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ABSTRACT

Autoregressive (AR) models provide a means to approximate the spectrum of a signal.

In this work, we face the problem of designing computationally efficient methods for parameter

estimation in 1st and 2nd order AR processes. First, we review how the spectral distribution

provides an analysis of the variance of a time series by revealing its frequency components. Then,

we tackle the low-complexity parameter estimation problem in the AR(1) case using a binarized

process and a piecewise linear curve approximation heuristic, whose multiplicative complexity

does not depend on the blocklength. A comprehensive literature review on the binarized

version of AR(1) processes is presented. An algorithm based on stochastic approximations

is presented for estimating the parameters of AR(1) processes. We show that the resulting

estimator is asymptotically equivalent to the exact maximum likelihood estimator. For moderately

large samples (N > 100), the algorithm represents an economy of 50% in both additions and

multiplications with respect to the direct method. For the AR(2) model, based on simulations, we

show how estimates of its parameters can be obtained using two iterations of AR(1) filtering. We

bootstrap our AR(1) methods to solve the low-complexity AR(2) parameter estimation problem.

Such iterative estimation strategy displays competitive statistical behavior in simulations when

compared to standard maximum likelihood estimates. Finally, the low-complexity estimator

is experimented in the context of image segmentation. The autocorrelation of pixel intensity

values of texture images is considered as a descriptive measure for textures. The low-complexity

estimator has a smaller within variance than the exact estimator in 30% of the considered textures

and a smaller within median absolute deviation in 46% of of the cases.

Keywords: Signal Processing. Autoregressive Filters. Approximate Computing.



RESUMO

Modelos Autorregressivos (AR) provêm meios para aproximar o espectro de um sinal.

Neste trabalho, abordamos o problema de desenvolver métodos computacionalmente eficientes

para estimação de parâmetros de processos AR de primeira e segunda ordens. Primeiramente,

revisamos como a distribuição espectral fornece uma análise da variância de uma série temporal

ao revelar seus componentes de frequência. Em seguida, o problema de estimação do parâmetro

de correlação do modelo AR(1) é abordado usando um processo binário e uma heurística

para aproximação de curvas por uma função linear por partes. O estimador resultante tem

complexidade multiplicativa independente do tamanho de bloco, N. A literatura sobre técnicas

de binarização para análise de processos AR(1) é revisada. Um segundo algoritmo baseado

em aproximações estocásticas é apresentado para a estimação dos parâmetros de correlação

e variância de processos AR(1). Mostramos que o estimador resultante é assintoticamente

equivalente ao estimador de máxima verossimilhança. Para tamanhos de amostra moderados ou

grandes (N > 100), o algoritmo representa uma economia de 50% em adições e multiplicações

relativamente ao método direto. Para processos AR(2), a partir de simulações, mostramos

como seus parâmetros podem ser estimados com duas iterações de filtragem AR(1). Daí,

aplicamos o estimador aproximado desenvolvido para estimação em processos AR(1) para

estimar parâmetros autorregressivos de processos AR(2). Esta técnica mostra-se competitiva

em simulações de Monte Carlo quando comparada com o método de máxima verossimilhança.

Finalmente, o estimador aproximado é experimentado no contexto de segmentação de imagens.

A autocorrelação da intensidade de pixels em imagens de texturas é considerada como uma

medida descritiva para texturas. O estimador de baixa complexidade apresentou menor variância

por grupo em 30% das 13 texturas consideradas e menor desvio absoluto mediano por grupo em

46% dos casos.

Palavras-chave: Processamento de Sinais. Filtros Autorregressivos. Computação Aproxi-

mada.
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1 INTRODUCTION

1.1 MOTIVATION

In this work, we deal with the parameter estimation problem under computational

constraints. In particular, we study a class of stationary processes called autoregressive processes

of order 1, or AR(1) processes. The main motivation for this choice came from the field of image

processing: the image compression problem. For motivation, we consider the very informative

counting exercise presented in (GONZALEZ; WOODS, 2007, page 547). A video is a sequence

of image frames. The modern high-definition television (HDTV) standard adopts frames (which

are just matrices of pixel intensity values) with at least 1280-by-720 pixels. Color videos use

3 matrices in order to compose each frame, which sums up to 3× 1280× 720 pixels. Pixel

intensities are represented as 8-bit integers. Therefore, using 1 byte = 8 bits, the representation

of a single frame needs 3× 1280× 720 > 2.7× 106 bytes ≈ 2.7 MB of storage space. If a

video is displayed at a rate of 30 frames per second, which is half the usual rate used by modern

video-games, then 30 frames/second×2.7 MB/frame = 81 MB/second of data is consumed. For

instance, a two-hour movie occupies approximately

2 hours×3600 seconds/hour×81 MB/second = 583,200 MB≈ 583.2 GB

of storage space. How can we save hundreds of movies using only 1,000 GB of storage space?

The answer to this question is in image compression.

One of the most widely used tools for image compression is the Discrete Cosine

Transform (DCT) (AHMED; NATARAJAN; RAO, 1974; RAO; YIP, 2014). It is present in

image and video compression formats such as JPEG (WALLACE, 1992), MPEG (GALL, 1992),

H.261 (International Telecommunication Union, 1990), H.263 (International Telecommunication

Union, 1995), H.264/AVC (LUTHRA; SULLIVAN; WIEGAND, 2003) and HEVC (POURA-

ZAD et al., 2012). It is possible to show that the DCT matrix is the asymptotic case of the

Principal Component Analysis (PCA) (JOLLIFFE, 2002) of AR(1) processes when the pa-

rameter ρ of the AR(1) process tends to 1 (AHMED; NATARAJAN; RAO, 1974, Figure 2).

Therefore, the DCT works in a way analogous to the PCA: the input data is projected onto the

linear span of the DCT columns and only the most significant coefficients are retained. That is

the essence of (lossy) image compression. Because of this relationship, the highly-correlated

AR(1) process is a commonly accepted model for the local pattern of pixel intensity values of

natural images (PRATT, 2007). The main benefit of using the DCT is that the transformation
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matrix is fixed: it does not depend on the input data and it works as a compressor of a fairly

general class of signals.

We took a step back to study computationally efficient ways to estimate the corre-

lation parameter ρ of autoregressive processes of order 1. Such fast estimation methods can

be used to adaptively choose transformation matrices which better match the local statistics of

different image regions (RADÜNZ; BAYER; CINTRA, 2016) or to approximate the correlator

of synthesis-imaging arrays (ROMNEY, 1999).

In fact, it is possible to link the autoregressive parameters estimated iteratively with

the frequencies in the spectrum of the signal under analysis (LI; KEDEM, 1994). That opens

the door for solving common spectral analysis tasks such as signal detection and frequency

estimation via autoregressive modeling techniques. We give a step towards a low-complexity

approach to that class of problems in Section 5.1.2 by approximating the parameters of AR(2)

processes.

In systhesis-imaging arrays, the correlator subsystem is responsible for the actual

measurement of the interference patterns which describe the phenomena being sensed, analo-

gously to the lens of a digital camera (ROMNEY, 1999). In particular, the FX correlator makes

use of the convolution property of Fourier transforms (OPPENHEIM, 1999; SMITH, 2007) in

order to compute the cross-correlation between the signals under analysis. It has two parts: the F

part consists of computing the Fourier transform of the input signals, and the X part consists

of computing their elementwise product. Its performance depends heavily on the architecture

of complex multiply-and-accumulate (CMAC) processors, due to the use of Fourier transforms.

For instance, in (LAPSHEV; HASAN, 2017), a strategy for optimizing the computation of the

FX correlator is developed based on multiple CMACs. The motivation was to reduce the number

of memory readings in the X part. The authors report a 30% reduction in memory consumption

and 1.4% reduction in energy consumption.

The goal of the correlator is in fact to compute the cross-correlation between two sig-

nals. That can also be realized in the time-domain (ROMNEY, 1999, Section 5). Autoregressive

models provide approximations for describing arbitrary signals (DJURIC et al., 1999). Finally,

the methods emphasized in this dissertation can provide correlator architectures with virtually

zero multiplications.
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1.2 OBJECTIVES

We have the following objectives:

• Review theory and methods of stochastic processes described as linear filters, in particular

autoregressive filters;

• Review methods for parameter estimation in AR(1) processes;

• Propose methods for parameter estimation in AR(1) processes under hard computational

constraints.

1.3 DOCUMENT STRUCTURE

The dissertation has the following structure:

• In Chapter 2, we briefly review concepts and literature on low-complexity algorithms

used in signal processing tasks.

• In Chapter 3, we review the theoretical background on spectral analysis of stationary

processes. In particular, we focus on how the information contained in the power spectral

density furnishes valuable insights on the behavior of a stochastic process.

• In Chapter 4, we first use the tools of Chapter 3 to describe the statistical characteristics of

a given AR(1) process yn. We study classical estimators and we propose an approximate

algorithm to estimate the variance of the process which is asymptotically equivalent to

the maximum likelihood estimator and costs 50% less in terms of arithmetical complexity.

Then, we consider a binary process bn which contains only the sign information of yn.

We discuss the link between the stochastic structure of bn and yn under a more general

assumption than the one which is usually made, which we refer to as the symmetric

assumption (SA). We conjecture that there exists a retrieval mechanism for ρ based solely

on the information from bn when the SA is satisfied. We propose a low-complexity

estimator for ρ based on a piecewise linear approximation to the map between estimators

of bn and yn known to exist in the gaussian case. The proposed approximating function

has only dyadic rational coefficients and thus its computation has null multiplicative

complexity.

• Finally, in Chapter 5, we consider the application of the developments of Chapter 4 in

two situations. The first one is the parameter estimation problem in AR(2) processes.

Monte Carlo simulations suggest that we can estimate the parameters of an AR(2) process

with two iterations of AR(1) filtering. This way, we “bootstrap” the estimators studied in
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Chapter 4 and experiment with them in this method. The second application is in image

segmentation. We carried out computational experiments with texture images and the goal

was to distinguish the textures using only the first autocorrelation.
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2 LOW-COMPLEXITY METHODS IN SIGNAL PROCESSING

The mathematical theory of a method for signal analysis is usually developed before

an efficient way to the physical realization of the method is known to exist. This is a natural

path: the concept precedes the optimization of the computation. In other words, we know what

we want to know before we know how to acquire the desired knowledge. The appeal of a signal

processing method depends upon factors such as what physical phenomena the signals represent

and the amount of information which can be extracted from those signals by using the method.

In this chapter, we provide a brief introduction to the computational issues faced by

researchers and practitioners of signal processing. We cite a few signal processing methods, or

algorithms, which have proven to be valuable by providing practical insights into a wide variety

of real-world signals.

2.1 COMPUTATIONAL COMPLEXITY

An algorithm is a detailed, complete description for the realization of a well-defined

task. In signal processing, one of the the tasks is a computational method for processing data,

i.e., for extracting information from raw signals. More specifically, the implementation of signal

processing methods in digital computers needs to deal with the fact that data comes in discrete

pieces. More concretely, let us say that we have an N-point input data vector x = [x1,x2, . . . ,xN ]
>

and a quantity Q(x) is to be computed. The quantity Q(x) may be itself another data vector, or a

scalar. There may exist more than one way to compute Q(x). The computational complexity

of an algorithm is the amount of computational effort spent during its execution. Amongst

the factors which determine the performance of an algorithm are the hardware (or software)

architecture chosen for implementation, memory consumption and the number of arithmetic

operations it realizes (BRIGGS et al., 1995, Section 10.6). Such factors are used to decide

which algorithm–within a certain class of algorithms for computing Q(x)–is better suited for a

particular application.

Given the great number of different criteria which can be used to optimize the

computation of Q(x), usually the following approximation is used:

Computational Complexity≈ Arithmetical Complexity. (2.1)

The arithmetical complexity of an algorithm is measured by the number of arithmetic operations

needed to complete the algorithm. Arithmetic operations include addition, multiplication, and



19

bit-shifting. Considering the binary representation of a number, multiplications by powers of 2

are equivalent to bit-shifting operations. Thus, we can write (2.1) in more detail as

Computational Complexity≈Multiplications+Additions+Bit-shifts. (2.2)

As the size of the problem scales up, i.e., as N grows, the number of multiplications

becomes relatively more important as a measure of computational complexity in (2.2) (CINTRA;

OLIVEIRA, 2015, Table 1), (FOG, 2011, page 272). For that reason, substantial research

effort has been spent on optimizing (i.e., minimizing) the number of multiplications required to

compute a given quantity.

2.2 FAST ALGORITHMS

We start with a “toy example” from (BLAHUT, 2010, page 2). Let x = a+ jb and

y = c+ jd be complex numbers, where j ,
√
−1 and a,b,c,d are real scalars. The multiplication

xy results in the complex number z = xy = e+ j f , wheree = ac−bd,

f = ad +bc.
(2.3)

The algorithm which computes z using these equations is called the direct method to compute z.

In this case, the direct method uses 4 multiplications and 2 additions. However, notice that we

can write (2.3) equivalently as e = (a−b)d +a(c−d)

f = (a−b)d +b(c+d).
(2.4)

This new representation induces the following algorithm for computing z: (i) compute c1 =

(a−b)d, c2 = (c−d) and c3 = c+d, then (ii) e = c1 +ac2 and f = c1 +bc3. This algorithm

requires 3 multiplications and 5 additions. It trades 1 addition by 1 multiplication. Whenever

additions are cheaper than multiplications, we say that this is a fast algorithm for the computation

of z.

A fast algorithm is a procedure for the computation of a quantity Q which is more

efficient than the direct method implied by the conceptual definition of Q. In Chapter 2 of his

classical book, Arithmetical Complexity of Computations, Winograd consider three examples

of algorithms which revolutionized the way many computations are performed (WINOGRAD,

1980, Chapter 2). The first one is the Toom-Cook algorithm for the multiplication of two
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integers (TOOM, 1963; COOK; AANDERAA, 1969). The second one is the algorithm known

as the Fast Fourier Transform (FFT), or the Cooley-Tukey FFT algorithm, for the computation of

the Discrete Fourier Transform (DFT) (COOLEY; TUKEY, 1965). The third one is an algorithm

for matrix multiplication discovered by Strassen in 1969 (STRASSEN, 1969).

In particular, amongst the discrete transforms, the DFT has received special attention.

In (HEIDEMAN, 1988, Chapter 5), Heideman worked out a theory for the multiplicative

complexity of the DFT providing closed-form lower bounds on the number of multiplications

for computing an N-point DFT, as a function of N. The connection of the DFT with other

discrete transforms such as the Discrete Hartley Transform (DHT) (BRACEWELL, 1983), and

the DCT (AHMED; NATARAJAN; RAO, 1974) allows Heideman’s theory to be extended to

such cases (HEIDEMAN, 1988, Sections 6.4, 6.5).

2.3 APPROXIMATE ALGORITHMS

The research effort of the fast algorithms community is mainly focused on the exact

computation of a given quantity relevant in signal processing and data analysis. We can think of

such efforts as a fight against nature itself towards the cheapest way of physically realizing an

important computation. Both Gauss and Cooley & Tukey were concerned about energy when

they devised (and re-discovered) the FFT algorithm (HEIDEMAN, 1988, page 77). Gauss was

worried about spending his own mental energy, whereas Cooley & Tukey’s concern was mainly

spending electrical energy and computer time. What about the trade-off between the accuracy

and the cost of a computation? The answer to this question is in the paradigm of approximate, or

inexact, computing (HAN; ORSHANSKY, 2013; BETZEL et al., 2018; BASU et al., 2018).

