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Abstract

The purpose of this dissertation is to present an alternative way to compute the
eigenvalues for spheroidal harmonics, in view of its applications to arbitrary spin
quasi-normal frequencies of Kerr black hole. The alternative is based on the rela-
tion between the connection problem of the angular Teukolsky Master Equation
(TME) and the dependence of the Painlevé V transcendent on monodromy data.
The latter has an expansion in terms of irregular conformal blocks, uncovered by
the AGT correspondence, which can in principle be used for explicit calculations.
The isomonodromic deformations in the angular TME is translated to two condi-
tions on the Painlevé V transcendent which are solved to �nd the expansion of the
accessory parameter of the angular TME and consequently the �rst terms of the
expansion of the eigenvalue sλlm.

Keywords: Teukolsky master equation. Isomonodromic deformations. Function τV
transcendent. Accessory parameter. Eigenvalue sλlm.



Resumo

A proposta desta dissertação é apresentar uma forma alternativa para o cál-
culo dos autovalores para harmônicos esferoidais, em vista de sua aplicação em
modos quase-normais no buraco negro de Kerr. Essa forma alternativa é baseada
na relação entre problema de conexão da parte angular da equação Master de
Teukolsky (TME) e a dependência da função τV transcendente de Painlevé V so-
bre monodromy data. Essa última tem a expansão em termos de blocos conformes
de primeiro tipo, descoberto pela correspondência AGT, que pode, em princípio,
ser usado explicitamente. As deformations isomonodrômicas na parte angular da
TME é transladado em duas condições para a função τV que são resolvidas de
modo a encontrar a expansão do parâmetro acessório da parte angular da TME e
consequentemente os primeiros termos da expansão do autovalor sλlm.

Palavras-chave: Equação Master de Teukolsky. Deformações isomonodrômicas. Função

transcendente τV . Parâmetro acessório. Autovalor sλlm.
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1 | Introduction

Conformal �eld theory is a quantum �eld theory on a Euclidean two-dimensional space,
that is invariant under local conformal transformations. In contrast to other types of
quantum �eld theories, two-dimensional conformal �eld theories have an in�nite number
of symmetries, where in some cases can be used to solve problems directly. Based on
this number of symmetries, conformal �eld theory has been intensively studied in the
last three decades [2, 3, 4]. An attractive property of this theory is that any correlation
function can be written as a linear combination of conformal blocks, where conformal
blocks are functions determined by conformal symmetries and labeled by representations
of the Lie algebra. In this theory the Lie algebra is called Virasoro algebra, which appears
as a central extension of the Witt algebra with the central extension depending explicitly
on the central charge c [5]. The value of c is crucial in 2d conformal �eld theory, and it
is related with the Weyl anomaly or trace anomaly of the energy-momentum tensor [6].
The importance of the values of c appears directly, for example, when we describe via
conformal �eld theory a system with free bosons or fermions, where c takes the values
c = 1 and c = 1/2, respectively [7]. As a function labeled by the Virasoro algebra, the
conformal blocks also depend explicit on the value of c; therefore, to write the correlation
function is crucial to de�ne c.

Still, in the discussion of to write the correlation functions in terms of the conformal
blocks, Alday, Gaiotto, and Tachikawa recently discovered in [8] a relevant relation be-
tween conformal �eld theory in 2d and N = 2 four-dimensions super-symmetric gauge
theory, commonly referred to as AGT correspondence. This correspondence brought a
new formalism for the conformal block where it is possible to express the conformal block
in terms of Nekrasov partition functions [9]. On the light of AGT correspondence, it was
recently observed that some correlation functions from conformal �eld theory, with c = 1
in the Virasoro algebra, can be expressed in terms of τ -functions associated to Painlevé
equations, to be more precise the Painlevé VI, V, and III [10]. These observations ap-
pear even more in AGT correspondence which provides, via Nekrasov partition function,
explicit representations for conformal blocks, correlation functions and consequently an
exact expansion of the corresponding τ -functions.

There exists in the literature six types of Painlevé equations which are commonly de-
noted by PVI, PV, PIV, PIII, PII, and PI, such equations have been playing an increas-
ingly important role in mathematical physics, especially in the applications to classical
and quantum integrable systems, random matrix theory and now in 2d conformal �eld
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theory via τ -functions associated [10, 11]. The most natural mathematical framework for
Painlevé equations appears in the theory of isomonodromic deformations of linear systems
develop by Jimbo, Miwa, and Ueno [12, 13, 14]. Essentially, this theory is about how to
deform certain parameters of linear systems such that its monodromy representation is
preserved, this condition conducts to systems of linear partial di�erential equations whose
the integrability conditions leads to Painlevé equations.

The method of isomonodromic deformations is a powerful a tool to associate linear
with integrable nonlinear equations and to solve severe problems such as connection prob-
lems of nonlinear di�erential equations, asymptotic properties of the Painlevé equations
and accessory parameter in Heun equation. The last example is the start point in this
dissertation, where the isomonodromic deformations theory will be used on the con�uent
Heun equation, in order to �nd the accessory parameter associated. In the treatment of
isomonodromic deformation, the con�uent Heun equation can be recast as a linear system
which has the same number of singularities of the equation, in this case, two regular sin-
gularities and one irregular singularity of rank 1. Where in this system, the investigation
of isomonodromic deformations leads to the Painlevé V. How this comes about will be
discussed in this dissertation.

The Painlevé V tau function τV an isomonodromic invariant in isomonodromic defor-
mations theory is crucial in the calculation of the accessory parameter expansion. Fur-
thermore, the results from AGT correspondence are also useful, given that the τV is now
expressed in terms of correlation function from 2d conformal �eld theory in c=1 [11].
With the isomonodromic deformation treatment and the accessory parameter expansion
calculated, we �nd the explicit expansion of the eigenvalues of the angular Teukolsky
Master equation (TME) in view of the angular equation is a con�uent Heun equation and
can be written in terms of a linear system.

This dissertation is divided into three chapters. In Chapter 1, we present a short
introduction to conformal �eld theory in two dimensions, where we de�ne Virasoro alge-
bra, primary operators and the concept of insertion limit on the Riemann sphere. The
correlation function between four primary operators is studied as well as Conformal Block
(CB) de�ned by Operator Product Expansion (OPE). With the OPE method limited, the
AGT correspondence is used to rewrite the CB in terms of Nekrasov partition functions.
Finally, at the end of the chapter, we de�ne Whittaker sates of rank r in the Virasoro al-
gebra and Con�uent CB of First Kind as a limit of the conformal block with four primary
operators. The limit allows us to write the correlation function between two Whittaker
states of rank r = 0 and one of rank r = 1.

In Chapter 2, we start introducing some general ideas about Painlevé equations and
write the explicit form of the Painlevé VI and V. In order to investigate isomonodromic
deformation, we de�ne a generic linear system and study the analytic continuation of
solutions via Monodromy matrices and Stokes phenomenon. Using the Jimbo, Miwa, and
Ueno results, we present the general idea of isomonodromic deformations in the generic
system, Schlesinger equations, and the τ -function as an isomonodromic invariant. With
the generic system de�ned, we investigate a nontrivial system with two regular points
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and one irregular point, which is associated with deformations in the Con�uent Heun
equation. Furthermore, we study isomonodromy deformation on Painlevé V and de�ned
τV associated. We �nish this chapter using the AGT correspondence with c = 1 to express
the τV -function in terms of the correlation function between two Whittaker states of rank
r = 0 and one state of rank r = 1 in the Virasoro algebra, de�ned in Chapter 1.

In Chapter 3, we derivate the two conditions of the τV -function: the �rst condition
from the isomonodromic deformation theory and second condition named Toda equation.
Using the τV expression de�ned in Chapter 2 and the conditions, we �nd the �rst terms
of the accessory parameter expansion associated with the con�uent Heun equation. With
the expansion of the accessory parameter calculated, we express the �rst seven terms of
the expansion for the eigenvalue sλlm of the angular Teukolsky Master equation, where
these terms are in agreement with the results found in the literature.

Finally, in Chapter 4 we present a short review of the dissertation and also propose
new directions and perspectives for our work.
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2 | Conformal Block

Conformal Blocks (CB) are special functions determined by conformal symmetry and
responsible for building correlation functions in two-dimensional conformal �eld theory.
Such correlations play an essential role in this chapter, to be more precise, we are in-
terested in the correlation function between four primary operators, as well as in the
correlation function of three primary operators, which appears as a con�uence limit of
the correlation function of four primary operators. Therefore, we start this chapter giving
a short introduction to 2d conformal �eld theory and explaining the idea behind conformal
blocks. To write explicitly the two correlation functions, we also study how conformal
blocks are written in terms of Nekrasov partition functions, using such partition functions
we write the conformal block and con�uent CB of the �rst kind. We �nish this chapter
writing the explicit expression for four operators correlation function and the con�uent
correlation function in terms of Nekrasov partition functions.

Conformal Field Theory

The �rst formalism about Conformal Field Theory (CFT) in two dimensions appeared
in the seminal paper by A. Belavin, A. Poliakov and A. Zamolodchikov [15], since then,
many applications are made in di�erent areas like condensed matter, string theory, and
black holes.

The approach for studying CFT is somewhat di�erent from the usual approach for
quantum �eld theory. Because instead of starting with a classical action for the �elds and
quantizing them via the canonical quantization or the path integral method, one employs
the symmetries of the theory. The procedure which uses symmetries is called nowadays
conformal bootstrap, with which it is possible to de�ne and in certain cases even solve the
theory just by exploiting the consequence of the symmetries. In 2d CFT, the bootstrap
procedure can be used directly, since there is an in�nite number of generators.

The exciting idea is that by studying CFT, it is possible to understand some statis-
tical systems since in the statistical point of view, conformal �eld theory describes the
critical behavior of some systems at second order phase transitions. For example, the
two-dimensional Ising Model has two phases, disordered and ordered phases, which are
associated with high and low temperature, respectively. These two phases are related to
each other by a second order phase transition at the self-dual point. At the critical point,
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the �eld theory has �uctuations on all lengths such that the scale invariance appears,
wherein some systems such scale invariance leads to the complete conformal symmetry.
The relation between scale invariance phenomenon and conformal invariance in D = 2
dimension possess an intrinsic link arising from the renormalization group [16]. In black
hole physics, we also have an example, the 3D BTZ black hole named after Máximo Baña-
dos, Claudio Teitelboim, and Jorge Zanelli, where from AdS/CFT conjecture leads to 2D
CFT on the boundary [17].

2.1 Conformal Field Theory in d=2

We start this subsection by introducing conformal transformations and determining the
conditions for conformal invariance. We also present the Virasoro algebra as an exten-
sion of the Witt algebra and de�ne primary operators. Furthermore, we calculate the
correlation function of two and three primary operators explicitly.

Conformal Transformations and Condition for Conformal Invariance

Let us consider a two-dimensional �at space with local transformations which preserve
the angle of intersection between two curves, Figure 2.1. Such transformations are called

Figure 2.1: Conformal Transformation

conformal transformations and by these transformations the metric changes in the
following form

g′ρσ
∂x′ρ

∂xµ
∂x′σ

∂xν
= Λ(x)gµν , (2.1)

with gµν the Euclidian metric.
In direction to prove the angular invariance, let us use the de�nition (2.1) and the

angle de�nition which is given by

cos (α(x0)) :=
uρ(x)wσ(x)

||u||||w||
gρσ(x)

∣∣∣∣
x=x0

, (2.2)
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with the norm of the vectors ||u|| =
√
uνuµgνµ and ||w|| =

√
wνwµgνµ. By a conformal

transformation x→ x′(x) the angle between the lines is written as

cos (α′(x0)) =
u′ρ(x′(x))w′σ(x′(x))

||u′||||w′||
g′ρσ(x′(x))

∣∣∣∣
x=x0

. (2.3)

Using the transformation of the vector

u′
ρ
(x′(x)) =

∂x′ρ

∂xµ
uµ(x), (2.4)

we have

cos (α′(x0)) =
uµ(x)wν(x)

||u||||w||
1

Λ(x)

∂x′ρ

∂xµ
∂x′σ

∂xν
g′ρσ(x′(x))

∣∣∣∣
x=x0

, (2.5)

with the equation (2.1), we obtain

cos (α′(x0)) =
uµ(x)wµ(x)

||u||||w||
gµν(x)

∣∣∣∣
x=x0

= cos (α(x0)),

(2.6)

which means that the angle is invariant by conformal transformation, α′(x0) = α(x0).
Now, in order to investigate the conditions associated with conformal transformations,

let us consider an in�nitesimal coordinate transformation given by

x′
ρ

= xρ + ερ(x) +O(ε2). (2.7)

Replacing in the left-hand side of (2.1), we �nd

gρσ
∂x′ρ

∂xµ
∂x′σ

∂xν
= gµν + (∂νεµ + ∂µεν) +O(ε2). (2.8)

where the second term must be proportional to the metric, thus

∂νεµ + ∂µεν = K(x)gµν , (2.9)

with K(x) some function of x. By taking the trace in the equation above and replacing
K(x) in the same equation, we get

∂νεµ + ∂µεν = (∂ . ε)gµν , ∂ . ε = ∂σερgρσ = ∂σεσ. (2.10)

From the relation above, we can obtain the Cauchy-Riemann equations by using complex
variables. It is well-known that on the Euclidean plane R2 ' C:

z = x0 + ix1, ε = ε0 + iε1, ∂z =
1

2
(∂0 − i∂1)

z̄ = x0 − ix1, ε̄ = ε0 − iε1, ∂z̄ =
1

2
(∂0 + i∂1)

(2.11)
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∂0ε0 = ∂1ε1, ∂0ε1 = −∂1ε0, (2.12)

where we observe from the equations above that ε = ε(z) and ε̄ = ε̄(z̄) are holomorphic and
antiholomorphic functions. Furthermore, the most general conformal transformation in
the complex plane will be written as f(z) = z+ ε(z). Thus, via conformal transformation
z → f(z) the metric will change in the following form

d2s =
∂f

∂z

∂f̄

∂z̄
dzdz̄, (2.13)

where ∂f
∂z

∂f̄
∂z̄

=
∣∣∂f
∂z

∣∣2 is the scale factor.

2.1.1 Witt Algebra
The generators of conformal transformations, which can be found using (2.10), compose
a Lie algebra which in two dimensions is called Witt algebra. To obtain the commutation
relations associated with such algebra, let us consider ε(z) a meromorphic function as an
expansion in Laurent series such that (2.7) becomes

z′ = z + ε(z) = z −
∑
n∈Z

εnz
n+1 and z̄′ = z̄ + ε̄(z̄) = z̄ −

∑
n∈Z

ε̄nz̄
n+1

(2.14)

with εn, ε̄n ∈ C. From (2.14), we identify the generators corresponding to a transformation
for a particular n as,

Ln = −zn+1∂z, L̄n = −z̄n+1∂z̄, (2.15)

given that n ∈ Z, we have thus an in�nite number of generators in two dimensions. Where
the Lie brackets associated with Witt algebra are given by

[Lm, Ln] = (m− n)Lm+n,

[L̄m, L̄n] = (m− n)L̄m+n,

[Lm, L̄n] = 0.

(2.16)

The �rst commutation relation can be proved by considering the act of the Lm and
Ln in a holomorphic function, h(z),

[Lm, Ln]h(z) = (LmLn − LnLm)h(z)

= zm+1∂z(z
n+1∂zh(z))− zn+1∂z(z

m+1∂zh(z))

= (n+ 1)zm+n+1∂zh(z)− (m+ 1)zm+n+1∂zh(z))

= −(m− n)zm+n+1∂zh(z)

= (m− n)Lm+nh(z)

The second commutation in (2.16) can be obtained considering the antiholomorphic func-
tion h̄(z̄). In the next pages, we are not going to consider generators from the antiholo-
morphic part {L̄n}, since the treatment is analogue.
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Global Conformal Transformation

In the part of the Witt algebra generated by {Ln}, the generators Ln are not de�ned
everywhere in the complex plane. In particular, when z = 0 in the equation (2.15), the
generator will depend on the value of n to be well de�ned, the same problem is observed
at in�nity. In order to understand and consider the point at in�nity, let us take the
conformal compacti�cation of R2, in this case the Riemann sphere, S2 ' C∪ {∞}. Now,
on the Riemann sphere, we can deal with z = 0 and z =∞:
At z = 0, we �nd that Ln is well de�ned only for n ≥ −1,

Ln = −zn+1∂z, n ≥ −1.

To investigate the behavior of Ln at z = ∞, we need perform the change of variable
z = − 1

w
, and study the limit w → 0. Thus, we obtain

Ln = −
(
− 1

w

)n−1

∂w n ≤ 1

where ∂z = (−w)2∂w. Therefore, we have the following constraints,

Ln =

{
n ≥ −1, z = 0,

n ≤ 1, z =∞,
(2.17)

where from these constraints we obtain the generators associated to a subalgebra in the
Witt algebra generated by the set {L−1, L0, L1}, with these generators responsible for
the global conformal transformations. From (2.14) and (2.15), it is possible to check
directly that L−1, L0, and L1 are interpreted as translation, dilation, rotation and special
conformal transformation (SCT),

L−1 = −∂z =⇒ z′ = z − ε−1 : Translation

L0 = −z∂z =⇒ z′ = (1− ε0)z :

{
Dilation, ε0 is R
Rotation, ε0 is C

L1 = −z2∂z =⇒ z′ = z − ε1z2 : SCT.

In summary, the set of operators generate transformations on the Riemann sphere of
the following form

z 7→ f(z) =
az + b

cz + d
, with a, b, c, d ∈ C, (2.18)

where the transformation is invertible when ad− bc 6= 0. By considering ad− bc = 1, we
can infer that the conformal group on the Riemann sphere S2 ' C ∪ {∞} is the Möbius
group, SL(2,C)/Z2. The quotient by Z2 is due to the fact that (2.18) is una�ected by
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taking all of a, b, c, and d to minus themselves. In the SL(2,C) language, the conformal
transformations associated with the operators {L−1, L0, L1} are given by [18]

Translation :

(
1 B
0 1

)
, Rotations :

(
ei
θ
2 0

0 e−i
θ
2

)

Dilation :

(
λ 0
0 λ−1

)
, SCT :

(
1 0
C 1

) (2.19)

where B = a1 + ia2, C = b1 − ib2 and λ, θ ∈ R.

