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Abstract

Modern geocellular models may contain up to hundreds million cells, while practical

petroleum reservoir models handle at most a fraction of this quantity turning the direct

numerical simulation of multiphase flow in heterogeneous and anisotropic medium

infeasible. To overcome these problems Multiscale Finite Volume Methods (MsFVM)

uses restriction algorithm to transfer information onto a lower-resolution grid, solve the

resulting coarse system and by using a set of basis function, project back the solution

onto the higher-resolution grid. Nonetheless, the MsFVM basis function fail to deal with

high-resolution geological properties on general grids as they often rely on TPFA, which

is only consistent for k-orthogonal grids. Furthermore, MsFVM possess no framework

capable of generating the geometric entities needed for simulation on unstructured

coarse-scale meshes. The Multiscale Restricted Smoothed Basis (MsRSB) method creates

this framework and expands the multiscale approach to unstructured coarse meshes.

However, it fails to produce consistent solutions on fine-scale unstructured meshes and

for arbitrary permeability tensors as it also uses TPFA. In this thesis, we couple a Multi-

Point Flux Approximation (MPFAD) with a Diamond stencil to the MsRSB to extend

its use to general unstructured grids. The resulting framework showed prominent

results producing accurate solutions for two-phase flow simulation in heterogeneous

and mildly anisotropic medium with unstructured grids on a coarse and a fine scale.

Keywords: Multiscale. MsFV. Finite volume. MPFA. Unstructured-grids.



Resumo

Hoje em dia, os modelos geo-celulares podem conter até centenas de milhares de cé-

lulas, enquanto os modelos de reservatórios de petróleo trabalham no máximo com

uma pequena fração desta quantidade. Isto torna a simulação numérica de escoamento

multifásico em meios heterogêneos e anisotrópicos nestas malhas inviáveis. Para superar

estas limitações, o Método dos Volumes Finitos Multiescala (MsFVM) usa algoritmos

de restrição para transferir informação da escala de malha de alta-resolução para uma

malha de menor resolução onde o sistema de equações é resolvido para então, utilizando

um conjunto de funções de base, projetar a solução de volta na malha de maior resolução.

No entanto, as funções de base do MsFVM são incapazes de capturar informações geoló-

gicas em alta-definição em malhas não estruturadas uma vez que o método depende de

uma aproximação do fluxo do tipo por dois pontos (TPFA) que é consistente apenas com

malhas k-ortogonais. Além disso, o MsFVM não possui um framework capaz de gerar

as entidades necessárias para a simulação em malhas não estruturadas na escala de

baixa resolução. O Métodos Multiescala das Funções de Base Restritamente Suavizadas

(MsRSB) criar este metodologia e expande os conceitos do método clássico para permitir

a simulação em malhas de baixa resolução não estruturadas. Contudo, este método falha

em produzir soluções consistentes para malhas de alta resolução não estruturadas, uma

vez que ele também depende de uma aproximação do tipo TPFA. Nesse trabalho, nós

acoplamos o MsRSB com uma aproximação do fluxo do tipo multipontos com estêncil

diamante para estender o seu uso para malhais não estruturadas em geral.

Palavras-chave: Multiescala. MsFV. Volumes finitos. MPFA. Malhas não-estruturadas.
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1 INTRODUCTION

The advances in geostatistical modeling and characterization allows information

from different scales to be integrated in order to generate geocellular models whose

resolution typically range from 108 to 109 blocks, meanwhile the standard models of

flow simulation in porous media can handle 106 to 107 blocks (ZHOU, 2010). In this

way, multiple direct simulations on these high-resolution grids become infeasible. To

overcome this limitation, scale-transferring methods have been devised. In essence,

they allow high-resolution geostatistical data to be integrated onto the flow simulation

grid (BARBOSA, 2017).

Among them, two branches of schemes stand out: the upscaling and the mul-

tiscale methods (DURLOFSKY, 2005). The first generally employs a sort of homoge-

nization (Farmer, 2002), even when there is no formal separation between the scales. In

these schemes a solution is found at the coarse-scale space leading to fast results, which

often are unable to preserve details of the physical properties causing deterioration of

the accuracy of the representation of the studied phenomena.

On the other hand, the multiscale schemes develop a set of operators, which are

capable of projecting the fine-scale discrete system onto the coarse-scale space, this

low-resolution system is then solved and the multiscale operator projects the solution

back to the high-resolution grid (Hou and Wu,1997; Jenny, Lee and Tchelepi, 2006;

Zhou and Tchelepi,2008). This preserves the natural coupling between scales avoiding

inconsistencies and loss of fine-scale information inherent to most upscaling methods.

The central idea and core of all multiscale is the basis functions, a set of functions

devised to exchange information between high-resolution and low-resolution grids.

The Multiscale Finite Element Method (MsFEM) propposed by Hou and Wu (1997)

for elliptical problems solves these functions using a set of boundary conditions to

uncouple each coarse volume. Therefore, the velocity field is not fully conservative as

the basis functions neglect flux normal on the surface of the coarse volumes. Using a

Multiscale Mixed Finite Element Methods (MsMFEM), Chen and Hou (2002) dealt with

this problem by imposing mathematically flow conservation by creating basis functions

that compute simultaneously the pressure and velocity. Arbogast and Bryant (2002)

brought this scheme to the petroleum context as they adapted it for two-phase flow

problems.

The Multiscale Finite Volume (MsFV) proposed by Jenny, Lee and Tchelepi

(2003) uses a different strategy to reimpose flux conservation. In this method, the basis

functions are calculated on auxiliary an auxiliary dual coarse mesh. Thus, the basis
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function become non-conservative on the surface of each dual coarse volumes but on

the fine-scale volumes inside them. The MsFV uses the flow on the surfaces of each

primal coarse volume to compute a new set of basis functions used to reconstruct a

conservative velocity field. Although the use of another mesh increases the amount of

data stored, it eliminates considerably the number of degrees of freedom by removing

the need to calculate an operator that simultaneously integrates information of pressure

and velocity fields. Jenny, Lee and Tchelepi (2006) extended this method to work

with incompressible flow on three-dimensional domain. Additionally, JENNY; LEE;

TCHELEPI studied techniques to improve the performance of Implicit Pressure Explicit

Saturation (IMPES) strategy used by MsFV. Zhou and Tchelepi (2008), Zhou (2010)

developed an algebraic notation to write the MsFV and geral multiscale methods as

a series of simple matrix operations. For that, ZHOU; TCHELEPI created the two

scale-transferring operators: Restriction Operator and a Prolongation Operator.

Nevertheless, most of the methods in MsFVM family are unable to properly work

on unstructured grids. This is due to three different factors: the use of Two-Point Flux

Approximation (TPFA), which is only consistent for k-orthogonal grids, the difficulties

presented in generating geometrical entities, such as auxiliary grids and coarse cell

centers; and in calculating multiscale operators accordingly. In this context, a great

effort has been made in the development of schemes capable of enabling the simulation

on unstructured grids on both scales. Krogstad et al. (2009) developed a variant of

MsMFEM capable of working with coarse meshes whose volumes are nearly degenerated

and unstructured.

Moyner and Lie (2013) extended the MsFV by creating a framework to allow

the simulation on unstructured grids on the coarse-scale. The Multiscale Restriction-

Smoothed Basis (MsRSB) method devised by MOYNER; LIE calculate the basis functions

interactively smoothing the indicator function of each coarse volume restricted to

corresponding support region giving birth to a robust and fast scheme. However, it is

also limited to the simulation on unstructured coarse-scale meshes as it uses a TPFA.

On the other hand, many authors have studied methods to overcome the lim-

itations of the classical TPFA. Among them, the work of Edwards and Rogers (1998)

and Aavatsmark et al. (1998) stand out. Separately, they generalized the control volume

distributed multi-point flux approximation (CVD-MPFA) devised by Crumpton, Shaw

and Ware (1995) to work on general unstructured grids. These strategies enabled direct

simulation on unstructured grids with full permeability tensors. Nonetheless they may

fail to converge for high anisotropic media on highly distorted meshes (EDWARDS;

ZHENG, 2008; CHEN et al., 2008).

In this thesis, we replace the TPFA used on the MsRSB for the approximation

of the basis functions by a non-orthodox MPFA with a diamond stencil (MPFA-D) to
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create the Multiscale Control-Volumed (MsCV) framework to allow the simulation on

fine and coarse scales unstructured grids.

1.1 Research Objectives

In this context, the general objective of this thesis is the study and develop-

ment of multiscale schemes for the 2-D numerical simulation of two-phase flows in

heterogeneous and anisotropic petroleum reservoirs using truly untructured meshes.

1.2 Specific Objectives

1. To develop a multiscale framework for the simulation of one-phase and two-

phase flows in highly heterogeneous and anisotropic petroleum reservoir using a

non-orthodox flux approximation consistent with unstructured grids in any scale.

2. Incorporate a MPFA-D in a multiscale pressure solver

3. To create alternative tools to coarsen fine-scale grids.

1.3 Thesis Organization

This thesis is comprised of 6 different chapters. This first chapter is focused on

introducing and reviewing the main issues of the simulation of two-phase flow in porous

media using multiscale schemes. The second chapter consists of the mathematical

formulation used to derive the PDEs that described two-phase flow in porous media. The

third chapter refers to the numerical formulation, in which, we present the numerical

schemes used to derive the discrete form of the equations of the previous chapter. As

the multiscale strategy consists in the core of the thesis, the forth chapter is dedicated

to explain the multiscale formulation along the creation of the entities that comprised

the MsCV framework. The fifth chapter is a compilation of the results for single-phase

and two-phase problem. Finally, the sixth and final chapter we present the conclusions

and suggestions for further work.
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2 MATHEMATICAL FORMULATION

This chapter gives a brief introduction on the laws and assumptions used to

derive the equations that governs oil and water flow inside the reservoir rock. First, we

present the equation that describe multiple phases flow in porous medium, Darcy’s Law,

following by mass conservation PDE that model pressure distribution inside the Oil

Reservoir along with hyperbolic PDE that models the way fluid phases are transported.

2.1 Darcy’s Law

Darcy’s law was originally formulated by Henry Darcy based on the results

of a experiment on water flow through bed sands. While the Navier-Stokes Equation

describe flow in a microscopic level, Dary’s law is a volume averaging approximation of

the Navier-Stokes equation (ERWING, 1983) on scale that is small as possible but coarse

enough to have an average that capture well the heterogeneity of the porous medium.

Darcy’s law states the velocity of a phase is linearly proportional to the pressure

gradient, this can be described with the equation bellow:

~vi = −λiK˜~∇pi with λi = kri/µi , i = water (w), oil (o) in Ω (2.1)

where λi , kri and µi are respectively mobility , relative permeability and viscosity of

the phase i.

For a two-dimensional space (R2) using a Cartesian coordinate system, the

absolute permeability tensor K˜ is defined as:

K˜(~x) =

kxx kxy
kyx kyy

 ∀~x ∈R2 (2.2)

where ~x = (x,y).

The absolute permeability K˜ is an intrinsic property and exclusive to the rock

reservoir. It measures the capacity of a medium to allow flow. On the other hand, the

relative permeability kri , is a dimensionless measure of the effective permeability of

that phase.

Therefore, it is necessary to have an equation that models the influence of one

phase flow to the other phases. The Brooks and Corey model used in this work is a

constitutive equation (HELMIG, 1997) based on physical experiments defined by the
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following expression:

krw =
(
Sw − Swi

1− Swi − Sor

)nw
and kro =

(
1− Sw − Sor
1− Swi − Sor

)no
(2.3)

where Si the fraction of the pore volume occupied by the phase i = o,w, Swi and Sor is

the residual saturation of the water phase and oil phases and nw and no take different

values (CHEN; HUAN; MA, 2006).

There are many other models for the relative permeability such as the van

Genuchten, Yanosik and McCracken that can be found (CARVALHO, 2005; CHEN;

HUAN; MA, 2006). This work uses exclusively the Brooks and Corey model for relative

permeability.

2.2 Mass Conservation Equation

Let us consider an immiscible two-phase flow on a porous medium where the

wetting and no-wetting phase are respectively water and oil. The medium is fully

saturated i.e. all porous are full occupied by either one of the phases. The rock matrix

and all fluids are consider incompressible. There is no mass transference between

phases nor changes in temperature of the reservoir. We disregard capillary effect and we

assume that no chemical reaction take place. Taking into account these assumptions we

can apply mass conservation law to each phase and after some algebraic manipulation

derive the equation bellow (CHEN; HUAN; MA, 2006):

∂(φρiSi)
∂t

= −∇ · (ρi~vi) + qi in Ω× [0, t] where i = w,o (2.4)

In (2.4), φ denotes the porosity of the medium, t the time and qi represents

source sink term that in this context can be a representation of injection and production

wells, ~vi phase velocity and ρi the density of the phase. We also assume that the medium

is fully saturated, i.e.:

So + Sw = 1 (2.5)

2.3 Water-Oil Immiscible Flow

From equation (2.4) under the assumptions stated in beginning of section 2.2 we

can derive the two partial differential equations (PDE)s that govern water-oil flow in

porous media. The first is the Pressure equation, an elliptic PDE, which provides the

pressure distribution inside the oil reservoir. The latter is the Saturation equation, a
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hyperbolic PDE, that shows the distribution of phase i inside the reservoir. Once the

saturation of the phase i is found the other phase saturation can be found using the

closure equation (2.5), also defined in the previous section.

2.3.1 Pressure Equation

The pressure equation is the elliptic PDE that governs water-oil flow in porous

medium, and is obtained by combining and manipulating equations (2.1) and (2.4) for

each phase. (CARVALHO, 2005; CHEN; HUAN; MA, 2006). It is expressed as:

−~∇ · ~v =Q with ~v = −λK˜(~∇p − ρavg~g) in Ω (2.6)

where ~v = ~vw + ~vo is the total velocity of the fluid neglecting compressibility, ∇p is the

pressure gradient and Q = Qw +Qo is the sum of each phase volumetric source and

sink terms divided by its density, Qi = qi/ρi . The average density ρavg is the a mobility

weighted average. (HURTADO, 2011)

ρavg =
λoρo +λwρw

λ
with λ = λo +λw (2.7)

We also neglect the gravity term on the Darcy’s velocity equation (2.6) and find

a simpler form for the total velocity:

~v = −λK˜~∇p (2.8)

By inserting this simplified velocity (2.8) inside (2.6), we obtain a global pressure

equation for two-phase flow with no gravity:

~∇ · (λK˜~∇p) =Q (2.9)

Equation (2.9) can be also used to describe single-phase flow by simply setting

λ = 1, and the total velocity becomes fluid velocity.

~∇ · (K˜~∇p) =Q (2.10)

2.3.2 Saturation Equation

The saturation equation is a hyperbolic non-linear PDE that describes how one

of the phases is transported throughout the porous medium. It can also be derived by

combining and manipulating equations (2.1) and (2.4) for the water phase, leading to:

φ
∂Sw
∂t

= −~∇ · ~F(Sw) +Qw for Ω× [0, t] (2.11)
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Figure 1 – Types of boundary conditions.

Source: Author.

in which ~F(Sw) is given by:

~F(Sw) = fw(Sw)~v with fw = λw/λ (2.12)

The fractional flux fw(Sw) expresses the fraction of water being transported

with the total flow. Notice that as the fractional flux depends on the saturation and it

represents a non-linear term of the equation.

2.3.3 Initial and Boundary Conditions

In order to make the mathematical model described by equations 2.6 and 2.11

well-posed, a combination of proper initial and boundary conditions (BC) must be

defined. Besides the classic boundary condition, there must exist conditions to represent

the interaction of wells and the porous medium. The flow rate in injections wells qi is

equivalent to a Neumann condition, while the controlled pressure on the Production

Well qp is the Dirichlet condition.

The most common boundary conditions for the pressure equation are (CONTR-

ERAS, 2012; BARBOSA, 2017; CARVALHO, 2005):

p(~x, t) = gD in ∂ΩD

~v · ~n = gN in ∂ΩN

p(~x, t) = pproduction in ∂Ωp

~v · ~n =Qinjection in ∂Ωi

(2.13)

The first two of these conditions on equation 2.13 are respectively Dirichlet

(gD) and Neumann (gN ) BC or prescribed pressure and prescribed flux defined on

the contour of the domain. The following two are the same Dirichlet and Neumann

conditions but defined on the production (pproduction) and injections wells Qinjection.
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For the pressure equation boundary condition need to be defined on the whole

contour of the domain ∂Ω. The BC becomes a disjoint union of the different boundary

conditions adequately chosen for each problem as shown in Figure 1, and:

∂Ω = ∂Ωi +∂Ωp +∂ΩD +∂ΩN (2.14)

As for the BC of the saturation equation it is required to define the water

saturation in the injection wells (Sw) and the initial conditions are set by prescribing

the water saturation (S
0
w) on the domain Ω at the initial time step t = to .

