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Abstract

Survival data have been applied in several contexts, such as survival time of mechanical com-

ponents, the failure times of electrical insulator films, and in censored data from head-and-neck-

cancer clinical trials. The resulting data are positive-valued and are often censored of heavy tails.

This latter fact suggests that tailored tools are necessary for modelling survival data behavior.

In particular, there is a need for flexible models; inferential methods, such as estimation and

goodness-of-fit (GoF); and conditional representation (e.g., regression and time series models).

Several models have been proposed to describe survival data based on distribution families de-

rived from transformations of reference distributions (called baselines). One of the most important

derived distribution families is the beta-G family introduced by Eugene et al. [Beta-normal dis-

tribution and its applications. Communication in Statistics-Theory and Methods, 31, 497-512].

Although the beta-G class is capable of producing even distributions for bimodal data, it requires

both efficient estimation methods and GoF criteria. GoF methodology proposals are sought be-

cause not rarely it is hard to distinguish models within the beta-G class using: (i) criteria without a

cut-off point rule or (ii) criteria originally suitable for nested models (e.g., the Akaike Information

Criteria). Further, the likelihood function for beta-G models in real and synthetic experiments have

suggested the proposal of estimation criteria which do not involve such function. In this thesis, the

synthetic aperture radar (SAR) imagery is taken as a concrete context for data modelling. SAR is

widely regarded as an important tool for remote sensing, partly because of its ability to operate in-

dependently of atmospheric conditions and producing images in high spatial resolution. However,

features from SAR images are corrupted by a multiplicative noise that imposes the use of specifi-

cally designed probabilistic models. An important SAR feature is the SAR intensity image, which

is defined as the norm of a complex return. Further, experiments with real SAR intensities often

produce multimodal data. Several works aimed at modeling SAR intensity data by means of dis-



tribution mixtures, but such strategy may impose a large number of parameters. In this thesis, we

adopt the Mellin transform as a way to derive new tools for the understanding of survival analysis

data. With this we propose: (i) new qualitative and quantitative GoF measures suitable for survival

analysis data and (ii) a unique estimation method not based on the likelihood function. In the

context of SAR imagery analysis, we introduce: (i) two new probabilistic models: the compound

Poisson-truncated Cauchy and the G-G family with three and four parameters, respectively; and

(ii) a regression model at the G0
I distribution for speckled data.

Keywords: Survival Analysis. SAR Imagery. Beta-G class. Mellin Transform. G0
I Regression.



Resumo

Dados de sobrevivência foram aplicadas em vários contextos, tais como o tempo de sobre-

vivência dos componentes mecânicos, os tempos de falha dos filmes isolantes elétricos e em dados

censurados de ensaios clínicos de câncer de cabeça e pescoço. Os dados resultantes têm natureza

positiva, frequentemente marcadas por censura e caudas pesadas. Este último fato sugere o uso de

modelos flexíveis; métodos de inferência tal como estimação e bondade de ajuste; e ajuste condi-

cional (por exemplo, regressão e séries temporais). Vários modelos têm sido propostos para de-

screver dados de sobrevivência na forma de famílias definidas pela transformação de distribuições

de referência (chamadas de baselines). Uma delas é a família beta-G proposta por Eugene et

al. [Beta-normal distribution and its applications. Communication in Statistics-Theory and Me-

thods, 31, 497-512]. Embora a classe beta-G seja capaz de produzir até mesmo distribuições para

dados bimodais, ela carece tanto de métodos mais eficientes de bondade de ajuste como de esti-

mação. A problemática que suscita a proposta de métodos de comparação de ajustes é distinguir a

diferença entre dois modelos definidos na classe beta-G usando critérios: (i) sem uma regra envol-

vendo um ponto de corte associado ou (ii) próprios de modelos encaixados (a exemplo do critério

de Informação de Akaike). Além disso, a função de verossimilhança para modelos beta-G em

experimentos reais e sintéticos têm sugerido a proposta de critérios de estimação que não trabalhe

diretamente com esta função. Nesta tese, imagens de radar de abertura sintética (Synthetic Aper-

ture Radar-SAR) são consideradas como um contexto concreto para modelagem de dados. O SAR

tem sido indicado como uma importante ferramenta para resolver problemas de sensoriamento re-

moto, isso se deve a sua capacidade de operar independente de condições atmosféricas e produzir

imagens em alta resolução espacial. Entretanto, as imagens SAR têm seus atributos corrompidos

por um ruído multiplicativo que impõe o uso de um modelo adaptado a sua presença. Uma im-

portante característica em imagens SAR é a imagem em intensidade SAR, que é definida como a



norma de um retorno complexo. Além disso, experimentos com dados reais de intensidades SAR

produzem dados multimodais. Vários trabalhos destinados a modelar dados de intensidade SAR

usam misturas de distribuições, mas essa estratégia pode impor um grande número de parâmetros.

Nesta tese, adotamos a transformada de Mellin como um caminho para obter novas ferramentas

para a compreensão de dados de análise de sobrevivência. Com isso nós propomos: (i) uma nova

medida de bondade de ajuste no aspecto qualitativo e quantitativo para dados de análise de sobre-

vivência e (ii) um método de estimação independente da verossimilhança. No contexto da análise

de imagens SAR, apresentamos: (i) dois novos modelos de probabilidade: a composta Poisson-

truncado Cauchy e a família G-G com três e quatro parâmetros, respectivamente; e (ii) um modelo

de regressão na distribuição G0
I para dados speckled.

Palavras-chave: Análise de Sobrevivência. Imagens SAR. Classe beta-G. Transformada de

Mellin. Regressão G0
I .
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1 Introduction

In this chapter, we aim to give reasons for the two applied contexts used in this thesis: lifetime

and synthetic aperture radar (SAR). Further, sections about main contributions, computational

support, and the structure of this thesis are presented.

1.1 Motivation

Survival analysis tools have been applied in several contexts, such as lifetime of mechanical

components [1], industrial [2] areas, breaking strengths of glass fibers [3], the failure times of

electrical insulator films [4], biomedical science [5], and survival times from other practical expe-

riments [6]. Survival data impose some difficulties (e.g., censured nature and resulting empirical

distributions having heavy tail and asymmetric behavior) and, therefore, require the proposal of

tailored modeling and inference methods. The derivation of new probability models capable of

better explaining reliability data is a central task in the field of survival analysis. In recent years,

families of distributions were developed, such as the Marshall and Olking (MO)-G [7], the Ku-

maraswamy (Kw)-G [8], the McDonald [9], the T-X [10, 11], and the generalized Weibull [12].

Despite the significant number of new models, few Goodness-of-fit (GoF) measures have been

proposed for the recent distributions; thus hindering model selection. Considering progressive

type-II censored data, Pakyari and Balakrishnan [13] proposed a general GoF test [14] that encom-

passes the GoF test described in [15]. Chen and Balakrishnan [15] derived an approximate GoF

method as well. Such methods are based on distance measures between theoretical and empirical

cumulative distribution functions (cdfs).

Taking a different approach, Linhart and Zucchini [16] proposed information-theoretical mea-

sures considering the Akaike and Bayesian information criteria [17] as figures of merit for model

selection.

An alternative method for GoF assessment is given by the Pearson system diagram for model
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selection [18], which is based on skewness and kurtosis measures [19, p. 23]. Delignon et al. [20]

and Vogel and Fennessey [21] applied such diagram for SAR and hydrology data, respectively.

However, in [22], Nicolas noticed that the Pearson diagram tends to be not well-suited for

positive random variables. Thus, the log-cumulant (LC) diagram, which plots the third-kind LC,

κ̃3, against second-kind LC, κ̃2, was introduced as an alternative. The LCs diagram offers some

advantages over the Pearson diagram. Besides being suitable for positive random variables, its

computational implementation is casier and it also captures the distribution flexibility in the sense

of skewness and kurtosis [23]. A detailed description of the LC diagram is provided in [22, 23].

Nicolas [22] proposed (i) the application of the Mellin transform (MT) [R. H. Mellin, 1854–

1933] [24, p. 50] as an alternative to the usual characteristic function (cf) and (ii) a Pearson-like

diagram based on LCs estimators instead of skewness and kurtosis. Such diagram was demon-

strated to be relevant for quantitative and qualitative comparison of non-nested distributions in

SAR and Polarimetric SAR (PolSAR) data [25–28].

In this thesis, we have as

First goal: to propose a combination of probability weighted moments (PWMs) and the MT in

order to furnish new GoF measures which consider quantitative and qualitative aspects for

models in the beta-G family.

On the other hand, models proposed from the beta-G family are often fitted by maximum like-

lihood estimators (MLEs). MLEs often have not closed-form expressions and, as a consequence,

require the use of interactive optimization sources. Dias [29] discussed about some numerical

issues which come from using MLEs in extended distributions. It is known that MLEs have well-

defined asymptotic properties, but they may present an expressive bias for small and moderate

sample sizes. Thus, this thesis considers that:

Second goal: proposing estimation criteria based on LC, not dependent on of the likelihood

function, may be a good solution to numerical issues and events of flat likelihood, in which

obtain from the use of MLEs in beta-G models.

As a second applied context, PolSAR images are processed obeying the following dynamic:

Polarized pulses oriented at horizontal (H) and vertical (V) directions are emitted towards to an
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under-study target. Subsequently, such pulses are recorded also at those two directions. One pixel

of a PolSAR image concentrates information from four polarization channels in the form of four

complex numbers, say HH, HV, VH, and VV.

The intensities (squared norm of four polarization channels) extracted from SAR images are

important features for understanding SAR scenarios. These components can also be understood as

the result of compounding sums of kind [30]:

S = X1 +X2 + · · ·+XN , (1.1)

where both N and {Xi} are independent random variables.

Probability mixture models are often used to describe data of this nature, but these assumptions

impose a great number of parameters and, as consequence, the inference stage becomes hard. In

order to provide a more parsimonious solution, we propose a probability distribution with only

three parameters which is able to describe data with multiple modals. Our model is defined by

the sum of a random number N following the truncated Poisson model of independent random

variables having the Cauchy law, with µ and γ being scale and location parameters, respectively.

The Cauchy distribution has been employed on several contexts; e.g., to model experiments

with circular [31, 32], finance [33], and optical [34] data. In recent years, some papers have pro-

posed to extend the Cauchy model. Some of them are the generalized odd half-Cauchy family pro-

posed by Cordeiro et al. [35], the beta-Cauchy distribution proposed by Alshawarbeh et al. [36],

the generalized skew-Cauchy distribution proposed by Huang and Chen et al. [37], the Weibull-

power Cauchy distribution proposed by Tahir et al. [38], the generalized Cauchy family proposed

by Alzaatreh et al. [39], the half-Cauchy distribution proposed by Bosch [40], the Kumaraswamy-

half Cauchy distribution proposed by Ghosh [41] and the beta-half-Cauchy distribution proposed

by Cordeiro and Lemonte [42].

One of the strategies to generate probability distributions is by “compounding”, pioneered by

Grushka [43] and Golubev [44]. This procedure proposes to generate a new model from a scale

transform of a random vector. Some examples are:

+ Minimum or maximum of a random sample;

+ Sum of a random vector;
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+ Minimum on which one of its parameters is random.

Golubev [44] proposed the exponentially modified Gaussian model which has physic appeal in

biology and is the result of the convolution between exponential and Gaussian models. Teich and

Diament [45] showed that the compound Poisson distribution such that its parameter follows the

range distribution yields in the negative binomial model. These compositions were considered as

special cases by Karlis and Xekalaki [30]. They defined the “compounding N” method that de-

scribes an event by the sum given in Eq. (4.1). The wide use of (4.1) can be justified by its analytic

form be approximate to several natural phenomenon. Revfeim [46] proposed the compound Pois-

son exponential for describing total precipitation at a day, where the daily precipitation number is

Poisson distributed and the precipitation amount follows the exponential distribution. Panger [47]

showed that the compound Poisson and negative binomial model are extensively used in the risk

economic theory. Besides, Thompson [48] made an application of Compound Poisson distribution

for modeling the month rain total.

In this thesis,

Third goal: we advocate using (4.1) to model intensities obtained from SAR systems.

SAR images have been used as important tools for solving remote sensing issues. Each entry

of SAR image is associated to a complex element whose squared norm is called as intensity.

Two questions are important to take account when working with this type of images: (i) they

are contaminated by speckle noise which hampers their processing and (ii) some of their scenarios

result in multimodal data. Other two contributions are also made in the SAR context:

Fourth goal: Proposal of a new family of distributions which includes extensions for the G0
I and

K models and

Fifth goal: Proposal of a G0
I regression model.

The above five goals are detailed subsequently.
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1.2 Main goals

In general, one wishes to contribute in two applied great areas: Survival analysis and SAR

image processing. With respect to the former, we propose non-likelihood estimation criteria as well

as GoF measures for the beta-G class. Second we aim to offer a parsimonious model to describe

multimodal SAR intensity data, an extension of the family of G distributions, and a regression

model that is tailored for situations where the dependent variable, Y , assumes positive real values

following the G0
I distribution.

The technical mechanism used is based on (a) the MT as a statistical tool applied to inference,

(b) random compound sum, (c) extension of the family of G distributions, and (d) a regression

model for the G0
I distribution. This work addresses the following specific objectives:

1. To derive PWMs of Fréchet and Kumaraswamy models for real powers.

2. To derive expressions for the MT of beta-Weibull (BW), beta-Fréchet (BF), beta-Kw (BKw),

and beta-log-logistic (BLL) distributions.

3. To propose four Hotelling’s T 2 statistics as new GoF measures.

4. To propose a new alternative methodology to the Pearson diagram for some beta-G distribu-

tions like qualitative scheme of GoF.

5. To furnish new estimators in closed-form based on LCs for BW parameters.

6. Proposal and assessment of a Hotelling’s T 2 statistic at the BW model for both inputs MLEs

and LCEs.

7. To propose a new three-parameter model called the compound truncated-Poisson Cauchy

distribution (CTPC) for describing multimodal SAR intensities.

8. To derive some properties of the CTPC model: cf and a distance measure between cfs.

9. To provide two estimation procedures for the CTPC parameters: MLEs and quadratic dis-

tance (QD) estimators.



30

10. To design a GoF tool based on a distance between cfs with associated cut-off point.

11. To propose a new probability distribution capable of encompassing two G submodels, K

and G0. In particular, they are sought to be extended with the inclusion of an additional

parameter. Some mathematical properties of the proposed distributions are studied.

12. To propose a regression model for the G0
I distribution and to derive some of its properties,

such as, score function, MLEs, Fisher information matrix, and influential measures.

The following five essays summarize Chapters 2, 3, 4, 5, and 6.

“ Essay 1: Goodness-of-fit Measures Based on the Mellin Transform for Beta

Generalized Lifetime Data”, submitted to Reliability Engineering & Systems

Safety.

In this essay, we propose GoF measures for generalized beta (beta-G) models based

on the MT and PWMs. We combine PWMs and the MT in order to furnish new GoF

qualitative and quantitative tools for choosing models within the beta-G class. First,

we derive PWMs for the Fréchet and Kumaraswamy distributions. After, we provide

expressions for the MT associated with the beta-G family and some of its special cases: in

particular, BW, BF, BKw, and BLL distributions. Subsequently, we make a combination

between the Hotelling’s T 2 statistic and the multivariate delta method to beget asymptotic

confidence ellipses to test hypotheses involving second kind cumulants. Finally, we

apply the proposed GoF measures on five real data sets applications in survival data

analysis.
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“ Essay 2: New Mellin-based Estimation and GoF Criteria for the Beta-Weibull

Model”, under review.

In this essay, we propose a new estimation method based on LC expressions of the BW

distribution, an important model in the beta-G generator. This process is called LCEs.

Further, we furnish a new BW GoF measure as well as its asymptotic behavior. This

latter tool combines the Hotelling’s T 2 statistic with the generalized delta method. Unlike

MLEs, our proposal has both expression and asymptotic standard errors in closed-form.

In order to quantify the performance of proposed LCEs and to compare it with that due

to MLEs, we perform Monte Carlo experiments. Finally, we apply the proposed method

based on LC (LC) expressions with real data.

“ Essay 3: The Compound Truncated Poisson Cauchy Model: A Descriptor for

Multimodal Data”, under review.

In this essay, we propose a probability distribution having only three parameters, which

is able to describe multimodal data. Our model is defined by the sum of a random

number, following the truncated Poisson law, of independent random variables with the

Cauchy model, called CTPC distribution. We derive some of its properties: cf and a dis-

tance measure between cfs. Further, we provide two estimation procedures for the CTPC

parameters: MLEs and QD estimators. Furthermore, we derive a new GoF measure

stemmed from the CTPC law and based on empirical cf. To quantify the performance

of both proposed estimators and GoF statistic, we make a Monte Carlo simulation study.

According to three figures of merit, results indicate QDEs may present better perfor-

mance than MLEs. Finally, an experiment with actual SAR data is performed. It aims

to describe a segment of SAR intensities (positive real feature of SAR) with at least two

types of textures. Our model can outperform six classic distributions for modeling SAR

intensities: Weibull, gamma, generalized gamma, K , G0
I , and beta generalized normal

models.
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“ Essay 4: An Extension for the Family of G Distributions”, under review.

In this essay, we extend the G family, proposing models more extensive than classical

distributions from the G family: such as G0
I and K models. Additionally, the statistical

properties such as moment, Mellin-based LCs, and maximum likelihood methods con-

cerning to the new distributions are derived. Finally, applications to actual data provide

evidence that the new distributions outperform usual G models.

“ Essay 5: G0
I Regression Model for Speckled Data”, under review.

Synthetic aperture radar (SAR) is an efficient and widely used remote sensing tool. How-

ever, data extracted from SAR images are contaminated with speckle noise, which pre-

cludes their modeling directly. Intensities are important SAR features which have a

non-additive nature and various distributions obtained from the multiplicative approach

have been proposed to describe them. The G0
I model is one of the most successful among

them. Several inferential procedures have been proposed for G0
I parameters, but–from a

literature review we made–there are not works which tackle a regression structure for this

model. This paper proposes a G0
I regression model in order to consider the influence of

other intensities (present in the polarimetric SAR data) in the modeling of intensities due

to one particular polarization channel. We derive some theoretical properties for the new

model: Fisher information matrix, residual-kind measures, and influential tools. Point

and interval estimation procedures via maximum likelihood are proposed and assessed

by Monte Carlo experiments. Results from synthetic and real studies point out that the

new model may be useful for speckled data.

1.3 Organization of the thesis

This thesis is organized as follows. This chapter presents the introduction. Next, a brief review

of theoretical background of the papers developed in this thesis is provided. The five subsequent
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chapters present in detail the articles of this thesis. Each essay is self-contained, having its own

notation and labels for formulas and tables. Finally, the last chapter approaches main conclusions

of this thesis and some proposals for future works.

1.4 Computational support

All results we presented in this thesis were obtained using the R statistical software [49]. We

employ MATHEMATICA and WXMAXIMA softwares 1 to check deduced expressions when pos-

sible.The text was written in the LATEX 2 and its references were made with BibTeX. The main

packages and functions of the R software used in this thesis are presented in Table 1.1.

Table 1.1: The main packages and functions of R software used in this thesis

Packages Functions Maintainer

MASS ginv( ) Brian Ripley

moments skewness( ), kurtosis( ) Lukasz Komsta

stats quantile( ), optim( ), ks.test( ) R Core Team

xtable xtable( ) David Scott

maxLik maxNR( ), maxBFGS( ), maxBFGSR( ), maxSANN( ), maxCG( ), maxNM( ) Ott Toomet

mixtools ellipse( ) Derek Young

compiler enableJIT( ) R Core Team

BB BBsolve( ) Paul Gilbert

gamlss gamlss( ) Mikis Stas.

plot3D scatter3D( ) Karline Soetaert

tools pdf( ), dev.off( ), compactPDF( ) R Core Team

base summary( ), var( ), cov( ), t( ), c( ), seq( ), log( ), exp( ), cor( ), length( ), tan( ), atan( ), R Core Team

sin( ), cos( ), abs( ), sqrt( ), round( ), ceiling( ), head( ), tail( ), matrix( ), as.matrix( ), vector( ),

as.vector( ), psigamma( ), numeric( ), sort( ), rbind( ), cbind( ), list( ), table( ), read.table( ),

diag( ), cloud( ), qnorm( ), rnorm( ), pnorm( ), qchisq( ), pf( ), runif( ), rpois( ), rcauchy( ),

pweibull( ), rweibull( ), dweibull( ), pbeta( ), hist( ), plot( ), lines( ), curve( ),

points( ), density( ), abline( ), text( ), mtext( ), legend( ), box( ), expression( ),

polygon( ), axis( ), title( ), range( ), write( ), anyNA( ), proc.time( ), cut( ),

is.infinite( ), return( ), print( ), apply( ), replicate( ), factorial( ), choose( ),

cumsum( ), qqplot( ), parse( ), chull( ), solve( ), RNGkind( ), seet.sed( ), eval( ),

rep( ), getwd( ), setwd( ), source( ), match.arg( ), rm(list=ls(all=TRUE)), require( )

1For more information about these software, see <http://andrejv.github.io/wxmaxima/> and

<https://www.wolframalpha.com/>, respectively.
2For more information and details on the typography system LATEX, visit <http://www.tex.ac.uk/CTAN/latex>.
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2 Goodness-of-fit Measures Based on the Mellin Trans-

form for Beta Generalized Lifetime Data

Abstract

In recent years various probability models have been proposed for describing lifetime data.

Increasing model flexibility is often sought as a means to better describe asymmetric and heavy

tail distributions. Such extensions were pioneered by the he beta-G family. However, efficient

goodness-of-fit (GoF) measures for the beta-G distributions are sought. In this chapter, we combine

probability weighted moments (PWMs) and the Mellin transform (MT) in order to furnish new

qualitative and quantitative GoF tools for model selection within the beta-G class. We derive

PWMs for the Fréchet and Kumaraswamy distributions; and we provide expressions for the MT,

and for the log-cumulants (LC) of the beta-Weibull, beta-Fréchet, beta-Kumaraswamy, and beta-

log-logistic distributions. Subsequently, we construct LC diagrams and, based on the Hotelling’s

T 2 statistic, we derive confidence ellipses for the LCs. Finally, the proposed GoF measures are

applied on five real data sets in order to demonstrate their applicability.

Keywords: Class beta-G. Mellin transform. Second-kind statistic. Probability weighted

moments. Hotelling’s T 2 statistic.

2.1 Introduction

Survival analysis tools have been applied in several contexts, such as survival time of me-

chanical components [1], the failure times of electrical insulator films [4], the effect of varying

IL-2 concentration on T cell response [50], and in censored data from head-and-neck-cancer cli-

nical trials [6]. Further applications were found in digital image processing, for instance in SAR
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imagery analysis [51, 52]. The derivation of new probability models capable of better explaining

reliability data is a central task in the field of survival analysis. In recent years, an effort to extend

classical models by means of probability distribution generators has been sought [53]. As a result,

the following probability models were introduced: the Marshall and Olking (MG)-G class of dis-

tributions [7], the generalized exponential distribution [54], the beta-normal distribution [53], the

Kumaraswamy (Kw)-G class [8], the McDonald normal distribution [9], the generalized gamma

distribution [55, 56], the T-X family of distributions [11, 57], and the generalized Weibull distribu-

tion [12].

Despite the significant number of new models, few goodness-of-fit (GoF) measures have been

proposed for the recent distributions; thus hindering model selection. Considering progressive

type-II censored data, Pakyari and Balakrishnan [13] proposed a general GoF test [14] that en-

compasses the GoF test described in [15]. Such methods are based on distance measures between

theoretical and empirical cumulative distribution functions.

Taking a different approach, Linhart and Zucchini [16] proposed information-theoretical mea-

sures considering the Akaike and Bayesian information criteria [17] as figures of merit for model

selection. An alternative method for GoF assessment was given by the Pearson system dia-

gram for model selection [18], which is based on skewness and kurtosis measures [19, p. 23].

Delignon et al. [20] and Vogel and Fennessey [21] applied such diagram for SAR and hydrology

data, respectively. Chabert and Tourneret [58] introduced a generalization of the Pearson diagram

for bivariate random vectors. Nagahara [59] examined the problem of devising GoF measures for

multivariate non-normal distributions by using the Pearson system.

However, in [22], Nicolas noticed that the Pearson diagram tends not to be well-suited for posi-

tive random variables. Thus, the LC diagram, which plots the third-kind LC κ̃3 against the second-

kind LC κ̃2, was introduced as an alternative [22]. The LC diagram offers some advantages over

the Pearson diagram. Besides being suitable for positive random variables, its computational im-

plementation is more direct and it also captures the distribution flexibility in the sense of skewness

and kurtosis [23]. Such diagram was demonstrated to be relevant for quantitative and qualitative

comparison of non-nested distributions in SAR and PolSAR data [27, 28, 60, 61]. A detailed de-

scription of the LC diagram is provided in [22,23]. In [22], Nicolas proposed the application of the
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MT [24, p. 50] as an alternative to the usual characteristic function. Li et al. [23] also considered

the MT-based diagram for the classification of empirical probability density functions (pdf) from

SAR imagery data. Nicolas and Maruani [62] compared the MT-based method with the second

kind cumulant, moment, lower order moment, and maximum likelihood (ML) methods. Khan and

Guida [61] have applied the MT to describe complex vector data having the G model; whereas

Anfinsen and Eltoft [26] have demonstrated that MT can be useful for PolSAR data analysis.

In this chapter, we propose a combination of PWMs and the MT in order to furnish new GoF

qualitative and quantitative tools for model selection in classes of generalized distributions [53].

We introduce a general expression for the MT of the beta generalized (beta-G) distributions. Be-

cause of analytical tractability and suitability for beta-generalization, we separate the following

baseline distributions for investigation: Weibull [63], Fréchet [64, 65], Kumaraswamy [66], and

log-logistic [67]. Their corresponding beta-generalizations are: the beta-Weibull (BW) [68], the

beta-Fréchet (BF) [69], the beta-Kumaraswamy (BKw) [70], and the beta-log-logistic (BLL) [71]

distributions. We introduce closed-form expressions for the Fréchet and Kumaraswamy PWM

functions. Moreover, we propose a relationship between the Hotelling’s T 2 statistic and the mul-

tivariate delta method to obtain asymptotic confidence ellipses for hypothesis testing that involves

second kind cumulants. Finally, five actual data sets in the context of survival analysis were sub-

mitted to the proposed methodology.

The structure of this work is outlined as follows. Section 2.2 reviews the beta-G class of distri-

butions with four particular cases. In Section 3.3, the MT and its properties are outlined. Moreover,

we summarize the PWM theory and derive the PWM for the Fréchet and Kw distributions. Sec-

tion 2.4 presents new GoF measures for four extended models from the beta-G class. In Section 2.5,

numerical results are displayed. Finally, concluding remarks are presented in Section 2.6.

2.2 The Beta-G Distribution Family

The beta-G family of distributions was proposed by Eugene et al. [53] and is defined as follows.

Let G(x;τττ) be a cumulative distribution function (cdf) with parameter vector τττ. We refer to such

cdf as the baseline distribution. The beta-G approach extends the baseline distribution into another
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distribution F(x) according to:

F(x) = F(x;a,b,τττ) = IG(x;τττ)(a,b) =
1

B(a,b)

∫ G(x;τττ)

0
ω

a−1(1−ω)b−1 dω, (2.1)

where a> 0 and b> 0 are shape parameters, Iy(a,b)=By(a,b)/B(a,b) is the incomplete beta func-

tion ratio, By(a,b)=
∫ y

0 ωa−1(1−ω)b−1 dω is the incomplete beta function, B(a,b)=Γ(a)Γ(b)/Γ(a+

b) is the beta function, and Γ(a) =
∫

∞

0 ωa−1 e−ω dω is the gamma function. The pdf associated with

(2.1) is given by:

f (x) = f (x;a,b,τττ) =
1

B(a,b)
g(x;τττ)G(x;τττ)a−1[1−G(x;τττ)]b−1, (2.2)

and

h(x) = h(x;a,b,τττ) =
g(x;τττ)G(x;τττ)a−1 [1−G(x;τττ)]b−1

B(a,b) [1− IG(x;τττ)(a,b)]
, (2.3)

where g(x;τττ) = dG(x;τττ)/dx is the baseline pdf. In the next subsections, we separate four particu-

lar beta-G distribution, given in Table 2.1, for further assessment and derivation of GoF measures.

The quantile function (qf), cdf, and the sample space X of the baseline distributions in Table 2.1

and models other are addressed in Table 2.2.

Fig. 2.1 presents pdf and hrf curves of BW, BF, BKw, and BLL for several parameters values.

Due to the inclusion of shape parameters (a and b), these distributions are more flexible than their

baselines and are candidates for modeling positive real data sets [72–74].

2.3 Mellin Transform as a Special PWM: Second Kind Statistics

for Beta Generalized Models

The Fourier transform is a central tool in signal analysis [96, 97]. Traditionally a probability

distribution can be described by means of its characteristic function (cf) of the first kind, which is

the Fourier transform of its pdf. Let X be random variable equipped with cdf F(x). Then, its cf

ΦX(t) is defined as [98, p. 342]:

ΦX(t) = E(ei t X) =
∫

∞

−∞

ei t x dF(x), t ∈ R,

3For α≤ 0 we have µ≤ x < ∞ and for α > 0, µ≤ x≤ µ+ λ/α.
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Table 2.2: Quantile and Cumulative Distributions of Adapted PWM

Models Q[F(x)] F(x) X References

Weibull λ [− log(1−F(x))]
1/α 1− exp

{
−
( x

λ

)α}
R+ [76–78]

Fréchet λ [− log(F(x))]−
1/α exp

{
−
( x

λ

)−α
}

R+ −−

Kw
[
1− (1−F(x))

1/λ

]1/α [
1− (1− xα)λ

]
[0, 1] −−

Rayleigh {2σ2[− log(1−F(x))]}1/2 1− exp
{
− x2

2σ2

}
R+ −−

Gumbel µ−λ log[− log(F(x)))] exp
{
−exp

[
− (x−µ)

λ

]}
R [76, 79, 80]

Logistic µ+λ[log(F(x))− log(1−F(x))]
[
1+ exp

(
− (x−µ)

λ

)]−1
R [76]

Log-logistic α

[
F(x)

1−F(x)

]1/λ
[

1+
(

α

x

)λ
]−1

R+ [81–84]

GEV (α 6= 0) µ+
λ

α
{[− log(F(x))]−α−1} exp

[
−
(

1+α
(x−µ)

λ

)−1/α

]
R [79, 85–89]

GEV (α = 0) µ−λ{log[− log(F(x))]} exp
[
−exp

(
− (x−µ)

λ

)]
R [79, 85–89]

Pareto
λ

(1−F(x))1/α
1−
(

λ

x

)α

[λ,∞) [90–92]

Pareto-G µ+
λ

α
[1− (1−F(x))α] 1−

(
1−α

(x−µ)
λ

)1/α

(α 6= 0)3 [90, 92–94]

Pareto-G µ+λ[− log(1−F(x))] 1− exp
(
− (x−µ)

λ

)
(α = 0)3 [90, 92–94]

Uniform α+F(x)(β−α)
x−α

β−α
[α,β] −−

Lambda-G λ1 +
F(x)λ3 − (1−)λ4

λ4
−− R [76, 95]
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Figure 2.1: The pdf and hrf curves of the BW, BF, BKw, and BLL models for several parameter

values.
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where i =
√
−1. However, the cf can be not analytically tractable, as noticed in the BW [68],

BF [69], BKw [70], BLL [71], beta-Gumbel [69], and beta log-normal [99] models. To address

this issue, Colombo [100] has suggested the MT as an alternative. In [22], Nicolas introduced the

second kind statistics based on the MT for analyzing distributions over R+.

In this section, we show that the MT of beta-G distributions can be directly obtained from

the PWM of baseline distributions. For such, in the following, we review PWM for baseline

distributions.

2.3.1 PWM Background

PWM was introduced by Greenwood et al. [76] and consists of a generalized moment expres-

sion for probability models. In terms of estimation theory, PWMs can furnish useful closed-form

estimators when classical estimators, such as the method of moments and ML, are analytically

intractable [76, 79, 101].

The PWM is defined by

Ml, j,k = E
{

X lF(X) j[1−F(X)]k
}
=

∫ 1

0
Q[F(x)]lF(x) j(1−F(x))k dF(x), (2.4)

where l, j,k ∈ R and Q(•) represents the qf of F(•). Notice that (2.4) generalizes the usual

moments, which are obtained by taking l ∈ Z+ and j = k = 0 (Ml,0,0). If Ml,0,0 is finite, then

PWM Ml, j,k is well-defined for all j,k ∈ R+ [76].

Suppose that j,k ∈ Z+, from the binomial theorem, we have:

Ml,0,k =
k

∑
j=0

(
k
j

)
(−1) jMl, j,0 (2.5)

and

Ml, j,0 =
j

∑
k=0

(
j
k

)
(−1)kMl,0,k, (2.6)

where if the expression (2.5) exists and X is a continuous variable, thus Ml,0,k exist. The same

follows for the expression (2.6). PWM is proportional to E(X l
j+1: j+k+1) when l, j, k ∈ Z+, since

the lth moment about the original of the ( j+1)th order statistic for a sample size of ( j+ k+1) is
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given by

E
(

X l
j+1: j+k+1

)
=

Ml, j,k

B( j+1, k+1)
,

where B(•,•) denotes beta function. Other important properties for PWM are [76]:

(i) Let X be a random variable, then lth ordinary moment of the first-order statistic is given by

E(X l
1:n) =

(k+1)Ml,0,k, if j = 0;

( j+1)Ml, j,0, if k = 0;

(ii) Consider a npoints random sample drawn from X such that n = k + 1 = j + 1, hence the

expected value of the sample range can be determined as

E(Xn:n−X1:n) = n (M1,n−1,0−M1,0,n−1).

Table 2.3 presents some PWMs for the distributions listed in Table 2.2.

The PWM can be (i) used to estimate the parameters of a probability model, and (ii) applied as

the basis to generate new estimators. In what follows we describe three methods (named M1, M2,

and M3) which generators new estimation methods.

Deng and Pandey [102, 103] and Deng et al. [104] developed PWM-based estimators by

means of the following quantities: (i) partial PWMs (PPWMs), (ii) integer-order PWMs (IPWMs),

(iii) fractional PWMs (FPWMs), (iv) fractional partial PWMs (FPPWMs), and (v) integer-order

partial PWMs (IPPWMs). The diagram in Fig. 2.2 exhibits the existing estimation PWM-based

methods.

Initially, PWM was particularized as follows:

K1: αk = M1,0,k = E{X(1−F)k}, k ∈ R+,

K2: β j = M1, j,0 = E{X F j}, j ∈ R+.
(2.7)

4Where the constant γ is the Euler-Mascheroni constant.
5Summation is 0 when k = 0.
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Table 2.3: Central Moments and Probability Weighted Moments

Models M1,0,0 Ml, j,k Restriction

Weibull λΓ

(
1+

1
α

)
λlΓ
(
1+ l

α

) ∞

∑
r=0

(
j
r

)
(−1)r

(k+ r+1)1+l/α
l,k ∈ R, and j ∈ R+

Fréchet λΓ
(
1− 1

α

)
λl Γ

(
1− l

α

)
∑

∞
r=0
(k

r

)
(−1)r 1

( j+r+1)1−l/α
l, j ∈ R and k ∈ R+

Kw λB(1+ 1/α, λ) λ ∑
∞
r=0
( j

r

)
(−1)r B [1+ l/α, λ(k+ r+1)] l,k ∈ R and j ∈ R+

Rayleigh
√

2σ2Γ

(
1+

1
2

) (
2σ2
)l/2

Γ

(
1+

l
2

)
∞

∑
r=0

(
j
r

)
(−1)r

(k+ r+1)1+l/2
l,k ∈ R, and j ∈ R+

Gumbel µ+ γλ
1

j+1
{µ+λ[γ+ log( j+1)]} 4 j ∈ R+, l = 1, and k = 0

Logistic µ
µ

k+1
− α

k+1

k

∑
r=0

1
r

5 k ∈ R+, l = 1, and j = 0

Log-logistic
α

λ

[
π

sin(π/λ)

]
αl B( j+ l/λ+1, k− l/λ+1) j >−(l/λ+1), and k > l/λ−1

GEV µµµ∗
1

j+1

{
µ− λ

α
[1− ( j+1)α

Γ(1−α)]

}
j ∈ Z+, l = 1, and k = 0

Pareto
λ

1−α
, α > 1 λlB(k+1−α, j+1) l ∈ R,k > α−1, and j >−1

Pareto-G
λ

1+α
, α >−1

λ

α
[B( j+1,k+1)−B( j+1,k+α+1)] j >−1,k >−1, and l = 1

Uniform
α+β

2

l

∑
r=0

(
l
r

)
α

l−r (β−α)r

(r+ j+1)
j ∈ R, l ∈ Z+, and k = 0

Lambda-G λ1 +
1
λ2

ζ

l

∑
r=0

(
l
r

)
λ

l−r
1 λ

−r
2

r

∑
h=0

(−1)h
(

r
h

)
B(δr,ηh) l, j,k ∈ R

where µµµ∗ =


µ+λ

[
Γ(1−α)−1

α

]
, if α 6= 0 and α < 1,

µ+λγ, if α = 0,4

∞, if α≥ 1,

δr = λ3(r−h)+ j, ηh = λ4 h+ k+1 , and ζ =

[
1

λ3 +1
−B(1,λ4 +1)

]
.
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Figure 2.2: Diagram with the PWM-based estimation methods.

Given an ordered sample x(1)≤ x(2)≤ ·· · ≤ x(n), the K1 and K2 PWMs can be unbiasedly estimated

as

ak =
1
n

n

∑
r=1

[(
n− r

k

)
xr

]/(n−1
k

)
and b j =

1
n

n

∑
r=1

[(
n− r

j

)
xr

]/(n−1
j

)
, (2.8)

where k, j = 0,1,2, . . . ,(n−2),(n−1)∈Z+, and the binomial coefficient is given as
(n

r

)
= n!

r!(n−r)! ,

if n≥ r ≥ 0, otherwise 0.

The method M1 developed by Deng and Pandey [102], called PPWM, redefines the PWM as

M p
l, j,k =

∫ 1

F(x0)
Q[F(x)]lF(x) j(1−F(x))k dF(x), (2.9)

where F(x0) is a lower bound of the censored sample and x0 is the censoring threshold. Thus,

K1: α
p
k = M p

1,0,k =
∫ 1

F(x0)
Q[F(x)](1−F(x))k dF(x),

K2: β
p
j = M p

1, j,0 =
∫ 1

F(x0)
Q[F(x)]F(x) j dF(x).