2.1.2 Virasoro Algebra
The generators of the local conformal transformations which obey the Witt algebra (2.16)
are related with classical generators. The quantum version of these generators obeys
an identical algebra the Virasoro algebra, except for a central charge c that appears
as an extension of the Witt algebra. The central charge is perhaps the most important
number which characterizes the CFT. The c is intrinsically related to Weyl anomaly which
appears when we try to quantize the Witt algebra on the Riemann sphere. Essentially, this
anomaly is related to the trace of the energy-momentum tensor, where classically the trace
is zero; however, in the quantization on a curved background, the trace is proportional
to c. We are not going to prove all mathematical de�nitions, more details in [7, 4, 15, 6].
In this dissertation, we assume directly that the Lie bracket in the Virasoro algebra is
de�ned by

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0 (2.20)

and the explicit deduction of the Virasoro algebra can be seen in [5]. Since Virasoro
algebra is the quantum version associated with Witt algebra, we can build the spectrum
in CFT by using Ln, analogous to quantum theory, more details about extension of the
Witt algebra in [6, 18, 7].

To build such a spectrum is necessary to de�ne quasi-primary and primary operators
in the Virasoro algebra. Both are local operators on the Riemann sphere, but only the
primary operators are annihilated by the lowering generators. In the point of view of
representation theory, such operators are the lowest dimension operators in the conformal
algebra. All other operators in the representation are called descendants and are obtained
by acting on the primary operators with the raising generators. Such de�nitions will
become apparent in the next pages.

2.1.3 Quasi-Primary Operators
In two dimensions the operator O∆(z) is de�ned as quasi-primary if by conformal trans-
formation z 7→ f(z) the operator changes to the following way

O(z) 7→ O′(z) =

(
∂f

∂z

)∆

O(f(z)), (2.21)
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where ∆ is the holomorphic conformal dimension associated to O(z). From (2.21), we can
also de�ne a primary operator, where if an operator changes as the equation above for any
conformal transformation, it is a primary operator. Essentially, every primary operator is
quasi-primary operator, but the reverse is not true, for example, the energy-tensor in 2D
CFT is a quasi-primary, however, via conformal transformation do not change as (2.21)
[3, 6].

Let us investigate how a primary operator O(z) changes under an in�nitesimal con-
formal transformation, z 7→ f(z). Replacing f(z) = z + ε(z) with ε(z)� 1 in (2.21), the
following quantities are obtained(

∂f

∂z

)∆

= 1 + ∆∂zε(z) +O(ε2),

O(z + ε(z)) = O(z) + ε(z)∂zO(z) +O(ε2).

(2.22)

We have directly
δεO(z) =

(
∆∂zε(z) + ε(z)∂z

)
O(z), (2.23)

since ε(z) is a Laurent series and it is well-known from quantum theory that, a small
variation in a �eld is associated with commutation between a conserved charge and a
�eld, we can thus use the same idea to �nd the commutation relation related with the
equation (2.23). In this case, we have an in�nite number of conserved charges or conformal
charges written as the sum of all generators [3],

Qε = −
∑
n∈Z

εnLn. (2.24)

Therefore, using ε(z) and Qε, we �nd the general commutation relation,

[Ln,O∆(z)] = zn
(
z∂z + (n+ 1)∆

)
O∆(z). (2.25)

From the equation above, we �nd how the global generators act on the primary operator
O∆(z). To do that, let us consider n = 0,±1

[L−1,O∆(z)] = ∂zO∆(z),

[L0,O∆(z)] = (z∂z + ∆)O∆(z),

[L1,O∆(z)] =
(
z2∂z + 2z∆

)
O∆(z),

(2.26)

where, as it was explained previously we can see explicitly in the relations above how the
global operators act on O∆(z), with the commutation relations representing translation,
dilation, rotation, and special conformal transformation. It is possible to set the position
of the operator O∆(z) at z = 0 which means consider a reference point where the operator
is not translated. Therefore,

[L−1,O∆(0)] = ∂zO∆(0),

[L0,O∆(0)] = ∆O∆(0),

[L1,O∆(0)] = 0.

(2.27)
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In the commutations above L1 annihilate the operatorO∆(0) and L−1 changes the position
of O∆(0) by translation, thus, O∆(0) is a primary operator with L1 and L−1 representing
the lowering and raising generator respectively, in representation theory.

We have written lots of commutation relations, and carefully pointed out the interpre-
tation of the global generators. Now we will introduce the idea of states in conformal �eld
theory. In general, the conformal dimension of any operator can be related to quantum
numbers, such connection allow us to de�ne the operator-state correspondence, denote by
O∆ ↔ |∆〉 [19, 6]. In such correspondence, each insertion of an operator on the Riemann
sphere are represented by states as

lim
z→0
O∆(z) |0〉 = |∆〉 , (2.28)

where we consider the insertion of O∆ at z = 0. The vacuum state |0〉 is characterized by
no operator insertion on the sphere and satis�es the following conditions,

Lm |0〉 = 0, m ≥ −1, 〈0|Lm = 0, m ≤ 1,

where we also have L±1,0 |0〉 = 0, [15, 18].
Using the insertion limit, we can derive the following relations from the last two

commutations in (2.27)
L0 |∆〉 = ∆ |∆〉 ,
Ln |∆〉 = 0, n ≥ 1.

(2.29)

Also, we de�ne in the dual case

〈∆|L0 = ∆ 〈∆| ,
〈∆|Ln = 0, n ≤ 1,

(2.30)

with L−n = L†n.
All operators which satisfy the relations above are classi�ed as primary operators

with conformal dimension ∆. The �rst commutation in (2.27) is related to descendants
operators that are built from |∆〉 and are commonly created using Ln with n ≤ −1 or in
the dual case by n ≥ 1.

Let us give an example of how to calculate the conformal dimension of a descendant
operator. In this example, we are going to consider the �rst descendant operator de�ned
by

O(−1)
∆ (z) = L−1O∆(0), (2.31)

the equation above can be written as

O(−1)
∆ (z) |0〉 = L−1O∆(z) |0〉 → |∆1〉 = L−1 |∆〉 . (2.32)

To compute the conformal dimension of |∆1〉, we apply L0 and use the commutation
relations (2.20) and (2.29),

L0 |∆1〉 = L0L−1 |∆〉 ,
= ([L0, L−1] + L−1L0) |∆〉 ,
= (∆ + 1)L−1 |∆〉 ,
= (∆ + 1) |∆1〉 ,

(2.33)
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so the holomorphic dimension is ∆ + 1.

In general, we can construct the states from |∆〉 and its descendants by using (2.26),

Operator Dimension
...

L−1L−1L−1 |∆〉 , L−2L−1 |∆〉 , L−3 |∆〉 ∆ + 3
L−1L−1 |∆〉 , L−2 |∆〉 ∆ + 2

L−1 |∆〉 ∆ + 1
|∆〉 ∆.

(2.34)

Using partitions it is possible to generalize (2.33) labeling the descendants as L−λ |∆〉 =
L−λN ...L−λ1 |∆〉 with λ = {λ1 ≥ λ2 ≥ ... ≥ λN ≥ 0} and conformal dimension ∆λ =
∆ + |λ|, |λ| =

∑N
i λi. The partitions formalism can be identi�ed by Young diagram.

Since the conformal blocks are functions of Young diagrams, they play a crucial role in
this dissertation, hence we are going to �x some notations.

Young Diagram

A set of all Young tableau will be denoted by Y. For λ ∈ Y, we denote the trans-
posed tableau as λ′ with λi, and λ′j the number of boxes in ith row and j th column of
λ, with |λ| the total number of boxes. Given a box (i, j) ∈ λ, we de�ne the arm-length
AY(•), the leg-lenght LY(◦), and the hook length hλ(i, j) as,

AY(•) = λi − j,
LY(◦) = λ′j − i,

hλ(i, j) = AY(•) + LY(◦) + 1.

(2.35)

An example,

Figure 2.2: Young tableau related to partition λ = {6, 5, 3, 1}.

which represents a partition λ = {6, 5, 3, 1} with λ3 the number of boxes in the row,
λ′4,5 the number of boxes in the column, and hλ(2, 3) the hook length of the box with
the red star. To calculate the hook length, we add the arm-length Aλ(•) = 1, leg-length
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Lλ(◦) = 2, and one, hλ(2, 3) = 1 + 2 + 1 = 4. We also have the size of the diagram given
by |λ| = 15.

2.1.4 Correlation Functions
In terms of the holomorphic part and using the relation (2.21), a general correlation
function on the Riemann sphere can be de�ned by

〈O∆1(z1)...O∆p(zp)〉 =

p∏
i=1

(
∂f

∂z

)∆i

z=zi

〈O∆1(f(z1))...O∆p(f(zp))〉 . (2.36)

Using this de�nition, we can use the conformal bootstrap to �nd correlation functions
between primary operators in conformal �eld theory. In particular, the calculation of the
two- and three-point correlation function are obtained straightforwardly. The four-point
function can be constructed by using anharmonic ratios de�ned in two dimensions as

w(z1, z2, z3, z4) =
|z1 − z2||z3 − z4|
|z1 − z3||z2 − z4|

, v(z1, z2, z3, z4) =
|z1 − z2||z3 − z4|
|z2 − z3||z1 − z4|

. (2.37)

These ratios are invariant under global transformations, and we can perform such trans-
formations to set z4 =∞, z3 = 1, z2 = z, and z1 = 0, where the dependence in z does not
�x the explicit form of the four-point correlation function and leads to the de�nition of
the conformal block. The explicit form of the conformal block will be explained in the fol-
lowing section. The general calculation of the p-point functions with p > 4 is complicated
and may have an arbitrary dependence on these ratios, i.e., not �xed by global conformal
symmetry.

Two-point function

A two-point function is de�ned as

〈O∆1(z1)O∆2(z2)〉 = g(z1, z2), (2.38)

the goal here, it is to use the bootstrap procedure to �nd the general form of g(z1, z2).
The invariance under translations, f(z) = z + a, and rotation, f(z) = cz with c ∈ C and
|c| = 1, requires from (2.21) that g(z1, z2) must to be of the form g(z1, z2) = g(|z1 − z2|).
The invariance under rescaling f(z) = λz, implies that

〈O∆1(z1)O∆2(z2)〉 → 〈λ∆1+∆2O∆1(λz1)O∆2(λz2)〉
= λ∆1+∆2g(λ|z1 − z2|) = g(|z1 − z2|),

(2.39)

from which, we conclude

g(|z1 − z2|) =
C12

|z1 − z2|∆1+∆2
, (2.40)
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where C12 is a normalization constant. The last symmetry is associated to special confor-
mal transformation. Let us consider the inversion f(z) = −1

z
,

〈O∆1(z1)O∆2(z2)〉 → 〈 1

z2∆1
1

O∆1

(
−1

z1

)
1

z2∆2
2

O∆2

(
−1

z2

)
〉

=
1

z2∆1
1

1

z2∆2
2

C12

|−1
z2

+ 1
z1
|∆1+∆2

,

(2.41)

which is satis�ed if ∆1 = ∆2 = ∆. The general form is written as

〈O∆i
(zi)O∆j

(zj)〉 =
δij

|z1 − z2|∆i+∆j
=

{
1

|z1−z2|2∆ i = j,

0 i 6= j,
(2.42)

where we are considering C12 to be δij.

Three-point function

For three-point function, we have

〈O∆1(z1)O∆2(z2)O∆3(z3)〉 = h(z1, z2, z3). (2.43)

Using the same argument from two-point function, the translation and rotation symme-
tries lead to

〈O∆1(z1)O∆2(z2)O∆3(z3)〉 = h(|z12|, |z23|, |z13|), (2.44)

with |zij| = |zi − zj|. From rescaling symmetry

〈O∆1(z1)O∆2(z2)O∆3(z3)〉 = 〈λ∆1O∆1(λz1)λ∆2O∆2(λz2)λ∆3O∆3(λz3)〉
= λ∆1+∆2+∆3h(λ|z12|, λ|z23|, λ|z13|).

(2.45)

Such results allow us to write one possible solution as

h(|z12|, |z23|, |z13|) =
C123

|z12|a|z23|b|z13|c
, (2.46)

with a+ b+ c = ∆1 + ∆2 + ∆3 and C123 is again some normalization constant. From the
SCT, we obtain more one constraint

1

z2∆1
1 z2∆2

2 z2∆3
3

(z1z2)a(z2z3)b(z1z3)c

|z12|a|z23|b|z13|c
=

1

|z12|a|z23|b|z13|c
. (2.47)

Using the �rst constraint in the equation above lead to

a = ∆1 + ∆2 −∆3, b = ∆2 + ∆3 −∆1, c = ∆1 + ∆3 −∆2, (2.48)

by replacing these results in (2.47), we have

〈O∆1(z1)O∆2(z2)O∆3(z3)〉 =
C123

|z12|∆123|z23|∆231|z13|∆132
, (2.49)

with ∆ijk = ∆i + ∆j −∆k.
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2.1.5 Operator Product Expansion - OPE
It is well-known from quantum theory the importance of the short distance expansion of
a product of two �elds [20]. In the CFT approach, such expansion can be obtained from
the generic form of two- and three-point functions, which allows us to extract the explicit
form of the OPE between two primary operators in terms of descendants. The main idea
is to suppose the existence of a complete set of local descendants operators {O(−λ)

∆ (z1)}
in the theory, then the completeness of this set is equivalent to the OPE,

O∆2(z2)O∆1(z1) =
∑
∆λ

C∆λ
∆2∆1

z∆2+∆1−∆λ
12

O(−λ)
∆ (z1). (2.50)

where z12 := z2−z1 and ∆λ = {∆, λ} is a multi-index with ∆ labels the primary operators
while λ - the Young diagram λ = {λ1 ≥ λ2 ≥ ... ≥ λN ≥ 0} labels their descendants, with
the conformal dimension ∆λ = ∆ + |λ| and the number of boxes |λ| = λ1 + λ2 + ...+ λN .
Observe that from the OPE it is possible to recover the two-point function from the equa-
tion above by considering O(−λ)

∆ (z1 = 0) to be the identity with ∆λ = 0

Four-Point function

Using the OPE expression, we can compute the general form of the four-point func-
tion. Therefore, from (2.50), the correlation function between four primary operators can
be written as

〈O∆4(z4)O∆3(z3)O∆2(z2)O∆1(z1)〉 =
∑
∆λ

C∆λ
∆2∆1

z∆2+∆1−∆λ
12

〈O∆4(z4)O∆3(z3)L−λO∆(z1)〉 .

(2.51)
The order of each operator is important because it can lead to di�erent types of four-

point functions. In the literature, there are three types of correlations which are associated
with the channels s, u and t, as we have in quantum theory [7, 20]. In this dissertation,
we are interested in the four-point function related to the s-channel. Therefore, using
global symmetry we �x z4 =∞, z3 = 1, z2 = z, and z1 = 0.

〈O∆∞(∞)O∆3(1)O∆2(z)O∆1(0)〉 =
∑
∆λ

C∆λ
∆2∆1

z∆2+∆1−∆λ
〈O∆4(∞)O∆3(1)L−λO∆(0)〉 . (2.52)

It is well-known from the last section, equation (2.49), that the structure constant C123

carries information about the correlation function between three primary operators. The
constant C∆λ

∆2∆1
shares the same idea, representing the correlation function of two primaries

and one descendant. In order to �nd the explicit form of (2.52), we have to compute C∆λ
∆2∆1

,
therefore, let us consider the general correlation between three descendants, where to treat
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with C∆λ
∆2∆1

we �x the three operators at 0, 1 and ∞. Thus, we have

〈L−µO∆i
(∞)L−νO∆j

(1)L−ηO∆k
(0)〉 = 〈L−µO∆i

(∞)(L−νO∆j
(1)L−ηO∆k

(0))〉

=
∑
∆λ

C∆λ
∆ν∆η

〈L−µO∆i
(∞)L−λO∆(0)〉

=
∑
∆λ

C∆λ
∆ν∆η

Qµλ(∆i,∆)

(2.53)

where we used the OPE between L−νO∆j
(1)L−ηO∆k

(0) to write the second line. Also, we
de�ne the conformal dimensions ∆η = ∆ + |η|, ∆λ = ∆k + |λ|, and ∆ν = ∆j + |ν|, where
again |η|, |λ| and |ν| represent the total number of boxes in the Young diagrams. To �nd
the structure constant in (2.52), it is possible to invert the equation (2.53) to write as [21]

C∆λ
∆ν∆η

=
∑
∆µ

[Qµλ(∆i,∆)]−1 〈L−µO∆i
(∞)L−νO∆j

(1)L−ηO∆k
(0)〉 . (2.54)

To ensure the normalization between O∆i
(∞) and O∆(0) and to eliminate any diver-

gence in C∆λ
∆ν∆η

, we set ∆i = ∆, as result Qµλ(∆), the Kac-Shapovalov matrix, has a
block-diagonal structure Qµλ(∆) ∼ δ|µ|,|λ|. Thus,

Qµλ(∆) = 〈L−µO∆(∞)L−λO∆(0)〉 , (2.55)

where each element of Qµλ(∆) can be computed algebraically as the matrix element of
descendants states,

Qµλ(∆) = 〈∆|Lµ1 ...LµML−λ1 ...L−λN |∆〉 .
Since we are interested in C∆λ

∆1∆2
from (2.54) we obtain

C∆λ
∆2∆1

=
∑
∆µ

[Qµλ(∆)]−1 〈L−µO∆(∞)O∆2(1)O∆1(0)〉 . (2.56)

Replacing at (2.52) we have,

〈O∆4(∞)O∆3(1)O∆2(z)O∆1(0)〉 = z−∆2−∆1

∑
∆λ,∆µ

z∆λΓ∆λ
∆4∆3

[Qµλ(∆)]−1Γ
∆µ

∆2∆1
, (2.57)

where we de�ne
Γ∆λ

∆4∆3
= 〈O∆4(∞)O∆3(1)L−λO∆(0)〉 ,

Γ
∆µ

∆2∆1
= 〈L−µO∆(∞)O∆2(1)O∆1(0)〉 .

