
JOHNY MOREIRA DA SILVA

Extracting Structured Information from Text to Augment Knowledge Bases

Universidade Federal de Pernambuco
posgraduacao@cin.ufpe.br

http://cin.ufpe.br/~posgraduacao

Recife
2019

mailto:posgraduacao@cin.ufpe.br
http://cin.ufpe.br/~posgraduacao

JOHNY MOREIRA DA SILVA

Extracting Structured Information from Text to Augment Knowledge Bases

Trabalho apresentado ao Programa de Pós-
graduação em Ciência da Computação do Centro
de Informática da Universidade Federal de Per-
nambuco como requisito parcial para obtenção do
grau de Mestre em Ciência da Computação.

Área de Concentração: Banco de Dados

Orientador: Luciano de Andrade Barbosa

Recife
2019

 Catalogação na fonte

Bibliotecária Monick Raquel Silvestre da S. Portes, CRB4-1217

S586e Silva, Johny Moreira da

Extracting structured information from text to augment knowledge bases /
Johny Moreira da Silva. – 2019.

 93 f.: il., fig., tab.

 Orientador: Luciano de Andrade Barbosa.
 Dissertação (Mestrado) – Universidade Federal de Pernambuco. CIn,

Ciência da Computação, Recife, 2019.
 Inclui referências e apêndices.

 1. Banco de dados. 2. Processamento de linguagem natural. I. Barbosa,
Luciano de Andrade (orientador). II. Título.

 025.04 CDD (23. ed.) UFPE- MEI 2019-080

Johny Moreira da Silva

“Extracting Structured Information from Text to Augment
Knowledge Bases”

Dissertação de Mestrado apresentada ao
Programa de Pós-Graduação em Ciência da
Computação da Universidade Federal de
Pernambuco, como requisito parcial para a
obtenção do título de Mestre em Ciência da
Computação.

Aprovado em: 25/02/2019.

BANCA EXAMINADORA

Prof. Dr. Luciano de Andrade Barbosa (Orientador)

Universidade Federal de Pernambuco

__
Prof. Dr. Paulo Salgado Gomes de Mattos Neto (Examinador Interno)

Universidade Federal de Pernambuco

Prof. Dr. Hendrik Teixeira Macedo (Examinador Externo)

Universidade Federal de Sergipe

To my mother, Maria Delvani. For her strength, love and faith. The kindest person I’ve
ever known. With love.

ACKNOWLEDGEMENTS

Firstly, I would like to express my sincere gratitude to my advisor Prof. Luciano de

Andrade Barbosa for the continuous support of my Masters study, for his patience, mo-

tivation, presence, and immense knowledge. His guidance helped me in all the time of

research and writing of this Master thesis. Thank you for sharing your knowledge and

enthusiasm.

Besides my advisor, I would like to thank my professors at PPGCC (Postgraduate

Program in Science Computing) and former professors, who have guided me through

this journey in the searching for knowledge. Sharing knowledge is one of the noblest

and admirable attitudes I’m aware of, and you exercised it adroitly. You’ll always be

remembered.

My sincere gratitude to the members of my examination board: Prof. Paulo Salgado

Gomes de Mattos Neto, and Prof. Hendrik Teixeira Macedo, for their insightful comments,

feedbacks and contributions to improving this work.

Very special gratitude goes out to FACEPE (Fundação de Amparo a Ciência e Tec-

nologia do Estado de Pernambuco) for providing the funding for the work.

Thank you to Chaina Oliveira, Raphael Dourado, Everaldo Neto, and Junior Sobreira

for helping me with the construction of the datasets used to validate this work. You Rock!

I would like to express my very profound gratitude to my family for providing me with

unfailing support and continuous encouragement throughout my years of study and my

life in general. Thanks for understanding my absence in important moments for the last

few years. This accomplishment would not have been possible without you.

Last but not least, I thank all my friends, which I will not personally mention to not

fall in the mistake of missing someone. Thanks for the chatting, the drinkings, the trips,

the encouragement, and enthusiasm. The path without you would be really boring.

Thank you.

ABSTRACT

Knowledge graphs (or knowledge bases) allow data organization and exploration,

making easier the semantic understanding and use of data by machines. Traditional strate-

gies for knowledge base construction have mostly relied on manual effort, or have been

automatically extracted from structured and semi-structured data. Considering the large

amount of unstructured information on the Web, new approaches on knowledge bases con-

struction and maintenance are trying to leverage this information to improve the quality

and coverage of knowledge graphs. In this work, focusing in the completeness problem of

existing knowledge bases, we are interested in extracting from unstructured text missing

attributes of entities in knowledge bases. For this study, in particular, we use the infoboxes

of entities in Wikipedia articles as instances of the knowledge graph and their respective

text as source of unstructured data. More specifically, given Wikipedia articles of enti-

ties in a particular domain, the structured information of the entity’s attributes in the

infobox is used by a distant supervision strategy to identify sentences that mention those

attributes in the text. These sentences are provided as labels to train a sequence-based

neural network (Bidirectional Long Short-Term Memory or Convolutional Neural Net-

work), which then performs the extraction of the attributes on unseen articles. We have

compared our strategy with two traditional approaches for this problem, Kylin and iPop-

ulator. Our distant supervision model have presented a considerable amount of positive

and negative training examples, obtaining representative training examples when com-

pared with the other two traditional systems. Also, our pipeline extraction have shown

better performance filling the proposed schema. Overall, the extraction pipeline proposed

in this work outperforms the baseline models with an average increase of 0.29 points in

F-Score, showing significant difference in performance. In this work we have proposed a

modification of the Distant Supervision paradigm for automatic labeling of training ex-

amples and an extraction pipeline for filling out a given schema with better performance

than the analyzed baseline systems.

Keywords: Natural Language Processing. Named Entity Recognition. Wikipedia. DB-

pedia. Deep Learning. Distant Supervision.

RESUMO

Grafos de Conhecimento (ou Bases de Conhecimento) permitem a organização e ex-

ploração de dados, tornando mais fácil o seu entendimento semântico e utilização por

máquinas. Estratégias tradicionais para construção de bases de conhecimento tem depen-

dido na maior parte das vezes de esforço manual, ou tem utilizado extração automática

de fontes de dados estruturadas e semi-estruturadas. Considerando a grande quantidade

de informação não estruturada na Web, novas abordagens para construção e manutenção

de bases de conhecimento tem tentado alavancar o uso dessa fonte como forma de mel-

horar a qualidade e a cobertura dos grafos de conhecimento. Este trabalho está voltado

para o problema de completude de bases de conhecimento, nós estamos interessados em

extrair de textos não estruturados os atributos faltosos de entidades. Para este estudo

em particular, nós fazemos uso de Infoboxes de entidades de artigos da Wikipédia como

instâncias do grafo de conhecimento, e os textos desses artigos são utilizados como fonte

de dados não estruturados. Mais especificamente, dados artigos de entidades da Wikipé-

dia de um determinado domínio, a informação estruturada dos atributos de Infobox da

entidade são usados por uma estratégia de supervisão distante, de forma a identificar

sentenças que mencionam esses atributos. Essas sentenças são rotuladas e utilizadas para

treino de uma rede neural baseada em sequência (Rede Bidirecional de Memória de Curto-

Longo Prazo ou Rede Neural Convolucional), que realizam a extração de atributos em

novos artigos. Nós comparamos nossa estratégia com duas abordagens tradicionais para

o mesmo problema, Kylin e iPopulator. Nosso modelo de supervisão distante apresentou

uma quantidade considerável de exemplos de treinamento positivos e negativos quando

comparado com os outros dois sistemas tradicionais. Nosso esquema de extração também

apresentou melhor performance no preenchimento do esquema de dados proposto. No

geral, nosso sistema de extração superou os modelos de base com um aumento médio de

0.29 pontos no F-Score, mostrando diferença significativa de performance. Neste trabalho

foi proposto uma modificação do paradigma de supervisão distante para rotulagem au-

tomática de exemplos de treinamento, e um esquema de extração para preenchimento de

um dado esquema de dados com performance superior aos sistemas de base analisados.

Palavras-chave: Processamento de Linguagem Natural. Reconhecimento de Entidades

Nomeadas. Wikipedia. DBpedia. Aprendizagem Profunda. Supervisão Distante.

LIST OF FIGURES

Figure 1 – Infoboxes examples showing schema drift between entities under the
same domain. 16

Figure 2 – Knowledge Graph snippet of DBpedia. 19
Figure 3 – Architecture of KYLIN’s infobox generator 34
Figure 4 – iPopulator extraction process . 35
Figure 5 – Wikicode (left) example to render Infobox (right) on Wikipedia page . 38
Figure 6 – Infobox types. 41
Figure 7 – Framework architecture for querying and retrieving Infoboxes informa-

tion across Wikipedia categories. LEFT: Query all infoboxes given a
Category name. RIGHT: Query mapped infobox templates and corre-
spondent scheme for returned Articles. 44

Figure 8 – Breadth-first search to gather infoboxes until given threshold similarity
between levels of subcategories . 45

Figure 9 – Distribution of Infoboxes size across Wikipedia. 47
Figure 10 – Top property names used on Wikipedia Infoboxes 47
Figure 11 – Distribution of infoboxes size by category 50
Figure 12 – External scheme-based quality index for categories. Properties from

suggested templates’ schema used on internal schemata 52
Figure 13 – Correlation between Suggested properties from Infobox templates and

the proportion of properties actually used on Infobox instance 53
Figure 14 – Internal scheme-based quality index for categories. Schemata homo-

geneity obtained through Jaccard similarity between infobox schemas. . 55
Figure 15 – Deepex architecture for building datasets, classifiers and extractors . . 56
Figure 16 – Deepex pipeline extraction architecture 57
Figure 17 – Example of sliding window for labeling sentences and NER tagging

using Soft TF-IDF (with Jaro Winkler) measure. 60
Figure 18 – LEFT.- The CNN extracts character features from each word. It creates

embedding for each character. Padding tokens are added to the end and
start of the word. The embeddings are concatenated, passed through
the CNN and a max pooling layer. The output is the feature vector
for the word at the character level. RIGHT - The BLSTM for tag-
ging named entities. Pre-trained word embeddings, additional features
word-level, and Character-level features obtained from the Convolu-
tional Neural Network are concatenated for each word in the sentence.
They are fed to the BLSTM network, and passed to the output layer.
The output is the sequence tagging. 63

LIST OF TABLES

Table 1 – Infobox Types Usage Proportion . 42
Table 2 – Overview data of Wikipedia exploration 46
Table 3 – Top 10 Infobox Templates by Usage Proportion 48
Table 4 – Extracted categories, number of articles found and subcategory extrac-

tion nodes . 49
Table 5 – Overview of templates usage for each category. Total count of used tem-

plates, most used template, template size and proportion of the most
used template . 51

Table 6 – From left to right are presented: Infobox templates used as input to the
Schema Discovery component; The schema size composed by most used
properties in the domain; The data type expressed by each property
(T - Textual, N - Numeric, A - Alphanumeric, M - Multivariate); The
average count of tokens and characters for the values of each property;
The average count of tokens in the sentences containing values for the
respective properties; The count of tokens and characteres were obtained
from the validation set. 66

Table 7 – Features set used by CRF extractor. 68
Table 8 – Features used by iPopulator to train CRF extractors. 69
Table 9 – Hyper-parameter values applied for training neural network architecture

used in this work. 71
Table 10 – Macro and Micro F-score by model for each class 74
Table 11 – Results for the Wilcoxon Signed-rank Test. 75
Table 12 – Proportion of filled properties in defined schema. 76
Table 13 – The output of the Distant Supervision. Labels count for each schema

property according with evaluated model. 78
Table 14 – Complete Macro and Micro results from evaluation experiments. 90
Table 15 – Complete precision measures for each dataset. 91
Table 16 – Complete recall measures for each dataset. 92
Table 17 – Complete F-score measures for each dataset. 93

LIST OF ABBREVIATIONS AND ACRONYMS

biRNN Bidirectional Recurrent Neural Networks

BLSTM Bidirectional Long Short-Term Memory

BoW Bag-of-Words

CNN Convolutional Neural Networks

CRF Conditional Random Fields

CSS Cascading Style Sheets

DL Deep Learning

DS Distant Supervision

FN False Negative

FP False Positive

HMM Hidden Markov Model

HTML Hypertext Markup Language

IE Information Extraction

KB Knowledge Base

KBC Knowledge Base Construction

KG Knowledge Graph

L-BFGS Limited-memory Broyden–Fletcher–Goldfarb–Shanno

LOD Linked Open Data

LSTM Long Short-Term Memory

ML Machine Learning

NER Named Entity Recognition

NIF NLP Interchange Format

NLP Natural Language Processing

OpenIE Open Information Extraction

POS Part of Speech

RDF Resource Description Framework

RE Relation Extraction

RNN Recurrent Neural Networks

SKOS Simple Knowledge Organization System

SVM Support Vector Machine

TF-IDF Term Frequency-Inverse Document Frequency

TN True Negative

TP True Positive

URI Uniform Resource Identifier

URL Uniform Resource Locator

W3C World Wide Web Consortium

WWW World Wide Web

XML Extensible Markup Language

LIST OF SYMBOLS

𝛾 Greek letter gamma

Γ Capital greek letter gamma

𝛿 Greek letter delta

Δ Capital greek letter delta

𝜃 Greek letter theta

𝜅 Greek letter kappa

𝜒 Greek letter chi

∈ Set membership

∀ Universal quantification

𝑥⃗ Vector representation

‖𝑥⃗‖ Vector length

𝑥̃ Median

CONTENTS

1 INTRODUCTION . 15
1.1 PROBLEM AND MOTIVATION . 15
1.2 RESEARCH QUESTIONS . 17
1.3 WORK ORGANIZATION . 17

2 CONCEPTS AND TERMINOLOGY 19
2.1 KNOWLEDGE BASES . 19
2.1.1 Knowledge Base Construction . 20
2.1.2 Knowledge Base Refinement . 22
2.1.3 The DBpedia datasets . 24
2.2 DISTANT SUPERVISION . 25
2.3 INFORMATION EXTRACTION . 25
2.3.1 Approaches on Information Extraction 26
2.4 SEQUENCE-BASED MODELS . 27
2.4.1 Conditional Random Fields . 27
2.4.2 Sequence-based Neural Networks . 28
2.5 WORD REPRESENTATION . 29

3 RELATED WORK . 31
3.1 WIKIPEDIA STRUCTURES EXPLORATION 31
3.2 KNOWLEDGE GRAPHS ENHANCEMENT 32
3.3 INFOBOX INSTANCES FOR KNOWLEDGE BASE ENHANCEMENT . . . 32
3.3.1 Kylin . 33
3.3.2 iPopulator . 34
3.4 SEQUENCE-BASED NEURAL NETWORKS FOR NLP 36

4 DATA DESCRIPTION AND PROCESSING 37
4.1 WIKIPEDIA STRUCTURE . 37
4.2 INDEXING WIKIPEDIA CATEGORIES AND TEMPLATES 39
4.3 INDEXING WIKIPEDIA INFOBOXES . 40
4.4 INDEXING WIKIPEDIA TEXTS . 43
4.5 FRAMEWORK ARCHITECTURE FOR QUERYING CATEGORY INFOR-

MATION . 44

5 DATA ANALYSIS . 46
5.1 GENERAL STATISTICS . 46
5.2 CATEGORY-BASED STATISTICS . 49

5.2.1 Categories Quality Analysis . 51
5.2.1.1 What is the coverage of infoboxes’ attributes from mapped templates? . . . 52
5.2.1.2 How similar are the infoboxes on a category? 53
5.2.1.3 Would it be possible use Wikipedia categories to define common scheme

for entities under the same domain? . 55

6 DEEPEX . 56
6.1 AUTOMATIC DATA LABELING . 57
6.1.1 Schema Discovery . 57
6.1.2 Distant Supervision . 58
6.2 MODELS TRAINING . 61
6.2.1 Sentence Classifier Training . 61
6.2.2 Attribute Extractor Training . 62

7 EXPERIMENTS . 65
7.1 EXPERIMENTAL SETUP . 65
7.1.1 Datasets . 65
7.1.2 Approaches . 68
7.1.3 Metrics . 72
7.2 EVALUATION AND RESULTS . 73

8 CONCLUSIONS AND FUTURE WORK 80
8.1 DISCUSSION . 80
8.2 CONTRIBUTIONS AND LIMITATIONS 80
8.3 FUTURE WORK . 81
8.4 CONCLUSION . 82

REFERENCES . 83

APPENDIX A – MACRO AND MICRO MEASURES BY TEM-
PLATE . 90

APPENDIX B – PRECISION MEASURES FOR EACH DATASET 91

APPENDIX C – RECALL MEASURES FOR EACH DATASET . . 92

APPENDIX D – F-SCORE MEASURES FOR EACH DATASET . . 93

15

1 INTRODUCTION

1.1 PROBLEM AND MOTIVATION

Knowledge bases are graphs in which nodes represent real-world objects and edges rep-
resent relations between them. Due to its semantic richness, knowledge graphs have been
used for different tasks such as improving the quality of the results of web search and
question-answering systems.

Since the quality of knowledge bases might have a great impact on these tasks, prac-
titioners and researchers have been working on building and maintaining them. There
are different ways to build knowledge bases: manually (e.g. Cyc1); using crowdsourcing
(e.g., Freebase2); or automatically (e.g., DBpedia3 and YAGO4). Any strategy employed
to build comprehensible knowledge bases is hardly complete and free of error (PAULHEIM,
2016). Knowledge bases might have, for instance, wrong information about entities, miss-
ing entities, attributes or relations between entities.

In this work, we are particularly interested in the problem of knowledge base com-
pleteness. More specifically, we aim to extract missing attributes (and their values) of
entities from text to improve knowledge base coverage. To give a concrete example, Fig-
ure 1 illustrates the missing-attribute issue on Wikipedia Infoboxes. In the article of the
Gachsaran oil field the attribute “current production oil” is a common attribute in oil
fields, as can be seen on other infobox examples (Ghawar Field and Ahvaz oil field). This
attribute is not present in the article’s infobox but appears in the article text (See text
excerpt placed above Gachsaran infobox example on Figure 1).

Wikipedia is currently a valuable source of information, and its corpus encompasses a
vast number of different domains. For this reason, a lot of effort has been made to convert
its content to semantic form. As highlighted in Wu and Weld (2007), although working
with Wikipedia introduces some challenges on information recovering process, it also
presents several features that make it ideal for extraction of information, among them are:
use of unique identifiers for entities (URI); tabular summaries as Infoboxes; rudimentary
taxonomic hierarchy as page lists and categories; redirection and disambiguation pages;
and a vast number of articles. According to our data collection (of indexed DBpedia
datasets and Wikipedia dump - both dating from October of 2016 and released in 2017)
around 5.1M articles and 2.3M infoboxes are distributed over 1.1M Categories.

In this work, we are particularly interested in improving the coverage of Wikipedia
infoboxes, which are tables on the top right-hand corner of Wikipedia articles that present
1 http://www.opencyc.org/
2 https://developers.google.com/freebase/
3 http://wiki.dbpedia.org/
4 http://www.yago-knowledge.org/

16

characteristics of the entity which the article refers to. Because of its structural nature,
Wikipedia infoboxes have been used to create knowledge bases such as DBPedia and
YAGO.

According to Wu and Weld (2007) infoboxes are manually created when human authors
create or edit an article, a time-consuming process, and as a result, many articles have
no infoboxes, and the majority of infoboxes which do exist are incomplete. To improve
the coverage of Wikipedia infoboxes, we propose an approach that extracts the values
from the text of entity’s article on Wikipedia, using information extraction techniques
(AGGARWAL; ZHAI, 2013).

Traditional information extraction approaches use machine learning along with hand-
crafted features to perform extraction (WU; WELD, 2007; LANGE; BÖHM; NAUMANN, 2010).
Deep learning is an alternative to this as shown by Zhang, Zhao and LeCun (2015), which
have used Convolutional Neural Networks (CNN) to learn features from text and perform
text classification. Instead of defining hand-craft features, deep learning strategies can
learn suitable features according to the task at hand. Deep learning has shown to be
very effective for many tasks, including text processing (COLLOBERT et al., 2011). For all
those reasons, we apply sequence-based deep learning techniques namely Convolutional

Source: Wikipedia. Viewed in November 27th 2018

Figure 1 – Infoboxes examples showing schema drift between entities under the same do-
main.

17

and Recurrent Neural Networks to extract values of missing attributes.
To avoid having to manually label examples to train the extraction models, we apply

the weakly supervised approach of Distant Supervision (MINTZ et al., 2009). More specif-
ically we leverage the fact that, on the same Wikipedia page, characteristics of an entity
are usually mentioned both on its text and its infobox. The information in the infobox
is then matched with the text using a text similarity measure (Soft TF-idf) to label the
tokens in the sentences in order to train the extractors.

1.2 RESEARCH QUESTIONS

The main goal of this research work is to provide an extraction pipeline to retrieve textual
information from plain text articles and fulfill predefined schemata. This approach can be
categorized as an external method for knowledge base completion. As a requirement to
achieve this goal, some objectives were defined as the target for this research.

• Construct training datasets through the alignment of distant supervision with sim-
ilarity measure: Is it possible to apply a similarity measure, e.g. Soft TF-IDF (CO-

HEN; RAVIKUMAR; FIENBERG, 2003), to distant supervision as a means of dataset
creation?

• Build the extraction pipeline using deep learning: Can a deep neural network ar-
chitecture be competitive with traditional information extraction models in the
attribute extraction task?

1.3 WORK ORGANIZATION

This section introduces each chapter of this work. The work is organized as follows.
Chapter 2 gives an overview about main concepts, terminologies and works in the fields
of Knowledge Base Construction, Information Extraction, and Deep Learning for Natural
Language Processing tasks. The Knowledge Bases section comprehend the construction
and enhancement of these structures, and the Knowledge Based used throught this work,
the DBpedia, discussing its datasets and extraction methods. The Distant Supervision sec-
tion defines the approach of the same name, and embraces some work efforts to improve it.
The Information Extraction section discuss classical and current methods applied for in-
formation extraction in structured and unstructured documents, highlighting its vantages
and advantages.

Chapter 3 discusses work directly related to this research. Works that have explored
Wikipedia structured information for schema discovery and data analysis. It also discusses
previous works that have tried to increase the coverage, or make corrections in DBpedia
and other Knowledge Bases. Under this chapter are also discussed works that have mod-

18

eled Sequence-based Neural Networks architectures for NLP. The two baseline works used
for this research are also detailed explained.

Chapter 4 describes and discusses in details the processing of the data sources explored
by this work. The advantages and difficulties, and how the found problems were surpassed.
It also explains in the datails the indexing strategy employed to store the large amount
of data, and the framework developed to manipulate it, explaining the applied querying
mechanisms for that.

Chapter 5 gives a general analysis of the data used by this work, Wikipedia and
DBpedia. It explores the Infoboxes instances distribution, Infobox Templates composition,
and the Properties comprised by them. It suggests the use of Wikipedia Categories for
automatic schema discovery, analyzing infoboxes and subcategories as a form to infer
information domains and lead autonomous schema discovery. It also conceptualize two
quality indexes to analyze the composition of infobox schemata from Wikipedia.

Chapter 6 presents DEEPEX, the extractor pipeline proposed by this work. It in-
troduces the extraction architecture and gives the details of each module, the strategies
applied to build them and how they are trained. Chapter 7 presents the experiments per-
formed to evaluate our model, comparing it with already existing systems for the same
task. It gives the experimental setup, presents the metrics for evaluation, and the tests
performed to validate the differences. Lastly, it concludes the study in Chapter 8 dis-
cussing the contributions, limitations and proposing future approaches to improve the
work.

19

2 CONCEPTS AND TERMINOLOGY

This chapter introduces the concepts and terminologies used throughout this work. Sec-
tion 2.1 introduces Knowledge Base, its importance, how they are represented, built, and
enhanced, as well as its strengths and weaknesses, and also presents details about DB-
Pedia, the knowledge base used in this work. Section 2.2 presents Distant Supervision, a
strategy of automatically labelling data. Section 2.3 presents an overview of Information
Extraction, showing its central concepts, techniques and models. Sequence-based models
used for labeling sequenced information in the area of information extraction are pre-
sented in Section 2.4. The word representation problem is also discussed in Section 2.5,
showing alternatives and techniques applied to linear and non-linear models dealing with
textual information.

2.1 KNOWLEDGE BASES

Source: Data extracted from DBpedia Knowledge base. Image created for
this research.

Figure 2 – Knowledge Graph snippet of DBpedia.

