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ABSTRACT

We address the problem of computing transport observables on arbitrary surfaces. Our
approach is based on discrete exterior calculus (DEC) and applies to open quantum systems. The
curved system is approximated by a simplicial complex consisting of flat triangles where each
vertex is located on a smooth surface. Was developed a discretization of Schrödinger equation
and the associated Green’s functions. Such an approach allowed for the formulation of the
tight-binding Hamiltonian based in discrete calculus exterior. We present an efficient algorithm
for the calculation of the recursive Green’s functions using numerical tools available for DEC.
In addition to working with curved surfaces, our discretization shares the advantages of the
Finite Differences Method when submitted to mesh in flat space. Our approach is applied to
the calculation of the conductance of a non-flat quantum device coupled to electron reservoirs
defined on curved surfaces. We found numerical evidence of a curvature induced integrable-
chaotic crossover.

Keywords: Discrete exterior calculus. Quantum scattering. Recursive Green’s function.
Schrödinger.



RESUMO

Abordamos o problema de computar observáveis de transporte em superfícies arbitrárias.
Nossa abordagem é baseada em cálculo exterior discreto (DEC) e aplica-se a sistemas quânticos
abertos. O sistema curvo é aproximado por um simplicial complex que consiste de triângulos
planos, onde cada vértice está localizado em uma superfície suave. Foi desenvolvida uma dis-
cretização da equação de Schrödinger e das funções de Green associadas. Tal abordagem permi-
tiu a formulação do hamiltoniano, do tipo tight-binding, com base no cálculo exterior discreto.
Apresentamos um algoritmo eficiente para o cálculo das curvas recursivas de Green. Além de
trabalhar com superfícies curvas, nossa discretização compartilha as vantagens do Método de
Diferenças Finitas quando submetido a um domínio plano, nossa abordagem é aplicada ao cál-
culo da condutância de um dispositivo curvo acoplado a reservatórios de elétrons definidos em
superfícies curvas. Encontramos evidências numéricas de um cruzamento caótico-integrável
induzido por curvatura.

Palavras-chaves: Cálculo exterior discreto. Espalhamento quântico. Funções de Green recursi-
vas. Schrödinger.



LIST OF FIGURES

Figure 1 – Physical system defined as a scattering region connected to two semi-infinite
leads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Figure 2 – Slices scheme. Device connected to two semi-infinite leads, the device is
divided and N subsystems and coupled to the left and right leads. Here,
H j, j+1, with j = 0, . . . ,N + 1, is the coupling matrix between neighboring
slices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Figure 3 – Example of a simplicial complex and its dual. The elements of the primal
mesh (k-simplices) are shown in black lines, while elements of the dual mesh
((n-k) -cell) are represented by red dashed lines. . . . . . . . . . . . . . . . 27

Figure 4 – (a) Delaunay mesh where c, p and A denote circumcenters, vertices and
parts of the dual areas to the vertex p0, respectively. The notation di, j refers
to the distance between the circumcenters ci and c j, while d0, j indicates the
distance between I0 and c j. (b) Delaunay mesh. (c) Non-Delaunay mesh. . . 30

Figure 5 – In the first line, the primal elements of a 2D mesh and in the second line their
corresponding dual elements. In the horizontal, the derivative operator maps
k-cochain to (k+1)-cochain, whereas in the vertical direction the Hodge star
operator and its inverse mapping between primal k-cochain and dual (n−k)-
cochain. (color online) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 6 – (a) The orientation of a triangle. (b) Primal elements. (c) Dual elements. . . 32
Figure 7 – Embedding of a two-dimensional surface in three-dimensional space. . . . 34
Figure 8 – Voronoi cell. The dual 2-cell ?pi, j is marked dashed lines. . . . . . . . . . 36
Figure 9 – Curved surface mesh (scattering region) used in the recursive Green’s func-

tion approach. The color of the face of the triangles are mapped from the
smallest (light color) to the largest deformation (dark color) in relation to
the plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 10 – Schematic depiction of the DEC-based procedure to calculate the retarded
Green’s functions. (color online) . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 11 – 2D structured-triangular mesh representing a flat surface with its primal e
dual elements. The dual 2-cell ?pi, j is marked dashed lines and the dual
0-cells (circumcenters) marked with circles. . . . . . . . . . . . . . . . . . 41

Figure 12 – (a) Conductance versus energy of a curved system (L = 24nm and W =

12nm) for increasing values of the curvature parametrized by the height A.
(b) Cross-section of the Gaussian surface for four values of A. . . . . . . . . 43



Figure 13 – Time used to calculate the conductance of a curved square system of lat-
eral length L. Circles: solutions using DEC full inversion implementation.
Square: solutions using DEC recursive implementation. The lines show the
theoretically expected sizing for large L: O(L6) for full inversion, O(L4) for
the recursive technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 14 – The transmission coefficient calculated as a function of the electron energy. . 51
Figure 15 – The transmission probability calculated as a function of the electron energy.

The system is represented by a flat surface with length L = 8nm and width
W = 4nm. The distance between the DEC mesh nodes a = 0.5nm. The po-
tential energy V at each vertex varies between −t0 and t0. . . . . . . . . . . 52



LIST OF TABLES

Table 1 – In Cartesian coordinates of R3, f (x,y,z) is a scalar field and υ = (A,B,C) is
a vector field. In exterior calculus notation (third column), the f and F fields
are differentiable forms related to the f and υ fields by F = f [, ω = υ[. The
[ operator converts a vector to a 1-form. . . . . . . . . . . . . . . . . . . . . 25



LIST OF SYMBOLS

Gr Retarded Green’s function

Ga Advanced Green’s function

H Hamiltonian

W Vector space

Ωk Space of differential k-forms over W

ω k-form

ω̄ k-cochain

K Simplicial mesh

?K Dual simplicial mesh

σ k Primal k-dim element of K

?σ k Dual k-dim element of ?K

C k(K ) space of primal k-cochain

Dk(?K ) space of dual k-cochain.

dk kth discrete exterior derivative operator

*k kth discrete Hodge star operator

∂k kth discrete boundary operator



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.1 THE SCATTERING PROBLEM . . . . . . . . . . . . . . . . . . . . . . . 14
1.2 LIST OF PUBLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 BRIEF REVIEW ON QUANTUM TRANSPORT . . . . . . . . . . . . 17
2.1 QUANTUM SCATTERING THEORY . . . . . . . . . . . . . . . . . . . . 17
2.2 CALCULATING SELF-ENERGY . . . . . . . . . . . . . . . . . . . . . . 18
2.3 RECURSIVE TECHNIQUE . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 DISCRETE EXTERIOR CALCULUS . . . . . . . . . . . . . . . . . . 22
3.1 A BRIEF REVIEW OF EXTERIOR CALCULUS . . . . . . . . . . . . . 22
3.1.1 Forms in Rn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.2 Exterior derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.3 Hodge star . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.4 Laplace-Beltrami . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.5 Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 DISCRETE EXTERIOR CALCULUS . . . . . . . . . . . . . . . . . . . 26
3.2.1 Discrete domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.2 Discretization of differential forms . . . . . . . . . . . . . . . . . . . 27
3.2.3 Discrete boundary operator . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.4 Discrete exterior derivative . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.5 Discrete Hodge star operator . . . . . . . . . . . . . . . . . . . . . . 29
3.2.6 Volume of circumcentric dual cells . . . . . . . . . . . . . . . . . . . 29
3.2.7 Discrete Laplace-Beltrami . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.8 Example calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 GREEN’S FUNCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1 DISCRETE GREEN’S FUNCTION . . . . . . . . . . . . . . . . . . . . . 34
4.1.1 Full retarded Green’s function . . . . . . . . . . . . . . . . . . . . . . 35
4.1.2 The DEC recursive technique for the Green’s functions . . . . . . 36
4.2 COMPARISON WITH FINITE DIFFERENCE IN FLAT SURFACE . . . 41
4.3 NUMERICAL RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



APPENDIX A – PERFORMANCE . . . . . . . . . . . . . . . . . . . 50

APPENDIX B – NUMERICAL SIMULATIONS . . . . . . . . . . . . 51



14

1 INTRODUCTION

1.1 THE SCATTERING PROBLEM

Solving the scattering problem is one of the most common and general tasks in condensed
matter physics. Instead of describing states in a closed geometry, one considers the scatter-
ing of particles in a finite system coupled to infinite leads. Green’s functions are known to be
a convenient tool to solve linear differential equations, including the Schrödinger equation in
quantum mechanics. Finding the scattering matrix, or the Green’s function, associated with a
quantum scattering, or bound-state, the problem is tantamount to solving the time-independent
Schrödinger equation. Depending on the geometry of the scattering region, an analytical ap-
proach could become a daunting, if not an impossible, task. A valuable alternative is to employ
numerical techniques based on discretization models which could in principle allow direct com-
putation of all relevant observables.

