
UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE CIÊNCIAS EXATAS E DA NATUREZA

DEPARTAMENTO DE FÍSICA
PROGRAMA DE PÓS-GRADUAÇÃO EM FÍSICA

GABRIEL LUZ ALMEIDA

ON SYMMETRIES OF EXACT SOLUTIONS

OF EINSTEIN FIELD EQUATIONS

Recife
2019



GABRIEL LUZ ALMEIDA

ON SYMMETRIES OF EXACT SOLUTIONS OF EINSTEIN FIELD
EQUATIONS

Dissertation presented to the graduation
program of the Physics Department of Uni-
versidade Federal de Pernambuco as part of
the duties to obtain the degree of Master of
Science in Physics.

Concentration area: Theoretical and
computational physics.

Supervisor: Prof. Dr. Carlos Alberto
Batista da Silva Filho.

Recife
2019



          

 

 

 

 
 

Catalogação na fonte
Bibliotecária Arabelly Ascoli CRB4-2068

A447o       Almeida, Gabriel Luz 
On symmetries of exact solutions of Einstein field equations  /

Gabriel Luz Almeida. – 2019.
81 f.

Orientador: Carlos Alberto Batista da Silva Filho 
Dissertação  (Mestrado) –  Universidade  Federal  de

Pernambuco. CCEN. Física. Recife, 2019.
Inclui referências.

1.  Simetrias.  2.  Integrabilidade.  3.  Teoria  de  Einstein-Yang-
Mills. 4. Soluções exatas. I. Silva Filho, Carlos Alberto Batista da
(orientador). II. Título.
    
530.1            CDD (22. ed.)                    UFPE-FQ 2019-41   



GABRIEL LUZ ALMEIDA

ON SYMMETRIES OF EXACT SOLUTIONS OF EINSTEIN FIELD
EQUATIONS

Dissertation presented to the graduation pro-
gram of the Physics Department of Universi-
dade Federal de Pernambuco as part of the
duties to obtain the degree of Master of Sci-
ence in Physics.

Accepted on: 27/06/2019.

EXAMINING BOARD:

Prof. Dr. Carlos Alberto Batista da Silva Filho
Supervisor

Universidade Federal de Pernambuco

Prof. Dr. Shahram Jalalzadeh
Internal Examiner

Universidade Federal de Pernambuco

Prof. Dr. Riccardo Sturani
External Examiner

International Institute of Physics - UFRN



Acknowledgments

I want to thank everyone who have helped me in any way during these years as a
physics student. I am specially thankful to my family, who have supported me along my
way from the undergraduate up to the achievement of the masters degree: my mother
Maria Helena, my father Givanildo and my sister Giliane.

I would like to thank the professors Leonardo Cabral, for lecturing the most exciting
undergraduate courses I had (Mathematical Physics 1 & 2), having become a role model
not only as a teacher, but also as a human being; Azadeh Mohammadi, for the vibrating
discussions about physics and always being available when I had doubts, specially during
the course of Quantum Field Theory; Bruno Cunha, for the inspirational philosophical
questions raised during the course of Quantum Theory, having also become a role model
for my career as a physicist; �nally, to all the other professors who have contributed to
my education in some way.

To all the friends who have been part of this journey, either in the classroom discus-
sions, relaxing conversations or hallways interactions. You have made the environment of
the physics department much more enjoyable.

I am deeply grateful to my supervisor Carlos Batista for always believing in my po-
tential and wishing me to succeed. I will always be glad for you have accepted me as a
scienti�c initiation student a few years back. Throughout these years, you have taught me
how to become a better student and a competent researcher, helping me think critically
and always knowing how to get the best out of me. I am thankful for all the advice, all
the insightful discussions and all the e�ort put towards my education. Wherever I go I
will carry your precious lessons with me.

I also want to thank the CNPq for the �nancial support, allowing me to continue
my studies in this magni�cent �eld that is physics and to grow in several ways, that
otherwise I wouldn't be able to. In fact, this master wouldn't be possible without its
incentive, regardless of the e�ort I could ever possibly put.

Lastly, but by no means least, my special thanks to Mariana, my girlfriend, for all
the unimaginable support and patience in the most di�cult times. You make my days
brighter.



Abstract

In this dissertation, symmetries are studied in the context of general relativity. Ini-
tially, we address the problem of separability of the Hamilton-Jacobi equation for the
geodesic Hamiltonian, a particular Hamiltonian function constructed from the metric of
the spacetime that gives rise to the geodesic equation. In this scenario, the existence of
classes of coordinate systems that separate the Hamilton-Jacobi equation, the so-called
separability structures, turns out to be intimately connected to the existence of symme-
tries. In fact, this study leads to the most general form taken by the metric tensor in
n dimensions containing m ≤ n rank-2 Killing tensors in involution with each other and
r = n − m commuting Killing vector �elds. The close relationship between the notion
of separability structures and the existence of symmetries is manifest in this framework.
In particular, we show that the existence of a separability structure enables the complete
integrability of the geodesic motion. Then, a study on symmetries from the point of view
of the action of continuous group on di�erential manifolds is conducted. A review on
groups, Lie groups and Lie algebras is provided, and a study on spaces admitting the
particular case of a separability structure with m = 2 is done under the light of these
tools. Finally, equipped with all this knowledge, starting with the most general four-
dimensional spacetime possessing two commuting Killing vectors and a nontrivial Killing
tensor, we analytically integrate Einstein-Yang-Mills equations for a completely arbitrary
gauge group. We assume that the gauge �eld inherits the symmetries of the background
and is aligned with the principal null directions of the spacetime. In particular, general-
izations of the Kerr-NUT-(A)dS spacetime containing nonabelian gauge �elds as source
of matter are obtained.

Keywords: Symmetries. Integrability. Einstein-Yang-Mills theory. Exact solutions. Lie groups.
Lie algebras.



Resumo

Nesta dissertação, simetrias são estudadas no contexto de relatividade geral. Inicial-
mente, tratamos do problema da separabilidade da equação de Hamilton-Jacobi para
o hamiltoniano geodésico, uma função hamiltoniana especí�ca, construída a partir da
métrica do espaço-tempo, que dá origem à equação geodésica. Nesse cenário, a existên-
cia de classes de sistemas de coordenadas que separam a equação de Hamilton-Jacobi,
as chamadas estruturas de separabilidade, estão intimamente conectadas à existência de
simetrias. De fato, esse estudo nos leva à forma mais geral adotada pelo tensor métrico
em n dimensões contendo m ≤ n tensores de Killing de rank 2 em involução entre si e
r = n − m campos vetoriais de Killing que comutam entre si. A relação íntima entre
a noção de estruturas de separabilidade com a existência de simetrias é evidente nesse
cenário. Em particular, mostramos que a existência de uma estrutura de separabilidade
permite a integrabilidade completa do movimento geodésico. Em seguida, um estudo de
simetrias do ponto de vista da ação de um grupo contínuo em variedades diferenciáveis
é conduzido. Uma revisão de grupos, grupos de Lie e álgebras de Lie é fornecido, e um
estudo sobre espaços admitindo uma estrutura de separabilidade com m = 2 é feito sob
luz desta abordagem. Então, munidos de todo esse conhecimento, partindo do espaço-
tempo quadridimensional mais geral possuindo dois vetores de Killing que comutam entre
si e um tensor de Killing não-trivial, integramos analiticamente as equações de Einstein-
Yang-Mills para um grupo de calibre completamente arbitrário. Consideramos que os
campos de calibre herdam as simetrias do espaço-tempo de fundo e estão alinhados com
as direções principais nulas do espaço-tempo. Em particular, generalizações da solução
de Kerr-NUT-(A)dS contendo campos de calibre não-abelianos como fontes de matéria
são obtidas.

Palavras-chave: Simetrias. Integrabilidade. Teoria de Einstein-Yang-Mills. Soluções exatas.
Grupos de Lie. Álgebras de Lie.



Contents

1 Introduction 9

2 The Theory of Separability of the Hamilton-Jacobi Equation 11
2.1 Symplectic Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Lie Algebra of Poisson Brackets . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 First Integrals and Killing Tensors . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 The Hamilton-Jacobi Equation and Separation of Variables . . . . . . . . . . 18
2.5 Orthogonal Separable Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6 Classes of Separable Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.7 The Normal Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7.1 Normal Form, Killing Tensors and Killing Vectors . . . . . . . . . . . . . . 23
2.8 Intrinsic Characterization of Separability Structures of Type Sr . . . . . . . 24
2.9 The Canonical Form of Separability Structures of Type Sn−2 . . . . . . . . . 26
2.10 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.10.1 Separability Structures in Spacetimes with Spherical Symmetry . . . . . . . . 28
2.10.2 Geodesics on the Schwarzschild Spacetime . . . . . . . . . . . . . . . . . . . 30

3 Group Theory and Symmetries 32
3.1 Introduction to Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.1 Physically Important Examples of Groups . . . . . . . . . . . . . . . . . . . . 34
3.1.2 Cosets and Quotient Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Lie Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Lie Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.1 Constructing the Lie Algebra for the SU(2) Group . . . . . . . . . . . . . . . 39
3.3.2 The Exponential Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4 Transformation Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5 Isometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.5.1 Conserved Quantities Along the Geodesic Motion . . . . . . . . . . . . . . . 47
3.6 Maximally Symmetric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.7 Hidden Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.8 Group Action on Spaces with a Separability Structure of Type Sn−2 . . . . . 51



4 A Class of Integrable Metrics Coupled to Gauge Fields 53
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Geometric Characterization of Spacetimes . . . . . . . . . . . . . . . . . . . 55
4.2.1 Petrov Classi�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.2 Optical Scalars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.3 Frobenius Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.4 The Goldberg-Sachs Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3 The Natural Null Tetrad Frame . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4 Reparameterizing the Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5 Aligning the Gauge Fields with the PNDs . . . . . . . . . . . . . . . . . . . 62
4.6 Solving the Abelian Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.7 General Gauge Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.7.1 Group SU(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.7.2 The Lorentz Group SO(3, 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.8 Coordinate Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Conclusion 75

References 77



9

1 Introduction

In 1915, Albert Einstein proposed a new theory of gravitation, the well-known theory
of general relativity. Interestingly, he did not believe, at �rst, that exact solutions to
his �eld equation could be attained, due to the highly nonlinear character present in this
tensor equation, that comprises a total of ten coupled partial di�erential equations. To his
surprise, however, it was not long after, just a couple of months apart from the publication
of his paper, that Karl Schwarzschild published a very simple exact solution, representing
the exterior gravitational �eld of a spherical body. The success in the attainment of this
exact solution was possible thanks to the use of symmetries. Since then, symmetries
have played a prominent role in the search for exact solutions in the context of general
relativity. The use of symmetries is not restricted to this e�ect though, rather they have
also been used as a mechanism to aid in the integration of the geodesic equation. Indeed,
symmetries are long known to be connected to the notion of integrability in various �elds of
physics. In general relativity, symmetries are also important to describe the �nal stage of
the gravitational collapse, since this is expected to result in an axisymmetric gravitational
system presenting invariance under time translation. In face of this, the purpose of the
present work is to investigate symmetries, showing the existing connection with the notion
of integrability.

In this dissertation, we study symmetries �rst by addressing the problem of the inte-
grability of the geodesic equation. In this scenario, symmetries are manifest in spaces ad-
mitting a coordinate system that separates the Hamilton-Jacobi equation for the geodesic
Hamiltonian, a particular Hamiltonian function constructed from the metric of the space-
time that gives rise to the geodesic equation. We also study symmetries from the point
of view of the group action on di�erentiable manifolds. The relevance of such investi-
gations is con�rmed through the attainment of exact solutions in the framework of the
Einstein-Yang-Mills theory, having symmetries as starting point.

The outline of the presentation is the following: in chapter 2 we present the theory of
separability of the Hamilton-Jacobi equation, aiming at investigating the particular case
where the Hamiltonian function is the one build from the metric, de�ned on the cotangent
bundle of Riemannian manifolds. The concept of separability structures is then introduced
and shown to be connected to the existence of symmetries and to the integrability of the
geodesic equation. Practical applications of all the key concepts introduced along the
chapter are then worked out at the end of the chapter through examples drawn from
general relativity.

In chapter 3, in order to gain a deeper understanding on the geometric aspects behind
the notion of symmetries, we give formal de�nitions of groups, Lie groups and Lie algebras.
The invariant vector �elds de�ning a Lie algebra are shown to play a fundamental role in
the action of Lie groups on di�erentiable manifolds. The particular case where this group
action keeps the metric tensor invariant is investigated, showing that its in�nitesimal
generators are essential in the integration of the geodesic motion. The chapter is �nished
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with a study on the symmetries of the general spaces presenting a separability structure
of type S2.

In chapter 4, starting from the most general n-dimensional spaces endowed with (n−2)
commuting Killing vector �elds and a nontrivial rank-2 Killing tensor, we intend to obtain
exact solutions for the Einstein-Yang-Mills theory in four dimensions. We further assume
that these spaces possess a naturally de�ned null frame and that the gauge �elds are sub-
ject to the symmetries of the underlying geometry. In order to attain this integration, a
review on the Petrov classi�cation, optical scalars, Frobenius theorem and the Goldberg-
Sachs theorem is provided. We then solve completely the problem proposed, showing
explicit examples of nontrivial solutions to this problem. Finally, coordinate transforma-
tions and rede�nition of the arbitrary parameters de�ning the general solution for the
case tackled explicitly in this dissertation is performed, the solutions being identi�ed as
generalizations of the Kerr-NUT-(A)dS spaces. In particular, it is worth mentioning that
the results, in special the exact solutions found in this chapter, are original.

Finally, in chapter 5, we summarize the main results obtained along this dissertation,
and then we discuss the perspectives for future investigations.
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2 The Theory of Separability of the Ha-

milton-Jacobi Equation

The problem of integrability of the geodesic equation arises naturally in the study of sep-
arability of the Hamilton-Jacobi equation for a particular Hamiltonian function called the
geodesic Hamiltonian, de�ned on the cotangent bundle of Riemannian manifolds. With
this in mind, in this chapter we shall introduce the theory of separability of the Hamilton-
Jacobi equation in Riemannian geometry, showing the close relationship between the
notion of separability structures and the existence of su�ciently many symmetries to
completely integrate the geodesic equation. In fact, the complete integrability of the
geodesic equation will always hold for spaces admitting a separability structure. Bear-
ing this in mind, the �rst three sections of this chapter cover the basics of symplectic
manifolds, showing how the notion of Hamiltonian mechanics emerges in the framework
of di�erential geometry, followed by sections covering the theory of separability itself.
Finally, the chapter is �nished with examples drawn from Einstein's theory of general
relativity.

2.1 Symplectic Manifolds

The most important structure underlying the theory of separability of the Hamilton-
Jacobi equation is the notion of symplectic manifold. For this reason, we give here the
basic de�nition and work out some important properties of such structure.

Let Q be a di�erentiable manifold of dimension n and (qi) a local coordinate system
de�ned on it. It is well known that the cotangent bundle of Q, denoted by T ∗Q, is
also a di�erentiable manifold, of dimension 2n. The coordinate system (qi) gives rise
to a natural local chart (qi, pi) on T ∗Q, where the pi spanning the cotangent space of
Q at qi are the components or arbitrary 1-forms with respect to the basis (dqi). In the
context of Hamiltonian dynamics, the qi are interpreted as the position coordinates, while
the pi are the momentum coordinates. These coordinates can be used to de�ne a natural
structure on T ∗Q called the canonical symplectic structure (also called the canonical
symplectic form), given by

ω =
n∑
i=1

dpi ∧ dqi . (2.1)

The natural character of this object originates as a consequence of the fact that any
coordinate transformation on the qi gives rise to the same form (2.1), since the momenta
1-forms dpi transform inversely to the position 1-forms dqi.

In general terms, a symplectic structure ω is de�ned to be any nondegenerate1 and

1By a nondegenerate 2-form ω, we mean any 2-form �eld satisfying the following: for all vector �elds



12

closed di�erential 2-form �eld de�ned on an even-dimensional manifold M2n. The respec-
tive manifold (M2n,ω) is then called symplectic manifold. Thus, any di�erentiable
manifold Q gives rise naturally to a symplectic manifold consisting of its cotangent bun-
dle T ∗Q together with the symplectic structure ω de�ned by equation (2.1). A symplectic
manifold constructed this way is denoted by (T ∗Q,ω).

Symplectic forms ω can be used to map vector �elds ξ to 1-forms ωξ by means of the
relation ωξ(η) = ω(η, ξ), which must be valid for all vectors η. In fact, this mapping is
an isomorphism between the tangent and cotangent spaces of the corresponding sympletic
manifold (M2n,ω). Thus, denoting by ω−1 the inverse mapping ω−1 : T ∗M2n → TM2n,
to every function H de�ned on (M2n,ω) we can associate a vector �eld ω−1(dH). Vector
�elds constructed in this way are called Hamiltonian vector �elds, the corresponding
functions being called Hamiltonian functions. This nomenclature is not merely co-
incidental and can be understood from the following: given local coordinates (qi, pi) on
the sympletic manifold (T ∗Q,ω), the 1-form �eld dH corresponding to the Hamiltonian
function H(qi, pi) reads

dH =
n∑
i=1

(
∂H

∂qi
dqi +

∂H

∂pi
dpi

)
.

Then, using the mapping ω−1 de�ned from the canonical symplectic form (2.1), this
1-form �eld is taken to the following Hamiltonian vector �eld:

ω−1(dH) =
n∑
i=1

(
∂H

∂pi

∂

∂qi
− ∂H

∂qi
∂

∂pi

)
. (2.2)

In particular, the integral curves of this vector �eld, which are given by the equation
(q̇i, ṗi) = ω−1(dH), reduce to the following set of equations:

q̇i =
∂H

∂pi
and ṗi = −∂H

∂qi
, (2.3)

where the dots above the coordinates qi and pi represent derivatives with respect to a
parameter τ that parameterizes the curve. We recognize equations (2.3) as being the
Hamilton's canonical equations. From this, we see the close relationship existing
between symplectic manifolds and Hamiltonian dynamics.

2.2 Lie Algebra of Poisson Brackets

A recurring structure appearing in the study of Hamiltonian dynamics is the Poisson
bracket. In this section, we show how this important concept arises in the context of
di�erential geometry, and show, in particular, how it is connected to the well-known Lie
bracket of vector �elds. As we shall see, the set of all Hamiltonian functions equipped
with the Poisson bracket operation forms a Lie algebra.

Remember, a Lie algebra is de�ned to be a vector space closed under a binary opera-
tion [ , ], which is bilinear, antisymmetric and satis�es the Jacobi identity. In symplectic
manifolds, a simple and important example of Lie algebra is provided by the set of all
Hamiltonian vector �elds, with the bilinear operation being the usual Lie bracket of vec-
tor �elds. This case is easily proven to be a Lie algebra since the Lie bracket carries all
the necessary properties of the binary operation of a Lie algebra, and, in addition, any

ξ 6= 0, there exists another vector η such that ω(ξ,η) 6= 0 at all points of M2n.
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linear combination of Hamiltonian vector �elds, say ω−1(dG) and ω−1(dH), is also a
Hamiltonian vector �eld: aω−1(dG) + bω−1(dH) = ω−1(d(aG+ bH)), where a and b are
constant numbers, while G and H are functions on the cotangent bundle. The closure of
this set under the Lie bracket will be proved in this section. In fact, this Lie algebra is a
subalgebra of the larger Lie algebra of all vector �elds de�ned on the same manifold.

Another important case of Lie algebra is provided by the vector space of Hamiltonian
functions together with the Poisson bracket. To understand this better, consider a sym-
plectic manifold (M2n,ω), where M2n is a di�erentiable manifold of dimension 2n and
ω is an arbitrary symplectic form de�ned on it. Then, to each Hamiltonian function H
de�ned on M2n, we can associate a one-parameter group of di�eomorphisms gτH de�ned
to be the phase �ow of the Hamiltonian vector �eld ω−1(dH), which means that

d

dτ

∣∣∣∣
τ=0

gτH(x) = ω−1(dH(x)) , for all x of M2n . (2.4)

An interesting property of such Hamiltonian phase �ows is that they preserve the sym-
pletic form. Indeed, this result can easily be proved in local coordinates for the canonical
symplectic form (2.1) by making use of the Lie derivative.

The Poisson bracket {F,H} of two Hamiltonian functions F and H is then de�ned
to be the derivative of F in the direction of the phase �ow of H:

{F,H}(x) =
d

dτ

∣∣∣∣
τ=0

F (gτH(x)) . (2.5)

Notice that the Poisson bracket of any two functions de�ned on M2n is again a function
on the same manifold. It follows directly from (2.4) and (2.5) that

{F,H}(x) =
d

dτ

∣∣∣∣
τ=0

F (gτH(x)) = dF (ω−1(dH(x))) . (2.6)

In particular, using local coordinates on the right-hand side of this expression, it is easy
to verify that the Poisson bracket is antisymmetric {F,G} = −{G,F} for any two Hamil-
tonian functions F and G. Moreover, since the mapping ω−1 and the exterior derivative
of functions are linear operators, the Poisson bracket is bilinear:

{F, aG+ bH} = a{F,G}+ b{F,H} , (2.7)

for any constants a and b and Hamiltonian functions F , G and H.
Consider, for instance, the symplectic manifold (T ∗Q,ω) with canonical symplectic

structure ω, as de�ned naturally by the n-dimensional manifold Q with local coordinates
(qi). In this case, the Hamiltonian vector �eld ω−1(dH) is given by equation (2.2) and,
consequently, using expression (2.6), the Poisson bracket of the Hamiltonian functions F
and H takes the well-known form:

{F,H} =
n∑
i=1

(
∂F

∂qi
∂H

∂pi
− ∂F

∂pi

∂H

∂qi

)
. (2.8)

Now, in order to see the relation between the Poisson bracket of two functions F
and H and the Lie bracket of the corresponding Hamiltonian vector �elds ω−1(dF ) and
ω−1(dH), recall that the Lie derivative of a function f in the direction of the vector �eld



14

ξ, Lξf , is simply the derivative of f in the direction of the �ow of ξ. Thus, given two
Hamiltonian functions F and G, we have from de�nition (2.5) that

L[ω−1(dH)]G =
d

dτ

∣∣∣∣
τ=0

G(gτH) = {G,H} . (2.9)

Besides this, because the Lie derivative obeys the Leibniz rule of derivation and Hamil-
tonian phase �ows preserve the symplectic form, the following holds:

L[ω−1(dH)](ω
−1(dG)) = ω−1

(
L[ω−1(dH)]dG

)
. (2.10)

Recall also that the Lie bracket of two vector �elds ξ and η is related to the Lie derivative
by [ξ,η] = Lξη. Consequently, using (2.10), the Lie bracket of the Hamiltonian vector
�elds ω−1(dF ) and ω−1(dH) results in the following relation:[

ω−1(dH),ω−1(dG)
]

= L[ω−1(dH)](ω
−1(dG)) = ω−1

(
L[ω−1(dH)]dG

)
. (2.11)

Finally, from the fact that the exterior derivative commutes with the Lie derivative of
di�erential forms, combining relations (2.9) and (2.11), we are lead to[

ω−1(dH),ω−1(dG)
]

= −ω−1(d{H,G}) , (2.12)

where the antisymmetry of the Poisson bracket was used. This proves the sought relation-
ship: the Hamiltonian vector �eld resulting from the Poisson bracket of two Hamiltonian
functions H and G is equal, up to a minus sign, to the Lie bracket of the corresponding
Hamiltonian vector �elds ω−1(dH) and ω−1(dG). For this reason, it is customary, in this
context, to call the negative of the Lie Bracket the Poisson bracket of vector �elds. In
particular, once we know that the Jacobi identity holds for any three vector �elds under
the Lie bracket operation, it follows from (2.12) that it also holds for the Poisson bracket
of any three Hamiltonian functions, up to a closed 1-form. In special, using the canonical
Poisson bracket (2.8), it is easy to verify that the Jacobi identity is identically satis�ed, a
feature that is actually common to any notion of Poisson brackets. Namely, for any three
Hamiltonian functions F , G and H de�ned on our sympectic manifold, we have:

{F, {G,H}}+ {H, {F,G}}+ {G, {H,F}} = 0 . (2.13)

In conclusion, since the Poisson bracket is a binary and closed operation on the space of
Hamiltonian functions de�ned on symplectic manifolds, being, in addition, antisymmetric,
bilinear and satisfying the Jacobi identity (2.13), it endows the space of Hamiltonian
functions with a structure of Lie algebra.

2.3 First Integrals and Killing Tensors

It is widely known that the concept of Lie algebra is intimately connected to the notion
of symmetry. In fact, in the framework of Hamiltonian dynamics, the Poisson bracket
appears naturally in conserved quantities along the Hamiltonian �ow. To see this, con-
sider two Hamiltonian functions F and H de�ned on the canonical symplectic manifold
(T ∗Q,ω), where ω is the canonical symplectic structure (2.1). Moreover, assume that
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H describes a particular physical system and that F is nonconstant. Then, the time
evolution of the function F (qi, pi) along the Hamiltonian �ow of H is dictated by

dF

dτ
=

n∑
i=1

(
∂F

∂qi
q̇i +

∂F

∂pi
ṗi
)

=
n∑
i=1

(
∂F

∂qi
∂H

∂pi
− ∂F

∂pi

∂H

∂qi

)
= {F,H} , (2.14)

where the Hamilton's canonical equations (2.3) have been used in the second equality.
It is clear from this that if the Poisson bracket on the right-hand side of this expression
vanishes, then F is a conserved quantity along the Hamiltonian phase �ow of H. Con-
sequently, due to Noether's theorem, there exists an underlying continuous symmetry in
the corresponding physical system described by H.

