
WALBER JOSÉ ADRIANO SILVA

An Architecture to Evolve the Inter-Domain Routing Using Software-Defined
Networking

Universidade Federal de Pernambuco
posgraduacao@cin.ufpe.br

http://cin.ufpe.br/~posgraduacao

Recife
2019

mailto:posgraduacao@cin.ufpe.br
http://cin.ufpe.br/~posgraduacao

WALBER JOSÉ ADRIANO SILVA

An Architecture to Evolve the Inter-Domain Routing Using Software-Defined
Networking

Tese apresentada ao Programa de Pós-
Graduação em Ciências da Computação da
Universidade Federal de Pernambuco, como
requisito parcial para a obtenção do título
de Doutor em Ciências da Computação.

Área de Concentração: Redes de Com-
putadores.

Orientador: Prof. Dr. Djamel Fawzi Hadj Sadok

Recife
2019

 Catalogação na fonte

Bibliotecária Monick Raquel Silvestre da S. Portes, CRB4-1217

S586a Silva, Walber José Adriano

An architecture to envolve the inter-domain routing using software-defined
networking / Walber José Adriano Silva. – 2019.

 144 f.: il., fig., tab.

 Orientador: Djamel Fawzi Hadj Sadok.
 Tese (Doutorado) – Universidade Federal de Pernambuco. CIn, Ciência da

Computação, Recife, 2019.
 Inclui referências.

 1. Redes de computadores. 2. SDN. 3. BGP. I. Sadok, Djamel Fawzi Hadj
(orientador). II. Título.

 004.6 CDD (23. ed.) UFPE- MEI 2019-088

Walber José Adriano Silva

“An Architecture to Evolve the Inter-Domain Routing Using Software-
Defined Networking”

Tese de Doutorado apresentada ao Programa
de Pós-Graduação em Ciência da
Computação da Universidade Federal de
Pernambuco, como requisito parcial para a
obtenção do título de Doutor em Ciência da
Computação.

Aprovado em: 15/03/2019.

__
Orientador: Prof. Dr. Djamel Fawzi Had Sadok

BANCA EXAMINADORA

__
Prof. Dr. Paulo Romero Martins Maciel

Centro de Informática /UFPE

Prof. Dr. Arthur de Castro Callado

Departamento de Computação / UFC - Campus Quixadá

__
Prof. Dr. Eduardo Luzeiro Feitosa
Instituto de Computação / UFAM

Prof. Dr. Reinaldo Cézar de Morais Gomes

Departamento de Sistemas e Computação / UFCG

__
Prof. Dr. Rafael Roque Aschoff

Instituto Federal de Pernambuco / Campus Palmares

I dedicate this thesis to all my family, friends and professors who gave me the necessary
support to get here.

ACKNOWLEDGEMENTS

First of all, to God for the innumerable bestowed gifts provided that enable me to accom-
plish and complete this work.

This thesis is the result of a long journey, with the support of my family, my friends,
and my beloved, Dayane. As it could not be different, I dedicate to them this work, and
I thank all the affection, understanding, and incentive.

To Dayane, for always being (literally) by my side. She has been my source of inspi-
ration and the greatest encouragement for surpassing the hard moments. Believe me, I
would not have the strength and motivation I have without your fellowship, dedication,
and love. To her, I will always be grateful.

To my family, for understanding and always encouraging my decision to do the doc-
torate, recognizing the importance of it for my studies and supporting any decision that
was taken by me. I thank my parents, Leandro and Socorro, for believing that this was
the right path to follow. For the love, affection, and words of encouragement that allows
me to fly higher and higher in pursuit of my goals. I thank my best friend and brother
Thiago, for the support, motivation, time, and his unconditional love.

To professors Gustavo Motta (UFPB, Brazil) and Nuno Preguiça (NOVA, Portugal)
for the words of encouragement that motivated me to join the doctorate course.

To my colleagues at the Informatics Center - CIn and the Nucleus of Information Tech-
nology - NTI who helped in the development of research activities, especially Alexandre
(whom I wish to succeed in all his endeavors, too) and Edivaldo.

To all the teachers of the CIn-UFPE, for providing the knowledge, not only rational,
but the manifestation of the character and affectivity of education in the process of pro-
fessional training. Especially the teachers Djamel, Judith, Paulo Maciel and Kelvin for
the knowledge transmitted in the disciplines of doctorate.

To the government employees of UFPE and UFRN who have always been helpful,
quick, and zealous in meeting the demands of my doctorate. I would like to highlight the
Secretary Office of CIn-UFPE, the CCEN-UFPE Library and Central-UFPE Library, and
the Network and Support Office - CERES-UFRN, the Manage Office of CERES-UFRN,
PRH-UFRN, and the CERES-UFRN Library.

To the whole GPRT staff for socializing, advice, and assistance during the doctoral-
attendance meetings. In particular, Professor Patricia Endo for the exquisite corrections
and comments in my thesis proposal, and also to GPRT secretaries Ana Carolina and
Roxana Calheiros for being very helpful and attentive to me.

Especially my advisor Professor Djamel Sadok, for the opportunity given, for the
exchange of ideas, for the teachings, for the critical vision of my work, being always
willing to discuss the progress of the research activities and providing guidelines, even

with all their attributions.
I also would like to thank Professors Paulo Maciel, Arthur Callado, Eduardo Feitosa,

Reinaldo Gomes, and Rafael Aschoff, as well as the anonymous reviewers from multiple
conferences and periodic (ICOIN-2017, HPSR-2017, SBrT-2017, ICNC-2018, JONS-2018,
and Information-2018) for their valuable comments and suggestions to improve my aca-
demic works.

And if you were not mentioned here, but collaborated directly or indirectly in my
doctorate, I sincerely thank you. This is a life stage that ends so that another begins
because a good life is one in which it is worth living it, and I enjoyed every little moment
of this journey (from the bad to the good times). Of course, I will take what I have learned
with each of you for the rest of my life.

“Seja você quem for, seja qual for a posição social que você
tenha na vida, a mais alta ou a mais baixa, tenha sempre como
meta muita força, muita determinação e sempre faça tudo com
muito amor e com muita fé em Deus, que um dia você chega
lá. De alguma maneira você chega lá.” (Silva, Ayrton Senna
da, [199-?])

ABSTRACT

The Border Gateway Protocol (BGP) is the current state-of-the-art protocol for
inter-domain routing between Autonomous System (AS). The BGP follows the tradi-
tional network paradigm, where the network logic is embedded into the network hard-
ware, new network capabilities are defined only in the protocol design phase, solutions
have a distributed nature, and network management is often manually executed. This
approach makes challenging to evolve inter-domain routing because architecture becomes
very dependent on the protocol, and consequently adding new features are inherently
hard to introduce into the network. With Software-Defined Networking (SDN) paradigm,
new architectures can emerge to overcome inter-domain routing limitations (e.g., limited
mechanisms to control inbound traffic of a given AS). Thus, this work offers a new archi-
tecture to manage traffic in the inter-domain using SDN technologies. The architecture
explores direct inter-domain communication to exchange control information as well as
the functionalities of the OpenFlow protocol. It also addresses the challenge of adopt-
ing SDN technologies in the inter-domain environment, such as resilience mechanisms for
link failures, management of flows and avoids inconsistency in SDN stateful application.
Furthermore, after the depiction of the architecture, different scenarios are proposed for
evaluation of the architecture capabilities. The results indicate the potential of the archi-
tecture to evolve the inter-domain routing, once it provides new mechanisms to perform
Traffic Engineering (TE) and addresses solutions to mitigate the limitations of using SDN
technologies in the inter-domain environment.

Keywords: SDN. BGP. OpenFlow.

RESUMO

O Border Gateway Protocol (BGP) é o principal protocolo para roteamento entre
Sistemas Autônomos (AS). O BGP segue o paradigma de rede tradicional, onde a lógica
da rede é embarcada no hardware, os novos recursos de rede são definidos apenas na fase
de projeto do protocolo, as soluções de rede têm natureza distribuída, o gerenciamento da
rede é executado manualmente, entre outras características. Essa abordagem de projetar
redes dificulta o desenvolvimento de novas lógicas de roteamento entre domínios, pois a
arquitetura se torna muito dependente do protocolo e, consequentemente, a adição de
novos recursos é inerentemente difícil de ser introduzida na rede. Com o paradigma das
Redes Definidas por Software (SDN), novas arquiteturas podem surgir para superar as
limitações de roteamento entre domínios. Assim, esta tese oferece uma arquitetura para
gerenciar o tráfego de rede entre domínios com o uso de tecnologias SDN. A arquitetura
explora a comunicação direta entre domínios para trocar informações de controle, bem
como as funcionalidades providas pelo protocolo OpenFlow. Ademais, também é abordado
o desafio em adotar tecnologias SDN no ambiente inter-domínio, como: resiliência da
conectividade entre domínios no caso da falha de enlaces; o gerenciamento de fluxos
em redes SDN; e, a mitigação de inconsistência de estado em aplicações SDN. Desta
forma, após a descrição da arquitetura, diferentes cenários foram propostos e avaliados.
Os resultados indicam o potencial da arquitetura em evoluir o roteamento entre domínios,
uma vez que fornece novos mecanismos para executar tarefas de engenharia de tráfego
e aborda soluções para atenuar as limitações do uso de tecnologias SDN no ambiente
inter-domínio.

Palavras-chaves: SDN. BGP. OpenFlow.

LIST OF FIGURES

Figure 1 – Current BGP behavior, where as far as a prefix advertised by an AS
propagates on the Internet, it became less controllable (how traffic
should be handled) and harder to influence by the AS that originate it. 21

Figure 2 – Vision of this Thesis and what the proposed architecture in this Thesis
is trying to achieve for the Internet. 21

Figure 3 – SDN Architecture. 25
Figure 4 – Components of an OpenFlow Switch. 27
Figure 5 – Scheme of the Fast Failover. 28
Figure 6 – Topology discovery using flood messages. 29
Figure 7 – Reactive flow creation. 30
Figure 8 – Proactive flow creation. 31
Figure 9 – Hybrid flow creation. 31
Figure 10 – Several Packet-In packets sent to the OpenFlow controller for the cre-

ation of new flow. 33
Figure 11 – Flows created using Simple Flow Creation (SFC) 35
Figure 12 – Additional rules of Path Protection (PP) 35
Figure 13 – Application of Local Restoration (LR) after a failed link 36
Figure 14 – Application of Path Restoration (PR) after a failed link 36
Figure 15 – After link B-C failure and application of Local Fast Restoration (LFR). 37
Figure 16 – Model of the BGP control plane. 38
Figure 17 – Monitoring points in BGP. 41
Figure 18 – Single homed and multihomed scheme. 42
Figure 19 – The exponential growth of routing table size captured by active BGP

entries at FIB since 1989. 50
Figure 20 – The unique number of ASs on the Internet from 1997 until 2018. The

data were extracted from <http://www.cidr-report.org/as2.0/> 50
Figure 21 – The total number of ASs and stub ASs on the Internet from Decem-

ber of 2015 to April of 2018. Source: <http://data.caida.org/datasets/
as-relationships/> . 51

Figure 22 – The context of the architecture. 69
Figure 23 – The proposed architecture described by the application, control, and

data planes of the SDN architecture. 70
Figure 24 – The flow of information inside the BGP Speaker component. 71
Figure 25 – Conceptual scheme for mitigation of multiple Packet-In events. 78

http://www.cidr-report.org/as2.0/
http://data.caida.org/datasets/as-relationships/
http://data.caida.org/datasets/as-relationships/

Figure 26 – HYbriD Resilience MechAnism (HYDRA) dynamics before and after
a link failure. (a) HYDRA before the link B-C failure. Path [A, B, C] is
protected. (b) HYDRA after the link B-C failure (proactive protection).
(c) HYDRA after the protection and restoration phases are applied. . 80

Figure 27 – An example of peering in COOL. 85
Figure 28 – Example of multipath scenario, in which circle represents an AS and

the links between them the relationships. 87
Figure 29 – Transient failure scenario in the inter-domain routing. The symbol “>”

indicates the preference route to reach AS 0. 89
Figure 30 – Topologies adopted in this work. (a) The representation of the Abi-

lene topology. (b) The representation of a Wide Area Network (WAN)
Google topology. 95

Figure 31 – Number of flow entries for different topologies. (a) To the Abilene topol-
ogy, the number of flow entries for each approach adopting 10 flows per
endpoints. (b) The number of flow entries for each approach with 10
flows per endpoints using the Google topology. 96

Figure 32 – Results for the signaling overhead after a link failure in the Abilene
topology. 97

Figure 33 – Results for failure recovery time after a link failure in the Abilene topol-
ogy. 99

Figure 34 – Scenario description used in the evaluation. 100
Figure 35 – Bandwidth usage between an OpenFlow switch and the controller. . . . 101
Figure 36 – The total number of multi-homed stub ASs is common in recent months

of the Internet. 107
Figure 37 – The topology adopted. 107
Figure 38 – Expected normal distribution of network traffic for the workload. . . . 110
Figure 39 – Results using the Random strategy. 111
Figure 40 – Results using the Round-Robin strategy. 111
Figure 41 – Results using the Round-Robin with Threshold strategy using 95% of

the link capacity for all outbound links. 112
Figure 42 – Packet loss. 113
Figure 43 – The average of multiple measurements for the network traffic during a

link failure around the 15th second with a confidence level of 95%. . . . 115
Figure 44 – An execution of link failure in the 15th second. 115
Figure 45 – Details of network traffic for the link failure around the 15th second. . 115
Figure 46 – Link recovery to video stream using SDI solution. 116
Figure 47 – Topology used to evaluate MLV mechanism, and adopted in this work

for the exchange traffic simulation. 118
Figure 48 – Exchange traffic by tree number. 118

Figure 49 – Exchange traffic. 119
Figure 50 – Scheme for backward compatibility with legacy network. 121
Figure 51 – AS domain composed of only OpenFlow switches. 122
Figure 52 – The potential number of customers affected by the proposed architec-

ture deployed on the Internet. 123
Figure 53 – Multiple OpenFlow Controllers in a logical centralized scheme. 124
Figure 54 – Using standard BGP implementation, AS C can only influence the rout-

ing policies of ISP X to forward network traffic towards AS C that will
use either Link 1 or Link 2, but not both at the same time. 127

LIST OF TABLES

Table 1 – The BGP path selection decision process 39
Table 2 – Classification for proposals to evolve the inter-domain routing with a

brand new design. 55
Table 4 – Classification for proposals to evolve the inter-domain routing with in-

cremental improvements. 58
Table 6 – Classification of proposals to evolve inter-domain communication. 61
Table 8 – Size of “max_len” for each definition of flow. 78
Table 9 – Notation adopted. 81
Table 10 – Notation adopted . 92
Table 11 – The average of Packet-In events reaching the stateful application with

the confidence intervals for a confidence level of 95% (min/average/max).102
Table 12 – Flow table and group table for the OpenFlow Switch using OpenFlow

Fast Failover Group Table. 114

LIST OF ALGORITHMS

Algorithm 1 – Algorithm of Event Engine . 79
Algorithm 2 – The algorithm of HYDRA for the protection phase. 82
Algorithm 3 – Install primary path. 83
Algorithm 4 – Install backup paths. 84
Algorithm 5 – The algorithm of HYDRA for the restoration phase. 84
Algorithm 6 – Reactive Random Load Balancer 90
Algorithm 7 – Reactive Round-Robin Load Balancer 90
Algorithm 8 – Reactive Round-Robin Load Balancer with Threshold 91
Algorithm 9 – Protecting algorithm . 92

CONTENTS

1 INTRODUCTION . 19
1.1 MOTIVATION . 19
1.2 OBJECTIVES . 23
1.3 STATEMENT OF THE CONTRIBUTIONS 23
1.4 OUTLINE OF THESIS . 24

2 FUNDAMENTALS . 25
2.1 OVERVIEW OF SOFTWARE-DEFINED NETWORKING 25
2.2 OVERVIEW OF OPENFLOW PROTOCOL 26
2.2.1 OpenFlow Switch Components . 26
2.2.2 OpenFlow Fast Failover Group Table 27
2.3 FLOW CREATION . 28
2.3.1 Topology Discovery . 29
2.3.2 Types of flow creation . 30
2.3.3 Multiple Packet-In during flow creation 32
2.4 RESILIENCE MECHANISMS . 34
2.4.1 Resilience mechanisms approaches . 34
2.4.2 Dynamic of resilience mechanisms . 35
2.5 A BRIEF REVIEW OF BGP . 37
2.5.1 BGP Control Messages . 37
2.5.2 BGP Control Plane . 39
2.5.3 Monitoring Prefixes . 40
2.6 STATE-OF-THE-ART TECHNIQUES FOR INBOUND TRAFFIC CONTROL

WITH BGP . 41
2.6.1 AS relationships . 42
2.6.2 Traffic Engineering with BGP . 43
2.7 FINAL REMARKS . 44

3 RELATED WORKS THAT EVOLVE THE INTER-DOMAIN ROUT-
ING . 45

3.1 ISSUES IN EVOLVING THE INTER-DOMAIN ROUTING CONTROL PLANE 45
3.1.1 Ossification . 45
3.1.2 Backward compatibility . 46
3.1.3 Complexity introduced by the distributed configuration 46
3.1.4 Conflicts and uncertainty in inter-domain routing policies 47
3.1.5 Coordination among ASs . 48

3.1.6 Traffic engineering in the inter-domain 49
3.2 CLASSIFICATION OF EFFORTS FOR EVOLVING THE CONTROL PLANE 51
3.2.1 The criteria . 51
3.2.1.1 Concepts . 51
3.2.1.2 Approach . 52
3.2.1.3 Control plane placement . 53
3.2.1.4 Explore path diversity . 53
3.2.2 Efforts to evolve the control plane of inter-domain routing 54
3.2.2.1 Brand new design . 54
3.2.2.2 Incremental improvement . 57
3.2.2.3 Inter-domain communication . 60
3.3 LESSONS LEARNED . 63
3.3.1 Inter-domain routing limitations . 64
3.3.2 New business relationships . 65
3.3.3 SDN as an enabling technology . 66
3.4 CONCLUDING REMARKS . 68

4 THE ARCHITECTURE PROPOSAL 69
4.1 THE CONTROLLER FOR AN ARCHITECTURE TO EVOLVE INTER-

DOMAIN ROUTING . 69
4.1.1 Topology Management . 72
4.1.2 Flow Management . 72
4.1.3 Domain Controller . 73
4.1.4 COOL Interface . 75
4.1.5 Applications . 76
4.2 MANAGING FLOWS . 76
4.2.1 A scheme to avoid inconsistency in flow creation 77
4.2.2 A hybrid resilience mechanism for OpenFlow networks 79
4.2.2.1 An example . 79
4.2.2.2 Notation and concepts . 81
4.2.2.3 HYDRA protection phase . 82
4.2.2.4 HYDRA restoration phase . 83
4.3 DYNAMIC OF THE PROPOSED ARCHITECTURE 84
4.3.1 Establishing a peering session . 85
4.3.2 Exploring multi-paths . 87
4.3.3 Loop avoidance . 88
4.4 APPLICATIONS OF THE PROPOSED ARCHITECTURE 89
4.4.1 Reactive Load Balancers . 89
4.4.1.1 Reactive Random Load Balancer with Random strategy (RLL) 90
4.4.1.2 Reactive Round-Robin Load Balancer (RRLL) 90

4.4.1.3 Reactive Round-Robin Load Balancer with Threshold (RRLLT) 90
4.4.2 Protecting primary routes . 91
4.5 CONCLUDING REMARKS . 93

5 EVALUATION . 94
5.1 EVALUATION OF THE COOL CONTROLLER 94
5.1.1 Resilience mechanisms for OpenFlow networks 94
5.1.1.1 Number of flows entries . 95
5.1.1.2 Signaling overhead . 97
5.1.1.3 Failure recovery time . 98
5.1.2 Avoiding inconsistency in flow creation for stateful applications . . . 99
5.1.2.1 Scenario description . 100
5.1.2.2 Results . 101
5.1.3 Discussion about management of OpenFlow rules 102
5.1.3.1 Restrictions of the number of network rules 103
5.1.3.2 Rules installation for OpenFlow networks 103
5.1.3.3 Discussion about avoiding inconsistency 104
5.2 EVALUATION OF THE PROPOSED ARCHITECTURE FOR MANAGING

INTER-DOMAIN TRAFFIC . 106
5.2.1 Manage Inter-domain Traffic . 106
5.2.1.1 Topology adopted . 106
5.2.1.2 Prototype environment . 108
5.2.1.3 Workloads . 109
5.2.1.4 Results of the workload execution . 110
5.2.2 Protection against external link failure 113
5.2.3 Evaluation of Traffic Exchange Messages 117
5.3 ARCHITECTURE DISCUSSION . 119
5.3.1 Discussion based on the related works 119
5.3.2 Discussion about the partial deployment of the proposed architecture120
5.3.2.1 Backward compatibility with legacy networks internally 121
5.3.2.2 Backward compatibility with legacy networks in the inter-domain 122
5.3.2.3 Logically centralized . 123
5.3.3 Adopting a Routing Registry . 124
5.3.4 Controlling inbound network traffic 125
5.3.5 Discussion about inter-domain routing 126
5.3.5.1 Inter-domain routing policies conflicts . 126
5.3.5.2 Bilateral agreements . 128
5.4 CONCLUDING REMARKS . 128

6 FINAL CONSIDERATIONS . 129

6.1 LIMITATIONS . 129
6.2 FUTURE WORKS . 129
6.3 CONCLUSION . 132

REFERENCES . 133

19

1 INTRODUCTION

The last decade has been marked by profound advances in Information and Communi-
cation Technologies (ICT). Thereby, it is expected that computer networks will continue
to play an important role in the adoption of new ICT, for example, Internet of Things
(IoT), 5G, Software-Defined Networking (SDN) and others (HUANG et al., 2017). Thus,
facing the great diversity of technologies, a growing problem is in the inter-domain.

The inter-domain network environment is a collection of tens of thousands of indepen-
dently operated networks. In the Internet jargon, these networks are called Autonomous
System (AS)s. An AS can be an Internet Service Provider (ISP), a Campus, a Content
Provider, or any other independently operated network that can establish its routing poli-
cies and is perfectly capable of define how the network should be operated. Besides, ASs
can connect with each other as they execute an inter-domain routing protocol to exchange
network reachability information. And the Border Gateway Protocol (BGP) (REKHTER;

LI; HARES, 2006) is current standard for inter-domain routing on the Internet and provides
reachability information among the ASs.

The BGP is the “glue” that allows different ASs to reach each other networks. An AS
does tune its BGP configurations to express policies that reflect how the AS connects to
others for accommodating its business requirements. Besides that, this protocol has been
allowing the Internet exchange reachability information and network traffic since its early
stages.

Furthermore, the Internet topology and traffic patterns have been changing since its
inception, from a pure hierarchical topology (well-defined tree structure) to a flat AS-level
topology (more connected and without a well defined structured topology) (LUCKIE et al.,
2013). One cause of the Internet topology changing is the expansion of Content Delivery
Network (CDN) and Internet Exchange Point (IXP). They have been increasing the path
diversity of the Internet, where CDN and IXP introduced additional AS connectivity to
intensify Internet traffic among ASs (LABOVITZ et al., 2010; AGER et al., 2012).

1.1 MOTIVATION

BGP is one of the most successful protocols on the Internet and it has a great capacity to
scale but it is nonetheless one of the most inflexible and “ossified” protocols (KOTRONIS,
2015; HAKIRI et al., 2014; CHOWDHURY; BOUTABA, 2010). Many researchers have indi-
cated issues related to BGP since its inception. A few drawbacks of BGP are the lack of
end-to-end guarantees of Quality of Service (QoS) (YANNUZZI; MASIP-BRUIN; BONAVEN-

TURE, 2005), complex network management (FEAMSTER et al., 2005), long convergence
time (YANNUZZI; MASIP-BRUIN; BONAVENTURE, 2005), security issues (KEVIN et al., 2010),

20

and limitations of routing policy enforcement (GIOTSAS; LUCKIE; HUFFAKER, 2014). For
example, BGP does not have robust Traffic Engineering (TE) techniques for control in-
bound traffic (SILVA; SADOK, 2017) and the current Internet routing table explosion is
a side effect of the application of BGP traffic engineering tasks by multi-homed ASs, in
which ASs desiring to increase the reliability of their domains by advertising multiple
subnets of their network prefixes through different AS neighbors (POTAROO.NET, 2016).

The Internet is intrinsically heterogeneous and distributed, where network operators
execute independent network management task into their AS (LIN et al., 2014). And the
lack of active BGP mechanisms to apply traffic engineering on the traffic contributes to the
over-provisioned ASs infrastructure, leading to an inter-domain environment consisting
of expensive, high-performance and specialized hardware. Consequently, those network
resources are around 30% to 60% (HONG et al., 2013) underutilized to cope with disruption
or unpredictable changes of connectivity in the inter-domain environment.

One way to fully utilize the network resources between different domains will be ex-
ploring the existed multi-paths of the Internet. However, the BGP’s destination-based
forwarding paradigm limits the granularity of distributing network traffic among the mul-
tiple paths of the current Internet topology. Hence, BGP is not capable of exploring the
full potential of path diversity in the current Internet, because it just computes one “best”
next hop for each network prefix. New technologies in use such as 5G (GUPTA; JHA, 2015)
and the IoT (AL-FUQAHA et al., 2015) have very ambitious requirements (for example, low
latency and high bandwidth links), and that will stress the network’s capabilities, espe-
cially in the inter-domain environment. Addressing those network requirements within an
Internet not designed to support them is a challenging task. Therefore, new network archi-
tectures and technologies can emerge to explore the full potential of the current Internet
infrastructure (SINGH; DAS; JUKAN, 2015).

The difficultly to evolve inter-domain routing is caused by the process of “ossifica-
tion”, where the architecture becomes very dependent on the protocol, and new features
are inherently hard to introduce into the network. Specifically for the BGP, the “ossifica-
tion” is due to economic reasons combined with the fact that backward compatibility has
to be assured since there is no flag day to switch to a new architecture. Thus, all BGP
appliances have to execute the same version of the protocol to operate appropriately, or
anomalies in the network may occur (e.g., BGP black holes). Hence, a new feature for
the BGP protocol has to have a minimum integration within heterogeneous networks and
interoperate through different administrative domains (e.g., the Internet). These require-
ments have frustrated new proposals to evolve BGP and the ecosystem of inter-domain
routing (SILVA; SADOK, 2017).

Although BGP is a scalable protocol and widely deployed, it does not explore the full
potential of the Internet once it is a single path protocol with unclear TE mechanisms,
where the collaboration between domains (especially multiple AS-paths away) is a difficult

21

Figure 1 – Current BGP behavior, where as far as a prefix advertised by an AS propagates
on the Internet, it became less controllable (how traffic should be handled) and
harder to influence by the AS that originate it.

task (CARDONA et al., 2016). Thus, Figure 1 depicts the motivation of this Thesis, where
a BGP prefix from a AS propagates into the Internet, it becomes less controllable, and
harder is the effect of BGP TE techniques. The vision for an Internet where the
AS has more control and influence to its prefixes advertised on the Internet is
the direction of this Thesis and the path to reach this goal is to work on the
current architecture of the inter-domain environment. This vision is depicted in
Figure 2.

Figure 2 – Vision of this Thesis and what the proposed architecture in this Thesis is trying
to achieve for the Internet.

One promising approach to enable network architectures to evolve is SDN. SDN
emerged as a paradigm that allows network engineers to elaborate new network designs
and includes desirable features for this evolution such as open programmable interfaces at
networking devices, the separation between control and forwarding planes, and innovation

22

is in applications executed inside the control planes (MENDIOLA et al., 2017; NUNES et al.,
2014; KREUTZ et al., 2015; SILVA, 2018b).

A notable SDN technology is the OpenFlow (OF) protocol. OF is an open pro-
grammable interface for SDN that gained momentum in academia and industry over
the last decade (MCKEOWN et al., 2008). OF is flow-oriented, meaning that the sequence
of packets identified by a set of common header fields follows a given path. Thus, OF
can provide fine-grain forward capabilities to the network by matching multiple fields of
Transmission Control Protocol and Internet Protocol (TCP/IP).

However, the benefits of applying SDN technologies in the inter-domain do not come
for free. Creating an efficient quantity of flows inside an OF network is a challenging
management task due to the limitation of the resources (e.g. switches memory) and the
signaling overhead between data and control plane elements (OpenFlow switches and
controllers, respectively) (NGUYEN et al., 2016).

Therefore and summarizing, the following research questions have been investigated
in this Thesis:

• What are the requirements for a new architecture for inter-domain rout-
ing? One major component of the inter-domain routing system is the control plane.
Then, through a survey that gives an original classification of previous proposals
to evolve the inter-domain routing control plane are discussed the challenges to the
evolution of current and new control planes.

• How to apply traffic engineering tasks between different SDN domains?
BGP has some mechanisms to apply traffic tasks, for example, Multi-Exit Dis-
criminator (MED), Communities, AS-Path Prepending and others. However, the
effectiveness of applying these mechanisms is often unclear and is also not guaran-
teed since they are indirect approaches. This Thesis proposes and investigates a new
architecture and mechanisms to apply traffic engineering tasks between domains.

• How to manage flows inside an SDN domain? Different from traditional
networks, in which TE tasks uses an Interior Gateway Protocol (IGP), e.g. Open
Shortest Path First (OSPF) for manage routing information inside the domain, the
SDN network relies on proper management of flows. Management of network flows
in SDN is a top concern because of restrictions in network device memories (such
as size, energy consumption and so forth) and the signaling overhead to control the
network. For OpenFlow networks, it is an issue to decide where and when a network
flow rule has to be installed (SILVA, 2018c).

23

1.2 OBJECTIVES

Considering the motivations described, the primary objective of this Thesis is to propose,
elaborate, design, implement and evaluate an architecture to evolve the inter-domain
routing using SDN to enable new TE tools and mitigate the weight of adopting SDN
technologies for being used in the inter-domain environment. Furthermore, the architec-
ture is backward compatible with BGP and composed by SDN technologies that allow
the coordination of ASs to perform TE tasks. Some scenarios are presented and analyzed
through simulation and emulation techniques to validate the architecture.

The specific goals of this Doctoral Thesis are:

• Classify previous works in the inter-domain routing;

• Evaluate and discuss an architecture to evolve the inter-domain routing using SDN;

• Depict mechanisms for properly manage flows in SDN networks, taking into account
resilience requirements, keeping the trade-off between the number of rules installed
and signaling between a SDN controller and switches, and avoiding inconsistency in
network state of SDN applications.

1.3 STATEMENT OF THE CONTRIBUTIONS

The main contributions of this thesis are:

• Providing an original classification of previous proposals to evolve the control plane
of the inter-domain routing. And also, discussing about the challenges to the evolu-
tion of current and new control planes (Chapter 3).

• Presenting and describing an architecture that uses OF networks and is compatible
with current inter-domain routing protocol BGP (see Chapter 4);

• Presenting different schemes to create and install flows (reactive, proactive and
active approaches), avoiding inconsistency in OpenFlow stateful applications, as well
as a resilience scheme to mitigate link failures in OpenFlow networks (Chapter 4);

• Exploring OF features for network traffic engineering tasks in inter-domain routing
(Chapter 5);

• Analyzing how the traffic can be managed using the proposed architecture and BGP
(Chapter 5);

Therefore, the contribution for the computer network community is not limited by
the text of this Thesis itself, but also expands to the published papers. See the Reference
chapter to read the papers published as a result of this Doctoral Thesis.

24

1.4 OUTLINE OF THESIS

The remaining structure of this Thesis is: Chapter 2 provides the basic knowledge and
concepts about SDN and inter-domain routing using BGP. Then, Chapter 3 gives an orig-
inal classification of previous proposals to evolve the control plane of the inter-domain
routing and also discusses the challenges to the evolution of current and new control
planes. Afterward, Chapter 4 presents the architecture to manage inter-domain routing
and mechanisms that address the difficulties of managing rules inside SDN networks.
Then, Chapter 5 evaluates the proposed architecture and Chapter 6 presents the limita-
tions, future works and final thoughts of this work.

25

2 FUNDAMENTALS

This chapter presents some technical background and an overview of Software-Defined
Networking (SDN), the OpenFlow protocol (an SDN technology) and the Border Gateway
Protocol (BGP). The main idea is to introduce the fundamentals concepts that are used in
the remaining of the work. If the reader is already comfortable with those fundamentals,
it can skip this chapter without loss of understanding about this Thesis.

2.1 OVERVIEW OF SOFTWARE-DEFINED NETWORKING

Traditional network protocols have been developed and deployed by combining software
and hardware into network devices (e.g. TCP/IP). Indeed that approach makes network
management a complex and laborious task, once to implement the desired high-level
administration network policies it is required to configure each network device and perform
low-level instructions/commands (often vendor-specific). Depending on the number of
network devices, making such procedures are slow, challenging, and error-prone (KREUTZ

et al., 2015).
Software-defined networking (SDN) is emerging as a network paradigm which proposes

a separation of software-hardware from devices (vertical integration), generalizes network
devices and functions, enables programmability to network, centralizes network manage-
ment task (NUNES et al., 2014). A major feature of SDN is the decoupled control and data
plane. The centralization logic of SDN is aware of network state; can enforce network poli-
cies, routing decisions, forwarding information, and so forth. Figure 3 presents the SDN
architecture divided in three layes: Application Layer, Control Layer and Infrastructure
Layer.

Figure 3 – SDN Architecture.

26

Due to the logical centralization of the control of an SDN network, availability has
become an attribute of prime concern. Because the network programmability is done
through software applications on the control plane, not more on underlying data plane
devices (KREUTZ et al., 2015), data plane elements must receive instructions from the
control planes elements when required.

2.2 OVERVIEW OF OPENFLOW PROTOCOL

There are some instances of the concepts of SDN (FEAMSTER; REXFORD; ZEGURA, 2014),
and one of them is the OpenFlow protocol (MCKEOWN et al., 2008). The OpenFlow
protocol (a standardized open interface) allows an OpenFlow controller to program the
Forwarding Information Base (FIB) of OpenFlow switches (MCKEOWN et al., 2008). An
OpenFlow network uses the concept of flow to carry traffic inside the network. Flow is
a sequence of packets sent from a particular source to a particular destination following
a given path (KREUTZ et al., 2015), where the packets have the same fields values. And
a path is an ordered sequence of OpenFlow Switches and links from the origin to the
destiny. In an OpenFlow Switch, the flow entry match fields, in a flow table, include layer
2, 3 or 4 header information, the ingress port, or the metadata values (PFAFF et al., 2012).
The information about how OpenFlow Switches should behave comes from the OpenFlow
controller.

Hence, to better understand the terminology and behavior of the elements on Open-
Flow specification, this Section describes a brief overview of the protocol. If the reader
requires more details about OpenFlow, we encourage to read the public specification of
the protocol (OPENNETWORKING, 2014).

2.2.1 OpenFlow Switch Components

The main components of an OpenFlow architecture is described at Figure 4. Through
multiple connections, an OpenFlow Switch (data plane element) can handle requests from
the network by consulting one or more OpenFlow Controller. Based on the logic inside
the controller, the behavior of an OpenFlow network is defined. An OpenFlow Switch
has multiple internal elements to treat flows. A brief description of those components is
(OPENNETWORKING, 2014):

• Port: where packets enter and exit on the pipeline;

• Flow Table: is the intern structure on the OpenFlow Switch that contain flows
entries. Actions and matches for flows are storage at it. Furthermore, a flow table
is what compose a pipeline;

• Pipeline: the set of linked flow tables. The main goal of a pipeline is to provide
matching, forwarding, and packet modification on flows inside the OpenFlow Switch;

27

Figure 4 – Components of an OpenFlow Switch.

• Group Table: is where a list of action buckets and some means of choosing one or
more of those buckets to apply on a per-packet approach;

• Meter Table: contains information about measurements of the packets that travels
flow tables;

• Controller: an entity that send control information to an OpenFlow Switch;

• OpenFlow Channel: the interface for communication and management between an
OpenFlow Switch and an OpenFlow Controller.

The OpenFlow protocol provides features and abstractions to enable a controller to
program the OpenFlow Switch. Additionally, the current version of OpenFlow allows some
management tasks to be done inside the OpenFlow Switch without requiring the controller
intervention. The Group Table is a feature that enables the OpenFlow Switches to add
new features. For example, OpenFlow Fast Failover Group Table (FF) enables detection
and actions to the mitigation of link failures (LIU et al., 2014a).

2.2.2 OpenFlow Fast Failover Group Table

As explained in the work of (CASCONE et al., 2016), which proposed an SDN resilience
mechanisms implemented in hardware that use OpenState (BIANCHI et al., 2014) (an ex-
tension of OpenFlow specification for stateful packet processing), the resilience mechanism
deployed into hardware have notorious minimal unavailability time in comparative with
software approaches. Thus, since the OpenFlow version 1.1, the OpenFlow specification
provides the implementation of Fast Failover Group Table (FF) (PFAFF et al., 2011), which
is a resilience mechanism deployed into an OpenFlow switch which could change primary

28

paths to backup paths in the presence of link failures. That local action occurs without
the switch requiring to communicate to the OpenFlow controller. The main goal of FF
is to decrease the restoration time after a failure and avoid the overhead communication
between switch and controller.

Figure 5 – Scheme of the Fast Failover.

