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ABSTRACT

In spatial data analysis the data are indexed by a set of locations in space, the
way this set is defined separates spatial statistics into three areas: Geostatistics, models
for Areal data, and Point Process. In this work we will focus on the models for areal data,
specifically in the simultaneous autoregressive (SAR) models, which has applications in
many fields such as Ecology, Public Health, Texture Analysis and Spatial Econometrics.
It is proposed to implement the SAR models within the generalized additive models for
location, scale, and shape (GAMLSS), allowing to consider any type of distribution to fit
the data, and to model all the parameters of a distributions as function of the explanatory
variables. The implementation of this procedure within GAMLSS is made considering
the connection between random effects and penalized smoothers, and the relationship
of the SAR and conditional autoregressive (CAR) models. An efficient algorithm was
implemented to construct the penalty matrix compatible with general scope of penalization
methods. Monte Carlo simulation studies were conducted with the purpose of evaluating
the properties of the regression coefficients estimators of the SAR-GAMLSS models in
the context of finite samples and with different probability distributions for the response
variable. The methodology was applied to the analysis of house prices and also to the
study of income inequality in the State of Pernambuco, Brazil, considering the spatial
structure of the regions in the analysis.

Keywords Simultaneous autoregressive. Spatial statistics. Spatial econometrics. Penalized
smoothers.



RESUMO

Na análise de dados espacias os dados são indexados por um conjunto de local-
izações no espaço, este separa a estatística espacial em três áreas: Geoestatística, modelos
para dados de Área e Processos Pontuais. Este trabalho concentra-se nos modelos para
dados de área, especificamente nos modelos autoregressivos simultâneos (SAR), que possui
diversas aplicações nas áreas de Ecologia, Saúde Pública, Análise de Textura e Econometria
Espacial. Propomos a implementação dos modelos SAR nos modelos aditivos generalizados
para locação, escala e forma (GAMLSS), permitindo considerar qualquer tipo de função
de distribuição para ajuste dos dados, e modelar todos os parâmetros da distribuição
como função de variáveis explicativas. O procedimento de implementação nos GAMLSS é
feito considerando a conexão existente entre termos de efeitos aleatórios e suavizadores
penalizados, e a relação entre os SAR e modelos autoregressivos condicionais (CAR). Um
algoritmo eficiente foi implementado para construção da matriz de penalidade compatível
com o escopo geral dos métodos de penalização. Estudos de simulação de Monte Carlo
foram realizados com o propósito avaliar as propriedades do estimadores dos coeficientes
de regressão do modelos SAR-GAMLSS no contexto de amostras finitas, e com distintas
funções de probabilidade para a variável resposta. Aplicamos a metodologia à análise
dos preços de residências e também ao estudo da desigualdade de renda no Estado de
Pernambuco, Brasil, em ambos levando em consideração a estrutura espacial das regiões.

Palavras-chaves Autorregressão Simultânea. Estatística Espacial. Econometria Espacial.
Suavizadores Penalizados.
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1 INTRODUCTION

The first law of geography enunciated by Waldo Tobler states that: "everything is
related to everything else, but near things are more related than distant things" (TOBLER,
1970). Over time the strengthening of this idea only grew with advancement of technologies
in the last decades has allowed some benefits for several areas of knowledge, as is the case
of spatial statistics, which studies the phenomena where the locations are relevant for
understanding it. In this area, the observations are indexed by locations on the map. Areas
such as Econometrics, Climatology, Ecology, Health Public and others are incorporating
spatial information into their analysis. In Econometrics, for example, the level of economic
activity in each city, county, and country, if spatial information is relevant, according to
specific criterion, then information on the level of activity of the neighbors leaves the
analysis richer (ANSELIN, 2003). In Public Health, on the other hand, location-indexed
data help to find factors associated with specific diseases in and it propagation within
a region of interest. It also gives a sense of the health location of the individual and its
distribution on the map (BHUNIA; SHIT, 2019).

According to Banerjee et al. (2004), let a vector s = (s1, s2) of coordinates pairs
that taken values in the set D = {s1, . . . , sq} ⊂ Rq which is a subset fixed of positive
volume. Then, the data in spatial analysis are divided into three basic types:

• areal data, where Y (s) is a random variable at location s, the set D represents
a subsets of indexes of pairs of coordinates s that delimit an area or region. For
example, a indexes set of cities, districts, counts and others, and Y (s) can represent
the number of crimes in a district, the number of workers in a city, rainfall level by
region, and other similar variables;

• point-referecend data or geostatistical data, where Y (s) is a random variable at
location s, and s takes values on a continuous surface D ⊂ Rq. For example, Y (s)
represents the level of soil salinity in a location s;

• point pattern data, the set D is random, and s indicates the occurrence of an event
on the map, for example indicates regions that record earthquake, terrorist attacks,
disease focus and others.

In the context of this master thesis the areal data will be treated. An example
of this type of spatial data is in Figure 1; On the right side of it, the map of Brazil
with its federation units is showed, highlighting the unit corresponding to the state of
Pernambuco. On the left side, the map of the state of Pernambuco with 184 municipalities
with their respective Gini index values is shown, thus exemplifying the type of spatial
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data referring to the areal data. One question that can be asked here is: Is the level of
inequality (measured by the Gini index) in a city explained by neighboring cities? This
question will be will be discussed later in this master thesis.

Figure 1 – On the right side showing the map of Brazil with the state of Pernambuco
highlighted and map of Pernambuco with the values of Gini index by city on
the left side.

Over the decades, statistical models have been developed to work with this type of
spatial data, as for example the conditional autoregressive (CAR) (BESAG, 1974) models
and intrinsic autoregressive (IAR) (BESAG; KOOPERBERG, 1995) models are examples
of these models. This work comprised the development of a structure that comprised
simultaneous autoregressive (SAR) models (WHITTLE, 1954), which are also models for
areal data and contains a relationship with the CAR models.

Another point of this master thesis deals with a flexible class of regression models,
which are the generalized additive models for location, scale, and shape (GAMLSS) (RIGBY;
STASINOPOULOS, 2005). This approach is a flexible alternative for modeling response
variables with different probability distribution functions beyond the exponential family.
The GAMLSS also allow the modeling of all parameters of the probability distribution
of the response variable. And also includes of terms of non-parametric functions in the
modeling of these parameters. These models have been applied to various problems. Sá et
al. (2018) studied the relationship of wildfires and environmental factors in Portugal, using
the functions of the distribution function zero-adjusted Gamma (ZAGA) and zero-inflated
Poisson (ZIP) for the response variable. Luo (2013) used the Box-Cox Power Exponential
(BCPE) distribution function in the modeling of stock market liquidity. Voudouris et
al. (2012) used also the BCPE distribution in the analysis of the problem of film box-
office revenues. By comparison of coefficients and a graphical analysis of semiparametric
terms, Cajias (2018) checks the accuracy of the GAMLSS models in contrast to the
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generalized additive models in Munich’s residential market. De Bastiani et al. (2018) show
the modelling and fitting of Gaussian Markov random field spatial components within a
GAMLSS model.

Structure of the master thesis

In Chapter 2, a review about the models used in the regression analysis and
their respective assumptions are presented. It starts with linear models, then generalized
linear models (GLM), then present the generalized additive models (GAM) and then the
GAMLSS, which are part of our object of study. In Chapter 3, a theoretical review of the
models for areal data is presented. To implement the SAR models in the GAMLSS as terms
of random effect, it was necessary to study the relationship between this model and the
CAR models. In this Chapter, the theoretical framework of the proposed implementation.
In Chapter 4, it is presented a numerical evaluation of the regression coefficient estimators
of the proposed model, comparing it with other models existent in the literature. In Chapter
5 it is presented two applications of the proposed model, one to data set Housing Values
in Suburbs of Boston. The an other application related to Spatial Econometrics, where
is model the inequality index of Gini for the municipalities in the state of Pernambuco,
Brazil is modeled. Finally, in Chapter 6 are presents some final considerations and the
appendix with simulation study graphics are shown.

Computational Resources

For the development of this master thesis was used the software R (Team, 2019).
For the simulation studies, it was used GAUSS computing cluster belongs to the National
Supercomputing Center at Federal University of Rio Grande do Sul (CESUP / UFRGS).
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2 REGRESSION ANALYSIS

The purpose of this Chapter is to describe aspects of regression analysis. Here the
contents necessary to understand this master thesis will be exposed in a summarized way.
Firsty, a brief explanation about linear models is presented. Secondly the generalized linear
models are introduced. Some details about generalized additive models are also presented
and finally GAMLSS are presented.

2.1 Linear Models

The regression analysis is the search for the causal relationship between variables,
seeking to understand how a response variable can be explained through others variables,
called explanatory variables. The parametric regression approach, which is that of the linear
models, has as main characteristic that the relationship between the response variable
and explanatory variables, or covariates, is that the explained variable is a linear and
parametric function of the explanatory variables. In contrast, terms of random error are
added to the linear function, implying that the response variable is a random variable.
For n observations of these variables, this relation can be represented by the following
equation:

yi = β0 + β1xi1 + . . .+ βkxik + εi, for i = 1, . . . , n,

with εi representing the error term, that are independent and identically distributed
(i.i.d), by hypothesis, and has distribution εi ∼ N(0, σ2), βk represents a fixed unknown
parameters that is called regression coefficients, which shows the effect of variable xk on
the mean of the response variable, E(y|x1, . . . , xk). The meaning of linear model here is
that the model is linear in the parameters. Usually, the estimation of these unknown
parameters of the linear regression model is done using the residual sum of squares of the
model S :

S(β0, . . . , βk) =
n∑
i=1

(yi − β0 + β1xi1 + . . .+ βkxik)2.