Sw(~x, t) = Sw in ∂Ω× [0, t]

Sw(~x,0) = S
0
w in Ω

(2.15)



24

3 NUMERICAL FORMULATION

Several methods have been devised to solve systems of partial differential equa-

tions. Among them, the Finite Volume Method (FVM) stands out as a scheme that

provides conservative solutions. This means that no fluid can be created or destroyed

inside this system. Moreover, the Finite Volume Method (FVM) has its origins in a physi-

cal interpretation of the flow problem (SOUZA, 2015; CARVALHO, 2005; CONTRERAS

et al., 2016).

In this chapter, we present the basic numerical strategies used to solve the PDEs

presented in last chapters. Throughout this thesis we employ a cell-centered Finite

Volume approximation.

3.1 IMPES strategy

In the following sections, we use the Finite Volume Method to derive a discrete

form of the pressure and saturation equations. We apply the IMPES( Implicit Pressure

Explicit Saturation) strategy in which the pressure equation implicitly solved and

saturation equation explicitly. See Figure 2 for details. First, the total mobility λT is

calculated using an initial saturation field, then the pressure equation is implicitly

solved; the velocity fields is explicitly calculated using Darcy’s law and finally a new

Saturation field is also explicitly computed. If a time-related condition is met, such as

the simulation has reached the desired time, this process stops, if not, the new saturation

field is used as input and this process repeats itself until this condition is met.

Figure 2 – IMPES Flowchart.

Source: Author.
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Figure 3 – Discrete domain and general control volume Ωk.

Source: Author.

3.2 Discrete Form of the Pressure Equation

According to the Finite Volume Method, the approximate solution of the pressure

equation is obtained by integrating equation (2.6) throughout the domain Ω. This leaves

us with: ∫
Ω

~∇ · ~vdV =
∫
Ω

QdV (3.1)

In order to obtain a discrete form of equation 3.1, the domain Ω is discretized in

Nk general control volumes (CVs) as illustrated in the figure 3. This allows to rewrite

equation (3.1) as the sum of the integrals of all Nk CV:

Nk∑
1

∫
Ωk

~∇ · ~vdV =
Nk∑
1

∫
Ωk

QdV (3.2)

Therefore, equation (3.1) can also be written for a single general control volume

Ωk as: ∫
Ωk

~∇ · ~vdV =
∫
Ωk

QdV (3.3)

By using the Divergence Theorem on the left hand side of the equation (3.3), we

obtain: ∫
∂Ωk

~v · ~ndA =
∫
Ωk

QdV (3.4)

where ∂Ωk is the surface of the control volume Ωk and ~n the unitary vector normal to

∂Ωk.

These two integrals of equation (3.4) can be approximated using the Mean Value
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Theorem as:

∫
∂Ωk

~v · ~ndA =
∑

IJ∈∂Ωk

~vIJ · ~NIJ∫
Ωk

QdV = Q̄kΩk

(3.5)

where ~vIJ stands for the mean velocity approximated on an arbitrary linear surface

formed by vertices I and J, ~NIJ stands for the normal area vector for a random surface

(or an edge in 2d) IJ and Q̄k is the mean value of the source/sink term.

Then, equation (3.4) is rewritten as:∑
IJ∈∂Ωk

~vIJ · ~NIJ = Q̄kΩk (3.6)

where IJ stands for one edge of all edges that comprised the surface of a control volume

∂Ωk.

Notice that equation (3.6) is an exact discrete approximation of equation (3.4). In

order to obtain a fully discrete system of equations, we need a consistent approximation

for the pressure gradient present in the Darcy’s flow.

3.2.1 Mobility Approximation

An important step of the IMPES strategy is obtaining consistent approximations

for the mobilities in the pressure equation. FRIIS and EVJE (2012), Souza (2015) sug-

gests the total mobility projected on an edge IJ can be obtained by the average of the

approximation of the mobility on each node of this edges (J and I). (See figure 4).

λIJ =
λI +λJ

2
(3.7)

where the nodal mobilities λI and λJ are approximated by the arithmetic mean of the

mobilities surrounding a given a node:

λi =

ni∑
k̂=1

λk̂Ωk̂

ni∑
k̂=1

Ωk̂

(3.8)

where i = I, J and ni is number of control volumes around node i.

3.2.2 FV Flux Approximation

There are several possibilities to compute an approximate value for the flux at

the surface of the CVs. Each choice represents a different formulation with advantages
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Figure 4 – Mobility Approximation.

Source: Author.

Figure 5 – Unidimensional domain.

Source: Author.

and disadvantages (AAVATSMARK et al., 1998; CRUMPTON; SHAW; WARE, 1995;

CONTRERAS, 2012; CONTRERAS et al., 2016; EDWARDS; ROGERS, 1998; EDWARDS;

ZHENG, 2008; GAO; WU, 2010).

3.2.2.1 Two Point Flux Approximation - TPFA

The classical FVM approach for the discretization of Darcy’s flow is a Two-Point

Flux Approximation (TPFA) scheme. It is an accurate, robust and efficient method

however it lacks support for full permeability tensors and unstructured grids (SOUZA,

2015).

In order to understand how TPFA is devised, let us consider a fragment of

unidimensional domain discretized by two cell-centered CVs as illustrated on Figure 5.

Let us consider a pressure gradient driving flow from the left-side L̂ to the right-

side control volume R̂. Both volumes possess different permeabilities, turning the

middle-edge permeability discontinuous. However, for a consistent Finite Volume

Approximation, flux must be unique and continuous between any two adjacent volumes.

In this context, we derive the TPFA in three straightforward steps. First, we

assume piecewise linear flux in each control volumes to approximate flux at the middle-
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Figure 6 – TPFA consistency errors.

Source: Author.

edge:

(~vē · ~Nē)L̂ = −KL̂A

pē − pL̂∆XL̂
2


(~vē · ~Nē)R̂ = −KR̂A

pē − pR̄∆XR̂
2


(3.9)

where pē is an auxiliary pressure at middle-edge and A the area of the face.

Second, we impose continuity by assuming that the flux is equal on both sides.

As a consequence we find an unique value for pē:

(~vē · ~Nē)L̂ + (~vē · ~Nē)R̂ = 0

−KL̂

pē − pL̂∆XL̂
2

 = −KR̂

pR̂ − pē∆XR̂
2


pē =

pL̂KL̂
∆XL̂

+ pR̂KR̂
∆XR̂

KL̂
∆XL̂

+ KR̂
∆XR̂

(3.10)

Finally, we derive a single continuous flux on the middle-edge by inserting pē
back into any of the equations (3.9):

(~vē · ~Nē) = −
2KL̂KR̂

KL̂∆XR̂ +KR̂∆XL̂
A(pR̂ − pL̂) (3.11)

This approximation has been proven to be accurate, efficient and robust for

multiphase-flow simulation on isotropic media and on general k-orthogonal grids, i.e.,

grids where the surfaces of the cells are aligned with the principal directions of the

permeability tensor (AAVATSMARK et al., 1998). In this approximation the flux across
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a control surface only depends on the pressure of the volume on the left and right of this

surface, which means the contribution of cross fluxes is not properly computed (SOUZA,

2015). Figure 6 shows situations where this approximation may lead to inconsistent flux

approximation. The media depicted on the left figure shows an anisotropic media on

with a diagonal permeability tensor K1
∼

. In this case the projection of the permeability

tensor on an edge of the grid may result in a full permeability tensors which induces

cross flux that in turn is not taken in account on the flux approximation of Equation

3.11. Moreover, the media on the right figure possess a full permeability tensor (eg.: K2
∼

)

on a k-orthogonal grid. Note that this tensor induces a cross flux 1.5 greater than flux

on the main directions. Once more, as Equation 3.11 neglects cross terms of the flux we

have an inconsistent approximation (SOUZA, 2015; CONTRERAS et al., 2016). Hence,

simulations on non isotropic media or on no k-orthogonal grids produces inconsistent

approximated fluxes on the control surfaces which leads to first order errors O(1) that

do not disappear as the mesh is refined (EDWARDS; ZHENG, 2008).

3.2.2.2 Non-Orthodox FV Flux Approximation

A lot of effort has been put to devise schemes capable of dealing with the

limitations of the classical TPFA method. Crumpton, Shaw and Ware (1995) were the

first to develop a control volume distributed scheme employing an approximation of

the flux using multiple points. Edwards and Rogers (1998) and Aavatsmark et al. (1998),

independently, generalized this formulation and devised control-volume distributed

multi point flux approximation (CVD-MPFA) schemes to general unstructured grids.

These strategies were successful in overcoming limitations that bounded TPFA to k-

orthogonal grids. However, for high anisotropic media on highly distorted meshes,

they may fail to converge (EDWARDS; ZHENG, 2008; CHEN et al., 2008). Hence,

several authors have proposed more robust numerical schemes in order to deal with

this limitation (LIPNIKOV et al., 2007; EDWARDS; ZHENG, 2008; SHENG; YUAN,

2011; CHEN et al., 2008; GAO; WU, 2010).

3.2.2.2.1 Multi Point Flux Approximation with a Diamond stencil - MPFA-D

In this thesis, we use the Multi Point Flux Approximation with a Diamond stencil

(MPFA-D) originally proposed by Gao and Wu (2010) and brought to the petroleum

reservoir context by Contreras et al. (2016). This approximation is a robust cell-centered

scheme which ensures linearity preserving property. Therefore, MPFA-D can be seen as

a generalization of the equation (3.11).

Before deriving MPFA-D flux, we shall state a lemma (GAO; WU, 2010; CONTR-

ERAS et al., 2016; CONTRERAS, 2012) throughly used throughout this thesis:
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Figure 7 – Zoom on the edge of two adjacent volumes inside the discrete domain.

Source: Author.

Lemma 1. Let 4OPQ be a triangle with vertices O,P ,Q ordered counterclockwise. For a
general pressure p defined on 4OPQ , we have:

~∇p '
pq − pp
|PQ|2

PQ~ +
RPQ~
|PQ|2

[(pp − po)cot∠PQO+ (pq − po)cot∠OPQ] (3.12)

where R is a linear operator which rotates a vector 90° clockwise. For a two-dimensional
space, it can be defined as:

R =

 cosθ sinθ

−sinθ cosθ

 , with θ = 90o (3.13)

Check (CONTRERAS, 2012) for a proof of Lemma 1.

Let IJ be a general edge inside the discretization of a physical domain Ω as

shown in Figure 7. Regardless the shape of any adjacent volumes inside this domain,

two auxiliary triangular CVs can be formed by connecting the nodes I and J edge to the

centroids of the volumes on the left L̂ and on the right R̂ of IJ . In a three-dimensional

space, theses triangles become diamond-shaped tetrahedrons which give name to this

scheme.

Assuming that hL̂IJ and hR̂IJ stand for the height of left and right triangles,
~NIJ =R~IJ , ~NJI =R~JI and ~NIJ + ~NJI = 0, let us start deriving the MPFA-D flux expres-

sion. Figure 8 illustrates better these triangles as well as these parameters.

Let us begin by applying equation (3.12) on the left triangle 4L̂JI .

~∇p '
pI − pJ
|IJ |2

IJ~ +
RIJ~
|IJ |2

[(pI − pL̂)cot∠IJL̂+ (pJ − pL̂)cot∠L̂IJ] (3.14)

where pk = p(~x) is a pressure defined on the node a k on the ~x = (x,y) coordinate.

We assume the full permeability tensor K˜ projected on IJ is a linear combination

of the tangential and normal permeabilities, as described bellow:

KIJ (i) = K tIJ (i)
IJ~ +KnIJ (i)

~NIJ (3.15)
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Figure 8 – Left and Right triangles.

Source: Author.

where (i) is equal to L̂ or R̂, so KIJ (L̂) and KIJ (R̂) stand for the projection of the perme-

ability tensor of the left and right control volumes on the face IJ .

Let us now find expressions for the tangential K tIJ and normal permeability KnIJ
projected on the edge IJ . By manipulating equation (3.15) we are able to obtain the

following expression for normal and tangential permeabilities:

KnIJ (i)
=
~NT
IJK˜(i) ~NIJ

|IJ |2
(3.16)

K tIJ (i)
=
~NT
IJK˜(i)IJ~

|IJ |2
(3.17)

Note that, from Figure 8, we can also obtain these simple geometric expressions:

cot∠IJL̂ =
JL̂~ · JI~

|IJ |hL̂IJ
(3.18)

cot∠L̂IJ =
IL̂~ · IJ~

|IJ |hL̂IJ
(3.19)

We can derive an expression for the left flux by using equation (3.14) in (2.8)

and applying on both sides the inner product of ~NIJ . See triangle 4IJL̂ on Figure (8). It

follows:

~vL̂IJ · ~NIJ ' −λIJ [K
n
IJ (L̂)

(
(pI − pL̂)cot∠IJL̂+ (pJ − pL̂)cot∠L̂IJ

)
−K tIJ (L̂)

(pI − pJ )] (3.20)

By using (3.16) to (3.19) and manipulating the resulting expression we obtain:

hL̂IJ
λIJK

n
IJ (L̂)

~vL̂IJ · ~NIJ ' −
1
|IJ |

(
(pI − pL̂)

JL̂~ · JI~
|IJ |

+ (pJ − pL̂)
IL̂~ · IJ~
|IJ |

)
− (pI − pJ )hL̂IJ

K tIJ (L)

KnIJ (L)

(3.21)
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Similarly, we can redo the same expression on the triangle formed by the right

control volume 4IR̂J :

hR̂IJ
λIJK

n
IJ (R̂)

~vR̂IJ · ~NIJ ' −
1
|IJ |

(
(pJ − pR̂)

JR̂~ · JI~
|IJ |

+ (pI − pR̂)
IR̂~ · IJ~
|IJ |

)
− (pI − pJ )hR̂IJ

K tIJ (R)

KnIJ (R)

(3.22)

As we have previously stated, for a consistent finite volume approximation flux

must be continuous and unique across IJ , this means:

~vL̂IJ · ~NIJ + ~vR̂IJ · ~NJI = 0 (3.23)

In which:

−~vL̂IJ · ~NIJ = ~vR̂IJ · ~NJI = ~vIJ · ~NIJ (3.24)

Finally, we can use (3.23) in (3.22), take the average of the resulting expression

and equation (3.21) to derive an expression for a unique and continuous flux on IJ :

~vIJ · ~NIJ ' τIJ [pR̂ − pL̂ −υIJ (pJ − pI )] (3.25)

where the scalar transmissibility τIJ , and the non-dimensional tangential parameter υIJ
are defined as:

τIJ = −λIJ |IJ |
KnIJ (L̂)

KnIJ (R̂)

KnIJ (L̂)
hR̂IJ +KnIJ (R̂)

hL̂IJ
(3.26)

υIJ =
IJ~ · L̂R̂~

|IJ |2
− 1
|IJ |

K tIJ (L̂)

KnIJ (L̂)

hL̂IJ +
K tIJ (R̂)

KnIJ (R̂)

hR̂IJ

 (3.27)

3.2.2.2.2 Boundary Condition Flux Treatment

For an adequate treatment of the boundary conditions each case given in (2.13)

must be treated individually and accordingly. A flux expression for edges subjected

to Dirichlet Boundary Conditions can be derived by using gD(I) and gD(J), prescribed

pressures, in equation (3.20). It follows:

~vIJ · ~NIJ ' −
λIJK

n
IJ

hL̂IJ |IJ |

[
(JL̂~ · JI~)gD(I) + IL̂~ · IJ~)gD(J)− pL̂|IL|

2
]
−K tIJ (gD(J)− gD(I)) (3.28)

Similarly, for edges subjected to Neumann boundary conditions we have:

~vIJ · ~NIJ = gN |IJ | (3.29)

where gN stands for the velocity normal to edge IJ .
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3.2.2.2.3 Linearity-Preserving Explicit Weighted Derivation

In cell-centered finite volume approximation all degrees of freedom are projected

on the cell centroid. However, the expression (3.25) relies on two auxiliary nodes I and

J . (See Figure 9). A simple solution to this problem is to define the pressure in such

nodes as a linear combination of the cell pressures around theses nodes:

pI =
n(I)∑
k=1

wkpk (3.30)

where n(I) is the number of volumes around I and wk is the weighted attributed to

pressure pk.

