressível então o modulo
volumétrico da fase solida Ks tende ao infinito logo α = 1, na qual a equação (3.22) fica como:

D
Dt

(φ) = (1−φ) ε̇v (3.23)

Agora tem-se mais uma relação D
Dt

(
p f
)

e a porosidade, mais para ρ f , este depende de
p f , (pressão do fluido) T (Temperatura) ou ρs(p f ,T ) ao aplicar a derivada material para ρ f ,

ela pode-se expressar mediante a regra da cadeia como:

D
Dt

(
ρ f
)
=

∂ρ f

∂ p f

D
Dt

(
p f
)
+

∂ρ f

∂T
D
Dt

(T ) (3.24)

Ao renomear alguns termos da equação (3.24) temos:

1
ρ f

D
Dt

(
ρ f
)
=

1
K f

D
Dt

(
p f
)
−β f

D
Dt

(T ) (3.25)

Onde mantido-se em conta o seguinte:
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1
K f

= 1
ρ f

∂ρ f
∂ p f

β f =
1

ρ f

∂ρ f
∂T

E β f é coeficiente de expansão térmica para o fluido
K f é o modulo de compressibilidade do fluido
Como o problema foi considerado isotérmico, temos que D

Dt (T ) = 0, logo:

1
ρ f

D
Dt

(
ρ f
)
=

1
K f

D
Dt

(
p f
)

(3.26)

Então ao substituir na equação (3.25) temos:

φ
ρ f

K f

D
Dt

(
p f
)
+ρ f (1−φ)

(
1
Ks

D
Dt

(
p f
)
− K

(1−φ)Ks

(
ε̇v +

1
Ks

D
Dt

(
p f
)))

+∇·(ρ f qf)+ρ f ε̇v = 0

(3.27)

Ao arranjar os termos da equação e colocando em evidencia o termo comum tem-se:

ρ f

(
φ

K f

D
Dt

(
p f
)
+

(1−φ)

Ks

D
Dt

(
p f
)
− K

Ks

(
ε̇v +

1
Ks

D
Dt

(
p f
))

+ ε̇v

)
+∇ · (ρ f qf) = 0 (3.28)

Assim tem-se outra relação entre a porosidade e D
Dt

(
p f
)

este permite a solução do
sistema totalmente acoplado.

3.4 Resumo das Equações dos Esquemas Numéricos: Total e Se-
quencial
Mostra-se as equações utilizadas para um mesmo problema hidro-mecânico, nos seguin-

tes esquemas numéricos, totalmente acoplado e sequencialmente desacoplado, alem da descrição
do método utilizado por ambos esquemas.

Totalmente Acoplado
As equações governantes de fluxo e mecânicas, são resolvidas simultaneamente a cada

passo de tempo. A solução do problema de acoplamento é geralmente obtida usando o método de
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Newton-Raphson. Este tipo de acoplamento é incondicionalmente estável, porém, dependendo
do problema a ser resolvido, a simulação pode apresentar um custo computacional bastante
elevado e de difícil convergência.
• Atualização da porosidade:

D
Dt

(φ) = (1−φ) ε̇v (3.29)

• Equação de fluxo:

φ
D
Dt

(
ρ f
)
+∇ · (ρ f qf)+ρ f ε̇v = 0 (3.30)

• Problema mecânico:
div σ +b = 0 (3.31)

σ = σ
′+ p f I (3.32)

σ̇ = Dep
ε̇ (3.33)

Neste sistema de equações ao resolver as equações simultaneamente em um mesmo
passo de tempo chamasse totalmente acoplado devido as varias dependentes aparecem equações
do sistema.

Sequencial Desacoplado
As equações governantes de fluxo ou o do problema mecânico é resolvido primeiro,

e então o outro problema é resolvido empregando a solução intermediária do primeiro. Esta
sequencia é iterada em cada passo de tempo até a obtenção da convergência . A solução deste
tipo de acoplamento é idêntica a obtida usando a abordagem totalmente acoplada.
Apresenta-se quatro esquemas dentro do desacoplamento:
(i) Decomposição drenada (drained split);
(ii) Decomposição não-drenada (undrained split);
(iii) Deformação fixada (fixed strain) e;
(iv) Tensão fixada (fixed stress)
Neste trabalho considero-se o desacoplamento do tipo tensão fixada
• Atualização da porosidade:

