‘Centro L
&Infcrmatlca

P6s-Graduacao em Ciéncia da Computacao

Paulo Freitas de Araujo Filho

Contributions to In-vehicle Networks: Error Injection and Intrusion Detection System
for CAN, and Audio Video Bridging Synchronization

e
e

4
S,
Universidade Federal de Pernambuco
posgraduacao@cin.ufpe.br
http://cin.ufpe.br /~posgraduacao

i

mailto:posgraduacao@cin.ufpe.br
http://cin.ufpe.br/~posgraduacao

Paulo Freitas de Araujo Filho

Contributions to In-vehicle Networks: Error Injection and Intrusion Detection System
for CAN, and Audio Video Bridging Synchronization

M.Sc. Dissertation presented to the Centro
de Informatica of the Universidade Federal
de Pernambuco in partial fulfillment of the
requirements for the degree of Master of
Computer Science.

Advisor: Divanilson Rodrigo de Sousa
Campelo

Recife
2018

Catalogacéo na fonte
Bibliotecaria Monick Raquel Silvestre da S. Portes, CRB4-1217

A663c

Araujo Filho, Paulo Freitas de

Contributions to in-vehicle networks: error injection and intrusion detection
system for CAN, and audio video bridging synchronization |/ Paulo Freitas de
Araujo Filho. — 2018.

94 1.: l., fig., tab.

Orientador: Divanilson Rodrigo de Sousa Campelo.

Dissertacdo (Mestrado) — Universidade Federal de Pernambuco. Cin,
Ciéncia da Computacéo, Recife, 2018.
Inclui referéncias.

1. Redes de computadores. 2. Técnicas de injecao de erros. |. Campelo,
Divanilson Rodrigo de Sousa (orientador). Il. Titulo.

004.6 CDD (28. ed.) UFPE- MEI 2018-111

Paulo Freitas de Araujo Filho

Contributions to In-Vehicle Networks: Error Injection and Intrusion Detection
System for CAN, and Audio Video Bridging Synchronization

Dissertagdo de Mestrado apresentada ao
Programa de Pos-Graduacdo em Ciéncia da
Computacdo da Universidade Federal de
Pernambuco, como requisito parcial para a
obtengdo do titulo de Mestre em Ciéncia da
Computagdo.

Aprovado em: 04/07/2018.

BANCA EXAMINADORA

Prof. Abel Guilhermino da Silva Filho
Centro de Informatica / UFPE

Prof. Eduardo Coelho Cerqueira
Faculdade da Engenharia de Computagao e
Telecomunicagao / UFPA

Prof. Divanilson Rodrigo de Sousa Campelo
Centro de Informatica / UFPE
(Orientador)

I dedicate this dissertation to all my family, friends and professors who gave me the

necessary support to get here.

ACKNOWLEDGEMENTS

I would like to thank God for the guidance and strength.

To my mom and dad, Ana Rosa and Paulo Araujo, for giving me all the support and
assistance I could possibly need, while also pushing me for reaching my best.

To my sister and brother in-law, Juliana and Paulo Mendes, for being there for me no
matter what.

To my niece, Leticia, who brings the happiness and joy of a child.

To my fiancée, Aline, who is also always there for me as a source of support, companion
and love.

To all my cousins, family and friends that are there for me in the best, but also on
the worst and more difficult moments.

To my advisor, Divanilson Campelo, who provided me as many career opportunities
as he could and gives me the support and guidance, not only from a professor, but also
from a friend.

To Edilson, Fabio, David, Rodrigo, Caio, Luis and Eron that helped me during the
development of this project.

To Colt Correa, Dave Robins, and Laks, from Intrepid Control Systems, who gave me
the opportunity to apply my academic knowledge to solve problems from the industry,
and from whom I learned so much.

To the examining board professors Eduardo Cerqueira and Abel Guilhermino.

To CNPq for the financial support and to Cln for the structure and research environ-
ment.

To all of you, thank you so much.

Paulo Freitas

ABSTRACT

Vehicles are equipped with Electronic Control Units (ECUs) responsible for perform-
ing tasks as simple as lighting up brake lights or as complex as controlling the wheels
of an electric car. The exchange of information between ECUs uses the Controller Area
Network (CAN) and the Controller Area Network with Flexible Data Rate (CAN FD),
which provides higher data rates and payloads, as the main and most used intra-vehicular
networks, at least until today. Interconnected ECUs must work perfectly and interact with
each other as well as with other car components in a reliable way, thus it is indispensable to
test and predict the behavior of these units in error situations. For this, an error injection
mechanism can be very advantageous for checking various error conditions in real-world
scenarios that affect the safety of vehicles. Furthermore, nowadays, cars are also equipped
with network technologies that provide connectivity to the external world. This offers
numerous possibilities in terms of new applications and services to be provided, however
makes the car a network node subject to cyber-attacks. It is then necessary to provide
security mechanisms to prevent, or at least detect, attacks. Besides CAN and CAN FD
networks, the advent of 100BASE-T1 Ethernet has feasible the outcome of many new
automotive applications with higher bandwidth demands. In order to be use Ethernet in
applications that require determinism, a series of IEEE standards, which together consti-
tute the Audio Video Bridging (AVB), were developed and proposed. The IEEE 802.1AS,
for instance, is the AVB standard that defines the generalized Precision Time Protocol
(gPTP), responsible for node synchronization within AVB networks. In this context, this
dissertation intends to make contributions for CAN/CAN FD networks as well as for the
automotive Ethernet. For CAN networks, it proposes a novel Error Injection Technique to
assist with system level validation tests and also an Intrusion Detection System based on
machine learning algorithms. For automotive Ethernet, it designs and proposes a hardware
implementation of the gPTP protocol that achieves the required nanoseconds precision,

while also providing implementation details for future researches on that protocol.

Key-words: Controller Area Network (CAN). Error Injection Techniques. Intrusion De-
tection Systems (IDS). Audio Video Bridging (AVB). AVB Networks Synchronization.
IEEE 802.1AS.

RESUMO

Veiculos sdo equipados com unidades de controle eletronico (ECUs) responsaveis por
executar tarefas tao simples quanto acender as luzes de freio, ou tdo complexas quanto
controlar as rodas de um carro elétrico. A troca de informagodes entre ECUs utiliza a
Controller Area Network (CAN) e a Controller Area Network with Flexible Data Rate
(CAN FD), com maior taxa de transmissao e carga util, como principais e mais utilizadas
redes intra-veiculares, pelo menos por enquanto. ECUs interconectadas devem trabalhar
perfeitamente e interagir umas com as outras, bem como com outros componentes veic-
ulares, de forma confiavel, sendo entdao imprescindivel testar e prever o comportamento
dessas unidades em situacoes de erro. Para isso, um mecanismo de injecao de erro pode
ser muito vantajoso para verificar varias situacoes de erro em cenarios reais, que possam
afetar a seguranca do veiculo. Além disso, atualmente, os carros também sao equipados
com tecnologias de redes que proveem conectitividade com o meio exterior. Essa conec-
tividade oferece intimeras possibilidades em termos de novas aplicagoes e servigos a serem
oferecidos, contudo, torna os carros sujeitos a ataques cibernéticos. E necessdrio entao
prover mecanismos de seguranca para prevenir, ou ao menos detectar, ataques. Além das
redes CAN e CAN FD, o advento da Ethernet 100BASE-T1 tem viabilizado uma grande
gama de aplicagoes automotivas com maiores demandas de banda. A fim de usar a Eth-
ernet para aplicagoes com requisitos temporais e deterministicos, uma série de padroes
do IEEE, os quais juntos compéem o Audio Video Bridging (AVB), foi desenvolvida e
proposta. O IEEE 802.1AS, por exemplo, é o padrao do AVB que define o generalized
Precision Time Protocol (gPTP), responsével pela sincronizagdo de nds em redes AVB.
Esta dissertagdo propoe contribuigoes tanto para as redes CAN/CAN FD, como também
para a Ethernet automotiva. Para redes CAN, sdo propostos uma nova técnica de injecao
de erros, para auxiliar em testes de validacao em nivel de sistema, e um sistema de de-
teccao de intrusao baseado em algoritmos de aprendizagem de maquina. Para a Ethernet
automotiva, é proposta uma implementacdo em hardware do protocolo gPTP que atinge
os requisitos de precisao de nano-segundos, enquanto que também oferecendo detalhes de

implementacao necessarios para futuras pesquisas sobre o protocolo em questao.

Palavras-chaves: Controller Area Network (CAN). Técnicas de Injecao de Erros. Sis-
temas de Deteccao de Intrusao (IDS). Audio Video Bridging (AVB). Sincronizagao em
redes AVB. IEEE 802.1AS.

LIST OF FIGURES

[Figure 1 — Illustration of nodes connected to a CAN network 20

[Figure 2 — Fields of a data or remote CAN frame of standard or extended format|. 22

[Figure 3 — CAN and CAN FD data or remote frames structure/. 24
[Figure 4 — Nominal CAN bit time| 25
[Figure 5 — FError Injection Technique SoC implementation and connection diagram| 32
[Figure 6 — Error Injection Module Block Diagram| 32
[Figure 7 — Bit Timing Logic Module Block Diagram 33
[Figure 8 — Error Injection Top Level Block Diagram 33
[Figure 9 — Experimental Setup|. 34
[Figure 10 — Scope of three smashed frames followed by a valid frame.| 36
[Figure 11 — Detailed scope of one of the smashed frames. 36
[Figure 12 — Models Confusion Matrices 40
[Figure 13 — Confidence interval with 99% of confidence level 41
[Figure 14 — Confidence interval with 99% of confidence level 42
[Figure 15 — Block Diagram for a possible IPS system| 43
[Figure 16 — AVB stackl 49
[Figure 17 — Time-aware system model (IEEE..., 2011) 53
[Figure 18 — gPTP domain (IEEE...,2011) 53
[Figure 19 — Time-aware system port communication (LIM et al., [2011)[. 54
[Figure 20 — Peer delay mechanism 55
[Figure 21 — Entities and Layers of a time-aware system|. 63
[Figure 22 — Peer Delay Mechanism state machines and messages 64
[Figure 23 — Peer delay mechanism 64
[Figure 24 — MD PDelay Resquest state machine diagram| 65
[Figure 25 — MD _PDelay Response state machine diagram|. 65
[Figure 26 — MD _SyncReceive state machine diagram| 67
[Figure 27 — Synchronization process partial block diagram| 69
[Figure 28 — MD _SyncSend state machine diagram| 69
[Figure 29 — Synchronization process message flow| 70
[Figure 30 — ¢gPTP Core 72
[Figure 31 — Ethernet frame format| 73
[Figure 32 — gPTP IP design| 74
[Figure 33 — RTL diagram of project that uses the gPTP IP designed 76
[Figure 34 — Project from Fig. [33| utilization report| 78
[Figure 35 — Project from Fig. [33] utilization report| 78

[Figure 36 — RTL diagram of project that uses the gPTP IP designed 79

[Figure 37 — RTL diagram of project that uses the gPTP IP designed 79

[Figure 38 — RTL diagram of project that uses the gPTP IP designed 79
[Figure 39 — Testing scenario 80
[Figure 40 — Testing scenario v i it 81
[Figure 41 — Testing scenario v v v v v i 81
[Figure 42 — Testing scenario o v v v vt 82
[Figure 43 — Message Encapsulation and Extraction Waveform| 83
[Figure 44 — Message Encapsulation and Extraction Waveform Zoom in 84
[Figure 45 — MD _PDelayRequest state machine operation|. 84
[Figure 46 — MD _PDelayResponse state machine operation 85
[Figure 47 — Synchronization Process Waveforms|. 85

[Figure 48 — LinkDelaySyncIntervalSetting Operation| 87

LIST OF TABLES

[Table 2 — Arbitration field first 11 bits for the messages to be transmitted by nodes

| A Band C. 21
[Table 3 — DLC encoding for CAN FD networks| 23
[Table 4 — Bitsmash Parameters Listl 31
[Table 5 — Bitsmash parameters values for a test setup| 35
[Table 6 — IDS Trained Models! 39
[Table 7 — Models Accuracy Rate Mean and Standard Deviation| 40
[Table 8 — Maximum Detection Times Available 43
[Table 9 — Sync Receive Structure Main Attributes| 67
[Table 10 — Port Sync Sync Structure Main Attributes 68
[Table 11 — gPTP messages traffic flow in slave-only AVB end stations 72
[Table 12 — gPTP messages| 72
[Table 13 — gptp3 O IP Inputs|. 75

[Table 14 — gptp3 0 IP Outputs|. 76

ADAS
AVB
AVTP
BE
BMCA
BRAM
CAN
CAN FD
CBS
CLBs
CRC
CSN
DLC
DSP
ECU
EPON
FF
FIFO
FPGA
gPTP
IDS
iForest
ILA

IP

IPS
LIN

LUTRAM

LUTs

LIST OF ABBREVIATIONS AND ACRONYMS

Advanced Driver Assistance Systems
Audio Video Bridging

Audio Video Transport Protocol
Best Effort

Best Master Clock Algorithm

Block RAM

Controller Area Network

Controller Area Network with Flexible Data Rate

Credit Based Shaper
Configurable Logical Blocks
Cyclic Redundancy Check
Coordinated Shared Networks
Data Length Code

Digital Signal Processing
Electronic Control Unit

Ethernet Passive Optical Network
Flip-Flop

First-in First-out

Field Programmable Gate Array
generalized Precision Time Protocol
Intrusion Detection System
Isolation Forest

Integrated Logic Analyzer
Intellectual Property

Intrusion Prevention System
Local Interconnect Network
Look-up Table RAM

Look-up Tables

MD
MDT
MI
MOST
OCSVM
PL

PS
PTP
QoS
RC
RSE
RTOS
SIW
SoC
SRP
SVM
TSN
TT
uTp
UuTSP

Media Dependent
Maximum Detection Time

Media Independent

Media Oriented Systems Transport

One-class Support Vector Machine

Programmable Logic
Processing System

Precision Time Protocol
Quality of Service

Rate Constrained

Rear Seat Entertainment
Real Time Operating System
Synchronization Jump Width
System-on-a-chip

Stream Reservation Protocol
Support Vector Machine
Time Sensitive Networking
Time-Triggered

Unshielded Twisted Pair
Single Unshielded Twisted Pair

CONTENTS

I INTRODUCTIONI e e e e e e e e e e e e 15
1.1 PRELIMINARY BACKGROUND AND RELATED WORKSI 15
[1.2 OBJECTIVES AND GOALS 17
1.3 DISSERTATION OVERVIEWI 18
1.4 MAIN CONTRIBUTIONS 18
2 TRADITIONAL INTRA-VEHICULAR NETWORKS| 19
21 CANAND CAN FD NETWORKS 19
2.1.1 CAN FED! 22
2.1.2 Bus synchronization| L 23
2.1.3 Bit Stuffing| 25
2.1.4 Protocol Testing| 26
2.2 OTHER USED NETWORKS 26
221 LIN 26
2.2.2 FlexRay| 27
2.2.3 MOST| 27
PROPOSED ERROR INJECTION AND IDS TECHNIQUES FOR
| CAN NETWORKS e e e e e e e e e 29
3.1 T E ECT TE El........ 29
(3.1.1 Requirements and Operation 29
(3.1.2 Hardware Implementation and Experiment 31
[3.1.2.1 Error Injection Module Design| 31
[3.1.2.2 Experimental Setup 34
B123 Results 35
3.2 CAN IDS SYSTEMI 36
3.2.1 Security Concerns in CAN Networks and Countermeasures, 36
3.2.2 The Proposed IDS Technique| 37
[3.2.2.1 Machine Learning Algorithms for Novelty Detection| 38
[3.2.2.2 The Dataset and Cross-validation Approach 38
3.2.3 Experiment and Results| 39
3.3 CAN IPS SYSTEM: CORRUPTING INJECTED FRAMESI 42

4.1.1 Origins and Generations 45

[4.1.2 Bringing Determinism to Automotive Ethernet| 47
4.1.3 AVB/TSN| 48
4.2 AVB TIME SYNCHRONIZATION - IEEE 802.1ASI 51
4.2.1 Protocol Overview| 51
[4.2.2 Protocol Operation|. 53
4.2.2.1 Steps 1 and 2: the Peer Delay Mechanism| 54

4222 Step 3: Best Master Clock Selection and Synchronization Spanning Tree . . 56

14.2.2.3 Step 4: Transport of Synchronization Information and Node Synchronization 57
[4.2.3 Future perspectives for the IEEE 802.1AS standard|. 58

5.1 DESIGN REQUIREMENTS AND OTHER IMPLEMENTATIONS. 59
5.2 DESIGN IMPLEMENTATIONI 61
[5.2.1 Entities and State Machines| 62
5211 localClockl 62
(5.2.1.2 Peer Delay Mechanism| oL 63
[5.2.1.3 Transport of Time Synchronization|. 66
5.2.2 MAC Layer Interface 71
6 GPTP PROTOTYPE EVALUATION| 75
6.1 DESIGN ANALYSIS AND ITS USE AS A COMPONENT 75
6.1.1 Design Reports 77
6.2 [ESTING METHODOLOGY AND RESULTS| 80
6.2.1 Simulation Testsl 80
0.2.2 Hardware Tests 87
[7 CONCLUSIONI o e e e e e e e e e e e e e e e e e e 89

15

1 INTRODUCTION

1.1 PRELIMINARY BACKGROUND AND RELATED WORKS

Today’s vehicles are equipped with Electronic Control Units (ECUs), which are responsi-
ble for performing tasks as simple as lighting up brake lights or as complex as controlling
the wheels of an electric car. In the early days, ECUs operated stand-alone by perform-
ing single and unique tasks. With the introduction of new functionalities in the car that
demanded exchange of information between ECUs, stand-alone ECUs were no longer a
viable solution. Initially, the exchange of information among ECUs was through point-
to-point links, which quickly were proven to be inappropriate as the amount of cables
increased exponentially with the number of ECUs and, consequently, impacted the cost
and the weight of vehicles. An approach that provided a shared medium among ECUs

was needed.

Upon this scenario, the [Controller Area Network (CAN)| protocol was developed by

BOSCH, which adopted an open licensing policy and a good cooperation with semiconduc-
tor companies that contributed for a large availability of controllers and transceivers
to the industry (MATHEUS; KONIGSEDER) 2015). Because of that, the protocol was
quickly and largely adopted not only by the automotive industry, but also by the indus-
trial automation, aerospace and medical engineering industries. Moreover, despite new
automotive applications that require higher data rates, the technology remains, at
least until today, as the main and most used technology for intra-vehicular networks, as
it is a cost-efficient and industry-proven solution (NAVET; SIMONOT-LION, 2013). In fact,
based on the protocol, the [Controller Area Network with Flexible Data Rate (CAN
protocol was developed to be compatible and to coexist with networks. By

offering higher data rates and payloads than traditional systems, has at-
tracted the attention from the automotive industry as one of the prominent candidates for

the next-generation in-vehicle networks responsible for control signals (WOO et al., [2016).

A fundamental aspect of interconnected ECUs is that they must work perfectly and
interact with each other as well as with other car components like sensors and actuators in
a reliable way. For this reason, one of the main tasks for car manufacturers and component
suppliers regarding ECUs is to predict the behavior of these units in error situations. For
this, an error injection mechanism can be very advantageous for checking various error
conditions in real-world scenarios that may affect the safety of passengers.

In this context, the literature has provided a number of error injection approaches
for CAN. An on-the-fly error injection mechanism is proposed in (CHANDRAN; GUDDETI;
SADASHIVAIAH, 2016) to help validation at the system level in CAN/CAN FD networks.

It emulates an error injection module, which replaces the input signal of a node by a

Chapter 1. Introduction 16

signal containing the injected error. This approach, however, can only test a device per
time. Furthermore, the work in (GESSNER et al., [2014) presents the implementation of a
physical fault injector for CAN. It relies in a star topology and it is focused exclusively
on CAN, not CAN FD networks. Other works, such as the ones in (NOVAK, [2009), (LUO
et al., 2009) and (NOVAK; FRIED; VACEK, [2002), present error generation and injection
techniques for CAN networks. None of them, however, allows the creation of a list of
frames to be preserved in tests or details how to support different bit rates.

Along with intra-vehicular network technologies for ECUs communication, some of
today’s cars are also equipped with network technologies, such as Bluetooth, 4G/5G
and [EEE 802.11p, among others, that provide connectivity to the external world. This
connectivity offers numerous possibilities in terms of new applications and services that
can be provided, such as tracking and traffic lights detection systems. On the other hand,
it also makes the car a network node subject to cyber-attacks, what could potentially
put in risk people’s safety. Therefore, it is necessary to provide security mechanisms to
prevent, or at least detect, attacks.

In this dissertation, we present a novel approach to generate and inject errors in
CAN/CAN FD networks without the need of connecting multiple additional devices. The
technique acts directly on the CAN/CAN FD bus to enable the smash or corruption of
specific bits of specific frames. As a result, by means of a single tool, testers can generate

and inject on the bus many error conditions in real time for validating safety requirements

at the system level. In addition, we also present an |Intrusion Detection System (IDS)|

based on machine learning algorithms, that successfully detects frames that are injected
in CAN networks and may jeopardize the driver’s and passengers’ safety. The proposed

systems are implemented using low-cost development boards and real CAN networks.

When used together, both systems may constitute an [Intrusion Prevention System (IPS)

in a way that intrusion frames are detected and corrupted in real time by the injection of
error frames.

Both CAN and CAN FD protocols are message oriented broadcast networks, mainly
used for control data. While CAN networks have a single data rate and can transfer
up to 8 bytes of data at a maximum rate of 1Mbit/s, CAN FD networks can switch
between two data rates in order to transfer up to 64 bytes of data at a maximum rate
of 10Mbit/s. Besides these two intra-vehicular protocols, other ones, such as the
[Interconnect Network (LIN)| [Media Oriented Systems Transport (MOST) and FlexRay,

were also developed and applied to the automotive domain. Each has its own advantage

and purpose, such as cost, data rates beyond 10Mbps or deterministic behavior.

The complexity brought by this multi-protocol architecture as well as by the rising of
new and more complex automotive applications have significantly increased the amount
of software to be flashed into the ECUs. The increase was such that the time needed for

programming or updating an [Electronic Control Unit (ECU) firmware became a problem

Chapter 1. Introduction 17

and a new strategy for this was needed. Initially as a solution for programming ECUs and
also for diagnostics, engineers developed the automotive Ethernet, which was then stan-
dardized as the 100BASE-T1 (STANDARD) [2016)), a physical layer for 100Mbit /s Ethernet
networks suitable for the hostile environment of a car.

The emergence of Automotive Ethernet makes viable the introduction of novel car
functionalities that demand high bandwidth. However, since Ethernet was not originally
conceived to support deterministic data, a few strategies to overcome this limitation
needed to be proposed. A series of IEEE standards, which together constitute the
[Video Bridging (AVB) protocols, were developed to provide time-synchronized streaming
of audio and video using IEEE 802.3 Ethernet. Soon, it was realized that the tech-

nology had the potential for being applied not only in multimedia applications, but also

on time sensitive applications with hard timing deadlines.
The IEEE 802.1AS is the standard that defines the [generalized Precision Time|
[Protocol (gPTP)|, which is responsible for node synchronization within an network.

Even though this protocol has a great importance and directly affects a system’s capac-

ity of accomplishing synchronized activity such as turning the wheels of an electric car,
there are not many implementations of this protocol available for the industry. Most are
proprietary technologies that offer no implementation details and others do not offer the
demanded nanoseconds precision for some systems with strict timing requirements.

In this dissertation, we also propose and present a hardware based implementation for
the [gPTP protocol targeting AVB end points. The intention is to provide a [gPTP imple-
mentation that achieves the nanosecond precision specified in the IEEE 802.1AS standard,
and that can be used to synchronize nodes with hard synchronization requirements. The
synchronization of the wheels of an electric vehicle, for example, cannot afford any lack
of synchronization, which may compromise the direction of the wheels and then cause
some accident. Moreover, this dissertation provides implementation details that may help

researchers to propose improvements and enhancements to the gPTP protocol.

1.2 OBJECTIVES AND GOALS

While making an overview of intra-vehicular networks, from its initial conception and
traditional protocols towards the new protocols related to the Automotive Ethernet, this

dissertation has three main objectives:

1. Propose a novel Error Injection Technique for CAN/CAN FD networks to assist

with system level validation tests;

2. Propose a CAN Network Intrusion Detection System based on machine learning
algorithms, that could be used along with the proposed error injection technique for

corrupting frames intruders;

Chapter 1. Introduction 18

3. Propose a hardware implementation of the [gPTP protocol that achieves the re-
quired nanosecond precision, while also providing implementation details for future

researches on that protocol.

1.3 DISSERTATION OVERVIEW

The remainder of this work is described as follows: Chapter 2 explains the fundamental
knowledge regarding traditional intra-vehicular networks. Its focus is on CAN and CAN
FD networks, which are detailed described. Chapter 3 presents the proposed CAN/CAN
FD Error Injection Technique design, implementation and validation tests as well as the
proposed machine learning[IDS] technique for CAN networks and how these two techniques
can be used together as an system. Chapter 4 introduces the automotive Ethernet
topic by covering its origins, generations and AVB/Time Sensitive Networking (TSN)
concepts. Then, it focus on the IEEE 802.1AS AVB standard, which defines the [gPTP re-
sponsible for synchronizing nodes within AVB networks. Chapter 5 presents the proposed

design for the [gPTP protocol hardware implementation bringing detailed diagrams and
technical explanations. Chapter 6 explains the setup and methodology adopted for test-
ing the [gPTP implementation, while also presenting the results obtained from it. Finally,

Chapter 7 concludes this dissertation and discusses possible future researches.