(2.58)

Using the Virasoro commutation relations we can compute the explicit form of the cor-
relations Γ∆λ

∆4∆3
and Γ

∆µ

∆2∆1
, after some algebra - for more details, see [21]. We arrive

at

Γ∆λ
∆4∆3

= 〈O∆4(∞)O∆3(1)L−λO∆(0)〉 = 〈O∆4(∞)O∆3(1)O∆(0)〉 γ∆λ
∆4∆3

,

Γ
∆µ

∆2∆1
= 〈L−µO∆(∞)O∆2(1)O∆1(0)〉 = 〈O∆(∞)O∆2(1)O∆1(0)〉 γ∆µ

∆2∆1
,

(2.59)
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with

γ∆λ
∆4∆3

=
N∏
l=1

(∆−∆4 +λl∆3 +
l−1∑
n=1

λn), γ
∆µ

∆2∆1
=

M∏
p=1

(∆−∆1 +µp∆2 +

p−1∑
m=1

µm), (2.60)

where again λ = {λ1 ≥ λ2 ≥ ... ≥ λN ≥ 0} and µ = {µ1 ≥ µ2 ≥ ... ≥ µM ≥ 0}. The
expressions in (2.59) express the correlation functions with only one descendant with the
correlation function without descendant, where we will denote the correlations without
descendant as C∆

∆4∆3
and C∆

∆2∆1
.

Now we have enough information to express the four-point function in 2d CFT, using
the above results the four-point function is written as

〈O∆4(∞)O∆3(1)O∆2(z)O∆1(0)〉

=
∑

∆

C∆
∆4∆3

C∆
∆2∆1

z∆−∆1−∆2Fc(∆4,∆3,∆2,∆1,∆; z),

(2.61)
where the function Fc(∆4,∆3,∆2,∆1,∆; z) is called conformal block, a power series in
z with coe�cients depending on four conformal dimensions related to operators and one
conformal dimension ∆ associated to intermediate operator. The explicit form of the
conformal block is the following

Fc(∆4,∆3,∆2,∆1,∆; z) =
∑
λ,µ∈Y

γ∆λ
∆4,∆3

[Qµλ(∆)]−1γ
∆µ

∆2,∆1
z|λ|, (2.62)

with the Kac-Shapovalov matrix given by a block-diagonal structure. From (2.59) and
(2.60), the �rst three terms of the conformal block are

Fc(∆4,∆3,∆2,∆1,∆; z) = 1 +
(∆−∆1 + ∆2)(∆−∆4 + ∆3)

2∆
z +

+

[
(∆−∆1 + ∆2)(∆−∆1 + ∆2 + 1)(∆−∆4 + ∆3)(∆−∆4 + ∆3 + 1)

2∆(1 + 2∆)
+

+
(1 + 2∆)

(
∆1 + ∆2 + ∆(∆−1)−3(∆1−∆2)2

1+2∆

)(
∆4 + ∆3 + ∆(∆−1)−3(∆4−∆3)2

1+2∆

)
(1− 4∆)2 + (c− 1)(1 + 2∆)

]
z2

2
+ ... .

(2.63)
The exact calculation can be seen in [21]. The real computation of (2.62) becomes

complicated at higher levels. In the direction of solving this problem, a big step was
made in the paper of Luis F. Alday, Davide Gaiotto and Yuji Tachikawa [8], where they
conjectured an expression for correlation functions on the Riemann surface of genus g and
n punctures as Nekrasov partition function of a certain N = 2 Super Conformal Gauge
Theory in four dimensions.

In this dissertation, we take g = 0, where all calculations are related to the Rieman
sphere. Also, we are interested in the four-point function that is associated with four
punctures, n = 4. In next section, we are going to treat how the conformal block is
written in terms of the Luis F. Alday, Davide Gaiotto and Yuji Tachikawa correspondence
or AGT correspondence, and also about Nekrasov partition function.
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2.2 Conformal Block via Instanton Partition Functions

In the AGT correspondence paper [8] was revealed a deep connection between 2d CFT
and N = 2 SCFT gauge theory. This correspondence turned out to be very important for
the 2d CFT. In particular, in their paper Alday, Gaiotto and Tachikawa gave an explicit
combinatorial formula for the expansion of the conformal blocks in terms of Nekrasov par-
tition function [9]. Based on this paper, Alba, Fateev, Litvinov, and Tarnopolskiy(AFLT)
[22] studied the origin of such expansion for the conformal block, from a CFT point of
view. They considered the algebra A = Vir⊗H which is the tensor product of mutually
commuting Virasoro and Heisenberg algebras and discovered the special orthogonal basis
of states in the highest weight representations of A. Such discovery allowed to compute
the conformal block expansion in agreement with the expansion proposed in the AGT
correspondence. Therefore, in order to write the explicit form of the conformal block and
given that is according with the AGT correspondence, we are going to consider the de�ni-
tions from AFLT paper, as well as the de�nitions from A. Belavin and V. Belavin paper,
where the explicit form for the Nekrasov partition functions was written - see Appendix
A in [23].

We know that the algebra A is de�ned by the tensor product between the Virasoro and
Heisenberg algebras. In this new algebra, we have the following commutation relations

[Ln, Lm] = (n−m)Lm+n +
c

12
n(n2 − 1)δm+n,0,

[an, am] =
n

2
δm+n,0, [Ln, am] = 0.

(2.64)

where in A the primary operator carries information from the both algebras and we can
denote, for example, by |∆, α〉 = |∆〉 ⊗ |α〉 [22].

In the A algebra the Virasoro conformal block is denoted as BV ir(t), where we choose
z = t. Using the operator product expansion, BV ir(t) assumes the form of a power series

BV ir(t) =
∞∑
N=0

〈N ; ∆4,∆3|∆2,∆1;N〉 tN , (2.65)

where ∆1,2,3,4 are the conformal dimensions of each operator inserted on the Riemann
sphere. We also have the vector |N ; ∆4,∆3〉 de�ned as a linear combination of Nth level
descendants L−λ |∆〉, with λ = {λ1 ≥ λ2 ≥ ... ≥ λN ≥ 0} [23]. The Heisenberg conformal
block is also a function of t and it is de�ned by

BH(t) = (1− t)2( ε
2

+θ̂2)( ε
2

+θ̂3). (2.66)

In this case, the conformal block is built using the vectors |N,α〉 criated by the action of
an, which satis�es the commutation relation [an, am] = n

2
δm+n,0. On the level N the state

|N,α〉 obeys the following recursive relation, an |N,α〉 = α |N − n, α〉 [23].
The computation of the equations (2.65) and (2.66) is complicated, and we will not

explain here, it is not the goal. The derivation of the equation (2.66) in terms of combina-
torial expansion can be seen in the paper by Marshakov, Mironov, and Morozov [21]. For
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the equation (2.65) we consider the results from the Appendix [23] and use the de�nition
from AFLT [22]. Therefore, we introduce the conformal block in the A algebra as

B(t) = BH(t)BV ir(t), (2.67)

where, in terms of AGT correspondence, the Heisenberg block corresponds to U(1) factor
[8], in the gauge group in N = 2 SCFT, and the Virasoro block is built in terms of Young
diagrams de�ned in the last section.

Now we come to a surprising observation, Alday, Gaiotto, and Tachikawa checked
explicitly in [8] that the conformal block B(t) is exactly the conformal block of the Virasoro
algebra (2.62) with central c for four operators of dimensions ∆1,2,3,4 inserted at 0, t, 1,
∞ respectively, and with an intermadiate state in the s-channel whose dimension is ∆.
Where the conformal dimensions ∆1,2,3,4 and ∆ are given by

∆i =
θ̂i(2ε− θ̂i)

4ε1ε2
, i = 1, 2, 3, 4, ∆ =

α(ε− α)

ε1ε2
, α =

ε

2
+
σ̂

2
, (2.68)

and the central charge in the Virasoro algebra:

c = 1 +
6ε2

ε1ε2
, ε = ε1 + ε2. (2.69)

where ε1,2 are deformation parameters in the gauge theory 1.
To give an idea about insertions on the sphere, and explain how these set of conformal

dimensions are organized in the s-channel, let us consider the following pictures. The Fig-
ure (2.4) is frequently used in the literature to represent the four-point function related to
s-channel and help us to understand the order of each operator, as well as the localization
of the intermediate state. Furthermore, as a theory on the Riemann sphere, we can use
the Figure 2.3 as a representation of the insertion of four punctures or O∆ operators on
the sphere [8].

Figure 2.3: Riemann sphere

with 4 punctures

Figure 2.4: Four-point func-

tion for s-channel

1The deformation parameters appear as deformations in the gauge theory and are directly connected
with the central charge de�ned in the SCFT on the Riemann sphere, see Subsection 3.2 and Section 6 [8]
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From [23], the term 〈N ; ∆4,∆3|∆2,∆1;N〉 in (2.65) depends on the Nekrasov partition
functions and it is given by

〈N ; ∆4,∆3|∆2,∆1;N〉 =
∑
λ,µ∈Y
|λ|+|µ|=N

Z(~a, µ1)Z(~a, µ2)Z̄(~a, µ3)Z̄(~a, µ4)

Z(σ̂)Z̄(σ̂)
, (2.70)

with

µ1 =
ε

2
+
θ̂3

2
− θ̂4

2
, µ2 =

ε

2
− θ̂1

2
+
θ̂2

2
,

µ3 = − ε
2

+
θ̂1

2
+
θ̂2

2
, µ4 = − ε

2
+
θ̂3

2
+
θ̂4

2
,

(2.71)

Z(~a, µi) =
∏
λ∈Y

(φ(a1)− µi + ε))
∏
µ∈Y

(φ(a2)− µi + ε)), i = 1, 2,

Z̄(~a, µj) =
∏
λ∈Y

(φ(a1)− µj))
∏
µ∈Y

(φ(a2)− µj)), j = 3, 4,

Z(σ̂) =
∏
λ∈Y

[−ε1Aλ(•) + ε2(Lλ(◦) + 1)][σ̂ − ε1Aµ(•) + ε2(Lµ(◦) + 1)]×

∏
µ∈Y

[−ε1Aµ(•) + ε2(Lµ(◦) + 1)][−σ̂ − ε1Aλ(•) + ε2(Lλ(◦) + 1)],

Z̄(σ̂) =
∏
λ∈Y

[ε+ ε1Aλ(•)− ε2(Lλ(◦) + 1)][ε− σ̂ + ε1Aµ(•)− ε2(Lλ(◦) + 1)]×∏
µ∈Y

[ε+ ε1Aµ(•)− ε2(Lµ(◦) + 1)][ε+ σ̂ + ε1Aλ(•)− ε2(Lµ(◦) + 1)],
(2.72)

φ(ai) = ai + ε1(i− 1) + ε2(j − 1),

where from the gauge theory ~a = (a1, a2) = (σ̂,−σ̂) is the adjoint vacuum expectation
value (VEV) of U(2), µ1,2 are eingenvalues of mass of two hypermultiplet in the fundamen-
tal Z(~a, µi), and µ3,4 are those of the anti-fundamental Z̄(~a, µj). The last two partitions
Z(σ), and Z̄(σ) are related to the adjoint hypermultiplet, furthermore, the terms Aµ(•)
and Lµ(◦) was de�ned in (2.35). Here we are interested in the explicit expression of the
conformal block, therefore, we eliminate any discussion of group theory and supersym-
metry in this dissertation, more details of the de�nitions above can be seen in Appendix
B of [8]. Therefore, replacing (2.70) in (2.65) and considering the de�nitions (2.71) and
(2.72), we have2

BV ir(t) =
∑
λ,µ∈Y

Bλ,µ(θ̂4, θ̂3, θ̂2, θ̂1, σ̂)t|λ|+|µ|, (2.73)

2The "hat" in the parameters does not mean operators. It is just a strange choice of parameters.



CHAPTER 2. CONFORMAL BLOCK 29

where we de�ned

Bλ,µ(θ̂4, θ̂3, θ̂2, θ̂1, σ̂) =
Z(σ̂, µ1)Z(σ̂, µ2)Z̄(σ̂, µ3)Z̄(σ̂, µ4)

Z(σ̂)Z̄(σ̂)
, (2.74)

Z(σ̂, µ1) =
∏
λ∈Y

(
σ̂

2
+ εij(ε1, ε2) +

θ̂4

2
− θ̂3

2
)
∏
µ∈Y

(
−σ̂
2

+ εij(ε1, ε2) +
θ̂4

2
− θ̂3

2
),

Z(σ, µ2) =
∏
λ∈Y

(
σ̂

2
+ εij(ε1, ε2)− θ̂2

2
+
θ̂1

2
)
∏
µ∈Y

(
−σ̂
2

+ εij(ε1, ε2)− θ̂2

2
+
θ̂1

2
),

Z̄(σ̂, µ3) =
∏
λ∈Y

(
σ̂

2
+ εij(ε1, ε2)− θ̂1

2
− θ̂2

2
)
∏
µ∈Y

(
−σ̂
2

+ εij(ε1, ε2)− θ̂1

2
− θ̂2

2
),

Z̄(σ̂, µ4) =
∏
λ∈Y

(
σ̂

2
+ εij(ε1, ε2)− θ̂3

2
− θ̂4

2
)
∏
µ∈Y

(
−σ̂
2

+ εij(ε1, ε2)− θ̂3

2
− θ̂4

2
),

with Z(σ̂) and Z̄(σ̂) de�ned in (2.72), and εij(ε1, ε2) = ε1(i − 1
2
) + ε2(j − 1

2
). Now we

know that, via AGT correspondence, the equations (2.62) and (2.67) are the same with
the central charge gives by (2.69), thus, we �nally �nd the four-point correlation function
where it is necessary to replace the equation (2.73) in (2.67). However, to connect this
chapter with Chapter 2 and use the τ function, we have to set the value of the central
charge in the CFT.

2.2.1 Conformal Field Theory for c = 1

It was shown in the papers [10] and [11] that correlation functions in 2D CFT can be
interpreted in terms of generic τV I and τV -functions, when the central charge takes the
value c = 1. Such interpretation was initially observed in the series of papers by Sato,
Miwa and Jimbo [24]-[25] , where it was shown that isomonodromic deformations in linear
systems admitted an explicit form in terms of correlation functions of local operators or
monodromy �elds [29]. As an isomonodromic invariant, the τ -function became a useful
tool to study correlation functions in conformal �eld theory with any applications in
quantum integral systems and black holes.

In order to explore this idea, let us set c = 1 in the four-point correlation function.
The discussions about τV and τV I-function, as well as the associated Painlevé VI and
Painlevé V, will be left for Chapter 2. Essentially, the idea here is just set the value of
the central charge to build the conformal block and also the con�uent CB of the �rst
kind that we are going to explain in the next section. Thus, in this case, the conformal
dimensions in (2.68) are replaced by

∆ =
σ̂2

4
, ∆i =

θ̂2
i

4
, i = 0, t, 1,∞, (2.75)
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where, in order to �x the notation with the next chapters, we replace θ̂1 = θ̂0, θ̂2 = θ̂t,
θ̂3 = θ̂1, and θ̂4 = θ̂∞. When c = 1, we conclude that ε1 = −ε2. We can choose
ε1 = −ε2 = 1 which is analogue to take ~ = 1. Thus, the conformal block in the A
algebra will be de�ned by

B(t) := (1− t)2θ̂tθ̂1
∑
λ,µ∈Y

Bλ,µ(θ̂∞, θ̂1, θ̂t, θ̂0, σ̂)t|λ|+|µ|, (2.76)

with

Bλ,µ(θ̂∞, θ̂1, θ̂t, θ̂0, σ̂) =
∏
λ∈Y

[(σ̂ + 2(i− j) + θ̂t)
2 − θ̂2

0][(σ̂ + 2(i− j) + θ̂1)2 − θ̂2
∞]

16h2
λ(i, j)[λ

′
j + µi − i− j + 1 + σ̂]2∏

µ∈Y

[(−σ̂ + 2(i− j) + θ̂t)
2 − θ̂2

0][(−σ̂ + 2(i− j) + θ̂1)2 − θ̂2
∞]

16h2
µ(i, j)[µ

′
j + λi − i− j + 1− σ̂]2

,

(2.77)

where we identify the hook lenghts hλ(i, j) and hµ(i, j) de�ned in (2.35).
As we can see in (2.61), the sum in the four-point function is under ∆'s that are

associated to descendant operators in the intermediate channel ∆ = σ̂2/4, Figure 2.4.
Since we can de�ne a tower of states in the intermediate channel, it is possible to de�ne
∆ = ( σ̂

2
+ n)2, where, instead of to sum in ∆, we pass to sum in n with n ∈ Z. Thus, the

four-point function de�ned in (2.61) will take the following form

〈O∆∞(∞)O∆1(1)O∆t(t)O∆0(0)〉

=
∑
n

C({∆i},
σ̂

2
+ n)t(

σ̂
2

+n)2−∆0−∆tB({θ̂i}, σ̂ + 2n; t).

(2.78)
where we de�ne {θ̂i} = (θ̂∞, θ̂1, θ̂t, θ̂0), {∆i} = (∆∞,∆1,∆t,∆0) and

C({∆i},
σ̂

2
+ n) = C

(σ̂/2+n)2

∆∞∆1
C

(σ̂/2+n)2

∆0∆t
. (2.79)

2.3 Con�uent Conformal Block

In this section, we are going to use the last result for the four-point function, as well as
the explicit expression for the conformal block to study the three-point function as a limit
from the four-point function. Furthremore, we derive the exact form for the Con�uent
Conformal Block of the First Kind.

The AGT correspondence has triggered the study of con�uent CB [30, 31], where one
class of them, relevant in this dissertation, corresponds to the decoupling of one of µ1,2,3,4

in the gauge theory. This decoupling consists of sending one of the µ1,2,3,4 to in�nity,
analogous to a coalescence process that appears for example between the Hypergeometric
di�erential equation and the Con�uent Hypergeometric equation, where this latter is
obtained rescaling the independent variable and sending two singular points to in�nity in
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the �rst equation, where the two singularities coalesce into one point at in�nity. In this
case, to send µ1,2,3,4 to in�nity we send two θ's to in�nity, and also rescale the equation
(2.78). By a quick analysis, we can observe that there exist other types of limits (2.71)
that can lead to di�erent types of con�uent CB [11, 10]. However, in this dissertation we
consider the con�uent limit on the s-channel Figure (2.4) associated with the Con�uent
Conformal Block of First Kind, that corresponds to send µ4 →∞, therefore, we will send
θ̂1 and θ̂∞ to in�nity in (2.71). Where the limit can be represented by the Figure (2.5),
where O[1]

Λ1,Λ2
will be explained.