Figure 9 – Auxiliary nodes can be written as linear combination of its surrounding
neighbors.

Source: Author.

Many authors have proposed ways to interpolate this pressures. Gao and Wu

(2010) have developed two Linearity-Preserving Explicit Weighted (LPEW) interpo-

lation methods. Both are explicit, since no system of equations are locally solved in

the process, and robust for anisotropic and heterogeneous media (CONTRERAS et al.,

2016). In this work we use the interpolation method LPEW-2.

The process of deriving LPEW-2 is very straightforward. Figure 10 illustrates

all geometric entities between two adjacent volumes k̂ and ̂k − 1 used throughout the

LPEW-2 deriving process. First we need to construct an auxiliary control volume by

connecting each middle edge around the nodes to be interpolated (see figure 11a). Note

that k triangles 4Ik k + 1, where k +n = n and k = n(I), are formed in this process.

First, we need calculate a discrete and continuous Darcy’s flux on the middle

edges Ik. We do this by applying lemma 1 on the triangle 4Ik k + 1 and on the triangle
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Figure 10 – Sketch of the geometrical entities used in the LPEW-2 deriving process.

Source: Author.

4Ik − 1k (see Figure 11b). This lead us to the following expressions:

~v k̂
Ik
· ~NIk ' K

n
k̂,1
η1
k (pk̂ − pI )− (K t

k̂,1
− cotϑk̂,1K

n
k̂,1

)(pk − pI ) (3.31)

~v
̂k−1
Ik
· ~Nk ' K

n
̂k−1,1

η2
̂k−1

(p̂k−1 − pI )− (K t
̂k−1,2

− cotϑ̂k−1,2K
n
̂k−1,2

)(pk − pI ) (3.32)

where:

η1
k =
|Ik|
hkk

(3.33)

η2
k =
|Ik + 1|
hkk+1

(3.34)

Knα̂i =
~NT
It̄K˜α̂ ~NI t̄
|I t̄|2

(3.35)

K tα̂i =
~NT
It̄K˜α̂I t̄~
|I t̄|2

(3.36)

and where α̂ = 1,2, ...,n(I) , i = 1,2, t = α + i − 1.
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Figure 11 – LPEW 2 Derivation adapted from (GAO; WU, 2010).

(a) Auxiliary Control Volume around node I
created by connecting middle edges.

(b) Imposing flux conservation on each the
middle-edges of the auxiliary CV.

(c) Imposing flux conservation in the auxiliary
control volume.

Source: Author.

The mass conservation equation written for the middle edge Ik gives us:

~v k̂
Ik
· ~NIk + ~v

̂k−1
Ik
· ~Nk = 0 (3.37)

After some algebraic manipulation, we obtain the following equation:

(pk̂ − pI ) =
Kn
k̂,1
η1
k (pk̂ − pI ) +Kn

̂k−1,1
η2
̂k−1

(p̂k−1 − pI )

Kn
̂k−1,2

cotϑ̂k−1,2 +Kn
k̂,1

cotϑ k̂,1 −K
t
̂k−1,2

+K t
k̂,1

(3.38)

Flux of the surface of the auxiliary control volume k − 1k is calculated analo-

gously. It follows that:

~vk k+1 · ~Nk k+1 '
(
K
t
k̂ −K

n
k̂ cot(ϑ2

k̂
)
)
(pk − pI )−

(
K
t
k̂ +K

n
k̂ cot(ϑ1

k̂
)
)
(pk+1 − pI ) (3.39)
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where ϑ1
k̂

= ∠Ik k + 1 and ϑ2
k̂

= ∠k k + 1I

Knα̂ =
~NT

αα+1
K˜α ~NT

αα+1

|αα+1|2
(3.40)

K tα̂ =
~NT

αα+1
K˜α−−−−−−→αα+1

|αα+1|2
(3.41)

where α = 1,2, ...,n(i).

We also impose flux conservation on the boundaries of auxiliary control volume

(see Figure 11c):

n(I)∑
k=1

vk k+1 · ~N
t
k k+1

= 0 (3.42)

By using (3.40) and (3.41) in (3.39) and (3.42) and after substituting (3.38) on

the resulting expression, we derive the LPEW-2 weights as:

wk =
ψk∑n(I)
k=1ψk

(3.43)

where

ψ = K
n
k̂,1η

1
kξk +K

n
k̂,2η

2
kξk+1 (3.44)

and where:

ξk =
K
t

ˆk−1 −K
t
k̂ +K

n
ˆk−1 cotϑ1

ˆk−1
+K

n
k̂ cotϑ2

k̂

K t,1k −K
t,2
k−1 +Kn,2k−1 cotθ2

k−1K
n,1
k cotθ1

k

(3.45)

Nodes lying on the boundary of the computational domain must be treated

accordingly. For nodes subjected to Dirichlet BC one can simply set the values of node I

and J to the value of the prescribed pressure. In cases of nodes lying in a Neumamm

BC, weights must be calculated taking in account incoming and out-coming fluxes.

Essentially the deriving process is the same and it gives the following results:

ξk =


K̄n1 cotϑ2

1−K̄
t
1

Kn1 cotϑ1
1−K

t
1
, k = 1;

Use equation (3.45), 2 6 k 6 n(I);
K̄nn(I) cotϑ2

n(I)+K̄
t
n(I)

Knn(I) cotϑ1
n(I)−K

t
n(I)
, k = n(I) + 1;

(3.46)
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where k is counted counterclockwise from the edge 1 until the last edge around this

node n(I) + 1. Check (GAO; WU, 2010; CONTRERAS, 2012; CONTRERAS et al., 2016)

for more detail.

3.3 Discrete Form of the Saturation Equation

In order to derive a discrete form of the saturation equation, we employ the

same basic assumptions used to derive (3.6). We start by integrating equation (2.9) in

the time interval to and t and in the domain Ω obtaining:

∫ t

to

∫
Ω

∂Sw
∂t

dV dt = −
∫ t

to

∫
Ω

1
φ
~∇ · ~F(Sw)dV dt +

∫ t

to

∫
Ω

1
φ
QwdV dt (3.47)

The space integral can be represented as a sum of integrals for all Nk control

volumes in the domain Ω. After applying Gauss Theorem in the first integral on the

RHS equation (3.47) is rewritten as:

∫ t

to

Nk∑
1

∫
Ωk̂

∂Sw
∂t

dV dt = −
∫ t

to

Nk∑
1

1
φk̂

∫
∂Ωk̂

~F(Sw)~ndsdt +
∫ t

to

Nk∑
1

∫
Ωk̂

1
φk̂
QwdV dt (3.48)

where Nk is the number of control volumes that subdivide the physical domain Ω.

Equation (3.48) is also valid for a single control volume k̂, i.e.:

∫ t

to

∫
Ωk̂

∂Sw
∂t

dV dt = − 1
φk̂

∫ t

to

∫
∂Ωk̂

~F(Sw)~ndsdt +
1
φk̂

∫ t

to

∫
Ωk̂

QwdV dt (3.49)

By using the mean value theorem, we get:

1
φk̂

∫
∂Ωk̂

~F(Sw)~ndsdt ' 1
φk̂

∑
IJ∈Ωk̂

~F(Sw)IJ · ~NIJ (3.50)

1
φk̂

∫
Ωk̂

QwdV '
1
φk̂
Qw (3.51)

and ∫
Ωk̂

∂Sw
∂t

dV ' ∂Sw
∂t

Ωk̂ (3.52)

where Qw stand for a average sink/source term integrated on the referring CV.
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Using (3.50) to (3.52) in (3.49), we obtain :

∫ t

to

∂Sw
∂t

∣∣∣∣
k
dt = − 1

φk̂Ωk

∫ t

to

∑
IJ∈Ωk̂

~F(Sw)IJ · ~NIJdt +
Qw
φk̂Ωk̂

(3.53)

which is the semi-discrete form of the saturation equation. Note that we have dropped

the over bar notation for the saturation term on the LHS.

3.3.1 Temporal Discretization

The standard solution used by the oil and gas industry to discretize the time

derivative term in the saturation equation for a two-phase flow simulation using the IM-

PES algorithm (see Figure 2) is the Forward Euler Method, a first order approximation.

Using the Forward Euler approximation to integrate the LHS of equation (3.53),

we have:

∫ t

to

∂Sw
∂t

dt = Sn+1
w,k̂
− Sn

w,k̂
(3.54)

where Sn+1
w,k̂

and Sn
w,k̂

are, respectively, the water saturation on k̂ at the time level n and

n+ 1.

By using (3.54) in (3.53) and manipulating we obtain a fully discrete saturation

equation approximation:

Sn+1
w,k̂

= Sn
w,k̂
− ∆t
φk̂Ωk̂

∑
IJ∈Ωk̂

~F(Sw)IJ · ~NIJ +
∆tQw
φk̂Ωk̂

(3.55)

where the hyperbolic term is ~F(Sw)IJ = fw
(
Sn
w,k̂

)
~vIJ and the time step is ∆t = tn+1 − tn.

Notice that we have derived an explicit approximation which only relies on

current known information to calculate the saturation at next time step. Therefore, to

ensure stability, ∆t must satisfy Courant-Friedrichs-Lewy condition (CFL):

maxIJ∈Ωk̂

(∆fw(Sw)
∆Sw

)
IJ

~vIJ · ~NIJ

 ∆tVk̂ 6 σ (3.56)

where the CFL condition is σ , and
(
∆fw(Sw)
∆Sw

)
IJ

is a discrete approximation of (∂fw(Sw)
∂Sw

)IJ
(SOUZA, 2015).
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4 MULTISCALE METHOD

In this section we describe the modifications performed on the MsRSB (MOYNER;

LIE, 2015) scheme to produce the Multiscale Control Volumed framework developed

for solving the pressure equation in one-phase and two-phase flows on unstructured

grids on all scales.

We start the chapter by presenting the classical Multiscale Finite Volume Method

(MsFVM) (JENNY; LEE; TCHELEPI, 2003) and improved (JENNY; LEE; TCHELEPI,

2006) using the algebraic notation developed by Zhou and Tchelepi (2008) which allows

us to describe general multiscale methods as a series of simple matrix operations by

defining a restriction and a prolongation operator. General concepts used in Multiscale

Finite Volume methods are also introduced, and finally we present a general algorithm

for two-phase flow in porous media flow using a MsFV for the pressure equation only.

This chapter proceeds as we present the MsRSB along with the modifications

used to couple a CVD MPFA-D pressure solver with a FOU saturation solver. Differently

from the previous section, we also describe and discuss implementation details and

algorithms developed for this thesis.

It is noteworthy that there are also Multiscale Finite Volume strategies available

for the saturation equation (ZHOU, 2010) however in this thesis, we focus only on the

studies of the pressure equation multiscale methodologies.

4.1 Multiscale Finite Volume Method

The formulation which is considered to be the standard Multiscale Finite Volume

method was developed by Jenny, Lee and Tchelepi (2006) and it builds on his previous

work (JENNY; LEE; TCHELEPI, 2003) and it suggest a fine-scale flux reconstruction

step done by imposing Neumann boundary conditions on coarse scale volumes.

Additionally, we use the algebraic formulation developed by Zhou and Tchelepi

(2008) to describe the scale transferring processing using two matrices operators: A

Restriction Operator that restrains the influence of fine-scale cells onto single coarse

volumes and Prolongation Operator used to map the influence of a coarse volume into

fine-scale cells. This allows this method to be also used as an Upscaling technique.

Moreover, as a Finite Volume Method, it inherits local mass conversation properties so

important for a consistent approximation of the saturation field.

As most of the multiscale methods, including the MsFVM, were conceived

to work strictly with k-orthogonal grids, all the illustrations and general concepts
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Figure 12 – A description of coarse and fine meshes on the left. Center cells (blue),
Edges Cells (red), Inner Dual (white).

Source: Author.

presented in this section have a structured mesh format. However, in the Section 4.3

we will revisit some of this concepts taking in account the generalizations required by

unstructured meshes as we present the MsRSB.

4.1.1 Basic Multiscale Finite Volume Mesh Concepts

By definition all numerical schemes that work with scale-transferring process

make use of some sort of auxiliary mesh. Classical Multiscale Methods such as MsFEM

and MsMFEM rely simply on a higher-resolution grid, fine mesh, and on a lower-

resolution grid, coarse mesh. In addition these the Finite Volume Multiscale Methods

introduces a third grid used to ensure flux conservation on the fine scale. Figure 12

describes these threes types of meshes .

Fine Scale Mesh (Ωf orΩ): This is the higher-resolution grid derived from the dis-

cretization of the physical domain. Traditional Multiscale Methods generally

employ some kind of k-orthogonal grid discretization for this mesh. Figure 12

illustrates this mesh as the smaller gray squares volumes covering the domain on

the left side.

Primal Coarse Mesh (Ωp
c orΩp): This is a lower-resolution grid generated by cluster-

ing fine-scale volumes. In most traditional multiscale methods, it inherits the

k-orthogonality of the underlying discretization, giving birth to simple forms of

rectangular shapes. Figure 12 illustrates this mesh as thick bold black lines on the

left side. Note that each coarse volume is composed of a finite amount of fine-scale

volumes.
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Dual Coarse Mesh (Ωd
c orΩ

d ): In the classical MsFVM and its variants, the Dual n

other Coarse Mesh arises from the need to reimpose conservation on the bound-

aries of the coarse volumes. It is usually generated by connecting the centers

of each adjacent coarse volume. The duality emerges as all the vertices of the

primal coarse volumes are the centers of each dual coarse volumes. Figure 12

shows this process, the blue nodes (coarse volume centers) are connected with the

other center forming dual volumes with the red-dashed boundary. On the right

Figure 12, we zoom in to illustrate the composition of the dual volumes. Each dual

coarse volume is comprised by boundary (red), inner (white) and coarse center

volumes(blue).

Primal Coarse Center (xP ): The fine-scale volume which will represent the center of a

coarse volume. The classical MsFVM approach is to use the fine volume closest

to the coarse cell centroid, however the recent work (BARBOSA, 2017) proposes

shifting the primal coarse center of coarse volumes lying on the boundary of the

domain. In these cases, the new center should be the fine-scale volume closest to

the intersection between the boundary of volume and the physical domain. On

the right, Figure 12, these volumes are represented in blue. The very definition of

the Dual Coarse Mesh relies on how these center volumes are defined. Therefore,

for unstructured grids a more robust algorithm needs to be applied. In the next

section we describe a different algorithm (MOYNER; LIE, 2015) to be used for

general unstructured coarse meshes.

Support of Region of Primal Coarse Volume: The concept of a support region of a

coarse volume is intrinsically connected to the basis function idea. The mathe-

matical definition of a support of a real-valued function is the subset of a domain

containing non-zero elements only. Traditionally, MsFVM used this concept im-

plicitly by using the Dual Coarse Mesh. See Figure 13. In these methods, the

support region of Coarse Center (xP ) is comprised of dual coarse volumes(dashed

red lines) surrounding xP . Note that support of the dark blue cell center is the sum

of the four dual cells around it. Not all the boundaries of the dual cells remain

inside the support region, the light pink volumes located on the middle of the

region do, however, volumes lying on the outside boundary do not. Different

from the primal coarse (solid black lines) and fine mesh partition, the support

region overlaps with support regions of different coarse centers to cover the whole

domain. More details on Subsection 4.1.2.2.

Coarsening Ratio (Cr): The coarsening ratio or the upscaling ratio is defined as:

Cr =
nf
nc

(4.1)



4.1. Multiscale Finite Volume Method 42

Figure 13 – Support Region

Source: Author.

where nc and nf are the numbers of coarse volumes and the number of fine

volumes. It is worth pointing out the coarsening ratio has a direct impact on the

quality of the multiscale solution.

4.1.2 MsFV Operators

The very definition of Multiscale Methods arises from the need to exchange

information in different grids. As a direct simulation on a higher-resolution mesh

is not feasible, we transfer relevant information to a lower-resolution grid using a

sort of restriction algorithm. After that, we solve the resulting coarse system and the

solution is projected back onto the higher-resolution grid using a set of basis functions.

In a simplified way, the lower resolution system works as an auxiliary basis with a

considerable fewer degrees of freedom which enables the simulation, meanwhile the

basis functions capture the coupling between these scales. Therefore, for a discrete

system it is natural to define these scale-transferring operators in a matrix form.