Several discretization methods have been used in quantum calculations, among them the
finite difference (FDM) and finite element (FEM) methods. The finite difference method is
the standard procedure for transforming a differential equation into a difference equation. It
is perhaps the most mature and successful numerical approach in quantum numerical simula-
tions for both two-dimensional (albeit only in flat geometries) and three-dimensional domains
(FERRY; GOODNICK, 1997; DATTA, 2005). FDM is used in crucial numerical quantum transport
simulation software, such as Nanomos (REN et al., 2003) and Kwant (GROTH et al., 2014). Over
the years, the finite element method (FEM) has been used as an alternative to FDM in many
applications, such as in calculations of electronic structures of materials (KOJIMA; MITSUNAGA;

KYUMA, 1989; TSUCHIDA; TSUKADA, 1995; TSUCHIDA; TSUKADA, 1996; PASK et al., 2001), elec-
tromagnetism (ASSOUS et al., 1993; WONG; PICON; HANNA, 1995) and fluid dynamics (TAYLOR;

HOOD, 1973; TUANN; OLSON, 1978), to name a few. More recently, stimulated by the simplicity
in the treatment of boundary conditions, precision control through mesh refinements and the
ability to represent regions with complex geometries, the FEM has been adopted to compute
Green’s functions in two-dimensional structures to calculate transport properties of quantum
devices (HAVU et al., 2004; KURNIAWAN; BAI; LI, 2009).

There are several reasons for the substitution, in real physical problems, of the standard
discretization methods of FEM and FDM by others that, in addition to discretizing the geom-
etry, preserve topological structures and the classical theorems of calculus on surfaces (DES-

BRUN; KANSO; TONG, 2008; GRADY; POLIMENI, 2010; TONTI, 2014; FERRETTI, 2014; ALOTTO

FABIO FRESCHI, 2013). In this direction, several works have adopted the discrete exterior cal-
culus (DEC) (HIRANI, 2003; DESBRUN; KANSO; TONG, 2008) for the numerical treatment of
problems described by differential equations with several types of boundary conditions (GRADY;

POLIMENI, 2010; RUFAT et al., 2014; GOES et al., 2016), with important applications in electro-
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magnetism (STERN et al., 2015; RABINA; MONKOLA; ROSSI, 2015; CHEN; CHEW, 2017b) and fluid
dynamics (MOHAMED; HIRANI; SAMTANEY, 2016b; NITSCHKE; REUTHER; VOIGT, 2017) in two
(including curved domains) and three dimensions. In the various DEC approaches cited above,
comparisons showed computational time and precision compatible with typical discretization
models (including FDM and FEM) and the expected integration between topology, geometry
and the physical quantities involved. In a nutshell, DEC is a method of discretization of dif-
ferential forms and their operators (Hodge star, exterior derivative, wedge product), which are
usually present in the formulation of differential equations on manifolds. Just as FEM, DEC is
based on structured and unstructured simplicial meshes. Therefore, it is adaptable to solve scat-
tering problems in arbitrary complex structures. Its main advantage is the alignment between
the continuous and the discrete theory making numerical approaches with DEC less susceptible
to spurious solutions, see Refs. (DESBRUN; KANSO; TONG, 2008).

The effects of curvature and topology have also been a major subject in condensed mat-
ter physics. Several models have been developed to model curvature and to study its influ-
ence on the physical properties of materials. Studies on the Schrödinger equation confined to
a curved surface showed the presence of a quantum geometry-induced potential expressed in
terms of both Gaussian and Mean curvatures (JENSEN; KOPPE, 1971; COSTA, 1981). Years later,
ENCINOSA; ETEMADI, used the benefits of differential forms to produced results identical to
those of COSTA. Since then, geometric effects has been the subject of intensive research (ENCI-

NOSA; MOTT, 2003; MARCHI et al., 2005; TAIRA; SHIMA, 2007; ATANASOV; DANDOLOFF, 2007;
ATANASOV; DANDOLOFF, 2008; SANTOS et al., 2016; SILVA; BASTOS; RIBEIRO, 2017). Shortly
after the discovery of graphene, the Dirac Hamiltonian to curved surface (SUZUURA; ANDO,
2002; VOZMEDIANO; JUAN; CORTIJO, 2008) has been applied to investigate the electronic prop-
erties of curved graphene sheets (JUAN; CORTIJO; VOZMEDIANO, 2007; CORTIJO; VOZMEDIANO,
2007b; CORTIJO; VOZMEDIANO, 2007a; KERNER; NAUMIS; GÓMEZ-ARIAS, 2012). More recently,
STEGMANN; SZPAK, using a tight-binding model and the non-equilibrium Green’s function
method, presented a study of the effect of curvature on the current flow lines on elastically
deformed graphene sheets (STEGMANN; SZPAK, 2016). It is generally understood that a com-
plete understanding of the full potential of graphene must include the effects of curvature in its
physical properties.

In the present thesis, we address the problem of including geometric features, such as cur-
vature, in the calculation of transport and spectral characteristics of quantum devices. More
specifically, we propose a DEC based numerical algorithm to solve quantum scattering and
bound-state problems in confined systems defined on arbitrary curved surfaces. The choice of
DEC in this thesis is mainly due to its applicability to simulate physical processes on curved sur-
faces, unlike the FDM and the FEM approaches. In Chapter 2, we present a brief review of the
Green’s function formalism, while the DEC discretization is presented in Chapter 3. In Chapter
4, we describe two DEC-based models to compute Green’s functions associated with a quantum
scattering problem on curved surfaces. The comparison between DEC-based discretization and
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the finite difference method in flat surfaces is performed in Section 4.2. We closed the chapter
illustrating our DEC approach by calculating the conductance of a curved device. We observed
a qualitative change in the conductance as a function of energy, which goes from a smooth de-
pendence for a flat system to an irregular noisy type of behavior as the curvature is increased.
Finally, in Chapter 5 we give a summary of our main results and conclusions. In Appendix A,
the computational time efficiency of our numerical approach is analyzed.

1.2 LIST OF PUBLICATIONS

This thesis is based on the content of a manuscript. Under the supervision of A. M. S. MACÊDO,
W. R. DE OLIVEIRA and S. B. MELO we did:

∙ L. D. DA SILVA, C. A. BATISTA , I. R. R. GONZÁLEZ, A. M. S. MACÊDO, W. R.
DE OLIVEIRA, S. B. MELO. A discrete exterior calculus approach to quantum transport
and quantum chaos on surfaces. Journal of Computational and Theoretical Nanoscience.
2019.

In addition, in research conducted by C. A. BATISTA we produce:

∙ C. A. BATISTA , L. D. DA SILVA, I. R. R. GONZÁLEZ, A. M. S. MACÊDO, W. R. DE
OLIVEIRA, S. B. MELO. Quantum transport in curved surface. (Manuscript in prepara-
tion).
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2 BRIEF REVIEW ON QUANTUM TRANSPORT

In this chapter, we give the formal general definition of retarded and advanced Green functions.

2.1 QUANTUM SCATTERING THEORY

Figure 1 – Physical system defined as a scattering region connected to two semi-infinite leads.

right leadleft lead scattering region

Source: (SILVA et al., 2019)

Consider a system composed of a scattering region connected to two semi-infinite leads, as
shown in Figure 1. The wave function ψ of the scattered particle can be obtained by solving the
time-independent Schrödinger equation

(
− h̄2

2m
∇

2 +V (r)
)
·ψ(r) = Eψ(r), (2.1)

where m is the mass of the particle, E is the incident energy and V is the potential function. The
Green’s function associated with the scattering problem is defined by the equation

[E −H ] ·G(r,r′) = δ (r− r′), (2.2)

where δ is the Dirac delta function and the operator

H :=
(
− h̄2

2m
∇

2 +V (r)
)

(2.3)

is the Hamiltonian of the system.
In quantum scattering theory, knowing G(r,r′) with the appropriate boundary conditions

one can compute all observables of physical interest. For instance, the transmission coefficient
for particle transfer from the left lead to the right one can be calculated using the Landauer
formula (DATTA, 2005; MEIR; WINGREEN, 1992):

T (E) = Tr [ΓLGr(E)ΓRGa(E)] , (2.4)
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where Gr,a are the retarded and advanced Green’s functions of the entire system respectively
(including the coupling to the semi-infinite leads), and Γ{L,K} are the system-lead coupling
functions. The coupling functions can be written as

Γk = i(Σr
k(E)−Σ

r†

k (E)), (2.5)

where k ∈ {L,R} and Σr
k = ukgr

k(E)u
†
k represents the self-energy matrix that describes the spec-

tral effects of the coupling to the semi-infinite leads, gr
k(E) represents the Green’s function of

the kth isolated semi-infinite leads, and uk is the matrix that accounts for the coupling of the kth

lead to the scattering region. From its definition, the matrix Green’s function must satisfy, Gr =
(Ga)†, then, to calculate T (E), we must solve the algebraic equation

[εI −H −Σ
r
L(E)−Σ

r
R(E)] ·Gr = I, (2.6)

where ε = E + i0+ and I is the identity matrix. Among the transport properties that can be
computed from the solution of the scattering problem, we are particularly interested in the
system’s conductance, which is related to the transmission coefficient T (E) by the Landauer
formula (LANDAUER, 1989):

G0 = g0T (E), (2.7)

where g0 =
2e2

h is the conductance quantum.
Assuming that ΓL and ΓR are known, the problem of calculating the conductance is thus re-

duced to the computation of the Green’s function Gr for a given incident energy E, as suggested
in Eq. (2.4).

