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RESUMO

O custo computacional da implementação de transformadas discretas pode ser significativo

quando se considera a enorme quantidade de dados que as tecnologias contemporâneas exi-

gem e/ou a demanda por dispositivos de baixa potência. O uso de algoritmos rápidos reduz os

custos aritméticos de computação das transformadas e o consumo de energia sem eliminar a

necessidade por aritmética em ponto flutuante. Neste sentido, as aproximações matriciais de

baixa complexidade são uma alternativa para o cômputo das transformadas. Neste trabalho, é

introduzido um método baseado em uma heurística gulosa e na distância angular entre vetores

para obtenção de aproximações matriciais. Introduzimos metodologias para a aplicação efetiva

do método proposto para aproximar as matrizes das transformadas discretas de Fourier, Har-

tley e do cosseno (DCT). O método é utilizado para obtenção de novas aproximações para a

DCT de comprimento 8. Treze novas aproximações foram obtidas, das quais cinco apresen-

tam resultados melhores que os da DCT em termos do índice de similaridade estrutural em

experimentos de compressão de imagens. Uma das aproximações obtidas foi selecionada para

análises mais aprofundadas. Aproximações de comprimentos 16 e 32 para as simulações de ví-

deo foram obtidas escalando, por meio do algoritmo de Jridi-Alfalou-Meher, a aproximação de

comprimento 8 selecionada. O codec de vídeo utilizando as aproximações propostas apresentou

resultados muito próximos aos do codec original, tendo uma perda máxima de 0.55dB nos testes

realizados. Para a aproximação selecionada, foi também realizada a implementação em FPGA.

Quando comparada à implementação de outras aproximações da literatura, a implementação da

transformada proposta mostrou capacidade de operar numa frequência até 19% maior.

Palavras-chave: DCT, transformadas discretas, aproximações matriciais



ABSTRACT

The computational cost of implementing discrete transforms can be significant when consid-

ering the massive amount of data that contemporary technologies require and/or the demand

for low–power devices. The use of fast algorithms substantially reduces arithmetic costs with-

out eliminating the need of floating-point arithmetic. In this sense, low-complexity matrix ap-

proximations appear as an alternative way to compute these transforms. In this work, a greedy

algorithm based on the angular distance between vectors for obtaining low-complexity approx-

imations from a given matrix is proposed. We introduce methodologies for the effective appli-

cation of the proposed method to approximate the discrete Fourier, Hartley, and cosine (DCT)

transforms. The method is employed to derive new approximations for the 8-point DCT. Thir-

teen new approximations for the 8-point DCT were obtained; five of them outperformed the

DCT in terms of the structural similarity index on the image compression experiments. One of

the proposed approximations was chosen for further analysis. Approximations for the 16- and

32-point DCT were derived by means of the Jridi–Alfalou–Meher scaling method based on the

previously selected 8-point approximation. Such scaled matrices were submitted to video exper-

iments. The encoded video resulted from the approximate transforms performed very closely to

the standard video encoding: the maximum loss was 0.55dB in video compression experiments.

The selected approximation was also implemented on a FPGA. When compared to implemen-

tations of other two approximations in literature, the proposed method was shown to be able to

operate at a 19% higher frequency.

Keywords:DCT, discrete transforms, matrix approximations
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1 INTRODUCTION

1.1 MOTIVATION AND FRAMEWORK

A signal might be seen as a function that changes with time and/or space and transmits

information about the behavior of the phenomenon under study (PRIEMER, 1990; MOURA,

2009). The IEEE Transactions on Signal Processing Internet page states that the “term ’signal’

includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar,

medical and musical signals” (IEEE TRANSACTIONS ON SIGNAL PROCESSING, ).

The field of signal processing comprises, among other things, a collection of techniques

to obtain, manipulate, analyze, represent, transmit and extract information from an input sig-

nal (MOURA, 2009). In particular, transforms play an important role in this area of research.

The use of transforms allow us to look at data from a different perspective, the transform do-

main, which often adds new interpretations to the data under analysis. For example, the Fourier

transform decomposes an input signal into its frequency components and the Karhunen–Loève

transform is capable of decorrelating data sequences (BRITANAK; YIP; RAO, 2007).

Among the possible transforms, the ones with sinusoidal kernels are particularly impor-

tant (CINTRA, 2011). Special interest is given to the discrete transforms, because they are suita-

ble for real-world applications using digital computers which are inherently capable of discrete,

finite calculations only (BLAHUT, 2010). In this work, we separate three discrete transforms

for analysis: the discrete Fourier transform (DFT), the discrete Hartley transform (DHT), and

the discrete cosine transform (DCT).

The DFT is one of the most important discrete transforms (STRANG, 1994). It finds

application in many different problems such as solving difference equations (HELMS, 1967),

image processing (REDDY; CHATTERJI, 1996; GONZALEZ; WOODS, 2012), beamforming (GO-

DARA, 1995; SEYDNEJAD; AKHZARI, 2016), analysis of radar signals (CHENG et al., 2016;

SAPONARA; NERI, 2017), voice processing (KLATT; KLATT, 1990), time series (RANSOM;

EIKENBERRY; MIDDLEDITCH, 2002; PERERA et al., 2015; CHEN; CHEN, 2014), spectral
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estimation (KAY, 1993), harmonic regression (BÁRTFAI, 2016), and analysis of biomedical

signals (FITZKE et al., 1997).

The DHT, introduced by Bracewell in 1983 (BRACEWELL, 1983), is also a relevant

discrete transform (POULARIKAS, 2010). The DHT is an attractive discrete transformation

mainly due to the following properties: (i) the DHT is isomorphic to the DFT (BRACEWELL,

1983); (ii) the multiplicative complexities of the DHT and the DFT are identical in the sense

discussed in Heideman (HEIDEMAN; BURRUS, 1988); (iii) unlike the DFT, the DHT is a

purely real-valued transform, which means that it does not require complex arithmetic for its

computation (BRACEWELL, 1983); (iv) the forward and inverse transforms are the same; and

(v) the DHT is more symmetric than other transforms (more symmetric than the DCT, for exam-

ple), which facilitates its computation and implementation (BRACEWELL, 2000). Because of

its similarities with the DFT, the DHT is also applied in many different fields of study. Some

examples are: optics (VILLASENOR, 1994); image processing (TSENG; LEE, 2014; KAS-

BAN, 2017); convolution computation (DUHAMEL; VETTERLI, 1987; PEI; JAW, 1989); au-

dio processing (JLEED; BOUCHARD, 2017); biomedical image analysis (SHRUTHI et al.,

2016); and solution of power system problems (HEYDT et al., 1991).

The DCT is applied, for example, in areas such as image processing (ZHANG; WU;

MA, 2016; CAO et al., 2015; KOZHEMIAKIN et al., 2014), audio processing (NASSAR et

al., 2016), watermarking (RAM, 2013; LEI et al., 2016), and gait recognition (FAN et al.,

2016). However, its most popular use is in data compression (BRITANAK; YIP; RAO, 2007).

In particular, the DCT is applied in several image and video compression patterns, such as

the JPEG (WALLACE, 1992), MPEG (GALL, 1992), H.261 (International Telecommunication

Union, 1990), H.263 (International Telecommunication Union, 1995), H.264/AVC (LUTHRA;

SULLIVAN; WIEGAND, 2003), and HEVC (POURAZAD et al., 2012). The good perfor-

mance of the DCT for data compression can be justified by the fact the the DCT is asympto-

tically equivalent to the Karhunen–Loève transform (KLT), which is the optimal transform for

data compression, when the input signal has some specific features (BRITANAK; YIP; RAO,

2007).

Although these transforms are very popular, implementing them requires floating-point
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arithmetic. Fast algorithms can dramatically reduce their computational cost. However, the

number of calls in applications of these transforms can be extraordinarily high. For instance,

a single image frame of high-definition TV (HDTV), that can be encoded with the DCT, con-

tains 32.400 8×8 image subblocks. Therefore, computational savings in the transformation step

may effect significant performance gains, both in terms of speed and power consumption (PO-

TLURI et al., 2014; COUTINHO et al., 2015). One approach to further minimize the computa-

tional cost of computing the discrete transforms is the use of matrix approximations (BAYER;

CINTRA, 2010; CINTRA; BAYER; TABLADA, 2014). Such approximations provide matrices

with similar mathematical behavior to the exact transform while presenting a dramatically low

arithmetic cost.

1.2 GOALS

In the sense of the previous discussion, our goals in this dissertation are:

• Introducing a greedy search algorithm for matrix approximation based on angular dis-

tance between vectors;

• Discussing how the proposed method can be applied to derive approximations for trigo-

nometric discrete transforms;

• Applying the proposed algorithm to introduce new low-complexity approximations for

the 8-point DCT;

• Assessing the efficiency of the proposed approximations on image and video compression

experiments when compared to the exact DCT and other approximations in literature.

1.3 STRUCTURE

The present work is structured as follows. In Chapter 2, we present the discrete trans-

forms discussed in this dissertation: the DFT, DHT, and DCT. An overview of the mathematical

structure of these transforms is provided.
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In Chapter 3, we present some popular fast algorithms and low-complexity approxima-

tions for the DCT. Such low-complexity approximations shown in this chapter are considered

for comparison with the methods proposed in this work.

The search algorithm for matrix approximation is detailed in Chapter 4. The proposed

method is based on an unconstrained optimization problem. Considering the orthogonality pro-

perty, we derive a constrained optimization problem as well. We also discuss how the proposed

approach can be tailored to obtain approximations for complex-valued matrices, such as the

DFT.

Considering symmetries and redundancies of a given exact matrix, we show how to

reduce the computational cost of the proposed approximation algorithm. In Chapter 5, we ex-

plore the structure of the DFT, DHT and DCT, and define approximations schemes based on the

combination of procedures to reduce the computational cost of the algorithm and version of the

proposed method used.

In Chapter 6, the approximation schemes defined in Chapter 5 are used to find new

approximations for the 8-point DCT. The proposed approximations are evaluated according to

popular figures of merit and compared to the exact DCT and other approximations in literature.

In Chapter 7, a JPEG-like experiment for image compression is described and used to

evaluate the performance of the proposed approximations in comparison to the DCT and the

other approximations in literature.

In Chapter 8, one of the proposed approximations that presented good results in the

image compression experiments is select for further analysis. A fast algorithm for the chosen

approximation is introduced. The 16- and 32-point scaled versions of the selected approxima-

tion, obtained by the Jridi-Alfalou-Meher method (JRIDI; ALFALOU; MEHER, 2015), are

presented. The video compression experiment is described and performed. The FPGA imple-

mentation of the selected approximation is presented along with the implementation of two

other approximations in literature for comparison.

In Chapter 9, an overview of the topics discussed and obtained results is presented.
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2 DISCRETE TRIGONOMETRIC TRANSFORMS

TwoN -dimensional vectors, say x =

[
x0 x1 . . . xN−1

]>
and X =

[
X0 X1 . . . XN−1

]>
,

relate to each other through a discrete transform according to the following expressions:

Xk ,
N−1∑

i=0

xi · ker(i, k,N), k = 0, 1, . . . , N − 1, (2.1)

xi =
N−1∑

k=0

Xk · ker−1(i, k,N), i = 0, 1, . . . , N − 1, (2.2)

where ker(·, ·, ·) and ker−1(·, ·, ·) are the forward and inverse transformation kernels. In this

work, although our main goal is to propose new approximations for the DCT, we also discuss

the DFT and the DHT, which are related transforms. In the following, we present a brief mathe-

matical overview of the DFT, DHT, and DCT.

2.1 DISCRETE FOURIER TRANSFORM

The N -point DFT has its coefficients defined as in Equation (2.1) with its kernel given

by

ker(i, k,N) , cos

(
2πik

N

)
− j sin

(
2πik

N

)
= e−j2πik/N , i, k = 0, 1, . . . , N − 1.

(2.3)

Its inverse kernel is furnished by

ker−1(i, k,N) =
1

N

[
cos

(
2πik

N

)
+ j sin

(
2πik

N

)]
=

1

N
ej2πik/N , i, k = 0, 1, . . . , N − 1,

where j =
√
−1.

2.1.1 Matrix representation of the DFT

The DFT of an input signal of length N can be calculated by a matrix operation as

X = FN · x, (2.4)
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where FN is the DFT matrix given by

FN =




1 1 1 . . . 1

1 ωN ω2
N . . . ω

(N−1)
N

1 ω2
N ω4

N . . . ω
2(N−1)
N

...
...

... . . . ...

1 ω
(N−1)
N ω

2(N−1)
N . . . ω

(N−1)(N−1)
N




,

and ωN , e−j2π/N . The matrix FN is orthogonal. Then, we have that F−1N = 1
N

F∗N , where F∗N

is the Hermitian matrix of FN (SEBER, 2008).

Figure 1 displays, for some values of N , the image representation of the real and com-

plex parts of FN . The darker shades of gray represent smaller values, whereas lighter shades

represent larger values. This kind of representation is useful to visualize patterns and symme-

tries in the matrix, which can be explored to simplify computations and identify redundancies

in the calculation of Equation (2.4).

(a) <(F8) (b) =(F8) (c) <(F16) (d) =(F16)

(e) <(F32) (f) =(F32) (g) <(F64) (h) =(F64)

Figura 1 – Image representation of the real and imaginary parts of the DFT matrix considering
N = 8, 16, 32, 64. The functions <(·) and =(·) return the real and complex parts of
its arguments, respectively.
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2.1.2 Computational complexity

To calculate the DFT coefficients (Equation (2.4)), it is necessary to perform at most

N2 complex multiplications and N(N − 1) complex additions (BLAHUT, 2010). The complex

multiplication, (e+ jf) = (a+ jb) · (c+ jd), can be expressed in terms of real multiplications

and real additions as (BLAHUT, 2010)

e = ac− bd, (2.5)

f = ad+ bc, (2.6)

which requires four real multiplications and 2 real additions. As an alternative, e and f can be

obtained as

e = (a− b)d+ a(c− d), (2.7)

f = (a− b)d+ b(c+ d), (2.8)

whenever the multiplication operation is more computationally expensive than the addition ope-

ration. In this case, the complex product requires three real multiplications and five real additi-

ons. Besides that, if c and d are constants for a series of complex multiplications, for example,

when transforming a series of input vectors using Equation (2.4), then the terms c+ d and c− d

are also constants and can be previously computed. By doing so, the computation cost beco-

mes three real multiplications and three real additions. Each complex addition requires two real

additions.

Therefore, if considering the last option described for the computation of the complex

product, the direct computation of all the DFT coefficients requires at most 3N2 real multipli-

cations and N(5N − 2) real additions.

2.2 DISCRETE HARTLEY TRANSFORM

The DHT forward and inverse kernels are given by:

ker(i, k,N) ,
1

N
cas

(
2πik

N

)
, k = 0, 1, . . . , N − 1, (2.9)

ker−1(i, k,N) = cas

(
2πik

N

)
, i = 0, 1, . . . , N − 1.
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where cas(x) , cos(x) + sin(x) (BRACEWELL, 1983).

Notice that cos(x) is an even function and sin(x) is an odd function (OPPENHEIM,

1999). Therefore, we can say that the even part of the DHT is the part that corresponds to the

cosine function and the odd part of the DHT is the part that corresponds to the sine function.

The DFT and DHT relate to each other through a very simple expression. Let XFourier
k

and XHartley
k be kth coefficient of the DFT and DHT spectrum, respectively, computed from

x according to Equation (2.1). Then, the DHT coefficients are calculated in terms of the DFT

coefficients as follows

XHartley
k = <(XFourier

k )−=(XFourier
k ), (2.10)

and conversely

<(XFourier
k ) =

1

2
(XHartley

N−k +XHartley
k ) and =(XFourier

k ) =
1

2
(XHartley

N−k −XHartley
k ).

(2.11)

The matrix representation of the DHT is naturally derived from Equation (2.10) as (POU-

LARIKAS, 2010)

HN = <(FN)−=(FN).

