

Pós-Graduação em Ciência da Computação

MODEL-DRIVEN NETWORKING: A NOVEL

APPROACH FOR SDN APPLICATIONS

DEVELOPMENT

Por

FELIPE ALENCAR LOPES

Dissertação de Mestrado

Universidade Federal de Pernambuco

posgraduacao@cin.ufpe.br

www.cin.ufpe.br/~posgraduacao

RECIFE, FEVEREIRO/2015

 Universidade Federal de Pernambuco

CENTRO DE INFORMÁTICA

PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

FELIPE ALENCAR LOPES

MODEL-DRIVEN NETWORKING: A NOVEL

APPROACH FOR SDN APPLICATIONS

DEVELOPMENT

 ORIENTADOR: Prof. Stênio Flávio de Lacerda Fernandes

 CO-ORIENTADOR: Prof. Stênio Flávio de Lacerda Fernandes

RECIFE, FEVEREIRO/2015

Este trabalho foi apresentado à Pós-Graduação em Ciência da

Computação do Centro de Informática da Universidade Federal de

Pernambuco como requisito parcial para obtenção do grau de Mestre em

Ciência da Computação.

FICHA CATALOGRÁFICA

Lopes, Felipe Alencar.
Model-Driven Network: a Novel Approach for SDN

Applications Development / Felipe Alencar Lopes. – Recife,
2015. viii, XX folhas: il., fig., tab.

Dissertação (mestrado) – Universidade Federal de
Pernambuco. CIn – Ciência da Computação, 2015.

Inclui bibliografia.

1. Tecnologia da informação – Ciência da informação. I.
Título.

004 CDD (22. ed.) MEI2009-016

Dissertação de Mestrado apresentada por Felipe Alencar Lopes à Pós Graduação em Ciência da

Computação do Centro de Informática da Universidade Federal de Pernambuco, sob o título

“Model-Driven Networking: A Novel Approach for SDN Applications Development”,

orientada pelo Prof. Stênio Flávio de Lacerda Fernandes e aprovada pela Banca Examinadora

formada pelos professores:

 __

 Prof. José Augusto Suruagy Monteiro

 Centro de Informática/UFPE

 __

 Profa. Patricia Takako Endo

 Universidade de Pernambuco

 Prof. Stênio Flávio de Lacerda Fernandes

 Centro de Informática / UFPE

Visto e permitida a impressão.

Recife, 27 de fevereiro de 2015.

Profa. Edna Natividade da Silva Barros
Coordenadora da Pós-Graduação em Ciência da Computação do

Centro de Informática da Universidade Federal de Pernambuco.

Model-Driven Networking: a Novel Approach for SDN Applications Development

À minha família.

Model-Driven Networking: a Novel Approach for SDN Applications Development

Agradecimentos

Primeiramente, agradeço a Deus por este momento e por todas as vezes que Ele me mostrou

um caminho a seguir, apesar de qualquer adversidade. Agradeço também a minha família, em

especial a minha mãe Regilvane e minha irmã Rebeka que me apoiaram desde sempre na

realização desta e de tantas outras etapas da minha vida. Preciso agradecer ainda a mais uma

mulher especial, minha amiga, companheira e namorada, Bruna, por todo o apoio e

compreensão que tanto me ajudaram a passar pelos altos e baixos dessa jornada.

 Preciso destacar a minha gratidão ao meu orientador Stênio Fernandes, não só pela

oportunidade de ter sido seu aluno e orientando, mas pelos ensinamentos, paciência,

conselhos e incentivos que foram fundamentais para que esse momento fosse possível. Além

dele, eu agradeço também ao meu co-orientador Robson Fidalgo por todas as contribuições,

dicas e conversas de laboratório que me possibilitaram concluir este trabalho.

Agradeço aos professores do CIn, ressaltando Fernando Castor e Djamel Sadok, pela

geração de conhecimento e motivação resultante de suas aulas.

 Gostaria ainda de agradecer a todos meus professores do IFAL, em especial a profª.

Mônica Ximenes que teve uma enorme parcela de contribuição nesta fase da minha vida

acadêmica. Outros professores do IFAL que merecem meu agradecimento são os meus ex-

companheiros de apartamento em Recife, o prof. Fernando Kenji e a profª. Eunice Palmeira, os

quais, em meio a viagens, conversas e muita ajuda, estiveram comigo durante boa parte dessa

trajetória.

 Agradeço também: aos amigos de faculdade do IFAL (Toni, Gilton, Handrik, Geraldo,

Uziel, Pedro, Valter e André), pelos vários momentos de descontração; aos amigos do antigo

CEFET pela amizade de sempre, em especial ao meu velho amigo, e recentemente companheiro

de apartamento, Nicolas Alexandre; e aos amigos e colegas do Residencial Universitário (Jean,

Douglas, Mailson, sem falar do pessoal do racha de seg. e qua.) e do CIn, que tanto me

ajudaram em várias ocasiões (Marcelo Santos, Marcelo Iury, Maria Silvia, Weslley e Edson).

Gostaria de agradecer ainda a todos aqueles que direta ou indiretamente contribuíram

de alguma forma para que esse sonho se tornasse realidade.

Por fim, agradeço a FACEPE – Fundação de Amparo à Ciência e Tecnologia do Estado de

Pernambuco – por financiar este trabalho.

Model-Driven Networking: a Novel Approach for SDN Applications Development

Acknowledgement

First, I thank God for this moment and for all the times He showed me a way forward,

despite any adversity. I also thank my family, especially my mother, Regilvane Alencar, and my

sister, Rebeka Alencar, who always supported me to realize this and so many other stages of

my life. I must also thank to more one special woman. My friend, companion, and girlfriend,

Bruna Albernaz, for all the support and understanding that helped me through the ups and

downs of this journey.

 I need to state my gratitude to my advisor Stênio Fernandes, I was fortunate not only for

the opportunity to have been his student, but by teaching, patience, advice and incentives that

were essential in making this moment possible. Besides him, I also thank my co-advisor Robson

Fidalgo. His contributions, tips, and our laboratory conversations enabled me to finish this

work.

I thank the CIN teachers, emphasizing Fernando Castor and Djamel Sadok, due to the

generation of knowledge and resulting motivation of their classes.

 I would also like to thank all my teachers of IFAL, especially prof. Mônica Ximenes that

had a huge portion of contribution at this stage of my academic life. Other IFAL teachers who

deserve my thanks are my former fellow apartment in Recife, prof. Fernando Kenji and prof.

Eunice Palm, which, among trips, conversations, and a lot of help, been with me for much of

this trajectory.

 I also thank the college friends IFAL (Toni, Gilton, Handrik, Geraldo, Uziel, Pedro, Valter

and Andre) for the various moments of fun; the friends of the former CEFET, which are my

friends since always, especially my old friend, and recently roommate, Nicolas Alexandre. I

would also like to thank my friends and colleagues of the Residencial Universitário (Jean,

Douglas, Maílson, and all the guys that play football there) and friends from CIn, which both

helped me on several occasions (Marcelo Santos, Marcelo Iury, Maria Silvia, Weslley and

Edson).

I would also like to thank all those who directly or indirectly contributed in some way to

this dream come true.

Finally, I thank FACEPE - Foundation for Science and Technology of Pernambuco State -

to fund this work.

Model-Driven Networking: a Novel Approach for SDN Applications Development

“Always pass on what you have learned.”

- Yoda

Model-Driven Networking: a Novel Approach for SDN Applications Development

Resumo

As Redes Definidas por Software, ou Software-Defined Networking (SDN), têm

recebido grande atenção de comunidades acadêmicas e indústria. Uma das razões

para este interesse é que SDN permite a programação da rede, devido à sua

arquitetura composta por um controlador externo que suporta o uso de linguagens de

programação para a construção de aplicações, eliminando o tradicional acoplamento

entre plano de controle e plano de dados. Dado que o desenvolvimento destas

aplicações SDN ainda é complexo, existe uma forte necessidade de metodologias e

ferramentas que permitam o uso de todo potencial de abstração suportado por estas

redes. Focando neste problema, este trabalho apresenta uma nova abordagem,

chamada Model-Driven Networking (MDN), para o desenvolvimento de aplicações e

especificação de políticas SDN através da diagramação de modelos. A MDN baseia-se

no paradigma de Engenharia de Software Baseada em Modelos, oferecendo uma

Linguagem de Modelagem Específica de Domínio para criação dos modelos SDN

executáveis. Para comprovar a relevância e a viabilidade tecnológica da proposta,

também foi construída uma ferramenta de modelagem para a criação de aplicações

SDN seguindo a abordagem MDN. Em uma comparação da MDN com outras

abordagens, identificou-se diversos benefícios na utilização de MDN, além das

principais funcionalidades necessárias para o desenvolvimento de aplicações e

políticas SDN, tais como o suporte aos diversos controladores existentes e a validação

das aplicações modeladas. Este trabalho conclui que MDN aumenta o nível de

abstração no desenvolvimento de aplicações SDN, reduzindo a complexidade para

implementar estas aplicações e ajudando a evitar comportamentos errôneos da rede.

Palavras-chave: Redes Definidas por Software. Engenharia de Software Baseada em

Modelos. Linguagem de Modelagem Específica de Domínio

Model-Driven Networking: a Novel Approach for SDN Applications Development

Abstract

Software-Defined Networking (SDN) has been receiving a great deal of attention from

both academic and industry communities. One reason for this interest is that SDN

enables the network programmability, due to its architecture composed by an external

controller, which supports the use of programming languages to build applications,

breaking the traditional bind between control and data plane. Nevertheless, the

application development is still complex for such recent technology. Moreover, there is a

strong need for methodologies and tools that enable the utilization of all the level of

abstraction supported by these networks. Focusing on such problem, this dissertation

presents a new approach, named Model-Driven Networking (MDN), to enable the

development of SDN applications and specification of network rules through models.

The MDN is based on the Model-Driven Engineering (MDE) paradigm, offering a

Domain-Specific Modeling Language (DSML) to create SDN models. In order to show

the relevance and the technical viability of MDN, this dissertation proposes a modeling

tool for creating SDN applications. When comparing MDN to other approaches, our

results identify several benefits of using MDN besides the major functionality needed on

developing SDN applications, such as the support for several controllers and the

validation of applications. This dissertation argues that MDN raises the level of

abstraction in the development, thus reducing the complexity to implement SDN

applications, and prevents erroneous behavior of the network.

Keywords: Software-Defined Networking. Model-Driven Engineering. Domain-Specific

Modeling Language

Model-Driven Networking: a Novel Approach for SDN Applications Development

List of Figures

Figure 1.1: Traditional network architecture (a) in relation to SDN architecture (b). 16

Figure 2.1: Overall perspective of the control layer in SDN architecture. 24

Figure 2.2: The necessary steps to the Client 1 communicate with the Client 2 when the

switch does not have rules that can manage this communication. 26

Figure 2.3: Northbound and Southbound perspective of an SDN architecture. 27

Figure 2.4: SDN architecture from the OpenFlow perspective. 28

Figure 2.5: Fields of an entry in flow table. .. 29

Figure 2.6: Pyretic code to monitor network packets. .. 31

Figure 2.7: Single-way process of model-driven development. 32

Figure 2.8: The application model conforms to a modeling language. Such language

has its abstract syntax represented by a metamodel; which conforms to a language that

has an abstract syntax represented by a meta-metamodel. .. 34

Figure 2.9: Bézivin's 3+1 MDA organization (BÉZIVIN, 2005). 35

Figure 2.10: Scheme representing the organization of visual notation regarding the

semantics of DSML as well as its metamodel. ... 36

Figure 2.11: Visual notation proposed by Lennox et al. (2004)...................................... 36

Figure 2.12: Summarized scheme of MDD and its components. 38

Figure 2.13: Simplified set of the Ecore meta-metamodel. .. 41

Figure 2.14: EVL rules structure. ... 41

Figure 2.15: Workflow for developing graphical modeling editors using GMF. 42

Figure 3.1: The releasing of SDN programming languages in timeline. 44

Figure 3.2: Graphical interface of Miniedit. .. 48

Figure 3.3 Topology model in VND. ... 48

Figure 3.4: Class diagram of CIM-SDN. .. 49

Figure 4.1: Simplified view of the MDN Architecture. ... 52

Figure 4.2: Example of MDN approach being implemented in Ecore instances. 55

Figure 4.3: MDN’s core metamodel. .. 55

Figure 4.4: Full metamodel of MDN. .. 57

Figure 4.5: Example of visual notation elements in a MDN diagram. 60

Figure 4.6: Semantic mapping of MDN. ... 62

Figure 4.7: MDN workflow. .. 68

Model-Driven Networking: a Novel Approach for SDN Applications Development

Figure 4.8: The MDN editor. .. 69

Figure 4.9: Steps in modeling a firewall application with INVALID model. 70

Figure 4.10: Steps in modeling a firewall application with VALID model. 70

Figure 4.11: The use of pingall command in Mininet to simulate the application modeled.

 .. 71

Figure 5.1: Pyretic code causing an infinite loop in network behavior. 76

Figure 5.2: The modeling of network monitor application. ... 77

Figure 5.3: Network-monitoring application output when Mininet's pingall command is

called. .. 78

Figure 5.4 Topology for the access control application. ... 80

Figure 5.5 Validation of topology for the use case #2. ... 80

Figure 5.6 Modeling of first requirement. ... 81

Figure 5.7 Modeling of second requirement. ... 82

Figure 5.8 Modeling of third requirement. .. 82

Figure 5.9: Test involving the access control application and its first requirement. 84

Figure 5.10: Mininet commands to open consoles in each hosts. 84

Figure 5.11: Output of the simulation for the second requirement. 84

Figure 5.12: The third network requirement of access control application. 85

Figure 5.13: Group element and LOAD_BALANCE action highlighted in blue. 85

Figure 5.14: Model of load balancing application. .. 86

Figure 5.15: Output of load balancing application. ... 88

Model-Driven Networking: a Novel Approach for SDN Applications Development

List of Tables

Table 1: Summary of characteristics for each SDN-based DSL indentified in literature.46

Table 2: Main concepts of SDN that compose MDN approach...................................... 53

Table 3: Visual notation of MDN approach. ... 59

Table 4: EVL rules for NetworkNode semantic. ... 61

Table 5: Syntactic mapping for the Rule element and its relative graphical symbol. 63

Table 6: Summarized sdn.egl template. .. 65

Table 7: EGL template for ODL controller. .. 67

Table 8: Features comparison for SDN modeling. ... 75

Table 9: Snippet of code generated for network-monitoring application. 78

Table 10: Code generated by MDN editor to implement the access control application.

 .. 83

Table 11: Snippet of EGL template and the code generated from load balancing

application model. .. 87

Model-Driven Networking: a Novel Approach for SDN Applications Development

Contents

1. INTRODUCTION .. 15

1.1 WHY TO MODEL SDN APPLICATIONS? ... 17

1.2 PROBLEM STATEMENT AND RESEARCH QUESTION ... 19

1.3 GENERAL OBJECTIVE... 20

1.4 SPECIFIC OBJECTIVES ... 20

1.5 DISSERTATION STRUCTURE .. 21

2. TECHNICAL BACKGROUND ... 22

2.1 SOFTWARE-DEFINED NETWORKING (SDN) .. 22

2.1.1 SDN Architecture Overview ... 23

2.1.2 SDN Controller ... 24

2.1.3 Northbound and Southbound interfaces in SDN architecture 26

2.1.4 OpenFlow Protocol .. 27

2.1.5 What is an SDN Application? ... 29

2.1.6 SDN Programming Languages .. 30

2.2 MODEL-DRIVEN ENGINEERING (MDE) .. 31

2.2.1 The Model-Driven Development (MDD) ... 32

2.2.2 Domain-Specific Modeling Language (DSML) ... 33

2.2.3 Specifying DSMLs ... 33

2.2.4 Transformation Engines and Generators ... 38

2.2.5 Tools for Enabling MDE ... 39

2.2.6 Graphical Modeling Framework (GMF) .. 40

3. RELATED WORK .. 43

3.1 DOMAIN-SPECIFIC LANGUAGES FOR SDN ... 43

3.2 MODELING APPROACHES FOR SDN .. 47

4. THE MDN FRAMEWORK .. 51

4.1 OVERVIEW OF MDN ARCHITECTURE ... 51

4.2 BUILDING PROCESS OF MDN INFRASTRUCTURE .. 52

4.2.1 Specifying the Domain ... 52

4.3 ARTIFACTS ... 54

Model-Driven Networking: a Novel Approach for SDN Applications Development

4.3.1 Abstract Syntax .. 54

4.3.2 Concrete Syntax .. 58

4.3.3 Semantic Domain .. 60

4.3.4 Mappings ... 62

4.4 CODE GENERATION ... 63

4.4.1 Templates for Code Generation... 64

4.4.2 The support for different controllers ... 66

4.5 APPLICATIONS DEVELOPMENT PROCESS USING MDN APPROACH.............................. 67

4.5.1 MDN Editor .. 68

5. EVALUATION .. 73

5.1 USE CASE 1: NETWORK MONITORING ... 76

5.1.1 Modeling Application for Network Monitoring ... 77

5.1.2 Code Generation ... 78

5.1.3 Simulation .. 78

5.2 USE CASE 2: ACCESS CONTROL APPLICATION... 79

5.2.1 Modeling the access control application and its policies 79

5.2.2 Code Generation ... 82

5.2.3 Simulation .. 83

5.3 USE CASE 3: LOAD BALANCING APPLICATION .. 85

5.3.1 Simulation .. 88

5.4 CHAPTER REMARKS .. 89

6. FINAL REMARKS .. 90

6.1 SUMMARY OF CONTRIBUTIONS ... 91

6.2 LIMITATIONS.. 91

6.3 FUTURE WORK ... 92

A. ONLINE ... 99

B. ATTACHMENTS .. 99

15

Model-Driven Networking: a Novel Approach for SDN Applications Development

Chapter

1

1. Introduction

The complexity and rigidity of today’s Internet are about to end. Its current underlying

infrastructure relies on a vertical integrated architecture based on a variety of software

and hardware components, which results in a little flexible environment, hard to manage

(NUNES, et al., 2014). The need to make Internet more dynamic and to enable new

management techniques has driven the development of a new paradigm, named

Software-Defined Networking (SDN) (FEAMSTER, REXFORD e ZEGURA, 2013).

Concisely, SDN is a network architecture that separates the control plane

(network intelligence) from the data one (cf. Figure 1.1). This separation moves the

network logic to an external controller device that runs a software system, which

enables the network programmability (ORTIZ, 2013). However, there is still no clear

vision about how to interact with such controller to build SDN applications, avoid

conflicting policies, and define the network behavior (FOSTER, et al., 2013).

 Network programming has been a subject of research in more than a decade.

For instance, Open Signaling (CAMPBELL, et al., 1999), Active Networking

(TENNENHOUSE, et al., 1997), and Ethane (CASADO, et al., 2007), are good

examples of past researches. These studies did not achieved widespread success due

to many reasons, e.g., lack of compelling problems solved, the focus on data-plane

16

Model-Driven Networking: a Novel Approach for SDN Applications Development

instead of control-plane programmability, and by enabling the programmability only for

the developers working at specific vendors of network devices. Although SDN is not a

very new idea, it integrates the concepts of programmability in the network, which is

current mature enough to its deployment.

With the network programmability in hand, the first approaches enabled the

development of SDN applications (e.g., access control, load balancing, traffic shaping)

or even the specification of policies (e.g., limit data transfer per user) by building SDN

programming languages (FOSTER, et al., 2013). Typically, such languages are

designed specifically to express problem solutions in a particular domain (e.g., SDN), a

concept known as Domain-Specific Language (DSL) (FOWLER, 2011). The advantage

of DSL-based SDN programming languages is to abstract the complexity of low-level

details relative to SDN controllers and protocols (FOSTER, et al., 2011).

a) Traditional network architecture.

b) The decoupled control-plane in an SDN

architecture.

Figure 1.1: Traditional network architecture (a) in relation to SDN architecture (b).

The DSL paradigm hides low-level implementation details, speeding up and

making easier the software development, it is worth emphasizing that DSLs can be

categorized into two separate classes: textual or visual (ESSER e JANNECK, 2001).

Both are part of the software engineering discipline, but a visual DSL, named Domain-

Specific Modeling Language (DSML), also composes the Model-Driven Engineering

(MDE) paradigm (SCHMIDT, 2006). MDE as a software development methodology is

used to address platform complexity, such as SDN applications development. Through

components focused on a particular application domain (e.g., DSML), it also removes

the tight platform dependency (e.g., underlying SDN controllers, operating systems, and

the like). DSML is the basis of a MDE technology, it is used to create models, by

enabling the execution of them as software applications.

17

Model-Driven Networking: a Novel Approach for SDN Applications Development

1.1 Why to model SDN applications?

In SDN, its applications are responsible to define the logical aspect of network

functionalities (JARSCHEL, et al., 2014). Such applications involve several specific

components (e.g., firewall, rule-based access control, load balancing, and so on).

