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Abstract
We are proposing a new formulation of circuit theory, taking in consideration its physical
distribution in the space. For doing this we will use some concepts of the algebraic topology.
Names as Hermann Weyl and Steve Smale did important contributions showing these
connections between the theory of circuits and the theory of algebraic topology. In this
work, we will go to consider an electrical circuit as a graph or as a one-dimensional complex,
where the domain of the boundary operator ∂ is the vector space C1 generated by the
branches (wires of the circuit) and its codomain is the vector space C0 generated by the
nodes. In chapter 3, the Kirchhoff ’s current law will be reformulate to the concise formula
∂I = 0 and the Kirchhoff ’s potential law will be reformulate to the concise formula
V = −dφ, where d : C0 → C1 is the coboundary map. The methods of mesh-current and
node-potential are also discussed in this chapter, as well as a conclusive analysis of the
existence and uniqueness of solutions for the electric circuit equations too is realized. In
chapter 4 we will study some alternative methods for solving electric circuit equations.
The Weyl’s method makes use of orthogonal projection operators and this method is
summarized by the formula π = σ(sZσ)−1sZ. The Kirchhoff’s method uses graph theory
to find the values of voltages and electric currents and will be given by pλ = R−1

∑
T
QTpT.

The Green’s reciprocity theorem exposes symmetries for some resistive circuits. In chapter
5, we will treat circuits where their branches have at most a battery in series with a
capacitor. Here, the Gauss’ Law will be reformulated to ∂Q = −ρ, and the Poisson’s
equation will be reformulated to −∂Cdφ = −ρ. In this chapter, we too study the Dirichlet
problem, ending with the study of Green’s functions.

Key-words: electric circuits and algebraic topology. electric circuits.smale.mathematical
physics. electromagnetism.



Resumo
Estamos propondo uma nova formulação da teoria dos circuitos, levando em consideração
a sua distribuição física no espaço. Para fazer isto, usaremos alguns conceitos da topologia
algébrica. Nomes como Hermann Weyl e Steve Smale fizeram importantes contribuições
mostrando essas conexões entre a teoria dos circuitos e a da topologia algébrica. Neste
trabalho, nós consideraremos um circuito elétrico como um grafo ou um complexo unidi-
mensional, onde o domínio do operador fronteira ∂ é o espaço vetorial C1 gerado pelos
ramos (fios do circuito), e o seu codomínio é o espaço vetorial C0 gerado pelos nós. No
capítulo 3, a lei das correntes de Kirchhoff será reformulada para a fórmula concisa ∂I = 0
e a lei das voltagens de Kirchhoff será reformulada para a fórmula concisa V = −dφ, onde
d : C0 → C1 é a aplicação cofronteira. Os métodos da corrente na malha e do potencial nos
nós são também discutidos neste capítulo, bem como uma análise conclusiva da existência
e unicidade das soluções para as equações dos circuitos elétricos é também realizada. No
capítulo 4, estudaremos alguns métodos alternativos para resolver equações de circuitos
elétricos. O método de Weyl faz uso de operadores para projeção ortogonal e este método
resume-se a fórmula π = σ(sZσ)−1sZ. O método de Kirchhoff usa a teoria de grafos para
encontrar os valores de tensões e correntes elétricas e será dado por pλ = R−1

∑
T
QTpT. O

teorema da reciprocidade de Green expõe simetrias para alguns circuitos resistivos. No
capítulo 5, vamos tratar circuitos onde seus ramos têm no máximo uma bateria em série
com um capacitor. Aqui, a Lei de Gauss será reformulada para ∂Q = −ρ, e a equação de
Poisson será reformulada para −∂Cdφ = −ρ. Neste capítulo, nós também estudamos o
problema de Dirichlet, terminando com o estudo das funções de Green.

Palavras-chaves: circuitos elétricos e topologia algébrica. circuitos elétricos. smale. física-
matemática. eletromagnetismo.
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1 INTRODUCTION

The circuit theory is an approximation of the theory of electromagnetism, where
the interest is almost all concentrated in terms of what happens along the wires and nodes
of the circuit. The biggest benefit of the development of any theory is, as you might expect,
make predictions about the values of its main parameters. In our case, the fundamental
quantities in an electrical circuit are: electric charge(Q), energy and electric potential (φ),
and thereafter electric currents (I), voltages (V ) and electric power (Pot). So this will
always be the first goal to be achieved when we thinking about a circuit theory. What we
are proposing here is a new formulation of circuit theory, making further consideration
about its shape, i.e., doing better observation of how the wires are interconnected. We
also intend from the behavior of each branch of the circuit, try to make generalizations
about the behavior into the entire circuit. The mathematical tools used in this work are:
linear algebra, graph theory and algebraic topology.

Well known names worked in the grounds of the vision of circuit theory via algebraic
topology. We will mention some of these names. Kirchhoff, as we will see soon in this work,
made important considerations about the topology of the circuit. Maxwell considered that
the topology could have an important role in the formulation of electromagnetic boundary
value problems, although it has not been exploited by him. But it was Weyl with its
articles (WEYL, 1923) and (WEYL, 1924) that not only established the connection between
circuit theory and algebraic topology, but also helped to justify the own theory of algebraic
topology (still discredited among mathematicians), called by him of Combinatorial analyzes
situs. After this, Steve Smale with his article (SMALE, 1972) makes important aplications
this new perspective to study dynamical systems associated with electrical circuits.

Now, we will briefly comment about the chapters of this work. Chapter 2 is
devoted to a brief review of topics of linear algebra that are essential and indispensable
to the proper understanding on whole text. The main references were (BAMBERG;
STERNBERG, 1988), (LANG, 1987) and (HOFFMAN; KUNZE, 1971).

Chapter 3 is where we introduce the concepts of graph theory and algebraic
topology in the study of electrical circuits, i.e., this chapter is essential for understanding
the following chapters. Branches and nodes, for example, constitute an one-dimensional
complex, a fundamental concept in topology. With this will conquer a new perspective to
study a circuit.

Chapter 4 is devoted exclusively to resistive circuits and present more two methods
to solve the equations of an electrical circuit. The first of these methods was thought by
Weyl and makes use of orthogonal projections. It is a creative way to associate geometric
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notions to solve the equations of electric circuits. The other method was created by
Kirchhoff and uses graph theory (specifically maximal trees) to find the Weyl’s orthogonal
projection. It is extremely elegant the way that Kirchhoff thought graph theory in the
study of eletrical circuits. We conclude this chapter with the Green’s reciprocity theorem,
where is possible to find symmetries in resistive circuits which apparently has not any
symmetry.

Chapter 5 deals with capacitive circuits. The most interesting aspect of this study
is precisely the notion of discretization of electrostatics. Here we find the discrete versions
of Gauss’ Law, Poisson equation, Laplace equation and Dirichlet problem , concluding the
chapter with a discrete version of Green’s functions. At this point opens up the future
possibility of adapting this new theory for the continuous version, thereby covering the
whole electromagnetism, not just the fraction destined to circuit theory.

Our work has (BAMBERG; STERNBERG, 1990) as the main reference, but
several contributions were made, or in mathematics organization of ideas discussed, or in
mathematical demonstrations where there were only categorical statements, or adding new
definitions and propositions. As examples of this, we cite the following contributions to the
Chapter 2: generalization of the operator ∂ (page 22), the diagram on page 33, helping the
overall view of the matter, the definition 3.73, the lemma 3.74, corollaries 3.53, 3.54, 3.69,
3.71, theorem 3.70 (demonstration omitted from the book). In Chapter 3 we mention the
contributions of lemmas 4.15, 4.17, corollary 4.31 and propositions 4.4, 4.6, 4.14 and 4.32.
No Chapter 4 there were several contributions: remarks 5.25, 5.33, definitions 5.30, 5.34,
lemmas 5.2, 5.5, 5.6,5.23, corollaries 5.9, 5.32, 5.35, proposition 5.16 (full demonstration),
5.20 (full demonstration), 5.26, 5.31, theorem 5.8 and finally an adjustment in the sign of
Green’s second formula.
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2 A BRIEF REVIEW OF LINEAR
ALGEBRA

2.1 Vector Space

Definition 2.1. A vector space over a field K is a set V on which are defined two
operations

+ : V × V → V

(u,v) 7→ u + v
and . : K × V → V

(c,v) 7→ c.v

called addition and scalar multiplication, satisfying the following properties:

(A1) (u + v) + w = u + (v + w), ∀ u,v,w ∈ V,
(A2) u + v = v + u, ∀ u,v ∈ V,
(A3) ∃ 0 ∈ V | v + 0 = 0 + v = v, ∀ v ∈ V,
(A4) ∀ u ∈ V, ∃ v ∈ V | u + v = v + u = 0,
(M1) 1.v = v, 1 ∈ K, ∀ v ∈ V,
(M2) (bc).v = b.(c.v), ∀ b, c ∈ K, ∀ v ∈ V,
(M3) a.(u + v) = a.u + a.v, ∀ a ∈ K, ∀ u,v ∈ V,
(M4) (b+ c).v = b.v + c.v, ∀ b, c ∈ K, ∀ v ∈ V.

(2.1)

Definition 2.2. A subset W of V is a vector subspace of V if:

(i) W 6= ∅,

(ii) u,v ∈ W ⇒ u + v ∈ W ,

(iii) α ∈ K, u ∈ W ⇒ α.u ∈ W .

Remark 2.3. We will work only with finite dimensional vector spaces.

2.2 Linear Transformations

Definition 2.4. A linear map(or linear transformation) from V to W is a function
T : V → W with the following properties

(i) T (v + w) = T (v) + T (w),
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(ii) T (λv) = λT (v).

Definition 2.5. Let T : V → W be a linear map. The kernel of T, denoted by ker T ,
is defined by:

ker T := {v ∈ V | T (v) = 0}.

Definition 2.6. Let T : V → W be a linear map. The range of T, denoted by Im T , is
defined by:

Im T := {T (v) | v ∈ V }.

Theorem 2.7. Let T : V → W be a linear map. Then:

dim V = dim kerT + dim ImT (2.2)

Proof. Vide (LANG, 1987).

2.3 Quotient space

Definition 2.8. Let V be a vector space and let W be a subspace of V . Given a vector
v ∈ V , we define v as being the set:

v := {v + w | w ∈ W} (2.3)

v is called equivalence class of v module W.

Definition 2.9. Let us define the following operations between equivalence classes and
scalars:  v + w := v + w

c.v := c.v , ∀ c ∈ R

Remark 2.10. The above operations are well defined, that is, they don’t depend on the
choice of the class representatives.

Lemma 2.11. The set of equivalence classes equipped with the above operations determine
a vector space. This space is called quotient space of V in W, and is denoted by V/W.

Proof. Just check the axioms 2.1. We will check one of these axioms.
Commutativity:
v + w = v + w = w + v = w + v.

Theorem 2.12. If T : V → W is a linear map, then:

V/ker(T ) ∼= Im(T )

Proof. Vide (HOFFMAN; KUNZE, 1971).
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Proposition 2.13. dim V/W = dim V − dim W .

Proof. Let βW = {w1, . . . ,ws} be a basis of W . Completing this basis, we have βV =
{w1, . . . ,ws,u1, . . . ,ut} a basis of V . To complete the proof, we need to prove that
{u1, . . . ,ut} is a basis of V/W .
Let v ∈ V/W , then:

v = α1w1 + · · ·+ αsws + γ1u1 + · · ·+ γtut =

α1w1 + · · ·+ αsws + γ1u1 + · · ·+ γtut = γ1u1 + · · ·+ γtut

Therefore, {u1, . . . ,ut} is a generator set of V/W .

Now, we will show that {u1, . . . ,ut} is linearly independent.

α1u1 + · · ·+ αtut = 0 = α1u1 + · · ·+ αtut

⇒ α1u1 + · · ·+ αtut = ξ1w1 + · · ·+ ξsws

⇒ α1u1 + · · ·+ αtut − ξ1w1 − · · · − ξsws = 0

⇒ α1 = · · · = αt = ξ1 = · · · = ξs = 0

.

2.4 Direct sums

First, let’s define direct sums of two subspaces.

Definition 2.14. Let W1,W2 be subspaces of V . When W1
⋂
W2 = {0}, we say that the

sumW = W1 +W2 is direct, orW is a direct sum ofW1 andW2 , and writeW = W1⊕W2.

Now, we wish to consider direct sums of several subspaces. For this, we need a
concept of independence of subspaces.

Definition 2.15. Let W1, . . . ,Wk subspaces of a vector space V . We say that W1, . . . ,Wk

are independent if:

v1 + · · ·+ vk = 0, vi ∈ Wi, for i = 1, . . . , k ⇒ vi = 0, for i = 1, . . . , k

.

Theorem 2.16. Let V be a vector space over a field F . Let W1, . . . ,Wk be subspaces of
V and let W = W1 + · · ·+Wk. The following conditions are equivalent.

(i) W1, . . . ,Wk are independent.
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(ii) Each vector v ∈ W is written uniquely as

v = v1 + · · ·+ vk

where vi ∈ Wi, for i = 1, . . . , k.

(iii) For each j, 2 ≤ j ≤ k, we have Wj
⋂(W1 + · · ·+Wj−1) = {0}.

Proof. (i)⇒(ii). Let v = v1 + · · · + vk and v = w1 + · · · + wk, where vj,wj ∈ Wj, for
j = 1, . . . , k, then:

v1 + · · ·+ vk = w1 + · · ·+ wk

(v1 −w1) + · · ·+ (vk −wk) = 0

From (i), we have (vi −wi) = 0⇒ vi = wi, for i = 1, . . . , k.
(ii)⇒(iii). If wj = w1 + · · · + wj−1, with wi ∈ Wi, ∀i, we have 0 + · · · + 0 + wj =
w1 + · · ·+ wj−1 + 0. Therefore, by (ii), we have that w1 = · · · = wj−1 = wj = 0.
(iii)⇒(i).Let w1 + · · ·+ wk = 0 and consider j the largest integer such that wj 6= 0. Then:

wj = −w1 − · · · −wj−1

By (iii), we have wj = 0, which is a contradiction.

Definition 2.17. If one (and hence all) of the three conditions of theorem 2.16 hold for
W1, . . . ,Wk, we say that the sum W = W1 + · · ·+Wk is direct or W is the direct sum
of W1 . . .Wk, and we write W = W1 ⊕ · · · ⊕Wk.

Theorem 2.18. Let V be a vector space over the field F and let W1, . . . ,Wk be vector
subspaces of V . The following two statements are equivalent:

(i) V = W1 ⊕ · · · ⊕Wk.

(ii) If Bi is a basis of Wi, for i = 1, . . . , k, then B, such that B = ⋃k
i=1 Bi, is a basis of

V .

Proof. (i)⇒ (ii). Let Bi = {ui1, . . . , uidi} be a basis of Wi, for i = 1, . . . , k. We will show
that B = ⋃k

i=1 Bi is a basis of V .
First, the vectors of B generate V since any v ∈ V ⇒ v = v1 + · · · + vk, with

vi =
di∑
j=1

cijuij, ∀i. Therefore, v =
k∑

n=1

dn∑
j=1

cnjunj

Second, the vectors are L.I. because
k∑

n=1

dn∑
j=1

cnjunj = 0 , and how sum is direct, we have

di∑
j=1

cijuij = 0, for 1 ≤ i ≤ k ⇒ cij = 0, for 1 ≤ i ≤ k and 1 ≤ j ≤ di.
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(ii)⇒(i).First, as B is a basis, your vectors generate V . Then:

V = W1 + · · ·+Wk

To prove that the sum is direct, just observe the definition (2.17) and use the item (i) of
Theorem 2.16 , because, since the vectors of B are L.I, we have as consequence that:

k∑
i=1

vi = 0⇒ vi = 0, i = 1, . . . , k

Corollary 2.19. If V = W1 ⊕ · · · ⊕Wk, then dim V= dim W1+. . .+ dim Wk.

