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ABSTRACT

A polytope P is a model for a combinatorial problem on finite graphs GG whose variables
are indexed by the edge set E of G if the points of P with (0,1)-coordinates are precisely
the characteristic vectors of the subset of edges inducing the feasible configurations for
the problem. In the case of the (simple) Max Cut problem, which is the one that concern
us here, the feasible subsets of edges are the ones inducing the bipartite subgraphs of G.
This work we introduce a new polytope Py; C Rl given by at most 11|E| inequalities,
which is a model for the Max Cut problem on GG. Moreover, the left side of each inequality
is the sum of at most 4 edge variables with coefficients +1 and right side 0, 1 or 2. We
restrict our analysis to the case of G = K, the complete graph in z vertices, where z is an
even positive integer z > 4. This case is sufficient to study because the simple Max Cut
problem for general graphs GG can be reduced to the complete graph K, by considering the
objective function of the associated integer programming as the characteristic vector of the
edges in G C K,. This is a polynomial algorithmic transformation. An extension to the
linear model into a more complete symmetric model which contains all the permutations
for triangular and quadrilateral inequalities, equivalent to other formulations present in

the literature is presented as well as the 01-cliques.

Keywords: Combinatorial Optimization. Integer Programming. Max Cut Problem.



RESUMO

Um politopo P é um modelo para um problema combinatorial em um grafo finito
G cujas variaveis sao indexadas pelo conjunto de arestas E de G se os pontos de P
com coordenadas (0,1) sdo precisamente o vetor caracteristico do subconjunto de arestas
induzindo um configuracao viavel do problema. No caso do Corte Méaximo simples, que
¢é o problema abordado neste trabalho, o subconjunto de arestas vidveis é aquele que
induz uma biparticao dos vértices de G. Neste trabalho é apresentado um novo politopo
Py, C RI®! contendo no méximo 11|E| desigualdades, que é um modelo para o problema
do Corte Maximo em (. O lado esquerdo de cada inequacao é a soma de no maximo
quatro variaveis de aresta com coeficientes +1 e o lado direito é 0, 1 ou 2. A andlise é
restrita para o caso G = K, o grafo completo com z vértices, onde z é um inteiro positivo
com z > 4. Este caso é suficiente pois o problema do Corte Maximo simples para grafos

gerais (G pode ser reduzido ao grafo completo K.

Palavras-chave: Otimizacao Combinatoria. Programacao Inteira. Corte Maximo.
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one of the 2 long sides of the rectangle. If we care for orientation and all the
3 surfaces are orientable, then there are in fact 12 ()-graphs and 6 oriented
surfaces. Note that PH = SKo DU SKoDUoSK o DU SK o DU o SK.
But orientation does not concern us here. Therefore there are only 3 pairs of
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Small instances of Pog,, h = 2, integer and h = 2.5, half integer:
Pog, — RP? and Pog, 5 — RP?. Cellular embeddings of the graphs into
the real projective plane or a disk with antipodal identification, RP?. The
two thick closed paths are instances of zigzag paths. There is a total of
z = 4h zigzag paths in Pog,. Closely related to a zigzag path is a closed
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crossing it at the middle and following close the second half of the edge,
turning at the angle to the next edge, where the process is repeated for
all edges of the zigzag path which are crossed once by the closed straight
line. The graph induced by the closed straight lines of a map is called the
line embedding of the phial map. The graph of this embedding is the one
whose vertices are the closed straight lines of the map and whose edges are
the intersection points of two of such lines (which may coincide). The line
embeddings are in 1-1 correspondence with the usual cellular embeddings
which occur in another surface. This surface is determined, but not really
relevant here for our current purposes. As a crucial property, we have that
the graphs of the line embeddings induced by the Pog;'s are the complete
graphs K, with z even. This is straightforward by the circular symmetry
of these projective graphs: every pair of closed lines cross exactly once.
To obtain Pogy, and its dual as labeled graphs consistent with the labels
of G35 = K, it is convenient to embed it into S?*. This can be done
combinatorially by the shaded rozigs, see Figure 4. . . . . . .. ... ..
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G1 = Pog,. We also display a strong O-join, denoted by 7', given in thick
edges: the parity of the number of edges of T" in the coboundary (boundary)
of a vertex (a face) and the parity of the degree of the vertex (the face)
of G; = Pog, coincide. The labels of the vertices of K4 are the digits in
1,2...,9,A,B,C,D,E,F,G (base 17). An edge of G3 = K, is labeled
by an unordered pair of vertices. Note that the face boundaries in clockwise
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1 INTRODUCTION

The Max Cut problem is one of the first NP-complete problems according to Garey
e Johnson (1979). This problem can be stated as follows. Given a graph G does it has a
bipartite subgraph with n edges? It is a very special problem which has been acting as
a paradigm for great theoretical developments. See, for instance Goemans e Williamson
(1995), where an algorithm with a rather peculiar worse case performance (greater than
87%) can be established as a fraction of type (solution found/optimum solution). This

result constitutes a landmark in the theory of approximation algorithms.

Under computational complexity theory, a decision problem can be simply put as a

problem with yes or no answer. Complexity classes can be defined as follows:

Polynomial or P: the set of all decision problems that can be solved in polynomial
time by a deterministic Turing machine such as linear programming (i.e.: the time it takes

is a polynomial function on the size of the problem).

Non-deterministic Polynomial or NP: the set of all decision problems that
can be solved in polynomial time by a non-deterministic Turing machine such as integer
factorization. In other words, all problems whose instances where the answer is "yes" have

proofs that can be verified in polynomial time.

NP-Complete: the set of all decision problems in NP for which exists a polynomial
transformation from any other NP problem into it. A significant consequence of this is that
if a polynomial solution exists for any given problem in NP-Complete then all problems

within this class also posses polynomial solution. 3-SAT is such an example.

NP-Hard: the set of all problems which are at least as hard as the NP-complete
problems but are not necessarily decision problems. If a problem is NP-Hard then an NP-
Complete problem exists such that it is reducible to the NP-Hard problem in polynomial
time. Consider the halting problem, given a program and an input, will it halt? This
decision problem is clearly not in NP but any NP-Complete problem can be trivially

reduced to it.

This work investigates the Max Cut problem along with cut polyhedra associated
with it. In a formulation found in Barahona, Jiinger e Reinelt (1989), the authors express
odd subsets of circuits as exponential restrictions in a 0-1 linear program. A short formu-
lation for the Max Cut in Lancia e Serafini (2011) expresses the problem as O(|V| - |E|)
inequalities and O(|V|> + | E|) variables. Yet another formulation by Nguyen, Minoux e
Nguyen (2016) proposed a compact model only containing short inequalities in the order

of O(|V] - |E|).
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Our contribution is two fold. First we present a formulation that contains exactly
E variables and 11|E| short inequalities (each involving 3 edge variables with coefficients
+1) so that the polytope in R!®! formed by these inequalities has its all integer coordinate
points in 1-1 correspondence with the characteristic vectors of the complete bipartite
subgraphs of K. Second we provide a self-contained proof that signed odd polygons are

valid inequalities for the Max Cut problem.

In the first part we discuss the theoretical background involving the Max Cut
problem and related works which propose new and efficient formulations. In this section
we also discuss several works which provide means to find new classes of valid inequalities,

some of which are employed in our computational efforts whilst investigating the problem.

The second part deals exclusively with the theoretical models proposed by this
work. We first define the necessary combinatorial elements upon which our formulation is
based and thus provide the formulation itself. An important theorem contained in this
part demonstrates how it is feasible to decide if an integer maximum cut exists given a
relaxed dual optimum with that same integer objective value via a 2-SAT. This reduces

the original problem significantly given the necessary conditions stated in the theorem.

All computational efforts and investigations regarding this work, including experi-
ments with both random and well-known graphs such as Coxeter and Johnson’s graph
family. We also demonstrate the effectiveness of working with relaxed larger formulations
containing all cycles of the graph and more compact formulations which append violating

inequalities as they appear.
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2 MAX CUT PROBLEM

2.1 FORMULATIONS FOR THE CUT POLYTOPE

The Max Cut problem is equivalent to finding the maximum bipartite graph given
that no edge has a negative weight associated with it (Barahona, Grotschel e Mahjoub
(1985)). It has also been shown that the Max Cut problem is NP-Hard in the general case
as stated, but can be solved polynomially for planar graphs (Hadlock (1975)), graphs with
no long odd cycles (Grotschel e Nemhauser (1984)) and graphs not contractible to K3
(Barahona (1983)). An important survey on the Max Cut problem is available at Poljak e

Tuza (1995) where several works related to cut polytopes are discussed in detail.

Several formulations for cut polyhedra have been proposed in the revised literature.
These polyhedra are frequently associated to classical combinatorial optimization problems
such as the separation or maximum cut problem, object of focus in this work. Consider a
graph G = (V| E) finite, undirected and with no multiple edges, where V' is the node set
and FE is the edge set. Given C € V., §(C) is the set of edges with one extremity incident
to C' and the other to C'\ V. This is called a cut and the convex hull of incidence vectors
of cuts is known as a cut polytope. The problem thus resides in finding a maximum cut for

a given graph.

Such a formulation proposed by Barahona e Mahjoub (1986) includes all odd
chordless cycles in a undirected graph G. A chordless cycle is any cycle within G such that
the induced subgraph is the cycle itself. The authors demonstrate that any triangular face
within the complete graph K, can be written as a valid cycle inequality and the set of all

of such inequalities build a cut polytope for a 0-1 linear program.
Let C' be a chordless cycle and F' a facet in G. Let x be an incident vector of a cut.
Then for each cycle C', k(C) is even such that
k(F)—k(C\F)<|F|—1, FeC,|F| odd.

so for every distinct vertices i, j, k in K,

xij + SL’jk + T S 2
—Tij + Tk + T S 0
Tij — Tjp + T <0

Tij + Xjp — T <0

where z;; is the edge connecting nodes ¢ to j are the cycle inequalities for the polygon 1, j, k.

Such valid inequalities of triangles are called triangle inequalities. A polytope containing
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triangle inequalities covering all possible cycles (and their sign permutations) is known as

triangular polytope.