Figure 2.5: Con�uent Limit.

In the CFT, the limit is linked with Whittaker states of rank 1 represented by O[1]
Λ1,Λ2

,
these states were initially introduced by Bonelli, Maruyoshi and Tanzini in [32] and the
existence of these states in the Virasoro algebra was veri�ed in [33, 34]. Since then, the
con�uent versions of conformal blocks have been studied in the context of 4D SCFT, via
AGT correspondence, as well as the relation with quantum Painlevé equations [10, 11].

In this section, we consider the results and de�nitions of Whittaker state, and write
the con�uent conformal block of the �rst kind, [31, 11]. The Whittaker states do not
satisfy the relations (2.29) and (2.30) and in order to consider these states, a general
Virasoro algebra V ir[r]

c is built with the same commutations (2.20). However, the action
of Ln in states changes as [35]

Ln |Λ〉 = Λn |Λ〉 (n = r, r + 1, ..., 2r),

Ln |Λ〉 = 0 (n > 2r).
(2.80)

In the dual case,

〈Λ|Ln = Λn 〈Λ| (n = −r,−r − 1, ...,−2r),

〈Λ|Ln = 0 (n < −2r),
(2.81)

with Λ = (Λr,Λr+1...Λ2r) and r is the rank. It is not di�cult to verify that r = 0, we
recover the relations (2.29) and (2.30) with |Λ〉 = |∆〉. In the case r = 1, we denote
|Λ〉 = |Λ1,Λ2〉, with |Λ1,Λ2〉 representing the Whittaker state of rank 1 with

L1 |Λ1,Λ2〉 = Λ1 |Λ1,Λ2〉 , L2 |Λ1,Λ2〉 = Λ2 |Λ1,Λ2〉 ,

Ln |Λ1,Λ2〉 = 0 (n > 2).

As in Figure (2.4), the diagram associated with the con�uent limit in the four-point
function for s-channel is given by the �gure below:
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Figure 2.6: Con�uent three-point function for s-channel.

Where the double line in the diagram representing the Whittaker state and the dot,
meaning the connection between states. It will be convenient to de�ne as Λ1 = θ̂∗ and
Λ2 = 1

4
[11]. Where, essentially, the value of Λ2 carries no special meaning, and it could

be made arbitrary since we can rescale using t and θ̂∗.
Returning to the limit µ4 →∞: θ̂1, θ̂∞ and t are rescaled by

θ̂1 =
δ + θ̂∗

2
, θ̂∞ =

δ − θ̂∗

2
, t→ t

δ
, δ →∞, (2.82)

where replacing θ̂1 and θ̂∞ in (2.76), we write the con�uent CB of �rst kind as

D(t) := lim
δ→∞

(
1− t

δ

)2θ̂t(
δ+θ̂∗

2
) ∑
λ,µ∈Y

Bλ,µ
(
δ − θ̂∗

2
,
δ + θ̂∗

2
, θ̂t, θ̂0, σ̂

)
t|λ|+|µ|

δ|λ|+|µ|
(2.83)

or
D(t) := e−θ̂tt

∑
λ,µ∈Y

Dλ,µ(θ̂∗, θ̂t, θ̂0, σ̂)t|λ|+|µ|, (2.84)

with

Dλ,µ(θ̂∗, θ̂t, θ̂0, σ̂) = lim
δ→∞
Bλ,µ

(
δ + θ̂∗

2
,
δ − θ̂∗

2
, θ̂t, θ̂0, σ̂

)
1

δ|λ|+|µ|
. (2.85)

Using the equation (2.77), we have

Dλ,µ(θ̂∗, θ̂t, θ̂0, σ̂) =
∏
λ∈Y

(
σ̂ + 2(i− j) + θ̂∗

)(
(σ̂ + 2(i− j) + θ̂t)

2 − θ̂2
0

)
8h2

λ(i, j)
(
λ
′
j + µi − i− j + 1 + σ̂

)2 ×

∏
µ∈Y

(
− σ̂ + 2(i− j) + θ̂∗

)(
(−σ̂ + 2(i− j) + θ̂t)

2 − θ̂2
0

)
8h2

µ(i, j)
(
µ
′
j + λi − i− j + 1− σ̂

)2 .

(2.86)

Observe that, in terms of partitions, it is easy to verify that the number of terms in the
numerator reduces from eight to six.

Analogous to (2.78), the con�uent three-point function with two operators of rank 0
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and one Whittaker operator of rank r = 1 is written as

〈O[1]
Λ1,Λ2

(∞)O∆t(t)O∆0(0)〉

=
∑
n

C(θ̂∗, θ̂t, θ̂0,
σ̂

2
+ n)t(

σ̂
2

+n)2−θ̂2
0−θ̂2

tD(θ̂0, θ̂t, θ̂∗, σ̂ + 2n; t)

(2.87)
with, (Λ1,Λ2) = (θ̂∗,

1
4
) and

C(θ̂∗, θ̂t, θ̂0,
σ̂

2
+ n) = C

(σ̂/2+n)2

(θ̂∗,1/4)
C

(σ̂/2+n)2

θ̂20
4

θ̂2t
4

. (2.88)

In this chapter, we gave an introduction to conformal �eld theory and �nished with
the exact expression for the four-point and con�uent three-point correlation functions,
where to �nd such expressions we had to use the AGT correspondence to express the
conformal block in terms of Nekrasov partition function. The expression for the con�uent
three-point function (2.87) plays a crucial role in this dissertation given that is linked with
τV -function when c=1, such connection will be explored in the next chapters. In the next
chapter, we also de�ne explicitly the Painlevé VI and V, that we mentioned in Section
1.2.
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3 | Fifth Painlevé equation

In this chapter, we start de�ning Painlevé transcendents as solutions of nonlinear
Painlevé equations and explaining how the Painlevé VI and Painlevé V are connected
by a speci�c con�uent limit. To understand explicitly such equations, it is necessary to
de�ne isomonodromic deformations theory in linear systems, thus, we present the general
idea about it, as well as Monodromy matrices and Stokes phenomenon. We also de�ne
the Schlesinger equations and the generic τ -function as an isomonodromic invariant and
using a generic linear system, we study the isomonodromic deformations of the linear
system associated with Painlevé V, where this allows us to de�ne the isomonodromic
invariant τV -function. Lastly, based in the paper by Lisovyy, Nagoya, and Roussillon [11],
we connect the explicit expression for τV -function with the con�uent three-point function
that was de�ned in the �rst chapter by setting the value of the central charge in the 2d
conformal �eld theory to be one, c = 1.

3.1 Painlevé Transcendents

Painlevé transcendents are solutions to certain nonlinear second-order ordinary di�erential
equations in the complex plane. Such solutions are widely recognized as important special
functions with a broad range of applications including classical and quantum integrable
models, 2d Ising model, random matrix theory and black hole physics [36, 37, 38]. Many
aspects of Painlevé equations, such as their analytic, geometric properties and asymptotic
problems have been extensively studied in the last four decades [39, 40, 41].

In the literature, the Painlevé transcendents are necessarily solutions of a set of nonlin-
ear second-order equations denominated Painlevé equations. It is well-known that there
exist six Painlevé equations which are connected by limits and commonly denoted using
roman numbers with PI, PII, PIII, PIV, PV, and PVI with each equation has the following
form,

d2q

dz2
= F

(
z, q,

dq

dz

)
(3.1)

where F is meromorphic in q and rational in dq
dz
.

The �fth Painlevé equation can be obtained by the con�uent limit on Painlevé VI,
where the limit is obtained by the con�uence of two singular points and scaling transfor-
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mations on the PVI parameters [10]. Therefore, in the Painlevé V, we have

Painlevé VI
con�uent−−−−−→
limit

Painlevé V,

where the limit is taken by replacing (z, q, α, β, γ, δ) → (1 + εz, q, α, β, ε−1γ − ε−2δ, ε−2δ)
in the �rst equation below and taking the limit ε→ 0 [42],

Painlevé VI:

d2q

dz2
=

1

2

(
1

q
+

1

q − 1
+

1

q − z

)(
dq

dz

)2

−
(

1

z
+

1

z − 1
+

1

q − z

)
dq

dz

+
q(q − 1)(q − z)

z2(z − 1)2

[
α + β

z

q2
+ γ

z − 1

(q − 1)2
+ δ

z(z − 1)

(q − z)2

]
,

(3.2)

Painlevé V:

dq2

dz2
=

(
1

2q
+

1

q − 1

)(
dq

dz

)2

− 1

z

dq

dz
+

(q − 1)2

z2

(
αq +

β

q

)
+ γ

q

z
+ δ

q(q + 1)

q − 1
. (3.3)

where α, β, γ, and δ are complex constants. For generic parameters, the solutions of (3.3)
have critical points at z = 0,∞. We also have singular behavior when q(z0) = 0, 1,∞
and we say the points 0 and 1 are regular and appears as a simple pole in the right-hand
side of (3.3), however, z =∞ is an irregular point and does not appear as a simple pole,
where such irregularity arises as a consequence of the con�uent limit.

As we know, the solutions of Painlevé equations are the Painlevé transcendents. Such
solutions can not be expressed in terms of elementary functions, for example, exponential
functions, logarithms, and hyperbolic functions or in terms of other special functions:
Bessel, gamma, and hypergeometric functions. It means that there is no simple represen-
tation of these functions. Although the Painlevé transcendents do not share properties
with elementary and special functions, a remarkable result was �rst presented in the
1980s by Jimbo [43], where, using the theory of isomonodromic deformations and mon-
odromy data for linear system, it was possible to de�ne Painlevé transcendents in terms
of connection formulas from the linear system [13, 14, 12]. In the next sections, we brie�y
review de�nitions of Fuschian systems, monodromy matrices and theory of isomonodromic
deformations for the nontrivial case leading to Painlevé V.

3.2 Linear System

Before de�ning the linear system, we start this section de�ning a second order ordinary
di�erential equation, which essentially will help us to understand how to build the systems.
We also give an example of the linear equation the hypergeometric equation, furthermore,
in order to introduce the idea of the limit of con�uence between linear equations, we
present the con�uent hypergeometric equation. Lastly, we de�ne the general linear sys-
tem with n regular singularities and one irregular singular point at in�nity.
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Ordinary Di�erential Equation

A second-order di�erential equation in the complex plane is de�ned by

d2y

dz2
+ p(z)

dy

dz
+ q(z)y = 0, (3.4)

with

p(z) =
n−1∑
i=1

Ai
z − zi

, q(z) =
n−1∑
i=1

(
Bi

(z − zi)2
+

Ci
z − zi

)
, (3.5)

where n − 1 counts the number of insertions in the complex plane. In this dissertation,
it is extremally important to classify the nature of each insertion. Therefore, we will
consider the classi�cation by Poincaré rank, r [44, 45], where r = 0 represents the regular
singularity and r ≥ 1 the irregular. Here, we will work with the cases r = 0 and r = 1.

Initially, we de�ne a short test for r = 0, then treat with r = 1. Therefore, for r = 0
the singularity satis�es the following condition:

• The singularity of rank r=0 is regular (or called Fuchsian singularity) if either p(z)
or q(z) diverges as z → zi, but (z − zi)r+1p(z) and (z − zi)2r+2q(z) remain �nite as
z → zi. The limit �nite means that the functions (z−zi)r+1p(z) and (z−zi)2r+2q(z)
are analytics at z = zi. However, if these conditions are not satis�ed the singularity
is irregular with rank r ≥ 1.

To check if the singularity is irregular of rank r = 1, we have to supose that p(z) and q(z)
in (3.4) have poles of high order [46]. Thus, in this case, we write p̄(z) and q̄(z) as

p̄(z) =
n−1∑
i=1

(
Di

(z − zi)2
+

Ei
z − zi

)
,

q̄(z) =
n−1∑
i=1

(
Fi

(z − zi)4
+

Gi

(z − zi)3
+

Hi

(z − zi)2
+

Ii
z − zi

)
.

(3.6)

The idea is again analog, we check the value of the rank by considering the condition:

• The singularity of rank r=1 is irregular if either p̄(z) or q̄(z) diverges as z → zi, but
(z − zi)r+1p(z) and (z − zi)2r+2q̄(z) remain �nite as z → zi. Note that, it is easy to
realize that the two limits

lim
z→zi

(z − zi)r+1

(
Di

(z − zi)2
+

Ei
z − zi

)
,

lim
z→zi

(z − zi)2r+2

(
Fi

(z − zi)4
+

Gi

(z − zi)3
+

Hi

(z − zi)2
+

Ii
z − zi

)
,

are �nite if r = 1. Where again we have that the productors (z − zi)r+1p(z) and
(z − zi)

2r+2q̄(z) are analytics at z = zi. If these conditions are not satis�ed the
singularity is irregular with some rank r > 1.
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For more general case r > 1, we can use the same idea, however, it is necessary to realize
that the poles in the funções in (3.4) are linked directly with the value of r since the poles
of high order in the polynomials lead to the real value of r.

Riemann ODE and Confluent Limit

One trivial example of ODE which will be useful to treat it is the Riemann di�erential
equation given by three regular singularities n = 3, where using Möbius transformation
in (3.4) we �x the singularities at 0, 1 and ∞,

d2y

dz2
+

(
A1

z
+

A2

z − 1

)
dy

dz
+

[
B1

z2
+

B2

(z − 1)2
+
C1

z
+

C2

z − 1

]
y(z) = 0. (3.7)

The constants above can be found by using pairs of characteristic exponents relative to
the behavior of each pair of solutions around the singular points 0, 1, and∞, respectively.
Therefore, we have from [47]

z(1− z)
d2y

dz2
+ (γ − (α + β + 1)z)

dy

dz
− αβ y(z) = 0, (3.8)

with the following pair of characteristic exponents

z = 0 : (0, 1− γ) z = 1 : (0, γ − α− β) : z =∞ : (α, β).

The equation above is in the form of the canonical Hypergeometric equation, whose
solutions are known as Hypergeometric functions, with the pair of solutions given by

z =0 :

{
2F1(α, β, γ; z)

z1−γ
2F1(α− γ + 1, β − γ + 1, 2− γ; z),

z =1 :

{
2F1(α, β, α + β + 1− γ; 1− z)

(1− z)γ−β−α2F1(γ − α, γ − β, γ − α− β + 1; 1− z),

z =∞ :

{
z−α2F1(α, α− γ + 1, α− β + 1; 1/z)

z−β2F1(β, β − γ + 1, β − α + 1; 1/z).

(3.9)

The exact calculations of the solutions via Frobenius methods, limits in the equation,
and review of the theory can be seen in [48, 47].

Other types of di�erential equations are built from the Hypergeometric equation by
taking speci�c limits. One of these limits, it is responsible for the Con�uent Hyperge-
ometric di�erential equation, where, in the hypergeometric equation the limit is made
by replacing z by z/b, sending b → ∞, and subsequently replacing the parameter c by
b. In e�ect, the regular singularity at z = 1 in the hypergeometric di�erential equation
coalesces into an irregular singularity at ∞ [49]. Thus, we obtain

zy′′(z) + (b− z)y′(z)− ay(z) = 0. (3.10)
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The equation above has one regular singularity at the origin and one irregular singularity
at in�nity with Poincaré rank r = 1, and the solutions of this equation are the Con�uent
Hypergeometric functions [49].

To deal with isomonodromic deformations, and compute the monodromy matrices, the
second-order di�erential equation (3.4) is commonly written in terms of a linear system
given by

d

dz
Φ(z) = A(z)Φ(z), (3.11)

where Φ(z), A(z) are 2×2 matrices. Each line of Φ(z) satis�es a second-order di�erential
equation analogous to (3.4), where, via Frobenius method we can use the solutions of these
equations to build the fundamental solutions of the system. Where the solutions are lin-
early independent if their Wronskian, W (Φ(z); z) = detΦ(z), does not vanish identically.
A trivial example, it is the Hypergeometric system where there are three solutions matri-
ces around 0, 1, and ∞, that we denote as Φ(0)(z), Φ(1)(z), and Φ(∞)(z) respectively with
the elements of the fundamental solutions given by Hypergeometric functions as (3.9).
We can also build the system related to the Con�uent Hypergeometric equation (3.10)
by using the Con�uent Hypergeometric functions. Note that, in this case, the system has
two singularities one regular at z = 0 and one irregular at z =∞ of rank r = 1.

Now let us take the general linear system with n regular singularities and one irregular
at in�nity with r = 1. Such generalization will become clear in the Painlevé V section.
Therefore, we have the following system [42]

d

dz
Φ(z) = A(z)Φ(z), A(z) =

n∑
i=1

Ai
(z − zi)

+ A∞, (3.12)

with Ai associated to the regular point zi and A∞ to the irregular point with r = 1 at
in�nity. The general expression of the fundamental solution matrix Φ(i)(z) around each
point is written as

Φ(i)(z) = G(i)

(
I +

∞∑
j=1

Φ
(i)
j ε

j
(i)

)
exp

( −1∑
j=−ri

1

j
A

(i)
j ε

j
(i) + A

(i)
0 log(ε(i))

)
(3.13)

with G(i), Φ
(i)
j , A(i)

j , and A(i)
0 constant matrices, r∞ = 1 and ri = 0, i = 1, ..., n. εi de�ne

as

ε(i) =

{
z − z(i) i = 1, ..., n

1/z, i =∞.

As an excellent review of the de�nitions above, Robert Conte's book can be helpful [42].