Proof. It is a direct consequence of Theorem 2.18, item(ii) .

2.5 Orthogonal Complement

Definition 2.20. Consider a vector space V equipped with an inner product <,> and
consider a non-empty subset S of V . Then:

S⊥compl := {v ∈ V | v is orthogonal to all vectors of S} (2.4)

Lemma 2.21. S⊥compl is a vector subspace of V , even if S is not a subspace of V .

Proof. Just check the conditions of definition (2.2).

Proposition 2.22. If S is a vector subspace of V , then:

V = S ⊕ S⊥compl (2.5)

and S⊥compl is called orthogonal complement of S.

Proof. The sum is direct since S ∩ S⊥compl = 0. In fact, let v ∈ S ∩ S⊥compl . So < v,v >=
0⇒ v = 0. Now let BS = {v1, . . . ,vr} be an orthogonal basis of S. Completing this basis
and using the Gram-Schmidt method, we find BV = {v1, . . . ,vr,u1, . . . ,us} an orthogonal
basis of V . To conclude the proof, we show that B

S
⊥compl = {u1, . . . ,us} is a basis of

S⊥compl . In fact, let w ∈ S⊥compl , then < w,vi >= 0 to i = 1, . . . , r. Then:

w = 0.v1 + · · ·+ 0.vr + α1.u1 + · · ·+ αs.us (2.6)

With (2.6), we prove that B
S
⊥compl is a generating set. That is a linearly independent set

follows immediately, since B
S
⊥compl ⊂ BV .



Chapter 2. A BRIEF REVIEW OF LINEAR ALGEBRA 17

2.6 Projections

Definition 2.23. Let V be a vector space and P : V → V a linear operator. P is a
projection of V onto Im P if P ◦ P = P .

Definition 2.24. Let V be a vector space with inner product. The projection P : V → V

of V on W is called orthogonal if the kernel of P is the orthogonal complement of W ,
i.e., ker P = W⊥compl .

Proposition 2.25. The orthogonal projection P : V → V of V on W exists and is unique.

Proof. Let {w1, . . . ,wk} be an orthogonal basis of the subspace W. Knowing that V =
W ⊕W⊥compl , then:

P (v) =
k∑
i=1

1
‖wi‖2 < v,wi > wi, ∀ v ∈ V. (2.7)

2.7 Linear Functionals

2.7.1 Dual Vector Space

Definition 2.26. If V is a vector space over a field R, a linear functional on V is a
linear transformation of V in R.

Definition 2.27. The space of all linear functionals of V will be denoted by V ∗ and called
the dual space of V .

Proposition 2.28. The set V ∗, with the following operations

(α + β)(v) := α(v) + β(v), ∀ v ∈ V

(c.α)(v) := cα(v), ∀c ∈ R, ∀ v ∈ V

with α, β ∈ V ∗, is a vector space over R.

Proof. Just check the axioms in definition (2.1) that define a vector space. Let’s check
only one, and leave the rest as an exercise.

• Additive inverse element: ∀ α ∈ V ∗,∃ − α ∈ V ∗ such that

(α− α)(v) = α(v)− α(v) = 0 = −α(v) + α(v) = (−α + α)(v), ∀ v ∈ V.
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Definition 2.29. Let {v1, . . . ,vn} be a basis of the vector space V . The linear functional
vi : V → R is defined as follows:

vi(vj) =


1 , if i = j,

0 , if i 6= j.

Theorem 2.30. If {v1, . . . ,vn} is a basis of the vector space V , then {v1, . . . ,vn} is a
basis of the dual vector space V ∗.

Proof. Let us first show that {v1, . . . ,vn} is a generator set of V ∗. Let f ∈ V ∗. Then we
have:


f(v1) = κ1

...
f(vn) = κn

∀ v ∈ V, ∃ αi ∈ R such that v =
n∑
i=1

αivi. Then, we have:

f(v) = f

(
n∑
i=1

αivi
)

=
n∑
i=1

αif(vi).

Therefore:
f(v) = α1κ1 + · · ·+ αnκn. (2.8)

We claim that:
f = κ1v1 + · · ·+ κnvn. (2.9)

Indeed: (κ1v1 + · · ·+ κnvn)(v) = κ1v1(v) + · · ·+ κnvn(v) = α1κ1 + · · ·+ αnκn.
Then by (2.8), we have that the identity (2.9) is true. Now, it suffices to show that
{v1, . . . ,vn} is a linearly independent set. Indeed, from:

n∑
i=1

αivi = 0

we have:
(
n∑
i=1

αivi)(vj) = αj = 0(vj) = 0, for j = 1, . . . , n.

Corollary 2.31. dim V = dim V ∗

Proof. Direct consequence.
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2.7.2 New Notation

We now introduce a new notation that will appear somewhat strange at first, but
will prove suggestive when the transition from the discrete case to the continuous case is
made, using, for example, the Stokes’ theorem. In this work, we will only deal with the
discrete case, nevertheless we introduce this notation, to ensure a future perspective.

Let v ∈ V such that its coordinates in some basis BV is v = (v1, . . . ,vn) and let
α ∈ V ∗ such that its coordinates in the dual basis BV ∗ is α = (α1, . . . , αn). Then:

α(v) =
∫

v
α = α1v1 + · · ·+ αnvn. (2.10)

Remark 2.32. Obviously in the equation (2.10) it doesn’t appear an integral as usual.
It’s just a way of represent the calculation of the linear functional on its associated vector
space.

2.8 Annihilator

Definition 2.33. Let W be a subspace of V . The annihilator of W is a subset W⊥ of
V ∗ formed by linear functions α ∈ V ∗ such that

α(w) = 0, ∀ w ∈ W

Lemma 2.34. W⊥ is a vector subspace of V ∗.

Proof. Let us verify the conditions of definition (2.2).

(i) W⊥ 6= ∅ because 0 ∈ W⊥(zero function).

(ii) α, β ∈ W⊥. Then

(α + β)(w) = α(w) + β(w) = 0, ∀ w ∈ W

Therefore α + β ∈ W⊥.

(iii) c ∈ R, α ∈ W⊥ Then:

(c.α)(w) = c.α(w) = c.0 = 0, ∀ w ∈ W

Therefore c.α ∈ W⊥.

Proposition 2.35. dim V= dim W + dim W⊥.
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Proof. Let βW = {w1, . . . ,wr} be a basis of W . Completing this base, we have βV =
{w1, . . . ,wr,u1, . . . ,us} is a basis of V . By theorem 2.30, we have βV ∗ = {w1, . . . ,wr,

u1, . . . ,us} is a basis of V ∗.To conclude the proof, just show that the set βW⊥ =
{u1, . . . ,us} form a basis of the annihilator W⊥.

First, we will check that the set βW⊥ is a generator set of W⊥. Let f ∈ W⊥, then
f(wi) = 0, to ∀ wi ∈ βW , i.e., f nullifies all elements of basis of W . Therefore:

f = 0.w1 + · · ·+ 0.wr + α1.u1 + · · ·+ αs.us. (2.11)

The verification that the set is linearly independent is immediate, since βW⊥ ⊂
βV ∗ .

2.9 Adjoint transformation

2.9.1 A and A∗

Definition 2.36. Let V and W be vector spaces, and let A : V → W be a linear
transformation. We define the adjoint of A as being the function A∗ : W ∗ → V ∗ such
that:

A∗(α) = α ◦ A, ∀ α ∈ W ∗ (2.12)

Lemma 2.37. The adjoint A∗ : W ∗ → V ∗ defined above is a linear transformation.

Proof. For β1, β2 ∈ W ∗ and α1, α2 ∈ R, we have:

A∗(α1β1 + α2β2) = (α1β1 + α2β2) ◦ A = α1(β1 ◦ A) + α2(β2 ◦ A) = α1A
∗(β1) + α2A

∗(β2).

Theorem 2.38. The matrices of A : V → W and A∗ : W ∗ → V ∗ (with respect to a
certain basis of V and W , and the corresponding dual bases of V and W ) are the transpose
of each other.

Proof. Let βV = {v1, . . . ,vm}, βW = {w1, . . . ,wn} basis of V and W , respectively, and
let βV ∗ = {v1, . . . ,vm}, βW ∗ = {w1, . . . ,wn} be the corresponding dual basis of V ∗ and
W ∗. We have:

A(vj) =
n∑
i=1

aijwi, ∀ j = 1, . . . ,m (2.13)

The scalars aij are the entries of the matrix A.
Note that:

aij = wi(A(vj)) (2.14)
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Let us now consider the matrix’s representation of A∗:

A∗(wl) =
m∑
k=1

bklvk, ∀l = 1, . . . , n (2.15)

The scalars bkl represent the entries of the matrix A∗.
Applying A∗(wl) in the vector vj, , and using (2.15), (2.12) and (2.14), we find:

A∗(wl)(vj) = bjl = wl(A(vj)) = alj

Therefore:
bjl = alj. (2.16)

2.9.2 Maps i and i∗

Consider W a vector subspace of the vector space V .

W

'
��

i // V

'
��

W ∗ ∼= V ∗/W⊥

OO

V ∗
i∗oo

OO

i and i∗ are adjoint maps.

Definition 2.39. For every f ∈ V ∗ and for all v ∈ V , we have:

(f +W⊥)(v) := {f(v) + g(v) | g ∈ W⊥}

Proposition 2.40. Let i : W → V

w 7→ w
be the inclusion map and π : V ∗ → V ∗/W⊥

v 7→ v
the projection map. Then i and π are adjoint maps, i.e., i∗ = π.

Proof. ∀ Ψ ∈ V ∗ and ∀ w ∈ W , by definition 2.39 we have:

Ψ ◦ i(w) = Ψ(w) = (Ψ +W⊥)(w) = π(Ψ)(w)

Therefore, we have:
Ψ ◦ i = π(Ψ).

Proposition 2.41. Let i : W → V

w 7→ w
the inclusion map and i∗ : V ∗ → V ∗/W⊥ its

adjoint transformation. Then i∗ is the projection map.
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Proof. For ∀ w ∈ W and ∀ α ∈ V ∗, we have:

i∗(α)(w) = α ◦ i(w) = α(w)

On the other hand, by definition 2.39, we have:

i∗(α)(w) = (β +W⊥)(w) = β(w), for some β ∈ V ∗.

Therefore α(w) = β(w), ∀w ∈ W ⇒ β − α ∈ W⊥ ⇒ β = α +W⊥.

2.10 Some Important Results

Proposition 2.42. W⊥ ≡ (V/W )∗.

Proof. Just build an isomorphism between W⊥ and V/W ∗. For this, consider the following
bases:

βW = {w1, . . . ,ws} (2.17)

βV = {w1, . . . ,ws,u1, . . . ,ut} (2.18)

βV/W = {u1, . . . ,ut} (2.19)

βW ∗ = {w1, . . . ,ws} (2.20)

βV ∗ = {w1, . . . ,ws,u1, . . . ,ut} (2.21)

β(V/W )∗ = {u1, . . . ,ut} (2.22)

βW⊥ = {u1, . . . ,ut} (2.23)

βV ∗/W⊥ = {w1, . . . ,ws} (2.24)

Now, define the linear transformation:

ψ : W⊥ → (V/W )∗

uj 7→ uj

This linear transformation takes the basis (2.23) to the basis (2.22) . Moreover,
by corollary 2.31, by proposition 2.13 and by proposition 2.35, we have dim W⊥=dim
(V/W )∗. Therefore, ψ is an isomorphism.

Proposition 2.43. V ∗/W⊥ ≡ W ∗.

Proof. Similarly, define the linear transformation:

ψ : W ∗ → (V ∗/W⊥)
wj 7→ wj

This linear transformation takes the basis (2.20) on basis (2.24). Moreover, by corollary
2.31, by proposition 2.13 and by proposition 2.35, we have dimW ∗=dim V ∗/W⊥. Therefore,
ψ is an isomorphism.
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Proposition 2.44. Let A∗ : W ∗ → V ∗ be an adjoint transformation of A : V → W . Then
the following equalities are valid:

Im(A)⊥ = ker(A∗), (2.25)

ker(A)⊥ = Im(A∗). (2.26)

In particular, if A is injective, then A∗ is surjective, and conversely, if A∗ is injective, A
is surjective.

Proof. Let us prove the equality (2.25).

If β ∈ ker(A∗), we have:

β ◦ A(v) = A∗(β)(v) = 0(v) = 0, ∀ v ∈ V

So ker(A∗) ⊂ Im(A)⊥. Now consider α ∈ Im(A)⊥, then:

α(A(v)) = 0, ∀ v ∈ V ⇒ (A∗α)(v) = 0, ∀ v ∈ V ⇒ A∗α = 0⇒ α ∈ ker(A∗).

Therefore Im(A)⊥ ⊂ ker(A∗)
Let us now prove the equality (2.26).

Let β ∈ Im(A∗), then ∃ α ∈ W ∗ such that β = A∗(α). Therefore, ∀ v ∈ ker(A),
we have:

β(v) = A∗(α)(v) = α(A(v)) = α(0) = 0⇒ β ∈ ker(A)⊥

So Im(A∗) ⊂ ker(A)⊥.

We will now show the inverse inclusion. Let BkerA = {u1, . . . ,ur}. . Completing
this basis, we have BV = {u1, . . . ,ur,v1, . . . ,vs}. For f ∈ ker(A)⊥ and ∀ α ∈ W ∗, we
have:

(A∗α)(uj) = α(A(uj)) = α(0) = 0 = f(uj), ∀ uj ∈ Bker A (2.27)

As a consequence of Theorem 2.2, we have that {A(v1), . . . , A(vs)} is a L.I. set.
So choosing γ ∈ W ∗ such that

γ(A(vi)) = f(vi), i = 1, . . . , s (2.28)

we have, for (2.27) and (2.28), that :

A∗(γ) ≡ f.

Therefore, ker(A)⊥ ⊂ Im(A∗).
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3 ALGEBRAIC TOPOLOGY IN
THE ANALYSIS OF ELECTRI-
CAL CIRCUITS

Introduction

In this chapter, we present an unorthodox approach to the analysis of electrical
circuits using tools from algebraic topology and graph theory . An electrical circuit is
seen as a graph as well as a one-dimensional complex, where the domain of the boundary
operator is the vector space generated by the branches (wires of the circuit) and its
codomain is the vector space generated by the nodes. An electric circuit has homology and
cohomology groups. Kirchhoff ’s laws have a concise and elegant formulation through the
boundary and coboundary maps. The methods of mesh-current and node-potential are
also discussed, as well as a conclusive analysis of the existence and uniqueness of solutions
for the circuit equations. This approach allows us to analyze electrical circuits by making
effective considerations about its shape.

3.1 Elements of Graph Theory

Definition 3.1. A branch is a line segment or oriented arc. The ends of the branch are
called nodes.

Definition 3.2. A path is a sequence of nodes and branches such that the end node of a
branch is the starting node of the next branch.

Definition 3.3. A path is closed if the starting node of its first branch coincide with the
ending node of its last branch.

Definition 3.4. A path is simple if all elements of the succession of nodes and branches
are distinct, that is, they are "covered" only once (except the first and last nodes of a
closed path).

Definition 3.5. A mesh is a simple closed path.

Definition 3.6. The collection formed by branches and nodes is called a one-dimensional
complex.