(2.10)

Let x(1) ≤ x(2) ≤ ·· · ≤ x(n) be an ordered complete sample, the K1 and K2 PPWMs can be

unbiasedly estimated by [105]

ap
k =

1
n

n

∑
r=1

[(
n− r

k

)
xp

r

]/(n−1
k

)
and bp

j =
1
n

n

∑
r=1

[(
n− i

j

)
xp

r

]/(n−1
j

)
, (2.11)
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where k, j = 0,1, . . . ,(n−1) ∈ Z+, and

xp
r =

0, if xr ≤ x0,

xr, if xr > x0.

(2.12)

For a fixed x0, an empirical frequency estimated of F(x0) is given by F̂(x0) = n0/n, where n0

is the number of occurrences which do not exceed x0 in the sample.

We highlight two important observations [102], namely: (i) If F(x0) = 0, α
p
k and β

p
j become

αk and β j, respectively and (ii) let α
p
k and β

p
j be unbiased estimators, then α

p
k and β

p
j become αk

and β j, respectively.

On the other hand, Deng and Pandey [103] developed other methods, denoting by IPWMs and

FPWMs. The IPWMs method consists in the usage of the expressions (2.7) and (2.8) to generate

new estimators. In case of the FPWMs method, we maintain the expressions (2.7)

ak =
1
n

n

∑
r=1

[(1−Pr)
kxr] and b j =

1
n

n

∑
r=1

[P j
r xr],

where xr is the rth order statistics, x(1)≤ x(2)≤ ·· · ≤ x(n), and Pr is the probability plotting position

of xr computed by a suitable formula [106], in which

Pr =
r−0.35

n
. (2.13)

Finally, we have the method M3 that was developed by [104], denoted FPPWM. This method

is the combination of the two previous methods, M1 and M2. The first step is to define the FPPWM

as given in (2.9). From there, they designated the K1 and K2 for FPPWMs and IPPWMs as given

in (2.10) and (2.11), respectively; and the xp
r presented in (2.12). Hence, the K1 and K2 FPPWM

are estimated from a sample series using plotting position expression

ap
k =

1
n

n

∑
r=1

[(1−Pr)
kxp

r ] and bp
j =

1
n

n

∑
r=1

[P j
r xp

r ],

where xp
r is defined in Eq. (2.12) and Pr in Eq. (2.13).

2.3.2 PWM of Particular Baseline Distributions

Greenwood et al. [76] and Caiza and Ummenhofer [77] derived the PWM for the following

models: the Weibull, the Gumbel [76], the generalized lambda [76], the logistic [76, 77], the
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Wakeby [76], and the kappa distribution [76]. Mahdi and Ashkar [83] derived the PWM for the

log-logistic model as a means to investigate the generalized probability weighted moments and

ML fitting methods. They also showed how to provide an estimation based on PWMs. Mahdi

and Ashkar [78,81] also derived and described PWMs linked to the Weibull and log-logistic mod-

els as an alternative to estimation methods such as the generalized PWMs [90], generalized mo-

ments [107–109], and ML methods [110].

However, the current literature lacks PWM expressions for the Fréchet and Kw distributions.

In the following propositions, we address this literature gap.

Proposition 1 Let X be a random variable following the Fréchet model with λ > 0 and α > 0 as

location and shape parameters, respectively. The PWM of X is given by

Ml, j,k = λ
l
Γ

(
1− l

α

)
∞

∑
r=0

(
k
r

)
(−1)r 1

( j+ r+1)1− l
α

.

Proposition 2 Let X be a random variable following the Kw model with shape parameters λ > 0

and α > 0. The PWM of X is given by

Ml, j,k = λ

∞

∑
r=0

(
j
r

)
(−1)r B

[
1+

l
α
, λ(k+ r+1)

]
.

Proofs for the above propositions are given in the Appendix A. A summary of the PWM results is

listed in Table 2.3; central moments are also shown as particular cases.

2.3.3 Mellin Transform

Let X ∈ R+ be a random variable with cdf F(x). Then the first cf of the second kind is defined

by means of the MT:

φX(s) =
∫

∞

0
xs−1 dF(x) = E(X s−1), (2.14)

where s ∈ C is a complex variable [22].

Similarly the cf, the MT has also an inverse. Let φX(s) be well-defined, one can deduce the pdf

as [22, 100]

f (x) =
1

2π i

∫ a+i∞

a−i∞

x−s
φX(s) ds. (2.15)
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If f (x) is a pdf, the second kind cf satisfies φX(s)
∣∣∣
s=1

= 1.

Next, we have the second cf of the second kind (an alternative to the cgf), which is defined as

the natural logarithm of φX(s) [22]:

ψX(s) = log [φX(s)] . (2.16)

As an illustration, consider the following example [111]: Let X ∈ R+ be a random variable fol-

lowing the Gamma distribution with pdf given by

f (x) =
βα

Γ(α)
xα−1 e−βx, for x,α,β > 0,

where Γ(α) is the gamma function [112, p. 254]. From (2.14), one has

φX(s) =
βα

Γ(α)

∫
∞

0
x(s+α−1)−1 e−βx d(x).

After simple algebraic manipulations,

φX(s) =
Γ(s+α−1)

Γ(α)

1
βs−1 .

For α = β = 1 and from the inversion formula (2.15), one has

f (x) =
1

2π i

∫ a+i∞

a−i∞

x−s
Γ(s) ds = e−x .

The last integral is known as the Cahen-Mellin integral [113]. Assuming α > 0 and β > 0,

f (x) =
1

2π i

∫ a+i∞

a−i∞

x−s

βs−1
Γ(s+α−1)

Γ(α)
ds

=
βαxα−1

Γ(α)

1
2π i

∫ a+i∞

a−i∞

(xβ)−(s+α−1)
Γ(s+α−1) ds.

Using the Cahen-Mellin integral formula [113],

f (x) =
βα

Γ(α)
xα−1 e−βx .

Considering the beta-G family, we introduce the following theorem relating the MT to the

PWMs.
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Theorem 1 Let X be a random variable having distribution in the beta-G family with cdf and pdf

given by (2.1) and (2.2), respectively. Then, the MT of X, referred to as φBG(s), is given by

φBG(s) =
1

B(a, b)
Ms−1,a−1,b−1, (2.17)

where Ms−1,a−1,b−1 is the PWM of a baseline G.

Proof 1 Applying (2.1) into (2.14) with G(x) = 1−G(x) we can show that:

φBG(s) =
∫

∞

0
xs−1 dF(x)

=
∫

∞

0
xs−1 g(x)

B(a, b)
G(x)a−1G(x)b−1 dx

=
1

B(a, b)

∫
∞

0
xs−1 G(x)a−1G(x)b−1 dG(x)

=
1

B(a, b)
E
[
X s−1 G(X)a−1G(X)b−1

]
=

1
B(a, b)

Ms−1,a−1,b−1.

n

Table 2.4 displays the obtained MT for the considered distributions.

Table 2.4: Mellin transform for the BW, BF, BKw, and BLL models

Models MT Restriction

BW λs−1

B(1,b) Γ
(
1+ s−1

α

)
b−(s−1+α)/α for all a = 1,b > 0,α > 0,λ > 0

BF λs−1

B(a,1) Γ
(
1− s−1

α

)
a(s−1−α)/α for all b = 1,a > 0,α > 0,λ > 0

BKw λ

B(1,b) B
(
1+ s−1

α
, λb

)
for all a = 1,b > 0,α > 0,λ > 0

BLL αs−1

B(a,1) B
(
a+ s−1

λ
, 1− s−1

λ

)
for all b = 1,a > 0,α > 0,λ > 0
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2.3.4 The log-cumulants method

In what follows, we discuss that log-moments (LMs) arise from the MT likewise ordinary

moments come from the cf [22, 114, 115]. Hence, the νth LMs, say m̃ν, is defined by [22]

m̃ν =
dν

φX(s)
dsν

∣∣∣∣
s=1

=
∫
R+

(logx)ν dF(x) = E[(logX)ν], ∀ ν ∈ N.

Deriving ψX(s) and evaluating s = 1, we obtain the second kind LCs of order ν [22]:

κ̃ν =
dν

ψX(s)
dsν

∣∣∣∣
s=1

, ∀ ν ∈ N. (2.18)

For example, the three first LCs can be written as:
κ̃1 = m̃1,

κ̃2 = m̃2− m̃2
1,

κ̃3 = m̃3−3m̃1m̃2 +2m̃3
1.

The formulas LMs and LCs are also used for the second-kind moments and cumulants, for in-

stance [116, 117]: Let X be a random variable,

κ̃1 = m̃1 = E(logX) and κ̃2 = m̃2− m̃2
1 = Var(logX).

In general, the vth-order LCs can be retrieved from [26, 60]

κ̃ν = m̃ν−
ν−1

∑
r=1

(
ν−1
r−1

)
κ̃r m̃ν−r. (2.19)

In practice, let κ̃ν be a function of the parameter vector θθθ, then the estimation of θθθ is done by

replacing m̃ν by sample LM, say ̂̃mν, which is defined as [26, 28, 60, 118, 119]

̂̃mν =
1
n

n

∑
r=1

(logxr)
ν,

where n is the sample size and xr the rth observation of a data set. In [22,119,120] the sample LM

was defined as ̂̃mν1 =
1
n

n

∑
r=1

logxν1
r .
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In addition to these estimation processes, the literature also uses mixed moments and mixed LM

given by [119]

̂̃mν2 =
1
n

n

∑
r=1

xν2+1
r log(xr),

and

̂̃mν3 =
1
n

n

∑
r=1

xr log(xν3
r ),

respectively. Another interesting case is by considering the identities [116, 117, 121, 122]:

̂̃
κ1 =

1
n

n

∑
r=1

[log(xr)],

̂̃
κ2 =

1
n

n

∑
r=1

[log(xr)− ̂̃κ1]
2,

̂̃
κ3 =

1
n

n

∑
r=1

[log(xr)− ̂̃κ1]
3,

...
...

...

̂̃
κν =

1
n

n

∑
r=1

[log(xr)− ̂̃κ1]
ν, where ν ∈ N.

It follows some examples of LC-based estimators: G0
I [120, 123], G0

A [120, 123], gamma [62],

K [62], Nakagami [23], Fisher [23], and generalized gamma [23] models. These resulting es-

timators depend on the polygamma function ψ(ν)(z) [112, p. 260]. The use of approximations

for ψ(•)(•) may be a manner of obtaining approximated closed-form estimators. To that end, the

following results are valid [112, p. 259–260] as z→ ∞,

ψ(z) = log(z)− 1
2z
− 1

12z2 +
1

120z4 + . . .

ψ
(1)(z)≈ 1

z
+

1
2z2 +

1
6z3 −

1
30z5 +

1
42z7 −

1
30z9 + . . .

ψ
(2)(z)≈− 1

z2 −
1
z3 −

1
2z4 +

1
6z6 −

1
6z8 +

3
10z10 −

5
6z12 + . . .

ψ
(3)(z)≈ 2

z3 +
3
z4 +

2
z5 −

1
z7 +

4
3z9 −

3
z11 +

10
z13 − . . .

(2.20)

For the generalized gamma [23] model with parameters µ 6= 0, δ ∈ R+, and σ ∈ R+, the LCs
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are given by [23]

κ̃ν =


log(σ)+

ψ(δ)− log(δ)
µ

, for ν = 1,

ψ(ν−1)(δ)

µν
, for ν≥ 2.

(2.21)

Thus, using (2.21) and (2.20), estimators for µ and σ may be given in closed-form [23]:
µ̂ =

√
1̂̃
κ2

(
1
δ̂
+ 1

2δ̂2

)
,

σ̂ = exp
{̂̃

κ1− 1
µ̂

[(
1
δ̂
+ 1

2δ̂2

)
− log(δ̂)

]}
.

Table 2.5 lists LC-based estimators for some known distributions. Next, in the Table 2.6,

presents LCs for the considered beta-G models.

2.3.5 The Log-cumulants Diagram

As discussed by Delignon et al. [20], the Pearson diagram is a tool for model selection and

assessment of fitting. Such diagram is based on skewness and kurtosis measures. Nicolas [22]

presented evidence that the Pearson diagram can be analytically intractable and introduced the

(κ̃3, κ̃2) diagram, which is similar to the Pearson diagram, but employs the second kind statistics

κ̃3 and κ̃2 instead of skewness and kurtosis measures. In [22], it is also shown that the (κ̃3, κ̃2)

diagram is a suitable alternative for classifying SAR images whose associate Pearson diagram is

often intractable.

Anfinsen and Eltoft [60] introduced the matrix LC (MLC) diagram as means to visually inspect

the multidimensional space where each dimension is represented by one particular MLC with order

ν. Thus, such visualization tool facilitates the use of MT and provides intuition to the LC method.

The diagram in [60] is an extension of the LC diagram considered by Nicolas [22, 119] for the

univariate MT. In [23, 26, 28, 61], the MT-based LC diagram was employed for pdf classification

from SAR imagery data.

In this chapter, we employ the (κ̃3, κ̃2) diagram as a tool for assessing fits under beta-G models.

The LCs of such models were derived using PWMs and the MT and are displayed in Table 2.6,
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Table 2.6: Log-cumulants of considered models

Model κ̃1 κ̃2 κ̃3 · · · κ̃ν ∀ ν > 1

BW log(λ)+ ψ(1)−log(b)
α

1
α2 ψ(1)(1) 1

α3 ψ(2)(1) · · · 1
αν ψ(ν−1)(1)

BF log(λ)− ψ(1)−log(a)
α

1
α2 ψ(1)(1) − 1

α3 ψ(2)(1) · · · (−1)ν 1
αν ψ(ν−1)(1)

BKw ψ(1)−ψ(λb+1)
α

ψ(1)(1)−ψ(1)(λb+1)
α2

ψ(2)(1)−ψ(2)(λb+1)
α3 · · · ψ(ν−1)(1)−ψ(ν−1)(λb+1)

αν

BLL log(α)+ ψ(a)−ψ(1)
λ

ψ(1)(a)+ψ(1)(1)
λ2

ψ(2)(a)−ψ(2)(1)
λ3 · · · ψ(ν−1)(a)+(−1)ν ψ(ν−1)(1)

λν

where the LCs are given in terms of the digamma and polygamma functions given by ψ(z) =
d

dz logΓ(z) and ψ(n)(z) = dn+1

dzn+1 logΓ(z) [112, p. 258–260], respectively.

Fig. 2.3 exhibits the regions in the (κ̃3, κ̃2) diagram linked to the BW, BF, BKw, and BLL

models. These regions can be understood as manifolds [60]. Each distribution is represented by a

subspace, whose dimensions depend on the parameter number of the associated distribution [26,

60]. However, the resulting region can degenerate into a curve [26, 60]. For instance, the log-

logistic distribution has no shape parameters and its manifold is represented by a line (vertical

dashed line), which can be viewed as a zero-dimensional manifold.

The regions linked to the BW and BF distributions are parameterized by one parameter. These

regions are represented, respectively, by a solid and dotted curve in Fig. 2.3, being one-dimensional

manifolds. On the other hand, the BKw and BLL distributions result in two-dimensional manifold

because they are parametrized by two and three parameters, respectively.

2.4 New GoF Tools for Beta-G Models

In recent years, several models have been proposed to describe survival data, such as the beta

power exponential [127], McDonald exponentiated gamma [3], gamma extended Weibull [2], and

the models considered in this chapter. These models are however in need of accurate GoF tools.

In this section, we propose four GoF tools for beta-G models based on the Hotelling’s T 2 statis-

tic [128, p. 170].
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Figure 2.3: Diagram of the LCs (κ̃3, κ̃2) for BW, BF, BKw, and BLL models.

2.4.1 Hotelling’s T 2 Statistic

The Hotelling’s T 2 statistic is a generalization of the Student’s t statistics [128, p. 170] given

by:

T 2 = n(xxx−µµµ)> SSS−1 (xxx−µµµ) , (2.22)

where xxx = 1
n ∑

n
r=1 xxxr is the sample mean vector based on a random sample xxx1,xxx2, . . . ,xxxn from the

ν-variate normal random vector xxx∼Nν(µµµ, ΣΣΣ); µµµ and ΣΣΣ are the mean vector and covariance matrix,

respectively; and SSS = 1
n ∑

n
r=1 xxxrxxx>r −nxxxxxx> is the sample covariance matrix. Such statistics follows

the F-Snedecor distribution with ν and n−ν degrees of freedom denoted by Fν,n−ν [128, p. 177].

Considering a significance level η, the likelihood ratio test for the hypothesis E(X) = µµµ can be

rejected if T 2 ≥ QF(1−η;ν,n−ν), where QF(•;ν,n−ν) is the qf for Fν,n−ν [128]. Additionally

one may consider ν-dimensional confidence ellipsoids given by [128]:

n(xxx−µµµ)> SSS−1 (xxx−µµµ)≤ QF(1−η;ν,n−ν).



55

For large samples, the T 2 distribution can be approximated by its limiting distribution, which is the

chi-squared distribution with ν degrees of freedom [26]. This result is relevant for the case where

xxxr is not normal and the exact distribution for (2.22) is not known.

2.4.2 Hotelling’s T 2 statistic and Log-cumulants

We aim at applying the Hotelling’s T 2 statistic as a means for proposing GoF tests based on

the LCs. Our goal is to estimate the LCs and then classify the underlying distribution according to

the location of the estimated LCs
[̂̃
κ2

̂̃
κ3

]>
over the (κ̃3, κ̃2) diagram.

Therefore, we need a test statistics for the null hypothesis H0 : E
([̂̃

κ2
̂̃
κ3

])
=
[
κ̃2 κ̃3

]
. Such

test would pave the way for accepting or rejecting the pertinence of estimated LCs to particular

regions over the (κ̃3, κ̃2) diagram.

Because the LCs tend to be analytically well-defined quantities, they can be given closed-form

expressions, as we showed in Table 2.6, for several beta-G distributions. Such relationship between

parameters and LCs can be used to derive estimators for the LCs. In other words, we have that

̂̃
κ2 = g2(θ̂θθ) and ̂̃

κ3 = g3(θ̂θθ),

where θ̂θθ is the estimated parameter vector; and g2(•) and g3(•) are composite functions that return

the LCs in terms of the baseline distribution parameters by means of evaluating: (2.18), (2.16),

(2.14), and (2.17).

Further, we notice that for large samples, considering the generalized delta method [115], the

estimator vector
[̂̃
κ2

̂̃
κ3

]>
follows the bivariate normal distribution with mean

[
κ̃2 κ̃3

]>
and an

asymptotic covariance matrix KKK, as previously shown in [26, 28, 61]. The estimated asymptotic

covariance matrix K̂KK can be obtained from the asymptotic covariance matrix of the parameter

estimators ΣΣΣ [26]. As shown in [26, p. 2769], we can write

K̂KK = ĴJJ
>
· Σ̂ΣΣ · ĴJJ,
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where

ĴJJ =



dg2(θ̂θθ)

d θ̂1

dg3(θ̂θθ)

d θ̂1

dg2(θ̂θθ)

d θ̂2

dg3(θ̂θθ)

d θ̂2

...
...

dg2(θ̂θθ)

d θ̂r

dg3(θ̂θθ)

d θ̂r


, (2.23)

θr is the rth parameter of the model and Σ̂ΣΣ is the estimated asymptotic covariance matrix of the

estimator vector θ̂θθ.

The ML estimators for the parameters of beta-G distributions often have no closed-form ex-

pressions and its covariance matrix is unknown. This is illustrated by the beta-Pareto [72], beta-

Laplace [129], BW [68], and BF [130] distributions.

As presented in [110, p. 181–182] and [25,131], the inverse of Fisher information matrix (FIM)

can be employed as an approximation for the variance-covariance matrix, since it is the asymp-

totic covariance matrix of the ML estimators [110, p. 181–182]. Thus, we have the following

approximation for ΣΣΣ [132, Th. 7.3.11]:

ΣΣΣ≈−
[

E
(

d2 `(θθθ)

dθθθ
> dθθθ

)]−1

, (2.24)

under regularity conditions [110].

For the majority of beta-G models, the calculation of their FIMs is analytically intractable. A

common solution for this problem is the use of the observed information matrix instead of the

FIM, as supported by [72, 129, 133]. Thus, the observed information matrix is an estimator for

the FIM [134]. Therefore, in this work, we use the inverse observed information matrix as re-

placement for the asymptotic covariance matrix of the ML estimators. The observed information

matrix has the advantage of being definite positive matrix; thus measuring the observed curvature

on the log-likelihood surface. In other words, it provides an indication of how much a multidi-

mensional likelihood surface is rotated with respect to the parameter axes [135]. For the model

parameter estimation, we employed the ML estimation because it results in invariant, consistent,

and asymptotically efficient estimators [136, p. 3].
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Thus, comparing with (2.22) and (2.23), for second and third order LCs κ̃2 and κ̃3, we have

that ν = 2, µµµ =
[
κ̃2 κ̃3

]>
, xxx =

[̂̃
κ2

̂̃
κ3

]>
, where ̂̃κ2 and ̂̃κ3 are sample estimators for κ̃2 and κ̃3,

respectively. The matrix S can be substituted by the estimated asymptotic covariance matrix K̂KK of

[̂̃κ2,
̂̃
κ3]
>. Therefore, we obtain the following statistic:

T 2 = n

̂̃κ2̂̃
κ3

−
κ̃2

κ̃3

> K̂KK
−1

̂̃κ2̂̃
κ3

−
κ̃2

κ̃3

 , (2.25)

where the inverse of K̂KK is obtained via usual matrix inversion [137, 138] if the matrix K̂KK is nonsin-

gular [139, p. 508]; otherwise the generalized Moore-Penrose inverse [139, 140] is applied.

For such, we submit the estimated LCs ̂̃κ2 and ̂̃κ3 from the (κ̃3, κ̃2) diagram [22] to the

Hotelling’s T 2 statistic formalism. Considering large samples, the limiting distribution of the

random variable T 2 is the χ2 distribution [26]. Thus, in (2.25), we can adopt the approximation

QF(•;ν,n− ν) ≈ Qχ2(•;ν), where Qχ2(•;ν) is the qf for the χ2 distribution with ν degrees of

freedom. Therefore, we can derive a confidence ellipse at significance level η according to:̂̃κ2̂̃
κ3

−
κ̃2

κ̃3

> K̂KK
−1

̂̃κ2̂̃
κ3

−
κ̃2

κ̃3

≤ 1
n

Qχ2(η;2),

where Qχ2(η;2) is the qf for χ2
2. The above ellipse is centered at (κ̃2, κ̃3) and its axes are directed

according the eigenvectors of K̂KK [141].

2.4.3 Hotelling’s T 2 statistic for Selected Beta-G Distributions

Based on the last discussion, four GoF measures are proposed for the BW, BF, BKw, and BLL

distributions.

Proposition 3 Let X be a random variable following the BW distribution with parameters a = 1,

b > 0, α > 0 and λ > 0, then the Hotelling’s T 2 statistic, here referred to as T 2
BW, based on the LCs

is given by

T 2
BW =

nα̂6

4

(
1

α̂2 −
1

α2

)2
(

|ĤHHBW|
Uα̂α̂Ub̂b̂−U2

λ̂b̂

)
,
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where | • | is the determinant of a matrix ĤHH ·; |ĤHHBW| is the estimator of |HHHBW| given by

|HHHBW|= Uαα(UλλUbb−U2
λb)+Uαλ(UαbUλb−UαλUbb)+Uαb(UαλUλb−UαbUλλ),

and α̂, b̂, λ̂ are the estimators for α, b, and λ, respectively. The quantities U· are the entries of the

associated information matrix and are given in the Appendix B.

Proposition 4 Let X be a random variable following the BF distribution with parameters a > 0,

b = 1, λ > 0 and α > 0, then the Hotelling’s T 2 statistic, referred to as T 2
BF, based on the LCs is

given by

T 2
BF =

nα̂6

4

(
1

α̂2 −
1

α2

)2
(

|ĤHHBF|
Uα̂α̂Uââ−U2

λ̂â

)
,

where |ĤHHBF| is the estimator of |HHHBF| given by

|HHHBF|= Uαα(UλλUaa−U2
λa)+Uαλ(UαaUλa−UαλUaa)+Uαa(UαλUλa−UαaUλλ),

and α̂, â, λ̂ are the estimates of the α, a, and λ, respectively. In the Appendix B, the quantities U·

are fully detailed.

Proposition 5 Let X be a random variable following the BKw with parameters a = 1, b > 0, λ > 0

and α > 0, then its Hotelling’s T 2 statistic, here called T 2
BKw, is given by

T 2
BKw =

n|ĤHHBKw|
δ̂22δ̂33− δ̂2

23

·
[
δ̂33

(̂̃
κ2− κ̃2

)2
+ δ̂22

(̂̃
κ3− κ̃3

)2
−2δ̂23

(̂̃
κ2− κ̃2

)(̂̃
κ3− κ̃3

)]
,

where |ĤHHBKw| is an estimator of |HHHBKw| given by

|HHHBKw|= Uαα(UλλUbb−U2
λb)+Uαλ(UαbUλb−UαλUbb)+Uαb(UαλUλb−UαbUλλ);

̂̃
κ2 and ̂̃κ3 are the estimates of the LCs κ̃2 and κ̃3, respectively; δ̂22, δ̂23, and δ̂33 are the estimates

for δ22, δ23, and δ33 given in compact form by

δ22 =
[
J12 J22 J32

]
·ΣΣΣBKw ·

[
J12 J22 J32

]>
,

δ23 =
[
J12 J22 J32

]
·ΣΣΣBKw ·

[
J13 J23 J33

]>
,

δ33 =
[
J13 J23 J33

]
·ΣΣΣBKw ·

[
J13 J23 J33

]>
;
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and

J12 =
2

α3

{
ψ
(1)(λb+1)−ψ

(1)(1)
}
,

J13 =
3

α4

{
ψ
(2)(λb+1)−ψ

(2)(1)
}
,

J22 =
b

α2 ψ
(2)(λb+1), J23 =

b
α3 ψ

(3)(λb+1),

J32 =
λ

α2 ψ
(2)(λb+1), J33 =

λ

α3 ψ
(3)(λb+1).

For the sake of brevity, the matrix ΣΣΣBKw is shown in Appendix B where the above expressions are

also given fully expanded forms.

Proposition 6 Let X be a random variable following the BLL distribution with parameters a > 0,

b = 1, λ > 0 and α > 0, then its Hotelling’s T 2 statistic, here named T 2
BLL, based on the LCs is given

by

T 2
BLL =

n|HHHBLL|
δ̂22δ̂33− δ̂2

23

·
[
δ̂33

(̂̃
κ2− κ̃2

)2
+ δ̂22

(̂̃
κ3− κ̃3

)2
−2δ̂23

(̂̃
κ2− κ̃2

)(̂̃
κ3− κ̃3

)]
,

where |ĤHHBLL| is an estimator of |HHHBLL| given by

|HHHBLL|= Uαα(UλλUaa−U2
λa)+Uαλ(UαaUλa−UαλUaa)+Uαa(UαλUλa−UαaUλλ);̂̃

κ2 and ̂̃κ3 are the estimates of the LCs κ̃2 and κ̃3, respectively; δ̂22, δ̂23, and δ̂33 are the estimates

for δ22, δ23, and δ33 given in compact form by

δ22 =
[
0 J22 J32

]
·ΣΣΣBLL ·

[
0 J22 J32

]>
,

δ23 =
[
0 J22 J32

]
·ΣΣΣBLL ·

[
0 J23 J33

]>
,

δ33 =
[
0 J23 J33

]
·ΣΣΣBLL ·

[
0 J23 J33

]>
;

and

J22 =−
2
λ3

{
ψ
(1)(a)+ψ

(1)(1)
}
,

J23 =−
3
λ4

{
ψ
(2)(a)−ψ

(2)(1)
}
,

J32 =
1
λ2 ψ

(2)(a), J33 =
1
λ3 ψ

(3)(a).

The matrix ΣΣΣBLL is shown in Appendix B with the above expressions fully expanded.
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2.5 Application to Actual Data

2.5.1 Selected Data Sets and Descriptive Statistics

We separated five real data sets to be submitted to our proposed methodology, determining

according to the introduced GoF criteria a suitable candidate among the BW, BF, BKw, and BLL

models. In the following, we describe briefly the selected data sets:

(i) Breaking data [142]: 100 observations on breaking stress of carbon fibres (in Gba);

(ii) Guinea.pig data [143]: 72 survival times of guinea pigs injected with different doses of tu-

bercle bacilli;

(iii) Stress-rupture data [5]: the stress-rupture life of kevlar 49/epoxy strands subjected to constant

sustained pressure at the 90% stress level until failure;

(iv) Airborne data [144, 145]: repair times (in hours) for an airborne communication transceiver;

(v) River flow data [146]: lower discharge of at least seven consecutive days and return period

(time) of ten years (Q7,10) of the Cuiabá River, Mato Grosso, Brazil.

Table 4.1 gives the descriptive summary for each data set. The first and second data sets

are homogeneous with sample variation coefficient (VC) of 38.68% and 37.26%, respectively.

The remaining data sets are heterogeneous. The river flow data set has negative skeweness and

platykurtic distribution (kurtosis is less than 3). The remaining data sets have positive skeweness

with leptokurtic distribution (kurtosis is greater than 3).

2.5.2 (κ̃3, κ̃2) Diagram and Log-cumulants Estimation

Fig. 2.4 exhibits the (κ̃3, κ̃2) diagram and regions linked to particular distributions are em-

phasized. For each data set, we computed the sample LCs according to bootstrap sampling with

1,000 replicates and 90% sample sizes. Each data set is represented by a different dot pattern.
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Table 2.7: Descriptive statistics and LCs (̂̃κ2 and ̂̃κ3) for selected data sets

Data Min. Max. Mean Median SD Skewness Kurtosis VC (%) ̂̃
κ2

̂̃
κ3

Breaking 0.39 5.56 2.62 2.70 1.01 0.36 3.10 38.68 0.19 −0.09

Guinea.pig 12.00 376.00 99.82 70.00 81.12 1.80 5.61 81.26 0.50 0.04

Stress-rupture 0.01 7.89 1.02 0.80 1.12 3.00 16.71 109.22 2.02 −2.71

Airborne 0.20 24.50 3.64 1.75 5.07 2.91 11.67 139.34 1.18 0.35

River flow 34.14 186.40 107.60 114.10 40.90 −0.15 1.93 37.26 0.19 −0.06

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0
.0

0
.4

0
.8

1
.2
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κ
2

BKW

BLL
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BF

LL

Figure 2.4: Diagram of the LCs (κ̃3, κ̃2) showing the manifolds of theoretical LCs for the BKw,

BLL, BW, BF, and log-logistic models, as well as a collection of sample LCs representing break-

ing (+), guinea.pig (�), stress-rupture ( ), airborne (×), and river flow (◦) data sets.
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For each data set, we computed the 95% confidence interval in each replications (sample sizes

n ∈ {10,50,100,300}) and repeated this process 1,000 times to compute these intervals without

the Bonferroni correction (WOBC) and with the Bonferroni correction (WBC). Table 2.8 displays

centers and ranges of the confidence interval for bootstrap percentile WOBC and WBC. We note

that for the five data sets the larger the sample size the smaller confidence interval. Both for the

WOBC and WBC methods. Also, we highlight that for all data sets and in all scenarios (n ∈

{10,50,100,300} and the second and third order sample LCs), the method WOBC had a lower

confidence interval than WBC.

Qualitatively we have the following analysis. For the breaking stress and stress-rupture data

sets, most of the points are located over the regions linked to the BKw and BW distributions. The

points derived from the Guinea.pig data are located in the BLL distribution region. The airborne

data set has its associated points over the central region, which includes the log-logistic distribution

region, and over the BLL and BF distribution regions. Finally, we have the river flow data set,

where the BKw distribution region captures most of its points, while some of them spread over the

BW and log-logistic distribution regions.

2.5.3 Hotelling’s T 2 statistic Analysis

The Hotelling’s T 2 statistic with p values were computed and are displayed in Table 2.9. The

obtained statistics can be interpreted as a measure of the distance between the data and each par-

ticular beta-G model. Lower values of Hotelling’s T 2 statistic suggest a better agreement between

data and model; indicating therefore a better data fitting.

By separating the models linked to the smallest values of Hotelling’s T 2 statistic, we have

that the BLL distribution is a good model for the guinea.pig and airborne data sets. The stress-

rupture and breaking data could be better modeled by the BW distribution. Similarly, the river flow

data could be fitted under the BKw distribution. These quantitative results confirm the qualitative

analysis provided in Fig. 2.4.
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Table 2.8: Centers and ranges of the confidence interval for bootstrap percentile WOBC and WBC

Center Range

Data n ̂̃
κ2

̂̃
κ3

̂̃
κ2

̂̃
κ3

WOBC WBC WOBC WBC WOBC WBC WOBC WBC

10 0.2540 0.2706 −0.1912 −0.2249 0.3958 0.4545 0.4173 0.5089

Breaking 50 0.2058 0.2153 −0.1116 −0.1303 0.1751 0.2153 0.2056 0.2514

100 0.2005 0.2068 −0.1012 −0.1075 0.1297 0.1531 0.1624 0.1827

300 0.1980 0.1990 −0.0896 −0.0950 0.0730 0.0881 0.0948 0.1159

10 0.4871 0.5261 0.0011 −0.0273 0.6746 0.8103 0.7069 0.8421

Guinea.pig 50 0.5058 0.5049 0.0299 0.0275 0.3350 0.3981 0.3068 0.3798

100 0.5007 0.5036 0.0359 0.0331 0.2326 0.2917 0.2259 0.2637

300 0.5027 0.5036 0.0411 0.0412 0.1349 0.1660 0.1312 0.1533

10 1.9282 2.0325 −2.8507 −3.1065 2.8789 3.3712 6.0492 7.1599

Stress-rupture 50 2.0169 2.0158 −2.5566 −2.6439 1.3950 1.6934 2.9275 3.4401

100 2.0015 2.0187 −2.6613 −2.6314 0.9527 1.1515 2.1224 2.5153

300 2.0201 2.0181 −2.6782 −2.6759 0.5475 0.6489 1.1837 1.4768

10 1.1443 1.1834 0.3735 0.3599 1.4776 1.6600 2.0760 2.6289

Airborne 50 1.1758 1.1720 0.3724 0.3786 0.6979 0.7739 1.0802 1.2804

100 1.1703 1.1741 0.3652 0.3670 0.4798 0.5672 0.7770 0.9387

300 1.1687 1.1738 0.3551 0.3585 0.2717 0.3209 0.4501 0.5216

10 0.1797 0.1796 −0.0579 −0.0642 0.2329 0.2681 0.1406 0.1699

River flow 50 0.1868 0.1865 −0.0589 −0.0587 0.1112 0.1260 0.0703 0.0805

100 0.1855 0.1847 −0.0589 −0.0607 0.0743 0.0876 0.0479 0.0601

300 0.1854 0.1859 −0.0590 −0.0598 0.0451 0.0538 0.0271 0.0333
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Table 2.9: Hotelling’s T 2 statistic and p-value (in parentheses) with respect to the data sets

Models Breaking Guinea.pig Stress-rupture Airborne River flow

BW 0.1786 (0.8367) 6.7272 (0.0021) 0.0554 (0.9462) 2.9496 (0.0638) 2.6815 (0.0821)

BF > 10 (≈ 0.00) 5.4663 (0.0062) > 10 (≈ 0.00) 2.3937 (0.1042) 2.2896 (0.1159)

BKw 6.7720 (0.0018) > 10 (≈ 0.00) 0.1335 (0.8752) > 10 (≈ 0.00) 0.2258 (0.7990)

BLL 5.5000 (0.0054) 0.8623 (0.4266) > 10 (≈ 0.00) 0.3187 (0.7289) 0.9358 (0.4016)

2.5.4 Confidence Ellipses

To complement the previous analysis of visual application, we have plotted confidence ellipses

for each data set. The construction of the ellipses was based on (2.25). We employed the smallest

value of Hotelling’s T 2 statistic from Table 2.9 and the associated beta-G distribution using the

estimated LCs ̂̃κ2 and ̂̃κ3; and the sample variance-covariance matrix Σ̂.

To obtain the ellipse for breaking and stress-rupture data set we used the BW model with the

T 2
BW statistics given by Proposition 3. For the guinea.pig and airborne data set we apply the BLL

model with the T 2
BLL statistics given by Proposition 6. In the case of the river flow data, we apply the

BKw model with the T 2
BKw statistics given by Proposition 5. Fig. 2.5 depicts the obtained ellipses.

2.6 Conclusion

In this chapter, several GoF measures have been proposed for determining good fits at the beta-

G class in the survival analysis context. We provided qualitative and quantitative analyses for the

introduced GoF tools including numerical and visual inspection approaches. We derived closed-

form expressions for the second kind characteristic function, LCs, Hotelling’s T 2 statistic, and

ellipse of confidence for the LCs of the BW, BF, BKw, and BLL distributions. Proposed measures

have been applied to five real data sets in order to demonstrate their applicability.
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Figure 2.5: Confidence ellipses for each data set.
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3 New Mellin-based Estimation and GoF Criteria

for the Beta-Weibull Model

Abstract

In recent years various probability models have been proposed for describing lifetime data.

Such proposals are often made from a class of distributions and aim to gain flexibility to yield

asymmetric and heavy tail distributions. The beta-G family proposed by Eugene et al. [Beta-

normal distribution and its applications. Communication in Statistics-Theory and Methods, 31,

497-512] is one of those classes. Although this class as well as other competing proposals can

provide models which are able even of characterizing multimodal data, efficient estimation pro-

cesses for their parameters are mandatory. Works about new distributions often present maximum

likelihood estimators (MLEs). In general, although has well-defined asymptotic properties they

do not provide closed-form and requires the use of interactive optimization sources. In this chap-

ter, we propose a new estimation method based on log-cumulant (LC) expressions of the beta-

Weibull (BW) distribution, an important model in the beta-G generator. This process is called LC

estimators. Further, we furnish a new BW goodness-of-fit measure as well as its asymptotic behav-

ior. This latter tool combines the Hotelling’s statistics with the generalized delta method. Unlike

MLEs, our proposal has both expression and asymptotic standard errors in closed-form. In order to

quantify the performance of proposed LC estimators and to compare it with that due to MLEs, we

realize Monte Carlo experiments. Finally, we apply the proposed method based on log-cumulant

(LC) expressions with real data. Results suggest new LC estimators may outperform meaningfully

the MLEs.