On the other hand, the DFT can be obtained from the DHT as follows (POULARIKAS, 2010)

<(FN) = E(HN) and =(FN) = O(HN),

where E(·) and O(·) return the even and odd parts of its input, respectively. When applied to

matrices, E(·) and O(·) act elementwise.

The image representations of the DHT for N = 8, 16, 32, 64 are shown in Figure 2.

As expected, because the DFT and the DHT share similar mathematical definitions, the image

patterns shown in Figures 2 and 1 are comparable. This is more evident for larger values of N .

2.2.1 Computational complexity

To transform an input signal, x, using the DHT, the following matrix computation is

performed (POULARIKAS, 2010):

X =
1

N
·HN · x.
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(a) H8 (b) H16 (c) H32 (d) H64

Figura 2 – Image representation of the DHT matrix for N = 8, 16, 32, 64.

The arithmetic complexity of the above matrix multiplication requires at most N2 real multipli-

cations and N(N − 1) real additions.

Notice that the only difference between the DFT and DHT formulas (Equations (2.3)

and (2.9)) is the imaginary unit j multiplying the sine term in the DFT. From this, we can see

that there is a relationship between the two transforms, as shown in Equations (2.10) and (2.11).

The existence of such this invertible rational transformation between the DFT and DHT implies

that the two systems are equivalent in the sense that an algorithm capable of obtaining DFT

can also be used to compute the DHT, and vice versa, with no additional multiplicative comple-

xity (HEIDEMAN; BURRUS, 1988). Therefore, the DFT and DHT have identical multiplica-

tive complexities (HEIDEMAN; BURRUS, 1988).

2.3 DISCRETE COSINE TRANSFORM

There are eight different variations of the DCT: DCT–I, DCT–II, DCT–III, DCT–IV,

DCT–V, DCT–VI, DCT–VII, and DCT–III (BRITANAK; YIP; RAO, 2007). However, only the

DCT–II is shown to optimally decorrelate Markov type-1 signals (BRITANAK; YIP; RAO,

2007). In this work, we only consider the DCT–II. Then, we refer to the DCT–II simply as

DCT.

The DCT has its forward and inverse kernels defined as

ker(i, k,N) = (1− (1− 1/
√

2)δk)

√
2

N
cos

(
(
2i+ k)π

2N

)
, k = 0, 1, . . . , N − 1,

ker−1(i, k,N) = (1− (1− 1/
√

2)δk)

√
2

N
cos

(
(
2i+ k)π

2N

)
, i = 0, 1, . . . , N − 1,
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where

δk =





0, if k = 0,

1, otherwise.

In fact, the DCT is an asymptotic case of the more general Karhunen-Loève transform (KLT).

The analytical derivation of the DCT from the KLT is shown in the sequel.

2.3.1 The Karhunen–Loève transform

Let x be a random input vector with zero mean, which represents the input data to be

decorrelated, where the superscript > indicates the transposition operation. The KLT is a linear

transformation represented by an orthogonal matrix W which decorrelates the variables in x.

The decorrelated output vector y is obtained according to the following operation:

y =

[
y0 y1 . . . yN−1

]>
= W> · x. (2.12)

If the transformation W> decorrelates the input variables, then the covariance matrix of the

output vector y is given by the following diagonal matrix (BRITANAK; YIP; RAO, 2007):

Ry = E{y · y>} = diag(λ0, λ1, . . . , λN−1), (2.13)

where E(·) represents the expectation operator, diag(·) is the diagonal matrix generated by its

arguments, and

λk = E
{
y2k
}
, k = 0, 1, . . . , N − 1,

are the variances of the vector y.

Replacing (2.12) in (2.13), it is possible to rewrite the covariance matrix of y as

Ry = E
{
W> · x · x> ·W

}
= W> · E

{
x · x>

}
·W = W> ·Rx ·W,

where Rx is the covariance matrix of x which, by construction, is real and symmetric (GON-

ZALEZ; WOODS, 2012; SEBER, 2008). Since W is intended to be orthogonal, it must satisfy

W−1 = W>. Thus, we can write

Rx ·
[
w0|w1| · · · |wN−1

]
=

[
w0|w1| · · · |wN−1

]
·Ry, (2.14)
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where wk, k = 0, 1, . . . , N − 1, represents the kth column of the matrix W. Therefore, Equa-

tion (2.14) can be rewritten as the following eigenvalue problem:

Rx ·wk = λk ·wk, k = 0, 1, . . . , N − 1. (2.15)

Note that the variances coincide with the eigenvalues. Solving Equation (2.15), we obtain the

columns of W, which are ordered according to the decreasing order of their respective eigen-

values (BRITANAK; YIP; RAO, 2007), thus resulting in the KLT.

2.3.2 Derivation of the discrete cosine transform

If the entries of the input vector x satisfy

xm = ρ · xm−1 + zm,

where ρ ∈ [0, 1] is the correlation coefficient and zm is a white noise process, then we say that

x is described by a first-order Markovian model (CINTRA; BAYER; TABLADA, 2014). In

that case, the elements of the correlation matrix associated with x are given by (GONZALEZ;

WOODS, 2012; BRITANAK; YIP; RAO, 2007)

[Rx]m,n = ρ|m−n|, m, n = 0, 1, . . . , N − 1. (2.16)

Solving Equation (2.15), we find that the mth component of the kth eigenvector wk, for k,m =

0, 1, . . . , N − 1, is given by (BRITANAK; YIP; RAO, 2007; RAY; DRIVER, 1970):

ck,m =

√
2

N + λk
· sin

(
µk

[
(m+ 1)− N + 1

2

]
+

(k + 1)π

2

)
, (2.17)

where

λk =
1− ρ2

1− 2ρ cos(µk) + ρ2
(2.18)

is the kth eigenvalue associated to wk and µk, k = 0, 1, . . . , N − 1, are the real-valued roots of

the following transcendental equation in µ:

tan(Nµ) = − (1− ρ2) sin(µ)

(1 + ρ2) cos(µ)− 2ρ
. (2.19)
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Assuming highly correlated input data, that is, ρ → 1, we notice that the right side of

Equation (2.19) goes to zero. Therefore, the N real-valued positive roots of Equation (2.19) are

given by

µk =
kπ

N
, k = 0, 1, . . . , N − 1.

Thus, replacing the values of µk in Equation (2.18), we have that λk = 0 for k 6= 0. Now,

there is only λ0 left to compute in order to obtain a closed expression for Equation (2.17).

From (STRANG, 1988, p. 251), we have that the trace (BRITANAK; YIP; RAO, 2007) of Rx,

defined as

tr(Rx) =
N−1∑

n=0

[Rx]n,n,

equals the sum of the N eigenvalues. From Equation (2.16), we have that tr(Rx) = N . Thus

tr(Ry) =
N−1∑

k=0

λk = λ0 = tr(Rx) = N ∴ λ0 = N.

Finally, we obtain that

c0,m =
1√
N
, k = 0,

ck,m =

√
2

N
sin

(
k(2m+ 1)

2N
+
π

2

)
=

√
2

N
cos

(
(2m+ 1)kπ

2N

)
, k 6= 0.

Introducing a constant αk, we can combine the equations above, obtaining

ck,m =

√
2

N
αk cos

(
(2m+ 1)kπ

2N

)
, (2.20)

where α0 = 1/
√

2 and αk = 1, if k 6= 0.

The linear transformation whose matrix has elements defined as in Equation (2.20) is

called the discrete cosine transform (ARAI; AGUI; NAKAJIMA, 1988; GONZALEZ; WO-

ODS, 2012). Therefore, the DCT is asymptotically equivalent to the KLT when ρ → 1. Such

relationship justifies the good decorrelation and energy compression properties of the DCT

when the input data follows a highly correlated first order stationary Markovian process.

Similar to the DFT and the DHT, the DCT matrix, CN , also shows some patterns that

are easier to see in its image representation. Figure 3 shows those images. It is possible to see,

specially for larger values of N , that the DCT matrix has a structure very similar to the top left

quadrant of both the DFT and DHT.
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(a) C8 (b) C16 (c) C32 (d) C64

Figura 3 – Image representation of the DCT matrix for N = 8, 16, 32, 64.

2.3.3 Computational complexity

The direct computation of the DCT transform of an input signal x,

X = CN · x

requires at most N2 multiplications and N(N − 1) additions.

The arithmetic computational complexities of the DFT, DHT, and DCT discussed here

refer only to its direct implementation. In practice, fast algorithms are employed, being able to

drastically reduce the arithmetic cost of the transform computation.
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3 FAST ALGORITHMS AND APPROXIMATIONS FOR THE 8-POINT DCT

An algorithm is a detailed description of a computational procedure (BLAHUT, 2010).

A fast algorithm is an alternative, computationally efficient way or realizing the same proce-

dure, which is not the obvious way to compute the output from the input (BLAHUT, 2010). In

the context of discrete transforms, the performance of an algorithm is usually measured by the

number of multiplications and additions it requires (BLAHUT, 2010). For example, in Chap-

ter 2, Section 1, Equations 2.7 and 2.8 are fast algorithms for computing Equations 2.5 and 2.6,

respectively.

If considering butterfly-based structures as commonly found in decimation-in-frequency

algorithms, such as (HOU, 1987; YIP; RAO, 1988; RAO; YIP, 1990), a fast algorithm for a

given matrix A can be the product of several matrices, for example, A = A1 · A2 · A3.

In this case, the computational cost of computing A · x is replaced by the cost of computing

A1 · A2 · A3 · x. Even though the number of matrices increase, the computational cost

decreases because A1, A2, and A3 are usually sparse matrices containing mostly 1’s and -1’s,

which results in trivial multiplications (SALOMON; MOTTA; BRYANT, 2007).

Since one of our goals in this work is to derive new approximations for the 8-point

DCT, we present next some popular fast algorithms and low-complexity approximations for

this particular transform.

3.1 FAST ALGORITHMS FOR THE 8-POINT DCT

Let C8 be the 8-point DCT matrix. Because of its symmetries, C8 can be represented in

the following way:

C8 =
1

2
·




γ3 γ3 γ3 γ3 γ3 γ3 γ3 γ3
γ0 γ2 γ4 γ6 −γ6 −γ4 −γ2 −γ0
γ1 γ5 −γ5 −γ1 −γ1 −γ5 γ5 γ1
γ2 −γ6 −γ0 −γ4 γ4 γ0 γ6 −γ2
γ3 −γ3 −γ3 γ3 γ3 −γ3 −γ3 γ3
γ4 −γ0 γ6 γ2 −γ2 −γ6 γ0 −γ4
γ5 −γ1 γ1 −γ5 −γ5 γ1 −γ1 γ5
γ6 −γ4 γ2 −γ0 γ0 −γ2 γ4 −γ6


 ,
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where

γ0 =

√
2 +

√
2 +
√

2

2
≈ 0,9808 . . . , γ1 =

√
2

2
≈ 0,707 . . . ,

γ2 =

√
2 +

√
2−
√

2

2
≈ 0,8315 . . . , γ3 =

√
2 +
√

2

2
≈ 0,9239 . . . ,

γ4 =

√
2−

√
2−
√

2

2
≈ 0,5556 . . . , γ5 =

√
2−
√

2

2
≈ 0,3827 . . . ,

γ6 =

√
2−

√
2 +
√

2

2
≈ 0,1951 . . .

Thus, an 8-point input vector might have its components decorrelated by the following expres-

sion:

X = C8 · x,

where X is the decorrelated vector.

Explicitly, we have that



X0

X1

...

X7




=




c0,0 c0,1 · · · c0,7

c1,0 c1,1 · · · c1,7
...

... . . . ...

c7,0 c7,1 · · · c7,7



·




x0

x1
...

x7




=




c0,0x0 + c0,1x1 + · · ·+ c0,7x7

c1,0x0 + c1,1x1 + · · ·+ c1,7x7
...

c7,0x0 + c7,1x1 + · · ·+ c7,7x7



. (3.1)

Therefore, the arithmetic cost to decorrelate the input vector using C8 is 64 multiplications and

56 additions.

Besides having a closed form, an import factor for the usage of the DCT is the exis-

tence of fast algorithms that allows its efficient calculation. Common fast algorithms for the

computation of the 8-point DCT include: (i) Yuan et al. (YUAN; HAO; XU, 2006), (ii) Arai

et al. (ARAI; AGUI; NAKAJIMA, 1988), (iii) Chen et al. (CHEN; SMITH; FRALICK, 1977),

(iv) Feig–Winograd (FEIG; WINOGRAD, 1992) and, Loeffler et al. (LOEFFLER; LIGTEN-

BERG; MOSCHYTZ, 1989). The arithmetic cost of those and other methods is listed in Table 1.

The theoretical minimum of multiplicative complexity for this length is 11 multiplica-

tions (??), which is attained, for example, by the Loeffler et al. (LOEFFLER; LIGTENBERG;
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Algorithm Multiplication Additions

Loeffler 11 29
Suehiro 12 29
Yuan 12 29
Lee 12 29
Vetterli 12 29
Hou 12 29
Wang 13 29
Arai et al. 13 29
Chen et al. 16 26
Feig–Winograd 22 28

Tabela 1 – Arithmetic cost of the fast algorithms for the exact 8-point DCT

MOSCHYTZ, 1989) algorithm. This result is obtained when we consider: (i) the computa-

tion of the DCT as a cyclic convolution, and (ii) the results presented in (??), as demonstrated

in (DUHAMEL; VETTERLI, 1987).

3.2 MATRIX APPROXIMATIONS

As shown on the previous section, the entries of the DCT matrix are irrational quan-

tities. Thus, given the limited precision of computers, its practical implementation with exact

numeric precision it is unfeasible (WALLACE, 1992). In this sense, the fast algorithms previ-

ously mentioned are implemented by means of truncation and/or rounding of its coefficients

with its precision defined according to the desired application. Despite substantially reducing

the computational cost of its implementation, the fast algorithms for the DCT considered do not

eliminate the need for the use of floating-point or fixed-point with large integers. The cost of

the elementary arithmetic operations in floating-point numeric representation is usually higher

than the cost from operations in fixed-point arithmetic or simpler representations (BRITANAK;

YIP; RAO, 2007). For this reason, the hardware implementation using floating-point arithmetic

requires greater consumption of power and area resources. Additionally, given the maturity of

the area of fast algorithms for the 8-point DCT, there is little space for improvement over the

methods already archived in literature.

An alternative approach to further reduce the computational cost of the DCT over the

methods already archived in literature is the use of matrix approximations (BAYER; CINTRA,
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2010; CINTRA; BAYER; TABLADA, 2014). Such approximations are matrices with low com-

putational cost that have similar mathematical structure to the exact transforms. That is, let CN

be the N -point DCT, an approximation for CN , ĈN , is a matrix such that

X̂ = ĈN · x ≈ CN · x = X.

Thus, X̂ ≈ X, according to some criteria, such as proximity or coding measures (BRITANAK;

YIP; RAO, 2007). An approximation for CN can be obtained from a low-complexity multiplier-

less matrix T. That is, a matrix whose elements are zeros or powers of two. Notice that in binary

representation, multiplications by powers of two can be performed by simple bit-shifting opera-

tion (BRITANAK; YIP; RAO, 2007). Such multiplications have no cost in hardware implemen-

tations (MADANAYAKE et al., 2012) and are regarded as trivial multiplications (BLAHUT,

2010).

The design of approximate transforms is often based on structural aspects of the exact

transforms, such as: symmetries (CHAM, 1989), fast algorithms (HOU, 1987; LOEFFLER;

LIGTENBERG; MOSCHYTZ, 1989), parametrization (FEIG; WINOGRAD, 1992), and nu-

merical properties (YUAN; HAO; XU, 2006). In a general manner, the low-complexity matrix

T from which we derive an approximation for a trigonometric transform, C, is obtained by

solving the optimization problem below:

T = arg min
T′

approx(T′,C),

where approx(·, ·) is a specific objective function—such as proximity or performance measu-

res (BRITANAK; YIP; RAO, 2007)—submitted to several constraints, such as orthogonality

and low-complexity of the candidate matrices T′.