We will treat the circuits as graphs, as we see in figure 1.
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Figure 1 – Real circuit versus Topological circuit.

3.2 Structure of Vector Space

Consider a circuit with the following set of branches {α1,α2, . . . ,αn}. We represent
each branch as follows:

α1 = (1, 0, . . . , 0),
α2 = (0, 1, . . . , 0),

...

αn = (0, 0, . . . , 1).

With this representation, we can generate a vector space whose canonical basis are the
branches of the circuit. This vector space will be denoted by C1.

Definition 3.7. The vector space C1 is called space of the one-chains.

Remark 3.8. As a consequence of the above, we have dim C1 = number of branches of
the circuit.

Likewise, consider the set {A1,A2, . . . ,AM} of nodes of the circuit. We represent
each node as follows:

A1 = (1, 0, . . . , 0),
A2 = (0, 1, . . . , 0),

...

Am = (0, 0, . . . , 1).

With this representation, we can generate a vector space whose canonical basis are the
nodes of the circuit. This vector space will be denoted by C0.
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Definition 3.9. The vector space C0 is called space of the zero-chains.

Remark 3.10. As a consequence of the above, we have dim C0 = number of nodes in the
circuit.

Example 3.11. Consider the circuit of Figure 2. From the above, we have:

A

B

C

α

�

�

�

�1 �2

Figure 2 – Circuit’s graph.

α = (1, 0, 0, 0),β = (0, 1, 0, 0),γ = (0, 0, 1, 0), δ = (0, 0, 0, 1).
The set {α,β,γ, δ} forms a basis of C1.
dim C1 = 4 .

A = (1, 0, 0),B = (0, 1, 0),C = (0, 0, 1)
The set {A,B,C} forms a basis of C0

dim C0 = 3

In this new approach, we may, for example, represent the current vector I ∈ C1 and
the potential vector φ ∈ C0 as follows:
I = (Iα, Iβ, Iγ , Iδ) = Iαα+ Iββ + Iγγ + Iδδ,
φ = (φA, φB, φC) = φA A + φB B + φC C.
We can also represent the meshes M1 and M2 as follows:
M1 = (1, 1, 0, 1) = 1α+ 1β + 0γ + 1δ,
M2 = (0,−1, 1, 0) = 0α− 1β + 1γ + 0δ.

Remark 3.12. Note that meshes can only have as coordinates ±1 or zero. This is a
consequence of the fact that the meshes are simple paths.
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3.3 Boundary and Coboundary Maps

Definition 3.13. We define the boundary map ∂ : C1 −→ C0 as the linear transforma-
tion such that:

∂κ = B − A. (3.1)

where κ is any branch of the circuit and A and B are, respectively, the start node and end
node of this branch.

Generalizing the concept for any K = (κα, κβ, κγ, . . . ) ∈ C1, we have:

∂K = L,

where L = (LA, LB, LC , . . . ) ∈ C0, where, for example, LA is equal to:

LA = (κδ1 + · · ·+ κδl)︸ ︷︷ ︸
go to A

− (κε1 + · · ·+ κεt)︸ ︷︷ ︸
leave A

(3.2)

To show how compute (3.2) from (3.1), consider the following sets:

{δ1, . . . , δl}, set of all branches that have A as a final node. (3.3)

{ε1, . . . , εt}, set of all branches that have A as a initial node. (3.4)

Then:

∂(κδ1δ1 + · · ·+ κδlδl + κε1ε1 + · · ·+ κεtεt) =
l∑

i=1
κδi∂(δi) +

t∑
j=1

κεj∂(εj).

And, from (3.1), (3.3) and (3.4), we have:

l∑
i=1

κδi∂(δi) +
t∑

j=1
κεj∂(εj) =

l∑
i=1

κδi(A−Bδi) +
t∑

j=1
κεj(Bεj − A) (3.5)

where Bδi is the inicial node of the branch δi and Bεj is the final node of the branch εj.

Then, isolating the node A in (3.5), we find (3.2).

Example 3.14. Calculating LA in the following circuit’s node, we have:

LA = κρ − κα − κη.

Definition 3.15. We denote by Z1 the kernel of the boundary map ∂. The elements
of Z1 are called cycles.
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K ∈ Z1 ⇒ ∂K = 0,
Z1 ⊂ C1.

Example 3.16. Every mesh is a cycle, but not every cycle is a mesh. This example
emphasizes this fact.

We have that M1 = (1, 1, 0, 1) and M2 = (0,−1, 1, 0)

• M1,M2, I ∈ Z1, that is, are cycles.

• M1 and M2 are meshes, however I isn’t a mesh.

Definition 3.17. We denote by B0 the image of the boundary map ∂. We call B0 the
space of boundaries: ∂C1 ≡ B0 ⊂ C0.

Definition 3.18. We denote by C1 the dual space of the one-chains, also called one-
cochains.

Definition 3.19. We denote by C0 the dual space of the zero-chains, also called zero-
cochains.

Definition 3.20. The linear transformation d : C0 → C1 is called coboundary map.The
map d is, by definition, adjoint to the map ∂ and, therefore, ∀φ ∈ C0, we have:

dφ = φ∂.

Figure 3 – Node A of the circuit

A

B

C

α

�

�

�

�1 �2

∂M1 = 0, ∂M2 = 0 ∂I = 0,onde I = (3
2 , 1,

1
2 ,

3
2)
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Remark 3.21. Let φ ∈ C0 and K ∈ C1. Using the notation (2.10), we have:∫
K

dφ =
∫
∂K
φ. (3.6)

Definition 3.22. We denote by Z0 the kernel of the coboundary map d and we
denote by B1 the space of coboundaries, which is the image of d.

Remark 3.23. Soon we will give a physical meaning to the subspace Z0 and B1.

Proposition 3.24. Z0 is the annihilator of B0.

Proof. Follows immediately from proposition (2.44).

Proposition 3.25. B1 is the annihilator of Z1.

Proof. Follows immediately from proposition 2.44.

3.4 Homology and Cohomology Groups

Definition 3.26. The homology group H0 is defined by: H0 = Z0/B0( = C0/B0).

Proposition 3.27. The subspace Z0 is isomorphic to the dual of the homology group H0.

Proof. Follows immediately from propositions (2.42) and (3.24).

Definition 3.28. A topological space is called path-connected if for any point we get
a path connecting it to any other point of the space.

Definition 3.29. A connected component of a topological space is a maximal path-
connected subspace.

Lemma 3.30. The dimension of the homology group H0 is equal to the number of connected
components of the circuit.

Proof. Let A and D be any two nodes of a connected component of the circuit. Thus
there exists a path, represented by the 1-chain P ∈ C1, such that ∂P = D −A. Then
D−A ∈ B0 for any two nodes A and D of the connected component.

Let L ∈ C0 be a 0-chain. Then we have:

L =
∑

N=A,B,C,...
LNN = (LA, LB, . . . ).

We can rewrite the above equation as follows:

L =
∑

LN [A + (N−A)] =
∑

LNA +
∑
N 6=A

LN(N−A).
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If we are in a connected component, then N−A ∈ B0, for N = A,B, . . .

Then we have L − (∑LN)A = ∑
N 6=A LN(N −A) ⇒ L − (∑LN)A ∈ B0. Therefore, L

and (∑LN)A belong to the same equivalent class of the quotient space H0 = C0/B0.
Consequently, for a connected component, every 0-chain L is in the same equivalence class
of some multiple of A, that is, L = αA. Then A generates all classes of the quotient space.
Therefore, for a connected component, dim H0 = 1.

Remark 3.31. Since A doesn’t belong to the subspace B0 (A 6∈ ∂C1), we have A 6= 0.

Now we generalize the result to several connected components. Consider a general
complex. Let A be a node of this complex. Let us use the following procedure. Consider
all branches that have A as a boundary point. Now join all other nodes that are in the
opposite border of these branches and repeat the argument in relation to these new nodes,
thereby generating new branches and nodes. Keep repeating this procedure a finite number
of times, until all the connected component is covered.

Let S0(A) be the set formed by the node A and all nodes found in the previous
paragraph. Now let S1(A) be the set of all branches involved in the previous procedure.
If a node B 6∈ S0(A), this implies that there is no path connecting the nodes A and B.
Therefore the node B belongs to another connected component of the complex in question.
Using the method shown above, we also will find the sets S0(B) and S1(B), and so on.
Therefore, following this algorithm, we find the disjoint sets S0(A), S0(B), . . . and the
disjoint sets S1(A), S1(B), . . . .

The set of branches and nodes as canonical bases of C1 and C0, respectively. There-
fore, we have:

C1 = C1(A)⊕ C1(B)⊕ . . .

C0 = C0(A)⊕ C0(B)⊕ . . .

such that ∂C1(A) = B0(A) ⊂ C0(A), ∂C1(B) = B0(B) ⊂ C0(B), . . . . With this, we have:

H0 = C0

B0
= C0(A)⊕ C0(B)⊕ . . .
B0(A)⊕B0(B)⊕ . . .

H0 = (C0(A)⊕ C0(B)⊕ . . . ) + (B0(A)⊕B0(B)⊕ . . . )

H0 = (C0(A) +B0(A))⊕ (C0(B) +B0(B))⊕ . . .

Therefore:
H0 = H0(A)⊕H0(B)⊕ . . .

So, by corollary 2.19, we have:
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dim H0 = dim H0(A) + dim H0(B) + . . .

Thus dim H0 = number of connected components.

The next theorem will need the following definitions

Definition 3.32. A tree is a connected complex without meshes.

Definition 3.33. Let S be a connected complex. A maximal tree of S is a tree that
contains all nodes of S.

Definition 3.34. We say that the meshes M1, . . . ,Mk are linearly independent if and
only if:

k∑
i=1

αiMi = 0⇒ αi = 0, ∀i.

Theorem 3.35. There is a basis of the subspace Z1 that consists only of meshes.

Proof. Initially, we will analyze the simplest case, in which the complex is a tree. First,
observe that in any tree there is a node belonging to only one branch (one extremity of the
tree). Starting from this node, and traversing the tree, you realize that every new branch
is covered accompanied by a new node. Therefore, we find the following relation for any
tree:

n = r + 1 (3.7)

where n = number of nodes and r = number of branches.
As we are in a connected component, by lemma 3.30, we have:

dim H0 = 1 (3.8)

Then dim C0 - dim B0 = 1. So:

dim B0 = n− 1 (3.9)

But, by the Kernel-Range Theorem in relation to the boundary operator ∂, we have:

dim Z0 = r − dim B0. (3.10)

Then, using equations (3.7), (3.9) and (3.10), we conclude that:

dim Z0 = 0. (3.11)

Therefore, the theorem is proven on the case when the connected complex is a tree. We
now consider the more general case, where we have a complex (not necessarily a tree) in a
connected component. In this general case, we have:

n ≤ r + 1 (3.12)
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As we are in a connected component, the identity (3.8) is still correct. By equations (3.9)
and (3.10), we find:

dim Z1 = r + 1− n (3.13)

Therefore, if we find r + 1− n independent meshes, we find a basis of Z1 consisting only
of meshes, thus completing the proof. To assist us in achieving this goal, we develop a
method which consists of three fundamental points:

(i) Certainly some branches will need to be removed from the complex

(ii) The withdrawals of these branches should eliminate all the meshes of the complex,
without, however, eliminating its nodes . Therefore, we will have a maximal tree at
the end of the process .

(iii) Each branch removed must belong to only one mesh, that is, this branch cannot be
shared by other meshes .

Remark 3.36. Let us denote the set of removed branches by T .

The first question is: how many branches are there in T? To answer this question,
just use the relation (3.7), which is valid for any tree, and calculate the removed branches
as follows:

r − (n− 1) = r + 1− n

Note that this number is equal to the dimension of Z1 (see (3.13)). As each branch
taken is associated with only one mesh, then we identify the following meshes {Mi}n+1−r

i=1

with these branches. As Mi ∈ Z1, ∀i, then we have just to show that these meshes are
linearly independent.

In fact, they are L.I., because each mesh Mi is associated with a branch ri ∈ T
that, on the other hand, belongs exclusively to this mesh. Therefore:

n+1−r∑
i=1

αiMi = 0⇒ αi = 0, ∀i.

Remark 3.37. In the proof of Theorem 3.35, it is enough we work with only one connected
component since the connected components are independent of each other. So to find the
result in the entire complex, just repeat the argument in each connected component of the
complex.

Remark 3.38. As a consequence of Theorem 3.35, we have that I ∈ Z1 ⇒ I = ∑
JiMi,

where the meshes Mi, with i = 1, 2, . . . , are linearly independent and form a basis of Z1 .
The scalars Ji represent the currents of these meshes.
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Definition 3.39. The homology group H1 is defined by: H1 = Z1/B1( ' Z1).

Remark 3.40. Physically, the homology group H1 will represent the mesh currents.

Definition 3.41. The cohomology group H1 is defined by: H1 = Z1/B1( = C1/B1).

Remark 3.42. Physically, the cohomology group H1 represents the voltages in the meshes.

Remark 3.43. The cohomology group is the dual of the homology group.

3.5 Kirchhoff’s Laws

We will now mention the classic versions of the Kirchhoff laws, accompanied by a
new formulation, using the boundary and coboundary operators.

3.5.1 Kirchhoff’s Current Law

Classic Version: In a node, the sum of intensities of currents arriving is equal to the
sum of intensities of currents leaving. This law expresses the conservation of charges.

Reformulation: If I is a 1-chain representing the distribution of currents in an electrical
circuit, then:

∂I = 0.

Remark 3.44. The current vector I is a cycle, that is, I ∈ Z1.

3.5.2 Kirchhoff’s Voltage Law

Classic Version: There is a function φ, called electrostatic potential, such that the
voltage across each branch of the circuit will be the difference of φ applied to the initial
and final nodes.

Example 3.45. Let α be a branch with A and B being its start and end nodes, respectively.
Then V α = φ(A)− φ(B) is the voltage in this branch.

Reformulation: There is a 0-cochain φ : C0 → R, called potential function, such that:

V = −dφ (3.14)

where V ∈ C1 represents the voltage in all branches of the circuit.

Example 3.46. Returning to the example above, we have:
V α = −dφ(α) = −φ∂(α) = −φ(B − A) = φ(A)− φ(B)

Remark 3.47. The equation (3.14) provides a physical meaning to the subspace B1. This
subspace is therefore the space of the voltages of the circuit.
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Remark 3.48. For any mesh M ∈ Z1 , with V = −dφ, , for some φ ∈ C0, we have:∫
M

V = −
∫

M
dφ = −

∫
∂M
φ = 0.

Therefore, the sum of the voltages of the branches of each mesh in a circuit is zero. This is
the second version of the Kirchhoff’s voltage law.

Remark 3.49. The remark 3.48 can also be explained by the fact that V ∈ B1, which is
the annihilator of Z1. So V vanishes for any mesh M.

3.6 Electric Power

Definition 3.50. We define the power in a branch α by the following formula:

Potα = V α.Iα (3.15)

Theorem 3.51 (Tellegen’s theorem). The total power dissipated in a resistive circuit is
zero.

Proof. Let I ∈ C1 the current of the circuit and V ∈ C1 its voltage. Then:

Pot =
∑

V αIα =
∫

I
V = −

∫
I
dφ = −

∫
∂I
φ = 0.

3.7 Restricted Coboundary Map

Proposition 3.52. The subspace Z0 represents the space of the potentials that are constant
along each connected component of the circuit. Equivalently, Z0 is the space of potentials
such that the voltages on the branches is null.

Proof. φ ∈ Z0 ⇒ dφ = 0
Let ∂K be an arbitrary element of B0. Then:∫

∂K
φ =

∫
K

dφ = 0

As K is arbitrary, particularly the result is true for every branch of the circuit.

