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ABSTRACT 

 

Two-phase flows of oil and water in naturally fractured petroleum reservoirs can be described 

by a system of nonlinear partial differential equations that comprises an elliptic pressure 

equation and a hyperbolic saturation equation coupled through the total velocity field. 

Modeling this problem is a great challenge, due to the complexity of the depositional 

environments, which can include fractures (channels or barriers). In such cases, it is 

particularly complex to construct structured meshes which are capable of properly modeling 

the reservoir. In this work, a locally conservative approach to model the oil and water 

displacements in naturally fractured reservoirs using general unstructured meshes was 

developed. A cell-centered Finite-Volume Method with a Multi-Point Flux Approximation 

that uses the so called “diamond stencil” (MPFA-D) was used to solve the pressure equation, 

coupled with a Hybrid-Grid Method (HyG) to deal with the fractures. The classical First 

Order Upwind Method (FOUM) was used to solve the saturation equation. The FOUM was 

applied in two different segregated schemes, in its explicit and implicit versions, respectively 

the IMPES (IMplicit Pressure and Explicit Saturation) and the SEQ (SEQuential implicit 

pressure and saturation). The MPFA-D is a very robust and flexible formulation that is 

capable of handling highly heterogeneous and anisotropic domains using general polygonal 

meshes. In the HyG, the mesh that discretizes the domain must fit the spatial positions of the 

fractures, so that they are associated to edges - as 1-D cells in a 2-D mesh -, therefore, the 

calculation of the fluxes in these edges is dependent on the pressures on fractures and on the 

adjacent volumes, but, in this strategy, the fractures are expanded, in the computational 

domain, to the same dimension of the mesh. In this way, it is possible to get, for example, 2-D 

fracture cells in a 2-D mesh, but avoiding excessive refinement in the fractured regions, in the 

original mesh. The proposed formulation presented quite remarkable results when compared 

with similar formulations using classical full pressure support and triangle pressure support 

methods, or even the with MPFA-D itself when using an equidimensional approach. 

 

Keywords: Two-phase flows of oil and water. Heterogeneous and anisotropic reservoirs. 

Naturally fractured reservoirs. Hybrid-grid method. MPFA-D. 



RESUMO 

 

Escoamentos bifásicos de óleo e água em reservatórios de petróleo naturalmente fraturados 

podem ser descritos por um sistema de equações diferenciais parciais não-lineares que 

compreende uma equação elíptica de pressão e uma equação hiperbólica de saturação 

acopladas através do campo de velocidade total. Modelar este tipo de problema é um grande 

desafio, devido à complexidade dos ambientes deposicionais, que pode incluir fraturas (canais 

ou barreiras). Em tais casos, é particularmente complexo construir malhas estruturadas 

capazes de modelar adequadamente o reservatório. Neste trabalho, foi desenvolvida uma 

formulação localmente conservativa para modelar os escoamentos de óleo e água em 

reservatórios naturalmente fraturados usando malhas não-estruturadas. Para resolver a 

equação da pressão, foi adaptado um método de volumes finitos centrado na célula com uma 

aproximação de fluxo por múltiplos pontos que usa o chamado "estêncil de diamante" 

(MPFA-D) acoplado a um método de malha híbrida (HyG) para lidar com as fraturas. O 

clássico método de ponderação à montante de primeira ordem (FOUM) foi usado para 

resolver a equação de saturação. O FOUM foi aplicado em dois esquemas segregados 

diferentes, em suas versões explícita e implícita, respectivamente o IMPES (solução IMplícita 

para a Pressão e Explícita para a Saturação) e o SEQ (solução SEQuencialmente implícita 

para pressão e saturação). O MPFA-D é uma formulação muito robusta e flexível que é capaz 

de lidar com domínios altamente heterogêneos e anisotrópicos usando malhas poligonais 

quaisquer. No HyG, a malha que discretiza o domínio deve ajustar-se às posições espaciais 

das fraturas, de forma que elas estejam associadas a arestas - como células 1-D em uma malha 

2-D -, portanto, o cálculo dos fluxos nessas arestas é dependente das pressões nas fraturas e 

nos volumes adjacentes, mas, nessa estratégia, as fraturas são expandidas, no domínio 

computacional, para a mesma dimensão da malha. Dessa forma, é possível obter, por 

exemplo, células de fratura 2-D em uma malha 2-D, mas evitando-se refinamentos excessivos 

nas regiões das fraturas, na malha original. A formulação proposta apresentou bons resultados 

quando comparada com formulações similares utilizando métodos clássicos com suporte total 

e suporte triangular para a pressão, ou mesmo com o próprio MPFA-D, numa abordagem 

equidimensional. 

 

Palavras-chave: Escoamento bifásico de óleo e água. Reservatórios heterogêneos e 

anisotrópicos. Reservatórios naturalmente fraturados. Modelo de malha híbrida. MPFA-D. 
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1 INTRODUCTION 

Most of physical phenomena observed in nature that are relevant to mankind are 

described through mathematical models, so that they can be used to perform simulations, i.e., 

predictions of results associated with those physical phenomena. In this context, one of the 

phenomena of interest is the flow of fluids in porous media, whose mathematical model 

comes from the experiments of Henry Darcy, in a hospital in Dijon, France, in 1856. This 

phenomenon is intrinsically associated with the production of petroleum, a process that 

involves the displacement of hydrocarbons through a porous reservoir and whose importance 

to the global economy is fundamental. Its simulation represents a very important tool in order 

to obtain information that allows an adequate management of the production, aiming at 

optimizing the recovery of hydrocarbons and maximizing the economic return of the process 

(CHEN; HUAN; MA, 2006; EWING, 1983; PEACEMAN, 1977). 

Oil recovery generally takes place initially with the drilling of wells, which functions 

as outlets for oil stored at high pressures in the reservoir. This process is called primary 

recovery. When the reservoir pressure is not enough to expel the oil, the drilling of injection 

wells is required, through which fluids are injected to increase the pressure in the reservoir 

and make feasible the oil recovery. This process is called secondary recovery. In the case in 

which water is used as the injected fluid in the secondary recovery and it is assumed that the 

pressure of the reservoir does not fall sufficiently to lead to the appearance of a gas phase, the 

secondary recovery process can be simplified as a two-phase flow. 

The two-phase flow in heterogeneous and anisotropic media, as petroleum reservoirs, 

after considering some simplifying hypotheses, can be described, as a system of nonlinear 

partial differential equations, composed by an elliptic pressure equation and a hyperbolic 

transport equation. The modeling of this problem is a great challenge, due to the complexity 

of depositional environments that typically includes inclined layers, faults and fractures 

(channels or barriers) with different sizes and shapes. 

The fractures can be the result of external stresses during the production process or 

have origin in the geological activities during the formation of the reservoir system. This last 

type is what characterizes the naturally fractured reservoirs, which have received increasing 

attention, because the oil industry estimates that most of the remaining exploitable fields are 

of this type (MATTHÄI, 2005). 
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Sandve, Berre and Nordbotten (2012) terms as fractures all the reservoirs systems of 

discontinuities and affirm that they can occur on different scales, with different geometries, 

and may behave as either channels or barriers for the fluid flow. Martin, Jaffré and Roberts 

(2005) affirm that the case in which there is a small permeability in the fracture involves a 

pressure discontinuity and the case in which there is a large permeability in the fracture 

involves a velocity discontinuity. 

Since the mid-20th century, different strategies have been studied to deal with 

fractured reservoirs. The most intuitive of all is single-continuum approach, which consists of 

upscaling the properties over the fractured regions to obtain equivalent properties (i.e., 

porosity, permeability, etc.), but the presence of the fractures within the porous media 

frequently introduce strong discontinuities that are not well represented by averaged 

descriptions (LONG et al., 1982). Therefore, since the beginning of the studies of the 

infiltration in fractured media, it was sought to build a multi-continuum approach, in which no 

geometric distinctions would be made between matrix and fractures, but instead employ 

different media that coexist in space, with transfer functions relating them (BERRE; 

DOSTER; KEILEGAVLEN, 2018). 

Barenblatt, Zheltov and Kochina (1960) considered that a fractured (what they called 

fissured) rock consisted of pores and permeable blocks separated one from each other by a 

system of fractures, whose widths are considerably greater than the characteristic dimensions 

of the pores, what makes the permeability of the fracture system considerably bigger than 

permeability of the blocks pores system. On the other hand, the total volume of the fractures 

is much smaller than the total porous volume, so that the ratio between the total fractures 

volume and the rock volume is considerably smaller than the porosity of the blocks. From this 

model, the first and most commonly used approach to treat naturally fractured domains was 

developed, which uses effective parameters to derive the behavior of the fluid in a dual-

continuum context (BARENBLATT; ZHELTOV; KOCHINA, 1960; WARREN; ROOT, 

1963). This family of strategies has been called dual-porosity models, in which the reservoir 

is modelled as a highly interconnected and structured set of fractures supplied by fluids from 

numerous small matrix blocks (ULEBERG; KLEPPE, 1996). For two-phase flow, the dual-

continuum methods need a very complex basis, in terms of constitutive relations for capillary 

pressures and relative permeabilities, and transfer functions, to ensure an accurate solution 

(HOTEIT; FIROOZABADI, 2008; BERRE; DOSTER; KEILEGAVLEN, 2018).  
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Other conventional way to incorporate the effects of the fractures in a flow simulator 

is using transmissibility multipliers that account for the reduced or increased permeability for 

each cross-fracture connection (MANZOCCHI et al., 1999; NILSEN et al., 2012). 

Transmissibility multipliers are typically calculated as empirical functions and are highly grid 

dependent and strictly associated with a connection between two grid cells rather than with 

the fracture itself. Therefore, if the grid is refined, the fractures permeabilities must be 

recalculated and then translated back to new multipliers values. Regarding the modelling, the 

transmissibility multipliers are not good solutions because any given multiplier value will be 

tied to a specific discretization and the introduction of these values into another consistent 

scheme will produce large pointwise errors (NILSEN et al., 2012). 

On the other hand, some strategies which describe the fractures explicitly have also 

been developed. These methods are more suitable for multiphase flow problems, because, if 

the constitutive relations for capillary pressures and relative permeabilities are known, they 

can be included directly into the models (BERRE; DOSTER; KEILEGAVLEN, 2018). 

However, these strategies are frequently associated to matrix ill-conditioning and excessive 

time steps restrictions due to the geometrical scales contrast between the fracture and the rock 

matrix grid cells (GHORAYEB; FIROOZABADI, 2000).  

The explicit fracture representation methods can be divided in two groups, based on 

the discretization approaches: the conforming mesh and the non-conforming mesh 

formulations. In the first one, the mesh construction needs to fit the fractures positions (this 

condition makes this strategy especially costly when it is necessary to discretize small angles 

and small distances), which is not needed in the second one, in which the fractures can cross 

through the rock matrix grid-cells. In this second group, there are the extended finite elements 

methods (FUMAGALLI; SCOTTI, 2013; SCHWENCK et al., 2015; FLEMISCH; 

FUMAGALLI; SCOTTI, 2016), which are applicable only for finite elements methods, and 

the embedded discrete fracture models (LI; LEE, 2008), in which the degrees of freedom of 

matrix and fractures are discretized separately, but the coupling structure is identical to that of 

dual-continuum, with the difference that the coupling terms is modeled in terms of discrete 

variables directly (BERRE; DOSTER; KEILEGAVLEN, 2018).  