1.4 MAIN CONTRIBUTIONS

This section summarizes the author’s main contributions to the intra-vehicular networking

field during his Master Degree studies:

1. Publication of the paper "Experimental evaluation of cryptography overhead in
automotive safety-critical communication', IEEE Vehicular Technology Conference
(VTC) 2018, pp. 1-6, Jun 2018, E. A. Silva Jr, P. Freitas de Araujo-Filho, D. R.

Campelo;

2. Submission of the paper "A Low-cost Responsive Intrusion Detection System for
CAN Networks", to IEEE Communication Letters, June 2018.

3. Design and implementation of an error injection technique that is currently com-

mercialized and used by the automotive industry;

4. Design and implementation of an Audio Codec Driver embedded to an AVB end-

point that is currently commercialized and used by the automotive industry;

5. Hardware implementation for the [gPTP protocol that will be commercialized and
used by the automotive industry as part of an AVB end-point.

19

2 TRADITIONAL INTRA-VEHICULAR NETWORKS

By its origins, vehicles were essentially mechanical machines with wheels. In order to add
simple features, electronics started to be introduced. Sensors, actuators and ECUs, for
controlling them, were introduced and vehicles were equipped with power windows and
other simples functionalities.

Back on those days, each new function was implemented and added as a standalone
[ECU. If data needed to be exchanged between then, point to point links were used. Thus,
the number of required connections increased exponentially with the number of ECUs.
This approach was inefficient and made the number of wiring to dramatically increase
(TUOHY et al., 2015). As a matter of fact, cabling is the third heavier and more expensive
component in a car according with (MATHEUS; KONIGSEDER,, 2015).

To overcome this problem, intra-vehicular networks were developed and introduced.
ECUs were then connected to each other using a shared media, such as a network bus
for CAN and Flexray. Each intra-vehicular network has its own characteristics, having
advantages, but also limitations. In this chapter CAN and CAN FD networks will be
extensively covered while other technologies such as LIN, MOST and FlexRay will be

discussed more briefly.

2.1 CAN AND CAN FD NETWORKS

The Controller Area Network (CAN) was one of the first intra-vehicular networking tech-
nology developed and is largely used until today. It was developed by BOSCH in the 80s
being later standardized in ISOs.

Despite its well proven technology and robust operation, it is also important to high-
light some other factors that made it to be well accepted and used. Not only by the
automotive industry, but also by industrial automation, aerospace and medical engineer-
ing industries (MATHEUS; KONIGSEDER, 2015). An open licensing policy was adopted,
resulting in the technology standardization and accessibility to other companies. A good
cooperation between BOSCH and semiconductor companies was established, so a good
portfolio of CAN controllers and transceivers were available in the market. BOSCH, being
involved in many industry sectors, was a customer for its own technology.

The CAN protocol defines only the first two layers in the OSI model, the physical layer
and the data link layer. In the physical layer, it can use only one or two wires. The option
with one wire is the single wire low speed CAN network, which can reach up to 125Kbits/s.
The two wire configuration is the dual wire high speed CAN network, which can reach up
to 1Mbit/s, and, because of that, is the most used one (GMBH.; REIF; DIETSCHE, 2014).

Besides the wiring, a CAN transceiver is responsible for reading voltages and translating

Chapter 2. Traditional Intra-vehicular Networks 20

it to a state that can be either dominant, logical 0, or recessive, logical 1. In case of the
high speed CAN, the voltage observed is the differential voltage between the wires, which
are called CAN High and CAN Low.

In the data link layer, it is represented by a CAN controller, connected to the CAN
transceiver. This controller is responsible for reading the logical state of the bus (dominant
0 or recessive 1) and decoding the data being transfered. Moreover, it manages whether
the bus is busy and the node should wait for transmitting some data or if it can transmit
its data right away.

Each node is, therefore, formed by an[ECU, a CAN controller and a CAN transceiver.
They are then connected to the bus by the CAN High and CAN Low wires, in case of a
dual wire high speed CAN network. Observe the illustration in Figure [1}

Node 1 Node 2 Node 3
ECU1 ECU 2 ECU 3
CAN CAN CAN
Controller Controller Controller
CAN CAN CAN
Transceiver Transceiver Transceiver
CAN High

CAN Low

Figure 1 — Illustration of nodes connected to a CAN network

Since the nodes share a common bus, it is necessary to manage somehow which one
gets access to the medium and can transmit, while the others simply listen to the bus. This
mechanism is defined as arbitration. Each CAN frame can be divided in some fields, each
of them composed by a different number of bits. They are, in sequence: Start of Frame
field, Arbitration field, Control field, data field, [Cyclic Redundancy Check (CRC) field,

Acknowledgment field and End of Frame field. The arbitration mechanism occurs during

the transmission of the arbitration field bits and is based on a logical AND operation.

Consider, three nodes A, B and C trying to transmit a message. Consider the first 11
bits of each message arbitration field to be as described in table

They all transmit the first bit, and a logical AND operation occurs with these bits
resulting in a logical 1, which is actually the bit transmitted by all of them. Then, they
transmit the second bit, and a logical AND operation occurs with these bits. This time,
the result is a logical 0, which corresponds to the bit transmitted by the nodes B and
C. Since node A transmitted a logical 1, it stops transmitting and it is said to has lost

the arbitration. After this, only nodes B and C keep transmitting and performing logical

Chapter 2. Traditional Intra-vehicular Networks 21

Table 2 — Arbitration field first 11 bits for the messages to be transmitted by nodes A, B
and C

Arbitration Field (first 11 bits)
Bit0 Bit1l Bit2 Bit3 Bit4 Bit5 Bit6 Bit7 Bit8 Bit9 Bit 10

Node A 1 1 1 0 1 0 1 0 1 0 1
Node B 1 0 1 0 1 0 0 0 1 1 1
Node C 1 0 1 0 0 1 1 0 1 0 1

AND operations. When bit 4 is reached, the logical AND operation results in a logical 0,
then B loses the arbitration and stops transmitting. C is the only node transmitting now.
In a simpler way, during the arbitration field, if more than one node wants to transmit,
priority is given to the one with a dominant bit in the dispute. The other ones stop the
transmission and wait for the bus to be idle again to try to retransmit the frame.

When it comes to addressing, all nodes in a CAN network broadcast their messages,
so every node connected to the bus can receive the messages transmitted. The addressing
is message-oriented, so, each message has an identifier and each node has a list of mes-
sage identifiers of interest. In this way, despite being able to receive any message being
transmitted in the bus, the nodes only actually get the message whose identifier is in its
list of interest.

The message identifier size can vary depending whether the frame is of a base/standard
format or extended format. In the former case, the identifier has 11 bits and, consequently,
can address 2! messages. In the latter case, the identifier has 29 bits and can address 22
messages.

Besides the base or extended format, there are four different CAN frame types: Data,
Remote, Error and Overload frame. Data frames are used to transfer data from a trans-
mitter to a receiver node. Remote frames, on the other hand, are used to request the
transmission of data from some node. Error frames are transmitted to indicate that some
error condition was detected on the bus. Overload frames are used to synchronize idle
detection and provide an extra delay between data and remote frames (ROBERT BOSCH
GMBH, [1991).

In addition to the four frame types, data frames and remote frames are preceded by a
Interframe Space, formed by three consecutive recessive bits. If, a dominant bit is detected
on the bus before the occurrence of three consecutive recessive bits, an overload frame
starts. If not, after these three bits, the bus is considered to be in an idle state and a data
or remote frame can start upon the appearance of a dominant bit. The dominant bit that
marks the start of a data or remote frame is called Start of Frame bit and is the first bit
of the frame being transmitted.

Figure [2| describes the first bitst of a data or remote frame in the standard or extended
format. It is possible to notice in this figure the location of some bits of interest. For
instance, the location of the base identifier and identifier extension, which is the last 18

bits of the identifier in case of a extended format frame. As a matter of fact, the standard

Chapter 2. Traditional Intra-vehicular Networks 22

and extended format are distinguished by the IDE bit. If this bit is 0, the frame is of base

format, while it is 1 in case of a extended format.

CAN Base Format

_ Arbitration Field _ Control Field
BASE
SOF | IDENTIFIER | RTR IDE r0 DLC (4 bits)
(11 bits)

CAN Extended Format

. Arbitration Field L Control Field
BASE
SOF | IDENTIFIER | SRR IDE IDENTIFIER EXTENSION (18 bits) RTR | r1 r0 DLC (4 bits)
(11 bits)

Figure 2 — Fields of a data or remote CAN frame of standard or extended format

Another bit of interest is the RTR bit, which distinguishes between a remote and data
frame. Being 1 in the former case and 0 in the latter. Note that if there is a dispute
between two nodes, one trying to transmit a data frame and the other a remote frame of
same identifier, the one transmitting a data frame wins the arbitration.

The [Data Length Code (DLC)|field represents the four bits of the data length code. It
determines the number of bytes transmitted by the frame in the data field. If the is,
for example, "0000", the data field has 0 bytes. If it is "0101", the data field has 5 bytes. If
it is "1XXX", the data field has 8 bytes. "X" represents a don’t care bit, i.e., this bit can
be either 0 or 1. The data field is not represented in the Figure |2, but follows the
field. It contains the actual data being transmitted, and can have up to 8 bytes.

Also not represented in Figure [2 the remaining fields in the frame are the [CRC, the
Ack and the End of Frame fields. The [CRC field serves as a redundancy check while

the acknowledgment field serves for the node to acknowledge the receipt of a frame. For

instance, if a frame is transmitted and there is no other node in the bus to receive it, an
error occurs and the transmitting node keeps trying the retransmit the frame. Finally, the
End of Frame field contains seven recessive bits that delimit the end of the frame. After
it, if no error or overload condition is detected, the bus goes to idle and is ready for the

transmission of another data or remote frame.

2.1.1 CANFD

So far, it has been said CAN networks can transfer up to 8 data bytes of payload with a bit
rate of 1 Mbps. This is more than enough for control signals between ECUs and from/to
sensors and actuators. However, it may not be sufficient when it comes to other applica-
tions such as lane departure systems, parking aids or blind-spot detection. Thus, motivated
by applications requiring faster communication or increased data payload (PRADEEP,
2013), the CAN FD protocol was proposed and developed.

Chapter 2. Traditional Intra-vehicular Networks 23

This technology is based on CAN in a way nodes of both protocols interoperate and
can share the same network, as long as there is some compatibility between the controllers
and transceivers. The protocol efficiency is increased by a increased data payload. The
data field is able to transfer up to 64 bytes of data, instead of only 8 as in CAN networks.
The field works in the same way, encoding the length of the data field. But, now,
only the "1000" code indicates a 8 bytes data field. Data fields with more than 8 bytes are
encoded as exhibited in table [3

Table 3 — DLC encoding for CAN FD networks

DLC 1st bit | DLC 2nd bit | DLC 3th bit | DLC 4th bit | Number of Data Bytes
1 0 0 1 12
1 0 1 0 16
1 0 1 1 20
1 1 0 0 24
1 1 0 1 32
1 1 1 0 48
1 1 1 1 64

In addition to a higher data per frame rate, a faster communication is achieved by
switching between two bit rates. While a CAN node has only one bit rate, a CAN FD
node can switch from a nominal bit rate to a data bit rate during portion of the frame.
By doing so, a part of the frame, that is called data phase and includes the data field,
can have a higher bit rate and then transmit bits faster.

Observe in Figure |3 a comparison between the structures of a CAN and CAN FD
frames of base and extended format. Also, notice the bit EDL in CAN FD frames cor-
responds to a reserved bit (r0 or rl) in a CAN frame. This bit serves for distinguishing
between CAN and CAN FD frames. If it is 1, it is the EDL bit and the frame is a CAN
FD frame. If it is O, it is a reserved bit and the frame is a CAN frame.

In the CAN FD frames diagrams, is possible to observe the start of the data phase in
the BRS bit. This bit indicates whether the bit rate should be switched or not. If it is one,
the bit rate is switched from the nominal bit rate, in the arbitration phase, to the data
bit rate, in the data phase. If it is zero, there is no switch and the whole frame operates
with the nominal bit rate (ROBERT BOSCH GMBH, 2012). In case of a switch, the bit rates
are switched back at the [CRC field.

2.1.2 Bus synchronization

While CAN networks only have one bit rate, called nominal bit rate, CAN FD networks
may switch between a nominal bit rate and a data bit rate during a portion of the frame.
These bit rates are achieved through bit time configurations, one for each bit rate. Thus,
the nominal bit rate corresponds to a nominal bit time configuration and the data bit

rate corresponds to a data bit time configuration.

Chapter 2. Traditional Intra-vehicular Networks

24

CAN Base Format

_ Arbitration Field _ Control Field
BASE
SOF | IDENTIFIER | RTR IDE r0 DLC (4 bits)
(11 bits)

CAN FD Base Format

_ Arbitration Field _ _ Control Field R
BASE
SOF | IDENTIFIER | r1 IDE EDL r0 | BRS | ESI DLC (4 bits)
(11 bits)

g

N Arbitration Phase Data Phase

CAN Extended Format

v

. Arbitration Field . Control Field
BASE
SOF | IDENTIFIER | SRR | IDE IDENTIFIER EXTENSION (18 bits) RTR| rl DLC (4 bits)
(11 bits)
CAN FD Extended Format
P Arbitration Field L Control Field R
BASE
SOF | IDENTIFIER | SRR | IDE IDENTIFIER EXTENSION (18 bits) r1 | EDL BRS | ESI DLC (4 bits)
(11 bits)
h Arbitration Phase o Data Phase

Figure 3 — CAN and CAN FD data or remote frames structure

Both bit times are divided into four time segments that are multiple of the time

quantum, a fixed unit of time derived from the local oscillator (ROBERT BOSCH GMBH,
1991) and (ROBERT BOSCH GMBH, [2012). As described in Figure [d] the four segments of

a bit time are:

 Synchronization segment (Sync Seg): Formed by a single time quantum, it is the

portion of the bit time in which the various nodes in the bus must synchronize. The

leading edge of a bit is expected to be positioned within this segment.

« Propagation segment (Prop Seg): Used to compensate for physical delay times

within the network, it is twice the sum of the signal propagation time on the bus

line, the input comparator delay and the output driver delay.

« Phase buffer segment 1 (Phase Seg 1) and Phase buffer segment 2 (Phase Seg 2):

Used to compensate for edge phase errors by being lengthened or shortened during

resynchronizations.

In addition, between the phase buffer segments is the sample point, the location in

time at which the bus level should be read and interpreted as the value of that respective

bit (ROBERT BOSCH GMBH, 2012).

In order to correctly read the bus level, the distance between sample points and edges

from recessive (logic 1) to dominant (logic 0) bits must be controlled. The edges are

Chapter 2. Traditional Intra-vehicular Networks 25

Sync Seg | Propagation Seg Phase Seg 1 Phase Seg 2

Sample Point

Figure 4 — Nominal CAN bit time

supposed to take place within Sync Seg, and if they lie in any of the other segments, there
is a phase error that must be compensated by performing a synchronization (HARTWICH;
BASSEMIR, |1999).

There are two types of synchronization: hard synchronization and resynchronization.
The former is done at the start of frame, and the bit time is restarted with the end of
Sync Seg, regardless of the phase error. The latter happens at every other recessive to
dominant edge inside a frame and leads to a compression or an expansion of the bit time
such that the position of the sample point is altered with regard to the edge (HARTWICH;
BASSEMIR), |1999). If the edge lies before the sample point, the phase error is said to be
positive and Phase Seg 1 is lengthened to compensate for that phase error by an amount
up to a parameter called [Synchronization Jump Width (SJW)l On the other hand, if the

edge lies after the sample point, the phase error is said to be negative and Phase Seg 2 is

shortened also to compensate for the phase error by an amount up to [SJW]

Once the synchronization to the bus is accomplished through hard synchronization
and resynchronization, the bus is decoded, i.e., the bit value at the sample point is read
and interpreted according to the CAN frame specification, as illustrated in [3| Correctly
interpreting the bits — especially the RTR (Remote Transmission Request), IDE (Identi-
fier Extension), EDL (Extended Data Length) and BRS (Bit Rate Switch) bits — allows
to distinguish the frame from being a CAN or a CAN FD frame as well as from being
of normal or extended format, in case of a data or a remote frame. Note that it is also

necessary to identify the occurrence of error and overload frames.

2.1.3 Bit Stuffing

A last topic important to be discussed regarding CAN and CAN FD networks is the bit
stream coding with stuff bits. Since synchronization only occurs in recessive to dominant
edges, if there are too many consecutive dominant or recessive bits in the bus, there can
be a long time with no synchronization being performed in the bus. To avoid this and
guarantee a maximum distance between edges available for synchronization, the frame is
coded with the method of bit-stuffing (ROBERT BOSCH GMBH, 2012).

This method basically inserts a dominant bit after every five consecutive recessive bits
and a recessive bit after every five consecutive dominant bit. The bit inserted is called a
stuff bit and should be disregarded while decoding the bus. Its only purpose is to create

an edge so a synchronization can occur. This process occurs for all frame segments until

Chapter 2. Traditional Intra-vehicular Networks 26

the CRC field for CAN networks. For CAN FD networks, it occurs until before the CRC
field and stuff bits are inserted in a particular fixed manner in the CRC field.

2.1.4 Protocol Testing

As seen in the previous subsections, CAN networks are largely used in the automotive
domain. They are mostly responsible for control data and can be considered the main
intra-vehicular network technology, at least for now and when it comes to an average car.
On the other hand, CAN FD networks are becoming the solution to go when there is a
need for higher payloads and bit rates (but limited to 10Mbit/s), specially because its
interoperability with CAN.

That said, the reliability and stability of CAN-based ECUs is of major concern (LUO
et al., [2009). It is then necessary to deeply test ECUs and its interaction with each other
as well as with sensors and actuators connected to the network bus. For this purpose,
there are a few testing tools available and used by the industry. Most of them are based
on the same procedure: setting up a trigger condition and then injecting errors upon
this condition (MOSTAFA; SHALAN; HAMMAD), [2006). This approach enables testers to
expose all ECUs connected to the bus to an intentionally created error condition or even
to adulterate the contents of some frame payload. Moreover, it can be also used for
vulnerability testing, since allows testers to inject errors to the bus and analyze how the

ECUs would behave upon these error conditions.

2.2 OTHER USED NETWORKS

Before moving on to the next chapter, it is necessary to discuss, even if more briefly,
other traditional intra-vehicular networks. Each of them has its own particularities and
characteristics, with great advantages for some use cases, but also limitations. The next
subsection addresses LIN, MOST and FlexRay technologies.

2.2.1 LIN

There are many vehicle applications that are simple and have very low requirements,
such as power windows, central locks, or light sensors. These kind of application basically
requires a simple sensor-actuator communication. Therefore, a solution cheaper than CAN
would be preferable.

A joint force of companies then created the consortium in order to standardize a
solution for a cost efficient network capable of handling simple applications that would be
over-performed by CAN (MATHEUS; KONIGSEDER, 2015). The solution, LIN, was a single
wire system with data rate limited to 19.2Kbps.

LIN was designed such that up to 16 ECUs could share the media provided by the bus.

In spite of that, there is no conflict on the bus because it is based on a master-slave access

Chapter 2. Traditional Intra-vehicular Networks 27

method. A slave can only transmit after being told to by the master. Additionally, the
communication scheduling is predetermined. LIN Description Files contains the scheduling
tables and configures the entire LIN network (GMBH.; REIF; DIETSCHE, 2014).

LIN networks fulfill well its tasks and are largely used in today’s cars. Usually, several
LIN buses are connected to more complex ECUs. This configuration along with the tech-
nology well adoption, makes one to believe that a vehicle architecture based on only one
network technology is not likely to be seem, at least in the short term. Therefore, as long
as LIN keeps being the most cost efficient solution for the low requirement communication

it was designed for, it shall be present in vehicle architectures.

2.2.2 FlexRay

Intending to eliminate all mechanical fallback from the car and to have pure electric
functions, the industry became interested in "X-by-wire" applications. Some examples of
this kind of application are steering-by-wire and braking-by-wire, which aims a entirely
electrical steering and braking systems, respectively. "X-by-wire" applications are usually
related to safety-critical control systems, and then need a reliable and deterministic net-
work technology. A braking command, for example, can not afford to be delayed by other
packets in the network. This could jeopardize the safety of the driver and its passengers.

BWM and other companies formed then the FlexRay Consortium and developed the
FlexRay technology, later turned into ISO standards (MATHEUS; KONIGSEDER, 2015).
FlexRay only defines the first two OSI layers (PHY and DLL) and is able to reach 20Mbit-
s/s data rates over a twisted pair cable (GMBH.; REIF; DIETSCHE, 2014). Its communication
is based on time slots and cycles. Each cycle consists of a static segment and a network
idle time, but can additionally comprise a dynamic time segment. Access in the static
segment is granted by TDM, in a way each time slot is assigned to a node. The dynamic
segments use a "mini-slot" method with a preset order of frame identifiers combined with
counter for multi-user access (MATHEUS; KONIGSEDER, [2015). These methods guarantee
the needed known latency and determinism.

In spite of achieving its conception objectives, the use and acceptance of FlexRay
did not developed as expected. Maybe because its actually complex technology combined
with the slowly evolving "X-by-wire" safety-critical applications and the not suitability

for being a in-car backbone network.

2.2.3 MOST

In the late 90s, the introduction of complex audio applications in cars become of great
interest. Not only for playing music, but also for navigation systems. This kind of appli-

cation, however, required a data transmission rate much higher than the one provided by
CAN.

Chapter 2. Traditional Intra-vehicular Networks 28

The solution was to introduce a new PHY technology, but the industry wanted more
than that. The intention was to provide a system covering all network aspects from the
PHY to the application layer. It was a challenging target to achieve. For this purpose,
BMW, Daimler and OASIS (supplier, nowadays part of Microchip) founded the MOST
Corporation to develop and establish MOST as a standard and a communication tech-
nology defining all seven layers of the ISO/OSI layering model (MATHEUS; KONIGSEDER,
2015). The aim was achieved and there are, today, three variants of MOST available
to the industry. MOST25 and MOST150, first introduced with optical communication
and reaching, respectively, 25Mbits/s and 150Mbits/s; and MOST50 with electrical UTP
cabling reaching 50Mbits/s.

MOST is organized in a ring topology. One node acts as timing master to which
the other nodes synchronize to. It provides asynchronous and synchronous channels. The
former for transmitting application data and the latter for real time communication of
audio and video data (GMBH.; REIF; DIETSCHE, [2014).

In spite of the effectiveness in handling audio and video data and the higher data rates
achieved, MOST have significant issues for being largely adopted by the industry. First
of all, Microchip charges for licensing the DLL/PHY technology, and does not provide a
specification for interoperability and compliance. This creates a monopoly situation, which
is not well seen or wanted by the automotive industry. In addition, by specifying all OSI
seven layers and adopting a token ring topology, MOST became a complex technology
with difficulties associated to adding or removing some nodes from the network. This
scenario was actually one of the reasons the industry started researching about other
network technologies with higher data rates to be applied in the automotive domain,

process that has led to the Automotive Ethernet.

29

3 PROPOSED ERROR INJECTION AND IDS TECHNIQUES FOR CAN NET-
WORKS

In Chapter [2/[CAN] and [CAN FD]| networks were broadly discussed as well as the impor-

tance of their reliable and error free operation. A major step in this process is to predict

the behavior of [CANJJCAN FD nodes in error situations. For this, an error injection

mechanism can be very advantageous, especially for validating safety requirements at the
system level in real-world scenarios.

In this line of thought, in this dissertation, we propose a novel approach, called Bits-
mash, for injecting errors in and [CAN FD networks by means of a single device.
The tool is connected to a|CAN|JCAN FD|bus and configured to smash or corrupt specific

bits of specific frames. The proper configuration of the bits to be corrupted results in the

occurrence of error conditions predicted in the [CAN|JCAN FD) protocols, so it is possible

to inject customizable errors on the bus. A hardware implementation of the technique is
presented such that customizable errors are successfully generated and injected in real
[CAN|/CAN FD| buses.

Besides that, in the context of the car as a node connected to the world, vehicles

are subject to cyber-attacks, what could potentially put in risk people’s safety. A mali-
cious packet could, for example, be injected into the car’s network and disable its
airbag system. Therefore, it is essential to provide security mechanisms in intra-vehicular
networks.

For this purpose, in this dissertation, we also propose an intrusion detection system
for networks using machine learning algorithms. This system was deployed and
successfully tested by detecting injected frames in networks. Furthermore, both the
Bitsmash and IDS system can be combined into a single Intrusion Prevention System
in a way that intrusion frames are detected by the IDS system and corrupted by
the injection of an error frame in real time.

In this chapter, both the Bitsmash and the IDS systems are discussed by the
means of their requirements, implementation and validation process. Moreover, an analysis

is made on how to combine them into the single IPS system.

3.1 BITSMASH ERROR INJECTION TECHNIQUE

3.1.1 Requirements and Operation

The purpose of the Bitsmash technique is to assist in the validation of electronic com-

ponents and safety requirements at the system level in real-world scenarios. In essence,

it makes possible to inject configurable errors in [CAN|JCAN FD)|networks, so the system

behavior under these conditions can be observed. Only one device is needed for injecting

Chapter 3. Proposed Error Injection and IDS Techniques for CAN Networks 30

errors in any node connected to the bus. The control of which node is affected by the
error relies on the message identifiers expected by the node and configured for the errors.