In the literature of discrete transforms, the seminal paper of Haweel (HAWEEL,

2001) introduced the signed DCT (SDCT) as an alternative to the exact DCT for use in image

compression. The application of a discrete transform on an input vector x consists of taking

inner products of x with a set of discrete basis functions t>1 , t
>
2 , . . . , t

>
N . In matrix notation, we

can write the transformed vector as X = T ·x, where

Xk =
N

∑
n=1

tk,nxn

is the kth element of X and tk,n is the (k,n)th entry of the discrete transform T; i.e., t>k is the kth
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row of T. The idea of the SDCT is to approximate X as sign(T) ·x, where

sign(x) =


1, if x > 0,

0, if x = 0,

−1, if x < 0

is the sign function and, when applied to a matrix, it acts entry-wise. The implication of this

type of truncation is that the entries of sign(T) belong to the set {0,±1}. Therefore, it follows

immediately that the computation of the matrix-vector product sign(T) ·x has null multiplicative

complexity. In (CINTRA; BAYER, 2011; BAYER; CINTRA, 2010), a similar strategy is

applied to obtain DCT approximations based on the rounding function. Since the entries of the

DCT matrix are also absolutely bounded by 1.5, the approaches also produced matrices with

computationally simple entries with null multiplicative complexity. In (CINTRA, 2011), an

unified approach to approximate the computation of discrete transforms with sinusoidal kernels

is proposed based on dyadic rational rounding functions (BRITANAK; YIP; RAO, 2006, Section

5.4.4.3). Recently in (CINTRA et al., 2018), the underlying idea of matrix approximation was

formalized in a mixed integer programming model and applied to the convolutional kernels

of convolutional neural networks. The main goal was to reduce the computational cost and

speed-up the inference phase.
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3 SPECTRAL ANALYSIS OF STATIONARY PROCESSES

In this chapter, we present a discussion on stochastic processes, linear filters driven

by stationary processes, and the role of the spectral distribution on characterizing such processes.

We aim at conveying to the reader the main ideas necessary to the development of our proposed

methods. The focus is on theoretical aspects.

3.1 STOCHASTIC PROCESSES

A discrete-time stochastic process is a sequence {yn,n ∈ Z} of random variables,

which we refer to as simply yn, defined in a common probability space (U,E ,P), where U is

called the sample space, or the universe, E is a σ -algebra of subsets of U , and P is a probability

measure (POLLARD, 2002). An event E is any element of E : E ∈ E . The quantity P(E) is

called the probability of E; it measures “the size of E” within U . A real-valued random variable

in (U,E ,P) is a function y which maps U onto R, the set of real numbers. The collection

of pairs (R,P({u ∈ U : y(u) ∈ R})) for all R ⊂ R is called the distribution of y. The event

{u ∈U : y(u) ∈ R} can be more succintly denoted as y ∈ R and in order to differentiate that

notation from the more formal one, we write Pr(y ∈ R) for the probability of y lying in R.

Given a point u ∈U , a realization of yn is induced, namely {yn(u),n ∈ Z}, also

called a sample path. One can think of u as being the state of the world (FERGUSON, 2014), or

the configuration of nature, which determines the specific realization yn(u). While a member of

the sequence yn is a random variable, which is a function, yn(u) is just a sequence of numbers.

For instance, consider the problem of determining whether the limit of a sequence

exists as n→ ∞. Let us answer this question for (i) a “deterministic sequence” xn = ∑
n
i=1(1/2)i,

for n > 0, with xn = 0, for n≤ 0, and (ii) a stochastic process yn. We define yn as a “stochastic

version” of xn as follows. For n≤ 0, let yn = 0 (with probability 1). For n > 0, let yn = yn−1+xn

with probability 1/2 and yn = yn−1 with probability 1/2. That is, while xn = xn−1 +(1/2)n, i.e.,

xn always adds (1/2)n to the previous value xn−1, we flip a fair coin to decide whether (1/2)n is

added to the current value yn−1 in order to determine the value yn. An immediate consequence

is that yn ≤ xn with probability 1. It is well known that limn→∞ xn = 1. Therefore, even though

we do not know for sure what is the value of limn→∞ yn, the statement “limn→∞ yn is finite with

probability 1” is valid, in the sense that the nature of yn is in accordance with the use of this kind

of terms; besides that, the statment indeed holds true. The types of assertions that we do about

the sequences xn and yn are different in nature.
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There are deterministic sequences with such a complex behavior that probabilistic

statements may be used when one wants to have a glimpse on some property of the sequence.

For instance, let xn = 1 if n is a prime number and xn = 0 otherwise. In order to know the

value of xn, one simply needs to check if n is a prime number. There is no uncertainty involved

on that. However, as it turns out, when n grows, the computational realization of this check

becomes increasingly harder. Let π(n) = ∑
n
i=2 xi be the prime-counting function, which is

also a deterministic sequence. Thus, π(2) = 1,π(3) = π(4) = 2,π(5) = 3 and so on. The

Prime Number Theorem (WEISSTEIN, 2003) stands for a collection of results which provide

approximations for π(n) when n→ ∞. The theorem states that

lim
n→∞

π(n)
n/ log(n)

= 1.

The harshness of the problem of checking if n is prime motivates the following exploration. Let

n be an integer sampled uniformly at random from {n1,n1 + 1, . . . ,n2}, where n1 and n2 are

large-enough integers with n2 > n1: what is the probability of n being prime? The exact answer

for this question is
π(n2)−π(n1−1)

n2−n1 +1
.

The Prime Number Theorem gives an approximate answer to this question with a simple

substitution of π(n) by n/ log(n). For instance, if we take n1 = 7001 and n2 = 8000, we have

π(8000)−π(7000)
8000−7001−1

=
107

1000
= 0.107

and
8000/ log(8000)−7000/ log(7000)

8000−7001−1
≈ 0.100,

which represents a relative error of ≈−6.54%. This is an example of a complex deterministic

sequence whose analysis can benefit from probabilistic assertions.

The comment by Kolmogorov in (KOLMOGOROV, 1983) (seen in (RÊGO, 2007))

is useful here:

In everyday language we call random these phenomena where we cannot find a

regularity allowing us to predict precisely their results. [...] Therefore, we should

have distinguished between randomness proper (as absence of any regularity) and

stochastic randomness (which is the subject of the probability theory).

Hereafter, we use “stochastic processes”, “time series” interchangeably. Also, we refer to the

observed time series as a “data series”.
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3.2 STATIONARY STOCHASTIC PROCESSES

3.2.1 Strict stationarity

In order to completely characterize the behavior of a stochastic process yn, we must

know the joint distribution of any finite-dimensional slice (yn1, . . . ,ynk) from it. The collection

of all such distributions contains all the information about the dynamics of yn. When the

distributions of (yn1, . . . ,ynk) and (yn1+`, . . . ,ynk+`) are the same for any (n1, . . . ,nk), k and `, we

say that yn is strictly stationary (BROCKWELL; DAVIS, 2002, page 15, Remark 1). In particular,

for k = 1, strict stationarity implies that all marginal distributions of yn are the same. This notion

has mainly theoretical value. It means that the dynamics of the process does not depend upon

the specific time window considered.

3.2.2 Wide-sense stationarity, or stationarity

A weaker concept of stability has found to be more relevant in practice. It is based

on averages about yn. Define µy(n), E(yn) and Γy(n,m), E{(yn−µy(n))(ym−µy(m))} as the

mean and autocovariance functions of yn (BROCKWELL; DAVIS, 2002, Definition 1.4.1). We

say that yn is weakly stationary, wide-sense stationary, covariance-stationary, or simply stationary

if its mean is constant and its autocovariance function depends only on the discrete-time lag

between observations (BROCKWELL; DAVIS, 2002, Definition 1.4.2). More precisely, µy(n) is

constant and Γy(n,m) , γy(|m−n|), for all m,n. Note that γy(k) is an even function of k. We

also assume, without loss of generality, that the processes have mean zero, i.e. µy(n) = 0 for all

n. In practice, this means that the sample mean is subtracted from the data series previously to

subsequent analysis. The autocorrelation function of yn is the normalized autocovariance

ρy(k),
γy(k)
γy(0)

.

From the Cauchy-Schwartz inequality, |γy(k)| ≤ γy(0) for all k, which implies that ρy(k) is always

in [−1,1] (BROCKWELL; DAVIS, 2013, page 26). We refer to σ2
y , γy(0) as the variance of yn.

Unless otherwise specified, we consider the space of L2-integrable, non-degenerate random

variables, which means that the variance is a strictly positive real number: 0 < σ2
y < ∞.
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3.2.3 White noise (WN)

The simplest class of stationary processes are white noise (WN) processes. We say

that yn is a WN process if E(yn) = 0 and γy(k) = σ2
y δk, where δk = 1 if k = 0 and 0 otherwise.

In particular, a sequence of independent and identically distributed (IID) random variables is a

WN process; the converse is not true in general.

3.3 THE ENERGY SPECTRUM OF A DETERMINISTIC SEQUENCE

Consider a particular realization {yn(u),n ∈ Z}, or sample path, of a stochastic

process yn. In this section, for simplicity of notation, we denote yn(u) simply by yn.

The z-transform of yn is defined as (OPPENHEIM, 1999, Chapter 3)

Y (z),
∞

∑
n=−∞

ynz−n, (3.1)

whenever the infinite sum converges. The values of z for which Y (z) exists consists of an area in

the complex plane referred to as the region of convergence (ROC) of Y (z) (OPPENHEIM, 1999,

page 96). The z-transform can be seen as the discrete-time analogue of the Laplace transform

of a continuous-time function (BOYCE; DIPRIMA; HAINES, 2001, page 293). It is a linear

operator which maps a sequence yn into a function Y (z).

The evaluation of Y (z) over the unit circle {z ∈ C : z = e jω ,ω ∈ [−π,π)}, where

j ,
√
−1, is of special interest. It yields the discrete-time Fourier transform (DTFT) of yn:

Y (e jω) =
∞

∑
n=−∞

yne− jωn. (3.2)

The DTFT is not a purely abstract mathematical concept. It is naturally linked to the physics and

structure of linear time-invariant systems and its eigenfunctions (OPPENHEIM, 1999, Section

2.6.1). From the triangular inequality and the fact that the complex exponential has unit norm,

|Y (e jω)| ≤
∞

∑
n=−∞

|yn| · |e− jωn|=
∞

∑
n=−∞

|yn|.

Therefore, ∑
∞
n=−∞ |yn|< ∞ is a sufficient condition for the existence of the DTFT of yn. In this

case, yn is said to be absolutely summable.

In general, the quantity z can be written in polar form as z = r · e jω , r = |z| > 0.

Thus, (3.2) can be written as

Y (r · e jω) =
∞

∑
n=−∞

(ynr−n)e− jωn. (3.3)
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Equation (3.3) is the DTFT of {ynr−n} and the sufficient condition for existence of the DTFT

translates into ∑
∞
n=−∞ |ynr−n|< ∞. It can be shown that the ROC of Y (z) is equivalently determi-

ned by the collection of values of r for which (3.3) is well-defined, so that the ROC is either a

ring or a disk: {z∈C : rL ≤ |z| ≤ rU}, where 0≤ rL ≤ rU ≤∞ are lower and upper limits (OPPE-

NHEIM, 1999, Section 3.2, Property 1). For instance, rL = rU = r0 implies that Y (z) converges

only at the circle {z : |z|= r0}; rU = ∞ means that Y (z) converges everywhere in the complex

plane but inside a disk of radius rL about the origin; 0 < rL < rU < ∞ defines a ring-shaped ROC;

and so on. Another consequence of this discussion is that the DTFT of yn exists if, and only if,

the ROC of Y (z) contains the unit circle (OPPENHEIM, 1999, Section 3.2, Property 2). For

example, let yn = ρn for n≥ 0 and yn = 0 otherwise. In this case, Y (z) = ∑
∞
n=0 ρnz−n converges

to (1−ρ/z)−1 whenever |z|> |ρ|. If |ρ|< 1, the ROC contains the unit circle and the DTFT is

well-defined (summability of |yn| indeed requires |ρ|< 1) (OPPENHEIM, 1999, Example 3.1).

Given Y (e jω), yn can be recovered as (STOICA; MOSES et al., 2005, Equation

1.2.3)

yn =
1

2π

∫
π

−π

Y (e jω)eiωn dω, (3.4)

the inverse DTFT. With the notation yn
DTFT←→ Y (e jω), we mean that yn and Y (e jω) form a DTFT

pair. The energy spectrum of yn is the squared magnitude of its spectrum:{
|Y (e jω)|2 : ω ∈ [−π,π)

}
.

If yn is also square-summable, i.e., ∑
∞
n=−∞ |yn|2 < ∞, then (STOICA; MOSES et al., 2005,

Equation 1.2.5)

1
2π

∫
π

−π

|Y (e jω)|2 dω =
1

2π

∫
π

−π

{
∞

∑
n=−∞

∞

∑
m=−∞

ynyme− jω(n−m)

}
dω

=
∞

∑
n=−∞

∞

∑
m=−∞

ynym

{
1

2π

∫
π

−π

e− jω(n−m) dω

}
=

∞

∑
n=−∞

|yn|2.

This is an instance of the Parseval’s identity, which is valid in a broader sense for vectors of

a separable Hilbert space decomposed by orthogonal projection over a complete set of basis

vectors (BROCKWELL; DAVIS, 2013, Theorem 2.4.2 (iv)). The Parseval’s identity applied

to the DTFT discloses a conceptually strong and practically useful truth. It says that |Y (e jω)|2

provides the distribution of the “energy” in yn in terms of its frequency components. Such

frequency components are explicited in the synthesis formula (3.4), where we see that yn admits
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a representation as the superposition of infinitesimal complex sinusoids (OPPENHEIM, 1999,

page 48).

In the process of obtaining Parseval’s identity, one gets an interesting byproduct.

Define

cy(k) =
∞

∑
n=−∞

ynyn−k, k ∈ Z, (3.5)

as the “autocovariance-like” function of yn. Under square-summability of yn and from the

Cauchy-Schwartz inequality, cy(k) is a real number, for all k. Now, notice that (STOICA;

MOSES et al., 2005, Equation 1.2.8)

∞

∑
k=−∞

cy(k)e− jωk =
∞

∑
k=−∞

(
∞

∑
n=−∞

ynyn−k

)
e− jωk

=
∞

∑
k=−∞

∞

∑
n=−∞

ynyn−ke− jωne− jω(k−n)

=

(
∞

∑
n=−∞

yne− jωn

)
·

(
∞

∑
m=−∞

yne jωm

)
= Y (e jω) ·Y (e− jω) = |Y (e jω)|2.

In other words, the energy spectrum of the sequence yn can be obtained from the DTFT of

its autocovariance-like function cy(k). This equation is useful in Section 3.5, where we study

the relationship between the input and output autocovariance functions of linear time-invariant

systems.

3.4 THE SPECTRAL DISTRIBUTION OF A STATIONARY PROCESS

Now, let {yn,n ∈ Z} be a stationary stochastic process. We can not simply use the

definition (3.2) and call it the spectrum of yn, because, in general, a stationary process is not

absolutely-summable with probability 1 (PORAT, 2008, page 27). Notice also that Y (e jω) is a

random variable in this case. However, yn does have some well-defined averages, the first- and

second-order moments, which characterize its dynamics (OPPENHEIM, 1999, page 65). An

alternative notion of spectrum must take place.

The Wiener-Kintchine theorem (KOOPMANS, 1995), also known as Herglotz’s

theorem (PORAT, 2008, Theorem 2.9), (BROCKWELL; DAVIS, 2013, Section 4.3), implies

that the autocovariance function of a stationary process admits the Fourier representation

γy(k) =
1

2π

∫
π

−π

e jωk dFy(ω), (3.6)
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where the right-hand side is a Riemann-Stieltjes integral and Fy(ω),−π ≤ω < π , Fy(−π) = 0, is

termed the power spectral distribution of yn. Indeed, by Kolmogorov’s existence theorem, there

exists a random variable for which Fy(ω)/Fy(π) is the distribution function. As any generalized

distribution function (BROCKWELL; DAVIS, 2002, page 115, Remark 2), Fy can be broken

as Fy = Fc
y +Fs

y (KEDEM, 1986, Section 2), where Fc
y is an absolutely continuous function

and Fs
y is a step function, both positive, bounded by Fy(π), right-continuous and monotonically

non-decreasing1. If Fy(ω) is continuous for all ω ∈ [−π,π], i.e., Fs
y = 0, then there exists a

continuous function fy such that

Fy(ω) =
∫

ω

−π

fy(t)d t. (3.7)

The function fy is called the power spectral density (PSD) of yn. Even when fy does not exist as

a continuous function, i.e., when there is a positive amount of power concentrated in a countable

set of frequencies, the function fy is still referred to as the PSD, making use of the Dirac delta

function δ (·). It is defined so that δ (x) = 0 for x 6= 0 and
∫

∞

−∞
δ (x)dx = 1. Then, for instance,

fy(ω) =
∞

∑
m=−∞

πmδ (ω−ωm)

is a discrete spectrum, where πm > 0 is the power at frequency ωm, with ∑
∞
m=−∞ πm < ∞. Notice

that by the very definition of the Dirac delta function δ (·), (3.7) remains valid in such cases,

since

Fy(ω) =
∫

ω

−π

∞

∑
m=−∞

πmδ (t−ωm)d t =
∞

∑
m=−∞

πm

∫
ω

−π

δ (t−ωm)d t.