The mesh conforming methods can also be subdivided in three groups: the 

equidimensional strategy, the lower-dimensional fracture models and the hybrid-grid 

methods. The equidimensional strategy is certainly the costliest one, in which the fractures are 

treated as n-dimensional entities in a n-dimensional domain (2-D surfaces in a 2-D domain, 
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for example). In this case, they are represented in the geometric mesh with its real aperture 

and the inside of the fracture is discretized as the rest of the domain. On the other hand, the 

lower-dimensional - also called mixed-dimensional (BERRE; DOSTER; KEILEGAVLEN, 

2018) - fracture models (MARTIN; JAFFRÉ; ROBERTS, 2005; HOTEIT; FIROOZABADI, 

2008; AHMED et al., 2015) and the hybrid-grid methods (KARIMI-FARD; DURLOFSKY; 

AZIZ, 2004; SANDVE; BERRE; NORDBOTTEN, 2012; AHMED et al., 2017) describe the 

fractures explicitly as (n-1)-dimensional cells in a n-dimensional domain, for example as 1-D 

lines in 2-D surfaces (NOORISHAD; MEHRAN, 1982; BACA; ARNETT; LANGFORD, 

1984; MARTIN; JAFFRÉ; ROBERTS, 2005), what improves considerably the computational 

efficiency (HOTEIT; FIROOZABADI, 2008). However, it is still not feasible to use them to 

treat domains with high quantity (thousands) of fractures, due to computational capacity 

limitations. In these cases, it is possible to use an upscaling technique to mimic the effect of 

most fractures, using those types of strategies just for the most relevant ones (LEE; LOUGH; 

JENSEN, 2001). 

In the lower-dimensional fracture models (LDFM), the flow equations for the 

fractures are discretized separately from the matrix, in a (n-1)-dimensional subdomain. 

Otherwise, in the hybrid-grid methods (HyG), the fractures are expanded to n-dimensional in 

the computational domain, so the equations for the fractures and for the rock matrix are 

discretized together, which make them more adequate to take full advantage from full 

pressure support (FPS) methods when solving the pressure equation. 

Thus, the hybrid-grid method meets the characteristics of capability to represent 

complex geometries and easiness to improve the representation of physics, despite the 

computational cost increasing, when compared to those methods which do not represent the 

fractures explicitly. It is also more capable of taking full advantage from full pressure support 

methods, when compared to the lower-dimensional model, and without an important 

increasing of computational cost. 

The formulation that has been traditionally used to discretize the governing equations 

is the control volume finite difference (CVFD) method (PEACEMAN, 1977; AZIZ; 

SETTARI, 1979; ERTEKIN; ABOU-KASSEM; KING, 2001), also called Two-Point Flux 

Approximation (TPFA) method, due its simplicity as well as its robustness and its association 

with structured grids, what, in general, leads to low computational cost, besides being easy to 

implement (CARVALHO, 2005). On the other hand, there are difficulties in representing 

complex geometries with structured meshes, cases in which the use of an excessive number of 
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blocks, in order to reduce the errors, can make the problem overly computationally costly, 

besides this, the CVFD only guarantees the convergence if the case of K-orthogonality, i.e., 

when the permeability tensor principal directions is aligned with the mesh axes (SOUZA, 

2015). 

Whenever it is necessary to deal with a full permeability tensor or a non-orthogonal 

grid, a multipoint flux approximation (MPFA) is, in general, required. The MPFA stencil is 

constructed to enforce flux continuity at a point on the interface between neighboring blocks 

and essentially generalizes the harmonic permeability averages used in TPFA (HE; 

DURLOFSKY, 2006). This family of methods was developed simultaneously by Aavatsmark, 

Barkve and Mannseth (1998.a; 1998.b), who has given it this name (MPFA), and Edwards 

and Rogers (1998). Since the appearance of other variants of MPFA, this specific formulation 

presented by Aavatsmark, Barkve and Mannseth (1998.a, 1998.b), have been called MPFA-O, 

because of the format of the set of support regions for the flux approximation on the edges 

sharing a vertex. One of the limitations of this original formulation is the difficulty in dealing 

with high anisotropy ratio tensors due to its triangular support, then, to overcome this 

restriction, some FPS formulations were developed, starting with the original MPFA-FPS, by 

Edwards and Zheng (2008). 

One of these FPS variants is the MPFA-D, which uses the so called “diamond 

stencil” and which was presented by Gao and Wu (2010) and further adapted for the 

simulation of two-phase flow in petroleum reservoirs by Contreras (2012). This method can 

handle highly heterogeneous and anisotropic domains by using general polygonal meshes. 

These are very important characteristics because the permeability, for example, is a property 

that can vary many orders of magnitude in a short stretch of the domain (GEIGER et al., 

2004; CARVALHO, 2005). Moreover, since the sedimentary layers can be deposited in 

different ways giving different preferential directions for the flow of fluids, the porous media 

should be treated preferentially as anisotropic systems (CARVALHO, 2005). 

In context of solving the hyperbolic transport equation, the First Order Upwind 

Method (FOUM) has good properties of monotonicity and mildness in regions close to shock, 

although the numerical diffusion associated with it reduces its accuracy (CARVALHO, 2005). 

In this formulation, a property value on a face is calculated from the value on the center of the 

cell which is upstream with respect to the fluid flow. 
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1.1 Objectives 

The objective of this researching work is to develop and implement a numerical 

scheme to perform 2-D simulations of one-phase and two-phase flows in naturally fractured 

reservoirs that can deal with any permeability tensors and general polygonal meshes, by using 

the MPFA-D (applied for the first time in this context), the HyG and the FOUM. The specific 

objectives of this work are: 

1) Develop and implement, in the MATLAB® environment, a programing tool to 

generate computational hybrid-grids from original grids created by a mesh 

generation software, as a strategy to handle the fractures. 

2) Apply properly the MPFA-D on the created computational hybrid-grids to solve 

the pressure equation in fractured domains. 

3) Apply properly the FOUM, in its implicit and explicit versions, on the created 

computational hybrid-grids to solve the saturation equation in fractured domains. 

1.2 Text Organization 

This text is organized in five chapters. In this first chapter, the problem to be studied 

is presented as well as a brief history of the approaches already used on it and the chosen 

strategy for this work. In the second chapter, it is presented the mathematical model for the 

phenomenon studied here, beginning with some simplifying assumptions, followed by some 

fundamental concepts about oil reservoirs, what is followed by the development of the 

pressure and saturation equations and the boundary conditions necessary to define the 

problem. In the third chapter, it is presented the numerical formulation, beginning with a 

generic algorithm, followed, in this order, by the MPFA-D development, a very brief 

explanation about the MPFA-O, the FOUM development, in its explicit and implicit versions, 

and the HyG development. In the fourth chapter, the results of some performed tests and their 

discussions are presented. The fifth chapter has the conclusions about this work. Finally, the 

bibliography used here is presented. 
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2 MATHEMATICAL MODEL 

This section presents the mathematical model used in this work to describe the two-

phase flow in porous media, including major assumptions, some fundamental concepts, the 

governing equations and the auxiliary conditions. 

2.1 Assumptions 

Fluid flow in porous media is a very complex phenomenon, which would lead us to a 

complex mathematical model, so, aiming to simplify the model to be studied, the following 

assumptions were considered: 

1. Two-phase flow: oil (o) and water (w). 

2. Immiscible and incompressible flow. 

3. Fully saturated non-deformable rock. 

4. Thermal, chemical and capillary effects are neglected. 

5. Dispersion and adsorption effects are neglected. 

6. Darcy’s law is applicable. 

2.2 Concepts 

This subsection briefly presents some fundamental concepts associated to fluid flow 

in porous media and that are important to the comprehension of the mathematical model. 

2.2.1 Rock and Fluid Properties 

Oil reservoirs are porous rock in whose pores are accumulated the fluids. Some of 

these pores are isolated, while others are interconnected. The ratio of pore volume in a rock 

sample to the total volume of this rock sample is called porosity (ϕ). Two types of porosity 

can be calculated, the total porosity, which considers all the pores of the rock sample, and the 

effective porosity, which account only the interconnected ones (ERTEKIN; ABOU-

KASSEM; KING, 2001). In the remainder of this text, the term porosity is used to refer to the 

effective porosity, because it indicates, the capacity of the reservoir to accumulate fluids that 

can be displaced (exploitable fluids). 

Considering that the pore volume is completely fulfilled by the fluids (or phases), the 

saturation of a phase i (Si) is the ratio of the total pore volume which is fulfilled by the phase 

i. Therefore, the sum of the saturations of all phases needs to be equal to 1. 



 22 

 1  with, under our assumptions, ,i
i

S i w o        (2.1)                                          

As the scope of this work is oil (o) and water (w) two-phase flow, it is important to 

define the irreducible water saturation (Swi), which is the saturation bellow which the water 

can not be displaced anymore in drainage processes due to the rock-fluid interactions. A 

similar effect is observed to the oil in imbibition processes and this minimum limit value is 

called residual oil saturation (Sor). 

Permeability is the capacity of a porous medium to transmit fluids through its 

interconnected pores. If the porous medium is completely saturated by only one phase, this 

capacity is called absolute permeability, but if there is more than one phase saturating the 

pores, it is called the effective permeability of each phase (ERTEKIN; ABOU-KASSEM; 

KING, 2001). The ratio between the effective permeability of a phase i and the absolute 

permeability of the case in which the porous medium would be completely saturated by this 

phase i is called relative permeability of this phase (kri). In this work, Brooks and Corey type 

functions are used (CHEN; HUAN; MA, 2006; KOZDON; MALLISON; GERRITSEN, 

2011; SOUZA, 2015) and the relative permeability is a function of the fluid saturation 

defined, in this work, for our two phases (oil and water), by: 

   ;    1w on n
rw n ro nk S k S           (2.2)                                                        

where nw and no are exponents that can assume different values (KOZDON; MALLISON; 

GERRITSEN, 2011; SOUZA, 2015) and Sn is the normalization of the wetting phase 

saturation with respect to the irreducible water saturation (Swi) and the residual oil saturation 

(Sor). It is defined as (CHEN; HUAN; MA, 2006): 

1
w wi

n
wi or

S SS
S S



 

            (2.3) 

A rock sample, however, may be more permeable to the flow in one direction than in 

another, indicating the existence of anisotropy. That is why the permeability is generally 

described as a tensor, which can be represented as a set of orthogonal vectors or as a 

symmetric matrix. In 2-D and using Cartesian coordinates, the permeability tensor would be 

(SOUZA, 2015): 

( ) xx xy

xy yy

K K
K x

K K
 

  
 




          (2.4) 
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where x  is the position vector. The full tensor pressure equation is assumed to be elliptic and 

the permeability tensor must satisfy the following ellipticity condition (EDWARDS; 

ROGERS, 1998): 

2
xy xx yyK K K           (2.5) 

Be the fluid a continuous medium, in which any property of it is defined in any point. 