It is minimized the sum in relation to the parameters vector β = (β1, . . . , βk), this
method is called of least squares. Equating ∂S

∂β = 0 it is obtained the solution in matrix
terms to β vector:
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X>ε̂ = 0

=⇒ X>(y −Xβ̂) = 0

=⇒ X>y = (X>X)β̂
=⇒ β̂ = (X>X)−1X>y,

where X = [1 x1, . . .xk] denotes an n× (k + 1) design matrix. One of the limitations of
this approach is that the distribution function of the response variable is Gaussian, which
is often not satisfied in practice, requiring some transformation (such as the logarithmic
function) in it. Another point is that, by hypothesis, the variance of the response variable
is constant on the regression surface, Fox (2015).

2.2 Generalized Linear Models

The motivation for constructing the generalized linear models class is related to the
linear relationship between the response variable and the regression coefficients imposed in
the context of linear models with normal errors. Another motivation is due to the context
of allowing variance to be modeled. Presented by Nelder e Wedderburn (1972), these
models the GLMs allow the flexibility of the distribution function of Y, which now belongs
to the exponential family (E .f.). Many families of probability distributions are included in
the E .f., such as Bernoulli, Poisson, Gaussian, Exponential, Gamma and others.

The general structure of the GLMs is (MCCULLAGH; NELDER, 1989):

Y ∼ E .f.(µ,φ)
g(µ) = Xβ,

where g(.) is a monotonic function link (logit, probit, complementary log-log), which
provides the relationship between the linear predictor and the mean of the response
variable distribution. The vector φ is a vector of constants and g(µ) = η is is called a
linear predictor, β is a vector (k + 1)× 1 of unknown parameters and X is an n× (k + 1)
design matrix. A complete reference in GLMs is found in McCullagh e Nelder (1989).
According to these, the likelihood function is constructed from observations yi of the
random variable Y with probability distribution function:

fY(yi; θ, φ) = exp{(yiθ − b(θ))/a(φ) + c(yi, θ)},

where θ is called the canonical parameter, a(.), b(.) and c(.) are specific functions. For
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Gaussian distribution is given by:

fY(yi; θ, φ) = 1√
2πσ2

exp{−(yi − µ)2

2σ2 }

= exp{−y
2 + 2yµ− µ2

2σ2 − log(σ
√

2π)}

= exp{yiµ− µ
2/2

σ2 − y2
i

2σ2 − log(σ
√

2π)},

with θ = µ, a(φ) = φ = σ2, b(θ) = θ2, c(φ, yi) = − y2
i

2σ2 − log(σ
√

2π).

The mean and variance of Y are found when:

l(θ, φ, yi) = log fY(yi; θ, φ),

where l(θ, φ, yi) is the log-likelihood function, which is a function of θ and φ. Then obtain :

∂l

∂θ
= {yi − b′(θ)/a(φ)},

∂2l

∂θ2 = −b′′(θ)/a(φ).

From relationships :

E

(
∂l

∂θ

)
= 0,

E

(
∂2l

∂2θ

)
+ E

(
∂l

∂θ

)2

= 0.

And then the mean and variance of the response variable are shown in terms of
this parameterization:

E(Y ) = b′(θ),
V ar(Y ) = b′′(θ)a(φ).

Note that in this approach the limitation is that the response variable belongs to the
exponential family and the relationship between the response and explanatory variables is
assumed to be linear.

2.3 Generalized Additive Models

The generalized additive models (GAMs) incorporate in the GLM analysis the use
of nonparametric techniques in the modeling of the parameters of the distribution of the
response variable (HASTIE; TIBSHIRANI, 1990). In the context of GAMs, the linear
predictor can be rewritten as a sum of smooth function. The predictor is given by:

g(µ) = Xβ + s1(x1) + . . .+ sJ(xJ), (2.1)
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where β is a (k + 1)× 1 vector of unknown parameters, X is an n× (k + 1) design matrix,
s(.) denotes nonparametric smoothing function for covariate (x). These functions can be
P-splines smoother (EILERS; MARX, 1996), Ridge Regression (HOERL; KENNARD,
1970), Lasso Regression (TIBSHIRANI, 1996).

For example, using B-spline basis (BOOR et al., 1978), which consists of polynomial
pieces that are connected, Eilers e Marx (1996) show that P-splines are smoothers with
low-rank, with nodes equally spaced and with a difference penalty being applied to the
parameters βj . A fitted curve for n observations of the response variable Y and covariate X
can be represented by linear combination ŷ(x) = ∑n

j=1 β̂Bj(y, x), where j denotes the degree
of B-splines. The authors propose a penalty in the parameters given by: ∑k−1

j=1(βj+1− βj)2.
The advantage of using the P-splines is the flexibility given to the fit of the data.

Wood (2017) presents the theory behind the GAMs, as smoothers like cubic splines,
Thin plate splines, Duchon splines, Gaussian Markov random fields and as these can be
incorporated in Equation 2.1. The computational manipulation of GAMs is also presented
with the mgcv.

2.4 Generalized Additive Models for Location, Scale, and Shape

The generalized additive models for location, scale, and shape (GAMLSS) were
proposed by Rigby and Stasinopoulos in 2005. This is a general class for reponse variables
univariates. In this class of models, assumes that the observations of the response variable
yi are independent, with i = 1, ..., n. And they have probability (or density, in the
continuous case) function f(yi|θi), conditioned on the vector θi> = (θi1, ..., θip) of p
unknown parameters of this function. All parameters of the distribution function of the
response variable can be modeled through different independent (explanatory) variables
and random effects. Let y> = (y1, y2, . . . , yn) be a vector of length n of the observations
of the response variable and for k = 1, 2, 3, . . . K, and let gk(.) be a known monotonic link
function that associates θk with independent variables and random effects through the
GAMLSS (RIGBY; STASINOPOULOS, 2005) model given by:

gk(θk) = ηk = Xkβk +
Jk∑
j=1

Ujkγjk, (2.2)

where the vector ηk is the linear predictor and has length n. Similarly, θ>k=(θ1k, θ2k, ..., θnk)
has the same length. In turn, the vector of the parameters β>k = (β1k, β2k, . . . , βJ ′

k
k) has

dimension J ′k, and the matrices of covariates Xk and Ujk are of orders n×J ′k and n× qjk.
Lastly, the random effects parameter vector γjk has length J ′k and follows a Gaussian
distribution with γjk ∼ Nqjk

(0, λ−1
jk K−1

jk ), and K−1
jk is the inverse of a symmetric matrix

qjk × qjk, Kjk, which may be a function of a vector of hyperparameters λjk. And, if Kjk is
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a singular matrix, then it is understood that γjk has density function that is improper
and proportional to exp(−1

2γ
>
jkKjkγjk).

Note that in GAMLSS it is possible to model all the parameters of the distribution
of the response variable as a linear function of explanatory variables and random effects,
but not all distribution parameters need to be modeled using explanatory variables. For
example, set Ujk = In, where In is a identity matrix n×n, and γjk = hjk = hjk(xjk), for all
combinations of j and k = 4 (for example) in (2.2) is obtained the GAMLSS formulation
semiparametric additive given below:

g1(µ) = η1 = X1β1 +
J1∑
j=1

hj1(xj1),

g2(σ) = η2 = X2β2 +
J2∑
j=1

hj2(xj2),

g3(ν) = η3 = X3β3 +
J3∑
j=1

hj3(xj3),

g4(τ ) = η4 = X4β4 +
J4∑
j=1

hj4(xj4)

with vectors µ, σ, ν, τ each with length n. Here, µ represents the location parameter,
(e.g. the mean), σ of the scale (e.g. the standard deviation), ν and τ are skewness and
kurtosis,respectively, and represent the shape parameters.

In this approach assumes the modeling is done for four parameters (k = 4) of the
distribution function of the response variable. Primordial in the process of fitting of the
additive components in the GAMLSS structure are: the algorithm backfitting and the fact
that quadratic penalties in the likelihood function result from the hypothesis of random
effects in the linear predictor to follow a normal distribution. In this way, the estimation
uses shrinkage matrices within algorithm backfitting (RIGBY; STASINOPOULOS, 2005).

As mentioned in the previous section, in the model (2.2) it is assumed that γjk, are
independent and have normal distribution with γjk ∼ Nqjk

(0, λ−1
jk K−1

jk ). In the GAMLSS
framework, the hypothesis of independence between different random effects vectors is
essential. However, if for a k two or more random effects vectors are not independent, they
can be combined into a single random effect vector and also their corresponding covariate
matrices, Ujk, in a single array of covariates. Rigby e Stasinopoulos (2005) show that,
with λjk fixed, βk and γjk are estimated in the GAMLSS structure by maximizing the
penalized likelihood function, lp, given by:

lp = l − 1
2

p∑
k=1

Jk∑
j=1
γ>jkKjkγjk, (2.3)
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where l = ∑n
i=1logf(yi|θi) is the logarithm of the likelihood function of the observations

given θi for i = 1, ..., n. It is also shown in Appendix C from Rigby e Stasinopoulos (2005)
that the maximization of lp applied to partial residuals, εjk, to update the estimate of
the additive predictor Ujkγjk together with an algorithm backfitting leads to shrinkage
matrix Sjk, given below:

Sjk = Ujk(U>jkVkkUjk + Kjk)−1U>jkVkk, (2.4)

where k = 1, 2, 3, 4 and j = 1, 2, ..., Jk, with Vkk is an matrix of iterative weights. For
different forms of Ujk and Kjk different types of additive terms in the linear predictor can
be incorporated ηk, for k = 1, 2, 3, 4.

There are two basic algorithms that are used in gamlss package in R software.
The first is the algorithm CG, which is based on the algorithm of Cole e Green (1992).
In this, information about the first derivatives and (the expected or approximate value)
of the second and the cross-derivatives of the log-likelihood function in relation to the
θ = (µ, σ, ν, τ)> for a distribution with four parameters. However, for many probability
functions (density), fY (y|θ), the parameters θ are orthogonal information since the
expected values of the log-likelihood function are zero, for example, location and scale
models and dispersion family models.

This is the case, the RS algorithm is more adequate, since it does not use the
log-likelihood cross-derivatives. the fitting process with the RS algorithm, presented in
Stasinopoulos et al. (2017), is given by the following steps:

• the outer iteration which calls;

• the inner iteration which calls;

• the modified backfitting algorithm.