However, there is still a considerable number of issues regarding the development of

correct and effective SDN applications (FEAMSTER, REXFORD e ZEGURA, 2013),

which are essentially composed of algorithms. Hereafter, we list the main issues that led

to the development of this research work and claim the ground for model SDN

applications.

i. Networks perform multiple and parallel tasks, such as access control, routing,

and traffic monitoring. The independent implementation of such tasks is

effectively hard, due to dependency between tasks and the network behavior as

a whole (FOSTER, et al., 2011).

ii. The communication between control and data planes has a low abstraction

level specified by a protocol called OpenFlow protocol (MCKEOWN, et al.,

2008). Such low-level also defines the controllers’ interfaces, making complex

for developers and network operators to interact with them (VOELLMY, KIM e

FEAMSTER, 2012). For example, the OpenFlow rules directly reflect the

structure of the switch hardware (e.g., bit patterns and actions name). In this

scenario, high-level concepts such as the definition of an outcome port for a

packet and implementation of access control application require multiple

OpenFlow rules that programmers must manage manually.

iii. Applications and rules defined for a certain controller vendor may not work on a

different environment, resulting in several different codes and network rules to

implement similar behavior in networks with different controllers. For example, a

controller based on Java programming language has its applications and

modules wrote on a specific programming language, generally the same used

to write the controller code. This dependency becomes problematic when the

controller needs to be changed or different networks need a replication of some

network behavior. Another example is the variation in performance achieved by

different controllers (TOOTOONCHIAN, et al., 2012) (LOPES, et al., 2014).

Network operators may need to replace controllers for improving network

performance.

18

Model-Driven Networking: a Novel Approach for SDN Applications Development

iv. Typically, SDN applications receive events for packets when the switches do

not have specific associated rule (e.g., OpenFlow rule) that handle such

packets (MCKEOWN, et al., 2008). Besides, an earlier rule might cancel the

execution of a next rule set in the application. As result, developers need to

verify line by line if the execution sequence that installs rules in switches causes

a wrong behavior of the network.

v. SDN programming languages and their written codes for applications are error-

prone, they do not allow a clear view of network components or even actions

that a network performs, and often result in complex environments (CASADO,

FOSTER e GUHA, 2014). The resultant problem is the difficulty in validate

applications and the network behavior.

vi. Some network operators may be unfamiliar with low-level implementation

details of programming languages. The use of models can improve the

communication between network operators and developers (MOHAGHEGHI, et

al., 2011), in order to define and to implement correctly the network

requirements.

vii. Previous studies on modeling approaches and tools to model software-defined

networking do not entirely addressed these issues in developing SDN

applications and specifying network rules.

To minimize these problems relative to platform complexity, validation of software

systems, and the like, researchers propose models built in a DSML, which are more

than documentation items: they are executable objects, since one of the DSML

characteristics is the code generation (KELLY e TOLVANEN, 2008). Models created

from a DSML increase the level of abstraction in software development and help to

validate an application while it is under development (BALASUBRAMANIAN, et al.,

2006). Furthermore, codes generated by a DSML are independent of an underlying

programming language (KELLY e TOLVANEN, 2008). In the case of SDN, this means

that a DSML can support several controller vendors.

Considering the possible benefits enabled by DSML and described above, we

propose the concept of Model-Driven Networking (MDN) (LOPES, et al., 2015), an

association between MDE and SDN that consists of creating SDN applications from

models by using a DSML. Instead of writing textual error-prone network algorithms, this

dissertation also proposes a modeling editor to create SDN applications, which

demonstrates the feasibility of our approach.

19

Model-Driven Networking: a Novel Approach for SDN Applications Development

1.2 Problem Statement and Research Question

The SDN significance in future networks is reflected on a forecast from International

Data Corporation (IDC)1, which presents that SDN market for the enterprise and cloud

service provider segments will be worth $8 billion by 2018. This scenario demonstrates

the importance in providing approaches and tools to enable SDN paradigm in an easier

way.

Despite the role played by SDN in enabling network programmability, the correct

development of applications and specification of rules that define the network behavior

are still open issues. Besides, the available body of knowledge focuses on low-level

details of programming (FOSTER, et al., 2013) (NELSON, FERGUSON e SCHEER,

2014), and the specific studies on modeling SDN have not necessarily addressed the

factors that enable applications development and rules specification (FONTES e

SAMPAIO, 2013) (PINHEIRO, et al., 2013).

SDN programming consists of writing correct algorithms for SDN controllers that

run them, i.e., algorithms running in controllers need to satisfy some network

requirement. However, SDN controllers usually offer low-level platforms based on

OpenFlow protocol to enable the network programmability. Thus, the direct codification

of algorithms for SDN tends to be error-prone and requires a considerable knowledge in

writing OpenFlow (or any other SDN protocol) rules.

In other network types, such as Ethernet (IMTIAZ, et al., 2008) and wireless

sensor networks (RODRIGUES, et al., 2011), we found MDE-based solutions proving to

be a feasible way in addressing several problems and in rising abstraction level for such

networks. Thus, the proposal of MDN claims to address the drawbacks in developing

SDN and its applications (e.g., problematic applications, conflicting rules, low-level of

abstraction, and the like) treading a path similar to these approaches.

In this way, we raise two research questions in order to guide and evaluate our

work:

 RQ1 – Is MDN concept a feasible way to develop SDN applications?

 RQ2 – What are the benefits and limitations of MDN when compared to other

SDN development approaches?

These research questions led us to reason about how MDE could be applied to

SDN and how such an approach could help network operators to build applications or to

1
 Worldwide Software-Defined Networking Market Expected to Reach $8 Billion by 2018 -

http://www.idc.com/getdoc.jsp?containerId=prUS25052314

20

Model-Driven Networking: a Novel Approach for SDN Applications Development

manage network resources, by enabling the avoidance of conflicts among network

rules, preventing erroneous network behavior, and validating applications.

1.3 General Objective

The main goal of our study is to propose a new model-based approach, called MDN, to

develop SDN applications. Besides, we aim to identify its feasibility to develop SDN

applications. We also try to define the main benefits of MDN, demonstrating how it

improves the development process to create SDN applications, as well as its limitations

in such development.

In order to achieve our goal, we provide a metamodel-based tool, called MDN

editor, which resembles a Computer-Aided Software Engineering (CASE) tool (CASE,

1985). It enables not only the modeling of SDN and its applications, but also makes

easier the development, verification, and validation of such applications. Furthermore,

MDN editor supports different controller vendors without the need to recreate

applications, and improves the communication between network operators and

developers. In such a way, this dissertation focuses on bring to the field an alternative

way for the SDN applications development.

In summary, we argue that our MDN approach offers a new development

process and a modeling tool for SDN applications development, by relying on the

concepts of MDE. Furthermore, although the development of SDN applications involves

several problems, such as dependent tasks specification, incompatibility among

applications for different controllers, low-level of abstraction, and the like, MDN

approach can address such issues through a model-based perspective, which has been

successfully applied into other scenarios involving networks (e.g., Ethernet, Wireless

Sensor Networks).

1.4 Specific Objectives

i. Present the SDN structure and demonstrate how its applications may be

created based on MDE paradigm;

ii. Develop the MDN approach;

iii. Build a tool that enables the modeling of SDN applications based on the

MDN approach;

iv. Verify the benefits and limitations by using Model-Driven Networking;

21

Model-Driven Networking: a Novel Approach for SDN Applications Development

v. Compare the proposed approach with others in the same topic.

1.5 Dissertation Structure

We present this dissertation as follows:

 Chapter 2 – Technical Background provides the necessary background for

a thorough understanding of this work, by defining key concepts and

paradigms used for the development of the Model-Driven Networking

approach.

 Chapter 3 – Related Work describes technologies and scientific findings that

relate to the purpose of this dissertation.

 Chapter 4 – The MDN Framework presents the processes and techniques

used in associating concepts, paradigms, and standards defined in the

technical background.

 Chapter 5 – Evaluation demonstrates the benefits and potential limitations

resulting from using the Model-Driven Networking approach.

 Chapter 6 – Final Remarks draws some conclusions and provides directions

for future work.

22

Model-Driven Networking: a Novel Approach for SDN Applications Development

Chapter

2
2. Technical Background

The recent emergence of software-defined networking offers a platform to enable the

network programmability (FEAMSTER, REXFORD e ZEGURA, 2013). This

programmability allows software used in networks to be developed through software

engineering techniques (e.g., MDE). This chapter defines the concepts related to SDN

(section 2.1) and MDE (section 2.2), aiming to guide the reader in understanding the

dissertation’s proposal and its underlying terms.

2.1 Software-Defined Networking (SDN)

In the introduction, we stated that SDN separates the network logic from the forwarding

devices. Such logic is the software control that runs on an external machine, named

SDN controller. With this in mind, such controller enables the development and

implementation of other softwares, similarly to what happens in traditional computing

between operating systems and their applications.

SDN controller operates on a high-level, global, and consistent view of the

network. Besides, the separation between control and data planes has brought great

advances to datacenter, campus, and enterprise networks, such as a higher level in

specifying network policies, access control (NAYAK, et al., 2009) and QoS (KIM, et al.,

2010), experiments based on simulation (SHERWOOD, et al., 2010), easier load

23

Model-Driven Networking: a Novel Approach for SDN Applications Development

balancing (WANG, BUTNARIU e REXFORD, 2011), and seamless migration of

networks or virtual machines (ERICKSON, et al., 2008).

While traditional networks distributes the control plane (responsible to determine

how the transmission of packets should occur) across the network forwarding devices,

in SDN this control plane is logically centralized (may be physically distributed),

resembling a server platform. Another possible comparison is relative to forwarding

rules. In traditional networks, forwarding devices run distributed algorithms (e.g., A*

search) in an independent manner to determine the packet forwarding rule. By contrast,

in SDN, controllers calculate the forwarding rule (e.g., with Bellman-Ford) and

implements this rule by programming the data plane of forwarding devices.

We state that protocols proposed for SDN, such as OpenFlow (MCKEOWN, et

al., 2008), are key components used to enable the programming of forwarding devices.

Currently, OpenFlow protocol is widely accepted as an open standard that allows

controllers to manage forwarding devices. Other initiatives also aim to standardize the

communication between SDN controllers and forwarding devices, such as ForCES

(WANG, et al., 2010) and OpFlex (DVORKIN, et al., 2014). However, the use of

OpenFlow in controllers and switches from major vendors motivate us to adopt it in this

work.

2.1.1 SDN Architecture Overview

In SDN, the control logic is decoupled from the forwarding devices and all network

intelligence (e.g., decisions about routing, permissions) is moved to the SDN controller

(ONF, 2013). We can note such decoupling strategy through flow tables present in

switches. The switches receive and register network policies or rules, defined by a

controller. In other words, an SDN controller defines the flow table entries present in

switches to instruct them about how to handle packets or flows. It has all information

about the network (e.g., where the hosts are connected, the network topology, the

source or destination of each packet or flow), and goes through a number of details to

deal with conflict resolution that involves general policies or to avoid misbehavior of

network elements.

In order to provide a better description about the SDN control plane, the literature

presents two interfaces, named the north and south bounds (HU, HAO e BAO, 2014).

The northbound interface relates to higher-level elements to support the development of

network applications, services, or to instruct controllers through a well-defined API. On

24

Model-Driven Networking: a Novel Approach for SDN Applications Development

the other hand, the southbound interface relates to allow the communication between

controllers with forwarding devices or to communicate with low-level protocols at the

forwarding plane.

The perspective from control-plane involves a relationship between its layers

(e.g., northbound, southbound) and intrinsic characteristics of controllers (e.g., vendor,

multiple instances). Such perspective consists of an application layer, which includes

logical, user, and business applications, a control layer (i.e., SDN controllers), and a

forwarding layer (e.g., forwarding devices), as Figure 2.1 depicts.

Figure 2.1: Overall perspective of the control layer in SDN architecture.

At the time of this writing, SDN-related activities at Internet Research Task Force

(IRTF) proposed an RFC with its view of SDN architecture. For this RFC, the control

layer is divided into control and management plane, each of them with its own

respective southbound interface, but the respective implementations of SDN following

such RFC have yet to publish their documents. SDN reference model as a three-layer

model presented in (HU, HAO e BAO, 2014) and proposed by ONF (ONF, 2014) is well

aligned with this dissertation.

2.1.2 SDN Controller

A controller in SDN composes the control-plane of such network architecture. It is the

network “brain”. As we introduced previously, control-plane in SDN is handled apart

from the data-plane. This handling is realized inside the SDN controller and research

studies, as in (GUDE, et al., 2008) and (ERICKSON, 2013), propose implementations

25

Model-Driven Networking: a Novel Approach for SDN Applications Development

that give a general idea about how the management of forwarding devices should

occur, as well as about the communication between the control-plane and data-plane,

discussing the right way to deploy it.

Controllers in an SDN are strategic control elements, relaying instructions and

information to underlying switches (via southbound interface) and applications on the

top (via northbound interface). An SDN controller sends messages to switches

disseminating packet-handling rules, e.g., routing, dropping, and the like; a developer

generally defines such rules though the controller’s northbound API. As Figure 2.1

depicts, the SDN architecture places a controller (control layer) between the

southbound (forwarding layer) and northbound (application layer) interfaces.

The hypothetical topology depicted in Figure 2.2 helps to understand the

controller’s responsibility and the insertion of a new rule into a switch. In the topology

below, client 1 (C1) wishes to establish a communication with client 2 (C2). From such

topology, assuming that C1 sends a packet with destination to C2 (step 1); then, first,

the packet arrives at switch (S), which at the time has no forwarding rule for this packet

(i.e., it does not have a matching rule in its flow table) (step 2). After the arrival, S

generates a new flow request to the controller (step 3). The controller responds with a

new packet, which inserts a new rule at S (step 4). Switch S forwards the first packet to

C2 (step 5). Then, switch S will now be able to send all packets from C1 to C2 with no

need for additional communication with the controller. It is noteworthy that all

communication switch-controller-switch is performed, for instance, by default with

OpenFlow protocol. Figure 2.2 depicts this flow.

The possible responses (e.g., actions, instructions, and the like) from controller to

switches are defined by programming algorithms based on the SDN southbound

protocol (e.g., OpenFlow), in the shape of applications, modules and policies deployed

on the controller at the control layer or through external applications and services in the

application layer.

An important aspect of an SDN architecture is that, given any administrative

domain, it is possible to have more than one controller handling a number of switches.

This is a desired feature when network reliability and availability come into play.

Conversely, according to the version 1.4 of OpenFlow specification, an OpenFlow

switch is capable to connect with multiple controllers.

26

Model-Driven Networking: a Novel Approach for SDN Applications Development

Figure 2.2: The necessary steps to the Client 1 communicate with the Client 2 when the switch
does not have rules that can manage this communication.

We have seen several SDN controllers released over the past years. Beacon

(ERICKSON, 2013), NOX (GUDE, et al., 2008), POX2, and OpenDaylight3 are a few

examples of such releases. Although they have different characteristics, such as occurs

on the traditional operating systems for PCs, such controllers have a similar operation

that might be categorized on proactive, reactive, or a combination of both. Reactive

controllers only instruct the forwarding device when the latter forwards the flow to them.

Proactive controllers, in contrast, rely instructions to their underlying forwarding devices

at any moment, without the need for such devices communicate with it. Usually, SDN

controllers offer these two types of operation.

2.1.3 Northbound and Southbound interfaces in SDN architecture

Now we present two interfaces that involve the SDN controller, named northbound and

southbound. One of the most discussed topics in SDN relates to such interfaces

(FEAMSTER, REXFORD e ZEGURA, 2013). Southbound interface, located below the

SDN Controller Platform in Figure 2.3, has converged to the OpenFlow standard,

although there is some room for discussions, as in (DORIA, et al., 2010) and (CISCO,

2014). Such interface should to enable SDN switches to communicate with controllers.

As controllers relay instructions to switches about how to handle incoming flows, then,

2
 POX Wiki: https://openflow.stanford.edu/display/ONL/POX+Wiki

3
 OpenDaylight portal: http://www.opendaylight.org/

27

Model-Driven Networking: a Novel Approach for SDN Applications Development

switches can handle incoming packets, identify network topology, and apply rules

defined at some level of northbound API.

In contrast to southbound, northbound interface has no widely accepted standard

specifying it. Although there are already some initiatives towards this direction

(FOSTER, et al., 2013). Even the Open Networking Foundation (ONF) has created a

working group with the aim of designing prototypes, codifying patterns, and producing

artifacts that may validate the creation of a standard for the northbound (RAZA e

LENROW, 2013).

The northbound, located above the SDN Controller Platform in Figure 2.3,

encompasses the relationships between controllers, network applications or services,

and user applications. This layer is responsible to abstract the underlying functions of

the network, in a way that network operators or developers can implement new

applications or changes into network to achieve their objectives without having to verify

and know others aspects that are not related to their applications or changes.

The perspective involving the northbound and southbound layers is depicted at

Figure 2.3. Such perspective demonstrates the separation of responsibilities for each

layer or interface level in an SDN architecture.

Figure 2.3: Northbound and Southbound perspective of an SDN architecture.

2.1.4 OpenFlow Protocol

The OpenFlow (OF) protocol is primarily a specification, which standardizes how the

exchanging of information between control-plane and data-plane must occur in an SDN

scenario. Such specification also is part of a default architecture, created to describe the

role of each component (ONF, 2013). Since OpenFlow is a specification and a protocol

28

Model-Driven Networking: a Novel Approach for SDN Applications Development

used by many SDN solutions (HU, HAO e BAO, 2014), including the approach

presented in this dissertation, we provide an overview on it in this section.

The default OpenFlow architecture defines forwarding devices (OpenFlow

switches) with one or more flow tables and a higher-level layer that communicates with

a controller through the OpenFlow protocol (cf. Figure 2.4). OpenFlow (or other similar

protocols) has a decisive role at the SDN scenario. When an OpenFlow switch receives

a packet, it verifies and compares the header fields of such packet with its own fields in

flow table entries. If an entry corresponds to a packet header, the switch will realize any

instructions or actions related with the flow entry (e.g. packet forwarding to Client 2 in

Figure 2.2). In case that switch does not find any entry, it will act as the instructions

defined at table-miss flow entry (every flow table contains a table miss entry to address

this case). The switch may forward the packet to the controller (via an OpenFlow

SSL/TLS channel), drop the packet, or continue to match the packet header fields with

others flow tables (if any).

Figure 2.4: SDN architecture from the OpenFlow perspective.

The flow table consists of flow entries used by switches to forward the data flow.

Three fields compose an entry in flow table: (1) A packet header to define the flow, (2)

an action to define how packets should be processed, and (3) the statistics used to

keep information about the number of packets and bytes for each flow. Figure 2.5

depicts the structure of a flow entry.

Each entry has also an identifier field (id) and its priority. Such priority is defined

according to each id field or a natural sequence between entries in flow table. All entries

have statistics that can be sent to controller or requested by it. Furthermore, each entry

has an associated action to deal with an incoming packet flow. These actions define the

behavior of SDN and enable the programmability of such networks.

29

Model-Driven Networking: a Novel Approach for SDN Applications Development

Currently, we have identified several OpenFlow switches available. Vendors of

network equipment such as IBM4, HP5, and NEC6 already offer some type of OpenFlow

switch to deploy an SDN environment. It demonstrates the massive investment on this

new paradigm of networks.

Figure 2.5: Fields of an entry in flow table.

Although OpenFlow protocol enables programmable networks, we emphasize

that OpenFlow is not SDN; OpenFlow is just part of the various components in an SDN

environment, with the role of performing the communication between controllers and

switches. To date, it also still has issues to be addressed, such as scalability

(YEGANEH, TOOTOONCHIAN e GANJALI, 2013), performance (TOOTOONCHIAN,

et al., 2012), reliability (HU, et al., 2013), and security (KREUTZ, RAMOS e

VERÍSSIMO, 2013).

2.1.5 What is an SDN Application?

One of the main benefits provided by SDN is to enable the network programmability. It

results in SDN applications, which can deliver highly scalable, efficient, and

manageable network services (FEAMSTER, REXFORD e ZEGURA, 2013) (e.g. load

balancing, access control, and the like). Although SDN enables remote applications

communicating with SDN controller, hereinafter we discuss SDN applications running

on it, which resembles the common organization of traditional operating systems and

software applications.

4
Available online: http://bit.ly/sdn-switches

5
Available online: http://bit.ly/hp-switches

6
Available online: http://bit.ly/nec-switches

30

Model-Driven Networking: a Novel Approach for SDN Applications Development

According to ONF (ONF, 2014), SDN applications are deployed at the application

layer, which completes the three main layers of SDN architecture (i.e. forwarding layer,

control layer, and application layer). As previously mentioned, such application layer

communicates with controller through an interface (e.g., northbound) (JARSCHEL, et

al., 2014). This interface enables applications to specify rules or to request some

network resource. The specification of rules or network behavior by an SDN application

passes through underlying SDN layers to get reach the forwarding devices (e.g.,

OpenFlow switches).

Typical SDN applications include features such as granular firewall monitoring,

user identity management, access control policies, etc. (for an extensive list see (HU,

HAO e BAO, 2014)). While most discussions involves the use of SDN in datacenters,

recent research efforts started to explore the use and creation of SDN applications for

networks with flexible and more secure managements (FOSTER, et al., 2013)

(MONSANTO, et al., 2013).