Be m the mass and V the volume of a fluid sample. The density (ρ) or the specific mass is 

defined as (FOX; PRITCHARD; McDONALD, 2010): 

lim
rV V

m
V







                     (2.6) 

where rV  is the representative elementary volume above which the density becomes stable, 

i.e. an average defined value can be deterministically determined. 

The viscosity (µ) is the measure of the resistance of the fluid to the flow. This 

property relates the shear stress applied to a fluid and the gradient of the velocity acquired by 

it as result of the load (FOX; PRITCHARD; McDONALD, 2010). 

The mobility of a phase i (λi) is the measure of how mobile this phase is in the 

presence of other phases. The higher the relative permeability of a phase, the more mobile is 

that phase. On the other hand, the more viscous is a fluid, the less mobile it is. Thus, the 

mobility of a phase i is defined as (FANCHI, 2005): 

ri
i

i

k



           (2.7) 

The total mobility (λ), in the case in which the capillarity effects are neglected, is 

defined as the sum of the mobilities of all the phases present in the medium: 

i
i

                  (2.8) 

2.2.2 Darcy’s Law 

In 1856, Henry Darcy investigated the flow of water in vertical homogeneous sand 

filters (Figure 1) in connection with the fountains of the city of Dijon, France. From his 

experiments, Darcy concluded that the rate of flow (volume per time) q is proportional to the 

cross-sectional area A available to the flow, proportional to the pressure difference h1 – h2 and 

inversely proportional to the length of the porous media sample, L. 
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Figure 1 – Sand filter scheme of the experiment of Henry Darcy. 

 

Source: Author. 

 

By combining the evidences described above and by using K as a proportionality 

factor, the following relation can be obtained (BEAR, 1972; ROSA; CARVALHO; XAVIER, 

2006): 

1 2h hq KA
L


           (2.9) 

Despite being an empiric law, later studies led to a general form to the Darcy’s law to 

a phase i in presence of other phases, which is largely used in reservoir simulation (BEAR, 

1972; PEACEMAN, 1977; EWING, 1983): 

 i
i i i i

qv K p g
A

     
 


                             (2.10) 

where v⃗i is the velocity of the phase, 


 is the gradient operator, pi is the pressure of the phase 

i, gሬ⃗  is the vector of gravity acceleration directed downward and K̰ is the absolute permeability. 

Neglecting the gravity and capillarity effects, it becomes: 

i iv K p  



                   (2.11) 

h1 
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where p is the global pressure. It is also important to define the total velocity as the sum of the 

velocities of all phases: 

i
i

v v                      (2.12) 

2.2.3 Fractional flow 

The fractional flow of the phase i can be defined, for the case without gravity and 

capillarity effects, as (CHEN; HUAN; MA, 2006): 

i
if




                                (2.13) 

2.3 Governing Equations 

This section briefly presents Equations used to model the two-phase flow (oil and 

water) in heterogeneous and anisotropic porous media. The mathematical development begins 

at the mass conservation law (BEAR, 1972) for the phase i, defined as: 

i
i i i i

S v q
t

 
   



                               (2.14)                                 

in which t stands for time and qi for the source term of the phase i. 

2.3.1 Pressure Equation 

Writing Equation (2.14) for both phases and adding them, the following expression is 

obtained: 

   w o w o
w o

w o

S S q qv v
t


 

 
   



                   (2.15) 

Applying the restriction from Equation (2.1) to eliminate the saturation and using the 

definition from Equation (2.12) for the total velocity, it is obtained:  

w o

w o

q qv
 

  
 

                   (2.16) 

Defining specific total flow rate as Q=Qw+Qo, where Qi= qi ρi⁄  (with ,i w o ), it is 

possible to write the elliptic pressure equation (PEACEMAN, 1977; EDWARDS; ROGERS, 

1998; CARVALHO et al., 2005; CONTRERAS et al., 2016): 

  (with )v Q v K p     
  


                          (2.17) 
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Moreover, λ=λw+λo is the total mobility - see Equation (2.8) -, the expression for v⃗ 

comes from the Darcy’s Law - see Equation (2.11) - and p is the global pressure, neglecting 

capillarity effects.  

2.3.2 Saturation Equation 

Because of the restriction given by Equation (2.1), Equation (2.14) can be written 

just for the water phase (PEACEMAN, 1977; CARVALHO et al., 2005; CHEN; HUAN; MA, 

2006; CONTRERAS et al., 2016). For this, Equation (2.11) is written for both phases, each 

one multiplied by the mobility of the other phase, to obtain the same expression: 

w o o w w ov v K p      
 


                  (2.18)                                             

Then: 

0w o o wv v  
                                       (2.19)                        

But v⃗o= v ሬሬ⃗ – v⃗w, then: 

  0w w o wv v v   
                     (2.20) 

Rearranging: 

 w w o w wv v v     
  

                  (2.21)                                                            

Then, the water phase velocity is defined as: 

w
w wv v f v


                       (2.22) 

Then, Equation (2.14) can be written for the water phase as: 

 w
w w

S f v Q
t

    


                    (2.23)                                          

This Equation (2.23) is the hyperbolic saturation equation. Equations (2.17) and 

(2.23) are coupled by the total velocity field v⃗ (PEACEMAN, 1977). 

2.3.3 Initial and Boundary Conditions 

In order to get a complete description of the problem, it is necessary to define 

appropriate auxiliary, initial and boundary, conditions. In this case, considering a domain Ω, 

its contour Γ is defined as: 
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D N P I                      (2.24) 

where ΓD and ΓN represent the boundaries with prescribed pressures (Dirichlet boundary 

conditions), and prescribed fluxes (Neumann boundary conditions), respectively, and ΓP and 

ΓI represent the production and injection wells, respectively. Therefore, these auxiliary 

conditions are typically given by (AZIZ; SETTARI, 1979; CONTRERAS et al., 2016): 
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                 (2.25) 

where x⃗ represents the position vector, t is the time variable, gD is a scalar function for 

pressure and gN is a scalar function for flux. Moreover, nሬ⃗  is the outward unitary normal vector 

to the control surface, v⃗ is the total velocity and Sതw is the prescribed water saturation on an 

injection well. Beyond this, pressure or flux can be prescribed in the wells, respectively, as 

∫ v⃗ ⋅ nሬ⃗  ΓZ
∂ΓZ = gZ,1 or p(x⃗,t) = gZ,2, with Z=I,P; where  gZ,1 and  gZ,2 are scalar functions for 

flux and pressure, respectively. 
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3 NUMERICAL FORMULATION 

The complexity of the fluid flow in reservoirs problem makes very difficult or even 

impossible to obtain analytical solutions. The experimental approach is also unfeasible, that is 

why it is necessary to use numerical formulations to find the solutions for this type of 

problems (CHEN; HUAN; MA, 2006; SOUZA, 2015). This section presents the numerical 

strategy used in this work. 

The problem described by Equations (2.17) and (2.23), with their initial and 

boundary conditions given by Equation (2.25), is solved through two different types of 

segregated formulations, the Implicit Pressure and Explicit Saturation Scheme (IMPES) 

(CHEN; HUAN; MA, 2006; AHMED et al., 2015) or the Sequential Implicit Scheme (SEQ) 

(HOTEIT; FIROOZABADI, 2008; BRUM, 2016). 

The numerical formulation was implemented in MATLAB® (an environment that 

allows easy prototyping and have wide library of functions), modifying and extending some 

codes developed by Souza (2015) and Contreras et al. (2016), in the PADMEC researching 

group of UFPE. The mesh generation was made by using the free software GMSH 

(GEUZAINE and REMACLE, 2009). The visualization of the result pressure and saturation 

fields was made by using VisIt® (VISIT USER’S MANUAL, 2005) and the graphs were 

made by using MATLAB®. 

3.1 Coupling Strategy 

Both schemes, IMPES or SEQ, start with a known saturation distribution, from 

which the total mobilities throughout the domain are calculated - see Equations (2.2), (2.3), 

(2.7) and (2.8). Using these mobilities as input, Equation (2.17), the pressure equation, is 

solved by an implicit formulation. With the pressure distribution calculated from Equation 

(2.17), the Darcy velocities throughout the domain are calculated and used as input to 

Equation (2.23), the saturation equation, which is solved by an explicit formulation, in the 

case of IMPES, or by an implicit one, in the case of SEQ, case in which, to solve the 

nonlinear system of equations, an iterative method was used (see Figure 2). Both the implicit 

and the explicit formulations are detailed in section 3.3. In turn, the saturation calculated from 

Equation (2.23) is used to recalculate the mobilities to be used again as inputs to update the 

pressure field by Equation (2.17).  

In these segregated formulations, this looping procedure is repeated until it reaches 

the previously set final time of simulation (tF) (see Figure 2). 
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Figure 2 – Pressure and Saturation coupling strategy in a segregated formulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Author. 

 

3.2 Pressure Equation 

By integrating Equation (2.17) on a domain Ω (Figure 3.a), the following equation is 

obtained: 

  v Q
 

     
           (3.1)                           

and by the Gauss Divergence Theorem, it becomes: 
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           (3.2)                               

Initial Condition ܵ௪(⃗ݔ, 0) Compute Mobilities 

Implicit Solution of the 
Pressure Equation 

௡ାଵݐ = ௡ݐ +  ݐ∆

Explicit Solution 
of the Saturation 

Equation 

 

END 

IMPES             

NO 
YES 

Recalculate the 
Saturation Field 

Implicit Solution 
of the Saturation 

Equation 

NO 

YES 

 Is the residue 
small enough? 

௡ݐ ≥ ிݐ  

Calculate the 
Residue 

Update Mobilities 

Velocity Field Calculation 
through Darcy Law 

First Try for 
Saturation Field 



 30 

where nሬ⃗  is the outward unitary normal vector to the control surface Γ. Discretizing the domain 

Ω with a mesh, as shown in Figure 3.b, it is possible to write, for each grid cell, by using the 

mean value theorem, the following expression: 

k

j j k k
j

v N Q


  
                  (3.3) 

where Qഥk is the mean source term, Ωk is the volume (or area in 2-D) and Γk is the set of edges 

of the k-th grid-cell. 

 

Figure 3 – Generic domain: (a) continuous domain with its boundary conditions; (b) generic 

mesh on the computational domain. 

 

  (a)                                                     (b) 

Source: Author. 

 

3.2.1 Multipoint Flux Approximation Variant with “Diamond” Stencil (MPFA-D) 

The flux expression in Equation (3.3) is obtained through the MPFA-D, initially 

proposed by Gao and Wu (2010) and further developed by Contreras et al. (2016) and 

extended to fractured porous media in the present work.  