Given a vector (µ0,σ0,ν0, τ 0) of initial estimates for the parameters, the outer iteration
sequentially fits a model for each parameter considering the latest estimates for the other
parameters until the convergence of the global deviance. The inner iteration is called in
each fitting of the parameters and applies a local scoring algorithm. And the modified
backfitting algorithm uses a good weighted least (WLS) and algorithm a good penalized
weighted least squares (PWLS) algorithm (RIGBY; STASINOPOULOS, 2014).

In continuation of the fitting process in the GAMLSS, the vector of hyperparameters
λjk can be estimated internally (locally) or globally. In the local estimation, the method
of estimation for each λjk is applied each time in the backfitting algorithm of RS or CG
algorithms. In globally the method of estimation is is applied outside these algorithms.
Three different methods can be applied to estimate hyperparameters:
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• Methods based in likelihood as MLE/REML;

• Generalized Akaike information criterion (GAIC);

• Generalized cross validation or validation (GCV) global deviance (VDEV).

The implementation of the gamlss package is present in the software R, (STASINOPOU-
LOS; RIGBY et al., 2007). for fitting a GAMLSS model. There others packages as
gamlss.add for fitting extra additive terms in the fitting a parameter of distribution. All
distributions within gamlss package are found in gamlss.dist package (RIGBY et al.,
2019 forthcoming).
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3 GAUSSIAN MARKOV RANDOM FIELDS

In this section it is presented a definition of Gaussian Markov random fields (GMRF)
and its connection with the autoregressive models.

A necessary concept when talking about GMRFs is conditional independence. As
exemplified in Rue e Held (2005), consider γ = (γ1, . . . , γq)> a random vector normally
distributed with a q× 1 mean vector µ and q× q precision matrix K. Two variables γ1 and
γ2 are independent if and only if (iff) πγ1,γ2(γ1, γ2) = πγ1(γ1)πγ2(γ2), with π(.) representing
the density function of the variable. On the other hand, γ1 and γ2 are called conditionally
independent given γ3 if and only if (iff) π(γ1, γ2|γ3) = π(γ1|γ3)π(γ2|γ3) and the notation is
represented by γ1 |= γ2|γ3. Note that independence implies conditional independence, but
the reciprocal is not valid, according to Edwards (2012). This is due to the fact that γ1

and γ2 may be marginally dependent.

Let G = (V , E) be an non-directed graph, with V = {1, . . . , q}, the set of vertices
or nodes representing the q - area units and E is the set of edges that connect these areas.
Hence, Rue e Held (2005) define that γ ∈ Rn will be a GMRF with respect to the graph
G if its density function is given by:

π(γ) = (2π)−n
2 |K|1/2 exp(−1

2(γ − µ)>(K)(γ − µ)), (3.1)

and kij 6= 0 iff {i, j} ∈ E for all i 6= j, i = 1, . . . , q. Hence, the precision matrix K informs
which areas are neighbors, given some neighborhood criterion. For kij = 0, i and j are
called conditional independent, by the Markov property. Clearly, for a larger number of
neighbors, more dense (or less sparse) will be K.

The first class of GMRF to areal data presented are conditional autoregressive
models. These models based on the Markov property constitute a special class of spatial
models that are suitable for discrete spatial domain, Kemp (2007). Also shown is a special
case of this class which are intrinsic conditional autoregressive models (ICAR). Next, it is
presented another approach to the areal data that are simultaneous autoregressive models
that are commonly employed in the context of spatial econometrics. A important point to
be emphasized is, as Hodges (2016) in Section 5.2, these models were developed to model
the variable response, and in the course of time that statisticians began to employ them
as distributions of random effects or latent variables.

3.1 Models for areal data

In this section, let assume that the data can be thought of as a realization of a
stochastic process {Z(s) : s ∈ D}, with mean µ(s), Z(s) = (Z(s1), . . . ,Z(sq))> has a



Chapter 3. Gaussian Markov Random Fields 22

multivariate normal distribution where the space of variation is discrete (CRESSIE, 1993).
Each element of the set D represents the i-geographic region (unit area), i = 1, . . . , q,
where each index represents a set of pairs of coordinates that delimit an area. In the Figure
2, the 49 districts of Columbus city of the state of OHIO, in United States, are displayed,
and for each of them a unique code is associated. The set of indices denoting each areal D
can be defined here as D = {1, . . . , 49} and from this a structure of spatial dependence
for the observations can be constructed, considering neighboring regions whose borders
touch each other.

Figure 2 – Indexes for 49 Columbus districts, OHIO, United States.

For example, to construct a neighborhood matrix W of dimension q × q given by
the number of areas (regions, districts). The elements of this matrix denote the spatial
dependence between the regions. Looking at Figure 2, line 6 of the matrix W which
represents the relation of district 6 will have only the elements w6,5 = 1 and w6,9 = 1 with
non-zero values, where wi,j represents the line and column of W. By definition the elements
of the diagonal of the neighborhood matrix are equal to zero, wii = 0, and symmetry is
required, district i is neighbor to j if it is also j is neighbor of i, this is represented by
the notation i ∼ j, two areas are considered neighbors if they share one or more common
points at their borders. In this way, the representation of the set of neighbors of district 6
can be given by N6 ≡ {5, 9}. And generally for the above example:

Ni ≡ {k : k is a neighbor of i }, i = 1, . . . , 49.
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Conditional autoregressive models

The Conditional autoregressive models (CAR) are attributed to Besag (1974) and,
according to Banerjee et al. (2004), these models have been widely used in recent years in
the context of spatial hierarchical models as random effects.

The CAR model is defined as follows (CRESSIE, 1993):

γi|γ−i ∼ N
 n∑
j=1

cijγj,mi

 , (3.2)

where γi is a random variable associated with the unit of area i, for i = 1, . . . , q.
The vector γ−i denotes all realization γj except ith. In its turn, cijγj is the conditional
mean of γi and mi is conditional variance. The element cij from matrix C denotes the
spatial dependence between the units of area i and j. And M is diagonal n× n matrix.
Using the brook’s lemma and Hammersley-Clifford (1971, apud Besag (1974)) theorem, it
is shown that joint distribution is given by:

γ ∼ Nq(0, (I−C)−1M), (3.3)

here, I is an q × q identity matrix, and the elements of the covariance matrix must be
symmetric with cijm−1

i = cjimj
−1, for all i 6= j, and cii = 0. The spatial dependence matrix

can be computed as equal to C = ρcW, with ρc representing the spatial autocorrelation
parameter, and W is a spatial weight matrix, defined as before. In summary, according to
Hoef et al. (2018a), four conditions for obtaining a covariance matrix valid for the CAR
model:

• The matrix (I−C) has positive eigenvalues;

• The diagonal elements of C are zero;

• cij/mii = cji/mjj, for all i and j; and

• M is a diagonal matrix with positive diagonal elements.

The restriction 1/λ[1] < ρc < 1/λ[N], with λ[1] the smallest eigenvalue of W and λ[N] the
highest eigenvalue, is used to obtain a valid covariance matrix. Because the restriction
ensures that (I− ρcW) has positive eigenvalues (CRESSIE, 1993).

The intrisic autoregressive model (IAR) Besag e Kooperberg (1995) is a special case
of the CAR model when ρc = 1 implying that the covariance matrix of this model does
not exist. According to Besag e Higdon (1999), in IAR models, for i = 1, . . . , q regions,
Z ∼ N(0,K−), where K− is the q× q generalized inverse of matrix K. The elements of the
diagonal of matrix K, kii, are the number of regions adjacent to region i. The non-diagonal
elements, kij, represent the neighborhood relation between two regions, i and j, equal to
−1 iff i and j are considered neighbors, and 0 in otherwise.
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Simultaneous autoregressive models

The SAR model was introduced by Whittle (1954), which defined a spatial process
simultaneously in R2 on a countable grid. These models have been studied extensively over
the years, and are richly exposed in Cressie (1993), Cressie e Wikle (2011), and most recently
in Hoef et al. (2018b). These models have application in a diverse amount of scientific areas.
In the field of texture analysis, Mao e Jain (1992) construct a multiresolution model based
on SAR model for Texture classification and Texture segmentation. The SAR models are
also commonly used in quantitative study of the environment and living beings, known as
Ecological data analysis, since they have a certain spatial pattern due to the proximity
of the collected observations. For example, Lichstein et al. (2002) analyze reproduction
habitat relationships for three common Neotropical migrant songbirds with the use of
SAR models, with the use of the SAR model, which was adequate for the significance of
the autocorrelation parameter.

This model is considered a GMRF with density function given by (3.1). The SAR
model with zero mean is given as follows:

γi =
q∑
j=1

bijγj + εi, i = 1, . . . , q, (3.4)

which can be rewritten in matrix terms:

(I−B)γ = ε, (3.5)

where I is an q × q identity matrix. The error term is Gaussian with ε ∼ Nq(0,Λ), where
0 is a q × q zero matrix and Λ is a q × q diagonal matrix. In its turn, B is an spatial
dependence matrix with elements bij which denote the dependence between the area units.
Thus, for example, b35 > 0 this means that the unit of area 3 depends on the unit 5. By
convention, area units do not depend on themselves, implying that the elements on the
diagonal, bii, are zero. We have to:

γ ∼ N(0, (I−B)−1Λ(I−B>)−1). (3.6)

Thus, for the covariance matrix, ΣSAR = (I−B)−1Λ(I−B>)−1) to be positive-definite it is
sufficient that (I−B)−1 exists (that is, (I−B) be full rank) and Λ be a positive diagonal
matrix. In Hoef et al. (2018b), the definition of B is to take it as B = ρSW, where ρs
is the parameter that denotes the spatial autocorrelation between the areas. As in CAR
models, To obtain a precision matrix of a specification of a SAR model looks directly at
the eigenvalues and eigenvectors of the weights matrix W, a sufficient condition for (I−B)
to have inverse, in terms of W, is that the parameter ρ is such that 1/λ[1] < ρS < 1/λ[N],
with /λ[1] < 0 and λ[N] > 1 denoting the smallest eigenvalue and higher eigenvalue of W,
respectively. Again, this condition is sufficient but not necessary. It is possible to obtain a
specification of the SAR model without this condition being met, but in practical terms it
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is not carried out in this way Hoef et al. (2018b). Another choice that can be made for B is
such that B = W̃. Each row of the neighborhood matrix is normalized and such that the
sum is equal to 1, That is, the element of the normalized matrix are w̃ij = wij/wi+. The
matrix W̃ does not require symmetry, and is called the stochastic row because W̃1 = 1
(BANERJEE et al., 2004). Let, in a similar way, B = αW̃, being α the spatial correlation
parameter, (3.4) is modified to:

γi = α
∑
j∈Ni

wij∑
k wik

γj + εij, (3.7)

with wij denoting the matrix element of W, and Ni is the set of all indices of regions that
are adjacent to region i. One point to note is that unlike the previous version eigenvalues
have the restriction of |λi| = 1. And so for (I − αW̃) be full rank it is enough that
α ∈ (−1, 1), and this explains α being denoted as a spatial autocorrelation parameter.