Figure 5 depicts an scheme for using FF. Suppose an OpenFlow switch has the flow
table as indicated, in which the instruction of flow is to apply the FF group type. Thus,
the switch will autonomously monitor the first port in the action buckets seeking for a
change in the first watch port. If a link failure occurs with that network port interface, the
status of the port will not have the bit OFPPS_LIVE enable, and the switch will apply
the next action in that action buckets. In the example of Figure 5, if port 2 goes down
(caused by a failure), the switch stops forwarding traffic to port 2 and stars to forwarding
traffic to port 3. Whenever a link failure occurs, the controller must gain awareness about
the underly topology.

2.3 FLOW CREATION

Different from traditional networks, in which Traffic Engineering (TE) tasks uses Interior
Gateway Protocol (IGP) (e.g. Open Shortest Path First (OSPF)) for managing traffic,
the SDN networks relies on properly management of flows. Management of network flows
in SDN is a top concern because of restrictions in network devices’ memory (such as size,
energy consumption, and so forth) and the signaling overhead to control the network.

In an OpenFlow network, the flows are deployed with Ternary Content Addressable
Memory (TCAM) (SHARMA et al., 2014). TCAM memories are very fast, however with
the limitation of being of high cost and high energy consumption. Currently, OpenFlow

29

switches have between ∼500 and 2500 OpenFlow rules (VISHNOI et al., 2014a) (with high-
end switches’ supporting more than 100,000 rules), and the practical use of OpenFlow
switches memory is vital to operating OpenFlow networks, especially in case of failures.

Besides the memory limitation, the SDN controller has to maintain a consistent view of
the network state (SILVA, 2018b; ROTHENBERG et al., 2012). Depending on the approach
to fetch information about the network state, the signaling between the switches and
controller can play a crucial role in the network communication overhead.

2.3.1 Topology Discovery

One element of the network state is the topology. This subsection provides a brief review
of how the SDN controller can fetch the topology information about the SDN network.

Figure 6 – Topology discovery using flood messages.

The topology discovery process can be reached using flood messages. In Figure 6 rep-
resented that processing of discovery of the topology, where the long dash lines represent
the control packets from/to OpenFlow switches or hosts. This process uses intensively the
OpenFlow flood port (PFAFF et al., 2012), where an incoming packet is distributed to all
physical ports except input port and those disabled by Spanning Tree Protocol (STP).
The switching loop treatment has to be done for avoiding broadcast storms during the
discovery process of the SDN topologies that contain cycles (or loop in the topology).

The SDN controller is responsible for acquiring physical network information, such
as links and OpenFlow Switches identifications and features (e.g., supported link rates
of each switch port). It also creates a logical abstraction of the representation of the
physical topology that can be used appropriately by the other components. Regarding
implementation, one discovery protocol, used in Ethernet networks, that provides topology
discovery is Link Layer Discovery Protocol (LLDP).

Besides, the controller also monitors the underlying infrastructure to maintenance
topology consistency. If a link suffers a failure, it is expected that the controller receives
status information from the OpenFlow switch via OFPT_PORT_STATUS message noti-

30

fication (PFAFF et al., 2012). Thus, it is expected that every modification on the topology
is communicated to the controller, and then it provides an appropriated treatment to keep
the consistency of the topology and network state. The controller can also use either Loss
Of Signal (LOS) or Bidirectional Forwarding Detection (BFD)(D. Katz and D. Ward, 2010a)
to detect link failure.

2.3.2 Types of flow creation

Differently, from traditional networks, the SDN networks forward packets based on a flow
computed by the logic in the SDN controller. For OpenFlow networks, it is an issue to
decide where and when a network flow rule has to be installed, once the flow rules consume
precious network resources.

Thereby, once the topology is known, the controller can create new flows inside the
network. Three approaches can be performed to flow creation: Reactive; Proactive; and,
Hybrid. The three algorithms for flow creation are in Figures 7, 8, 9, respectively. The
cycles represent OpenFlow switches, and a visual description of the path followed by the
first packet from the source node S to destination node D for the three approaches is
indicated. The long dashed lines inform the path of the first packet of a new flow and the
dotted lines are OpenFlow packets instructing the OpenFlow switches to create the flow
from node S to node D.

Figure 7 – Reactive flow creation.

The Reactive flow creation populated the flows on demand to react upon incoming
packet events, OFPT_PACKET_IN messages (PFAFF et al., 2012). When a packet that
did not match any rule installed into an OpenFlow Switch, often, the switch enqueues
the packet and informs the controller for a new flow creation. Afterward, the controller
computes the rules to be associated with the new flow and installs them in the network.
Once the rules are installed on the switches, packets are dequeued and forwarded in the
network. The freshly-installed rules will then process any subsequent packet of the flow

31

without further intervention of the controller (NGUYEN et al., 2016). Figure 7 represents
the Reactive flow creation.

Figure 8 – Proactive flow creation.

The Proactive flow creation uses the topology information of an SDN network to
connect all previously known source and destination points on the network. Thus, before
a packet belonging to a particular flow arrives at the SDN network, the OpenFlow rules
already have been installed into the OpenFlow switches for that packet. For this flow
creation process, the controller sends control messages to the OpenFlow switches and
instructs them to install all flows rules to connect the source and destinations. Figure 8
represents the Proactive flow creation scheme.

Figure 9 – Hybrid flow creation.

The other way to create flows inside the SDN network is the Active flow creation. It
exercises bird’s eye view of SDN, and once the packet is sent to the OpenFlow controller, it
calculates where the destination is and sends the packet to the final data plane element.
Besides, it sends OpenFlow control packets to install a new flow for each OpenFlow
Switch in the path between the source and destination without further intervention of the
controller.

32

The approach for Hybrid flow creation mixes the Reactive and Proactive flow creation.
The difference between Hybrid and Reactive is that in Hybrid approach all OpenFlow
Switches receive OpenFlow rules at once, instead of the Reactive that requires each Open-
Flow Switch, individually, to communicate with the controller to create the new flow.

Also, it is important to highlight the difference between Hybrid and Proactive. The first
does not create rules in advance. It waits for the packet from source to destination arrive
into one OpenFlow Switch (or any other event that changes the network state). Then,
the switch sends an OpenFlow message to the controller that processes and computes the
path from source to destination for that particular packet. Afterward, the controller sent
to all switches the OpenFlow messages instructing, those switches, the creation of the
new flow. The Figure 9 represents the Hybrid flow creation approach.

After a flow is created, it is important that the SDN controller make sure that the
network is available. Thus, resilience mechanisms are vital for SDN networks. They assist
network operators in reaching high levels of availability.

2.3.3 Multiple Packet-In during flow creation

One instance of SDN concepts is the OpenFlow protocol (KREUTZ et al., 2015) that is
specified and managed by the Open Networking Foundation (ONF) (ONF, 2017). ONF
already defined a couple of versions of the OpenFlow, and every time a new version of
OpenFlow is released, new network headers protocols are embraced and included in the
protocol specification. However, not all management actions and functionalities can be
predicted and solved at the protocol level (BOSSHART et al., 2014). Thus, the OpenFlow
controller has to be used to manage those exceptions.

Based on the OpenFlow protocol specification, the controller enables the programma-
bility of OpenFlow switches by installing predefined actions to be executed in the switches.
However, whether any predefined actions in the switches are not enough to handle the
incoming packets, then the switches can transfer those packets to the controller. This
mechanism of transferring packets from switches to the controller is called Packet-In, and
it allows the controller to apply custom actions to packets that were not predicted in the
OpenFlow specification.

One of the problems of Packet-In packets is the concentration of messages (ANDO;

NAKAO, 2016) sent from switches to the controller. Figure 10 depicts a typical case
of incoming multiple Packet-In to the controller. When a transmission is starting, the
switch receives those packets in its interface port. If there is no matching in the already
installed rules, the default rule usually is to send the packet to the controller (using
OFPP_CONTROLLER port as described in the OpenFlow specification (ONF, 2017)).
Thus, the incoming packets are encapsulated in an OpenFlow message and sent to the
controller as a Packet-In.

33

Figure 10 – Several Packet-In packets sent to the OpenFlow controller for the creation of
new flow.

The quantity of the packets received at the interface of the switch and encapsulated
in a Packet-In packet is indicated by the “max_len” field of the Output action (an action
that can be used to forward packets to the controller (ONF, 2017)). Setting the appro-
priate value of “max_len” can decrease the bandwidth required between switches and
controller, once not all the information in the packet received from the network is used
in the management of flows, especially and often in the flow creation process. Thus, the
header of the packet is analyzed, and the decision about how to handle the Packet-In is
performed. Finally, the switch will stop sending Packet-In packets when the controller
instructs the switch how to handle that traffic, using a Flow-Mod packet.

In Figure 10, the switch sent 4 (four) Packet-In packets to the controller, before the
rule for creating a new flow in the switch was being installed. At the controller, the received
packets also generate Packet-In events. Those events are distributed to applications that
previously registered in the controller its intention of receiving Packet-In events. Whether
the controller passes all Packet-In events, the burst of packets can alter the state of the
application and its logic. And that is why the controller has to provide a consistent view
of the network state to their applications.

The Stateful Application in Figure 10 received all 4 Packet-In events from the controller
and changed its state four times for a new flow, instead of changing state only once. The
properly control of the quantity of information sent from the controller to a stateful
application requires a modification in the switch or controller side.

34

2.4 RESILIENCE MECHANISMS

It is essential to have a minimal guarantee that the network will remain available and
operational, even when part of the network goes down (e.g., caused by a link failure). For
OpenFlow networks, the resilient mechanisms are approaches that seek to bring minimal
guarantees for the network connectivity.

Thus, this section presents the challenge of managing the number of rules required in
a resilience mechanism for OpenFlow network, once the switches have a limit number of
available rules that can be used, and the decoupling between data and control plane plays
a critical role in the network availability when compared against the traditional network.
Also, this Section starts with a presentation about resilience mechanisms approaches.
Then, it compiles a few recent works and approaches in the field for the resilience mecha-
nisms. Finally, this section concludes by describing the dynamics of resilience mechanisms
extracted from the related works.

2.4.1 Resilience mechanisms approaches

Resilience mechanisms are vital for OpenFlow networks. They assist network operators in
reaching high levels of availability. However, a good resilience mechanism for OpenFlow
networks is challenging because there must be a trade-off between rule installation and
the signaling overhead between OpenFlow switches and the OpenFlow controller (SILVA,
2017; SILVA; DIAS; SADOK, 2017). The resilience mechanisms have been classified into
three categories (SILVA, 2017): restoration approach (or Reactive); protection approach
(or Proactive) (NGUYEN et al., 2016; FERNANDEZ, 2013; ADRICHEM; ASTEN; KUIPERS,
2014; AKYILDIZ et al., 2014); and hybrid approach (or Active) (SILVA, 2017).

Restoration approaches create rules on demand to react to failure events. For example,
whenever an a link failure occurs, the controller reacts by signaling the data plane elements
to restore the broken flows affected by the failure. For OpenFlow networks, restoration
approaches are similar to the usual process of flow creation (see Section 2.3.2), where the
difference is the cause: for a restoration approach a failure starts the flow creation; and,
in the flow creation, network demand initiates the process.

In a protection approach, rules are populated in advance, when backup paths are
configured and installed before failures occur. In other words, a protected flow is created
in the network before a failure occurs or any packet belonging to the path arrives at an
OpenFlow switch port.

Instead of restoration and protection approaches, a third type in the classification of
resilience mechanisms can be used, as well discussed by Silva (SILVA, 2017): the Hybrid,
that is a solution that merges restoration and protection. The Hybrid approach optimizes
the control of network traffic, signaling, and memory utilization by exploring the bird’s
eye-view of SDN. This is reachable with the monitoring state of the network searching to

35

mitigate the occurrence of a failure.

2.4.2 Dynamic of resilience mechanisms

Figure 11 – Flows created using SFC

The resilience mechanisms take actions when a failure event occurs, and those ac-
tions can be previously made (e.g., protection approach) or made after the failure event
(restoration). The dynamic of each resilience mechanism depends on the strategy adopted
for creating flows into the network. The SFC is the most trivial way to create flows in an
OpenFlow network. It creates a rule for each flow installed into each OpenFlow switch in
the path between the source to the destination. The Figure 11 depicts three flows from
Sources (S1, S2, and S3) to Destination hosts (D1, D2 and D3) using SFC. Thus, taking
into consideration the SFC, the three types of resilience mechanisms can be depicted.

Figure 12 – Additional rules of PP

To protect the path [A, B, C], a resilience mechanism can create backup rules to avoid
unavailability when a primary path suffers a link failure. In the case of the path [A, B,
C], the affected links can be linked A-B or B-C. A simple approach would be to install
OpenFlow rules to protect the link A-B and other rules to protect the flows from a link
B-C failure. This logic is presented in Figure 12, where the PP applies OpenFlow rules to
protect the path [A, B, C]. Thus, if link A-B or B-C suffers a failure, the flows from hosts
S1, S2, and S3 still reach destination hosts D1, D2, and D3 by using the additional flows
installed in advance for the protection scheme. Besides, no signaling between the controller
and OpenFlow switches is needed. Nonetheless, extra rules are required to compose an

36

operational solution (as indicated by the paths [B, A, D, E, F, C] and [A, D, E, F, C] in
Figure 12).

Figure 13 – Application of LR after a failed link

Instead of the protection mechanism, a network operator can opt for a restoration
approach, where new flows are installed after failure. Figure 13 depicts the operation of
LR. LR is indicated when the computation path time is not a bottleneck of the resilience
scheme to restore the flows (network with a few number of nodes and links) (SILVA,
2017). Thus, when a link failure occurs, the OpenFlow controller acquires the information
of what nodes have involved and reconstructs the broken path between those nodes. If the
packets belong to the affected flows, they need to be sent back through the same input
port of an OpenFlow switch; the OpenFlow specification has a special port for this case.
The OFPP_IN_PORT is a virtual port that has to be explicitly set in OpenFlow rules
for a switch send a packet back to the same input port (PFAFF et al., 2012).

Figure 14 – Application of PR after a failed link

Another restoration mechanism is the PR (see Figure 14), which the work of Sharma
et al. (SHARMA et al., 2011) uses. Different from LR, PR exercises the global view of SDN
networks and computes the best path (often using the shortest path algorithm) for each
flow affected by the broken link. Note that under certain circumstances, LR and PR can
produce the same outcome. In the topology used as the example (see Figure 11), if link
A-B suffers a failure, the recovery mechanism of LR and PR will produce the same final
network state because Node A is the disjoint point between the primary and backup path
([A, B, C], [A, D, E, F, C], respectively), however, if link B-C suffers a failure, the outcome
of LR and PR application will be different.

37

Figure 15 – After link B-C failure and application of LFR.

To reduce signaling between controller and OpenFlow switches, as well as the number
of flow entries installed, a resilience recovery strategy can employ an aggregation scheme.
The aggregation scheme can use the Internet Protocol (IP) network mask or tunnels.
The application of LFR is presented in Figure 15. Thus, instead of treating every flow
individually (as PP and PR), LFR aggregates all flows into one “big” flow that makes all
packets affected by the failure be redirected using this “big” flow. An example of work that
applies the LFR concept is in Zhang et al. (ZHANG et al., 2016). Therefore, this subsection
exemplifiers and depicts the resilience mechanisms extracted from related works.

2.5 A BRIEF REVIEW OF BGP

The Internet is a collection of tens of thousands of independently operated networks,
simply called Autonomous System (AS)s. An AS can be an Internet Service Provider
(ISP), a campus, a content provider or any other independently operated networks. Thus,
to carry traffic from one AS to another, an AS requires two types of routing system:
intra-domain routing; and inter-domain routing.

Intra-domain routing is the process routing network traffic inside any single autonomous
system in as a fast, effective and reliable way as possible. Examples of protocols for
intra-domain routing are OSPF, Routing Information Protocol (RIP), and internal BGP
(iBGP). However, for inter-domain routing, the focus is on applying routing policies and
distributing routing reachability information among ASs. For the inter-domain routing
system, the external BGP (eBGP) is the standard protocol of the Internet.

2.5.1 BGP Control Messages

The BGP exchanges messages between ASs using the Transmission Control Protocol
(TCP). The TCP port number 179 is allocated exclusively for the BGP protocol. The
advantage of using TCP is avoiding the BGP control plane having to manage message
delivery and flow control between BGP speakers (or peers), which simplified the BGP
design. Thus, a BGP peer has a reliable way to exchange Network Layer Reachability
Information (NLRI) and compose the Routing Information Base (RIB).

38

Figure 16 – Model of the BGP control plane.

Each BGP peer needs to be manually configured with a set of parameters to enable a
BGP connection (YANNUZZI; MASIP-BRUIN; BONAVENTURE, 2005; REKHTER; LI; HARES,
2006). There are four types of BGP control messages to be exchanged after a TCP con-
nection is established between two BGP peers (REKHTER; LI; HARES, 2006):

• OPEN message: sent to open a BGP session and to verify the connection’s parame-
ters;

• UPDATE message: to transfer network reachability information by advertising and
withdrawing routes;

• KEEPALIVE message: periodically sent to ensure that the connection between the
peers is still reachable;

• NOTIFICATION message: used in response to special or error conditions.

Additionally, the BGP is a path vector protocol, and it uses a sequence of Autonomous
System Number (ASN)s for characterizing the path. Thereby, when the BGP updates
travel through different ASs, the BGP routers prepend their ASN to the AS-Path at-
tribute. The AS-Path attribute of BGP carries the ASNs that a given network prefix
traversed. If a router receives a BGP update message and detects its own ASN in the
AS-Path attribute, then the router will ignore the update because it is a routing loop
once the message has already passed through the AS.

Each BGP update message contains NLRI and BGP information to apply the routing
process. For the BGP, the RIB is constructed through the BGP decision process executed
in the BGP control plane.

39

2.5.2 BGP Control Plane

The BGP Control Plane is the place where decisions about how to handle the network
traffic are made and where the traffic is sent. Figure 16 presents an abstraction of a BGP
router in which the BGP control plane is modeled.

The responsibilities of the control plane are managing network traffic, setting system
configuration, and the exchange of routing information. To set up the control plane, an
User Interface is provided and is often the command line of the network appliance.

The BGP control plane uses UPDATE messages to exchange Network Layer Reacha-
bility Information (NLRI) with other routers to create the topology view of the network
state and to build the routing table. The BGP configuration reflects the business model
of the organization that executes it. The main goal of the BGP is to reflect the desired
inter-domain routing policy of a particular AS. The BGP routing decision process applies
the filtering and export for a given AS to learn routes from its neighbor and re-advertise
them. The final goal of this BGP decision process defines one “best” route per prefix.

Once a TCP connection of the BGP is established, and the route information is ex-
changed, the Routing Information Base (RIB) is filled. The adjacency table Adj-RIB-In
is the input for the BGP routing decision process, and it is where the attribute ma-
nipulation is also carried out (such as checking communities values). Then, the import
policy/filter determines which routes are acceptable from each BGP peer. This generates
a new database called the Local Routing Information Base Local RIB that stores all ac-
ceptable routes learned from all BGP peers plus the internal routes, which are routes that
belong to the AS and were learned through intra-domain routing protocols. Thereby, to
construct the Local RIB, the control plane compiles information of the BGP, and all other
routing protocols (for example, injected by OSPF and RIP) and static routes enter by
the network operator.

Table 1 – The BGP path selection decision process

Priority Criterion
1 Prefer route with highest Local preference
2 Path originated by a local router
3 Path with shorter AS-path length
4 Path with lowest origin code
5 Lower MED values for routes from the same neighboring AS
6 Prefer routes learned from external eBGP rather than iBGP
7 Prefer the path with the lowest IGP metric to the BGP next hop

(...) Other BGP tie-break

Once the routes are learned, the BGP control plane has to decide a single “best” next
hop of each destination. First, if the prefixes learned are unique, then they are installed

40

in the forwarding table of the BGP appliance, and the longest prefix matching is applied.
However, if some prefixes have the same subnet mask, but different next hops, then the
BGP uses its tie-break algorithm to decide what is the next hop for a given network prefix.

Table 1 presents that algorithm, where the priority indicates the sequence of the
criterion used in this process. The first criterion for the BGP route selection process is
preferred high Local preference values, which is a numerical value that a network operator,
in the local AS, can assign to a particular route. If the Local preference value is equal for
more than one route, then the BGP will follow another tie-break criterion. This way, the
BGP decision process selects just one best route towards each destination.

The finalization of the BGP decision process is the export policy/filter that determines
which routes can be sent to each Peer. Again, the attribute manipulation is also applied
on the routes, and then, they have stored in the Adj-RIB-Out database. Then, other Peers
can learn the routes available for them. All the routing information is then processed to
update the routing tables of the BGP router. The control plane functions do not process
each packet of the device. This responsibility belongs to the data plane elements.

The Data Plane is also known as the Forwarding Plane. It forwards network traffic to
the next hop along the route to the selected destination following the logic given by the
control plane. The Forwarding Information Base (FIB) stores the information of which
interface packets should be forward to. Thus, the Data Plane elements (e.g., routers or
switches) use the FIB to forward incoming and outgoing packets or frames to one of its
interfaces. For a BGP router, all packets pass through the Data Plane of the router.

2.5.3 Monitoring Prefixes

The traditional BGP monitoring can be simplified as collecting data from Adj-RIB-In,
where it stores the received prefixes from the neighbors of a router, Adj-RIB-Out, where it
stores the advertised prefixes, and the Local-RIB, which is the selected, used and installed
prefixes for a router. Some routers can store the prefixes of the Adj-RIB-In before and
after the application of the routing policies.

Hence, the Adj-RIB-In (Pre-Policy) stores all received prefixes from a Peer and the
Adj-RIB-In (Post-Policy) is yield after those prefixes pass for filters or any modification of
BGP attributes (e.g., Communities). The main benefit of this capability is to reconfigure
and activate BGP routing tables without tearing down existing peering sessions, whenever
the routing policy changes due to a configuration change, and the drawback are more
memory required to store all received routes before and after the application of routing
policies. The Adj-RIB-Out (Pre-Policy) and Adj-RIB-Out (Post-Policy) work as the same
way as the Adj-RIB-In (Pre-Policy) and Adj-RIB-In (Post-Policy), with the difference of
being used for advertising prefixes to the Peers.

Thus, the easy way to get the routing information that is actually being used by
a router is accessing its Local-RIB. However, to access the Local-RIB of a router, it

41

Figure 17 – Monitoring points in BGP.

requires a peering BGP session to exchange (advertise or receive) prefixes. To overcome
that limitation, BGP Monitoring Protocol (BMP) can be used to execute such BGP
collection (SCUDDER; FERNANDO; STUART, 2016) and other type of routing information,
e.g. IPv4, IPv6 or Link State (locally originated). Besides, new RFCs drafts also will
incorporate new monitoring points in BGP, for example, draft-even-grow-bmp-local-rib
and draft-even-grow-bmp-adj-rib-out that will be responsible for getting Local-RIB, and
Adj-RIB-Out (Pre-Policy) and Adj-RIB-Out (Post-Policy), respectively.

Therefore, instead of just focus on one router at each time, new network tools are
allowing collecting routing information from multiple routers. Thus, the idea of monitoring
BGP is getting that information from more than one Peer. The Figure 17 depicts the points
where can BGP collection can be performed with the Peers executing the Multiprotocol
Extensions for BGP (MPBGP) (which is an extension to the BGP that enables multiple
types of address families to be advertised simultaneous during a BGP session).

2.6 STATE-OF-THE-ART TECHNIQUES FOR INBOUND TRAFFIC CONTROL WITH BGP

The current state-of-the-art techniques for inbound traffic control is based on applying
the prefix disaggregation, AS path prepending or the use of BGP communities (requires
standard policies and configured the system to be successful) (DEUS; CARVALHO; LEITE,
2014). Thus, depending on the AS goals, it can apply those TE techniques to reach the
desired traffic network load through its inter-domain links.

42

Before delving into the state-of-the-art techniques for inbound traffic control with
BGP, a brief description of AS relationships is required. Then, a process for apply BGP
inbound traffic engineering with BGP is depicted.

2.6.1 AS relationships

AS relationships determine how routing policies must be set up to absolve business con-
straints, agreements, and requirements. However, not all ASs are of the same types. A
stub AS (or non-transit AS) typically refers to an AS that has a connection to the Internet
through at least one other AS, it can use a public or private ASN to establish peer rela-
tionship between its neighbors, and the network traffic is a source or sink. Further, if the
stub AS uses just one link to the other AS, it is classified as a single-homed connection.
Otherwise, it is a multi-homed AS (using multiple links to the other AS). The Figure 18
presents a scheme for single homed and multi-homed stub AS.

The other type of AS is a transit AS, and that is an AS that allows connectivity of
other ASs through itself. In Figure 18, the ISP are transit ASs because it carries network
traffic from an AS to the Internet and from the Internet to the AS (which can be a stub or
transit AS). Therefore, depending on connectivity and operational policies between ASs,
a AS can play a role of stub or transit AS.

Figure 18 – Single homed and multihomed scheme.

Regarding ASs relationships, they may be complex and are usually not exposed to pub-
lic access. However, it is possible to abstract the relationships among ASs by simplifying
them into one of the two types:

• Customer-to-provider: the relationship where the AS provider (or upstream) is paid
by the customer AS (or downstream) to carry customer network traffic from or to
other networks;

43

• Peer-to-peer: the ASs involved agree to share the costs of the connectivity among
them, and then, all traffic between them is free of charge.

The customer-to-provider relationship ensures that AS providers are paid by the cus-
tomer regardless of the direction in which traffic flows. Thus, for a particular AS, it is
preferable to first route traffic for customer links, then peer-to-peer links and finally to
provider links (when it is acceptable). Because the volume of traffic matters to define a
transit AS profit, it is mandatory to control how the inbound and outbound traffic is
routed. Besides, for non-transit ASs’ (stub ASs) control, the inbound traffic is mandatory
to reach the full utilization of their inter-domain links.

2.6.2 Traffic Engineering with BGP

Control of the outbound network traffic is an easy task with BGP. Since an AS controls
the decision process on its BGP routes, it can select each best path to reach a particular
destination through its peers. The AS can rely on the Local preference attribute, for exam-
ple. By assigning appropriate values, the AS indicates which route should be considered
as the best route to the BGP routers (LUDWIG, 2009).

However, it is not a simple task to control inbound network traffic because it requires
techniques to be applied that do not guarantee its effectiveness (Ning Wang, Kin Hon Ho,

George Pavlou, 2008). A network operator can use the following techniques to influence the
incoming network traffic with the BGP (CARDONA et al., 2016): Multi-Exit Discriminator
(MED); Selective announcements; AS path prepending; and, Community.

Multiple Exit Discriminator (Multi-Exit Discriminator (MED)), or Multi-Exit Dis-
criminator, is a BGP attribute that provides a “hint” to external neighbor routers about
the preferred path into an AS that has multiple entry points. This suggestion can, or
not, be acceptable for the neighbors. Indeed, MED is only useful for informs neighbors
peers (SHAO et al., 2015a) because MED is a non-transitive attribute (see Table 1), which
means that it is not propagated throughout the Internet, but only to neighbors ASs.

The idea behind MED is to override the “hot potato routing” behavior, which is the
practice of passing traffic off to another autonomous system as quickly as possible. Thus,
because in the BGP path selection decision process the lowest value of MED is verified
first than the lowest IGP metric for defining the BGP next hop, MED is used to indicated
how the traffic must enter a given AS.

Another traffic engineering technique using BGP is the Selective announcements (or
Selective advertisement) that relies on careful advertisements of different routes through
different links. Single Homed AS can not explore the full potential of this technique,
once only one link is available. Besides, this technique is indicated to avoid performance
problems of transit providers or to balance incoming traffic.

44

Moreover, inbound traffic policies are applied by influencing the best path selection of
external BGP speakers. Thus and because more-specific prefix always wins, independent
of any configured BGP attribute set into the BGP UPDATE message, all BGP traffic
engineering efforts becomes pretty useless when selective announcements are applied.

By default, the BGP prefers the route with the shortest BGP AS-Path attribute length
when two or more routes exist to reach a particular prefix. AS-path prepending technique
occurs by increasing the AS Path length of a particular route. The goal is trying to change
the way that the other ASs selects the best routes and consequently, how the other AS
traffic is handled.

The Community is a BGP attribute and can be used as “tags” associated with ad-
vertisement prefixes. The main goal of a BGP Community is to identify routes to be
applied in the routing policies. Thus, appended pre-arranged communities can be used to
influence path selection of other ASs if the neighbors consider those communities in their
routing decision process.

Furthermore, the BGP Community value has meaning and application for those ASs
that include the BGP Community into the routing policies of their domains. Although
BGP Community can be set as any value of 32 bits, some values have an administrative
assignment, e.g., Well-Know Communities. Well-Know Communities are Communities
that have defined values with a given mean and published in the RFC-1997 (CHAN-

DRA; TRAINA, 1996). For example, No-export community (with the value 0xFFFFFF01)
means do not export to any BGP neighbor at all, and No-advertise community (value
0xFFFFFF02) informs to the neighbor routers not to advertise a prefix to any BGP
neighbors (iBGP or eBGP).

In general, network operators can only rely on the manipulation of the BGP’s at-
tributes to apply any traffic engineering technique. However, for inbound traffic engineer-
ing, those approaches only try to influence the routing decisions of external ASs, to obtain
their desired inbound traffic distribution (SHAO et al., 2015a).

Nonetheless, because each AS selects preferred routes based on its policies, usually
the BGP inbound techniques lead to a trial-and-error process with no guarantees of suc-
cess. Therefore, the agreements, contracts, and AS relationships dictate how the configu-
ration of the BGP should be performed for a given AS.

2.7 FINAL REMARKS

This Chapter introduced the fundamentals concepts that will be used in the remaining of
this Thesis, such as SDN, OpenFlow, and BGP. For a more detailed explanation about
those topics, see the References for this work.

45

3 RELATED WORKS THAT EVOLVE THE INTER-DOMAIN ROUTING

The contribution of this Chapter is given an original classification of previous proposals
to evolve the control plane of the inter-domain routing.

3.1 ISSUES IN EVOLVING THE INTER-DOMAIN ROUTING CONTROL PLANE

There has been a myriad of publications on the inter-domain routing field, and despite
the success of the Internet, it still has some crucial issues and research challenges regard-
ing its operation and design that need to be addressed. This section presents the issues
described in related works that impact the evolution of the control plane inter-domain
routing systems. Each issue is explained and systematized into the following types: os-
sification; backward compatibility; distributed configuration; complexity routing policies;
coordination among ASs; traffic engineering.

3.1.1 Ossification

The Internet architecture is no longer a coherent whole. It has various components such as
transport protocols, routing mechanisms, firewalls, load balancers, security mechanisms
and other middle-boxes. Furthermore, the BGP is one of the most successful protocols
on the Internet, and although many researchers have indicated issues related to the BGP
since its inception (e.g., lack of end-to-end service guarantees, long convergence time,
security issues (KEVIN et al., 2010)), practical deployments for new network architecture
and protocols in the inter-domain environment are difficult to achieve.

The major problem for evolving the inter-domain routing system is called “ossifica-
tion”, where the architecture becomes very dependent on the protocol and new features
are inherently difficult to introduce into the network (CHOWDHURY; BOUTABA, 2010; ES-

TEVES; GRANVILLE; BOUTABA, 2013; CHOWDHURY; BOUTABA, 2009). For the BGP, the
ossification is due to economic reasons and the fact that backward compatibility has to
be assured since there is no flag day to switch to a new architecture. Thus, all BGP
appliances have to execute the same version of the protocol to operate appropriately, or
anomalies in the network may occur (e.g., BGP black holes).

In other words, the BGP is an inflexible protocol as a consequence of the control
and data plane being embedded into the network hardware. The dependency between
a specific infrastructure and the hardware required creates a barrier to architectural in-
novation in the inter-domain routing. Hence, a new feature for the BGP has to have a
minimum integration within heterogeneous networks and interoperate through different
administrative domains (e.g., the Internet).

46

3.1.2 Backward compatibility

A new feature for the BGP has to have a minimum integration within heterogeneous
networks and operate through different administrative domains (e.g., the Internet). Those
requirements frustrated new proposals to evolve the BGP and the ecosystem of inter-
domain routing (SILVA; SADOK, 2017). One of the main reasons for this is new proposals
that have to be maintained with the infrastructure already built, and ASs will not rely on
immature technologies that do not prove to be profitable or are not operable with other
ASs on which they depend (THAI; De Oliveira, 2013).

Thus, the difficult-to-change architecture of the Internet creates a mandatory require-
ment for integration among different proposals and the BGP. The backward compatibility
imposes a limitation to “clean-slate” proposals. Brand new and incompatible BGP pro-
posals are considered unrealistic (KOTRONIS; GAMPERLI; DIMITROPOULOS, 2015). In fact,
in the more than two decades since the first version of the BGP protocol (Y. Rekhter, T.J.

Watson, 1995), much scientific and industrial effort have been made to overcome the BGP
limitations and failed to make it a flexible protocol. The backward compatibility with the
BGP for the new approaches in the inter-domain environment continues to be a manda-
tory requirement.

However, a major criticism of the BGP is that it is not suitable for the next generation
of inter-domain networks (THAI; De Oliveira, 2013). The main argument to sustain that
claim is any new proposal for inter-domain routing has to be part of traditional networks
to operate on the Internet and those proposals will be restricted by the limitations of the
BGP.

Moreover, the BGP is a widely-adopted protocol used in the infrastructure of the
major part of the Internet. It is an inflexible protocol, and it is difficult to incorporate
new changes into the network infrastructure. Therefore, the control plane of the inter-
domain routing must be evolved instead of receiving a revolution. Evolving the Internet
control plane is not an easy task because to be practical and useful, it is almost mandatory
to have backward compatibility with the current technologies (YANNUZZI; MASIP-BRUIN;

BONAVENTURE, 2005).

3.1.3 Complexity introduced by the distributed configuration

The traditional approach for the inter-domain routing is through a fully-distributed path
selection computation in IP routers and that limits the capacity of individual ASs in
terms of the management scalability of path selection (FEAMSTER et al., 2004). Besides, a
network configuration that changes frequently, to suit the business and organization’s de-
sires, is a counterproductive challenge. Thus, the big challenge of distributed configuration
concerns the complexity of keeping a consistent network policy through all routers. The
complexity of managing the configuration in distributed devices to make them operate

47

with the acceptable network behavior is a hard task. Additionally, network management
is a complex activity due to it requiring the enforcement of the high-level administration
network policies in the network.

Hence, a network operator needs to individually visit each network device and perform
low-level instructions/commands (often vendor-specific) on them. Depending on the num-
ber of network devices, carrying out such procedures is slow and error-prone (KREUTZ et

al., 2015), and a local network error can affect all the other networks. For example, for the
famous case of the Pakistan Telecom incident BGP misconfiguration, in which the access
to YouTube in that country was restricted, the company advertised an unauthorized prefix
causing many ASs to lose access to the site. Therefore, the complexity introduced by a
distributed configuration can affect not only the specific network where a misconfiguration
occurs, but also the whole inter-domain routing environment.

3.1.4 Conflicts and uncertainty in inter-domain routing policies

The BGP incorporated routing and policy requirements into one seamless protocol. For
inter-domain routing, each BGP router has its own view of the network state and applies
routing policies based on its local configuration. This led to the concept of the routing
policy, which can be understood as how routing decisions are made to compose the net-
work reachability state (AL-MUSAWI; BRANCH; ARMITAGE, 2016). The difference between
routing and policy control is that the first is more related to an engineering effort and the
second is strictly about business (THAI; De Oliveira, 2013). Both functions are embedded
into the BGP current protocol version, despite the fact that its original design was only
for routing purposes.

Moreover, different types of ASs deploy different types of routing policies into their
domains, and that diversity of policies can eventually lead to conflicted ones. An example
is the application of inbound traffic engineering techniques using the BGP techniques. The
main idea of an AS to control its inbound traffic is to fulfil the AS’ businesses interests.
However, applying the BGP mechanisms for inbound traffic control (such as Selective
advertisement or AS-path prepending (Ning Wang, Kin Hon Ho, George Pavlou, 2008)) does
not guarantee the effectiveness of the desirable results.

In fact, the BGP techniques try to influence the routing decisions of external ASs,
in order to obtain their desired inbound traffic distribution. Hence, a network operator
that uses those approaches leads to a trial-and-error process, since other ASs can easily
ignore or withdraw the BGP suggestions coming through BGP update messages. Indeed,
the problem of inter-domain routing traffic engineering can be seen as a conflicting one,
in which the interactions between ASs can be modeled as game theory and nonlinear
programming (Ning Wang, Kin Hon Ho, George Pavlou, 2008).

Another issue due to conflicts and uncertainty in inter-domain routing policies is to
discover what the network traffic distribution of the inter-domain environment will be

48

when policies between domains have to change. The prediction of how much bandwidth
will be consumed or how the traffic will be distributed when a domain desires to change its
inter-domain routing policies for a given prefix are difficult to estimate (DEUS; CARVALHO;

LEITE, 2015). Therefore, proposals to evolve the control plane of inter-domain routing have
to provide schemes, mechanisms or protocols to overcome the BGP limitations to express
new and refined policies that avoid conflicts and uncertainty in the inter-domain routing
policies.

3.1.5 Coordination among ASs

The inter-domain routing on the Internet is characterized by the use of best efforts for car-
rying network traffic, where thousands of distributed and connected ASs make their own
decisions about how traffic should be routed and forwarded. Besides, it is assumed that
packets can be lost and suffer delays, but the overall network will still to be operational
and functional. Although the resilience requirement is one of the main concerns, other
attributes are desirable for the inter-domain routing environment. For example, some
network applications, such as Voice over Internet Protocol (VoIP), require guarantees
from the network for its appropriate utilization, and to provide end-to-end requirements,
it is fundamental to have some level of coordination among ASs.