We emphasize that there is not yet a widely well-accepted standard process for

developing SDN applications. Currently, such development uses some General

Purpose Language (GPL) (e.g., Python, Java, and C++) to write SDN applications or to

specify policies through SDN controllers’ APIs. In addition, a well-known approach is to

use the Domain-Specific Languages (DSL) paradigm in building SDN programming

languages to support the development of applications (FOSTER, et al., 2013).

Although each SDN layer has its own responsibility, note that there is a tight

dependency between current SDN applications development and SDN controllers. Such

a dependency might hinder some benefits of the SDN architecture, such as flexibility

and scalability. For instance, an application developed to run with the NOX controller

(GUDE, et al., 2008) cannot be executed on an SDN environment with Floodlight as

controller due to incompatibility issues (FLOODLIGHT, 2014).

2.1.6 SDN Programming Languages

The need to build network applications that run on an SDN environment and the low-

level of abstraction existent to specify OpenFlow-based rules motivated the emergence

of several SDN languages, such as Procera (VOELLMY, KIM e FEAMSTER, 2012),

Pyretic (MONSANTO, et al., 2013), and Flowlog (NELSON, FERGUSON e SCHEER,

2014). SDN controllers use such languages to support the development of applications

and to provide abstractions for operation, administration, and managing of networks.

31

Model-Driven Networking: a Novel Approach for SDN Applications Development

Such network management is characterized through diverse features, such as security

(e.g., avoiding that unauthorized users access the network), performance (e.g.,

eliminating bottlenecks or erroneous network behavior), and reliability (e.g., ensuring

that the network is available to its users). In SDN, the literature defines three stages to

provide the network management through SDN programming languages: i) traffic

monitoring, ii) policies and rules specification, and iii) updating of flow tables (FOSTER,

et al., 2013). An instance of such languages is the following example of Pyretic code

(cf. Figure 2.6):

Select(packets) *
GroupBy([srcmac]) *
SplitWhen([inport]) *
Limit(1)

Figure 2.6: Pyretic code to monitor network packets.

The piece of code above exhibits code of an SDN programming language to

create an application that will select a group of packets in a given port. Such language

is built with an underlying GPL (Python). The use of GPL to propose an SDN language

has been based on the DSL paradigm, previously mentioned. The DSL paradigm is

present in most SDN languages available, but they differ by their components, methods,

and scope (e.g., quality of service, load balancing, network monitoring). Unlike GPL, a

DSL is designed for a specific domain (e.g., SQL in databases) (FOWLER, 2011).

2.2 Model-Driven Engineering (MDE)

The term MDE describes software development processes that create models of

softwares methodically transformed to concrete implementations (e.g., source code)

(FRANCE e RUMPE, 2007). MDE combines Domain-Specific Modeling Languages

(DSML) (SCHMIDT, 2006), which formalize the application structure, behavior, and

requirements within particular domain (e.g., middleware platforms, mobile applications,

software-defined networking), with Transformation Engines and Generators that verify

properties of models and transform them in software artifacts (e.g., source code,

configuration files, simulation inputs, documentation, or even in another model).

We emphasize that the overall concept behind the MDE exists since 1980s and

1990s. The prior works, such as Computer-Aided Software Engineering (CASE, 1985),

served as lessons learned for recent MDE technologies. For instance, pioneer CASE

tools also enabled features like the detection of errors and code generation through

graphical modeling, but the design of such tools was defined in a low abstraction-level,

32

Model-Driven Networking: a Novel Approach for SDN Applications Development

often hard coded. Today's platforms based on MDE can structure and offer more

functionalities in a higher abstraction-level (e.g., metamodels) and a modular way. For

instance, the transformation engine for code generation is not coupled with the graphic

model, it consists of several components that may be implemented independently (e.g.,

templates, validation rules).

2.2.1 The Model-Driven Development (MDD)

While some authors define MDD equivalently to the MDE (SCHMIDT, 2006) (FRANCE

e RUMPE, 2007), we consider the definition of Selic (2003) in which MDD involves the

process of software development that primarily focuses and produces models rather

than codes of computer programs (SELIC, 2003). Thus, models in MDD are the primary

artifacts in the development process (HAILPERN e TARR, 2006). Kelly and Tolvanen

(2008) reinforce this view, they claim that MDD uses its source models instead of

source codes from traditional development in implementing software (KELLY e

TOLVANEN, 2008).

The development process based on models should be applied whenever

possible, because it increases the level of abstraction and reduces complexity of the

development. Essentially, MDD uses the automated transformation of models to

applications, similarly to what happens in the compilation of applications code. When

the model of an application is done, the target code may be generated and then

interpreted or compiled for execution, without the need for modification in such code.

Figure 2.7 depicts this single-way of MDD.

Figure 2.7: Single-way process of model-driven development.

One strategy to provide a MDD solution is through a DSML. In this way, the

underlying modeling language of MDD and the generation of code need to be domain-

specific, enabling the development of only certain applications in a particular domain

(KELLY e TOLVANEN, 2008). The focus on a narrow domain makes possible for MDD

(with an underlying DSML) to map the modeling closer to the main problem and to

enable code generation effectively.

33

Model-Driven Networking: a Novel Approach for SDN Applications Development

2.2.2 Domain-Specific Modeling Language (DSML)

The aforementioned Domain-Specific Language (DSL), used in several proposals for

SDN applications development, is a software language built and tailored to solve

problems through some domain-specific application. Compared to GPLs, the DSLs

have a higher level of abstraction due to providing constructs that represent concepts of

the domain. According to (CUADRADO e MOLINA, 2009) and (KELLY e TOLVANEN,

2008), a DSL is fundamentally composed of three components, namely the Abstract

Syntax, which defines language concepts as well as their constraints and relationships,

the Concrete Syntax, corresponding to notation available for end-user in specifying

applications based on abstract syntax, and the Semantics, used to describe the

meaning of notation elements.

The concrete syntax of a DSL can have textual and/or graphical notations. In the

latter case, it is named Domain-Specific Modeling Language (DSML) (KELLY e

TOLVANEN, 2008). Another difference of DSML as compared to textual DSL is that

DSML has two additional components in its fundamental composition, i.e., two

mappings components named Semantic Mapping, for the relationship between abstract

syntax and semantic domain, and Syntactic Mapping, which assigns syntactic

constructions (e.g., graphical, textual, or both) with elements of abstract syntax. Thus,

formally, a DSML is a 5-tuple composed of Concrete Syntax (CS), Abstract Syntax (AS),

Semantics (S), Semantic Mapping (MC), and Syntactic Mapping (MS) (HAREL e

RUMPE, 2004), as defined in (1):

 (1)

Any DSML requires a precise specification of these five components (KELLY e

TOLVANEN, 2008). Such specification follows the MDE requirements to offer a model-

based development platform.

2.2.3 Specifying DSMLs

The more specific and restricted the domain, the easier it becomes to be structured in a

DSML and in its components. Thus, we cannot use DSML for creating applications out

of the scope previously defined. However, it is not a limitation, because we can extend a

DSML to achieve other features, since they are within the same domain.

The first step in DSML specification is the definition of the target domain and its

concepts. The identification of main concepts for a DSML is strongly dependent on a

34

Model-Driven Networking: a Novel Approach for SDN Applications Development

creative view and knowledge in the domain. However, some sources can help in this

investigation, such as domain architecture or available specifications (e.g., OpenFlow),

existing products (e.g., SDN controllers), patterns, target environment, and code

(KELLY e TOLVANEN, 2008).

As aforementioned, to create a DSML we need to specify five basic components.

In the following paragraphs are clearer definitions and descriptions of forms of

specification for each DSML component:

Abstract syntax. Such component is normally specified through a metamodel. The

metamodel (or abstract syntax) has the conceptual structure of a DSML, e.g., the

entities (or concepts) of a modeling language, their attributes, possible relationships,

and well-formedness rules. When a DSML needs to be created, the developer uses a

metamodeling language to specify the elements of metamodel, which describes the

domain knowledge. For metamodeling, there are several languages, e.g., MetaGME

(LEDECZI, et al., 2001) (KARSAI, et al., 2004) or Meta-Object Facility (MOF) (OMG,

2000). According to (KELLY e TOLVANEN, 2008), a metamodeling language is used

for specifying the abstract syntax (or metamodel) of a DSML, which supports the

production of CASE tools that follow such abstract syntax. The authors also consider

the metamodeling language as a meta-metamodel, i.e., a model that describes another

metamodel. Indeed, the metamodel is just part of this cascade instance, as Figure 2.8

depicts.

Figure 2.8: The application model conforms to a modeling language. Such language has its
abstract syntax represented by a metamodel; which conforms to a language that has an abstract
syntax represented by a meta-metamodel.

The idea of conformity between models is shared yet by the Object Management

Group (OMG) and its four-level modeling framework (OMG, 2014), as well as the

Bézivin’s version of metalayers (BÉZIVIN, 2005). For OMG’s Model-Driven Architecure

35

Model-Driven Networking: a Novel Approach for SDN Applications Development

(MDA), i.e., its particular view of MDE, a metamodel is a “class of models”. The derived

models of this class of models are instances of the metamodel. Such structure has four

levels, namely levels M0, M1, M2, and M3. It is worth to mention that for MDA the level

M2 corresponds to the metamodel and it is expressed using MOF.

 On the other hand, Bézivin (2005) removes the dependency on MOF and Unified

Modeling Language (UML) present in OMG’s MDA and defines a more general

infrastructure, named 3+1 MDA organization. Such infrastructure is closer to that used

in MDN approach. Figure 2.9 shows the Bézivin’s architecture.

Figure 2.9: Bézivin's 3+1 MDA organization (BÉZIVIN, 2005).

Concrete syntax. In DSMLs, graphic elements compose such syntax. They may have

a close iconic meaningful to its corresponding entity (or concept) in abstract syntax.

These graphic elements are visual representations for conceptual elements of abstract

syntax, forming a visual notation, which is a representation focused on humans, with the

purpose to facilitate the communication and problem solving (HAREL, 1988). To

encode information of underlying models or metamodels, the visual notation uses

spatial arrangements of graphic (and textual) elements (MOODY, 2009). The scheme

of Figure 2.10 depicts the composition of visual notations.

36

Model-Driven Networking: a Novel Approach for SDN Applications Development

Figure 2.10: Scheme representing the organization of visual notation regarding the semantics of
DSML as well as its metamodel.

According to Moody (2009), the visual notation (or visual language, graphical

notation, diagramming notation) is composed of a set of graphical symbols, a set of

compositional rules (visual grammar), and descriptions of the meaning for each

graphical symbol (visual semantic). Thus, the Moody’s definition for visual notation (or

concrete syntax) of a DSML, which is used in this dissertation, is the combination

between graphical symbols (e.g., lines, circles, spatial relationships, and the like) and

compositional rules.

The typical starting point in defining a concrete syntax for a DSML is specify a

basic visual notation for the language. For instance, Lennox et al. (2004) proposes a

notation composed simply of directed arrows between boxes (cf. Figure 2.11). The main

principle argued was read the whole specification for a Call Processing Service from

visual notation representing a model (LENNOX, SCHULZRINNE e WU, 2004). It is

worth to mention that such specification of concrete syntax normally arises from the

creativity and domain knowledge owned by the creator of a DSML. In some cases,

empiric aspects (e.g., cognitive and colors) may be used to a better definition of the

visual notation.

Figure 2.11: Visual notation proposed by Lennox et al. (2004).

Semantic Domain. Abstract syntax conveys limited information about what the

concepts in a DSML actually mean. The definition of semantics is crucial for clarify what

37

Model-Driven Networking: a Novel Approach for SDN Applications Development

the DSML represents and means. Without such definition, misinterpretations and

personal assumptions may occur in the use of the language. For instance, in the context

of modeling languages, the understanding involving the meaning of State Machines

form a key part in choosing it to model a behavior of a problem domain.

The concepts that compose a DSML have some meaning, also referred to as

semantics. If some modeler creates elements into a diagram and design a link

connecting them, it is a meaning for the model. Such meaning come from the problem

domain (KELLY e TOLVANEN, 2008). In a hypothetical scenario, when a developer is

creating an information system for a university, the modeling concepts, such as

“teachers”, a “campus”, “classrooms”, and their properties and connections are well-

defined meanings inside the application domain. These relationships between modeling

concepts and meanings are the semantics of a DSML. In other words, the semantics of

a DSML defines the meaning of the language, using terms as behavior and static

properties.

There are several ways to describe the meaning of a language concept (CLARK,

SAMMUT e WILLANS, 2008). An example is the use of natural language in describing

the meaning of concepts:

i. By describing concepts with well-defined meaning, e.g., “a professor has a

name and an office”;

ii. Defining the properties and behavior for a concept, e.g., “a professor can

be in vacation, or can be teaching classes”, as well as the common

properties for all instances of a concept, e.g., “professors have Ph.Ds”;

iii. Specializing another concept, e.g., “a hardware lab is a classroom with

hardware equipment”.

 Besides the use of natural language in specifying semantics, Clark et al. (2008)

present more four approaches to describe the semantics of languages. The main

difference of these four approaches in relation to natural language in specifying

semantics is the use of metamodels to express such semantics. The approaches are:

(1) Translational, which translates concepts from one language into concepts in a

different language; (2) Operational, which models the operational behavior involving

language concepts; (3) Extensional, used for extend the semantics of an existing

language; (4) Denotational, for model the mapping to semantic domain concepts.

 Generally, the use of more than one approach in specifying the language

semantics occurs. The MDN combines natural language with Object Constraint

38

Model-Driven Networking: a Novel Approach for SDN Applications Development

Language (OCL) and a metamodel to specify the semantics of the proposed DSML,

mixing translational and operational approaches. OCL is one of the most efficient ways

to apply rules of architecture and to perform validation in system models (OMG, 2006).

Mappings. In order to complete the specification of a DSML, the mapping

between the semantic domain and metamodel (abstract syntax) must be made. Such

association, usually called semantic mapping, can also serves to define the semantics

of the DSML. It enables valid instances of models and it can be performed through the

specification of constraints or rules (e.g., cardinality in metamodels). Besides the

semantic mapping, we already introduced the syntactic mapping, which combines the

elements of visual notation with the concepts or entities of abstract syntax. Some tools

help in such mapping (e.g., Eclipse Modeling Framework (ECLIPSE, 2014)), they

associate graphics, codes and the like to the concepts in metamodel. Both mappings

are dependent on previous components of DSML to be satisfied.

Besides the specification of a DSML, in order to build a MDE infrastructure, there

is the need to generate code and to enable the model transformation, but such

requirements are out of the scope DSML structure, as depicted in Figure 2.12. Thus, we

discuss the model transformation and generators in the next subsection.

Figure 2.12: Summarized scheme of MDD and its components.

2.2.4 Transformation Engines and Generators

To be useful, MDE technologies require both the DSML and the features to generate

code or to transform models. In the previous subsection, we already discussed DSML

and its specification. Hereinafter, we will briefly present the role of the transformation

engines and generators to enable the synthesizing of artifacts from models also helping

to ensure the consistency between applications and their models (SCHMIDT, 2006).

39

Model-Driven Networking: a Novel Approach for SDN Applications Development

Note that one of the benefits in using MDD is its improved compatibility with

diverse scenarios. We observe this benefit in the transformation of models, e.g., a

model of a software-defined network can become a traditional network model. There are

wide accepted solutions to enable the transformation between models, such as the

OMG’s Query/View/Transformation (QVT) (BAST, et al., 2011), although it is not the

focus of this dissertation, an extensible work can be found in (MENS e VAN GORP,

2006) and (CZARNECKI e SIMON, 2003). According to Cuadrado and Molina (2009),

we can even consider the code generation as a transformation, named model-to-text,

which also has standards under development (OMG, 2008).

The code generator is one of the key parts in a MDE structure; it helps in

automating the execution of models as applications. From the perspective of developer

(or modeler), the generated code is complete and it does not require modifications after

the action of code generator (KELLY e TOLVANEN, 2008). Thus, such action means

that such generator and its underlying framework have the logic and methods to

translate automatically the models to executable code, being the last validation step in

the MDD process.

An overview about tools that enable and make easier the implementation of MDE

structure is presented in the next subsection.

2.2.5 Tools for Enabling MDE

The benefits achieved with MDE have raised some tools that help in the creation of

infrastructures to support the development based on models. These tools need to offer

support for the specification of DSML components, domain-specific constraints and

perform model checking to detect and prevent several errors early in MDD life cycle.

Furthermore, the tools for enabling MDE need to allow the generation of code or even

the transformation between models.

In this scenario, there is a number of available tools we can use to create a MDE-

based editor, such as Graphical Modeling Framework (GMF) (STEINBERG, et al.,

2009), MetaEdit+ (TOLVANEN e ROSSI, 2003), and AToM³ (DE LARA e

VANGHELUWE, 2004). These tools enable the creation of metamodels, visual

notations, and so on, but the main benefit is in automating the mappings and the code

generation.

Although the tools for implement MDE have similarities, due to reasons like

public license, compatibility, and code generation, the Model-Driven Networking (MDN)

40

Model-Driven Networking: a Novel Approach for SDN Applications Development

editor uses GMF as underlying framework. Thus, we perform a more comprehensive

explanation of this framework in the next subsection.

2.2.6 Graphical Modeling Framework (GMF)

The GMF is a framework for building Eclipse-based graphical editors. For example, an

SDN modeling tool proposed in this dissertation, UML editors, flow editor, and so on.

Such framework consists of two other frameworks, namely the Eclipse Modeling

Framework (EMF) and the Graphical Editing Framework (GEF). Before we explain how

such composition occurs, we expose what each of them is:

Eclipse Modeling Framework (EMF). The EMF project is a modeling framework and a

tool for code generation to build applications based on a structured data model. From a

model specification described in the XML Metadata Interchange (XMI) standard, the

EMF provides features to create a set of classes for the model (relating the model

described in XMI with such classes). It also joins such features with adapter classes to

enable the editing based on commands of model (e.g., insert an entity).

EMF includes a metamodel Ecore that is indeed a reference implementation of

OMG’s EMOF (Essential Meta-Object Facility), which by its turn is the simplified version

of the more comprehensive MOF. EMF uses an Ecore metamodel to specify the

abstract syntax of a DSML. It makes reasonably easy the mapping between application-

level models and Ecore metamodel.

Ecore is the model used to represent models in EMF. A simplified set of the

Ecore model is depicted in Figure 2.13, which only shows the elements of Ecore

needed to model the MDN approach, avoiding, for example, the base class

ENamedElement, which relates with EClass, EAttribute, and EReference, defining the

name attribute which is presented explicitly in the classes mentioned here.

As the Figure 2.13 shows, there are four Ecore classes composing this meta-

metamodel (STEINBERG, et al., 2009):

1. EClass represents a modeled class, having a name, zero or more attributes

(EAttributes), and zero or more references (EReferences).

2. EAttribute represents a modeled attribute, which has a name and a type.

3. EReference represents an association between classes. It has a name, a

boolean flag (it indicates if the reference represents a containment), and a

reference target, which is another class of EClass type.

41

Model-Driven Networking: a Novel Approach for SDN Applications Development

4. EDataType represents the type of attributes (e.g., int or float).

Figure 2.13: Simplified set of the Ecore meta-metamodel.

From the perspective of DSML specification and its components, EMF enables

the specification of abstract syntax and code generator. Automating the mappings

already discussed in subsection 2.2.3.

EMF also has a language based on Object Constraint Language (OCL) for

verification of models, named Eclipse Validation Language (EVL).

Rules written with EVL have the structure depicted in Figure 2.14 below:

context <name> {

 (constraint|critique <name>) {

 (guard (:expression)|({statementBlock}))?

 (check (:expression)|({statementBlock}))?

 (message (:expression)|({statementBlock}))?

 (fix)*
 }

}

Figure 2.14: EVL rules structure.

Each context is related to an instance of EClass (e.g., network node, host, and rules).

Thus, inside the specified context, there is the concept of invariants (i.e., constraint and

critique), which defines the applicability of rules to a subset of the instances specified by

the context. Such definition is performed by writing the guard and/or check expressions.

If some instance matches the guard and does not satisfy the expression defined in

check invariant, the model is not valid and a fix is need.

42

Model-Driven Networking: a Novel Approach for SDN Applications Development

Graphical Editing Framework (GEF). The GEF framework specifies technology used

to create graphical editors and views of Eclipse IDE and its workbench user interface. In

more detail, there are six components consisting such editors:

i. Model diagram editor, including a tool palette;

ii. Figures graphically representing the data elements of underlying models;

iii. EditParts relating figures and their respective models elements;

iv. Request objects for users inputs;

v. EditRule objects that evaluate requests and create appropriated command

objects;

vi. Command objects, which edit the model and provide features to undo or

redo.

GEF is intrinsically linked with the concrete syntax in specifying DSML, as well as

with the mapping between visual notation and its semantics. Furthermore, GEF is a key

part in creating the MDN editor as a feasible tool.