Knowledge bases are graphs in which nodes represent real-world objects and edges
represent relations between them. These objects represented by nodes on graphs are also
called Entities. According to Balog (2018), an entity is a uniquely identifiable object or
thing, characterized by its name(s), type(s), attributes and relationships to other entities.
Although the terms Knowledge Base and Knowledge Graph represent the same concept,
Balog (2018) highlights that “when the emphasis is on the relationships between entities,
a knowledge base is often referred to as a knowledge graph.”. Figure 2 shows a snippet of
DBpedia Knowledge Base (KB), how the nodes (entities) are related, and a subset of their

20

attributes. Knowledge graphs are important to organize the data, allowing an intuitive
exploration across its structures. Besides, they are crucial for semantically explore the
data meanings and consequently enable the development of tasks oriented to knowledge,
i.e., it enables a better understanding and use of the available data by machines.

The information used to build knowledge graphs can come from several sources. It
can be obtained from structured sources (e.g. Wikipedia Infoboxes, tables of product
specification from online stores, databases, social networks, among others), unstructured
texts (e.g. news articles, Wikipedia articles, any site on the World Wide Web (WWW),
posts on social media, and so on), and it can also come in multimedia form (as images
and videos).

Currently, the main form to represent and exchange obtained data to knowledge graphs
structure are through the use of Semantic Web standards as Resource Description Frame-
work (RDF)1. RDF is a World Wide Web Consortium (W3C) specification for data mod-
eling and interchange on the Web, is currently used for content description, modeling,
and knowledge management. RDF documents are composed of three main components:
resource, property, and value. With these components at hand, the RDF standard can
replicate existing entities links on the Web. Using Uniform Resource Identifier (URI) to
represent resources, as well as the relationships between them.

2.1.1 Knowledge Base Construction

Due to its semantic richness, knowledge graphs have provided structured information
on the Web and have been used for different tasks such as improving the quality of the
results on web search (HALEVY; NORVIG; PEREIRA, 2009) and question-answering systems
(FERRUCCI et al., 2010). Sa Alex Ratner and Zhang (2017) points out that the process
of populating a structured relational database from unstructured sources it is of great
interest for the database community. At the same time, the natural language processing
and machine learning communities are pursuing the same problem under the name of
Knowledge Base Construction (KBC).

To tackle the problem, KBC has been an area of intense study over the last decade,
presenting different approaches. Paulheim (2017) points out that a Knowledge Graph can
be built with the use of different methods. They can be curated by an organization or
a small, closed group of people, through crowd-sourced effort, or created with heuristic,
automatic or semi-automatic means. Sa Alex Ratner and Zhang (2017) separates these
approaches in two main categories: Rule-based systems and Statistical Approaches. The
first one relies on a set of rules and patterns to derive relationships, while the second
tries to overcome rule-based limitations through the use of probabilistic machine learning
models. Details of the categorization are described below.
1 <https://www.w3.org/RDF/>

https://www.w3.org/RDF/

21

• Rule-based Approaches: In these approaches rules can lead the extraction pro-
cess. However, they require that the developer builds patterns for the domain, usu-
ally through the use of string matching, heuristics and expression rules. An example
of this type of approach is the “Hearst Pattern” proposed by Hearst (1992), in
which was discovered that simple patterns like “X such as Y.” could assist the ex-
traction of a large number of hyponyms, e.g., it states that from the sentence “The
bow lute, such as the Bambara ndang, is plucked and has an individual curved neck
for each string.” the hyponym (Bambara ndang, bow lute) can be extracted given
the intuitive inferring that“Bambara ndang” is kind of a “bow lute” even if the
reader is not familiar with the terms. DBLife (DEROSE et al., 2007; SHEN et al., 2007)
is another example of rule-based approach. It identifies mentions of people in the
database research community by performing string matching between the corpus
and heuristic variations of a dictionary of canonical person names (e.g., abbrevia-
tions and first/last name ordering). Because the lack of ambiguities when dealing
with this domain of information, DBLife can achieve high recall and high precision.
Although, these approaches can achieve reasonable extraction performance for spe-
cific domains, their limitations make it unable to scale to large corpus or different
domains. Trying to overcome the limitations of grammar-based and regular expres-
sions extraction, Krishnamurthy et al. (2008) and Li et al. (2011) have proposed
IBM’s SystemT, which aids developers in the construction of high-quality extrac-
tion patterns through the use of a declarative language called AQL, which consists of
a combination of the familiar syntax of SQL and some defined text-specific algebra
operators. Niu et al. (2012) point out that the development process of rule-based
KBC systems is increasingly being assisted by statistical techniques.

• Statistical Approaches: these approaches automatically select the patterns from
a range of a priori features from input data, usually lexical, syntactic and semantic
features. The extraction is performed through supervised learning, and candidate
entities are associated with the likelihood of the instance being positive. For that
are used machine learning models such as logistic regression or conditional random
fields. The training examples are usually composed of annotations of sentences. As
examples of systems applying this approach we have the following: Elementary (NIU

et al., 2012), take as input a variety of data sources, perform information extraction
with standard NLP tools and machine learning algorithms, then builds a Markov
Logic Network system to perform statistical inference and make predictions for the
target KB; Deep Dive (SA ALEX RATNER; ZHANG, 2017) uses a high-level declar-
ative language based on SQL and on Markov Logic, its extraction process passes
through two fases, the first evaluates the sequence of SQL queries informed to pro-
duce a factor graph of extracted information, the second step is the inference fase
where statistical inferences are performed over the generated factor graph; Google’s

22

knowledge vault (DONG et al., 2014) also combines different data sources for KBC,
however, it verifies the extractions coming from Web content using existing knowl-
edge bases, working as a knowledge fusion approach, existing KBs are used to apply
a Local Closed World Assumption and fit probabilistic binary classifiers to compute
the probability of a extracted tuple being true, adding to the KB only th extracted
tuples with a high probability of being a true.

Beyond rule-based and statistical approaches, Niu et al. (2012) also points out distant
supervision and human feedback as common techniques for KBC. In addition to these ap-
proaches we can mention the manual efforts to build KBs, which rely on human knowledge
engineers to add information to the base (e.g., Cyc2).

2.1.2 Knowledge Base Refinement

Although there is a vast number of techniques to be applied in KBC, when talking about
Corpus scaling to the size of the Web, it is almost impossible to achieve one hundred
percent of information coverage in the initial construction. As stated by Balog (2018)
“Knowledge bases are bound to be incomplete; there is always additional information to
be added or updated”. Hence, some strategies can be used to fix inconsistencies or include
missing information. This problem is managed through Knowledge Base/Graph Refine-
ment. Paulheim (2016) groups the approaches for KB refinement into three orthogonal
categories: completion versus correction, refinement target and internal versus external
methods. They are detailed below:

• Completion versus Error detection/Correction: This categorization takes into
consideration the main goal of the refinement. The addition of missing knowledge
to the graph is called Completion and is related to the quality dimension Complete-
ness. The identification of wrong information in the graph is called Error Detection
and is related to the quality dimension free-of-error. As examples of appoaches on
KB Completion, Nickel and Ring (2012) has proposed the use of matrix factoriza-
tion to predict entity types in YAGO (SUCHANEK; KASNECI; WEIKUM, 2007), while
Paulheim (2012) have proposed the use of association rule mining to predict miss-
ing types in DBpedia, the method is basically based on redundancies, trying to find
patterns of co-occuring types to predict new ones. Aprosio, Giuliano and Lavelli
(2013a) makes use of cross-language links and overlappings between category tags
as features to train a supervised kernel-based classifier and predict missing types
for the DBpedia ontology. As examples of Error Detection approaches, Paulheim
(2014) represents relationships between entities in DBpedia as a high dimensional
feature vector and employs outlier detection methods to identify wrong interlinks.

2 <http://www.opencyc.org/>

http://www.opencyc.org/

23

Wienand and Paulheim (2014) it also makes use of outlier detection methods to
detect errors in DBpedia, more specifically wrong numerical values in the KB.

• Refinement target: This categorization considers the targeted information. Which
are the entity type, the relationship between entities, interlinks between knowledge
graphs and datatypes. Nickel and Ring (2012), Paulheim (2012), and Aprosio, Giu-
liano and Lavelli (2013a) uses the entity types as target for enhancement, while
Paulheim (2014), Wu and Weld (2007), and Lange, Böhm and Naumann (2010)
make use of the relations between entities. The work of Wienand and Paulheim
(2014) focuses on numerical values in the KB.

• Internal versus External methods: This categorization takes into consideration
the provenance of the data used by the approach. Internal methods only use the
knowledge graph itself. External methods use additional data, e.g., external text
corpora. Nickel and Ring (2012), Paulheim (2012), Paulheim (2014), and Wienand
and Paulheim (2014) are internal methods, once it makes use of only the graph
information itself, while Aprosio, Giuliano and Lavelli (2013a), Wu and Weld (2007),
and Lange, Böhm and Naumann (2010) are external methods which make use of
external sources like cross-language editions of the DBpedia an unstructured sources.

As aforementioned, there are different ways a knowledge base can be built and en-
hanced: manually, using crowdsourcing or automatically. While manually and crowdsourc-
ing KB rely on human involvement and curation, automatic approaches mainly make use
of knowledge extraction and graph construction with the assistance of handcrafted pat-
terns and machine learning models. The knowledge extraction, used both for construction
and enhancement of KBs, can be performed on structured, semi-structured, and unstruc-
tured documents, mostly on the web, given its extensive amount of data and different
sources.

The graph construction is related to the completeness of already existent KBs. This
perspective makes use of the graph information itself or other graphs, without external
corpus or extractions. These approaches try to predict new entities or relationships be-
tween them. Named entity found by extraction methods can be highly ambiguous, to
build consistent Knowledge Graph (KG)s it is necessary to apply methods like entity
resolution, entity linking, and link prediction tasks. Entity resolution consists in the dis-
tinction of entities with the same name and different names for the same entity, to fix
inconsistent information on KG. Entity Linking consists in to determine the identity of
extracted entities, it differs from Named Entity Recognition (NER) because NER only
identifies occurrences of an entity in the text, Entity Linking tries to link those identified
occurrences in the text to its corresponding entries in a KG. The Linking prediction is
used to predict possible future links in the graph. It can also be used to predict missing
links between related entities due to incomplete data.

24

Any strategy employed to build and maintain comprehensible knowledge bases is
hardly complete and free of error. As previously shown, Knowledge bases may have, for
instance, wrong or inconsistent information about entities, missing entities, attributes or
relations between entities. In this work, we are going to explore the completeness of these
structures through Information Extraction in unstructured sources. DBpedia Knowledge
Base, the KB used in this work, makes use of ontology mappings to annotate structured
Wikipedia sources, and then extract information. The next subsection will focus on this
Knowledge Base, its composition, and latest release.

2.1.3 The DBpedia datasets

The DBpedia community project presented on Lehmann et al. (2015) builds a large-scale,
multilingual knowledge base by extracting structured information from Wikipedia. The
latest DBpedia version (2016-10, publication year: 2017) describes 6.6M entities consisting
of 1.5M persons, 840K places, 496K works, 298K organizations, 306K species, 58K plants,
and 6K diseases. The total number of resources described only in English Wikipedia is
18M.

The extracted information is set in the form of RDF statements and served as Linked
Open Data (LOD) on the Web. The project makes use of a community effort to build
mappings from Wikipedia structured information representation to a DBpedia ontology.
This approach makes possible a consistent extraction of high-quality data and datatype
information (e.g.: geographic, date-temporal, and numbers). DBpedia provides a variety
of datasets organized in RDF format. They are mainly built using extractors divided into
four categories:

• Mapping-based Infobox Extraction: It maps infobox properties and values to
manually written mappings between them and terms in the DBpedia ontology, which
is a shallow, cross-domain ontology, and has been manually created based on the
most commonly used infoboxes within Wikipedia, currently it covers 685 classes
described by 2,795 different properties3. This approach extracts high-quality data
and provides datatype definition for each infobox property. However, the extracted
information is restricted to ontology mapped structures;

• Raw Infobox Extraction: Existing infobox information is extracted and directly
mapped to RDF statements. This extraction does not rely on manual mappings
to ontologies and does not provide datatype definition for properties. Hence, the
quality of the extracted data is poor.

• Feature Extraction: Specialized extractors to get single article features, e.g. geo-
graphic coordinates;

3 <https://wiki.dbpedia.org/services-resources/ontology>

https://wiki.dbpedia.org/services-resources/ontology

25

• Statistical Extraction: It extracts information from the unstructured text to pro-
vide data based on statistical measures of page links or word counts. For instance,
the grammatical gender dataset tries to identify the gender of a given resource
mapped to the class “dbo:Person” on DBpedia ontology.

2.2 DISTANT SUPERVISION

Distant Supervision (DS) is a paradigm usually applied by Relation Extraction methods
to build training datasets. Instead of relying on human handcrafted features, patterns or
manual annotation of training examples, DS starts from the assumption that any sentence
containing a pair of entities from a known relation is likely to express that relation. Mintz
et al. (2009) have used Freebase aligned with 1.2 million Wikipedia articles to generate
training sets of 102 Freebase relations and entity pairs that participate in those relations.

Takamatsu, Sato and Nakagawa (2012) highlights, that although DS is an attractive
approach to heuristically generate a large number of labeled data, when compared with
the limitations of supervised approaches, it can generate noisy labeled data and cause
poor extraction performance. It states that this can happen when the given entity pair
express more than one relation on target text. As an example, in the context of Relation
Extraction, the pair (Michael Jackson, Gary) expressing place_of_birth relation on the
KB might be matched with the sentence “Michael Jackson moved from Gary.” which does
not rightfully represents the relation place_of_birth. On the other hand, the sentence
“Michael Jackson was born in Gary” is a good representation for the relation. Roth et al.
(2013) have organized DS approaches into three basic principles:

• At-least-one constraint: it considers that at least one sentence labeled positive by
the DS assumption actually represents a true positive sample (RIEDEL; YAO; MC-

CALLUM, 2010; HOFFMANN et al., 2011; SURDEANU et al., 2010);

• Topic-based models: makes use of a generative model to discriminate between pat-
terns that are expressing the relation and ambiguous ones (ALFONSECA et al., 2011);

• Pattern correlations: make use of a probabilistic graphic model containing hidden
variables to model whether a pattern expresses a relation or not (TAKAMATSU; SATO;

NAKAGAWA, 2012).

2.3 INFORMATION EXTRACTION

Most Information Extraction (IE) methods rely on NER, a sequence labeling problem
where categories should be applied to each term. Balog (2018) points out that the main
technique to train an NER model is to use a large labeled corpus. It also highlights that
sequence labeling models widely used are hidden Markov models (ZHOU; SU, 2001) and
Conditional Random Fields (FINKEL; GRENAGER; MANNING, 2005).

26

As pointed out by Weld and Hoffmann (2008), IE techniques has received a lot of
attention in latest years. IE has showed potential in convert natural language texts on the
web to relational form. Consequently, it has made possible the discovery of textual knowl-
edge, data integration, the use of advanced searches, development of question-answering
systems, text summarization and even ontology learning.

Grishman (1997) defines IE as “the identification of instances of a particular class
of events or relationships in a natural language text, and the extraction of the relevant
arguments of the event or relationship. [...] involves the creation of a structured represen-
tation (such as a database) of selected information drawn from the text.”. IE can extract
information from unstructured, semi-structured or structured data. However, recently the
effort has been pointed to extract structure from unstructured information, e.g., natural
language texts, on a large scale.

This section presents an overview about approaches used for Information Extraction.
It embraces classical methods until recent ones, emphasizing its positives and negatives
points.

2.3.1 Approaches on Information Extraction

Beyond syntactic parsing and sequence tagging for entity extraction, traditional IE meth-
ods have relied on supervised or bootstrapping approaches for relation extraction. Boot-
strapping techniques have used relation specific pattern examples, as sources to induce
rules and extract information (RILOFF, 1993; SODERLAND et al., 1995). The two main ap-
proaches for information extraction are rule and feature-based. Rule-based methods apply
linguistic rules to capture patterns typically used to express relations, as in Agichtein and
Gravano (2000), and Brin (1999). Feature-based approaches use machine learning tech-
nics to learn lexical, syntactic and semantic features from input data and extract target
relations through supervised learning (GUODONG et al., 2005).

These traditional methods rely on sample patterns or on supervised learning, to learn
syntactic and semantic features on training data on a given corpus, as a consequence, it
is required the specification of a target schema to lead the extraction process. As shown
by Vo and Bagheri (2016), these characteristics imply on limited scalability and portability
across domains, which, e.g., can be challenging to apply to a large corpus as the Web.

A new paradigm for information extraction is proposed by Banko et al. (2007), the
Open Information Extraction (OpenIE), it intends to work with an unlimited relation
number and run fast enough to process the diversity of corpus on the Web. This paradigm
excludes human involvement in rule definition or training examples labeling. Thus, Ope-
nIE systems apply self-supervised learning where automatic heuristics are responsible
for generating labeled data to feed extractors, and target relations are extracted auto-
matically. As pointed out by Banko et al. (2007), OpenIE is an extraction paradigm
that facilitates domain-independent discovery of relations extracted from text and readily

27

scales to the diversity and size of the Web corpus. However, Vo and Bagheri (2016) has
shown that extractions using this approach usually present incoherent or uninformative
relations.

Alfonseca et al. (2011) also highlights the existence of unsupervised methods in Rela-
tion Extraction (RE), they are called unsupervised semantic parsing. The main objective
of these approaches is to use inference over semantic representations of text, obtained
through the clustering of mentioned entities and relations. Although they are powerful
models, they also require high computational resources.

The DS method, proposed by Mintz et al. (2009) and presented on previous sections,
comes up as an alternative for the approaches aforementioned. This method can be cate-
gorized as a weakly supervised approach, where the model can heuristically label training
examples using existing structured information. Looking for scalability and portability
across domains, the work presented here intends to apply distant supervision as a weakly-
supervision method to build training datasets for text classification and entity extraction.
In spite the fact that the DS assumption is mostly applied in a Relation Extraction
perspective, our goal is to use the assumption for NER tagging of sentence tokens. Iden-
tifying entities occurrences in the natural language text through the matching of value
and properties existing in the structured source.

2.4 SEQUENCE-BASED MODELS

Sequence classification can be applied to a variety of fields as genomic analysis, information
retrieval, finances, time series prediction and information extraction. Xing, Pei and Keogh
(2010) states that a sequence is an ordered list of events and may carry a sequence of labels,
in the case of natural language processing consists in labeling each element in the sequence,
e.g., assigning a category for each word in a sentence, such as name identity, noun phrase,
verb phrase etc. Xing, Pei and Keogh (2010) also highlights that the sequence labeling
problem has been solved by using conditional random fields. However, other models have
beem applied such as combining Hidden Markov Model (HMM) and SVM, and using
recurrent neural networks

This section presents the main sequence-based models applied for Information Extrac-
tion tasks. In the first subsection is shown the Conditional Random Fields, an advanced
implementation of Markov Random Fields, widely used for the task. The second sub-
section presents Sequence-based Neural Network models, a novel approach for deal with
Information Extraction ad Natural Language Processing.

2.4.1 Conditional Random Fields

Conditional Random Fields (CRF) is a sequence modeling framework commonly used
for Natural Language Processing (NLP) tasks. It was formalized by Lafferty, Mccallum

28

and Pereira (2001), and is defined as “a framework for building probabilistic models to
segment and label sequence data”. The CRF models P=(𝑦⃗|𝑥⃗) using a Markov Random
Field, assuming that 𝑥⃗ and 𝑦⃗ have the same length. The nodes of the Markov Random
Field corresponds to elements of 𝑦⃗ and features that are conditional on 𝑥⃗. The training is
done to maximize the likelihood of (𝑥⃗, 𝑦⃗) pairs from training data.

According with Sutton (2012), CRFs have been applied to many problems in natural
language processing, including named-entity recognition (MCCALLUM; LI, 2003), shallow
parsing (SHA; PEREIRA, 2003), word alignment in machine translation (BLUNSOM; COHN,
2006), citation extraction from research papers (PENG; MCCALLUM, 2006), extraction of
information from tables in text documents (PINTO et al., 2003), and many others. Directly
related with this research are the works of Wu and Weld (2007), and Lange, Böhm and
Naumann (2010) which have applied CRF aligned with engineered features to extract
information through NER tagging. The main drawback in CRFs to model sequential
inputs to outputs is the need for feature engineering definition. Works applying this model
have relied on the specification and modeling of syntactic features.

2.4.2 Sequence-based Neural Networks

The Sequence-based Neural Network is a newly approach to perform the task of sequence
classification using Deep Neural Network. Sequence-based Neural Network models have
been applied to sentiment classification, semantic relation classification, question answer-
ing, syntactic parsing, sequence tagging, and character level text classification.

The basic unit of these mechanisms is the neuron. It requires scalar inputs with as-
sociated weights. A multiplication operation is applied and is followed by a sum of its
elements. A nonlinear function is applied to the result which is passed to an output layer.
A Feed-forward Neural Network is the combination of these Neurons, which are organized
in layers of a network where the output of a neuron can be the input of one or more neu-
rons. When all neurons of a layer are connected through weights with all neurons in the
next layer, this is called a fully connected layer. Deep Learning refers to more advanced
architectures of neural networks. Deep learning presents several hidden layers and not
all neurons must be connected. The main deep learning models are CNN and Recurrent
Neural Networks (RNN).

The building of a CNN architecture for text classification is pointed out by Zhang and
Wallace (2015) as starting by converting a sentence into a sentence matrix where the rows
are word vector representations of each token. These word representations can be trained
from available models as word2vec (MIKOLOV et al., 2013) and GloVe (PENNINGTON;

SOCHER; MANNING, 2014). Different from feed-forward neural networks, CNNs do not
apply weights connecting neurons on different layers. CNNs make use of convolutions to
compute the output. Convolutions are functions applied over the input matrix. A filter is
used to segment the matrix in different regions and learn features from it. Each hidden

29

layer on the CNN apply different filters to the previously resulted matrix, at the end, the
convolution results coming to the output layer are combined to get the classification.

CNNs have mostly been successfully applied to computer vision tasks, but it has
also overcome state-of-art results for tasks as speech recognition, handwritten characters
classification, and more recently it has been applied for natural text classification. Santos,
Xiang and Zhou (2015) have proposed the use of CNN to classify relations through ranking
of loss function. They could outperform state-of-the-art results using the SemEval-2010
Task 8 dataset without using handcrafted features. Santos, Xiang and Zhou (2015) have
used CNN to learn features from sentences and do relation extraction. They have applied
different window sizes, pre-trained word embeddings, and a non-static architecture to
achieve the goal. Obtained results have also outperformed classical approaches for relation
extraction. Zhang, Zhao and LeCun (2015) have applied CNNs to learn character level
features from words and use it for text classification. This approach does not require
knowledge about the syntactic or semantic structure of a language making it easy for a
system using it to work with different languages.

The RNN model was first proposed by Elman (1990) and consists of a neural network
that map input sequences to output sequences. This network presents an internal state
that stores context information, allowing it to keep information about past inputs for
an amount of time that is not fixed a priori. RNNs have been successfully applied to
solve problems like speech recognition, language modeling, language translation, image
captioning, and time series prediction. Although RNNs are expected to store context
information, there are cases when more context is needed. Usually when the gap between
stored information and the present moment is small RNNs work successfully. Long Short-
Term Memory (LSTM) is a special case of RNN and was first introduced by Hochreiter and
Schmidhuber (1997). LSTM makes use of memory cells and gating mechanisms allowing
the storage of information for long periods, circumventing the RNN long-term dependency
for some cases.

As of the act of looking past context to predict current state, Schuster and Paliwal
(1997) present a Bidirectional Recurrent Neural Networks (biRNN) which looks both
ways, past, and future contexts, to better predict current state. Using a combination of
both biRNN and LSTM, Graves and Schmidhuber (2005) have presented a Bidirectional
Long Short-Term Memory (BLSTM) approach which has been shown good results for
NER tasks (CHIU; NICHOLS, 2016).

2.5 WORD REPRESENTATION

Dealing with textual data is a challenging task. As stated by Goldberg (2017) most fea-
tures in natural language represent discrete, categorical features such as words, letters,
and part-of-speech tags. The first focus when dealing with Machine Learning tasks is how
to represent these symbols, once they require well-specified input and output of fixed-

30

length. Hence, Machine Learning (ML) models cannot handle raw text directly, being
necessary its conversion to vectors of numbers.

