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Abstract

We consider the issue of performing testing inferences on the parameters that index the linear
regression model under heteroskedasticity of unknown form. Quasi-t test statistics use asymp-
totically correct standard errors obtained from heteroskedasticity-consistent covariance matrix
estimators. An alternative approach involves making an assumption about the functional form
of the response variances and jointly modeling mean and dispersion effects. In this dissertation
we compare the accuracy of testing inferences made using the two approaches. We consider sev-
eral different quasi-t tests and also z tests performed after generalized least squares estimation
which was carried out using three different estimation strategies. Our numerical evaluations
were performed using different models, different sample sizes, and different heteroskedasticity
strengths. The numerical evidence shows that some quasi-t tests are considerably less size dis-
torted in small samples than the tests carried out after the jointly modeling mean and dispersion
effects. Finally, we present and discuss two empirical applications.

Keywords: Generalized least squares. Heteroskedasticity. Linear regression. Ordinary least
squares. Quasi-t test. z test.



Resumo

Na presente dissertação nós consideramos a realização de inferências por teste de hipótese
sobre os parâmetros que indexam o modelo linear de regressão sob heteroscedasticidade de
forma desconhecida. As estatísticas de teste quasi-t empregam erros-padrão assintoticamente
corretos oriundos de estimadores consistentes da matriz de covariância do estimador de mín-
imos quadrados ordinários dos parâmetros de regressão. Um enfoque alternativo envolve a
modelagem das variâncias das respostas, ou seja, a modelagem conjunta de efeitos médios e
de dispersão. Nós comparamos os dois enfoques através de várias simulações de Monte Carlo.
Consideramos vários testes quasi-t e testes z realizados após estimação por mínimos quadrados
generalizados realizada através de três enfoques distintos. Nossas avaliações numéricas foram
realizadas utilizando diferentes modelos, tamanhos de amostra e graus de heteroscedasticidade.
A evidência numérica indica que os testes quasi-t tendem a apresentar distorções de tamanho
consideravelmente menores em pequenas amostras do que os testes realizados após a mode-
lagem conjunta dos efeitos médios e de dispersão. Por fim, apresentamos e discutimos duas
aplicações empíricas.

Palavras-chave: Mínimos quadrados generalizados. Heteroscedasticidade. Regressão linear.
Mínimos quadrados ordinários. Teste quasi-t. Teste z.
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1 Introduction

1.1 Initial considerations

The linear regression model is commonly used in empirical analyses in a variety of fields. It
assumes that the mean of the variable of interest (response, dependent variable) equals a linear
predictor that involves regression coefficients and a set of independent variables (covariates,
regressors). Alternatively, the response is taken to be the sum of the linear predictor (systematic
component) and a random, unobservable error. Parameter estimation is typically carried out
by ordinary least squares (which requires no distributional assumptions) from a sample of n
observations. It is oftentimes assumed that all n errors (or, equivalently, that all n responses)
share the same variance. Such an assumption is known as homoskedasticity. Under constant
error variances and normality, exact testing inferences can be carried out using standard t and F
tests. The homoskedasticity assumption, nonetheless, is commonly violated when working with
cross-sectional datasets. When that happens, the ordinary least square estimator of the vector of
regression coefficients remains unbiased, consistent, and asymptotically normally distributed.
Its usual covariance matrix estimator, however, becomes biased and is not consistent under un-
equal error variances. The common practice is to use a heteroskedasticity-consistent covariance
matrix estimator, i.e., an estimator for the variance of the vector of ordinary least regression
coefficients estimators that is consistent under both homoskedasticity and heteroskedasticity of
unknown form. We can then obtain asymptotically correct standard errors and use them to
construct quasi-t test statistics that are, under the null hypothesis, asymptotically distributed as
standard normal. Hence, without the need to assume that the errors are normally distributed,
the practitioner can perform testing inference on the regression parameters.

An alternative approach is to jointlymodel the responsemean and variance, and then perform
z tests. Parameter estimation is performed by estimated (feasible) generalized least squares, i.e.,
using generalized least squares and replacing the unknown variances with the corresponding
estimates. This approach entails the extra burden of modeling dispersion effects in addition
to mean effects. The most commonly model assumes that heteroskedasticity is multiplicative,
as proposed by Harvey (1976). The multiplicative functional form guarantees that all variance
estimates are positive.

The two testing strategies listed above use standard errors obtained from different covariance
matrix estimators: quasi-t test statistics use standard errors obtained from a heteroskedasticity-
robust covariance matrix estimators whereas in the z test the standard error is obtained from an
estimate of the estimated generalized least squares covariance matrix.
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Atkinson, Riani, and Torti (2016) have recently compared the covariance matrix estima-
tors obtained using the two approaches. They show that covariance matrix estimation is more
accurate when performed via estimated generalized least squares even when the skedastic func-
tion is misspecified. Their focus lies in the accuracy of variance and covariance estimates.
According to Simonoff (1993), nonetheless, since estimated variances are used primarily for
performing inferences, comparisons involving different variance estimators should be related to
their intended use, such as the empirical coverages of associated confidence intervals and the
true nominal sizes of associated tests. This is the approach we shall pursue in this dissertation.
In what follows, we shall address the following question: Are z testing inferences made after
estimated generalized least squares estimation more accurate than those based on quasi-t tests?
An appealing feature of the latter is that it does not require assumptions about the skedastic
function.

In order to motivate the analysis in the remainder of our dissertation, consider the data
analyzed by Cribari-Neto (2004). The variable of interest (y) is per capita spending on public
schools in theU.S. (49 states andWashington, D.C.; sample size: 50 observations). It is expected
that such per capita spending grow with per capita income (x), i.e., richer states are expected
to spend more on public schools than less developed states on a per capita basis. We postulate
two different relationships, namely: quadratic and linear. In order to distinguish between them,
we write the model as yi = β1 + β2xi + β3x2

i + εi, i = 1, . . . , 50, where εi is a zero mean random
error, and test H0 : β3 = 0 (linear) against H1 : β3 , 0 (quadratic). Inspection of the data
indicates that there is a very atypical data point, namely: Alaska. Additionally, there appears
to be heteroskedasticity. A practitioner may be interested in knowing whether the best testing
strategy involves the use of a quasi-t test, whose test statistic is based on a heteroskedasticity-
robust standard error, or the use of a z test carried out after estimating the model parameters
by estimated generalized least squares. Notice that the latter approach requires one to model
not only mean effects but also dispersion effects. Interestingly, the two approaches (i.e., the z
test and the best performing quasi-t tests) may yield different inferences at the 10% significance
level. It will also be seen that z testing inferences are heavily dependent on how the dispersion
effects are modeled. We shall return to this application in Chapter 5.

1.2 Organization of dissertation

The dissertation unfolds as follows. There are six chapters, including this introduction. In
Chapter 2 we briefly present the linear regression model and the heteroskedasticity-consistent
covariance matrix estimators that will be used in the following chapters. Chapter 3 is devoted to
estimated generalized least squares estimation of the parameters that index the linear regression
model. The numerical evidence on the finite sample performances of the different tests are pre-
sented in Chapter 4. We report results on the sizes and powers of the tests, i.e., we examine their
performances under both the null and alternative hypotheses. The data generating processes we
consider include heteroskedastic and homoskedastic model structures, balanced and leveraged
data, and also normal and nonnormal random errors. In Chapter 5 we present and discuss two
empirical applications. One of them is the application briefly introduced above. Finally, some
concluding remarks are offered in Chapter 6.
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1.3 Computing platforms

The simulations were carried out using the Ox matrix programming language (version 7.2).
The Ox programming language is an object-oriented matrix programming language developed
by Jurgen Doornik and it is freely available for academic usage at http://www.doornik.com.
The appendix of this dissertation contains two programs written in Ox that were used to obtain
some of the numerical results we present. In particular, it contains Ox code for a size simulation
and for a power simulation. For more information about the Ox matrix programming language,
see Doornik (2009). The figure was produced using the R statistical computing environment
(version 3.2.4). R is a free software environment for statistical computing and graphics. For
details, see R Core Team (2016). The typesetting environment chosen was LATEX (Lamport
1986). LATEX is a document preparation system developed based on TEX, which was developed
by Donald Knuth. It is freely available.
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2 Model and estimators

The linear regression model can be written as

y = Xβ + ε, (2.1)

where y is an n × 1 vector of responses (observations on the dependent variable), X is an n × p
matrix of observations on p covariates (rank(X) = p < n), β = (β1, . . . , βp)

′ is a p-vector of
unknown regression parameters and ε = (ε1, . . . , εn)

′ is an n-vector of random errors.
The following assumptions are usually made:

A1 Model (2.1) is correctly specified;

A2 IE(εi) = 0, i = 1, . . . , n;

A3 var(εi) = IE(ε2
i ) = σ

2 ∀ i (0 < σ2 < ∞);

A4 IE(εiε j) = 0 ∀ i , j;

A5 limn→∞ n−1X′X = Q, where Q is a positive definite matrix.

The ordinary least squares estimator (OLSE) of β is obtained by minimizing the sum of
squared errors:

ε′ε = (y − Xβ)′(y − Xβ).

It can be expressed in closed-form as

β̂ = (X′X)−1X′y

= (X′X)−1X′(Xβ + ε)

= (X′X)−1X′Xβ + (X′X)−1X′ε

= β + (X′X)−1X′ε.

Under Assumptions A1 and A2, β̂ is unbiased for β, IE(β̂) = β ∀β ∈ IRk as we can see below:

IE(β̂) = IE[β + (X′X)−1X′ε]

= β + (X′X)−1X′IE(ε)
= β.
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It is important to note that it is not necessary to assume homoskedasticity to establish the
unbiasedness of the OLSE.

Under Assumptions A1, A2 and A4, the covariance matrix of ε is Φ = diag{σ2
1 , . . . , σ

2
n }.

It then follows that under homoskedasticity (Assumption A3), Φ = σ2In, where In is the n × n
identitymatrix. UnderAssumptionsA1, A2 andA4, the covariancematrix of β̂ can be expressed
as

Ψ = IE[(β̂ − β)(β̂ − β)′]
= IE[(β + (X′X)−1X′ε − β)(β + (X′X)−1X′ε − β)′]

= IE[(X′X)−1X′εε′X(X′X)−1]

= (X′X)−1X′ΦX(X′X)−1.

Φ is the error covariance matrix, which can also be written asσ2Ω, whereσ2 is a positive scalar.
WhenAssumption A3 holds (i.e., under homoskedasticity),Φ = σ2In and thenΨ = σ2(X′X)−1,
which can be easily estimated as σ̂2(X′X)−1, where σ̂2 = ε̂′ε̂/(n − p) and ε̂ = y − Xβ̂ are the
residuals. Under Assumptions A1 through A4, β̂ is the best linear unbiased estimator (BLUE)
of β (Gauss-Markov Theorem). This result implies that under homoskedasticity the OLSE has
smaller variability than any other estimator of β that is both linear and unbiased. Under A1,
A2 and A5 (thus, without assuming homoskedasticity), β̂ is consistent for β, i.e., β̂ converges
in probability to β, which will be denoted by plim(β̂) = β, where plim denotes probability
limit. In order to prove this result, we use the fact that if g(·) is a continuous function and zn is
a sequence of random vectors, then

plim(g(zn)) = g(plim(zn)),

provided that plim(zn) exists. Under the Assumptions A1 and A5, we have

plim(β̂) = plim(β + (X′X)−1X′ε)

= β + plim(X′X)−1 plim(X′ε)
= β + plim(n−1X′X)−1 plim(n−1X′ε)

= β + (plim n−1X′X)−1 plim(n−1X′ε)

= β +Q−1 plim(n−1X′ε).

Note that X′ε =
∑n

i=1 xiεi, where xi is the ith line of X (as a column vector). It follows from the
Law of Large Numbers that n−1X′ε converges in probability to IE(xiεi), which by Assumption
A2, equals 0. That is, plim(n−1X′ε) = 0. Therefore,

plim(β̂) = β.

It is important to emphasize that this result holds regardless of whether Assumption A3 is
satisfied. When Assumption A3 or Assumption A4 is not valid, the OLSE of β is no longer
efficient.

When the errors are heteroskedastic butΦ is known (which rarely happens), one can use the
generalized least squares estimator (GLSE), which is given by β̂G = (X′Φ−1X)−1X′Φ−1y. Its
covariance matrix is cov(β̂G) = σ

2(X′Ω−1X)−1, as shown below.
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The initial idea is to transform the model given in (2.1) using P, a matrix of dimension n× n
which satisfies

PΩP′ = In.

Since Ω is positive-definite, P always exists. Notice that

Ω
−1 = P′P.

We can use P to transform Model (2.1) as follows:

Py = PXβ + Pε.

That is, we have
y∗ = X∗β + ε∗,

where y∗ = Py, X∗ = PX and ε∗ = Pε. The vector of transformed errors ε∗ has mean zero:

IE(ε∗) = IE(Pε) = PIE(ε) = 0.

That is, Assumption A2 is satisfied. The covariance matrix of the vector of transformed erros
can be easily obtained:

IE(ε∗ε∗
′

) = IE(Pεε′P′) = PIE(εε′)P′ = σ2PΩP′ = σ2In.

Thus, Assumptions A2 through A4 hold for the transformed model. Minimization of the sum
of squared errors yields the following estimator of β:

β̂G = (X∗
′

X∗)−1X∗
′

y∗

= (X′P′PX)−1X′P′Py

= (X′Ω−1X)−1X′Ω−1y

= (X′σ−2
Ω
−1X)−1X′σ−2

Ω
−1y

= (X′Φ−1X)−1X′Φ−1y.

Note that β̂G is unbiased for β:

IE(β̂G) = (X′Φ−1X)−1X′Φ−1IE(y)
= (X′Φ−1X)−1X′Φ−1Xβ
= β.

The covariance matrix of β̂G is

cov(β̂G) = σ
2(X∗

′

X∗)−1 = (X′Φ−1X)−1 = σ2(X′Ω−1X)−1.

The GLSE is efficient in the sense of the Gauss-Markov Theorem.
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Since Φ is typically unknown, β̂G cannot be computed. A possible solution is to assume a
functional form for the n variances, and then estimateΦ. The estimated (or feasible) generalized
least squares (EGLS) estimator is obtained by replacing Φ by such an estimate. It is given by

ˆ̂β = (X′Φ̂−1X)−1X′Φ̂−1y.

Direct estimation of Φ is problematic, since this matrix contains n unknown variances. A
possible solution is to postulate a model for the variances, and then estimate the parameters
of such a model. The most commonly used model for the error variances is the multiplicative
model proposed by Harvey (1976). See the next chapter for further details.

A more commonly used approach involves basing inferences on β̂ coupled with a consistent
estimator for its covariance matrix, i.e., with a covariance matrix estimator that is consistent
under both homoskedasticity and heteroskedasticity of unknown form. The most well known
consistent covariance estimator is known as HC0 and was introduced by White (1980):

HC0 = (X′X)−1X′Φ̂0X(X′X)−1,

where Φ̂0 = diag{ε̂2
1, . . . , ε̂

2
n }.

It has been shown that HC0 can be considerably biased in finite samples, especially when
the data contain high leverage data points; see, e.g., Chesher and Jewitt (1987). In particular, it
tends to ‘optimistic’, i.e., it tends to underestimate the true variances. As a consequence, quasi-t
tests whose statistic use HC0 standard errors tend to be liberal, i.e., such tests tend to overreject
the null hypothesis when such a hypothesis is true.