4.1.2.1 Restriction Operator

The idea behind the Restriction Operator R˜op is to create an operator capable of

mapping information from the fine-scale (Ωf ) onto the coarse-scale (Ωp
c ). See Figure

14a. Moreover, for a consistent finite volume approximation, this operator must respect

the flux conservation law and when written in matrix form the restriction operator

must obey the following equation:

Qc = R˜opQf (4.2)
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Figure 14 – Multiscale Operators

(a) Restriction Operator (b) Prolongation Operator

Source: Author.

where Qc and Qf are respectively a nc ×1 and nf ×1 source/sink term on the coarse and

fine scale as a consequence R˜op must be a nc ×nf matrix.

In essence, equation (4.2) states algebraically that when we apply the Restriction

Operator to a fine-scale source/sink vector an equivalent and conservative vector on

the coarse-scale space.

Most traditional MsFV Methods propose using the Volume Summation (CHEN;

HOU, 2002; JENNY; LEE; TCHELEPI, 2006; ZHOU, 2010; MOYNER; LIE, 2015) as the

Restriction Operator. It can be defined as:

(R˜op)ij =

1, Ω
f
i ∈Ω

c
j ;

0, otherwise
where 1 6 j 6 nc and 1 6 i 6 nf (4.3)

This operator literately works as a switch identifying which fine cells Ωf
i influ-

ence the coarse volume Ωc
j . As a consequence, jth row of the operator is a 1×nf boolean

vector with 1 for all fine cells that belong to Ωc
j and 0 otherwise.

4.1.2.2 Prolongation Operator

On the other hand, the Prolongation Operator P˜op maps the influence of the

coarse volumes onto the fine scale mesh. Concisely, the fine-scale space solution becomes

a convex combination of the pressures on the coarse-scale space. See Figure 14a. The

weighting function used to span the multiscale fine solution is called the basis function.

By construction, the Prolongation Operator is comprised of all the basis functions in

such way that:

Pf = P˜opPc (4.4)

where Pf is a nf × 1 fine-scale pressure solution, Pc is a nc × 1 coarse-scale pressure

solution and P˜op nf ×nc matrix.
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Figure 15 – Basis Function Sketching

(a) Primal and Dual Coarse Grid generating
the Support Regions

(b) Isometric Representation of General Basis
Function on a two-dimensional domain

(c) Basis Function Overlaping on a Cross Sec-
tion: Basis function ranging from 1 to 0

Source: Author.

The basis function are computed by solving the homogeneous elliptic part of

Equation (2.9) using a set of Reduced Boundary Conditions devised to decouple the

domain generating multiple smaller problems. As a result, the basis functions associated

to a coarse cell center can be interpreted as normalized pressures with values varying

from 1 on the coarse cell center to 0 outside the zone of influence, or the support of

this cell. Thus, the jth column in P˜op stores how the coarse cell center (xPj ) influence the

high-resolution domain. This column becomes a nf ×1 vector with non-zero values only

inside the support region of the associated basis function. Additionally, the ith row is

comprised of all the weights to the 1×nc coarse pressure solution vector used to span

the pressure solution on the Ω
f
i fine-scale volume.

Once more, a consistent Finite Volume approximation requires that flux must

be conserved. Regarding the Prolongation Operator, this is done in two different ways.

The basis functions must be calculated using a conservative flux approximation and

the basis functions must ensure partition of unity, that is, the sum of the values of all

basis function in any point inside the domain is always equal to 1. In other words, no

information originated on the coarse-scale solution is lost as they are projected on the

fine-scale. The basis functions are weights of a convex combination of the coarse-scale

space. Therefore, the sum of any ith row is equals to 1.

Figure 15 illustrates the behavior of the basis functions. On Figure 15a we present

a coarse grid (black lines) along with its dual (red dashed lines). When combining the

four dual volumes surrounding any coarse center we have the support of a base function

associated with each coarse volume. As we previously mentioned, the support regions
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Figure 16 – Support Region

Source: Author.

overlap, therefore the basis function also overlap. Figure 15b shows the basis function

associated with the inner volumes of the primal mesh. Notice how each basis function

expand only inside small portions of the domain peaking at each coarse center. This

zone of influence crosses the boundaries of each coarse volume reaching neighbor

coarse volumes. The cross section view on Figure 15c shows that basis function idea is

intrinsically related to the Finite Element concepts of hat functions.

Regardless of the choice for the basis function, the Prolongation Operator is

given by:

(P˜op)i,j = φj(xi) where 1 6 j 6 nc and 1 6 i 6 nf (4.5)

The basis functions used by Jenny, Lee and Tchelepi (2003) on the original

MsFVM are very similar to those in the MsFEM (HOU; WU, 1997). However, they are

calculated locally on each dual coarse volume. By definition, the resulting velocity

field is mass conservative on the coarse-scale but not inside the fine-scale velocity

field. This happens as a consequence of the boundary conditions used to decouple the

problem. As the normal flow outside the support region is neglected, the velocity field

across the dual block interfaces becomes discontinuous. To deal with this issue, Jenny,

Lee and Tchelepi (2003) proposed solving another set of basis function to reimpose

conservation. A conservative fine-scale velocity field is obtained by comprising the

already conservative velocity field calculated on the boundaries of each coarse volume

and the velocity field found inside the coarse volumes by using this conservative field as

Neumann Boundary conditions on each coarse cell. In this approach, the basis function

associated with a coarse cell j is defined as:
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
−~∇ · (−λK˜~∇φji ) = 0 in Ωd

Aj

− ∂
∂xt

(
−λK˜ ∂

∂xt
φ
j
i

)
= 0 on ∂Ωd

Aj

φ
j
i = δixPj on V (∂Ωd

Aj
)

(4.6)

where t stands for the component tangential to the boundary φji = φj(xi), Aj stands for

all the dual cells around xPj and V (∂Ωd
Aj

) stands for the vertices in these duals.

The boundary conditions used to solve the problem given by equation (4.6) are

called the Reduced Boundary Conditions. Figure 16 presents a sketch of a support of a

coarse cell center Aj (dark blue) to help better understand these conditions. Briefly they

mean that for each coarse volume j (bold solid lines), a one-dimensional problem (light

pink region) is solved setting 1 on xPj (dark blue) and 0 on the surrounding centers(light

blue), to be used as boundary conditions to solve the rest of the support region (white

cells).

Each method has a particular choice for basis functions and Reduced Boundary

Conditions. Traditional MsFV methods generally employ TPFA to solve Equation (4.6)

(JENNY; LEE; TCHELEPI, 2006; ZHOU, 2010) that have proven to be accurate, efficient

and robust for multiphase-flow simulation on highly heterogeneous and isotropic

or moderate k-orthogonal reservoirs. The idea of Multiscale Methods is to exchange

accuracy, to the detriment of computational cost. Theoretically, Multiscale Methods

could converge to the numerical solution of any PDE, as long as, the approximation of

Equation (4.4) is exact (ZHOU, 2010).

4.1.3 Algebraic Formulation of the MsFVM

As we have previously mentioned, multiscale methods project the fine-scale

system of equations onto a coarse-scale space to be solved and projected back. For that,

we must apply a Finite Volume Flux Approximation to discretize the flux on Equation

(3.5) obtaining a fully discrete system of equations:

T˜f Pf =Qf for Pf ∈Ωf (4.7)

where Pf is a nf ×1 vector containing the pressure for all nf volumes in Ωf , Qf a vector

containing discrete representation of sink and source term in Ωf and T˜f is the nf ×nf
transmissibility matrix.

From this point, we use the definition of Prolongation Operator presented on

Equation (4.4) in Equation (4.7) and pre multiply both sides of the equation by the
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Restriction Operator, resulting in:

R˜opT˜f P˜opPc = R˜opQf (4.8)

We use the definition of Restriction Operator on the LHS of the equation (4.2) to

define source/sink term vector on the coarse-scale:

R˜opT˜f P˜opPc =Qc (4.9)

which is a nc ×nc coarse-scale system of equations:

T˜cPc =Qc (4.10)

where

T˜c = R˜opT˜f P˜op (4.11)

Qc = R˜opQf (4.12)

By solving Equation (A.16), we have:

Pc = T˜−1
c Q˜c (4.13)

Thus, we construct the multiscale solution by projecting it back onto the fine-

scale space:

Pms = P˜opPc = P˜opT˜−1
c Q˜c ≡ P˜op(R˜opT˜f P˜op)−1R˜opQf (4.14)

This algebraic form of interpreting Multiscale Methods was first proposed by

Zhou and Tchelepi (2008) to expand the multiscale operator adding more complex

physics i.e: compressibility, gravity and capillarity. As the multiscale solution is obtained

by using only matrix operators, this scheme is referred as the operator based multiscale

method (OBMM). Note that the procedures used to derive Equation (4.14) are mesh

independent, in contrast to classical MsFVM (JENNY; LEE; TCHELEPI, 2003; JENNY;

LEE; TCHELEPI, 2006) that use underlying grid information to construct a dual mesh

used to derive the coarse-scale transmissibility field. This means that in order to extend

MsFVM to work on unstructured grids it is only necessary do devise multiscale operators

accordingly.

4.1.4 Velocity Field Calculation

The difficulty in finding a consistent approximation for the transport equation

lays on the fact that it is mandatory to obtain a conservative velocity field in all grids.
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Finite Volume Approximations are by definition conservative, however, the multiscale

pressure solution derived in the last subsection gives birth to a velocity field that is

only locally conservative, which means the flow is discontinuous on the boundaries

of the dual coarse volumes but continuous inside. This is due to the use of the set of

boundary conditions, to solve Equation (4.6), that neglected normal flux on the surface

of the dual cells in order to uncouple the domain. Therefore, methods consistent with

the Multiscale Finite Volume family need to use some sort of reconstruction step in

order to obtain a fully conservative fine-scale velocity field. Figure 17 illustrates the

flux reconstruction algorithm proposed by Jenny, Lee and Tchelepi (2006) and used

in this thesis. This is done in two straightforwards steps. As a consequence of fluxes

being discontinuous on surfaces of the support region, the interface coarse volumes

remains conservative. The first step is to use the pressure field obtain by Equation

4.14 to retrieve on the surface of each primal coarse volume, in order to use them as

Neumann Boundary Conditions to solve Equation (2.6) restricted to each primal coarse

volume. The second step is to use the resulting pressure fields to calculate a new velocity

field in all surfaces but on the ones contained on the contour of each primal coarse

volume as described in Equation4.15. The reconstructed flux is a composition of the

velocities found in these two steps. For the boundaries of each coarse volume, we use

the velocity calculated on the first step, inside, we use the velocity computed in the

second step. −
~∇ · (−λK˜~∇(pmsc) = qf inside Ωp

− ∂
∂xn

(
−λK˜ ∂

∂xn
(pmsc)

j
i

)
= ~vms · ~N on ∂Ωp

(4.15)

where n is the normal component of the flow on the boundary of the primal coarse

volumes, pmsc is the new pressure field calculated inside each primal coarse volume and

~vms · ~N the Neumann flux computed on the surface of each primal coarse volume using

the pressure field calculated using Equation 4.14.

4.1.5 Multiscale Errors

By construction, multiscale methods rely on the numerical scheme used to

discretize the flux on the underlying high-resolution mesh. Therefore, the quality of

multiscale solution is always bounded by direct simulation on the fine grid or reference

solution, which becomes a theoretical upper limit. According to Equation (3.56), the

variation of the velocities between solutions in two-phase flow simulations using an

IMPES approach may result in two simulations with different numbers of time step.

In other words, comparing results of the multiscale and reference solution after the

same number of time step means comparing results calculated in different times. Thus,

for a proper comparison the pressure and saturation field are evaluated after the same

amount of simulation time.
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Figure 17 – Neumann

Source: Author.

In this thesis, we employ the same metric used by Barbosa (2017), Moyner and

Lie (2015), Jenny, Lee and Tchelepi (2003), Jenny, Lee and Tchelepi (2006), Zhou (2010),

Hajibeygi and Jenny (2011) to assess the accuracy of the MsCV framework. Let us now

determine the errors used in this thesis. First, we define respectively the L2 and L∞
norms as:

||~x||2 = ||~x|| =
N∑
i=1

|xi |
1
2 (4.16)

||~x||∞ = max
1≤i≤N

(|xi |) (4.17)

where xi is the ith component of a N size vector ~x.

The absolute and relative errors are defined as:

eabs = ||Xref −Xms|| (4.18)

erel =
||Xref −Xms||
||Xref ||

(4.19)

where Xms and Xref are the multiscale and reference solution for a generic variable X,

respectively.

4.2 General Multiscale Algorithm for Two-Phase Flow

In the previous sections we have introduced basic concepts used to derive general

Multiscale Finite Volume Methods. Now, we summarize these ideas by presenting a
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general algorithm to simulate two-phase flows using a IMPES strategy which replaces

the implicit pressure solver with a MsFVM scheme.

Algorithm 1 Multiscale Algorithm for the Pressure Equation in Two-Phase Flows

1: procedure Preprocessing Algorithm(Input: Ω Physical Domain )
2: Ωf ← Fine Mesh Discretization Algorithm(Ωf )
3: Ωc

p ← Coarsening Algorithm(Ωf )
4: xP ← Calculate Primal Coarse Cell Centers(Ωc

p)
5: Ωc

d ← Dual Mesh Generation(Ωf ,Ωc
p,x

P )
6: (S,K,Qwells, tmax,BC)← Read Initial Simulation Parameters . Initial

Saturation Field, Permeability Field, Wells, Maximum Simulation Time, Boundary
Conditions

7: end procedure
8: procedure Start Simulation(Input: Ωf ,Ωc

p,xP , Ωc
d ,S,K,Qwells, tmax,BC)

9: R˜op← Generate Restriction Operator(Ωf ,Ωc
p)

10: while t 6 tmax do
11: (λf ,λc)← Calculate Mobility(S,K,Qwells) . Fine/Coarse Scale Fields
12: procedure Pressure Equation(Input: Ωf ,Ωc

p,xP ,
Ωc
d ,So,K,Qwells,λf ,λc,BC,Rop)

13: (Tf ,Qf )← Fine-Scale Discrete System Assembly (Ωf ,S,Qwellsλf ,BC)
14: P˜op← Generate Prolongation Operator(Tf )
15: Pc← (R˜opT˜f P˜op)−1R˜opQf . Calculate Coarse-Scale Pressure Field
16: Pms← P˜opPc . Calculate Fine-Scale Pressure Field
17: V cons

c ← Calculate Velocity(Pms,K,λf ) . Calculate Fine-Scale Velocity
Field only conservative on Primal Coarse Cells

18: procedure Flux Reconstruction(Input: Tf ,Qf , Pc,V cons
c ,K,λf ,λc)

19: for each volume k in Ωc
p do

20: (T kc ,Q
k
c )← Coase-Scale System Assembly (Tf ,Qf , Pc,V cons

c ,λc)
21: pneumann← (T kc )−1Qkc . pneumann stores pressure field
22: end for
23: V cons

p ← Calculate Velocity(Pms,K,λf ,λc) . Calculating Fine-Scale
Velocity Field only conservative inside Primal Coarse Cells

24: Vms← Assembly Multiscale Velocity Field(V cons
p ,V cons

c ) . Fully
Conservative Fine-Scale Velocity Field

25: end procedure
26: end procedure
27: ff lux←Calculate Fractional Flux (S,Vms)
28: ∆t←Maximum Time Step(ff lux,Vms,S) . Calculate Time Step
29: procedure Saturation Equation(Input: ff lux,Vms,S,BC)
30: S← Saturation Update(ff lux,Vms,S,BC)
31: end procedure
32: t← t +∆t
33: end while
34: end procedure
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4.3 Multiscale Restriction Smoothed-Basis method coupled

with a MPFA-D solver

In this subsection, we use the formulation presented on the previous subsection

to present the Multiscale Restriction Smoothed-Basis Method. As most of the basic

concepts of the MsRSB share the basic principles with the MsFV, we focus on presenting

the differences by comparing these methods and introducing the algorithms used to

handle general unstructured meshes. Algorithm 1 is used as guide to describe the

MsRSB along with the technical details of its implementation.

First, we start this subsection introducing basic concepts of the MsRSB method

and comparing with the MsFV. We continue by presenting the multiscale preprocessing

stage algorithms: coarsening algorithms, coarse cell center calculation, support region

generation. Finally, we introduce the MsRSB method, how the multiscale operators

are calculated and we comment on the coupling with the MPFA-D solver. We call the

resulting framework the Multiscale Control Volumed, a scheme capable of handling

unstructured grids on both scales.