The proposed technique offers full flexibility and control on corrupting any bit, from
the first Data Length Code (DLC) bit (in frames) or the BRS bit (in
frames), in any frame in the bus. Therefore, with the proper setup, it is possible to
generate any of the following errors described in the [CAN|JCAN FD protocols: Bit Error,
Form Error, CRC Error and Stuff Error (MATSUMOTO et al., 2012). Bit errors happen

when a node sends a bit, but reads its opposite level when monitoring it. For example,
it sends a recessive bit, which gets corrupted and a dominant level is read instead. Form
errors happen when a bit responsible for the format of a frame is corrupted. For example,
in case the end of frame (EOF) bit is dominant instead of recessive. CRC errors take place
when the cyclic redundancy check (CRC) in the CRC field of a received frame does not
match to the one calculated by each node for that frame. This happens, for example, when
bits in this field are corrupted. Finally, stuff errors are related to the protocols coding.
After five consecutive bits with the same logic level, a stuff bit with the opposite level
is demanded, so a resynchronization is guaranteed to occur. If there is no stuff bit, i.e.
a sequence of six consecutive bits with the same level is observed due to a corruption of
bits, a stuff error occurs.

The errors are generated by corrupting specific bits of specific frames. This process
involves two main aspects: 1) the identification of the bits that should be adulterated,;
and 2) the actual corruption of these bits. The first aspect corresponds to the Bitsmash
decision-making process, which is based on the parameters described in Table 4 The
decision-making process occurs in the following way. After a command to start the Bits-
mash process is given, a timer starts counting and the Bitsmash module starts reading and
decoding the [CAN|JCAN FD|bus incoming bits. It keeps checking if the incoming identi-

fier corresponds to one of the identifiers present in ID_List in order to decide to corrupt

or preserve the incoming frame. The decision of corrupting the frame occurs when the
identifier is in ID_List and the Boolean parameter Smash_all is 0 or when the identifier
is not in ID_List and the Boolean parameter Smash_all is 1.

Once a frame is decided to be corrupted, the module waits for Bits_to_wait bits
starting at the first data length code (DLC) bit in case of a frame or at the BRS bit
in case of a[CAN FD frame, and then smashes Bits_to_drive bits driving to a dominant
bit 0. Note that this process must be responsive enough such that the bit smashing occurs
from the beginning of the first bit that should be smashed until the end of the last bit to
be smashed. This process continues until the number CAN_frames of frames are corrupted
or the timer reaches the Timeout value.

The full control and flexibility provided by Bitsmash through its configurable param-
eters makes possible to elaborate customized test plans. One could be to corrupt the data

being read from some sensor by adding the identifiers of the messages sent by this sensor

Chapter 3. Proposed Error Injection and IDS Techniques for CAN Networks 31

Table 4 — Bitsmash Parameters List

Bitsmash Parameters List

Parameter Definition
ID_List List of arbitration IDs whose frames should be corrupted or preserved
Smash_all Boolean variable that is 0 for corrupting the frames whose ID is in ID_List,

and 1 for preserving them and corrupting all the other frames

CAN_frames Maximum number of CAN frames to be corrupted

Bits_to_drive | Number of bits to be smashed

Bits_to_wait | Number of bits to wait before starting smashing bits

Timeout Duration of time in which frames can be corrupted

in ID_List and configuring Smash_all as 0. Another one could be to preserve the frames
transmitted by some node and to corrupt all received frames by adding the correspoding
identifiers in ID_List and configuring Smash_all as 1.

In order to sucessfully accomplish the Bitsmash process, it is necessary to correctly
synchronize and decode the bus. Besides that, since the bit is read at the sample point,
the decision to smash or not a bit happens at this point. If the decision is for smashing
the next bit, the time between the decision making and the actual smashing, driving a
dominant bit to the bus, corresponds to a Phase Seg 2. As a result, the smash of the bit,
i.e., the dominant bit driving, is required to occur in less time than the duration of Phase
Seg 2, which can be really short considering the smash in the data phase of a 10 Mbps
network. If this requirement is not satisfied, the smashing will be late and will
not be able to start at the right time.

3.1.2 Hardware Implementation and Experiment

In order to guarantee the timing requirements discussed in the last section, the design
of Bitsmash must be implemented in hardware instead of in a processor. However, the
use of a processor makes the system easier to be configured for different bit rates as well
as for configuring the Bitsmash parameters from Table [d] The Microzed development
board was chosen as a low-cost development board based on the Xilinx Zyng-7000 All

Programmable|System-on-a-chip (SoC)| It was programmed using the Vivado Design Suite

for the programmable logic side, and the Xilinx SDK for the processor system side. Figure
show the block diagram of the error injection technique implementation in the Zynq
SoC. The actual error injection module is implemented in the FPGA side of the SoC,
while the Bitsmash parameters are configured by the Setup Module in the processor side
of the SoC. The SoC is then connected to the CAN bus through a CAN transceiver.

3.1.2.1 Error Injection Module Design

The Error Injection Module in Fig. [f] is detailed in Fig. [Observe that this module is
composed of four modules: two Bit Timing Logic (BTL) blocks, a multiplexer and an

Error Injection Top Level block.

Chapter 3. Proposed Error Injection and IDS Techniques for CAN Networks 32

BRP_AP
SJW_AP '
TSeg1_AP H

TSeg2_AP

BRP_DP Timer is over
SJW_DP Done smashing
TSeg1_DP CAN frames smashed

TSeg2_DP | !Emt"'.r :
ID_List njection

Module
Bits_t it

. its_|1 o_v'val (FPGA)
Bits_to_drive

CAN_frames

Smash_all
Timeout

E Setup
CAN E Module

Bus (Processor)

CAN High

CAN Bus Tx

CAN Bus Rx E
CAN '

Transceiver [iympnpe—— a

i

CAN Low

Figure 5 — Error Injection Technique SoC implementation and connection diagram

Error Injection Module

BRP_AP .
SIW AP BltLTlrr.ung Sample bit
TSeg1 AP 'OQIC' Sample point,
TSeq2 AP Arbitration | wiiting point
92 Phase
Multiplexer
BRP_DP . Sample bit Sample bit) .
SIW_DP B'tLT'"f“ng | Sample point oo o] SLimer s over
ogic " K | Sample point, | one smashing
TSeg1 DP, Data Writing point Writing point CAN frames smashed | .
TSeg2 DRI phase CAN Bus Tx
ID_List Error
Bits_to_wait Injection
Bits_to_drive Top Level
CAN_frames
Smash_all
Timeout
CAN Bus Rx

Figure 6 — Error Injection Module Block Diagram

The BTL modules are responsible for the whole synchronization process and are
formed by other four blocks, as illustrated in Fig. [T} Edge Detector, Baudrate Logic,
Synchronization State Machine and Sample Logic.

The Edge Detector, as its name indicates, detects edges, since the synchronization
occurs at the edges. The Baudrate Logic receives a Bit Rate Prescaler (BRP), which is
a value by which the clock should be divided, as an input parameter and divides the
input clock according to it. The Synchronization State Machine is the core of the BTL
module: It is a state machine that performs the synchronization and resynchronizations
in response to the detected edges and outputs a sample point and a writing point —

the latter identifies the beginning of the bit time. Finally, the Sample Logic receives the

Chapter 3. Proposed Error Injection and IDS Techniques for CAN Networks 33

Bit Timing Logic

CAN Bus Rx

le bit
Sample bi Edge Edge SS

Writing point,| petector Edge HS

hs_enable

Synchronization

Baudrate | Clockta,] giate Machine

BRP Logic
SIW Writing point
TSeg1 Sample point
TSeg2 ||
Sample bit | |
Sample
CAN Bus Rx,| Logic

Figure 7 — Bit Timing Logic Module Block Diagram

sample point and outputs the correspondent bit value.

There are two BTL modules because, in case of a frame and depending on
its BRS bit, the frame can have different bit rates for the arbitration phase and the data
phase. The multiplexer in the diagram is used to choose between the sample bit, the
sample point and the writing point from one BTL module or the other, depending on if
a bit rate switch is supposed to occur or not within a frame.

The last module of the error injection module block diagram, the Error Injection Top
Level block, is formed by other three blocks, as illustrated in Fig. 8 the Timeout Timer,
the Top Frame, and the Corrupt Frame ID.

Error Injection Top Level

ID_List
__| Sample point, Error frame
_] CANBusRx Top IDE bit
Frame EDL bit
Frame index
ID matched Timer is over .
Done smashing
Comupt CAN frames smashed
Timeout . Timer is over Frame CAN Bus Tx
_1 Start timer Tlmeout D
Timer
Bits_to_wait
Bits_to_drive
CAN_frames
Smash_all
CAN Bus Rx |

Figure 8 — Error Injection Top Level Block Diagram

While the Timeout Timer is simply a timer for measuring the time when the corruption
of bits can occur, the Top Frame block is the one responsible for checking if the frame
identifier received is in the ID_list or not. It decodes the bus, builds the frame and looks

for an identifier match using the received sample points and bus values. This block then

Chapter 3. Proposed Error Injection and IDS Techniques for CAN Networks 34

outputs a signal informing if there was a match or not between the received identifier and
the ones in ID_list.

The information of whether the identifier is in ID_list or not is then passed to the
Corrupt Frame ID module along with the other Bitsmash parameters (i.e., CAN_Frames,
Smash_all, Bits_to_drive, Bits_to_wait and Timeout). If the Smash_all parameter is
0 and the match has occurred or if it is 1 and there is no match, the module performs the
smash of the desired bits, driving a dominant bit to the CAN bus through the CAN Bus
TX output.

3.1.2.2 Experimental Setup

In order to validate the proposed design and implementation for Bitsmash, an experi-
ment was conducted using real CAN/CAN FD nodes and bus. The experimental setup,
illustrated in Fig. @ constitutes of a CAN/CAN FD bus in which two neoVI FIRE 2 equip-
ment, from Intrepid Control Systems, and a Microzed development board are connected.
The FIRE 2 equipment work as network nodes capable of transmitting and receiving CAN
and CAN FD frames. The development board comprises the Bitsmash design, responsible
for corrupting frames according with real time configurations made to the parameters
from Table 4} The Microzed, which includes the Zynq SoC, is connected to the CAN bus
through a CAN transceiver.

neoVI neoVI
FIRE 2 FIRE 2

CAN/CAN FD Bus

Microzed

Figure 9 — Experimental Setup

The experimental setup was exposed to different types and formats of CAN and CAN
FD frames, which were generated by the neoVI FIRE 2 equipments in association with
Vehicle Spy software. Then, two categories of tests were performed: general smashing tests
and error injection tests. The former corresponds to multiple tests in which Bitsmash was
required to smash different bits in frames of different types and formats, and with differ-
ent IDs. The objective was to verify whether the corruption of bits occurred as planned,
regardless of any possible error condition that might have happened. The latter intends
to validate the error injection mechanism. Bitsmash parameters were configured for cus-
tomizing and injecting multiple error conditions from all four possible errors described

before: Bit error, Form error, CRC error and Stuff error.

Chapter 3. Proposed Error Injection and IDS Techniques for CAN Networks 35

3.1.2.3 Results

The corruption of bits, in all tests performed for both the general smashing and error
injection cases, was successfully achieved. The desired bits, and only them, were success-
fully smashed while also satisfying the required response time for different bit rates. In
addition, when one of the CAN/CAN FD error conditions was injected, the neoVI prod-
ucts and Vehicle Spy software correctly accused that error. To observe if the smash was
occurring successfully, i.e., if all the bits required to be smashed, and only them, were
being smashed from the beginning to the end of the bit time, a PicoScope oscilloscope
and the WaveBPS software, capable of decoding CAN frames, were used.

One of the performed tests aimed to corrupt three extended CAN frames with ID
124AB001. The Bitsmash module was configured according with the parameters values
in Table [5} Then, one of the neoVI FIRE 2 connected to the bus was configured to send
extended CAN frames with ID 124AB001. Note that, as long as the desired identifier is
in ID__ List, the other identifiers in the list do not matter for this particular test.

Table 5 — Bitsmash parameters values for a test setup

Parameter Values
ID_List { 0x124AB001, 0x124ABEEF, 0x401, 0x555}
Smash_all 0
CAN_frames 3
Bits_to_drive 8
Bits_to_wait)
Timeout 60000

The three successfully corrupted frames are presented in Fig. followed by a non-
corrupted frame, since the sending node keeps trying to transmit a valid frame. Figure
shows the smashed bits in detail. Note that, as expected, the Bitsmash module waits for
five bits starting at the first DLC bit and then drives eight dominant bits. Because of the
bit smash there were six following dominant bits causing a Stuff error that interrupted
the data frame. Therefore, the parameters setup exhibited in Table |5 causes the injection
of a Stuff error. One can realize that any parameters configuration driving six or more
bits to the dominant level causes a Stuff error. In the same way, Bit errors, Form errors

and CRC errors were also injected by setting proper configurations of parameters.

Chapter 3. Proposed Error Injection and IDS Techniques for CAN Networks 36

Beginning of smash

Correct frame

sdmfmmmmmmmkm sdmmmmmmmmmFﬁ sdummmmmmmmFL

b | Wrardrareh bt el frd At phe Al i

Figure 10 — Scope of three smashed frames followed by a valid frame.

Start of error
First bit — frame caused

smashed by bit smashing

Bytel: 80 Err DL IFS

1D: 492 D! XTD ID: 124AB001 BY DLC: 8
[0 JOJOC 11171717117171711°111

swle¢1ea1anlj:1101&11nannnsnnnnnsn1nna1aan1 %wwﬁ___

MMLI\\I'MV"-I'H'_"\‘_\'_ — s \— Y —arhe

Figure 11 — Detailed scope of one of the smashed frames.

3.2 CAN IDS SYSTEM

3.2.1 Security Concerns in CAN Networks and Countermeasures

Even though the controller area network is the main intra-vehicular network (at least
until today) for control data, until recently there was no concern for protecting this data
as the car was considered an isolated device. However, when the car gained connectivity
capabilities through technologies such as Bluetooth, 4G/5G, IEEE 802.11p and others,
a paradigm change has occurred. The vehicle became a node in a network and could
communicate with other vehicles, with the road infrastructure and with other devices
such as mobile phones and computers.

In this scenario, the car became subject to cyber-attacks that could come from the
network and put in danger the life of the driver and its passengers. A malicious CAN
frame could, for example, be injected in the CAN bus of a vehicle and disable its airbag

system, or even Kkill its engine. For the matter of fact, this has already been proved possible

Chapter 3. Proposed Error Injection and IDS Techniques for CAN Networks 37

by Charlie Miller and Chris Valasek, who remotely took control over a vehicle while it
was being driven by a third person in a highway (MILLER; VALASEK, [2015).

A lot of research has been done and demonstrated the vulnerabilities and lack of
security in cars as well as some possible countermeasures. The authors of (CHECKOWAY
et al., |2011) discovered that a remote exploitation is feasible through a broad range of
attack vectors, such as Bluetooth, CD players and cellular radio. In (WOO; JO; LEE, 2015)
it is shown that long-range wireless attacks are possible using a malicious smart-phone
application. In (LIU et al., [2017) attacking methodologies and possible countermeasures
are summarized, while challenges and future directions in this field are discussed. Among
the countermeasures presented, intrusion detections systems based on anomaly detection
are proposed as a strategy for preventing frame injection attacks.

For this purpose, recently, a few IDS techniques have been proposed. An IDS tech-
nique based on an analysis of the time interval between frames with the same identifier is
proposed in (SONG; KIM; KIM, [2016). Although great results are achieved, this approach is
limited to periodic messages and can be compromised by possible delays in the transmis-
sion of frames. The work in (MARCHETTI; STABILL 2017) also considers the frames IDs,
but the sequence in which they appear in the bus, instead of the time interval between
them. The authors of (KANG; KANG, 2016), on the other hand, use a deep neural network
for classifying between normal and attack CAN packets in a CAN bus with the data bytes
as features of the model. Despite the good results achieved with this strategy, deep neural
networks demand devices with high computing power, what could be expensive and then

not attractive for the automotive industry to embedded in a car.

3.2.2 The Proposed IDS Technique

It is well accepted that IDS techniques are a good strategy against some attacks, such
as injection attacks, to the CAN bus. However, most of these techniques either have
limitations or require considerable processing power. Therefore, in this dissertation, we
propose an IDS technique that is able to detect injected frames with high accuracy while
also being able to be deployed in a platform as cheap as a Raspberry Pi.

Frames that are regularly exchanged among nodes in a CAN bus are used to build
a pattern of regular frames. Then, upon the arrival of a new frame, it is compared with
the pattern established and classified as a regular frame, in case it fits in the pattern, or
as an intrusion frame, if it differs from the pattern. In other words, the IDS technique
intends to be a novelty detection system, whose task is to identify and classify data that
differ from some pattern (PIMENTEL et al., |2014). For this purpose, two things are needed:
strategies for building the regular frames pattern and a dataset with lots of regular and

intrusion frames.

Chapter 3. Proposed Error Injection and IDS Techniques for CAN Networks 38

3.2.2.1 Machine Learning Algorithms for Novelty Detection

Upon the many possible strategies for building the pattern of regular frames, we decided to
use two machine learning algorithms: the One Class Supported Vector Machine (ZHANG;
XU; GONG, [2015) and the [Isolation Forest (iForest)| (LIU; TING; ZHOU, 2012). The choice
of the OCSVM and iForest algorithms results from the fact that they have been indicated
as potential candidates for the detection of intrusion frames in automotive CAN networks
(WEBER et al., 2018).

ISupport Vector Machine (SVM)|are machine learning algorithms that use separation

hyperplanes to separate instances of data from different classes. A kernel function, which
can be linear, polynomial or a radio-basis function (RBF), defines the mathematical form
of the hyperplane, which is then optimized to minimize wrong classifications and maximize
the distance between data from different classes. In the case of a novelty detection problem,
the algorithm can be called a [One-class Support Vector Machine (OCSVM)|and trained

only with regular frames, in a way that the optimum hyperplane aggregates all regular

frames and keeps them separated from any other frame that is not regular (PIMENTEL et
al., |2014).

On the other hand, the Isolation Forest algorithm builds an ensemble of isolation
trees for a given dataset and takes as anomalies the instance that has short average path
lengths on the trees. This approach is based on the fact that anomalies are, supposedly,
the minority among the data and very different from regular frames. Thus, due to their
susceptibility to isolation, anomalies are isolated closer to the root of the tree, whereas
normal points are isolated at the deeper end of the tree (LIU; TING; ZHOU, 2008).

3.2.2.2 The Dataset and Cross-validation Approach

The dataset used was acquired from the Hacking and Countermeasure Research Lab.
(KIM, |2018), which freely releases its dataset containing real-world data extracted from
cars for academic purposes. This dataset contains a timestamp, the identifier, the DLC
field and the eight bytes of payload for a few millions of frames, which are labeled as
regular or intruders.

The frames in the dataset were divided into a training set, to train the model; a
validation set, to validate the model and help with tunning of the model parameters; and
a testing set, to represent the frames that would be incoming in the bus and to which
the proposed IDS system would be applied to. To define these sets, first, 250,000 regular
frames were randomly taken and split into 10 folds of 25,000 regular frames each, while
the remaining regular frames were put on the testing set. Then, 25,000 intrusion frames
were randomly taken into an intrusion fold, while the remaining intrusion frames were
also put on the testing set.

The folds with regular frames were then used to form 10 pairs of training and validation

Chapter 3. Proposed Error Injection and IDS Techniques for CAN Networks 39

sets, in a way that for each pair a single and different fold was used as validation set along
with the data in the intrusion fold, while the regular data from the other nine folds formed
the training set. These ten pairs of training and validation sets were defined in order to
apply cross validation to the models and achieve statistic significance for their accuracy
results, such that it was possible to compare them to each other (DEMSAR| 2006).
Besides that, despite the dataset has information regarding the frames timestamp, ID
and DLC, it was decided to only use the frames payload as features due to the results
of many classification tests performed. Moreover, instead of training only a model per
algorithm, it was decided to also evaluate how much of data would be necessary to achieve
good detection results in terms of accuracy. Thus, for each algorithm, three models were
defined by varying the amount of data bytes used as features in the classification process.
Three models were created for each algorithm by using the first six, the first seven or all
the eight data bytes in the frames as features. Table [6] shows a description for the defined

models.

Table 6 — IDS Trained Models
Models used for the proposed IDS

Name Description
OCSVM 6 features | Uses the OCSVM algorithm with the first six bytes of data as features
OCSVM 7 features | Uses the OCSVM algorithm with the first seven bytes of data as features
OCSVM 8 features | Uses the OCSVM algorithm with the eight bytes of data as features
IF 6 features Uses the Isolation Forest algorithm with the first six bytes of data as features

IF 7 features Uses the Isolation Forest algorithm with the first seven bytes of data as features

IF 8 features Uses the Isolation Forest algorithm with the eight bytes of data as features

3.2.3 Experiment and Results

After preparing the training, validation and testing sets for the cross validation and also
preparing the data contained in them to consider the aforementioned amount of features,

the experiment itself constituted in the following steps:

1. Use the training and validation sets for tunning the hyper-parameters of the six

models using the cross validation;

2. Use the cross validation methodology to obtain and train 10 variations for each of

the six models;

3. Apply each trained model variation to classify the frames in the testing set as regular

or intrusion frames.

As well as the data organization in folds and sets, the experiment steps were performed
by programming with Python language and using appropriate libraries and packages that

made the training and prediction tasks to be as simple as function calls.

Chapter 3. Proposed Error Injection and IDS Techniques for CAN Networks 40

Mean and standard deviation values were computed for the prediction results for each
model variation and summarized in Table [l Note the results obtained for the isolation
forest models present higher accuracy rate mean and lower standard deviation than the
results obtained for the [QCSVM] models. Also note that the values in Table [7] indicate
that the more data bytes used as features the larger the accuracy rate mean and the

smaller the accuracy rate standard deviation.

Table 7 — Models Accuracy Rate Mean and Standard Deviation

Model Detection Rate
Mean Standard Deviation

OCSVM 8 features | 97.0633% 1.7735%
OCSVM 7 features | 96.5949% 2.1515%
OCSVM 6 features | 95.6728% 3.1849%
iForest 8 features | 99.7215% 0.0383%
iForest 7 features | 99.5916% 0.0530%
iForest 6 features | 99.3140% 0.0885%

Furthermore, a confusion matrix was plotted for each of the six models, as described in
Figure [12] The results exhibited in them show that for all the six models better accuracy
rates are achieved for classifying intrusion frames. In other words, a wrong classification

is more likely to occur for regular frames than for intrusion frames.

OCSVM 6 Features OCSVM 7 Features OCSVM 8 Features
Target Class Target Class Target Class
Regular Intrusion Regular Intrusion Regular Intrusion
8 8 8
@ 5| 95.3686% | 2.3661% @ | 96.1004% | 0.2180% @ 3| 96.6205% | 0.0823%
gc ga ga
5 5 5
g8 gs g5
O 3| 46314% | 97.6339% O 3| 3.8996% | 99.7820% O 3| 383795% | 99.9177%
kS IS IS
iForest 6 Features iForest 7 Features iForest 8 Features
Target Class Target Class Target Class
Regular Intrusion Regular Intrusion Regular Intrusion
8 8 8
@ | 99.2172% | 0.0626% @ 3| 99.5323% | 0.0262% @ 2| 99.6828% | 0.0289%
8 ¢ 8 S ¢
o o o
5 5 5
g5 g5 g5
0 5| 07828% | 99.9374% | & 3| 04677% | 99.9738% | & 3| 0.3172% | 99.9711%
€ € €

Figure 12 — Models Confusion Matrices

Despite the results from Table [7] may be meaningful, they only represent a punctual
estimative. The calculation and plot of confidence intervals are a better approach to
provide statistic significance to the obtained results. For this reason, first, the D’ Agostino
and Person’s hypothesis test is used to verify whether the accuracy rates, obtained from

the models variations, can be approximated by a normal distribution. The null hypothesis,

Chapter 3. Proposed Error Injection and IDS Techniques for CAN Networks 41

that the sample data come from a normal distribution, could not be rejected for any of
the six models. Thus, the sample data may be approximated by a normal distribution for
all the models (D’AGOSTINO; PEARSON; [1973). However, since only 10 folds are used, the
number of samples is small and a approximation by the t-Student distribution is made
instead.

Figures |13 and [14] show the confidence interval with 99% of confidence level for the
six models. Note that the confidence intervals for the OCSVM models overlap, while the
confidence intervals for the Isolation Forest models are disjoint among themselves and also
from the OCSVM models. When confidence intervals overlap, it is not possible to consider
a model to be superior to the others, as its results can be anywhere within the interval
with the probability of the confidence level. Thus, it is not possible to affirm that any of
the OCSVM models is better than the others. On the other hand, since the confidence
interval for the IF 8 features model is disjoint from the others and is the one with higher
accuracy rates, being the one more to right, it is possible to affirm it is the model with
best results in terms of accuracy rate. In the same way, the IF' 7 features model and the IF
6 features model are the second and third models with best accuracy rates, respectively,

from the ones in the experiment.