Keywords: Beta-Weibull model. Mellin transform. Probability weighted moments.

Goodness-of-fit measure. Monte Carlo simulation.
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3.1 Introduction

Survival analysis tools have been required in several reliability issues; as, for example, in

lifetimes [35] and industrial [147] areas, biomedical sciences [5], and reliability engineering [148].

In particular, survival data impose some difficulties (e.g., censured nature and resulting empirical

distributions having heavy tail and asymmetric behavior) and, therefore, require the proposal of

tailored modeling and inference methods. Several probability distributions have been proposed

as answers to those issues, but few works have addressed the proposal of alternative inference

methods for these extended models. In this chapter, we advance in the last sense.

In recent years, several works have addressed to extend classical models through generators of

distributions. Some examples are: the Marshall and Olking (MO)-G class proposed by Marshall

and Olkin [7], the generalized exponential (Exp)-G class by Gupta and Kundu [54], the Beta-G

class by Eugene et al. [53], the Gamma-G class by Zografos and Balakrishnan [55] and Ristic

and Balakrishnan [56], the Kw-G class by Cordeiro and Castro [8], the McDonald (Mc)-G class

by Cordeiro et al. [9], the TX-G class by Alzaatreh et al. [149], and by Aljarra et al. [11], and

the Weibull-G class by Cordeiro et al. [12]. The diagram 5.4 displays a relationship among these

classes.

We illustrate some issues which may arrive to apply likelihood-based inference in models ob-

tained from those classes.

Consider the extended Weibull model proposed by Marshall and Olkin [7]. Hirose [150] ap-

plied this model in breakdown voltage estimation. He employed the maximum likelihood esti-

mates (MLEs) to this end. MLEs do not often present closed-form and, as a consequence, re-

quire the use of interactive optimization sources. Dias [29] discussed about some numerical issues

which come from using MLEs in extended distributions. It is known MLEs have well-defined

asymptotic properties, but they may present an expressive bias for small and moderate sample

sizes. In particular, Dias [29] presented evidence that this bias may be more pronounced for the

exponential-Poisson distribution.

The gamma, Weibull and lognormal models remains largely an open field for parameter esti-

mation research [27,116]. It can be by the fact that both classical moments method and maximum
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Figure 3.1: Diagram relating the current models.

likelihood parameter estimation techniques bring to systems of non-linear ill behaved systems of

equations [151–153] that do not allow the use of classical numerical estimation approaches, such

as Newton-Raphson approach which reported persistent divergence in a panel of cases [153, 154].

The estimation procedure based on the MT has achieved a prominent position in several areas,

such as radar image and signal processing. The estimation by means of the MT was worked by

Nicolas and Maruani [62]. They showed evidence that such estimators present variance which can

be comparable with that of MLEs. The methodology of estimation by second type LCs (or by

the MT) consists in to equal the sample and theoretical LC estimators (LCEs). This estimation

has shown good performance for flexible distributions arising from the stochastic product or sum

model.

Nicolas [22] introduced a diagram alternative to the Pearson system (developed by Rhind [155]

and, subsequently, by Pearson [156]) like a qualitative measure of GoF to assess fits of matrix

distributions in radar image processing. Nicolas and Maruani [62] provided a simulation study

on which the performance of estimation based on LCs was compared with the ML and moment

estimations. Recently, Khan and Guida [61] proposed an estimation procedure in terms of log-

moments for the matrix G distribution. Anfinsen and Eltoft [60] have demonstrated matrix LCEs

may be great value in polarimetry SAR image processing, since it is possible to derive from them

estimators having lower bias and variance. Moreover, Li et al. [23] proposed the generalized
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gamma model for the empirical modeling of SAR images. With this, they developed the second-

kind cumulants, its properties, and applied to the SAR images data set.

In this chapter, we derive a new estimation procedure and a quantitative and qualitative GoF

measure for the BW distribution [68]. Both proposals are formulated in terms of theoretic results

linked to the BW MT, which is also proposed in this chapter. In particular, we derive that estimators

based on LCs for the BW parameters present closed-form and their asymptotic covariances are

analytically tractable. We also propose a type Hotelling statistic for the BW LCEs and MLEs which

may be used as a GoF measure. We perform a Monte Carlo study on which the proposed estimation

method is compared with MLEs adopting bias and mean squared error (MSE) as figures of merit.

Besides, we perform an application with actual lifetime data in order to quantify the impact of

applying MLEs and LCs on the proposed GoF measure. Results point out that our proposal may

outperform that based on the likelihood function (widely used in the survival analysis).

The chapter is outlined as follows. Section 3.2 presents the BW distribution. In Section 3.3,

we discuss the MT as a special PWM for the BW model. In Section 3.4, we present a new esti-

mation criterion and a GoF measure. Numerical results are displayed in Section 3.5. Finally, the

conclusions are exhibited in Section 3.6.

3.2 The BW model

The Weibull distribution is commonly used to model lifetimes of systems. However, its hrf

does not accommodate non-monotone hazard rates and this fact motivates the proposal of ex-

tended Weibull models which outperform this gap. Famoye et al. [68] introduced the BW model

which has been widely employed. Other properties of the BW model were derived and studied

by Lee et al. [6], and Cordeiro et al. [157, 158]. From (2.2) and (2.3), the BW pdf and hrf are

respectively:

f (x) =
αxα−1

B(a,b)
1

λα
e−b( x

λ
)

α
[
1− e−(

x
λ
)

α
]a−1

,
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and

h(x) =
αxα−1

λα

e−b( x
λ
)

α
[
1− e−(

x
λ
)

α
]a−1

B
1−e−(

x
λ
)

α (a,b)
.

This distribution is denoted by X ∼ BW (a,b,λ,α). Fig. 2.1 displays some BW pdf and hrf curves.

One can note that its hrf may assume constant, increase, decrease, bathtub and upside-down bath-

tub forms. These behaviors are sought because they are found in practical situations.

3.2.1 MLE of BW model

Let x1,x2, . . . ,xn be an observed sample obtained from X ∼ BW(a = 1,b,λ,α), the associated

log-likelihood function is given by

`(θθθ) = n log(α)−nα log(λ)−n log B(1, b)+(α−1)
n

∑
r=1

log(xr)−b
n

∑
r=1

(xr

λ

)α

,

and the corresponding components of the score vector,

U(θθθ) = (Uα,Uλ,Ub) =

(
d `(θθθ)

d α
,
d `(θθθ)

d λ
,
d `(θθθ)

d b

)>
,

are give by:

Uα =
n
α
+

n

∑
r=1

log
(xr

λ

)
−b

n

∑
r=1

(xr

λ

)α

log
(xr

λ

)
,

Uλ =−n
α

λ
+b

α

λα+1

n

∑
r=1

xα
r ,

Ub =−n{Ψ(0,b)−Ψ(0,1+b)}− 1
λα

n

∑
r=1

xα
r .

(3.1)

where we employed the polygamma function given by: Ψ(k,x) = dk+1

dxk+1 logΓ(x) [22].

The MLE for θθθ is defined as

θ̂θθ = argmax
θθθ∈R4

[`(θθθ)],

or, equivalently, as a solution of system obtained from making Equations (3.1) equal to null vector.

One can note that MLEs do not present closed-form expressions and interactive techniques are
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required, such as BFGS (Broyden-Fletcher-Goldfarb-Shanno) [159]. Examples these models are

the beta-Pareto [72], beta-Laplace [129], BW [68], and BF [160] distributions.

For covariance matrix estimation, and T 2 Statistic, we can employ as an approximation the

inverse of FIM [110, p. 181–182], ΣΣΣML say, given in (2.24), since it is the asymptotic covariance

matrix (ACM) of the ML estimators [110, p. 181–182].

Not always the calculation of FIMs for the beta-G model is analytically tractable, thereupon

a common solution for this problem is the use of the observed information matrix instead of the

FIM, as supported by [72, 129, 133]. Therefore, the observed information matrix is an estimator

for the FIM [134], this is,

ΣΣΣML ≈
[
− d2 `(θθθ)

dθθθ
> dθθθ

]−1

=


Uαα Uαλ Uαb

Uλα Uλλ Uλb

Ubα Ubλ Ubb



−1

, (3.2)

where Uαα = n
α2 + bξBW

2 , Uαλ = Uλα = 1
λ
(n− bξBW

3 ), Uαb = Ubα = ξBW
1 , Uλλ = [bα(α+1)ξBW

0 −nα]/λ2,

Uλb = Ubλ =−α

λ
ξBW

0 , Ubb = n[Ψ(1,b)−Ψ(1,1+b)], ξBW
s = ∑

n
r=1

(
xr

λ̂

)α̂

logs
(

xr

λ̂

)
, for s = 0,1,2;

and ξBW
3 = ∑

n
r=1
(xr

λ

)α
[
log
(xr

λ

)α
+1
]
.

It is known that MLEs present a bias with order O(n−1) and it suggests the proposal of alter-

native estimation strategies, where O(•) represents magnitude order. Dias [29] presented evidence

that plane likelihood events can occur of using MLEs in extend distributions. Thus, new estima-

tion procedures for distribution classes (such as the beta-G model) are sought. In what follows, we

present some theoretical results which aim to propose new GoF measure and estimation procedure

for the BW model.

3.3 Second Kind Statistics for the BW Model

In this section, is explored the theoretical properties for the BW model. Because, the PWM and

MT have already been reported in the previous chapter. This discussion aims to provide contexts

for our theoretical contributions.
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3.3.1 Theoretical properties for the BW model

The BW MT is given by the following Theorem.

Theorem 2 Let X ∼ BW(1,b,λ,α), its MT is given by

φBW(s) =
λs−1

B(1,b)
b−

(s−1+α)
α Γ

(
1+

s−1
α

)
.

n

The proof is detailed in [161]. Assuming s = ν+1 in Theorem 2, one has that the log-moments of

the BW model, mν, for ν ∈ N, are given by

mν =
λν

B(1,b)
b−

(ν+α)
α Γ

(
1+

ν

α

)
. (3.3)

Several authors [6,68,157] have proposed expansions for BW log-moments, Equation (3.3) presents

a closed-form expression. Hence, using Theorem 2 in (2.18), we have the BW LCs:

Proposition 7 If X ∼ BW(1,b,λ,α), its second kind cumulants are given by

κ̃ν =


log(λ)+ ψ(1)−log(b)

α
, for ν = 1;

1
αν ψ(ν−1)(1), for ν > 1,

One can note that BW LCs with order higher than two depend only on α. We remark that the

third order LC is negative.

3.4 Estimation and GoF for the BW model

This section aims to present both estimation procedures by LC and maximum likelihood and

a GoF measure for the BW distribution. First we present the LCEs for BW parameters based

on Proposition 7. Finally, we propose a GoF measure for the BW distribution, combining the

asymptotic behaviors of LCEs with the Hotelling T 2 statistics.
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3.4.1 LCEs for the BW model

Now, we are in position to derive the LCEs for b, λ and α parameters, say b̂LC, λ̂LC and

α̂LC, respectively. Combining the Proposition 7 with the relations in (2.19) replacing m̃ν by the

corresponding sample log-moments, one has closed-form estimators for λ and α are given by,

respectively: Assuming that b̂LC known,

λ̂LC = exp

{̂̃m1−
ψ(1)− log(b̂LC)

α̂LC

}
,

and

α̂LC =

√√√√ ψ(1)(1)̂̃m2− ̂̃m2
1

.

Further, LCE for b is defined as a solution of the following non-linear equation:

b̂LC = exp
{
− 3
√

Λϒ
3/2

[
ψ(1)− log(b̂LC)

]
+ψ(1)

}
,

where

Λ =
ψ(2)(1)̂̃m3−3 ̂̃m1 ̂̃m2 +2 ̂̃m3

1

and ϒ =
̂̃m2− ̂̃m2

1

ψ(1)(1)
.

3.4.2 Covariance matrix of LCEs

First we derive the covariance matrix of BW LCEs. Subsequently, we furnish a new GoF

measure for the BW model. Consider the following quantities;

m̃mm = (m̃1, . . . , m̃p)
> and ̂̃mmm = (̂̃m1, . . . , ̂̃mp)

>.

The central limit theorem and the Cramér-Wold theorem [162] proved that

√
n( ̂̃mmm− m̃mm)

D−→
n→∞

Nν(000, MMMν),

where xxx ∼ Nν(µµµ, ΣΣΣ) denotes the multivariate normal distribution with mean vector µµµ and covari-

ance matrix ΣΣΣ and [22, 26]

MMMν = nE
{
( ̂̃mmm− m̃mm)( ̂̃mmm− m̃mm)>

}
=
{

m̃r+ j− m̃rm̃ j
}∣∣∣ν

r, j=1
. (3.4)
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Now, let gν : Rν→R be moment-to-cumulant transformation function (which are continuously

differentiable),

κ̃ν = gν(m̃1, . . . , m̃ν) and ̂̃
κν = gν(̂̃m1, . . . , ̂̃mν).

Thence, together with the Cramér-Wold theorem, we have [163]

√
n(̂̃κκκ− κ̃κκ)

D−→
n→∞

Nν(000, KKKν),

where

KKKν = JJJ>ν ·MMMν · JJJν, (3.5)

∇∇∇gν =

[
d

d m̃1
gν(m̃mm), . . . ,

d
d m̃ν

gν(m̃mm)

]>
, for ν = 1, . . . ,r,

and

JJJν =
[
∇∇∇g1

∣∣ · · · ∣∣∇∇∇gν

]>
.

In this chapter, we use both asymptotic results of LCEs (given in (3.5)) and of MLEs. These

last have behavior similar to (3.5), replacing MMMν in (3.5) by the observed information matrix as

estimator for its expected counterpart which is analytically intractable. The following proposition

presents these matrices.

Proposition 8 Let X ∼ BW(1,b,λ,α) ν = 3 in (3.5), its ACM of LCE is given by

KKKLC =
1

α6

κ̃22 κ̃23

κ̃32 κ̃33

 ,
where

κ̃22 = α
2[Ψ(3,1)+2Ψ

2(1,1)],

κ̃23 = α[Ψ(4,1)+6Ψ(1,1)Ψ(2,1)],

κ̃33 = Ψ(5,1)+9Ψ(1,1)Ψ(3,1)+9Ψ
2(2,1)+6Ψ

3(1,1).
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Further the ACM of MLEs is given [161]

KKKML =

(
UααUbb−U2

λb
α8|HHH|

)
·

 4α2Ψ2(1,1) 6αΨ(1,1)Ψ(2,1)

6αΨ(1,1)Ψ(2,1) 9Ψ2(2,1)

 ,
where

|HHH|= Uαα(UλλUbb−U2
λb)+Uαλ(UαbUλb−UαλUbb)+Uαb(UαλUλb−UαbUλλ),

and the proof of this proposition is provided in Appendix C.

3.4.3 Hotelling’s statistic for BW model

In order to compare our proposal with MLEs, we propose a new GoF measure for the BW

model. To that end, we combine the Hotelling’s statistic [164] with the generalized delta method [165]

as follows.

The following result is known from the multivariate analysis literature [128]: Let xxx1, . . . ,xxxn ∈

R4 be a random sample drawn from a 4-points random vector. The T 2 Hotelling statistic is given

by

T 2 = (xxx−µµµ0)
>SSS−1(xxx−µµµ0), (3.6)

where xxx = 1
n ∑

n
r=1 xxxr, SSS = 1

n−1

n

∑
r=1

(xxxr−xxx)(xxxr−xxx)> and µµµ0 ∈Rn is a mean vector associated with

any random vector.

In practice, (3.6) is often considered to test H0 : µµµ= µµµ0 when the covariance matrix is unknown.

As a decision rule, if an outcome of T 2 is large (representing that xxx is distinct of µµµ0), one has sample

evidence to reject H0. This criterion is feasible because the T 2 statistics follows asymptotically

the Snedecor F model given by (n−1)ν(n−ν)−1X with X ∼ Fν,n−ν, where “Fν,n−ν” denoted the

Snedecor F distribution with ν and n−ν degrees of freedom.

Now we are in position to provide a new GoF measure. Note that, from the stochastic majoring

T 2≤C2, one can obtain an ellipsoid equation centered on LCEs having axes in the directions of the

eigenvectors of KKK. Based on the generalized delta method [165], κ̃2 and κ̃3 follows asymptotically
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bivariate normal distribution; i.e.,
̂̃κ2̂̃

κ3

−
κ̃2

κ̃3


 a∼N2(000, KKK),

where ̂̃κ2 = g2(θ̂θθ),
̂̃
κ3 = g3(θ̂θθ), θ̂θθ = (θ̂1, θ̂2, . . . , θ̂ν)

>, KKK = ∇∇∇
>

ΣΣΣ∇∇∇,

ΣΣΣ =


ΣΣΣML, for MLEs,

ΣΣΣLC, for LCEs,

where ΣΣΣML is given in (3.2), and ΣΣΣLC = Cov(m̂r, m̂ j)
∣∣∣ν
r, j=1

= 1
n(m̃r+ j− m̃r m̃ j); and

∇∇∇ =


∇∇∇ML, for MLEs ,

∇∇∇LC, for LCEs ,

where

∇∇∇
>
ML =

dg2(θθθ)
dθ1

dg2(θθθ)
dθ2

. . . dg2(θθθ)
dθr

dg3(θθθ)
dθ1

dg3(θθθ)
dθ2

. . . dg3(θθθ)
dθr

 and ∇∇∇
>
LC =

dg2(m̃mm)
d m̃1

dg2(m̃mm)
d m̃2

. . . dg2(m̃mm)
d m̃r

dg3(m̃mm)
d m̃1

dg3(m̃mm)
d m̃2

. . . dg3(m̃mm)
d m̃r

 .
Hence, we have the associated contour equation with (1−η) confidence are given by: For η as a

specific nominal level,

T 2 = n


̂̃κ2̂̃

κ3

−
κ̃2

κ̃3



>

K̂KK
−1


̂̃κ2̂̃

κ3

−
κ̃2

κ̃3


≤ χ2

2,η

n
,

where χ2
2,η denotes the ηth percentile of the chi-squared distribution with two degrees of freedom,

KKK−1 =
{

κ̃r, j}
r, j=2,3 , and the probability of random vector belonging to the contour is

P
(
T 2 ≤ χ

2
2,η
)
= 1−η.

Based on the last discussion, we can define a GoF measure for the BW distribution according to

the approach of Vasconcelos et al. [161].
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Proposition 9 Let X be a random variable following the BW distribution with parameters a = 1,

b > 0, α > 0 and λ > 0, then the T 2 statistic based on LCEs is given by

T 2 =


T 2

ML, for MLEs

T 2
LC, for LCEs ,

(3.7)

where

T 2
ML =

nα̂6

4

(
1

α̂2 −
1

α2

)2
(

|ĤHH|
Uα̂α̂Ub̂b̂−U2

λ̂b̂

)
,

and

T 2
LC =

nα6̂̃
κ33
̂̃
κ22− ̂̃κ2

23

{̂̃
κ

22
[

Ψ(1,1)
(

1
α̂2 −

1
α2

)]2

+ ̂̃κ33
[

Ψ(2,1)
(

1
α̂3 −

1
α3

)]2

− 2̂̃κ23
Ψ(1,1)Ψ(2,1)

(
1

α̂2 −
1

α2

)(
1

α̂3 −
1

α3

)}
,

where |ĤHH|, ̂̃κ22
, ̂̃κ33

, ̂̃κ23
, α̂, λ̂, and b̂ are the estimators of |HHH|, κ̃22, κ̃33, κ̃23, α, λ, and b respec-

tively; the proof of this Proposition is presented in Appendix C. We provide (3.7) as a GoF measure

for the BW law.

3.5 Numerical results

This section discusses results of a simulation study, performed to quantify the performance of

discussed methods. Beyond, experiments with real data are made to detect the effect of the use of

estimates into the new GoF measure.

3.5.1 Simulation study

To assess the performance of LCEs, a Monte Carlo simulation is accomplished with sam-

ple sizes n = 10,200,300,500, λ = 1, α ∈ {3,4,5} and b ∈ {4,5,6,7}. For each combination

(b,λ,α,n) we generate 1.000 Monte Carlo replications on which proposed estimators are assessed
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Figure 3.2: Density of estimates of parameter α by the two methods.
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Figure 3.3: The absolute relative bias of the estimates of parameters λ (a), α (b) and b (c) by two

methods.

for several sample sizes. This study is carried out using the R statistical software with BB and

MaxLik packages and BBsolve and maxBFGS functions. As figures of merit, we use the following

quantities to compare our proposal with MLEs: (a) absolute bias |E(θ̂i)−θi|, (b) relative absolute

bias |E(θ̂i)−θi|/θi, and (c) square root of mean square error,
√

MSE.

Table 3.1 presents the values of adopted criteria. One can note that the estimates based on LCEs

present values of
√

MSE and bias that decrease when increasing the sample size, while MLEs have

a good performance only for α. Fig. 3.3 shows values of the absolute relative bias. In all cases, our

method outperform MLEs. Fig. 3.2 displays empirical densities of estimates for both ML and LC

criteria. It is noticeable that our method converges faster for the expected asymptotic behavior.
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Table 3.1: Absolute biases and root mean squared error between parentheses
n Parameters LCE MLE

(λ,α,b) λ̂ α̂ b̂ λ̂ α̂ b̂

10 (1, 3, 4) 0.0970 (0.4375) 0.3847 (1.0240) 0.4378 (0.4829) 2.6814 (2.7717) 0.6209 (1.3079) 14.3624 (16.0946)

(1, 3, 5) 0.0772 (0.4541) 0.4175 (1.0681) 0.5065 (0.5529) 3.0021 (3.1089) 0.6209 (1.3079) 13.4747 (14.4035)

(1, 3, 6) 0.0199 (0.4761) 0.3574 (1.0116) 0.5762 (0.6176) 3.3048 (3.4247) 0.6209 (1.3079) 13.2928 (14.3557)

(1, 4, 5) 0.0443 (0.4900) 0.3047 (1.1650) 0.5569 (0.6260) 2.1011 (2.1849) 0.8279 (1.7439) 24.8966 (30.4742)

(1, 4, 6) 0.0143 (0.4720) 0.2572 (1.1157) 0.6202 (0.6940) 2.1212 (2.1891) 0.8279 (1.7439) 18.8525 (23.6321)

(1, 4, 7) 0.0570 (0.4921) 0.2628 (1.1406) 0.6881 (0.7547) 2.3351 (2.4381) 0.8279 (1.7439) 19.2111 (23.5978)

(1, 5, 7) 0.0588 (0.5330) 0.1851 (1.2944) 0.7533 (0.8554) 1.8208 (1.8918) 1.0348 (2.1796) 37.1777 (47.9914)

200 (1, 3, 4) 0.0926 (0.2496) 0.1232 (0.4600) 0.3684 (0.3892) 3.8489 (3.8671) 0.1238 (0.2049) 30.1620 (31.0186)

(1, 3, 5) 0.1499 (0.2758) 0.1232 (0.4600) 0.4383 (0.4618) 3.4671 (3.4700) 0.1238 (0.2049) 15.7810 (15.8675)

(1, 3, 6) 0.2042 (0.3101) 0.1232 (0.4600) 0.5220 (0.5446) 4.3724 (4.3806) 0.1238 (0.2049) 24.4781 (24.7023)

(1, 4, 5) 0.1049 (0.3198) 0.1620 (0.6089) 0.4576 (0.4862) 3.0176 (3.0288) 0.1651 (0.2732) 58.8000 (60.4853)

(1, 4, 6) 0.1570 (0.3422) 0.1606 (0.6072) 0.5381 (0.5713) 2.5815 (2.5937) 0.1651 (0.2732) 26.8884 (28.0325)

(1, 4, 7) 0.2149 (0.3665) 0.1620 (0.6089) 0.6114 (0.6448) 2.9631 (2.9700) 0.1651 (0.2732) 35.1489 (35.7311)

(1, 5, 7) 0.1726 (0.4039) 0.1842 (0.7340) 0.6334 (0.6714) 2.1059 (2.1142) 0.2063 (0.3415) 44.1454 (47.8689)

300 (1, 3, 4) 0.1129 (0.2321) 0.1050 (0.3982) 0.3581 (0.3768) 2.8348 (2.8431) 0.1222 (0.1829) 12.3868 (13.0370)

(1, 3, 5) 0.1710 (0.2608) 0.1050 (0.3982) 0.4360 (0.4565) 3.9843 (3.9903) 0.1223 (0.1829) 24.0742 (24.1696)

(1, 3, 6) 0.2325 (0.3065) 0.1050 (0.3982) 0.5152 (0.5372) 4.6184 (4.6247) 0.1223 (0.1829) 29.0995 (29.4373)

(1, 4, 5) 0.1214 (0.3014) 0.1399 (0.5309) 0.4519 (0.4778) 2.7040 (2.7105) 0.1630 (0.2439) 40.4146 (41.5011)

(1, 4, 6) 0.1809 (0.3257) 0.1399 (0.5309) 0.5285 (0.5551) 2.9484 (2.9590) 0.1630 (0.2439) 42.8914 (43.9331)

(1, 4, 7) 0.2413 (0.3599) 0.1399 (0.5309) 0.6067 (0.6330) 3.3507 (3.3622) 0.1630 (0.2439) 55.9035 (58.6638)

(1, 5, 7) 0.1975 (0.3904) 0.1716 (0.6592) 0.6154 (0.6467) 2.2460 (2.2532) 0.2037 (0.3049) 56.7250 (59.4779)

500 (1, 3, 4) 0.1582 (0.2151) 0.0560 (0.3004) 0.3506 (0.3652) 3.8750 (3.8775) 0.1172 (0.1569) 30.0781 (30.1264)

(1, 3, 5) 0.2149 (0.2612) 0.0560 (0.3004) 0.4340 (0.4489) 4.4134 (4.4171) 0.1172 (0.1569) 32.4681 (32.5623)

(1, 3, 6) 0.2719 (0.3087) 0.0560 (0.3004) 0.5223 (0.5380) 3.5910 (3.6114) 0.1172 (0.1568) 13.0823 (14.9157)

(1, 4, 5) 0.1890 (0.2716) 0.0747 (0.4005) 0.4374 (0.4570) 2.9964 (3.0019) 0.1562 (0.2091) 56.6910 (57.5881)

(1, 4, 6) 0.2405 (0.3093) 0.0747 (0.4006) 0.5251 (0.5465) 3.2949 (3.3088) 0.1562 (0.2091) 63.9427 (66.7045)

(1, 4, 7) 0.3029 (0.3621) 0.0747 (0.4005) 0.6002 (0.6193) 3.4282 (3.4387) 0.1562 (0.2091) 60.4176 (62.7743)

(1, 5, 7) 0.2761 (0.3682) 0.0917 (0.4979) 0.6077 (0.6321) 2.4534 (2.4596) 0.1953 (0.2614) 80.0111 (83.1250)
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Table 3.2: Description of data sets

Data Minimum Mean Median Mode SD Skewness Kurtosis Maximum VC

Voltage 2.00 177.03 196.50 300.00 114.99 −0.28 1.45 300.00 64.95

Electronic 0.03 1.94 1.79 NA 1.44 0.60 2.72 5.09 74.20

Glass 0.55 1.51 1.59 1.61 0.32 −0.90 3.92 2.24 21.51

3.5.2 Experiments with actual data

In this section, we provide two experiments with actual data to illustrate that the LCEs for BW

parameters may outperform meaningfully that due to ML in the lifetime data context. To that end,

we consider:

i) Voltage data: This base represents the time of failure and running times for a sample of

devices from a field-tracking study of a larger system [157, 166].

ii) Electronic data: This base data represents lifetimes of 20 Electronic Components [167,

p. 83–100].

iii) Glass data: This base represents the first set of data on the strengths of 1.5 cm glass fibre,

measured at the National Physical Laboratory, England [168].

Table 3.2 displays a descriptive summary of each data set. The first and third has one mode, and

second amodal. The electronic and glass data sets presents the smallest standard deviation (SD)

(1.44 and 0.32, respectively); while the highest is given in voltage data set. Voltage and glass data

sets have the mean small in than median, which results a negative skewness, see in Table 3.2. Also,

for voltage and glass data sets, we have the distribution of these data are negative skewness because

its symmetry are negative (−0.28 and −0.90). The glass data set has a high kurtosis what implies

a difficulty in choosing the possible model for estimating and the others has a small kurtosis. The

first data set is homogeneous (small variance) with sample variation coefficient (VC) of 21.51%.

The remaining data sets are heterogeneous.

Fig. 3.4 displays the (κ̃3, κ̃2) diagram, which is a tool alternative to the Pearson’s diagram as

discussed by Vasconcelos et al. [161]. It consists in resulting curves and areas over plane obtained
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Figure 3.4: Diagram of the LCs (κ̃3, κ̃2) showing the manifold of theoretical LCs for the BW, as

well as a collection of sample LCs representing voltage (�), electronic (×), and glass (+) data

sets.

from of writing κ̃2 in terms of κ̃3 for all points of the BW parametric space. After sample LCEs

were plotted over the (κ̃3, κ̃2) plane for each data set. It is noticeable considered data sets are over

the curve, which indicates the BW model like a good descriptor for considered data sets. This

graph can be understood as a qualitative index defined on the Proposition 7 for the BW model.

Now, we wish to assess the impact of both LCEs and ML criteria with respect to the 95%

confidence region derived from in Proposition 9. Fig. 3.5 shows these regions adopted for three

data sets and for two estimation methods. By a visual inspection, one can initially see that the use

of LCEs are more recommended than MLEs with respect to the use of proposed GoF measure.

In order to confirm the previous analysis, we quantify the degree of coverage of confidence

curves in Fig. 3.5. Table 3.3 exhibits values of the kind Hotelling statistic using LCEs and MLE

methods as well as their p-values. As a conclusion, the T 2 statistic equipped with LCEs presented

better performance than that in terms of MLEs.
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Figure 3.5: Confidence ellipses for each data set.

Table 3.3: Hotelling statistics and p-value with respect to the data sets

Data LCE MLE

T 2 p-value T 2 p-value

Voltage 0.2461 0.7835 1.7562 0.1912

Electronic 0.1588 0.8544 1.4353 0.2640

Glass 0.0002 0.9998 2.1485 0.1254
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3.6 Conclusion

In this chapter, we have proposed a new estimation procedure based on the MT for the BW

model. Moreover, a novel GoF measure for the BW distribution has also been derived. These

proposals have aimed to outperform issues with the use of MLE for the BW parameters as well as

the absence of a GoF quantity with a qualitative appeal in the lifetime context.

Monte Carlo experiments were conducted in sense to compare our proposal with MLEs. Using

biases and MSE as figures of merit, estimators based on LCs for BW parameters may outperform

meaningfully MLE. Finally, experiments with actual data were performed, indicating that the pro-

posed GoF measure equipped with LCEs may present better coverage degrees than if it is evaluated

at MLEs.
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4 The Compound Truncated Poisson Cauchy Model:

A Descriptor for Multimodal Data

Abstract

Multimodal data come from several applications in practice such as in the processing of Syn-

thetic Aperture Radar (SAR) images involving multiple clusters. This case has been often modeled

by using probability mixtures, but this solution may involve a great number of parameters and the

inference stage becomes hard. In order to overcome this gap we propose a probability distribution

having only three parameters, which is able to describe multimodal data. Our model is defined

by the sum of a random number, following the truncated Poisson law, of independent random

variables with the Cauchy model, called Compound truncated Poisson Cauchy (CTPC) distribu-

tion. We derive some of its properties: characteristic function (cf) and a distance measure between

cfs. Further, we provide two estimation procedures for the CTPC parameters: maximum like-

lihood estimators (MLEs) and quadratic distance estimators (QDEs). Furthermore, we derive a

new goodness-of-fit (GoF) measure stemmed from the CTPC law and based on empirical cf. To

quantify the performance of both proposed estimators and GoF statistic, we make a Monte Carlo

simulation study. According to three figures of merit, results indicate QDEs may present better

performance than MLEs. Finally, an experiment with actual SAR data is performed. It aims to

describe a segment of SAR intensities (positive real feature of SAR) with at least two types of

textures. Our model can outperform six classic distributions and one mixed distribution for mode-

ling SAR intensities: Weibull, gamma, generalized gamma, K , G0, beta generalized normal, and

Compound truncated Poisson Gamma models.

Keywords: Stochastic sums. Multimodal distribution. CTPC distribution. Stochastic distance.

PolSAR imagery.
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4.1 Introduction

Multimodal empirical distributions have been used in several applications in practice; for in-

stance, biomedical sciences [5], image processing [51], industrial [2] areas, breaking strengths

of glass fibers [3], and survival times [6]. Probability mixture models are often used to describe

data of this nature. However, these models impose a large number of parameters and, as a con-

sequence, making inferences on such parameters becomes a hard task. becomes a hard task.In

order to furnish a more parsimonious solution, we propose a probability distribution with only

three parameters which is able to describe data with multiple modes. The proposed model is de-

fined by the sum of a random number N of independent random variables following the Cauchy

distribution with location and scale parameters, µ and γ, respectively. As subsequently detailed, we

assume that the quantity N follows the truncated Poisson distribution. Such distribution is denoted

by X ∼ C (µ,γ).

The Cauchy distribution has been employed on several contexts; e.g., to model experiments

with circular [31, 32], financial [33], and optical data [34]. In recent years, the Cauchy model

has been extended resulting in a number of derived models: (i) the generalized odd half-Cauchy

family proposed by Cordeiro et al. [12], (ii) the beta-Cauchy distribution proposed by Alshawar-

beh et al. [169], (iii) the generalized skew-Cauchy distribution proposed by Huang and Chen [37],

(iv) the Weibull-power Cauchy distribution proposed by Tahir et al. [170], (v) the generalized

Cauchy family proposed by Alzaatreh et al. [171], (vi) the half-Cauchy distribution proposed

by Bosch [40], (vii) the Kumaraswamy-half Cauchy distribution proposed by Ghosh [172], and

(viii) the beta-half-Cauchy distribution proposed by Cordeiro and Lemonte [173]. In a general

sense, the above models were generated from the T-X (in which X is a random variable, “the trans-

former”, is used to transform another random variable T , “the transformed”). Class proposed by

Alzaatreh et al. [149]. However, such generator often provide unimodal or bimodal distributions.

Another approach to generate probability distributions is by “compounding”, a technique worked

by Grushka [43]. Such procedure generate new models by means of employing scale transforma-

tions of random vectors. Some examples of such transformations are: (i) minimum or maximum

of a random sample; (ii) sum of a random vector; and (iii) minimum on which is one random vec-
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tor of its parameters. Golubev [44] proposed the exponentially modified Gaussian model which is

suitable for analysis of variabilities featured by a number of biological phenomena often thought

to be associated with the lognormal distributions. Teich and Diament [174] showed that, if the

parameter of the compound Poisson distribution follows the range distribution, then the negative

binomial model is obtained. In Karlis and Xekalaki [30] have addressed an important type of such

compositions, the so-called compound N distribution, in which a random variable describes by the

following sum:

S = X1 +X2 + · · ·+XN , (4.1)

where both N and {Xl} are independent random variables. Revfeim [46] proposed the compound

Poisson exponential distribution for describing as to how little extra information might bere cov-

ered from a record of daily rainfall totals compared with a record of monthly rainfall totals.

Because (4.1) describes a number of natural phenomena, it is a widely considered model [47].

Revfeim [46] proposed the compound Poisson exponential distribution for describing the total

precipitation per day, where the number of days with precipitation is Poisson distributed and the

precipitation amount follows the exponential distribution. Second Panger [47], the compound

Poisson and compound negative binomial distributions are extensively used in risk theory, in par-

ticular to model total claims incurred a fixed period of time. Finally, Thompson [48] applied the

compound Poisson distribution for modeling the total monthly rainfall.

Synthetic aperture radar (SAR) imagery have been used as important tool for remote sensing.

Each entry of SAR image is associated to a complex-valued element whose squared norm is known

as intensity. Two questions are important to take into account when working with this type of

images: (i) they are contaminated by speckle noise which hampers their processing and (ii) some

of their scenarios result in multimodal data. Delignon and Pieczynski [175] assumed that the

returning back-scattered field F from an illuminated area is modeled by:

F =
n

∑
k=1

Fk, (4.2)

where n is the number of scatters and Fk are complex-valued quantities representing the individual

scatters.
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In this chapter, we adopt the the above-mentioned summation modeling to describe intensities

captured by SAR. Further, based on the results in [176–178], we have evidence that the Cauchy

distribution could meaningful represent the intensity. Moreover, in [179, 180] we find indications

that the truncated Poisson distribution could be a suitable candidate distribution for modeling the

number of resolution cells. Therefore, combining these two evidences, we proposed the random

sum of the Cauchy distributions with the number of terms following the truncated Poisson law

as a descriptor for the squared norm of F . As a result, we introduce a new probabilistic model

referred to as the CTPC distribution. The proposed distribution inherits the parameters from its

parent distributions, presenting three parameters: two shape and one scale parameter.

Here, we use the random sum of the Cauchy distributions with the number of terms following

the truncated Poisson law as a descriptor for the squared norm of F . Two drawbacks arrives from

this supposition: (i) the proposed model is defined in R instead of on R+ and (ii) it is not resulting

from the multiplicative model (as, for instance, K and G0 classic distribuitions) based on SAR

image physical formation. With respect the first issue, we show that the model proposed under

restriction is quasi positive (we assume this notation means “a real variable whose probability of

intervals on R− is negligible"). About (ii), although the CTPC model is not defined as product of

two independent random variables (where one represents the speckle noise and other describes the

relief, known multiplicative model), this model is linked to the fact that the signal of a resolution

cell is influenced additively by several reflectors whose number of them varies of cell by cell. Note

that

||F ||2 =
N

∑
l=1

Fl F̄j + 2Re[∑
l< j

Fl F̄j],

where || · || represents the square norm of a complex argument. Here, the second term is assumed

to be null and, consequently, ||F ||2 = ∑
N
l=1 Fl F̄j. Thus, Eq. (4.2) can be used for describing SAR

intensities. On the other hand, our model can assume uni and multimodals behaviors, unlike of

models obtained from the multiplicative approach. This gain may be very important before SAR

scens having many kind of textures.

The goal of this chapter is three-fold. First, we aim at analytically derive the CTPC distribu-

tion. Then, two of its properties are derived and discussed: cf and a distance measure between cfs.
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Moreover, we provide two estimation procedures for CTPC parameters: MLE and QDE. Second,

we furnish a CTPC GoF measure. A Monte Carlo study is made to quantify the performance of

the estimators in terms of some figures of merit. Results indicate QDEs may be more accurate

than MLEs. Third, we present evidence that the CTPC model may assume positive and multi-

modal nature being able to describe intensities distributed over SAR images with distinct clusters.