Corollary 3.53. The operator d of a circuit with a single connected component with a
ground node is injective.

Proof. The ground node will always have zero potential. Therefore the set Z0 of the
constant potentials can only contain the zero vector.
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Corollary 3.54. dim Z0 = number of connected components.

Proof. Direct consequence of proposition 3.27 and lemma 3.30.

Definition 3.55. P 0 = C0/Z0 is called restricted potential space.

Proposition 3.56. P 0 ≈ B∗0 .

Proof. Direct consequence of propositions (2.43) and (3.24).

By isomorphism theorem, the application d : C0 → C1 induces an injective map
[d] : P 0 → C1 given by:

[d]φ = dφ.

Definition 3.57. [d] is called restricted coboundary map.

Remark 3.58. The voltage V = −[d]φ associated with the potential φ ∈ P 0 is uniquely
determined (injectivity of [d]).

The map [d] induces the map [∂] such that [∂] and [d] are adjoint transformations,
that is:

[d]φ = φ ◦ [∂].

Definition 3.59. [∂] : C1 → B0 is called restricted boundary map.

Example 3.60. Consider figure 4. We have:

Figure 4 – Boundary and coboundary operators.

Basis of C0 : {A∗, B∗, C∗, D∗, E∗}.
Basis of C1 : {α∗, β∗, γ∗, δ∗}. Then:

d(A∗) = −1α∗ + 0β∗ + 1γ∗ + 0δ∗,

d(B∗) = 1α∗ − 1β∗ + 0γ∗ + 0δ∗,

d(C∗) = 0α∗ + 1β∗ − 1γ∗ + 0δ∗,
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d(D∗) = 0α∗ + 0β∗ + 0γ∗ + 1δ∗,

d(E∗) = 0α∗ + 0β∗ + 0γ∗ − 1δ∗.

Therefore, coboundary and boundary operators are equal to:

d =


−1 1 0 0 0

0 −1 1 0 0
1 0 −1 0 0
0 0 0 1 −1

 and ∂ =



−1 0 1 0
1 −1 0 0
0 1 −1 0
0 0 0 1
0 0 0 −1


Now, by corollary 3.54, we have:

dimZ0 = 2 and dimP 0 = dimC0 − dimZ0 = 3

Let A and D be the ground nodes of the circuit. Note that {B∗,C∗,E∗} is L.I., so is a
basis of P 0. Then:

[d]B∗ = 1α∗ − 1β∗ + 0γ∗ + 0δ∗

[d]C∗ = 0α∗ + 1β∗ − 1γ∗ + 0δ∗

[d]E∗ = 0α∗ + 0β∗ + 0γ∗ − 1δ∗

Therefore, the restricted coboundary and boundary maps are:

[d] =


1 0 0
−1 1 0

0 −1 0
0 0 −1

 and [∂] =


−1 1 0 0

0 −1 1 0
0 0 0 −1

 (3.16)

Remark 3.61. By (3.16), notice that the method to find [d] is eliminating the columns
of ground nodes to the matrix of the map d. And the method to find [∂] is eliminating the
lines of ground nodes to the matrix of the map ∂.

Remark 3.62. We have [∂] : C1 → B0. But here B0 is modified because the lines relating
to ground nodes were removed.

3.8 Special Maps: σ and s

The space H1 is a copy of the subspace Z1. Think H1 as an abstract vector space,
independent of C1, representing the space of currents of meshes.

Definition 3.63. The inclusion map σ : H1 → C1 is the map which identifies H1 with
the subspace Z1 of C1. Physically, σ converts the mesh currents in currents on the branches.
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Definition 3.64. The map s : C1 → H1 is the adjoint map of σ.

Proposition 3.65. The map s : C1 → H1 converts voltages in the branches in voltages
on the meshes.

Proof. We observe that each column j of the matrix of σ with respect to the canonical
bases is equal to the coordinates of the mesh Mj, which, on the other hand, belongs to
the base of Z1. As the matrix of the operator s is the transpose of the matrix σ, we have
that each line of the matrix of the operator s correspond to the coordinates of one mesh of
Z1. Then, the result follows immediately, just by multiplying s by voltage vector V.

Proposition 3.66. The map s : C1 → H1 represents the canonical projection of C1 on
C1/B1.

Proof. Direct consequence of Proposition 2.41.

Example 3.67. From the figure 5, we obtain the following results:

Figure 5 – Meshes and branches

For J1 =
 1

0

 and J2 =
 0

1

, we have:

σ

 1
0

 = α + β + γ,

σ

 0
1

 = −γ + δ.

Therefore:

σ =


1 0
1 0
1 −1
0 1

 (3.17)
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For the mesh current J1, J2, we find the following branch’s current.
1 0
1 0
1 −1
0 1

 .
 J1

J2

 =


J1

J1

J1 − J2

j2

 .

By (3.17), we have:

s =
 1 1 1 0

0 0 −1 1

 .

Considering V =


V α

V β

V γ

V δ

, we find the following tensions in the meshes:

s.V =
 1 1 1 0

0 0 −1 1

 .

V α

V β

V γ

V δ

 =
 V α + V β + V γ

−V γ + V δ



The following diagram summarizes the operators and spaces that were seen with their
respective relationships.

H1 ≡ Z1

∼=
��

σ // C1
[∂] //

R
��

B0 = Im(∂) ∼= C1/Z1
i //

∼=
��

H0 = C0/B0

∼=
��

H1 = C1/B1 C1
s

oo P 0 = C0/Z0
[d]

oo Z0
i∗

oo

3.9 The Maxwell Methods

3.9.1 Ohm’s Law

Considering the figure 6, we have:

Ohm’s Law for a Specific Branch of the Circuit:
V α −Wα = zα(Iα −Kα).

For the entire circuit, we write:

V−W = Z(I−K)

Observe now that Z is a diagonal matrix whose entries are the resistances, and I,V,W,K
are column matrices.
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A

B

+

��

��
��

��

Figure 6 – Branch α of the circuit.

Joining the Ohm’s law with Kirchhoff’s current law (KCL) and Kirchhoff’s voltage law
(KVL), we obtain the following system:


V−W = Z(I−K) (Ohm’s Law)

I = σ(J) (KCL)
V = −[d]φ (KVL)

(3.18)

At this time, we will present two methods for solve equations 3.18.

3.9.2 Maxwell’s Mesh-Current Method

Consider the system ((3.18)), where the values of K,W and Z are provided. We
want to find I and V.

Applying the operator s, we have:

s(V−W) = s(V)︸ ︷︷ ︸
=0

−s(W) = −s(W) = s(Z(I−K)) = sZI− sZK.

We have s(V) = 0 because V = −[d]φ, then V respects the Kirchhoff voltage law, i.e., the
sum of the voltages in the meshes is equal to zero.

sZI = sZK− sW

⇒ sZσ(J) = s(ZK−W) (3.19)

⇒ J = (sZσ)−1s(ZK−W). (3.20)
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Equation (3.20) will be valid if the operator sZσ is invertible. The next theorem
makes an important statement about this.

Theorem 3.68. In resistive circuits, the map sZσ is invertible.

Proof. We need to show that the linear map sZσ : H1 → H1 is a bijection. For that, we
need to show that it is injective (since dimH1 = dimH1).

Consider the nonzero vector J ∈ H1. We want to show that sZσ(J) 6= 0. As s is
the adjoint of σ, we have:

[(sZσ)J](J) = s(ZI)(J) = (ZI)σ(J) = (ZI)I =
∫
I
ZI =

∑
γ

ZγI
2
γ .

Since Zγ > 0(resistive circuit) and I 6= 0 (because σ is injective and J 6= 0), we have∑
γ ZγI

2
γ > 0 ⇒ [(sZσ)J](J) > 0⇒ (sZσ)(J) 6= 0.

Corollary 3.69. For resistive circuits, the solution of the system (3.18) exists and is
unique, that is, there is only a single pair I and V satisfying the system.

Proof. The result follows from theorem 3.68 applied to the equation (3.19). Once J is
determined I is computed using (KCL) and V is found using Ohm’s law.

3.9.3 Maxwell’s Node-Potential Method

Consider the system ((3.18)), where the values of K,W and Z are provided. We
want to find I and V.

V−W = Z(I−K)

Z−1(V−W) = I−K

[∂]Z−1(−[d]φ−W) = − [∂] K

[∂]Z−1[d] φ = [∂] (K− Z−1W) (3.21)

φ = ([∂]Z−1[d])−1 [∂] (K− Z−1W). (3.22)

The equation (3.22) will be valid if the operator [∂]Z−1[d] is invertible. The next theorem
makes an important statement about this.

Theorem 3.70. In resistive circuits, the map [∂]Z−1[d] is invertible.

Proof. We have [∂]Z−1[d] : P 0 → B0. Since dim P 0 = dim B0, it suffices to show the
injectivity of [∂]Z−1[d].

If φ 6= 0, then:

φ[([∂]Z−1[d])φ] = [d]φ(Z−1[d]φ) = VZ−1V =
∫
Z−1V

V =
∑
γ

(V γ)2

Zγ
.
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Since Zγ > 0 (resistive circuit) and V 6= 0 (because [d] is injective and φ 6= 0), we have
(V γ)2

Zγ
> 0⇒ φ[([∂]Z−1[d])φ] > 0⇒ ([∂]Z−1[d])(φ) 6= 0, para φ 6= 0.

Corollary 3.71. For resistive circuits, the solution of the system (3.18) exists and is
unique, that is, there is only a single pair I and V satisfying the system.

Proof. The result follows from the theorem 3.70 applied to the equation (3.21).

3.10 RLC Circuits

More generally, in a circuit whose branches are resistors, capacitors or inductors,
Z remains a diagonal matrix r × r (where r is the number of branches of the circuit), and
its entries are the impedances of the branches, which may be functions of the frequency
f = ω

2π . In this case, not always the matrices sZσ and [∂]Z−1[d] will be invertible.

Recall that:

• Capacitor impedance= − i
ωC

• Inductor impedance= iωL

There exist m linearly independent meshes, then the matrix sZσ will have order
m and its determinant is given by the polynomial D(ω), whose degree is at most m. The
operator sZσ is not invertible if |D(ω)| = 0, which means that there can be at most m
values of ω such that sZσ is not invertible. Similarly, the operator [∂]Z−1[d], of order
r −m, will have at most r −m values of ω such that the modulus of the determinant is
zero, ie, |D1(ω)| = 0.

The resonant frequencies are defined in two ways:

Definition 3.72. If ω is such that the determinant D(ω) of sZσ is zero or the determinant
D1(ω) of [∂]Z−1[d] is zero, then f = ω

2π is called a resonance frequency of the system.

Definition 3.73. If for the operators sZσ and [∂]Z−1[d] the determinants |D(ω)| 6= 0
and |D1(ω)| 6= 0 for all ω, then f = ω

2π will be resonance frequency of the system if ω
generate in the circuit the maximum value of the mesh current J .

Lemma 3.74. The roots of the determinants of operators sZσ and [∂]Z−1[d] are the
same.

Proof. This fact is a consequence of non-uniqueness (or nonexistence) of solutions of the
equation

V−W = Z(I−K) (3.23)
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that is, if by the mesh-current method we find more than one solution (or even no solution)
to the equation (3.23), then this result must be confirmed also by the node potential
method, and vice versa. Therefore:

det(sZσ) = D(ω) = 0⇔ det([∂]Z−1[d]) = D1(ω) = 0,

i.e., the polynomials D and D1 have the same roots.

For the case where |D(ω)| = 0, the equation

(sZσ)J = 0 (3.24)

will have nontrivial solutions.

Definition 3.75. The non-trivial solutions of the equation (3.24) are called normal
modes of the system.

Example 3.76. In this example, we will find the resonant frequencies and some normal
modes of the system. Looking at the figure 7, we have:

Figure 7 – Resonance frequencies and normal modes.

σ =


1 0
1 0
1 −1
0 1

 , s =
 1 1 1 0

0 0 −1 1



Also we have:

Z = i


2ωL 0 0 0

0 − 1
ωC

0 0
0 0 ωL 0
0 0 0 − 1

2ωC


Multiplying the matrices, we have:

sZσ = i

 3ωL− (ωC)−1 −ωL
−ωL ωL− (2ωC)−1


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Therefore, we find the determinant:

Det(sZσ) = −2ω2L2 + 5L
2C −

1
2ω2C2 .

Setting Det(sZσ) = 0, we find the following angular frequencies:

ω = 1√
LC

, ω = 1
2
√
LC

.

Therefore, the resonance frequencies of the system are equal to:

f = 1
2π
√
LC

, f = 1
4π
√
LC

.

To find the corresponding normal modes, we solve the equation (sZσ)J = 0 for each
resonance frequency.For example, to ω = 1√

LC
we have:

sZσ = i

 2
√

L
C
−
√

L
C

−
√

L
C

1
2

√
L
C



and a normal mode to (sZσ)J = 0 is
 1

2

, which means that the current in the second

mesh is twice greater than the current in the first mesh. Similarly, setting ω = 1
2
√
LC

, we
have:

sZσ = i

 −1
2

√
L
C
−1

2

√
L
C

−1
2

√
L
C
−1

2

√
L
C


and a normal mode to (sZσ)J = 0 is

 1
−1

, which means that J1 and J2 has the same

amplitude, but opposite phase.

Example 3.77. Find the resonance frequency and the maximum mesh current. From
figure 8, we have:

Figure 8 – RLC circuit.

σ =
 1

1

 , s =
(

1 1
)
, Z =

 R 0
0 i(ωL− 1

ωC
)

 .
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Therefore, we have:

sZσ =
(

1 1
) R 0

0 i(ωL− 1
ωC

)

 1
1

 = (R + i(ωL− 1
ωC

)).

Then, knowing that W =
 Eeiωt

0

, from equation 3.20 we have:

J = 1
R + i(ωL− 1

ωC
)Ee

iωt

The mesh current clearly has its peak value when ωL = 1
ωC
⇒ ω = 1√

LC
. Therefore, the

resonance frequency is equal to:
f = 1

2π
√
LC

and the peak value of the mesh current is:

|J | = E

R
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4 METHOD OF ORTHOGONAL
PROJECTION

Introduction

In this chapter we will restrict our study only to resistive circuits and we will
present two alternative methods for solving circuit equations. The Weyl’s method makes
use of orthogonal projection operators while the Kirchhoff’s method uses graph theory to
find the values of voltages and electric currents. The Green’s reciprocity theorem exposes
some symmetries for some resistive circuits.

4.1 Weyl’s Method of Orthogonal Projection

4.1.1 Weyl’s Method

As in chapter 2, let α, β, γ, . . . denote the branches of a resistive circuit.

Definition 4.1. Let Z be the diagonal matrix of resistors. The inner product (, )Z :
C1 × C1 → R is defined by:

(I, I′)Z =
∫

I
ZI′ = rαIαI

′
α + rβIβI

′
β + . . . (4.1)

Remark 4.2. As the entries of Z are all positive, we have that the inner product above
is positive definite.

Remark 4.3. Let us denote by π the orthogonal projection of C1 on Z1.

The method of Weyl’s projection consists of the following equations: I = π(K− Z−1W),
V = Z(π − I)(K− Z−1W).

(4.2)

Proposition 4.4. The equations (4.2) are equivalent to the equations (3.18) for electrical
circuits.

Proof. Firstly we show that (4.2)⇒ (3.18).

(i) By definition of projection on Z1, we have that I ∈ Z1. Then:

I = σ(J) (4.3)
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(ii) We have:

π
(
(π − I)(K− Z−1W)

)
= (π2 − π)(K− Z−1W) = (π − π)(K− Z−1W) = 0.

