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Abstract

We are proposing a new formulation of circuit theory, taking in consideration its physical
distribution in the space. For doing this we will use some concepts of the algebraic topology.
Names as Hermann Weyl and Steve Smale did important contributions showing these
connections between the theory of circuits and the theory of algebraic topology. In this
work, we will go to consider an electrical circuit as a graph or as a one-dimensional complex,
where the domain of the boundary operator 0 is the vector space C generated by the
branches (wires of the circuit) and its codomain is the vector space Cj generated by the
nodes. In chapter 3, the Kirchhoff ’s current law will be reformulate to the concise formula
Jl = 0 and the Kirchhoff ’s potential law will be reformulate to the concise formula
V = —d¢, where d : C° — C" is the coboundary map. The methods of mesh-current and
node-potential are also discussed in this chapter, as well as a conclusive analysis of the
existence and uniqueness of solutions for the electric circuit equations too is realized. In
chapter 4 we will study some alternative methods for solving electric circuit equations.
The Weyl’s method makes use of orthogonal projection operators and this method is
summarized by the formula 7 = o(sZ0) 'sZ. The Kirchhoff’s method uses graph theory

to find the values of voltages and electric currents and will be given by p) = Rflz QTpr.
T
The Green’s reciprocity theorem exposes symmetries for some resistive circuits. In chapter

5, we will treat circuits where their branches have at most a battery in series with a
capacitor. Here, the Gauss’ Law will be reformulated to 0Q) = —p, and the Poisson’s
equation will be reformulated to —9Cd¢ = —p. In this chapter, we too study the Dirichlet

problem, ending with the study of Green’s functions.

Key-words: electric circuits and algebraic topology. electric circuits.smale.mathematical

physics. electromagnetism.



Resumo

Estamos propondo uma nova formulacio da teoria dos circuitos, levando em consideracao
a sua distribuicao fisica no espaco. Para fazer isto, usaremos alguns conceitos da topologia
algébrica. Nomes como Hermann Weyl e Steve Smale fizeram importantes contribuicoes
mostrando essas conexoes entre a teoria dos circuitos e a da topologia algébrica. Neste
trabalho, nés consideraremos um circuito elétrico como um grafo ou um complexo unidi-
mensional, onde o dominio do operador fronteira 9 é o espago vetorial C; gerado pelos
ramos (fios do circuito), e o seu codominio é o espago vetorial Cy gerado pelos nés. No
capitulo 3, a lei das correntes de Kirchhoff serd reformulada para a férmula concisa 01 = 0
e a lei das voltagens de Kirchhoff sera reformulada para a féormula concisa V' = —d¢, onde
d: C° — C* é a aplicacdo cofronteira. Os métodos da corrente na malha e do potencial nos
nos sao também discutidos neste capitulo, bem como uma andlise conclusiva da existéncia
e unicidade das solugoes para as equagodes dos circuitos elétricos é também realizada. No
capitulo 4, estudaremos alguns métodos alternativos para resolver equagoes de circuitos
elétricos. O método de Weyl faz uso de operadores para projecao ortogonal e este método
resume-se a formula m = o(sZo)"'sZ. O método de Kirchhoff usa a teoria de grafos para

encontrar os valores de tensoes e correntes elétricas e sera dado por py = Rilz Qrpr- O
T
teorema da reciprocidade de Green expoe simetrias para alguns circuitos resistivos. No

capitulo 5, vamos tratar circuitos onde seus ramos tém no méaximo uma bateria em série
com um capacitor. Aqui, a Lei de Gauss sera reformulada para 0Q) = —p, e a equacao de
Poisson sera reformulada para —9Cd¢ = —p. Neste capitulo, nés também estudamos o

problema de Dirichlet, terminando com o estudo das func¢oes de Green.

Palavras-chaves: circuitos elétricos e topologia algébrica. circuitos elétricos. smale. fisica-

matematica. eletromagnetismo.
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1 INTRODUCTION

The circuit theory is an approximation of the theory of electromagnetism, where
the interest is almost all concentrated in terms of what happens along the wires and nodes
of the circuit. The biggest benefit of the development of any theory is, as you might expect,
make predictions about the values of its main parameters. In our case, the fundamental
quantities in an electrical circuit are: electric charge(Q), energy and electric potential (¢),
and thereafter electric currents (I), voltages (V') and electric power (Pot). So this will
always be the first goal to be achieved when we thinking about a circuit theory. What we
are proposing here is a new formulation of circuit theory, making further consideration
about its shape, i.e., doing better observation of how the wires are interconnected. We
also intend from the behavior of each branch of the circuit, try to make generalizations
about the behavior into the entire circuit. The mathematical tools used in this work are:

linear algebra, graph theory and algebraic topology.

Well known names worked in the grounds of the vision of circuit theory via algebraic
topology. We will mention some of these names. Kirchhoff, as we will see soon in this work,
made important considerations about the topology of the circuit. Maxwell considered that
the topology could have an important role in the formulation of electromagnetic boundary
value problems, although it has not been exploited by him. But it was Weyl with its
articles (WEYL, 1923) and (WEYL, 1924) that not only established the connection between
circuit theory and algebraic topology, but also helped to justify the own theory of algebraic
topology (still discredited among mathematicians), called by him of Combinatorial analyzes
situs. After this, Steve Smale with his article (SMALE, 1972) makes important aplications

this new perspective to study dynamical systems associated with electrical circuits.

Now, we will briefly comment about the chapters of this work. Chapter 2 is
devoted to a brief review of topics of linear algebra that are essential and indispensable
to the proper understanding on whole text. The main references were (BAMBERG;
STERNBERG, 1988), (LANG, 1987) and (HOFFMAN; KUNZE, 1971).

Chapter 3 is where we introduce the concepts of graph theory and algebraic
topology in the study of electrical circuits, i.e., this chapter is essential for understanding
the following chapters. Branches and nodes, for example, constitute an one-dimensional
complex, a fundamental concept in topology. With this will conquer a new perspective to

study a circuit.

Chapter 4 is devoted exclusively to resistive circuits and present more two methods
to solve the equations of an electrical circuit. The first of these methods was thought by

Weyl and makes use of orthogonal projections. It is a creative way to associate geometric
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notions to solve the equations of electric circuits. The other method was created by
Kirchhoff and uses graph theory (specifically maximal trees) to find the Weyl’s orthogonal
projection. It is extremely elegant the way that Kirchhoff thought graph theory in the
study of eletrical circuits. We conclude this chapter with the Green’s reciprocity theorem,
where is possible to find symmetries in resistive circuits which apparently has not any

symmetry.

Chapter 5 deals with capacitive circuits. The most interesting aspect of this study
is precisely the notion of discretization of electrostatics. Here we find the discrete versions
of Gauss’ Law, Poisson equation, Laplace equation and Dirichlet problem , concluding the
chapter with a discrete version of Green’s functions. At this point opens up the future
possibility of adapting this new theory for the continuous version, thereby covering the

whole electromagnetism, not just the fraction destined to circuit theory.

Our work has (BAMBERG; STERNBERG, 1990) as the main reference, but
several contributions were made, or in mathematics organization of ideas discussed, or in
mathematical demonstrations where there were only categorical statements, or adding new
definitions and propositions. As examples of this, we cite the following contributions to the
Chapter 2: generalization of the operator 0 (page 22), the diagram on page 33, helping the
overall view of the matter, the definition 3.73, the lemma 3.74, corollaries 3.53, 3.54, 3.69,
3.71, theorem 3.70 (demonstration omitted from the book). In Chapter 3 we mention the
contributions of lemmas 4.15, 4.17, corollary 4.31 and propositions 4.4, 4.6, 4.14 and 4.32.
No Chapter 4 there were several contributions: remarks 5.25, 5.33, definitions 5.30, 5.34,
lemmas 5.2, 5.5, 5.6,5.23, corollaries 5.9, 5.32, 5.35, proposition 5.16 (full demonstration),
5.20 (full demonstration), 5.26, 5.31, theorem 5.8 and finally an adjustment in the sign of

Green'’s second formula.
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2 A BRIEF REVIEW OF LINEAR
ALGEBRA

2.1 Vector Space

Definition 2.1. A vector space over a field K is a set V on which are defined two

operations

+: VxV = V and o KxV =V
(u,v) — u+v (c,v) = cv

called addition and scalar multiplication, satisfying the following properties:

(Al) (u+v)+w=u+(v+w), Vuv,welV,

(A2) u+v=v+u Yuvey,

(A3) J0e€V |[v+0=0+v=v,VveY

(Ad) VueV, dveV|u+v=v+u=0, (2.1)
(M1) lv=v, 1€ K, VvelV,

(M2) (bc).v=0b.(cv), Vbce K, ¥VveYV,

(M3) a.(u+v)=au+av,Vace K, Vuvev,

(M4) (b+c)v=bv+cv, VbceK, VvelV.

Definition 2.2. A subset W of V is a vector subspace of V if:

(i) W #0,
(i) ,veW =u+veW,
(iii) ae K, ue W=auel.

Remark 2.3. We will work only with finite dimensional vector spaces.

2.2 Linear Transformations

Definition 2.4. A linear map(or linear transformation) from V' to W is a function

T :V — W with the following properties

(i) T(v+w)=T(v)+T(w),
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(i) T(W) = AT(v).

Definition 2.5. Let T': V' — W be a linear map. The kernel of T, denoted by ker T,
is defined by:
ker T:={veV |T(v)=0}.

Definition 2.6. Let T : V — W be a linear map. The range of T, denoted by Im T, is
defined by:
ImT :={T(v)|veV}

Theorem 2.7. Let T : V — W be a linear map. Then:

dim V = dim kerT + dim ImT (2.2)

Proof. Vide (LANG, 1987). O

2.3 Quotient space

Definition 2.8. Let V' be a vector space and let W be a subspace of V. Given a vector

v € V, we define ¥ as being the set:
vi={v+w|weW} (2.3)
v is called equivalence class of v module W.

Definition 2.9. Let us define the following operations between equivalence classes and

scalars:

V+W = vV+Ww
cv = ¢v ,VceR

Remark 2.10. The above operations are well defined, that is, they don’t depend on the

choice of the class representatives.

Lemma 2.11. The set of equivalence classes equipped with the above operations determine

a vector space. This space is called quotient space of V in W, and is denoted by V/W.

Proof. Just check the axioms 2.1. We will check one of these axioms.

Commutativity:

V+W=V+W=WF+V=W+V. O
Theorem 2.12. If T :V — W is a linear map, then:
V/ker(T) = Im(T)

Proof. Vide (HOFFMAN; KUNZE, 1971). O
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Proposition 2.13. dim V/W = dim V — dim W.

Proof. Let By = {w1,...,w,} be a basis of W. Completing this basis, we have [, =
{wi,...,ws,uy,...,u;} a basis of V. To complete the proof, we need to prove that
{uy,...,q;} is a basis of V/W.

Let v € V/W, then:

V= Wi QW F o g =

W] + -+ W g + - 0 = iU+

Therefore, {uy,...,u;} is a generator set of V/W.

Now, we will show that {uy,...,u,} is linearly independent.

alﬁl—l—”-—i—atﬁt:ﬁ:alul—l—-”—l—oztut
:>C(1ul+"'+06tut:£1W1+"'+€3Ws
= o+ o —§wy — s = Ewy =0

== =§==§=0

2.4 Direct sums

First, let’s define direct sums of two subspaces.

Definition 2.14. Let W;, W5 be subspaces of V. When W) N W, = {0}, we say that the
sum W = W; + W, is direct, or W is a direct sum of W7 and W5 , and write W = W; @ W,.

Now, we wish to consider direct sums of several subspaces. For this, we need a

concept of independence of subspaces.

Definition 2.15. Let W7, ..., W} subspaces of a vector space V. We say that Wy,..., W,

are independent if:

vi+-+vy=0, vyeW, fori=1,....,k=v;=0, fori=1,...,k

Theorem 2.16. Let V' be a vector space over a field F'. Let Wy, ... Wy be subspaces of
Voand let W =Wy + - -- + Wy. The following conditions are equivalent.

(i) Wi,..., Wy are independent.
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(7i) Each vector v.€ W is written uniquely as
V=V|+- -+ Vg
where v, € Wy, fori=1,... k.

(iii) For each j,2 < j <k, we have W; N(Wy + --- + W;_1) = {0}.

Proof. (i)=(ii). Let v=v; +---+ v and v = wy + - -- + Wy, where v;, w; € W, for
7 =1,...,k, then:

V1+“‘+Vk = W1+"'+Wk
(Vl—W1)+"'+<Vk—Wk) =0
From (i), we have (v; —w;) =0=v; =w;, fori=1,... k.
(il)=(iii). If w; = wy + --- + w;_q, with w; € W;, Vi, we have 0 + --- + 0 + w; =

w1 + -+ + w;_1 + 0. Therefore, by (ii), we have that w; =--- =w,_; = w; = 0.
(ili)=(i).Let wy + - - - +wy, = 0 and consider j the largest integer such that w; # 0. Then:

W] :—Wl—..._wj_l
By (iii), we have w; = 0, which is a contradiction. H

Definition 2.17. If one (and hence all) of the three conditions of theorem 2.16 hold for
Wy, ..., Wy, we say that the sum W = W; 4 --- 4+ W}, is direct or W is the direct sum
of Wi... Wy, and we write W =W, & --- d Wy.

Theorem 2.18. Let V' be a vector space over the field F' and let W1y, ..., W} be vector

subspaces of V.. The following two statements are equivalent:

(ii) If B; is a basis of W, fori=1,... k, then B, such that B =, B;, is a basis of
V.

Proof. (i)= (ii). Let B; = {us1, ..., w4, } be a basis of W, for i =1,..., k. We will show
that B = U, B; is a basis of V.

