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ABSTRACT

In this dissertation, we consider an important class of regression models, namely: the

class of generalized extreme value nonlinear regression models. Such models are commonly

used in many fields to model extremal events. The main model foundations involve extreme value

theory, which provides underlying laws for scenarios in which the data may contain atypical

observations which results from the phenomenon of interest and not the result of measurement

or recording error. In particular, we develop residual based diagnostic analysis, local influence

analysis, generalized Cook’s distance and generalized leverage for the generalized extreme value

nonlinear regression model. Since the expected value of the dependent variable is determined by

the two parameters that index the distribution, we model each parameter separately and also both

parameters jointly, thus considering three possible scenarios. Additionally, we present a model

misspecification test that can be used to determine whether the fitted model is incorrectly specified.

We provide Monte Carlo simulation results on the finite sample behavior of the test. The results

show that the test performs well both in terms of size and power. The size simulations were

performed by generating the data from the postulated model whereas in the power simulations the

fitted model is different from that used for data generation. The local influence analysis is carried

out using three different perturbation schemes. We show that the diagnostic procedures that

focus on the scale parameter are typically less stable and more computationally challenging than

that on the other model parameter. We also propose two residuals for use with the model: the

standardized and deviance residuals. Empirical applications based on simulated and observed data

are presented and discussed. All numerical results were obtained using the Julia programming

language.

Keywords: Extreme value theory. Influence analysis. Misspecification test. Nonlinear regression.

Outlier.



RESUMO

A presente dissertação considera uma importante classe de modelos de regressão, a

saber: a classe de modelos de regressão generalizados de valores extremos não-linear. Esses

modelos são comumente utilizados em diversos campos do conhecimento para modelar eventos

extremos. A fundamentação principal do modelo envolve a teoria de valores extremos, que propõe

técnicas de modelagem a serem usadas em cenários em que os dados podem conter observações

atípicas, resultantes do fenômeno de interesse e não de erro de medição. Em particular, na

presente dissertação, nós desenvolvemos análise de diagnóstico baseada em resíduos, análise de

influência local, distância de Cook generalizada e alavancagem generalizada para o modelo de

regressão generalizado de valores extremos não-linear. Uma vez que o valor esperado da variável

dependente é determinado pelos dois parâmetros que compõem a distribuição, modelamos cada

um dos parâmetros separadamente e também conjuntamente, considerando, assim, três possíveis

cenários. Também apresentamos um teste de especificação correta. A hipótese nula é a de que

o modelo está corretamente especificado e a hipótese alternativa é a de que a especificação do

modelo está incorreta. Apresentamos resultados de simulação de Monte Carlo que mostram que

o teste proposto funciona bem em amostras finitas, apresentando baixas distorções de tamanho

e poder elevado. As simulações de tamanho foram realizadas gerando-se os dados do modelo

postulado, enquanto que nas simulações de poder o modelo ajustado difere do modelo do qual

os dados foram gerados. A análise de influência local é desenvolvida a partir de três esquemas

distintos de perturbação dos dados. Mostramos que as técnicas de diagnóstico que focam no

parâmetro de escala são tipicamente menos estáveis e mais árduas computacionalmente que as

que focam no outro parâmetro. Dois novos resíduos são também propostos, a saber: o resíduo

padronizado e o resíduo desvio. Aplicações empíricas baseadas em dados simulados e reais são

apresentadas e discutidas. Todos os resultados numéricos foram obtidos utilizando a linguagem

de programação Julia.

Palavras-chave: Análise de influência. Outlier. Regressão Não-Linear. Teoria de valores

extremos. Teste de especificação incorreta.
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1 ESTIMATION AND INFERENCE IN GENERALIZED EXTREME VALUE MOD-

ELS

1.1 INTRODUCTION

Extreme value theory is an important tool for modeling certain phenomena and has

been gaining attention in recent years. (COLES; PERICCHI; SISSON, 2003) discuss the growing

dissatisfaction with the standard methodology for modeling extreme values. The classic approach

consists of adopting an asymptotic model to describe stochastic variation at extreme occurrences

of a process. It ignores possible errors at interpretation and may lead to inaccurate inferences.

Also, the standard asymptotic theory is not valid, for example, for studying extreme quantiles. In

several applications, the interest lies in the maximum (or minimum) sample value, which renders

the distribution of such a random variable important. Additionally, extreme value theory is useful

when the sample contains an atypical observation, which is considered to be a faithful realization

of the phenomenon under study, and not the result of a data recording error. The main idea of

(GUMBEL, 1935) was to propose three distributions for such random variables that are valid as

the number of data points increases.

Most of the works that make use of extreme values distribution aim at modeling

natural phenomena: flood frequency (ROSSI; FIORENTINO; VERSACE, 1984; WAYLEN;

WOO, 1982), wind load (SIMIU et al., 2001), industrial management (WANG; DEY, 2010;

CALABRESE; OSMETTI, 2013). There are also applications in medicine (PARK; SOHN, 2006).

(COLES; PERICCHI; SISSON, 2003) showed the improvements when the extreme value theory

is adopted instead of the classical approach. There are also applications for mixture of extreme

values distribution (WAYLEN; WOO, 1982; YUE et al., 1999).

Let Y1,Y2, . . . ,Yn be a sequence of independent and identically distributed random

variables with distribution FY (y) and let Mn = max(Y(1),Y(2),Y(3), . . . ,Y(n)). The distribution for

Mn is given by FMn(y) = FY (y)n. The extreme value distribution G arises when it is possible to

obtain real-valued sequences an and bn such that

IP
(

Mn−bn

an
≤ y
)
= FY (any+bn)

n→ G(y). (1.1)

This property is called ’max stability’. The limiting distribution may assume three forms, namely

• Gumbel (Extreme Value type I):
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F(y) = e−e−
y−µ

σ
, y ∈ IR;

• Fréchet (Extreme Value type II):

F(y) = e−(
y−µ

σ )
−ε

, ε > 0 and y ∈ (µ−σ/ε,∞);

• Reversed Weibull (Extreme Value type III):

F(y) = e−(
µ−y

σ )
ε

, ε < 0 and y ∈ (−∞,µ−σ/ε).

The parameters µ ,σ ,ε are, respectively, location, scale and shape parameters. Here,

µ ∈ IR, σ > 0. Figure 1 shows density curves for some parameters values for GEV distribution,

illustrating the extreme values distributions presented in this section. (LITTELL, 2006) shows

that the corresponding sequences in (1.1) for each member of extreme value distribution family

are:

I : an = 1 and bn =− logn,

II : an = n−1/ε and bn = 0,

III : an = n1/ε bn = 0.

It is noteworthy that extreme value theory can be applied to minimal values after a

change of sign (−Y ). In that case, it is possible to obtain the distributions of minimal values

(KOTZ; NADARAJAH, 2000).

The Gumbel distribution is more often used than the Fréchet distribution or the

reversed Weibull distribution. A decisive factor in the choice between such distributions is the

difficulty in estimating the parameter ε . In Fréchet or reversed Weibull cases, the estimation of ε

usually occurs by choosing values in the interval [−0.5,0)∪ (0,0.5].

Extreme value modeling has seen many improvements since Gumbel’s original

proposal. The generalized extreme value (GEV) distribution proposed by (JENKINS, 1955)

covers the three distributions previously mentioned, by considering restrictions on the parameter

space. Other noteworthy developments on the GEV distribution are some criteria that can be
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used to select one of the three extreme value distributions (HOSKING, 1984) and a multivariate

extension proposed by (ESCALANTE-SANDOUAL, 1998).

This chapter unfolds as follows. Section 1.2 presents the generalized extreme value

distribution. We show different parameters estimation approaches in Section 1.3. Section

1.4 presents a useful hypothesis test for extreme value distribution selection. Some empirical

applications based on observed and simulated data are presented in Section 1.5. Finally, some

concluding remarks are presented in Section 1.6.

1.2 THE GENERALIZED EXTREME VALUE (GEV) DISTRIBUTION

Initially introduced by (JENKINS, 1955), the GEV distribution covers the three main

extreme value distributions. The cumulative probability function (cdf) and the probability density

function (pdf) of a random variable Y that follows the GEV (µ,σ ,ε) law are given, respectively,

by

F(y) =


e−1+ε((y−µ)/σ))−1/ε

, I(−∞,µ−σ/ε](y) for ε < 0,

I[µ−σ/ε,∞)(y) for ε > 0,

e−e−(y−µ)/σ

, I(−∞,∞)(y) for ε = 0,

and

f (y) =


e−(1+ε((y−µ)/σ))−1/ε 1

σ

{
1+ ε

(
y−µ

σ

)}− 1
ε
−1
× I(−∞,µ−σ/ε](y) for ε < 0,

× I[µ−σ/ε,∞)(y) for ε > 0,

e−e−(y−µ)/σ 1
σ

e−(y−µ)/σ× I(−∞,∞)(y) for ε = 0.

When ε = 0 the GEV distribution reduces to the Gumbel distribution. The other

two distributions are the Fréchet distribution, which corresponds to ε > 0, and the reversed

Weibull distribution, which corresponds to ε < 0. (KOTZ; NADARAJAH, 2000) showed that

the standard GEV distribution can be obtained by taking z = (y−µ)/σ and making the proper

changes to the parameter space.

The value of the parameter ε determines most of common statistical measures such

as, for example, the mean and the variance:

IE(Y ) =


µ +σ(Γ(1− ε)−1)/ε if ε < 1,

µ +σγ if ε = 0,

∞ if ε ≥ 1,
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and

Var(Y ) =


σ2(Γ(1−2ε)− (Γ(1− ε))2)/ε2 if ε < 1/2,
π2σ2

6 if ε = 0,

∞ if ε ≥ 1/2.

Here, γ is the Euler constant, which is approximately equal to 0.5772. Several restrictions on

GEV exists for restricted values of ε . When ε > 1/2 the second and higher moments do not exist.
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Figure 1 – GEV (µ,σ ,ε) densities for some parameter values.
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When the shape parameter equals zero, the GEV distribution is closed by basic

constant operations (sum and product), which means that if Y ∼ GEV (µ,σ ,0), then Z = aY +b

is distributed as GEV (aµ +b,aσ ,0).

TheGEVdistribution (in theGumbel case) is closely related to the logistic distribution.

Let Y1,Y2 ∼ GEV (µ,σ ,0). Using, for example, the moment generating function we obtain that

Y1−Y2 ∼ Logistic(0,σ).

(III, 1975) showed that the generalized Pareto distribution can be used as an alternative to the

GEV law. This distribution covers the Pareto, exponential and uniform distributions. (BALI,

2003) generalized both generalized distributions by using the Box-Cox transformation formula,

thus arriving at the Box-Cox-generalized extreme value distribution.

The maximum likelihood estimators of the parameters that index the GEV distribution

cannot be expressed in closed-form. Estimates can be obtained by using numerical methods. The

estimation presents some problems for ε , due to parametric restrictions. (LITTELL, 2006) shows

that if ε <−1 the maximum likelihood estimator does not exist; when−1 < ε < 0 and 0 < ε < 1,

the estimation is difficult since the contour curves show flat regions as in Figure 2. Finally,

when ε = 0 the curves are more defined, which renders the directions produced by quasi-Newton

methods more accurate, thus making estimation process easier.
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Figure 2 – Contour curves of the GEV profile likelihood for µ and σ .
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The contour curves for the Gumbel distribution (ε = 0) show a regular scenario with

well defined curves. However, the profile likelihood function shows a region apparently flat for

critical values of ε , which may make the optimization process fail to converge.

(LITTELL, 2006) notes that most papers use values between −1/2 and 1/2, thus

avoiding numerical optimization instabilities. However, this difficulty does not make the GEV

distribution useless,since the generalize extreme value distribution can explain certain phenomena

better than the Gumbel distribution as shown by (COLES; PERICCHI; SISSON, 2003).

Probability weighted moments estimation for the GEV distribution (HOSKING;

WALLIS; WOOD, 1985) is a good alternative to maximum likelihood estimation for small sample

sizes and when information on ε is not available. Other good alternatives are the method of

moments, the ranked set estimation method (KOTZ; NADARAJAH, 2000) and generalized least

squares (PARK; SOHN, 2006).