For the general case where (M2n,ω) is a 2n-dimensional symplectic manifold with
arbitrary symplectic structure ω de�ned on it, the Hamiltonian function F is said to be
a �rst integral (or constant of the motion) with respect to the Hamiltonian function
H if the Poisson bracket of these two quantities vanishes,

{F,H} = 0 . (2.15)

Any two functions F and H satisfying (2.15) are said to be in involution. For this
general case, the equivalent expression for equation (2.14) is given by de�nition (2.5), and
the same physical interpretation follows: a �rst integral is a function of q and p that is
conserved along the Hamiltonian phase �ow. Notice that, from the property (2.7), any
linear combination of �rst integrals is also a �rst integral and, from the Jacobi identity
(2.13), the Poisson bracket of any two �rst integrals gives rise also to a �rst integral.
Thus, the set of �rst integrals is easily seen to form a Lie subalgebra of the larger Lie
algebra of Hamiltonian functions, under the Poisson bracket operation.

For the canonical symplectic manifold (T ∗Q,ω) with natural coordinates (qi, pi), an
important class of Hamiltonian functions is provided by the set of all symmetric tensors
on the manifold base Q, and de�ned in the following way. To every rank-r symmetric
tensor K of this set, we assign a Hamiltonian function EK through

EK =
1

r!

n∑
i1=1

. . .
n∑

ir=1

Ki1...ir(qi)pi1 . . . pir . (2.16)

Functions de�ned this way can be used to establish a notion of bracket for symmetric
tensors that will turn out to be of great importance in the theory of separability of the
Hamilton-Jacobi. In fact, de�ning functions EK1 and EK2 according to (2.16) corre-
sponding to the symmetric tensors K1, of rank-r, and K2 of, rank-s, respectively, it is
not di�cult to show that their Poisson bracket can be written as

{EK1 , EK2} =−
n∑
i1

. . .

n∑
ir+s−1

(
1

r!s!

)
pi1 . . . pir+s−1×{

n∑
j=1

[
rK

j(i1...ir−1

1 ∂jK
ir...ir+s−1)
2 − sKj(i1...is−1

2 ∂jK
is...ir+s−1)
1

]}
,

where the ∂j means derivation with respect to the coordinate qj. The quantity enclosed by
the curly brackets is known as the Schouten-Nijenhuis (SN) bracket of the symmetric
tensors K1 and K2, and denoted by [K1,K2]:

[K1,K2]i1...ir+s−1 =
n∑
j=1

[
rK

j(i1...ir−1

1 ∂jK
ir...ir+s−1)
2 − sKj(i1...is−1

2 ∂jK
is...ir+s−1)
1

]
. (2.17)
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We immediately notice from this formula that the SN bracket of the two symmetric tensors
K1 and K2, respectively of rank r and s, resulted in another symmetric tensor, but this
time of rank-(r + s − 1). In the case where [K1,K2] = 0, K1 and K2 are said to be in
involution, and this is equivalent to {EK1 , EK2} = 0. Further important properties of the
Schouten-Nijenhius bracket are listed below, [1, 2]:

(i) for manifolds Q endowed with a symmetric (torsion-free) connection∇, the replace-
ment of the ∂i appearing in (2.17) by ∇i leaves the bracket unchanged;

(ii) for vector �elds, the SN bracket coincides with the Lie bracket; Similarly, the SN
bracket of a vector �eld X with a rank-2 symmetric tensor K is equal to the Lie
derivative of K in the direction of the �ow of X: [X,K] = LXK;

(iii) for symmetric tensors K1 and K2 of same order, the SN bracket becomes antisym-
metric: [K1,K2] = −[K2,K1]. In particular, [K1,K1] = 0;

(iv) for any three symmetric tensors K1, K2 and K3, the following property holds:
[K1 �K2,K3] = [K1,K3]�K2 +K1 � [K2,K3], where the symbol � represents
the symmetrized tensor product;

(v) for any three symmetric tensorsK1,K2 andK3, the Jacobi identity [K1, [K2,K3]]+
[K3, [K1,K2]] + [K2, [K3,K1]] = 0 holds.

In the last two properties, (iv) and (v), the tensors K1, K2 and K3 are of arbitrary and
possibly di�erent rank.

A case of particular importance occur when Q is a Riemannian manifold2 , with
metric tensor denoted by g: (Q, g). In this case, being the metric a symmetric tensor,
it follows that relation (2.16) can be used to de�ne a privileged Hamiltonian function on
the symplectic manifold (T ∗Q,ω) called the geodesic Hamiltonian function:

H = 1
2

n∑
i=1

n∑
j=1

gijpipj , (2.18)

where gij are the components of the metric tensor g in the coordinate system (qi). In
particular, considering a symmetric connection ∇ compatible with the metric g, namely
∇Xg = 0 for all vector �elds X (or, equivalently, ∇kgij = 0), we have that the Poisson
bracket of the function EK associated to a rank-r symmetric tensor K with the geodesic
Hamiltonian given by (2.18) results in

{EK , H} =
n∑

i1=1

. . .
n∑

ir+1=1

(
1

r!

)
∇(i1Ki2...ir+1)pi1 . . . pir+1 , (2.19)

where we have made use of the property (i) above to replace ∂j by ∇j. Therefore, for the
case where the quantity EK is a �rst integral with respect to the geodesic Hamiltonian
function H, {EK , H} = 0, this equation immediately leads to

∇(i1Ki2...ir+1) = 0 . (2.20)

2The rigorous de�nition of a Riemannian manifold is of a di�erentiable manifold Q endowed with
a positive-de�nite metric tensor g. Nevertheless, here we use this nomenclature in the broader sense
encompassing metric tensors of arbitrary signature.
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In its turn, this equation amounts to saying that the SN bracket of K and g vanishes:

{EK , H} = 0 ⇐⇒ [K, g] = 0 . (2.21)

We recognize equation (2.20) as the de�ning equation for Killing Tensors. Thus, in the
context of Hamiltonian dynamics, Killing tensorsK arise as homogeneous polynomials in
momenta de�ned on the cotangent bundle of a Riemannian manifold (Q, g), which are in
involution with the corresponding geodesic Hamiltonian. Equivalently, Killing tensors are
symmetric tensors in involution with the metric with respect to the SN bracket, (2.21). In
particular, from the property (ii), we immediate see that Killing vectors are the special
case where K = X is a vector in involution with the metric g: [X, g] = 0.

Besides providing a better understanding on Killing tensors, the importance of Hamil-
tonian functions of the type (2.18) in Riemannian geometry resides in the fact that the
�ow of the corresponding Hamiltonian vector �eld ω−1(dH), which is a vector �eld in
T ∗Q, is projected onto the geodesics of the Riemannian manifold (Q, g). This projection
is done by the mapping πQ : T ∗Q → Q that, in natural coordinates (qi, pi), takes points
(qi, pi) on T ∗Q to points qi on the manifold base Q. To see this, remember that the
integral curves of the Hamiltonian vector �eld ω−1(dH) on the cotangent bundle T ∗Q
are dictated by the Hamilton's equations (2.3). Thus, considering H to be the geodesic
Hamiltonian (2.18), we have:

q̇i =
∂H

∂pi
=

n∑
j=1

gijpj and ṗi = −∂H
∂qi

= −1
2

n∑
j=1

n∑
k=1

(∂ig
jk)pjpk . (2.22)

Notice that the �rst of these equations is equivalent to

pi =
n∑
j=1

gij q̇
j .

Hence, we see that both the pi and ṗi can be written in terms of the coordinates qi and
q̇i, along with the metric components. Thus, di�erentiating the �rst of the equations in
(2.22) with respect to the parameter τ , and using the above relations for pi and ṗi, after
some simple manipulations we arrive at the following equation:

d2qi

dτ 2
+

n∑
k=1

n∑
l=1

[
1
2

n∑
j=1

gij (∂kglj + ∂lgkj − ∂jglk)

](
dqk

dτ

)(
dql

dτ

)
= 0 .

We immediately recognize the quantity inside the square brackets as being the Christof-
fel symbols Γikl, showing therefore that the integral curves of Hamiltonian vector �elds
associated to the geodesic Hamiltonian projected on the manifold base Q are indeed the
geodesics of (Q, g). Moreover, we learn that τ is an a�ne parameter since the coordinates
qi satisfy the geodesic equation

d2qi

dτ 2
+

n∑
k=1

n∑
l=1

Γikl

(
dqk

dτ

)(
dql

dτ

)
= 0 .

From this result, it is clear that �rst integrals relative to geodesic Hamiltonians are quan-
tities that are conserved along the geodesic motion on (Q, g).
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2.4 The Hamilton-Jacobi Equation and Separation of Variables

It is well known from classical mechanics that the method of Hamilton-Jacobi provides
an interesting technique to �nd general solutions of the Hamilton's equation. In general,
however, this method is very complicated and can only be successfully applied when
the Hamilton-Jacobi equation is separable, in which case this method becomes a useful
computational tool. In this section we outline the main points concerning this method
and make the bridge to di�erential geometry.

Considering local coordinates (qi, pi) on the cotangent bundle T ∗Q of our usual n-
dimensional di�erentiable manifold Q, Hamiltonian functions H(qi, pi) give rise to the
following partial di�erential equation known as the Hamilton-Jacobi equation:

H

(
qi,

∂W

∂qi

)
= h , (2.23)

where h is a constant usually called the energy. A complete integral of this equation
is a solution W (qi, ai) depending on n real parameters ai. These constants are such that
we can always choose an = h, and W is such that the n × n matrix with components
given by ∂2W/∂qi∂aj is invertible everywhere. Namely, det(∂2W/∂qi∂aj) 6= 0. Once a
complete integralW (qi, ai) for a Hamiltonian H is known, the solutions for the Hamilton's
canonical equations are determined by the following equations:

bi +
∂W

∂ai
= δinτ and pi =

∂W

∂qi
, for i = 1, . . . , n , (2.24)

with an = h, the bi being n further constants, and τ being the time parameter. Then,
we can solve this system of 2n equations for the components qi and pi, to be expressed
in terms of the time parameter τ and the 2n parameters ai and bi, with the latter being
determined by initial conditions. As anticipated at the beginning of this section, the most
relevant cases in which this method can be successfully applied are the ones in which the
complete integral W (qi, ai) can be split into n additive terms, each term depending only
on one of the variables qi:

W (qi, ai) = W1(q
1, ai) +W2(q

2, ai) + . . .+Wn(qn, ai) . (2.25)

In general, each of the functions Wi appearing in (2.25) depend on the n parameters
ai. In this case the Hamilton-Jacobi equation (2.23) becomes also separable

Hi

(
qi,

dWi

dqi
; a1, . . . , an

)
= ai , for i = 1, . . . , n ,

as can be seen from direct derivation of (2.23) with respect to qj, and, hence, each of the
functions Wi can always be solved by quadrature. Thus, the Hamilton-Jacobi equation, a
partial di�erential equation in the n variables qi, becomes a set of n �rst-order ordinary
di�erential equations, each one for each of the variables qi, which always has solution.
Moreover, for a given Hamiltonian function H, a coordinate system (qi) de�ned on some
neighborhood of the base manifold Q is said to be a separable coordinate system if
it allows the existence of a separable complete integral of the form (2.25).

In reference [3], Levi-Civita provides a condition for the existence of a complete integral
of the form (2.25) for the Hamilton-Jacobi equation with Hamiltonian given by H(qi, pi).
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Denoting by ∂i and ∂i the derivatives ∂/∂qi and ∂/∂pi, respectively, these conditions are
given by the following set of n(n− 1)/2 equations3:

∂iH∂jH∂i∂jH + ∂iH∂jH∂
i∂jH − ∂iH∂jH∂i∂jH − ∂jH∂iH∂j∂iH = 0 , (2.26)

for i 6= j. For Hamiltonians of type (2.18), the Hamilton-Jacobi equation becomes

n∑
i=1

n∑
j=1

gij∂iW∂jW = 2h ,

and the above conditions, called the Levi-Civita conditions, boil down to∑
hkrs

(
girgjs∂i∂jg

hk + 1
2
gij∂ig

hk∂jg
rs − gis∂igjh∂jgkr − gjs∂jgih∂igkr

)
phpkprps=0 , (2.27)

where again the indices i and j must be di�erent from each other.
The geometric importance in the separability of the Hamilton-Jacobi equation for

geodesic Hamiltonians lies in the fact that it ensures the complete integrability of the
geodesic motion. This is because, as we have seen in the previous section, the solutions
of the Hamilton's canonical equations (and, hence, the Hamilton-Jacobi equation) for
this type of Hamiltonians are the geodesics of the corresponding space. Thus, since
separability of the Hamilton-Jacobi equation implies its complete integrability, then we
are always given the geodesic motion in the case we have a separable Hamilton-Jacobi
equation for the geodesic Hamiltonian function.

2.5 Orthogonal Separable Systems

In this section we consider the simpler and more restrictive case where the separable
coordinate system (qi) respective to the geodesic Hamiltonian function (2.18) is such that
the components of the inverse metric gij are diagonal on it. Namely, gij = 0 for i 6= j.
In this case, the coordinate system is called orthogonal separable system, and the
geodesic Hamiltonian takes the simpler form

H = 1
2

n∑
i=1

giip2i ,

and the separability conditions (2.27) reduce to the following set of equations:

giigjj∂i∂jg
hh − gii∂igjj∂jghh − gjj∂jgii∂ighh = 0 , for i 6= j . (2.28)

In the case of orthogonal separability, the most general form allowed for the compo-
nents gii is given by gii = φ(n)

i, where φ(i)
j are the components of the inverse of a n× n

Stäckel matrix [φi
(j)]. A Stäckel matrix [φi

(j)] is de�ned to be a regular matrix such that
the components of its ith row are functions only of the coordinate qi: φi(j) = φi

(j)(qi).
Thus, the components of the inverse metric correspond to the last row of the inverse

3In order to avoid confusion, throughout this chapter we do not use Einstein summation convention.
Instead, we use the summation symbol

∑
explicitly, as occurrence of equations like (2.26) are frequent

in the theory of separability of the Hamilton-Jacobi equation.
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Stäckel matrix [φ(i)
j]. Indeed, in this case, the Hamilton-Jacobi equation is given simply

by

1
2

n∑
i=1

gii(∂iWi)
2 = h .

Then, di�erentiating this equation with respect to aj and de�ning

φi
(j) =

∂Wi

∂qi
∂2Wi

∂aj∂qi
and cj =

∂h

∂aj
,

noticing that the φi(j) are functions only of qi, we are lead to

n∑
i=1

giiφi
(j) = cj ⇒ gii =

n∑
i=1

cjφ(j)
i .

Hence, since we can always choose an = h, without loss of generality, we obtain the
desired result. The other n − 1 rows can be used to build rank-2 symmetric tensors Ki

(also diagonal in the coordinates (qi)), with components given by (Ki)
jj = φ(i)

j. In this
case, the inverse metric is recovered if we set i = n. In fact, these quantities are Killing
tensors in involution, as the corresponding functions EKi , de�ned by (2.16), commute
with the Hamiltonian H = EKn , and commute also with each other. To prove this, notice
that the de�ning characteristic of Stäckel matrices can be formulated as ∂iφk(l) = δik∂iφi

(l).
This equation, in turn, is equivalent to δih∂iφk

(l) = δik∂iφh
(l). Then, multiplying this latter

equation by the expression φ(l)
jφ(m)

hφ(p)
k, followed by summation in the indices l, h and

k, we arrive at the following important relations valid for Stäckel matrices:

φ(m)
i∂iφ(p)

j − φ(p)
i∂iφ(m)

j = 0 . (2.29)

On the other hand, a direct calculation of the Poisson bracket of the quantities EKm and
EKp gives the following result:

{EKm , EKp} = 1
2

n∑
i=1

n∑
j=1

[
φ(m)

i∂iφ(p)
j − φ(p)

i∂iφ(m)
j
]
pip

2
j = 0 ,

where the last equality holds as a consequence of (2.29), proving, therefore, that the
tensors Ki are in involution with each other. In particular, since EKn = H, the functions
EKi are �rst integrals quadratic in the momenta, con�rming that, indeed, the tensors Ki

are rank-2 Killing tensors.

2.6 Classes of Separable Systems

In the theory of separability of the Hamilton-Jacobi equation, a very important concept
that arises is that of equivalence of separable coordinate systems. This is because, in
general, a coordinate transformation does not preserve the separability property of the
Hamilton-Jacobi equation. In the case it does, the two separable coordinate systems
in question might lead to two di�erent complete integrals. Accordingly, two separable
coordinate systems (qi) and (q′i) for the same Hamiltonian function H and de�ned on
the same neighborhood on Q are said to be equivalent if they give rise to the same
complete integral. In other words, these two coordinate systems are equivalent if the
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complete integral of the Hamilton-Jacobi equation with Hamiltonian H represent the
same n-parameter families of real functions on the manifold Q. The simplest scenario
where this is the case is provided by a separated transformation: q′i = q′i(qi). In this
case both systems give rise to the same integral since they generate the same coordinate
hypersurfaces.

For separable systems, a coordinate qi for which the function ∂iH/∂
iH is linear in

the momenta is called �rst class coordinate, being dubbed second class coordinate
otherwise. A coordinate which makes ∂iH = 0 is also considered to be of �rst class and
is called, in addition, ignorable (or cyclic). At this point it is convenient to denote by
Latin letters (a, b, c, . . .) the indices corresponding to the m ≤ n second class coordinates,
and by Greek letters (α, β, γ, . . .) the r = n−m coordinates of the �rst class, including
ignorable coordinates.

The following important results connect the de�nitions of �rst and second class coor-
dinates with the notion of equivalent separable coordinate systems. For the proofs, see
for instance [4]:

(i) the number of �rst class coordinates (and hence, the number of second class coor-
dinates) are equal for any two equivalent separable coordinate systems;

(ii) for every separable coordinate system there exists a family of equivalent separable
systems where all the �rst class coordinates are ignorable.

These two results are general and hold irrespective of the kind of Hamiltonian consid-
ered. The following results, on the other hand, are only true, in general, for geodesic
Hamiltonian functions:

(iii) the second class coordinates of two equivalent separable coordinate systems are
related to each other by a separated transformation, q′a = q′a(qa);

(iv) two equivalent separable systems (qi) = (qa, qα) and (q′i) = (q′a, q′α), the �rst be-
ing such that all �rst class coordinates are ignorable, are connected to each other
by transformations of the type dqa = dq′a and dqα =

∑n
i=1A

α
i(q
′i)dq′i, up to a

separated transformation;

(v) the second class coordinates (qa) in a separable coordinate system (qi) = (qa, qα)
are orthogonal. Namely, gab = 0 for a 6= b.

The collection of all equivalent separable coordinate systems associated to the same
Hamiltonian function H is called separability structure and is denoted by Sr, with r
denoting the number of �rst class coordinates, which is common to all the members of this
collection according to the �rst of the properties above. Notice that, since this de�nition
is based on the concept of coordinate systems, separability structures are de�ned only
locally on Q.

2.7 The Normal Form

In this section, starting from the properties for equivalent separable coordinate systems
listed in the previous section, and considering only geodesic Hamiltonian functions, we
seek the most simple form allowed for the components of the corresponding inverse metric
gij in separable coordinates within the same separability structure Sr. To this end, let
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us consider the separable systems in Sr such that all �rst class coordinates are ignorable
(property (ii)). Then, since in separable coordinate systems the second class coordinates
are orthogonal (property (v)), the Levi-Civita conditions (2.27) for such coordinates re-
duce to

gaagbb∂a∂bg
cc − gaa∂agbb∂bgcc − gbb∂bgaa∂agcc = 0 , for a 6= b ,

which is the same conditions for orthogonal systems (2.28). Thus, from the discussion of
section 2.5, we conclude that the components of the inverse metric gij for indices running
over the second class coordinates are given by

gab = δabφ(m)
a ,

where, as usual, m is the number of second class coordinates and φ(a)
b are the components

of a m×m inverse Stäckel matrix, φ(m)
a corresponding to the components of its last row.

Further simpli�cations are still possible, but for this intent, let us de�ne �rst isotropic
coordinates qa to be second class coordinates such that gaa = 0. Although this de�nition
is clearly coordinate dependent, the same property holds for all coordinate systems within
the same separability structure Sr for geodesic Hamiltonians. This is true because, in this
case, second class coordinates for equivalent separable systems are related to each other
by separated transformations (property (iii)), implying that in all these systems we have
gaa = 0. In particular, this kind of coordinates are never present in strictly Riemannian
manifolds, as null coordinates are not allowed to exist in such geometries.

From now on, let us denote by Sr,m2 separability structures containing m2 isotropic
coordinates, leaving the notation Sr for separability structures without isotropic coor-
dinates. Then, taking into account the previous results, a theorem due to Benenti [4],
asserts that in every separability structure Sr,m2 there exists a coordinate system (qi) such
that the �rst class coordinates (qα) are all ignorable and, in addition, the metric in this
coordinate system takes the following form:

[gij] =

m1 m2 r δa1b1φ(m)
a1 0 0

0 0 ga2α

0 gαa2 gαβ

 m1

m2

r
,

(2.30)

where m1 is the number of nonisotropic second class coordinates qa1 , m2 = m −m1 the
number of isotropic coordinates qa2 , and r the number of ignorable �rst class coordinates
qα. The coordinate systems in which this happens are called normal separable coor-
dinates, and the respective form taken by the metric tensor (2.30) is called the normal
form. Besides this, Benenti also proves in [4] that the components ga2α and gαβ acquire
the following simpler form in these coordinates:

ga2α = θαa2φ(m)
a2 and gαβ =

m∑
a=1

ηαβa φ(m)
a ,

where θαa2 and η
αβ
a are functions only of the coordinate corresponding to their lower index:

θαa2 = θαa2(q
a2), ηαβa = ηαβa (qa), and ηαβa are symmetric in their upper indices.

In summary, in every separable structure Sr,m2 there always exists a coordinate system
(qi) where all its �rst class coordinates (qα) are ignorable and the metric components gij

takes the form (2.30), with components ga2α and gαβ given by the general form ga2α =
θαa2φ(m)

a2 and gαβ =
∑m

a=1 η
αβ
a φ(m)

a. In this case, the index a1 runs over the values
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1, . . . ,m1; a2 over m1 + 1, . . . ,m; and α and β over m+ 1, . . . , n. Notice that, separability
structures having neither second class isotropic coordinates nor �rst class coordinates are
necessarily orthogonal.

The normal form represents the largest number of simpli�cations we can carry out
within a separability structure without a�ecting the generality. Moreover, it fully charac-
terizes the separability structure, since all the other members of this class can be reached
by means of coordinate transformations of kind (iv).

2.7.1 Normal Form, Killing Tensors and Killing Vectors

In the construction and simpli�cation of the normal form (2.30), only the last row of the
inverse Stäckel matrix [φ(a)

b] was used. In fact, the other m− 1 rows can be used to build
rank-2 symmetric tensorsKa by the simple replacement φ(m)

b → φ(a)
b in the components

of the normal form, similar to what was done in section 2.5 for orthogonal separable
coordinates. In this case, these m − 1 quantities give rise to second order homogeneous
polynomials in the momenta, denoted by EKa , according to the general formula (2.16):

EKb = 1
2

n∑
i=1

n∑
j=1

(Kb)
ijpipj

= 1
2

∑
a1

φ(b)
a1p2a1 +

∑
a2α

φ(b)
a2θαa2pa2pα + 1

2

∑
aαβ

φ(b)
aηαβa pαpβ , (2.31)

the geodesic Hamiltonian H being recovered by setting b = m. Then, evaluating the
Poisson bracket of two of these quantities, say EKb and EKc , we end up with the following
expression:

{EKb , EKc} = 1
2

∑
a1b1

χa1b1cb pa1p
2
b1

+
∑
a1a2α

χa1a2cb θαa2pa1pa2pα + 1
2

∑
aa1αβ

χa1acb η
αβ
a pa1pαpβ

+1
2

∑
a1a2α

χa2a1cb θαa2(pa1)
2pα +

∑
a2b2αβ

χa2b2cb θαa2θ
β
b2
pb2pαpβ + 1

2

∑
aa2αβγ

χa2acb θ
γ
a2
ηαβa pαpβpγ ,

where the functions χabcd are de�ned by

χabcd = φ(c)
a∂aφ(d)

b − φ(d)
a∂aφ(c)

b .

Notice, however, that the above expression is precisely equal to (2.29) and, hence, vanish
identically since [φ(a)

b] is an inverse Stäckel matrix. Therefore, since EKm = H, this proves
not only that the quantities EKa are �rst integrals, giving rising to rank-2 Killing tensors
Ka, but also that they are in involution with each other. Moreover, since Stäckel matrices
are by de�nition regular, it follows that the set of tensors {Ka}, for a = 1, . . . ,m, and
Km = g−1, with g−1 representing the inverse metric tensor, is composed by pointwise
independent Killing tensors.