3.3 Solutions of Linear System and Monodromy Matrix

Using the de�nitions above, let us study the properties of the solutions around each
singularity, as well as the analytic continuation of solutions via monodromy matrix.
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3.3.1 Solutions Around Regular Points
Initially, we consider just the regular points in the system, the treatment at z =∞ will be
left to the next section. Around each regular point, the fundamental solution is written
as

Φ(i)(z) = G(i)

(
I +

∞∑
j=1

Φ
(i)
j ε(i)

)
ε
A

(i)
0

(i) , i = 1, 2, ..., n (3.14)

where the term ε
A

(i)
0

(i) is responsible for the multivaluedness with A(i)
0 controling the branch-

ing of Φ(i)(z). To describe the multivaluedness of the fundamental solution Φ(i)(z), we
can consider the projective plane P1 around the singular points and a universal covering
P̄1, such that the covering map is de�ned by π : P̄1 → P1 with Φ(z) single-value on P̄1.
Thus, let consider γ a path in P̄1, starting at a point z on the Riemann sphere and ending
at zγ, such that π(z) = π(zγ). The fundamental matrix Φ(zγ) at zγ is single-valued and
still satis�es (3.12), this implies that there exists a nonsingular constant matrix Mγ with

Φ(zγ) = Φ(z)Mγ. (3.15)

As we can see, each path γ around the singularities is related to Mγ, where the mapping
γ → Mγ de�nes the monodromy representation associated with the di�erential system
(3.12). Therefore, the n regular singularity �xed at each zi is related to γi with

Φ(i)(zγi) = Φ(i)(zi)Mi i = 1, 2, ..., n, (3.16)

Figure 3.1: Paths on the Riemann Sphere.

where the dashed path represents the path around the point at in�nity and γi related
with each Mi. The set of Mi and the monodromy at in�nity form the monodromy group
of (3.12).

In the system, we also de�ne that the matrices A1, ..., An can be diagonalizable if there
are a set of invertible matrices Gi such that

A
(i)
0 = G−1

(i)AiG(i). (3.17)

The behavior around singularities plays a central role in the system and help us to �nd
the explicit form of Mi in (3.16). We know that the behavior around each regular point
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is given by (3.14) where replacing ε(i) we get

Φ(i)(z) = G(i)

[
I +

∞∑
j=1

Φ
(i)
j (z − zi)j

]
(z − zi)A

(i)
0 , (3.18)

where Φ
(i)
j is a constant matrix. To determine such constants, we need to expand A(z)

around zi, where it is convenient to de�ne

A(z) = Gi

∞∑
j=0

A
(i)
j (z − zi)j−1G−1

i , i = 1, ..., n. (3.19)

Using the relation above and replacing in (3.18), it is possible to prove that the eigenvalues
of A(i)'s are in modulo distinct of nonzero integers, where this assumption eliminates any
logarithmic behavior. The eigenvalues are roots of the indicial equation in the Frobenius
method which leads two independent solutions and it is well-known that, if the roots are
repeated or di�er by an integer, the second solution has a logarithmic behavior, therefore,
to eliminate such behavior the eigenvalues must not be separated by nonzero integer
(counting zero) [50].

From (3.16), we can also observe that any solution of (3.12) around a regular point
can be written as

Φ(z) = Φ(i)(z)C(i), i = 1, ..., n, (3.20)

with C(i) some invertible constant matrix. To �nd the explicit form of the monodromy
matrices in (3.15), let us consider the transformation z → e2iπz around zi, such transfor-
mation leads to

Φ(i)(e2iπ(z − z(i)) + z(i)) = Φ(i)(z)e2iπA
(i)
0 , (3.21)

then, using the equation (3.20), we de�ne the monodromy matrix Mi as

Mi = C−1
i e2iπA

(i)
0 Ci. (3.22)

3.3.2 Solutions Around Irregular Point
Now we are going to investigate the solution at in�nity where the behavior of the funda-
mental solution is a little complicated since it is proportional to exponential (3.13) with
such exponential in�uencing directly in the de�nition of the monodromy matrix. We know
from (3.13) that the solution around in�nity is given by

Φ(∞)(z) =

(
I +

∞∑
j=1

Φ
(∞)
j z−j

)
z−A

(∞)
0 e−A

(∞)
−1 z, (3.23)

where A(∞)
0 and A(∞)

−1 are diagonal and given in terms of the eigenvalues of each matrix.

The term z−A
(∞)
0 is related to the multivaluedness of the solution Φ(∞)(z), on the other
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hand, the second term e−A
(∞)
−1 z is responsible for the growth and decay of the solution at

in�nity, and also for the Stokes phenomenon.

Stokes Phenomenon

The exponential term plays a constraint in each solution of the system at in�nity, where
the solutions are restricted by Stokes lines L in the complex plane and the behavior of
the solutions can di�er in di�erent sectors [51], see Figure 3.2.

Figure 3.2: Stokes lines Figure 3.3: Stokes sectors

The sectors are de�ned by [52]

Sk =

{
z ∈ C,−1

2
π + (k − 2)π < Arg(z) <

3

2
π + (k − 2)π

}
, k ∈ Z. (3.24)

where k labels the sector, see Figure 3.2. Let us consider a solution in the �rst sector
Φ

(∞)
k=1(z), inside this sector Φ(∞)(z) is not de�ned entirely, and other sectors are necessary

to build all solution. To take this into account, let us consider that there exists a set of
sectors in which a unique Φk(z) behaves like the general solution (3.23),

Φ(∞)(z) ∼ Φ
(∞)
k (z) in Sk. (3.25)

Using the argument that the fundamental matrices Φk+1 and Φk have the same asymp-
totic expansion in Sk (3.25) and using the Stokes matrices, we can connect the solution
by

Φ
(∞)
k+1(z) = Φ

(∞)
k (z)Sk, (3.26)

see Figure (3.3), where

S2k =

(
1 s2k

0 1

)
S2k+1 =

(
1 0

s2k+1 1

)
, (3.27)

and the parameters s2k and s2k+1 are Stokes multipliers [52].
A striking consequence of (3.26), it is that the equation (3.25) can be written as

Φ(∞)(z) ∼ Φ
(∞)
0 SkSk−1...S1 in Sk. (3.28)
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In this case, the covering map π(z) → π(zγ) send the solutions from a sector Sk to
Sk+2 and vice versa:

Φ
(∞)
k+2(e2iπz) = Φ

(∞)
k (z)e2iπA

(∞)
0 . (3.29)

From (3.26), we recover the k-sector by

Φ
(∞)
k (e−2iπz) = Φ

(∞)
k (z)SkSk+1e

−2iπA
(∞)
0 . (3.30)

Comparing with (3.15), we identify the monodromy matrix

M
(∞)
k = SkSk+1e

−2iπA
(∞)
0 (3.31)

where by recurrence the monodromy associated to the next sector can be expressed as

M
(∞)
k+1 = S−1

k M
(∞)
k Sk. (3.32)

Replacing (3.31) in (3.32) we obtain the monodromy matrix in terms of Stokes's matrices
and exponential of A(∞)

0 , thus

M
(∞)
k+1 = Sk+1e

−2iπA
(∞)
0 Sk. (3.33)

Here we will choose the �rst sector k = 1, such that the matrix at in�nity will be de�ned
as

M∞ = M
(∞)
2 = S2e

−2iπA
(∞)
0 S1, (3.34)

where such choice will be helpful in the next chapter.
The linear system (3.12) has n+ 1 monodromy matrices where it is always possible to

choose γ's in such a way that the product γ1γ2...γnγ∞ is homotopic to a point z on the
Riemann sphere, with the monodromies matrices satisfying the following constraint:

M1...MnM∞ = I, (3.35)

where the deformation is de�ned to be isomonodromic, if only if, it leaves invariant all
the matrices.

Isomonodromic Deformations Theory

The study of isomonodromic deformations in the linear system is based on consider-
ing, Φ(z) and A(z) depending on the point a, with the point a belonging to the set
zi, i = 1, ..., n. Where such point has the interpretation of the gauge parameter in the
isomonodromic deformation theory. For a short review on isomonodromic deformations,
see [13, 14]. To reinforce the concept behind deformations in the linear system with just
one irregular point at in�nity and de�ne the general idea about the isomonodromic in-
variant τ -function, let us consider the following theorem.
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Theorem 1[13]The deformation equations of the linear system given by

∂

∂z
Φ(z, a) =A(z, a)Φ(z, a)

A(z, a) =
n∑
i=1

Ai(a)

(z − zi)
+ A∞,

(3.36)

are isomonodromic if only if Φ(z, a) satis�es the following linear partial di�erential equa-
tion

∂

∂a
Φ(z, a) = −Aa(a)

z − a
Φ(z, a) (3.37)

that is equivalent to a completely integral system of nonlinear di�erential equations for Ai
and Aa given by

∂Ai
∂a

=
[Aa, Ai]

a− zi
∂Aa
∂a

=
n∑
j=1
j 6=a

[Aj, Aa]

a− zi
+ [A∞, Aa]. (3.38)

The equations above are known it as Schlesinger equations and can be proved by con-
sidering the commutation relation ∂z∂aΦ(z, a) = ∂a∂zΦ(z, a) between (3.36) and (3.37),
see [42]. The Schlesinger equations above means that deformations which preserve the
monodromy of a generic linear system are governed by the integrable systems of partial
di�erential equations (PDE).

Isomonodromic τ-function

The Schlesinger equations are commonly written in terms of the Jimbo-Miwa-Ueno isomon-
odromic τ -function which plays a central role in deformations theory [13]

d logτ =
n∑
j=1
j 6=a

Tr(AiAa)
da

a− zi
+ Tr(A∞Aa)da, (3.39)

with the 1-form satisfying
d(d logτ) = 0. (3.40)

The equation (3.40) has a form of conservation law, where in this case the conservation
is related to �ow of isomonodromy in the linear system. Therefore, we de�ne H to
represent such conservation quantity:

H =
d

da
log(τ(a)) =

n∑
j=1
j 6=a

Tr(AiAa)
a− zi

+ Tr(A∞Aa). (3.41)
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3.4 Isomonodromic Deformation Problem for PV

To study isomonodromic deformations which leads to Painlevé V the start point is to
consider a system with two regular singularities and one irregular singularity, thus, we
will �x the two regular singularities at z = 0 and z = t and the irregular at z =∞.
Taking a = t, the PDEs (3.36),(3.37) are written as

∂

∂z
Φ(z, t) = A(z, t)Φ(z, t), A(z, t) = A∞ +

A0

z
+

At
z − t

, (3.42)

∂

∂t
Φ(z, t) = − At

z − t
Φ(z, t), (3.43)

and from (3.38), the Schlesinger equation are given by

∂

∂t
A0 = −1

t
[A0, At],

∂

∂t
At =

1

t
[A0, At] + [A∞, At]. (3.44)

The fundamental matrix Φ(z) is given by

Φ(z) =

(
y(1)(z) y(2)(z)
u(1)(z) u(2)(z)

)
, (3.45)

where we can work with (3.42) in order to �nd a second-order di�erential equation for
y(i)(z) with i = 1, 2. The second line obeys an analogue di�erential equation with u(i)(z)
related to y(i)(z) by di�erentiation and multiplication by a rational function

u(i)(z) =
1

A12(z)

(
dy(i)

dz
− A11(z)y(i)(z)

)
, (3.46)

with A11(z) and A12(z) elements of A(z). Thus, the �rst line satisfy

y′′(i)(z) + p(z)y′(i)(z) + q(z)y(i)(z) = 0,

p(z) = −Tr(A)− ∂zlog(A12), q(z) = det(A)− A′11 + A11∂zlog(A12).
(3.47)

Using basis change, we take A∞ to be diagonal, which leads to the assumption that
A12 vanishes as O(z−2), when z →∞ . Therefore, from (3.42) A12(z) is written as

A12(z) =
k(z − λ)

z(z − t)
, k = a

(0)
12 + a

(t)
12 , λ =

ta
(0)
12

a
(0)
12 + a

(t)
12

. (3.48)

Now substituting in (3.47):

y′′(i)(z)−
(
TrA∞ +

TrA0 − 1

z
+

TrAt − 1

z − t
− 1

z − λ

)
y′(i)(z)

+

(
detA∞ +

detA0

z2
+

detAt
(z − t)2

+
c0

z
+

ct
z − t

+
µ

z − λ

)
y(i)(z) = 0,

(3.49)
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with

c0 = TrA∞TrA0 − Tr(A∞A0) +
1

t
Tr(A0At)−

1

t
TrA0TrAt

−a(∞)
11 −

1

λ
a

(0)
11 +

1

t
(a

(0)
11 + a

(t)
11 ),

ct = TrA∞TrAt − Tr(A∞At)−
1

t
Tr(A0At) +

1

t
TrA0TrAt

−a(∞)
11 −

1

λ− t
a

(t)
11−

1

t
(a

(0)
11 + a

(t)
11 ),

µ = a(∞) +
1

λ
a

(0)
11 +

1

z − t
a

(t)
11 ,

(3.50)

where the terms ct, c0 and µ obey,

c0 + ct + µ = TrA∞(TrA0 + TrAt)− Tr(A∞(A0 + At))− a(∞)
11 .

The parameter ct is called accessory parameter and plays an important role in isomon-
odromy deformations, since it is related to τV [53]. We also remark that such accessory
parameter does not appear in deformed systems with n ≤ 3, for example, the hypergeo-
metric system and con�uent hypergeometric system. However, for systems with a value
of n ≥ 4, as well as con�uent limits of such systems, the accessory parameter appears
naturally [54, 45]. In the next chapter, we will work in the linear system associated with
the con�uent Heun equation to �nd ct by using τV . It must be clear by now that the
study of such system leads to the associated Painlevé V.

The constant λ de�ned in (3.48) appears as a singularity in (3.49). This singularity is
classi�ed as apparent with indicial exponents 0 and 2 with trivial monodromy, Mλ = I.
From (3.40), we identify H in ct as

ct = TrA∞TrAt +
1

t
TrA0TrAt −H − a(∞)

11 −
1

λ− t
a

(t)
11 −

1

t
(a

(0)
11 + a

(t)
11 ),

H = Tr(A∞At) +
1

t
Tr(A0At).

(3.51)

In order to write ct as function of λ, µ and t and using the absence of logarithmic
behavior at z = λ, we can expand p(z), q(z) around λ, where by residue the only relevant
terms are

p(z) = − 1

z − λ
+ p1 + p2(z − λ) + ..., q(z) =

µ

z − λ
+ q1 + q2(z − λ) + ..., (3.52)

p1 = −TrA∞ +
1− TrA0

λ
+

1− TrA1

λ− t
,

µ =
a

(0)
11

λ
+

a
(t)
11

λ− t
,

q1 = detA∞ +
detA0

λ2
+

detAt
(λ− t)2

+
c0

λ
+

ct
λ− t

.

(3.53)
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Now, by expanding y(i)(z) in Frobenius series

y(i)(z) =
∞∑
n=0

an(z − λ)α+n,

we can �nd the indicial equation that solve any logarithmic behavior. Without mentioning
all calculation, the indicial equation is obtained as (µ + p1)µ + q1 = 0. Substituting in
(3.53):

µ2 −
(
TrA∞ +

TrA0

λ
+

TrA1 − 1

λ− t

)
µ+ detA∞ +

detA0

λ2
+

detAt
(λ− t)2

+
TrA∞(TrA0 + TrAt)− Tr(A∞(A0 + At))− a(∞)

11

λ
+

tct
λ(λ− t)

= 0,

(3.54)

which leads to

ct(λ, µ, t) = −λ(λ− t)
t

[
µ2 −

(
TrA∞ +

TrA0

λ
+

TrAt − 1

λ− t

)
µ+ detA∞

+
detA0

λ2
+

detAt
(λ− t)2

+
TrA∞(TrA0 + TrAt)− Tr(A∞(A0 + At))− a(∞)

11

λ

]
.

(3.55)

Now let us �x the notation between Chapter 1 and Chapter 2 by choosing the following
parametrizations to A0, At and A∞

TrA∞ = 0, TrAt = θ̂t, TrA0 = θ̂0, Tr(A∞(A0 + At)) = − θ̂∞
2
,

detA0 = detAt = 0, detA∞ = det
1

2
σ3 = −1

4
.

(3.56)

where the parametrizations will become clear in the next section. Using the parametriza-
tions, we write a(0)

11 and a(t)
11 in terms of λ, µ and t as

a
(0)
11 = −λ(λ− t)

t

[
µ− 1

2
− θ̂0 + θ̂t − θ̂∞

2(λ− t)

]
,

a
(t)
11 =

λ(λ− t)
t

[
µ− 1

2
− θ̂0 + θ̂t − θ̂∞

2λ

]
,

(3.57)

where replacing the parametrizations in (3.54) and (3.51), we �nally get ct

ct = −λ(λ− t)
t

[
µ2 −

(
θ̂0

λ
+

θ̂t
λ− t

)
µ− 1

4
+
θ̂∞
2λ

+
θ̂0θ̂t
λ− t

]
. (3.58)

Here, λ and µ have the interpretation of canonical variables, in the system, with Poisson
bracket de�ned by

∂λ

∂t
= {λ, ct},

∂µ

∂t
= {µ, ct}. (3.59)
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In the Poisson bracket above, ct describes the evolution of λ as a function of the gauge
parameter t, where the equation of motion associated to λ is the non-linear Painlevé V
associated to the Schlesinger equations (3.44):

d2λ

dt2
=

(
1

2λ
+

1

λ− t

)(
dλ

dt

)2

− 1

t

dλ

dt

+
(λ− 1)2

t2

(
θ̂2

0

2
t− θ̂2

t

2t

)
− (θ̂∞ + 1)

λ

t
− λ(λ+ 1)

2(λ− 1)
,

(3.60)

with λ(t) as a meromorphic function on the universal covering P1 \ {0,∞}. Using the
parametrization of A0, At and A∞ we write the equation (3.49) as,

y′′(i)(z) +

(
1− θ̂0

z
+

1− θ̂t
z − t

− 1

z − λ

)
y′(i)(z) +

(
− 1

4
+
c0

z
+

ct
z − t

+
µ

z − λ

)
y(i)(z).

(3.61)
where, as the consequence of the nature of the singularity λ, the equation (3.61) is the
deformed con�uent Heun equation. Furthermore, the ct de�ned in (3.58) describes the
evolution of the apparent singularity λ by (3.60).

As we know, con�uent Heun equation is associated with Painlevé V, as well as with
isomonodromic �ow H. Slavyanov studied such relation in [41], where the relationship
between the Heun class of second-order linear equations and the Painlevé equations arose
as an interesting connection. Also, Carneiro Da Cunha and Novaes in [53] used Painlevé
V associated with con�uent Heun equation in Kerr scattering problem. We want to
emphasize that, in terms of Heun class, the Con�uent Heun equations mentioned above
arise when two or more of the regular singularities merge to form an irregular singularity.
That is analogous to the derivation of the con�uent hypergeometric equation from the
hypergeometric equation explained in the subsection Fuchsian ODE.