In general, the conditions, according to Hoef et al. (2018a), guarantee a valid
specification for covariance matrix of a SAR model are listed below:

• The matrix I−B is of full rank, i.e. if its determinant is non zero and therefore its
rank is q;

• The diagonal elements of B are zero; and

• Λ is a diagonal matrix with positive elements.

The SAR models are used in the area of Spatial econometrics and under different
contexts, which leads to different formulations of the SAR models. As emphasized Cressie
e Wikle (2011), the matrix B is seen in this field as a type of lag operator or backshift
operator. This operator applied to an element of a time series produces the element prior
to this. Hence, instead of time lag, for time series models, the lag is performed in space.
The spatial SARlag model with zero mean (µ = 0) is written as Y = BY + ν, with
ν ∼ N(0,ΣSAR), that an equivalent formulation presented in this section. The SARerror

models assumes that the spatial correlation is present in terms of error, adding to the
Ordinary Least Square (OLS) regression model a term to capture this spatial process:

Y = Xβ + ξWu + ε,

where ξ is the spatial autoregression coefficient (HAINING; HAINING, 2003).

3.2 The relationship between simultaneous and conditional autoregressive
models

To implement the SAR models in the GAMLSS it is necessary to check the
relationship of these with the CAR models, because the full conditional distributions for
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the SAR random effects have no convenient form (BANERJEE et al., 2004). Specifically,
it is necessary know how to write the SAR model as a CAR Model. This relationship
between these two models has been the subject of research. An important result that was
found in the literature was the equivalence between these two models when only if and
only if their covariance matrices are equal, assuming that the mean was modeled correctly
Cressie (1993), this is:

(I−C)−1M = (I−B)−1Λ(I−B>)−1

The results show that any covariance matrix of the SAR model can be expressed as the
covariance matrix of a CAR model, but the reverse is not true. In literature, Hoef et al.
(2018a) investigate this relationship and makes a generalization for any definite matrix
defined, here we follow them.

Theorem 1 (Hoef et al. (2018a)). Any positive-definite covariance matrix Σ can be
expressed as the covariance matrix of a CAR model (I − C)−1M for a unique pair of
matrices, C and M.

Proof. Let Q = Σ−1 and decompose it into Q = D - R, where D is a diagonal matrix
with elements dii = qii, i.e. the elements in diagonal of precision matrix, and R has
elements rij = −qij and rii = 0. Let C = D−1R and M = D−1. Thus, Σ−1 = D−R =
D(I−D−1R) = M−1(I−C), which shows Σ written as a covariance matrix of the CAR
model, if the following conditions are attend:

• M is strictly diagonal with positive values, so M and M−1 are positive-definite. By
hypothesis,Σ and Σ−1 are positive-definite. Thus, Σ = (I−C)M and, by proposition,
(I−C)−1 has positive eigenvalues and thus so does I−C;

• By construction mij = 0, for i 6= j, mii = 1
qii

and the fact that Q = Σ−1 is
positive-definite, imply that qii > 0 , for i = 1, 2, 3 . . . , n. And consequently, mii > 0;

• By condition 2, in CAR models section, cii = 0 by the fact that C = D−1R;

• For all i 6= j, C has elements cij = d−1
ii rij = miirij, and thus cij

mii
= rij = −qij.

The symmetry of Q implies qij = qji, and consequently cij

mii
= cji

mjj
.

The second part to prove is the uniqueness of the covariance matrix of the SAR
model written as CAR, given by the authors (HOEF et al., 2018a) is presented below:

Proof. Assume existence of C̃ and D̃ other than C and D, respectively, and satisfying
the four conditions in the previous proof. We have that if these matrices also satisfy
ΣCAR = M̃

−1(I− C̃), then diag(M) = diag(M̃) = diag(Σ−1), by proposition 4, implying
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that M = M̃, if these are diagonal matrices. From this fact it follows that C̃ = C, because
C̃ = I− M̃M−1(I−C), and so the representation is unique.

Besag (1974) provides proof of equivalence between a first order SAR model and
the third order CAR model in the context of a rectangular lattice. Let Yij be a random
variable in the i-th row and j-th column of the grid, and consider the generator process of
this variable as a model:

Yij = δ1Yi−1,j + δ
′

1Yi+1,j + δ2Yi,j−1 + δ
′

2Yi,j+1 + εi,j, (3.8)

where εi,j is white noise and δk is the is the k-th regression coefficient. Assume that the
covariance matrix of these are equal to the identity matrix of the same order (Λ = I), thus
(3.8) has its representation in the CAR model given by:

E(Yi,j|{ym,n : (m,n) 6= (i, j)}) = (1 + δ2
1 + δ

′

1
2 + δ2

2 + δ
′

2
2)−1{(δ1 + δ′1)(yi−1,jyi+1,j)

+ (δ2 + δ′2)(yi,j−1 + yi,j+1)− (δ1δ
′
2 + δ′1δ2)(yi−1,j−1 + yi−1,j+1)

− (δ′1δ′2 + δ1δ2)(yi−1,j+1 + yi+1,j−1)− (δ1δ
′
1)(yi−2,j + yi+2,j)

− (δ2δ
′
2)(yi,j−2 + yi,j+2)}.

This equivalent representation of the SAR model in terms of the CAR model will be very
useful as will showed later in the section of the Chapter 3 that deals with the computational
implementation of the SAR model for the purpose of this work.

3.3 The implementation of the SAR model within GAMLSS

This section will discuss how to implement the SAR in GAMLSS model. The
relationship between the models of discrete space variation (area units, in our case) and
nonparametric regression can be found in section 8.2 of Fahrmeir et al. (2013). In turn,
the implementation of CAR models in GAMLSS can be seen in De Bastiani et al. (2018).

The concept of neighborhood when it comes to units of area varies according to
the approach adopted. Here we consider neighbors the units of areas that share the border
of these polygons. In addition, if area i is neighbor of j, then j is neighbor of i, exhibiting
a symmetric neighborhood relation. According to Fahrmeir et al. (2013), each unit of area
will have its own regression coefficient γi, with i = 1, . . . , q. In order that the coefficients
obtained from neighboring regions are more similar, the authors impose a quadratic penalty
as follows:

PLS(λ) =
n∑
i=1

(yi − γi)2 + λ
q∑

u=2

∑
v∈N(u),v≤u

(γu − γv)2, (3.9)
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where N(u) is the set of all neighbors of area u and λ is smoothing parameter. Rewriting
the PLS in matrix form have to:

PLS(λ) = (y −Uγ)>V(y −Uγ) + λγ>Kγ, (3.10)

as can be seen in Section 9.4 of Stasinopoulos et al. (2017). The matrix U is a n× q matrix
that associates each observation with its respective unit of area. The idea behind is to
place each observation in its respective region. That is:

ui,m =

1, if yi belongs region m,

0, otherwise .

The n× n matrix of weights V is diagonal-off. The penalty matrix K has dimension q × q
and has elements:

ku,v =


0, if u and v are not neighbors,

−1, if i and j are neighbors ,

nu, the number of neighbors of u,∀u = v.

This penalty matrix represents the pseudo-inverse of the covariance matrix of the CAR
model. And this represents the reason why the SAR model is not incorporated directly
into the GAMLSS, through its covariance matrix. The value of γ̂ that minimizes (3.10) is
γ̂ = (U>VU + λK)−1U>Vy.

The link between (penalized) smooths, random effects and random fields can be
found in section 5.8 of Wood (2017). The author state that the penalty can be a prior
distribution as follows:

γ ∼ Nq(0, λK−).

In this way, the precision model of the SAR model represented by the special case of CAR
model, IAR model, can be incorporated into the GAMLSS models, where γ is a intrinsic
GMRF.

To better exemplify how the SAR models can be incorporated into the GAMLSS
approach, consider the right side of Figure 1 again, that shows 184 municipalities in
Pernambuco with Gini index values. From a given configuration of neighbors, and again
noting that a first order SAR model is equivalent to the third order CAR model, it is
obtained the third order neighborhood configuration. Look at Figure 3 shows a subset of
the 6 cities in state of Pernambuco, on the right side, and the relationship of these cities
in terms of graph (nodes and edges) on left side. In order to construct a valid K precision
matrix based on the general penalization scope presented above, can starts from the matrix
of neighbors W. Each of the seven areas in the figure can be considered as a nodes, as
explained at the beginning of this chapter. Neighbors up to third order are obtained when
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Figure 3 – A subset of six regions of the Pernambuco Gini data example and, on the right,
an undirected graph describing the relationship between the six regions

the minimum number of edges between a region is equal to k ≤ 3. Below is shown the
weight matrices for different neighborhood orders, where two areas are neighbors, in terms
of graph, if the number of edges between the two areas equals k:

W1 =



0 1 0 0 0 0
1 0 1 1 0 0
0 1 0 1 0 0
0 1 1 0 0 0
0 0 0 1 0 1
0 0 0 0 1 0


,W2 =



0 0 1 1 0 0
0 0 0 0 1 0
1 0 0 0 1 0
1 0 0 0 0 1
0 1 1 0 0 0
0 0 0 1 0 0


,

W3 =



0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0
1 0 0 0 0 0
0 1 1 0 0 0


,

where each row in the matrices above represents a the neighborhood relation of order k of
the regions of Figure 3. For example, the element w1,5 in matrix W3 informs that the area
1 and the area 5 are neighbor of third order. In general, the highest order neighborhood
matrices Wk are constructed with the following elements:

wki,j =


0, if i and j are not neighbors of order k,

−1, if i and j are neighbors of order k,

nii, the number of neighbors of i from order k,∀i = i.
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And so, the precision matrix K, from this neighborhood structure is:

K =



4 -1 -1 -1 -1 0
-1 5 -1 -1 -1 -1
-1 -1 5 -1 -1 -1
-1 -1 -1 4 0 -1
-1 -1 -1 0 4 -1
0 -1 -1 -1 -1 4


.