Two important concepts when discussing approximate transforms are presented next.

Definition 3.1 (Orthogonality). Matrix A is said to be row orthogonal or simply orthogonal if

A ·A> is a diagonal matrix.

Definition 3.2 (Orthonormality). If A ·A> is the identity matrix, then A is said to be orthonor-

mal.
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If T is orthogonal, then its inverse is given by T−1 = T> · D−1, where D is the dia-

gonal matrix resulting from T · T>. In particular, if T is orthonormal, then T−1 = T>. As a

consequence of that, if T is orthogonal and can be decomposed into the product of p matrices,

that is,

T = A1 ·A2 · · · · ·Ap,

then

T−1 = T> ·D−1 = (A1 ·A2 · · · · ·Ap)
> ·D−1 = A>p ·A>p−1 · · · · ·A>1 ·D−1.

Another reason to pursue the orthogonality of T is that the exact DCT is an orthonormal matrix.

Orthonormal approximations can be obtained when T is orthogonal.

In this work, we consider, among the existing orthonormalization methods (HIGHAM,

2008; WATKINS, 2004), the one based on polar decomposition (HIGHAM, 1986; HIGHAM;

SCHREIBER, 1988), which preserves the low-complexity structure of the transform T. In this

case, the orthonormalization procedure only requires the computation of a diagonal matrix given

by

D =
√

(T ·T>)−1, (3.2)

where
√
· represents the matrix square root operation (HIGHAM, 1987).

Lastly, as shown in (HIGHAM, 1986; CINTRA; BAYER, 2011; CINTRA, 2011; BRI-

TANAK; YIP; RAO, 2007; BAYER; CINTRA, 2012), an orthonormal approximation for the

DCT is given by

ĈN = D ·T. (3.3)

3.2.1 Nonorthogonal case

Notice that Equations 3.2 and 3.3 are derived considering that T is orthogonal, i.e.,

that T satisfies Definition 3.1. When that is not the case, the elements outside the diagonal of

T ·T> result in an increase of the computational complexity of ĈN . In this scenario, a possible

solution to obtain orthonormal approximations, is to approximate D itself by setting to zero the
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off-diagonal elements. Therefore, the approximate diagonal is given by

D̂ =
√

(diag(T ·T>))−1,

hence

ĈN = D̂ ·T.

Next, we present a representative selection of low-complexity matrices from which ap-

proximations for the DCT can be derived.

3.2.2 Low-complexity matrices for DCT approximation

3.2.2.1 The Walsh-Hadamard transform:

The order N Walsh-Hadamard transform (WHT) (HORADAM, 2007) is given by a

binary N ×N matrix, TWHT–N , with entries in {±1} that satisfies:

TWHT–N ·T>WHT–N = N · IN ,

where IN represents the identity matrix or order N . The 8-point WHT is given by

TWHT–8 =




1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 −1 −1 1 1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 −1 −1 1 −1 1 1 −1
1 −1 1 −1 −1 1 −1 1
1 −1 1 −1 1 −1 1 −1


 ,

with the diagonal matrix implied by Equation 3.2 given by

DWHT–8 = diag

(
1√
8
,

1√
8
,

1√
8
,

1√
8
,

1√
8
,

1√
8
,

1√
8
,

1√
8

)
.

The WHT is used in image processing due to its good performance and simplicity of

implementation (HORADAM, 2007). Then, even though the WHT was not proposed as an

approximation for the DCT, it is used as an alternative to the DCT.

3.2.2.2 The signed DCT (SCDT):

The first matrix in the literature proposed as an approximation for the DCT was intro-

duced by Haweel in (HAWEEL, 2001). The signed DCT (SDCT) is a nonorthogonal matrix
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obtained from the application of the sign function to each element of C8. The sign function is

given by sign(x) = |x|/x, x 6= 0 and sign(0) = 0. Thus, the low-complexity matrix associated

to the 8-point SDCT is given by

TSDCT =




1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 −1 1 1 1 −1
1 −1 −1 1 1 −1 −1 1
1 −1 1 1 −1 −1 1 −1
1 −1 1 −1 −1 1 1 −1
1 −1 1 −1 1 −1 1 −1




with

DSDCT = diag

(
1√
8
,

1√
8
,

1√
8
,

1√
8
,

1√
8
,

1√
8
,

1√
8
,

1√
8

)
.

3.2.2.3 The level 1 approximation by Lengwehasatit and Ortega:

Lengwehasatit and Ortega proposed five levels of approximation for the DCT based on

the input signal features (LENGWEHASATIT; ORTEGA, 2004). The level one approximation

is generated by the low-complexity orthogonal matrix below:

TLO =




1 1 1 1 1 1 1 1
1 1 1 0 0 −1 −1 −1
1 1

2
− 1

2
−1 −1 − 1

2
1
2

1
1 0 −1 −1 1 1 0 −1
1 −1 −1 1 1 −1 −1 1
1 −1 0 1 −1 0 1 −1
1
2
−1 1 − 1

2
− 1

2
1 −1 1

2
0 −1 1 −1 1 −1 1 0




with

DLO = diag

(
1√
8
,

1√
6
,

1√
5
,

1√
6
,

1√
8
,

1√
6
,

1√
5
,

1√
6

)
.

3.2.2.4 The series of approximations BAS:

The series of approximations BAS was proposed by Bouguezel, Ahmad, and Swamy (BOU-

GUEZEL; AHMAD; SWAMY, 2008a; BOUGUEZEL; AHMAD; SWAMY, 2008b; BOU-

GUEZEL; AHMAD; SWAMY, 2009; BOUGUEZEL; AHMAD; SWAMY, 2010; BOUGUE-

ZEL; AHMAD; SWAMY, 2011; BOUGUEZEL; AHMAD; SWAMY, 2013). Many of these ap-

proximations were obtained from SDCT modifications (TABLADA; BAYER; CINTRA, 2015).

Table 2 displays the matrices considered in this work.
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Transform Matrix Orthogonal? D

TBAS–1




1 1 1 1 1 1 1 1
1 1 0 0 0 0 −1 −1
1 1

2
− 1

2
−1 −1 − 1

2
1
2

1
0 0 −1 0 0 1 0 0
1 −1 −1 1 1 −1 −1 1
1 −1 0 0 0 0 1 −1
1
2
−1 1 − 1

2
− 1

2
1 −1 1

2
0 0 0 −1 1 0 0 0




Yes diag
(

1√
8
, 12 ,

1√
5
, 1√

2
, 1√

8
, 12 ,

1√
5
, 1√

2

)

TBAS–2




1 1 1 1 1 1 1 1
1 1 1 0 0 −1 −1 −1
1 1 −1 −1 −1 −1 1 1
1 0 −1 0 0 1 0 −1
1 −1 −1 1 1 −1 −1 1
1 −1 1 0 0 −1 1 −1
1 −1 1 −1 −1 1 −1 1
1 −1 1 −1 1 −1 1 −1


 No diag

(
1√
8
, 1√

6
, 1√

8
, 12 ,

1√
8
, 1√

6
, 1√

8
, 1√

8

)

TBAS–3




1 1 1 1 1 1 1 1
1 1 0 0 0 0 −1 −1
1 1 −1 −1 −1 −1 1 1
0 0 −1 0 0 1 0 0
1 −1 −1 1 1 −1 −1 1
1 −1 0 0 0 0 1 −1
1 −1 1 −1 −1 1 −1 1
0 0 0 −1 1 0 0 0


 Yes diag

(
1√
8
, 12 ,

1√
8
, 1√

2
, 1√

8
, 12 ,

1√
8
, 1√

2

)

TBAS–4




1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
2 1 −1 −2 −2 −1 1 2
2 1 −1 −2 2 1 −1 −2
1 −1 −1 1 1 −1 −1 1
1 −1 −1 1 −1 1 1 −1
1 −2 2 −1 −1 2 −2 1
1 −2 2 −1 1 −2 2 −1


 Yes diag

(
1√
8
, 1√

8
, 1√

20
, 1√

20
, 1√

8
, 1√

8
, 1√

20
, 1√

20

)

TBAS–5




1 1 1 1 1 1 1 1
1 1 0 0 0 0 −1 −1
1 0 0 −1 −1 0 0 1
0 0 1 0 0 −1 0 0
1 −1 −1 1 1 −1 −1 1
0 0 0 1 −1 0 0 0
1 −1 0 0 0 0 1 −1
0 −1 1 0 0 1 −1 0


 No diag

(
1√
8
, 12 ,

1
2 ,

1√
2
, 1√

8
, 1√

2
, 12 ,

1
2

)

TBAS–6




1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 −1 1 1 −1
1 −1 1 −1 1 −1 1 −1
1 −1 1 −1 −1 1 −1 1
1 −1 −1 1 1 −1 −1 1
1 1 −1 −1 −1 −1 1 1


 Yes diag

(
1√
8
, 1√

8
, 1√

8
, 1√

8
, 1√

8
, 1√

8
, 1√

8
, 1√

8

)

Tabela 2 – BAS approximations for C8

3.2.2.5 The rounded DCT (RDCT):

Given x ∈ R, let bxc be the largest integer that does not exceed x. The round function,

as implemented in Matlab/Octave, is defined by

round(x) = sign(x) · bx+ 0.5c.

Applied to matrices, the round function operates elementwise.

The rounded DCT was proposed by Cintra and Bayer in (BAYER; CINTRA, 2010).

The low-complexity orthogonal matrix RDCT is obtained by the application of the rounding
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function to the DCT matrix entries as follows:

TRDCT = round(2 ·C) =




1 1 1 1 1 1 1 1
1 1 1 0 0 −1 −1 −1
1 0 0 −1 −1 0 0 1
1 0 −1 −1 1 1 0 −1
1 −1 −1 1 1 −1 −1 1
1 −1 0 1 −1 0 1 −1
0 −1 1 0 0 1 −1 0
0 −1 1 −1 1 −1 1 0




with

DRDCT = diag

(
1√
8
,

1√
6
,
1

2
,

1√
6
,

1√
8
,

1√
6
,
1

2
,

1√
6

)
.

3.2.2.6 The modified RDCT:

The modified RDCT (MRDCT) was introduced by Bayer and Cintra in (BAYER; CIN-

TRA, 2012). The MRDCT is an orthogonal matrix obtained by replacing some elements of the

RDCT matrix by zeros. Its explicit form is presented next:

TMRDCT =




1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 −1
1 0 0 −1 −1 0 0 1
0 0 −1 0 0 1 0 0
1 −1 −1 1 1 −1 −1 1
0 −1 0 0 0 0 1 0
0 −1 1 0 0 1 −1 0
0 0 0 −1 1 0 0 0




with

DRDCT = diag

(
1√
8
,

1√
2
,
1

2
,

1√
2
,

1√
8
,

1√
2
,
1

2
,

1√
2

)

The difference matrix is given by:

TRDCT −TMRDCT =




0 0 0 0 0 0 0 0
0 1 1 0 0 −1 −1 0
0 0 0 0 0 0 0 0
1 0 0 −1 1 0 0 −1
0 0 0 0 0 0 0 0
1 0 0 1 −1 0 0 −1
0 0 0 0 0 0 0 0
0 −1 1 0 0 −1 1 0


 .

3.2.2.7 The series of approximations CBT:

In (CINTRA; BAYER; TABLADA, 2014), Cintra, Bayer and Tablada obtained a se-

ries of approximations, which we are going to refer to as CBT, by means of applying several

different rounding approximations to the DCT matrix. The matrices introduced in (CINTRA;

BAYER; TABLADA, 2014) are shown in Table 3.

The quality of the approximations shown here, in terms of figures of merit common in li-

terature, is going to be discussed in Chapter 6 along with the results for the new approximations

proposed.
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Transform Matrix Orthogonal? D

TCBT–1




1 1 1 1 1 1 1 1
2 1 1 0 0 −1 −1 −2
0 1 −1 0 0 −1 1 0
1 0 −2 −1 1 2 0 −1
1 −1 −1 1 1 −1 −1 1
1 −2 0 1 −1 0 2 −1
1 0 0 −1 −1 0 0 1
0 −1 1 −2 2 −1 1 0


 Yes diag

(
1√
8
, 1√

12
, 12 ,

1√
12
, 1√

8
, 1√

12
, 12 ,

1√
12

)

TCBT–2




1 1 1 1 1 1 1 1
2 1 1 0 0 −1 −1 −2
2 0 0 −2 −2 0 0 2
1 0 −2 −1 1 2 0 −1
1 −1 −1 1 1 −1 −1 1
1 −2 0 1 −1 0 2 −1
0 −2 2 0 0 2 −2 0
0 −1 1 −2 2 −1 1 0


 Yes diag

(
1√
8
, 1√

12
, 1√

16
, 1√

12
, 1√

8
, 1√

12
, 1√

16
, 1√

12

)

TCBT–3




1 1 1 1 1 1 1 1
1 1 1 0 0 −1 −1 −1
1 1 −1 −1 −1 −1 1 1
1 0 −1 −1 1 1 0 −1
1 −1 −1 1 1 −1 −1 1
1 −1 0 1 −1 0 1 −1
1 −1 1 −1 −1 1 −1 1
0 −1 1 −1 1 −1 1 0


 Yes diag

(
1√
8
, 1√

6
, 1√

8
, 1√

6
, 1√

8
, 1√

6
, 1√

8
, 1√

6

)

TCBT–4




1 1 1 1 1 1 1 1
2 1 1 0 0 −1 −1 −2
1 1 −1 −1 −1 −1 1 1
1 0 −2 −1 1 2 0 −1
1 −1 −1 1 1 −1 −1 1
1 −2 0 1 −1 0 2 −1
1 −1 1 −1 −1 1 −1 1
0 −1 1 −2 2 −1 1 0


 Yes diag

(
1√
8
, 1√

12
, 1√

8
, 1√

12
, 1√

8
, 1√

12
, 1√

8
, 1√

12

)

TCBT–5




1 1 1 1 1 1 1 1
2 1 1 0 0 −1 −1 −2
2 1 −1 −2 −2 −1 1 2
1 0 −2 −1 1 2 0 −1
1 −1 −1 1 1 −1 −1 1
1 −2 0 1 −1 0 2 −1
1 −2 2 −1 −1 2 −2 1
0 −1 1 −2 2 −1 1 0


 Yes diag

(
1√
8
, 1√

12
, 1√

20
, 1√

12
, 1√

8
, 1√

12
, 1√

20
, 1√

12

)

TCBT–6




1 1 1 1 1 1 1 1
1 1 0 0 0 0 −1 −1
1 0 0 −1 −1 0 0 1
1 0 −1 0 0 1 0 −1
1 −1 −1 1 1 −1 −1 1
0 −1 0 1 −1 0 1 0
0 −1 1 0 0 1 −1 0
0 0 1 −1 1 −1 0 0


 No diag

(
1√
8
, 12 ,

1
2 ,

1
2 ,

1√
8
, 12 ,

1
2 ,

1
2

)

TCBT–7




2 2 2 2 2 2 2 2
2 2 1 1 −1 −1 −2 −2
2 1 −1 −2 −2 −1 1 2
2 −1 −2 −1 1 2 1 −2
2 −2 −2 2 2 −2 −2 −2
1 −2 1 2 −2 −1 2 −1
1 −2 2 −1 −1 2 −2 1
1 −1 2 −2 2 −2 1 −1


 No diag

(
1√
8
, 1√

20
, 1√

20
, 1√

20
, 1√

8
, 1√

20
, 1√

20
, 1√

20

)

Tabela 3 – Series of approximations CBT for C8
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4 SEARCH METHOD

In this chapter, we introduce a new search method for finding matrix approximations.

Notice that, even though the development of the method was motivated by the trigonometric

transforms, the proposed method is completely general and might be used to approximate any

matrix. Although our main goal is to find new approximations for the DCT, we are going to

explore in this chapter the ramifications of the proposed method when applied to the DHT and

DFT also.