Aiming to obtain the expression for the flux crossing one edge, it is necessary to 

highlight the local set of grid cells around this edge and construct the MPFA-D stencil, as 

depicted in Figure 4. Consider an edge defined by the nodes I and J, L෠ and R෡ denote the 

barycenters (or collocation points) of the neighbor control volumes (CVs) to the left and to the 
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right of the edge, respectively. The segments IJሬሬሬ⃗  and JIሬሬሬ⃗  are the faces of the cells L෠ and R෡, 

respectively. Nሬሬ⃗ IJ = ℜIJሬሬሬ⃗  and Nሬሬ⃗ JI = ℜJIሬሬሬ⃗ , such that Nሬሬ⃗ IJ = −Nሬሬ⃗ JI, are the length normal vectors to 

edges IJሬሬሬ⃗  and JIሬሬሬ⃗ , respectively, and   is a π 2⁄  rotation matrix (see Figure 4). The heights of 

the barycenters to the edge are denoted as hIJ
L෠  and hJI

R෡  for the cells L෠ and R෡, respectively (see 

Figure 4). K̰(L෠) = K̰L෠  is the permeability of the cell to the left of the considered edge 

(analogous to the right one). 

 

Figure 4 – Local diagram of a part of an arbitrary polygonal mesh, highlighting the "diamond 

stencil": ˆ ˆIRJL . 

 

Source: Author. 

 

Considering that pL෠  and pR෡ are the pressure approximations, respectively, on the left 

and right CVs, and that pI and pJ are the pressure approximations on the edge vertices, the 

development of the MPFA-D flux expression can be initiated by the following lemma. 

Lemma 1 

Let △OPQ be a triangle with the vertices O, P, Q ordered counterclockwise. So, for a 

function u defined on △OPQ: 
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   1
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

 
                                                     (3.4)  

and: 
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 
          (3.5) 

where S△OPQ  is the area of △OPQ, ui (with i = O,P,Q) is the value of the function u on the 

vertices of the triangle, and the rotation matrix   is: 

0 1
1 0

 
    

                                                                                                           (3.6) 

So, the estimated pressure gradient on the control volumes to the left (L෠) and to the 

right (R෡) (Figure 4) are defined, respectively, as: 
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                      (3.8) 

Considering the triangle △L෡IJ (Figure 4), the flow crossing the control surface IJ, 

with respect to the cell to the left, can approximated as:  
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with: 

       
ˆ ˆ

ˆˆ( ) ( )
2 2;   

L L

TT

IJIJ IJ LLn t
IJ IJ

N K IJN K N
K K

IJ IJ
 
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                                                    (3.10) 

The term λIJ is the mobility value calculated on the edge IJ. Therefore, Equation 

(3.9) can be written as:                         
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The same expression can be written for the grid cell to the right: 
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                      (3.12) 

By the imposition of flux continuity, it comes:      

ˆ ˆL R
IJ IJ IJ IJ IJ IJv N v N v N     
                                   (3.13) 

Subtracting Equations (3.12) – (3.13) and making the substitution indicated in 

Equation (3.14), and after some algebraic manipulation, the unique flux equation can be 

rewritten as: 

 ˆ ˆIJ IJ IJ IJ J IR Lv N p p p p       
                                        (3.14)      

where: 
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                 (3.16) 

The expression for the flux crossing the edge IJ - see Equation (3.14) - is dependent 

of the pressures on the elements to the left and to the right of IJ and on the vertices I and J, 

then, to obtain a completely cell-centered formulation, it is necessary interpolate the pressures 

on the vertices. A strategy for realizing these interpolations is presented later in this text. Note 

that the tangential term, shown in Equation (3.16), disappears from Equation (3.14) when the 

permeability tensor is K-orthogonal, what makes, in these cases, this MPFA-D scheme 

becomes a two-point flux approximation formulation (TPFA) (GAO; WU, 2010). 

3.2.2 Boundary Treatment 

The flux expression over boundaries with prescribed pressures is given by: 
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            (3.17) 
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where gD
J = pJ, gD

I = pI are known. Whenever there is a prescribed flux over the boundaries, 

we can write: 

IJ IJ Nv N g IJ 
                                                                                                     (3.18)       

where gN is this prescribed flux. 

3.2.3 Face Mobility Approximation 

It is necessary to define how to calculate the term λIJ in Equation (3.15). In many 

applications, this value is assumed to be the mobility on the CV which is upstream with 

respect to the flow (AZIZ; SETTARI, 1979; HURTADO, 2005; KOZDON; MALLISON; 

GERRITSEN, 2011; SOUZA, 2015), but in the works of Hurtado (2005) and Souza et al. 

(2018), who have studied more properly this issue, this approach is overcome by the linear 

approximations (which calculate some average of the mobilities on the CVs neighboring the 

face IJ, without considering the flow direction), which present, in general, better results. 

The linear approximation of the mobility on IJ could be made as some type of 

volume weighting average of the mobilities on the grid cells neighboring this edge, which had 

been tried during the development of this work, but returned wrong results, because of the 

applications to naturally fractured reservoirs. Due to the very small volume (or area, in 2-D) 

of the fractures cells, any volume weighting would lead a physical incoherence: the mobilities 

on fractures cells, which are very relevant to the physical phenomenon, would have very 

small weights on the calculation. That is why the simple arithmetic average between the 

mobilities on the cells to the left and to the right is used here, as shown in Equation (3.19), 

this way, if a rock matrix cell and a fracture cell share an edge, they will have the same weight 

on the calculation. 

ˆ ˆ

2
L R

IJ
 




                             (3.19) 

3.2.4 Treatment of Vertex Unknowns 

To get a fully cell-centered formulation, it is necessary to obtain the pressures on 

each node, which are not on Dirichlet boundaries, by interpolation considering a weighted 

average of the pressures of the primal cells that share that node (Figure 5.a). It is possible to 

obtain the weights of this interpolation explicitly, avoiding the inversion of local matrices. 

Following Queiroz et al. (2014) and Contreras et al. (2016), in this work, the LPEW2 (Linear 
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Preserving Explicit Weighting type 2) of Gao and Wu (2010) was used. The following is a 

general outline of the path followed to obtain the weights expression according to LPEW2. 

For more details, see Appendix A. 

The first thing to do is to build a dual cell surrounding each node to be interpolated, 

as shown in Figure 5.a, defined by connecting the auxiliary variables (kሜ) at the midpoint of 

each edge which share the node to be interpolated. In Figure 5.a, the node J is shared by nJ 

cells. But, imposing divergence free, the flow balance on the dual CV is:   

 1  1
1

0
Jn

k k k k
k

v N
 



 


                                                                                               (3.20) 

By the Lemma 1, the expressions for v⃗kሜ  k+1 ⋅ Nሬሬ⃗ kሜ  k+1 can be written using the values of 

the pressures on kሜ , k+1 and J. Aiming to eliminate these auxiliary variables on the edges it is 

necessary to impose the flux continuity on the half edges Jkሜ : 

0Jk Jk kJ kJv N v N   
  

                                                                                           (3.21) 

These flux expressions can be written, by Lemma 1, using the pressure values on kሜ , 

k෠, 1k  and J. Therefore, by Equation (3.21) it is possible to get an expression for the pressure 

on kሜ  in function of the pressures on k෠, 1k  and J, to be substituted in Equation (3.20). After 

some algebraic manipulation, it is possible to write an expression for the pressure on J as a 

function of the pressures on k෠, in the following format: 

 ˆ ˆ ˆ ˆ ˆ ˆ1 1 1 1
1

Jn

J k k k kk k
k

p w p w p w p w p
 



                                                             (3.22) 

where wk෠ is the weight assigned to the k-th cell surrounding the shared node - i.e. weight 

assigned to pk෠ in Equation (3.22). Considering the development given by Gao and Wu (2010), 

and the parameters shown in Figure 5.b, each explicit weight wk෠ can be computed as: 

ˆ

1

; 1, 2,...,
J

k
Jnk

k
k

w k n





 


                                                                                    (3.23) 
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Figure 5 – Notation for control volumes surrounding vertex J: (a) Nodes and edges 

surrounding node J. (b) Parameters used to calculate the type 2 explicit interpolation weights 

from Gao and Wu (2010), for the k-th cell. 

 

              (a)                                                             (b) 

Source: Author. 
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and: 
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in which λk k+1 is the mobility on the half-edge k k+1ሬሬሬሬሬሬሬሬሬሬ⃗ , analogue to λkk-1. It is also necessary to 

define ξk, for Equation (3.24), as: 
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                          (3.28) 

where λk෠  is the mobility on k-th cell surrounding J. The angles θk,1, θk,2, ϑk,1 and ϑk,2 are 

defined as shown in Figure 5.b. There is a slight modification to be made when the vertex to 

be interpolated is on the boundary, which is explained in Appendix A. 

3.2.5 Multipoint Flux Approximation Variant with “O” Stencil (MPFA-O) 

Considering that it is important to compare the applicability of the MPFA-D with 

more classical methods, the HyG was also coupled with the MPFA-O (AAVATSMARK; 

BARKVE; MANNSETH, 1998.A; 1998.B; EDWARDS; ROGERS, 1998; SOUZA, 2015) to 

be applied in some tests. In this method, the flux calculation on the edge IJ (see Figure 6) is 

made by summing the fluxes calculated through the semi-faces Iū and ūJ. 

The flux through Iū is calculated by using the support regions △hሜ h෡ū and △ūk෡ḡ. On the 

other hand, the flux through ūJ is calculated by using the support regions △tሜh෡ū and △ūk෡kሜ . Note 

that as the support regions do not include the nodes I and J, the interpolation of their function 

values, as done in MPFA-D, is avoided. To eliminate the auxiliary variables at the midpoints 

of the edges sharing I and J, it is necessary to impose the flux continuity in all the semi-faces 

sharing those nodes. For this, a support region ring (hence the suffix “O”) is built surrounding 

each node (see Figure 6), with which an algebraic equation system is written by the flux 

continuity imposition on each semi-face. By these equations systems, the auxiliary variables 

at the midpoints of the edges can be written as function of the variables at the centers of the 

cells sharing the nodes, then the expressions for the flux crossing through the semi-faces Iū 

and ūJ can be written only by cell center variables. 

This configuration makes the MPFA-O a Triangle Pressure Support (TPS) 

formulation, with regions of the domain where the pressure is extrapolated, instead of 
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interpolated, which leads to a more limited capability to deal with any meshes or permeability 

tensors, if compared, for example, with MPFA-D, MPFA-Enriched (CHEN et al., 2008) or 

MPFA-FPS (EDWARDS; ZHENG, 2008), which are FPS formulations. 

 

Figure 6 – Local diagram of a part of an arbitrary polygonal mesh, highlighting the stencil for 

the MPFA-O. 

 

Source: Author. 

 

3.3 Saturation Equation 

In this work, two segregated schemes were used to solve the proposed problem: 

IMPES, in which the saturation equation is calculated explicitly, and SEQ, in which the 

saturation equation is solved implicitly. In both formulations the discretization is made by the 

First Order Upwind Method (FOUM). 