Strategies to represent textual information are mainly divided into two categories: One-
hot representation (or sparse vectors) and feature embeddings (or dense representation).
Each technique has pros and cons, recommended to be used for specific context, tasks,
and different problem complexities. Goldberg (2017) accentuate these differences.

In the One-hot encode approach, each dimension corresponds to a unique feature,
i.e. each word or letter in the vocabulary is treated as a single vector with the same
size as the vocabulary, the word or letter itself is identified by a unique value 1 (one)
indicating its position in the index, all other positions are filled with value 0 (zero). This
representation is also called sparse vectors, since it requires more dimensions to represent
vocabulary information and all entries are zero except the single entry corresponding to
the respective word/letter.

Another widely used sparse representation for the feature extraction procedure is
the Bag-of-Words (BoW). It considers each word count as a feature. Similar to one-hot
encoding, the vector dimension for each word is defined by the size of the vocabulary,
but it differs in the method to populate the vector. The BoW approach looks for the
histogram of the words/letters within the document to fill the vector representation.
Usually, this method is aligned with the Term Frequency-Inverse Document Frequency
(TF-IDF) measure, to balance the scoring between occurrences of rare and highly frequent
words.

In the Dense representation each core is embedded into a d dimensional space. This
dimension is usually lower than the number of features. Goldberg (2017) points out that
the main difference is that on sparse representations each feature is its own dimension
while in the dense representation each feature is mapped to a vector. The use of dense
and low-dimensional vectors reduces computational effort from deeper non-linear models.
However, some aspects can be considered when choosing the word representation: Dense
vectors allow the model to share statistical strength between events, because of its capa-
bility to capture similarities, increasing its generalization power; one-hot representation
can be used when there are distinct features and is believed that no correlations exist
between different features, also when its not desired the share of information between
distinct words.

31

3 RELATED WORK

The effort to build a large-scale knowledge base mainly using semi-structured information
harvested from the Web usually presents inconsistencies as incompleteness and incorrect
entities attributes, types or relationships with other entities. This section presents a brief
overview from previous approaches that have tried to circumvent this problem. The main
topics explored by these studies is Knowledge Base completeness, more specifically ap-
proaches on Information Extraction in the Wikipedia, and DBpedia data analysis for
schema discovery.

3.1 WIKIPEDIA STRUCTURES EXPLORATION

Previous works have used Wikipedia structure to extract semantic relations, to provide an-
swers to queries, and to identify common schemas. Nguyen et al. (2010) have explored the
Wikipedia structure as infoboxes and Links between pages to conceptualize WIKIQUERY.
WIKIQUERY has as primary goal to capture relations between Wikipedia entities and pro-
vide a multi-document answer to queries. To achieve this goal it states that each value
of an infobox tuple is either an atomic value or a reference to another infobox, usually
represented by hyperlinks. Then, it makes use of a graph structure to navigate in these
relationships and returns answers to queries as a set of minimal trees from this graph.
Hence, it links entities through references over its content to provide multi-document
answers to queries.

The proposed strategy of Nguyen et al. (2012) is to cluster infobox structured informa-
tion and discover entity types. To address this problem it is defined a clustering strategy
called WIClust (Wikipedia Infobox Clustering), an unsupervised method that receives
as input a set of infoboxes, applies correlations among its properties to identify the im-
portant ones and uses it as the base for the cluster. The output is a set of entity types
represented by each resulted cluster. This method does not require the number of clusters
(or types) to be known in advance. However, they do not make use of any other type
of structured information on Wikipedia beyond infobox instances. Different from these
works, the study shown here makes use of other Wikipedia structures beyond infobox
instances, e.g., Categories hierarchy, and infobox templates. The main goal is to support
the schema discovery process through data analysis and proposed quality measures. This
initiative may assist the definition of entity types in a general form, focusing on the in-
formation domain, and without require the input of a set of infobox instances to perform
clustering.

Mohamed and Oussalah (2014) have made use of Infobox templates and instances to
increase the number of training examples for named entity classification and recognition

32

problems. However, despite the use of Wikipedia structures, its focus is gather training
examples to increase coverage and represent named entities for Person, Location and
Organization in NER problems, without autonomous Infobox creation.

3.2 KNOWLEDGE GRAPHS ENHANCEMENT

Works have tried to enhance existing knowledge graphs. Trying to circumvent the prob-
lems of incorrect or incomplete information about entities, relationships, types, and literal
values. Works as Paulheim and Bizer (2013), Paulheim and Bizer (2014), Sleeman and
Finin (2013), Nickel and Ring (2012), and Sleeman, Finin and Joshi (2015) have applied
internal methods for Knowledge Graph refinement, using only the graph information itself
to infer and add missing knowledge or identify erroneous pieces of information. Nickel and
Ring (2012) have focused in incorporate ontological knowledge to a factorization sparse
vector for learning relations of the YAGO Knowledge Base. The other cited works have
also made use of statistical and machine learning approaches, as probabilistic and topic
modeling, but they have mainly focused on the DBpedia knowledge graph.

DBpedia makes use of four types of extractors, as shown in the previous chapter.
Aprosio, Giuliano and Lavelli (2013c) states that the problem of coverage on DBpedia
data is mainly caused by the lack of existing Infobox instances for some pages, and by
the limitation of mappings for its ontology. Previous works (ZAVERI et al., 2013; FLEIS-

CHHACKER et al., 2014; WIENAND; PAULHEIM, 2014; PAULHEIM, 2017) have analyzed and
tried to measure the quality of DBpedia data and ontology mappings, mostly through
the use of outliers detection and analysis of ontology mappings. Font, Zouaq and Gagnon
(2017) have proposed the use of OpenIE and information already available on the knowl-
edge graph to partly correct existing problems. Different from them, we have performed a
joint data analysis on DBpedia datasets and Wikipedia structured information, relating
infobox structure to Categories hierarchy in order to lead an automatic schema discovery.

Aprosio, Giuliano and Lavelli (2013a), and Aprosio, Giuliano and Lavelli (2013b)
tries to overcome the coverage problem through automatic mapping of infobox templates
to DBpedia ontology. It makes use of a rule-based approach to map already existing
Wikipedia infoboxes, taken from different language versions of Wikipedia pages, and maps
to the most probable class in the ontology. The limitation of the work is the mapping of
only existing infoboxes, while there is a large number of entities with infobox missing
information or without infobox instances. The work here proposed tackles the problem
through natural language processing, to fill existing infoboxes or create new ones.

3.3 INFOBOX INSTANCES FOR KNOWLEDGE BASE ENHANCEMENT

The automatic creation or update of Infobox instances is constantly explored as a means
of extend Knowledge Bases information coverage. The automatic creation or update can

33

come from various approaches, between them we can highlight the ones using Semantic
Web, Relation Extraction, Entity Extraction, and already existing Knowledge Bases.

The approach presented by Banerjee and Tsioutsiouliklis (2018) shows a method for
Relation Extraction exploring Wikipedia corpus and structures. It have faced the wrong
labeling problem of Distant Supervision using DBpedia triples and text from articles in
Wikipedia. To circumvent the problem, it has made use of confidence values provided
by co-ocurrence statistics of dependency paths. The confidence values are provided as
weights to proposed training model, which is a Multi-Encoder Model with three LSTM
layers that encode features from Words, POS tags and dependency paths. The output of
the hidden states is used to predict the relation.

The work of Sáez and Hogan (2018) derives statistics from Wikidata, an existing
central hub for storage of the structured data from Wikipedia and other Wikimedia pages,
to create Infobox instances. It ranks and prioritizes atribute-value pairs from entities,
using it to create Wikipedia infoboxes. It does not use any other type of information like
manually-specified templates, training data, or unstructured information.

Infoboxer, a tool grounded in semantic web technologies is proposed by Yus et al.
(2014) for the task of infoboxes creation and updating. It identifies popular properties
in infobox instances inside a category and make use of its frequencies to rank the most
used. It also makes use of the DBpedia Ontology to identify attribute value types. The
property values are manually informed by the user. However, when the value type is a
semantic class, it makes use of the most used instances in DBpedia to suggest possible
values to the property.

Different from Infoboxer (YUS et al., 2014), Kylin (WU; WELD, 2007) and iPopulator
(LANGE; BÖHM; NAUMANN, 2010) are sytems directly related with the work proposed
in this paper. Infoboxer is a tool to assist users during infobox creation and editing,
while Kylin and iPopulator focus on autonomous infobox generation through identifying
Entity properties and values for information extraction. Also, the work of Sáez and Hogan
(2018) do not apply information extraction in natural language texts as a means of infobox
creation, instead it generate derivates from Wikidata structured information. Kylin and
iPopulator are detailed in the following subsections.

3.3.1 Kylin

Directly related with the work presented here, Kylin was proposed by Wu and Weld (2007)
and is a system prototype that looks for pages with similar infoboxes, defines common
attributes, create training datasets, and trains CRF extractors. It looks for autonomously
creation and completeness of Infoboxes, as well as automatic link generation for identified
nouns. Our system has focused on the first goal, autonomous creation or completeness
of infoboxes. In spite of the modules from both works being similar, they are different
in methods and techniques applied to achieve the goal. Also, given constant updates of

34

Wikipedia texts, pages, and structures, Kylin may be obsolete to the current context.
The architecture of Kylin’s infobox generator is composed of three main components (see
Figure 3); they are described below. Details of the architecture of our system are showed
in Chapter 6.

Source: (WU; WELD, 2007)

Figure 3 – Architecture of KYLIN’s infobox generator

(i) Preprocessor: it selects and refines Infoboxes, choosing relevant attributes and gen-
erates training datasets for machine learning models;

(ii) Classifier: Two types of classifiers are modeled, the first is a document classifier that
predicts if an article belongs to some class, the second is responsible for predicting
if a sentence holds the value to a property; and

(iii) Extractor: for each property of the defined schema, one CRF model is trained to
extract values for it.

Kylin makes use of strict heuristics to match between property-value and sentence
tokens. Wu and Weld (2007) justifies the choose for strict heuristics, consequently build-
ing incomplete datasets, to the increase of precision over recall. Our work makes use of
matched tokens similarity scores inside a sliding window of sentence tokens, following a
different path. The intuition is to relax sentence classifiers to catch unusual sentences,
that may contain important values, letting the extractor in charge of define what is going
to be extracted. Our approach allows better extractions for unpopular categories, articles,
and sentence patterns that do not happen frequently. The are also differences in classifiers
and extractors models and training, that are better discussed in Chapter 7.1.2.

3.3.2 iPopulator

Directly related to this work, iPopulator was proposed by Lange, Böhm and Naumann
(2010). It presents a naive process to extract information from plain text and populate
infobox instances. Different from Kylin, iPopulator does not define the schema to be

35

filled, it makes use of all suggested attributes from evaluated template types, and does
not apply classifiers to filter irrelevant sentences. Also, iPopulator do not make use of
the entire Article text when looking for extractions, it states that the majority of the
information can be found in the few first articles paragraphs.

As stated before, to build training datasets Kylin applies a set of heuristics, pursuing
exact matches betweeen Infobox property-values and text sentences. Nevertheless, as as-
serted by Lange, Böhm and Naumann (2010) in iPopulator, often times an attribute value
and its occurrence in the text do not precisely match. Based on this assumption, iPopula-
tor define the similarities measures based on two functions (one for numerical values and
the other for string values) and the Levenshtein edit distance, applying fuzzy matching
to detect matching from articles text tokens and attribute values.

iPopulator process is composed of the Structure Analysis module, Training Data Cre-
ation, Value Extractor Creation, and Attribute Value Extraction. The extraction process
is shown in Figure 4. Its modules are described below.

Source: (LANGE; BÖHM; NAUMANN, 2010)

Figure 4 – iPopulator extraction process

The Structure Analysis module makes use of regular expressions to model a struc-
ture discovery algorithm. The algorithm is composed of parsing, counting, sorting, and
merging. First, the values of each Infobox attribute are parsed, and patterns repre-
senting the syntactical structures of these values are extracted, i.e., the attribute num-
ber_of_employees from infobox_company might contain the value “12,500 (2003)”, this
value is parsed, and the pattern (Number ‘(’ Number ‘)’) is obtained. Afterward, ob-
tained patterns for this attribute are counted and sorted. Important patterns, according
to its frequencies, are merged to obtain a unique representative pattern for the attribute.
Some rules are applied to identify optional elements of the structure, as well as lists recog-

36

nition (an attribute is composed by multiple values of the same type, forming a list. e.g.,
band members and film actors).

For Training Data Creation, iPopulator restricts the size of Articles text to only a few
first paragraphs, using the first five paragraphs in executed experiments. Sentences are
aligned to fuzzy matching for the labeling task. Parts of the value structure previously
defined are used as labels for sequence tagging. The fuzzy matching is composed of two
functions, differing between textual and numeric values. The Value Extractors Creation
is made with the training of CRF models. One extractor is trained for each template
attribute, using the previously built training datasets as input.

The Attribute Value Extraction applied by iPopulator make use of three basic heuristics
to lead information extraction. First, the order of extracted tokens is aligned to the
obtained value structure and the position of the tokens. Second, structural elements as
commas or brackets are not directly extracted from the text. Instead, they are kept from
previously obtained value structure. Third and last, meaningless values are removed from
extraction, e.g., optional tokens (marked with ? in obtained structure pattern) are only
removed if preceded by mandatory tokens.

3.4 SEQUENCE-BASED NEURAL NETWORKS FOR NLP

RNNs are shown by Goldberg (2017) as producing strong results in language modeling, se-
quence tagging, parsing, and the modeling of character sequences and part-of-speech tags.
As a practical application of RNNs, Chiu and Nichols (2016) have designed architecture of
network merging word and character features as well as pre-trained embeddings of words.
They have conceptualized the network as a hybrid of BLSTM, to model the sequence of
words backward and forward, along with a CNN to capture character level features. The
architecture has overcome state-of-the-art results on the OntoNotes 5.0 and CoNLL-2003
datasets. As highlighted by Chiu and Nichols (2016), the classical systems on NER rely
on heavy feature engineering, proprietary lexicons, and rich entity linking information.

37

4 DATA DESCRIPTION AND PROCESSING

The data used by this work comes from a combination of DBpedia (LEHMANN et al.,
2015) datasets and extractions from raw Wikipedia Dump. DBpedia is a knowledge base
represented by RDF triples, created from Wikipedia structured information and following
mapped ontologies. It provides information about entities, categories which the entities
belong to, hyperlinks between entities, subcategories, among others. For this study, we
used datasets from the English version of the dump of October of 20161 and released
in 2017. The Wikipedia Dump is a complete copy of all Wikipedia pages, in the form of
Wikitext source and metadata embedded in Extensible Markup Language (XML) format.
The Dump used in this study dates from October 2016, and is the same used in the
extraction of the DBpedia datasets.

From DBpedia we have used datasets that provide information about Categories, Tem-
plates and natural text from Articles. Wikipedia Dump has been used for the extraction
of Infobox instances. This combination was due to DBpedia coverage problem on Infobox
information. To efficiently query this information and be able to generate statistics for this
study, we have used Apache Lucene2. Apache Lucene is a free and open-source informa-
tion retrieval library and has been widely recognized for its utility in the implementation
of search engines being suitable for applications requiring text indexing and searching
capability. Therefore, this work applies basic indexing and searching strategy of DBpedia
datasets and Wikipedia DUMP through Apache Lucene capacity.

In the remaining of this chapter, we provide details about the data and our strategy
to process it for the analysis. To make easy the understanding of concepts, section 4.1
contains a glossary of Wikipedia structures used by this work. Section 4.2 presents the in-
dexing mechanism applied to provide manipulation of Wikipedia structures as Categories,
Subcategories, and Template parameters. Section 4.3 shows the same indexing strategy
applied to Infoboxes. The indexing of Wikipedia article texts is described in Section 4.4.
The querying schema to recover indexing information is shown in Section 4.5.

4.1 WIKIPEDIA STRUCTURE

Wikipedia presents a vast structure to organize its information. Below are listed and
described the main structures explored by this work:

• Categories: group together pages on similar subjects;

• Subcategories: represents an IS-A relation between categories, implying that if Cat-
egory 𝐵 IS-A Category 𝐴, articles under 𝐵 are also directly related to Category 𝐴.

1 <http://wiki.dbpedia.org/datasets/dbpedia-version-2016-10>
2 <https://lucene.apache.org/core/>

http://wiki.dbpedia.org/datasets/dbpedia-version-2016-10
https://lucene.apache.org/core/

38

Source: Wikipedia. Viewed in January 30th 2019

Figure 5 – Wikicode (left) example to render Infobox (right) on Wikipedia page

The subcategorization makes it possible organize categories. It is an acyclic directed
graph that has the categories as vertices and the parent-child relationships as edges;

• Infobox (instance): is a fixed-format table on articles that present concise and rele-
vant information to the topic. Number 1 in Figure 5;

• Infobox Template3: Also called of Infobox Type and Infobox Class, are templates
that provide standardized information across related articles. It suggests properties
to be used when filling information. Nonetheless, their use is not mandatory. An
Infobox type must be specified during Infobox creation or editing. The user should
inform it at the infobox mapping header (see Number 2 in Figure 5);

• Property or Attribute: a parameter used to identify an aspect to be filled when
creating or editing Infoboxes. E.g., name, birth date, and nationality. Number 3 in
Figure 5;

• Property value: value assigned to a property. Number 4 in Figure 5;

• Tuple: a set of one property and its value(s). Number 5 in Figure 5.
3 <https://en.wikipedia.org/wiki/Help:Infobox>

https://en.wikipedia.org/wiki/Help:Infobox

39

Listing 4.1 – Tuple examples for each dataset along with its respective processing output.

1 (
<http :// dbpedia . org / r e s o u r c e /Tow_Law>

3 <http :// pur l . org /dc/ terms / subject >
<http :// dbpedia . org / r e s o u r c e / Category : Wind_farms_in_England> .

5)
Indexing Terms :

7 Subject = Tow_Law
Pred i cate = s u b j e c t

9 Object = Wind_farms_in_England

(a) article_categories_en.ttl is the original dataset name for article-categories

1 (
<http :// dbpedia . org / r e s o u r c e / Category : Wind_farms_in_England>

3 <http ://www. w3 . org /2004/02/ skos / core#broader>
<http :// dbpedia . org / r e s o u r c e / Category : Wind_farms_in_the_United_Kingdom>

5)
Indexing Terms :

7 Subject = Wind_farms_in_England
Pred i cate = none

9 Object = Wind_farms_in_the_United_Kingdom

(b) skos_categories_en.ttl is the original dataset name for skos-categories

1 (
<http :// en . dbpedia . org / r e s o u r c e /Template : Infobox_UK_place>

3 <http :// en . dbpedia . org / property / templateUsesParameter>
" l a t i t u d e " .

5)
Indexing Terms :

7 Subject = Infobox_UK_place
Pred i cate = templateUsesParameter

9 Object = l a t i t u d e

(c) template_parameters_en.ttl is the original dataset name for template-parameters

Source: This research

4.2 INDEXING WIKIPEDIA CATEGORIES AND TEMPLATES

The DBpedia community provides datasets in two serialization types: turtle (.ttl) and
quad-turtle (.tql). The turtle serializations are composed of a series of data in n-triple
format (<subject> <predicate> <object>.), while the quad-turtle adds context infor-
mation to every triple, the fourth component contains the graph name and provenance
information on each triple. The quad turtle format is (<subject> <predicate> <object>
<graph/context>.). We restrict our approach to use turtle (.ttl) serialization datasets once
the current work does not need graph context, but only the information itself.

For better readability, the selected datasets are going to be referred as article-categories,
skos-categories, and template-parameters, respectively. Listing 4.1 shows an example
of triple for each file. The selected datasets are described below.

• article-categories holds relations between articles and categories (or subcate-
gories). The triple structure is organized as follows: the subject corresponds to an

40

Article URI, the predicate is a property and the object corresponds to the category
URI. This dataset contains a total of 23,990,512 triples;

• skos-categories represents relations between categories and subcategories, con-
sisting of 6,083,029 triples. This dataset uses the Simple Knowledge Organization
System (SKOS) property broader namespace 4 to indicate a subcategory-category
relation in the triple. The subject corresponds to the subcategory, the predicate
holds the broader annotation and the object corresponds to a category;

• template-parameters represents the structure of infobox templates. Each triple
consists of the template URI (subject), URI for the ontology property templateUses-
Parameter (predicate) and the suggested template parameter name (object). This
dataset comprises a total of 776.554 triples.

We index the DBpedia datasets iterating over each dataset triple, considering each
triple as a document and each triple element as a term. The predicate statement was
not used for indexing since they do not contain relevant information for our study (see
Listing 4.1). To keep only significant information and better readability, during indexing
we tokenized each triple element by removing part of the URI and special characters like
quotes, “>” and “<”. We selected for indexing only the last token from URI in triple
statements, as is showed on Listing 4.1. The indexed information using this strategy,
containing Wikipedia structures and infobox compositions, was necessary to make a con-
sistent analysis of Wikipedia structured data and also investigate the use of Categories
for schema definition.

4.3 INDEXING WIKIPEDIA INFOBOXES

In addition to Categories and Infobox Templates information, we are also interested in
data contained in the Infobox instances. Instead of using DBpedia datasets to retrieve
Infobox information, we have parsed the Wikicode in Wikipedia Dump retrieving this
information. The decision was made because of the coverage problem of DBpedia, where
there are Wikipedia entities yet to be mapped to its ontology, and consequently extracted.
We have used the Wikipedia Dump to extract infoboxes, infoboxes template mappings,
infobox properties and its respective values preserving original article information, and
extending information coverage. The variety of Infobox Templates have also come to the
attention. Therefore, we have gathered some known Infobox Types to evaluate its use in
the whole Wikipedia.

Lehmann et al. (2015) has pointed out that a wide range of infobox templates are used
and, although this system has evolved, some problems can still be highlighted about its
use by different communities of Wikipedia editors. Among some problems are the use of
4 <https://www.w3.org/2009/08/skos-reference/skos.html>

https://www.w3.org/2009/08/skos-reference/skos.html

41

Source: Wikipedia

(a) pfam box (b) taxobox (c) chembox

Figure 6 – Infobox types.

different templates to describe the same concept; different templates using different names
for the same attribute; and assignment of different formats and units of measurement to
attribute values.

Given the problems as mentioned above, as a preliminary step to guide the indexing of
Infoboxes from Wikipedia, we have identified different infobox mappings. Beyond the In-
fobox mapping already shown (Figure 5), there are different Infobox mappings as shown
in Figure 6. In spite of the structure be visually the same, the mapping codes change
according to template type (pfam_box, taxobox or chembox). Some of the templates are
related to specific domains (e.g., chembox is associated with the chemicals and pfam_box
to protein family/domain) whereas the template Infobox is adopted across general do-
mains.

Wikipedia presents a statistic page5 which displays infoboxes statistics compiled in Au-
gust 2013. Hence, to get recent information we have quantified the infoboxes usage across
the Wikipedia DUMP used in this research (dating from October 2016). We have navi-
gated through it counting occurrences of a sample of identified template types. Wikipedia
statistics page itself highlights that its only possible know a minimum figure for the num-
ber of infoboxes, the true figure will always be higher and less easy to count, once it en-
compasses a variety of non-{Infobox} infoboxes. We have empirically listed some infoboxes
types, see Table 1 for the regular expressions used for each one and their proportion of
the total number of identified templates.

5 <https://en.wikipedia.org/wiki/Wikipedia:WikiProject_Infoboxes/Statistics>

https://en.wikipedia.org/wiki/Wikipedia:WikiProject_Infoboxes/Statistics

42

Table 1 – Infobox Types Usage Proportion

Infobox Pattern Proportion
{{\s?(I|i)nfobox.*\n(|.*\n)*}} 88.49 · 10−2

{{\s?(T|t)axobox.*\n(|.*\n)*}} 9.48 · 10−2

{{\s?(S|s)peciesbox.*\n(|.*\n)*}} 52.72 · 10−4

{{\s?(G|g)eobox.*\n(|.*\n)*}} 52.23 · 10−4

{{\s?(C|c)hembox.*\n(|.*\n)*}} 37.71 · 10−4

{{\s?(A|a)utomatic(_|\s)taxobox.*\n(|.*\n)*}} 23.27 · 10−4

{{\s?(D|d)rugbox.*\n(|.*\n)*}} 22.47 · 10−4

{{\s?(E|e)nzyme.*\n(|.*\n)*}} 12.04 · 10−4

{{\s?(P|p)fam(_|\s)?box.*\n(|.*\n)*}} 2.06 · 10−4

{{\s?(P|p)rotein.*\n(|.*\n)*}} 37.89 · 10−6

Source: This research

Templates starting with “Infobox” are the most common ones – 88.4% of the total
templates – whereas the other ones cover a tiny proportion of articles. For this reason, in
this work, we have considered either for indexing and analysis only the infobox templates
mapped with prefix “Infobox”.