In the inter-domain routing, the coordination between ASs depends on the technology
used. In general, each AS provides the manual configuration of BGP router peers to
exchange NLRI. Those configurations are aligned with the routing policies and describe
what is or not allowed to be advertised between neighbor ASs. Thus, the coordination
among domains is often restricted to ASs that have a previous business relationship or
some type of an agreement, such as a customer-to-provider relationship. For example, if
a stub AS requests the verification of the BGP configuration to a transit AS that does
not have any formal relationship with the requesting AS, it is expected that the request
may not be fulfilled by the transit AS (often ignored).

One motivation for improving the coordination among ASs for inter-domain routing
is security (KEVIN et al., 2010, 2010; NARAYANAN, 2009). For example, the difficult to en-
force and track the origin of ASs that advertise a given IP prefix is a security issue that
threatens the inter-domain routing system. Relying on the BGP attributes (e.g., AS-Path
attribute) for such tasks has demonstrated its ineffectiveness over the last few decades.
Thereby, deliberate network attacks (e.g., Man-In-The-Middle attacks (MITM) or Dis-
tributed Denial of Service (DDoS) (SOMANI et al., 2015) attacks), misconfigurations or
even errors (ALSHAMRANI; GHITA, 2016) in a BGP router can cause and affect connec-
tivity problems on the whole Internet. Those issues occur because the standard control
plane of the BGP was not designed to provide security mechanisms for ASs’ trust in the
NLRI advertised on the Internet.

49

3.1.6 Traffic engineering in the inter-domain

The traffic engineering inside an AS is performed using intra-domain routing systems,
which are the processes of routing inside any single AS with the purpose of delivering the
packets as efficiently as possible. To manage intra-domain routing, there are a couple of
routing protocols, for example OSPF, RIP, Enhanced Interior Gateway Routing Protocol
(EIGRP), Intermediate System to Intermediate System (IS-IS). Each protocol has its own
direct mechanisms to reach the goal of applying traffic engineering techniques. However,
inter-domain routing that fulfills traffic engineering requirements (e.g., Quality of Service
(QoS)) is more tricky.

The major design focus of the BGP was a routing protocol capable of applying rout-
ing policies and scale when exchanging connectivity information, once scalability is a
paramount requirement for inter-domain routing protocols. The BGP has proven its scal-
ability and efficiency to impose routing policies over years of deployment. Nonetheless,
ASs that use exclusively the BGP for inter-domain routing cannot receive other types of
routing information other than connectivity. Besides, due to the fact that the BGP is de-
signed to use only one best route to each destination entry (see Section 2.5.2), the control
plane has limited connectivity information for routing in a more optimized route selection
when it is possible.

For example, due to the lack of direct mechanisms to explore the path diversity of the
Internet, ASs have been seeking to improve resilience requirements for their domains, and
a common technique to reach that goal is the ASs splitting their prefixes and advertising
them for different paths. The side effect of this technique is the Internet routing table
growth, which affects the Internet scalability. The Figure 19 presents the Internet routing
table size growth over almost the last two decades, where the number of unique public
ASN has a line growing over the time, see Figure 20.

As is depicted in Figure 21, the Internet is composed mostly of stub ASs. The ex-
haustion of Internet Protocol version 4 (IPv4) and the application of BGP techniques
to provide independence addressing, load balancing and fail-over techniques for multi-
homing ASs are stressing the current inter-domain routing scheme (YANNUZZI; MASIP-

BRUIN; BONAVENTURE, 2005). The exponentially-growing table size on the Internet is a
scalability issue that threatens the future of the Internet, and the consequences are, for ex-
ample, expensive router devices and increased delays for convergence time (BENNESBY;

MOTA, 2017).
On the one hand, BGP does not transport network metrics, such as capacity, band-

width or cost, to create the topology state of its path-vector algorithm. Having those
types of information is crucial to apply traffic engineering optimization tasks over net-
work traffic. On the other hand, flooding inter-domain routing with AS internal network
metrics can impose an overhead in the communication between domains, revealing sen-
sitive operational information (for example, bandwidth utilization in inter-domain links)

50

Figure 19 – The exponential growth of routing table size captured by active BGP entries
at FIB since 1989.

Figure 20 – The unique number of ASs on the Internet from 1997 until 2018. The data
were extracted from <http://www.cidr-report.org/as2.0/>

or detailing their view of the network status. Therefore, exploring the full potential of
Internet path diversity, avoiding the side-effects of TE techniques and having appropriate
tools for managing traffic engineering tasks in the inter-domain environment with secu-
rity and in alignment with the ASs’ business requirements are the trade-offs for the next
generation of inter-domain routing proposals.

http://www.cidr-report.org/as2.0/

51

Figure 21 – The total number of ASs and stub ASs on the Internet from December of 2015
to April of 2018. Source: <http://data.caida.org/datasets/as-relationships/>

3.2 CLASSIFICATION OF EFFORTS FOR EVOLVING THE CONTROL PLANE

This section is dedicated to exploring the classification of efforts to change the inter-
domain control plane. First, each one of the criteria is depicted and explained. After that,
the different works to evolve the control plane of inter-domain routing are classified based
on the criteria chosen.

3.2.1 The criteria
The criteria selected were concepts, approach, control plane placement and explore path
diversity. Each one is depicted in this subsection.

3.2.1.1 Concepts

The concept type used in the proposals is one classification criterion for works to evolve
the control plane. The concept is the set of principles and designs adopted by a work in
the literature to approach the network research problem. Thereby, this survey classifies
two concept types: Traditional and SDN.

• Traditional: The traditional networks are characterized as all the network logic
embedded into network appliances. They have a distributed nature, and to solve a
specific networking problem, they need to act individually on the affected appliances
and apply manual changes in their configurations.

Traditional network protocols have been developed and deployed by combining soft-
ware and hardware into network devices (e.g., Transmission Control Protocol and
Internet Protocol (TCP/IP)). In other words, closed and proprietary network sys-
tems have been produced with long development cycles (usually years) and bring
new network functionalities that frequently require the acquisition of new hardware
with such features. Besides, proprietary boxes often alter the configuration, as well

http://data.caida.org/datasets/as-relationships/

52

as the compatibility of APIs (Application Programming Interfaces) across vendor
(and even across different products from the same vendors (FEAMSTER; REXFORD;

ZEGURA, 2014)). Therefore, legacy and discontinued products make the integra-
tion with new network devices a hard to often impossible task (SCOTT-HAYWARD;

NATARAJAN; SEZER, 2015).

• SDN: SDN is emerging as a new network paradigm (NGUYEN et al., 2016; LIN; HART;

KRISHNASWAMY, 2013; NENCIONI et al., 2016; SILVA; DIAS; SADOK, 2017). SDN pro-
poses a separation between software and hardware in devices (vertical integration).
Thereby, SDN has the potential to enable new technologies, network programma-
bility and the flexibility of functionalities on network devices.

A major feature of SDN is the decoupled control and data plane. This allows a
centralization logic of the control to be fully aware of the network state, enforc-
ing network policies, routing decisions, forwarding information, and so forth. Many
technologies apply the concepts of SDN. The most notable one is the OpenFlow
protocol (MCKEOWN et al., 2008). OpenFlow is an instantiation of the concepts of
SDN (FEAMSTER; REXFORD; ZEGURA, 2014), which is becoming a standard de facto
instance of SDN in the academic and industrial fields (PFAFF et al., 2012).

Touching upon OpenFlow, it provides a programmable interface between the Open-
Flow controller (the network logic) and OpenFlow Switches (forwards packets based
on controller logic). Besides, OpenFlow rules follow the concept of flow, which is a se-
quence of packets sent from a particular source to a particular destination following
a given path (KREUTZ et al., 2015). The OpenFlow rules are capable of identifying
and matching TCP/IP header fields, which can provide fine-grained rules for the
definition of traffic flows inside OpenFlow networks.

3.2.1.2 Approach

The approach can be a new architecture or network protocol to evolve inter-domain
routing systems or both.

• Architecture: This is when a work describes a network system that details its func-
tions and the interactions between its components or other network systems.

• Protocol: This is when a work depicts a set of rules and conventions for operation
and communication between different network entities.

• Architecture/protocol: This includes the architecture or protocol approach.

53

3.2.1.3 Control plane placement

Other criteria adopted are the control plane placement (HELLER; SHERWOOD; MCKEOWN,
2012; BANNOUR; SOUIHI; MELLOUK, 2017), which can be as follows:

• Distributed: Each control plane element is uniquely responsible for composing the
network state and performing the routing computation. Thus, those elements per-
form independent computation about routes and are capable of managing the por-
tion of the network that is directly connected to it.

• Centralized: This approach is based on a single control plane that manages all the
network devices.

• Logically centralized: Although multiple elements to manage the network can exist,
one layer of abstraction aggregates all those elements into a seamless solution.

3.2.1.4 Explore path diversity

The BGP’s destination-based forwarding paradigm indicates that all forwarding decisions
about IP packets will rely exclusively on the IP destination header field. Hence, BGP will
only select one “best” route per prefix when it is constructing the RIB (see Section 2.5 for
more details). Thus, even when there are multiple paths to reach a given network, only one
of them will be selected (HE; REXFORD, 2008; SINGH; DAS; JUKAN, 2015). Unlocking the
full potential of the Internet path diversity (such as resilience or QoS) is a goal of various
previous works in the literature. This work analyzes the following criteria to explore path
diversity:

• Overlay: The control plane creates networks that run independently on top of an-
other network.

• Sourcing routing: The sender has the possibility of specifying the paths that the
packet will take through the network.

• Based on flows: This is the set of network rules that the control plane defines and
includes the sequences of nodes that a given packet has to pass between source and
destination.

• Inter-domain negotiations: The solution provides mechanisms to allow each path to
negotiate to explore the path diversity of the network.

• Alternative routes: Instead of using one single best path per prefix, alternative routes
try to achieve resilience, security or optimize bandwidth utilization for inter-domain
interconnections exploring the availability of multiple paths.

54

• Not Applied (N/A): This is when the work does not provide direct evidence of how
it explores the path diversity. It can occur, for example, when the research is just
an architecture description or other high-level abstraction.

3.2.2 Efforts to evolve the control plane of inter-domain routing

The efforts to evolve the inter-domain routing control plane were classified as follows:
Brand new design; Incremental improvement; and Inter-domain communication.

3.2.2.1 Brand new design

Clean-slate redesigns seem to be a very attractive approach to make a new control plane
for inter-domain routing without the cumbersome backward compatibilities requirements.
For traditional networks, a new protocol for inter-domain routing has the potential to
overcome the limitations and drawbacks of the BGP. Table 2 compiles works with a
brand new design for inter-domain routing using the criteria presented in Section 3.2.1.

Feedback-Based Routing (FBR) (ZHU; GRITTER; CHERITON, 2003) was inspired by
standard engineering practice of designing dynamic systems with feedback control theory.
Thus, instead of using just connectivity information for routing like the BGP, FBR creates
the network state based on connectivity and structural information (such as quality and
state of inter-domain links) received from routers that compose the final solution. FBR
developed and used its own protocol for inter-domain routing, the Wide-area Relay Ad-
dressing Protocol (WRAP). With WRAP, FBR applies a sourcing routing scheme where
the core routers of the Internet should be in charge of propagating structural information
while the routing decisions occur at the routers at the edge of the network, in which they
compute the network routing to achieve the end-to-end performance requirements.

Bandwidth-Aware Routing in Overlay Networks (BARON) (LEE et al., 2008) was a
proposal to overcome the limitations of the default best effort Internet routing. Hence,
overlay routing was used to improve end-to-end performance parameters, especially the
bandwidth requirement. Furthermore, to create a feasible and scalable solution, BARON
explores the Distributed Information Nodes (DIN) database that was used to distribute
the node information across the network. The major drawback of overlay solutions for
evolving inter-domain routing is that they normally imply additional complexity regarding
the overhead that the tunnels introduce in order to be properly managed.

Fujinoki (FUJINOKI, 2008) proposed the Multi-Path BGP (MBGP) to improve the net-
work bandwidth utilization and avoid disconnection when an external link fails. MBGP
was a new network protocol to explore the multipath with a solution based on BGP up-
dates. Furthermore, to overcome a single route for a destination network, the Multipath
BGP (Van Beijnum et al., 2009) proposed a change in the BGP’s path selection and path
dissemination rules to explore the utilization of multiple paths in concurrence without

55

Ta
bl

e
2

–
C

la
ss

ifi
ca

tio
n

fo
r

pr
op

os
al

s
to

ev
ol

ve
th

e
in

te
r-

do
m

ai
n

ro
ut

in
g

w
ith

a
br

an
d

ne
w

de
sig

n.

P
ro

po
sa

l
an

d
au

th
or

s
C

on
ce

pt
s

A
pp

ro
ac

h
C

on
tr

ol
P

la
ne

P
la

ce
m

en
t

E
xp

lo
re

P
at

h
D

iv
er

si
ty

B
ri

ef
de

sc
ri

pt
io

n

FB
R

,
Zh

u,
G

rit
-

te
r

an
d

C
he

ri-
to

n
(Z

H
U

;
G

R
IT

-
T

ER
;

C
H

ER
IT

O
N

,
20

03
)

Tr
ad

iti
on

al
Pr

ot
oc

ol
D

ist
rib

ut
ed

So
ur

ci
ng

ro
ut

in
g

Ed
ge

ro
ut

er
s

ta
ke

ro
ut

in
g

de
ci

sio
ns

ba
se

d
on

re
ac

ha
bi

lit
y

an
d

pr
ob

e
in

fo
rm

at
io

n
of

th
e

ro
ut

es
th

at
co

m
po

se
th

e
ro

ut
in

g
so

lu
tio

n.

BA
RO

N
,

Le
e

et
al

.
(L

EE
et

al
.,

20
08

)

Tr
ad

iti
on

al
A

rc
hi

te
ct

ur
e

D
ist

rib
ut

ed
O

ve
rla

y
A

pp
lie

s
ov

er
la

y
ne

tw
or

ks
to

cr
ea

te
a

ba
nd

w
id

th
-a

wa
re

ro
ut

in
g

sc
he

m
e.

M
BG

P,
Fu

ji-
no

ki
(F

U
JI

N
O

K
I,

20
08

)

Tr
ad

iti
on

al
Pr

ot
oc

ol
D

ist
rib

ut
ed

A
lte

rn
at

iv
e

ro
ut

es
A

ct
iv

e
m

ul
tip

at
h

de
te

ct
io

n
fo

r
im

pr
ov

in
g

ne
tw

or
k

ba
nd

w
id

th
us

ag
e

w
he

n
lin

k
fa

ils
in

in
te

r-
do

m
ai

n
ro

ut
in

g
M

ul
tip

at
h

BG
P,

Be
ijn

um
et

al
.

(V
an

B
ei

jn
um

et
al

.,
20

09
)

Tr
ad

iti
on

al
Pr

ot
oc

ol
D

ist
rib

ut
ed

A
lte

rn
at

iv
e

ro
ut

es
M

od
ifi

es
BG

P
to

us
e

sim
ul

ta
ne

ou
s

m
ul

tip
le

pa
th

s
an

d
av

oi
d

lo
op

s
in

ro
ut

es
.

A
M

IR
,

Q
in

et
al

.
(Q

IN
et

al
.,

20
12

)

Tr
ad

iti
on

al
Pr

ot
oc

ol
C

en
tr

al
iz

ed
So

ur
ci

ng
ro

ut
in

g
C

om
pu

te
pr

im
ar

y
an

d
al

te
rn

at
iv

e
pa

th
st

o
a

gi
ve

n
de

st
in

at
io

n
ba

se
d

on
to

po
lo

gy
in

fo
rm

a-
tio

n
ad

ve
rt

ise
d

by
ne

ig
hb

or
in

g
A

Ss
.

N
IR

A
,

Ya
ng

et
al

.(
YA

N
G

;C
LA

R
K

;
B

ER
G

ER
,2

00
7)

Tr
ad

iti
on

al
A

rc
hi

te
ct

ur
e

an
d

Pr
ot

oc
ol

D
ist

rib
ut

ed
So

ur
ci

ng
ro

ut
in

g
A

llo
w

us
er

s
to

ch
oo

se
th

e
se

qu
en

ce
of

IS
Ps

fro
m

th
ei

r
ne

tw
or

ks
un

til
re

ac
hi

ng
th

e
fin

al
de

st
in

at
io

n.
M

LV
,

C
he

n
et

al
.

(C
H

EN
et

al
.,

20
16

b)

SD
N

A
rc

hi
te

ct
ur

e
an

d
Pr

ot
oc

ol
C

en
tr

al
iz

ed
Ba

se
d

on
flo

w
s

Pr
op

os
ed

a
lin

k
ve

ct
or

al
go

rit
hm

fo
r

co
m

-
po

sin
g

a
ne

w
wa

y
of

re
pr

es
en

tin
g

th
e

in
te

r-
do

m
ai

n
st

at
e

fo
r

SD
N

ne
tw

or
ks

.
RC

S,
W

an
g

et
al

.(W
A

N
G

et
al

.,
20

16
b)

SD
N

A
rc

hi
te

ct
ur

e
D

ist
rib

ut
ed

In
te

r-
do

m
ai

n
ne

-
go

tia
tio

ns
C

us
to

m
er

ne
tw

or
ks

ca
n

ex
pl

or
e

th
e

pa
th

di
-

ve
rs

ity
of

SD
N

do
m

ai
ns

fo
r

pa
rt

ic
ul

ar
ap

pl
i-

ca
tio

ns
.

SD
I,

W
an

g,
et

al
(W

A
N

G
et

al
.,

20
16

a)

SD
N

A
rc

hi
te

ct
ur

e
D

ist
rib

ut
ed

In
te

r-
do

m
ai

n
ne

-
go

tia
tio

ns
Su

pp
or

t
fin

e-
gr

ai
ne

d
in

te
r-

do
m

ai
n

ro
ut

in
g

be
tw

ee
n

SD
N

do
m

ai
ns

.

56

compromising loop-freeness. Although MBGP and Multipath BGP are solutions to in-
crease the exploration of path diversity on the Internet, the proposals were only tested
in simulations, and how the network traffic should be split across multiple paths was not
appropriately discussed.

Another Multipath Interdomain Routing (AMIR) (QIN et al., 2012) was a proposal
for a new AS-level routing scheme to explore the use of concurrent multiple paths on
the Internet. AMIR was designed to compute primary and alternative paths based on
negotiating path provisioning among neighboring ASs. The AMIR scheme explores the
best available paths for forwarding data in a source routing fashion. Thereby, a given
domain can receive multiple paths from its inter-domain partners and choose the best
one, and that has the potential to improve the experience of user applications from the
network perspective.

Regarding the architecture scheme, the work of Yang et al. (YANG; CLARK; BERGER,
2007) presents a new inter-domain routing architecture called New Internet Routing Ar-
chitecture (NIRA) that gives the end-host (users) and stub ASs the ability to choose
the sequence of ISP that their packets can take. On the current Internet, the routes are
chosen by ASs running the BGP without considering the network source to make routing
decisions. The main idea of NIRA was to give the users the ability to choose routes for
the Internet from a source routing approach. Thus, the users could select routes that lead
to improvement of their network performance, reliability or user satisfaction. Although
the NIRA’s objective was to transform the Internet architecture, it requires the adoption
of a new network protocol called the Topology Information Propagation Protocol (TIPP)
to work properly.

Applying the SDN concepts, the Multi-dimension Link Vector (MLV) (CHEN et al.,
2016b) presented a new mechanism to exchange the network view. MLV uses the Open-
Flow protocol (MCKEOWN et al., 2008) in its data plane elements and enables flexible
inter-domain routing in an SDN network federation. MLV is a solution based on a link
vector algorithm for representing the inter-domain state of the network. With the exchang-
ing of the link vector data structure and the fine-grained rules provided by OpenFlow,
the network operator could make decisions regarding paths combining that information.
Despite the fact that MLV was a proposal to evolve inter-domain routing among SDN
networks, the link vector data structure imposes scalability concerns.

The Route Chaining System (RCS) (WANG et al., 2016b) follows the concept of SDN
networks to allow ASs to select routes that do not follow the standard BGP algorithm and
explore the possibility of diversity paths of the Internet. RCS focuses on control traffic
on transit ASs from the AS source to destinations and also requires an inter-domain
communication layer between ASs to enable the multiple and distributed control planes
to be connected to compose the solution.

Software Defined Inter-domain (SDI) routing (WANG et al., 2016a) advances into the

57

inter-domain support of flexible routing policies to forwarding packets, where multiple
fields of the IP packet header could be used for matching (flow-level), instead of just
using the BGP’s destination-based forwarding paradigm. SDI also provides a mechanism
to treat a large number of flow table entries required to represent the forwarding fine-
grained flows. For the control plane placement, the SDI solution keeps each domain with
its own control plane, which computes paths individually. To explore the path diversity
between SDI domains, flow schemes are exchanged.

Summary: Clean-slate proposals are suitable for a very specific application, when used,
and cannot be broadly adopted because they are incompatible with the current control
plane of the Internet. In addition to traditional solutions, a new protocol proposal must be
executed inside network devices or all network devices that utilize such solutions need to
be modified, and such a situation may require CAPEX (CAPital EXpenditure) and OPEX
(OPerational EXpenditure) to be operational. For example, the network staff would need
to be trained for new proposals or protocols, as well as acquire new network devices that
support those clean-slate solutions. For the inter-domain routing system with the SDN
solutions, those whose approaches are not compatible with the BGP have little practical
appeal for wide adoption (such as MLV (CHEN et al., 2016b)), and solutions that propagate
a detailed representation of the network state suffer from scalability limitations.

3.2.2.2 Incremental improvement

Proposals made to incorporate new BGP network capabilities by changing the protocol
behavior, extensions of the BGP or additional control information that is used with the
BGP protocol. Table 4 presents the works related to incremental improvements of inter-
domain routing.

For inter-domain routing, the authors in (FEAMSTER et al., 2004) claimed that the
fully-distributed path selection computation in IP routers limits the capacity of individual
ASs in terms of management scalability of path selection. Thus, they proposed Routing
Control Platform (RCP), a platform that avoids the complexity of fully-distributed path
computation in the inter-domain routing system by centralizing routing control logic.
Due to the architecture network abstraction designed by the RCP, it did not describe
how, in fact, to explore the path diversity of inter-domain routing; hence, these criteria
are not applicable to the RCP. However, the RCP was a precursor of SDN concepts, in
which it is indicated that the control plane of a domain should be built in a centralized
way (FEAMSTER; REXFORD; ZEGURA, 2014).

In addition to centralized routing control and to enable multipath routing on the
Internet (the BGP uses a single best path), Multi-path Interdomain ROuting (MIRO)
(XU; REXFORD, 2006) proposed the use of overlay networks and specific packet tags to
enable multiple paths for inter-domain routing. The idea was to allow a new control
plane logic where ASs negotiate alternative paths, as needed, from their ISP. MIRO

58
Ta

bl
e

4
–

C
la

ss
ifi

ca
tio

n
fo

r
pr

op
os

al
s

to
ev

ol
ve

th
e

in
te

r-
do

m
ai

n
ro

ut
in

g
w

ith
in

cr
em

en
ta

li
m

pr
ov

em
en

ts
.

P
ro

po
sa

l
an

d
au

th
or

s
C

on
ce

pt
s

A
pp

ro
ac

h
C

on
tr

ol
P

la
ne

P
la

ce
m

en
t

E
xp

lo
re

P
at

h
D

iv
er

si
ty

B
ri

ef
de

sc
ri

pt
io

n

RC
P,

Fe
am

st
er

et
al

.(F
EA

M
ST

ER
et

al
.,

20
04

)

Tr
ad

iti
on

al
A

rc
hi

te
ct

ur
e

Lo
gi

ca
l

C
en

tr
al

-
iz

ed
N

/A
C

en
tr

al
iz

at
io

n
of

th
e

ne
tw

or
k

ro
ut

in
g

lo
gi

c
fo

r
in

te
r-

do
m

ai
ns

.

M
IR

O
,

X
u

et
al

.
(X

U
;

R
EX

FO
R

D
,

20
06

)

Tr
ad

iti
on

al
A

rc
hi

te
ct

ur
e

an
d

Pr
ot

oc
ol

D
ist

rib
ut

ed
In

te
r-

do
m

ai
n

ne
-

go
tia

tio
ns

Ex
pl

or
em

ul
ti-

pa
th

su
sin

g
ov

er
la

y
ne

tw
or

ks
an

d
pa

ck
et

ta
gs

.

R
-B

G
P,

K
us

hm
an

et
al

.
(K

U
SH

M
A

N
et

al
.,

20
07

)

Tr
ad

iti
on

al
Pr

ot
oc

ol
D

ist
rib

ut
ed

A
lte

rn
at

iv
e

ro
ut

es
Pr

ot
ec

t
th

e
in

te
r-

do
m

ai
n

lin
ks

ag
ai

ns
t

fa
ilu

re
s

us
in

g
pr

e-
co

m
pu

te
d

al
te

rn
at

iv
es

pa
th

s
YA

M
R

,
G

an
ich

ev
et

al
.(

G
A

N
IC

H
EV

et
al

.,
20

10
)

Tr
ad

iti
on

al
Pr

ot
oc

ol
D

ist
rib

ut
ed

A
lte

rn
at

iv
e

ro
ut

es
A

sc
he

m
e

w
ith

m
in

im
al

ov
er

-
he

ad
fo

r
pr

ot
ec

tin
g

ro
ut

es
be

fo
re

th
eo

cc
ur

re
nc

eo
fa

n
in

te
r-

do
m

ai
n

lin
k

fa
ilu

re
s.

ST
A

M
P,

Li
ao

et
al

.
(L

IA
O

et
al

.,
20

08
)

Tr
ad

iti
on

al
Pr

ot
oc

ol
D

ist
rib

ut
ed

A
lte

rn
at

iv
e

ro
ut

es
It

ex
ec

ut
es

m
ul

tip
le

in
st

an
ce

s
of

th
e

ro
ut

in
g

so
lu

tio
n

to
av

oi
d

th
e

oc
cu

rr
en

ce
of

tr
an

sie
nt

pr
ob

le
m

s,
su

ch
as

bl
ac

k-
ho

le
s

or
lo

op
s.

C
O

IN
,

Si
lv

a
an

d
Sa

do
k

(S
IL

VA
;

SA
D

O
K

,2
01

7)

SD
N

A
rc

hi
te

ct
ur

e
C

en
tr

al
iz

ed
Ba

se
d

on
flo

w
s

O
ve

rr
id

et
he

BG
P

be
ha

vi
or

in
th

e
In

te
rn

et
Se

rv
ic

e
Pr

ov
id

er
st

o
pr

o-
vi

de
in

bo
un

d
tr

affi
c

co
nt

ro
l.

SI
R

EN
,

K
ot

ro
ni

s
et

al
.(K

O
T

R
O

N
IS

;
G

A
M

PE
R

LI
;

D
IM

-
IT

R
O

PO
U

LO
S,

20
15

)

SD
N

A
rc

hi
te

ct
ur

e
C

en
tr

al
iz

ed
Ba

se
d

on
flo

w
s

O
ut

so
ur

ci
ng

ro
ut

in
g

lo
gi

c
to

In
-

te
rn

et
Se

rv
ic

e
Pr

ov
id

er
s.

SD
X

an
d

iS
D

X
,

Fe
am

st
er

et
al

.
(F

EA
M

ST
ER

et
al

.,
20

13
;

G
U

PT
A

et
al

.,
20

16
)

SD
N

A
rc

hi
te

ct
ur

e
an

d
Pr

ot
oc

ol
Lo

gi
ca

l
C

en
tr

al
-

iz
ed

In
te

r-
do

m
ai

n
ne

-
go

tia
tio

ns
O

ve
rr

id
et

he
BG

P
be

ha
vi

or
in

th
e

In
te

rn
et

Ex
ch

an
ge

s
to

de
pl

oy
re

-
fin

ed
ro

ut
in

g
po

lic
ie

s.

Si
lv

a
(S

IL
VA

,
20

18
a)

SD
N

A
rc

hi
te

ct
ur

e
C

en
tr

al
iz

ed
Ba

se
d

on
flo

w
s

A
ne

w
ar

ch
ite

ct
ur

e
to

m
an

-
ag

e
ne

tw
or

k
tr

affi
c

in
th

e
in

te
r-

do
m

ai
n

us
in

g
O

pe
nF

lo
w

ne
t-

wo
rk

s.

59

defaults to the single-path routing provided by the conventional BGP, but allows ASs
to negotiate alternative paths as needed. This provides flexibility where required while
remaining compatible with BGP. Compared to source routing, MIRO gives transit ASs
more control over the flow of traffic in their networks.

An idea to protect the inter-domain links against failures is in the Resilient BGP (R-
BGP) (KUSHMAN et al., 2007) proposal. R-BGP produces failover paths to mitigate the
unavailability of the best path selected from the BGP decision process. Thus, when a link
fails, the failover path was already computed and ready to be used, avoiding the path
exploration time of discovering new paths to networks affected by the failed link. Another
proposal to avoid unavailability when external links fail is the Yet Another Multipath
Routing Protocol (YAMR) (GANICHEV et al., 2010). It is a resilient solution that explores
advertising additional paths that are not contained in the primary path (resulting from the
BGP’s best path algorithm). Thus, each alternative path receives a label that identifies
the links the path needs to avoid. YAMR is deployed in a distributed way, where the
control plane of YAMR can be implemented as an extension of the BGP protocol.

The main contribution of the Selective Announcement Multi-Process (STAMP) proto-
col is executing several BGP instances inside the AS that is used to discover complemen-
tary paths (LIAO et al., 2008). The goal of those complementary paths is established paths
that are not affected by the same set of network events. Thus, the STAMP requires min-
imal modification of the BGP process to become an operational solution and to achieve
an improvement in routing stability compared with the standard BGP protocol.

The integration between SDN technologies and BGP has already been investigated
and implemented by some researchers (KOTRONIS; GAMPERLI; DIMITROPOULOS, 2015;
KOTRONIS et al., 2014). The integration with SDN solutions and BGP networks is vi-
tal to a practical deployment of SDN proposals. In fact, modern SDN controllers have
mechanisms to exchange BGP information with BGP speaker components that behave as
legacy routers. For example, the ONF ATRIUM project proposes a framework to support
BGP by use of the ONOS controller (ONOS, 2017) and Quagga (QUAGGA, 2017). An-
other widely-used SDN controller is the Ryu (RYU, 2016) support, interworking between
OpenFlow and BGP, since a BGP function is installed in the Ryu SDN framework.

The COntrol INbound Traffic (COIN) framework (SILVA; SADOK, 2017) proposed to
evolve the control plane routing system with the OpenFlow protocol. The COIN frame-
work expanded the Ryu SDN controller to provide mechanisms for controlling inbound
traffic from ISP to its multi-homed ASs customers. Thus, the customers could manage how
network traffic reaches them through the use of applications in the SDN controllers’ ISP.
Those applications, when required and allowed, override the BGP behavior of the ISP’
network infrastructure to fulfil the customer’s network traffic management requirements.

With the focus on merging SDN and traditional network concepts, SIREN (KOTRONIS;

GAMPERLI; DIMITROPOULOS, 2015) presented a proposal to integrate the control plane of

60

those two approaches. It combines BGP and SDN principles to improve the convergence
time of the BGP at the inter-domain level. To reach that goal, SIREN allows an AS to
outsource routing functionality and export it to its ISP control. SIREN is an extension of
the previous idea explored in Kotronis et al. (KOTRONIS; DIMITROPOULOS; AGER, 2012).
However, a pitfall of SIREN is that this approach limits the ability of the innovation of
an AS, considering that a domain has to be subordinate to the requirements established
by the outsourcing agreements for managing its network.

Using the idea of overriding the BGP behavior, the proposal of Software-Defined Inter-
net Exchange (SDX) (FEAMSTER et al., 2013) and its extension Industrial-Scale Software-
Defined Internet Exchange (iSDX) (GUPTA et al., 2016) explore the SDN centralized con-
trol inside the Internet Exchange Point (IXP). iSDX allows the reduction of the forwarding
table size of OpenFlow devices used by the IXP participants, the creation of more flexible
forwarding policies and the end-to-end enforcing of QoS. iSDX requires a brokerage sys-
tem to establish multilateral peering; innovation is processed in the Layer 2 scheme (using
Ethernet MAC addresses), and a third party orchestrates traffic between participants.

Silva (SILVA, 2018a) presented a new architecture to manage network traffic in the
inter-domain using OpenFlow networks. The idea of the proposed architecture was to
use BGP and SDN technologies to provide new mechanisms that allow different ASs to
coordinate how traffic should be handled between them using network applications inside
SDN controllers. Thereby, a proof of concept scenario demonstrated that stub ASs can
appropriately manage network traffic towards its domain by controlling the parameters
of those network applications in its ISP. The achieved results indicated the potential of
the idea to apply different strategies for routing in the inter-domain environment.

Summary: Works to incrementally improve the inter-domain routing try to add capa-
bilities to the BGP control plane, such as exploring path diversity for resilience purposes
or increasing the available bandwidth of a domain. One major limitation of the BGP
that is tackled by related works with incremental improvement is searching for multi-
path solutions for inter-domain routing. Thus, instead of using only the one best route
per prefix, the use of alternative routes has the potential to improve resilience against
link failures, bandwidth availability and security (SINGH; DAS; JUKAN, 2015; CVJETIC;

SMILJANIC, 2014; LI et al., 2016).

3.2.2.3 Inter-domain communication

The control communication between different domains is also an important criterion to be
analyzed in related works. Table 6 depicts the related works that evolve the inter-domain
control plane routing using some inter-domain communication mechanism.

For ASs that exchange control information with the BGP protocol, they can use the
BGP attributes for that purpose. For example, an AS may set MED or Communities’ val-
ues to alter how the control plane of other ASs selects routes (KING et al., 2016; J. Heitz et

61

Ta
bl

e
6

–
C

la
ss

ifi
ca

tio
n

of
pr

op
os

al
s

to
ev

ol
ve

in
te

r-
do

m
ai

n
co

m
m

un
ic

at
io

n.

P
ro

po
sa

l
an

d
au

th
or

s
C

on
ce

pt
s

A
pp

ro
ac

h
C

on
tr

ol
P

la
ne

P
la

ce
m

en
t

E
xp

lo
re

P
at

h
D

iv
er

si
ty

B
ri

ef
de

sc
ri

pt
io

n

A
D

D
-

PA
T

H
(W

A
LT

O
N

et
al

.,
20

16
)

Tr
ad

iti
on

al
Pr

ot
oc

ol
D

ist
rib

ut
ed

A
lte

rn
at

iv
e

ro
ut

es
A

llo
w

sB
G

P
sp

ea
ke

rs
to

le
ar

n
an

d
ad

ve
rt

ise
m

or
e

th
an

on
e

pa
th

pe
r

pr
efi

x.
N

or
th

-B
ou

nd
D

ist
rib

ut
io

n
of

Li
nk

-S
ta

te
an

d
T

E
In

fo
rm

at
io

n,
G

re
dl

er
et

al
.

(H
.

G
re

dl
er

et
al

.,
20

16
)

Tr
ad

iti
on

al
Pr

ot
oc

ol
D

ist
rib

ut
ed

In
te

r-
do

m
ai

n
ne

-
go

tia
tio

ns
A

m
ec

ha
ni

sm
to

ex
ch

an
ge

lin
k-

st
at

e
an

d
T

E
in

fo
rm

at
io

n
to

ex
-

te
rn

al
co

nt
ro

lc
om

po
ne

nt
us

in
g

a
ne

w
BG

P
N

LR
Ie

nc
od

in
g

fo
rm

at
.

BG
P

A
dm

in
is-

tr
at

iv
e

Sh
ut

do
w

n
C

om
m

un
ic

a-
tio

n,
Sn

ijd
er

s
et

al
.

(S
N

IJ
D

ER
S;

H
EI

T
Z;

SC
U

D
D

ER
,

20
17

)

Tr
ad

iti
on

al
Pr

ot
oc

ol
D

ist
rib

ut
ed

N
/A

It
tr

an
sm

its
a

sh
or

t
te

xt
m

es
sa

ge
de

sc
rib

in
g

w
hy

a
BG

P
se

ss
io

n
wa

s
sh

ut
do

w
n

or
re

se
t.

R
ou

te
Fl

ow
,

N
as

ci
m

en
to

et
al

(N
A

SC
IM

EN
T

O
et

al
.,

20
11

)

SD
N

A
rc

hi
te

ct
ur

e
C

en
tr

al
iz

ed
Ba

se
d

on
flo

w
s

Pr
ov

id
es

vi
rt

ua
liz

ed
IP

ro
ut

in
g

se
rv

ic
es

ov
er

O
pe

nF
lo

w
en

ab
le

d
ha

rd
wa

re
.

W
E-

Br
id

ge
(L

IN
et

al
.,

20
14

)
SD

N
Pr

ot
oc

ol
D

ist
rib

ut
ed

In
te

r-
do

m
ai

n
ne

-
go

tia
tio

ns
Ex

ch
an

ge
co

nt
ro

l
in

fo
rm

at
io

n
am

on
g

di
ffe

re
nt

SD
N

do
m

ai
ns

.
In

te
r-

SD
N

,
Be

n-
ne

sb
y

et
al

(B
EN

-
N

ES
B

Y
et

al
.,

20
14

)

SD
N

A
rc

hi
te

ct
ur

e
C

en
tr

al
iz

ed
Ba

se
d

on
flo

w
s

A
do

pt
ed

SD
N

ap
pl

ic
at

io
ns

to
ro

ut
e

pa
ck

et
s

in
to

SD
N

do
m

ai
ns

.