By integrating Equation (2.23) over k-th grid CV, the following expression is 

obtained: 
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Using the mean value theorem, the first term becomes: 
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where Sሜ w(k) and ϕሜ k are the mean representative values of the water saturation and of the 

porosity, respectively, in the k-th cell, although, from now, these variables will appear in the 

text without the upper bar. Using again the mean value theorem, the right-hand side term 

becomes: 

( ) ( )

k

w k k w k kQ Q


                                         (3.31) 

From the Gauss Divergence Theorem, the second term becomes: 
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in which the term ൫fw൯
IJ

 v⃗IJ ⋅ Nሬሬ⃗ IJ, for an edge IJ is computed as the upwind flux, by the 

following expression: 
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                                                          (3.33) 

where fw,L෠  and fw,R෡ are respectively the fractional flows of the cells to the left and to the right 

of the edge IJ, and αIJ is defined as: 

  w
IJ IJ IJ
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S
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                                                                                       (3.34) 

Using Equations (3.29) to (3.32), it is possible to write the expression for the FOUM: 
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The time discretization can be done by using the Euler Explicit Method 

(TANNEHILL; ANDERSON; PLETCHER, 1997): 
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Note that in Equation (3.36) the right-hand side is calculated in the time step n, so the 

term Sw(k)
 n+1 can be calculated explicitly, using all the information from the previous time step. 
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This is the strategy used in IMPES scheme and it is conditionally stable, being necessary to 

satisfy a CFL-type condition (HIRSCH, 1994; SOUZA, 2015) defined for the k-th grid cell as: 

( )max
k

k
k

w
IJ IJ w k kIJ

w IJ
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f v N Q
S





 
  

       


                                                  (3.37) 

in which C is the Courant number and (∂fw ∂Sw)⁄
IJ

 is the partial derivative of the fractional 

flow in relation to saturation at the face IJ. The global time step is defined as the minimum of 

all Δtk: 

min
k

kt t
 

                                                                                                             (3.38) 

Alternatively, in the SEQ formulation the saturation equation is solved implicitly. 

For this, Equation (3.35), which was written for the k-th cell, is rewritten as a matrix equation: 

  1 1n n nt G     0
w w wS f S                                                                                     (3.39) 

in which fw
  n+1 and Sw

 n+1 are respectively the vectors of the water fractional flow and of the 

water saturation in each grid cell at the (n+1)-th time step. The entries of the matrix G̰ are 

defined as: 
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1,  if the -th grid cell is the  upwind to 

0,  if the -th grid cell is the  upwind to 
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k CV v N

i CV v N
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  



                                (3.42) 

in which Qሜ k is the mean representative value of the total source term in the k-th cell, which 

shares the edge IJ with the i-th cell. To solve the non-linear system of equations, the classical 

Newton-Raphson (NR) method (BURDEN; FAIRES, 2010) was used, which is an iterative 

root-finding algorithm. Therefore, to the j-th iteration, Equation (3.39) becomes: 

  1 1j jn n n jt G     
w w wS f S r                                    (3.43) 

in which the convergence criterion, considering a chosen tolerance δ, is: 
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max( )j r                                                      (3.44) 

with the value of r j from Equation (3.43) it is possible to calculate the saturation vector for 

the (j+1)-th iteration as: 

  111 1 1j j jn n n jJ
   

w w wS S S r                                                                             (3.45)                                                              

where: 

    1 1n nJ t G I I     


  w wS f                    (3.46)                                                                

in which ḟw
  n+1

 is the vector of the partial derivatives of the fractional flow in relation to 

saturation in each grid cell, i.e. ∂fw(k)
  n+1 ∂Sw(k)ൗ  is the k-th entry (relative to the k-th grid cell), in 

the time step n+1 and Ḭ is the identity matrix. The saturation vector calculated by Equation 

(3.45) is used as input to Equation (3.43) in the (j+1)-th iteration. 

Although, there is no formal time step restriction for the implicit solution of the 

saturation equation, if the size of the time step is too big, the accuracy on the solution can be 

lost (HIRSCH, 1994). Besides, it is important to keep in mind that some instability can also 

occur due to the segregated character of the SEQ method.  

Given the difficulty of determining the maximum feasible time step for the SEQ 

method, in this work, the calculation of the restricted time step of the explicit case was used as 

reference also for the implicit case, however using bigger values for the Courant number, in 

this last case. Furthermore, in the implicit case, if the amount of iterations needed to achieve 

the condition of Equation (3.44) is bigger than a chosen value, for example, it is possible to 

decrease the time step and try again, to prevent the iterative process from extending too far.  

The time step is clearly more computationally expensive in the implicit scheme than 

in the explicit scheme, but when the latter one becomes excessively restrictive to the time 

advance, as in the case of fractured reservoirs, frequently, the implicit scheme becomes more 

efficient from a computational point of view, because it allows larger steps. 

3.4 Hybrid-Grid Method 

The geological activities during the formation of the reservoir system may lead to the 

occurrence of natural fractures in it. In this context, aiming to simulate a domain containing 

fractures (see Figure 7.a), it is necessary to use a specific strategy to treat this type of entities. 
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As explained in the introduction of this text, the Hybrid-Grid Method (HyG) was chosen, with 

due justification, to treat the fractures. 

 

Figure 7 – Fractured domain. (a) Sketch of a domain with fractures (ΓF). (b) Geometric mesh 

discretizing the domain, with the edges corresponding to the fractures marked as brown. (c) 

Computational mesh discretizing the domain, with the expanded fractures as polygonal grid 

cells. 

 

  (a)                                           (b)                                          (c) 

Source: Author. 

 

This scheme consists on the explicit representation of the fractures, in the geometric 

mesh, as lower-dimensional entities (lines in 2-D domains or surfaces in 3-D domains, for 

example – see Figure 7.b) and expand them to the same dimension of the mesh in 

computational domain (Figure 7.c), so Equations for the fractures and for the rock matrix can 

be discretized together. Karimi-Fard, Durlofsky and Aziz (2004) presented, in a context of 

control-volume finite-difference, this strategy to treat fractures, but without call it as Hybrid-

Grid. This name was given by Sandve, Berre and Nordbotten (2012), who presented it in the 

context of a MPFA method, what was followed by Ahmed et al. (2017), who presented a 

coupling of it with a full-pressure support formulation, the CVD-MPFA. 

Although the fractures in the geometric mesh are represented as lower-dimensional 

entities, the missing transverse dimension is indicated as the fracture aperture which must be 

previously set for each fracture family, because the construction of the hybrid-grid (the 

computational grid in which the fractures are dimensionally expanded) is made considering 
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this parameter. For this work, which uses just 2-D meshes, the hybrid-grid construction was 

made by following the procedure explained below: 

1 – In the vicinity of each fracture-edge (geometric mesh edge representing a 

fracture), two parallel straight lines must be traced (auxiliary lines), each one at the distance 

of half of the aperture set for that fracture (Figure 8.a). 

2 – If a node is shared by n fracture-edges (with n > 1), there will occur n 

intersections by adjacent auxiliary lines that will correspond to the new points of the 

computational mesh. In Figure 8.a, node N is shared by three fracture-edges, what lead to the 

emergence of three new nodes, represented as N’, N’’ and N’’’. So, each point shared by n 

fracture-edges will become n new points. Assuming that the nodes I and P are shared by two 

fracture-edges, for example, they become the new nodes I’, I’’, P’ and P’’ (Figure 8.b). If the 

node is shared by only one fracture-edge, it will not occur any intersection and the original 

node is kept (see node T in Figures 8.a and 8.b). 

3 – Connect the points to form the new polygons corresponding to the expanded 

fractures (Figure 8.b). 

 

Figure 8 – Hybrid-grid construction. (a) Parallel segments tracing and new points 

determination. (b) Hybrid-grid configuration. 

           

    (a)                                                                         (b) 

Source: Author. 
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This strategy makes easier the management of the weighting associated to the node 

function values calculation (that is necessary for some cell-centered formulations), if 

compared, for example, with other methods that do not expand the fractures and solve their 

equations in a lower-dimensional domain, as the lower-dimension fracture model (LDFM) 

(AHMED et al., 2015; BRUM, 2016). 

Figure 9.a shows the local set for the interpolation of the fracture node I in LDFM, 

with the blue arrow indicating all the cells which are involved in the node value interpolation 

(k෠, fመ1, h෠, ŝ, fመ2, r̂ and gො), for the calculation of the flux crossing, among other faces, IM and IL. 

But if the fractures separating k෠, gො and r̂ from ŝ and h෠ are, for example, barriers, there would 

be a function discontinuity through the fractures and the value of it on k෠, gො and r̂ should not 

influence the flux calculation on IL. So, it would be necessary to evaluate for each edge 

sharing I, which cells would be the ones to participate in the interpolation. If the fracture is 

expanded (Figure 9.b), the node I becomes I’ and I’’, forming the edges I’L and I’’M, each 

one with an appropriate set of cells to participate on its interpolation (see the blue arrows in 

Figure 9.b), without the necessity to determine in which edge is going to be the flux 

calculation. 

 

Figure 9 – Set of grid cells for node interpolation. (a) In LDFM. (b) In HyG. 

 

(a)                                                                (b) 

Source: Author. 

 

Other important advantage of the HyG is that it is possible to take full advantage of 

the full-pressure support (FPS) methods such as the MPFA-D, because it is possible to build 
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ĥ



 45 

support regions including the expanded fractures (Figure 10.a). Therefore, it is possible to 

impose the flux continuity on the virtual edges between k෠ and  fመ1, and h෠ and  fመ1. 

In LDFM (Figure 10.b) the calculation of the flux from k෠ to fመ1 or from h෠ to  fመ1 is 

made by using triangle support regions, excluding the fracture information, that is why, in 

these cases, it is necessary to write an additional equation only for the fracture. The LDFM 

could leads to underutilization of the potential of the FPS methods. 

Other advantage of the HyG relating to the LDFM is that, in the last one, the permeability 

tensor in a fracture is always assumed to be K-orthogonal (aligned with the fracture), but the 

HyG does not present this restriction. 

 

Figure 10 – Support regions to the flux calculation. (a) In HyG. (b) In LDFM. 

 

      (a)                                                              (b) 

Source: Author. 
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4 RESULTS 

In this section, the results of the application of the MPFA-D in the context of HyG 

for the simulation of one-phase and two-phase flows in naturally fractured reservoirs are 

presented. First, a convergence test is shown, comparing the MPFA-D/HyG with CVD-

MPFA/HyG (AHMED et al., 2017). Then, some results obtained by the MPFA-D/HyG for 

the simulation of single-phase flow are presented and compared with those obtained by the 

MPFA-O/HyG and with those obtained by the MPFA-D under the equidimensional strategy. 

Finally, some results obtained by the MPFA-D/HyG for the simulation of two-phase flow are 

presented and compared with other results found in literature. The simulations were 

performed using an Intel® Core™ i7-3770 3.40 GHz, with 7.89 GB of available RAM, with 

Windows 10 Pro© 64 bits and MATLAB® 2014a. 

Unless otherwise indicated in the statement of the problem, the exponents nw and no 

of Equation (2.2) are always equal to 2, the porosities are always set as 0.2 in the rock matrix 

and 1 in the fracture. In all examples in which IMPES scheme is used, the Courant number is 

0.9, and in those in which SEQ is used, the nonlinear chosen tolerance δ is 10-3. The rock 

matrix properties are referred to by the subscript m and the fracture properties are referred to 

by the subscript f.  