4.3.1 Basic MsRSB Concepts

MsRSB inherits most of the geometric entities defined for the MsFVM. Concepts

such as fine scale mesh , primal coarse mesh, primal coarse center and the support of a

coarse center remain identical, however the means to obtain them may vary. More on

that on subsection (4.3.2). One of the major difference between these methods concerns

the support region. While the MsFVM uses it implicitly, the MsRSB defines it explicitly

and uses the very definition to calculate the prolongation operator direct on it. Hereby,

we present the basic geometric concepts used by the MsRSB.

Support Region of a Primal Coarse Volume j (Ij): The definition of the support re-

gion of a primal coarse volume is identical to the MsFVM. It consists in all

fine-scale volumes where:

(P˜op)i,j > 0 ∀i ∈ Ij , otherwise (P˜op)i,j = 0 (4.20)

Ij defines a influence zone of the coarse cell center xPj . Unlike the MsFVM that

uses the dual coarse volumes to generate the support region, the MsRSB uses

the primal coarse cells and the coarse center to create the support region of a

primal coarse volume in order to define all other geometric entities. Figure 18a

illustrates the support region of the center coarse cell as the blue volumes around

it. Note that the pink fine control volume, center of the middle coarse volume, is

not included on the support region.
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Figure 18 – Basic concepts of a general coarse volume ΩP
j MsRSB

(a) Support region (Ij ) and
(Bj ) support boundary.

(b) Global Boundary, G =
B1 ∪B2 ∪B3 ∪ ...∪Bk .

(c) Global boundary in ΩP
j

Hj = Ij ∩G.

Source: Author.

Support Boundary Region, (Bj): The support of a boundary region consists in all vol-

umes that share at least one edge with Ij but are not contained in it. Figure 18a

and 18c depict these as orange volumes. It is worth noting that no primal coarse

center xPj (in pink) are included in this group.

Global Support Boundary, (G): The Global Support Boundary Region is the union of

all support boundaries associated with all coarse volumes of the primal coarse

mesh. Figure 18b illustrates as the green fine-scale volumes.

Global Support Boundary in a Support Region, Hj : The region consists in the inter-

section of a general Ij with G. They are represented as the yellow volumes on

Figure 18c.

4.3.2 Preprocessing Algorithms

In order to make a MsCV compatible with general grids, we must understand the

peculiarities these grids possess to propose algorithms to generalize the ideas behind

the MsFVM. The first main difference is the fact the MsRSB allows coarse volumes to

assume general non-regular shapes. This makes the coarsening algorithm not trivial as

agglomerating fine-scale cells in rectangular volumes. Also, the extension we propose

to overcome the limitation of the classical MsRSB that used TPFA as the pressure

solver, reducing the choice of underlying fine-scale grids. Therefore, the second main

difference is, fine-scale volumes may also be unstructured. Figure 19 describes these

differences. Note that in Figure 19a, the coarse volumes are unstructured but the fine-

scale volumes are not. Figure 19b describes a general grid with unstructured fine-scale

and coarse-scale volumes.
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Figure 19 – General unstructured grids.

(a) Structured fine mesh with unstructured
primal coarse grid.

(b) Unstructured fine mesh with unstruc-
tured primal coarse grid.

Source: Author.

As a consequence, we must define coarsening algorithms, calculate the pri-

mal cell centers to define the support region. The preprocessing stage consists in all

these algorithms. See Figure 20. For the fine Mesh discretization step, we use Gmsh

(GEUZAINE; REMACLE, 2009), a finite-element mesh generator broadly used in the

numerical simulation context.

Figure 20 – Preprocessing Algorithm

Source: Author.

4.3.2.1 Coarsening Algorithms

In this thesis, we use two different approaches for generating a primal coarse-

scale mesh. The first approach used Metis (KARYPIS; KUMAR, 2009), a set of partitioner

tools used for distributing workload among different cores in parallel computing

simulations, this gives birth to coarse grids that assume unstructured shapes. Figure

21 shows two examples of meshes generated using Metis algorithm. On the other

hand, since Metis was not conceived for multiscale coarsening their grids may cause

oscillations as explained on the Results. In addition, Metis may generate coarse grids

in which a fine-scale element from a random partition is completely surrounded by

fine-scale elements of other partitions (See Figure 22). In other words, it does not ensure

that all cells in the same partition share at least one face.
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Figure 21 – Coarse Meshes with 45 coarse volumes generated using Metis.

(a) Underlying unstructured fine-scale grid. (b) Underlying structured fine-scale grid.

Source: Author.

Figure 22 – Coarse mesh generated with Metis improper for multiscale simulation.

Source: Author.

The need for another simple yet robust coarsening algorithm, made us develop

some partitioning routines that allows users to literally draw the contours of the coarse

volumes. This geometrical approach showed better results in most cases in comparison

to coarse girds generated using Metis as we are capable of generating coarse grids that

better model the geometry of the problem. Check the Results of this thesis for more on

that subject.
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The core idea to these routines is an algorithm that checks whether the centroid

of a fine-scale cell is inside of a general polygon. For the sake of simplicity name this

algorithm inpolygon. Figure 23 describes this process. It works by taking as an input a

generally defined polygon and multiple fine-scale cells (Figure23a). This routine checks

the centroid of each of these cell and returns the cells in which their centroids lye inside

this polygon (Figure23b e 23c).

Figure 23 – Inpolygon Algorithm: Checks if a center is inside a polygon.

(a) Input: General poly-
gons and fine-scale
cells.

(b) Checks which fine-
cell center are inside
the polygont.

(c) Return: Fine-scale
cells inside this
polygon.

Source: Author.

The first algorithm developed creates a base coarse mesh using simple geometric

shapes. This is done by drawing upon the fine-scale mesh these forms, then, inpolygon is

used to check if each fine cell belongs to each coarse cell. Figure 24 uses the underlying

fine-scale mesh on Figure 21a to illustrate this process. First, the user inputs which basic

shape will be used along with the number of elements in the X and Y axes, this creates a

basic forming grid (Figure 24a) that is applied upon a fine-scale mesh (Figure 24b). Each

volume in this basic forming coarse grid uses inpolygon to check the fine-scale volumes

that belong to them. As a consequence, the resulting coarse-scale have contours that

resembles but are not necessarily equal to those in the original forming grid (Figure

24c). Figure 25 repeats the same process using an hexagonal basic grid.
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Figure 24 – Coarse mesh generation.

(a) User defines a basic
forming grid.

(b) Apply forming grid to a
fine-scale mesh.

(c) Generate coarse-
scale volumes.

Source: Author.

Figure 25 – Hexagonal coarse mesh generation.

(a) User defines a basic
forming grid.

(b) Apply forming grid to a
fine-scale mesh.

(c) Generate coarse-
scale volumes.

Source: Author.

We have also implemented a routine that let the user to draw different shapes on

the coarse-scale grid, which in turn uses inpolygon to create additional coarse volumes.

This allows the user to generate complex and non-conforming coarse-scale meshes

taking into account the physical and geometrical properties of the media. Figure 26

describes some of its features. It possible to input the size, position where a basic shapes

is applied (Figure 26a). User can rotate and manipulate (Figure 26b) as well as create as

many shapes as needed to compose a complex cell (Figure 26c).
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Figure 26 – Support and Boundary Support Region generation for general unstructured
grids.

(a) Position shapes. (b) Rotate shapes. (c) Create complex volumes.

Source: Author.

Finally, after using these steps we have developed an algorithm that checks the

coarse-scale mesh integrity. In other words, a routine that ensures that all fine-scale

volumes in a coarse-volume shares at least one edge with each other. The fine-scale

volumes that do not bear these conditions are reallocated to neighbor coarse-volumes.

4.3.2.1.1 Coarse Cell Center Calculation

The process of defining the primal coarse cell center in most of classical MsFVMs

is as simple as calculating the centroid. However, for unstructured coarse cells this is

not an option as the centroid of non-convex shapes may lay too close to the contours

of the polygon or even outside it. (See figure 27.) We use an unstructured coarse mesh

with a unitary domain in Figure 28 to illustrate a 3 step algorithm that deals with this

limitation. Let us calculate the center of the blue coarse mesh in Figure 28a. The first

step is to find the interfaces between the blue coarse volume and its neighbors (See

Figure 28b).

Figure 27 – Centroid of non-convex coarse cells.

Source: Author.
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Figure 28 – Blue coarse volume interfaces.

(a) Ordinary coarse mesh. (b) Highlighted interfaces.

Source: Author.

Second, one must find the middle of these interface. This is done by finding the

point that splits in two the length of each interface Figure depicts 29.

Figure 29 – Finding the center of the interfaces.

Source: Author.

Finally, we use these points to calculate the Geometric Median. By definition,

this median finds a point which minimizes the sum of the distances to the sample

points. That is to say, the center point of a coarse volume is the point which has the

lowest sum of distances to the middle edges interfaces. This ensures that the center

always lays inside the coarse volume. In this thesis the geometric median is calculated

using classic Weiszfeld’s algorithm (WEISZFELD, 1937). The primal coarse center (xP )

is the fine-scale cell whose center lays closest to the geometric median.

Barbosa (2017) suggests relocating the center of primal coarse cells lying on the

boundary of the domain to the fine-scale volume closest to the intersection between the
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coarse cell surface and the physical domain. Barbosa conduced a series of simulations

showing that this modification increases the accuracy of the resulting pressure field.

Thereby, we have also implemented these modifications.

Figure 30 – Relocated primal coarse cell center in a non-conforming unstructured mesh.

(a) Classic primal coarse cell center of coarse
cells lying on the boundary.

(b) Relocated primal coarse cell center of coarse
cells lying on the boundary.

Source: Author.

4.3.2.2 Support Region Generation

The final step of the preprocessing stage of most MsFVM is to generate an

auxiliary mesh to be used to reconstruct a conservative flux field throughout the fine

mesh. While the MsFVM uses the dual mesh, the MsRSB uses the support region of

each coarse cell Ij for this purposes. As we work with unstructured meshes, there are

several ways to define this auxiliary mesh, each with advantages and disadvantages that

directly impact the quality of the solution.

In this thesis, we use the algorithm proposed by Moyner and Lie (2015) with a

slight modification to better work with fine-scale unstructured grids to generate the

support region of each primal coarse volume. Figure 31 illustrates the process that

generates the support region and the support boundary associated with the center

primal coarse volume whose coarse volume is green.

(a) The first step is to define which primal coarse volumes are neighbors of the center

coarse volume. We define neighbor as volumes that share at least one node.

(b) We find the middle of the interface of the central volume with each of its neighbors

(blue nodes). We also find the middle of the interface among all neighbor volumes

(red nodes).
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(c) We use these points plus the center points of the neighbor coarse cell center (black

nodes in pink volumes) to perform a Delaunay triangulation.

(d) For a consistent support region, no neighbor coarse cell center may lay inside

of this region. Then, we perform a search among the triangles generated by the

Delaunay triangulation to find those that do not meet this condition. In other

words we find those triangles that prevent the coarse cell center nodes (black

nodes) to be on the boundary of the resulting shape.

(e) We remove the triangles found on the previous step from the Convex Hull of the

points found at the (b) step.

(f) We use the basis algorithm using the resulting polygon to find which fine-scale

volumes lay inside it (blue volumes).

(g) We search for fine-scale volumes that share at least two edges with this region.

(h) We add these volumes to the blue region to formally define the support region of

the middle coarse volume.

(i) Finally, we define as the support boundary all volumes that share at least one

node with the volumes inside the support region.
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Figure 31 – Support region and boundary support region generation for general un-
structured grids.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Source: Author.

This process is repeated for each coarse volume on the primal coarse mesh. After

this, we use the very definition to find the Global Support Boundary and Global Support

Boundary in a Support Regions (See Section 4.3.1).
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4.3.3 MsRSB Multiscale Operators

Besides the modifications in the preprocessing stage, the major difference be-

tween the MsRSB and the MsFVM lays on the way the prolongation operator is generated.

While the MsFVM finds it implicitly by using the classic Reduced Boundary Conditions

to solve Equation (4.6), the MsRSB calculates it explicitly using a modified version

of Reduced Boundary Conditions to enable simulations on unstructured coarse-scale

meshes. Moreover, the basis functions of the MsRSB are computed on the support

regions which are significantly bigger than the four dual where the basis functions

are solved on the classic MsFVM (See Figure 16). Cost wise, it is expensive to solve an

implicit simulation at every time step. The MsFV deals with it using adaptive com-

putation conditions to determine when to update the prolongation operator (JENNY;

LEE; TCHELEPI, 2006). Two-phase simulation using the MsRSB as pressure solver

benefit greatly as this method uses explicit prolongation operator. No more than a 100

iterations are needed to recalculate the prolongation operator found on the previous

time step decreasing significantly the coast associated with updating the basis functions.

Regarding the Restriction operator,the MsRSB uses the same as the MsFV which is

defined in Equation (4.3).

4.3.3.1 Prolongation Operator

The MsRSB calculates the prolongation operator in a very forward manner.

Unlike the classic MsFVM that assembles the fine-scale transmissibility discrete system

and multiple basis function problems to calculate a multiscale solution, the MsRSB uses

the fine-scale system to calculate the basis function. This is done a pre-conditioner on

the fine-scale matrix which strips its original boundary conditions. The preconditioned

matrix is then used in a modified Weighted Jacbobi method which employs a different

set of boundary conditions to calculate the basis functions. See Figure 32.

Figure 32 – Preprocessing Algorithm.

Source: Author.

Therefore, adapting the MsRSB to work with different FV formulations become

as simple as assemble a fine-scale system with an accordingly flux approximation and

finding a conservative reconstructed velocity field. In this thesis, we employed the flux

approximation derived in the Section 3.2.2.2 to assemble the MPFA-D.
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Let T˜f be a n×n transmissibility matrix of Equation (4.7). We define the precon-

ditioned matrix T˜pref as:

(T˜pref )ij =


(T˜f )ij i , j;

(T˜f )ij −
n,k,j∑
k=1

(T˜f )ik i = j;
(4.21)

As we have previously mentioned, the MsRSB basis functions are solved itera-

tively inside each support region. As iterative methods require an initial solution, we

must choose an initial guess to ensure that partition of unity is not lost while iterating.

One natural option is to use the indicator function of each corresponding coarse volume.

In other words, one is set to all fine-scale volumes inside the associated coarse volume,

i.e. :

(P˜0
op)ij =

1 Ω
f
i ∈Ω

c
j ;

0, otherwise
(4.22)

Note that Equation (4.22) is equivalent to:

(P˜0
op)ij = R˜Top (4.23)

For IMPES like simulations where the MsRSB is used exclusively as a solver for

the pressure equation, the prolongation operator computed on the previous time-step

is used as an initial guess instead of Equation (4.22). For such problems, the mobilities

are updated slowly resulting in little changes to the fine-scale transmissibility matrix.

As a consequence, the prolongation operator tends to converge very quickly after the

first time-step.

The Prolongation Operator is finally defined using the following procedure

(MOYNER; LIE, 2015):

1. We calculate the classical Weighted Jacobi increment.

d̂j = −ωD−1T˜pref (P˜op)
η
j (4.24)

where is D is the diagonal matrix containing the main diagonal of the precondi-

tioned transmissibility matrix T˜pref and ω is the damping parameter, which is set

to 2/3 the optimal choice for solving Poisson’s equation with constant coefficients

using the Jacobi’s method Moyner and Lie (2015).
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2. The following piecewise function modifies the increment ensuring that partition

of unity is not lost and restricting growth to the inner side of the support region.

dij =


d̂ij−(P˜op)

η
ij

∑
k∈Hk d̂ik

1+
∑
k∈Hk d̂ik

Ω
f
j ∈Hj ;

d̂ij Ω
f
j ∈ Ij and Ω

f
j <Hj ;

0 Ω
f
j < Ij ;

(4.25)

The last sub-function in Equation (A.21) clears increments of fine-scale volumes

as they get to the boundaries of the support region. To avoid losing partition

of unity, the first sub-function of Equation A.21 redistributed this increment

among all other support regions that share these fine-scale volumes. In essence,

while the second sub-function spreads the influence inside each Prolongation

Operator column (P˜op)
η
j , the last sub-function restricts this influence to fine-scale

volumes contained in each support region and while the first spreads this lost

influence by normalizing the Prolongation Operator rows (P˜op)
η
i of fine-scale

volumes that belong to the Global Support Boundary. Thus, sub-functions 1 and

3 are a sort of Reduce Boundary conditions. It is worth remembering that the

primal coarse cell center (xP ) by definition does not belong to no support region

nor any boundary region, therefore the values attributed by Equation 4.22 remain

constant as Equation (A.21 is incapable modifying the value of these volumes. In

other words, the centers take 1 for values on the Prolongation Operator Column

(P˜op)
η
xP j

associated with the primal coarse volume and 0 otherwise.