As mentioned above, we have tried to use DBpedia datasets that contain Infobox data.
However, these datasets present some issues related to information relevance and cover-
age. The infobox_properties (52.7M triples) contains raw properties extraction. Contains all
information from structured sources in the page. Hence, extracting a lot of noisy data like
image frames information throughout article content, e.g., image caption, width, alt or
map caption, which are not relevant as an entity attribute. The infobox_properties_mapped

(27.5M triples) enclose data extracted following DBpedia ontology, but the tuples are in
a less clean property namespace, i.e., the object statement of the tuples are wordy, and
the predicates of this dataset points to “rdf:Property”, a basic denotation of relationship.
Lastly, the mappingbased_literals (14.4M triples), which follows the ontology namespace,
extracting only ontology mapped entities, and as a consequence reducing information
coverage.

A problem while using Wikipedia DUMP was the page format, which consists of
a syntax used by the MediaWiki software to generate Wiki pages, called Wikicode or
Wikitext. A snippet of the Wikicode used to generate infoboxes is shown in Figure 5,
note that not all property names used in the Wikicode are kept the same after the page
be rendered. To retrieve rendered infobox information we have tried crawl into Articles
Hypertext Markup Language (HTML) pages. However, this approach has returned noisy
and incomplete Infoboxes information. Hence, the approach applied in this work was
to navigate through the dump parsing the Wikicode with mwparserfromhell 6, indexing
6 <https://mwparserfromhell.readthedocs.io/en/latest/>

https://mwparserfromhell.readthedocs.io/en/latest/

43

recovered information using Apache Lucene. We have used the same strategy applied to
DBpedia turtle files. We iterate over each tuple from an existing infobox’s article and
index it in form of a triple: (<subject> <predicate> <object>) the article name, property
name and property value, respectively. It also indexes the infobox template mapping as
a tuple: (<s> <o>): subject (article name) and object (infobox template mapping).

4.4 INDEXING WIKIPEDIA TEXTS

To make extractions from Wikipedia articles, it is necessary to retrieve its plain text.
Wikipedia is an initiative from the Wikimedia Foundation and makes use of the Medi-
aWiki, a Wiki software designed to display and share open content on the web. Wikis
based on MediaWiki usually present an edit button to permit collaborative editing and
construction of pages by users without knowledge of HTML or Cascading Style Sheets
(CSS). MediaWiki makes use of a simplified markup language, sometimes known as Wiki-
text, Wikicode or Wiki markup.

As a first step to retrieve plain text from Wikipedia articles, we have tried to parse
page’s Wikicode with the already used mwparserfromhell. This approach was made to
recover many texts as possible, as well as when processing infobox information. However,
the number of templates, tables, and Uniform Resource Locator (URL) markups presents
on these pages have made the process difficult, retrieving the text with noisy data.

The lastly published version of DBpedia, used by this work, includes three large
datasets in the NLP Interchange Format (NIF) (HELLMANN et al., 2013), containing the
entire text of the wiki-page. These datasets were recently included on DBpedia as an
effort to support Computational Linguistics, and NLP tasks and are listed below.

• nif-context: contains 26.9M triples, mapping the full text of Wikipedia pages;

• nif-page-structure: it has 656.9M triples, mapping the structure of wiki pages,
e.g. Section, Paragraph and Title;

• nif-text-links: it is composed by 928.3M triples and contains all in-text links of a
wiki page.

Proposed by Hellmann et al. (2013), the NIF is an RDF/OWL-based format that aims
to achieve interoperability between NLP tools, language resources and annotations. Its
ontology7 contains seven core URIs (String, RFC5147String, Context, isString, reference-
Context, beginIndex, endIndex) that provide the foundation to express NLP annotations
effectively in RDF. As described by Hellmann et al. (2013) the main class in the ontology
is “nif:String” which is the class of all words over the alphabet of Unicode characters and
it can be used to include the reference text as a literal within the RDF.
7 <http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core/nif-core.html>

http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core/nif-core.html

44

Source: This research

Figure 7 – Framework architecture for querying and retrieving Infoboxes information
across Wikipedia categories. LEFT: Query all infoboxes given a Category
name. RIGHT: Query mapped infobox templates and correspondent scheme
for returned Articles.

Therefore, we decided to use DBpedia nif-context dataset to retrieve articles plain
text. To do so, we have applied the same Apache Lucene indexing strategy previously
explained. RDF tuples were filtered to use only the ones containing the “nif:String” state-
ment. Tuples were indexed in the form <s> <o>. The subject statement was stripped to
store only resource last token, which corresponds to the entity name. The object state-
ment, representing full resource text, was kept unchangeable. The predicate statement
corresponding to “nif:String” annotation is ignored.

4.5 FRAMEWORK ARCHITECTURE FOR QUERYING CATEGORY INFORMATION

To better understand Wikipedia data distribution we have done an extensive analysis
of Wikipedia structured information, i.e., Categories, Subcategories, Infoboxes, and In-
fobox Templates. Therefore we used DBpedia datasets to capture Wikipedia’s categories,
subcategories, template schemas, mapped articles to categories and Article’s plain text.
Also, we have navigated through the Wikipedia dump to query infoboxes information.
We tried to use infoboxes information mapped on DBpedia datasets. However, there are
some Wikipedia entities yet to be mapped to DBpedia ontology thus being absent on its
datasets.

To assist the analysis we have developed a framework using Apache Lucene, where
all DBpedia structure information and Infoboxes on Wikipedia dump were indexed and
queried. We have used the querying framework to retrieve diverse kinds of information,
e.g., top used infobox templates, top used infobox properties, all Wikipedia infoboxes,

45

categories and templates, as well as all infoboxes, and templates related to a given cate-
gory.

Querying data related to Category was necessary to investigate schema definition
according to different information domains. As an example, the querying strategy shown
in Figure 7 is responsible for retrieving all infoboxes, infobox-template mappings and
template schemas related to a given Category. The data recovered by this search was used
to perform analysis of homogeneity and consistency of infobox schemas under different
Categories. The analysis was expected to auxiliary the schema definition for the slot filling
task.

Source: This research

Figure 8 – Breadth-first search to gather infoboxes until given threshold similarity be-
tween levels of subcategories

This query receives as input a Category 𝐶 and returns three outputs: i) the Infobox
Instance 𝐼 for each Article 𝐴 existing under informed Category 𝐶; ii) the Infobox Template
Mapping 𝑇 for each returned Article 𝐴 with an Infobox instance 𝐼; iii) the Template
Scheme 𝑆 for each Infobox Template Mapping 𝑇 . A breadth-first search is used to navigate
across subcategories retrieving registered articles under them, until an informed similarity
threshold (Figure 8). For each level in the hierarchy category, the algorithm unifies infobox
attributes of found infoboxes, creating some global schema for that level, measuring the
similarity between this schema and the ones found on child categories. The search stops
when the similarity between child and mother node is below a given threshold 𝜃 (given
the heterogeneity of property names and infobox variation, for this study we have defined
𝜃 = 0.15). We have used Jaccard to measure the similarity between the common scheme
of root level and the next ones. The data analysis of this search result is shown on Chapter
5.

46

5 DATA ANALYSIS

The main objectives of this data analysis are divided into two classes: i) General Statistics:
give an overview of structured information on Wikipedia as a whole, showing raw numbers
of Articles, Categories, Subcategories, Properties, Templates, and Infoboxes, as well as
identify infoboxes inconsistencies; ii) Category-based Statistics: discusses data related to
Categories and investigate the identification of common infobox schemes, with attributes
from different infoboxes in the same category, trying to define a measure of quality and
homogeneity of infoboxes inside a given category.

We hope the findings and analysis on this chapter will help further completeness and
augmentation of knowledge bases as DBPedia and YAGO, as well as guide researchers
working with scheme discovery and information extraction on Wikipedia.

5.1 GENERAL STATISTICS

This section will briefly present some statistics about queried information from developed
indexing and searching framework. It starts by showing raw numbers from Wikipedia ele-
ments as Articles/Entities, Infoboxes, Categories, Subcategories, Properties and Infobox
templates (see Table 2). These data provide information about infoboxes distribution
across articles and categories. It also gives a notion about the diversity of templates and
properties currently used by existing infoboxes. It is important to emphasize that only a
bit more than 50% of existing articles present an Infobox instance. Although not every
existing article must have an infobox instance, this proportion shows us the gap of entities
yet to be structured.

Table 2 – Overview data of Wikipedia exploration

Element Total
Articles 5.166.304

Infoboxes 2.785.031
Infoboxes w/ geo 2.105.172

Infoboxes w/ datetime 1.584.340
Categories 1.079.614
Properties 56.819

Infoboxes Templates 3.448

Source: This research

Figure 9 shows the distribution of the size of infoboxes on complete Wikipedia. The
infobox size is measured by counting the number of distinct properties. The numbers show

47

Source: This research

Figure 9 – Distribution of Infoboxes size across Wikipedia.

that there is a reasonable number of properties per infobox: the median size of infoboxes
is 13. 68.26% of infoboxes lies within one standard deviation of the mean (16.24 ± 10.57).
However, the infoboxes size do not follow a normal distribution. The largest infobox, with
172 properties, corresponds to the Al Jazeera English entity, a Qatari paid television news
channel, the amount of properties is due to the descriptions of the variation in satellite,
cable and IPTV information shown in the Infobox.

Source: This research

Figure 10 – Top property names used on Wikipedia Infoboxes

Figure 10 presents a word cloud with the most popular properties in the infoboxes. As
one can see, some of the most popular properties are from generic entities, for instance,
birth_place and birth_date are attributes of entities related to Person. Properties like
name and image can be applied to any type of topic, is not a coincidence that almost
every infobox instance comes with a name and an image example. Another observation
is that attributes related to geo and temporal information are also very common: e.g.,
location, timezone, country, birth_place, birth_date, death_date, years, and variations of
longitude, latitude and coordinates, among others. Attributes that indicate multivalued
information are also present, e.g: subdivision_type, subdivision_type1, subdivision_type2
and are usually followed by subdivision_name, subdivision_name1, subdivision_name2 ;

48

they are mostly related to Infobox settlement and are used to organize settlements subdivi-
sion types like country, state, seat or province, and its respective values. This information
is an indicative that not all attribute names are self-descriptive. Also, it is important to
point out that recovered properties where normalized to get its frequencies.

Table 3 – Top 10 Infobox Templates by Usage Proportion

Infobox Template Proportion
infobox_settlement 1.32 · 10−1

infobox_person 6.44 · 10−2

infobox_football_biography 4.84 · 10−2

infobox_album 4.61 · 10−2

infobox_film 3.97 · 10−2

infobox_musical_artist 2.96 · 10−2

infobox_company 1.99 · 10−2

infobox_nrhp 1.97 · 10−2

infobox_single 1.79 · 10−2

infobox_officeholder 1.72 · 10−2

Source: This research

Table 3 presents the proportion of the top 10 templates that use the “Infobox *”
naming pattern. Most of them refer to high-level entities. For instance, the top template,
Infobox settlement1, is recommended to be used for “any subdivision below the level of
a country” (e.g., cities, towns, villages, communities, administrative districts, counties,
provinces, among others). The Infobox officeholder2 also incorporates a bunch of other
templates (e.g., Infobox president, Infobox governor, Infobox senator, Infobox state rep-
resentative, Infobox congressman, among others). This reflects the granularity of infobox
templates usage and freedom of creation/editing by each Article’s editor. Also related to
location, Infobox NRHP3 is used on articles about historic places in the USA listed on
the National Register of Historic Places.

Other interesting observations from the numbers in Table 3 are: four of the top tem-
plates are related to People (i.e., person, football biography, musical artist and office
holder); three templates are associated with Arts and Entertainment (i.e., film, album
and single); two templates are related to geographic Locations or Places (i.e., settlement
and NRHP); and the seventh (7th) top template is related to Organization. This might
reflect that they are popular topics on Wikipedia and should provide the right amount of
data for training of machine learning or deep learning tasks.

1 <https://en.wikipedia.org/wiki/Template:Infobox_settlement>
2 <https://en.wikipedia.org/wiki/Template:Infobox_officeholder>
3 <https://en.wikipedia.org/wiki/Template:Infobox_NRHP>

https://en.wikipedia.org/wiki/Template:Infobox_settlement
https://en.wikipedia.org/wiki/Template:Infobox_officeholder
https://en.wikipedia.org/wiki/Template:Infobox_NRHP

49

5.2 CATEGORY-BASED STATISTICS

Table 4 – Extracted categories, number of articles found and subcategory extraction
nodes

Category Art. Inf. Nodes Category Description
French films 6587 6249 583 All french films.
Oil companies of 464 288 20 Contains companies from United States
the United States Oil industry

Operas 2626 402 7 Contains operas, subcategorized by composer,
genre, original language, year and acts.

Protein families 742 379 1 Collects together articles describing sets
of related proteins called a family.

Skyscrapers between 1028 905 1 Tall buildings between 100 and 149 meters
100 and 149 meters

HarperCollins books 1832 1597 15
Books published by HarperCollins
and its imprints - a subsidiary of
News Corp, based in New York City.

Towns in Turkey 750 693 7 Turkish cities

Alpine three-thousanders 944 934 2
Mountains between 3,000 metres (9,842 ft) and
3,999 metres (13,122 ft) above sea level in the
Alps, in Austria, Switzerland, Italy and France.

Numbered minor planets 2959 2910 1 All articles on numbered minor planets (MPs).

IOS games 1799 1730 6 Category for video games available
for the iOS operating system.

Source: This research

In this section, it is investigated the usage of Categories to relate entities semantically,
different from Nguyen et al. (2010) which link entities through references over its content,
and Nguyen et al. (2012) that presents an Infobox clustering strategy to discover infobox
types. The strategy discussed here tries to assist the schema discovery process through
data analysis and proposed quality measures. Thus, this analysis will investigate the
inferring of data schema from the Categories hierarchy. Based on Categories hierarchy
this approach can benefit schema definition in corpus organized as hierarchies. Hence, we
look at the structured information of Wikipedia on a category level.

The Oxford Online dictionary defines Category as “a class or division of people or
things regarded as having particular shared characteristics.”, based on this assumption
our goal is to study how the structured information is organized in different categories
and try use information under a given domain for automatic schema discovery.

Since our Wikipedia dump has more than 1 million categories, we selected ten cate-
gories to perform this analysis. As among the top-10 categories there were many categories
on the same topic and related with general concepts (e.g., films, company, settlement),
we have opted to manually select those which corresponds to different domains and more

50

specific concepts (e.g., French films, oil companies of the United States, towns in Turkey).
To choose them, we ranked all Wikipedia categories based on the number of articles with
“Infobox *something*” instances on its root hierarchy level, i.e., subcategories were not
considered. We have manually chosen Categories inside the top-200 ranking of infobox
instances on the root level. Table 4 shows the categories used in this study, for each cat-
egory are shown the number of articles, the number of infoboxes and a brief description
of each category domain. Retrieved data about these categories were acquired using the
searching framework scheme described on Section 4.5, where subcategories were explored
to gather more data and specificities about the domain. In the table are also shown the
number of matched subcategory nodes in the hierarchy.

Source: This research

Figure 11 – Distribution of infoboxes size by category

Figure 11 shows the distribution of the size of the infoboxes for the ten categories
and the complete Wikipedia. The median size of infoboxes categories is between 7 and
20, except for Numbered Minor Planets which is 30. The overall median size of infoboxes
in the datasets is around 13, which is close to the median for all infoboxes as presented
previously. The category with the largest median schema size is Numbered Minor Planets.
Its specificity and scientific nature can explain this. The common attributes in its infoboxes
are properties for orbital and physical characteristics as well as proper orbital elements
of planets, which suggests that this category is curated by a community of specialized
and accurate users. Figure 11 also shows that there is not much variation in size on each
category. The most considerable variation is Skyscrapers between 100 and 149 meters with
an interquartile range of 8, followed by Oil companies of the United States with 7.

51

Table 5 – Overview of templates usage for each category. Total count of used templates,
most used template, template size and proportion of the most used template

Category Templates Most Used Size Prop.
French films 11 Infobox film 36 0.9916
Oil Companies of the United States 29 Infobox company 84 0.6458
Operas 10 Infobox opera 25 0.9179
Protein Families 8 Infobox protein family 21 0.9366
Skyscrapers between 100 and 149 meters 12 Infobox building 182 0.9259
HarperCollins books 15 Infobox book 66 0.9530
Towns in Turkey 6 Infobox settlement 424 0.9870
Alpine Three-thousanders 4 Infobox mountain 239 0.9914
Numbered minor planets 2 Infobox planet 119 0.9996
IOS games 17 Infobox video game 52 0.8924

Source: This research

We also studied how the categories use templates. Table 5 presents some numbers
regarding that. Although there is some variation regarding the number of templates used
by the categories, almost all of them use primarily a single template for the articles: the
most used template in analyzed categories covers about 90% of the articles. The only ex-
ception is the category Oil companies of the United States whose the most used template
covers only 64% of the articles. It can indicate that this category is more heterogeneous
than the other ones but wrong mappings are also the problem. Some articles of this
category use the template infobox_oil_field whereas others infobox_oilfield, which have
the same properties. Another issue in this category is wrong mappings: mappings for
Infobox_NASCAR_driver, Infobox_racing_car and Infobox_court_case templates are
under this category. It occurs because those infobox mappings are related to subcate-
gories as Chevron Corporation, a subcategory of Oil Companies of the United States.
This behavior can indicate that for this category the applied threshold for searching was
excessively relaxed.

Some templates present a large schema (e.g., Infobox Settlement and Infobox mountain
with 424 and 239 properties, respectively). However, Infobox templates are flexible, and
its suggested properties are not mandatory.

5.2.1 Categories Quality Analysis

We have conceptualized two quality indexes to analyze the composition of infobox schemata
from Wikipedia. These measures are calculated considering queried information from Cat-
egories (as shown previously). They are divided according to its type of input data: the
external scheme-based quality index uses data about suggested template schemes (exter-
nal from category) and the recovered Infoboxes schemes; the internal scheme-based index
uses only data about the recovered infoboxes schemes (internal from category).

52

The external scheme-based quality index can help define the trustworthiness of in-
foboxes on a given Category to follow suggested template schemes, i.e., the coverage
of infoboxes attributes of mapped templates. Internal scheme-based quality indexes can
help define a homogeneous infobox scheme for Category based on the similarity between
existing infoboxes.

5.2.1.1 What is the coverage of infoboxes’ attributes from mapped templates?

As we mentioned before, infobox templates can help to create more homogeneous in-
foboxes. For that, it is necessary that the created Infobox apply the attributes suggested
by the mapped template. We define, therefore, as a quality measure the coverage of in-
foboxes’ attributes used from their mapped templates, which we call template coverage.
This measure can be obtained through the following proposition:

𝑔(𝛿, 𝛾) = ‖𝛿⃗ ∩ 𝛾⃗‖
‖𝛾⃗‖

(5.1)

𝜅̃ = median(𝛿,𝛾)∈𝐶{𝑔(𝛿⃗, 𝛾⃗)} (5.2)

Where:
𝛿, infobox instance in category
𝛾, template mapped to 𝛿 infobox instance;
𝛿⃗, properties actually used on infobox definition;
𝛾⃗, suggested properties from mapped template; and
𝜅̃, general coverage index for Category 𝐶.

Source: This research

Figure 12 – External scheme-based quality index for categories. Properties from suggested
templates’ schema used on internal schemata

53

To get the intersection between suggested template schemata and infobox schemata
we have normalized all property names through lowercasing and removing underlines,
dashes, spaces, and duplicates. The result of this analysis for selected categories can be
seen in Figure 12. The numbers show that there is a great variation in the median of
the intersection for analyzed categories. Whereas the categories French Films and Operas
have a value closer to 0.4, Towns in Turkey it is close to 0.1.

Source: This research

Figure 13 – Correlation between Suggested properties from Infobox templates and the
proportion of properties actually used on Infobox instance

Comparing those values with the size of the largest suggested template for each cat-
egory presented in Table 5, it seems there is some negative correlation between them,
indicating that the template size may influence the quality index. To verify this observa-
tion, we have calculated for each category the proportion of used properties and the size
of the suggested template. We calculated for each category the Spearman correlation be-
tween template coverage and mapped templates size: 𝜌=−0.779669. Under a significance
level of 0.95, the test presents 𝑝-value < 2.2𝑒−16, which indicates a statistically high signif-
icance between these variables. To illustrate it, a scatter plot between these two features
can be seen on Figure 13. As one can see, there is a template with almost 1400 proper-
ties, which corresponds to Infobox officeholder template on category Oil Companies in the
United States that presents around 2% of suggested properties used in infobox instances.

5.2.1.2 How similar are the infoboxes on a category?

In this section, we evaluate the homogeneity of the attributes of the infoboxes belonging
to the same category. One can assume that the more similar the infoboxes’ attributes are
on a category, the closer is to define a single schema for it.

54

The intuition behind this measure is while Categories can present diverse infobox types
(as shown in Table 5), their schemes can be very similar. Therefore, instead of handle a
vast number of infobox types under the same domain (Category) we could define only a
common infobox scheme for each Category. We have normalized recovered properties, by
removing underlines and lowercasing them. We have used Jaccard similarity to measure
the similarity between infobox attributes queried from the same category. The measure
can be obtained through the following proposition:

𝑓(Δ) = 𝑗𝑎𝑐𝑐𝑎𝑟𝑑(𝛿⃗𝑖, 𝛿⃗𝑥), {∀𝛿𝑖𝛿𝑥 ∈ Δ | 𝑖 = 1..(𝑛 − 1), 𝑥 = (𝑖 + 1)..𝑛} (5.3)
𝜒̃ = median{𝑓(Δ)}, ∀Δ ∈ 𝐶 (5.4)

Where:
Δ, matrix of infobox instances, each column corresponds to a property name;
𝑓(Δ), condensed similarity matrix; and
𝜒̃, general similarity index for Category 𝐶.
In Figure 14, we present boxplots with the distribution of the similarity for the ten

categories. The plots show that in general there is not much homogeneity between in-
foboxes’ schemas. The most heterogeneous categories are Numbered minor planets and
Alpine three-thousanders with the median around 25%. Although category Numbered mi-
nor planets is composed by only two infobox types (template mappings), where Infobox
planet has a frequency of 99%, it presents 119 suggested properties, and in average only
25 properties are used on infobox instances for this category. Nonetheless, it is not guar-
anteed that used properties are always the same. See the low properties coverage from
suggested templates shown in Figure 12 for this category. The two plots also infer a neg-
ative correlation between external schema-based (Figure 12) and internal schema-based
(Figure 14) indexes, where categories presenting a high index of suggested properties us-
age usually presents a low index of schema homogeneity and vice versa, i.e., the greater
the properties coverage, less the homogeneity. This behavior is consistent, once the higher
use of suggested properties indicates the presence of specific information for the infobox
type.

The most homogeneous category is Oil companies of the United States with median
around 90%, even though being composed of 24 templates and the most used template
(Infobox company) shows a frequency of only 62%, the median of the external schema-
based index is around 15%. This can be explained by suggested scheme size and the
existence of shared properties across different suggested templates, e.g. Infobox Company,
Infobox Building and Infobox NRHP, the top 3 infobox templates most used by the
category Oil Companies of the United States, share properties like location, name, owner,
type, architect, engineer and other small naming variations.

55

Source: This research

Figure 14 – Internal scheme-based quality index for categories. Schemata homogeneity
obtained through Jaccard similarity between infobox schemas.

We can conclude from these numbers that: (1) there is a great heterogeneity of in-
foboxes within a same category; (2) the number of templates used by the infoboxes in a
category has not much influence in its heterogeneity; and (3) the size of the suggested tem-
plate may increase the heterogeneity, once not all properties must be used and different
properties are applied to only some entities under the same domain (subtypes).

5.2.1.3 Would it be possible use Wikipedia categories to define common scheme for entities
under the same domain?

Wikipedia Categories should aggregate information under the same topic, and conse-
quently the same domain. Hence, it is possible to gather some similarities in infobox
schemes under them. The main questions to be answered are: (1) How define a limit
of visited subcategories maintaining infobox similarities? (2) Infobox instances under the
same category hierarchy and mapped to different templates, represent a same entity type?

We expect to have cleared some questions and raised new ones through the shown data
analysis. But a lot of work yet must be done to acquire an automatic schema discovery
on Wikipedia infoboxes through a Category approach. We believe the starting point is
deciding whether the discovery process is from a general or more specific schema.