2.2 CALCULATING SELF-ENERGY

In this subsection, we will present a summary of the equations needed to calculate the self-
energy matrices. The details of the statements for each formula are outlined in chapters 5 and 6
of (DOLLFUS PHILIPPE; TRIOZON, 2016).

For numerical calculations, we can represent the physical system by a 2D structured mesh
with spacing equal to a. The stationary solutions of the Schrödinger equation in terms of the
transverse modes is given as

χp(i) =

√
2

M+1
sin
(

pπi
M+1

)
, (2.8)

where M + 1 is number of mesh steps along y, 0 ≤ i ≤ M + 1, p = 1, . . . ,M, and χ0(i) ≡ 0 ≡
χM+1(i). The dispersion relations for this model is:

Ep(k) =VL +Ep +2t0 [1− cos(kpa)] . (2.9)

with

Ep = 2t0

[
1− cos

(
pπ

M+1

)]
, (2.10)
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t0 =− h̄2

2ma2 (2.11)

and VL is the potential in the left lead.
The self-energy matrix for the left lead is given by :

Σ
r
L(i, i

′,E) =
M

∑
p=1

χp(i)χp(i′)gr
L(E), (2.12)

where gr
L(E) is the one-dimensional lead Green’s function expressed by

gr
L(E) =

(E + i0+−2t0 −VL −Ep)+
√
(E − i0+−2t0 −VL −Ep)

2 −4t2
0

2t2
0

(2.13)

where, whatever the energy, the complex square root is chosen with negative imaginary part.
From ΣL(E) one also obtains the ΓL(E) of Eq. 2.5:

Γ
r
L(i, i

′,E) = ∑
propagating modes p

χp(i)χp(i′)2t0 sin(kpa). (2.14)

The wave vector kp of mode p is given by:

kpa = arccos
(

1− E −VL −Ep

2t0

)
(2.15)

The matrices ΣR(E) and ΓR(E) are calculated using the Eqs. (2.9) - (2.15), with a potentially
different potential VR.

2.3 RECURSIVE TECHNIQUE

The recursive technique for calculating Green’s functions is based on slicing the device into
simpler subsystems, from which Green functions can be easily calculated. These subsystems
are then coupled using the Dyson equation (for a demonstration of these formula, see Ref.
(DATTA, 1997)):

G = g+gHG, (2.16)

where G is the full Green’s function, g is the Green’s function for a disconnected system, and
H describes the coupling between subsystems. In general, the idea is to break the system into
N subsystems, where we assume that the g function of the isolated slice is known (see Figure
2). The subsystems are added one by one; thus, the total Green’s function can be obtained
recursively using Eq. 2.16.
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Figure 2 – Slices scheme. Device connected to two semi-infinite leads, the device is divided
and N subsystems and coupled to the left and right leads. Here, H j, j+1, with j =
0, . . . ,N +1, is the coupling matrix between neighboring slices.

Left
lead

Right
lead

H0,1 H1,2 H2,3 HN,N+1

HN+1,NH3,2H2,1H1,0
0 1 2 3 · · ·

· · ·

· · ·

N N +1

i

j

Source: The author (2019)

We will illustrate the use of Dyson’s equation with an example. For this, suppose that the
Green’s function gL describing the isolated semi-infinite left leads. Let’s apply the Dyson equa-
tion to construct a Green’s functions family that couples the device to the left lead. Consider
a system consisting of two subsystems, would get GL

1,2, i.e., elements of the Green’s function
between the first and last column of the coupled system. The first step is to couple the first
column ( j = 1) to the Green’s function of the left lead. This can be done by projecting Eq. 2.16
between columns 0 and 1. Thus,

GL
1,1 = g1 +g1H1,0GL

0,1. (2.17)

To find the Green’s function GL
0,1, we apply the Dyson equation again

GL
0,1 = gLH0,1GL

1,1, (2.18)

where the function g is evaluated to zero since it is only set for slices isolated. Replacing (2.18)
in (2.17), we get

GL
1,1 = (g1 −H1,0gLH0,1)

−1 (2.19)

For column two ( j = 2), the Green’s function GL
2,2 is given by

GL
2,2 = g2 +g2H2,1GL

1,2 (2.20)

and

GL
1,2 = GL

1,1H1,2GL
2,2. (2.21)
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Again, replacing (2.21) in (2.20) we get

GL
2,2 =

(
g2 −H2,1GL

1,1H1,2
)−1

. (2.22)

Proceeding as above, we can obtain the following recurrence relations:

GL
j, j =

(
g j −H j, j−1GL

j−1, j−1H j−1, j
)−1

, (2.23)

GL
0, j = GL

0, j−1H j−1, jGL
j, j. (2.24)

with j = 2 . . .N.
The recursive technique is a convenient way to calculate specific Green’s functions in large

complex systems that can be divided into several connected subsystems. From the computa-
tional aspect, this recursive approach, for large systems, can be much faster than a direct solu-
tion of the Equation 2.6.
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3 DISCRETE EXTERIOR CALCULUS

3.1 A BRIEF REVIEW OF EXTERIOR CALCULUS

3.1.1 Forms in Rn

Let W be a vector space over the real numbers R and {ei}n
i=1 a basis of W . We first define a

real-valued linear functional ϕ on W to be a linear transformation of elements of W to the real
numbers R, i.e., ϕ : W →R. Thus for w1,w2 ∈W and a,b ∈R,

ϕ(aw1 +bw2) = aϕ(w1)+bϕ(w2). (3.1)

The collection of all linear functionals on W constitutes a vector space termed the dual space
to W , denoted as W *. The linear functionals φ 1,φ 2, . . . ,φ n of W * defined as the maps which
extracts the ith component of the vector constitutes the dual base of W *. The set {φ i}n

i=1 is in
fact the dual basis of {ei}n

i=1 since

(φ i)(e j) =

0, se i , j

1, se i = j.
(3.2)

Therefore, each elements ω ∈W * can be written as

ω = ∑αiφ
i, (3.3)

where αi are scalar-valued functions. These liner functionals are called forms from of degree
1 or simply 1-forms. For convenience we will adopt the notation Ω1(W ?) to refer the set of all
1-forms on W *.

Give w1,w2 ∈W and ϕ1,ϕ2 ∈W *, we define a exterior product (or wedge product) between
ϕ1 and ϕ2, denoted by ∧, as

ϕ
1 ∧ϕ

2(w1,w2) = det(ϕ i(w j)) (3.4)

Note that the exterior product is an alternate product (i.e., ϕ1 ∧ϕ2 = −ϕ2 ∧ϕ1) and bilinear
(i.e., ϕ in linear in each of its arguments) consequently

ϕ ∧ϕ = 0 for all ϕ ∈W * (3.5)

and

(aϕ1 +bϕ2)∧ϕ3 = a(ϕ1 ∧ϕ3)+b(ϕ2 ∧ϕ1), for a,b ∈R. (3.6)

The collection of all alternating bilinear functionals on W constitutes a vector space spanned by
the set {φ i ∧φ j, i < j}. Such space is often denoted by Ω2(W ?) and it’s elements called forms
of degree 2 or simply 2-forms on W ?. Thus, each element ω ∈ Ω2(W *) can be written as

ω = ∑
i< j

αi jφ
i ∧φ

j i, j = 1, . . . ,n, (3.7)
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where αi j are scalar-valued functions.
To generalize the notion of higher-order forms we must highlight the exterior product can

be extended to a large number of elements of the dual space setting

ϕ1 ∧ϕ2 ∧ . . .∧ϕk = det(ϕ i(w j)), i, j = 1, . . .k. (3.8)

It follows from the properties of determinants that ϕ1 ∧ ϕ2 ∧ . . .∧ ϕk is in fact k-liner and
alternate. An k-forms can be thought of as elements of the vector space Ωk(W ?) spanned by set

{φ
i1 ∧ . . .∧φ

ik ; i1 < .. . < ik, i = 1, . . . ,n}. (3.9)

Therefore, each element ω ∈ Ωk(W ?) can be written as

ω = ∑
i1<...<ik

αi1...ik(φ
i1 ∧ . . .∧φ

ik), i j ∈ {1, . . . ,n}, (3.10)

where αi1...ik are scalar-valued functions. When appropriate, we will denote by I the k-upla
(i1, . . . , ik), i1 < .. . < ik, i j ∈ {1, . . . ,n}, and will user the following notation for ω:

ω = ∑
I

αIφ
I. (3.11)

We also set the convention that Ω0(W *) is the space of scalar-valued functions called 0-forms.
For each p ∈ Rn the set Rn

p = {p − q : q ∈ Rn} is a vector space called tangent space
of Rn in p. A basis for its dual space (Rn

p)
* is obtained by taking (dxi)p, i = 1 . . .n, where

xi : Rn → R is the map which extracts the ith-coordinate of each point. It’s possible to show
that all linear functionals (dxi)p satisfy (3.2) and therefore are dual for tangent space Rn

p (see
proof in (MANFREDO, 1976)). Thus, in space Rn the expression (3.11) in terms of theses basis
is written as

ω = ∑
I

αIdxI. (3.12)

Example 3.1.1. A 1-form in R3:

ω = α1dx1 +α2dx2 +α3dx3.

