
Universidade Federal de Pernambuco

Centro de Ciências Exatas e da Natureza

Programa de Pós-Graduação em Estatística

YURI MARTÍ SANTANA SANTOS

AN EMPIRICAL EVALUATION OF STRUCTURAL CHANGES IN QUANTILE

AUTOREGRESSIVE MODELS

Recife

2019



Yuri Martí Santana Santos

AN EMPIRICAL EVALUATION OF STRUCTURAL CHANGES IN

QUANTILE AUTOREGRESSIVE MODELS

Dissertação apresentada ao Programa de
Pós-Graduação em Estatística do Centro de
Ciências Exatas e da Natureza da Universidade
Federal de Pernambuco, como requisito parcial
à obtenção do título de mestre em Estatística.

Área de Concentração: Ciência Exatas e da
Terra

Orientador: Raydonal Ospina Martínez
Coorientador: Wilton Bernandino da Silva

Recife

2019



          

 

 

Catalogação na fonte
Bibliotecária Leonice Cavalcante CRB 4-1996

S231E         Santos, Yuri Martí Santana 
   An  empirical  evaluation  of  structural  changes  in  quantile
autoregressive models / Yuri Martí Santana Santos. – 2019.
    51 f.: fig., tab.

Orientador: Raydonal Ospina Martínez
Dissertação  (Mestrado) –  Universidade  Federal  de

Pernambuco. CCEN. Estatística. Recife, 2019.
Inclui referências.

1.  Crise  do  subprime.  2.  Regressão  quantílica.  3.  Mudança
estrutural. I. Ospina, Raydonal (orientador) II. Título.

   519.5                 CDD (22. ed.)               UFPE-MEI 2019-35        



Yuri Martí Santana Santos

An empirical evaluation of structural
changes in quantile autoregressive models

Dissertação apresentada ao Programa de Pós-
Graduação em Estatística do Centro de Ciên-
cias Exatas e da Natureza da Universidade
Federal de Pernambuco, como requisito par-
cial à obtenção do título de mestre em Es-
tatística

Aprovado em: Recife, 28 de fevereiro de 2019

Prof. Wilton Bernardino da Silva
CCSA- UFPE

Prof. Francisco Cribari-Neto
CCEN - UFPE

Prof. Ricardo Chaves Lima
CCSA - UFPE

Recife
2019



Dedico este trabalho a minha família.



ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisors Dr. Raydonal Ospina Martínez

and Dr. Wilton Bernardino da Silva for their continuous guidance advice, patience effort and

irreversible suggestions throughout the research.

I also would like to acknowledge Dr. Francisco Cribari-Neto and Dr. Ricardo Chaves Lima as

members of the committee, and I am gratefully indebted for their very valuable and motivational

comments on this thesis.

Thanks CAPES (Coordenação de Aperfeicoamento de Pessoal de Nível Superior) for the financial

support needed to motivated this research.



“A ship is safe in harbor, but that’s not what ships

are for.”

(Shedd. John A. 1928)



ABSTRACT

This work proposes an evaluation on a subgradient test for structural change and on the

usual coverage tests to evaluate Value at Risk (VaR) estimates, obtained by quantile regression.

In an initial analysis, exchange-traded funds returns were evaluated during the United States

subprime mortgage crisis. This task was performed with aid of a subgradient test for structural

change (Qu), which allows us to evaluate whether the parameter values remain stable throughout

the series and in a generalized moments method based duration test (GMM) for coverage

evaluation. The empirical results shown break dates in the 5%-quantiles few days before the

Lehman Brothers bankruptcy event. Motivated by the empirical results, simulation studies using

heteroscedastic autoregressive processes were performed under different scenarios with and

without structural breaks. The simulation studies show that the structural change test is capable

of detecting breaks quite accurately. However, the usual VaR coverage tests are conservative.

Keywords: Subprime crisis. Quantile Regression. Structure change. Value-at-Risk. Linear

autoregressive conditional heteroskedasticity. Subgradient test.



RESUMO

Este trabalho propõe uma avaliação em um teste subgradiente para mudança estrutural e

dos testes de cobertura usuais para avaliação das estimativas de Valor em Risco (VaR), obtidas

por regressão quantílica. Em uma análise inicial, retornos de exchange-traded funds foram

avaliados durante a crise do subprime nos Estados Unidos. Esta tarefa foi realizada com ajuda

do teste de quebra estrutural subgradiante (Qu), que permite avaliar se os valores dos parametros

permanecem estáveis durante toda a série e o método dos momentos generalizados baseados

na duração (GMM) para a avaliação da cobertura. Os resultados empíricos mostram datas de

quebra no quantil 5% poucos dias antes do evento da falência do Lehman Brothers. Motivados

pelos resultados empíricos obtidos, estudos de simulação utilizando processos autoregressivos

heteroscedásticos foram realizados sob diferentes cenários com e sem quebras estruturais,. Os

estudos de simulação evidenciam que o teste mudança estrutural é capaz de detectar quebras com

bastante precisão. Entretanto, os teste usuais de cobertura do VaR mostram-se conservativos.

Palavras-chave: Crise do subprime. Regressão quantílica. Mudança estrutural. Valor em Risco.

Modelos autoregressivos heteroscedásticos. Teste subgradiente.
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1 INTRODUCTION

Quantile regression can be related to Value-at-Risk (VaR) when trying to estimate

this risk measure by using a conditional statistical structure. Focusing on it, the quantile

autoregression approach proposed by Koenker (KOENKER; ZHAO, 1996) is a pioneer work in

literature. To explore VaR and quantile autoregression seems to be an interesting approach in

applied finance.

As an example of VaR’s usefulness, we can cite the stock market crash on Wall

Street in 1987 and other crisis such as the Subprime mortgage that have attracted a great deal of

attention among investors, researchers and practitioners. In this sense, VaR is a statistical measure

associated with extreme quantiles which can be used to evaluate extreme price movements in

financial data and, in the financial markets. In addition, the quantile autoregression can improve

the VaR estimation. To investigate extreme price movements is very important in the risk

management area.

Another analysis that can be related with extremal quantiles and, perhaps exemplified

as financial crisis, is the structural change evaluation. In this sense, we can highlight the statistical

procedure proposed by QU(2008) which propose to investigate structural changes using quantile

regression.

The goal of this work is, in an applied setting, to explore VaR estimation based on

quantile autoregression and under structural changes. To that end, some initial applications

were done using exchange traded funds during the United States subprime mortgage crisis. In

addition, simulations were performed in order to evaluate the nominal level and the power of

some coverage tests proposed in the literature, and to analyze the behavior of the QU’s test.

The rest of the work is organized in four more Chapters which include the Literature

review (Chapter 2), methodology and empirical motivation (Chapter 3), simulation analysis

(Chapter 4) and conclusion (Chapter 5).
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2 LITERATURE REVIEW

2.1 CONDITIONAL HETEROSCEDASTIC MODELS AND QUANTILE REGRESSION

Conditional heteroscedastic models and quantile regression are two distinct statistical

concepts which their foundations were written and published in less than 5 years from each other.

The first concept (conditional heteroscedastic models) is a class of models which its

purpose is establish a conditional variance to explain the heteroskadasticity often presented in

a time series. In the financial time series context, the term ‘volatility’ is interchangeable with

‘conditional variance’. The pioneer model from this class was introduced by ENGLE(1982) and

was named ARCH model, acronym for autoregressive conditional heteroskedasticity. A few

years later, Engle’s model was extended by BOLLERSLEV(1986) who introduced the GARCH

modeling, abbreviation of generalized ARCH model. The GARCH models generalize the ARCH

equation in a similar manner as an ARMA (Autoregressive Moving Average) model (BOX et al.,

2015) extends an AR (Autoregressive) model. Since Bollerslev in 1986, several extentions of

GARCH models have been proposed by researchers, including the EGARCH model (NELSON,

1991), the linear GARCH model of Taylor (TAYLOR, 2008) and many others.

The second concept (quantile regression) was introduced by KOENKER; BAS-

SETT(1978) and it concerns a relation establishment between the τ-quantile of a response

variable and explanatory variables, where τ ∈ (0,1). Inspired in the ideia of conditional mean

from classic linear regression models, quantile regression seeks to model a conditional quantile.

In Koenker’s work this relation was shown to be linear, but it might be easily extended as

nonlinear as well (KOENKER; PARK, 1996).

Futhermore, quantile regression has been used in time series analysis and, the

development of ARCH and GARCH models estimated by quantile regression methods has been

undertaken, the former developments by Koenker (KOENKER; ZHAO, 1996) and the latter by

Lee (LEE; NOH, 2013).