MacKinnon and White (1985) proposed two alternative covariance matrix estimators. They
both include finite sample corrections. When all errors share the same variance, it can be shown
that

IE(ε̂i2) = (1 − hi)σ
2, (2.2)

where hi is the ith diagonal element of H = X(X′X)−1X′, the ‘hat matrix’. It is important to note
the hi’s are the leverage measures of the different observations. Building up on previous results
by Horn, Horn, and Duncan (1975), MacKinnon and White (1985) introduced the estimator
known as HC2. It is given by

HC2 = (X′X)−1X′Φ̂2X(X′X)−1,

where Φ̂2 = diag{ε̂2
1/(1 − h1), . . . , ε̂

2
n/(1 − hn)}. Using (2.2) it is possible to show that HC2 is

unbiased under homoskedasticity.
The authors have also introduced a jackknife covariance matrix estimator. It can be approx-

imated by the following estimator, which is known as HC3:

HC3 = (X′X)−1X′Φ̂3X(X′X)−1,

where Φ̂3 = diag{ε̂2
1/(1 − h1)

2, . . . , ε̂2
n/(1 − hn)

2}.
TheHC4heteroskedasticity-consistent covariancematrix estimatorwas proposed byCribari-

Neto (2004). It is given by

HC4 = (X′X)−1X′Φ̂4X(X′X)−1,
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where Φ̂4 = diag{ε̂2
1/(1− h1)

δ1, . . . , ε̂2
n/(1− hn)

δn}, δi = min{4, hi/h̄} and h̄ = n−1 ∑n
i=1 hi, i.e.,

h̄ is the mean leverage. Notice that the exponent of (1 − hi) is not constant; it equals the ratio
between the ith leverage measure and the mean leverage up to a truncation constant.

A variant of the HC4 estimator was introduced by Cribari-Neto and Silva (2011). It is known
as HC4m and is given by

HC4m = (X′X)−1X′Φ̂4mX(X′X)−1,

where Φ̂4m = diag{ε̂2
1/(1− h1)

θ1, . . . , ε̂2
n/(1− hn)

θn}. Here, θi = min{ν1, hi/h̄}+min{ν2, hi/h̄},
where ν1 and ν2 are positive real constants. Based on numerical evidence, the authors proposed
using ν1 = 1.0 and ν2 = 1.5. For details, see Cribari-Neto and Silva (2011).

The above heteroskedasticity-robust covariance matrix estimators can be used for interval
estimation and testing inferences. Heteroskedasticity-robust interval estimation was addressed
by Cribari-Neto and Lima (2009). Heteroskedasticity-robust testing inferences were considered
by several authors; see, e.g., Cribari-Neto and Lima (2010) and Long and Ervin (2000).
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3 Estimated generalized least squares

As noted in the previous chapter, an alternative approach involves modeling the error vari-
ances. Consider the following linear model:

yi = x
′
iβ + σiεi, i = 1, . . . , n,

wherexi is a p×1 vector of observations on the independent variables and the errors are assumed
to be standard normally distributed. Following Harvey (1976), the ith error variance is modeled
as

σ2
i = var(yi) = exp{z′iγ} = exp{γ1 + γ2zi2 + · · · + γszis}, (3.1)

where γ is an s × 1 vector of parameters and z′i denotes the ith row of Z , an n × s matrix that
contains observations on the dispersion covariates which are usually, though not necessarily,
related to the mean regressors. This model is known as the multiplicative heteroskedastic linear
regression model.

The above model was recently revisited by Atkinson, Riani, and Torti (2016). For a given
γ, they estimate of β by weighted least squares. The weights used in the estimation of β are
specified as

wi = 1/σ2
i .

The estimator of β can thus be written as

β̃ = (X′W X)−1X′Wy,

where W = diag{w1, . . . ,wn} is the n × n weight matrix. Alternatively, β̃ can be computed
by regressing W1/2y on W1/2X using ordinary least squares. Finally, γ can be estimated by
maximum likelihood making use of the normality assumption.

Notice that the ith weight is now given by w̃i = 1/σ̃2
i , where σ̃

2
i = exp(z′i γ̃). Let W̃ be the

n-dimensional diagonal matrix that contains the estimated weights. The estimated covariance
matrix of β̃ is (X′W̃ X)−1.

For a given β, the parameter vector γ can be estimated by maximizing the following log-
likelihood function:

`(γ) = log

{
n∏

i=1

[
(2πσ2

i )
−1/2 exp

(
−

1
2
(yi − x

′
iβ)

2

σ2
i

)]}
= −

1
2

n∑
i=1

{
log(2π) + log(σ2

i ) + (yi − x
′
iβ)

2/σ2
i

}



3 ESTIMATED GENERALIZED LEAST SQUARES 20

= −
1
2

n∑
i=1

{
log(2π) + z′iγ + (yi − x

′
iβ)

2/exp(z′iγ)
}
.

The authors present a scoring algorithm that can be used to jointly estimate the model
parameters. The score vector with respect to γ is

S(γ) =
∂`(γ)

∂γ
=

1
2

n∑
i=1
zi

[
(yi − x

′
iβ)

2

exp(z′iγ)
− 1

]
.

The observed information for γ is

K(γ) = −
∂2`(γ)

∂γ∂γ′
=

1
2

n∑
i=1
ziz
′
i

[
(yi − x

′
iβ)

2

exp(z′iγ)

]
.

The expected information is thus

I(γ) = IE[K(γ)] =
1
2

n∑
i=1
ziz
′
i .

Parameter estimation can now be performed using an iterative scoring algorithm. The estimate
of γ in the (k + 1)th iteration is given by

γk+1 = γk + δI(γk)
−1S(γk) = γk + δ(Z′Z)−1

n∑
i=1
zi

[
(yi − x

′
iβk)

2

exp(z′iγk)
− 1

]
,

where 0 < δ < 1 is the step length. Given γk+1, the parameter vector β is re-estimated by
weighted least squares. The algorithm stops when convergence is reached.

We shall also consider two alternative estimation approaches, as outlined by Harvey (1976),
namely: (i) a two-step procedure and (ii) maximum likelihood estimation. Notice that, the
variance function in (3.1) implies that

Φ =


exp(z′1γ) 0 0 . . . 0

0 exp(z′2γ) 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . exp(z′nγ)


.

In the two-step procedure, we estimate γ from

log(ε̂i2) = z′iγ + ui,

where ui = log(ε̂2
i /σ

2
i ). Let q = (log(ε̂2

1 ), . . . , log(ε̂2
n ))
′. The estimator of γ is

γ̂ = (Z′Z)−1Z′q.

Using γ̂, we obtain an estimator for β as follows:

ˆ̂β = (X′Φ̂−1X)−1X′Φ̂−1y,
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where Φ̂ = diag{exp(z′1γ̂), . . . , exp(z′nγ̂)}.
Harvey (1976) showed that the first component of γ̂, γ̂1, is an inconsistent estimator of γ1,

the first component of γ; in particular, plim(γ̂1) = γ1−1.2704. The remaining s−1 elements of
γ̂ are, nonetheless, consistent for the corresponding parameters inγ. Since γ1 merely introduces
a proportionality factor in (3.1), ˆ̂β is consistent for β.

The third and final approach uses maximum likelihood estimation. The log-likelihood func-
tion

`(β, γ) = −
1
2

n∑
i=1
{log(2π) + z′iγ + (yi − x

′
iβ)

2/exp(z′iγ)}

is maximized with respect to β and γ. The estimators asymptotic variance-covariance matrix
is given by the inverse of Fisher’s information matrix:

(
∑n

i=1 σ
−2
i xix

′
i)
−1 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 2(

∑n
i=1 ziz

′
i )
−1

 .
In the tables that follow the acronyms EGLS1, EGLS2 and EGLS3 refer to, respectively,

maximum likelihood estimation, the estimation procedure outlined by Atkinson, Riani, and
Torti (2016) and the two-step estimation procedure.
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4 Numerical evaluation

4.1 Simulation setup

In what follows we shall numerically evaluate the finite sample performances of quasi-t
and z testing inferences in linear regressions. Recall that z test statistics use estimated gener-
alized least squares standard errors whereas quasi-t test statistics use heteroskedasticity-robust
standard errors. All reported results are based on 10,000 Monte Carlo simulations and were
obtained using the Ox matrix programming language (Doornik 2009). The sample sizes are
n = 50, 100, 150, 200. The covariate values for n = 50 were replicated twice, three times and
four times when n = 100, 150, 200, respectively. This was done so that the strength of het-
eroskedasticity, which is measured by λ = max(σ2

i )/min(σ2
i ), remains constant as the sample

size increases. The values of the dispersion parameters (i.e., the components of γ) in the three
experiments were selected so that λ ≈ 51 and 101, λ ≈ 6 and 26 and λ = 1 and ≈ 3, respectively.
The simulations thus cover different heteroskedasticity strengths. Following Atkinson, Riani,
and Torti (2016), regardless of the true skedastic function, estimated generalized least squares
estimation is carried out using

σ2
i = exp

( p∑
j=1

γ j xi j

)
.

In the models used in our simulations, xi1 = 1 ∀i.
The interest lies in testing the null hypothesisH0 : β j = β

(0)
j against the alternative hypothe-

sisH1 : β j , β
(0)
j , for some j in {1, . . . , p}, where β(0)j is a given scalar. The quasi-t test statistic

is

τ =
β̂ j − β

(0)
j√

v̂ar(β̂ j)

,

where v̂ar(β̂ j) denotes the estimated variance of β̂ j obtained from a heteroskedasticity-consistent
covariance matrix estimator. Under the null hypothesis, τ is asymptotically distributed as
N(0, 1). The null hypothesis is rejected if |τ | > z1−α/2, where α is the test significance level
and z1−α/2 denotes the 1−α/2 standard normal upper quantile. We consider quasi-t tests based
on statistics that use standard errors obtained from HC0, HC2, HC3, HC4 and HC4m. We also



4 NUMERICAL EVALUATION 23

consider testing inferences based on the following test statistic:

τg =
β̃ jg − β

(0)
j√

v̂ar(β̃ jg)

,

where v̂ar(β̃ jg) is obtained from the estimated covariance matrix of β̃g, g = 1, 2, 3 for the three
different estimation approaches discussed in Chapter 3. The rejection rule is the same as in the
quasi-t tests, i.e., the null hypothesis is rejected if |τg | > z1−α/2. All tests are performed at the
10% and 5% significance levels.

The first numerical evaluation uses the following data generating process:

yi = β1 + β2xi2 + β3xi3 + β4xi4 + σiεi, i = 1, . . . , n.

All covariate values are absolute values ofN(0, 1) random draws. The same covariates are used
in the skedastic function. The errors εi’s are generated fromN(0, 1) and from χ2

(m), m = 2, 5, 10;
the latter were normalized to have zero mean and unit variance. Data generation is carried out
using β1 = β2 = β3 = β4 = 3. There is no leverage point. The error variances are

σ2
i = exp(γ + γxi2 + γxi3 + γxi4).

Notice that the skedastic function is equal from that usedwhen performing estimated generalized
least squares estimation. We used the following values for γ: 0.935 (λ ≈ 51) and 1.101 (λ ≈
101).

The second set of Monte Carlo simulations were based on the model

yi = β1 + β2xi + σiεi, i = 1, . . . , n.

The covariate values are selected as equally spaced points in [0, 1]. The largest covariate value
(1.0) is then replaced by a = 1.0, 2.5, 3.5, 5.0. When a = 1.0, there is no leverage point. When
a > 1, the data are leveraged. The errors εi’s are randomly generated from the standard normal
distribution. Data generation is carried out using β1 = β2 = 3. The skedastic function is

σ2
i = exp(γ + γzi).

The values of z1, . . . , zn are selected as squared t5 random draws. Notice that the skedastic
function used for performing estimated generalized least squares estimation differs from the
true skedastic function. We use the following values of γ: 0.200 (λ ≈ 6) and 0.393 (λ ≈ 26).

The third Monte Carlo experiment uses

yi = β1 + β2xi + β3x2
i + σiεi, i = 1, . . . , n.

The values of xi are those in the empirical application presented in Section 5.2. The data contain
three leverage points (n = 50). The errors εi’s are obtained as standard normal random draws.
Data generation is performed using β1 = −150.868, β2 = 688.806 and β3 = 0. We carried
out simulations under homoskedasticity (λ = 1) and heteroskedasticity (λ > 1). The skedastic
function is

σ2
i = 3700
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when the error variances are equal and

σ2
i = 4ηi,

where ηi = β1 + β2xi + β3x2
i , under unequal error variances.

4.2 Size simulations

Tables 4.1 through 4.5 present the tests null rejection rates (entries are percentages). We
consider quasi-t tests (Chapter 2) and also three estimated generalized least squares-based tests
(Chapter 3). Consider, at the outset, Tables 4.1 (λ ≈ 51) and 4.2 (λ ≈ 101) which contain results
from the first simulation experiment. We test H0 : β3 = 3 against H1 : β3 , 3, and present
results for normal and nonnormal (chi-squared distributed) errors. The results in Tables 4.1 and
4.2 lead to important conclusions. First, overall, the EGLS tests are the worst performing tests,
especially when the sample size is not large (n = 50 and n = 100). Note that the null rejection
rates of the three estimated generalized least squares-based tests are very similar. For instance,
when n = 50 and under normal errors, such rejection rates at the 10% significance level are close
to 19% (in both tables). Under highly asymmetrical errors (χ2

2 distributed errors) the EGLS
tests are even more liberal, their null rejection rates becoming approximately equal to 24% for
EGLS1 and 21% for EGLS2 and EGLS3. Second, the performances of the HC0, HC2, HC3,
HC4 and HC4m quasi-t tests show some deterioration as the error distribution becomes more
asymmetric; such a deterioration is not, however, as pronounced as that of the EGLS tests. For
instance, in Table 4.1, when n = 50 and at the 5% significance level, the HC0 (HC2) [HC4] null
rejection rates for normal and χ2

2 errors are 10.67% and 12.22% (8.33% and 10.18%) [6.38%
and 8.34%], respectively. Third, overall, all tests become more accurate as the sample size
increases.

We now move to the second simulation experiment. The interest lies in testingH0 : β2 = 3
againstH1 : β2 , 3. As before, all tests are carried out at the 10% and 5% significance levels.
Recall that the regressionmodel contains a single covariate, that for the smallest sample (n = 50)
its values are selected as an equally spaced sequence of points from 0 to 1 (i.e., in [0, 1]), and
that the largest covariate value (1.0) is then replaced by a = 1.0, 2.5, 3.5, 5.0. We thus aim to
evaluate the impact of increased maximal data leverage on the tests finite sample performances.
The tests null rejection rates can be found in Tables 4.3 (λ ≈ 6) and 4.4 (λ ≈ 26). The results
we report lead to interesting conclusions. First, the HC0 test becomes much more liberal as
the value of a increases, i.e., under progressively more intense maximal leverage, especially
when the sample size is not large (n = 50 and n = 100). For instance, when n = 50 and at
the 10% nominal level, we see in Table 4.3 that the HC0 null rejection rate goes from 12.12%
to 31.02% when the maximal covariate value goes from 1.0 to 5.0. Second, the EGLS1 and
EGLS2 tests also become progressively more liberal in small samples as the data become more
leveraged. Their null rejection rate (n = 50, α = 0.10, Table 4.4) jump from approximately
18% to approximately 23% when the value of a is increased from 1.0 to 5.0. Even with larger
samples the tests size distortions are substantial. For instance, when n = 200 and a = 2.5,
the tests null rejection rates are approximately equal to 15%. Third, the HC3, HC4 and HC4m
tests tend to become more conservative under leveraged data, especially when the sample size
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Table 4.1 Null rejection rates (%), first simulation experiment; λ ≈ 51.
n 50 100 150 200

Errors 5% 10% 5% 10% 5% 10% 5% 10%
EGLS1 12.34 19.09 7.82 13.73 6.92 12.56 6.58 11.89
EGLS2 12.19 18.85 7.59 13.35 6.82 12.37 6.52 11.78
EGLS3 12.03 18.38 8.29 14.11 7.32 12.82 6.73 12.05
HC0 10.67 16.99 8.09 14.03 7.15 12.75 6.70 12.33

N(0, 1) HC2 8.33 13.99 7.19 12.53 6.53 11.85 6.20 11.47
HC3 6.24 11.44 6.11 11.21 5.97 11.14 5.67 10.73
HC4 6.38 11.47 6.09 11.10 5.96 11.08 5.67 10.67
HC4m 5.66 10.50 5.65 10.68 5.68 10.75 5.55 10.41
EGLS1 13.32 19.99 8.21 14.62 7.52 13.12 7.20 12.83
EGLS2 12.90 19.37 7.76 13.87 7.28 12.69 6.96 12.48
EGLS3 12.60 18.85 8.89 14.25 8.03 13.52 7.61 13.11
HC0 10.98 17.07 8.47 14.01 7.26 13.10 6.84 11.96