3. The Prolongation Operator is updated using the modified increment.

(P˜op)
η+1
j = (P˜op)

η
j + dj (4.26)

4. The local error is defined for volumes not in the Global Support of the Boundary

Region.

ej = max
i

(||d̂ij ||), i < G (4.27)

5. Check for convergence. If ||ej ||∞ > tol the current (P˜op)
η
j is fed to Step 1, otherwise

set (P˜op) = (P˜op)
η
j .

The Multiscale Restricted Smoothed Basis is named after the process reported

above. Figure (33) to (36) illustrate how the initial indicator function is smoothed

restricted to the corresponding support region. In both cases, they assume hat-shaped

functions bounded by the support region.
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Figure 33 – Illustration on how the basis function spreads its influence inside its associ-
ated support region calculated for at homogeneous permeability field.

(a) Initial guess. (b) 41 iterations (c) 81 iterations. (d) After converging.

Source: Author.

Figure 34 – Three-dimensional view on the basis function of Figure 33 being smoothed
while restricted to its support region.

(a) Initial guess. (b) 41 iterations. (c) 81 iterations. (d) After converging.

Source: Author.

Figure 35 – Illustration showing the basis function in a unstructured grid converging
limited to its support region unstructured fine-scale grid.

(a) Initial guess. (b) 31 iterations. (c) 171 iterations. (d) After converging.

Source: Author.
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Figure 36 – Three-dimensional view on the basis function of Figure 35 that shows a
star-shaped initial guess iterating into a hat-function type restricted to its
support region.

(a) Initial guess. (b) 31 iterations. (c) 171 iterations. (d) After converging.

Source: Author.
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5 RESULTS

In this chapter we present the results obtained using the MsCV framework

implemented on Matlab 2014 (MATLAB, 2014). For the sake of simplicity the results

are grouped in accordance to the type of flow studied, one or two-phase flows. All

simulations were performed in accordance with the numerical formulation described

on Chapter 3. It is worth noting that reference solution stands for the solution obtained

by performing a direct simulation on the fine-scale or the analytical solution when

available.

5.1 One-Phase Flow Results

The results presented on this subsection use one-phase flow examples to better

understand the behavior of the MsCV framework and its components. The first example

was devised to verify how MsCV impacts the piece-wise linear property of the MPFA-D,

the second example is a benchmark of Metis and geometric partitioner generated coarse-

grids, the third example consists on a test showing the possibilities of using an adaptable

coarse-grid and the last example uses a knowingly difficult highly heterogeneous

permeability field to evaluate the accuracy of the MsCV framework.

5.1.1 MsCV Piecewise Linearity Test

Among the many features desired for numerical schemes we highlight the ability

to produce solutions that are piece-wise linear. Gao and Wu (2010) devised the MPFA-D

under specific assumptions in order to guarantee this attribute. Therefore, it is worth

testing how the multiscale framework affects this ability. To do so, we use the classical

Flow Channel problem (See Figure 37) in a homogeneous squared domain [0 1]2 in

which the top and the bottom are submitted to null flux condition and the left and right

side to prescribed pressure respectively defined as 1 and 0.
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Figure 37 – Flow-channel domain representation.

Source: Author.

This problem has a quite simple analytical solution expressed by the following

equation:

p(x) = −x+ 1 (5.1)

The experiment we propose solves this problem using the multiscale framework

in high-resolution grid containing 14,592 triangular elements coarsened using the

geometric partitioner and the Metis algorithm producing each 5 coarse-scale meshes

(See Fig.38 and Figure 39).
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Figure 38 – Coarse grids generated using Metis.

(a) 35 coarse volumes. (b) 65 coarse volumes. (c) 95 coarse volumes.

(d) 125 coarse volumes. (e) 155 coarse volumes.

Source: Author.

Figure 39 – Coarse grids generated using Geometric Partitioner.

(a) 36 coarse volumes. (b) 64 coarse volumes. (c) 100 coarse volumes.

(d) 120 coarse volumes. (e) 156 coarse volumes.

Source: Author.
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This expected solution to this problem, as defined by Equation (5.1), is a linear

function that connects the prescribed pressure values of the left to that on right of

the physical domain. As we have previously mentioned, the MPFA-D was conceived

to ensure piece-wise linear solutions. It is worth noting that for this configuration the

direct simulation on the fine-scale converged to the analytical solution. The MsCV

in turn produced solution that were coase-scale dependent and oscillated around the

analytical solution.

Figures 40 and 41 showed that no matter the number of coarse volumes Metis

is clearly more oscillatory than the Geometric Partitioner. Additionally, it was easy to

notice that the MsCV could not preserve the piece-wise linear property in all coarse-

grids tested. Nonetheless Table 2 shows that with a proper coarsening the average

pressure error can drop close to 1%. Finalt wly, it was clear that the geometric partitioner

produced the better solution in comparison to the Metis. Check Table 1 and 2. It is worth

pointing out that the 95 coarse volumes grid created using Metis produced pressure

values so oscillatory that infinity norm |p|∞ peaked at 76.1097%.

We speculate that as the coarse volumes are highly unstructured with different

shapes and sizes, the corresponding support regions also vary in dimension and quality.

As a consequence, the domain is unevenly covered with support regions what leads

to parts of the domain influencing too much the coarse pressure values over others.

Thus, an small error on the coarse pressure are amplified by the prolongation operator

causing the presented oscillations.

It is worth point out that these errors bear little influence on the overall quality of

the two-phase flow solutions. Firstly, because the saturation field relies on the velocity

fields that in turn rely on the pressure gradient. Secondly, these error are small in

comparison to those introduced by highly heterogeneous and/or anisotropic medium

as the examples in the two-phase flow subsection show. In these cases, the simulation

using the Geometric Partitioner produced solutions with errors as small as MsFV, which

is also piece-wise linear.

The next results corroborate with this proposition. Moreover, there are state of

the art smoothers that are capable of significantly improving the pressure field with

only a few iterations. Hajibeygi and Jenny (2011) develop an algorithm that improves

the approximation of the basis functions iteratively up to a given tolerance, Barbosa

(2017) recalculates the pressure field solving the Equation 2.9 on each primal coarse

volume bounded by Dirichlet BC using the pressure values obtained from Equation

4.14.
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Figure 40 – Comparison between the multiscale and reference solution obtained using
coarse-grids generated on Metis.
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(a) 35 coarse volumes.
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(b) 65 coarse volumes.
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(c) 95 coarse volumes.
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(d) 125 coarse volumes.
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Source: Author.
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Figure 41 – Comparison between the multiscale and reference solution obtained using
coarse-grids generated on our geometric partitioner.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Geometric Coarsening Algorithm : 36 Coarse Volumes

Distance (m)

P
re

ss
ur

e

 

 
Multiscale Solution
Reference Solution

(a) 36 coarse volumes.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Geometric Coarsening Algorithm : 64 Coarse Volumes

Distance (m)

P
re

ss
ur

e

 

 
Multiscale Solution
Reference Solution

(b) 64 coarse volumes.
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(c) 100 coarse volumes.
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(d) 120 coarse volumes.
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(e) 156 coarse volumes.

Source: Author.

Finally, we have noticed a clear trend presented on the Tables 1 and 2 and on

the Figures 40 and 41 showed that as the coarse grids become more well behaved the

multiscale solution converges to the reference solution. To test this proposition, we

performed a simulation using a 9x9 structured fine-scale grid on a 3x3 structured

coarse-scale grid. The simulation was performed using the center of coarse volumes
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Table 1 – MsCV piecewise linearity test errors of the Metis grids.

# of Coarse Volumes ||p||2 ||p||∞ Coarsening Algorithm
35 6.5025% 13.3116% Metis
65 4.1776% 9.5648% Metis
95 3.1206% 76.1097% Metis

125 2.4210% 6.9305% Metis
155 2.7314% 5.5654% Metis

Table 2 – MsCV piecewise linearity test errors of the geometric partitioner grids.

# of Coarse Volumes ||p||2 ||p||∞ Coarsening Algorithm
36 2.0166% 3.4052% Geometric Partitioner
64 1.5651% 4.219% Geometric Partitioner

100 1.8609% 4.215% Geometric Partitioner
120 1.3986% 2.784% Geometric Partitioner
156 1.0303% 2.9747% Geometric Partitioner

proposed by Moyner and Lie (2015), in which the coarse centers coincide with the

centroid of each coarse volume for quadrilateral structured grids, and the coarse centers

proposed by Barbosa (2017) that suggests relocating the center of primal coarse volumes

lying on the boundary of the domain to the fine-scale volume closest to the intersection

between the coarse cell surface and the physical domain (See Figure 42). The pressure

solution presented on Figure 43 points out that using well behaved structured grids is

not sufficient condition to ensure piece-wise linearity as this property is also depend of

a proper choice for primal coarse center. The coarse center type suggested byMoyner

and Lie (2015) did not converge to the reference solution, however, the relocated coarse

center proposed by Moyner and Lie (2015) did.

Figure 42 – Primal coarse centers used to check piece-wise linearity on structured grids.

(a) Primal coarse center proposed by Bar-
bosa (2017) (Center type 1).

(b) Primal coarse center proposed by
Moyner and Lie (2015) (Center type 2).

Source: Author.
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Figure 43 – Comparison between the multiscale solution for each type of center and
reference solution.
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5.1.2 A benchmark of coarse-grids generated using the Geometric

Partitioner and Metis

The need to better understand the results of the last subsection lead us to propose

a numerical experiment to help determine in which cases the Geometric Partitioner

produces better results than Metis. We have chosen to use once more the Flow-Channel

problem keeping the underlying fine-scale grid with 14,592 elements. Additionally, we

have created 20 coarse grids using Metis in which the coarse volumes range from 35 up

to 225 and 13 coarse grids using the Geometric Partitioner counterpart with volumes

ranging from 36 to 256. For each generated coarse grid we performed a simulation

varying the Kyy component of the permeability tensor taking the values 1, 10 and 100.

The results obtained were compiled into the following 2 charts presented on Figure 44.



5.1. One-Phase Flow Results 75

Figure 44 – Error of the coarse grids generated using Metis and the Geometric Parti-
tioner (GP).
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(b) Infinity Norm Comparison.

Source: Author.

The first feature that call our attention was the rather stable and low error

obtained using the grids created using the Geometric Partitioner. It is noteworthy how

smooth the L2 and Infinity norms curves for Kyy = 1 and Kyy = 10. In addition, they

also produce a downward trend in both studied norms. Meanwhile, Metis produced

oscillatory error curves that showed a clear downward trend only for Kyy in the L2

norm. Also, the L2 and Infinity norm values on the Metis curves were considerably

higher than the Geometric Partitioner counterpart.

The high anisotropic case (Kyy = 100) in turn produced extremely oscillatory

results for both partitioner. The gaps presented on these curves represent coarse-grids

in which the error become so high that multiscale framework beard no solution. Thus,

the Geometric Partitioner was not capable of producing a stable solution for the first 10
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coarse-grids generated while Metis did not produced a solution only in 2 cases.

To understand why of this unexpected result we need to remember that the

prolongation operator is calculated neglecting the normal component of the flux flowing

outside the support region. Moreover, the Kyy component of the permeability tensor

may induces a trend to flow 100 times greater on the Y direction. Thus, as the Geometric

Partitioner generates well behaved coarse-grids in which the faces of the coarse volumes

tend to stay parallel to the main directions, the reduced boundary conditions destroy

the Y component of flow depriving the support region of the physics of the problem.

On the other hand, the uneven and aleatory shapes of the faces of the coarse vol-

umes generated on the Metis produces contours not even close to the main components

of the flow, which means that the impact of reduced boundary conditions are scaled

down. In other words, the surface of the coarse-grid volumes are better aligned to the

preferential direction of the permeability tensor.

5.1.3 Using the Geometric Partitioner to create an adaptive grid

The MsCV inherits from the MsRSB the ability to work with truly unstructured

coarse-grids. To take advantage of this property, the Geometric Partitioner incorporate

routines capable of generating non-conforming lower-resolution grids as thoroughly

shown on the last chapter. For this reason, we propose a simple numerical experiment

to show the impact of using an adaptive mesh on the solution. The experiment consists

on an unitary domain Ω = [0 1]× [0 1] in a 1/4 of five spot configuration, in which,

flux is prescribed (Qinj = 1) at the injector well and pressure is prescribed (pprod = 0) at

the producer well. The medium is isotropic and heterogeneous and it consists in two

transverse channels as depicted on Figure 45. The permeability tensors of this example

are given by the following expression:

K1 =

1 0

0 1

 and K2 =

1000 0

0 1000


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Figure 45 – Homogeneous medium with high permeability channels.

Source: Author.

This problem has been focus of many studies on literature (BARBOSA, 2017;

CARVALHO, 2005; JENNY; LEE; TCHELEPI, 2006). Figure 46 presents the pressure

field of the reference solution for comparison purposes. Usually, it does not present great

challenge to multiscale methods, however when the vertical boundaries of the coarse

volumes meet the high-permeability channels, the multiscale solution deteriorates. This

happens because the boundary conditions used to uncouple the problem neglect the

flux where the permeability tensor induces bigger fluxes.

Figure 46 – Pressure field of the reference solution of problem.

(a) Two-dimensional view of the pres-
sure field.

(b) Three-dimensional view of the
pressure field.

Source: Author.

To replicate this studies, we generated a 12x12 coarse grid upon a fine-scale

unstructured grid with 12,018 triangular elements in which the vertical boundary of

the coarse volumes falls inside the channels (See Figure 47).
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Figure 47 – 12x12 coarse grid on a homogeneous by part medium with high permeabil-
ity channels.

Source: Author.

Figure 48 shows that, as expected, the MsCV produced non-physical results that

qualitatively bear no resemblance to the reference solution.The L2 and Infinity norm

of the pressure solution (|p|2 and |p|∞) calculated for this problem were estimated in

69.52% and 242.12% respectively. Pressure field overshoot the maximum and under-

shoot minimum values of the reference solution destroying completely the physics of

the problem.

Figure 48 – Pressure field of the multiscale solution of problem.

(a) Two-dimensional view of the pressure
field.

(b) Three-dimensional view of the pres-
sure field.

Source: Author.

To overcome this issue, we used the Geometric Partitioner to tailor a lower-

resolution grid respecting the physical properties of the medium. The resulting coarse

grid replaces those volumes whose boundaries meet the high permeability regions with



5.1. One-Phase Flow Results 79

two bigger coarse volumes so that these channels can lie completely inside each coarse

block (See Figure 49 ).

Figure 49 – Non-conforming "12x12" coarse grid whose coarse volumes do not meet
regions of high permeability channels.

Source: Author.

The simulation performed on this adaptable coarse grid exceed our expecta-

tions. First the L2 and Infinity norm of the pressure solution (|p|2 and p∞) dropped

to respectively 26.10% and 36.45%. In addition, the pressure field did not overshot

the maximum or undershoot minimum values of the reference solution. In the overall,

the new pressure field was greatly improved in comparison to prior multiscale solu-

tion. In conclusion a proper choice of coarse-grid was capable of enabling simulations

diminishing errors and respecting the physics of the problem.

Figure 50 – Pressure field of the multiscale solution of problem 5.1.3 on a non-
conforming coarse grid.

(a) Two-dimensional view of the pressure
field.

(b) Three-dimensional view of the pres-
sure field.

Source: Author.
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5.1.4 Highly Heterogeneous and Highly Anisotropic Permeability Field

Let us consider now a one-phase flow in a highly heterogeneous and anisotropic

media inside a square domain with a unitary side (CONTRERAS, 2012). The pressure

on the boundaries of the domain are set to zero and the permeability tensor is given by

the following expression:

K˜ =

 y2 + εx2 −(1− ε)xy

−(1− ε)xy εy2 + x2

 , ε = 5x10−2 (5.2)

A unitary source term spreads its influence in a smaller square concentric to the

domain and is defined as:

f (x,y) =

1 (x,y) ∈
[

3
8

5
8

]2
;

0, (x,y) <
[

3
8

5
8

]2 (5.3)

Contreras (2012) adapted the problem proposed by Yuan and Sheng (2008) to

expose the flaws in the MPFA-D formulation. Contreras showed that the MPFA-D was

capable of producing smooth solutions in triangular grids however it failed to respect

the Discrete Maximum Principle producing pressure values above and bellow those

defined for the boundaries giving birth to non-physical values.