Accuracy Rate Confidence Intervals

Il OCSVM 6 features
Il OCSVM 7 features
-4 Il OCSVM 8 features -
IF 6 features
I IF 7 features
| HEE IF 8 features -
93 94 95 96 97 98 99 100

Accuracy Rate

Figure 13 — Confidence interval with 99% of confidence level

Chapter 3. Proposed Error Injection and IDS Techniques for CAN Networks 42

Accuracy Rate Confidence Intervals

OCSVM 6 features
OCSVM 7 features
OCSVM 8 features
IF 6 features
IF 7 features
IF 8 features

99.2 99.4 99.6 99.8 100.0
Accuracy Rate

Figure 14 — Confidence interval with 99% of confidence level

3.3 CAN IPS SYSTEM: CORRUPTING INJECTED FRAMES

So far, we have proposed a novel Error Injection technique for CAN/CAN FD networks
and a CAN IDS system. The former allows the injection of customizable errors in CAN/-
CAN FD networks by precisely corrupting bits with great responsiveness. The latter is
based on machine learning algorithms and detects whether a frame is a regular or an
intrusion frame achieving high accuracy rates, even when only using the first six bytes of
the payload as features.

In addition to the individual functionalities of these proposed systems, both of them
could be used as the compounding modules for an Intrusion Prevention System (IPS). The
IDS module would detect whether the incoming frames are intrusion frames and, if this is
the case, notify the Error Injection module, which would then corrupt the intruder frame
by smashing the next six bits within it, such that all ECUs would discard it. Observe
in Figure a block diagram for this possible IPS system. Note this is just a possible
representation for such a system, for example, the same bus decoder module from
the Error Injection technique could also be used for decoding the IDS module incoming
frame. In this way, this decoder module would be extracted from the Error Injection
Module and its output would then be used for both the Error Injection Technique and
IDS module.

This design, however apparently simple, has rigid timing requirements. In order to
corrupt some intrusion frame, such that the ECUs would discard it, it is necessary to
classify the frame as regular or intrusion fast enough for being able to corrupt it, if it is
the case, before the frame is over. A late detection would not allow the corruption of the

intrusion frame, such that the ECUs would accept it and suffer the consequences of the

Chapter 3. Proposed Error Injection and IDS Techniques for CAN Networks 43

CAN Bus Rx
Intrusion Injection
IDS Notification | Module
Module

Figure 15 — Block Diagram for a possible IPS system

attack.

The frame detection can only start after the data that is used as features in the
classification is acquired. The IDS models presented in the last section use the first six,
the first seven or all the eight bytes in the frame payload as features. In case of only
six data bytes are used, the total available time for detecting and corrupting a possible
intrusion frame is the time that corresponds to the bits that comes after the six data bytes
used until the end of frame bit, which is the last bit within a frame. According to
the protocol frame format, this corresponds to 40 bits. In the same way, the total
available time for detecting and corrupting frames when seven bytes are used is the time
that corresponds to the bits that comes after these seven bytes until the end of frame bit.
This corresponds to 32 bits, eight bits (or one byte) less than when using six data bytes as
features. Finally, the total available time for detecting and corrupting frames when using
eight bytes corresponds to the time of 24 bits, 16 bits (or two bytes) less than when using
six data bytes as features.

The corruption of a intrusion frame, on the other hand, is accomplished by the smash
of six consecutive bits, that in turn generates a bitstuff error. Then, after detecting the
frame, there should still be enough time for smashing these six bits within the frame
before the end of frame bit is reached. Thus, the [Maximum Detection Time (MDT) is

given by equation [3.1]

MDT = AT — CT (3.1)

in which AT is the available time for detecting and corrupting the frame, C'T" is the time
needed for corrupting the frame and MDT is the maximum time available for detecting
the frame as regular or intrusion.

Observe in Table [§| the MDT' values obtained from equation in terms of amount
of bits and us for a 500Kbps network, in case of six, seven or eight data bytes are

used as features.

Table 8 — Maximum Detection Times Available

Number of Features Used | AT (in bits) | DT (in bits) | MDT (in bits) | MDT for 500Kbps CAN networks (in ys)
8 data bytes 24 bits 6 bits 18 bits 36us
7 data bytes 32 bits 6 bits 26 bits 5208
6 data bytes 40 bits 6 bits 34 bits 68us

Chapter 3. Proposed Error Injection and IDS Techniques for CAN Networks 44

Considering this time analysis, the suggested IPS system requires the satisfaction of
the MDT times from Table |8 which are, in fact, in the order of just tens of micro-
seconds. Thus, it is necessary to measure the time taken by the IDS system to detect
incoming frames. However, with the purpose of obtaining quick results and validate the
suitability and accuracy rate of the proposed IDS system, this system was implemented
by programming with Python language and using a traditional operating system based
on Linux. This approach does not offer the required precision on taking measurements
in the order of less than mili-seconds. Then, it was only possible to measure the total
time needed to detect all the frames in the testing set defined for the experiment of the
last section, and then calculate a mean detection time value for each frame. This mean
value satisfies the established MDT' limits even when using a cheap hardware platform
with limited processing power, such as the Raspberry Pi Model 3, but is not enough for
ensuring that the MDT would be individually satisfied for each frame. Furthermore, the
use of a traditional operating system is not ideal for achieving determinism or satisfying
real time deadlines.

Therefore, in order to appropriately validate the proposed IPS system, it is necessary
to actually measure the individual detection time for each frame in the IDS testing set and
to deterministically guarantee they are lower the established limits. So, the IDS system,

that makes use of Python and a traditional operating system, needs to be re-designed

using a lower level programming language, such as C, and also a [Real Time Operating]

[System (RTOS). Further research and implementation efforts are required and this is left

as a future work, beyond the scope of this dissertation.

45

4 AUTOMOTIVE ETHERNET AND AVB TIME SYNCHRONIZATION

As seen in Chapter [2| intra-vehicle networks are not based (at least until now) on only
one networking technology, but on many. Each technology has its particular advantage
and purpose, and should coexist with other ones in an automobile.

The complexity brought by this multi-protocol architecture has significantly increased

the amount of software to be flashed into ECUs. Besides that, new features for the auto-

motive domain, such as infotainment and [Advanced Driver Assistance Systems (ADAS)|

systems, will require bigger and more complex software. Nonetheless, many high end cars
today have more than 100 million lines of code (CHARETTE, 2009).

This huge increase in the software size brings a problem: the time needed for pro-
gramming or updating an [ECU firmware. BWM used to use a 500 Kbps high speed
network for this (MATHEUS; KONIGSEDER, 2015). However, at some point, because of the
size of the data being transfered, an activity that once took thirty minutes were taking
hours to be accomplished. Changes were required.

This chapter first covers the path taken by engineers and researchers who came up with
the automotive Ethernet, exploring its three generations. Then, the lack of determinism in
Ethernet is discussed as well as strategies to overcome it, with especial highlights for Audio
Video Bridging (AVB) and time-sensitive networking (TSN). Finally, after introducing
and its compounding protocols, a special attention is given to the IEEE 802.1AS
standard: The gPTP protocol defined in it, for synchronizing the nodes within an AVB

network, is discussed and explained.

41 AUTOMOTIVE ETHERNET

4.1.1 Origins and Generations

The doubtless need for changes in the way data was uploaded to ECUs made BMW to
start studying and searching for a new interface technology for ECUs. This technology
should fulfill a few requirements in order to be used in [ECU programming and also in
diagnostic purposes. First, it should have a high data rate to speed up [ECU flashing,
without requiring additional processing resources. Also, it should be cost-efficient and
have good network integration, so that it could be used by any dealer around the world
(MATHEUS; KONIGSEDER,, 2015).

The first two technologies considered were MOST and USB, which were soon discarded.
MOST was discovered to not offer sufficient data rate, to be resource and cost demanding,
and a completely new interface for external testers. USB, on the other hand, had enough
bandwidth and acceptance among external testers. But, it did not offer network support

or sufficient cable length and robustness.

Chapter 4. Automotive Ethernet and AVB Time Synchronization 46

A third evaluation was made on 100BASE-TX Ethernet, which proved itself to pro-
vide sufficient data rate and to be readily available in computers. Besides that, it was a

network technology, through which a car could be treated as a network node. Immunity

requirements for in-car communication were met using two pairs of [Unshielded Twisted|
cables. On the other hand, electromagnetic compatibility (EMC) emissions

were much higher than the acceptable levels, incurring in distortions on FM radio, for

example. It was not a problem for the programming and diagnostic use cases, since in
both situations the car would be stationary at a dealer or factory. Diagnostics and [ECU]
programming were the first Ethernet use cases for the automotive industry, representing
the first generation of Automotive Ethernet.

Despite 100BASE-TX Ethernet could be used satisfactorily for diagnostic and pro-

gramming, it was not suitable for any other application for a running car. By that time,

an application of interest for the industry was a [Rear Seat Entertainment (RSE)|system.
This kind of system required much more bandwidth than (or even [CAN FD)) could

provide, while MOST was also complex and expensive. To use Ethernet for this purpose,

it would be necessary to shield the cables for preventing EMC emissions. However, this
was not an option due to the consequently extra cost and weight for the car. A solution
was still required to be found.

BMW then approached Ethernet PHY vendors in a try of obtaining solutions from
them. Broadcom then came up and proposed the so called BroadR-Reach Ethernet tech-
nology, solving the EMC emissions problem and promising to transmit Ethernet packets
at 100Mbps at vehicle runtime over a [Single Unshielded Twisted Pair (UTSP)| (MATHEUS;
KONIGSEDER, 2015). This technology was then standardized as the 100BASE-T1 Ethernet
and is already being used in some cars on the market (STANDARD)| 2016).

The 100BASE-T1 technology was the mark for the second generation of Automotive
Ethernet, focused on ADAS and infotainment systems (HANK et al., 2013). Many vehicles
already use today a lot of different camera-based sensors, requiring simultaneously large
bandwidth and low latency, what was not possible before.

Furthermore, vehicles are expected to have a growing number of camera-based sen-
sors, sometimes requiring uncompressed data transfers, as well as other short and long
range radars. Some of them may even require more than 100Mbps of bandwidth. In order
to provide more than 100Mbps of bandwidth, a joint force was formed to develop and
standardize the 1000BASE-T1 Ethernet, providing 1000Mbps data rates and suitable for
the automotive environment (IEEE..., [2016).

The third generation of automotive Ethernet third is related to the introduction of
a new architecture, rather than some new application or Ethernet use case. It proposes
a new intra-vehicular network architecture based on an Ethernet backbone. Instead of
having multi-protocol networks connected or disjoint, there would be a common Ethernet

backbone to which all sub-networks would be connected through switches.

Chapter 4. Automotive Ethernet and AVB Time Synchronization 47

Currently there is a working group for the development of a 10Mbps automotive
Ethernet network, expected to be called 10BASE-T1 (MATHEUS; KONIGSEDER), 2017).
This network would aim applications currently addressed by [CAN| [CAN FD| and LIN

networks. One of the ideas is the belief in a car not only based on an Ethernet backbone,

but with only Ethernet networks. Further comparison among 10BASE-T1 Ethernet and
legacy in-vehicle networks will be necessary in order to have a better view about future

trends in automotive networks.

4.1.2 Bringing Determinism to Automotive Ethernet

The idea of an Ethernet backbone approach represents a paradigm change in intra-
vehicular networks, since heterogeneous architectures would be replaced by a top-down,
unified approach. This process has, however, a major barrier. Ethernet networks do not
support, by its original conception, deterministic traffic and cannot guarantee a determin-
istic behavior. Furthermore, regardless the existence of an Ethernet backbone, real-time
applications, such as safety-critical data, require extensions and strategies for bringing
determinism to Ethernet.

During the development of this dissertation, we conducted an experimental evalu-
ation of the cryptography overhead in automotive safety-critical communication using
an Ethernet network. We considered a dedicated network for safety-critical traffic and
used a real-time operating system (RTOS) to verify whether the required deadline for
safety-critical communication was satisfied after the application of layer 2 cryptography
schemes. This research resulted in the publication of the paper "Experimental Evaluation
of Cryptography Overhead in Automotive Safety-Critical Communication", published in
the IEEE Vehicular Technology Conference (VTC), 2018.

To overcome the lack of determinism in Ethernet, several approaches were proposed
and adopted, such as IEEE 802.1Q, TTEthernet and (TUOHY et al., [2015). IEEE
802.1Q is a simple technique used for assigning priorities to packets by adding an extra
field to the Ethernet packet header. It works as a lightweight [Quality of Service (QoS)|

scheme when used together with a traffic queuing algorithm, such as the weighted fair

queuing algorithm. This strategy was used in the automotive field in a lot of studies,
such as (LIM; WECKEMANN; HERRSCHER, 2011). It does a performance study on an in-
car switched Ethernet network without prioritization based on the Internet Protocol (IP)
and with the necessary automotive requirements and service constraints. Moreover, an
802.1Q-based system proposed in (LEE; PARK, 2013) has been shown to meet hard real-
time delay constraints by limiting the maximum transmission unit (MTU).

On the other hand, TTEthernet is a proprietary technology designed to allow the
coexistence of time-triggered, real-time synchronized communication with lower priority
event-triggered messages over Ethernet, by the application of time-division multiplexing
(KOPETZ et al., [2005). Three types of traffic are supported: [Time-Triggered (TT), which

Chapter 4. Automotive Ethernet and AVB Time Synchronization 48

takes priority over the other types;|Rate Constrained (RC), which is guaranteed to have a
predetermined bandwidth level; and [Best Effort (BE)| which stands for the regular Eth-
ernet procedures (TUOHY et al., 2015). A comparison between TTEthernet and FlexRay is
done by (STEINBACH; KORF; SCHMIDT) [2010), which considers TTEthernet to be a viable

solution for time-triggered communication in vehicles.

Last but not least, AVB was designed to provide time-synchronized streaming of audio
and video using 802.3 Ethernet. As automotive Ethernet is a switched-based network, data
must be synchronized no matter if image and audio might travel through different paths
with different delays (MATHEUS; KONIGSEDER, [2015). Two traffic classes with different
latency guarantees are supported by AVB. Class A traffic guarantees a maximum latency
of 2ms and corresponds to 802.1Q priority level 3, while Class B guarantees a maximum
latency of 50ms and corresponds to 802.1Q) priority level 2 (ZINNER et al., [2011). As AVB
is of a great deal to the industry, and this dissertation concerns one the its protocols,

AVB is discussed in detail in the next section.

4.1.3 AVB/TSN

AVB extends Ethernet by adding features to support multimedia streaming (SRID-
HARAN, [2015). This is done by using a series of IEEE standards associated with the first
generation AVB (AVBgenl), as listed below:

« [EEE 802.1AS - 2011;

IEEE 802.1Qat - 2010;

[EEE 802.1Qav - 2009;
« IEEE 802.1BA - 2009.

The IEEE 802.1AS standard is the generalized Precision Time Protocol (gPTP), based
on the [Precision Time Protocol (PTP) defined by IEEE 1588. This protocol is respon-

sible for timing and synchronization for time-sensitive applications in bridged local area

networks. It first determines whether the nodes connected to the system are capable of
running the gPTP protocol or not. A gPTP domain is established with those nodes that
are capable. Then, the best node for acting as a master is defined as the grandmaster, to
which all the other nodes will synchronize to. A synchronization process is started so each
node in the domain is synchronized to the grandmaster clock. This protocol is central to
this dissertation and it will be further explored in the following section.

The IEEE 802.1Qat [Stream Reservation Protocol (SRP) allows the allocation of re-

sources, such as buffers and queues, for reserving streams with guaranteed maximum

latencies. Resources can be reserved within bridges along the path between the talker
(end station that is the source of a stream) and the listener (end station that is the

destination of a stream), so the class’ maximum latency is achieved (BELLO, 2014).

Chapter 4. Automotive Ethernet and AVB Time Synchronization 49

The idea of IEEE 802.1Qav is to introduce forwarding and queuing enhancements
for time-sensitive streams. It handles priority allocation of streams by adding data to
the Ethernet header in a very similar way to IEEE 802.1Q (TUOHY et al., 2015). Time-
critical and non-time-critical traffic are separated into different traffic classes so they can
be handled accordingly. The IEEE 802.1Qav also applies |[Credit Based Shaper (CBS)|
algorithms that perform traffic shaping at the output ports of bridges and end nodes
(BELLO, [2014).

Finally, the IEEE 802.1BA profiles the other three standards for plug-and-play and
video streams automotive Ethernet use cases (TUOHY et al., [2015). Besides these four
standards, another important standard associated with AVB is IEEE 1722, the
[Video Transport Protocol (AVTP)| It enables interoperable streaming, being the layer 2

transport protocol for time sensitive applications in bridged local area networks. Equiv-
alently, the IEEE 1733 is the layer 3 transport protocol for time sensitive applications
in bridged local area networks. Figure illustrates the AVB stack, in which the AVB
protocols along with IEEE 1722 have a background color.

Control Applications

Streaming Media API

IEEE 1722
Layer 2 AVB Transport Protocol
IEEE 802.1Qat
Stream Reservation TCP/IP
IEEE 802.1AS Protocol Protocol Stack
generalized Precision
Time Protocol IEEE 802.1Qav

Forwarding and
Queuing Protocol

IEEE 802.3 Physical Layer

Figure 16 — AVB stack

Although the initial scope of AVB was to allow audio and video delivery in a time-
synchronized manner, its potential use for other time-sensitive applications was soon
realized (TUOHY et al., [2015). Thus, AVB was to be proved and improved for other time-
sensitive applications in the automotive domain, such as safety-critical control systems,
or even for other domains, such as aeronautical and industrial. With that in mind, the
IEEE AVB task group changed its name to Time-Sensitive Networking (TSN) task group
(AVNU..., 2018).

Already under the TSN name, a second group of IEEE standards was proposed and

Chapter 4. Automotive Ethernet and AVB Time Synchronization 50

can be referred to as AVB second generation (AVBgen2). By the time this dissertation
was written, all of these standards were completed or nearly completed in IEEE and certi-
fication tests are under development. They were summarized by the AVnu Alliance for the
2017 IEEE Standards Association (IEEE-SA) Ethernet & IP @ Automotive Technology
Day event, that happened in 2017 November in San Jose, California, USA. This summary

is briefly reproduced below:

1. IEEE 802.1Qbv - 2015 (Done) - Time Aware Shaper
a. Achieves the theoretical lowest possible latency in engineered networks.
2. IEEE 802.1Qbu - 2016 (Done) & IEEE 802.3br - 2016 (Done) - Preemption
a. Reduces latency of time-sensitive streams in non-engineered networks.
3. IEEE 802.1Qch - 2017 (Done) - Cyclic Queuing & Forwarding
a. Supports known latencies regardless of the network topology.
4. IEEE 802.1Qci - 2017 (Done) - Per Stream Filtering & Policing
a. It is able to identify flows by other than layer 2 fields.
5. IEEE 802.1CB - 2017 (Done) - Frame Replication & Elimination
a. Supports data redundancy "seamlessly" for the applications.
6. IEEE 802.1AS-Rev - 2017 (Draft 5.0) - Enhanced Generic Precise Timing Protocol
a. Supports clock redundancy.
7. IEEE 802.1Qcc - 2017 (Draft 1.6) - Stream Reservation Protocol Enhancements

a. Supports a "central controller" or pre-defined (flashed) "engineered configura-
tion" or both.

b. Supports a standardized interface to make reservations without needing to use
stream SRP.

c. Used to configure the features of the previous standards.

Beyond these standards, another one, which is in early stages of development in the
IEEE TSN task group, constitutes the AVB third generation (AVBgen3):

1. 802.1Qcr - 2017 (Draft 0.1) - Asynchronous Traffic Shaping

a. Supports deterministic latency without using network topology info.

b. Supports zero congestion loss for asynchronous traffic.

Chapter 4. Automotive Ethernet and AVB Time Synchronization 51

Therefore, a long way has already been taken to enable time-synchronized audio and
video delivery as well as to expand this initial purpose to other time-sensitive applications.
On the other hand, there is still a lot to do, especially because the publication of a
standard is only the first step to be taken. Actually implementing a protocol, once it has
been standardized, is really a challenging job to be done. For example, to the best of our
knowledge, even though the frame preemption protocol was published in 2016, until the
beginning of 2018 there were only a few available implementations for the industry, and
most of them are still in a prototype testing phase.

In this dissertation, an experimental implementation of the IEEE 802.1AS standard
is presented. This standard is detailed in the next section, while the proposed implemen-

tation is addressed in the subsequent chapters.

4.2 AVB TIME SYNCHRONIZATION - IEEE 802.1AS

IEEE 802.1AS, which defines the generalized Precision Time Protocol, is the AVB stan-
dard responsible for the distribution of precise timing and synchronization within AVB
networks. It is its duty to ensure the fulfillment of jitter, wander and time-synchronization
requirements for time-sensitive applications (GARNER; OUELLETTE; TEENER, 2010).

The use of this protocol was initially focused on the automotive industry, from in-
fotainment systems to more complex ADAS systems as well as on autonomous driving.
However, it was soon expanded to other segments with time-sensitive requirements, such
as avionics and industrial plants. Timing requirements fulfillment and synchronization
are accomplished by the same means IEEE 1588 provides clock synchronization. For the
matter of fact, the IEEE 802.1AS includes a very specific profile of the IEEE 1588, in
which required and prohibited PTP features are specified.

4.2.1 Protocol Overview

gPTP requires all bridges and end stations to meet the requirements of IEEE 802.1AS,
being able to transport synchronization (GARNER; RYU, [2011). They are then called time-
aware bridges and time-aware end stations. The first, if not grandmaster, receives time
information from the grandmaster, corrects it to compensate for delays and transmits the
corrected time information to the next attached nodes. The latter, if not a grandmaster,
receives time information from the grandmaster and synchronize itself to it.

The delays that should be compensated are composed of the residence and propagation
times. The first corresponds to the time needed for a bridge to receive time information
from the grandmaster and transmit it to the next attached time-aware systems. The res-
idence time is then local to a bridge and not so difficult to be computed. On the other

hand, the propagation delay corresponds to the time taken for the synchronized time in-

Chapter 4. Automotive Ethernet and AVB Time Synchronization 52

formation to transit between two time-aware systems. Its computation is more challenging
and depends on the media through which the time-aware systems are connected to.

All time-aware systems must be connected in a point-to-point basis, not necessarily
physically, but at least logically. That is, the gPTP information sent by a port is received
by another gPTP port at the other end of the link. Whether the links are physically
point-to-point or only logically connected is media-dependent (GARNER; RYU, 2011), i.e.

depends on the media being used. The standard defines the following possible medias:

[EEE 802.3 Ethernet using full-duplex point-to-point links;

« IEEE 802.3 |[Ethernet Passive Optical Network (EPON);

IEEE 802.11 wireless;

» Generic coordinated shared networks (Coordinated Shared Networks (CSN)| e.g.,
MoCA and G.hn).

Since some computations on the protocol are media dependent, the protocol architec-
ture divides a time-aware system into a media dependent layer and a media independent
layer. Each of them is responsible for specific tasks, which will be discussed during this
chapter. Besides these two layers, there is also a higher layer for application interfaces.
This layer can either provide the time information that will be transmitted to other nodes,
or use time information received from other nodes. Figure [17]illustrates a description of
the gPTP protocol layers.

Before moving on to the details of the protocol operation, it is enlightening to observe
how time-aware systems connect and communicate to each other. Figure (18| exhibits a set
of time-aware systems connected to each other by a local area network, forming a gPTP
domain. Note that different medias can coexist in the same domain. The gPTP domain
defines one of its time-aware systems as a grandmaster, which sends time information to
all the other systems and to which they should all synchronize to. In case the connection
with the grandmaster is lost, another node in the domain is defined as the grandmaster.

Figure on the other hand, shows in more detail the communication between time-
aware systems ports. Each time-aware system contains at least one port, which can have
one out of four possible roles: Master, Slave, Disabled and Passive. The Master Port is
any port of the time-aware system that is closer to the grandmaster than any other port
of the gPTP communication path connected to the port. The Slave Port is the one port of
the time-aware system that is closest to the grandmaster. The Disabled Port is any port
of the time-aware system for which the port is not enabled or the time-aware system is
not capable of running the gptp protocol. The Passive Port is any port of the time-aware
system whose port role is not Master, Slave or Disabled (IEEE...,2011). Time information
is then passed from the grandmaster until the end stations through bridges in a way that

master ports send the time information and slave ports connected to them receive it.

Chapter 4. Automotive Ethernet and AVB Time Synchronization 53

Time-aware higher-layer application
(see clause 9)
!

ClockMaster |< ClockSiaveTime _{)50k Slave

A

PortSyncSync

PortSyncSync
A

[SiteSync J LocalClock
PortSyncSync J L t PortSyncSync
PortSync
Vv

MDSyncReceive MDSyncSend MD: i MDSy

(see clause 10)

media independent

PortSync

o [MD) (MD j m
3 9 1 x
@ LLC LLC @
= — MS MS c
oo e c =
- - - ©
(] c c (]
Ss 28 23 e
S o a MAC relay Saaw o2
QG 802 (see IEEE 802.1Q-2005) 2ol oo
[0} [oR=a= OEE (]
o ©8E o ec T
o= IF0 g 30 o=
=% T o 3o By
[} (0]
S E S E
£8 5 l S £ 8
% 1! 1SS %
& MAC MAC (]
8 PHY PHY 8

r
\.