χ2
(10) HC2 8.75 14.24 7.57 12.68 6.74 12.18 6.46 11.25

HC3 6.82 11.70 6.58 11.33 6.19 11.30 5.98 10.67
HC4 6.90 11.77 6.58 11.32 6.16 11.28 6.00 10.61
HC4m 6.21 10.79 6.28 10.95 5.92 10.95 5.82 10.38
EGLS1 14.18 20.87 9.85 15.88 8.01 13.89 6.88 12.43
EGLS2 13.63 20.00 9.09 14.65 7.49 13.07 6.63 11.98
EGLS3 12.88 19.06 10.14 16.19 8.45 14.55 7.64 13.23
HC0 11.20 17.50 8.36 14.16 7.65 13.23 7.02 12.42

χ2
(5) HC2 9.02 14.72 7.43 12.94 7.02 12.33 6.62 11.71

HC3 7.26 12.15 6.61 11.64 6.48 11.50 6.13 11.00
HC4 7.20 12.32 6.70 11.66 6.40 11.41 6.13 10.96
HC4m 6.58 11.28 6.35 11.21 6.19 11.02 5.88 10.73
EGLS1 17.31 23.54 11.05 17.28 9.59 14.97 8.28 14.10
EGLS2 15.93 21.81 9.72 15.29 8.71 13.58 7.57 13.03
EGLS3 14.52 21.02 11.70 17.61 10.60 16.16 9.53 15.23
HC0 12.22 18.47 9.37 15.04 8.11 13.86 7.42 12.21

χ2
(2) HC2 10.18 15.62 8.46 13.84 7.45 12.88 6.90 11.61

HC3 8.16 13.19 7.52 12.57 6.75 12.04 6.53 11.05
HC4 8.34 13.37 7.61 12.54 6.82 11.95 6.55 11.03
HC4m 7.45 12.37 7.21 12.15 6.49 11.71 6.41 10.80
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Table 4.2 Null rejection rates (%), first simulation experiment; λ ≈ 101.
n 50 100 150 200

Errors 5% 10% 5% 10% 5% 10% 5% 10%
EGLS1 12.17 19.22 7.82 13.66 6.91 12.61 6.50 11.72
EGLS2 11.81 18.64 7.27 12.66 6.65 12.04 6.37 11.42
EGLS3 11.61 17.99 8.33 13.68 7.02 12.59 6.61 11.84
HC0 10.80 17.13 8.09 14.07 7.30 12.90 6.71 12.20

N(0, 1) HC2 8.42 14.07 7.11 12.59 6.61 12.18 6.20 11.50
HC3 6.34 11.43 6.20 11.23 6.00 11.32 5.70 10.76
HC4 6.32 11.26 6.13 11.20 6.00 11.23 5.70 10.67
HC4m 5.72 10.41 5.77 10.60 5.84 10.86 5.53 10.45
EGLS1 13.35 19.80 8.24 14.51 7.45 13.02 7.22 12.92
EGLS2 12.62 18.73 7.38 13.01 6.96 12.18 6.70 12.08
EGLS3 12.35 18.32 8.73 14.20 7.80 13.46 7.38 12.99
HC0 11.12 17.46 8.67 14.33 7.46 12.94 6.86 12.01

χ2
(10) HC2 8.81 14.46 7.59 12.74 6.78 12.08 6.35 11.34

HC3 6.85 11.80 6.75 11.38 6.28 11.25 5.88 10.68
HC4 6.88 11.85 6.63 11.34 6.22 11.17 5.87 10.60
HC4m 6.21 10.80 6.31 10.93 6.09 10.89 5.78 10.39
EGLS1 14.30 20.97 9.93 15.78 7.88 13.80 6.95 12.18
EGLS2 13.26 19.47 8.73 13.84 7.11 12.48 6.49 11.41
EGLS3 12.76 18.83 10.02 15.89 8.36 14.61 7.50 13.01
HC0 11.53 17.95 8.47 14.40 7.71 13.36 7.19 12.56

χ2
(5) HC2 9.37 15.08 7.57 13.07 7.15 12.43 6.78 11.77

HC3 7.31 12.34 6.66 11.76 6.57 11.51 6.30 11.08
HC4 7.31 12.31 6.68 11.69 6.51 11.40 6.21 11.02
HC4m 6.68 11.45 6.44 11.26 6.27 11.06 5.99 10.75
EGLS1 17.04 23.40 11.06 17.34 9.61 14.93 8.42 14.10
EGLS2 15.09 20.79 9.05 14.36 8.21 12.80 7.25 12.33
EGLS3 14.69 20.99 11.51 17.37 10.32 16.27 9.81 15.51
HC0 12.64 19.13 9.76 15.22 8.41 14.04 7.60 12.57

χ2
(2) HC2 10.66 16.11 8.74 14.16 7.78 13.17 7.21 12.00

HC3 8.67 13.59 7.87 13.00 7.12 12.28 6.79 11.38
HC4 8.79 13.60 7.88 12.92 7.13 12.30 6.78 11.37
HC4m 7.79 12.69 7.49 12.52 6.88 11.90 6.67 11.15
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is not large. To illustrate that, consider n = 50 and α = 0.10 in Table 4.4. For a = 1.0, the
three tests null rejection rates are 9.81%, 10.34% and 9.43%, respectively; when a = 5.0, the
corresponding figures are 3.16%, 0.47% and 2.05%. The HC4 is particularly affected by the
extreme leverage. Fourth, the tests size distortions tend to decrease as n increases.

The tests null rejection rates obtained in the third simulation scenario are presented in Ta-
ble 4.5 (entries are percentages). The interest lies in testing H0 : β3 = 0 against H1 : β3 , 0.
Recall that we are testing a linear versus a quadratic functional form. We present results ob-
tained under homoskedasticity (λ = 1.0, σ2 = 3700) and mild heteroskedasticity (λ ≈ 2.5,
σ2

i = 4ηi). The first conclusion we draw from the figures in Table 4.5 is that the EGLS tests
are again considerably liberal (especially EGLS1 and EGLS2 in small samples), even when the
sample size is large (n = 200). For instance, under homoskedasticity (heteroskedasticity) and at
the 10% significance level the null rejection rates of the of the EGLS1 test when for n = 50 and
n = 200 are, respectively, 36.53% and 14.42% (37.78% and 14.89%). Second, the HC0 and
HC2 tests are again liberal, even when n = 200. Third, the HC4 test is once again conservative.
Fourth, overall, the HC3 and HC4m tests display good control of the type I error frequency. For
example, under heteroskedasticity and when n = 100, the HC3 and HC4m null rejection rates
at the 10% significance level are, respectively, 11.15% and 9.91%.

4.3 Power simulations

We shall now focus on the tests power, i.e., on the tests ability to detect that the null hypothesis
is false when it is indeed false. We performedMonte Carlo simulations using the same scenarios
as in the size simulations. Data generation, however, is now carried out under the alternative
hypothesis. Since some tests are considerably liberal, we compare the powers of size-corrected
tests. At the outset, we consider the setup used in the first set of size simulations. We testH0 :
β3 = 3 but the true parameter value is taken to be 6.0, i.e., data generation is performed using
β3 = 6.0. Tables 4.6 and 4.7 contain the tests nonnull rejection rates (entries are percentages).
The EGLS tests are more powerful than the quasi-t tests regardless of the error distribution and
sample size. We also note that the powers of all test increase with the sample size, as expected.

Simulation results for the second scenario are presented in Tables 4.8 and 4.9 (entries are
percentages). Recall that the maximal leverage increases with a. We test H0 : β2 = 3 against
a two-sided alternative hypothesis, and data generation is carried out using β2 = 4.1. The
numerical results reported in the two tables show that the quasi-t tests are slightly less powerful
than the EGLS1 and EGLS2 tests when a = 1.0, i.e., when the data do not contain a leverage
point. For instance, when n = 150 and at the 10% significance level the powers of the EGLS1
and EGLS2 tests are approximately 39% whereas the powers of the quasi-t tests are around 37%
(Table 4.9). As the data become more leveraged (i.e., as the value of a increases), however,
some quasi-t tests become progressively more powerful than the EGLS tests. Take, for instance,
n = 100, a = 5.0 and α = 0.10 (Table 4.9). The EGLS1, EGLS2 and EGLS3 tests nonnull
rejection rates are 45.08%, 45.14% and 80.77%, respectively; the corresponding figure for the
HC0 (HC3) [HC4m] test is 99.30% (97.50%) [96.50%]. It is also noteworthy that the HC4 test
is typically the least powerful quasi-t test when the sample size is small (n = 50). Additionally,
in small samples and under strongly leveraged data, the EGLS3 test is more powerful than the
EGLS1 and EGLS2 tests. When n ≥ 100, all quasi-t tests are nearly equally powerful.
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Table 4.3 Null rejection rates (%), second simulation experiment; λ ≈ 6.
n 50 100 150 200

a 5% 10% 5% 10% 5% 10% 5% 10%
EGLS1 8.42 14.42 7.40 13.46 7.68 13.60 7.28 13.22
EGLS2 8.42 14.42 7.40 13.46 7.68 13.60 7.28 13.22
EGLS3 9.93 16.26 8.81 15.11 9.04 15.53 8.71 15.07
HC0 6.64 12.12 5.76 11.37 5.98 11.26 5.77 10.73

1.0 HC2 5.98 11.07 5.46 10.81 5.73 10.91 5.62 10.53
HC3 5.45 10.17 5.11 10.19 5.52 10.60 5.42 10.27
HC4 5.70 10.58 5.30 10.47 5.59 10.74 5.52 10.41
HC4m 5.22 9.80 4.98 10.00 5.38 10.49 5.31 10.20
EGLS1 11.11 16.93 6.51 11.63 5.73 11.08 5.10 10.28
EGLS2 11.10 16.92 6.51 11.63 5.73 11.08 5.10 10.28
EGLS3 13.75 20.03 9.50 15.27 8.19 14.01 7.31 12.94
HC0 8.87 15.26 6.96 12.58 6.82 12.01 6.34 11.85

2.5 HC2 6.87 11.64 5.79 11.01 6.00 10.95 5.72 11.10
HC3 4.95 8.66 4.75 9.38 5.08 9.79 5.17 10.22
HC4 2.64 4.89 3.36 6.73 3.94 8.30 4.41 8.70
HC4m 4.16 7.62 4.39 8.68 4.73 9.32 4.90 9.90
EGLS1 19.21 25.15 8.36 13.44 5.95 10.48 4.65 9.54
EGLS2 19.26 25.20 8.36 13.43 5.95 10.46 4.65 9.55
EGLS3 17.13 24.14 11.33 16.72 8.60 14.00 7.64 13.23
HC0 13.84 20.84 9.68 16.22 8.45 14.53 8.01 13.79

3.5 HC2 8.74 13.89 7.45 12.95 7.04 12.29 6.97 12.00
HC3 4.95 8.09 5.62 9.90 5.65 10.25 5.91 10.53
HC4 1.79 2.88 3.07 5.43 3.48 6.80 4.01 7.89
HC4m 3.84 6.29 4.91 8.37 5.07 9.27 5.49 9.69
EGLS1 34.82 41.11 13.47 18.87 7.94 12.30 6.00 10.09
EGLS2 35.28 41.52 13.49 18.89 7.94 12.30 5.99 10.10
EGLS3 22.31 28.98 13.04 17.89 9.88 14.37 8.91 13.72
HC0 23.49 31.02 15.16 21.86 11.99 18.12 10.78 16.62

5.0 HC2 11.87 16.91 11.00 16.81 9.19 14.73 8.84 14.09
HC3 5.06 7.35 7.89 11.99 6.96 11.56 6.91 11.62
HC4 0.81 1.27 3.40 5.59 3.60 6.43 4.12 7.35
HC4m 3.24 4.55 6.32 10.07 6.00 10.08 6.17 10.57
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Table 4.4 Null rejection rates (%), second simulation experiment; λ ≈ 26.
n 50 100 150 200

a 5% 10% 5% 10% 5% 10% 5% 10%
EGLS1 10.72 17.81 10.30 17.05 9.90 16.91 9.56 16.69
EGLS2 10.72 17.81 10.30 17.05 9.90 16.91 9.56 16.69
EGLS3 15.94 24.01 16.43 24.37 16.91 25.02 16.36 24.51
HC0 6.60 11.89 5.73 11.53 5.88 11.61 5.45 11.23

1.0 HC2 5.73 10.76 5.40 11.15 5.63 11.20 5.29 11.06
HC3 5.06 9.81 4.98 10.56 5.44 10.85 5.17 10.81
HC4 5.35 10.34 5.24 10.84 5.53 10.99 5.25 10.92
HC4m 4.83 9.43 4.83 10.42 5.35 10.71 5.09 10.69
EGLS1 9.97 16.58 8.78 15.15 8.63 15.38 8.48 15.03
EGLS2 9.97 16.58 8.78 15.15 8.63 15.38 8.48 15.03
EGLS3 16.20 24.18 14.39 22.00 13.66 21.14 13.21 20.87
HC0 4.68 9.74 4.19 9.34 4.67 9.95 4.83 10.22

2.5 HC2 3.10 6.51 3.20 7.97 3.98 8.91 4.25 9.50
HC3 1.97 4.30 2.53 6.32 3.39 7.94 3.84 8.90
HC4 1.00 2.14 1.51 4.19 2.39 6.41 3.27 7.58
HC4m 1.69 3.61 2.17 5.74 3.12 7.54 3.76 8.64
EGLS1 11.78 17.88 8.74 14.74 8.41 14.92 8.17 14.32
EGLS2 11.78 17.89 8.74 14.74 8.40 14.92 8.17 14.32
EGLS3 17.55 25.52 13.70 20.55 11.44 18.07 10.63 17.35
HC0 6.47 11.99 5.33 10.54 5.22 10.45 5.27 10.72

3.5 HC2 3.27 6.61 3.60 8.09 4.07 8.75 4.41 9.45
HC3 1.47 3.22 2.38 5.65 3.21 7.11 3.65 8.08
HC4 0.44 1.00 1.23 2.68 1.64 4.33 2.32 5.90
HC4m 1.04 2.38 2.06 4.65 2.82 6.42 3.32 7.56
EGLS1 16.91 23.11 9.22 15.09 8.27 14.01 7.74 13.16
EGLS2 16.99 23.17 9.22 15.07 8.27 14.00 7.73 13.16
EGLS3 18.34 25.39 12.00 17.86 8.86 14.41 7.81 12.97
HC0 12.36 19.10 8.82 15.20 7.83 13.42 7.34 12.92

5.0 HC2 5.09 8.33 6.03 10.80 5.78 10.66 5.89 10.95
HC3 1.96 3.16 3.89 7.14 4.11 8.06 4.64 8.93
HC4 0.24 0.47 1.43 2.93 2.03 4.02 2.55 5.46
HC4m 1.26 2.05 3.18 5.80 3.30 7.05 3.97 8.08
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Table 4.5 Null rejection rates (%), third simulation experiment; homoskedasticity and heteroskedasticity.
n 50 100 150 200

λ 5% 10% 5% 10% 5% 10% 5% 10%
EGLS1 29.36 36.53 12.58 19.21 10.00 15.95 8.40 14.42
EGLS2 29.33 36.55 12.58 19.21 9.99 15.95 8.40 14.42
EGLS3 15.11 21.49 10.24 15.91 9.18 14.48 8.33 13.25
HC0 13.90 20.62 9.16 15.12 8.51 14.13 7.35 12.80

1.00 HC2 9.51 15.09 7.11 12.43 7.17 12.33 6.33 11.53
HC3 5.79 9.46 5.34 9.83 6.01 10.79 5.56 10.14
HC4 1.98 3.53 2.94 5.83 4.33 7.91 4.06 8.02
HC4m 4.48 7.49 4.54 8.72 5.49 9.94 5.19 9.58
EGLS1 30.90 37.78 13.32 20.33 10.64 16.28 8.76 14.89
EGLS2 30.82 37.77 13.32 20.33 10.64 16.28 8.76 14.89
EGLS3 16.63 23.44 11.25 16.85 10.13 15.24 8.66 14.16
HC0 17.55 24.63 11.00 17.63 9.80 15.59 8.37 14.35

2.44 HC2 11.83 18.26 8.63 14.26 8.25 13.55 7.07 12.43
HC3 7.35 11.45 6.40 11.15 6.82 11.51 6.10 11.01
HC4 2.38 4.15 3.48 6.55 4.70 8.11 4.19 8.17
HC4m 5.69 9.07 5.59 9.91 6.29 10.55 5.73 10.15

The tests nonnonull rejection rates for the third simulation scenario are presented in Ta-
ble 4.10 (entries are percentages). We testH0 : β3 = 0 against a two-sided alternative hypoth-
esis and the true parameter value is taken to be 1100. (Recall that the values of the other two
regression parameters are β1 = −150.868 and β2 = 688.806.) Again, HC4 is the least powerful
test when the sample size is small. When n ≥ 100, all tests are nearly equally powerful.