1.3 GEV PARAMETER ESTIMATION

1.3.1 The maximum likelihood method

Themaximum likelihood estimator enjoys, under regularity conditions (SEN; SINGER;

LIMA, 2009), desirable asymptotic properties: consistency, asymptotic efficiency and asymptotic

normality. LetY= (y1,y2, . . . ,yn)
> be a vector of independent and identically distributed random

variables, each following the generalized extreme value distribution. Let di = ε(yi−µ)/σ . The

log-likelihood function is given by

`(µ,σ ,ε|y) =−
n

∑
i=1

(1+di)
− 1

ε −n log(σ)+

(
−1

ε
−1
) n

∑
i=1

log(1+di) .

Differentiating the log-likelihood function with respect to each parameter, we obtain

the score function Uν = (Uµ ,Uσ ,Uε)
>, where

Uµ =
∂`

∂ µ
=− 1

σ

n

∑
i=1

(1+di)
− 1

ε
−1 +

(
1+ ε

σ

) n

∑
i=1

1
1+di

,

Uσ =
∂`

∂σ
=

n

∑
i=1

di

εσ
(1+di)

− 1
ε
−1− n

σ
+

(
−1

ε
−1
) n

∑
i=1

−di

σ(1+di)
,

Uε =
∂`

∂ε
=

n

∑
i=1
−(1+di)

1
ε
−1
[
(1+di)

1
ε2 log(1+di)+

1
ε

(
di

ε

)]
+

+
1
ε2

n

∑
i=1

log(1+di)+

(
−1

ε
−1
) n

∑
i=1

di

ε(1+di)
.
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The above system of equations cannot be solved analytically. Parameter estimates can be obtained

by numerically maximizing the log-likelihood function using a Newton or a quasi-Newton method.

Some numerical methods require the Hessian matrix or Fisher’s information matrix, such as,

for example the Newton-Raphson method and Fisher’s scoring method. Both matrices can be

found, for example, in (SHI, 1995). Some references on maximum likelihood estimation on GEV

distribution are (PRESCOTT; WALDEN, 1980) and (HOSKING; WALLIS; WOOD, 1985), who

propose initial values for the parameters when using numerical optimization methods.

A GEV Bayesian estimation approach was outlined by (MARTINS; STEDINGER,

2000). The authors use the beta distribution as the a priori distribution for the shape param-

eter, thus avoiding some computational problems, such as convergence by local maximum or

non-convergence. (PRESCOTT; WALDEN, 1983) consider GEV parameter estimation under

censoring.

1.3.2 The method of moments

The method of moments estimators can be obtained as the solution to a system of

equations obtained by equating population and sample moments. Oftentimes, this solution is

explicit, in contrast to the maximum likelihood method. However, the method of moments

estimators does not enjoy the same proprieties of the maximum likelihood estimator. In particular,

it shows a lack of efficiency.

(MARTINS; STEDINGER, 2000) showed that the system of equations that is used

in generalized extreme value estimation is

µ̃ = Y − σ̃

ε̃
{1−Γ(1+ ε̃)},

σ̃ =
S|ε̃|

{Γ(1+2ε̃)− [Γ(1− ε̃)]2}1/2 ,

κ = sign(ε̃)
−Γ(1+3ε̃)+3Γ(1+ ε̃)Γ(1+2ε̃)−2[Γ(1+ ε̃)]3

{Γ(1+2ε̃)− [Γ(1− ε̃)]2}3/2 ,

where Y , S and κ are, respectively, the sample mean, the standard deviation and the sample

skewness and µ̃ , σ̃ and ε̃ are the method of moments estimators of µ , σ and ε , respectively. The

last equation does not admit a explicit solution, requiring an iterative method. Recall that for

certain values on ε the moments are not finite. Consider the GEV type I (Gumbel) distribution.

When the shape parameter equals zero, (KOTZ; NADARAJAH, 2000) showed that

σ̃ =

√
6

π
S and µ̃ = Y − γσ̃ .
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By comparing the variance formulas proposed by (OLIVEIRA, 1963) with the Cramér-Rao lower

bounds (CORSINI et al., 1995), (KOTZ; NADARAJAH, 2000) concluded that the estimator

for µ has about 95% efficiency whereas the estimator for σ has efficiency of only 55%. For the

Fréchet distribution, the system of equations used with the method of moments is presented by

(SINGH, 1998). An alternative was given by (HILL, 1975), which presented a estimator for

shape parameter when it is known that ε > 0. The Hill estimator is given by

M(1)
n =

1
k

k−1

∑
i=0

logyn−i− logyn−k (k < n),

where k = k(n) is a sequence of integer numbers, such as yn−k
IP→ n/k. Based on Hill estimator,

(DEKKERS; EINMAHL; HAAN, 1989) proposed an alternative estimation strategy. The

estimator is given by

ε̃ = M(1)
n +

1
2

{
1− (M(1)

n )2

M(2)
n

}−1

,

where

M( j)
n =

1
k

k−1

∑
i=0

(logY(n−i)− logY(n−k))
j

The authors list the sufficient conditions for consistency. Assume the max stability

property. Then:

• If y∗(F)> 0, k(n)/n→ 0, and lim
n→∞

k(n)→ ∞, then lim
n→∞

ε̃
IP→ ε .

• If y∗(F)> 0, k(n)/n→ 0, and lim
n→∞

k(n)/(logn)δ → ∞ for some δ > 0, then lim
n→∞

ε̃
a. s→ ε .

Here, y∗(F) = sup{y|F(y)< 1} and y∗(F)> 0. If such conditions are satisfied, then ε̃ can be

used free of parametric restrictions.

1.3.3 The probability-weighted moments method

The probability-weighted moment (PWM) of a random variable Y with cdf F(·) is

given by

Mp,r,s = IE[Y p{F(Y )}r{1−F(Y )}s],

where p, r and s are real numbers. PWM’s are particularly useful when the quantile function

y(F) can be expressed in closed-form. It has some particular cases when r or s can be equal to

zero. When both r and s equal zero Mp,r,s reduces to IE[Y p]. Based on the probability-weighted

moments, (GREENWOOD et al., 1979) proposed the probability-weighted moments method.
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This method is similar to the moments method but the usual sample moments are replaced by

probability weighted moments.

In order to use the method proposed, we consider the moment τr = M1,r,0 which is

estimated by

τ̂r[pi,n] =

n
∑

i=1
pr

i,ny(i)

n
.

pi,n is a plotting position, a distribution-free estimate of F(yi). Reasonable candidates for pi,n

are (i−a)/n, 0 < a < 1, (i−a)/(n+1−2a), −0.5 < a < 0.5, and

pi,n =
i−1
n−1

.

The method consists of evaluating the first p expressions for τ (for a distribution

with p parameters), constructing a system of equations, and then solving it to obtain parameters

expressions that are functions of τ0, . . . ,τp−1.

For the generalized extreme value distribution, the inverse distribution function

(quantile function) is

y(F) = µ +σ{1− (− logF)ε}/ε when ε 6= 0.

If ε = 0, we obtain

y(F) = µ−σ(− logF).

The GEV rth probability-weighted moment for ε 6= 0 is given by

τr =
µ +σ{1− (r+1)−εΓ(1+ ε)}/ε

r+1
, ε >−1.

The restriction ε >−1 is adopted to avoid the nonexistence of moments. It follows that

τ0 = µ +(σ{1−Γ(1+ ε)}/ε)

2τ1− τ0 = σΓ(1+ ε)(1−2−ε)/ε

3τ2− τ0

2τ1− τ0
=

1−3−ε

1−2−ε
.

The last equation requires the use of an iterative method to be solved. However, the term on the

right hand side is almost linear and can be approximated by a low-order polynomial function. By

doing so, we obtain (HOSKING; WALLIS; WOOD, 1985)



23

µ̈ = τ̂0 + σ̈{Γ(1+ ε̈)−1}/ε̈,

σ̈ =
(2τ̂1− τ̂0)ε̈

Γ(1+ ε̈)(1−2−ε̈)
,

ε̈ = 7.8590c+2.9554c2,

where

c =
2τ̂1− τ̂0

3τ̂2− τ̂0
− log2

log3

and µ̈ , σ̈ and ε̈ are the probability-weighted moments estimators of µ , σ and ε , respectively.

Using the quantile function for the case where ε = 0, i.e., the Gumbel distribution quantile

function, the estimators are

µ̈ = τ̂0− γσ̈ ,

σ̈ =
2τ̂1− τ̂0

log(2)
.

The results in (CHERNOFF; GASTWIRTH; JOHNS, 1967) may be used to prove that

the vector of estimators (µ̈, σ̈ , ε̈) is asymptotically normally distributed. The probability-weighted

moments method is recommended when the sample size is small. (HOSKING;WALLIS; WOOD,

1985) presented an application which makes use of MLE inaccurate in empirical applications,

due to nonregularity of the log-likelihood function, causing ocasional nonconvergence of Newton-

Raphson method . Occasionally, the probability-weighted moments estimator offers smaller

standard deviations for estimators than maximum likelihood estimators.

1.4 GEV HYPOTHESIS TESTING INFERENCES

It is sometimes useful to check whether the assumed distribution is valid. Most

of studies find that the generalized extreme value distribution is more adequate than another

arbitrary continuous distribution (F). For this test the hypothesis are

H0 : F is a member of the GEV class of distributions

H1 : F is not a member of the GEV class of distributions.

When the null hypothesis is not rejected, the researcher may proceed to the next test, which is

used to identify which distribution (Gumbel, Fréchet or reversed Weibull) is most appropriate.
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Let Y= (y1,y2, . . . ,yn)
∗ be a random sample. The test statistic proposed by (KOTZ;

NADARAJAH, 2000) is

φn(Y) =
√

n min
a,b

max
y
|Fn(y)−F2

n (ay+b)|,

where Fn(y) is the empirical distribution function. The motivation behind this statistic lies in the

max stability property; see Equation (1.1). (KOTZ; NADARAJAH, 2000) showed that

IP(φn(y)> r)≤ IP
(√

n min
n

max
y∈{y1,...,yn}

|Un(y)−U2
n (y

a)|> r
)
,

whereUn denotes the empirical distribution function of a random sample taken from the standard

uniform distribution. The authors used the fact that U(y) =U2(
√

y) and constructed a table of

critical values for the test, which can be found in (KOTZ; NADARAJAH, 2000). The test is

typically conservative in finite samples thus rejecting the null hypothesis when is true less often

than expected for ε ≥−1 (the regular case). The test becomes less size-distorted as σ increases.

When the null hypothesis of the test presented above is not rejected it is useful to

perform a separate test in order to identify which particular GEV distribution should be used.

(LITTELL, 2006) showed that

Type I (Gumbel): has been applied to meteorological extremes to model extremely high tem-

peratures and predict high return levels of wind speed.

Type II (Fréchet): has been used to estimate probabilities of extreme occurrences on Germany’s

stock index and to predict behavior of solar proton peak fluxes.

Type III (R.Weibull): has been used to partitioning and floorplanning problems, window glasses

and for assessing the magnitude of future earthquakes.

The sign of the shape parameter is the indicator of the distribution type, since ε = 0, ε > 0 and

ε < 0 imply types I, II and III respectively. (HOSKING, 1984) introduced six test statistics that
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can be used to test H0 : ε = 0 (Gumbel) against H1 : ε 6= 0 (not Gumbel), namely:

TLR = 2{L(y; ν̂)−L(y; ν̃)},

T ∗LR = (1−2.8/n)TLR,

TW = n−1
ε̂

2/F̂33,

T ∗W = n−1
ε̂

2/Î33,

TLM = n−1F̃33d̃2,

T ∗LM = n−1Ĩ33d̃2,

d̃ =
n

∑
i=1
{ẑi + ẑ2

i /2(exp(−ẑi)−1),

where L(y;ν) is the likelihood function, F33 and I33 are the (3,3) elements of Fisher’s information

matrix and from the observed information matrix, respectively, which are given by (PRESCOTT;

WALDEN, 1980), and zi = (yi−µ)/σ . Hats indicate evaluation under the alternative hypothesis

and tildes indicates evaluation under the null hypothesis. The six test statistics presented above are

asymptotically equivalent under the null hypothesis. When H0 is true, they are all asymptotically

distributed as χ1.

It is possible to use, multiplying by the sign function to avoid negative occur-

rences, T 1/2
LR , T ∗LR

1/2, T 1/2
W , T ∗W

1/2, T 1/2
LM , T ∗LM

1/2 to test H0 : ε = 0 (Gumbel) against H2 : ε <

0 (R. Weibull) or H0 : ε = 0 (Gumbel) against H3 : ε > 0 (Fréchet), which makes possible to

select the exact extreme value distribution. Under null hypothesis, such test statistics have a

limiting standard normal distribution. Positive deviations are taken as evidence that ε > 0 and

negative deviations are taken as evidence that ε < 0. Standard normal one-tailed critical values

may be used accordingly.