Therefore:

(π − I)(K− Z−1W) ∈ ker(π)⇒ (π − I)(K− Z−1W) ∈ Z⊥compl
1

⇒ (I′, (π − I)(K− Z−1W))Z = 0 ∀ I′ ∈ Z1

⇒
∫

I′
Z(π − I)(K− Z−1W) =

∫
I′
V = 0, ∀ I′ ∈ Z1

So
V ∈ Z⊥1 = B1. (4.4)

Therefore:
V = −dφ, for some φ ∈ C0. (4.5)

(iii)
V = Z(π − I)(K− Z−1W) = Z(π[(K− Z−1W)]− (K− Z−1W))

= Z(I−K + Z−1W) = W + Z(I−K)

Therefore:
V−W = Z(I−K) (4.6)

The equations (4.3), (4.5) and (4.6) are the equations forming system (3.18).

Next we show that (3.18)⇒ (4.2).

(i) We have:
V−W = Z(I−K)⇒ V = W + Z(I−K).

Therefore:
V = Z(Z−1W−K + I). (4.7)

Since
V = −[d]φ,

then ∫
I′
V = 0, ∀ I′ ∈ Z1,

so ∫
I′
Z(Z−1W−K + I) = 0, ∀ I′ ∈ Z1.

Therefore:
(I′, Z−1W−K + I)Z = 0, ∀ I′ ∈ Z1, (4.8)

hence:
Z−1W−K + I ∈ Z⊥compl

1 ⇒ (K− Z−1W)− I ∈ Z⊥compl
1
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⇒ (K− Z−1W)− I ∈ ker(π).

From
K− Z−1W = (K− Z−1W− I) + I (4.9)

we have:
π(K− Z−1W) = π(K− Z−1W− I) + π(I) = I, (4.10)

therefore:
I = π(K− Z−1W). (4.11)

(ii) From the equations (4.7) and (4.11), we have:

V = Z(Z−1W−K + π(K− Z−1W)) = Z(K− Z−1W)(π − I)

that is:
V = Z(π − I)(K− Z−1W) (4.12)

The equations (4.11) and (4.12) recover the system (4.2).

Example 4.5. From figure 9, we have:

K =
 4

1

 ; W =
 −1

0

 ; Z =
 1 0

0 3

 .

The space C1 has dimension two, with canonical basis


 1

0

 ,
 0

1

, and the space

Z1 has dimension one and a basis equal to


 1

1

. To find the Weyl’s orthogonal

Figure 9 – Weyl’s projection.
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projection, we will normalize the vector
 1

1

:
 1

1

 ,
 1

1


Z

=
 1

1

 ,
 1 0

0 3

 1
1

 = 4

Then, an orthonormal basis of Z1 is
 1

2
1
2

. Therefore, by formula (2.7), we have:

π(
 1

0

) =
 1

0

 ,
 1

2
1
2


Z

 1
2
1
2

 =
 1

4
1
4

 (4.13)

π(
 0

1

) =
 0

1

 ,
 1

2
1
2


Z

 1
2
1
2

 =
 3

4
3
4

 (4.14)

With this, we have:

π =
 1

4
3
4

1
4

3
4

 . (4.15)

As long as

K− Z−1W =
 5

1

 (4.16)

we get

I = π(K− Z−1W) =
 2

2

 . (4.17)

Still using the Weyl’s orthogonal projection, we have:

V = Z(π − I)(K− Z−1W) =
 −3

3

 . (4.18)

4.1.2 Explicit Expression for the Weyl’s Orthogonal Projection

According to Maxwell’s Mesh-Current Method, we have:

J = (sZσ)−1s(ZK−W) (4.19)

Applying σ in the equation (4.19), we have:

I = σ(sZσ)−1s(ZK−W). (4.20)

Therefore:
I = σ(sZσ)−1sZ(K− Z−1W) (4.21)

Comparing the equation (4.21) with the Weyl’s formula I = π(K− Z−1W), we can intuit
the outcome of the next proposition.
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Proposition 4.6. The Weyl’s orthogonal projection operator can be explicitly given by
π = σ(sZσ)−1sZ.

Proof. We need to show that π = σ(sZσ)−1sZ is an orthogonal projection of C1 in Z1.

(i) Im(π) = Z1.
• Im(π) ⊂ Z1. Obvious, since σ is an injection of Z1 in C1.
• Z1 ⊂ Im(π), because for all I ∈ Z1,∃ ξ ∈ [Z−1s−1(sZσ)σ−1(I)] ⊂ C1 | π(ξ) = I.

Remark 4.7. Since s is not injective, for u ∈ H1, we have:

s−1(u) = {v ∈ C1 | s(v) = u}.

(ii) π : C1 → Z1 satisfies π2 = π. In fact, we have:

π2 = (σ (sZσ)−1sZ)(σ︸ ︷︷ ︸
Id

(sZσ)−1sZ) = σ(sZσ)−1sZ = π. (4.22)

(iii) ker(π) = Z
⊥compl
1 .

• ker(π) ⊂ Z
⊥compl
1 . Indeed, ∀ I ∈ Z1 and U ∈ ker(π), we have:

(I,U)Z = (πI,U)Z = (σ(sZσ)−1sZ(I),U)Z = (σ(sZσ)−1sZ(I), ZU). (4.23)

As the matrix of σ(sZσ)−1s is symmetric, it is a self-adjoint transformation, so for (4.23)
we have:

(ZI, σ(sZσ)−1sZ(U)) = (I, 0)Z = 0, ∀ I ∈ Z1.

Then U ∈ Z⊥compl
1

• Z⊥compl
1 ⊂ ker(π). Indeed, let U ∈ Z⊥compl

1 . Then, ∀ I ∈ Z1, we have:

(I,U)Z = 0⇒ (πI,U)Z = (σ(sZσ)−1sZ(I), ZU). (4.24)

Since σ(sZσ)−1s is a self-adjoint transformation, for (4.24) we have:

(ZI, σ(sZσ)−1sZ(U)) = (I, σ(sZσ)−1sZ(U))Z = 0, ∀ I ∈ Z1 (4.25)

Since equation (4.25) is true for ∀ I ∈ Z1, it is particularly true for I = σ(sZσ)−1sZ(U).
Then:

(σ(sZσ)−1sZ(U), σ(sZσ)−1sZ(U))Z = 0⇒ σ(sZσ)−1sZ(U) = 0⇒ U ∈ ker(π). (4.26)
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4.2 Kirchhoff’s Method

Definition 4.8. Suppose we have a connected complex and let T be a maximal tree in
this complex. We define the linear operator pT as follows:

pT(α) =


0 , if α ∈ T

Mα , if α 6∈ T
(4.27)

where Mα is a mesh containing the branch α.

Remark 4.9. Mα is an element of the basis of Z1.

Remark 4.10. Mα is the only mesh that contains the branch α.

Remark 4.11. pT(Mα) = Mα because the branch α is present in the mesh Mα, , while
the other branches of Mα belong to the maximal tree.

Remark 4.12. The sense of the mesh Mα is chosen so that it contains "+α" and not
"−α".

Example 4.13. Find the matrix of the linear operator pT. See the figure 10.

Figure 10 – Maximal tree

pT(α) = α− β
pT(β) = 0
pT(γ) = β + γ

Then:

[pT] =


1 0 0
−1 0 1

0 0 1

 .
Proposition 4.14. pT : C1 → C1 is a projection over Z1.
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Proof. • First, we will show that pT(J) = J, ∀ J ∈ Z1. Indeed, if J ∈ Z1, then J = ∑
αiMi.

Then by remark 4.11, we have:

pT(J) =
∑

αipT(Mi) =
∑

αiMi = J

• Im pT = Z1.

Im pT ⊂ Z1 (obvious).
Z1 ⊂ Im pT. In fact, since pT(J) = J, ∀ J ∈ Z1.
• p2

T = pT. Indeed, ∀ A ∈ C1, we have:

p2
T(A) = pT(pT(A)).

Since pT(A) ∈ Z1, then:
pT(pT(A)) = pT(A).

Lemma 4.15. If the projection is self-adjoint, then it is orthogonal.

Proof. α ∈ ker pT, then, ∀ β ∈ Z1, we have:

0 = (pT(α), β) = (α, pT(β)) = (α, β)

So α ∈ Z⊥compl
1 . Therefore ker pT ⊂ Z

⊥compl
1 .

Now let α ∈ Z⊥compl
1 . Then, ∀ β ∈ Z1, we have:

0 = (α, β) = (α, pT(β)) = (pT(α), β).

In particular, choosing β = pT(α), we have:

(pT(α), pT(α)) = 0⇒ pT(α) = 0⇒ α ∈ ker pT.

Therefore Z⊥compl
1 ⊂ ker pT.

Remark 4.16. The projection pT is not necessarily orthogonal.

The Kirchhoff’s method aims to produce a projection in Z1 which is orthogonal.
To this end, by lemma 4.15, just build a projection in Z1 which is self-adjoint. For this
purpose, we introduce the following construction: for each maximal tree T we associate
a real number λT, with 0 ≤ λT ≤ 1, such that

∑
T
λT = 1. With this we construct the

following operator:
pλ =

∑
T
λTpT. (4.28)

where pT is the operator of the definition (4.8).

Lemma 4.17. pλ is a projection in Z1.
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Proof. • pλ(J) = J, ∀ J ∈ Z1. Indeed, we have:

pλ(J) =
∑
T
λTpT(J) =

∑
T
λTJ = (

∑
T
λT︸ ︷︷ ︸

1

)J = J (4.29)

• Im pλ = Z1. Indeed:
Im pλ ⊂ Z1 (obvious).
Z1 ⊂ Im pλ, because, by equation (4.29), pλ(J) = J, ∀ J ∈ Z1.
• p2

λ = pλ, because p2
λ(A) = pλ(pλ(A)︸ ︷︷ ︸

∈Z1

) = pλ(A), ∀ A ∈ C1.

In general, pλ is not orthogonal. However, Kirchhoff made a special choice for the
coefficients λT to become pλ an orthogonal projection.

Definition 4.18. QT :=
∏
β 6∈T

rβ, where as before rβ is the electrical resistance in the branch

β.

Definition 4.19. R :=
∑
T
QT.

Definition 4.20. λT := QT
R
.

Theorem 4.21. The operator pλ : C1 → C1 given by pλ = R−1
∑
T
QTpT is an orthogonal

projection onto Z1.

Proof. By Lemma 4.17 we have that pλ is a projection in Z1. Just show that Rpλ =
∑
T
QTpT

is a self-adjoint projection and therefore, by lemma 4.15, pλ will be an orthogonal projection.
As the branches of the circuit form a basis of C1, it is sufficient to show that, for any pair
α and β of branches, we have:∑

T
QT(pTα, β)Z =

∑
T
QT(α, pTβ)Z (4.30)

So with α and β fixed and summing over all maximal trees of complex, three cases can
happen.

1st case:A maximal tree T with α, β ∈ T. See Figure 11. Then:

(pT(α), β)Z = (α, pT(β))Z = 0 (4.31)

Therefore , the factor on the left side of (4.31) is equal to the factor on the right side .

2nd case: A maximal tree T with α, β 6∈ T. See the figure 12. Then:
(pT(α), β)Z = 0 because the branch β does not belong to the mesh Mα = pT(α), and
(α, pT(β))Z = 0 for the same reason explained above. So we have:

(pT(α), β)Z = (α, pT(β))Z (4.32)
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Figure 11 – 1st case

Figure 12 – 2nd case

3rd case: The third case is more complicated. We will have a maximal tree T for which
only one of the branches belong to T. For example, β ∈ T and α 6∈ T. See Figure 13.
Consider two possibilities. First, if β 6∈Mα = pT(α), then:

Figure 13 – 3rd case

(pT(α), β)Z = (α, pT(β))Z = 0 (4.33)

Therefore, the factor on the left side of (4.33) is equal to the factor on the right side. Now
we have to work a bit more on the second possibility. Consider that β ∈ Mα = pT(α),
then:

(pT(α), β)Z = ±rβ e (α, pT(β))Z = 0 (4.34)

where the positive sign occurs when α and β occur with the same sign in Mα. Otherwise,
the negative sign occurs. Note that, in this case, there will always be a unique maximal tree
T′ formed only permuting α for β, i.e., if before α 6∈ T and β ∈ T, we now have α ∈ T′

and β 6∈ T′(keeping the rest intact). Therefore, we have:

pT′(β) = ±pT(α)
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and:
(α, pT′(β))Z = ±rα e (pT′(α), β)Z = 0 (4.35)

Also note that:  QT = rα · · · r̂β · · · ,
QT′ = r̂α · · · rβ · · · ,

(4.36)

where hats indicate the removal of the factor.

Therefore, by (4.34), (4.35) and (4.36), we have:

QT(pT(α), β)Z +QT′(pT′(α), β)Z = QT(α, pT(β))Z +QT′(α, pT′(β))Z (4.37)

Therefore, by (4.31), (4.32), (4.33) and (4.37), summing over all maximum trees T, we
have: ∑

T
QT(pT(α), β)Z =

∑
T
QT(α, pT(β))Z . (4.38)

Corollary 4.22. The Weyl’s orthogonal projection operator has the following explicit
formula:

π = R−1∑
T
QTpT.

Proof. Comes from theorem 4.21 and the uniqueness of the orthogonal projection operator
on the subspace Z1.

Example 4.23. In figure 14 there are three maximal trees. The first maximal tree T1 is
formed only by the branch α, the second T2 is formed by branch β, and the third T3 by
branch γ.

Figure 14 – Kirchhoff’s method
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For T1, we have:

pT1 =


0 −1 1
0 1 0
0 0 1

 and QT1 = rβ.rγ = 6

For T2, we have:

pT2 =


1 0 0
−1 0 1

0 0 1

 and QT1 = rα.rγ = 3

For T3, we have:

pT3 =


1 0 0
0 1 0
1 1 0

 and QT1 = rα.rβ = 2

Then R = QT1 +QT2 +QT3 = 11. Since

π = 1
R

3∑
i=1

QTipTi

π = 1
11[6.pT1 + 3.pT2 + 2.pT3 ]

Therefore:

π = 1
11


5 −6 6
−3 8 3

2 2 9


where π is the orthogonal projection over Z1. The vectors


1
−1

0

 ,


0
1
1




form a basis for the subspace Z1 and since π is a projection over Z1, we have:

π


1
−1

0

 =


1
−1

0

 and π


0
1
1

 =


0
1
1


Notice now the operator

Id − π = 1
11


6 6 −6
3 3 −3
−2 −2 2


The matrix Id − π projects onto the orthogonal subspace (orthogonal complement with
respect to Z1). As the dimension of this subspace is 1, the basis of the orthogonal
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complement of Z1 consists of a single vector. We have:

1
11


6 6 −6
3 3 −3
−2 −2 2




0
11
0

 =


6
3
−2

 .

Then




6
3
−2


 is a basis of the orthogonal complement of Z1.

Remark 4.24. Note that the vector

Z


6
3
−2

 =


6
6
−6


physically represents a voltage that follows the Kirchhoff’s voltage law because in relation
to the usual inner product, we have:

(


6
6
−6

 ,


1
−1

0

) = (


6
6
−6

 ,


0
1
1

) = 0.