Studying quantiles might be useful in many situations, especially as exploratory tool

for skewed distributions, like household wages (NGUYEN et al., 2007) or financial returns

(ROCKAFELLAR; URYASEV, 2002).

Regards to financial returns, the GARCH model seems computationally more conve-

nient than the linear GARCH model, but linear GARCH may be more appropriate for modeling

financial returns. As it was once noted, (DUFFIE; PAN, 1997) the maximum likelihood es-
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timation of the quadratic form associated to GARCH model has a potential disadvantage of

being overly sensitivity to extreme returns. The linear GARCH structure is less sensitive to

extreme returns, but it is more difficult to handle mathematically. In addition, the linear GARCH

approach is well suited for quantile estimation because of its linear formulation.

According to KOENKER; ZHAO(1996), it was clear that misspecification of the

form of the conditional distribution used to define the likelihood estimation in ARCH and

GARCH models can create serious problems for parameter estimation and conditional prediction

intervals. This motivation led them to investigate methods that are not so sensitive to the

normality assumption, so usual when using ARCH and GARCH models. In particular, quantile

regressions methods used to estimate ARCH and GARCH models have a valuable property for

this case: It does not assume any particular distribution, just some mild conditions.

2.2 VALUE-AT-RISK

Value-at-Risk (VaR) traces its roots to the infamous financial disasters of early 1990s

that had engulfed many large financial institutions, as stated by JORION(2000). After those

events, regulators were forced to act against the poor supervision and turned the VaR as a

quantifying measure aimed to improve the market risk management.

Formally, the VaR measure proposes to show the worst expected loss over a given

horizon at a given confidence. VaR is usually estimated by standard statistical techniques to

assess the market risk exposure by providing a single number which summarizes this type of

risk. For example, a financial institution could say that the daily VaR of its trading portfolio is $2

millions at 99% confidence level, in other words, there is only 1% chance, under normal market

conditions, of a loss greater than $2 millions.

There are many approaches to evaluate VaR, but it is natural to evaluate it by

using quantile regression. According to GAGLIANONE et al.(2011), due to its capability of

conditional distribution exploration with distribution-free assumption and also for its capability

to be used to estimate ARCH or GARCH models, which are widely used in financial time series

analysis. According to Xiao (XIAO; GUO; LAM, 2015), VaRs estimated by quantile regression

and GARCH are able to improve the estimation results, under normal market conditions.

A honorable mention which also uses standard quantile regression techniques and

was explicitly developed for predicting VaR is the CAViaR model (ENGLE; MANGANELLI,

2004). According to this approach, the returns follow special cases of a GARCH process and the
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regressors are latent and dependent on unknown parameters. The estimation of CAViaR uses

nonlinear quantile regression techniques that are not directly applicable for the proposal of our

work. For this reason, and by simplicity, we focused on ARCH/GARCH modeling estimated by

quantile regression.

2.3 STRUCTURAL CHANGES

A structural change is generally defined when a series abruptly changes at a certain

point in the time. This behavior can involve a change in the mean or the other parameters of the

stochastic process corresponding to the series. The ability to detect when the structure of the

time series changes might give discernment into the modeling problem and structural changes

tests are helpful to determine when and whether there is a significant change in the data.

HAMILTON(1990) argue that many of the major exogenous economic events that

influence financial series are shocks such as the doubling of oil prices experienced over the past

decades. These events can be considered as episodes with an identifiable duration in which the

response of economic series might be expected to have a noteworthy difference from that seen

outside these periods. Several studies about structural changes focus merely on variation in the

conditional mean while, under diverse number of contexts, structural changes in the conditional

distribution or in conditional quantiles are the ones of key importance.

QU(2008) proposed testing procedures for structural change in conditional quantile(s)

with unknown timing. More precisely, he adopted the methodology of quantile regression and

proposes two types of test statistics for structural change occurring in a specific quantile. The

test is based on sequentially weighted empirical subgradients. It has excellent size properties

even in small samples, local power under parameter’s changes whose regressors has mean equal

to zero and does not require estimating any nuisance parameters, only requires estimating the

model under the null hypothesis. The main idea is that if there is a structural change, then the

parameter estimates obtained imposing the null hypothesis will not be close to the true values for

at least one subset of the sample. As a result, the estimated residuals will persistently fall below

or above the true quantile, forcing the subgradient to take a large value.

According to QU(2008), this test is directly related to the CUSUM tests (PAGE,

1954) where quantities derived from ordinary least squares procedures or recursive residuals are

explored, however he highlights that CUSUM fails against parameter change whose regressor

has mean zero and does require estimate a parameter which is not the immediate interest, but
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must be accounted in the analysis of the parameters of interest, then suffering of non-monotonic

power.
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3 METHODOLOGY AND EMPIRICAL MOTIVATION

In the first part of this chapter (Section 3.1) we present a brief description of the

methods we used to evaluate VaR in our empirical investigation. The second part (Section 3.2)

presents an empirical analysis using quantile autoregression to estimate VaR of some Exchange

Trade Funds (ETFs) and an application of QU’s test to evaluate structural changes in the analyzed

time series. This analysis motivates the simulations presented in Chapter 4.

3.1 METHODS

3.1.1 Bollerslev’s and Taylor’s GARCH model

We say {εt} follows a GARCH model, with parameters (p,q) (BOLLERSLEV(1986)),

if it can be expressed as

εt = σtvt , (3.1)

σ
2
t = α0 +

p

∑
i=1

αiε
2
t−i +

q

∑
j=1

β jσ
2
t− j, (3.2)

where {vt} is a sequence of independent and identically distributed random variables with zero

mean and variances equal to one; α = (α0,α1, . . . ,αp)
′ and β = (β1,β2, . . . ,βq)

′ contain the

parameters that model the conditional variance σ2
t (α0 > 0, αi ≥ 0 for all i ∈ {1,2, . . . , p} and

βi ≥ 0 for all j ∈ {1,2, . . . ,q}). When using GARCH modeling, it is common to associate the

term ‘volatility’ with σ2
t . If ∑

max(p,q)
i=1 (αi +βi)< 1, {εt} is weakly stationary.

A modified version of the GARCH model is the linear GARCH proposed by Taylor.

If {εt} follows a linear GARCH model with parameters (p,q), then it is defined as

εt = σtvt , (3.3)

σt = α0 +
p

∑
i=1

αi|εt |+
q

∑
j=1

β jσt− j. (3.4)

GARCH models include ARCH models as a special case whenever its parameter

q = 0. In other words, when β = 0. In our study, we used linear ARCH models which were

estimated by quantile regression.
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3.1.2 Quantile Regression

Let ε be a random variable with distribution function F(ε). The τth quantile (τ ∈

(0,1)) is defined as

F−1(τ) = inf{ε ∈R : F(ε)≥ τ}. (3.5)

KOENKER; BASSETT(1978) proposed the loss function ρτ(u) = u(τ−1(u < 0)),

where 1(x < 0) is an indicator function and F−1(τ) is the τ-quantile. When using ρτ(u) and the

empirical distribution function in the expected value E(ρτ(ε−ξ )), it is possible show that the

τth sample quantile (ξ̂ ) is obtained by

ξ̂ = min
ξ∈R

n

∑
i=1

ρτ(εi−ξ ), (3.6)

where n is the sample size and εi is the ith observation in the sample data (from ε).

Quantile regression deals with a conditional quantile, thus, if ξ ′
ε|x(τ) = x′βτ , then

the quantile ξ is conditional to the vector of regressors x. Applying a systematic structure

ξε|x(τ) = x′βτ , the vector βτ (3.6) can be estimated by (KOENKER; CHESHER; JACKSON,

2005)

β̂τ = min
β∈R

n

∑
i=1

ρτ(εi− xiβ ). (3.7)

3.1.3 Linear ARCH models estimated by quantile regression

The linear ARCH model (equation (3.4)) and quantile regression (Equation (3.7)) can

be used in GARCH modeling (see KOENKER; XIAO (2006)). Let {εt} follow a linear ARCH(p)

process (a special case of the Equation (3.4)). Given the information set Ft−1 representing all

results of {εt} from the first period until t−1, the conditional quantile function can be written as

Qε(τ|Ft−1) =

(
α0 +

p

∑
i=1

αi|εt−i|

)
F−1

v (τ), (3.8)

where F−1
v (τ) denotes the τ th quantile of the innovations {vt} with an unknown distribution and

E(v2
t ) = 1, where E(·) denotes the expected value. The restriction E(v2

t ) = 1 is used as manner

to achive E(ε2
t ) = σ2

t , that is say σ2
t represents εt variance, but this restriction can be relaxed

(DROST; KLAASSEN, 1997). Thus, another form to represent the linear ARCH process is

εt =

(
1+

p

∑
i=1

γi|εt−i|

)
√

ω0vt , (3.9)
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where γi =
αi
α0

and
√

ω0 = α0 are the new coefficients, {√ω0vt} represents a new innovation,

with E(v2
t )< ∞ (not necessarily equal to one). Thus, a new conditional quantile function of {εt}

can be obtained

Qε∗(τ|Ft−1) =

(
1+

p

∑
i=1

γi|εt−i|

)
F−1

v∗ (τ), (3.10)

where F−1
v (τ) denotes the τth quantile of the new innovations {√ω0vt} with an unknown

distribution and E(|√ω0vt |2) < ∞. The use of a linear form of ARCH model suggests the

computation of the regression quantiles by stantard linear programming techniques which are

more efficient when comparing with others non-linear approaches (see KOENKER; ZHAO

(1996)). Throughout this work, the model in (3.10) is frequently used to estimate VaR.