We revisit this problem to understand how the multiscale framework behaves in

this case. For this simulation we used for the high-resolution grid a triangular mesh

with 10,874 elements. As for the low-resolution grid we use 3 different coarsening ratios,

8x8, 10x10 and 16x16 as illustrated by Figure 51.

Figure 51 – Illustration on the 3 different coarsening used with the triangular fine-scale
mesh with 10,874 elements.

(a) 8x8 coarse grid. (b) 10x10 coarse grid. (c) 16x16 coarse grid.

Source: Author.
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Figure 52 – Pressure solution using the 3 coarsening presented on Figure 51.

(a) Reference Solution. (b) 16x16 coarse grid.

(c) 10x10 coarse grid. (d) 8x8 coarse grid.

Source: Author.

As shown in Figure 52, not only the MsCV framework replicate the issues

presented on the reference solution but it also propagated the errors. In all cases (See

Figures 52b to 52d the multiscale solution presented values bellow the minimum

value of the reference solution. This is expected, as we understand that the reference

solution bounds the quality of the multiscale solution. In other words, if no errors were

introduced during the multiscale step the best solution to be obtained would be the

reference solution.

As we check the Prolongation Operator we see that the MPFA-D solver used

in the multiscale framework produced weights that respected the partition of unity

but violated the discrete maximum principle producing weights above 1 and bellow

0. Figure 53 illustrates the support region of a coarse cell on the 8x8 coarse grid lying

on the boundary of the domain. Note that in this case the limits of the weights were

extrapolated thus giving birth to normalized pressure values with no physical meaning.

It is worth noting that many other volumes on the boundary in all coarse grids simulated

also presented this behavior. This being said, we speculate that as multiple support

regions violate the maximum principle and as the multiscale solution is defined as the
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prolongation operator times the coarse-cell pressure vector, this causes the differences

of the maximum and minimum value pointed by Figure 52.

Figure 53 – Support region of a coarse cell on the boundary producing values beyond 1
and bellow 0.

(a) Two-dimensional view. (b) Three-dimensional view.

Source: Author.

5.2 Two-Phase Flow Results

In this section we compile the results considering incompressible water-oil flow.

All simulation performed in this subsection uses IMPES like approach described on

Chapter 3. For the first three examples presented in this subsection we consider a

unitary domain Ω = [0 1]× [0 1] in a 1/4 of five spot configuration, in which, flux is

prescribed (Qinj = 1) at the injector well and pressure is prescribed (pprod = 0) at the

producer well. Additionally, water is being injected at the injection well (Sw = 1) in a

field initially saturated by oil only (So = 1 or Sw = 0). Moreover, the permeability tensors

used in these examples are defined by the following expression:

K1 =

1 0

0 1

 , K2 =

 1
1,000 0

0 1
1,000

 and K3 =

1,000 0

0 1,000


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Figure 54 – Permeability fields of the first three two-phase flow examples.

(a) Example 5.2.1. (b) Example 5.2.2.

(c) Example 5.2.3.

Source: Author.

5.2.1 Two-Phase Flow in 1/4 of Five Spot with a Central Low Permeabil-

ity Barrier

In this context, our first example (See Fig. 54a) consists in a low permeability

zone shaped as a square with size (L = 0.5) and concentric with the unitary domain.

In this example, the simulation was performed on a fine-scale grid containing 2,432

volumes and on a coarse-scale 7x7 grid generated using the Geometric Partitioner.

Under this setting, we were capable of obtaining results that qualitatively remained

very close to the reference solution (See Fig. 55). Notice that the multiscale solution

was capable of retaining most of the important features for the flow. These results

are supported by the curves in Fig. 58a that show almost identical cumulative oil

plots. Nonetheless, the multiscale solution has anticipated the breakthrough. Moreover,



5.2. Two-Phase Flow Results 84

Table 3 shows that the average error on the saturation field is as low as ||s||2 = 1.89%

at a PVI = 1.

5.2.2 Two-Phase Flow in 1/4 of Five Spot with a Central High Permeabil-

ity Channel

Our second example (See Fig. 54b) inherits the same geometry, configuration

and fine-scale mesh described on Section 5.2.1. Nevertheless, the central barrier is

replaced by a high permeability zone in which the permeability tensor is defined as

K3. The simulation in this example was performed on coarse-scale 9x9 grid generated

using the Geometric Partitioner. One more time, the multiscale solution were capable

of reproducing the physics of the reservoir. Qualitatively, the results remained very

close to the reference solution (See Fig. 56). The curves presented in Figure 58b support

these affirmations. It is worth point out that for this case the breakthrough took place at

roughly the same time as the reference solution. However, there was a slight but signifi-

cant difference on the cumulative oil curve in which multiscale solution overproduced.

Additionally, the errors presented on Table 3 were quite low. It is worth pointing out a

diminishing trend over time where the lowest average error ||s||2 = 4.75% takes place at

PVI of 1.

5.2.3 Two-Phase Flow in a 1/4 of Five-Spot with Two Unconnected

Channels and Two Curved Barriers

On the third example, we present a geological formation for which classical mul-

tiscale methods would have trouble to represent as they would require high-resolution

fine-grids to obtain a discrete system capable of preserving the complex features of

this geological formation (See Fig. 54c). By using our framework, we were capable of

running a very accurate simulation with only 3,060 fine-scale volumes and 5x5 coarse

volumes. Figure 57 shows that qualitatively the solutions are very close showing that

this scheme was capable of preserving the high-resolution features of the flow. The

results presented in Fig. 58 support this affirmation by showing very close Cumulative

Oil curves. Moreover in this example the breakthrough in the multiscale and in the

reference simulation take place at almost the same time. Table 3 also shows a very low

average error ||s||2 = 5.28% for a P V I = 1.

5.2.4 Flow in a Heterogeneous Reservoir with a Random Permeability

Field Using a Fine-Scale Quadrangular Grid

The final example of this thesis consists on incompressible water-oil flow in a

unitary domain Ω = [0 1]× [0 1] in a 1/4 of five spot configuration defined similarly
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Figure 55 – Reference and multiscale solution for the saturation field of example 5.2.1.

(a) PVI - 0.1 (b) PVI - 0.4 (c) PVI - 0.5 (d) PVI - 1

(e) PVI - 0.1 (f) PVI - 0.4 (g) PVI - 0.5 (h) PVI - 1

Source: Author.

Figure 56 – Reference and multiscale solution for the saturation field of example 5.2.2.

(a) PVI - 0.1 (b) PVI - 0.4 (c) PVI - 0.5 (d) PVI - 1

(e) PVI - 0.1 (f) PVI - 0.4 (g) PVI - 0.5 (h) PVI - 1

Source: Author.
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Figure 57 – Reference and multiscale solution for the saturation field for example 5.2.3.

(a) PVI - 0.1 (b) PVI - 0.4 (c) PVI - 0.5 (d) PVI - 1

(e) PVI - 0.1 (f) PVI - 0.4 (g) PVI - 0.5 (h) PVI - 1

Source: Author.

Figure 58 – Production curves of Examples 5.2.1 to 5.2.3 .
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(a) Example 5.2.1.
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(b) Example 5.2.2.
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(c) Example 5.2.3.

Source: Author.
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Table 3 – Average error comparison of Examples 5.2.1 to 5.2.3

PVI Example 5.2.1 ||s||2 Example 5.2.2 ||s||2 Example 5.2.3 ||s||2
0.1 9.10% 11.30% 14.06%
0.4 6.91% 5.83% 10.86%
0.5 5.24% 5.55% 8.88%
1 1.89% 4.75% 5.28%

as the previous three examples. The permeability of the medium used in this example

slightly modifies the permeability tensor proposed by Chueh et al. (2010) that generates

random heterogeneous and isotropic fields in order to increase the variability of the

medium (See Figure 60). The high-resolution mesh used in this example is a quadran-

gular grid with 2,795 elements. In addition, we have used the Geometric Partitioner to

generate multiple low-resolution meshes in rectangular-shaped and honeycomb-shaped

coarse grids. For a matter of comparison we present the two best results of each type, a

8x8 rectangular-shaped grid and with a honeycomb-shaped with 48 coarse volumes as

shown in Figure 59.

Figure 59 – Fine-scale and Coarse-scale grids of Example 5.2.4.

(a) Rectangular-shaped coarse grid. (b) Honeycomb hexagonal grids.

Source: Author.
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Figure 60 – Isotropic and Highly Heterogeneous Permeability Field of Example 5.2.4

(a) Two-dimensional view. (b) Three-dimensional view.

Source: Author.

As shown on Figure 61, the results were qualitatively very similar. Both grids

were capable of retaining the most important features of the flow. However, they also

lost some quality on the process. Notice that the bottom-most front of the flow at

the PVI 0.2 shows a small phase difference when compared the honeycomb and the

reference solution. On the other hand, the same front of the flow on the geometric

partitioner has washed-out appearance. Regarding the middle portion of the flow,

we point out that both grids produced fronts with a smear look. This phenomena

becomes more noticeable from the PVI 0.2 from and on. At a PVI 0.5 the remaining

oil accumulates forming two pools. Although the pool located on the bottom-center

is decently represented on both multiscale simulations, the one located close to the

top right corner is not. The rectangular-shaped seems to produce a flow that is the

average of the reference solution meanwhile the honeycomb grid seems to be delayed

in comparison to the reference solution.

In general, these solutions were accurate. The rectangular-shaped coarse grid

presented a better looking solution at the PVI 0.9 besides that differences on the

fingering on the right portion of the flow. Nevertheless, the production curves presented

on Figure 5.2.4 point out that the honeycomb grid produces a more accurate solution.

Furthermore, Table 4 shows that the norm ||p||2 of the honeycomb grid is smaller

throughout all the simulation, stabilizing at a much lower value, 2.57% in comparison

to the 6.88% of the rectangular-shaped grid. On the other hand, the ||p||inf is higher on

the honeycomb mesh during a considerable time of the simulation. This pattern is only

changed at a PVI of 0.9 when this trend is inverted. Moreover, it is worth noting the

unsteady bias of the ||p||inf on the rectangular mesh.
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Figure 61 – Reference, and multiscale solution on a rectangular grid and multiscale
solution on the honeycomb grid respectively, for the saturation field for
example 5.2.4.

(a) PVI - 0.1 (b) PVI - 0.2 (c) PVI - 0.5 (d) PVI - 0.9

(e) PVI - 0.1 (f) PVI - 0.2 (g) PVI - 0.5 (h) PVI - 0.9

(i) PVI - 0.1 (j) PVI - 0.2 (k) PVI - 0.5 (l) PVI - 0.9

Source: Author.
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Figure 62 – Production curves of Example 5.2.4.
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(a) Honeycomb mesh production curves.
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(b) Rectangular mesh production curves.

Source: Author.

Table 4 – Error comparison of the example 5.2.4.

PVI
Honeycomb Mesh Rectangular Mesh
||p||2 ||p||∞ ||p||2 ||p||∞

0.1 3.03% 19.54% 8.64% 13.19%
0.2 3.32% 22.51% 8.76% 17.43%
0.3 2.99% 19.89% 6.82% 13.45%
0.4 4.47% 15.78% 7.27% 11.82%
0.5 4.58% 13.93% 7.70% 10.54%
0.6 2.82% 11.50% 7.81% 9.86%
0.7 2.53% 9.99% 7.72% 9.75%
0.8 2.57% 9.30% 7.25% 9.66%
0.9 2.57% 8.52% 6.88% 9.91%
1 2.57% 7.84% 6.88% 10.22%
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6 CONCLUSIONS AND FURTHER WORK

In this thesis, we modify the multiscale restriction-smoothed basis (MsRSB)

replacing the two-point flux approximation (TPFA) by a non-orthodox multi-point

flux approximation with a diamond stencil (MPFA-D) to create the multiscale control-

volumed (MsCV) framework that allows the simulation on unstructured grids on the

fine and coarse scales.

Additionally, we have developed a geometrical coarsening algorithm that creates

lower-resolution grids in which the users can generate coarse volumes are capable

of adapting themselves according to the underlying geological features of the media.

As the examples have shown, this framework loses the piecewise linearity property

intrinsic to the MPFA-D, however this does not seem to have a great impact on the

two-phase flow solutions.

The routines developed to perform a geometric partition of the high-resolution

grid outperformed Metis in almost all cases analyzed. Furthermore, the ability to

generate adaptable- coarse grids showed prominent results. In general, the framework

created was capable of preserving high-resolution features of the flow even in highly

heterogeneous and mildly anisotropic medium.

Moreover, the ability to work with truly unstructured fine-scale grids can im-

prove the discretization of complex geological formations enabling simulation on fine

meshes with a significantly lower number of control volume in comparison to the

structured grid counterparts.

In conclusion, the framework we have presented can produce accurate solutions

at reasonably computational costs on the simulation of two-phase flow in heterogeneous

and anisotropic porous media using general unstructured grids.

Finally, herein are some suggestions for further work to explore.

1. Expand the presented multiscale formulation to three-dimensions.

2. Study more complex physic such as compositional formulation.

3. Study non-linear flux approximations.

4. Implement and study the impact of a implicit saturation solver.

5. Implement smoothers and flux-corrective schemes.

6. Define criteria for automatic definition of coarse grids.
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APPENDIX A – Resumo Estendido

Ummétodo MsCV utilizando uma aproximação não

ortodoxa MPFA-D para a simulação de escoamento

bifásico em malhas verdadeiramente não estruturadas.

Introdução

Os avanços na modelagem e caracterização geoestatística permitem que infor-

mações de diferentes escalas sejam integradas para gerar modelos geocelulares cuja

resolução geralmente varia de 108 a 109 células, enquanto os modelos padrão de simu-

lação de fluxo em meio poroso podem lidar apenas com 106 a 107 blocos (ZHOU, 2010).

Desta forma, múltiplas simulações diretamente em malhas de alta resolução tornam-se

inviáveis. Para superar essa limitação, os métodos de transferência de escala foram

planejados. Essencialmente, eles permitem que dados geoestatísticos de alta resolução

sejam integrados nas malhas onde acontece a simulação de fluxo (BARBOSA, 2017).

Entre eles, destacam-se duas famílias de métodos: o upscaling e os métodos mul-

tiescala. O primeiro geralmente emprega um tipo de homogeneização (Farmer, 2002),

mesmo quando não existe a separação formal entre as escalas. Nestes esquemas, uma

solução é encontrada no espaço da escala de baixa resolução levando a resultados com

baixo custo computacional e robustos, que muitas vezes não conseguem preservar deta-

lhes do escoamento causando deterioração da precisão da representação dos fenômenos

físicos estudados.

Por outro lado, a família de métodos multiescala desenvolve um conjunto de

operadores, que são capazes de projetar o sistema de equações discretizado da escala

fina no espaço de solução da malha menos refinada. Este sistema projetado é resolvido

para então ser projetado novamente na malha de alta resolução utilizando os operadores

multiescala (Hou and Wu, 1997; Jenny, Lee and Tchelepi, 2006; Zhou and Tchelepi,

2008). Isso preserva o acoplamento natural entre escalas, evitando inconsistências e

perda de informações da escala fina inerentes à maioria dos métodos de upscaling.

A principal diferença entre os métodos Multiescala diz respeito à estratégia usada

para impor a conservação de massa (Kippe, Aarnes and Lie, 2008). Enquanto os métodos

na família do Método de Elemento Finito Misto Multiscala (MsMFEM) (Hou and Wu,

1997; Kippe, Aarnes and Lie, 2008) impõem matematicamente a conservação do fluxo

criando operadores multiescala que por definição produzem campos de velocidade
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conservativos, os esquemas na família de Volume Finito Multiscala (MsFV) usam uma

malha grossa auxiliar adicional para reconstruir um campo de fluxo conservativo.

Embora o uso de outra malha aumente a quantidade de dados armazenados, elimina

consideravelmente o número de graus de liberdade ao remover a necessidade de calcular

um operador multiescala que integre informações simultaneamente de campos de

pressão e velocidade.

No entanto, a maioria dos métodos da família MsFVM sofrem com uma deficiên-

cia grave, eles são incapazes de trabalhar em malhas não estruturadas. Isto pode ser

atribuído a três fatores; o uso da aproximação de fluxo de dois pontos (TPFA), que é

consistente apenas em malhas k-ortogonais, na dificuldades apresentadas em gerar as

entidades geométricas, como malhas auxiliares e centros dos volumes, e o cálculo de

operadores multiscala apropriados para malhas quaisquer. Neste contexto, um grande

esforço foi feito no desenvolvimento de esquemas capazes de permitir a simulação em

malhas não estruturadas em ambas as escalas. Krogstad et al. (2009) desenvolveu uma

variante do MsMFEM capaz de trabalhar com malhas grossas cujos volumes são quase

degenerados e não estruturados. Parramore et al. (2016) desenvolveu um novo tipo de

condição de contorno, Neumann-D, utilizadas para calcular o operador de prolonga-

mento e as acoplou com um solver tipo MPFA-O. Moyner and Lie (2015) apresentou o

método multiescala das funções de base restritivamente suavizadas (MsRSB) na qual

o operador de prolongamento multiscala é calculado de modo iterativo, suavizando a

função indicador de cada volume grosso restrito à região de suporte correspondente,

permitindo a simulação usando malhas não estruturadas na escala de baixa resolução.