Under this formalism, we have the most commonly adopted definition for the PSD of a stationary

process (PORAT, 2008, Section 2.8), (OPPENHEIM, 1999, Section 2.10), (STOICA; MOSES et

al., 2005, Section 1.3.1), which is simply the DTFT of its autocovariances, as show below:

fy(ω) =
∞

∑
k=−∞

γy(k)e− jωk DTFT←→ γy(k) =
1

2π

∫
π

−π

e jωk fy(ω)dω. (3.8)

If ∑
∞
k=−∞

|γy(k)|< ∞, then fy is a continuous function of ω (PORAT, 2008, page 28). Indeed,

this is a common assumption in many results of time series analysis (e.g., see the theorems in

(BROCKWELL; DAVIS, 2013, Chapter 3)). Again, even when fy has discontinuities, which we

incorporate into it using δ (·), the representation (3.8) can still be used.

The PSD holds the following noteworthy properties (STOICA; MOSES et al., 2005,

Section 1.4):
1 In fact, there is also a third component in such decomposition of Fy: the sigular component. We omit it here

because it is not useful in most applications of signal processing.



29

1. The PSD is non-negative: it follows directly from its derivation from Fy as fy(ω) =

d
dω

Fy(ω) and the fact that Fy is a monotonically non-decreasing function;

2. The PSD is 2π-periodic (when considered over the whole real line):

fy(ω +2π) =
∞

∑
k=−∞

γy(k)e− j(ω+2π)k = e− j2πk fy(ω) = fy(ω).

That is why we focus on the window −π ≤ ω < π of length 2π;

3. The PSD is real and symmetric: since γy(k) = γy(−k) and e− jωk + e jωk = 2cos(ωk),

fy(ω) = σ
2
y +2

∞

∑
k=1

γy(k)cos(ωk) = fy(−ω).

Because of this symmetry, fy is often plotted only over the interval [0,π];

4. The conceptual analogue of Parseval’s identity for the energy spectrum of deterministic

sequences arises by evaluating γy(k) in (3.8) at k = 0, which yields

σ
2
y =

1
2π

∫
π

−π

fy(ω)dω.

This equation shows that (i) (2πσ2
y )
−1 fy(ω) is a PDF with compact support [−π,π] and

(ii) it provides an analysis of the variance, or power, of yn into the frequency components

of its autocovariances. In this sense, (2πσ2
y )
−1Fy(ω) can be interpreted as the proportion

of the variance of yn explained by frequencies not greater than ω (BROCKWELL; DAVIS,

2013, page 332). A similar interpretation is given to the ordered eigenvalues of a correlation

matrix in the context of Principal Component Analysis (JOLLIFFE, 2002).

3.4.1 Examples

3.4.1.1 WN processes

If yn is a WN process, then γy(k) = σ2
y δk and its PSD is given by fy(ω) = σ2

y . It has

a flat spectrum; equivalently, an uniform spectral distribution. The process is named after the

white color, which scatters evenly all wavelengths of light (PRIESTLEY, 1981, Section 1.1).

3.4.1.2 AR(1) processes

Let xn be a WN process with variance σ2
x . Let yn be a stationary process driven by xn

as yn = ρ ·yn−1+xn, where |ρ|< 1 is a constant. Then yn is said to be a first-order autoregressive

process (GRUNWALD; HYNDMAN; TEDESCO, 1995). This class of processes is the theme of
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Figure 1 – Some particular cases of the PSD of the first-order autoregressive process with
ρ < 0 (left) and ρ > 0 (right).

Chapter 4. We have that (see Section 4.1) (DJURIC et al., 1999)

fy(ω) = σ
2
x ·

1
ρ2−2ρ cos(ω)+1

.

Some particular cases are displayed in Figure 1, with σ2
x = 1. For −1 < ρ < 0, the process has

more power given to higher frequencies. For ρ = 0, we have that yn collapses into xn and it is

just a white noise with a flat spectrum. For 0 < ρ < 1, the power is concentrated at the lower

frequencies. As an illustration of this fact, two realizations of AR(1) processes are displayed in

Figure 2.

3.4.1.3 MA(1) processes

Let xn be a WN process and yn be a stationary process obeying yn = xn +θ · xn−1,

where θ is a constant. This is called a first-order moving average process (BROCKWELL;

DAVIS, 2002, Example x). Then E(yn) = 0,

γy(k) = E[(xn +θxn−1)(xn−k +θxn−k−1)]

= (1+θ
2)γx(k)+θ [γx(k+1)+ γx(k−1)]

=


(1+θ 2)σ2

x , if k = 0,

θσ2
x , if |k|= 1,

0, if |k|> 1,
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Figure 2 – Two realizations of AR(1) processes of length 512 with ρ =−0.7 (top) and
ρ = 0.7 (bottom). Processes with ρ < 0 have more higher frequency

components than those with ρ > 0. The stats::arima.sim function in the R
programming environment was used with the default random number

generator and seed 0.

and the PSD of yn is given by

fy(ω) = σ
2
x · (θ 2 +2cos(ω)θ +1).

Some cases are displayed in Figure 3, with σ2
x = 1. As in the AR(1) processes, a phase transition

occurs at θ = 0, when yn is a WN. We note, however, that the PSD is smoother than in the AR(1)

case.

In the examples discussed so far, the stationary processes consist of purely indetermi-

nistic sequences only, using the terms of Wold’s decomposition (BROCKWELL; DAVIS, 2013,

Theorem 5.7.1). Because of that, Fs
y = 0 and the spectral density is indeed a continuous function.

In the next three examples, we build a process with Fy having both a discrete part, with many

jumps, and a continuous part. The main goal is to show the role played by the linearity property

of the DTFT when analyzing a process which is the sum of stationary processes.
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Figure 3 – Some cases of the PSD of the first-order moving average process with θ < 0
(left) and θ > 0 (right).

3.4.1.4 Random sinusoid

Let yn = Acos(ω0n)+Bsin(ω0n), where ω0 ∈ [0,π) is fixed and the coefficients

A and B are random variables satisfying E(A) = E(B) = E(AB) = 0 and E(A2) = E(B2) = σ2.

Therefore, yn has mean zero and

E(ynyn−k) = E{ [Acos(ω0n)+Bsin(ω0n)] · [Acos(ω0(n− k))+Bsin(ω0(n− k))] }

= σ
2[cos(ω0n)cos(ω0(n− k))− sin(ω0n)sin(ω0(k−n))]

= σ
2 cos(ω0k),

where we used the fact that the sine is an odd function and the trigonometric identities for

the arc sum of cosine and sine functions. Therefore, yn is stationary with autocovariance

γy(k) = σ2 cos(ω0k). The PSD may be written by computing the DTFT of γy(k):

fy(ω) = σ
2
π{δ (ω +ω0)+δ (ω−ω0)}, −π ≤ ω < π.

The spectrum of yn concentrates its power at ±ω0. In this case, the spectral distribution Fy = Fs
y

is the step function defined by

1
2πσ2 ·Fy(ω)

def
=

1
2πσ2 ·

∫
ω

−π

fy(t)d t =


0, if −π ≤ ω <−ω0,

1/2, if −ω0 ≤ ω < ω0,

1, if ω0 ≤ ω < π.
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3.4.1.5 Sum of random sinusoids

Let yn = ∑
M
m=1 xm,n, where xm,n = Am cos(ωmn)+Bm sin(ωmn), the random variables

Am and Bm are all uncorrelated with mean zero, E(A2
m) = E(B2

m) = σ2
m, and the frequencies

0≤ωm < π are all distinct. The process xm,n was studied in the previous example. It is stationary

with a discrete spectral distribution whose power is evenly concentrated at the frequencies ±ωm,

for a fixed value of m. Because the coefficients are all uncorrelated, it is easy to verify that xm,n

is uncorrelated with x`,n for ` 6= m. Thus, yn is stationary and

γy(k) =
M

∑
m=1

γxm(k) =
M

∑
m=1

σ
2
m cos(ωmk).

Since the DTFT is a linear transform, we have that Fy is again a step function with M jumps each

of size 1
2σ2

m at the −ωms followed by other M jumps of the same size at the ωms.

3.4.1.6 Sum of random sinusoids plus noise

Let xn be a stationary process with continuous PSD fx(ω) and let yn be the sum of

random sinusoids of the previous example, uncorrelated with xn. Then, again from the linearity

of the DTFT, zn = yn + xn has a continuous-by-parts spectral distribution Fz = Fc
z +Fs

z , where

the continuous part is Fc
z = Fx and the discrete part is Fs

z = Fy. Explicitly, we have

Fz(ω) = ∑
m∈m(ω)

σ2
m

2
+
∫

ω

−π

fx(t)d t, −π ≤ ω < π,

where m(ω) is the set of indices of the frequencies in {±ωm,m = 1,2, . . . ,M} which are not

greater than ω and {ωm} are the frequencies of the components of yn, as in the previous example.

In (KAY, 1993, Example 4.2), a variation of this example is considered within a regression

framework in which the coefficients are fixed.

3.5 LINEAR TIME-INVARIANT SYSTEMS

Let {xn,n ∈ Z} be a stationary time series. We will say that {yn,n ∈ Z} is the output

of a linear time-invariant system driven by xn if, with probability 1,

yn =
∞

∑
k=−∞

hkxn−k, (3.9)

for some set {hk,k ∈ Z} of real numbers, called the impulse response of the filter. The name

comes from the fact that, if the input is xn = δn, the Kronecker’s delta, then the filter response is
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yn = hn. The operation performed in (3.9) between hk and xn is a convolution. One can say that

yn is the output of the convolutional filter hk with xn given as input and write yn = (h∗ x)n.

If hk = 0 for k < 0, yn is a function of {xm, m≤ n} only. In this case, we say that

the filter is causal. For a causal filter, if there is an integer M > 0 such that hk = 0 for k ≥M,

i.e., {hk} is a finite set and (3.9) a finite sum, we say that the filter has a finite impulse response,

or it is a FIR filter; otherwise the filter has an infinite impulse response and it is an IIR filter.

Motivated by operational concerns (physical computers can only perform a finite number of

calculations), the problem of deriving a FIR filter which, in some sense, optimally mimics a

given “ideal”, target IIR filter is an important problem in signal processing (OPPENHEIM, 1999,

Section 7.2).

The z-transform of hk, H(z), is called the transfer function of the filter and it plays

a fundamental role in the description of its properties. If xn and yn are deterministic with

z-transforms X(z) and Y (z), we have the following celebrated result.

Theorem 3.1 (Convolution Theorem (Section 2.9.6 in (OPPENHEIM, 1999))). If yn = (h∗ x)n,

then

Y (z) = H(z) ·X(z)

for all values of z lying in the intersection of the ROCs of X(z), Y (z) and H(z).

Note the analogue result for the Laplace transform (BOYCE; DIPRIMA; HAINES,

2001, Theorem 6.6.1) and its role in the solution of initial value problems (BOYCE; DIPRIMA;

HAINES, 2001, Example 2, page 333). In particular, when these sequences all have Fourier

transforms, i.e., their ROCs include the unit circle, Theorem 3.1 implies that

|Y (e jω)|2 = |H(e jω)|2 · |X(e jω)|2. (3.10)

This equation makes clear how the operation h∗ x change the energy spectrum of xn. The filter

hk attenuates some frequencies and amplifies some others in the spectrum of xn–hence the name

filter.

Now, suppose that xn is any stationary process with autocovariance function γx(k),

with σ2
x = γx(0)< ∞. Then, from (3.9) and under

∞

∑
k=−∞

|hk|< ∞, (3.11)
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we have

E(ynyn+k) =
∞

∑
`=−∞

∞

∑
m=−∞

hmh`E(xn−`xn+k−m)

=
∞

∑
`=−∞

∞

∑
m=−∞

hmh`γx(k− (m− `)) (r← m− `)

=
∞

∑
r=−∞

∞

∑
m=−∞

hmhm−rγx(k− r)

=
∞

∑
r=−∞

γx(k− r)
∞

∑
m=−∞

hmhm−r

=
∞

∑
r=−∞

γx(k− r)ch(r), (3.12)

where ch(r) = ∑
∞
m=−∞ hmhm−r is the “autocovariance-like” function of hn (see Equation (3.5)

and the discussion around it). First of all, we see that γy(k) = E(ynyn+k) is a function of the

lag k only and, since E(yn) = 0, it follows that yn is stationary. The sufficient condition here is

summability of |hn|. Secondly, we see that γy(k) is the convolution of γx(k) with ch(k). Thus,

from the Convolution Theorem and the definition of the PSD, we also have a “convolution

theorem” regarding the convolutional filter (3.9) with stationary inputs and outputs in terms of

their PSDs and the DTFT of hn:

fy(ω) = |H(e jω)|2 · fx(ω). (3.13)

The well-known ARMA processes (BROCKWELL; DAVIS, 2002, Chapter 3) is one of the most

important classes of models for stationary processes. In this model, xn is a WN process, and so

fx(ω) = σ2
x is constant in ω . Thus, fy(ω) essentially equals |H(e jω)|2 and, in this sense, the

filter coefficients completely determine the PSD of the output yn. In other cases, when xn is not

necessarily a WN process, (3.13) is interpreted similarly to (3.10).

There are two major emphasis in the study of linear filters:

• Filter design. Relying on (3.10) (or (3.13)) we are faced with the problem of deriving a

filter hk which implements a given, prespecified “spectral transformation”. This means

that the coefficients hk are supposed to attenuate and/or amplify some frequencies in the

spectrum of xn. Very popular applications include the processing of digital audio and

musical signals (SMITH, 2007).

• Filter estimation. The problem is to find the filter hk which maximizes the likelihood

that yn = (h ∗ x)n holds true, given observations of xn and yn. This is sometimes called

the deconvolution problem. In some cases, only yn is observed and assumptions about

the probability distribution of xn take place in order to make the problem well-posed.
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Filter estimation is usually the sense in which linear filters are introduced in statistics

textbooks (BROCKWELL; DAVIS, 2002, Chapter 5). All sorts of time series analysis and

forecasting can take advantage of the estimated filter.

If hk is a function of a parameter vector θθθ , we have the parametric filter

yn =
∞

∑
k=−∞

hk(θθθ)xn−k. (3.14)

Examples include the AR(1) and MA(1) processes discussed before. The MA(1) is already in

the form of a causal filter with h0 = 1, h1 = θ and hk = 0 in the other cases. Under the condition

|ρ|< 1, the AR(1) process can also be represented as a causal filter yn = ∑
∞
k=0 ρkxn−k (see next

chapter), where we have hk = ρk for k ≥ 0 and hk = 0 otherwise.

Indeed, a parametric family of filters can provide models at a reduced dimension.

For example, many models of practical relevance are IIR filters. In general, the characterization

of these systems must be done by considering the infinite set of parameters {h0,h1,h2, . . .}. If

hk = hk(θθθ) for some finite-dimensional vector θθθ , the analysis of the system is made simpler.

Also, statistical inference problems such as estimation of the filter coefficients from a finite

slice of data reduce to solving an optimization problem which is much more feasible in finite

dimensions. Also, sufficient conditions on {hk} so that the filter is causal can be translated into

constraints on θθθ .