3.1.4 Value at Risk (VaR)

Value-at-Risk measures the maximum loss that can be expected, at a particular

significance level, over a given trading horizon (JORION, 2000; GAGLIANONE et al., 2011).

Let εt be the return of a portfolio at t-period, and τ ∈ (0,1) the VaR’s significance level. Thus,

VaR (VaRt
τ ) is obtained by solving the equation

Pr(εt ≤−VaRt
τ |Ft−1) = τ (3.11)

where Ft−1 is the information set available at time t− 1 and Pr(·) denotes some probability.

From (3.11), −VaRτ
t is the τ-th conditional quantile of the returns. Based on the information

available up to (t−1)-period, we can use −VaRt
τ as an one-step ahead prediction for the τ-th

quantile of the returns. Equation (3.11) can be rewritten as

−VaRt
τ = F−1

εt |Ft−1
(τ) = inf{ε : Fεt |Ft−1(ε)≥ τ}. (3.12)

3.1.5 Qu’s test for structural changes

The Qu’s test (QU, 2008) seeks to determine whether the coefficients of a linear

quantile regression remain the same over the data range. For the accomplishment of this task he

proposed the following inferential procedure:

Consider the random variable εti , where the subscript indicates that process was

observed in ti-period. Suppose that the τth conditional quantile of εti can be written as a linear

function

Qεti
(τ|xti) = xtiβtiτ , (3.13)
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where xti is the vector of explanatory variables corresponding to the τth quantile of εti and βti is

the corresponding vector of coefficients. The response of εti to xti is different from that from εt j

to xt j if and only if βtiτ 6= βt jτ , i 6= j, τ ∈ (0,1). The hypotheses of Qu’s test are given bellow

H0 : βtiτ = β0τ for all i, (3.14)

H1 : βtiτ =

 β1τ for ti ∈ {t1, t2, . . . , tk},

β̃1τ for ti ∈ {tk+1, tk+2, . . . , tn},
(3.15)

where tk denotes the break point, and n is the sample size of the analyzed time series.

Qu’s test evaluates the subgradient using a subsample, that uses the sort data from the

beginning up to t = bλnc, λ ∈ [0,1], where b.c denotes a floor function. It is important to note

that in optimization problems such as in Equation (3.6) the objective function is not differentiable

and this is the reason why the subgradient is used instead of the gradient. Subgradient generalize

the derivative in cases of convex functions which are not differentiable. The subgradient statistic

proposed by Qu is defined by (QU, 2008)

Sn(λ ,τ,ϑ) = n1/2
bλnc

∑
t=t1

xtψτ(εt− x′tϑ), (3.16)

where ϑ is some estimate for βτ and ψτ(u) = 1(u≤0)− τ . Under the null hypothesis, ψτ(εi−

x′tiβ0τ) is a sequence of independent binary random variables with mean zero and variance

τ(1− τ). In this sense, it can be considered as a pivot quantity to make the decisions about the

rejection/nonrejection of the null hypothesis. Let X = (x′t1, . . . ,x
′
tn)
′ be the matrix of explanatory

variable, and define Hλ ,n(β0τ), (n−1X ′X)−1/2Sn(λ ,τ,β0τ). QU (2008) concludes that, under

a few assumptions, Hλ ,n(β0τ) converges to a limiting distribution that is nuisance parameter

free. In other words, Hλ ,n(θ0τ)
d−→N (0,λ 2τ(1− τ)). Replacing β0τ by the quantile regression

estimate, we get

Hλ ,n(β̂0τ) = (X ′X)−1/2
bλnc

∑
t=t1

xtψτ(εt− x′t β̂0τ) (3.17)

According to QU (2008), under the null hypothesis, Hλ ,n(β̂τ) converges to a non degenerate

distribution, whereas under alternative hypothesis it diverges for some λ . Since that the true

break point is unknown, it is necessary to investigate over all the possiblities. In addition, also

according to QU (2008), if Hλ ,n(β̂0τ) is multiplied by λ (i.e, λH1,n(β̂0τ)) it often yields better

finite sample results. In this sense, QU (2008) defines the following (alternative) statistic:

SQτ , sup
λ∈[0,1]

∣∣∣∣∣∣(τ(1− τ))−1/2
[
Hλ ,n(β̂τ)−λH1,n(β̂τ)

]∣∣∣∣∣∣
∞

(3.18)
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where ||.||
∞

is the uniform norm (RUDIN, 2006). Under the null hypothesis, the preceding

statistic (Equation (3.18)) converges to a p-vector of independent Brownian bridge processes

(REVUZ; YOR, 2013) on [0,1]. The critical values for the SQτ test were obtained via simulations

by Qu in his aforecited paper.

3.1.6 Coverage tests

Coverage tests are widely used to evaluate VaR estimate. It is not enough to know

if a certain VaR model produces a plausible percentage of VaR violations1, it is necessary to

evaluate if the VaR violations are independent of each other as stated by CHRISTOFFERSEN

(1998). Tests that simply check the expected rate of violations are called unconditional coverage

tests, and the others seeking a more sophisticated approach regarding clusters and violation

moments are called conditional coverage tests.

Let I1−τ be the indicator function which is equal to 1 when there is a VaRτ violation.

The CHRISTOFFERSEN’s null hypothesis (independence of VaR violations) is H0 : Π =

Πα =

τ 1− τ

τ 1− τ

. It is tested against Π =

π01 1−π01

π11 1−π11

 , where πi j = Pr(It
1−τ

= j|It−1
1−τ

=

i).The GMM test (CANDELON et al., 2010) is based on an orthonormal polynomial M j+1

corresponding to a geometric distribution in a form of the number of trials needed to get one

success with probability s ∈ (0,1). This polynomial M j+1 is given (∀d ∈N+) by

M j+1(d;s) =
(1− s)(2 j+1)+ s( j−d +1)

( j+1)
√

1− s
M j(d;s)− j

j+1
M j−1(d;s), (3.19)

where d is the the duration between two VaR violations (supposed to be geometrically distributed

under null hypothesis), j ∈N, M0(d;s) = 1, and M−1(d;s) = 0. If the geometric distribution is

the true distribution of d with a success probability s, then the expected value of M j(d;s) is zero

for all j.

Let us denote {di}N
i=1 as a sequence of N durations between violations. The null

hypothesis of conditional coverage GMM test is

H0 : E(M(di;s)) = 0, (3.20)

where M denotes a (p,1) vector of M j for j = 1, . . . , p. Under some regularity conditions, and

under null hypothesis, the GMM’s test statistic converges to a chi-square distribution as described
1 Consider εt some return at t-period. A VaR violation occurs if the observed return exceeds the VaR’s estimate,

i.e., if εt > VaRt
τ .
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bellow

Jcc =

(
1√
N

N

∑
i=1

M(di;s)

)>(
1√
N

N

∑
i=1

M(di;s)

)
d−→ χ(`), (3.21)

where ` is the number of orthornormal polynomials used as moment conditions (see (CANDE-

LON et al., 2010))

3.2 AN EMPIRICAL MOTIVATION

Exchange Traded Funds (ETFs) have become larger in popularity over the last few

years. In Brazil, which is considered an important emerging economy, ETFs first appeared

in 2004 (BM&FBOVESPA; BOVESPA, 2008). Around the World, ETFs have experienced a

significant increase in terms of assets and number of financial products. A reason that can justify

this behavior is the fact that investors have been learned their mechanisms and have been able to

know about these kind of financial products (ABNER, 2013).