A
lto

,
A

lim
i

et
al

.
(A

LI
M

I
et

al
.,

20
14

)

SD
N

Pr
ot

oc
ol

Lo
gi

ca
lly

C
en

tr
al

-
iz

ed
Ba

se
d

on
flo

w
s

A
llo

w
s

ex
ch

an
ge

ne
tw

or
k

re
-

so
ur

ce
co

ns
um

pt
io

n
w

hi
le

m
ai

n-
ta

in
in

g
or

im
pr

ov
in

g
ap

pl
ic

at
io

n
pe

rfo
rm

an
ce

.

62

al., 2017). However, the BGP attributes have limited scope and effectiveness (AL-MUSAWI;

BRANCH; ARMITAGE, 2016), and consequently, new signaling mechanisms between differ-
ent control planes emerged to overcome those restrictions.

To tackle the ability of the BGP advertising just one best route per prefix, ADD-
PATH is an extension to the BGP that uses its capability to advertise, identify and add
multiple paths to a destination (WALTON et al., 2016). The standard behavior of the BGP
produces and advertises only one best-path to a given address prefix. If two NLRIs are
advertised with the same value of the address prefix, the latest advertisement will override
the previous one in the RIB. ADD-PATH allows the advertisement of multiple paths for
the same address prefix without the new paths implicitly replacing any previous ones.
The main idea of this BGP extension is instead of using the address prefix as the primary
identifier of a path, it uses a Path Identifier, in which each path receives a unique identifier,
and that allows multiple values of address prefixes to exist in the RIB.

Exchanging the topology and information about the current state of the network
among routing components are typically used in the interior routing protocol (for ex-
ample, OSPF). Generally, the ASs are not willing to reveal their internal infrastructure
or the business relationship information among other ASs because of security or business
concerns. However, in some scenarios, the link-state or TE information can be shared with
external components of a domain, for example, applications that require end-to-end TE
(this is the case of the SIREN (KOTRONIS; GAMPERLI; DIMITROPOULOS, 2015) proposal
where the external control plane was responsible for computing the routing of the cus-
tomer domain or Multi-Protocol Label Switching Traffic Engineering (MPLS-TE) with
Path Computation Element (PCE). The North-Bound Distribution of Link-State and TE
Information (H. Gredler et al., 2016) describes a mechanism to collect and share link-state
and TE information with external components by a new BGP NLRI encoding format.

Another extension for BGP to improve the communication among BGP neighbors is
the BGP Administrative Shutdown Communication (SNIJDERS; HEITZ; SCUDDER, 2017),
defined in RFC 8203. It tackles the lack of information when a BGP session was reset
or shutdown. Thus, the solution adds a short text message as part of the notification
message of the BGP (REKHTER; LI; HARES, 2006). The purpose of that message is to
notify operators about the event that caused the BGP closure.

RouteFlow (NASCIMENTO et al., 2011) controls and configures flows of OpenFlow
switches using Quagga (QUAGGA, 2017) as the main engine. RouteFlow becomes a proxy
for the OpenFlow controller, where all the network logic follows traditional network pro-
tocols with inter-domain routing executing the BGP protocol. Furthermore, RouteFlow
provides virtualized IP routing services over OpenFlow-enabled hardware, with the main
idea of the proposed architecture adopting a west/eastbound interface to make a deeper
integration of the routing engines of an ISP and its customers.

As recent surveys indicate, there is not yet a standard west/eastbound SDN interface

63

to exchange network control information between different SDN controllers (KREUTZ;

RAMOS; VERISSIMO, 2013; LIN et al., 2014; KREUTZ et al., 2015). Thereby, to allow the
communication between SDN controllers in the inter-domain ecosystem, the authors in
(LIN et al., 2014) proposed an interface for SDN to exchange reachability and topology
information, the WE-Bridge (LIN et al., 2014). The goals were to present a peer-to-peer
mechanism that has to be resilient, secure and exchange network control information for
ASs. WE-Bridge was used by RCS (WANG et al., 2016b) and SDI (WANG et al., 2016a) to
exchange control information between SDN controllers.

To exchange routing information between SDN domains (a domain that deploys SDN
technologies), the Inter-SDN Routing Component (BENNESBY et al., 2014) was proposed
to tackle the problem of integration between the different control planes. Using TCP con-
nections, the new exchange mechanism is inspired by the BGP and incorporates messages
similar to the BGP (OPEN, UPDATE, KEEPALIVE and NOTIFICATION), uses RIBs
(RIB-In, Local RIB, RIB-Out) and simplifies the route selection decision process. The
Inter-SDN claims that the way to solve inter-domain issues is through architectural ab-
straction (SDN applications) and extensibility properties (the network programmability).

Application-Layer Traffic Optimization (ALTO) (ALIMI et al., 2014) (defined in RFC
7285) is the most detailed specification for a standardization of the east/westbound in-
terface for SDN controllers. It provides a network information service with the goal of
exporting resources and parameters to network applications. ALTO is based on abstract
maps of a network that simplify the state of a network and the applications that can
effectively use them.

Summary: Traditional network approaches for inter-domain communications focus on
adding new capabilities or modifications to the BGP’s messages. However, those ap-
proaches require a long cycle (months or years) of development until they reach the
production environment. The SDN and traditional network have one point in common:
those initiatives tackle the challenge of managing a huge number of network devices that
requires coordination among multiple control planes.

In fact, to overcome BGP control plane limitations for inter-domain communication,
SDN approaches seek an integration with BGP and coordination between SDN controllers.
Additionally, SDN network applications require complex network information that is hid-
den through inter-domain routing to allow the proper execution of optimization algorithms
in the network (MUQADDAS et al., 2017).

3.3 LESSONS LEARNED

This section highlights the topic of the control plane for inter-domain routing and provides
some insights into the content in the previous sections.

64

3.3.1 Inter-domain routing limitations

The BGP will never select two, or more, next hops per prefix. It always chooses a unique
best hop per prefix. Different from internal routing protocols (e.g., the Equal-Cost Multi-
Path Routing (ECMP)) where multiple destinations are allowed to a given prefix for
load balancing proposes, the BGP standard protocol does not incorporate this behavior.
Hence, for network operators to maximize the utilization of external links, they have to
split the traffic using a subnet of the prefix, which has the side effect of increasing the
global routing table 1.

The use of multiple links may have the consequence of improving path diversity and
network reliability (CVJETIC; SMILJANIC, 2014). The BGP can filter routes by matching
prefix, prefix-length and/or based on different path attributes that are associated with
each BGP route and are part of an update message. However, the forwarding data plane
elements can only forward the packets based on destination prefixes, once the BGP follows
a destination-based forwarding paradigm (REKHTER; LI; HARES, 2006). Thereby, routers
can apply their routing policies, but, they are limited to the forward decision based on
the destination address of the IP packet.

Routing systems that use source addresses, policy-based routing or are based on appli-
cation requirements cannot be deployed on the current Internet as this is not supported
by the current BGP logic of control. Furthermore, novel network applications may require
some other fields in the packet header to optimize the inter-domain routing path or simply
to distinguish routing by source addresses (CHEN et al., 2016b). Those requirements are
not available with the use of the BGP.

Moreover, it has long been known that the Internet architecture has several issues,
despite the Internet’s unparalleled success. Highly rigid and static, the traditional net-
working infrastructure was initially designed to operate for a particular type of traffic
(text-based content), and that does not satisfy today’s increasingly demanding users that
request interactive and dynamic multimedia streams. Along with the multimedia trends,
the recent emergence of new and innovate technologies, e.g., Internet of Things (IoT),
has been pressuring the inter-domain infrastructure to support those new types of net-
work demands.

Previous works have attempted to solve these architectural deficiencies with brand
new designs or incremental improvements, which have had limited success (RAGHAVAN et

al., 2012). On the one hand, the resistance to these new efforts stems from the requirement
that new solutions must be mature enough and have obvious benefits. In other words, an
AS will not risk its business existence in adopting technologies with unproven scalability,
reliability, interoperability and consistency. Moreover, the current Internet’s infrastructure
took years to reach its current size, and a myriad of ASs is still expecting to reach the
Return on Investment (ROI) from that.
1 See Figure 19

65

On the other hand, many ASs are searching for ways to increase their profit: be
more agile to address business requirement changes, provide a network that reduces cost,
simplifies operations and supports new and innovative products and services. Thereby,
the next generation control plane needs to be more suitable to their business needs, and
it is expected that automation (DATTA et al., 2018) and intelligent network traffic control
systems (FADLULLAH et al., 2017) will play an important role in evolving the inter-domain
routing.

Therefore, to bridge the gap between what is expected and desirable on architectural
evolvability and what is feasibly deployable has to include, among other ideas, modularity
solutions with BGP compatibility and extensive support of automation.

3.3.2 New business relationships

In traditional networks, the agreements to exchange traffic are usually between ASs that
have some physical connection between them, and only in specific places of the Internet is
this condition not applied (for example, IXPs). Thereby, through BGP peers, ASs apply
the BGP configuration that reflects the business relationships previously established and
that limits the types of business relationships between ASs.

Thus, it is expected that ASs will gain more advantages of the next generation of the
control plane for the Internet because this will allow them to control and explore the full
potential of the Internet-wide infrastructure. For example, the observation of CAIDA’s
AS relationship database (CAIDA, 2016) allows the characterization of multi-homed ASs.
Considering the period from December of 2015 to April of 2018, Figure 21 presents the
total number of public ASN in CAIDA’s AS relationship database, as well as the total
number of stub ASs with public ASNs. Therefore, this graph indicates that the majority
of ASs on the Internet are stub ASs, and as discussed, its control of routes is limited by
the physical bound with its neighbor ASs.

Outsourcing the AS routing logic is one way to establish new business relationships on
the Internet (KOTRONIS; DIMITROPOULOS; AGER, 2012). Offloading the routing functions
of a customer AS to an external trusted contractor (e.g., transit AS) can optimize inter-
domain traffic engineering, evolve inter-domain routing and allow the implementation of
collaborative security and troubleshooting schemes.

Another idea is to transit ASs to provide mechanisms to stub ASs that manage its
routes (SILVA, 2018a). A type of relationship where any ASs can establish a relationship
with other non-neighbor ASs is very difficult to achieve in the current Internet architec-
ture, since many network operational tasks (such as manual configuration) are needed.
Furthermore, the relationship must make sense from the business perspective, and secu-
rity mechanisms have to be deployed to guarantee an acceptable level of trust between
the domains.

66

Thus, to establish new business relationships between multiple ASs, a reliable and
secure mechanism has to emerge for inter-domain routing. The manual configuration of
the BGP and the use of TCP (KEVIN et al., 2010) to exchange NLRI are not enough for
the next generation of the control plane for inter-domain routing that has to incorporate
new mechanisms to exchange and establish network relationships through any AS on the
Internet to enable dynamic resources, bandwidth and routing.

Previous works in the field indicate the values of collaboration among ASs with differ-
ent business models (CHANDA; WESTPHAL, 2013; WICHTLHUBER; REINECKE; HAUSHEER,
2015; RAO et al., 2011). For example, exploring a more intensified collaboration between
ASs that produces (e.g., Content Delivery Network (CDN)) and consumes the content
(e.g., Access Networks) can produce gains for all participants (POESE et al., 2010; POESE

et al., 2012). Moreover, with new inter-domain communication mechanisms, it will be pos-
sible to deploy visionary solutions such as an economy plane for the Internet (WOLF et al.,
2014).

3.3.3 SDN as an enabling technology

One of the major features of the BGP is the scalability of the protocol due to its fully-
distributed nature. The size-effect of distributed control of the BGP is causing the protocol
“chattiness” (YANNUZZI; MASIP-BRUIN; BONAVENTURE, 2005) and the long convergence
time (BENNESBY; MOTA, 2017), since every BGP speaker has to generate the global view
of the network state to make decisions about routing. The centralization of inter-domain
routing control can be used to mitigate the BGP issues (KOTRONIS; GAMPERLI; DIM-

ITROPOULOS, 2015; KOTRONIS, 2015; THAI; De Oliveira, 2013). A bird’s eye view of the
centralized solution has the potential to identify misconfiguration, avoid route leaks, ad-
dress the satisfaction and dissatisfaction among ASs (CARDONA et al., 2016) and under-
stand and perform troubleshooting; all sorts of undesired network behavior will be exposed
to the centralized control.

Previous proposals that use exclusively traditional network technologies (YANG; CLARK;

BERGER, 2007; FEAMSTER et al., 2004) required extensions for the BGP or a brand new
network protocol to make them operational. This results in a difficult scenario that is not
easy to deploy or manage for ASs because of CAPEX, OPEX, security and reliability con-
cerns. With SDN technologies, the consistency of the network state is encouraged by the
principle of logical centralization (BANNOUR; SOUIHI; MELLOUK, 2017). The inter-domain
routing centralization has the potential to benefit the application of traffic engineering
techniques, enforcement of routing policies, network troubleshooting and other desirable
features. For example, the proposal of iSDX (GUPTA et al., 2016) uses the SDN centralized
control in an IXP to allow the creation of more flexible forwarding policies and the end-to-
end enforcing of QoS. Thus, the adoption of SDN technologies can solve the management
decentralization problem of the traditional network, as discussed in Chen et al. (CHEN et

67

al., 2016a).
Furthermore, new network services can emerge if the current inter-domain routing

system allows the evolution of the routing control plane. The traditional network mostly
applies the decentralization of the routing decision, and with the advent of SDN concepts,
the logical centralization of the routing control plane may enable inter-domain routing
evolution. Thereby, a good question to pose regarding SDN is the following: Why have
SDN technologies not yet changed the inter-domain landscape? First of all, it is worth
noting that the SDN paradigm is a brand new approach to design networks (although
it inherits ideas from other approaches (FEAMSTER; REXFORD; ZEGURA, 2014)), which
is different from the traditional network that has been the main paradigm to construct
networks since the Internet’s inception. Therefore, the technologies that instantiate SDN
concepts are in their early stages, as they are not mature technologies, and wide adoption
is not expected for the next couple of years.

The most successful SDN technology is the OpenFlow protocol. This protocol has
some hindrance regarding memory and signaling utilization (SILVA, 2017) because Open-
Flow switches usually use TCAM as the main memory to match a flow. That type of
memory is very fast, however having the drawback of being expensive with a high energy
consumption. The fine-grained OpenFlow rules can represent a cumbersome inter-domain
environment where the number of prefixes (or flows) is tremendously high (WANG et al.,
2016a). Flow management is almost mandatory for the real deployment of the OpenFlow
protocol in inter-domain routing, and that problem can be understood as an extension
of the rule placement problem inside OpenFlow networks. A detailed survey about flow
management can be seen in the work of Nguyen et al. (NGUYEN et al., 2016).

Another drawback of the OpenFlow networks is the reliability between controllers and
the data plane elements (OpenFlow switches). Once the control and data plane is decou-
pled, when the control becomes unavailable, the forwarding elements may not continue
to work appropriately. Some works claim that the data plane elements need to have some
capabilities to fix those scenarios, and a mix of control and data plane programmability
can be the key for future network solutions. Ideas for allowing data plane elements to
become more flexible and programmable are in their infancy, such as P4 (BOSSHART et

al., 2014) or OpenState (BIANCHI et al., 2014), and those technologies could resolve the
flexibility and performance of OpenFlow switches.

Therefore, to be practical, an OpenFlow solution must manage the flows (installation,
aggregation and eviction) and maintain a trade-off among rule installation and the signal-
ing overhead between OpenFlow switches and the OpenFlow controller to maintain the
availability of the network (NGUYEN et al., 2016; SILVA, 2018b). For ASs, and especially
ISP, new proposals cannot be adopted for inter-domain routing that represent a risk (reli-
ability, availability, performance, security and other requirements) to their business unless
substantial profit is imminent (KOTRONIS; GAMPERLI; DIMITROPOULOS, 2015).

68

3.4 CONCLUDING REMARKS

There is still much to be done until the BGP control plane is fully replaced as the main
routing core system of the Internet. None of the efforts researched in this work provide
all the features to reach that goal. SDN technologies seem to be a prominent technical
field for new network architectures, and they are receiving much academic and industrial
attention. Beyond the technical requirements, the new proposals to evolve inter-domain
routing must be aligned with network operator business vision.

69

4 THE ARCHITECTURE PROPOSAL

The main idea of this architecture is to exploit the global view of the network provided
by the SDN and exchange control information between different ASs to manage how
inter-domain traffic should be performed. The Figure 22 depicts the high level view of
the architecture context. Once the AS has SDN’s capabilities, it can exchange control
information with its clients to discover what is the best way to deliver network traffic.
Thus, instead of just relying on BGP mechanisms to execute traffic engineering tasks, a
new control channel can be used for that purpose. However, to an SDN be able to provide
new capabilities and to create a new logic inside the SDN domain, the network controller
must be capable of enabling new types of functionalities.

Figure 22 – The context of the architecture.

Thus, this Chapter is dedicated to presenting the architecture to control traffic in
inter-domain routing using SDN technologies. An overview of the controller that enables
the architecture functionalities is presented in Section 4.1, where a description of each
component is done. Section 4.2 tackles the challenges of manage flows inside an SDN
network. After, in Section 4.3, the dynamic of the proposed architecture is presented,
depicting how the architecture establishes a peering session between domains, how it can
explore the multipaths in the inter-domain environment and avoid creating loops during
the path diversity exploration. The Section 4.4 is dedicated to the description of OpenFlow
applications to manage network traffic using the proposed architecture. The last section,
Section 4.5, provides the concluding remarks of the chapter.

4.1 THE CONTROLLER FOR AN ARCHITECTURE TO EVOLVE INTER-DOMAIN ROUT-
ING

The architecture to evolve inter-domain routing requires to use of SDN technologies to
export new capabilities not currently available in BGP. Hence, this thesis developed an
SDN controller called COntrOL Traffic (COOL)1. The overview of the SDN controller is
depicted in Figure 23, with the three planes of the SDN architecture. The presentation of
the controller will following the bottom-up approach.
1 Publicly available in: <https://github.com/walberjose/COOL>

https://github.com/walberjose/COOL

70

Figure 23 – The proposed architecture described by the application, control, and data
planes of the SDN architecture.

In the Data Plane, the OpenFlow Switches and BGP Routers connect to the Control
Plane using OpenFlow and BGP Protocols. Thus, the controller has the OpenFlow proto-
col capabilities and a modified BGP Speaker that provides access to all Adj-RIB-In (see
Section 2.5) between all BGP neighbors.

Because the BGP selection process selects only one best next hop per prefix, some
changes are required in the BGP Speaker component to allow extract maximum informa-
tion from the BGP Peers (details in Figure 24). Once with the routing information learned
from the neighbors, COOL can allow new types of SDN application to take decision about
how to select paths. And after the decision made by the SDN application, the paths are
installed in the Data Plane using OpenFlow rules by the OpenFlow Speaker component.

Figure 24 indicates the flow of information between the BGP Speaker component and
the COOL controller. First, all BGP peers establish a connection to the BGP Speaker

71

Figure 24 – The flow of information inside the BGP Speaker component.

component. Those peers can be internal or external. Let us assume that all those peers
are enumerated with a number. Thus, the routes learned from each peer advertisement
can be presented by 𝑅𝑖, where 𝑖 is a unique identifier for the peer. Denoting 𝑃𝐼𝑁 an
abstraction of the input policies of the domain that deploys the proposed architecture,
the set of received input routes is represented by:

𝐼𝑅 =
𝑛∑︁
1

𝑅𝑖 − 𝑃𝐼𝑁

Then the Topology Management component exclude all invalid routes, including fault
AS path or fault prefixes, using the Routes Validator component. As the result, the set of
valid routes is produced, 𝑉 ′

𝑟 . Considering that the BGP selection process is represented
by the function 𝐵𝑃 , then 𝑉 ′

𝑟 is used as the input for 𝐵𝑃 . The result is 𝑃 = 𝐵𝑃 (𝑉 ′
𝑟), where

𝑃 is a set of all primary routes (best ones). Thus 𝑃 composes the Local RIB database of
the domain. To advertise the output routes, 𝑅′

𝑛, for others 𝑛th BGP Peers, those peers
receive the outcome of 𝑅𝑖 = 𝑃 − 𝑃𝑂𝑈𝑇 , where 𝑃𝑂𝑈𝑇 is the output policies defined for
each peer.

The COOL uses the global network view and extracts as much routing information as
possible about prefixes advertised from its peers. However, to allow new network capabil-
ities, it is natural to extend the SDN controller. Thereby, COOL has its components for
embracing the proposed architecture: Topology Management, Flow Management, Domain
Controller and COOL Interface.

72

4.1.1 Topology Management

This component is responsible for acquiring physical network information, such as link and
switch identifications and features (e.g., supported link rates at each switch port, etc.).
It also registers all switches that enter and leave the SDN network. If the architecture
uses the OpenFlow protocol for the SDN network, then all OpenFlow Switches Enter
and OpenFlow Switches Leave events are notified by the controller. Those type of events
provides a list of switches in the network, as well as the links between them. Thereby, the
Topology Management component can create a digraph2 data structure representing the
underlaying physical infrastructure.

To ensure backward compatibility with BGP, Topology Management module is also
capable of acquiring NLRI information (AS-Path length, network prefix, etc.) by accessing
information in the BGP Speaker component. Therefore, both local and external routing
information about prefixes reachability is available and then them are combined to build
a global topology state of the network.

When using OpenFlow, Topology Management component also receives information
about the states of the OpenFlow table (information inside the OpenFlow switches). Thus,
the Topology Management module monitors the underlying infrastructure to maintain its
topology consistent with network events. When a link suffers a failure, it is expected
that the Controller receives information on its new state from the OpenFlow switch via
OFPT_PORT_STATUS message notification (PFAFF et al., 2012). Any topology change
must be communicated to the Flow Management module for processing.

To improve the information about the topology of the network inside the Topology
Management component, others protocols (different of OpenFlow protocol) can be enable
by the controller. For example, to create a logical abstraction of the representation of the
physical topology a discovery protocol can be instantiate to make the representation of
the topology always updated, for example, the Link Layer Discovery Protocol (LLDP),
or for fast recovery from link failures, Bidirectional Forwarding Detection (BFD) can be
enabled and used (see Subsection 2.3.1 for more details).

It is notable that the network administrator of the domain can include some manual
configuration that describes the hosts and networks. This is useful for connecting the BGP
peers inside and outside of the domain. Traditionally, the BGP configuration is executed
manually, and this component allows this type of procedure.

4.1.2 Flow Management

To allow network traffic from one AS to another, it is required two types of routing system:
intra-domain routing, which is the routing process inside the single autonomous system;
and inter-domain routing, which is the process of routing traffic between ASs. Because
2 A digraph, or directed graph, is a graph that made up of a set of vertices connected by edges, where

the edges have a direction associated with them.

73

COOL uses BGP to manage reachability of external networks, and it is based on flows,
COOL requires a scheme to allow packets to reach network borders.

In an OpenFlow network, the controller is responsible for creating new flows into the
network (SILVA, 2017). Thus, COOL classifies two types of OpenFlow switches: border;
and internal. A border is an OpenFlow switch that has at least one link connection to
another AS, and an internal is a switch that all links are connected to internal or border
switches.

Thus, in COOL, a flow is defined as a tuple: (𝐼𝑃_𝑠𝑟𝑐, 𝑀𝑎𝑠𝑘_𝑠𝑟𝑐, 𝐼𝑃_𝑑𝑠𝑡, 𝑀𝑎𝑠𝑘_𝑑𝑠𝑡),
in which 𝐼𝑃_𝑠𝑟𝑐 represents the IP prefix of a network source with its network mask
𝑀𝑎𝑠𝑘_𝑠𝑟𝑐, and 𝐼𝑃_𝑑𝑠𝑡 is the IP prefix of destination with its network mask 𝑀𝑎𝑠𝑘_𝑑𝑠𝑡.
That definition of flow is used to create flows between internal switches. Thus, a sequence
of packets sent from a particular source to a specific destination will following a given
path, where the packets with the same the IP header fields belongs to a flow.

For a connection between border switches, a tunnel is established. Whether an external
link suffers a failure, all the traffic through that link will be redirected. COOL uses a tag
to identify a connection between any two border switches, with the requirement of the
value of a tag must to be unique. The main idea is to avoid the naive approach where all
the OpenFlow switches in a flow have the tuple installed, and the use of a tag mitigates
the memory consumption of the network (see Subsection 4.4.2 for more details).

Because BGP policies have to reflect business requirements of an AS, Flow Manage-
ment is subject to the routing domain policies passed by the Domain Controller module
to avoid routing policies conflicts. Besides, the Flow Management component computes
the paths to be installed into the OpenFlow network of the domain that uses the pro-
posed architecture. It sends instructions to the OpenFlow Speaker component to install
the OpenFlow rules in the OpenFlow switches.

Flow Management also uses information about network topology and hosts (stored
and available by Topology Management) to compute flows inside the OpenFlow network.
The Section 4.2 is dedicated to explain how this computation effort is performed.

4.1.3 Domain Controller

This component is responsible for applying or repealing the policies of the domain that
deploys the proposed architecture. Thus, if an AS app needs to explore multiple AS paths
for a given prefix, the Domain Controller will allow, or not, the use of multiple next hops
for that prefix.

To reach that goal, Domain Controller has two modules: the Policy Management that
is responsible for avoiding two (or more) AS apps creating rules that go against each
other or the AS policies; and Routing Registry is responsible for store and query Routing
Registry (RR) information about routes.

74

Furthermore, Policy Management can verify if routing decisions based on the policies
provided from the domain are valid or not. This avoids two (or more) AS apps making
conflicted decisions about the routing, each AS app is associated with a customer AS,
and each customer has their own prefixes registered inside the Routing Registry. Thereby,
verifying whether a given prefix belongs to a customer AS is conducted through querying
the Routing Registry database and, with that information, it is possible to avoid, or
discover, if the routing objective of one AS app negatively affecting the routing objective
of the other.

The SDN data plane technologies (e.g. OpenFlow protocol) provide various fields for
matching packets including different TCP/IP protocols (SILVA, 2018b). The proposed ar-
chitecture can explore the capabilities provided by the data plane technology, and it defines
the routing policies based on the 4-tuple: {𝑃𝑠𝑟𝑐, 𝐴𝑆𝑁𝑠𝑟𝑐, 𝑃𝑑𝑠𝑡, 𝐴𝑆𝑁𝑑𝑠𝑡}, where 𝑃𝑠𝑟𝑐 and 𝑃𝑑𝑠𝑡

represent the source and destination prefixes, respectively, and 𝐴𝑆𝑁𝑠𝑟𝑐 and 𝐴𝑆𝑁𝑑𝑠𝑡 the
ASN for the source and destination of a given domain, respectively. Therefore, the 4-tuple
can provide new types of fine-grain routing policies for inter-domain routing with different
granularity (* is a wildcard symbol):

• Policy-based on destination ASN: the pattern for matching this type of policy can
be reachable using the tuple {*, *, *, 𝐴𝑆𝑁𝑑𝑠𝑡}. Thus, all network traffic that matches
with this rule will be redirected to the 𝐴𝑆𝑁𝑑𝑠𝑡 domain;

• Policy-based on destination prefix: {*, *, 𝑃𝑑𝑠𝑡, 𝐴𝑆𝑁𝑑𝑠𝑡}. It is assumed that the prefix
𝑃𝑑𝑠𝑡 must belong to the 𝐴𝑆𝑁𝑑𝑠𝑡 and each 𝑃𝑑𝑠𝑡 is advertised by only one AS to this
policy become valid. Note that this type of policy is equivalent to the application
of BGP routing policies. To keep the consistency and backward compatibility with
BGP, the “best” route for prefix 𝑃𝑑𝑠𝑡 (assigned by the BGP Decision Process of BGP
Speaker component) of BGP is used as the default behavior of the proposed mech-
anism and must produce the lowest priority rules to guarantee that more specific
rules will be select (whether exist);

• Policy-based on source ASN: {*, 𝐴𝑆𝑁𝑠𝑟𝑐, *, 𝐴𝑆𝑁𝑑𝑠𝑡}. With this policy, network traf-
fic coming from different source ASs can be required to be routed differently. This
new type of routing policy offers a better granularity than routing policies of BGP
(destination-based);

• Policy-based on source prefix: {𝑃 ′
𝑠𝑟𝑐, 𝐴𝑆𝑁𝑠𝑟𝑐, *, 𝐴𝑆𝑁𝑑𝑠𝑡}. This type of policy is, in

fact, a specific case of the policy based on source ASN, where the prefix 𝑃 ′ is explicit
informed;

The set of actions that a given AS can take using in the proposed architecture are:

• Drop: discards packets that matches the routing policies;

75

• Forward: accept the packets and forward to one of the AS neighbors.

Implementing the new types of routing policies requires a data plane with new capa-
bilities and, hence, forward traffic based on other TCP/IP fields, instead of just the IP
destination value. When a domain that uses the OpenFlow protocol (MCKEOWN et al.,
2008), which is an SDN technology, or other network programmable appliances for the
data plane elements, it can enable the potential to evolve the network logic.

4.1.4 COOL Interface

The COOL Interface is used to overcome the BGP limitations regarding control messages.
New types of control messages can be created and to be exchanged between different do-
mains. Besides, this component allows communication between the ASs, others controllers
and exchanges control information about prefixes to customers of the domain. It helps
the Domain Controller to perform some control tasks as well.

The communication should use a secure channel (e.g., Hyper Text Transfer Protocol
Secure (HTTPS)) to send and receive messages in readable format (e.g. JavaScript Ob-
ject Notation (JSON)). And it should also be responsible for exchanging Authentication,
Authorization, and Accounting (AAA) messages to Customer AS. Although the security
requirements should play an important role in a production deployment of the proposed
architecture, the focus of this thesis is on functionalities that SDN can bring to a new
architecture for inter-domain routing, and not develop a product, or a complete security
solution for the proposed architecture. Therefore, the few messages of the COOL Interface
are:

• Get RIB: receives information about the valid and available prefixes;

• Set Multipath: informs the paths that the packets should take for an specific appli-
cation of Customer AS;

• Get Flow: receives statistics about the installed flows in the data plane. It also pro-
vides information to the Applications regarding multiple paths and the bandwidth
utilization for a given prefix, and verifies the quantity of network traffic destined for
the prefixes of the Customer AS ;

Others messages are used for the execution of new routing application. Thereby, the
COOL Interface provides information to Applications about the routes. For example, if
a change in the RIB occurs (e.g., a withdraw prefix network) the Domain Controller
component notifies the Applications through COOL Interface, and then, the applications
can update to the new the network state.

76

4.1.5 Applications

The Applications is the place where the new logic for the inter-domain routing can occur
and, thus, the control of traffic is executed inside the application plane of the proposed
architecture. A customer AS initializes the AS app to manage the network prefixes of the
AS that deploys the proposed architecture with the goal of instructing how traffic will
be handled. The AS app also receives the network status from the proposed architecture.
For example, the bandwidth utilization of each prefix owned by the Customer AS, or the
available paths to reach its networks. With that information, the network operation of
the Customer AS can send control information to configure how much traffic each path
will receive for each prefix in use.

The AS app is responsible for exploring the multiple paths available for a given prefix if
it is required. The information about those paths come from the BGP Speaker component
that learned all the prefixes advertised by the AS neighbors through external BGP peering.
Furthermore, with the information about multiple paths available, the Customer AS can
indicate how the traffic will be treated and distributed to those paths.

The BGP protocol uses just one “best” next hop for each prefix even if other paths to
those prefixes are valid and available. BGP is not a multipath protocol, and one good rea-
son for that is that exploring multiple paths on the Internet can affect the performance of
Transmission Control Protocol (TCP) connections, the most used transport level protocol
in the Internet (AGER et al., 2012).

Thus, distributing packets belonging to a connection through multiple paths can result
in poor performance of high-level protocols of the TCP/IP stack (LIU et al., 2014b) (e.g.,
reordering packets of TCP (SINGH; DAS; JUKAN, 2015)). In particular, it is often the case
on the Internet, which connects heterogeneous types of network appliances and protocols,
that the network suffers from different delays among paths. To avoid the problem of
exploring path diversity on the Internet, the proposed architecture guarantees that the
association of the source and destination of the IP packets will be forwarded through
the same path. Then, a 2-tuple composed of the IP source prefix and the IP destination
prefix is adopted to define a flow in the OpenFlow network. Therefore, for a given TCP
connection, it will use the same path during its time life (if the path is valid and available).

Aligned with the 2-tuple flow definition, the AS app of a customer AS can also check
the health of each path in use by sending control messages to multiple paths. Thus, if an
inter-domain path suffers a problem (such as link failure) or a transient loop occurs, the
AS app will be notified not to use that problematic path.

4.2 MANAGING FLOWS

Traditional networks evolved through embedding software into the network hardware in
the form of protocols that work in a distributed matter. With SDN, the controller is

77

responsible to manage and control the flows and to keep the network available in the
presence of failures.

To fulfill this challenge, it was developed, in this work, an engine for manage flows
inside the SDN network. The piece of software responsible for compute flows is the Flow
Management component of COOL controller. COOL controller also executes a scheme to
avoid inconsistency in flow creation that mitigates the problem of flow creation for stateful
SDN applications, and the HYbriD Resilience MechAnism (HYDRA)’s algorithm, which
is a new resilience mechanism for SDN network.

4.2.1 A scheme to avoid inconsistency in flow creation

This subsection provides one solution for the problem of multiple Packet-In events that
can cause inconsistency in the network view of OpenFlow applications. Thus, as previously
presented (as shown in Subsection 2.3.3), the OpenFlow stateful applications (an applica-
tion that stores the network state) require to receive the consistency of network changes.
Multiple Packet-In packets sent to the controller can alter the logic behind stateful appli-
cations because a typical OpenFlow application relies, for example, on Packet-In events
to create new network flows. Therefore, this Subsection proposes a scheme for avoiding
inconsistency in OpenFlow stateful applications caused by multiple flow requests.

The conceptual scheme for mitigation of multiple Packet-In events is depicted in Fig-
ure 25, and it required the network operator to define the Definition of flow to be used
in the OpenFlow network. Those flows can be composed of actions (e.g. forward, drop,
and modify) and a match pattern that can use any subset of a packet’s header field of the
protocols supported by the OpenFlow specification (ONF, 2017).

The Definition of flow allows the controller to create flows in advance (Proactive
flow creation (SILVA, 2017)) into the switches. Thus, before packets matching those rules
arrive in the network, the switches will already have information about how to handle the
incoming traffic.

After the flow definitions, it is required that the Priority of flow is given. For example,
the network operator can define that IP packets carrying TCP protocol should be more
important than IP packets carrying User Datagram Protocol (UDP) (or the other way
around). The goal is to prioritize some flows in order to speed up the OpenFlow table
lookups, once the priority of flows is the first criteria to be observed during table lookups
in OpenFlow. Thus, Priority of flow has to indicate those flows that will receive priority,
as well as rate limits if it is applicable.

Also, all flows defined by the network operator is tightly adjusted by the “max_len”
value, whose goal is to avoid waste of bandwidth between switches and controller. This
adjustment uses Size of flows present in Table 8, which shows that the sum of header
fields size for composing a flow is used to set the “max_len” value of rules that generates
a Packet-In. Thereby, only the quantity of bytes indicated in the size of “max_len” for

78

Figure 25 – Conceptual scheme for mitigation of multiple Packet-In events.

Table 8 – Size of “max_len” for each definition of flow.

Header fields
Value of

“max_len”
Definition of Flow

Ethernet 14 bytes (In_port,Ethdst)
Ethernet+ARP 42 bytes (In_port,ARPdst)

Ethernet+IP+ICMP 50 bytes (IPsrc,IPdst,IPproto)
Ethernet+IP+TCP 54 bytes (IPsrc,IPdst,IPprot,TCPsrc,TCPdst)
Ethernet+IP+UDP 42 bytes (IPsrc,IPdst,IPprot,UDPsrc,UDPdst)

each definition of flow is used in a Packet-In packet, ignoring the other bytes belonging
to the incoming packet.

All information about flows are sent to the Flow Engine that populate the flow tables of
the OpenFlow Switch through Flow-Mod messages of the OpenFlow protocol. For example,
if the flow received a low priority and a rate limit, the controller will instruct the switch
to create an entry in the Table Meter for that flow. The Flow Engine is also responsible
for storing the flows created and active in the switches.

Furthermore, in the controller, it is required a modification of the Event Engine (see
Figure 25), which belongs to the controller framework and manages the Packet-In events.
Algorithm 1 presents the modification of Event Engine. The algorithm requires the topol-
ogy information of the network, represented in a digraph 𝐺(𝑉, 𝐸), where 𝑉 are the

79

Algorithm 1: Algorithm of Event Engine
Require: 𝐺(𝑉, 𝐸), 𝑓𝑙𝑜𝑤𝑠 and 𝑜𝑝𝑖
Ensure : Only one event generates a change in state of a stateful application, even

in the presence of multiple Packet-In
1 if get_flow(𝑜𝑝𝑖) NOT in 𝑓𝑙𝑜𝑤𝑠 then
2 send_to_applications(𝑜𝑝𝑖) ;
3 else
4 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 ← get_actions(𝑜𝑝𝑖,𝐺,𝑓𝑙𝑜𝑤𝑠);
5 apply_actions(𝑎𝑐𝑡𝑖𝑜𝑛𝑠,𝑜𝑝𝑖) ;

switches, and 𝐸 represents the set of links between each switch. It also requires that
all the flows already created are stored in the data structure 𝑓𝑙𝑜𝑤𝑠, and the representa-
tion of Packet-In is 𝑜𝑝𝑖. In Line 1, it checks if the 𝑜𝑝𝑖 is not already in 𝑓𝑙𝑜𝑤𝑠. If this is the
case, then the 𝑜𝑝𝑖 is a brand new solicitation and needs to be treated for an application.
Otherwise, the algorithm performs the actions that the application defined for that flow
(lines 4-5). In line 2, the Event Engine sends the event to the applications that require
to receive the Packet-In packet in a controlled way. The final consideration is that the
Algorithm 1 must be deployed in a non-preemptive code inside the controller, to avoid
inconsistency in the manipulation of 𝑓𝑙𝑜𝑤𝑠 data structure.