In summary, GMF automates the joining between EMF and GEF. Thus,

developer or modeler need only perform the definition of abstract and concrete syntaxes

in these frameworks, as Figure 2.15 depicts. Through several standard rules (e.g.,

symbols connections, actions for create/edit/delete models) and models described in

XMI, it automatically relates each element of metamodel described in EMF with the

visual notation specified in GEF, generating an editor based on the Eclipse user

interface.

Figure 2.15: Workflow for developing graphical modeling editors using GMF.

43

Model-Driven Networking: a Novel Approach for SDN Applications Development

Chapter

3
3. Related Work

This chapter presents and discusses recent research studies related to SDN

applications development. In section 3.1, we present the DSLs for SDN, while in section

3.2 we show model-based approaches.

Since the first OpenFlow specification, released in 2008, several approaches

emerged trying to raise the abstraction level of the protocol that enables SDNs and its

applications. These approaches achieve their goals through the controller’s northbound

interface. Such interface enables and even requires a higher-level concept to define the

desired behavior in an SDN-based environment. Due to network dynamics and

complexity for the developer to handle all aspects of an SDN application, such

applications have been achieved through high-level programming languages that hides

the complexity involved in implementing and handling OpenFlow protocol directly.

3.1 Domain-Specific Languages for SDN

Some SDN programming languages have emerged to enable network operators in

creating network applications for the controllers’ northbound interface. Currently, the

following SDN programming languages are available: FML (HINRICHS, et al., 2009),

Nettle (VOELLMY, AGARWAL e HUDAK, 2011), Procera (VOELLMY, KIM e

FEAMSTER, 2012), Flog (KATTA, REXFORD e WALKER, 2012), NetCore

44

Model-Driven Networking: a Novel Approach for SDN Applications Development

(MONSANTO, et al., 2012), Pyretic (MONSANTO, et al., 2013), Frenetic (FOSTER, et

al., 2011), FatTire (REITBLATT, et al., 2013), Nlog (KOPONEN, et al., 2014), and

Flowlog (NELSON, FERGUSON e SCHEER, 2014). It is worth emphasizing that all

those languages are based on the DSL paradigm. Figure 3.1 depicts the timeline of

releases of the SDN programming languages.

Figure 3.1: The releasing of SDN programming languages in timeline.

The first SDN programming language released was FML, using a declarative

style to express network policies and abstract the complexity of OpenFlow rules. FML

was released just one year after the release of the first OpenFlow specification and it is

based on NOX controller (GUDE, et al., 2008). The following FML policy snippet

present in (HINRICHS, et al., 2009) exemplifies its declarative style. In such snippet the

user todd is defined as superuser without communication restrictions:

 () ()

 ()

Where means source user, means target user; means source host and

target host; means source access point and means target access point;

means protocol and verifies if the flow is a request.

Nettle language also enables the writing of network policies for developing SDN

applications, starting the discussion about proactive and reactive SDN applications

development. Besides the DSL, Nettle uses Functional Reactive Programming (FRP)

paradigm in its design, which means it is compatible with reactive controllers by

supporting the implementation of policies that reacts according to events.

Procera and NetCore bring the offering of support to avoid conflicts among

network policies, a desirable characteristic in programming SDN applications, which

reduces the complexity in development. The FRP, DSL, and declarative paradigms,

used earlier in Nettle and FML, were also used in Procera and NetCore. Such use has

45

Model-Driven Networking: a Novel Approach for SDN Applications Development

particularities relative to expressiveness achieved by each language. The following

code snippet shows an example of Procera in practice to illustrate the declarative style

of such languages.

proc world → do

 returnA −≺

 λreq → if destIP req ‘inSubnet’ ipAddr 128 36 5 0 // 24

 then allow else deny

The code above declares that such procedure might allow only traffic to IP addresses in

subnet 128.36.5.0 / 24. Thus, this type of building does not requires a programmer or

network operator to know how to implement the blocking of traffic destined to the IP

mentioned, these agents only need to declare what is allowed. Such scenario is the

main characteristic of declarative paradigm.

Further, after Procera and NetCore releases, there are the Frenetic and Pyretic

languages, which are slightly different, but make part of the same project (Frenetic

project). They have distinct characteristics involving how modules are interpreted. For

example, Frenetic allows parallel modules (e.g., access control parallel to load

balancing), while Pyretic adds sequential execution to parallel support. Pyretic might

execute an access control module in parallel to load balancing, defining after such

execution the start of monitor usage module. These languages also use DSL,

declarative, and FRP (for Frenetic) paradigms.

The Flog language applies ideas of FML, by allowing event-driven development

(i.e., FRP paradigm), network state query, and processing information according to the

facts generated by network events (e.g., new flow, unreachable device).

Nlog is another proposal for computing the network forwarding state, based on

DSL and declarative paradigms, and it resembles FML semantically and in its

characteristics of network state query.

Flowlog is a finite-state language, which restricts some buildings in order to

simplify the reasoning about correctness and to install proactively rules into switches.

Last but not least, the language FatTire has one of the most narrow scopes when

compared to other languages due to its focus on fault-tolerance, by offering features to

handle the failures in an SDN application.

In order to summarize the description of each DSL discussed in this section we

present the Table 1 below.

46

Model-Driven Networking: a Novel Approach for SDN Applications Development

Table 1: Summary of characteristics for each SDN-based DSL indentified in literature.

 Use Cases Paradigm Objective Year Limitations
FML/FSL Routing, DSL,

Declarative,
Rule-based,
Logic
Programming

Replace the various
different configuration
mechanisms and offer a
higher level abstraction
to express network
behavior.

2009 Does not allow arithmetic
constraints;

Static policies;

Does not address
conflicting rules;

Does not allow explicit
negation in rule bodies.

Nettle QoS, policy-
based routing,
load balancing.

DSL,
Declarative,
FRP.

Allow programming
OpenFlow networks in a
declarative style.

2011 Does not address
conflicting rules.

Procera ACLs, QoS,
policy-based
routing, load
balancing.

DSL,
Declarative,
FRP.

Express reactive
dynamic policies in a
declarative way.

2012 Does not directly support
issuing events or external
queries (NELSON, et al.,
2014).

Flog ACLs, QoS,
policy-based
routing, load
balancing.

DSL,
Declarative,
Rule-based,
Logic
Programming.

Provide an event-driven
and forward-chaining
language to each time a
network event occurs
the logic program
executes.

2012 Does not allow explicit
negation in rule bodies.

NetCore Network
monitoring,
ACLs, QoS,
policy-based
routing, load
balancing.

DSL,
Declarative,
FRP.

Allow programmers to
describe what network
behavior they want,
without how it should be

implemented.

2012 Can’t reference the state on
the controller.

Frenetic Network
monitoring,
ACLs, QoS,
policy-based
routing.

DSL,
Declarative.

Raise the level of
abstraction for writing
controller programs for
SDN, offering ways to
query the network state,
and define forwarding
policies.

2013 Only provides consistency
on a single switch for each
flow.

FatTire Network
monitoring,
policy-based
routing, fault-
tolerance.

DSL,
Declarative,
FRP.

Write programs in terms
of paths through the
network and explicit
fault-tolerance
requirements.

2013 Failure-recovery and
detection mechanisms not
integrated;

Does not address QoS and
performance requirements.

Pyretic Network
monitoring,
ACLs, QoS,
policy-based
routing.

Imperative,
DSL.

Specify network policies
at a high level of
abstraction.

2013 Only provides consistency
on a single switch for each
flow.

Nlog Network
monitoring,
policy-based
routing.

DSL,
Declarative,
Rule-based,
Logic
Programming.

Compute the network
forwarding state and
separate the logic
specification from the
controller that executes
such logic.

2013 Does not offer a way to
verify the correctness of
SDN applications;

Does not allow explicit
negation in rule bodies.

Flowlog ACLs, QoS,
policy-based
routing.

DSL, Rule-
based,
Declarative,
Logic
Programming

Abstract the data-plane
and control-plane
behaviors, allowing
reason about the
semantics of SDN
applications and its
code.

2014 Does not have abstractions
for queries.

47

Model-Driven Networking: a Novel Approach for SDN Applications Development

Most of information present in Table 1 can also be found at (KREUTZ, et al.,

2014), the main difference is relative to our view on limitations for each SDN

programming language, in order to verify if our proposal can contribute to address some

of them.

3.2 Modeling Approaches for SDN

Increasing the abstraction in development or management of SDN applications is the

objective of several research projects as abovementioned. To the best of our

knowledge, besides the proposals involving textual DSL-based programming languages

for SDN discussed above, the closest related studies found in literature involving the

modeling of SDN and its applications are the following: Miniedit (LANTZ, HELLER e

MCKEOWN, 2010), Virtual Network Descriptor (VND) (FONTES e SAMPAIO, 2013),

and Common Information Model for SDN (CIM-SDN) (PINHEIRO, et al., 2013).

Miniedit refers to the creation of virtual topologies in SDN through a graphical

interface. These topologies are simulated at Mininet, the underlying SDN simulator

(LANTZ, HELLER e MCKEOWN, 2010). From Miniedit, it is possible to create and

organize the network nodes, such as controllers, forwarding devices, and hosts. The

graphical interface of Miniedit with a topology to illustrate its features is depicted at

Figure 3.2. Such topology is composed of four hosts, seven switches, and three

controllers. The hosts h1 and h2 are physically connected to switches s2 and s3, which

are connected with switch s1. The controller c0 manages the logic of such switches. On

the other hand, the controller c2 manages the logic of switches s5, s6, and s7, the last

two connect the hosts h3 and h4. Finally, the switch s4 connects switches s1 and s5, it

is logically managed by controller c1.

48

Model-Driven Networking: a Novel Approach for SDN Applications Development

Figure 3.2: Graphical interface of Miniedit.

Another tool for modeling SDN is the VND. An editor aims to describe the

structure and part of the SDN behavior through a Graphical User Interface (GUI). It uses

a framework called Network Scenario Description Language (NSDL) (MARQUES e

SAMPAIO, 2012) to define the SDN elements, also supporting the generation of scripts

for Mininet simulator and OpenFlow controllers. The proposal of VND was adapt the

NSDL framework to support the description of SDNs, since the original proposal of

NSDL was to describe traditional networks. Figure 3.3 depicts the modeling of SDN

topologies in VND.

Figure 3.3 Topology model in VND.

49

Model-Driven Networking: a Novel Approach for SDN Applications Development

The NSDL framework used in VND provides a vocabulary that composes a set of

rules, which enable the description of traditional networks (e.g., topology,

characteristics, and network perspectives). NSDL also offers a Graphical User Interface

(GUI) for topology generation (MARQUES e SAMPAIO, 2012). Although VND can

describe SDN topologies, it only enables the definition of QoS for network elements and

cannot model applications, such as firewall or load balancing.

Last, but not least, the Common Information Model extension for Software-

Defined Networking (CIM-SDN) was recently proposed (PINHEIRO, et al., 2013). It

offers an abstraction model and a client editor for SDN management, by modeling SDN

elements (e.g., hosts, controllers, switches) and by reducing the complexity in defining

their properties. CIM-SDN also validates an SDN structure through OCL, finding

inconsistences and avoiding error-prone buildings in network. The abstract syntax of

MDN resembles the CIM-SDN.

The CIM-SDN approach extends the MDA’s Common Information Model (CIM) to

support the description of SDN elements. It is based on an SDN controller named

FlowVisor (SHERWOOD, et al., 2009), since it deals with slices of the network (i.e.,

Slice class) that are the focus of such controller. The extension of CIM model for SDN is

depicted at Figure 3.4.

Figure 3.4: Class diagram of CIM-SDN.

 CIM-SDN enables the building of CIM models for describing of slices in an SDN

environment. It also may model the nodes of SDN, as well as its properties (e.g.,

SdnSwitch class enables the definition of how many ports a switch has). However, due

to its foundation on CIM model, it is dependent on UML to perform the modelling of

SDNs.

50

Model-Driven Networking: a Novel Approach for SDN Applications Development

 To the best of our knowledge, our MDN approach is the first DSML for SDN.

Moreover, a number of features make MDN a novel approach to address the issues that

currently exists for SDN application development. At the time of this writing, MDN is the

only one to unify the description of SDN scenarios (e.g., topology, properties) with the

development of SDN applications through high-level models. MDN addresses issues

not found in other proposals, such as the compatibility between applications and

different controller vendors, as well as the validation of SDN topologies and

applications.

51

Model-Driven Networking: a Novel Approach for SDN Applications Development

Chapter

4
4. The MDN Framework

This chapter describes the methods and the infrastructure of MDN, which consists of

techniques and software built following the MDE paradigm to support the approach and

technology presented in this dissertation. We start describing the MDN architecture at

section 4.1. After we present the building process MDN in section 4.2 and its artifacts

(section 4.3). Then, we present details of code generation (section 4.4) and conclude

this chapter by presenting the MDN Editor and its development process (section 4.5).

4.1 Overview of MDN Architecture

The general perspective of MDN involves elements of a MDE technology applied to

SDN applications domain. In this context, we consider the MDN architecture with three

layers related to each other (i.e., Model, MDE Technology, and SDN Domain-Specific

Elements). The base of such architecture, depicted in Figure 4.1 is the set of concepts

and specification of SDN domain used.

 Due to MDN architecture layers, we can achieve a higher abstraction level in

creating SDN applications through modeling.

52

Model-Driven Networking: a Novel Approach for SDN Applications Development

Figure 4.1: Simplified view of the MDN Architecture.

4.2 Building Process of MDN Infrastructure

The concepts defined in the previous chapters provide the necessary background to

understand a prospective relationship between MDE and SDN, which results in the

MDN approach. In this section, we present the workflow for the creation of MDN

infrastructure, used to offer a new way in developing SDN applications. Such workflow

follows a main process defined to create a model-based tool using the Eclipse’s

framework (i.e., GMF), which relates with MDE concepts.

4.2.1 Specifying the Domain

Initially, in order to offer the DSML and code generator of a model-based approach,

such as MDN, first it is necessary to define the domain scope and its modeling concepts

for such modeling language, which may be coming from available specifications,

architecture, existing products, code, and so on (KELLY e TOLVANEN, 2008).

Although to date there is no well-known standard specification for SDN applications, this

work used their underlying concepts (e.g., SDN controllers, OpenFlow), relationships,

and the basic elements of SDN architecture, already defined in the literature (cf. section

2.1.1).

Furthermore, we carried out an investigation about SDN programming

languages, identifying several domain-specific languages in literature, such as FML

(HINRICHS, et al., 2009), Nettle (VOELLMY, AGARWAL e HUDAK, 2011), and Pyretic

(MONSANTO, et al., 2013) (for an extensive list see chapter 3, (HU, HAO e BAO,

2014) and (LARA, KOLASANI e RAMAMURTHY, 2013)). Due to common

characteristics of such languages in abstracting OpenFlow complexity for specifying

network policies, such as relational operators, packet flow identification, and performing

53

Model-Driven Networking: a Novel Approach for SDN Applications Development

actions, the MDN approach was inspired by the plusses of them in its domain

specification.

According to Kelly and Tolvanen (2008), it is possible to use natural language in

describing the domain scope. Thus, Table 2, based on OpenFlow and SDN use cases

(JARSCHEL, et al., 2014), presents an overview of the domain scope and its concepts

involved in specifying the MDN approach. Such table is composed of the main elements

that enable the creation of SDN applications by modeling.

Concepts Description

Network Node
A general concept involving specific network components, such as host, controller,
and switch.

Link Component to connect network elements (e.g., controllers, switches, hosts, rules).

Controller
The logical part of SDN environment in which switches are managed, applications
deployed, and network behavior programmed.

Switch
It makes part of forwarding layer, connecting hosts, controllers, or even other
switches.

Host Clients or servers in the network.

Traffic Network traffic comprehends the amount of data used or the network traffic rate.

Flow
The SDN with OpenFlow deals with traffic by verifying its flows properties (e.g.,
packet header, incoming/outgoing port, source, and destination) and installing rules
in flow tables.

Rule In SDN, network rules are specified through algorithms running on controllers.

Relational
Operator

In SDN programming languages, relational operators are used to compose
conditional rules in applications (e.g., equal to, greater than, less than).

Action
The OpenFlow specification (version 1.4) defines actions for each flow entry (e.g.,
discard, forward, deny).

Time Network behavior may change over the time (e.g., vacation period, big time rush).

Condition Some rules of SDN applications are applied according to certain conditions.

Table 2: Main concepts of SDN that compose MDN approach.

In section 2.1.1, we have stated the main components of the SDN architecture:

controllers, forwarding devices, SDN protocols (e.g., OpenFlow), hosts and applications.

Except the SDN southbound protocol, which is underlying to SDN controller and switch,

such components are presented in domain specification. Besides, some characteristics

from literature (MONSANTO, et al., 2013) involving network behavior and network

structure are also described at Table 2, i.e., Traffic, Flow, and Rules.

After we have used natural language to express the main concepts of domain

scope, we have specified the building process of MDN metamodel, defining the

relationships and attributes for each concept above. The next section outlines such

metamodel, among other artifacts that compose the MDN approach.

54

Model-Driven Networking: a Novel Approach for SDN Applications Development

4.3 Artifacts

Besides domain scope, the following elements compose a DSML: abstract and concrete

syntaxes, semantic domain, and mappings (semantic and syntactic). Hereinafter, we

present these elements in the MDN specification, in order to demonstrate its structure.

We already defined the use of framework GMF to develop the MDN infrastructure. The

new element in this scenario is the Epsilon framework (KOLOVOS, et al., 2014), a

family of languages and tools for code generation, model validation, migration, among

others, which provides facilities in implementing EMF and GMF components.

4.3.1 Abstract Syntax

The metamodel discussed in this section, also known as abstract syntax of DSML,

represents a view that involves the structural characteristics of MDN core. Such view is

the base for the others artifacts of DSML (i.e., concrete syntax, mappings, and

semantics).

Besides the identification of concepts defined at Table 2, we also have used the

version 1.4 of OpenFlow specification in defining abstract syntax (ONF, 2013). For

example, such specification defines that one controller can be linked with many

switches, as well as one switch can be linked with many controllers. Thus, by following

the concept of cardinality present in modeling approaches (e.g., classes diagram, UML),

this is a many-to-many relationship, which needs to be specified in metamodel.

Firstly, our methodology in building MDN related each main component of SDN

architecture (e.g., controller, switch) and described it in the metamodel by using an

essential version of MOF, named EMOF. As pointed out in section 2.2.6, a reference

implementation of EMOF was created by Eclipse, namely Ecore. It grants that concepts

of domain are formally described in abstract syntax with a meta-metamodel (M4 of

Bézivin's 3+1 MDA organization), hereinafter named Ecore model. Furthermore, Ecore

is part of EMF/GMF frameworks.

Figure 4.2 shows a brief example of implementing domain concepts of SDN

architecture using Ecore and its classes. To perform such implementation, EMF

provides an Ecore editor in which graphical elements and Java annotations that define

an Ecore model. For another view of this initial implementation, the script describing this

metamodel of SDN architecture in MDN core is available in the appendix A.

55

Model-Driven Networking: a Novel Approach for SDN Applications Development

Figure 4.2: Example of MDN approach being implemented in Ecore instances.

Thus, it is feasible to use instances of Ecore classes to describe the

infrastructure of MDN. For instance, Figure 4.2 shows the description of SDN controller

as an EClass instance named Controller. It contains three attributes: name, mac, and ip,

for which its target reference (EReference) is equal to another EClass instance named

Switch. We performed such a description for each item listed in Table 2 through a direct

editing using the Ecore editor present in Epsilon.

After we had implemented the domain concepts of SDN architecture in Ecore, it

is possible to view at Ecore editor an UML-based diagram exhibiting the abstract syntax

and core metamodel with the classes and relationships of SDN architecture defined for

the MDN approach. In other words, the elements of SDN architecture such as

Controller, Switch, and even Host are nodes of Sdn, which is the diagram to model

these elements. The nodes of Sdn diagram also have the following relationships

connecting them: switchController (switch may link with controller), hostSwitch (host

may link with switch), and switch (switch may link with other switch). Such relationships

are consistent with OpenFlow specification and SDN architecture itself, where hosts are

connected with switches in the forwarding plane. Figure 4.3 depicts this scenario.

Figure 4.3: MDN’s core metamodel.

56

Model-Driven Networking: a Novel Approach for SDN Applications Development

In order to clarify the definition of abstract syntax and its specification process,

the building shown in Figure 4.3 represents a metamodel in which only the modeling of

SDN architecture is possible. Thus, it is need to outline the increments performed for

that MDN structure enables the development of SDN applications. The organization of

such increments in abstract syntax still has relation with the OpenFlow specification in

its version 1.4 and SDN architecture (ONF, 2014).

As seen in sections 2.1.5 and 2.1.6, the programming of SDN is performed in

controllers through rules in the shape of algorithms. Such programming may involve

several use cases. However, based on literature, we have defined three main features

related to SDN applications: traffic monitoring, policies and rules specification, and

validation (MONSANTO, et al., 2013).