4.4 Variability

In the previous sections we focused on testing inferences. It should be noted, however,
that the variances of the ordinary and estimated generalized least squares estimators of the
parameters that index the linear regression models can be considerably distinct. The estimators
of such variances can also behave quite differently in finite samples. In order to show that, we
consider the second simulation experiment used in the size and power simulations and present in
Table 4.11 the true variances of the two estimators of β2 for a = 1.0, 5.0; recall that when a = 5.0
the data are substantially leveraged. The sample sizes are n = 50, 200. It is noteworthy that the
EGLS2 estimator of the regression slope parameter is more accurate than the OLS estimator.
The difference between the two variances is considerably large when λ ≈ 25 and a = 1.0 (no
leverage point in the data): for n = 50, var(β̂2) = 1.4085 and var(β̃2) = 0.5842, a difference of
almost 140%. Nonetheless, such a difference nearly vanishes as the data become substantially
leveraged: when λ ≈ 25, n = 50 and a = 5.0, var(β̂2) = 0.0884 and var(β̃2) = 0.0665. Notice
that under strong leverage the true variances are considerably smaller than under well balanced
data, i.e., the OLS and EGLS estimators of β2 fluctuate considerably less. Additionally, the two
estimators become approximately equally accurate.
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Table 4.6 Nonnull rejection rates (%), first simulation experiment; λ ≈ 51.
n 50 100 150 200

Errors 5% 10% 5% 10% 5% 10% 5% 10%
EGLS1 45.89 59.65 86.77 92.33 97.40 98.79 99.58 99.80
EGLS2 45.05 58.97 84.62 90.03 96.23 97.63 98.99 99.21
EGLS3 34.53 50.65 80.22 88.67 95.77 97.85 99.17 99.68
HC0 32.47 45.41 64.86 73.61 81.54 88.95 93.61 96.15

N(0, 1) HC2 31.97 45.08 64.62 73.45 81.48 88.86 93.51 96.14
HC3 31.34 44.62 64.41 73.31 81.30 88.84 93.47 96.13
HC4 30.92 43.90 64.08 73.08 81.19 88.82 93.44 96.09
HC4m 30.83 44.35 64.29 73.17 81.16 88.87 93.44 96.13
EGLS1 38.56 53.94 86.24 92.80 97.71 98.95 99.76 99.91
EGLS2 37.55 52.54 82.25 88.60 94.83 96.01 97.89 98.02
EGLS3 27.95 43.90 79.29 88.74 95.68 98.28 99.48 99.81
HC0 26.95 39.54 62.21 74.72 85.03 91.85 95.16 97.85

χ2
(10) HC2 26.41 38.69 61.82 74.50 84.97 91.83 95.14 97.84

HC3 25.88 37.98 61.41 74.46 84.90 91.78 95.12 97.83
HC4 25.03 37.17 60.57 74.39 84.73 91.72 95.03 97.80
HC4m 25.22 37.51 60.85 74.43 84.85 91.76 95.03 97.81
EGLS1 33.37 52.28 85.73 92.54 98.22 99.38 99.81 99.95
EGLS2 31.61 49.54 80.11 86.36 93.46 94.53 96.21 96.35
EGLS3 26.70 45.22 79.70 89.19 96.66 98.65 99.57 99.89
HC0 23.83 38.71 59.84 75.08 84.45 93.21 96.12 98.57

χ2
(5) HC2 23.34 38.22 58.93 74.81 84.40 93.16 96.09 98.58

HC3 22.87 37.39 58.77 74.66 84.14 93.12 96.03 98.55
HC4 22.24 36.11 58.62 74.56 84.07 93.09 96.07 98.58
HC4m 22.49 36.55 58.52 74.64 84.01 93.12 96.02 98.55
EGLS1 20.00 42.93 79.62 92.18 97.98 99.48 99.80 99.95
EGLS2 19.11 41.47 72.74 82.86 89.72 90.94 92.86 92.97
EGLS3 19.06 38.51 74.19 88.29 96.32 98.96 99.65 99.88
HC0 21.81 36.60 58.44 78.84 88.24 95.61 96.61 99.17

χ2
(2) HC2 20.86 35.18 57.78 78.35 88.01 95.47 96.61 99.16

HC3 19.90 34.40 56.87 78.13 87.87 95.40 96.54 99.16
HC4 18.78 33.23 56.18 77.55 87.71 95.36 96.50 99.14
HC4m 19.25 33.87 56.37 77.84 87.76 95.38 96.50 99.16



4 NUMERICAL EVALUATION 32

Table 4.7 Nonnull rejection rates (%), first simulation experiment; λ ≈ 101.
n 50 100 150 200

Errors 5% 10% 5% 10% 5% 10% 5% 10%
EGLS1 26.81 38.69 62.38 73.43 83.08 89.51 92.79 96.12
EGLS2 25.95 37.24 58.39 68.97 80.32 86.45 90.89 94.25
EGLS3 18.97 30.58 54.33 66.85 77.72 86.25 90.77 94.90
HC0 16.22 25.51 34.86 45.01 48.24 60.18 64.03 73.24

N(0, 1) HC2 16.05 25.13 34.83 45.00 48.09 60.19 64.00 73.24
HC3 15.82 24.79 34.36 44.76 48.06 60.23 63.93 73.27
HC4 15.65 24.71 34.24 44.53 48.03 60.07 63.89 73.23
HC4m 15.76 24.55 34.17 44.67 48.00 60.15 63.88 73.27
EGLS1 19.11 31.23 56.49 71.10 81.15 88.95 93.28 96.19
EGLS2 18.63 29.91 53.17 65.95 76.44 83.74 89.53 92.17
EGLS3 12.93 23.80 47.36 62.67 76.02 85.82 90.32 94.51
HC0 11.60 19.13 26.04 38.98 45.25 59.10 62.22 74.32

χ2
(10) HC2 11.40 18.66 25.77 38.89 45.22 58.91 62.08 74.34

HC3 10.95 18.29 25.56 38.86 45.07 58.90 61.80 74.32
HC4 10.63 18.02 25.10 38.78 44.81 58.80 61.64 74.22
HC4m 10.81 18.13 25.49 38.95 44.91 58.77 61.88 74.28
EGLS1 14.08 28.12 55.53 68.84 82.36 89.93 93.69 97.00
EGLS2 13.07 26.36 49.20 60.96 75.21 82.39 87.29 90.45
EGLS3 10.57 21.91 47.13 62.91 75.60 85.43 90.31 95.66
HC0 9.16 16.18 22.20 36.94 41.37 59.34 62.19 75.68

χ2
(5) HC2 8.95 15.74 21.71 36.44 41.06 59.19 62.09 75.71

HC3 8.85 15.32 21.47 36.20 40.37 58.90 61.96 75.68
HC4 8.23 14.93 21.14 35.86 39.91 58.78 62.03 75.64
HC4m 8.39 15.03 21.47 35.82 40.05 58.87 62.07 75.66
EGLS1 6.34 19.10 41.88 65.11 77.61 88.60 92.66 96.53
EGLS2 6.04 18.06 37.82 56.39 68.02 77.38 83.09 86.02
EGLS3 5.73 15.74 32.92 55.54 68.99 83.42 88.37 94.98
HC0 5.80 12.34 16.82 34.64 39.82 59.45 56.42 77.04

χ2
(2) HC2 5.43 11.85 16.45 34.32 39.34 59.17 56.19 76.84

HC3 5.18 11.43 16.42 33.94 38.94 58.83 55.78 76.62
HC4 4.98 11.09 15.63 33.84 38.69 58.50 55.40 76.50
HC4m 4.93 11.04 15.92 33.90 38.67 58.50 55.47 76.52
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Table 4.8 Nonnull rejection rates (%), second simulation experiment; λ ≈ 6.
n 50 100 150 200

a 5% 10% 5% 10% 5% 10% 5% 10%
EGLS1 22.62 34.23 47.75 59.59 67.13 76.52 78.93 87.26
EGLS2 22.62 34.23 47.75 59.58 67.13 76.52 78.93 87.26
EGLS3 20.86 31.57 44.44 56.92 64.96 74.41 78.74 86.23
HC0 22.31 33.21 46.94 59.10 66.60 75.62 79.95 86.25

1.0 HC2 22.38 33.15 46.94 59.18 66.61 75.62 79.95 86.26
HC3 22.41 33.15 46.93 59.18 66.60 75.62 79.94 86.25
HC4 22.39 33.14 46.84 59.21 66.60 75.64 79.94 86.24
HC4m 22.40 33.16 46.90 59.23 66.60 75.62 79.93 86.25
EGLS1 25.38 42.28 68.49 78.44 87.46 91.86 95.30 97.39
EGLS2 25.38 42.28 68.49 78.44 87.46 91.86 95.30 97.39
EGLS3 27.73 42.23 65.97 77.50 87.15 92.46 95.79 97.79
HC0 51.01 62.13 84.03 90.23 95.64 97.66 98.85 99.53

2.5 HC2 47.79 59.07 82.81 89.47 95.31 97.51 98.84 99.50
HC3 43.06 54.45 80.76 88.66 94.95 97.32 98.74 99.47
HC4 32.17 42.53 76.20 85.28 93.55 96.73 98.57 99.34
HC4m 41.00 51.61 80.01 88.02 94.64 97.22 98.70 99.43
EGLS1 21.07 30.78 74.12 83.79 92.48 95.67 97.91 98.81
EGLS2 21.02 30.75 74.16 83.81 92.49 95.68 97.91 98.81
EGLS3 26.90 47.07 74.06 85.72 94.24 97.23 98.60 99.38
HC0 73.61 83.11 96.05 98.27 99.57 99.83 99.99 100.00

3.5 HC2 62.24 73.76 94.07 97.17 99.40 99.80 99.97 100.00
HC3 47.73 59.95 91.19 95.81 98.93 99.74 99.96 100.00
HC4 24.94 34.80 81.64 90.48 98.06 99.40 99.92 99.98
HC4m 41.28 51.96 88.93 94.80 98.77 99.66 99.96 100.00
EGLS1 41.01 45.25 66.76 83.94 94.59 97.09 98.71 99.27
EGLS2 41.96 46.44 66.82 83.98 94.67 97.11 98.72 99.27
EGLS3 43.89 61.13 76.91 91.51 97.12 99.18 99.62 99.90
HC0 93.47 96.71 99.30 99.84 99.99 100.00 100.00 100.00

5.0 HC2 74.15 82.47 97.94 99.44 99.97 100.00 100.00 100.00
HC3 47.59 59.37 95.83 98.49 99.94 99.99 100.00 100.00
HC4 20.31 33.75 86.83 94.42 99.76 99.97 100.00 100.00
HC4m 36.97 49.60 93.75 97.64 99.91 99.99 100.00 100.00



4 NUMERICAL EVALUATION 34

Table 4.9 Nonnull rejection rates (%), second simulation experiment; λ ≈ 26.
n 50 100 150 200

a 5% 10% 5% 10% 5% 10% 5% 10%
EGLS1 10.52 17.15 19.61 29.15 29.52 39.01 37.91 48.87
EGLS2 10.52 17.15 19.61 29.15 29.52 39.01 37.90 48.87
EGLS3 9.64 16.10 18.93 27.61 26.91 38.02 36.96 48.73
HC0 10.25 16.82 19.04 27.89 27.11 36.59 35.40 46.71

1.0 HC2 10.23 16.92 19.08 27.90 27.08 36.57 35.40 46.68
HC3 10.19 16.85 19.12 27.90 27.07 36.55 35.40 46.67
HC4 10.27 16.78 19.14 27.86 27.05 36.54 35.42 46.66
HC4m 10.30 16.81 19.12 27.86 27.04 36.53 35.39 46.64
EGLS1 12.79 21.50 25.01 34.58 33.35 45.09 44.58 55.22
EGLS2 12.79 21.50 25.01 34.58 33.34 45.09 44.58 55.22
EGLS3 15.39 24.77 33.59 44.04 47.51 59.18 62.71 71.72
HC0 32.63 42.59 57.70 66.40 73.36 79.90 83.74 88.90

2.5 HC2 31.12 42.02 57.66 66.83 73.86 80.03 83.83 88.81
HC3 29.46 40.23 57.84 66.67 73.77 80.01 83.81 88.86
HC4 22.81 32.14 57.64 65.91 73.99 80.23 83.61 88.93
HC4m 28.18 38.63 58.19 66.72 73.63 80.10 83.88 88.84
EGLS1 14.07 23.14 29.06 38.31 37.56 49.12 48.40 58.29
EGLS2 13.99 23.12 29.08 38.31 37.56 49.13 48.42 58.30
EGLS3 21.76 34.18 50.32 61.75 68.55 77.91 83.48 88.63
HC0 54.57 66.24 84.99 89.99 95.13 97.20 98.32 99.27

3.5 HC2 48.96 60.04 83.92 89.12 94.74 96.90 98.25 99.16
HC3 39.46 49.46 81.66 87.70 94.35 96.50 98.21 99.09
HC4 21.28 30.32 74.19 82.51 92.70 95.64 97.91 98.90
HC4m 34.25 44.32 80.30 86.61 94.10 96.36 98.17 99.06
EGLS1 16.36 22.13 35.22 45.08 45.25 55.74 55.72 65.21
EGLS2 16.78 22.23 35.20 45.14 45.33 55.79 55.77 65.26
EGLS3 32.27 48.61 68.55 80.77 90.30 94.25 96.91 98.25
HC0 83.10 89.31 98.19 99.30 99.88 99.99 100.00 100.00

5.0 HC2 63.53 73.10 96.81 98.56 99.86 99.94 100.00 100.00
HC3 39.93 51.41 94.49 97.50 99.73 99.91 100.00 100.00
HC4 17.27 28.42 84.89 93.28 99.24 99.82 99.99 100.00
HC4m 31.60 42.36 92.81 96.50 99.67 99.90 99.99 100.00
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Table 4.10 Nonnull rejection rates (%), third simulation experiment; homoskedasticity and het-
eroskedasticity.

n 50 100 150 200
λ 5% 10% 5% 10% 5% 10% 5% 10%

EGLS1 11.77 23.75 55.29 68.80 78.17 86.82 91.59 95.83
EGLS2 11.83 23.75 55.29 68.76 78.20 86.83 91.59 95.83
EGLS3 23.07 33.98 49.81 64.15 70.90 81.51 87.37 93.40
HC0 34.39 46.31 65.83 76.44 81.85 89.21 93.41 96.61

1.00 HC2 30.53 43.25 64.53 75.02 80.69 88.62 93.11 96.39
HC3 26.86 38.03 62.19 72.90 79.24 87.76 92.64 96.19
HC4 18.09 26.04 54.73 66.98 75.09 85.48 91.64 95.39
HC4m 24.72 34.40 60.09 71.76 78.43 87.20 92.40 96.07
EGLS1 23.84 40.59 84.30 92.65 97.74 99.16 99.81 99.93
EGLS2 23.99 40.83 84.31 92.65 97.74 99.16 99.81 99.93
EGLS3 41.48 56.27 79.63 89.52 95.38 98.30 99.45 99.88
HC0 60.56 72.30 90.71 94.95 97.95 99.16 99.80 99.93

2.44 HC2 54.47 66.00 88.25 93.38 97.37 98.96 99.74 99.90
HC3 45.38 57.37 85.23 91.39 96.43 98.68 99.71 99.89
HC4 28.07 37.05 76.10 85.98 93.65 97.68 99.53 99.83
HC4m 40.44 52.17 83.38 90.38 95.90 98.44 99.66 99.87

Table 4.12 contains the mean values of the different variance estimators. First, note that the
HC0 estimator is very optimistic when the data are leveraged, i.e., it substantially underestimates
the true variance. Second, HC2 is the least biased heteroskedasticity-consistent estimator. Third,
HC4 and HC4m can be quite positively biased, especially HC4; that is, they tend to overestimate
the true variance, more so when the data are leveraged and the sample size is small (n = 50).