In Lancia e Serafini (2011) the authors present a shorter formulation for the
Max Cut by defining new valid inequalities on the already known formulation of the
problem ((BARAHONA; JUNGER; REINELT, 1989), (SIMONE; RINALDI, 1994)) and
demonstrating these valid inequalities can be used to solve the problem through a simple
preparation procedure. The authors define a new graph which contains a duplicated
vertex set and new arc cycles whose length depends on the current optimal solution. The
formulation presented posses O(|V| - |E|) inequalities and O(|V|> + | E|) variables which

the authors claim have potential to be efficient for sparse graphs.

An even more compact formulation proposed by Nguyen, Minoux e Nguyen (2016)
contains O(|E|-|V) inequalities. The authors call attention to the particular case of sparse
graphs where, on the best case scenario, |E| = |V| and the problem is reduced to O(|V]?)
constraints. The basis for their work is the metric polytope, upon which they apply an

elimination procedure to remove redundant inequalities.

2.2 VALID INEQUALITIES FOR THE MAX CUT MODEL

Some authors in the revised literature propose new classes of valid inequalities
since none of the proposed formulations are the integer hull of the desired polytope. As
part of this work, we have adapted these approaches in order to find valid inequalities
on demand. Tests with random graphs indicate that including constraints induced by all
possible circuits within the complete graph significantly reduces the number of problems
whose relaxed optima is an integer vertex on the polytope. Unfortunately this ratio of

integer to fraction relaxed optima quickly deteriorates as the problem size increases.

In Barahona, Jiinger e Reinelt (1989) the authors present a cutting plane algorithm
embedded in a branch and bound framework (also known as branch and cut) to address
the problem of finding a maximum cut. The strategy adopted to generate cutting planes
uses odd cycle inequalities. Since this strategy is widely used by others, including this
work, it is briefly described here. Let the graph H be defined as (V' U V" E'U E" U E™)
which consists of two copies of a graph G, G’ = (V', F') and G" = (V" E") with some
additional edges E". For every edge e;; in E four edges are created in H, ey, € E" and
epgn € E" with weight y;; and two edges ey ;v and ey with weight 1 — y7: both in £
for /', j' € V" and i",5” € V" and where zj; is the value for the optimization variable
corresponding to the edge z;; at the current optimum solution. It is shown that any path
from 4’ to i” has an odd number of edges in E” and if the shortest path from ¢’ to ¢’ is

smaller than one then there is a corresponding odd cycle which is violated at z*.

A polyhedral cut and price approach is investigated by Krishnan e Mitchell (2006)
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where the authors formulate the semidefinite programming (SDP) relaxation of Max Cut
as a semi-infinite linear programming problem, which is solved within an interior point
cutting plane algorithm at the pricing phase. In a second phase cutting planes are added

to the original problem in order to improve the SDP relaxation.

Another valid class of constraints known as gap inequalities which appear in Laurent
e Poljak (1996) and further studied by Galli, Kaparis e Letchford (2012) are constructed
from a finite sequence of integers related to a positive semidefinite relaxation of the max-cut
problem. This class of inequalities is quite general, including hypermetric (see Tylkin (1960)
and Kelly (1975)) and negative type (Schoenberg (1938)) inequalities. Another important
type of valid inequality which can be seen as a particular case of gap inequalities are
those originated from cliques in the graph. The authors express how to obtain the integer
sequences of the corresponding gap inequalities that define facets of the cut polytope. This
technique is discussed in further detail at section 3.4 at the appropriate context of this

work.
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3 THEORETICAL MODELS

3.1 THICK GRAPHS, GEMS AND Q-DUALITIES

Thick graphs into closed surfaces. A surface is closed if it is compact and has no
boundary. A closed surface is characterized by its Euler characteristic and the information
whether or not is orientable. We use the following combinatorial counterpart for a graph

G cellularly embedded into a closed surface S, here called a map.

Cellularly embedded means that S\G is a finite set of open disks each one named a
face of the embedding, whence a surface dual graph is well defined. Each edge is replaced
in the surface by an e-thick version of it, named e-rectangle. Each vertex v is replaced
by a 6-disk, where ¢ is the radius of the disk whose center is v. The e-rectangles and the
d-disks form the thick graph of G, denoted by T'(G). By choosing an adequate pair (e < §),
the boundary of T'(G) is a cubic graph (i.e., regular graph of degree 3), denoted by C(G).
The edges of C'(G) can be properly colored with 3 colors: we have short, long, and angular
colored edges so that at each vertex of C(G) the three colors appear. The long (resp.
short) colored edges are the edges which induced by the long (resp. short) sides of the
e-rectangles. The angular edges are the other edges (Figure 1).

Gems or hollow thick graphs. A cubic 3-edge colored graph H in colors (0,1,2) is
called a gem (for graph-encoded map) if the connected components induced by edges of
colors 0 and 2 are polygons with 4 edges. A polygon in a graph is a non-empty subgraph
which is connected and has each vertex of degree 2. A bigon in H is a connected component
of the subgraph induced by all the edges of any two chosen chosen among the three colors.
An ij-gon is a bigon in colors ¢ and j. From H we can easily produce the surface S and
G — S: attach disks to the bigons of H thus obtaining T'(G) < S up to isotopy. To get
G embedded into S just contract the d-disks to points. Each rectangle becomes a digon
and contracting these digons to their medial lines we get G < S. The Euler characteristic
of Sisv(H)+ f(H)—r(H), where v(H) is the number of 01-gons of G' (or the number of
vertices of G), f(H) is the number of 12-gons of H (or the number of faces of G < 5)
and r(H) is the number of rectangles of H (or the number of edges of H). Moreover, S is
an orientable surface iff and only H is a bipartite graph, see (LINS, 1980). Note that in
each gem any edge appear exactly in two bigons: indeed, if the edge is of color ¢ it will
appear once in a ij-gon and once in a ik-gon, where {i, j, k} = {0,1,2}. The surface of
a map is obtainable from the gem by attaching disks to the bigons and identifying the

boundaries along the two occurrences of each edges.

@-graphs and their dualities. A perfect matching in a graph with an even number, v,
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\V2

TN

G T(G) C(G) = H, a gem

Figure 1 — Neighborhood of an edge in G — S its thickened version and a hollow counterpart:
the gem H. To get a Q-graph from H, let po be the short edges, 111 be the angular
edges (they correspond to angles in (), let s be the long edges, and finally add the
crossing edges i3 as the diagonals of the 02-rectangles of H. Note that the colors
of the edges of () are implicit 0 is the color of the short edges of the 02-rectangles,
2 of their long edges, 1 is the color of the edges of H not in the rectangles and 3
is the color of the crossing edges.

of vertices is a set of v/2 pairwise disjoint edges. A Q-graph Q(po, p11, fi2, pi3) is the disjoint
union of 4 ordered of its perfect perfect matchings u;, + = 0,1, 2, 3, so that each component
of po U g U g is a complete graph K. Each such K is called a hyperedge of the Q-graph.
The edges in yu; are called angular edges of the g-graph. The edges in g are called short

edges, the ones in uo, long edges, the ones in ugz are called the crossing edges. The graphs

Q(ptos p1, pra pi3) and Q(pia, pn, fio, pi3) are dual Q-graphs. The graphs Q(po, pu1, p2, p13) and

Q(us3, p1, pi2, o) are phial Q-graphs. The graphs Q(po, g1, pi2, p3) and Q(pio, fi1, 13, pi2) are
skew @Q-graphs. To obtain a gem H, whence G from a ()-graph, just remove its last perfect

matching. Note that dual Q-graphs induce the same surface S and the same zigzag paths
while interchanging boundary of faces and coboundaries of vertices. Skew ()-graphs induce
the same graph G and interchange coboundary of faces and zigzag paths. Phial ()-graphs
interchange coboundary of vertices and zigzag paths while maintaining the boundaries of
the faces (as cyclic set of edges) in the respective surfaces, see Figure 2. Note that the
embedding G < S defines the @-graph. This enable us to identify

Q1 = Qo pu1, pio, pi3) = Gy — S = Gy,
Q2 = Qpa, pu1, 1o, pi3) = Gy — S = Gy,
Qs = Q(uz, 11, o, p2) = G5 — 5% = G5,
Qs = Qus, pu, po, o) = G3 — S* = G,
Qs = Q(p2, 1, s, o) = G5 — S* = G,
Qs = Qs p1s pi3s o) = GY — 8% = Gy

(G1 the graph of the dual map, G5 and graph of the phial map G5. To get the phial

of a map, we interchange the short edges of the rectangles by their diagonals. There are
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Q1 =0Q(0,1,2,3) Q2=0Q(2,1,0,3) Q3 =Q(3,1,0,2)  Q4+=0Q(3,1,2,0) @5 =0Q(2,1,3,0) Qs =0Q(0,1,3,2)

1 1, d 1, 4d 11 1,1 1, a1 1
a 0 a 2 ) a 3 b a 3 b a 2 b a 0 b
3 3 ) 0 0 2
2 2 0 0 0 0 2 2 3 3 3
3 3 2 0 0 2
@ 0 eNAgl 2 Nl 3 N Al 3 ONAgd 2 N4l 0 ¢

Figure 2 — @Q-graph Q(h, 1, j, k) is a short form of Q(pn, i, 115, p1x). We depict the Q-dualities
of a Q-graph (usual surface duality, skew duality and phial duality) which induce
3 graphs G1, G5, G35 and 3 surfaces: S'?, 523, 53! The minus signs mean a local
reversal of orientation given by the cyclic order of the rectangle corners (a, b, ¢, d).
Graphs G; and G5 (i = 1,2,3) are the same: they are just embedded into
distinct surfaces in such a way that the faces of one are the zigzags paths (left-
right paths) of the other. The zigzags paths are closed and well defined — they
correspond to the 13-gons of () — even if the surface is non-orientable, where
is impossible to define left or right globally. Taking the dual (DU) corresponds
in the gem to switch the vertical rectangles to horizontal ones (and vice-versa)
while maintaining the cyclic order of the corners of the rectangle (so the surface
does not change). Taking the skew (SK) corresponds to exchange corners linked
by one of the two short sides of the rectangles. Starting with Q(0,1,2,3) and
applying iteratively the composition SK o DU we get the six ()-graphs which appear
in the top of each one of the six surfaces. Taking the phial (P#) is defined as
PH =DU o SK o DU, or directly by exchanging a pair of corners linked by one of
the 2 long sides of the rectangle. If we care for orientation and all the 3 surfaces
are orientable, then there are in fact 12 ()-graphs and 6 oriented surfaces. Note
that PH = SK o DU o SK o DU o SK o DU o SK o DU o SK. But orientation
does not concern us here. Therefore there are only 3 pairs of skew maps, each pair
inducing the same graph {G; :— S'? G} :— S3'}, {Gy :— S'? Gy = S%},
{G3 :— S? G5 :— S3'}, and 3 surfaces 52,523 S31.

also the twisted maps G, G5 and G5. There are three closed surfaces S'? where Gy and
G, embed as duals, S* where G5 and G3 embed as duals and S?' where G5 and Gy
embed as duals. For the case that concerns us, G5 is K, with line embedding in S2, G, is
Pogy, and Gy is the RP?-dual of Pogy, since S'? is RP?. These dualities were introduced
first in (LINS, 1980) and then in (LINS, 1982).
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3.2 THEORY OF GEMS AND Q-DUALITIES FOR CELLULAR EMBEDDINGS OF GRAPHS
INTO SURFACES

Let GG; be an arbitrary map of a graph into a surface, orientable or not, and G, G,
denote respectively the dual and phial of G;. Let E denote the common set of edges for
graphs G, G5, G3: they are identified via the hyperedges of the associated @)-graph.