In addition to the m symmetries generated by this set of Killing tensors, the ignorable
�rst class coordinates qα give rise to a set of r independent commuting killing vectors {∂α}
adapted to the respective normal coordinates. Then, in total, we have n independent
�rst integrals, m being of second order in the momenta, while r are of �rst order. The
independent nature of the �rst integrals generated by these Killing tensors and Killing
vectors one more time can be seen as a consequence of the regularity of the Stäckel matrix
φa

(b).
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The above results can be synthesized in the following statement: Every n-dimensional
Riemannian manifold (Q, g) allowing the existence of a coordinate system that separates
the Hamilton-Jacobi equation for the corresponding geodesic Hamiltonian H, are naturally
equipped with a set of m = n− r rank-2 Killing tensors and r commuting Killing vectors,
where r is the number of coordinates qi such that ∂iH/∂

iH is either a �rst order polynomial
in the momenta or vanishes.

2.8 Intrinsic Characterization of Separability Structures of Type Sr
The intent of the present section is to provide a geometric characterization of separability
structures that do not present second class isotropic coordinates. Recall that this assump-
tion does not represent any restriction for strictly Riemannian manifolds, as they naturally
cannot have such type of coordinates. In this case, the nonvanishing components of the
inverse metric in normal coordinates are given by gaa = φ(m)

a and gαβ =
∑m

a=1 η
αβ
a φ(m)

a,
and, accordingly, the nonvanishing components of the Killing tensors Ka related to the
second class coordinates qa are given by (Ka)

bb = φ(a)
b and (Ka)

αβ =
∑m

b=1 η
αβ
b φ(a)

b.
For a reason that should become clear later on in this section, we shall denote the

r independent Killing vectors respective to the ignorable coordinates qα by Xα. Then,
using the general form for the metric and Killing tensors in normal coordinates given
above, we are able to derive the following properties:

(i) the Killing tensors and Killing vectors, in addition to being in involution with mem-
bers of the same set, are in involution with each other: [Ka,Xα] = 0;

(ii) the coordinate vectors Xa = ∂a form a set of m common orthogonal eigenvectors
of the Killing tensors Ka, for all a, which are in involution: [Xa,Xb] = 0. In this
case, Ka is though of as the matrix with components (Ka)

i
j;

(iii) the eigenvectors ofKa are orthogonal to the Killing vectorsXα and, moreover, they
are in involution with the latter ones: Xa ·Xα = 0, [Xa,Xα] = 0, the latter result
following as an obvious consequence of both Xa and Xα being coordinate vectors.

In fact, the properties listed above are necessary conditions for the existence of a
separability structure of type Sr on a Riemannian manifold (Q, g), as the normal form is
always attainable for any separability structure. Su�cient conditions can also be worked
out from integrability equations for the set of Killing tensors Ka, ultimately leading to
the Levi-Civita conditions (2.27) for the normal form, [7]. The following theorem, due
to Benenti [5, 7], summarizes these points and represents the most important result in
the theory of separability of the Hamilton-Jacobi regarding its application to di�erential
geometry:

Theorem 1. An n-dimensional Riemannian manifold (Q, g) admits a local separability
structure of type Sr if and only if the following conditions are met:

(1) there exist r independent commuting Killing vectors Xα: [Xα,Xβ] = 0;

(2) there exist n− r independent rank-2 Killing tensors Ka such that [Ka,Kb] = 0 and
[Ka,Xα] = 0;

(3) the Killing tensors Ka have in common n− r orthogonal eigenvectors Xa such that
[Xa,Xα] = 0, Xa ·Xα = 0, and [Xa,Xb] = 0.
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It is worth mentioning that, as remarked at the end of section 2.6, the notion of
separability structure is local (as it is based on the notion of coordinate systems) and,
therefore, the applicability of the above theorem follows accordingly.

An important consequence of this theorem is that, once both sets of vectors {Xa}
and {Xα} are separately in involution, and, in addition, are constituted by pointwise
independent vector �elds, according to Frobenius' theorem they generate two distinct
foliations of the same manifold. Moreover, due to the orthogonality property Xa ·Xα =
0, these two foliations are orthogonal. Let us denote by {Zn−r} the foliation corresponding
to the integrable system {Xa}, and by {Wr} the foliation respective to the system {Xα}.
An important aspect of these foliations is that each integral submanifold of {Wr} is �at,
which follows from the fact that they are spanned by the abelian r-parameter group of
isometries generated by the Killing vectors Xα, and each integral submanifold of {Zn−r}
possesses an orthogonal separable structure Sn−r following as a consequence of the fact
that the vectors Xa are orthogonal, and that all the conditions of theorem 1 are trivially
satis�ed for the restriction of the Killing tensors Ka to the integral submanifolds of
{Zn−r}.

Concerning the uniqueness of the vectors and tensors in theorem 1, it is not di�cult
to see that any linear combination of the Killing tensors Ka, including combinations of
the inverse metric g−1 and symmetrized products of the Killing vectors Xα,

K̃b =
n−r∑
a=1

cb
aKa +

n∑
α=m+1

n∑
β=m+1

dαβb Xα �Xβ + kbg
−1 ,

where cba, d
αβ
b and kb are constants, and det [cb

a] 6= 0, gives rise to an equivalent set
of Killing tensors {K̃a} satisfying all the conditions of theorem 1, as the old set {Ka}
did. The properties of the SN bracket listed in section 2.3 turn out to be handy to prove
this statement. Taking into account the expression above, it is possible to prove that
one of these Killing tensors can always be chosen to be the inverse metric tensor g−1,
[5]. Similarly, the sets of vectors {Xa} and {Xα} are not uniquely determined. In fact,
transformations of the type

X̃α =
n∑

β=m+1

Aα
βXβ and X̃a = f(xa)Xa ,

where [Aα
β] is a regular constant matrix and f(xa) is a function depending solely on the

coordinate xa, preserve all the conditions of theorem 1 and, therefore, the new sets {X̃a}
and {X̃α} represent a new equivalent basis of vector �elds.

An important question that arises naturally in this context and has important physical
relevance is whether the nontrivial Killing tensors can be reduced to symmetrized products
of Killing vectors. As it turns out, although the theorems on separability structures do
not imply general statements about reducibility of the Killing tensors, in the case of Sn−2
structures it is known that if the Killing tensor K is reducible, one of its components
must be a Killing vector independent from the n − 2 Killing vectors Xα, [5]. The most
important example of a space containing an irreducible Killing tensor is provided by the
metric of Kerr. In fact, this Killing tensor was discovered by Carter in his famous paper
[8], where it made possible the complete integrability of the geodesic equation. On the
other hand, an example of spacetime with reducible Killing tensor is provided by the
Schwarzschild solution, as we will see in the examples at the end of this chapter.
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2.9 The Canonical Form of Separability Structures of Type Sn−2
As it will be exempli�ed in section 2.10 and throughout chapter 4 of this dissertation (or
[9]), the most important spacetimes relevant to general relativity are the four-dimensional
spaces endowed with a separability structure of type Sn−2. As a matter of fact, there
are enough examples in the literature to justify the importance of separability structures
of this type. In fact, further four-dimensional examples can be found in [10, 11], and
higher-dimensional spacetimes possessing this same separability structure can be checked
at [12].

Having said that, let us consider spaces (Q, g) admitting a separability structure of
type Sn−2. In terms of the normal separable coordinates it means that the nonvanishing
components of the inverse metric are given by gaa = φ(2)

a and gαβ =
∑2

a=1 η
αβ
a φ(2)

a, where
the indices a, b run over the values 1 and 2 and correspond to the second class coordinates
x and y, while the indices α, β varies among the values 3, . . . , n, and correspond to the
ignorable �rst class coordinates denoted here by {σα}. In this case the Stäckel matrix
φa

(b) is 2×2 and, therefore, we can make use the following canonical form for 2×2 Stäckel
matrices:

[φa
(b)] =

[
φ1

(1) φ1
(2)

φ2
(1) φ2

(2)

]
=


1

ψ1

φ1

ψ1

− 1

ψ2

φ2

ψ2

 , (2.32)

where the functions ψ1 and φ1 depend on the �rst of the two second class coordinates, x,
while ψ2 and φ2 depend on the second coordinate, y. Notice that, since the �rst line of
this matrix depends just on x and the second just on y, we con�rm that this matrix is
indeed a Stäckel matrix. Besides this, its determinant reads (φ1 + φ2)/ψ1ψ2 and, hence,
the functions φ1 and φ2 cannot be simultaneously vanishing, otherwise this would render
this matrix singular. It follows that the canonical form for the inverse of a 2× 2 Stäckel
matrix is given by

[φ(a)
b] =

[
φ(1)

1 φ(1)
2

φ(2)
1 φ(2)

2

]
=


φ2ψ1

φ1 + φ2

−φ1ψ2

φ1 + φ2
ψ1

φ1 + φ2

ψ2

φ1 + φ2

 . (2.33)

Consequently, since the components of the inverse metric gij are given in terms of the
components of an inverse Stäckel matrix, we can make use of the canonical form (2.33),
which immediately yields the following expressions:

gab =
δabψa
φ1 + φ2

and gαβ =
2∑

a=1

ηαβa ψa
φ1 + φ2

.

Thus, the inverse metric tensor, denoted by g−1, can be written in tensor form as

g−1 =
1

φ1 + φ2

[∑
αβ

(ηαβ1 ψ1 + ηαβ2 ψ2)∂α ⊗ ∂β + ψ1∂x ⊗ ∂x + ψ2∂y ⊗ ∂y

]
, (2.34)

where, recall, functions with subscript 1 are functions of the coordinate x, while the ones
with subscript 2 are functions of y. The coordinate vectors ∂α must be understood as
∂σα = ∂/∂σα, where σα are the ignorable coordinates. In addition to this general form
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taken by the inverse metric, remember also that spaces with separability structure of
type Sn−2 contain a nontrival Killing tensor K with nonvanishing components given by
Kab = δabφ(1)

a and Kαβ =
∑2

a=1 η
αβ
a φ(1)

a. Thus, similarly to what was done for the
components of the inverse metric above, making use of the canonical form (2.33), the
nontrivial Killing tensor K attain the following form:

K =
1

φ1 + φ2

[∑
αβ

(ηαβ1 φ2ψ1 − ηαβ2 φ1ψ2)∂α ⊗ ∂β + φ2ψ1∂x ⊗ ∂x − φ1ψ2∂y ⊗ ∂y

]
.

The discussion held in the previous section on foliations can easily be exempli�ed in
this section. For that, notice that the integrable distributions {Xa} and {Xα} correspond
respectively to the sets {∂x, ∂y} and {∂σ3 , . . . , ∂σn}. Then, the foliation {Z2} associated
to the �rst of these integrable distributions is parameterized by the coordinates x and y
through {x, y, σ3 = σ3

0, . . . , σ
n = σn0 }, for constants σ3

0, . . . , σ
n
0 . The induced metric in

each of the submanifolds Z2 is given by the restriction of the metric (2.34) to the vectors
∂x and ∂y:

g−1
∣∣
Z2

=
1

φ1 + φ2

(ψ1∂x ⊗ ∂x + ψ2∂y ⊗ ∂y) .

This two-dimensional metric is easily seen to be in orthogonal separable coordinates as
its form precisely exhibits the normal form for orthogonal separable systems: components
given by gab = δabφ(2)

a and having no �rst class coordinates.
For the second integrable distribution, {∂σ3 , . . . , ∂σn}, the parameterization given by

{x = x0, y = y0, σ
3, . . . , σn}, with x0 and y0 being constants, gives rise to the integral

submanifolds Wn−2 that generate the foliation {Wn−2}. In this case, the induced metric
on each of these (n− 2)-dimensional submanifolds is given by

g−1
∣∣
Wn−2

=
1

φ1 + φ2

[∑
αβ

(ηαβ1 ψ1 + ηαβ2 ψ2)∂α ⊗ ∂β

]
,

where φ1, φ2, ψ1, ψ2, η
αβ
1 and ηαβ2 are now constants for the corresponding functions

evaluated at x = x0 and y = y0. Consequently, since all the components of the induced
metric are constants, the corresponding induced Riemannian tensor is vanishing, giving
rise to a �at foliation, agreeing with the discusion in section 2.8.

2.10 Examples

In the present section, examples of physically relevant space drawn from Einstein's theory
of general relativity are used to illustrate the most signi�cant points discussed in the
preceding sections on the theory of separability. In fact, the most important spacetimes
in general relativity have separability structures, enabling, thus, the full integrability of the
geodesic motion. Particular emphasis is given to Kerr spacetime possessing a separability
structure of type S2 and such that the nontrivial Killing tensor gives rise to the quadratic
conserved quantity found by Carter in his 1968 paper, [8]. This example will be worked
out in chapter 4.
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2.10.1 Separability Structures in Spacetimes with Spherical Symmetry

In this �rst example, four-dimensional spacetimes possessing spherical symmetry are con-
sidered. Thereby, let us consider the following su�ciently general metrics:

ds2 = −f(r)dt2 + f(r)−1dr2 + g(r)−1(dθ2 + sin2 θdφ2) . (2.35)

An important spacetime contained within this class is the Reissner-Nordström solution
in an (anti-)de Sitter background, which is attained by setting

f(r) = 1− 2m

r
+
e2

r2
− Λ

3
r2 and g(r) =

1

r2
. (2.36)

Denoting the coordinates of this metric by r = q1, θ = q2, φ = q3 and t = q4, and the
corresponding momentum coordinates by pr = p1, pθ = p2, pφ = p3 and pt = p4, the
geodesic Hamiltonian associated to the metric (2.35) is given by

H = 1
2

4∑
i=1

4∑
j=1

gijpipj =
1

2

[
f(r)p2r + g(r)p2θ +

g(r)

sin2 θ
p2φ −

1

f(r)
p2t

]
. (2.37)

From this Hamiltonian, we can promptly write down the corresponding Hamilton-Jacobi
equation which, after some simple rearrangement, reads

f(r)

g(r)

(
∂W

∂r

)2

+

(
∂W

∂θ

)2

+
1

sin2 θ

(
∂W

∂φ

)2

− 1

f(r)g(r)

(
∂W

∂t

)2

=
2h

g(r)
.

The separation of variables for this equation can easily be accomplished by de�ning sep-
aration constants c1, c2 and c3 by

c21 =

(
∂W

∂θ

)2

+
1

sin2 θ

(
∂W

∂φ

)2

, c2 =
∂W

∂t
and c3 =

∂W

∂φ
.

In this case, we were able to achieve full separation of the Hamilton-Jacobi equation for
the Hamiltonian (2.37), with complete integral given by the sum of the functions Wr, Wθ,
Wφ and Wt, which are given by the following expressions:

Wr =

∫
dr

√
1

f(r)

[
2h+

c22
f(r)

− c21g(r)

]
, Wθ =

∫
dθ

√
c21 −

c23
sin2 θ

,

Wφ = c3φ and Wt = c2t .

Since the separation of variables in additive form could be attained for the Hamiltonian
(2.37), the coordinate system {r, θ, φ, t} is classi�ed as separable. Furthermore, it is
immediate to see that the coordinates φ and t are ignorable �rst class coordinates, since
this Hamiltonian does not depend on these coordinates, ∂φH = ∂tH = 0. Besides this,
evaluation of the quantities ∂rH/∂rH and ∂θH/∂θH does not result in linear polynomials
in the momenta and, therefore, the coordinates r and θ are of second class. In particular,
no isotropic coordinates exist in this separable coordinate system. In fact, the coordinate
system {r, θ, φ, t} is already adapted to normal coordinates as the �rst class coordinates
φ and t are both ignorable and the inverse metric is in accordance with the form (2.30):

[gij] =


f(r) 0 0 0

0 g(r) 0 0
0 0 g(r) sin−2 θ 0
0 0 0 −f(r)−1

 .
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Knowing that the coordinates r, θ, φ and t are normal separable coordinates, we can
work backwards to �nd the components of the inverse Stäckel matrix φ(a)

b and also �nd
the functions ηαβa . To this end, remember that the components of the inverse metric
corresponding to the second class coordinates are given by gab = δabφ(2)

a and the ones
corresponding to the �rst class ignorable coordinates given by gαβ =

∑2
a=1 η

αβ
a φ(2)

a. From
this, the following results can easily be drawn:

φ(2)
1 = f(r) , φ(2)

2 = g(r) , η332 = sin−2 θ , η441 = −f(r)−2 ,

the remaining functions ηαβa being all vanishing: η331 = η442 = 0 and ηαβa = 0 for α 6= β.
Then, using the canonical form for the inverse Stäckel matrix (2.33), the functions φ1, φ2,
ψ1 and ψ2 can easily be obtained in terms of f(r) and g(r)4:

φ1 =
1

g(r)
, φ2 = 0 , ψ1 =

f(r)

g(r)
and ψ2 = 1 . (2.38)

Thus, with these functions, the Stäckel matrix and its inverse reads, respectively,

[φa
(b)] =

[
f(r)−1g(r) f(r)−1

−1 0

]
and [φ(a)

b] =

[
0 −1

f(r) g(r)

]
.

Having constructed the Stäckel matrix for the current normal separable coordinates and
possessing, in addition, the functions ηαβa , expression (2.31) can be used to build the �rst
integral EK . In this case, we must set θαa = 0 and the index a1 = a runs over 1 and 2
since there are no isotropic coordinates. Thus, we are lead to

EK = 1
2

n∑
i=1

n∑
j=1

(Kb)
ijpipj = −1

2

[
p2θ + (sin−2 θ)p2φ

]
.

The corresponding Killing tensor is easily obtained from this expression, and reads:

K = −
[
∂θ ⊗ ∂θ + (sin−2 θ)∂φ ⊗ ∂φ

]
. (2.39)

As a matter of fact, besides the Killing vectors ∂φ and ∂t, spaces of type (2.35) are endowed
with two additional independent Killing vectors on account of the spherical symmetry,
namely

Y1 = cosφ∂θ − cot θ sinφ∂φ and Y2 = − sinφ∂θ − cot θ cosφ∂φ .

Combining these vectors along with the Killing vector ∂φ in the following way

− (Y1 ⊗ Y1 + Y2 ⊗ Y2 + ∂φ ⊗ ∂φ) = −
[
∂θ ⊗ ∂θ + (sin−2 θ)∂φ ⊗ ∂φ

]
,

we are lead precisely to the Killing tensor (2.39), showing, therefore, that it is reducible.
The fact thatK is made of symmetrized products of Killing vectors that are independent
from the Killing vectors related to the ignorable coordinates φ and t is in total accordance
with the discussion at the end of section 2.8.

4Notice that this is not the general solution for the functions φ1, φ2, ψ1 and ψ2. Nevertheless, all these
solutions are equivalent, inasmuch as they give rise to Killing tensors di�ering from each other only up
to terms proportional to the metric or, possibly, to symmetrized products of Killing vectors. In present
example, the general solution provides a Killing tensor K̃ = c1K+ c2g

−1, where c1 and c2 are constants
and K is the Killing tensor for the particular choice (2.38).
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2.10.2 Geodesics on the Schwarzschild Spacetime

In this second example, we intend to illustrate the method of Hamilton-Jacobi to ob-
tain the well-known geodesic equations for the motion on the equatorial plane of the
Schwarzschild geometry. To this end, consider spacetimes given by the metric (2.35),
with functions f(r) and g(r) given by (2.36) with e = 0 and Λ = 0. In this case, the
Hamiltonian function H is given by (2.37), setting θ = π/2 and pθ = 0:

H = 1
2

[
f(r)p2r + g(r)p2φ − f(r)−1p2t

]
. (2.40)

Then, following the same procedure as in the previous example, a complete integral for
the Hamilton-Jacobi equation with Hamiltonian (2.40) can easily be attained, yielding

W =

∫
dr

√
1

f(r)

[
2h+

a22
f(r)

− a21g(r)

]
+ a1φ+ a2t .

Once we have an expression for the complete integral W , we can make use of equations
(2.24) to obtain the general solution for the geodesic motion. For the Hamiltonian (2.40),
these equations are given in terms of the following quadratures:

b1 +

∫
dr√

f(r) [2h− a21g(r)] + a22
= τ

b2 −
∫
dr

a1g(r)√
f(r) [2h− a21g(r)] + a22

+ φ = 0

b3 +

∫
dr

a2

f(r)
√
f(r) [2h− a21g(r)] + a22

+ t = 0


(2.41)

with momenta coordinates given by

pr =

√
1

f(r)

[
2h+

a22
f(r)

− a21g(r)

]
, pφ = a1 and pt = a2 . (2.42)

Although, in theory, we just need to plug the explicit expressions for f(r) and g(r)
into (2.41), solve the integrals and, then, solve the system in order to obtain r, θ and
φ as functions of the time parameter τ , these integrals cannot be solved analytically for
the f(r) and g(r) corresponding to the Schwarzschild geometry. Notice, however, that
di�erentiating the �rst of the equations in (2.41) with respect to the parameter τ , and
using the explicit form for f(r) and g(r), we are lead to(

dr

dτ

)2

=

(
1− 2m

r

)(
2h− a21

r2

)
+ a22 . (2.43)

This equation is well-known in this context, representing the radial motion, and can
be found in any general relativity textbook. See, for instance, equation (5.64) in [13].
In addition to this equation, other important equations are obtained from the last two
momenta components in (2.42), pφ and pt. To this end, recall from section 2.3 that
pi =

∑
j gij q̇

j. Then, from this relation, we obtain:

r2
(
dφ

dτ

)
= a1 and

(
1− 2m

r

)(
dt

dτ

)
= −a2 . (2.44)
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These are equations for conservation of angular momentum and energy, respectively, and
can also be compared with equations (5.62) and (5.61) in [13]. Finally, plugging the
constants a1 and a2 given in (2.44) into (2.43), we are lead to

−
(

1− 2m

r

)(
dt

dτ

)2

+

(
1− 2m

r

)−1(
dr

dτ

)2

+ r2
(
dφ

dτ

)2

= 2h .

This equation, also present in [13] (equation 5.63), corresponds to the quantity

2h =
n∑
i=1

n∑
j=1

gij

(
dqi

dτ

)(
dqj

dτ

)
,

which is constant along the geodesics, conveying the fact that the parameterization re-
spective to τ is, indeed, a�ne, as it was anticipated at the end of section 2.3.
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3 Group Theory and Symmetries

It is well known that the concept of symmetry in physics is intimately connected to the
abstract notion of groups. Indeed, groups are widely used in the most varied branches
of physics as a tool to implement symmetries. Taking this into account, in this chapter
we present the precise de�nition of groups, providing the most relevant features shared
by this important structure. Then, starting from this simple notion, we de�ne what is
a Lie group and de�ne the notion of a Lie algebra as a particular set of vector �elds.
The exponential map then plays an important role, as we can make use of it to de�ne
a Lie group, starting from a Lie algebra. These notions happen to be of fundamental
importance in the description of symmetries when applied to a di�erentiable manifold. In
fact, we show that the set of di�eomorphisms that keep the metric tensor invariant has
origin in a group action, the so-called isometry group, whose generators are the Killing
vector �elds. These latter, in turn, give rise to the notion of conserved quantities, having
wide applications in general relativity. At the end of the chapter, we present a brief
analysis of spaces with a separability structure of type Sn−2 in light of this framework.

3.1 Introduction to Groups

A group G is de�ned to be a set of elements g endowed with a multiplication operation
· that takes any two elements g1 and g2 in G to another element g1 · g2, also in G, such
that the following algebraic properties are satis�ed:

1. associativity : for any three elements g1, g2 and g3 in G, the product · is such that
(g1 · g2) · g3 = g1 · (g2 · g3);

2. identity : in every group, there exists an element called the identity, denoted by e,
with the property that for any g in G, we have e · g = g · e = g;

3. inverse: for every element g in G, there exists an element g−1 also in G, called the
inverse of g, such that g · g−1 = g−1 · g = e.

Consider, as a �rst example, the cyclic group Cn = (e, g, g2, · · · , gn = e). In this
group, the multiplication operation · is such that gm = g · g · . . . · g, with g being repeated
m times on the right hand side of this equality. From this, it is clear that the inverse
element is given by (gm)−1 = gn−m. A particular realization of such a group is provided
by the set (1, e1(2πi/n), e2(2πi/n), . . . , en(2πi/n) = 1), with multiplication operation being the
usual multiplication of complex numbers. Another simple example is given by the set
of integers Z = (. . . ,−2,−1, 0, 1, 2, . . .) together with the ordinary sum of real numbers,
G = (Z,+). In this case the identity element is the number 0, and the inverse of any
number g being its negative −g. A third and important example is provided the set of
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2 × 2 matrices which implement counter clockwise rotations on the plane of an angle θ,
given by

R2(θ) =

[
cos θ − sin θ
sin θ cos θ

]
, (3.1)

with the group multiplication being the usual matrix multiplication. In particular, it is
easy to verify that R2(θ1)R2(θ2) = R2(θ1 + θ2), and that the inverse of an element R(θ)
is given by R(−θ). Besides this, the identity element of the group is given by the identity
matrix itself: R(0) = I. This group is called the special orthogonal group and is
denoted by SO(2). Notice that in all these examples, the order of the multiplication was
not important, as the same result could be obtained in either order. Nevertheless, the
multiplication operation of a group is not always commutative, i.e., for elements g1 and g2
of a group G, we may have g1 · g2 6= g2 · g1. For the case where every product of elements
in a group commutes, the group is said to be an abelian group. The groups Cn, (Z,+)
and SO(2) are examples of abelian groups. For a counterexample, consider the group
formed by all 2× 2 matrices with real entries and determinant equal to one. This group
is called the special linear group SL(2,R), and can be represented by

A(x1, x2, x3) =

[
x1 x2
x3

1+x2x3
x1

]
. (3.2)

It is very easy to verify that this set of matrices satisfy the axioms of a group for any choice
of real numbers x1, x2 and x3. In particular, performing the multiplication of two of these
elements, it is easy to check that A(x1, x2, x3)A(y1, y2, y3) 6= A(y1, y2, y3)A(x1, x2, x3),
providing thus an example of non-abelian group.