Thus each element on the diagonal of K shows how many neighbors has the i, and the
elements outside the diagnoal inform about the neighborhood relation. Since K is a valid
matrix for the penalty criteria as shown in Fahrmeir et al. (2013).

The function sp2precSar()

Based on algorithm Brute Force Search proposed by Anselin e Smirnov (1996), was
implemented an algorithm for constructing the compatible penalty matrix. This is a more
efficient alternative to the recursive algorithm proposed by Blommestein e Koper (1992).
The idea behind the algorithm is to compute neighborhood matrices of higher-orders of
neighborhood, for our interest until order 3 for representation of the SAR model as CAR,
from the first-order neighborhood matrix. The algorithm follows the following steps given
below:

1. Let A be an accumulation matrix, and set A = W1 the first-order contiguity matrix;

2. Compute W2 = W1W1 a second-order power matrix;

3. Compute the P2 matrix, where p2
ij = 1 if the w2

ij > 0, and 0 for otherwise;

4. Update A = A + P2;

5. Compute W3 = W2W1 a third-order power matrix;

6. Compute the P3 matrix, where p3
ij = 1 if the w3

ij > 0, and 0 for otherwise;

7. Return matrix T = A + P3.

From the neighbor relationships established above, the penalty matrix K is com-
puted from the matrix T, which establishes a neighbor relationship of up to third order,
and K is computed as K = DT −T, where DT is a diagonal matrix which denotes the
numbers o neighbors up to third order from algorithm above. The implemented function
takes two types of spatial object classes in R as arguments:

• SpatialPolygonsDataFrame objects; and
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• nb objects which are lists of neighbors.

These two objects are obtained from the spdep package. And with the use of these is
provided the penalty matrix K. This matrix corresponds to the spatial structure of the
SAR model rewritten as a special case of CAR, the IAR model. This matrix is treated as
an extra penalty in the penalized log-likelihood, Equation (2.3). Thus, the SAR models,
γ ∼ N(0, λ−1K−), are incorporated into (2.2) as through the terms of random effects, and
U matrix is defined as in Equation (3.3). The purpose of this modeling is to take into
account the spatial information in the analysis, if necessary, and to make the observed
values of neighboring regions closer.
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4 SIMULATIONS STUDY

This chapter aims to evaluate the properties of estimators of the coefficients of
the SAR models within GAMLSS approach. Firstly, the methodology was evaluated in
the context of finite samples with linear and nonlinear trend under the assumption of
normality of the errors. Then, it was evaluated with different probability distribution for
the response variable. The simulation consider two different scenarios, (i) simulating the
regions, the form of polygons and (ii) the regions based on a dataset.

In the study, 1000 replications of Monte Carlo for each n = (20, 40, 60) sample size.
The number of polygons generated through the partition of Voronoi is equal to n. According
to Okabe et al. (2009), the Voronoi diagram of a set of points subdivide the plan, in this
study the plan is R2. Here three sets of points were used P1 = {1, . . . , 20}, P2 = {1, . . . , 40}
and P3 = {1, . . . , 60}, this sets are called generators. The generated regions are V1(ni)
with i = 1, . . . , 20, V2(ni) with i = 1, . . . , 40, and V3(ni) with i = 1, . . . , 60. In this
study each region contains only one point. The Voronoi diagrams for P1, P2, and P3

are V1{V1(n1), . . . , V1(n20)}, V2{V2(n1), . . . , V2(n40)}, V3{V3(n1), . . . , V3(n60)}. Theses n
points are generated randomly from U ∼ (0, 1) in a square area and are then aggregated
into cells representing areas as stated above. An example for the generation of Voronoi
diagram is given in Figure 4, which shows 50 generated regions. The voronoi.polygons()
function of the SDraw package implemented in the R software was used to generate the
areas.

Figure 4 – Plot of 50 areas generated by Voronoi partition.



Chapter 4. Simulations study 33

4.1 Evaluation in the models with spatial dependence and normal errors

Linear Trend

To compute spatial dependence, it was generated n observations following a normal
distribution and created the covariance matrix of the SAR models from the above polygons
and make spatially correlated response variable values, it is done the cholesky decomposition
of this and make the product by the observations generated previously. And so, it was
generated a sample of spatially correlated observations. This methodology follows the work
of Haining e Haining (2003). The procedure was performed as follows:

1. Obtain the cholesky decomposition for a square matrix Σ of order n× n such that
Σ = LL>. Where L is a lower triangular n by n matrix. The valid matrix taken here
is the covariance matrix of the SAR model;

2. Generate the n observations of the vectors of covariates x1 and x2 that follows from
a continuos uniform (U) probability distribution in the range of 0 to 3;

3. For each of the 1000 replications of Monte Carlo a vector ε of length n is generated
from uncorrelated normal random variables; and

4. Compute the response variable y with spatial dependency for each replicate by doing
y = µ+ Lε , where µ = β0 + β1x1 + β2x2, a linear trend.

Here two scenarios were computed for spatial correlation, ρ = 0.0 and ρ = 0.10.
For this values used for ρ, was guaranteed that condition that 1

λ[1]
< ρ < 1

λ[N ]
, as defined

in chapter 3, which implies ρ ∈ (−0.39, 0.20). Therefore, the two values chosen for ρ were
ρ = (0.0, 0.10). Analyzing the behavior of the proposed model when there is no spatial
dependence and when there is. The error term parameter from ε ∼ N(0, σ2) were set as
σ2 = 1 and β = (β0, β1, β2)> = (2.5,−0.5, 0.2)>. In addition to the SAR evaluation in
the GAMLSS context, this was compared to the three regression models in this simulation
study, presented in Chapters 2 and 3:

• OLS model: Y = Xβ + ε, with ε ∼ Nn(0, σ2I);

• SARlag model: Y = ρWY + Xβ + ε, with ε ∼ Nn(0, σ2I);

• SARerror model: Y = Xβ + ξWu + ε, with ε ∼ Nn(0, σ2I)

where X is an n× 3 design matrix with a column of ones and covariates generated x1 and
x2. The ρ and ξ are spatial autoregression coefficients. The OLS model was fitted using
the gamlss() function with the default options and without semiparametric terms, fit an
OLS model, this function is contained in gamlss package. The SARlag and SARerror were
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estimated using spdep package, these models were estimated using the generalized least
squares method. For model SARgamlss proposed in this master thesis, the modeling was
done as follows:

Y ∼ N(µ, σ2),
µ = β0 + β1x1 + β2x2 + s(area),

log(σ) = β0,

where s(area) is an IAR spatial smoother . In the fitting process was used the
ga() interface in the gamlss() that establishes a connection with mgcv package (WOOD,
2017). In this is created a base of type IAR with matrix of penalty of given by the
function that was we developed sp2precSAR(), from the relationship obtained between
the autoregressive models SAR and CAR and is in gamlss.spatial (De Bastiani et al.,
2018). Also in the interface, a low-rank matrix approximation is used to reduce the number
of parameters (equivalent to regions) in the IAR smoothing function.

The measures used in the comparison of the models studies with linear trend of
simulation were the empirical relative bias (RB-E) (%), the empirical mean square error
(MSE-E), and the empirical Akaike’s Information Criterion (AIC-E) (AKAIKE, 1974):

RB-E = 1
m

m∑
i=1

β̂
(i)
k − βk
βk

,

MSE-E = 1
m

m∑
i=1

(β̂(i)
k − βk)2,

AIC-E = 1
m

m∑
i=1

(−2l(θ̂)i + 2K),

where m is the number of replications of Monte Carlo, βk is the true value of the k-
th parameter, β̂(i)

k is the i-th estimate of the k-th parameter, and K is the number of
parameters. The i-th log-likelihood is given by l(θ̂). The estimation of parameter βk is
calculated as:

β̂k = 1
m

m∑
i=1

β̂
(i)
k .

In the evaluation of the properties of the coefficient estimators in the context of finite
sample is expected when the number of elements in the sample increases both RB-E and
MSE-E decrease to check the consistency properties of these estimators.

Tables1 show the estimates of the regression coefficients, RB-E, MSE-E from the
models for the cases without spatial dependence. Regarding SARgamlss, the estimators
of the coefficients appear to be asymptotically non-biased with decreasing MSE as the
number of observations in the sample increases. Comparing all models, in this context
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Table 1 – Estimates, RB-E, MSE-E and AIC-E for β1 and β2 of OLS, SARlag, SARerror
and SARgamlss models. The true values of parameters are β1 = −0.5, β2 = 0.2,
σ2 = 1, and ρ = 0.0.