A valid question that is commonly posed is: To what extent is it worthwhile to base infer-
ences on the OLSE coupled with heteroskedasticity-robust standard errors under unequal error
variances instead of incorporating a dispersion submodel to the regression model and then car-
rying out estimation and performing inferences using EGLS? The results in Table 4.11 show
that the EGLS estimator of the regression parameters can be considerably more accurate than
the OLS estimator, especially when the data are not leveraged. The results in Table 4.12 show
that the standard, baseline heteroskedasticity-robust standard error (HC0) tends to be largely
negatively biased when the data are leveraged, thus resulting in liberal quasi-t testing infer-
ences. Better control of the type I error frequency is achieved by using a positively biased
heteroskedasticity-robust standard error, such as HC3 and HC4m.

We then arrive at the following relevant question: How should estimated variances be eval-
uated? Simonoff (1993) argues that since they are primarily used for performing inferences, a
comparison of different variance estimators should involve their intended use. In this disser-
tation, we focus on the accuracy of testing inferences based on statistics that employ different
standard errors.
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Table 4.11 True variances of β̂2 and β̃2.
λ a n var(β̂2) var(β̃2)

1.0 50 0.4930 0.3938
5.16 200 0.1233 0.0985

5.0 50 0.0566 0.0534
200 0.0141 0.0133

1.0 50 1.4085 0.5842
25.18 200 0.3521 0.1461

5.0 50 0.0884 0.0665
200 0.0221 0.0166

Table 4.12 Mean estimated variances of β̂2 and β̃2.
λ a n HC0 HC2 HC3 HC4 HC4m EGLS2

1.0 50 0.4638 0.4917 0.5215 0.5071 0.5329 0.4003
5.16 200 0.1213 0.1231 0.1248 0.1240 0.1255 0.1052

5.0 50 0.0265 0.0860 0.4411 15.3550 1.0580 0.1294
200 0.0121 0.0144 0.0172 0.0252 0.0188 0.0299

1.0 50 1.3171 1.3977 1.4835 1.4414 1.5178 0.8616
25.18 200 0.3461 0.3511 0.3563 0.3537 0.3582 0.2311

5.0 50 0.0705 0.2396 1.2501 43.7030 3.0062 0.6396
200 0.0209 0.0239 0.0278 0.0385 0.0299 0.1889
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5 Empirical applications

In what follows we shall present and discuss two empirical applications. Testing inferences
shall be performed using z and quasi-t tests. Unless stated otherwise, the variables used in the
skedastic function for EGLS estimation are the same as those used to model the mean response.

5.1 Man-hours for manning installations data

The dependent variable (y) is the number of monthly man-hours for manning installations
in the U.S. Navy in Bachelor Office Quarters, and the independent variables are average daily
occupancy (x2) and number of building wings (x3). The source of the data is Myers (1990,
Table 5.2, p. 218). The data contain 25 observations on the response and on the covariates.
Observations 22 and 23 appear to be leverage data points: h22 = 0.720 and h23 = 0.877,
whereas 3p/n = 0.360. The regression model we use is

yi = β1 + β2xi2 + β3xi3 + εi, (5.1)

i = 1, . . . , 25.
Table 5.1 contains some descriptive statistics on the response variable (y) and on the inde-

pendents variables. We note that the distribution of y seems to be positively asymmetrically
distributed. The response minimal and maximal values are 164.38 and 8266.77, respectively,
and its average value equals 2109.39.

Table 5.1 Descriptive Statistics, complete data; man-hours for manning installations data.
Statistics y x2 x3
Minimum 164.38 2.00 1.00
Maximum 8266.77 811.08 58.00
Mean 2109.39 117.16 11.12
Median 1845.89 95.00 9.00
Variance 3787883.00 28203.08 145.03

Standard deviation 1946.25 167.94 12.04
Skewness 1.46 3.06 2.49
Kurtosis 2.21 9.92 7.26

We tested for the presence of heteroskedasticity using the test proposed by Koenker (1981).
The null hypothesis of equal error variances was rejected at the 5% significance level. Hence,
there is evidence that the data are heteroskedastic.
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Next, the parameters of Model (5.1) were estimated by ordinary and estimated generalized
least squares. The OLS point estimates are β̂1 = 618.551, β̂2 = 4.045 and β̂3 = 91.455;
the EGLS1 point estimates are ˜̃β1 = 125.598, ˜̃β2 = 22.570 and ˜̃β3 = −6.954; the EGLS2
point estimates are β̃1 = 125.580, β̃2 = 22.570 and β̃3 = −6.951; the EGLS3 point estimates
are ˆ̂β1 = 132.358, ˆ̂β2 = 18.778 and ˆ̂β3 = 22.207. It is noteworthy that the OLS parameter
estimates are considerably different than those obtained with the three EGLS strategies. We
also note that the EGLS1 and EGLS2 estimates of β3 are quite different from the corresponding
EGLS3 estimate; the first two are negative wehereas the latter is postive. Table 5.2 presents the
standard errors of the three parameter estimates (sei, i = 1, . . . , 3) obtained using the different
approaches. The largest standard errors are those obtained using the HC4 covariance matrix
estimator followed by HC4m. Overall, the smallest standard errors are EGLS1 and EGLS2.

Table 5.2 Standard errors, complete data; man-hours for manning installations data.
se1 se2 se3

EGLS1 81.47 1.87 12.01
EGLS2 81.47 1.87 12.01
EGLS3 119.86 2.73 27.12
HC0 236.44 2.76 28.92
HC2 372.38 7.11 59.12
HC3 741.83 19.90 136.66
HC4 4448.37 161.34 926.48
HC4m 1115.32 33.53 215.30
OLS 345.48 1.71 23.85

Consider the test of H0 : β3 = 0 against H1 : β3 , 0. The interest lies in determining
whether x3 should be removed from the regression model given that x2 is already in the model.
Table 5.3 contains the tests p-values for the complete data and for the data without the two
leverage points. When all observations are used, the only tests that yield rejection of the null
hypothesis at the usual significance levels are the test whose statistic uses OLS standard error
and the HC0 test. It is interesting to note that when the two leverage data points are removed
from the data all tests yield p-values in excess of 0.5, thus indicating that the evidence against
the null hypothesis is quite small. Table 5.4 contains the parameter estimates we obtained after
the withdrawal of the identified leverage points from the data. Note that now all estimates of
β3 are positive. Table 5.5 contains the standard errors obtained after the withdrawal of the
identified leverage points. Note that there is now less discrepancy in these quantities among the
estimators used. The HC4 and HC4m standard errors are still the largest ones and the EGLS
standard errors are typically the smallest ones.

We note that rejection of the null hypothesis is driven by only two atypical data points.
When such observations are not in the data, the EGLS1, EGLS2, EGLS3, HC2, HC3, HC4
and HC4m tests lead to the same conclusion, namely: the covariate x3 can be safely removed
from the regression model. Indeed, the coefficient of determination for the regression with
the incomplete data equals 0.959477; when x3 is removed from the model R2 remains nearly
unchanged: 0.959463. This is evidence that, as long as the two leverage points are not in the
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Table 5.3 Tests p-values; man-hours for manning installations data.
complete data, n=25 incomplete data, n=23
Test p-value Test p-value
EGLS1 0.56266 EGLS1 0.81127
EGLS2 0.56288 EGLS2 0.81218
EGLS3 0.41285 EGLS3 0.53989
HC0 0.00157 HC0 0.92456
HC2 0.12185 HC2 0.93266
HC3 0.50337 HC3 0.94074
HC4 0.92137 HC4 0.94626
HC4m 0.67100 HC4m 0.94358
OLS 0.00013 OLS 0.93363

Table 5.4 Parameter estimates, incomplete data; man-hours for manning installations data.
β1 β2 β3

OLS 56.538 22.802 1.666
EGLS1 85.837 22.348 1.851
EGLS2 85.860 22.354 1.824
EGLS3 41.784 22.770 4.601

Table 5.5 Standard errors, incomplete data; man-hours for manning installations data.
se1 se2 se3

EGLS1 63.16 1.65 7.75
EGLS2 62.86 1.65 7.67
EGLS3 74.47 1.16 7.51
HC0 88.84 1.39 17.59
HC2 97.08 1.53 19.71
HC3 107.61 1.74 22.40
HC4 119.23 2.55 24.71
HC4m 110.91 1.85 23.53
OLS 131.74 1.80 20.00

dataset, the second covariate does not significantly add to the fit. The HC2 throughHC4m quasi-
t tests and the EGLS tests deliver the correct inference in both scenarios. Such inference is not
driven by only two (atypical) data points. The HC0 and OLS testing inferences, in contrast, are
driven by only two observations: when the two atypical points are in the data the HC0 and OLS
tests lead the practitioner to incorrectly conclude that x3 must be in the model.

5.2 Per capita spending on public education

The data we shall now use were previously analyzed by Cribari-Neto (2004). The source of
the data is the U.S. Department of Commerce. The response (y) is per capita spending on public
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schools and the covariates, x and x2, are per capita income by state in 1979 in the United States
and its square; income is scaled by 10−4. The observation relative to Wisconsin is missing, and
that for Washington, D.C. is included. Thus, n = 50. The regression model is

yi = β1 + β2xi + β3x2
i + εi,

i = 1, . . . , 50.
Table 5.6 contains some descriptive statistics on the response variable (y) and on the inde-

pendent variable (x). We note that there is positive asymmetry in the dependent variable (y).
Additionally, the its minimal and maximal values are 259 and 821, respectively.

Table 5.6 Descriptive Statistics, complete data; per capita spending on public education data.
Statistics y x
Minimum 259.00 0.57
Maximum 821.00 1.08
Mean 373.26 0.76
Median 354.00 0.76
Variance 8940.32 0.01

Standard deviation 94.55 0.10
Skewness 2.16 0.66
Kurtosis 8.08 0.46

The Koenker (1981) test suggests that there is heteroskedasticity. The OLS parameter es-
timates are β̂1 = 834.254, β̂2 = −1837.172 and β̂3 = 1588.499; the EGLS1 estimates are
˜̃β1 = 464.508, ˜̃β2 = −845.283 and ˜̃β3 = 933.734; the EGLS2 estimates are β̃1 = 464.514,
β̃2 = −845.299 and β̃3 = 933.744; the EGLS3 estimates are ˆ̂β1 = 486.345, ˆ̂β2 = −906.319 and
ˆ̂β3 = 975.892. Table 5.7 contains the standard errors of the three parameter estimates obtained
using the different approaches. Again, the largest standard errors are those obtained using the
HC4 covariance matrix estimator followed by HC4m. The smallest standard errors are obtained
by OLS followed by the EGLS ones.

The interest lies in testing a linear versus a quadratic functional form, i.e., in testing H0 :
β3 = 0 against H1 : β3 , 0. Table 5.8 contains the tests p-values. Notice that the OLS and
HC0 tests reject the null hypothesis (in favor of a quadratic model specification) at the 10%
significance level. The data are plotted in Figure 5.1. It is clear that Alaska is a leverage and
atypical data point. Indeed, its leverage value (hAlaska) equals 0.651 which considerably exceeds
three times the mean leverage (3p/n = 0.180). Considering this reference value (0.180), two
other observations are singled out as leverage points, namely: Washington, D.C. (hD.C. = 0.208)
and Mississippi (hMississippi = 0.200). We shall, however, follow Cribari-Neto (2004) and focus
on the impact of the most atypical observation (Alaska) on the resulting inferences. We removed
Alaska from the data, estimated the parameters and performed the OLS, EGLS and quasi-t tests
again. We report the tests p-values in Table 5.8 (‘incomplete data’). It is noteworthy that when
Alaska is not in the data, except for EGLS1 and EGLS2, the tests p-values are large, and hence
the null hypothesis is not rejected. The null hypothesis is marginally rejected at the 10% nominal
level, however, by the EGLS1 and EGLS2 tests. Hence, rejection of the null hypothesis by the
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OLS and HC0 tests with the complete data seems to be driven by a single atypical observation.
In contrast, one does not reject the null hypothesis at the usual significance levels when using
the HC2, HC3, HC4 and HC4m tests even when the data contain a strong leverage point, i.e.,
such testing inference is not substantially affected by an atypical observation. We note that the
coefficient of determination (R2) for the regression with the incomplete data equals 0.501079;
when x2 is removed from the model it remains nearly unchanged: 0.498841. This can be
viewed as evidence that, as long as Alaska is not in the data, squared per capita income (x2)
does not significantly add to the fit. The EGLS3 z test and the HC2 through HC4m quasi-t
tests deliver the correct inference in both scenarios. For instance, the HC3 (HC4) [HC4m]
p-values computed using the complete and incomplete datasets are 0.4262 and 0.7747 (0.7722
and 0.8914) [0.5340 and 0.8096], respectively. The corresponding EGLS1 (EGLS2) [EGLS3]
p-values are 0.2082 and 0.0968 (0.2082 and 0.0971) [0.2336 and 0.2269]; notice the reduction
in p-values when Alaska is removed from the data which contrasts to the sizable increased in the
quasi-t tests p-values. Table 5.9 contains the parameter estimates obtained after the withdrawal
of Alaska from the data. Table 5.10 contains the standard errors obtained after the withdrawal
of the outlying observation. Note that even though such figure become smaller, there is still
considerable discrepancy among them. The HC4 and HC4m standard errors are still the largest
ones and the EGLS standard errors are the smallest ones.

Table 5.7 Standard errors, complete data; per capita spending on public education data.
se1 se2 se3

EGLS1 421.78 1123.43 741.90
EGLS2 421.77 1123.41 741.89
EGLS3 455.78 1226.69 819.24
HC0 461.57 1244.67 830.90
HC2 689.37 1868.52 1251.33
HC3 1096.00 2977.71 1996.45
HC4 3007.83 8181.65 5487.08
HC4m 1401.03 3808.81 2554.33
OLS 327.46 829.43 519.34

It is interesting to note that the EGLS tests yielded conflicting inferences when the incom-
plete data were used: the EGLS1 and EGLS2 z tests rejected the null hypothesis (in favor of
the quadratic specification) at the 10% significance level whereas the null hypothesis was not
rejected by the EGLS3 z test. Since the atypical observation (Alaska) is not in the data, one
would expect the tests to not reject the null hypothesis under evaluation. The rejection of H0
by two EGLS tests when the outlier-free data were used was not expected. In order to further
investigate that, we redid the analysis using a different skedastic function, namely:

σ2
i = exp(γ1 + γ2xi);

i.e., income squared, which is used as a mean regressor, is no longer used a dispersion regressor.
The EGLS tests p-values computed using both complete and incomplete data using the new
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Table 5.8 Tests p-values; per capita spending on public education data.
complete data, n = 50 incomplete data, n = 49
Test p-value Test p-value
EGLS1 0.2082 EGLS1 0.0968
EGLS2 0.2082 EGLS2 0.0971
EGLS3 0.2336 EGLS3 0.2269
HC0 0.0559 HC0 0.6157
HC2 0.2043 HC2 0.6954
HC3 0.4262 HC3 0.7747
HC4 0.7722 HC4 0.8914
HC4m 0.5340 HC4m 0.8096
OLS 0.0022 OLS 0.6496

Table 5.9 Parameter estimates, incomplete data; per capita spending on public education data.
β1 β2 β3

OLS -208.724 1000.016 -314.051
EGLS1 -426.827 1625.700 -752.356
EGLS2 -426.675 1625.271 -752.061
EGLS3 -362.640 1450.299 -635.319

Table 5.10 Standard errors, incomplete data; per capita spending on public education data.
se1 se2 se3

EGLS1 268.82 704.97 453.13
EGLS2 268.89 705.18 453.27
EGLS3 305.18 808.19 525.71
HC0 345.36 935.68 625.66
HC2 437.03 1191.57 802.07
HC3 591.91 1621.86 1097.14
HC4 1228.88 3383.72 2299.70
HC4m 700.56 1923.43 1303.74
OLS 405.27 1064.06 691.30

skedastic function are presented in Table 5.11. At the outset, note that the EGLS tests now
deliver the same inferences in both scenarios; there is no longer contradiction between them.
It is also noteworthy that all three z tests now seem to deliver the correct inference when the
incomplete data are used: the null hypothesis is not rejected (the three p-values are quite large),
i.e., there is no evidence against the linear specification. However, when the complete data are
used (Alaska is included in the data), the three EGLS tests yield rejection of the null hypothesis
at the 10% significance level. Such inference (rejection of the linear specification in favor of the
quadratic specification) seems to be driven by a single, atypical data point.