A subgroup H of G is de�ned as a subset of G that is a group in its own. In other
words, for any pair of elements h1, h2 of H ⊂ G, the product h1 · h2 is also in H, and if
h ∈ H, so is its inverse h−1. Notice that the identity element e necessarily makes part
of any subgroup, and it alone forms a trivial subgroup of G. An example of subgroup is
provided by the SO(2) group, which is a subgroup of the SL(2,R) group, as it can be
realized by choosing x1 = cos θ, x2 = − sin θ and x3 = sin θ in (3.2). Group elements
which commutes with every other element in the group also form a subgroup called the
center of the group.

Given two groups G and G′, a mapping φ : G→ G′ that preserves the group product,
namely for any two elements g1, g2 ∈ G we have φ(g1 · g2) = φ(g1) · φ(g2), is called a
homomorphism. If, in addition, φ is one-to-one, then it is said to be an isomorphism
between G and G′. Two groups G and G′ for which there exists such a mapping are said
to be isomorphic and this correspondence is denoted by G ' G′. Notice that, for a
homomorphism φ, φ(g) = φ(e · g) = φ(e) · φ(g), implying that if e is the identity element
of G, then φ(e) = e′ is the identity of G′. Likewise, from e′ = φ(g · g−1) = φ(g) · φ(g−1),
we have that [φ(g)]−1 = φ(g−1). These are important properties of homomorphisms. As
an example, consider the group U(1) comprised by the complex numbers (eiϑ), with ϑ
real, and group product being the usual multiplication of complex numbers. This group
is isomorphic to the SO(2) group (3.1), U(1) ' SO(2), as can easily be seen from the
identi�cation φ(eiθ) = R2(θ).

The subset of G formed by elements which are mapped to the identity e′ of G′ by
means of the homomorphism φ is called kernel of φ: Ker(φ) = {g ∈ G|φ(g) = e′}.
In fact, the kernel of φ is a subgroup of G, as can easily be checked through the group
axioms. Moreover, from the properties given above for homomorphisms, it is not di�cult
to see that φ is an isomorphism if, and only if, Ker(φ) = {e}.
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Another important concept that arises in group theory is that of a conjugate ele-
ment. We say that an element g1 ∈ G is conjugate to g2 ∈ G if there exists another
element h, also in G, such that g1 = h · g2 · h−1. This relation is usually denoted by
g1 ∼ g2, and, in fact, it forms an equivalence class:

1. re�exivity : g ∼ g;

2. symmetry : if g1 ∼ g2, then g2 ∼ g1;

3. transitivity : If g1 ∼ g2 and g2 ∼ g3, then g1 ∼ g3.

One can easily reach the conclusion that each element of a group belongs to one, and
only one, equivalence class, and the identity alone forms a class by itself. This de�nition
enables us to de�ne a conjugate subgroupHg to a subgroupH ofG, de�ned as following:
for any �xed element g of G, Hg = {g · h · g−1;h ∈ H}. An invariant subgroup H of
G is a subgroup which is equal to all its conjugate subgroups. Namely, if H = Hg for all
g ∈ G. In other words, a subgroup H is an invariant subgroup of G if for all elements
h ∈ H and g ∈ G, we have that g ·h · g−1 ∈ H. We immediately notice that all subgroups
of abelian groups are invariant subgroups and that the kernel of a homomorphism φ is, as
well, an invariant subgroup since φ(g ·h ·g−1) = φ(g) ·φ(h) ·φ(g)−1 = φ(g) ·e′ ·φ(g)−1 = e′,
for any h ∈ Ker(φ) and g ∈ G. Notice also that every group possess at least two trivial
invariant subgroups: the subgroup containing the identity element alone, and the whole
group itself. A group that contains no invariant subgroup besides the trivial ones is
called simple, while one that contains at most a non-abelian invariant subgroup is called
semi-simple.

3.1.1 Physically Important Examples of Groups

In this section, a few general examples of groups which are physically relevant are pre-
sented in order to better illustrate the importance of this structure in physics.

General Linear Groups, GL(n,R) and GL(n,C)

The general linear group GL(n,R) (GL(n,C)) is a matrix group de�ned by the set of
all n × n invertible matrices R with real (complex) entries. This is an example of non-
abelian group. A particular subgroup is the special linear group SL(2,R) (SL(2,C)),
de�ned by the subset of n × n matrices A with det(A) = 1. Notice that the special
linear group is an invariant subgroup of the general linear group, inasmuch as we have
that det(RAR−1) = det(A) = 1 for any R ∈ GL(n,R). The SL(2,C) group plays a
fundamental role in the theory of spinors in four-dimensional spacetimes.

Orthogonal and Special Orthogonal Groups, O(n) and SO(n)

The orthogonal group O(n) is a matrix group de�ned as the subset of matrices A ∈
GL(n,R) satisfying AAT = I = ATA. An important subgroup is formed by the subset
of matrices A in O(n) with det(A) = 1, called the special orthogonal group and
denoted by SO(n). The SO(2) and SO(3) groups implement rotations respectively in the
two- and three-dimensional Euclidean space. In both relativistic and classical mechanics,
systems which are invariant under the action of the SO(3) group possess conserved angular
momentum. In quantum mechanics, the irreducible representations of the SO(3) are used
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in the central force problem to label the stationary states. Besides this, the SO(3) group
also plays an important role in general relativity, as this is a symmetry group of spacetimes
representing static spherical objects, such as static stars.

Generalized Orthogonal and Lorentz Groups, O(k, n− k) and O(3, 1)

A possible generalization of the orthogonal group O(n) is the generalized orthogonal
group O(k, n − k) which is composed by the matrices A ∈ GL(n,R) which satis�es
OηOT = η = OTηO, where η = diag(1, . . . , 1,−1, . . . ,−1) is a diagonal matrix composed
by k plus signs and n − k negative signs. The case O(3, 1) is the Lorentz group, which
has fundamental importance in describing symmetries in specialrelativity, including in
quantum �eld theory.

Unitary and Special Unitary Groups, U(n) and SU(n)

The set of matrices in GL(n,C) satisfying AA† = 1 = A†A, where the † represents the
conjugate transpose operation, forms a group called the unitary group and the subgroup
comprising the elements with det(A) = 1 is called special unitary group and denoted
by SU(n). The SU(n) group is fundamental in the theory of elementary particles as it
is the symmetry group of the standard model. In particular the SU(2) is part of the
symmetry group in the electroweak interaction, which uni�es electromagnetism and the
weak interactions, and the SU(3) in quantum chromodynamics, the theory of the strong
interaction between quarks and gluons. The SU(n) group is an example of a simple group.

Discrete Groups

Not only continuous, by also discrete groups are important in physics. For instance, the
cyclic group Cn may represent discrete rotations of an angle multiple of 2π/n, which can
be applied in solid state physics. Likewise, the group of translations Ta(n), which takes
points x in Rn to points x + a, becomes a discrete group of symmetry in a system of
particles evenly spaced in an rectangular grid of width a.

3.1.2 Cosets and Quotient Groups

An important notion that arises in group theory is the concept of cosets. Let H be a
subgroup of G with elements (h1, h2, . . .), and g an element of G which is not necessarily
in H. Then, the set formed by the elements (g ·h1, g ·h2, . . .) and denoted by gH is called
a left coset of H. Likewise, the set Hg = (h1 · g, h2 · g, . . .) is called a right coset of H.
Notice that sets constructed this way are not subgroups of G if g is not in H, inasmuch
as they do not contain the identity element.

An important characteristic of cosets is that two left cosets of the same subgroup are
either the same set or do not have any element in common. Therefore, they comprise
disjoint subsets of the group [20]. This result follows directly from the rearrangement
theorem, which states that for any group elements g1, g2 and g3 of G, we have that
g1 ·g2 = g1 ·g3 implies g2 = g3 and, as a consequence, for a group with elements (g1, g2, . . .),
the set (gk · g1, gk · g2, . . .) is just a rearrangement of the group G, for any gk ∈ G.

Indeed, consider two distinct elements g1 and g2 of G which are not in H, and assume
that g1 ·hi = g2 ·hj, namely the cosets g1H and g2H have at least one element in common.
From this, we have that g1 = g2 · hj · h−1i . Then, consider another element hk of H such
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that k 6= i and k 6= j. In this case we have that g1 ·hk = (g2 ·hj ·h−1i )·hk = g2 ·(hj ·h−1i ·hk),
which is clearly an element of g2H. Thus, since hj · h−1i · hk spans the whole subgroup
H as we vary k throughout all its possible values (due to the rearrangement theorem), it
follows that g1H = g2H. Therefore, if two cosets of the same subgroup have at least one
element in common, then, in fact, the two cosets coincide completely. As a consequence,
all the distinct cosets of this subgroup will split the whole group into disjoint sets.

Now, let H be an invariant subgroup of G with elements (h1, h2, . . .). The multiplica-
tion of two cosets g1H and g2H of this subgroup may be de�ned as the coset consisting
of all products g1 · hi · g2 · hj = g1 · g2 · hk, hence g1H · g2H = (g1 · g2)H. The need for
H to be an invariant subgroup lies in the fact that the multiplication of cosets given by
g1 ·hi ·g2 ·hj = g1 ·g2 ·hk would not be well de�ned, since, in general, hk = g−12 ·hi ·g2 ·hj is
not an element of H. For invariant subgroups, however, hk = (g−12 ·hi ·g2)·hj = hl ·hj ∈ H,
for some l. In this case, the cosets of H can be thought of as being elements of another
group with group multiplication as de�ned above. The identity element of this group is
the subgroup H = e ·H itself, and the inverse of gH is given by the coset g−1H. Thus, the
set of all cosets of an invariant subgroup H of G together with this notion of multiplication
forms a group called the quotient group of G, which is denoted by G/H.

Example: Symmetric Group Sn

The symmetric group Sn (also known as the permutation group) is a group with
elements p which produce exchanges within a set of n quantities (xi). For instance, the
group element pij = (ij) exchanges the quantities xi ↔ xj, and pijk = (ijk) makes
xi → xj → xk → xi, while all the other members of (xi) are kept untouched. Notice that,
in this notation, (ij) = (ji) and (ijk) = (jki) = (kij) 6= (ikj). The group multiplication
p·p′ must be understood as the following: we �rst perform the exchanges corresponding to
the group element p′, then the ones corresponding to p. As an example, consider n = 3. In
this case, our set (xi) has three quantities (x1, x2, x3), while the group S3 has six elements:

p1 = e , p2 = (12) , p3 = (23) , p4 = (31) , p5 = (123) , p6 = (321) .

As an illustration of the group multiplication, consider the product p4 · p5:

p4 · p5 = (31) · (123) =

x1
(123)−−−→ x2

(31)−−→ x2

x2
(123)−−−→ x3

(31)−−→ x1

x3
(123)−−−→ x1

(31)−−→ x3

= (12) = p2 .

Following this procedure, we are able to perform any multiplication we wish. In particular,
from the product p5 · p4 = p3 6= p4 · p5, we see that this group is non-abelian. In fact, the
symmetric group S3 is the smallest non-abelian group that can be constructed [20]. Two
examples of subgroups of S3 are provided by the sets H1 = (p1, p5, p6) and H2 = (p1, p2).
From this, we can construct the left cosets:

p1H1 = p5H1 = (p1, p5, p6)
p2H1 = p3H1 = p4H1 =

(p2, p3, p4)

p1H2 = p2H2 = (p1, p2)
p3H2 = p6H2 = (p3, p6)
p4H2 = p5H2 = (p4, p5)

Notice that both sets of cosets are distinct partitions of the same group S3. Besides this,
it is simple to verify that H1 is an invariant subgroup of S3, while H2 is not. Thus, we
can construct the quotient group S3/H1, consisting of the left cosets (p1H1, p2H1). In this
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case, p1H1 is the identity element of the group, while p2H1 is such that p2H1 · p2H1 =
(p2 · p2)H1 = p1H1, since p2 · p2 = p1. Thus, we see that the quotient S3/H1 is isomorphic
to the cyclic group C2, S3/H1 ' C2.

3.2 Lie Groups

Lie groups arise as a uni�cation of the algebraic concept of groups with the di�erential-
geometric notion of manifolds. The group elements of a Lie group are identi�ed with
points in a manifold, endowing the group with a structure of topology. Thus, notions
such as compactness and connectedness become relevant.

More precisely, a group G is de�ned to be a Lie group if, in addition to being a group
in the usual sense, it is such that each group element g is associated to a point x in some
di�erentiable manifold M , g → g(x), and such that both the multiplication and inverse
operations, g(x) · g(y) = g(z) and g(x)−1 = g(y), are parameterized by di�erentiable
functions z = f(x, y) and y = h(x). The dimension of the Lie group is de�ned to be the
dimension of the underlying manifold.

As an illustration, consider the SO(2) group given by (3.1). We easily see that the
manifold that parameterizes this group is the unit circle S1 with coordinate θ. In this case,
since R(θ1)R(θ2) = R(θ1 + θ2), the multiplication operation is given by the di�erentiable
function f(θ1, θ2) = θ1 + θ2. Likewise, the inverse is given by h(θ) = −θ, which is also
di�erentiable. Therefore, the SO(2) group is indeed a Lie group. In particular, it is
compact, since S1 is a compact manifold.

Another example of a Lie group is provided by the special unitary group SU(2).
Consider the following representation for its group elements:

U =

[
x4 + ix3 x2 + ix1

−x2 + ix1 x4 − ix3
]
,

with (x1)2+(x2)2+(x3)2+(x4)2 = 1, which stems from det(U) = 1. It is easy to check that
UU † = I = U †U . The constraint (x1)2 + (x2)2 + (x3)2 + (x4)2 = 1 is the de�ning equation
for the 3-sphere S3. Hence, each element of the SU(2) group is identi�ed with some point
in this manifold. Choosing the branch x4 = +

√
1− ~x 2, where ~x 2 ≡ (x1)2 + (x2)2 + (x3)2,

the variables x1, x2 and x3 become coordinates covering the upper half of S3. Thus, the
relation g ∈ SU(2)↔ x ∈ S3 is given by

g(x1, x2, x3) =

[ √
1− ~x 2 + ix3 x2 + ix1

−x2 + ix1
√

1− ~x 2 − ix3
]
. (3.3)

The group multiplication g(x1, x2, x3) · g(y1, y2, x3) = g(z1, z2, z3) provides

zi(x, y) =
3∑
j=1

3∑
k=1

εijky
jxk + xi

√
1− ~y 2 + yi

√
1− ~x 2 , (3.4)

where εijk is the Levi-Civita symbol, and the inverse g(x1, x2, x3)−1 = g(y1, y2, y3) gives
yi(x) = −xi, as can be veri�ed. Notice that, both of these functions are di�erentiable.
Therefore, the SU(2) is indeed a Lie group. In fact, most of the Lie groups are matrix
groups and, in particular, all the matrix groups presented in 3.1.1 are Lie groups. The
example above is particularly interesting since it exempli�es the fact that general coor-
dinate systems are, usually, unable to parameterize the whole group [21]. More on this
covering problem will be discussed below.
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3.3 Lie Algebras

Once Lie groups are manifolds, all the important structures of di�erential geometry can
be applied to them. In particular, there exists a class of vector �elds de�ned on Lie
groups with fundamental importance in the description of symmetries. In fact, these
vector �elds generate the so-called Lie algebra of the group. For this reason, we present
here the geometric notion behind the de�nition of Lie algebras.

Let G be a Lie group. Then, since the multiplication operation is a di�erentiable map,
we are able to de�ne a di�eomorphism on the Lie group G through

Lg : G→ G

h 7→ g · h .

This di�eomorphism is called left translation1 and is fundamental to de�ning Lie alge-
bras, as we will shortly see. Before, though, consider the following properties:

Lg−1 = (Lg)
−1 and Lg ◦ Lh = Lg·h ,

which are valid for all g and h in G, as can be easily proven.
In di�erential geometry, di�erentiable maps between manifolds can be used to map

vector �elds from one manifold to the other. In fact, this is done by means of the dif-
ferential map d. Therefore, the left translation Lg de�ned above naturally induces a
map dLg of vector �elds on the Lie group G to vector �elds also on G. As a matter of
notation, let us denote by vg the restriction of the vector �eld v to the tangent space
TgG. Then, the di�erential map dLg(vh) takes the vector vh ∈ ThG to another vector
dLg(vh) ∈ Tg·hG. To understand how this works, let us de�ne a coordinate system (xi)
on an open set of G and denote by g = g(x) an arbitrary group element in these coordi-
nates. Then, de�ning a vector vh at ThG by vh = vi∂i, and �xed group elements g0 and
h respectively by g0 = g(x = x0) and h = g(x = x1), this map is given by the following
expression:

dLg0(vh) =
n∑
i=1

n∑
j=1

vi
∂Lg0

j

∂xi

∣∣∣∣
x=x1

∂

∂xj
∈ TLg0hG = Tg0·hG . (3.5)

In this mapping, the functions Lg0
j = Lg0

j(x) are the components of the left translation
Lg0g = g0 · g in the coordinates (xi). The two following properties, valid for any group
elements g, h and vector �elds v and w, are of great importance and will be essential in
the de�nition of Lie algebras:

dLg ◦ dLh = d(Lg ◦ Lh) = dLg·h and dLg([v,w]) = [dLg(v), dLg(w)] . (3.6)

Vector �elds v satisfying dLg(vh) = vg·h for every g, h ∈ G are called left invariant
vector �elds. In other words, left invariant vector �elds are vector �elds which are kept
unchanged under the application of the di�erential map dLg:

dLg(v) = v , for every g ∈ G.
1Right translation can be similarly constructed and share the same properties as the left translation.

Indeed, all the general results presented in this section are valid for right translations.
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Conversely, given a basis for the tangent space at the identity, equation (3.5) can be
used to build vector �elds satisfying dLg(v) = v. Namely, we can de�ne vectors vh ≡
dLh(ve) ∈ ThG, for all h ∈ G. Then, from the �rst of the properties in (3.6):

dLg(vh) = dLg(dLh(ve)) = (dLg ◦ dLh)(ve) = (dLg·h)(ve) = vg·h , (3.7)

which is by de�nition a left invariant vector �eld. It is clear from this construction that
every Lie group admits the existence of such class of vector �elds.

Notice that since the di�erential map is linear, any linear combination of left invariant
vector �elds results in another left invariant vector �eld. Thus, the set of left invariant
vector �elds of G forms a vector space, denoted here by g. Moreover, notice that for any
given left invariant vector �eld v, the vector vg ∈ TgG is uniquely determined by the
vector ve ∈ TeG as a direct consequence of (3.7):

vg = dLg(ve) and ve = dLg−1(vg) .

This one-to-one identi�cation conveys that the vector space of invariant vector �elds g
and the vector space TeG are isomorphic, g ' TeG. In particular, the dimension of g
is equal to the dimension of the group G. In addition to this, from the second of the
properties (3.6), for any left invariant vector �elds v and w,

dLg([v,w]) = [dLg(v), dLg(w)] = [v,w] .

Therefore, the Lie bracket of left invariant vector �elds is again a left invariant vector
�eld. It follows from this result that since g is a �nite dimensional vector space closed
under the Lie bracket of vector �elds, then it is a Lie algebra. In fact, a Lie algebra
constructed this way is said to be the Lie algebra of the group.

Choosing a basis {Xi} for the Lie algebra g and assuming that dim(g) = n,

[Xi,Xj ] =
n∑
k=1

Ck
ijXk ,

for some constants Ck
ij called the structure constants of g. It follows from the anti-

symmetry and Jacobi identity of Lie brackets that

Ck
ji = −Ck

ij and
n∑
l=1

C l
[ijC

m
k]l = 0 . (3.8)

In fact, these constants fully characterize the Lie algebra g and any set of constants
satisfying (3.8) are structure constants for the Lie algebra of some Lie group [24].

3.3.1 Constructing the Lie Algebra for the SU(2) Group

In this subsection, some of the most important concepts described above on Lie algebras
are exempli�ed with an actual Lie group, using again the SU(2) group.

Consider the parameterization for the SU(2) group given by (3.3), recalling that ~x 2 =
(x1)2+(x2)2+(x3)2. In particular, as we have seen in section 3.2, the group multiplication
in these coordinates is given by (3.4). From this, the components of the left translation
Lg(x)g(y) = g(x) · g(y) can be easily obtained:

[Lg(x)g(y)]i =
3∑
j=1

3∑
k=1

εijky
jxk + xi

√
1− ~y 2 + yi

√
1− ~x 2 ,
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where ~y 2 = (y1)2 + (y2)2 + (y3)2. Note that, since the identity element e corresponds to
the coordinates yi = 0, the expression above gives [Lg(x)g(0)]i = yi, as expected.

Having in hands the components of the left translations Lg(y) in the coordinates (yi)
above, we are now in position to construct the left invariant vector �elds of the SU(2)
group. To this end, consider the vector ve = vi∂i de�ned at TeG, where the vi are
constants, and then, making use of equation (3.5), we are lead to

vg =
3∑
i=1

(
3∑
j=1

3∑
k=1

εijkv
jxk + vi

√
1− ~x 2

)
∂

∂xi

∣∣∣∣
x

∈ TgG ,

where (xi) are the coordinates of the arbitrary group element g. Then, by letting these
coordinates vary along the domain in which they are de�ned, the left invariant vector
�eld v = v(x) is then constructed. This expression can be rearranged to provide us the
following simpler form:

v(x) =
3∑
j=1

vjXj(x) , where Xj(x) =
3∑
i=1

(
3∑

k=1

εijkx
k + δij

√
1− ~x 2

)
∂

∂xi
. (3.9)

In fact, the left invariant vector �elds {Xj}, for j = 1, 2, 3, form a basis for the Lie algebra
su(2) of the SU(2) group. In particular, we see that Xj = ∂j at the identity element.
Computation of the Lie brackets of these vector �elds yields

[Xi,Xj ] =
3∑

k=1

(−2)εkijXk ⇒ Ci
jk = −2εijk . (3.10)

The change of basis X̃i = −1
2
Xi, changes the structure constants to C̃i

ij = εijk.
Now, consider the set of 1-form �elds {ω̃i} on the SU(2) group de�ned by

ω̃i = 2
3∑
j=1

[
3∑

k=1

(
−εijkxk +

xixkδkj√
1− ~x 2

)
+ δij

]
dxj .

It is easy to verify that this is dual to the basis of left invariant vector �elds X̃i, since
ω̃i(X̃j) = δij. Then, from the expression above we can calculate the exterior derivatives
dω̃i and verify that the Maurer-Cartan equation holds [26]. Namely,

dω̃i +
3∑
j=1

3∑
k=1

1
2
Ci

jkω̃
j ∧ ω̃k = 0 , with Ci

jk = εijk .

The existence of this set of 1-forms is not particular to the SU(2) group. Rather, in every
Lie group there always exists such a set, which is de�ned by the notion of pullback of
1-form �elds, and such that the Maurer-Cartan equation always holds. This is exactly
the 1-form counterpart of the left invariant vector �elds.

3.3.2 The Exponential Map

In the discussion above, we have seen that every Lie group admits the existence of a Lie
algebra of left invariant vector �elds. In this section, we present a mechanism called the
exponential map used to obtain a Lie group stemming from a Lie algebra.
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Before, consider a vector �eld v de�ned on a di�erentiable manifold M with coordi-
nates (xi), with integral curves parameterized by τ . In other words, given a point x0 in
M , the parameterized curve xi = xi(τ) is such that it starts at x(0) = x0 and walks on
M according to the following �rst order di�erential equation:

dxi

dτ
= vi(x) .

The solution to this equation x(τ) can be expanded around x0 at τ = 0, yielding

xi(τ) = xi0 + τ
dxi

dτ

∣∣∣∣
τ=0

+
τ 2

2!

d2xi

dτ 2

∣∣∣∣
τ=0

+ . . . =

(
1 + τv +

τ 2

2!
v2 + . . .

)
xi
∣∣∣∣
x=x0

⇒ xi(τ) ≡ exp(τv)xi ,

where v2xi should be understood as the action of v on the function v(xi) = vi(x), v3xi,
the action of v on v(vi) =

∑
j v

j∂jv
i, and so on.

The map exp : R ×M → M de�ned above, which takes the pair (t, x0) to the point
x(t), is the well-known exponential map, being also called the �ow of v. This map is
such that the following properties hold:

1. composition: exp [(τ1 + τ2)v]x = [exp(τ1v) ◦ exp(τ2v)]x ;

2. identity : exp(0 · v)x = x ;

3. inverse: [exp(τv)]−1 x = exp(−τv)x .

In particular, for �xed x and v, this map has the structure of a group, being called the
one-parameter group of di�eomorphism. In this sense, the vector �eld v is said to
be the in�nitesimal generator of the group.