The simulation results presented by (HOSKING, 1984) show different results for

each alternative hypothesis: For H1, the test based on sign(T ∗LR)T
∗

LR
1/2 is the least biased, and the

tests based on T ∗LM, T ∗W are liberal; for H2, the tests that use sign(T ∗LR)T
∗

LR
1/2 and sign(T 1/2

LM )T 1/2
LM

have almost the same performance. Finally, for H3, the test based on the statistic sign(T ∗LR)T
∗

LR
1/2

has good performance.

1.5 EMPIRICAL APPLICATIONS

In what follows we shall present some empirical applications. As shown in Figure 2,

parameter estimation for type II and III distributions can be problematic. Hence, we shall only

consider the Gumbel (i.e., type I) distribution. Parameter estimates are obtained as described
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in previous sections. Standard errors are obtained using the parametric bootstrap method with

5000 replications and compared, for the maximum likelihood method, to those obtained from the

expected (I f ) and observed (∇a) information matrices. All computations were carried out using

the Julia programming language. (BEZANSON et al., 2017). The data used in this Section can

be found in (CASTILLO, 1988).

1.5.1 Precipitation data

We use data on the yearly total precipitation in Philadelphia for the last 40 years,

measured in inches. The aim of the analysis relates to drought risk determination. Table 1

contains some descriptive statistics. We note the large kurtosis (leptokurtic distribution) and the

negative skewness.

Table 1 – Descriptive statistics, precipitation data.
Min Max Median Mean Variance Skewness Kurtosis

29.340 52.130 41.450 41.380 34.261 −0.278 2.180

Table 2 presents the parameter estimates and their respective standard errors. Note

that the three estimates for each parameter are similar.

Table 2 – Estimates (standard errors) for the precipitation data.
µ̂ µ̃ µ̈

38.423 (0.95595) 38.745 (0.97264) 38.559 (0.81706)
σ̂ σ̃ σ̈

5.717 (0.70678) 4.563 (0.92764) 4.886 (0.70564)

For maximum likelihood estimates, it is possible to compare the standard errors com-

puted by bootstrap to those obtained from Fisher’s information matrix and observed information

matrix. Such results are in Table 3

Table 3 – Standard errors, precipitation data.
µ̂ σ̂

I f 0.95184 0.70484
∇a 0.95983 0.66818

Figure 3 contains the data histogram and also the estimated densities obtained using

the three estimation methods. It is noteworthy that the density estimates obtained using the

method of moments and the probability weighted moments are similar.
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Figure 3 – Histogram of the precipitation data with the fitted densities obtained by the
maximum likelihood method (ML), method of moments (MM) and probability

weighted moments methods (PWM).

1.5.2 Epicenter data

We shall now model the distances, in miles, to a nuclear power plant of the most

recent 8 earthquakes of intensity larger than a given value. The analysis allows one to assess the

risk of earthquakes occurring close to the central site. In addition, it is known that a fault is the

main cause of earthquakes in the area, and the closest point of the fault is 50 miles.

Table 4 – Descriptive statistics from the epicenter data.
Min Max Median Mean Variance Skewness Kurtosis

58.200 238.900 155.200 144.543 3029.319 −0.034 1.761

Table 4 presents some descriptive statistics. The data variance is large, the skewness

is close to zero and the kurtosis is also small. The parameter estimates and their respective

standard errors are given in Table 5

Table 5 – Parameter estimates and standard errors, epicenter data.
µ̂ µ̃ µ̈

117.286 (6.87559) 119.773 (7.02376) 118.031 (6.40411)
σ̂ σ̃ σ̈

49.384 (4.98416) 42.9139 (6.56193) 45.932 (5.37179)

For maximum likelihood estimation, it is possible to obtain standard error from

Fisher’s information matrix. These results are given in Table 6.
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Table 6 – Standard errors for parameters of Gumbel distribution fitting on epicenter
data.

µ̂ σ̂

I f 6.71291 4.97092
∇a 6.75238 4.96471

The data histogram and the three estimated densities are presented in Figure 4. The

probability-weighted moments estimated density lies between the other two estimated densities.

50 100 150 200 250

0
.0

0
0

0
.0

0
4

0
.0

0
8

data

D
e

n
s
it
y

ML

MM

PWM

Figure 4 – Histogram of the precipitation data with the fitted densities obtained with
maximum likelihood method (ML), method of moments (MM) and probability

weighted moments methods (PWM).
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1.5.3 Simulated data

In the last application we use simulated data. Using the Mersenne-Twister algorithm

implemented in R (R Core Team, 2018), we simulated samples of sizes n= 20,40,60,80,100,150

and 200 from the standard uniform distribution and them applied the quantile function presented

in Section 1.3.3. The parameter values are µ = 2 and σ = 3.

The seed used was 341. We have used the Julia programming language (BEZANZON

et al., 2012) and also the statistical computing enviroment R (R Core Team, 2018) and the object-

oriented matrix programming language Ox (DOORNIK, 2007).

For each sample and each language we computed parameter estimates, standard

errors using observed and expected Fisher information and time elapsed (in seconds) for each

method. In Julia and R we used the L-BFGS-B method, a constrained version of BFGS using

a limited amount of computer memory and in Ox we used the BFGS method. The results are

presented in Table 7. The initial values are obtained using the method of moments. In all cases,

the analytic gradient is used.

In Julia, the algorithms took only two iterations for every sample size to find the

maximum likelihood estimate, the time elapsed being higher than that of Ox, but very close. The

Ox implementation is the fastest.

The implementation in R is the slowest. For sizes n = 20,40,60 and 80 the algorithm

did not converge. For the other sample sizes, the estimates are similar to those obtained using

Julia and Ox.

The values for expected and observed Fisher information matrix are very similar and

the estimated standard errors decrease as the sample size increases, improving the accuracy of

maximum likelihood method. The precision for Gumbel is higher on scale parameter than the

location parameter.
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Table 7 – Parameter estimates and standard errors, simulated data using Julia, Ox and R.
Julia Ox R

µ̂ σ̂ µ̂ σ̂ µ̂ σ̂

20

Est 1.25616 3.50121 1.25616 3.50121 - -
I f 0.82433 0.61042 0.82433 0.61042 - -
∇a 0.82768 0.60960 0.82768 0.60960 - -
Time 0.005179 0.00057 -
Conv Yes Yes No

40

Est 1.57492 2.70357 1.57492 2.70357 - -
I f 0.45009 0.33329 0.45009 0.33329 - -
∇a 0.45106 0.33033 0.45106 0.33033 - -
Time 0.01826 0.00051 -
Conv Yes Yes No

60

Est 1.75830 3.23437 1.75830 3.23437 - -
I f 0.43965 0.32556 0.43965 0.32556 - -
∇a 0.44000 0.32755 0.44000 0.32755 - -
Time 0.00143 0.00074 -
Conv Yes Yes No

80

Est 2.18932 3.21092 2.18932 3.21092 - -
I f 0.37799 0.27990 0.37799 0.27990 - -
∇a 0.37887 0.28093 0.37887 0.28093 - -
Time 0.00212 0.00137 -
Conv Yes Yes No

100

Est 2.17276 2.91838 2.17276 2.91838 2.18063 2.91635
I f 0.30728 0.22754 0.30728 0.22754 0.30707 0.22738
∇a 0.30682 0.23125 0.30682 0.23125 0.30661 0.23076
Time 0.00371 0.00127 0.019
Conv Yes Yes 52

150

Est 1.76318 3.20241 1.76318 3.20241 1.79064 3.19094
I f 0.27531 0.20387 0.27531 0.20387 0.27433 0.20314
∇a 0.27472 0.20874 0.27472 0.20874 0.27376 0.20671
Time 0.00524 0.00452 0.012
Conv Yes Yes 52

200

Est 2.34119 3.00235 2.34119 3.00235 2.34396 2.99850
I f 0.22353 0.16552 0.22353 0.16552 0.22324 0.16531
∇a 0.22332 0.16529 0.22332 0.16529 0.22304 0.16476
Time 0.00796 0.00387 0.016
Conv Yes Yes 52
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2 THE GENERALIZED EXTREME VALUE NONLINEAR REGRESSION MODEL

Let yyy = (y1 . . . ,yn)
> be a vector of independent random variables such that each

yi, i = 1, . . . ,n, follows a Gumbel distribution. Here, E(yi) = µi + γσi. (BARRETO-SOUZA;

VASCONCELLOS, 2011) proposed the following regression model:

g1(µµµ) = ηηη1 = f1(X ,βββ ),

g2(σσσ) = ηηη2 = f2(Z,θθθ),

where µµµ = (µ1, . . . ,µn)
>, σσσ = (σ1, . . . ,σn)

>, ηηη1 = (η11, . . . ,η1n)
>, ηηη2 = (η21, . . . ,η2n)

>, g1(·)

and g2(·) are strictly monotonic and twice-differentiable link functions that map R and R+,

respectively, onto R, f1(·;βββ ) and f2(·;θθθ) are continuously twice-differentiable functions, βββ =

(β1, . . . ,βp)
> ∈Rp and θθθ = (θ1, . . . ,θq)

> ∈Rq are unknown parameter vectors (p+q < n), and

X and Z are n× p and n×q full column rank matrices not necessarily different.

Estimation of ψψψ = (βββ>,θθθ>)> can be performed by maximum likelihood. The

log-likelihood function is given by

`(ψψψ) = `(βββ ,θθθ) =−
n

∑
i=1

log(σi)−
n

∑
i=1

yi−µi

σi
−

n

∑
i=1

exp
(
−yi−µi

σi

)
.

Let y∗i = exp(−yi/σi), µ∗i = exp(−µi/σi) and vi = −1+(yi− µi)[1− exp(−(yi− µi)/σi)]/σi.

The components of the score function vector UUUψψψ = (UUU>
βββ
,UUU>

θθθ
)> are given by

UUUβ j =
∂`(ψψψ)

∂β j
=−

n

∑
i=1

(
y∗i −µ∗i

µ∗i σi

)
∂ µi

∂η1i

∂η1i

∂β j
, j = 1, . . . , p,

UUUθ j =
∂`(ψψψ)

∂θ j
=

n

∑
i=1

vi

σi

∂σi

∂η2i

∂η2i

∂θ j
, j = 1, . . . ,q.

Following (BARRETO-SOUZA; VASCONCELLOS, 2011), we define the n× p matrix X̃ =

(∂η1i/∂β j)i, j, the n× q matrix S̃ = (∂η2i/∂θ j)i, j and the following n× n diagonal matrices:

Ω =−diag(µ∗i σi), Σ = diag(σi), M1 = diag(dµi/dη1i) and M2 = diag(dσi/dη2i). We can then

write, in matrix notation,

∂`(ψψψ)

∂βββ
= X̃>Ω

−1M1(yyy∗−µµµ
∗) and

∂`(ψψψ)

∂θθθ
= S̃>Σ

−1M2vvv,

where yyy∗ = (y∗1, . . . ,y
∗
n)
>, µµµ∗ = (µ∗1 , . . . ,µ

∗
n )
> and vvv = (v1, . . . ,vn)

>.

The maximum likelihood estimator (MLE) of the vector of parameters that index

the nonlinear regression model (i.e., of ψψψ), say ψ̂ψψ = (β̂ββ
>
, θ̂θθ
>
)>, is obtained as the solution

to UUUψψψ = 000. The solution to such a system of equations cannot be expressed in closed form.



32

Parameter estimates can be, however, obtained by numerically maximizing `ψψψ with respect

to ψψψ using a nonlinear optimization algorithm, such as a Newton (e.g., Newton-Raphson) or

quasi-Newton (e.g., BFGS) algorithm.