The principal advantage of trading an ETFs is that, as a stock index, it can replicate

the performance of a benchmark. Therefore, an ETF can be considered as an investment strategy

easy to manager and benefited by lower management fees. Summing up, ETFs represent an

interesting investment option with some advantages:

• They are more liquid than mutual funds since they can be traded on an intraday basis.

• The composition of an ETF is completely known.

• Arbitrage opportunities.

• Tax-efficient when compared to mutual funds.

In the literature about ETFs, empirical studies have been performed in order to assess

the efficiency of this kind of investment option. The United States, for example, represents

almost 70% of the ETF market in terms of assets under management, although the number of

exchange traded products in the U.S. accounts for only 30% of the world total (ABNER, 2013).

U.S. market is somehow concentrated at the top 5 largest ETFs which represent

22.7% of the market in the United States. Leaders on the ETF market include SPDR, iShares

and Vanguard. The following subsections explain the ETFs explored in the empirical analysis

section (Section 3.3).
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3.2.1 SPDR S & P 500 ETF - SPY

The SPDR S&P 500 ETF trades under the symbol ‘SPY’. The target behind this ETF

is to give an investment vehicle that at least roughly produces returns in line with the S&P 500

Index before expenses. SPY is consistently one of the highest volume trading having attributes

that are intended to accomplish goals on U.S. exchanges. Average volume is typically over 60

million shares, although that does fluctuate over time. Many investors and hedge funds use SPY

because it represents the S&P 500 index - a basket of 500 major U.S. companies. Each asset in

SPY index must have positive earnings in the most recent quarter, and also over the last four

quarters. Investors focusing on SPY aim to invest in a wide range of large U.S. companies only

by buying a single share.

3.2.2 Vanguard Information Technology ETF - VGT

The VGT tracks the performance of the MSCI US IMI Information Technology

25/50 Index. The index tracks the returns of companies belong to the information technology

sector. The fund includes stocks of companies that serve the electronics and computer industries,

and companies that manufacture products based on the latest applied science in this sector. Its

top holdings include Apple Inc., Microsoft Corp., Facebook Inc. and Google’s parent company

Alphabet Inc.

The fund is market-cap-weighted, which means that larger holdings have a greater

influence on the fund’s performance as their market capitalization increases. The fund uses a

passive indexing approach that seeks to fully replicate the performance of the benchmark, or if

regulatory guidelines require it, the fund will use a sampling strategy.

3.2.3 Industrial Select Sector SPDR ETF - XLI

XLI provides investors exposure to prices and yield performance of publicly traded

equity securities of companies in the Industrial Select Sector Index. Under normal market

conditions, the fund generally invests at least 95% of its total assets in the securities comprising

the index. The index includes securities of companies from the following industries: aerospace

and defense; industrial conglomerates; marine; transportation infrastructure; machinery; road

and rail; air freight and logistics; commercial services and supplies; etc.

In general, the performance in the industrial goods sector is largely driven by supply
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and demand for building construction in the residential, commercial and industrial real estate

segments, as well as the demand for manufactured products, showing not high levels of volatility.

3.2.4 Consumer Staples Select Sector SPDR ETF - XLP

The XLP tracks the performance of the Consumer Staples Select Sector Index.

Seeking to track the performance of the index, the fund employs a replication strategy. It

generally invests at least 95% of its total assets in the securities comprising the index. The

index includes securities of companies from the following industries: food and staples retailing;

household products; food products; beverages; tobacco; and personal products.

Due to their low volatility, consumer staples stocks are considered to play a key role

in defensive strategies, and intuitively will be the hardest return to archive any break detection.

3.3 EMPIRICAL ANALYSIS

The main point of this section is to use the quantile regression methods discussed in

Sections 3.1.2,3.1.3, 3.1.5, and 3.1.6 in order to evaluate VaR measure corresponding to the four

ETFs discussed in sections 3.2.1 to 3.2.4. The period of analysis corresponds to the daily returns

from July 2007 to June 2009 (from 7/03/2007 to 6/29/2009, 502 trading days). This two-year

period was chosen to include the subprime mortgage crisis in the United States.

3.3.1 Modelling procedure

In an initial study, we used quantile ARCH models to estimate 5% and 1% VaRs

corresponding to the ETFs stock indices. After that we investigated some possible break points

in the return series in the analyzed period. The Augmented Dickey–Fuller (ADF) (DICKEY;

FULLER, 1981) and McLeod-Li (MCLEOD; LI, 1983) tests were done, however it is important

to note that the ADF test is biased towards nonrejection of nul hypothesis (unit root) rejection

(see PERRON (1990) pointed out. Partial autocorrelation function (PACF) and autocorrelation

function (ACF) were plotted for the regular and absolute returns. This procedure was done to

get insights about the orders of the ARCH processes. Finally, ten fitted models were evaluated.

To help on choosing the models, AIC (AKAIKE, 1974), pseudo R2, GMM’s p-values, Christof-

fersen’s p-values, Qu’s statistics were computed. It is important to note that the pseudo R2 we

used is based on the quantile regression loss function (see KOENKER; CHESHER; JACKSON

(2005))



28

3.3.2 Modelling ETFs

Serial correlations in return series are not significant because they are not predictable

(see, e.g., ISSLER (1999)). On the other hand, when considering absolute (or squared) returns,

it is possible to evaluate the predictability of conditional variance by plotting Autocorrelation

(ACF) and Partial Autocorrelation (PACF) functions. The plots in Figures 1 to 2 show only a few

significant values for autocorrelations and partial autocorrelations. The plots corresponding to

the absolute returns show a completely different scenario. These plots revel some visual evidence

of the predictability of variances in all ETFs, which justifies the use of GARCH modeling. In

addition, after implementing ADF test, we did not find any evidence of unity roots. As expected,

McLeod-Li’s test detected serial correlation between absolute returns in all ETFs returns.

Figure 1 – ACF of returns for all ETFs.

As a second step, focusing on τ-quantiles (τ = 1%,5%), we fitted ten ARCH(p) mod-

els with orders (p) from 1 to 10. AIC and pseudo R2 (called R1 by KOENKER; MACHADO(1999))

were computed. GMM’s and Christoffersen’s tests were implemented to help with the model

selection.
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Figure 2 – PACF of returns for all ETFs.

Figure 3 – ACF of absolute returns for all ETFs.
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Figure 4 – PACF of absolute returns for all ETFs.

3.3.3 Model selection

In an initial analysis, eighty VaR models (ten for each ETF in both quantiles, 5% and

1%) were fitted using quantile linear ARCH modeling, and the τ-quantiles were estimated. For

each ETF, we considered τ = 5% and 1% by using the different ARCH orders (p = 1, . . . ,10).

The model selection started observing the AIC and pseudo R2 measures, presented in Tables 1 and

2. The AIC (Table 1) selects for both quantiles (τ = 5%,1%) high order quantile linear ARCHs,

none lower than six and some, especially when τ = 1%, reaching ten. A similar behavior occurs

when using pseudo R2 values, reaching a stable and less increasing state at higher orders. It is

important to note that AIC and the pseudo R2 are not sufficient to evaluate VaR violations. This

is the reason we did not focus on these measures as the main criteria to qualify the goodness

of fit of the VaR estimates. In this sense, the widely used coverage tests were analyzed, this is

shown in Subsection 3.3.3.1.

3.3.3.1 Coverage tests

The results from the Christoffersen’s test are shown in Tables 3 and 4. As can be

seen, considering a nominal level of 5% and τ = 5%, the null hypothesis were not rejected for
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ARCH τ = 5% τ = 1%
order SPY VGT XLI XLP SPY VGT XLI XLP

1 -1888 -1959 -1895 -2437 -1444 -1609 -1553 -1996
2 -1978 -2010 -1952 -2452 -1615 -1691 -1694 -2169
3 -1973 -2012 -1973 -2450 -1632 -1711 -1735 -2170
4 -2062 -2055 -2019 -2460 -1803 -1750 -1799 -2165
5 -2081 -2053 -2027 -2482 -1881 -1787 -1794 -2221
6 -2098 -2088 -2031 -2475 -1912 -1915 -1803 -2222
7 -2123 -2095 -2029 -2477 -1963 -1978 -1866 -2315
8 -2121 -2102 -2024 -2486 -2010 -2020 -1864 -2331
9 -2114 -2096 -2020 -2479 -2008 -2014 -1914 -2337
10 -2113 -2092 -2013 -2485 -2008 -2009 -1921 -2341