Then an experiment with actual SAR data is performed. From this study, the proposed model is

compared against six classic distributions and one mixed distribution for SAR intensities: Weibull,

gamma, generalized gamma (GΓ) [181], K [182, 183], G0 [123], beta generalized normal (BGN)

distribution [51], and Compound truncated Poisson Gamma (CTPG) [184]. Results are favorable

to the introduced model.

This chapter is outlined as follows. In Section 4.2, we make a brief review of Compound N

family. In Section 4.3 we define the CTPC model, present some of its properties, we provide

the CTPC cf and a GoF measure based on empirical cf. Two estimation procedures for CTPC

parameters are developed in Section 4.4. In Section 6.4, we make a simulation study to assess the

proposed tools. Experiments with real SAR data are provided in Section 4.6. Finally, we furnish

concluding remarks in Section 4.7.

4.2 Compound N family

Karlis and Xekalaki [30] have addressed an important distribution generator called compound

N family, which is defined by the sum (4.1). Now, we detail this family briefly. Let N ∈ Z+

be a discrete random variable and X1,X2, . . . ,XN be a random sample obtained from X . Consider

N,X1,X2, . . . ,XN be mutually independent. Thence, the cdf of (4.1) is given by

FS(x) = P(S≤ x) = P

(
N

∑
h=1

Xh ≤ x

)
=

∞

∑
r=1

P(N = r)P

(
N

∑
h=1

Xh ≤ x |N = r

)

=
∞

∑
r=1

P(N = r)P

(
r

∑
h=1

Xh ≤ x

)

=
∞

∑
r=1

P(N = r) FSr(x),

(4.3)
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where FSr(x) is the cdf of the sum of r independent random variables with distribution X , say Sr.

Its pdf follows from differentiating (4.3):

fS(x) =
∞

∑
r=1

P(N = r) fSr(x),

where fSr is the pdf of the sum of r independent random variables with distribution X .

Additionally, the hazard rate function (hrf) of the CTPC distribution is

hS(x) =
fS(x)

1−FS(x)
=

∑
∞
k=1 P(N = k)(1−FSk(x)) hSk(x)

∑
∞
k=1 P(N = k)(1−FSk(x))

=
∞

∑
k=1

wk(x)hSk(x),

where

wk(x) =
P(N = k)(1−FSk(x))

∑
∞
k=1 P(N = k)(1−FSk(x))

,

such that ∑
∞
k=1 wk(x) = 1. Thus, one has that the CTPC hrf is a mixture of Cauchy sum hrfs.

Fig. 4.1 show CTPC pdf plot. It is noticeable that the proposed model can describe multimodal

and positive data.

Moreover, hrf may be of three different forms: increasing, decreasing and inverted bathtub.

The Fourier transform [J. B. J. Fourier, 1768–1830] [24, p. 32] is one of the most important

tools in signal processing. Traditionally, a probability distribution can be characterized by means

of its cf, which is the Fourier transform of its pdf. Let X be random variable following a probability

distribution equipped with pdf f (x) and cdf F(x). Then, its cf, ΦX(t), is defined as [98, p. 342]:

ΦX(t) := E(ei t X) =
∫

∞

−∞

ei t x dF(x), for t ∈ R, (4.4)

where i =
√
−1 and E(•) is the expectation operator. The cf of a compound N family can be

determined according to the following theorem [185, Theorem 17.10.1].

Theorem 3 Let N be a discrete random variable over positive integer having cf ΦN(t) and S =

∑
N
r=1 Xr such that Xi cf ΦX(t) for all i = 1, . . . ,N and X1,X2, . . . ,XN ,N be mutually independent.

Then the following result holds

ΦS(t) = ΦN(−i log ΦX(t)).
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Based on the cf, the nth moment of the random variable S is given as follows. The nth moment

of S is the ratio between the nth derivative of cf, evaluated at the zero point, and the nth power of

the imaginary number; i.e.,

E(Sn) =
Φ

(n)
S (0)
in

, n ∈ N.

In particular, the two first moments are given by

E(S) =
ΦS(0)

i
=

1
i

[
d
d t

ΦS(t)
]

t=0

=

[
1
i
Φ

(1)
N (−i log ΦX(t))

(
−iΦ(1)

X (t)
ΦX(t)

)]
t=0

= iΦ
(1)
N (0)Φ

(1)
X (0)

= E(N) E(X)

and

E(S2) =
1
i2

[
d2

d t2 ΦS(t)
]

t=0

=
Φ

(2)
N (0)
i2

[−iΦ(1)
X (0)]2 +(−i)Φ(1)

N (0)

{
Φ

(2)
X (0)− [Φ

(1)
X (0)]2

i2

}
= E(N2)[E(X)]2 +E(N)Var(X),

where Var(X) is the variance operator.

Another way to characterize a random variable is through the moment generating function (mgf).

This function is also known as the Laplace transform [P. S. Laplace, 1749–1827] [24, p. 36], par-

ticularly in non-probabilistic contexts [98, p. 278].

Let X be a random variable such that E(et X)< ∞ [186, p. 194], then the mgf of X is defined as

MX(t) := E(et X) =
∫

∞

−∞

et x dF(x) for t ∈ R.
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Thereby, the mgf of the compound N family is given by

MS(t) =
∫

∞

−∞

et x fS(x)d(x)

=
∫

∞

−∞

et x
∞

∑
r=1

P(N = r) fSr(x)d(x)

=
∞

∑
r=1

P(N = r)
∫

∞

−∞

et x fSr(x)d(x).

As mentioned before, note that fSr is the pdf of the sum of r independent random variables with

distribution X . Thence, the mgf can be given as [185]

MS(t) =
∞

∑
r=1

P(N = r)[MX(t)]r = MN{log[MX(t)]},

where MN(•) and MX(•) are the mgfs of the N and X random variables, respectively. As a conse-

quence, the cumulant generating function (cgf) [98, p. 147]

KS(t) = log[MS(t)] = log{MN [logMX(t)]}= KN [KX(t))].

Likewise that we obtain the expected value by means of the cf, one can do through mgf:

E(Sn) =
dn MS(t)

d tn

∣∣∣
t=0

.

Supposing mgf exists and is known, then ΦS(t) = MS(i t). Thus, all properties of the mgf can

be extended to the cf. The main gain of the cf with respect to mgf is that it always exists for

any t ∈ R [187, p. 153].

To illustrate the previous discussion of this section, consider (4.1) with N ∼ TP(λ) having cf

ΦN(t) = eλeit −1
eλ−1

[188]. Using Xi ∼ N (µ,σ2), Belchior et al. [189] proposed S ∼ CTPN(λ,µ,σ2);

and Weverson et al. [189] introduced S∼ CTPG(λ,α,β) assuming Xi ∼ Γ(α,γ). Their cdf and pdf

are given by, respectively,

FS(x) =



(
1

eλ−1

)
∞

∑
r=1

λr

r!
Φ

(
x− rµ
σ
√

r

)
, CTPN,

(
1

eλ−1

)
∞

∑
r=1

λr

r!
γ(rα,xβ)

Γ(rα)
, CTPG,
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and

fS(x) =



(
1

eλ−1

)
∞

∑
r=1

λr

r!
1

σ
√

2rπ
exp
[
−1

2
(x− rµ)2

rσ2

]
, CTPN,

(
1

eλ−1

)
∞

∑
r=1

(λβα)r

r!
xrα−1 e−βx, CTPG,

where Φ(•) is the cdf of the N (0,1), λ > 0, µ ∈ R, σ > 0, α > 0, and β > 0. More details and

properties are given in [184, 189].

4.3 The CTPC distribution

Let X1,X2, . . . ,Xk a random variable following a Cauchy distribution, called C (µ,γ), then the

cdf and pdf of Sk are, respectively, given by:

FSk(x;µ,γ) =
[

1
π

arctan
(

x− k µ
k γ

)
+

1
2

]
, (4.5)

and

fSk(x;µ,γ) =

{
πk γ

[
1+
(

x− k µ
k γ

)2
]}−1

,

where x ∈ R and µ ∈ R and γ > 0 are the location and scale parameters, respectively. Let us

further assume that N obeys the truncated Poisson distribution, denoted as N ∼ TP(λ). Thus we

have [190]:

P(N = n) =
1

eλ−1
λn

n!
, for n = 1,2, . . . . (4.6)

By applying (4.5) and (4.6) in (4.3), it follows that:

FS(x;θθθ) =
1

eλ−1

∞

∑
k=1

λk

k!

[
1
π

arctan
(

x− k µ
k γ

)
+

1
2

]
,

where θθθ = (λ,µ,γ)> and the associated pdf is given by:

fS(x;θθθ) =
1

eλ−1

∞

∑
k=1

λk

k!

{
πk γ

[
1+
(

x− k µ
k γ

)2
]}−1

. (4.7)
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Figure 4.1: Plots of the pdf and hrf of CTPC model for several parameter values.

In this work, the above probability law is referred to as the Compound Poisson-truncated Cauchy

distribution and it is denoted by S∼ CTPC(λ,µ,γ).

Fig. 4.1 show CTPC pdf and hrf plot. It is noticeable that the proposed model can describe mul-

timodal and positive data. Moreover, hrf may be of three different forms: increasing, decreasing

and inverted bathtub. In what follows, we derive some results for the CTPC model.

Initially, we have that the cf of N and X are, respectively, given by [189]:

ΦN(t) =
eλ ei t −1
eλ−1

and ΦX(t) = exp(µ i t− γ|t|) ,
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Applying the above Theorem 3 we have that the CTPC cf is given by:

ΦS(t) =
eλ exp{i[−i(iµt−γ |t|)]}−1

eλ−1
=

eλ exp{iµt−γ |t|}−1
eλ−1

. (4.8)

Invoking the Euler’s identity, we can rewrite (4.8) in the following form:

ΦS(t) =
Λt [cos(δt)+ i sin(δt)]−1

eλ−1
, (4.9)

where Λt = eλ cos(µt) e−γ|t|
and δt = λ sin(µt) e−γ|t|. Thus,

Re [ΦS(t)] =
1

eλ−1
(Λt cos(δt)−1) and Im [ΦS(t)] =

1
eλ−1

Λt sin(δt).

Additionally, the second type cf or cumulant generate function of SN is given by

ΨS(t) = log(ΦS(t)) = log

{
eλ exp[iµt−γ |t|]−1

eλ−1

}
.

Expression (4.9) can be used for various goals. In this chapter, we propose two estimation

criteria based on it. In what follows, we discuss the derivation of these methods as well as the

maximum likelihood procedure for the CTPC model.

4.3.1 Empirical cf method

Let X1,X2, . . . ,Xn be a random sample drawn from X with cdf F(x;θθθ). The associated empirical

cf (ecf) is defined as

ΦXn(t) =
1
n

n

∑
j=1

ei t X j =
∫
R

ei t x dFn(x;θθθ), (4.10)

where Fn(x;θθθ) is the empirical cdf associated with F(x;θθθ) and θθθ = (θ1,θ2, . . . ,θp)
> ∈ Rp. Based

on (4.10), several inferential methods have been proposed. In particular, Groparu and Doray [191]

proposed a new hypothesis test and a point estimation procedure in terms of (4.10).

Assuming t ∈ R in (4.10), Press et al. [192] and Paulson et al. [193] introduced an estimator

which minimizes the following distance:

Dν(θθθ;xxx) =
∫
R
|ΦXn(t)−ΦX(t)|ν dG(t,κ), (4.11)
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where xxx = (x1,x2, . . . ,xn)
> and G(t,κ) is a continuous weighting function.

As an example of (4.11) with ν = 2, Knight and Yu [194] introduced an estimator based on the

distance

D2(θθθ;xxx) =
∫
R
|ΦXn(t)−ΦX(t)|2 dG(t,κ). (4.12)

Further, Besbeas and Morgan [195] and Matsui and Takemura [196] have used successfully the

weight function G(t,κ) =
∫ t
−∞

e−κ |t| dt for κ > 0, which renders the integral in (4.12) finite. In

general, these estimators are called ecf estimators (ECFE) and are defined as

θ̂θθECFE = arg min
θθθ ∈Θ⊆ Rp

D2(θθθ;xxx),

which obeys the asymptotic behavior [162]

√
n(θ̂θθ−θθθ)

D−→
n→∞

Np(000,ΣΣΣ−1
ΩΩΩΣΣΣ
−1),

where “ D
−→

” indicates convergence in distribution,

ΣΣΣ = E
(

d2 D2(θθθ)

dθθθ
> dθθθ

)
and Ω = E

(
dD2(θθθ)

dθθθ
>

dD2(θθθ)

dθθθ

)
.

In this chapter, we aim to derive a distance-based GoF criterion for the CTPC model. First, consider

the following result proposed by Yu [197].

Lemma 1 Let X ∼ C (µ,γ) with cf given by

ΦX(t) = ei t µ−γ |t|, for t ∈ R.

Assuming G(t,κ) = e−κ |t| and κ > 0, the distance (4.12) is given by

DC (θθθ;xxx) =
2
n2

n

∑
j,l=1

κ

κ2 +
(
x j− xl

)2 −
4
n

n

∑
j=1

κ+ γ

(κ+ γ)2 +
(
x j−µ

)2 +
2

2γ+κ
,

where xxx = (x1,x2, . . . ,xn)
> is an outcome of (X1,X2, . . . ,Xn)

>.

The proof this lemma is in [195, 196].

Taking into account the previous lemma, we propose the subsequent proposition.
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Proposition 10 Let X ∼ CTPC(λ,µ,γ) with cf given in (4.8) and G(t,κ) = e−κ |t| for κ > 0. In this

case, the distance (4.12) is given by

DCTPC(θθθ;xxx) =
2
n2

n

∑
j,l=1

κ

κ2 +(x j− xl)2 +
4

n(eλ−1)

n

∑
j=1

κ

κ2 + x2
j

− 2
n(eλ−1)

n

∑
j=1

g3(λ,γ,µ,κ,x j)+
2

κ(eλ−1)2

+
1

(eλ−1)2 g1(λ,γ,µ,κ)−
2

(eλ−1)2 g2(λ,γ,µ,κ),

where

g1(θθθ; κ) =
∫
R

e2λcos(µt)e−γ|t|
e−κ|t| dt, g2(θθθ; κ) =

∫
R

Λt cos(δt) e−κ|t| dt,

and

g3(θθθ; κ,x j) =
∫
R

cos(δt− tx j)Λt e−κ|t| dt.

n

The proof of this proposition is given in Appendix D. From this proposition, the following

corollary holds.

Corollary 1 Let X ∼ CTPC(λ,0,1). The GoF measure (4.12) is given by

DCTPC(θθθ;xxx) =
2
n2

n

∑
j,l=1

κ

κ2 +(x j− xl)2 +
4

n(eλ−1)

n

∑
j=1

κ

κ2 + x2
j

− 2
n(eλ−1)

n

∑
j=1

∞

∑
r=0

λr

r!
(k+ r)

x2
j +(k+ r)2

+
2

κ(eλ−1)2

+
1

(eλ−1)2
2

(−2λ)κ
[Γ(κ)−Γ(κ,−2λ)]− 4

(eλ−1)2(−λ)κ
[Γ(κ)−Γ(κ,−λ)] .

n

The above particular case is important to define an alternative measure for multimodal data

to be compared with other obtained from one parameter standard models (such as exponential,

Rayleigh and Nakagami distributions).

To check the behavior of DCTPC(θθθ;xxx) at θθθ = (λ,µ,γ), where λ ∈ {0.1,1.0,5.0,10.0} and µ ∈

{−10,−9, . . . ,10}, we follow the steps:
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Figure 4.2: Illustration of GoF measure of CTPC model.

1. Given λ = λ0, generate one CTPC(λ0,0,0.1) sample of size n = 100, say xxx = (x1, . . . ,xn);

2. At each Monte Carlo replication, quantify DCTPC((λ0,µ,0.1);xxx) assuming κ = 10 for each

µ ∈ {−10,−9, . . . ,10}, yielding the distance vector d1,i, . . . ,d100,i for ith replication;

3. Return, for each λ, the vector (d1,d2, . . . ,d100) such that dk = 100−1
∑

100
i=1 di,k and κ =

1, . . . ,10.

It is expected that DCTPC(λ0,0,1) ≤ DCTPC(λ0,µ,0.1), where the lower bound must be as close

to zero as possible. Fig. 4.2 illustrates the values of the distances obtained. One can observe the

expected behaviour tends to be achieved for higher values of λ; i.e., this distance is sensitive to

the value of the parameter λ. Although it is not the focus of this chapter, the measure proposed

in Proposition 10 can be combined to non-parametric procedures to provide a GoF tools for the

CTPC law.

In what follows, we furnish estimation criteria based on CTPC distances.
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4.4 New Estimation and GoF criteria

This section aims to provide two estimation methods. One of them is the maximum likelihood

procedure and the other two are based on the minimization of a distance measure between empirical

and theoretical cfs. Moreover, the distance proposed in the previous section is understood as a new

GoF criterion.

4.4.1 Maximum Likelihood Method

Let S1,S2, . . . ,Sn be a random sample obtained from S∼CTPC(λ,µ,γ) having pdf given in (4.7).

The log-likelihood function at the parameter vector θθθ = (λ,µ,γ)> based on one outcome of that

sample, say xxx = (x1,x2, . . . ,xn)
>, is given by

`(θθθ) = `(θθθ;xxx) = log
n

∏
l=1

f (xl; λ,µ,γ) = n log[(eλ−1)−1]+
n

∑
l=1

log

{
∞

∑
k=1

λk

k!
fSk (xl)

}
, (4.13)

where fSk (xl)≡ fSk (xl;µ,γ).

Based on (4.13), the associated score function,

U(θθθ) = (Uλ,Uµ,Uγ) =

(
d `(θθθ)

d λ
,
d `(θθθ)

d µ
d `(θθθ)

d γ

)>
,

is given by:

Uλ(θθθ) =

[
n

∑
l=1

1
fS(xl)(eλ−1)

∞

∑
k=0

λk

k!
fSk+1(xl)

]
− n

eλ

(eλ−1)
,

Uµ(θθθ) =
1

(eλ−1)

n

∑
l=1

1
fS(xl)

∞

∑
k=1

{
λk

k!
fSk (xl)

dlog [ fSk (xl)]

dµ

}
=

2
eλ−1

n

∑
l=1

1
fS(xl)

∞

∑
k=1

λk

k!

[
k(xl− k µ)

k2γ2 +(xl− k µ)2

]
fSk (xl) .

Uγ(θθθ) =
1

(eλ−1)

n

∑
l=1

1
fS(xl)

∞

∑
k=1

{
λk

k!
fSk (xl)

dlog [ fSk (xl)]

dγ

}
=

2
(eλ−1)γ

n

∑
l=1

1
fS(xl)

∞

∑
k=1

λk

k!

[
yk l −1
yk l +1

]
fSk (xl) ,
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where yk l =
(

xl−kµ
kγ

)2
.

The MLEs can be obtained from Uλ = Uµ = Uγ = 0. These equations do not yield closed-form

estimates for λ, µ, and γ. Hence, we need to use iterative techniques; such as a BFGS (Broyden-

Fletcher-Goldfarb-Shannon) method [159, 198].

4.4.2 QDE based on cf

Let X1,X2, . . . ,Xn be a random sample obtained from X ∼ CTPC(λ,µ,γ) having cf ΦS(t) given

in (4.8). Thus, the associated empirical cf is defined by

Φn(t j) =
1
n

n

∑
l=1

ei t j Xl ,

for j = 1,2, . . . ,k, where k is fixed and represents the number of points used to discretization of the

support of the cf. Also, for the same set of points t1, t2, . . . , tk, let vvv(θθθ) be the vector containing the

real and imaginary parts of the cf, as follows:

vvv(θθθ) =(Re [Φ(t1)] , . . . ,Re [Φ(tk)] , Im [Φ(t1)] , . . . , Im [Φ(tk)])
> ,

and let vvvn be the vector containing the real and imaginary parts of the empirical cf, as follows:

vvvn =(at1,at2, . . . ,atk ,bt1,bt2, . . . ,btk)
> ,

where

at j = Re
[
Φn(t j)

]
=

1
n

n

∑
l=1

cos(t j Xl) and bt j = Im
[
Φn(t j)

]
=

1
n

n

∑
l=1

sin(t j Xl), j = 1,2, . . . ,k.

We consider two QDEs which are defined as the argument in Θ ∈ Rp which minimizes the

distances DCTPC1 and DCTPC2 defined by:

DCTPC1(θθθ) = [vn− v(θ)]>I2k[vn− v(θ)],

and

DCTPC2(θθθ) = [vn− v(θ)]>Σ
−1(θ)[vn− v(θ)],
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where I2k is the identity matrix with order 2k,

Σ(θ) =

 ΣΣΣR ΣΣΣR I

ΣΣΣI R ΣΣΣI

 ,
ΣR = nE

[
(atl −Re [Φ(tl)])(at j −Re

[
Φ(t j)

]
)
]∣∣∣k

l, j=1
,

ΣI = nE
[
(btl − Im [Φ(tl)])(bt j − Im

[
Φ(t j)

]
)
]∣∣∣k

l, j=1
,

and

ΣIR = ΣRI = nE
[
(atl −Re [Φ(tl)])(bt j − Im[Φ(t j)])

]∣∣∣k
l, j=1

.

Before proposing our estimation criterion, it is important to determine guidelines to choose the

values of tl . To that end, Thaler [199] and Groparu [200] derived the following proposition.

Proposition 11 Let X1, . . . ,Xn be a random sample drawn from X with cf Φ(t). Let Φn(t) be the

ecf associated with Φ(t), then the following identities hold true:

E(at ,bt) ={Re[Φ(t)], Im[Φ(t)]} ,

Cov(at ,as) =
1
2n

{
Re[Φ(t + s)]+Re[Φ(t− s)]−2Re[Φ(t)]Re[Φ(s)]

}
,

Cov(bt ,bs) =
1
2n

{
Re[Φ(t− s)]−Re[Φ(t + s)]−2Im[Φ(t)]Im[Φ(s)]

}
,

Cov(at ,bs) =
1
2n

{
Im[Φ(t + s)]− Im[Φ(t− s)]−2Re[Φ(t)]Im[Φ(s)]

}
.

The proof of this proposition can be found in Thaler [199], Groparu [200], Groparu and Do-

ray [191], and Luong and Doray [201, 202].

From Proposition 11, for t = s, we have Re[Φ(0)] = 1 and Im[Φ(0)] = 0; therefore, we have

that:

Var(at) =
1

2n
{Re[Φ(2t)]+1−2(Re[Φ(t)])2},

Var(bt) =
1

2n
{1−Re[Φ(2t)]−2(Im[Φ(t)])2},

Cov(at ,bt) =
1

2n
{Im[Φ(2t)]−2Re[Φ(t)]Im[Φ(t)]}.
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Assuming t → 0, one can show that Re[Φn(t)] and Im[Φn(t)] are uncorrelated and converge for

Re[Φ(t)] and Im[Φ(t)] for larger samples, respectively. Therefore, it is recommended to define

t1, t2, . . . , tk as close to zero as possible.

Theorem 4 Let X ∼ CTPC(λ,µ,γ) be a random variable. The DCTPC1(θθθ) is given by

DCTPC1(θθθ) =
k

∑
j=1

(1
n

n

∑
l=1

cos(t j xl)−
C j cos(S j)−1

eλ−1

)2

+

(
1
n

n

∑
l=1

sin(t j xl)−
C j sin(S j)

eλ−1

)2
 ,

where

C j = exp
{

λcos(µt j)e−γ|t j|
}
, and S j = λsin(µt j)e−γ|t j| .

n

From Theorem 4, one has the quadratic distance estimator (QDE) is given by

θ̂θθCTPC1 = arg min
θθθ∈Θ

[DCTPC1(θθθ; xxx)] .

Theorem 5 Let X ∼ CTPC(λ,µ,γ) be a random variable. The DCTPC2(θθθ) is given by

DCTPC2(θθθ) = [vvvn− vvv(θθθ)]>ΣΣΣ
−1(θθθ) [vvvn− vvv(θθθ)] ,

where

vvvn = [at1 ,at2 , . . . ,atk ,bt1,bt2, . . . ,btk ] ,

vvv(θθθ) =
1

eλ−1
[C1 cos(S1)−1, . . . ,Ck cos(Sk)−1,C1 sin(S1), . . . ,Ck sin(Sk)] ,

and the ΣΣΣ(θθθ) matrix is given in Appendix E in the form of matrix (6).

n

Thus, a second estimator based on DCTPC2 , denoted by VQDE (The QDE using the variance

matrix given in (6)), is defined by

θ̂θθCTPC2 = arg min
θθθ∈Θ

[DCTPC2(θθθ; xxx)] .
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4.4.3 GoF Measure

The Distance measure proposed in Proposition 10 may be understood as a discrepancy measure

between a supposed probabilistic model and an empirical distribution drawn from data by means

of cf. We want to use such distance measure to propose adherence test in terms of the CTPC cf,

H0 : X ∼ FCTPC. To this end, it is necessary to define a pivotal statistics.

Baringhaus and Henze [203] proposed to solve this problem through the statistic

Tn,G(θ̂θθ) = n
∫
|ΦXn(t) − ΦX(t, θ̂θθ)|2dG(t,κ), (4.14)

where ΦX(t, θ̂θθ) is the CTPC cf, ΦXn(t) is the empirical cf (both given in (4.8) and (4.10)), G(t,κ) is

the weight function given in Eq. (4.4), and θ̂θθ is a consistent estimator of θθθ. Jiménez-Gamero et al. [204]

studied some properties of (4.14). Two of them are (i) Tn,Ĝ(θ̂θθ) and Tn,G(θ̂θθ), where Ĝ is an estimator

of G, have similar expansions and (ii) if θ̂θθ is strongly consistent for θθθ ∈ΘΘΘ, Tn,G(θ̂θθ) −→ ∞ almost

surely when H0 does not hold. Therefore, as general rule, the test equipped by (4.14) that rejects

H0 for large values of Tn,G(θ̂θθ) is strongly consistent.

The asymptotic null distribution of Tn,G(θ̂θθ), supposing that H0 is true, is given by

Tn,G(θ̂θθ)
D−→

n→∞

∞

∑
j=1

ζ j χ
2
1 j,

where χ2
11,χ

2
12, . . . , are independent variables having chi-square distributions with one degree of

freedom, the set {ζ j} represent the eigenvalues of an operator in terms of θθθ according to Jiménez-

Gamero et al. [204].

In practice, it is hard to determine the asymptotic distribution of Tn,G(θ̂θθ). A way to work with

this statistic is to use the bootstrap procedure. In what follows, we outline how to use parametric

bootstrap to approximate the null distribution of Tn,G(θ̂θθ).

Let us first define the bootstrap distribution under the null hypothesis of Tn,G(θ̂θθ). Let T ∗ be the

parametric bootstrap version of Tn,G(θ̂θθ). Thus, for τ∗n,α = inf{τ : P(T ∗ ≥ τ)≤ α} and p∗ = P(T ∗ ≥

Tobs), the test is defined by (for a nominal level α)

φ
∗ =

1, if T ∗ ≥ τ∗n,α or p∗ ≤ α,

0, otherwise.
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In practice, this bootstrap test is executed through the following algorithm: Consider the pro-

blem to check if a data array {xi}1≤i≤n can be understood as an outcome of a random sample from

the CTPC model.

1. Estimate the CTPC parameters, say θ̂θθ, by a consistent method (as, for instance, by maximum

likelihood).

2. Based on the estimates of the previous item, calculate Tn,G(θ̂θθ), using Equation of the distance

given in Proposition 10, say Tobs.

3. Generate B bootstrap samples {x(k)i }, for 1≤ i≤ n, 1≤ k ≤ B, from FCTPC(x; θ̂θθ).

4. Calculate Tn,G(θ̂θθ) for each bootstrap sample and denote the resultant value by T ∗k , for k =

1,2, . . . ,B.

5. Approximate the p-value by means of the expression

p̂boot =
∑

B
k=1 I(T ∗k ≥ Tobs)

B
,

in which I(ω) is the indicator variable that is equal to 1 if the event ω is true or to zero

otherwise. The boostrap test rejection rule is

Reject H0 if p̂boot ≤ α,

with α denoting the required significance level. An equivalent way to define such decision

rule is by the bootstrap critical value T ∗a:B, where a = [(1−α)B]+1, [x] is the greatest integer

less than x, and T ∗1:B ≤ T ∗2:B ≤ ·· · ≤ T ∗B:B are the values T ∗k , in increasing order. In this case, the

rejection rule is

Reject H0 if Tobs > Ta:B.

4.5 Synthetic studies

4.5.1 Performance of the estimators

We carry out a simulation study in order to compare the performance of the proposed estimation

methods. To that end, we consider several combinations of parameters and λ ∈ {0.5,1.0}, µ ∈
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{−2,−1,0,0.5,1.5}, γ = 8 and sample sizes n ∈ {10,200}. For each combination (λ, µ, γ, n), we

generate 1,000 Monte Carlo replications on which proposed estimators are assessed for several

sample sizes.

For the QDE and VQDE methods, we use two kinds of ttt = (t1, t2, . . . , tk):

(a) for ttt = (0.1,0.2, . . . ,1.0) with associated estimators denoted by QDE1 and VQDE1 and

(b) for ttt = (0.1,0.2, . . . ,5.0), denoted as QDE2 and VQDE2.

As one merit figure, we use the sample root mean squared error by parameter (RMSEp)

RMSE(θ̂i) =
√

1/n ∑
1000
k=1 (θ̂ik−θi)2 for i = 1,2,3, where θ̂ ∈ (̂λ, µ̂, γ̂)> and θi ∈ (λ,µ,γ)>. We

also use the sample root mean squared error (RMSE)

RMSE =

√√√√ 1
1000

1000

∑
k=1

Ek,

where Ek = (̂λk−λk)
2 +(µ̂k−µk)

2 + (̂γk− γk)
2. Better results are associated to smaller values of

RMSEp and RMSE.

Numerical results are shown in Fig.s 4.3 and 4.4, where the numbers {1,2, . . . ,8} corresponds

the parameter values equivalent the combination

(λ,µ,γ) ={(0.5,−1,8),(0.5,0,8),(0.5,0.5,8),(0.5,1.5,8),(1.0,−2,8),(1.0,0,8),(1.0,0.5,8),

(1.0,1.5,8)}.

We observe that, as expected, for all methods, the larger sample sizes are associated to smaller

RMSEp values. In addition, we emphasize that for both small samples the VQDE1 method outper-

forms the others and large samples the QDE1. Further, with respect to the effect number of points

in the vector ttt on QDEi and VQDEi, one can notice that its increase implies VQDE2 and QDE1

outperform VQDE1 and QDE2, respectively.

Finally, we analyze the impact of the QDE and VQDE methods of the distance between the

points in the vector t. For that, we considered tε =(0.1ε,0.2ε, . . . ,5ε), where ε∈{0.1,0.5,1,2,10},

λ = 0.5, γ = 8 and µ ∈ {−1.0,0.5,1.5}. Fig. 4.5 displays the results. We note that VQDE outper-

forms QDE and that such difference vanishes as ε increases.
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Figure 4.3: RMSEp for several parameter values. (a), (b), and (c) n = 10; and (d), (e), and (f)

n = 200.
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Figure 4.4: RMSE for several parameter values: (a) n = 10 and (b) n = 200.
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Figure 4.5: RMSE of the QDE and VQDE methods with respect to ε.

4.5.2 Performance of the new GoF measure

Now, the performance of Tn,G(θ̂θθ) in (4.14) is assessed on synthetic data. The simulation study

is driven by the algorithm below:

Algorithm 1: Estimated type I error for Tn,G(θ̂θθ) at the CTPC model.
Step 1. Set θθθ = (λ,µ,γ) ∈ {(1.3,−0.1,1); (1.3,−0.1,0.5); (log(2),0,1);

(1,0,1); (1.3,0,1); (1.3,0,0.5); (log(2),0.1,1); (1,0.1,1); (1.3,0.1,1); (1.3,0.1,0.5)};

Step 2. Generate a sample x1,x2, . . . ,xn from the CTPC distribution at θθθ;

Step 3. Estimate θθθ by MLE;

Step 4. Calculate Tn,G(θ̂θθ);

Step 5. Design 1,000 Monte Carlo replications and, on each one, 250 n-points bootstrap

samples, (xxx∗1,xxx
∗
2, . . . ,xxx

∗
250), at sample sizes n ∈ {20,50,100}; Step 6. Calculate the Monte

Carlo estimates for α ∈ {0.01,0.05,0.10}.

Fig. 4.6 displays the estimated test results. In general, estimates are close to the adopted nom-

inal levels and, in particular, better results are found in higher sample sizes. Significance levels
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smaller than 10% are overestimated; while, they are underestimated for α = 10%.

4.6 Application

Intensities extracted from SAR images are important features for understanding SAR scenarios.

These components can also be understood as the result of compounding sums as (4.1) [175]. In

this chapter, we propose the CTPC model as a possible compound distribution, which is able to

describe multimodal (among other behaviors, such as negative support, symmetric form, etc). In

what follows, we aim to describe SAR intensity obtained by EMISAR (see [205]) sensor of scenes

of Foulum (Denmark) regions.

SAR images are processed obeying the following dynamic: Polarized pulses oriented at hori-

zontal (H) and vertical (V) directions are emitted towards to an under-study target. Subsequently,

such pulses are also recorded at H and V directions. Thus, each SAR entry is equipped with infor-

mations due to three polarization channels, say SHH, SHV, SVV ∈ C, representing the Horizontal-

Horizontal (HH), Horizontal-Vertical (HV) and Vertical-Vertical (VV) states, respectively. In prac-

tice, HV and VH states are similar and, as a consequence, one assumes that SHV = SVH.

Fig. 4.7 shows an intensity map of Foulum SAR regions due to the HH and VV channel. First

we provide a brief descriptive discussion in the Table 4.1. One can observe three behaviors for

both channels: (a) “median < mean” which indicates that the empirical density is right asym-

metric (confirmed by the positive asymmetry coefficient), (b) the sample variation coefficients of

73.03% and 73.33%, respectively, indicate high variability data and (c) values of associated kur-

tosis are greater than three what suggest a leptokurtic empirical distributions; i.e., they are more

concentrated than the Gaussian model.

Several distributions have been proposed to model SAR intensity data: the classical Γ and

Weibull models, the GΓ law proposed by Stacy [181], the K and G0 models proposed by Jakeman

and Pusey [182], Lee et al. [183] and Frery et al. [123] and the BGN distribution derived recently

by Cintra et al. [51]. We compare the proposed model fit for SAR intensity data using the CTPC

and those six models.

In order to check which distribution better fits the data from highlighted SAR region, we plot
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Figure 4.6: Estimated type I error probability for several parameters with α = 1%, α = 5%, and

α = 10%, respectively.
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(a)

Figure 4.7: PolSAR image with selected region Denmark.

Table 4.1: Statistical descriptive measures

Measures Channel HH Channel VV

Minimum 0.0025 0.0055

Mean 0.0165 0.0267

Median 0.0146 0.0208

SD 0.0121 0.0195

Skewness 1.1511 2.5267

Kurtosis 4.4181 12.8274

Maximum 0.0864 0.1923
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Figure 4.8: Densities adjusted by estimation method (MLE and VQDE2)of the sub-region for two

channels (HH-Fig. 4.8(a) and Fig. 4.8(c)- and VV-Fig. 4.8(b) and Fig. 4.8(d)- respectively).

pdf and cdf curves in Fig. 4.8. One can observe that CTPC pdf and cdf fits are closer to the

corresponding empirical functions of the channels. To confirm it, we apply GoF test based on the

Kolmogorov-Smirnov (KS) statistics. In general, smaller KS values indicate better fit. Results

are presented in Table 4.2. The best performance is obtained by the CTPC distribution with MLE

and QDE2 methods. Moreover, regarding the proposed GoF tool, p-values associated with statistics

designed in Algorithm 1 for MLE and QDE2 are 0.492 and 0.484, respectively; i.e., both databases

can be understood as outcomes of the CTPC model.
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Table 4.2: Estimates of the model parameters and the Statistic of KS test of the channels

C
ha

nn
el

V
V

C
ha

nn
el

H
H

Distributions Methods Estimates (λ,µ,γ,α, β) KS

MLE 2.3463 0.5819 0.0864 −−− −−− 0.1074

QDE1 1.9790 0.7045 0.1049 −−− −−− 0.1524

CTPC QDE2 1.5885 0.5742 0.1945 −−− −−− 0.1973

VQDE1 1.9014 0.7460 0.1062 −−− −−− 0.1828

VQDE2 2.2609 0.6037 0.0622 −−− −−− 0.1153

Gamma MLE 1.9636 −−− 1.1907 −−− −−− 0.2450

Weibull MLE 1.4406 −−− 0.5469 −−− −−− 0.1378

GG MLE 9.8567 0.0144 0.4957 −−− −−− 0.1857

K MLE 6.0458 −−− 3.6724 2.8570 −−− 0.1405

G0 MLE −−− −3.2020 3.7833 4.7838 −−− 0.1272

BGN MLE 0.1329 0.2405 0.8651 4.5401 0.1506 0.1413

CTPG MLE 2.0001 −−− −−− 0.6094 0.1021 0.1190

MLE 1.3275 1.3039 0.2165 −−− −−− 0.0919

QDE1 1.0291 1.5102 0.1439 −−− −−− 0.1024

CTPC QDE2 1.2196 1.3202 0.2354 −−− −−− 0.0597

VQDE1 0.9574 1.6379 0.1589 −−− −−− 0.1533

VQDE2 1.3972 1.2946 0.2188 −−− −−− 0.0929

Gamma MLE 2.7334 −−− 1.0248 −−− −−− 0.1177

Weibull MLE 1.5488 −−− 0.3336 −−− −−− 0.1190

GG MLE 9.9020 0.0366 0.5455 −−− −−− 0.0980

K MLE 12.0986 −−− 4.5895 3.8570 −−− 0.0921

G0 MLE −−− −4.3179 8.8194 10.9331 −−− 0.0659

BGN MLE 0.3917 0.5408 0.9218 3.1273 0.2498 0.0883

CTPG MLE 1.3498 −−− −−− 1.3011 0.2125 0.1091



112

4.7 Conclusion

We have proposed a new model with three parameters to describe multimodal data, called

CTPC. In particular, the CTPC model formation may be related to radar data dynamics. Our

model has been used to describe features obtained from SAR images, named intensity.