56

6 DEEPEX

This chapter presents Deepex: the solution to the underlined problem of Knowledge Base
Completeness through information extraction on Wikipedia.

Source: This research

Figure 15 – Deepex architecture for building datasets, classifiers and extractors

The architecture of our system is presented in Figures 15 and 16. The architecture
showed in Figure 15 is composed by the two modules described bellow:

• Automatic Data Labeling This module presents two main components. The first
one, Schema Discovery receives as input the name of the infobox template that rep-
resents the information domain to be structured. It collects infobox instances that
use the given template and computes the most used properties across them, which
we call the template’s schema. The second component, the Distant Supervision, au-
tomatically labels the data. It receives as input the previously defined schema from
the Schema Discovery component. The Distant Supervision component also queries
infobox tuples from infobox instances, using the given template type. For each re-
trieved infobox instance, it also retrieves the respective article text. To build the
training datasets it applies DS between the retrieved tuples and articles sentences.
The training samples are composed of two types of labels, one at sentence level to
train sentence classifiers and the other at token level to train extractors. The out-
put of this component is a set of labeled datasets, each dataset corresponding to a
property in the defined schema;

• Models Training comprises the training of the sentence classifiers and attribute
extractors. The Sentence Classifier Training receives as input the labeled sentences
coming from the Distant Supervision component. It trains the sentence classifiers

57

that will be used to predict informed sentences may or may not contain a value for
the respective property, i.e., the component is used to filter sentences before passing
them to the attribute extractor. The Attribute Extractor Training uses the labeled
tokens that comes from Distant Supervision component. However, before starting
building the extractors, the samples are filtered by the Sentence Classifier Training;

Source: This research

Figure 16 – Deepex pipeline extraction architecture

Figure 16 presents the pipeline extraction architecture executed after building datasets,
classifiers and attribute extractors. It is described below:

• Extraction pipeline consists in processing candidate articles to extract attributes
in the domain. A Sentence Tokenizer is applied to the text of the candidate article.
The processed sentences are passed through the Sentence Classifier which filters
sentences that may contain values related to the respective property and send them
to the Attribute Extractor which performs the attribute value extraction.

Details of each module from the architecture are provided in the following sections.
Section 6.1 presents the target corpus and supervision knowledge base definition, as well as
the training datasets creation using the DS assumption aligned with a similarity measure.
Section 6.2 shows the modeling and training of sentence classifiers and extractors.

6.1 AUTOMATIC DATA LABELING

This module presents two main components, the Schema Discovery and the Distant Su-
pervision. The first component defines the domain schema, i.e., the set of properties of the
domain. The domain schema is used by the processes of training classifiers, extractors,
and the extraction itself. The second component, Distant Supervision, generates labeled
data for each property of the schema through the matching of tuples and sentence tokens.

6.1.1 Schema Discovery

Our Extraction task requires a previously defined schema to be filled. Our first attempt
to determine the domain schema was through the analysis of Wikipedia Categories and

58

subcategories, to conceptualize domains and infer common properties under them. How-
ever, as presented in Chapter 3 traditional approaches using Wikipedia for slot-filling
tasks have relied on the most common properties from Template types. Hence, we have
followed the same path.

To make easier processing, retrieving and searching for information on Wikipedia it
was required the development of storage and querying strategy that scales to the size of
its corpus without requiring high computational effort. For that we have used Apache
Lucene, the strategy is presented in Chapter 4.

The component receives as input the Infobox Template name representing the informa-
tion domain for extraction. A query is done to the indexed Wikipedia Corpus to retrieve
all Infobox instances using the given Template name. All Infobox properties are counted
and sorted. Following the work of Wu and Weld (2007) a threshold of 60% of frequency
was defined. All properties with a frequency of use above this threshold are considered as
part of the schema.

6.1.2 Distant Supervision

Inspired by the works of Wu and Weld (2007), and Lange, Böhm and Naumann (2010)
we have applied Distant Supervision as a paradigm for automatic labeling of training
examples. Using Wikipedia corpus and infobox instances as the source of supervision we
expect to align entities and its properties to text sentences successfully. This strategy
provides training data for sentences classification and entities extraction.

The component receives as input the tuples from infobox instances using the previously
informed infobox template, and the respective article text containing this infobox instance.
It also receives from Schema Discovery the set of properties composing the schema for
the domain, which will lead the automatic dataset labeling. The output is a set of labeled
datasets, one dataset for each property in the schema. Each dataset contains labeled
sentences that are sent for Sentence Classifier Training, and labeled tokens that are used
for Attribute Extractor Training.

As previously explained in Section 4.3 we have tried to apply DBpedia as the source
of entities’ attributes to perform distant supervision. However, DBpedia shows a lack of
coverage of Wikipedia entities. To encompass more entities on different domain contexts
we decided to follow the same approach of Wu and Weld (2007), and Lange, Böhm and
Naumann (2010). These works have used infobox tuples from Wikipedia Dump as sources
of supervision for labeling tokens in the sentence using Distant Supervision matching.
While using Wikipedia Infoboxes have allowed gathering a variety of entities, it has also
aroused new challenges related with information retrieval which we have worked around
through the processing described on Section 4.3.

Our distant supervision strategy presented in Figure 17 uses the tuples from infoboxes
instances as sources of supervision to label attributes present in the sentences of the

59

Listing 6.1 – Wikicode creating Infobox instance for entity Caribou County.

{{ Infobox U. S . county
| county = Caribou County
| s t a t e = Idaho
| founded year = 1919
| founded date = February 11
| s e a t wl = Soda Spr ings
| l a r g e s t c i t y wl = Soda Spr ings
| area_total_sq_mi = 1799
| area_land_sq_mi = 1764
| area_water_sq_mi = 34
| area percentage = 1.9%
| census es t imate yr = 2017
| pop = 7034
| density_sq_mi = 3 .9
| d i s t r i c t = 2nd
}}

Source: Wikipedia

articles. A simple strategy to perform this task would be to do exact matching between
tokens of the values and the properties with sentences tokens. As explained by Takamatsu,
Sato and Nakagawa (2012), Riedel, Yao and McCallum (2010), Hoffmann et al. (2011),
and Surdeanu et al. (2010) this assumption tends to introduce some noise, especially,
when the source of supervision does not come from the same target corpus. Although
Wikipedia Article’s text and infoboxes present the same scope, usually some problems
are found when dealing with properties names and values spelling.

An infobox tuple is composed by a property name and its respective value(s). It was
built one dataset for each property existing on the given Infobox schema (properties of the
domain). Because the property names come from the Wikicode vocabulary, it is even more
difficult to do exact matching with plain text sentences. In Listing 6.1 are presented some
infobox tuples from an entity mapped to Infobox U.S. county type. Beyond underlines
and joint words, there are property names ending with “wl” as well as abbreviations, e.g,
pop, sq, mi, and yr (for more variation in spelling of property names, see Figure 10).

To lead an autonomous DS matching without generating too much noise or loss of
information coverage, we decided to apply the Soft TD-IDF (with Jaro Winkler)(COHEN;

RAVIKUMAR; FIENBERG, 2003) similarity measure to match between property-value to-
kens and sentence tokens. See Figure 17, where we have a snippet of a Wikipedia Article,
and an example of infobox tuple. The sentence example is being passed over by a sliding
window, which tries to match with Soft TF-IDF the tokens within the window with each
other token from tuples property and value. The sliding window greatest score according
to a given threshold indicates the sentence label, while the individual Soft TF-IDF score
gives the NER tagging. Any other similarity measure could be used for this task, e.g.
Jaccard Similarity. However, instead of measuring the intersection over union of word
characters, like Jaccard Similarity would do, the Soft TF-IDF will give higher scores to
common words in the corpus and words sharing the same prefix.

60

The Soft TF-IDF was first proposed by Cohen, Ravikumar and Fienberg (2003) and
consists of a variation of the TF-IDF weighting. Its calculation (DOAN; HALEVY; IVES,
2012) is obtained through proposition (6.1) . Different from the basic approach, this metric
makes use of the Jaro Winkler (WINKLER, 1999) measure to define the similarity level
between words. Furthermore, the Jaro Winkler applies the Jaro (JARO, 1989) measure
aligned with the prioritization of strings sharing the same prefix. This approach was
applied to label sentences as having high, low, or borderline confidence in presenting
property value(s). Also, to make NER tagging at the tokens level to further training of
extractors (see Figure 17).

𝑠(𝑥, 𝑦) =
∑︁

𝑡∈𝑐𝑙𝑜𝑠𝑒(𝑥,𝑦,𝑘)
𝑣𝑥(𝑡) · 𝑣𝑦(𝑢*) · 𝑠′(𝑡, 𝑢*) (6.1)

Where:
𝑥 and 𝑦, two strings
𝑘, a prespecified threshold (Default value is 0.5. We have considered a high threshold

of 0.8, to ensure a minimal difference between the tokens)
𝑠′, is a basic similarity measure (e.g., Jaro Winkler)
𝑐𝑙𝑜𝑠𝑒(𝑥, 𝑦, 𝑘), set of all terms 𝑡 ∈ 𝐵𝑥 that have at least one close term 𝑢 ∈ 𝐵𝑦, that

satisfies 𝑠1(𝑡, 𝑢) ≥ 𝑘. 𝐵𝑥 is the document of 𝑥, and 𝐵𝑦 is the document of 𝑦;
𝑣𝑥 and 𝑣𝑦, the TF/IDF feature vectors normalized to length 1.

We consider a match when the Soft TF-IDF score between the tokens in the sliding
window and the tokens of the property and values tokens is higher than 0.5. If multiple

Source: This research

Figure 17 – Example of sliding window for labeling sentences and NER tagging using Soft
TF-IDF (with Jaro Winkler) measure.

61

sentences have a score higher than 0.5 for the given property-value, the solution picks the
sentence with the highest score.

We have empirically defined a sliding window of size 5 (five) tokens. When the sliding
window presents a similarity score above or equal to 0.5 it indicates that the sentence
is a relevant example, i.e., “positive” examples. The sentences with the greatest sliding
window expressing any score of similarity between 0.0 (zero) and 0.5, were considered
as borderline samples, thus being labeled as “other” — lastly, the sentences were all the
sliding windows have showed similarity equal to 0.0 (zero) where considered as having low
confidence and were labeled as “negative” training examples.

We have defined the labeling of borderline sentences to gather unusual sentence pat-
terns. There are cases where in spite the fact that the property-value relation exists, the
sliding window matching presents low confidence. For instance, this is the case of long
sentences or different spellings between the tuple and the sentence. An example of sliding
window for long sentence that would present low confidence at first sight is the matching
for the tuple (area_land_sq_mi: 1,764) and the sentence “...the county has a total area of
1,799... and 34 square miles (88 km2) (1.9%) is water...”. The gap between the matching
words area and water to 34 square miles is bigger than 5 words. This may cause a low
similarity confidence to label the sentence as positive on the first run.

Given the exposed, the sentences labeled as “other” are passed through the sentence
classifier. Depending on the new confidence degree, these sentences will have their la-
bels updated to “positive” or “negative”. Positive and negative samples are used to train
sentence classifiers, while only positive samples are used to train extractors.

To label the tokens for training the extractor, we have applied the Soft TF-IDF (with
Jaro Winkler) on a token by token basis, keeping the matched pair with the biggest score,
separately comparing property and value tokens with the ones belonging to the sentence.
Matched tokens from property name were tagged as “PROP”, while matched tokens from
value were tagged as “VALUE”. Remaining tokens with no matching were tagged as “O”
(from “other”). The example for the NER tagging system is also shown on Figure 17

6.2 MODELS TRAINING

The distant supervision provides labeled examples to build the sentence classifier and
attribute extractor. The output of the components are the trained models to be used by
the Extraction Pipeline module.

6.2.1 Sentence Classifier Training

Text classification is one of the common NLP tasks developed in the supervised machine
learning field of study. A variety of classical algorithms and models are widely used to
play the task (BAHARUDIN; LEE; KHAN, 2010), among them are Naive Bayes, Logistic

62

Regression, Supporting Vector Machines and Random Forests. Each one of them offers
its advantages and disadvantages in use or application to solve specific problems as spam
detection, categorization of news articles or sentiment analysis.

The sentence classifiers were applied in the extraction pipeline with two main objec-
tives: first, to detect among sentences labeled as “other” on the initial datasets, those
ones that may contain property values, in order to relabel them to “positive”; second and
more importantly, to select candidate sentences for the attribute extraction, among all
sentences in the candidate articles.

The sentence classifiers used in this work were built using Support Vector Machine
(SVM) (CORTES; VAPNIK, 1995). It was trained one classifier for each property in the
recovered schema. Baharudin, Lee and Khan (2010) have evaluated the use of well-known
machine learning models for text classification and has stated that “SVM has been recog-
nized as one of the most effective text classification method in the comparison of supervised
machine learning algorithms. It captures inherent characteristics of the data, independent
of the feature space dimensionality”. Although it presents some drawback in memory ef-
ficiency, SVM model has been effective in high dimensional spaces as text classification.
Hence, pursuing better classification results we have opted for using SVM classification
model, which also can be extended as in Chang and Lin (2011), to give probability esti-
mates to update samples previously labeled as “other” by the Distant Supervision com-
ponent.

After training the model for the given properties, the trained sentence classifiers is
used to predict the sentences labeled as “other” by the DS method. This method is used
to catch possible false positive sentences that were not matched by the hybrid DS assump-
tion. Therefore, the sentences are passed through the trained classifier. If the prediction
probability of being true is bigger than 90%, the sentences have their labels updated. The
resulting datasets are used as training datasets for the information extractors.

6.2.2 Attribute Extractor Training

A popular technique applied for Information Extraction in natural language texts is the
Named Entity Recognition tagging. The method is also known as entity identification,
entity extraction or entity chunking. It consists of the identification of named entities in
sentences and further classification under predefined classes.

Our work is based on NER, although it does not make use of generic categories as
(Person, Location, Organization, and Misc) to label entities as traditional approaches in
this area do. Instead, the tokens representing properties and values (to be extracted) are
identified as “PROP”, “VALUE”, and “O” (from “other”). The sequence-based classifica-
tion model is used to predict these categories on input examples.

Given the strong results provided by RNNs for sequence tagging, parsing, and other
NLP tasks, as well as the application of CNNs for classification tasks (YOUNG et al., 2018).

63

Source: Adapted from (CHIU; NICHOLS, 2016)

Figure 18 – LEFT.- The CNN extracts character features from each word. It creates em-
bedding for each character. Padding tokens are added to the end and start
of the word. The embeddings are concatenated, passed through the CNN
and a max pooling layer. The output is the feature vector for the word at
the character level. RIGHT - The BLSTM for tagging named entities. Pre-
trained word embeddings, additional features word-level, and Character-level
features obtained from the Convolutional Neural Network are concatenated
for each word in the sentence. They are fed to the BLSTM network, and
passed to the output layer. The output is the sequence tagging.

We have used a hybrid deep neural network model as the sequence-based classification
model for this work. This model reduces the human involvement in feature engineering
tasks as a CRF model would do.

While the character-level CNN allows the automatic extraction of features for charac-
ters composing a word, RNN model allows the sequence classification of tokens in a sen-
tence (ELMAN, 1990). The variation of the RNN model used in this work is the BLSTM,
which is composed by a combination of biRNN and LSTM. This combination allows the
storage of context information for long contexts, and at the same time performs predic-
tions of the current state looking forward and backward in the entered sequence. This
behavior is important for our particular problem, since Wikipedia can present a variety
of writing styles, containing short and long sentences.

The applied model receives as input a combination of pre-trained word embeddings,
word features and character features obtained from a character-level CNN. The features
are passed through a Bidirectional Long Short-Term Memory layer (BLSTM). The applied

64

deep neural network gives as output a sequence of predicted labels for sentence tokens
received as input. The main objective of this hybrid architecture is to learn sentences,
words, and character level features, and output the respective attribute extractor. The
model architecture (see Figure 18) is based on Chiu and Nichols (2016), which have applied
this architecture to the NER tagging task.

The character-level CNN (Figure 18) is used to extract character features from each
word in the sentence. It makes use of a lookup table composed by numbers (0-9), special
characters, and upper and lower letters (a-z, A-Z) to output a character embedding. The
characters set also include tokens for PADDING and UNKNOWN, which are used for pad
both sides of words according to the CNN window size, and to identify not listed characters
in the lookup table, respectively. The additional (optional) character features used by the
original model are upper case, lower case, punctuation, and other, used to represent the
character type. Once, our vocabulary already includes these types of symbols, we decided
not to use this additional character features. The character level features generated by
the lookup table for each character in the word are concatenated, passed into the CNN,
and finally by a max pooling layer to decrease the spatial size and output the word
representation according to the character-level classification.

In addition character features extracted by the CNN, the hybrid neural network ar-
chitecture (Figure 18) makes use of pre-trained word embeddings. The use of pre-trained
word embeddings leverages the execution of the model, instead of training our own embed-
dings what would take too much effort given the size of the working corpus. We decided
to use Stanford’s GloVe which has been trained on 6 billion words from Wikipedia and
Web text (PENNINGTON; SOCHER; MANNING, 2014). Glove 6B 50d have also shown com-
petitive results for the CoNLL-2003 and OntoNotes, according to experiments done by
Chiu and Nichols (2016). The model also makes use of additional word features: allCaps,
upperInitial, lowercase, mixedCaps, noinfo. We have incremented it with numeric, con-
tainsDigit and mainlyNumeric. The model proposed by Chiu and Nichols (2016) makes
use of lexicons as a form of external knowledge to help identify known named entities
for the categories Person, Location, Organization, and Misc. We have decided to not use
lexicons in the applied model, because our goal its not the NER tagging of such categories,
but the sequence labeling of properties and values (“PROP”, “VALUE”, and “O”), which
are general-purpose labels.

65

7 EXPERIMENTS

We have performed an extensive performance evaluation of our solution for unstructured
information extraction on Wikipedia. Besides analyzing its overall performance, our goals
included: examine baseline works for the same IE task, the dataset construction of each
strategy and the proportion of filled properties from the defined schema. This chapter
is organized into the experimental setup in Section 7.1, describing the datasets defini-
tion, applied schemas, evaluated approaches, and metrics; and the evaluation and results
presentation in Section 7.2

7.1 EXPERIMENTAL SETUP

7.1.1 Datasets

To evaluate the performance of our work, we used 4 infobox templates: U.S. County,
Artist, Airline and University (see Table 6). We have chosen them because they are
among the 125 most-used templates on Wikipedia and 3 of them (U.S. County, Airline
and University) were also used by previous approaches (WU; WELD, 2007; LANGE; BÖHM;

NAUMANN, 2010). The attributes were selected using the strategy defined in chapter 6.
Overall, a total of 29 attributes were chosen (Table 6).

The selected properties are expressed by different data types (numerical, textual, al-
phanumeric, and multivariate). The properties composition is also shown in Table 6.
These different data types tend to make difficult the information extraction task. Numer-
ical information is usually easier to detect and extract features than information mostly
composed by textual and alphanumeric characters. The extraction of textual information
is more sensitive to case, spellings, and writing styles variation (e.g., long and short sen-
tences, writing structure descriptive or expository). Properties with alphanumeric symbols
as letters and numbers are even more difficult to get a reliable pattern. For instance, prop-
erties related to datatypes (e.g., founded, birth_date, and established) can sometimes be
represented by only a numerical chain (e.g., 2009, 1589), or as a data pattern composed
by day, month, and year organized in different ways (e.g., 25 September 2009 ; April 29,
1882 ; c. 1589).

The variation in the size of the values to be extracted as well as the size of the context
in which they are usually found, are shown in 6. We have used the validation set to
measure the average count of characters and sentences for each property. It is possible to
identify that while some properties are present in minor contexts, e.g., sentences presenting
the density_sq_mi have in average the count of tokens around 11.17, there are cases in
which the information to be extracted is among a large context, e.g., sentences presenting
information about area contain in average 33.36 tokens. Also, we can notice the differences

66

Table 6 – From left to right are presented: Infobox templates used as input to the Schema
Discovery component; The schema size composed by most used properties in
the domain; The data type expressed by each property (T - Textual, N - Nu-
meric, A - Alphanumeric, M - Multivariate); The average count of tokens and
characters for the values of each property; The average count of tokens in the
sentences containing values for the respective properties; The count of tokens
and characteres were obtained from the validation set.

INFOBOX
TEMPLATE

SCHEMA
SIZE

DATA
TYPE DATASET

PROP. VALUE
AVG. COUNTS

SENT. AVG.
COUNTS

TOKENS CHAR TOKENS

U.S. County 12

T

county 2.12 14.28 14.88
largest_city_wl 1.13 7.25 13.38
named_for 3.75 22.25 25.36
seat_wl 1.16 8.28 9.32
state 1.16 7.78 14.26

N

pop 1.00 5.05 19.52
density_sq_mi 1.00 2.63 11.17
area_land_sq_mi 1.00 3.44 33.36
area_total_sq_mi 1.00 3.48 33.36
area_water_sq_mi 1.00 2.58 33.36

A area_percentage 2.00 4.10 33.36
district 1.00 3.00 24.00

Airline 7
T

airline 2.38 14.54 26.00
callsign 1.00 7.50 20.00
headquarters 6.75 39.83 26.00
IATA 1.00 2.50 20.50
ICAO 1.00 2.00 4.00

M fleet_size 1.00 2.00 10.40
A founded 1.08 4.83 22.67

Artist 5
T

birth_place 2.64 12.82 21.45
name 3.00 17.88 22.75
nationality 1.08 7.46 22.77

M field 3.00 19.79 23.00
A birth_date 2.13 8.94 22.88

University 5
T

city 1.86 11.14 26.57
country 1.14 6.14 25.86
name 7.86 50.86 25.57

M type 1.00 6.43 25.43
A established 1.29 6.29 18.71

Source: This research

in the size of the information to be extracted, while the majority of the properties present
an average information to be extracted below 2 tokens, there are cases in which the
information to be extracted is almost a sentence, e.g., University’s name (7.86 tokens),
Airline’s headquarters (6.75 tokens), and U.S County’s named_for (3.75 tokens).

When dealing with this number of properties to be extracted, there are cases in which

67

the property presents a high frequency on the infobox instances, but its value is rarely
found in the articles text, e.g., IATA and ICAO (airport codes). Also, there is the case of
fleet_size, which is present in a considerable number of infobox instances but is not present
in the articles text as a unique concrete value. This is mostly because the information
present in the text is organized by categories of aircraft models, separated by groups
and counted, i.e., instead of the information be expressed as in the sentence “...the fleet
size is of 5 aircrafts...”, it is common to be presented as “...mainline fleet consists of the
following aircrafts: 2 Boeing 737, 3 Boeing 767-300ER...”. Therefore, the property most
times represents an information to be inferred.

The different sizes of the schema (Table 6) may infer the popularity of the class or the
lack of structured information existent in the Wikipedia. It can also indicate specialized
domain. For instance, while the selected schema for Artist and University is mostly com-
posed by generic properties (e.g., city, country, type, nationality, birth_date, birth_place),
the schema for U.S County and Airline presents specific properties as IATA, ICAO, call-
sign, and information related to area, seat, density, and population.

Based on previous approaches for the task, e.g. Kylin and iPopulator, 100 articles were
randomly selected for each infobox template. A set of 50 articles were labelled and used as
validation, and another set of 50 articles were labeled for test. Each article was eyeballed,
and property values were manually extracted to construct the validation and test sets for
each schema property.

68

7.1.2 Approaches

To compare our work with previous ones, we have implemented each baseline approach
from the ground. We executed the following approaches for comparison:

Table 7 – Features set used by CRF extractor.

Feature Description Example Feature Description Example
First token of sentence Hello World Contains an underline symbol km_square
In first half of sentence Hello World Contains an percentage symbol 20%
In second half of sentence Hello World Stop word the; a; of
Start with capital Hawaii Purely numeric 1929
Single Capital A Number type 1932; 1,234; 5.6

Start with capital,
end with period

Mr.
String normalization:
capital to “A”, lowercase to “a”,
digit to “1”, others to “0”

TF—1 =⇒ 𝐴𝐴01

All capital, end with period CORP. Part of Speech tag
Contains at least one digit AB3 Token itself
Made up of two digits 99 NP chunking tag
Made up of four digits 1999 Previous tokens (window size 5)
Contains a dollar sign 20$ Following tokens (window size 5)

OBS: Features for anchored text and tokens present on original work were discarded.