ρ = 0.0 β1 = −0.5 β2 = 0.2
Estimators Estimate RB-E (%) MSE-E Estimate RB-E (%) MSE-E AIC-E

n = 20
OLS -0.490675 -1.864954 0.077110 0.204041 2.020496 0.106526 47.02732

SARlag -0.465352 -6.929593 0.075745 0.188284 -5.857993 0.102182 48.79764
SARerror -0.495872 -0.825654 0.084000 0.206456 3.227956 0.56822 48.1975
SARgamlss -0.487917 -2.416623 0.082355 0.204897 2.448497 0.121333 46.3445

n = 40
OLS -0.501162 0.232439 0.037316 0.204698 2.349242 0.033008 126.787

SARlag -0.490062 -1.987511 0.036305 0.203051 1.525444 0.032233 128.257
SARerror -0.501207 0.241482 0.039715 0.205125 2.562331 0.531405 126.1988
SARgamlss -0.499699 -0.060177 0.037839 0.202291 1.145297 0.033934 123.6795

n = 60
OLS -0.50041 0.082069 0.023055 0.204055 2.027479 0.025307 165.2223

SARlag -0.493595 -1.281006 0.022545 0.202299 1.149439 0.025146 165.9959
SARerror -0.50078 0.155907 0.023512 0.203077 1.538748 0.514603 165.8743
SARgamlss -0.500637 0.127308 0.023325 0.204400 2.200188 0.026084 165.2223

of absence spatial dependence all models have RB-E descending when n increases. The
SARlag show more precision in terms of MSE-E for the two estimators of β1 and β2, but
in general they are more biased. By the criterion of model selection, SARgamlss showed, in
general, better performance among the compared models. The boxplots for β0 are in the
Appendix A of this paper.

Figure 5 shows the boxplots for the parameter estimates of β1 and β2, with no
spatial correlation, and for each sample size n. The green line marks the true value of the
parameter, showing that the estimators are close to the true value in both parameters,
generally, for all models.

In the context of spatial dependence, Tables 2 show the estimates of the regression
coefficients, RB-E, MSE-E from the analyzed models. The SARgamlss shows consistent
estimators for the regression coefficients. As expected, empirical AIC shows that spatial
models are preferable when in the context of finite sample and low degree of spatial
dependence.

Figure 6 shows the boxplots, in context of spatial dependence, for the estimates
from models for β1 and β2. Showing bias for the SARlag model when n increases. The
OLS, SARlag, SARerror and SARgamlss show a low dispersion of the estimates to the true
parameter values.
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Figure 5 – Boxplots of parameters estimates for β1 and β2 from models OLS, SARlag,
SARerror and SARgamlss with ρ = 0.0.

Nonlinear Trend

In order to evaluate the flexibility of the SARgamlss, non-linear trend response
variables were simulated and computed as follows:

1. Obtain the cholesky decomposition for a square matrix Σ of order n such that
Σ = LL>. Where L is a lower triangular n by n matrix. The valid matrix taken here
is the covariance matrix of the SAR model;

2. Generate the n observations of the vectors of covariates x1 and x2 that follows from
a uniform (U) probability distribution in the range of 0 to 3;

3. For each of the 1000 replications of Monte Carlo a vector ε of length n is generated
from uncorrelated normal random variables; and

4. Compute response variable y with spatial dependency for each replicate by doing
y = f(x1,x2) + Lε , where f(x1,x2) is a nonlinear trend.
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Table 2 – Estimates, RB-E, MSE-E and AIC-E for β1 and β2 of OLS, SARlag, SARerror
and SARgamlss models. The true values of parameters are β1 = −0.5, β2 = 0.2,
σ2 = 1, and ρ = 0.1.

ρ = 0.10 β1 = −0.5 β2 = 0.2
Estimators Estimate RB-E (%) MSE-E Estimate RB-E (%) MSE-E AIC-E

n = 20
OLS -0.492488 -1.502369 0.067175 0.206019 3.009448 0.129656 50.64832

SARlag -0.525209 5.041705 0.07565 0.217459 8.729509 0.109321 51.22088
SARerror -0.493619 -1.276258 0.066422 0.21036 5.180058 0.547488 49.93418
SARgamlss -0.489522 -2.095593 0.072134 0.207878 3.938787 0.124604 48.73013

n = 40
OLS -0.508173 1.634647 0.043178 0.207593 3.796664 0.04145 147.8509

SARlag -0.510037 2.007308 0.037387 0.192001 -3.999287 0.033117 136.6093
SARerror -0.498122 -0.375633 0.034929 0.201562 0.780873 0.522299 133.1951
SARgamlss -0.500475 0.09499 0.038303 0.20072 0.360108 0.036884 135.0565

n = 60
OLS -0.500009 0.001867 0.022554 0.201955 0.977709 0.029762 183.1435

SARlag -0.534155 6.831008 0.024201 0.208804 4.402074 0.027921 172.1048
SARerror -0.5008 0.159991 0.019707 0.202116 1.057873 0.510827 171.4649
SARgamlss -0.500024 0.004879 0.021631 0.202108 1.054092 0.029622 178.0091

The nonlinear trend is computed by:

f(x1,x2) = 10πσx1σx2{1.2 exp(−(x1 − 0.2)2/σ2
x1 − (x2 − 0.3)2/σ2

x1)
+ 0.8 exp(−(x1 − 0.7)2/σ2

x1 − (x2 − 0.8)2/σ2
x2)},

where σx1 = 0.3 and σx2 = 0.4. This methodology is based on Durbán et al. (2012).
Where the authors generated responses with a non-linear spatial trend in the coordinates.
As before, two scenarios were evaluated, with spatial dependence and without, with
ρ = (0.0, 0.10). The models used were OLS, SARlag, and SARerror, these were defined as
in the previous Section in 3. Note that these models consider the linear trend for µ. The
SARgamlss used here is given by:

Y ∼ N(µ, σ2),
µ = β0 + h11(x1) + h21(x2) + s(region),

log(σ) = β0,

where s is an IAR spatial smoothing function and h(.) are smooth terms of type P-Splines
(EILERS; MARX, 1996) to capture the non-linearity of the covariates x1 and x2. Other
forms for nonlinear trend modeling can also be considered, such as an interaction between
covariates (e.g. s(x1,x2)). To evaluate and compare the peformances of the models, the
AIC-E was computed as before.

Figure 7 shows the boxplots for empirical AIC from fitted models without spatial
dependence in this scenario. It is noticed that SARgamlss has a better estimate of AIC-E in



Chapter 4. Simulations study 38

−1.5

−1.0

−0.5

0.0

OLS SARlag SARerror SARgamlss

 β1 =−0.5n=20

−1

0

1

OLS SARlag SARerror SARgamlss

 β2 =0.2

−1.5

−1.0

−0.5

0.0

OLS SARlag SARerror SARgamlss

 β1 =−0.5n=40

−1

0

1

OLS SARlag SARerror SARgamlss

 β2 =0.2

−0.9

−0.6

−0.3

0.0

OLS SARlag SARerror SARgamlss

 β1 =−0.5n=60

−0.2

0.0

0.2

0.4

0.6

0.8

OLS SARlag SARerror SARgamlss

 β2 =0.2

Figure 6 – Boxplots of parameters estimates for β1 and β2 from models OLS, SARlag,
SARerror and SARgamlss with ρ = 0.10.

relation to the other models. In relation to the models that consider linear trend, OLS is
that it has better performance among these in this type of scenario.

For scenario with dependence spatial, Figure 8 shows the boxplots for empirical
AIC. For all sample sizes, SARgamlss has best estimate of AIC-E in relation to the other
models due the flexibility of P-splines smooth terms. The SARlag and SARerror models
performed slightly better than the OLS model. It can be attributed to the fact that
spatial dependence is now present. And as shown in Table 4.1, the SARerror has better
performance, generally, than SARlag.
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Figure 7 – Boxplots of AIC estimates for models OLS, SARlag, SARerror and SARgamlss
with ρ = 0.0 and nonlinear trend.

n OLS SARlag SARerror SARgamlss
ρ = 0.0

20 61.16245 61.86282 61.65316 57.79662
40 118.4104 119.2874 119.1686 115.6146
60 176.3101 177.275 177.2223 173.8598

ρ = 0.10
20 62.94609 63.29105 63.23864 58.64176
40 124.4764 122.0848 121.9803 118.4058
60 187.3604 181.7326 181.765 179.5834

Table 3 – AIC estimates for models OLS, SARlag, SARerror and SARgamlss with ρ = 0.10
and nonlinear trend
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Figure 8 – Boxplots of AIC estimates for models OLS, SARlag, SARerror and SARgamlss
with ρ = 0.10 and nonlinear trend
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4.2 Simulation study based on real data

Simulations studies based on real data are used to test the properties of coefficient
estimators in spatial models as seen in Lee e Lee (2012), and Alam, Rönnegård e Shen
(2015). Here the data set used was from Boston Housing Data (HARRISON; RUBINFELD,
1978), this dataset will be analyzed in more detail in the Chapter 5. The response variable
is the median value of owner-occupied homes in 1000s in 506 census track of Boston,
Massachusetts, United States. Here, 506 observations of response variable were simulated
using the covariates RM and RAD, that are average number of rooms and index of accessibility
to radial highways, respectively. Figure 9 shows the spatial structure in the districts of
Boston with the median values of of owner-occupied homes.

Figure 9 – Median values of owner-occupied homes in suburbs of Boston.

The probability distribution used for variable response was Sinh-Arcsinh (SHASH)
distribution,Y∼ SHASH(µ, σ, ν, τ), (JONES; PEWSEY, 2009) which is given by:

f(y|µ, σ ν, τ) = c√
2πσ(1 + z2)1/2

e−r
2/2,

where:

r = 1
2
{

exp
[
τ sinh−1(z)

]
− exp

[
−ν sinh−1(z)

]}
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and:

c = 1
2
{
τ exp

[
τ sinh−1(z)

]
+ ν exp

[
−ν sinh−1(z)

]}
,

where z = (y − µ)/σ , for −∞ < y <∞, µ = (−∞,+∞), σ > 0, ν > 0 and τ > 0
(STASINOPOULOS et al., 2017). Figure 10 shows the SHASH distribution density for
different parameter values. This distribution function is implemented in gamlss, (RIGBY
et al., 2019 forthcoming). The µ is the median, σ is a scaling parameter, ν is the left tail
heaviness and τ is the right tail heaviness parameter.
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Figure 10 – Plot of Sinh-Arcsinh distribution

In the simulation scheme, 1000 replications of Monte Carlo were made. The
regression coefficients were (β0, β1, β2) = (1, 0.5, 0.5). The Models OLS, SARlag, SARerror,
and SARgamlss, in Equation 4.1, were used and compared in the simulation.