Next, we shall present the model Hessian matrix, `ψψψψψψ . Let di = (yi− µi)/σi and

d∗i = exp(−di). It can be shown that the elements of the Hessian matrix are

∂ 2`(ψψψ)

∂β j∂βl
=

n

∑
i=1

(
1−d∗i

σi

)(
∂ 2µi

d2η1i

∂η1i

∂βl

∂η1i

∂β j
+

∂ µi

∂η1i

∂ 2η1i

∂β j∂β l

)
− d∗i

σ2
i

(
∂ µi

∂η1i

)2
∂η1i

∂β j

∂η2i

∂θl
,

∂ 2`(ψψψ)

∂θ j∂θl
=

n

∑
i=1

(
di−1−did∗i

σi

)(
∂ 2σi

∂ 2η2i

∂η2i

∂θl

∂η2i

∂θ j
+

∂σi

∂η2i

∂ 2η2i

∂θ j∂θ l

)
+

(
1−di(2+d∗i (di−2σi))

σ2
i

)
× ∂σi

∂η2i

∂η2i

∂θ j

∂η2i

∂θl
and

∂ 2`(ψψψ)

∂θ j∂βl
=

∂ 2`(ψψψ)

∂βl∂θ j
=

n

∑
i=1

(
d∗i (1+diσi)−1

σ2
i

)
∂ µi

∂η1i

∂σi

∂η2i

∂η1i

∂βl

∂η2i

∂θl
.

Let Jββββββ = diag((∂ µi/∂η1i)
2/σ2

i ), Jθθθβββ = Jβββθθθ = diag((γ−1)(∂ µi/∂η1i)(∂σi/∂η2i)/σ2
i )

and Jθθθθθθ = diag((Γ(2)(2)+1)(∂σi/∂η2i)
2/σ2

i ), whereΓ(2)(·) denotes the gamma function second

derivative. (BARRETO-SOUZA; VASCONCELLOS, 2011) showed that Fisher’s information

matrix is given by

Iψψψψψψ =

 X̃>Jββββββ X̃ X̃>Jβββθθθ S̃

S̃>Jθθθβββ X̃ S̃>Jθθθθθθ S̃

 .
When n is large, ψ̂ψψ is approximately distributed as Np+q(ψψψ, I−1

ψψψψψψ). Such an approxi-

mation can be used when performing interval estimation and hypothesis testing inferences.

2.1 DIAGNOSTIC ANALYSIS

Diagnostics analysis tools allow practitioners to determine whether the fitted regres-

sion model is valid, i.e., whether it provides a good representation to the data, and whether the

sample contains atypical/influential observations. Ideally, the point estimates should not be highly

sensitive to small data perturbations. In particular, such tools can be used to determine whether

the relevant model assumptions hold. In what follows, we shall develop a set of diagnostic

analysis tools for the generalized extreme value nonlinear regression model.

2.1.1 Residual analysis

Residuals measure the discrepancy between observed response values and the cor-

responding model fitted values. They can be used for detecting atypical data points. In what
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follows we shall propose two different residuals for the GEVNRM. The first residual is similar

to that proposed by (FERRARI; CRIBARI-NETO, 2004) for the beta regression model. The

standardized residual is given by

rs
i =

yi− ŷi√
V̂ar(yi)

,

where ŷi = η̂1i + γη̂2i and

V̂ar(yi) = η̂
2
2i

π2

6
.

Here, η̂ ji is the ith element of ηηη j evaluated at the maximum likelihood estimates, i = 1, . . . ,n

and j = 1,2. When the model is correctly specified and provides a good representation to the

data, there should be no detectable pattern in the index plot of rs
i or in the plot of rs

i against ŷi.

The same holds true for any alternative residual.

The second residual, proposed by (FERRARI; CRIBARI-NETO, 2004) for use with

beta regressions is based on the deviance. It is based on a measure of discrepancy between

the log-likelihood of the saturated model and that of the fitted model. The deviance residual is

defined as

rd
i = sgn(yi− ŷi)

√
2(`(yi, µ̃i, σ̃i)− `(yi, µ̂i, σ̂i)),

where sgn is the sign function. The ith observation contribution to the deviance equals (rd
i )

2,

and hence an observation with a large absolute value of rd
i can be viewed as discrepant. Here,

µ̃µµ = (µ̃1, . . . , µ̃n)
> and σ̃σσ = (σ̃1, . . . , σ̃n)

> are the values of µµµ and σσσ that simultaneously solve

UUU µµµ = 000 and UUUσσσ = 000, respectively. We note that UUUσσσ = 000 does not have a closed form solution,

but UUU µµµ = 000 yields µ̃µµ = yyy. We then decided to set σ̃σσ = σ̂σσ and obtained

rd
i = sgn(yi− η̂1i− γη̂2i)

√
2(`(yi,yi, σ̂i)− `(yi, µ̂i, σ̂i)).

After some algebra, we arrived at the following expression for the deviance residual:

rd
i = sgn(yi− η̂1i− γη̂2i)

√
2
(

yi− η̂1i

η̂2i
+ exp

(
−yi− η̂1i

η̂2i

))
.

The two residuals presented above can be used to construct half-normal plots with

simulated envelopes; see (ATKINSON, 1985). Such plots can then be used to identify atypical

data points.
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2.1.2 Generalized leverage

In what follows we shall consider the generalized leverage proposed by (WEI;

HU; FUNG, 1998), which measures the impacts of observed values on predicted values. Let

ŷyy = (ŷ1, . . . , ŷn)
> be the vector of fitted values. The generalized leverage GL(ψψψ) is the n× n

matrix whose (i, j) element is ∂ ŷi/∂y j, i.e., the instantaneous rate of change of the ith predicted

value associated with an infinitesimally small change in the jth response value. The generalized

leverage is invariant under reparameterization and observations for which GLii is large are taken

to be leverage points. (WEI; HU; FUNG, 1998) proposed the following leverage matrix:

GL(ψψψ) = Dψ(−`ψψψψψψ)
−1`ψψψyyy,

where `ψψψyyy = ∂ 2`/∂ψψψ∂yyy> and Dψψψ = ∂E(Y )/∂ψψψ>, both evaluated at the maximum likelihood

estimate ψ̂ψψ . The ith observation is taken to be a leverage point if GLii, the ith diagonal element

GL(ψψψ), is large.

For the GEVNRM, we write `ψψψyyy = (∂ 2`/∂βββ∂yyy>,∂ 2`/∂θθθ∂yyy>)> and use the fact

that E(yi) = µi + γσi to obtain

∂E(yi)

∂β j
=

∂ µi

∂η1i

∂η1i

∂β j
, j = 1, . . . , p,

∂E(yi)

∂θl
= γ

∂σi

∂η2i

∂η2i

∂θl
, l = 1, . . . ,q.

Let X̃∗ be an n× p matrix whose (i, j) element is given by (dµi/dη1i)(∂η1i/∂β j) and let S̃∗ be

an n×q matrix whose (i, j) element is γ(∂σi/∂η2i)(∂η2i/∂θ j). It follows that Dψψψ = [X̃∗ S̃∗]

and that `ψψψyyy can be written as

`ψψψyyy =

 X̃>M1Σ
−1
2 D1

S̃>M2Σ
−1
2 D2

 ,
where D1 and D2 are n× n diagonal matrices whose ith diagonal entries are given by d∗i and

1−d∗i (1−di), respectively, with di and d∗i as defined in Section 2 and Σ2 = diag(σ̂2
i ).

2.1.3 Generalized Cook’s distance

Cook’s distance method is recommended for global influence analysis, i.e., when

the interest lies in evaluating changes in the parameter estimates caused by the exclusion of a

subset of observations from the sample. The generalized Cook distance associated with the ith

observation is given by

GDi = (ψ̂ψψ(i)−ψψψ)>M(ψ̂ψψ(i)−ψψψ),
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where ψ̂ψψ(i) denotes the estimate of ψ obtained after excluding the ith observation from the sample

and M is a nonnegative definite matrix, usually taken to be M =−`ψψψψψψ , the observed information

matrix; see (COOK; WEISBERG, 1982) and (XIE; WEI, 2007).

Computation of ψ̂ψψ(i) may be expensive when the sample size is large. To circumvent

that, we follow (PREGIBON, 1981) and use the following one-step approximation:

ψ̂ψψ
1
(i) = ψ̂ψψ +{−`ψψψψψψ}−1`ψψψ(i), (2.1)

where `ψψψ(i) = ∂`(i)(ψψψ)/∂ψψψ , `(i)(ψψψ) denoting the log-likelihood function without the ith observa-

tion. The terms on the right hand side of Equation (2.1) are evaluated at the maximum likelihood

estimates.

Considering the GEVNRM and using the same notation as in (BARRETO-SOUZA;

VASCONCELLOS, 2011), we obtained, after some some algebra,

∂`(r)(ψψψ)

∂β j

∣∣∣∣
ψψψ=ψ̂ψψ

=−
n

∑
i 6=r

(y∗i −µ
∗
i )

∂ µi

∂η1i

∂η1i

∂βu
, j = 1, . . . , p,

∂`(r)(ψψψ)

∂θv

∣∣∣∣
ψψψ=ψ̂ψψ

=
n

∑
i6=r

vi

σi

∂σi

∂η2i

∂η2i

∂θl
, l = 1, . . . ,q.

2.1.4 Local influence

The local influence method proposed by (COOK, 1986) and the global influence

method proposed by (COOK; WEISBERG, 1982) are recommended when the main interest lies

in measuring the impact of a particular set of observations on the resulting parameter estimates.

The major difference between the two approaches lies in the fact that the global influence method

involves performing parameter estimation without a given set of observations in the sample

whereas the local influence method uses a local perturbation scheme with the complete data.

Let ωωω be a k-dimensional perturbation vector such that ωωω ∈Ω⊂Rk, let `(ψ̂ψψ|ωωω) be

the perturbed log-likelihood function and assume that that there exists a non-perturbation vector

ωωω0 such that `(ψψψ,ωωω0) = `(ψψψ). The impact of minor perturbations on the maximum likelihood

estimate ψ̂ψψ can be measured using the log-likelihood displacement LD(ωωω) = 2{`(ψ̂ψψ)− `(ψ̂ψψωωω)},

where ψ̂ψψωωω denotes the maximum likelihood estimate under `(ψψψ|ωωω).

Local influence methods analyze the local behavior of the log-likelihood displacement

around ωωω0 by computing the normal curvature of the plot of LD(ωωω0 +αddd) against α , where

α ∈R and ddd is a unit norm direction. The main interest lies in dddmax, the direction corresponding

toCdddmax , the largest curvature. The index plot of dddmax reveals which data points can be considered
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atypical, i.e., which observations have considerable influence on LD under minor perturbations.

(COOK, 1986) showed that the normal curvature at ddd is given by

Cddd(ψ̂ψψ) = 2|ddd>∆
>`−1

ψψψψψψ∆ddd|,

where ∆ is a p+q×n perturbation matrix.

In the framework of the GEVNRM,

∆ = ({∆i j},{∆il})> =

({
∂ 2`

∂β j∂ωi

}
,

{
∂ 2`

∂θl∂ωi

})>
, j = 1, . . . , p, l = 1, . . . ,q and i = 1, . . . ,n.

This matrix is evaluated at both ψψψ = ψ̂ψψ and ωωω = ωωω0. In what follows, we shall consider three

different perturbation schemes for local influence analysis in the GEVNRM, namely: case-weights

perturbation, response perturbation and explanatory variable perturbation. Some details regarding

the derivation of the influence measures can be found in the Appendix.

2.1.4.1 Case-weights perturbation

In this scheme, the perturbation is a weight that represents the contribution for each

observation to the log-likelihood function. The perturbed log-likelihood function is given by

`(ψψψ|ωωω) =
n

∑
i=1

ωi`i(ψψψ|ωωω),

where `i(ψψψ|ωωω) =− log(σi)− (yi−µi)/σi− exp(−(yi−µi)/σi). The no perturbation vector is

given by ωωω0 = (1, . . . ,1)> and it is possible to show that the components of the perturbation

matrix are

∆1βββ = X̃>Ω
−1M1R1,

∆1θθθ = S̃>Σ
−1M2R2,

where R1 = diag(y∗i − µ∗i ) and R2 = diag(vi). The perturbation matrix can be expressed as

∆ = (∆1βββ ,∆1θθθ )
>, a matrix of dimension (p+q)×n.

2.1.4.2 Response perturbation

We shall now consider perturbations to the dependent variable. It is noteworthy

that this perturbation scheme is closely related to the observations leverages. Additionally,

(SCHWARZMANN, 1991) showed that it is closely related to Cook’s distance measures in the
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context of the classic linear regression model. In nonlinear models that belong to the exponential

family, (WEI; HU; FUNG, 1998) established a similar result but using the generalized leverage.

(LAURENT; COOK, 1993) presented two new leverage measures: the Jacobian and tangent

plane leverages. They showed the response variable perturbation scheme can be described

by two quadratic forms which use such leverage measures. Their results generalize those of

(SCHWARZMANN, 1991).