3.2.1 Reformulation of the Max Cut Problem

Vector spaces from graphs. For subset of edges A and B let A + B denote their
symmetric difference. This is closely related with the sum in GF(2) via the characteristic
vectors. Thus an element is in

Ai+A+.. .+ A4

if it belongs to an odd number of A;’s. This sum on subsets of edges becomes an associative
binary operation and 2%, the set of all subsets of E, becomes a vector space via + on
subsets, or, what amounts to be the same, the mod 2 sum of characteristic vectors of
the subsets of edges. There is a distinguished basis given by the characteristic vectors
of the singletons. We say that subset of edges A is orthogonal to subset of edges B if
|AN B|is even. If W C 2% is a subspace, then W+ = {u € 2F : v L w,Vw € W} is also a
subspace and dimW + dim W+ = |E|. Let V; (i = 1,2, 3) be the subspace of 2F generated
by the coboundary of the vertices of G;, or coboundary space of G;. The cycle space of G;
is V. The face space of G;, denoted by JF;, is the subspace of Vi+ generated by the face
boundaries of G;. The zigzag space of G, denoted by Z;, is the subspace of Vi- generated
by the zigzag paths of G;. Note that G; is rich iff V+=F;+Z;. In particular, F; = V, and
Z = Vs.

Theorem 1 (Absorption property). Let (i, j, k) denote a permutation of {1,2,3}. Then
VinV; CV.

Proof. For a proof we refer to Theorem 2.5 of (LINS, 1980). The proof is long and we do
not know a short one. This is a basic property which opens the way for a perfect abstract

symmetry among vertices, faces and zigzags. A useful consequence of this property is that
ViNVe=ViNVs=VoUVs =V, NV UVs. O

The cycle deficiency of G; is cdef(G;) = dim((Vi)/(V; + Vi)). Map G, is rich if
its cycle deficiency is 0, implying, in particular, V; = VjL N Vi, for all permutations (4, j, k)
of (1,2,3).

Corollary 2. Maps G, G2, G5 have the same cycle deficiency.
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Proof. Assume GG; has e edges, v vertices, f faces and z zigzags. Then

cdef(G1) =(e—v+1)—((f-D+@g-1)—y)=e—(v+f+g) +(3+),

where v = dim(V; NV, U V3). The Corollary follows because v + f + z is invariant under

permutations of (v, f, 2). O

Thus richness is a symmetric property on the maps G, G5, G3: we have (G is rich

& (G5 is rich < Gy is rich. A subgraph is even if each of its vertices has even degree.

Corollary 3. If F' C E induces an even subgraph of G;, then F € Vi
Proof. Any polygon of G is in Vi*. Note that F is a sum of polygons and so, F' € Vi-. [

A subset F' C E is a strong O-join in G, if it induces a subgraph so that at each
vertex v and each face f the parity of the number of F-edges in the coboundary of v and
in the boundary of f coincides with the parity of the degrees of v and f, respectively. Note
that F is a strong O-join iff ' = E\F € Vi N V4. See Figure 4, where we depict a strong
O-join T given by the thick edges in G; = Pogs. In the case of a rich G3, F is a strong
O-join of G iff F € V.

The coboundary of a set of vertices W is the set of edges which has one end W and
the other in V\W. A subset of edges is a coboundary in a graph iff it induces a bipartite
subgraph: the edges of this graph constitutes the coboundary of the set of vertices in the
same class of the bipartition. A cut in combinatorics is frequently defined as a minimal
coboundary. Thus it is preferable to talk about maximum coboundary instead of talking

about maximum cut to avoid misunderstanding.

Theorem 4 (Reformulation of Max Cut Problem). Let G5 be a rich map. The mazimum
cardinality of a coboundary in Gs is equal to the cardinality of |E| minus the minimum

cardinality of a strong O-join in Gy.

Proof. The result follows because the complement of a strong O-join F' is an even subgraph
in graphs G; and Gy. Thus, F' € Vi N V3 = V3. The last equality follows because G is

rich. Note that the elements of V5 are precisely the coboundaries of Gfs. O

3.2.2 Projective Orbital Graphs

Motivation to restrict to G3 = K,z even. In order to use the ()-dualities
and rich maps we must start with a rich map Gj3. Our universal choice for Gj is the
complete graph K, with z even. There are various reasons for this choice. (a) Every graph
is a subgraph of some K. (b) It is very easy to embed G3 = K, in some surface so that

its phial G; and dual of the phial G are embedded into the real projective plane, PR*:
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the simplest closed surface after the sphere. (c) There is a combinatorial well structured
generator subset of the cycle space of K., Vs, given by all but one coboundaries of the
vertices of GG; and the all but one coboundaries of the vertices of Gy (faces of G1). Moreover
each one of these generators correspond to a polygon in K, having either 3 or 4 edges.
Finally, (d) the maximum cardinality of a bipartite subgraph of an arbitrary graph G
with 2z vertices can be obtained by solving the integer 0-1 programming problem using
the characteristic vector of the edge set of G relative to the complete graph Gz = K, as
objective function. If z is odd attach a pendant edge e to GG, and solve the problem for
G + e C K, 1. All these properties justify the restriction to complete graphs with an even

number of vertices.

Our formulation will use inequalities induced signed forms of these generating
polygons in all possible ways. So it is paramount to have short polygons as generators,
otherwise an exponential number of inequalities arises from the beginning. Our approach
starts by constructing graph (G; = Pog;, embedded into RP,, and its description follows.
The projective orbital graphs. Let h € { 1, %, 2, g, 3, %, 4, %, ...}. The Projective orbital
graph or Pog(h) is defined as follows.

Case h integer. If h is an integer, then Pog(h) consists of h concentric circles (orbits)
having each z = 4h vertices equally spaced. In the complex plane the hz vertices of Pog(h)
are {kexp(2mij/z) :k=1,2,...,h, 7=0,...,2—1}. Each one of the h orbits of Pog(h)

induces z edges as closed line segments in the complex plane:

{[kexp(2mij/z, kexp(2mi(j +1)/2)]): 7 =1,...,z}.

These edges are called orbital edges. There are also zh radial segments being z(h — 1) radial
edges and z pre-edges: {[kexp(2mij/z),(k+ 1)exp(2mij/z]) :k=1,...,h, j=1,... 2}
Note that the z points {[(h + 1)exp(27ij/z]) : j = 1,...,z} are not vertices of Pog(h)
and are called auzxiliary points. Each one of the radial segments incident to an auxiliary
point is a pre-edge. The graph whose vertices are the vertices of Pog(h) plus the auxiliary
points and whose edges are the edges plus pre-edges of Pog(h) is named a pre-Pog(h).
Take a pre-Pog(h) and embed it in the planar disk with center at the origin and radius
h + 1, denoted D, of the usual plane so that the auxiliary points are in the boundary of D.
The antipodal points of 9D are identified, forming real projective plane RP?. In particular
pairs of antipodal auxiliary points become a single bivalent vertex which is removed and
the result is the graph Pog(h) embedded into RP?. (see left side of FigureFigure 3) This
completes the definition of Pog(h), in the case of integer h.

Case h is half integer. If h is a half integer then Pog(h) has |h| orbits each with
z = 4h vertices and a degenerated orbit corresponding to the extra % and inducing a single

central vertex. In the complex plane the hz + 1 vertices of Pog(h) are {kexp(2mij/z) :
k=1,2...,|h], 7=0,...,2—1}U{0}. The orbital and radial edges as well as the
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identifications are defined similarly as in the case h integer. The extra ingredient is that
there are z edges linking 0 to the vertices in the innermost non-degenerated orbit (see

right side of FigureFigure 3).

The shapes of the Pogy’s are tailored in such a way that it has z zigzag paths: such
a path is exemplified in thick edges in FigureFigure 3). These paths alternates choosing
the rightmost and leftmost edges at each vertex. Since RP? is non-orientable, in traversing
an edge crossing the boundary of D we must repeat the direction (left-left or right-right,
instead of changing it). Note that a zigzag path is closed since it links two antipodal

auxiliary points in D before they are identified in RP?.

3.2.3 Combinatorially Constructed Labeled Pog,

By using a combinatorial construction for Pog;, we get the triad of graphs Gy = Pogy,
its dual in RP?, G5 and its phial G3 = K. The construction is based on a table named
shaded rozigs which amounts to an embedding of K, into some higher genus surface. We

refer to Figure 4.

The rozig table has z rows and z — 1 columns. Each entry of the table is an ordered
distinct pair of labels in {1,2,..., 2z and each such pair appears twice (maybe with the
symbols switched). These symbols label the vertices of the complete graph and the pair
is an oriented form an edge of G3 = K,. The filling of the table depends on a simple
function suc2{1,2,...z} x{z} — {1,2,...2} x {2}, where suc2((,z) = (+2,if { < z—2,
suc2(z,z) =1, suc2(z — 1,z) = 2.