First, the vectors of B generate V since any v € V = v = vy + -+ 4+ Vi, with

ko dn
Z ciju;j, Vi. Therefore, v = Z Z CnjUp;
7=1 n=1j=1
k dn
Second, the vectors are L.I. because Z Z CnjUy; = 0, and how sum is direct, we have
n=1j=1

Zcijuzjzﬂ, for1<i<k=c¢;=0for1<i<kandl<j<d,.
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(ii)=(i).First, as B is a basis, your vectors generate V. Then:

V=W +-+W,

To prove that the sum is direct, just observe the definition (2.17) and use the item (i) of

Theorem 2.16 , because, since the vectors of B are L.I, we have as consequence that:

k
dvi=0=v;i=0,i=1,...k

=1

Corollary 2.19. If V=W @& --- & Wy, then dim V= dim Wy+...+ dim W.

Proof. 1t is a direct consequence of Theorem 2.18, item(ii) . [

2.5 Orthogonal Complement

Definition 2.20. Consider a vector space V equipped with an inner product <, > and

consider a non-empty subset S of V. Then:
Steomnl .= £y € V' | v is orthogonal to all vectors of S} (2.4)
Lemma 2.21. Stems! 45 g vector subspace of V, even if S is not a subspace of V.

Proof. Just check the conditions of definition (2.2). O

Proposition 2.22. If S is a vector subspace of V', then:
V =8 @ Gteomnl (2.5)

and S+teomrl s called orthogonal complement of S.

Proof. The sum is direct since S N Steomel = 0. In fact, let v € SN Steompl, So < v, v >=
0=v=0. Nowlet Bg ={vy,...,v,} be an orthogonal basis of S. Completing this basis

and using the Gram-Schmidt method, we find By = {vy,...,v,,uy,...,us} an orthogonal

basis of V. To conclude the proof, we show that Bgi.,., = {ui,...,us} is a basis of

Steompl In fact, let w € Steempl then < w,v; >=0toi=1,...,7r. Then:
w=0vi+---+0v,+ar.u;+ -+ asu, (2.6)

With (2.6), we prove that By, is a generating set. That is a linearly independent set

follows immediately, since By o, C By O
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2.6 Projections

Definition 2.23. Let V be a vector space and P : V — V a linear operator. P is a
projection of V onto Im P if Po P = P.

Definition 2.24. Let V be a vector space with inner product. The projection P : V — V
of V on W is called orthogonal if the kernel of P is the orthogonal complement of W,
i.e., ker P = Wtcompl,

Proposition 2.25. The orthogonal projection P :V — V of V on W ezists and is unique.

Proof. Let {wy,...,w;} be an orthogonal basis of the subspace W. Knowing that V' =
W @ Wteomel then:

PY) =3

Wil <v,w; >Ww;, YveV. (2.7)
=1 (

2.7 Linear Functionals

2.7.1 Dual Vector Space

Definition 2.26. If V is a vector space over a field R, a linear functional on V is a

linear transformation of V' in R.

Definition 2.27. The space of all linear functionals of V' will be denoted by V* and called
the dual space of V.

Proposition 2.28. The set V*, with the following operations
(a+p8)(v) = av)+p8(v),VveV
(ca)(v) = ca(v),VeeR, VveV
with o, B € V*, is a vector space over R.

Proof. Just check the axioms in definition (2.1) that define a vector space. Let’s check

only one, and leave the rest as an exercise.

e Additive inverse element: V o € V* 4 — a € V* such that

(a—a)(v)=a(v)—a(v)=0=—a(v)+a(v) = (—a+a)(v), Vvel.
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]

Definition 2.29. Let {vy,...,v,} be a basis of the vector space V. The linear functional

v’ : V — R is defined as follows:

1, ifi=j,
Vi(Vj):

0 , ifi#j.

Theorem 2.30. If {vy,...,v,} is a basis of the vector space V, then {v', ... v"} is a

basis of the dual vector space V*.

Proof. Let us first show that {v!,... v"} is a generator set of V*. Let f € V*. Then we

have:

fva) = ka

VveV, da; €Rsuch that v = Zaivi. Then, we have:

=1

1) =1 (Lam) = s,
i=1 i=1
Therefore:
f(V) = a1k + -+ apky. (2.8)

We claim that:
f=rvi4 RV (2.9)

Indeed: (kiv!+ -+ 4+ K, v?)(V) = KvEH(V) + -+ K, V(V) = anky + -+ + Qphin.
Then by (2.8), we have that the identity (2.9) is true. Now, it suffices to show that

{vl,...,v"} is a linearly independent set. Indeed, from:

we have: .
(Z ozivi)(vj) =05 = O(Vj) = 07 for ] = ]_, e, N
i=1

Corollary 2.31. dimV = dim V*

Proof. Direct consequence. O]
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2.7.2 New Notation

We now introduce a new notation that will appear somewhat strange at first, but
will prove suggestive when the transition from the discrete case to the continuous case is
made, using, for example, the Stokes’ theorem. In this work, we will only deal with the

discrete case, nevertheless we introduce this notation, to ensure a future perspective.

Let v € V such that its coordinates in some basis By is v = (vy,...,Vv,) and let
« € V* such that its coordinates in the dual basis By« is a = (a!,...,a™). Then:
a(v) = / a=a'vy+---+a"v,. (2.10)

Remark 2.32. Obviously in the equation (2.10) it doesn’t appear an integral as usual.
It’s just a way of represent the calculation of the linear functional on its associated vector

space.

2.8 Annihilator

Definition 2.33. Let W be a subspace of V. The annihilator of W is a subset W+ of
V* formed by linear functions o € V* such that

aw)=0,VwelW
Lemma 2.34. W+ is a vector subspace of V*.

Proof. Let us verify the conditions of definition (2.2).

(i) Wt # 0 because 0 € W+(zero function).
(ii) o, B € W+. Then
(a+B)(w)=a(w)+8(w)=0, VweW
Therefore o + 3 € W+,
(iii) ¢ € R, o € W+ Then:
(ca)w)=ca(w)=c0=0,VwelW

Therefore c.ac € W+.

Proposition 2.35. dim V= dim W + dim W+.
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Proof. Let By = {w1,...,w,} be a basis of W. Completing this base, we have 8y =

{wi,...,W,,uy,...,u,} is a basis of V. By theorem 2.30, we have By~ = {w!, ... w",
ul ... u’} is a basis of V*.To conclude the proof, just show that the set Sy =
{ul, ..., u®} form a basis of the annihilator W+.

First, we will check that the set 3y, . is a generator set of W+. Let f € W+, then
f(w;) =0, toVw; € By, i.e, f nullifies all elements of basis of W. Therefore:

f=0w+ -+ 0w +apu + -+ a,u’. (2.11)

The verification that the set is linearly independent is immediate, since [y C

B+ L

2.9 Adjoint transformation

29.1 A and A*

Definition 2.36. Let V' and W be vector spaces, and let A : V — W be a linear
transformation. We define the adjoint of A as being the function A* : W* — V* such
that:

A'(a) =aocA, YaeW”" (2.12)

Lemma 2.37. The adjoint A* : W* — V* defined above is a linear transformation.
Proof. For By, 8, € W* and aq, as € R, we have:

A* (1B + agfz) = (1 + aefla) 0 A= i (Bro A) + aa(fr 0 A) = a1 A*(B1) + a A™(Ba).
O

Theorem 2.38. The matrices of A : V. — W and A* : W* — V* (with respect to a
certain basis of V- and W, and the corresponding dual bases of V- and W ) are the transpose
of each other.

Proof. Let By = {vi,..., v}, Pw = {wi,...,w,} basis of V and W | respectively, and
let By = {v',...,v"}, By~ = {w! ..., w"} be the corresponding dual basis of V* and
W*. We have: .

Alvy) = agwi, Yji=1,...,m (2.13)

i=1
The scalars a;; are the entries of the matrix A.
Note that:

as; = w(A(v))) (2.14)
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Let us now consider the matrix’s representation of A*:
m
AW = bvt, Vi=1,...,n (2.15)
k=1

The scalars by; represent the entries of the matrix A*.
Applying A*(w') in the vector v;, , and using (2.15), (2.12) and (2.14), we find:

A (W) (v)) = bj = W'(A(v;)) = ay

Therefore:
b‘l = Q. (216)

J

2.9.2 Maps 7 and ¢*

Consider W a vector subspace of the vector space V.

W : 1%

-] B

7 and ¢* are adjoint maps.
Definition 2.39. For every f € VV* and for all v € V, we have:

(f+WH(v) = {f(v) +g(v) [ g€ W}

Proposition 2.40. Let i: W — V be the inclusion map and w:V* — V*/Wt

W = W vV — VvV
the projection map. Then i and 7 are adjoint maps, i.e., i* = .

Proof. VW € V* and V w € W, by definition 2.39 we have:
Poi(w) =T¥(w) = (T +W)(w) = m(T)(w)

Therefore, we have:
Yoi=m(P).

]

Proposition 2.41. Let i:W — V the inclusion map and * : V* — V*/W its

W o= W
adjoint transformation. Then ¢* is the projection map.
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Proof. For Vw e W and V a € V*, we have:
(a)(w) = a0 i(w) = a(w)
On the other hand, by definition 2.39, we have:
i*(a)(w) = (8 + W) (w) = B(w), for some 3 € V*.

Therefore a(w) = B(w), Vwe W = f—a e Wt = 3 =a+ W O

2.10 Some Important Results

Proposition 2.42. Wt = (V/W)*.

Proof. Just build an isomorphism between W+ and V/W*. For this, consider the following

bases:

Bw = {wi,...,ws} (2.17)

By = {wWi,...,We,uy,..., 0} (2.18)
Byyw = {U,..., U} (2.19)
By~ = {w', ..., w'} (2.20)
By« = {w', ..., w'ul,...  u'} (2.21)
Boywy = {u',...,u"} (2.22)
Byt = {u',... u'} (2.23)
Byejwe = {W',...,W°} (2.24)

Now, define the linear transformation:
Wt = (V/W)
v w
This linear transformation takes the basis (2.23) to the basis (2.22) . Moreover,

by corollary 2.31, by proposition 2.13 and by proposition 2.35, we have dim W!=dim
(V/W)*. Therefore, v is an isomorphism. O

Proposition 2.43. V*/W+ = W~

Proof. Similarly, define the linear transformation:
VW = (VW
wl o= W
This linear transformation takes the basis (2.20) on basis (2.24). Moreover, by corollary

2.31, by proposition 2.13 and by proposition 2.35, we have dim W*=dim V*/W=. Therefore,

1 is an isomorphism. O
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Proposition 2.44. Let A* : W* — V* be an adjoint transformation of A .V — W. Then

the following equalities are valid:

Im(A)* = ker(A*), (2.25)

ker(A)* = Im(A"). (2.26)
In particular, if A is injective, then A* is surjective, and conversely, if A* is injective, A

18 surjective.

Proof. Let us prove the equality (2.25).
If g € ker(A*), we have:

BoA(v)=A"(p)(v)=0(v)=0, VveV
So ker(A*) € Im(A)*. Now consider o € Im(A)*, then:
a(A(v) =0, YveV=(A)(v)=0, VveV =A"a=0= ac ker(A").

Therefore Im(A)*+ C ker(A*)
Let us now prove the equality (2.26).

Let 8 € Im(A*), then 3 o € W* such that § = A*(«). Therefore, V v € ker(A),
we have:
B(v) = A*(a)(v) = a(A(v)) = a(0) = 0 = 5 € ker(A)"

So Im(A*) C ker(A)*.

We will now show the inverse inclusion. Let Bye,a = {uy,...,u,}. . Completing
this basis, we have By = {uy,...,u,,vy,...,v,}. For f € ker(A)* and V a € W*, we
have:

(A%a)(u5) = a(A(u;)) = a(0) = 0 = f(u;), V u; € By 4 (2.27)

As a consequence of Theorem 2.2, we have that {A(vy),..., A(vy)} is a L.I set.
So choosing v € W* such that

YAW)) = f(vi), i=1,...,s (2.28)
we have, for (2.27) and (2.28), that :

A*(v)

f.

Therefore, ker(A)* C Im(A*). O
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3 ALGEBRAIC TOPOLOGY IN
THE ANALYSIS OF ELECTRI-
CAL CIRCUITS

Introduction

In this chapter, we present an unorthodox approach to the analysis of electrical
circuits using tools from algebraic topology and graph theory . An electrical circuit is
seen as a graph as well as a one-dimensional complex, where the domain of the boundary
operator is the vector space generated by the branches (wires of the circuit) and its
codomain is the vector space generated by the nodes. An electric circuit has homology and
cohomology groups. Kirchhoff ’s laws have a concise and elegant formulation through the
boundary and coboundary maps. The methods of mesh-current and node-potential are
also discussed, as well as a conclusive analysis of the existence and uniqueness of solutions
for the circuit equations. This approach allows us to analyze electrical circuits by making

effective considerations about its shape.

3.1 Elements of Graph Theory

Definition 3.1. A branch is a line segment or oriented arc. The ends of the branch are

called nodes.

Definition 3.2. A path is a sequence of nodes and branches such that the end node of a

branch is the starting node of the next branch.

Definition 3.3. A path is closed if the starting node of its first branch coincide with the

ending node of its last branch.

Definition 3.4. A path is simple if all elements of the succession of nodes and branches
are distinct, that is, they are "covered" only once (except the first and last nodes of a
closed path).

Definition 3.5. A mesh is a simple closed path.

Definition 3.6. The collection formed by branches and nodes is called a one-dimensional

complex.

We will treat the circuits as graphs, as we see in figure 1.
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Figure 1 — Real circuit versus Topological circuit.

3.2 Structure of Vector Space

Consider a circuit with the following set of branches {a, aa, . . ., o, }. We represent

each branch as follows:

a, =(0,0,...,1).

With this representation, we can generate a vector space whose canonical basis are the
branches of the circuit. This vector space will be denoted by C}.

Definition 3.7. The vector space (] is called space of the one-chains.

Remark 3.8. As a consequence of the above, we have dim €} = number of branches of

the circuit.

Likewise, consider the set {A1, Ay, ..., Ay} of nodes of the circuit. We represent
each node as follows:

With this representation, we can generate a vector space whose canonical basis are the

nodes of the circuit. This vector space will be denoted by Cj,.
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Definition 3.9. The vector space () is called space of the zero-chains.