37

4 LOW-COMPLEXITY INFERENCE FOR AR(1) PROCESSES

In this chapter, we focus on a specific subclass of the ARMA models: the AR(1) filter

model (GRUNWALD; HYNDMAN; TEDESCO, 1995). From the discussion in Section 3.4.1,

we can think about the predicted data series resulting from the estimated AR(1) filter as a

first-order, coarse linear approximation of a signal. It is one of the simplest attempts to express

the data series as an autoregression in time. In this sense, the AR(1) process is a fundamental

class of time series models (DJURIC et al., 1999).

Despite its simplicity, the AR(1) model is the theme of recent papers and still moti-

vates research efforts. For instance, in (ALLÉVIUS, 2018), the inverse of the correlation matrix,

the so-called precision matrix, of irregularly sampled AR(1) processes is shown to have a closed

form, which is also sparse, as in the usual case of uniformly-in-time sampling (ALLÉVIUS,

2018, Equation 3). The author shows how the result allows fast pseudo-random number genera-

tion. Also, in (RESCHENHOFER, 2018), a robust estimate of the correlation coefficient, ρ , is

proposed in the case of heteroscedasticity, i.e., when the variance of the series is not constant but

some function of time (CRIBARI-NETO, 2004).

The concepts introduced in Chapter 3 are used here to characterize AR(1) processes.

We discuss how its main parameter, ρ , provides an interpretation for the process in both time

and frequency domains. We also review classical estimators for θθθ , (ρ,σ2
x ), where σ2

x is the

variance of the input process in the AR(1) scheme. A new approximate estimator for θθθ is

proposed which provides an economy of 50% in arithmetical complexity for moderate or large

sample sizes (N > 100). Then, we focus on the development of an alternative, low-complexity

estimator for ρ . Towards this goal, we study a binary threshold process derived from AR(1)

data (KEDEM, 1980). Our results show that a reliable recovery of ρ under one-bit compressive

sampling of AR(1) processes and computational constraints is feasible.

4.1 AR(1) PROCESSES

Let xn be a WN process with variance σ2
x . Let yn be a stationary process driven by

xn as

yn = ρ · yn−1 + xn, n ∈ Z, (4.1)

for some real constant ρ . Then yn is said to be an AR(1) process. This is a generative proba-

bilistic model in the sense that the model explicitly prescribes the algorithm by which yn is
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sampled (GELMAN et al., 2014, page 336). A recursive application of the defining Equati-

ons (4.1) leads to the representation of yn as a causal filter passing through to xn:

yn =
∞

∑
k=0

ρ
kxn−k. (4.2)

We see that this equation is a particular case of the parametric linear filter (3.14) with

hk = hk(ρ) =

ρk, if k ≥ 0,

0, otherwise.
(4.3)

Therefore, the sufficient condition (3.11) for stationarity in this case translates into |ρ|< 1. Thus,

a stationary and causal solution yn of (4.1) exists uniquely if |ρ|< 1 (PORAT, 2008).

From (3.12), since γx(k) = σ2
x δk and the autocovariance-like function of hk is ch(r) =

∑
∞
`=−∞

ρ`ρr+` = ρr/(1−ρ2), the autocovariance function of yn is γy(k) = (γx∗ch)k =
σ2

x
1−ρ2 ·ρ |k|.

Therefore, the variance of yn is σ2
y = γy(0) = σ2

x /(1−ρ2) and its autocorrelation function is

given by the power law

ρy(k) = ρ
|k|, k ∈ Z. (4.4)

From that, we have the time-domain interpretation of ρ : if ρ ≈ 1, then consecutive observations

are highly correlated and there is a high probability that they have similar values. In contrast, if

ρ = 0, then yn = xn; thus yn is a WN process. We note that the entire autocorrelation structure of

the AR(1) process is fully characterized by the parameter ρ .

Now, let us analyze the AR(1) filter coefficients hk defined in (4.3), with |ρ| < 1.

The DTFT of hk is given by the geometric series

H(e jω) =
∞

∑
k=−∞

hk · e− jωk =
∞

∑
k=0

ρ
k · e− jωk.

Since |ρ · e− jω |= |ρ| · |e− jω |= |ρ|< 1 by hypothesis, H(e jω) converges to

H(e jω) =
1

1−ρ · e− jω ,

uniformly in ω (RUDIN et al., 1976, Theorem 7.9 (Uniform Convergence Criteria)). From (4.2),

it follows that the PSD of yn is given by

fy(ω) = σ
2
x ·
∣∣H(e jω)

∣∣2 = σ
2
x ·
∣∣∣∣ 1
1−ρ · e− jω

∣∣∣∣2 = σ
2
x ·

1
ρ2−2ρ cos(ω)+1

. (4.5)

Similarly to what happens in the autocorrelation function (4.4), the parameter ρ is the most

important parameter in modeling the shape of the PSD of the AR(1) process. In fact, the
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Figure 4 – Normalized PSD (4.6), 0≤ ω ≤ π , of some AR(1) processes. Left: ρ < 0; right:
ρ > 0.

normalized PSD, which is a PDF for ω ∈ [−π,π], depends only on ρ:

f̄y(ω) = (2πσ
2
y )
−1 fy(ω) =

1
2π
· 1−ρ2

ρ2−2ρ cos(ω)+1
, (4.6)

For reference, we display some curves of f̄y(ω), 0≤ ω ≤ π , in Figure 4. Positive values of ρ

are related to processes with low-frequency oscillations, whereas negative values of ρ indicate

high-frequency behavior. This interpretation is intuitive also from a time-domain point of view.

Therefore, fitting an AR(1) process to an observed data series provides a crude, glimpse-like,

first-try classification of signals into low-frequency and high-frequency signals.

4.1.1 On Distributional Specifications

Up to this point, we have not examined in further details the probabilistic nature of

xn and yn. We only assume that xn is a WN process and yn is stationary. In the AR(1) context,

two problems can be posed (ANDĚL, 1983):

1. Given the distribution of the IID sequence xn, find the marginal distribution of yn.

2. Given a marginal distribution for yn, find the distribution of the IID sequence xn.

Specification of one of these distributions completely determine the other: they are linked by the

system’s defining Equations (4.1). For now, we focus on the first question above, namely how

the distribution of xn determines the common marginal distribution of yn.

As we mentioned earlier, the equation (4.1) provides a generative model for yn based
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on the input process xn. From that equation, the characteristic function (CF) can be used to

find the marginal distribution of yn implied by a given distribution for xn. The CF of a random

variable y is given by (MAGALHÃES, 2006)

ψ(t), E(exp( jty)). (4.7)

If y has a continuous distribution with PDF p(y′), then

ψ(t) =
∫

∞

−∞

e jty′ p(y′)dy′

is the inverse Fourier transform of p(y′). In the sequel, let Q(x), Pr(xn ≤ x) be the cumulative

distribution function (CDF) of xn, p(y) be the common marginal PDF of yn, and ψx(t) and ψy(t)

be the CF of xn and yn, respectively.

Since xn is an IID sequence of random variables with common CF ψx(t), we have

that

E(exp{ jt(axn +bxm)}) = E(exp{ jtaxn}) ·E(exp{ jtbxm}) = ψx(at) ·ψx(bt), (4.8)

for any scalars a and b; the first identity is a direct consequence of independence and the second

one follows from the definition of the CF in (4.7). From (4.2), and applying (4.8) inductively,

the CF of yn follows as (ANDĚL, 1983, Equation 2.1)

ψy(t) = E

(
exp

{
jt

∞

∑
k=0

ρ
kxn−k

})
=

∞

∏
k=0

E
(

exp{ jtρkxn−k}
)
=

∞

∏
k=0

ψx(ρ
kt). (4.9)

An immediate consequence is that if xn has a symmetric distribution, then that is also the case

for yn, provided that the above infinite product converges. To see this, recall that, by definition,

the CF forms a Fourier transform pair with the PDF. Since E(xn) = 0, the PDF of xn must be

symmetric around zero. Therefore, it is an even function and its (inverse) Fourier transform,

which is the CF of xn, is real. In this case, from (4.9), the CF of yn is also real, which implies, by

the same Fourier transform argument, that yn has a symmetric marginal. We highlight this result

in a lemma because it is useful in the sequel.

Lemma 4.1 (Symmetric Distributions). If the distribution of xn is symmetric, then so is the

marginal distribution of yn.

From now on, we use the phrase “the symmetric assumption” (SA) to mean that xn

and yn are symmetrically distributed around the origin. Therefore, we have that Q(−x)= 1−Q(x)

and p(y) = p(−y).
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4.1.2 Gaussian AR(1) Processes

If xn is an IID sequence of gaussian random variables with mean zero and variance

σ2
x , then ψx(t) = exp

(
− t2

2 ·σ
2
x

)
, which satisfies the SA and is indeed a real function. From (4.9),

ψy(t) =
∞

∏
k=0

exp
(
−σ

2
x t2

ρ
2k/2

)
= exp

(
−t2

2
σ

2
x

∞

∑
k=0

ρ
2k

)

= exp
(
−t2

2
· σ2

x
1−ρ2

)
= exp

(
−t2

2
·σ2

y

)
,

which implies that yn has gaussian marginals with mean zero and variance σ2
y . Since corre-

lated gaussian random variables have a joint gaussian distribution, it follows that any slice

(yn1, . . . ,ynk) from {yn} follows a multivariate gaussian law. In this case, yn is said to be a

Gaussian Process (KEELEY; PILLOW, 2018). In summary, this argument shows the following.

Theorem 4.1 (Gaussian Processes). If xn consists of IID gaussians, the resulting yn in (4.2) is a

gaussian AR(1) process.

It is noteworthy that, because a member of the gaussian family is completely deter-

mined by first- and second-order moments, stationarity leads to strict stationarity in this case.

That is because both (yn1, . . . ,ynk) and (yn1+`, . . . ,ynk+`) are gaussian random vectors with mean

zero and cov(ynt ,yns) = cov(ynt+m,yns+m) = γy(|nt−ns|), which means that they have the same

autocovariance matrix.

4.2 BINARIZED AR(1) PROCESSES

Consider the binary threshold process {bn,n ∈ Z} based on yn given by (KEDEM;

FOKIANOS, 2002, Equation 2.2)

bn =

 1, if yn ≥ 0,

0, if yn < 0.
(4.10)

This transformation has been called hard-limiting (KEDEM, 1980; KEDEM, 1976), extreme

clipping (VLECK; MIDDLETON, 1966), hard thresholding (KITIC et al., 2013), amongst

other nomenclatures. The analysis of bn tends to be focused on the information content of the

zero-crossings in yn. A zero-crossing in yn occurs from time n−1 to time n if yn−1 and yn have

different signs. A given realization of bn is a binary sequence from which information about

zero-crossings of yn is available: if bn−1 6= bn, then yn−1 and yn are indeed different in sign. As it
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turns out, such information can be effectively used to make inferences about the original process

yn. The natural question is posed fundamentally as a concern about the information content of

zero-crossings, i.e., it is an Information Theory type of question (KULLBACK, 1997; MACKAY;

KAY, 2003):

What can be inferred about an AR(1) process from its associated binary threshold

process?

4.2.1 State of the Art

One can think of binarization, or one-bit sampling, as the extreme case of roun-

ding (OPPENHEIM, 1999, Section 6.6): only one bit about each number is taken, representing

the sign. Once digital computers can represent a number with only a finite-length sequence of

bits, any computation with real numbers is actually an approximation (BLAHUT, 2010). The

required precision varies with the context at hand.

The topic of extreme clipping, or one-bit sampling, is naturally appealing to the field

of compressive sensing, where it has been indeed studied (BOUFOUNOS; BARANIUK, 2008;

PLAN; VERSHYNIN, 2013). More recently, in (KIPNIS; DUCHI, 2017), the estimation of

the mean of a sample of IID gaussian random variables under one-bit sampling was considered

under various scenarios for the communication channel.

4.2.1.1 Motivation

The idea of investigating the information contained in level-crossings of a signal has

been around for a long time as well as still being theme of recent research (SINN; KELLER,

2011; MOSSBERG; SINN, 2017). It appeals to both theory and practice of signal processing.

In particular, there is an ever-growing need of algorithms for the feasible computation of

fundamental quantities in signal processing responsible for a huge number of instruction calls in

modern digital signal processors (DSPs) (BETZEL et al., 2018). If we are able to recover useful

information about a process by simple countings of its level-crossings, dramatic reductions

of data storage and data processing may take place (KEDEM, 1986). We emphasize that the

benefits encompass both memory usage (each bn requires only one bit of memory) and arithmetic

complexity (in the hardware level, computations involving binary sequences can be implemented

as fast, lightweight procedures).
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4.2.1.2 Previous work

The celebrated Rice’s formula, due to the work of Stephen Rice on the mathematics

of noise-corrupted signals (RICE, 1944), also known as Van Vleck’s formula (VLECK; MID-

DLETON, 1966, Equation 17), (JORDAN, 1986, Equation 21), (KEDEM, 1980, Equation 1.3),

establishes a simple link between the covariance of a bivariate gaussian random vector (x1,x2)

and the covariance of its signed version (sign(x1),sign(x2)), namely (JORDAN, 1986, Equation

21):

cov(sign(x1),sign(x2)) =
2
π

arcsin(cov(x1,x2)).

In Section 4.3.2, we discuss this topic in further detail. This relationship has been successfully

applied to time series analysis, as we show in the sequel. It turns out that the link also holds

between Pearson’s and Kendall’s correlations of a fairly general family of elliptical distributi-

ons (LINDSKOG; MCNEIL; SCHMOCK, 2003), with a minor technical modification to include

in the result special cases of distributions which concentrate probability mass in points, called

atoms of the distribution. This establishes a surprising connection of zero-crossings analysis with

nonparametric statistics. Interestingly, there is evidence (LINDSKOG; MCNEIL; SCHMOCK,

2003, Figure 1) that the zero-crossings estimator has less variance than the Pearson product-

moment estimator for heavy-tailed data. Recently, in (MOSSBERG, 2014), the case of a general

gaussian process (not necessarily an autoregressive one) was considered with applications to

sensor networks. Estimators of higher-order autocorrelations of yn are obtained from bn based

on the results in (SINN; KELLER, 2011). Even more recently, in (MOSSBERG; SINN, 2017),

the work was extended to deal with bivariate gaussian processes and the cross-correlations are

obtained from the respective joint zero-crossings process.

4.2.1.3 Kedem’s work

An important sequence of papers in the topic of time series analysis by zero-crossings

has been published since the 1970s by Benjamin Kedem. In (KEDEM, 1976), the estimation of

ρ in (4.1) by using the one-bit samples (4.10) is investigated. In (KEDEM, 1980), the case of

AR(p) processes is considered also under one-bit sampling. In (KEDEM, 1986), the theory of

spectral analysis through the so-called higher-order crossings (KEDEM; YAKOWITZ, 1994)

is elegantly exposed in a tutorial style (see (KEDEM; SLUD, 1982) for a rigorous treatment

of the subject). The theory unifies previous ad hoc procedures of level-crossings analysis.
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Kedem showed that there is a “D-domain” (in reference to the discrete-time difference operator),

the domain of zero-crossings, similar to the usual spectral (Fourier) domain, where frequency

information can be represented.

4.2.1.4 This work

We take the following venue:

• Research cited so far goes under the gaussian assumption. In Section 4.3, we take a step

back to give a closer look at the AR(1) case under the SA only. The relationship between

the stochastic structure of yn and bn is depicted.

• Our primary goal is the efficient estimation of θθθ =
(
ρ,σ2

x
)>.

• In Section 4.4, some standard estimators based on yn are studied. We discuss issues of

computational complexity and a fast algorithm based on an observation about common

factors in the estimators for ρ and σ2
x is developed.

• In Section 4.5, motivated by multiplication-free computing, we consider approximating

the estimator based on bn for the gaussian case by piecewise linear functions with “compu-

tationally cheap” coefficients. This induces approximate estimators of ρ .