D
Dt

(φ) = (1−φ) ε̇v (3.34)
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• Equação de fluxo:

φ
D
Dt

(
ρ f
)
+∇ · (ρ f qf)+ρ f ε̇v = 0 (3.35)

• Problema mecânico:
div σ +b = 0 (3.36)

σ = σ
′+ p f I (3.37)

σ̇ = Dep
ε̇ (3.38)

ε̇v =
ṗ′

Ks
−

ṗ f

Ks
+ ε̇

p
v (3.39)

Neste sistema de equações a equação (3.39) permite desacoplar ao sistema e facilitar
o calculo computacional e resolve-se em um mesmo passo ambos sistemas mais separada-
mente, esta equação (3.39) descacopla do sistema as equações (3.34) e (3.35), devido a seguinte
substituição ε̇

p
v = ṗ f Ks (MURAD et al., 2013).

Na seguinte figura 16 mostra-se o procedimentos de cada esquema numérico:

Figura 16 – Esquemas dos métodos totalmente acoplados (superior) e acoplados iterativamente
(inferior).

Fonte: (KIM, 2010)
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3.5 Algoritmo de Integração Implícita-Explícita (IMPLEX) para o
Modelo de DRUCKER PRAGER
No trabalho feito por (BESERRA, 2010) dentro dos resultados conseguidos pela autora,

propõe uma nova maneira de estimar o multiplicador plástico, esta permanece constante no
algoritmo de retorno e elimina as oscilações observadas pelos autores do algoritmo original
(OLIVER; HUESPE; CANTE, 2008), para problemas de estados de tensões uniformes. Essa
melhor aproximação do multiplicador plástico no algoritmo de retorno também resulta numa
menor violação da condição de consistência.
Para uma estimativa do multiplicador plástico consegui-se a partir da projeção das deformações
totais do tempo anterior.
Posteriormente, com esta projeção das deformações totais estima-se um estado de tensões de
prova.
Logo, com base no estado de tensões de prova verifica-se o estado de plastificação do material.
Se caso haja violação da superfície de fluência, obtém-se o multiplicador plástico para o passo
do tempo atual mediante operações da função de fluência obtida como o estado de tensões de
prova e outros parametros (para major detalhe ver (BESERRA, 2010) ).
Esta forma de calcular o multiplicador plastico é diferente em relação ao calculo do multiplicador
plástico feito por (OLIVER; HUESPE; CANTE, 2008), este, faz-se uma extrapolação explícita
do multiplicador plástico do passo atual, este é feito escalonado pelos incrementos de tempos
dos passos atual e anterior.
Continua-se o algoritmo do método IMPLEX de forma igual à integração implícita feita por
(OLIVER; HUESPE; CANTE, 2008) .
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4 Simulação Numérica e Discussões de Re-
sultados

Os casos simulados no presente trabalho tem com objetivo comparar as dois formas de
acoplamentos (totalmente acoplado e sequencialmente acoplado) verificar a precisão do esquema
sequencial em relaçao ao esquema totalmente acoplado.
Realizarem-se os seguintes problemas:
1. Na modelagem acoplada Hidro-geomecanica da perfuração de poços horizontais em rochas
fragies também se faz a comparação de ambos acoplamentos tanto no regime elástico como
plástico
2. Comparou-se os dos sistemas, na modelagem de um caso de reativação de falha com acopla-
mento hidro-mecânica como (CABRAL, 2007).

4.1 Simulação, Análise e Comparação na Perfuração de Poços Ho-
rizontais
O processo de escavação em meios rochosos induzem uma redistribuição do estado de

tensões no maciço que acarreta no fissuramento das regiões próximas à execução da perfuração.
O aparecimento de fissuras conduz a um aumento na permeabilidade da rocha que, por sua vez,
afeta da redistribuição das poro-pressões. (SOULEY, 2001). Devido a essa distribuição não
uniforme de tensões pode ocorrer o break-out, na figura mostra uma imagem de ultrassom de um
poço que sofreu break-out, tal fenómeno muda a secção do poço de circular para elíptica.

Figura 17 – Exemplo de breakout de um poço tirada por uma câmera de fundo.