Figure 17 — Time-aware system model (IEEE..., 2011)

endpoint
(local grand
master)

lost connection to
& access network

Ethernet 5
Bridge wireless

Ethernet

endpoint

endpoint endpoint client

endpoint
clock clock
client client

endpoint

local network

Figure 18 — gPTP domain (IEEE..., 2011)

4.2.2 Protocol Operation

As seen before, IEEE 802.1AS establishes a gPTP domain in which one time-aware system
is defined as the grandmaster and all the others receive information from the grandmaster
and synchronize to it @, . This process, however, is not so straightforward,
but it can be divided into four steps for an easier understanding:

Chapter 4. Automotive Ethernet and AVB Time Synchronization 54

Port Roles:
M MasterPort CrnpEED
S SlavePort Time-Aware Bridge
P PassivePort M M
D DisabledPort
S S
Time-Avare M [| [P Time-Aware p [|| [] m Time-Aware

Bridge Brldge ’ Bridge

E\j ” -
D pD/

Time-Aware D
Bridge
M

D Time-Aware
Bridge
M

S
Time-Aware
End-Station

Time-Aware
End-Station

Figure 19 — Time-aware system port communication (LIM et al., 2011)

1. Determination of whether the peer is capable of supporting the gPTP protocol and

interoperate with other nodes using it;
2. Determination of the path delay and the rate of the peer’s clock;
3. Selection of the best master clock and establishing a synchronization spanning tree;

4. Transportation of time-synchronization information and synchronization of each

node to the master time source.

4221 Steps 1 and 2: the Peer Delay Mechanism

A global per-port boolean variable called asCapable is used to indicate whether the peer
is capable of supporting the gPTP protocol. That is, this variable is set to TRUE if, and
only if, the time-aware system to which this port belongs to and the time-aware system
at the other end of the link attached to the port communicate to each other and can
interoperate by using the IEEE 802.1AS protocol. The asCapable variable is then used
to enable most of the state machines in the media independent layer, which performs the
clock synchronization process. In this way, the clock synchronization process is performed
only when the asCapable variable is set to TRUE and the peer supports the gPTP protocol
and can interoperate with the peer at the other end of the link by using this protocol.

Even though asCapable is used in the media independent layer, its determination
depends on the media and is then attributed to state machines in the media depended
layer. For full-duplex Ethernet ports, it is a result of the Peer Delay Mechanism, as
described in the IEEE 1588 protocol.

Chapter 4. Automotive Ethernet and AVB Time Synchronization 55

A peer delay request message is periodically sent by a node, called Node 1, to the node
at the other end of the link, called Node 2. Then, Node 1 simply waits for a peer delay
response and a peer delay response follow up message to be sent from Node 2. Node 1, the
peer delay initiator, timestamps the instant ¢; at which the peer delay request message
is sent. In the same way, Node 2, the peer delay responder, timestamps the instant t, at
which the peer delay request message is received. It then prepares a peer delay response
message carrying the time ¢, and sends it to Node 1. The time ¢3 at which the response is
sent is also timestamped and sent to Node 1 in a peer delay response follow up message. A
last timestamp %4 is taken by Node 1 upon the receipt of the peer delay response message.

Figure [20 illustrates a diagram of this process.

Node 1 Node 2
Peer Delay Initiator Peer Delay Responder

t2

3
pdela _ResP 2

t4 (t3)

Up
pdelay _ResP _Follow_

Figure 20 — Peer delay mechanism

The peer delay initiator has thus all four timestamps taken: ¢, t9, t3 and t4. Note
these values are constantly updated, since the peer delay mechanism exchanges messages
periodically. It then computes the neighborRateRatio (r) and the neighborPropDelay (D)
variables, which are used to compute the synchronized grandmaster time.

The neighborRateRatio variable corresponds to the measured ratio of the local clock
frequency from the time-aware system at the other end of the link and the local clock

frequency of this time-aware system. It is computed by equation

t3 —t
r=—_% (4.1)
ty — 1ty

in which 3y and t49 are the timestamps t3 and t4 taken in the first exchange of peer delay
messages.

On the other hand, the neighborPropDelay variable measures the propagation delay

on the link attached to this port, expressed in the time base of the time-aware system at

Chapter 4. Automotive Ethernet and AVB Time Synchronization 56

the other end of the link. It is computed by equation

gy —1) —tzs+1
D:T(4 1)2 3+ 12 (4.2)

in which r is the neighborRateRatio calculated by equation

The peer delay mechanism is always running, so the propagation delay in the link
to be always known to all ports of all links that run the protocol. Thus, in case of a
grandmaster or network topology change, a faster reconfiguration is possible (MANN et al.,
2013).

Once this mechanism is up and running, a peer is determined as capable of supporting

the gPTP protocol and asCapable is, consequently, set to 1 for that port if:
e The port is exchanging peer delay messages with its neighbor;
o The measured propagation delay does not exceed a threshold value;

o The port only receives one peer delay response and peer delay response follow up

messages for each peer delay request sent;

o If the peer delay response and peer delay response follow up messages received do

not come from the time-aware system the port belongs to.

4.2.2.2 Step 3: Best Master Clock Selection and Synchronization Spanning Tree

The whole point of the IEEE 802.1AS protocol is to synchronize every time-aware system
in the same gPTP domain to the same clock. This is done by selecting the best clock
from the time-aware systems in the domain as a reference to which all the others have to
synchronize to.

The standard specifies the [Best Master Clock Algorithm (BMCA)| for autonomously

select the best available clock as the grandmaster and construct a time-synchronization

spanning tree with the grandmaster as the root. The spanning tree works as a synchro-
nization hierarchy for the time-aware systems and defines the path the synchronization
information should travel through. Besides this, the BMCA also assigns the role each port
should have, i.e., if they should be a master, a slave, a passive or a disabled port. Figure
shown before represents a grandmaster and its synchronization spanning tree resulted
from the BMCA algorithm.

In the beginning, every time-aware system sends to the others announce messages
containing information about its own clock along with a spanning tree. Upon the receipt
of announce messages, a time-aware system evaluates whether the best clock is its own
clock or the one indicated by the announce message received. In the latter case, it keeps
the information about who is the best clock along with the associated spanning tree, and

stops transmitting announce messages.

Chapter 4. Automotive Ethernet and AVB Time Synchronization 57

At some point, there will be only one time-aware system sending announce messages.
This "last survivor" is the best clock and thus the grandmaster. It keeps periodically
transmitting announce messages in case some time-aware system with better clock enters
the domain. In this case, the new time-aware system would compare and evaluate its own
clock as better than the one received and then indicate that its own clock should be the

grandmaster by sending announce messages.

4.2.2.3 Step 4: Transport of Synchronization Information and Node Synchronization

IEEE 802.1AS defines a grandmaster and a synchronization hierarchy within an AVB
network through the spanning tree resulted from the BMCA. The grandmaster, located
at the root of the spanning tree, then sends synchronization information to its immediate
children, i.e., to the time-aware systems it communicates with directly, with no need
of a bridge. The time-aware system that receives the synchronization information then
synchronizes itself to the grandmaster using the received information. This means the
time-aware system is able to compute the grandmaster time corresponding to any desired
local clock time.

Moreover, in case the time-aware system is a time-aware bridge, it also applies cor-
rections to the information received and sends new synchronization information to its
immediate children. This process goes on until every time-aware system receives the syn-
chronization information. In Figure [19] it is possible to see the path the synchronization
information takes from the grandmaster until each end station, passing through each
bridge. It is also important to notice that the information is sent by master ports and
received by slave ports.

To perform time synchronization, the synchronization information in sent by the
grandmaster and received by all the other time-aware systems periodically. This infor-
mation consists of a grandmaster time and a corresponding local clock time (MANN et al.,
2013). The time synchronization information is sent through Sync and Follow Up mes-
sages. The correspondence between the grandmaster and the local clock time is obtained
using the timestamped information from the upstream time-aware system carried in the
Follow Up message and the timestamped of the arrival of the Sync message.

In order to synchronize itself to the grandmaster, a time-aware system receives from
the Sync and Follow Up messages the values of preciseOrigin Timestamp, followUpCorrec-
tionField and rateRatio attributes. The preciseOriginTimestamp attribute is the source
time of the grandmaster when the received time-synchronization information was sent by
the grandmaster. The followUpCorrectionField attribute contains the accumulated time
since the preciseOriginTimestamp was acquired by the grandmaster. It corresponds to the
elapsed time between the time the grandmaster sent the received time-synchronization
information and the time at which the time-synchronization information was sent by the

immediate upstream time-aware system. Finally, the rateRatio attribute is the ratio of

Chapter 4. Automotive Ethernet and AVB Time Synchronization 58

the grandmaster frequency to the frequency of this time-aware system local clock.
Using these values, along with other ones obtained from the peer delay mechanism
explained before, it is possible to compute the clock slave time corresponding to the

grandmaster time according with the equation [4.3]

clockSlaveTime = preciseOriginTimestamp + followUpCorrectionField+

neighbor PropDelay

dA 4.
neighbor Rate Ratio * rate Ratio * (43)

Note that the third term of the equation divides the neighborPropDelay by the neigh-
borRateRatio and the rateRatio, so the propagation delay in the link is expressed in the
grandmaster time base. Besides that, the last term in the equation, dA, corresponds to
the delay asymmetry. It is calculated with the timestamps from the peer delay mechanism

and is used to compensate for any asymmetry in the link.

4.2.3 Future perspectives for the IEEE 802.1AS standard

Future trends regarding the IEEE 802.1AS include the IEEE 802.1AS-Rev mentioned in
the last section (P802...} |2018) and a new draft of the IEEE 1588 (IEEE..., 2018).
IEEE 802.1AS-Rev, which was in its Draft 5.0 by June 2017, is a revision for the IEEE

802.1AS standard and intends to improve it. It brings modifications in order to provide:
e Clock Redundancys;
e Support for more than just bridges, like routers;
» Support for aggregated links and accuracy enhancement in Wi-Fi.

On the other hand, the new IEEE 1588 version being drafted does not refer directly
to the gPTP protocol. However, since the IEEE 802.1AS is based on the IEEE 1588, the
advances brought by this new draft could essentially also be applied to the gPTP protocol.
One of the main advances on this new draft regards to a new Annex S, addressing security
aspects for the protocol (IEEE..., 2018).

99

5 GPTP PROTOTYPE PROPOSAL AND IMPLEMENTATION

Despite the IEEE 802.1AS standard has been published in 2011, there are not so many
implementations of it available for the industry. Moreover, most are proprietary tech-
nologies restricted for some companies and some do not offer the precision required for
synchronization at 1000BASE-T1 Ethernet networks.

In this chapter, the design requirements for the AVB synchronization protocol are
presented along with known implementations for that protocol. Then, considerations are
made on the decision for the development of a new implementation of the protocol instead
of using a third-party one. After that, the implementation proposed is presented along

with the details and adopted strategies, and the chosen hardware platform.

5.1 DESIGN REQUIREMENTS AND OTHER IMPLEMENTATIONS

In order to design and produce AVB end points or bridges, it is essential to understand
and use the IEEE standards in which AVB stands on. One can choose between using a
previous implementation of the standards or develop his own, as long as the standards
specifications are obeyed. This is imperative for the correct functioning of the time-aware
systems and for achieving interoperability among nodes with different implementations.

This work aims to provide an implementation for the IEEE 802.1AS protocol that
achieves the nanosecond precision and can be used by AVB end-stations as well as to
serve as a study platform for researchers to improve the protocol. The targeted end-
station are for the automotive domain and slave-only devices, such that no master feature
like the transmission of Announce messages need to be supported. Thus, the following
points must be taken into consideration when choosing between a previous third-party or

new own implementation of the protocol.

1. Fulfillment of standard requirements;

2. Protocol particularities for slave-only automotive systems;
3. Protocol particularities for end-point devices;

4. Costs of licensing x Costs of development;

5. Time-to-market;

6. Availability of technical implementation details.

IEEE 802.1AS, as explained before, is responsible for synchronizing all nodes in an
AVB network to a common time reference. According with the standard, two end nodes,

with fewer than 7 AVB nodes between them, are required to synchronize within a 500ns

Chapter 5. gPTP Prototype Proposal and Implementation 60

precision (IEEE...,2011). Therefore, direct neighbor nodes must synchronize with a nanosec-
ond precision (MATHEUS; KONIGSEDER, [2017). In order to achieve the required precision,
certain constraints are made on the responsiveness and accuracy of time-aware systems.
The local clock of each node is required to have a granularity less than or equal to 40ns.
The duration of time between the receipt of a time synchronization event message and
the sending of the next subsequent time synchronization event message on another port,
defined as Residence Time, must be within 10ms. The duration of time between the re-
ceipt of a peer delay request message by a port of a time-aware system, and the sending of
the corresponding peer delay response message, defined as pdelay turnaround time, must
be within 10ms (IEEE..., 2011).

Besides the protocol requirements, it is important to note that automotive Ethernet
devices execute gPTP operations with some differences to what is described in the stan-
dard. Automotive original equipment manufacturer (OEM) usually configure the gPTP
domain and its spanning tree statically. This means that the grandmaster and all port roles
from all nodes are assigned prior to the system startup and are not supposed to change.
Therefore, there is no need to support the BMCA state machines (BECHTEL et al., [2015).
Their functions must not be executed, so no modification is applied to the grandmaster
or port roles’ previous configuration. Since announce messages are used only for BMCA
purposes, they are also neither required nor expected in an automotive network. Finally,
as the spanning tree is static, time-aware bridges may perform delay measurements in only
one direction. They are not required to initiate peer delay requests on its ports whose role
is Master.

Added to the particularities imposed by the automotive environment targeted, the
aimed implementation is for slave-only end points. Therefore, all matters regarding only
bridges can be left out. This implies even more simplifications on the desired implemen-
tation. Node ports are no longer required to send sync and follow up messages, but only
to receive them.

Upon the gPTP requirements and all those simplifications made, one could decide for
acquiring an 802.1AS third-party implementation. This could definitely reduce the end-
point time-to-market, even though licensing costs could eventually overcome development
costs in the long run. However, there are not this many implementations out there for
purchasing or licensing. Despite IEEE contributes to joint solutions for industry common
problems, the automotive industry is so competitive; a company is not likely to allow its
opponents to use implementations developed by them.

Some commercial implementations are in AVB end points from XMOS and NXP. They
are already commercial end points, not standalone implementations of the gPTP protocol.
Being a commercial product, implementation details are not available or possible to be
modified for investigating and proposing improvements to the protocol. Thus, they would

not be useful for researching the protocol itself, but only network aspects. On the other

Chapter 5. gPTP Prototype Proposal and Implementation 61

hand, the work in (HERBER; SAEED; HERKERSDORF, 2015) is one of few references found
that discusses implementation details. The authors of this research implement their own
AVB end-point, so hardware resource requirements can be evaluated and timing measures
can be directly embedded into the hardware for precise assessment of performance metrics.

The end point designed in (HERBER; SAEED; HERKERSDORF, [2015) extends an Eth-
ernet MAC into an AVB controller, which includes the implementation of the IEEE
802.1Qat, IEEE 802.1Qav and IEEE 802.1AS standards. The Xilinx Zynq 7000 System
on Chip (SoC) is chosen as the target hardware so it is possible to partition the pro-
tocols implementation between the software of a processing system (PS) and the
[Programmable Gate Array (FPGA) hardware of a programmable logic (PL). In addition,

a Linux based operating system is used.

Time-critical portions of the protocols are best suited for a hardware implementation
in the PL, since a better performance can be achieved. On the other hand, if the required
performance of some portion can be achieved by the PS, this portion is implemented in
software since hardware resources are scarce and valuable as well as its implementation
is more complex and time consuming. The authors of the mentioned work decided for
a hardware implementation for IEEE 802.1Qat and IEEE 802.1Qav standards, as flow
control and traffic shaping are highly time-critical and multiple streams must be handled
in parallel. However, the gPTP protocol, apart from the required real time clock (RTC),
is implemented in software at the expense of a reduced precision compared with hardware
realizations. They argue, supported by the work in (MAHMOOD; EXEL; SAUTER, [2014),
that software based time-synchronization could achieve synchronization precision within
the microseconds range and a precision lower than that would represent extra complexity
for limited benefits to their product.

Contrary to their decision, our desire in this dissertation is for an end-point product ca-
pable to synchronize neighbor nodes with a nanosecond precision, as specified in the gPTP
protocol. The implementation must be able to support not only 100BASE-T1 Ethernet
networks, but also the recently standardized 1000BASE-T1 automotive Ethernet technol-
ogy, in which the nanosecond precision is indispensable due to the higher data rates. That
said, upon the few available realizations of the IEEE 802.1AS protocol, their limitations
regarding nanosecond synchronization precision and the lack of implementation details,

the decision is made is for developing our own gPTP protocol implementation.

5.2 DESIGN IMPLEMENTATION

Once the decision is for developing our own IEEE 802.1AS implementation, it is necessary
to have in mind this must be done mostly in hardware, so the desired synchronization
precision is achieved. Therefore, the platform chosen for the implementation is the same
Xilinx Zynq 7000 SoC used in (HERBER; SAEED; HERKERSDORF, 2015). This device has

a programmable logic and a dual-core ARM Cortex-A9 processors combining great pro-

Chapter 5. gPTP Prototype Proposal and Implementation 62

cessing power with flexibility. Nevertheless, it has been largely used in a wide range

of embedded applications including multi-camera driver assistance systems and 4K2K

Ultra-HDTV. The [Processing System (PS) programming is done in C language while the

[Programmable Logic (PL)| programming is done in VHDL. The communication between
them is through AXI the LogiCORE™ IP AXI4-Lite IP Interface (IPIF), which provides

a point-to-point bidirectional interface between a user IP core and the Xilinx LogiCORE

IP AXI Interconnect core.
In addition, it is also necessary to consider the simplifications made for the slave-only

automotive end-point device to be designed:
o BMCA shall not be implemented - automotive systems/slave-only devices limitation;

» Announce messages shall not be supported - automotive systems/slave-only devices

limitation;

o Sync and Follow up messages shall not be sent (only received) - end-point limitation

(the implementation is not for bridges).

The proposed IEEE 802.1AS implementation will be part of a node in an AVB network.
While in this chapter we dive in the explanation about how the protocol is implemented,

in Chapter [6| we discuss how to use this implementation as part of an AVB node.

5.2.1 Entities and State Machines

The first thing to do in the implementation is to define the system architecture in func-
tional blocks, i.e. define what components constitute a time-aware system, in our case,
a time-aware end-station. According with the specification, each time-aware system is
composed by a Port Structure Entity for each port of the system added to a single Local
Clock Entity, Site Sync Sync Entity and Clock Slave Entity. The Port Structure Entity, in
turn, is formed by other two entities, a Port Sync Entity and a Media Dependent Entity.
As one can deduce, the Media Dependent Entity includes all state machines from the
[Media Dependent (MD)| Layer. On the other hand, the [Media Independent (MI) Layer
is compounded by the Site Sync Sync Entity, the Clock Slave Entity and the Port Sync

Entity. Figure shows a representation of the time-aware system entities and layers.
Each of these entities is implemented for the design and will be explained in detail in this

section.

5.2.1.1 Local Clock

The whole purpose of the gPTP protocol is to synchronize all nodes in a gPTP domain
to a common time reference. Thus, each node in a gPTP domain has its own local clock
and needs to convert a time measure in the node time base to the grandmaster time base.

Therefore, every time-aware system has a single Local Clock Entity that corresponds

Chapter 5. gPTP Prototype Proposal and Implementation 63

Time-aware System

Media Independent Layer

Site Sync Sync Entity Local Clock Entity

Clock Slave Entity
Media Dependent Layer

Port
Structure
Port Sync Entity Media Dependent Entity

Figure 21 — Entities and Layers of a time-aware system

to a real time clock used for all state machines and operations within the time-aware
system, and a Clock Slave Entity responsible for the time base conversion performed with
values received from other state machines, as will be discussed later. As said before, the
protocol specification requires a granularity of less than or equal to 40ns. In this project,

a granularity of 10ns is chosen so every clock cycle takes 10ns to be executed.

5.2.1.2 Peer Delay Mechanism

The peer delay mechanism is responsible for computing the neighbor Rate Ratio and the
neighbor PropDelay as well as determining whether a port is capable of communicating to
the port attached at the other end of the link using the gPTP protocol. This mechanism is
performed by two state machines in the PL, which belong to the media dependent entity
in the port structure instantiated for each port: MD_PDelay Resquest state machine
and MD PDelay Response state machine.

MD PDelay Resquest periodically sends a peer delay request message to the port
attached at the other end of the link, and then waits for the peer delay response and
peer delay response follow up messages. By default, the wait period is 1s, but it can
configurable. The time in which the peer delay request is sent is timestamped as t;, while
the time in which the peer delay response is received is timestamped as 4.

At the port in the other end of link, the MD_PDelay Response state machine from
this other time-aware system waits for a peer delay request. Upon its receipt, it constructs
a peer delay response message and sends it to the port from which the request came from.
Within this message, the time in which the request was received, timestamped as ts, is
carried. Then, it constructs a peer delay response follow up message and also sends it
to the port from which the request came from. Within this message, time in which the
response message was sent, timestamped as t3, is carried. Figure [22|shows a diagram of the

peer delay mechanism state machines and messages involved in the peer delay mechanism.

Chapter 5. gPTP Prototype Proposal and Implementation 64

Figure [23]shows the same diagram of Fig.[20] in which the timestamps and messages from

the peer delay mechanism are represented.

Node 1 Media Dependent Entity Node 2 Media Dependent Entity

PDelay Req

MD_PDelay_Request
State Machine

MD_PDelay_Response
State Machine

PDelay Resp

]
[]
LN
N
[]
1
]
(]

PDelay Resp FUp,

<

| ! PDelay Req
MD_PDelay_Response PDelay Resp E= MD_PDelay_Request
State Machine 'PDelay Resp FUps. State Machine

Figure 22 — Peer Delay Mechanism state machines and messages

Node 1 Node 2
Peer Delay Initiator Peer Delay Responder

t1 Pdelay\ Req
t2

t3
pdetay_ResP 2
t4 3)
\ay Resp,Fo\\ow,UP(
pde ay._

Figure 23 — Peer delay mechanism

Upon the receipt of timestamps t3 and t4, the MD_PDelay Resquest state machine
has all four timestamps needed for computing neighbor Rate Ratio and neighbor PropDelay,
as defined by equations4.1jand The neighborPropDelay D and each timestamped time
are composed by a 48-bit field for seconds and a 32-bit field for nanoseconds, while the
neighborRateRatio r is a double precision floating point type with 64 bits. The double
precision floating point combined with the division in the equations are not easily per-
formed in the PL. This type of data and the division operation by some value other than
a power of 2 increases the utilization of the [FPGA|resources and require significant extra
execution time. Since all operations must be executed within one clock cycle time, which
is only 10ns, timing can be compromised.

An alternative approach is needed and the strategy is to take advantage of the com-
bined PL and PS resources in the SoC. Thus, the MD__ PDelay Resquest state machine

Chapter 5. gPTP Prototype Proposal and Implementation 65

sends all operands in equations and and makes a calculation request for the PS.
Then, the PS receives the operands values, performs the requested computation using the
processor resources and sends the results back to the PL. The only concern about this
approach is whether the time to send the operands to the PS, execute the operation and
get the results back may surpass the period of sending the next peer delay request mes-
sage. Experimental tests were performed in this work and this approach was verified to
consume only a few microseconds. Since the period between peer delay requests is usually
around 1s, the strategy adopted is well suited. Once the propagation delay is received
from the PS, the PL simply compares it with a previously configured threshold value and
attributes TRUE to the asCapable variable if the propagation delay does no overcome the
threshold. Figures[24]and [25|show the MD__PDelay_ Resquest and MD__PDelay_Response

state machine diagrams.

PDelay
Begin Port _Resporjse
Command Enabled is Received

Wait for

Disabled
State

Initial
State

Request

Response
Follow Up
is Received

Request
Calculation
to PS

Waits for the Compute

............. asCapable
Roll over

rand D
are received
from the PS

Figure 24 — MD _PDelay Resquest state machine diagram

PDelay
Begin Port Request
Command Enabled is Received

Wait for
PDelay
Request

Response
Follow Up

Disabled
State

Initial
State

Response

Figure 25 — MD_PDelay Response state machine diagram

These two state machines cover the first two steps defined in [4.2.2. The third step
corresponds to the best master clock selection and establishment of a synchronization
spanning tree, referring to the BMCA. However, since automotive systems do not need

to support it, we concentrate on the fourth step of the list.

Chapter 5. gPTP Prototype Proposal and Implementation 66

5.2.1.3 Transport of Time Synchronization

The transport of time-synchronization information involves six state machines, four from
the media independent layer and two from the media dependent layer. The latter two are
the MD__SyncReceive and MD__SyncSend state machines in the MD Entity. The former
four are the PortSyncSyncReceive and PortSyncSyncSend state machines in the PortSync
Entity, the SiteSyncSync state machine in the SiteSync Entity and the ClockSlave state
machine in the Clock Slave Entity.

The MD _SyncReceive state machine receives Sync and Follow Up messages and sends
the time-synchronization information carried in these messages to the PortSyncSyncRe-
ceive state machine, in the Port Sync entity of the same port, using a Sync Receive
Structure. The sync message supplies the Sync Receive Structure with the port iden-
tity information that identifies the port from which the synchronization information was
originated from. The port identity contains an 8-byte MAC address in the IEEE EUI-64
format to identify the time-aware system and a port number value to identify the port
within the time-aware system (IEEE..., 2011). It goes into the sourcePortIdentity field of
the Sync Receive Structure. Besides this information, the sync message also brings to the
structure a logMessagelnterval value, used for determining how long the state machine
should wait for the follow up message to arrive.