We consider that each response yi is perturbed as yiw = yi +ωiSy, where ωi is the

ith components of the perturbation vector ωωω = (ω1, . . . ,ωn)
> and Sy is a scale factor, usually

taken to be the estimated standard deviation of yyy = (y1, . . . ,yn)
>. The no perturbation vector

is ωωω0 = 000n, where 000n = (0, . . . ,0)>, i.e., 000n denotes the n-dimensional vector of zeros. Let

liωωω = (yiw−µi)/σi and l∗iωωω = exp(−liωωω). The perturbed log-likelihood function is given by

`i(ψψψ|ωωω) =− log(σi)− liωωω − l∗iωωω .

After some algebra, we arrived at

∆2βββ = SyX̃>M1Σ
−1
2 L1,

∆2θθθ = SyS̃>M2Σ
−1
2 L2,

where L1 = diag(l∗iωωω), Σ2 = diag(σ̂2
i ) and L2 = diag(1+ l∗iωωω(liωωω−1)). The perturbation matrix

is given by ∆ = (∆2βββ ,∆2θθθ )
>, a matrix of dimension (p+q)×n.

2.1.4.3 Explanatory variable perturbation

This scheme is considered when we are interested in analyzing the impact of small

perturbations to the values of a given explanatory variable on the resulting inferences. Since there

are submodels for µµµ and σσσ , we shall consider three kinds of perturbation: perturbation on µµµ by

making xi jωωω = xi j +ωixSx, perturbation on σσσ by making zikωωω = zik +ωizSz, and perturbation on

both parameters by adding the same perturbation to µµµ and σσσ simultaneously, i.e., ωix = ωiz = ωi,

where j ∈ {1, . . . , p}, k ∈ {1, . . . ,q} and i = 1, . . . ,n. Here, Sx and Sz are scaling factors, usually

taken to be the standard deviations of xxx j = (x1 j, . . . ,xn j)
> and zzzk = (z1k, . . . ,znk)

>, respectively.

The perturbed predictors as

g1(µiωωω) = η1iωωω = f1(X ,βββ ,ωix),

g2(σiωωω) = η2iωωω = f2(Z,θθθ ,ωiz).
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The no perturbation vector is ωωω0 = (0, . . . ,0)>. The perturbation matrix is given by

∆ = ({∆ ji},{∆li})> =

({
∂ 2`

∂β j∂ωix

}
,

{
∂ 2`

∂θl∂ωix

})>
,

For j = 1, . . . , p, l = 1, . . . ,q and i = 1, . . . ,n. In what follows we shall use a notation similar

to that used by (LEMONTE; PATRIOTA, 2011):

m1i =
dµi

dη1i
, m2i =

dσi

dη2i
, ṁ1i =

d2µi

dη2
1i
, ṁ2i =

d2σi

dη2
2i
,

m∗1i =
dµiω

dη1iω
, m∗2i =

dσiω

dη2iω
, ṁ∗1i =

d2µiω

dη2
1iω

, ṁ∗2i =
d2σiω

dη2
2iω

,

µ̇i j =
∂η1i

∂β j
, µ̇

∗
i j =

∂η1iω

∂β j
, µ̈i j =

∂ 2η1iω

∂β j∂ωix
, µ̇iω =

∂η1iω

∂ωix
,

σ̇il =
∂η2i

∂θl
, σ̇

∗
il =

∂η2iω

∂θl
, σ̈il =

∂ 2η2iω

∂θl∂ωiz
, σ̇iω =

∂η2iω

∂ωiz
.

We start by considering perturbation on µµµ . Here, ∆βββ 1
and ∆θθθ 1 are matrices of

dimensions p×n and q×nwith typical elements∆i j and∆il , respectively. Let viωωω = (yi−µiω)/σi

and v∗iωωω = exp(−viωωω). It can be shown that

∆i j =
1− v∗iωωω

σi
[m∗1iµ̈i j + ṁ∗1iµ̇i jµ̇iω ]−

v∗iωωω
σi

(m∗1i)
2
µ̇i jµ̇iω , j = 1, . . . , p,

∆il =−
1+ v∗iωωω(viωωω +1)

σ2
i

m2iσ̇ilm∗1iµ̇iω , l = 1, . . . ,q.

We now move to perturbation on σσσ . Let tiωωω = (yi−µi)/σiω , and t∗iωωω = exp(−tiωωω).

Also, let ∆βββ 222
and ∆θθθ 222 be matrices with typical elements ∆i j and ∆il respectively. After some

algebra, we arrive at

∆i j =
t∗iωωω(1− tiωωω)−1

σ2
iω

m1iµ̇i jm∗2iσ̇iω , j = 1, . . . , p,

∆il =
1

σ2
iω

(
1+2tiωωω

(
t∗iωωω −

t∗iωωωtiωωω
2
−1
))

(m∗2i)
2
σ̇ilσ̇iω

+
tiωωω(1− t∗iωωω)−1

σ2
iω

[m∗2iσ̈il + ṁ∗2iσ̇
∗
il σ̇iω ], l = 1, . . . ,q.

Finally, we consider joint perturbation on µµµ and σσσ . Let jiωωω = (yi−µiω)/σiω and

j∗iωωω = exp(− jiωωω). Also, let∆βββ 333
and∆θθθ 333 bematrices with typical elements∆i j and∆il , respectively.

It can be shown that

∆i j =
1− j∗iωωω

σiω
[m∗1iµ̇

∗
i jµ̇
∗
iω + ṁ∗1iµ̈i j]+

j∗iωωω
σ2

iω
[(m∗1i)

2
µ̇
∗
i jµ̇iω ]

− 1
σiω

(
1+

j∗iωωω( jiωωω −1)
σiω

)
(m∗1iµ̇

∗
i jm
∗
2iσ̇iω), j = 1, . . . , p
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∆il =
jiωωω(σiω − j∗iωωω)−1

σiω
(m∗2iσ̇

∗
il σ̇
∗
iω + ṁ∗2iσ̈il)

+
1− jiωωω(σiω − j∗iωωω(2− jiωωω))

σ2
iω

[(m∗2i)
2
σ̇
∗
il σ̇iω ]

−
j∗iωωω(1− jiωωω)−σiω

σ2
iω

(m∗2iσ̇
∗
ilm
∗
1iµ̇iω), l = 1, . . . ,q.

2.2 MISSPECIFICATION AND NONNESTED HYPOTHESIS TESTS FOR THE GEVNRM

We shall now focus on testing inferences for the GEVNRM. Our interest is twofold.

First, we wish to test the null hypothesis that a given fitted GEVNRM is correctly specified. Such

a null hypothesis is tested against the alternative hypothesis that the model specification is in error.

Misspecification can be due to the use of incorrect link functions, omitted covariates, neglected

nonlinearity, etc. Second, we wish to be able to choose one model from a set of nonnested

GEVNRMs. For instance, we may have at our disposal two plausible models that differ in the

link functions they use in the submodels for σσσ . How can one of such models be selected with the

aid of a hypothesis test? We shall address this issue.

2.2.1 A misspecification test for the GEVNRM

Our interest now lies in testing whether the model specification is in error. To that

end, we shall consider the misspecification test proposed by (RAMSEY, 1969) for the classical

linear regression model; see also (RAMSEY; GILBERT, 1972). Such a test is known as the

RESET test (Regression Specification Error Test). The null hypothesis is that the model is

correctly specified which is tested against the alternative hypothesis that the model is incorrectly

specified. The structure of the GEVNRM is more complex than that of the classical linear model,

since it contains two submodels with possibly nonlinear predictors, each submodel using a link

function. Additionally, none of the parameters modelled separately is the mean response. In

what follows, we shall outline a modified version of the RESET test that can be used with the

GEVNRM. The underlying idea is that the model is augmented using some testing variables and

one then test their exclusion. If the testing variables prove to be statistically significant, then there

is evidence of model misspecification and the null hypothesis is rejected. The testing variables

can be taken to be powers of the fitted values. Consider the GEVNRM with two submodels, i.e.,

suppose that one models µµµ and σσσ , such that both submodels contain regressors. The test can be

performed as follows:

1. Estimate the parameters of the GEVNRM and obtain η̂ηη1 and η̂ηη2 (the estimated predictors).
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2. Estimate the parameters of the augmentedGEVNRMobtained by adding η̂ηη
2
1 as an additional

regressor to the submodel for µµµ and adding η̂ηη
2
2 as an additional regressor to the submodel

for σσσ .

3. Test the joint exclusion of the two artificial regressors (i.e., the joint exclusion of η̂ηη1 and

η̂ηη2).

4. If the null hypothesis is rejected, reject the model under evaluation. Otherwise, conclude

that the model is correctly specified.

Whenσσσ (µµµ) is taken to be constant (i.e., not affected by covariates), only the submodel

for µµµ (σσσ ) using η̂ηη
2
1 (η̂ηη

2
2), and only one restriction is tested.

In the test procedure outlined above, we only use the squared estimated predictors of

both submodels as testing variables, i.e., we augment the submodels for µµµ and σσσ using η̂ηη
2
1 and

η̂ηη
2
2, respectively. It is possible to use additional powers of the estimated predictors as additional

testing variables. For instance, one can augment the submodel for µµµ using η̂ηη
2
1 and η̂ηη

3
1 and

augment the submodel for σσσ using η̂ηη
2
2, η̂ηη

3
2 and η̂ηη

4
2. In that case, one would test the joint exclusion

of five variables.

2.2.2 Nonnested hypothesis tests for the GEVNRM

Oftentimes the practitioner has at his/her disposal more than one candidate model

and such models are nonnested. That is, no model can be obtained as a particular case of some

other model. At the outset, we shall consider the standard case of nested models. For example,

consider Model M1:

g(1)1 (µi) = β1 +β2x1i +β3x2i,

g(1)2 (σi) = θ1 +θ2z1i +θ3z2i.

Suppose that the practitioner suspects that the covariates x2 and z2 are not important for ex-

plaining the phenomenon of interest. He/she can then test H0 : (β3,θ3)
> = (0,0)> against

H1 : (β3,θ3)
> 6= (0,0)>. If the null hypothesis is rejected, the following simpler model, say

Model M2, can be used:

g(2)1 (µi) = β1 +β2x1i,

g(2)2 (σi) = θ1 +θ2z1i.

(The superscripts in parentheses in the link functions index the model.) Such an approach is valid

because the two models are nested: the latter is a special case of the former. When the models
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are nonnested such standard testing approach cannot be used.

Two GEVNRMs, say M1 and M2, are said to be nonnested if it is not possible to

obtain M1 by imposing restrictions on the parameters that index M2, and vice-versa. The concept

can be easily extended to more than two models. A test for nonnested classical linear regression

models was introduced by (DAVIDSON; MACKINNON, 1981). In what follows we shall adapt

their test, which is known as the J test, for use with GEVNRMs. The main idea is to consider an

artificial model that encompasses all nonnested models, and then replace the parameters of the

models that are not being tested by their respective maximum likelihood estimates, which are

consistent when each of such models is the true model.

Suppose there are N ≥ 2 nonnested models, say, M1, . . . ,MN :

Ma : g1(µµµ) = ηηη1 = f1(X ,βββ ),

g2(σσσ) = ηηη2 = f2(Z,θθθ),

a = 1, . . . ,N. Notice that the models can differ in at least one of the following: (i) regressors

used in the submodel for µµµ , (ii) regressors used in the submodel for σσσ , (iii) link function used in

the submodel for µµµ , (iv) link function used in the submodel for σσσ , (v) any combination of the

aforementioned factors.

Let Np and Nq be the number of µµµ and σσσ submodels that differ from the respective

submodels in Model Ma. That is, Np (Nq) denotes the number of models whose submodels for

µµµ (σσσ ) differ from the submodel for µµµ (σσσ ) used in Model a. In order to test Ma using the J test,

one estimates the parameters that index the remaining models by maximum likelihood, and then

includes the corresponding estimated predictors that differ from Ma as additional covariates in

the corresponding submodels of Ma. Next, one tests the exclusion of extra Np +Nq regressors.