We have de�ned H as the isomonodromic �ow in (3.41), therefore, from equation
(3.58), we �nd explicitly

d

dt
log(τV ({θ̂i}, t)) = −λ(λ− t)

t

[
µ2 −

(
θ̂0

λ
+

θ̂t
λ− t

)
µ+

θ̂∞
2λ
− 1

4

]
− θ̂0θ̂t

t
(3.62)

with {θ̂i} = (θ̂0, θ̂t, θ̂∞). The equation above will be useful in the next chapter where,
necessarily, it will give the condition to recover the con�uent Heun equation from deformed
equation (3.61).

3.5 Conformal �eld theory of Painlevé V

From the AGT correspondence, and based in the papers: Gamayun, Iorgov, and Lisovyy
[29], where conformal �eld theory for c = 1 was discussed in the context of isomonodromic
deformations theory for Painlevé VI, and also in Lisovyy, Nagoya, and Roussillon [11]
where an analogous discussion was made in the context of Painlevé V. We can write
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τV ({θ̂i}, t) in terms of correlation function in 2d CFT, with c = 1, thus, the formalism of
partitions de�ned in Chapter 1 can be used to write the explicit form of τV (t).

As we know, the linear system (3.42) associated with Painlevé V has two regular
singular points �xed at 0 and t and one irregular singularity of rank one at in�nity. The
correlation function associated with this type of system is a three-point function with two
operators of rank 0 satisfying (2.30) and one Whittaker operator of rank r = 1 satisfying
(2.80) - see the de�nitions in [11]. Note that, the three-point function mentioned, it was
explained in the Con�uent Conformal Block section, equation (2.87). Therefore, from
AGT correspondence, the τV (t) is given by

τV (t) = 〈O[1]
Λ1,Λ2

(∞)O∆t(t)O∆0(0)〉
∣∣∣∣
c=1

, (3.63)

where using the parametrizations de�ned (3.56), the conformal dimension related to each
operator is given by

∆0 =
1

4
TrA2

0 =
θ̂2

0

4
, ∆t =

1

4
TrA2

t =
θ̂2
t

4
,

(Λ1,Λ2) =
(
Tr(A∞(A0 + At)),

1

4

)
=
(
− θ̂∞,

1

4

)
.

(3.64)

Comparing with Chapter 1, it is easy to notice that θ̂∗ was replaced by −θ̂∞, where the
signal is consequence of the parametrizations of A0, At, and A∞. Thus, τV (t) written as

τV (t) =
∑
n

C(θ̂∞, θ̂t, θ̂0,
σ̂

2
+ n)t

1
4

(σ̂+2n)2− 1
4

(θ̂2
0+θ̂2

t )D
(
θ̂0, θ̂t, θ̂∞, σ̂ + 2n; t

)
, (3.65)

with

D(θ̂0, θ̂t,θ̂∞, σ̂; t) = e−θ̂tt
∑
λ,µ∈Y

Dλ,µ(θ̂∗, θ̂t, θ̂0, σ̂)t|λ|+|µ|,

Dλ,µ(θ̂∞, θ̂t, θ̂0, σ̂) =
∏
λ∈Y

(
σ̂ + 2(i− j)− θ̂∞

)(
(σ̂ + 2(i− j) + θ̂t)

2 − θ̂2
0

)
8h2

λ(i, j)
(
λ
′
j + µi − i− j + 1 + σ̂

)2

∏
µ∈Y

(
− σ̂ + 2(i− j)− θ̂∞

)(
(−σ̂ + 2(i− j) + θ̂t)

2 − θ̂2
0

)
8h2

µ(i, j)
(
µ
′
j + λi − i− j + 1− σ̂

)2 ,

C(θ̂∞, θ̂t, θ̂0,
σ̂

2
+ n) = C

(σ̂/2+n)2

(−θ̂∞, 14 )
C

(σ̂/2+n)2

θ̂20
4

θ̂2t
4

.

(3.66)

The structure constant above is the normalization constant of the correlation function
with each structure in the right-hand side, counting the contributions of each part in the
diagram, Figure 3.4. Where the �rst part is related to the correlation function between
one state of rank 0 and one Whittaker state of rank 1, and in the second part, we have a
correlation function with three operators of rank 0.
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Figure 3.4: Con�uent three-point function for s-channel.

The computation of each structure using 2d CFT is complicated when n is large, which
means consider more contribution in the intermediate channel ∆ = (σ

2
+ n)2. Therefore,

instead of CFT we can determine the explicit form of the structure constant from the
Jimbo asymptotic formula [43], that express the asymptotic behavior of PV tau function
in terms of monodromy. Hence, the structure C(θ̂∞, θ̂t, θ̂0, σ̂) is expressed in terms of
G-Barnes functions and the parameter sV ,

C({θ̂}, σ̃) = snV
∏
ε=±

G(1 + 1
2
(εσ̃ − θ̂∞))G(1 + 1

2
(θ̂t + θ̂0 + εσ̃))G(1 + 1

2
(θ̂t − θ̂0 + εσ̃))

G(1 + εσ̃)
.

(3.67)
with σ̃ = σ̂ + 2n and G-Barnes function satisfying G(1 + z) = Γ(z)G(z). Where sV is
interpreted in terms of linear systems where the diagram Figure 3.4 is separated into two
parts with the two-point correlation representing a Con�uent Hypergeometric system and
the three-point function a Hypergeometric system with sV gluing the systems [11].

Now we �nally have the explicit expression for τV (t), which together with (3.61) and
(3.62) will help us to solve the accessory parameter as well as the eigenvalue for the
angular Teukolsky Master equation.
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4 | Kerr Black Hole Application

After building the τV as a function of the con�uent CB of the �rst kind, we �nally
arrive at the chapter in which it is explained an alternative way to �nd the expansion of
the eigenvalue for the angular Teukolsky Master equation (TME). There are several ways
available [55, 56, 57] to compute the expansion for the angular eigenvalue, here we use the
isomonodromic deformations theory as a new alternative to �nd the explicit expansion. To
do that, we work with the angular TME. The treatment of the radial Teukolsky equation,
as well as the study of quasi-normal modes, are subjects for future work.

In this chapter, we start by explaining how the Angular Teukolsky Master equation is
derived, then with the angular equation de�ned, we use the isomonodromic deformations
theory described in Chapter 2, as well as the �rst and second conditions of the τV function
relevant in the calculation of the accessory parameter expansion. We also derive the Toda
equation necessary to de�ne the exact form of the second condition of τV . Lastly, we use
the accessory parameter expansion to �nd the �rst seven coe�cients of the expansion of
the angular eigenvalue.

4.1 Teukolsky Master Equation

Teukolsky Master Equation (TME) appears when we consider the Newman-Penrose (NP)
formalism to investigate perturbations of spin-s �elds in the Kerr metric, where in terms of
NP formalism the TME represents �rst-order perturbations of the Einstein �eld equation
[58]. Essentially, the NP formalism consists in to project the metric onto a compost basis
of 4 null vectors l, n, m and m̄, commonly called null tetrads, with l, n real vectors and
m, m̄ complex vectors. In such formalism, the metric is decomposed as

gµν = −lµnν − nµlν +mµm̄ν + m̄µmν , (4.1)

with the null tetrads satisfying the orthogonality conditions lµmµ = lµm̄µ = nµmµ =
nµm̄µ = 0, and the normalization conditions given by lµnµ = −1,mµm̄µ = 1 [59].

To study perturbations in Kerr by using NP formalism, we are going to consider the



CHAPTER 4. KERR BLACK HOLE APPLICATION 51

metric in Boyer-Lindquist coordinates

ds2 = −
(

1− 2Mr

Σ

)
dt2 −

(
4Marsin2θ

Σ

)
dtdφ+

Σ

∆
d2r + Σd2θ

−sin2θ

(
r2 + a2 +

2Ma2rsin2θ

Σ

)
dφ2,

(4.2)

where the rotation parameter a is the angular momentum per unit mass, a = J/M , and
the function ∆ and Σ are given by

∆ = r2 − 2Mr + a2 = (r − r+)(r − r−), Σ = r2 + a2 cos2 θ. (4.3)

Without showing all steps, we assume directly from Teukolsky's paper the explicit form
of the Teukolsky master equation. The derivation of TME and a review of the Newman-
Penrose formalism can be seen in [60] and [59], respectively. Thus,[

(r2 + a2)

∆
− asin2 θ

]
∂2Ψ

∂t2
+

4Mar

∆

∂2Ψ

∂t∂φ
+

[
a2

∆
− 1

sin2 θ

]
∂2Ψ

∂φ2

−∆−s
∂

∂r

(
∆s+1∂Ψ

∂r

)
− 1

sin θ
∂

∂θ

(
sin θ

∂Ψ

∂θ

)
− 2s

[
a(r −M)

∆
+
icos θ

sin2 θ

]
∂Ψ

∂φ

−2s

[
M(r2 − a2)

∆
− r − iacos θ

]
∂Ψ

∂t
+ (s2cot2 θ − s)Ψ = 0,

(4.4)

where we are considering the vacuum case, with the energy tensor equal to zero, T =
0. The spin-weight �eld parameter s takes the values 0, ±1, ±2 for outgoing scalar,
electromagnetic, and gravitational �elds, respectively, and values s = ±1/2,±3/2 for
fermionic perturbations - to review perturbations of spin-s �elds in the Kerr metric we
recommend [61, 62, 63, 64]. The equation above can be separated by writing the �eld
Ψ(xµ) as Ψ(xµ) = e−iωteimφR(r)S(θ), where replacing in the equation we obtain the radial
and angular Teukolsky Master equation related to R(r) and S(θ), respectively

4.2 Spin-Weighted Spheroidal Harmonics

From (4.4), the angular TME is the spin-weighted spheroidal harmonics equation, which
has appeared in a variety of physical and mathematical problems, even before the black
hole application [55, 57]:

1

sinθ
d

dθ

[
sinθ

dS

dθ

]
+

[
a2ω2sin2θ − 2aωscosθ − (m+ s cosθ)2

sin2θ
+ s+ λ

]
S(θ) = 0. (4.5)

where we identify the separation constant λ and also the poles in θ = 0 and θ = π.
Changing variable x = cos θ, the di�erential equation becomes

d

dx

[
(1− x2)

dS

dx

]
+

[
a2ω2(1− x2)− 2aωsx− (m+ sx)2

(1− x2)
+ s+ λ

]
S(x) = 0, (4.6)
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where to use the isomonodromic formalism, let us take

y(z) = (1 + x)θ̂z0/2(1− x)θ̂0/2S(x), z = −2aω(1− x). (4.7)

The variable change brings the di�erential equation into the canonical con�uent Heun
form

d2y

dz2
+

[
1− θ̂0

z
+

1− θ̂z0
z − z0

]
dy

dz
+

[
−1

4
+
θ̂∞
2z
− z0cz0
z(z − z0)

]
y(z) = 0, (4.8)

with
z0 = −4aω, z0cz0 = λ+ 2aωs+ a2ω2. (4.9)

and monodromy parameters de�ned by

θ̂0 = −m− s, θ̂z0 = m− s, θ̂∞ = 2s. (4.10)

We also identify the accessory parameter z0cz0 in the con�uent Heun equation. The
di�erential equation (4.8) has 3 singular points: two regular at z = 0 and z = z0 and an
irregular singular point of Poincaré rank 1 at z =∞. As we know series expansions for the
solutions y(z) at the regular points can be obtained from the Frobenius method. We also
understand that the point at in�nity is trickier, because the solutions present the Stokes
phenomenon, and as it was explained, the convergence of the solutions is conditional to
sectors of the complex plane, see Figure 3.2.

In order to de�ne, in the next pages, the quantization condition between the regular
points, we will use solutions in (4.8) which are regular at both points 0 and z0:

y(z) =

{
z0(1 +O(z)) z → 0,

(z − z0)0(1 +O(z − z0)) z → z0,
(4.11)

which will place a restriction on the value of λ and eliminate divergent solutions.
It is well-known, from Chapter 2, that the con�uent Heun equation (4.8) can be cast

as a �rst order matrix equation:

dΦ

dz
= A(z)Φ(z) =

(
1

2
σ3 +

A0

z
+

At
z − t

)
Φ(z), (4.12)

with Φ(z) de�ned as in (3.45) and A∞ de�ned to be 1
2
σ3.

Following the de�nitions of the Chapter 2, the fundamental solution around the regular
points z = 0 and z = t has the same form of (3.18), where we write it as

Φ(0)(z) = G0

[
I +

∞∑
j=1

Φ
(0)
j zj

]
zA

(0)
0 , (4.13)

Φ(t)(z) = Gt

[
I +

∞∑
j=1

Φ
(t)
j (z − t)j

]
(z − t)A

(t)
0 , (4.14)
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with A(0)
0 and A(t)

0 de�ned as (3.17)

A
(0)
0 = G−1

0 A0G0, A
(t)
0 = G−1

t AtGt. (4.15)

Since there are many parametrizations forA0 andAt, we are going to consider a parametriza-
tion such that the matrices A(0)

0 and A(0)
t around each singularity are de�ned by

A
(0)
0 =

1

2
θ̂0σ3, A

(0)
t =

1

2
θ̂tσ3, (4.16)

where θ̂0, θ̂t are eingevalues of A(0)
0 , A(0)

t , respectively, and they are related to the trace
of A0 and At in (4.12). The monodromy associated with the analytic continuation of the
fundamental solution Φ(z) around 0 and t is

Φ(ze2πi) = Φ(z)M0,

Φ((z − t)e2πi + t) = Φ(z)Mt,
(4.17)

with the monodromy matrices given by

M0 = C−1
0 eπiθ̂0σ3C0, Mt = C−1

t eπiθ̂tσ3Ct. (4.18)

Around the irregular singular point, z = ∞, the asymptotic solution is de�ned in
sectors de�ned in (3.24), thus, from (3.23) and taking (3.25) the solution on the k-sector
is written as,

Φ
(∞)
k (z) =

(
I +

∞∑
j=1

Φ
(∞)
j z−j

)
exp
[1
2
σ3z +

1

2
((θ̂0 + θ̂t)I− θ̂∞σ3)log z

]
, z ∈ Sk, (4.19)

where from (3.23), we de�ned A(∞)
0 = −1

2
σ3, A

(∞)
−1 = −1

2
((θ̂0 + θ̂t)I − θ̂∞σ3), and θ̂i's are

de�ned as (3.56),

θ̂0 = TrA0, θ̂t = TrAt, θ̂∞ = −Tr [σ3(A0 + At)] (4.20)

with

detA0 = detAt = 0, detA∞ = det
1

2
σ3 = −1

4
.

It is customary to de�ne the monodromy at z = ∞ in the sector k = 1, such that using
the equations (3.30),(3.31) and (3.32), the monodromy around in�nity is de�ned by

Φ(e−2πiz) = Φ(z)M∞, (4.21)

with the monodromy matrix M∞ written as [52]

M∞ = S2e
−iπθ̂∞σ3S1, (4.22)
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and the three matrices around each point satisfying the relation,

M∞MtM0 = I. (4.23)

It will be convenient to de�ne the trace of M∞ as an independent parameter [43],

2 cosπσ̂ = TrM∞ = 2 cos πθ̂∞ + s1s2e
−iπθ̂∞ . (4.24)

Furthermore, in order to facilitate the notation, we de�ne the parameter ρ̂ which
represents all monodromy data associated to the system (4.12),

ρ̂ = {θ̂0, θ̂t, θ̂∞; s1, s2}. (4.25)

with s1 and s2 representing the Stokes multipliers.

4.2.1 Connection matrix and the quantization condition
Here we are interested in solutions between z = 0 and z = t, which are connected by
a connection matrix, allowing us to �nd the quantization condition (4.11) in terms of
monodromy data. The linear system related to (4.11) is the Hypergeometric system
written as

d

dz
Φ(z) =

(
A0

z
+

At
z − t

)
Φ(z), (4.26)

where in this system the fundamental solution at z = 0 can be built by using the Frobenius
method in the �rst line of Φ(z) and then using (3.46) to �nd the second line. In a short
way, from (4.13), we have

Φ(0)(z) = G0 (I +O(z)) z
1
2
θ̂0σ3 . (4.27)

with A(0)
0 = 1

2
θ̂0σ3. We can �nd a basis where the monodromy matrixM0 is diagonal with

Φ(0)(ze2πi) = Φ(0)(z)M0, (4.28)

therefore, in this basis of solutions the monodromy M0 is given by M0 = eiπθ̂0σ3 .
The monodromy around z = t de�ned as (4.17) is also diagonal in this basis, but the

matrix Ct is now related to the connection matrix between the fundamental solutions
Φ(t)(z) and Φ(0)(z):

Φ(t)((z − t)e2πi + t) = Φ(0)(z)C−1
t0 e

πiθ̂tσ3Ct0, (4.29)

with the constant connection matrix de�ned by Ct0 = Φ(t)(z)−1Φ(0)(z). Now if the pa-
rameters in the matrix system (4.26) are such that the conditions (4.11) are satis�ed, we
can prove that the connection matrix Ct0 is either lower triangular or upper triangular.
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As a consequence, the product between the monodromy matrix at z = 0, and z = t, will
satisfy the following equation

TrM0Mt = 2 cos π(θ̂0 + θ̂t). (4.30)

Let us now prove that the lower and upper triangular condition in the connection matrix
leads to the equation (4.30). To do this, let us take a generic Fuchsian system. Such a
system is analogous to the Hypergeometric system (4.26) and written as

∂Ψ(z)

∂z
=

(
B0

z
+

Bt

z − t

)
Ψ(z). (4.31)

The system above has the solutions Ψ(0)(z) and Ψ(t)(z) around z = 0 and z = t, respec-
tively, thus the generic monodromies around these points can be found via

Ψ(0)(e2πiz) =Ψ(0)(z)M0

Ψ(t)(e2πi(z − t) + t) = Ψ(t)(z − t)Mt.
(4.32)

Via conjugation we can �nd a generic base whose monodromy matrices can be written in
terms of a diagonal matrix. Thus, let us consider

M0 = C0D0C
−1
0 , Mt = CtDtC

−1
t (4.33)

where D0 and Dt are diagonal matrices. In that way, we choose the matrices D0 and Dt

to be in the following form

D0 =

(
eiπη0 0

0 e−iπη0

)
Dt =

(
eiπηt 0

0 e−iπηt

)
(4.34)

with the matrices satisfying the convenient conditions Tr(D0) = 2cos(πη0), Tr(Dt) =
2cos(πηt), detD0 = 1, and detDt = 1. The trace of the product of M0 and Mt is,
therefore, written as

Tr(M0Mt) = Tr(C0D0C
−1
0 CtDtC

−1
t )

= Tr(C−1
t C0D0C

−1
0 CtDt),

(4.35)

where we used the cyclic property of the trace in the second line. The product of matrix
C−1
t C0 in the trace has the interpretation of connection matrix between the fundamental

solutions Ψ(0)(z) and Ψ(t)(z) and we de�ne as C̄t0 = C−1
t C0. Therefore, let us take the

generic connection matrix as

C̄t0 =

(
a b
c d

)
(4.36)

with the constants a, b, c and d functions of η0 and ηt and detC̄t0 6= 0. Replacing the
matrix above in the trace equation and using (4.34) we have,

Tr(M0Mt) =
2ad cos(pπ(η0 + ηt)) + 2bc cos(pπ(η0 − ηt))

ad− bc
. (4.37)
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Given that, the C̄t0 can be lower triangular or upper triangular, this implies that b or c
must be zero. Thus,

TrM0Mt = 2cospπ(η0 + ηt), (4.38)

where from a generic case the relation above has the same form of (4.30).
Returning to the quantization discussion, the condition (4.30) is satis�ed when the

separation constant λ corresponds to the angular eigenvalue in the equation (4.8). Using
the property (4.23) and the de�nition of σ̂ from (4.24), we arrive at

σ̂(λ) = θ̂0 + θ̂t + 2j, j ∈ Z, (4.39)

where we explicit the dependence on λ, but in fact, σ̂ depends on all parameters in (4.8).
The condition (4.39) does not provide a full solution of the system, and we need

to beware of the values of θ̂i since some θ̂i are related to non-normalizable solutions of
the di�erential equation (4.8). Essentially, in the next section, we are going to use the
quantization condition, and it will be clear from the context which values of θ̂i lead to the
normalizable solutions.