Specializing to the case where M is a Lie group G and setting both the starting
point to be the identity e and v to be a left invariant vector �eld, the exponential map
exp(v) ≡ exp(τv)e

∣∣
τ=1

becomes a map from the Lie algebra g to the group G. In fact,
this map takes the Lie algebra g onto a neighborhood of the identity element in G. In
addition to this, although this map might not be de�ned globally, we can always write
any group element g as a �nite product of exponential maps,

g = expv1 · expv2 · . . . · expvk ,

for some v1, . . ., vk in g [17]. In this expression, �·� is the usual group multiplication. As
an illustration, consider again the SU(2) group with the parameterization given by (3.3)
and basis for the su(2) Lie algebra by (3.9). Then, let us evaluate exp(αX1), where α
is a real constant. In order to perform this calculation, we need to evaluate the action
(X1)nxi, for i = 1, 2, 3, at the identity xi = 0, where

X1 = (
√

1− ~x 2 )∂1 − x3∂2 + x2∂3 .

It is easy to verify that (X1)nx1|e = (−1)(n−1)/2 for n odd and (X1)nx1|e = 0 for n even,
whereas (X1)nx2|e = 0 and (X1)nx3|e = 0 in both cases. Hence, we have:

x1(α) = exp(αX1) =
∞∑
n=1

αn

n!
(X1)nx1

∣∣∣∣
x=0

=
∑
n odd

(−1)(n−1)/2αn

n!
= sin(α) ,
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along with x2(α) = 0 = x3(α). Thus, the vector �elds αX1 of su(2) are mapped to the
group elements in G with coordinates x1(α) = sinα, x2 = 0 and x3 = 0. In this case, the
matrix representation, given by (3.3), takes the following form:

g(sin(α), 0, 0) =

[
cos(α) i sin(α)
i sin(α) cos(α)

]
. (3.11)

For n-parameter matrix Lie groups G, the group elements g(α) can be expanded in
Taylor series around the identity matrix I = g(0), leading to

g(α) = I +
n∑
i=1

αiZi + . . . ,

where the αi are n real parameters and the Zi are matrices de�ned by

Zi =
∂

∂αi
[g(α)]

∣∣∣∣
αi=0

.

These are the in�nitesimal generators of the Lie group as they give rise to the same Lie
algebra, with respect to the ordinary commutator of matrices, as the one generated by
the left invariant vector �elds Xi. In this case the exponential map of vector �elds Xi is
equivalent to the matrix exponentiation of the generators Zi:

exp
(∑

i
αiXi

)
⇐⇒ exp

(∑
i
αiZi

)
.

Then, similarly, the Lie algebra g is spanned by the matrices Zi, which is mapped onto a
neighborhood of the identity I through the matrix exponentiation. For the SU(2) group
with elements g(x) parameterized by (3.3), from Zi = ∂g(x)/∂xi|xi=0,

Z1 = i

[
0 1
1 0

]
= iσ1 , Z2 = i

[
0 −i
i 0

]
= iσ2 , Z3 = i

[
1 0
0 −1

]
= iσ3 , (3.12)

where the σi are the well-known Pauli matrices. Thus, Zi = iσi and we have:

[σi, σj] =
3∑

k=1

2iεkijσk ⇒ [Zi, Zj] =
3∑

k=1

(−2)εkijZk .

Notice that, this algebra of commutators is the same as that of Lie brackets satis�ed by
the vector �elds Xi, (3.10), illustrating thus the equivalence Zi ⇔Xi. Besides this, once
the exponential of Pauli matrices are known to satisfy the relation:

exp [ia(n̂ · ~σ)] = cos(a)I + i sin(a)(n̂ · ~σ) ,

where a is a real parameter and n̂ is a three-dimensional unit vector, we have that

exp(αZ1) = cos(α)I + sin(α)Z1 =

[
cos(α) i sin(α)
i sin(α) cos(α)

]
.

Comparing this with (3.11), we see that the exponential map of the vector �eld αX1 and
the matrix exponentiation of αZ1 resulted in the same group element, agreeing, thus, with
the statement that the two exponential maps are equivalent.

Before �nishing the section, there are some important points regarding the exponential
map of Lie algebras that are worthwhile mentioning:
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1. the covering problem: in general, one single exponential map does not cover the
whole group. Instead, it only maps the Lie algebra onto a neighborhood of the
identity. For Lie groups G whose Lie algebras g contain a subalgebra h that gen-
erates a compact subgroup H, a theorem due to Cartan states that the product of
exponentials, one of the generators in the complement of h, and the other with the
generators in h, maps g onto the entire Lie group G.

2. isomorphic Lie algebras : two Lie groups presenting the same Lie algebra are not
necessarily the same. Rather, they are locally isomorphic. In fact, for any given
Lie algebra there exists a unique Lie group Ḡ which is simply connected, called the
universal covering group. In this case, any other group presenting the same Lie
algebra is either identical to Ḡ or else has the form of a quotient Ḡ/D, where D is
a discrete invariant subgroup of Ḡ.

3.4 Transformation Groups

In physics, Lie groups are realized as transformations acting on a manifold M of physical
relevance for some theory. More precisely, the action of a Lie group G on the manifoldM is
de�ned to be a smooth transformation τ that assigns to every pair of points (g, x) ∈ G×M
a point τg · x in M such that for any group elements g, g1 and g2 ∈ G and points x ∈M ,
the following properties hold:

(i) composition law : τg1 · (τg2 · x) = (τg1 ◦ τg2) · x = τ(g1·g2) · x;

(ii) identity transformation: τe · x = x;

(iii) inverse transformation: (τg)
−1 = τg−1 , since τg−1 · (τg · x) = τ(g−1·g) · x = x.

In particular, due to (iii), for any �xed group element g, the map τg : M → M is
a di�eomorphism on M . On the other hand, �xing the point x and letting the group
element g vary, the image of the map τ : G→M de�nes a submanifold Ox on M , called
the orbit of G through x. The group G is then said to be transitive on its orbits, since
for any two points x1 and x2 on Ox there exist group elements g1, g2 and g3 in G such
that if τg1 ·x = x1 and τg2 ·x = x2 then τg3 ·x1 = x2, in which case g3 = g2 · g−11 . In other
words, any two points in an orbit is connected to each other by means of a transformation
τg, for some g:

τg1 · x = x1 ⇒ x = τg1−1 · x1 ⇒ x2 = τg2 · x = τg2 · (τg1−1 · x1) = τg2·g−1
1
· x1 .

Besides this, the group G is said to be either transitive onM , in the case where Ox = M ,
or intransitive, if Ox 6= M .

A group action is said to be simply-transitive if τg1 · x = τg2 · x implies g1 = g2,
for all g1, g2 ∈ G. Conversely, the action is said to be multiply-transitive if there exist
distinct group elements g1 and g2 such that τg1 · x = τg2 · x, a case of particular interest
being when τg · x = τe · x = x. In this case, the group elements g form a Lie subgroup,
called the stability group S(x) of x, as can easily be proven:

(i) closure: given two group elements g1 and g2 in S(x), τg1 · x = x and τg2 · x = x,
then g1 · g2 is also in S(x): τ(g1·g2) · x = τg1 · (τg2 · x) = x;

(ii) identity : the identity element e is in S(x), by de�nition, since τex = x;
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(iii) inverse: for every g in S(x): τg ·x = x⇒ x = τg−1 ·x, implying that if g is in S(x),
then so is its inverse g−1.

Notice that if the points x1 and x2 of the same orbit are connected to each other by
means of τg · x1 = x2 and g1 is in S(x1), namely τg1 · x1 = x1, then the element g · g1 · g−1
belongs to the stability group of x2, S(x2):

τg · x1 = x2 ⇒ x1 = τg−1 · x2 ⇒ x1 = τg1 · x1 = τg1 · (τg−1 · x2) .

Then, since x2 = τg · x1, it follows that

x1 = τg1 · (τg−1 · x2) ⇒ x2 = τg · (τg1 · (τg−1 · x2)) = τ(g·g1·g−1) · x2 .

Therefore, this shows that S(x1) and S(x2) are conjugate subgroups of G.
The exponential map when applied to the map τ : G → Ox provides a way to map

left invariant vector �elds of g to vector �elds tangent to Ox ⊂M . In fact, by varying the
point x, the submanifolds Ox will cover a region of M , and then smooth vector �elds will
be de�ned in the same region. Recall that the di�erential map preserves the Lie brackets
of vector �elds, meaning that the basis of left invariant vector �elds in G will give rise
to a set of vector �elds in M satisfying the same Lie algebra. Denoting this mapping by
dτ (Xi) = ξi, we have that:

[Xi,Xj ] =
∑
k

Ck
ijXk =⇒ [ξi, ξj ] =

∑
k

Ck
ijξk .

Conversely, given a �nite set of vector �elds ξi on M satisfying [ξi, ξj ] =
∑

k C
k
ijξk, for

some constants Ck
ij, there always exists a Lie group acting on M , whose Lie algebra has

as structure constants the same constants Ck
ij [24]. Besides this, the stability group S(x)

of a point x is generated by those v ∈ g such that the mapping dτ (v)|x = 0, namely the
Kernel of the linear map dτ at x. In particular, it follows from this that the dimensions
r of the group G, d of the orbit through x and s of the stability group S(x) are related
to each other by the relation r = d+ s.

A very simple example of group action is given by the one-parameter group of di�eo-
morphism introduced in the previous section. Indeed, provided a vector �eld ξ de�ned on
a manifold M , the exponential map exp : R×M → M de�ned by τ τ = exp(τξ) takes a
point (τ, x) ∈ [G = (R,+)]×M and assigns to it a point exp (τξ)x ∈M along the integral
curves of ξ, starting from x and walking along the curve for a �time� τ . G = (R,+) is the
Lie group de�ned by the real line endowed with the sum, similar to the discrete group
(Z,+).

3.5 Isometries

Notice that, so far, nothing has been said about whether the manifolds in which the groups
are acting are equipped with structures such as a metric or connection. In the particular
case of Riemannian manifolds, it is of great importance to study group transformations
that leave the metric invariant, namely di�eomorphisms φ such that the pullback of
the metric g by φ results in φ∗g = g. When this happens, the di�eomorphism φ is a
symmetry transformation called isometry.
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Assuming (xµ) to be a coordinate system de�ned in M and letting φ be a di�eomor-
phism on M which takes points in the coordinates xµ to the ones in x′µ = x′µ(x), the
pullback of the metric tensor g by the di�eomorphims φ reads2

(φ∗g)µν(x) =
∂x′ρ

∂xµ
∂x′σ

∂xν
gρσ(x′) . (3.13)

Then, the invariance of the metric under the map φ is equivalent to the equation

(φ∗g)µν(x) = gµν(x) , (3.14)

meaning that isometries are transformations that leave the functional form of the metric
invariant. Equations of this form are extremely di�cult to be solved directly and, instead,
we consider in�nitesimal transformations:

xµ 7→ x′
µ
(x) = xµ + ε ξµ(x) , (3.15)

where ε is an in�nitesimal parameter and ξµ(x) are the components of a vector �eld ξ(x),
called the in�nitesimal generator of the transformation. Hence, a �nite transformation
is constructed through successive applications of (3.15), giving rise, ultimately, to the
exponential map of the vector �eld ξ discussed in the previous sections. In order to
work out the general form for the in�nitesimal generators of isometries, consider the
in�nitesimal tranformations (3.15). Then, it follows that

∂x′ρ

∂xµ
= δρµ + ε ∂µξ

ρ and gµν(x
′) = gµν(x) + ε ξλ∂λgµν(x) +O(ε2) ,

where the second of these expressions was obtained via Taylor expansion. Plugging these
results into equation (3.14), with help of the de�nition (3.13), we are lead to

gµν(x) =
∂x′ρ

∂xµ
∂x′σ

∂xν
gρσ(x′) =

(
δρµ + ε ∂µξ

ρ
)

(δσν + ε ∂νξ
σ)
[
gρσ(x) + ε ξλ∂λgρσ(x)

]
= gµν(x) + ε

(
ξλ∂λgµν + gµσ∂νξ

σ + gρν∂µξ
ρ
)
,

where we have kept only the terms up to �rst-order in ε. Notice that, the content embraced
by the brackets in this last expression is the Lie derivative of the metric tensor g along
the vector �eld ξ, Lξg. Thus, the requirement that the in�nitesimal transformation is an
isometry translates to the following equation for ξµ:

(Lξg)µν =
(
ξλ∂λgµν + gµσ∂νξ

σ + gρν∂µξ
ρ
)

= 0 . (3.16)

In turn, this equation can be put in the following simpler form:

∇µξν +∇νξµ = 2∇(µξν) = 0 , (3.17)

where we have made use of ∂λgµν = Γσλνgµσ + Γρλµgρν and Γσµν = Γσνµ, which are direct
consequence of the fact that Riemannian manifolds are endowed with a torsion free metric-
compatible connection. Equation (3.17) is known as the Killing equation, and the
in�nitesimal generators ξ satisfying it are called Killing vector �elds.

2From now on, it is convenient to make use of the Einstein notation, which says that to any repeated
index, there is a summation implied over all the values allowed for that index.
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We notice from equation (3.16) that, if in some coordinate system (xµ) the components
of the metric gµν do not depend on one of the coordinates, say x1, then the vector �eld
de�ned by ξ = ∂1 is a Killing vector �eld. In this case, the isometry is easily seen to be
given by x′µ(x) = xµ + aδµ1 , where a is a constant.

An useful equation that relates the second order derivative of a Killing vector �eld
ξ with components ξµ to the Riemann tensor Rµνρ

σ can be obtained from the de�ning
equation for the Riemann tensor

(∇µ∇ν −∇ν∇µ)ξρ = Rµνρ
σξσ .

Indeed, calling this equation (µνρ), evaluation of the sum (µνρ) − (νρµ) − (ρµν), with
further use of the index symmetries of the Riemann tensor and the Bianchi identity
R[µνρ]

σ = 0, we easily arrive at the following equation:

∇ρ∇νξµ = Rµνρ
σξσ . (3.18)

Notice that, equation (3.18) gives the second order partial derivatives of the Killing
vector �eld ξµ in terms of its �rst order derivatives and its components themselves. It
is not di�cult to see from this that higher order derivatives are also expressed in terms
of these same quantities, namely the n components ξµ and the n(n − 1)/2 components
∇µξν (since ∇µξν = −∇νξµ), where n is the dimension of the manifold on which the
vector �eld ξµ is de�ned. Thus, Killing vector �elds are fully characterized by these
n + n(n − 1)/2 = n(n + 1)/2 quantities. In particular, if ξµ = 0 and ∇µξν = 0 at some
point, then ξ ≡ 0. Consequently, there cannot be more than n(n + 1)/2 independent
Killing vector �elds in a Riemannian manifold.

The set of Killing vector �elds in a Riemannian manifold turns out to form a Lie
algebra. This fact follows directly from the two following properties of Lie derivatives: for
any vector �elds v, w, and constants a, b,

(i) linearity : Lav+bw = aLv + bLw ;

(ii) commutation: LvLw − LwLv = L[v,w] .

Indeed, since Killing vector �elds ξ are such that Lξg = 0, given two of such vectors, ξ
and η, the �rst of these properties provides that the linear combination aξ + bη is also a
Killing vector �eld:

Laξ+bηg = aLξg + bLηg = 0 .

Thus, since the number of independent Killing vector �elds is �nite, they form a �nite
dimensional vector space. In addition to this, from the second of the properties above,
this vector space is closed under the Lie bracket of vector �elds:

L[ξ,η]g = (LξLη − LηLξ)g = 0 .

From these results, it becomes clear that the set of Killing vector �elds on an n-
dimensional Riemannian manifold forms, indeed, a Lie algebra. In this case, the dimension
of the algebra is no larger than n(n + 1)/2. Consequently, since to any Lie algebra of
vector �elds there exists a corresponding Lie group of transformations, the set of Killing
vector �elds de�nes a Lie group, called the isometry group, the corresponding stability
group being known as the isotropy group.
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Another important class of di�eomorphisms φ on Riemannian manifolds is the one
that leaves the metric invariant up to a conformal factor Ω2 = Ω2(x):

(φ∗g)µν = Ω2gµν .

Transformations of this type are called conformal isometries. By means of the in�nites-
imal transformation xµ 7→ x′µ(x) = xµ + εψµ, and assuming that Ω2(x) ≈ 1 + εf(x), by a
procedure similar to the above for Killing vector �elds, we obtain

(Lψg)µν = ∇µψν +∇νψµ = f(x)gµν . (3.19)

This equation is known as the conformal Killing equation, and the generators of con-
formal isometries ψ are therefore called conformal Killing vector �elds. Contracting
the indices µ and ν in (3.19), and replacing the expression for f(x) into the same equation,
we obtain the following equivalent equation:

∇µψν +∇νψµ =
2

n
(∇ρψρ) gµν . (3.20)

Just as for Killing vector �elds, the conformal Killing vector �elds de�ned on a Rieman-
nian manifold happen to form a Lie algebra. In fact, this can easily be proven, following
the same steps as we did above for the Killing vector �elds.

3.5.1 Conserved Quantities Along the Geodesic Motion

An important feature carried by Killing vector �elds is that, through them, we are able
to build quantities that are conserved along geodesic paths. In fact, these constants of
the motion will turn out to be very e�ective in the attainment of the geodesic motion,
as, in general, the geodesic equation cannot be solved analytically without the use of
symmetries.

Let M be an n-dimensional manifold with coordinate system (xµ) de�ned on it, and
assume uµ = dxµ/dτ to be the tangent vector to a geodesic path parameterized by the
a�ne parameter τ : uµ∇µu

ν = 0. Then, the quantity de�ned by ξµuµ is conserved along
the geodesic motion:

uµ∇µ(ξνu
ν) = uµuν∇µξν + (uµ∇µu

ν)ξν = 0 ,

where it has been made use of the fact that uµuν∇µξν = uµuν∇(µξν) = 0, since ξµ is
a Killing vector �eld, and that uµ is tangent to an a�nely parameterized geodesic. If,
instead of a Killing vector �eld we had considered a conformal Killing vector �eld ψ and
had constructed the quantity ψµuµ, we would have obtained:

uµ∇µ(ψνu
ν) = uµuν∇(µψν) + (uµ∇µu

ν)ψν =
1

n
(∇ρψρ) gµνu

µuν ,

where we have made use of ∇(µψν) = (∇µψν +∇νψµ)/2, along with the de�ning equation
for conformal Killing vector �elds (3.20). Notice that the right hand side of the above
equation vanishes only for null geodesics, gµνuµuν = 0. Thus, conformal Killing vector
�elds give rise to conserved quantities along null geodesics.
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3.6 Maximally Symmetric Spaces

A maximally symmetric space is an n-dimensional Riemannian manifold that admits
the action of an isometry group with maximal number of generators, namely n(n+ 1)/2.
In this section we list the most important properties of such spaces.

Consider Riemannian manifolds with Riemann tensor given in the form below:

Rµνρσ = R(gµρgνσ − gµσgνρ) . (3.21)

In fact, any two-dimensional Riemannian manifold has a Riemann tensor of this form,
whereR represents a measure of curvature called the sectional curvature. For manifolds
with dimension bigger than two, at each point we may choose a pair of tangent vectors,
which will determine a two-dimensional submanifold by the geodesics passing through this
point, with initial tangent vector given by the vectors in the tangent subspace spanned
by this pair of vectors. In this case, the Riemann tensor acquire the above form when
restricted to this two-dimensional submanifold. Consider, then, the special case in which
(3.21) holds regardless of the direction we choose. In this case, the sectional curvature R,
at any point, does not depend on this direction either. This, in fact, endows this space
with a notion of isotropy. Besides this, contracting Rµρν

ρ = Rµν , and further Rµ
µ = R,

to obtain Ricci scalar, we arrive at R = n(n− 1)R. Bianchi identity ∇[λRµν]ρ
σ = 0 then

yields (n−2)(n−1)∂µR = 0. In particular, for dimensions bigger than two, R, and hence
R, is constant. For this reason, spaces of the form (3.21), and in special of dimension two
with constant R, are called spaces of constant curvature.

An important feature of spaces of constant curvature is that they admit the action
of an isometry group with maximal number of generators. In fact, it is also possible to
prove the converse: any Riemannian manifold admitting a maximal isometry group is
necessarily a space of constant curvature [24]. Therefore, spaces of constant curvature
are maximally symmetric spaces, and vice-versa. Consequently, equation (3.21) with R
constant can be adopted, equivalently, as the de�nition for maximally symmetric spaces.

The action of the isometry group on maximally symmetric spaces is transitive on the
whole manifold. In other words, any point in the manifold can be taken continuously to
any other through an isometry transformation. Spaces with this characteristic are said to
be homogeneous. Thus, maximally symmetric spaces, in addition to being isotropic, as
discussed above, are homogeneous. For this reason, this class of spaces are widely used
in cosmology to describe the spacelike hypersurfaces of cosmological models [28].

Notice that the Einstein tensor Gµν ≡ Rµν − 1
2
Rgµν can be easily evaluated for maxi-

mally symmetric spaces of dimension n using equation (3.21):

Gµν = Rµν −
1

2
Rgµν =

(
1

n
− 1

2

)
Rgµν .

From this, we see that such a class of spaces is necessarily solution for the vacuum Ein-
stein's equation with a cosmological constant Λ:

Rµν −
1

2
Rgµν + Λgµν = 0 , where Λ ≡

(
1

2
− 1

n

)
R . (3.22)

In particular, spaces of this type with a Lorentzian signature, gµν = diag(−+ . . .+), are
called either a de Sitter space dSn, if R > 0 (Λ > 0), or an anti-de Sitter space AdSn,
if R < 0 (Λ < 0). The case where R = 0 is necessarily the �at space.
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It is simple to verify that spaces with Riemann tensor de�ned by equation (3.21) are
such that all the components of the Weyl tensor

Cµνρσ = Rµνρσ −
2

n− 2
(gµ[ρRσ]ν − gν[ρRσ]µ) +

2

(n− 1)(n− 2)
Rgµ[ρgσ]ν

are identically vanishing. For spaces of dimension equal or larger than four the vanishing
of the Weyl tensor is equivalent to the statement that the metric tensor is conformal to
the metric of the �at space [29]. In other words, there exists a coordinate system such
that

gµν = Ω2ηµν , (3.23)

where ηµν stands for the components of the metric tensor of the �at space. On the
other hand, two-dimensional spaces are always conformal to the �at space, while three-
dimensional spaces, which are such that the Weyl tensors is always zero, are conformally
�at if, and only if, the Cotton tensor vanishes [30]:

Cµνλ = ∇λRµν −∇νRµλ +
1

2(n− 1)
(gµλ∇νR− gµν∇λR) = 0 .

It turns out that, since Rµν = Rgµν/n and R is constant for maximally symmetric spaces,
we have ∇λRµν = (∇λR)gµν/n = 0, which implies that the Cotton tensor vanishes for
such spaces, irrespective of the dimension n. Thus, we conclude that maximally symmetric
spaces of any dimension are conformally �at. Conversely, starting from a metric tensor
with components given in the form (3.23), and then integrating Einstein's equation (3.22),
which can be accomplished with the aid of the Cartan vielbein formalism, we obtain:

Ω2 =

[
1 +

Λ(ηµνx
µxν)

2(n− 1)(n− 2)

]−2
⇒ gµν =

[
1 +

Λ(ηµνx
µxν)

2(n− 1)(n− 2)

]−2
ηµν ,

where ηµν = diag(+ . . . + − . . .−) are the components of the �at metric in arbitrary
dimension and signature. In fact, spaces endowed with the metric above are maximally
symmetric, as can be seen from the fact that, by de�nition, the scalar ηµνxµxν is invariant
under the O(k, n − k) group, which is of dimension n(n + 1)/2. Thus, we see that not
only maximally symmetric spaces are conformally �at and satis�es the vacuum Einstein's
equation with a cosmological constant, but also that conformally �at spaces satisfying
such a equation are maximally symmetric.

For homogeneous spaces M with an isometry group G and isotropy at some point x
given by H, it can be shown that M = G/H. In other words, every group transformation
τg · x, for group elements that di�er only by a multiplication by an element of H on
the right, is equivalent to some point in this manifold in a one-to-one manner. In the
particular case of n-dimensional de Sitter spaces, the isometry group is given by the
generalized orthogonal group O(1, n), while the isotropy group is given by O(1, n − 1).
Thus, dSn = O(1, n)/O(1, n − 1). Notice that the dimension of the group O(1, n) is
n(n + 1)/2, which leads to r = n, the dimension of the orbits. Similarly, we have that
AdSn = O(2, n− 1)/O(1, n− 1).

Before �nishing the section, there are still two other important features shared by this
class of spaces that are worthwhile mentioning. The �rst one concerns the number of
conformal isometries these spaces have. In fact, maximally symmetric spaces not only
count with the highest number of isometries, but also with the maximum number of
conformal isometries. Indeed, it is possible to prove that a space admits the maximal
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number of independent conformal Killing vector �elds if, and only if, it is conformally �at
[30]. In this case, the maximal number is (n+1)(n+2)/2, where n is the dimension of the
manifold. The second feature concerns the uniqueness of maximally symmetric spaces:
two maximally symmetric spaces sharing the same signature and sectional curvature R
are locally the same.