4.1 One-phase flow in a reservoir with a central fracture 

This problem was proposed by Sandve, Berre and Nordbotten (2012) and it was used 

to evaluate the convergence rates for pressure obtained with MPFA-D/HyG. It consists of a 

one-phase problem in a computational domain that contains a single fracture with the aperture 

a as shown in Figure 11. Dirichlet boundary conditions are imposed on all the boundaries of 

the domain according to the analytical solution, presented in the following equation: 

             
     

cos cosh 1 cos cosh 2 ;    ,
,

cos cosh ;                                                  ,
m

f

x y x a x y
p x y

x y x y
      

              (4.1)                          

In this case, permeability throughout the domain, including the fracture, is given by:  

     
   
, ;      , 1 0

, ;    
, ;  , 0 1

m m
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m f
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 


                                          (4.2)       

The distributed source term in defined as: 

       
 

1 cos cosh 2 ;   ,
0;                                         ,

m

f

x a x y
q
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    

                                                         (4.3)                              
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The normalized error norms for pressure were defined by Sandve, Berre and 

Nordbotten (2012) as:  

 
 

2

2 max( ) min( )
i i ii

L
ii

V p





 



p

p p
                                            (4.4) 

where pi and pi are respectively the numerical and analytical pressures calculated at the center 

and Ωi is the volume (or area in 2-D) of the i-th cell of the mesh. This test was done for three 

fracture apertures a (10-3, 10-4, 10-5) and, for each aperture, three values of the permeability 

contrast κ (10-4, 1, 104) were used. The characteristic size of the grid cells is defined as: 

1

1 n

i
i

L
n 

   
 

                                                                                                     (4.5) 

where n is the number of cells in the mesh. The characteristic ratio of the mesh is defined as 

a/L. For the pressure variable, Figure 12 show convergence ratios of approximately 2 for all 

apertures and all permeability contrast values, such as the same errors magnitude in all cases. 

 

Figure 11 – Computational domain for the one-phase flow problem in a reservoir with a 

central fracture. 

 
Source: Author. 

 

The results of the MPFA-D were compared to those of the CVD-MPFA (also 

coupled with the hybrid-grid method) presented by Ahmed et al. (2017). These authors 

presented their results for two different versions of this formulation, the triangle-pressure 

support and the full-pressure support.  
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Figure 12 – One-phase flow in a reservoir with a central fracture. Normalized error versus 

characteristic size ratio with different values of permeability and aperture. The continuous 

lines are the results of the MPFA-D, the broken lines and the discrete marks (triangle, circle 

and asterisk) are, respectively, the results of the FPS and TPS CVD-MPFA (AHMED et al., 

2017). 

 

   (a)                                                              (b)                

 

(c) 

Source: Author. 

 

Our convergence ratios and errors magnitude are very close to those obtained by the 

CVD-MPFA (AHMED et al., 2017), as shown in Figure 12, despite the errors magnitude, for 

κ = 1, of both CVD-MPFA being slightly lower than those of the MPFA-D. Otherwise, for 

the other values of κ (for all values of a) the errors magnitude obtained by the MPFA-D are 

basically the same than those of the CVD-MPFA (Figure 12). 
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4.2 The ¼ five spot one-phase flow with multiple connected fractures 

In this example, based on the work of Ahmed et al. (2017), the MPFA-D and the 

MPFA-O were applied, coupled with HyG, to solve a problem with multiple connected 

fractures, in which three permeability tensors were applied, with increasing anisotropy. The 

domain is defined as Ω = [0,1]×[0,1]m, discretized by 3,324 triangle cells, as shown in 

Figure 13, in which the bold lines indicate the fracture positions. 

 

Figure 13 – Computational mesh for ¼ five spot one-phase flow with multiple connected 

fractures. 

 

Source: Author. 

 

The aperture is set as a =10-3 m for all the fractures. In the injection well, on the 

point x⃗I = (0;0)m, the pressure is set as pI = 1 bar and, in the production well, on the point 

x⃗P = (1;1)m, the pressure is set as pP = 0. There is no flow crossing the boundaries. The three 

tested permeability tensors for the rock matrix are an isotropic one (K̰m,1 is the identity 

matrix), a mild anisotropic one (K̰m,2 has an anisotropy ratio of 10:1 at an angle of 30 ) and a 

strongly anisotropic one (K̰m,3 has an anisotropy ratio of 3000:1 at an angle of 25 ), all of 

them in mD and the two last ones defined as: 
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                          (4.6) 

The permeability in the fracture is: 
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510f mK K
 

                     (4.7) 

The Figure 14 shows the results of both formulations under the three tensors. 

 

Figure 14 – Pressure fields (in bar) of ¼ five spot one-phase flow with multiple connected 

fractures in different configurations. The regions with pressure bigger than 1 are marked by 

white and those with pressure lower than zero are marked by black. 

 

 

   

   

Source: Author. 

 

Figure 14 shows that, under the isotropic (K̰m,1) and the mild anisotropic (K̰m,2) 

tensors, both formulations return the expected results. However, under the strongly 

anisotropic tensor (K̰m,3), the MPFA-O, which is a triangle pressure support method, gives a 

wrong and oscillatory solution while the MPFA-D gives the expected solution. 
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Table 1 shows how the MPFA-O/HyG violates the discrete maximum and minimum 

principle in this case if used under a strongly anisotropic tensor. 

 

Table 1 – Maximum and minimum pressures in bar from the ¼ five spot one-phase flow with 

multiple connected fractures. 

 

MPFA-D/HyG MPFA-O/HyG 

MAX MIN MAX MIN 

,1mK


 1 0 1 0 

,2mK


 1 0 1 0 

,3mK


 1 0 1.925 -1.674 

 

Source: Author. 

 

4.3 One-phase flow in a strongly anisotropic field and a diagonal fracture 

In this example, based on the work of Gao and Wu (2013), the MPFA-D and the 

MPFA-O were applied, coupled with HyG, to solve a problem that involves a strongly 

anisotropic full-tensor field over a fractured domain defined as Ω = [0,1]×[0,1]m, discretized 

by 4,336 triangle cells, with a diagonal fracture (indicated as a bold line), as shown in Figure 

15.a. The result of the MPFA-D on a mesh with the equidimensional representation of the 

fracture (the fracture represented as a 2-D entity), as shown in Figure 15.b and 15.c, was used 

as the reference result (this mesh has 537,276 triangle cells). The fracture aperture is a =10-4 

m and the permeability tensor is: 

4

1 0cos sin cos sin
D;  with 40

sin cos sin cos0 10
K

   

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                          (4.8) 

The Dirichlet boundary conditions (in bar) were set as follows: 

   
   
   
   

1;  0,0.2 0 0 0,0.2
0;  0.8,1 1 1 0.8,1

0.5;  0.2,1 0 0 0.2,1
0.5;  0,0.8 1 1 0,0.8

Dg

   
       
   

                                                                          (4.9) 
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The permeability in the fracture is: 

fK K
 

                                                                                                              (4.10) 

In this example, 3 values of κ (10-4, 1, 104) were tested and the results are presented 

in Figure 16. This figure shows that the MPFA-D/HyG returns results that are comparable 

with those from the equidimensional strategy (the reference), showing to be capable to deal 

with this type of permeability tensor in all of the tested situations, including, in this example, 

respecting the maximum and minimum limits (see Table 2), which is neither guaranteed by 

this method. Otherwise, the MPFA-O, for example, which is just triangle pressure support, 

produces oscillatory wrong solutions in all tested cases. 

The MPFA-D/HyG achieves satisfactory results and captures the effects of the 

fracture avoiding the refinement of the inside region of the fracture and the resulting over 

refinement of the region surrounding it. To solve this problem on the mesh shown in Figure 

15.b took about 20 times longer than solve it on the mesh shown in Figure 15.a, using HyG. 

Table 2 shows the maximum and minimum pressures obtained by each strategy and how the 

MPFA-O/HyG violates the discrete maximum and minimum principle in all the tested cases. 

 

Figure 15 – Computational mesh for one-phase flow in a strongly anisotropic field and a 

diagonal fracture. (a) Mesh to be used in the Hybrid-Grid Method. (b) Mesh to be used in 

equidimensional strategy. (c) Zoom in the mesh to be used in equidimensional strategy (15.b), 

highlighting the 2-D representation of the fracture. 

   

(a)                                             (b)                                          (c) 

Source: Author. 
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Figure 16 – Pressure fields (in bar) of the one-phase flow problem on a strongly anisotropic 

field and a diagonal fracture in different configurations. The regions with pressure bigger than 

1 are marked by white and those with pressure lower than zero are marked by black. 

 

 

   

   

   

Source: Author. 
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Table 2 – Maximum and minimum pressures in bar from the one-phase flow problem on a 

strongly anisotropic field and a diagonal fracture. 

 

REFERENCE MPFA-D/HyG MPFA-O/HyG 

MAX MIN MAX MIN MAX MIN 

κ = 10-4 1 0 1 0 6.969 -5.168 

κ = 1 1 0 1 0 1.921 -0.854 

κ = 104 1 0 1 0 1.088 -0.098 

 

Source: Author. 

 

4.4 The ¼ five spot two-phase flow with a diagonal fracture 

In this example, it was solved a two-phase flow problem presented by Brum (2016). 

The domain is defined as Ω = [0,1]×[0,1], discretized by three meshes, as shown in Figure 17.a, 

17.b and 17.c, respectively with 454, 944 and 1,910 triangle cells, with a diagonal fracture 

(marked as a bold line). 

In the injection well, at the point x⃗P = (0;0), the pressure is set as pI= 1 and, in the 

production well, at the point x⃗P = (1;1), the pressure is set as pP= 0. There is no flow crossing 

the boundaries. The saturation is set as Sሜ w(I)= 1 on injection well and Sሜ w
0 = 0, initially, in the 

rest of the domain. The viscosities of water and oil are 1 and 0.45, respectively, and the 

permeability on the matrix is: 

2 1
1 2mK  

  
 

                   (4.11) 

The permeability in the fracture is K̰f = 104 Ḭ, with Ḭ being the identity matrix. The 

aperture of the fracture is af = 10-3. The results presented by Brum (2016), obtained by using 

the MPFA-O coupled with the LDFM, were used as the reference to be compared with the 

results of the MPFA-D/HyG. For both formulations, the saturation equation was solved both 

implicitly (by using 4 as Courant number) and explicitly. 

Figures 18 and 19 show the pressure fields on mesh 3, calculated by MPFA-D/HyG 

and MPFA-O/LDFM at 0.5 PVI and 1.0 PVI, respectively. The results are close to each other, 

but the first one seems to be more diffusive. Note that in the vicinity of the fracture, due to its 
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high permeability, the pressure is approximately constant, but in case of the MPFA-D/HyG 

this effect seems to be more prominent. 

 

Figure 17 – Computational meshes for the ¼ five spot two-phase flow with a diagonal 

fracture. (a) Mesh 1. (b) Mesh 2. (c) Mesh 3. 