The main attributes acquired from the Follow Up message to the synchronization
process are the preciseOriginTimestamp, the correctionField and the cumulativeScale-
dRateOffset. The preciseOriginTimestamp is the grandmaster time when the received
time-synchronization information was sent. This attribute is directly passed to the Sync
Receive Structure. The correctionField corresponds to corrections for fractional nanosec-
onds, it is chosen so that its sum with the preciseOrigin Timestamp is the grandmaster time
that corresponds to the local time of when the Sync message was sent. It is used for com-
puting the followUpCorrectionField of the Sync Receive Structure, which corresponds to
the elapsed time between the time the grandmaster sent the received time-synchronization
information and the time at which the time-synchronization information was sent by the
immediate upstream time-aware system. The cumulativeScaled RateOffset is a scaled rate
offset accumulated from the time-aware systems on the spanning tree from the grand-
master towards the immediate upstream node. It is used for computing the rateRatio
attribute from the Sync Receive Structure, that is the ratio of the grandmaster frequency
to the frequency of the LocalClock entity of the time-aware system at the other end of
the link attached to this port.

Another important information attached to the Sync Receive Structure is the up-
streamTxTime attribute, that corresponds to the time in which the Sync message was
received minus the propagation time on the link attached to this port divided by neigh-
borRateRatio. In order to calculate it, the moment in which the Sync message is received

is timestamped, while the propagation delay on the link (neighborPropDelay) and the

Chapter 5. gPTP Prototype Proposal and Implementation 67

neighborRateRatio are already computed by the peer delay mechanism. Also, in case the
link is not symmetric, a delay asymmetry factor dA, obtained from the timestamps taken
in the peer delay mechanism, has to be taken into consideration for compensating the
asymmetry. The value of dA is then divided by rateRatio and subtracted from the Sync
message timestamp.

Just as in the MD__PDelay Resquest, the rateRatio and upstream Tz Time compu-
tations involve multiplications and divisions that affect the implementation timing and
performance. Thus, the same strategy of sending the operands and performing the nec-
essary calculations on the PS in adopted here. This strategy is also well suited for the
synchronization process because the default period between sync messages is 125ms, so it
is affordable to spend a few microseconds in the calculations. Observe in table [9 the main
attributes in a Sync Receive Structure and in Fig. [26|a simplified state machine diagram
for MD __SyncReceive state machine.

Table 9 — Sync Receive Structure Main Attributes

Sync Receive Structure Main Attributes

sourcePortIdentity

logMessagelnterval

preciseOriginTimestamp

followUpCorrectionField

rateRatio

upstreamTxTime

Follow Up
Begin Port Sync Message Message

Command Enabled is Received is Received

Wait for

Initial Disabled S Wait for Request
State State yne Follow Up Calculations
Message Message to PS

Calculations
Results are

Build and Received

Send
Sync Receive
Structure

Figure 26 — MD__SyncReceive state machine diagram

The PortSyncSyncReceive state machine, in the Port Sync Entity of the same port,
receives the Sync Receive Structure and uses the information carried in it to compute the
accumulated rateRatio and the syncReceipt Timeout Time. Then, a Port Sync Sync Struc-
ture is built, using these computed values and others from the Sync Receive Structure,

and sent to the SiteSyncSync state machine.

Chapter 5. gPTP Prototype Proposal and Implementation 68

The rateRatio received from Sync Receive Structure is the ratio of the grandmaster
frequency to the frequency of the LocalClock entity of the time-aware system at the other
end of the link attached to this port. On the other hand, the neighborRateRatio is the
measured ratio of the local clock frequency of the time-aware system at the other end
of the link attached to this port, to the local clock frequency of this time-aware system.
Then, the accumulated rateRatio adds these both values and subtracts one to obtain the
ratio of the grandmaster frequency to the frequency of the current time-aware system.

The syncReceipt Timeout Time is computed from the logMessagelnterval by using the
PS for performing calculations. It corresponds to the time interval expected between sub-
sequent Sync messages, i.e. the time at which sync receipt timeout occurs if a subsequent
time-synchronization event message is not received by that time.

The sourcePortldentity, logMessagelnterval, preciseOriginTimestamp, followUpCor-
rectionField and upstreamTxTime attributes from the Sync Receive Structure are directly
passed to the Port Sync Sync Structure. Observe in Table [10| the main attributes from
Port Sync Sync Structure and in Fig. 27| a block diagram for the state machines seen so

far regarding the synchronization process.

Table 10 — Port Sync Sync Structure Main Attributes

Port Sync Sync Structure Main Attributes

sourcePortIdentity

logMessagelnterval

preciseOriginTimestamp

followUpCorrectionField

upstreamTxTime

accumulated rateRatio

syncReceipt TimeoutTime

Following the synchronization process, the single SiteSyncSync state machine in the
time-aware system receives a Port Sync Sync Structure from every port, as each port
structure receives Sync and Follow Up messages and has a MD__ SyncReceive and a Port-
SyncSyncReceive state machine. The SiteSync state machine then forwards back to the
PortSyncSyncSend state machine of all Port Entities the Port Sync Sync Structure re-
ceived by the time-aware system slave port. Remember that only one port in a time-aware
system can have a slave port role. Thus, the SiteSyncSync state machine can be thought
as a multiplexer that receives synchronization information from every port and forwards
back to them only the information coming from the slave port.

The PortSyncSyncSend state machine receives the time-synchronization information,
received at the time-aware system slave port, from the Site Sync Entity in a Port Sync
Sync structure. Then, it builds a Sync Send Structure that has the same fields of the
Sync Receive structure, so its main attributes are the same ones displayed in table [0 This
structure shall be sent to the MD Entity if, and only if, the present port has a master

role. Therefore, the main purpose of the PortSyncSyncSend state machine is to guarantee

Chapter 5. gPTP Prototype Proposal and Implementation 69

SiteSyncSync
State Machine
Port Sync Sync Port Sync Sync
PorStructure | ST Portstructure | TS
WPort Entity _ | ____ ... WPort Entity . | ...
PortSyncSyncReceive PortSyncSyncReceive

State Machine E State Machine E
Sync Receive

E Sync Receive
+ MD Entity Structure
' r

EMD Entity Structure
(] [

MD_SyncReceive

E . MD_SyncReceive
State Machine -

State Machine E

Sync Follow Up Sync Follow Up
Message Message Message Message

Figure 27 — Synchronization process partial block diagram

the synchronization information is only forwarded to the MD Entity of master ports, as
they are the only ports sync and follow up messages should be sent from.

The MD__SyncSend state machine in the MD entity is the one who receives the Sync
Send Structure containing the synchronization information. This state machine does the
opposite of the MD__SyncReceive state machine. It receives the Sync Send Structure and
uses the information contained in it to build a sync and a follow up message, which are
sent to the MAC layer. In this process, calculations involving double precision floating
points are required to compute some of the follow up message attributes, such as the cu-
mulativeScaledRate Offset. Like before, the PS is used for accomplishing these calculations.
Observe in Fig. 28 the MD _SyncSend state machine diagram.

Sync Send
Begin Port Structure
Command Enabled is Received

Wait for
Sync Send
Structure

Send
Sync
Message

Request
Calculations
to PS

Disabled
State

Initial
State

Calculations
Results are
Received

Send
Follow Up
Message

Figure 28 — MD _SyncSend state machine diagram

Chapter 5. gPTP Prototype Proposal and Implementation 70

Observe in Fig. the synchronization process message flow discussed so far. Note
the SiteSyncSync state machine forwards to all port structures the Port Sync Sync Struc-
ture received from the slave port. Also note only master ports send sync and follow up
messages, as only them send a a Sync Send Structure from the PortSyncSyncSend state

machine to the MD SyncSend state machine.

SiteSyncSync State Machine

State Machine

State Machine

State Machine

State Machine

send |i} send |i}

L] L}

L] L]

] N ' .

' Receive ' Receive
: :

L} L}

Port Sync Sync |Port Sync Sync Port Sync Sync |Port Sync Sync

Slave Port Structure Structure Master Port | Structure Structure
_Structure L. _Structure L.
P PortEntity) ...l ! L PortEntity ...l :
: E PortSyncSync | | PortSyncSync :E : E PortSyncSync | | PortSyncSync :E
Vo Receive Send E: i Receive Send E:
E 1| State Machine| |State Machine|!: E 1| State Machine| | State Machine|':
E Sync Receive E E Sync Receive Sync Send E
' MP Structure ' ' MP Structure Structure '
{Entity ' {Entity i :
P e PR e 2
, MD_Sync MD_Sync . MD_Sync MD_Sync

Sync Follow Up
Message Message

Sync FollowUp Sync Follow Up
Message Message Message Message

Figure 29 — Synchronization process message flow

Now, the ClockSlave in the Clock Slave Entity is the only state machine left to be
explained regarding the transport of time-synchronization. This state machine is the one
responsible for the actual synchronization of the time-aware system to the grandmaster
clock. In order to do so, it receives the Port Sync Sync Structure from the SiteSync-
Sync state machine every time a sync and a follow up message have been received by
the slave port. Then, it performs calculations to obtain a clockSlaveTime and a clock-
SlaveTime__ready signal. The former, compounded by a 48 bits seconds field and a 32 bis
nanoseconds field, corresponds to the actual timestamp used for synchronizing the slave
node to the grandmaster clock. The latter is simply a 1 bit signal that indicates whenever
the clockSlaveTime is updated.

The clockSlaveTime is computed according with the equation In this equation,
the terms preciseOriginTimestamp, followUpCorrectionField and rateRatio are received
from the Port Sync Sync Structure, while neighborPropDelay, neighborRateRatio and dA
are obtained from the peer delay mechanism. It is executed every time a sync and a follow
up message arrives in a slave port and, consequently, a new Port Sync Sync Structure is

received at the ClockSlaveSM state machine from the SiteSyncSync state machine. Also,

Chapter 5. gPTP Prototype Proposal and Implementation 71

every time this computation is performed, a pulse is sent on the clockSlaveTime ready

signal, so the node knows when to re-synchronize itself to the grandmaster clock.

clockSlaveTime = preciseOriginTimestamp + followUpCorrectionField+

(neighbor PropDelay/neighbor Rate Ratio) * rate Ratio + dA; (5.1)

This concludes the transport of time-synchronization information and node synchro-
nization processes, fourth step in the list [£.2.2. Observe in Fig. [30a diagram exhibiting all
state machines involved in the time-synchronization process and in the peer delay mech-
anism. Note that the LinkDelaySyncIntervalSetting state machine is the only one in the
diagram that has not been explained yet. This state machine is responsible for configur-
ing the pdelayReqInterval and syncInterval signals, which corresponds to the time interval
between Peer Delay Request messages and Sync messages, respectively. In other words,
it configures the periodicity in which Peer Delay Request messages and Sync messages
are sent by the time-aware system. For this purpose, a Signaling message that carries
information about these periods is received and then used for making the requested con-
figurations.

In spite of all state machines represented in Fig. |30] have been implemented, some of
them are not needed by slave-only AVB end stations. AVB end stations do not need to
forward any synchronization information through sync and follow up messages. There-
fore, even though the PortSyncSyncSend and MD SyncSend state machines have been

implemented, they are only needed for bridges.

5.2.2 MAC Layer Interface

The proposed implementation for the gPTP protocol has already been detailed explained
with regard to the protocol operation. The peer delay mechanism, transport of time
synchronization and node synchronization were presented by means of the state machines
implemented and messages’ structures involved in these processes. However, it is also
necessary to discuss how the gPTP Core, designed in Fig. interfaces with the MAC
Layer, i.e. how the messages are received from and sent to the Ethernet MAC Layer and,
consequently, to the PHY and the other nodes in the network.

First, we summarize all messages received and sent by the gPTP Core from Fig.
Table [11] presents the purpose and flow of the gPTP messages, while Table [12| describes
their size in bytes as well as the main fields of each message. In addition to the six
gPTP messages in these tables, the gPTP protocol also specifies an Announce message.
This message is used by the BMCA state machines and brings information related to
the grandmaster selection and spanning tree formation. Since, those are static and pre-

configured for our case, there is no need to support Announce messages in the design.

Chapter 5. gPTP Prototype Proposal and Implementation 72

gPTP Core
SiteSyncSync State Machine
3
clockSlaveTime |}
ClockSlave '
Port Sync Sync Port Sync Sync State Machine cIockSIayeT|me
Structure Structure ready signal R
Y SRR Port Structure e eeeaeae
A eleleleleleluiuiks Infuleleieteleleeeletuues === .
E i| PortSyncSync | | PortSyncSync|: . .
i :| Receive Send EPort Entity '
i 1| State Machine| | State Machine|: '
: Sync Receive Sync Send E
' Structure Structure MD Entity E
L i Bl il |
| MD_Sync MD_Sync MD_PDelay || MD_PDelay | | LinkDelaySync |:!
: Receive Send Request Response IntervalSetting |, E
: ! | State Machine| | State Machine| | State Machine| | State Machine| | State Machine E:
v v v v v
Sync Follow Sync Follow Up PD PD PD PD PD PD Signaling
Msg Up Msg Msg Req Resp Resp Req Resp Resp Msg
Msg Msg Msg Follow Msg Msg Follow
Up Up
Msg Msg

Figure 30 — gPTP Core

Table 11 — gPTP messages traffic flow in slave-only AVB end stations

gPTP Message Sent from state machine Received by state machine Purpose
Signaling - LinkDelaySyncIntervalSetting Configure Sync and PDelay Request messages periods
Sync MD_SyncSend MD__SyncReceive Forward/Receive Synchronization Information
Follow Up MD_SyncSend MD_SyncReceive Forward/Receive Synchronization Information
PDelay Request MD __PDelayRequest MD__PDelayResponse state machine Peer Delay Mechanism
PDelay Response MD__PDelayResponse MD__PDelayRequest Peer Delay Mechanism
PDelay Response Follow Up MD__PDelayResponse MD__PDelayRequest Peer Delay Mechanism

Table 12 — gPTP messages

gPTP Message Message Length Message Fields
Signaling 60 bytes Header (34 bytes) targetPortIdentity (10 bytes) ‘ messagelntervalRequestTLV (16 bytes)
Sync 44 bytes Header (34 bytes) Reserved (10 bytes)
Follow Up 76 bytes Header (34 bytes) | preciseOriginTimestamp (10 bytes) | Follow Up_information_TLV (32 bytes)
PDelay Request 54 bytes Header (34 bytes) Reserved (10 bytes) Reserved (10 bytes)
PDelay Response 54 bytes Header (34 bytes) | requestReceiptTimestamp (10 bytes) requestingPortIdentity (10 bytes)
PDelay Response Follow Up 54 bytes Header (34 bytes) | responseOriginTimestamp (10 bytes) requestingPortIdentity (10 bytes)

The gPTP messages contain information from the concern of only the state machines
within the gPTP core, while the MAC layer (in which they are supposed to be sent to and
received from) only supports Ethernet frames whose format is exposed in Fig. . Thus,
the interface between the gPTP core and MAC layer must handle a format conversion by
encapsulating/extracting gPTP messages in/from Ethernet frames. For this purpose, a

Build Frames and a Build Messages modules are also designed in the SoC programmable

Chapter 5. gPTP Prototype Proposal and Implementation 73

logic.

MAC Destination MAC Source Ethertype Payload CRC
(6 bytes) (6 bytes) (2 bytes) (46 to 1500 bytes) (4 bytes)

Figure 31 — Ethernet frame format

The Build Frames module receives the messages to be sent to the MAC layer from the
gPTP Core and encapsulate them to Ethernet frames by adding the gPTP message to the
Ethernet frame payload field, and filling the other fields in the frame as follows. The MAC
Destination has the fixed hexadecimal value 01-80-C2-00-00-0E; the MAC source receives
the MAC address of the node; the Ethertype has the fixed hexadecimal value 88F7; and
the cyclic redundancy check (CRC) is filled with an appropriated error-detecting code.

Once the Ethernet frames are built, they are sent to [First-in First-out (FIFO) structure

connected to the MAC layer. In this way, the gPTP messages received by the Build
Frames module are encapsulated to Ethernet frames one by one and sent to the FIFO,
which sends the frames to the MAC layer.

The Build Messages module works in the opposite way from the Build Frames. A
FIFO receives Ethernet frames containing gPTP messages from the MAC layer and for-
wards these frames to the Build Messages module, which extracts the encapsulated gPTP
messages. Once a message is extracted, the Build Messages module forwards it to the
appropriate state machines in the gPTP Core, as summarized in Table [L1], and receives
another Ethernet frame from the FIFO. For example, a received sync message is forwarded
to the MD__ SyncReceive state machine, while a received Peer Delay Response message is
forwarded to the MD _PDelayRequest state machine.

The FIFOs have a 64-bit width, such that the Ethernet frames are sent and received in
pieces of eight bytes. This means the Build Frames and Build Messages modules not only
encapsulate and extract gPTP messages, but also splits and puts together Ethernet frames
in 8 bytes packets. In order to identify which Ethernet frames contain gPTP messages
and to define how many eight bytes packets form the Ethernet frame, eight extra bytes
are included in the beginning of the Ethernet frame. These bytes are constituted by
an identification code, with hexadecimal value of 0x5555AAAA, and the length of the
Ethernet frame.

Considering the interface with the MAC layer, the final design is offered in the form

of an |[Intellectual Property (IP)|that can be included by any project in need of a IEEE

802.1AS implementation for slave-only end stations. A diagram for this IP is exhibited in
Fig. [32]

Chapter 5. gPTP Prototype Proposal and Implementation

74

MAC
Layer

gPTP IP for slave-only end stations

8 bytes _ 8 bytes i gPTP
packets | Receive packets: | Build Msgs .
FIFO ' | Messages
L}
L}
L}
'
8 bytes . 8 bytes ; gPTP
backets | Transmit | packets! Build | Msgs
FIFO . Frames

Figure 32 — gPTP IP design

gPTP
Core

75

6 GPTP PROTOTYPE EVALUATION

After its implementation, the IEEE 802.1AS protocol design proposed in chapter |5/ needs
to be tested and validated with regard to its feasibility and behavior. The implementation
feasibility needs to be verified in a hardware platform to ensure that timing and utilization
limitations are satisfied. For this purpose, reports are acquired from the Xilinx Vivado
tool used and then analyzed. Furthermore, in order to verify the implementation behavior,
i.e. if the design works in the way it should, an experimental setup is established along
with a testing methodology.

This chapter then presents and analyzes timing and utilization reports for the design
implementation on Chapter [5] Then, it proposes a testing methodology based on simu-
lation and hardware tests as well as the their results. The intention is to prove that the

developed implementation fulfills the IEEE 802.1AS standard requirements and works
properly.

6.1 DESIGN ANALYSIS AND ITS USE AS A COMPONENT

In Chapter [3], the gPTP IP implementation for slave-only end-stations was detailed con-
sidering all its modules and state machines, as exhibited in Fig. [32] In order to test this
implementation, it is necessary to create a larger project that uses the IP and also other
elements needed for this IP to work, such as the FIFOs that interface with the MAC layer.
Observe in Fig. [33] the register-transfer level (RTL) diagram obtained in Vivado for this
larger project.

It is composed by nine modules, in which one of them it the gPTP IP to be evaluated,
named as gptp3_ 0, which has seven inputs and five outputs as described in Tables|13|and
respectively. Note that, apart from the clockSlaveTime and clockSlaveTime_ready
outputs, highlighted in Fig. [32, most of the other gPTP IP inputs and outputs are used
for interfacing with two FIFOs and exchanging data with the processor system. As seen
before, the FIFOs are used for interfacing the gPTP IP with the MAC layer and the
processor system is used to perform calculations required by the IEEE 802.1AS standard.

Table 13 — gptp3_ 0 IP Inputs

Input/Output Description

S00_ AXI AXT interface connection for performing configurations and calculations using the processor.

RTC_input Real time clock used in the timestamps operations.
receive_ I Empty | Indicates if the receive FIFO (FWFT_FIFO2_0) is empty.
receive_ff DataOut | Data that comes from the receive FIFO (FWFT_FIFO2_0) to the gPTP IP.
transmit_ff Full | Indicates if the transmit FIFO (FWFT_FIFO2 1) is full.

s00 axi aclk clock that runs all state machines and modules in the project.

s00__axi_ aresetn asynchronous reset used for all state machines and modules in the project.

Chapter 6. gPTP Prototype Evaluation 76
FWET_FIFO2_1
e D063 0]
st me
= 2 Ful
xiconstant_0 e ERTL: Aemost_Emgty
L T ' Armost Ful
0] ReadEn comal]
L T FIFO2 v
FWFT_FIFO2_0
dack M::ﬂ]
xiconstant_1 e =‘= ::u -
L wietn ERTLE T
(“"“""‘/r‘ Dataln830) Avos_Ful =
Yoy Reafn cneg0] o
FIFO2
0
(ERTL:
g rc_oulilo)
pa7_0_axi_penph /
e
il soo_m 1 o3 0 :
o ACLX Ld 4 so0_ax 1
ARESETN l? | : RTC_inpu63:0) Trme530] el {D cockSiavelime(63:0]
S00_ACLK W M0 AN [g~ mose_§_Empty SveTrme_ready el [D dockSiaveTime_ready
sw_aesen gl Lyl o §_Oua0u630) recaive_§_ReatEn |t
MOO_ACLX g vament ¥ Ful vammit_¥ WaseEn +
MOO_ARESETN g #00_a_ack vamait 8 Daakia0) e
G =00_au_aesen '
AXT Tnterconne ' . ,
L - R
rst_ps7_0_SOM FIXED 10
shwast _sync ok mb_raset
@d_reset_n bus_stuct_resef0 0)
@ aux_mset_n pesgheal_meeg0:()
- mb_debug sys_ st sl 0]
- dom_bcked |_aresen[00) J,
System
processing_system?7_0
oor 4+
- FuED 10 4+
M_AXI_GPO_ACLK ZYNO M_AXI_GPO e |- wted
’ FOLK_CLXO
FOLK_RESETON L—
Figure 33 — RTL diagram of project that uses the gPTP IP designed
Table 14 — gptp3_ 0 IP Outputs
Input/Output Description
clockSlaveTime Timestamp used for synchronizing the slave node to the grandmaster clock.

clockSlaveTime_ready

Indicates whenever clockSlaveTime is updated.

receive ff ReadEn

Receive FIFO (FWFT_FIFO2 0) read enable signal used for requesting data to be read.

transmit ff WriteEn

Transmit FIFO (FWFT_FIFO2_ 1) write enable, used for requesting data to be written.

transmit I Dataln

Data that goes from the gPTP IP to the transmit FIFO (FWFT FIFO2 1).

Two of the other eight modules presented in Fig. |33] are FIFOs used to interface the

gPTP IP with the
FIFO exhibited in

MAC layer. The FIFO FWFT _FIFO2 1 corresponds to the transmit
Fig. It receives 8-byte packets containing the Ethernet frames that

encapsulate the gPTP messages to be transmitted to the MAC layer. The 8-byte packets
are received in the input Dataln, while the output DataOut (not connected) would be
connected to the MAC layer. On the other hand, the FIFO FWFT_FIFO2_ 0 corresponds

Chapter 6. gPTP Prototype Evaluation 7

to the receive FIFO exhibited in Fig. It receives from the MAC layer 8-byte packets
containing the Ethernet frames that encapsulate the gPTP messages and transmit them
to the gPTP IP. The FIFO input Dataln, connected to a Constant module, would actually
be connected to the MAC layer, while its output DataOut is connected to the gPTP IP, so
the 8 bytes packets are transmitted. As described in Tables[13]and[14] the FIFOs modules
have some status signals reporting whether the FIFO is full or empty. Those are used by
the FIFOs control, so there is to attempt to write in a FIFO that is full or to read from
a FIFO that is empty.

Other two modules are simply Constant modules connected to the FIFOs. They are
used only for obtaining the design utilization and timing reports, as no input can be left
unconnected. The xlconstant_ 0 writes 1 to the FWFT_FIFO2 1 (transmit FIFO) read
enable and to the FWFT_FIFO2_0 (receive FIFO) write enable, so the transmit FIFO
can always read data coming from the gPTP IP and the receive FIFO can always send
data to the gPTP IP. On the other hand, xlconstant 1 simulates the input that comes
from the MAC layer. The use of a constant value does not affect the utilization and timing
reports, as the actual connection with the MAC layer is not evaluated, only its interface.

The rtc_ 0 module is a real time clock used as time reference by the gPTP IP Local-
Clock entity. It is a 64-bit signal with resolution of 10 nanoseconds. The gPTP modules
inside the IP perform format conversions when timestamps are taken, since the standard
uses a timestamp format with a 48-bit field for seconds and a 32-bit field for nanoseconds.

The processing system7 0 corresponds to the processor present in the Zynq chip.
It is used by the gPTP IP in order to perform configurations and calculations whenever
necessary, as explained in Chapter 5] Combining hardware IP modules with the processing
system is the great advantage of using a system-on-chip (SoC) architecture. It allows the
complex calculations required in the gPTP protocol to be performed by the processor,
while the hardware handles all the data flow and calculation requests.

The last two modules are also related to the processing system. The ps7_0_axi_periph
is the AXI Interconnect IP core used as interface between the gPTP IP (gptp3_0) and the
processing system (processing_ system7_0). It handles all data transfer between these two
modules. The rst_ps7 0 50M module, on the other hand, is responsible for the processor

system reset. One of its outputs is also used for resetting the gPTP IP and FIFOs modules.

6.1.1 Design Reports

Field Programmable Gate Arrays (FPGAs) are pre-fabricated silicon devices that can be
electrically programmed in the field to become almost any kind of digital circuit or system
(FAROOQ; MARRAKCHI; MEHREZ, [2012). Normally, they are constituted by [Configurable
[Logical Blocks (CLBs) that implement logic functions, I/O blocks that make off-chip con-

nections, and programmable routing that interconnect all these elements. A CLB element

contains a pair of slices, each comprised by [Look-up Tables (LUTs)|and storage elements.