4.3 CHARACTERIZATION OF BINARIZED AR(1) PROCESSES

Because the AR(1) model satisfies the Markov property, the identity

Pr(yn ∈ An|yn−1 ∈ An−1, . . . ,yn−p ∈ An−p) = Pr(yn ∈ An|yn−1 ∈ An−1), p > 1,

holds true, where each Ai is an arbitrary measurable (Borel) subset of the real line. In particular,

if Ai is one of the sets in {[0,∞),(−∞,0)}, for all i, then it follows that bn is a Markov chain

with state space {0,1}. From (4.1), we have that

Pr(bn = 1|yn−1 = y) = Pr(xn ≥−ρy) = 1−Q(−ρy).

That is, [bn|yn−1 = y] is a Bernoulli random variable with success probability 1−Q(−ρy). Note

that, from the stationarity of yn, the transition probabilities do not depend on n, meaning that

bn is a time-homogeneous process. The process yn is also time-homogeneous. Therefore, the

transition matrix associated to bn is given by

P ,

 P00 1−P00

1−P11 P11

 ,
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Figure 5 – Graph representation of the process bn.

where Pik , Pr(bn = k|bn−1 = i). Let α , Pr(bn = 1). By the Law of Total Probability, we have

Pr(bn = 1) = Pr(bn = 1,bn−1 = 1)+Pr(bn = 1,bn−1 = 0)

∴ α = αP11 +(1−α)P01 = αP11 +(1−α)(1−P00)

and then P00 and P11 must satisfy

P00 = 1− α

1−α
(1−P11). (4.11)

Therefore, the parameters α and P11 are sufficient to describe the process bn. The parameter P00

is determined by them as in (4.11). Figure 5 displays a graph representation of the process bn.

In the sequel, we discuss how the parameter ρ of the original process yn determines

the transition probabilities Pik under the SA. This link between ρ and the elements of P has

interesting implications on the estimation of ρ .

4.3.1 Consequences of the Symmetric Assumption (SA)

If the distribution of xn is symmetric about zero, then Q(−x) = 1−Q(x) and

Pr(bn = 1|yn−1 = y) = Q(ρy). (4.12)

Also, from the Lemma 4.1, yn has symmetric marginals, which implies that α = 1/2, and it

follows from (4.11) that P00 = P11. The SA gives a symmetric transition matrix to bn, once in

this case P = P>. Define λ , P11 = P00. Then

λ = Pr(bn = 1|bn−1 = 1)

=
Pr(bn = 1,bn−1 = 1)

Pr(bn−1 = 1)
(4.13)

= 2Pr(bn = 1,bn−1 = 1)

= 2
∫

∞

0
Pr(bn = 1,yn−1 = y)dy

= 2
∫

∞

0
Pr(bn = 1|yn−1 = y)Pr(yn−1 = y)dy.
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The Bayes rule furnishes the second and last identities. Thus, considering (4.12), we have the

following expression for λ :

λ = 2
∫

∞

0
Q(ρy)p(y)dy. (4.14)

That is, λ is a functional of the distributions Q and p. If Q and p belong to some parametric

family of distributions, there are possibly other parameters upon which λ may depend on. Notice

that, in fact, by definition,

P00 = 2
∫ 0

−∞

(1−Q(ρy))p(y)dy = 2
∫

∞

0
Q(ρy)p(y)dy = λ ,

as it should hold true, according to the previous discussion. The second identity above uses once

again Q(x) = 1−Q(−x) and p(y) = p(−y), which are consequences of the SA hypothesis. In a

nutshell, so far we have learned the following:

If yn satisfies the AR(1) model, with xn
IID∼ Q and Q(−x) = 1−Q(x), then the

process bn defined in (4.10) is a time-homogeneous Markov chain with state space

{0,1} and symmetric transition matrix P with λ and ρ linked as (4.14).

On the relationship between λ and ρ , we notice that if the correlation ρy(1) = ρ

between consecutive observations of yn is high, then the probability

λ = P11 = Pr(yn ≥ 0|yn−1 ≥ 0) = Pr(yn ≤ 0|yn−1 ≤ 0) = P00

of the next observation having the same sign as the present observation will be high as well. This

remark suggests the existence of a bijective map between λ and ρ .

By looking at (4.14), since Q is non-decreasing by its very definition and so Q(ρ1y)≥

Q(ρ2y) whenever ρ1 > ρ2, it is tempting to say that a bijective map between λ and ρ always

exists under the SA. However, using the Fourier relationship between the PDF and the CF, we

have

p(y) =
1

2π

∫
∞

−∞

ψy(t)exp{− jty}d t (4.15)

and

ψx(t) =
∫

∞

−∞

q(x)exp{ jtx}dx, (4.16)
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where we denoted the PDF of xn by q(x) = d
dxQ(x). Substituting (4.9) into (4.15) and then

using (4.16), we have

p(y) =
1

2π

∫
∞

−∞

[
∞

∏
k=0

ψx(tρk)

]
exp{− jty}d t

=
1

2π

∫
∞

−∞

[
∞

∏
k=0

∫
∞

−∞

q(x)exp{ jtρkx}dx

]
exp{− jty}d t,

from which is clear that p(y) may depend on ρ . Thus, we can express the relationship (4.14)

between λ and ρ in the more explicit form

λ =
1
π

∫
∞

0
Q(ρy)

{∫
∞

−∞

[
∞

∏
k=0

∫
∞

−∞

q(x)exp{ jtρkx}dx

]
exp{− jty}d t

}
dy. (4.17)

In order to further investigate such relationship, we consider two examples: the Cauchy and

gaussian distributions. Both are symmetric distributions around the origin. However, the gaussian

distribution possesses well-defined moments and is fully characterized by the first and second

moments. On the other hand, the Cauchy distribution does not have any finite moment.

• Gaussian case: It can be shown that λ = 1/2+π−1 arcsinρ (KEDEM, 1980), which is a

monotone function in the interval ρ ∈ [−1,1]. Its inverse is ρ = cos(π(1−λ )). This is an

important case because of the widely used gaussian assumption in time series modeling.

We discuss it in details in the next section.

• Cauchy case: If xn is an IID sequence of standard Cauchy random variables, then Q(x) =
1
2 +

1
π

arctan(x) and the CF is ψx(t) = e−|t|. From (4.9), we have that ψy(t) converges

to e−(1−|ρ|)
−1|t| uniformly in t, which means that yn has Cauchy marginals with scale

parameter c = (1−|ρ|)−1 and so p(y) = π−1c/(y2+c2). Substituting Q and p into (4.14)

and calculating the integral numerically, we obtain the relationship between ρ and λ whose

graphic is in Figure 6. In Figure 6, the curve of the Cauchy case is depicted along with the

curve for the gaussian case and the straight line ρ = 2λ −1 for reference.

We were not able to prove that the bijective link always exists under the SA. Based

on Figure 6, we conjecture that this is indeed the case. The important implication of such

conjecture being true is that it would then be possible to recover ρ after hard-limiting yn, when

we have access to the sign information bn only, because any bijective map has an inverse.
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Figure 6 – Function (4.14) computed for the gaussian case and the Cauchy case.

4.3.2 Gaussian Inputs: Van Vleck’s Formula

If yn is a gaussian AR(1) process, the discussion in Section 4.1.2 leading to the

Lemma 4.1 implies that Q(x) = Φ(x/σx) and p(y) = σ−1
y φ(y/σy), where

φ(y) = (2π)−1/2 exp(−y2/2) and Φ(x) =
∫ x

−∞

φ(u)du =
1
2

{
1+ erf

(
x√
2

)}
are the PDF and CDF of the gaussian distribution, respectively, and erf(·) is the error func-

tion (NG; GELLER, 1969). In this particular case of (4.14),

λ =
2
σy

∫
∞

0
Φ(ρy/σx)φ(y/σy)dx (y← y/σx)

=
√

1−ρ2
[∫

∞

0
φ(y
√

1−ρ2)dy+
∫

∞

0
erf
(

ρy√
2

)
φ(y
√

1−ρ2)dy
]

=
1
2
+
√

1−ρ2
∫

∞

0
erf
(

ρy√
2

)
φ(y
√

1−ρ2)dy

=


− 1

π
tan−1

(√
1−ρ2

ρ

)
, if −1 < ρ < 0,

1/2, if ρ = 0,

1− 1
π

tan−1
(√

1−ρ2

ρ

)
, if 0 < ρ < 1,

(4.18)



49

where (NG; GELLER, 1969, Equation 4.3.2) furnishes the last passage. Of particular interest,

the inverse link is

ρ =


−
[
1+ tan2(πλ )

]−1/2
, if 0≤ λ < 1/2,

0, if λ = 1/2,[
1+ tan2(πλ )

]−1/2
, if 1/2 < λ ≤ 1.

(4.19)

As mentioned before, the works reviewed in Section 4.2.1 use the fact that, under

gaussianity, (yn,yn−1) follows a bivariate gaussian distribution with mean zero and covariance

matrix

σ
2
y ·R =

σ2
x

1−ρ2 ·

 1 ρ

ρ 1

 ,

where R is the correlation matrix. Let φ(y1,y2;ρ,σ2
x ) be the joint PDF of (yn,yn−1). Revisi-

ting (4.13), we have that

λ = 2Pr(bn = 1,bn−1 = 1) = 2
∫

∞

0

∫
∞

0
φ(y1,y2;ρ,σ2)dy1 dy2, (4.20)

which is the double of the probability of (yn,yn−1) lying in the first quadrant of R2. Previous

works are based on the evaluation of the integral in (4.20), which yields (KEDEM, 1976), (SINN;

KELLER, 2011, Lemma 2.1), (GIBBONS; CHAKRABORTI, 2003, page 403)

λ =
1
2
+

1
π

arcsinρ

or, equivalently,

ρ = sin(πλ −π/2) =−cos(πλ ) = cos(π(1−λ )). (4.21)

Notice that, in the gaussian case, the link between λ and ρ does not depend on σ2
x . Equa-

tion (4.21) is known as the Van Vleck’s formula (VLECK; MIDDLETON, 1966). Higher-order

interactions in the form of E(bnbn−k), for k > 1, have similar representations in terms of the

orthant probabilities (SINN; KELLER, 2011, Section 2.1). Their evaluations require numerical

integration (SINN; KELLER, 2011, Section 3.2). From the well known trigonometric identity

1+ tan2(x) =
1

cos(x)2 ,

it follows that the functions (4.21) and (4.19) are the same, which reaffirms our result in (4.14).
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4.4 ESTIMATION OF ρ AND σ2
x

4.4.1 Conventional Methods

Classically, the most commonly used frequentist estimators in the context of parame-

tric probabilistic models for time series are

• the Maximum Likelihood Estimator (MLE) (BROCKWELL; DAVIS, 2013, Section 8.7),

• the Least Squares Estimator (LSE) (DJURIC et al., 1999, Equation 14.92), (BROCKWELL;

DAVIS, 2013, Section 8.7) and

• the Method-of-Moments Estimator (MME),

because they have well-known, desirable properties. The MME is also known as the Yule-Walker

estimator (BROCKWELL; DAVIS, 2002, Section 5.1.1). In this section, we show that all these

estimators are the same for ρ .

Bayesian estimators are extremely powerful, specially as a way to represent and

reason about previously acquired information (GELMAN et al., 2014, Section 1.1). Bayesian

estimators also provide an MLE-like estimator, in this setting called the maximum a posteri-

ori (MAP) estimator. The MAP estimator has a natural regularization feature (FRIEDMAN;

HASTIE; TIBSHIRANI, 2001, Section 5.8): the prior distribution works as a regularizer (or

penalizer, in the optimization jargon) for the likelihood function (FONSECA; CRIBARI-NETO,

2018, Section 3.3). In this work, we consider only frequentist estimators.

Let θθθ =(ρ,σ2
x ) be the parameter vector to be estimated. In the frequentist framework,

we assume that θθθ is an unknown, constant vector. It can not be known exactly unless one has

access to the whole population U of samples u ∈U , i.e., all possible realizations of the process

under study. Given a data series {y1, . . . ,yN} from an AR(1) process, the MLE of θθθ is given

by (CASELLA; BERGER, 2002, Definition 7.2.4)

θ̄θθ , argmax
θθθ

`(θθθ |y1, . . . ,yN), (4.22)

where

`(θθθ |y1, . . . ,yN) = log p(y1|θθθ)+
N

∑
n=2

log p(yn|yn−1,θθθ)

is the log of the likelihood function of θθθ and p(yn|yn−1,θθθ) denotes the conditional distribution

of yn given yn−1, which furnishes the transition probabilties of yn. For large N, we can drop the
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marginal contribution of y1 and maximize (RESCHENHOFER, 2018, Equation 4)

`∗(θθθ |y1, . . . ,yN) =
N

∑
n=2

log p(yn|yn−1,θθθ). (4.23)

In the gaussian case, since xn is gaussian and yn = ρyn−1 + xn, the distribution of yn given yn−1

is gaussian with mean ρyn−1 and variance σ2
x . Therefore, we have

`∗(θθθ |y1, . . . ,yN) =−
N−1

2
log(2πσ

2
x )−

1
2σ2

x

N

∑
n=2

(yn−ρyn−1)
2. (4.24)

The maximization problem of `∗ with respect to ρ is equivalent to the minimization problem

of the LSE objective, the forward prediction error ∑
N
n=2(yn−ρyn−1)

2. Since `∗ is a degree-2

polynomial in ρ with negative leading coefficient, `∗ is convex in ρ (CHVATAL; CHVATAL et

al., 1983) and the solution ρ∗ of ∂`∗/∂ρ = 0, namely

ρ
∗ =

∑
N
n=2 ynyn−1

∑
N
n=2 y2

n−1
,

is unique. The quantity ρ∗ is also the LSE of ρ and is asymptotically equivalent to the exact MLE

of ρ , the solution of ∂`/∂ρ = 0. The main reason for practical usage of ρ∗ is that the exact MLE

has not a closed form and numerical methods must be employed (RESCHENHOFER, 2018,

Section 2). It is also asymptotically equivalent to the MME ρ̂ obtained by a simple substitution

of the sample counterparts of the quantities in ρ = ρy(1) = E(ynyn−1)/E(y2
n). Using the MME

definition in (BROCKWELL; DAVIS, 2013, Equation 7.2.1), we have

ρ̂ =
∑

N
n=2 ynyn−1

∑
N
n=1 y2

n
. (4.25)

The only difference between ρ̂ and ρ∗ is the extra term y1 in the denominator’s sum. Notice

that ρ̂ < ρ∗ (almost surely) and ρ̂ ≈ ρ∗ for large N. We focus on ρ̂ because there is a positive

probability that ρ∗ /∈ [−1,1] (RESCHENHOFER, 2018), while the Cauchy-Schwartz inequality

guarantees that(
N

∑
n=2

ynyn−1

)2

≤

(
N

∑
n=2

y2
n

)(
N

∑
n=2

y2
n−1

)
<

(
N

∑
n=1

y2
n

)2

∴ |ρ̂|< 1 (almost surely).

Similarly, the maximization of `∗ with respect to σ2
x yields

σ̂
2
x =

1
N−1

N

∑
n=2

x̂2
n, (4.26)

where x̂2
n = (yn − ρ̂yn−1)

2. We have that θ̂θθ = (ρ̂, σ̂2
x ) is asymptotically equivalent to the

exact MLE of θθθ , θ̄θθ , and therefore it is asymptotically unbiased and attains the Cramér-Rao
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lower bound (CASELLA; BERGER, 2002, Theorem 10.1.2). In other words, θ̂θθ has the mi-

nimal possible asymptotic variance amongst all asymptotically unbiased estimators of θθθ . We

have (BROCKWELL; DAVIS, 2013, Theorem 7.2.2)

√
N (ρ̂−ρ)

D−→N
(
0,
(
1−ρ

2)) , (4.27)

where the variance is obtained by replacing ρ(k) by ρk in Bartlett’s formula (BROCKWELL;

DAVIS, 2013, Equation 7.2.5). Finally, the Invariance Principle (CASELLA; BERGER, 2002,

Theorem 7.2.10) ensures that the MLE of σ2
y = σ2

x /(1−ρ2) is asymptotically equivalent to

σ̂2
y = σ̂2

x /(1− ρ̂2).