4.2.2 A hybrid resilience mechanism for OpenFlow networks

This section presents the algorithms for the HYDRA that is a hybrid resilience mechanism
used for creating flows inside OpenFlow networks for the COOL controller. This resilience
mechanism is used for the controller to manage flows inside the SDN network. Thus,
HYDRA has two phases. In the first phase, a given path is protected by the additional
OpenFlow rules with OpenFlow Fast Failover Group Table (FF) (see Section 2.2.2 for
more information about the FF technique). When a link (or a set of links) fails, the
second phase kicks in and restores the consistency state of the network with the goal of
optimizing all paths affected by the link failure. The next subsection presents an example
that explains and clarifies the phases of this hybrid resilience mechanism.

4.2.2.1 An example

An example to applying the HYDRA is in the simple topology depicted in Figure 26, in
which the source hosts (S1, S2 and S3) communicate with each destination host (D1, D2
and D3). In Figure 26a, the path [A, B, C] is the primary path for flows from source to
destination hosts. The first phase of the resilience mechanism applies a protection rule
from Node B to Node C (path [B, A, D, E, F]). Thus, if any of the links A-B or B-C
suffers a failure, the backup path will be used automatically with the OpenFlow feature
of FF. That way, path [A, B, C] is protected.

80

Figure 26 – HYDRA dynamics before and after a link failure. (a) HYDRA before the link
B-C failure. Path [A, B, C] is protected. (b) HYDRA after the link B-C fail-
ure (proactive protection). (c) HYDRA after the protection and restoration
phases are applied.

If a link that belongs to the primary path suffers a failure, the protected path will
be used, as indicated by Figure 26b, in which the link B-C is no longer available. As
a consequence, the packets will travel through a backup path until reaching Node C
(destination node). Thereby, even if the link A-B fails, all the flows from source hosts
will continue to experience reachability to destination hosts because the backup path also
protects that link. This is the basic idea of HYDRA’s protection phase, where the main
goal is to make the paths highly available.

Nonetheless, the use of a backup path can result in a non-optimal network utilization
because it is possible that the flows will travel a longer distance than necessary after a link
failure. A restoration phase is fundamental to make all the paths optimal again. Often,
the shortest path algorithm is used to create optimal paths (in which the path length is
the metric), but an optimal path can be defined with any metric that a network operator
stipulates.

A resilience mechanism deployed in the network hardware, such as FF, can lead to an
inconsistent global view of the network because when a link failure occurs, all multiplex
actions of FF are performed inside the OpenFlow switch without the consent of the
controller (SILVA, 2018b). In this situation, the controller must recover the current network
state.

Different from previous works that adopted specific protocols for discovering a link
failure (e.g., Bidirectional Forwarding Detection (BFD) (D. Katz and D. Ward, 2010b)), HY-
DRA uses the OpenFlow messages OFPT_PORT_STATUS sent by OpenFlow switches
to the controller. Those messages contain the identification of the switch and port af-
fected by the failure. Therefore, the controller acquires information necessary to recover
the network state consistency and perform corrections to non-optimized flows.

Once the controller is aware of the a link failure, it starts a restoration phase to recover
the consistency of the network state and makes flows that are using backup paths optimal

81

again. Figure 26 presents the scheme for the restoration of the path between Nodes A and
C, after the link B-C failure. That concludes HYDRA’s final phase.

4.2.2.2 Notation and concepts

For brevity, first, the notation used is summarized in Table 9, and an individual description
for each item is provided. The notation is used to compose the HYDRA algorithms,
and those are detailed in the next Subsections.

Table 9 – Notation adopted.

Notation Description

𝐺(𝑉, 𝐸)
The network topology, where 𝑉 denotes the set
of nodes (switches) and 𝐸 the set of edges (links
between switches)

𝑂
Set of endpoints (source and destination of
a flow)

𝐼 A set of path identifiers
𝑠 Source endpoint (source a flow)
𝑑 Destination endpoint (destination a flow)

𝑔𝑒𝑡_𝑝𝑜𝑟𝑡(𝑣, 𝑑)
Function that returns the output port for
destination 𝑑 of switch 𝑣

𝑀𝑇 (∙, ∙)
Function that returns the match for a given
argument

𝑜𝑓𝑝𝑠 OpenFlow packet port status event
𝑜𝑝𝑜 OpenFlow packet output event

𝑠𝑒𝑛𝑑(∙, ∙) Function that sends an OFPFlowMod packet.
𝐹 All flows installed in the network.
𝑣 An OpenFlow switch
𝑙 A failed link
|| ∙ || Provides the number of elements in a given set

Thus, before delving into the algorithms, some concepts need to be defined. One of
them is the concept of endpoints. These are places inside an OpenFlow network where
the network operator has some interest for packets to reach that location (notation 𝑂;
see Table 9). For example, an endpoint can be a host, a switch port connected to a load
balancer appliance, the ingress/egress of the backbone network, and so forth. Thus, an
endpoint consists of two elements. The first one is the source, where the packets are
identified as belonging a specific flow, and the destination, the place where the packets

82

are released from the flow. Furthermore, the path connecting the source to the destination
is composed using a tunnel.

This work models an OpenFlow network as a directed graph (or digraph) 𝐺(𝑉, 𝐸),
where 𝑉 is a set of nodes (e.g., OpenFlow switches) and 𝐸 a set of edges (e.g., net-
work links). For the creation of the network state, the OpenFlow controller usually uses
flood messages to discover the topology and maintain the graph data structure, 𝐺(𝑉, 𝐸).
Thereby, with the topology of the OpenFlow network known, the OpenFlow controller
has an instance of the data structure of 𝐺 and can manage the flows inside the network.
One way to reach that topology information is fetching OpenFlow switches with con-
trol packets to discover the origin and destination of the links, switches and hosts (see
Section 2.3.1).

4.2.2.3 HYDRA protection phase

The protection phase of HYDRA is responsible for distributing the primary and backup
paths through the network. Algorithm 2 depicts the protection phase of HYDRA, where
it is assumed that the network topology is known, the set of endpoints and a set of
path identifiers is provided. Between lines 1 and 6, the primary path is computed using
Dijkstra’s algorithm 3 (line 2). Afterwards, a unique identification for primary and backup
paths is reserved from the set of identifiers (lines 3 and 4). Those identifications are used in
the construction of the paths using the OpenFlow with FF, and be a unique identification
for each flow is a requirement of the protocol. After that, the identification of each flow
is assigned to be installed for primary and backup paths (lines 5 and 6).

Algorithm 2: The algorithm of HYDRA for the protection phase.
Require: The network topology 𝐺(𝑉, 𝐸), set of endpoints 𝑂, set of identifiers 𝐼.
Ensure : For all endpoints, install primary and backup paths between source and

destination.
1 for (𝑠, 𝑑) in 𝑂 do
2 𝑃𝑠𝑑 ← Find the shortest path from 𝑠 to 𝑑 on 𝐺 with Dijkstra’s algorithm;
3 𝑝𝑟𝑖𝑚𝑎𝑟𝑦_𝑖𝑑 ← get_an_available_tag(𝐼,𝑑) ;
4 𝑏𝑎𝑐𝑘𝑢𝑝_𝑖𝑑 ← get_an_available_tag(𝐼,𝑑) ;
5 install_primary_path(𝑃𝑠𝑑,𝑝𝑟𝑖𝑚𝑎𝑟𝑦_𝑖𝑑) ;
6 install_backup_path(𝑃𝑠𝑑,𝑏𝑎𝑐𝑘𝑢𝑝_𝑖𝑑) ;

For installation of the primary path, Algorithm 3 is used. The algorithm requires the
network topology, the identifier selected for the primary path, the switches that compose
the endpoints and the path between those endpoints. Lines 1–4 initialize the variables, and
then the installation of the primary path occurs between lines 5 and 10. The basic idea is
to send for each OpenFlow switch in the path between the endpoints, the OFPFlowMod
3 An algorithm for finding the shortest paths between nodes in a graph.

83

Algorithm 3: Install primary path.
Require: The network topology 𝐺(𝑉, 𝐸), an identifier 𝑖, the definition of flow 𝑑,

the action to be applied 𝑎𝑐𝑡𝑖𝑜𝑛, the switch source 𝑠𝑤_𝑠𝑟𝑐, the switch
destination 𝑠𝑤_𝑑𝑠𝑡, and the 𝑃𝑠𝑑 path from 𝑠𝑤_𝑠𝑟𝑐 to 𝑠𝑤_𝑑𝑠𝑡

Ensure : Install a primary path between switch source and switch destination
using the selected identifier

1 𝑖𝑛_𝑝𝑜𝑟𝑡← 0;
2 𝑜𝑢𝑡_𝑝𝑜𝑟𝑡← 0;
3 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 0;
4 𝑝𝑎𝑡ℎ_𝑙𝑒𝑛𝑔𝑡ℎ ← ||𝑃𝑠𝑑||;
5 for 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 < 𝑝𝑎𝑡ℎ_𝑙𝑒𝑛𝑔𝑡ℎ− 1 do
6 𝑜𝑢𝑡_𝑝𝑜𝑟𝑡← 𝑔𝑒𝑡_𝑝𝑜𝑟𝑡(𝐺, 𝑃𝑠𝑑[𝑐𝑜𝑢𝑛𝑡𝑒𝑟], 𝑃𝑠𝑑[𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1]);
7 𝑚𝑎𝑡𝑐ℎ←𝑀𝑇 (𝑖, 𝑑);
8 𝑜𝑝𝑜← 𝑐𝑟𝑒𝑎𝑡𝑒_𝑜𝑝𝑒𝑛𝑓𝑙𝑜𝑤(𝑜𝑢𝑡_𝑝𝑜𝑟𝑡, 𝑚𝑎𝑡𝑐ℎ, 𝑎𝑐𝑡𝑖𝑜𝑛);
9 𝑠𝑒𝑛𝑑(𝑜𝑝𝑜, 𝑃𝑠𝑑[𝑐𝑜𝑢𝑛𝑡𝑒𝑟]);

10 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1 ;

packet instructing the match (definition of flow 𝑑 and the identification of flow 𝑖), the
output port and the action.

Regarding the variable 𝑎𝑐𝑡𝑖𝑜𝑛, the "FORWARD"4 value must be executed by the algo-
rithm, once Algorithm 3 represents a flow creation process. If 𝑎𝑐𝑡𝑖𝑜𝑛 is not "FORWARD",
the first switch in the path, 𝑠𝑤_𝑠𝑟𝑐, receives an instruction to "DROP" the packets that
match the 𝑚𝑎𝑡𝑐ℎ variable, and hence blocking the packets belong to that flow. For sim-
plicity, this process of blocking packets was not included and is not shown in Algorithm 3.

Once the primary path is installed, the installation of the backup paths take place.
The Algorithm 4 installs the backup paths for each switch in the primary path. The idea
here is the use of Proactive install rules that avoid any unavailability in the primary path.

4.2.2.4 HYDRA restoration phase

After the HYDRA protection phase, the HYDRA resilience mechanism begins the restora-
tion phase. Algorithm 5 depicts the restoration phase of the HYDRA approach. This
phase is important to avoid the underutilization of flow entries in the OpenFlow network.
Thereby, the algorithm uses the 𝑜𝑓𝑝𝑠 packet with the information of the link failure.
Between lines 1–5, the involved switches are identified, the topology is updated with the
failed link, and the affected flows are discovered.

Then, once the current network state is known, then new paths for the affected flows
can be installed. Lines from 6–10 depict this process for each flow affected by the link
failure.

4 The proposed architecture adopted only two types of actions: forward and drop. See Subsection 4.1.3
for more information.

84

Algorithm 4: Install backup paths.
Require: The network topology 𝐺(𝑉, 𝐸), an identifier 𝑖, the definition of flow 𝑑,

switch source 𝑠𝑤_𝑠𝑟𝑐, switch destination 𝑠𝑤_𝑑𝑠𝑡, 𝑃𝑠𝑑 path from
𝑠𝑤_𝑠𝑟𝑐 to 𝑠𝑤_𝑑𝑠𝑡

Ensure : Install backup paths between switch source and switch destination using
the selected tag.

1 for 𝑠𝑟𝑐_𝑛𝑜𝑑𝑒,𝑑𝑠𝑡_𝑛𝑜𝑑𝑒 in 𝑃𝑠𝑑 do
2 𝑒 ← get_edge(𝐸,𝑠𝑟𝑐_𝑛𝑜𝑑𝑒,𝑑𝑠𝑡_𝑛𝑜𝑑𝑒);
3 𝐺𝑓 ← 𝐺(𝑉, 𝐸 − 𝑒);
4 𝑃 ′

𝑠𝑑 ← Find the shortest path from 𝑠𝑟𝑐_𝑛𝑜𝑑𝑒 to 𝑑𝑠𝑡_𝑛𝑜𝑑𝑒 on 𝐺𝑓 with
Dijkstra’s algorithm;

5 𝑖𝑛_𝑝𝑜𝑟𝑡← 0;
6 𝑜𝑢𝑡_𝑝𝑜𝑟𝑡← 0;
7 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 0;
8 𝑝𝑎𝑡ℎ_𝑙𝑒𝑛𝑔𝑡ℎ ← ||𝑃 ′

𝑠𝑑||;
9 for 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 < 𝑝𝑎𝑡ℎ_𝑙𝑒𝑛𝑔𝑡ℎ− 1 do

10 𝑜𝑢𝑡_𝑝𝑜𝑟𝑡← 𝑔𝑒𝑡_𝑝𝑜𝑟𝑡(𝐺, 𝑃 ′
𝑠𝑑[𝑐𝑜𝑢𝑛𝑡𝑒𝑟], 𝑃 ′

𝑠𝑑[𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1]);
11 𝑚𝑎𝑡𝑐ℎ←𝑀𝑇 (𝑖, 𝑑);
12 𝑜𝑝𝑜← 𝑐𝑟𝑒𝑎𝑡𝑒_𝑜𝑝𝑒𝑛𝑓𝑙𝑜𝑤(𝑜𝑢𝑡_𝑝𝑜𝑟𝑡, 𝑚𝑎𝑡𝑐ℎ, 𝑎𝑐𝑡𝑖𝑜𝑛 =′ 𝐹𝑂𝑅𝑊𝐴𝑅𝐷′);
13 𝑠𝑒𝑛𝑑(𝑜𝑝𝑜, 𝑃 ′

𝑠𝑑[𝑐𝑜𝑢𝑛𝑡𝑒𝑟]);
14 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1;

Algorithm 5: The algorithm of HYDRA for the restoration phase.
Require: The network topology 𝐺(𝑉, 𝐸), set of 𝐹 , set of identifiers 𝐼 and 𝑜𝑓𝑝𝑠
Ensure : The flows will follow the shortest path

1 𝑙← 𝑔𝑒𝑡_𝑓𝑎𝑖𝑙𝑒𝑑_𝑙𝑖𝑛𝑘(𝑜𝑓𝑝𝑠);
2 𝑠𝑟𝑐_𝑛𝑜𝑑𝑒,𝑑𝑠𝑡_𝑛𝑜𝑑𝑒← 𝑔𝑒𝑡_𝑠𝑤𝑖𝑡𝑐ℎ𝑒𝑠_𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑(𝐺, 𝑙);
3 𝑒 ← get_edge(𝐸,𝑠𝑟𝑐_𝑛𝑜𝑑𝑒,𝑑𝑠𝑡_𝑛𝑜𝑑𝑒);
4 𝐺𝑓 ← 𝐺(𝑉, 𝐸 − 𝑒);
5 𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑_𝑓𝑙𝑜𝑤𝑠← 𝑔𝑒𝑡_𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑_𝑓𝑙𝑜𝑤𝑠(𝐺, 𝑙, 𝐹);
6 for 𝑓𝑙𝑜𝑤 in 𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑_𝑓𝑙𝑜𝑤𝑠 do
7 𝑠𝑟𝑐, 𝑑𝑠𝑡← 𝑔𝑒𝑡_𝑓𝑙𝑜𝑤(𝐺, 𝑓𝑙𝑜𝑤);
8 𝑃 ′

𝑠𝑑 ← Find the shortest path from 𝑠𝑟𝑐 to 𝑑𝑠𝑡 on 𝐺𝑓 with Dijkstra’s algorithm;
9 𝑝𝑟𝑖𝑚𝑎𝑟𝑦_𝑖𝑑 ← get_an_available_identifier(𝐼,𝑑);

10 install_primary_path(𝑃𝑠𝑑,𝑝𝑟𝑖𝑚𝑎𝑟𝑦_𝑖𝑑);

4.3 DYNAMIC OF THE PROPOSED ARCHITECTURE

This section describes the dynamic of the proposed architecture. First, it presents how a
peering session is established between a domain with the proposed architecture and others
traditional ASs, in Subsection 4.3.1.

Once the peering is established and the network traffic information is exchanged,
the architecture can explore the multi-paths of the inter-domain environment, in Sub-
section 4.3.2. However, to avoid the creation of loops during the multi-path exploration,

85

the dynamic of the proposed architecture also provides a loop avoidance mechanism, in
Subsection 4.3.3.

4.3.1 Establishing a peering session

In a traditional TCP/IP network, when an AS has to set up a BGP peering with an other
AS, a network operator requires to configure BGP routers with the peering information,
such as ASN, IP addresses, whether multi-hop and others. Because COOL is a solution
for OpenFlow networks with BGP compatibility, it is required to provide some peering
information for the BGP Speaker component.

In Figure 27 depicts an example of how a peering session can be established. The basic
peering information requires:

• peer router IP: the IP unicast value of the remote peer;

• ASN: AS number of the remote AS;

• switch_id: an unique identifier of a border OpenFlow switch;

• port_of_switch: the port that connects a border switch to the peer remote router;

• IP_controller: the IP unicast value of the OpenFlow controller;

• router_id: the identification of the OpenFlow controller.

Figure 27 – An example of peering in COOL.

Thus, for neighbor peering, all configuration for peering between a neighbor and the
domain that deploys the proposed architecture has to be provided by the network operator
in the same way as the traditional BGP configuration. The OpenFlow controller has to
be informed about the port where the BGP Speaker component will establish the peer

86

session for a given neighbor. In addition to the port information, the ASN of the foreign
AS and the IP address of the remote router have to be provided. Furthermore, if the IP
address of an AS is a multihop, then the number of networks between the BGP Speaker
and the router of the neighbor AS has to also be provided as by default, all IP packets
from the BGP Speaker to a router neighbor is set with the value 1 in the Time To Live
(TTL) IP field for an external BGP connection.

Backing to the Figure 27, once the peering is established, the OpenFlow controller
knows what prefixes where learned from each peer. For example, supposing that a prefix
from AS:65520 in the Figure 27 was learned through port 1 of switch s4. Thus, if that
network prefix is the preferable, the main path to reach AS:65520 will outbound AS:65510
domain using port 1 of switch s4.

Then, if everything goes as planned, and the BGP peering is established, the exchange
of NLRI between the peers can be made. The NLRI will compose the Adj_RIB_IN, and
after applying the Import Policies, the LOCAL_RIB is populated. The LOCAL_RIB
is generated by executing the BGP decision process. The RIB information is useful to
the AS that deploys the proposed architecture as it can provide the other ASs multiple
paths for traffic management that passes through the infrastructure. Thus, the proposed
architecture explores the RIB information and provides more management control to
customer ASs using inter-AS communication.

Furthermore, if the AS that deploys the proposed architecture allows a customer to
manipulate the traffic in its network infrastructure, it will always be limited to the subset
of prefixes learned and valid in the LOCAL_RIB. Besides, these prefixes have to be in
the Routing Registry database and assigned to the same customer that requires traffic
management. That is, the remote control of a customer will be limited to only a subset
of the LOCAL_RIB, and a customer AS cannot change the forward network behavior of
other prefixes that are not registered to it.

For the exchange control messages between a customer and a provider of the proposed
architecture, it establishes a secure channel between the ASs (e.g., Virtual Private Network
(VPN) or Hyper Text Transfer Protocol Secure (HTTPS)), which connects the AS that
provides the services (for example, an ISP) to its customers’ ASs. With a security channel,
the network operator in the customer AS can exchange management information and
monitor the traffic utilization destined to its network infrastructure.

Thus, the AS app of a customer AS will be responsible for manipulating how traffic
is managed. The organization of the proposed architecture is aligned with one of the
SDN principles, where the logic of the network occurs in applications executed over the
controller. The AS app receives the BGP network state (extracted from the RIBs) for the
valid prefixes and the network bandwidth usage for each path associated with each prefix.

When the network operator in the customer site receives the network state from its
AS app, it will be able to configure the parameters of the execution of the AS app. This

87

allows the network operator to manage how traffic of the inter-domain network will reach
its network infrastructure. For example, the customer AS can send control information
that describes how to load balance the traffic that passes through the AS that deploys
the architecture, once it has access to the available bandwidth usage information for each
prefix and the available and valid routes.

The default forwarding actions are to use the BGP behavior. With the information
on how to treat the traffic, the AS that deploys the proposed architecture can apply the
new control for a given network prefix and then override the BGP default behavior when
required. Furthermore, both the customer and provided ASs can monitor the network
traffic to verify if it has fulfilled the customer’s requirements. Any changes in the BGP’s
view of the network that deploys the proposed architecture is rapidly notified to the
customer via COOL Interface to take the appropriate action.

4.3.2 Exploring multi-paths

The architecture is capable of verifying if the multi-path of the domain can be explored.
This is done by sending control packets through the paths learned and verified if those
are valid and available. If this is the case, then the path can be used to forward traffic.

Suppose the example in the Figure 28. The stub AS A advertises the prefix 1.1.0.0/16
to its ISP X, then X propagates that prefix to its neighbors. The same process occurs
with stub AS C that advertises prefix 2.2.0.0/16. Eventually all ASs in the topology have
the routes to reach AS A and C.

Figure 28 – Example of multipath scenario, in which circle represents an AS and the links
between them the relationships.

Because the BGP follows the destination-based forwarding paradigm and considering
the relationship between the domains in the Figure 28, a natural BGP path for traffic
from AS C to AS A is created with the path be [C-Z-Y-X-A] (CARDONA et al., 2016).
If ISP Z deploys the architecture proposed, AS X can become a new customer of ISP
Z. In this case, the new Customer to Provider relationship can enable AS X to request

88

shifting traffic from stubs AS C and A. Thereby, a subset of traffic from AS C to A can
be forward to use path [C-Z-W-X-A] and the remain of traffic forward the BGP natural
path, [C-Z-Y-X-A]. Besides, to avoid loops during the path diversity exploration, a loop
avoidance mechanism is deployed in the architecture.

4.3.3 Loop avoidance

BGP only advertises its “best” path routes for its peers, hence, hiding the potential of
exploring the path diversity. With a central entity peering with the domain’s neighbors
allows the AS (especially the ISPs) to know every possible exit and the routes reachable
through its links. Those paths can produce a loop, and consequently decreasing the per-
formance of the network. Loops can occur inside a network or during connections between
networks.

For a network inside the AS, the loop avoidance system relies on the path computation
based on information acquired from the SDN network. Multiple works already had been
done about how to compute paths without loops in the context of SDN networks (NGUYEN

et al., 2016; SILVA, 2018c). Indeed, the Section 4.2 depicts approaches for creation of flows
inside the SDN networks that avoid loops, once it uses algorithms loop-free proved. Thus,
the challenge for loop avoidance belongs to the inter-domain environment.

Because the proposed architecture is backward compatible with BGP, it relies on the
BGP loop prevention mechanism to avoid loop during the application of the new types
of routing policies in the inter-domain for single path approaches. Thus, BGP Speaker
analyzes the BGP AS-Path attribute of a prefix learned, and if it finds the ASN of the
domain in the AS-Path, it will ignore that prefix. That is the standard behavior of BGP to
avoid loops for a single path, and possible transient loops can occur during the convergence
of BGP using the AS-Path mechanism.

However, to explore multiple paths in simultaneous, it is fundamental to develop an-
other loop avoidance mechanism. For example5, supposing the topology representing some
connected ASs as in Figure 29, if the AS 4 deploys the architecture and a customer AS 0
requires the explore the multi-paths for its domain, AS 4 could forward packets to AS 0
using paths: [5-2-0], [1-0], and [3-1-0]. Supposing the network state of the Figure 29 and
that one of the neighbors of AS 4 (AS 5, AS 3 or AS 1), decides to prefer send traffic to
AS 0 through AS 4. Let’s say that it is AS 3. In this case, AS 4 will not use the path
[3-1-0] because AS 3 will forward traffic back, and then, forming a loop between AS 4 and
AS 3. To avoid this situation AS 4 must verify if the packets sent for each path will reach
the destination.

The verification, if some paths are available or not, can be done by sending some
control packets from the AS that deploys the proposed architecture to the customer AS.
5 This example is based on a case scenario presented in the work of Qiu, Wang and Gao (QIU; WANG;

GAO, 2007).

89

Figure 29 – Transient failure scenario in the inter-domain routing. The symbol “>” indi-
cates the preference route to reach AS 0.

Thereby, AS 4 can send control packets to AS 0 for verifying the availability of path [3-1-0]
and if those packets come back to the BGP Speaker or they are not acknowledged by the
customer AS, in the case AS 0, then the path becomes unavailable to be used.

4.4 APPLICATIONS OF THE PROPOSED ARCHITECTURE

Some OpenFlow applications were conceived to test the applicability of the proposed
architecture: three types of reactive load balancers and a scheme to protect primary
routes.

4.4.1 Reactive Load Balancers

As explained by Silva (SILVA; DIAS; SADOK, 2017), there are different strategies for SDN
load balancers. However, in this work, it was decided to develop three types of strategies
for the load balancers to be used as the control application in the AS app:

1. Reactive Random Load Balancer (RLL);

2. Reactive Round-Robin Load Balancer (RRLL);

3. Reactive Round-Robin Load Balancer with a Threshold (RRLLT).

These three strategies use the reactive flow creation approach (SILVA, 2017) where
the flows are created on-demand in the response of a packet that requires a new flow.
The baseline for the comparative will be the default behavior of the BGP that uses the
“best” next hop to the forward packets. The remainder of this Subsection is dedicated to
depicting each approach.

90

4.4.1.1 Reactive Random Load Balancer with Random strategy (RLL)

A reactive load balancer creates flows on-demand. Consequently, when there is no Open-
Flow rule installed in the data plane’s devices that match against the incoming packet,
the controller is notified. Thus, the work of a reactive load balancer with random selects
a path from a list of valid and available paths by submitting that list to a Random algo-
rithm. Then, it randomly selects one of those paths to compose a new rule for that flow.
Algorithm 6 depicts the RLL.

Algorithm 6: Reactive Random Load Balancer
Require: The list of valid and available next hop to a prefix 𝐿, and a random

function that selects an item from a list 𝑟𝑎𝑛𝑑𝑜𝑚.
Ensure : Select a next hop for a given destination.

1 next_hop ← 𝑟𝑎𝑛𝑑𝑜𝑚(𝐿);
2 return next_hop;

4.4.1.2 Reactive Round-Robin Load Balancer (RRLL)

Instead of a Random algorithm, a RRLL applies the Round-Robin algorithm to the list
of available and valid paths. The Round-Robin scheduling algorithm is the simplest and
easiest to be deployed once the first element in the list is selected and added in the tail of
that list. This process is continuously repeated following the list in a circular order and
selects each path in the list equally. Algorithm 7 presents the RRLL scheme.

Algorithm 7: Reactive Round-Robin Load Balancer
Require: The list of valid and available next hop to a prefix 𝐿.
Ensure : Select the next hop for a given destination.

1 next_hop ← 𝐿.𝑝𝑜𝑝(0);
2 𝐿.𝑎𝑝𝑝𝑒𝑛𝑑(next_hop);
3 return next_hop;

4.4.1.3 Reactive Round-Robin Load Balancer with Threshold (RRLLT)

The RRLLT is an extension of the aforementioned strategy where a threshold of band-
width usage is provided for each path in the list. Thus, if the bandwidth of a path over-
comes this threshold, the algorithm must consider the associate path congested and not
able to be used for flow creation until the usage becomes lower than the threshold value.

Algorithm 8 depicts the RRLLT algorithm. It requires a list of valid and available next
hop to a given prefix (multi-path), the best next hop for the prefix (extracted from the
BGP decision process), the outbound links contains the network state of bandwidth usage
(main metric of the algorithm) and a threshold. Thereby, for each valid and available next

91

hop in the list, the algorithm will verify if the next hop is congested or not by compare
it against the threshold. If the next hop in evaluation is less than the threshold, then
Round-Robin algorithm is applied and the next hop selected is used. However, all the
outbound links for the a given prefix is congested, i.e., the bandwidth usage is greater
than the threshold, then the best next hop is used. The idea of selecting the best next
hop as the default next hop for a given prefix is just to define a criteria to the situation
when all outbound links for that prefix is congested. Others criterion can be adopted to
change the behavior of RRLLT (see in future works section in Section 6.2).

To be clear, all the already created flows assigned to the path that has overcome the
threshold will continue to use that path, even when the path state is congested. This
decision will avoid degradation in the transport level protocols that require keeping the
state of established connections.

Algorithm 8: Reactive Round-Robin Load Balancer with Threshold
Require: The list of valid and available next hop to a given prefix 𝐿, the BGP

best next hop 𝑏𝑒𝑠𝑡 for the prefix, and the bandwidth usage list of
outbound links in the domain 𝐷, a threshold for bandwidth utilization 𝑡.

Ensure : Select the next hop for a given destination.
1 length_of_L ← 𝑔𝑒𝑡_𝑙𝑒𝑛𝑔𝑡ℎ(𝐿);
2 for next_hop_id in length_of_L do
3 if 𝐷[next_hop_id] ≤ 𝑡 then
4 next_hop ← 𝐿.𝑝𝑜𝑝(𝑛𝑒𝑥𝑡_ℎ𝑜𝑝_𝑖𝑑);
5 𝐿.𝑎𝑝𝑝𝑒𝑛𝑑(next_hop);
6 return next_hop;

7 return best;

4.4.2 Protecting primary routes

For brevity, the notation is summarized in Table 10 with an individual description of
each item. This notation is used to compose the protection scheme for primary routes.
Furthermore, this work models an OpenFlow network as a directed graph (or digraph)
𝐺(𝑉, 𝐸), where 𝑉 is a set of nodes (e.g., OpenFlow switches) and 𝐸 a set of edges (e.g.,
network links).

The topology of the OpenFlow network is assumed to be known, and the OpenFlow
controller has an instance of the data structure of 𝐺. One way to reach that topology
information is fetching switches with OpenFlow control messages to discover the origin
and destination of the switches, links, and hosts.

Once with the topology state, to protect the network traffic against external link
failures, it is required that the the solution generate additional flows to protect the primary
routes. The idea here is to use proactive rules into the OpenFlow network infrastructure
and let the OpenFlow switches handle the connectivity restoration when an external link

92

Table 10 – Notation adopted

Notation Description

𝐺(𝑉, 𝐸)
The network topology, where 𝑉 denotes the set
of nodes (switches) and 𝐸 the set of edges (links
between switches)

𝑠(∙, ∙)
The function which returns the border switch of
a given prefix.

𝑅 The set of routes in the Local RIB of BGP Speaker.
𝑠𝑤𝑠 The border switch where the primary path ends.
𝑠𝑤𝑑 The border switch where the alternative path ends.
𝑆∙,∙ A path from source ∙ to destination ∙.
𝑡∙ A tag identification for the tunnel.

𝑓𝑓∙ A tag identification for the FF.

Algorithm 9: Protecting algorithm
Require: The network topology 𝐺(𝑉, 𝐸), the local RIB 𝑅, and the set of

alternative routes 𝐴.
Ensure : For all primary route, calculating a tunnel path from the OpenFlow

switch port where the route outbound to an alternative outbound link of
another border switch, and installing the new tunnel.

1 for 𝑟 in 𝑅 do
2 𝑠𝑤𝑠 ← 𝑠(𝑟, 𝑃) ;
3 if 𝑟 in 𝐴 then
4 𝑠𝑤𝑑 ← 𝑠(𝑟, 𝐴) ;
5 𝑆𝑝,𝑎 ← Find the shortest path from 𝑠𝑤𝑠 to 𝑠𝑤𝑑 on 𝐺 with the Dijkstra’s

algorithm;
6 𝑡𝑖𝑑 ← get the tunnel identification;
7 𝑓𝑓𝑖𝑑 ← Create an unique identify for the FF;
8 Construct a tunnel path using 𝑆𝑝,𝑎, 𝑡𝑖𝑑 and 𝑓𝑓𝑖𝑑;

is not available. Thus, all traffic will be redirected to an alternative outbound link, and
all prefixes that are reachable to the domain through more than one external link will be
recovered.

The algorithm for protecting routes is depicted in Algorithm 9. It requires the set
of primary routes 𝑅 that is extracted from the Local RIB component (see Figure 24),
the network topology 𝐺 extracted from the Topology Management module and the set of
alternative routes 𝐴 extracted from the Valid and Available Paths component inside the
Topology Management module. With those information, for each primary route 𝑟 of the
local RIB 𝑅, and an alternative path is computed to connect the switch border of the
primary path to the switch border of the secondary path.

93

4.5 CONCLUDING REMARKS

This Chapter tackles the network control in inter-domain routing and proposed a new
architecture to manage traffic to multi-homed ASs where an AS using SDN technologies
that can provide new services and allowing its customers to apply new network manage-
ment tasks into its infrastructure. It also explores the challenges of managing flows inside
the SDN domain, where multiple algorithms are depicted to warranty the resilience for
the flows in the SDN network.

The dynamic of the proposed architecture is detailed, including how to establish a
peering session between domains, how the architecture explores the multi-paths available
in the inter-domain environment, and how it avoids loops during its execution. Finally, the
Chapter finished describing three applications to be used in the evaluation of the proposed
architecture. The next chapter explores the evaluation of the architecture depicted in this
chapter.

94

5 EVALUATION

This evaluation Chapter is divided into two parts. The first part is dedicated to evaluating
the COOL controller that includes: resilience mechanisms for OpenFlow networks; and,
avoiding inconsistency in flow creation. The second part is dedicated to evaluating the
proposed architecture that includes: manage inter-domain traffic using a proof of concept
scenario; the protection against external link failure using the FF protection mechanism
of OpenFlow; and, an investigation about traffic exchange messages. And, at the end of
each part of this Chapter, and discussion about the evaluation made is performed.

5.1 EVALUATION OF THE COOL CONTROLLER

The COOL controller is based on the Ryu controller (RYU, 2016) 1 and publicly available
on the site: <https://github.com/walberjose/COOL>. COOL uses the OpenFlow 1.3 ver-
sion for its OpenFlow Speaker and version 4 of the BGP protocol in the BGP Speaker.
Furthermore, multiple modules were developed to embrace the requirements of the pro-
posed architecture depicted in Chapter 4. Therefore, this section evaluates the COOL
controller regarding resilience mechanisms and the mechanism to avoid inconsistency in
stateful applications.

5.1.1 Resilience mechanisms for OpenFlow networks

The COOL controller implements multiple resilience mechanisms for OpenFlow networks.
For performance evaluation, this subsection is dedicated to analyze the HYDRA (pre-
sented in details in Subsection 4.2.2 of Section 4.2) against the PP, LR, PR and LFR
approaches. The SFC can be used as a reference in the experiments once it is a sim-
ple way to create flows in an OpenFlow network. Just remembering, PP is a protection
resilience mechanism (that creates backup rules in advance), and LR, PR and LFR are
restoration approaches (see Section 2.4 for more detail about those resilience mechanisms).
The description of those algorithms, as well as the literature reviewed are in Section 2.4.2.

Two computers were used to emulate the OpenFlow network scenarios. The first com-
puter was a dedicated machine with Ubuntu Version 17.04, 8 CPU cores with a clock
of 2.20 GHz and 8 GB of RAM. This computer was used as the OpenFlow controller
with Ryu (RYU, 2016). The second computer has Ubuntu Version 14.04.4 with 3 GB
of RAM and a dual-core CPU with a 2.4-GHz clock. This second machine executed
Mininet (MININET, 2016) for the network emulation environment. A physical Ethernet
cable of 100 Mbps connected the computers in crossover mode.
1 Ryu is a component-based SDN framework written in Python language.

https://github.com/walberjose/COOL

95

Figure 30 – Topologies adopted in this work. (a) The representation of the Abilene topol-
ogy. (b) The representation of a WAN Google topology.

The dataset topology from Internet Topology Zoo (TOPOLOGY-ZOO, 2017) was used.
Topology Zoo is an ongoing project that collects network topologies’ information from
around the world, and it is very useful for researchers to access information from real-world
topologies. The 2005’ Abilene topology was adopted to apply the experiments of HYDRA.
Once, with the data network information, the network topology was reproduced inside
the emulation environment of Mininet (MININET, 2016). The topology used has 11 nodes
and 14 links. Figure 30a presents the Abilene topology representation. The bandwidth
links were 1000 Mbps with zero delay value and none packet loss during the execution of
the experiments using the Mininet.