3.7 Hidden Symmetries

Besides the conserved quantities linear in the velocity uµ of a geodesic curve built from
Killing vectors, a space may admit the existence of conserved quantities of higher order
in these velocities [31, 32]. Unlike the former ones, whose origin lies in the existence
of symmetries of the metric tensor, the symmetries associated to higher order conserved
quantities, the so-called hidden symmetries, are related to the existence of �rst integrals
in the cotangent bundle of Riemannian manifolds.

One of such conserved quantities can be constructed from conformal Killing ten-
sors, which are de�ned to be totally symmetric tensors of rank r satisfying:

∇(νKµ1µ2...µr) = gν(µ1K̃µ2...µr) , (3.24)

with K̃µ2...µr being another totally symmetric tensor of rank (r − 1). It is easy to prove
that the quantity Kµ1µ2...µru

µ1uµ2 · · ·uµr , where uµ is the tangent vector to an a�nely
parameterized null geodesic, is conserved along the geodesic. In particular, when K̃µ2...µp =
0, equation (3.24) becomes the de�ning equation for Killing tensors. For these latter,
the quantity Kµ1µ2...µru

µ1uµ2 · · ·uµr is, in fact, conserved for any kind of geodesic motion,
not being restricted only to null geodesics, as can easily be checked. In particular, the
metric tensor of Riemannian manifolds provides an example of a rank-2 Killing tensor,
since it is, by de�nition, covariantly constant. Notice, in particular, that this de�nition of
conformal Killing tensors provides a generalization for Killing vector �elds, as these can
be obtained from equation (3.24) by setting r = 1 and K̃ = 0.

The generalization towards the antisymmetric tensors also exists and these are called
conformal Killing-Yano tensors. Such quantities are de�ned as totally antisymmetric
tensors of rank r (di�erential r-forms) whose components satisfy

∇(νYµ1)µ2...µr = gνµ1Ỹµ2...µr − (r − 1)g[µ2(ν Ỹµ1)µ3...µr] , (3.25)

where Ỹµ2...µr is some (r − 1)-form. Contracting this equation with the inverse metric
tensor gµ1ν , we easily arrive at the following equation for Ỹ :

Ỹµ2...µr =
1

(n− r + 1)
∇µ1Yµ1µ2···µr .

As a matter of checking, choosing r = 1 in equation (3.25), it reduces to the conformal
Killing equation, and to the Killing equation if, in addition to r = 1, we set Ỹ = 0. For
the case in which the tensor Ỹ is vanishing, the rank-r antisymmetric tensor Y is, then,
called a Killing-Yano tensor. Killing-Yano tensors are such that their �square� is a
rank-2 Killing tensor:

Kµν = Yµµ2µ3···µrYν
µ2µ3···µr ,

as can easily be proved after a little of algebra. Therefore, any space admitting a Killing-
Yano tensor of arbitrary rank, necessarily possess a rank-2 Killing tensor. The converse is
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not always true, though. Besides this, for Einstein space, namely spaces where Rµν ∝ gµν ,
or equivalently (3.22), from a rank-2 Killing-Yano tensor, we can construct a Killing vector
�eld by means of the de�nition

ξµ =
1

n− 1
∇νY

µν . (3.26)

Indeed, using the de�nition of Riemann tensor in terms of covariant derivatives along with
the Bianchi identity R[µνρ]

σ = 0, is it not di�cult to show that [33]

∇(µξν) = − 1

n− 2
Rλ(µYν)

λ .

Then, for Einstein spaces, the right hand side of this equation vanishes as a consequence
of the antisymmetry of the tensor Y . Thus, we see that Einstein spaces admitting a
rank-2 Killing-Yano tensor possess a Killing vector of the form (3.26).

3.8 Group Action on Spaces with a Separability Structure of Type Sn−2
In this section, we shall study spaces admitting a separability structure of type Sn−2, as
obtained in the previous chapter, in light of the approach of group action described in the
present chapter. This will hopefully provide us with insights and de�nitely with a better
understanding of such spaces.

Recall, these Riemannian manifolds are described by the metric given by

g−1 =
1

φ1 + φ2

[
(ηαβ1 ψ1 + ηαβ2 ψ2)∂α ⊗ ∂β + ψ1∂x ⊗ ∂x + ψ2∂y ⊗ ∂y

]
,

where functions with subscript 1 are functions of x, while the ones with subscript 2 are
functions of the coordinate y. Besides this, the coordinates with Greek indices, α and β,
varies among the coordinates {σ3, σ4, · · · , σn}, where n is dimension of the manifold. In
addition to this, remember also that such spaces are endowed with a nontrivial rank-2
Killing tensor given in this same coordinates by

K =
1

φ1 + φ2

[
(ηαβ1 φ2ψ1 − ηαβ2 φ1ψ2)∂α ⊗ ∂β + φ2ψ1∂x ⊗ ∂x − φ1ψ2∂y ⊗ ∂y

]
.

We immediately notice from the metric tensor above that, since it does not depend
on the coordinates σα, the coordinate vectors ∂α = ∂σα are Killing vector �elds. Hence,
once coordinate vectors always commute with each other, we have that the Lie algebra
generated by them is abelian, namely all the constants Ca

bc = 0, giving rise, therefore, to
an abelian Lie group. Thus, since this Lie algebra is (n−2)-dimensional, the corresponding
Lie group of isometries is of same dimension.

As we have seen along this chapter, once we have the Lie algebra of Killing vector �elds
of a Riemannian manifold, the isometry group is then obtained through the exponential
map. In the present case, we can easily obtain this group action:

σ̃α = exp(aβ∂β)σα =

(
1 + aβ∂β +

1

2
aβaγ∂β∂γ + · · ·

)
σα = σα + aα ,

where the constants aα are parameters spanning the group elements of the Lie group.
Similarly, for the coordinates x and y, we have

x̃ = exp(aα∂α)x = x and ỹ = exp(aα∂α)y = y .
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From this transformation, it becomes clear the abelian character of the group. This group
is isomorphic to the simply connected Lie group of translations (Rn−2,+) which is, in fact,
the universal covering group of the Lie algebra presented.

It is also clear from the action of the isometry group above that their orbits are the
submanifoldsWn−2 de�ned in the previous chapter as the hypersurfaces of constant x and
y. Hence, this group action is transitive on these submanifolds. Moreover, this action is
simply-transitive, since

exp(aβ∂β)σα = exp(bβ∂β)σα ⇔ aα = bα .

In particular, since exp(aβ∂β)σα = σα ⇔ aβ = 0, the isotropy group is trivial.
Regarding conserved quantities along the geodesic motion, the isometry group of the

class of metrics considered here, generated by the Killing vector �elds ∂α, gives rise to the
(n− 2) conserved quantities qα de�ned by

qα = (∂α)µu
µ = gµν(∂α)µuν = gαν

dxν

dτ
,

where uµ is the tangent vector to an a�nely parameterized curve x(τ). As stressed in
the previous section, these conserved quantities have origin in the symmetries of the
Riemannian manifold. On the other hand, the following conserved quantities

q1 = gµν
dxµ

dτ

dxν

dτ
and q2 = Kµν

dxµ

dτ

dxν

dτ
,

where gµν and Kµν are respectively the components of g and K, have origin in the sym-
metries of the geodesic Hamiltonian de�ned on the cotangent bundle of our Riemannian
manifold. Hence, it follows that, once n independent conserved quantities were obtained
through symmetries, the geodesic motion is analytically attainable for such a class of met-
rics. In fact, this is in total accordance with the results found in chapter 2 and reinforces
the usefulness of symmetries.
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4 A Class of Integrable Metrics Cou-

pled to Gauge Fields

4.1 Introduction

Since the advent of Einstein's theory of general relativity in 1915 there has been an
extensive attempt to obtain exact solutions for the �eld equations. Since then, general
classes of spaces have been investigated, each one taking into account di�erent geometric
anzätze. The use of symmetries is one of the most desired features one would like to
impose in this search, since the existence of these are known to be connected to the
notion of integrability [31, 32]. Particular emphasis is put on the integrability of the
Klein-Gordon and Schrödinger equations, which have been attained in some cases thanks
to the existence of symmetries [8].

As we have seen in chapter 2, the study of separability of the Hamilton-Jacobi equation
for the geodesic Hamiltonian naturally gives rise to a general class of spaces with de�nite
separability structure and symmetries. In particular, the most general n-dimensional
metric endowed with (n − 2) commuting Killing vectors and a nontrivial rank-2 Killing
tensor was found and studied there when we considered separability structures of type
Sn−2. The importance of investigating such a class resides in the fact that the attainment
of the complete integral is always possible in such a case due to the number of symmetries
these spaces have. In fact, as shown explicitly in section 3.8, the (n − 2) Killing vector
�elds together with the metric and Killing tensor provide n �rst integrals, allowing, thus,
the complete integrability of the geodesic motion. When restricted to n = 4, this general
line element, given in section 2.9 by equation (2.34), takes the following form:

gab∂a∂b =
1

S1(x) + S2(y)

[
Gij

1 (x)∂i∂j −Gij
2 (y)∂i∂j + ∆1(x)∂2x + ∆2(y)∂2y

]
, (4.1)

where we have de�ned ηij1 ψ1 = Gij
1 (x), ηij2 ψ2 = −Gij

2 (y), ψ1 = ∆1(x), ψ2 = ∆2(y),
φ1 = S1(x) and φ2 = S2(y). In this notation, the indices a and b range over the coordinates
{τ , σ, x, y}, while i, j run over {τ , σ}. Moreover, the functions Gij

1 (x) and Gij
2 (y) are

symmetric in their upper indices, i.e., Gij
1 = Gji

1 and Gij
2 = Gji

2 . Besides this, we have used
the notation ∂a∂b for ∂a ⊗ ∂b. In the language of the chapter 2, the coordinates used in
this metric are normal separable, τ and σ being �rst class coordinates, while x and y are
of second class. In this case, the two commuting Killing vector �elds are the coordinate
vectors ∂τ and ∂σ, and the nontrivial rank-2 Killing tensor K, written in terms of the
new functions Gij

1 , G
ij
2 , ∆1, ∆2, S1 and S2, is given by (see section 2.9)

K =
1

S1 + S2

[
S1G

ij
2 ∂i∂j + S2G

ij
1 ∂i∂j + ∆1S2∂

2
x − S1∆2∂

2
y

]
. (4.2)
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As stressed earlier in this introduction, this Killing tensor, along with the two Killing
vectors ∂τ and ∂σ, ensures the complete integrability of the geodesic equation for spaces
given by the metric (4.1).

Recently, the authors of Ref. [11], A. Anabalón and C. Batista, attained the complete
integration of Einstein's vacuum equation for the general class of metrics of the form (4.1),
assuming the following restriction on the functions Gij

1 and Gij
2 :

detGij
1 ≡ Gττ

1 G
σσ
1 −Gτσ

1 G
τσ
1 = 0 and detGij

2 ≡ Gττ
2 G

σσ
2 −Gτσ

2 G
τσ
2 = 0 . (4.3)

These constraints are interesting as they guarantee that both of the terms Gij
1 ∂i∂j and

Gij
2 ∂i∂j appearing in the line element (4.1) can be written as the square of a vector

�eld, so that the spacetime has a naturally de�ned Lorentz frame and, consequently, a
natural null tetrad. In particular, this class of spaces contains the most physically relevant
analytical solutions of Einstein's equation, as it contains the Kerr-(A)dS spacetime [5].
In e�ect, in the particular case of Lorentzian signature, the metric (4.1) represents a
stationary and axisymmetric spacetime. As a matter of fact, the constraints (4.3) give
rise to two independent geodesic and shear-free null congruences, even without imposing
a �eld equation. Hence, making use of the Goldberg-Sachs theorem, the authors were able
to completely integrate Einstein's vacuum equation for the spaces under consideration.

Following these general lines, we aim to broaden their results by allowing the exis-
tence of a gauge �eld on backgrounds described by the line element (4.1) in the so-called
Einstein-Yang-Mills theory. More precisely, we intend to analytically integrate the �eld
equations of this theory for an arbitrary gauge group, for the class of metrics (4.1) under
(4.3). A drawback that we immediately face is that the Goldberg-Sachs theorem is no
longer valid in this case. Nevertheless, we surpass this problem by requiring the gauge
�elds to be aligned to the principal null directions of the spacetime, a feature shared by
almost all known charged black hole solutions.

Einstein-Yang-Mills (EYM) theory is an interacting theory describing the dynamics of
a non-abelian gauge �eld coupled to the gravitational �eld. Alone, the Yang-Mills (YM)
theory plays an essential role in the uni�cation of fundamental interactions in particle
physics. In the framework of the EYM theory, due to the complexity and the non-
linear character of the �eld equations, until now almost all known solutions have been
found numerically [34, 35, 36, 37, 38], although in a few speci�c cases, exact solutions
could also be obtained [39, 40]. The �rst of these numerical solutions was presented
by R. Bartnik and J. McKinnon in 1988 [41] for the case of a four-dimensional static
spherically symmetric spacetime, describing solitonic solutions. Two years later, a black-
hole counterpart was found, also numerically, by P. Bizon [36]. Interestingly, this new
solution presented hair, contradicting the well-known no-hair conjecture for black hole
solutions, as it presented globally vanishing YM-charges characterizing the black hole. In
fact, other asymptotically �at colored black hole solutions were also presented later on
[34, 37]. In all these cases, the SU(2) was the favorite gauge group used to describe the
source of matter. Nevertheless, other gauge groups were also investigated. In particular,
some special EYM systems with the Lorentz group SO(n− 1, 1) as the gauge group have
revealed to be equivalent to modi�ed theories of gravity [42, 43]. The SO(n), along with
the SU(n), has also been used in the context of cosmology to study the evolution of the
early Universe in the in�ationary epoch [40, 44, 45].
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4.2 Geometric Characterization of Spacetimes

In what follows, a geometric characterization of spacetimes is provided by studying
the Petrov classi�cation, the optical scalars, the Frobenius theorem, and, �nally, the
Goldberg-Sachs theorem. These four elements will turn out to be of central importance
in both understanding the general geometric properties of the spacetimes (4.1) and in the
achievement of nontrivial exact solutions of the EYM theory.

4.2.1 Petrov Classi�cation

The Petrov classi�cation provides a way of characterizing spacetimes based on the the
so-called principal null directions of the Weyl tensor. In fact, together with the Goldberg-
Sachs theorem, it turns out to be a powerful tool in the process of integration of the
Einstein's equation, as we will see in the subsequent sections.

It is well known that in any four-dimensional spacetime, we are always able to �nd a ba-
sis of vector �elds {e0, e1, e2, e3} such that g(ea, eb) = ηab, where ηab = diag(−1, 1, 1, 1) =
ηab. In this case, this orthonormal basis is said to be a Lorentz frame and, in terms of
it, the inverse metric can be written as

gab∂a∂b = ηabea ⊗ eb = −(e0)
2 + (e1)

2 + (e2)
2 + (e3)

2 . (4.4)

Out of this basis, a null tetrad frame {l,n,m, m̄} can be de�ned by the relations

l =
1√
2

(e0 + e3) , m =
1√
2

(e1 + ie2) ,

n =
1√
2

(e0 − e3) , m̄ =
1√
2

(e1 − ie2) .
(4.5)

It follows that the only nonvanishing inner products among the vector �elds in this frame
are lana = −1 and mam̄a = 1. In particular, it is clear that all these four vectors are null,
justifying the designation �null tetrad�. In terms of this frame, the general metric (4.4)
can be written as

gab∂a∂b = −(l⊗ n+ n⊗ l) + (m⊗ m̄+ m̄⊗m) . (4.6)

Notice that a null tetrad frame is not uniquely de�ned. In fact, once the Lorentz group
can be used in a Lorentz frame, giving rise to a continuum of new orthonormal frames,
there can be in�nitely many distinct null frames de�ned within the same spacetime. In
particular, the action of the Lorentz group in a null tetrad frame is translated into the
following set of transformations:

(i) Lorentz Boost

l→ λl , n→ λ−1n , m→ eiθm , m̄→ e−iθm̄ ; (4.7)

(ii) Null Rotation Around l

l→ l , n→ n+ wm+ w̄m̄+ |w|2l , m→m+ w̄l , m̄→ m̄+ wl ; (4.8)

(iii) Null Rotation Around n

l→ l + z̄m+ zm̄+ |z|2n , n→ n , m→m+ zn , m̄→ m̄+ z̄n ; (4.9)
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where λ and θ are real parameters and w and z are complex. Thus, the six real parameters
de�ned from λ, θ, w and z parameterize the Lorentz group SO(3, 1). In this case, the
most general transformation preserving the metric (4.6) is a composition of the above
transformations.

In four-dimensional spaces, the Weyl tensor Cabcd possesses just ten independent com-
ponents. These components, in turn, can be neatly encoded in the �ve so-called Weyl
scalars {Ψ0,Ψ1,Ψ2,Ψ3,Ψ4}, which are complex functions of the spacetime de�ned by:

Ψ0 ≡ Cabcdl
amblcmd , Ψ1 ≡ Cabcdl

anblcmd , Ψ2 ≡ Cabcdl
ambm̄cnd ,

Ψ3 ≡ Cabcdn
albncm̄d , Ψ4 ≡ Cabcdn

am̄bncm̄d .
(4.10)

Indeed, all the other projections of the Weyl tensor on the null tetrad can be written in
terms of these scalars through the symmetries of the Weyl tensor, including the ones stem-
ming from the vanishing traces and from the Bianchi identity Ca[bcd] = 0. For instance,
Cabcdl

anbm̄cmd = Ψ2 + Ψ̄2 and Cabcdnambncm̄d = 0.
Under a null rotation around n, the Weyl scalars transform according to

Ψ0 → Ψ′0(z) = Ψ0 + 4zΨ1 + 6z2Ψ2 + 4z3Ψ3 + z4Ψ4 ,

Ψ1 → Ψ′1(z) = Ψ1 + 3zΨ2 + 3z2Ψ3 + z3Ψ4 = 1
4
d
dz

Ψ′0(z) ,

Ψ2 → Ψ′2(z) = Ψ2 + 2zΨ3 + z2Ψ4 = 1
3
d
dz

Ψ′1(z) , (4.11)

Ψ3 → Ψ′3(z) = Ψ3 + zΨ4 = 1
2
d
dz

Ψ′2(z) ,

Ψ4 → Ψ′4(z) = Ψ4 = d
dz

Ψ′3(z) ,

as can be easily proven using equations (4.9) and (4.10). Then, assuming Ψ4 to be
nonvanishing (which can always be achieved by means of the Lorentz transformations
(4.7)-(4.9), as long as the Weyl tensor is nonzero), Ψ′0(z) is a quartic polynomial in z and,
hence, the order of degeneracy of its roots {z1, z2, z3, z4} can be used to de�ne the Petrov
types of the spacetime, as it follows:

· Type O : the Weyl tensor is vanishing, Cabcd ≡ 0;
· Type I : all roots zi are di�erent;
· Type II : two roots coincide, z1 = z2, and z3 6= z4 are both di�erent from z1;
· Type III : three roots coincide, z1 = z2 = z3, and z4 6= z1;
· Type N : all roots coincide, z1 = z2 = z3 = z4;
· Type D : two pairs of roots coincide, z1 = z2, z3 = z4, and z4 6= z1.

Each of the distinct roots of the equation Ψ′0(z) = 0, namely the elements of {z1, z2, z3, z4},
gives rise to a privileged null direction of the spacetime, de�ned by

l′i = l + z̄im+ zim̄+ |zi|2n . (4.12)

These are the so-called principal null directions (PNDs) of the Weyl tensor, and the
direction l′i is said to be a repeated PND if the root zi is degenerated. Thus, for
instance, type I spacetimes possess four distinct PNDs, while type D spaces possess just
two, both being repeated. In particular, notice that the choice z = zi in (4.11) will not
just annihilate Ψ′0, but also Ψ′1, if the root zi has degree of degeneracy two; Ψ′1 and Ψ′2,
if the root is triple degenerate; and Ψ′1, Ψ′2 and Ψ′3, if z1 = z2 = z3 = z4; as can be easily
grasped if we write Ψ′0 as

Ψ′0(z) ∝ (z − z1)(z − z2)(z − z3)(z − z4) , (4.13)
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and use the derivatives on the right-hand side of the expressions (4.11). From this, we
also see that the proportionality factor of Ψ′0(z) is just Ψ4.

It is worth noting that the exchanges l↔ n and m↔ m̄ will turn a rotation around
l into a rotation around n, and vice-versa, and, likewise, the Weyl scalars will change
as Ψ0 ↔ Ψ4, Ψ1 ↔ Ψ3 and Ψ2 ↔ Ψ2. In particular, with these replacements, we
immediately obtain the behavior of the Weyl scalars under a rotation around l, starting
from equations (4.11). It is easy to see from this that after performing a rotation around
n and annihilating some of the Weyl scalars, any arbitrary rotation around the null vector
l will keep these scalars unchanged.

Using Ψ′0(z) as in (4.13) and performing a null rotation around n, followed by a
rotation around l, the Weyl scalar Ψ4 is taken to a new Ψ′′4 given in the form

Ψ4 → Ψ′′4 = Ψ4(1 + w(z − z1))(1 + w(z − z2))(1 + w(z − z3))(1 + w(z − z4)) . (4.14)

Besides this, the vector �eld n′′ of the new null tetrad frame acquires the form

n→ n′′ = |w|2
[
l +

∣∣∣∣z +
1

w

∣∣∣∣2n+

(
z̄ +

1

w̄

)
m+

(
z +

1

w

)
m̄

]
. (4.15)

From (4.14), we see that, after choosing z to be one of the roots of Ψ′0 = 0, z = zi, we can
annihilate Ψ′′4 by choosing w = −1/(zi − zj), for some zj 6= zi. Notice that this will not
be possible only if zi is a fourth order degenerate root of Ψ′0 = 0. In particular, setting
z = zi and plugging w = −1/(zi − zj) into (4.15), we obtain:

n′′ = |zi − zj|−2(l + |zj|2n+ z̄jm+ zjm̄) ,

which is a null vector �eld aligned with the PND corresponding to the root zj (compare
this with equation (4.12)). Thus, we see that the successive annihilation of the Weyl
scalars Ψ0 and Ψ4 corresponds to the alignment of the null vector �elds l and n along
the principal null directions of the Weyl tensor. In particular, similarly to what happens
when we align the null vector �eld l to one of the PNDs of the spacetime, the alignment
of the null vector �eld n will result in the annihilation just of the Weyl scalar Ψ4, for
nondegenerate roots; Ψ4 and Ψ3, for double degenerate roots; Ψ4, Ψ3 and Ψ2, for triple
degeneracy; and, �nally, Ψ4, Ψ3, Ψ2 and Ψ1, when all the roots are equal; all of this
without a�ecting the Weyl scalars already annihilated by the alignment of the vector �eld
l.

Below we summarize these results, displaying the Weyl scalars that can be annihilated
in each of the Petrov types by aligning both l and n with the principal null directions,
and choosing l to be the one with the higher degeneracy degree:

Type O - All Type II - Ψ0, Ψ1, Ψ4 Type N - Ψ0, Ψ1, Ψ2, Ψ3

Type I - Ψ0, Ψ4 Type III - Ψ0, Ψ1, Ψ2, Ψ4 Type D - Ψ0, Ψ1, Ψ3, Ψ4

Table 4.1: Weyl scalars that can be made to zero by a judicious choice of the null tetrad frame, for each
of the possible types according to the Petrov classi�cation.

4.2.2 Optical Scalars

In this section, we discuss the important concept of optical scalars of a null congruence of
geodesics. Understanding these quantities is of fundamental importance in the connection
between the Petrov classi�cation and the Goldberg-Sachs theorem.
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As previously introduced, assume that {l,n,m, m̄} is a null tetrad and de�ne vector
�elds e(1) = e1 and e(2) = e2 from m and m̄ according to (4.5). Namely,

e(1) =
1√
2

(m+ m̄) and e(2) =
1

i
√

2
(m− m̄) . (4.16)

Hence, in terms of the frame {l,n, e(1), e(2)}, the covariant derivative of the null vector
�eld l, ∇νlµ, can be expressed in the following way:

∇νlµ = K00lµlν +K03lµnν +K0ilµe(i)ν +Ki0e(i)µlν +Ki3e(i)µnν +Kije(i)µe(j)ν , (4.17)

where
K00 ≡ nµnν∇νlµ , K0i ≡ −nµe(i)ν∇νlµ , Ki1 ≡ −e(i)µlν∇νlµ ,

K01 ≡ nµlν∇νlµ , Ki0 ≡ −e(i)µnν∇νlµ , Kij ≡ e(i)
µe(j)

ν∇νlµ .
(4.18)

In expression (4.17), the components K30, K33 and K3i are not present, which is a conse-
quence of the vanishing of the inner product lµlµ = 0. For instance,

K30 ≡ (∇νlµ)lµnν = 1
2
∇ν(l

µlµ)nν = 0 .

Notice that the contraction of expression (4.17) with lµ leads to

lν∇νlµ = −K03lµ −Ki3e(i)µ .

We see from this that l is tangent to a congruence of null geodesics if, and only
if, Ki3 ≡ 0. In other words, in the case where Ki3 = 0, there will exist a set of null
geodesics �lling the whole manifold, in such a way that at each point passes one, and
only one, of these curves, each having l as its tangent vector. In this case, by means
of a reparameterization by an a�ne parameter, we can always make K03 = 0. Hence,
assuming l to be tangent to a congruence of null geodesics, expression (4.17) reduces to

∇νlµ = K00lµlν +K0ilµe(i)ν +Kije(i)µe(j)ν .