The estimator θ̂θθ is obtained as the approximate MLE under the gaussian assumption.

Even though, θ̂θθ is commonly used in general because of the similarity with the MME, which does

not require the gaussian assumption and is asymptotically gaussian as in (4.27). The convergence

result (4.27) provides a way to build confidence intervals for ρ̂ .

4.4.2 Computational Cost Analysis and an Approximate Estimator for σ2
x

In order to compute ρ̂ directly from (4.25), we need to perform (N−1)+(N)+(1) =

2N multiplications and (N− 2)+ (N− 1) = 2N− 3 additions. Also, if one has access to two

slots of memory at any time, then ρ̂ can be computed passing only once through the data by

simultaneously accumulating the two sums. If only one slot of memory is available, two iterations

through the data are required and, after computing the first sum, (e.g., the numerator) its value

must be stored.

Also, since the computation of each x̂2
n = (yn− ρ̂yn−1)

2 requires 1 addition and 2

multiplications, direct computation of σ̂2
x in (4.26) requires 2(N−1)+1= 2N−1 multiplications

(one less if N−1 is chosen to be a power of 2) and (N−1)+(N−2)+(1) = 2N−2 additions

(one less if the value N−1 is some sort of universal constant in the computing system which

does not need to be computed).

Thus, direct computation of θ̂θθ as in (4.25) and (4.26) requires (2N)+ (2N−1) =

4N−1 multiplications and (2N−3)+(2N−2) = 4N−5 additions.
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Now, let S , ∑
N
n=1 y2

n so that ρ̂ = S−1
∑

N
n=2 ynyn−1. Notice that

N

∑
n=2

x̂2
n =

N

∑
n=2

y2
n + ρ̂

2
N

∑
n=2

y2
n−1−2ρ̂

N

∑
n=2

ynyn−1

= S− y2
1 + ρ̂

2(S− y2
N)−2ρ̂ · ρ̂S

=
[
S+ ρ̂

2S−2ρ̂
2S
]
−
[
y2

1 + ρ̂
2y2

N
]

= S
(
1− ρ̂

2)−R, (4.28)

where R , y2
1 + ρ̂2y2

N . Let ŝ2
x , S

(
1− ρ̂2)/(N−1). We have the following result.

Proposition 4.1. The statistic ŝ2
x converges in probability to σ̂2

x .

Demonstração. We have that (N−1)E
{∣∣ŝ2

x− σ̂2
x
∣∣}=E{|R|} and, from the triangular inequality,

E(|R|)≤ E(y2
1)+E(ρ̂2y2

N). Hölder’s inequality yields

E(ρ̂2y2
N)≤

√
E(ρ̂4) ·

√
E(y4

N). (4.29)

The fourth moment of the gaussian distribution is given by

E
{
N (µ,σ2)4}= µ

4 +6µ
2
σ

2 +3σ
4. (4.30)

From the asymptotic distribution of ρ̂ in (4.27), we have that E(ρ̂)→ ρ and

var
{√

N · (ρ̂−ρ)
}
→ 1−ρ

2

∴ var(ρ̂)∼ 1−ρ2

N

∴ E(ρ̂4)∼ ρ
4 +6ρ

2 1−ρ2

N
+3

(
1−ρ2)2

N2 ,

where “x ∼ y” is meant to be interpreted here as “x scales as y as N grows” and the last

approximation uses (4.30). From the gaussian assumption, yN is distributed as N (0,σ2
y ) and

then (4.30) yields

E(y4
N) = 3σ

4
y .

By applying the limit in N on both sides of (4.29), we get

lim
N→∞

E(ρ̂2y2
N)≤

√
3ρ

2
σ

2
y .

Also from the gaussian assumption, E(y4
1) = 3σ4

y . Thus

lim
N→∞

E(|R|)≤ 3σ
4
y +
√

3ρ
2
σ

2
y = constant in N,
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Estimator Method M A
ρ̂ Diret 2N 2N−3
σ̂2

x Direct 2N−1 2N−2
θ̂θθ

p→ θ̄θθ Direct 4N−1 4N−5(
ρ̂, ŝ2

x
) p→ θ̄θθ Algorithm 1 2N +3 2N−1

Table 1 – Arithmetic complexity for estimators of θθθ as a function of the sample size N.

and we have

lim
N→∞

E
{∣∣ŝ2

x− σ̂
2
x
∣∣}= lim

N→∞

1
N−1

E(|R|) = 0.

Now, from Markov’s inequality, for any ε > 0, it holds true that

lim
N→∞

Pr
{∣∣ŝ2

x− σ̂
2
x
∣∣> ε

}
≤ 1

ε
· lim

N→∞
E
{∣∣ŝ2

x− σ̂
2
x
∣∣}= 0.

We proved that ŝ2
x

p→ σ̂2
x , where

p→ means convergence in probability.

We propose Algorithm 1 for the approximate estimation of θθθ . It computes ρ̂ and ŝ2
x .

Based on Proposition 4.1 and the discussion about ρ̂ in the previous subsection, the Algorithm 1

yields an estimator with the same nice asymptotic properties as the exact MLE θ̄θθ . It requires

2N +3 multiplications and 2N−1 additions. As N→ ∞, define

RatioM (N),
2N +3
4N−1

↓ 1
2

and RatioA (N),
2N−1
4N−5

↓ 1
2

as the ratios between the arithmetic complexities of (ρ̂, ŝ2
x)
> and θ̂θθ , where an ↓ a means that an

is a monotonically decreasing sequence in n which converges to a. Therefore, we can say that,

asymptotically, Algorithm 1 provides an economy of 50% in arithmetic complexity relatively to

θ̂θθ . In Figure 7, we display these ratios as a function of N. It is also clear in Algorithm 1 that

only two slots of memory are required if the data comes into the computing system via a data

stream in an on-line fashion; otherwise it would need space in memory and N additional slots

are required. In Table 1, we give the arithmetic complexity for the computation of ρ̂ and σ̂2
x

separately, of θ̂θθ as the sum of these two complexities, and of
(
ρ̂, ŝ2

x
)> through Algorithm 1.

We display signal-flow diagram representations of the first part of Algorithm 1 in

Figure 8. The diagram in Figure 8 implements the for-loop and yields intermediary values of ŝ2
x

and ρ̂ . We display it separately in order to make clear that the second part is not run after every

new observations comes into the computing system as it is the case with the intermediary values

of the parameters.
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Algorithm 1: Algorithm for the Computation of
(
ρ̂, ŝ2

x
)>

Require: y1,y2, . . . ,yN
Ensure: ρ̂ and ŝ2

x

ŝ2
x ← y2

1
ρ̂ ← 0
for n← 2,3, . . . ,N do

ŝ2
x ← ŝ2

x + y2
n

ρ̂ ← ρ̂ + ynyn−1
end for
ρ̂ ← ρ̂/ŝ2

x
ŝ2

x ← ŝ2
x(1− ρ̂2)/(N−1)
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0.
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Limit

Figure 7 – Decay of the ratio between the arithmetic complexities of the direct and
proposed fast implementation to estimate θθθ .

Figure 8 – First part of the signal-flow diagram representation of Algorithm 1. Here, ŝ2
x

and ρ̂ denote the intermediary values available after the for-loop in
Algorithm 1. The notation Z−1 represents a time delay. The second part only

concludes the final two lines in Algorithm 1.
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4.4.3 Estimation of ρ Based on bn

Let y1,y2, . . . ,yN be a N-point slice of contiguous elements from the AR(1) process

yn. Suppose that only one-bit of each yn can be captured as bn in (4.10). The problem now

translates into working out statistical inference for Markov chains and using that to make

inferences about the original process yn. Statistical inference for Markov chains is a very

important topic in applied statistics and it has been considered for general Markov processes in,

e.g., (BILLINGSLEY, 1961) and (ANDERSON; GOODMAN, 1957). We consider only the case

of interest: two-state (binary), discrete-time Markov chains as treated in Klotz’s paper (KLOTZ,

1973). He actually treats the case when α = Pr(bn = 1) is not necessarily 1/2; we use α = 1/2.

Under the SA and assuming that y1 follows the stationary distribution of yn in (4.9),

we have that α = Pr(b1 = 1) = 1/2 = Pr(b1 = 0). An intuitive estimator for λ is the empirical

proportion of times when the chain keeps its state (0-0 or 1-1 transitions):

λ̂ =
1

N−1
#{n = 2,3, . . . ,N : bn = bn−1} , (4.31)

where #A is the number of elements in the set A. We now check that λ̂ is in fact the MLE for λ

and consider its properties and the implications in the estimation of ρ .

The probability that the observed sequence equals a specific binary pattern

(b1,b2, . . . ,bN) ∈ {0,1}N

follows from the Markov property and the Bayes rule as (KLOTZ, 1973, Equation 2.6)

Pr(b1,b2, . . . ,bN) = Pr(b1)
N

∏
n=2

Pr(bn|bn−1)

=
1
2

N

∏
n=2

λ
bnbn−1+(1−bn)(1−bn−1)(1−λ )bn(1−bn−1)+(1−bn)bn−1

=
1
2

λ
(N−1)−[2(t1−t11)−t0](1−λ )2(t1−t11)−t0 (4.32)

where t1 = ∑
N
n=1 bn is the number of 1s, t11 = ∑

N
n=2 bnbn−1 is the number of times that both

bn and bn−1 equal 1, and t0 = b1 +bN . According to the Factorization Theorem (CASELLA;

BERGER, 2002, Theorem 6.2.6), D = 2(t1− t11)− t0 is a sufficient statistic for λ , since we can

write the likelihood Pr(b1,b2, . . . ,bN) as a function of λ and D only (CASELLA; BERGER,

2002, Definition 6.2.1). This means that D efficiently summarizes the information that the sample

b1,b2, . . . ,bN gives about λ .

We have that D is the number of zero-crossings in y1, . . . ,yN , i.e., the number of times

when bn 6= bn−1, for n = 2,3, . . . ,N (KEDEM, 1980). The MLE of λ , say λ̂ , is the maximizer
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of (4.32). Standard optimization routines lead to

λ̂ = 1− D
N−1

.

This is in accordance with our intuition in (4.31): N−1−D is the number of times when the

chain keeps its state. Let kn = 1 if bn = bn−1 and kn = 0. Then kn indicates when the chain bn

keeps its state and, similarly, 1− kn indicates a zero-crossing at the time n−1 to time n. We can

write

λ̂ =
1

N−1

N

∑
n=2

kn. (4.33)

Since E(kn) = Pr(kn = 1) = Pr(bn = bn−1), we have

E(kn) = Pr(bn = 0,bn−1 = 0)+Pr(bn = 1,bn−1 = 1)

= Pr(bn−1 = 0)P00 +Pr(bn−1 = 1)P11

=
λ

2
+

λ

2
= λ .

Therefore, E(λ̂ ) = λ , i.e., λ̂ is an unbiased estimator for λ . Its variance is given by

(N−1)2 var(λ̂ ) =
N

∑
n=2

var(kn)+2
N

∑
n=2

N

∑
m=n+1

cov(kn,km)

= (N−1)λ (1−λ )+2
N

∑
n=2

N

∑
m=n+1

cov(kn,km),

where we used that var(kn) = E(k2
n)−E(kn)

2 = λ (1−λ ). For r > 0,

cov(kn,kn+r) = E(knkn+r)−E(kn)E(kn+r)

= Pr(kn = 1,kn+r = 1)−λ
2

= Pr(kn+r = 1|kn = 1)Pr(kn = 1)−λ
2

= λ Pr(kn+r = 1|kn = 1)−λ
2

= λ Pr(bn+r = bn+r−1|bn = bn−1)−λ
2.

From the time-homogeneity of bn, cov(kn,kn+r) does not depend on n. Let Kr = Pr(bn+r =

bn+r−1|bn = bn−1). Then (SINN; KELLER, 2011, Equation 2.1),

var(λ̂ ) =
λ (1−λ )

N−1
+

2
(N−1)2

N−1

∑
r=1

(N− r)cov(kn,kn+r)

=
λ (1−λ )

N−1
+

2λ

(N−1)2

N−1

∑
r=1

(N− r)(Kr−λ ). (4.34)
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The quantities Kr have no closed form. The numerical evaluation of Kr is the theme of (SINN;

KELLER, 2011, Section 3). However, from (KLOTZ, 1973, Equation 4.1), we have the following

convergence result for λ̂ :

√
N(λ̂ −λ )

D→N (0,2λ (1−λ )) . (4.35)

From the Invariance Principle, we obtain an approximate MLE for ρ from (4.14) as the quantity

ρ̂a which solves λ̂ = 2
∫

∞

0 Q(ρ̂ay)p(y)dy. In the gaussian case (4.21), we have ρ̂a = cos(π(1−

λ̂ )) and, for standard Cauchy inputs, ρ̂a ≈ 2λ̂ −1 (see Figure 6). From that, we define

ρ̂a , cos
(

π(1− λ̂ )
)

(4.36)

and we refer to ρ̂a as the approximate estimator of ρ .

4.5 LOW-COMPLEXITY ESTIMATION OF ρ

In this section, our goal is to propose a low-complexity estimator for ρ based on

the process bn. We denote this estimator by ρ̃ and we call it the low-complexity estimator,

whereas ρ̂ and ρ̂a are called the exact and approximate estimators, respectively. The estimator

ρ̃ is obtained by approximating the function g(λ ) = cos(π(1−λ )) which links λ and ρ in the

gaussian case in (4.14). We start from a piecewise linear approximation of g(λ ). Then, the

coefficients obtained in this step are rounded to suitable dyadic rationals.

4.5.1 Dyadic Rational Approximation of a Real Number

The set D of dyadic rationals consists of the rational numbers which can be written

as n/2m, where n and m≥ 0 are integers (BRITANAK; YIP; RAO, 2006, Section 5.4.4.3). The

set D is dense in the real line, in the sense that for any real number x and any ε > 0, we can

find a dyadic rational d ∈ D such that |x− d| < ε . In this very sense, for a given m, the set

Dm , {n/2m : n ∈ Z} of mth order dyadic rationals can be seen as an “2−m-scale approximation”

of the real numbers. Also, Dm ⊂Dm+1 for all m≥ 0. Therefore, for an arbitrary real number

x, there is a sequence {x̃0, x̃1, . . .} of Dm-approximations of x whose associated absolute error

sequence {|x̃0− x|, |x̃1− x|, . . .} is non-increasing, i.e., |x̃i+1− x| ≤ |x̃i− x|. Such sequence of

Dm-approximations of x can be constructed as follows.

Consider the nearest-integer round function defined as (CINTRA, 2011)

round(x), sign(x) · b|x|+1/2c,
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Figure 9 – The first 15 elements of the sequence of absolute errors of dyadic rounding of
π .

where sign(x) equals 1 if x > 0, 0 if x = 0 and −1 if x < 0, and bxc, max{n ∈ Z : n≤ x} is the

floor of x. The image of round(·) is the set Z of integers. In fact, by construction, we have that,

for any real number x,

round(x) = argmin
n∈Z
|x−n|.

Thus, round(x) is the optimal projection (or representation) of x in the set Z. Similarly,

roundm(x),
round(2mx)

2m , m≥ 0, (4.37)

maps R onto Dm. In particular, round0(·) = round(·) and D0 = Z. From the same reasoning,

by construction, roundm(x) is the optimal projection of x onto Dm. Thus, it is clear that any

real number x can be approximated arbitrarily well by some element of Dm by choosing a

sufficiently large m. More precisely, for all x and ε > 0, we can always find m(ε) such that

|x− roundm(x)|< ε for m≥ m(ε). We have proven the following lemma.

Lemma 4.2. The sequence {roundm(x) : m≥ 0} converges to x as m→ ∞.