These features involve common elements, such as traffic, concessions (e.g.,

allow or deny some behavior), and monitoring of network nodes or devices. In general,

the elements of Table 2 cover the components necessary to program applications in

SDNs. In this scenario, we have inserted these components into abstract syntax, but the

use of them depends on the SDN application to be modeled.

Thus, MDN metamodel should enable that rules to be modified and related with

the respective controller, which will relay such rules to underlying switches. We have

achieved such actions by adding the rule element into the metamodel and relating it

with the controller (Controller) and network nodes (NetworkNode). Thus, the rule

element may define the behavior of both (i.e., controller and network nodes). However,

as seen earlier, in SDNs, rules are algorithms that may be related to several network

elements (e.g., traffic, switches, and hosts). Then, there is a need to enable the

modeling of such elements, also by inserting them into MDN metamodel. The following

elements were inserted directly or indirectly (i.e., a combination of classes in

metamodel): Traffic, Flow, Rule, Concession, RelationalOperator, Action, Time, and

Condition. Figure 4.4 depicts this addition and the metamodel correlated with M2 level

of Bézivin's 3+1 architecture (BÉZIVIN, 2005).

57

Model-Driven Networking: a Novel Approach for SDN Applications Development

Figure 4.4: Full metamodel of MDN.

The description of each element inserted in MDN metamodel (as an EClass,

EEnum, or EReference) is present in Table 2. However, it is worth to underline the

meaning of the relationships between them and the reason why they were inserted in

the metamodel:

i. The Sdn entity and its aggregations (e.g., ruleObjects, nodes) is a concept

relative to the GMF in creating the graphical editor. Similar purpose is related to

RuleObject entity. It only present in such metamodel to enable the creation of

classes that are inheriting its compositionality in Sdn diagram. Annotations such

as gmf.diagram and gmf.node also appear on MDN metamodel due to their use

by GMF.

ii. Rule is one of the most important elements of MDN metamodel. In SDN, the

specification of rules in MDN is equivalent to the writing of algorithms that

composes an SDN application. The result of such specification involves the insert

of rules in flow tables, which are related with the source and destination of a

network flow or packet depending on certain characteristics (i.e., Condition) of

58

Model-Driven Networking: a Novel Approach for SDN Applications Development

the network or flow itself (i.e., Time, Traffic, PacketHeader). As we have stated in

section 2.1.4, such rules define some type of action to be made (i.e., Action)

when a flow (e.g., packet forwarding between two hosts) matches the

characteristics or conditions present in flow tables. Thus, we linked the Rule

element with the abovementioned elements. Note that such Rule element is not

related with Controller element in our metamodel due to semantic of our concrete

syntax. However, the code generation verifies the hosts related in a Rule

element. Such verification goes deeper by identifying the switch that connects

such hosts. After, it finds the controller that manages this switch.

iii. PacketHeader, Actions, Conditions, and RelationalOperators are enumerations

containing the accepted values for each homonymous class. For instance,

OpenFlow specification defines that switches identify the packets by verifying

their headers, e.g., incoming port (IN_PORT), source IP (IP_SRC), destination

MAC (MAC_DST), and so on (for extensive list see Figure 2.5 or (ONF, 2013)).

Another definition from OpenFlow specification is the possible actions in

switches. MDN approach defined such actions (Actions) in three values to be

accepted by a model of SDN application, namely, (i) FORWARD, which may

send the packet flow to the normal processing pipelining, to the controller, or to

another port, or may multicast; (ii) DROP, which discards the packet; and (iii)

MODIFY, which changes some value or characteristic of the packet. On the other

hand, Conditions and RelationalOperators have their utility when there is a need

to compare the packet flow with some network requirement, e.g., WHEN the

traffic transmitted from host A is GREATER_THAN 1 gigabyte, discard its

packets.

These statements describe more than abstract syntax of MDN through

metamodeling, they build a base and give an overview about how the modelling of SDN

and its applications may occurs with MDN.

4.3.2 Concrete Syntax

The concrete syntax defines a graphical element for each concept present in abstract

syntax (e.g. Controller). The same occurs with the links type involving the relationships

among entities (e.g., links between hosts and switches). Although we present and

discuss the concrete syntax of MDN and its graphical elements, there is room for

improvements such as the verification of cognitive aspects in their characteristics.

59

Model-Driven Networking: a Novel Approach for SDN Applications Development

Currently, MDN offers simple black and white graphical elements, but with denotational

meaning in relation to the concepts that they represent.

In order to represent graphically each element of SDN domain scope, our MDN

approach uses several symbols (cf. Table 3). For instance, due to the wide use in

documenting network diagrams, we used network shapes present in Microsoft Visio in

the graphical representation of topology elements (e.g., host, switch, and controller). On

the other hand, we added specific graphical style for each type of connection present in

an SDN application model (i.e., solid lines for physical links and dashed lines for rule

links) in order to differentiate the connections between network nodes and rules.

Furthermore, MDN also defines new icons to enable the modelling of graphical

underlying concepts such as packet header, traffic, and relational operators, increasing

the level of abstraction in using such concepts.

Visual Notation Description Properties

Controller: represents the SDN controllers. name (EString); mac (EString);
ip (EString); type (EString).

Switch: represents the forwarding devices. name (EString); mac (EString);

ip (EString); ports (EInt).

Host: represents the end nodes of the
network.

name (EString); mac (EString);
ip (EString).

Rule: represents the constraints that define
the network behavior.

name (EString).

Condition: composes the network rules,
conditioning their effectiveness.

condition (Conditions).

Packet Header: represents the headers of
packets present in flows. It is used to describe
some Condition or perform some Action.

header (PacketHeaders);
value (EString); operator
(RelationalOperators).

Time: represent the time dimension in the
network. It is used to describe some
Condition.

beginDate (EDate); endDate
(EDate); operator
(RelationalOperators).

Traffic: represent the network traffic, specially
from hosts. It is used to describe some
Condition and perform some Action.

unit (EString: MB, GB); value
(EInt); operator
(RelationalOperators).

Action: network rules define some action to
perform when some flow matches the
conditions.

action (Actions).

Physical Link: represents the element used to
connect two network nodes.

Rule Link: represents the element used to
connect virtually rules and nodes.

Table 3: Visual notation of MDN approach.

60

Model-Driven Networking: a Novel Approach for SDN Applications Development

In order to illustrate how the visual notation elements of concrete syntax are

organized in MDN, we have created the example model depicted in Figure 4.5. Such

model demonstrates the graphical representation and relationships of each element that

compose the concrete syntax. It is a simple topology (similar to Figure 2.2) composed of

one controller, two hosts, and one switch connecting them. Furthermore, there are

elements that compose a Rule entity, i.e., Condition, Traffic, and Action (cf. Table 3).

Figure 4.5: Example of visual notation elements in a MDN diagram.

The meaning of model depicted in Figure 4.5 may be defined as an SDN

environment composed of two hosts (Host 1 and Host 2), one switch (Switch 1)

connecting them, and one controller (Controller) managing this switch. Such

environment has a rule (Rule) programming the network, specifically hosts 1 and 2,

which drops (Action) the packets at port 80 (see the property of PacketHeader symbol7)

from Host 1 to Host 2 if the traffic reaches more than 1024MB. The date and time in

which such action performs need to be in the period specified at Time element.

4.3.3 Semantic Domain

The abstract syntax conveys limited information in defining the meaning of concepts in a

DSML. The same limitation applies to concrete syntax. Thus, the artifact that is able to

represent the domain concepts describing particularities of each element, particularly

those elements that are present in the abstract syntax, is the semantic domain, which

7
EQUAL_TO: [IN_PORT] 80).

61

Model-Driven Networking: a Novel Approach for SDN Applications Development

consists of a set of descriptions and constraints for concepts belonging to domain scope

of the DSML. Indeed, it is used to define the behavior and meaning of abstract syntax

elements.

 We have based the definition of MDN’s semantic domain on translational and

operational approaches (cf. section 2.2.3) by using natural language for presenting and

well-formed rules written with EVL for implementation (KOLOVOS, et al., 2014)

(KOLOVOS, PAIGE e POLACK, 2009). For instance, considering the element

NetworkNode from MDN metamodel, it is the EClass reference for the elements

Controller, Switch, and Host. Thus, according to the body of knowledge in networks and

the OpenFlow specification, there are three rules that are not possible to grant by

metamodeling and need to be set out with EVL: 1) elements of NetworkNode type

should have a name; 2) such elements must not have the same MAC; and 3) They

need valid IPs.

Our example present in Table 4 shows a summary of rules defined by using

natural language and EVL. In such a way, we have defined the resting semantic domain

of MDN and it is fully available at appendix A.

Element NetworkNode

Rule #1 Should has a name.

Rule #2 Should not has two identical MACs in the network.

Implementation 1. context NetworkNode {
2. critique hasName { //Rule #1
3. check : self.name.isDefined()
4. message : 'Unnamed ' + self.eClass().name.toUpperCase() + ' not

allowed'
5. fix {
6. title : 'Define the name of the node '
7. do {
8. var type := UserInput.prompt('What is the name?');
9. if (type.isDefined()) self.type := type;
10. }
11. }
12. }
13. constraint uniqueMAC { //Rule #2
14. check {
15. var networkNodes =
16. NetworkNode.all.select(nn|nn.mac = self.mac);
17. return networkNodes.size() = 1;
18. }
19. message : 'Not unique MAC "' + self.mac + '" not allowed'
20. fix {
21. title : 'Define the correct MAC '
22. do {
23. var mac := UserInput.prompt('What is the MAC?');
24. if (mac.isDefined()) self.mac := mac;
25. }

Table 4: EVL rules for NetworkNode semantic.

62

Model-Driven Networking: a Novel Approach for SDN Applications Development

4.3.4 Mappings

In section 2.2.3, the specification process of DSMLs was introduced. As seem, such

specification has two types of mappings to grant well-formed models by using DSMLs,

i.e., semantic mapping and syntactic mapping. The former was made by relating the

underlying concepts of SDN with the abstract syntax of MDN and its EVL rules. The

latter was defined through the EMF framework by relating each EClass and EReference

of metamodel with their corresponding graphical elements. The following lines attempt

to clarify these mappings.

 The semantic mapping was defined through the scheme present in Figure 4.6,

relating concepts of MDN with its abstract syntax.

Semantics Abstract Syntax

Network
Node

Host

Switch

Controller

Link

Rule

Flow

Traffic

Condition

Action

Time

Relational
Operator

Figure 4.6: Semantic mapping of MDN.

 Regarding the syntactic mapping, MDN approach enables to specify a graphical

symbol for each element present in abstract syntax through the EMF framework and the

use of Java annotations. For instance, the syntactic mapping between Rule element

and its visual notation was performed from the code snippet present in Table 5. The

Java annotation @gmf.node defines the graphical representation for the respective

63

Model-Driven Networking: a Novel Approach for SDN Applications Development

class Rule, which is the RuleFigure (cf. section 4.3.2). Inside such class, there are three

Java annotations of @gmf.link type, which defines the style of connections between rule

and other three elements (i.e., Host, Condition, and Action) by setting the style of such

connections and in customizing four attributes: target.decoration, source-decoration,

style, and color.

Element Rule

Mapping 1. @gmf.node(figure="figures.RuleFigure")
2. class Rule {

3. @gmf.link(target.decoration="arrow", source.decoration="none",

style="dash", color="0,0,0")
4. ref Host targetHostRule;
5. attr String name;

6. @gmf.link(target.decoration="none", source.decoration="none",

style="dash", color="0,0,0")
7. transient ref Condition ruleCondition;

8. @gmf.link(target.decoration="none", source.decoration="none",

style="dash", color="0,0,0")
9. ref Action ruleAction;
10. }

Table 5: Syntactic mapping for the Rule element and its relative graphical symbol.

The entire syntactic mapping of MDN approach followed this correlation using

annotations and it is available at appendix A.

4.4 Code Generation

The feature of code generation is a fundamental component of any DSML. Furthermore,

the EMF framework, used in MDN infrastructure in defining our abstract syntax, also

provides code generation support through the specification of code templates. Such

templates are specified by writing Eclipse Generation Language (EGL) tags, operations,

and static text. EGL tags are replaced by information present in the model of a particular

application (e.g., host IP and rule name), EGL evaluates a model and retrieves the

modeled elements as well as their properties.

SDN controllers have two main different types of operation to handle packets or

flows, namely proactive and reactive. Such operation modes are implemented

according to message patterns (e.g., OpenFlow messages (ONF, 2013)) exchanged

between controller and switch. Thus, the MDN approach enables modelling of

applications in such modes; it is performed by verifying the conditions to apply rules

64

Model-Driven Networking: a Novel Approach for SDN Applications Development

desired by an end-user or required by an application (e.g., time conditions, traffic limit,

and the like).

Although there are several controllers available to deploy an SDN environment,

currently the MDN infrastructure offers support for the POX controller due to

characteristics like open-source development model, Apache license, and modularity

(e.g., packet forwarding and firewall as modules). Furthermore, in order to simulate and

validate the modeled applications, MDN enables the transformation of topologies

present in MDN models into Mininet scripts.

The code generation feature was enabled by adding an action button at MDN

graphical editor (cf. section 0). When the SDN application modeling is done, the end-

user pushes such button and the MDN tool performs a process similar to a compilation

in traditional programming. Then, the tool uses the template associated with the button

and creates a new file with generated code and ready to run as application module in

the controller.

4.4.1 Templates for Code Generation

At beginning of this section, we defined that EMF framework and its EGL language

make use of code templates to perform the code generation, by verifying created

models and replacing tags present in templates for elements and properties of such

models. In the case of MDN approach and its underlying DSML, the specification of

abstract and concrete syntaxes demonstrated that an SDN application may considerer

the network topology in its behavior and it is based on rules, which must perform certain

action depending on some condition (cf. Figure 4.5). Thus, the EGL templates of MDN

editor to generate code must have tags and operations that satisfy the concepts

involved in SDN applications.

 In such a way, the code generation of MDN approach considers available

information in application models. It makes the automatic building and declaration of

several variables, structures, and methods without the direct involvement of end-user

(e.g., network operator). The Table 6 demonstrates part of main template sdn.egl used

in generating code. For a complete listing, the appendix A has the full sdn.egl and other

templates used.

At Table 6 is displayed the combination between EGL tags (e.g., operations,

conditional commands) and static text out of them (the text out of “[% %]”), composing

the Python code used to program the POX controller. The result in replacing EGL tags

65

Model-Driven Networking: a Novel Approach for SDN Applications Development

by information present in the model is the SDN application that is executed by POX.

Furthermore, such template is composed of five other .egl files (i.e., it imports). Each of

them is responsible to perform some specific action on final code. For instance, the

header.egl imports the possible libraries of POX controller that may be used on SDN

applications.

Template sdn.egl

Objective It defines the possible libraries used in code generated of MDN models.

1. [%
2. import "header.egl";
3. import "utils.egl";
4. import "condition.egl";
5. import "firewall.egl";
6. import "monitor.egl";
7. %]
8. [% var header = getCodeHeader(); %]
9. [%=header%]
10. [% var counterActionDrop : Integer = 0; %]
11. [% var counterActionMonitor : Integer = 0; %]
12. def mdn_handler (event):
13. # Handles packet events and kills the ones with blocked property
14. packet = event.parsed
15. [%
16. for (rule in Rule.all) {
17. if (rule.ruleAction.isDefined()) {
18. //IF ACTION EQUALS TO DROP
19. if (rule.ruleAction.type.value = Actions#DROP.value) {
20. if (counterActionDrop == 0) {
21. counterActionDrop = counterActionDrop + 1;
22. }
23. actionDrop(rule);
24. }
25. //IF ACTION EQUALS TO MONITOR
26. if (rule.ruleAction.type.value = Actions#MONITOR.value){
27. if (counterActionMonitor == 0) {
28. counterActionMonitor = counterActionMonitor + 1;
29. }
30. actionMonitor(rule);
31. }

 [...]
32. }
33. }
34. %]
35. def launch ():
36. [% if (counterActionDrop > 0) { %]
37. core.openflow.addListenerByName("PacketIn", mdn_handler)
38. [% } %]

[...]

Table 6: Summarized sdn.egl template.

66

Model-Driven Networking: a Novel Approach for SDN Applications Development

 Indeed, the SDN programming occurs in method mdn_handler (event) at line

11 from Table 6, it holds the verification of rules present at modeled application,

identifying the required actions. It is from the actions of each rule (i.e., rule object at line

16) that the body of code is generated by retrieving information of network elements and

conditions. The verifications of counters (e.g., lines 20 and 27) are used to avoid

duplicated code in implementing such rules. For instance, the method

addListenerByName at line 37 can not be defined twice with the same PacketIn

parameter or it would cause an inconsistency.

 The reactive and proactive operation modes are applied according to the

message type exchanged between switch and controller. For instance, in line 37 it is

defined a listener for PacketIn messages (ONF, 2013), which are output from switches

to the controller. The listener is the way in which the controller reacts to such

messages, in MDN it is handled by mdn_handler method. The OpenFlow specification

defines more than one type of message for reactive and proactive operation modes

(see (ONF, 2013) for an exhaustive list).

4.4.2 The support for different controllers

It is worth mentioning that the templates used to generate code must be defined not

only according to modeled application characteristics but also with de underlying

controller vendor. For instance, although this dissertation presents the MDN approach

supporting the code generation for POX (based on Python), it is possible to generate

compatible code for the OpenDaylight8 (ODL) controller, which is based on Java

programming language. MDN enables such support by using different EGL templates

for each underlying controller.

This extensible characteristic enables the compatibility of MDN models with any

SDN controller vendor without the need to perform any type of modification in syntaxes

and mappings of underlying DSML. Thus, an application created following our MDN

approach can be migrated to different SDN scenarios (e.g., testing applications

performances for distinct controllers) without code refactoring. There is the need only to

generate code to the target controller.

The example at Table 7 shows the code template for ODL controller. Such code

snippet is just a monitor application that notifies when the incoming packet IP is equal to

that is defined in a rule of model.

8
 OpenDaylight Project - opendaylight.org.

67

Model-Driven Networking: a Novel Approach for SDN Applications Development

Template sdn-odl-monitor.egl

Objective Generate code for a monitor application compatible with ODL controller.

1. [% import "header.egl"; %]
2. [% var ruleCounter : Integer = 0; %]
3. [%for (rule in Rule.all) {
4. if (rule.ruleAction.isDefined()) {
5. if (rule.ruleAction.type.value = Actions#MONITOR.value and

rule.sourceHostRule.isDefined() and rule.targetHostRule.isDefined()) {
6. %]
7. public class Rule[%=ruleCounter%]PacketInDispatcherImpl implements

 PacketProcessingListener {
8. private Map<InstanceIdentifier<Node>, PacketProcessingListener>

 handlerMapping;
9. public PacketInDispatcherImpl() {

 handlerMapping = new HashMap<>();
10. }
11. public void onPacketReceived(PacketReceived notification) {
12. InstanceIdentifier<?> incomingIp =

 [%=rule.sourceHostRule.hostSwitch.ip %];
13. InstanceIdentifier<Node> nodeOfPacket =

 incomingIp.firstIdentifierOf(Node.class);
14. PacketProcessingListener nodeHandler =

handlerMapping.get(nodeOfPacket);
15. [...]
16. [% ruleCounter = ruleCounter + 1;
17. }
18. }
19. } %]

Table 7: EGL template for ODL controller.

4.5 Applications Development Process using MDN approach

The process involving SDN applications development in MDN approach is rather similar

to traditional software development. The main difference resides in using the concrete

syntax of each of them. To create an application using MDN, an end-user needs to

verify if the application domain fits in domain specified for the underlying DSML of MDN.

If it is so, end-user models the application just by using visual elements of MDN’s

concrete syntax. At the end, if the created model is valid, it is possible to generate the

code of such application and run it in the target controller.

Due to its foundation on MDD process, the MDN approach requires that any

modification or correction to be performed in some application must be made through

the model, excluding the direct modification of code generated, as Figure 4.7 depicts.

Such figure also depicts the workflow of SDN applications development in MDN.

68

Model-Driven Networking: a Novel Approach for SDN Applications Development

Figure 4.7: MDN workflow.

4.5.1 MDN Editor

After we have specified each element of MDN’s DSML and the components of GMF, the

latter enables to generate a graphical editor, the MDN editor. Such editor has an area to

create projects as well as mdn_diagram files. These files enable the diagramming

model in a space for the modeling. The editor also lists elements of visual notation in a

palette tool, grouping the nodes of MDN models, such as hosts, switches, and

controllers, separating them from elements that creates the possible relationships

between such nodes.

 The user interface has several similarities with Eclipse GUI, however it only

provides the perspective to model SDN applications. As Figure 4.8 depicts, MDN editor

provides the aforementioned project explorer (as well as Eclipse), one diagram area,

and palette with network objects and connections. The already mentioned button for

code generation, named “Export to script is located at the top of graphical interface,

when some generation is performed it appears at the Application Code tab at bottom.

There is also a button to generate Mininet script; it follows the same functioning of the

former.

69

Model-Driven Networking: a Novel Approach for SDN Applications Development

Figure 4.8: The MDN editor.