Remark 3.10. As a consequence of the above, we have dim Cy = number of nodes in the

circuit.

Example 3.11. Consider the circuit of Figure 2. From the above, we have:

Figure 2 — Circuit’s graph.

a=(1,0,0,0),8 = (0,1,0,0),~ = (0,0,1,0),8 = (0,0,0,1).
The set {a, B,7,d} forms a basis of Cj.

A = (1,0,0),B = (0,1,0),C = (0,0,1)
The set {A, B, C} forms a basis of Cj

In this new approach, we may, for example, represent the current vector I € C} and
the potential vector ¢ € () as follows:

I=(ly,1p,1,,15) = oo+ 138 + Ly + 156,

@ = (¢4, 9B, 90c) = ¢4 A+ ¢p B+ ¢c C.

We can also represent the meshes M; and M, as follows:
M; =(1,1,0,1) = lae + 18 + 0y + 19,
M, = (0,-1,1,0) = 0cx — 18 + 1y + 0.

Remark 3.12. Note that meshes can only have as coordinates +1 or zero. This is a

consequence of the fact that the meshes are simple paths.
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3.3 Boundary and Coboundary Maps

Definition 3.13. We define the boundary map 0 : €| — Cj as the linear transforma-

tion such that:

Ok =B — A. (3.1)

where x is any branch of the circuit and A and B are, respectively, the start node and end
node of this branch.

Generalizing the concept for any K = (kq, k3, Ky, ... ) € C1, we have:
K =L,
where L = (L4, Lp, L¢,...) € Cy, where, for example, L, is equal to:

La= (ks + -+ Ks)— (Key + -+ Ke,) (3.2)

go to A leave A

To show how compute (3.2) from (3.1), consider the following sets:

{61,...,0;}, set of all branches that have A as a final node. (3.3)

{€1,...,&}, set of all branches that have A as a initial node. (3.4)

Then:

l

t
O(Ks, 01 + -+ + k5,01 + K1 + -+ + K e) = > k5,0(0:) + D ke, 0(¢5).
i=1 j=1

And, from (3.1), (3.3) and (3.4), we have:

! ¢ ! ¢
Z ks, 0(8;) + Z ke, 0(€5) = Z ks, (A — Bys,) + Z ke, (Be, — A) (3.5)
=1 7=1 =1 j=1

where Bj, is the inicial node of the branch d; and B, is the final node of the branch ;.

Then, isolating the node A in (3.5), we find (3.2).

Example 3.14. Calculating L4 in the following circuit’s node, we have:

Ly=Ky,— Ko — Ky.

Definition 3.15. We denote by Z; the kernel of the boundary map 0. The elements

of Z; are called cycles.
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KEle>0K:0,
Zy; C Ch.

Example 3.16. Every mesh is a cycle, but not every cycle is a mesh. This example

emphasizes this fact.

We have that M; = (1,1,0,1) and My = (0,—1,1,0)

e M, M,, 1€ 7, that is, are cycles.

e M; and M are meshes, however I isn’t a mesh.

Definition 3.17. We denote by B, the image of the boundary map 0. We call Bj the
space of boundaries: 0C, = By C (.

Definition 3.18. We denote by C*' the dual space of the one-chains, also called one-

cochains.

Definition 3.19. We denote by C° the dual space of the zero-chains, also called zero-

cochains.

Definition 3.20. The linear transformation d : C° — C' is called coboundary map.The
map d is, by definition, adjoint to the map 9 and, therefore, V¢ € C°, we have:

dg = 0.

Figure 3 — Node A of the circuit

OM; —0.0M; =0 ol-0O.onde I- (3143
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Remark 3.21. Let ¢ € CY and K € C). Using the notation (2.10), we have:

/K dp=[ ¢ (3.6)

Definition 3.22. We denote by Z° the kernel of the coboundary map d and we

denote by B! the space of coboundaries, which is the image of d.
Remark 3.23. Soon we will give a physical meaning to the subspace Z° and B*.

Proposition 3.24. Z° is the annihilator of B,.

Proof. Follows immediately from proposition (2.44). O

Proposition 3.25. B! is the annihilator of Z;.

Proof. Follows immediately from proposition 2.44. m

3.4 Homology and Cohomology Groups

Definition 3.26. The homology group H, is defined by: Hy = Zy/Bo( = Cy/By).

Proposition 3.27. The subspace Z° is isomorphic to the dual of the homology group Hy.

Proof. Follows immediately from propositions (2.42) and (3.24). O

Definition 3.28. A topological space is called path-connected if for any point we get

a path connecting it to any other point of the space.

Definition 3.29. A connected component of a topological space is a maximal path-

connected subspace.

Lemma 3.30. The dimension of the homology group Hy is equal to the number of connected

components of the circuit.

Proof. Let A and D be any two nodes of a connected component of the circuit. Thus
there exists a path, represented by the 1-chain P € (7, such that 0P = D — A. Then
D — A € By for any two nodes A and D of the connected component.

Let L € Cy be a 0-chain. Then we have:

L= Y LyN=(LsLg...).
N=A,B,C,...

We can rewrite the above equation as follows:

L= IyA+(N-A)]=YLyA+ Y Ly(N-A).
N#£A
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If we are in a connected component, then N — A € By, for N = A, B, ...
Then we have L — (3 Ly)A = X nza Lv(N — A) = L — (X Ly)A € By. Therefore, L
and (3 Ly)A belong to the same equivalent class of the quotient space Hy = Cy/By.
Consequently, for a connected component, every 0-chain L is in the same equivalence class
of some multiple of A, that is, L = aA. Then A generates all classes of the quotient space.

Therefore, for a connected component, dim Hy = 1.

Remark 3.31. Since A doesn’t belong to the subspace By (A & 9C}), we have A # 0.

Now we generalize the result to several connected components. Consider a general
complex. Let A be a node of this complex. Let us use the following procedure. Consider
all branches that have A as a boundary point. Now join all other nodes that are in the
opposite border of these branches and repeat the argument in relation to these new nodes,
thereby generating new branches and nodes. Keep repeating this procedure a finite number

of times, until all the connected component is covered.

Let So(A) be the set formed by the node A and all nodes found in the previous
paragraph. Now let S1(A) be the set of all branches involved in the previous procedure.
If a node B & Sp(A), this implies that there is no path connecting the nodes A and B.
Therefore the node B belongs to another connected component of the complex in question.
Using the method shown above, we also will find the sets So(B) and S;(B), and so on.
Therefore, following this algorithm, we find the disjoint sets Sp(A), So(B),... and the
disjoint sets S1(A), S1(B),....

The set of branches and nodes as canonical bases of (', and Cj, respectively. There-

fore, we have:

Ci=Ci(A)eCi(B)s
Co=Co(A) ® Co(B) @
such that 0C,(A) = By(A) C Cy(A),0C1(B) = By(B) C Cy(B),. ... With this, we have:

Co _ Go(A) @ Go(B) &
By By(A) ® By(B) &

HO =
Hy = (Co(A)® Co(B) @ ...) + (Bo(A) © By(B) @ ....)
Hy = (Cyo(A) + By(A)) ® (Co(B) + By(B)) @ ...
Therefore:
Hy=Ho(A)® Hy(B)® ...

So, by corollary 2.19, we have:
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Thus dim Hy = number of connected components. O

The next theorem will need the following definitions
Definition 3.32. A tree is a connected complex without meshes.

Definition 3.33. Let S be a connected complex. A maximal tree of S is a tree that

contains all nodes of S.

Definition 3.34. We say that the meshes My, ..., M} are linearly independent if and
only if:

k
ZOQ‘MZ‘ =0=q; = O, V.
i=1
Theorem 3.35. There is a basis of the subspace Z; that consists only of meshes.

Proof. Initially, we will analyze the simplest case, in which the complex is a tree. First,
observe that in any tree there is a node belonging to only one branch (one extremity of the
tree). Starting from this node, and traversing the tree, you realize that every new branch
is covered accompanied by a new node. Therefore, we find the following relation for any

tree:
n=r+1 (3.7)

where n = number of nodes and r = number of branches.

As we are in a connected component, by lemma 3.30, we have:
dim Hy =1 (3.8)
Then dim Cj - dim By = 1. So:
dim By =n—1 (3.9)
But, by the Kernel-Range Theorem in relation to the boundary operator 9, we have:
dim Zy = r — dim B. (3.10)
Then, using equations (3.7), (3.9) and (3.10), we conclude that:
dim Zy = 0. (3.11)

Therefore, the theorem is proven on the case when the connected complex is a tree. We
now consider the more general case, where we have a complex (not necessarily a tree) in a

connected component. In this general case, we have:

n<r+l (3.12)
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As we are in a connected component, the identity (3.8) is still correct. By equations (3.9)
and (3.10), we find:
dm Zy,=r+1-—n (3.13)

Therefore, if we find r + 1 — n independent meshes, we find a basis of Z; consisting only
of meshes, thus completing the proof. To assist us in achieving this goal, we develop a

method which consists of three fundamental points:

(i) Certainly some branches will need to be removed from the complex

(ii) The withdrawals of these branches should eliminate all the meshes of the complex,
without, however, eliminating its nodes . Therefore, we will have a maximal tree at

the end of the process .

(iii) Each branch removed must belong to only one mesh, that is, this branch cannot be

shared by other meshes .

Remark 3.36. Let us denote the set of removed branches by T.

The first question is: how many branches are there in T? To answer this question,
just use the relation (3.7), which is valid for any tree, and calculate the removed branches

as follows:

r—n—1)=r+1-n

Note that this number is equal to the dimension of Z; (see (3.13)). As each branch
taken is associated with only one mesh, then we identify the following meshes {M;}#}~"
with these branches. As M; € Z;, Vi, then we have just to show that these meshes are

linearly independent.

In fact, they are L.I., because each mesh M; is associated with a branch r; € T
that, on the other hand, belongs exclusively to this mesh. Therefore:

n+1—r
Z O./iMi:O:}Oéi:O, Vi.

=1

[]

Remark 3.37. In the proof of Theorem 3.35, it is enough we work with only one connected
component since the connected components are independent of each other. So to find the
result in the entire complex, just repeat the argument in each connected component of the

complex.

Remark 3.38. As a consequence of Theorem 3.35, we have that I € Z; = 1 =3 J;M;j,
where the meshes M;, with ¢« = 1,2, ..., are linearly independent and form a basis of Z; .

The scalars J; represent the currents of these meshes.
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Definition 3.39. The homology group H, is defined by: H, = Z,/By( ~ Z;).

Remark 3.40. Physically, the homology group H; will represent the mesh currents.
Definition 3.41. The cohomology group H! is defined by: H' = Z'/B'( = C'/B%).
Remark 3.42. Physically, the cohomology group H'! represents the voltages in the meshes.

Remark 3.43. The cohomology group is the dual of the homology group.

3.5 Kirchhoff’s Laws

We will now mention the classic versions of the Kirchhoff laws, accompanied by a

new formulation, using the boundary and coboundary operators.

3.5.1 Kirchhoff’s Current Law

Classic Version: In a node, the sum of intensities of currents arriving is equal to the

sum of intensities of currents leaving. This law expresses the conservation of charges.

Reformulation: If I is a 1-chain representing the distribution of currents in an electrical

circuit, then:

Jl =0.

Remark 3.44. The current vector I is a cycle, that is, I € Z;.

3.5.2 Kirchhoft’s Voltage Law

Classic Version: There is a function ¢, called electrostatic potential, such that the
voltage across each branch of the circuit will be the difference of ¢ applied to the initial

and final nodes.

Example 3.45. Let a be a branch with A and B being its start and end nodes, respectively.
Then V* = ¢(A) — ¢(B) is the voltage in this branch.

Reformulation: There is a 0-cochain ¢ : Cy — R, called potential function, such that:
V =—do¢ (3.14)
where V' € C" represents the voltage in all branches of the circuit.

Example 3.46. Returning to the example above, we have:

Ve = —dg(a) = —¢d(a) = —$(B — A) = ¢(A) — $(B)

Remark 3.47. The equation (3.14) provides a physical meaning to the subspace B'. This

subspace is therefore the space of the voltages of the circuit.
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Remark 3.48. For any mesh M € Z, , with V = —d¢, , for some ¢ € C°, we have:

/MV:_/Md(b:_/(‘?M(b:O.

Therefore, the sum of the voltages of the branches of each mesh in a circuit is zero. This is

the second version of the Kirchhoff’s voltage law.

Remark 3.49. The remark 3.48 can also be explained by the fact that V € B!, which is

the annihilator of Z;. So V vanishes for any mesh M.

3.6 Electric Power

Definition 3.50. We define the power in a branch a by the following formula:
Pot, = V*.1, (3.15)

Theorem 3.51 (Tellegen’s theorem). The total power dissipated in a resistive circuit is

zero.
Proof. Let I € C; the current of the circuit and V € C! its voltage. Then:

Pot:ZV“]a:/IV:—/qu’):— [ ¢=0.

3.7 Restricted Coboundary Map

Proposition 3.52. The subspace Z° represents the space of the potentials that are constant
along each connected component of the circuit. Equivalently, Z° is the space of potentials

such that the voltages on the branches is null.

Proof. p € Z° = dep =0
Let OK be an arbitrary element of By. Then:

[ = e =0
oK K
As K is arbitrary, particularly the result is true for every branch of the circuit. O]

Corollary 3.53. The operator d of a circuit with a single connected component with a

ground node s injective.

Proof. The ground node will always have zero potential. Therefore the set Z° of the

constant potentials can only contain the zero vector. O
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Corollary 3.54. dim Z° = number of connected components.

Proof. Direct consequence of proposition 3.27 and lemma 3.30. O
Definition 3.55. P° = (C°/ZY is called restricted potential space.

Proposition 3.56. P’ ~ Bj.
Proof. Direct consequence of propositions (2.43) and (3.24). [l

By isomorphism theorem, the application d : C° — C* induces an injective map
[d] : P — C* given by:

Definition 3.57. [d] is called restricted coboundary map.