Example 3.1.2. A 2-form in R3:

ω = α12dx1 ∧dx2 +α13dx1 ∧dx3 +α23dx2 ∧dx3.

3.1.2 Exterior derivative

For any differentiable function f ∈ Ω0(W *) the usual differential of the function f is the 1-form

d f = ∑
i

∂ f
∂xi

dxi. (3.13)
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The exterior derivative, denoted as d, is an operation that transforms a k-form ω into a (k+1)-
form dω by simple operation defined in (3.13) applied to the scalar-valued components of the
form. More precisely, if ω = ∑I αIdxI is a form in Rn the exterior derivative operator dω of ω

is defined by

dω = ∑
I

dαI ∧dxI. (3.14)

Give an arbitrary k-form ω1 and s-form ω2, the exterior derivative operator satisfies the follow-
ing properties:

d(ω1 +ω2) = dω1 +dω2, (3.15)

d(ω1 ∧ω2) = dω1 ∧ω2 +(−1)k
ω1 ∧dω2, (3.16)

d(dω1) = 0. (3.17)

Example 3.1.3. Consider a 1-form ω = xyzdx+ yzdy+(x+ z)dz in R3. Then, using (3.13),
(3.14), (3.15) and the properties (3.4) – (3.6) we get

dω = d(xyz)∧dx+d(yz)∧dy+d(x+ y)∧dz (3.18)

= (yzdx+ xzdy+ xydz)∧dx+(zdy+ ydz)∧dy+(dx+dz)∧dz (3.19)

=−xzdx∧dy+(1− xy)dx∧dz− ydy∧dz. (3.20)

In the language of differential forms, the Stokes’s Theorem in R3 says that the integral of
a differential form ω over the boundary of some orientable surface S is equal to the integral of
its exterior derivative dω over the whole of S, i.e.∫

S
dω =

∫
∂S

ω. (3.21)

The operation exterior derivative can be thought of as a generalization of the differential of a
function.

3.1.3 Hodge star

The Hodge star operator is a linear mapping from k-forms to (n−k)-forms, denoted as * : Ωk →
Ωn−k. The Hodge star transforms each subspace spanned by dxi1 ∧ . . .∧ dxik to an element of
the orthogonal subspace, i.e.,

*(dxi1 ∧ . . .∧dxik) = (−1)σ (dx j1 ∧ . . .∧dx jn−k), (3.22)

where the ordering of indices from i1 < .. . < ik, j1 < .. . < jn−k, (i1, . . . , ik, j1, . . . , jn−k) is a
permutation of the integers 1,2, . . . ,n, and σ is 0 or 1 according to permutation is even or odd,
respectively. So for example, if we consider the basic 1-forms dxi in R3, then

*dx1 = dx2 ∧dx3, (3.23)

*dx2 = dx1 ∧dx3, (3.24)

*dx3 = dx1 ∧dx2. (3.25)
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Example 3.1.4. If ω = α1dx1 +α2dx2 is a 1-form in R2, then

*ω = α1dx2 −α2dx1 (3.26)

Example 3.1.5. If ω = α12dx1 ∧dx2 +α13dx1 ∧dx3 +α23dx2 ∧dx3 is a 2-form in R3 then

*ω = α12dx3 −α13dx2 +α23dx1. (3.27)

The differential operators in vector calculus can be seen as special cases of the exterior
derivative and the Hodge star acting on a form of a particular degree. In Table 1 we describe the
gradient (grad), curl and divergent (div) in local coordinates and in exterior calculus notation.

Table 1 – In Cartesian coordinates of R3, f (x,y,z) is a scalar field and υ = (A,B,C) is a vector
field. In exterior calculus notation (third column), the f and F fields are differentiable
forms related to the f and υ fields by F = f [, ω = υ[. The [ operator converts a vector
to a 1-form.

Symbol Vector calculus (R3) Exterior calculus

grad f
∂ f
∂x

dx+
∂ f
∂y

dy+
∂ f
∂ z

dz dF

∇×υ

(
∂C
∂y

− ∂B
∂ z

)
dx
(

∂C
∂x

− ∂A
∂ z

)
dy+

(
∂B
∂x

− ∂A
∂y

)
dz *dω

divυ
∂A
∂x

+
∂B
∂y

+
∂C
∂ z

*d *ω

Source: adapted from (NESTLER et al., 2018)

3.1.4 Laplace-Beltrami

The Laplace-Beltrami operator, often denoted by ∇2, is the generalization of the Laplacian to
curved spaces. Therefore, it is used to operate on functions defined on surfaces in Euclidean
space and, more generally, on Riemannian manifolds. The Laplace-Beltrami operator, like the
Laplacian, is the divergence of the gradient. The formula for ∇2 when applied to a scalar func-
tion ϕ is, in local coordinate

∇
2
ϕ =

1√
|g|

∂

∂xi
(
√
|g|gi j ∂

∂xi
ϕ), (3.28)

where g is a metric.
How we know to write div, grad using exterior calculus (see Table 1), the Laplace-Beltrami

operator for 0-forms can be expressed by

∇
2 := *d *d. (3.29)
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3.1.5 Manifolds

A general manifold is a topological space that is locally Euclidean. For instance, curve, plane,
and sphere are all common examples manifolds. More precisely, an n-dimensional manifold (in
Rn) is a subset M of Rn together with an of a collection homeomorphisms to Euclidean space
called charts. These charts must be compatible such that the composition of a chart with the
inverse of an overlapping chart must also be a homeomorphism, and this homeomorphism is
termed the transition map. In order for the manifold to be suitable for calculus, it must be a
differentiable manifold the which requires that the transition maps be differentiable. The notion
of forms in a manifold can be extend using similar considerations for forms in space Rn, see
(SPIVAK, 1965; MANFREDO, 1976).

3.2 DISCRETE EXTERIOR CALCULUS

In this section, we present a brief description of the main tools of the DEC discretization proce-
dure. The discretization domain, the differential forms and operators will be presented in detail.
A more thorough presentation of the mathematical fundamentals of DEC can be found in Refs.
(DESBRUN; KANSO; TONG, 2008; HIRANI, 2003). For a careful description of the discrete exte-
rior calculus objects and their implementations, see (BELL; HIRANI, 2012; ELCOTT; SCHRODER,
2006; MOHAMED; HIRANI; SAMTANEY, 2016b). For a review on exterior calculus on manifolds,
see (SPIVAK, 1965).

3.2.1 Discrete domain

A simplicial complex K in RN is a collection of simplices in Rn such that

1. Every face of a simplex of K is in K .

2. The intersection of any two simplices of K is either a face of each of them or it is empty.

In DEC, the continuous spatial domain of dimensions n = 2,3 is approximated by a simpli-
cial complex K , which is a manifold that admits a metric and is orientable (MUNKRES, 1984).
Here, the simplices (nodes, edges and triangles) of K are denoted by σ k, where the superscript
index indicates the dimension of the simplex. For instance, in a 2D domain, σ0,σ1 and σ2 rep-
resent the nodes (0-simplex), edges (1-simplex) and triangles (2-simplex) of K , respectively.
Here, we will refer to a simplicial complex simply by a primal mesh K and denote by Nk the
number of its k-simplex.

From a primal mesh K one can construct a dual mesh ?K through the Voronoi duality
(circumcentric duality). Therefore, the dual mesh can be defined via the location of the circum-
center of each triangle of the primal mesh with the connectivity induced by the primal connec-
tivity (see Figure 3). For each k-simplex σ k ∈ K , its dual is a (n− k)-cell, which we denote
as ?σ k ∈ ?K . Geometrically, 0-cells associated with the triangular faces are the circumcenters
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of the triangles. The 1-cells associated with one of the primal edges are the orthogonal line
segments that connect the circumcenters of the triangles to their related primal edges, whereas
2-cells (polygons) associated with primal nodes are formed by the dual of the edges connected
to this primal nodes (see Figure 5). This article focuses on simplicial meshes over a flat/curved
surface, and therefore the simplices/cells involved are restricted to nodes, edges, triangle, and
their respective duals. The orientation of each element needs to be specified and must remain
consistent throughout all the mathematical operations. Here, the positive orientation of both
triangles and polygons are assumed to be counterclockwise. The orientation of the dual edges
can be defined by rotating the primal edge orientation (arbitrarily defined) 90 degrees along
the orientation of the triangle. In Figure 3 we shown an example of a primal and its dual two-
dimensional mesh. For a 3D mesh representing a curved surface, the dual edges can be twisted
lines and the dual cells can be non-planar.