Source: Adapted from (WU; WELD, 2007)

• Kylin: as described in Chapter 3, it is a system proposed by Wu and Weld (2007)
that looks for autonomously creation and completeness of Infoboxes. It builds sen-
tence classifiers using the sentence tokens and Part of Speech (POS) tags as features
to train a Maximum Entropy Model. It employs a bagging ensemble strategy to over-
come noisy, incomplete and unbalanced data. To build extractors, it makes use of
a CRF model with the features described in Table 7. As mentioned in the Table
7 footnote, while training the CRF models, we have discarded original features re-
lated to anchored text and tokens, once our recovered and processed data do not
contain any anchor or hyperlink information. We have found some difficulties while
trying to implement the system. First, the work has not mentioned how articles and
infoboxes were processed, to handle the text information. As mentioned in Chapter
4, a Wikipedia page content can be gathered through Wikicode although there is
always the option to crawl the HTML pages. The second problem was to apply the
bagging of Maximum Entropy models as implemented by Mallet1 for classification,
mainly because of the framework poor documentation. Looking to precisely follow
the original work without any obstacles, we have changed the classifier model im-
plementation for a more recent one, the Bagging Classifier ensemble method and

1 <http://mallet.cs.umass.edu/topics.php>

http://mallet.cs.umass.edu/topics.php

69

Table 8 – Features used by iPopulator to train CRF extractors.

Description
Length

Small token (length < 10)
Within long paragraph (#sentences > 2)

Relative token positions
Position in article: in 1st, 2nd, 3rd third
Position in paragraph: in 1st, 2nd, 3rd third
Position in sentence: in 1st, 2nd, 3rd third

(a) Features for the currently analyzed to-
ken only

Description Example
General

Value of the token 2010
Type Number, String
Part-of-speech tag NN
Enclosed by formatting symbols [”] Hi [”]
Enclosed by the formatting symbols ”’? [”’] Title [”’]

Structure
Two-digit number 17
Four-digit number 2010
Number 1511
Formatted numbers (thousand sign) 1,121
Formatted numbers (thous., mill./bill.) 1 mill.
Alphanum. char. (start: letter) Company
Alphanum. char. (start: letter, end: dot) end.

Check for Occurrence
Token km/mi/miles km
Token contains “http” http://faz.de
Token contains “?” Who?
Token contains “.” him.

(b) Features for all tokens inside a window of five tokens before
and after the currently analyzed token.

Source: (LANGE; BÖHM; NAUMANN, 2010)

Logistic Regression model from Scikit Learning library2. Kylin has also used the
Mallet implementation to build the CRF model. In our implementation of Kylin,
we have also changed the model implementation for the SKlearn CRFSuite3 with
Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS)(BYRD et al., 1995)
feature weight estimation method.

• iPopulator As shown in Chapter 3, iPopulator is a rule-based system proposed
by Lange, Böhm and Naumann (2010). It first applies rules to get patterns that
represent the syntactic structure of the property values, this step is called Structure
Analysis. Dealing with a rule-oriented system like iPopulator, brings some diffi-
culties. In this case, the main difficulty is related to the parsing function to de-
tect value attributes structure. The work does not clearly list the types of tokens
to be detected as syntactic structures. Hence, we have used the following three
type detectors: text, number, and alphanumeric. These detectors were used to in-
fer patterns for each property value occurrence. The obtained patterns are sorted,
ranked and then merged to compose a final result expression. During the Train-
ing Data Creation it applies a Fuzzy matching strategy to sequence label the sen-
tence tokens. The fuzzy matching is composed of two functions, one for textual
values and the other for numeric values. The similarity function for textual parts

2 <scikit-learn.org>
3 <https://sklearn-crfsuite.readthedocs.io/en/latest/api.html>

scikit-learn.org
https://sklearn-crfsuite.readthedocs.io/en/latest/api.html

70

apply the Levenshtein edit distance, using a similarity threshold empirically defined
(0.001 * 𝑙𝑒𝑛𝑔𝑡ℎ(𝑓𝑖𝑟𝑠𝑡_𝑡𝑜𝑘𝑒𝑛)). The similarity function for numeric values calculates
the absolute difference between compared tokens and compares the result to the
defined threshold (0.001 * 𝑓𝑖𝑠𝑡_𝑡𝑜𝑘𝑒𝑛). The labels used for sequence tagging the
sentences are the position values of the respective structure part previously defined,
e.g., pattern (Number ‘(’ Number ‘)’) for value “12,500 (2003)” provide labels
1 and 2 to respectively matched sentence tokens). iPopulator also applies a CRF
model to lead the extraction process. We have noticed that the features applied
to train the CRF model were rather simplistic (See Table 8). While training value
extractors all of them are automatically evaluated, and only the ones presenting
precision above 0.75 are kept. This elimination is performed to boost precision over
recall. During the execution of experiments shown in the next sections, we have
maintained extractors for all evaluated attributes, to conduct fair comparisons be-
tween models. Lastly, when looking for properties extraction iPopulator make use of
only a few first paragraphs of the article text. We have used the first five paragraphs.

• Deepex-BLSTM+CNN It corresponds to our system described in Chapter 6. Due
to automatic dataset construction done with the assistance of distant supervision
and similarity measures, the generated initial datasets to train sentence classifiers
have shown unbalanced numbers of negative and positive samples (See Table 13).
Looking for computational efficiency and better fit of the data, we have applied
undersampling over the training set to train the sentence classifiers. It was applied
a random undersampling strategy to remove samples from the majority class. The
training of sentence classifiers consists in the use of BoW vectors features with TF-
IDF weighting. We have used the Sklearn SVC4 implementation of SVM with the
default Radial Basis Function (RBF) kernel, and enabling the probability estimate.
Because of the vast number of attributes to be evaluated, and the manual verification
employed over the constructed validation set, it would require extensive human effort
fit different parameters to all datasets, becoming a time-consuming task. Hence,
instead of define different hyper-parameters for each property dataset, we have used
the validation set of 50 articles to empirically define some hyper-parameters (Table
9) common to all the generated datasets. For that, we have used the U.S. County
domain, because of its less amount of training data and its variety of properties
encompassing different data types. The defined Deep Neural Network architecture is
composed by one layer of BLSTM with recurrent dropout of 0.25. The entire model
was trained with the NAdam optimizer. The number of epochs (10) for training
was defined using an early stopping strategy after 5 iterations with no significant
improvement over the validation set. We have trained the extractor model using
only tagged sentences passed through sentence classifier and predicted as containing

4 <https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html>

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

71

properties value. These sentences are coming from the initial DS matching described
in Chapter 6.1.

Table 9 – Hyper-parameter values applied for training neural network architecture used
in this work.

Hyper-parameters Value Search space
Convolution Width 3 [3, 5]
CNN output size 50 [10, 50]
LSTM state size 275 [100, 300]
LSTM dropout 0.68 [0.25, 0.75]

Source: This research

• Deepex-BLSTM_W2 It consists of a variation of the proposed architecture for
extractors in Chapter 6.2.2. It makes use of the BLSTM layer aligned only with
pre-trained word embeddings, and word features. It makes use of the same hyper-
parameters defined for the Deepex-BLSTM+CNN (see Table 9);

• Deepex-BLSTM It consists of another variation for the proposed architecture for
extractors in Chapter 6.2.2. It makes use of the BLSTM layer aligned only with
pre-trained word embeddings. It makes use of the same hyperparameters defined for
the Deepex-BLSTM+CNN (see Table 9);

• Deepex-CRF Our work has also investigated the use of CRF in our extraction
pipeline defined in Chapter 6. Hence, we have replaced the hybrid neural network of
BLSTM and character-level CNN layers by a CRF model. The applied CRF model
has used the same features described on Table 7 for training Kylin extractors. The
implementation of Sklearn CRFSuite5 with L-BFGS (BYRD et al., 1995) feature
weight estimation method were also used to model this CRF extractor.

The four Deepex variations of the extraction model were independently embedded in
our pipeline. The experiments were executed for each combination of the pipeline and
extractor models. The benchmark between the four models and baseline works can be
seen in Section 7.2.

The difficulty in comparing iPopulator and Kylin is highlighted by Lange, Böhm and
Naumann (2010). iPopulator can be evaluated in a fine-grained measure, due to the par-
titioning of values to be extracted, on the other hand, Kylin extracts complete values.
In Lange, Böhm and Naumann (2010) the evaluation settings used to compare the two
models were different, what can lead to an imprecise performance comparison (e.g., eval-
uated properties, the selection, and number of Articles used to compose validation set).
5 <https://sklearn-crfsuite.readthedocs.io/en/latest/api.html>

https://sklearn-crfsuite.readthedocs.io/en/latest/api.html

72

To overcome the comparison problems highlighted by Lange, Böhm and Naumann (2010),
when comparing these different models we have established accurate criteria to compute
metrics. Different from Lange, Böhm and Naumann (2010), we have run the experiments
applying the same scenario to all evaluated models, i.e., using the same datasets, in-
fobox templates, evaluating its performance over the complete schema, without attribute
elimination as it is the case of Lange, Böhm and Naumann (2010).

7.1.3 Metrics

We have analyzed the systems performance through the computation of precision, re-
call, and f-score of each evaluated schema property. Given the different approaches for
extraction, mainly from iPopulator fragmented extraction, and multivalued properties,
we have performed a partial matching between expected and extracted outputs. We have
computed the Jaccard similarity to measure the distance between the strings and differ
positive from negative matchings, e.g. the value “MacAir Airlines Pty” is a True Posi-
tive (TP) extraction for the expected value “MacAir Airlines Pty Ltd”. However, exact
matching would indicate it as a False Positive (FP). To compute the metrics we have
applied the following definitions:

• True Positive (TP): extracted values have matched expected output. For atomic
values, its when the Jaccard distance is below or equal to 0.5, e.g., expected value
“Major General Patrick R. Cleburne” presents a Jaccard distance of 0.2 from the
extracted value “Patrick R. Cleburne”, thus, it is a TP. For the cases of multival-
ued and iPopulator extractions, is computed the Jaccard similarity between each
extracted value and the expected one(s). If the distance is below or equal to 0.5 it
indicates a positive matching. It is taken the proportion of positive matchings from
the total of values extracted, if the proportion of positive matchings is above 0.5,
we have a true positive extraction. For instance, the expected multivalue “photogra-
phy, painting, sculpture’ and the extracted value “photography, painting” presents
a proportion of 0.66 of positive matching.

• False Positive (FP): a value is extracted when it is not expected extraction, and when
the extracted values are different from the expected output. For atomic values is
when the Jaccard distance is above 0.5. For multivalued and iPopulator extractions
is when the proportion of positive matchings is below 0.5.;

• True Negative (TN): the model does not perform extraction when no extraction is
required;

• False Negative (FN): the model does not perform extraction when extraction is
required.

73

We have computed Precision, Recall and F-score for each dataset. However, to better
evaluate extractions according to extracted infobox templates, we have focused the evalu-
ation in the micro and macro Precision, Recall and F-score measures. The macro average
measures the overall performance of the systems across different datasets for one given
infobox template. The micro measure aggregates the contributions of all datasets from the
infobox template. Therefore, for simplicity, when analyzing the performance of the models
over a given Infobox template, we will be referring to macro and micro measures, oth-
erwise, when referring to the performance of the models over separate property datasets
we will be referring to common Precision, Recall and F-score measures. The Table 14 for
complete macro and micro Precision, Recall, and F-score measures by Infobox Template
can be found in the Appendix A, and the Table 17 to all computed F-score measures ffor
each dataset in Appendix D. To clear differences in performance across evaluated infobox
templates, we have computed the micro and macro measures for each one.

Since the baselines have not clarified how articles text and infobox information were
preprocessed, also considering constant evolving of Wikipedia structures, articles, and
event writing styles, it is expected that obtained baseline results will differ from the
original works. We have focused on measuring the performance of the systems as a whole,
using extracted and expected outputs as parameters to measure precision, recall, and
F-score.

7.2 EVALUATION AND RESULTS

The macro and micro F-score values obtained by all approaches in the 4 domains are
presented in Table 10. All the variations of Deepex obtained better results than the two
baselines (Kylin and iPopulator) both in terms of macro and micro F-score. To verify
if these results are statistically significant, we have used the F-scores obtained for each
dataset (property), see Table 17 in Appendix D, and executed the Shapiro normality test
(SHAPIRO; WILK, 1965) in the distributions of each approach. The normality test have
rejected the null hypothesis for normality in all distributions. Hence, we have executed the
Wilcoxon Signed-rank Test (WILCOXON, 1945) on the difference of the F-scores between
all approaches (See Table 11) to verify the following hypothesis:

𝐻0 There is no difference between the models.

𝐻1 There is significant difference between the models.

74

Table 10 – Macro and Micro F-score by model for each class

F-SCORE U.S. county Airline Artist University

Macro

Kylin 0.5053 0.2791 0.3256 0.4233
iPopulator 0.5328 0.2972 0.3247 0.3907
DEEPEX-CRF 0.8109 0.3770 0.8009 0.7349
DEEPEX-BLSTM+CNN 0.8230 0.3431 0.7656 0.7818
DEEPEX-BLSTM_W2 0.7923 0.4246 0.7471 0.7867
DEEPEX-BLSTM 0.8004 0.3840 0.7666 0.7811

Micro

Kylin 0.6535 0.4651 0.4548 0.5049
iPopulator 0.5990 0.5000 0.4035 0.4191
DEEPEX-CRF 0.8344 0.5866 0.8000 0.7374
DEEPEX-BLSTM+CNN 0.8598 0.5290 0.7638 0.7891
DEEPEX-BLSTM_W2 0.8274 0.5905 0.7462 0.8010
DEEPEX-BLSTM 0.8270 0.5625 0.7631 0.7951

Source: This research

In the Table 11, 𝑁 is the sample size (it were used 29 datasets), for the test execution
the ties in the distribution are discarded,once 𝑁 is bigger than 20 in all cases, we can
use the 𝑝-𝑣𝑎𝑙𝑢𝑒 to evaluate our hypothesis. The numbers show that all Deepex varia-
tions obtained statistically superior results in comparison with the baselines. This can be
explained by the restrictive nature of their heuristics to build the training datasets for
extraction, as Table 13 and 12 depict.

In the better cases Kylin have achieved macro F-score for U.S. County and University
of 0.5053 and 0.4233, respectively. iPopulator have achieved 0.5328 and 0.3907 for the
same domains. In some cases Kylin’s performance was impaired by the datasets construc-
tion, as shown in Table 13 some properties for the Kylin pipeline could not leverage a
sufficient amount of training samples, e.g., county, district, pop, and headquarters. For
the property district in the domain U.S. County, our approach extracted 1.584 positive
examples whereas Kylin only 616 and iPopulator 528. Regarding negative examples, the
difference is even bigger (our approach: 144.906, Kylin: 0). This problem have implicated
in the coverage of extracted properties.

As shown in Table 12, the proportion of extracted properties is affected by Kylin’s
heuristics in the 4 domains. Kylin was not able to fill any schema completely, different from
the Deepex variations and even iPopulator. This confirms the observation of restrictive
heuristics. For the U.S. County domain, for instance, Kylin was able to extract only 67%
of the properties whereas iPopulator 92%, and Deepex 100%. The highest proportion
coverage of Kylin comes from the extractions in the U.S. County domain, which presents
a large amount of numerical properties. Therefore, Kylin is restricted to correctly extract

75

Table 11 – Results for the Wilcoxon Signed-rank Test.

Comparison N p-value Null Hypothesis
(𝛼 = 0.01)

Kylin vs DEEPEX
Kylin vs
Deepex-CRF 27 3.20 · 10−4 Rejected

Kylin vs
Deepex-BLSTM 27 1.60 · 10−4 Rejected

Kylin vs
Deepex-BLSTM_W2 26 2.40 · 10−4 Rejected

Kylin vs
Deepex-BLSTM+CNN 27 1.80 · 10−4 Rejected

iPopulator vs DEEPEX
iPopulator vs
Deepex-CRF 27 3.20 · 10−4 Rejected

iPopulator vs
Deepex-BLSTM 27 1.40 · 10−4 Rejected

iPopulator vs
Deepex-BLSTM_W2 28 1.60 · 10−4 Rejected

iPopulator vs
Deepex-BLSTM+CNN 28 1.40 · 10−4 Rejected

DEEPEX CRF vs DL
CRF vs BLSTM 24 9.92 · 10−1 Accepted

CRF vs BLSTM_W2 25 7.28 · 10−1 Accepted

CRF vs BLSTM+CNN 25 7.79 · 10−1 Accepted

Source: This research

information from numerical properties, and for this reason underperforms the extraction
of textual properties. It achieved high F-score results only for textual properties with a
well defined structure in the articles text, e.g., artist’s name (0.85) and birth_date (0.77),
university’s name (0.94), and named_for (0.68). Another issue with Kylin’s heuristics to
build the training data that may have caused the low properties coverage: the low number
of labeled false samples. Even though Kylin applies a Bagging strategy to decrease the
impact of noisy and incomplete data, the lack of representation for negative sentences is
evident.

Regarding iPopulator, it was not able to extract information only for the properties:
district, IATA, and ICAO. All these properties represent information rarely seen on articles
text. Despite the fact that iPopulator have managed to extract information for almost all
properties in the schema, the macro and micro results presented in Table 10 indicate the
lack of Precision and Recall in the extractions (See Table 14 in Appendix A for macro
and micro Precision and Recall measures). This may have happened because iPopulator
restricts its search for properties to only a few first paragraphs from the Articles text,

76

Table 12 – Proportion of filled properties in defined schema.

U.S. county airline artist university
KYLIN 0.67 0.57 0.40 0.60
IPOPULATOR 0.92 0.71 1.00 1.00
DEEPEX-CRF 1.00 0.71 1.00 1.00
DEEPEX-BLSTM 1.00 0.71 1.00 1.00
DEEPEX-BLSTM_W2 1.00 0.71 1.00 1.00
DEEPEX-BLSTM+CNN 1.00 0.71 1.00 1.00

Source: This research

e.g., properties like density and district are rarely found in the first paragraphs of the
text. The labeling of property values fragment with the use of fuzzy matching have also
generated noisy training data.

The iPopulator system, unlike Kylin, presents a vast number of labeled sentences to
train extractors. There are cases where the count of positive samples in iPopulator is about
two times bigger than in Kylin datasets, or even more, e.g.: University’s city (iPopula-
tor: 33543, Kylin: 14594), name (iPopulator: 68158, Kylin: 33662). The average number
of positive samples clearly shows the difference: iPopulator (9,769.90), Kylin (6,856.38).
This behavior may have caused the labeling of a high number of wrong samples, which
have decreased the performance of the extractors. A large amount of samples in iPopula-
tor datasets indicates that its heuristics are widely open to get multiple fragments of the
same value attribute through the use of fuzzy matching, see the example below:

Tuple: (birth_date, 1827 / 11 / 03)
Sentence: “Alexander Fraser was born at Woodcockdale, near Linlithgow on 3
November 1827 and was baptised on 11 January 1828 at Linlithgow.”

Labels: [‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘3’, ‘O’, ‘1’, ‘O’, ‘O’, ‘O’, ‘O’,
‘2’, ‘O’, ‘1’, ‘O’, ‘O’, ‘O’]

In the above example iPopulator have matched only the day and the year of the birth,
and could not match the month. Furthermore, because of the fuzzy matching thresholds,
it has also matched the day and year of baptism as if they represent the birth date. This
wrong labeling of iPopulator can also be extended for the cases of multivalued attributes
and lists of values. This flexibility should increase the extraction recall, the amount of
noisy data, and consequently decrease the precision and F-score.

Deepex comes as a mid-term between Kylin and iPopulator. Its Distant Supervision
output presents a considerable amount of negative and positive training examples, in

77

average 7,202.24 positive examples and 175,773 negatives (See Table 13). As stated before,
the unbalancing of the datasets are circumvented by the undersampling during sentence
classifiers training. As shown in table 12, the Deepex variations is able to fill the entire
schema from three infobox templates. The properties fleet_size and IATA from infobox
template Airline, as aforementioned, are properties rarely seen on articles text, which
makes difficult its extraction by the models.

When comparing the Deepex version with CRF versus Deepex variations with Deep
Learning architectures, the 𝑝-𝑣𝑎𝑙𝑢𝑒𝑠 for the hypothesis test (Table 11) are always above
the level of significance, accepting the null hypothesis. For these cases we can state that
applied Deep Learning (DL) architectures have shown the same performance for the task
as the widely used CRF model. However, the DL variations of Deepex have performed
better for some cases as numerical and textual properties.

The Deepex variation using CRF presented better macro and micro results for the
Artist infobox template, 0.8009 and 0.8000, respectively. The properties for Artist tem-
plate present the mixed data type birth_place, the multivalued property fields (an artist
can be assigned to various fields), and textual properties that do not present long chains of
text (name and nationality). In spite the different data types from properties schema, the
Deepex-CRF have outperformed the others for the textual and multivariate attributes,
possibly because of the well-defined CRF features (Table 7), and of the simple and direct
writing style of the articles under this domain. However, it have underperformed the other
DL aproaches for the alpha numeric property.

The Deepex-BLSTM_W2 have outperformed all the other models in two datasets,
Airline with the macro F-score of 0.4246, and University with macro F-score of 0.7867.
The writing style in these domains is rather flexible and specialized, presenting a more
challenging extraction. Both templates have properties related to textual and alphanu-
meric data types, representing date information (founded, and established). While the
textual information to be extracted can present long chains of text (e.g., headquarters
from Airline, named_for from U.S. County, and name from University). As shown in Ta-
ble 6, these properties are composed by long chains of words and characters, headquarters
with an average of 6.75 tokens, named_for with 3.75, and name from University with
7.86.

78

Table 13 – The output of the Distant Supervision. Labels count for each schema property
according with evaluated model.

CLASS PROPERTY KYLIN IPOPULATOR DEEPEX
Pos. Neg. Pos. Neg. Pos. Other

US County

area_land_sq_mi 2332 90 2803 54071 4216 96275
area_percentage 3214 65 3042 97466 1308 54947
area_total_sq_mi 2253 86 2817 91245 4043 59329
area_water_sq_mi 3189 2968 3169 98702 5160 50466
county 28299 0 13820 71034 7423 76349
density_sq_mi 1642 2446 1014 115277 4222 28265
district 616 0 528 144906 1584 7748
largest_city_wl 746 15547 4849 93537 1941 48667
named_for 1998 664 1438 54895 2511 58238
pop 23 4 739 124034 7073 23570
seat_wl 6137 11625 5324 111406 3792 29619
state 7717 15811 7337 113290 15495 25994

Airline

airline 17212 4310 11035 31489 4418 57510
callsign 3954 2844 1985 76379 635 7433
fleet_size 1546 4660 385 59075 1226 18711
founded 2009 1314 4502 57255 3074 29002
headquarters 264 518 3991 27112 1846 60510
IATA 6085 2139 303 80517 391 3413
ICAO 3183 3296 1024 79084 236 5360

Artist

birth_date 3331 1814 11 340963 5515 155645
birth_place 872 4940 6658 178902 6868 305377
field 1292 4016 24576 221745 9556 192083
name 25016 1191 25158 294210 12493 209569
nationality 3278 27804 15624 367670 8044 67230

University

city 14594 60612 33543 474681 13517 178201
country 10959 38616 14475 391257 23267 220564
established 10607 10260 14459 533380 23086 119102
name 33662 676 68158 236380 29420 403964
type 2805 3584 10560 477455 6505 151380

AVERAGE 6856.38 7651.72 9769.90 175773.00 7202.24 94638.66

Source: This research

For the Airline template, Deepex-BLSTM_W2 have presented high F-score for the
properties founded (0.80), headquarters (0.62), and callsign (0.25). The callsign property
is a textual information rarely found on articles text, and is mostly presented as all caps,
a word feature included in the extractor architecture. The BLSTM have captured context
in long chains of text, allowing the extraction of long property values as headquarters,
and University name which have obtained a F-score of 0.96. Hence, given the exposed we
can ensure that the word features added to the BLSTM network using word embeddings
have made easier the extraction of information from these especialized domains, and
with flexible writing styles. Adding the CNN to the BLSTM model have increased the
extraction recall, and decreased the performance of the extractor. This can be caused
by the learning of too many features from of unusual sentences containing the target

79

information.
Lastly, the Deepex-BLSTM+CNN have presented high extraction results for the U.S.