The rozig table has 3 types of columns: the projective column, formed by the

0-column, the left columns, formed by columns 1 to z/2 and the right columns formed by

columns z/2 + 1 to z — 1.

Defining the first row of the rozig table. The entries in the first row start with (2,1)

in the projective column, followed by
(1,4),(6,1),...,(2,1) or by (1,4),(6,1),...,(1, 2),

according to 2z = 2 mod 4 or z = 0 mod 4 filling the left columns. Finally we have, if
z =2 mod 4,

(1,3),(5,1),...,(z —1,1) or by (3,1),(1,5),...,(1,z — 1),

filling the right columns. This completes the filling of the first row of the rozig table. This
row corresponds to the cyclic order of the oriented edges of the coboundary of vertex
1 of G5 = K. It corresponds also to a rooted oriented zigzag (rozig) path labeled 1 in
G, = Pogyp, z = 4h. See Figure 4.
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e B

Figure 3 — Small instances of Pog,, h = 2, integer and h = 2.5, half integer: Pog, — RIP?
and Pogy 5 — RP?. Cellular embeddings of the graphs into the real projective
plane or a disk with antipodal identification, RP2. The two thick closed paths are
instances of zigzag paths. There is a total of z = 4h zigzag paths in Pog;,. Closely
related to a zigzag path is a closed straight line, which is depicted as a thin line
which goes parallel to an edge crossing it at the middle and following close the
second half of the edge, turning at the angle to the next edge, where the process
is repeated for all edges of the zigzag path which are crossed once by the closed
straight line. The graph induced by the closed straight lines of a map is called the
line embedding of the phial map. The graph of this embedding is the one whose
vertices are the closed straight lines of the map and whose edges are the intersection
points of two of such lines (which may coincide). The line embeddings are in 1-1
correspondence with the usual cellular embeddings which occur in another surface.
This surface is determined, but not really relevant here for our current purposes. As
a crucial property, we have that the graphs of the line embeddings induced by the
Pogy,'s are the complete graphs K, with z even. This is straightforward by the
circular symmetry of these projective graphs: every pair of closed lines cross exactly
once. To obtain Pog;, and its dual as labeled graphs consistent with the labels of
G5 = K, it is convenient to embed it into S?3. This can be done combinatorially
by the shaded rozigs, see Figure 4.
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Figure 4 — Example of labeled shaded rooted oriented zigzags or labeled shaded rozigs

G, = Pogs. We also display a strong O-join, denoted by 7', given in thick edges:
the parity of the number of edges of 7" in the coboundary (boundary) of a vertex (a
face) and the parity of the degree of the vertex (the face) of G; = Pog, coincide.
The labels of the vertices of K4 are the digitsin 1,2...,9, A, B,C,D,E, F,G
(base 17). An edge of G5 = K, is labeled by an unordered pair of vertices.
Note that the face boundaries in clockwise order and the vertices coboundaries in
counter-clockwise order correspond to directed polygons in G3 = K. Rozig 1 is
displayed.
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Defining the other rows of the rozig table. To get row 7 + 1 from row ¢ in the rozig
table just apply suc2 to the individual symbols of the pairs. This completes the definition
of rozig table. From its rows we get a rotation for K., namely a cyclic ordering for the

edges incident to each vertex i of K.

Yet another combinatorial counterpart for graphs embedded into surfaces. To
obtain a combinatorial counterpart for an embedding of a graph we need a rotation (which
we have: the rows of the rozig) together with the corresponding twist which is the subset
of edges that are twisted for the fixed rotation. In our case, the twisted edges are the
ones which correspond to the radial edges of Pog,. The non-twisted ones correspond to
the orbital edges of Pogy,. In terms of rozigs, a twisted edge is one traversed in opposite
directions by the two zigzags that traverse the edge. The pair (rotation,twist) is sufficient
to describe the embedding because from it we can recover the entire ()-graph: given an
immersion respecting the rotation of ¢ (with crossings between the 1-colored edges) in
the plane, given a twisted edge e the pair of edges of color 2 in the hyperedge of @

corresponding to e is replaced by the crossing edges.

The relevance of the shading. All the edges in a column of the rozig table are radial
or all are orbital. We can shade the columns so that an edge is twisted in the rotation iff it
is in a shaded column. In this way, shading defines the twist of the map and complements

the rozigs completing its combinatorial presentation.

Defining the shading. The projective column is shaded, the left columns alternate
(non-shaded, shaded) starting with non-shaded. The right columns are shaded or not
according to the reflection of the left columns in the vertical line separating the left and

right columns. See Figure 4.

3.3 LINEAR FORMULATION FOR MINSTRONGOJOIN AND MAX CUT

Suppose that G = Pogy, and Gs) are duals in RP? and Gy = K, (2 = 4h)
embedded in some surface as the phial of G;. The common set of edges is denoted
E. In order to prove that G is rich is enough to prove that G; is rich. We have that
dim(V{/F) = (|E| —v+1) = (f—1)=|E| —v— f+2=—x+2 =1, since x(RP?) = 1.
Any zigzag in Z; can be adjoined to J; to generate the cycle space of G;. Note that each
zigzag is an orientation reversing polygon, so it is not in the span of the boundaries of the

faces. Thus G is rich, whence Gj is rich.

Triangles and quadrangles in V}; spanning the cycle space of K,. Denote by
Vo the set of polygons p of length 3 and 4 of graph G35 = K, which corresponds to the

coboundary of the vertices of Gy and G5. We have (V12>:V§, because at most one polygon
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(corresponding to the central face if z =0 mod 4 or the central vertex if z =2 mod 4)
has number of sides distinct from 3 and 4. Note that this polygon is equal to the sum of
all the other polygons (3- and 4-gons) in the same G;.

We can now define the first of our polytopal formulations. It has a variable 2/, € RIZ!
for each e € £/ and a variable s, € RIVe2l for each p € Vis.
) PEV2: 25+ X ie Cp} = ol
0 bounds: 0<uz. <1Ve € E,s,>0,Vp e Via.

Proposition 5. P is a linear formulation for the MinStrongOdJoin problem.

Proof. Any characteristic vector of a strong O-join satisfies the linear restrictions of P}.
Reciprocally, if (2., sp) is all integer and satisfy these restrictions it is the characteristic

vector of a strong O-join. O

Double slack variables. Observe that each s, appears once with coefficient 2. Therefore

% is a slack variable and s is called a double slack variable.

Valid inequalities. A wvalid inequality for a polytope is one which does not remove
any of its points with all integer coordinates. It is straightforward to show that a linear
formulation for a combinatorial problem remains so if we add valid inequalities. A class of
valid inequalities will be added to P which permits the elimination of the double slack

variables s, and of the unitary upper bounds z/ < 1.

Let p € Vi3 and ¢ C p so that |p| + |¢| is odd. The pg-inequality is

Ip| + gl — 1

sp+ Y {re:eCqgCp} < 5

The following theorem is central in this work.

Theorem 6. The pg-inequalities eliminate fractional double slack variables s, in the sense

that after including them, integer x.,e’ € E imply integer s,,p € Via.

Proof. Let SP = 3{z, : e C q C p}. The analysis for (0-1)-integers z, given in Figure 5
shows that the vertices with a fractional s, are precisely the ones that violate some
restriction. The neighborhood of a vertex in V5. The thick edges have z/, = 1 and the
dashed edges have 2, = 0. The whole coboundary of the vertex is the edge set of a polygon
p € Gs. n

By simply adding the pg-inequalities provides another linear formulation for the

MinStrongQOjoin problem:
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o, > o, >
“, o “, o
%, & %, &
(7 (7
o i 1%
s=0 s=1/2 s=1 s=3/2
max S5 =2 max S5 = 2 max 3= 1 max S5 = 0
0+2 < 2 (True) 1+2<2 (False) 1+1<2 (True) 3 +0 <2 (True)
max S§ =0 max S§ =0 max S =0 max S§ =0
0+0<1(True)  140<1 (True) 1+0<1 (True) 5 +0<1 (False)
T _-_ lllllll!lllllll lllllllélllllll
s=0 s=1/2 s=1 s=3/2 s=2
max 5§ = 3 max S5 = 3 max S5 = 2 max S5 = 1 max 53 =0
0+3<3 (True)  143<3 (False) 142 <3 (True) 2 4+1<3 (True) 240 < 3 (True)
max St =1 max St =1 max S} = 1 max Sj = 1 max S =0
0+1<2(True) L +1<2 (True) 141 <2 (True) 241 <2 (False) 2+0<2 (True)

Figure 5 — Valid /violating pg-inequalities: s + max SP < W%, with |p| and |g| of distinct
parities where ¢ C p. We impose z, € {0, 1}. The condition characterizing a strong
O-join can be localized to a neighborhood of a generic 3-vertex in V5. The thick
full edges are in ¢ and their set constitutes a strong O-join. The coboundary of
v is p, which is a polygon in G3. The dashed edges are the ones in p\g. For each
half integer s one of its pg-inequalities is violated. If s is integer all its induced
pg-inequalities are valid. Thus, integer x/, e € E, plus pg-inequalities imply integer
double slackness variables s,, p € Vis.

peVip: 2s, + 3 {x) : e C p} = |p|
Pl=q aCpeVir: s+ 3{a, eCqcph <P
bounds: 0<a, <1,s,>0.

Since integrality of «/ imply integrality of the s, and each of these appears once in
an equation, we can dispose of these double slackness variables variables by considering its

implicit definition,

_pl =X{xl, e Cp}

sp(integer) = 5 we obtain,
P, =
q Cp€Vigpl =g odd : |p|—3{a;:eCp}+3X{2z,:eCqCp} <|p|+]q -1
bounds: 0<z, <1 VecF.