4.2.2 τ -function and Painlevé V system
In this section and the next, we are going to de�ne two conditions for the τV -function to
help in the calculation of the accessory parameter.

Now we are ready to return to section 2.4, where we studied the isomonodromic
deformation in Painlevé V. The �rst idea again is to see the parameter t in (4.12) as
gauge parameter in the space of �at holomorphic connections A(z, t). In this case, the
system will give a deformation equation associated to the �rst line in the fundamental
matrix solution, and to recover the di�erential equation (4.8), we take t to z0. The
advantage of this deformation stems from the fact that we can yet translate conditions,
such as the quantization condition (4.11) in terms of gauge-invariant properties of (4.10),
where in this case is saved in the monodromy data, ρ̂.

We know from the Chapter 2 that the system must obey

∂Φ

∂z
= A(z, t)Φ(z, t) =

(
1

2
σ3 +

A0

z
+

At
z − t

)
Φ(z, t),

∂Φ

∂t
= − At

z − t
Φ(z, t),

(4.40)

where the condition of the mixed derivative ∂z∂tΦ = ∂t∂zΦ, requires that A0 and At
satisfy the Schlesinger equations :

∂A0

∂t
=

1

t
[At, A0],

∂At
∂t

= −1

t
[At, A0]− 1

2
[At, σ3], (4.41)

whose solution gives a one-parameter family of matrix systems with di�erent values of t,
but the same ρ̂. From section 2.4, the equation (3.61) can be written as

d2y

dz2
+ p(z)

dy

dz
+ q(z)y = 0, (4.42)
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p(z) =
1− θ̂0

z
+

1− θ̂t
z − t

− 1

z − λ
, q(z) = −1

4
+
θ̂∞ − 1

2z
− tct
z(z − t)

+
λµ

z(z − λ)
,

(4.43)

where the equation (3.54) is rewritten in the following form,

µ2 −

[
θ̂0

λ
+
θ̂t − 1

λ− t

]
µ+

θ̂∞ − 1

2λ
− tct
λ(λ− t)

=
1

4
. (4.44)

The equation above allows us to write ct as function of λ, µ and t. As a result of the
indicial equation, the algebraic condition (4.44) tells us that the singularity at z = λ in
(4.42) is apparent without logarithmic behavior. Then the monodromy matrix around
z = λ is trivial.

In order to recover the con�uent Heun equation (4.8) and take into account the family
of isomonodromic connections, it is necessary to consider the following choices,

θ̂0 → θ̂0, θ̂t0 → θ̂t0 − 1, θ̂∞ → θ̂∞ + 1, λ(t0) = t0, µ(t0) = − ct0

θ̂t0 − 1
.

(4.45)
These choices bring the deformed con�uent Heun equation (4.42) to (4.8). From (4.24),
it is not di�cult to show that σ̂ has the following shift, σ̂ → σ̂ − 1. These conditions are
more conveniently written in terms of the τV -function de�ned in (3.41), where to leave
the τV depending only on terms of monodromy data ρ̂, we must take Â0 = A0− 1

2
θ̂0I and

Ât = At − 1
2
θ̂tI:

d

dt
log τV (ρ̂; t) =

1

2
Trσ3(At −

1

2
θ̂tI) +

1

t
Tr(A0 − 1

2
θ̂0I)(At − 1

2
θ̂tI), (4.46)

where the condition above is according with the Jimbo-Miwa-Ueno (JMU) τV -function
de�ned in [43, 10]. Therefore, (4.45) leads to

d

dt
log τV (ρ̂; t) = ct +

θ̂0θ̂t
2t

,
d

dt
t
d

dt
log τV (ρ̂; t) +

θ̂t
2

= 0. (4.47)

The second condition (4.47) stems from the second derivative of the τV function, calculated
using the Schlesinger equations and imposing (4.45). The left-hand side can be related
through the Toda equation [65] to a product of τV -functions, such an equation will be
proved soon. Thus,

d

dt
t
d

dt
log τV (ρ̂; t) +

θ̂t
2

= KV
τV (ρ̂+; t)τV (ρ̂−; t)

τ 2
V (ρ̂; t)

, (4.48)

where KV is independent of t and the ρ̂± are related to ρ̂ by the simple shifts,

ρ̂± = {θ̂0, θ̂t ± 1, σ̂ ± 1, θ̂∞ ∓ 1; s1, s2}. (4.49)
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Miwa's theorem [66] tells us that τV de�ned by (4.46) is analytic in t except at the critical
points t = 0 and t =∞. Therefore, either τ+

V (ρ̂+; t) or τ−V (ρ̂−; t) has to vanish in (4.48).
The proof of (4.48) is a little laborious and straightforward: Initially, we consider a

basis of solutions where At is diagonal,

∂Φ(z)

∂z
[Φ(z)]−1 = A(z) = A∞ +

A0

z
+

1

z − t

(
α̂t 0

0 β̂t

)
. (4.50)

From the fundamental solution Φ(z), we de�ne the derived solutions that are represented
by

Φ+(z) = L+(z)Φ(z) =

(
1 0
p+ 1

)(
z − t 0

0 1

)(
1 q+

0 1

)
Φ(z), (4.51)

Φ−(z) = L−(z)Φ(z) =

(
1 p−

0 1

)(
(z − t)−1 0

0 1

)(
1 0
q− 1

)
Φ(z), (4.52)

here we dropped the t dependence. From (4.50), Φ±(z) satisfy

∂Φ±

∂z
[Φ±(z)]−1 = A±∞ +

A±0
z

+
1

z − t

(
α̂t ± 1 0

0 β̂t

)
. (4.53)

Note that, Φ±(z) is related to the possible shifts represented in (4.49). In terms of
monodromy it is clear that the monodromy data of Φ±(z) are related to that of Φ(z) by
(4.51) and (4.52). Given Φ±(z), one can establish the Toda equation (4.48) by comparing
the corresponding expressions for each τV -function (4.46), and choosing p± and q± in
order to keep the form of the new connection, de�ned through (4.12), mantain the partial
fraction form at z = t and z = ∞. The parameters p± and q± are determined from
requirement that the transformation of A∞ does not include term proportional to z and
that the transformation of At is still diagonal. Let us start to work with Φ+(z), replacing
(4.51) in (4.53) we �nd

∂Φ+

∂z
[Φ+(z)]−1 =

∂L(z)+

∂z
(L+(z))−1 + L+(z)A(z)(L+(z))−1. (4.54)

De�ning the matrices A+
∞ and A+

0 as function of A∞ and A0 respectively,

A+
i =

(
1 q+

0 1

)
Ai

(
1 −q+

0 1

)
=

(
ãi b̃i
c̃i d̃i

)
, Ai =

(
ai bi
ci di

)
i =∞, 0. (4.55)

such that, (
ãi b̃i
c̃i d̃i

)
=

(
ai + q+ci bi − (ai − di)q+ − ci(q+)2

ci di − q+ci

)
, (4.56)

after some algebra in the right-hand side of (4.54), we compare the equations (4.53) and
(4.54) in order to �nd how the matrices A+

∞, A
+
0 , and A

+
t are written. Thus,

A+
∞ =

(
1 0
p+ 1

)(
ã∞ 0

0 d̃∞

)(
1 0
−p+ 1

)
− (z − t)b̃∞

(
p+ −1

(p+)2 −p+

)
+

1

z − t

(
0 0
c̃∞ 0

)
,

(4.57)
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1

z
A+

0 =
1

z

(
1 0
p+ 1

)(
ã0 −b̃0t

− c̃0
t

d̃0

)(
1 0
−p+ 1

)
− b̃0

(
p+ −1

(p+)2 −p+

)
+

1

z − t

(
0 0
c̃0
t

0

)
,

(4.58)

1

z − t
A+
t =

1

z − t

(
α̂t 0

0 β̂t

)
+ q+(α̂t − β̂t)

(
p+ −1

(p+)2 −p+

)
+

1

z − t

(
0 0

p+(α̂t − β̂t) 0

)
.

(4.59)
Adding these three terms above with the �rst term in (4.54) given by

∂L+(z)

∂z
L+(z) =

1

z − t

(
1 0
0 0

)
+

1

z − t

(
0 0
p+ 0

)
, (4.60)

we �nd the constraint that the extra terms must satisfy to recover the system. Therefore,
from A+

∞, the term proportional to z must vanish which implies b̃∞ = 0, the extra terms
proportional to (z − t)−1 also must be canceled, then the last terms in A+

∞, A
+
0 , A

+
t , and

the equation (4.60) lead to following constraint, p+(α̂t− β̂t + 1) = −c̃0/t− c̃∞. Using the
�rst contraint we �nd the explicit form of q+:

q+ =
α̂∞ − a∞

c∞
, q+ = − β̂∞ − d∞

c∞
, (4.61)

where α̂∞ and β̂∞ are eingevalues of A∞. Replacing q+ in the de�nition (4.56) we have
ã∞ = α̂∞, d̃∞ = β̂∞, and c̃∞ = c∞. Therefore, At will keep the form in (4.53) with the
matrices A+

0 and A+
t written as

A+
0 =

(
1 0
p+ 1

)(
ã0 −b̃0t

−c̃0/t d̃0

)(
1 0
−p+ 1

)
, (4.62)

A+
∞ =

(
1 0
p+ 1

)(
α̂∞ b̃0 − q+(α̂t − β̂t)
0 β̂∞

)(
1 0
−p+ 1

)
. (4.63)

The calculation for decreasing the value of α̂t is entirely analogous. Starting from the
original linear system, we have

Φ−(z) = L−(z)Φ(z) =

(
1 p−

0 1

)(
(z − t)−1 0

0 1

)(
1 0
q− 1

)
Φ(z), (4.64)

that satis�es,
∂Φ−

∂z
[Φ−(z)]−1 = A− +

A−0
z

+
1

z − t

(
α̂t − 1 0

0 β̂t

)
. (4.65)

Again we de�ne the matrices A−∞ and A−0 as function of A∞ and A0, respectively

A−i =

(
1 0
q− 1

)
Ai

(
1 0
−q− 1

)
=

(
ãi b̃i
c̃i d̃i

)
, i =∞, 0. (4.66)
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(
ãi b̃i
c̃i d̃i

)
=

(
ai − q−ci bi

ci + (ai − di)q− − ci(q−)2 di + q−ci

)
. (4.67)

In this case, the matrices A−∞, A
−
t , A

−
0 , and the extra term are given directly by

A−∞ =

(
1 p−

0 1

)(
ã∞ 0

0 d̃∞

)(
1 −p−
0 1

)
− (z − t)c̃∞

(
−p− (p−)2

−1 p−

)
+

b̃∞
z − t

(
0 1
0 0

)
,

(4.68)

A−t
z − t

=
1

z − t

(
α̂t 0

0 β̂t

)
−q−(α̂t−β̂t)

(
−p− (p−)2

−1 p−

)
+

1

z − t

(
0 −p−(α̂t − β̂t)
0 0

)
, (4.69)

A−0
z

=
1

z

(
1 p−

0 1

)(
ã0 −b̃0/t

−c̃0t b̃0

)(
1 −p−
0 1

)
− c̃0

(
−p− (p−)2

−1 p−

)
+

b̃0/t

z − t

(
0 1
0 0

)
,

(4.70)

∂L−

∂z
[L−]−1 =

1

z − t

(
−1 0
0 0

)
+

1

z − t

(
0 p−

0 0

)
. (4.71)

Since the term (z − t) must vanish to keep the form of the system, we must take c̃∞ = 0
which leads to the analogous result for q+:

q− = − α̂∞ − a∞
b∞

, q− =
β̂∞ − d∞

b∞
, (4.72)

as well as the constraint p−(α̂t − β̂t − 1) = −b̃0/t − b̃∞, that cancel the terms (z − t)−1.
Thus, the matrix A−0 and A−t are expressed as

A−0 =

(
1 p−

0 1

)(
ã0 −b̃0/t

−c̃0t b̃0

)(
1 −p−
0 1

)
, (4.73)

A−∞

(
1 p−

0 1

)(
α̂∞ 0

c̃0 + q−(α̂t − β̂t) β̂∞

)(
1 −p−
0 1

)
. (4.74)

Now we are ready to �nd the Toda equation. Using the de�nition of isomonodromy �ow
(3.41) we write the Hamiltonians of this new system as

H± =
d

dt
logτ±V (t) = TrA±∞A

±
t +

1

t
TrA±0 A

±
t . (4.75)

Here, replacing the matrices to the system Φ±(z) and using q±, we �nd the following
Hamiltonians:

H+ = α̂∞ +
1

t
a0 +

1

t
c0q

+ + α̂t

(
a∞ +

a0

t

)
+ β̂t

(
d∞ +

d0

t

)
, (4.76)
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H− = −α̂∞ −
1

t
a0 +

1

t
b0q
− + α̂t

(
a∞ +

a0

t

)
+ β̂t

(
d∞ +

d0

t

)
. (4.77)

It is not di�cult to prove that the last two terms in the equations above is related to the
isomonodromy �ow of the original system. Thus, we write the equations as

H+ −H = α̂∞ +
1

t
a0 +

1

t
c0q

+,

H+ −H = −α̂∞ −
1

t
a0 +

1

t
b0q
−.

(4.78)

Let us take the derivate of the Hamiltonian of the original system, which is expressed as

H =
d

dt
logτV (ρ̂, t) = TrA∞At +

1

t
TrA0At. (4.79)

We have directly
d

dt
t
d

dt
logτV (ρ̂, t) = TrA∞At = a∞α̂t + d∞β̂t. (4.80)

Where we use the de�nition of At and A∞ from (4.55) and At in (4.50). Taking a second
derivate in (4.80) and then using the Schlesinger equations de�ned in (4.41), we arrive at,

d2

dt2
t
d

dt
logτV (ρ̂, t) =

1

t
Tr(A∞[A0, At]) = −1

t
(α̂t − β̂t)(b0c∞ − c0b∞). (4.81)

Using the equations for q+, q−, (4.75), and (4.78) we �nd the relations between the second
and �rst derivate on t,

d2

dt2
t
d

dt
logτV (ρ̂, t) = (α̂t − β̂t)

b∞c∞
α̂∞ − a∞

d

dt
log

τ+
V (ρ̂+, t)τ−V (ρ̂−, t)

τV (ρ̂, t)
. (4.82)

After a little algebra we can also prove the useful relations

(α̂t − β̂t)
b∞c∞

α̂∞ − a∞
= (α̂t − β̂t)(a∞ − β̂∞)

(α̂t − β̂t)(a∞ − β̂∞) =
d

dt
t
d

dt
logτV (ρ̂, t)− (α̂∞ + β̂∞)β̂t − β̂∞(α̂t − β̂t).