Notice that, in this case, performing a null rotation around l, in which case the vector
�elds e(1) and e(2) transforms as e′(i) = e(i) + ail, for real parameters a1 and a2, the
covariant derivative ∇νlµ will transform in the following way:

∇νlµ → ∇νl
′
µ = ∇νlµ = K̃00lµlν + K̃0ilµe(i)ν +Kije(i)µe(j)ν ,

for some functions K̃00 and K̃0i. In particular, the components Kij was not changed.
The invariance of Kij under null rotations around l can, then, be used to invariantly
characterize the geometric properties of the congruence of null geodesics with tangent l.
We can then decompose the matrix K with components Kij in its traceless symmetric
part, its trace, and its antisymmetric parts,

K = σ + θI + ω , (4.19)

with matrices σ and ω de�ned in terms of the real parameter ω and complex σ as

σ =
1

2

[
−(σ + σ̄) i(σ − σ̄)
i(σ − σ̄) σ + σ̄

]
and ω = ω

[
0 −1
1 0

]
, (4.20)

and I being the identity matrix. The real parameters θ and ω are known respectively as
the expansion and twist, while the complex parameter σ is called the shear. These are
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the optical scalars of the null congruence of geodesics, being interpreted as measures of
the relative movement of nearby null geodesics.

From (4.19) and (4.20), the optical scalars can be solved in terms of Kij, giving

σ =
1

2
[(K22 −K11)− i(K12 +K21)] , θ =

1

2
(K11 +K22) , ω =

1

2
(K21 −K12) .

From this and equations (4.16) and (4.18), these scalars can be neatly written as

θ + iω = m̄µmν∇µlν and σ = −mµmν∇µlν .

Two important classes of spaces, the Kundt and Robinson-Trautman spacetimes, are
de�ned in terms of the optical scalars as those admitting a congruence of null geodesics
with all vanishing optical scalars (σ = 0, θ = 0 and ω), in the �rst class, and shear-free
(σ = 0) and twist-free (ω = 0), in the latter class. Important examples of spacetimes
within the Kundt and Robinson-Trautman spacetimes are respectively the pp-wave and
Schwarzschild spacetimes.

4.2.3 Frobenius Theorem

Although some elements of the Frobenius theorem have already been used in the second
chapter of this dissertation in order to discuss the geometric properties of spaces with a
separability structures of type Sr, here we give a precise de�nition once this theorem has
an essential role in the integrability of the Einstein's equation for the problem proposed
in the present chapter, as we will see shortly.

To this end, let M be an n-dimensional di�erentiable manifold and N a submanifold
ofM . Then, N is said to be an integral submanifold if there exists a set of vector �elds
{v1, . . . ,vr} that spans all the tangent spaces to N in a smooth fashion. The tangent
bundle of an integral submanifold is called a distribution, and both the distribution and
the system of vector �elds {v1, . . . ,vr} are said to be integrable if through every point
q ∈ M there passes one of such integral submanifolds. Based on these de�nitions, the
Frobenius theorem states that the set {v1, . . . ,vr} is integrable if, and only if, it is in
involution. Namely, if at every point p ∈ M there exist smooth functions hkij = hkij(x)
such that

[vi,vj ] = hkijvk . (i, j, k = 1, . . . , r)

In other words, this theorem says that the integral curves of the system {v1, . . . ,vr}
satisfying the above constraint foliates the whole manifold M , each leaf being an integral
submanifold generated by the integrable system {v1, . . . ,vr}.

An extension of the Frobenius theorem in terms of di�erential 1-forms exist and turns
out to be of great importance in the discussion that follows. In this formulation, we
consider a set of r 1-forms {ω1, . . . ,ωr} with ω1∧ . . .∧ωr 6= 0. Then, the statement that
these set of 1-form �elds satisfy

dωi ∧ ω1 ∧ . . . ∧ ωr = 0 , (i = 1, . . . , r) (4.21)

is equivalent to saying that there exists an (n − r)-dimensional integrable distribution,
spanned by those vector �elds v that annihilates the 1-forms ωi everywhere:

ω1(v) = . . . = ωr(v) = 0 .
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4.2.4 The Goldberg-Sachs Theorem

The Goldberg-Sachs theorem is the most important theorem involving the Petrov clas-
si�cation. As originally introduced in Ref. [69], this theorem states that in a Ricci-�at
spacetime (spaces where Rab = 0 but the Riemann tensor is nonvanishing) the Weyl
scalars Ψ0 and Ψ1 are vanishing if, and only if, the vector �eld l is tangent to a shear-free
congruence of null geodesics. In other words, in spaces such that Rab = 0, it is equivalent
to saying either that l is geodesic and shear-free or that it is a repeated principal null
direction. Later on, it was shown that the condition Rab = 0 could be weakened to include
Einstein spaces: Rab = Λgab [70].

Another important result provided in Ref. [69] states that if the equations

Rabk
akb = 0 , Rabk

aηb = 0 and Rabη
aηb = 0 (4.22)

hold for a geodesic and shear-free real direction k and some complex null vector η or-
thogonal to k, then k is necessarily a repeated PND of the Weyl tensor. Notice that, the
cases Rab = 0 and Rab = Λgab above are covered by this stronger result, as does any other
spacetime with energy-momentum tensor Tab satisfying equations (4.22) with Tab in place
of Rab. Indeed, once the Einstein's equation reads

Rab −
1

2
Rgab + Λgab = Tab ,

the conditions (4.22) hold as long as the energy-momentum tensor satis�es

Tabk
akb = 0 , Tabk

aηb = 0 and Tabη
aηb = 0 . (4.23)

4.3 The Natural Null Tetrad Frame

Back to our problem, notice that under the assumptions (4.3), the symmetric tensors
Gij

1 ∂i∂j and G
ij
2 ∂i∂j acquire simpler forms that will be of great help:

Gij
1 ∂i∂j = Gττ

1 ∂
2
τ +Gσσ

1 ∂2σ + 2
√
Gττ

1 G
σσ
1 ∂τ∂σ =

[√
Gττ

1 ∂τ +
√
Gσσ

1 ∂σ

]2
,

Gij
2 ∂i∂j = Gττ

2 ∂
2
τ +Gσσ

2 ∂2σ + 2
√
Gττ

2 G
σσ
2 ∂τ∂σ =

[√
Gττ

2 ∂τ +
√
Gσσ

2 ∂σ

]2
.

From this, the metric (4.1) can easily be written as a sum of squares, as in (4.4), if we
de�ne the natural Lorentz frame {e0, e1, e2, e3} by

e0 =
1√

S1 + S2

(√
Gττ

2 ∂τ +
√
Gσσ

2 ∂σ

)
, e2 =

1√
S1 + S2

√
∆1∂x ,

e1 =
1√

S1 + S2

(√
Gττ

1 ∂τ +
√
Gσσ

1 ∂σ

)
, e3 =

1√
S1 + S2

√
∆2∂y .
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In this case, as learned in the previous section, a null tetrad frame {l,n,m,m} can be
easily de�ned, using (4.5), resulting in the following natural null frame:

l =
1√

2(S1 + S2)

[√
Gττ

2 ∂τ +
√
Gσσ

2 ∂σ +
√

∆2∂y

]
,

n =
1√

2(S1 + S2)

[√
Gττ

2 ∂τ +
√
Gσσ

2 ∂σ −
√

∆2∂y

]
,

m =
1√

2(S1 + S2)

[√
Gττ

1 ∂τ +
√
Gσσ

1 ∂σ + i
√

∆1∂x

]
,

m̄ =
1√

2(S1 + S2)

[√
Gττ

1 ∂τ +
√
Gσσ

1 ∂σ − i
√

∆1∂x

]
.

(4.24)

Hence, the metric can be put in the form (4.6) and, in addition, the Killing tensor �eld
(4.2) can, similarly, be written compactly in terms of this null frame as

K = S1(l⊗ n+ n⊗ l) + S2(m⊗ m̄+ m̄⊗m) .

The null tetrad frame constructed this way can easily be checked to satisfy the following
nicely displayed algebraic relations:

dl ∧ l ∧m = 0 and dm ∧ l ∧m = 0 ,

dl ∧ l ∧ m̄ = 0 and dm̄ ∧ l ∧ m̄ = 0 ,

dn ∧ n ∧m = 0 and dm ∧ n ∧m = 0 ,

dn ∧ n ∧ m̄ = 0 and dm̄ ∧ n ∧ m̄ = 0 .

(4.25)

In these equations, the symbols l, n,m, and m̄ should be understood as the 1-form �elds
corresponding (through the metric tensor) to the vector �elds of the null tetrad frame.
Namely, their components are la = gabl

b, na = gabn
b, ma = gabm

b, and m̄a = gabm̄
b.

Notice that each of the lines in (4.25) is in the form (4.21), meaning that the vector �elds
that annihilate the 1-forms in each of these lines generate a bidimensional integrable
distribution in accordance with Frobenius theorem. In particular, since each of the pairs
of 1-forms present in a line have corresponding vector �elds that are their own annihilators,
and since they are linearly independent, this foliation is spanned by the corresponding
vector �elds themselves. Indeed, it is straightforward to see from (4.24) that the Lie
brackets [l,m], [l, m̄], [n,m], and [n, m̄] are all vanishing. Besides this, once in four
dimensional spacetimes the maximum dimension of a null subspace is two, each of these
distributions are said to be a maximally isotropic integrable distribution. In this
case, the distributions corresponding to the pairs in each of the lines in (4.25) are denoted
respectively by span{l,m}, span{l, m̄}, span{n,m}, and span{n, m̄}. As a consequence
of this, the vector �elds l and n are geodesic and shear-free [71].

In addition to the interesting algebraic properties (4.25) and their powerful geometric
implications, the real vector �elds l and n of the null tetrad (4.24) are principal null
directions of the spaces (4.1), as both Ψ0 and Ψ4 are identically zero. Besides this, we
have that Ψ1 = Ψ3, that are generally nonvanishing, so that l is a repeated null direction
whenever n is also a repeated null direction. It is interesting to note that, as a consequence
of the Goldberg-Sachs theorem, once the vector �elds l and n are geodesic and shear-free,
if we are interested in Einstein spaces Rab = Λgab, we can impose Ψ1 = Ψ3 = 0 without
loss of generality. In fact, this class of type D spaces turn out to be fully integrable and
has already been investigated in Ref. [11].
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It is important to bear in mind that the addition of non-abelian gauge �elds coupled to
the gravitational �eld in this problem precludes, in general, the use of the Goldberg-Sachs
theorem. Nevertheless, assuming the gauge �elds to be aligned with the principal null
directions l and n, a concept that will be exploited in the following section, we are led
to an energy-momentum tensor Tab that obey (4.23). In this case the real and complex
null vector �elds k and η will be either l and m, or n and m, ensuring, this way, that
the real vector �elds l and n are both repeated principal null directions of the spacetime.
Remember, this is only valid because both l and n are geodesic and shear-free. In fact, as
we will see in the following sections, this alignment will enable the integration of Einstein's
equation, culminating in the attainment of exact solutions that broaden those of Ref. [11].

4.4 Reparameterizing the Metric

In order to attain the integration of Einstein's equation in the subsequent sections, it is
convenient to choose a di�erent parameterization for the unknown functions present in
the line element (4.1). Remember, because of the conditions (4.3), the functions Gτσ

1 and
Gτσ

2 are determined in terms of Gττ
1 and Gσσ

1 , in the �rst case, and Gττ
2 and Gσσ

2 , for the
latter case. Hence, the freedom in these functions can be transferred to the four new
functions N1, P1, N2 and P2 de�ned by:

N1(x) =
1

Gσσ
1 ∆1

, P1(x) = −

√
Gττ

1

Gσσ
1

, N2(y) =
1

Gσσ
2 ∆2

, P2(y) =

√
Gττ

2

Gσσ
2

.

Notice that, we can easily invert these relations to express Gττ
1 and Gσσ

1 in terms of N1

and P1, and Gττ
2 and Gσσ

2 in terms of N2 and P2. Then, plugging these into the line
element (4.1), the spaces under consideration acquire the following simpler form, given
not in terms of the inverse metric, but in terms of the metric itself:

ds2 = (S1 + S2)

[
−N2∆2

(P1 + P2)2
(dτ + P1dσ)2

+
N1∆1

(P1 + P2)2
(dτ − P2dσ)2 +

dx2

∆1

+
dy2

∆2

]
. (4.26)

4.5 Aligning the Gauge Fields with the PNDs

In this section, we present the so-called Einstein-Yang-Mills theory, and specify precisely
the problem we are going to solve. Particularly, we introduce the concept of alignment
of the interacting �eld with the principal null directions l and n, in which case it will
provide us with a great deal of simpli�cation to our problem.

The Einstein-Yang-Mills theory describes an interacting theory between the gauge �eld
A, a Lie algebra-valued 1-form, with the gravitational �eld, played, as usual in general
relativity, by the metric tensor g. This interaction happens through minimal coupling,
described by the following action:

S =

∫ √
|g|
[
R− 2Λ− 1

2λ
Tr
(
FabFab

)]
dτdσdxdy , (4.27)
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where g stands for the determinant of g, R is the Ricci scalar, λ is the coupling constant,
and F is the �eld strength, a Lie algebra-valued 2-form de�ned by

F = dA+A ∧A . (4.28)

In coordinates, once provided a representation for the Lie algebra of the gauge group
describing the chosen theory, this de�nition reads

Fab = ∂aAb − ∂bAa + [Aa,Ab] . (4.29)

The trace in (4.27) is taken over the internal degrees of freedom originating from this Lie
algebra. Finally, the equations of motion stemming respectively from the variation of S
with respect to the metric gab and the gauge �eld Aa are:

Rab −
1

2
Rgab + Λgab = Tab , (4.30)

D ?F ≡ d ?F + [A, ?F ] = 0 . (4.31)

In this case, D stands for the gauge group covariant derivative, ? the Hodge dual operation,
and Tab the energy-momentum tensor of the gauge �eld, de�ned by

Tab =
1

λ
Tr

(
FacF c

b −
1

4
gabFcdF cd

)
.

Notice, in particular, that the abelian case is immediately recovered if we set to zero the
last term on the right hand side of equation (4.28) (or equivalently in (4.29)), along with
the commutator in equation (4.31).

In what follows, we will assume the �eld strength F to be aligned with the principal
null directions of the Weyl tensor, l and n, meaning, in other words, that we are con-
sidering the gauge �eld to inherit the geometric properties of the spacetime. A generic
rank-2 antisymmetric tensor H with components Hab = H[ab] is said to be aligned with
the real null direction k if there exists some complex null vector η linearly independent
and orthogonal to k such that

Habk
aηb = 0 .

In the language of Newman-Penrose formalism, this means that k is a principal null
direction of H [74], a fact that is neatly understood through the spinorial formalism [75].
Thus, the alignment conditions of our problem are given by

Fablamb = 0 and Fabnamb = 0 . (4.32)

In particular, since F is a physical �eld, it follows that its components are real. In this
case, equation (4.32) implies that Fablam̄b and Fabnam̄b are also vanishing. A direct alge-
braic consequence of this this alignment condition is that the following eight components
of the energy-momentum tensor vanish:

Tabl
alb = Tabn

anb = Tabm
amb = Tabm̄

am̄b = 0 ,

Tabl
amb = Tabl

am̄b = Tabn
amb = Tabn

am̄b = 0 ,
(4.33)

which can easily be checked by using the pair in equation (4.32), along with its complex
conjugate. This justi�es the use of the Goldberg-Sachs in the integration of Einstein's
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equation, and then we can impose Ψ1 = Ψ3 = 0 as discussed in section 4.3. In addition
to the equations (4.33), we also have that

Tab
(
lanb −mam̄b

)
= 0 , (4.34)

which stems directly from the fact that the trace of the energy-momentum tensor of the
gauge �eld is zero, Tabgab = 0, and from the fact that the inverse metric can be written
as in equation (4.5). These relations provide a great simpli�cation on the integration of
the equation of motion (4.30). Indeed, de�ning the tensor

Eab = Rab −
1

2
Rgab + Λgab − Tab ,

the Einstein �eld equations are given by Eab = 0. Remember, this equation comprises
a total of ten equations since Eab is symmetric. In terms of the null tetrad frame, these
equations can be arranged in the following way:

Eabl
alb = Eabn

anb = Eabm
amb = Eabm̄

am̄b = 0 ,

Eabl
amb = Eabl

am̄b = Eabn
amb = Eabn

am̄b = 0 ,

Eab(l
anb −mam̄b) = 0 ,

(4.35)

along with the equation
Eab(l

anb +mam̄b) = 0 . (4.36)

It is not di�cult to see that the conditions (4.33) and (4.34) imply that the nine com-
ponents of the Einstein �eld equations in (4.35) do not depend on the gauge �eld A,
since the projection of the energy-momentum tensor also vanishes in these components.
In fact, the resulting equations depend just on the functions present in the metric and
have already been solved in Ref. [11] for the vacuum case. Thus, we can bene�t from
this, borrowing the general solutions from this reference. Once we have done this, we just
need to solve the last of these components, namely equation (4.36), along with the gauge
�eld equation (4.31).

Besides the alignment conditions, we also assume the gauge �elds to be invariant under
the Lie dragging along the Killing vectors ∂τ and ∂σ, inheriting thereby the symmetries
of the spacetime. Formally, this is given by Lie derivatives as

L∂τA = 0 and L∂σA = 0 .

In fact, this invariance means that the components of A in the coordinate frame do not
depend on the coordinates τ and σ, allowing us to write the gauge �eld as

A = Aτdτ +Aσdσ +Axdx+Aydy = Aa(x, y)dxa , (4.37)

where each of the components Aa is an element of the Lie algebra for the gauge group
adopted in the theory, depending just on the coordinates x and y.

It turns out that the Lie algebra-valued 1-form (4.37) can be further simpli�ed due to
the alignment conditions, by noticing that the equation (4.32) gives

Fxy ∝ Fab(la − na)(mb − m̄b) = 0 , (4.38)

which is equivalent to the equation

d̃Ã+ Ã ∧ Ã = 0 , (4.39)



65

if we de�ne the 1-form �eld Ã on the leaves of constant τ and σ by

Ã ≡ Axdx+Aydy .

In this case, d̃ is the exterior derivative on these submanifolds. In fact, this is only possible
thanks to the fact that the components Aa are functions only of x and y.

Equation (4.39) conveys the vanishing of the corresponding �eld strength F̃ , meaning
that the gauge �eld Ã is related through a gauge transformation to the zero gauge �eld
in each of the leaves that foliates the manifold. Thus, there must have a smooth gauge
transformation on the whole manifold that takes the gauge �eld Ã to the zero gauge �eld.
According to this, without losing generality, both of the components Ax and Ay can be
set to zero in (4.37), yielding

A = Aτdτ +Aσdσ . (4.40)

Hence, in the sequence, and throughout the remainder of this chapter, this gauge freedom
will be implicitly used to write the gauge �eld A in the form (4.40).

So far just one of the alignment conditions was used, which allowed us to write the
gauge �eld in the form (4.40). The two following equations, also stemming from the
alignment conditions (4.32),

Fab(la − na)(mb + m̄b) = 0 ,

Fab(la + na)(mb − m̄b) = 0 ,

have general solution given by

Aτ =
B1 + B2
P1 + P2

and Aσ =
P1B2 − P2B1
P1 + P2

, (4.41)

where B1 = B1(x) is an arbitrary element of the Lie algebra depending solely on the
variable x, and similarly for B2 = B2(y). Finally, imposing the last of the constraints
arising from the alignment conditions, namely,

Fτσ ∝ Fab(la + na)(mb + m̄b) = 0 , (4.42)

we conclude, using equations (4.29) and (4.40), that

A ∧A = 0 . (4.43)

This equation means that the elements B1 and B2 appearing in (4.41) should commute
with each other, since this is equivalent, in coordinates, to the equation [Aa,Ab] = 0.
Besides this, it also says that the �eld strength F is linear in the gauge �eld, just as in
the abelian case; see either (4.28) or (4.29).

Once we have treated the Einstein's equation, let us now investigate the consequences
of the assumptions above on the �eld equations for the gauge �eld, equation (4.31), which
becomes better manageable if we take the Hodge dual of it:

∇aFab + [Aa,Fab] = 0 . (4.44)

Due to the condition (4.38), the components ∇aFax and ∇aFay of the divergence of F
vanish identically, as can be easily seen, so that equation (4.44) yields

[Aa,Fax] = [Aa,Fay] = 0 .
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On the other hand, due to the fact that Fτσ is zero, as shown in equation (4.42), it follows
that the contractions AaFaτ , FaτAa, AaFaσ, and FaσAa are all vanishing, reducing the
components τ and σ of the equation (4.44) to

∇aFaτ = ∇aFaσ = 0 .

A consequence of the above equations, which follows from the alignment conditions, is
that the �eld equation (4.44) can be broken into the following pair of equations:

∇aFab = 0 , (4.45)

[Aa,Fab] = 0 . (4.46)

In face of this, we immediately see that our problem has been reduced to �rst solving the
abelian case, once equations (4.43) and (4.45) gives respectively the general form for the
�eld strength and the �eld equation for the abelian case, and, then, in hands of the most
general solution for this problem, the non-abelian case is obtained by simply solving the
supplementary algebraic equations (4.43) and (4.46) for the general gauge group. This is,
in fact, the outline of the steps we shall follow in the subsequent sections. At this point,
it is worthwhile mentioning that the non-abelian solutions contructed from the abelian
ones should not be interpreted physically as the same. In fact, as we will see in the
next sections, the non-abelian solutions might present a richer algebraic structure with no
analogue in the abelian theory. Indeed, even in the simplest case in which the non-abelian
gauge �eld Aa is proportional to the U(1) electromagnetic �eld Aa, namely Aa = AaQ,
where Aa is a solution for the Maxwell equations and Q is an arbitrary constant element
for some choice of Lie algebra, the non-abelian solution is physically distinguishable from
the electromagnetic one, as discussed in Ref. [39].

4.6 Solving the Abelian Case

As anticipated in the previous section, the general solution for the Einstein-Yang-Mills
theory in a background possessing two commuting Killing vector �elds, a nontrivial Killing
tensor and a gauge �eld that is aligned with the principal null directions of the spacetime
is obtained by �rst solving the abelian problem. Since the integration of the equations
(4.35) has already been performed in Ref. [11], here we just borrow these results. In
particular, the integration of the equation Ψ1 = Ψ3 leads to three independent cases
depending on whether the derivatives P ′1 = dP1/dx and P ′2 = dP2/dy are zero or not. In
any of these cases, the integration is attained following the same basic three steps: (i)
�rst, we integrate the nine components of the Einstein's equation (4.35) in order to �nd
the most general form for the metric functions S1, S2, N1, N2, ∆1, and ∆2; (ii) then, using
the gauge �eld in the form given by equations (4.40) and (4.41), and then imposing the
�eld equation for the abelian case, ∇aFab = 0, we obtain the most general form for the
Lie algebra functions B1 and B2; (iii) �nally, we integrate the remaining component of the
Einstein's equation, (4.36), which gives rise to a constraint in the integration constants
for the functions previously found. After these three steps, our goal of solving the abelian
problem is completed.

Due to the similarity among the three possible cases, let us tackle just one of them,
when P1′ 6= 0 and P2′ 6= 0, which is the most general and interesting case, and discuss
the other two. In this case, since the functions P1(x) and P2(y) are both nonconstant, we
can always make a coordinate choice in such a way to obtain

P1(x) = x2 and P2(y) = y2 . (4.47)
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Indeed, performing the coordinate transformation (x, y) → (x̂ =
√
P1, ŷ =

√
P2) in the

line element (4.26), along with a rede�nition of the functions N1, ∆1, N2, ∆2, we obtain
the desired result after dropping the hats in the new coordinates. Then, following steps
completely analogous to the ones taken in Ref. [11] to obtain the general solution for the
equations (4.35), we are led to the following results:

N1 =
x2

(a1 + b1x2)(a2 + b2x2)
, S1 =

a3 + b3x
2

a1 + b1x2
,

N2 =
− y2

(a1 − b1y2)(a2 − b2y2)
, S2 =

a3 − b3y2

b1y2 − a1
,

(4.48)

where the a's and b's are arbitrary integration constants. We also obtain the general form
for the functions ∆1 and ∆2, which can be put in the compact form

∆1 =
1

x2

[
c1I

5/2
1 J

3/2
1 + c2I

3
1J1 + c3I

2
1J

2
1 +

Λ(a1b3 − a3b1)
3b21(a2b1 − a1b2)

I1J1

]
,

∆2 =
1

y2

[
c4I

5/2
2 J

3/2
2 + c5I

3
2J2 − c3I22J2

2 −
Λ(a1b3 − a3b1)

3b21(a2b1 − a1b2)
I2J2

]
,

(4.49)

where the c's are integration constants that are arbitrary for the moment, and the I's and
J 's stand for the following �rst order polynomials:

I1 = a1 + b1x
2 , I2 = a1 − b1y2 , J1 = a2 + b2x

2 , J2 = a2 − b2y2 . (4.50)

This covers the �rst of the steps presented at the beginning of this section for the
attainment of the general solution for the abelian case. In the second step, we assume
the gauge �eld to be given in the form displayed in the equations (4.40) and (4.41),
and integrate the abelian �eld equations ∇aFab = 0. This can be accomplished without
di�culty, yielding as general solutions

B1 = Q1I
1/2
1 J

1/2
1 +Q3x

2 +Q4 and B2 = Q2I
1/2
2 J

1/2
2 +Q3y

2 −Q4 ,

where the Q's are arbitrary constant elements of the Lie algebra. From this, we can easily
build the �eld strength F , in which case we will notice that neither Q3 or Q4 makes
part of the �nal result, meaning that both of them are pure gauge and, therefore, can be
ignored, without losing generality. Thus, we can write

B1 = Q1I
1/2
1 J

1/2
1 and B2 = Q2I

1/2
2 J

1/2
2 . (4.51)

The constant elements Q1 and Q2 are interpreted as the charges generating the gauge
�eld. In the particular case of the electromagnetic theory, the gauge group is the group
U(1), and Q1 and Q2 are respectively the magnetic and electric charges.