Remark 3.58. The voltage V = —[d]¢ associated with the potential ¢ € P° is uniquely
determined (injectivity of [d]).

The map [d] induces the map [0] such that [0] and [d] are adjoint transformations,
that is:

[d]é =@ od].
Definition 3.59. [0] : ) — By is called restricted boundary map.
Example 3.60. Consider figure 4. We have:

B B C E

A D

Figure 4 — Boundary and coboundary operators.
Basis of C° : {A*, B*,C*, D*, E*}.
Basis of C' : {a*, 8*,~v*,6*}. Then:
d(A") = —1a™ + 08" + 19" + 067,

d(B*) = 1a* — 18" + 0" + 06,

d(C*) = 0a* 4 15* — 19" + 05",
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d(D*) = 0a* + 08" + 09" + 107,

d(E*) = 0a* + 03* + 0y — 15*.

Therefore, coboundary and boundary operators are equal to:

-1 0 0

-1 1 00 O
0 —1 0 0 1 -1 0 0

1 0 -10 0
0 0 0 1

0 0 01 -1
0O 0 0 -1

Now, by corollary 3.54, we have:
dimZ° =2 and dimP° = dimC° — dimZ° =3

Let A and D be the ground nodes of the circuit. Note that {B",C",E’} is L.I., so is a
basis of P°. Then:

*

[dB" = 1a* — 158* + 0v* + 06"
[d]C" = 0a* + 18" — 19* 4 05"
[AJE" = 0o + 08* 4+ 0" — 16*

Therefore, the restricted coboundary and boundary maps are:

1 1 0 -1 1 0 O
d] = and [0] = 0 -1 1 0 (3.16)
0 -1 0
0 00 -1
0 0 -1

Remark 3.61. By (3.16), notice that the method to find [d] is eliminating the columns
of ground nodes to the matrix of the map d. And the method to find [0] is eliminating the

lines of ground nodes to the matrix of the map 0.

Remark 3.62. We have [0] : C; — By. But here By is modified because the lines relating

to ground nodes were removed.

3.8 Special Maps: 0 and s

The space H; is a copy of the subspace Z;. Think H; as an abstract vector space,

independent of (', representing the space of currents of meshes.

Definition 3.63. The inclusion map ¢ : H; — (' is the map which identifies H; with

the subspace Z; of C'y. Physically, o converts the mesh currents in currents on the branches.
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Definition 3.64. The map s : C' — H' is the adjoint map of o.

Proposition 3.65. The map s : C' — H' converts voltages in the branches in voltages

on the meshes.

Proof. We observe that each column j of the matrix of ¢ with respect to the canonical
bases is equal to the coordinates of the mesh M, which, on the other hand, belongs to
the base of Z;. As the matrix of the operator s is the transpose of the matrix o, we have
that each line of the matrix of the operator s correspond to the coordinates of one mesh of

Zy. Then, the result follows immediately, just by multiplying s by voltage vector V. [
Proposition 3.66. The map s : C* — H! represents the canonical projection of C* on
C'/B!.

Proof. Direct consequence of Proposition 2.41. m

Example 3.67. From the figure 5, we obtain the following results:

Figure 5 — Meshes and branches

1 0
For le( )and ng( , we have:
0 1
1
O'( = a+ B+,
0
0
o = —v+0.

Therefore:

(3.17)

O = =
|
—
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For the mesh current Jq, J5, we find the following branch’s current.

1 0 J1
1 0 Ju| J1
1 -1 ' JQ Jl — J2
0 1 J2
By (3.17), we have:
11 10
5= .
00 —11
VO{
VB
Considering V = v | we find the following tensions in the meshes:
V(S
VO(
v 11 10 1% Vet V4V
5.V = . =
00 -1 1 % —Vr+V°
V§

The following diagram summarizes the operators and spaces that were seen with their

respective relationships.

(6]

leZl g Cl Bgzlm(ﬁ)gCl/Zl%H():Co/Bo

Ei Rl «| |

Hl — CI/BI Cl PO — CO/Zo ZO
s (d]

%

3.9 The Maxwell Methods

3.9.1 Ohm’s Law

Considering the figure 6, we have:

Ohm’s Law for a Specific Branch of the Circuit:
Ve —We = 2,1, — K,).

For the entire circuit, we write:
V-W=Z71-K)

Observe now that Z is a diagonal matrix whose entries are the resistances, and I, V, W K

are column matrices.
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e B

Figure 6 — Branch « of the circuit.

Joining the Ohm’s law with Kirchhoff’s current law (KCL) and Kirchhoff’s voltage law
(KVL), we obtain the following system:

V-W = Z(I-K) (Ohm’s Law)
I = o(J) (KCL) (3.18)
Vo= (KVL)

At this time, we will present two methods for solve equations 3.18.

3.9.2 Maxwell’s Mesh-Current Method

Consider the system ((3.18)), where the values of K, W and Z are provided. We
want to find I and V.

Applying the operator s, we have:

s(V-W) = @—S(W) =—s5(W)=s(ZI1-K)) =sZ1 — sZK.

We have s(V) = 0 because V = —[d], then V respects the Kirchhoff voltage law, i.e., the

sum of the voltages in the meshes is equal to zero.
szl = sZK —sW

=sZo(J) = s(ZK—-W) (3.19)
=J = (sZo) 's(ZK - W). (3.20)
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Equation (3.20) will be valid if the operator sZo is invertible. The next theorem

makes an important statement about this.

Theorem 3.68. In resistive circuits, the map sZo is invertible.

Proof. We need to show that the linear map sZo: H; — H' is a bijection. For that, we

need to show that it is injective (since dimH; = dimH").

Consider the nonzero vector J € H;. We want to show that sZo(J) # 0. As s is

the adjoint of o, we have:
(sZ0)3)(T) = s(Z1)(3) = (Z1)o(T) = (ZD)I = /ZI A
I
5
Since Z, > O(resistive circuit) and I # 0 (because ¢ is injective and J # 0), we have
>, 22 >0 = [(sZ0)J](J) > 0= (sZo)(J) #0. O

Corollary 3.69. For resistive circuits, the solution of the system (3.18) exists and is

unique, that is, there is only a single pair I and 'V satisfying the system.

Proof. The result follows from theorem 3.68 applied to the equation (3.19). Once J is
determined I is computed using (KCL) and V is found using Ohm’s law. O]

3.9.3 Maxwell’s Node-Potential Method

Consider the system ((3.18)), where the values of K, W and Z are provided. We
want to find I and V.

V-W = Z(I-K)

Z7' (V-W) = I-K
0127 (~[d]¢ - W) = —[I]K
0127 d] ¢ = [0](K-Z"'W) (3.21)
¢ = (027 [d)~" O] (K - Z7'W). (3.22)

The equation (3.22) will be valid if the operator [0] Z~![d] is invertible. The next theorem

makes an important statement about this.

Theorem 3.70. In resistive circuits, the map [0]Z'[d] is invertible.

Proof. We have [0]Z7'[d]: P — By. Since dim P° = dim By, it suffices to show the
injectivity of [0]Z~[d].

If ¢ # 0, then:
(1012 [d)g] = [z '@ =vZ V= [ V-3 (Vz:) |
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Since Z., > 0 (resistive circuit) and V # 0 (because [d] is injective and ¢ # 0), we have
V)2 — — —
WL = 0= 8100127 [4)] > 0= (912~ {d)(@) £ 0. para & # 0. 0
.

Corollary 3.71. For resistive circuits, the solution of the system (3.18) exists and is

unique, that is, there is only a single pair I and V satisfying the system.

Proof. The result follows from the theorem 3.70 applied to the equation (3.21). n

3.10 RLC Circuits

More generally, in a circuit whose branches are resistors, capacitors or inductors,
Z remains a diagonal matrix r x r (where r is the number of branches of the circuit), and
its entries are the impedances of the branches, which may be functions of the frequency

f = 2= In this case, not always the matrices sZo and [0]Z~'[d] will be invertible.

Recall that:

e Capacitor impedance= ——

e Inductor impedance= 1wl

There exist m linearly independent meshes, then the matrix sZo will have order
m and its determinant is given by the polynomial D(w), whose degree is at most m. The
operator sZo is not invertible if |D(w)| = 0, which means that there can be at most m
values of w such that sZco is not invertible. Similarly, the operator [9]Z~![d], of order
r —m, will have at most » — m values of w such that the modulus of the determinant is

zero, ie, | Dy (w)| = 0.

The resonant frequencies are defined in two ways:

Definition 3.72. If w is such that the determinant D(w) of sZo is zero or the determinant

Dy (w) of [9]Z71[d] is zero, then f = £ is called a resonance frequency of the system.

Definition 3.73. If for the operators sZo and [9]Z'[d] the determinants |D(w)| # 0
and |D;(w)| # 0 for all w, then f = 5~ will be resonance frequency of the system if w

generate in the circuit the mazimum value of the mesh current J.

Lemma 3.74. The roots of the determinants of operators sZo and [0]Z7[d] are the

sarme.

Proof. This fact is a consequence of non-uniqueness (or nonexistence) of solutions of the
equation

V-W=Z2ZI-K) (3.23)
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that is, if by the mesh-current method we find more than one solution (or even no solution)
to the equation (3.23), then this result must be confirmed also by the node potential

method, and vice versa. Therefore:
det(sZo) = D(w) = 0 < det([0]Z *[d]) = D1(w) =0,

i.e., the polynomials D and D; have the same roots. O

For the case where |D(w)| = 0, the equation
(sZo)J =0 (3.24)
will have nontrivial solutions.

Definition 3.75. The non-trivial solutions of the equation (3.24) are called normal

modes of the system.

Example 3.76. In this example, we will find the resonant frequencies and some normal

modes of the system. Looking at the figure 7, we have:

| < ai
| N

B |
I
c T 2c

2

B

2L L y o

A

Figure 7 — Resonance frequencies and normal modes.

1
1 1 1 10
0’ g s g
1 -1 00 —1 1
0 1
Also we have:
2wl 0 0 0
0o —L 0 0
Z =1 wC
0 0 wlL 0
0 0 0 —ﬁ

Multiplying the matrices, we have:

| 3wL — (wC)™! —wL
s40 =1
—wlL wL — (2wC)™!
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Therefore, we find the determinant:

5L 1
_ 272
Det(sZa) = —2w’L + % - W
Setting Det(sZo) = 0, we find the following angular frequencies:
1 1
w=—— =

YT oVIo

Therefore, the resonance frequencies of the system are equal to:

Fo 1
B omV/LC

To find the corresponding normal modes, we solve the equation (sZo)J = 0 for each

resonance frequency.For example, to w = \/%—C we have:

SZJ:i(

[~

—. /L

2VE

/L 1
c 2

|

NN

L
C

1
and a normal mode to (sZo)J =0 is ( 5 ) , which means that the current in the second

mesh is twice greater than the current in the first mesh.

1
SZU:i( f
2

and a normal mode to (sZo)J = 0 is (

Similarly, setting w =

|

1
), which means that J; and J, has

have:
1

\/g

L

1 /L

2V C

=

amplitude, but opposite phase.

1
2V LC’ we

the same

Example 3.77. Find the resonance frequency and the maximum mesh current. From

figure 8, we have:

N VN/ > B

o I
C

) B
C ,

A

Figure 8 — RLC circuit.
1 R 0
a:( ) s=(11), Z:( , X )

1 0 i(wLl— -5)
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Therefore, we have:
R 0 1 1
sZo=(1 1 = (R+i(wl — —)).
( )(0 z'<wL—;c>)(1> e

E 1wt
Then, knowing that W = ( (; ), from equation 3.20 we have:

1

J: Eiwt
R+i(wL— L) ¢

The mesh current clearly has its peak value when wlL = i =>w= \/% Therefore, the

resonance frequency is equal to:

o 1
_27r\/m

and the peak value of the mesh current is:

E
Jl==
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4 METHOD OF ORTHOGONAL
PROJECTION

Introduction

In this chapter we will restrict our study only to resistive circuits and we will
present two alternative methods for solving circuit equations. The Weyl’s method makes
use of orthogonal projection operators while the Kirchhoff’s method uses graph theory to
find the values of voltages and electric currents. The Green’s reciprocity theorem exposes

some symmetries for some resistive circuits.

4.1 Weyl’s Method of Orthogonal Projection

4.1.1 Weyl’'s Method

As in chapter 2, let «, 3,7, ... denote the branches of a resistive circuit.

Definition 4.1. Let Z be the diagonal matrix of resistors. The inner product (,) :
C} x C7 — R is defined by:

(L), = /IZI’ = ro Dy I+ rglally + .. (4.1)

Remark 4.2. As the entries of Z are all positive, we have that the inner product above

is positive definite.

Remark 4.3. Let us denote by 7 the orthogonal projection of C on Z;.

The method of Weyl’s projection consists of the following equations:

{ I = n(K-Z'W), 42)

V = Z(r-1)(K-Z"'W).

Proposition 4.4. The equations (4.2) are equivalent to the equations (3.18) for electrical

circuits.

Proof. Firstly we show that (4.2) = (3.18).

(i) By definition of projection on Z;, we have that I € Z;. Then:

I=0(J) (4.3)
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(ii) We have:
T((r=DEK=-Z'W)) = (r* —m)(K - Z'W) = (1 — 7)(K - Z'W) = 0.
Therefore:
(r =K — Z'W) € ker(r) = (r — )(K — Z7'W) € Z; =™
=T, (r-D)K-Z'"W));,=0VI €27,
= [ Zx-DEK-2'W)=[V=0vTeZ
v 1
So
Ve 7z = B. (4.4)
Therefore:
V = —d¢, for some ¢ € C°. (4.5)
(iii)
V=Zr-DK-Z'"W)=Z(r[(K—-Z'W)] - (K- Z'W))
=Z0-K+Z'"W)=W+ Z(1-K)
Therefore:
V-W=71I-K) (4.6)
The equations (4.3), (4.5) and (4.6) are the equations forming system (3.18).
Next we show that (3.18) = (4.2).
(i) We have:
V-W=Z71I-K)=V=W+Z(I-K).
Therefore:
V=2(Z"'"W-K+1). (4.7)
Since
then
V=0 VTIe€Z,
I/
SO
/ Z(Z7'W -K+1)=0, VY € Z,.
Therefore:
I, Z7'W-K+I);, =0, VI € 7, (4.8)
hence:

Z71W — K 4 I c Zf—compl = (K . Z71W) | c Zf—compl
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= (K- Z"'W) —1I € ker(n).