Creating, Validating, and Simulating SDN Applications. In order to demonstrate a

simple example in using MDN editor to model SDN applications, we specified a firewall

application as follows. Considering a hypothetical scenario where the network topology

is composed of three hosts (h1, h2, and h3) and two switches (s1 and s2) managed by

one controller (C), the firewall application must block the flows between h1 and h3.

Such application is created by modeling this network topology (or simply the hosts)

(step 1) and specifying the rule object in MDN editor to perform a drop action for the

required hosts (step 2). After these steps, the end-user must validate the model before

the code generation (step 3) (cf. Figure 4.9). For instance, if the host h1 has no value

for IP attribute the MDN editor describes the error in Problems tab (cf. Figure 4.8).

However, if the model is valid, we can generate the application code and deploy it in

SDN controller (step 4 in Figure 4.10).

 If there is a need to simulate SDN applications, we need to generate the Mininet

script following the same process to generate application code (cf. optional step 5 in

Figure 4.10). Thus, the SDN application runs in the controller, and the topology part of

MDN model can be simulated in Mininet.

70

Model-Driven Networking: a Novel Approach for SDN Applications Development

Figure 4.9: Steps in modeling a firewall application with INVALID model.

Figure 4.10: Steps in modeling a firewall application with VALID model.

71

Model-Driven Networking: a Novel Approach for SDN Applications Development

The simulation for this scenario was performed in Linux-based environment with

an installation of Mininet in which the MDN model-based topology is simulated and

connected to a POX controller that by its turn runs the code generated from application

model. Thus, the code generated by MDN editor to implement such SDN application

and the network topology modeled must be imported to files accessible by POX and

Mininet, such files are available at appendix A. In this case, as the following commands

show, the file mdn.py was used in POX and the MultipleSwitchTopo.py in Mininet, as

follows:

$ sudo mn --custom ~/mininet/custom/MultipleSwitchTopo.py --topo

multipleswitchtopo –controller remote,127.0.0.1 &

$ ~/pox/pox.py forwarding.l2_learning mdn

It is worth to mention that MDN uses POX controller with l2_learning module,

which makes SDN switches act as a L2 learning switch. Even if this module learns L2

addresses, the flows entries it installs have many fields as possible (e.g., source/target

IP, incoming port). Such module enables the controller to paths across the network.

Besides, in order to test if the firewall constraint in which host h1 can not get connection

with host h2, the pingall command of Mininet was used (cf. Figure 4.11), obtaining the

following output:

Figure 4.11: The use of pingall command in Mininet to simulate the application modeled.

72

Model-Driven Networking: a Novel Approach for SDN Applications Development

 This description about implementing a simple firewall SDN application

demonstrated the MDN workflow in practice, in order to clarify its development process

that involves modeling, validation, code generation, and execution of modeled

applications.

73

Model-Driven Networking: a Novel Approach for SDN Applications Development

Chapter

5
5. Evaluation

This chapter presents the analysis of MDN approach in practice, by comparing it with

other related approaches in developing SDN applications. It also presents the modeling

of three use cases in order to demonstrate the feasibility of MDN in several scenarios,

including its flexible characteristic. We end this chapter by present a summary of our

simulations and concluding remarks of it.

 In order to evaluate the benefits of MDN and to detect any possible drawback of

it in relation to other approaches, we have performed a comparison considering the

required features to support the modeling and creation of SDN applications. Such

comparison analyzed the related approaches by verifying the support for each feature

below:

Topology model. A common characteristic in creating SDN models is to diagram the

network topology. It is achieved by enabling the modeling of network nodes such as

hosts, switches, and controllers.

Model behavior and rules. SDN has rules and behaviors, which SDN applications

define. The modeling of scenarios with such particularities may be valuable in granting

74

Model-Driven Networking: a Novel Approach for SDN Applications Development

the network functioning according to a network requirement or organizational policy

(e.g., block all connections after 6pm).

Model applications. As discussed in whole dissertation, the SDN enables the network

programmability, which results in several applications handling the network. The

modeling of SDN applications specifies through models the actions, nodes, and

conditions in which the actions of certain application are performed.

Support for multiple controllers. Several vendors provides SDN controllers with

distinct characteristics. Each of them with its advantages and drawbacks. Thus, the

purpose of making models and SDN applications compatible with these possible

scenarios (e.g., different controllers in networks) is to avoid the refactoring of

applications or network configuration.

Support for DSLs. The code generation feature may use more than one programming

language to implement SDN applications. It includes the use of DSLs. However, if the

modeling approach is hard coded it becomes difficult to provide the support for different

underlying languages or controllers and it does not takes advantage of the abstraction

benefits in using SDN and, for instance, MDE.

Generated executable code. The use of models may be interesting in just

documenting the network. However, the support of code generation through a paradigm

like MDE avoids inconsistent models and provides easier ways to implement

applications.

Validation. Although there are several ways to model and implement SDN applications

(e.g., modeling approaches, DSLs, native APIs of SDN controllers), the validation of

such applications has been performed only by compiling the code or testing the

applications in execution environments. The feature that validates an SDN application

during its creation is a way to avoid defective applications.

Descriptive graphical elements. Although SDN enables the network programmability,

it does not makes such programming as easy. The use of graphical elements describing

the behavior of SDN applications facilitates the understanding by end-users like network

operators that do not have wide knowledge in programming.

75

Model-Driven Networking: a Novel Approach for SDN Applications Development

Now, considering the modeling of simple firewall application at section 0, we

used the related works involving modeling in an attempt to perform the creation of such

application (cf. section 3.2).

Although all the approaches provide the basic feature in modeling network

topology and support to program or configure multiple controllers, they do not enable

the modeling of applications or network behavior and rules. Consequently, there is no

support for DSLs. On the other hand, Miniedit and VND generate executable code to

configure Mininet and SDN controllers, respectively, while CIM-SDN does not. The CIM-

SDN is the only one to perform validation on models. MDN provides all features

mentioned here.

Thus, the attempt of modeling showed gaps involving the modeling approaches

when compared to MDN when the evaluation considered expressiveness of them. We

present the general result of our comparison in Table 8 below.

Main Features for SDN Modeling Miniedit VND CIM-SDN MDN

Topology Model YES YES YES YES

Model behavior and rules NO NO NO YES

Model applications NO NO NO YES

Support for multiple controllers YES YES YES YES

Support for DSL NO NO NO YES

Generate executable code YES YES NO YES

Validation NO NO YES YES

Descriptive graphical elements YES YES NO YES

Percentage 50% 50% 37.5% 100%

Table 8: Features comparison for SDN modeling.

Regarding the textual DSLs for SDN (e.g., Procera, Nettle, Pyretic), MDN also

demonstrates its effectiveness. Although the related DSLs have a number of features

close to that MDN provides, excepting topology model and graphical elements due to

their textual focus, they do not validate the applications like MDN. Furthermore, they

allow error-prone expressions, as follows in Figure 5.1:

76

Model-Driven Networking: a Novel Approach for SDN Applications Development

1. from pyretic.lib.corelib import *
2. from pyretic.lib.std import *
3.
4. def infinite_loop (pkt):
5. self.rule = if_(match(srcip=pkt['srcip']),
 modify(dstip=self.controller.getip),
 self.rule)
6. def main():
7. pkt = packets()
8. pkt.register_callback(infinite_loop)
9. return pkt

Figure 5.1: Pyretic code causing an infinite loop in network behavior.

The figure above displays a code snippet in which lines 5-6 compose a network

rule has a hypothetical method named infinite_loop. Such method receives as

parameter the network state and certain packet. When the controller invokes

infinite_loop, it tries to match the packet’s source IP (pkt[‘srcip’]) with flow

entries. If there is a flow entry for such packet, the method changes the packet’s

destination IP forwarding it to controller. Thus, every flow present in flow entries will

change its destination IP to controller.

Another gap found at DSLs for SDN is the controller-dependency. For instance,

the Pyretic language creates applications for POX controller and do not offer an option

to change it. On the other hand, MDN avoids such dependency by creating applications

based on templates, which can have any syntax according to target controller.

In order to verify the completeness of MDN and possible limitations in using it to

develop SDN applications, we performed the modeling of three use cases that are

common in testing SDN proposals (JARSCHEL, et al., 2014). Such modeling answers

to our first research question, concerning the feasibility of MDN in developing SDN

applications. The simulation environment used to create and to simulate such use cases

consists of Ubuntu as operational system and Mininet as SDN simulator. The following

sections describes each use case, by presenting their modeling process and simulation.

5.1 Use Case 1: Network Monitoring

Our first use case aims to model an application that provides traffic monitoring flow

characteristics defined by network operator. As hypothetical scenario, we created a

topology composed of two hosts (h1 and h2), which connects to one switch (s)

(managed by an SDN controller). This application will monitor the traffic between h1 and

h2 and print the statistics of flows. As we used Linux-based environment to run the SDN

controller and to test the application, the printing is displayed at an Ubuntu’s console.

77

Model-Driven Networking: a Novel Approach for SDN Applications Development

 The template used to generate code extends the default network-monitoring

module of POX controller9.

5.1.1 Modeling Application for Network Monitoring

In order to create network-monitoring application, we modeled the hypothetical scenario

by creating two host objects (setting the IP 10.0.0.2 for h1 and the IP 10.0.0.3 for h2),

one switch object, and the controller object. The host objects have links to switch object,

which by its turn connects to controller. Furthermore, we used the rule object of MDN,

with its type attribute set to MONITOR. After the association of h1 and h2 with the rule

object, our model is ready. Thus, MDN Editor will validate the model and after enable

the code generation. Figure 5.2 depicts such modeling.

Figure 5.2: The modeling of network monitor application.

After the modeling, the MDN can generate the executable code as described in

section 5.1.2.

9
 POX repository - https://github.com/noxrepo/pox/tree/carp/pox/samples/flow_stats.py

78

Model-Driven Networking: a Novel Approach for SDN Applications Development

5.1.2 Code Generation

The code generated from the modeling needs to define an application that 1) identifies

the network flows, 2) verifies if certain flow involves a traffic between h1 and h2, and 3)

performs a MONITOR action when the flow matches the verification.

 As result for this application, MDN uses its EGL templates (available at appendix

B) to generate the code file with our needs of creating an SDN application that monitors

the network under the conditions specified at model. We show part of the code

generated and its related EGL template at Table 9 (we omitted some parts such as

importing of libraries).

 EGL Template
1. web_bytes = 0
2. web_flows = 0
3. Web_packet = 0
4. for f in event.stats:
5. [% for (rule in Rule.All) { %]
6. [% var srcIP = rule.sourceHostRule.ip.toString(); %]
7. [% var dstIP = rule.targetHostRule.ip.toString(); %]
8. [% srcIP = srcIP.substring(1, srcIP.length()-1); %]
9. [% dstIP = dstIP.substring(1, dstIP.length()-1); %]
10. if f.match.ip_dst == [%=dstIP%] or f.match.ip_src == [%=srcIP%]:
11. web_bytes += f.byte_count
12. web_packet += f.packet_count
13. web_flows += 1
14. [% } %]

Code Generated
1. web_bytes = 0
2. web_flows = 0
3. web_packet = 0
4. for f in event.stats:
5. if f.match.ip_dst == 10.0.0.3 or f.match.ip_src == 10.0.0.2:
6. web_bytes += f.byte_count
7. web_packet += f.packet_count
8. web_flows += 1

Table 9: Snippet of code generated for network-monitoring application.

5.1.3 Simulation

When the controller executes our code generated as a module (cf. Figure 5.3), and we

perform a pingall command at Mininet, the following output appears at Ubuntu’s

console:

Figure 5.3: Network-monitoring application output when Mininet's pingall command is called.

79

Model-Driven Networking: a Novel Approach for SDN Applications Development

Thus, the application identified three packets, two used for pingall and one for the

route learning. It also shows the bytes amount used to perform such command in

Mininet. The string 00-00-00-00-00-01 refers to the switch that connects the two hosts

(h1 and h2), it is an OpenFlow switch identifier, named DPID (ONF, 2013). Although the

textual presentation, the application classifies the network flows for each switch, as well

as the bytes transferred. Such application could provide this information through a

graphical interface, but for now, it is out of the scope. Our intent is to demonstrate the

correct execution of application model created in MDN Editor.

5.2 Use Case 2: Access Control Application

In order to clearly show the MDN potential to express fine-grained access control, this

use case considers a hypothetical scenario in which the network topology consists of

five hosts (h1, h2, h3, h4, and h5) connected to three switches interconnected (s1, s2,

and s3). Switch s1 connects the hosts h1 and h2, switch s2 links the host h3, and

switch s3 connects the hosts h4 and h5. One SDN controller manages the switches.

Besides, the network needs to satisfy following requirements:

1. Hosts connected to switch s1 cannot access the network in the 6am - 9am

period;

2. Host h3 cannot establish connections when the application port is equal to 8080;

3. Hosts connected to switch s3 cannot access the network.

5.2.1 Modeling the access control application and its policies

We start to create the network topology by modeling each network node, defining their

names and their links, as Figure 5.4 depicts.

80

Model-Driven Networking: a Novel Approach for SDN Applications Development

Figure 5.4 Topology for the access control application.

In order to emphasize the feature of validation that MDN provides, when we try to

validate such topology, the MDN editor provides the following errors about invalid

structures:

Figure 5.5 Validation of topology for the use case #2.

81

Model-Driven Networking: a Novel Approach for SDN Applications Development

Then, we need to correct the properties of topology elements by defining their IP

as follows:

 s1 – IP: 10.0.0.1

o h1 – IP: 10.0.0.2

o h2 – IP: 10.0.0.3

 s2 – IP: 128.0.0.1

o h3 – IP: 128.0.0.2

 s3 – IP: 192.0.0.1

o h4 – IP: 192.0.0.2

o h5 – IP: 192.0.0.3

After, we created the rules to satisfy the network requirements as follows: the first

requirement defines a period (i.e., 6am - 9am) in which hosts of switch s1 can access

network resources. Then, we inserted a rule R1 that relates hosts h1 and h2 to a

condition specifying the period with MDN’s time element. Besides, we defined the action

DROP for R1 (cf. Figure 5.6).

Figure 5.6 Modeling of first requirement.

For the blocking of host h3 when it tries to establish a connection through port

8080, we defined more one rule in which its action drops the flows of h3 when it refers

to such port. The Figure 5.7 depicts such modeling. Note that our model reutilizes the

ACTION element in order to simplify the modeling (the blurred part is our first

requirement modeled – cf. Figure 5.6).

82

Model-Driven Networking: a Novel Approach for SDN Applications Development

Figure 5.7 Modeling of second requirement.

Finally, to satisfy the third requirement, we added another rule (R3) that block all

flows from h4 or h5. Once again, note in Figure 5.8 that we can reutilize the ACTION

element to drop the respective flows (the blurred part is our second requirement

modeled - cf. Figure 5.7).

Figure 5.8 Modeling of third requirement.

5.2.2 Code Generation

The code generated from the modeling above needs to implement the topology in

Mininet and an application to meet the three requirements described in section 5.2.

Then, in Table 10, we present a snippet of code generated by our template, named

accesscontrol.egl (fully available at appendix A).

83

Model-Driven Networking: a Novel Approach for SDN Applications Development

Code Generated
1. ip = packet.find('ipv4')
2. # This packet isn't IP!
3. if ip is None:
4. return
5. # Rule R1
6. # The flow is in the block list
7. elif str(ip.srcip) == '10.0.0.2' or str(ip.srcip) == '10.0.0.3':
8.
9. # Verify rule conditions, if any
10. if (datetime.now().strftime('%H:%M') > datetime.strptime('06:00AM', '%I:%M

%p') and datetime.now().strftime('%H:%M') <datetime.strptime('09:00AM', '%I:%M%p'
):

11. print("It is in the blocked list source %s - destination
%s", ip.srcip, ip.dstip)

12. event.halt = True
13. else
14. event.halt = False
15.
16. # Rule R2
17. # The flow is in the block list
18. elif str(ip.srcip) == '128.0.0.2':
19. # Verify rule conditions, if any
20. if (str(packet.find("tcp").srcport) == '8080'):
21. print(“It is in the blocked list”)
22. event.halt = True
23. else
24. event.halt = False

Table 10: Code generated by MDN editor to implement the access control application.

In summary, once again we defined a scaffold that MDN Editor uses to insert

data from elements modeled. For instance, line 7 receives the IPs of hosts tied to rule

R1, if these hosts perform some type of connection or transmission on network, the

controller verifies if the period allows such action (lines 10-13).

5.2.3 Simulation

In order to test our application modeled, as well as its code generated, we imported the

Mininet script generated from topology specified in Figure 5.4 and simulated the

scenarios involved in the use case requirements defined at the beginning of section 5.2.

 The first requirement was tested by verifying if the hosts h1 and h2 could receive

or rely packets across the network in the specified (6am - 9am). Then, for such

requirement, we obtain the output depicted at Figure 5.9 of Mininet and our access

control application.

Figure 5.9 depicts two consoles of Ubuntu, the left console shows POX controller

executing our access control application, at right the console presents the Mininet

creating the topology and the output of pingall command. Note that hosts h3, h2, and

h5 do not have any restrictions preventing the transmission of data between them (right

84

Model-Driven Networking: a Novel Approach for SDN Applications Development

console). On the other hand, hosts h1 and h2 cannot rely or receive any data

considering the time displayed in the upper left corner of the figure.

Figure 5.9: Test involving the access control application and its first requirement.

The simulation of second requirement used a feature of Mininet named xterm,

which opens a console for host of topology. We opened one console for host h2 and

other console for host h3 (cf. Figure 5.10), as follows:

mininet> xterm h2

mininet> xterm h3

Figure 5.10: Mininet commands to open consoles in each hosts.

After, we set h3 to act as a server listening at application port 8080. Then, from

console opened for h2, we used the Mininet’s command iperf, which generates TCP

traffic, in order to test if the h3 could receive packets to such port. Figure 5.11 depicts

this scenario.

Figure 5.11: Output of the simulation for the second requirement.

Finally, we verified if the application blocks the hosts connected to switch s3

(dpid: 00-00-00-00-00-03). Considering the hour of simulation out of the period

between 6-9am, pingall command returned the reachability displayed in Figure 5.12.

85

Model-Driven Networking: a Novel Approach for SDN Applications Development

Figure 5.12: The third network requirement of access control application.

5.3 Use Case 3: Load Balancing Application

The load balancer we describe hereinafter receives the HTTP requests from a client

and distributes them, based on a round-robin algorithm, to a list of four hosts. However,

as presented earlier in section 4.3.1, the MDN infrastructure does not offer any class or

relationship that provide a way to model such load balancer. Thus, we took this use

case to demonstrate the extensibility of our approach. First, we modify the MDN

metamodel by adding a new element called group, which groups the hosts of network

topology. Then, we use such group element to define the hosts involved in load

balancing application. Note that the act of extending metamodel is not role of network

operators, we only use such an extension to present the possibilities enabled by MDN

approach.

 The group element was inserted in MDN metamodel as a diagram element. It

works as a container to network nodes of host type. Figure 5.13 depicts the new

element in MDN metamodel (we have omitted some links in order to provide a better

visualization), it has an ip attribute, which refers to the virtual IP of load balancing

described above.

Figure 5.13: Group element and LOAD_BALANCE action highlighted in blue.

86

Model-Driven Networking: a Novel Approach for SDN Applications Development

 Besides, with the aim of verify if the network operator needs to perform load

balancing for the grouped hosts at model, we add an action named LOAD_BALANCE

(cf. Figure 5.13). After these extensions performed in MDN metamodel, following the

same process used to specify our DSML (cf. section 4.3), we have defined a simple

white box for the group element as part of MDN’s visual notation, or concrete syntax.

We also have mapped such visual notation with its underlying concept. Figure 5.14

depicts the visual notation used to model load balancing applications.

Figure 5.14: Model of load balancing application.

Another addition in MDN infrastructure is relative to templates for code

generation. We have implemented a new template to capture the grouped hosts, which

is used in code generation if the modeler defines any LOAD_BALANCE action. If there

is such action, this template selects the IPs of grouped hosts and inserts them into a list.

From such list, a round robin algorithm performs the selection of one host and directs

the traffic to it. Table 11 depicts the structure of code generation for such scenario.

EGL Template
1. [% operation actionLoadBalancing(rule : Any) : String { %]
2. virtual_ip = IPAddr("[%=rule.targetGroupRule.ip %]")
3. host = {}
4. [%
5. var index = 0;
6. for (host in rule.targetGroupRule.hostsGroup.all) {
7. %]
8. host[[%=index%]] = {'ip':IPAddr("[%=host.ip%]")}
9. [% index++; %]
10. [% } %]

11. total_hosts = len(host)

12. host_index = 0

13. [...]

14. # Only handle IPv4 packets

15. if (not event.parsed.find("ipv4")):

16. return EventContinue

87

Model-Driven Networking: a Novel Approach for SDN Applications Development

17. # Only verify traffic with virtual IP as destination

18. if (msg.match.nw_dst != virtual_ip):

19. return EventContinue

20. [...]