Besides the Abilene topology, another topology adopted was from the Wide Area
Network (WAN) Google topology. The Google topology was extracted from the work
of (JAIN et al., 2013). It was composed of 12 nodes and 18 links, and its representation
is in Figure 30b, and adopting the same configuration of Mininet used in the Abilene
topology’s links. Therefore, all topologies adopted in this work are in Figure 30.

5.1.1.1 Number of flows entries

One way to evaluate HYDRA, executing in COOL, is using the total number of possible
flow entries required for connecting two endpoints in the OpenFlow network. The flow
entries can be understood as the rules used in the flow table of an OpenFlow switch.
Thereby, the flow entries consumed for the approaches measured were: SFC (where a flow
connects an endpoint in the topology); PP; and HYDRA protection phase (for details
about the last two approaches, see Section 2.4.2).

The endpoints (composed of a source and a destination) were randomly selected in one
of the topologies and the number of flow entries in each experiment (counting all network
rules installed in the OpenFlow switches) executed was measured more than 300 times.
After that, the average of the number of flow was computed. Besides, for the Abilene
and Google topologies, each experiment was configured as 10 flows per endpoints. Thus,
increasing the number of endpoints used in the topology will also increase the number of
rules used in the OpenFlow switches.

96

Figure 31 – Number of flow entries for different topologies. (a) To the Abilene topology,
the number of flow entries for each approach adopting 10 flows per endpoints.
(b) The number of flow entries for each approach with 10 flows per endpoints
using the Google topology.

In total, the number of endpoints possible in the Abilene topology is 110 and for the
Google topology 132. For convenience, the selected number of endpoints were [10, 25, 40,
55, 70, 85, 100], resulting in the number of flows generated in the topology of [100, 250,
400, 550, 700, 850, 1000], respectively. After collecting the measurements, the average
and standard deviation were calculated, and confidence intervals at the confidence level
of 95% was used. The results for the Abilene and Google topologies are in Figure 31.

The baseline for analysis is the SFC, and this algorithm uses one flow entry in each
OpenFlow switch for every flow created for an endpoint. Compared it against PP, PP
consumes much more flow entries on average to connect the endpoints in both topologies;
see Figure 31a,b, respectively. This result is expected as for each flow, a protection path
must be created, and that protection path avoids the unavailability of the flow in the
presence of a link failure.

However, with the HYDRA protection phase, the average number of flow entries is
higher than SFC for each quantity of number of flows evaluated. This difference is caused
by the additional use of flow entries to represent the backup tunnel paths required to
protect the main path of each flow. Compared to PP, the HYDRA protection phase is
a more scalable solution based on the results achieved and the topologies adopted because
it will consume the least number of flows on average.

97

Figure 32 – Results for the signaling overhead after a link failure in the Abilene topology.

5.1.1.2 Signaling overhead

A criterion for measurement scalability is using the number of messages as an evaluation
metric (MENDIOLA et al., 2017). Protection approaches install primary and backup flow
entries in advance to prevent connectivity interruptions. After a link failure, no signaling
messages between OpenFlow switches and the controller are sent to restore connectivity.
This is true if and only if the rules use FF (or other hardware-based resilience solution).
Otherwise, the number of signaling messages between switches and the controller is the
number of flow entries affected by the failure, because it is necessary to change the forward
port number for every flow entry affected by the failed link.

Hence, it is mandatory to investigate the signaling overhead of resilience mechanisms.
Those are analyzed using scenarios that describe a link’s failure occurring in one of the
topologies adopted. Thereby, the Abilene topology depicted in Figure 30a will be used, and
the following resilience mechanisms will be compared: LR, PR and HYDRA Restoration
Phase.

For example, suppose that in the topology adopted (Abilene topology; see Figure 30a),
the primary path is made through the cities of Seattle, Sunnyvale, Los Angeles and Hous-
ton (any other path in the topology could be used). Suddenly, the link connecting Los
Angeles and Houston suffers a failure (this link was choose because belongs to the primary
path). The number of affected flows and the total number of signaling messages to recover
from that failure are depicted in Figure 32. Regarding the LR and PR approaches and
based on the achieved data, PR generates fewer signaling messages to the SDN controller
than LR. This outcome is the opposite of the results presented in the work of Zhang et

98

al. (ZHANG et al., 2016), where LR generated fewer update flow entries. The justification
for this result is that the LR may not be the shortest path between two given endpoints.

Thereby, when a link in the path between two endpoints suffers a failure, if the shortest
path from the OpenFlow switches’ source and the destination of the failed link does not
belong to the shortest path between the endpoints, then LR will require more signaling
messages than PR. The reason for this signaling overhead is that there are more OpenFlow
switches to restore the network connectivity after a link failure. Besides, LR and PR
produce much more signaling messages with a relative lesser number of affected flows
after a link failure, as a typical link requires hundreds of thousands of flows per link
(e.g., in the IXP environment (GUPTA et al., 2016)). Regarding HYDRA, it notoriously
overcomes LR and PR for signaling overhead criteria, since HYDRA Protection Phase
already installed restoration rules and, after a link failure, signaling rules are required to
restore an optimal state of the paths (shortest paths).

5.1.1.3 Failure recovery time

For the restoration approach, PR and LR were used. Both restoration approaches require
signaling to the SDN controller to recover from a link failure. However, this is not the
case for the protection mechanisms, which is the case of PP and the HYDRA protection
phase, as all recovery rules are already installed inside the OpenFlow switches, and those
rules protect the network from a link failure.

To execute the experiments, a subset of the Abilene topology (depicted in Figure 30a)
was used. Using the iperf (IPERF, 2016) tool, a different number of flows from the node
Sunnyvale (of Figure 30a) to the node Houston was generated, making the primary path
composed of the nodes Sunnyvale, Los Angeles and Houston. Because this work uses the
number of hops as the main metric to define what is a better path, the backup path is
composed by the nodes Sunnyvale, Denver, Kansas City and Houston. Then, the link
connecting Los Angeles and Houston suffers a failure, and for each resilience mechanism,
the results of the failure recovery time are measured and plotted in Figure 33.

Figure 33 shows the failure recovery time, where the x-axis represents the number
of disrupted traffic flows and the y-axis the failure recovery time in milliseconds for each
resilience mechanism. As expected, the restoration approaches take more time to recover
the flows, because a communication between the OpenFlow switch and the controller is
required. However, PR reduces the restoration time against LR because it uses less nodes
to signaling. PR and LR recover each flow individually, and hence, that behavior affects
the recovery time.

Analyzing the protection approaches, because PP and the HYDRA Protection Phase
already had installed the backup path using the FF. When a link failure was detected
by the OpenFlow switch, then it automatically switched the primary path to the backup
path. As a consequence, the recovery time becomes minimal. However, the number of

99

Figure 33 – Results for failure recovery time after a link failure in the Abilene topology.

flow entries required by the PP approaches is higher than the HYDRA protection phase
(see Figure 31a), and that factor increases the lookup time of the OpenFlow switch table,
affecting the failure recovery time of the flows for the PP.

5.1.2 Avoiding inconsistency in flow creation for stateful applications

This subsection evaluates the proposed scheme for avoiding inconsistency in flow creation
for OpenFlow networks depicted in Section 4.2.1. Thereby, a Load Balancer (LB) appli-
cation was developed to verify the applicability of the proposed scheme. Additionally, the
state consistency of the LB application using the proposed scheme is also investigated.
That is it, a stateful LB was developed to test the ideas for avoiding inconsistency in flow
creation. The concept of a load balancing is to distribute load among various elements and
improve the performance by optimizing the metric of interests (KHIYAITA et al., 2012). A
LB is frequently used to distribute the load between different resources, or components of
a system. Thus, to verify how the proposed scheme is applicable in practice, a LB program
was developed to serve as a tester.

The RRLL2 was chosen for the LB. Thus, the LB distributes the load of create flow
in an OpenFlow network systematically, following the Round-Robin Algorithm (RRA),
in which the identification number of all available OpenFlow switch ports are stored in
a circular queue. The selection process uses the values from the head to the tail of the
queue to select the forward port of a new flow and then starting again at the top of the
queue. Thus, packets belonging to a new flow must be forwarded consistently to the port
2 Reactive Round-Robin Load Balancer (RRLL)

100

Figure 34 – Scenario description used in the evaluation.

that was previously assigned by the selection process, and this will only occurs if the LB
receives the number of Packet-In events equivalent to every new flow produced.

Because RRA is a stateful algorithm, the LB with RRA is a stateful application as
well. Here, LB works with the flows defined as a 5-tuple of IP source, IP destination, IP
protocol, UDP source port and UDP destination port. All flows are distributed equally
to the number of interfaces that connect to servers.

5.1.2.1 Scenario description

Figure 34 depicts the scenario. The Mininet(MININET, 2016) was used to create the em-
ulation environment for the experiments. The virtual scenario executed in a dedicated
machine with Ubuntu 16.04 LTS, 8 GB of RAM and 8 CPU cores with a clock of 2.20
GHz. Furthermore, the network traffic was generated using the version 2 of iperf (IPERF,
2016) tool, in client mode. The iperf produced traffic with different bandwidth rates when
setting in the client’s mode and using the UDP protocol. The number of datagrams gen-
erated were 71332 for every measurement, with 100 Mbytes for transfer (using the flag
“-n 100M” of iperf) and the UDP buffer size of 208 Kbytes (default size).

The different bandwidth rates of iperf were used as well. Thus, the workloads used
a fixed quantity of UDP packets sent for the Load Balancer application, however us-
ing different bandwidth rates. The rates used were 1Mbps, 10Mbps, 100Mbps, 200Mbps,
500Mbps, and 1000Mbps, and those values were chosen by convenience. For the exper-
iments, the Open vSwitch (OPENVSWITCH, 2016) (with OpenFlow version 1.3 protocol
enabled) behaved as the LB with RR, which handled the incoming network traffic and
distributed to the servers directly connected (Figure 34). Besides, when a packet did
not match any of the previous rules installed in the switch, the default action was to
encapsulate the packet with a Packet-In packet and then send it to the controller.

After that, the controller treats the Packet-In packets with and without the proposed
scheme as described in Section 4.2.1. It measured the number of Packet-In events that
the LB application received during the flow creation process. After the LB decides how

101

Figure 35 – Bandwidth usage between an OpenFlow switch and the controller.

the packet in the Packet-In will be handled, the LB instructs the controller to install rules
in the OpenFlow switch through a Flow-mod packet. When the rules are installed, the
packets are forwarded to one of the servers (Server 1, Server 2, ..., Server N) that executed
the iperf (IPERF, 2016) tool in the server mode. Afterwards, it was measured the number
of Packet-In events that LB received without and with the proposed scheme.

5.1.2.2 Results

The first result verifies the bandwidth generated by multiple Packet-In packets between
an OpenFlow switch and the controller executing the LB application. When applying
restrict values of “max_len” to the flow creation of the LB, following the Definition of
Flow, there is an expectation of a reduction in the bandwidth usage.

Figure 35 depicts the bandwidth usage with and without the proposed scheme. All
the values were measured using the Wireshark(WIRESHARK, 2017) with more than 100
repetitions, and a confidence interval of 95% was applied. For low bandwidth, the use of
bandwidth with and without the proposed scheme is practically imperceptive. Nonethe-
less, with high rates, such as 1000 Mbps, the use of bandwidth is notorious.

Another result was the number of Packet-In events sent to the LB application for
every workload adopted. The results are displayed in Table 11. This table shows the total
number of Packet-In events received by the LB application using the proposed scheme and
without. The experiments were executed more than a 100 times. The values in Table 11
represent the minimum, average and maximum number of Packet-In events measurements
with the confidence level of 95%.

102

Table 11 – The average of Packet-In events reaching the stateful application with the
confidence intervals for a confidence level of 95% (min/average/max).

Bandwidth Without the proposed scheme The proposed scheme
1 Mbps 1.0/1.0/1.0 1.0/1.0/1.0
10 Mbps 5.9/6.0/6.1 1.0/1.0/1.0
100 Mbps 526.8/559.5/592.2 1.0/1.0/1.0
200 Mbps 1218.3/1295.0/1371.7 1.0/1.0/1.0
500 Mbps 3312.6/3467.6/3622.6 1.0/1.0/1.0
1000 Mbps 3950.6/3983.3/4016.0 1.0/1.0/1.0

When the bandwidth rate is relatively low (< 1 Mbps), the controller with and without
the proposed scheme passes the same number of Packet-In events for the application
during a new flow creation. However, when a higher rate was used (> 1Mbps in the
experiments), the number of Packet-In events distributed to the application started to
produce inconsistent in stateful SDN applications that relies on the count of Packet-In
events. This behavior does not occur when the proposed scheme is used.

The multiple Packet-In events received for an stateful application executing in a con-
troller without the proposed scheme can affect the logic behind the application, taking
it to an inconsistent state. For example, the consequence for the LB with RR algorithm
receiving inconsistent information from the controller was to unbalance the distribution
of flow creation through to the servers, which is not the desired behavior.

However, when the experiments are executed with the proposed scheme, the number
of Packet-In events sent to the LB becomes stable, and all Packet-In events generate a
unique flow from LB. As a result, for all workloads, there is only one Packet-In event
reaching the application when a new flow request arrives in the OpenFlow switch. Hence,
for each request of a new flow, the LB can distribute the creation of flows without the need
to treat multiple Packet-In events, therefore, keeping the consistency of the RR algorithm
inside the LB.

One last observation of the Table 11 is the proximity of the measurement values
of Packet-In events with and without the proposed scheme when the bandwidth usage
rates are 500Mbps and 1000Mbps. This proximity occurs because of the overload in the
controller, which started to drop packets due to CPU overhead.

5.1.3 Discussion about management of OpenFlow rules

SDN is a recent concept to how network engineers design networks and one of the chal-
lenges in OpenFlow networks is how to manage the rules to be used in the OpenFlow
devices. Thereby considering this challenge and the proposed architecture, this section
discusses the number of network rules affected by the proposed architecture in the inter-

103

domain environment, the installation of rules in OpenFlow networks and the mitigation
of inconsistency in SDN stateful applications.

5.1.3.1 Restrictions of the number of network rules

It is evident that exploring multiple paths of customers prefixes can increase the demand
for OpenFlow rules. For example, in the topology adopted (see Figure 37), the execution of
a load balancer application increased 𝑛 + 1 times the number of OpenFlow rules required
to forward a given customer prefix, where 𝑛 is the number of source network prefixes
needed to be managed by the transit AS. Thus, instead of just one forward rule to the
prefix 172.16.0.0/24 to the AS 400 (the default “best” next hop of BGP rule), 51 OpenFlow
rules were required to manage the inbound traffic for the customer AS from the 50 prefixes
of the 50 Networks.

Regarding the number of network rules, the OpenFlow protocol required multiple
match fields to compose a single rule, and the OpenFlow switches often deployed a flow
rule using the TCAM. TCAM memories are a high-speed memory, but with the limitation
of very high monetary costs. Moreover, TCAM requires a lot of space in its chip hardware
and has a notoriously high energy consumption. Thereby, due to the fine-grain of the
OpenFlow rules, these rules can be cumbersome to an inter-domain environment where the
number of prefixes (or flows) is tremendously high (WANG et al., 2016a). Thus, it is worth
noting that any OpenFlow based solution requires appropriate flow management. The
rule placement problem inside an OpenFlow network is further detailed in the excellent
and extensive survey of Nguyen et al. (NGUYEN et al., 2016).

Furthermore, OpenFlow specification, and hence the OpenFlow switches, aims to make
the data plane elements flexible and efficient as Application Specific Circuits Integration
(ASCI) used in the BGP routers (traditional network approach). However, to increase the
flexibility of the OpenFlow protocol, the number of TCP/IP protocols supported for each
new version of the OpenFlow protocol stumbles into the TCAM limitations. Therefore, a
trade-off between flexibility (e.g., number of match fields) and performance (for example,
number of rules) must be reached. Ideas for allowing OpenFlow data plane elements to
be more flexible and programmable are at the very beginning such as P4 (BOSSHART et

al., 2014) or OpenState (BIANCHI et al., 2014) and can be an answer for the flexibility and
performance of OpenFlow switches.

5.1.3.2 Rules installation for OpenFlow networks

With regards to reducing the number of rules installed into the SDN network, the works
of Palette (KANIZO; HAY; KESLASSY, 2013) and One Big Switch (KANG et al., 2013) are
proposals that tried to addressed the OpenFlow switches’ memory limitation. They con-
sidered that the rules to be installed are non-reducible, so they can not enforce rule

104

aggregations. Thus, the solutions distributed the routing rules in the network in such a
way that the routing semantics are maintained, and the network policies are not violated.

The work of (NGUYEN et al., 2014) also seeks to optimize the placement of routing
rules within an SDN network. It accomplishes this by minimizing the resources required
for the treatment of network flows. With an algebraic model and using the Integer Linear
Programming, an optimization technique, to express constraints in the end-to-end routing
policy on the network, the work indicated how to allocate a greater amount of traffic
over memory capacity constraints using the model proposed. The work also performs
comparisons with the solutions Palette and One Big Switch and found similar values of
optimization. However, it overcomes the previous works in a scenario of extreme memory
shortage, when the SDN controller must be triggered to maintain the minimum network
operating state, even if the network performance degradation occurs.

Furthermore, to reduce signaling overhead between OpenFlow switches and OpenFlow
controllers, it is necessary a prediction, or estimation of the network traffic, to allow rules
installation in advance, and before the traffic ingress into the network. The accurate
achievement prediction requires data collections and induces signaling messages, which
makes this a difficult task.

For increasing the utilization of TCAM space and avoid TCAM misses, the authors
in (VISHNOI et al., 2014b), presented a system that combines an adaptive heuristic with
proactive eviction by choosing the timeout values of OpenFlow rules. They found that
over particular types of network, with the understanding of the network traffic, is possible
to outperform static timeout policy (fix value of OpenFlow timeout rules). However, to
increase the utilization of the data plane elements’ memory, it requires a heavy signaling
overhead to the controller, because of frequently fetching information about the switches
and flows states.

Thus, a trade-off among rule installation and the signaling overhead between Open-
Flow switches and OpenFlow controller must be made. The work in (NGUYEN et al., 2016)
classified the flow creation for OpenFlow networks into two categories: reactive, the rules
are created on demand to react upon flow events; proactive, rules are populated in ad-
vance, that way the flow is created before the packet arrives at an OpenFlow switch port.
One other option is to use the bird’s eye of SDN to actively create network rules when
the controller already discovers the path that the packet will take (SILVA, 2017).

5.1.3.3 Discussion about avoiding inconsistency

Regarding avoiding inconsistency in stateful applications, this work tackled the guarantee
in the consistency of Packet-In events to the stateful application. Besides, manipulating
OpenFlow rules’ parameters, such as the “max_len” value in the action rules generates
by the Packet-In, can bring benefits for the network, e.g., the reduction of bandwidth
usage between switches and controller. This reduction is important to avoid saturation

105

of the controller with useless information in the Packet-In packets when creating new
flows. The results indicate that the bandwidth usage represents less than 1% (verified
in all experiments) of the total available bandwidth between a switch and a controller.
Despite that small percentage, this reduction can play a significant role when applied in
a different scenario in which bandwidth is a critical resource, for example in Software
Defined Wireless Networks (MIZUYAMA; TAENAKA; TSUKAMOTO, 2017).

However, turning OpenFlow rules’ parameters is not appropriate for usage with all
types of stateful applications. For example, a Deep Packet Inspection (DPI) application
needs all data that a packet carries, and not a subset of those values (as setting “max_len”
for reducing the overhead communication between data and control plane). In this sce-
nario, for DPI, the recommendation is to use the value of OFP_NO_BUFFER (ONF,
2017), and then the whole packet will be sent to the controller for inspection.

Furthermore, the modification of Event Engine is sufficient to prevent a stateful appli-
cation from changing its state several times in response to multiple incoming packets that
belong to a unique flow request. The option to make the change in the Event Engine of
the controller, and not to in all stateful applications that require a consistent delivery of
Packet-In events, is to prevent every stateful application from developing its own control
mechanism.

As concerns the experiments, the results are relevant for other researchers that use
virtualization environment. For example, if the Load Balancer is submitted to a small
amount of load (less than 1Mbps), it is possible that the wrong outcome of the dis-
tributed traffic may not be perceived (KOERNER, 2012; SILVA; SADOK, 2017). However,
when the rate of incoming packets increases, the state storage in the stateful application
may suffer changes that do not represent the desired behavior of the application. Hence,
this scenario may become problematic for researchers to interpreting the data from a
stateful application, because that application will be in the inconsistent state.

Regarding the related works, the values in Table 11 are consistent with the number
of Packet-In events measured in the work of Mizuyama et al. (MIZUYAMA; TAENAKA;

TSUKAMOTO, 2017), which is an indication that the measurements of this work were
conducted appropriately. Moreover, here, the proposal was to modify only the controller
and perform some control in the switches. The idea is to avoid having different approaches
for new additional features in OpenFlow networks, such as the use of various flavors
of OpenFlow specification or modified switches. Those different approaches can lead to
incompatibility problems and make integration with preexisting software and hardware,
or new ones, a difficult task.

For future works, other approaches can be tested to avoid inconsistency in stateful
applications. One of them is the use of some programmable data planes frameworks such as
OpenState (BIANCHI et al., 2014) or P4 (BOSSHART et al., 2014). Those frameworks attempt
to develop flexible hardware that is as efficient as Application Specific Integrated Circuits

106

(ASICs). Thus, the hardware of the switch will be responsible for sending consistent
control messages to the controller.

Finally, one caveat of the proposed approach to avoid inconsistency in the stateful ap-
plications is that there are some individual cases in which the number of Packet-In packets
do not need to be controlled, and they are useful to applications. For example, to produce
an estimation of how much bandwidth a flow will consume, the work of (MIZUYAMA;

TAENAKA; TSUKAMOTO, 2017) counts the number of multiple Packet-In messages that a
controller received to create new flows. Then, with the estimative of bandwidth for each
flow, the controller could allocate flows in order to avoid network traffic congestion in the
switches links.

5.2 EVALUATION OF THE PROPOSED ARCHITECTURE FOR MANAGING INTER-DOMAIN
TRAFFIC

Once the capabilities of the COOL controller were investigated, this section evaluates
the proposed architecture regarding managing inter-domain traffic, the protection of links
against external link failures and traffic exchange control messages.

To perform the evaluation, a common topology is extracted from the Internet topology
information, and afterward, a prototype network based on that topology is depicted. Then,
the definition of workloads to be used in the prototype is established, following by the
execution of the prototype that explores the management of inbound traffic using different
strategies. Adopting the same prototype, another scenario investigates the situation when
an external link fails. This section finishes with a study of the signaling overhead of the
proposed architecture.

5.2.1 Manage Inter-domain Traffic

The goal of this evaluation is the execution of the proposed architecture to control inter-
domain traffic. More specifically, the inbound traffic of a stub AS. This can be done by
exploring the available outbound links of a given ISP to a prefix destination.

Besides, the methodology for evaluating the application of multiple strategies for load
balancing traffic is similar to the work of Silva, Dias and Sadok (SILVA; DIAS; SADOK, 2017).
First, the evaluation scenario is depicted, a prototype environment is built, workloads are
defined and executed, and the results are presented.

5.2.1.1 Topology adopted

To adopt a topology for composing the evaluation scenario, the CAIDA’s AS relationship
database (CAIDA, 2016) was used for the characterization of multi-homed stub ASs. It
was expected that those types of ASs get more advantages of the proposed architecture
once it can allow them to control and explore the path diversity of the Internet.

107

Figure 36 – The total number of multi-homed stub ASs is common in recent months of
the Internet.

Figure 37 – The topology adopted.

The period from December 2015 to October 2017 was considered. Figure 36 presents
the total number of public ASN in CAIDA’s AS relationship database as well as the total
number of stub ASs with public ASN and a subset of this total representing the total
number of multi-homed stub ASs with two relationships of customer-to-provider. Thus,
as the multi-homed customer stub ASs with two ISP are typical in recent months of the
Internet, the evaluation testbed of the proposed architecture adopted a topology with two
outbound links, one for each ISP, and a multi-homed customer AS.

Thereby, based on the data above extracted from CAIDA’s relationship database, the
topology adopted its depiction in the Figure 37. It consisted of four ASs, where three of
them were transit ASs (AS 100, AS 300, and AS 200), and one stub AS (AS 400). The
relationship of customer-to-provider was: AS 400 to AS 300, AS 400 to AS 200, AS 300
to AS 100, and AS 200 to AS 100. As AS 100 deployed the proposed architecture, a new
relationship of customer-to-provider was created between AS 400 and AS 100, with the
goal of managing inbound traffic to the customer (in this case, AS 400).

The partial FIB of the AS 100 for the customer AS 400 was indicated in Figure 37,
where AS 400 advertised the network prefix 172.16.0.0/24 and the AS 100 learned this
prefix and propagated through eBGP sessions between all the ASs in the topology. The
AS 100 learned that it could reach network 172.16.0.0/24 either through the AS-path
[200,400] or through the AS-path [300,400].

The default behavior of the proposed architecture followed the outcome of the BGP

108

decision process where the preferable next hop to reach the Server (IP 172.16.0.1) of AS
400 was by using the path of AS 200. This preferable path is indicated in Figure 37 with
the character “>” in the BGP Routing Table, and the character “*” indicates that both
routes were valid as the result of the BGP decision process. The length of the AS-Path
was equal for both paths to the network 172.16.0.0/24. The BGP decision process selected
the path [200,400] to be the next hop for that prefix; however, as the Network Operator
in AS 400 could use the proposed architecture executed in AS 100, AS 400 could explore
the use of both paths, if the AS 100 allowed it.

Once there was a relationship between AS 400 (Customer) and AS 100 (Provider)
using the proposed architecture, the AS 100 could offload the control of traffic that went
to the network prefixes of AS 400. In the topology adopted, only one prefix was available
for the customer AS 400 to manipulate, and two options of paths to reach that prefix.
Therefore, a load balancer application of AS 400 executing inside the COOL controller
in AS 100 could distribute traffic using both of the valid and available paths to reach
AS 400. And when only one path becomes available, hence, and the load balancing can
not be applied, the traffic will just follow the standard BGP behavior and forwarding all
network traffic to just one “best” next hop (per prefix).

5.2.1.2 Prototype environment

To set up the prototype environment, two physical machines were required to implement
the topology adopted (see Figure 37). One physical machine executed the following com-
ponents of the prototype environment: the OpenFlow Switch, the SDN Controller of AS
100, and the 50 Networks (number choose by convenience). Each of the 50 Networks prop-
agated its prefix and had only one virtual machine to generate traffic. For convenience,
those prefixes ranged from 192.168.1.0/24 to 192.168.50.0/24. Furthermore, the configu-
ration of the physical machine was a core 8-CPU with a maximum clock rate of 2.20 GHz,
8 GB of RAM, and a network card of 1 Gbps. For the AS 100 configuration, each virtual
machine in the 50 Networks was emulated using a container (lightweight virtualization).
For the OpenFlow Switch, the Open vSwitch (OPENVSWITCH, 2016) was used. The pro-
tocol enabled in the Open vSwitch was OpenFlow version 1.3. The proposed architecture
was executed in the modules of the Ryu SDN controller (RYU, 2016).

The other machine had a 3 GB of RAM, CPU with a maximum clock rate of 2.4 GHz,
and a network card of 1 Gbps. This machine was used to create AS 300, AS 200, and AS
400. Those ASs were an instance of the full virtual machines executed in Virtualbox (VIR-

TUALBOX, 2016) with Quagga (QUAGGA, 2017). The terminal of the virtual machine of
AS 400 was used to send and receive JSON messages between the OpenFlow Controller
in the AS 100 and the AS 400.

A crossover Ethernet cable was used to connect the physical machines. However, to
avoid interference between the OpenFlow Switch and the AS 300 and AS 200, it divided

109

the 1 Gbps bandwidth between the two machines with the Linux tc (Traffic Control)
tool, allocating two virtual interfaces of 100 Mbps. Thus, the connection between AS 300
and the OpenFlow Switch had an available 100 Mbps as well as the connection between
AS 200 and the OpenFlow Switch. Hence, the network traffic from AS 100 to AS 400 is
limited to the 100 Mbps passing through path AS 200 and AS 400, as well as the path
AS 300 and AS 400.

Regarding the network traffic, the network throughput tests tool were performed with
the iperf (IPERF, 2016). Each of the virtual machines in 50 Networks used iperf to generate
UDP packets in a controllable way. The main motivation for adopting UDP, instead of
TCP or other protocol, is the possibility of know how much network traffic is generated in
the source and the quantity is actually received in the destination without the congestion
control affecting the experiments (see Section 6.2 for future works). Furthermore, for
the Server component, it was executed in the iperf (IPERF, 2016) in UDP server mode,
which was started in the AS 400 network. The server was set up with the IP address of
172.16.0.1/24, and connected to the BGP router in the AS 400 infrastructure.

5.2.1.3 Workloads

To test how the management of inbound traffic could be performed using the proposed
architecture, several workloads schemes were designed to investigate the bandwidth usage
in the prototype environment when applying the three types of strategies. The main
goal of the workloads choose is to observe how network traffic can be steering using the
proposed architecture in the inter-domain environment. Therefore, the workloads were:

1. Maximum constant network traffic for BGP behavior: This workload pro-
duces 100 Mbps of bandwidth usage during 30 seconds of using the iperf in client
mode to generate the UDP packets from the 50 Networks. The workload was de-
signed to explore the BGP behavior of using just one “best” next hop (per prefix).
Thus, based on the adopted topology in Figure 37, this workload will only use one
path to carry this traffic, either path [200, 400] or path [300, 400], but not both to
reach prefix 172.16.0.0/24 of AS 400.

2. Constant network traffic with balanced rate (Balanced load): This workload
produces 200 Mbps of bandwidth usage during 30 seconds of using the iperf in client
mode to generate the UDP packets from the 50 Networks. Thereby, the total volume
of traffic is split equally into each network. Hence, each one of the 50 Networks will
be responsible for producing 4 Mbps of network traffic using UDP packets during
30 seconds.

3. Constant network traffic with unbalanced rate (Unbalanced load): Similar
to constant network traffic with a balanced rate workload, however, with network

110

Figure 38 – Expected normal distribution of network traffic for the workload.

traffic configured to become unbalanced. Thus, the 50 Networks is split in half, and
25 of the 50 Networks will generate 7 Mbps and the other 25 will generate 1 Mbps
of network traffic using UDP packets for 30 seconds, where the total number of
bandwidth produced is 200 Mbps in this interval.

4. Normal distribution workload (Normal distribution): this workload produces
200 Mbps of bandwidth using UDP packets following a normal distribution for
the 50 Networks. The mean of the normal distribution is 4 Mbps of bandwidth
with a standard deviation of 1 Mbps. The representation of the expected normal
distribution of the network traffic for this type of workload is in Figure 38.

5.2.1.4 Results of the workload execution

The experiments were performed to investigate how different strategies could play a role
in managing incoming traffic. It used the topology adopted (see Figure 37), and explored
the three strategies for controlling inbound traffic: RLL (Random); RRLL (Round-Robin);
and, RRLLT (Round-Robin with threshold)3.

The three types of workload were applied to the prototype environment for the RLL
strategy (workloads 2, 3 and 4 were considered). The experiment executed more than 1000
times, the mean and the standard deviation were calculated. Then, the confidence interval
with a 95% confidence level was calculated as well, and the Figure 39 presents the results
for RLL. The total bandwidth used in the experiments was 200 Mbps and it was expected
that the RLL distributed this load for both links of the AS 100. The ideal scenario was
3 See Section 4.4 for more details about each algorithm.

111

Figure 39 – Results using the Random strategy.

Figure 40 – Results using the Round-Robin strategy.

RLL send 100 Mbps using path [200, 400] and 100 Mbps using path [300, 400] to reach
AS 400 (see topology adopted in Figure 37). However, for all types of workload executed,
including workloads 2, 3 and 4, none of the paths barely reached 95% of the utilization
(95 Mbps of bandwidth usage). Although the Balanced load (workload 2) seems to reach
better bandwidth usage for both paths, it is wise to claim that it poorly distributed the
load between the available links of the AS 100.

For the RRLL (Round-Robin strategy), the workloads 2, 3 and 4, the same process of
statistic computation was performed: 1000 samples, mean and standard deviation com-
puted, and the application of the 95% confidence level. The results are in Figure 40. The

112

Figure 41 – Results using the Round-Robin with Threshold strategy using 95% of the link
capacity for all outbound links.

Balanced load workload provides the best result for the RRLL, reaching the full bandwidth
utilization available (200 Mbps). The same results were not reproduced for Unbalanced
load and Normal distribution load, the workloads 3 and 4, respectively. However, the
results for RRLL were better that those found with RLL, for every workload used.

Figure 41 presents the results for RRLLT (Round-Robin with threshold). The best
next hop for reach the prefix 172.16.0.1/24 in the AS 400 is through path [200, 400] (see
the Forwarding Table of AS 400’s prefixes in Figure 37). Thus, the strategy will make
the links usable until 95% of its capacity, when the link capacity overlaps this threshold,
then it will be considered congested, and RRLLT will not use the link anymore. When all
alternative paths are congested, the default path is used (in the case, the best next hop)
even if it is also congested.

For all workloads used (2, 3 and 4), when the path [300, 400] reached the threshold
of 95% capacity, the default path [200, 400] was used. Hence, this behavior created a
characteristic pattern in Figure 41, where path [300, 400] did not reach the full capacity
(because it was considered saturated) and the path [200, 400] did.

Figure 42 presents the aggregation of packet losses during the experiment of managing
inter-domain traffic. It considered both paths [200, 400] and [300, 400] simultaneously.
Once the UDP does not provide capabilities to provide the quantity packet loss, this
metric considered the expected bandwidth (200 Mbps) minus the real quantity received
by the Server 172.16.0.1. The experiment used the workloads 2, 3 and 4, and it was
executed 1000 times. The confidence level of 95% was used.

The evaluation of the packet loss provides information about how the SDN application
performed. Analyzing the workload 2, the RRLL did not lose any packet, and it was the

113

Figure 42 – Packet loss.

only result where the application reached the full capacity of both links of the domain
AS 100. Besides, the RRLLT performed better than RLL. For the Unbalanced load (work-
load 3) the RLL presented the more packet loss compared against RRLL and RRLLT,
with the RRLLT presenting less packet loss than RRLL. Finally, the workload 4 (normal
distribution load) produced equally quantity of packet loss for RRLL and RRLLT, with
the confidence intervals overlapping. The RLL produce more packet loss than RRLL and
RRLLT for the three workloads adopted.

Based on the results found, the selection of the load balancing strategy depends on the
type of workload in the traffic between domains. Network traffic without much variation
in the bandwidth usage, such as the workload 2 (behaved network traffic), it was more
suitable for reactive load balancing using the Round-Robin strategy as it was used for
RRLL. The RRLLT indicates to be at least equally good as the RRLL for unbalanced
loads (workloads 3 or 4). And the Random strategy (as the RLL) should be avoided to
distribute traffic when an option to adopt a reactive load balancing for SDN application
is available.

5.2.2 Protection against external link failure

This scenario captured the dynamic of a disruption of an external link when the domain
that deployed the proposed architecture was protected with the FF rules of OpenFlow.
The main goal of this scenario was to mitigate the unavailable time of the domain during
the disruption of an external link, taking into account the FF mechanism and exploring
the multiple paths allowed by the proposed architecture.

This scenario used Workload 1 and the prototype environment describing the adopted
topology (see Figure 37). To avoid any delay or packet losses that could be caused during
the OpenFlow rules installation process, all FF rules were installed before the execution

114

Table 12 – Flow table and group table for the OpenFlow Switch using OpenFlow Fast
Failover Group Table.

Flow table at OpenFlow Switch.
Match fields Instruction

IP_src:192.168.1.0/24 and IP_dst:172.16.0.0/24 Group1
IP_src:192.168.2.0/24 and IP_dst:172.16.0.0/24 Group1

(...) Group1
IP_src:192.168.50.0/24 and IP_dst:172.16.0.0/24 Group1

IP_dst:172.16.0.0/24 Group2

Group table at OpenFlow Switch.

Group Identifier Group Type Action Buckets

Group1 Fast Failover
Watch: AS 200 port; Outport: AS 200
Watch: AS 300 port; Outport: AS 300

Group2 Fast Failover Watch: AS 200 port; Outport: AS 200

of the workload. An example of the state of the table rules is depicted in Table 12.
Suppose that OpenFlow Switch of Figure 37 is the edge device of AS 100. As the

workload was designed to explore the BGP’s destination-based forwarding paradigm, the
best next hop for the prefix 172.16.0.0/24 is through the AS 200. If the domain AS 400
can apply inbound control over the prefix 172.16.0.0/24 in the AS 100, then all traffic
from the 50 Networks can be forwarded as the AS 400’s interest.

The first 50 lines of the OpenFlow Switch flow table reflected this scenario, and used
the group table Group1 identifier, where it forwarded packets to AS 200 when the external
link to this AS was live (not failed), or otherwise to AS 300. The last OpenFlow rule is the
routing safety rule, where all the remaining traffic that does not match against previous
rules will be forwarded. The Group2 identifier was used to forward network traffic for
path [200,400], which was the “best” next hop for the BGP AS 400’s prefix.

Regarding the experiments, Figure 43 depicts the average bandwidth received by the
Server during the execution of Workload 1. The workload was executed more than 30
times with a confidence level of 95%. Figure 43 indicates that the FF mechanism did
not affect the total bandwidth available to the workload once the maximum available
bandwidth was used practically during the entire 30 s interval.