From
K-Z'"W=(K-Z"'"W-1)+1 (4.9)
we have:
T(K—-Z"W)=7aK-Z"'"W-1I)+x(1) =1, (4.10)
therefore:
I=7K-Z"'W). (4.11)

(ii) From the equations (4.7) and (4.11), we have:
V=Z2(Z""W-K+71(K-Z"'"W))=Z(K - Z'W)(r —1)

that is:
V=Zr-)(K-Z"'W) (4.12)

The equations (4.11) and (4.12) recover the system (4.2). O

Example 4.5. From figure 9, we have:

4 _
K= ;. W= L VA Lo .
1 0 0 3
. . . . ) 1 0
The space C] has dimension two, with canonical basis { ( 0 ) , ( ) ) }, and the space

1
71 has dimension one and a basis equal to . } To find the Weyl’s orthogonal

L A~

=Y

RY

4A 3Q lA

12

A
L

Figure 9 — Weyl’s projection.
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1
projection, we will normalize the vector ( ) ) :

()60 63 ()=

) . Therefore, by formula (2.7), we have:

) (4.13)
) (4.14)

N [—= N[

Then, an orthonormal basis of Z; is (
1

()l
0

(-

With this, we have:

/
N N
N————
N————
N

—
N— N
N———

I
/

I
— O (e R
N— — N——
PN

/
N= N[
N————
N————
N

—
N— DN
N———

I
RS

[N [SSIN [V

1 3
T = i g . (4.15)
1 1
As long as
5
K—-Z7"'W= ( . ) (4.16)
we get
2
I=7(K—-Z"'W)= ( ) ) : (4.17)
Still using the Weyl’s orthogonal projection, we have:
-1 _3
V=Zr-)K-2Z"W)= N (4.18)

4.1.2 Explicit Expression for the Weyl’s Orthogonal Projection
According to Maxwell’s Mesh-Current Method, we have:
J=(sZ0)"'s(ZK — W) (4.19)
Applying o in the equation (4.19), we have:
I=o0(sZ0)'s(ZK — W). (4.20)

Therefore:
I=0(sZ0) 'sZ(K— Z'W) (4.21)

Comparing the equation (4.21) with the Weyl’s formula I = 7(K — Z7'W), we can intuit

the outcome of the next proposition.
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Proposition 4.6. The Weyl’s orthogonal projection operator can be explicitly given by
T=o0(sZo) 'sZ.

Proof. We need to show that m = 0(sZ0)"'sZ is an orthogonal projection of C} in Z;.

(i) Im(7) = Z;.
e Im(7) C Z;. Obvious, since o is an injection of Z; in Cj.
e 7, C Im(m), because for all 1 € Z;,3 £ € [Z7 s (sZo)o H(I)] C C, | n(€) = 1.

Remark 4.7. Since s is not injective, for w € H!, we have:

sTHa) ={vel'|s(v)=1u}

(ii) m: Cy — Z; satisfies 72 = 7. In fact, we have:

72 = (0(sZo) 'sZ)(0(sZo) ' sZ) = o(sZo) 'sZ = . (4.22)

(iii) ker(r) = Z; ="
e ker(m) C Z;o™ Indeed, VI € Z; and U € ker(m), we have:

(L,U)z = (7L, U) = (6(sZ0o) 'sZ(1),U)y = (0(sZc) 'sZ(1), ZU). (4.23)

As the matrix of o(sZc)~'s is symmetric, it is a self-adjoint transformation, so for (4.23)

we have:

(Z1,0(sZo) *sZ(U)) = (1,0), =0, YIE Z,.

Then U € Z; !
. Zf“’mpl C ker(m). Indeed, let U € le“’mpl. Then, VI € Z;, we have:

(LU); =0= (7L U); = (0(sZ0) 'sZ(1), ZU). (4.24)
Since o(sZo) " 's is a self-adjoint transformation, for (4.24) we have:
(Z1,0(sZ0)'sZ(U)) = I,0(sZ0)'sZ(U)); =0, V1€ Z; (4.25)

Since equation (4.25) is true for V I € Z;, it is particularly true for I = o(sZo)"'sZ(U).
Then:

(0(sZo) 'sZ(U),0(sZ0) 'sZ(U))z =0 = 0(sZ0)'sZ(U) = 0= U € ker(r). (4.26)

]
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4.2 Kirchhoff’s Method

Definition 4.8. Suppose we have a connected complex and let T be a maximal tree in

this complex. We define the linear operator pr as follows:

0, if aeT
pr(a) = (4.27)
M, , if a¢gT

where M, is a mesh containing the branch a.
Remark 4.9. M, is an element of the basis of Z;.
Remark 4.10. M, is the only mesh that contains the branch «.

Remark 4.11. pp(M,) = M, because the branch « is present in the mesh M, , while

the other branches of M, belong to the maximal tree.

Remark 4.12. The sense of the mesh M, is chosen so that it contains "+a'" and not

Figure 10 — Maximal tree

pT(Oé) = a—-p
pr(B) = 0

Then:

Proposition 4.14. pr : C1 — C4 is a projection over Z.
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Proof. e First, we will show that pr(J) = J, V J € Z. Indeed, if J € Z;, then J =Y o; M;.
Then by remark 4.11, we have:

pr(J) = ZaipT(Mi) = ZaiMi =J

o Im pr = Z;.

Im pr C Z; (obvious).

Zy C Im pr. In fact, since pr(J) = J, V J € Z;.
e p% = pr. Indeed, V A € C, we have:

p3(A) = pr(pr(A)).

Since pr(A) € Z;, then:
pr(pr(4)) = pr(A).

m
Lemma 4.15. If the projection is self-adjoint, then it is orthogonal.
Proof. o € ker pr, then, V g € Z;, we have:
0= (pT(OZ),B) = (Of,pT(B)) = (a7ﬁ)
J—com pl J-com 1
So a € Z; ™. Therefore ker pp C Z; “™".
Now let o € Zf“ompl. Then, V 5 € Z;, we have:
0= (Oé,ﬁ) = (a7pT(B)) = (pT(a)7B)'
In particular, choosing 5 = pr(«), we have:
(pr(a),pr(a)) = 0= pr(a) = 0 = a € ker pr.
Therefore Z; ™ C ker pr. O

Remark 4.16. The projection pr is not necessarily orthogonal.

The Kirchhoft’s method aims to produce a projection in Z; which is orthogonal.
To this end, by lemma 4.15, just build a projection in Z; which is self-adjoint. For this
purpose, we introduce the following construction: for each maximal tree T we associate

a real number Ar, with 0 < Ay < 1, such that Z At = 1. With this we construct the
T
following operator:

pr=>_ Arpr. (4.28)
T
where pr is the operator of the definition (4.8).

Lemma 4.17. p, is a projection in Z;.
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Proof. e py\(J) =J, ¥ J € Z;. Indeed, we have:

pa(J) = Z/\TPT(J) = Z)\TJ = (Z Ar)d =J (4.29)

~—
1

e Im p, = Z;. Indeed:

Im p) C Z; (obvious).

Zy C Im py, because, by equation (4.29), p\(J) = J, V J € Z;.

e p3 = py, because p3(A) = pa(pa(A)) = pa(A), V A € C. O
——

€71

In general, p), is not orthogonal. However, Kirchhoff made a special choice for the

coefficients At to become p) an orthogonal projection.

Definition 4.18. Qr := [] r, where as before 4 is the electrical resistance in the branch
BET
B.

Definition 4.19. R := ZQT

Definition 4.20. \p :=

=

Theorem 4.21. The operator py : C; — Cy given by py = R*IZ QTpr is an orthogonal
T
projection onto Z.

Proof. By Lemma 4.17 we have that p, is a projection in Z;. Just show that Rp) = Z QTpr

T
is a self-adjoint projection and therefore, by lemma 4.15, p) will be an orthogonal projection.
As the branches of the circuit form a basis of (1, it is sufficient to show that, for any pair

« and [ of branches, we have:
Z Qr(pra, B)z = Z Qr(a,prB)z (4.30)
T T

So with o and § fixed and summing over all maximal trees of complex, three cases can

happen.

1% case:A maximal tree T with a, 8 € T. See Figure 11. Then:

(pr(e), B)z = (a,pr(B))z =0 (4.31)
Therefore , the factor on the left side of (4.31) is equal to the factor on the right side .
274 case: A maximal tree T with o, 3 € T. See the figure 12. Then:

(pr(a), B)z = 0 because the branch g does not belong to the mesh M, = pr(«), and

(c, pr(B))z = 0 for the same reason explained above. So we have:

(pr(a), B)z = (a,pr(B))z (4.32)
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Figure 11 — 1%¢ case

[+ 4
-
/

/

2B
o

Figure 12 — 2" case

37¢ case: The third case is more complicated. We will have a maximal tree T for which
only one of the branches belong to T. For example, § € T and o ¢ T. See Figure 13.
Consider two possibilities. First, if 5 & M, = pr(«), then:

Figure 13 — 3" case

(pr(), B)z = (a,pr(B))z = 0 (4.33)

Therefore, the factor on the left side of (4.33) is equal to the factor on the right side. Now
we have to work a bit more on the second possibility. Consider that § € M, = pr(«),
then:

(pr(a),B)z = Frz e (a,pr(f))z =0 (4.34)

where the positive sign occurs when o and 3 occur with the same sign in M,. Otherwise,
the negative sign occurs. Note that, in this case, there will always be a unique maximal tree
T’ formed only permuting « for 3, i.e., if before o € T and 5 € T, we now have o € T’
and [ ¢ T'(keeping the rest intact). Therefore, we have:

prv(B) = £pr(a)
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and:
(a,pr(B))z = £ra € (pr(@),B)z =0 (4.35)
Also note that:
{QT — ta...fﬁ...’ (436)
Qu = o -Tge-,

where hats indicate the removal of the factor.

Therefore, by (4.34), (4.35) and (4.36), we have:

Qr(pr(a), B)z + Qr(pr (), B)z = Qr(a, pr(B8))z + Qr (o, pr(B)) 2 (4.37)

Therefore, by (4.31), (4.32), (4.33) and (4.37), summing over all maximum trees T, we

have:

XT:QT(Z?T(@),@Z = ZQT(@,Z?T(B))Z- (4.38)

T
[l

Corollary 4.22. The Weyl’s orthogonal projection operator has the following explicit

formula:

m=R"'Y Qrpr.
T

Proof. Comes from theorem 4.21 and the uniqueness of the orthogonal projection operator

on the subspace Z;. O

Example 4.23. In figure 14 there are three maximal trees. The first maximal tree T} is
formed only by the branch «, the second T is formed by branch [, and the third T3 by
branch 7.

RYy
2y

T 20

19 3Q

A

Figure 14 — Kirchhoff’s method



Chapter 4. METHOD OF ORTHOGONAL PROJECTION 95

For Ty, we have:

-1 1
pr, = 10 and Qr, =137y =6
0 1
For T5, we have:
100
pr, = —1 0 1 and Qr, =14.7y =3
0 01
For T3, we have:
1 00
pr, = 0 1 0 and Qr, =14.73 =2

1 10
Then R = Qr, + @1, + @1, = 11. Since

1 3
™= E ; QTipTi

1
T= ﬁ[ﬁpn + 3.p1, + 2.p1y)

Therefore:
5 —6 6
L 3 8 3
m = — —
11
2 29

where 7 is the orthogonal projection over Z;. The vectors

1 0
-1 |(,[ 1
0 1

1 1 0 0
™ -1 | =] —1 and 7| 1 | =
0 0 1 1
Notice now the operator
6 6 —6
Iy—m i 3 3 -3
ST
-2 =2 2

The matrix I; — 7 projects onto the orthogonal subspace (orthogonal complement with

respect to Z7). As the dimension of this subspace is 1, the basis of the orthogonal
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complement of Z; consists of a single vector. We have:

] 6 6 —6 0
- 3 3 =3 11 | =

11
-2 =2 2 0 -2
6
Then 3 is a basis of the orthogonal complement of Z;.
—2

Remark 4.24. Note that the vector

physically represents a voltage that follows the Kirchhoft’s voltage law because in relation

to the usual inner product, we have:

1 6 0
—6 0 —6 1

4.3 Green’s Reciprocity Theorem

Consider a circuit in which except for two branches o and 3, all other branches
contain only resistors. The branches o and  may contain current sources and/or voltage
sources andjor resistors. For a specific choice of sources for o and (3, we find the current
vector I and the voltage vector V satisfying Kirchhoft’s laws. Modifying the sources of the
branches o and [, we find a new pair of solution i, V for the current and voltage vectors,

respectively, both satisfying the Kirchhoff’s laws. Then:

IL1cZ, V,VeB. (4.39)
Therefore, by (4.39), we have:
[v=[v=o
i I
Consequently:
> v = Y VL. (4.40)
all all

branches branches

Isolating the terms associated with the branches a and § from (4.40), we have:

Vel + VP + S VL=V + VP + Y VL. (4.41)
other other
branches branches
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For the branches different from « and [, we have:

V7 =r,1, and V= Tw—fv-
Then:

Svi= N = Y n L= Y VL (4.42)
br(;tr?ce}fes br(;trf‘:}fes br(;trflcehres br(;trf‘ce}:es

Therefore, by (4.41) and (4.42), we have:

Vel + VP, =V, + VP, (4.43)

With this, we demonstrated the following theorem.