County template, macro F-score of 0.8230 and micro of 0.8598. The properties belonging
to this domain are composed by numeric, textual and alphanumeric data types. Dif-
ferent from Artist and University, the articles from the U.S. County domain present a
well-structured writing style, with standardized sentences presenting important informa-
tion. This information domain presents a lot of numerical properties (area_land_sq_mi,
area_total_s_mi, area_water_sq_mi, density_sq_mi, pop), that can have its features
easily extracted by a character level CNN, once it will treat only with numbers an puntu-
ation. The template also presents properties related to places as country, state, seat_wl,
largest_city_wl, district. The pre-trained word embeddings used in this network may con-
tain semantic information of these target words that have increased the preformance of the
model. Also, the use of this dataset and model to fit hyper-parameters may have affected
the superior performance of Deepex-BLSTM+CNN under the U.S. county domain.

80

8 CONCLUSIONS AND FUTURE WORK

This chapter finishes our work listing all contributions, limitations, future works that can
still be done to improve it, and concludes answering the raised research questions. Section
8.1 presents a brief discussion about the differences and similarities between our work and
the baselines. In Section 8.2 are discussed the contributions and limitations of this work.
In Section 8.3 are shown perspectives and opportunities for future works in the field. The
last Section finishes the work by answering research questions.

8.1 DISCUSSION

Kylin (WU; WELD, 2007), and iPopulator (LANGE; BÖHM; NAUMANN, 2010) are also
methods for Wikipedia attributes extraction. These works present similar approaches to
extract unstructured information to populate/create infoboxes autonomously. However,
their models rely on specifics heuristics and feature engineering to build training datasets
and train models.

While Kylin presents strict heuristics to build training datasets, and sentence classifiers
to filter the passage of sentences to the extractor, iPopulator makes use of broad huristics
to build training datasets, and fuzzy matching to differ between numerical and textual
information. The work presented here has merged both paths, using distant supervision
along with similarity measures between attributes names, values and sentence tokens to
build training datasets. We have also used sentence classifiers to filter the flow of sentences
passed to the attribute extractor.

Different from Kylin and iPopulator, which makes use of the traditional sequence-
based model CRF for NER tagging and further entity extraction, we have applied the
hybrid architecture of BLSTM aligned with character level CNN, designed by Chiu and
Nichols (2016), to automatically extract character and word features from sentences, and
work as a NER tagger to guide the information extraction process.

8.2 CONTRIBUTIONS AND LIMITATIONS

Starting by the contributions, we can list the followings:

1. First, an indexing architecture is presented in order to explore Wikipedia corpus and
DBpedia RDF turtle files, and also to assist the analysis of Wikipedia structure,
data distribution, heterogeneity and quality. The data analysis is an important step
to support schema and domain discovery through Categories hierarchy;

81

2. Second, the modifications of the Distant Supervision assumption have allowed an ef-
fective labeling of properties and values from different spellings and formats between
supervision source and plain texts;

3. Third, we have showed that the use of Deep Learning architectures for NER tagging
can present competitive performance to the state-of-the-art CRF model; and

4. Fourth, our proposed extraction pipelines have surpassed baseline works for the
same problem, the slot-filling task on Wikipedia corpus.

An important limitation of our work is the absence of differential treatment to label
multivalued properties. To easily evaluate all properties in suggested schema we have
treated multivalued properties with an “OR” approach.

8.3 FUTURE WORK

Although we have improved the extraction of property values on Wikipedia corpus, some
points and work can still be done to improve information extraction on an unstructured
corpus. As a first step, we plan to investigate strategies to remove noisy labeling from
the Distant Supervision assumption. The work presented here have applied an approach
based on similarity measure to detect mentions of properties and values in the sentences,
but it can still apply wrong labels.

For sentence labeling we intend to study the use of topic-based models and pattern
correlations, as in the works of Alfonseca et al. (2011), and Takamatsu, Sato and Naka-
gawa (2012). An important improvement to our extraction pipeline is the extraction of
multivalued properties. Similar to Lange, Böhm and Naumann (2010), we intend to inves-
tigate the use of hidden variables to learn property values pattern (atomic or multivalued),
to include it to assist the extraction process. Also, we intend to use neural networks to
model sentence classifiers, that are currently built with SVM classifiers.

The automatic definition of a target schema based on Categories is a good strategy to
explore hierarchical and tagged structures in the Web. In this work, we could highlight
some important aspects of this data organization, although investigations still need to be
done to provide an autonomous schema definition. Beyond data analysis, it is possible to
apply supervised and unsupervised learning methods to the task.

Finally, as a form to validate our strategy when scaling to the diversity of Web, we
intend to apply it to other corpus, i.e., datasets minerated from Web sources like sites
of real estate for sale, web forums, products specifications from e-commerce sites, among
others.

82

8.4 CONCLUSION

Given the exposed, and the initially raised research questions, we can conclude:

1. Although we could not define a common schema for Categories, the data analysis
performed on Wikipedia structures have shown that the study of the Categories
hierarchy can assist the information domain and schema discovery, allowing a better
understanding of information distribution across categories. Categories are widely
used on the Internet, sometimes called as tags. It can be found not only in Wikipedia,
but also in Web forums, blogs and news platforms;

2. The Soft TF-IDF similarity can be applied to modify the Distant Supervision as-
sumption. It allows the matching of tokens from the supervision source and plain
texts, considering word miss-spellings or formats without generate a high amount
of noise;

3. Extraction experiments done with our proposed extraction pipeline (modifying the
sequence tagging model to use CRF and variations of a Deep Learning architecture)
have shown that even though CRF model got high F-score for two infobox classes
(airline and artist), the differences between the four Deepex variations are not statis-
tically significant. Therefore, a Deep neural network architecure can be competitive
with the widely used CRF model for the sequence classification problem of NER
tagging.

83

REFERENCES

AGGARWAL, C. C.; ZHAI, C. X. Mining text data. Boston, MA: Springer US, 2013.
1–522 p. ISBN 9781461432234.

AGICHTEIN, E.; GRAVANO, L. Snowball: Extracting Relations from Large Plain-Text
Collections. Proceedings of the 5th ACM International Conference on Digital Libraries,
I, n. 58, p. 85–94, 2000. ISSN 158113231X.

ALFONSECA, E.; FILIPPOVA, K.; DELORT, J.-Y.; GARRIDO, G. Pattern Learning
for Relation Extraction with a Hierarchical Topic Model. Proceedings of the 50th Annual
Meeting of the Association for Computational Linguistics: Short Papers-Volume 2,
n. July, p. 54–59, 2011.

APROSIO, A. P.; GIULIANO, C.; LAVELLI, A. Automatic expansion of dbpedia
exploiting wikipedia cross-language information. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), v. 7882 LNCS, p. 397–411, 2013. ISSN 03029743.

APROSIO, A. P.; GIULIANO, C.; LAVELLI, A. Automatic Mapping of Wikipedia
Templates for Fast Deployment of Localised DBpedia Datasets. Proceedings of the 13th
International Conference on Knowledge Management and Knowledge Technologies -
i-Know ’13, p. 1–8, 2013.

APROSIO, A. P.; GIULIANO, C.; LAVELLI, A. Extending the coverage of DBpedia
properties using distant supervision over Wikipedia. CEUR Workshop Proceedings,
v. 1064, 2013. ISSN 16130073.

BAHARUDIN, B.; LEE, L. H.; KHAN, K. A Review of Machine Learning Algorithms
for Text-Documents Classification. Journal of Advances in Information Technology, v. 1,
n. 1, 2010. ISSN 1798-2340.

BALOG, K. Entity-Oriented Search. Cham: Springer International Publishing, 2018.
(The Information Retrieval Series, v. 39). ISBN 978-3-319-93933-9.

BANERJEE, S.; TSIOUTSIOULIKLIS, K. Relation Extraction Using Multi-Encoder
LSTM Network on a Distant Supervised Dataset. Proceedings - 12th IEEE International
Conference on Semantic Computing, ICSC 2018, IEEE, v. 2018-Janua, p. 235–238, 2018.

BANKO, M.; CAFARELLA, M. J.; SODERLAND, S.; BROADHEAD, M.; ETZIONI,
O. Open information extraction from the web. IJCAI International Joint Conference on
Artificial Intelligence, v. 51, n. 12, p. 2670–2676, 12 2007. ISSN 10450823.

BLUNSOM, P.; COHN, T. Discriminative word alignment with conditional random
fields. Proceedings of the 21st International Conference on Computational Linguistics
and the 44th annual meeting of the ACL - ACL ’06, n. July, p. 65–72, 2006. ISSN
2194-9034.

BRIN, S. Extracting Patterns and Relations from the World Wide Web. The World
Wide Web and Databases, v. 1590, n. 2, p. 172–183, 1999. ISSN 1098-6596.

84

BYRD, R. H.; LU, P.; NOCEDAL, J.; ZHU, C. A Limited Memory Algorithm for
Bound Constrained Optimization. SIAM Journal on Scientific Computing, v. 16, n. 5, p.
1190–1208, 9 1995. ISSN 1064-8275.

CHANG, C.-c.; LIN, C.-j. LIBSVM. ACM Transactions on Intelligent Systems and
Technology, v. 2, n. 3, p. 1–27, 4 2011. ISSN 21576904.

CHIU, J. P.; NICHOLS, E. Named Entity Recognition with Bidirectional LSTM-CNNs.
Transactions of the Association for Computational Linguistics, Association for
Computational Linguistics, Morristown, NJ, USA, v. 4, p. 357–370, 12 2016. ISSN
2307-387X.

COHEN, W.; RAVIKUMAR, P.; FIENBERG, S. A Comparison of String Distance
Metrics for Name-Matching Task. In: IJCAI 2003 Workshop on Information Integration
on the Web (IIWeb 2003). [S.l.: s.n.], 2003. v. 47.

COLLOBERT, R.; WESTON, J.; BOTTOU, L.; KARLEN, M.; KAVUKCUOGLU, K.;
KUKSA, P. Natural Language Processing (almost) from Scratch. v. 12, p. 2493–2537,
2011. ISSN 0891-2017.

CORTES, C.; VAPNIK, V. Support-Vector Networks. Machine Learning, v. 297, n. 20,
p. 273–297, 1995. ISSN 1747-0285.

DEROSE, P.; SHEN, W.; CHEN, F.; LEE, Y. DBLife: A community information
management platform for the database research community. Cidr, p. 1–4, 2007. ISSN
0361-803X.

DOAN, A.; HALEVY, A.; IVES, Z. Principles of Data Integration. 1st. ed. [S.l.]:
Elsevier, 2012. 520 p. ISBN 9780124160446.

DONG, X.; GABRILOVICH, E.; HEITZ, G.; HORN, W.; LAO, N.; MURPHY, K.;
STROHMANN, T.; SUN, S.; ZHANG, W. Knowledge vault: a web-scale approach to
probabilistic knowledge fusion. Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining - KDD ’14, p. 601–610, 2014. ISSN
0893-6080.

ELMAN, J. L. Finding Structure in Time. Cognitive Science, v. 14, n. 2, p. 179–211, 3
1990. ISSN 03640213.

FERRUCCI, D.; BROWN, E.; CHU-CARROLL, J.; FAN, J.; GONDEK, D.;
KALYANPUR, A. A.; LALLY, A.; MURDOCK, J. W.; NYBERG, E.; PRAGER, J.;
SCHLAEFER, N.; WELTY, C. Building Watson: An Overview of the DeepQA Project.
AI Magazine, v. 31, n. 3, p. 59, 2010. ISSN 0738-4602.

FINKEL, J. R.; GRENAGER, T.; MANNING, C. Incorporating non-local information
into information extraction systems by Gibbs sampling. Proceedings of the 43rd Annual
Meeting on Association for Computational Linguistics - ACL ’05, n. June, p. 363–370,
2005. ISSN 02773791.

FLEISCHHACKER, D.; PAULHEIM, H.; BRYL, V.; VÖLKER, J.; BIZER, C. Detecting
errors in numerical linked data using cross-checked outlier detection. Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), v. 8796, p. 357–372, 2014. ISSN 16113349.

85

FONT, L.; ZOUAQ, A.; GAGNON, M. Assessing and Improving Domain Knowledge
Representation in DBpedia. Open Journal of Semantic Web, v. 4, n. 1, 2017.

GOLDBERG, Y. Neural Network Methods for Natural Language Processing (Synthesis
Lectures on Human Language Technologies). Synthesis Lectures on Human Language
Technologies, v. 10, n. 1, p. 1–309, 2017.

GRAVES, A.; SCHMIDHUBER, J. Framewise phoneme classification with bidirectional
LSTM and other neural network architectures. Neural Networks, v. 18, n. 5-6, p. 602–610,
7 2005. ISSN 08936080.

GRISHMAN, R. Information extraction: Techniques and challenges. In: . [S.l.]:
Springer-Verlag, 1997. p. 10–27. ISBN 3-540-63438-X.

GUODONG, Z.; JIAN, S.; JIE, Z.; MIN, Z. Exploring various knowledge in relation
extraction. Proceedings of the 43rd Annual Meeting on Association for Computational
Linguistics - ACL ’05, n. June, p. 427–434, 2005. ISSN 1650-1977.

HALEVY, A.; NORVIG, P.; PEREIRA, F. The Unreasonable Effectiveness of Data.
IEEE Intelligent Systems, v. 24, n. 2, p. 8–12, 3 2009. ISSN 1541-1672.

HEARST, M. A. Automatic acquisition of hyponyms from large text corpora. In:
Proceedings of the 14th conference on Computational linguistics -. Morristown, NJ, USA:
Association for Computational Linguistics, 1992. v. 2, p. 539. ISSN 1469-8110.

HELLMANN, S.; LEHMANN, J.; AUER, S.; BRÜMMER, M. Integrating NLP Using
Linked Data. In: AIP Conference Proceedings. [S.l.: s.n.], 2013. v. 1501, n. 1, p. 98–113.
ISBN 978-3-642-41337-7.

HOCHREITER, S.; SCHMIDHUBER, J. Long Short-Term Memory. Neural
Computation, v. 9, n. 8, p. 1735–1780, 11 1997. ISSN 0899-7667.

HOFFMANN, R.; ZHANG, C.; LING, X.; ZETTLEMOYER, L.; WELD, D. S.
Knowledge-based weak supervision for information extraction of overlapping relations.
ACL-HLT 2011 - Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies, v. 1, p. 541–550, 2011.

JARO, M. A. Advances in Record-Linkage Methodology as Applied to Matching the
1985 Census of Tampa, Florida. Journal of the American Statistical Association, Vol. 84,
n. June 1989, No. 406, p. 414–420, 1989.

KRISHNAMURTHY, R.; LI, Y.; RAGHAVAN, S.; REISS, F.; VAITHYANATHAN, S.;
ZHU, H. SystemT : A System for Declarative Information Extraction. v. 37, n. 4, p.
7–13, 2008.

LAFFERTY, J.; MCCALLUM, A.; PEREIRA, F. Conditional Random Fields:
Probabilistic Models for Segmenting and Labeling Sequence Data Part of the Numerical
Analysis and Scientific Computing Commons Recommended Citation "Conditional
Random Fields: Probabilistic Models for Segmenting and Labelin. Proc. of ICML,
v. 2001, n. June, p. 282–289, 2001. ISSN 1750-2799.

LANGE, D.; BÖHM, C.; NAUMANN, F. Extracting structured information from
Wikipedia articles to populate infoboxes. [S.l.: s.n.], 2010. 1661–1664 p. ISSN 16135652.
ISBN 9781450300995.

86

LEHMANN, J.; ISELE, R.; JAKOB, M.; JENTZSCH, A.; KONTOKOSTAS, D.;
MENDES, P. N.; HELLMANN, S.; MORSEY, M.; KLEEF, P. V.; AUER, S.; BIZER,
C. DBpedia - A large-scale, multilingual knowledge base extracted from Wikipedia.
Semantic Web, v. 6, n. 2, p. 167–195, 2015. ISSN 22104968.

LI, Y.; ROAD, H.; JOSE, S.; REISS, F. R.; ROAD, H.; JOSE, S.; CHITICARIU, L.;
ROAD, H.; JOSE, S. SystemT : A Declarative Information Extraction System. n. June,
p. 109–114, 2011.

MCCALLUM, A.; LI, W. Early results for named entity recognition with conditional
random fields, feature induction and web-enhanced lexicons. In: Proceedings of the
seventh conference on Natural language learning at HLT-NAACL 2003 -. Morristown,
NJ, USA: Association for Computational Linguistics, 2003. v. 4, p. 188–191.

MIKOLOV, T.; SUTSKEVER, I.; CHEN, K.; CORRADO, G.; DEAN, J. Distributed
Representations of Words and Phrases and their Compositionality. CrossRef Listing of
Deleted DOIs, v. 1, p. 1–9, 10 2013. ISSN 0003-6951.

MINTZ, M.; BILLS, S.; SNOW, R.; JURAFSKY, D. Distant supervision for relation
extraction without labeled data. In: Proceedings of the Joint Conference of the 47th
Annual Meeting of the ACL and the 4th International Joint Conference on Natural
Language Processing of the AFNLP: Volume 2 - ACL-IJCNLP ’09. [S.l.: s.n.], 2009. v. 2,
n. August, p. 1003. ISBN 9781932432466. ISSN 1932432469.

MOHAMED, M.; OUSSALAH, M. Identifying and Extracting Named Entities from
Wikipedia Database Using Entity Infoboxes. International Journal of Advanced
Computer Science and Applications, v. 5, n. 7, p. 164–169, 2014. ISSN 2158107X.

NGUYEN, H.; NGUYEN, T.; NGUYEN, H.; FREIRE, J. Querying Wikipedia
documents and relationships. Procceedings of the 13th International Workshop on the
Web and Databases - WebDB ’10, p. 1, 2010. ISSN 07308078.

NGUYEN, T. H.; NGUYEN, H. D.; MOREIRA, V.; FREIRE, J. Clustering Wikipedia
infoboxes to discover their types. Proceedings of the 21st ACM international conference
on Information and knowledge management - CIKM ’12, p. 2134, 2012.

NICKEL, M.; RING, O.-h. Factorizing YAGO Scalable Machine Learning for Linked
Data. Proc.\ of WWW’12, p. 271–280, 2012. ISSN 1878-5832.

NIU, F.; ZHANG, C.; RÉ, C.; SHAVLIK, J. Elementary: Large-scale Knowledge-base
Construction via Machine Learning and Statistical Inference. 2012.

PAULHEIM, H. Browsing Linked Open Data with Auto Complete. 11th International
Semantic Web Conference (ISWC2012), p. 1–8, 2012. ISSN 16130073.

PAULHEIM, H. Identifying Wrong Links between Datasetsby Multi-dimensional Outlier
Detection. In: Third International Workshop on Debugging Ontologies and Ontology
Mappings. [S.l.: s.n.], 2014. p. 27–38. ISSN 1613-0073.

PAULHEIM, H. Knowledge graph refinement: A survey of approaches and evaluation
methods. Semantic Web, v. 8, n. 3, p. 489–508, 12 2016. ISSN 22104968.

87

PAULHEIM, H. Data-Driven Joint Debugging of the DBpedia Mappings and Ontology.
In: The Semantic Web. ESWC 2017. Lecture Notes in Computer Science. [S.l.]: Springer,
Cham, 2017. p. 404–418.

PAULHEIM, H.; BIZER, C. Type Inference on Noisy RDF Data. In: . [S.l.: s.n.], 2013.
p. 510–525. ISBN 978-3-642-41335-3.

PAULHEIM, H.; BIZER, C. Improving the Quality of Linked Data Using Statistical
Distributions. International Journal on Semantic Web and Information Systems, v. 10,
n. 2, p. 63–86, 2014. ISSN 1552-6283.

PENG, F.; MCCALLUM, A. Information extraction from research papers using
conditional random fields. Information Processing & Management, v. 42, n. 4, p.
963–979, 7 2006. ISSN 03064573.

PENNINGTON, J.; SOCHER, R.; MANNING, C. Glove: Global Vectors for Word
Representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP). [S.l.: s.n.], 2014. p. 1532–1543. ISBN 9781937284961.
ISSN 10495258.

PINTO, D.; MCCALLUM, A.; WEI, X.; CROFT, W. B. Table extraction using
conditional random fields. Proceedings of the 26th annual international ACM SIGIR
conference on Research and development in informaion retrieval - SIGIR ’03, p. 235,
2003. ISSN 01635840.

RIEDEL, S.; YAO, L.; MCCALLUM, A. Modeling Relations and Their Mentions without
Labeled Text. In: Proceedings of the 2010 European Conference on Machine Learning
and Knowledge Discovery in Databases: Part III. Berlin, Heidelberg: Springer-Verlag,
2010. p. 148–163. ISBN 3-642-15938-9, 978-3-642-15938-1.

RILOFF, E. Automatically Constructing a Dictionary for Information Extraction Tasks.
Proceedings of the 11th National Conference on Artificial Intelligence - AAAI ’93, p.
811–816, 1993. ISSN 1479-6678.

ROTH, B.; BARTH, T.; WIEGAND, M.; KLAKOW, D. A survey of noise reduction
methods for distant supervision. In: Proceedings of the 2013 Workshop on Automated
Knowledge Base Construction. New York, NY, USA: ACM, 2013. p. 73–77. ISBN
9781450324113.

SA ALEX RATNER, C. R. J. S. F. W. S. W. C. D.; ZHANG, C. DeepDive: Declarative
Knowledge Base Construction. v. 143, n. 5, p. 951–959, 2017. ISSN 1527-5418.

SÁEZ, T.; HOGAN, A. Automatically Generating Wikipedia Info-boxes from Wikidata.
Companion of the The Web Conference 2018 on The Web Conference 2018 - WWW
’18, p. 1823–1830, 2018. Available at: <http://dl.acm.org/citation.cfm?doid=3184558.
3191647>.

SANTOS, C. dos; XIANG, B.; ZHOU, B. Classifying Relations by Ranking with
Convolutional Neural Networks. In: Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers). Stroudsburg, PA, USA:
Association for Computational Linguistics, 2015. p. 626–634. ISBN 9781941643723. ISSN
9781937284435.

http://dl.acm.org/citation.cfm?doid=3184558.3191647
http://dl.acm.org/citation.cfm?doid=3184558.3191647

88

SCHUSTER, M.; PALIWAL, K. Bidirectional recurrent neural networks. IEEE
Transactions on Signal Processing, v. 45, n. 11, p. 2673–2681, 1997. ISSN 1053587X.

SHA, F.; PEREIRA, F. Shallow parsing with conditional random fields. Proceedings of
the 2003 Conference of the North American Chapter of the Association for Computational
Linguistics on Human Language Technology - NAACL ’03, v. 1, n. June, p. 134–141,
2003. ISSN 0013-4686.

SHAPIRO, S. S.; WILK, M. B. An Analysis of Variance Test for Normality (Complete
Samples). Biometrika, v. 52, n. 3/4, p. 591, 12 1965. ISSN 00063444.

SHEN, W.; DOAN, A.; NAUGHTON, J. F.; RAMAKRISHNAN, R. Declarative
Information Extraction Using Datalog with Embedded Extraction Predicates. In: VLDB
’07 Proceedings of the 33rd international conference on Very large data bases. Vienna,
Austria: VLDB Endowment, 2007. p. 1033–1044. ISBN 978-1-59593-649-3.

SLEEMAN, J.; FININ, T. Type prediction for efficient coreference resolution in
heterogeneous semantic graphs. Proceedings - 2013 IEEE 7th International Conference
on Semantic Computing, ICSC 2013, p. 78–85, 2013.

SLEEMAN, J.; FININ, T.; JOSHI, A. Topic modeling for RDF graphs. CEUR Workshop
Proceedings, v. 1467, p. 48–62, 2015. ISSN 16130073.

SODERLAND, S.; FISHER, D.; ASELTINE, J.; LEHNERT, W. CRYSTAL: Inducing a
Conceptual Dictionary. Proceedings of the Fourteenth International Joint Conference on
Artificial Intelligence, p. 1314–1321, 1995.

SUCHANEK, F. M.; KASNECI, G.; WEIKUM, G. Yago: A Core of Semantic Knowledge.
Proceedings of the 16th International Conference on World Wide Web, p. 697–706, 2007.
ISSN 01695347. Available at: <http://dl.acm.org/citation.cfm?id=1242572.1242667>.

SURDEANU, M.; TIBSHIRANI, J.; NALLAPATI, R.; MANNING, C. D. Multi-instance
Multi-label Learning for Relation Extraction. n. July, p. 455–465, 2010.

SUTTON, C. An Introduction to Conditional Random Fields. Foundations and Trends®
in Machine Learning, v. 4, n. 4, p. 267–373, 2012. ISSN 1935-8237.

TAKAMATSU, S.; SATO, I.; NAKAGAWA, H. Reducing Wrong Labels in Distant
Supervision for Relation Extraction. Jeju, Republic of Korea, n. July, p. 721–729, 2012.