Consider ¢ C p € V3o, |p| — |q| odd:
pl = > {ze:e Cph+> {20 eCqCp} <|p|+1gl -1

—pl=YA{el:ecp\gt =D {al:eCqgCpt+d {2z, :eCqCp}<|p|+]qg -1

= {eeieCqCpt =) {atreCp\g} < gl - 1.
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Theorem 7. The polytope

P {qCpeVu,lpl—M odd: YA{zl:eCqgCp}—>{zl:eCp\g} <lq -1
-

- bounds: 0<z,<1 VecFE.

is a linear formulation for the MinStrongQOjoin problem.
Proof. 1t is straightforward from the equivalences above. O]

We want to get a linear formulation for the Max Cut problem. Given Py it is
enough to replace each variable z/, by x. = 1 — 2. This has the effect of complementing
the characteristic vectors and the minimization problem becomes a maximization one. We

get

d{zcieCacpy = {aireCp\g) <l -1
=D {l-zreCqgcpt—) {I—zc:eCp\gt <lgf -1
= gl = > {ze:e CaCpt—(pl—lal) + D {ze e Cp\g} < la| — 1
=Y {zccecp\gt =Y {zc:eCqgcCpt<lp|—lgl -1
= > {zerecp\gt > {zereCqgCpy<[pl-p —1
=Y fzeieCp\g} =D {we:eCqgCpt<p" -1
Sign of an edge in a polygon. Edges in p\g have sign +1 and edges in ¢ have sign -1.

Let o, be the sign of edge e in polygon p. Let pt and p~ denote respectively the number
of +1 signs and —1 signs on the edge variables of the polygon p. Note that |p| — |¢| odd
= |p| — p~ odd = p*™ odd. Then the last equivalence can be rewritten as

Y {ogreecpt <pt—1

Let S35 denote the polygons in V;, arbitrarily signed except for the fact that pt is odd.
Note that we have disposed the ¢’s by using signed polygons. In the Theorem below the
linear restrictions forming the polytope are induced by signed forms of the coboundaries of
the vertices and the signed forms of the boundary of the faces of map G; = Pog), — RP%.
The phial graph of G, is G3 = K, z = 4h, embedded into some higher genus surface S,
which does not concern us except for the practical fact that G5 = K, — S via shaded
rozigs is the easier way to obtain combinatorially the graphs G; = Pog, and its dual G»
in RP? so that G4, Gs, G5 have the same edge set E.

Theorem 8. The polytope
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P pESH: Y{otw.reCpr<pt—1
2 bounds: xz.>0 Vee E.

is a linear formulation for the Max Cut problem on the complete graph K.,z even.

Proof. 1t is straightforward from the equivalences above, except for the unitary upper
bounds. Given any ij € E there is in GG; in a coboundary of a vertex or the boundary of a
face of degree 3 or 4 containing ¢7. The variables correspond to unoriented edges. So we

have z;; = xj; for every pair of distinct vertices of G3 = K.

Case 3. In the first case there is a k so that z;; + 2, + o5 < 2 and z;; — xj; — x5 < 0.
Adding these, 2z;; <2 or z;; < 1.

Case 4. If ij is in the coboundary of a vertex or in the boundary of a face of degree 4,
there are k and [ so that x;; — i — 2 — 2 <0, @4 + 26+ — 2 < 2 . Adding we get
2w —2x;; < 20r x55—x; < 1. We also have x;+xj, —xim+ay <2, xjj—xj+ogt+a; <2 .
Adding we get 2z;; + 2x;; < 4 or x;; + z;; < 2. The inequalities imply that 2z;; < 3 and,

since x;; is an integer, x;; < 1. ]

Estimating |S;;|. For this estimation we count the number of 3-vertices, 4-vertices,
3-faces and 4-faces of GG;. If h is an integer, then the number of 3-vertices is z = 4h and
the number of 3-faces is 0. The number of 4-vertices of Gy is z(h — 1). The number of
4-faces is z(h — 1) + z/2. If h is a half integer, then the number of 3-vertices is 0, the
number of 3-faces is z = 4h. The number of 4-vertices is |h|z. The number of 4-faces is

(Lh] — 1)z + z/2.

Unifier of vertices and faces. Let a unifier be either a vertex or a face or G. If h is
integer the number of 3-unifiers is z and the number of 4-unifiers is z(h—1)+2z(h—1)+2/2 =
2z(h — 1) + z/2. If h is a half integer, then the number of 3-unifiers is z and he number of
4-unifiers is [h]z + ([h] — 1)z 4+ 2/2 = 2|h|z — z/2.

Cardinality of Si, in terms of unifiers. This cardinality is 4 times the number of
3-unifiers plus 8 times the number of 4-unifiers of G;. Thus, if A is an integer, the |Sf52|
is 42 + 8(2z(h — 1) + 2/2) = 82 + 162h — 162 = 162h — 82 < 16zh = 422 If h is a half
integer, then |S7;| is 42 + 8(2|h|z — 2/2) = 16|h]z < 16zh = 42%. Thus, in every case,
1S$5] < 422 = O(|E|). In fact we have 42% < 10|E| = 522 — 5z <= 5z < 22 <= 2 > b5,

which is clearly true, since there is no use in working with Kj.

Theorem 9. The number of linear inequalities defining Py is at most 11| E|. Each of them
involves the sum of no more than 4 edge variables with £1 coefficients. The right hand
side of them is either 0, 1 or 2.
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Proof. We have established in the above discussion that |Sf;| < 10|E|. There are |E|
inequalities corresponding to the non-negativity of the variables. The bounds on each

inequality are directly seen to hold. So the result follows. O

3.4 CONSTRUCTION OF TOROIDAL ORBITAL GRAPHS AND THEIR MEDIALS

In this section we develop an algorithm to construct phials of K, with z odd,
complementing the even case. We define the medial of a map as an embedding of a
4-regular graph formed by placing a vertex in the middle of each edge of the map and
defining an edge for each angle (pair of adjacent edges) of the original map (Figure 6).
The surface induced by the combinatorial embedding of the phial of K, is the orientable

z—1
2

plane. However, we show the that in the medial the non-planar elements are redundant.

surface of genus . Recall that in the even case the surface is always the real projective

The construction of the medial map is easily accomplished from the toroidal orbital
graph. For simplicity, consider the case of z = 5 (Figure 6a). Vertex 4 — 3 is now placed
where the midpoint of edge 4 — 3 was at T'og;. The same goes for every other vertex. The
vertex labeling is done threefold: the name indicating the correspondent edge, the color
to indicate where the edge is crossing (black) or on the same side of the cut (white) and
finally the shape to indicate if the value of the variable associated with that edge is present
on the current objective function (i.e: the edge is present on the subgraph). Rectangle
indicated the edge is present whereas a square indicate it is not. The extrapolation for
the general case follows the same rules (see cases z = 7 and z = 9 on Figures Figure 6b,

Figure 6c).

The ™Tog;, is the medial of Tog, where 4h + 1 = z. Tog,, is the map induced
by the shaded, rooted and oriented zigzags (vertices of K,). The description of Togy,
is more complicated than the even case z. We present examples which permit an easy

generalization.

The construction of the rozigs table goes as follows: the first row is the zigzag for
the first vertex of the phial (1). Similarly, the last row is the zigzag for the last vertex
of the phial (z). The first and last columns have a special rule and all other entries are

computed via their 2-successor. The 2-successor of a vertex v is defined as follows:

z, if v=z
1, if v=z-1
succy(v) = ) " )
, if v=z
v+ 2, otherwise

with v € {1,2,...,z}. Take for instance the case z = 5 (Figure 7), the first half of the

first column as well as the second half of the second column (orange) are computed as the
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14}

; A= ',
/\
52 35

(a) Medial for z =5

(b) Medial for z =7

; 11 :
8
8

23 52 74 67
9

L B ¢
19§ T

(c) Medial for z =9

Figure 6 — Medial for cases z = {5,7,9}. The construction of the medial is done by
connecting the angles between neighboring edges at the edges midpoints.
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successors of the first pair (2 —1). The second half of the first column is computed through
the even vertices of the zth zigzag while the first half of the last column is computed
through the odd vertices of the zth zigzag (light blue). Examples for z = 7 (Figure 8) and

z =9 (Figure 9) are included to facilitate the extrapolation for any odd z.

H, Hy
-2 _ 4
14 31 15
31 | 23 | 35 B-1] TOgl -2
02 23 | 42
b4 142 | 14
15|52 | 35| 54 fi-4f
(a) Shaded, rooted and oriented zigzags for K. - >
H H;
-4 1-2
-3 -5

(b) Toroidal Orbital Graph for z = 5.

Figure 7 — Rozigs table and its associated Tog; for the case z = 5.

(3]

14| 61 | 13 | 51
36 | 13| 35| 23
ol | 35 | 52 | 45
2123|952 24|62
74145 | 24 | 46 | 14
76 162 |46 | 61 | 36
17 | 72| 37| 74| 57|76

Ol W+~
3| 3| =3

(a) Shaded, rooted and oriented zigzags for K.

(b) Toroidal Orbital Graph for z = 7.

Figure 8 — Rozigs table and its associated Tog; 5 for the case z = 7.

Unlike the projective orbital graphs described on section 3.2, the naive formulation of
the linear program by including the cycle inequalities for every face and vertex coboundary
for the odd case is exponential due to the middle face/vertex. The largest vertex and
face are redundant but the central face (for cases integer h) or central vertex (for cases
half-integer h) remains. A simple solution is to formulate the problem by inequalities
from three distinct origins, all of which are cycle inequalities of triangles dubbed triangle

inequalities.
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14| 61 [ 18 | 31 | 15 [ 71 | 19
36 | 83 | 31 | 83 | 37 | 23 | 39
98 | 15 [ 83 | 75 | 52 | 45 | 59
71| 37 |75 | 27 | 74| 67 | 79
92 123 | 52 | 27 | 42 | 26 | 82
94 145 | 74 142 | 64 | 48 | 14
96 | 67 | 26 | 64 | 86 | 61 | 36
98 |82 | 48 [ 86 | 18 | 83 | 58
1919213994 |59 196 | 79|98

(a) Shaded, rooted and oriented zigzags for K.

(b) Toroidal Orbital Graph for z = 9.

Figure 9 — Rozigs table and its associated Togs for the case z = 9.

Figure 10 — Polygons with more than three vertices are broken into triangles by the addition
of chords from the lexicographically least vertex to all other non-adjacent vertices.
For example, square 1234 is broken into two triangles 123 and 134. An analogous
procedure is done of larger polygons.