Figure 3 – Example of a simplicial complex and its dual. The elements of the primal mesh (k-
simplices) are shown in black lines, while elements of the dual mesh ((n-k) -cell) are
represented by red dashed lines.

Source: (SILVA et al., 2019)

3.2.2 Discretization of differential forms

The fundamental objects of the DEC method are the discrete representatives of the contin-
uous differential forms. Given a k-form ω in Rn, a k-discrete form (denoted by ω̄) is a column
matrix of dimension Nk ×1 whose entries are given by a real number assigned to each σ k

i ∈ K

through the relation

ω̄i =
∫

σ k
i

ω, i = 1, · · · ,Nk. (3.30)

In terms of algebraic topology, the paths formed by a linear combination of k-simplices σ k

are called k-chains (see Figure 5) and the integral over these “paths”, i.e., the discrete forms
of dimension k, are called a primal k-cochain or simply a k-cochain (MUNKRES, 1984). By
convention the integral of a continuous 0-form ω over 0-dimensional objects is simply the
value of a form (continuous function) at the point, i.e., ω̄i = ω(σ0

i ).
Discrete forms can also be defined in a dual mesh. In this case, we may refer to the dis-

crete forms of dimension k as a dual k-cochain. Here, we will represent the space of primal
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k-cochain and dual k-cochain by C k(K ) and Dk(?K ), respectively. Such spaces are related
via the discrete exterior derivative and Hodge star operators as we will show in the following
subsections.

3.2.3 Discrete boundary operator

The kth discrete boundary operator, denoted by ∂k takes a k-chain to its (k−1)-chain boundary.
It is defined by its action on an oriented k-simplex σ k = {p0, p1, ..., pk}:

∂kσ
k = ∂k{p0, p1, ..., pk} :=

k

∑
j=0

(−1) j{p0, p1, ..., p̂ j, ..., pk} (3.31)

where p̂ j indicates that the jth term is omitted. To illustrate it’s action on a simplex we consider
a triangle oriented σ2 = {p1, p2, p3}. The boundary of σ2, by the above definition, is the chain
{p1, p2}−{p0, p2}+ {p1, p2}, which are the three boundary edges of the triangle. Since the
boundary operator is a linear map from k-chain to (k−1)-chain, it can simply be represented by
matrix of size Nk−1 ×Nk so that the action of ∂k on a k-chain is the usual matrix multiplication.

3.2.4 Discrete exterior derivative

The kth discrete exterior derivative, denoted by dk : C k(K )−→ C k+1(K ), is a linear map that
transforms a k-cochain into a (k+1)-cochain through the relation dk = ∂ T (see Figure 5), where
∂ is the boundary operator acting on simplices (see (MUNKRES, 1984)). In practical terms, the
discrete k-dimensional exterior derivative operator (reference to the k-cochain dimension) is the
incidence matrix (with sign) between σ k+1 and σ k of K (the signal is determined by relative
orientation of the simplices). Therefore, dk is a sparse Nk+1×Nk matrix whose nonzero elements
are 1 and -1. For example, the discrete exterior derivative operator acting on nodes of a 2D mesh
is an N1 ×N0 matrix defined by

(d0)i j =


+1, if j is the ending node of edge i,

−1, if j is the starting node of edge i,

0, otherwise.

(3.32)

The discrete exterior derivative operator acting on k-cochains in the dual mesh is defined by the
relation d̄k = (−1)kdT

k−1. However, the DEC version for Stokes’s theorem is given by∫
σ k+1

dkω̄
k =

∫
∂σ k+1

ω̄
k, (3.33)

where ∂σ k+1 is the k-chain boundary of σ k+1.
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3.2.5 Discrete Hodge star operator

The kth discrete Hodge star denoted by *k : C k(K ) −→ Dk−1(?K ) is linear map that trans-
forms primal k-cochains into dual (n− k)-cochains (see Figure 5). The DEC approach admits
several interpretations for the discrete Hodge star operator (MOHAMED; HIRANI; SAMTANEY,
2016a). Conveniently, we will use the Hodge circumcentric operator which is represented by a
diagonal matrix Nk ×Nk defined by

(*k)ii :=
|?σ k

i |
|σ k

i |
, (3.34)

where | · | indicates the primal and dual volume of the elements. For example, |σ1| represents
the length of the edge σ1 and |?σ0| the face area of the dual cell ?σ0. By conversion the volume
of a 0-simplex is equal to one. As described in (MOHAMED; HIRANI; SAMTANEY, 2016b), in the
3D mesh of a curved surface the length of a dual edge is its length as a twisted line. On the other
hand, for each primal node, its dual is the non-planar polygon consisting of sector contributions
from all flat triangles sharing the primal node, and its area is calculated accordingly as a non-
planar surface area.

The maps dual of (n− k)-cochains to primal k-cochains is realized by the inverse operator
*−1 (see Figure 5), which is the inverse of the matrix defined in Eq. (3.34).

The DEC approach admits other interpretations for the discrete Hodge star operator, the
most common being the Galerkin (BOSSAVIT, 1998) and barycentric definitions (AUCHMANN;

KURZ, 2006; TREVISAN; KETTUNEN, 2004). However, the Galerkin and the barycentric defini-
tions lead to sparse non-diagonal representations, which implies a higher computational cost, in
comparison with the diagonal definitions based on circumcentric duals (MOHAMED; HIRANI;

SAMTANEY, 2016a), without significant gains in accuracy (MOHAMED; HIRANI; SAMTANEY,
2018). Such alternative definitions would make our recursive method proposed in Subsection
4.1.2 a challenging task, to say the least.

3.2.6 Volume of circumcentric dual cells

The choice for the dual mesh, built through the circumcentric duality, is motivated by resulting
in a diagonal matrix representation for the Hodge star operator. As suggested by the Equation
(3.34), each nonzero element of this matrix depends on the volume of the primal and dual mesh
elements. In general, the calculation of the volume of primal elements is simple, so we will
focus on presenting the possibilities of calculating the volume of circuncentric dual cells. The
correct setting for such volume is crucial for the correct definition of the discrete Hodge star
operator. In this subsection, we will exemplify the use of the sign convention, established in (HI-

RANI; KALYANARAMAN; VANDERZEE, 2013), for the volume of dual cells. Numerical evidence
suggests that such convention enables DEC to work correctly with Delaunay and non-Delaunay
meshes, using the diagonal definition of the Hodge star operator (MOHAMED; HIRANI; SAM-

TANEY, 2018).



30

Figure 4 – (a) Delaunay mesh where c, p and A denote circumcenters, vertices and parts of
the dual areas to the vertex p0, respectively. The notation di, j refers to the distance
between the circumcenters ci and c j, while d0, j indicates the distance between I0 and
c j. (b) Delaunay mesh. (c) Non-Delaunay mesh.

(a)

(b) (c)

Source: The author (2019)

Figure 5(a), illustrate a typical 2D mesh, where all the circumcenters are within their as-
sociated triangles. In this case, dual edges such as ?{p0, p4}, are composed of two dual com-
ponents of two neighboring triangles ({p0, p4, p5} and {p0, p3, p4}), while dual face elements
(for example, shaded regions), consists of several parts from triangles sharing the same primal
vertex. For example, dual face ?{p0} is composed by 5 parts A1, . . . ,A5. In this case, we can
get the length of the dual edge ?{p1, p4} simply by summing the length of each component,
i.e., |?{p0, p4}| = d3,0 + d0,4, as illustrated in the Figure 5(a). On the other hand, the area of
red shaded 2-cell by summing over all its five parts, i.e., |?{p0}| = ∑

5
i |Ai|. Note that, for such

meshes, the volumes of circumcentric dual cells are obviously positive.
Figure 5(b) shows an example of a Delaunay mesh in which the circumcenter (c4) is outside

the triangle associated ({p0, p4, p5}). Then, |?{p1, p4}| = d3,4 = d3,0 − d0,4. It is noted that
volume of dual edge ?{p3, p4}, is still positive, although the sign of d0,4 be negative (HIRANI;

KALYANARAMAN; VANDERZEE, 2013). For this specific case, the calculation for the volume of
dual face is unaffected and therefore follows as previously defined, summing the area of all red
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shaded regions.
Figure 5(c), shows a sample non-Delaunay mesh with circumcenters c3 and c4 both outside

their associated triangles ({p0, p4, p5} and {p0, p3, p4}, respectively). According to the con-
vention (HIRANI; KALYANARAMAN; VANDERZEE, 2013) the dual edge ?{p0, p4} has a negative
volume, since it is oriented in the opposite direction to the orientation induced by the primal
edge (90∘ counterclockwise in relation to their primal edges). Still in Figure 5(c), as established
by (HIRANI; KALYANARAMAN; VANDERZEE, 2013), the dual cell area of ?{p0} can be found to
be the difference between right light red region (counterclockwise oriented) and left dark red
region (clockwise oriented). These are examples of signed volumes.