Some mathematical properties of the CTPC model have been derived and studied; such as,

cf and a distance measure (as a possible GoF measure). Further, we proposed two estimation

methods: maximum likelihood and quadratic QD estimators. A Monte Carlo study has indicated

QD estimators can present better results. We also made an application to real SAR data. Our

model may furnish the best fit when compared with six SAR models: Γ, Weibull, GΓ, K , G◦, beta

generalized normal distributions, and CTPG.
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5 An Extension for the Family of G Distributions

Abstract

Synthetic aperture radar (SAR) is a central tool for mapping scenarios on the Earth’s sur-

face. Like its processing considers the coherent illumination, images obtained by such system

are strongly corrupted by an interference pattern, called “speckle noise”. This phenomenon can

significantly degrade the perceived SAR image quality, making it difficult to analyze and inter-

pret. Thus, the proposal of statistical models which are able for describing speckled data is sought

as an important preprocessing activity. In this sense, the multiplicative approach has received

considerable attention. An important particular case from this class is the G family proposed by

Frery et al. [IEEE Transactions on Geoscience and Remote Sensing, vol. 35, no. 11, pp. 648–

659, 1994], which is a wide class of models for speckle data. In this chapter, we extend such

class, proposing models more extensive than classical distributions from the G family: such as

G0 and K models. Additionally, the statistical properties such as moment, and Mellin-based

log-cumulants (LCs), and maximum likelihood methods concerning to the new distributions are

derived. Finally, applications to actual data provide evidence that the new distributions outperform

usual G models.

Keywords: SAR imagery. Speckle noise. Multiplicative model. G family.

5.1 Introduction

Synthetic aperture radar has been widely used as an important tool for monitoring informa-

tions in remote sensing applications. This fact can be explained by means of its capability of

operating in all-weather and all-day as well as of providing images with high spacial resolution.

However, like its resulting images stem from a coherent illumination process, they are affected
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by a signal-dependent granular noise called speckle [206]. A primary source of noise is the co-

herent interference of the signal backscatter by the elements of the target surface. Due to this

contamination, rendered imagery presents a granular appearance which precludes its immediate

interpretation. In this sense, the proposal of appropriate statistical models has been sought as a

necessary preprocessing step.

Many works have recently aimed at finding adequate models to fit speckled data [20, 123, 175,

207,208]. For example, Delignon et al. [20] proposed the KUBW Pearson system for the statistical

modeling of ocean SAR images. This approach was extended for the non-Rayleigh speckle distri-

bution [175]. In recent years, results on empirical distributions have favored the search for statis-

tical models [208]. Importantly, the multiplicative model is one of the most successful approaches

for describing speckled data [207]. Unlike others methods, this modeling has a phenomenological

nature which is closely tied to the physics of the image formation. In this sense, the G distribution

proposed by Frery et al. [123] represents one of the most successful models due to its flexibility.

In particular, the G distribution has two practical submodels, namely, the K and G0 distributions.

The K law was originally proposed by Jakeman and Pulsey [209] in order to extend the

Rayleigh distribution which is often used for describing homogeneous surfaces. Several works

have addressed its parameter estimation by means of the maximum likelihood (ML) [210, 211]

and the moment method (MM) [212]. On the other hand, the G0 distribution was derived by Fr-

ery et al. [123]. This model is similar to the Fisher distribution, which is a reparametrization of

the G0 distribution itself [213]. The estimation of its parameters is often based on ML [214],

MM [215], robust procedures [215–218], and bias correction [219–221]. Additionally, parameter

hypothesis tests based on classical inference [222], information theory [223], and non-parametric

method [213,224,225] have been suggested. In [208,226] the K and G0 models have been exam-

ined and found not to be accurate descriptions for all polarization channel intensities in PolSAR

images.

The main goal of this chapter is the proposition of a new probability distribution capable of

encompassing the G distribution family. In particular, the K and G0 submodels are sought to be

extended with the inclusion of a single additional parameter. Additionally, new evidence corrob-

orating with conclusions in [208, 226] is sought. We also aim at deriving statistical properties of
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proposed distributions and apply them to actual SAR data. Further, we developed Mellin-based

LCs as well as their covariance matrix. The proposed models are assessed according to detailed

computational experiments with SAR data, considering goodness-of-fit (GoF) measures as figures

of merit.

The rest of this chapter is structured as follows. First, the multiplicative model theory is revis-

ited in Section 5.2. Section 5.3 details the mathematical derivation of the proposed distribution.

Some of its statistical properties are examined and the relationships with other models are schema-

tized. An application to real data is performed in Section 5.4. GoF measures are employed as

figures of merit to assess the proposed models. Section 5.5 concludes this chapter.

5.2 Multiplicative model and the G distribution

One of first models for speckled data obtained from a SAR mechanism was considered by

Arsenault [227]. Thereafter, statistical multiplicative modeling for SAR images was suggested by

Ward [228]. This approach assumes that each picture element is the outcome of a random variable

Z called which is the product of two independent positive random variables, denoted by X and Y .

Random variables X and Y model the terrain backscatter and the speckle noise, respectively.

Let fX(x;θθθX) and fY (y;θθθY ) be the densities associated to X and Y with parameter vectors θθθX

and θθθY , respectively. The pdf of Z = X ·Y is given by the following expression [123]:

fZ(z;θθθX ,θθθY ) =
∫

∞

0
x−1 fY (z/x;θθθY ) fX(x;θθθX)dx. (5.1)

A particular successful distribution derived from the multiplicative model is the G distribution [123].

Among the particular sub-models of the G distribution, the G0 [213] and the K [211] distributions

occupy central positions.

In the following subsections, we review the probability distributions usually employed for mod-

eling the speckle noise and the backscattering. By simplicity of notation, we suppressed the argu-

ment parameters of densities.



116

5.2.1 Speckle noise

Resulting from the coherent record of the returned echoes, SAR images are strongly con-

taminated by speckle noise. The speckle Y is often described by the gamma distribution, Y ∼

Γ(L,µ−1L) [123], with pdf given by

fY (y) =
LL

µΓ(L)

(y
µ

)L−1
exp
[
−L

y
µ

]
I(0,∞)(y), (5.2)

where L > 0 represents the number of looks and I(0,∞)(·) represents the indicator function with

respect to the set (0,∞). In practice, when the parameter L (which, is often considered an integer

number) is estimated from real data, one seeks to obtain the equivalent number of looks (ENL). A

detailed discussion about estimation of this quantity is presented in [229].

5.2.2 Intensity backscatter

The backscatter contains the relevant information of the mapped area [223]. Indeed, it depends

on target physical properties such as moisture and relief. In practice, low backscatter values are

represented by dark areas whereas high backscatter values are associated to bright areas. For

example, the reflected radiation in smooth regions, such as a lake or crop fields, is often projected

away from the sensor. Since moisture spreads the reflected signal, forest regions present a higher

degree of backscattering, when compared to homogeneous areas. On the other hand, urban regions

are extremely heterogeneity and, thus, allow that the sensor captures much of the reflected energy.

The backscatter is often described according to the following expression:

ξ =
n

∑
k=1

Ak exp( jθk),

where Ak, k = 1,2, . . . ,n, are real non-negative random variables representing amplitudes, θk,

k = 1,2, . . . ,n, represent the phase of the kth component, j =
√
−1 is the imaginary unit, and

n is the number of scatters number per resolution cell. The random variables A1,A2, . . . ,An and

θ1,θ2, . . . ,θn are assumed to be independent and identically distributed. Whereas the amplitudes

Ak, k = 1,2, . . . ,n, may follow any distribution of identical finite variance σ2; the phases are uni-

formly distributed over the interval [0,2π) [175,209]. For large values of n, the variable ξ is circular
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Gaussian distributed [175] with independent components of zero mean and variance nσ2. Based

on this result, the amplitude relative to ξ follows the Rayleigh distribution, while its intensity is

exponentially distributed parameter (nσ2)−1.

Several works have indicated the following distributions as representative models for charac-

terizing intensity data: (i) the Dirac distribution (used to model homogeneous areas) [20], (ii) the

gamma distribution (used to model heterogeneous areas) with pdf given by

fX(x) =
λα

Γ(α)
xα−1 exp[−λx]I(0,∞)(x),

where α,λ > 0 [211]; and (iii) the reciprocal gamma distribution (used to model extremely hetero-

geneous areas) whose pdf is furnished by [123]:

fX(x) =
1

γαΓ(−α)
xα−1 exp

[
−γ

x

]
I(0,∞)(x),

where −α,µ > 0.

In order to unify the different statistical models, the generalized inverse Gaussian (GIG) dis-

tribution, was proposed in [123]. Denoted by X ∼ N −1(α,γ,λ), its associate random variable is

equipped with the following pdf:

fX(x) =
(λ/γ)α/2

2Kα(2
√

λγ)
xα−1 exp

[
− γ

x
−λx

]
I(0,∞)(x),

where Kα(·) is the Bessel function with order α, −∞ < α < ∞, and γ,λ > 0.

5.3 Intensity return: new models and their properties

In this subsection, we present expressions for densities from the proposed distributions as well

as their associated statistical properties, the LCs and covariance matrix Mellin-based. It is made

for the most general case of this approach and for two of its particular cases which extend the K

and G0 distributions.
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5.3.1 Generalized Speckle Model

In this chapter, we consider a more general model for describing the speckle noise. To that end,

we suggest as an appropriate model a reparametrization of the generalized gamma (GΓ) distribu-

tion, Y ∼ GΓ(L ,µ−1L1/θ,θ), whose associate pdf is given by:

fY (y) =θ
LL

µΓ(L)

(y
µ

)θL−1
exp
[
−L
(y

µ

)θ]
I(

0,∞
)(y). (5.3)

Li et al. [208] suggested this distribution as an empirical-statistical modeling of intensity SAR

images. In that case, the parameters θ, L , and µ were considered as the power, shape, and scale

parameters, respectively. Because (5.3) generalizes (5.2), it can be considered as an extended

model for the speckle noise. In particular, the parameters θ, L , and µ are the model correction (to

the intensification of the texture presence), ENL, and intensity mean parameters, respectively.

5.3.2 Generalized Intensity Backscatter Model

We propose the extended generalized inverse Gaussian distribution (EGIG) as a more general

model for the intensity backscatter. According to Ralph et al. [230], this distribution can be derived

as a power transformation of the GIG law. In that case, if X ∼ EGIG(α,γ,λ,θ), then its pdf is

expressed by:

fX(x) =
θ(λ/γ)θα/2

2Kα(2
√
(λγ)θ)

xθα−1× exp
[
− (γ/x)θ− (λx)θ

]
I(

0,∞
)(x), (5.4)

where θ > 0. By specifying α > 0 and γ→ 0, the above distribution collapses into the generalized

gamma law, X ∼ GΓ(α,λ,θ), with pdf given by:

fX(x) =
θλθα

Γ(α)
xθα−1 exp[−(λx)θ]I(

0,∞
)(x). (5.5)

The above distribution is flexible enough to encompass several other distributions as particu-

lar subcases: (i) exponential (θ = α = 1), (ii) gamma (θ = 1), (iii) Weibull (α = 1), (iv) log-

normal (α → ∞), (v) generalized normal (θ = 2), (vi) half-normal (α = 1/2 and λ2 = 2σ2),

(vii) Rayleigh (α = 1 and λ2 = 2σ2), (viii) Maxwell-Boltzman (α = 3/2), and (ix) χ2 (α = k/2,

for k = 1,2, . . .) [231].
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Figure 5.1: Relationships among the probabilistic models for the intensity backscatter.

On the other hand, considering α < 0 and λ→ 0, the pdf in (5.4) is reduced to:

fX(x) =
θ

γθαΓ(α)
xθα−1 exp

[
−
(

γ

x

)θ]
I(0,∞)(x). (5.6)

Such distribution is the reciprocal generalized gamma, X ∼ GΓ−1(α,λ,θ).

In Fig. 5.1, we summarize the relationships among the above-mentioned probabilistic models

for the intensity backscatter.

5.3.3 The G-G distribution

Let X ∼EGIG(α,γ,λ,θ) and Y ∼GΓ(L ,µ−1L1/θ,θ). The application of (5.3) and (5.4) in (5.1)

furnishes the return variable Z = X ·Y , whose pdf is given by:

fZ(z) =
θ2LL(λ/γ)

αθ

2 (z/µ)θL−1

µΓ(L)Kα(2(γλ)θ/2)

[
L(z/µ)θ + γθ

λθ

]α−L
2

Kα−L

(
2
√

λθ[L(z/µ)θ + γθ]
)
I(0,∞)(z),

where α,γ,λ,θ,µ,L > 0. The variable Z is said to follow the G-G distribution denoted by Z ∼

G-G(α,γ,λ,L ,θ,µ). In what follows, we derive some mathematical properties of the G-G distri-

bution. These properties can be used for extracting features in SAR images, such as coefficient of

variation, skewness, and kutosis as we aim at demonstrating in experimental section of this chapter.
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Theorem 6 Let Z ∼ G-G(α,γ,λ,L ,θ,µ). The non-central moments of Z are given by:

E(Zk) =
µk

L k
θ

(
γ

λ

)k/2
Γ(L + k

θ
)

Γ(L)

K
α+ k

θ

(2(γλ)θ/2)

Kα(2(γλ)θ/2)
.

In particular, the variance of Z is given by:

Var(Z) =
µ2

L2Γ(L)Kα(2(γλ)θ/2)

γ

λ

[
Γ

(
L +

2
θ

)
K

α+ 2
θ

(2(γλ)θ/2)−
Γ2(L + 1

θ

)
Γ(L)

K2
α+ 1

θ

(2(γλ)θ/2)

Kα(2(γλ)θ/2)

]
.

The proof of Theorem 6 derives from (i) the non central moment expressions of X ∼ EGIG and

Y ∼ GΓ and (ii) the assumption of independence of X and Y in Z = X×Y .

First particular case: the G-K distribution

Let X ∼ GΓ(α,λ,θ) and Y ∼ GΓ(L ,µ−1L1/θ,θ). By applying (5.3) and (5.5) in (5.1), the pdf

of the return variable Z is expressed by:

fZ(z) =
2θL1/θλ

µΓ(α)Γ(L)

(L1/θλz
µ

)θ
α+L

2 −1
Kα−L

(
2
√

Lλθ(z/µ)θ

)
I(0,∞)(z),

where α,λ,θ,µ,L > 0. This distribution is referred to as the G-K distribution, denoted as Z ∼

G-K (α,λ,L ,θ,µ).

By setting α > 0 and γ ↓ 0 in Theorem 6, the following corollary is obtained.

Corollary 2 Let Z ∼ G-K (α,λ,L ,θ,µ). Its non-central moments are expressed by

E(Zk) =
( µ

L1/θλ

)k Γ( k
θ
+L)Γ( k

θ
+α)

Γ(L)Γ(α)
.

Accordingly, the associated variance is:

Var(Z) =
( µ

L1/θλ

)2 1
Γ(L)Γ(α)

[
Γ

(2
θ
+L

)
Γ

(2
θ
+α

)
−

Γ2(1
θ
+L

)
Γ2(1

θ
+α
)

Γ(L)Γ(α)

]
.

Second particular case: the G-G0 distribution

Let X ∼GΓ−1(α,γ,θ) and Y ∼GΓ(L ,µ−1L1/θ,θ). Combining (5.3) and (5.6) into (5.1) yields

the pdf of the return variable Z as follows:

fZ(z) =
θLLγ−θαΓ(L−α)

µΓ(L)Γ(−α)

( z
µ

)θL−1[
γ

θ +L
( z

µ

)θ]α−L
I(0,∞)(z),



121

G-K (α,λ,θ,L) //

θ=1

K (α,λ,L)
α,λ→∞

α/λ→1

&&
G-G(α,γ,λ,θ,L)

OO

��

θ=1 //

α>0
γ↓0

α<0
λ↓0

G(α,γ,λ,L)
α<0
λ↓0

))

α>0
γ↓0

55

Γ(L ,L)

G0(α,γ,L)

−α,γ→∞

−α/γ→1

88

G-G0(α,γ,θ,L) //

θ=1

Figure 5.2: The new distributions are emphasized in double-line boxes

where α,γ,λ,θ,µ,L > 0. Such distribution is termed the G-G0 distribution; and we may write

Z ∼G-G0(α,γ,L ,θ,µ). If we let α < 0 and λ ↓ 0 in Theorem 6, the following corollary holds true.

Corollary 3 Let Z ∼ G-G0(α,γ,L ,θ,µ). Its non-central moment is expressed by:

E(Zk) =
(

γµ
L1/θ

)k Γ( k
θ
+L)Γ(−α− k

θ
)

Γ(L)Γ(−α)
.

In particular, the variance of this distribution is given by:

Var(Z) =
(

γµ
L1/θ

)2 1
Γ(L)Γ(−α)

[
Γ

(2
θ
+L

)
Γ

(
−α− 2

θ

)
−

Γ2(1
θ
+L

)
Γ2(−α− 1

θ

)
Γ(L)Γ(−α)

]
.

The above described models are related as shown in the diagram in Fig. 5.2. The proposed

models are pictorially represented in double boxes.

ML Estimation for the G-K and G-G0 distributions

Let zzz = (z1,z2, . . . ,zN) be a possible outcome of a random sample from the G-G0 distribution

with unknown parameter vector δδδ = (α,γ,θ,L), where N is the number of pixels in a selected
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sample. The log-likelihood function `(δδδ) = `(δδδ;zzz)> is given by:

`(δδδ)

N
= logθ+L logL−αθ logγ+ logΓ(L−α)− logµ− logΓ(L)− logΓ(−α)

+(θL−1)
N

∑
i=1

log
zi

µ
+(α−L)N−1

N

∑
i=1

log
(

γ
θ +L

(zi

µ

)θ)
.

(5.7)

Analogously, for ξξξ = (α,λ,θ,L)>, if zzz is G-K distributed, then we have:

`(δδδ)

N
= log 2 + logθ +

α+L
2

logL + θ
α+L

2
logλ − θ

α+L
2

logµ − logΓ(α)

− logΓ(L) − N−1
(

θ
α+L

2
−1
) N

∑
i=1

log zi + N−1
N

∑
i=1

logKα−L(ϕi(ξξξ)),

(5.8)

where ϕi(δδδ) = 2
√

L λθ (zi/µ)θ, for i = 1,2, . . . ,N. The score function associated to (5.7) and (5.8)

are generically given by UUU1(δδδ) = (Uα,Uγ,Uθ,UL)
> and UUU2(δδδ) = (Uα,Uλ,Uθ,UL)

>, respectively,

where

(Uα,Uγ,Uλ,Uθ,UL) =
(d`(δδδ)

dα
,
d`(δδδ)

dγ
,
d`(δδδ)

dλ
,
d`(δδδ)

dθ
,
d`(δδδ)
dL

)
,

were derived and are shown in Fig. 5.3. Finally, the ML estimators, (α̂, γ̂, θ̂, L̂) and (α̂, λ̂, θ̂, L̂), are

defined as the solutions of the non-linear system linked to UUU1(δδδ) = 000 and UUU2(δδδ) = 000, respectively.

5.3.4 Mellin Transform: Second kind statistic for the G-K and G-G0 models

Mellin Transform and LCs

The most successful tool in the signal processing is the Fourier transform. In statistics, it is

defined as the cf on which it is possible to obtain the Pearson diagram [18].

But, the cf is not always tractable. To solve this issue, Colombo [100] has suggested the MT as

an alternative tool for characterizing models. Nicolas [22] derived and applied the MT in the SAR

image processing context. In what follows, we present some MT results for the G-G0 and G-K

models.

Let X ∈ R+ be a positive random variable with pdf f (x), thereby its MT is given by

φX(s) =
∫

∞

0
xs−1 f (x)dx = E(X s−1),
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a) For the G-G0 model:

Uα

N
=−θ logγ−ψ

(0)(L−α)+ψ
(0)(−α)+N−1

N

∑
i=1

log
(

γ
θ +L

(zi

µ

)θ)
,

Uγ

N
=− αθ

γ
+θ(α−L)γθ−1N−1

N

∑
i=1

{
1

γθ +L(zi/µ)θ

}
,

Uθ

N
=

1
θ
−α logγ+LN−1

N

∑
i=1

log
zi

µ
+L(α−L)N−1

N

∑
i=1

{
log(zi/µ)(zi/µ)θ

γθ +L(zi/µ)θ

}

+(α−L)γθ logγN−1
N

∑
i=1

{
1

γθ +L(zi/µ)θ

}
,

UL
N

= logL +1+ψ
(0)(L−α)−ψ

(0)(L)+θN−1
N

∑
i=1

log
zi

µ
−N−1

N

∑
i=1

log(γθ +L(zi/µ)θ)

+(α−L)N−1
N

∑
i=1

{
(zzz/µ)θ

γθ +L(zzz/µ)θ

}
.

b) For the G-K model:

Uα

N
=

logL
2

+
θ

2
logλ − θ

2
logµ − ψ(α) + N−1 θ

2

N

∑
i=1

logzi + N−1
N

∑
i=1

[
∂Kα−L(ϕ(zi,ξξξ))

∂α

]
/Kα−L(ϕ(zi,ξξξ)),

Uγ

N
=θ

α+L
2λ

+ N−1
N

∑
i=1

[
∂Kα−L(ϕ(zi,ξξξ))

∂λ

]
/Kα−L(ϕ(zi,ξξξ)),

Uθ

N
=

1
θ
+

α+L
2

log
λ

µ
+ N−1 α+L

2

N

∑
i=1

logzi + N−1
N

∑
i=1

[
∂Kα−L(ϕ(zi,ξξξ))

∂λ

]
/Kα−L(ϕ(zi,ξξξ)),

UL
N

=
logL

2
+

α+L
2L

+
θ

2
log

λ

µ
− ψ(L)+N−1 θ

2

N

∑
i=1

logzi + N−1
N

∑
i=1

N

∑
i=1

[
∂Kα−L(ϕ(zi,ξξξ))

∂L

]
/Kα−L(ϕ(zi,ξξξ)).

Figure 5.3: G-G0 and G-K score functions.
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where s = a+ ib ∈ C is a complex variable [22].

It is known the kth moment of the MT is defined as

m̃k =
dk

φX(s)
dsk

∣∣∣∣
s=1

=
∫
R+

(logx)k f (x)dx, k ∈ N.

The second kind mean (known as log-mean) given by Nicolas [22], say m̃1, is

log(µ̃) = m̃1 ⇐⇒ µ̃ = em̃1 . (5.9)

The tailored cumulative generator function is given

ψX(s) = log(φX(s)) .

The second kind cumulants or LCs of order k are obtained from the nth derivative of ψX(s)

evaluated at s = 1:

κ̃k =
dkψX(s)

dsk

∣∣∣∣
s=1

, k ∈ N.

For proposed models in the previous section, the following MT expressions hold.

Corollary 4 If Z ∼ G-K (α,λ,L ,θ,µ) or Z ∼ G-G0(α,γ,L ,θ,µ) their MT, are expressed by

φZ(s) =



(
µ

L 1/θλ

)s−1 Γ( s−1
θ
+L)Γ( s−1

θ
+α)

Γ(L)Γ(α) , Z ∼ G-K ;

(
µγ

L 1/θ

)s−1 Γ( s−1
θ
+L)Γ(− s−1

θ
−α)

Γ(L)Γ(−α) , Z ∼ G-G0.

To proof the Corollary 4 derive from (i) the assumption of independence of X and Y in Z = X×Y ,

(ii) apply φZ(s) = φX(s)φY (s), and (iii) use the function Γx(δ) =
∫

∞

0 xδ−1 e−u du. To obtain the

classical moments, we can make s = k+ 1 in the previous corollary. Based on Corollary 4, the

associated LCs follow.

Corollary 5 If Z ∼ G-K (α,λ,L ,θ,µ) or Z ∼ G-G0(α,γ,L ,θ,µ), the LCs for k > 1 are given by

κ̃k =


ψ(k−1)(L)+ψ(k−1)(α)

θk , Z ∼ G-K ,

ψ(k−1)(L)+(−1)k ψ(k−1)(−α)
θk , Z ∼ G-G0,
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being that ψ(k)(x) = ∂k+1 log Γ(x)/∂xk+1 and ψ(x) is the digamma function [112, p. 260].

Note that G-K LCs with order higher than two do not depend of µ and λ, whilst the G-G0 LCs

independent of µ and γ for these orders. From (5.9) and Corollary 4, for Z ∼ G-K (α,λ,L ,θ,µ),

we have

µ̃ =
µ

L 1/θλ
exp
{

Ψ(L)+Ψ(α)

θ

}
−→
θ→∞

µ
λ
,

and for Z ∼ G-G0(α,γ,L ,θ,µ)

µ̃ =
µγ

L 1/θ
exp
{

Ψ(L)−Ψ(−α)

θ

}
−→
θ→∞

µγ.

Delignon et al. [20] discussed the Pearson diagram based on skewness and kurtosis measures

for SAR imagery. This map has been used as an important GoF measure. Nicolas [22] presented

evidence that this technique may be analytically intractable. This author introduced the (κ̃3, κ̃2) di-

agram, which represents the analogue to the Pearson diagram, using κ̃2 and κ̃3 instead of skewness

and kurtosis measures. They showed that the (κ̃3, κ̃2) diagram is a suitable alternative for classify-

ing SAR images. Li et al. [226] also considered the MT-based diagram for pdf classification from

SAR imagery data.

Now we introduce the (κ̃3, κ̃2) diagram for the G-K and G-G0 models using LCs in Corol-

lary 5. Fig. 5.4 exhibits the G-K , G-G0, K , and G0 regions in the (κ̃3, κ̃2) diagram. In this graph,

the G-K and G-G0 models are represented by surface and G0 and K models by curves, whose di-

mensions depend on the texture parameter number in the associated distribution. The shape of the

G0 and K models are driven by one texture parameter and, therefore, represented by curves (black

and dotted, respectively); i.e., having one-dimensional manifolds. The G-G0 and G-K models

have three parameters and are represented by surfaces (shading lines) [60], i.e., two-dimensional

manifolds.

5.3.5 GoF for the G-K and G-G0 models

This section aims to present GoF measures for the G-K and G-G0 models. This is the way to

combine the asymptotic behavior of LC estimators with the Hotelling T 2 statistics [232, 233].
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Figure 5.4: Diagram of the LCs (κ̃3, κ̃2) for G-K , G-G0, K and G0 models.

Covariance matrix of LCEs

It is known the following result holds: Let

m̃mm = (m̃1, . . . , m̃p)
> and ̂̃mmm = (̂̃m1, . . . , ̂̃mp)

>.

The central limit theorem and the Cramér-Wold theorem [162] proved that

√
n( ̂̃mmm− m̃mm)

D−→
n→∞

Np(000, MMMp), (5.10)

where xxx ∼ Np(µµµ, ΣΣΣ) denotes the multivariate normal distribution with mean vector µµµ, covariance

matrix ΣΣΣ, and

MMMp = E
{
( ̂̃mmm− m̃mm)( ̂̃mmm− m̃mm)>

}
= {m̃r+ν− m̃rm̃ν}

∣∣∣p
r,ν=1

.

Let gν : Rp→ R, be a moment-to-cumulant transformation function (which are continuously

differentiable), thus we get

κ̃κκν = gν(m̃1, . . . , m̃p) and ̂̃
κκκν = gν(̂̃m1, . . . , ̂̃mp).
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Using the multivariate delta method [162] and (5.10), together with the Cramér-Wold theorem, we

have

√
n(̂̃κκκ− κ̃κκ)

D−→
n→∞

Np(000, KKK p),

where

KKKν = JJJ>ν ·MMMν · JJJν,

∇∇∇gν =

[
∂

∂m̃1
gν(m̃mm), . . . ,

∂

∂m̃ν

gν(m̃mm)

]>
, for ν = 1, . . . ,r,

and

JJJν =
[
∇∇∇g1

∣∣ · · · ∣∣∇∇∇gν

]>
.

Thence, the covariance matrices of LCEs vector [κ2,κ3]
> is agiven by

KKKG-K =

κ̃22 κ̃23

κ̃32 κ̃33

 ,
where

κ̃22 =
1
θ4

{
ψ
(3)(L)+ψ

(3)(α)+2[ψ(L)+ψ(α)]2
}
,

κ̃23 = κ̃32 =
1
θ5

{
ψ
(4)(L)+ψ

(4)(α)++6[ψ(2)(L)+ψ
(2)(α)][ψ(L)+ψ(α)]

}
,

κ̃33 =
1
θ6

{
ψ
(5)(L)+ψ

(5)(α)++9[ψ(3)(L)+ψ
(3)(α)][ψ(L)+ψ(α)]+

+9[ψ(2)(L)+ψ
(2)(α)]2 +6[ψ(L)+ψ(α)]3

}
;

and for the another model we have:

KKKG-G0 =

κ̃22 κ̃23

κ̃32 κ̃33

 ,
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where

κ̃22 =
1
θ4

{
ψ
(3)(L)+ψ

(3)(−α)+2[ψ(L)+ψ(−α)]2
}
,

κ̃23 = κ̃32 =
1
θ5

{
ψ
(4)(L)−ψ

(4)(−α)++6[ψ(2)(L)−ψ
(2)(−α)][ψ(L)+ψ(−α)]

}
,

κ̃33 =
1
θ6

{
ψ
(5)(L)+ψ

(5)(−α)++9[ψ(3)(L)+ψ
(3)(−α)][ψ(L)+ψ(−α)]+

+9[ψ(2)(L)−ψ
(2)(−α)]2 +6[ψ(L)+ψ(−α)]3

}
.

It is known the statistic:

T 2 = n

̂̃κ2̂̃
κ3

−
κ̃2

κ̃3

> K̂KK
−1

̂̃κ2̂̃
κ3

−
κ̃2

κ̃3

 ,

where K̂KK
−1

=
{̂̃

κ
r,ν}

r,ν=2,3
, follows the chi-square distribution. Thus, the probability of random

vector to belong to the contour is

P
(
T 2 ≤ χ

2
2,η
)
= 1−η.

From brief algebraic manipulation one can provide GoF measures for G-K , and G-G0 models,

similarly [232].

Proposition 12 Let Z be a random variable, in which Z can assume G-K (α,λ,L ,θ,µ) or

G-G0(α,γ,L ,θ,µ) distribution, then the T 2 statistics is given by

T 2 = n
[̂̃

κ
22(̂̃

κ2− κ̃2

)2
+ ̂̃κ33(̂̃

κ3− κ̃3

)2
2 ̂̃κ23(̂̃

κ2− κ̃2

)(̂̃
κ3− κ̃3

)]
,

where ̂̃κ22
, ̂̃κ33

, ̂̃κ23
, ̂̃κ2, and ̂̃κ3, are the estimators of κ̃22, κ̃33, κ̃23, κ̃2, and κ̃3, respectively;

In particular its asymptotic confidence interval (ACI) is given by

ACI(κ̃n, 100(1− γ)%) = (̂̃κn± zγ/2

√̂̃
κ

n,n
),

for n = 2,3, and zγ/2 is the quantile (1− γ/2) of the standard normal distribution.
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(a) Slected HH SAR image (b) Selected region

Figure 5.5: SAR image of the selected forest region.

5.4 Application to real SAR data

In this section, we analyze actual intensity SAR data. In particular, we consider the forest re-

gion of the San Francisco Bay image obtained by the AIRSAR sensor in L-band with four nominal

looks [1]. Fig. 5.5 illustrates the selected SAR image with details.

We aim at submitting the intensity data from the HH, HV, and VV polarization channels of the

selected image to the discussed models G-G0, G-K , G0, and K , according to the discussed ML

estimation.

We focused our attention on the G-G0 and G-K models, because they are solutions requiring

fewer parameters when compared with G-G distribution. Moreover, we do not include the G

model in this study because of the following rationale. The G model collapses to the G0 and

K distributions after a limiting process subject to: (a) α < 0 and λ ↓ 0 and (b) α > 0 and γ ↓ 0,

respectively. However, the conditions imposed on γ and λ are difficult to check in practice. It is

a statistically non-trivial task—in the hypothesis test theory sense—to verify whether (G ,G0) and

(G ,K ). differ. On the other hand, the G0 and K models are implicit in the new G-G0 and G-K

distributions under the condition θ = 1, which can be easily checked.

Fig. 5.6 shows the obtained fitted densities for each case. Qualitative visual inspection suggests

that the G family suitably models the HH and HV intensity data in the form of G0 and K distri-
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Figure 5.6: Fitted densities for G-G0 (solid black), G-K (dashed black), G0 (solid gray), and K

(dashed gray) distributions.

butions, respectively. However, for the VV intensity data, it is less successful. For quantitative

analysis, we consider two GoF measures: (i) the corrected version of Akaike information crite-

rion (AICc) and (ii) Bayesian information criterion (BIC). The computational results for the AIC

returned identical values to the values associated to the corrected AIC. This is expected because

AIC and AICc behave differently only for small and moderate sample sizes [234]. Table 5.1 shows

ML estimates and GoF measurements. In all cases the proposed G-G0 and G-K outperformed the

competing models.

Table 5.2 presents the mean (Z̄) and variance Var(Z) on both real data and for fitted models

according to Corollaries 2 and 3. The proposed models describe the sample mean and variance

better than the traditional G0 and K distributions. The variance by means of G0 fits are undefined;

however this difficulty is overcome by the proposed G-G0 model.

Now, we aim at quantifying the discrimination capability between the elements in the following

pairs: (G0,G-G0) and (K ,G-K ), at neighborhoods of SAR intensity data. To that end, it was

employed two ratio likelihood statistics to test H0 : θ = 1, which have chi-squared asymptotic

distribution with one degree of freedom and expressions based on G-G0 and G-K models given

by, respectively:

SG-G0 = 2
W

∑
i=1

[
log fG-G0(zi) − log fG0(zi)

]
, and SG-K = 2

W

∑
i=1

[
log fG-K (zi) − log fK (zi)

]
,
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Table 5.1: Estimates of parameters and GoF measures

Models
Estimates (ξ̂) Goodness-of-fit (×103)

α̂ γ̂/̂λ θ̂ L AICc BIC

Results for the channel HH

G-G0 −3.120 0.317 0.775 4 −3.702 −3.685

G-K 2.673 30.394 0.769 4 −3.595 −3.579

G0 −1.679 0.107 n/a 4 −3.676 −3.665

K 1.456 11.296 n/a 4 −3.511 −3.500

Results for the channel HV

−10.763 2.761 0.559 4 −6.292 −6.276

1.745 33.522 0.901 4 −6.288 −6.272

−1.519 0.042 n/a 4 −6.077 −6.066

1.380 23.897 n/a 4 −6.280 −6.269

Results for the channel VV

−3.859 0.546 0.698 4 −3.448 −3.432

2.300 22.739 0.786 4 −3.365 −3.349

−1.555 0.100 n/a 4 −3.393 −3.382

1.361 9.912 n/a 4 −3.294 −3.284
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Table 5.2: Comparison between empirical and descriptive properties

Model/Data Channel Z̄ Var(Z)

HH 0.1317362 0.0531517

Data HV 0.0557846 0.0066813

VV 0.1423261 0.0531961

HH 0.1389117 0.0951966

G-G0 HV 0.0592943 0.0059955

VV 0.1471238 0.0827471

HH 0.1575847 ∞

G0 HV 0.0809249 ∞

VV 0.1801802 ∞

HH 0.1321899 0.0234291

G-K HV 0.0579247 0.0041409

VV 0.1414152 0.0282010

HH 0.1288952 0.0184169

K HV 0.0577478 0.0038544

VV 0.1373083 0.0220293
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Figure 5.7: In left panel we have the diagram of the LCs κ̃3 ∼ κ̃2 and in right panel the LCs cube,

both plots are in respect to the G-K and G-G0 models.

where W = 7× 7 pixels is the window size. In Fig. 5.9, we present the p-value map associated

with both statistics. In general, results provide evidence that the model pair (G-K ,K ) presents the

highest difference. From results presented by SG−K for HH and VV channels, higher differences

are found at regions with more pronounced textures. On the other hand, differences seem to be

uniformly distributed in the maps provided by SG−G0 , specially at ocean regions.

Fig. 5.7 exhibits the (κ̃3, κ̃2) diagram and overlapping data. To build it, multiple points have

been obtained for each set by means of the bootstrap method [235]. In particular 1,000 replicates

were considered.

For the HH and VV channels, the majority of over lapping points provide are covered by

the G-G0 model at the Fig. 5.7(a). For the HV channel, discussed models do not present good

performance, although our proposals have furnished the best results. We also provide the 3D

diagram in the Fig. 5.7(b), called LC cube [28], for the two proposed models. From this approach

we observe that data of three channels are covered the G-G0 region.

Besides of LC diagram and LC cube, we provide confidence ellipses (with 90% confidence)

their coverage degrees, ACI, and the T 2 statistics (see Table 5.3) for each considered model. The
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Figure 5.8: Confidence ellipses about LC diagram for each data set aforementioned by bootstrap

with 1,000 replications.

ellipses are obtained through of estimated cumulants κ̃2 and κ̃3 and covariance matrix of LCs of the

models studied according to Anfinsen and Elfort [60] (see Fig. 5.8). Results, as already discussed

present evidence in favor of the G-G0 model

5.5 Conclusion

Considering the multiplicative modeling, a new class of distributions for speckled data has

been proposed: the G-G distribution. Among its particular cases, we have two new distributions

which generalizes the classical G0 and K distributions. We derived statistical properties of the

new distributions and related them according to variation of their parameters. Two diagrams were

presented to illustrate their relationships. The LCs for the new models and its 2D and 3D diagrams

were proposed. Applications to real data have been considered. As figures of merit, we selected

three GoF measures (AIC, corrected AIC, and BIC) as well as ones based on LCs and likelihood

ratio statistics. We demonstrate that the proposed models are capable of outperforming the G0 and

K distributions.
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Table 5.3: ACI and p-value of the T 2 statistics

Models LCs ACI p-value

Results for the channel HH

G-G0 κ̃2 (−2.1997,4.4010) 0.5763

κ̃3 (−6.9893,7.2501)

G-K κ̃2 (−2.5434,5.0340) 0.0000

κ̃3 (−10.2761,9.0370)

G0 κ̃2 (−2.4983,4.6782) 0.0038

κ̃3 (−9.4092,10.4955)

K κ̃2 (−3.0267,5.5398) 0.0000

κ̃3 (−15.1112,13.1624)

Results for the channel HV

(−2.4230,4.8627) 0.1094

(−8.9429,8.1349)

(−2.9302,5.5189) 0.0005

(−13.8510,12.0847)

(−2.8540,5.2603) 0.0000

(−11.7602,13.2054)

(−3.2670,5.9257) 0.0000

(−17.1269,14.9137)

Results for the channel VV

(−2.3336,4.7120) 0.2132

(−7.6207,7.6602)

(−2.8121,5.4872) 0.0000

(−12.2778,10.7615)

(−2.7645,5.1146) 0.0000

(−11.1508,12.5033)

(−3.3334,6.0318) 0.0000

(−17.6987,15.4107)
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Figure 5.9: G-K and G-G0 p-value maps for the ratio likelihood statistic of HH, HV, and VV

channels from the San Francisco AIRSAR image.
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6 G0
I Regression Model for Speckled Data

Abstract

Synthetic aperture radar (SAR) is an efficient and widely used remote sensing tool. However,

data extracted from SAR images are contaminated with speckle noise, which precludes their mode-

ling directly. Intensities are important SAR features which have a non-additive nature and various

distributions obtained from the multiplicative approach have been proposed to describe them. The

G0
I model is one of the most successful among them. Several inferential procedures have been

proposed for G0
I parameters, but–from a literature review we made–there are not works which

tackle a regression structure for this model. This chapter proposes a G0
I regression model in order

to consider the influence of other intensities (present in the polarimetric SAR data) in the modeling

of intensities due to one particular polarization channel. We derive some theoretical properties for

the new model: Fisher information matrix, residual-kind measures, and influential tools. Point and

interval estimation procedures via maximum likelihood are proposed and assessed by Monte Carlo

experiments. Results from synthetic and real studies point out the new model may be useful for

speckled data.