First, add all inequalities originated from triangles of T'og. Then break every other
cycle by adding a chord from the lexicographically smallest vertex to the next non-adjacent

such that only triangles remain (Figure 10).

Finally, triangle inequalities are added too guarantee full coverage of all edges of
Tog. The significance of these inequalities are to ensure that every primal variable of the
linear problem will assume value within the [0, 1] interval. Recall that given three distinct

vertices {1, j, k},

Iij +xjk+«77ki S 2

+ T — 2 <0
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i+j+ k=1 (3.1)
l . .

ki = {l—i-j} (3.2)

kij = min {k;;}. (3.3)

Therefore, given 4, j, kK must be found such that every possible edge in the original
subgraph is covered. Equation Equation 3.3 presents a method of finding such values of k
given a pair ¢, 7. Such an example of a formulation for the Max Cut problem for the case
z = b is available at Appendix Appendix 5.

This formulation however is quite extensive. It is possible to extract directly from
™Tog, a compact relaxed formulation where the faces and coboundaries of vertices are

the dual variables and the edges are the primal variables.

max > {c,z, : v € V}

Subject to
VieF, yr: 2z —>{x, v < f} =0
YoeV, y, 2, <1

Primal :

Bounds:

Ty 20, zp >0

min Y {y, : v € V}
Subject to
VieF, xp:2y; >0
Vo eV, ay iy — Sy f >0} > e

Bounds:

Dual :

Yy > 0, yy free

Since there exists no known integer hull for the Max Cut problem, the above
polyhedron is relaxed. In order to guarantee an actual cut it is necessary to enforce x,

binary and z integer at the primal. A formulation for the case z = 5 is as follows.
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Figure 11 — The graph H(z*) can be found by duplicating each vertex v in the graph G into
v’ and v” and adding new edges from v’ to all other vertices except v”. For any
two distinct vertices 7, j an edge has weight z7; if it goes from ¢’ to j" or from "
to j” and weight 1 — z7; otherwise where z7; is the value of the variable x;; on

the current solution x*.

yl34 : 2x134 — 13 — w34 — T14 =0
yl24 : 2x194 — T2 — Toq — T14 =0
Y235 : 2x935 — T3 — T35 — To5 = 0
Y1324 : 21324 — T13 — X9z — T4 — T14 =0
Y1325 : 221305 — T13 — Xe3 — Ta5 — T15 = 0
Y2354 : 229354 — T23 — T35 — Ty5 — Tag =0

The compact formulation acts as a starting point. Theron after it is possible to
include triangular inequalities to enforce the bounds and to find violating polygons in
order to prune fraction vertices of the polytope. There are several examples on the current

literature proposing methods and techniques to find valid inequalities for the cut polyhedra.

A straightforward method for finding violating polygons as proposed by Barahona,
Junger e Reinelt (1989) and followed by Lancia e Serafini (2011) takes on from the graph
H(x*). Every vertex in the original graph G appears double as v" and v”. There is an edge
connecting all vertices except from v to v” for all v and the edge has weight z7; if the
edge goes from i’ to j” or from " to j* and 1 — z7; otherwise where z7; is the value for the

variable z;; at the current primal optimum.

Let s; be the length of the shortest path ¢ = " inducing a polygon p which uses

vertex i. Therefore s), = p* — .
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Nl i i e i e e N — e i e e e Y (et et e e e e —

Figure 12 — A violating signalization for the huge polygon at the center can be found by the
same means as normal violating polygons are found. Construct the path on H(z*)
from 1’ to 1” going through all other vertices. If the shortest path is smaller than
1 then the edges corresponding to segments of the shortest path going from v’ to
(v +1)" has coefficient —1 and all others have coefficient 1. This particular path
induces the polygon x5 — xo3 + T34 — T45 — T56 + 16 < 2

We have:

% +
s, <1l < p z, <1

= —prta>-1
— 1, > -1

=z, >p -1
<~

p is a violating polygon

where 3 = Y- {05z} : e € p} and p* is the number of positive signs in p. A Floyd-Warshall
(CORMEN, 2009) algorithm can be employed to find all violating polygons given a primal

optimum x*.

This method can be used to find a signalization for a violating T'og central polygon.
Since this polygon includes all vertices of the graph, if such a violating polygon is found,
a cut can be immediately found. This is done by constructing a graph with all double
vertices but only linking edges between lexicographically consecutive vertices and applying
Dijkstra’s algorithm and determining if a path whose sum of weights of edges is smaller
than 1 (Figure 12).

In addition to violating polygons, it is also possible to add gap inequalities to the
polytope based on Laurent e Poljak (1996). Given a maximal primal z*, a symmetric
matrix M is constructed by attributing value 1—2z7; to M;; and Mj; where z7; is the value
for variable z;; at 2* and M;; is the corresponding cell at row ¢ and column j. The next
step is to extract the eigenvectors and eigenvalues from M. For every negative eigenvalue
the coefficients of the new constraint is calculated from the corresponding eigenvector as

follows:

Let b* be an eigenvector of M whose eigenvalue is strictly negative. Let u* be the

sum of all elements in b*. Let b; = [b; = | where 7 is the element index on b* and z is the
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number of vertices on the subgraph. Then the positive semi-definite cut of the eigenvector

b* is given by

Zi:l i: (bibjx;;) < 2(41))2‘

i=1 j=i+1

It is important to note that cliques are a special case of these inequalities where all

coefficients are equal to one.

3.5 2-SAT SOLVER

It is possible to extract a set of boolean clauses from each restriction. As seen, every
triangle inequality possesses four separate forms of attributing the signalization such that
the number of positive terms is odd: either all the terms have a positive coefficient or only
one term does. Consider the first case containing only positive terms: x;; + x5 + 25 = 2.
Since all variables assume 0 — 1 value, there are only three ways in which the equation is

satisfied: one of the terms must be equal to 0 and the other two equal to 1 such that

Let b;; be a boolean variable which is true if x;; = 0 and false otherwise. In this manner it

is possible to formulate the following clauses

(bij A bjx Abri) V (bij Abjg Abri) V (bij Abjg A brg)

in disjunctive normal form (DNF). In conjunctive normal form (CNF), the above is written

as

(bij V bix V bii) A (i V bix) A (bjg V bii) A (b V bij).

Developing the all triangle inequalities in the same manner yields the following set

of clauses
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Ty + Tip + 2 = 2 <> 011V 101 Vv 110
= (bij A b A bgi) V (bij A b A bri) V (bij A bji A byi)
= (bi; V b V bri) A (bij V b)) A (b V bri) A (bi V bij)
Tij — T — Tp = 0 4> 000 V 101 V 110
= (bij A bj, A bi) V (bij A b A bi) V(b A byi A byi)
= (bij V bjr V i) A (big V bj) A (b V bg) A (b V big)
— i + T — T = 0 43 000V 011 V 110
= (bij A bji. A bgi) V (bij A b A bri) V (bij A bji A byi)
= (bij V bjie V bri) A (big V bjie) A (bjie V bri) A (B V big)
—xij — Zji + 1 = 0 <> 000V 011 Vv 101
= (bij A bji Abgi) V (bij A b Abi) V (bij A bjr A brg)
= (bij V bjie V brs) A (Bij V Bji) A (Bjie V bs) A (bri Vb )-
Note that for every case in CNF the expression is written as one large clause

containing three terms and three other clauses each with two terms. The corresponding

truth table is for the boolean variables is

S8 s | By B b | By VRV
0O 0 O 1 1 1 1
0O 0 1 1 0 0 1
0O 1 010 0 1 1
0O 1 1 0 1 0 1
1 0 01O 1 0 1
1 0 1 0 0 1 1
1 1 0 1 0 0 1
1 1 1 1 1 1 1

Table 1 — Truth table for the sidevars and boolean variables corresponding to the equation
Tij + Tji + Ty = 2

where s; is a sidevar indicating which side of the cut’s bipartition the vertex i of the
original subgraph belongs to. A canonical way of interpreting this is placing vertex ¢ on the
left side if s; is true. Two significant pieces of information can be immediately extracted
from Table Table 1: first the lower half of the table is a mirrored image of the top half,
locally this indicates that the partitioning can be mirrored by swapping all vertices; second
the last column, which corresponds to the large clause is a tautology. This means that in
CNF form the problem reduces to a 2-SAT. Tables Table 2, Table 3,Table 4 correspond to

the remaining set of clauses.

Definition: Let z* be a primal and y, a dual optimal solution. An edge e;; is in

the equality subgraph if the dual restriction corresponding to z;; holds as an equality.
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Si  S; Sk E bj bkz % V bjk V b]“
o 0 o0, 1 0 O 1
0 0 1|1 1 1 1
o 1 0,0 1 O 1
0O 1 1,0 0 1 1

Table 2 — Truth table for the sidevars and boolean variables corresponding to the equation
Tij — ZTji — Ty = 0

Si S5 Sk bz’j bjik bki bij vV bjik V b]m
o 0 0,0 1 O 1
o 0 1,0 0 1 1
o 1 01 0 O 1
0o 1 1|1 1 1 1

Table 3 — Truth table for the sidevars and boolean variables corresponding to the equation
— L5 + Tjk — Thi = 0

Si S5 Sk bij bj bikz bij V bjk V bikl
o 0 0,0 0 1 1
0O 0 1,0 1 O 1
o 1 01 1 1 1
o 1 1,1 0 0 1

Table 4 — Truth table for the sidevars and boolean variables corresponding to the equation
—Tjj — Tji + T = 0

Theorem 10. Suppose we have a formulation for the Maz Cut composed only of triangular
restrictions. Note that these restrictions imply 0 < x;; < 1. As a consequence we can

declare that x;; is free for all i,5. Then, all edges e;; are in the equality subgraph.
Proof. Since x;; is free, the dual restriction y;; corresponding to z;; holds as an equality. [

Definition: Let y, be a dual minimum solution for a formulation of the Max Cut
and R be the set of restrictions such that (y.), > 0. Then y, is rich if for each sidevar s,
there is a r € R with s € r.