Fonte: (TINGAY; REINECKER; MÜLLER, 2008)
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4.2 Dados da Perfuração de Poços Horizontais
Foi feita a simulação de perfuração de poço horizontal em material frágil (folhelho)

considerando a influência da alteração da permeabilidade durante o processo de escavação.
Para simular tal problema de forma acoplada(equações hidráulicas e mecânicas) foi utilizado o
algoritmo de integração IMPLEX para o modelo de Drucker Prager. A malha possui 2072 nós e
3984 elementos e o raio do poço é 0.127m a discretização da geometria bem como as condições
de contorno adotadas estão expostas na seguinte figura:

Figura 18 – Geometria do problema e malha de elementos finitos

Na seguinte tabela 1 apresenta-se os parâmetros do nosso caso estudado.
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Tabela 1 – Parâmetros do material do maciço escavado

Parâmetros Elástico Plástico

Módulo de Young 5400 MPa 5400 MPa
Coeficiente de Poisson 0,35 0,35
Parâmetro de Biot-Willis 1,00 1,00
Permeabilidade intrínseca inicial 10−17 cm/s 10−17 cm/s
Porosidade inicial 0,20 0,20
Pressão de poros inicial p0 25 MPa 25 MPa
Pressão de fluido aplicada na perfuração 30 MPa 30 MPa

Comparação na Perfuração de Poços Horizontais no caso elástico
Tem-se a comparação entres os dois tipos de acoplamentos para alguns parâmetros no

regime elástico:
a) O gráfico correspondente ao esquema CUP
b) O gráfico correspondente ao esquema SEQ

Figura 19 – Distribuição da pressão de líquido

a) b)
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Figura 20 – Variação da porosidade

a) b)

Figura 21 – Variação da permeabilidade

a) b)

Tem-se os analises de alguns parâmetros dos seguintes nodos,como mostra-se na figura
22
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Figura 22 – Analise dos nodos próximos ao poço

tem-se analise de alguns parâmetros como mostra-se na figuras seguintes:

Figura 23 – Evolução do deslocamento vertical
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Figura 24 – Evolução da pressão

Nas figuras 23 e 24 mostra-se a evolução do deslocamento vertical e a evolução da
pressão respetivamente para ambos acoplamentos, em todos os casos tiverem comportamento
quase idêntico.

Tem feito os seguintes analises para alguns parâmetros dos seguintes elementos próximos
ao poço que mostra-se na figura 25

Figura 25 – Analise dos elementos próximos ao poço
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Figura 26 – Evolução da porosidade

Figura 27 – Evolução da permeabilidade

Em todos os elementos analisados, note-se que o comportamento similar dos gráficos
para ambos casos de acoplamento no caso elástico.

Tem-se alguns dados computacionais obtidos pelo programa de CODE_ BRITGH na
seguinte tabela 2 mostra-se os resultados
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Tabela 2 – Dados da simulação numérica no regime elástico

Dados de simulação CUP SEQ

Tempo total acumulado do CPU 0.399440E+03 0.317144E+03
Tempo do CPU na solução do sistema 0.143064E+03 0.104344E+03
Radio do sistema/total 0.358161E+00 0.329011E+00
Número total de N-R iterações 429 399
Número total de intervalos de tempo 363 1114
Radio iterações por passo de tempo 1.18 1.14

Pode-se observar na tabela que o tempo de simulação foi menor no esquema numérico
sequencial, em este caso também se observa que o numero de iterações foi menor também no
esquema numérico sequencial.

Comparação na Perfuração de Poços Horizontais no regime elasto-
plástico

Tem-se os seguintes resultados no regime elasto-plástico com os parâmetros de simulação
da tabela 1
a) O gráfico correspondente ao esquema CUP
b) O gráfico correspondente ao esquema SEQ

Figura 28 – Distribuição da pressão de líquido

a) b)
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Figura 29 – Deformações plásticas

a) b)

Figura 30 – Variação de porosidade

a) b)
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Figura 31 – Variação de permeabilidade

a) b)

Nas figuras 28 mostra-se a distribuição da pressão do liquido, esta permanece muito
similar que no caso elástico, na figura 30 a porosidade mostra-se algumas pequenas diferencias
para alguns elementos, mais termos gerais o comportamento foi similar como consequência a 31
a permeabilidade apresenta pequenas diferencias mais em termos gerais similar comportamento

Ao analisar alguns parâmetros dos seguintes nós que mostra-se na figura 22, tem-se:

Figura 32 – Evolução do deslocamento vertical
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Figura 33 – Evolução da pressão

Os comportamentos são similares quanto no deslocamento vertical como na evolução da
pressão para ambos acoplamentos.