1. Obtain the cholesky decomposition for a square matrix Σ of order n× n such that
Σ = LL>. Where L is a lower triangular n by n matrix. The valid matrix taken here
is the covariance matrix of the SAR model from structure spatial in Boston;
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Table 4 – Estimates, RB-E, MSE-E and AIC-E for β1 and β2 of OLS, SARlag, SARerror
and SARgamlss models. The true values of parameters are ρ = 0.10, β1 = −0.5,
β2 = 0.5, and σ = 1, ν = 0.5, τ = 0.5, from SHASH distribution with linear
trend.

ρ = 0.10 OLS SARlag SARerror SARgamlss
β1 = 0.5

Estimate 0.495889 0.495932 0.494812 0.496347
RB-E (%) -0.822197 -0.813572 -1.037651 -0.730605
MSE-E 0.072518 0.073034 0.073171 0.039514

β2 = 0.5
Estimate 0.499481 0.501614 0.499404 0.500277
RB-E (%) -0.103826 0.322838 -0.119161 0.055324
MSE-E 0.000718 0.001455 0.073171 0.00055
AIC-E 2881.795 2883.787 2882.81 2778.225

2. For each of the 1000 replications of monte carlo a vector ε of length n is generated
from uncorrelated SHASH random variables; and

3. Compute response variable y with spatial dependency for each replicate by doing
y = β0 + β1RM + β2RAD + Lε, where ε ∼ SHASH(µ, σ, ν, τ)

The SARgamlss model used in this simulation scenario was:

Y ∼ SHASH(µ, σ, ν, τ),
µ = β0 + β1RM + β2RAD + s(region),

log(σ) = β0,

(4.1)

as before, s is an IAR spatial smoothing function.

Table 4 shows the simulation results based on Boston Housing data. The SARgamlss

model displays a smaller RB-E for β1 and β2, compared to the other models. The SARgamlss

also shows a better performance in relation to MSE-E and AIC-E. This result is attributed
to the fact that SARgamlss allows any distribution function to response variable.

The main conclusions obtained from the simulation studies carried out are given
below:

• In finite sample context with normal errors and linear trend and without and
low spatial dependence, the OLS, SARlag, SARerror and SARgamlss models exhibit
behavior similar to low bias and MSE-E.

• In context of nonlinear trend, SARgamlss models is preferable to allow flexible terms
that model non-linear relations and spatial dependence.
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• SARgamlss models should also be considered when the response variable is suspected
to be non-Gaussian.
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5 APPLICATIONS

5.1 Boston Housing data

To illustrate the use of the GMRF within the GAMLSS models with the spatial
structure being represented by a SAR model, a known set of data was used. It is the
hedonic pricing data of Harrison e Rubinfeld (1978). In this article, the authors analyzed the
demand for clean air through a hedonic price model for residences in Boston. Considering
the spatial structure, Pace e Gilley (1997) estimates a parametric SAR model and obtains
a more accurate prediction of the parameters, but with Gaussian distribution for response
variable. These data are used in the literature to verify robust estimation as in Subramanian
e Carson (1988), it was also used in nonparametric estimation (PACE, 1993) and new
spatial regression models (SIMLAI, 2014). A comparison is made between the model
estimated by these authors (PACE; GILLEY, 1997) and the model proposed in this paper,
this comparison is relevant by the fact that some premises of this model may not be true.
Another relevant point is that fittings of models can be compared in which the spatial
term is parameterized and another that the term is smoothing. This section is divided
as follows. Firstly, it is presented the variables. Then, was fitted a model with spatial
configuration as in Pace e Gilley (1997), and check the goodness of fit is checked. Finally,
the SARgamlss model is fitted considering different continuous distribution on the real line.

Description of the variables

The data consist of 506 observations per census tract, with 14 variables related
to the structure of the households, the location and socioeconomic characteristics. The
variables used in the analysis are given below:

• PRICE: The response variable is the logarithm of the median corrected value of
household values in USD 1000’s;

• CRIM: Crime per capita in the town;

• AGE: Proportion of owner-occupied units built prior to 1940;

• NOX: Nitric oxides concentration (parts per 10 million);

• CHAS: Borders Charles River, which is a factor indicating if the property is near the
Charles River or not;

• RM: Average number of rooms per dwelling;
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• ZN: proportion of residential land zoned for lots over 25,000 sq.;

• INDUS: proportion of non-retail business acres per town;

• PTRATIO: pupil-teacher ratio by town;

• RAD: index of accessibility to radial highways;

• TAX: full-value property-tax rate per $10,000;

• B: 1000(Bk − 0.63)2 where Bk is the proportion of black people by town;

• LSTAT: % lower status of the population in the town;

• DIS: weighted mean of distances to five Boston employment centres ;

• LAT: latitude of census tract; and

• LONG: longitude of census tract.

Figure 11 – Histogram (left) and Boxplot (right) of price from Boston housing data.

As can be see in Figure 11 the data appears to be symmetrical. In the box plot of
this variable is displayed, Figure 11b, shows the presence of many points considered as
outliers. The symmetry of the data appears again, showing that they are little dispersed.
On the other hand, looking at the summary measures is verified a homogeneous data
with coefficient of variation equal to 0.135. The skewness is -0.334 and kurtosis is 3.808.
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Therefore a nonormal probability distribution that differs from the Gaussian can be
required to model the respose variable, PRICE indicating the need to use a distribution
function capable of dealing with these characteristics.

The plot of the response variable against explanatory variables is given by figure
12. For this, the median price increases when the residence is sited near the Charles River.
Looking at Figure 12f for the median to RM, note a linear positive relation. The median
relationship of the response variable with LSTAT, Figure 12m, appears be linearly negative.
For all other variables, the relation a complex relation is drawn, as for example the plot of
median against the RAD, shown in Figure 12j. thus requiring some non-parametric function
in the modeling. Another point to note here is the homoscedasticity hypothesis, present in
linear models, that appears to be violated. Thus, it is necessary to model the dispersion
parameter as a function of explanatory variables.

Comparison

The final fitted model by Pace e Gilley (1997), under the assumption that the data
follow a normal distribution for response variable, is shown in (5.1). They collected the
location of tracts in terms of latidude and longitude. And so they added spatial information
to the hedonic price model of Harrison e Rubinfeld (1978) and the modeling of median
household prices was performed as follows:

log(PRICE) = β0 + β1CRIM + β2AGE + β3NOX + β4CHAS + β5RM

+ β6ZN + β7INDUS + β8PTRATIO + β9RAD + β10TAX

+ β11B + β12LSTAT + β13DIS + β14LAT + β15LONG

+ +β16LAT2 + β17LONG2 + +β18LAT*LONG, (5.1)

in the above equation the price of residences is has a linear relation in all the explanatory
variables, including the interaction between the coordinates (LAT*LONG). To better analyze
this model, it was performed the analysis of residuals, in Figure 13 to verify the suitability
of the model with the Worm plot Buuren e Fredriks (2001) was used, and this one way of
ascertaining the adequacy of the regression residuals. The Worm plot is a detrended QQ
plot for verify the fitting of data, because showing the differences between two distributions,
conditioned to covariate values. This plot shows the non-adequacy of the distribution of
the response variable, showing that the ordered residuals are far from their approximate
expected values (indicated by the dotted horizontal line).

The distribution Box-Cox t, BCT(µ, σ, ν, τ), distribution was chosen in a preliminary
analysis, based on Generalized Akaike Information Criterion (GAIC) (PAN, 2001) with
penalty k = 2, which is equivalent to the standard Akaike Information Criterion (AIC).
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Figure 12 – Plot of Price against exploratory variables, of Boston Housing data
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Figure 13 – Worm plot of the model Pace e Gilley (1997) for the Boston Housing data

This was done through the function chooseDist(), from gamlss package. The explanatory
variables were selected based on GAIC, using the stepGAICAll.A() function from same
package. The parameter µ > 0 corresponds to the median in BCT, and σ( τ

τ−2)0.5 is
approximate the coefficient of variation (when σ > 0 is small, ν > 0 and τ is moderate
or larger)(RIGBY et al., 2019 forthcoming), ν and τ control skewness and kurtosis,
respectively. Figure 14 shows a plot of the BCT distribution for different values of the
parameters.

The SAR model in the approach GAMLSS

Thus, the final fitted model was:

Y ∼ BCT(µ̂, σ̂, ν̂, τ̂),
µ̂ = −43.36− h11(LSTAT)− h21(NOX) + h31(RM)
− h41(CRIM)− h51(LON) + s(census tract),

log(σ̂) = −2.4325078 + h12TAX− h12DIS +−0.0014336B,

log(ν̂) = −0.5126,
log(τ̂) = 1.67− h14(CRIM),
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Figure 14 – Plot of Box-Cox T distribution

where the functions h are P-splines functions, and s is IAR spatial smoothing function
with penalty matrix provided by the sp2precSar() function, which corresponds to the
covariance of the SAR model rewritten as an IAR model. The spatial IAR smoother was
employed only in median (µ) modeling. The term plots shows the partial effect of the
variables used on the model parameter, in this case µ, σ and τ . In Figure 15, LSTAT has a
decreasing effect on µ, indicating the idea that the larger the number of people with lower
status in the census tract the more devalued are the real estate in this area. For the higher
levels nitric oxides concentration (NOX) in the census tract, there is a depreciates the value
of real estate. The average number of rooms has a positive effect on µ for already large
residences, with number of rooms greater than 6.

In relation to fitted scale parameter, σ, Figure 16 shows the effects of explanatory
variables in modeling. The weighted distances to five Boston employment centers (DIS)
has negative effect on σ, which can be thought of as the prices of the residences become
more equal. The same is true for variable B, indicating that the greater number of black
people in the census tract reduces the variability of house prices. And the increase in TAX
implies the price of residences with greater variability. Figure 17 shows the partial for the
τ , indicating that the number of crimes has a negative effect on house price kurtosis.