Table 1 – AIC values for the fitted models

ARCH τ = 5% τ = 1%
order SPY VGT XLI XLP SPY VGT XLI XLP

1 0.048 0.028 0.002 0.051 0.027 0.017 0.012 0.008
2 0.136 0.084 0.064 0.073 0.185 0.102 0.148 0.172
3 0.139 0.093 0.091 0.080 0.205 0.126 0.188 0.180
4 0.219 0.139 0.138 0.097 0.335 0.166 0.245 0.183
5 0.240 0.144 0.153 0.125 0.390 0.202 0.247 0.234
6 0.259 0.180 0.163 0.127 0.414 0.304 0.259 0.241
7 0.283 0.193 0.168 0.136 0.447 0.353 0.310 0.315
8 0.288 0.206 0.171 0.152 0.477 0.384 0.314 0.332
9 0.289 0.207 0.174 0.153 0.481 0.386 0.353 0.342

10 0.294 0.210 0.175 0.166 0.485 0.388 0.363 0.350
Table 2 – pseudo R2 values for the fitted models

almost all ETFs data when considering the ARCH order p = 1. When τ = 1% (and p = 1), in all

cases, the null hypotheses were not rejected. For τ = 5%, when p = 2 or 3, the null hypotheses

were rejected only for SPY (CTuc and CTcc, when p = 2, and CTcc, for p = 3) and XLI (CTuc,

for p = 3). Regarding to Christoffersen’s coverage test, in the next chapter, we show simulation

evidences that Christoffersen’s test is a permissive test and we recommend to consider this

question in the model selection.

ARCH SPY VGT XLI XLP
order CTuc CTcc CTuc CTcc CTuc CTcc CTuc CTcc

1 0.054 0.045 0.239 0.064 0.828 0.966 0.429 0.013
2 0.021 0.028 0.235 0.064 0.168 0.386 0.117 0.018
3 0.051 0.044 0.830 0.135 0.021 0.067 0.114 0.058
4 0.001 0.003 0.012 0.020 0.004 0.016 0.411 0.056
5 0.000 0.000 0.012 0.020 0.002 0.009 0.019 0.011
6 0.000 0.000 0.030 0.066 0.019 0.062 0.002 0.001
7 0.001 0.000 0.007 0.006 0.002 0.006 0.004 0.001
8 0.004 0.005 0.001 0.002 0.002 0.006 0.000 0.000
9 0.001 0.000 0.006 0.006 0.017 0.058 0.001 0.001
10 0.006 0.019 0.017 0.003 0.001 0.003 0.000 0.000

Table 3 – P-values of Christoffersen’s test when τ = 5%. CTuc and CTcc denotes
unconditional and conditional tests, respectively.

The results of the GMM test are shown in Tables 5 and 6. As can be seen, the
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ARCH SPY VGT XLI XLP
order CTuc CTcc CTuc CTcc CTuc CTcc CTuc CTcc

1 0.666 0.142 0.048 0.059 0.329 0.610 0.996 0.951
2 0.048 0.059 0.048 0.059 0.215 0.407 0.008 0.016
3 0.020 0.032 0.008 0.002 0.003 0.008 0.008 0.016
4 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.016
5 0.000 0.000 0.000 0.000 0.000 0.000 0.019 0.004
6 0.000 0.000 0.001 0.001 0.001 0.003 0.001 0.001
7 0.000 0.000 0.000 0.000 0.000 0.001 0.007 0.015
8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 4 – P-values of Christoffersen’s test when τ = 1%. CTuc and CTcc denotes
unconditional and conditional tests, respectively.

null hypotheses were rejected in almost all cases (unconditional and conditional tests). An

interesting exception is when τ = 1% and p = 1 (Table 6) ARCH(1). In this case, the p-values

corresponding to XLI and XLP suggest not rejection of the null hypotheses for all coverage

tests. It is important to note that, the aim of coverage tests is to feedback whether VaR are

well-estimated or not. Thus, coverage tests precedes other model criteria as AIC when fitting

VaR models and, because of that, lower order models should be further evaluated.

ARCH SPY VGT
order GMMuc GMMcc3 GMMcc5 GMMuc GMMcc3 GMMcc5

1 0.000 0.000 0.000 0.014 0.000 0.000
2 0.040 0.000 0.000 0.014 0.000 0.000
3 0.046 0.000 0.000 0.094 0.000 0.001
4 0.004 0.000 0.000 0.005 0.000 0.000
5 0.001 0.000 0.000 0.002 0.000 0.000
6 0.001 0.000 0.000 0.004 0.000 0.000
7 0.004 0.000 0.000 0.001 0.000 0.000
8 0.014 0.000 0.000 0.006 0.000 0.000
9 0.006 0.000 0.000 0.001 0.000 0.000

10 0.017 0.000 0.000 0.038 0.000 0.000
ARCH XLI XLP
order GMMuc GMMcc3 GMMcc5 GMMuc GMMcc3 GMMcc5

1 0.047 0.057 0.142 0.027 0.009 0.002
2 0.000 0.000 0.000 0.013 0.007 0.007
3 0.002 0.000 0.000 0.001 0.000 0.002
4 0.000 0.000 0.000 0.003 0.004 0.013
5 0.000 0.000 0.000 0.000 0.000 0.000
6 0.000 0.000 0.000 0.000 0.000 0.000
7 0.009 0.000 0.000 0.000 0.000 0.000
8 0.009 0.000 0.000 0.000 0.000 0.000
9 0.010 0.000 0.000 0.000 0.000 0.000

10 0.000 0.000 0.000 0.000 0.000 0.000
Table 5 – P-values for GMM test when τ = 5%. GMMuc denotes the unconditional test.

GMMcc3 and GMMcc5 correspond to the conditional tests with `= 3 and 5,
respectively.
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ARCH SPY VGT
order GMMuc GMMcc3 GMMcc5 GMMuc GMMcc3 GMMcc5

1 0.040 0.021 0.010 0.006 0.001 0.000
2 0.007 0.002 0.000 0.004 0.000 0.000
3 0.006 0.001 0.000 0.008 0.002 0.000
4 0.000 0.000 0.000 0.002 0.000 0.000
5 0.000 0.000 0.000 0.000 0.000 0.000
6 0.000 0.000 0.000 0.003 0.000 0.000
7 0.000 0.000 0.000 0.003 0.001 0.000
8 0.000 0.000 0.000 0.000 0.000 0.000
9 0.000 0.000 0.000 0.000 0.000 0.000
10 0.000 0.000 0.000 0.000 0.000 0.000

ARCH XLI XLP
order GMMuc GMMcc3 GMMcc5 GMMuc GMMcc3 GMMcc5

1 0.447 0.722 0.944 0.080 0.068 0.081
2 0.032 0.023 0.032 0.009 0.004 0.005
3 0.002 0.000 0.000 0.005 0.001 0.000
4 0.000 0.000 0.000 0.003 0.000 0.000
5 0.000 0.000 0.000 0.016 0.008 0.003
6 0.001 0.000 0.000 0.002 0.000 0.000
7 0.001 0.000 0.000 0.009 0.004 0.005
8 0.000 0.000 0.000 0.002 0.000 0.000
9 0.000 0.000 0.000 0.002 0.000 0.000
10 0.000 0.000 0.000 0.001 0.000 0.000

Table 6 – P-values for GMM test when τ = 1%. GMMuc denotes the unconditional test.
GMMcc3 and GMMcc5 correspond to the conditional tests with `= 3 and 5,

respectively.

3.3.3.2 Graphical analysis

Values-at-Risk measured by quantile linear ARCH model ranging from 1 to 3 were

selected for sake of some visual inspection of the original series and its fitted models. Red lines

are related to 1%-quantiles and orange lines to 5%-quantiles. In general, all ETFs in evaluation

often shown higher violation sequences than expected at the end of 2008 and few violations or

none at all at the period preceding the end of 2008. This can be seen in Figures 5 to 8. In each

Figure, the black line is the returns, the orange line is the VaR5%, the red line represent VaR1%.

In addition, a dashed horizontal blue line at 5% represents a daily hypothetical loss limit in an

ETF investiment. According to Figures 5 to 8, in terms of VaR estimates, SPY seems to be the

most aggressive index. In the opposite direction, we can highlight the XLP index. It is important

to note that in Figure 7, the VaR fitted with a ARCH(1) in XLI series have some serious problems

because the clear cross-quantile at critical period in the end of 2008. This violates the basic

principle that distribution functions and their associated inverse functions should be monotone

increased.
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Figure 5 – SPY returns and its VaR5% and VaR1% fitted as quantile linear ARCH of order
1 to 3, top-bottom.

Figure 6 – VGT returns and its VaR5% and VaR1% fitted as quantile linear ARCH of order
1 to 3, top-bottom.