3.2.7 Discrete Laplace-Beltrami

The discrete Laplace-Beltrami operator on a k-cochain is given by

∇
2 := (−1)nk+1 *−1

k dT
k *k+1 dk, (3.35)

in which, n is the dimension of the discrete domain and 0 < k < n. Making k = 0 and n = 3 in
Eq. (3.35) we have the discretization of the Laplacian scalar in R3:

∇
2 =

∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂ z2 . (3.36)

Figure 5 – In the first line, the primal elements of a 2D mesh and in the second line their cor-
responding dual elements. In the horizontal, the derivative operator maps k-cochain
to (k+ 1)-cochain, whereas in the vertical direction the Hodge star operator and its
inverse mapping between primal k-cochain and dual (n− k)-cochain. (color online)

d0

*0 *−1
0

d1

*1 *−1
1

*2 *−1
2

−dT
0 dT

1

Source: (SILVA et al., 2019)

3.2.8 Example calculation

To clarify the ideas, we will illustrate how to calculate these operators. We will now produce the
matrices that represented the discrete operators acting on the two-dimensional triangle oriented
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σ2 = {p0, p1, p2}, with nodes p0, p1 and p2 at (0,0), (1,0) and (0.5,1), respectively. This
example, edges are oriented so that they point toward the node index of greater value and the
face counterclockwise, as shown Figure 7(a). Their corresponding dual cells are obtained by
taking the circumcentric dual of σ2. Figures 6(b)-(c) illustrate primal and dual elements color-
coded to represent the dual relationship between the elements in the primal and dual mesh.

Figure 6 – (a) The orientation of a triangle. (b) Primal elements. (c) Dual elements.

p0 p1

p2

(a) (b) (c)

Source: (SILVA et al., 2019)

The discrete exterior derivative, which acts on 0-cochain it can be thought of as the signed
matrix of incidence between edges and vertices of an oriented triangle. Similarly, the discrete
exterior derivative, which acts on 1-cochain, is the signed matrix of incidence between oriented
faces and edges. Thus, according to Figure 7(a):

d0 =


−1 1 0

−1 0 1

0 −1 1

 , d1 =
[
1 −1 1

]
. (3.37)

According to the definition of the Hodge star operator based on the circumcentric duality
and summarized in Eq. (3.34), the Hodge star matrices *0 and *1 which act on 0-cochain and
1-cochain are:

*0 ≈


0.17 0 0

0 0.17 1

0 0 0.15

 , *1 ≈


0.375 0 0

0 0.25 0

0 0 0.25

 . (3.38)

To calculate the DEC version of Laplace-Beltrami which act on 0-cochain, we use Eq. (3.35)
with n = 2 and k = 0. Hence L0 =−*−1

0 dT
0 *1 d0 yielding the matrix

L0 ≈


−3.67 2.20 1.47

2.20 −3.67 1.470

1.66 1.66 −3.33

 . (3.39)
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We present here how to compute the discrete operators acting on a simple triangle using
the notation of the discrete exterior calculus. It is important to note that the Hodge star oper-
ator depends on geometry. Therefore, the choice of mesh type directly influences the discrete
Laplace-Beltrami operator configuration. For our proposal, we will choose a structured mesh
composed of isosceles rectangle triangles. We will see later that this choice promotes a change
in the Hodge star operator so that the discrete Laplace-Beltrami, when subjected to the bound-
ary conditions of Dirichlet, is a sparse and tridiagonal matrix. In addition to the gain in storage
efficiency, it allows the use of efficient algorithms to compute the desired Green’s functions. On
the other hand, it is noteworthy that the choice of a uniform triangular mesh is convincing to
our problem but it is not reasonable for a DEC approach, for instance, of equations governing
fluid dynamics. In this context, the dual circumcenter would generate a singular matrix ?1 since
the circumcentric line would lie on the opposite edge of the right angle.
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4 GREEN’S FUNCTION

4.1 DISCRETE GREEN’S FUNCTION

In this section, we will show how to use the DEC scheme to calculate the retarded Green’s func-
tions Gr. In the first subsection, the discretization of full retarded Green’s functions is carried
out following the model described in (DATTA, 2005) but replacing the standard numerical dis-
cretization by the DEC approach. In the second subsection, we begin with the three-dimensional
DEC discretization of Schrödinger equation and then introduce a technique, based on the effi-
cient recursive Green’s function (RGF) method (THOULESS; KIRKPATRICK, 1981), to calculate
the conductance of a curved sample.

The curved system adopted here are discretized by a simplicial mesh consisting of flat tri-
angles connecting the primal nodes, where each of the primal nodes are positioned on a smooth
surface. The surface S is the result of the deformation in vertical direction of a structured-
triangular mesh D (consisting of isosceles right triangles) through a smooth application ϕ , as
illustrated in Figure 7. The resulting triangulation is a curved non-Delaunay mesh. Previous
investigation (MOHAMED; HIRANI; SAMTANEY, 2018) showed that DEC solutions using circu-
mentric dual and the diagonal Hodge star definitions produce correct numerical solutions even
with non-Delaunay triangulations. For instance, the simulation of an inviscid incompressible
flow over a non-Delaunay triangulation of a sinusoidal curved surface (generated similar to
S) showed insignificant differences between the Delaunay and the non-Delaunay triangulations.
According to the authors, it is essential to correctly consider the signed volume for some flipped
dual edges and overlapping dual cells that are present in these meshes (see Subsection 3.2.6).
Such convention for signed volumes is essential to represent the discrete Hodge star opera-
tor in non-Delaunay meshes correctly. The sign convention is discussed in detail in (HIRANI;

KALYANARAMAN; VANDERZEE, 2013).

Figure 7 – Embedding of a two-dimensional surface in three-dimensional space.

D
ϕ−→ S

Source: (SILVA et al., 2019)
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4.1.1 Full retarded Green’s function

This discretization was prepared by adapting the procedure used by CHEN; CHEW when present-
ing discrete Green’s functions of a wave equation (CHEN; CHEW, 2017a). In discrete exterior
calculus the potential function V (r) (Eq. (2.1)) is treated as a N0 ×1 column array (0-cochain)
defined by

V̄ =


V̄1
...

V̄N0

 , V̄i ≡V (σ0
i ). (4.1)

According to the Eq. (3.35) the Schrödinger’s Hamiltonian can be written as a N0 ×N0 matrix

H̄ =

(
h̄2

2m

(
*−1

0 dT
0 *1 d0

)
−Ū

)
, (4.2)

where Ū is a diagonal matrix whose main diagonal is formed by V̄ , i.e, Ū = diag(V̄ ).
In Eq. (2.2), for each given r′, G(r,r′), in DEC notation, is treated as a N0×1 column array

(0-cochain). Since r′ has N0 possibilities of choices, Green’s function G(r,r′) can be considered
as a N0 ×N0 matrix Ḡ. Analogously, for any given r′, the Dirac delta function δ (r,r′) is treated
as a N0×1 column array (2-cochain) which has value 1 if r= r′ and zero otherwise. Therefore, a
discrete Dirac delta function can be replaced by a N0×N0 identity matrix. The Green’s function
is then the solution of equation[

EĪ +
h̄2

2m

(
*−1

0 dT
0 *1 d0

)
−Ū

]
· Ḡ = Ī. (4.3)

The Dirichlet boundary condition is implemented in Eq. (4.3) simply by assigning the value
zero on all entries referring to primal nodes of the surface mesh boundary. Therefore,

Ḡ =

[
EĪ +

h̄2

2m

(
*−1

0 dT
0 *1 d0

)
−Ū

]−1

(4.4)

is the discrete solution of Green’s function in an surface mesh.
Assuming that the Green’s functions on the left and right leads are known, the full retarded

Green’s function Ḡr can be expressed as

Ḡr =

[
ε Ī +

h̄2

2m

(
*−1

0 dT
0 *1 d0

)
−Ū − Σ̄L − Σ̄R

]−1

, (4.5)
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where

Σ̄L =


Σr

L 0 . . . 0

0 0
... 0

... . . .
. . .

...

0 . . . . . . 0


N0×N0

, Σ̄R =


0 0 . . . 0

0 0
... 0

... . . .
. . .

...

0 . . . . . . Σr
R


N0×N0

. (4.6)

Note that a solution for Ḡr would correspond to the inversion of an N0 ×N0 matrix, where
N0 is the number of nodes in the system. Therefore, is not efficient to evaluate directly the full
retarded Green’s function, Ḡr, in large systems. In the next subsection, we will show the DEC
version of the tight-binding representation of the system’s Hamiltonian, and then recursively
build the full retarded Green’s function.