Keywords: Speckled data. G0
I regression model. Influence measure. Conditional intensity.

6.1 Introduction

SAR is a remote sensing powerful technique. SAR systems operate under the dynamic: elec-

tromagnetic pulses are sent towards a target and their returns are recorded. The intensity of the

echoed signal is a powerful information source since it carries physical properties due to the target

surface. Modeling intensities is therefore sought in SAR image processing.
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SAR images are obtained using coherent illumination and, consequently, strongly contami-

nated by a particular interference pattern, called speckle noise [223]. This noise imposes devia-

tions from the classical properties of additivity and Gaussian distribution and, therefore, tailored

modeling and analysis techniques are mandatory in SAR imagery processing. The multiplicative

model (MulM) is one of the most successful approaches for describing speckled data [207]. Unlike

other methods, this modeling has a phenomenological nature which is closely tied to the physics

of the image formation.

A particular case of the MulM is the G0
I distribution, which was pioneered by Frery et al. [123].

The G0
I model depends on three parameters, which indicate roughness (α), brightness (γ), and the

number of looks (L). The last parameter represents a quantity which is related to the signal-

to-noise ratio in SAR images (high values of L indicate smoother images). The G0
I model has

received great attention by characterizing areas with different degrees of texture (from mild to

extreme). This model is also known for its heavy tail, what give itself advantage at describing

urban scenarios (which impose more difficult to work with) [236]. Several works have proposed

advances for the G0
I distribution. The estimation of its parameters is often based on maximum

likelihood (ML) [214], moment method [215], robust procedures [215–218], and bias correc-

tion [219, 219–221]. Additionally, parameter hypothesis tests based on classical inference [222],

information theory [223], and non-parametric method [213, 224, 225] have been suggested. All

these works have assumed intensities from a unconditional perspective; i.e., intensities at one po-

larization channel are not influenced by ones of other channels in the same scene.

In recent years, the interest at understanding such type of imagery in a multidimensional and

multilook perspective has increased. Basically, polarimetric SAR measurements record the ampli-

tude and phase of backscattered signals for possible combinations of linear reception and trans-

mission polarizations: HH, HV, VH, and VV (H for horizontal and V for vertical polarization).

Evidence from practical situations support the assumption that HV and VH polarizations are iden-

tical. Thus, for each pixel of a SAR image, one has three intensities associated to the HH, HV, and

VV channels. In this chapter, we discuss about how to model SAR intensities given the influence

of ones.

This chapter proposes a new regression model for distributed G0
I response variables, which
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are related to SAR imagery pixels. Beyond the challenge of deriving theoretical properties of re-

gression of a widely used model, our proposal is motivated by the fact: given a polarimetric SAR

return, any particular intensity defined in the former is related to ones. We propose a formulation

of a G0
I regression model as well as the derivation of some of its properties: Moments for the recip-

rocal G0
I model, Fisher information matrix, two residual-kind and four influential-kind measures.

Point and interval estimation procedures are also designed and assessed via a Monte Carlo simula-

tion study. Finally, our proposal is applied to real SAR data and, comparatively to the performance

of exponential, gamma (Γ), inverse gamma (Γ−1), normal (N ), inverse normal (N −1), Weibull,

power exponential, and exponential generalized beta type 2 (EGB2) regression models, shows to

be a useful tool in SAR imagery processing.

The chapter unfolds as follows. Section 6.2 presents the main properties of the G0
I model. In

Section 6.3, we suggest a new regression model and discuss some of its properties. A simulation

study involving the G0
I regression parameters is presented in Section 6.4. An application to real

data is made in Section 6.5. Section 6.6 addresses the main conclusions.

6.2 The G0
I distribution

According to the MM approach [223], SAR intensities, say Z ∈R+, are defined as the product

of two independent positive random variables: one describes the speckle noise, say Y , and other

models the terrain backscatter, say X ; i.e.,

Z = X × Y,

where X and Y are independent. Assuming X ∼ Γ−1(α, γ) and Y ∼ Γ(L ,L), Frery et al. [123]

proposed the G0
I distribution having pdf given by

fZ(z; α, γ, L) =
LLΓ(L−α)

γαΓ(−α)Γ(L)
zL−1[γ+Lz]α−L , (6.1)

where −α > 0, γ = µ(−α−1)> 0, and L > 0 (which assumes natural values when obtained from

the SAR system) represent roughness, brightness, and the number of looks, respectively. This

situation is denoted by Z ∼ G0
I (α, γ, L). In what follows, we present some results which will be

used to develop the G0
I regression model.
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Frery et al. [123] proposed the nth ordinary moment of the G0
I distribution as follows.

Corollary 6 Let Z ∼ G0
I (α, γ, L). Its non-central moments are given by

E(Zk) =
(

γ

L

)k B(L + k,−α− k)
B(L ,−α)

,

if α <−k. Otherwise, it is infinite.

Proof 2 Let Z ∼ G0
I (α,γ,L), then

E(Zk) =
∫

∞

0
zk fZ(θθθ) dz =

∫
∞

0

LLΓ(L−α)

γαΓ(−α)Γ(L)
zL−1+k[γ+Lz]α−L dz.

With this, we make the change of variable u = γ+Lz and we compute

E(Zk) =
Γ(L−α)

LkγαΓ(−α)Γ(L)

∫
∞

γ

(
1− γ

u

)L+k−1
uα+k−1 du.

Again let r = γ/u, then

E(Zk) =
(

γ

L

)k Γ(L−α)

Γ(−α)Γ(L)

∫ 1

0
(1− r)L+k−1 r−α−k−1 dr.

As B(a,b) =
∫ 1

0 xa−1(1− x)b−1 dx, we acquire:

E(Zk) =
(

γ

L

)k B(L + k,−α− k)
B(L ,−α)

.

n

From Corollary 6, the G0
I variance is

Var(Z) = µ2
[(

α+1
α+2

)
L +1

L
−1
]
, (6.2)

if α < −2. Otherwise, it is infinite. We assume the last constraint in all the chapter. It is no-

ticeable the individual increasing of α or µ indicates SAR scenes with higher variability; whereas

the increasing of L implies more homogeneous areas. Two next results are contributions of this

chapter.

Corollary 7 Let Z ∼ G0
I (α, γ, L). Then, the kth inverse moment of T = (γ+LZ) is given by

E
[

1
T k

]
=

1
γk

k−1

∏
i=0

(
−α + i

−α + L + i

)
.
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n

The proof these Corollary is in the Appendix F.

Lemma 2 The G0
I distribution is a scale family.

Proof 3 Let Z ∼G0
I (α,γ,L) and c a non-negative constant. Then if Z1 = cZ, we have by definition

of cumulative distribution function:

FZ1(z1) = P(Z ≤ z1/c) i.e. fZ1(z1) =
1
c

fZ(z1/c). (6.3)

Then, using (6.1) in (6.3) and rearranging the expression, we have:

fZ1(z1) =
LLΓ(L−α)

(γc)αΓ(−α)Γ(L)
z1

L−1[(γc)+Lz1]
α−L ,

therefore Z1 ∼ G0
I (α, γc, L), this is, the G0

I distribution is a scale family.

n
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Figure 6.1: G0
I densities.

Figs 6.1(a) and 6.1(b) show the G0
I density curves for α ∈ {−10,−5,−3}, µ ∈ {1, 2, 3}, and

L ∈ {2, 4, 20}. Evidence are given in sense: (i) the increasing of µ increases location and vari-

ability at the same time (what is expected from (6.2)) and (ii) high values of α yield curves having

weightier tails.
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6.3 G0
I Regression Model

When modeling features at a polarization channel extracted from SAR images (like intensity),

there are always other features–associated to other channels, which work in parallel. For instance,

if one aims to model HH channel features, they have any correlation degree with features due to HV

and VV channels. In this section, we provide a mathematical treatment to study linear dependency

among intensities of polarization channels.

From Lemma 2, one can define a linear model for the G0
I distribution. Let Zk be a random

variable such that

Zk = exxx>k βββ
εk, for k = 1, . . . ,n, (6.4)

where βββ = (β0, β1, . . . , βp)
> is a vector of regression coefficients, xxxk = (1, xk1, . . . , xkp)

> is the

vector of p < n explanatory variables (assumed fixed and known), and εk ∼ G0
I (α,−(α+1), L).

Thus, it follows from Lemma 2 that [Zk|xxxk]∼G0
I (α,γk,L), where γk = µk (−α−1), µk = g−1(ηk),

ηk = xxx>k βββ, and g(•) is a positive value, strictly monotonic, and twice differentiable link function.

It is known that there are several possible link functions; for instance [237–240]:

g(µk) =



log{µk/(1−µk)}, logit,

Φ−1(µk), probit,

log{− log(1−µk)}, complementary log-log,

− log{− log(µk)}, log-log,

tan{π(µk−0.5)}, Cauchy,

log(µk), log,

µλ

k , power,

where Φ(•) is the cumulative distribution function of the standard normal distribution. By analy-

tical tractability issues, we choose g(x) = log(x).
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Thus, we assume n SAR intensities at a region of a given channel are described by random

variables Z1, . . . ,Zn such that Zk ∼ G0
I (α,γk,L) with mean µk = exxx>k βββ, where xxxk is the vector of

features known which may be associated to Zk; e.g., biomass index (as in [241]), other features

at the same channel (as phase), and same features at the other channels. In this chapter, we work

in the last branch: mapping the linear dependence/effect of the HV channel over HH and VV

channels. To illustrate the use of the regression model, we consider a real SAR image (Fig. 6.2(a)

in RGB, adopting red, green, and blue as the intensities of HH, HV, and VV, respectively) obtained

from the AIRSAR sensor over an region of San Francisco (USA) under four number of looks. This

image is characterized by three regions: ocean, forest, and urban. In order to assess the effect of

kind of regions over the estimates of parameters α,γ, and µ, we plot maps of estimates obtained

over around of 7×7 windows for each pixel in Figs 6.2(b)-6.2(c). Note that maps for α and µ are

more informative than that for γ, since only formers reproduce the behavior of the considered SAR

image. Finally, Fig. 6.2(e) illustrates the use of the proposed G0
I regression model.

6.3.1 Estimation by maximum likelihood

Consider (Z1 |xxx1), . . . ,(Zn |xxxn) be a n-points random sample such that Zk ∼ G0
I (α,γk,L) and

γk = exxx>k βββ(−α−1). From (6.1) and (6.4), the log-likelihood function at θθθ = (βββ>, α, L)> is given

as

`(θθθ) =
n

∑
k=1

`k(θθθ), (6.5)

where

`k(θθθ) :=L log(L)+ logΓ(L−α)−α log(µk)−α log(−α−1)− logΓ(−α)

− logΓ(L)+(L−1) log(zk)+(α−L) log(tk)

and tk = γk + L zk such that zk is an outcome from Zk.

Grounded on (6.5), the associated score function,

U(θθθ) := (Uβββ,Uα,UL) =

(
∂`(θθθ)

∂βββ
> ,

∂`(θθθ)

∂α
,
∂`(θθθ)

∂L

)>
,
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is determined by:

Uβββ = αXXX>EEE(TTT ∗−µµµ∗), (6.6)

where XXX is an n× p matrix whose kth row is xxx>k , EEE := diag{1/g′(µ1), . . . , 1/g′(µk), . . . , 1/g′(µn)}, g′(x) =

d g(x)/dx, TTT ∗ = (T ∗1 , . . . ,T
∗

k , . . . ,T
∗

n )
>, with T ∗k = − c1/Tk, c1 = (L−α)(−α−1),

and µµµ∗ = (1/µ1, . . . , 1/µk, . . . , 1/µn)>.

Uα =nU1(α,L)+
n

∑
k=1

log
(

Tk

µk

)
− (α−L)

n

∑
k=1

µk

Tk
, (6.7)

where

U1(α,L) =−Ψ(L−α)+Ψ(−α)− log(−α−1)+
α

(−α−1)
,

and Ψ(x) = dlogΓ(x)/dx is the digamma function.

UL = nU2(α,L)+
n

∑
k=1

log
(

zk

Tk

)
+(α−L)

n

∑
k=1

zk

Tk
, (6.8)

where

U2(α,L) = 1+ log(L)+Ψ(L−α)−Ψ(L).

In this case, the Fisher information matrix is given by

KKK(θθθ) = E
[
− ∂2 `(θθθ)

∂θθθ
>

∂θθθ

]
=


KKKββββββ KKKβββα KKKβββL

• KKKαα KKKαL

• • KKKLL

 , (6.9)

where KKKββββββ = αXXX>WWWXXX , KKKβββα = c2XXX>EEEµµµ∗, KKKαα = nc3, KKKLL = nc4, KKKβββL = KKKαL = 000, WWW :=

diag{ω1, . . . ,ωt , . . . ,ωn}, and

ωk =

(
L

L−α+1

)
1
µ2

k

1
{g′(µk)}2 .

A detailed discussion about the elements of KKK(θθθ) and c2, c3, and c4 is presented in Appendix G. We

observe that the parameters βββ and α are not orthogonal (in sense that θi and θ j in θθθ = (θ1, . . . ,θp)
>
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are orthogonal, termed by “θi ⊥ θ j”, if only if E[∂2 `(θθθ)/∂θi∂θ j] = 0 for all i 6= j [242]), which is

the opposite to what is verified in the class of generalized linear regression models (see McCullagh

and Nelder [239]). On the other hand, βββ⊥ L and α⊥ L .

For a sufficiently large sample and under the usual regularity conditions [110], it follows that

√
n( θ̂θθ − θθθ)

D−→
n→∞

Np+1
(
000, KKK−1(θθθ)

)
,

where θ̂θθ is the MLE for θθθ, D−→
n→∞

represents convergence in distribution, and Np(µµµ, ΣΣΣ) indicates the

multivariate normal distribution with mean µµµ and covariance matrix ΣΣΣ. In this chapter, we obtain a

closed-form expression for KKK−1(θθθ) of the G0
I regression model:

KKK−1(θθθ) =


KKKββββββ KKKβββα KKKβββL

• KKKαα KKKαL

• • KKKLL

 ,

with elements given in Appendix G.

The asymptotic multivariate normal distribution can be also used to construct asymptotic con-

fidence intervals, which are useful for testing significance of some sub-models and comparing

some special sub-models using the likelihood ratio, score and Wald statistics. In particular, the

asymptotic confidence interval at 100(1− ε)% for the ith component of θθθ, θi, is given by

ACIε

(
θ j
)
=
(

θ̂ j − zε/2

√
k̂ j, j ; θ̂ j + zε/2

√
k̂ j, j
)
,

where k̂ j, j denotes the jth element of the main diagonal of KKK−1(θθθ) and zε/2 is the (1− ε/2) quantile

of the standard normal distribution.

We obtain the MLE for α, L , and βββ from the system (Uβββ,Uα,UL)= (0,0,0). Hereby, they need

to be obtained by numerically maximizing the log-likelihood function using iterative methods; for

instance, BFGS (Broyden-Fletcher-Goldfarb-Shanno), Newton Raphson, etc [159]. When using

the optimization algorithms we need to determine initial estimates for parameter vector βββ. A

suggestion is to use the ordinary least squares estimates for this parameter obtained from a linear

regression model of the transformed responses g(z1),g(z2), . . . ,g(zn); i.e., (XXX>XXX)−1XXX> log(zzz),
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where log(zzz) := [log(z1), . . . , log(zk), . . . , log(zn)]
>. For preliminary estimation of α fixed the value

L , equaling score components from (6.1) to the null vector, it follows

Uα = n[Ψ(−α)−Ψ(L−α)− log(γ)]+
n

∑
k=1

log(Tk) = 0

and

Uγ =−
nα

γ
+(α−L)

n

∑
k=1

1
Tk

= 0. (6.10)

Through Equation (6.10), we have the initial guess of α given by α = L S
S−n/γ

, where S = ∑
n
k=1 T−1

k ,

and γ can be obtained by the nonlinear equation

1
n

n

∑
k=1

log
(

TK

γ

)
= Ψ

(
L

S
S− n/γ

)
−Ψ

(
L
(

1+
S

S− n/γ

))
.

6.3.2 Residual analysis

An important step to propose a new regression model is the analysis of its assumptions based

on residual-based quantities. To that end, we introduce two kinds of residuals for our proposal.

Residual analysis is often made in terms of ordinary residuals, standardized variants, or de-

viance residuals and has a twofold goal: identifying outliers (this step is named as sensibility or

influential study) and/or checking assumptions of the model. In this case, the kth standardized

residual is defined as:

rk =
Zk− µ̂k√
V̂ar(Zk)

,

where µ̂k = g−1(x>k β̂ββ) and

V̂ar(Zk) = µ̂2
k

[(
α̂+1
α̂+2

)
L +1

L
−1
]
.

A second residual is the deviance residual according to [243, 244], which defined–adapting to the

G0
I regression– Ddk(zzz;µµµ,α,L) = sign(zk−µk)

√
|rdk| as a residual, where

rdk = 2[`(zzz;zzz,α,L)− `(zzz;µµµ,α,L)],= 2
[

α log
(

zk

µk
T �k

)
−L log(T �k )

]
,
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with T �k = Tk/zk(−α−1+L) and sign(zk−µk) is the signum function defined as

sign(•) =



+, if zk > µk,

0, if zk = µk,

−, if zk < µk.

Hence, the standardized deviance residuals are defined by [245, p. 49]

SRk =
Ddk(zzz;µµµ,α,L)

S
√
(1−hkk)

,

where S = ∑
n
k=1

Ddk(zzz;µµµ,α,L)2/(n− p).

When the distribution of the residuals is not known, normal plots with simulated envelopes are

a helpful diagnostic tool (Atkinson [240], Section 4.2; Neter et al. [246], Section 14.6). The main

aim is to make this graph as good as possible and, so for this, simulated envelopes can be used to

decide if the observed residuals are consistent with the fitted model.

To build the envelope plot, we need of minimum and maximum values of the ν order statistics.

We follow Atkinson [240, p. 36], who suggested ν = 19 and the probability that a given absolute

residual falls beyond the upper band-provided by the envelope-is approximately equal to 0.05.

As rule of decision, if some absolute residuals are outside the limits provided by the simulated

envelope, we will have to investigate that (these) residue(s). On the other hand, if a great amount

of points is out of this range, we have evidence against the suitability of the fitted model.

6.3.3 Influential measures

This section tackles the proposal of influential tools for the G0
I regression model. After writing

about kind of residuals, it is required to define measures for identifying influential observations.

In what follows, we derive four influential measures: a generalized leverage quantity, projection-

based (known as hat) matrix, Cook’s distance, and Difference in Fits (DFFITS).

Wei et al. [247] developed the generalized leverage, which is defined as

GL(θ̃θθ) =
∂z̃zz

∂zzz>
, (6.11)
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where θθθ is a parameter vector such that E(zzz) = µµµ(θθθ), θ̃θθ is an estimator of θθθ, and z̃zz = µ(θ̃θθ). Let `(θθθ)

be the G0
I log-likelihood function having second order continuous derivatives with respect to θθθ and

zzz. Let also θ̂θθ be the MLE for θθθ, assuming its existence and uniqueness follow, and ẑzz the predicted

response vector. Wei et al. [247] showed the generalized leverage n× n matrix in (6.11) may be

expressed by

GL(θθθ) = Dθθθ

[
−∂2`(θθθ)

∂θθθ∂θθθ
>

]−1

Dθθθz,

evaluated at θ̂θθ, where Dθθθ =
∂µ

∂θθθ
> and Dθθθz =

∂2`(θθθ)

∂θθθ∂zzz>
.

Considering α as nuisance parameter and L fixed, then we obtain a closed-form expression for

GL(βββ) in the G0
I regression model. We have

(i)

Dβββ = EEEXXX ,

(ii)

− ∂2`(θθθ)

∂βββ∂βββ
> = αXXX>QQQXXX ,

where QQQ = diag{q1, . . . ,qk, . . . ,qn} with

qt =−
{[

1
µ2

k
+

c1(−α−1)
αT 2

k

]
+

[
1
µk

+
c1

αTk

]
g′ ′(µk)

g′(µk)

}
1

{g′(µk)}2

and

(iii)

∂2`(θθθ)

∂βββ∂zzz>
= αXXX>EEETTT ∗,

where

TTT ∗ =
Lc1

α
diag{1/T 2

1 , . . . , 1/T 2
k , . . . , 1/T 2

n } .

Therefore, the following identity holds:

GL(βββ) = EEEXXX(XXX>QQQXXX)−1XXX>EEETTT ∗. (6.12)
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More details are presented in Appendix H.

Now, replacing the observed information matrix by the Fisher information matrix, the expres-

sion (6.12) collapses in

GLA(βββ) = EEEXXX(XXX>WWWXXX)−1XXX>EEETTT ∗.

Hence, the (k,k)-entry of GLkk can be expressed as

GLkk(βββ) = ωkx>k (XXX
>WWWXXX)−1xk,

where

ωk =
∂2`k(θθθ)

∂µ2
k

(
∂µk

∂Tk

)2

=

[
α

µ2
k
+

c1(−α−1)
T 2

k

]
1

{g′(µk)}2 . (6.13)

Pregibon [248] extended the projection/hat matrix from linear regression ẑ versus X under

weights to generalized linear models, given as

H =WWW 1/2XXX(XXX>WWWXXX)−1XXX>WWW 1/2.

The literature has suggested the use of the (k,k)-entry of H, say hkk, for detecting the presence of

leverage points in linear generalized regression models [247, 249]. It is worth mentioning that–for

large samples–GL and H coincide and, in the case of canonical bonding, this equality holds for

any sample size.

We suppose that the parameters α and L are unknown and hence θθθ
> = (βββ>,α,L). Let Dθ =

[(EX)> 000> 000>]>, where 000 is an n-vector of zeros. Moreover,

∂2`(θθθ)

∂θθθ∂zzz>
=


αXXX>EEETTT ∗

aaa>

bbb>

 ,

where aaa = (a1, . . . ,ak, . . . ,an)
> with ak = L [Tk +(α−L)µk]/T 2

k , and bbb = (b1, . . . ,bk, . . . ,bn)
> with bt =

1/zk−L/Tk +
(α−L)

Tk

(
1− Lzk

Tk

)
. Finally, to determine−∂

2`(θθθ)/∂θθθ∂θθθ
>, we follow the same idea on which
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was built the expression (6.9), and we have

−∂2`(θθθ)

∂θθθ∂θθθ
> =


αXXX>QQQXXX XXX>EEEMMM XXX>EEENNN

• RRR PPP

• • SSS

 , (6.14)

where MMM = diag{m1, . . . ,mk, . . . ,mn} with

mk =
1
µk

+
1
Tk

(
2α−L +1+

µtc1

Tk

)
,

NNN = diag{n1, . . . ,nk, . . . ,nn} with

nk =
(−α−1)

Tk

[
1+

(α−L)zk

Tk

]
,

PPP = tr(P∗), where P∗ = diag{p∗1, . . . , p∗k , . . . , p∗n} with

p∗k = Ψ
(1)(L−α)+

1
Tk
(zk +µk)+

(α−L)µkzk

T 2
k

,

RRR = tr(R∗), where R∗ = diag{r∗1, . . . ,r∗k , . . . ,r∗n} with

r∗k =−U (1)
1 (α,L)+

µk

Tk

[
2+(α−L)

µk

Tk

]
,

and SSS = tr(S∗), where S∗ = diag{s∗1, . . . ,s∗k , . . . ,s∗n} with

s∗k =−Ψ
(1)(L−α)+Ψ

(1)(L)− 1
L
+

zk

Tk

[
2+(α−L)

zk

Tk

]
.

Faced with this, using the strategy that was used to find the inverse KKK(θθθ), and partitioning ma-

trix (6.14) as

−∂2`(θθθ)

∂θθθ∂θθθ
> =

AAA? BBB?

• DDD?

 ,
we have that its inverse is given by

(
−∂2`(θθθ)

∂θθθ∂θθθ
>

)−1

=


AAA∗ BBB∗ CCC∗

• DDD∗ EEE∗

• • FFF∗

 ,
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where AAA∗ =
[
(αXXX>QQQXXX)−1 +ζζζ

∗
ϑϑϑ
∗−1

ζζζ
∗>
]

ϒϒϒ
∗
ΦΦΦ
∗−1

ϒϒϒ
∗> , BBB∗ =

[
−ζζζ
∗
ϑϑϑ
∗−1
]

ϒϒϒ
∗
ΦΦΦ
∗−1

ϒϒϒ
∗> ,

DDD∗ = ϑϑϑ
∗−1

ϒϒϒ
∗
ΦΦΦ
∗−1

ϒϒϒ
∗> , CCC∗ = ϒϒϒ

∗
ΦΦΦ
∗−1

1 ϒϒϒ
∗> , EEE∗ = ϒϒϒ

∗
ΦΦΦ
∗−1

2 ϒϒϒ
∗> , FFF∗ = ΦΦΦ

∗−1
,

ϑϑϑ = RRR− (XXX>EEENNN)>(αXXX>QQQXXX)−1(XXX>EEENNN), ζζζ
∗
= (αXXX>QQQXXX)−1(XXX>EEENNN), ϒϒϒ

∗ = AAA?−1
BBB?, ΦΦΦ

∗ = DDD?−

BBB?>
ϒϒϒ
∗, ΦΦΦ

∗ = [ΦΦΦ∗1 ΦΦΦ
∗
2 ]. Therefore, it can be shown that

GL(βββ,α,L) = GL(βββ)+EEEXXXBBB∗aaa>+EEEXXXCCC∗bbb>,

where GL(βββ) is given in equation (6.12). We can observe that for a large α GL(βββ,α,L)→GL(βββ).

Cook [250] developed an influence measure for each observation. This distance quantifies the

effect of the tth observation by means of its square distance between β̂ββ and β̂ββ(t) (where β̂ββ(t) is the

parameter estimate without the tth observation), given by

Dc(θθθ) =
1
p
(β̂ββ− β̂ββ(k))

>XXXWWWXXX (β̂ββ− β̂ββ(k)).

We can use the usual approximation to Cook distance given as

D∗c(θθθ) =
hkkr2

k
p(1−hkk)2 ,

which avoid us to fit the model (n+1) times and it combines leverage and residuals (see Cook

[251]).

We also determine a DFFITS diagnostic measure proposed by White [252], that serves to show

how influential the point is in a linear regression. This measure is defined as

DFFITS(θθθ) = (β̂ββ− β̂ββ(k))

√(
hkk

1−hkk

)
.

In order to illustrate proposed influential measures, we compute them for distributed G0
I data

following the configuration: (βββ>,α,L) = (1,1,−50,4) and n = 100. Results are presented in

Fig. 6.3. In the Fig. 6.3(e), the plot of studentized residuals vs. predicted values are displayed.

There are not patterns, as expected from a good adjustment. Fig. 6.3(b) shows the Cook distances

vs. predicted values. We also compute values of (hkk) vs. predicted values in Fig. 6.3(c). The graph

of DFFITS vs. observed values is made in Fig. 6.3(d). Finally, the envelope plot of studentized

residuals is done in Fig. 6.3(f). As expected, it indicates that the model is well fitted.
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6.4 A simulation study

MLEs for G0
I regression parameters given in (6.6), (6.7), and (6.8) do not have closed-form

expressions and, therefore, iterative numerical methods are required. To that end, we did a pilot

study to choose an iterative method. In this initial study, we elect four procedures: BFGS (for

Broyden-Fletcher-Goldfarb-Shanno), CG (for Conjugate Gradients), NM (for Nelder-

Mead) and SANN (for Simulated ANNealing). We consider βββ ∈ {0.01,0.01,0.01}, α ∈ {−50,

−10,−5,−3}, L = 2, and sample sizes n ∈ {20,50,100,500}. For each combination (βββ,α,L ,n),

we generate 100 Monte Carlo replications on which proposed estimators are assessed. All com-

putational manipulations were made using software R (see R Core Team [253]). Using root mean

square error (RMSE) as figure of merit, the CG method obtained the best results. Detailed numerical

results are presented in Appendix I. From now on, we use the CG procedure.

Now, we are in position of making a performance study. To reach this goal, we use 1,000

Monte Carlo replications on which distributed G0
I (α,e

β0+β1 x1+β2 x2 (−α− 1),L) data were ge-

nerated under the following specifications: n ∈ {20,50,100,500}, β0 = β1 = β2 ∈ {0.01,1,2},

α ∈ {−15,−10,−5,−3}, L ∈ {1,4,8}, and xk ∼ G0
I (α,(−α−1),L).

We use five comparison criteria: the absolute bias (Abias), root mean square error (RMSE),

Akaike information criterion (AIC) and its corrected version AICc, and Bayesian information cri-

terion (BIC). Results are presented in Fig. 6.4 and Table 6.1. In general, as expected, the quality

of estimates improves with the increase of sample sizes. It is known that the increasing of L di-

minishes the effect of speckle noise over generated data. It is possible to observe that better results

are associated to high values of L . On the other hand, harder fits are related to smaller values of α

for single look data (L = 1); whereas, harder fits are function of higher values of α for multillok

(L > 1) data. Results of first and third scenarios are in the Appendix I.

6.5 Application to SAR imagery

In this section we apply the proposed G0
I regression model to SAR imagery processing and

compare its fit with those due to other seven models: exponential, Γ, Γ−1, N , N −1, Weibull,
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Table 6.1: Parameter estimates using the model µk = eβ0+β1 x1,k+β2 x2,k , where xk ∼ G0
I (α, (−α−

1), L) with βββ = (1,1,1)

L
=

8
L
=

4
L
=

1

α =−3 α =−5 α =−10 α =−15
Parameter n

Mean Abias RMSE Mean Abias RMSE Mean Abias RMSE Mean Abias RMSE

20 0.9924 0.0076 0.5568 0.9918 0.0082 0.4913 0.9946 0.0054 0.4656 1.0011 0.0011 0.4577

50 1.0154 0.0154 0.3088 1.0152 0.0152 0.2816 1.0260 0.0260 0.2696 1.0062 0.0062 0.2737

β0 100 1.0073 0.0073 0.2174 1.0055 0.0055 0.1937 1.0041 0.0041 0.1840 1.0097 0.0097 0.1809

500 1.0024 0.0024 0.0934 1.0082 0.0082 0.0842 1.0069 0.0069 0.0801 1.0028 0.0028 0.0793

20 0.9640 0.0360 0.3559 0.9633 0.0367 0.3358 0.9648 0.0352 0.3229 0.9694 0.0306 0.3182

50 0.9728 0.0272 0.1662 0.9789 0.0211 0.1576 0.9783 0.0217 0.1651 0.9816 0.0184 0.1668

β1 100 0.9927 0.0073 0.1006 0.9908 0.0092 0.1088 0.9996 0.0004 0.1047 0.9899 0.0101 0.1068

500 0.9971 0.0029 0.0402 0.9953 0.0047 0.0437 0.9959 0.0041 0.0467 0.9977 0.0023 0.0462

20 0.9752 0.0248 0.3474 0.9761 0.0239 0.3174 0.9644 0.0356 0.3159 0.9429 0.0571 0.3022

50 0.9826 0.0174 0.1643 0.9849 0.0151 0.1610 0.9747 0.0253 0.1654 0.9825 0.0175 0.1676

β2 100 0.9898 0.0102 0.1067 0.9925 0.0075 0.1121 0.9866 0.0134 0.1096 0.9877 0.0123 0.1106

500 0.9972 0.0028 0.0398 0.9978 0.0022 0.0434 0.9980 0.0020 0.0439 0.9988 0.0012 0.0454

20 −6.2772 3.2772 4.9687 −8.2102 3.2102 5.0661 −11.0354 1.0354 3.8719 −15.1020 0.1020 3.0831

50 −4.4825 1.4825 2.7875 −6.2796 1.2796 2.8566 −9.6713 0.3287 2.6133 −14.3900 0.6100 1.7358

α 100 −3.9924 0.9924 2.1181 −6.0977 1.0977 2.6556 −9.6499 0.3501 2.7932 −14.2794 0.7206 2.0741

500 −3.1718 0.1718 0.6680 −5.2236 0.2236 1.2107 −9.4019 0.5981 1.6048 −14.0003 0.9997 1.5528

20 0.9640 0.0360 0.4204 0.9725 0.0275 0.3942 0.9959 0.0041 0.3689 1.0122 0.0122 0.3879

50 0.9867 0.0133 0.2330 0.9780 0.0220 0.2240 1.0030 0.0030 0.2256 1.0045 0.0045 0.2321

β0 100 0.9859 0.0141 0.1642 0.9949 0.0051 0.1515 1.0038 0.0038 0.1569 0.9960 0.0040 0.1585

500 1.0012 0.0012 0.0708 0.9978 0.0022 0.0650 1.0045 0.0045 0.0664 1.0050 0.0050 0.0640

20 0.9928 0.0072 0.2853 1.0019 0.0019 0.2770 1.0089 0.0089 0.2669 0.9961 0.0039 0.2714

50 1.0023 0.0023 0.1414 1.0036 0.0036 0.1434 0.9987 0.0013 0.1489 0.9941 0.0059 0.1490

β1 100 1.0029 0.0029 0.0860 0.9959 0.0041 0.0957 0.9990 0.0010 0.1062 1.0013 0.0013 0.1042

500 1.0007 0.0007 0.0342 0.9996 0.0004 0.0394 1.0008 0.0008 0.0430 0.9990 0.0010 0.0438

20 0.9940 0.0060 0.2883 0.9988 0.0012 0.2629 0.9853 0.0147 0.2498 0.9828 0.0172 0.2702

50 0.9985 0.0015 0.1383 1.0117 0.0117 0.1402 0.9962 0.0038 0.1532 0.9992 0.0008 0.1526

β2 100 1.0030 0.0030 0.0845 1.0013 0.0013 0.0943 0.9971 0.0029 0.1052 1.0008 0.0008 0.1023

500 0.9993 0.0007 0.0350 1.0020 0.0020 0.0397 0.9977 0.0023 0.0425 0.9962 0.0038 0.0442

20 −4.9700 1.9700 3.3480 −7.4023 2.4023 4.0255 −10.7984 0.7984 3.5743 −14.8559 0.1441 2.8710

50 −3.6625 0.6625 1.5581 −6.1744 1.1744 2.6286 −10.3427 0.3427 2.8598 −14.5587 0.4413 2.6102

α 100 −3.3191 0.3191 0.8637 −5.5130 0.5130 1.5094 −9.5457 0.4543 1.4945 −14.1127 0.8873 1.2772

500 −3.0427 0.0427 0.3141 −5.1051 0.1051 0.6645 −9.3749 0.6251 0.9552 −14.0128 0.9872 1.0874

20 0.9257 0.0743 0.3826 0.9880 0.0120 0.3754 1.0113 0.0113 0.3826 1.0245 0.0245 0.3699

50 0.9800 0.0200 0.2170 0.9938 0.0062 0.1997 0.9995 0.0005 0.2142 1.0167 0.0167 0.2217

β0 100 0.9958 0.0042 0.1509 0.9962 0.0038 0.1459 0.9920 0.0080 0.1501 1.0121 0.0121 0.1541

500 0.9975 0.0025 0.0647 0.9977 0.0023 0.0611 1.0000 0.0000 0.0644 1.0047 0.0047 0.0671

20 1.0117 0.0117 0.2583 0.9968 0.0032 0.2621 0.9877 0.0123 0.2673 0.9882 0.0118 0.2593

50 1.0029 0.0029 0.1295 0.9998 0.0002 0.1287 0.9970 0.0030 0.1470 0.9906 0.0094 0.1534

β1 100 1.0019 0.0019 0.0856 1.0014 0.0014 0.0926 1.0050 0.0050 0.1008 0.9889 0.0111 0.1051

500 1.0010 0.0010 0.0320 1.0018 0.0018 0.0375 1.0006 0.0006 0.0434 0.9979 0.0021 0.0466

20 1.0175 0.0175 0.2586 0.9959 0.0041 0.2557 0.9944 0.0056 0.2565 0.9802 0.0198 0.2598

50 1.0008 0.0008 0.1296 0.9981 0.0019 0.1359 1.0042 0.0042 0.1420 0.9941 0.0059 0.1513

β2 100 0.9963 0.0037 0.0813 1.0005 0.0005 0.0916 1.0022 0.0022 0.0984 1.0006 0.0006 0.1051

500 1.0016 0.0016 0.0324 1.0009 0.0009 0.0378 1.0002 0.0002 0.0417 0.9984 0.0016 0.0431

20 −4.6538 1.6538 2.9152 −7.0135 2.0135 3.4979 −11.0715 1.0715 3.2874 −14.9771 0.0229 2.8080

50 −3.5156 0.5156 1.1705 −5.8053 0.8053 1.8376 −11.0096 1.0096 3.4952 −15.2506 0.2506 4.1899

α 100 −3.2240 0.2240 0.6444 −5.3719 0.3719 1.1582 −9.9394 0.0606 1.6493 −14.3275 0.6725 1.5228

536 −3.0425 0.0425 0.2523 −5.0635 0.0635 0.4597 −9.6555 0.3445 0.8068 −14.1784 0.8216 1.0722



154

power exponential, and EGB2 regression models. . We describe intensities due to HH and VV

channels in terms of HV intensities. From initial descriptive analysis, HV data are well correlated

with HH and VV data: 0.5486 and 0.4465, respectively. We compose two simple linear regression

models under the link functions: (i) µHH(xk) = exp(β0 + β1 xk)(HH ∼ HV ) and (ii) µVV (xk) =

exp(β0 +β1 xk)(VV ∼ HV ). In what follows, we aim to describe the SAR intensities obtained by

the AIRSAR [205] sensor of scenes of San Francisco (USA) regions. Fig. 6.5 shows an intensity

HH map of a San Francisco SAR region. To this framework, the G0
I regression model is equipped

by the following link function:

log(µk) = β0 + β1 xk,

where the response variable is Zk ∼ G0
I (α,µk(−α−1)) and the roughness α is a nuisance param-

eter. To quantify the performance of considered fits we use three measures: mean absolute biases

(MAB) and root mean squared error (RMSE) given by

1
n

n

∑
k=1
|Zk− Ẑk|, and

1
n

n

∑
k=1

(Zk− Ẑk)
2,

respectively. Table 6.3 shows values for MAB and RMSE, which indicate the G0
I regression model

may overcome considered competing models. The last panel of Fig. 6.7 shows standardized resi-

duals of considered models. Our proposal represents the unique acceptable model by this criterion

and the GoF measure given in Table 6.2.