21. # Round-robin

22. index = host_index % total_hosts

23. selected_host_ip = host[index]['ip']

24. host_index += 1

25. [...]
26. # Set route to the selected host

27. msg.actions.append(of.ofp_action_nw_addr(of.OFPAT_SET_NW_DST, selected_server_ip))

28. event.connection.send(msg)

29. [...]

30. [%}%]
Code Generated

1. virtual_ip = IPAddr("10.0.0.2")
2. host = {}
3. host[0] = {'ip':IPAddr("10.0.0.3")}
4. host[1] = {'ip':IPAddr("10.0.0.4")}
5. host[2] = {'ip':IPAddr("10.0.0.5")}
6. host[3] = {'ip':IPAddr("10.0.0.6")}
7. total_hosts = len(host)
8. host_index = 0
9. [...]
10. # Round-robin

11. index = host_index % total_hosts

12. selected_host_ip = host[index]['ip']

13. host_index += 1

14. # Setup route to the selected server

15. [...]

16. msg.actions.append(of.ofp_action_nw_addr(of.OFPAT_SET_NW_DST, selected_server_ip))

17. event.connection.send(msg)

18. [...]

Table 11: Snippet of EGL template and the code generated from load balancing application model.

The EGL template (cf. Table 11), at lines 1-10, generates code to perform the

verification of virtual IP and hosts related to load balancing. Lines 14-24 verify if some

traffic is sent to virtual IP and if such traffic is IPv4. For such cases, the application runs

round-robin algorithm to select the host that will receive the traffic. The following lines

(i.e., lines 16-18) consist of OpenFlow messages to set the traffic route to the selected

server.

Finally, we have generated the MDN Editor once again, in order to enable the

modeling of load balancing elements and code generation. Although the code

generated in Table 11 already presents some properties of network nodes modeled for

the use case in discussion (cf. Figure 5.14), we clarify the properties for switches 1 (s1)

and 2 (s2) as well as for their underlying hosts (h):

 s1 – IP: 10.0.0.1

o Load Balancing – Virtual IP: 10.0.0.254

 h1 – IP: 10.0.0.2

 h2 – IP: 10.0.0.3

88

Model-Driven Networking: a Novel Approach for SDN Applications Development

 h3 – IP: 10.0.0.4

 h4 – IP: 10.0.0.5

 s2 – IP: 192.168.0.1

o h5 – IP: 192.168.0.2

Then, in summary, our MDN Editor can now create a load balancing application

model, which consists of a rule that handles HTTP requests from host h5, by directing

such requests to a group of hosts (i.e., h1, h2, h3, and h4) based on a round-robin

algorithm.

5.3.1 Simulation

We have tested the modeled application by creating the topology in Mininet and running

the generated code at POX controller. From Mininet, the host h5 throw HTTP requests

through the wget10 command to the virtual IP of load balancing group. In response to

such requests, we have started a HTTP server for each host grouped in load balancing.

Thus, from host h5, wget command was used as follows:

mininet> h5 wget http://10.0.0.254:80

Such command performs an HTTP request to the address specified as

parameter, which refers to our virtual IP. We have performed the wget call five times in

order to verify if the application balanced the traffic based on round-robin algorithm.

Figure 5.15 depicts the output obtained from such calls. At the left side of figure, our

application prints the host IP that is sending HTTP responses for each request. At the

right side, there is the output of wget commands when we have performed the five

HTTP requests to virtual IP.

Figure 5.15: Output of load balancing application.

After we present the correct behavior of load balancing application generated

from our MDN model, note that a network operator can execute the applications

10

 GNU Wget 1.16.1 Manual - http://www.gnu.org/software/wget/manual/wget.html

89

Model-Driven Networking: a Novel Approach for SDN Applications Development

presented until here as modules of an SDN controller. Thus, for instance, the load

balancing application discussed here could be executed with a network monitor

application in order to collect statistics from network. Such modularity might depend on

the underlying controller. However, we claim that MDN supports this modular scenario

of SDN applications.

5.4 Chapter Remarks

In order to verify the feasibility of MDN to model (and generate) SDN applications, we

have created three models of SDN applications (i.e., network monitoring, access

control, and load balancing). Such step demonstrated that MDN achieves a higher

abstraction level in developing SDN applications, as well as providing the validation of

such applications. From MDN Editor, the network operator does not need to verify if the

OpenFlow rules are consistent or even codify them.

 Note that although some use cases may be considered simple, MDN allows the

modeling of complex topologies and scenarios. The code generation of MDN mapped

with OpenFlow specification (version 1.4) considered the use of wildcards in defining

rules for flow entries. If there is a Host element in some MDN model with a partial IP

with the following format: 10.0.0.* and a Rule element related to such Host, the rule

will be applied to all hosts in 10.0.0.0 /24. Thus, for instance, a network operator can

use such wildcards in MDN Editor to create a Rule that achieves several hosts

according to some match pattern (or wildcard) without the need to insert visual notation

for each of them.

90

Model-Driven Networking: a Novel Approach for SDN Applications Development

Chapter

6

6. Final Remarks

This dissertation discussed how our approach to develop SDN applications might be

applied to abstract the complexity in network programmability, avoiding error-prone

implementations and providing consistent network executable models. This chapter

presents a summary of contributions (section 6.1) and the limitations (section 6.2) of

MDN. We conclude this dissertation providing future work directions (section 6.3).

First, we presented an infrastructure that consists of DSML specification

considering all its components to describe an SDN scope in the concept that we called

Model-Driven Networking (MDN), which also defines a development process based on

modeling. In order to verify and test such concept, we have implemented a tool named

MDN Editor that supports the modeling of SDN applications. After modeling, MDN

Editor enables code generation, exporting SDN applications to files that an SDN

controller can execute.

We have evaluated our approach in terms of effectiveness by comparing its

features with three other modeling approaches identified in the literature. MDN has

demonstrated to be more complete in this comparison. We have also verified that a

91

Model-Driven Networking: a Novel Approach for SDN Applications Development

MDE-based approach such as MDN has one advantage over textual DSLs for SDN,

relative to its independence from specific controllers.

At last, we have demonstrated the use of MDN in developing three common use

cases for SDN applications (i.e., network monitoring, access control, and load

balancing). The analysis brings preliminary evidences that several SDN concepts and

low-level specifications can be mapped into our MDN approach, which provides a

consistent way to facilitate the interaction between network operators and this new

network paradigm, with the potential to improve the productivity and to reduce error-

prone actions.

In summary, we believe that since MDN can model several concepts related to

an SDN application, it provides an easier and alternative way to perform the

development of such applications.

6.1 Summary of Contributions

The benefits of the MDN proposal are manifold:

i. The description of SDN architecture and underlying concepts through

metamodeling;

ii. Identification how MDE concepts can help in SDN applications development;

iii. The support for any controller vendor;

iv. The support for any underlying programming language;

v. The graphical description of SDN by MDN models, offering a high-level

platform to develop SDN applications;

vi. Validation of SDN topologies and applications before the deploying.

Such items answer to our second research question about the benefits in using

MDN when we compare it with other approaches of development.

6.2 Limitations

SDN applications tend to have infinite possibilities of use cases, and thus, the

underlying domain-specific characteristic of MDN may limit the possible applications

that our approach can model and develop. For example, currently MDN cannot model

an application for Deep Packet Inspection (DPI). It would be necessary to extend MDN

metamodel and its code generation strategy to enable the developing of DPI

applications.

 Currently, MDN is restricted to some features and application types such as

traffic monitoring, network policies and rules specification, and validation. Another

92

Model-Driven Networking: a Novel Approach for SDN Applications Development

limitation is related to our evaluation, which does not verifies cognitive aspects of

concrete syntax. Besides, although MDN is not dependent on a specific SDN controller

vendor due to its extensible engine of code generation, currently, it supports only code

generation for POX controller.

 Such drawbacks provides the answer for our second research question about the

limitations of MDN approach in developing SDN applications when compared to another

development method.

6.3 Future Work

There are several ways to enhance and to extend our work. The first step is to consider

a qualitative evaluation of our approach, by checking the expressiveness of its concrete

syntax. In addition, we envisage a formal mathematical definition of our DSML in order

to prove that MDN syntaxes address fully the domain scope defined for SDN and its

applications. In order to avoid error-prone models, another valuable increment is to

detect the loop connections at model validation.

We also plan to explore model transformations from MDN models to standard

network models, such as NETCONF, and vice-versa. Regarding transformations, it is

also possible to investigate how to support reverse engineering through a code-to-

model transformation (e.g., to transform Python code into SDN models).

We have verified the benefits of MDN considering only the applications

development. However, we intend to synchronize automatically the network structure

with MDN models without the need to model manually its nodes and links. MDN Editor

should to identify the network topology and generate a model for it.

93

Model-Driven Networking: a Novel Approach for SDN Applications Development

References

BALASUBRAMANIAN, K. et al. Developing applications using model-driven design
environments. Computer, v. 39, n. 2, p. 33-40, 2006.

BAST, W. et al. Meta Object Facility (MOF) 2.0 Query/View/Transformation (QVT).
Object Management Group, 2011. Available in: <http://www.omg.org/spec/QVT/1.1>.
Accessed in: 21 Dec 2014.

BÉZIVIN, J. On the unification power of models. Springer-Verlag. Software &
Systems Modeling, v. 4, n. 2, p. 171-188, May 2005.

CAMPBELL, A. T. et al. A survey of programmable networks. ACM SIGCOMM
Computer Communication Review, v. 29, n. 2, p. 7-23, 1999.

CASADO, M. et al. Ethane: Taking control of the enterprise. ACM SIGCOMM
Computer Communication Review, New York, NY, v. 37, n. 4, p. 1-12, Oct 2007.

CASADO, M.; FOSTER, N.; GUHA, A. Abstractions for software-defined networks.
Communications of the ACM, New York, NY, v. 57, n. 10, p. 86-95, Oct. 2014.

CASE, A. F. Computer-Aided Software Engineering (CASE): Technology for Improving
Software Development. ACM SIGMIS Database, v. 17, n. 1, p. 35-43, 1985.

CISCO. OpFlex: An Open Source Approach. [S.l.]: [s.n.], 2014.

CLARK, T.; SAMMUT, P.; WILLANS, J. Applied metamodelling: a foundation for
language driven development. 2. ed. [S.l.]: Ceteva, v. 1, 2008.

CUADRADO, J. S.; MOLINA, J. G. A model-based approach to families of embedded
domain-specific languages. IEEE Transactions on Software Engineering, 35(6),
2009. 825-840.

CZARNECKI, K.; SIMON, H. Classification of model transformation approaches.
Proceedings of the 2nd OOPSLA Workshop on Generative Techniques in the
Context of the Model Driven Architecture, Citeseer, v. 45, n. 3, p. 1-17, 2003.

DE LARA, J.; VANGHELUWE, H. Meta-modelling and graph grammars for multi-
paradigm modelling in AToM³. IN ATOM”, SOFTWARE AND SYSTEMS MODELING
(3), August 2004. 194-209.

DORIA, A. et al. Forwarding and Control Element Separation. RFC 5810 (Proposed
Standard), March 2010.

DVORKIN, M. et al. OpFlex Control Protocol. IETF, 2014. ISSN Work in progress.
Available in: <http://tools.ietf.org/html/draft-smith-opflex-00>. Accessed in: 15
September 2014.

94

Model-Driven Networking: a Novel Approach for SDN Applications Development

ECLIPSE. Documentation. Graphical Modeling Framework, 2014. Available in:
<http://wiki.eclipse.org/GMF_Documentation>. Accessed in: 20 Dec 2014.

ERICKSON, D. The beacon openflow controller. HotSDN '13 Proceedings of the
second ACM SIGCOMM workshop on Hot topics in software defined networking,
2013. 13-18.

ERICKSON, D. et al. A Demonstration of Virtual Machine Mobility in an OpenFlow
Network. ACM Sigcomm, 17-22 Aug 2008.

ESSER, R.; JANNECK, J. W. A framework for defining domain-specific visual
languages. Workshop on Domain-Specific Visual Languages, in conjunction with
ACM Conference on Object-Oriented Programming, Systems, Languages and
Applications OOPSLA-2001, Tampa Bay, Florida, 2001.

FEAMSTER, N.; REXFORD, J.; ZEGURA, E. The Road to SDN. ACM Queue, v. 11, n.
12, p. 20, 2013.

FLOODLIGHT, P. Floodlight OpenFlow Controller, 2014. Available in:
<http://www.projectfloodlight.org/floodlight/>. Accessed in: 15 Sep 2014.

FONTES, R.; SAMPAIO, P. Visual Network Description: A Customizable GUI for the
Creation of Software Defined Network Simulations. 27th European Simulation and
Modelling Conference - ESM'2013, 23-25 October 2013.

FOSTER, N. et al. Frenetic: a network programming language. Proceedings of the
16th ACM SIGPLAN international conference on Functional programming,
September 2011. 279-291.

FOSTER, N. et al. Languages for Software-Defined Networks. IEEE Communications
Magazine, v. 51, n. 2, p. 128-134, February 2013.

FOWLER, M. Domain-Specific Languages. 1ª. ed. [S.l.]: Addison-Wesley, 2011.

FRANCE, R.; RUMPE, B. Model-driven development of complex software: A research
roadmap. Future of Software Engineering. IEEE Society., 2007. 37-54.

GUDE, N. et al. NOX: Towards an Operating System for Networks. ACM SIGCOMM
Computer Communication Review, v. 38, n. 3, p. 105-110, 2008.

HAILPERN, B.; TARR, P. Model-driven development: The good, the bad, and the ugly.
IBM systems journal, v. 45, n. 3, p. 451-461, 2006.

HAREL, D. On Visual Formalisms. ACM Communications, v. 31, n. 5, p. 514-530,
1988.

HAREL, D.; RUMPE, B. Meaningful Modeling: What's the Semantics Much confusion
surrounds the proper definition of complex modeling. IEEE Computer, v. 37, n. 10, p.
64-72, 2004.

HINRICHS, T. L. et al. Practical Declarative Network Management. Proceedings of the
1st ACM workshop on Research on enterprise networking, 21 August 2009. 1-10.

95

Model-Driven Networking: a Novel Approach for SDN Applications Development

HU, F.; HAO, Q.; BAO, K. A Survey on Software-Defined Network and OpenFlow: From
Concept to Implementation. IEEE Communications Surveys & Tutorials, v. 16, n. 4,
p. 2181-2206, May 2014.

HU, Y. et al. Reliability-aware controller placement for Software-Defined Networks.
Integrated Network Management (IM 2013), 2013. 672-675.

IMTIAZ, J. et al. A novel method for auto configuration of Realtime Ethernet Networks.
IEEE International Conference on Emerging Technologies and Factory
Automation, ETFA., Hamburg, 15-18 Sep 2008. 861-868.

JARSCHEL, M. et al. Interfaces, attributes, and use cases: A compass for SDN. IEEE
Communications Magazine, v. 52, n. 6, p. 210-217, 2014.

KARSAI, G. et al. Composition and cloning in modeling and meta-modeling. IEEE
Transactions on Control Systems Technology, v. 12, n. 2, p. 263-278, Mar 2004.

KATTA, N. P.; REXFORD, J.; WALKER, D. Logic Programming for Software-Defined
Networks. ACM SIGPLAN Workshop on Cross-Model Language Design and
Implementation, 2012.

KELLY, S.; TOLVANEN, J.-P. Domain-Specific Modeling: Enabling Full Code
Generation. [S.l.]: Wiley-IEEE Computer Society Press, 2008.

KIM, W. et al. Automated and Scalable QoS Control for Network Convergence. Internet
Network Management Workshop on Research on Enterprise Networking
(INM/WREN), 2010. 1-1.

KOLOVOS, D. et al. The Epsilon Book. Eclipse, 2014. Available in:
<http://eclipse.org/epsilon/doc/book/>. Accessed in: 16 Dec 2014.

KOLOVOS, D. S.; PAIGE, R. F.; POLACK, F. A. C. On the evolution of OCL for
capturing structural constraints in modelling languages. In: ACM Rigorous Methods for
Software Construction and Analysis. Berlin, Heidelberg: Springer-Verlag, 2009. p.
204-218.

KOPONEN, T. et al. Network virtualization in multi-tenant datacenters. 11th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 14), April
2014. 203-216.

KREUTZ, D. et al. Software-Defined Networking: A Comprehensive Survey. ArXiv e-
prints, Jun 2014.

KREUTZ, D.; RAMOS, F. M. V.; VERÍSSIMO, P. Towards secure and dependable
software-defined networks. Proceedings of the second ACM SIGCOMM workshop
on Hot topics in software defined networking, Sep 2013. 55-60.

LANTZ, B.; HELLER, B.; MCKEOWN, N. A network in a laptop: rapid prototyping for
software-defined networks. Proceedings of the 9th ACM SIGCOMM Workshop on
Hot Topics in Networks, 2010. 19.

96

Model-Driven Networking: a Novel Approach for SDN Applications Development

LARA, A.; KOLASANI, A.; RAMAMURTHY, B. Network Innovation using OpenFlow: A
Survey. IEEE Communications Surveys & Tutorials, v. 16, n. 1, p. 493-512, August
2013.

LEDECZI, A. et al. Composing Domain-Specific Design Environments. IEEE Computer,
v. 34, n. 11, p. 44-51, 2001.

LENNOX, J.; SCHULZRINNE, H.; WU, X. Call Processing Language (CPL): A
Language for User Control of Internet Telephony Services. IETF, 2004. Available in:
<http://www.ietf.org/rfc/rfc3880.txt>. Accessed in: 15 Dec 2014.

LOPES, F. A. et al. How Software Aging Affects SDN: A View on the Controllers.
Global Information Infrastructure and Networking Symposium (GIIS), Montreal,
CA, 15-19 September 2014.

LOPES, F. A. et al. Model-Driven Networking: A Novel Approach for SDN Applications
Development. IFPE/IEEE International Symposium on Integrated Network
Management. [S.l.]: [s.n.]. 2015. p. xx-xx.

MARQUES, E. M.; SAMPAIO, P. N. NSDL: an integration framework for the network
modeling and simulation. International Journal of Modeling and Optimization, v. 2,
n. 3, p. 304-308, 2012.

MCKEOWN, N. et al. OpenFlow: enabling innovation in campus networks. ACM
SIGCOMM Computer Communication Review, v. 38, n. 2, p. 69-74, Apr 2008.

MENS, T.; VAN GORP, P. A taxonomy of model transformation. Electronic Notes in
Theoretical Computer Science, v. 152, p. 125-142, 2006.

MOHAGHEGHI, P. et al. Where does model-driven engineering help? Experiences from
three industrial cases. Software & Systems Modeling, Springer Berlin Heidelberg, v.
12, n. 3, p. 619-639, October 2011.

MONSANTO, C. et al. A Compiler and Run-time System for Network Programming
Languages. ACM SIGPLAN Notices, v. 47, n. 1, p. 217-230, 25-27 January 2012.

MONSANTO, C. et al. Composing Software-Defined Networks. Proceedings of the
10th USENIX conference on Networked Systems Design and Implementation,
2013. 1-14.

MOODY, D. L. The “Physics” of Notations: Toward a Scientific Basis for Constructing
Visual Notations in Software Engineering. IEEE Transactions on Software
Engineering, v. 35, n. 6, p. 759-779, November 2009.

NAYAK, A. et al. Resonance: Dynamic access control for enterprise networks.
Proceedings of the 1st ACM workshop on Research on enterprise networking,
August 2009. 11-18.

NELSON, T. et al. Tierless Programming and Reasoning for Software-Defined
Networks. Proceedings of the 11th USENIX Symposium on Networked Systems
Design and Implementation, 2-4 April 2014.

97

Model-Driven Networking: a Novel Approach for SDN Applications Development

NELSON, T.; FERGUSON, A. D.; SCHEER, M. J. G. Tierless Programming and
Reasoning for Software-Defined Networks. Proceedings of the 11th USENIX
Conference on Networked Systems Design and Implementation, 2014.

NUNES, B. A. A. et al. A Survey of Software-Defined Networking: Past, Present, and
Future of Programmable Networks. IEEE Communications Surveys & Tutorials, v.
16, n. 3, p. 1617-1634, August 2014. ISSN 1553-877X.

OMG. Meta Object Facility (MOF) Specification. Object Management Group, 2000.

OMG. OCL 2.0 Specification. Object Management Group, 2006. Available in:
<http://www.omg.org/spec/OCL/2.0/>. Accessed in: 27 Dec 2014.

OMG. MOF Model To Text Transformation (MOFM2T) 1.0. Object Management
Group, 2008. Available in: <http://www.omg.org/spec/MOFM2T/1.0/>. Accessed in: 21
Dec 2014.

OMG. Meta Object Facility (MOF™) Core v2.4.2. OMG, 2014. Available in:
<http://www.omg.org/spec/MOF/2.4.2>. Accessed in: 14 Dec 2014.

ONF. OpenFlow Switch Specification 1.4.0. Open Networking Foundation, 14 Oct
2013. Available in: <https://www.opennetworking.org/images/stories/downloads/sdn-
resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf>. Accessed in: 20 Apr
2014.