In Figure 9, we display the absolute errors | roundm(π)−π| of the dyadic rational

approximation of the number π for 0≤ m≤ 14. For instance, | round6(π)−π| ≈ 10−3.

4.5.2 A Piecewise Linear Curve Approximation Approach

We consider a piecewise linear curve approximation approach inspired by the method

described in (HAMANN; CHEN, 1994). There are two main differences in our approach. Firstly,
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we used the least squares regression to fit each straight line whereas linear interpolation is used

in (HAMANN; CHEN, 1994). Secondly, because we do not use interpolation, we chose the

breakpoints in a different way, based on a heuristic measure of how well the neighborhood of a

given point can be approximated by straight line.

Let I1, I2, . . . , IK denote a partition of [0,1]. That is, Ik
⋂

Ii is empty whenever k 6= i

and
⋃K

k=1 Ik = [0,1]. For each Ik we obtain the best linear approximation of g(λ ), λ ∈ Ik, with

the ordinary least squares (OLS) linear regression method (MONTGOMERY; PECK; VINING,

2012). The input data for the regression is the set of pairs

PM ,

{(
i

M
, cos

(
π

[
1− i

M

]))
: i = 0,1, . . . ,M

}
,

for some integer M > 1. There are M + 1 pairs in PM, which are equally spaced (in the λ

direction) points lying on the graphic of the function g(λ ). Define PM(k), {(`,r) ∈PM : ` ∈

Ik} as the pairs of PM for which the x-axis value is in Ik. Then, let ĝ(λ ) be the function defined by

parts as ĝk(λ ) = ck +dkλ , λ ∈ Ik, where the numbers ck and dk are the OLS regression estimates

of the best straight line approximation of the pairs in PM(k). Finally, the low-complexity

approximation of g(λ ) is the function g̃(λ ) defined by parts as

g̃k(λ ), ck + roundmk(dk) ·λ , λ ∈ Ik. (4.38)

The order of dyadic rational rounding mk may be different amongst the sets I1, I2, . . . , IK . Finally,

the low-complexity estimator ρ̃ of ρ is given by evaluating g̃(λ ) at the MLE of λ :

ρ̃ , g̃(λ̂ ). (4.39)

According to this construction, the function g̃(λ ) is determined by the way we cut

[0,1] into non-overlapping pieces, followed by the choice of the rounding orders mk. More

precisely, we first obtain ĝ(λ ), by choosing (i) the length K of the partition, and (ii) real numbers

t1, t2, . . . , tK−1 such that I1 = [0, t1), Ik = [tk−1, tk) for k = 2,3, . . . ,K−1, and IK = [tK−1,1]. Note

that in the case tk = k/K, the intervals Ik all have the same length (in the Lebesgue sense) and

the following limit holds true: limK→∞ ĝ(λ ) = g(λ ), point-wise in λ .

Therefore, based on Lemma 4.2, the following result about the asymptotic behavior

of the proposed low-complexity approximation scheme is valid.

Proposition 4.2. If tk = k/K, i.e., under uniform partitioning of [0,1], the function g̃(λ ) obtained

by the described method converges to g(λ ) for each λ ∈ [0,1] as K → ∞ and mk → ∞, k =

1,2, . . . ,K.
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Our goal is to find a parsimonious low-complexity approximation g̃(λ ) of g(λ )

which is computationally cheap to calculate and whose precision suffice for most applications.

Given K, we use the following algorithm in order to get insight on how to choose the breakpoints

tk:

1. For each point pi =
( i

M , cos
(
π
[
1− i

M

]))
in PM which is not an endpoint, i.e., i 6= 0 and

i 6= M, find the line passing through pi−1 and pi and use it to predict the y-coordinate of

pi+1 given the x-coordinate of pi+1.

2. Compute the squared error Ei between the predicted pi+1 y-coordinate and its actual value.

We use Ei as a figure of merit to understand how well the neighborhood of pi can be

approximated with a straight line.

3. Let E = maxi Ei and define the final figure of merit of point pi as the normalized squared

error Ei/E ∈ [0,1].

The values of Ei/E are plotted against the respective λ values in Figure 10 for the function g(λ );

we used M = 1000. The horizontal dashed line marks the threshold level of 0.25. The points

pi which satisfy pi ≤ 0.25 correspond to the interval λ ∈ [1/3,2/3]. Thus, in the sense of the

measure in Figure 10, the divergence from linearity of g(λ ) = cos(π(1−λ )) for λ ∈ [1/3,2/3]

is at most 25% the maximal divergence, which happens at the endpoints λ = 0 and λ = 1.

From these observations, we propose the following low-complexity approximation.

We used K = 5. The target function g(λ ) has the following anti-symmetry property:

g(λ ) = cos(π(1−λ )) =−cos(πλ ) =−g(1−λ ). (4.40)

The partition length K = 5 implies the choice of K − 1 = 4 breakpoints. From (4.40), we

constrain t3 and t4 as t3 = 1− t2 and t4 = 1− t1, respectively. Therefore, we only need to

tweak the parameters t1 and t2. The same reasoning applies to any odd value of K: only

t1, t2, . . . , t(K−1)/2 must be fine-tuned. We consider a “brute force” grid search approach. For

each point (t1, t2) ∈ [0.05,0.19]× [0.20,0.35] and m1,m2,m3 ∈ {0,1,2,3,4}:

1. Fit the piecewise linear approximation ĝ(λ ) of g(λ ) with breakpoints t1, t2, t3 = 1− t2 and

t4 = 1− t1.

2. Compute g̃(λ ) from ĝ(λ ) as in (4.38) using m1, m2, m3, m4 = m2 and m5 = m1.

3. Let the figure of merit be the supremum absolute error between g̃(λ ) and g(λ ):

E(t1, t2,m1,m2,m3) = sup
λ∈[0,1]

|g̃(λ )−g(λ )|.

For the breakpoints’ search space, a resolution of 10−2 was used. The minimum, with respect

to E(·), is 0.0223. It is attained at (t1, t2,m1,m2,m3) = (0.14,0.29,4,4,0). The respective
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piecewise linear curve is

g̃∗(λ ),



−1.0157+ 11
16 ·λ , if λ ∈ [0.00,0.14),

−1.1931+ 31
16 ·λ , if λ ∈ [0.14,0.29),

−1.5032+ 3 ·λ , if λ ∈ [0.29,0.71),

−0.7602+ 31
16 ·λ , if λ ∈ [0.71,0.86),

0.3337+ 11
16 ·λ , if λ ∈ [0.86,1.00].

(4.41)

The quantity ∑
5
k=1 mk = 2(m1 +m2)+m3 can be seen as a measure of the simplicity of g̃(λ ). If

we add the constraints m1 = m2 = m3 = 0, the best configuration is (t1, t2) = (0.11,0.33), which

yields E(·) = 0.0587. Such error is more than 2.6 times larger than the maximal deviation of

g̃(λ ). For that reason, we use only g̃(λ ) in our experiments. We notice that−1.0157+ 11
16 ·0.01≈

−1.0088 and 0.3337+ 11
16 ·0.99≈ 1.0143. In order to guarantee that the estimates of ρ are within

[−1,1], we define

g̃(λ ),


−1, if g̃∗(λ )≤−1,

g̃∗(λ ), if g̃∗(λ ) ∈ (−1,1),

1, if g̃∗(λ )≥ 1.

(4.42)

The induced low-complexity estimator of ρ is then ρ̃ = g̃(λ̂ ). In Figure 11, we display the curves

g(λ ) and g̃(λ ). In Figure 12, we display a signal-flow diagram representation of the computation

of g̃∗(λ ).

4.5.3 Computational Cost Analysis

VanVleck’s (or Kedem’s) approximate estimator is given by

ρ̂a = g(λ̂ ) = cos
(

π(1− λ̂ )
)
.

From cos(π(1−λ )) = −cos(πλ ), given λ̂ , the estimator ρ̂a requires 1 multiplication (λ ·π)

and the computation of the cosine function; the result has the sign bit reversed before it is output.

The CORDIC algorithm (LAKSHMI; DHAR, 2010) and its variations are the most common

choice for the computation of elementary trigonometric functions at the software level when

no hardware multiplier is available. Use cases include biomedical applications embedded on

microcontrollers or FPGAs (KWONG; CHANDRAKASAN, 2011). It requires only additions,
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Figure 10 – Error measure Ei/E through the domain of λ for the function g(λ ).
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(g̃(λ )) estimators.
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Figure 12 – Signal-flow graph representation of the function g̃∗(λ ) in (4.41).

bit-shifts and the precomputation and storage of a lookup table with floating point numbers

which are used through the iterations of the algorithm.

Our alternative estimator is ρ̃ = g̃(λ̂ ), where g̃(·) is given in (4.42). Thus, the

estimator ρ̃ requires the storage of 4+5 = 9 floating-point numbers and 3 dyadic rationals: the

breakpoints, the intercepts and the slopes. For the middle case, notice that 3λ = 2λ +λ . That is,

multiplication by 3 can be implemented with 1 bit-shift and 1 sum. Also, since

31
16

=
32−1

16
= 2− 1

24 ,

multiplication by 31/16 can be implemented with 5 bit-shifts and 1 sum. Finally, we have that

11
16

=
16− (4+1)

16
= 1− 1

22 −
1
24
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and then multiplication by 11/16 can be implemented with 6 bit-shifts and 2 sums. Notice that

we could also write
11
16

=
8+2+1

16
=

1
2
+

1
23 +

1
24 ,

however 8 bit-shifts are required under this representation. Therefore, in a worst-case scenario,

given an estimate of λ , the estimator ρ̃ requires no more than 3 sums and 6 bit-shifts.

If a prior distribution π(`) is available for λ , the expected value of the number of

sums can be computed as

3
(∫ 0.14

0
π(`)d`+

∫ 1.00

0.86
π(`)d`

)
+2

∫ 0.86

0.14
π(`)d`.

Similarly, the expected value of the number of bit-shifts is

6
(∫ 0.14

0
π(`)d`+

∫ 1.00

0.86
π(`)d`

)
+
∫ 0.71

0.29
π(`)d`+5

(∫ 0.29

0.14
π(`)d`+

∫ 0.86

0.71
π(`)d`

)
.

In particular, if π(`) = `−1, ` ∈ [0,1], is the uniform distribution, the expected number of sums

is 2.28 and the expected number of bit-shifts is 3.60.

4.6 STATISTICAL PERFORMANCE ANALYSIS

It looks like we loose a great deal of information by taking only one bit bn of each

observation yn. For instance, since bn says nothing about the amplitude of yn, we can not estimate

the variance σ2
y of the process yn based solely on bn. A natural question arises: what does one

loose in terms of estimation accuracy when one uses ρ̂a = cos(π(1− λ̂ )), or ρ̃ = g̃(λ̂ ) instead

of ρ̂ to estimate ρ?

In order to answer this question, we consider the mean squared error (MSE) as a

figure of merit of an estimator. The MSE of ρ̂ for a sample of size N is defined as (CASELLA;

BERGER, 2002, Section 7.3)

MSE(ρ̂,N), E
{
(ρ̂−ρ)2} . (4.43)

Analogously, we have that MSE(ρ̇,N) , E
{
(ρ̇−ρ)2}, where ρ̇ ∈ {ρ̂a, ρ̃} is an alternative

estimator of ρ . Consider now the relative mean squared error (rMSE) between an alternative

estimator ρ̇ and the exact estimator ρ̂ for a sample of size N, defined as the ratio (KIPNIS;

DUCHI, 2017, Equation 2)

rMSE(ρ̇, ρ̂,N),
MSE(ρ̇,N)

MSE(ρ̂,N)
. (4.44)
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Figure 13 – MSE of the estimators of ρ in AR(1) processes as a function of N for the true
value of ρ set as ρ = 0.8 and various values of σ2

x estimated through Monte
Carlo simulations.

We used the following Monte Carlo simulation study in order to access the statistical

performance of the estimators of ρ in terms of rMSE. For ρ = 0.8 and for each pair (N,σ2
x ),

where N ∈ {20,40, . . . ,500} and σx ∈ {0.5,1,3,5}, we generated 200 samples of an AR(1)

process with the given parameter configuration and, for each sample r = 1,2, . . . ,200, we

estimated ρ with the exact, approximate and low-complexity estimators, yielding ρ̂(r), ρ̂
(r)
a , and

ρ̃(r), for the rth sample, respectively. Then, the the MSE in (4.43) is estimated as

M̂SE(ρ̂,N) =
1

200

200

∑
r=1

(
ρ̂
(r)−ρ

)2
. (4.45)

The rMSE in (4.44) is estimated for ρ̂a and ρ̃ respectively as

r̂MSE(ρ̂a, ρ̂,N) =
∑

200
r=1

(
ρ̂
(r)
a −ρ

)2

∑
200
r=1
(
ρ̂(r)−ρ

)2 ,

and r̂MSE(ρ̃, ρ̂,N) =
∑

200
r=1

(
ρ̃(r)−ρ

)2

∑
200
r=1
(
ρ̂(r)−ρ

)2 .

In Figure 13, we display curves of the MSE of the each estimator as a function of N.

In general, the MSE of all estimators converge to zero as N grows. This empirical observation
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Figure 14 – MSE of estimators of ρ as a function of ρ (σ2
x = 1, N = 500) estimated

through Monte Carlo simulations.

is in accordance with the theoretical background leading to (4.27), (4.35) and (4.36). Also, the

performance of the alternative estimators is upper bounded by the performance of the exact

estimator.

Qualitatively, from a visual inspection, the parameter σ2
x have no significant impact

on the behavior of the MSE of both the exact and the approximate estimators. The MSE behavior

was also homogeneous in σ2
x for other values of ρ . Indeed, such phenomena can be explained by

the signal-to-noise ratio (SNR). The SNR is defined by the ratio between the variance, or power,

of the signal yn and the variance of the input noise xn. In the case of AR(1) processes, the SNR

is given by

SNRy =
σ2

y

σ2
x
=

σ2
x /(1−ρ2)

σ2
x

=
1

1−ρ2 . (4.46)

We see that SNRy does not depend on σ2
x . Based on this observation, we set σ2

x = 1 for the

subsequent analyses. The SNRy metric does depend on ρ though. In fact, when |ρ| → 1 SNRy

grows towards positive infinity. In Figure 14, we see that the MSE of all estimators decreases

and the performances of both alternative estimators become closer to the performance of ρ̂ as ρ

approaches 1.

From a visual inspection, the curves in Figure 13 suggest that estimators ρ̂a and

ρ̃ have no significant difference in statistical behavior. In order to take a closer look into the

difference amongst the estimators, we display the empirical values of the rMSE between each

alternative estimator and ρ̂ in Figure 15.

According to Figure 15, we note that in general, in the sense of MSE, the performance
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Figure 15 – rMSE between alternative and exact estimators of ρ in AR(1) processes as a
function of N for various values of ρ and σ2

x = 1 estimated through Monte
Carlo simulations.
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of ρ̃ is upper bounded by the performance of ρ̂a, which in turn is upper bounded by the

performance of ρ̂ . Particularly for ρ ∈ {0.6,0.7}, the proposed low-complexity estimator ρ̃

behaved better than the approximate estimator ρ̂a. In general, the following order relation

amongst the estimators of ρ can be established in terms of statistical performance as measured

by the MSE:

Exact� Approximate� Low-complexity,

where A� B means that A is preferable to B.

For ρ = 0.9, we note that the rMSE of ρ̃ grows more rapidly with N than in the

other cases, which means that the difference in performance between ρ̃ and ρ̂ becomes clearer

as N grows (i.e., as the empirical MSE converges to its true value). That can be explained by

the discontinuity in g̃(λ ) at λ = 0.86; in fact, g̃(0.86) = 0.92. The linear nature of the method

causes the approximation having a hard time to mimic high-curvature regions, which is the case

with λ → 1 ∴ ρ → 1. A possible solution for that problem would be to guarantee that the

low-cost approximations are somewhat smooth functions.
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5 APPLICATIONS

In this chapter, we experiment the developments of Chapter 4 in two applications.