4.1 OVERALL STRUCTURE AND INITIAL CONCEPTS

Let A be an arbitraryN×M matrix with elements in R, and ak =

[
ak,0 ak,1 . . . ak,M−1

]
,

k = 0, 1, . . . , N − 1, be a row vector that represents the kth row of A. Note that A might be

described by its rows as follows:

A =




a0

a1

...

aN−1



.

Aiming at finding a low-complexity approximation T for A, we reduced the problem of

approximating the whole matrix into the problem of approximating its rows by low-complexity

row vectors. Such heuristic can be categorized as greedy (CORMEN et al., 2001). Therefore,

our goal is to derive integer low-complexity matrices

T =




t0

t1
...

tN−1



,

such that its rows tk, k = 0, 1, . . . , N − 1, satisfy

tk = arg min
t∈DP

approx(t, ak), k = 0, 1, . . . , N − 1, (4.1)

where DP is the search space. We characterize the search space in the next subsection.
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4.1.1 Search Space

In order to obtain a low-complexity matrix T, its entries must be computationally sim-

ple (BRITANAK; YIP; RAO, 2007; BLAHUT, 2010). We define the search space as the col-

lection of M -point row vectors whose entries are in a set, say P , of low-complexity elements.

That is, the search space DP is composed by all the possible permutations of length M of the

elements in P . Therefore, the cardinality of the search space is given by |DP | = |P|M . A

particular vector in DP is denoted by DP(i), i = 1, 2, . . . , |DP |. Some choices for P include:

P1 = {0,±1} and P2 = {0,±1,±2}, where all elements in P are trivial multiplicands as

discussed in Chapter 3, Section 2.

To illustrate, approximating 8×8 matrices may require search spaces DP1 and DP2 as

shown in Tables 4 and 5, respectively. Such search spaces have cardinality |P1|8 = 38 = 6, 561

and |P2|8 = 58 = 390, 625 elements, respectively.

i DP1
(i)

1
[
−1 −1 −1 −1 −1 −1 −1 −1

]

2
[
−1 −1 −1 −1 −1 −1 −1 0

]

...
...

3200
[
0 0 0 −1 0 0 0 1

]

3201
[
0 0 0 −1 0 0 1 −1

]

...
...

6560
[
1 1 1 1 1 1 1 0

]

6561
[
1 1 1 1 1 1 1 1

]

Tabela 4 – Examples of approximated vectors from the search space DP1

i DP2(i)

1
[
−2 −2 −2 −2 −2 −2 −2 −2

]

2
[
−2 −2 −2 −2 −2 −2 −2 −1

]

...
...

150000
[
−1 2 1 −2 −2 −2 −2 −2

]

150001
[
−1 2 1 −2 −2 −2 −2 −1

]

...
...

390624
[
2 2 2 2 2 2 2 1

]

390625
[
2 2 2 2 2 2 2 2

]

Tabela 5 – Examples of approximated vectors from the search space DP2
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4.1.2 Objective Function

The problem posed in (4.1) requires the identification of an error function to quantify

the “distance” between the candidate row vectors from DP and the rows of the exact matrix A.

Related literature often considers error functions based on matrix norms (CINTRA; BAYER,

2011), proximity to orthogonality measures (TABLADA; BAYER; CINTRA, 2015), and coding

performance measures (BRITANAK; YIP; RAO, 2007).

In this work, we propose the utilization of a distance based on the angle between vectors

as the objective function to be minimized. Let u and v be two M -dimensional vectors defined

over RM . The angle between vectors is simply given by:

angle(u,v) = arccos

(
〈u,v〉
‖u‖ · ‖v‖

)
, (4.2)

where 〈·, ·〉 is the inner product and ‖·‖ indicates the norm induced by the inner product (STRANG,

1988).

4.2 ANGLE BASED METHOD

Based on the previous discussion, we are able to propose the angle based method, which

is based on the optimization problem stated as follows:

tk = arg min
t∈DP

angle(ak, t), k = 0, 1, . . . , N − 1. (4.3)

First, we select the set P and span the induced search space DP . Then, for each row

of A, we generate a subset of the search space, D(k)
P , k = 0, 1, . . . , N − 1, containing all the

vectors in DP that are solutions to the problem in (4.3). Lastly, each approximate matrix is

obtained as a combination of the vectors in D(k)
P , k = 0, 1, . . . , N − 1. The number of matrices



45

obtained is given by
∏N−1

k=0 |D
(k)
P |. Therefore,

T(i) =




t0

t1
...

tk
...

tN−1




, i = 1, 2, . . . ,
N−1∏

k=0

|D(k)
P |,

where tk ∈ D(k)
P .

The procedure for the angle based method is shown in Algorithm 1.

Example 4.1. Let A be a 4 × 4 matrix. Suppose that, after applying Algorithm 1 to approxi-

mate A, we obtained |D(1)
P | = |D(3)

P | = 1, and |D(2)
P | = |D(4)

P | = 2. In this case, we obtain
∏4

k=1 |D
(k)
P | = 1 · 2 · 1 · 2 = 4 approximate matrices, given by:

T(1) =




D(1)
P (1)

D(2)
P (1)

D(3)
P (1)

D(4)
P (1)



, T(2) =




D(1)
P (1)

D(2)
P (2)

D(3)
P (1)

D(4)
P (1)



, T(3) =




D(1)
P (1)

D(2)
P (1)

D(3)
P (1)

D(4)
P (2)



, T(4) =




D(1)
P (1)

D(2)
P (2)

D(3)
P (1)

D(4)
P (2)



,

where D(k)
P (i), k = 0, 1, . . . , N − 1, i = 1, 2, . . . , |D(k)

P |, represents the ith vector in D(k)
P .

loa 1 – Pseudo algorithm for angle based method

Input: A, DP
Output: approximations (3 dimensional array containing all the obtained approximate matri-

ces)

for k ← 0, 1, . . . , N − 1 do
angles← null vector of length |DP |
for i← 1, 2, . . . , |DP | do
angles(i)← angle(ak,DP(i));

end for
indexes← indexes of the vectors in DP for which angles = min(angles);
D(k)
P ← DP(indexes);

end for
approximations← Null array with dimensions N ×M ×

∏N−1
k=0 |D

(k)
P |;

approximations← All combinations of the vectors in D(k)
P , k = 0, 1, . . . , N − 1;
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4.3 ANGLE BASED METHOD - CONSTRAINED TO ORTHOGONALITY

Note that the previous method does not guarantee that the obtained matrices are ortho-

gonal. However, orthogonality is a desirable feature, as discussed in Chapter 3, Section 2. In

order to ensure orthogonality, we reformulate the previously stated optimization problem ba-

sed on the order that the rows of the exact matrix are approximated. Thereby, a constrained to

orthogonality version of the proposed method is derived.

4.3.1 Search sequence

For the unconstrained method, since there is no constraints to the optimization problem,

the rows are approximated independently from each other. However, if considering orthogona-

lity as a constraint, we define a dependency relation among the rows. Hence, the sequence in

which we approximate the rows must be considered.

There are N rows to be approximated. One way of doing it is—under some criteria–to

approximate the rows following their natural order, i.e., first we approximate the 1st row, then

the 2nd row, and so on. The 2nd row is approximated subject to the orthogonality constraint

relative to the resulting approximate 1st row. The 3rd row is approximated considering ortho-

gonality relative to approximate rows 1 and 2, and so on. This procedure corresponds to the

sequence ℘1 = (1, 2, 3, . . . , N). However, this is only a particular search sequence. Therefore,

for a systematic procedure, we must consider all the N ! possible permutations of ℘1. Let ℘m,

m = 1, 2, . . . , N !, be the mth permutation of ℘1, and ℘m(k), k = 0, 1, . . . , N − 1, be a parti-

cular element of ℘m. For example, if N = 8, there are N ! = 40320 possible search sequences.

In this case, we have ℘1250 = (1, 3, 7, 6, 5, 4, 8, 2) and ℘1250(2) = 7.

4.3.2 Optimization problem

In view of the previous discussion, we can now fully specify the optimization problem

suitable for the proposed algorithm under the orthogonality constraint. Fixing a search sequence

℘m, the optimization problem is stated as follows:

t℘m(k) = arg min
t∈DP

angle(a℘m(k), t), k = 0, 1, . . . , N − 1, (4.4)
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subject to

〈t℘m(i), t℘m(j)〉 = 0, i 6= j. (4.5)

The solution of the problem above returns N row vectors t℘m(0), t℘m(1), . . . , t℘m(N−1) that are

taken as the rows of the approximate matrix T.

Algorithm 2 displays the procedure for the constrained to orthogonality version of the

proposed method.

loa 2 – Algorithm for the angle based method constrained to orthogonality

Input: A; DP ; ℘ (N !×N matrix containing all the possible search sequences).
Output: approximations (3 dimensional array containing all the obtained approximate matri-

ces).

approximations← Null array with dimensions N ×M ×N !;
for m← 1, 2, . . . , N ! do

for k ← 0, 1, . . . , N − 1 do
θmin ← 2π;
index← 1;
for i← 1, 2, . . . , |DP | do
aux← approximations(:, :,m) · (DP(i))>

if sum(aux) = 0 then
θ ← angle(a℘m(k),DP(i));
if θ < θmin then
θmin ← θ;
index← i;

end if
end if

end for
approximations(℘m(k), :,m)← DP(index);

end for
end for

4.4 APPROXIMATIONS FOR COMPLEX-VALUED MATRICES

The introduced method is based on the calculation of the angle between two vectors

whose elements are in R: a row of the input matrix and the candidate approximate vector.

However, one of the transforms we are considering is the DFT, which has its coefficients de-

fined over the complex space, C. In this case, algorithm modifications are necessary. Next, we

describe two procedures, I and II, to obtain complex-valued approximations using the proposed
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method. Each of them offers a way to decompose the complex-valued problem into real-valued

problems that are suitable for the application of the proposed method.

4.4.1 Procedure I

A natural first option is to decompose the complex matrix in its real and complex com-

ponents and approximate each one using any version (unconstrained or constrained) of the pro-

posed method. Then, the DFT approximations are combinations of the approximations found for

the real and complex components. Notice that, if using the constrained version of the method,

the approximations for the real and complex parts are going to be orthogonal, but there is no

guarantee that the resulting approximate matrices are orthogonal as well.

4.4.2 Procedure II

Another approach for approximating complex-values matrices is to calculate the angle

in the complex space. According to Scharnhorst (SCHARNHORST, 2001), one way of compu-

ting the angle between two M -dimensional complex vectors, say r and s, is by considering its

isometric vector space R2M .

Then, the angle between r and s is calculated as in (4.2) with

angle(r, s) = angle(r?, s?),

where r? and s? are defined in R2N by the relation

r?2k = <(rk) and r?2k+1 = =(rk), k = 0, 1, . . . ,M − 1. (4.6)

The inverse operation is given by:

rk = r?2k + jr?2k+1 k = 0, 1, . . . ,M − 1. (4.7)

Let A be an N × M matrix whose coefficients are complex, that is, ai,j ∈ C, i =

0, 1, . . . , N − 1, j = 0, 1, . . . ,M − 1. By performing the mapping on (4.6) for each row of A,

we obtain a new real matrix B with dimensions N × 2M , i.e.

Complex N ×M matrix A
(4.6)−−→ Real N × 2M matrix B. (4.8)
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Then, B can be approximated by any version of the proposed method as they were

described earlier. Next, each approximate matrix obtained, B̂, must be converted from real to

complex again by applying (4.7) to each of its rows, i.e.

Real N × 2M matrix B̂
(4.7)−−→ Complex N ×N matrix Â. (4.9)

The matrices obtained from (4.9) are the complex approximations for the input matrix A.

In this case, the constrained version of the proposed method can not guarantee orthogo-

nality of the approximate matrices obtained. The approximations for the real N × 2M matrix

are going to be orthogonal. However, there is nothing that assures that its rows are still going to

be orthogonal after being converted back to complex vectors. Also, due the mapping in (4.8),

we are now approximating 2M -dimensional vectors. Therefore, the cardinality of the search

space is now given by |DP | = |P|2M .

Table 6 summarizes the modifications in each version of the method so they can appro-

ximate complex matrices.

Angle based method
Procedure for

complex-valued
approximation

Unconstrained Constrained to orthogonality

Procedure I

• Separate A into its
real and complex components
• Run Algorithm 1
for both components
• Combine the approximations
obtained for the real
and complex components

• Separate A into its
real and complex components
• Run Algorithm 2
for both components
• Combine the approximations
obtained for the real
and complex components

Procedure II

• Apply (4.8) to A
• Run Algorithm 1
• Apply (4.9) to the
approximations obtained

• Apply (4.8) to A
• Run Algorithm 2
• Apply (4.9) to the
approximations obtained

Tabela 6 – Procedures to approximate complex matrices using the unconstrained and constrai-
ned versions of the angle based method.

Since our focus here is to approximate the 8-point DCT, we have no data to support

a suggestion of which procedure for complex-valued matrix approximation is better in terms

of the obtained approximation quality. However, in terms of complexity, Procedure I, which
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requires the approximation of two N × M matrices, seems to be a better option. Since the

size of the search space grows exponentially, it is likely that the processing time to find the

approximations also grow exponentially as M increases, which makes the processing time to

approximate a N × 2M matrix significantly larger than the processing time to approximate two

N ×M matrices.

4.5 REMARKS

Here we list some observations about the proposed method. Some of the following notes

are just general considerations while other points are going to be further explored in the next

chapter.

4.5.1 General remarks

• If A already has any low-complexity rows, they might be previously fixed and any of the

methods can be used to approximate only the remaining rows. This reduces processing

time;

• Matrix symmetries may also be explored in order to reduce computational time.

4.5.2 Unconstrained version of the proposed method

• Since the unconstrained version of the method does not have to consider the search se-

quence, it is faster than the constrained version;

• The rows are approximated independently, which allows the use of parallelization in order

to run it even faster;

• By construction, the approximations generated by a specific search space are all different,

although different search spaces may generate the same approximations.

4.5.3 Constrained to orthogonality version of the proposed method

• For a particular search sequence, the algorithm may reach a point where it can not find a

vector in the search space that is orthogonal to the vectors already fixed in the approxi-
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mation matrix. From that point on, all the rows still to be approximated are going to be

set as null vectors in the approximate matrix;

• Some search sequences may generate the same approximation matrix;

• As for the two items above, the 3-dimensional array obtained from the method must be

“cleaned” in order to eliminate the singular matrices and the repeated ones. Only the

remaining matrices are actually valid approximations;

• Notice in Algorithm 2 we only change the candidate vector in the approximate matrix if

the angle between this vector and the matrix row is smaller than the previous minimum

angle. By doing so, we fix in the approximated matrix the first vector in the search space

which generates that minimum angle. Changing this condition may generate a different

approximate matrix.
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5 APPROXIMATION SCHEMES

As discussed in the end of the previous chapter, some features of the matrix we aim at

approximating may be used in order to reduce the computational complexity of the approxima-

tion process. We show here: (i) how the search space might be reduced by only considering the

positive elements of P; (ii) how the native low-complexity rows of the discrete transforms we

are considering can be used to reduce the number of rows to be approximated; and (iii) how to

explore the symmetries of the discrete transform matrices in order to further reduce the comple-

xity of the approximation process. Finally, we define the combination of versions of the method

and features explored to reduce the computational complexity of the approximation process as

the approximation schemes we can use to approximate the DFT, DHT and DCT.

5.1 SEARCH SPACE REDUCTION

The search space is generated from a set of low-complexity elements. Some common

choices for this set and the size of the corresponding search spaces when approximating an

N ×M matrix are displayed in Table 7.