Theorem 4.25 (Green’s reciprocity theorem). For a resistive circuit where, except for

two branches a and 3 (which may contain, in addition to resistors, voltage sources and/or

current sources), all other branches contain only resistors, we have:

VeI, + VP, =Vel, + VP,

(4.44)

Now consider a purely resistive circuit (no voltage or current sources). There are two

ways to add branches to this circuit:

1) Soldering entry (parallel branch). See the figure 15.

B B

etc. etc.
A

Figure 15 — Soldering entry.

Remark 4.26. This method doesn’t add new nodes.

2) Pliers entry (branch in series). See the figure 16.

Remark 4.27. This method adds new nodes.

Remark 4.28. In both cases, the added branch may contain a short circuit, a voltage

source, a current source or a resistor. Let’s analyze the following cases for a purely resistive

circuit, where two branches o and  were added using either of two methods previously

discussed.
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B B
C

etc. o etc.
A A

Figure 16 — Pliers entry.

L+ 4 C o]
>Iﬁ ?a< >—"ﬂ=&;

~e B D e

L+ A C ]
Vﬁ=&—[
R

- B D+
V,=0 Ja=0

Figure 17 — Symmetry between applied voltage and resulting current

1% case: Insert a battery whose voltage is £ in « and measure the short-circuit current of
I in . Then connect the same battery in f and measure the short-circuit current of I,

in a. See figure 17. By Green’s reciprocity theorem, we have:
VoI, + VPl = Ve, + VI,
Since V* = V# = 0 (short-circuit), then:
VP =V,
Els =€,

Therefore:
Iy =1, (4.45)

Remark 4.29. Although the circuit itself doesn’t need to have symmetry properties, the

relationship between applied voltage and resulting current is symmetric.
274 case: Insert a current source J in a and measure the voltage V# for the open circuit in
the branch . Now connect the same current source j in the branch § and measure the

voltage Ve for the open circuit in the branch «. . See the figure 18.

By Green’s reciprocity theorem, we have:
VeI, + VP, =Vel, + VP,

Since Iz = I, = 0, we have:
ver, = VP2,
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= A C ]

1] £y=i

B D [~ B D

Figure 18 — Symmetry between the current source and resulting voltage.

veg=v~eJ
Therefore:

ve=v"8 (4.46)

Remark 4.30. Although the circuit itself doesn’t need to have symmetry properties, the
relationship between the current applied and the resulting voltage is symmetric.

More generally, the circuit can be a n-ports resistive circuit, i.e., a circuit where we
can connect 'n" devices. If current sources I,, Ig, ... are connected to the various ports,
the resulting voltages V<, V4 ... will be dependent on the current according some linear
relationship of the type:

V = RI (4.47)

where R is a matrix of order n.

Corollary 4.31. R is a symmetric matrix.

Proof. Putting up a current source at the port p and leaving the n — 1 other ports open,

we have:

VY =R | J, | =V'=RyJ, (4.48)

0

Now putting a current source at the door A and letting n — 1 other ports open, we have:

0

A A

Ve | =R | Jy | = V¥ =Ru (4.49)

0

Making J,, = J\ = J, from Green’s reciprocity theorem and, hence, by equation (4.46), we
have:
VA=Vr
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:>R)\MJ:RM)\J

= Ry, = Ry, (4.50)
0

Proposition 4.32. Relations of the type I = GV or V = RI, with G, R symmetric

matrices, represent a generalization of Green’s theorem.

Proof. Let I = GV, with G a symmetric matrix of order n. Therefore G is a self-adjoint

operator. Then:

Therefore:
Vel +-+Verl, =VAL, 4+ V], (4.51)

The proof for the case V = RI, with R symmetric matrix, is analogous. m

The Green’s reciprocity theorem can also be derived as a consequence of the
mesh-current solution. In the case where there are no current sources, so that K = 0, we
have:

J = (sZo)'s(—W).

Then:
I =0)=—0(sZo) 's(W).

Since Z is a symmetric matrix and s is the transpose matrix of o, we have:
G=—0(sZo)'s
is a symmetric matrix. Then:
I=GW. (4.52)

So, by proposition 4.32, with the equation (4.52) we find the generalization of Green’s
theorem.

Similarly we can start from the node-potential solution,with the vector voltage source
W =0, then:

Then:
V = —[dl¢ = —[d]([0]Z27[d) "' [IK.

Since [d] is the transpose of [0], the matrix

R = —[d]([0]2""[d]) (0]
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is symmetrical. Therefore we have:
V = RK (4.53)

Therefore, by proposition 4.32, the equation (4.53) represents the Green’s generalized

theorem.

Remark 4.33. Relations between V and W, and between I and K generally are not

described by symmetric matrices.
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5 CAPACITIVE NETWORKS

Introduction

In this chapter we will treat circuits where their branches have at most a battery
in series with a capacitor. When the battery is triggered, charges will accumulate on the
plates of the capacitor until eventually a steady state is reached. In this state, no current
will be flowing. At this time, we are interested in discovering the charge on nodes and
capacitors, and the voltage on the branches. To achieve this goal, in this chapter we will
study the resolution of the Poisson equation and the Dirichlet problem, ending with the
study of Green’s functions. The importance of studying capacitive circuits lies in the fact
that within the electromagnetism, the study of these circuits is equivalent to the study of

a discretization of electrostatics.

5.1 Sign’s Conventions

el

p

R

g

|

-

E
|
|

|

N
Ny

1
r
s

-0, —
|
|

Figure 19 — Sign’s conventions.

V¢ and W positive V¢ and W refer to drop of potential when the branch is traversed

in the sense defined by the arrow.
Q.: the sign of @, is defined by the equation: Q, = Cy(V, — W,,), where C,, > 0.

Plates of a capacitor: in the sense defined by the arrow, the first plate of the capacitor
will be positive (observe the figure 19). In this case, your charge will have the same sign

as @, (charge of capacitor). The negative plate will have opposite sign to the sign of Q.
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CAPACITIVE NETWORKS

Chapter 5.

+
Qe
R

Figure 20 — Charge at the node A.

p: is a zero-chain that represents the total charge on each node. Each node is connected

to the positive and\or negative plates the some capacitors. Therefore, on each node, to

find the resulting charge, we will use the following convention:
pPA = ZQi - ZQj (5.1)
—— ——
negative plates

positive plates

where Q;, Q); are, for example, the charges of the capacitors 1, j.

Example 5.1. Observing the figure 20, we have:
pa=—Qa — Qs+ Q, (5.2)

5.2 Some Analogies with Resistive Networks
In capacitive circuits, we have a vector Q € (', where its coordinates represent

the charges of capacitors in their respective branches.
(5.3)

Q = (QOA?QB?Q’Y?"')'

The vectors V, W € O, as before, represent respectively the voltages and voltage

sources in each branch.
The matrix C' is a diagonal matrix where its inputs are the capacitances of each

branch of the circuit. Therefore C' : C* — € will represent an isomorphism between the

spaces C'! and C}.
From the figure 19, we deduce the following general equation for each branch of

the capacitive circuit:
Qa
Ve —We = —. 54
C, (5-4)



Chapter 5. CAPACITIVE NETWORKS 64

Generalizing the equation (5.4) for all branches of the circuit, we get the following

matrix equation:

V-W=0'Q. (5.5)

Lemma 5.2. Let Q € C be the vector representing the charges of the capacitors, and let
p € Cy be the charges at the nodes. Then:

0Q = —p. (5.6)

The equation (5.6) is known as Gauss’ Law.

Proof. Analyzing equation (5.1) and noting that the negative plate of the capacitor is
always located close to the end node of the branch, whereas the positive plate of the
capacitor is located next the starting node, we can infer that the charges on the negative
plate are always going toward the end node, while the charges on the positive plate are

always leaving of the initial node. Then:

positive plates negative plates
pa= 2.Q — >0 (5.7)
~—— ——
leave to A go to A

Clearly the relation on the right-hand side of equation (5.7) is equal to the relation of the
right-hand side of equation (3.2), but with reversed sign. O]

Remark 5.3. As a consequence of the fact that the sum of the charges of the two plates
of a capacitor is equal to zero, we have:

Y. pa=0 (5.8)

all nodes

At this time, we will make some considerations. Firstly, let the voltage V satisfy
Kirchhoff’s voltage law, i.e.:
V = [d]¢. (5.9)

Now suppose that initially the capacitors of the circuit are discharged. Then, after
charging them, by the conservation of charges, we have 0Q = 0. Therefore, in analogy
with what was done in the mesh-current method, we introduce the mesh charges, described
by the vector P € Z;, such that:

Q=o0(P). (5.10)

So replace I for Q, J for P, Z for C~! and making K = 0 (since there are no
current sources in our capacitive circuit), we observe that the equations (5.5), (5.9), (5.10)
are completely analogous to those equations found in the analysis of resistive circuits.
Therefore:

P = (sC7'o) 1 (—sW), (5.11)

¢ = —(91C[A) " OICW. (5.12)
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Remark 5.4. The same considerations about existence and uniqueness of charge Q and

voltage V are also valid in this new context, because the matrix C' has only positive entries.

5.3 Poisson’s Equation

Until the end of this chapter, we will assume that the capacitive circuits do not

have voltage sources, i.e., W = 0. Therefore, manipulating the equations
Q=CV, V=—-d¢ and 0Q =—p
we deduce that:

—0Cd¢p = —p (5.13)

The equation (5.13) is known as Poisson’s equation. The operator —9Cd is
called Laplacian and is denoted by A. With this, we have A : C° — C, and the equation
(5.13) can be rewritten as

A¢p = —p. (5.14)
Lemma 5.5. The Laplacian A is a symmetric operator.
Proof. Indeed, since 9 = (d)T for the matrices of the operators d and d with respect to

canonical basis, we have:

AT = (—0Cd)T = —dTCTHT = —0Cd = A.

Lemma 5.6. Let A be a node of the circuit and let u € C°, then:

(An)(A) = >, Cu(u(B)—u(A)) (5.15)

a:0a=+(B-A)

where we are summing over all the branches o such that dae = £(B— A) for some B € Cj.

The charge on node A is given by:
pai= Y Culu(A)—u(B)) (5.16)
a:0a=1t(B—A)
Proof. Let a be a branch with A as one of its nodes, and B as the other. Then:
du(a) =uwd(ax) = fu(B — A) = £(u(B) —u(A)). (5.17)

The formula of the functional du summing only over the branches « that have A

as one of its nodes is equal to:

du = > We's (5.18)
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where a* is an element of the canonical basis of the dual space C'. By (5.17) and (5.18),

we have:

du = Z( ):I:(u(B) —u(A))a” (5.19)
a:da=+(B—A

Multiplying (5.19) by the matrix of the capacitances C, we have:

Cdu = > +(u(B) —u(A))Chax (5.20)
a:0a=+(B—-A)

Applying in (5.20) the operator —0, we have:

—0Cdu = — > +(u(B) —u(A))C,0c.
a:0a=+(B—A)
Then:

—9Cdu=— Y +(u(B) - u(A))C.(£(B — A)). (5.21)
a:0a=+(B—A)

Isolating the node A, we have the following result :
—0Cdu(A) = ( > Cy(u(B) — u(A))) A. (5.22)
a:0a=£(B-A)

Therefore:

(Au)A)= Y C.(u(B)—u(A)). (5.23)

a:do=%=(B—A)
To calculate the charge on node A by (5.14) and (5.23), we have:

pa= > Ca(u(A)—u(B)). (5.24)

a:0a=+(B—A)

Now observe that, in particular, u satisfies the Laplace’s equation
Au = 0. (5.25)

if, and only if, for each node A, we have:

1
2 Ca

summed over all branches a which has the node A at one end. Therefore, Laplace’s

u(A) =

3 C,u(B) (5.26)

equation tells us that the potential in each node is the weighted average of the potentials

at nearest neighbor nodes, with the weight being given by capacitances .

Definition 5.7. Let [d] : PY — C! be the restricted coboundary map and let [0] : C; — By

be the restricted boundary map. Then we define the restricted Laplacian as:
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Theorem 5.8. The operator [A] is invertible.

Proof. Analogous to the proof of theorem 3.70, just replacing Z~! by C. m

Corollary 5.9. For a circuit with ground node, A = [A].

Proof. For a circuit with ground node, d is injective. Therefore d = [d],0 = [0] and
A =[A]. O

Let p € P° and consider the Poisson’s restricted equation:

Al = —p. (5.27)

The solution of Poisson’s restricted equation is given by:

¥ = —[A]p. (5.28)

Remark 5.10. From equations (5.27) and (5.28), in agreement with what was previously
seen, the rows corresponding to the circuit’s ground of 1 € P° and p € B are eliminated.
The diagram of the figure 21 relates the domains of the Laplacian and restricted

Laplacian.

c'——po Lt

|

—-A

Figure 21 — Diagram of the restricted Laplacian.

Example 5.11. Consider figure 22. 4 units of charge are at node B and 1 unit at node
C. The node A is the ground of the circuit. Find the potential of B and C and the charge
on the node A(as units, use microfarads for capacitance, microcoulombs for charge and

volts for potential). Analyzing the figure 22, we have:

) . 0 1 0 1 00
m:( ),wz 1 1|, c=]o0 20
0 1 -1
0 —1 00 3
Then:
1 1 0 100 L 0 3 2
[0]C[d] = ( ) 020 —1 1| = ( )
0 1 —1 -2 5
0 0 3 0 —1
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pp=4 l Cy=
B

Figure 22 — Poisson’s Equation (example 5.11).

Therefore, the solution of Poisson’s equation is :

w5 (33) +=u(23)(3)-0)

Then we have ¢® =2V and ¢© =1V . Then V* = -2V and V7 =1 V. Using Q = CV,
we find that Q, = =2 pC and Q, =3 pC. As

pa=Qu—Q, (5.29)

then p, = =5 uC.

54 Boundary and Interior Nodes

*
C l I D
Figure 23 — Boundary nodes and interior nodes.

Imagine a circuit of capacitors, with no battery, like in figure 23. We subdivide
the nodes into two types: boundary nodes and interior nodes. Boundary nodes, as A

and B, are connected to external sources. These external sources maintain their potential
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in a specific value. Interior nodes, such as C and D, do not connect to any external source,
but only with the others nodes of the circuit. With this, we have a decomposition of the
space Cj (charges of the nodes) and C° (potentials of the nodes).