3.3.4 Testing for structural change

As mentioned before (Section 3.3), our period of analysis involves the subprime

crisis in United States. In this sense, it is important to evaluate structural changes on the 5% and
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Figure 7 – XLI returns and its VaR5% and VaR1% fitted as quantile linear ARCH of order
1 to 3, top-bottom.

Figure 8 – XLP returns and its VaR5% and VaR1% fitted as quantile linear ARCH of order
1 to 3, top-bottom.

1%- quantiles. For this task Qu’s test was implemented and the results are shown in Tables 7 and

8. In the tables, the critical values, the test statistics and the probable structure change date are

shown according to the corresponding quantile ARCH model. As can be seen, when choosing

a small ARCH order (e.g., p < 4), 5%- quantiles presented more break signs when comparing
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with 1%-quantiles. When τ = 5%, the quantile linear ARCH models order ranging from 1 to 4

detect breaks in SPY, VGT and XLI. XLP behaved similar, but only when p = 1,2. Noteworthy,

XLI also shows breaks when using models ranging from 7 to 10. When τ = 1%, the quantile

linear ARCH models presented breaks in 29 times, out of 40 models, and confirmed in all first

order models used despite have a trend towards high order models to show those breaks.

Most importantly, it is notable especially when τ = 5% the break dates are directly

related to September 15th, 2008. This was the date of Lehman Brothers’ bankruptcy. It was

the largest bankruptcy filing in United States history. Noteworthy that SPY, the most traditional

ETF showed here, discovered break signs, when quantile τ = 5%, just 7 trading days before the

major event. This is a sign of the utility of this tool in financial markets applications. In addition,

XLI and XLP, both markets famous for being relatively stable also detected a break point near

September 15th, 2008.

ARCH Crit. SPY VGT XLI XLP
order value SQτ Break at SQτ Break at SQτ Break at SQτ Break at

1 1.329 2.947 03-09-08 3.140 12-09-08 2.810 12-09-08 2.218 16-09-08
2 1.453 2.239 03-09-08 2.339 25-08-08 2.677 03-09-08 2.136 16-09-08
3 1.517 2.206 03-09-08 2.326 12-09-08 2.134 03-09-08 1.436 16-09-08
4 1.569 2.154 03-09-08 1.796 03-09-08 1.621 23-07-08 1.521 16-09-08
5 1.601 1.763 05-06-08 1.524 03-09-08 1.512 06-08-08 1.484 29-04-08
6 1.628 1.304 03-09-08 1.083 08-07-08 1.623 06-08-08 1.485 29-04-08
7 1.650 0.619 24-12-08 1.264 15-10-08 1.952 03-09-08 1.594 16-09-08
8 1.655 1.296 16-09-08 1.380 26-09-08 2.081 03-09-08 0.889 19-05-08
9 1.684 1.167 08-09-08 1.078 05-06-08 1.967 03-09-08 1.627 02-10-08

10 1.695 0.926 08-09-08 1.312 06-11-08 2.191 03-09-08 1.335 16-09-08
Table 7 – Qu’s test values for the fitted models at quantile τ = 5%

ARCH Crit. SPY VGT XLI XLP
order value SQτ Break at SQτ Break at SQτ Break at SQτ Break at

1 1.329 1.672 26-09-08 1.681 26-09-08 1.421 01-10-08 1.366 16-09-08
2 1.453 1.399 26-09-08 1.693 26-09-08 0.857 01-10-08 1.067 15-09-08
3 1.517 0.856 26-09-08 1.964 26-09-08 1.796 01-10-08 1.195 16-09-08
4 1.569 1.509 26-09-08 0.740 07-10-08 1.791 01-10-08 1.677 05-06-08
5 1.601 1.892 05-06-08 1.669 26-09-08 1.512 14-10-08 1.469 05-06-08
6 1.628 1.692 05-06-08 0.874 07-01-09 1.722 09-02-09 1.859 02-10-08
7 1.650 1.881 05-06-08 3.320 02-10-08 1.824 13-10-08 1.890 05-06-08
8 1.655 2.741 12-09-08 1.863 07-11-08 1.729 14-10-08 0.992 08-10-08
9 1.684 2.201 14-10-08 2.042 27-01-09 2.563 08-10-08 2.318 18-11-08

10 1.695 2.682 16-09-08 2.999 12-02-09 2.661 08-10-08 2.276 17-11-08
Table 8 – Qu’s test values for the fitted models at quantile τ = 1%
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As a conclusion of our empirical analysis we can highlight that the model selection

was harsh and unfruitful when considering models without structural break in financial crisis.

For this reason, a structural change analysis was proposed. The Qu subgradient test had similar

break detection on both investigated quantiles (τ = 1%,5% ), but the accuracy when those breaks

occurred seemed to be more interesting for the less extreme quantile (τ = 5%). The test showed a

good performance in general on both quantiles while trying to see the financial crisis period as a

structural break. This fact was more noticeable when τ = 5%. After making the structural change

analysis we can see how it influenced the coverage tests results. In fact, we found evidence about

structural changes in all ETFs we analyzed and, after comparing this insight with the results

from Cristofersen’s and GMM’s coverage tests, we were motivated to make a simulation study

involving these statistical procedures. The analysis are shown in Chapter 4.
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4 SIMULATION ANALYSIS

In the simulation study, ten different models were considered, each one with the

parameter structure changing over time. The objective is to achieve insights about the behavior of

some tests which were used before to model VaR in ETFs. Let εt be a modified linear ARCH(2)

model, defined as

εt =



(1+α1,0|εt−1|+α2,0|εt−2|)vt
√

ω0 , when t ∈ [0,bλ1nc)

(1+α1,1|εt−1|+α2,1|εt−2|)vt
√

ω1 , when t ∈ [bλ1nc,bλ2nc)
...

(1+α1,k|εt−1|+α2,k|εt−2|)vt
√

ωk , when t ∈ [bλknc,n]

(4.1)

where t ∈ {0,1, ...,n}, 0 < λ1 < .. . < λk < 1 and vt
√

ωi ∼N (0,ωi) : i ∈ {0,1, . . . ,k}.

The random process in Equation 4.1 describes a reparametrized linear ARCH(2)

process with k breaks in parameters (α1,i,α1,i,ωi) : i ∈ {0,1, . . . ,k}. Noteworthy, λ j : j ∈

{1, . . . ,k} represents the relative position of the j-th break across the time window (T ), it is

not the index t itself at the break moment. Equation (4.1) is equivalent to (3.9) by including a

structural change (represented by λ = (λ1,λ2, . . . ,λk)). This modified ARCH process was used

in our simulation study.

4.1 SIMULATED MODELS

Two thousand Monte Carlo replications from 10 different modified linear ARCH(2)

processes were generated in order to evaluate Qu’s test as well as the GMM’s and Cristoffersen’s

coverage tests. It was used R programming language and environment for statistical computing (R

Core Team, 2018) and coded set.seed(42) in Mersenne-Twister pseudorandom number generator

as starting point for these proccesses generated. Each simulated model was planned to achieve

different perspectives of the tests used in the empirical analysis. In addition, we intended to

simulate a return series as seen in previous chapter but also under different break circumstances.

Figure 9 shows a particular case when simulating a model behaving like the SPY stock index.

Table 9 shows λ -values (indicating break point positions), the values of parameters

(α1,i,α2,i,ωi) (used after the break). The table contains all information necessary to understand

the processes generated according to Equation (4.1). Note that λ is initially equal to zero. This

means that the following parameters are the starting parameters (according to the generated

process). The choice of each α was based on LEE; NOH (2013). A brief description of models
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Figure 9 – SPY returns(left) and simulation process(right).

(from A to J) are listed bellow

Model λ α-parameters ω

A 0 (0.15, 0.06) 1
0 (0.15, 0.0375) 1

B
.25 (0.35, 0.1400) 2
0 (0.15, 0.0375) 1

C
.5 (0.35, 0.1400) 2
0 (0.15, 0.0375) 1

D
.75 (0.35, 0.1400) 2
0 (0.15, 0.0375) 1

E
.5 (0.35, 0.1400) 1
0 (0.15, 0.06) 1
.25 (0.35, 0.14) 2F
.35 (0.15, 0.06) 1

Model λ α-parameters ω

0 (0.15, 0.06) 1
.75 (0.35, 0.14) 2G
.85 (0.15, 0.06) 1
0 (0.15, 0.0375) 1
.4 (0.35, 0.1400) 2H
.6 (0.15, 0.0375) 3
0 (0.15, 0.0375) 1
.25 (0.35, 0.1400) 2I
.75 (0.15, 0.0375) 1
0 (0.15, 0.0375) 1
.25 (0.35, 0.1400) 2
.5 (0.15, 0.0375) 1

J

.75 (0.35, 0.1400) 2
Table 9 – Simulated processes

• Model A is a simple linear ARCH(2), used mainly to evaluate the nominal size of the tests;

• Models B, C, D were conceived to check a single break at different points over the time;

• Model E aimed to check the impact of only changing the structure of conditional volatility;

• Model F and G were proposed to evaluate the behavior of the tests when a brake with

clusters of volatility happens;

• Model H stands for a more progressive break;

• Model I has a long length cluster;

• Model J had three breaks and formed interchangeable clusters.