Set (P) Size of the corresponding search space

{−1, 0, 1} 3M

{−2,−1, 0, 1, 2} 5M

{−1,−1/2, 0, 1/2, 1}, 5M

{−2,−1,−1/2, 0, 1/2, 1, 2} 7M

Tabela 7 – Examples of common sets and the size of the corresponding search space

Observing the sets shown in Table 7 we can see that they are all symmetric around

zero. It is important to have those negative and positive elements since the target matrices also

have positive and negative entries. In this sense, one way to reduce the size of the search space,

would be to consider only the nonnegative elements of those sets. Then, after the approximation

process, restore the element signs according to the sign pattern from the exact matrix. Therefore,

we propose the following procedure to approximate an input matrix A:
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1. Select a set P and remove its negative elements, e.g.: P+ = {0, 1, 2};

2. Approximate abs(A) using the unconstrained version of the method, where abs(·) re-

turns the absolute value of its input. When applied to matrices, the abs function is an

elementwise operation (SEBER, 2008);

3. Define the approximations for A as

Â = âbs(A)� sign(A), (5.1)

where âbs(A) is an approximation obtained from step 2, and � represents the element

wise multiplication.

By performing the procedure above, the size of the search space is reduced and the

sign structure of the input matrix is preserved. As an example, Table 8 shows the proportional

reduction of the search space when A is an N × 8 matrix.

Set
Size of the original

search space (Table 7)
Size of the reduced

search space
Reduction of the search space

{0, 1} 38 ≈ 6.56× 103 28 = 2.56× 102 96.10%
{0, 1, 2} 58 ≈ 3.90× 105 38 ≈ 6.56× 103 98.32%
{0, 1/2, 1}, 58 ≈ 3.90× 105 38 ≈ 6.56× 103 98.32%
{0, 1/2, 1, 2} 78 ≈ 5.76× 106 48 ≈ 6.55× 104 98.86%

Tabela 8 – Reduction of the size of the search space for some sets when M = 8

Note that the proposed procedure above can be used only in association with the un-

constrained version of the method. This is due to the fact that for the unconstrained version

the rows are approximated independently. Observe that, for the proposed procedure, we are ap-

proximating a nonnegative matrix with nonnegative elements. In this case, two row vectors are

orthogonal if, and only if, they have nonzero elements in different positions, which causes the

inner product to be zero. Thus, if using this procedure associated with the constrained version

of the method, we have the following possible situations:

• If a row is approximated by a vector with more than one nonzero element, the output

matrix is necessarily going to have at least one all zero row. In this case, it means that the

matrix is singular and it is not interesting for our purposes;
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• Otherwise, the output matrix is going to be a permuted and/or scaled version of the iden-

tity matrix, which is also not interesting for decorrelation purposes.

Therefore, for the constrained version of the method it is necessary to consider the

original sets and the search space remains the same size.

5.2 FIXING LOW-COMPLEXITY ROWS

Notice that, if a given matrix already has low-complexity rows, then those rows do not

need to be approximated. Therefore, the proposed method is only applied to the remaining rows.

The DFT, DHT, and DCT all have native low-complexity rows. Next, we identify for

each considered transform which are these low-complexity rows that can be disregarded by the

approximation algorithm.

5.2.1 DFT and DHT

The DFT and DHT have the same low-complexity rows, which is expected given their

similar kernels. The kernels of both transforms are built as a combination of cosine and sine

functions with their argument being 2πik
N

. Then, for those two transforms, the low-complexity

rows are the ones for which k = 0, N/4, N/2, 3N/4. For each of these values we have that

• If k = 0, then 2πik
N

= 0;

• If k = N
4

, then 2πik
N

= π
2
i;

• If k = N
2

, then 2πik
N

= πi;

• If k = 3N
4

, then 2πik
N

= 3π
2
i.

Table 9 displays the sequences generated by the cosine ans sine functions when their argument

are the ones obtained above and i = 0, 1, 2, . . ..

As seen in Table 9, all the sequences have elements on the low-complexity set {−1, 0, 1}.

For the DFT, its real and complex parts are given by the cosine and sine sequences shown in

Table 9, respectively, as shown in Figure 4.



55

k Argument Generated sequences

0 0
cos(0) 1, 1, 1, 1, 1, 1, 1, . . .
sin(0) 0, 0, 0, 0, 0, 0, 0, . . .

N
4

π
2
i

cos(π
2
i) 1, 0,−1, 0, 1, 0,−1, . . .

sin(π
2
i) 0, 1, 0,−1, 0, 1, 0, . . .

N
2

πi
cos(πi) 1,−1, 1,−1, 1,−1, 1, . . .
sin(πi) 0, 0, 0, 0, 0, 0, 0, . . .

3N
4

3π
2
i

cos(3π
2
i) 1, 0,−1, 0, 1, 0,−1, . . .

sin(3π
2
i) 0,−1, 0, 1, 0,−1, 0, . . .

Tabela 9 – Cosine and sine sequences generated when k = 0, N/4, N/2, 3N/4
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Figura 4 – Graphic representation of the real and imaginary parts of the low-complexity sequen-
ces that form the rows of the DFT matrix for k = 0, N/4, N/2, 3N/4.

1

1 3 5 7 9 11 13 15

k 
=

 0

−1

0

1

1 3 5 7 9 11 13 15

k 
=

 N
/4

−1

0

1

1 3 5 7 9 11 13 15

k 
=

 N
/2

−1

0

1

1 3 5 7 9 11 13 15

k 
=

 3
N

/4

Figura 5 – Graphic representation of the low-complexity sequences that form the rows of the
DHT matrix for k = 0, N/4, N/2, 3N/4.

For the DHT, its low-complexity rows are going to be the sum of those sequences. The

graphic representation of those sequences is shown in Figure 5.
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5.2.2 DCT

The DCT matrix does not have low-complexity rows. However, for k = 0, N
2

, the DCT

rows are scaled low-complexity sequences, as show in Table 10. In this case, we can define

k ck,m Row sequence (m = 0, 1, 2, . . .)

0 1√
N

1√
N
, 1√

N
, 1√

N
, 1√

N
, . . . = 1√

N
(1, 1, 1, 1, 1, 1, 1 . . .)

N/2
√

2
N

cos((2m+ 1)π
4
) 1√

N
,− 1√

N
,− 1√

N
, 1√

N
, . . . = 1√

N
(1,−1,−1, 1, 1,−1,−1 . . .)

Tabela 10 – DCT row sequence for k = 0, N/2

those rows as the low-complexity sequences in Table 10.

5.3 UNCONSTRAINED VERSION OF THE METHOD

For the unconstrained version of the proposed method, we can not only fix some rows

but combine this with the search space reduction procedure proposed on the previous section.

Figures 6, 7, and 8 display the image representation of the absolute value of the transforms

considered for N = 8, 16, 32, 64.

(a) abs(<(F8)) (b) abs(=(F8)) (c) abs(<(F16)) (d) abs(=(F16))

(e) abs(<(F32)) (f) abs(=(F32)) (g) abs(<(F64)) (h) abs(=(F64))

Figura 6 – Image representation for the absolute value of the real and complex parts of the DFT
matrix for N = 8, 16, 32, 64.
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(a) abs(H8) (b) abs(H16) (c) abs(H32) (d) abs(H64)

Figura 7 – Image representation for the absolute value of the DHT transform matrix for N =
8, 16, 32, 64.

(a) abs(C8) (b) abs(C16) (c) abs(C32) (d) abs(C64)

Figura 8 – Image representation for the absolute value of the DCT transform matrix for N =
8, 16, 32, 64.

In the images on Figures 6, 7, and 8, it is possible to identify the low-complexity rows we

can previously fix on the approximation matrix. In particular, for the DFT and DHT matrices,

we can also see that some of the remaining rows are repeated. For example, in abs(<(F16))

(Figure 6(c)), rows k = 1, 7, 9, 15 are the same. Note that if abs(A) has repeated rows, then,

by definition of the unconstrained version of the method, the optimal solutions for those rows

are going to be the same. As a consequence, we only need to approximate the unique rows. In

summary, if (i) using the unconstrained version; (ii) using the search space reduction procedure

proposed; and (iii) fixing the low-complexity rows already in the transform matrix; it is only

necessary to approximate the rows highlighted in Figures 6, 7, and 8.

5.3.1 Matrix symmetries

Looking a little bit further into Figures 6, 7, and 8, it is possible to identify, inside the

highlighted regions, some symmetry patterns. That means it is possible to approximate only a

portion of those rows and obtain the whole matrix by reflexions on the rows, columns, or both,
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of the approximated partition.

5.3.1.1 DFT and DHT

Notice that for the absolute value of the DFT and DHT in Figures 6 and 7, that are not

only low-complexity rows but also low-complexity columns, i = 0, N/4, N/2, 3N/4. Those

columns may also be fixed previously on the approximation matrix. Figures 9 and 10 show

which portion of the highlighted rows in Figures 6 and 7 we need to approximate. That is,

which portion of the matrix we need to approximate in order to obtain the whole matrix apart

from the low-complexity rows and columns already existent in the original matrix.

Figura 9 – Portion of the DFT matrix to be approximated for N = 8, 16, 32, 64.

Figura 10 – Portion of the DHT matrix to be approximated for N = 8, 16, 32, 64.

5.3.1.2 DCT

For the DCT , there is no low-complexity columns that can be previously fixed. Howe-

ver, there are symmetries in the rows that can be explored, as shown in Figure 11.

Table 11 summarizes the information about the rows and columns to be approximated

for both versions of the method considering all the possible modifications presented above to

reduce the complexity of the approximation process. Table 12 also gives the same information
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Figura 11 – Portion of the DCT matrix to be approximated for N = 8, 16, 32, 64.

of Table 11 for the case when we are only considering previously fixing the low-complexity

rows. Table 13 summarizes which of the modifications presented above may be used for each

Transform
Rows to be

approximated
Columns to be
approximated

Number
of rows to be
approximated

Number of
columns to be
approximated

DFT 1 to N/4− 1 1 to N/4− 1 N/4− 1 N/4− 1

DHT 1 to N/4− 1
1 to N/4− 1

and
N/4 + 1 to N/2− 1

N/4− 1 N/2− 2

DCT
1 to N/2− 1

and
N/2 + 1 to N − 1

0 to N/2− 1 N − 2 N/2

Tabela 11 – Summary of the rows and columns to be approximated when using the unconstrai-
ned version of the proposed method considering all the possible modifications to
reduce the approximation procedure.

Transform Fixed Rows
Columns to be
approximated

Number
of rows to be
approximated

Number of
columns to be
approximated

DFT 0, N/4, N/2, 3N/4 All columns N − 4 N
DHT 0, N/4, N/2, 3N/4 All columns N − 4 N
DCT 0, N/2 All columns N − 2 N

Tabela 12 – Summary of the rows and columns to be approximated when using the constrained
version of the proposed method and previously fixing the low-complexity rows of
the original matrix.

method.

It is noteworthy that all the modifications can actually be used in association with the

constrained version of the proposed method. But, in our case (the matrices we are interested are
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Version of the method
Unconstrained Constrained to orthogonality

Search space reduction 3 7

Fix low-complexity rows 3 3 (only if the input matrix is orthogonal)
Explore matrix symmetries 3 7

Complex adaptation 3 7

Tabela 13 – Comparison of the unconstrained and constrained versions of the proposed method
in terms of the complexity reduction procedures they admit.

orthogonal), only previously fixing the low-complexity rows guarantees that the output matrix

is orthogonal (which is the whole point of this version of the method).

5.4 APPROXIMATION SCHEMES

Based on the discussion above, we can define the approximation schemes that can be

used to approximate the DCT, DHT, and DFT. The DHT and DCT can be approximated using

Schemes I and II, displayed in Figure 12. For the DFT, Schemes III and IV in Figure 13, which

consider the complex adaptation, can be used.

Scheme I

Use the unconstrained version of the method with:

• Search space reduction;

• low-complexity rows previously fixed;

• Exploring matrix symmetries (Figures 10
and 11).

Scheme II

Use the constrained to orthogona-
lity version of the method with:

• low-complexity rows previously fixed.

Figura 12 – Approximation schemes for the DHT and DCT.

Notice that the approximation schemes proposed for the DFT consider only the uncons-

trained version of the method. This is because none of the complex adaptations when used with

the constrained version guarantees that the output matrices obtained are orthogonal. Then, the

use of the constrained version loses its point. Also, when considering the complex adaptation

A, which means we are going to approximate the real and imaginary parts independently, we
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Scheme III

Complex-valued
approximation

considering
procedure I

N =
8?

Use the unconstrained
version of the method with:

• Search space reduc-
tion;

• low-complexity rows
previously fixed;

• Exploring matrix sym-
metries (Figure 6(a)-
(b)).

Use the unconstrained
version of the method with:

• Search space reduc-
tion;

• low-complexity rows
previously fixed;

• Exploring matrix
symmetries (Figure 9).

yes

no

Scheme IV

Complex-valued
approximation

considering
procedure II

Use the unconstrained
version of the method with:

• Search space reduc-
tion;

• low-complexity rows
fixed;

• Exploring matrix
symmetries (Figure 9).

Figura 13 – Approximation schemes for the DFT.

need to verify if the size of the matrix is N = 8. In this case, we have two 8 × 8 matrices

to approximate and, if we check the portion of those matrices that need to be approximated

(Figure 9(a)), we can see that this region is reduced to a single element, not a vector, which is

required by the method. Then, when N = 8, we are going to approximate the entire second

row, as in Figure 6(a)-(b). For the approximation Scheme IV this is not a concern, since when

N = 8, the 8× 8 initial matrix is converted in a 8× 16 matrix by the mapping in equation (4.6)
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and that single element is now a vector with two elements (the real and imaginary parts of the

original complex element).

In the next chapter, the approximation Schemes I and II are applied to obtain new ap-

proximations for the 8-point DCT.
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6 NEW ANGLE-BASED APPROXIMATIONS FOR THE 8-POINT DCT

6.1 FIGURES OF MERIT

To evaluate the performance of the proposed approximations, we selected traditional

figures of merit

• total error energy (ε(·)) (CINTRA; BAYER, 2011);

• mean square error (MSE(·)) (BRITANAK; YIP; RAO, 2007; WANG; BOVIK, 2009);

• coding gain (Cg(·)) (BRITANAK; YIP; RAO, 2007; GOYAL, 2001; KATTO; YASUDA,

1991);

• transform efficiency (η(·)) (BRITANAK; YIP; RAO, 2007).

The MSE and total error energy are suitable measures to quantify the difference between the

exact DCT and its approximations (BRITANAK; YIP; RAO, 2007). The coding gain and trans-

form efficiency are appropriate tools to quantify compression, redundancy removal, and data

decorrelation capabilities (BRITANAK; YIP; RAO, 2007). Additionally, since for the unres-

tricted version of the method there is no guarantee of orthogonality, we also considered the

orthogonality deviation measure (FLURY; GAUTSCHI, 1986).

Hereafter we adopt the following quantities and notation: the interpixel correlation is

ρ = 0.95 (BRITANAK; YIP; RAO, 2007; GOYAL, 2001; LIANG; TRAN, 2001), Ĉ is an

approximation for the DCT, and R̂y = Ĉ ·Rx · Ĉ>, where Rx is the covariance matrix of x,

whose elements are given by ρ|i−j|, i, j = 1, 2, . . . , 8. We detail each of these measures below.

6.1.1 Total Energy Error

The total energy error is a similarity measure given by (CINTRA; BAYER, 2011):

ε(Ĉ) = π · ‖C− Ĉ‖2F,

where ‖ · ‖F represents the Frobenius norm (WATKINS, 2004).
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6.1.2 Mean Square Error

The MSE of a given approximation Ĉ is furnished by (BRITANAK; YIP; RAO, 2007;

WANG; BOVIK, 2009):

MSE(Ĉ) =
1

8
· tr
(

(C− Ĉ) ·Rx · (C− Ĉ)>
)
,

where tr(·) represents the trace operator (BRITANAK; YIP; RAO, 2007). The total energy error

and the mean square error are appropriate measures for capturing the approximation error in a

Euclidean distance sense.

6.1.3 Coding Gain

The coding gain quantifies the energy compaction capability and is given by (BRITA-

NAK; YIP; RAO, 2007):

Cg(Ĉ) = 10 · log10





1
8

∑8
i=1 r

2
i,i(∏8

i=1 r
2
i,i · ‖ĉi‖2

)1/8



 ,

where ri,i is the ith element of the diagonal of R̂y (BRITANAK; YIP; RAO, 2007) and ĉi is the

ith row of Ĉ.