In fact, a sample of the execution of the selected workload is presented in Figure 44,
which shows how the traffic used different paths to reach the Server. Although Figure 44
describes the network behavior of the traffic generated during the 30 s, it does not provide
details about the disruption event that occurred in the 15th second. Next, Figure 45 details
what happened in between the times of 14.95 s and 15.05 s of this scenario.

115

Figure 43 – The average of multiple measurements for the network traffic during a link
failure around the 15th second with a confidence level of 95%.

Figure 44 – An execution of link failure in the 15th second.

Figure 45 – Details of network traffic for the link failure around the 15th second.

The workload produced 100 Mbps of network traffic and used the path [200, 400] as
the “best” next hop and path [300, 400] as a backup path. In the 15th second, the link
connecting AS 100 and AS 200 failed. After the link failure in the 15th second, the FF
mechanisms took a few milliseconds to discover the disruption. Once this occurred, the
traffic automatically shifted from path [200, 400] to path [300, 400]. This process was done
exclusively in the data plane (OpenFlow switches) and took less than ten milliseconds,
which is an acceptable value for disruption in an inter-domain environment (less than

116

Figure 46 – Link recovery to video stream using SDI solution.

50 ms (Niven-Jenkins, B and Brungard, D and Betts, M and Sprecher, N and Ueno, 2009)). The
measured millisecond interval was coherent with the FF mechanism recovery times found
in the literature (SHARMA et al., 2011; LIN et al., 2016).

The main result of this scenario was that, by exploring the valid and available multi-
ple paths of BGP, the proposed architecture avoided the application of the BGP decision
process for selecting a new best next hop when an external link failed. The BGP con-
vergence is a time consuming process (dozens or hundreds of seconds (WANG et al., 2015;
GODFREY et al., 2015)) when deciding a new route, and with the application of the pro-
posed architecture mechanisms, if it exists, a valid next hop will then always be already
computed and installed in the data plane, and then the domain can immediately use the
spare route. Therefore, the proposed architecture can bring the unavailability of paths to
the milliseconds time after an external link failure, instead of being subject to the long
BGP convergence time.

Regarding of related works, the Software Defined Inter-domain (SDI) routing (WANG

et al., 2016a) advanced into the inter-domain support of flexible routing policies to for-
warding packets. Instead of just use the BGP’s destination-based forwarding paradigm,
SDI adopted update rules with multiple fields of the IP packet header to construct the
inter-domain global view of the solution. To show the flexibility of fine-grained routing
policies in multi-domain SDN networks, a prototype to experiment SDI was conducted,
and a test was done to analyze the behavior of SDI solution when an external link suf-
fers a failure. The results are in Figure 46, and SDI took a few seconds to restore the
connectivity. Despite the fact SDI is an SDN solution, let the SDN controller manage the
restoration of an external link failure requires the computation of a new network state
inside the controller. This process can take a few seconds to reach the proper response.

Although creating flows with a reactive approach can save memory space inside data
plane devices (SILVA, 2017), as it is the case of SDI, the most significant shortcoming

117

of those approaches is the restoration time. The FF feature of OpenFlow protocol can
be classified as a proactive approach (NGUYEN et al., 2016), where rules are populated
in advance. Thus network flows are created before the packet arrives at an OpenFlow
switch port. Hence, a flow will be already installed into the switch and the response time
is drastically reduced, once the restoration mechanism is very close to where the network
problem occurred.

5.2.3 Evaluation of Traffic Exchange Messages

We elaborated a simulation to evaluate the traffic exchange requirements in the inter-
domain environment for the proposed architecture. Thus, the simulation program can
execute a few algorithms extracted from the literature using SDN technologies (see Chap-
ter 3). For convenience, the Hop-by-hop (CHEN et al., 2016b), MLV (CHEN et al., 2016b),
BGP and BGP with the proposed architecture exchange mechanisms was implemented 4.

Unfortunately, the authors of Hop-by-hop and MLV were unable to provide the actual
software used in their work, so we developed the algorithms based on their paper (CHEN

et al., 2016b). Hop-by-hop and MLV uses a link-vector data structure to exchange the net-
work state, and MLV was presented in Chapter 3. The BGP and BGP with the proposed
architecture use a path-vector data structure.

We modeled the traffic exchange of BGP as in a process of Breadth First Search (BFS)
algorithm, as Chen et. al. (CHEN et al., 2016a) indicated. To BGP with the proposed
architecture, we considered that once the ISP discover a multipath to a customer, it will
send a message to the customer with the size of a prefix.

The topology adopted for executing the simulations is in Figure 47. It will be the
baseline for the simulation in this Subsection. Although this topology is a hierarchical
structure (GAO, 2001; CHEN et al., 2016b) to represent the Internet, there are works in
the literature that put this claim in perspective (e.g., Luckie et al. (LUCKIE et al., 2013)).
However, we choose this type of topology to enable the comparison between related works
and the proposed architecture.

Figure 47 represents the ASs in circles, and the number indicates its ASN. Further-
more, each connection represents the relationship between ASs. If the relationship is Cus-
tomer to Provider, then the provider receives prefixes from the customer and advertises
to others ASs. And in the Peer to Peer relationship, both ASs exchange their learned
prefixes.

MLV’s work used 4 bytes for the prefix field and 32 bytes for the link field (CHEN et

al., 2016b), and did not considered any overhead caused by the carrying protocol, such
as the TCP is to BGP. Thereby, the simulation with BGP and BGP with the proposed
architecture will not incorporate the overhead caused by the transport protocol as well.
4 The simulation program is in the URL: <https://github.com/walberjose/Simulator>

https://github.com/walberjose/Simulator

118

Figure 47 – Topology used to evaluate MLV mechanism, and adopted in this work for the
exchange traffic simulation.

Figure 48 – Exchange traffic by tree number.

Figure 48 represents the growing of exchange traffic for each AS that advertises only
one prefix and increases the number of ASs in the topology of Figure 47 for each iteration.
Thus, as more ASs are incorporated into the topology, the quantity of exchange traffic
increases to reach the steady-state of the network. As notable, the strategies of Hop-by-
hop and MLV are more sensitive to the increase of the topology (new nodes added) than
BGP and BGP with the architecture proposal. The BGP with the architecture proposal
consumes more traffic than only using BGP in the experiments. This outcome occurs due
to the need to send messages back to the customers when using BGP with the architecture
proposal.

In Figure 49, the number of prefixes advertised per AS is investigated. This graph
considered all the nodes in the topology and varied the number of prefixes advertised for

119

Figure 49 – Exchange traffic.

each AS in the topology of Figure 47 from 1 to 50 with increment of 5 prefixes per AS.
Analyzing the results of Figure 47 and Figure 48, there is an evidence that the number
of ASs in the topology affects more the traffic exchange than the increase in advertised
prefixes per AS.

Another observation is that in Figure 49 as the number of prefixes advertised per AS
increases the BGP and the BGP with the architecture proposal starting to get close for
Hop-by-hop and MLV solution in terms of exchange traffic. However, for the inter-domain
environment is better to have solutions less sensitive to the increase of nodes than the
number of prefixes advertised. Today, the number of public prefixes on the Internet is
less than a million (CAIDA, 2017), although the number of routers (as a simplification of
the number of nodes) is unknown, but it is expected that this value is to be around of 1
billion.

5.3 ARCHITECTURE DISCUSSION

Although the main results found in this Thesis are in the last section, here presents some
complementary discussion about the proposed architecture.

5.3.1 Discussion based on the related works

BGP follows the destination-based forwarding paradigm (REKHTER; LI; HARES, 2006) and
uses one “best” route per prefix. Although these features enabled the scalability of the
BGP protocol, they provide a limitation for the inter-domain routing system to explore
the path diversity on the Internet (QIN et al., 2012). Thereby, the baseline for forwarding
traffic is based on the BGP’s gross-grain routing policies.

SDN enabled new approaches to improve the inter-domain ecosystem, and because
the routing and policies tasks are embedded into the BGP protocol, new solutions adopt-

120

ing SDN technologies try to overcome the BGP limitations. For example, the effects of
SDN centralization on Internet routing convergence was studied in recent works (KOTRO-

NIS; GAMPERLI; DIMITROPOULOS, 2015; CHEN et al., 2016a; GÄMPERLI; KOTRONIS; DIM-

ITROPOULOS, 2014), where the simulation of those works indicates the effectiveness of
SDN utilization in the inter-domain routing environment.

Thai and Oliveira (THAI; De Oliveira, 2013) presented the Interdomain Management
Layer (IML) architecture to allow SDN networks to exchange network resources. The
goal of IML is decoupling policy from routing for facilitating inter-domain resource sharing
between ASs. In the IML framework, it did not have detailed how fine-grain inter-domain
routing policies rules could be achieved.

Kotronis et al. (KOTRONIS; GAMPERLI; DIMITROPOULOS, 2015) developed a hybrid
BGP-SDN emulator framework for evaluating for the transition between traditional rout-
ing technologies (e.g., BGP) to SDN, called SIREN. Although SIREN is compatible with
multiple traditional protocols, it adopted the BGP for exchanging control information
between SDN domains, where some works indicated that BGP is a weak candidate to
promote the next generation of SDN’s exchange network control, once the control of the
protocol has a limited set of capabilities (THAI; De Oliveira, 2013). Thus, this Thesis pro-
posed an architecture that explores the BGP capabilities and uses SDN technologies, with
a new control channel included, to enable routing applications to define new logics to the
inter-domain routing system.

The Software Defined Inter-domain (SDI) routing (WANG et al., 2016a) advanced
into the gap of supporting inter-domain flexible routing policies to forwarding packets.
SDI used WE-Bridge to exchange control messages between SDI domains. And the Multi-
dimension Link Vector (MLV) (CHEN et al., 2016b) depicted a new mechanism to exchange
the network view using a link vector algorithm (BGP uses a path vector algorithm).
Thereby, the cumbersome of SDI and MLV solutions is that they propagate network link
states into the inter-domain routing system and do not have backward compatibility with
the current Internet infrastructure.

5.3.2 Discussion about the partial deployment of the proposed architecture

The BGP is well known an “ossified” protocol (SILVA; Djamel Fawzi Hadj Sadok, 2018) and
the last decades demonstrated that previous proposals to overcome the limitations of that
protocol are hard to achieve. Thus, SDN proposals incompatible with BGP have limited
appeal for real-world deployments (SILVA; Djamel Fawzi Hadj Sadok, 2018), e.g., MLV (CHEN

et al., 2016b). Therefore, the proposed mechanism provides fine-grain inter-domain routing
policies using the data structures extracted from BGP (guarantee the backward compat-
ibility) and uses inter-domain communication interface to exchange control information
between domains to apply those new types of routing policies. Being backward compatible
with BGP is an incentive to the adoption of the proposed mechanism for ISPs with SDN

121

Figure 50 – Scheme for backward compatibility with legacy network.

networks.
Therefore, this subsection tackles the argument about partial deployment. We split

this analysis into two fronts. In the first part, incremental deployment of the proposed
architecture inside the AS and the other part is about how we think inter-domain should
evolve by adopting the proposed architecture.

5.3.2.1 Backward compatibility with legacy networks internally

A well-established design principle is the end-to-end argument (SALTZER; REED; CLARK,
1984). Based on this principle, the network complexity has to be concentrated in the
network edges, making the core simple from the perspective of network management.
Thus, the proposed architecture applies this design principle, and the programmable de-
vices (notably OpenFlow switches) are positioned at the edges of the network. Hence, two
options for the core might occur:

• Legacy network: With the legacy network in the core, the SDN controller is the
centralization logic that acts as Route Server for the BGP routers. Figure 50 de-
picts a scheme for mixing OpenFlow switches and legacy network appliances. The
legacy core is connected through internal BGP (iBGP) sessions to the OpenFlow
Controller, which distributes external routes to the internal BGP routers. The in-
frastructure routes continue to be distributed with the interior gateway protocols
(such as OSPF) executed in the Legacy core perimeter.

• OpenFlow network: In the future, it is expected that all network devices will have
some SDN technology embedded inside an AS. Thus, a domain with SDN technol-
ogy (OpenFlow devices) is straightforward, and Figure 51 depicts this scenario. All
OpenFlow switches are connected to the OpenFlow Controller, which manages the
flows inside the AS domain.

122

Figure 51 – AS domain composed of only OpenFlow switches.

5.3.2.2 Backward compatibility with legacy networks in the inter-domain

Once not all of the AS will adopt the proposed architecture (at least not right away), it
is mandatory to investigate how the incremental deployment should be rolled out in the
inter-domain environment. To investigate the potential of the proposed architecture on the
Internet, CAIDA’s database (CAIDA, 2017) was used to rank the ASs that provide transit
to other ASs. The ranking was based on the Customer Cone metric5, which measures the
number of direct and indirect customers of a given AS. The data for ranking the ASs
was based on the Customer Cone metric and was extracted from the topological data
collected by CAIDA and BGP routing in June 2016. A total of 54,772 ASs comprised the
dataset used.

The first ten ASs in this ranking were selected and the number of ASs in their Customer
Cone were measured. Figure 52 depicts the potential of the proposed architecture in
the Internet. The first 10 ASs in the ranking had an expressive quantity of direct or
indirect customer relationships that could allow those customers to use the benefits of
the deployment of the proposed architecture. Therefore, if one of those 10 ASs provided
network services to control the inbound management of network traffic to its customer in
the cone, those customer ASs could explore the path diversity of the Internet by using an
AS app executing inside the provider.

The proposed architecture acted in the BGP decision process and allows an AS that
deployed this technology to offload its control for customer ASs. Next, a customer could
manage inbound traffic by applying control mechanisms for network traffic toward its
prefixes. The premise was that ASs would be willing to have that control and eventually
could establish new relationships to transit ASs on the Internet. This type of relationship,
where any AS can create a relationship with any other AS, is very difficult in the current
Internet architecture.

The benefits for the customers’ ASs is the appropriate management of their inbound
network traffic and for the transit ASs to provide new network value-added services.
5 Defined as the set of ASs an AS can reach using customer links (LUCKIE et al., 2013).

123

Figure 52 – The potential number of customers affected by the proposed architecture
deployed on the Internet.

Obviously, the offload of control from the transit AS would hardly be available for free
and will probably provide those new network services if and only if it had some political or
financial incentives. Thereby, a transit AS that executes the proposed architecture could
explore the new routing services economically and hence increase its profit that would be
reachable via collaboration among ASs or due payment. Therefore, a new economy plane
for the Internet (WOLF et al., 2014) could emerge and the financial appeal of the proposed
architecture is the incentive to transform and evolve the inter-domain environment (SILVA;

SADOK, 2017).
Besides having more control of the inbound network traffic, increasing control in the

inter-domain routing could also be beneficial for the security of the Internet. For example,
it is well known that the mitigation of DDoS is more effective when applying defense
mechanisms as close as possible to the source of the attack (ZARGAR; JOSHI; TIPPER,
2013). As the detection is more precise in the AS suffering a DDoS attack, it can respond
by expanding its defense mechanism through other ASs. This will have the potential to
inhibit the occurrence of DDoS once the defense mechanism can be expanded to being as
close as possible to the source of the attack. Future works will focus on mitigating DDoS
flooding attacks with the proposed architecture.

5.3.2.3 Logically centralized

Once the OpenFlow Controller is responsible for being aware of the network state, it is
important the controller does not become the Single Point of Failure (SPOF) (FONSECA;

MOTA, 2017), where if it fails, the entire network will stop to work properly. Thereby, the
idea is to have a logically centralized controller, in which there are multiple controllers
connected, each one responsible for part of the network and sharing the network state of
the network.

The Figure 53 depicts an approach to logically centralized the controller. Each Open-
Flow Controller is connected to one or more than one switches via OpenFlow protocol

124

Figure 53 – Multiple OpenFlow Controllers in a logical centralized scheme.

(the Southbound interface). Also, the controllers connecting with each other using a West-
/Eastbound interface. With that connection, the controllers share TE information and
often establishes a hierarchic to create the logically centralized network state.

Furthermore, in Figure 53 a Master/Slave scheme is presented, where the Master
receives network state from the OpenFlow Controller Slaves to maintain the centralized
logic of the network. If a Slave controller becomes unable, the Master controller takes
control of the OpenFlow Switches controlled by the unavailable controller. In the case
of the Master Controller being down, an election should occur to elect a new Master
controller for the network.

5.3.3 Adopting a Routing Registry

One major concern in BGP inter-domain routing is the exploration and impersonation of
the ownership of IP prefixes for ASs. Hijacking, misconfiguration, and errors (ALSHAM-

RANI; GHITA, 2016) can lead to the disconnection of portions of the Internet (e.g., creating
black hole routing), MITM, DDoS, and other security issues. These issues occur because
the control plane of BGP does not provide security mechanisms for discovering what an
AS owns and is allowed to advertise for a given prefix.

To be reachable on the Internet, an AS has to inform the prefixes from its network and
passes those values to its ISP (or its Peers). Often, this is done basically by signed contracts
between ASs during the establishment of their AS relationships, and an agreement for

125

which RR is used. An Internet Routing Registry (IRR) is a database on ASNs and IP
routing prefixes. A registry in an IRR is used for configuring BGP routers to avoid security
issues between ASs (IRR, 2017).

When an RR is adopted, it is possible to build filters based on the registries of that
database. Although there are some global IRRs (for example, ARIN’s IRR (IRR, 2017)),
often the providers run their Routing Registries. The problem of using a global Internet
Routing Registry is that the current efforts do not provide extensive, updated, and reliable
databases of most of the ASs, and hence the registries usually do not reflect the reality of
the ASs relationships and the ownership of their prefixes.

However, a private RR for an ISP that deploys the proposed architecture can provide
a properly level of trust, once all the AS agrees about the integrity of the registries.
Thereby, when a customer ASs request some modification about the path for its prefixes,
the provider can verify that those prefixes belong to the customer and then apply those
actions.

5.3.4 Controlling inbound network traffic

The Internet is intrinsically heterogeneous and distributed where network operators ex-
ecute independent network management tasks into their AS domain (LIN et al., 2014).
Additionally, the lack of direct BGP mechanisms to control inbound network traffic con-
tributes to the over-provisioning of ASs infrastructure, leading to an inter-domain environ-
ment consisting of expensive, high-performance, and specialized hardware. Consequently,
these network resources are underutilized by around 30% to 60% (HONG et al., 2013) to
cope with disruption or unpredictable changes of connectivity in the inter-domain envi-
ronment.

Moreover, the BGP does not provide an effective mechanism to control inbound traffic
for prefixes advertised to other ASs. All traffic engineering tools available with BGP only
rely on techniques that try to influence other BGP speakers to generate the network traffic
distribution desired. Thus, this work explored the possibility of adopting SDN technologies
in the inter-domain environment (for example, an ISP) and providing new routing network
services to customers of the transit ASs that deploy the proposed architecture.

A prototype was used to execute an experiment of how to perform load balancing
for inbound traffic to a given AS. Although the scenario adopted consisted of few ASs, a
common configuration in current Internet topology was extracted, which was expected to
be represented in a real scenario deployment. Furthermore, based on the achieved results,
the proposed architecture was effective for allowing customers of a transit AS to control
the inbound traffic.

126

5.3.5 Discussion about inter-domain routing

Suppose the composition presented in the Figure 54. The stub AS C is connected to
the Internet using two links and advertise a route prefix 10.0.0.0/24 to all its neighbors.
Furthermore, AS C has some interest in steer network traffic originated in AS A and
AS B based on the origin of the traffic. The desire of AS C is to receiving traffic to prefix
10.0.0.0/24 from AS A through path [AS A, ISP X, Path 1, AS C] and from AS B through
path [AS B, ISP X, Path 2, AS C].

The BGP provides techniques to influence the incoming network traffic towards its
network prefix (CARDONA et al., 2016), for example, AS path prepending, Multi-Exit Dis-
criminator (MED), Selective announcements, and Community. In the case of Figure 54,
the ISP X will learn the prefix 10.0.0.0/24 from Link 1 and 2. Because of the longest
prefix match is equal for those prefixes, the BGP will apply the BGP decision process
to decide the “best” path to that prefix. Using the BGP path selection decision process
(see Table 1), the MED and AS path only will be used after the Local Preference value
is verified. Thus, altering the value of MED and AS-path (using the AS path prepending
technique), in the BGP update message, does not provide guarantees for the AS C that
the traffic will be forwarding as its interest.

Besides, splitting the prefix 10.0.0.0/24 and advertising small prefixes through its inter-
domain links (thus, applying Selective announcement technique) could produce a result
next to the interest of AS C. However, it is very unlikely that splitting a “/24” prefix will
be accepted by its neighbors or others ASs in the Internet, because filtering small prefixes
(e.g., “/25”, “/30”, etc.) is the best practice in the ISP community (SMITH, 2017).

Shao et al. (SHAO et al., 2015b) depicted multiple scenarios where the BGP Commu-
nities could be used to provide some improvement on the “fine-grain” inbound traffic
engineering with BGP. The idea of Community is to mark a piece of information on the
prefix advertised by the AS that originated it (such as AS C in Figure 54), and use that
information in the foreign AS (e.g., ISP X). However, the authors indicated that although
some scenarios a given AS can achieve the proper network traffic distribution towards its
domain, others complex scenarios (e.g., the case of Figure 54) cannot be resolved using
BGP, even whether ISP X is willing to cooperate with AS C. Therefore, a network op-
erator that applies the BGP traffic engineering mechanisms will not achieve a network
traffic distribution that satisfies its inter-domain routing polices interest.

5.3.5.1 Inter-domain routing policies conflicts

Because the ASs are autonomous to decide its own TE policies, the conflict (or tension)
between inbound routing policies of the tail-end AS against the outbound routing policies
of ISP is inevitable. Therefore, some options for conflict resolution of routing policies
between different ASs are:

127

Figure 54 – Using standard BGP implementation, AS C can only influence the routing
policies of ISP X to forward network traffic towards AS C that will use either
Link 1 or Link 2, but not both at the same time.

• Prioritize directly connected ISP’s clients: the ISP that deploys the proposed mech-
anism allows direct connected. In Figure 54, this conflict resolution occurs when
the ISP X gives priority for AS A and AS B instead of AS C.

• Prioritize ASs that originated prefixes: once the ISP has information about the
origin of a prefix (e.g., using an IRR database), it can provide priority to ASs that
originated the prefix over others ASs. For example, in Figure 54, AS C will allow
dictating its preference about the network traffic path over AS A or AS B.

• Prioritize a third party to control (steering) traffic inside the ISP: In this scenario
the client does not own the prefixes addresses for the origin or the destination of
the network packets.

Thus, the proposed architecture does not impose, or restrict, what ISPs should do
or not do for its inter-domain routing policies, but instead, it overcomes the limitations
of BGP protocol and give more freedom to the ISPs in defining its own fine-grained
inter-domain routing policies and its clients.

128

5.3.5.2 Bilateral agreements

The proposed mechanism was designed to bilateral incentive agreements between different
domains on the Internet. The idea is to establish connections between domains that require
applying fine-grained inter-domain routing policies. Thus, by using the direct Inter-domain
communication interface, the ISP that executes the proposed mechanism can allow the
application of the fine-grain policies and, hence, will mitigate the explosion of propagating,
for all inter-domain elements, more specific network states as it is the case of, e.g., MLV
and SDI solutions.

In addition to, it the adoption of bilateral agreements also promotes the mitigation
of the number of rules to be implemented in the SDN infrastructure for the new types
of routing policies produced by the proposed architecture. As highlighted in the previous
works (WANG et al., 2016a; CHEN et al., 2016b), propagating the routing control information
across multiple domains imposes scalability limitations. As discussed in Subsection 5.1.3.1,
the number of network rules in inter-domain environment is proportional to the number of
management prefixes in use by the customers of the proposed architecture. Then, instead
of the number of prefixes advertised on the Internet become the bottleneck in the inter-
domain routing system, the proposed architecture increases the network rules only in ASs
that have it installed, and, therefore, bilateral agreements enables the solution to scale.

5.4 CONCLUDING REMARKS

This Chapter executed evaluations on the COOL controller and the proposed architec-
ture. Multiple types of performance evaluation were used: simulation, numerical analysis,
and emulation. Each metric adopted verifies a capability or a function. For evaluation
of COOL, it was considered resilience mechanisms for OpenFlow networks (including
the number of flow entries, signaling overhead, failure recovery time), and a mechanism
to avoid inconsistency in flow creation for stateful applications. For the proposed archi-
tecture, the management of inter-domain traffic (using different strategies types), the
protection of external link failure and the exchange traffic were investigated as well.

Besides, this Chapter discussed the results and implications of this Thesis. The man-
agement of network rules is mandatory to properly operate an SDN network in the inter-
domain environment. Thereby, the discussion about the number of networks rules in inter-
domain environment, the rules installation for OpenFlow networks and a discussion about
avoiding inconsistency in SDN stateful applications was done. It is also examined the pro-
posed architecture of this Thesis, and that included a discussion against the related works,
the partial deployment of the proposed architecture in the inter-domain environment, the
adoption of Routing Registry to increase the security of the architecture operation, the
control of inbound network traffic and a discussion about inter-domain routing.

129

6 FINAL CONSIDERATIONS

In this Thesis, we presented an architecture to evolve the inter-domain routing using SDN
technologies, and considered the challenges involved in this network environment. This
last chapter delineates limitations (Section 6.1) and a few future works (Section 6.2) and
presents the final considerations of this Doctoral Thesis (described in Section 6.3).

6.1 LIMITATIONS

One obvious drawback of the proposed architecture is the adoption of a unique BGP Speaker
entity executing for the SDN controller (RYU, 2016). This choice made this component a
SPOF inside the architecture. And it is well known that SPOF imposes a limitation for
scalability since only one instance can establish TCP connections with the others BGP
Peers (in practice, the number of TCP ports available for connection is less than 65535).
However, the simplicity of using only one BGP Speaker was selected by convenience.
This limitation can be overcome by creating a new component called, for example, BGP
Speaker management, with the goal of creating a logically centralized entity that manages
the BGP information received and sent to a given domain. Future works can add that
network capability for the COOL controller.

Another limitation regards the application of fine-grained rules. For example, it is
perfectly acceptable on the Internet that a given prefix be advertised from different ASs,
and this case is denoted as Multiple-Origin AS (MOAS) prefixes (JACQUEMART; URVOY-

KELLER; BIERSACK, 2014). The current state of this work assumes that each prefix is
unique and belongs to only one AS, and that does not reflect the behavior of prefixes
advertisement in the Internet.

Although having limitations, this work also opens multiple fronts of research to be
investigated. Indeed, multiple academic works referenced the papers produced as the
outcome of this doctorate, which is an indication of relevance of this Thesis in the academic
field of network computing. Furthermore, the next section depicts some ideas for future
works.

6.2 FUTURE WORKS

All the network logic in the SDN architecture resides inside applications executed over
SDN controllers. The three strategies for load balancers used in this work followed the
reactive flow creation. Hence, for future works, it is interesting to investigate the different
approaches for the manipulation of flows in an OpenFlow network, for example, proactive
and active strategies for inter-domain environment (SILVA, 2017). To intra-domain, an-
other idea in this line of thought is to manage and apply a more aware congestion control

130

for the flows, e.g., a switchover mechanism (LIN et al., 2016) that changes congested flows
to different paths during the lifetime of the flows.

For future works, the execution of different protocols to compose the workload has been
considered. One limitation of this work is that it only used UDP flows. The exclusive use
of this protocol in the experiments was justified for the sake of space and time. However,
the use of the iperf tool to set up and generate TCP flows can be considered the next step.
TCP flows will be designed to be as representative as possible of the typical Internet TCP
flows. The importance of this investigation is to discover the sensitivity of the throughput
of TCP flows to dropped packets as realistic Internet traffic tends to be highly dynamic,
with individual flows varying in their bandwidth utilization. Thus, with more realistic
traffic, it will be possible to analyze whether there is any improvement in the throughput,
as was seen in the described experiments using UDP flows.

Another idea to be explored is the creation of a numerical network model to be ex-
ecuted over a BGP topology. A good question to be answered will be how much path
diversity on the Internet can be improved with a large adoption of the proposed architec-
ture. IXPs and CDNs can contribute to increasing the capillarity of the Internet traffic,
which is reflected in the BGP topology, and the proposed architecture can make it inter-
esting for transit ASs to provide a new type of network services to stub ASs, principally
for the management of inbound network traffic.

Besides, we also delineate the following specific points that can complement the work
presented in this Doctoral Thesis:

• Create a more refined algorithm for flow creation using different metrics to calculate
the paths inside the OpenFlow (OF) network (such as delay, financial cost of links,
or any combination of metrics);

• Adopting more representative network traffic distribution to investigate the behavior
of the different strategies types for load balancing in the inter-domain environment.

• Modeling the relationships and the link capacity of ASs of the current inter-domain
environment to study how much economic gains can be achieved with architecture;

• It is well known that the mitigation of DDoS is more effective when applying defense
mechanisms as close as possible to the source of the attack. As the detection is
more precise in the AS suffering a DDoS attack, it can respond by expanding its
defense mechanism through other ASs, if the proposed architecture is applied on the
Internet. This will have the potential to inhibit the occurrence of DDoS once the
defense mechanism can be expanded to being as close as possible to the source of
the attack. A future work could be applying the proposed architecture on mitigation
techniques to avoid DDoS flooding attacks.

131

• Create a model and simulate the financial gains of an automatic solution for TE
using the proposed architecture and the manual configuration. For example, per-
forming inter-domain traffic shift when delays occurs in routes;

• Investigating the use of programmable data plane elements (such as P4) to enhance
the control plane capabilities. One interesting feature is to deploy new technolo-
gies in the data plane that overcome monitoring limitation of some protocols, e.g.
Simple Network Management Protocol (SNMP). One example of new technologies
for improving network monitoring capabilities is the gRPC Network Management
Interface (gNMI)1;

• Increment the formality of routing policies, for example, creating a compiler to verify
valid policies in the Domain Controller component (more specific Policy Manage-
ment). In the current version of the software, the verification occurs only in the
manual mode;

• Compare the performance of the applications in the COOL controller against other
controllers’ applications. Example of SDN applications to be investigated are: path
diversity; automated actions (based on link utilization or delay stats); programmable
cost function;

• Investigate the inter-controller control traffic of the proposed architecture and others
controllers, such as the ONOS controller (MUQADDAS et al., 2016). The idea is to
investigate the trade-off between control awareness and overhead communication to
achieve it;

• Future works will use more representative network traffic distribution to investigate
the behavior of the different strategies types for load balancing in the inter-domain
environment;

• As mentioned in Subsection 4.4.1.3, new criteria can be chosen to change OpenFlow
Applications for bandwidth control. One more complex algorithm could be applying
Feedback Control Theory (FCT) (CHIANG et al., 2007) to continuously control the
operation of the routing network (which can be classified as a dynamic system by
the FCT). Thus, the error in the FCT would be the quantity between the current
bandwidth utilization to the threshold, and the controller will monitor the network
to guide the bandwidth utilization for the desired value.

It is expected that those points will be developed and, hence, produce academic articles
for future publication.
1 Publicly available on: <https://github.com/openconfig/reference/tree/master/rpc/gnmi>

https://github.com/openconfig/reference/tree/master/rpc/gnmi

132

6.3 CONCLUSION

This Thesis proposed an architecture to evolve the inter-domain routing using SDN to
enable new ways to perform traffic engineering tasks and to mitigate the challenges of
using SDN technologies in the inter-domain. Providing a backward compatibility with
BGP and using SDN, the architecture allowed a coordination of ASs to perform control
task in the inter-domain routing environment.

The proposed architecture also was designed and developed to execute experiments
on how the proposed architecture could be used to provide more network traffic control
using the capabilities of OpenFlow networks. The results indicated that the effectively of
the inbound control mechanisms to manage incoming traffic for the inter-domain routing
was dependent on the logic executed in applications of the proposed architecture.

To the SDN challenges of managing network flows, this work depicted the multiple
types of flow creation and resilience mechanisms for mitigating unavailability of the SDN
networks. Besides, a hybrid resilience mechanism for OpenFlow networks and a scheme
to mitigate Packet-In events generated from the controller to the OpenFlow stateful
applications caused by multiple Packet-In packets sent from OpenFlow switches. Here
proposed without requiring changes in the specification or the OpenFlow switches, the
results of adopting the proposed scheme indicate that a stateful application can keep the
internal state consistency concerning Packet-In events.

Furthermore, this work also extensively discussed the limitation of the OpenFlow tech-
nology, classified previous works in the management of flows and the inter-domain routing
environment, the mechanisms to exchange control information among SDN domains, the
attractiveness of deploying the architecture in the current Internet, and future works.
In conclusion, the results and the extensive discussion of the proposed architecture makes
this work a step further in the literature of the mechanisms for managing Internet traffic.

133

REFERENCES

ADRICHEM, N. L. V.; ASTEN, B. J. V.; KUIPERS, F. a. Fast Recovery in Software-
Defined Networks. 2014 Third European Workshop on Software Defined Networks, p.
61–66, 2014. ISSN 2379-0350.

AGER, B.; CHATZIS, N.; FELDMANN, A.; SARRAR, N.; UHLIG, S.; WILLINGER,
W. Anatomy of a large european IXP. ACM SIGCOMM Computer Communication
Review, v. 42, n. 4, p. 163, 2012. ISSN 01464833.

AKYILDIZ, I. F.; LEE, A.; WANG, P.; LUO, M.; CHOU, W. A roadmap for traffic
engineering in software defined networks. Computer Networks, Elsevier B.V., v. 71, p.
1–30, 2014. ISSN 13891286.

AL-FUQAHA, A.; GUIZANI, M.; MOHAMMADI, M.; ALEDHARI, M.; AYYASH, M.
Internet of Things: A Survey on Enabling Technologies, Protocols and Applications.
IEEE Communications Surveys & Tutorials, PP, n. 99, p. 1–1, 2015. ISSN 1553-877X.

AL-MUSAWI, B.; BRANCH, P.; ARMITAGE, G. BGP Anomaly Detection Techniques:
A Survey. IEEE Communications Surveys & Tutorials, v. 19, n. 1, p. 1–20, 2016.

ALIMI, R.; PENNO, R.; YANG, Y.; KIESEL, S.; PREVIDI, S.; ROOME, W.;
SHALUNOV, S.; WOUNDY, R. Application-Layer Traffic Optimization (ALTO)
Protocol Applications. 2014.

ALSHAMRANI, H.; GHITA, B. IP prefix hijack detection using BGP connectivity
monitoring. IEEE International Conference on High Performance Switching and
Routing, HPSR, v. 2016-July, p. 35–41, 2016. ISSN 23255609.

ANDO, S.; NAKAO, A. OpenFlow transparent custom action extension by using
Packet-In and click packet processing. Proceedings - Asia-Pacific Conference on
Communications, APCC 2016, p. 274–280, 2016. ISSN 19440375.

BANNOUR, F.; SOUIHI, S.; MELLOUK, A. Distributed SDN Control: Survey,
Taxonomy and Challenges. IEEE Communications Surveys and Tutorials, n. c, p. 1–25,
2017. ISSN 1553877X.

BENNESBY, R.; MOTA, E. A survey on approaches to reduce BGP interdomain routing
convergence delay on the Internet. IEEE Communications Surveys and Tutorials, n. c,
2017. ISSN 1553877X.

BENNESBY, R.; MOTA, E.; FONSECA, P.; PASSITO, A. Innovating on interdomain
routing with an inter-SDN component. Proceedings - International Conference on
Advanced Information Networking and Applications, AINA, n. Ic, p. 131–138, 2014. ISSN
1550445X.

BIANCHI, G.; BONOLA, M.; CAPONE, A.; CASCONE, C. OpenState: Programming
Platform-independent Stateful OpenFlow Applications Inside the Switch. ACM
SIGCOMM Computer Communication Review, v. 44, n. 2, p. 44–51, 2014. ISSN
01464833.

134

BOSSHART, P.; VARGHESE, G.; WALKER, D.; DALY, D.; GIBB, G.; IZZARD, M.;
MCKEOWN, N.; REXFORD, J.; SCHLESINGER, C.; TALAYCO, D.; VAHDAT, A.
P4: Programming Protocol-Independent Packet Processors. ACM SIGCOMM Computer
Communication Review, v. 44, n. 3, p. 87–95, 2014. ISSN 01464833.

CAIDA. Center for Applied Internet Data Analysis - CAIDA.
http://data.caida.org/datasets/as-relationships/serial-2/, 2016. Available from
Internet: <www.caida.org>.

CAIDA. AS Rank: AS Ranking - CAIDA. http://as-rank.caida.org/, 2017. Available
from Internet: <http://as-rank.caida.org/>.

CARDONA, J. C.; VISSICCHIO, S.; LUCENTE, P.; FRANCOIS, P. ”I Can’t Get No
Satisfaction”: Helping Autonomous Systems Identify Their Unsatisfied Inter-domain
Interests. IEEE Transactions on Network and Service Management, v. 13, n. 1, p. 43 –
57, 2016. ISSN 19324537.

CASCONE, C.; POLLINI, L.; SANVITO, D.; CAPONE, A.; SANSO, B. SPIDER: Fault
resilient SDN pipeline with recovery delay guarantees. IEEE NETSOFT 2016 - 2016
IEEE NetSoft Conference and Workshops: Software-Defined Infrastructure for Networks,
Clouds, IoT and Services, p. 295–302, 2016.

CHANDA, A.; WESTPHAL, C. Content Based Traffic Engineering in Software Defined
Information Centric Networks. INFOCOM, 2013. 32nd IEEE International Conference
on Computer Communications, p. 3397–3402, 2013.