MLEs for involved parameters and their standard errors are presented in Table 6.4. All models

were well adjusted and presented a positive impact of HV over HH or VV. The fitted models are

given by

(HH ∼ HV ) : µ̂HH(x) = exp(−2.524+17.207x)

(VV ∼ HV ) : µ̂VV (x) = exp(−2.551+14.608x),

where x is the HV polarization channel. Then, if the HV channel is 0.01, we have the expected

value for HH and VV given by 0.09519 and 0.09027, respectively.

Fig. 6.6 and 6.7 displays fitted line plot under the data set, a standardized residuals, Cook’s dis-

tance, and the normal plot of deviance residuals with a simulated envelope (according to Atkinson

(1985)). Results indicate the new model presents the best results.
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Table 6.2: GoF measures for SAR image models based on actual data

HH ∼ HV VV ∼ HV

Model GD AIC CAIC SBC GD AIC CAIC SBC

G0
I −462.20 −454.20 −454.00 −440.70 −486.70 −478.70 −478.50 −465.10

Exponential −372.60 −368.60 −368.60 −361.80 −436.50 −432.50 −432.40 −425.70

Gamma −460.10 −452.10 −451.90 −438.50 −485.20 −477.20 −477.00 −463.60

Inverse gamma −429.20 −423.20 −423.10 −413.00 −457.10 −451.10 −450.90 −440.90

Normal −290.20 −284.20 −284.00 −274.00 −284.30 −278.30 −278.20 −268.10

Inverse normal −423.50 −417.50 −417.40 −407.30 −474.20 −468.20 −468.10 −458.10

Weibull −447.70 −441.70 −441.60 −431.50 −476.00 −470.00 −469.80 −459.80

Power Exponential −359.50 −353.50 −353.40 −343.30 −360.80 −354.80 −354.70 −344.60

EGB2 −390.80 −380.80 −380.50 −363.90 −427.20 −417.20 −416.90 −400.20

Table 6.3: Statistics MAB, MRAB and RMSE of the regression models

HH ∼ HV VV ∼ HV

Model MAB RMSE MAB RMSE

G0
I 0.087 0.126 0.087 0.127

Exponential 0.096 0.135 0.096 0.137

Gamma 0.096 0.135 0.096 0.137

Inverse gamma 0.104 0.161 0.102 0.164

Normal 0.096 0.135 0.097 0.137

Inverse normal 0.090 0.131 0.099 0.139

Weibull 0.092 0.139 0.091 0.139

Power exponential 0.092 0.139 0.092 0.134

EGB2 0.131 0.186 0.137 0.192
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Table 6.4: Parameter estimates using data on SAR imagery
Model Parameter Estimate Std. error t stat p-value

HH ∼ HV

G0
I β0 −2.524 0.077 −32.800 0.000

β1 17.207 1.613 10.700 0.000

Exponential β0 −2.514 0.123 −20.510 0.000

β1 16.896 2.592 6.520 0.000

Gamma β0 −2.514 0.076 −33.000 0.000

β1 16.896 1.610 10.500 0.000

Inverse gamma β0 −3.344 0.079 −42.200 0.000

β1 17.615 1.512 11.700 0.000

Normal β0 −2.414 0.108 −22.290 0.000

β1 14.879 1.548 9.610 0.000

Inverse normal β0 −2.610 0.094 −27.900 0.000

β1 19.845 2.867 6.920 0.000

Weibull β0 −2.385 0.078 −30.700 0.000

β1 16.592 1.619 10.200 0.000

Power exponential β0 −2.649 0.023 −113.600 0.000

β1 15.904 0.192 82.800 0.000

EGB2 β0 −4.265 0.557 −7.660 0.000

β1 23.989 5.068 4.730 0.000

VV ∼ HV

G0
I β0 −2.551 0.100 −25.48 0.000

β1 14.608 1.985 7.36 0.000

Exponential β0 −2.598 0.122 −21.26 0.000

β1 15.340 2.579 5.95 0.000

Gamma β0 −2.598 0.087 −29.80 0.000

β1 15.340 1.841 8.33 0.000

Inverse gamma β0 −3.576 0.094 −38.26 0.000

β1 13.882 1.815 7.65 0.000

Normal β0 −2.510 0.126 −19.99 0.000

β1 13.542 1.839 7.36 0.000

Inverse normal β0 −2.670 0.105 −25.33 0.000

β1 17.501 3.065 5.71 0.000

Weibull β0 −2.509 0.089 −28.17 0.000

β1 15.637 1.869 8.37 0.000

Power exponential β0 −2.884 0.044 −65.00 0.000

β1 14.828 0.739 20.10 0.000

EGB2 β0 −7.570 2.31 −3.28 0.001

β1 51.760 24.25 2.13 0.034
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6.6 Conclusion

In this chapter, we have proposed a new G0
I regression model to describe conditionally SAR

intensities. The proposed model showed to be very flexible for several SAR textures, compara-

tively to exponential, Γ, Γ−1, N , N −1, Weibull, power exponential, and EGB2 regression models.

We have used the maximum likelihood procedure for G0
I regression parameters and proposed a

closed-form expression for the Fisher information matrix. The performance of estimates was as-

sessed by Monte Carlo simulation study. Subsequently, some diagnostic and influential techniques

were proposed: a generalized leverage and Cook measures and two kind of residuals. Finally, an

application of the G0
I regression model to actual SAR data was made. Results pointed out our

proposal may be useful in SAR image processing.
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(a) San Francisco image (b) Map of γ

(c) Map of α (d) Map of µ

(e) Illustration of regression

Figure 6.2: The effect of roughness over estimates for (α,γ,µ) and illustration for the regression

model.
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0 20 40 60 80

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

Indices of observation

h ii

(c) Leverage (hkk) versus predicted values

0 20 40 60 80

−0
.2

0.
0

0.
2

0.
4

 

Indices of observation

DF
FI

TS

(d) DFFITS versus indices of observation

0 20 40 60 80

−3
−2

−1
0

1
2

3

Indices of observation

St
an

da
rd

ize
d 

re
sid

ua
ls

(e) Standardized residuals versus predicted values
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(f) Normal Q-Q Plot

Figure 6.3: The upper (a) is a fitted line plot, (b), (c), and (d) panels plots the Cooks distance, lever-

age and DFFITS against the predicted. The (e) panels is standardized residuals versus predicted

and the another panel displays Normal Q-Q plot of absolute deviance residuals with a simulated

envelope.
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Figure 6.4: Measure AIC, AICc and BIC to sample size n ∈ {20, 50, 100, 500}, respectively.
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Figure 6.5: PolSAR image with selected region San Francisco (USA).
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Figure 6.6: A fitted line plot for urban SAR imagery data of the two models (left panels plots are

of the model I and right band plots are of the second model).
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Figure 6.7: The three diagnostic plots for urban SAR imagery data of the two models (left panels

plots are of the model I and right band plots are of the second model).
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7 Conclusions

In this chapter, we present some concluding remarks and directions for future works.

7.1 Concluding Remarks

In Chapters 2 and 3 of this thesis, we have shown that Mellin-kind statistics can be successfully

applied like GoF measures and estimation criteria for beta-G models in the survival analysis con-

text. Expressions for the MT of BW, BF, BKw, and BLL distributions have been derived as some

analytical contributions. Subsequently, the LCs related to these expressions have been used as en-

tries to the Hotelling’s T 2 statistic and their asymptotic distributions were studied. Our proposals

have been illustrated by means of five experiments with actual lifetime data. Moreover, LC-based

estimators have been derived for the BW model. These estimators presented results better than

those due to the ML method for both synthetic and real data.

In Chapter 4, a model for multimodal SAR intensities has been introduced, called CTPC model.

We derived some of its mathematical properties; such as, cf and a distance measure (which was

used as a possible GoF tool). Further, we have proposed two estimation methods for CTPC pa-

rameters: ML and QD estimators. A Monte Carlo study has indicated that QD estimators have

furnished best results. An application to real SAR data was made and results have shown evidence

that the CTPC model may outperform other seven classic distributions for modeling SAR inten-

sities: gamma, Weibull, generalized gamma, K , G0, beta generalized normal distributions, and

CTPG.

In Chapter 5, a new class of distributions for speckled data has been proposed: named the G-G

family. Two new distributions which generalize the classical (in sense of SAR imagery) G0
I and K

models have been detailed among its special cases. We derived some mathematical properties of

these new distributions and proposed their LC-based diagrams for model selection. Applications

to real data have been considered and results have demonstrated that the new models are capable
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of outperforming the G0
I and K distributions.

In Chapter 6, we proposed a new G0
I regression model to describe speckled data from SAR

imagery. We derived some of its mathematical properties: Fisher information matrix, residual-kind

quantities, and influential measures. Point and interval estimation procedures have been developed

for G0
I regression model parameters via maximum likelihood. Results from simulated and actual

studies have illustrated that our proposal may be useful as conditioned models for SAR intensity

data.

7.2 Directions for future researches

This thesis has also raised several points, which require deeper studies. Some of them are

presented as follows:

M to revisit the first paper looking for developments for censored data;

M to derive the Mellin transform, log-cumulants diagram, and estimators based in log-cumulants

for other families of distributions (as those presented in Fig. 5.4);

M to provide estimators via probability weigth moment and log-cumulants for the beta-log-

logistic model;

M to introduce a new regression model with response variables given by the K and CTPC

distributions;

M to develop generalized hypothesis tests for the G0
I regression model;

and

M to implement a computational package in R for regression models having G0
I and K response

variables.
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Appendix A - Proof of PWMs for Baseline Distribu-

tions

In this appendix, we derive PWM expressions for Fréchet and Kumaraswamy distributions.

Fréchet PWM

Applying the Fréchet quantile function Q[F(x)] = λ [− log(F(x))]−
1/α to (2.4), and considering

the substitution u =− log(F(x)), we obtain:

Ml, j,k = λ
l
∫

∞

0
u−l/α e−u( j+1) (1− e−u)k du. (1)

Taking into account the following series expansion described in [254, 255]

(1− z) j =
∞

∑
r=0

(
j
r

)
(−1)r zr, (2)

for |z|< 1 and j > 0, (1) becomes:

Ml, j,k = λ
l

∞

∑
r=0

(
k
r

)
(−1)r

∫
∞

0
u−l/α e−u( j+r+1) du.

From Γ(δ) = vδ
∫

∞

0 xδ−1e−vx dx, the following result holds:

Ml, j,k = λ
l
Γ

(
1− l

α

)
∞

∑
r=0

(
k
r

)
(−1)r 1

( j+ r+1)1−l/α
,

For integer, non-negative values of k, we have [256, p. 612]:

Ml, j,k = λ
l
Γ

(
1− l

α

) k

∑
r=0

(
k
r

)
(−1)r 1

( j+ r+1)1−l/α
.

The last results are valid for (1− l/α) /∈ Z−.

n
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Kumaraswamy PWM

Applying the Kumaraswamy model quantile function Q[F(x)] =
[
1− (1−F(x))

1/λ

]1/α

in (2.4),

and considering the substitution u = 1− (1−F(x))
1/λ, we have:

Ml, j,k = λ

∫ 1

0
ul/α(1−u)λ(k+1)−1[1− (1−u)λ] j du.

Again, take v = (1−u)λ and use [256, p. 271]∫ b

a
f (x)d(x) =−

∫ a

b
f (x)d(x),

to obatin

Ml, j,k =
∫ 1

0
(1− v1/λ)

l/α(1− v) jvk dv.

Invoking (2), we have

Ml, j,k =
∞

∑
r=0

(
j
r

)
(−1)r

∫ 1

0
(1− v1/λ)

l/αvr+k dv.

Given t = 1− v1/λ, we obtain

Ml, j,k = λ

∞

∑
r=0

(
j
r

)
(−1)r

∫ 1

0
t l/α(1− t)λ(k+r+1)−1 d t.

As B(δ,τττ) =
∫ 1

0 xδ−1(1− x)τ−1 dx , the following holds:

Ml, j,k = λ

∞

∑
r=0

(
j
r

)
(−1)r B [1+ l/α, λ(k+ r+1)] .

For integer, non-negative values of j, we have that [256, p. 612]:

Ml, j,k = λ

j

∑
r=0

(
j
r

)
(−1)r B [1+ l/α, λ(k+ r+1)] .

n
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Appendix B - Proof of GoF Criteria

In this appendix, we furnish proofs for Propositions 3, 4, 5, and 6.

General Derivation

According to (2.25), in order to derive the sought statistics for the distribution, we need to

obtain the following quantities: (i) the estimates ̂̃κ2 and ̂̃κ3 and (ii) K̂KK
−1

.

Algorithm 2: Computation of ̂̃κ2 and ̂̃κ3

Step 1. If BW or BKw models are considered, then let θθθ =
[
λ α b

]>
; otherwise

θθθ =
[
λ α a

]>
;

Step 2. Compute log-likelihood function `(θθθ);

Step 3. Derive the ML estimates θ̂θθ by solving the score vector at zero, which can be

performed by means of iterative methods, such as the Broyden-Fletcher-Goldfarb-Shanno

(BFGS) algorithm;

Step 4. Derive estimates for κ̃2 and κ̃3 LCs based on ̂̃κ2 = g2(θ̂θθ) and ̂̃κ3 = g3(θ̂θθ).

Algorithm 3: Computation of K̂KK
−1

Step 1. Compute the LC matrix ĴJJ according to (2.23), considering the particular functions

g2(•) and g3(•);

Step 2. Derive the matrix ΣΣΣ according to (2.24);

Step 3. Compute: K̂KK = ĴJJ
>
· Σ̂ΣΣ · ĴJJ;

Step 4. If K̂KK is nonsingular, compute K̂KK
−1

by usual inversion [137, 138]; otherwise compute

the generalized inverse of K̂KK [139, 140].
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With the outputs from Algorithm 2 and 3, the sought statistics can be obtained according to the

algebraic manipulation implied by (2.25).

In the next subsections, for each considered model, we state the necessary inputs for the above

algorithms and derive the statistics.

Beta-Weibull Distribution

Log-likelihood Function

`(θθθ) = n log(α)−nα log(λ)−n log B(1, b)+(α−1)
n

∑
r=1

log(xr)−b
n

∑
r=1

(xr

λ

)α

.

Score vector components

∂`(θθθ)

∂α
=

n
α
+

n

∑
r=1

log
(xr

λ

)
−b

n

∑
r=1

(xr

λ

)α

log
(xr

λ

)
,

∂`(θθθ)

∂λ
=−n

α

λ
+b

α

λα+1

n

∑
r=1

xα
r ,

∂`(θθθ)

∂b
=−n{ψ(b)−ψ(1+b)}− 1

λα

n

∑
r=1

xα
r .

Functions g2(θθθ) and g3(θθθ)

g2(θθθ) =
1

α2 ψ
(1)(1), and g3(θθθ) =

1
α3 ψ

(2)(1).
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Information Matrix and Its Inverse

HHHBW =−∂2`(θθθ)

∂θθθ
>

∂θθθ
=


Uαα Uαλ Uαb

Uλα Uλλ Uλb

Ubα Ubλ Ubb

 ,

where Uαα = n
α2 + bξBW

2 , Uαλ = Uλα = 1
λ
(n− bξBW

3 ), Uαb = Ubα = ξBW
1 , Uλλ = [bα(α+1)ξBW

0 −nα]/λ2,

Uλb = Ubλ =−α

λ
ξBW

0 , Ubb = n[ψ(1)(b)−ψ(1)(1+b)], ξBW
s = ∑

n
r=1

(
xr

λ̂

)α̂

logs
(

xr

λ̂

)
, for s = 0,1,2;

and ξBW
3 = ∑

n
r=1
(xr

λ

)α
[
log
(xr

λ

)α
+1
]
.

If the determinant |HHHBW| 6= 0, the asymptotic covariance matrix is given by ΣΣΣBW ≈ HHH−1
BW , where

the usual matrix inversion is applied [137,138]; otherwise we apply the generalized Moore-Penrose

inverse [139, 140].

Log-cumulant Matrix

JJJBW =−


2

α3 ψ(1)(1) 3
α4 ψ(2)(1)

0 0

0 0

 .

Asymptotic Covariance Matrix and Its Inverse

KKKBW =

(
UααUbb−U2

λb
α8|HHHBW|

)
·

 4α2ψ(1)(1)2 6αψ(1)(1)ψ(2)(1)

6αψ(1)(1)ψ(2)(1) 9ψ(2)(1)2

 .
where

|HHHBW|= Uαα(UλλUbb−U2
λb)+Uαλ(UαbUλb−UαλUbb)+Uαb(UαλUλb−UαbUλλ).
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Because KKKBW is singular, the generalized Moore-Penrose inverse was computed [139, p. 508]:

KKK−1
BW =

(
α6|HHHBW|

UααUbb−U2
λb

)(2ψ(1)(1))−2 0

0 0

 .

Hotelling’s T 2 statistic Derivation

Therefore, we obtain:

T 2
BW =

nα̂6

4

(
1

α̂2 −
1

α2

)2
(

|ĤHHBW|
Uα̂α̂Ub̂b̂−U2

λ̂b̂

)
.

n

Beta-Fréchet Distribution:

Log-likelihood Function

`(θθθ) = n log(α)+nα log(λ)−n log B(a, 1)− (1+α)
n

∑
r=1

log(xr)−a
n

∑
r=1

(
λ

xr

)α

.

Score vector components

∂`(θθθ)

∂α
=

n
α
+n log(λ)−

n

∑
r=1

log(xr)−a
n

∑
r=1

(
λ

xr

)α

log
(

λ

xr

)
,

∂`(θθθ)

∂λ
= n

α

λ
−aαλ

α−1
n

∑
r=1

x−α
r ,

∂`(θθθ)

∂a
=−n{ψ(a)−ψ(1+a)}−λ

α
n

∑
r=1

x−α
r .
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Functions g2(θθθ) and g3(θθθ)

g2(θθθ) =
1

α2 ψ
(1)(1), and g3(θθθ) =−

1
α3 ψ

(2)(1).

Information Matrix and Its Inverse

HHHBF =−
∂2`(θθθ)

∂θθθ
>

∂θθθ
=


Uαα Uαλ Uαa

Uλα Uλλ Uλa

Uaα Uaλ Uaa

 ,

where Uαα = n
α2 +aξBF

2 , Uαλ =Uλα = 1
λ
(aξBF

3 −n), Uαa =Uaα = ξBF
1 , Uλλ =

1
λ2

[
nα−aα(1−α)ξBF

0
]
,

Uλa = Uaλ =
α

λ
ξBF

0 , Uaa = n[ψ(1)(a)−ψ(1)(1+a)], ξBF
s = ∑

n
r=1

(
λ̂

xr

)α̂

logs
(

λ̂

xr

)
with s = 0,1,2, and

ξBF
3 = ∑

n
r=1

(
λ

xr

)α [
log( λ

xr
)α +1

]
.

If the determinant |HHHBF| 6= 0, the asymptotic covariance matrix is given by ΣΣΣBF ≈ HHH−1
BF [137,

138]; otherwise we apply the generalized Moore-Penrose inverse [139, 140].

Log-cumulant Matrix

JJJBF =


− 2

α3 ψ(1)(1) 3
α4 ψ(2)(1)

0 0

0 0

 .
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Asymptotic Covariance Matrix and Its Inverse

KKKBF =

(
UααUaa−U2

λa
α8|HHHBF|

)
·

 4α̂2ψ(1)(1)2 −6α̂ψ(1)(1)ψ(2)(1)

−6α̂ψ(1)(1)ψ(2)(1) 9ψ(2)(1)2

 .
Because KKKBF is singular, the generalized Moore-Penrose inverse was computed [139, p. 508]:

KKK−1
BF =

(
α6|HHHBF|

UααUaa−U2
λa

)
(

2ψ(1)(1)
)−2

0

0 0

 .

Hotelling’s T 2 statistic Derivation

Therefore, we obtain:

T 2
BF =

nα̂6

4

(
1

α̂2 −
1

α2

)2
(

|ĤHHBF|
Uα̂α̂Uââ−U2

λ̂â

)
.

n

Beta-Kumaraswamy Distribution

Log-likelihood Function

`(θθθ) = n log(αλ)−n log B(1, b)+(α−1)
n

∑
r=1

log(xr)+(λb−1)
n

∑
r=1

log(1− xα
r ) ,
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Score vector components

∂`(θθθ)

∂α
=

n
α
+

n

∑
i=1

log(xr)− (λb−1)
n

∑
r=1

xα
r log(xr)

1− xα
r

,

∂`(θθθ)

∂λ
=

n
λ
+b

n

∑
r=1

log(1− xα
r ),

∂`(θθθ)

∂b
=−n{ψ(b)−ψ(1+b)}+λ

n

∑
r=1

log(1− xα
r ).

Functions g2(θθθ) and g3(θθθ)

g2(θθθ) =
ψ(1)(1)−ψ(1)(λb+1)

α2 , and g3(θθθ) =
ψ(2)(1)−ψ(2)(λb+1)

α3 .

Information Matrix and Its inverse

HHHBKw =−
∂2`(θθθ)

∂θθθ
>

∂θθθ
=


Uαα Uαλ Uαb

Uλα Uλλ Uλb

Ubα Ubλ Ubb

 ,

where Uαα = n
α2 +(λb−1)∑

n
r=1

xα
r log2(xr)
(1−xα

r )
2 , Uαλ =Uλα = b∑

n
r=1

xα
r log(xr)
(1−xα

r )
, Uαb =Ubα = λ∑

n
r=1

xα
r log(xr)
(1−xα

r )
,

Uλλ = n
λ2 , Uλb = Ubλ =−∑

n
r=1 log(1− xα

r ), and Ubb = n[ψ(1)(b)−ψ(1)(1+b)].

If the determinant |HHHBKw| 6= 0, the asymptotic covariance matrix is given by

ΣΣΣBKw ≈
1
|HHHBKw|


Ub

αα Ub
αλ

Ub
αb

Ub
λα

Ub
λλ

Ub
λb

Ub
bα

Ub
bλ

Ub
bb

 ,
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with Ub
αα = UλλUbb−U2

λb, Ub
αλ

= Ub
λα

= UαbUλb−UαbUλλ, Ub
αb = Ub

bα
= UαλUλb−UαbUλλ,

Ub
λλ

= UααUbb −U2
αb, Ub

λb = Ub
bλ

= UαλUαb −UααUλb, Ub
bb = UααUλλ −U2

αλ
; otherwise we

apply the generalized Moore-Penrose inverse [139, 140].

Log-cumulant Matrix

JJJBKw =


J12 J13

J22 J23

J32 J33

 ,

where

J12 =
2

α3{ψ
(1)(λb+1)−ψ

(1)(1)},

J13 =
3

α4{ψ
(2)(λb+1)−ψ

(2)(1)},

J22 =
b

α2 ψ
(2)(λb+1), J23 =

b
α3 ψ

(3)(λb+1),

J32 =
λ

α2 ψ
(2)(λb+1), J33 =

λ

α3 ψ
(3)(λb+1).

Asymptotic Covariance Matrix and Its Inverse

KKKBKw =
1
|HHHBKw|

δ22 δ32

δ23 δ33

 ,
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where

δ22 = J12(J12Ub
αα + J22Ub

λα
+ J32Ub

bα)+ J22(J12Ub
αλ

+ J22Ub
λλ

+ J32Ub
bλ
)

+ J32(J12Ub
αb + J22Ub

λb + J32Ub
bb),

δ23 = δ32 = J13(J12Ub
αα + J22Ub

λα
+ J32Ub

bα)+ J23(J12Ub
αλ

+ J22Ub
λλ

+ J32Ub
bλ
)

+ J33(J12Ub
αb + J22Ub

λb + J32Ub
bb),

δ33 = J13(J13Ub
αα + J23Ub

λα
+ J33Ub

bα)+ J23(J13Ub
αλ

+ J23Ub
λλ

+ J33Ub
bλ
)

+ J33(J13Ub
αb + J23Ub

λb + J33Ub
bb).

If δ22δ33 > δ2
23 and |HHHBKw| 6= 0, then the inverse is given by

KKK−1
BKw =

|HHHBKw|
δ22δ33−δ2

23

 δ33 −δ32

−δ23 δ22

 ,
otherwise we apply the generalized Moore-Penrose inverse [139, 140].

Hotelling’s T 2 statistic Derivation

The sought T 2
BKw statistic is:

T 2
BKw =

n|ĤHHBKw|
δ̂22δ̂33− δ̂2

23

[
δ̂33

(̂̃
κ2− κ̃2

)2
+ δ̂22

(̂̃
κ3− κ̃3

)2
−2δ̂23

(̂̃
κ2− κ̃2

)(̂̃
κ3− κ̃3

)]
.

n

Beta-log-logistic Distribution:

Log-likelihood Function

`(θθθ) = n log
(

λ

α

)
−n log B(a, 1)+(aλ−1)

n

∑
r=1

log
(xr

α

)
− (a+1)

n

∑
r=1

log
[
1+(xr/α)λ

]
.
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Score vector components

∂`(θθθ)

∂α
=−nλa

α
+

λ(a+1)
α

n

∑
r=1

(xr/α)λ[
1+(xr/α)λ

] ,
∂`(θθθ)

∂λ
=

n
λ
+a

n

∑
r=1

log
(xr

α

)
− (a+1)

n

∑
r=1

(xr/α)λ log(xr/α)[
1+(xr/α)λ

] ,

∂`(θθθ)

∂a
=−n{ψ(a)−ψ(1+a)}+λ

n

∑
r=1

log
(xr

α

)
−

n

∑
r=1

log
[
1+(xr/α)λ

]
.

Functions g2(θθθ) and g3(θθθ)

g2(θθθ) =
ψ(1)(1)+ψ(1)(1)

λ2 , and g3(θθθ) =
ψ(2)(1)−ψ(2)(1)

λ3 .

Information Matrix and Its inverse

HHHBLL =−
∂2`(θθθ)

∂θθθ
>

∂θθθ
=


Uαα Uαλ Uαa

Uλα Uλλ Uλa

Uaα Uaλ Uaa

 ,
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where

Uαα =− λ

α2

{
na− (a+1)

n

∑
r=1

zr

[
1+

λ

1+ yλ
r

]}
,

Uαλ =
1
α

[
na− (a+1)

n

∑
r=1

(
zr +λyλ

r log(yr)
)]

,

Uαa =−
λ

α

n

∑
r=1

(zr−1),

Uλλ =
n
λ2 +(a+1)

n

∑
r=1

zr logyr

1+ yλ
r

[
(1+ yλ

r ) logyr +
λ

α
yλ

r

]
,

Uλa =−
n

∑
r=1

(1− zr) logyr, Uaa = n[ψ(1)(a)−ψ
(1)(1+a)].

with zr = yλ
r/(1+ yλ

r ), and yr = xr/α.

If the determinant |HHHBLL| 6= 0, the asymptotic covariance matrix is given by

ΣΣΣBLL ≈
1
|HHHBLL|


Ua

αα Ua
αλ

Ua
αa

Ua
λα

Ua
λλ

Ua
λa

Ua
aα Ua

aλ
Ua

aa

 ,

with Ua
αα = UλλUaa−U2

λa, Ua
αλ

= Ua
λα

= UαaUλa−UαaUλλ, Ua
αa = Ua

aα = UαλUλa−UαaUλλ,

Ua
λλ

= UααUaa −U2
αa, Ua

λa = Ua
aλ

= UαλUαa −UααUλa, Ua
aa = UααUλλ −U2

αλ
; otherwise we

apply the generalized Moore-Penrose inverse [139, 140].

Log-cumulant Matrix

JJJBLL =


J12 J13

J22 J23

J32 J33

 ,
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where

J12 = J13 = 0,

J22 =−
2
λ3{ψ

(1)(a)+ψ
(1)(1)},

J23 =−
3
λ4{ψ

(2)(a)−ψ
(2)(1)},

J32 =
1
λ2 ψ

(2)(a), J33 =
1
λ3 ψ

(3)(a).

Asymptotic Covariance Matrix and Its Inverse

KKKBLL =
1
|HHHBLL|


δ22 δ32

δ23 δ33

 ,
where

δ22 = J22(J22Ua
λλ

+ J32Ua
aλ
)+ J32(J22Ua

λa + J32Ua
aa),

δ23 = δ32 = J23(J22Ua
λλ

+ J32Ua
aλ
)+ J33(J22Ua

λa + J32Ua
aa),

δ33 = J23(J23Ua
λλ

+ J33Ua
aλ
)+ J33(J23Ua

λa + J33Ua
aa).

If δ22δ33 > δ2
23 and |HHHBLL| 6= 0, then the inverse is given by

KKK−1
BLL =

|HHHBLL|
δ22δ33−δ2

23

 δ33 −δ32

−δ23 δ22

 ,
otherwise we apply the generalized Moore-Penrose inverse [139, 140].
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Hotelling’s T 2 statistic Derivation

The sought T 2
BLL statistic is:

T 2
BLL =

n|ĤHHBLL|
δ̂22δ̂33− δ̂2

23

[
δ̂33

(̂̃
κ2− κ̃2

)2
+ δ̂22

(̂̃
κ3− κ̃3

)2
−2δ̂23

(̂̃
κ2− κ̃2

)(̂̃
κ3− κ̃3

)]
.

n
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Appendix C - Proof of Hotelling Statistics Derivation

In this appendix we provide explicit expressions for the elements of asymptotic matrix of LCEs,

which are employed to obtain the new GoF measure.

Consider the relations between moment-to-cumulant transformations given in (2.19), and MMM3

and KKK3 defined in (3.4) and (3.5), then, we have

KKK3 = JJJ>3 ·MMM3 · JJJ3,

with the Jacobian matrix of the moment-to-cumulant transformations given in [26, 60]

JJJ3 =


1 0 0

−2m1 1 0

−3(m2−2m2
1) −3m1 1

 ,

and

MMM3 =


κ̃2 κ̃3 +2κ̃1κ̃2 M13

κ̃3 +2κ̃1κ̃2 M22 M23

M31 M32 M33

 ,

where

M13 = κ̃4 +3κ̃1κ̃3 +3κ̃
2
2 +3κ̃

2
1κ̃2,

M22 = κ̃4 +4κ̃1κ̃3 +2κ̃
2
2 +4κ̃

2
1κ̃2,

M23 = κ̃5 +5κ̃1κ̃4 +9κ̃2κ̃3 +9κ̃
2
1κ̃3 +12κ̃1κ̃

2
2 +6κ̃

3
1κ̃2,

M33 = κ̃6 +6κ̃1κ̃5 +15κ̃2κ̃4 +15κ̃
2
1κ̃4 +9κ̃

2
3

+54κ̃1κ̃2κ̃3 +18κ̃
3
1κ̃3 +15κ̃

3
2 +36κ̃

2
1κ̃

2
2 +9κ̃

4
1κ̃2.
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Therefore [26, 60],

KKK3 =


κ̃2 κ̃3 κ̃4

κ̃3 κ̃4 +2κ̃2
2 κ̃5 +6κ̃2κ̃3

κ̃4 κ̃5 +6κ̃2κ̃3 κ̃6 +9κ̃2κ̃4 +9κ̃2
3 +6κ̃3

2

 . (3)

For use the proposed of the GoF criteria we developed as input the ACM given by two types:

(i) with based in matrix (3), we derived the ACM for the BW(1,b,α,λ); (ii) the matrix M3 must

be replaced by observed information matrix of the BW(1,b,α,λ). This way, the ACM for the first

case is:

KKKLC =

 κ̃4 +2κ̃2
2 κ̃5 +6κ̃2κ̃3

κ̃5 +6κ̃2κ̃3 κ̃6 +9κ̃2κ̃4 +9κ̃2
3 +6κ̃3

2

=
1

α6

κ̃22 κ̃23

κ̃32 κ̃33

 ,
where

κ̃22 = α
2[Ψ(3,1)+2Ψ

2(1,1)],

κ̃23 = α[Ψ(4,1)+6Ψ(1,1)Ψ(2,1)],

κ̃33 = Ψ(5,1)+9Ψ(1,1)Ψ(3,1)+9Ψ
2(2,1)+6Ψ

3(1,1).

If |KKKLC| 6= 0, then the matrix inverse is given by

KKK−1
LC =

α6

κ̃33κ̃22− κ̃2
23

 κ̃33 −κ̃32

−κ̃23 κ̃22

 ,
otherwise we apply the generalized Moore-Penrose inverse [139, 140].

On the other hand, the ACM for the BW model using the observed information matrix instead

of matrix MMM, is given by

KKKML =

 2
α3 Ψ(1,1) 0 0

3
α4 Ψ(2,1) 0 0

ΣΣΣML


2

α3 Ψ(1,1) 3
α4 Ψ(2,1)

0 0

0 0

 ,
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where ΣΣΣML is given in (3.2). Thence,

KKKML =

(
UααUbb−U2

λb
α8|HHH|

)
·

 4α2Ψ2(1,1) 6αΨ(1,1)Ψ(2,1)

6αΨ(1,1)Ψ(2,1) 9Ψ2(2,1)

 .
Due to the fact of KKKML be singular, the generalized Moore-Penrose inverse was computed [139,

p. 508]:

KKK−1
ML =

(
α6|HHH|

UααUbb−U2
λb

)(4Ψ2(1,1))−1 0

0 0

 .
Finally, the T 2

LC statistics is given by:

T 2
LC =

nα6

κ̃33κ̃22− κ̃2
23

{̂̃
κ

22
[

Ψ(1,1)
(

1
α̂2 −

1
α2

)]2

+ ̂̃κ33
[

Ψ(2,1)
(

1
α̂3 −

1
α3

)]2

− 2̂̃κ23
Ψ(1,1)Ψ(2,1)

(
1

α̂2 −
1

α2

)(
1

α̂3 −
1

α3

)}
,

where ̂̃κ22
, ̂̃κ33

, ̂̃κ23
, and α̂, are the estimates of κ̃22, κ̃33, κ̃23; and α, respectively.

For the T 2
ML statistics we have:

T 2
ML =

nα̂6

4

(
1

α̂2 −
1

α2

)2
(

|ĤHH|
Uα̂α̂Ub̂b̂−U2

λ̂b̂

)
.

n
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Appendix D - Proof of GoF measure CTPC model

We want to derive the distance

DCTPC(θθθ; xxx) =
∫
R
|ΦXn(t)−ΦS(t)|2 e−κ |t| d t

=
∫
R

ν1(ttt) d t +
∫
R

ν2(ttt) d t +
∫
R

ν3(ttt) d t,

where ΦS(t) and ΦXn(t) are given in (4.8) and (4.10), respectively. Also, |xxx|2 = xxx · xxx for xxx ∈ Cp.

Using the Euler′s identity, one has that∫
R

ν1(ttt) d t =
∫
R

ν11(ttt) d t + intR ν12(ttt) d t,

from which ∫
R

ν11(ttt) d t =
1
n2

n

∑
j,l=1

∫
R

cos(t(x j− xl))e−κ |t| d t

and ∫
R

ν12(ttt) d t =
1
n2

n

∑
j,l=1

∫
R

i sin(t(x j− xl))e−κ |t| d t. (4)

Note that ν12(ttt) is an odd function nd that the integral in (4) is convergent. Therefore, the result (4)

is equal to zero. Moreover, using the software wxMaxima, one obtains the following identity:∫
R

ν1(ttt) d t =
∫
R

ν11(ttt) d t =
2
n2

n

∑
j,l=1

κ

κ2 +(x j− xl)2 .

For the second term, we have:∫
R

ν2(θθθ, ttt) d t =− 2
n(eλ−1)

n

∑
j=1

∫
R

Re(ϑ j) d t, (5)

where ϑ j = [Λt (cos(δt)− i sin(δt))−1]ei t X j .

Developing the algebra and using the identity of the cosines in expression (5), we have:∫
R

ν2(θθθ, ttt) d t =− 2
n(eλ−1)

n

∑
j=1

g3(θθθ;κ,x j)+
4

n(eλ−1)

n

∑
j=1

κ

κ2 + x2
j
,
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where

g3(θθθ;κ,x j) =
∫
R

cos(δt− t x j)Λt e−κ|t| d t.

Finally for the third case we have:∫
R

ν3(θθθ, ttt) d t =
∫
R

1
(eλ−1)2 [Λt (cos(δt)+ i sin(δt))−1] [Λt (cos(δt)− i sin(δt))−1]e−κ|t| d t.

Again developing the algebra of this expression we have:∫
R

ν3(θθθ, ttt) d t =
1

(eλ−1)2

[∫
R

Λ
2
t e−κ|t| d t +

∫
R

e−κ|t| d t
]
− 2

(eλ−1)2

∫
R

Λt cos(δt) e−κ|t| d t

=
1

(eλ−1)2 g1(θθθ; κ)− 2
(eλ−1)2 g2(θθθ; κ)+

2
κ(eλ−1)2 ,

where

g1(θθθ; κ) =
∫
R

e2λcos(µt)e−γ|t|
e−κ|t| d t

and

g2(θθθ; κ) =
∫
R

Λt cos(δt) e−κ|t| d t,

as desired.