However, as pointed in (KATTO; YASUDA, 1991), the previous definition is suitable

for orthogonal transforms only. For nonorthogonal transforms, such as SDCT (HAWEEL, 2001)

and MRDCT (BAYER; CINTRA, 2012), we adopt the unified coding gain (KATTO; YASUDA,

1991). For i = 1, 2, . . . , 8, let ĉi and ĝi be the ith row of Ĉ and Ĉ−1, respectively. Then, the

unified coding gain is given by

C∗g (Ĉ) = 10 · log10

{
8∏

i=1

1
8
√
Ai ·Bi

}
,

where Ai = su
[(

ĉ>i · ĉi
)
�Rx

]
, su(·) returns the sum of all elements of the input matrix, the

operator � represents the elementwise product, and Bi = ‖ĝi‖2.
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6.1.4 Transform Efficiency

The transform efficiency is an alternative measure to the coding gain, being expressed

according to (BRITANAK; YIP; RAO, 2007)

η(Ĉ) =

∑8
i=1 |ri,i|∑8

i=1

∑8
j=1 |ri,j|

· 100,

where ri,j is the (i, j)th entry of R̂y, i, j = 1, 2, . . . , 8 (BRITANAK; YIP; RAO, 2007).

6.1.5 Orthogonality deviation

The orthogonality deviation (FLURY; GAUTSCHI, 1986) is a measure to quantify how

close a matrix is from a diagonal matrix. It is given by:

δ(T) = 1− ‖ diag(T)‖2F
‖T‖2F

.

6.2 IMPORTANT DEFINITIONS

A large number of new approximations were obtained considering the approximation

schemes introduced in the previous chapter. In order to optimize the presentation of those ap-

proximate matrices, the following definitions are required.

Definition 6.1 (Equivalence). We say that two matrices are equivalent to each other when they

present the same results for a set of evaluation metrics considered.

Definition 6.2 (Class of equivalence). A set of matrices equivalent to each other form a class

of equivalence.

Although for some cases the number of approximate matrices obtained was large, we

were able to identify a reduced number of classes of equivalence. Then, instead of presenting

all the matrices obtained, we present only one representative of each class of equivalence. The

metrics that define the equivalence relationship between two matrices, the metric to select the

representative matrix of each class, and the results obtained are discussed in the next section.
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6.3 NEW APPROXIMATIONS

The new approximations were obtained running approximations Schemes I and II, which

are the appropriate ones for the DCT, as explained in Chapter 5. The low-complexity sets con-

sidered to generate the search spaces are displayed in Table 14.

Set Set elements

P1 {−1, 0, 1}
P2 {−1,−1

2
, 0,−1

2
, 1}

P3 {−2,−1, 0, 1, 2}
P4 {−3,−1, 0, 1, 3}
P5 {−1,−1

2
,−1

4
, 0,−1

4
,−1

2
, 1}

P6 {−2,−1,−1
2
, 0,−1

2
, 1, 2}

P7 {−3,−1,−1
2
, 0,−1

2
, 1, 3}

P8 {−2,−1,−1
2
,−1

4
, 0,−1

4
,−1

2
, 1, 2}

P9 {−3,−2,−1,−1
2
, 0,−1

2
, 1, 2, 3}

Tabela 14 – Low-complexity sets considered.

From this point on, the new approximation matrices proposed in this work are going to

be referred to as Ty,z, which means T is the representative approximation of equivalence class z

obtained using approximation Scheme y. For example, TI,1 is the representative approximation

of equivalence class 1 obtained using approximation Scheme I.

The following evaluation metrics were considered to define the classes of equivalence:

• Total error energy;

• Mean square error;

• Coding gain; and

• Transform efficiency.

For approximations obtained using the approximation Scheme I, which considers the

version of the method not constrained to orthogonality, the approximate matrix chosen to be

the representative of each class was the one with the minimum orthogonality deviation. For the

ones obtained using the approximation Scheme II, the representative matrix of each class was
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the one with the minimum arithmetic complexity. Table 15 summarizes the results obtained.

The actual matrices obtained are presented in Appendix A of this work.

Approximation
scheme

Number of matrices
obtained

Number of classes
of equivalence

Scheme I 151 6
Scheme II 15 10

Tabela 15 – Total matrices and classes of equivalence obtained for the 8-point DCT.

Among the matrices obtained, three had already been introduced in literature. We veri-

fied that TI,1 = TII,1 = TRDCT and TII,2 = TCBT–4. Thus, for further analysis we focus on the

13 new approximations obtained. Table 16 displays an overview of the representative matrices

of each class of equivalence.

Approximation
scheme

Class of
equivalence

Representative
matrix

Representative
approximation

δ(T) Additions Bit-shiftings

Scheme I C2 TI,2 ĈI,2 0.0300 48 16
Scheme I C3 TI,3 ĈI,3 0.0130 80 24
Scheme I C4 TI,4 ĈI,4 0.0005 56 32
Scheme I C5 TI,5 ĈI,5 0.0086 52 16
Scheme I C6 TI,6 ĈI,6 0.0017 76 40
Scheme II C3 TII,3 ĈII,3 0 48 24
Scheme II C4 TII,4 ĈII,4 0 48 16
Scheme II C5 TII,5 ĈII,5 0 80 24
Scheme II C6 TII,6 ĈII,6 0 80 24
Scheme II C7 TII,7 ĈII,7 0 56 32
Scheme II C8 TII,8 ĈII,8 0 56 32
Scheme II C9 TII,9 ĈII,9 0 72 40
Scheme II C10 TII,10 ĈII,10 0 72 40

Tabela 16 – Overview of the new approximations obtained from the angle based method

In Table 17, the measurements obtained for the approximations in literature along with

the results for the new approximations for the figures of merit considered to define the classes

of equivalence are shown. The DCT and integer DCT (IDCT) (OHM et al., 2012) results were

included as reference. The top five results for each measure are displayed in bold and were all

obtained from new approximations proposed in this work. We can also highlight approximations

ĈI,4 and ĈI,6, which are among the top five for all measures considered.



68

Approximation ε(Ĉ) MSE(Ĉ) C∗g (Ĉ) η(Ĉ)

DCT 0 0 8.8259 93.9912
IDCT (HEVC) 0.0020 8.66× 10−6 8.8248 93.8236
ĈWHT 47.6126 0.2241 7.9461 85.3138
ĈLO 0.8695 0.0061 8.3902 88.7023
ĈSDCT 3.3158 0.0207 6.0261 82.6190
ĈRDCT 1.7945 0.0098 8.1827 87.4297
ĈMRDCT 8.6592 0.0594 7.3326 80.8969
ĈBAS-2008a 5.9294 0.0238 8.1194 86.8626
ĈBAS-2008b 4.1875 0.0191 6.2684 83.1734
ĈBAS-2009 6.8543 0.0275 7.9126 85.3799
ĈBAS-2010 4.0935 0.0210 8.3251 88.2182
ĈBAS-2011 26.8462 0.0710 7.9118 85.6419
ĈBAS-2013 35.0639 0.1023 7.9461 85.3138
ĈCBT–1 8.5953 0.0375 8.1361 86.8051
ĈCBT–2 1.7945 0.0100 8.1361 86.8051
ĈCBT–3 1.7945 0.0098 8.1834 87.1567
ĈCBT–4 1.7945 0.0100 8.1369 86.5359
ĈCBT–5 0.8695 0.0062 8.3437 88.0594
ĈCBT–6 3.3158 0.0208 6.0462 83.0814
ĈCBT–7 2.1473 0.0665 6.4434 63.7855
ĈI,2 0.4022 0.0028 8.4721 90.1603
ĈI,3 0.5765 0.0040 8.4412 90.5152
ĈI,4 0.1691 0.0011 8.7184 91.9696
ĈI,5 0.4022 0.0028 8.4520 90.6123
ĈI,6 0.1272 0.0008 8.7654 92.8767
ĈII,3 1.2194 0.0046 8.6337 90.4615
ĈII,4 1.2194 0.0127 8.1024 87.2275
ĈII,5 2.4482 0.0084 8.4301 90.5362
ĈII,6 2.4482 0.0265 7.8837 87.7395
ĈII,7 1.5452 0.0043 8.6693 91.4370
ĈII,8 1.5452 0.0176 8.0161 88.4340
ĈII,9 1.0145 0.0029 8.7393 92.3530
ĈII,10 1.0145 0.0114 8.1454 88.5210

Tabela 17 – Performance measures for the DCT approximations in literature and the new ap-
proximations proposed

To provide another way of visualizing the data in Table 17, we generated the plot in

Figure 14. In that (i) the axis contain the information about the MSE and total error energy

measures; (ii) the color express the coding gain information; and (iii) the size of each point

represent the transform efficiency. The ideal transform in terms of MSE and total energy error
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is the one localized at the point (0, 0). The larger and bluer the point, the better the coding

performance. The first thing that one can noticed is that there are two approximations, ĈBAS–2013

and ĈBAS–2011, that have such high MSE results that makes it hard to evaluate the differences

between the remaining approximations. Therefore, we filtered the data in Figure 14 to keep

only the approximations with MSE lower than 2 and total energy error lower than 0.02. The

approximations that satisfy those conditions are shown in Figure 15.

In this Figure 15, we can observe that from the 31 approximations, considering the

ones in literature and the proposed ones, only 17 showed up in the filtered plot. From those 17

approximations, 11 of them are approximations proposed in this work. Also, the five transforms

closest to the DCT in terms of all measures considered were proposed in this work and the

approximations that overall presented the best results were ĈI,4 and ĈI,6, as highlighted before.

In the next chapter, the obtained approximations are evaluated in the context of image

compression.
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ĈBAS−2008a
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ĈI,6
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Figura 14 – Visual representation of Table 17.
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ĈCBT−4
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7 APPROXIMATIONS PERFORMANCE ON IMAGE PROCESSING

7.1 IMAGE COMPRESSION EXPERIMENTS

To evaluate the efficiency of the proposed transformation matrices, we performed a

JPEG-like image compression experiment as described in (CINTRA; BAYER; TABLADA,

2014; POTLURI et al., 2014; BAYER; CINTRA, 2010). Input images were divided into sub-

blocks of size 8×8 pixels and submitted to a bi-dimensional (2-D) transformation, such as the

DCT or one of its approximations. Let A be a sub-block of size 8×8. The result of the 2-D trans-

formation of A is an 8×8 sub-block B obtained as follows (CINTRA; BAYER; TABLADA,

2014; CINTRA; BAYER, 2011):

B = Ĉ ·A · Ĉ>.

Considering the zig-zag scan pattern as detailed in (PAO; SUN, 1998) and shown in

Figure 16, the initial r, r = 1, 2, 3, . . . , 64, elements of B were retained; whereas the remaining

(64− r) elements were discarded. The previous operation results in a matrix B′ populated with

Figura 16 – Zig-zag pattern.

zeros which is suitable for entropy encoding (WALLACE, 1992). Each processed sub-block was

submitted to the corresponding 2-D inverse transformation and the image was reconstructed.
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The 2-D inverse transform is given by:

A =





Ĉ> ·B · Ĉ, if T for orthogonal,

Ĉ−1 ·B · (Ĉ−1)
>
, otherwise.

We considered 44 8-bit standardized images obtained from the USC-SIPI image bank (UNI-

VERSITY OF SOUTHERN CALIFORNIA, ) (cf. Appendix B) and submitted them to the

above described procedure. The reconstructed images were compared with the original ima-

ges and evaluated quantitatively according to popular figures of merit: the mean square error

(MSE) (BRITANAK; YIP; RAO, 2007), the peak signal-to-noise ratio (PSNR) (SALOMON;

MOTTA; BRYANT, 2007) and the structural similarity index (SSIM) (WANG et al., 2004).

We consider the MSE and PSNR measures because of its good properties and historical usage.

However, as discussed in (WANG; BOVIK, 2009), the MSE and PSNR are not the best measu-

res when it comes to predict human perception of image fidelity and quality, for which SSIM

has been shown to be a better measure (WANG et al., 2004; WANG; BOVIK, 2009).

Additionally, for better visualization of the results, we considered the relative difference

for each measures. The relative difference is given by:

RDiffµ =
µ(C)− µ(Ĉ)

µ(C)
= 1− µ(Ĉ)

µ(C)
,

where µ(C) and µ(Ĉ) indicate the exact DCT measure and the measure of an approximation,

respectively, and µ ∈ {MSE, PSNR, SSIM}.

For the MSE, we aim at the lowest possible results. That is, we look for approximations

whose MSE is the closest possible to the DCT MSE or even smaller. In general, for the appro-

ximations in literature, MSE(Ĉ) > MSE(C) or, equivalently, MSE(Ĉ)
MSE(C)

> 1. In this sense, we

search for approximations such that,

MSE(Ĉ)

MSE(C)
→ 1+,

where→ 1+ represents right convergence. In other words, RDiffMSE → 0, or even Ĉ and C are

equivalents. Ideally, we want approximations such that

MSE(Ĉ)

MSE(C)
< 1.
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That is, RDiffMSE > 0, which means Ĉ presents better results than C in terms of MSE.

On the other hand, for the PSNR and SSIM, we aim at the largest possible values. So

in this case, we want approximations such that the PSNR or SSIM are as large as DCT PSNR

or SSIM or even larger. Let µ ∈ {PSNR, SSIM}. Usually, approximations in literature satisfy

µ(Ĉ) < µ(C), i.e., µ(Ĉ)/µ(C) < 1. In this sense, we want approximations such that

µ(Ĉ)

µ(C)
→ 1−,

where→ 1− represents left convergence. That is the same as saying that RDiffµ → 0. Ideally,

we look for approximations such that

µ(Ĉ)

µ(C)
> 1,

which indicates RDiffµ < 0. That means that Ĉ presents better results than C in terms of PSNR

or SSIM.

7.2 RESULTS

First, we selected three images from the USC-SIPI image bank (UNIVERSITY OF

SOUTHERN CALIFORNIA, ) and performed the procedure describe above. Figure 17 displays

the selected images.

(a) Lena (b) Baboon (c) Airplane

Figura 17 – Sample images.

The MSE, PSNR and SSIM of the reconstructed images obtained from using each ap-

proximation presented in this work are shown in Table 18.
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For the experiments, we considered r = 10. In Table 18, the 5 best results for each

measure and sample image are highlighted. All the approximations among the 5 best for all

three images besides the DCT (ĈI,4, ĈI,6, ĈII,7, ĈII,9) were introduced in this work.