4.3 Green’s Reciprocity Theorem

Consider a circuit in which except for two branches α and β, all other branches
contain only resistors. The branches α and β may contain current sources and/or voltage
sources and/or resistors. For a specific choice of sources for α and β, we find the current
vector I and the voltage vector V satisfying Kirchhoff’s laws. Modifying the sources of the
branches α and β, we find a new pair of solution Î, V̂ for the current and voltage vectors,
respectively, both satisfying the Kirchhoff’s laws. Then:

I, Î ∈ Z1, V, V̂ ∈ B1. (4.39)

Therefore, by (4.39), we have: ∫
Î
V =

∫
I
V̂ = 0

Consequently: ∑
all

branches

V γ Îγ =
∑
all

branches

V̂ γIγ. (4.40)

Isolating the terms associated with the branches α and β from (4.40), we have:

V αÎα + V β Îβ +
∑
other

branches

V γ Îγ = V̂ αIα + V̂ βIβ +
∑
other

branches

V̂ γIγ. (4.41)
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For the branches different from α and β, we have:

V γ = rγIγ and V̂ γ = rγ Îγ.

Then: ∑
other

branches

V γ Îγ =
∑
other

branches

rγIγ Îγ =
∑
other

branches

rγ ÎγIγ =
∑
other

branches

V̂ γIγ (4.42)

Therefore, by (4.41) and (4.42), we have:

V αÎα + V β Îβ = V̂ αIα + V̂ βIβ (4.43)

With this, we demonstrated the following theorem.

Theorem 4.25 (Green’s reciprocity theorem). For a resistive circuit where, except for
two branches α and β (which may contain, in addition to resistors, voltage sources and/or
current sources), all other branches contain only resistors, we have:

V̂ αIα + V̂ βIβ = V αÎα + V β Îβ (4.44)

Now consider a purely resistive circuit (no voltage or current sources). There are two
ways to add branches to this circuit:

1) Soldering entry (parallel branch). See the figure 15.

Figure 15 – Soldering entry.

Remark 4.26. This method doesn’t add new nodes.

2) Pliers entry (branch in series). See the figure 16.

Remark 4.27. This method adds new nodes.

Remark 4.28. In both cases, the added branch may contain a short circuit, a voltage
source, a current source or a resistor. Let’s analyze the following cases for a purely resistive
circuit, where two branches α and β were added using either of two methods previously
discussed.



Chapter 4. METHOD OF ORTHOGONAL PROJECTION 58

Figure 16 – Pliers entry.

Figure 17 – Symmetry between applied voltage and resulting current

1st case: Insert a battery whose voltage is E in α and measure the short-circuit current of
Iβ in β. Then connect the same battery in β and measure the short-circuit current of Îα
in α. See figure 17. By Green’s reciprocity theorem, we have:

V̂ αIα + V̂ βIβ = V αÎα + V β Îβ

Since V̂ α = V β = 0 (short-circuit), then:

V̂ βIβ = V αÎα

EIβ = E Îα

Therefore:
Iβ = Îα (4.45)

Remark 4.29. Although the circuit itself doesn’t need to have symmetry properties, the
relationship between applied voltage and resulting current is symmetric.

2nd case: Insert a current source J in α and measure the voltage V β for the open circuit in
the branch β. Now connect the same current source j in the branch β and measure the
voltage V̂ α for the open circuit in the branch α. . See the figure 18.

By Green’s reciprocity theorem, we have:

V̂ αIα + V̂ βIβ = V αÎα + V β Îβ

Since Iβ = Îα = 0, we have:
V̂ αIα = V β Îβ
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Figure 18 – Symmetry between the current source and resulting voltage.

V̂ αJ = V βJ

Therefore:
V̂ α = V β (4.46)

Remark 4.30. Although the circuit itself doesn’t need to have symmetry properties, the
relationship between the current applied and the resulting voltage is symmetric.

More generally, the circuit can be a n-ports resistive circuit, i.e., a circuit where we
can connect "n" devices. If current sources Iα, Iβ, . . . are connected to the various ports,
the resulting voltages V α, V β, . . . will be dependent on the current according some linear
relationship of the type:

V = RI. (4.47)

where R is a matrix of order n.

Corollary 4.31. R is a symmetric matrix.

Proof. Putting up a current source at the port µ and leaving the n− 1 other ports open,
we have:


...
V λ

...

 = R.



0
...
Jµ
...
0


⇒ V λ = RλµJµ (4.48)

Now putting a current source at the door λ and letting n− 1 other ports open, we have:


...
V̂ µ

...

 = R.



0
...
Ĵλ
...
0


⇒ V̂ µ = RµλĴλ (4.49)

Making Jµ = Ĵλ = J , from Green’s reciprocity theorem and, hence, by equation (4.46), we
have:

V λ = V̂ µ



Chapter 4. METHOD OF ORTHOGONAL PROJECTION 60

⇒ Rλµ J = Rµλ J

⇒ Rλµ = Rµλ. (4.50)

Proposition 4.32. Relations of the type I = GV or V = RI, with G,R symmetric
matrices, represent a generalization of Green’s theorem.

Proof. Let I = GV, with G a symmetric matrix of order n. Therefore G is a self-adjoint
operator. Then:

(V, GV̂) = (GV, V̂).

Therefore:
V α1 Îα1 + · · ·+ V αn Îαn = V̂ α1Iα1 + · · ·+ V̂ αnIαn (4.51)

The proof for the case V = RI, with R symmetric matrix, is analogous.

The Green’s reciprocity theorem can also be derived as a consequence of the
mesh-current solution. In the case where there are no current sources, so that K = 0, we
have:

J = (sZσ)−1s(−W).

Then:
I = σJ = −σ(sZσ)−1s(W).

Since Z is a symmetric matrix and s is the transpose matrix of σ, we have:

G = −σ(sZσ)−1s

is a symmetric matrix. Then:
I = GW. (4.52)

So, by proposition 4.32, with the equation (4.52) we find the generalization of Green’s
theorem.
Similarly we can start from the node-potential solution,with the vector voltage source
W = 0, then:

φ = ([∂]Z−1[d])−1[∂]K.

Then:
V = −[d]φ = −[d]([∂]Z−1[d])−1[∂]K.

Since [d] is the transpose of [∂], the matrix

R = −[d]([∂]Z−1[d])−1[∂]
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is symmetrical. Therefore we have:

V = RK (4.53)

Therefore, by proposition 4.32, the equation (4.53) represents the Green’s generalized
theorem.

Remark 4.33. Relations between V and W, and between I and K generally are not
described by symmetric matrices.
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5 CAPACITIVE NETWORKS

Introduction

In this chapter we will treat circuits where their branches have at most a battery
in series with a capacitor. When the battery is triggered, charges will accumulate on the
plates of the capacitor until eventually a steady state is reached. In this state, no current
will be flowing. At this time, we are interested in discovering the charge on nodes and
capacitors, and the voltage on the branches. To achieve this goal, in this chapter we will
study the resolution of the Poisson equation and the Dirichlet problem, ending with the
study of Green’s functions. The importance of studying capacitive circuits lies in the fact
that within the electromagnetism, the study of these circuits is equivalent to the study of
a discretization of electrostatics.

5.1 Sign’s Conventions

Figure 19 – Sign’s conventions.

Vα and Wα: positive V α and Wα refer to drop of potential when the branch is traversed
in the sense defined by the arrow.

Qα: the sign of Qα is defined by the equation: Qα = Cα(Vα −Wα), where Cα > 0.

Plates of a capacitor: in the sense defined by the arrow, the first plate of the capacitor
will be positive (observe the figure 19). In this case, your charge will have the same sign
as Qα (charge of capacitor). The negative plate will have opposite sign to the sign of Qα.
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Figure 20 – Charge at the node A.

ρ: is a zero-chain that represents the total charge on each node. Each node is connected
to the positive and\or negative plates the some capacitors. Therefore, on each node, to
find the resulting charge, we will use the following convention:

ρA =
∑

Qi︸ ︷︷ ︸
positive plates

−
∑

Qj︸ ︷︷ ︸
negative plates

(5.1)

where Qi, Qj are, for example, the charges of the capacitors i, j.

Example 5.1. Observing the figure 20, we have:

ρA = −Qα −Qβ +Qγ (5.2)

5.2 Some Analogies with Resistive Networks

In capacitive circuits, we have a vector Q ∈ C1, where its coordinates represent
the charges of capacitors in their respective branches.

Q = (Qα, Qβ, Qγ, . . . ). (5.3)

The vectors V,W ∈ C1, as before, represent respectively the voltages and voltage
sources in each branch.

The matrix C is a diagonal matrix where its inputs are the capacitances of each
branch of the circuit. Therefore C : C1 → C1 will represent an isomorphism between the
spaces C1 and C1.

From the figure 19, we deduce the following general equation for each branch of
the capacitive circuit:

V α −Wα = Qα

Cα
. (5.4)
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Generalizing the equation (5.4) for all branches of the circuit, we get the following
matrix equation:

V−W = C−1Q. (5.5)

Lemma 5.2. Let Q ∈ C1 be the vector representing the charges of the capacitors, and let
ρ ∈ C0 be the charges at the nodes. Then:

∂Q = −ρ. (5.6)

The equation (5.6) is known as Gauss’ Law.

Proof. Analyzing equation (5.1) and noting that the negative plate of the capacitor is
always located close to the end node of the branch, whereas the positive plate of the
capacitor is located next the starting node, we can infer that the charges on the negative
plate are always going toward the end node, while the charges on the positive plate are
always leaving of the initial node. Then:

ρA =
positive plates∑

Qi︸ ︷︷ ︸
leave to A

−
negative plates∑

Qj︸ ︷︷ ︸
go to A

(5.7)

Clearly the relation on the right-hand side of equation (5.7) is equal to the relation of the
right-hand side of equation (3.2), but with reversed sign.

Remark 5.3. As a consequence of the fact that the sum of the charges of the two plates
of a capacitor is equal to zero, we have:∑

all nodes
ρA = 0 (5.8)

At this time, we will make some considerations. Firstly, let the voltage V satisfy
Kirchhoff’s voltage law, i.e.:

V = [d]φ. (5.9)

Now suppose that initially the capacitors of the circuit are discharged. Then, after
charging them, by the conservation of charges, we have ∂Q = 0. Therefore, in analogy
with what was done in the mesh-current method, we introduce the mesh charges, described
by the vector P ∈ Z1, such that:

Q = σ(P). (5.10)

So replace I for Q, J for P, Z for C−1 and making K = 0 (since there are no
current sources in our capacitive circuit), we observe that the equations (5.5), (5.9), (5.10)
are completely analogous to those equations found in the analysis of resistive circuits.
Therefore:

P = (sC−1σ)−1(−sW), (5.11)

φ = −([∂]C[d])−1[∂]CW. (5.12)



Chapter 5. CAPACITIVE NETWORKS 65

Remark 5.4. The same considerations about existence and uniqueness of charge Q and
voltage V are also valid in this new context, because the matrix C has only positive entries.

5.3 Poisson’s Equation

Until the end of this chapter, we will assume that the capacitive circuits do not
have voltage sources, i.e., W = 0. Therefore, manipulating the equations

Q = CV, V = −dφ and ∂Q = −ρ

we deduce that:
−∂Cdφ = −ρ (5.13)

The equation (5.13) is known as Poisson’s equation. The operator −∂Cd is
called Laplacian and is denoted by ∆. With this, we have ∆ : C0 → C0 and the equation
(5.13) can be rewritten as

∆φ = −ρ. (5.14)

Lemma 5.5. The Laplacian ∆ is a symmetric operator.

Proof. Indeed, since ∂ = (d)T for the matrices of the operators ∂ and d with respect to
canonical basis, we have:

∆T = (−∂Cd)T = −dTCT∂T = −∂Cd = ∆.

Lemma 5.6. Let A be a node of the circuit and let u ∈ C0, then:

(∆u)(A) =
∑

α:∂α=±(B−A)
Cα(u(B)− u(A)) (5.15)

where we are summing over all the branches α such that ∂α = ±(B−A) for some B ∈ C0.
The charge on node A is given by:

ρA =
∑

α:∂α=±(B−A)
Cα(u(A)− u(B)) (5.16)

Proof. Let α be a branch with A as one of its nodes, and B as the other. Then:

du(α) = u∂(α) = ±u(B−A) = ±(u(B)− u(A)). (5.17)

The formula of the functional du summing only over the branches α that have A
as one of its nodes is equal to:

du =
∑

α:∂α=±(B−A)
λαα

∗ (5.18)
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where α∗ is an element of the canonical basis of the dual space C1. By (5.17) and (5.18),
we have:

du =
∑

α:∂α=±(B−A)
±(u(B)− u(A))α∗ (5.19)

Multiplying (5.19) by the matrix of the capacitances C, we have:

Cdu =
∑

α:∂α=±(B−A)
±(u(B)− u(A))Cαα (5.20)

Applying in (5.20) the operator −∂, we have:

−∂Cdu = −
∑

α:∂α=±(B−A)
±(u(B)− u(A))Cα∂α.

Then:
−∂Cdu = −

∑
α:∂α=±(B−A)

±(u(B)− u(A))Cα(±(B−A)). (5.21)

Isolating the node A, we have the following result :

−∂Cdu(A) =
 ∑
α:∂α=±(B−A)

Cα(u(B)− u(A))
A. (5.22)

Therefore:
(∆u)(A) =

∑
α:∂α=±(B−A)

Cα(u(B)− u(A)). (5.23)

To calculate the charge on node A by (5.14) and (5.23), we have:

ρA =
∑

α:∂α=±(B−A)
Cα(u(A)− u(B)). (5.24)

Now observe that, in particular, u satisfies the Laplace’s equation

∆u = 0. (5.25)

if, and only if, for each node A, we have:

u(A) = 1∑
Cα

∑
Cαu(B) (5.26)

summed over all branches α which has the node A at one end. Therefore, Laplace’s
equation tells us that the potential in each node is the weighted average of the potentials
at nearest neighbor nodes, with the weight being given by capacitances .

Definition 5.7. Let [d] : P 0 → C1 be the restricted coboundary map and let [∂] : C1 → B0

be the restricted boundary map. Then we define the restricted Laplacian as:

[∆] = −[∂]C[d].
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Theorem 5.8. The operator [∆] is invertible.

Proof. Analogous to the proof of theorem 3.70, just replacing Z−1 by C.

Corollary 5.9. For a circuit with ground node, ∆ = [∆].

Proof. For a circuit with ground node, d is injective. Therefore d = [d], ∂ = [∂] and
∆ = [∆].

Let ψ ∈ P 0 and consider the Poisson’s restricted equation:

[∆]ψ = −ρ. (5.27)

The solution of Poisson’s restricted equation is given by:

ψ = −[∆]−1ρ. (5.28)

Remark 5.10. From equations (5.27) and (5.28), in agreement with what was previously
seen, the rows corresponding to the circuit’s ground of ψ ∈ P 0 and ρ ∈ B0 are eliminated.

The diagram of the figure 21 relates the domains of the Laplacian and restricted
Laplacian.

Figure 21 – Diagram of the restricted Laplacian.

Example 5.11. Consider figure 22. 4 units of charge are at node B and 1 unit at node
C. The node A is the ground of the circuit. Find the potential of B and C and the charge
on the node A(as units, use microfarads for capacitance, microcoulombs for charge and
volts for potential). Analyzing the figure 22, we have:

[∂] =
 1 −1 0

0 1 −1

 , [d] =


1 0
−1 1

0 −1

 , C =


1 0 0
0 2 0
0 0 3


Then:

[∂]C[d] =
 1 −1 0

0 1 −1




1 0 0
0 2 0
0 0 3




1 0
−1 1

0 −1

 =
 3 −2
−2 5


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Figure 22 – Poisson’s Equation (example 5.11).