Theorem 11. Suppose we have a Mazx Cut formulation composed only of triangular
inequalities and a dual viable solution for it with integer minimum y, with value o € Z.
Let T be the set of triangles in K, such that (y.); > 0 so that the restrictions in T hold as
equalities. If T' is rich and connected, then there is a 2-SAT to decide whether there is an

integer primal solution with value c.

Proof. An integer solution z* with value « exists if and only if z* is feasible and the pair
x*, y, satisfies the complementary slackness. Since all edges are in the equality subgraph,

complementary slackness is reduced to imposing that the restrictions in 7" hold. Since each
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such equality corresponds to a set of boolean clauses composed of two literals, solving
for the set of restrictions in 7T is equivalent to solving the 2-SAT. Since satisfying the
restrictions in 7" induces a cut by formulation, then the solution for the 2-SAT will set
all sidevars s such that the cardinality of the corresponding cut has value «. If there is
no solution then the decision is immediate and if there are any solutions it is trivial to

determine feasibility given connectivity. O]
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4 METHODOLOGY

In this chapter, three new different approaches are presented, capable of providing
a solution for the models present in chapter 3 along with a proof of optimality. Integer
linear programming may involve modifications of the relaxed problem’s polytope through
cutting planes (as proposed by Gomory (1958)). Such operations are analogous to a change
of basis on the current matrix and thus can hardly be verified unless one keeps all basis as
well as all pivots involved in each change. So the verification problem is simply overlooked
by the solvers. One contribution of this thesis is to address this issue by providing an
effective verification to the optimality of the solution in the particular case of the Max

Cut for small graphs.

The first approach was to create a connected-graph random generator to work as
backbone input. Preliminary experiments indicated that number of vertices, edges and
symmetry had the most significant impact on the results. Therefore, the experiments were
run based foremost the number of vertices, z, considered the size of the problem. For each
such category, the experiments were this based on either random graphs with specific
density (ratio of edges in the subgraph by edges in the complete graph) or specific known
symmetrical graphs detailed in Appendix 5.

The algorithms run by expanding binary trees as they progress on finding the Max

Cut. The trees are always rooted with a single right child which indicates the canonical

Cut

L: {2,5}
R: {1,3,4}

Figure 13 — Two binary trees for a problem of 5 vertices. Both trees induce {2,5} and {1, 3,4}
bipartitions for the cut, however, only the tree on the left is complete. Therefore,
the tree on the right requires additional information of the bipartition.
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placement of 1 on the right partition. In order to indicate this, the label 1 is placed on the
edge between the root and its only child. Thereon after, every node on the tree will have
either two children or none. Every new edge expanding into a child will contain a label to
indicate its corresponding vertex on the subgraph. By following a left label, the vertex is
placed on the left partition and analogous to the right. Therefore, every node on the tree
partially defines an partition for the cut, unique for each node. Although conceptually
indispensable, as data structure, the root node is treated as implicit (pre-root) and its

right child as root.

4.1 COMPACT TREE

Consider the randomly generated graph in Figure 14a, in order to provide sufficient
proof of correctness, the algorithm builds a single binary tree T., which provides on each
node the relaxed optimum for a given integer partial variable configuration. The algorithm
targets the greatest integer smaller than the largest leaf node. This mark is called a. The
algorithm attempts to find an integer solution to the problem with the same value as
a with a DFS-like approach, placing vertices on lexicographical order. Each time the
algorithm goes down a level on the tree, the correspondent vertex is placed in the adequate
bipartition and a relaxed LP is solved. The optimum is attributed to that node and the
algorithm checks to see if the value is lower than the target. If that is so, it backtracks to
the next open node. Otherwise the algorithm will go deeper on the tree until solved or
bursts the target. An illustration of the algorithm for the given example can be seen in
Figure 14b. The vertex 1 is canonically placed on the right but as there are no other set
vertices, the relaxed LP is solved and its value placed as a label for the root. In order to
simplify the algorithm and improve code efficiency, the left node is always expanded first
and given a choice, the algorithm will prefer expanding the closest node. Vertex 2 is placed
left (across from 1). The LP is modified to reflect this and solved with the appropriate
variables now set as integer. The corresponding optimum is placed on the child node and
the « is recomputed. In this particular case the a remains the same since the relaxed
optimum at least as large as the previous a. Since the current o (71) is still potentially
attainable, the algorithm continues expanding the left child. On the next level, vertex 3 is
placed left. As it’s optimum bursts the current « the node is marked as closed until the «
is lowered and its sibling is expanded. Since it also bursts the current «, the right child
is also marked as closed and the algorithm looks for the next open node which may still
present a solution for the current o. At this point, for this example, it backtracks to the
root and expands to the right placing vertex 2 on the same partition as 1. Once again the
« is burst and must be lowered to the next integer (69). The algorithm continues from the
node its on. It first goes left but once again bursts the target then turns right. The same
occurs on the next level and again on the next where an integer solution is found for the

current alpha. Notice how both siblings present integer solutions to the problem. However,
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as the current « is at 69, the solution for 68 could not be accepted until all open nodes
had less than 69 as relaxed optimum.

| Maxcutl

L: {6,9,C.D,E,G,HK,I}
R: {1,2,3,4,5,7,8,A,B,F,]

Figure 14 — A compact tree with a simple Max Cut and proof of optimality for a random graph
with 20 vertices, integrallity gap 2.705 and index 125 (a). The number in each
node represents the value for that cut. Some cuts have integer value while having
at least one fractional variable (indicated by F') while others are completely integer
(1). At each level, more variables on the original problem are set by positioning

new nodes of the original subgraph on either left or right partitions depending on
the path.
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4.2 PROOFING TREES

While the compact trees presented in section 4.1 provide proof of optimality in a
single structure, they can grow considerably if the relaxed optimum is distant from the
Max Cut. This is especially true for both P, and the triangular polytope for large enough
problems. The concept of proofing trees was extended to represent the solution with one

or more trees in order to improve the efficiency of the previous algorithm.

Let O, be the relaxed optimum for a given subgraph and O,, be the value of its
corresponding Max Cut. Then, 6 = |O,.] — O,, and O, < a < O,,. The new algorithm
builds ¢ trees, one for each possible value of o with sufficient proof that either « is the value
of the Max Cut or there is no possible cut for that value. At first the triangular polytope was
used to decrease the number of nodes in the tree. However, since the triangular polytope
distances from the integer hull as the problem size increases, a more viable strategy is to
start with the most compact formulation and introduce new violating restrictions along
the way. Since clique-0 contains the complete graph, it inherently sets the value for the
Max Cut to be lesser or equal than the Max Cut for the complete graph (intuitively the
largest cut for its size), significantly lowering the gap 0. This approach uses Pj5 for more
efficiency since solving it is much cheaper even though more LPs need to be solved for

each tree.

Two important integer parameters are associated with each tree. The first is the
value of o described above. The second is the fundamental width €2. The fundamental
width is calculated by pruning all leafs and counting the resulting leafs. This gives a sense
of how many different paths the algorithm had to follow before solving the problem. Our
algorithms are polynomial in €2 so it is paramount to bound it. We define 2* as max €2

and o* as min a.

The algorithm begins similarly by placing an implicit node 0 on the tree and a
node 1 as right child, indicating vertex 1 is on the right partition. We associate a set of
constraints and an objective function to each vertex of the tree. We solve an LP for each
such vertex, proceeding in a branch and bound manner. By using the so called triangular
polytope (our most expensive yet polynomial model), it is possible to solve and verify Max
Cut problems for random graphs up to 34 vertices in a reasonable amount of time. For
larger problems the computational experiments begin to become unwieldy for the available

hardware.

Proposition 12. All signed binomial inequalities imply the binomial equalities.

Proof. Assume all signed binomial inequalities involving vertices ¢, j, k of kz, namely
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L5 + Tk + oz <2

Tijg — Tje — Tk < 0

—Tij + T — T S 0

—T; — Tjp + T <0

rij=1 = wzp+ru<1l = zpt+ou<1

—{L‘jk—ZL‘kigl = ZE]]C—I—JIUZl = I]m—f-l‘]kzl

rij =0 = -0 <0 = zj—x <0

—£jk+l‘]ﬂ'§0 = ZL”jk—IijZO = xki—xjk:()

O

For every node on the tree we obtain the corresponding bipartition induced by
the path from the root to it. Every edge crossing from one partition to the other has a
positive variable on the current objective function while edges linking vertices on the same
partition has negative variables. This is done for the complete graph for the positioned
vertices up to that point. Similarly, binomials can be added for each edge as well. These are
introduced as new constraints on the LP for that node. The algorithm considers successful
if the LP returns an optimum exactly the number of positive variables on the objective

function.

The intuition of a proof tree is very simple: each tree will correspond to a possible
value of maximum cut. The tree will either present the cut or prove why there is no possible
cut with that value. Arbitrarily, the first node is always placed on the right partition.
If a node appears as a left child, then that node is on the opposite partition. A right
child denotes otherwise. If a tree does not contain a maximum cut, then every possible
partition configuration is contained within the tree, along with the point where it becomes

unfeasible.

4.3 PROBLEM MODELING

Models Fy; and the triangular polytope were prototyped in the Wolfram program-
ming language and implemented in Mathematica (Wolfram Research, Inc., 2016). The
prototype included the drawing and generation of random graphs with parameterized
density and Johnson family graphs, text output for both models in CPLEX LP format,
external system calls to solve the models as either LP or ILP using the SCIP optimization
suite (GAMRATH et al., 2016), automatic routines to run batch tests with random graphs,
functions to generate a cutting plane and append to the current problem and functions to
generate equivalent CNF clauses in order to verify the possibility of solving the problem
as a SAT.
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Figure 15 — Example of a naive binary tree. Every node has an unique number which completely
identifies a path from the root to it. Each edge contains a label identifying a vertex
in the original subgraph while the direction of the edge implies a placement on the
cut's partitions (left child implies placement in left partition and right child, right
partition). In this particular example, the node number 9 implies the partitions
{1,4} and {2,3}.

To every vertex in the subgraph was attributed a base-36 element varying from
1 to Z (A being 10). In this manner, every edge was modeled as a variable with the
string prefix xe to identify it as a primal structured variable. Implicit to the models, all
variables must be positive, however, Fy; has no implicit upper bound ze;; < 1 and thus
must be explicitly set when defining the inputs for the solver. This is not necessary for the

triangular polytope.