(4.83)

where we �nally stablish the Toda equation for the τV -function of Painlevé V by replacing
the equations above in (4.82)and then integrating on t,

d

dt
t
d

dt
logτV (ρ̂, t)− α̂∞β̂t − b∞α̂t = KV

τ+
V (ρ̂+, t)τ−V (ρ̂−, t)

τ 2
V (ρ̂, t)

(4.84)

with KV , as it was de�ned, a constant independent of t.
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4.2.3 Convenient parameterization for the linear system
In the previous section, it was convenient to parametrize the linear system in such a way
that At was diagonal. However, this is not the most common parameterization for such
system; rather it is useful to use the following parameterization

A∞ =
1

2

(
1 0
0 −1

)
Āi =

(
āi b̄i
c̄i d̄i

)
=

(
pi + θ̂i −qipi

1
qi

(pi + θ̂i) −pi

)
, i = 0, t, (4.85)

where the bar reminds us that, in the basis used above, Āt is not diagonal. In order to
diagonalize it, we use

At = Gt

(
θ̂t 0
0 0

)
G−1
t , Gt =

(
qt 1

1 pt+θ̂t
qtpt

)
, (4.86)

which satisfy the constraint (4.20). The last constraint in (4.20) can be written as

p0 + pt = − θ̂0 + θ̂t + θ̂∞
2

, (4.87)

where we observe that such constraint reduces the number of free parameters to 3. Con-
jugating with Gt, we have the matrix A∞ used in the last section,

A∞ =
1

2θ̂t

(
āt − d̄t 2c̄t

2b̄t −āt + d̄t

)
(4.88)

The matrix A0 is also computed straightforwardly. The form of A∞ is enough to stablish
the divergence of τ+(ρ̂+, t). Where we have to q+ and q−,

q+ =
α̂∞ − a∞

c∞
=
d̄t
b̄t
, q− = − α̂∞ − a∞

b∞
= − d̄t

c̄t
, (4.89)

which for the boundary condition λ = t or b̄t = 0 means that q+ will diverge. In terms of
entries, we have

H+ −H =
1

2
+

1

t

(
ā0 +

b̄0

b̄t
d̄t

)
, H− −H = −1

2
− 1

t

(
ā0 +

c̄0

c̄t
d̄t

)
. (4.90)

We now introduce the position of the apparent singularity λ and the canonically conjugate
parameter µ,

λ =
tb̄0

b̄0 + b̄t
, µ =

1

2
+
ā0

λ
+

āt
λ− t

. (4.91)

Therefore, by replacing λ and µ the equations (4.90) are written as,

H+ −H =
1

2
+
λ

t

(
µ− 1

2

)
− λ

t(λ− t)
θ̂t (4.92)
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H− −H = −1

2
+

(λ− t)
(
µ− 1

2

)
− 1

2
(θ̂0 + θ̂t − θ̂∞)

λ
(
µ− 1

2

)
− 1

2
(θ̂0 + θ̂t − θ̂∞)

(
λ

t

(
µ− 1

2

)
− θ̂0

t

)
. (4.93)

After more algebraic manipulations and using the isomonodromy �ow de�nition, we show
that,

d

dt
log

τ+
V (ρ̂+; t)

τV (ρ̂; t)
= −1

2
− λ

t

(
µ− 1

2

)
+

λ

t(λ− t)
θ̂t (4.94)

d

dt
log

τ−V (ρ̂−; t)

τV (ρ̂; t)
=

1

2
−

(λ− t)
(
µ− 1

2

)
− 1

2
(θ̂0 + θ̂t − θ̂∞)

λ
(
µ− 1

2

)
− 1

2
(θ̂0 + θ̂t − θ̂∞)

(
λ

t

(
µ− 1

2

)
− θ̂0

t

)
. (4.95)

Given that the �rst line has a divergent limit λ→ t, we conclude by taking the integration
on t and then taking the limit that we can substitute the second condition in (4.47) by
the simpler one

τV (ρ̂; t0) = 0. (4.96)

Where the monodromy data is that of (4.8):

ρ̂ = {θ̂0, θ̂t0 , σ̂, θ̂∞; s1, s2}, (4.97)

here, we make explicit the dependence in σ̂ from the quantization condition. Thus, in
terms of monodromy data, the �rst condition in (4.47) is given by

ct0 =
d

dt
log τV (ρ̂−; t0)− θ̂0(θ̂t0 − 1)

2t0
. (4.98)

with the shift in ρ̂− de�ned in (4.49).

4.2.4 Accessory parameter for the confluent Heun equation
Primarily, the accessory parameter ct0 depends on the derivate of τV -function, thus, to
�nd the explicit expansion of ct0 , it is necessary to �nd the root of the JMU τV -function
in (4.96), then replace the value of this root and considering the shifts de�ned in ρ̂− inside
the logarithm argument.

We know from Chapter 2 that the τV -function is written by using the formalism of
partition functions with c = 1 in the CFT, thus τV -function is given from (3.65) by

τV (ρ̂; t) =
∑
n

C̃({θ̂}, σ̂ + 2n)snV t
1
4

(σ̂+2n)2− 1
4

(θ̂2
0+θ̂2

t )D
(
θ̂0, θ̂t, θ̂∞, σ̂ + 2n; t

)
,

C̃({θ̂}, σ̂) =
∏
ε=±

G(1 + 1
2
(εσ̂ − θ̂∞))G(1 + 1

2
(θ̂t + θ̂0 + εσ̂))G(1 + 1

2
(θ̂t − θ̂0 + εσ̂))

G(1 + εσ̂)
,

(4.99)
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with {θ̂} = {θ̂0, θ̂t, θ̂∞}, G-Barnes function satisfying G(z + 1) = Γ(z)G(z), and the
con�uent conformal block of the �rst kind, D

(
θ̂0, θ̂t, θ̂∞, σ̂; t

)
de�ned in (3.66). Note that,

we de�ne C̃ from (3.67) just to keep the explicit dependence of τV in terms of sV .
To analyze the asymptotic behavior and to check with the literature, let us write (4.99)

as
τV (ρ̂; t) = C̃({θ̂}, σ̂)t

1
4

(σ̂2−θ̂2
0−θ̂2

t )e−
1
2
θ̂ttτ̂V (ρ̂; t). (4.100)

where τ̂V (ρ̂; t) is

τ̂V (ρ̂; t) =
∑
n

C̄({θ̂}, σ̂ + 2n)snV t
nσ̂+n2D

(
θ̂0, θ̂t, θ̂∞, σ̂ + 2n; t

)
,

C̄({θ̂}, σ̂ + 2n) =
C̃({θ̂}, σ̂ + 2n)

C̃({θ̂}, σ̂)
,

(4.101)

with τ̂V (ρ̂; t) just involving the combinatorial expansion of the con�uent CB of �rst kind
and ratios of gammas. The asymptotics of τ̂V (ρ̂; t) is the same when we compare with
[43] - replacing σ̂ for σ:

τ̂V (ρ̂; t) = 1 +

(
θ̂t
2
− θ̂∞

4
− θ̂∞(θ̂2

0 − θ̂2
t )

4σ̂2

)
t

+
(σ̂ − θ̂∞)((σ̂ + θ̂t)

2 − θ̂2
0)

8σ̂2(σ̂ − 1)2
ŝ−1t1−σ̂ +

(σ̂ + θ̂∞)((σ̂ − θ̂t)2 − θ̂2
0)

8σ̂2(σ̂ + 1)2
ŝt1+σ̂ +O(t2, t2±2<σ̂),

(4.102)

where the parameter ŝ in the equation above is related to sV by a string of gamma
functions

ŝ =
Γ2(1− σ̂)Γ(1 + 1

2
(σ̂ − θ̂∞))Γ(1 + 1

2
(θ̂t + θ̂0 + σ̂))Γ(1 + 1

2
(θ̂t − θ̂0 + σ̂))

Γ2(1 + σ̂)Γ(1− 1
2
(σ̂ + θ̂∞))Γ(1 + 1

2
(θ̂t + θ̂0 − σ̂))Γ(1 + 1

2
(θ̂t − θ̂0 − σ̂))

sV . (4.103)

In order to �nd explictly the accessory parameter expansion, let us de�ne in (4.101)
the variable X(σ̂; t) = sV t

σ̂. τ̂V is meromorphic in the variables X and t, then we can
use such property and the second condition for τV (4.96) in order to invert the function
to write X as a function of θ̂'s, σ̂ and t0. From (4.96) and (4.100), it is easy to see that
to invert the series we just need to work with (4.101). Thus,

τ̂V (ρ̂; t0) =
∑
n

C̄({θ̂}, σ̂ + 2n)Xn(σ̂; t0)tn
2

0 D
(
θ̂0, θ̂t, θ̂∞, σ̂ + 2n; t0

)
= 0. (4.104)

To �nd the terms of the accessory parameter expansion is necessary to de�ne the
value of n and the number of terms in the con�uent CB of the �rst kind. To simplify the
calculations, we express in this dissertation the �rst three terms in the expansion of ct0 ;
however, computationally we can get more terms. To compare with the literature, we will
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use, in the next section, the �rst seven terms to express the λ expansion. To �nd these
terms, we take n = 0,±1,±2,±3 and the con�uent CB expansion of �rst kind goes up to
t80. With these choices, we ensure all contributions of t0 in the expansion. Expanding the
terms in (4.104) and in order to write X(σ̂, t0) as a function of the θ̂'s, we can consider
X(σ̂; t) as an perturbation expansion,

X(σ̂, t0) =
∑
k=0

χkt
k
0 (4.105)

where it is possible to �nd each term of X(σ̂, t0) by using the second condition of τV .
After some algebra, the explicit form of the �rst three terms are

X({θ}, σ̂; t0) =
(σ̂ − θ̂∞)((σ̂ + θ̂t0)2 − θ̂2

0)

8σ̂2(σ̂ − 1)2
t0
(
1 + χ1t0 + χ2t

2
0 +O(t30)

)
(4.106a)

with,

χ1 = (σ̂ − 1)
θ̂∞(θ̂2

0 − θ̂2
t0

)

σ̂2(σ̂ − 2)2
, (4.106b)

and

χ2 =
θ̂2
∞(θ̂2

0 − θ̂2
t0

)2

64

(
5

σ̂4
− 1

(σ̂ − 2)4
− 2

(σ̂ − 2)2
+

2

σ̂(σ̂ − 2)

)
−

(θ̂2
0 − θ̂2

t0
)2 + 2θ̂2

∞(θ̂2
0 + θ̂2

t0
)

64

(
1

σ̂2
− 1

(σ̂ − 2)2

)
+

(1− θ̂2
∞)((θ̂0 − 1)2 − θ̂2

t0
)((θ̂0 + 1)2 − θ̂2

t0
)

128

(
1

(σ̂ + 1)2
− 1

(σ̂ − 3)2

)
, (4.106c)

where, we just express the �rst three terms of X({θ̂}, σ̂, t0).
To use (4.98) and �nd the accessory parameter, we must shift the monodromy param-

eters by one unit. A simple calculation using (4.103) yields to

X(ρ̂−; t) =
8σ̂2(σ̂ − 1)2

(σ̂ − θ̂∞)((σ̂ + θ̂t)2 − θ̂2
0)t
X(ρ̂; t). (4.107)

Now by using (4.98)

ct0 =
(σ̂ − 1)2 − (θ̂0 + θ̂t0 − 1)2

4t0
− θ̂t0 − 1

2
+
d

dt
log τ̂(ρ̂−; t0), (4.108)

and expanding the τ̂V term, we �nd the expansion for the accessory parameter

t0ct0 = k0 + k1t0 + k2t
2
0 + k3t

3
0 + . . . knt

n
0 + . . . , (4.109a)
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with the three �rst terms in the expansion, given by

k0 =
(σ̂ − 1)2 − (θ̂0 + θ̂t0 − 1)2

4
, (4.109b)

k1 = −
θ̂∞(σ̂(σ̂ − 2)− θ̂2

0 + θ̂2
t0

)

4σ̂(σ̂ − 2)
, (4.109c)

k2 =
1

32
+
θ̂2
∞(θ̂2

0 − θ̂2
t0

)2

64

(
1

σ̂3
− 1

(σ̂ − 2)3

)
+

(1− θ̂2
∞)(θ̂2

0 − θ̂2
t0

)2 + 2θ̂2
∞(θ̂2

0 + θ̂2
t0

)

32σ̂(σ̂ − 2)

−
(1− θ̂2

∞)((θ̂0 − 1)2 − θ̂2
t0

)((θ̂0 + 1)2 − θ̂2
t0

)

32(σ̂ + 1)(σ̂ − 3)
, (4.109d)

k3 =
θ̂3
∞(θ̂2

0 − θ̂2
t0

)3

256

(
1

(σ̂ − 2)5
− 1

σ̂5

)
+

4(θ̂2
0 − θ̂2

t0
)3θ̂∞ −

(
5(θ̂6

0 − θ̂6
t0

) + 8θ̂4
t0

+ 15θ̂2
0 θ̂

4
t0
− θ̂4

0(8 + 15θ̂2
t0

)
)
θ̂3
∞

1024(
1

σ̂3
− 1

(σ̂ − 2)3

)
+

1

24576
(θ̂2
t0
− θ̂2

0)θ̂∞

(
64 + 80θ̂2

∞ + 8θ̂2
t0

(20− 29θ̂2
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(θ̂4
0 + θ̂4

t0
)(125θ̂2

∞ − 116) + θ̂2
0

(
160− 232θ̂2

∞ + θ̂2
t0

(232− 250θ̂2
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))( 1

σ̂
− 1

σ̂ − 2

)
−

((−1 + θ̂0)2 − θ̂2
t0

)(θ̂2
0 − θ̂2

t0
)((1 + θ̂0)2 − θ̂2

t0
)θ̂∞(1− θ̂2
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96(3− σ̂)(1 + σ̂)

+
((−2 + θ̂0)2 − θ̂2

t0
)(θ̂2

0 − θ̂2
t0

)((2 + θ̂0)2 − θ̂2
t0

)θ̂∞(4− θ̂2
∞)

4096(4− σ̂)(2 + σ̂)
. (4.109e)

In the calculations above we assumed <σ̂ > 0, the corresponding expression for <σ̂ < 0 can
be obtained by sending σ̂ → −σ̂. The higher order terms become increasingly complicated
and we have the structure where the term kn is a rational function of the monodromy
parameters.

It should be emphasized that (4.96) and (4.98) are exact relations, even though their
usefulness stems from the ability to compute the τV function for Painlevé V e�ciently.
Miwa's theorem [66] shows that the τV function is analytic in the whole complex plane
except at t = 0 and t = ∞. Thus, the expansion (4.99) has an in�nite radius of conver-
gence, even if it becomes exponentially hard to compute the higher order coe�cients in
the expansion, due to their combinatorial nature.
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4.2.5 The spheroidal harmonics eigenvalues
Let us now to express the �rst seven terms of the separation constant by using the expan-
sion of the accessory parameter (4.109a). In angular case, the monodromies parameters
and σ̂ which is associated with the quantization condition (4.39) are written as

θ̂0 = −m− s, θ̂t0 = m− s, θ̂∞ = 2s, t0 = −4aω, σ̂ = −2s+ 2j. (4.110)

Replacing the parameters and using the equations (4.9), we �nd the expansion of the
angular eigenvalue expansion sλ`,m(aω),

sλ`,m(aω) =
∞∑
n=0

fn(aω)n, (4.111)

where in order to express the dependence on s, l and m, we are denoting the separation
constant as sλlm. We also de�ne a useful function h(`) as

h(`) =
2(`2 −m2)(`2 − s2)2

(2`− 1)`3(2`+ 1)
.

Thus, the �rst seven coe�cients are the following

f0 = (`− s)(`+ s+ 1),

f1 = − 2ms2

`(`+ 1)
,

f2 = h(l + 1)− h(l)− 1,

f3 =
2h(l)ms2

(l − 1)l2(l + 1)
− 2h(l + 1)ms2

l(l + 1)2(l + 2)
,

f4 = m2s4

(
4h(`+ 1)

`2(`+ 1)4(`+ 2)2
− 4h(`)

(`− 1)2`4(`+ 1)2

)
− (`+ 2)h(`+ 1)h(`+ 2)

2(`+ 1)(2`+ 3)

+
h2(`+ 1)

2(`+ 1)
+
h(`)h(`+ 1)

2`2 + 2`
− h2(`)

2`
+

(`− 1)h(`− 1)h(`)

4`2 − 2
,

f5 = m3s6

(
8h(`)

`6(`+ 1)3(`− 1)3
− 8h(`+ 1)

`3(`+ 1)6(`+ 2)3

)
+

ms2h(`)

(
− h(`+ 1)(7`2 + 7`+ 4)

`3(`+ 2)(`+ 1)3(`− 1)
− h(`− 1)(3`− 4)

`3(`+ 1)(2`− 1)(`− 2)

)
+

ms2

(
(3`+ 7)h(`+ 1)h(`+ 2)

`(`+ 1)3(`+ 3)(2`+ 3)
− 3h2(`+ 1)

`(`+ 1)3(`+ 2)
+

3h2(`)

`3(`− 1)(`+ 1)

)
,
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f6 =
16m4s8

`4(`+ 1)4

(
h(`+ 1)

(`+ 1)4(`+ 2)4
− h(`)

`4(`− 1)4
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−
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`2(`+ 1)2

(
(3`2 + 14`+ 17)h(`+ 1)h(`+ 2)
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− h3(`)
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(`− 1)(7`− 3)h(`)− (`− 1)2h(`− 1)− `(`− 2)h(`− 2)

3

)
(4.112)

as it was explained, the last four terms in the parameter accessory were omitted in the
last section; however, these terms are in agreement with [67] - see [68] for a thorough
review. Again, to calculate the next terms in (4.111), we need to �nd more terms in
accessory parameter expansion (4.109a). Essentially, we have to consider more terms
in the con�uent CB of �rst kind expansion and contributions of n in the intermediate
channel. Also, in order to recover the asymptotics, we chose j = ` + s + 1 in (4.39).
Where the minimum eigenvalue of ` is |s| and the azimuthal momenta are constrained by
|m| ≤ ` [60].
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5 | Conclusion and Perspectives

This dissertation introduced an alternative way to calculate the explicit expansion of
the eigenvalue sλlm for the angular Teukolsky Master equation. That is derivated from
the Newmann-Penrose formalism in the study of perturbations in the Kerr black hole
metric where to �nd the expansion we had introduced: In the �rst chapter, conformal
�eld theory in two dimensions, as well as correlation functions between operators where an
explicit expression for the con�uent three-point function was obtained. Using partition
functions formalism from AGT correspondence, we express the conformal block of the
�rst kind. In the second chapter, we also introduced a general idea about deformations in
linear systems. The isomonodromic invariant τV related to isomonodromic deformations
in the linear system with two regular points and one irregular point, and the Schlesinger
equations for Painlevé V. Furthermore, the �rst and second chapters were linked by setting
the central charge in c=1 with the τV written in terms of con�uent CB of the �rst kind.
In the third chapter, we treated with connection problem in the angular TME, where
the connection problem was translated to two conditions on the τV -function, expressed
in terms of con�uent CB of the �rst kind. Lastly, using the two conditions we found the
�rst terms of the accessory parameter, which led to the �rst terms of the expansion of the
eigenvalue sλlm in power of aω.

Now, we have been working on a paper with these results and in the radial Teukolsky
Master equation that will lead to the study of quasinormal modes for gravitational, elec-
tromagnetic and scalar perturbations. Furthermore, the expansion of sλlm it is not the
only result, the accessory parameter expansion has the interpretation of derivative of the
classical conformal block, in the CFT point of view [69]. Such understanding will give
directions to understand the classical limit in the central charge, precisely c → ∞. We
also have been working in the accessory parameter expansion at in�nity, where in this
case the τV -function depends on the con�uent conformal block of the second kind. In
terms of perturbation in Kerr, the accessory parameter expansion at in�nity leads to the
expansion of sλlm in the high-frequency case.
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