Ao analisar alguns parâmetros dos seguintes elementos próximos do poço que mostra-se
na figura 25

Figura 34 – Evolução da porosidade
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Figura 35 – Evolução da permeabilidade

Figura 36 – Trajetória de tensões

Em todos os elementos analisados, note-se que o comportamento similar dos gráficos
para ambos casos de acoplamentos no caso plástico.

Tem-se alguns dados computacionais obtidos pelo programa de CODE_ BRIGHT na
seguinte tabela 3 mostra-se os resultados
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Tabela 3 – Dados da simulação numérica no regime elasto-plástico

Dados de simulação CUP SEQ

Tempo total acumulado do CPU 0.188559E+05 0.140497E+05
Tempo do CPU na solução do sistema 0.706759E+04 0.566977E+04
Radio do sistema/total 0.374822E+00 0.403552E+00
Número total de N-R iterações 22531 18763
Número total de intervalos de tempo 14874 11038
Radio iterações por passo de tempo 1.51 1.70

Pode-se observar na tabela que o tempo de simulação foi menor no esquema numérico
sequencial, em este caso também se observa que o numero de iterações foi menor também no
esquema numérico sequencial, como era de esperar o caso plástico demorou mais tempo na
simulação que o caso elástico.

4.3 Simulação, Análise e Comparação na Ativação de uma Falha
As descontinuidades geológicas, como falhas, são inerentes à maioria das formações de

petróleo. Um plano de falha (ou zona de falha) é uma descontinuidade na massa de rocha, bastante
comum na maioria das bacias sedimentares. Pode ser formado, entre outros, por tectonismo.
Uma característica-chave do problema de reativação de falha é a grande variedade de variação
de parâmetros hidráulicos e mecânicos nesta zona altamente heterogénea. Além disso, a falta de
dados experimentais confiáveis associados aos materiais na zona de danos é bastante comum.
(CABRAL, 2007)

4.4 Dados da Ativação de uma Falha
Na reativação de falha, o problema consiste na análise de reativação de uma falha selante

que corta um campo da base da rocha inferior (“underburden”) até a superfície do fundo do mar,
passando pelo reservatório e pela rocha acima deste (“overburden”), nas figuras 37 e 38 pode-se
observar os dados da falha em 2D.
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Figura 37 – Secção transversal geológica 2D típica

Fonte: (CABRAL, 2013)

Figura 38 – Geometria do modelo: o reservatório é um arenito consolidado, de 50 m de espessura
incorporado a 400 m e localizado numa região de profundidade de água de 130 m.

Fonte: (CABRAL, 2013)
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Figura 39 – Geometria do problema e malha de elementos finitos, a malha possui 7225 nós e
14228 elementos

Na seguinte tabela 4 apresenta-se os parâmetros do nosso caso estudado, chama-se zona
de danos externos (ZDE) e zona de danos internos (ZDI).

Tabela 4 – Parâmetros do reservatório para caso elástico

Zona geológica K(MD) φ E v
Reservatorio 50 0,2 30 0,3
Overburden 1e−5 0,01 42 0,37
Underburden 1e−5 0,01 26 0,26
Núcleo 1e−5 0,1 8 0,3
ZDE 1e−5 0,2 8 0,3
ZDI 1e−5 0,3 6 0,25

Onde K é a permeabilidade intrínseca, φ porosidade, E módulo de Young, v coeficiente
de Poisson.

Comparação na Ativação de uma Falha no regime elasto-plástico
Os resultados ao comparar os dois acoplamentos no regime elásto-plástico mostra-se nas

seguintes figuras.
a) O gráfico correspondente ao esquema CUP
b) O gráfico correspondente ao esquema SEQ
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Figura 40 – Deslocamento em Y

Figura 41 – Distribuição da pressão de líquido
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Figura 42 – Distribuição da permeabilidade

Nos gráficos anteriores para este regime elasto-plástico observar-se pequenas diferencias
ao finalizar o tempo de simulação, mais mantém-se as mesmas formas de comportamento quanto
na distribuição da pressão como o deslocamento vertical e permeabilidade.

Figura 43 – Distribuição da deformações plásticas cisalhantes
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Figura 44 – Distribuição da deformações plásticas volumétricas

Como é elasto-plástico, ao ter uma mudança de pressões no reservatório ao correr
do tempo, isso produz deformações plásticas cisalhantes e volumétricas em a falha, pode-se
observar que o esquema totalmente acoplado conseguiu obter uma melhor descrição gráfica de
dito fenómeno.