The space Cy has the following decomposition:
Cy = O g Ol (5.30)

where Cp"! consists of all zero-chains where the only nonzero coordinates are related to
the boundary nodes, and Ci*® consists of all zero-chains where the only nonzero coordinates

are related to the interior nodes.

Similarly, the space C° will have the following decomposition:

CO = Cl())ound D CO

int

(5.31)

where CP .4 consists of all linear functionals that vanish on C*. Analogously, C, consists

of all linear functionals that vanish on CHoud,

Example 5.12. In figure 23, we have that A and B are boundary nodes, while C and D
are interior nodes. Then by (5.30), we can decompose p in a unique way as the sum of an

element of Cp°"" and an element of Ci'*.

p= pbound + pint (532)
ie.,
PA PA
0
PEL— | PP | ¢ . (5.33)
pc 0 pc
PD 0 PD

On the other hand, the potential ¢ can be uniquely decomposed as the sum of an

element of C?. . with an element of C?..

d) = d)bound + ¢int (534>
ie.,
¢! ¢
P | | #° 0
o= 1F] e |- (5.35)
¢ 0 ¢

In a general problem, the potential of each boundary node is specified, and the charge of
each interior node will also be provided. With this, we want to find the charge of boundary
nodes and the potential of interior nodes. This general problem can be expressed as the

superposition of two simpler problems:
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1. Dirichlet Problem:

Data provided: the charges of interior nodes are all zero, ie, p™

= 0 and the potential
Dvouna Of the boundary nodes is provided.
We need to find: the potentials of the interior nodes ¢, and the charges of the

boundary nodes pPowd,

To find ¢, ., we use the equation:

int>»
Ay + Drouna) = 0 at all interior nodes. (5.36)

Now to find pP°™d we use:
A(d)int + ¢bound) = _pbound‘ (537>

2. Poisson equation problem:
Data provided: the potentials of the boundary nodes are all nulls, ie, ¢, = 0, and
int

the charges of the interior nodes p™ are provided.

We need to find: the potentials of the interior nodes ¢,,, and the charges of the

boundary nodes p®°und,

To find ¢, ., we use the equation:

int»
A(¢y,) = —p™ at all interior nodes. (5.38)
Now, to find p*°"4, we use:

A(g,) = —p"™ at all boundary nodes. (5.39)

5.5 Decomposition of C!

Definition 5.13. For C' : C* — C}, we define the inner product (,)c: C' x C' - R
as follows:

(V.Vie=| V= Y cqcyveve (5.40)

v all branches

Remark 5.14. The inner product (5.40) is positive definite because the matrix C' is

diagonal, and its diagonal entries are positive.
Remark 5.15. We can represent the total energy stored in the capacitors as follows:
1 1
5(‘/7 Vie=>" §C’a(Va)2 (5.41)

Proposition 5.16. The space C' can be decomposed in the following orthogonal direct

sum:
ct=d(C) e Cc 7y (5.42)
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Proof. We must show that C~17 is the orthogonal complement of d(C?). First, we have
C1Z, C [d(C)]+eomet, In fact, for V € d(C°) and for some I € Z;, C7'1 € C71Z;, we

have:
(V,.C' D)o = / V= /V =0 (5.43)
c(Cc-11) I

To prove that C~17; = [d(C?)]* eomet| we will show that dim(C~1Z;) = dim[d(C?)]Leom!,
By (2.43), we know that:
C'/dC° = 7} (5.44)

= dim C' — dim dC° = dim Z; = dim Z;

= dim C' = dim dC" + dim 7, (5.45)

We show that dim C~'Z; = dim Z,. In fact, since
q; 17y — Im C'Z, (5.46)
is an isomorphism. O

Definition 5.17. The subspace D! is, by definition, the orthogonal complement of dC?

int

with respect to the space dC°.

As a consequence of the definition (5.17), we have:

d(C°) = dCy

int

@® D' (5.47)
By (5.42) e (5.47), we have:

C'=D'@dC? oC'Z,. (5.48)
The identity (5.48) is a decomposition of C'! into three mutually orthogonal sub-

spaces.

Remark 5.18. For the next lemma, we will use the notation: m = number of meshes, n,

= number of boundary nodes and n; = number of interior nodes.

Lemma 5.19.
dim D' =n, — 1. (5.49)

Proof. (i) By (5.46), we know that dim C~'Z; = dim Z; = m.
(ii) If there is at least a boundary node, then d : C{

0. — C! is injective since, as we

have seen in proposition 3.52, ZY is the space of constant potentials. With at least one

boundary node, there is at least one coordinate with null value. Therefore, the only
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constant potential we may have will be the constant vector 0. Therefore, by theorem 2.2,

we have dim dC’S1t = dim Cglt

iii) We know that dim C' =n — 1+ m, i.e.
(iii)

= Nn;.

dim C' =n; +n, —1+m (5.50)
By equation (5.48), we have:

dim C' = dim D'+ dim C2, + dim C™'Z, (5.51)

int

By equations (5.50) and (5.51), united to the results (i) and (ii), we have:
dim D' =n, —1 (5.52)
O]

Proposition 5.20. d¢ € D! if and only if ¢ is a solution of the Dirichlet problem.

Proof. Since D' C dC?, then if V € D! we have V = d¢ and V LdC?

int*

Then:

0= (Vidg)o = [ dbu = | dus Vb € Chy. (5.53)

As for any interior node, we can find a function ¢, that not annuls only in this node,

int

then by (5.53), we have 0C'V € C{°ud. Substituting V = d¢, we have
A¢ =0, at all interior nodes, (5.54)

Therefore, ¢ is a solution of the Dirichlet problem.

Conversely, if ¢ € C? is a solution of the Dirichlet problem, then:
0Cdg¢ = 0, at all interior nodes. (5.55)

Considering V' = d¢, we have:

0= .:/ .:/ A = (db,., Ve, Yo, € O . 5.56
aCdg d)mt 90V ¢1nt v ¢1nt ( ¢1nt )C ¢1nt int ( )

Therefore, by definition 5.17, we have V € D O

Example 5.21. The capacitive circuit of the figure 24, where A, B, C are boundary
nodes (where A is the ground node), while D is an interior node. We know that C! =
dC?, & D' @ C~'Z;. We want to find the bases of the subspaces dC?,, D', C~'Z;. From

in int»

figure 24, we find the following matrices:

1 0 1 0 1 0 0 -1 1000
0 -1 -1 0 0 -1 0 1 020 0

0= d= C = (5.57)
0 0 0 -1 1 -1 0 0 0020
1 1 0 1 0 0 -1 1 0001
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1 uF 2 uF

|
A
||

2 A

2 uF

Figure 24 — Capacitive circuit.

As we have 4 branches, then dim C! = 4. As we only have one mesh, dim Z; =1 =

dim C~!'Z; = 1. . Thus, for example, an element of the basis of C~17; is:

1 1

a1l p
C = (5.58)

-1 1

2

0 0

Remembering that as the circuit has a ground node in A, this implies that d is an injective
operator (consequence of the corollary 3.53). Therefore, as we have only one interior node,
then dim dC?, = 1. So just find a vector dC?; to find a base. So, for ¢, = (0,0,0,1), we

int int int 7

have:
-1

= . (5.59)

_ o O O

By decomposition (5.48), , we conclude that dim D' = 2. As A = —9Cd, then, from the
matrices (5.57), we find:

3 2 0 1
2 —4 0 2

A= . (5.60)
0 0 -1 1
1 2 1 —4

Choosing two linearly independent potential-vectors (0, 1,0, ¢p) , (0,0,1, ¢p) and solving
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the two following Dirichlet problems, we find the following potential for the interior node:

0 *
1 * 1

A. = = = —. 5.61
N R RS (5.61)
$p 0

0 *
0 * 1

A. = = = —. 5.62
== e (5:62)
¢p 0

Therefore, we have the solution ¢ = (0,0, 1, i)

With this, we find the following two linearly independent vectors in D*:

1 0 0 -1 0 -3
0 -1 0 1 1 -1
dep = = 2, 5.63
¢ 1 -1 0 0 0 —1 (5:63)
0 0 -1 1 : :
1
1 0 0 -1 0 —1
0 -1 0 1 0 :
de = = 4 5.64
¢ 1 -1 0 0 1 0 (564
0 0 -1 1 : —3

So after multiplication by suitable scalars, we find the following basis for the subspace D!:

~1 ~1
~1 1

: . 5.65

i 0 (5.65)
1 -3

5.6 Solution of the Boundary-value Problem by Weyl’s
Method of Orthogonal Projection

5.6.1 Poisson’s Equation

Suppose that a charge p is specified for all interior nodes. We want to find out the
solution of Poisson’s equation given this interior charge. For this, we build a distribution of
voltage V such that —AC'V = p, at all interior nodes. Since V e C, by (5.48), we have:

V=V+U+W (5.66)
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where V € dC?,, U € D', W € C~'Z,. Note that 0C(U+W) = 9C(U) +9C(W) = 0™

at all interior nodes, because 9C'(U) = 0™ at all interior nodes (Dirichlet’s problem),
and, since W € C7'Z;, 31 € Z; such that W = C7'I. So 0C(W) = dCC~'T =9I = 0.

Therefore, we have:

—dCV = —9CV = p, at all interior nodes. (5.67)
If we denote by 7 the orthogonal projection of C* on dC?,, we have:
V=nV. (5.68)

Now let ¢, such that V' = —de,,. Then by (5.67), we have ¢, is the solution of the

Poisson equation.

int»

5.6.2 Dirichlet’s Problem

We want to find out the solution of the Dirichlet problem for a specific value of the
potentials at the boundary nodes. Let us denote by qAﬁ the potential that is equal to zero
for the interior nodes and equal to a specified value at the boundary nodes, imposed by
the Dirichlet problem. With this, let V = —de. So, since 7 is the orthogonal projection of
C! on dC?

int»

we have:

V=1V+(1-7V. (5.69)
Since V € dC°, then by (5.47), we have (1 — )V € D'. Therefore, 7V = —dt, with
e %, and (1 — 1)V = —d¢, with A¢ = 0, at all interior nodes. Then:

~d¢ = —dyp —dp = —d(¢ — ¢). (5.70)

Considering that the circuit has a ground, then d is injective. Thus, for ¥ € C?, | we

have qAb = ¢ for all boundary nodes. Therefore, ¢ is the desired solution to the Dirichlet

problem.

Example 5.22. In this example, we will calculate the Weyl’s projection and then we will
solve the Poisson equation and the Dirichlet problem. First, let’s look at the previous

example, the equation (5.59), and note that a possible basis of dC?, is:

U= . (5.71)

Finding the norm of U, we have:

U = (U, U)c =2. (5.72)



Chapter 5. CAPACITIVE NETWORKS 76

Figure 25 — Weyl’s projection method.

Then, for any V € C!, we have:

1
mV = Z(V’ U)cU (5.73)
We know that w : C' — dC?,. So to find the matrix of 7, we apply m to the
1 0 0 0
0 1 0 0
vectors of the basis , , ,
0 0 1 0
0 0 0 1
With this, we find:
1 -2 0 -1 3 0 1
1{ -1 20 1 1 0 -1
™= and (1—m)=— 5.74
4 0O 00 O ( ) 0 4 0 ( )
—1 0 1 1 -2 0 3
Look at figure 25 and suppose that pp = 1. We want to solve the Poisson equation.
0
One possibility is to have @, = @ = @5 = 0,05 = —1, then V = o | Then
-1
1
~ .| -1 . .
7V = . Then, since A is a ground, we have:
—1
0 -1
0 1| -2
= and p=— . 5.75
¢=1, P=11 (5.75)
: 4
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as solution of Poisson’s equation.

We now will solve the Dirichlet problem assuming that to the figure 25, we have
ot = 0,¢% = 5,¢° = 6. Let’s build &, such that (Aﬁ = ¢ for all boundary nodes and
&D = (0.Then we have:

0
N N )
V= —db=| (5.76)
6
3 20 1 0 4
N 1 20 -1 ) 1
So, we have: V= (1 - m)V = 1 =
0O 04 0 6 5
1 -2 0 3 0 2

With this, we have the solution of the Dirichlet problem ¢, such that V = —d¢, is

equal to:

= o Ot O

5.7 Green’s Functions

Before starting this section, we will demonstrate the following lemma.

A B
Lemma 5.23. For a capacitive circuit with ground node, let A = D be the

Laplace operator write in block form with A a invertible matriz of order equal to dimCy™.

Then the solution of the Poisson equation problem exist and is unique.

Proof. The existence of the solution is guaranteed by the corollary 5.9 and theorem 5.8.

To prove uniqueness, consider the following Poisson equation problem:

A B ¢int _ _pint
C D 0 o _ pbound

Then: .
A¢int - _pmt
C¢int = _pbound
As the block A is invertible, then:
Pint = _A_lpint-
bound

Then ¢, is uniquely determined and hence p is also uniquely determined. O]

int
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Therefore, to ensure the uniqueness of solutions of the Poisson equation problem,
we will consider throughout this section that the capacitive circuit under study has the

Laplace operator with block A invertible.

Definition 5.24. The map G : Ci"* — C?

int

which gives to the charge distribution p

(restricted to the interior nodes) the potential ¢, which solves the Poisson equation is

int
called the Green’s operator.
Remark 5.25. The entries of the operator’s matrix G are denoted by G(A,B) (line B,

column A), with A, B € Cj nodes of the circuit. When A is a boundary node, we have
G(A,B) =0.

Proposition 5.26. If A is an interior node, then G(A,B) is equal to the potential at
node B result from solving the Poisson equation for a configuration of a unit charge at

interior node A and charge zero at the remaining interior nodes.

Proof. As the operator G solves the Poisson equation for a given configuration of charges

on interior nodes, then multiplying the line B of the matrix of the operator G by the
0

charge | 1 | of the interior node A, we will have:

by =G = G(A,B). (5.77)

Remark 5.27. For every boundary node B, we have G(A,B) = 0.