The J test statistic for testing the joint exclusion of the added testing variables (i.e., for testing

Model a) is

Ja = 2{`(β̂ββ , θ̂θθ)− `(β̃ββ , θ̃θθ)},

where `(βββ ,θθθ) is the log-likelihood function and (β̂ββ
>
, θ̂θθ
>
)> and (β̃ββ

>
, θ̃θθ
>
)> are, respectively, the

unrestricted and restricted maximum likelihood estimators of (βββ>,θθθ>)>. Note that Np and Nq

additional covariates are included in the augmented submodels for µµµ and σσσ , respectively, and

that the test statistic above is the standard likelihood ratio test statistic. Model Ma is rejected at

significant level α if Ja > χ2
1−α,Np+Nq

.
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Notice that the model under test is not rejected if it fit is not noticeably improved

when fitted values from the competing models are used as additional explanatory variables, i.e.,

when the coefficients of such regressors are not significantly different than zero. Otherwise,

the model is rejected. The test needs to be sequentially applied to each candidate model. For

instance, when there are two nonnested models, each model has to be tested against the other

model. As a result, one model may be accepted and the other model rejected, both models may

be accepted, and both models may turn out to be rejected.

A related test was introduced by (HAGEMANN, 2012): the MJ test. As with the J

test, it was designed for use with the classical linear regression model. We shall now present

a modified version of that test that can be used with the GEVNRM. The underlying idea is

that if Model a is the correct model, the associated J statistic has a well-defined asymptotic

distribution and the J statistics corresponding to all other candidate models diverge to ∞ as

the sample size increases. Therefore, the model that corresponds to the smallest J statistic is

a natural candidate to be taken as the correct model. When the smallest J statistic is large

one can safely reject all models. The hypotheses used in the MJ test differ slightly from those

used in the J test. Given a set of N candidate models, for each model one tests, using the J

test, H0 : the model is correct vs. H1 : the model is not correct. In contrast, the null hypothesis

used in the MJ test is H0 : one of the candidate models is the true model; it is tested against

H1 : none of the candidate models is the true model. The MJ test statistic equals the minimum

of all J statistics, i.e.,

MJ =min{J1, . . . ,JN}.

The null hypothesis is rejected at significance level α if MJ > χ2
1−α,N−1.

When the null hypothesis is not rejected, all that can be concluded is that one of the

N models can be taken as the correct model. The test is not informative as to which model is the

true model. It is noteworthy, however, that there is a model selection procedure associated to the

test, namely: If the null hypothesis is not rejected, one can select the model that corresponds to

the minimal J test statistic and discard the alternative N−1 models.

2.3 NUMERICAL EVALUATION

In this section we shall present results from numerical evaluations that were carried

out using the tests and diagnostic tools presented in the previous sections. All numerical
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evaluations were performed using the Julia programming language (BEZANSON et al., 2017).

Julia is a free open source, high-level, high-performance, dynamic programming language

that uses a JIT (just-in-time) compiler and was developed for numerical computing; see <https:

//julialang.org>. Uniform random number generation was carried out using the Mersenne

Twister algorithm. Gumbel random number generation was performed using the inversion

method. Log-likelihood maximization was carried out using the L-BFGS-B quasi-Newton

nonlinear optimization algorithm with analytical first derivatives. The initial value used for each

parameter in the numerical optimization scheme was 1.0. There were no convergence failures.

All computations were performed on a computer with an Intel i7 processor and 16 GB of memory

running the Linux operating system. All plots were produced using the R statistical computing

environment (R Core Team, 2018).

2.3.1 Local influence and residual analysis

The analysis we shall now performwill be based on a simulated data set. We randomly

generated yi ∼ Gumbel(µi,σi), where

µi = β1− exp(β2x2i), (2.2)

log(σi) = θ1 +θ2x2i, (2.3)

i = 1, . . . ,30. The true values of β1, β2, θ1 and θ2 are 1.7, 2.2, 0.5 and −1.3, respectively. The

values of x2i were obtained as random draws from the beta distribution with parameters α = 2

and β = 7. We shall attempt to identify atypical observations and then investigate whether they

are influential, i.e., whether they noticeably impact the parameter estimates.

Overall, observations #9,#13,#14 and #18 appear to be most atypical data points. In

order to check whether they are influential, we removed them from the sample (individually

and jointly) and estimated the model’s parameters again. In Table 8 we present the parameter

estimates obtained using each data subset and also the relative changes in such estimates (as

percentages) relative to the estimates computed using the complete data. The largest changes take

place in the estimates of β1 and β2, the parameters that index the location submodel. Indeed, such

changes are quite large. It is also clear that observation #18 is more influential than observations

#9, #13 and #14. For instance, the relative changes in the estimates of β1, β2, θ1 and θ2 caused by

the removal of observation #18 are, respectively, 109.03%, 76.17%, 4.70% and 17.18%. Also,

the relative changes in β̂1 and β̂2 that follow from simultaneously removing data points #14 and

#18 from the data are approximately equal to 111% and 69%, respectively. The removal of these

https://julialang.org
https://julialang.org
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Figure 5 – Local influence measures for µµµ (first column), σσσ (middle column) and for µµµ

and σσσ simultaneously (third column); the first, second and third rows relate to
perturbations to the covariate, cases and response values.

two observations from the data also lead to the largest relative changes in θ̂1 and θ̂2, which are

23% and 50% (approximately). Hence, the diagnostic tools correctly indicated that these data

points were worthy of further investigation.

We have also computed the standardized and deviance residuals and produced half

normal plots with simulated envelopes which are presented in Figures 8 (standardized residual)

and 9 (deviance residual). All points lie inside the envelope bands when the standardized residual

is used. When the deviance residual is used, only one point falls outside the simulated envelope

bands.

Finally, we shall manually introduce a data perturbation and then examine how the

diagnostic measures respond to such perturbation. At the outset, we multiply the largest response

value (which is the first value, y1) by a positive scalar, which we take to be 1.25,1.50 and 2.00.

Figures 10, 11 and 12 present the new Cook’s distance values and Figures 13, 14 and 15 present

the local influence measures computed using the modified data. As before, the first, second and

third rows in the local influence plots relate to perturbations to the covariate, cases and response
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Figure 6 – Generalized Cook’s distances for each observation of the data for µµµ , for σσσ ,
and for µµµ and σσσ simultaneously.
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Figure 7 – Generalized leverages for µµµ and σσσ simultaneously.
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Table 8 – Parameter estimates and relative changes (%) in such estimates based on
incomplete data; simulated data.

Observation(s) β̂1 β̂2 θ̂1 θ̂2 RCβ1 RCβ2 RCθ1 RCθ2

9 1.9772 1.8451 0.5768 −2.4012 89.55 44.46 3.54 9.26

13 1.7240 1.6807 0.6219 −3.1756 65.28 31.58 11.63 44.50

14 1.9690 1.8103 0.6859 −3.2469 88.77 41.73 23.11 47.74

18 2.1804 2.2502 0.5833 −2.5751 109.03 76.17 4.70 17.18

9, 14 1.9921 1.7654 0.6833 −3.1692 90.98 38.21 22.65 44.21

9, 18 2.2504 2.3396 0.5060 −2.0840 115.74 83.17 −9.17 −5.17

9, 13 1.7986 1.7081 0.5634 −2.8078 72.43 33.73 1.14 27.77

13, 14 2.0004 2.0118 0.5162 −3.1157 91.77 57.50 −7.35 41.78

13, 18 2.0360 2.1487 0.5359 −2.8434 95.19 68.22 −3.81 29.38

14, 18 2.2053 2.1659 0.6898 −3.3055 111.42 69.57 23.82 50.41

9, 14, 18 2.2413 2.1694 0.5971 −2.6938 114.88 69.84 7.18 22.58

9, 13, 14 1.8120 1.6367 0.6683 −3.6570 73.72 28.14 19.95 66.41

9, 13, 18 2.1162 2.2537 0.4633 −2.3859 102.87 76.44 −16.83 8.57

13, 14, 18 2.0518 2.0580 0.6508 −3.6975 96.71 61.12 16.83 68.25

9, 13, 14, 18 2.0889 2.0612 0.5725 −3.1618 100.26 61.37 2.76 43.87
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Figure 8 – Half normal plot,
standardized residual;

simulated data
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Figure 9 – Half normal plot, deviance
residual; simulated data.

values. It is clear that the new outlying data point is singled out as influential by Cook’s distance

(schemes for σσσ and also for µµµ and σσσ jointly). It is noteworthy that the magnitudes of the Cook’s

distances for observation #1 increase with the value of the multiplying constant used to alter the

value of the first response. We also note that observation #1 is singled out as influential by the

local influence measures (cases perturbation for σσσ and for µµµ and σσσ simultaneously).

Next, we modify the largest covariate value, x2,18, and then assess how the diagnostic
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Figure 10 – Cook’s distance (y1×1.25).
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Figure 11 – Cook’s distance (y1×1.50).
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Figure 12 – Cook’s distance (y1×2.00).
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Figure 13 – Local influence measures
(y1×1.25).
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Figure 14 – Local influence measures
(y1×1.50).
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Figure 15 – Local influence measures
(y1×2.00).
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measures are impacted. We sequentially multiply the largest covariate value by 1.10, 1.20 and

1.30 after generating the responses, thus making such data point progressively more atypical.

For brevity, we do not present the diagnostic plots. We note that the generalized leverages of

observation # 18 corresponding to the original data and to the three aforementioned altered

data are, respectively, 1.984, 2.525, 3.466, 101.197, It is thus clear that the generalized leverage

measure we derived is capable of detecting data points that are atypical in the regressors dimension.

It is also worthy noting that the local influence measure relative to the covariate perturbation

scheme is also quite sensitive to the increase in the largest independent variable value. For the

original data, we obtain the following values for the 18th local influence measure for perturbation

on µµµ , on σσσ and on both parameters simultaneously: 0.329, −0.715 and −0.919, respectively.

When the largest covariate value is multiplied by 1.10 (1.20) [1.30], we obtain 0.456,−0.846 and

−0.972 (0.673, −0.891 and −0.985) [−0.985, −0.930 and −0.996]. It is clear that the local

influence analysis indicates that observation #18 is atypical with progressively more emphasis as

it becomes progressively more atypical.

2.3.2 Misspecification detection

We performed a set of Monte Carlo simulations to evaluate the finite sample perfor-

mance of the RESET misspecification test. The number of Monte Carlo replications is 10,000 and

the sample sizes are n ∈ {50,100,150,200,250}. We implement the misspecification test using

the generalized likelihood ratio (LR), Wald, Score (S) and gradient (G) tests. Due to the poor

performance of the Wald test, we chose to use instead the modified Wald (MW) test proposed by

(LEMONTE, 2016). The significance levels are 10% and 5%. In each Monte Carlo replication,

we randomly generated yi ∼ Gumbel(µi,σi) using the model structure given in Equations (2.2)

and (2.3). Here, the values of x2i are selected as random standard uniform draws. The tests null

rejection rates are presented in Table 9. We note that the tests are considerably size-distorted

when the sample size is small (n = 50); such size distortions become smaller as the sample size

increases. The tests that use the generalized likelihood ratio, modified Wald and gradient criteria

are liberal whereas and that based on the score statistic is slightly conservative. The latter is the

most accurate in small samples. The worst performer is the modified Wald test for which an

extremely large sample size is needed for the test size distortion to become small. Even though

we do not present results for very large sample sizes, we note that the modified Wald test null

rejection rate at the 5% is 6.5% when n = 2500. That is, the test null rejection rates slowly
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converge to the test significance levels.

Table 9 – Misspecification test, null rejection rates.

n
LR S MW G

10% 5% 10% 5% 10% 5% 10% 5%

50 0.1516 0.0826 0.0857 0.0521 0.2105 0.1993 0.1445 0.0917

100 0.1320 0.0637 0.0912 0.0526 0.2090 0.1745 0.1366 0.0795

150 0.1201 0.0640 0.0848 0.0530 0.1745 0.1612 0.1054 0.0689

200 0.1146 0.0682 0.0975 0.0479 0.1586 0.1264 0.1076 0.0637

250 0.1037 0.0578 0.0933 0.0457 0.1487 0.1141 0.1049 0.0590

We have also performed simulations to estimate the tests powers under different types

of model misspecification. Here, we seek to determine whether the test is capable of detecting

that the model is incorrectly specified. We consider four different schemes for data generation

mechanisms, denoted by MS1, MS2, MS3 and MS4:

MS1 µi = β1− exp(β2x2i)+β3(x2i× x3i) and log(σi) = θ1 +θ2x2i +θ3(x2i× x3i);

MS2 µi = β1− exp(β2x2i)+β3x4i and log(σi) = θ1 +θ2x2i +θ3x4i;

MS3 µi = β1−β2x2i and log(σi) = θ1 +θ2 sin(x2i);

MS4 µi = β1− exp(β2x3i) and log(σi) = θ1 +θ2x3i;

MS5 µi = (β1− exp(β2x2i))
φ and log(σi) = θ1 +θ2x2i.