In order to take advantage of SCIP’s open source SOPLEX callable library written
in the C programming language, the whole project was ported to C++. So far, the ported
project is capable of generating random graphs with defined density, generate the models in
SCIP’s internal data structure, export the model as LP file, change the model’s description
by adding, removing or modifying any constraint or objective set, solve the model as an
LP, solve the Max Cut problem using the algorithms described in this chapter providing
sufficient proof of it. The program can be run as a command line tool which allows for the
user to input a file with the problem to be solved, redirect the output to any file desired,
give an initial value to the Max Cut (if desired), input a subgraph directly via the console,
generate any number of random graphs to be solved, choose between polytopes Fy; or the
triangular polytope, set the desired number of edges or density of the random subgraph
and count the number of random subgraphs at which the fundamental width of the trees
is zero (Table 5). These results clearly indicate the lack of efficiency of the triangular

polytope to solve the relaxed problem as the problem size increases.
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Pyy Pgy

z  # % # %
10 99 (00.99) | 9878 (98.78)
12 13 (00.13) | 9565 (95.65)
14 1 (00.11) | 9550  (95.50)
16 1 (00.01) | 8997 (89.97)
18 0 (00.00) | 8468 (84.68)
20 0 (00.00) | 7761 (77.61)
22 0 (00.00) | 7048 (70.48)
24 0 (00.00) | 6390 (63.90)

Table 5 — Amount of trees with 2 = 0 in 10* experiments with random graphs. The same
problems were run for both Polytope P and the triangular polytope for Kz
with even z € 10...24.

4.4 NATURAL TREE ALGORITHM

This approach builds the set of proofing trees in a naive manner, by assigning
vertices to partitions in lexicographical order. As seen in section 4.2, the algorithms will
build one tree for each § starting with o = |O,.|. The algorithm assumes « is the correct
value for the Max Cut and creates a new constraint for that. Each node in the tree is
expanded first left and the algorithm keeps going until it finds a cut or it fails to solve the
relaxed problem for a particular node. Every time the algorithm exhausts every possible

partition configuration, the « is lowered by one and a new tree is build.

Consider the well-known Petersen Graph present in Appendix 5 whose relaxed
optimum for Py, is less than 15, setting the starting a to 14. As can be seen in Figure 16,
the algorithm will build T7. It will place 1 in the right partition and attempt to position

2 across than beside 1.

T TN

Figure 16 — Example of proof for the Max Cut of the Petersen Graph. The algorithm build
tree proofing trees for & = 14, a = 13 and o = 12. Every leaf either indicates
that there is no feasible solution with integer variables on that node or that a
solution was found on that node (represented by concentric circles.

In this particular case both fails indicating that there is no feasible solution for
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res = 1 or xeps = 0. Since a valid cut requires all variables to be integer we conclude that
there is no cut for o = 14. The next step is to build 775. Once again the algorithm places
1 on the right partition and attempts to place 2 across. Empirical evidences suggest that
as a tends to a*, there are more feasible solutions that comprehends the partial placement
of variables. In this example the algorithm is successful in placing 2 across, however, there
are no feasible solutions that place 3 on either partition given that 2 is placed across from
1. This forces the algorithm to give up on this branch and backtrack to place 2 beside 1.
As this fails, the algorithm concludes there is no possible solution for @ = 13 and once

again lowers the « to build T7.

The algorithm begins once again placing 1 on the right partition, is able to position
both 2 and 3 on the left, fails to place 4 left but is able to place it right. When placing 5
on the left, the algorithm is able to not only find a feasible solution to it but also guess the
placement of all other vertices of the subgraph on either partition by handing an integer
solution to the LP. We emphasize that the actual number of correctly placed variables
that yields a complete solution may vary from solver to solver, but since our emphasis is
on verifiability, the returned partition is sufficient proof of optimality since it will result
into a feasible solution with value equal to o* if inputed in any solver with values for all

variables set (or equivalently transformed into a SAT).

45 ADAPTIVE TREE ALGORITHM

For each value of «, the algorithm will create a new constraint, demanding that the
objective function equals the current «. It will, then, create the tree, having the first node
as root. The algorithm will sprout the second node as children of the first node, using a
depth-first approach. The main reasoning behind the depth-first in lieu of a width-first
approach is that a deeper level on the binary tree implies in more set variables and a

greater chance of determining either success or failure.

The algorithm then selects the first vertex that has not been positioned at the
bipartition and attempts to build a tree with it on the child node. It then builds a
corresponding LP and attempts to solve it. If the LP yields an integer solution then its
done. If not then either the problem will have a fractional solution or no solution at all
(infeasible). At this point this strategy is a clear improvement since it will be known that
if any viable partition with a corresponding cut of value « exists, it will surely not have
that partial placement, therefore we can discard all further attempts down the tree (node

i will never be on the same side as j for instance).

The major advance in using the Adaptive Tree instead of the Natural Tree is that
the problem is polynomial on the number of nodes of the tree. Since the Adaptive Tree is
able to prematurely decide some unfeasible cut configurations (i.e: ¢ cannot belong to the

same side of the bipartition as j) the adaptive tree is capable of significantly reducing the
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complexity of the problem. The clear down side is that it must run multiple LPs on the
current node until the problem is solved, an incompatible vertex was found to correspond

to that node or all vertices who where not positioned yet at the bipartition were tested.

Ty TN T,

Figure 17 — Adaptive Tree for the Petersen graph. In this particular example, the Adaptive
Tree had one less depth level than the Natural Tree. The node where the problem
was solved has distance 4 to the root where the Natural Tree had distance 5.

An example for the Adaptive Tree computed for the Petersen Graph (Figure 17)
details how it is different from the Natural Tree. Unlike the Natural Tree which orderly
placed vertices in lexicographical order as the tree branched out, this algorithm placed
the lexicographically last vertices on the first two attempts (excluding the canonical 1
at the right side of the partition) because no vertex could be discarded at this point.
When this happens the last tested vertex is placed at the node. Deeper at the tree, the
algorithm decided that the vertex 5 could only be placed at the left side of the partition.

Coincidentally this yielded an integer solution for the relaxed problem.

Our computational experiments demonstrated that, on average, very dense or very
sparse subgraphs will have few possible partition configurations with cuts of the same
cardinality of the Max Cut for that problem. In practice this means the Adaptive Tree
will fail very often (effectively shrinking the search space) and quickly find the value of the
Max Cut. The exact same opposite happens with very symmetrical graphs, where many

solutions exists and the tree will succeed in most attempts.
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5 CONCLUSION

This work investigated cut polyhedra related to the Max Cut problem. The revised
literature presented different formulations for the Max Cut, some extensive others more
compact. Contained within the current literature, the smallest formulation prior to this
work had O(|V| - |E|) constraints while this work presents new formulations containing at
most exactly 11|E| constraints for the even case (in the number of vertices) or less for the

odd case.

This work also presented a theorem demonstrating how an integer solution for the
relaxed problem can be obtained from a fractional dual optimum with the same objective
value given that certain conditions are met. Given that both solutions must have the same
objective value the dual solution must be of integer optimum objective value. This is also
significant to determine when there is no cut of that cardinality. Since this is done by a

2-SAT, all possible integer solutions can be obtained done efficiently.

On the last part we performed computational experiments to evaluate the relaxed
problem for different classes of graphs as well as random subgraphs. We found that either
sparse or very dense subgraphs were more likely to present integer solutions for the relaxed
problem and that symmetric graphs were significantly harder to solve computationally by

solvers.
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APPENDIX A - GRAPH CATALOG
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(a) Icosahedral Graph: Ham-
miltonian, planar. 12 ver-
tices and 30 edges.

>
&

(c) Petersen Graph: Bridge-
less cubic. 10 vertices and
15 edges.

i
o

(e) Dodecahedral Graph:
Hamiltonian. 20 vertices
and 30 edges.

(b) Desargues Graph: Non-
planar cubic partial cube.
20 vertices and 30 edges.

(d) Moebius-Kantor Graph:
Bipartite. 16 vertices and
24 edges.

(f) Coxeter Graph: 3-regular.
28 vertices and 42 edges.

Figure 18 — Some interesting symmetrical graphs
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Figure 19 — Graphs from the Johnson family. J(8,2) is so far the graph that took the
longest to solve (approximately 49 hours as an ILP via SCIP).



APPENDIX B - CONSTRAINTS OF A LINEAR FORMULATION FOR THE

MAXCUT
Y123n0 * T12 + T13 + T23 <2
Y123p1 : T12 — T13 — T3 <0
Y123p2 * —T12 — 13 + X23 <0
Y123p3 1 —T12 + T13 — T3 <0
Y124n0 * T12 + T14 + Toy <2
Y124p1 © T12 — T14 — T4 <0
Y124p2 © —T12 — T14 + T24 <0
Y124p3 © —T12 + T14a — Toa <0
Y125n0 : T12 + 15 + Tos <2
Y125p1 © Ti2 — T15 — Tas <0
Y125p2 * —T12 — T15 + T25 <0
Y125p3 1 —T12 + T15 — L5 <0
Y134n0 * T13 + T14 + T34 <2
Y134p1 * T13 — T14 — T34 <0
Y134p2 * —T13 — T14 + T34 <0
Y134p3 * —T13 T T14 — T34 <0
Y145n0 © T14 + T15 + Tgs <2
Y14sp1 - T1a — T15 — T45 <0
Y145p2 © —T14 — T15 + Ty5 <0

Y1asp3 - —T14 T T15 — Ty5 <0



o8

Y235n0 -

Y235p1

Y235p2 -
Y235p3 -
Y245n0 :
Yo45p1 -
Y2a5p2 -
Y245p3 -

Y345n0 -

Y345p1

Y345p2 -

Y345p3 -

Toz + Tos5 + X35

c To3 — X25 — X35

—T93 — Ta5 + T35
—T23 + To5 — X35
Tog + Tos5 + Tys
To4 — T25 — 45
—T94 — To5 + Ty5
—To4 + Tos — T4

T34 + T35 + Tgs5

t T34 — T35 — T4p

—X34 — T35 + T45

—X34 + T35 — T45
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