This empirical application shows that testing inferences reached after EGLS parameter es-
timation can be highly dependent on how the response variances are modeled. It also shows
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Figure 5.1 Per capita spending on public schools vs. per capita income (×10, 000).

Table 5.11 Tests p-values; per capita spending on public education data; alternative skedastic function.
complete data, n = 50 incomplete data, n = 49
Test p-value Test p-value
EGLS1 0.0738 EGLS1 0.8733
EGLS2 0.0738 EGLS2 0.8733
EGLS3 0.0706 EGLS3 0.9954

that EGLS testing inferences can be quite affected by a single, atypical observation. The same
happened, we saw earlier, with the HC0 quasi-t test. The other quasi-t tests, however, proved
reliable even under highly leveraged data.
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6 Concluding remarks

The linear regression model is commonly used in empirical analyses in many fields. Often-
times such analyses employ cross sectional data and there is heteroskedasticity, i.e., the error
variances are not the same for all observations in the sample. Practitioners frequently want to
perform testing inferences on the model parameters, e.g., to decide which covariates should
be included in the model and which covariates should be removed from it. Broadly speaking,
two different testing strategies can be employed. The first involves using quasi-t test statistics
that are based on standard errors obtained from a heteroskedasticity-consistent covariance ma-
trix estimator. These standard errors are asymptotically correct under both homoskedasticity
and heteroskedasticity of unknown form. The second strategy requires expanding the model to
model not only the mean effects but also the dispersion effects. In other words, it is necessary to
specify a submodel for the response mean and a separate submodel for the response variances.
The likelihood of model misspecification is thus increased. Which testing strategy should be
preferred? We seeked to provide this question with an answer. Some authors in the literature
focused on the accuracy of estimated variances and covariances of alternative parameter esti-
mators, namely: ordinary least squares and estimated generalized least squares. According to
Simonoff (1993), however, since estimated variances are mainly used for performing inferences,
a comparison of different variance estimators should involve their intended use, such as the em-
pirical coverages of associated confidence intervals and the sizes of associated tests. This is
the approach we pursued. We compared the accuracy of testing inferences made using quasi-t
(ordinary least squares estimation coupled with asymptotically correct standard errors) and z
(estimated generalized least squares) tests.

Our numerical evaluations were performed using different models, different sample sizes,
and different heteroskedasticity strengths. We evaluated the finite sample performances of
several quasi-t tests (i.e., of tests based on different heteroskedasticity-robust standard errors) and
also those of standard z tests based on estimated generalized least squares estimation. The main
difference between the two approaches lies in the fact that the former only requires modeling
of mean effects whereas the latter requires the practitioner to model both mean and dispersion
effects. We also numerically evaluated the accuracy of point estimates obtained using the two
estimation approaches. Our numerical results showed that point estimates obtained by estimated
generalized least squares can be considerably more accurate than ordinary least squares point
estimates when the data do not include leverage points, but the difference in accuracy becomes
much smaller under leveraged data. As noted earlier, nonetheless, our chief interest lies in
testing inferences. The numerical evidence we reported showed that overall the best performing
quasi-t tests are those based on HC3 and HC4m heteroskedasticity-robust standard errors. It



6 CONCLUDING REMARKS 45

was also shown that such tests typically display better control of the type I error frequency than
z tests carried out after joint mean and dispersion modeling, especially under leveraged data.
For instance, in an extreme case of data containing a very atypical data point in one of our
simulations, when the sample contained only 50 observations and the tests were carried out at
the 5% significance level, the EGLS2 test null rejection rate exceeded 35% (i.e., it was more
than seven times larger than the test significance level); the HC3 and HC4m null rejection rates
were 5.06% and 3.24%, respectively.

We have also presented and discussed two empirical applications. In one them (the empirical
applications mentioned in the dissertation introduction), the interest lied in distinguishing be-
tween a linear and a quadratic model specification. In this application, the most reliable quasi-t
tests delivered what seems to be the correct inference, regardless of whether the data contain a
leverage point which is also an outlier. In contrast, EGLS testing inferences proved to be highly
dependent on how the responses variances are modeled and were also quite sensitive to a single,
atypical observation (Alaska). This highlights an advantage of quasi-t tests: they do not require
the practitioner to model dispersion effects.

In future work, we shall address the following issues:

• We shall consider alternative covariance matrix estimators that are consistent under both
homoskedasticity and heteroskedasticity, such as HC5 (Cribari-Neto, Souza, and Vascon-
cellos 2007) and HC5m (Li et al. 2016).

• We shall consider testing inferences on a vector of parameters rather than on a single
model parameter.
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Appendix A - Size simulation

/***************************************************************
DESCRIPTION: Monte Carlo simulation of quasi-t and z tests under
heteroskedasticity. The choice of sample sizes are: 50, 100, 150,
200. Multiple regression. Covariates generated from |N(0,1)| and
errors: normal and chi-square with 2, 5, 10 degrees of freedom.

AUTHOR: Inara Francoyse de Souza Pereira

LAST REVISION: October 01, 2017

***************************************************************/

#include<oxstd.h>
#include<oxprob.h>
#import <maximize>

const decl samplesize = 1; /* choice 1 (n=50), 2 (n=100), 3 (n=150)
or 4 (n=200) */

static decl svx_1, svx_2, svx_3, s_vy;

floglik(const vP, const adFunc, const avScore, const amHess){

/* log-likelihood function */
adFunc[0] = -0.5*sumc(log(2*3.141593) + (vP[0] + vP[1]*svx_1 +
vP[2]*svx_2 + vP[3]*svx_3) + ((s_vy - (vP[4] + vP[5]*svx_1 +
vP[6]*svx_2 + vP[7]*svx_3)).^2) ./ (exp(vP[0] + vP[1]*svx_1 +
vP[2]*svx_2 + vP[3]*svx_3)));

if (avScore){
(avScore[0])[0] = -0.5*sumc(1 - ((s_vy - (vP[4] + vP[5]*svx_1 +
vP[6]*svx_2 + vP[7]*svx_3)).^2) ./ (exp(vP[0] + vP[1]*svx_1 +
vP[2]*svx_2 + vP[3]*svx_3)));
(avScore[0])[1] = -0.5*sumc(svx_1 - (svx_1.*((s_vy - (vP[4] +
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vP[5]*svx_1 + vP[6]*svx_2 + vP[7]*svx_3)).^2)) ./ (exp(vP[0] +
vP[1]*svx_1 + vP[2]*svx_2 + vP[3]*svx_3)));
(avScore[0])[2] = -0.5*sumc(svx_2 - (svx_2.*((s_vy - (vP[4] +
vP[5]*svx_1 + vP[6]*svx_2 + vP[7]*svx_3)).^2)) ./ (exp(vP[0] +
vP[1]*svx_1 + vP[2]*svx_2 + vP[3]*svx_3)));
(avScore[0])[3] = -0.5*sumc(svx_3 - (svx_3.*((s_vy - (vP[4] +
vP[5]*svx_1 + vP[6]*svx_2 + vP[7]*svx_3)).^2)) ./ (exp(vP[0] +
vP[1]*svx_1 + vP[2]*svx_2 + vP[3]*svx_3)));
(avScore[0])[4] = sumc((s_vy - (vP[4] + vP[5]*svx_1 +
vP[6]*svx_2 + vP[7]*svx_3)) ./ (exp(vP[0] + vP[1]*svx_1 +
vP[2]*svx_2 + vP[3]*svx_3)));
(avScore[0])[5] = sumc(svx_1.*(s_vy - (vP[4] + vP[5]*svx_1 +
vP[6]*svx_2 + vP[7]*svx_3)) ./ (exp(vP[0] + vP[1]*svx_1 +
vP[2]*svx_2 + vP[3]*svx_3)));
(avScore[0])[6] = sumc(svx_2.*(s_vy - (vP[4] + vP[5]*svx_1 +
vP[6]*svx_2 + vP[7]*svx_3)) ./ (exp(vP[0] + vP[1]*svx_1 +
vP[2]*svx_2 + vP[3]*svx_3)));
(avScore[0])[7] = sumc(svx_3.*(s_vy - (vP[4] + vP[5]*svx_1 +
vP[6]*svx_2 + vP[7]*svx_3)) ./ (exp(vP[0] + vP[1]*svx_1 +
vP[2]*svx_2 + vP[3]*svx_3)));
}

if ( isnan(adFunc[0]) || isdotinf(adFunc[0]) )
return 0;
else
return 1;
}

main(){

decl i, s2, X, error, beta, betahat, residual2, gamma, sigmai2,
sigmai, lambda, P, H, h, weight2, weight3, weight4, g, g4, quant,
matrixW, vp, dfunc, ir, nrep, temp, eta, exectime, cfailure, ztest,
cvz1, cvz5, cvz10, alphachapeu, phi, covm3,covm2, What, betahat2,
ztest2, result, count, HC0, HC2, HC3, HC4, ztest3, ztest4, ztest5,
teste, ztest7, betahathat,si2, weights, Ww, yw, Xw, olsnumerator,
Pt, matrixtemp, hmean, g4m1, g4m2, g4m, weight4m, HC4m, ztest6, I,
I2, S, temp4, Psi, temp2, gammatil, temp3, ztest1, cfailure2,
betahat3, betaw, counter;

decl nobs = 50; /* number of base observations (replicate if
greater than 50) */

nrep=10000; /* number of Monte Carlo simulations */
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beta=<3.0;3.0;3.0;3.0>; /*true beta values */

gamma=<0.935;0.935;0.935;0.935>; /* true gamma values */
//gamma=<1.101;1.101;1.101;1.101>; /* true gamma values */

cfailure = 0; /* failure counter (maximum likelihood) */
cfailure2 = 0; /* failure counter (Atkinson) */

cvz1 = quann(0.995); /* critical value 1% */
cvz5 = quann(0.975); /* critical value 5% */
cvz10 = quann(0.950); /* critical value 10% */

quant = zeros(8,3); /* quantiles */
result = zeros(8,3); /* to save null rejection rates */

ranseed("MWC_52"); /* pseudo-random number generator */
ranseed(1994); /* generator seed */

exectime = timer(); /* start counting time */

X=1~fabs(rann(nobs, 3)); /* matrix of regressors */

/* if necessary, replicate the covariates values (for n> 50) */
if(samplesize == 1){
X = X;
nobs = nobs;
}
else if(samplesize == 2){
X = X|X;
nobs *= 2;
}
else if(samplesize == 3){
X = X|X|X;
nobs *= 3;
}
else{
X = X|X|X|X;
nobs *= 4;
}

eta = X*beta; /* linear predictor */

P = invertsym(X’X)*X’; /* matrix P */
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Pt = P’; /* transposed of matrix P */
H = X*P; /* matrix H (hat matrix) */
h = (diagonal(H))’; /* leverage measures */
weight2 = 1.0 ./ (1.0-h);
weight3 = 1.0 ./ ((1.0-h) .^ 2);
g = (nobs/4) * h;
g4 = g .> 4 .? 4 .: g;
weight4 = 1.0 ./ ((1.0-h) .^ g4);
g4m1 = g .> 1.0 .? 1.0 .: g;
g4m2 = g .> 1.5 .? 1.5 .: g;
g4m = g4m1 + g4m2;
weight4m = 1.0 ./ ((1.0-h) .^ g4m);

svx_1 = X[][1]; /* covariate 1 */
svx_2 = X[][2]; /* covariate 2 */
svx_3 = X[][3]; /* covariate 3 */

sigmai2 = exp(X*gamma);

sigmai = (sigmai2).^0.5; /* standard errors */

lambda = double(maxc(sigmai2)/minc(sigmai2)); /* degree of
heteroskedasticity */

betahat = zeros(4, nrep); /* matrix to save OLS estimates */
betahat2 = zeros(4, nrep); /* matrix to save EGLS1 estimates */
betahat3 = zeros(4, nrep); /* matrix to save EGLS2 estimates */
betahathat = zeros(4, nrep); /* matrix to save EGLS3 estimates */

/* vectors used to save test statistics */
ztest = zeros(1, nrep); /* EGLS1 */
ztest1 = zeros(1, nrep); /* EGLS2 */
ztest2 = zeros(1, nrep); /* EGLS3 */
ztest3 = zeros(1, nrep); /* HC0 */
ztest4 = zeros(1, nrep); /* HC2 */
ztest5 = zeros(1, nrep); /* HC3 */
ztest6 = zeros(1, nrep); /* HC4 */
ztest7 = zeros(1, nrep); /* HC4m */

hmean = meanc(h); /* mean leverage */
count = sumc( h .> 3*hmean ); /* number of leverage points */

/* following: Monte Carlo Loop */
for(i=0; i<nrep; i++){
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error = rann(nobs, 1); /* normal errors */
//error = (ranchi(nobs, 1, 10) - 10)/(sqrt(20)); /* chi-square errors
(10) */
//error = (ranchi(nobs, 1, 5) - 5)/(sqrt(10)); /* chi-square errors
(5) */
//error = (ranchi(nobs, 1, 2) - 2)/(sqrt(4)); /* chi-square errors
(2) */

s_vy= eta + sigmai.*error; /* response vector */

olsc(s_vy, X, &temp); /* regression estimation */

betahat[][i] = temp; /* OLS estimates */

residual2 = (s_vy-X*temp).^2;

matrixtemp = residual2 .* Pt; /* matrix to be used in HCs */

HC0 = P * matrixtemp; /* HC0 */
HC2 = P * (matrixtemp .* weight2); /* HC2 */
HC3 = P * (matrixtemp .* weight3); /* HC3 */
HC4 = P * (matrixtemp .* weight4); /* HC4 */
HC4m = P * (matrixtemp .* weight4m); /* HC4m */

/* following: EGLS2 estimation procedure */
temp2 = P * (nobs*residual2 ./ (sumc(residual2) - 1)); /*
starting values for gamma */

S = zeros(4,1); /* score vector */

counter=0;

do{

++counter;

if( counter <= 1000 ){

S[0][0] = - sumc(1 - ((s_vy - X*temp).^2) ./ (exp(X*temp2)));
S[1][0] = sumc(X[][1] .* (((s_vy - X*temp).^2) ./ (exp(X*temp2)) - 1));
S[2][0] = sumc(X[][2] .* (((s_vy - X*temp).^2) ./ (exp(X*temp2)) - 1));
S[3][0] = sumc(X[][3] .* (((s_vy - X*temp).^2) ./ (exp(X*temp2)) - 1));
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gammatil = temp2 + invertsym(X’X) * S; /* iterative scoring algorithm */

temp3 = temp;
temp4 = temp2;

si2 = exp(X*gammatil); /* sigma2 hat */

weights = (1 ./ si2);

Ww=diag(sqrt(weights));
yw=Ww*s_vy;
Xw=Ww*X;

olsc(yw, Xw, &betaw); /* weighted regression */

temp = betaw;
temp2 = gammatil;

} /* end of if */

else{
++cfailure2;
break;
}

} while((norm((temp|temp2) - (temp3|temp4))^2 / norm((temp3|temp4))^2)
> (10^(-8)));

if(counter==1001){
i--;
continue;
}

betahat3[][i] = betaw; /* EGLS2 estimates */

What = diag(weights); /* matrix of weights */
covm2 = invertsym(X’*What*X); /* EGLS2 covariance matrix */

/* following: Harvey estimation procedure (two-steps) */
olsc(log(residual2), X, &alphachapeu); /* regression estimation */
alphachapeu[0] += 1.2704;
phi=diag(exp(X*alphachapeu));
betahathat[][i] = invertsym(X’*invertsym(phi)*X)*
(X’*invertsym(phi)*s_vy);
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covm3 = invertsym(X’*invertsym(phi)*X); /* EGLS3 covariance matrix */

I = zeros(8,8); /* inverse of Fisher’s information matrix */

/* following: Harvey estimation procedure (maximum likelihood) */
vp = <5.0; 5.0; 5.0; 5.0; 5.0; 5.0; 5.0; 5.0>; /* starting values */
ir = MaxBFGS(floglik, &vp, &dfunc, 0, FALSE); /* BFGS with
analytical gradient */