Na seguinte figura mostra-se os dois nodos para seu posterior analise.

Figura 45 – Nodos próximos à falha

Na seguinte figura 46 mostra-se a evolução da pressão de liquido para os dois nodos
escolhidos na figura 45.
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Figura 46 – Evolução da pressão

Na figura anterior mostra-se a diferencia da pressão em ambos lados do reservatório,
no nodo "A"a pressão é maior que nodo "B"devido que do lado de nodo "A"encontra-se o
injetor e do lado do nodo "B"encontra-se o produtor, alem disso em termos gerais o acoplamento
sequencial foi muito preciso em relação ao acoplamento total durante todo o tempo de simulação.

Na seguinte figura mostra-se os elementos para seu posterior analise.

Figura 47 – Elementos próximos à falha

Na as seguintes figuras mostra-se o comportamento de os dois esquemas numéricos em
relação de alguns parâmetros
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Figura 48 – Evolução da porosidade

Figura 49 – Trajetória de tensões

Em relação aos parâmetros observados nos gráficos anteriores ambos acoplamentos
tiverem comportamento muito similar para alguns elementos mais em outros elementos não
aconteceu o mesma semelhança, sobre tudo em os elementos muito próximos que produz-se o
fenómeno de plastificação, mesmo assim o acoplamento sequencial feito pelo CODE-BRIGHT
capturo dito fenómeno.
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Tabela 5 – Dados da simulação numérica no regime elasto-plástico

Dados de simulação CUP SEQ

Tempo total acumulado do CPU 0.188559E+05 0.140497E+05
Tempo do CPU na solução do sistema 0.706759E+04 0.566977E+04
Radio do sistema/total 0.374822E+00 0.403552E+00
Número total de N-R iterações 22531 18763
Número total de intervalos de tempo 14874 11038
Radio iterações por passo de tempo 1.51 1.70

No parâmetros computacionais pode-se observar que o tempo de simulação no esquema
sequencial foi menor, respeito do esquema total e similarmente aconteceu no numero de iterações.
Outra observação é que regime plástico demanda mais tempo de simulação, alem disso este
capturo o fenómeno de plastificação em ambos esquemas.
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5 Conclusão e Trabalhos Futuros

Este trabalho foi formulado mediante equações matemáticas que aproximam tanto o
comportamento físico do movimento dos fluidos (problema hidráulico) quanto o deformacional
das rochas (problema mecânico). Também tive-se a necessidade de estudar algumas leis constitu-
tivas que regem estes fenómenos e, por fim, para logo formular matematicamente o acoplamento
físico entre os problemas.

Assumiu-se dois estratégias de acoplamento a total e sequencial, ambos esquemas
resultaram ser eficientes, sobre tudo para casos de acoplamento hidro-mecânico. No problema
da escavação do poço foi possível identificar a formação de um caminho preferencial de fluxo na
direção horizontal, onde houve maior plastificação do material, em ambos esquemas, no regime
plástico ele tive diferencias não significativas. No problema de reativação de falha, verificou-se
para o caso plástico, que a pressurização do reservatório altera o comportamento mecânico das
rochas, levando a plastificação da falha, ambos esquemas consegue mostrar dito fenómeno. Com
a ocorrência das deformações plásticas, a falha é reativada em função da deformação plástica
cisalhante, aumentando a permeabilidade, em ambos esquemas, acontece que o fluxo começa
a fluir pela falha. Se à verificado a precisão do esquema sequencial em relação ao esquema
totalmente acoplado, este esquema pode ser uma via eficiente para a simulação de alguns casos
da engenheira de petróleo no código de elementos finitos CODE-BRIGTH.

Como proposta de continuidade ao trabalho desenvolvido propõe-se fazer simulações em
casos de três dimensões no CODE-BRIGHT, para ter uma maior evidencia em as diferencias
entre ambos esquemas e possíveis ganhos computacionais. Também os casos simulados foram
feitas com a hipótese de totalmente saturado onde não existia fases, seria conveniente fazer
simulações o modificações no código do programa de CODE-BRIGHT para conseguir simular
problemas bifasico à mas, de igual maneira pode-se fazer modificações no código para simular
casos com a hipótese não totalmente saturado e em consequência fazer com diferentes hipótese.

——————————————————
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