Definition 5.28. The entry G(A,B) of the matrix G, with A;B € Cj nodes of the

circuit, is a function of two variables called Green’s function.

Remark 5.29. When the Green’s function is considered as the first variable A fixed, with
A € C" | then we have:
G(A,)e?

int*

(5.78)
Of the remark 5.29, we have:
-1 , if G(AA).
AG(A, ) = (5.79)
0 , if G(A,B),B# Ae BeC.
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Definition 5.30. Let my be the orthogonal projection in the subspace C{™. Then:
Ay =m0 A, . (5.80)

As a consequence of the equation (5.80), we have:

Ay C) — O™ (5.81)

int

Proposition 5.31. The operator Ay : C?

int
0 int
Cie and Cg™.

1

— Ot s an isomorphism between the spaces

Proof. By lemma 5.23, we know that in a circuit that has at least one boundary node(in

this context, it is similar to have a ground node), each p™™ is associated with only one

¢, (and vice versa). Therefore A, is a bijection. O

Corollary 5.32. G = (—Ay)~%.

Proof. Since A, is an isomorphism, we have:

_A2¢int = Ping < (_AQ)_lpint = ¢int‘

Therefore, by definition 5.24, we have G = (—Ay)~!. Then:

_AQd)int = Pint g Gpint = ¢int‘ (582)

Remark 5.33. The corollary 5.32 ensures the existence of the Green’s operator G.

Now, reformulating the definition (5.24), we have:

Definition 5.34. The map G : Ci* — (C?

int»

such that G = (—A,)7!, is called Green’s

operator.

Corollary 5.35. G is a symmetric operator.

Proof. We need just show that A} = A,. Indeed, as the matrix of the operator my is a

diagonal matrix, and how, by lemma 5.5, the Laplacian is symmetric, we have:

T _ T _ AT T _ AT _
Ay = (mo0 A\cpt) = Alco omy = Alco omy = Ay.
m

int int

By (5.82), for each node B, we have:

u(B) =" p(A)G(A,B), (5.83)
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such that the sum of (5.83) extends to all interior nodes A.

We can use the Green function to solve the Dirichlet problem. To achieve this

purpose, we will demonstrate a certain identity.

Note that for u,v € C° and for every node A € C, we have:

— 3 u(A)Av(A) = 3 u(A)aCdv(A)

all A all A

= u= du = (du,dv)¢ = (dv,du)c = dv = / \%
oCdv Cdv Cdu 0Cdu

= ¥ v(A)aCdu(A) = — 3 v(A)Au(A).

all A all A
Therefore:
> u(A)Av(A) = ) Au(A)v(A). (5.84)
all A all A

Spliting the sum of two parts, one on the boundary nodes and the other on the interior

nodes, we have:

3 [(A)AV(A) - Au(A)v(A)] = - b Z [u(B)Av(B) — Au(B)v(B)]  (5.85)

The identity (5.85) is called Green’s formula.

Let us now choose any two interior nodes A; and A, and set u,v € C?

o as follows:

u=G_G(Ay,) and v=G(Ay, )

Using u, v in the Green’s formula (5.85), we have that the right side is zero because
u(B) = v(B) = 0 for every boundary node B. Also note that:

-1, if A=Ay,
Au(A) =
0 , if A#A;and A € O},
and
-1, if A=A,
Av(A) =
0 , if A# Ay,and A € C™.

Therefore, the Green’s formula (5.85) becomes:
—u(Ay) +v(A;) =0
= 'LI(AQ) = V(Al).

Therefore:
G(Al, A2) - G(Az, Al) (586)
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Remark 5.36. In agreement with the corollary 5.35, the identity (5.86) shows once again

that the matrix of the operator G is symmetric.

If we write u = ¢,Au = —p,v = ¢,Av = —p, , the Green’s formula (5.85)

becomes:

~C R R ~ B
> (pct —pcd)= > (ppd” —ppd ) (5.87)
interior boundary
nodes C nodes B

With this, we realized that the Green’s formula is nothing more than the version for

capacitive circuits of Green’s reciprocity theorem 4.51.

Now suppose that (Aﬁ is a solution of the Dirichlet problem, then p = 0 at the
interior nodes. Let ¢ = G(A, ) in (5.87), with A an interior node. Then we have:

~C . ~ B
nodes C nooudr:iaéy

Since —AG(A,C) =1if C = A and 0 for the others interior nodes, since p = 0 at all
interior nodes and how G(A,B) = 0 for all B boundary node, (5.88) becomes:

o' = Y AGAB)G (5.89)

boundary
nodes B

~ A
with ¢ being the potential of Dirichlet problem’s solution for each interior node A .

The matrix (AG(A,B))jinco wdimes Clouma — CY . is called Poisson Kernel.

bound

Example 5.37. Return to the example (5.22), we have, from (5.75), that:
1 1 1 1
Then, ¢” (solution of the Dirichlet’s problem) is given by:
¢” = AG(D,A)¢" + AG(D,B)¢” + AG(D, C)¢°.

Therefore:

¢DZE¢A+}¢B+}¢C

4 2 47
There is another version for the Green formula , called Green’s second formula.

Let’s prove it.

Let A be a boundary node. We know from lemma 5.6 that:
(Au)(A)= > Ca(u(B)—u(A)) (5.90)
a:0a=+(B—A)

summed over all nodes B that are in the neighborhood of A.

In (5.90), we can divide the right side of the equality as follows:

(Auw)(A)= Y GuB)-uA)+ X Cu(uB)-u(A). (5.91)
o (BoA) Dot (B A)
B an interior node B a boundary node
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Let us denote the second term of the sum (5.91) for APoudy(A); ie:

(Au)(A) = S Ca(u(B) —u(A)) | + Abemdu(A). (5.92)
oDt (B A)
B an interior node

We can think of the boundary nodes with all branches of the circuit connecting two
boundary nodes as a circuit by itself. Then AP will be the Laplace operator of this
subcircuit. As this subcircuit doesn’t have interior nodes, by Green’s formula (5.85), we
have:

S (u(A)APMv(A) — APdu(A)v(A)) = 0. (5.93)

boundary A

Therefore, from (5.92) and (5.93), we have:

> (u(A)AV(A) - Au(A)v(A)) =

boundary A

= > > (u(A)Cu(v(B) = v(A)) = Ca(u(B) —u(A))v(A)) =

boundary A 9da=x(B-A)

B in interior

= 2 > Ca(u(A)v(B) —u(B)v(A)).

boundary A 9da==+(B-A)

B in interior

So:

> A(U(A)AV(A)—AU(A)V(A))Z > . >, Ca(u(A)v(B)—u(B)v(A)).
boundary boundary da=+(B-A)

B in interior

(5.94)
Replacing (5.94) on Green’s formula (5.85), we find:

Y. ((A)AV(A) - Au(A)v(A) =— > > Ca(u(A)v(B) —u(B)v(A))

A in interior A in da=+(B—A)
boundary B in interior

(5.95)
The identity (5.95) is called Green’s second formula.

5.8 Green’s Reciprocity Theorem in Electrostatics

Remark 5.38. In this section some results for systems of charged conductors are listed
without proof, merely in order to show some generalizations of the theory previously

studied for capacitive systems.

As a slight generalization of capacitive networks, we may consider a system of
charged conductors, each of which has a well-defined charge p and a well-defined potential

¢. The total charges on each of the various conductors may be described in terms of
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PA
a vector p = | pp | in a space we may call Cy, while the potentials form a vector

¢A
¢ =| ¢® | in its dual space C°.

Figure 26 — Conductors.

Remark 5.39. The stored electrostatic energy E on a system of conductors can be given
by:

1 1
E:2/p¢:22PA¢A-

The total conductor charges p may be expressed in terms of the potentials ¢ by a

Laplace operator A, so that:
p=-—-A¢.

Remark 5.40. : In the physics literature, —A is usually called the matriz of capacitance

coefficients and the inverse of the matrix —A is called the matriz of potential coefficients.

In the current context, the operator A depends on the shape of the conductors,
their distribution in space and on fundamental constants of electrostatics. Generally the
calculation of A is extremely difficult. But in some cases this calculation is simple, as in

the following example, which deals with concentric spheres.

Example 5.41. Consider in figure 27 a system of two concentric spheres, with radii r 4
and 7z In Gaussian units, for p4 = 1 and pg = 0, we find the potentials ¢ = i, o8 = é,

while, if p4 = 0 and pp = 1, we find the potentials ¢ = ¢¥ = % Then, we have:

—A_lz ( 1/7”A 1/7"3 )
]_/T'B 1/7“3
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<

Figure 27 — Two concentric spheres.

This matrix permits us to calculate the potential of the two spheres for an arbitrary charge

distribution. Its inverse gives the Laplace operator:

B ra  —TA
“A=_°=
'B—=TA \ —Tra 7Tp

This matrix determines the charges on the two spheres for specified potentials. For the

pa | _ TaB 1
PB rg—7ra\ —1 )’

i.e., there are equal and opposite charges of magnitude ﬁ on the two spheres. This

case oo = 1,05 = 0 it gives:

quantity A5 ig called the capacitance of the pair of spheres.
y TB—TA

Example 5.42. For any number of concentric spheres, the reasoning is the same. For

example, consider the three concentric spheres of figure 28. Then:

%

Figure 28 — Three concentric spheres.
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1/ra 1/rg 1)rc
—Al = 1/rg 1/rg 1/re
1/7”0 1/’/“0 1/7‘0

In the same way we use for capacitive circuits, we may also use the Green’s
reciprocity theorem for a system of conductors. So let (p, @) and (p', ¢’) are two settings

for charge and potential of a system of conductors, so Green’s reciprocity theorem states

that:
oo

Lemma 5.43. A is a self-adjoint operator.
Proof. Let p=—A¢, p' = —A¢'. Then

/ N

(A¢', 9) = (¢, Ad).

ie.,

]

The same way as was done in the study of capacitive circuits, here we can also
classify some conductors as boundary conductors whose potential may be established by
connecting batteries to them, while others are inner conductors whose charge may be
specified. And in the identical way, we will have the Poisson equation problem and the

Dirichlet problem.

For a system of conductors, let (p’, ¢’) be the charge and potential for the Poisson
equation problem and let (p, ¢) be the charge and potential to the Dirichlet problem. By
Green’s reciprocity theorem, we have:

oot > ppe" = > padt+ > ppe”

interior boundary interior boundary

But given that ¢’ = 0 on the boundary(Poisson) and p = 0 in the interior(Dirichlet), we
get:

Yo ophot=— > po” (5.96)

interior boundary
Suppose now that p/ = —AG(C,.) where G is the Green function and C an interior node.
With this, the equation (5.96) will be equal to:

o= > AG(C,B)¢” (5.97)

boundary

This is the Green’s function solution to the Dirichlet problem e the matrix [AG(C, B)] is
the Poisson Kernel. Observe that the equation (5.97) is similar to the equation (5.89) to

the capacitive circuits.
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Example 5.44. Consider the system of three large parallel conducting planes shown in

figure 29. We regard A and C' as boundary conductors, B as an interior conductor without

charge and we consider that in this geometry the potential in the plane B is a linear

function of the position between the plates A and C'. Then:

lt—  — > f——— g ———>]

A B c

Figure 29 — Parallel conducting planes.

68 = "+ 5(6° - o).

So: 5 .
B_ % ,A, * . C
¢ —3¢ +3¢-

This is a solution to Dirichlet’s problem.

Now consider Poisson’s equation, with charge p; on the middle plane, ¢4 = ¢’ = 0.

By reciprocity theorem,
ppd” = —pho™ — po©.
B _ 24A | 1.C )
But ¢ = £¢” + 3¢, then:
/ 2 A / 1 C r LA 1 . C
Pe39” + P30 = —Pad” — pod”.
Since ¢ and ¢¢ are linearly independent, we have:

2 1
;o2 Lo ‘
Pa = 3037 Pc SPB

The equations above show the induced charge in the planes A and C.

(5.98)
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6 SUMMARY AND PERSPEC-
TIVES

In this work we introduce the analysis of electrical circuits made with strong
considerations about its shape. The graph theory and algebraic topology were used to
make possible this goal. For example, we saw how the boundary and coboundary maps act
in the electrical circuit. We also saw that a circuit have homology (Hy, H;) and cohomology
(H') groups. We defined the vector space Cy, C; of nodes and branches, respectively, and
also their dual spaces C° and C'. We defined the vector subspaces of cycles Z; and of
boundaries By, as well as the dual subspace Z° and B!, providing a physical meaning to
them. Through Maxwell’s Mesh-Current Method and Maxwell’s Node-Potential Method,
we analyze the existence and uniqueness of the Kirchhoff equations for resistive electrical

circuits and also for more general circuits (RLC circuits).

We also worked with a geometric method, conceived by Weyl, introducing equations
that are equivalent (in resistive circuits) to Kirchhoff’s equations for electrical circuits.
Kirchhoff, on the other hand, contributed with an alternative way (based on graph theory)
to discover the Weyl’s orthogonal projection. Green’s Reciprocity Theorem allows us to

find some symmetries for the circuit.

We learned how to work with capacitive circuits, introducing the discrete versions
of the Gauss’ law, Dirichlet problem, Laplace and Poisson equations. We discuss how to
decompose the space C* in a direct sum, and define the space D!, relating this space with
the solutions of the Dirichlet problem. The decomposition of the space C! also enabled us
to know a new geometric method for solving the Dirichlet and Poisson problems, using
orthogonal projection. We finished our study with the Green’s functions, the Green’s
formula (which in turn is equivalent to the Green’s reciprocity theorem for capacitive

networks), Poisson Kernel and Green’s second formula.

As future perspectives, we intend relate capacitive circuits with the general theory
of electrostatics explaining, for example, how the star operator plays the same role to
the capacitance matrix. More generally, we intend very soon develop, using the exterior
differential calculus, a continuous version for the study of electrical circuits, thus formulating

a new perspective to electromagnetism’s study.
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