All generated process were fitted by using a linear ARCH(2) model estimated by quantile

regression (see equation (3.10)). Models B, C, D represent similar models, but under different
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break periods.

4.2 SIMULATION RESULTS

The simulation results are summarized in Tables 10 through 21 and Figures 10 and

11. The discussion of the results is made in next Subsections.

4.2.1 Coverage tests

After making a statistical investigation on all simulated data we concluded that the

presence of structural changes did not cause violation of the null hypothesis of the coverage tests.

Because of that, our analysis focused on investigation by considering the statistics under null

hypothesis. The results when considering the CHRISTOFFERSEN’s tests (Tables 10 to 13 )

display null rejection rates much smaller than the nominal levels (5% and 1%). It suggests very

conservative tests (with or without structural breaks).

No breaks
Models n = 360 n = 720 n = 1080

τ = 5% τ = 1% τ = 5% τ = 1% τ = 5% τ = 1%
A 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

One break
B 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
D 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
E 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Two breaks
F 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
G 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
I 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Three breaks
J 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 10 – Percentage of unconditional Christoffersen test statistics under 5% p-value
(rejected tests)
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No breaks
Models n = 360 n = 720 n = 1080

τ = 5% τ = 1% τ = 5% τ = 1% τ = 5% τ = 1%
A 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

One break
B 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
C 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
D 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
E 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Two breaks
F 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
G 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
H 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
I 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Three breaks
J 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 11 – Percentage of unconditional Christoffersen’s test statistics under 1% p-value
(rejected tests)

No breaks
Models n = 360 n = 720 n = 1080

τ = 5% τ = 1% τ = 5% τ = 1% τ = 5% τ = 1%
A 0.0020 0.0055 0.0015 0.0010 0.0015 0.0015

One break
B 0.0015 0.0065 0.0010 0.0020 0.0045 0.0015
C 0.0015 0.0065 0.0030 0.0000 0.0030 0.0015
D 0.0015 0.0085 0.0025 0.0005 0.0045 0.0010
E 0.0015 0.0050 0.0000 0.0015 0.0035 0.0025

Two breaks
F 0.0030 0.0120 0.0025 0.0020 0.0030 0.0055
G 0.0040 0.0070 0.0015 0.0020 0.0045 0.0045
H 0.0015 0.0035 0.0020 0.0005 0.0055 0.0010
I 0.0050 0.0070 0.0020 0.0015 0.0050 0.0025

Three breaks
J 0.0025 0.0060 0.0025 0.0020 0.0035 0.0020

Table 12 – Percentage of conditional Christoffersen’s test statistics under 5% p-value
(rejected tests)

Tables 14 through 17 show the results GMM tests. The unconditional test (Tables

14 and 15) is very conservative in almost all cases. However, there were some scenarios



42

No breaks
Models n = 360 n = 720 n = 1080

τ = 5% τ = 1% τ = 5% τ = 1% τ = 5% τ = 1%
A 0.0000 0.0005 0.0005 0.0005 0.0000 0.0000

One break
B 0.0000 0.0010 0.0000 0.0010 0.0000 0.0000
C 0.0000 0.0005 0.0000 0.0000 0.0005 0.0000
D 0.0000 0.0005 0.0000 0.0005 0.0000 0.0000
E 0.0005 0.0000 0.0000 0.0005 0.0000 0.0005

Two breaks
F 0.0005 0.0000 0.0005 0.0005 0.0005 0.0005
G 0.0000 0.0000 0.0000 0.0020 0.0000 0.0005
H 0.0000 0.0000 0.0000 0.0005 0.0000 0.0000
I 0.0000 0.0010 0.0000 0.0010 0.0000 0.0005

Three breaks
J 0.0005 0.0010 0.0005 0.0010 0.0005 0.0000

Table 13 – Percentage of conditional Christoffersen’s test statistics under 1% p-value
(rejected tests)

in which the null rejection rates were much larger than the nominal levels: (1) in Table 14,

models H (n = 360,720,1080), I (n = 360,720) and B (n = 1080), for τ = 5%, and models D

(n = 720,1080), C, H and I (n = 1080), for τ = 1%; (2) in Table 15, model H (n = 720,1080),

for τ = 5%.

The conditional test was realized by considering the order ` equal to 3 and 5 (Tables

16 and 17, and, 18 and 19, respectively). In general, the test seems to be conservative. However,

in some scenarios it presented a very liberal behavior: (1) in Table 16, models C, H, I, J

(n = 360,720,1080), and B (n = 1080), for τ = 5%, and, D (n = 720,1080), for τ = 1% ; (2)

in Table 17, models C, H, I, J (n = 720,1080), and B (n = 1080), for τ = 5%; (3) in Table 18,

models C, H, J (n = 360,720,1080), and B, D, I (n = 720,1080), for τ = 5%, and, D, F, G

(n = 720,1080), for τ = 1%; (4) in Table 19, models C (n = 360,720,1080), and B, D, H, J

(n = 720,1080), for τ = 5%, and, D, G (n = 1080), for τ = 1%.
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No breaks
Models n = 360 n = 720 n = 1080

τ = 5% τ = 1% τ = 5% τ = 1% τ = 5% τ = 1%
A 0.0005 0.0015 0.0000 0.0005 0.0000 0.0020

One break
B 0.0090 0.0010 0.0625 0.0035 0.2665 0.0065
C 0.0790 0.0015 0.0460 0.0540 0.0190 0.2285
D 0.0005 0.0080 0.0000 0.1665 0.0000 0.1920
E 0.0010 0.0020 0.0005 0.0065 0.0005 0.0085

Two breaks
F 0.0005 0.0045 0.0000 0.0305 0.0000 0.0260
G 0.0005 0.0030 0.0005 0.0185 0.0000 0.0150
H 0.1765 0.0010 0.3980 0.0320 0.3540 0.0955
I 0.1020 0.0020 0.1080 0.0545 0.0800 0.2340

Three breaks
J 0.0010 0.0015 0.0005 0.0035 0.0095 0.0000

Table 14 – Null rejection rates in unconditional GMM test and 5% nominal level.

No breaks
Models n = 360 n = 720 n = 1080

τ = 5% τ = 1% τ = 5% τ = 1% τ = 5% τ = 1%
A 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

One break
B 0.0005 0.0000 0.0000 0.0000 0.0010 0.0000
C 0.0035 0.0000 0.0185 0.0000 0.0045 0.0005
D 0.0000 0.0000 0.0000 0.0000 0.0000 0.0360
E 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Two breaks
F 0.0000 0.0000 0.0000 0.0000 0.0000 0.0030
G 0.0000 0.0000 0.0000 0.0005 0.0000 0.0015
H 0.0035 0.0000 0.1420 0.0000 0.2500 0.0015
I 0.0015 0.0000 0.0220 0.0000 0.0215 0.0015

Three breaks
J 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 15 – Null rejection rates in unconditional GMM test and 1% nominal level.
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No breaks
Models n = 360 n = 720 n = 1080

τ = 5% τ = 1% τ = 5% τ = 1% τ = 5% τ = 1%
A 0.0000 0.0015 0.0040 0.0000 0.0040 0.0000

One break
B 0.0010 0.0010 0.0595 0.0010 0.2230 0.0005
C 0.0675 0.0025 0.3070 0.0140 0.4685 0.0375
D 0.0125 0.0120 0.0650 0.1030 0.0885 0.1865
E 0.0005 0.0015 0.0200 0.0030 0.0320 0.0025

Two breaks
F 0.0015 0.0095 0.0125 0.0310 0.0165 0.0375
G 0.0015 0.0095 0.0075 0.0325 0.0180 0.0395
H 0.0180 0.0015 0.5090 0.0070 0.7890 0.0145
I 0.0155 0.0020 0.1130 0.0100 0.3260 0.0360

Three breaks
J 0.0005 0.0030 0.1875 0.0060 0.3625 0.0120

Table 16 – Null rejection rates in conditional GMM test with `= 3 and 5% nominal level.