In Figure 18 the map of predicted values by census tract is shown. Note that the
places where the residences have higher values are in the center-west region of the map,
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Figure 15 – Term plot of model mfinal.spatial for µ̂.
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Figure 16 – Term plot of model mfinal.spatial for log(σ̂).

and these places have as local neighbors with high values as well.

In the diagnostic analysis, looking at Figure 19 which indicates a reasibable fit to
the data, since over 95% of points lie within the elliptical (dashed) 95% interval bands.
The worm plot gives us a sense of how appropriate for data our fitted model is. In figure
19 all points are within the 95% confidence band between the two elliptic curves, showing
that this model specification is adequate.
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Figure 19 – Worm plot of the mfinal.spatial
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5.2 Gini Data

This application consists of an analysis of the determinants of the Income inequality
index in the State of Pernambuco in Brazil, measured by the Gini index, incorporating
the space in the analysis.

The Gini coefficient is a measure of the degree of income distribution in a society.
This measure ranges between 0, perfect equality, and 1 that extreme inequality. According
to Ray (2008), this coefficient is given by:

Igini = 1
2d2ψ

m∑
j=1

m∑
k=1

djdk|zj − zk|,

where ψ is average income in society, d is the total of persons in society. And here the
income data are ordered and subdivided into j classes, and thus the absolute difference of
the pairs of income, |zj − zk|, is computed.

The set of variables that affect the coefficient of gini is described below, according
to the work of Barros et al. (2007):

• Gini is the index of gini collected in 2010 for all the cities of Pernambuco, collected
from the portal Ipeadata of Instituto de Pesquisa Econômica Aplicada (IPEA);

• GDP is the gross domestic product for the current year of 2010;

• POP_TOT is the number of inhabitants of that city in 2010;

• PEA is the number of economically active people in the population for the year of
2010;

• POP_elderly is the number of old-aged people in the population for the year of
2010;

• POP_young is the number of young people in the population for the year of 2010;

• TX_illiterate is the proportion of illiterate people in the population for the year
of 2010;

• TX_unem is the proportion of unemployed people in the population for the year of
2010;

• PBF which is a financial aid to poor families with pregnant women and children and
adolescents between 0 and 17 years old and extremely poor, benefits range from
R$20.00 to R$ 182.00, for the year of 2010; and

• BPC consists of a minimum wage income (R$ 510,00) for the elderly and deficient
who cannot and cannot be supported by their families, were collected in Ministério
do Desenvolvimento Social (MDS) for year of 2010.
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In the descriptive analysis were found problems related to the correlation of some of the
explanatory variables. The variance inflation factor (VIF) was used to select variables that
could incur modeling problems. In order to avoid potential problems of multicollinearity,
was decided to do as follows: The variables PIB and POP_TOT were joined by the ratio
forming the variable Pibcap which is the gross domestic product per municipality. On the
other hand, the variable ELDeYOUNG was produced by the ratio between POP_elderly
and POP_young.

The selection of a suitable modelM = {D,G, T ,L} for the data of the Gini was
through the following components ofM:

1. D: A distribution function is specified for the response variable;

2. G: Specifies the set of link functions for the modeling of parameter;

3. T : Denotes the terms used in modeling for each parameter; and

4. H: Specifies the smoothing hyperparameters which determine amount of smoothing
in the hjk() and of spatial effect.

The selection of an appropriate distribution for variable was performed by comparing
different models using the AIC, this stage is called a fitting stage. The other stage of selection
of model is the diagnostic stage, this involves the use of worm plots of normalized quantile
residuals (i.e. z-scores) to verify the distribution function used. The distribution function
chosen with these two selection stages was the Beta distribution with parameterization
proposed by Ferrari e Cribari-Neto (2004).

The probability density function (pdf) of a Beta Y variable is given by:

f(y) = Γ(φ)
Γ(µφ)Γ((1− µ)φ)y

µφ−1(1− y)(1−µ)φ−1, 0 < y < 1,

where the parameters satisfy 0 < µ < 1, φ > 1 with E(y) = µ, V ar(y) = µ(1−µ)
1+φ (RIGBY

et al., 2019 forthcoming).

In the selection of the link functions (the component G), the criterion used in the
choice was the interval of the parameters. The criterion used in the choice was the interval
of the parameters. Therefore, the logit function was chosen for µ and ν modeling and the
log was chosen to σ.

For the T component, which is selection of the terms in the model, a GAIC
procedure was used (with k = 4) and selection strategy using Beta (µ,σ) distribution is
given below:

1. use a backward GAIC selection procedure to select an appropriate model for µ, with
σ fitted as constant;
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2. use a forward selection procedure to select an appropriate model for σ , given the
model for µ obtained in (1)

3. use a backward selection procedure to select an appropriate model for σ , given the
model for µ obtained in (1)

4. use a backward selection procedure to select an appropriate model for µ, given the
models for σ obtained in (1)

The smoothing parameters, component H, were fitted using local maximum-
likelihood method, and were used for both parameters µ and σ. After selecting the
explanatory variables and the distribution for response variable, two models were fitted:
one with spatial effect for µ, and other for µ and σ. In both, the spatial effect is a IAR
spatial model with penalty matrix from SAR. The fitted model is given by:

Y ∼ BE(µ̂, σ̂),

log
{

µ̂

1− µ̂

}
= 0.07462 + h11(TX_unem) + h21(GDP) + h31(PBF) + s(city),

log
{

σ̂

1− σ̂

}
= −1.99515− 0.12557GDP− 0.0003409BPC + s(city),

where the functions h are P-splines functions, and s is IAR spatial smoothing function
with penalty matrix which corresponds to the covariance of the SAR model rewritten
as an IAR model, as before, provided by function sp2precSar(). Here the IAR spatial
smoother was statistically significant in both the modeling of the mean and the scale
parameter.

The partial effects of the explanatory variables on the µ and σ parameters can be
seen in term plots. Figure 20 shows that TX_unem has a positive effect on the µ to some
extent and then this effect is decreasing, showing that if the unemployment rate increases
enough everyone will be poor to the same extent reducing income inequality. The GDP
has a decreasing effect in µ for small values, then there is a positive effect to indicate an
increase in the mean of the inequality to a certain level, finally if the GDP grows too
much, the societies become richer and the average of the Gini index decreases .

Figure 21 shows the partial effect of explanatory variables GDP and BPC. In both
the partial effect is decreasing linearly, indicates that the increase of GDP and BPC imply
in higher concentration of the Gini index.

Figure 22 shows the residuals of the regression, for the diagnostic analysis of the
adequacy of the fitted model. The estimated density (lower left) looks like the Gaussian
distribution. And the plot shows the vast majority of points on the red line, indicating a
reasonable fitting. Figures 23 shows the worm plot in four intervals of GDP, the worm plot
graph on top right side shows that the model fitted for this range of GDP variable did not
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have a good fit. shows that the model adjusted for this range of the GDP variable did not
have a good fit. evidencing the a reasonable fit. The Figure 24 indicates the worm plot for
three intervals of variables Tx_unem and PBF indicates a mean too high of residuals, but in
general a acceptable fit for the data.

The predicted values from the fitted model for the µ of Gini coefficient are shown
in Figure 25. High coefficient values are found in the cities located to the east and west in
the state of Pernambuco. These cities have greater economic activities, and therefore the
concentration of income are greater in these cities.

In this chapter, the SARgamlss models were applied to real data for different problems.
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Figure 22 – Worm plot of SARgamlss model for Gini
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Figure 23 – Worm plot of residuals by levels of GDP for the final model fitted
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Figure 25 – Fitted values of µ̂ by Cities in Pernambuco
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The first application to the Boston Housing data, showed a comparison made to the Pace
e Gilley (1997) model that considers normal errors, and indicated that the authors’ model
may not be adequate for this data set. The flexibilization of the distribution function of the
response variable, its modeling and the incorporation of spatial effects and semiparametric
terms bring a reasonable fit for these data. The second problem was a modeling for the
Gini data. The SARgamlss was applied to take into account the spatial effect contained in
these data and also a more flexible distribution function for the data. Through the worm
plots the acceptable fit for these data was verified.
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6 CONCLUSION

The objective of this work was to introduce the class of simultaneous autoregressive
spatial models within the GAMLSS approach. For this, the relationship of those with the
class of CAR models and starting from this relation in terms of covariance matrices is
that the objective is reached. For these last ones meet the requirements of the general
scope necessary to have penalization, through the precision matrix for the modeling in the
GAMLSS. The conclusions of simulations results, in finite sample context with normal
errors and linear trend and without and low spatial dependence, the the SARgamlss have
similiar behavior to SARlag, and SARerror. The results also showed that the SARgamlss is
preferable in the context of nonlinear trend and when the response variable is non-Gaussian.
Two applications were performed showing the importance of the employability of this
tool in the field of Spatial Econometrics. The flexibilization of the distribution function
of response variable, and the incorporation of spatial effects and semiparametric terms
bring a reasonable fit for Boston House data. The second application was a modeling for
the Gini index, the flexibility of the GAMLSS allowed the modeling of location and scale
parameters of distribution for Gini index with spatial effects in both. Further, diagnostic
analysis confirmed a reasonable fit for these data. The spatial analysis performed in this
master thesis can be applied to other data sets that have georeferenced information and
neighbourhood information.
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APPENDIX A – SIMULATIONS STUDY

Complementary results for chapter 4 on simulation studies are presented in this
appendix. The boxplots for the β0 parameter are shown for the SARlag, SARerror and
SARgamlss models, with different values of n, and also in the presence of spatial dependence
and not. Figures 26 and 27 show the inconsistency of the β0 estimator from SARlag.
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Figure 26 – Boxplots of parameters estimates for β0 from models OLS, SARlag, SARerror
and SARgamlss with ρ = 0.0.
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Figure 27 – Boxplots of parameters estimates for β0 from models OLS, SARlag, SARerror
and SARgamlss with ρ = 0.10.
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