Therefore, the solution of Poisson’s equation is :

([∂]C[d])−1 = 1
11

 5 2
2 3

 , ψ = 1
11

 5 2
2 3

 4
1

 =
 2

1


Then we have φB = 2 V and φC = 1 V . Then V α = −2 V and V γ = 1 V . Using Q = CV,
we find that Qα = −2 µC and Qγ = 3 µC. As

ρA = Qα −Qγ (5.29)

then ρA = −5 µC.

5.4 Boundary and Interior Nodes

Figure 23 – Boundary nodes and interior nodes.

Imagine a circuit of capacitors, with no battery, like in figure 23. We subdivide
the nodes into two types: boundary nodes and interior nodes. Boundary nodes, as A
and B, are connected to external sources. These external sources maintain their potential
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in a specific value. Interior nodes, such as C and D, do not connect to any external source,
but only with the others nodes of the circuit. With this, we have a decomposition of the
space C0 (charges of the nodes) and C0 (potentials of the nodes).

The space C0 has the following decomposition:

C0 = Cbound
0 ⊕ C int

0 (5.30)

where Cbound
0 consists of all zero-chains where the only nonzero coordinates are related to

the boundary nodes, and C int
0 consists of all zero-chains where the only nonzero coordinates

are related to the interior nodes.

Similarly, the space C0 will have the following decomposition:

C0 = C0
bound ⊕ C0

int (5.31)

where C0
bound consists of all linear functionals that vanish on C int

0 . Analogously, C0
int consists

of all linear functionals that vanish on Cbound
0 .

Example 5.12. In figure 23, we have that A and B are boundary nodes, while C and D
are interior nodes. Then by (5.30), we can decompose ρ in a unique way as the sum of an
element of Cbound

0 and an element of C int
0 .

ρ = ρbound + ρint (5.32)

i.e., 
ρA

ρB

ρC

ρD

 =


ρA

ρB

0
0

+


0
0
ρC

ρD

 . (5.33)

On the other hand, the potential φ can be uniquely decomposed as the sum of an
element of C0

bound with an element of C0
int.

φ = φbound + φint (5.34)

i.e., 
φA

φB

φC

φD

 =


φA

φB

0
0

+


0
0
φC

φD

 . (5.35)

In a general problem, the potential of each boundary node is specified, and the charge of
each interior node will also be provided. With this, we want to find the charge of boundary
nodes and the potential of interior nodes. This general problem can be expressed as the
superposition of two simpler problems:
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1. Dirichlet Problem:
Data provided: the charges of interior nodes are all zero, ie, ρint = 0 and the potential
φbound of the boundary nodes is provided.
We need to find: the potentials of the interior nodes φint and the charges of the
boundary nodes ρbound.

To find φint, we use the equation:

∆(φint + φbound) = 0 at all interior nodes. (5.36)

Now to find ρbound, we use:

∆(φint + φbound) = −ρbound. (5.37)

2. Poisson equation problem:
Data provided: the potentials of the boundary nodes are all nulls, ie, φbound = 0, and
the charges of the interior nodes ρint are provided.
We need to find: the potentials of the interior nodes φint and the charges of the
boundary nodes ρbound.

To find φint, we use the equation:

∆(φint) = −ρint at all interior nodes. (5.38)

Now, to find ρbound, we use:

∆(φint) = −ρbound at all boundary nodes. (5.39)

5.5 Decomposition of C1

Definition 5.13. For C : C1 → C1, we define the inner product (, )C : C1 × C1 → R
as follows:

(V, V̂)C =
∫
CV

V̂ =
∑

all branches
CαV

αV̂ α (5.40)

Remark 5.14. The inner product (5.40) is positive definite because the matrix C is
diagonal, and its diagonal entries are positive.

Remark 5.15. We can represent the total energy stored in the capacitors as follows:
1
2(V, V )C =

∑ 1
2Cα(V α)2 (5.41)

Proposition 5.16. The space C1 can be decomposed in the following orthogonal direct
sum:

C1 = d(C0)⊕ C−1Z1 (5.42)
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Proof. We must show that C−1Z1 is the orthogonal complement of d(C0). First, we have
C−1Z1 ⊂ [d(C0)]⊥compl . In fact, for V ∈ d(C0) and for some I ∈ Z1, C−1I ∈ C−1Z1, we
have:

(V, C−1I)C =
∫
C(C−1I)

V =
∫

I
V = 0 (5.43)

To prove that C−1Z1 = [d(C0)]⊥compl , we will show that dim(C−1Z1) = dim[d(C0)]⊥compl .
By (2.43), we know that:

C1/dC0 ≈ Z∗1 (5.44)

⇒ dim C1 − dim dC0 = dim Z∗1 = dim Z1

⇒ dim C1 = dim dC0 + dim Z1 (5.45)

We show that dim C−1Z1 = dim Z1. In fact, since

C−1
|Z1

: Z1 → Im C−1Z1 (5.46)

is an isomorphism.

Definition 5.17. The subspace D1 is, by definition, the orthogonal complement of dC0
int

with respect to the space dC0.

As a consequence of the definition (5.17), we have:

d(C0) = dC0
int ⊕D1. (5.47)

By (5.42) e (5.47), we have:

C1 = D1 ⊕ dC0
int ⊕ C−1Z1. (5.48)

The identity (5.48) is a decomposition of C1 into three mutually orthogonal sub-
spaces.

Remark 5.18. For the next lemma, we will use the notation: m = number of meshes, nb
= number of boundary nodes and ni = number of interior nodes.

Lemma 5.19.
dim D1 = nb − 1. (5.49)

Proof. (i) By (5.46), we know that dim C−1Z1 = dim Z1 = m.
(ii) If there is at least a boundary node, then d : C0

int → C1 is injective since, as we
have seen in proposition 3.52, Z0 is the space of constant potentials. With at least one
boundary node, there is at least one coordinate with null value. Therefore, the only
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constant potential we may have will be the constant vector 0. Therefore, by theorem 2.2,
we have dim dC0

int = dim C0
int = ni.

(iii) We know that dim C1 = n− 1 +m, i.e.:

dim C1 = ni + nb − 1 +m (5.50)

By equation (5.48), we have:

dim C1 = dim D1 + dim C0
int + dim C−1Z1 (5.51)

By equations (5.50) and (5.51), united to the results (i) and (ii), we have:

dim D1 = nb − 1 (5.52)

Proposition 5.20. dφ ∈ D1 if and only if φ is a solution of the Dirichlet problem.

Proof. Since D1 ⊂ dC0, then if V ∈ D1 we have V = dφ and V⊥dC0
int. Then:

0 = (V, dφint)C =
∫
CV

dφint =
∫
∂CV

φint, ∀φint ∈ C0
int. (5.53)

As for any interior node, we can find a function φint that not annuls only in this node,
then by (5.53), we have ∂CV ∈ Cbound

0 . Substituting V = dφ, we have

∆φ = 0, at all interior nodes, (5.54)

Therefore, φ is a solution of the Dirichlet problem.

Conversely, if φ ∈ C0 is a solution of the Dirichlet problem, then:

∂Cdφ = 0, at all interior nodes. (5.55)

Considering V = dφ, we have:

0 =
∫
∂Cdφ

φint =
∫
∂CV

φint =
∫
CV

dφint = (dφint,V)C , ∀φint ∈ C0
int. (5.56)

Therefore, by definition 5.17, we have V ∈ D1.

Example 5.21. The capacitive circuit of the figure 24, where A,B,C are boundary
nodes (where A is the ground node), while D is an interior node. We know that C1 =
dC0

int ⊕D1 ⊕C−1Z1. We want to find the bases of the subspaces dC0
int, D

1, C−1Z1. From
figure 24, we find the following matrices:

∂ =


1 0 1 0
0 −1 −1 0
0 0 0 −1
−1 1 0 1

 , d =


1 0 0 −1
0 −1 0 1
1 −1 0 0
0 0 −1 1

 , C =


1 0 0 0
0 2 0 0
0 0 2 0
0 0 0 1

 (5.57)
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Figure 24 – Capacitive circuit.

As we have 4 branches, then dim C1 = 4. As we only have one mesh, dim Z1 = 1⇒
dim C−1Z1 = 1. . Thus, for example, an element of the basis of C−1Z1 is:

C−1


1
1
−1

0

 =


1
1
2

−1
2

0

 (5.58)

Remembering that as the circuit has a ground node in A, this implies that d is an injective
operator (consequence of the corollary 3.53). Therefore, as we have only one interior node,
then dim dC0

int = 1. So just find a vector dC0
int to find a base. So, for φint = (0, 0, 0, 1), we

have:

d


0
0
0
1

 =


−1

1
0
1

 . (5.59)

By decomposition (5.48), , we conclude that dim D1 = 2. As ∆ = −∂Cd, then, from the
matrices (5.57), we find:

∆ =


−3 2 0 1

2 −4 0 2
0 0 −1 1
1 2 1 −4

 . (5.60)

Choosing two linearly independent potential-vectors (0, 1, 0,φD) , (0, 0, 1,φD) and solving
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the two following Dirichlet problems, we find the following potential for the interior node:

∆.


0
1
0

φD

 =


∗
∗
∗
0

⇒ φD = 1
2 . (5.61)

Therefore, we have the solution φ = (0, 1, 0, 1
2).

∆.


0
0
1

φD

 =


∗
∗
∗
0

⇒ φD = 1
4 . (5.62)

Therefore, we have the solution φ = (0, 0, 1, 1
4).

With this, we find the following two linearly independent vectors in D1:

dφ =


1 0 0 −1
0 −1 0 1
1 −1 0 0
0 0 −1 1




0
1
0
1
2

 =


−1

2

−1
2

−1
1
2

 , (5.63)

dφ =


1 0 0 −1
0 −1 0 1
1 −1 0 0
0 0 −1 1




0
0
1
1
4

 =


−1

4
1
4

0
−3

4

 . (5.64)

So after multiplication by suitable scalars, we find the following basis for the subspace D1:


−1
−1
−2

1

 ,

−1

1
0
−3




. (5.65)

5.6 Solution of the Boundary-value Problem byWeyl’s
Method of Orthogonal Projection

5.6.1 Poisson’s Equation

Suppose that a charge ρ is specified for all interior nodes. We want to find out the
solution of Poisson’s equation given this interior charge. For this, we build a distribution of
voltage V̂ such that −∂CV̂ = ρ, at all interior nodes. Since V̂ ∈ C1, by (5.48), we have:

V̂ = V + U + W (5.66)
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where V ∈ dC0
int, U ∈ D1, W ∈ C−1Z1. Note that ∂C(U+W) = ∂C(U)+∂C(W) = 0int

at all interior nodes, because ∂C(U) = 0int at all interior nodes (Dirichlet’s problem),
and, since W ∈ C−1Z1, ∃ I ∈ Z1 such that W = C−1I. So ∂C(W) = ∂CC−1I = ∂I = 0.
Therefore, we have:

−∂CV̂ = −∂CV = ρ, at all interior nodes. (5.67)

If we denote by π the orthogonal projection of C1 on dC0
int, we have:

V = πV̂. (5.68)

Now let φint, such that V = −dφint. Then by (5.67), we have φint is the solution of the
Poisson equation.

5.6.2 Dirichlet’s Problem

We want to find out the solution of the Dirichlet problem for a specific value of the
potentials at the boundary nodes. Let us denote by φ̂ the potential that is equal to zero
for the interior nodes and equal to a specified value at the boundary nodes, imposed by
the Dirichlet problem. With this, let V̂ = −dφ̂. So, since π is the orthogonal projection of
C1 on dC0

int, we have:
V̂ = πV̂ + (1− π)V̂. (5.69)

Since V̂ ∈ dC0, then by (5.47), we have (1 − π)V̂ ∈ D1. Therefore, πV̂ = −dψ, with
ψ ∈ C0

int, and (1− π)V̂ = −dφ, with ∆φ = 0, at all interior nodes. Then:

−dφ̂ = −dψ − dφ = −d(ψ − φ). (5.70)

Considering that the circuit has a ground, then d is injective. Thus, for ψ ∈ C0
int , we

have φ̂ = φ for all boundary nodes. Therefore, φ is the desired solution to the Dirichlet
problem.

Example 5.22. In this example, we will calculate the Weyl’s projection and then we will
solve the Poisson equation and the Dirichlet problem. First, let’s look at the previous
example, the equation (5.59), and note that a possible basis of dC0

int is:

U =


1
−1

0
−1

 . (5.71)

Finding the norm of U, we have:

‖U‖ =
√

(U,U)C = 2. (5.72)
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Figure 25 – Weyl’s projection method.

Then, for any V ∈ C1, we have:

πV = 1
4(V,U)CU (5.73)

We know that π : C1 → dC0
int. So to find the matrix of π, we apply π to the

vectors of the basis




1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1




.

With this, we find:

π = 1
4


1 −2 0 −1
−1 2 0 1

0 0 0 0
−1 2 0 1

 and (1− π) = 1
4


3 2 0 1
1 2 0 −1
0 0 4 0
1 −2 0 3

 . (5.74)

Look at figure 25 and suppose that ρD = 1. We want to solve the Poisson equation.

One possibility is to have Q̂α = Q̂β = Q̂γ = 0, Q̂δ = −1, then V =


0
0
0
−1

. Then

πV̂ = 1
4


1
−1

0
−1

. Then, since A is a ground, we have:

φ =


0
0
0
1
4

 and ρ = 1
4


−1
−2
−1

4

 . (5.75)
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as solution of Poisson’s equation.

We now will solve the Dirichlet problem assuming that to the figure 25, we have
φA = 0,φB = 5,φC = 6. Let’s build φ̂, such that φ̂ = φ for all boundary nodes and
φ̂
D = 0.Then we have:

V̂ = −dφ̂ =


0
5
5
6

 . (5.76)

So, we have: V = (1− π)V̂ = 1
4


3 2 0 1
1 2 0 −1
0 0 4 0
1 −2 0 3




0
5
6
0

 =


4
1
5
2

.

With this, we have the solution of the Dirichlet problem φ, such that V = −dφ, is
equal to:

φ =


0
5
6
4

 .

5.7 Green’s Functions

Before starting this section, we will demonstrate the following lemma.

Lemma 5.23. For a capacitive circuit with ground node, let ∆ =
 A B

C D

 be the

Laplace operator write in block form with A a invertible matrix of order equal to dimC int
0 .

Then the solution of the Poisson equation problem exist and is unique.

Proof. The existence of the solution is guaranteed by the corollary 5.9 and theorem 5.8.
To prove uniqueness, consider the following Poisson equation problem: A B

C D

 φint

0

 =
 −ρint

−ρbound


Then:

Aφint = −ρint

Cφint = −ρbound

As the block A is invertible, then:

φint = −A−1ρint.

Then φint is uniquely determined and hence ρbound is also uniquely determined.
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Therefore, to ensure the uniqueness of solutions of the Poisson equation problem,
we will consider throughout this section that the capacitive circuit under study has the
Laplace operator with block A invertible.

Definition 5.24. The map G : C int
0 → C0

int which gives to the charge distribution ρ

(restricted to the interior nodes) the potential φint which solves the Poisson equation is
called the Green’s operator.

Remark 5.25. The entries of the operator’s matrix G are denoted by G(A,B) (line B,
column A), with A,B ∈ C0 nodes of the circuit. When A is a boundary node, we have
G(A,B) = 0.

Proposition 5.26. If A is an interior node, then G(A,B) is equal to the potential at
node B result from solving the Poisson equation for a configuration of a unit charge at
interior node A and charge zero at the remaining interior nodes.

Proof. As the operator G solves the Poisson equation for a given configuration of charges
on interior nodes, then multiplying the line B of the matrix of the operator G by the

charge



0
...
1
...
0


of the interior node A, we will have:

φB = G



0
...
1
...
0


= G(A,B). (5.77)

Remark 5.27. For every boundary node B, we have G(A,B) = 0.