We use β3 = 2.5, θ3 = −0.7 and φ = 1.5. The values of x3i and x4i are selected as random

U(0,1.5) and U(1,2) draws, respectively. Schemes MS6 and MS7 are similar to Scheme MS5

with the single difference that now φ = 2.0 and φ = 2.5, respectively. The final scheme, MS8,

uses Equation (2.2) and (2.3) but estimation is carried out by taking σ to be constant.

We note that regardless of the scheme used for data generation, we fitted the model

given in Equations (2.2) and (2.3). Since some tests are liberal, all tests are now performed using

exact (estimated in the size simulations) critical values. We shall thus compare powers of tests

that are adjusted to have the correct size.

The tests nonnull rejection rates are presented in Table 10. The tests are more (less)

powerful under Scheme MS1 (MS2). It is also noteworthy that the tests are typically considerably

more powerful when they are carried after augmenting both submodels.
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Table 10 – Misspecification test, nonnull rejection rates.
Scheme n

LR S MW G

10% 5% 10% 5% 10% 5% 10% 5%

MS1

50 0.8230 0.7318 0.8076 0.7141 0.8026 0.6692 0.8046 0.6849

100 0.8875 0.8186 0.8722 0.7956 0.9013 0.8369 0.8888 0.8196

150 0.5488 0.4190 0.5609 0.4348 0.5391 0.3972 0.5485 0.4185

200 0.9087 0.8425 0.9120 0.8477 0.9073 0.8381 0.9100 0.8463

250 0.9917 0.9817 0.9937 0.9853 0.9899 0.9744 0.9917 0.9818

MS2

50 0.3830 0.2654 0.3662 0.2441 0.3891 0.2768 0.3728 0.2546

100 0.4911 0.3819 0.5331 0.4272 0.4536 0.3484 0.4933 0.3838

150 0.6439 0.4909 0.5176 0.3251 0.5352 0.4309 0.4916 0.3433

200 0.7071 0.6878 0.7947 0.6230 0.7853 0.7188 0.7234 0.6129

250 0.9700 0.9456 0.9709 0.9472 0.9733 0.9559 0.9737 0.9548

MS3

50 0.5348 0.3967 0.4736 0.3380 0.5735 0.4357 0.5152 0.3708

100 0.6099 0.4686 0.5531 0.4048 0.6597 0.5274 0.6073 0.4658

150 0.6553 0.5230 0.6090 0.4703 0.7052 0.5888 0.6578 0.5247

200 0.6834 0.5492 0.6287 0.4812 0.7403 0.6249 0.6874 0.5545

250 0.8476 0.7470 0.7947 0.6631 0.8890 0.8144 0.8491 0.7495

MS4

50 0.4715 0.3619 0.5106 0.3703 0.4726 0.3747 0.4384 0.3254

100 0.5582 0.4483 0.5878 0.4761 0.5585 0.4457 0.5470 0.4339

150 0.6108 0.5107 0.6462 0.5470 0.6167 0.5132 0.6045 0.5037

200 0.6370 0.5429 0.6798 0.5829 0.6333 0.5485 0.6261 0.5357

250 0.6655 0.5671 0.7035 0.6112 0.6449 0.5520 0.6539 0.5590

MS5

50 0.4980 0.3491 0.4032 0.2530 0.6656 0.5845 0.5705 0.4578

100 0.7327 0.6074 0.6901 0.5495 0.8112 0.7325 0.7627 0.6566

150 0.8944 0.8167 0.8795 0.7956 0.9296 0.8881 0.9096 0.8506

200 0.9431 0.8900 0.9374 0.8745 0.9622 0.9339 0.9527 0.9113

250 0.9835 0.9650 0.9824 0.9591 0.9892 0.9792 0.9865 0.9712

MS6

50 0.7512 0.6893 0.7723 0.7619 0.8432 0.8623 0.8982 0.7665

100 0.7952 0.7623 0.7923 0.7814 0.8954 0.8893 0.8593 0.7791

150 0.8268 0.8074 0.8125 0.8012 0.9028 0.9102 0.8125 0.8001

200 0.9202 0.8890 0.9647 0.9430 0.9317 0.9085 0.9186 0.8895

250 1.0000 0.9997 0.9999 0.9997 1.0000 0.9999 1.0000 0.9998

MS7

50 0.4937 0.3451 0.3962 0.2473 0.6584 0.5790 0.5653 0.4522

100 0.7155 0.5855 0.6696 0.5177 0.7933 0.7165 0.7465 0.6337

150 0.8553 0.7573 0.8332 0.7257 0.9032 0.8485 0.8762 0.8004

200 0.8899 0.8086 0.8781 0.7886 0.9222 0.8718 0.9053 0.8348

250 0.9762 0.9495 0.9731 0.9416 0.9839 0.9685 0.9803 0.9580

MS8

50 0.2720 0.1852 0.2956 0.2121 0.2255 0.1274 0.2487 0.1574

100 0.4243 0.3072 0.4195 0.2979 0.3928 0.2618 0.4008 0.2729

150 0.4318 0.3024 0.4441 0.3151 0.4009 0.2580 0.4114 0.2734

200 0.6274 0.5122 0.6590 0.5460 0.6077 0.4752 0.6165 0.4893

250 0.6964 0.5738 0.7210 0.6044 0.6828 0.5464 0.6867 0.5572
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2.3.3 Nonnested hypothesis tests

We performed a set of Monte Carlo simulations to evaluate the finite sample perfor-

mance of the J and MJ nonnested hypothesis tests. The number of Monte Carlo replications is

10,000 and the sample sizes are n ∈ {50,100,150,200,250}. All testing inferences are carried

out using the likelihood ratio criterion. The significance levels are 10% and 5%. The first

simulation study was performed to evaluate the J test null behavior. The following models are

used:

M1 µi = β1 +β2x2i and log(σi) = θ1;

S1 µi = β1 and log(σi) = θ1 +θ2z2i;

MS1 µi = β1 +β2x2i and log(σi) = θ1 +θ2z2i;

M2 µi = β1 +β2x3i and log(σi) = θ1;

S2 µi = β1 and log(σi) = θ1 +θ2z3i;

MS2 µi = β1 +β2x3i and log(σi) = θ1 +θ2z3i.

Models M1 and M2 only contain regressors in the submodels for µµµ , Models S1 and S2 only

contain regressors in the submodels for σσσ , and Models MS1 and MS2 contain regressors in both

submodels.

The values of x2i, x3i, z2i and z3i are obtained, respectively, as random draws from

the following distributions: Gamma(3,2), N(0,1), t4, U(1,2), Beta(2,7) and U(0.5,1.5). The

values of β1,β2,θ1 and θ2 are 2.7,1.3,1.8,1.2, respectively. In the size simulations, the true

data generating processes are models M1,S1,MS1 for each scheme. We consider three separate

situations, namely: (i) we test M1 vs. M2 (Case 1), (ii) we test S1 vs. S2 (Case 2) and (iii) we test

MS1 vs. MS2 (Case 3).

The test null rejection rates are presented in Table 11. We note that the test is

considerably size-distorted when the sample size is small (n = 50) under Cases 1 and 2; such

distortions become smaller as the sample size increases. The test is most accurate when only the

models for σσσ contain regressors (Case 2). For instance, under Case 2, with n = 50 (n = 100) and

at the 10% significance level, the test null rejection rate is 10.4% (10.1%).

We performed similar simulations to evaluate the test power, i.e., the test ability to

detect that the model under test is not correct. We consider the same cases as before, but we now

use Models M2 (Case 1), S2 (Case 2) and MS2 (Case 3) as the true data generating mechanisms.

Since the test is sometimes liberal, all tests are now carried out using exact (estimated from the

size simulations) critical values. Thus, we evaluate the powers of tests that have the correct size.
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Table 11 – J test, null rejection rates.

n
Case 1 Case 2 Case 3

10% 5% 10% 5% 10% 5%

50 0.137 0.064 0.104 0.042 0.150 0.082

100 0.086 0.040 0.101 0.068 0.128 0.054

150 0.098 0.054 0.100 0.052 0.119 0.062

200 0.080 0.043 0.121 0.064 0.101 0.054

250 0.096 0.032 0.104 0.051 0.106 0.051

The test nonnull rejection rates are presented in Table 12. The test power increases with the

sample size in all three scenarios. For n = 200 and at the 10% significance level, the nonnull

rejection rate for Case 1 (Case 2) [Case 3] is 90.03% (89.25%) [95.32%].

Table 12 – J test, nonnull rejection rates.

n
Case 1 Case 2 Case 3

10% 5% 10% 5% 10% 5%

50 0.4248 0.3084 0.4123 0.3059 0.4837 0.3686

100 0.6774 0.5547 0.6617 0.5487 0.7455 0.6437

150 0.8131 0.7249 0.7981 0.7072 0.8880 0.8225

200 0.9003 0.8391 0.8925 0.8299 0.9532 0.9162

250 0.9520 0.9104 0.9405 0.8980 0.9823 0.9648

We shall now move to MJ testing inference and consider three candidate models, i.e.,

N = 3. The three models only differ in the independent variable they use. The following models

are considered:

m1 µi = β1 +β2x2i and log(σi) = θ1;

s1 µi = β1 and log(σi) = θ1 +θ2z2i;

ms1 µi = β1 +β2x2i and log(σi) = θ1 +θ2z2i;

m2 µi = β1 +β2x3i and log(σi) = θ1;

s2 µi = β1 and log(σi) = θ1 +θ2z3i;

ms2 µi = β1 +β2x3i and log(σi) = θ1 +θ2z3i;

m3 µi = β1 +β2x4i and log(σi) = θ1;

s3 µi = β1 and log(σi) = θ1 +θ2z4i;

ms3 µi = β1 +β2x4i and log(σi) = θ1 +θ2z4i.

The true values for β1,β2,θ1,θ2 are 1.7,2.3,1.8 and −0.7 respectively. The val-
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ues of the covariates are selected as in the previous set of simulations, i.e., as in in the

simulations that dealt with the J test. We test H0 : One of the candidate models is correct vs.

H1 : No candidate model is correct. Under Cases 1, 2 and 3, the correct model is, respectively,

m1, s1 and ms1. The test null rejection rates are presented in Table 13. The only configuration in

which the test does not work well in when n = 50 (small sample) under Case 3; in that setting,

the test is considerably liberal. In all other cases, the test displays good control of the type I error

frequency. For instance, when n = 50 (n = 100) [n = 250] and at the 10% significance level

under Case 1 (i.e., m1 is the true model), the test null rejection rate is 10.8% (10.2%) [9.6%]. The

test null rejection rates converge to the corresponding significance levels as the sample increases.

Table 13 – MJ test, null rejection rates.

n
Case 1 Case 2 Case 3

10% 5% 10% 5% 10% 5%

50 0.108 0.064 0.078 0.036 0.194 0.118

100 0.102 0.050 0.104 0.066 0.110 0.056

150 0.116 0.054 0.086 0.056 0.130 0.068

200 0.091 0.046 0.102 0.046 0.100 0.034

250 0.096 0.051 0.096 0.054 0.096 0.054

As noted earlier, the MJ statistic is the minimal J statistic. When the null hypothesis

is not rejected, it can be used as a model selection criterion. We computed the frequencies of

correct model selection using the MJ statistic as a model selection criterion (given that H0 was

not rejected). The selected model is that with the smallest J test statistic, i.e., the model that

corresponds to the MJ test statistic. We only consider the Monte Carlo replications in which the

null hypothesis was not rejected. The results are presented in Table 14 (entries are percentages).

The results show that model selection works quite well when performed using the MJ test statistic.

Under Cases 1 and 3, the correct model was always selected. Under Case 2, the rate of success

range from 70.23% (n = 50) to 99.27% (n = 250).

Simulations were also performed to evaluate the power of the MJ test. Here, the

data are generated according to a model that does not belong to the set of candidate models.

We performed data generation by replacing the predictor variables with x5i = x2i× x4i and

z5i = z2i× z4i. That is, the following models were used for data generation (Cases 1, 2 and 3,

respectively):

m4 :µi = β1 +β2x5i
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Table 14 – Frequencies (%) of correct model selection using the MJ statistic as a model
selection criterion (conditional on the null hypothesis not being rejected).

n Case 1 Case 2 Case 3

50 100.00 70.23 100.00

100 100.00 89.04 100.00

150 100.00 95.49 100.00

200 100.00 98.30 100.00

250 100.00 99.27 100.00

log(σi) = θ1;

s4 :µi = β1

log(σi) = θ1 +θ2z5i;

ms4 :µi = β1 +β2x4i

log(σi) = θ1 +θ2z5i.