In the first one, we consider an extension of our developments in the theory of parameter

estimation for AR(2) processes. The second application is in image processing. We consider a

proof-of-concept of a simple correlation-based approach for the image segmentation problem.

5.1 LOW-COMPLEXITY INFERENCE FOR AR(2) PROCESSES

In this section, we consider the problem of estimation of the parameters of autore-

gressive processes of order 2, or AR(2) processes, under the low-complexity constraint. We say

that yn is an AR(2) process if it is stationary and

yn = a1yn−1 +a2yn−2 + xn (5.1)

for some real numbers a1,a2, where xn is a WN sequence with variance σ2
x . We talk briefly

about the key properties of this class of time series. In particular, we examine what is the benefit

of the additional parameter a2 in comparison to the AR(1) case, when a2 = 0.

We consider the idea of iterative AR(1) filtering and how this can be used in the

AR(2) parameter estimation problem. We look at the relationship between the AR(1) parameters

obtained in each iteration. Specifically for AR(2) processes, we show via simulations that

estimators for a1 and a2 can be obtained this way by applying AR(1) filtering twice. That is the

main contribution of this section.

5.1.1 The PSD of AR(2) Processes

We can write Equation (5.1) as

a(B) · yn =
(
1−a1B−a2B2) · yn = xn, (5.2)

where B is the backward shift operator defined by Bkyn = yn−k and a(z) = 1−a1z−a2z2 is the

autoregressive polynomial (BROCKWELL; DAVIS, 2002, page 84). Let us try to invert (5.2)

and write yn as a causal filter hk applied to xn:

yn = h(B) · xn =
∞

∑
k=0

hkxn−k, (5.3)
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where h(z) = ∑
∞
k=0 hkzk. From (5.2), since yn = a−1(B) · xn, we must have h(z) = a(z)−1, or

equivalently a(z)h(z) = 1, which yields

(1−a1z−a2z2)(h0 +h1z+h2z2 +h3z3 +h4z4 + · · ·) = 1

∴ h0 +(h1−a1)z+(h2−a1h1−a2)z2 +(h3−a1h2−a2h1)z3 + · · ·= 1.

Thus, hk obeys the linear difference equation hk = a1hk−1+a2hk−2, with initial conditions h0 = 1

and hk = 0 for k < 0. From this linear difference equation and the properties in (OPPENHEIM,

1999, Section 3.4), the z-transform of hk, H(z), is given by

H(z) =
1

1−a1z−1−a2z−2 . (5.4)

From (3.13) and (5.4), the PSD of the AR(2) process is given by

fy(ω) =
σ2

x
|1−a1e− jω −a2e− jω |2

=
σ2

x

1+a2
1 +a2

2−2a1(1−a2)cos(ω)−2a2 cos(2ω)
. (5.5)

Note that when a2 = 0, fy(ω) collapses into the AR(1) PSD (4.5). The following theorem

establishes constraints on the parameters a1 and a2 so that (5.3) is valid, i.e., h(B) · xn indeed

converges to yn.

Theorem 5.1 (Theorem 3.1.1 in (BROCKWELL; DAVIS, 2013)). An unique stationary and

causal solution yn to the AR(2) equations (5.1) exists if, and only if, a(z) 6= 0 whenever |z| ≤ 1.

Following (HAMILTON, 1994, Section 2.3), we have that

a(z) = 0 ∴ z−2a(z) = z−2−a1z−1−a2 = 0.

Setting w = z−1, assuming z 6= 0, we have that the requirement |z| ≥ 1 of Theorem 5.1 for the

roots of a(z) is the same as requiring that the roots of w2−a1w−a2 = 0, namely

w =
a1±

√
a2

1 +4a2

2
, (5.6)

be such that |w| ≤ 1. Let ∆ = a2
1+4a2 and consider the following mutually exclusive, exhaustive

cases:

1. If ∆ = 0, then there is only one real root with multiplicity 2 in (5.6), namely w = a1/2.

The condition |w| ≤ 1 is translated into |a1/2| ≤ 1 ∴ |a1| ≤ 2, or, using ∆ = 0, since

a2
1 =−4a2 ≤ 4 we have the equivalent condition a2 ≥−1.

2. If ∆ > 0, then we have has two distinct real roots in (5.6) and |w| ≤ 1 implies that

a2 ≥−1, a2−a1 ≤ 1, a1 +a2 ≤ 1.
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Figure 16 – The parameter space of AR(2) processes is known as the stability triangle
due to its form in the real plane. In the area under the curve a2 =−a2

1/4, the
roots (5.6) are complex numbers.

3. If ∆ < 0, then we have two distinct complex roots in (5.6) which are the complex conjugate

of each other. Therefore, they have the same norm, namely −a2, thus we must have

−a2 ≤ 1 ∴ a2 ≥−1.

The union of these constraints is a triangle in R2. It is called the stability triangle of AR(2)

processes (HAMILTON, 1994, page 17). We display the stability triangle in Figure 16.

5.1.2 Approximate Parameter Estimation via Iterative AR(1) Filtering

Inspired by the technology of wavelets and filter banks (STRANG; NGUYEN,

1996; MALLAT, 2008), we consider an estimation scheme explored through Algorithm 2 as

an extension of the development in the previous chapter. The similarity with wavelets is in the

re-utilization of the residual series in step 3.

Algorithm 2: Algorithm used to find AR(2) parameter estimates based on iterative AR(1)
filtering.

Require: y1,y2, . . . ,yN
Ensure: Iterative AR(1) estimates ρ̂1 and ρ̂2

1. Fit an AR(1) model to the data series yn. Let ρ̂1 denote the obtained estimate as
in (4.25).

2. Let x̂n = yn− ρ̂1yn−1, 2≤ n≤ N, denote the residual series from previous step.
3. Fit an AR(1) model to the data series x̂n. Let ρ̂2 denote the obtained estimate.
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Figure 17 – Map M (ρ̂1, ρ̂2) = (â1, â2) between the iterative estimates ρ̂1, ρ̂2 and the AR(2)
parameters a1 and a2.

We argue that there is a relationship between ρ̂1, ρ̂2, a1 and a2. We were not able to

provide a formal proof for that. We conducted a simulation study though, which suggests that

such a map

M : (ρ̂1, ρ̂2) 7→ (â1, â2)

indeed exists. The function M provides an estimator for a1 and a2 based on the iterative estimates

ρ̂1 and ρ̂2. The goal of the Monte Carlo simulation was to discover the true relationship between

these two sets of parameters. Because of that, we investigated the procedure using a large sample

size, namely N = 5000. For each point in a grid of resolution 10−2 within the stability triangle

in Figure 16, i.e., for each feasible point (a1,a2) in the AR(2) parameter space, we generated a

N-point realization of an AR(2) process and obtained (ρ̂1, ρ̂2) using Algorithm 2.

The results of the simulation were visually inspected using the rgl R package (ADLER;

NENADIC; ZUCCHINI, 2003). The patterns naturally suggested that the following estimator is

what we seek:

M (ρ̂1, ρ̂2) = (â1, â2) =

(
ρ̂1 + ρ̂2,−

ρ̂2

ρ̂1

)
. (5.7)

In fact, in Figure 17 we display plots of ρ̂1 + ρ̂2 versus the true a1 and of −ρ̂2/ρ̂1 versus the true

a2, along with the graphic of the functions x 7→ x and x 7→ −x, respectively, in red.

Since the mapping for a2 involves dividing ρ̂2 by ρ̂1, we may have problems of
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Pr{|a2− (−ρ̂2/ρ̂1)| ≤ q} 25% 50% 75% 95% 99%
Percentile q 0.004 0.008 0.014 0.025 0.036

Table 2 – Selected percentiles of the distribution of |a2− (−ρ̂2/ρ̂1)| as observed in the
simulations.

numerical instability when ρ̂1 is close to zero. Such behavior is in fact observed in the right

plot of Figure 17. We were not able to display all points in the plots of Figure 17 due to LATEX

memory issues, but, for the map a2 ≈ −ρ̂2/ρ̂1, errors as large as 20 are possible. We do not

have a proper solution for this numerical instability issue. In Table 2, we show a selected set

of percentiles of the distribution of |a2− (−ρ̂2/ρ̂1)| using the whole data from the simulations.

Notice that, for instance, 99% of the absolute deviations |a2− (−ρ̂2/ρ̂1)| from the identity line

are upper bounded by 0.036.

5.1.3 Performance Comparison with Maximum Likelihood Estimates

We compare the proposed iterative AR(1) filtering method with the maximum

likelihood estimator (MLE) of (a1,a2) (BROCKWELL; DAVIS, 2013, Section 8.7). The R

implementation of the MLE in the arima function of the stats package was used for the

comparisons.

For each one of the feasible values of

(a1,a2) ∈ {(−1.00,−0.25),(1.00,−0.50),(−0.50,0.50)}

and for N = 1024, we simulated 500 AR(2) processes with σ2
x = 1. For each sample, estimates

of (a1,a2) were obtained using (i) the MLE estimator, and the proposed iterative filtering method

with (ii) the exact estimator ρ̂ of ρ , (iii) VanVleck’s approximate estimator ρ̂a, and (iv) the

proposed low-complexity estimator ρ̃ .

In Figures 18 and 19, we display box-plots of the biases â1−a1 and â2−a2 for the

three selected parametric points and for each estimation method. We note that the estimates of

a2 have slightly more variability than the estimates of a1 when the proposed iterative method is

used. This phenomena is explained by the numerical instability issue of a2 estimates discussed

in the previous section. Also, using the average over the Monte Carlo replicas of the euclidian

distance
√

(â1−a1)2 +(â2−a2)2 as a figure of merit of the estimator, we can establish the
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following order relations:

(a1,a2) = (1.00,−0.25) : Iterative/Exact�MLE� Iterative/Low-c� Iterative/Approx

(a1,a2) = (−0.50,0.25) : MLE� Iterative/Exact� Iterative/Low-c� Iterative/Approx

(a1,a2) = (1.00,−0.50) : Iterative/Exact∼MLE� Iterative/Low-c� Iterative/Approx,

where A� B means that A is preferable to B and A∼ B means that one is indifferent between A

and B. We remark that proposed iterative scheme worked better with the proposed low-complexity

estimator than with the approximate estimator in all considered cases.

5.2 IMAGE SEGMENTATION

In the image segmentation problem, we are asked for a subdivision of an input

image into its constituents regions or objects (GONZALEZ; WOODS, 2007, Chapter 10). In

this section, we provide a simple proof-of-concept from a correlation-based approach to the
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Figure 20 – Box-plots of the distribution of estimates of ρ over the rows of the 512-by-512
texture images from the USC-SIPI database.

segmentation problem. For the experiments, we used the first series of the 13 texture images of

the USC-SIPI database (WEBER, 1997). The images have dimension 512-by-512 and the first

series consists of unprocessed images with TIFF format.

In Figure 20, we display box-plots of the empirical distribution of estimates ρ

computed for each row of the texture images from the database. We treat each row of gray pixel

intensity values as the data series yn. It seems possible to create clusters of images based solely

on the information of ρ . In Table 3, we evaluate the ability of the low-complexity estimator

to define clusters by comparing the variability of its estimates with the variability of the exact

estimates. The variability of the estimators is measured by the sample variance (v̂ar(·)) and

the sample median absolute deviations from the median (M̂AD(·)). Boldface entries indicate

textures in which the proposed low-complexity estimator was more efficient in the sense of

having less within-class variance and thus helping a classifier do its job. In the sense of the

variance ratio, the low-complexity estimator was more efficient in 4 out of 13 cases; in the sense

of the MAD ratio, the number was 6 out of 13.

In Figure 21, we display dispersion graphics of the pairs (ρrow,ρcol) of estimates of

ρ over the rows and columns of the texture images. Each color represents a different texture.

The “Binary” estimator uses simply λ̂ with no further transformation. It is clear that clusters

of textures indeed exist and are linearly separable. These observations can lead the way to fast

segmentation strategies based on learning correlation intervals characterizing a given texture.
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Texture v̂ar(ρ̃)/v̂ar(ρ̂) M̂AD(ρ̃)/M̂AD(ρ̂)

01 1.23 1.06
02 2.14 0.78
03 2.65 1.57
04 0.79 0.79
05 2.20 1.76
06 2.45 1.33
07 1.01 0.67
08 0.01 0.00
09 0.75 0.77
10 1.03 1.03
11 1.54 1.14
12 0.61 0.47
13 3.24 1.25

Table 3 – Relative efficiency of the proposed low-complexity estimator according to the
variance (var) and median absolute deviation (MAD) from the median, both

computed cluster-wise. Boldface numbers indicate cases in which the
low-complexity estimate had better performance.
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Figure 21 – Dispersion graphic of the pairs (ρrow,ρcol) of estimates of ρ over the rows
and columns of the texture images of the USC-SIPI database. Each color

represents a different texture.
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6 CONCLUDING REMARKS

6.1 OVERVIEW OF RESULTS AND DISCUSSION

In this dissertation, we studied the parameter estimation problem in AR(1) processes

under the low-complexity constraint. The work led to the following contributions:

• In Section 4.3, we studied a binarized version of AR(1) processes considering only the

assumption that the process has a symmetric distribution. The symmetric scenario is

less restrictive than the usual gaussian assumption. In this case, we provided the explicit

formula (4.17) for the link between the transition probability λ of the binary process and

the correlation structure described by ρ of the original AR(1) process. From this analysis,

we conjectured that the symmetric assumption is a sufficient condition for the existence of

a bijective map between λ and ρ which would allow ρ to be estimated from the one-bit

observations bn.

• In Section 4.3.2, we showed that our theoretical framework yields the same function

ρ = cos(π(1−λ )) already known for the case when yn has gaussian marginals.

• In Section 4.4, we reviewed some well-known methods for the estimation of the parameters

ρ and σ2
x . In particular, by taking a closer look into the expressions for the estimators

ρ̂ and σ̂2
x , we proposed the approximate estimator ŝ2

x for σ2
x which we proved to be

asymptotically equivalent to the exact estimator σ̂2
x costing 50% less in terms arithmetical

complexity.

• In Section 4.5, we proposed a low-complexity piecewise linear approximation g̃(λ ) to

the curve ρ = g(λ ) = cos(π(1−λ )), which links λ and ρ in the gaussian canse. Then, a

low-complexity estimator for ρ based on the one-bit observations was proposed, naturally

enough, as ρ̃ = g̃(λ̂ ). Given an estimate λ̂ of λ , the proposed estimator requires at most 3

sums and 6 bit-shifts. In Section 4.6, Monte Carlo simulations suggest that the proposed

estimator has a statistical performance comparable to the existing alternative estimator

ρ̂a = cos(π(1− λ̂ )).

• In Section 5.1, we considered the problem of parameter estimation in AR(2) processes.

Monte Carlo simulations suggest that iterative AR(1) filtering can be used to estimate

the parameters of an AR(2) process. Further simulations showed that such strategy has

statistical performance comparable to the MLE estimates. If we use an alternative estimator

based on bn for the iterative process, the variance of the final AR(2) estimators is slightly
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larger.

• Finally, in Section 5.2, we consider a correlation-based approach to image segmentation

using a database of 13 different texture images. Qualitatively, from Figure 20, it is clear

that some textures can be efficiently distinguished by using only the information contained

in the pixels’ first autocorrelation.

6.2 FUTURE WORKS

The work can certainly be improved in many directions. We cite a few:

• The low-complexity approximation was obtained using various heuristics and optimiza-

tions via exhaustive inspection. A more rigorous optimization framework would yield

better convergence guarantees. Also, the obtained curve g̃(λ ) is not smooth everywhere,

as it becomes clear from Figure 21. Constraining the coefficients of B-splines (BARTELS;

BEATTY; BARSKY, 1987, Chapter 4) to the set of dyadic rationals would be a more

elegant way to solve the problem.

• Autoregressive models can be used to approximate the PSD of stationary signals (DJURIC

et al., 1999). The low-cost AR(2) estimator could consequently be used to provide a cheap

estimator for the PSD of single tone sinusoids (SO et al., 1999).
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