CHANDRA, R.; TRAINA, P. BGP Communities Attribute - RFC 1997. Network Working
Group, p. 1–5, 1996. Available from Internet: <https://tools.ietf.org/pdf/rfc1997.pdf>.

CHEN, C.; LI, B.; LIN, D.; LI, B. Software-Defined Inter-Domain Routing Revisited.
IEEE ICC 2016 - Next-Generation Networking and Internet Symposium Software-Defined,
2016.

CHEN, Z.; BI, J.; FU, Y.; WANG, Y.; XU, A. MLV: A multi-dimension routing
information exchange mechanism for inter-domain SDN. Proceedings - International
Conference on Network Protocols, ICNP, v. 2016-March, p. 438–445, 2016. ISSN
10921648.

CHIANG, M.; LOW, S. H.; CALDERBANK, A. R.; DOYLE, J. C. Layering
as optimization decomposition: A mathematical theory of network architectures.
Proceedings of the IEEE, v. 95, n. 1, p. 255–312, 2007. ISSN 00189219.

CHOWDHURY, M. K. N.; BOUTABA, R. Network virtualization: state of the art and
research challenges. IEEE Communications Magazine, v. 47, n. 7, p. 20–26, 2009. ISSN
0163-6804.

CHOWDHURY, N. M. M. K.; BOUTABA, R. A survey of network virtualization.
Computer Networks, Elsevier B.V., v. 54, n. 5, p. 862–876, 2010. ISSN 13891286.

CVJETIC, A.; SMILJANIC, A. Improving BGP protocol to advertise multiple routes
for the same destination prefix. IEEE Communications Letters, v. 18, n. 1, p. 106–109,
2014. ISSN 10897798.

www.caida.org
http://as-rank.caida.org/
https://tools.ietf.org/pdf/rfc1997.pdf

135

D. Katz and D. Ward. BFD for IPv4 and IPv6 Single Hop. RFC 5881, n. 1, p. 1–5, 2010.
ISSN 0717-6163.

D. Katz and D. Ward. Bidirectional Forwarding Detection. RFC 5880, v. 53, p. 160,
2010. ISSN 1098-6596.

DATTA, A.; RASTOGI, A.; BARMAN, O. R.; D’MELLO, R.; ABUZAGHLEH, O.
An Approach for Implementation of Artificial Intelligence in Automatic Network
Management and Analysis. Online Engineering & Internet of Things, v. 22, p. 901–909,
2018.

DEUS, M. A. de; CARVALHO, P. H.; LEITE, J. P. Internet Traffic Engineering:
Understanding the Specialist Decision-Making Process for Traffic Management in South
America. 2014 28th International Conference on Advanced Information Networking and
Applications Workshops, p. 37–41, 2014.

DEUS, M. A. de; CARVALHO, P. H.; LEITE, J. P. Internet capacity: optimizing
autonomous system inbound traffic using specialist knowledge as support for decision-
making. Annales des Telecommunications/Annals of Telecommunications, v. 70, n. 7-8,
p. 331–343, 2015. ISSN 19589395.

ESTEVES, R. P.; GRANVILLE, L. Z.; BOUTABA, R. On the management of virtual
networks. IEEE Communications Magazine, v. 51, n. 7, p. 80–88, 2013. ISSN 01636804.

FADLULLAH, Z.; TANG, F.; MAO, B.; KATO, N.; AKASHI, O.; INOUE, T.;
MIZUTANI, K. State-of-the-Art Deep Learning: Evolving Machine Intelligence Toward
Tomorrow’s Intelligent Network Traffic Control Systems. IEEE Communications Surveys
& Tutorials, n. c, p. 1–1, 2017. ISSN 1553-877X.

FEAMSTER, N.; BALAKRISHNAN, H.; REXFORD, J.; SHAIKH, A.; MERWE,
J. van der. The case for separating routing from routers. Proceedings of the ACM
SIGCOMM workshop on Future directions in network architecture - FDNA ’04, p. 5,
2004. ISSN 158113942X.

FEAMSTER, N.; FEAMSTER, N.; BALAKRISHNAN, H.; BALAKRISHNAN, H.
Detecting BGP configuration faults with static analysis. Proc. Networked Systems Design
and Implementation, p. 49–56, 2005.

FEAMSTER, N.; REXFORD, J.; SHENKER, S.; CLARK, R.; HUTCHINS, R.; LEVIN,
D.; BAILEY, J. SDX: A software-defined Internet exchange. Open Networking Summit,
p. 2–3, 2013.

FEAMSTER, N.; REXFORD, J.; ZEGURA, E. The road to SDN: An Intellectual
History of Programmable Networks. ACM SIGCOMM Computer Communication
Review, v. 44, n. 2, p. 87–98, 2014. ISSN 01464833.

FERNANDEZ, M. P. Comparing OpenFlow controller paradigms scalability: Reactive
and proactive. In: International Conference on Advanced Information Networking
and Applications, AINA. [S.l.: s.n.], 2013. p. 1009–1016. ISBN 9780769549538. ISSN
1550445X.

FONSECA, P.; MOTA, E. A Survey on Fault Management in Software-Defined
Networks. IEEE Communications Surveys and Tutorials, n. c, p. 1–39, 2017. ISSN
1553877X.

136

FUJINOKI, H. Multi-Path BGP (MBGP): A Solution for Improving Network Bandwidth
Utilization and Defense against Link Failures in Inter-Domain Routing. In: 16th IEEE
International Conference on Networks. [S.l.: s.n.], 2008. p. 6. ISBN 9781424438051.

GÄMPERLI, A.; KOTRONIS, V.; DIMITROPOULOS, X. Evaluating the effect of
centralization on routing convergence on a hybrid BGP-SDN emulation framework.
Proceedings of the 2014 ACM conference on SIGCOMM - SIGCOMM ’14, p. 369–370,
2014.

GANICHEV, I.; DAI, B.; GODFREY, P. B.; SHENKER, S. YAMR: Yet Another
Multipath Routing Protocol. ACM SIGCOMM Computer Communication Review, v. 40,
n. 5, p. 13, 2010. ISSN 01464833.

GAO, L. On inferring autonomous system relationships in the Internet. IEEE/ACM
Transactions on Networking, v. 9, n. 6, p. 733–745, 2001. ISSN 10636692.

GIOTSAS, V.; LUCKIE, M.; HUFFAKER, B. Inferring Complex AS Relationships.
Proceedings of the 2014 Conference on Internet Measurement Conference, p. 23–29, 2014.

GODFREY, P. B.; CAESAR, M.; HAKEN, I.; SINGER, Y.; SHENKER, S.; STOICA, I.
Stabilizing route selection in BGP. IEEE/ACM Transactions on Networking, v. 23, n. 1,
p. 282–299, 2015. ISSN 10636692.

GUPTA, A.; JHA, R. K. A Survey of 5G Network: Architecture and Emerging
Technologies. IEEE Access, v. 3, n. c, p. 1206–1232, 2015. ISSN 21693536.

GUPTA, A.; MACDAVID, R.; BIRKNER, R.; CANINI, M.; FEAMSTER, N.;
REXFORD, J.; VANBEVER, L. An Industrial-Scale Software Defined Internet Exchange
Point. 13th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 16), p. 1–14, 2016.

H. Gredler, E.; MEDVED, J.; PREVIDI, S.; FARREL, A.; RAY, S. North-Bound
Distribution of Link-State and Traffic Engineering (TE) Information Using BGP.
Internet Engineering Task Force (IETF), p. 1–48, 2016. Available from Internet:
<https://tools.ietf.org/pdf/rfc7752.pdf>.

HAKIRI, A.; GOKHALE, A.; BERTHOU, P.; SCHMIDT, D. C.; GAYRAUD, T.
Software-defined networking: Challenges and research opportunities for future internet.
Computer Networks, Elsevier B.V., v. 75, n. PartA, p. 453–471, 2014. ISSN 13891286.

HE, J.; REXFORD, J. Toward internet-wide multipath routing. IEEE Network, v. 22,
n. 2, p. 16–21, 2008. ISSN 08908044.

HELLER, B.; SHERWOOD, R.; MCKEOWN, N. The controller placement problem.
ACM SIGCOMM Computer Communication Review, v. 42, n. 4, p. 473, 2012. ISSN
01464833.

HONG, C.-Y.; KANDULA, S.; MAHAJAN, R.; ZHANG, M.; GILL, V.; NANDURI, M.;
WATTENHOFER, R. Achieving high utilization with software-driven WAN. Proceedings
of the ACM SIGCOMM 2013 conference on SIGCOMM - SIGCOMM ’13, p. 15, 2013.
ISSN 0146-4833.

https://tools.ietf.org/pdf/rfc7752.pdf

137

HUANG, T.; YU, F. R.; ZHANG, C.; LIU, J.; ZHANG, J.; LIU, Y. A Survey on
Large-Scale Software Defined Networking (SDN) Testbeds: Approaches and Challenges.
IEEE Communications Surveys and Tutorials, v. 19, n. 2, p. 891–917, 2017. ISSN
1553877X.

IPERF. iperf - perform network throughput tests. http://iperf.sourceforge.net/, 2016.
Available from Internet: <http://iperf.sourceforge.net/>.

IRR. Internet Routing Registry. 2017. Available from Internet: <http://www.irr.net/>.

J. Heitz, E.; J. Snijders, E.; PATEL, K.; BAGDONAS, I.; HILLIARD, N. BGP Large
Communities Attribute Abstract. 2017.

JACQUEMART, Q.; URVOY-KELLER, G.; BIERSACK, E. A longitudinal study of
BGP MOAS prefixes. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 8406 LNCS, p.
127–138, 2014. ISSN 16113349.

JAIN, S.; ZHU, M.; ZOLLA, J.; HÖLZLE, U.; STUART, S.; VAHDAT, A.; KUMAR, A.;
MANDAL, S.; ONG, J.; POUTIEVSKI, L.; SINGH, A.; VENKATA, S.; WANDERER,
J.; ZHOU, J. B4. Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM -
SIGCOMM ’13, p. 3, 2013. ISSN 0146-4833.

KANG, N.; LIU, Z.; REXFORD, J.; WALKER, D. Optimizing the "one big switch"
abstraction in software-defined networks. Proceedings of the ninth ACM conference on
Emerging networking experiments and technologies - CoNEXT ’13, p. 13–24, 2013.

KANIZO, Y.; HAY, D.; KESLASSY, I. Palette: Distributing tables in software-defined
networks. Proceedings - IEEE INFOCOM, p. 545–549, 2013. ISSN 0743166X.

KEVIN, B.; TONI, F.; PATRICK, M.; JENNNIFER, P. A survey of BGP security -
Issues and solutions. Vol. V, No. N, V, n. April, p. 1–35, 2010. ISSN 0018-9219.

KHIYAITA, A.; BAKKALI, H. E. L.; ZBAKH, M.; KETTANI, D. E. Load balancing
cloud computing: State of art. Network Security and Systems (JNS2), v. 1, n. 1, p. 106 –
109, 2012.

KING, T.; DIETZEL, C.; SNIJDERS, J.; DOERING, G.; HANKINS, G. BLACKHOLE
Community This. 2016.

KOERNER, M. Multiple Service Load-Balancing with OpenFlow. IEEE 13th
International Conference on High Performance Switching and Routing Multiple, p.
210–214, 2012.

KOTRONIS, V. Centralizing Routing Control Across Domains: Architectural Approach
and Prominent Use Cases. 1–266 p. Tese (Doutorado) — University of Athens, 2015.

KOTRONIS, V.; DIMITROPOULOS, X.; AGER, B. Outsourcing the routing control
logic: better internet routing based on SDN principles. Proceedings of the 11th ACM
Workshop on Hot Topics in Networks, p. 55–60, 2012.

KOTRONIS, V.; DIMITROPOULOS, X.; KLÖTI, R.; AGER, B.; GEORGOPOULOS,
P.; SCHMID, S. Control Exchange Points: Providing QoS-enabled End-to-End Services
via SDN-based Inter-domain Routing Orchestration. Linx, v. 2429, n. 1093, p. 2443,
2014.

http://iperf.sourceforge.net/
http://www.irr.net/

138

KOTRONIS, V.; GAMPERLI, A.; DIMITROPOULOS, X. Routing centralization across
domains via SDN: A model and emulation framework for BGP evolution. Computer
Networks, v. 92, p. 227–239, 2015. ISSN 13891286.

KREUTZ, D.; RAMOS, F. M.; VERISSIMO, P. Towards secure and dependable
software-defined networks. Proceedings of the second ACM SIGCOMM workshop on Hot
topics in software defined networking - HotSDN ’13, p. 55, 2013.

KREUTZ, D.; RAMOS, F. M. V.; VERÍSSIMO, P. E.; ROTHENBERG, C. E.;
AZODOLMOLKY, S.; UHLIG, S. Software-Defined Networking : A Comprehensive
Survey. Proceedings of the IEEE, v. 103, n. 1, p. 14 – 76, 2015. ISSN 0018-9219.

KUSHMAN, N.; KANDULA, S.; KATABI, D.; MAGGS, B. M. R-BGP: Staying
Connected In a Connected World. NSDI’07 Proceedings of the 4th USENIX conference
on Networked systems design & implementation, p. 14, 2007.

LABOVITZ, C.; IEKEL-JOHNSON, S.; MCPHERSON, D.; OBERHEIDE, J.;
JAHANIAN, F. Internet inter-domain traffic. Proceedings of the ACM SIGCOMM 2010
conference on SIGCOMM - SIGCOMM ’10, p. 75, 2010. ISSN 1450302017.

LEE, S. J.; BANERJEE, S.; SHARMA, P.; YALAGANDULA, P.; BASU, S. Bandwidth-
aware routing in overlay networks. Proceedings - IEEE INFOCOM, p. 2405–2413, 2008.
ISSN 0743166X.

LI, M.; LUKYANENKO, A.; OU, Z.; YLA-JAASKI, A.; TARKOMA, S.; COUDRON,
M.; SECCI, S. Multipath Transmission for the Internet: A Survey. IEEE Communications
Surveys and Tutorials, v. 18, n. 4, p. 2887–2925, 2016. ISSN 1553877X.

LIAO, Y.; GAO, L.; GUERIN, R.; ZHANG, Z.-L. Reliable interdomain routing through
multiple complementary routing processes. Proceedings of the 2008 ACM CoNEXT
Conference on - CONEXT ’08, p. 1–6, 2008.

LIN, P.; BI, J.; CHEN, Z.; WANG, Y.; HU, H.; XU, A. WE-bridge: West-east bridge for
SDN inter-domain network peering. Proceedings - IEEE INFOCOM, p. 111–112, 2014.
ISSN 0743166X.

LIN, P.; HART, J.; KRISHNASWAMY, U. Seamless interworking of SDN and IP.
SIGCOMM ’13 Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM,
v. 43, n. 4, p. 475–476, 2013. ISSN 0146-4833.

LIN, Y. D.; TENG, H. Y.; HSU, C. R.; LIAO, C. C.; LAI, Y. C. Fast failover and
switchover for link failures and congestion in software defined networks. 2016 IEEE
International Conference on Communications, ICC 2016, 2016. ISSN 1098-6596.

LIU, H. H.; KANDULA, S.; MAHAJAN, R.; ZHANG, M.; GELERNTER, D. Traffic
Engineering with Forward Fault Correction. Proceedings of the 2014 ACM Conference
on SIGCOMM, p. 527–538, 2014. ISSN 19435819.

LIU, X.; MOHANRAJ, S.; PIORO, M.; MEDHI, D. Multipath Routing From a Traffic
Engineering Perspective: How Beneficial is It? 22nd IEEE ICNP, Raleigh, North
Carolina, USA, n. 2011, p. 21–23, 2014. ISSN 10921648.

139

LUCKIE, M.; HUFFAKER, B.; DHAMDHERE, A.; GIOTSAS, V.; CLAFFY, K. AS
relationships, customer cones, and validation. Proceedings of the 2013 conference on
Internet measurement conference - IMC ’13, p. 243–256, 2013.

LUDWIG, C. Traffic engineering with BGP. Seminar "Internet Routing" , Technical
University Berlin, p. 1–10, 2009.

MCKEOWN, N.; ANDERSON, T.; BALAKRISHNAN, H.; PARULKAR, G.;
PETERSON, L.; REXFORD, J.; SHENKER, S.; TURNER, J. OpenFlow: Enabling
Innovation in Campus Networks. ACM SIGCOMM Computer Communication Review,
v. 38, n. 2, p. 69, 2008. ISSN 01464833.

MENDIOLA, A.; ASTORGA, J.; JACOB, E.; HIGUERO, M. A Survey on
the Contributions of Software-Defined Networking to Traffic Engineering. IEEE
Communications Surveys and Tutorials, v. 19, n. 2, p. 918–953, 2017. ISSN 1553877X.

MININET. Mininet - An Instant Virtual Network on your Laptop (or other PC). 2016.
Available from Internet: <http://mininet.org/>.

MIZUYAMA, K.; TAENAKA, Y.; TSUKAMOTO, K. Estimation Based Adaptable
Flow Aggregation Method for Reducing Control Traffic on Software Defined Wireless
Networks. The 8th International Workshop on Information Quality and Quality of
Service for Pervasive Computing, 2017.

MUQADDAS, A. S.; BIANCO, A.; GIACCONE, P.; MAIER, G. Inter-controller Traffic
in ONOS Clusters for SDN Networks. IEEE ICC 2016 - Next-Generation Networking
and Internet Symposium, 2016.

MUQADDAS, A. S.; GIACCONE, P.; BIANCO, A.; MAIER, G. Inter-controller Traffic
to Support Consistency in ONOS Clusters. IEEE Transactions on Network and Service
Management, v. 4537, n. c, p. 1–14, 2017. ISSN 19324537.

NARAYANAN, A. A Survey on BGP Issues and Solutions. 2009. Available from Internet:
<http://arxiv.org/abs/0907.4815>.

NASCIMENTO, M. R.; ROTHENBERG, C. E.; SALVADOR, M. R.; CORRÊA, C.
N. A.; LUCENA, S. C. de; MAGALHÃES, M. F. Virtual routers as a service: The
RouteFlow Approach Leveraging Software-Defined Networks. Proceedings of the 6th
International Conference on Future Internet Technologies - CFI ’11, n. June 2016, p. 34,
2011.

NENCIONI, G.; HELVIK, B. E.; GONZALEZ, A. J.; HEEGAARD, P. E.; KAMISINSKI,
A. Availability Modelling of Software-Defined Backbone Networks. Proceedings - 46th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks,
DSN-W 2016, p. 105–112, 2016.

NGUYEN, X.-n.; SAUCEZ, D.; BARAKAT, C.; TURLETTI, T.; SOPHIA, I.;
MÉDITERRANÉE, A. Optimizing Rules Placement in OpenFlow Networks : Trading
Routing for Better Efficiency. HotSDN 2014, n. HotSDN, p. 127–132, 2014.

NGUYEN, X.-n.; SAUCEZ, D.; BARAKAT, C.; TURLETTI, T. Rules Placement
Problem in OpenFlow Networks: A Survey. IEEE Communications Surveys & Tutorials,
v. 18, n. 2, p. 1273–1286, 2016.

http://mininet.org/
http://arxiv.org/abs/0907.4815

140

Ning Wang, Kin Hon Ho, George Pavlou, M. H. An Overview of Routing Optimization
for Internet Traffic Engineering. IEEE Communications Surveys, v. 10, n. 1, p. 36–56,
2008.

Niven-Jenkins, B and Brungard, D and Betts, M and Sprecher, N and Ueno, S.
Requirements of an MPLS transport profile. https://tools.ietf.org/html/draft-ietf-
mpls-tp-requirements-10, 2009. Available from Internet: <https://tools.ietf.org/html/
draft-ietf-mpls-tp-requirements-10>.

NUNES, B. A. A.; MENDONCA, M.; NGUYEN, X. N.; OBRACZKA, K.; TURLETTI,
T. A survey of software-defined networking: Past, present, and future of programmable
networks. IEEE Communications Surveys and Tutorials, v. 16, n. 3, p. 1617–1634, 2014.
ISSN 1553877X.

ONF. ONF Overview - The Open Networking Foundation. 2017. Available from Internet:
<https://www.opennetworking.org/about/onf-overview>.

ONOS. A new carrier-grade SDN network operation system designed for high
availability,performance, scale-out. http://onosproject.org/, 2017. Available from
Internet: <http://onosproject.org/>.

OPENNETWORKING. OpenFlow Switch Specification, version 1.5.0. 2014. 1–205 p.
Available from Internet: <https://www.opennetworking.org>.

OPENVSWITCH. Open vSwitch. http://openvswitch.org/, 2016. Available from Internet:
<http://openvswitch.org/>.

PFAFF, B.; LANTZ, B.; HELLER, B.; BARKER, C.; COHN, D.; TALAYCO, D.;
ERICKSON, D.; CRABBE, E.; GIBB, G.; APPENZELLER, G.; TOURRILHES,
J.; PETTIT, J.; YAP, K.; POUTIEVSKI, L.; CASADO, M.; TAKAHASHI, M.;
KOBAYASHI, M.; M, N.; KIS, Z. L. OpenFlow 1.1 Specification. Open Networking
Foundation, p. 1–56, 2011. Available from Internet: <http://archive.openflow.org/
documents/openflow-spec-v1.1.0.pdf>.

PFAFF, B.; LANTZ, B.; HELLER, B.; BARKER, C.; COHN, D.; CASADO, M.
OpenFlow Switch Specification - 1.3 version. Open Networking Foundation, v. 0, p.
0–105, 2012.

POESE, I.; FRANK, B.; AGER, B.; SMARAGDAKIS, G.; FELDMANN, A. Improving
content delivery using provider-aided distance information. Proceedings of the 10th
annual conference on Internet measurement - IMC ’10, p. 22, 2010.

POESE, I.; FRANK, B.; SMARAGDAKIS, G.; UHLIG, S.; FELDMANN, A.; MAGGS,
B. Enabling content-aware traffic engineering. Computer Communication Review, v. 42,
n. 5, p. 22–28, 2012. ISSN 01464833 (ISSN).

POTAROO.NET. Advertised AS Count. 2016. Available from Internet: <http:
//bgp.potaroo.net/bgprpts/rva-index.html>.

QIN, D.; YANG, J.; LIU, Z.; WANG, H.; ZHANG, B.; ZHANG, W. AMIR: Another
multipath interdomain routing. Proceedings - International Conference on Advanced
Information Networking and Applications, AINA, p. 581–588, 2012. ISSN 1550445X.

https://tools.ietf.org/html/draft-ietf-mpls-tp-requirements-10
https://tools.ietf.org/html/draft-ietf-mpls-tp-requirements-10
https://www.opennetworking.org/about/onf-overview
http://onosproject.org/
https://www.opennetworking.org
http://openvswitch.org/
http://archive.openflow.org/documents/openflow-spec-v1.1.0.pdf
http://archive.openflow.org/documents/openflow-spec-v1.1.0.pdf
http://bgp.potaroo.net/bgprpts/rva-index.html
http://bgp.potaroo.net/bgprpts/rva-index.html

141

QIU, J.; WANG, F.; GAO, L. BGP rerouting solutions for transient routing failures and
loops. Proceedings - IEEE Military Communications Conference MILCOM, 2007.

QUAGGA. Quagga Routing Suite. http://www.nongnu.org/quagga/, 2017. Available
from Internet: <http://www.nongnu.org/quagga/>.

RAGHAVAN, B.; CASADO, M.; KOPONEN, T.; RATNASAMY, S.; GHODSI, A.;
SHENKER, S. Software-defined internet architecture. Proceedings of the 11th ACM
Workshop on Hot Topics in Networks - HotNets-XI, p. 43–48, 2012.

RAO, A.; LEGOUT, A.; LIM, Y.-s.; TOWSLEY, D.; BARAKAT, C.; DABBOUS, W.
Network characteristics of video streaming traffic. Proceedings of the Seventh COnference
on emerging Networking EXperiments and Technologies (CoNEXT), p. 1–12, 2011.

REKHTER, Y.; LI, T.; HARES, S. A Border Gateway Protocol 4 (BGP-4). Network
Working Group - Request for Comments: 4271, 2006. ISSN 1098-6596.

ROTHENBERG, C. E.; NASCIMENTO, M. R.; SALVADOR, M. R.; CORRÊA, C.
N. A.; Cunha de Lucena, S.; RASZUK, R. Revisiting routing control platforms with the
eyes and muscles of software-defined networking. Proceedings of the first workshop on
Hot topics in software defined networks - HotSDN ’12, p. 13, 2012.

RYU. A component-based software defined networking framework -
Ryu. https://osrg.github.io/ryu/, 2016. Available from Internet: <https:
//osrg.github.io/ryu/>.

SALTZER, J. H.; REED, D. P.; CLARK, D. D. End-to-end arguments in system design.
ACM Transactions on Computer Systems, v. 2, n. 4, p. 277–288, 1984. ISSN 07342071.

SCOTT-HAYWARD, S.; NATARAJAN, S.; SEZER, S. A Survey of Security in Software
Defined Networks. IEEE Communications Surveys & Tutorials, PP, n. 99, p. 1–33, 2015.
ISSN 1553-877X.

SCUDDER, J.; FERNANDO, R.; STUART, S. BGP Monitoring Protocol (BMP).
Internet Engineering Task Force, p. 1–27, 2016. Available from Internet: <https:
//tools.ietf.org/html/rfc7854>.

SHAO, W.; DEVIENNE, F.; IANNONE, L.; ROUGIER, J.-L. On the use of BGP
communities for fine-grained inbound traffic engineering. 2015. Available from Internet:
<http://arxiv.org/abs/1511.08336>.

SHAO, W.; DEVIENNE, F.; IANNONE, L.; ROUGIER, J.-L. On the Use of
BGP Communities for Fine-grained Inbound Traffic Engineering. arXiv preprint
arXiv:1511.08336, 2015. Available from Internet: <http://arxiv.org/abs/1511.08336>.

SHARMA, S.; STAESSENS, D.; COLLE, D.; PICKAVET, M.; DEMEESTER, P.
Enabling Fast Failure Recovery in OpenFlow Networks. IEEE Design of Reliable
Communication Networks, n. October, p. 164–171, 2011.

SHARMA, S.; STAESSENS, D.; COLLE, D.; PALMA, D.; GONCALVES, J.;
FIGUEIREDO, R.; MORRIS, D.; PICKAVET, M.; DEMEESTER, P. Implementing
Quality of Service for the Software Defined Networking Enabled Future Internet. 2014
Third European Workshop on Software Defined Networks, p. 49–54, 2014.

http://www.nongnu.org/quagga/
https://osrg.github.io/ryu/
https://osrg.github.io/ryu/
https://tools.ietf.org/html/rfc7854
https://tools.ietf.org/html/rfc7854
http://arxiv.org/abs/1511.08336
http://arxiv.org/abs/1511.08336

142

SILVA, W. J. A. Performance Evaluation of Flow Creation Inside an OpenFlow Network.
In: XXXV Simpósio Brasileiro de Telecomunicações e Processamento de Sinais -
SBrT2017. São Pedro, SP: SBrT, 2017. p. 102–106.

SILVA, W. J. A. An Architecture to Manage Incoming Traffic of Inter-Domain Routing
Using OpenFlow Networks. Information, v. 9, n. 4, p. 1–23, 2018.

SILVA, W. J. A. Avoiding Inconsistency in OpenFlow Stateful Applications Caused
by Multiple Flow Requests. International Conference on Computing, Networking and
Communications (ICNC), p. 543–548, 2018.

SILVA, W. J. A. Make Flows Great Again : A Hybrid Resilience Mechanism for
OpenFlow Networks. Information, v. 9, n. 6, p. 1–19, 2018.

SILVA, W. J. A.; DIAS, K. L.; SADOK, D. F. H. A Performance Evaluation of Software
Defined Networking Load Balancers Implementations. In: International Conference on
Information Networking (ICOIN). [S.l.: s.n.], 2017. ISBN 9781509051243.

SILVA, W. J. A.; Djamel Fawzi Hadj Sadok. A Survey on Efforts to Evolve the Control
Plane of Inter-Domain Routing. Information, v. 9, n. 5, p. 1–26, 2018.

SILVA, W. J. A.; SADOK, D. F. H. Control Inbound Traffic: Evolving the Control
Plane Routing System with Software Defined Networking. In: 18th International
Conference on High Performance Switching and Routing (HPSR). [S.l.: s.n.], 2017. ISBN
9781509028399.

SINGH, S.; DAS, T.; JUKAN, A. A Survey on Internet Multipath Routing and
Provisioning. IEEE Communications Surveys & Tutorials, v. 17, n. July, p. 1–1, 2015.
ISSN 1553-877X.

SMITH, P. BGP Best Current Practices. 2017. Available from Internet: <https:
//nsrc.org/workshops/2017/apricot2017/bgp/bgp/preso/05-BGP-BCP.pdf>.

SNIJDERS, J.; HEITZ, J.; SCUDDER, J. BGP Administrative Shutdown Communica-
tion. 2017.

SOMANI, G.; GAUR, M. S.; SANGHI, D.; CONTI, M.; BUYYA, R. DDoS Attacks in
Cloud Computing: Issues, Taxonomy, and Future Directions. v. 1, n. 1, 2015. Available
from Internet: <http://arxiv.org/abs/1512.08187>.

THAI, P.; De Oliveira, J. C. Decoupling policy from routing with software defined
interdomain management: Interdomain routing for SDN-based networks. Proceedings -
International Conference on Computer Communications and Networks, ICCCN, 2013.
ISSN 10952055.

TOPOLOGY-ZOO. The internet topology zoo. 2017. Available from Internet:
<http://www.topology-zoo.org/dataset.html>.

Van Beijnum, I.; CROWCROFT, J.; VALERA, F.; BAGNULO, M. Loop-freeness
in multipath BGP through propagating the longest path. Proceedings - 2009 IEEE
International Conference on Communications Workshops, ICC 2009, 2009. ISSN
2164-7038.

https://nsrc.org/workshops/2017/apricot2017/bgp/bgp/preso/05-BGP-BCP.pdf
https://nsrc.org/workshops/2017/apricot2017/bgp/bgp/preso/05-BGP-BCP.pdf
http://arxiv.org/abs/1512.08187
http://www.topology-zoo.org/dataset.html

143

VIRTUALBOX. Virtualization – Oracle VM VirtualBox.
https://www.virtualbox.org/wiki/Virtualization, 2016. Available from Internet:
<https://www.virtualbox.org/wiki/Virtualization>.

VISHNOI, A.; PODDAR, R.; MANN, V.; BHATTACHARYA, S. Effective Switch
Memory Management in OpenFlow Networks. DEBS ’14- Proceedings of the 8th ACM
International Conference on Distributed Event-Based Systems, 2014.

VISHNOI, A.; PODDAR, R.; MANN, V.; BHATTACHARYA, S. Effective Switch
Memory Management in OpenFlow Networks. 8th ACM International Conference on
Distributed Event-Based Systems, p. 177–188, 2014.

WALTON, D.; RETANA, A.; CHEN, E.; SCUDDER, J. Advertisement of Multiple
Paths in BGP - RFC 7911. Internet Engineering Task Force (IETF), p. 1–8, 2016.

WANG, T.; SHI, X.; YIN, X.; WANG, Z. Quantifying the Propagation Behavior of BGP
Routing Update. Bulletin of Networking, Computing, Systems, and Software, v. 4, n. 1,
p. 18–20, 2015.

WANG, Y.; BI, J.; LIN, P.; LIN, Y.; ZHANG, K. SDI: a multi-domain SDN mechanism
for fine-grained inter-domain routing. Annales des Telecommunications/Annals of
Telecommunications, Annals of Telecommunications, v. 71, n. 11-12, p. 625–637, 2016.
ISSN 19589395.

WANG, Y.; BI, J.; ZHANG, K.; WU, Y. A Framework for Fine-Grained Inter-Domain
Routing Diversity Via SDN. 2016 Eighth International Conference on Ubiquitous and
Future Networks (ICUFN), p. 751–756, 2016.

WICHTLHUBER, M.; REINECKE, R.; HAUSHEER, D. An SDN-based CDN/ISP
collaboration architecture for managing high-volume flows. IEEE Transactions on
Network and Service Management, v. 12, n. 1, p. 48–60, 2015. ISSN 19324537.

WIRESHARK. Wireshark - Network Protocol Analyzer. 2017. Available from Internet:
<https://www.wireshark.org/>.

WOLF, T.; GRIFFIOEN, J.; CALVERT, K.; DUTTA, R.; ROUSKAS, G.; NAGURNEY,
A. ChoiceNet : Toward an Economy Plane for the Internet. ACM SIGCOMM Computer
Communication Review, v. 44, n. 3, p. 58–65, 2014. ISSN 19435819.

XU, W.; REXFORD, J. MIRO : Multi-path Interdomain ROuting. Proceedings of the
2006 conference on Applications, technologies, architectures, and protocols for computer
communications, p. 171–182, 2006. ISSN 01464833.

Y. Rekhter, T.J. Watson, T. L. A Border Gateway Protocol 4 (BGP-4). Request for
Comments: 1771, 1995.

YANG, X.; CLARK, D.; BERGER, A. W. NIRA: A new inter-domain routing
architecture. IEEE/ACM Transactions on Networking, v. 15, n. 4, p. 775–788, 2007.
ISSN 10636692.

YANNUZZI, M.; MASIP-BRUIN, X.; BONAVENTURE, O. Open issues in interdomain
routing: A survey. IEEE Network, v. 19, n. 6, p. 49–56, 2005. ISSN 08908044.

https://www.virtualbox.org/wiki/Virtualization
https://www.wireshark.org/

144

ZARGAR, S. T.; JOSHI, J.; TIPPER, D. A survey of defense mechanisms against
distributed denial of service (DDOS) flooding attacks. IEEE Communications Surveys
and Tutorials, v. 15, n. 4, p. 2046–2069, 2013. ISSN 1553877X.

ZHANG, X.; CHENG, Z.; LIN, R.; HE, L.; YU, S.; LUO, H. Local Fast Reroute with
Flow Aggregation in Software Defined Networks. IEEE Communications Letters, v. 7798,
n. c, p. 1–4, 2016.

ZHU, D.; GRITTER, M.; CHERITON, D. R. Feedback based routing. ACM SIGCOMM
Computer Communication Review, v. 33, n. 1, p. 71–76, 2003. ISSN 01464833.

	Title page
	
	Acknowledgements
	Epigraph
	Abstract
	Resumo
	List of Figures
	List of Tables
	Lista de quadros
	Contents
	Introduction
	Motivation
	Objectives
	Statement of the contributions
	Outline of Thesis

	Fundamentals
	Overview of Software-Defined Networking
	Overview of OpenFlow Protocol
	OpenFlow Switch Components
	OpenFlow Fast Failover Group Table

	Flow creation
	Topology Discovery
	Types of flow creation
	Multiple Packet-In during flow creation

	Resilience mechanisms
	Resilience mechanisms approaches
	Dynamic of resilience mechanisms

	A Brief Review of BGP
	BGP Control Messages
	BGP Control Plane
	Monitoring Prefixes

	State-of-the-art techniques for inbound traffic control with BGP
	AS relationships
	Traffic Engineering with BGP

	Final remarks

	Related works that evolve the inter-domain routing
	Issues in evolving the inter-domain routing control plane
	Ossification
	Backward compatibility
	Complexity introduced by the distributed configuration
	Conflicts and uncertainty in inter-domain routing policies
	Coordination among ASs
	Traffic engineering in the inter-domain

	Classification of efforts for evolving the control plane
	The criteria
	Concepts
	Approach
	Control plane placement
	Explore path diversity

	Efforts to evolve the control plane of inter-domain routing
	Brand new design
	Incremental improvement
	Inter-domain communication

	Lessons Learned
	Inter-domain routing limitations
	New business relationships
	SDN as an enabling technology

	Concluding remarks

	The Architecture Proposal
	The controller for an architecture to evolve inter-domain routing
	Topology Management
	Flow Management
	Domain Controller
	COOL Interface
	Applications

	Managing Flows
	A scheme to avoid inconsistency in flow creation
	A hybrid resilience mechanism for OpenFlow networks
	An example
	Notation and concepts
	HYDRA protection phase
	HYDRA restoration phase

	Dynamic of the proposed architecture
	Establishing a peering session
	Exploring multi-paths
	Loop avoidance

	Applications of the proposed architecture
	Reactive Load Balancers
	Reactive Random Load Balancer with Random strategy (RLL)
	Reactive Round-Robin Load Balancer (RRLL)
	Reactive Round-Robin Load Balancer with Threshold (RRLLT)

	Protecting primary routes

	Concluding remarks

	Evaluation
	Evaluation of the COOL controller
	Resilience mechanisms for OpenFlow networks
	Number of flows entries
	Signaling overhead
	Failure recovery time

	Avoiding inconsistency in flow creation for stateful applications
	Scenario description
	Results

	Discussion about management of OpenFlow rules
	Restrictions of the number of network rules
	Rules installation for OpenFlow networks
	Discussion about avoiding inconsistency

	Evaluation of the proposed architecture for managing inter-domain traffic
	Manage Inter-domain Traffic
	Topology adopted
	Prototype environment
	Workloads
	Results of the workload execution

	Protection against external link failure
	Evaluation of Traffic Exchange Messages

	Architecture discussion
	Discussion based on the related works
	Discussion about the partial deployment of the proposed architecture
	Backward compatibility with legacy networks internally
	Backward compatibility with legacy networks in the inter-domain
	Logically centralized

	Adopting a Routing Registry
	Controlling inbound network traffic
	Discussion about inter-domain routing
	Inter-domain routing policies conflicts
	Bilateral agreements

	Concluding remarks

	Final considerations
	Limitations
	Future works
	Conclusion

	References