4.1.2 The DEC recursive technique for the Green’s functions

Figure 8 – Voronoi cell. The dual 2-cell ?pi, j is marked dashed lines.

pi, j

pi+1, j

pi, j−1

pi−1, j−1 pi−1, j

pi, j+1

pi+1, j+1

Source: (SILVA et al., 2019)

We start by considering the Schrödinger equation in three-dimensional space, which is given
by (

− h̄2

2m

(
d2

dx2 +
d2

dy2 +
d2

dz2

)
+V (x,y,z)

)
·ψ(x,y,z) = Eψ(x,y,z). (4.7)

For each primal node pi j we may write in DEC notation

(H ψ̄(x,y,z))|pi, j=(x,y,z) =− h̄2

2m

(
*−1

0 dT
0 *1 d0

)
ψ̄(pi, j)+V̄ (pi, j)ψ̄(pi, j), (4.8)

in which we defined ψ̄(pi, j) = ψ̄i, j, V̄ (pi, j) = V̄i, j so that Eq. (4.8) can be written as

H ψ̄i, j =− h̄2

2m

(
*−1

0 dT
0 *1 d0

)
ψ̄i, j +V̄i, jψ̄i, j. (4.9)



37

Now consider a primal edge ei+s, j+k such that ∂ei+s, j+k = {pi, j, pi+s, j+k}, with s,k = {0,±1}
(see Figure 8). The subscripts i and j refer to the position of primal nodes in the transverse and
longitudinal directions, respectively. Then, for each ei+s, j+k we have

(d0ψ̄)i, j =
∫

ei+s, j+k

dψ̄ =
∫

∂ei+s,i+k

ψ̄ = (ψ̄i+s, j+k − ψ̄i, j), (4.10)

consequently,

(*1d0ψ̄)i, j =
|? ei+s, j+k|
|ei+s, j+k|

(ψ̄i+s, j+k − ψ̄i, j). (4.11)

The r.h.s. of Eq. (4.10) then follows from (3.33). Taking the exterior derivative of the dual edge
Eq. (4.11) we find

(
dT

0 *1 d0ψ̄
)

i, j =
∫
(?pi, j)

d *dψ̄ =
∫

∂ (?pi, j)
*dψ̄ = ∑

s=0,±1
∑

k=0,±1

|? ei+s, j+k|
|ei+s, j+k|

(ψ̄i+s, j+k − ψ̄i, j)

(4.12)

with (s,k) , (0,0). Finally, applying *−1
0 to Eq. (4.12) we get

(
*−1

0 dT
0 *1 d0ψ̄

)
i, j = ∑

s=0,±1
∑

k=0,±1

|? ei+s, j+k|
|? pi, j||ei+s, j+k|

(ψ̄i+s, j+k − ψ̄i, j) (s,k) , (0,0). (4.13)

Therefore, the Schrödinger equation in DEC representation is given by

−ti, j+1ψ̄i, j+1 − ti, j−1ψ̄i, j−1 − ti+1, jψ̄i+1, j − ti−1, jψ̄i−1, j − ti+1, j+1ψ̄i+1, j+1 − ti−1, j−1ψ̄i−1, j−1

+
(
V̄i, j + ti, j+1 + ti, j−1 + ti+1, j + ti−1, j + ti+1, j+1 + ti−1, j−1

)
ψ̄i, j = Eψ̄i, j,

(4.14)

where

ti+s, j+k =
h̄2

2m
|? ei+s, j+k|

|? pi, j||ei+s, j+k|
(4.15)

with s,k ∈ {0,±1} and (s,k) , (0,0) are the hopping parameters for each slice in the transverse
and longitudinal directions of the mesh.

The DEC version of the recursive technique for the Green’s function is based on the slicing
scheme, extensively used in flat systems (MACKINNON, 1985; USUKI et al., 1995; LAKE et al.,
1997; LEWENKOPF; MUCCIOLO, 2013). In short, the slicing scheme consists in assuming that
we can find the solution for each slice in the scattering region, and this slice is coupled to the
preceding and succeeding slices by the hopping matrix terms of the discretized Schödinger
equation. The system can be decomposed into N slices indexed by j containing M primal nodes
as i = 1, . . . ,M, as shown in Figure 9. Slices with numbers 0 and N + 1 represent the left and
right leads, respectively. Here, we to adapting the procedures described in (FERRY; GOODNICK;

BIRD, 2009) for our DEC-based Schödinger equation.
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Figure 9 – Curved surface mesh (scattering region) used in the recursive Green’s function ap-
proach. The color of the face of the triangles are mapped from the smallest (light
color) to the largest deformation (dark color) in relation to the plane.

0 1 . . .. . . . . .. . . . . . . . .. . . N +1N
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1

...

...
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M

M+1

i

j

Source: (SILVA et al., 2019)

Rewriting Eq. (4.14) as a matrix equation we obtain

H jΨ j −TjΨ j−1 −T *
j Ψ j+1 −Tj−1Ψ j−1 −Tj+1Ψ j+1 = EIΨ j, (4.16)

where

Ψ j =


ψ j,1

ψ j,2

...

ψ j,M

 (4.17)

is vector wave function, at slice j, and

Tj =


t j,1 0 ... 0

0 t j,2 ... ...

... ... ... ...

... ... ... t j,M

 , (4.18)

Tj+1 =



0 t j+1,1 0 ... 0

0 0 t j+1,2 ... ...

0 0 ... ... 0

... ... ... 0 t j+1,M−1

... ... ... 0 0


, Tj−1 =



0 0 ... ... ...

t j−1,1 0 ... ... ...

0 t j−1,2 ... ... ...

0 ... ... 0 0

... ... 0 t j−1,M−1 0


.

(4.19)



39

From Eq. (4.16) we conclude that the Hamiltonian of the system is a tridiagonal block of di-
mension N ·M ×N ·M where the jth block is the Hamiltonian of the jth isolated slice given
by

H j =


h0(1, j) t2, j . . . 0

t1, j h0(2, j) . . . . . .

. . . . . . . . . tM, j

0 . . . tM−1, j h0(M, j)

 , (4.20)

with

h0(i, j) = ∑
s=0,±1

∑
k=0,±1

ti+s, j+k +V̄i, j (s,k) , (0,0). (4.21)

The hopping matrices that make the coupling between the slices j and j + 1 have dimension
M×M and are given by

H j, j+1 = Tj +Tj+1, H j+1, j = Tj +Tj−1 (4.22)

The recursive process is started by calculating the Green’s function of the first slice

gr
1,1 = [E −H1 −Σ

r
L]
−1 . (4.23)

Then, for each j > 1, we calculate the Green’s functions for each slice through the following
recurrence relations (LAKE et al., 1997):

gr
j+1, j+1 =

[
E −H j+1 −H j+1, jgr

j, jH j, j+1
]−1 (4.24)

gr
j+1,1 = gr

j+1, j+1H j+1, jgr
j,1 (4.25)

Finally, in the Nth slice, we obtain Gr
N,1 with

Gr
N,N =

[
E −HN −HN,N−1gr

N−1,N−1HN−1,N −Σ
r
R
]−1 (4.26)

Gr
N,1 = Gr

N,NHN,N−1gr
N−1,1 (4.27)

The transmission at energy E is calculated using the formula (MEIR; WINGREEN, 1992):

T (E) = Tr
[
ΓLGr

N,1(E)ΓRGa
1,N(E)

]
, (4.28)

where Ga
1,N =

[
Gr

N,1

]†
.

To summarize, the algorithm to obtain Gr
N,1 is:
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Algorithm 1: DEC-based algorithm to calculate the retarded Green’s functions
Data: Simplicial mesh K

Result: Gr
N,1

compute Σr
L and Σr

R (Eq. (2.12);
compute gr

1,1 (Eq. (4.23);
foreach primal edge in the interior of K do

compute the volume according to sign convention Ref. (HIRANI; KALYANARAMAN;

VANDERZEE, 2013)
end
foreach dual edges and dual cells in the interior of ?K do

compute the volume according to sign convention Ref. (HIRANI; KALYANARAMAN;

VANDERZEE, 2013)
end
for j = 1 to N do

compute the matrices (4.18), (4.19) and (4.20);
compute gr

j+1, j+1 (Eq. (4.24);

compute gr
j+1,1 (Eq. (4.25);

if j is equal to N then
compute Gr

N,N (Eq. (4.26));
compute Gr

N,1 (Eq. (4.27));

end
end

The computational cost of the our approach is in line with the typical RGF, i.e. it scales
as N ×M3, where N is the number of slices and M is the typical number of nodes in a given
slice, see Figure 9. The recursive scheme presented here is particularly recommended for large
systems in the presence of curvature. A schematic description of the whole procedure is shown
in Figure 10. A performance comparison of the implementation of the models described in this
section will be discussed in appendix A.
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Figure 10 – Schematic depiction of the DEC-based procedure to calculate the retarded Green’s
functions. (color online)

Full operators
Laplacian → d0, ∗0, ∗1

Self-energy
Σ̄R, Σ̄L
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Gr
1N , Gr

NN

DEC

DEC

Full inversion

GFR

Less fast

Faster

Source: (SILVA et al., 2019)

4.2 COMPARISON WITH FINITE DIFFERENCE IN FLAT SURFACE

Figure 11 – 2D structured-triangular mesh representing a flat surface with its primal e dual el-
ements. The dual 2-cell ?pi, j is marked dashed lines and the dual 0-cells (circum-
centers) marked with circles.

pi, j
pi, j+1pi, j−1

pi−1, j−1

pi+1, j

pi−1, j

pi+1, j+1

e i+
1,

j+
1

e i−1,
j−1

Source: (SILVA et al., 2019)