Chapter 6. gPTP Prototype Evaluation 78

The former are tables that determine what should be the output for any given input,
they implement logical functions. The latter can be [Look-up Table RAM (LUTRAM),
which are distributed RAM memories; |[Flip-Flop (FF) elements; or registers. In order to

save resources, distributed RAM can be replaced by [Block RAM (BRAM) units, which
are dedicated blocks of RAM memory; and carry logic can be moved to |[Digital Signall

[Processing (DSP)|slices, which are dedicated digital signal processing units. This is just

a brief explanation about FPGA’s resources, so one can understand better the reports to
be presented in this subsection. Further information can be found in manuals and user
guides from FPGA manufacturers.

The design described in Fig. [33]is synthesized and implemented in Vivado, such that

utilization and timing reports are obtained. An [Integrated Logic Analyzer (ILA) is also

included in the design, so signals can be probed and inspected to verify the design correct
functioning. The ILA works as another module in the design, such that it also utilizes
resources from the chip. All reports obtained from Vivado and displayed in this chapter
consider the xc7z020clg400-1 part as Xilinx Zynq chip and also the resources needed for
the TLA.

Figures and show a summary of the chip resources utilization for the whole
project in Fig. [33|and the ILA. Figures [36]and [37 bring a more detailed utilization report
in absolute and percentage values of the utilization, respectively. Note that the design fits
the chosen chip. If it demanded more resources than the chip can offer, either the design
would have to be improved or the chip would have to be replaced by a bigger (and more

expensive) one.

Resource Utilization Available Utilization %

LUT 15133 53200 28.45
LUTRAM 1588 17400 9.13
FF 16351 106400 15.37
BRAM 7.50 140 5.36
DSP 8 220 3.64
10 65 125 52.00

Figure 34 — Project from Fig. [33| utilization report

LUT 1 28%
LUTRAM - 9%
FF A 15%
BRAM - 5%
DSP A 4%
10 1 52%

T T

0 25 50 75 100

Figure 35 — Project from Fig. |33] utilization report

Chapter 6. gPTP Prototype Evaluation 79
Name .4 SliceLUTs Slice Registers MLZS M:fes Slice "80215 "ﬂ‘g;jrsy LUTFiipFlop BlockRAMTile DSPs Bonded I0B
(53200) (106400) et rasony (133000 i (aaoey | Pairs (53200) (140) (220) (125)

~ (0 gptp_wrapper 16351 423 80 6316 13545 1588 5049 75 8 85
> & dbg_hub (dbg_hub_C 413 697 1 0 215 389 24 248 0 0 0
~ @ gptp_i (apip 14055 14459 416 80 5769 12617 1438 4453 0 8 0
> [@ FWFT_FIFO2_0 (aptp_F 985 106 64 0 284 207 688 106 0 0 0

> [FWFT_FIFO2_1 (aptp_F 986 106 64 0 287 208 688 106 0 0 0

> [@ gptp3_0 (aptp_optp3_0_0 11702 13628 288 80 5094 11702 0 4014 0 8 0

> processing_system7_0 (0 0 0 0 0 0 0 0 0 0 0

> [@ ps7_0_axi_periph (gptp_ 366 456 0 0 162 305 61 205 0 0 0

> rst_ps7_0_50M (gptp_rst 15 25 0 0 1 14 1 13 0 0 0

> @ rtc_0 (gptp_rtc_0_0 1 128 0 0 23 1 0 1 0 0 0
xiconstant_0 (g 0 0 0 0 0 0 0 0 0 0 0
xlconstant_1 (aptp_xlcon 0 0 0 0 0 0 0 0 0 0 0

> & u_ila_0(u_ila_0_C 665 1195 6 0 377 539 126 322 75 0 0

Figure 36 — RTL diagram of project that uses the gPTP IP designed
Name .y SliceLUTs Slice Registers M:;'es MuFfes Slice L&Tgi? &g;s; LUTFiipFlop BlockRAMTile ~ DSPs Bonded (0B
(53200) (106400) et azony (13300 eidl irangy P (53200 (140) (220) (125)

~ 1 gptp_wrapper 28.45% 1537% 150% 0.60% 47.49% 25.46% 9.13% 9.49% 536% 3.64% 52.00%
> & dbg_hub (dbg_hub_C 0.78% 0.66% <0.01% 0.00% 162% 073% 0.14% 0.47% 0.00% 0.00% 0.00%
~ [@ gptp_i (aptp 26.42% 1359% 156% 0.60% 4338% 23.72% 8.26% 8.37% 0.00% 3.64% 0.00%
> [E FWFT_FIFO2_0 (aptp_F 1.85% 010% 0.24% 0.00% 214% 0.56% 3.95% 0.20% 0.00% 0.00% 0.00%

> [@ FWFT_FIFO2_1 (¢ 1.85% 010% 0.24% 0.00% 216% 0.56% 3.95% 0.20% 0.00% 0.00% 0.00%

> [@ gptp3_0 (gptp_aptp3_0_0 22.00% 1281% 1.08% 060% 38.30% 22.00% 0.00% 7.55% 0.00% 3.64% 0.00%
> [@ processing_system7_0 (0.00% 000% 0.00% 0.00% 000% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

> [H ps7_0_axi_periph (gpip_ 0.69% 044% 0.00% 0.00% 122% 057% 0.35% 0.39% 0.00% 0.00% 0.00%

> [@ rst_ps7_0_50M (aptp_rst 0.03% 002% 0.00% 0.00% 008% 0.03% <0.01% 0.02% 0.00% 0.00% 0.00%

> [@ rte_0 (gptp_rtc_0_0 <0.01% 012% 0.00% 0.00% 017% <0.01% 0.00% <0.01% 0.00% 0.00% 0.00%
xiconstant_0 (gptp_xicon 0.00% 000% 0.00% 0.00% 000% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

@ xiconstant_1 (gptp_xicon 0.00% 0.00% 0.00% 000% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

> % u_ila_0 (u_ila_0_CV 1.25% 112% 0.02% 000% 283% 101% 0.72% 0.61% 536% 0.00% 0.00%

Figure 37 — RTL diagram of project that uses the gPTP IP designed

In the same way the utilization reports were obtained, the timing report exhibited

in Fig. was also acquired from Vivado. It shows that there is no failing endpoint in

the design, i.e. that there is enough time for the signals to go through their paths. It is

important to highlight here the timing impact of when there are many flip-flops (or other

logical units) in a signal path. The strategy of making calculation requests for the PS to

perform the computations and getting the results back from it was not pointless. If those

computations were performed in the FPGA itself, timing would simply not be met due

to the amount of logic resources required in the signals path.

Setup
Worst Negative Slack (WNS). 0.586 ns
Total Negative Slack (TNS): 0.000 ns
Number of Failing Endpoints: 0
Total Number of Endpoints: 42254

All user specified timing constraints are met.

Hold

Worst Hold Slack (WHS):
Total Hold Slack (THS):
Number of Failing Endpoints:

Total Number of Endpoints:

0.017 ns
0.000 ns

0
42254

Worst Pulse Width Slack (WPWS):
Total Pulse Width Negative Slack (TPWS):

Pulse Width

Number of Failing Endpoints:

Total Number of Endpoints:

Figure 38 — RTL diagram of project that uses the gPTP IP designed

3.750 ns
0.000 ns
0

18081

Chapter 6. gPTP Prototype Evaluation 80

6.2 TESTING METHODOLOGY AND RESULTS

In order to validate the gPTP IP, it is necessary to test it as a component of a larger
design, such the one described in Fig. In the last section, it was already verified that
the hardware utilization and and timing requirements are met. Now, we need to verify the
design behavior, i.e. if it works as expected. For this reason, a simulation is performed for

obtaining a proof of concept. Then, tests in utilizing the Zync SoC hardware take place.

6.2.1 Simulation Tests

The same software used for the design development, Vivado, also provides a simulation
tool that is very useful for verifying the system behavior. Basically, a test bench is written
in hardware description language to simulate all input signals of a design, while its output
signals waveforms are observed.

The design in Fig. corresponds to a node in an AVB network. To test this node
behavior, especially regarding the gPTP protocol operation, it is necessary to simulate
an AVB network with, at least, two nodes, so one of them is the slave-only end station
designed and the other is a grandmaster. Moreover, it is also necessary to simulate the
MAC layer through which the nodes communicate to each other. Then, the intended
simulation must minimally have the designed end station node (that is the unit under
test), a grandmaster node and something that works as a MAC layer. Observe a diagram
of this scenario in Fig.

8 bytes 8 bytes
Transmit | packets packets | Receive
FIFO FIFO
Grandmaster MAC End Station
Node Layer Node
8 bytes 8 bytes
Receive | _packets Dpackets | Transmit
FIFO FIFO

Figure 39 — Testing scenario

The MAC layer represented in Fig. has the only objective of exchanging packets
from one node to the other. Since each node has two FIFOs as interface, it is possible to
abstract the MAC layer by transferring packets from the grandmaster node transmit FIFO
directly to the end station node receive FIFO and also from the end station node transmit
FIFO to the grandmaster node receive FIFO. Just as described in Fig. However, the
existence of two FIFOs simply forwarding packets to each other does not make much

sense. It is just a waste of resources. The MAC layer can be better abstracted by keeping

Chapter 6. gPTP Prototype Evaluation 81

only two FIFOs between the end station and the grandmaster node, as exhibited in Fig.

(41l

8 bytes 8 bytes
,| Transmit | packets J ... | _packets | Receive
FIFO FIFO
Grandmaster MAC End Station
Node Layer Node
8 bytes 8 bytes
Receive | packets |, . . backets | Transmit
FIFO FIFO

Figure 40 — Testing scenario

MAC Layer Abstraction
P -y Aol LA S -

: 8 bytes 8 bytes E
» packets Receive packets !
: FIFO :
Grandmaster | : i | End Station
Node ' : Node
E 8 bytes 8 bytes 1
' packets Transmit _Packets ‘
; FIFO 5

Figure 41 — Testing scenario

In Fig. the end station node that corresponds to gPTP IP is represented along with
the modules that compound it: Build Messages, Build Frames and the gPTP Core. All of
them, already explained in detail. These modules and their interaction with each other
are exactly our object of study. They represent the final product of this dissertation and
thus need to be verified for their perfect functioning. On the other hand, the grandmaster
node is created only for testing the end station designed and has the same architecture of
the end station with a Build Messages, a Build Frames and a gPTP Core modules. Besides
these, however, it also has an extra module, called Message Generator, which periodically
creates and transmits signaling, sync and follow up messages.

The Message Generator module ensures the end station node receives signaling, sync
and follow up messages, so the gPTP Core behavior upon the receipt of these messages
can be observed. Moreover, the end station itself periodically sends to the grandmaster
node peer delay request messages. The behavior of gPTP Core within the grandmaster
is then observed in order to verify that the peer delay response and peer delay response

follow up messages are correctly transmitted back to the end station. If this is the case,

Chapter 6. gPTP Prototype Evaluation 82

the end station behavior upon the receipt of these two types of messages can also be
observed. Therefore, in this way, it is possible to verify the behavior of all state machines

in the gPTP core as well as of the Build Messages and Build Frames modules.

End Station Node (gPTP IP)

8 bytes 8 bytes

]
kets | Recei : gPTgP :
packets eceive packets , Build Msas '
FIFO i | Messages :
] 1

1
Grandmaster ! gPTP :
Node ! Core .
1
8 bytes 8 bytes , gPTP '

Transmit ackets ! Build

packets D : ui Msgs '
FIFO ! Frames .
1

clockSlaveTime
ready signal

clockSlaveTime

Figure 42 — Testing scenario

In this way, the simulation used to validate the gPTP IP for the end station node
is expected to verify the points below. Note that the numbers 2, 3 and 4 correspond
to the peer delay mechanism; the numbers 5, 6 and 7 represent the transport of time-
synchronization information and the number 8 is the computation needed for the actual

node synchronization.
o Extraction of Messages with the Build Messages Module
« Functioning of the gPTP Core

1. Receipt of Signaling Messages and Configuration of time periods

Creation and Dispatch of Peer Delay Request Messages

Receipt of Peer Delay Response and Peer Delay Response Follow Up Messages
Computation of Neighbor Rate Ratio, Propagation Delay and asCapable
Receipt of Sync and Follow Up messages

Creation and Dispatch of Sync Receive Structure

Creation and Dispatch of Port Sync Sync Structures

e R T

Computation of clockSlaveTime and clockSlaveTime ready outputs
« Encapsulation of Messages with the Build Frames Module

Before diving into the gPTP Core operation itself, lets first validate the extraction and
encapsulation of gPTP messages along with its interaction with the receive and transmit
FIFOs. In Fig. [43|it is possible to observe the transmission of a peer delay request message

by the end point to the grandmaster and also the receipt of the correspondents peer delay

Chapter 6. gPTP Prototype Evaluation 83

response and peer delay response follow up messages sent by the grandmaster to the end
point.

The tzSendPDelayReq signal is a flag that goes high whenever a peer delay request
message is to be sent by the end station, which occurs periodically according with the
period set in the LinkDelaySyncIntervalSetting state machine. When this happens, the
Build Frames module gets the peer delay request message in the txSendPDelayReqMessage
signal and creates a sequence of 8 bytes packets. This sequence corresponds to the message
and is sent to the transmit FIFO by being written to the transmit_ff Dataln signal
(in blue) while this FIFO’s write enable signal transmit_ff _WriteEn (in blue) is high.
Since the transmit FIFO along with the receive FIFO are an abstraction of the MAC
layer, as soon as the transmit FIFO holds data, this data is extracted by the Build
Messages module in the grandmaster node. Then, it is transmitted from the transmit
FIFO to the Build Messages module by the transmit_ff DataOut signal (in red) while
the transmit_ff ReadEn (in red) is high.

In the opposite way, the receive_ff WriteEn and receive_ff Dataln (in red) in Fig.
represent the transmission of a peer delay response and a peer delay response follow up
messages from the grandmaster node to the end point. As soon as the receive FIFO holds
data, this data is extracted by the Build Messages module in the end point so the actual
messages are built. Observe the 8 bytes packets received by the Build Messages module in
the receive_ff DataOut signal (in blue) while the receive_ff ReadEn is high, and in the
rcvdPDelayRespMessage and rcvdPDelayR...wUpMessage signals, the peer delay response
and peer delay response follow up messages built. Note that, once these messages are
built, the signals rcvdPDelayResp and rcvdPDelayRespFollowUp go to high to indicate
the messages were already received and are ready to be used. In Fig. it is possible to
observe a zoom in from Fig. [43], so the 8 bytes packets that form the peer delay response

message received are better displayed.

36,00, (U0 (1,2,0,2,0036,00, (U0}, (00,001, . (00,00, U5, U0, L0001),0003 05, £3) , (U, UU, UY, U, UV, UU, U, UU, UV, 0D, (U, UU, UU, U0, UU, U1, U0, UU, U0, UT)

I L L

555555555555 vy {@X@(@) 0 o 0o (8)axXayEem o ¥ oy a) o (o aa(aXaxa FEiEiEiE0100aaca
L]

I L | —

DUUUUUUUUUUUUUTY (e O XT) (XX Ereeszo0n X@ @) (EXEXE X)) wwwwwwwn

o, v, 09, 0,) o ; o, s,

1

36,00, (UU} , (00,00} ,0000000000000000 , (U, U, U, UU' , { (bbb bbb bbb bbb} , 0001} , 0002, 08,71, 0003b3c), ((a3, 28,22, a8, 28, 22, 2a, 2) , 0001} (e,

|

Figure 43 — Message Encapsulation and Extraction Waveform

In Fig. it is possible to observe the operation of the MD__PDelayRequest state
machine, responsible for the transmission of peer delay request messages and the receipt
of peer delay response and peer delay response follow up messages. This state machine
periodically builds peer delay request messages in the txSendPDelayRegMessage signal,
and then writes a logical one to the txSendPDelayReq signal. This is done so the Build

Chapter 6. gPTP Prototype Evaluation 84

TyuzL 00001 {7£0503000100bbbb Y 0500000000000000 ¥ X fEEEffEf0L00aRas W(EEezszo0s ¥(5599555995959955) &k

£££52008555aaaa 559999999 1) vz1ss 000001007U003600 7 100bbEb (0500000000000000 FEEfEEE£0L0D: ££££52005555aaaa
(1,3,,2,0036,00, (UU), {00,01),0000000000000000, {UU,UU, UV, UU) , { (bb, bb, bb, bb, kb, bb, bb, bb) 0001} ,0002,05,7£) , (000030000000, 0003bble), { (aa,aa,aa,aa, aa,aa,aa,aa) ,0001) «

L| B

Figure 44 — Message Encapsulation and Extraction Waveform Zoom in

Frames module knows that the gPTP message is ready to be sent to the MAC layer. Also,
since the peer delay request message is about to be sent, a timestamp t; (timestampl
signal in green) is taken to record the event time.

This process is repeated every time the MD PDelayRequest state machine is in state
s2 (cur_state signal in blue, not explicitly written, but between states sb and s3). Then,
the current state signal changes to s3 and stays there while the appropriated peer delay
response message does not arrive. Upon its receipt, indicated by the pulse in the rcvdPDe-
layResp signal, the timestamp ty (timestamp/ in green) is taken and the timestamp to
(timestamp?2 in green) is extracted from the peer delay response message in the rcvdPDe-
layRespMessage signal. After this, the current state changes to s4 and waits for the peer
delay response follow up message to arrive, which is indicated by the pulse in the rcuvd-
PDelayRespFollowUp signal. Then, the timestamp t3 (timestamp3 in green) is extracted
from the arrived message in the rcvdPDelayR...wUpMessage signal.

Once all four timestamps t1, t5, t3 and t4 are acquired, the current state changes to s7
and a calculation request is made to the PS by sending a pulse in the PS calc_request
signal in red. The PS handles the required computations for the neighbor rate ratio and
propagation delay, and sends the results back to the PL, while indicates they are ready by
sending a pulse to the PS_calc_ready signal (in red). The computed propagation delay
is then compared with a threshold, so the asCapable signal is set if the propagation delay
is less than the threshold, or cleared otherwise. Observe, also in Fig. the neighbor
propagation delay (D__PS) and the asCapable signal (both in red).

Name Value 366,200 ns 366,300 ns 366,400 ns 366,500 ns 366,600 ns 366,700 ns 366,800 ns 366,900 ns 367,000 ns 367

% cur_state s5 S5 pod 53 4 57 X

% tSendPDelayReqMessage (1,2U2(C (1,2,U,2,0035,00, (UL}, {00,00),0000000000000000 {1,2,U,2,0036,00, {(JU), (00,00),0000000000000000, (UU,UU,UU,UU}, { {(aa,aa,aa, aa,aa,aa,aa,aa),0001)
1% txSendPDelayReq 0 1

Iy clear_txSendPDelayReq 0 [l

% rovdPDelayRespMessage (1,3U,2,C (1,3,U,2,0036,00, (U0}, (00,01} ,0000000000000000, (UU, U, UT, UT) , { (bb,bb,2b,bb,bb,bb,bb bb) ,0001),000 | (1,3,U,2,0035,00, (UU}, (00,01),00000000000000!
Ifs revdPDelayResp 0 1

i clear_rcvdPDelayResp 0 I

2 rovdPDelayR. wUpMessage (1,3U2,((1,2,U,2,0035,00, (U0}, (00,00 ,0000000000000000, (UU,UU,UJ,UT) , { (bb,bb,bb,bb,bb,bb,bb,bb} 0001} ,0002,05,7£), (000000000 /| (1,a,U,2,0036,00, (UU}, 100,
1§ revdPDelayRespFollowUp 0 Il

5 clear_rcvdP...espFollowUp 0 Il

5 timestamp1[63:0] 36643 24434 X 36643

2§ timestamp2 0,366600 0,244510 X

5 timestamp4[63:0] 36680 24471

9 timestamp3 0,366630 0,244540

1 PS_calc_request 0 |
1% PS_calc_ready u 11
& D_PsS[95:0] 170 170

14 asCapable 1

Figure 45 — MD__ PDelayRequest state machine operation

At the grandmaster side, the MD _PDelayResponse state machine receives the peer

delay request message sent by the end station and sends the peer delay response and peer

Chapter 6. gPTP Prototype Evaluation 85

delay response follow up messages received from the end station, that are exhibited in Fig.
Observe in Fig. that the receipt of the peer delay request message is signaled by
the rcvdPDelayReq signal, while the transmission of the peer delay mechanism response
messages are signaled by the tzPDelayResp and txPDelayRespFollowUp signals. Note that
the timestamps ¢, and t3, received in the end station MD_PDelayRequest state machine,
are taken in the grandmaster MD PDelayResponse state machine, as exhibited by the
t2_pdelayReq ingress and t3_pdelayResp__egress signals (in red).

Name Value 366,550 ns 366,600 ns 366,650 ns 366,700 ns 366,750 ns

& rcvdPDelayReqMessage 12U2C 1,2,U0,2,0036,00,{UU0 (1,2,U,2,0036,00, (UU),{00,00),00000000
U revdPDelayReq 0 [
15 clear_rcvdPDelayReq 0 1

+ &f txPDelayRespMessage (13U2((1,2,U,2z,0036,00,(UU;,{00,0 } (10 {1,3,U,2,0036,00, (U0}, {00,01)
5 tPDelayResp 0 [
U5 clear_txPDelayResp 0]

© @9 tPDelayRes..wUpMessage (1,3U2((l,a,U,z,0036,00, (U} (00,00),00000C 0 {1,a,U,2,0036,00, (UU), {00,
% tPDelayRespFollowUp 0 | |
U clear_txPDel...RespFollowU 0 1
1% cur_state s2 sz W sz W sa ¥

© @9 t2_pdelayReq_ingress[63:0] 36660 24451

@9 13_pdelayResp_eqgress[63:C 36663 24454 X

Figure 46 — MD _PDelayResponse state machine operation

This concludes the simulation tests of the peer delay mechanism operation, that cor-
responds to the numbers 2, 3 and 4 from the list of points to be verified in the imple-
mentation. Carrying on with the verification, the waveforms related to the transport of
time-synchronization information and the computation of the clockSlaveTime and clock-

SlaveTime_ready signals, used to synchronize the node, are displayed in Fig.

Name Value 375,100 ns 375,150 ns 375,200 ns 375,250 ns 375,300 ns 375,350 ns 375,400 ns 375,450 ns 375,500 ns
1% receive_ff_ReadEn 0 N | |
+ % receive_ff_DataOut[63:0] UuuuUL o {£f0 O X0 0 o o o {00 o {freen ¥o Oy o o o (o (¥ o oo oo (frees0 o ¥o o (o (oo o
1% cur_state s1 s1 X sz sz X
1 revdSync 0 1
1% revdSync_clear 0 Il
+ % sync_msg (10020 (1,0,U,2,002c,00, (UU}, (00,01),000300 (1,0,0,2,002c,00, (UT), (00,01} ,0000000000000000, {1, U, U, UTT) , { 1bb,bb,bb,bb, bk
1 revdFollowUp 0 1
1 revdFollowUp_clear 0 1
+ % followUp_msg (18U,20 (1,8,U,2,004c,00, (UL}, (00,00} ,0000000000280000, (UT, UL, UT, UU) , { (bb,bb,bb, bbb, bb,0 | {1,8,U,2,004c,00, (U, (00,00} ,0000000000280000, (U1
1% sendSyncReceiveStructure 0 |l
U sendSyncReceiveStructure_clear 0 1
+ % syncReceiveStructure 0000, { (bb,bb,bb,bb,bb,bb,bb,bb) , 0001, £1, (000000000004, 0000001470) 000000) 00000000C000000000280000, { (bb, bb, bb, bi:
1% cur_state s3 53 W__sz
1 sendPSSyncStructure 0 1
1% sendPSSyncStructure_clear 0 |
+ & PSSyncStructure 0001,000 _0001, 000000000000000S £7249400,000100000000000000280000, { (bb, bk, bb, bb, bb, bb,bb,bb) 0001 , £1, (0000) 0001,0) 0001, 000000C00000000631c £9-
1% cur_state s1 s1
1% sendPSSyncStructure2 0 1
18 revdPSSyncStructure2_clear 0 Il
+ &5 PSSyncStructure2 0001,000 0001, 15£72d9400, 80000, ¢ (bb,bb,bb,bb,bb,bb,bb,bb} ,0001),£1, { 004,000 3 0001, J0631:
1% cur_state s1 s1 W sz
+ %4 revdPSSync_preciseOriginTimestamp 520 4,20 X
+ =4 revdPSSync_followUpCr ionField[95:0]
+ &4 revdPSSync_rateRatio[63:0]
15 PS_calc_request 0 Tl
16 PS_calc_ready u Iy
+ = calc_clockSlaveTime[63:0] X 7
24 clockSlaveTime[63:0]
5 clockSlaveTime_ready 0 [l

Figure 47 — Synchronization Process Waveforms

Chapter 6. gPTP Prototype Evaluation 86

The pulses in signals rcvdSync and rcvdFollowUp (in blue) in Fig. indicate the
receipt of a sync and a follow up by the MD SyncReceive state machine, which use
the information carried in these messages to perform some calculations and build the
Sync Receive Structure in signal syncReceiveStructure. As soon as this structure is built,
the sendSyncReceiveStructure signal goes high to notify the PortSyncSyncReceive state
machine, which then reads the structure and builds the correspondent Port Sync Sync
Structure in the PSSyncStructure signal (in red). Once this other structure is ready, the
SiteSyncSync state machine is notified by the sendPSSyncStructure signal (in red) and
then receives it. This happens for each port in the end station, as the SiteSyncSync state
machine receives a Port Sync Sync Structure from each port. The SiteSyncSync state
machine then identifies which structure received came from the slave port, so it forwards
this structure in the PSSyncStructure2 (in green) signal to the ClockSlave state machine.