/* convergence check */
if( ir == MAX_CONV || ir == MAX_WEAK_CONV ){

I[0][0] = sumc(1 ./ exp(vp[0] + vp[1]*svx_1 + vp[2]*svx_2 +
vp[3]*svx_3));
I[1][0] = I[0][1] = sumc(svx_1 ./ exp(vp[0] + vp[1]*svx_1 +
vp[2]*svx_2 + vp[3]*svx_3));
I[2][0] = I[0][2] = sumc(svx_2 ./ exp(vp[0] + vp[1]*svx_1 +
vp[2]*svx_2 + vp[3]*svx_3));
I[3][0] = I[0][3] = sumc(svx_3 ./ exp(vp[0] + vp[1]*svx_1 +
vp[2]*svx_2 + vp[3]*svx_3));
I[4][0] = I[0][4] = I[5][0] = I[0][5] = I[6][0] = I[0][6] =
I[7][0] = I[0][7] = I[4][1] = I[1][4] = I[5][1] = I[1][5] =
I[6][1] = I[1][6] = I[7][1] = I[1][7] = I[4][2] = I[2][4] =
I[5][2] = I[2][5] = I[6][2] = I[2][6] = I[7][2] = I[2][7] =
I[4][3] = I[3][4] = I[5][3] = I[3][5] = I[6][3] = I[3][6] =
I[7][3] = I[3][7] = 0;
I[1][1] = sumc((svx_1.^2) ./ exp(vp[0] + vp[1]*svx_1 +
vp[2]*svx_2 + vp[3]*svx_3));
I[2][1] = I[1][2] = sumc((svx_1 .* svx_2) ./ exp(vp[0] +
vp[1]*svx_1 + vp[2]*svx_2 + vp[3]*svx_3));
I[3][1] = I[1][3] = sumc((svx_1 .* svx_3) ./ exp(vp[0] +
vp[1]*svx_1 + vp[2]*svx_2 + vp[3]*svx_3));
I[2][2] = sumc((svx_2.^2) ./ exp(vp[0] + vp[1]*svx_1 +
vp[2]*svx_2 + vp[3]*svx_3));
I[3][3] = sumc((svx_3.^2) ./ exp(vp[0] + vp[1]*svx_1 +
vp[2]*svx_2 + vp[3]*svx_3));
I[3][2] = I[2][3] = sumc((svx_2 .* svx_3) ./ exp(vp[0] +
vp[1]*svx_1 + vp[2]*svx_2 + vp[3]*svx_3));
I[4][4] = nobs/2;
I[5][5] = 0.5*sumc(svx_1.^2);
I[5][4] = I[4][5] = 0.5*sumc(svx_1);
I[6][4] = I[4][6] = 0.5*sumc(svx_2);
I[7][4] = I[4][7] = 0.5*sumc(svx_3);
I[6][6] = 0.5*sumc(svx_2.^2);
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I[6][5] = I[5][6] = 0.5*sumc(svx_1 .* svx_2);
I[7][5] = I[5][7] = 0.5*sumc(svx_1 .* svx_3);
I[7][6] = I[6][7] = 0.5*sumc(svx_2 .* svx_3);
I[7][7] = 0.5*sumc(svx_3.^2);

I2 = invertsym(I);

betahat2[][i] = vp[4:]; /* estimates of maximum likelihood */

/* EGLS test statistics */
ztest[0][i] = (betahat2[2][i] - beta[2]) / sqrt(I2[2][2]);
/* EGLS1 */
ztest1[0][i] = (betahat3[2][i] - beta[2]) / sqrt(covm2[2][2]);
/* EGLS2 */
ztest2[0][i] = (betahathat[2][i] - beta[2]) / sqrt(covm3[2][2]);
/* EGLS3 */

/* quasi-t test statistics */
olsnumerator = betahat[2][i] - beta[2];
ztest3[0][i] = olsnumerator / sqrt(HC0[2][2]); /* HC0 */
ztest4[0][i] = olsnumerator / sqrt(HC2[2][2]); /* HC2 */
ztest5[0][i] = olsnumerator / sqrt(HC3[2][2]); /* HC3 */
ztest6[0][i] = olsnumerator / sqrt(HC4[2][2]); /* HC4 */
ztest7[0][i] = olsnumerator / sqrt(HC4m[2][2]); /* HC4m */

} /* end of if */

else{
++cfailure;
--i;
} /* end of else */
} /* end of the Monte Carlo loop */

result[0][0] = sumr(fabs(ztest[0][]) .> cvz1)/nrep*100; /* EGLS1 1% */
result[1][0] = sumr(fabs(ztest1[0][]) .> cvz1)/nrep*100; /* EGLS2 1% */
result[2][0] = sumr(fabs(ztest2[0][]) .> cvz1)/nrep*100; /* EGLS3 1% */
result[3][0] = sumr(fabs(ztest3[0][]) .> cvz1)/nrep*100; /* HC0 1% */
result[4][0] = sumr(fabs(ztest4[0][]) .> cvz1)/nrep*100; /* HC2 1% */
result[5][0] = sumr(fabs(ztest5[0][]) .> cvz1)/nrep*100; /* HC3 1% */
result[6][0] = sumr(fabs(ztest6[0][]) .> cvz1)/nrep*100; /* HC4 1% */
result[7][0] = sumr(fabs(ztest7[0][]) .> cvz1)/nrep*100; /* HC4m 1% */

result[0][1] = sumr(fabs(ztest[0][]) .> cvz5)/nrep*100; /* EGLS1 5% */
result[1][1] = sumr(fabs(ztest1[0][]) .> cvz5)/nrep*100; /* EGLS2 5% */
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result[2][1] = sumr(fabs(ztest2[0][]) .> cvz5)/nrep*100; /* EGLS3 5% */
result[3][1] = sumr(fabs(ztest3[0][]) .> cvz5)/nrep*100; /* HC0 5% */
result[4][1] = sumr(fabs(ztest4[0][]) .> cvz5)/nrep*100; /* HC2 5% */
result[5][1] = sumr(fabs(ztest5[0][]) .> cvz5)/nrep*100; /* HC3 5% */
result[6][1] = sumr(fabs(ztest6[0][]) .> cvz5)/nrep*100; /* HC4 5% */
result[7][1] = sumr(fabs(ztest7[0][]) .> cvz5)/nrep*100; /* HC4m 5% */

result[0][2] = sumr(fabs(ztest[0][]) .> cvz10)/nrep*100; /* EGLS1 10% */
result[1][2] = sumr(fabs(ztest1[0][]) .> cvz10)/nrep*100; /* EGLS2 10% */
result[2][2] = sumr(fabs(ztest2[0][]) .> cvz10)/nrep*100; /* EGLS3 10% */
result[3][2] = sumr(fabs(ztest3[0][]) .> cvz10)/nrep*100; /* HC0 10% */
result[4][2] = sumr(fabs(ztest4[0][]) .> cvz10)/nrep*100; /* HC2 10% */
result[5][2] = sumr(fabs(ztest5[0][]) .> cvz10)/nrep*100; /* HC3 10% */
result[6][2] = sumr(fabs(ztest6[0][]) .> cvz10)/nrep*100; /* HC4 10% */
result[7][2] = sumr(fabs(ztest7[0][]) .> cvz10)/nrep*100; /* HC4m 10% */

/* The quantiles of the different test statistics are calculated
and used as exact critical values in the power simulations */

quant[0][0] = quantiler(fabs(ztest[0][]), 0.995);
quant[1][0] = quantiler(fabs(ztest1[0][]), 0.995);
quant[2][0] = quantiler(fabs(ztest2[0][]), 0.995);
quant[3][0] = quantiler(fabs(ztest3[0][]), 0.995);
quant[4][0] = quantiler(fabs(ztest4[0][]), 0.995);
quant[5][0] = quantiler(fabs(ztest5[0][]), 0.995);
quant[6][0] = quantiler(fabs(ztest6[0][]), 0.995);
quant[7][0] = quantiler(fabs(ztest7[0][]), 0.995);

quant[0][1] = quantiler(fabs(ztest[0][]), 0.975);
quant[1][1] = quantiler(fabs(ztest1[0][]), 0.975);
quant[2][1] = quantiler(fabs(ztest2[0][]), 0.975);
quant[3][1] = quantiler(fabs(ztest3[0][]), 0.975);
quant[4][1] = quantiler(fabs(ztest4[0][]), 0.975);
quant[5][1] = quantiler(fabs(ztest5[0][]), 0.975);
quant[6][1] = quantiler(fabs(ztest6[0][]), 0.975);
quant[7][1] = quantiler(fabs(ztest7[0][]), 0.975);

quant[0][2] = quantiler(fabs(ztest[0][]), 0.950);
quant[1][2] = quantiler(fabs(ztest1[0][]), 0.950);
quant[2][2] = quantiler(fabs(ztest2[0][]), 0.950);
quant[3][2] = quantiler(fabs(ztest3[0][]), 0.950);
quant[4][2] = quantiler(fabs(ztest4[0][]), 0.950);
quant[5][2] = quantiler(fabs(ztest5[0][]), 0.950);
quant[6][2] = quantiler(fabs(ztest6[0][]), 0.950);
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quant[7][2] = quantiler(fabs(ztest7[0][]), 0.950);

savemat("v1.mat", quant);

/* printing of basic information */
print("\n");
println( "\t\t OX PROGRAM: ", oxfilename(0) );
println( "\t\t OX VERSION: ", oxversion() );
println( "\t\t NUM. REPLICATIONS: ", nrep );
println( "\t\t NUM. OBSERVATIONS: ", nobs );
println( "\t\t DATE: ", date() );
println( "\t\t TIME: ", time() );

/* printing results */
println("\nLAMBDA: ", lambda);
println("\nTRUE GAMMA VALUES: ", gamma);
println("\nMAXIMAL LEVERAGE: ", double(maxc(h)));
println("\nTHRESHOLD (3*p/n): ", double(3*hmean));
println("\nNUM. OBSERVATIONS > 3*p/n: ", "%2.0f", double(count));
println("\nNULL REJECTION RATES FOR n=", nobs, ":\n", "%c",
{"1%", "5%", "10%"}, "%r", {"EGLS 1", "EGLS 2", "EGLS 3",
"HC0", "HC2", "HC3", "HC4", "HC4m"}, "%8.2f", result);

println("NUMBER OF CONVERGENCE FAILURES EGLS1: ", cfailure);

println("NUMBER OF CONVERGENCE FAILURES EGLS2: ", cfailure2);

println("\nEXECUTION TIME: ", timespan(exectime)); /* runtime */

print("\n");

}
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Appendix B - Power simulation

/***************************************************************
DESCRIPTION: Monte Carlo simulation of quasi-t and z tests under
heteroskedasticity. The choice of sample sizes are: 50, 100, 150,
200. Multiple regression. Covariates generated from |N(0,1)| and
errors: normal and chi-square with 2, 5, 10 degrees of freedom.

AUTHOR: Inara Francoyse de Souza Pereira

LAST REVISION: October 01, 2017

***************************************************************/

#include<oxstd.h>
#include<oxprob.h>
#import <maximize>

const decl samplesize = 1; /* choice 1 (n=50), 2 (n=100), 3 (n=150)
or 4 (n=200) */

static decl svx_1, svx_2, svx_3, s_vy;

floglik(const vP, const adFunc, const avScore, const amHess){

/* log-likelihood function */
adFunc[0] = -0.5*sumc(log(2*3.141593) + (vP[0] + vP[1]*svx_1 +
vP[2]*svx_2 + vP[3]*svx_3) + ((s_vy - (vP[4] + vP[5]*svx_1 +
vP[6]*svx_2 + vP[7]*svx_3)).^2) ./ (exp(vP[0] + vP[1]*svx_1 +
vP[2]*svx_2 + vP[3]*svx_3)));

if (avScore){
(avScore[0])[0] = -0.5*sumc(1 - ((s_vy - (vP[4] + vP[5]*svx_1 +
vP[6]*svx_2 + vP[7]*svx_3)).^2) ./ (exp(vP[0] + vP[1]*svx_1 +
vP[2]*svx_2 + vP[3]*svx_3)));
(avScore[0])[1] = -0.5*sumc(svx_1 - (svx_1.*((s_vy - (vP[4] +
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vP[5]*svx_1 + vP[6]*svx_2 + vP[7]*svx_3)).^2)) ./ (exp(vP[0] +
vP[1]*svx_1 + vP[2]*svx_2 + vP[3]*svx_3)));
(avScore[0])[2] = -0.5*sumc(svx_2 - (svx_2.*((s_vy - (vP[4] +
vP[5]*svx_1 + vP[6]*svx_2 + vP[7]*svx_3)).^2)) ./ (exp(vP[0] +
vP[1]*svx_1 + vP[2]*svx_2 + vP[3]*svx_3)));
(avScore[0])[3] = -0.5*sumc(svx_3 - (svx_3.*((s_vy - (vP[4] +
vP[5]*svx_1 + vP[6]*svx_2 + vP[7]*svx_3)).^2)) ./ (exp(vP[0] +
vP[1]*svx_1 + vP[2]*svx_2 + vP[3]*svx_3)));
(avScore[0])[4] = sumc((s_vy - (vP[4] + vP[5]*svx_1 +
vP[6]*svx_2 + vP[7]*svx_3)) ./ (exp(vP[0] + vP[1]*svx_1 +
vP[2]*svx_2 + vP[3]*svx_3)));
(avScore[0])[5] = sumc(svx_1.*(s_vy - (vP[4] + vP[5]*svx_1 +
vP[6]*svx_2 + vP[7]*svx_3)) ./ (exp(vP[0] + vP[1]*svx_1 +
vP[2]*svx_2 + vP[3]*svx_3)));
(avScore[0])[6] = sumc(svx_2.*(s_vy - (vP[4] + vP[5]*svx_1 +
vP[6]*svx_2 + vP[7]*svx_3)) ./ (exp(vP[0] + vP[1]*svx_1 +
vP[2]*svx_2 + vP[3]*svx_3)));
(avScore[0])[7] = sumc(svx_3.*(s_vy - (vP[4] + vP[5]*svx_1 +
vP[6]*svx_2 + vP[7]*svx_3)) ./ (exp(vP[0] + vP[1]*svx_1 +
vP[2]*svx_2 + vP[3]*svx_3)));
}

if ( isnan(adFunc[0]) || isdotinf(adFunc[0]) )
return 0;
else
return 1;
}

main(){

decl i, s2, X, error, beta, betahat, residual2, gamma, sigmai2,
sigmai, lambda, P, H, h, weight2, weight3, weight4, g, g4, matrixW,
vp, dfunc, ir, nrep, temp, eta, exectime, cfailure, ztest, cvz1,
cvz5, cvz10, alphachapeu, phi, covm3,covm2, What, betahat2, ztest2,
result, count, HC0, HC2, HC3, HC4, ztest3, ztest4, ztest5, ztest7,
betahathat, si2, weights, Ww, yw, Xw, olsnumerator, Pt, matrixtemp,
hmean, g4m1, g4m2, g4m, weight4m, HC4m, ztest6, I, I2, S, temp4,
Psi, temp2, gammatil, temp3, ztest1, cfailure2, betahat3, betaw,
mat1, mat2, mat3, mat4, mat5, mat6, mat7, mat8, mat9, mat10, mat11,
mat12, mat13, mat14, mat15, mat16, mat17, mat18, mat19, mat20, mat21,
mat22, mat23, mat24, mat25, mat26, mat27, mat28, mat29, mat30, mat31,
mat32;