In order to compare the proposed DEC method with a known discretization method we consider
the two-dimensional Schrödinger equation in flat space. The pairs of triangles that share the
primal edges ei+1, j+1 and ei−1, j−1, have their circumcenters located at the same location (see
Figure 11), then their respective dual edges have zero length. Defining triangular mesh with
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lattice spacing a, the discrete Hodge star operators corresponding to nodes and edges are *0 = 1
and *1 = a2, respectively. With due replacements in Eq. (4.15) we obtain

t0 = ti, j+1 = ti, j−1 = ti+1, j = ti−1, j =
h̄2

2ma2 , (4.29)

(4.30)

which leads to writing Eq. (4.14) as

t0
(
−ψ̄i, j+1 − ψ̄i, j−1 − ψ̄i+1, j − ψ̄i−1, j

)
+
(
4t0 +Vi, j

)
ψ̄i, j = Eψ̄i, j. (4.31)

Equation (4.31) coincides with the discrete representation of the Schrödinger equation in flat do-
mains obtained with the FDM approach. Therefore, in addition to working with curved surfaces,
our DEC-based discretization shares the advantages of FDM when submitted to structured-
triangular mesh in flat space. In Appendix B, we present our DEC approach in quantum numer-
ical simulations for both one-dimensional and two-dimensional domains (flat surface).
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4.3 NUMERICAL RESULTS

As a simple application of our approach to an open system, we calculate the conductance of
a curved sample. More specifically, the curved surface was generated by first generating a
structured-triangular mesh (consisting of isosceles right triangles and vertical and horizontal
spacing set to a = 0.4nm) on a L×W rectangular domain and then setting the z-coordinate
value for the nodes as z = ϕ(x,y) = Aexp(−(x2 + y2)/b2) (see Figure 7). The A parameter
controls the maximum height of the Gaussian surface. Here, we have chosen values of b of
the order 0.2 times of the system’s width. The isolated semi-infinite leads Green’s functions gr

L

and gr
R (see Section 2.1) were approximated using the two-dimensional tight-binding Hamilto-

nian (FERRY; GOODNICK; BIRD, 2009). To emphasize the influence of curvature on the values
of the conductance we considered the simplest case where the potential energy vanishes. Our
DEC-based recursive technique is then used to obtain Gr

N,N and Gr
N,1. Transmission coefficients

were calculated using Eq. (4.28), which in turn were used to calculate the conductance via the
Landauer formula.

Figure 12 – (a) Conductance versus energy of a curved system (L = 24nm and W = 12nm) for
increasing values of the curvature parametrized by the height A. (b) Cross-section
of the Gaussian surface for four values of A.
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Figure 13(a) shows the calculated conductance of curved systems with different levels of
curvature, parametrized by the height A, as shown in Figure 12. Continuous line (relative to
A = 0, i.e, for flat surface) can be related to the number of modes available for propagation. The
qualitative change in the behavior of the conductance as a function of energy (for increasing
curvatures) provides an interesting evidence of a possible crossover from an integrable regime,
characterized by smooth conductance steps, towards a fluctuating Ericson-like energy depen-
dence, typical of mixed or even chaotic systems (GUHR; MÜLLER-GROELING; WEIDENMÜLLER,
1998). A more detailed analysis of this curvature induced crossover in open systems is beyond
the scope of this thesis and is left for a future work.
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5 CONCLUSIONS

A discrete exterior calculus discretization of Schrödinger equation and of the associated Green’s
functions was developed. The discretizations were carried out through the discrete exterior cal-
culus operators defined on a structured simplicial mesh and its circumcentric duality. Such an
approach paved the way for the formulation of the DEC-based tight-binding Hamiltonian mak-
ing it possible to explore the application of the recursive Green’s function method in our model.
Our approach results in an efficient method for the calculation of conductance on arbitrary sur-
faces with and without the presence of curvature. The ability to deal with curvature comprises a
fundamental distinction between the DEC-based approach and others, such as FDM and FEM.
It is worth remarking that as DEC is also applicable to unstructured simplicial meshes, we could
have taken this approach to deal with curvature, but this choice would force the use of the full
inversion model which, due to its complexity, makes quantum transport simulation in large sys-
tems impracticable. As an application to our DEC approach, we calculated the conductance of
a curved quantum device coupled to two electron reservoirs. In this case, we found numerical
evidences of a curvature induced integrable-chaotic crossover. Such evidence collaborates with
investigations carried out in (SILVA et al., 2019), where, using the DEC formalism, the possible
curvature-induced integrable-chaotic crossing is characterized through the statistical analysis of
the corresponding spectra.

An additional merit of the presented methodology was to suppress the implement the dis-
crete exterior derivative (d0). As can be seen in Eq. (4.14), our tight-binding Hamiltonian de-
pends only on the discrete Hodge star operators (*0 and *1) which in turn are restricted to the
calculation of the length of primal and the calculation of the a flat or non-flat surface area, as
described in Section 3.2.

We intend to extend the present work by proposing a DEC-based version of the covariant
formulation of the Dirac equation in a curved space (LICHNEROWICZ, 1964; BIRRELL; BIRRELL;

DAVIES, 1984) and use it to investigate the effects of curvature and topology on the electronic
properties of a curved graphene sheet. Furthermore, we are developing a Python package with
DEC-based algorithms to calculate transport properties in curved quantum systems for public
use. There already exist several codes for solving the scattering problem (e.g., (KAZYMYRENKO;

WAINTAL, 2008; GROTH et al., 2014)). However, so far, there is no package whose primary em-
phasis is to solve the scattering problem in complex geometries in the presence of curvature.
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APPENDIX A – PERFORMANCE

We now show the performance comparison of the implementation of the recursive technique in
Eqs. (4.26) and (4.27) and the full matrix inversion of Eq. (4.5), both corresponding to DEC
applied to a standard quantum scattering problem: the calculation of conductance of a square
curved system for a given fixed energy E. The system consists of L×L nodes that belong to a
simplicial 3D mesh structured square (see Figure 9). The coupling of the system to the left and
right semi-infinite leads of width L are attached. Measurements were performed on a computer
with a 64-bit AMD A8-4500M processor and 8GiB of main memory running a GNU/Linux
distribution with the SciPy (JONES; OLIPHANT; PETERSON, 2001) and NumPy (OLIPHANT, 2007)
packages.

Figure 13 shows the dependence of the running time on L and compares the Green’s function
implementations based on DEC. The codes of both were written entirely in Python (using the
NumPy and SciPy packages). One can see that for large system sizes, the recursive approach is
up to a thousand times faster than the inversion method. As expected, our DEC-based approach
has computational cost similar to FDM in calculating Green’s functions as part of the solution
to a scattering problem, i.e., O(L4).

Figure 13 – Time used to calculate the conductance of a curved square system of lateral length
L. Circles: solutions using DEC full inversion implementation. Square: solutions
using DEC recursive implementation. The lines show the theoretically expected
sizing for large L: O(L6) for full inversion, O(L4) for the recursive technique.
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APPENDIX B – NUMERICAL SIMULATIONS

B.1 ONE-DIMENSIONAL QUANTUM WIRE

We compute the transmission probability through a one-dimensional quantum wire. The trans-
mission probability is calculated using the Green’s function approach. The problem of solving
for the Green’s functions numerically is formulated using the DEC (see Section 4.1.2). In Figure
15(a) shows the result of a numerical simulation using our DEC code compares with theoretical
solution (FERRY; GOODNICK, 1997).

Figure 14 – The transmission coefficient calculated as a function of the electron energy.
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(a) Transmission probability versus energy for a
simple symmetric barrier. Transmission versus en-
ergy for a simple symmetric barrier with length W =
5. In this calculation, the wire width is L = 5, and
V0 = 10. The solid line corresponds to theoretical so-
lution and circles are calculated using the DEC code.
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a = 0.2.
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(b) Transmission probability versus energy for a
double symmetric barrier with constant potential
V = 1.355 and width of the 0.23L. Here, the wire
width is L = 1.0. The solid line corresponds to the-
oretical solution and circles are calculated using the
DEC code. The average distance between the DEC
mesh nodes a = 0.2.

Source: The author (2019)

B.2 TWO-DIMENSIONAL QUANTUM WIRE

We compute the transmission probability through a two-dimensional quantum wire (flat sur-
face). The transmission probability is calculated using the Green’s function approach. The prob-
lem of solving for the Green’s functions numerically is formulated using the DEC (see Section
4.1.2). Figure 15 shows the results of a numerical simulations using our DEC code (Figure
16(b) compares with Kwant software (Figure 16(a)) (GROTH et al., 2014) (Python package for
numerical calculations on tight-binding models).
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Figure 15 – The transmission probability calculated as a function of the electron energy. The
system is represented by a flat surface with length L = 8nm and width W = 4nm.
The distance between the DEC mesh nodes a = 0.5nm. The potential energy V at
each vertex varies between −t0 and t0.

(a) Kwat 1.3. (b) DEC code.

Source: The author (2019)
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