Finally, imposing the last component of Einstein's equation to hold, namely (4.36),
we obtain that the integration constants c2 and c5 appearing in the functions ∆1 and ∆2

must be related to each other through the equation

c5 =
(a1b2 − a2b1)

2λ(a3b1 − a1b3)
Tr (Q1Q1 −Q2Q2)− c2 . (4.52)

As it will be shown in the section 4.8 below, assuming that the gauge group is U(1),
this solution turns out to be the well-known Kerr-Newman-NUT-(A)dS spacetime. Thus,
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the solution presented in this section is just a straightforward generalization of the charged
Kerr-NUT-(A)dS class of spacetimes to the case where there are several electromagnetic
�elds decoupled from each other.

Following the same basic three steps above, we can solve the case where P1(x) is
nonconstant while P2(y) is a constant. In this case, we obtain a generalization of a twisting
but nonaccelerating spacetime contained in the Pleba«ski-Demia«ski class, which has as
a special case the charged Taub-NUT-(A)dS spacetime. Notice that this is virtually the
same as the case in which P ′1 = 0 and P ′2 6= 0, since the latter can be obtained from the
�rst one if we interchange the coordinates x and y in the line element (4.26). The case in
which both of the functions P1 and P2 are constant splits into two cases: one in which one
of the functions S1 or S2 are constant while the other is a nonconstant, and the other in
which both functions are constant. In the �rst of these cases, we obtain a generalization of
the Reissner-Nordström metric with cosmological constant [76], while the latter provides
a generalization of the charged Nariai spacetime [77].

Notice that the integration process performed above did not provide any fundamentally
new solutions besides the ones already described in the literature. Indeed, such solutions
are contained in the results of Ref. [39]. Nevertheless, this process was of valuable
importance, inasmuch as we could exhaust all the abelian solutions to the Einstein-Yang-
Mills theory in a background possessing two commuting Killing vector �elds and one
nontrivial rank-2 Killing tensor when the gauge �eld is aligned with the principal null
directions of the spacetime. Additionally, as we will see in the next section, these abelian
solutions will also be important in the construction of nontrivial solutions with non-abelian
gauge groups that have never been described in the literature before.

4.7 General Gauge Group

As we have learned in section 4.5, the general solution for an arbitrary gauge group is
provided by the abelian solution presented in the previous section, supplemented by the
conditions (4.43) and (4.46) constraining the gauge �eld. We have also seen in the same
section that both components Ax and Ay of the gauge �eld can be set to zero without
losing generality and that the terms AaFaτ , FaτAa, AaFaσ, FaσAa are all vanishing as a
consequence of the alignment conditions. On account of such properties, (4.43) and (4.46)
become equivalent to the three following equations:

[Aτ ,Aσ] = 0 , [Aa,Fax] = 0 and [Aa,Fay] = 0 .

As it turns out, for all the solutions to the problem considered in this chapter, including
those cases not treated explicitly here, namely the cases where P ′1 6= 0 and P ′2 = 0, and
P ′1 = 0 and P ′2 = 0, these conditions surprisingly boil down to

[Q1,Q2] = 0 . (4.53)

Thus, the two conditions (4.43) and (4.46) can be replaced by the one simple constraint
above. In particular, since in the abelian case this requirement represents no constraint
at all, in the case of an arbitrary k-dimensional abelian Lie algebra, our solution will have
2k arbitrary constant parameters stemming from the gauge group, once the elements Q1

and Q2 are completely arbitrary in this case.
Although in the general case we need �rst to specify the gauge group in order to work

out the constraint (4.53), we immediately see that a trivial solution for this constraint
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is given by assuming that the Lie algebra elements Q1 and Q2 are proportional to each
other, so that they commute trivially:

Q2 = eQ1 , (4.54)

where e is some arbitrary real constant. In this case, we easily see that the total number
of independent parameters is k+ 1, k being the components of Q1, plus the parameter e.
In fact, this particular type of solutions have already been discussed in Ref. [39] and can
be understood as simple generalization of U(1) solutions, like the ones presented in the
previous section. Notice, however, that this does not represent the most general solution,
as there might have more intricate solutions depending on the particular structure of the
gauge �eld. Indeed, we will see in the following examples that nontrivial solutions for this
constraint do exist.

In summary, the general solution for the Einstein-Yang-Mills theory in spacetimes pos-
sessing two commuting Killing vector �elds, one nontrivial rank-2 Killing tensor, assuming
the constraint (4.3) to hold, and such that the gauge �elds are aligned with the principal
null directions of the Weyl tensor and subjected to the symmetries of the spacetime is
provided by the line element (4.26), with functions P1, P2, N1, N2, S1, S2, ∆1 and ∆2

de�ned by equations (4.47)-(4.50), along with (4.52). The gauge �eld of this solution
is de�ned by equations (4.41) and (4.51), where the constant Lie algebra elements Q1

and Q2 are general elements of the gauge group Lie algebra, satisfying (4.53). Both the
functions of the metric and the functions de�ning the gauge �eld will be di�erent for the
other two cases not tackled explicitly here. However, the structure of such solutions are
similar to the case presented here. In particular, in both of them there will be constant
elements of the Lie algebra Q1 and Q2 that must commute according to (4.53), see Ref.
[9].

4.7.1 Group SU(2)

In this �rst example, we consider the SU(2) group and denote a basis for its Lie algebra
by {Lα}. As introduced in the previous chapter, a representation for these elements is
provided by the Pauli matrices σα (equation (3.12)), assuming the form

Lα =
−i
2
σα .

The corresponding algebra of commutators can be summarized in the relation

[Lα,Lβ] = εαβ
γLγ ,

where εαβγ is the three-dimensional Levi-Civita symbol. Then, a metric in the Lie algebra
vector space can be de�ned as

〈Lα,Lβ〉 = Tr (LαLβ) = −1

2
δαβ .

Assuming that the charges Q1 and Q2 are independent elements of the Lie algebra,
they can be generically written as

Q1 = q1
αLα = q1

1L1 + q1
2L2 + q1

3L3 ,

Q2 = q2
αLα = q2

1L1 + q2
2L2 + q2

3L3 .



70

From this, it follows that the constraint (4.53) implies that

q1
α q2

β εαβγ = 0 ,

whose general solution gives that q1α and q2α must be proportional to each other:

q2
α = eq1

α , (4.55)

where e is some arbitrary parameter. As a matter of fact, this solution has already been
described in the literature, inasmuch as it is among those solutions considered in Ref.
[39]; compare equations (4.55) and (4.54). Finally, notice that the traces appearing in the
solution of section 4.6, equation (4.52), are written as

Tr (Q1Q1) = −1

2

3∑
i=1

(q1
i)2 and Tr (Q2Q2) = −e

2

2

3∑
i=1

(q1
i)2 .

Although the SU(2) group revealed to be one of the simple cases with Q1 proportional
to Q2, in the following subsection we present an explicit example in which this is not the
case, showing that, depending on the gauge group chosen, we can have solutions that are
not just trivial generalizations of the U(1) case.

4.7.2 The Lorentz Group SO(3, 1)

Now, let us assume that the gauge group is the Lorentz group SO(3, 1), whose Lie algebra
can be generated by the following six 4× 4 matrices:

J1 =


0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

 , J2 =


0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

 , J3 =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 ,

K1 =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , K2 =


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 , K3 =


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 .

In this case, the algebra satis�ed by these generators reads

[Jα,Jβ] = εαβ
γJγ , [Jα,Kβ] = εαβ

γKγ , [Kα,Kβ] = −εαβγJγ .

In terms of this basis, a symmetric bilinear form in the Lie algebra vector space is then
provided by

〈Jα,Jβ〉 = Tr (JαJβ) = −2δαβ , 〈Kα,Kβ〉 = Tr (KαKβ) = 2δαβ ,

〈Jα,Kβ〉 = Tr (JαKβ) = 0 .

In this case, the arbitrary elements Q1 and Q2 can be written as

Q1 = q1
αJα + q̃1

αKα and Q2 = q2
αJα + q̃2

αKα ,

where the twelve charges q1α, q̃1α, q2α, and q̃2α are, for the moment, arbitrary. In order
to �nd the most general form allowed for these elements under the constraint (4.53), it is
convenient to de�ne a new basis

Nα ≡
1

2
(Jα − iKα) and Nα† ≡

1

2
(Jα + iKα) ,
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which is such that

[Nα,Nβ] = εαβ
γNγ , [Nα†,Nβ†] = εαβ

γNγ† , [Nα,Nβ†] = 0 ,

producing two independent copies of the su(2) Lie algebra. In this basis, the elements Q1

and Q2 acquire the form

Q1 = (q1
α + iq̃1

α)Nα + (q1
α − iq̃1α)Nα† ,

Q2 = (q2
α + iq̃2

α)Nα + (q2
α − iq̃2α)Nα† .

Then, the requirement that these two charges must commute translates into the following
equation:

(q1
α + iq̃1

α)(q2
β + iq̃2

β)εαβ
γNγ + (q1

α − iq̃1α)(q2
β − iq̃2β)εαβ

γNγ† = 0 ,

with general solution given by

(q2
α + iq̃2

α) = ε(q1
α + iq̃1

α) and (q2
α − iq̃2α) = ε̃(q1

α − iq̃1α) .

From this, we can easily solve for q2α and q̃2α in terms of the q1α and q̃1α, in which case
we will see that in order to keep these solutions real, we need to assume that ε̄ = ε̃. Thus,
de�ning ε = e+ iẽ and ε̃ = e− iẽ, with e and ẽ real, we obtain

q2
α = eq1

α − ẽq̃1α and q̃2
α = ẽq1

α + eq̃1
α .

With this, the �nal form for the elements Q1 and Q2 is given by

Q1 = q1
αJα + q̃1

αKα and Q2 = (eq1
α − ẽq̃1α)Jα + (ẽq1

α + eq̃1
α)Kα . (4.56)

In particular, the traces appearing in the solution of section 4.6 can be written as

Tr (Q1Q1) = −2
3∑

α=1

[
(q1

α)2 − (q̃1
α)2
]
,

Tr (Q2Q2) = −2
3∑

α=1

{
(e2 − ẽ2)

[
(q1

α)2 − (q̃1
α)2
]
− 4eẽq1

αq̃1
α
}
.

Since in general ẽ 6= 0, it follows that Q1 is not proportional to Q2, so that the general
solution (4.56) is not of the simple type presented in equation (4.54) and, therefore, it
is not contained in the class of solutions presented in Ref. [39]. In this case, the most
general solution for the group SO(3, 1) has eight charge parameters, six stemming from
the components of Q1 plus the two parameters e and ẽ. For a similar example using the
SO(4) Lie group, see Ref. [9]

4.8 Coordinate Transformations

As it was pointed out in the previous sections, for the case where the gauge group is
U(1), corresponding to the electromagnetic interaction, the solutions obtained above have
already been described in the literature and does not present any novelty. In particular,
as it was argued in section 4.6, the case tackled explicitly there leads to the well-known
Kerr-Newman-NUT-(A)dS spacetime. To show that this is indeed the case, in the present



72

section we present the explicit coordinate transformations that take the line element found
at that section to its known form.

The general solution presented in section 4.6 for the gauge group U(1) is given by
the line element (4.26), with the functions P1, P2, N1, N2, S1, S2, ∆1 and ∆2 given by
equations (4.47)-(4.50), along with the constraint (4.52). In addition, the gauge �eld of
this solution is given by (4.41) and (4.51). Then, instead of using the constant parameters
c1, c2, c3, c4, Q1 andQ2, which should be emphasized that, in this case, Q1 andQ2 are just
numbers, we use the constants c̃1, c̃2, c̃3, c̃4, e1 and e2 de�ned by the following relations:

c̃1 =
b
3/2
1 (a2b1 − a1b2)3/2

h32(a1b3 − a3b1)
c1 , c̃3 = −b1(a1b2 − a2b1)

2

h22(a1b3 − a3b1)
c3 −

2b2Λ

3h22(a1b2 − a2b1)
,

c̃4 =
b
3/2
1 (a1b2 − a2b1)3/2

h32(a1b3 − a3b1)
c4 , c̃2 =

b21(a1b2 − a2b1)
a1b3 − a3b1

c2 −
b22Λ

3(a1b2 − a2b1)2
,

e1 =
h22b1(a1b2 − a2b1)√

2λ(a1b3 − a3b1)
Q1 , e2 =

ih22b1(a1b2 − a2b1)√
2λ(a1b3 − a3b1)

Q2 .

In addition, let us perform the coordinate transformation (τ, σ, x, y)→ (t, φ, p, q) de�ned
by

x2 = b−11

(
h22p

2 +
b2

a1b2 − a2b1

)−1
− b−11 a1 ,

y2 = b−11

(
h22q

2 − b2
a1b2 − a2b1

)−1
+ b−11 a1 ,

τ =

√
b31(a2b1 − a1b2)
h1(a1b3 − a3b1)

(
a1
h2b1

t+
a2

h32(a1b2 − a2b1)
φ

)
,

σ =

√
b31(a2b1 − a1b2)
h1(a1b3 − a3b1)

(
1

h2
t+

b2
h32(a1b2 − a2b1)

φ

)
.

Notice that we have introduced two new constant parameters h1 and h2 that will turn
out to be very convenient in the discussion below. In fact, as can be easily seen, these
parameters can be trivially absorbed into the new constants and coordinates, and therefore
do not present physical content. They are just mathematical assets.

The result of performing the coordinate transformations and rede�nition of integration
constants above is given neatly by the line element

ds2 = −Q(q)

h21ρ
2

(dt− p2dφ)2 +
ρ2

Q(q)
dq2 +

P (p)

ρ2
(dt+ q2dφ)2 +

ρ2

h21P (p)
dp2 ,

with ρ2 = p2 + q2 and functions Q(q) and P (p) de�ned by the following polynomials:

P (p) = h−21

(
c̃2
h42

+ c̃1p+ c̃3p
2 − Λ

3
p4
)
, (4.57)

Q(q) =
c̃2
h42

+ e21 + e22 + c̃4q − c̃3q2 −
Λ

3
q4 . (4.58)

This result is impressive due to its simplicity. Notice in particular that all the integration
constants a's and b's could be eliminated from the functions de�ning the metric, conveying
that they are devoid of physical meaning. Thus, we are left with just the six constants c̃1,
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c̃2, c̃3, c̃4, e1 and e2. However, not all of them present physical meaning inasmuch as the
constant c̃2 can be eliminated by a convenient choice in the arbitrary parameter h2, as
can be grasped from equations (4.57) and (4.58). Thus, just �ve parameters are necessary
to characterize the spacetime.

Notwithstanding, the line element presented above is still not in its most recognized
form. In order to bring this about, we rede�ne the three physical constants c̃1, c̃3 and c̃4
in terms of the new constants a, l and m as

c̃1 = 2l +
2

3
a2lΛ− 8

3
l3Λ , c̃3 = Λ

(
1

3
a2 + 2l2

)
− 1 , c̃4 = −2m,

and use the freedom in the choice of the parameters h1 and h2 to set

h1 = a and h2 = c̃
1/4
2 (a2 − l2)−1/4(1− Λl2)−1/4 .

Following this with a further coordinate change (t, φ, p, q)→ (t̃, φ̃, θ, r) de�ned by

t = (a+ l)2φ̃− at̃ , φ = φ̃ , p = l + a cos θ , q = r ,

we arrive at the desired form for our line element:

ds2 =
ρ2

Q
dr2 − Q

ρ2

[
dt̃−

(
a sin2 θ + 4l sin2 θ

2

)
dφ̃

]2
+
P

ρ2

[
adt̃− (r2 + (a+ l)2)dφ̃

]2
+
ρ2

P
sin2 θdθ2 ,

(4.59)

where

ρ2 = r2 + (l + a cos θ)2, P = sin2 θ

(
1 +

4

3
Λal cos θ +

1

3
Λa2 cos2 θ

)
,

Q = a2 − l2 + e21 + e22 − 2mr + r2 − Λ

[
(a2 − l2)l2 +

(
1

3
a2 + 2l2

)
r2 +

1

3
r4
]
.

Indeed, this is precisely the Kerr-Newman-NUT-(A)dS solution as written in Ref. [78].
In this case, the constants m, a and l are interpreted respectively as the mass, angular
momentum per mass and NUT parameter of the black hole, while e2 and e1 are its electric
and magnetic charges. For a comparison, see equation (17) of Ref. [78] and the choice of
parameters adopted in section 4.2 of this reference.

Finally, in terms of these coordinates and parameters, the gauge �eld becomes

A =
1

ρ2

[
e1(l + a cos θ) + e2r

]
dt̃

− 1

aρ2

{
e1

[
r2 + (l + a)2

]
(l + a cos θ) + e2r

[
(l + a)2 − (l + a cos θ)2

]}
dφ̃ .

This form for the gauge �eld is obtained once we have set λ = 1/2 in the action (4.27),
which is the coupling constant usually adopted for the electromagnetic �eld.

It is not di�cult to see that, for a general k-dimensional gauge group, the coordinate
transformations and rede�nitions of parameters given above can still be used and it will
result in the same metric, with the only di�erence that, now, Q will not only have two
squared charge parameters, but rather there will be k sums of squared charge parameters.
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To achieve this, we just need to de�ne k constants e1, . . . , ek in terms of the k parameters
of the Lie algebra, in such a way that

Tr(Q1Q1 −Q2Q2) =
2λ(a1b3 − a3b1)2

h42b
2
1(a1b2 − a2b1)2

k∑
i=1

e2i ,

just as we did in the U(1) case. Besides this, notice that the coordinate transforma-
tions taking the separable coordinate system {x, y, τ, σ} to the system {r, θ, φ̃, t̃} is of the
type presented in section 2.6 (property (iv)). Hence, we see that the coordinate system
{r, θ, φ̃, t̃} is also separable and is equivalent to the �rst one. In particular, since the
second class coordinates x and y are taken respectively to θ and r by means of separated
transformations, and the �rst class coordinates τ and σ transform to φ̃ and t̃ according to
a linear combination, the coordinates in {r, θ, φ̃, t̃} are also normal. Indeed, the inverse of
the metric (4.59) can be computed, in which case we will see that it is of the form given
by equation (2.30) if we de�ne the inverse Stäckel matrix [φ(a)

b] using (2.33) for functions
de�ned by

ψ1(r) = Q , ψ2(θ) =
P

sin2 θ
, φ1(r) = r2 and φ2(θ) = (l + a cos θ)2 ,

along with

ηφ̃φ̃1 = − a
2

Q2
, ηt̃t̃1 = − 1

Q2
[r2 + (a+ l)2]2 , ηt̃t̃2 =

sin2 θ

P 2

(
4l sin2 θ

2
+ a sin2 θ

)2

,

ηφ̃φ̃2 =
sin2 θ

P 2
, ηφ̃t̃1 = − a

Q2
[r2 + (a+ l)2] , ηφ̃t̃2 =

sin2 θ

P 2

(
4l sin2 θ

2
+ a sin2 θ

)
.

From the functions de�ned above, we can immediately construct the nontrivial rank-2
Killing tensor of the solution using the results of section (2.9). In this case it will take
the following form:

K = Q(l + a cos θ)2 ∂2r −
r2

P

[
∂φ̃ +

(
4l sin2 θ

2
+ a sin2 θ

)
∂t̃

]2
− r2P

sin2 θ
∂2θ −

1

Q
(l + a cos θ)2

[
a ∂φ̃ + (r2 + (a+ l)2) ∂t̃

]2
.

This is the irreducible rank-2 Killing tensor of the Kerr-Newman-NUT-(A)dS (and gen-
eralizations thereof) that generates Carter's quadratic conserved quantity when the nut
charge l, the cosmological constant Λ, and the charges that generate the gauge �eld are
zero.
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5 Conclusion

In the chapter 2 of this dissertation, we presented a study on the separability of the
Hamilton-Jacobi equation for the geodesic Hamiltonian. The close relationship between
the notion of separability structures and the existence of su�ciently many symmetries
that allow us to completely integrate the geodesic equation for spaces admitting such
an structure was established. Furthermore, the most general form for these spaces was
presented, being dubbed the normal form. The particular case where the separability
structure is of type Sn−2 was worked out in section 2.9, in which case we learned that
these spaces are naturally equipped with a set of (n− 2) commuting Killing vector �elds
along with a nontrivial rank-2 Killing tensor. Moreover, we learned that they possess two
orthogonal foliations: {Z2}, which presents an orthogonal separable structure of type S2,
and {Wn−2}, which is a �at foliation. The canonical form for both the metric and the
Killing tensor in this case was also given in section 2.9.

In chapter 3, a presentation of the de�nition and general properties of groups, Lie
groups and Lie algebras was given, exemplifying wherever possible. The action of a
Lie group on di�erentiable manifolds was then studied, followed by a specialization to
the case where the action maintained the metric invariant, given rising to the spacetime
symmetries. The symmetries of spaces with a separability structure of type Sn−2 were
studied in light of this group action. Hence, we learned that the orbits of the abelian
isometry group generated by the (n− 2) commuting Killing vectors are precisely the �at
submanifolds Wn−2 that foliates the manifold, thus providing a better understanding on
the underlying geometry shared by these spaces. The symmetries existing in this class of
metrics was then used explicitly in section 3.8 to build the corresponding �rst integrals.

In face of all the knowledge obtained throughout these chapters on spaces with a
separability structure of type Sn−2, in chapter 4, restricting the dimension to n = 4 and
conditioning these spaces to the constraints (4.3), we aimed at obtaining exact solutions
for the Einstein-Yang-Mills theory. As we could see, the restrictions (4.3) gave rise to a
natural null frame, where the two real null vector �elds were aligned with the principal
null directions of the spacetime. In fact, these two vector �elds were shown to generate
two independent shearfree null congruences of geodesics even without imposing a �eld
equation. Hence, coupling gauge �elds to these spaces, and requiring them to be aligned
with these principal null directions, the Goldberg-Sachs theorem could be used to facilitate
the integration process, showing that the solutions had to be of Petrov type D. We further
assumed these gauge �elds to inherit the symmetries of the spacetime, namely that they
are not dependent on the cyclic coordinates of the metric in the canonical form, and hence
a whole class of exact solutions could successfully be obtained in this framework.

Unlike all the solutions of the Einstein-Yang-Mills theory presented so far in the lit-
erature, the exact solutions found in chapter 4 did not require initial speci�cation of the
particular gauge group used in the investigation. Rather, we could obtain solutions for
any gauge group chosen. In this same chapter, explicit construction of solutions using the
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SU(2) and the Lorentz group SO(3, 1) as the gauge groups were performed, the latter
providing nontrivial solutions never presented in the literature before. The chapter is
then �nished by explicit presentation of the known form for the general solutions, which
turned out to represent generalizations of the Kerr-NUT-(A)dS spacetime coupled to an
arbitrary gauge �eld. In particular, assuming the gauge group to be U(1), corresponding
to the the electromagnetic interaction, we could exhaust all the possible solutions within
the class of metrics considered, in which case, no new solution was found.

In conclusion, the full characterization of symmetries and geometric features studied
from di�erent approaches along the chapters 2, 3 and 4 for the class of metrics with a
separability of type Sn−2, and particularly for n = 4, equipped us with a deeper and
more complete understanding of the origin of the symmetries of this important class of
spaces that contains, as its most important members, the Kerr-NUT-(A)dS metric and
generalizations thereof. Besides this, its worth stressing that the wide class of nontrivial
solutions found in chapter 4 were never presented in the literature before.

Possible future directions in the same line of the research presented in this dissertation
would be pursing a di�erent choice on the restriction over the functions Gij

1 (x) and Gij
2 (y),

present in the line element (4.1), replacing the constraint (4.3). In addition, di�erent
choices regarding the kind of matter �lling the spacetime can be made. In fact, setting one
of these functions to zero was the path chosen by the author of the present work, together
with his advisor, in the investigation described in Ref. [10], for the four dimensional case,
and Ref. [12], for arbitrary dimensions. In the �rst of these papers, we searched for exact
solutions of the Einstein's vacuum equation, in which case an interesting new solution
was found. In the second case, a whole class of higher dimensional exact solutions in
the presence of a perfect �uid was obtained, the diagonal solutions being generalizations
of the Kasner metrics, while the nondiagonal case yielded solutions revealing a curious
algebraic structure.
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