Nesta dissertação, substituindo a aproximação de fluxo de dois pontos (TPFA) modifica-

mos o método multiescala das funções de base restritivamente suavizadas (MsRSB por

uma aproximação de fluxo não ortodoxa com um estêncil tipo diamante (MPFA-D) para

criar o framework Volume de Controle Muliescala (MsCV).

Objetivos Gerais

Neste contexto, objetivo geral desta dissertação é o estudo e o desenvolvimento de

métodos multiescala para a simulação do fluxo multifásico em reservatório de petróleo,

utilizando malhas verdadeiramente não estruturadas.

Objetivos Específicos

1. Desenvolver um estratégia multiscala para simulação de fluxo monofásico e bi-

fásico em reservatório de petróleo altamente heterogêneo e anisotrópico usando

uma aproximação de fluxo de múltiplos pontos consistente com malhas não estru-

turadas em qualquer escala.
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2. Incorporar uma aproximação MPFA-D ao resolvedor de pressão multiescala.

3. Criar ferramentas alternativas para realizar o engrossamento da malha de alta

resolução.

Formulação Matemática

Este trabalho utiliza uma formulação segregada que deriva a partir das leis de

conservação de massa duas equações diferenciais parciais a serem resolvidas sequencial-

mente, a equação da pressão de natureza elíptica e a equação de saturação de natureza

hiperbólica.

Equação da Pressão

A equação da pressão é uma equação diferencial parcial de natureza elíptica

que descreve o campo de pressão no reservatório de petróleo submetido a escoamento

bifásico incompressível. Para nosso problema, a equação da pressão pode ser definida

como:

−~∇ · ~v =Q com ~v = −λK˜(~∇p − ρavg~g) in Ω (A.1)

onde ~v = ~vw + ~vo é a velocidade de Darcy total do fluido negligenciando a compressi-

bilidade, ~∇p é o gradiente de pressão e Q =Qw +Qo é a soma do termo fonte de cada

fase dividdo pela densidade correspondente, Qi = qi/ρi . A densidade ponderada ρavg

é a média das densidades ponderadas pelas mobilidades (HURTADO, 2011). Nessa

trabalho os efeitos da gravidade são desconsiderados.

ρavg =
λoρo +λwρw

λ
com λ = λo +λw (A.2)

Equação da Saturação

A equação de saturação é uma equação diferencial parcial hiperbólica não-linear

que descreve como uma das fases é transportada através do meio poroso:

φ
∂Sw
∂t

= −~∇ · ~F(Sw) +Qw para Ω× [0, t] (A.3)

onde Sw é a saturação da fase água e Qw é o termo fonte da fase água e onde ~F(Sw) é

definido como:

~F(Sw) = fw(Sw)~v com fw = λw/λ (A.4)

O fluxo fracional fw(Sw) expressa a fração de água do fluxo com respeito ao

fluxo total. Note que o fluxo fracional depende da saturação, o que torna esta equação
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não-linear. Por fim, a suposição que o meio encontra-se totalmente saturado nos dá a

equação de fechamento:

So + Sw = 1 (A.5)

Condições Iniciais e de Contorno

Para tornar o modelo matemático descrito acima bem-posto, devemos propor

condições de contorno e condições iniciais consistentes. Além disso, devemos considerar

as condições que representem a iteração dos poços com o meio poroso. A injeção em

poços a taxa de fluxo qi é equivalente a uma condição de Neumann, enquanto a produção

a pressão controlada qp no poço de extração é considerada uma condição de Dirichlet.

As condições de contorno mais usuais para equação da pressão são:

p(~x, t) = gD em ∂ΩD

~v · ~n = gN em ∂ΩN

p(~x, t) = pprodução em ∂Ωp

~v · ~n =Qinjeção em ∂Ωi

(A.6)

A primeiras duas condições na equação acima são respectivamente condições

de Dirichlet (gD) e Neumann (gN ), isto é condição de pressão ou fluxo prescrito nos

contornos do domínio. As demais condições são também condições de Dirichlet e

Neumman mas definidas nos poços produtores (pprodução) e injetores Qinjeção.

Já a equação da saturação precisa de uma definição inicial do campo de saturação

e da definição da saturação de água sendo atravessando poço injetor.

Sw(~x, t) = Sw em ∂Ω× [0, t]

Sw(~x,0) = S
0
w em Ω

(A.7)

Formulação Numérica

As equações da pressão e saturação são então discretizadas utilizando esquemas

na família dos volumes finitos. O sistema de equações resultante é reacoplado através

de uma variante da metodologia IMPES (pressão implícita e saturação explicita) onde o

solver de pressão é substituído por um solver de multiescala para pressão e vazão.

Equação da Pressão Discreta

Utilizamos um método não ortodoxo de aproximação de fluxo onde o gradiente

de pressão é aproximado em uma aresta é aproximado com múltiplos pontos em um
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estêncil que se aproxima a de um diamante.

~vIJ · ~NIJ ' τIJ [pR̂ − pL̂ −υIJ (pJ − pI )] (A.8)

onde a transmissibilidade escalar τIJ , e o parâmetro tangencial não-dimensional υIJ são

dados por:

τIJ = −λIJ |IJ |
KnIJ (L̂)

KnIJ (R̂)

KnIJ (L̂)
hR̂IJ +KnIJ (R̂)

hL̂IJ
(A.9)

υIJ =
IJ~ · L̂R̂~

|IJ |2
− 1
|IJ |

K tIJ (L̂)

KnIJ (L̂)

hL̂IJ +
K tIJ (R̂)

KnIJ (R̂)

hR̂IJ

 (A.10)

Tratamento das Condições de Contorno

Pode-se mostrar que as arestas submetidas a condição de Dirichlet tem o seu

fluxo definidos por (CONTRERAS, 2012):

~vIJ · ~NIJ ' −
λIJK

n
IJ

hL̂IJ |IJ |

[
(JL̂~ · JI~)gD(I) + IL̂~ · IJ~)gD(J)− pL̂|IL|

2
]
−K tIJ (gD(J)− gD(I)) (A.11)

onde gD(I) e gD(J) são as pressões de Dirichlet.

Já as arestas submetidas as condição de Neumann tem fluxo definido como:

~vIJ · ~NIJ = gN |IJ | (A.12)

onde gN é a velocidade normal a aresta IJ .

Interpolação Conservativa

Para que a formulação acima continue centrada na célula e coerente com os

métodos dos volumes finitos, deve-se utilizar algum tipo de interpolação conservativas

para reescrever as pressões pi e pj em função da pressão dos elementos ao seu redor.

Essa interpolação é apresentada pela Equação 3.46.

Equação da Saturação Discreta

Utilizando o método de Euler para discretização temporal e uma aproximação

de primeira ordem para o termo espacial obtemos a equação da saturação discretizada:

Sn+1
w,k̂

= Sn
w,k̂
− ∆t
φk̂Vk̂

∑
IJ∈Ωk̂

~F(Sw)IJ · ~NIJ +
∆tQw
φk̂Vk̂

(A.13)
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onde a saturação do passo posterior Sn+1
w,k̂

é aproximada em função da saturação do passo

atual Sn
w,k̂

, da porosidade φk̂, do volume do elemento Vk̂ e onde o termo hiperbólico é

~F(Sw)IJ = fw
(
Sn
w,k̂

)
~vIJ e o passo de tempo é ∆t = tn+1 − tn.

Formulação Multiescala

A definição de métodos multiscala surge da necessidade de troca de informações

em diferentes escalas. Como simulação direta em uma malha de alta resolução (malha

fina Ω) não é viável, o método multiescala projetas o sistema de equações de alta re-

solução no espaço da malha de menor resolução (malha grossa primal, Ωc) usando os

operadores multiescala. O sistema de equações, agora com baixa resolução, é resolvido

e sua solução é projetada de na malha de alta resolução usando o operador de prolon-

gamento. Assim, o sistema de resolução inferior funciona como base auxiliar com um

número considerável menor de graus de liberdade criado para permitir a simulação,

enquanto os operadores de multiescala capturam o acoplamento entre essas escalas.

Zhou and Tchelepi (2008) desenvolveram uma notação algébrica baseada no trabalho de

Jenny, Lee and Tchelepi (2006) que descreve esses operadores de transferência de escala

em notação matricial com o operador de Restrição e Prolongamento respectivamente,

definido como:

Qc = R˜opQf (A.14)

Pf = P˜opPc (A.15)

onde Pf é um vetor solução nf × 1 da pressão na escala fina, Pc é um vetor solução nc × 1

da escala grossa, P˜op uma matriz nf × nc e R˜op uma matriz nc × nf e Qf o vetor que

armazena termos fonte/sumidou na escala fina e Qc o mesmo vetor mapeado na escala

de baixa resolução.

Após manipulações algébricas, definimos o sistema de equações na escala de

baixa resolução como:

T˜cPc =Qc (A.16)

Onde T˜c é a matriz de transmissibilidade na escala grossa é definida por:

T˜c = R˜opT˜f P˜op (A.17)

sabendo que T˜f é a matriz de transmissibilidade na escala fina.
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Métodos Multiescala das Funções de Base Restritamente Suavizadas

(MsRSB)

O MsRSB desenvolvido por Moyner and Lie (2015) tem como sua principal van-

tagem a possibilidade de trabalhar com malhas não estruturadas na escala grossa. Essa

flexibilidade permite a construção de malhas na grossas primais de baixa resolução que

se adaptem à meios com falhas, com canais de alta e baixa permeabilidade. O framework
do MsRSB herda estruturas e definições geométricas básicas do MsFV, como malha

fina, malha grossa primal, centro do volume da malha grossa primal, região de suporte

de um centro. Entretanto, os algoritmos de pré-processamento são generalizações dos

algoritmos clássicos para trabalhar em malhas na escala grossa não estruturadas. Além

disso o MsRSB, assim como a maioria dos métodos na família MsFV, emprega TPFA que

é apenas consistente em malhas k-ortogonais. Isto limita severamente a sua aplicação

em geometrias complexas que restringem o seu uso a malhas finas estruturadas. O

MsCV modifica substitui a aproximação tipo TPFA por uma aproximação tipo MPFA-D.

Abaixo segue a lista das entidades geométricas necessárias para método MsRSB.

Malha da Escala Fina (Ωf orΩ): Esta é a malha de alta resolução oriunda da discreti-

zação do domínio físico. Métodos multiescala tradicionais geralmente utilizam

algum tipo de malha k-ortogonal.

Malha Grossa Primal (Ωp
c ouΩp): É a malha de baixa resolução gerada pelo aglome-

ramento de elementos da malha da escala fina.

Centro de um Volume da Malha Grossa Primal (xP ): É um volume da malha fina que

representa o centro de um volume da malha grossa primal. Metodos clássicos

utilizam o volume fino mais próximo ao centroide.

Região de Supote de um Volume da Malha Primal j (Ij): A definição de região de su-

porte de um volume primal serve ao mesmo propósito da definição da malha dual

do MsFV, calcular o operador de prolongamento e reimpor conservação de massa

na fronteira dos elementos da malha. Além disso a definição matemática delimita

todos os elementos da malha fina tais que

(P˜op)i,j > 0 ∀i ∈ Ij , caso contrário (P˜op)i,j = 0

Ij define a zona de influência do centro de um volume da malha grossa primal xPj .

O MsRSB usa os volumes da malha grossa primal e seus centros para criar a região

de suporte de um volume grosso primal para definir todas as outras entidades

geométricas.
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Fronteiras da Região de Suporte, (Bj): A fronteira da região de suporte consiste em

todos os volumes da malha fina que compartilham ao menos uma aresta com Ij
mas não estão contidos nela.

Fronteira Global das Regiões de Suporte, (G): A região de fronteira global das regiões

de suporte é a união de todas as fronteiras da região de suporte de cada volume

da malha grossa primal.

Fronteira Global das Regiões de Suporte em uma Região de Suporte, Hj : Consiste na

interseção de Ij com G.

Operador de Restrição

O operador de Restrição do MsRSB e do MsCV é definido como:

(R˜op)ij =

1 Ω
f
i ∈Ω

c
j ;

0, caso contrário
onde 1 6 j 6 nc e 1 6 i 6 nf (A.18)

onde nf e nc são o número de volumes na malha fina e na malha grossa primal respecti-

vamente.

Operador de Prolongamento

O operador de prolongamento é calculado resolvendo a parte homogênea da

equação da pressão. Condições de contorno especificas são utilizadas para desacoplar o

problema gerando múltiplos problemas pequenos. Como consequência este operador

armazena em cada coluna a solução da equação da pressão normalizada resolvida na

região de suporte correspondente. O MsRSB e o MsCV utilizam uma versão modificada

do método de Jacobi ponderado para definição do operador de prolongamento:

1. Calcula-se o incremento do método de Jacobi ponderado:

d̂j = −ωD−1T˜pref (P˜op)
η
j (A.19)

onde ω é o parametro de amortecimento do método de Jacobi ponderado, D é

a matriz diagonal que contém a diagonal da matriz de transmissibilidade pré-

condicionada T˜pref e definida por:

(T˜pref )ij =


(T˜f )ij i , j;

(T˜f )ij −
n∑
k=1

(T˜f )ik i = j;
(A.20)
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2. O incremento do Método de Jacobi ponderado é modificado de acordo com a

seguinte função. Perceba que esta é uma função por partes e que restringe o

crescimento fora da região de suporte sem perder a partição da unidade.

dij =


d̂ij−(P˜op)

η
ij

∑
k∈Hk d̂ik

1+
∑
k∈Hk d̂ik

Ω
f
j ∈Hj ;

d̂ij Ω
f
j ∈ Ij e Ω

f
j <Hj ;

0 Ω
f
j < Ij ;

(A.21)

3. O operador de prolongamento é atualizado utilizando o incremento modificado.

(P˜op)
η+1
j = (P˜op)

η
j + dj (A.22)

4. Calcula-se o erro nos volumes finos não pertencentes a Fronteira Global das

Regiões de Suporte.

ej = max
i

(||d̂ij ||), i < G (A.23)

5. Testa convergência. Se ||e||∞ > tol o atual (P˜op)
η
j é utilizado como solução inicial do

primeiro passo e este processo repetido.

Conclusões

Nesta dissertação, modificamos o método multiescala das funções de base res-

tritivamente suavizadas (MsRSB) substituindo a aproximação de fluxo de dois pontos

(TPFA) por uma aproximação de fluxo não ortodoxa com um estêncil tipo diamante

(MPFA-D) para criar o framework Volume de Controle Muliescala (MsCV) que permite a

simulação de malhas não estruturadas em ambas as escalas.

Também foi desenvolvido algoritmos para gerar malhas grossas primais adapta-

tivas a partir de quaisquer tipo de malhas de alta resolução. Os exemplos mostraram

que embora a aproximação MPFA-D seja linear por partes, o MsCV não preserva esta

propriedade. Entretanto, isso não teve impacto nas soluções de escoamento bifásico.

Além disso, as rotinas desenvolvidas para geração de malhas grossa primal em

quase todos os casos obtiveram resultados melhores que as malhas geradas no Metis.

Este conjunto de rotinas que permitem ao usuário gerar malhas adaptáveis as proprie-

dades geofísicas do reservatório mostrou excelentes resultados. Em geral, o MsCV foi

capaz de obter bons resultados na simulação de escoamento água-óleo em meio poroso

altamente heterogêneo e levemente anisotrópico preservando as características de alta

resolução do escoamento.

Ademais, a habilidade de trabalhar com malhas verdadeiramente não estrutu-

radas em ambas as escolas permite uma discretização mais adequada das formações
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geológicas complexas, permitindo a simulação multiescala em malhas finas com um

número consideravelmente menor de graus de liberdade em comparação com as malhas

estruturadas equivalentes.

Em conclusão, o framework do MsCV é capaz de produzir soluções acuradas a

custos computacionais razoáveis para simulação de escoamento bifásico em meio poroso

heterogêneo e anisotrópico utilizando malhas verdadeiramente não estruturadas.
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