Now suppose that µ = 0 and γ = 1, then we holds

g1(λ,1,0; κ) =
∫
R

e−κ|t|+2λe−|t| d t = g−1 (λ,1,0; κ)+g+1 (λ,1,0; κ),

where

g−1 (λ,1,0; κ) =
∫ 0

−∞

eκ t+2λet
d t.

With the change of variable u = et and using the software wxMaxima

g−1 (λ,1,0; κ) =
∫ 1

0
e2λu uκ−1 du =

Γ(κ)−Γ(κ,−2λ)

(−2λ)κ
,

where Γ(κ,−2λ) =
∫

∞

−2λ
tκ−1 e−t d t. For g+1 (λ,1,0; κ) the resolution is identical to the previous

one. Hence,

g1(λ,1,0; κ) =
2

(−2λ)κ
[Γ(κ)−Γ(κ,−2λ)] .
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Using a similar procedure for g2(λ,1,0; κ), we get

g2(λ,1,0; κ) =
2

(−λ)κ
[Γ(κ)−Γ(κ,−λ)] .

Finally for g3(λ,1,0;κ,x j) we have:

g3(λ,1,0; κ,x j) =
∫
R

cos(tx j)eλe−|t| e−κ |t| d t

= g−3 (λ,1,0;κ,x j)+g+3 (λ,1,0;κ,x j).

For g−3 (λ,1,0;κ,x j), let u = et , then

g−3 (λ,1,0;κ,x j) =
∫ 1

0
cos(x j log(u))eλu uκ−1 du.

As ∑
∞
r=0

λr

r! = eλ, we have:

g−3 (λ,1,0;κ,x j) =
∞

∑
r=0

λr

r!

∫ 1

0
cos(x j log(u))uκ+r−1 du.

Using the software wxMaxima, we get:

g−3 (λ,1,0; κ,x j) =
∞

∑
r=0

λr

r!
(k+ r)

x2
j +(k+ r)2

.

For g+3 (λ,1,0; κ,x j) the process is analogous to the previous one. Thus,

g3(λ,1,0; κ,x j) = 2
∞

∑
r=0

λr

r!
(k+ r)

x2
j +(k+ r)2

.

n
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Appendix E - The Σ(θ) matrix of Theorem 5

ΣΣΣ(θθθ) =



Cov(a1,a1) Cov(a1,a2) . . . Cov(a1,ak) Cov(a1,b1) . . . Cov(a1,bk)

· Cov(a2,a2) . . . Cov(a2,ak) Cov(a2,b1) . . . Cov(a2,bk)

· · . . . Cov(a3,ak) Cov(a3,b1) . . . Cov(a3,bk)
...

...
. . .

...
...

...
...

· · . . . Cov(ak,ak) Cov(ak,b1) . . . Cov(ak,bk)

· · . . . · Cov(b1,b1) . . . Cov(b1,bk)

· · . . . · Cov(b2,b1) . . . Cov(b2,bk)

· · . . . · Cov(b3,b1) . . . Cov(b3,bk)
...

...
...

...
...

. . .
...

· · . . . · Cov(bk,b1) . . . Cov(bk,bk)



, (6)

where, ∀ i = j ∈ N we have:

Cov(ai,a j) =
1

2n

{
Re[ΦS(2 ti)]+1−2(Re[ΦS(ti)])2} ,

Cov(ai,b j) =
1

2n
{Im[ΦS(2 ti)]−2Re[ΦS(ti)]Im[ΦS(ti)]} ,

Cov(bi,b j) =
1

2n

{
1−Re[ΦS(2 ti)]−2(Im[ΦS(ti)])2} ,

where, ∀ i 6= j ∈ N we have:

Cov(ai,a j) =
1

2n

{
Re[ΦS(ti + t j)]+Re[ΦS(ti− t j)]−2Re[ΦS(ti)]Re[ΦS(t j)]

}
,

Cov(ai,b j) =
1

2n

{
Im[ΦS(ti + t j)]− Im[ΦS(ti− t j)]−2Re[ΦS(ti)]Im[ΦS(t j)]

}
,

Cov(bi,b j) =
1

2n

{
Re[ΦS(ti− t j)]−Re[ΦS(ti− t j)]−2Im[ΦS(ti)]Im[ΦS(t j)]

}
.
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Appendix F - Proof of Corollary 7

We proof in this appendix the Corollary 6, being similar to the previous proof. If Z∼G(α, γ, L)

and T = (γ+Lz), then by definition of cdf, we have:

FT (t) = P(T ≤ t) = P
(

z≤ t− γ

L

)
= FZ

(
t− γ

L

)
, (7)

Deriving both sides the expression (7) with respect to variable T , we have:

fT (t) =
1
L

fY

(
t− γ

L

)
=

Γ(L−α)

Γ(−α)Γ(L)

tα−1

γα

[
1− γ

t

]L−1
,

where t ∈ (γ,∞). It is now we are ready to find the nth expected value.

E
[

1
T n

]
=

∫
∞

γ

t−n fT (t) d t =
∫

∞

γ

Γ(L−α)

Γ(−α)Γ(L)

tα−n−1

γα

[
1− γ

t

]L−1
d t.

With the change of variable s = γ/t we have:

E
[

1
T k

]
=

Γ(L−α)

Γ(−α)Γ(L)

1
γk

∫ 1

0
s−α+k−1 (1− s)L−1 ds.

By result of previous appendix

E
[

1
T n

]
=

1
γn

B(−α+n,L)

B(−α,L)
=

1
γn

n−1

∏
k=0

(
−α+ k
−α+L + k

)
.

n
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Appendix G - Fisher’s information matrix and its in-

verse

Now we gain the score function and the Fisher information matrix for the parameter vector θθθ.

From expression (6.5), for i = 1,2, . . . , p, and from Searle [257], the following identity holds:

Uβββ =
n

∑
k=1

∂`k(θθθ)

∂β j
=

n

∑
k=1

∂`k(θθθ)

∂µk

∂µk

ηk

ηk

∂β j
= α

n

∑
k=1

[
(α−L)(−α−1)

Tk
− 1

µk

]
1

g′(µk)
xxxk j. (8)

We next obtain the matrix expression for the score function for βββ that is given in equation (6.6).

For the α parameter, we hold:

Uα =
n

∑
k=1

∂`k(θθθ)

∂α
= nU1(α,L)+

n

∑
k=1

log
(

Tk

µk

)
− (α−L)

n

∑
k=1

µk

Tk
. (9)

Similarly, it can be shown that the score function for L can be written as:

UL = nU2(α,L)+
n

∑
k=1

log
(

zk

Tk

)
+(α−L)

n

∑
k=1

zk

Tk
. (10)

From regularity conditions, it is known that the expected value of the derivative in equation (6.5)

equals zero.

From expression (8), the Hessian function at the terms β j and βl in βββ is

Uββββββ =
∂2`(θθθ)

∂β j∂βl
=

n

∑
k=1

∂

∂µk

[
∂`k(θθθ)

∂µk

∂µk

∂ηk

]
∂µk

∂ηk

∂ηk

∂β j
xkl

=
n

∑
k=1

[
∂2`k(θθθ)

∂µ2
k

∂µk

∂ηk
+

∂`k(θθθ)

∂µk

∂

∂µk

∂µk

∂ηk

]
∂µk

∂ηk
xk jxkl.

(11)

Since E(∂`k(θθθ)/∂µk) = 0, we keep

E
(
Uββββββ

)
=

n

∑
k=1

E
[

∂2`k(θθθ)

∂µ2
k

](
∂µk

∂ηk

)2

xk jxkl.

Using the expression (6.13), we have

E
(
Uββββββ

)
=

n

∑
k=1

[
α

µ2
k
+ c1(−α−1)E

(
1

T 2
k

)]
xk jxkl

{g′(µk)}2 ,
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and from Corollary 7 we have

E
(

1
T 2

k

)
=

1
µ2

k(−α−1)
α(α−1)

(L−α+1)c1
,

we retain:

E
(
Uββββββ

)
= α

(
L

L−α+1

) n

∑
k=1

1
µ2

k

1
{g′(µk)}2 xk jxkl,

see in equation (6.9) the matrix form. From expression (8), the Hessian function at the βββ and α

can be written as

U
βββ
>

α
=

∂[U
βββ
>]

∂α
=

n

∑
k=1

[
(α−L)(−α−1)

T 2
k

− 2α+1−L
Tkµk

− 1
µ2

k

]
µkxk j

g′(µk)
.

Hence, applying the expected value, we own:

E(U
βββ
>

α
) =

n

∑
k=1

[
(α−L)(−α−1)E

(
1

T 2
k

)
− 2α+1−L

µk
E
(

1
Tk

)
− 1

µ2
k

]
µkxk j

g′(µk)
.

Again using the Corollary 7, we have:

E(U
βββ
>

α
) = c2

n

∑
k=1

1
g′(µk)

1
µk

xk j,

where

c2 =−
[

1+
(2α+1−L)α

(−α−1)(α−L)
+

α(α−1)
(−α−1)(L−α+1)

]
,

The matricial expression is in equation (6.9). From expression (8), the Hessian function at the βββ

and L can be written as

U
βββ
>L =

∂[U
βββ
>]

∂L
=−(−α−1)

n

∑
k=1

[
Tk +(α−L)zk

T 2
k

]
1

g′(µk)
xk j.

Applying the expected value, we get:

E
(

U
βββ
>L

)
=−(−α−1)

n

∑
k=1

[
E
(

1
Tk

)
+(α−L)E

(
Zk

T 2
k

)]
1

g′(µk)
xk j.

We derived that

E
[

1
Tk

]
=− α

µk(−α−1)(L−α)
. (12)
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Then derivative both sides the expression (12) with respect to the L , we have

E
[

Zn

T 2
k

]
=− α

µk(−α−1)(L−α)2 . (13)

With this

E
(

U
βββ
>L

)
= 000.

For obtain Uαα we using the expression (9), this is,

Uαα =
∂[Uα]

∂α
= nU (1)

1 (α,L)−2
n

∑
k=1

µk

Tk
− (α−L)

n

∑
k=1

µ2
k

T 2
k
,

where U (1)
1 (α,L) is the first derivate of U1(α,L) with respect to the parameter α. Applying the

expected value in expression above

E(Uαα) = nU (1)
1 (α,L)−2

n

∑
k=1

µk E
(

1
Tk

)
− (α−L)

n

∑
k=1

µ2
k E
(

1
T 2

k

)
.

Using the Corollary 7 in this expression, we hold:

E(Uαα) = nc3,

where

c3 =U (1)
1 (α,L)+

2α

(L−α)(−α−1)
+

α(α−1)
(−α−1)2(L−α+1)

.

From expression (9), the second derivative of `(θθθ) with respect to the L can be written as

UαL =
∂Uα

∂L
=−nΨ

(1)(L−α)+
n

∑
k=1

zk

Tk
+

n

∑
k=1

µk

Tk
+(α−L)

n

∑
k=1

µk
zk

T 2
k
,

where Ψ(k) (x) = ∂k+1 log Γ(x)/∂xk+1 for x > 0. Applying the expected value, we own:

E(UαL) =−nΨ
(1)(L−α)+

n

∑
k=1

E
(

Zk

Tk

)
+

n

∑
k=1

µk E
(

1
Tk

)
+(α−L)

n

∑
k=1

µk E
(

Zk

T 2
k

)
. (14)

Then, for expression E(Zk/Tk) we will wake the fact that E(Uα) = 0, that is,

n

∑
k=1

E [log(Tk)] =−nU1(α,L)+
n

∑
k=1

log(µk)+(α−L)
n

∑
k=1

µk E
(

1
Tk

)
.
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Derivative both sides the expression above with respect the L , we retain
n

∑
k=1

E
(

Zk

Tk

)
= nΨ

(1)(L−α)−
n

∑
k=1

µk E
(

1
Tk

)
− (α−L)

n

∑
k=1

µk E
(

Zk

T 2
k

)
. (15)

Hence, using the expression (15) in (14), we have:

E(UαL) = 000.

Ultimately, we have for ULL using the expression (10), this is,

ULL =
∂UL
∂L

= n
[

Ψ
(1)(L−α)−Ψ

(1)(L)+
1
L

]
−2

n

∑
k=1

zk

Tk
− (α−L)

n

∑
k=1

(
zk

Tk

)2

.

Applying the expected value, we hold:

E(ULL) = n
[

Ψ
(1)(L−α)−Ψ

(1)(L)+
1
L

]
−2

n

∑
k=1

E
(

Zk

Tk

)
− (α−L)

n

∑
k=1

E

[(
Zk

Tk

)2
]
.

Through of (15) and the expressions (12) and (13), we obtain:

n

∑
k=1

E
(

Zk

Tk

)
= nΨ

(1)(L−α).

Derivative both sides of the expression above with respect the L , we get:

n

∑
k=1

E

[(
Zk

Tk

)2
]
=−nΨ

(2)(L−α).

Soon,

E(ULL) = nc4,

where

c4 =

[
(α−L)Ψ(2)(L−α)−Ψ

(1)(L−α)−Ψ
(1)(L)+

1
L

]
.

Therefore follows the Fisher information matrix for θθθ = (α,βββ>,L) that is given in equation (6.9).

For obtain the inverse of K(θθθ), we partition this matrix of following form:

KKK(θθθ) =

 AAA BBB

BBB> DDD

 ,
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where

AAA =

αXXX>WWWXXX c2XXX>EEEµµµ∗

• nc3

 ,

BBB> = BBB =
[
000 000

]
, and DDD = nc4.

It is thus useful the matrices can be inverted block-wise (e.g. Rao [258, p. 33], and for more

informations see Rencher and Schaalje [259]), this is:

K−1(θθθ) =


AAA−1 +υυυΦΦΦ

−1
υυυ> −υυυΦΦΦ

−1

−ΦΦΦ
−1

υυυ> ΦΦΦ
−1

 ,

where ΦΦΦ = DDD−BBB>AAA−1BBB, υυυ = AAA−1BBB. As BBB> = BBB = [000 000 ], we own:

K−1(θθθ) =


AAA−1 000

000 (nc4)
−1

 ,

with,

AAA−1 =


(αXXX>WWWXXX)−1 +ζζζϑϑϑ

−1
ζζζ
> −ζζζϑϑϑ

−1

−ϑϑϑ
−1

ζζζ
>

ϑϑϑ
−1

 ,

where

ϑϑϑ = nc3−
c2

2
α
(XXX>EEEµµµ∗)>(XXX>WWWXXX)−1 (XXX>EEEµµµ∗),

and

ζζζ =
c2

α
(XXX>WWWXXX)−1 (XXX>EEEµµµ∗).
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Appendix H - Diagnostic measures

In this appendix we obtain in details generalized leverage for (βββ>, α, L). The notation used

here is defined in the Diagnostic measures section. Thus, for i = 1, 2, . . . , p, and as given in (8),

we have

Dβββ =
n

∑
k=1

∂µk

∂β j
=

n

∑
k=1

1
g′(µk)

xk j = EEEXXX .

From equation (11) it follows that

− ∂2`(θθθ)

∂βββ∂βββ
> =

n

∑
k=1

{[
α

µ2
k
+

c1(−α−1)
T 2

k

]
+

[
α

µk
+

c1

Tk

]
g′′(µk)

g′(µk)

}
1

{g′(µk)}2 xk jxkl

= αXXX>QQQXXX ,

Also, it can be shown that

∂2`(θθθ)

∂βββ∂zzz>
=

n

∑
k=1

∂µk

∂g(µk)

∂g(µk)

∂β j

[
∂

∂µk

∂`(θθθ)

∂zzz>

]
= α

n

∑
k=1

xk j

g′(µk)

L
Tk

c1

α

= αXXX>EEETTT ∗,

Thus, its follows the result.
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Appendix I - Numerical results of the pilot simulation

Following are the table and graphs of the pilot test to choose the numerical iterative method to

estimate the parameters of the regression model of the G distribution. After, its have the tables of

the first and third scenario of Monte Carlo simulation.

Tabela 1: Parameter estimates using the model addressed µk = eβ0+β1 x1,k+β2 x2,k , where Xk ∼ G(α, (−α−1), L)

Parameter n
BFGS CG NM SANN

Mean RMSE Mean RMSE Mean RMSE Mean RMSE

20 −0.0370 0.4812 −0.0135 0.5571 −0.0187 0.6002 −0.0333 0.4742

β0 50 −0.0221 0.2783 −0.0193 0.2761 −0.0221 0.2784 −0.0189 0.2784

100 −0.0252 0.2015 −0.0227 0.1996 −0.0252 0.2015 −0.0289 0.2037

500 0.0149 0.0792 0.0149 0.0792 0.0149 0.0792 0.0170 0.0802

20 0.0297 0.3350 0.0298 0.3324 0.0300 0.3353 0.0296 0.3338

β1 50 0.0282 0.1545 0.0288 0.1550 0.0282 0.1545 0.0309 0.1584

100 0.0158 0.1039 0.0157 0.1039 0.0157 0.1039 0.0166 0.1035

500 0.0123 0.0360 0.0123 0.0360 0.0123 0.0360 0.0119 0.0378

20 −0.0095 0.2961 −0.0086 0.2926 −0.0092 0.2964 −0.0122 0.2934

β2 50 0.0171 0.1574 0.0170 0.1566 0.0171 0.1574 0.0153 0.1565

100 −0.0060 0.0875 −0.0058 0.0877 −0.0060 0.0875 −0.0036 0.0864

500 0.0067 0.0371 0.0067 0.0371 0.0067 0.0371 0.0068 0.0374

20 −16.8667 27.2267 −5.3176 3.8466 −40.3654 76.4936 −6.9478 6.5823

α =−3 50 −6.1848 12.5684 −4.0622 2.2177 −7.0349 18.5315 −4.3065 2.9810

100 −4.3723 4.3521 −3.7270 1.7593 −4.3793 4.3947 −3.9237 2.3201

500 −3.0705 0.3938 −3.0696 0.3920 −3.0705 0.3940 −3.0572 0.3949

20 −0.0992 0.4648 −0.0870 0.4569 −0.1005 0.4661 −0.0922 0.4572

β0 50 −0.0278 0.2556 −0.0203 0.2523 −0.0279 0.2556 −0.0209 0.2578

100 −0.0004 0.1670 0.0034 0.1652 −0.0005 0.1670 0.0008 0.1667

500 0.0120 0.0607 0.0124 0.0606 0.0120 0.0606 0.0102 0.0620

20 0.0216 0.3150 0.0267 0.3142 0.0208 0.3154 0.0270 0.3161

β1 50 0.0107 0.1523 0.0123 0.1521 0.0107 0.1523 0.0060 0.1543

100 0.0143 0.0997 0.0144 0.0990 0.0143 0.0997 0.0146 0.0992

500 0.0033 0.0387 0.0033 0.0386 0.0033 0.0387 0.0029 0.0398

20 0.0673 0.3103 0.0656 0.3072 0.0684 0.3115 0.0615 0.3049

β2 50 0.0231 0.1451 0.0238 0.1447 0.0230 0.1450 0.0250 0.1477

100 0.0003 0.0948 0.0008 0.0945 0.0003 0.0948 −0.0004 0.0961

500 0.0066 0.0411 0.0066 0.0411 0.0066 0.0411 0.0072 0.0423

20 −34.8726 46.2230 −8.2580 5.8834 −75.1931 104.7882 −10.0604 7.9690

α =−5 50 −18.2678 32.1539 −6.5404 2.9226 −29.0835 57.8295 −7.9320 5.1603
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100 −9.1406 11.1039 −6.0007 2.3826 −11.3666 21.9571 −6.9239 3.9901

500 −5.1647 0.9517 −5.1223 0.8737 − 5.1641 0.9515 −5.2155 0.9740

20 −0.0216 0.4107 −0.0105 0.4066 −0.0220 0.4112 −0.0081 0.4189

β0 50 −0.0362 0.2344 −0.0304 0.2285 −0.0366 0.2351 −0.0363 0.2331

100 −0.0263 0.1828 −0.0211 0.1794 −0.0263 0.1832 −0.0190 0.1844

500 0.0183 0.0674 0.0217 0.0682 0.0184 0.0676 0.0230 0.0726

20 −0.0098 0.2492 −0.0073 0.2484 −0.0106 0.2494 −0.0120 0.2526

β1 50 0.0257 0.1301 0.0283 0.1290 0.0254 0.1303 0.0286 0.1335

100 0.0162 0.1141 0.0166 0.1137 0.0162 0.1140 0.0158 0.1147

500 0.0047 0.0450 0.0047 0.0448 0.0048 0.0450 0.0038 0.0450

20 0.0108 0.3035 0.0136 0.2996 0.0104 0.3050 0.0125 0.3090

β2 50 0.0101 0.1591 0.0108 0.1573 0.0102 0.1597 0.0119 0.1594

100 0.0218 0.0931 0.0220 0.0931 0.0215 0.0932 0.0198 0.0944

500 0.0024 0.0452 0.0026 0.0448 0.0024 0.0453 0.0031 0.0453

20 −47.0713 50.9270 −10.4933 3.4479 −105.9656 123.4028 −13.0618 6.7257

α =−10 50 −36.7495 43.1158 −10.0741 2.3237 −71.8729 96.7460 −12.4509 5.3565

100 −27.3761 35.7574 −9.6007 2.2419 −45.6554 72.1477 −10.8695 3.9029

500 −13.3979 9.7916 −9.4169 1.3951 −13.6746 10.9915 −9.6884 2.1194

20 0.0334 0.3895 0.0309 0.3870 0.0287 0.3924 0.0306 0.3854

β0 50 0.0195 0.2604 0.0186 0.2612 0.0212 0.2587 0.0166 0.2610

100 0.0178 0.1801 0.0165 0.1794 0.0171 0.1802 0.0171 0.1816

500 0.0054 0.0645 0.0052 0.0644 0.0053 0.0644 0.0048 0.0644

20 −0.0530 0.2916 −0.0532 0.2883 −0.0515 0.2919 −0.0508 0.2855

β1 50 −0.0129 0.1557 −0.0114 0.1529 −0.0135 0.1554 −0.0110 0.1528

100 0.0042 0.1022 0.0051 0.1016 0.0038 0.1022 0.0038 0.1029

500 0.0124 0.0491 0.0127 0.0491 0.0123 0.0491 0.0128 0.0487

20 −0.0052 0.2724 −0.0027 0.2709 −0.0044 0.2756 −0.0019 0.2695

β2 50 −0.0049 0.1642 −0.0060 0.1641 −0.0068 0.1635 −0.0039 0.1666

100 −0.0075 0.1008 −0.0075 0.1013 −0.0068 0.1014 −0.0070 0.1031

500 0.0138 0.0440 0.0138 0.0440 0.0138 0.0441 0.0136 0.0448

20 −66.9966 39.5089 −49.6229 2.6470 −128.8739 103.8445 −51.9579 7.2810

α =−50 50 −56.1634 30.7463 −48.9755 1.1506 −105.1543 92.2535 −49.7222 5.8457

100 −63.0099 42.8523 −49.1635 2.1797 −101.3539 86.8564 −50.5785 5.3853

500 −58.6298 34.1430 −49.0169 1.0980 −92.7803 78.5264 −47.9205 3.3888
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L
=

8
L
=

4
L
=

1

Tabela 2: Parameter estimates using the model µk = eβ0+β1 x1,k+β2 x2,k , where Xk ∼ G(α, (−α−1), L), with βββ = (0.01,0.01,0.01)

α =−3 α =−5 α =−10 α =−15
Parameter n

Mean Abias RMSE Mean Abias RMSE Mean Abias RMSE Mean Abias RMSE

20 0.0022 0.0078 0.5559 0.0011 0.0089 0.4891 0.0042 0.0058 0.4654 0.0128 0.0028 0.4592

50 0.0261 0.0161 0.3118 0.0252 0.0152 0.2817 0.0360 0.0260 0.2698 0.0164 0.0064 0.2737

β0 100 0.0172 0.0072 0.2174 0.0156 0.0056 0.1935 0.0142 0.0042 0.1838 0.0197 0.0097 0.1807

500 0.0124 0.0024 0.0934 0.0182 0.0082 0.0843 0.0171 0.0071 0.0802 0.0127 0.0027 0.0792

20 −0.0260 0.0360 0.3559 −0.0266 0.0366 0.3360 −0.0251 0.0351 0.3225 −0.0205 0.0305 0.3178

50 −0.0173 0.0273 0.1662 −0.0110 0.0210 0.1576 −0.0117 0.0217 0.1651 −0.0085 0.0185 0.1668

β1 100 0.0027 0.0073 0.1006 0.0008 0.0092 0.1088 0.0095 0.0005 0.1047 −0.0001 0.0101 0.1069

500 0.0071 0.0029 0.0402 0.0053 0.0047 0.0437 0.0059 0.0041 0.0466 0.0077 0.0023 0.0462

20 −0.0145 0.0245 0.3478 −0.0140 0.0240 0.3176 −0.0258 0.0358 0.3160 −0.0478 0.0578 0.3035

50 −0.0073 0.0173 0.1644 −0.0052 0.0152 0.1610 −0.0153 0.0253 0.1647 −0.0075 0.0175 0.1676

β2 100 −0.0003 0.0103 0.1067 0.0025 0.0075 0.1122 −0.0034 0.0134 0.1096 −0.0022 0.0122 0.1107

500 0.0072 0.0028 0.0398 0.0078 0.0022 0.0434 0.0079 0.0021 0.0439 0.0088 0.0012 0.0454

20 −6.2574 3.2574 4.9443 −8.2877 3.2877 5.3225 −11.0602 1.0602 3.9170 −15.0471 0.0471 3.2909

50 −4.5023 1.5023 2.8531 −6.2957 1.2957 2.9071 −9.6979 0.3021 2.6429 −14.3824 0.6176 1.9040

α 100 −4.0021 1.0021 2.1548 −6.0878 1.0878 2.6569 −9.6738 0.3262 2.6916 −14.2610 0.7390 2.1281

500 −3.1708 0.1708 0.6657 −5.2222 0.2222 1.2198 −9.3387 0.6613 1.4733 −14.0496 0.9504 1.5497

20 −0.0260 0.0360 0.4205 −0.0175 0.0275 0.3945 0.0059 0.0041 0.3686 0.0223 0.0123 0.3879

50 −0.0034 0.0134 0.2330 −0.0121 0.0221 0.2240 0.0130 0.0030 0.2255 0.0145 0.0045 0.2321

β0 100 −0.0041 0.0141 0.1642 0.0049 0.0051 0.1513 0.0137 0.0037 0.1569 0.0061 0.0039 0.1585

500 0.0112 0.0012 0.0708 0.0078 0.0022 0.0650 0.0144 0.0044 0.0664 0.0150 0.0050 0.0639

20 0.0028 0.0072 0.2853 0.0119 0.0019 0.2769 0.0187 0.0087 0.2668 0.0061 0.0039 0.2716

50 0.0123 0.0023 0.1414 0.0135 0.0035 0.1434 0.0085 0.0015 0.1488 0.0041 0.0059 0.1491

β1 100 0.0129 0.0029 0.0860 0.0059 0.0041 0.0957 0.0090 0.0010 0.1063 0.0113 0.0013 0.1043

500 0.0107 0.0007 0.0342 0.0096 0.0004 0.0394 0.0108 0.0008 0.0430 0.0090 0.0010 0.0438

20 0.0041 0.0059 0.2883 0.0089 0.0011 0.2631 −0.0044 0.0144 0.2499 −0.0072 0.0172 0.2703

50 0.0085 0.0015 0.1383 0.0218 0.0118 0.1402 0.0063 0.0037 0.1533 0.0092 0.0008 0.1526

β2 100 0.0130 0.0030 0.0845 0.0113 0.0013 0.0943 0.0071 0.0029 0.1052 0.0107 0.0007 0.1023

500 0.0093 0.0007 0.0350 0.0120 0.0020 0.0397 0.0077 0.0023 0.0426 0.0062 0.0038 0.0442

20 −4.9645 1.9645 3.3439 −7.3870 2.3870 4.0181 −10.7511 0.7511 3.4781 −14.8518 0.1482 3.1501

50 −3.6681 0.6681 1.5700 −6.1732 1.1732 2.5879 −10.3547 0.3547 2.8542 −14.5246 0.4754 2.4713

α 100 −3.3181 0.3181 0.8613 −5.5264 0.5264 1.5472 −9.5812 0.4188 1.5693 −14.1028 0.8972 1.2310

500 −3.0427 0.0427 0.3141 −5.1035 0.1035 0.6612 −9.3989 0.6011 0.9508 −14.0035 0.9965 1.0914

20 −0.0642 0.0742 0.3827 −0.0021 0.0121 0.3756 0.0210 0.0110 0.3825 0.0347 0.0247 0.3698

50 −0.0100 0.0200 0.2170 0.0040 0.0060 0.1997 0.0095 0.0005 0.2145 0.0265 0.0165 0.2219

β0 100 0.0059 0.0041 0.1509 0.0062 0.0038 0.1460 0.0019 0.0081 0.1500 0.0221 0.0121 0.1541

500 0.0075 0.0025 0.0647 0.0077 0.0023 0.0611 0.0101 0.0001 0.0644 0.0148 0.0048 0.0671

20 0.0217 0.0117 0.2583 0.0069 0.0031 0.2622 −0.0021 0.0121 0.2669 −0.0020 0.0120 0.2593

50 0.0129 0.0029 0.1295 0.0098 0.0002 0.1287 0.0070 0.0030 0.1470 0.0007 0.0093 0.1535

β1 100 0.0119 0.0019 0.0856 0.0114 0.0014 0.0926 0.0151 0.0051 0.1007 −0.0012 0.0112 0.1051

500 0.0110 0.0010 0.0320 0.0118 0.0018 0.0375 0.0106 0.0006 0.0434 0.0079 0.0021 0.0466

20 0.0276 0.0176 0.2586 0.0059 0.0041 0.2557 0.0044 0.0056 0.2566 0.0100 0.0200 0.2599

50 0.0108 0.0008 0.1296 0.0080 0.0020 0.1359 0.0142 0.0042 0.1421 0.0040 0.0060 0.1513

β2 100 0.0063 0.0037 0.0813 0.0105 0.0005 0.0916 0.0122 0.0022 0.0984 0.0106 0.0006 0.1051

500 0.0116 0.0016 0.0324 0.0109 0.0009 0.0378 0.0102 0.0002 0.0418 0.0084 0.0016 0.0431

20 −4.6200 1.6200 2.7629 −7.0144 2.0144 3.4686 −11.1767 1.1767 3.6284 −14.9764 0.0236 2.8486

50 −3.5154 0.5154 1.1697 −5.7896 0.7896 1.7891 −10.9839 0.9839 3.4258 −15.3677 0.3677 4.3034

α 100 −3.2240 0.2240 0.6446 −5.3767 0.3767 1.1740 −9.9584 0.0416 1.6680 −14.3366 0.6634 1.5725

500 −3.0425 0.0425 0.2524 −5.0636 0.0636 0.4599 −9.6433 0.3567 0.8117 −14.1706 0.8294 1.0660
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Tabela 3: Parameter estimates using the model µk = eβ0+β1 x1,k+β2 x2,k , where Xk ∼ G(α, (−α−1), L) with βββ = (2,2,2)

α =−3 α =−5 α =−10 α =−15
Parameter n

Mean Abias RMSE Mean Abias RMSE Mean Abias RMSE Mean Abias RMSE

20 1.9919 0.0081 0.5548 1.9923 0.0077 0.4912 1.9935 0.0065 0.4648 2.0003 0.0003 0.4574

50 2.0157 0.0157 0.3090 2.0152 0.0152 0.2818 2.0264 0.0264 0.2696 2.0065 0.0065 0.2737

β0 100 2.0072 0.0072 0.2173 2.0056 0.0056 0.1936 2.0039 0.0039 0.1838 2.0096 0.0096 0.1808

500 2.0007 0.0007 0.0930 2.0080 0.0080 0.0843 2.0069 0.0069 0.0801 2.0027 0.0027 0.0792

20 1.9640 0.0360 0.3558 1.9632 0.0368 0.3359 1.9654 0.0346 0.3229 1.9703 0.0297 0.3181

50 1.9728 0.0272 0.1662 1.9789 0.0211 0.1576 1.9782 0.0218 0.1650 1.9815 0.0185 0.1668

β1 100 1.9927 0.0073 0.1006 1.9908 0.0092 0.1088 1.9995 0.0005 0.1047 1.9899 0.0101 0.1068

500 1.9979 0.0021 0.0393 1.9953 0.0047 0.0437 1.9960 0.0040 0.0466 1.9976 0.0024 0.0462

20 1.9756 0.0244 0.3475 1.9760 0.0240 0.3174 1.9642 0.0358 0.3160 1.9429 0.0571 0.3020

50 1.9826 0.0174 0.1643 1.9847 0.0153 0.1611 1.9747 0.0253 0.1651 1.9825 0.0175 0.1676

β2 100 1.9898 0.0102 0.1067 1.9926 0.0074 0.1122 1.9867 0.0133 0.1096 1.9877 0.0123 0.1107

500 1.9971 0.0029 0.0406 1.9978 0.0022 0.0434 1.9980 0.0020 0.0439 1.9988 0.0012 0.0454

20 −6.2741 3.2741 4.9574 −8.2286 3.2286 5.1440 −11.0468 1.0468 3.9221 −15.0153 0.0153 3.0416

50 −4.4756 1.4756 2.7953 −6.3484 1.3484 2.9828 −9.7086 0.2914 2.6937 −14.3593 0.6407 1.9766

α 100 −3.9868 0.9868 2.0859 −6.0915 1.0915 2.6772 −9.6877 0.3123 2.6652 −14.3964 0.6036 2.9943

500 −3.1769 0.1769 0.6776 −5.2467 0.2467 1.2644 −9.3986 0.6014 1.5593 −14.0854 0.9146 1.9685

20 1.9641 0.0359 0.4204 1.9726 0.0274 0.3942 1.9958 0.0042 0.3691 2.0119 0.0119 0.3880

50 1.9867 0.0133 0.2330 1.9779 0.0221 0.2240 2.0029 0.0029 0.2257 2.0046 0.0046 0.2322

β0 100 1.9859 0.0141 0.1642 1.9950 0.0050 0.1515 2.0037 0.0037 0.1569 1.9961 0.0039 0.1585

500 2.0012 0.0012 0.0708 1.9979 0.0021 0.0650 2.0044 0.0044 0.0664 2.0050 0.0050 0.0640

20 1.9928 0.0072 0.2853 2.0017 0.0017 0.2769 2.0087 0.0087 0.2669 1.9961 0.0039 0.2715

50 2.0023 0.0023 0.1413 2.0036 0.0036 0.1434 1.9986 0.0014 0.1488 1.9940 0.0060 0.1491

β1 100 2.0029 0.0029 0.0860 1.9959 0.0041 0.0957 1.9990 0.0010 0.1063 2.0014 0.0014 0.1042

500 2.0007 0.0007 0.0342 1.9996 0.0004 0.0394 2.0008 0.0008 0.0430 1.9991 0.0009 0.0438

20 1.9940 0.0060 0.2883 1.9988 0.0012 0.2630 1.9855 0.0145 0.2500 1.9830 0.0170 0.2704

50 1.9985 0.0015 0.1383 2.0117 0.0117 0.1401 1.9962 0.0038 0.1534 1.9992 0.0008 0.1527

β2 100 2.0030 0.0030 0.0845 2.0013 0.0013 0.0943 1.9971 0.0029 0.1052 2.0007 0.0007 0.1022

500 1.9993 0.0007 0.0350 2.0019 0.0019 0.0397 1.9977 0.0023 0.0425 1.9962 0.0038 0.0442

20 −4.9565 1.9565 3.3054 −7.4466 2.4466 4.1412 −10.8153 0.8153 3.6596 −14.8284 0.1716 2.7841

50 −3.6651 0.6651 1.5758 −6.1602 1.1602 2.5418 −10.3567 0.3567 2.8904 −14.5347 0.4653 2.8065

α 100 −3.3187 0.3187 0.8619 −5.5098 0.5098 1.5153 −9.5672 0.4328 1.5599 −14.1085 0.8915 1.2521

500 −3.0427 0.0427 0.3141 −5.1021 0.1021 0.6613 −9.3944 0.6056 0.9707 −13.9991 1.0009 1.0949

20 1.9258 0.0742 0.3826 1.9878 0.0122 0.3755 2.0113 0.0113 0.3825 2.0245 0.0245 0.3697

50 1.9800 0.0200 0.2170 1.9940 0.0060 0.1996 1.9993 0.0007 0.2144 2.0165 0.0165 0.2217

β0 100 1.9958 0.0042 0.1509 1.9962 0.0038 0.1460 1.9921 0.0079 0.1500 2.0121 0.0121 0.1540

500 1.9975 0.0025 0.0647 1.9977 0.0023 0.0611 2.0001 0.0001 0.0644 2.0048 0.0048 0.0671

20 2.0117 0.0117 0.2583 1.9969 0.0031 0.2622 1.9877 0.0123 0.2671 1.9879 0.0121 0.2593

50 2.0029 0.0029 0.1296 1.9997 0.0003 0.1287 1.9970 0.0030 0.1470 1.9907 0.0093 0.1535

β1 100 2.0019 0.0019 0.0856 2.0014 0.0014 0.0926 2.0050 0.0050 0.1007 1.9888 0.0112 0.1051

500 2.0010 0.0010 0.0320 2.0018 0.0018 0.0375 2.0006 0.0006 0.0434 1.9979 0.0021 0.0466

20 2.0176 0.0176 0.2585 1.9960 0.0040 0.2557 1.9943 0.0057 0.2565 1.9805 0.0195 0.2600

50 2.0008 0.0008 0.1296 1.9980 0.0020 0.1359 2.0043 0.0043 0.1420 1.9940 0.0060 0.1513

β2 100 1.9963 0.0037 0.0813 2.0005 0.0005 0.0916 2.0022 0.0022 0.0984 2.0006 0.0006 0.1051

500 2.0016 0.0016 0.0324 2.0009 0.0009 0.0378 2.0002 0.0002 0.0417 1.9984 0.0016 0.0432

20 −4.6174 1.6174 2.7650 −7.0183 2.0183 3.4802 −11.1248 1.1248 3.3803 −14.9811 0.0189 2.8060

50 −3.5141 0.5141 1.1662 −5.7939 0.7939 1.8148 −11.0345 1.0345 3.5124 −15.2890 0.2890 4.0108

α 100 −3.2242 0.2242 0.6458 −5.3713 0.3713 1.1550 −9.9359 0.0641 1.6897 −14.3302 0.6698 1.4913

500 −3.0425 0.0425 0.2524 −5.0627 0.0627 0.4578 −9.6485 0.3515 0.8098 −14.1719 0.8281 1.0850