No breaks
Models n = 360 n = 720 n = 1080

τ = 5% τ = 1% τ = 5% τ = 1% τ = 5% τ = 1%
A 0.0000 0.0000 0.0030 0.0000 0.0030 0.0000

One break
B 0.0000 0.0000 0.0485 0.0000 0.1915 0.0000
C 0.0410 0.0000 0.2595 0.0005 0.4290 0.0015
D 0.0090 0.0000 0.0485 0.0050 0.0640 0.0415
E 0.0005 0.0000 0.0170 0.0000 0.0260 0.0000

Two breaks
F 0.0000 0.0000 0.0075 0.0010 0.0110 0.0075
G 0.0010 0.0000 0.0035 0.0015 0.0130 0.0055
H 0.0060 0.0000 0.2480 0.0000 0.6280 0.0005
I 0.0005 0.0000 0.0575 0.0005 0.2630 0.0010

Three breaks
J 0.0005 0.0000 0.1585 0.0000 0.3210 0.0000

Table 17 – Null rejection rates in conditional GMM test with `= 3 and 1% nominal level.

4.2.2 Qu’s structure change test

For the Qu’s test we analyzed the rates of null hypothesis rejection (no breaks) and

the power of the test (one, two and three breaks). The results are shown in Tables 20 (5%
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No breaks
Models n = 360 n = 720 n = 1080

τ = 5% τ = 1% τ = 5% τ = 1% τ = 5% τ = 1%
A 0.0050 0.0040 0.0170 0.0040 0.0155 0.0030

One break
B 0.0080 0.0035 0.1095 0.0015 0.2765 0.0045
C 0.1930 0.0121 0.5815 0.0225 0.7980 0.0515
D 0.0885 0.0541 0.2270 0.2280 0.3230 0.4595
E 0.0190 0.0060 0.0565 0.0065 0.0800 0.0205

Two breaks
F 0.0260 0.0256 0.0480 0.0850 0.0655 0.1585
G 0.0235 0.0286 0.0460 0.1010 0.0685 0.1795
H 0.0865 0.0121 0.4685 0.0085 0.8715 0.0160
I 0.0185 0.0101 0.3295 0.0215 0.6535 0.0320

Three breaks
J 0.0980 0.0110 0.4865 0.0300 0.7545 0.0675

Table 18 – Null rejection rates in conditional GMM test with `= 5 and 5% nominal level.

No breaks
Models n = 360 n = 720 n = 1080

τ = 5% τ = 1% τ = 5% τ = 1% τ = 5% τ = 1%
A 0.0020 0.0005 0.0095 0.0015 0.0090 0.0000

One break
B 0.0025 0.0010 0.0850 0.0010 0.2410 0.0000
C 0.1410 0.0000 0.4715 0.0015 0.7165 0.0100
D 0.0485 0.0045 0.1535 0.0675 0.2320 0.2800
E 0.0085 0.0010 0.0350 0.0015 0.0510 0.0080

Two breaks
F 0.0105 0.0080 0.0300 0.0285 0.0350 0.0670
G 0.0135 0.0075 0.0210 0.0350 0.0375 0.0955
H 0.0530 0.0010 0.3535 0.0010 0.6320 0.0025
I 0.0035 0.0000 0.2100 0.0015 0.5360 0.0050

Three breaks
J 0.0385 0.0020 0.3865 0.0075 0.6605 0.0155

Table 19 – Null rejection rates in conditional GMM test with `= 5 and 1% nominal level.

nominal level) and 21 (1% nominal level). The rates of null hypothesis rejection presented

greater than the nominal levels when τ = 1% and n = 360,720. In the other cases, the rates

were close to nominal levels. The power of the test was high in many scenarios. However,
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considering 1% nominal level (Table 21), the simulations show very small powers for some

scenarios in models B (τ = 1%,n = 360,720), E (τ = 5%,n = 360,720; τ = 1%,n = 1080), F

(τ = 5%,n = 360,720), G (τ = 5%,n = 360), H (τ = 1%,n = 360), I (τ = 5%,n = 360,720;

τ = 1%,n = 360,720,1080), and J (τ = 5%,n = 360; τ = 1%,n = 720,1080).

No breaks
Models n = 360 n = 720 n = 1080

τ = 5% τ = 1% τ = 5% τ = 1% τ = 5% τ = 1%
A 0.0525 0.1710 0.0510 0.1075 0.0620 0.0785

One break
B 0.4070 0.1300 0.9085 0.1085 0.9875 0.1630
C 0.7570 0.3000 0.9760 0.7125 0.9995 0.9585
D 0.4170 0.4590 0.7475 0.7005 0.9105 0.8440
E 0.1325 0.2135 0.2000 0.1700 0.2960 0.1875

Two breaks
F 0.1640 0.2885 0.2270 0.2625 0.3520 0.2825
G 0.2060 0.3645 0.3200 0.3400 0.5065 0.3925
H 0.9485 0.2480 1.0000 0.6185 1.0000 0.9830
I 0.0510 0.1025 0.4055 0.0405 0.7015 0.0310

Three breaks
J 0.1480 0.1865 0.3995 0.1685 0.6570 0.1845

Table 20 – Null rejection rates in Qu’s test results. 5% nominal level was considered.

No breaks
Models n = 360 n = 720 n = 1080

τ = 5% τ = 1% τ = 5% τ = 1% τ = 5% τ = 1%
A 0.0125 0.0805 0.0075 0.0325 0.0115 0.0175

One break
B 0.1050 0.0675 0.7630 0.0360 0.9625 0.0420
C 0.5715 0.1140 0.9285 0.3255 0.9975 0.8270
D 0.1970 0.2910 0.4950 0.4825 0.7360 0.7065
E 0.0470 0.1165 0.0605 0.0605 0.1155 0.0670

Two breaks
F 0.0530 0.1835 0.0830 0.1345 0.1455 0.1255
G 0.0800 0.2390 0.1345 0.1865 0.2555 0.1965
H 0.8560 0.0975 0.9960 0.2400 1.0000 0.6985
I 0.0060 0.0475 0.1260 0.0110 0.4130 0.0080

Three breaks
J 0.0530 0.1030 0.1665 0.0670 0.4020 0.0705

Table 21 – Null rejection rates in Qu’s test results. 1% nominal level was considered.

Figures 10 (models B to E) and 11 (models F to J) show simulated process (left

charts) and the corresponding λ -histograms (right charts). In Figure 10, model E presented a

more volatile process and the corresponding λ -histogram identified the true brake point very

well. This fact also happened for models B, C and D. In Figure 11, models F and G, λ -histogram

identified the second brake point. The λ -histogram of model H identified the first break point.

The two breaks were well identified in Model I and the λ -histogram identified only two points in

model J.
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Figure 10 – Single break models (B to E), top-down. A single model simulation(left) and
the histogram of λ relative position of its break points when it is rejected

Qu’s test hypothesis given τ = 5% and n = 1080(right).
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Figure 11 – Multi break models (F to J), top-down. A single model simulation(left) and
the histogram of λ relative position of its break points when it is rejected

Qu’s test hypothesis given τ = 5% and n = 1080(right).
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5 CONCLUSION

Quantile regression provides a framework to cope with Value-at-Risk methodology.

In this sense, this is a robust method, with distribution free, so valuable when dealing with

financial time series. Regarding the applied part of this work, where we used many different

ETFs returns during the Subprime mortgage crisis, our investigation concludes in favor to

Qu’s test capacity to detect structural changes in real data. However, this empirical study

did not conclude positively from the widely used coverage tests (CHRISTOFFERSEN, 1998;

CANDELON et al., 2010). This motivated our simulation study.

In the simulation analysis we considered two thousand Monte Carlo replications from

ten different linear ARCH(2) processes which represent several simulation scenarios focusing

on designing simulated data behaving similar to the ETFs and presenting structural break points.

We estimated VaR at 1% and 5% levels and analyzed the null rejections rates of the coverage

tests as well as the power of QU’s test. Between the main conclusions we highlight that the

coverage tests behaved as very conservatives. Qu’s structural change test performed a notable

power in almost all model proposed during the simulation. However it was noted that its power

might be severely downgraded in some kinds of series structures like those showing clusters, so

common in financial time series. Anyway, in our simulations, Qu’s test retained yet a significant

power in these cluster situations. It was also noted in the multiple break models with similar

traits a tendency of detect break in the middlemost break.

As a future work we suggest a theoretical development on Christorfesen’s and

GMM’s null statistics in order to incorporate adjusts to make them dealing with structural breaks,

improving null rejection rates of these tests.
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