Upon the receipt of the Port Sync Sync Structure, the ClockSlave state machine ex-
tracts from it the preciseOriginTimestamp, the followUpCorrectionField and the rateRatio
values in the signals rcvd PSSync__preciseOrigin Timestamp, rcvd PSSync__followUpCorrectionField
and rcvdPSSync__rateRatio (in magenta). Then, it sends a pulse to the PS _calc_request
signal (in magenta) in order to request the PS to perform the needed computations
for the clockSlaveTime output. When the results are ready, the PL is notified by the
pulse in the PS calc_ready signal (in magenta) and then clock cycles are added to the
calc__clockSlaveTime, so the clockSlaveTime output compensates for the time spent by
the PS in the calculations. Also, when the clockSlaveTime output is updated, a pulse is
sent to the clockSlaveTime ready output.

At this point, besides the Build Messages and Build Frames modules, the behavior of
the MD__PDelayRequest, MD__PDelayResponse, MD _SyncReceive, PortSyncSyncReceive,
SiteSyncSync and ClockSlave state machines in the gPTP Core were already verified by the
simulation results. Despite the PortSyncSyncSend and MD__SyncSend state machines are
implemented, they are not used in end station devices, so no simulation is done for them.
Therefore, the only state machine left to be tested is the LinkDelaySyncIntervalSetting,
responsible for configuring the periods in which peer delay request and sync messages are
sent. In our case, only the former period does actually matter, since sync messages are
not sent by end station devices.

The LinkDelaySyncIntervalSetting state machine operation is verified by the simu-
lation waveforms in Fig. [48] which exhibits the receipt of a Signaling message in the
revdSignalingMsg1 signal (in blue). The state machine waits for a signaling message to
arrive in state s2, then, upon its receipt, the signalingMsg1_linkDelayInterval temp and
signalingMsgl _timeSyncInterval temp signals are updated with values carried in the sig-
naling message. As their names indicate, these signals hold period values for the peer delay

request and sync messages, respectively.

Chapter 6. gPTP Prototype Evaluation 87

Name Value 315,360 ns 315,380 ns 315,400 ns 315,420 ns 315,440 ns 315,460 ns 315,480 ns 315,58

% receive_fi_ReadEn 0 | 1

2 receive_ff_DataOut[63:0] UUUUUL _££££580 {99950 ¥ ddddD } UzlcO /00000) UUUUD /| bbbbO { £1020 ¥ asaal ¥ 02010 ¥ 03010) 55550

& signalingMsg1 (1,cU20 (U,U,UUUUII, UL, (U0}, (UU, U0} , UUUUUUUUUUUUUUUY, (UU, U0, U, UU) , ¢ (U0, UU, U0, U, UU, U0, UU, U, UUUU0 {1,e,U0,2,003c,00, (UL},
& revdSignalingMsg1 0 .
1 revdSignalingMsg1_clear 0 |

% cur_state s2 sz 2

2 signalingMsg1_linkDelayinterval_temp[7:0] 80 uu T
2§ signalingMsg1_timeSyncinterval_temp[7:0] 80 g =o
9 signalingMsg1_flags_temp[1:0] 3 u (: 3

Figure 48 — LinkDelaySyncIntervalSetting Operation

6.2.2 Hardware Tests

Once the simulation results are analyzed and the behavior of the end station node re-
garding the gPTP protocol is successfully verified, we have a proof of concept that the
design works. In order to categorically state that our implementation works and satisfies
all requirements specified in the last chapter is to have it tested in a hardware platform.

For this purpose, we have available a prototype board that has the xc7z020clg400-1
part of the Xilinx Zynq chip, the same one used for acquiring the utilization and timing
reports. Thus, a hardware bitstream for the design and the included ILA is generated in
Vivado and deployed to the board’s memory. Besides this, the board’s flash memory is
programmed with the processor C code using the Xilinx SDK software. At this point we
have the design in Fig. [33] which corresponds to the slave-only AVB end station with only
the gPTP protocol implemented, deployed to the actual hardware.

Ideally, two boards would be necessary for testing the gPTP implementation by com-
municating an end point with a grandmaster, just as done in the simulation. However,
there was only one board available and other arrangements had to be made. We pro-
grammed the processor side of the SoC to, not only perform the calculations required by
the gPTP IP state machines, but to also emulate an AVB node (regarding only the IEEE
802.1AS standard). The emulated node creates and sends gPTP messages directly to the
receive FIFO in Fig. 33| design by sending the appropriated set of 8 bytes packets. In the
same way, it also receives packets from the transmit FIFO in Fig. [33| design and converts
them to gPTP messages, so these messages can be verified.

Following this approach, such as with the simulation, the gPTP IP behavior was tested
upon the receipt of peer delay request, peer delay response, peer delay response follow up,
sync, follow up and signaling messages. Besides this, the Build Messages and Build Frames
modules were tested and verified to correctly encapsulate and extract every gPTP mes-
sage, no matter its type. Finally, the clockSlaveTime and clockSlaveTime ready outputs
from the gPTP IP, that correspond to the actual time information used to synchronize the
node to the grandmaster were also validated according with the expected values for the
messages transmitted. Waveforms similar to the ones from the simulation were obtained
with the ILA for the hardware tests, such that all results are successful and consistent.

Furthermore, the required nanosecond precision was achieved, such that all time require-

Chapter 6. gPTP Prototype Evaluation

88

ments defined in the IEEE 802.1AS standard were satisfied.

89

7 CONCLUSION

Today, the exchange of information between ECUs in cars typically uses the Controller
Area Network (CAN) and the Controller Area Network with Flexible Data Rate (CAN
FD). CAN and CAN FD protocols need to operate perfectly and in a reliable way, such
that the communication between ECUs is not compromised. Moreover, in the context of
a car connected to the exterior world, it is necessary to provide security mechanisms to
prevent, or at least detect, cyber-attacks to the intra-vehicular networks.

This dissertation proposes a novel Error Injection Technique for CAN and CAN FD
that enables the smash of any bit, from the first DLC bit (in CAN frames) or the BRS
bit (in CAN FD frames), within frames from CAN/CAN FD networks using only a single
device connected to the bus. By directly acting on the bus and adulterating specific bits,
the tool provides efficiency and flexibility in customizing errors to be injected in the
network. This mechanism can be very helpful for checking error conditions in real-world
scenarios that affect the safety of vehicles. Thus, the tool can be a powerful ally for
validating the correct functioning of automotive components and the safety requirements
at the system level.

Then, this dissertation proposes a responsive intrusion detection system for CAN
networks that can be deployed in low-cost hardwares, such as in a Raspberry Pi, and
embedded in vehicles. The technique uses the one-class Support Vector Machine and the
Isolation Forest algorithms to detect intrusion frames, possibly resulted from a cyber-
attacks. Six models are defined by using these algorithms with different amount of the
CAN frames data bytes as features. An experimental evaluation conducted and shows
that the iForest models outperform the OCSVM models by achieving mean accuracy
rates higher than 99% for the different amount of data bytes used as features. Moreover,
it shows that the more data bytes are used as features the larger the accuracy rate mean
and the smaller the accuracy rate standard deviation.

The rising of new and more complex automotive applications that require much higher
bandwidths, such as ADAS and Infotainment systems, contributed for the emergence of
the Automotive Ethernet. Despite many of these new applications required determin-
ism, Ethernet was not originally conceived to support deterministic traffic. Thus, a few
strategies to overcome the lack of determinism needed to be proposed.

The AVB standards were developed in order to provide time-synchronized streaming
of audio and video using IEEE 802.3 Ethernet. One of these standards, the IEEE 802.1AS,
defines the gPTP protocol that is responsible for synchronizing the nodes within an AVB
network. Furthermore, the gPTP protocol can also be applied to others time-sensitive
applications for synchronizing nodes. It can be used for controlling the wheels of an

electric car, for example. Even though this protocol has a great importance and directly

Chapter 7. Conclusion 90

affects a system’s capacity of accomplishing synchronized activity, there are not many
implementations of it available for the industry. Most are proprietary technologies that
offer no implementation details and others do not offer the demanded nanosecond precision
for some systems with strict timing requirements.

This dissertation provides a hardware implementation of the gPTP protocol utiliz-
ing a low-cost SoC platform. The implementation is tested with simulation and tests in
hardware and satisfies the expected behavior for the protocol. The nanosecond precision
specified by the IEEE 802.1AS standard, which is demanded for applications with strict
timing requirements, is fulfilled. Moreover, implementation details are provided to help
with future researches on the protocol.

Beyond the contributions and scope of this dissertation, a few future works are pro-
posed. The combined use of the proposed Error Injection and IDS techniques for CAN
networks is suggested, so they can work together as an intrusion prevention system ca-
pable of detecting and corrupting intrusion frames. The combination of this techniques
has, however, rigid time requirements. In order to corrupt some intrusion frame, such that
the ECUs would discard it, it is necessary to classify the frame as regular or intrusion
fast enough so it is possible to corrupt an intrusion frame before the it is over. It is then
necessary to measure the detection time for each frame and to ensure this time is lower
than a established time limit. Moreover, the redesign of the IDS system using a lower
level programming language, such as C, and also a Real Time Operating System (RTOS)
could contribute for guaranteeing a deterministic detection behavior.

Furthermore, the details provided for the proposed gPTP implementation allows one
to modify specifications and features of the protocol in order to investigate and propose
enhancements to the IEEE 802.1AS standard. For instance, a work front currently investi-
gates enhancements to the gPTP protocol that include grandmaster redundancy (P802.. ./,
2018). Moreover, another work front currently investigates security on the IEEE 1588
standard (IEEE..., 2018). Since the IEEE 802.1AS includes a profile of the IEEE 1588,
these security aspects could essentially be extended to the gPTP protocol. These investi-
gations can make use of the proposed implementation and are left as suggestions of future

works.

91

REFERENCES

AVNU FAQs. 2018. <http://avnu.org/faqs/>. [Online; accessed 04-June-2018].

BECHTEL, G.; GALE, B.; KICHERER, M.; DAVE, O. Automotive Ethernet AVB
Functional and Interoperability Specification. In: AVNU ALLTIANCETM. [S.1.], 2015.

BELLO, L. L. Novel trends in automotive networks: A perspective on Ethernet and the
IEEE Audio Video Bridging. In: IEEE. Emerging Technology and Factory Automation
(ETFA), 2014 IEEE. [S.1.], 2014. p. 1-8.

CHANDRAN, D.; GUDDETI, J.; SADASHIVAIAH, S. Automotive microcontroller
interface protocol validation in post-silicon using on-the-fly error injector. In: IEEE.
Embedded Computing and System Design (ISED), 2016 Sixth International Symposium
on. [S.1.], 2016. p. 152-157.

CHARETTE, R. N. This car runs on code. IEEFE spectrum, IEEE, v. 46, n. 3, p. 3, 20009.

CHECKOWAY, S.; MCCQY, D.; KANTOR, B.; ANDERSON, D.; SHACHAM,
H.; SAVAGE, S.; KOSCHER, K.; CZESKIS, A.; ROESNER, F.; KOHNO, T. et
al. Comprehensive Experimental Analyses of Automotive Attack Surfaces. In: SAN
FRANCISCO. USENIX Security Symposium. [S.1.], 2011.

D’AGOSTINO, R.; PEARSON, E. S. Tests for departure from normality. empirical
results for the distributions of ? and v/b'. Biometrika, Oxford University Press, v. 60,
n. 3, p. 613-622, 1973.

DEMSAR, J. Statistical comparisons of classifiers over multiple data sets. Journal of
Machine learning research, v. 7, n. Jan, p. 1-30, 2006.

FAROOQ, U.; MARRAKCHI, Z.; MEHREZ, H. Tree-based Heterogeneous FPGA
Architectures Application Specific Exploration and Optimization. [S.1.]: Springer Science
Business Media, 2012.

GARNER, G. M.; OUELLETTE, M.; TEENER, M. J. Using an IEEE 802.1 AS network
as a distributed IEEE 1588 boundary, ordinary, or transparent clock. In: IEEE. Precision
Clock Synchronization for Measurement Control and Communication (ISPCS), 2010
International IEEE Symposium on. [S.1.], 2010. p. 109-115.

GARNER, G. M.; RYU, H. Synchronization of audio/video bridging networks using
IEEE 802.1 AS. IEEE Communications Magazine, IEEE, v. 49, n. 2, 2011.

GESSNER, D.; BARRANCO, M.; BALLESTEROS, A.; PROENZA, J. sfican: A Star-
Based Physical Fault-Injection Infrastructure for CAN Networks. IEEE Transactions on
Vehicular Technology, IEEE, v. 63, n. 3, p. 1335-1349, 2014.

GMBH., R. B.; REIF, K.; DIETSCHE, K.-H. Automotive handbook. [S.l.]: Robert Bosch
GmbH, 2014.

HANK, P.; MULLER, S.; VERMESAN, O.; KEYBUS, J. V. D. Automotive Ethernet:
in-vehicle networking and smart mobility. In: EDA CONSORTIUM. Proceedings of the
Conference on Design, Automation and Test in Europe. [S.1.], 2013. p. 1735-1739.

http://avnu.org/faqs/

References 92

HARTWICH, F.; BASSEMIR, A. The configuration of the CAN bit timing. In: 6th
International CAN Conference. [S.1.: s.n.], 1999. p. 2-4.

HERBER, C.; SAEED, A.; HERKERSDORF, A. Design and Evaluation of a
Low-Latency AVB Ethernet Endpoint Based on ARM SoC. In: IEEE. High Performance
Computing and Communications (HPCC), 2015 IEEE 7th International Symposium
on Cyberspace Safety and Security (CSS), 2015 IEEE 12th International Conferen on
Embedded Software and Systems (ICESS), 2015 IEEE 17th International Conference on.
[S.1], 2015. p. 1128-1134.

IEEE 1588 Working Group Public. 2018. <https://ieee-sa.imeetcentral.com/1588public/
FrontPage>. [Online; accessed 05-June-2018].

IEEE Standard for Local and Metropolitan Area Networks - Timing and Synchronization
for Time-Sensitive Applications in Bridged Local Area Networks. IEEFE Std
802.1A8-2011, p. 1-292, March 2011.

IEEE Std 802.3bp-2016 (Amendment to IEEE Std 802.3-2015 as amended by IEEE Std
802.3bw-2015, IEEE Std 802.3by-2016, and IEEE Std 802.3bg-2016) - IEEE Standard

for Ethernet Amendment 4: Physical Layer Specifications and Management Parameters
for 1 Gb/s Operation over a Single Twisted-Pair Copper Cable. IEEE, IEEE, 2016.

KANG, M.-J.; KANG, J.-W. A novel intrusion detection method using deep neural
network for in-vehicle network security. In: IEEE. Vehicular Technology Conference
(VTC Spring), 2016 IEEE 83rd. [S.1], 2016. p. 1-5.

KIM, H. K. Car-Hacking Dataset for the intrusion detection. 2018. <https:
/ /sites.google.com/a/hksecurity.net /ocslab /Datasets/CAN-intrusion-dataset>. [Online;
accessed 04-June-2018].

KOPETZ, H.; ADEMAJ, A.: GRILLINGER, P.; STEINHAMMER, K. The time-
triggered Ethernet (TTE) design. In: IEEE. Object-Oriented Real-Time Distributed
Computing, 2005. ISORC 2005. Eighth IEEE International Symposium on. [S.1.], 2005.
p. 22-33.

LEE, Y.; PARK, K. Meeting the real-time constraints with standard Ethernet in an
in-vehicle network. In: IEEE. Intelligent Vehicles Symposium (1V), 2013 IEEE. [S.1],
2013. p. 1313-1318.

LIM, H.-T.; HERRSCHER, D.; VOLKER, L.; WALTL, M. J. Ieee 802.1 AS time
synchronization in a switched Ethernet based in-car network. In: IEEE. Vehicular
Networking Conference (VNC), 2011 IEEE. [S.1.], 2011. p. 147-154.

LIM, H.-T.; WECKEMANN, K.; HERRSCHER, D. Performance Study of an
In-Car Switched Ethernet Network without Prioritization. In: SPRINGER.
NetsjCars/Nets4 Trains. [S.1.], 2011. p. 165-175.

LIU, F. T.; TING, K. M.; ZHOU, Z.-H. Isolation forest. In: IEEE. Data Mining, 2008.
ICDM’08. Fighth IEEE International Conference on. [S.1.], 2008. p. 413-422.

LIU, F. T.; TING, K. M.; ZHOU, Z.-H. Isolation-based anomaly detection. ACM
Transactions on Knowledge Discovery from Data (TKDD), ACM, v. 6, n. 1, p. 3, 2012.

https://ieee-sa.imeetcentral.com/1588public/FrontPage
https://ieee-sa.imeetcentral.com/1588public/FrontPage
https://sites.google.com/a/hksecurity.net/ocslab/Datasets/CAN-intrusion-dataset
https://sites.google.com/a/hksecurity.net/ocslab/Datasets/CAN-intrusion-dataset

References 93

LIU, J.; ZHANG, S.; SUN, W.; SHI, Y. In-vehicle network attacks and countermeasures:
Challenges and future directions. IEEFE Network, IEEE, v. 31, n. 5, p. 50-58, 2017.

LUO, F.; MO, M.; LIU, C.; HUANG, Z. Can disturbances generator development. In:
IEEE. Vehicle Power and Propulsion Conference, 2009. VPPC’09. IEEE. [S.1.], 2009. p.
1587-1591.

MAHMOOD, A.; EXEL, R.; SAUTER, T. Impact of hard-and software timestamping on
clock synchronization performance over ieee 802.11. In: IEEE. Factory Communication
Systems (WFCS), 2014 10th IEEE Workshop on. [S.1.], 2014. p. 1-8.

MANN, E.; PEARSON, L.; ELDER, A.; HALL, C.; GUNTHER, C.; KOFTINOFF,
J.; BUTTERWORTH, A.; UNDERWOOD, D. Avb Software Interfaces and Endpoint
Architecture Guidelines. In: AVNU ALLIANCETM. AVnu Alliance TM Best Practices,
2013. [S.1.], 2013.

MARCHETTI, M.; STABILI, D. Anomaly detection of CAN bus messages through
analysis of id sequences. In: IEEE. Intelligent Vehicles Symposium (1V), 2017 IEEF.
[S.1], 2017. p. 1577-1583.

MATHEUS, K.; KONIGSEDER, T. Automotive Ethernet. [S.1.]: Cambridge University
Press, 2015.

MATHEUS, K.; KONIGSEDER, T. Automotive Ethernet. [S.1.]: Cambridge University
Press, 2017.

MATSUMOTO, T.; HATA, M.; TANABE, M.; YOSHIOKA, K.; OISHI, K. A method
of preventing unauthorized data transmission in Controller Area Network. In: IEEE.
Vehicular Technology Conference (VTC Spring), 2012 IEEE 75th. [S.1.], 2012. p. 1-5.

MILLER, C.; VALASEK, C. Remote exploitation of an unaltered passenger vehicle.
Black Hat USA, Mandalay Bay, Las Vegas, NV, USA, v. 2015, 2015.

MOSTAFA, M.; SHALAN, M.; HAMMAD, S. Fpga-based low-level CAN protocol
testing. In: IEEE. System-on-Chip for Real-Time Applications, The 6th International
Workshop on. [S.1.], 2006. p. 185-188.

NAVET, N.; SIMONOT-LION, F. In-vehicle communication networks-a historical
perspective and review. [S.1.], 2013.

NOVAK, J. Flexible approach to the Controller Area Networks test and evaluation. In:
IEEE. Intelligent Data Acquisition and Advanced Computing Systems: Technology and
Applications, 2009. IDAACS 2009. IEEE International Workshop on. [S.1.], 2009. p.
44-48.

NOVAK, J.; FRIED, A.; VACEK, M. Can generator and error injector. In: IEEE.
FElectronics, Circuits and Systems, 2002. 9th International Conference on. [S.1.], 2002.
v. 3, p- 967-970.

P802.1AS-REV — Timing and Synchronization for Time-Sensitive Applications. 2018.
<https://1.ieee802.0org/tsn/802- las-rev/>. [Online; accessed 05-June-2018].

PIMENTEL, M. A.; CLIFTON, D. A.; CLIFTON, L.; TARASSENKO, L. A review of
novelty detection. Signal Processing, Elsevier, v. 99, p. 215-249, 2014.

https://1.ieee802.org/tsn/802-1as-rev/

References 94

PRADEEP, Y. CAN-FD and Ethernet create fast reliable automotive data buses for the
next decade. Automotive Compilation, v. 10, 2013.

ROBERT BOSCH GMBH. CAN Specification version 2.0. [S.1.], 1991.

ROBERT BOSCH GMBH. CAN with Flexible Data-Rate Specification Version 1.0. [S.1],
2012.

SONG, H. M.; KIM, H. R.; KIM, H. K. Intrusion detection system based on the
analysis of time intervals of CAN messages for in-vehicle network. In: IEEE. Information
Networking (ICOIN), 2016 International Conference on. [S.l.], 2016. p. 63—68.

SRIDHARAN, K. Investigation of time-synchronization over Ethernet In-Vehicle
Networks for automotive applications. Dissertacao (Mestrado) — Technische Universiteit
Eindhoven, the Netherlands, 2015.

STANDARD, 1. IEEE Std 802.3bw-2015 (Amendment to IEEE Std 802.3-2015,
title=IEEE Standard for Ethernet Amendment 1: Physical Layer Specifications and
Management Parameters for 100 Mb/s Operation over a Single Balanced Twisted Pair
Cable (100BASE-T1), p. 1-88, March 2016.

STEINBACH, T.; KORF, F.; SCHMIDT, T. C. Comparing time-triggered Ethernet with
FlexRay: An evaluation of competing approaches to real-time for in-vehicle networks.
In: IEEE. Factory Communication Systems (WFCS), 2010 8th IEEE International
Workshop on. [S.1.], 2010. p. 199-202.

TUOHY, S.; GLAVIN, M.; HUGHES, C.; JONES, E.; TRIVEDI, M.; KILMARTIN,
L. Intra-vehicle networks: A review. IEEE Transactions on Intelligent Transportation
Systems, IEEE, v. 16, n. 2, p. 534-545, 2015.

WEBER, M.; KLUG, S.; SAX, E.; ZIMMER, B. Embedded hybrid anomaly detection
for automotive CAN communication. In: 9th Furopean Congress on Embedded Real Time
Software and Systems (ERTS 2018). [S.1.: s.n.], 2018.

WOO, S.; JO, H. J.; KIM, I. S.; LEE, D. H. A practical security architecture for
in-vehicle CAN-FD. IEEE Transactions on Intelligent Transportation Systems, IEEE,
v. 17, n. 8, p. 2248-2261, 2016.

WOO, S.; JO, H. J.; LEE, D. H. A practical wireless attack on the connected car and
security protocol for in-vehicle CAN. IEEE Transactions on Intelligent Transportation
Systems, IEEE, v. 16, n. 2, p. 993-1006, 2015.

ZHANG, M.; XU, B.; GONG, J. An anomaly detection model based on one-class SVM
to detect network intrusions. In: IEEE. Mobile Ad-hoc and Sensor Networks (MSN),
2015 11th International Conference on. [S.1.], 2015. p. 102-107.

ZINNER, H.; NOEBAUER, J.; GALLNER, T.; SEITZ, J.; WAAS, T. Application
and realization of gateways between conventional automotive and IP/Ethernet-based
networks. In: ACM. Proceedings of the 48th Design Automation Conference. [S.1.], 2011.
p- 1-6.

	Title page
	
	Acknowledgements
	Abstract
	Resumo
	List of Figures
	List of Tables
	Contents
	Introduction
	Preliminary Background and Related Works
	Objectives and Goals
	Dissertation Overview
	Main Contributions

	Traditional Intra-vehicular Networks
	CAN and CAN FD Networks
	CAN FD
	Bus synchronization
	Bit Stuffing
	Protocol Testing

	Other used networks
	LIN
	FlexRay
	MOST

	Proposed Error Injection and IDS Techniques for CAN Networks
	Bitsmash Error Injection Technique
	Requirements and Operation
	Hardware Implementation and Experiment
	Error Injection Module Design
	Experimental Setup
	Results

	CAN IDS System
	Security Concerns in CAN Networks and Countermeasures
	The Proposed IDS Technique
	Machine Learning Algorithms for Novelty Detection
	The Dataset and Cross-validation Approach

	Experiment and Results

	CAN IPS System: Corrupting Injected Frames

	Automotive Ethernet and AVB Time Synchronization
	Automotive Ethernet
	Origins and Generations
	Bringing Determinism to Automotive Ethernet
	AVB/TSN

	AVB Time Synchronization - IEEE 802.1AS
	Protocol Overview
	Protocol Operation
	Steps 1 and 2: the Peer Delay Mechanism
	Step 3: Best Master Clock Selection and Synchronization Spanning Tree
	Step 4: Transport of Synchronization Information and Node Synchronization

	Future perspectives for the IEEE 802.1AS standard

	gPTP Prototype Proposal and Implementation
	Design Requirements and Other Implementations
	Design Implementation
	Entities and State Machines
	Local Clock
	Peer Delay Mechanism
	Transport of Time Synchronization

	MAC Layer Interface

	gPTP Prototype Evaluation
	Design Analysis and Its Use as a Component
	Design Reports

	Testing Methodology and Results
	Simulation Tests
	Hardware Tests

	Conclusion
	References