Image Lena Baboon Airplane

Transform MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM

DCT 40.2377 32.0845 0.9763 338.3289 22.8374 0.9064 57.3786 30.5433 0.9832
ĈWHT 62.0565 30.2029 0.9737 377.2737 22.3642 0.9138 103.5323 27.9800 0.9792
ĈSDCT 110.2814 27.7058 0.9225 455.8198 21.5429 0.8304 158.1937 26.1389 0.9363
ĈLO 52.2906 30.9466 0.9722 350.1966 22.6877 0.9008 78.0402 29.2076 0.9789
ĈRDCT 58.6558 30.4477 0.9658 363.8937 22.5211 0.8723 85.8379 28.7940 0.9727
ĈMRDCT 129.0950 27.0217 0.8935 449.8371 21.6003 0.7437 179.5797 25.5882 0.9018
ĈBAS–2008a 59.8314 30.3615 0.9633 376.4999 22.3732 0.8845 93.3886 28.4279 0.9710
ĈBAS–2008b 53.1955 30.8721 0.9725 362.1343 22.5421 0.8931 84.4295 28.8659 0.9787
ĈBAS–2009 66.2534 29.9187 0.9638 389.3617 22.2273 0.8876 107.8282 27.8035 0.9714
ĈBAS–2010 49.9871 31.1422 0.9728 358.4581 22.5864 0.9088 78.4957 29.1823 0.9787
ĈBAS–2011 65.7003 29.9551 0.9567 389.5474 22.2252 0.8561 100.7354 28.0990 0.9647
ĈBAS–2013 62.0565 30.2029 0.9737 377.2737 22.3642 0.9138 103.5323 27.9800 0.9792
ĈCBT–1 93.8702 28.4055 0.9418 437.7631 21.7184 0.8257 153.5626 26.2680 0.9424
ĈCBT–2 61.1506 30.2668 0.9641 372.2386 22.4226 0.8676 86.9480 28.7382 0.9711
ĈCBT–3 59.1153 30.4138 0.9727 363.6265 22.5242 0.9038 92.9502 28.4483 0.9792
ĈCBT–4 61.7111 30.2272 0.9711 372.0019 22.4254 0.8996 94.0452 28.3974 0.9778
ĈCBT–5 55.0551 30.7228 0.9707 358.9443 22.5805 0.8966 79.3029 29.1379 0.9777
ĈCBT–6 113.2215 27.5915 0.9113 433.0143 21.7658 0.7985 166.6957 25.9116 0.9178
ĈCBT–7 50.1714 31.1262 0.9744 349.7947 22.6927 0.9023 71.2007 29.6060 0.9810
ĈI,2 51.1731 31.0404 0.9647 350.2942 22.6865 0.8950 70.3013 29.6612 0.9756
ĈI,3 50.5512 31.0935 0.9736 350.4899 22.6840 0.8967 69.7947 29.6926 0.9811
ĈI,4 42.7374 31.8227 0.9754 340.5167 22.8094 0.9063 60.9795 30.2790 0.9825
ĈI,5 51.1138 31.0454 0.9647 350.6485 22.6821 0.8942 69.5870 29.7055 0.9756
ĈI,6 40.9147 32.0120 0.9760 338.3480 22.8372 0.9071 58.9464 30.4262 0.9829
ĈII,3 46.8882 31.4202 0.9745 349.1215 22.7010 0.9097 72.4104 29.5328 0.9817
ĈII,4 68.2633 29.7889 0.9601 370.5620 22.4422 0.8767 97.3407 28.2479 0.9663
ĈII,5 52.3678 30.9402 0.9765 360.4583 22.5623 0.9118 82.1987 28.9822 0.9834
ĈII,6 106.0005 27.8777 0.9166 412.5139 21.9764 0.8030 146.8858 26.4610 0.9243
ĈII,7 45.0054 31.5982 0.9774 348.9218 22.7035 0.9165 71.7508 29.5725 0.9840
ĈII,8 85.7326 28.7993 0.9421 388.7694 22.2339 0.8477 120.5415 27.3194 0.9491
ĈII,9 43.1098 31.7850 0.9772 343.9778 22.7655 0.9141 67.6742 29.8266 0.9839
ĈII,10 69.7013 29.6984 0.9584 370.1255 22.4473 0.8748 99.3286 28.1601 0.9652

Tabela 18 – MSE, PSNR and SSIM of each sample image compressed and reconstructed con-
sidering the approximations 8-point DCT and r = 10

Among the approximations in literature, only ĈWHT and ĈBAS–2013 showed up in the top

5, although it only happened for the Baboon image and SSIM measure.

In order to have a more general idea about the behavior of those transforms, we carried

out the experiments described before for all the 44 images in the dataset, considering all the va-
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lues of r = 1, 2, . . . , 64. The MSE, PSNR and SSIM were calculated in each case. The average

curves obtained are displayed in the plots in Figure 18. The curves for all the approximations

were calculated, but only the ones with better results, i.e., the ones with results closer to the

DCT results were kept in the plots in order to provide a clear visualization.
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Figura 18 – Average curves for the MSE, PSNR and SSIM.

From the plots in Figure 18, we can observe that for the MSE and PSNR: (i) although

the approximations in literature considered present results very close to the DCT, none of them

overcomes the DCT; (ii) the proposed approximations ĈI,4 and ĈI,6, that presented the best

results in terms of the metrics considered in Chapter 6, showed the closest results to the DCT

for small values of r. However, as r grows, their curves tend to distance themselves from the

DCT; (iii) Approximations ĈII,3, ĈII,7 and ĈII,9 are consistently closer to the DCT than the

approximations in literature considered in the plots, ĈLO and ĈCBT–3, and, for larger values of
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r, they show the closest results to the DCT.

On other hand, for the SSIM, several approximations presented results better than the

DCT. In particular, all the approximations proposed in the work show in the plots of Figure 18

have results better than the DCT for, at least, 7 values of r (ĈI,4), and, at most, 59 values of r

(ĈII,7 and ĈII,9). However, ĈLO and ĈCBT–3, only showed results better than the DCT for one

and four values of r, respectively.
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8 FAST ALGORITHM, VIDEO CODING, AND HARDWARE REALIZATION

Comparing the computational cost of its direct implementation, performance measures

and results in the image compression experiments, we selected one of the new approximations

to further analyze. The chosen approximation was TII,3. It is an orthogonal matrix, and it is

among the less complex approximations proposed. Also, it overcomes all the approximations in

literature in the performance measures and overcomes the DCT in terms of SSIM in the image

compression experiments for several values of r.

Subsection 8.1.1 was written in colaboration with Thiago L. T. da Silveira (Programa

de Pós-Graduação em Computação da Universidade Federal do Rio Grande do Sul), who is part

of the paper Low-complexity 8-point DCT Approximation Based on Angle Similarity for Image

and Video Coding accepted for publication on the Journal of Multidimensional Systems and

Signal Processing.

8.1 FAST ALGORITHM

The direct implementation of TII,3 requires 48 additions and 24 bit-shifting operations.

However, such computational cost can be significantly reduced by means of sparse matrix fac-

torization. Considering butterfly-based structures we could derive the following factorization

for TII,3:

TII,3 = D ·A4 ·A3 ·A2 ·A1,

where

A1 =




1 1
1 1
1 1
1 1
1 −1

1 −1
1 −1

1 −1


 , A2 =




1 1
1 1
1 −1

1 −1
1
1
1
1


 ,

A3 =




1 1
1 −1

1
1
1
1
1
1


 , A4 =




1
1
2

1 1
1 2

−1 −1 1
2

1
1
2

−1 1
−2 1

−1 1 − 1
2



,
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and D = diag(1, 2, 1, 2, 1, 2, 1, 2). Figure 19 shows the signal flow graph (SFG) related to the

above factorization. The computational cost of this algorithm is only 24 additions and six mul-

tiplications by two. The multiplications by two are extremely simple to be performed, requiring

only bit-shifting operations (BRITANAK; YIP; RAO, 2007). The fast algorithm proposed re-

quires 50% less additions and 75% less bit-shifting operations when compared to the direct

implementation. The computational costs of the considered methods are shown in Table 19, the

exact DCT and IDCT (OHM et al., 2012) were included as reference.

x0

x1

x2

x3

x4

x5

x6

x7

2

1/2
1/2

1/2

2

1/2

X̃0

X̃1

X̃2

X̃3

X̃4

X̃6

X̃7

X̃5

Figura 19 – SFG of the proposed transform, relating the input data xn, n = 0, 1, . . . , 7, to its
correspondent coefficients X̃k, k = 0, 1, . . . , 7, where X̃ = TII,3 ·x. Dashed arrows
represent multiplication by −1.

In general terms, DCT approximations exhibit a trade-off between computational cost

and transform performance (TABLADA; BAYER; CINTRA, 2015), i.e., less complex matrices

effect poor spectral approximations (BRITANAK; YIP; RAO, 2007). Departing from this ge-

neral behavior, the proposed transformation TII,3 has (i) excelling performance measures and

(ii) lower or similar arithmetic cost when compared to competing methods, as shown in Ta-

ble 19.

8.1.1 Video coding

In order to assess the proposed transform ĈII,3 as a tool for video coding, we embedded

it into a public available HEVC reference software (Joint Collaborative Team on Video Coding

(JCT-VC), 2013). The HEVC presents several improvements relative to its predecessors (SUL-

LIVAN et al., 2012) and aims at providing high compression rates (POURAZAD et al., 2012).
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Method Multiplications Additions Bit-shifts

DCT (LOEFFLER; LIGTENBERG; MOSCHYTZ, 1989) 11 29 0
IDCT (HEVC) (OHM et al., 2012) 0 50 30
TII,3 (proposed) 0 24 6
ĈLO (LENGWEHASATIT; ORTEGA, 2004) 0 24 2
TSDCT (HAWEEL, 2001) 0 24 0
TRDCT (BAYER; CINTRA, 2010) 0 22 0
TMRDCT (BAYER; CINTRA, 2012) 0 14 0
TBAS-2008a (BOUGUEZEL; AHMAD; SWAMY, 2008a) 0 18 2
TBAS-2008b (BOUGUEZEL; AHMAD; SWAMY, 2008b) 0 21 0
TBAS-2009 (BOUGUEZEL; AHMAD; SWAMY, 2009) 0 18 0
TBAS-2011 (BOUGUEZEL; AHMAD; SWAMY, 2011) 0 16 0
TBAS-2013 (BOUGUEZEL; AHMAD; SWAMY, 2013) 0 24 0
TCBT–1 (CINTRA; BAYER; TABLADA, 2014) 0 22 4
TCBT–2 (CINTRA; BAYER; TABLADA, 2014) 0 22 6
TCBT–3 (CINTRA; BAYER; TABLADA, 2014) 0 24 0
TCBT–4 (CINTRA; BAYER; TABLADA, 2014) 0 24 4
TCBT–5 (CINTRA; BAYER; TABLADA, 2014) 0 24 6
TCBT–6 (CINTRA; BAYER; TABLADA, 2014) 0 18 0
TCBT–7 (CINTRA; BAYER; TABLADA, 2014) 0 28 12

Tabela 19 – Computational cost comparison

Differently from other standards, HEVC employs not only an 8-point IDCT but also transforms

of size 4, 16, and 32 (OHM et al., 2012). Such feature effects a series of optimization routines

allowing the processing of big smooth or textureless areas (POURAZAD et al., 2012).

For this reason, aiming to derive large blocklength transforms for HEVC embedding,

we submitted the proposed transform matrix TII,3 to the Jridi–Alfalou–Meher (JAM) scalable

algorithm (JRIDI; ALFALOU; MEHER, 2015). Such method resulted in 16- and 32-point ver-

sions of the proposed matrix TII,3 that are suitable for the sought video experiments. Although

the JAM algorithm is similar to Chen’s DCT (CHEN; SMITH; FRALICK, 1977), it exploits

redundancies allowing concise and high parallelizable hardware implementations (JRIDI; AL-

FALOU; MEHER, 2015). From a low-complexity N/2-point transform, the JAM algorithm

generates an N ×N matrix transformation by combining two instantiations of the smaller one.

The larger N -point transform is recursively defined by

T(N) =
1√
2
Mper

N




T(N
2 ) ZN

2

ZN
2

T(N
2 )


Madd

N , (8.1)

where ZN
2

is a matrix of order N/2 with all zeroed entries. Matrices Madd
N and Mper

N are, respec-
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tively, obtained according to

Madd
N =




IN
2

ĪN
2

ĪN
2
−IN

2




and

Mper
N =




PN−1,N
2

Z1,N
2

Z1,N
2

PN−1,N
2


 ,

where IN
2

and ĪN
2

are, respectively, the identity and counter-identity matrices of order N/2 and

PN−1,N
2

is an (N − 1)× (N/2) matrix whose ith row vectors are defined by

P
(i)

N−1,N
2

=





Z1,N
2
, if i = 1, 3, 5, . . . , N − 1

I
(i/2)
N
2

, if i = 0, 2, 4, . . . , N − 2.

The scaling factor 1/
√

2 of (8.1) can be merged into the image/video compression quantiza-

tion step. Furthermore, Equation 3.3 can be applied to generate orthogonal versions of larger

transforms. The computational cost of the resulting N -point transform is given by twice the

number of bit-shifting operations of the original N/2-point transform; and twice the number of

additions plus N extra additions. Following the described algorithm, we obtained the 16- and

32-point low-complexity transform matrices proposed.

Figures 20 and 21 display the SFG for the low-complexity transform matrices TII,3–(16)

and TII,3–(32) derived from TII,3. Table 20 lists the computational costs of the proposed transform

for sizes N = 8, 16, 32 compared to an efficient implementation of the IDCT (MEHER et al.,

2014).

N
IDCT (MEHER et al., 2014) TII,3 Reduction from IDCT to TII,3

Additions Bit-shifts Additions Bit-shifts Additions Bit-shifts

8 50 30 24 6 52% 80%
16 186 86 64 12 65.6% 86%
32 682 278 160 24 76.5% 91.3%

Tabela 20 – Computational cost comparison for 8-, 16-, and 32-point transforms embedded in
HEVC reference software.

In our experiments, the original 8-, 16-, and 32-point integer transforms of HEVC were

substituted by ĈII,3 and its scaled versions. The original 4-point transform was kept unchanged
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Figura 20 – SFG for the proposed 16-point low-complexity transform matrix, TII,3–(16).

because it is already a very low-complexity transformation. We encoded the first 100 frames of

one video sequence of each A to F class in accordance with the common test conditions (CTC)

documentation (BOSSEN, 2013). Namely we used the 8-bit videos: PeopleOnStreet (2560×1600

at 30 fps), BasketballDrive (1920×1080 at 50 fps), RaceHorses (832×480 at 30 fps),

BlowingBubbles (416×240 at 50 fps), KristenAndSara (1280×720 at 60 fps), and

BasketbalDrillText (832×480 at 50 fps). As suggested in (JRIDI; ALFALOU; MEHER,

2015), all the test parameters were set according to the CTC documentation. We tested the pro-

posed transforms in All Intra (AI), Random Access (RA), Low Delay B (LD-B), and Low

Delay P (LD-P) configurations, all in the Main profile.

We selected the frame-by-frame MSE and PSNR (OHM et al., 2012) for each YUV

color channel as figures of merit. Then, for all test videos, we computed the rate distortion

(RD) curve considering the recommended quantization parameter (QP) values, i.e. 22, 27, 32,
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Video sequence
AI RA LD-B LD-P

B
D

-P
SN

R

B
D

-R
at

e

B
D

-P
SN

R

B
D

-R
at

e

B
D

-P
SN

R

B
D

-R
at

e

B
D

-P
SN

R

B
D

-R
at

e

PeopleOnStreet 0.2999 −5.5375 0.1467 −3.4323 N/A N/A N/A N/A
BasketballDrive 0.1692 −6.1033 0.1412 −6.1876 0.1272 −5.2730 0.1276 −5.2407
RaceHorses 0.4714 −5.8250 0.5521 −8.6149 0.5460 −7.9067 0.5344 −7.6868
BlowingBubbles 0.0839 −1.4715 0.0821 −2.1612 0.0806 −2.1619 0.0813 −2.2370
KristenAndSara 0.2582 −5.0441 N/A N/A 0.1230 −4.1823 0.1118 −4.0048
BasketballDrillText 0.1036 −1.9721 0.1372 −3.2741 0.1748 −4.3383 0.1646 −4.1509

Tabela 21 – BD-PSNR (dB) and BD-Rate (%) of the modified HEVC reference software for
tested video sequences.

and 37 (BOSSEN, 2013). The resulting RD curves are depicted in Figure 22. We have also

measured the Bjøntegaard’s delta PSNR (BD-PSNR) and delta rate (BD-Rate) (BJØNTEGA-

ARD, 2001; HANHART; EBRAHIMI, 2014) for the modified HEVC software. These values

are summarized in Table 21. We demonstrate that replacing the IDCT by the proposed trans-

form and its scaled versions results in a loss in quality of at most 0.47dB for the AI configura-

tion, which corresponds to an increase of 5.82% in bitrate. The worst performance for the other

configurations—RA, LD-B, and LD-P—are found for the KristenAndSara video sequence,

where approximately 0.55dB are lost if compared to the original HEVC implementation.