   

(a)                                            (b)                                            (c) 

Source: Author. 

 

Figures 20 and 21 show the saturation fields on the mesh 3, returned by the MPFA-

D/HyG and MPFA-O/LDFM at 0.5 PVI and 1.0 PVI, respectively. Note that the fracture, 

because of its high permeability, conducts the injected water quickly to the lower pressure 

region. Comparing between the two formulations, the results are very close to each other, but 

it is possible to identify some qualitative differences. In the other hand, comparing IMPES 

and SEQ, under the same formulation, Figures 20 and 21 do not show appreciable 

discrepancies. 

Figure 22 shows the production report obtained in this example. Note that the results 

obtained by the four strategies were very close to each other (Figure 22.a and Figure 22.b), 

but zooming in the graphs (Figure 22.c and Figure 22.d) it is possible to check the results of 

each strategy individually. Figure 22.c shows that the results of cumulative oil production of 

the MPFA-D/HyG and of the MPFA-O/LDFM do not vary significantly with the changing of 

the chosen scheme to solve the saturation equation.  
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Figure 18 – Pressure field for the ¼ five spot two-phase flow with a diagonal fracture at 0.5 

PVI on Mesh 3. 

 

MPFA-D/HyG                               MPFA-O/LDFM 

      

      

Source: Author. 

 

Figure 22.c shows that the cumulative oil production calculated by the MPFA-

O/LDFM is bigger than those from MPFA-D/HyG, no matter the used mesh. Figure 22.d 

shows that solving implicitly the saturation equation causes an anticipation of the water 

breakthrough for both MPFA-D/HyG and MPFA-O/LDFM, on the other hand, in each mesh 

the water breakthrough calculated by MPFA-D/HyG is never later than that from MPFA-

O/LDFM. 

 

IMPES 

SEQ 
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Figure 19 – Pressure field for the ¼ five spot two-phase flow with a diagonal fracture at 1.0 

PVI on Mesh 3. 

 

MPFA-D/HyG                               MPFA-O/LDFM 

      

      

Source: Author. 

 

Another thing to be noted in Figure 22.d is that the water breakthrough calculated by 

the MPFA-D/HyG on mesh 1 (the coarsest one) is considerably earlier than that calculated by 

the MPFA-O/LDFM, what curiously, in this case, leads the result of MPFA-D/HyG on mesh 

1 to close to that one obtained on the mesh 3 (the most refined one). On meshes 2 and 3, the 

results of water breakthrough from both formulations are almost coincident. 
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Figure 20 – Saturation field for the ¼ five spot two-phase flow with a diagonal fracture at 0.5 

PVI on Mesh 3. 

 

MPFA-D/HyG                               MPFA-O/LDFM 

      

      

Source: Author. 

 

Table 3 shows the simulation time of the two strategies, IMPES and SEQ, under 

MPFA-D/HyG, on the three meshes. In the performed tests, IMPES showed to be 

computationally costlier, with severe time step restrictions associated to it. The difference 

between IMPES and SEQ increased very significantly (in absolute terms) with the mesh 

refinement, although the relative difference between IMPES and SEQ (RDIS) underwent a 

very small reduction. The computational costs of both schemes, IMPES and SEQ, increased at 

similar rates with the mesh refinement. 

IMPES 

SEQ 
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Figure 21 – Saturation field for the ¼ five spot two-phase flow with a diagonal fracture at 1.0 

PVI on Mesh 3.  

 

MPFA-D/HyG                               MPFA-O/LDFM 

      

      

Source: Author. 

 

Table 3 – Simulation time in seconds from the ¼ five spot two-phase flow with a diagonal 

fracture. 

 SEQ IMPES RDIS 

MESH 1 87 261 3 

MESH 2 386 1099 2.85 

MESH 3 2086 5260 2.52 

 

Source: Author. 

SEQ 

IMPES 
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Figure 22 – Production report for the ¼ five spot two-phase flow with a diagonal fracture. (a) 

Cumulative Oil  Production. (b) Watercut. (c) Zoom in the cumulative oil production graph. 

(d) Zoom in the watercut graph. (e) Legend. 

  
   (a)                                                             (b) 

  
   (c)                                                             (d) 

 

(e) 

Source: Author. 
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4.5 The ¼ five spot two-phase flow with connected channel and barriers 

In this example, a two-phase flow problem presented by Brum (2016) was solved. The 

domain is defined as Ω = [0,100]×[0,100], with a diagonal channel (high permeability fracture) 

connected with barriers (low permeabilities fractures), as shown in Figure 23. In case 1, the 

channel does not cross the barriers, as shown in Figure 23.a. In case 2, the channel crosses 

through the barriers, as shown in Figure 23.b.  

 

Figure 23 – Computational mesh for the ¼ five spot two-phase flow with connected channel 

(blue line) and barriers (red lines). (a) Case 1. (b) Case 2. 

     

(a)                                                      (b) 

Source: Author. 

 

In the injection well, at the point x⃗P = (0;0), the pressure is set as pI= 1 and, in the 

production well, at the point x⃗P = (100;100), the pressure is set as pP= 0. There is no flow 

crossing the boundaries. The saturation is set as Sሜ w(I)= 1 on injection well and Sሜ w
0 = 0, initially, 

in the rest of the domain. 

The viscosities of water and oil are set as 1, and the permeability on the matrix is: 

5

5

10 0
0 10mK




 
  
 

                   (4.12) 

The permeability in the channel is K̰f,1= 8⋅107K̰m and the permeability in the barriers 

is K̰f,2= 10-18K̰m. The aperture of the fractures (channels and barriers) is af = 10-4. 
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The results presented by Brum (2016), obtained by using the MPFA-O coupled with 

the LDFM, were used as the reference to be compared with the results of the MPFA-D/HyG. 

For both formulations, the saturation equation was solved only implicitly (by using 5 as 

Courant number), because of the hard time step restriction arising from the configuration of 

the problem. 

Figures 24 and 25 show the pressure field, in both cases 1 and 2, calculated by the 

MPFA-D/HyG and MPFA-O/LDFM at 0.5 PVI and 1.0 PVI, respectively.  

 

Figure 24 – Pressure field for the ¼ five spot two-phase flow with connected channel and 

barriers at 0.5 PVI. 

 

MPFA-D/HyG                                  MPFA-O/LDFM 

       

       

Source: Author. 

 

Case 1 

Case 2 
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Comparing the two formulations in each case (in Figures 24 and 25), the results are 

close to each other, so that it is not possible to identify relevant differences between the 

results of the two formulations. Note again that in the vicinity of the channel, due to its high 

permeability, the pressure is approximately constant. 

 

Figure 25 – Pressure field for the ¼ five spot two-phase flow with connected channel and 

barriers at 1.0 PVI. 

 

MPFA-D/HyG                                  MPFA-O/LDFM 

        

       

Source: Author. 

 

Figures 26 and 27 show the saturation field returned by the MPFA-D/HyG and 

MPFA-O/LDFM at 0.5 PVI and 1.0 PVI, respectively. Note that in case 1, in which the 

channel does not cross the barrier, the water saturation front need to walk around the barriers 

Case 1 

Case 2 
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and, because of this, the water can sweep more oil from the reservoir, increasing the 

cumulative oil production, what can be seen in Figure 28.a. In case 2, the channel crosses 

through the barrier and conducts the injected water quickly to the production well, what 

causes an anticipation of the water breakthrough in relation to the case 1, what can be seen in 

Figure 28.b. Note that the results of cumulative oil production (Figure 28.a) and watercut 

(Figure 28.b) obtained in each case by the two formulations were very close to each other. 

 

Figure 26 – Saturation field for the ¼ five spot two-phase flow with connected channel and 

barriers at 0.5 PVI. 
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Source: Author. 
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Zooming in the graphs of cumulative oil production (Figure 28.c and Figure 28.d) 

and watercut (Figure 28.e and Figure 28.f) it is possible to verify the magnitude of the 

differences between the results of both formulations and note that they are always bigger in 

case 1 than in case 2. 

 

Figure 27 – Saturation field for the ¼ five spot two-phase flow with connected channel and 

barriers at 1.0 PVI.  

 

MPFA-D/HyG                               MPFA-O/LDFM 

      

      

Source: Author. 

 

4.6 The ¼ five spot two-phase flow with multiple connected fractures 

In this example, MPFA-D/HyG was used to solve a two-phase flow problem in a 

domain defined as Ω = [0,1]×[0,1]m, with multiple connected fractures as shown in Figure 13, 

Case 1 

Case 2 
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with the bold lines indicating the fractures positions. In the injection well, at the point x⃗P = 
(0;0), water is injected with the rate of 0.1 PVI/year and, in the production well, at the point 

x⃗P = (1;1), the pressure is set as pP= 0. There is no flow crossing the boundaries. The 

saturation equation was solved only implicitly (by using 5 as Courant number), because of the 

hard time step restriction arising from the configuration of the problem. 

The saturation is set as Sሜ w(I)= 1 on injection well and Sሜ w
0 = 0, initially, in the rest of 

the domain. The viscosities of water and oil are set as 1 cP, and the rock matrix permeability 

tensors used in this example are K̰m,2 and, defined in Equation (4.6). The fractures 

permeability tensors are: 

5 510 ; 10a m iK K K I 
   

                                   (4.13) 

Four cases were tested in this example: K̰m,2 (mild anisotropic) and K̰m,3 (strongly 

anisotropic), each one combined with K̰a (anisotropic) and K̰i (isotropic). 

Figure 29 shows the pressure fields (with the scales in bar) after 1 year (0.1 PVI) for 

both tensors K̰m,2 and K̰m,3 (for the rock matrix) combined with the tensors K̰a and K̰i in the 

fractures. To illustrate how the presence of fractures modifies the pressure field, Figure 29 

also shows how it would be, under the same permeability tensors, if fractures did not exist, 

which is easily obtained here only by "turning off" the hybrid-grid option, so that it is not 

built in the preprocessing of the method. First comparing the situations in which there are 

fractures with that in which they are "turned off", it can be noted that the presence of these 

fractures with high permeability in the central region of the domain creates therein a region of 

approximately constant pressure. 

Comparing the cases with isotropic (K̰i) and anisotropic (K̰a) fracture permeability 

tensors, Figure 29 shows that under K̰m,2 (the mild anisotropic tensor) there are no appreciable 

differences, otherwise under K̰m,3 (the strongly anisotropic tensor), in addition to the visible 

qualitative differences, the pressures calculated in the injection well are also different (it is 

bigger in the case of the isotropic fracture). 

Figure 30 shows the saturation fields after 1 year (0.1 PVI) for both tensors K̰m,2 and 

K̰m,3 (for the rock matrix) combined with the tensors K̰a and K̰i in the fractures. 
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Figure 28 – Production report for the ¼ five spot two-phase flow with connected channel and 

barriers. (a) Cumulative Oil Production. (b) Watercut. (c) Zoom in the cumulative oil 

production graph highlighting case 1. (d) Zoom in the cumulative oil production graph 

highlighting case 2. (e) Zoom in the watercut graph highlighting case 1. (f) Zoom in the 

watercut graph highlighting case 2. 