Definition 5.28. The entry G(A,B) of the matrix G, with A,B ∈ C0 nodes of the
circuit, is a function of two variables called Green’s function.

Remark 5.29. When the Green’s function is considered as the first variable A fixed, with
A ∈ C int

0 , then we have:
G(A, ·) ∈ C0

int. (5.78)

Of the remark 5.29, we have:

∆G(A, ·) =


−1 , if G(A,A).

0 , if G(A,B), B 6= A e B ∈ C int
0 .

(5.79)
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Definition 5.30. Let π2 be the orthogonal projection in the subspace C int
0 . Then:

∆2 := π2 ◦∆|
C0

int
. (5.80)

As a consequence of the equation (5.80), we have:

∆2 : C0
int → C int

0 . (5.81)

Proposition 5.31. The operator ∆2 : C0
int → C int

0 is an isomorphism between the spaces
C0

int and C int
0 .

Proof. By lemma 5.23, we know that in a circuit that has at least one boundary node(in
this context, it is similar to have a ground node), each pint is associated with only one
φint (and vice versa). Therefore ∆2 is a bijection.

Corollary 5.32. G = (−∆2)−1.

Proof. Since ∆2 is an isomorphism, we have:

−∆2φint = ρint ⇔ (−∆2)−1ρint = φint.

Therefore, by definition 5.24, we have G = (−∆2)−1. Then:

−∆2φint = ρint ⇔ Gρint = φint. (5.82)

Remark 5.33. The corollary 5.32 ensures the existence of the Green’s operator G.

Now, reformulating the definition (5.24), we have:

Definition 5.34. The map G : C int
0 → C0

int, such that G = (−∆2)−1, is called Green’s
operator.

Corollary 5.35. G is a symmetric operator.

Proof. We need just show that ∆T
2 = ∆2. Indeed, as the matrix of the operator π2 is a

diagonal matrix, and how, by lemma 5.5, the Laplacian is symmetric, we have:

∆T
2 = (π2 ◦∆|

C0
int

)T = ∆T
|
C0

int
◦ πT

2 = ∆T
|
C0

int
◦ π2 = ∆2.

By (5.82), for each node B, we have:

u(B) =
∑
ρ(A)G(A,B), (5.83)
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such that the sum of (5.83) extends to all interior nodes A.

We can use the Green function to solve the Dirichlet problem. To achieve this
purpose, we will demonstrate a certain identity.

Note that for u,v ∈ C0 and for every node A ∈ C0, we have:

−
∑

all A
u(A)∆v(A) =

∑
all A

u(A)∂Cdv(A)

=
∫
∂Cdv

u =
∫
Cdv

du = (du, dv)C = (dv, du)C =
∫
Cdu

dv =
∫
∂Cdu

v

=
∑

all A
v(A)∂Cdu(A) = −

∑
all A

v(A)∆u(A).

Therefore: ∑
all A

u(A)∆v(A) =
∑

all A
∆u(A)v(A). (5.84)

Spliting the sum of two parts, one on the boundary nodes and the other on the interior
nodes, we have:∑

interior
nodes A

[u(A)∆v(A)−∆u(A)v(A)] = −
∑

boundary
nodes B

[u(B)∆v(B)−∆u(B)v(B)] (5.85)

The identity (5.85) is called Green’s formula.

Let us now choose any two interior nodes A1 and A2 and set u,v ∈ C0
int as follows:

u = G(A1, ·) and v = G(A2, ·)

Using u,v in the Green’s formula (5.85), we have that the right side is zero because
u(B) = v(B) = 0 for every boundary node B. Also note that:

∆u(A) =


−1 , if A = A1,

0 , if A 6= A1 and A ∈ C int
0 ,

and

∆v(A) =


−1 , if A = A2,

0 , if A 6= A2 and A ∈ C int
0 .

Therefore, the Green’s formula (5.85) becomes:

−u(A2) + v(A1) = 0

⇒ u(A2) = v(A1).

Therefore:
G(A1,A2) = G(A2,A1). (5.86)
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Remark 5.36. In agreement with the corollary 5.35, the identity (5.86) shows once again
that the matrix of the operator G is symmetric.

If we write u = φ,∆u = −ρ,v = φ̂,∆v = −ρ̂, , the Green’s formula (5.85)
becomes: ∑

interior
nodes C

(ρCφ̂
C
− ρ̂CφC) =

∑
boundary
nodes B

(ρ̂BφB − ρBφ̂
B) (5.87)

With this, we realized that the Green’s formula is nothing more than the version for
capacitive circuits of Green’s reciprocity theorem 4.51.

Now suppose that φ̂ is a solution of the Dirichlet problem, then ρ̂ = 0 at the
interior nodes. Let φ = G(A, ·) in (5.87), with A an interior node. Then we have:∑

interior
nodes C

(−∆G(A,C)φ̂C − ρ̂CG(A,C)) =
∑

boundary
nodes B

(ρ̂BG(A,B) + ∆G(A,B)φ̂B). (5.88)

Since −∆G(A,C) = 1 if C = A and 0 for the others interior nodes, since ρ̂C = 0 at all
interior nodes and how G(A,B) = 0 for all B boundary node, (5.88) becomes:

φ̂
A =

∑
boundary
nodes B

∆G(A,B)φ̂B (5.89)

with φ̂A being the potential of Dirichlet problem’s solution for each interior node A .

The matrix (∆G(A,B))dimC0
int×dimC0

bound
: C0

bound → C0
int is called Poisson Kernel.

Example 5.37. Return to the example (5.22), we have, from (5.75), that:

G(D,D) = 1
4 , ∆G(D,A) = 1

4 , ∆G(D,B) = 1
2 , ∆G(D,C) = 1

4 .

Then, φD (solution of the Dirichlet’s problem) is given by:

φD = ∆G(D,A)φA + ∆G(D,B)φB + ∆G(D,C)φC .

Therefore:
φD = 1

4φ
A + 1

2φ
B + 1

4φ
C .

There is another version for the Green formula , called Green’s second formula.
Let’s prove it.

Let A be a boundary node. We know from lemma 5.6 that:

(∆u)(A) =
∑

α:∂α=±(B−A)
Cα(u(B)− u(A)) (5.90)

summed over all nodes B that are in the neighborhood of A.

In (5.90), we can divide the right side of the equality as follows:

(∆u)(A) =
∑

A in boundary
α:∂α=±(B−A)

B an interior node

Cα(u(B)− u(A)) +
∑

A in boundary
α:∂α=±(B−A)

B a boundary node

Cα(u(B)− u(A)). (5.91)
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Let us denote the second term of the sum (5.91) for ∆boundu(A), ie:

(∆u)(A) =

 ∑
A in boundary

α:∂α=±(B−A)
B an interior node

Cα(u(B)− u(A))

+ ∆boundu(A). (5.92)

We can think of the boundary nodes with all branches of the circuit connecting two
boundary nodes as a circuit by itself. Then ∆bound will be the Laplace operator of this
subcircuit. As this subcircuit doesn’t have interior nodes, by Green’s formula (5.85), we
have: ∑

boundary A
(u(A)∆boundv(A)−∆boundu(A)v(A)) = 0. (5.93)

Therefore, from (5.92) and (5.93), we have:

∑
boundary A

(u(A)∆v(A)−∆u(A)v(A)) =

=
∑

boundary A

∑
∂α=±(B−A)
B in interior

(u(A)Cα(v(B)− v(A))− Cα(u(B)− u(A))v(A)) =

=
∑

boundary A

∑
∂α=±(B−A)
B in interior

Cα(u(A)v(B)− u(B)v(A)).

So:
∑

boundary A
(u(A)∆v(A)−∆u(A)v(A)) =

∑
boundary A

∑
∂α=±(B−A)
B in interior

Cα(u(A)v(B)−u(B)v(A)).

(5.94)
Replacing (5.94) on Green’s formula (5.85), we find:

∑
A in interior

(u(A)∆v(A)−∆u(A)v(A)) = −
∑
A in

boundary

∑
∂α=±(B−A)
B in interior

Cα(u(A)v(B)− u(B)v(A))

(5.95)
The identity (5.95) is called Green’s second formula.

5.8 Green’s Reciprocity Theorem in Electrostatics

Remark 5.38. In this section some results for systems of charged conductors are listed
without proof, merely in order to show some generalizations of the theory previously
studied for capacitive systems.

As a slight generalization of capacitive networks, we may consider a system of
charged conductors, each of which has a well-defined charge ρ and a well-defined potential
φ. The total charges on each of the various conductors may be described in terms of
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a vector ρ =


ρA

ρB
...

 in a space we may call C0, while the potentials form a vector

φ =


φA

φB

...

 in its dual space C0.

Figure 26 – Conductors.

Remark 5.39. The stored electrostatic energy E on a system of conductors can be given
by:

E = 1
2

∫
ρ
φ = 1

2
∑

ρAφ
A.

The total conductor charges ρ may be expressed in terms of the potentials φ by a
Laplace operator ∆, so that:

ρ = −∆φ.

Remark 5.40. : In the physics literature, −∆ is usually called the matrix of capacitance
coefficients and the inverse of the matrix −∆ is called the matrix of potential coefficients.

In the current context, the operator ∆ depends on the shape of the conductors,
their distribution in space and on fundamental constants of electrostatics. Generally the
calculation of ∆ is extremely difficult. But in some cases this calculation is simple, as in
the following example, which deals with concentric spheres.

Example 5.41. Consider in figure 27 a system of two concentric spheres, with radii rA
and rB In Gaussian units, for ρA = 1 and ρB = 0, we find the potentials φA = 1

rA
, φB = 1

rB
,

while, if ρA = 0 and ρB = 1, we find the potentials φA = φB = 1
rB
. Then, we have:

−∆−1 =
 1/rA 1/rB

1/rB 1/rB


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Figure 27 – Two concentric spheres.

This matrix permits us to calculate the potential of the two spheres for an arbitrary charge
distribution. Its inverse gives the Laplace operator:

−∆ = rB
rB − rA

 rA −rA
−rA rB


This matrix determines the charges on the two spheres for specified potentials. For the
case φA = 1, φB = 0 it gives:  ρA

ρB

 = rArB
rB − rA

 1
−1

 ,
i.e., there are equal and opposite charges of magnitude rArB

rB−rA
on the two spheres. This

quantity rArB
rB−rA

is called the capacitance of the pair of spheres.

Example 5.42. For any number of concentric spheres, the reasoning is the same. For
example, consider the three concentric spheres of figure 28. Then:

Figure 28 – Three concentric spheres.
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−∆−1 =


1/rA 1/rB 1/rC
1/rB 1/rB 1/rC
1/rC 1/rC 1/rC

 .

In the same way we use for capacitive circuits, we may also use the Green’s
reciprocity theorem for a system of conductors. So let (ρ,φ) and (ρ′,φ′) are two settings
for charge and potential of a system of conductors, so Green’s reciprocity theorem states
that: ∫

ρ′
φ =

∫
ρ
φ′.

Lemma 5.43. ∆ is a self-adjoint operator.

Proof. Let ρ = −∆φ, ρ′ = −∆φ′. Then∫
−∆φ′

φ =
∫
−∆φ

φ′,

i.e.,
(∆φ′,φ) = (φ′,∆φ).

The same way as was done in the study of capacitive circuits, here we can also
classify some conductors as boundary conductors whose potential may be established by
connecting batteries to them, while others are inner conductors whose charge may be
specified. And in the identical way, we will have the Poisson equation problem and the
Dirichlet problem.

For a system of conductors, let (ρ′,φ′) be the charge and potential for the Poisson
equation problem and let (ρ,φ) be the charge and potential to the Dirichlet problem. By
Green’s reciprocity theorem, we have:∑

interior
ρ′Aφ

A +
∑

boundary
ρ′Bφ

B =
∑

interior
ρAφ

′A +
∑

boundary
ρBφ

′B

But given that φ′ = 0 on the boundary(Poisson) and ρ = 0 in the interior(Dirichlet), we
get: ∑

interior
ρ′Aφ

A = −
∑

boundary
ρ′Bφ

B (5.96)

Suppose now that ρ′ = −∆G(C, .) where G is the Green function and C an interior node.
With this, the equation (5.96) will be equal to:

φC =
∑

boundary
∆G(C,B)φB (5.97)

This is the Green’s function solution to the Dirichlet problem e the matrix [∆G(C,B)] is
the Poisson Kernel. Observe that the equation (5.97) is similar to the equation (5.89) to
the capacitive circuits.
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Example 5.44. Consider the system of three large parallel conducting planes shown in
figure 29. We regard A and C as boundary conductors, B as an interior conductor without
charge and we consider that in this geometry the potential in the plane B is a linear
function of the position between the plates A and C. Then:

Figure 29 – Parallel conducting planes.

φB = φA + 1
3(φC − φA).

So:
φB = 2

3φ
A + 1

3φ
C .

This is a solution to Dirichlet’s problem.

Now consider Poisson’s equation, with charge ρ′B on the middle plane, φ′A = φ′C = 0.
By reciprocity theorem,

ρ′Bφ
B = −ρ′AφA − ρ′CφC .

But φB = 2
3φ

A + 1
3φ

C , then:

ρ′B
2
3φ

A + ρ′B
1
3φ

C = −ρ′AφA − ρ′CφC .

Since φA and φC are linearly independent, we have:

ρ′A = −2
3ρ
′
B, ρ

′
C = −1

3ρ
′
B. (5.98)

The equations above show the induced charge in the planes A and C.
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6 SUMMARY AND PERSPEC-
TIVES

In this work we introduce the analysis of electrical circuits made with strong
considerations about its shape. The graph theory and algebraic topology were used to
make possible this goal. For example, we saw how the boundary and coboundary maps act
in the electrical circuit. We also saw that a circuit have homology (H0, H1) and cohomology
(H1) groups. We defined the vector space C0, C1 of nodes and branches, respectively, and
also their dual spaces C0 and C1. We defined the vector subspaces of cycles Z1 and of
boundaries B0, as well as the dual subspace Z0 and B1, providing a physical meaning to
them. Through Maxwell’s Mesh-Current Method and Maxwell’s Node-Potential Method,
we analyze the existence and uniqueness of the Kirchhoff equations for resistive electrical
circuits and also for more general circuits (RLC circuits).

We also worked with a geometric method, conceived by Weyl, introducing equations
that are equivalent (in resistive circuits) to Kirchhoff’s equations for electrical circuits.
Kirchhoff, on the other hand, contributed with an alternative way (based on graph theory)
to discover the Weyl’s orthogonal projection. Green’s Reciprocity Theorem allows us to
find some symmetries for the circuit.

We learned how to work with capacitive circuits, introducing the discrete versions
of the Gauss’ law, Dirichlet problem, Laplace and Poisson equations. We discuss how to
decompose the space C1 in a direct sum, and define the space D1, relating this space with
the solutions of the Dirichlet problem. The decomposition of the space C1 also enabled us
to know a new geometric method for solving the Dirichlet and Poisson problems, using
orthogonal projection. We finished our study with the Green’s functions, the Green’s
formula (which in turn is equivalent to the Green’s reciprocity theorem for capacitive
networks), Poisson Kernel and Green’s second formula.

As future perspectives, we intend relate capacitive circuits with the general theory
of electrostatics explaining, for example, how the star operator plays the same role to
the capacitance matrix. More generally, we intend very soon develop, using the exterior
differential calculus, a continuous version for the study of electrical circuits, thus formulating
a new perspective to electromagnetism’s study.
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