ONF. SDN architecture. Open Networkin Foundation, 2014. Available in:
<https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-
reports/TR_SDN_ARCH_1.0_06062014.pdf>. Accessed in: 23 Dec 2014.

ORTIZ, S. Software-Defined Networking: On the Verge of a Breakthrough? IEEE
Computer, v. 46, n. 7, p. 10-12, Jul. 2013.

PINHEIRO, B. et al. CIM-SDN: A Common Information Model extension for Software-
Defined Networking. IEEE Globecom Workshops, 2013. 836-841.

RAZA, S.; LENROW, D. North Bound Interface Working Group (NBI-WG) Charter.
[S.l.]: Open Networking Foundation, 2013.

REITBLATT, M. et al. FatTire: Declarative Fault Tolerance for Software-Defined
Networks. Proceedings of the second ACM SIGCOMM workshop on Hot topics in
software defined networking, 2013. 109-114.

RODRIGUES, T. et al. Model-Driven Development of Wireless Sensor Network
Applications. IFIP 9th International Conference on Embedded and Ubiquitous
Computing (EUC), Melbourne, VIC, 24-26 Outubro 2011. 11-18.

SCHMIDT, D. C. Guest Editor's Introduction: Model-Driven Engineering. Computer,
Long Beach, California, v. 39, p. 25-34, February 2006.

SELIC, B. The pragmatics of model-driven development. IEEE software, v. 20, n. 5, p.
19-25, 2003.

SHERWOOD, R. et al. FlowVisor: A Network Virtualization Layer. OpenFlow Switch
Consortium, Tech. Rep, Oct 2009.

98

Model-Driven Networking: a Novel Approach for SDN Applications Development

SHERWOOD, R. et al. Can the Production Network Be the Testbed? Symposiumon
Operating Systems Design and Implementation (OSDI), Vancouver, BC, Canada,
2010. 1-6.

STEINBERG, D. et al. EMF: Eclipse Modeling Framework 2.0. [S.l.]: Addison-Wesley
Professional, 2009.

TENNENHOUSE, D. L. et al. A survey of active network research. IEEE
Communications Magazine, v. 35, n. 1, p. 80-86, 1997.

TOLVANEN, J.-P.; ROSSI, M. MetaEdit+: defining and using domain-specific modeling
languages and code generators. OOPSLA '03 Companion of the 18th annual ACM
SIGPLAN conference on Object-oriented programming, systems, languages, and
applications, 2003. 92-93.

TOOTOONCHIAN, A. et al. On controller performance in software-defined networks.
USENIX Workshop on Hot Topics in Management of Internet, Cloud, and
Enterprise Networks and Services (Hot-ICE), 54, 2012. 10.

VOELLMY, A.; AGARWAL, A.; HUDAK, P. Nettle: Functional Reactive Programming for
OpenFlow Networks. DTIC Document, July 2011.

VOELLMY, A.; KIM, H.; FEAMSTER, N. Procera: a language for high-level reactive
network control. HotSDN '12 Proceedings of the first workshop on Hot topics in
software defined networks, 2012. 43-48.

WANG, R.; BUTNARIU, D.; REXFORD, J. OpenFlow-based server load balancing gone
wild. Proceedings of the 11th USENIX conference on Hot topics in management of
internet, cloud, and enterprise networks and services. Hot-ICE'11, Berkeley, 2011.
12-12.

WANG, W. et al. Forwarding and Control Element Separation (ForCES) Protocol
Specification. IETF, 2010. Available in: <http://tools.ietf.org/html/rfc5810>. Accessed in:
17 October 2014.

YEGANEH, S. H.; TOOTOONCHIAN, A.; GANJALI, Y. On scalability of software-
defined networking. IEEE Communications Magazine, v. 51, n. 2, p. 136-141, Feb
2013.

99

Model-Driven Networking: a Novel Approach for SDN Applications Development

APPENDIX

A. Online

In this appendix, we put the following links to source code, models, and analysis

mentioned in this work:

 The MDN Editor is available at:

o https://github.com/felipealencar/mdn/tree/master/mdneditor

 The EVL rules:

o https://github.com/felipealencar/mdn/tree/master/mdn.validation

 The code for syntactic mapping:

o https://github.com/felipealencar/mdn/tree/master/mdn

 The EGL templates:

o https://github.com/felipealencar/mdn/tree/master/mdn/m2t

 The code generated for our simulations:

o https://github.com/felipealencar/mdn/tree/master/mdn.simulation

B. Attachments

Element NetworkNode

Rule #1 It may has a name.

Rule #2 It may not has two identical MACs in the network.

Rule #3 It may not has invalid IPs.

Implementation context NetworkNode {
 critique hasName { //Rule #1
 check : self.name.isDefined()
 message : 'Unnamed ' + self.eClass().name.toUpperCase() + ' not allowed'
 fix {
 title : 'Define the name of the node '
 do {
 var type := UserInput.prompt('What is the name?');
 if (type.isDefined()) self.type := type;
 }
 }
 }

 constraint uniqueMAC { //Rule #2
 check {
 var networkNodes = NetworkNode.all.select(nn|nn.mac = self.mac);

 return networkNodes.size() = 1;
 }
 message : 'Not unique MAC "' + self.mac + '" not allowed'
 fix {
 title : 'Define the correct MAC '

https://github.com/felipealencar/mdn/tree/master/mdneditor
https://github.com/felipealencar/mdn/tree/master/mdn.validation
https://github.com/felipealencar/mdn/tree/master/mdn
https://github.com/felipealencar/mdn/tree/master/mdn/m2t
https://github.com/felipealencar/mdn/tree/master/mdn.simulation

100

Model-Driven Networking: a Novel Approach for SDN Applications Development

 do {
 var mac := UserInput.prompt('What is the MAC?');
 if (mac.isDefined()) self.mac := mac;
 }
 }
 }

 constraint notNullIP { //Rule #3
 check : self.ip.isDefined()
 message : 'Invalid IP in ' + self.eClass().name.toUpperCase()
 fix {
 title : 'Define the IP of the node '
 do {
 var ip := UserInput.prompt('What is the IP?');
 if (ip.isDefined()) self.ip := ip;
 }
 }
 }

}

Element Switch -> NetworkNode

Rule #1 The maximum ports number should not be greater than [OF 1.4 SPEC]

Rule #2 A switch can not be connected to itself.

Rule #3 It may not has two identical IPs connected to the same switch.

context Switch {
 constraint maxNumPorts { //Rule #1
 check {
 if(self.ports > 65280){
 return false;
 }
 return true;
 }
 }
}

context Host {
 constraint noIdenticalIpsConnectedToSwitch { //Rule #2
 check {
 var networkNodes = Host.all.select(h|h.ip = self.ip);
 if(networkNodes.size() > 1){
 var hostSwitch = 0;
 for (host in networkNodes) {
 if(host.hostSwitch <> hostSwitch)
 hostSwitch = host.hostSwitch;
 else
 return false;
 }
 }
 return true;
 }
 message : 'More than one identical IP "' + self.ip + '" connected to switch'
 fix {
 title : 'Define the correct IP '
 do {
 var ip := UserInput.prompt('What is the IP?');
 if (ip.isDefined()) self.ip := ip;
 }

101

Model-Driven Networking: a Novel Approach for SDN Applications Development

 }
 }
}

Element Controller -> NetworkNode

Rule #1 Controller type must be ‘PROACTIVE’ or ‘REACTIVE’.

context Controller {
 critique checkType { //Rule #1
 check {
 if(self.type <> 'PROACTIVE' or self.type <> 'REACTIVE' or self.type <> ‘MIX’){
 return false;
 }
 return true;
 }
 message : 'Controller type should be REACTIVE, PROACTIVE or MIX'
 fix {
 title : 'Define the controller type '
 do {
 var type := UserInput.prompt('REACTIVE, PROACTIVE or MIX?');
 if (type.isDefined()) self.type := type;
 }
 }
 }
}

Element Rule

Rule #1 Name property cannot be empty.

Rule #2 If it has only one source host, such host cannot be the target host.

Rule #3 It can be linked to one Condition at maximum.

context Rule {
 critique hasName { //Rule #1
 check : self.name.isDefined()
 message : 'Unnamed ' + self.eClass().name.toUpperCase() + ' not allowed'
 fix {
 title : 'Define the name of the rule '
 do {
 var name := UserInput.prompt('What is the name?');
 if (name.isDefined()) self.name := name;
 }
 }
 }

 constraint ruleWithOneSourceHostRequiresDifferenteTargetHost { //Rule #2
 check {
 var rules = Rule.all.select(p|p = self);
 var sourceHosts = 0;
 var targetHosts = 0;
 for (r in rules) {
 sourceHosts = p.sourceHostRule;
 targetHosts = p.targetHostRule;
 if(sourceHosts.size() = 1){
 for (tH in targetHosts) {
 if(sourceHosts.ip = tH.ip or sourceHosts.ip = null or tH.ip = null){
 return false;
 }

102

Model-Driven Networking: a Novel Approach for SDN Applications Development

 }
 }
 }
 return true;
 }
 message : 'Rules can not be null and/or have the same source and target nodes.
Change some.'
 }

 constraint hasOneCondition { //Rule #3 (It is also guaranteed by metamodel)
 check {
 var rules = Rule.all.select(p|p = self);
 var conditions = 0;
 for (r in rules) {
 conditions = r.ruleCondition;
 if(conditions.size() > 1){
 return false;
 }
 }
 return true;
 }
 message : 'Rules can only have one Condition'

 }
}

Element Condition

Rule #1 It can be linked to one Time at maximum.

Rule #2 It can be linked to more than one PacketHeader, if these are different.

Implementation

Element Time

Rule #1 The “beginDate” attribute can not be great than “endDate” attribute.

context Time {
 constraint validDate { //Rule #1
 check : self.beginDate < self.endDate
 message : 'The Time clause requires that begin date less than end data.'
 }
}

Element Traffic

Rule #1 The “value” attribute can not be negative or empty.

Rule #2 The “unit” attribute can not be different from ‘mb’ or ‘gb’.

context Traffic {
 constraint validValue {
 check : self.value > 0

103

Model-Driven Networking: a Novel Approach for SDN Applications Development

 message : 'The value of traffic can not be less than or equal to 0.'
 fix {
 title : 'Define the correct value for traffic '
 do {
 var value := UserInput.prompt('What is the value for traffic?');
 if (value.isDefined()) self.header := header;
 }
 }
 }
 constraint validUnit {
 check {
 var unit = self.unit;
 unit = unit.toUpperCase();
 if(unit <> 'MB' or self.unit <> 'GB') {
 return false;
 }
 return true;
 }
 message : 'The unit of traffic can not be different from MB or GB.'
 fix {
 title : 'Define the correct unit for traffic '
 do {
 var unit := UserInput.prompt('What is the unit?');
 if (unit.isDefined()) self.unit := unit;
 }
 }
 }
}

Element PacketHeader

Rule #1 The “value” attribute can not be negative or empty.

 constraint validValue { //Rule #1
 check : self.value > 0
 message : 'The value of '+ self.header +' can not be less than or equal to 0.'
 fix {
 title : 'Define the correct value for packet header '
 do {
 var value := UserInput.prompt('What is the value for packet header' + self.header + '?');
 if (value.isDefined()) self.header := header;
 }
 }
 }

Element Action

Rule #1 It only can be linked with PacketHeader if its type is “MODIFY”.

Rule #2 It only can be linked with NetworkNode if its type is “FORWARD”.

104

Model-Driven Networking: a Novel Approach for SDN Applications Development

context Action {
 constraint ifActionEqualToModifyThenActionPacketHeaderCanNotBeNull { //Rule #1
 check {
 if(self.type.asString() = 'MODIFY' and self.actionPacketHeader = null) {
 return false;
 }
 return true;
 }
 message : 'The MODIFY action needs to relate with a packet header.'
 }
 constraint ifActionEqualToForwardThenActionForwardToNodeCanNotBeNull { //Rule #2
 check {
 if(self.type.asString() = 'FORWARD' and self.actionForwardToNode = null) {
 return false;
 }
 return true;
 }
 message : 'The FORWARD action needs to relate with a host.'
 }
}

Controller @gmf.node(figure="figures.ControllerFigure", label="name",

label.icon="false", tool.small.bundle="mdn.edit",
tool.small.path="/icons/full/obj16/controller.gif",
label.placement="external")
class Controller extends NetworkNode {
 attr String type;
}

Host @gmf.node(label="name", label.icon="false",
tool.small.bundle="mdn.edit",
tool.small.path="/icons/full/obj16/host.gif",
figure="figures.HostFigure", label.placement="external")
class Host extends NetworkNode {

 @gmf.link(target.decoration="none", source.decoration="none",
style="solid", color="0,0,0")
 ref Switch hostSwitch;

 @gmf.link(target.decoration="none", source.decoration="none",
style="dash", color="0,0,0")
 ref Rule sourceHostRule;
}

Switch @gmf.node(label="name", label.icon="false",
tool.small.bundle="mdn.edit",
tool.small.path="/icons/full/obj16/switch.gif",
figure="figures.SwitchFigure", label.placement="external")
class Switch extends NetworkNode {
 attr int ports;

 @gmf.link(target.decoration="none", source.decoration="none",
style="solid", color="0,0,0")
 ref Controller[*] switchController;

 @gmf.link(target.decoration="none", source.decoration="none",
style="solid", color="0,0,0", source.constraint="self <> oppositeEnd")
 ref Switch[1] source;

105

Model-Driven Networking: a Novel Approach for SDN Applications Development

 @gmf.link(target.decoration="none", source.decoration="none",
style="solid", color="0,0,0", source.constraint="self <> oppositeEnd")
 ref Switch[1] target;
}

Rule @gmf.node(figure="figures.RuleFigure", label="name", label.icon="false",
tool.small.bundle="mdn.edit",
tool.small.path="/icons/full/obj16/rule.gif",
label.placement="external")
class Rule {

 @gmf.link(target.decoration="arrow", source.decoration="none",
style="dash", color="0,0,0")
 ref Host targetHostRule;
 attr String name;

 @gmf.link(target.decoration="none", source.decoration="none",
style="dash", color="0,0,0")
 transient ref Condition ruleCondition;

 @gmf.link(target.decoration="none", source.decoration="none",
style="dash", color="0,0,0")
 ref Action ruleAction;
}

Action @gmf.node(figure="figures.ActionFigure", label="type",
label.icon="false", tool.small.bundle="mdn.edit",
tool.small.path="/icons/full/obj16/action.gif",
label.placement="external")
class Action extends RuleObject {
 attr Actions type;

 @gmf.link(target.decoration="arrow", source.decoration="none",
style="dash", color="0,0,0")
 ref PacketHeader actionPacketHeader;

 @gmf.link(target.decoration="arrow", source.decoration="none",
style="dash", color="0,0,0")
 ref NetworkNode actionForwardToNode;
}

Condition @gmf.node(label="condition", label.icon="false",
tool.small.bundle="mdn.edit",
tool.small.path="/icons/full/obj16/condition.gif",
label.placement="external", figure="figures.ConditionFigure")
class Condition extends RuleObject {
 attr Conditions condition = "WHERE";

 @gmf.link(target.decoration="none", source.decoration="none",
style="dash", color="0,0,0")
 ref Time conditionTime;

 @gmf.link(target.decoration="none", source.decoration="none",
style="dash", color="0,0,0")
 ref Traffic conditionTraffic;

 @gmf.link(target.decoration="none", source.decoration="none",
style="dash", color="0,0,0")
 ref PacketHeader conditionPacket;
}

106

Model-Driven Networking: a Novel Approach for SDN Applications Development

Traffic @gmf.node(figure="figures.TrafficFigure", label="operator,value,unit",

label.pattern="{0}: {2}{1}", label.icon="false",
tool.small.bundle="mdn.edit",
tool.small.path="/icons/full/obj16/traffic.gif",
label.placement="external")
class Traffic extends RuleObject {
 attr RelationalOperators operator;
 attr String unit = "MB";
 attr int value;
}

Time @gmf.node(figure="figures.TimeFigure", label.icon="false",
tool.small.bundle="mdn.edit",
tool.small.path="/icons/full/obj16/time.gif",
label.placement="external", label="operator,beginDate,endDate",
label.pattern="{0}: {1} - {2}")
class Time extends RuleObject {
 attr RelationalOperators operator;
 attr EDate beginDate;
 attr EDate endDate;
}

Packet
Header

@gmf.node(figure="figures.PacketHeaderFigure", label.icon="false",
tool.small.bundle="mdn.edit",
tool.small.path="/icons/full/obj16/packetheader.gif",
label.placement="external", label="operator,header,value",
label.pattern="{0}: [{1}] {2}")
class PacketHeader extends RuleObject {
 attr RelationalOperators operator;
 attr PacketHeaders header = "";
 attr String value;
}

Template header.egl

Objective It defines the possible libraries used in code generated of MDN models.

Implementation [%
operation getCodeHeader() : String {
 var header : String;

 header = "
 import pox
 import pprint
 import datetime
 from pox.lib.packet.ethernet import ethernet,
 ETHER_BROADCAST
 from pox.lib.packet.ipv4 import ipv4
 from pox.lib.packet.arp import arp
 from pox.lib.addresses import IPAddr, EthAddr
 from pox.lib.util import str_to_bool, dpidToStr
 from pox.lib.recoco import Timer
 from pox.core import core
 from pox.lib.util import dpidToStr
 import pox.openflow.libopenflow_01 as of

 # include as part of the betta branch

107

Model-Driven Networking: a Novel Approach for SDN Applications Development

 from pox.openflow.of_json import *

 log = core.getLogger()";

 return header;
}
%]

Template firewall.egl

Objective It defines the actions to drop flows.

Implementation [%
operation actionDrop(rule : Any) : String {
%]
 ip = packet.find('ipv4')
 # This packet isn't IP!
 if ip is None:
 return
 # The flow is in the block list
 [% var srcIP = rule.sourceHostRule.ip.toString(); %]
 [% var dstIP = rule.targetHostRule.ip.toString(); %]
 [% srcIP = srcIP.substring(1, srcIP.length()-1); %]
 [% dstIP = dstIP.substring(1, dstIP.length()-1); %]
 elif str(ip.srcip) == [%='\''+srcIP+'\''%] and str(ip.dstip) ==
[%='\''+dstIP+'\''%]:
 # Verify its conditions, if any
 [% var stringConditions : String = verifyConditions(rule); %]
 [% if (stringConditions.length() > 1) { %]
 [%='if ('+stringConditions+')'%]:
 print("It is in the blocked list source %s - destination
%s", ip.srcip, ip.dstip)
 event.halt = True
 else
 event.halt = False
 [% } %]
 [% else { %]
 print("It is in the blocked list source %s - destination %s",
ip.srcip, ip.dstip)
 event.halt = True
 [% } %]
 else:
 print("Allowed source %s - destination %s", ip.srcip, ip.dstip)
[%
}%]

Template monitor.egl

Objective It defines the monitoring for specified hosts.

Implementation [%
operation monitorAction(rule : Any) : String {
%]
def _timer_func ():
 for connection in core.openflow._connections.values():

108

Model-Driven Networking: a Novel Approach for SDN Applications Development

 connection.send(of.ofp_stats_request(body=of.ofp_flow_stats_r
equest()))

 connection.send(of.ofp_stats_request(body=of.ofp_port_stats_r
equest()))
 log.debug("Sent %i flow/port stats request(s)",
len(core.openflow._connections))

def _handle_flowstats_received (event):
 stats = flow_stats_to_list(event.stats)
 log.debug("FlowStatsReceived from %s: %s",
 dpidToStr(event.connection.dpid), stats)

 # Get number of bytes/packets in flows for web traffic only
 web_bytes = 0
 web_flows = 0
 web_packet = 0
 for f in event.stats:

 [% for (rule in Rule.All) { %]
 [% var srcIP = rule.sourceHostRule.ip.toString(); %]
 [% var dstIP = rule.targetHostRule.ip.toString(); %]
 [% srcIP = srcIP.substring(1, srcIP.length()-1); %]
 [% dstIP = dstIP.substring(1, dstIP.length()-1); %]
 if f.match.ip_dst == [%=dstIP%] or f.match.ip_src ==
[%=srcIP%]:
 web_bytes += f.byte_count
 web_packet += f.packet_count
 web_flows += 1
 [% } %]
 log.info("Web traffic from %s: %s bytes (%s packets) over %s
flows",
 dpidToStr(event.connection.dpid), web_bytes, web_packet,
web_flows)

handler to display port statistics received in JSON format
def _handle_portstats_received (event):
 stats = flow_stats_to_list(event.stats)
 log.debug("PortStatsReceived from %s: %s",
 dpidToStr(event.connection.dpid), stats)
[%
}
%]

Simple Firewall Application - GPL (Python)

1. from pox.core import core
2. block_ports = set()
3. def block_handler (event):
4. ip = event.parsed.find('ipv4')
5. if not ip: return # Not IP
6. if ip.srcip == '10.0.0.1' and ip.dstip == '192.168.1.1':
7. event.halt = True
8. def launch ():
9. core.openflow.addListenerByName("PacketIn", block_handler)