The test nonnull rejection rates are presented in Table 15. When the sample is quite

small (n = 50), the test is less powerful under Case 2 (i.e., data generated from Model s4).

For sample sizes ranging from n = 100 to n = 250 and at the 10% (5%) significance level, the

estimated nonnull rejection rates range from approximately 61% (approximately 53%) to 100%

(nearly 100%). That is, as long as the sample size is not too small, the test seems to be adequately

powerful.

Table 15 – MJ test, nonnull rejection rates.

n
Case 1 Case 2 Case 3

10% 5% 10% 5% 10% 5%

50 0.5125 0.4371 0.3546 0.2252 0.6969 0.5865

100 0.6137 0.5370 0.7189 0.6029 0.9322 0.8854

150 0.7350 0.6783 0.8824 0.8084 0.9882 0.9762

200 0.7928 0.7432 0.9541 0.9175 0.9983 0.9957

250 0.8416 0.8029 0.9844 0.9659 1.0000 0.9996

The numerical evidence presented above indicates that the two nonnested hypothesis

tests considered in this dissertation can be used to select a GEVNRM from a set of nonnested

models. Provided that the sample size is not too small, such inferences are typically accurate and

trustworthy.
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2.4 EMPIRICAL APPLICATION

We shall now use the GEVNRM in an analysis of real, observed data. To that end, we

shall consider the data presented by (HUET et al., 2004). Such data relate to the growth of winter

wheat and highlight the differences in dry weights of the wheat tillers and stems. The explanatory

variable x is measured on a cumulative degree-days scale which is an integral over time of

all temperatures at which the wheat is exposed; only temperatures that exceed the minimum

temperature at which wheat can develop are considered. Temperatures are measured in degrees

Celsius and time is measured in days, the initial time being determined by the physiological

state of the wheat. Plants growing on n = 18 randomly chosen small areas of about 0.15m2 are

harvested each week and the dry weights of the tillers for plants harvested from each area are

measured in milligrams. Our interest lies in modeling the behavior of dry weight (y) of tillers

which we assume that follows an extreme value distribution. We shall use the same model as

(BARRETO-SOUZA; VASCONCELLOS, 2011):

µi = β1 + exp(β2 +β3xi), (2.4)

log(σi) = θ1xi. (2.5)

The maximum likelihood parameter estimates (standard errors in parentheses) are

β̂1 = 81.5575 (13.5103), β̂2 = −2.7405 (0.9088), β̂3 = 0.0140 (0.0013) and θ̂1 = 0.0066

(0.0002). The residual half-normal plots with simulated envelopes are given in Figures 16

(standardized residual) and 17 (deviance residual). It is clear that most residuals lie inside the

confidence bands, thus indicating that the distributional assumptions hold.
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Figure 16 – Half normal plot,
standardized residual;
growth of winter wheat
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wheat data.
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We also performed the RESET misspecification test for model using the square of

the predicted values (η̂2
1 and η̂2

2 ) as testing variables. The test p-values based on the likelihood

ratio, score, modified Wald and gradient criteria are, respectively, 0.1793, 0.3758, 0.2349 and

0.3296. Hence, the null hypothesis of correct model specification is not rejected at the usual

significance levels. That is, there is no evidence of model misspecification.

Figure 18 contains local influence plots constructed using the three perturbation

schemes discussed earlier. It is noteworthy that the most (locally) influential data points are

observations #2 and #17. We computed the generalized Cook distance for each observation; see

Figure 19. The results indicate that observations #2, #16 and #17 are atypical. However, obser-

vation #16 does not appear to be atypical when both parameters are considered simultaneously.

The generalized leverage measures are presented in Figure 20. They indicate that observation #2

is the most atypical data point.
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Figure 18 – Local influence measures for µµµ (first column), σσσ (middle column), and for µµµ

and σσσ simultaneously (third column); the first, second and third rows relate
to perturbations to the covariate, cases and response values.

Overall, observations #2 and #17 stand out. We note that their response values are

considerably smaller than those of other data points with similar covariate values. The 2nd and

17th response values are considerably different from the corresponding fitted values: the fitted

value for observation #2 exceeds the observed value by 20.67%, the corresponding figure for

observation #17 being 21.81%. Such data points are worthy of further investigation.

We removed the atypical data points (#2 and #17, individually and jointly) from the
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Figure 19 – Generalized Cook’s distances for µµµ , for σσσ , and for µµµ and σσσ simultaneously.
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Figure 20 – Generalized leverage for µµµ , for σσσ , and for µµµ and σσσ simultaneously.

data and estimated the model parameters again. Table 16 presents the point estimates together

with the relative changes (%) in such estimates. It is noteworthy that the estimates of β1 and β2

change considerably when the atypical points are not in the data. Data point #2 appears to be

particularly influential. For example, when observation #2 is removed from the data, β̂1 and β̂2
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increase by nearly 26% and by approximately 22.5%, respectively. When the data do not contain

observations #2 and #17, such relative changes jump to nearly 30% and over 41%.

Table 16 – Parameter estimates and relative changes (%) in such estimates based on
incomplete data; growth of winter wheat data.

Observation(s) β̂1 β̂2 β̂3 θ̂1 RCβ1 RCβ2 RCβ3 RCθ1

2 102.64297 −3.35762 0.01491 0.00657 25.85 22.52 6.21 −0.47

17 84.48671 −3.25823 0.01486 0.00616 3.59 18.89 5.82 −6.75

2, 17 105.63374 −3.87697 0.01573 0.006074 29.52 41.47 12.04 −8.08

We performed the RESETmisspecification test. Recall that we test the null hypothesis

that the model is correctly specified against the alternative hypothesis that the model specification

is in error. Since the sample size is small, we used parametric bootstrap resampling to obtain

bootstrap p-values on the basis of 1,000 artificial samples. The null hypothesis of correct model

model specification is not rejected at the usual significance levels. The bootstrap likelihood ratio

test p-value equals 0.19020; when the most influential observation (#2) is not in the data, such a

p-value jumps to 0.41078. That is, the presence of such an observation in the data increases the

evidence against the null hypothesis, but not to the extent of reversing the conclusion that the

model is correctly specified.

Finally, we considered a second model for the data at hand, namely: µi = β1 +

exp(β2 +β3xi) and
√

σi = θ1xi. Notice that the alternative model uses a different link function

in the second submodel. The two models are thus nonnested. We implemented the J test using

the likelihood ratio criterion. Since the sample size is small, the tests were performed using

parametric bootstrap resampling. The number of bootstrap replications is 1,000. The p-value of

the test of the model given in Equations (2.4) and (2.5) against the alternative model are very

large regardless of whether we use the complete data (p-value: 0.99800) or the incomplete data

(p-value when observation 2 is not in the data: 0.99900; p-value when observation 17 is not

in the data: 0.99701). Hence, such a model is not rejected. In contrast, the alternative model

is rejected at the usual significance levels since the p-value for testing such a model is small:

0.00100. The same p-value is obtained when the two incomplete data sets are used.
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2.5 CONCLUDING REMARKS

Extreme value theory is quite useful for modeling extremal events. The behavior of

such events are oftentimes impacted by other variables and such dependence is captured using

a regression framework. In this paper we considered the generalized extreme value nonlinear

regression model. Our focus was on influence diagnostics and model validation. That is, we

developed and presented tools that can be used by practitioners after parameter estimation

has been carried out. First, we defined two residuals for use with the general extreme value

regression model. Such residuals can be used, e.g., to construct residual half-normal plots with

simulated envelopes. Second, we derived a generalized leverage measure, which can be used to

detect atypical data points, especially observations that are atypical in the regressors dimension.

Third, we obtained an expression for Cook’s distance which can be used to detect influential

observations using a global influence analysis. Fourth, we developed local influence analysis

based on three different local perturbation schemes. Such results can also be used to detect

influential observations. Fifth, we presented a test that can be used to determine whether a fitted

general extreme value regression model is correctly specified. Sixth, we presented two tests

that can be used to select a model from a set of nonnested general extreme value regression

models. Additionally, we presented the results of several numerical evaluations that were carried

out to evaluate the performances of the different tools considered in our paper. In particular,

we applied the diagnostic tools developed in the paper to a simulated dataset. It was clear that

such diagnostic tools were able to identify influential observations and also observations that are

atypical in the regressors dimension. We reported Monte Carlo evidence on the finite sample

performances of the misspecification and nonnested hypothesis tests. Finally, we presented and

discussed an empirical application.
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APPENDIX A – LOCAL INFLUENCE MEASURES

CASE-WEIGHTS PERTURBATION

In this scheme, the perturbation is a weight that represents the contribution for each

observation to the log-likelihood function.The no perturbation weight is given by ω0 = 1 due the

construction of the log-likelihood function it is easy to see that the derivatives are given by

∂ 2`

∂β j∂ωi
=

∂`

∂β j
,

∂ 2`

∂θl∂ωi
=

∂`

∂θl
.

Which simply reduces to the score function.

Response perturbation

We consider that each response yi is perturbed as yiw = yi+ωiSy, The no perturbation

weight is given by ω0 = 0. The derivatives are given by

∂ 2`

∂β j∂ωi
=

n

∑
i=1

exp
(
−yiw−µi

σi

)
Sy

σ2
i

dµi

dη1i

dη1i

dβ j
,

∂ 2`

∂θl∂ωi
=

n

∑
i=1

Sy

σ2
i

{
1+ exp

(
−yiw−µi

σi

)[(
−yiw−µi

σ2
i

)
σi−1

]}
dσi

dη2i

dη2i

dθl

Explanatory variable perturbation

Perturbation on X

Considering the perturbation on µ by making xi jω = xi j +ωixSx. The no perturbation

weight is given by ωix = 0. Sx is scale factor, usually taken to be the standard deviations of

xxx j = (x1 j, . . . ,xn j)
>. The derivatives are given by

∂ 2`

∂β j∂ωi
=

n

∑
i=1
−1

1
σi

[
1+ exp

(
−yi−µiw

σi

)][
dµiw

dη1iw

dη1iw

dβ jdωi
+

d2µiw

dη2
1iw

dη1iw

dβ j

dη1iw

dωi

]
− exp

(
−yi−µiw

σi

)
1

σ2
i

(
dµiw

dη1iw

)2 dη1iw

dβ j

dη1iw

dωi
,

∂ 2`

∂θl∂ωi
=

n

∑
i=1
− 1

σ2
i

{
1+ exp

(
−yi−µiw

σi

)
[(yi−µiw)−1]

}
dµiw

dη1iw

dη1iw

dωi

dσi

dη2i

dη2i

dθ j
.
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Perturbation on Z

Here, we consider the perturbation on σ by making zikω = zik +ωizSz. The no

perturbation weight is given by ωiz = 0. Sz is scale factor, usually taken to be the standard

deviations of zzz j = (z1k, . . . ,znk)
>. The derivatives are given by

∂ 2`

∂β j∂ωi
=

n

∑
i=1
− 1

σ2
iw

{
1− exp

(
−yi−µi

σiw

)[
1−
(

yi−µi

σiw

)]}
dµi

dη1i

dη1i

dβ j

dσiw

dη2iw

dη2iw

dωi
,

∂ 2`

∂θl∂ωi
=

n

∑
i=1
− 1

σiw

{
1−
(

yi−µi

σiw

)[
1− exp

(
−yi−µi

σiw

)]}[
dσiw

dη2iw

dη2iw

dθldωi
+

d2σiw

dη2
2iw

dη2iw

dθl

dη2iw

dωi

]
+

[
1

σ2
iw
−2
(

yi−µi

σ3
iw

)
+2exp

(
−yi−µi

σiw

)(
yi−µi

σ3
iw

)
− exp

(
−yi−µi

σiw

)(
yi−µi

σ2
iw

)2
]

(
dσiw

dη2iw

)2 dη2iw

dθl

dη2iw

dωi
.

Perturbation on X and Z

Here we consider both perturbations presented on previous subsections. The no

perturbation weight is given by ωiz = ωix = 0. The derivatives are given by

∂ 2`

∂β j∂ωi
=

n

∑
i=1
−1

1
σi

[
1+ exp

(
−yi−µiw

σi

)][
dµiw

dη1iw

dη1iw

dβ jdωi
+
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]
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