VO, D. T.; BAGHERI, E. Open Information Extraction. v. 1, n. C, p. 11p., 2016.

WELD, D. S.; HOFFMANN, R. Using Wikipedia to Bootstrap Open Information
Extraction. v. 37, n. 4, p. 62–68, 2008.

WIENAND, D.; PAULHEIM, H. Detecting incorrect numerical data in DBpedia. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), v. 8465 LNCS, p. 504–518, 2014. ISSN 16113349.

WILCOXON, F. Individual Comparisons by Ranking Methods. Biometrics Bulletin,
v. 1, n. 6, p. 80, 12 1945. ISSN 00994987.

WINKLER, W. E. The State of Record Linkage and Current Research Problems. US
Census Bureau, p. 1–15, 1999. ISSN 0031-6768.

http://dl.acm.org/citation.cfm?id=1242572.1242667

89

WU, F.; WELD, D. S. Autonomously semantifying wikipedia. Proceedings of the
sixteenth ACM conference on Conference on information and knowledge management -
CIKM ’07, p. 41, 2007. ISSN 9781595938039.

XING, Z.; PEI, J.; KEOGH, E. A brief survey on sequence classification. ACM SIGKDD
Explorations Newsletter, v. 12, n. 1, p. 40, 11 2010. ISSN 19310145.

YOUNG, T.; HAZARIKA, D.; PORIA, S.; CAMBRIA, E. Recent trends in deep learning
based natural language processing [Review Article]. IEEE Computational Intelligence
Magazine, v. 13, n. 3, p. 55–75, 2018. ISSN 15566048.

YUS, R.; MULWAD, V.; FININ, T.; MENA, E. Infoboxer: Using statistical and semantic
knowledge to help create Wikipedia infoboxes. CEUR Workshop Proceedings, v. 1272, p.
405–408, 2014. ISSN 16130073.

ZAVERI, A.; KONTOKOSTAS, D.; SHERIF, M. A.; BÜHMANN, L.; MORSEY, M.;
AUER, S.; LEHMANN, J. User-driven quality evaluation of DBpedia. Proceedings of the
9th International Conference on Semantic Systems - I-SEMANTICS ’13, p. 97, 2013.
ISSN 9781450319720.

ZHANG, X.; ZHAO, J.; LECUN, Y. Character-level Convolutional Networks for Text
Classification. NIPS’15 Proceedings of the 28th International Conference on Neural
Information Processing Systems - Volume 1, v. 1, 9 2015. ISSN 17429552.

ZHANG, Y.; WALLACE, B. A Sensitivity Analysis of (and Practitioners’ Guide to)
Convolutional Neural Networks for Sentence Classification. p. 253–263, 2015. ISSN
10709908.

ZHOU, G.; SU, J. Named entity recognition using an HMM-based chunk tagger. In:
Proceedings of the 40th Annual Meeting on Association for Computational Linguistics -
ACL ’02. Morristown, NJ, USA: Association for Computational Linguistics, 2001. p. 473.

90

APPENDIX A – MACRO AND MICRO MEASURES BY TEMPLATE
So

ur
ce

:T
hi

s
re

se
ar

ch

IN
FO

B
O

X
T

E
M

P
LA

T
E

M
O

D
E

L
M

A
C

R
O

M
IC

R
O

P
R

E
C

.
R

E
C

A
LL

F
-S

C
O

R
E

P
R

E
C

.
R

E
C

A
LL

F
-S

C
O

R
E

U
S

C
ou

nt
y

D
EE

PE
X

-B
LS

T
M

0.
66

72
1.

00
00

0.
80

04
0.

70
50

1.
00

00
0.

82
70

D
EE

PE
X

-B
LS

T
M

_
W

2
0.

66
85

0.
97

22
0.

79
23

0.
70

68
0.

99
75

0.
82

74
D

EE
PE

X
-B

LS
T

M
+

C
N

N
0.

71
47

0.
96

98
0.

82
30

0.
75

68
0.

99
53

0.
85

98
D

EE
PE

X
-C

R
F

0.
68

46
0.

99
42

0.
81

09
0.

71
96

0.
99

26
0.

83
44

iP
op

ul
at

or
0.

44
62

0.
66

11
0.

53
28

0.
51

05
0.

72
46

0.
59

90
K

yl
in

0.
52

64
0.

48
59

0.
50

53
0.

82
18

0.
54

25
0.

65
35

A
irl

in
e

D
EE

PE
X

-B
LS

T
M

0.
28

74
0.

57
86

0.
38

40
0.

45
00

0.
75

00
0.

56
25

D
EE

PE
X

-B
LS

T
M

_
W

2
0.

33
13

0.
59

12
0.

42
46

0.
48

44
0.

75
61

0.
59

05
D

EE
PE

X
-B

LS
T

M
+

C
N

N
0.

27
38

0.
45

93
0.

34
31

0.
42

27
0.

70
69

0.
52

90
D

EE
PE

X
-C

R
F

0.
32

42
0.

45
03

0.
37

70
0.

50
92

0.
69

17
0.

58
66

iP
op

ul
at

or
0.

25
41

0.
35

80
0.

29
72

0.
46

36
0.

54
26

0.
50

00
K

yl
in

0.
19

93
0.

46
55

0.
27

91
0.

45
45

0.
47

62
0.

46
51

A
rt

ist

D
EE

PE
X

-B
LS

T
M

0.
63

32
0.

97
13

0.
76

66
0.

62
96

0.
96

84
0.

76
31

D
EE

PE
X

-B
LS

T
M

_
W

2
0.

60
38

0.
97

95
0.

74
71

0.
60

25
0.

98
00

0.
74

62
D

EE
PE

X
-B

LS
T

M
+

C
N

N
0.

63
26

0.
96

95
0.

76
56

0.
63

07
0.

96
82

0.
76

38
D

EE
PE

X
-C

R
F

0.
69

32
0.

94
82

0.
80

09
0.

69
20

0.
94

80
0.

80
00

iP
op

ul
at

or
0.

30
88

0.
34

22
0.

32
47

0.
34

07
0.

49
46

0.
40

35
K

yl
in

0.
27

45
0.

40
00

0.
32

56
0.

68
00

0.
34

17
0.

45
48

U
ni

ve
rs

ity

D
EE

PE
X

-B
LS

T
M

0.
68

03
0.

91
68

0.
78

11
0.

69
10

0.
93

60
0.

79
51

D
EE

PE
X

-B
LS

T
M

_
W

2
0.

68
54

0.
92

31
0.

78
67

0.
69

66
0.

94
22

0.
80

10
D

EE
PE

X
-B

LS
T

M
+

C
N

N
0.

66
21

0.
95

41
0.

78
18

0.
66

81
0.

96
36

0.
78

91
D

EE
PE

X
-C

R
F

0.
68

24
0.

79
62

0.
73

49
0.

68
14

0.
80

35
0.

73
74

iP
op

ul
at

or
0.

31
46

0.
51

52
0.

39
07

0.
32

95
0.

57
58

0.
41

91
K

yl
in

0.
43

83
0.

40
93

0.
42

33
0.

73
33

0.
38

50
0.

50
49

Ta
bl

e
14

–
C

om
pl

et
e

M
ac

ro
an

d
M

ic
ro

re
su

lts
fro

m
ev

al
ua

tio
n

ex
pe

rim
en

ts
.

91

APPENDIX B – PRECISION MEASURES FOR EACH DATASET

So
ur

ce
:T

hi
s

re
se

ar
ch

IN
F

O
B

O
X

T
E

M
P

L
A

T
E

D
A

T
A

SE
T

D
E

E
P

E
X

B
A

SE
L

IN
E

S
B

L
ST

M
B

L
ST

M
_

W
2

B
L

ST
M

+
C

N
N

C
R

F
IP

O
P

U
L

A
T

O
R

K
Y

L
IN

U
S

C
ou

nt
y

ar
ea

_
la

nd
_

sq
_

m
i

1.
00

00
0

1.
00

00
0

1.
00

00
0

0.
80

00
0

0.
98

00
0

0.
98

00
0

ar
ea

_
pe

rc
en

ta
ge

0.
86

00
0

0.
88

00
0

0.
78

00
0

0.
98

00
0

0.
28

57
1

0.
88

00
0

ar
ea

_
to

ta
l_

sq
_

m
i

1.
00

00
0

1.
00

00
0

1.
00

00
0

0.
98

00
0

0.
98

00
0

0.
96

00
0

ar
ea

_
w

at
er

_
sq

_
m

i
0.

66
00

0
0.

64
00

0
0.

70
00

0
0.

66
00

0
0.

97
95

9
0.

94
00

0
co

un
ty

1.
00

00
0

1.
00

00
0

1.
00

00
0

1.
00

00
0

0.
95

65
2

0.
00

00
0

de
ns

ity
_

sq
_

m
i

0.
32

00
0

0.
30

00
0

0.
44

00
0

0.
42

00
0

0.
06

00
0

0.
60

71
4

di
st

ri
ct

0.
10

00
0

0.
10

52
6

0.
12

50
0

0.
06

89
7

0.
00

00
0

0.
00

00
0

la
rg

es
t_

ci
ty

_
w

l
0.

22
50

0
0.

21
95

1
0.

20
93

0
0.

23
52

9
0.

30
00

0
0.

00
00

0
na

m
ed

_
fo

r
0.

76
08

7
0.

71
73

9
0.

72
34

0
0.

48
00

0
0.

43
90

2
0.

52
00

0
po

p
0.

38
00

0
0.

38
00

0
0.

84
00

0
0.

78
00

0
0.

02
04

1
0.

00
00

0
se

at
_

w
l

0.
90

00
0

0.
96

00
0

0.
95

91
8

0.
85

10
6

0.
15

90
9

0.
84

61
5

st
at

e
0.

80
00

0
0.

82
00

0
0.

80
00

0
0.

96
00

0
0.

19
35

5
0.

58
33

3

A
ir

lin
e

ai
rl

in
e

0.
78

00
0

0.
76

00
0

0.
71

42
9

0.
95

34
9

0.
58

53
7

0.
73

46
9

ca
lls

ig
n

0.
20

00
0

0.
40

00
0

0.
12

50
0

0.
33

33
3

0.
00

00
0

0.
09

09
1

fle
et

_
si

ze
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

0
fo

un
de

d
0.

61
22

4
0.

66
66

7
0.

63
83

0
0.

37
20

9
0.

05
55

6
0.

44
44

4
he

ad
qu

ar
te

rs
0.

39
58

3
0.

46
80

9
0.

40
54

1
0.

51
06

4
0.

00
00

0
0.

00
00

0
IA

TA
0.

02
38

1
0.

02
43

9
0.

03
33

3
0.

10
00

0
0.

00
00

0
0.

12
50

0
IC

A
O

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

A
rt

is
t

bi
rt

h_
da

te
0.

93
75

0
0.

91
66

7
0.

89
58

3
0.

83
33

3
0.

00
00

0
0.

63
26

5
bi

rt
h_

pl
ac

e
0.

36
00

0
0.

38
77

6
0.

36
73

5
0.

56
81

8
0.

03
44

8
0.

00
00

0
fie

ld
0.

52
00

0
0.

50
00

0
0.

51
02

0
0.

54
00

0
0.

22
58

1
0.

00
00

0
na

m
e

0.
62

50
0

0.
52

08
3

0.
69

38
8

0.
82

00
0

0.
45

94
6

0.
74

00
0

na
ti

on
al

ity
0.

72
34

0
0.

69
38

8
0.

69
56

5
0.

76
19

0
0.

25
00

0
0.

00
00

0

U
ni

ve
rs

it
y

ci
ty

0.
51

22
0

0.
51

16
3

0.
48

93
6

0.
62

96
3

0.
10

00
0

0.
00

00
0

co
un

tr
y

0.
75

51
0

0.
71

42
9

0.
68

75
0

0.
85

29
4

0.
05

55
6

0.
00

00
0

es
ta

bl
is

he
d

0.
75

00
0

0.
79

59
2

0.
69

38
8

0.
68

75
0

0.
46

15
4

0.
62

50
0

na
m

e
0.

94
00

0
0.

94
00

0
0.

94
00

0
0.

95
91

8
0.

57
14

3
0.

90
00

0
ty

pe
0.

44
44

4
0.

46
51

2
0.

50
00

0
0.

28
26

1
0.

38
46

2
0.

66
66

7

Ta
bl

e
15

–
C

om
pl

et
e

pr
ec

isi
on

m
ea

su
re

s
fo

r
ea

ch
da

ta
se

t.

92

APPENDIX C – RECALL MEASURES FOR EACH DATASET

So
ur

ce
:T

hi
s

re
se

ar
ch

IN
F

O
B

O
X

T
E

M
P

L
A

T
E

D
A

T
A

SE
T

D
E

E
P

E
X

B
A

SE
L

IN
E

S
B

L
ST

M
B

L
ST

M
_

W
2

B
L

ST
M

+
C

N
N

C
R

F
IP

O
P

U
L

A
T

O
R

K
Y

L
IN

U
S

C
ou

nt
y

ar
ea

_
la

nd
_

sq
_

m
i

1.
00

00
0

1.
00

00
0

1.
00

00
0

1.
00

00
0

1.
00

00
0

1.
00

00
0

ar
ea

_
pe

rc
en

ta
ge

1.
00

00
0

1.
00

00
0

1.
00

00
0

1.
00

00
0

0.
50

00
0

1.
00

00
0

ar
ea

_
to

ta
l_

sq
_

m
i

1.
00

00
0

1.
00

00
0

1.
00

00
0

1.
00

00
0

1.
00

00
0

1.
00

00
0

ar
ea

_
w

at
er

_
sq

_
m

i
1.

00
00

0
1.

00
00

0
1.

00
00

0
1.

00
00

0
0.

88
88

9
1.

00
00

0
co

un
ty

1.
00

00
0

1.
00

00
0

1.
00

00
0

1.
00

00
0

0.
51

76
5

0.
00

00
0

de
ns

ity
_

sq
_

m
i

1.
00

00
0

1.
00

00
0

1.
00

00
0

1.
00

00
0

1.
00

00
0

0.
43

59
0

di
st

ri
ct

1.
00

00
0

0.
66

66
7

0.
66

66
7

1.
00

00
0

0.
00

00
0

0.
00

00
0

la
rg

es
t_

ci
ty

_
w

l
1.

00
00

0
1.

00
00

0
1.

00
00

0
1.

00
00

0
1.

00
00

0
0.

00
00

0
na

m
ed

_
fo

r
1.

00
00

0
1.

00
00

0
0.

97
14

3
1.

00
00

0
0.

51
42

9
1.

00
00

0
po

p
1.

00
00

0
1.

00
00

0
1.

00
00

0
1.

00
00

0
0.

50
00

0
0.

00
00

0
se

at
_

w
l

1.
00

00
0

1.
00

00
0

1.
00

00
0

0.
93

02
3

0.
46

66
7

0.
23

91
3

st
at

e
1.

00
00

0
1.

00
00

0
1.

00
00

0
1.

00
00

0
0.

54
54

5
0.

15
55

6

A
ir

lin
e

ai
rl

in
e

1.
00

00
0

1.
00

00
0

0.
97

22
2

0.
85

41
7

0.
51

06
4

0.
97

29
7

ca
lls

ig
n

0.
10

00
0

0.
18

18
2

0.
09

09
1

0.
10

00
0

0.
00

00
0

0.
28

57
1

fle
et

_
si

ze
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

0
fo

un
de

d
1.

00
00

0
1.

00
00

0
1.

00
00

0
0.

94
11

8
0.

50
00

0
1.

00
00

0
he

ad
qu

ar
te

rs
0.

95
00

0
0.

95
65

2
0.

65
21

7
0.

92
30

8
0.

00
00

0
0.

00
00

0
IA

TA
1.

00
00

0
1.

00
00

0
0.

50
00

0
0.

33
33

3
0.

00
00

0
1.

00
00

0
IC

A
O

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

A
rt

is
t

bi
rt

h_
da

te
1.

00
00

0
1.

00
00

0
1.

00
00

0
0.

97
56

1
0.

00
00

0
1.

00
00

0
bi

rt
h_

pl
ac

e
1.

00
00

0
1.

00
00

0
1.

00
00

0
0.

92
59

3
0.

12
50

0
0.

00
00

0
fie

ld
1.

00
00

0
1.

00
00

0
0.

96
15

4
1.

00
00

0
0.

38
88

9
0.

00
00

0
na

m
e

0.
93

75
0

0.
92

59
3

0.
97

14
3

1.
00

00
0

0.
56

66
7

1.
00

00
0

na
ti

on
al

ity
0.

91
89

2
0.

97
14

3
0.

91
42

9
0.

84
21

1
0.

33
33

3
0.

00
00

0

U
ni

ve
rs

it
y

ci
ty

0.
77

77
8

0.
84

61
5

0.
92

00
0

0.
51

51
5

0.
50

00
0

0.
00

00
0

co
un

tr
y

1.
00

00
0

1.
00

00
0

0.
97

05
9

0.
67

44
2

0.
33

33
3

0.
00

00
0

es
ta

bl
is

he
d

0.
97

29
7

1.
00

00
0

1.
00

00
0

1.
00

00
0

0.
60

00
0

1.
00

00
0

na
m

e
1.

00
00

0
1.

00
00

0
1.

00
00

0
0.

97
91

7
0.

66
66

7
1.

00
00

0
ty

pe
0.

83
33

3
0.

76
92

3
0.

88
00

0
0.

81
25

0
0.

47
61

9
0.

04
65

1

Ta
bl

e
16

–
C

om
pl

et
e

re
ca

ll
m

ea
su

re
s

fo
r

ea
ch

da
ta

se
t.

93

APPENDIX D – F-SCORE MEASURES FOR EACH DATASET

So
ur

ce
:T

hi
s

re
se

ar
ch

IN
F

O
B

O
X

T
E

M
P

L
A

T
E

D
A

T
A

SE
T

D
E

E
P

E
X

B
A

SE
L

IN
E

S
B

L
ST

M
B

L
ST

M
_

W
2

B
L

ST
M

+
C

N
N

C
R

F
IP

O
P

U
L

A
T

O
R

K
Y

L
IN

U
.S

.
C

ou
nt

y

ar
ea

_
la

nd
_

sq
_

m
i

1.
00

00
0

1.
00

00
0

1.
00

00
0

0.
88

88
9

0.
98

99
0

0.
98

99
0

ar
ea

_
pe

rc
en

ta
ge

0.
92

47
3

0.
93

61
7

0.
87

64
0

0.
98

99
0

0.
36

36
4

0.
93

61
7

ar
ea

_
to

ta
l_

sq
_

m
i

1.
00

00
0

1.
00

00
0

1.
00

00
0

0.
98

99
0

0.
98

99
0

0.
97

95
9

ar
ea

_
w

at
er

_
sq

_
m

i
0.

79
51

8
0.

78
04

9
0.

82
35

3
0.

79
51

8
0.

93
20

4
0.

96
90

7
co

un
ty

1.
00

00
0

1.
00

00
0

1.
00

00
0

1.
00

00
0

0.
67

17
6

0.
00

00
0

de
ns

ity
_

sq
_

m
i

0.
48

48
5

0.
46

15
4

0.
61

11
1

0.
59

15
5

0.
11

32
1

0.
50

74
6

di
st

ri
ct

0.
18

18
2

0.
18

18
2

0.
21

05
3

0.
12

90
3

0.
00

00
0

0.
00

00
0

la
rg

es
t_

ci
ty

_
w

l
0.

36
73

5
0.

36
00

0
0.

34
61

5
0.

38
09

5
0.

46
15

4
0.

00
00

0
na

m
ed

_
fo

r
0.

86
42

0
0.

83
54

4
0.

82
92

7
0.

64
86

5
0.

47
36

8
0.

68
42

1
po

p
0.

55
07

2
0.

55
07

2
0.

91
30

4
0.

87
64

0
0.

03
92

2
0.

00
00

0
se

at
_

w
l

0.
94

73
7

0.
97

95
9

0.
97

91
7

0.
88

88
9

0.
23

72
9

0.
37

28
8

st
at

e
0.

88
88

9
0.

90
11

0
0.

88
88

9
0.

97
95

9
0.

28
57

1
0.

24
56

1

A
ir

lin
e

ai
rl

in
e

0.
87

64
0

0.
86

36
4

0.
82

35
3

0.
90

11
0

0.
58

58
6

0.
83

72
1

ca
lls

ig
n

0.
13

33
3

0.
25

00
0

0.
10

52
6

0.
15

38
5

0.
28

57
1

0.
13

79
3

fle
et

_
si

ze
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

00
00

0
0.

36
36

4
0.

00
00

0
fo

un
de

d
0.

75
94

9
0.

80
00

0
0.

77
92

2
0.

53
33

3
0.

58
62

1
0.

61
53

8
he

ad
qu

ar
te

rs
0.

55
88

2
0.

62
85

7
0.

50
00

0
0.

65
75

3
0.

14
28

6
0.

22
22

2
IA

TA
0.

04
65

1
0.

04
76

2
0.

06
25

0
0.

15
38

5
0.

00
00

0
0.

00
00

0
IC

A
O

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

0.
00

00
0

A
rt

is
t

bi
rt

h_
da

te
0.

96
77

4
0.

95
65

2
0.

94
50

5
0.

89
88

8
0.

04
44

4
0.

77
50

0
bi

rt
h_

pl
ac

e
0.

52
94

1
0.

55
88

2
0.

53
73

1
0.

65
75

3
0.

05
40

5
0.

00
00

0
fie

ld
0.

68
42

1
0.

66
66

7
0.

66
66

7
0.

70
13

0
0.

44
06

8
0.

00
00

0
na

m
e

0.
75

00
0

0.
66

66
7

0.
80

95
2

0.
90

11
0

0.
75

00
0

0.
85

05
7

na
ti

on
al

ity
0.

80
95

2
0.

80
95

2
0.

79
01

2
0.

80
00

0
0.

28
57

1
0.

00
00

0

U
ni

ve
rs

it
y

ci
ty

0.
61

76
5

0.
63

76
8

0.
63

88
9

0.
56

66
7

0.
16

66
7

0.
00

00
0

co
un

tr
y

0.
86

04
7

0.
83

33
3

0.
80

48
8

0.
75

32
5

0.
09

52
4

0.
00

00
0

es
ta

bl
is

he
d

0.
84

70
6

0.
88

63
6

0.
81

92
8

0.
81

48
1

0.
52

17
4

0.
76

92
3

na
m

e
0.

96
90

7
0.

96
90

7
0.

96
90

7
0.

96
90

7
0.

61
53

8
0.

94
73

7
ty

pe
0.

57
97

1
0.

57
97

1
0.

63
76

8
0.

41
93

5
0.

42
55

3
0.

08
69

6

Ta
bl

e
17

–
C

om
pl

et
e

F-
sc

or
e

m
ea

su
re

s
fo

r
ea

ch
da

ta
se

t.

	Title page
	
	Acknowledgements
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of symbols
	Contents
	Introduction
	Problem and Motivation
	Research Questions
	Work Organization

	Concepts and Terminology
	Knowledge Bases
	Knowledge Base Construction
	Knowledge Base Refinement
	The DBpedia datasets

	Distant Supervision
	Information Extraction
	Approaches on Information Extraction

	Sequence-based Models
	Conditional Random Fields
	Sequence-based Neural Networks

	Word Representation

	Related Work
	Wikipedia structures Exploration
	Knowledge Graphs Enhancement
	Infobox instances for Knowledge Base Enhancement
	Kylin
	iPopulator

	Sequence-based Neural Networks for NLP

	Data Description and Processing
	Wikipedia Structure
	Indexing Wikipedia Categories and Templates
	Indexing Wikipedia Infoboxes
	Indexing Wikipedia Texts
	Framework architecture for querying Category information

	Data Analysis
	General Statistics
	Category-based Statistics
	Categories Quality Analysis
	What is the coverage of infoboxes' attributes from mapped templates?
	How similar are the infoboxes on a category?
	Would it be possible use Wikipedia categories to define common scheme for entities under the same domain?

	Deepex
	Automatic Data Labeling
	Schema Discovery
	Distant Supervision

	Models Training
	Sentence Classifier Training
	Attribute Extractor Training

	Experiments
	Experimental Setup
	Datasets
	Approaches
	Metrics

	Evaluation and Results

	Conclusions and Future Work
	Discussion
	Contributions and Limitations
	Future Work
	Conclusion

	REFERENCES
	Macro and Micro Measures by Template
	Precision measures for each dataset
	Recall measures for each dataset
	F-score measures for each dataset