Despite the very low computational cost when compared to the IDCT (cf. Table 20), the

proposed transform does not introduce significant errors. Figure 23 illustrates the tenth frame

of the BasketballDrive video encoded according to the default HEVC IDCT and ĈII,3

and its scaled versions for each coding configuration. The QP was set to 32. Visual degrada-

tions are virtually nonperceptible demonstrating real-world applicability of the proposed DCT

approximations for high resolution video coding.

8.2 FPGA IMPLEMENTATION

The proposed design along with TLO and TCBT–3 were implemented on a FPGA chip

using the Xilinx ML605 board. Considering hardware co-simulation the FPGA realization was

tested with 100,000 random 8-point input test vectors. The test vectors were generated from

within the MATLAB environment and, using JTAG based hardware co-simulation, routed to
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the physical FPGA device where each algorithm was realized in the reconfigurable logic fabric.

Then the computational results obtained from the FPGA algorithm implementations were rou-

ted back to the MATLAB memory space. The diagrams for the designs can be seen in Figure 24.

The metrics employed to evaluate the FPGA implementations were: configurable lo-

gic blocks (CLB), flip-flop (FF) count, and critical path delay (Tcpd), in ns. The maximum

operating frequency was determined by the critical path delay as Fmax = (Tcpd)
−1, in MHz.

Values were obtained from the Xilinx FPGA synthesis and place-route tools by accessing the

xflow.results report file. Using the Xilinx XPower Analyzer, we estimated the static (Qp

in W) and dynamic power (Dp in mW/MHz) consumption. In addition, we calculated area-

time (AT ) and area-time-square (AT 2) figures of merit, where area is measured as the CLBs

and time as the critical path delay. The values of those metrics for each design are shown in

Table 22.

Approximation CLB FF
Tcpd

(ns)
Fmax

(MHz)
Dp

(mW/GHz)
Qp

(W) AT AT 2

TII,3 (proposed) 135 408 1.750 571 2.74 3.471 236 413
TLO 114 349 1.900 526 2.82 3.468 217 412
TCBT–3 125 389 2.100 476 2.57 3.460 262 551

Tabela 22 – Hardware resource consumption and power consumption using Xilinx Virtex-6
XC6VLX240T 1FFG1156 device.

The design linked to the proposed design approximation TII,3 possesses the smallest

Tcpd among the considered methods. Such critical path delay allows for operations at a 8.55%

and 19.96% higher frequency than the designs associated to TLO and TCBT–3, respectively. In

terms of area-time and are-time-square measures, the design linked to the approximation TLO

presents the best results, followed closely by the one associated to TII,3.
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Figura 21 – SFG for the proposed 32-point low-complexity transform matrix, TII,3–(32), where
TII,3–(16) is the 16-point matrix presented in Figure 20.
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ĈSIIC3-LD-P

(e)

5000 10000 15000 20000

Bitrate (kbps)

30

32

34

36

38

40

42

44

Y
U
V
-P

S
N
R

(d
B
)

IDCT-AI
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ĈSIIC3-RA

IDCT-LD-B
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ĈSIIC3-LD-P

(f)

Figura 22 – Rate distortion curves of the modified HEVC software for test sequen-
ces: (a) PeopleOnStreet, (b) BasketballDrive, (c) RaceHorses, (d)
BlowingBubbles, (e) KristenAndSara, and (f) BasketbalDrillText.
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(a) MSE-Y = 10.4097, MSE-U = 3.5872,
MSE-V = 3.3079, PSNR-Y =
37.9564, PSNR-U = 42.5832,
PSNR-V = 42.9353

(b) MSE-Y = 10.8159, MSE-U = 3.8290,
MSE-V = 3.5766, PSNR-Y =
37.7902, PSNR-U = 42.2999,
PSNR-V = 42.5961

(c) MSE-Y = 10.1479, MSE-U = 3.4765,
MSE-V = 3.1724, PSNR-Y =
38.0670, PSNR-U = 42.7194,
PSNR-V = 43.1170

(d) MSE-Y = 10.3570, MSE-U = 3.6228,
MSE-V = 3.3113, PSNR-Y =
37.9785, PSNR-U = 42.5403,
PSNR-V = 42.9308

(e) MSE-Y = 14.0693, MSE-U = 4.0741,
MSE-V = 4.4404, PSNR-Y =
36.6481, PSNR-U = 42.0304,
PSNR-V = 41.6566

(f) MSE-Y = 14.5953, MSE-U = 4.1377,
MSE-V = 4.6053, PSNR-Y = 36.4887,
PSNR-U = 41.9632, PSNR-V =
41.4982

(g) MSE-Y = 14.6155, MSE-U = 4.1349,
MSE-V = 4.5502, PSNR-Y =
36.4827, PSNR-U = 41.9661,
PSNR-V = 41.5505

(h) MSE-Y = 15.0761, MSE-U = 4.2812,
MSE-V = 4.6444, PSNR-Y =
36.3479, PSNR-U = 41.8151,
PSNR-V = 41.4615

Figura 23 – Compression of the tenth frame of BasketballDrive using (a),(c),(e) the de-
fault and (b),(d),(f) the modified versions of the HEVC software for QP = 32, and
AI, RA, LD-B, and LD-P coding configurations, respectively.
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Figura 24 – Architectures for (a) TII,3, (b) TLO, and (c) TCBT–3.
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9 CONCLUSIONS

9.1 OVERVIEW

In this work, we introduced a greedy algorithm to find low-complexity approximati-

ons for a given matrix based on angular distance. The initial version of the method had no

constraints. Thus, in order to guarantee the orthogonality of the obtained approximations, we

proposed a constrained version of the proposed algorithm. Then, we discussed several ways to

reduce the algorithm complexity by exploring the DFT, DHT and DCT structural features and

defined approximation schemes.

The defined approximation schemes were used to derive new approximations for the 8-

point DCT. Thirteen new approximations were obtained. All of them had outstanding results in

terms of performance measures and six of them had also great results in the image compression

experiments, overcoming the exact DCT in several compression levels for the SSIM measure.

This is a relevant result because it directly offers counter-examples to the belief that the coding

performance of an approximation is supposed to always be inferior to the exact DCT. We show

that this is not always the case.

Although the problem of matrix approximation is quite simple to state, it is also very

tricky and offers several non-linearities. Notice that finding low-complexity matrices is an in-

teger optimization problem. Thus, navigating in the low-complexity matrix search space might

generate non-trivial performance curves, usually leading to discontinuities. Indeed, it is very

hard to tell beforehand whether an approximation method will deliver extremely good results.

However, the rationale of how to navigate in the low-complexity matrix search space

matters. In the present work, we did as much as possible to furnish a sound theoretical analysis

capable of capturing good approximations.

Based on the results from the evaluation steps, we took TII,3 and proposed a fast al-

gorithm for it that requires only 24 additions and 6 bit-shifthings operations. The FPGA im-

plementation of TII,3 was also made and compared to TLO and TCBT–3. In this case, TII,3 also
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overcame the approximations in literature, being able to work at a 8.55% and 19.96% higher

frequency than the designs associated to TLO and TCBT–3, respectively.

For the video experiments, we scaled TII,3 using the JAM method (JRIDI; ALFALOU;

MEHER, 2015), to obtain 16– and 32-point approximations. The obtained approximations were

embedded into the HEVC reference software. The replacement of the IDCT by TCBT–3 and its

scaled versions resulted in a quality loss of, at most, 0.55dB, observed for the RA configuration

in the RaceHorses video sequence.

9.2 PUBLISHED PAPERS

Based on this research, the following work was accepted for publication:

• Oliveira, R. S., Cintra, R. J., Bayer, F. M., Silveira, T. L. T., Madanayake, A., and Leite, A.

Low-complexity 8-point DCT Approximation Based on Angle Similarity for Image and

Video Coding. Multidimensional Systems and Signal Processing, 2018.

The author of this Dissertation also colaborated in the following papers working on the

hardware realization sections:

• Coutinho, Vítor A.; Cintra, Renato J.; Bayer, Fábio M.; Oliveira, Paulo A. M.; Oliveira,

Raíza S.; Madanayake, Arjuna. Pruned Discrete Tchebichef Transform Approximation

for Image Compression. Circuits Systems and Signal Processing, vol. 37, pp. 1-21, 2018.

• Oliveira, Paulo A. M.; Oliveira, Raíza S.; Cintra, Renato J.; Bayer, Fábio M.; Mada-

nayake, Arjuna. JPEG quantisation requires bit-shifts only. Electronics Letters, vol. 53,

pp. 588-590, 2017.

• Silveira, Thiago L. T.; Oliveira, Raíza S.; Bayer, Fábio M.; Cintra, Renato J.; Mada-

nayake, Arjuna. Multiplierless 16-point DCT approximation for low-complexity image

and video coding. Signal, Image and Video Processing, vol. 11, pp. 1-7, 2016.

9.3 FUTURE WORKS

For future works, we suggest the following lines of research:
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• The main restriction of the proposed unconstrained method is the fact that the seach space

grows very quick as M increases. In this sense, we suggest the investigation of efficient

search over the matrix space, possibly without having to consider all the elements in it;

• For the constrained to orthogonality version of the proposed method, we have a search

space that grows exponentially and M ! optimization problems to solve. Thus, we suggest

the study of not only a better way of navigating the search space but also the investigation

of ways to previously select the best approximation orders;

• Since we focused on finding approximations for the 8-point DCT, a natural next step

would be to approximate larger DCT matrices, such as the 16–, 32–, and 64-point DCT;

• We proposed in this work schemes to approximate not only the DCT but also the DFT

and DHT. Then, for future works, we suggest using the proposed approximation schemes

to find low-complexity approximations for the DFT and DHT;

• The convolution operation can be represented as a matrix–vector product. Such represen-

tation may pave the way to the design of low-complexity architectures for digital (convo-

lutional) filters.
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APÊNDICE A – NEW APPROXIMATIONS FOR THE 8-POINT DCT

In this appendix, the representative approximations for the 8-point DCT matrix derived

from the proposed method are displayed.

A.1 NEW APPROXIMATIONS OBTAINED FROM SCHEME I

TI,2 =




1 1 1 1 1 1 1 1
1 1 1/2 0 0 −1/2 −1 −1
1 1/2 −1/2 −1 −1 −1/2 1/2 1
1 0 −1 −1/2 1/2 1 0 −1
1 −1 −1 1 1 −1 −1 1

1/2 −1 0 1 −1 0 1 −1/2
1/2 −1 1 −1/2 −1/2 1 −1 1/2
0 −1/2 1 −1 1 −1 1/2 0




TI,3 =




1 1 1 1 1 1 1 1
3 3 1 1 −1 −1 −3 −3
3 1 −1 −3 −3 −1 1 3
3 −1 −3 −1 1 3 1 −3
1 −1 −1 1 1 −1 −1 1
1 −3 1 3 −3 −1 3 −1
1 −3 3 −1 −1 3 −3 1
1 −1 3 −3 3 −3 1 −1




TI,4 =




1 1 1 1 1 1 1 1
1 1 1/2 1/4 −1/4 −1/2 −1 −1
2 1 −1 −2 −2 −1 1 2
1 −1/4 −1 −1/2 1/2 1 1/4 −1
1 −1 −1 1 1 −1 −1 1

1/2 −1 1/4 1 −1 −1/4 1 −1/2
1 −2 2 −1 −1 2 −2 1

1/4 −1/2 1 −1 1 −1 1/2 −1/4




TI,5 =




1 1 1 1 1 1 1 1
1 1 1/2 0 0 −1/2 −1 −1
1 1/2 −1/2 −1 −1 −1/2 1/2 1
1 0 −1 −1/2 1/2 1 0 −1
1 −1 −1 1 1 −1 −1 1

1/2 −1 0 1 −1 0 1 −1/2
1 −3 3 −1 −1 3 −3 1
0 −1/2 1 −1 1 −1 1/2 0




TI,6 =




1 1 1 1 1 1 1 1
3 3 2 1/2 −1/2 −2 −3 −3
1 1/2 −1/2 −1 −1 −1/2 1/2 1
3 −1/2 −3 −2 2 3 1/2 −3
1 −1 −1 1 1 −1 −1 1
2 −3 1/2 3 −3 −1/2 3 −2
1 −3 3 −1 −1 3 −3 1

1/2 −2 3 −3 3 −3 2 −1/2




A.2 NEW APPROXIMATIONS OBTAINED FROM SCHEME II

TII,3 =




1 1 1 1 1 1 1 1
2 2 1 0 0 −1 −2 −2
2 1 −1 −2 −2 −1 1 2
1 0 −2 −2 2 2 0 −1
1 −1 −1 1 1 −1 −1 1
2 −2 0 1 −1 0 2 −2
1 −2 2 −1 −1 2 −2 1
0 −1 2 −2 2 −2 1 0



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TII,4 =




1 1 1 1 1 1 1 1
1 1/2 1 0 0 −1 −1/2 −1
1 1/2 −1/2 −1 −1 −1/2 1/2 1
1 0 −1 −1/2 1/2 1 0 −1
1 −1 −1 1 1 −1 −1 1

1/2 −1 0 1 −1 0 1 −1/2
1/2 −1 1 −1/2 −1/2 1 −1 1/2
0 −1 1/2 −1 1 −1/2 1 0




TII,5 =




1 1 1 1 1 1 1 1
3 3 1 1 −1 −1 −3 −3
3 1 −1 −3 −3 −1 1 3
1 1 −3 −3 3 3 −1 −1
1 −1 −1 1 1 −1 −1 1
3 −3 −1 1 −1 1 3 −3
1 −3 3 −1 −1 3 −3 1
1 −1 3 −3 3 −3 1 −1




TII,6 =




1 1 1 1 1 1 1 1
3 1 3 −1 1 −3 −1 −3
3 1 −1 −3 −3 −1 1 3
3 −1 −3 −1 1 3 1 −3
1 −1 −1 1 1 −1 −1 1
1 −3 1 3 −3 −1 3 −1
1 −3 3 −1 −1 3 −3 1
−1 −3 1 −3 3 −1 3 1




TII,7 =




1 1 1 1 1 1 1 1
2 2 1 1/2 −1/2 −1 −2 −2
1 1/2 −1/2 −1 −1 −1/2 1/2 1
1 1/2 −2 −2 2 2 −1/2 −1
1 −1 −1 1 1 −1 −1 1
2 −2 −1/2 1 −1 1/2 2 −2

1/2 −1 1 −1/2 −1/2 1 −1 1/2
1/2 −1 2 −2 2 −2 1 −1/2




TII,8 =




1 1 1 1 1 1 1 1
2 1 2 −1/2 1/2 −2 −1 −2
1 1/2 −1/2 −1 −1 −1/2 1/2 1
2 −1/2 −2 −1 1 2 1/2 −2
1 −1 −1 1 1 −1 −1 1
1 −2 1/2 2 −2 −1/2 2 −1

1/2 −1 1 −1/2 −1/2 1 −1 1/2
−1/2 −2 1 −2 2 −1 2 1/2




TII,9 =




1 1 1 1 1 1 1 1
3 3 2 1/2 −1/2 −2 −3 −3
1 1/2 −1/2 −1 −1 −1/2 1/2 1
2 1/2 −3 −3 3 3 −1/2 −2
1 −1 −1 1 1 −1 −1 1
3 −3 −1/2 2 −2 1/2 3 −3

1/2 −1 1 −1/2 −1/2 1 −1 1/2
1/2 −2 3 −3 3 −3 2 −1/2




TII,10 =




1 1 1 1 1 1 1 1
3 2 3 −1/2 1/2 −3 −2 −3
1 1/2 −1/2 −1 −1 −1/2 1/2 1
3 −1/2 −3 −2 2 3 1/2 −3
1 −1 −1 1 1 −1 −1 1
2 −3 1/2 3 −3 −1/2 3 −2

1/2 −1 1 −1/2 −1/2 1 −1 1/2
−1/2 −3 2 −3 3 −2 3 1/2



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APÊNDICE B – IMAGE DATABASE

In this appendix, the images considered for the image compression experiments, from

the USC-SIPI Database (UNIVERSITY OF SOUTHERN CALIFORNIA, ), are displayed for

reference.
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