 

   (a)                                                             (b) 

 

   (c)                                                             (d) 

 

   (e)                                                             (f) 

Source: Author. 
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Figure 29 – Pressure field (in bar) for the ¼ five spot two-phase flow with multiple connected 

fractures at 0.1 PVI (1 year). 
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Figure 30 – Saturation field for the ¼ five spot two-phase flow with multiple connected 

fractures at 0.1 PVI (1 year). 
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To illustrate how the presence of fractures modifies the pressure field, Figure 30 also 

shows how it would be, under the same permeability tensors, if fractures did not exist. As 

expected, these high permeability fractures conduct the fluid to the lower pressure region 

more easily than the rock matrix. Under K̰m,2 there are no appreciable differences between the 

results with K̰a and K̰i, but under K̰m,3 the application of the isotropic tensor in the fracture 

leads to the occurrence of the water breakthrough before 1 year, what do not occurs in the 

case in which the simulation is done considering the fracture permeability tensor as 

anisotropic as that one of the rock matrix, just multiplied by a constant. In this case, it is 

possible to note a huge difference between the applications of the isotropic and the anisotropic 

tensors inside the fracture. Differences that could even lead to completely different decisions 

in terms of reservoir management, indicating that one of these two options would be very 

wrong, that is why so important to have a formulation which is capable to deal with both. 
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5 CONCLUSIONS 

This work presented a formulation for the numerical simulation of one and two-

phase fluid flows in naturally fractured petroleum reservoirs. The formulation is based upon a 

Hybrid-Grid Method coupled with a non-orthodox Multipoint Flux Approximation finite 

volume method, with a Diamond Stencil (MPFA-D), to solve the elliptic pressure equation. 

The saturation equation was spatially discretized by the First Order Upwind Method (FOUM). 

Two schemes were used to couple the pressure and the saturation: IMPES (IMplicit Pressure 

and Explicit Saturation) and the SEQuential Implicit (SEQ). The latter showed to be 

particularly useful in this type of problems as the IMPES becomes extremely inefficient in 

some cases due to the severe time steps restriction. On the other hand, both returned very 

close results in the tested cases, with the SEQ just causing a negligible anticipation of the 

water breakthrough. 

In order to evaluate the effectiveness and demonstrate the applicability of the 

proposed formulation (MPFA-D/HyG) to general permeability tensors on structured or 

unstructured grids, some examples of one-phase and two-phase flow problems found in 

literature were solved, using triangular and quadrilateral meshes.  

In the convergence test, the proposed formulation performed very well when 

compared to the CVD-MPFA, a method that has been recently adapted in the Hybrid-Grid 

context (SANDVE; BERRE; NORDBOTTEN, 2012; AHMED et al., 2017), being capable of 

returning similar error magnitudes and equivalent convergence rates.  

In one-phase flow tests, MPFA-D proved to be clearly superior to the classic MPFA-

O, here also coupled with HyG, being capable to handle strongly anisotropic tensors even on a 

mesh distorted by the Hybrid-Grid strategy. In two-phase flow tests, the proposed formulation 

also performed well, presenting equivalent results to those obtained by more classical 

strategies, as the MPFA-O coupled with the LDFM (AHMED et al., 2015; BRUM, 2016). 

As further works, the mesh preprocessing and the used data structure (which was 

originally made to deal with triangles and quadrilaterals) could be modified, so that they could 

handle any polygons, or at least hexagons, in order to avoid the creation by the HyG of those 

additional degrees of freedom at points of intersection of three or more fractures (as the 

triangle N’N’’N’’’ in Figure 8). The physics representation could also be improved, including 

capillarity, gravity and thermal effects, three-phase flows, etc., given that this is easier to do in 

models that represent the fractures explicitly as HyG. Besides, it would be interesting to study 
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the coupling of the HyG with a Non-Linear Finite Volume Method (NLFV) that honors the 

Discrete Maximum Principle (DMP) for general permeability tensors and unstructured 

polygonal meshes. Other suggested further works are to extend the MPFA-D/HyG to 3-D and 

incorporate it in a multiscale formulation, becoming it suitable to real field applications. 
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APPENDIX A – LPEW2 DERIVATION 

 

Consider an inner vertex J whose pressure need to be interpolated. The first thing to 

do is to build a dual CV surrounding it. In the case of LPEW2, it is built connecting the 

midpoints of the edges sharing J. Imposing the divergence free (see Figure A1.a), the 

following expression is obtained: 

 1  1
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k k k k
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v N
 



 


                                                                                                 (A.1) 

 

Figure A1 - Sketch illustrating vertex pressure interpolation. (a) Divergence free imposition. 

(b) Flux continuity imposition on Jk .  

 

 

                     (a)                                                        (b) 

Source: Author. 
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the pressures on k , 1k   and J as: 
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where ˆ,2 1 k J k k     and ˆ,1  1k J k k    . Beyond this: 
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Rewriting Equation (A.2), the following expression is obtained: 
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Analogously: 

         ( ) ( ) ( ) ( )
1 1 11,2 1,11 1 1 1

cot cott n t n
J Jk k k k k kk kk k k k

v N T T p p T T p p       
     
   
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Note that each term  Jkp p  will appear in two flow expressions and this is the 

reason why the Equation (A.1) can be rewritten in the following generalized form: 
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Aiming to eliminate these auxiliary variables on the edges it is necessary to impose 

the flux continuity on the half edges Jk  (see Figure A1.b): 

0Jk Jk kJ kJv N v N   
  

                                                                                            (A.7) 

These flux expressions can be written, by Lemma 1, using the pressure values on k , 

k̂ , 1k  and J as: 
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T p p T T p p

T p p T T p p

 

     

    

     
                             (A.8) 

where ˆ,1
ˆ

k kJk    and 


1,2
1

k
k Jk


   . Beyond this: 

,1 1,2ˆ 1
;   k kk k

Jk Jk

J kJk

h h
   

 



                                                                                       (A.9) 

and: 
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       

       

ˆ ˆ1 1( ) ( )
ˆ ˆ2 21 1,1 ,2

ˆˆ 1( ) ( )
ˆ ˆ2 21 1,1 ,2

;   ;
1

1
;  ;

1

T T

Jk Jk J k J kk kn n
k k k kk k

TT

J kJk kkt t
k k k kk k

N K N N K N
T T

Jk J k

N K J kN K Jk
T T

Jk J k

 

 

 
 



 

 



 



   
  

 
 

                         (A.10) 

Rewriting the Equation (A.8), the following expression is obtained: 

    
  

 
( ) ( )
ˆ ˆ,1 1,2,1 1,2 1
( ) ( ) ( ) ( )
ˆ ˆ ˆ,1 ,1 ,1 1,2 1,2 1,2

cot cot

n n
k J k Jk k k k

Jkt n t n
k k k k k k

T p p T p p
p p

T T T T
 

 
 

  

  
 

  
                                          (A.11) 

Analogously: 

    
  

 
( ) ( )

ˆ ˆ1,1 ,2,21,1 1
( ) ( ) ( ) ( ) 1

ˆ ˆ ˆ,2 ,2 ,21,1 1,1 1,1
cot cot

n n
k J k Jk kk k

Jt n t n k
k k kk k k

T p p T p p
p p

T T T T
 

 
 


  

  
 

  
                                        (A.12) 

Then, substituting (A.11) in (A.6), the following expression is obtained: 

    ( ) ( )
ˆ ˆ,1 1,2,1 1,2 1

1
0

Jn
n n

k k J k Jk k k k
k

T p p T p p    


                                                (A.13) 

where: 

  

  

( ) ( ) ( ) ( )
ˆ ˆ ˆ,21 1 1,1

( ) ( ) ( ) ( )
ˆ ˆ ˆ,1 ,1 ,11,2 1,2 1,2

cot cot
cot cot

t t n n
k k kk k k

k n n t t
k k kk k k

T T T T
T T T T

 


 
  

  

  


  
                                                      (A.14) 

As indicated in Equation (A.12), each term  ˆ Jkp p  will appear in two auxiliary 

variables expressions, so the Equation (A.13) can be rewritten in the following generalizing 

form: 

  ( ) ( )
ˆ ˆ ˆ,1 1 ,2,1 ,2

1
0

Jn
n n

k k k k Jk k k
k

T T p p   


                                                              (A.15) 

Then: 

 
 

( ) ( )
ˆ ˆ ˆ,1 1 ,2,1 ,2

1

( ) ( )
ˆ ˆ,1 1 ,2,1 ,2

1

J

J

n
n n

k k k kk k k
k

Jn
n n

k k k kk k
k

T T p
p

T T

   

   















                                                                    (A.16) 
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Or alternatively: 

 

( ) ( )
ˆ ˆ,1 1 ,2 ˆ,1 ,2

ˆ ˆ ˆ ˆ
1 1 1( ) ( )

ˆ ˆ ˆ,1 1 ,2,1 ,2
1 1

J J J

J J

n nn n n
k k k kk k k

J n nk k k k
k k kn n

k k k kk k k
k k

T T
p p p w p

T T

    

    



  


 


  


  
 

                       (A.17) 

If the node to be interpolated is on the boundary, the flux crossing the boundary 

edges need to be considered, then the Equation (A.6) becomes: 

     ( ) ( ) ( ) ( )
ˆ ˆ ˆ ˆ ˆ ˆ 1 11,2 ,1

1
cot cot 0

J

J

n
t n t n

J J nk kk k k k k k
k

T T p p T T p p F F  


         

                                                                                                                              (A.18) 

where 1 1JnF F   is the total flow crossing the boundary edges. The continuity imposing on the 

boundary edges need to be done as following: 

11 1

11 1

0

0
JJ J

J J

nn J n J

v N F

v N F  

   


  


                                                                                      (A.19) 

It leads, through Lemma 1, to: 

   

   

( )
ˆ ˆ1,1 11,1 1

1( ) ( )
ˆ ˆ ˆ1,1 1,1 1,1

( )
ˆ ˆ,2 ,2 1

( ) ( )
ˆ ˆ ˆ,2 ,2 ,2

cot

cot
J J J J

J

J J J

n
J

Jt n

n
n n n J n

n Jn t
n n n

T p p F
p p

T T

T p p F
p p

T T










  
  




 
  

                                                             (A.20) 

Substituting (A.11) and (A.20) in (A.18), the following expression is obtained: 

 ˆ ˆ
1 1; 1

ˆ
1

1 1
J

J
J

n

J k kn k k
k k n

k
k

p p F 
   



 
   

 
 


                                                             (A.21) 

where: 

  

  

( ) ( )
ˆ ˆ ˆ1 1,2 1

1 ( ) ( )
ˆ ˆ ˆ1,1 1,1 1,1

( ) ( )
1 1,1 1

1 ( ) ( )
1,2 1,2 1,2

cot
cot

cot

cot
J J J

J

J J J

n t

n t

n t
n n n

n n t
n n n

T T
T T

T T

T T










  



  

 






 

                                                                         (A.22) 