/* quantiles obtained in the size simulations */
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mat1 = loadmat("v1.mat");
mat2 = loadmat("v2.mat");
mat3 = loadmat("v3.mat");
mat4 = loadmat("v4.mat");
mat5 = loadmat("v5.mat");
mat6 = loadmat("v6.mat");
mat7 = loadmat("v7.mat");
mat8 = loadmat("v8.mat");
mat9 = loadmat("v9.mat");
mat10 = loadmat("v10.mat");
mat11 = loadmat("v11.mat");
mat12 = loadmat("v12.mat");
mat13 = loadmat("v13.mat");
mat14 = loadmat("v14.mat");
mat15 = loadmat("v15.mat");
mat16 = loadmat("v16.mat");
mat17 = loadmat("v17.mat");
mat18 = loadmat("v18.mat");
mat19 = loadmat("v19.mat");
mat20 = loadmat("v20.mat");
mat21 = loadmat("v21.mat");
mat22 = loadmat("v22.mat");
mat23 = loadmat("v23.mat");
mat24 = loadmat("v24.mat");
mat25 = loadmat("v25.mat");
mat26 = loadmat("v26.mat");
mat27 = loadmat("v27.mat");
mat28 = loadmat("v28.mat");
mat29 = loadmat("v29.mat");
mat30 = loadmat("v30.mat");
mat31 = loadmat("v31.mat");
mat32 = loadmat("v32.mat");

decl nobs = 50; /* number of base observations (replicate
if greater than 50) */

nrep=10000; /* number of Monte Carlo simulations */

beta=<3.0;3.0;6.0;3.0>; /* true beta values */

gamma=<0.935;0.935;0.935;0.935>; /* true gamma values */
//gamma=<1.101;1.101;1.101;1.101>; /* true gamma values */

cfailure = 0; /* failure counter (maximum likelihood) */
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cfailure2 = 0; /* failure counter (Atkinson) */

cvz1 = quann(0.995); /* critical value 1% */
cvz5 = quann(0.975); /* critical value 5% */
cvz10 = quann(0.950); /* critical value 10% */

result = zeros(8,3); /* to save nonnull rejection rates */

ranseed("MWC_52"); /* pseudo-random number generator */
ranseed(1994); /* generator seed */

exectime = timer(); /* start counting time */

X=1~fabs(rann(nobs, 3)); /* matrix of regressors */

/* if necessary, replicate the covariates values (for n> 50) */
if(samplesize == 1){
X = X;
nobs = nobs;
}
else if(samplesize == 2){
X = X|X;
nobs *= 2;
}
else if(samplesize == 3){
X = X|X|X;
nobs *= 3;
}
else{
X = X|X|X|X;
nobs *= 4;
}

eta = X*beta; /* linear predictor */

P = invertsym(X’X)*X’; /* matrix P */
Pt = P’; /* transposed of matrix P */
H = X*P; /* matrix H (hat matrix) */
h = (diagonal(H))’; /* leverage measures */
weight2 = 1.0 ./ (1.0-h);
weight3 = 1.0 ./ ((1.0-h) .^ 2);
g = (nobs/4) * h;
g4 = g .> 4 .? 4 .: g;
weight4 = 1.0 ./ ((1.0-h) .^ g4);
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g4m1 = g .> 1.0 .? 1.0 .: g;
g4m2 = g .> 1.5 .? 1.5 .: g;
g4m = g4m1 + g4m2;
weight4m = 1.0 ./ ((1.0-h) .^ g4m);

svx_1 = X[][1]; /* covariate 1 */
svx_2 = X[][2]; /* covariate 2 */
svx_3 = X[][3]; /* covariate 3 */

sigmai2 = exp(X*gamma);

sigmai = (sigmai2).^0.5; /* standard errors */

lambda = double(maxc(sigmai2)/minc(sigmai2)); /* degree
of heteroskedasticity */

betahat = zeros(4, nrep); /* matrix to save OLS estimates */
betahat2 = zeros(4, nrep); /* matrix to save EGLS1 estimates */
betahat3 = zeros(4, nrep); /* matrix to save EGLS2 estimates */
betahathat = zeros(4, nrep); /* matrix to save EGLS3 estimates */

/* vectors used to save test statistics */
ztest = zeros(1, nrep); /* EGLS1 */
ztest1 = zeros(1, nrep); /* EGLS2 */
ztest2 = zeros(1, nrep); /* EGLS3 */
ztest3 = zeros(1, nrep); /* HC0 */
ztest4 = zeros(1, nrep); /* HC2 */
ztest5 = zeros(1, nrep); /* HC3 */
ztest6 = zeros(1, nrep); /* HC4 */
ztest7 = zeros(1, nrep); /* HC4m */

hmean = meanc(h); /* mean leverage */
count = sumc( h .> 3*hmean ); /* number of leverage points */

/* following: Monte Carlo Loop */
for(i=0; i<nrep; i++){

error = rann(nobs, 1); /* normal errors */
//error = (ranchi(nobs, 1, 10) - 10)/(sqrt(20)); /* chi-square errors
(10) */
//error = (ranchi(nobs, 1, 5) - 5)/(sqrt(10)); /* chi-square errors
(5) */
//error = (ranchi(nobs, 1, 2) - 2)/(sqrt(4)); /* chi-square errors
(2) */
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s_vy= eta + sigmai.*error; /* response vector */

olsc(s_vy, X, &temp); /* regression estimation */

betahat[][i] = temp; /* OLS estimates */

residual2 = (s_vy-X*temp).^2;

matrixtemp = residual2 .* Pt; /* matrix to be used in HCs */

HC0 = P * matrixtemp; /* HC0 */
HC2 = P * (matrixtemp .* weight2); /* HC2 */
HC3 = P * (matrixtemp .* weight3); /* HC3 */
HC4 = P * (matrixtemp .* weight4); /* HC4 */
HC4m = P * (matrixtemp .* weight4m); /* HC4m */

/* following: EGLS2 estimation procedure */
temp2 = P * (nobs*residual2 ./ (sumc(residual2) - 1)); /*
starting values for gamma */

S = zeros(4,1); /* score vector */

decl contador;
contador=0;

do{

++contador;

if( contador <= 1000 ){

S[0][0] = - sumc(1 - ((s_vy - X*temp).^2) ./ (exp(X*temp2)));
S[1][0] = sumc(X[][1] .* (((s_vy - X*temp).^2) ./ (exp(X*temp2)) - 1));
S[2][0] = sumc(X[][2] .* (((s_vy - X*temp).^2) ./ (exp(X*temp2)) - 1));
S[3][0] = sumc(X[][3] .* (((s_vy - X*temp).^2) ./ (exp(X*temp2)) - 1));

gammatil = temp2 + invertsym(X’X) * S; /* iterative scoring algorithm */

temp3 = temp;
temp4 = temp2;

si2 = exp(X*gammatil); /* sigma2 hat */
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weights = (1 ./ si2);

Ww=diag(sqrt(weights));
yw=Ww*s_vy;
Xw=Ww*X;

olsc(yw, Xw, &betaw); /* weighted regression */

temp = betaw;
temp2 = gammatil;

} /* end of if */

else{
++cfailure2;
break;
}

} while((norm((temp|temp2) - (temp3|temp4))^2 / norm((temp3|temp4))^2)
> (10^(-8)));

if(contador==1001){
i--;
continue;
}

betahat3[][i] = betaw; /* EGLS2 estimates */

What = diag(weights); /* matrix of weights */
covm2 = invertsym(X’*What*X); /* EGLS2 covariance matrix */

/* following: Harvey estimation procedure (two-steps) */
olsc(log(residual2), X, &alphachapeu); /* regression estimation */
alphachapeu[0] += 1.2704;
phi=diag(exp(X*alphachapeu));
betahathat[][i] = invertsym(X’*invertsym(phi)*X)*
(X’*invertsym(phi)*s_vy);
covm3 = invertsym(X’*invertsym(phi)*X); /* EGLS3 covariance matrix */

I = zeros(8,8); /* inverse of Fisher’s information matrix */

/* following: Harvey estimation procedure (maximum likelihood) */
vp = <5.0; 5.0; 5.0; 5.0; 5.0; 5.0; 5.0; 5.0>; /* starting values */
ir = MaxBFGS(floglik, &vp, &dfunc, 0, FALSE); /* BFGS with
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analytical gradient */

/* convergence check */
if( ir == MAX_CONV || ir == MAX_WEAK_CONV ){

I[0][0] = sumc(1 ./ exp(vp[0] + vp[1]*svx_1 + vp[2]*svx_2 +
vp[3]*svx_3));
I[1][0] = I[0][1] = sumc(svx_1 ./ exp(vp[0] + vp[1]*svx_1 +
vp[2]*svx_2 + vp[3]*svx_3));
I[2][0] = I[0][2] = sumc(svx_2 ./ exp(vp[0] + vp[1]*svx_1 +
vp[2]*svx_2 + vp[3]*svx_3));
I[3][0] = I[0][3] = sumc(svx_3 ./ exp(vp[0] + vp[1]*svx_1 +
vp[2]*svx_2 + vp[3]*svx_3));
I[4][0] = I[0][4] = I[5][0] = I[0][5] = I[6][0] = I[0][6] =
I[7][0] = I[0][7] = I[4][1] = I[1][4] = I[5][1] = I[1][5] =
I[6][1] = I[1][6] = I[7][1] = I[1][7] = I[4][2] = I[2][4] =
I[5][2] = I[2][5] = I[6][2] = I[2][6] = I[7][2] = I[2][7] =
I[4][3] = I[3][4] = I[5][3] = I[3][5] = I[6][3] = I[3][6] =
I[7][3] = I[3][7] = 0;
I[1][1] = sumc((svx_1.^2) ./ exp(vp[0] + vp[1]*svx_1 +
vp[2]*svx_2 + vp[3]*svx_3));
I[2][1] = I[1][2] = sumc((svx_1 .* svx_2) ./ exp(vp[0] +
vp[1]*svx_1 + vp[2]*svx_2 + vp[3]*svx_3));
I[3][1] = I[1][3] = sumc((svx_1 .* svx_3) ./ exp(vp[0] +
vp[1]*svx_1 + vp[2]*svx_2 + vp[3]*svx_3));
I[2][2] = sumc((svx_2.^2) ./ exp(vp[0] + vp[1]*svx_1 +
vp[2]*svx_2 + vp[3]*svx_3));
I[3][3] = sumc((svx_3.^2) ./ exp(vp[0] + vp[1]*svx_1 +
vp[2]*svx_2 + vp[3]*svx_3));
I[3][2] = I[2][3] = sumc((svx_2 .* svx_3) ./ exp(vp[0] +
vp[1]*svx_1 + vp[2]*svx_2 + vp[3]*svx_3));
I[4][4] = nobs/2;
I[5][5] = 0.5*sumc(svx_1.^2);
I[5][4] = I[4][5] = 0.5*sumc(svx_1);
I[6][4] = I[4][6] = 0.5*sumc(svx_2);
I[7][4] = I[4][7] = 0.5*sumc(svx_3);
I[6][6] = 0.5*sumc(svx_2.^2);
I[6][5] = I[5][6] = 0.5*sumc(svx_1 .* svx_2);
I[7][5] = I[5][7] = 0.5*sumc(svx_1 .* svx_3);
I[7][6] = I[6][7] = 0.5*sumc(svx_2 .* svx_3);
I[7][7] = 0.5*sumc(svx_3.^2);

I2 = invertsym(I);
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betahat2[][i] = vp[4:]; /* estimates of maximum likelihood */

/* EGLS test statistics */
ztest[0][i] = (betahat2[2][i] - beta[1]) / sqrt(I2[2][2]);
/* EGLS1 */
ztest1[0][i] = (betahat3[2][i] - beta[1]) / sqrt(covm2[2][2]);
/* EGLS2 */
ztest2[0][i] = (betahathat[2][i] - beta[1]) / sqrt(covm3[2][2]);
/* EGLS3 */

/* quasi-t test statistics */
olsnumerator = betahat[2][i] - beta[1];
ztest3[0][i] = olsnumerator / sqrt(HC0[2][2]); /* HC0 */
ztest4[0][i] = olsnumerator / sqrt(HC2[2][2]); /* HC2 */
ztest5[0][i] = olsnumerator / sqrt(HC3[2][2]); /* HC3 */
ztest6[0][i] = olsnumerator / sqrt(HC4[2][2]); /* HC4 */
ztest7[0][i] = olsnumerator / sqrt(HC4m[2][2]); /* HC4m */

} /* end of if */

else{
++cfailure;
--i;
} /* end of else */
} /* end of the Monte Carlo loop */

result[0][0] = sumr(fabs(ztest[0][]) .> mat1[0][0])/nrep*100;
/* EGLS1 1% */
result[1][0] = sumr(fabs(ztest1[0][]) .> mat1[1][0])/nrep*100;
/* EGLS2 1% */
result[2][0] = sumr(fabs(ztest2[0][]) .> mat1[2][0])/nrep*100;
/* EGLS3 1% */
result[3][0] = sumr(fabs(ztest3[0][]) .> mat1[3][0])/nrep*100;
/* HC0 1% */
result[4][0] = sumr(fabs(ztest4[0][]) .> mat1[4][0])/nrep*100;
/* HC2 1% */
result[5][0] = sumr(fabs(ztest5[0][]) .> mat1[5][0])/nrep*100;
/* HC3 1% */
result[6][0] = sumr(fabs(ztest6[0][]) .> mat1[6][0])/nrep*100;
/* HC4 1% */
result[7][0] = sumr(fabs(ztest7[0][]) .> mat1[7][0])/nrep*100;
/* HC4m 1% */

result[0][1] = sumr(fabs(ztest[0][]) .> mat1[0][1])/nrep*100;
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/* EGLS1 5% */
result[1][1] = sumr(fabs(ztest1[0][]) .> mat1[1][1])/nrep*100;
/* EGLS2 5% */
result[2][1] = sumr(fabs(ztest2[0][]) .> mat1[2][1])/nrep*100;
/* EGLS3 5% */
result[3][1] = sumr(fabs(ztest3[0][]) .> mat1[3][1])/nrep*100;
/* HC0 5% */
result[4][1] = sumr(fabs(ztest4[0][]) .> mat1[4][1])/nrep*100;
/* HC2 5% */
result[5][1] = sumr(fabs(ztest5[0][]) .> mat1[5][1])/nrep*100;
/* HC3 5% */
result[6][1] = sumr(fabs(ztest6[0][]) .> mat1[6][1])/nrep*100;
/* HC4 5% */
result[7][1] = sumr(fabs(ztest7[0][]) .> mat1[7][1])/nrep*100;
/* HC4m 5% */

result[0][2] = sumr(fabs(ztest[0][]) .> mat1[0][2])/nrep*100;
/* EGLS1 10% */
result[1][2] = sumr(fabs(ztest1[0][]) .> mat1[1][2])/nrep*100;
/* EGLS2 10% */
result[2][2] = sumr(fabs(ztest2[0][]) .> mat1[2][2])/nrep*100;
/* EGLS3 10% */
result[3][2] = sumr(fabs(ztest3[0][]) .> mat1[3][2])/nrep*100;
/* HC0 10% */
result[4][2] = sumr(fabs(ztest4[0][]) .> mat1[4][2])/nrep*100;
/* HC2 10% */
result[5][2] = sumr(fabs(ztest5[0][]) .> mat1[5][2])/nrep*100;
/* HC3 10% */
result[6][2] = sumr(fabs(ztest6[0][]) .> mat1[6][2])/nrep*100;
/* HC4 10% */
result[7][2] = sumr(fabs(ztest7[0][]) .> mat1[7][2])/nrep*100;
/* HC4m 10% */

/* printing of basic information */
print("\n");
println( "\t\t OX PROGRAM: ", oxfilename(0) );
println( "\t\t OX VERSION: ", oxversion() );
println( "\t\t NUM. REPLICATIONS: ", nrep );
println( "\t\t NUM. OBSERVATIONS: ", nobs );
println( "\t\t DATE: ", date() );
println( "\t\t TIME: ", time() );

/* printing results */
println("\nLAMBDA: ", lambda);



APPENDIX B - POWER SIMULATION 68

println("\nTRUE GAMMA VALUES: ", gamma);
println("\nMAXIMAL LEVERAGE: ", double(maxc(h)));
println("\nTHRESHOLD (3*p/n): ", double(3*hmean));
println("\nNUM. OBSERVATIONS > 3*p/n: ", "%2.0f", double(count));
println("\nNONNULL REJECTION RATES FOR n=", nobs, ":\n", "%c",
{"1%", "5%", "10%"}, "%r", {"EGLS 1", "EGLS 2", "EGLS 3", "HC0",
"HC2", "HC3", "HC4", "HC4m"}, "%8.2f", result);

println("NUMBER OF CONVERGENCE FAILURES EGLS1: ", cfailure);

println("NUMBER OF CONVERGENCE FAILURES EGLS2: ", cfailure2);

println("\nEXECUTION TIME: ", timespan(exectime)); /* runtime */

print("\n");

}


